

SpringerBriefs in Computer Science

Series Editors

Stan Zdonik
Peng Ning
Shashi Shekhar
Jonathan Katz
Xindong Wu
Lakhmi C. Jain
David Padua
Xuemin Shen
Borko Furht
V. S. Subrahmanian
Martial Hebert
Katsushi Ikeuchi
Bruno Siciliano

For further volumes:
http://www.springer.com/series/10028

Márcio Moretto Ribeiro

Belief Revision in
Non-Classical Logics

123

Márcio Moretto Ribeiro
Centro de Lógica Epistemologia e História da Ciência
UNICAMP
Campinas, São Paulo
Brazil

ISSN 2191-5768 ISSN 2191-5776 (electronic)
ISBN 978-1-4471-4185-3 ISBN 978-1-4471-4186-0 (eBook)
DOI 10.1007/978-1-4471-4186-0
Springer London Heidelberg New York Dordrecht

Library of Congress Control Number: 2012941631

� The Author(s) 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To Professor Renata Wassermann

Preface

This work started when I first met my adviser, Renata Wassermann, during my
under-graduation and it finishes now 7 years later. In the first years of work I had
the privilege of meeting professor Grigoris Antoniou who presented me the work
of his student Giorgos Flouris. Me and Renata were already working with belief
revision in Description Logics and Flouris had just presented their results on AGM
compliance. Although extremely interesting, their results were negative. They
showed essentially how AGM theory was not applicable to several interesting
Description Logics such as the ones behind OWL.

We decided then to investigate how to adapt AGM theory to make it applicable
to these and other logics. First, we investigated contraction in belief sets and then
revision both in belief bases and belief sets. In 2010, I finished my Ph.D. thesis
which was elected the best thesis in Computer Science of that year by the Brasilian
Society of Computer Science. This is why it was published.

To make it look like a book the thesis suffered some modifications. Some
classical results were proved to make it more self-contained. Some results were
removed because they were less related with the subject.

I would like to acknowledge many people, but I will mention just some. First
and most important I would like to thank Renata. In many ways this can be
considered our joint work.

For funding this work I want to thank CNPq (Conselho Nacional de Desen-
volvimento Científico e Tecnológico) and FAPESP (Fundação de Amparo a
Pesquisa do Estado de São Paulo)

I would like to thank people from LIAMF, especially professor Marcelo Finger,
professor Leliane Nunes, and professor Fabio Cozman who is not officially from
LIAMF, but is always present. Some of the works that I started in LIAMF are
being continued by some students who are doing a great job. I would like to
mention Filipe Resina who is implementing the algorithms presented in this book
and Renato Lundberg who is investigating the relation between kernel and
remainder set.

I am in debt with everyone who hosted me in Europe, especially professor
Griogoris Antoniou, Giorgos Flouris, and professor Andreas Herzig. I would also

vii

like to thank the people from my current work in CLE (Centro de Lógica Epis-
temologia e Historia da Ciência), especially my current adviser professor Marcelo
Coniglio.

Finally, I would like to mention everyone who supported me all these years, my
friends in Vinhedo, my friends in São Paulo, my colleagues from my under-
graduation course, my family, and my beloved Bianca.

viii Preface

Contents

1 Introduction . 1
1.1 Belief Revision . 2
1.2 Belief Sets and Belief Bases . 3
1.3 Postulates and Constructions . 3
1.4 Non-Classical Logics . 4
1.5 Belief Revision in Non-Classical Logics 5
1.6 Organization of the Book . 5
References . 6

2 Consequence . 7
2.1 Tarskian Consequence Operator . 8
2.2 Consequence Relation . 10

2.2.1 Properties of the Consequence Operator. 10
2.3 Standard Languages . 14
2.4 Conclusion . 17
References . 17

3 Logics . 19
3.1 Classical Propositional Logic . 20

3.1.1 Language . 20
3.1.2 Semantic . 20
3.1.3 Axiomatic System. 21
3.1.4 Properties. 25

3.2 Intuitionistic Logic . 26
3.2.1 Semantics. 26
3.2.2 Axiomatic System. 27
3.2.3 Properties. 29

3.3 Horn Logic (Horn). 30
3.3.1 Properties. 31

ix

3.4 Description Logics. 32
3.4.1 Language . 33
3.4.2 Semantics. 34
3.4.3 Extensions of ALC . 35
3.4.4 OWL. 37
3.4.5 Properties. 38

3.5 Conclusion . 42
References . 43

4 Classical Belief Revision . 45
4.1 Belief Systems . 45
4.2 AGM Theory . 47

4.2.1 AGM Contraction . 48
4.2.2 AGM Revision . 53

4.3 Belief Base Theory . 56
4.3.1 Base Contraction. 57
4.3.2 Belief Base Revision . 62
4.3.3 Belief Base Semi-Revision . 66

4.4 Conclusion . 69
References . 70

5 AGM Contraction in Non-Classical Logics 71
5.1 Generalized AGM Postulates . 72
5.2 AGM Compliance . 73
5.3 Relevance Compliance . 75
5.4 Relevance and Partial Meet Contraction 76
5.5 Rationality . 79
5.6 Conclusion . 81
References . 82

6 AGM Revision in Logics Without Negation. 83
6.1 Generalized Postulates . 84
6.2 Construction . 84
6.3 Representation Theorems . 86
6.4 Conclusion . 89
References . 89

7 Base Revision in Logics Without Negation 91
7.1 External Revision Without Negation . 92

7.1.1 External Kernel Revision With Strong Success. 93
7.1.2 External Kernel Revision with Strong Consistency 95
7.1.3 External Partial Meet Revision with Strong Success 96

x Contents

7.1.4 External Partial Meet Revision
with Strong Consistency . 98

7.2 Internal Revision Without Negation . 99
7.2.1 Internal Partial Meet Revision 100
7.2.2 Internal Kernel Revision . 101

7.3 Conclusion . 103
References . 104

8 Algorithms for Belief Bases . 105
8.1 Computing One a-Kernel . 105
8.2 Minimal Cuts . 107
8.3 Computing the Kernel . 108
8.4 Computing the Remainder Set. 109
8.5 Kernel and Remainder Sets. 110
8.6 Conclusion . 112
References . 113

9 Conclusion . 115
References . 117

Index . 119

Contents xi

Chapter 1
Introduction

Abstract Belief revision is a mature research field that deals with the dynamics
of epistemic states. It has applications in many different areas such as computer
science, philosophy, and law. In the past decade, specially motivated by semantic
Web applications, the interest in applying belief revision theory to non-classical
logics has grown rapidly. The first results on belief revision in Description Logics
(DL) showed problems in applying “classical belief revision theory” (AGM theory)
to these logics. The aim of this book is to show how to adapt belief revision theory
to make it applicable to a wider class of logics that includes most DLs.

Keywords Belief revision · Belief bases · Non-classical logics · Semantic web· Ontology evolution

In our everyday life we are constantly changing our mind. Some months ago, for
example, I did not believe that I would write a book in a near future, but now I do.
In this simple case of belief change I only needed to add a new piece of information
to my beliefs. Sometimes, however, changing our beliefs can be more complicated.

Consider the following example:

Example 1.1 My friend Aristotle believed that every man is mortal. He also believed
that Socrates is a man. Hence, he believed that Socrates is mortal. However, talking
with her friend Hannah she convinced him that Socrates’ accomplishments made
him immortal.

How should Aristotle incorporate this new belief? This new piece of information
certainly contradicts what he believed earlier. Hence, Aristotle has to abandon certain
beliefs to accommodate the new belief that Socrates is immortal. However, it is not
obvious which beliefs should he drop. He may consider Socrates a kind of demigod
and abandon his belief that he is a man or that not every man is mortal for example.
In the latter case he may consider that every man except certain ones are mortal. Any
of these possibilities seem plausible a priori.

Furthermore, information is expensive. It would be irrational for Aristotle to
abandon more beliefs than he has to. Aristotle would seem irrational if, in order to

M. M. Ribeiro, Belief Revision in Non-Classical Logics, 1
SpringerBriefs in Computer Science,
DOI: 10.1007/978-1-4471-4186-0_1, © The Author(s) 2013

2 1 Introduction

accommodate this new piece of information, he abandoned his beliefs about democ-
racy, for example.

1.1 Belief Revision

Belief revision is the research field that studies the rationality of belief change, i.e.,
how do rational agents change their beliefs and how should they change it. Before
presenting the dynamics of belief, we need to clarify what we understand by belief.

When we talk about belief we do not mean belief as in “I believe in what my
mother say” or in “I believe in God”. We are interested in the meaning of belief as in
“Aristotle believes that Socrates is mortal”, i.e., belief as a relation between an agent
and a proposition.

An agent is simply defined, following Russel and Norvig [RN03], as any entity
capable of perceiving and acting on the world. A proposition, on the other hand, is
not that easy to define. Some philosophers define it as the content of a sentence. For
our purposes, a proposition is just a sentence in certain logic, i.e., a sentence in a
language with a consequence operator.

Of course not every relation between an agent and a proposition is a belief. Hardly
nobody would say that I believe in the sentence “I am hairy” if it was written in my
forehead, although I would certainly have a relation with this proposition. Restricting
which relation between an agent and a proposition properly defines belief is hard
and touches several deep philosophical questions such as: Is there an explicit repre-
sentation of the believe somewhere in the agent, in his mind for example? Is there
a limit on how many propositions can an agent believe in? Can an agent believe
contradictory propositions? What is the difference between belief and knowledge?

As a matter of fact, precisely defining belief is hard and we will let it to philoso-
phers. In this book we just assume that at each moment the beliefs of an agent,
its epistemic state, can be represented by certain set of sentences. Whether this set
represents the cognitive state of the agent is not important for us. Furthermore, we
would not make any distinction between knowledge and belief.

Now consider an agent with certain epistemic state when it hears something, or
reads something, or smells something, etc., which makes it change its epistemic state.
Whatever makes it change its mind is called the input of the change. An operation is
the function from the old epistemic state to the new epistemic state given the input.

There are three main operations over epistemic states: revision, expansion, and
contraction. In the beginning of this chapter we presented examples of expansion
(me being informed that I would write a book) and revision (Aristotle learning that
Socrates is immortal). Expansion is the operation used when some proposition is
added to the agent’s epistemic state. Revision is used when this addition is done
in a consistent way. Contraction is used when the goal of the agent is to “open its
mind” about certain proposition, i.e., when it wants not to have an opinion about the
sentence.

1.2 Belief Sets and Belief Bases 3

1.2 Belief Sets and Belief Bases

There are several ways of representing the epistemic state of an agent. One can
represent the beliefs of an agent as sentences with probabilities or simply as sentences
in a certain logic, for example. We will consider two ways of representing an epistemic
state: as a belief set and as a belief base. In both ways an epistemic state is represented
as a set of sentences and both assume that the agent respects certain logic, i.e.,
there is a notion of consequence underlying the agent’s beliefs. The first represents
the epistemic state of an agent as a set of sentences closed under the consequence
operation called belief set. The second represents the epistemic state as an arbitrary
set of sentences called belief base. Each of these representations have advantages as
well as disadvantages.

In belief set representation the syntactic form of the epistemic state is abstracted
away, i.e., the form of the sentences do not matter, all that matters is their semantic
content. Certain philosophers defend this representation arguing that there is no way
to distinguish the syntactic form of an agent’s belief.

Belief base representation, on the other hand, distinguishes explicit beliefs from
implicit beliefs which can be abandoned more easily without cluttering the agent’s
mind. Certain philosophers defend this representation arguing that it is more expres-
sive and more economic. Furthermore, this representation clearly has advantages in
computational complexity.

1.3 Postulates and Constructions

The most common way of defining an operations over an epistemic state is via a set of
rationality postulates. Rationality postulates state criteria that should be satisfied by a
rational agent when it performs the operation. Let us assume that we are representing
the agent’s epistemic state as a belief set. Success of contraction over a belief set states
that, after performing the contraction, the resulting belief set should not contain the
input, closure states that it should be logically closed, etc.

The most influential work in belief revision is [AGM85]. In this work, the authors
defined rationality postulates for revision and contraction over belief sets. These sets
of postulates are called AGM postulates due to their authors initials.

Besides presenting these postulates, the authors also presented the operations
constructively. The construction for contraction presented in [AGM85], partial meet
contraction, is fully characterized by the AGM postulates, i.e., every partial meet
contraction satisfies the AGM postulates for contraction and every contraction that
satisfies the AGM postulates is a partial meet contraction. After AGM’s work, many
constructions for revision and contraction were presented, e.g.: Grove system of
spheres [Gro88], safe contraction [Rot92], and epistemic entrenchment [Gär88]. All
of them were proved equivalent to the AGM postulates.

4 1 Introduction

The result showing that certain construction is fully characterized by a set of
postulates is central in AGM theory and is called representation theorem. Once
a representation theorem is proved one can examine the construction by studying
the postulates that characterizes it. This way the details of implementation can be
abstracted away. If one wants to criticize the rationality of the operation she should
criticize some of the postulates rather than the construction itself. Chapter 4 presents
classical belief revision theory. Both belief base and belief set representations are
presented together with constructions and rationality postulates for the main opera-
tions.

1.4 Non-Classical Logics

We already argued that an agent respects some logic, but why don’t every agent
respect one and the same logic? Why don’t they all respect classical propositional
logic (CPL) or first-order logic, for example?

Following [Eps90], non-classical logics are used whenever one wants to empha-
size certain aspects of reasoning. For example, it is useful to use temporal logics
when time is the aspect to be emphasized. Furthermore, as pointed by Levesque
and Brachman [LB87], in computational applications it is useful to use less expres-
sive logics in order to keep reasoning computationally more efficient (less complex).
Summing up, one should choose the most adequate formalism to represent an agent’s
belief.

For example, Description Logics (DLs) have been pointed as an adequate for-
malism to represent conceptual knowledge (ontologies). Compared with their pre-
decessors (systems of frames [Min81] and semantic networks [Qui67]), DLs have
the advantage of having formal semantics based in first-order logic. Furthermore,
compared with first-order logic itself, DLs have the advantage of being decidable.

In the past 20 years many DLs with different expressivity and complexity have
been studied. These studies converged with the need for an ontology language for
the Web. The view of a Web where artificial agents who could exchange their knowl-
edge online needed a standard language to represent the background taxonomy of
the agents terms, i.e., to represent ontologies [BLHL01]. The outcome was the adop-
tion in 2004 of OWL, a language based on DLs, as the W3C standard to represent
ontologies in the Web.

Another example of non-classical logic is Horn logic. Horn logic is a fragment of
propositional logic. Although less expressive, the main inference problem in Horn
logic is polynomial in time while the main inference problem in CPL is CoNP-
complete. The efficiency of Horn logic made it an important choice in logical pro-
gramming. Some important programming languages, such as PROLOG, are based
in Horn logic.

Details of each of these logics can be abstracted away considering just the prop-
erties that their consequence operator satisfies. In Chap. 2 consequence operator and
certain properties that it may satisfy are presented. In Chap. 3 some examples of
logics, such as Horn logic and DLs, are also presented.

1.5 Belief Revision in Non-Classical Logics 5

1.5 Belief Revision in Non-Classical Logics

Since the Web is a dynamic environment, it would not be wise to assume that ontolo-
gies in the Web would be static. For this reason, in the past few years some works
focused on the study of ontology dynamics [Sto04, HS04].

However, there are several obstacles in applying AGM theory to DLs. As pointed
by Flouris [Flo06], AGM postulates for contraction are not compliant with many DL
including the ones behind the many flavors of OWL.

Furthermore, many applications in Aritificial Inteligence are written in PRO-
LOG. Some of these applications uses PROLOG to represent agent’s knowledge base
which may be dynamic. However, AGM theory is also not applicable to Horn log-
ics [LSST08]. In fact, AGM postulates are not compliant with several non-classical
logics.

In this book we intend to show how to use belief revision techniques in logics
where AGM theory is not applicable. Our main goal is to show that, although AGM
theory fails in those logics, belief revision is still a good theoretical framework to
deal with belief dynamics in non-classical logics.

Chapters 5, 6, and 7 are reserved for belief revision in non-classical logics. The
first and the second present revision and contraction in belief sets, respectively. The
third presents belief revision in belief bases.

1.6 Organization of the Book

We will assume from the reader certain familiarity with logic. Besides that, Chap. 2
introduces basic aspects of Tarskian logics and consequence operators. The chapter
begins defining basic concepts and ends defining logical properties that will be needed
in further chapters.

Chapter 3 presents a list of logics that will be used as examples for the application
of the theory presented afterwards. For each of these logics it is showed the properties
that its consequence operator satisfies. CPL is presented as a canonical example
of well-behaved logic. Intuitionistic logic, Horn logic, and DLs are presented as
examples of logic where classical belief revision theory does not apply.

Chapter 4 introduces classical belief revision theory. It presents belief revision
theory both in belief sets and in belief bases. Constructions for the most important
operations are defined as well as postulates that characterizes them. Representation
theorems proving these characterizations are presented. These theorems hold in log-
ics that satisfies certain assumptions which include CPL, but do not include the rest
of the logics listed in Chap. 3.

Chapter 5 is dedicated to belief set contraction in non-classical logics. Two pos-
tulates for belief contraction, namely, recovery and relevance, are compared. It is
argued that relevance is better suited for contraction in non-classical logics.

6 1 Introduction

Chapter 6 deals with belief set revision. It presents a construction for revision
in belief sets which does not depend on the underlying logic being closed under
classical negation.

In Chap. 7 several constructions for belief base revision that do not depend on
negation are introduced. For each construction a set of postulates that characterizes
it is presented and the respective representation theorem is proved.

Chapter 8 shows algorithms for belief base contraction. Most of these algorithms
were already known in other areas such as diagnosis and ontology debugging. They
are presented and analyzed in the context of belief base contraction.

Chapter 9 concludes the book summing up the main results.

References

[AGM85] Carlos Alchourrón, Peter Gärdenfors, and David Makinson. On the logic of theory
change. Journal of Symbolic Logic, 50(2):510–530, 1985.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web: A new form
of web content that is meaningful to computers will unleash a revolution of new
possibilities. Scientific American, Maio, 2001.

[Eps90] R. L. Epstein. The Semantics Foundations of Logic. Volume 1: Propositional Logics.
Kluwer, Dordrecht, Netherlands, 1990.

[Flo06] Giorgos Flouris. On Belief Change and Ontology Evolution. PhD thesis, University
of Crete, 2006.

[Gär88] Peter Gärdenfors. Knowledge in Flux: Modeling the Dynamics of Epistemic States.
MIT Press, Cambridge, UK, 1988.

[Gro88] Adam Grove. Two modellings for theory change. Journal of Philosophical Logic,
17:157–170, 1988.

[HS04] Peter Haase and York Sure. State-of-the-art on ontology evolution. SEKT informal
deliverable 3.1.1.b, Institute AIFB, University of Karlsruhe, 2004.

[LB87] Hector J. Levesque and Ronald J. Brachman. Expressiveness and tractability
in knowledge representation and reasoning. Computational Intelligence, 3:78–93,
1987.

[LSST08] Marina Langlois, Robert H. Sloan, Balázs Szörényi, and György Turán. Horn com-
plements: Towards Horn-to-Horn belief revision. In Dieter Fox and Carla P. Gomes,
editors, Proceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI
2008), pages 466–471, Chicago, Illinois, USA, Julho 13-17 2008. AAAI Press.

[Min81] Marvin Minsky. A framework for representing knowledge. In John Haugeland, editor,
Mind Design: Philosophy, Psychology, Artificial Intelligence, pages 95–128. MIT
Press, Cambridge, MA, 1981.

[Qui67] Ross M. Quillian. Word concepts: A theory and simulation of some basic semantic
capabilities. Behavioral Science, 12:410–430, 1967.

[RN03] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, Englewood Cliffs, NJ, 2 edition, 2003.

[Rot92] Hans Rott. On the logic of theory change: More maps between different kinds of
contraction functions. In Peter Gärdenfors, editor, Belief Revision. Cambridge Uni-
versity Press, 1992.

[Sto04] Ljiljana Stojanovic. Methods and Tools for Ontology Evolution. PhD thesis,
University of Karlsruhe, Germany, 2004.

Chapter 2
Consequence

Abstract Belief revision theory assumes that the agents reason according to a logic.
As an abstraction that encompasses many different logics, we can consider a logic as
a pair 〈L , Cn〉 such that L is the language of the logic and Cn is the consequence
operation Cn : 2L → 2L that gives the consequences of a set of sentences. We are
particularly interested in Tarskian logics and certain properties that they may satisfy
e.g., compactness, decomposability, distribuitivity, etc. In this chapter, Tarskian log-
ics, some logical properties, and relations between these properties will be presented.

Keywords Consequence operator ·Consequence relation ·Tarskian logics ·Lattices

As usual, the symbol 2L represent the set of subsets of L . We represent sets of
sentences (subsets of L) using upper case letters A, B, C, Sentences of the
language are represented with lower case Greek letters α,β,

Given a logic 〈L , Cn〉, consider a sentence α ∈ L and two sets of sentences
A, B ∈ 2L :

1. α is a consequence of B iff α ∈ Cn(A).

2. A is a consequence of B iff every element of A is a consequence of B i.e.,
A ⊆ Cn(B).

3. A and B are equivalent iff Cn(A) = Cn(B).

4. A is trivial iff Cn(A) = L .

Following the above definitions, a set A is not a consequence of B iff A � Cn(B)

i.e., there is at least one sentence α ∈ A which is not a consequence of B. An alter-
native definition would impose that A is not a consequence of B iff B ∩ Cn(A) = ∅.

We will use the former.

M. M. Ribeiro, Belief Revision in Non-Classical Logics, 7
SpringerBriefs in Computer Science,
DOI: 10.1007/978-1-4471-4186-0_2, © The Author(s) 2013

8 2 Consequence

2.1 Tarskian Consequence Operator

Some very basic properties that a consequence operator may satisfy are the following:

monotonicity: if A ⊆ B then Cn(A) ⊆ Cn(B).

idempotence: Cn(A) = Cn(Cn(A)).

inclusion: A ⊆ Cn(A).

A consequence operator that satisfies these properties is called Tarskian. In gen-
eral, if a consequence operator of a logic satisfies certain property, we will simply
say that the logic itself satisfies it. For example, a logic 〈L , Cn〉 with a Tarskian
consequence operator is also called Tarskian.

Although Tarskian logics do not encompass every logic in the literature (e.g., linear
logic [Gir87] and non-monotonic logics [AW97] are not Tarskian), it encompasses
enough logics so that we will only consider them in this book. Hence, from now on,
whenever we write logic we mean Tarskian logic.

The following are simple lemmas about Tarskian consequence operator that will
be used throughout the book without reference:

Lemma 2.1 Let A and B be sets of sentences in a Tarskian logic 〈L , Cn〉. Then
the following equations hold:

1. Cn(Cn(A) ∪ Cn(B)) = Cn(A ∪ B)

2. Cn(Cn(A) ∩ Cn(B)) = Cn(A) ∩ Cn(B)

Proof

1. By inclusion we have A ⊆ Cn(A) and B ⊆ Cn(B). It follows that A ∪ B ⊆
Cn(A) ∪ Cn(B) and by monotonicity Cn(A ∪ B) ⊆ Cn(Cn(A) ∪ Cn(B)).

By monotonicity both Cn(A) and Cn(B) are subsets of Cn(A ∪ B). It follows
that Cn(A)∪Cn(B) ⊆ Cn(A ∪ B) and by idempotence Cn(Cn(A)∪Cn(B)) ⊆
Cn(A ∪ B).

2. Of course, Cn(A)∩Cn(B) ⊆ Cn(A) and by idempotence Cn(Cn(A)∩Cn(B)) ⊆
Cn(A). Analogously we have that Cn(Cn(A)∩Cn(B)) ⊆ Cn(B). It follows that
Cn(Cn(A)∩Cn(B)) ⊆ Cn(B)∩Cn(A) Cn(A)∩Cn(B) ⊆ Cn(Cn(A)∩Cn(B))

follows directly by inclusion.
�
Lemma 2.2 Let A, B, K ∈ 2L . If A and B are equivalent then A ⊆ Cn(K) iff
B ⊆ Cn(K).

Proof By monotonicity and idempotence Cn(A) ⊆ Cn(K). Since by hypothesis
Cn(A) = Cn(B) then Cn(B) ⊆ Cn(K) and by inclusion B ⊆ Cn(K).

The converse is analogous.
�
A set K ⊆ L is closed (under Cn) iff K = Cn(K). We reserve the uppercase

letter K to represent closed sets.
The class of all closed sets in a logic 〈L , Cn〉 will be denoted KL or simply K

when the context is clear. In symbols:

2.1 Tarskian Consequence Operator 9

Fig. 2.1 This diagram represents the logic of example 2.3

K = {K ∈ 2L : K = Cn(K)}
Of course, the relation of inclusion is a partial order over K i.e., for every

K1, K2, K3 ∈ K we have:

transitivity: if K1 ⊆ K2 and K2 ⊆ K3 then K1 ⊆ K3.

reflexivity: K1 ⊆ K1.

anti-symmetry: if K1 ⊆ K2 and K2 ⊆ K1 then K1 = K2.

For every � ⊆ K, an upper-bound of � is any K ∈ K such that K ′ ⊆ K for
every K ′ ∈ �. The supremum or the least upper-bound of � (denoted sup(�)) is
an upper-bound of � such that sup(�) ⊆ K ′ for every upper-bound K ′ ∈ K of �.

Notice that for every � ∈ K, there is a unique sup(�) ∈ K defined by the formula:

sup(�) = Cn(
⋃

�)

The infimum, the greatest lower bound, of � in K is defined analogously. Again
notice that in f (�) = Cn(

⋂
�) ∈ K. Hence, 〈K,⊆〉 form a complete lattice i.e., a

partially ordered set such that every subsets has a supremum and an infimum.
Furthermore, K is closed under intersection i.e., for every � ⊆ K we have

⋂
� ∈

K. In other words, K forms a closure system. Hence, we have that:

in f (�) =
⋂

�

Logics will be illustrated by means of diagrams like the one in Example 2.1. Each
node in the diagram represent an element K of K and will be labeled by one set A
such Cn(A) = K . The transitive closure of the arrows represent the consequence
relation i.e., Cn(K j) ⊆ Cn(Ki) iff there is a path in the diagram from Ki to K j .

Example 2.3 defines a simple logic1 which is represented in the diagram of
Fig. 2.1.

Example 2.3

L = {a, b}
Cn(L) = Cn({b}) = L

Cn({a}) = {a}
Cn(∅) = ∅

1 This logic was borrowed from [Flo06].

10 2 Consequence

Since we will present several examples of logics like the above, some conventions
are useful. We will use Cn(a) as an abbreviation for Cn({a}). Furthermore, we will
use a instead of {a} to label the diagram. The value of Cn(L) will be omitted in
future presentation of logics, since it is always equal to L in Tarskian logics.

2.2 Consequence Relation

Another way to present Tarskian logics is via a consequence relation R ⊆ 2L ×L .

In this case a logic is a pair 〈L , R〉 and (A,α) ∈ R means that α is a consequence
of A. Tarskian consequence relation satisfies the following properties:

1. if α ∈ A then (A,α) ∈ R,

2. if (A,α) ∈ R and (B,β) ∈ R for every β ∈ A then (B,α) ∈ R and
3. if (A,α) ∈ R and A ⊆ B then (B,α) ∈ R.

A Tarskian relation R induces the following consequence operator:

Cn(A) = {α ∈ L : (A,α) ∈ R}
We call Cn the consequence operator that is induced by R. As we should expect, the
consequence operator Cn induced by a Tarskian relation R is Tarskian:

Proposition 2.4 If R is a Tarskian relation then the consequence operator Cn
induced by R is Tarskian.

Proof The proof is simple and follows like this:

Inclusion: If α ∈ A then (A,α) ∈ R and by definition α ∈ Cn(A).

Idempotence: Let α ∈ Cn(Cn(A)). For every β ∈ Cn(A), by definition, we have
that (A,β) ∈ R. Since (Cn(A),α) ∈ R then (A,α) ∈ R. Hence, α ∈ Cn(A).

Monotonicity: Let A ⊆ B and α ∈ Cn(A). By definition (A,α) ∈ R which implies
(B,α) ∈ R. It follows that α ∈ Cn(B).
�

Moreover, a Tarskian consequence operator Cn induces a relation:

(A,α) ∈ R iff α ∈ Cn(A)

Proposition 2.5 If Cn is a Tarskian operator then the consequence relation R
induced by Cn is Tarskian.

Proof This proof is omitted since it is trivial and very similar to the previous one.
�

2.2.1 Properties of the Consequence Operator

In this section, we present a list of properties which are not as basic as the ones
presented in previous section. These properties would not be generally assumed, but

2.2 Consequence Relation 11

they will be useful throughout the book. The list of properties that will be considered
include compactness, finiteness, Descending Chain Condition (DCC), closure under
complement, distribuitivity and decomposability.

Compactness guaranties that any consequence of a set of sentences is a conse-
quence of a finite subset of it:

compactness: A logic 〈L , Cn〉 is compact iff for all α ∈ L and all A ⊆ L , if
α ∈ Cn(A) then there is a finite A′ ⊆ A such that α ∈ Cn(A′).

A consequence relation is compact if for every α ∈ L and A ⊆ L we have that
(A,α) ∈ R there is a finite A′ ⊆ A such that (A′,α) ∈ R. It is trivial to verify that
a compact relation induces a compact consequence operator and vice-versa.

Compact logics are sometimes called finitary. We would not name them finitary
to avoid confusion with what we call finite logics:

finiteness: A logic 〈L , Cn〉 is finite iff there is only a finite number of distinct belief
sets i.e., KL is finite.

Of course, finite logics are compact, but the converse is not true in general.
Another logical properties related to compactness and finiteness are the chain

conditions. A sequence of sets of sentences A0, A1 . . . is an descending chain iff
Cn(A0) ⊃ Cn(A1) ⊃ The Descending Chain Conditions (DCC) states that any
chain in 〈L , Cn〉 is finite.

descending chain condition: A logic 〈L , Cn〉 satisfies the descending chain condi-
tion iff every descending chain in 〈L , Cn〉 has a minimal element i.e., a A j such
that for every Ai , we have that Cn(A j) ⊆ Cn(Ai).

It is trivial to notice that finite logics satisfies DCC.
The complement of a set A ⊆ L , if it exists, is a set A′ ⊆ L such that:

• Cn(A ∪ A′) = L
• Cn(A) ∩ Cn(A′) = Cn(∅)

A set A ⊆ L is finitely representable iff there is finite A′ such that Cn(A) =
Cn(A′).

closure under complement: A logic 〈L , Cn〉 is closed under complement or simply
complemented iff every finitely representable A ⊆ L has a complement A′ ⊆ L .

Dropping the restriction to finitely representable would narrow too much the
scope of complemented logics. If this restriction was dropped, even CPL would not
be complemented.2

Notice that the complement of a set A ⊆ L may not be unique. In the logic of
Example 2.6 and Fig. 2.2 the set {a} has two distinct complements {b} and {c}.

2 This was noted by Flouris in personal communication.

12 2 Consequence

Fig. 2.2 Logic of Example 2.6

Example 2.6

L = {a, b, c}
Cn({a, b}) = Cn({b, c}) = Cn({a, c}) = L

Cn(a) = {a}
Cn(b) = {b}
Cn(c) = {c}
Cn(∅) = ∅

The following property guaranties the uniqueness of complement:

distribuitivity: A logic 〈L , Cn〉 is distributive iff for all A, B, C ∈ 2L we have:

Cn(A ∪ B) ∩ Cn(A ∪ C) ⊆ Cn(A ∪ (Cn(B) ∩ Cn(C)))

By monotonicity we have that the converse of this property holds. Hence, Tarskian
distributive logics satisfy the following property for every set A and every finitely
representable sets B and C :

Cn(A ∪ (Cn(B) ∩ Cn(C))) = Cn(A ∪ B) ∩ Cn(A ∪ C)

For now on when we mention distributive logics we mean Tarskian distributive
logics.

A logic is called Boolean iff it is distributive and complemented. In Boolean
logics, every sentence has an unique complement modulo equivalences:

Proposition 2.7 Let 〈L , Cn〉 be a Boolean logic and consider A ⊆ L . If A′ and
A′′ are two complements of A then Cn(A′) = Cn(A′′).

Proof

Cn(A′) = Cn(A′ ∪ Cn(∅))

= Cn(A′ ∪ (Cn(A) ∩ Cn(A′′)))
= Cn(A′ ∪ A) ∩ Cn(A′ ∪ A′′) by distribuitivity
= L ∩ Cn(A′ ∪ A′′)
= Cn(A′ ∪ A′′)

2.2 Consequence Relation 13

Using an analogous argument we prove that Cn(A′′) = Cn(A′ ∪ A′′). Hence,
Cn(A′) = Cn(A′′).
�

Furthermore, if two sets of sentences are equivalent in a Boolean logic then their
complements are also equivalent:

Proposition 2.8 Let 〈L , Cn〉 be a Boolean logic and consider A, B ∈ 2L and let
A′ be a complement of A and B ′ be a complement of B then Cn(A) = Cn(B) if
and only if Cn(A′) = Cn(B ′).

Proof

Cn(A′) = Cn(A′) ∪ Cn(∅)

= Cn(A′) ∪ (Cn(B) ∩ Cn(B ′))
= Cn(A′) ∪ (Cn(A) ∩ Cn(B ′))
= Cn(A′ ∪ A) ∩ Cn(A′ ∪ B ′) by distribuitivity
= L ∩ Cn(A′ ∪ B ′)
= Cn(A′ ∪ B ′)

The proof that Cn(B ′) = Cn(A′ ∪ B ′) is analogous and we conclude that Cn(A′) =
Cn(B ′)
�

In Boolean logics, the closure of the complement of A is denoted ¬A.¬A is well
defined precisely because it is unique i.e., ¬A = Cn(A′) for A′ a complement of A.

Let A, K ∈ 2L such that K = Cn(K) and Cn(∅) ⊂ A ⊂ K , the complement of
A relative to K (denoted K −(A)) is the class of all sets K ′ such that:

• Cn(K ′) ⊂ Cn(K)

• Cn(K ′ ∪ A) = Cn(K)

decomposability [FPA04]: A logic 〈L , Cn〉 is decomposable iff for every A, K ∈
2L such that K = Cn(K), Cn(∅) ⊂ Cn(A) ⊂ K and A is finitely representable
we have that K −(A) �= ∅ i.e., there is K ′ ⊆ L such that Cn(K ′) ⊂ Cn(K) and
Cn(K ′ ∪ A) = Cn(K).

Decomposability was first introduced in [FPA04] and it is intimately related with
AGM theory as will be showed in Chap. 4.

The following is a sufficient condition for a logic not to be decomposable:

Lemma 2.9 [FPA05] Consider a logic 〈L , Cn〉. If for some K , K ′ ∈ 2L such that
K ′ = Cn({β ∈ L : Cn(β) ⊂ K }) we have that Cn(∅) ⊂ K ′ ⊂ Cn(K) then
〈L , Cn〉 is not decomposable.

Proof For any A ⊆ L , if Cn(A) ⊂ Cn(K) then Cn(A) ⊆ K ′. It follows that
Cn(K ′ ∪ A) = Cn(K ′) �= Cn(K).
�

Now let us present some relations between decomposability and the other logical
properties presented so far.

14 2 Consequence

Proposition 2.10 Boolean logics are decomposable.

Proof Consider a Boolean logic 〈L , Cn〉 and two sets of sentences A, K ⊆ L such
that A is finitely representable and Cn(∅) ⊂ Cn(A) ⊂ Cn(K). We will prove that
then Cn(K) ∩ Cn(A′) ∈ K −(A) for some complement A′ of A (which must exist
because 〈L , Cn〉 is complemented).
Let B = Cn(K) ∩ Cn(A′), then Cn(A ∪ B) = Cn(A ∪ (Cn(K) ∩ Cn(A′))). By
distributivity this is equal to Cn(A ∪ K) ∩ Cn(A ∪ A′) = Cn(K).

If A ⊆ B then Cn(K) ∩ Cn(A′) = B = Cn(B) = Cn(B ∪ A) = Cn(K), so
Cn(A′) ⊇ Cn(K) ⊃ Cn(A). In this case, Cn(A) = Cn(∅) which is a contradiction.
It follows that A � B. Hence, B ∈ K −(A).
�
Proposition 2.11 If a logic is decomposable and satisfy the descending chain con-
dition then it is complemented.

Proof Let A ⊆ L . By decomposability we have that L −(A) �= ∅. By the descend-
ing chain condition, there is an X ′ ∈ L −(A) such that X ′ ⊆ X and there is no X ′′
such that Cn(X ′′) ⊂ Cn(X ′). We will show that X ′ is a complement of A.

Since X ′ ∈ L −(A) then Cn(X ′∪A) = L . Now suppose that Cn(X ′)∩Cn(A) �=
Cn(∅), by decomposability, there is Y ∈ X ′−(Cn(X ′) ∩ Cn(A)).

In this case, we have that X ′ = Cn(Y ∪ (Cn(A) ∩ Cn(X ′))) ⊆ Cn(Y ∪ A).

However, since A ⊆ Cn(Y ∪ A), we have that Cn(X ′ ∪ A) ⊆ Cn(Y ∪ A). Hence,
Cn(Y ∪ A) = L .

In this case, Cn(Y) ⊂ Cn(X ′) and Cn(Y ∪ A) = L . It follows that X ′ is not the min-
imal which contradicts the definition. We conclude that Cn(X ′) ∩ Cn(A) = Cn(∅).

�
As a corollary of this result we have that finite decomposable logics are comple-

mented.

2.3 Standard Languages

So far, no assumptions was made over the structure of the language L . In this section,
the standard language for propositional logics will be presented together with logical
properties that depend on it.

A languageL is closed under an n-ary connective N iff for everyα1, . . . ,αn ∈ L
we have that N (α1, . . . ,αn) ∈ L . We will use standard infix notation for binary
connectives i.e., we will write αNβ instead of N (α,β).

A language is standard if it is closed under the standard connectives ∧ (conjunc-
tion), ∨ (disjunction), → (implication) and ¬ (negation) (of course only the last
connective is unary while the others are binary).

Consider a language L closed under negation. We say the negation ¬ in L is
classical iff 〈L , Cn〉 satisfies the following properties for every α ∈ L :
1. Cn(α) ∩ Cn(¬α) = Cn(∅)

2. Cn({α,¬α}) = L

2.3 Standard Languages 15

If a set contains both α,¬α ∈ Cn(A) then we say that A is contradictory. Using
this terminology we say that the second statement above guarantees that if 〈L , Cn〉
is closed under classical negation then if A is contradictory it must be trivial. Of
course, if a logic is closed under classical negation then it is complemented.

The following property of negation states that the negation of a sentence never
“helps” to prove the sentence [Was00]:

α-local non contravention: A logic 〈L , Cn〉 closed under negation satisfies α-local
non contravention iff for every α ∈ L and every A ⊆ L we have that if α /∈ Cn(A)

then α /∈ Cn(A ∪ {¬α})
Proposition 2.12 If 〈L , Cn〉 is distributive and closed under classical negation
then 〈L , Cn〉 satisfies α-local non contravention.

Proof Let α ∈ Cn(A ∪ {¬α}). Since α ∈ Cn(A ∪ {¬α})∩ Cn(A ∪ {α}), by distrib-
utivity, α ∈ Cn(A ∪ (Cn(α) ∩ Cn(¬α))). Since ¬ is classical, Cn(α) ∩ Cn(¬α) =
Cn(∅). It follows that α ∈ Cn(A).
�

In Chap. 4 classical AGM theory will be presented. This theory makes certain
assumptions about the underlying logic 〈L , Cn〉. First, it assumes that the language
is a standard language i.e., it is closed under the standard connectives. The other two
assumptions are presented below:

deduction: A logic 〈L , Cn〉 closed under implication satisfies deduction iff for every
α ∈ L and every A ⊆ L we have that α ∈ Cn(A ∪ {β}) iff β → α ∈ Cn(A).

supraclassicality: A logic 〈L , Cn〉 is supraclassical iff for every α ∈ L and every
A ⊆ L we have that if α ∈ CC P L(A) then α ∈ Cn(A) i.e., if α is a classical
consequence of A then α ∈ Cn(A). Classical consequence will be formalized in the
next section.

A consequence relation R satisfies deduction if the following holds:

(A ∪ {β},α) ∈ R iff (A,β → α) ∈ R

If R satisfies deduction then the consequence operator induced by R also satisfies
deduction and conversely.

We say that a logic satisfies the AGM-assumptions if it satisfies four requirements:
closure under standard language, deduction, supraclassicality, and compactness. We
will sometimes call well behaved a logic that satisfies AGM assumptions.

Well-behaved logics are Boolean.

Lemma 2.13 If 〈L , Cn〉 satisfy the AGM-assumption then Cn(A∪{α1})∩Cn(A∪
{α2}) ⊆ Cn(A ∪ {α1 ∨ α2}).
Proof By deduction we have that α1 → β,α2 → β ∈ Cn(A). Since (α1 ∨ α2) →
β ∈ CC P L({α1 → β,α2 → β}), by supraclassicality, monotonicity and idempo-
tence (α1 ∨ α2) → β ∈ Cn(A). Finally, by deduction, β ∈ Cn(A ∪ {α1 ∨ α2).

�

16 2 Consequence

Fig. 2.3 Relation between
logical properties

decomposable

compact

distributive

complemented

Int

ALCO

HornCPL

SROIQ

Proposition 2.14 If a logic 〈L , Cn〉 satisfies the AGM-assumptions then 〈L , Cn〉
is Boolean.

Proof Let β ∈ Cn(A∪ B)∩Cn(A∪C). By compactness there are A1 ⊆ A∪ B and
A2 ⊆ A∪C both finite and such that β ∈ Cn(A1)∩Cn(A2). Let A′ = A1∪A2, B ′ =
A1 ∩ A, C ′ = A2 ∩ C. It is easy to verify that A′, B ′ and C ′ are finite and that β ∈
Cn(A′ ∪ B ′) ∩ Cn(A′ ∪ C ′). Let B ′ = {β0, . . . ,βn}, C ′ = {βn+1, . . . βn+m}, γ1 =
β0 ∧ . . . ∧ βn and γ2 = βn+1 ∧ . . . ∧ βn+m . By supraclassicality we have that
Cn(A′ ∪ B ′) ∩ Cn(A′ ∪ C ′) = Cn(A′ ∪ {γ1}) ∩ Cn(A′ ∪ {γ2}). Using Lemma 2.13
Cn(A′ ∪ {γ1}) ∩ Cn(A′ ∪ {γ2}) ⊆ Cn(A′ ∪ {γ1 ∨ γ2}). It follows that:

β ∈ Cn(A′ ∪ B ′) ∩ Cn(A′ ∪ C ′)
= Cn(A′ ∪ {γ1}) ∩ Cn(A′ ∪ {γ2})
⊆ Cn(A′ ∪ {γ1 ∨ γ2})
⊆ Cn(A′ ∪ (Cn(B ′) ∩ Cn(C ′)))
⊆ Cn(A ∪ (Cn(B) ∩ Cn(C)))

We conclude that β ∈ Cn(A ∪ (Cn(B)∩Cn(C))) and, hence, Cn(A ∪ B)∩Cn(A ∪
C) ⊆ Cn(A ∪ (Cn(B) ∩ Cn(C))).

Now consider a set X ⊆ L . If X is finitely representable then there is a finite X ′
such that Cn(X) = Cn(X ′). Let X ′ = {β0, . . . ,βn}. Since 〈L , Cn〉 is supraclassi-
cal we have that Cn(β0, . . . ,βn) = Cn(β0 ∧ . . . ∧ βn). We will show that ¬α is the
complement of α = β0 ∧ . . . ∧ βn .

Since β ∈ CC P L(α,¬α) (see Sect. 3.1) for every β ∈ L we have β ∈
Cn(α,¬α), by supraclassicality. Furthermore, let β ∈ Cn(α)∩Cn(¬α). By deduc-
tion it holds that α → β,¬α → β ∈ Cn(∅). Since α ∨ ¬α ∈ CC P L(∅) (see
Sect. 3.1), by supraclassicality, we have that β ∈ Cn(∅). Hence, Cn(α)∩Cn(¬α) ⊆
Cn(∅).
�

A trivial corollary of this result states that if a logic 〈L , Cn〉 satisfies the AGM-
assumptions then it is decomposable.

2.4 Conclusion 17

2.4 Conclusion

In this chapter, a very general framework for logics was presented. A logic was
defined as a language together with a consequence operator. In this book, we are
interested only in Tarskian logics i.e., in logics with a consequence operator that
satisfies monotonicity, inclusion, and idempotence. Not every logic in the literature
is Tarskian, non-monotonic logics [AW97] and linear logics [Gir87] are examples of
non-Tarskian logics. These logics would not be considered in this book.

One nice property of Tarskian logics is that there is a bijection between them
and complete lattices. For this reason, it is possible to visually illustrate certain toy
logics. We will use lattice many times throughout the book as an heuristic to generate
examples of logics with certain properties. For a more complete presentation of
consequence operator see [Wój88].

Tarskian logics may satisfy certain properties such as distributivity, decompos-
ability etc. These properties are not independent. Some combinations of properties
may imply other properties. Several such relations between properties were proved in
this chapter. Diagram in Fig. 2.3 sums up the these results. The points in the diagram
correspond to logics that will be presented in the following chapter.

References

[AW97] G. Antoniou and M.A. Williams. Nonmonotonic reasoning. Artificial intelligence. MIT
Press, 1997.

[Flo06] Giorgos Flouris. On Belief Change and Ontology Evolution. PhD thesis, University of
Crete, 2006.

[FPA04] Giorgos Flouris, Dimitris Plexousakis, and Grigoris Antoniou. Generalizing the AGM
postulates: preliminary results and applications. In James P. Delgrande and Torsten
Schaub, editors, Proceedings of the 10th International Workshop on Non-Monotonic
Reasoning 2004 (NMR-04), pages 171–179, Whistler BC, Canada, June 6-8 2004.

[FPA05] Giorgos Flouris, Dimitris Plexousakis, and Grigoris Antoniou. On applying the AGM
theory to DLs and OWL. In Enrico Motta Yolanda Gil, V. Richard Benjamins, and Mark
A. Musen, editors, Proceedings of the 4th International Semantic Web Conference
(ISWC 2005), pages 216–231, Galway, Ireland, November, 6-10 2005. Springer.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
[Was00] Renata Wassermann. Resource Bounded Belief Revision. PhD thesis, Universiteit van

Amsterdan, Janeiro 2000.
[Wój88] R. Wójcicki. Theory of logical calculi: basic theory of consequence operations. Syn-

these library. Kluwer Academic Publishers, 1988.

Chapter 3
Logics

Abstract In this chapter, a list of Tarskian logics is presented, namely, classical
propositional logic (CPL), intuitionistic logic (Int), horn logic (Horn), and description
logics (DLs). Classical Propositional Logic is the canonical example of well-behaved
logic logic, i.e., a logic that satisfies the AGM assumptions. Besides the interest in the
properties that these logics satisfy, they were chosen for diverse reasons. Intuitionistic
logic has great interest among logicians as the basis for constructive mathematics.
Horn logic and Description Logics have great interest in computer science because
of their computational complexity. The interest in Description Logics in particular
has grown quickly among computer scientist since the announcement of a DL-based
language, OWL, as the standard language to describe ontologies on the Web.

Keywords Non-classical logics · Horn logic · Description Logics · OWL · Intu-
itionistic logic

We present classical propositional logic (CPL) in Sect. 3.1 as an example of logic
where the classical AGM theory is applicable. Intuitionistic logic is presented in Sect.
3.2, Horn logic in Sect. 3.3, and Description Logics (DLS) in Sect. 3.4. As will be
shown in further chapters, Int and Horn as well as many DLs are examples of logics
where classical AGM theory is not applicable. These later logics (Intuitionistic, Horn,
and Description logics) satisfy interesting properties that will be explored in further
chapters.

Lots of other logics could be added to this list. Logics that are not Tarskian, such
as non-monotonic logics [AW97] and linear logics [Gir87], and logics that are not
compact, such as Computational Tree Logic (CTL) [EH86] were discarded because
they do not fit the framework presented in this book. Other logics such as modal logics
[Che80] were not listed because, for our purposes, they have properties similar to
other logics listed here.

M. M. Ribeiro, Belief Revision in Non-Classical Logics, 19
SpringerBriefs in Computer Science,
DOI: 10.1007/978-1-4471-4186-0_3, © The Author(s) 2013

20 3 Logics

3.1 Classical Propositional Logic

In this section a brief introduction to CPL is presented. First, it is presented the
language of CPL. After that the semantic consequence relation and the syntactic
consequence relation for CPL are defined. In the end of the section some properties
of CPL are proved.

This chapter does not intend to be a complete introduction to CPL, it just presents
some basic definitions enough to prove the properties needed for the rest of this book.

3.1.1 Language

Let P = {p0, p1, . . . } be an infinite enumerable set called the signature of CPL. The
elements of P are called propositional variables. The language of CPL is the least
set LCPL such that:

1. P ⊆ LCPL
2. if α,β ∈ LCPL then (α ∧ β), (α ∨ β), (α → β), (¬α) ∈ LCPL.

Another way of presenting a language is using Backus-Naur form (BNF):

α := pi |(α ∨ α)|(α ∧ α)|(α → α)|(¬α)

Example 3.1. Let p0, p1, · · · ∈ P.

p0 ∈ LCPL
(¬p0) ∈ LCPL

(¬(¬p0)) ∈ LCPL
(p1 → (¬(¬p0))) ∈ LCPL

(p0¬ → p1) /∈ LCPL

The presentation using BNF is convenient for more complex languages. For this
reason it will be used to present other languages in this book. Standard conventions for
the parenthesis omission will be used for this and the rest of the languages presented
in this book.

Notice that LCPL is a standard language. In fact, it is the least standard language
that contains P.

3.1.2 Semantic

A function v : P → {0, 1} is called a truth-function. A truth-function assigns the
value 0 (false) or 1 (true) for every propositional variable. A truth-function satisfies
(or is a model for) a sentence α written �v α iff:

3.1 Classical Propositional Logic 21

• �v p iff v(p) = 1.

• �v ¬α iff it is not the case that � α (in symbols �v α).

• �v α ∨ β iff �v α or �v β.

• �v α ∧ β iff �v α and �v β.

• �v α → β iff �v α or �v β.

A truth-function v satisfies a set A iff it satisfies every sentence β ∈ A, i.e.,
�v A iff �v β for every β ∈ A. A sentence α is a semantic consequence of a set of
sentences A (written A �CPL α) iff for every truth-function v that satisfies A, v also
satisfies α, i.e., if �v A implies �v α. From now on � will be used instead of �CPL
whenever it is clear from the context that we are dealing with CPL.

Example 3.2 If v(p) = 1 then �v p and in this case �v p ∨ ¬p.

On the other hand if v(p) = 0 then �v ¬p and �v p ∨ ¬p. Hence, for all
truth-function v we have that �v p ∨ ¬p, i.e., � p ∨ ¬p.

Example 3.3 If �v ¬¬p then �v ¬p and it follows that �v p. Hence, ¬¬p � p.

It is easy to verify that the relation � is Tarskian.

3.1.3 Axiomatic System

Consider an enumerable set � whose elements are called schema variables. Let L�

be the least standard language that contains �. A rule is a pair A
α such that A ⊆ L�

is the set of premises of the rule and α ∈ L� is the consequence of the rule. An
axiom schema is a rule with an empty set of premises. To simplify notation, an axiom
schema is represented simply as a sentence α ∈ L� rather than ∅

α . An axiomatic
system is just a set of rules.

A substitution is a function δ : � → L� from schema variables to sentences. A
substitution can be extended uniquely to a function δ̂ : L� → L� over the set of
formulas in the standard following way:

• δ̂(c) = c if c ∈ P

• δ̂(¬α) = ¬δ̂(α)

• δ̂(α1 ∧ α2) = δ̂(α1) ∧ δ̂(α2)

• δ̂(α1 ∨ α2) = δ̂(α1) ∨ δ̂(α2)

• δ̂(α1 → α2) = δ̂(α1) → δ̂(α2)

Given an axiomatic system �, a derivation from A ⊆ LCPL to α ∈ LCPL (written
A �� α) is a sequence α0, . . . αn such that αn = α, αi ∈ L is an element of A
or there is a substitution σ and an inference rule B

β ∈ � such that σ(β) = αi and
σ(β′) = α j for every β′ ∈ B and j < i.

Consider the following axiomatic system:

modus ponens: {ξ1→ξ2,ξ1}
ξ2

axiom 1: ξ1 → (ξ2 → ξ1)

22 3 Logics

axiom 2: (ξ1 → (ξ2 → ξ3)) → ((ξ1 → ξ2) → (ξ1 → ξ3))

axiom 3: ξ1 → (ξ2 → (ξ1 ∧ ξ2))

axiom 4: (ξ1 ∧ ξ2) → ξ1
axiom 5: (ξ1 ∧ ξ2) → ξ2
axiom 6: ξ1 → (ξ1 ∨ ξ2)

axiom 7: ξ2 → (ξ1 ∨ ξ2)

axiom 8: ¬ξ1 → (ξ1 → ξ2)

axiom 9: (ξ1 → ξ2) → ((¬ξ1 → ξ2) → ξ2)

axiom 10: ((ξ1 ∨ ξ2) ∧ ¬ξ1) → ξ2

In further sections we might write �CPL to distinguish this axiomatic system from
the others that may appear. Whenever it is clear by the context, though, we will just
write � .

Example 3.4 The following sequence is a derivation of � α → α :
α → ((α → α) → α) ax. 1
(α → ((α → α) → α) → ((α → (α → α)) → (α → α)) ax. 2
(α → (α → α)) → (α → α) m.p. 1,2
α → (α → α) ax. 2
α → α m.p. 3,4

We use ax. n before a sentence α to indicate that α was derived by a substitution of
the axiom n. The symbols m.p. i, j are used before a sentence to indicate that this
sentence was derived by modus ponens with the sentences i and j as premises.

Example 3.5 The following is derivation for {α ∨ β,¬α} � β.

α ∨ β hyp.
(α ∨ β) → (¬α → (¬α ∧ (α ∨ β))) ax. 3
¬α → (¬α ∧ (α ∨ β)) m.p. 1, 2
¬α hyp.
¬α ∧ (α ∨ β) m.p. 3, 4
((α ∨ β) ∧ ¬α) → β ax. 10
β m.p. 5, 6

Notice that hyp. was used before a sentence α to indicate that α was in the set of
premises.

If every rule in A
α in the axiom system is finitary (i.e. if A is finite) then the logic

〈L , Cn〉 induced by this consequence relation is trivially compact.

Proposition 3.6 The relation � is Tarskian.

Proof The first and third items of the definition of Tarskian relation are trivial to
verify. For the second, notice that if A � α then by compactness mentioned above
there is a finite A′ ⊆ A such that A′ � α. To conclude the proof notice that the
concatenation of the deductions from B to the elements of A′ with the derivation
from A′ to α is a derivation from B to α. �

3.1 Classical Propositional Logic 23

Theorem 3.7 (Deduction). The relation � satisfies deduction.

Proof If A � β → α then by modus ponens we have that A ∪ {β} � α. Conversely,
if A � β then there is a derivation β0, . . . ,βn with βn = α. Let n = 0, then β0 = α
and either α is an instance of one of the axioms or α ∈ A ∪ {β}.

If α is an axiom or if α ∈ A then the β → α by axiom 1. Otherwise α = β and
in this case, by example 3.4, A � α → α.

Now assume that for all n if there is a derivation β0, . . . ,βn from A ∪ {β} to α
then A � β → α.

Now let β0, . . . ,βn+1 be a derivation from A ∪ {β} to α. We have three options:
(1) α is an instance of an axiom, (2) α ∈ A ∪ {β} or (3) there are i, j ≤ n such that
β j = βi → α. Case (1) and (2) were covered in the base case. For case (3) we have
by induction that A � β → βi and A � β → (βi → α). Hence, using axiom 2 we
have A � β → α. �

A set A is called inconsistent iff A � α ∧ ¬α for some α ∈ LCPL.

Proposition 3.8 (Triviality). If A is inconsistent then A is trivial, i.e., A � β for
every β ∈ LCPL.

Proof

¬α hyp
¬α → (α → β) ax. 8
α → β m.p. 1,2
α hyp.
β m.p. 3,4

Hence, for any β ∈ LCPL were have that A � β. �
There is a close relation between the semantic consequence presented in the

beginning of the section and the syntactic consequence presented above. First it is
true that α is a syntactic consequence of A then it is also a semantic consequence of
it, i.e., A � α implies A � α. In other words, � is sound w.r.t. �.

Theorem 3.9 (Soundness) If A � α then A � α.

Proof First we need to check that for each rule A
α in � it holds that if � σ(A) then

� σ(α). Since this is very simple and tedious, we will show only two examples: the
first axiom and modus ponens:

Let σ(ξ1 → (ξ2 → ξ1)) = α → (β → α) for α,β ∈ LCPL. Assume that
v(α) = 0 then v(α → (β → α)) = 1. Assume then that v(α) = 1 then v(β →
α) = 1, and hence v(α → (β → α)) = 1. We conclude that for any truth-function
v we have that v(α → (β → α)) = 1.

Now let α1 = σ(ξ1) and α2 = σ(ξ2). If v(α1) = v(α1 → α2) = 1 then, by
definition, v(α2) = 1. �

Besides � being sound it is also complete w.r.t. �, i.e., A � α implies that A � α.

24 3 Logics

Lemma 3.10 (Lindenbaum) If A is consistent then it can be extended to a consistent
complete consistent set X , i.e., a consistent set such that for all β ∈ LCPL either
β ∈ X or ¬β ∈ X.

Proof Arrange the sentences of LCPL is a sequence β1,β2 Now let X0 = A
and for i > 0 let:

Xi =
{

Xi−1 ∪ {βi } if consistent
Xi−1 ∪ {¬βi } otherwise.

Suppose that both Xi ∪ {β} and Xi ∪ {¬β} are inconsistent. By triviality and
deduction theorem Xi � α → β and Xi � ¬α → β. Using axiom 9 we have Xi � β.

Using a similar argument Xi � ¬β. Hence Xi is inconsistent which contradicts the
hypothesis. We conclude that Xi is consistent for every i.

Now let X = ⋃
i Xi . Suppose that X is inconsistent. By compactness there are

finite sets X ′ ⊆ X and X ′′ ⊆ X such that X ′ � β and X ′′ � ¬β for some β. It
follows that X ′ ∪ X ′′ is finite and inconsistent. Since X ′ ∪ X ′′ ⊆ X then there is an i
such that X ′ ∪ X ′′ = Xi . This contradicts the fact that every Xi is consistent. Hence
X = ⋃

Xi is consistent.
To finish, notice also that, by construction, X is complete. �

Theorem 3.11 (Completeness) If A � α then A � α.

Proof We will show the contrapositive, i.e., if A � α then A � α.

If A � α then A ∪ {¬α} is consistent and, by Lindenbaum lemma, it can be
extended to a complete consistent set X.

Consider now a truth-function v such that v(β) = 1 if β ∈ X and v(β) = 0
otherwise. We need to show that v is indeed a truth-function. First notice that since
X is maximal the X � β iff β ∈ X.

(¬) v(¬β1) = 1 iff ¬β ∈ X iff β /∈ X iff v(β) = 0
(→) v(β1 → β2) = 1 iff β1 → β2 ∈ X. Assume that β1 → β2 ∈ X and β1 ∈ X

then by modus ponens β2 ∈ X. It follows that β1 /∈ X or β2 ∈ X. Assume now
that β1 /∈ X or β2 ∈ X. In the first case β1 → β2 ∈ X by axiom 8 and in the
second β1 → β2 ∈ X by axiom 1.
It follows that β1 → β2 ∈ X iff β1 /∈ X or β2 ∈ X. Hence v(β1) = 0 or
v(β2) = 1.

(∧) v(β1 ∧ β2) = 1 iff β1 ∧ β2 ∈ X. Assume that β1 ∧ β2 ∈ X, then by axioms 4
and 5 β1,β2 ∈ X.

Assume now that β1,β2 ∈ X then axiom 3 β1 ∧ β2 ∈ X.

It follows that β1 ∧ β2 ∈ X iff β1,β2 ∈ X iff v(β1) = v(β2) = 1.

(∨) v(β1 ∨ β2) = 1 iff β1 ∨ β2 ∈ X.

Assume first that β1 ∈ X or β2 ∈ X. In both cases, by axioms 6 and 7, β1 ∨β2 ∈
X.

Now assume that β1 ∨ β2 ∈ X. If β1 /∈ X then by Example 3.5 β2 ∈ X.

It follows that β1 ∨ β2 ∈ X iff β1 ∈ X or β2 ∈ X iff v(β1) = 1 or v(β2) = 0.

3.1 Classical Propositional Logic 25

To conclude the proof notice that the truth-function v constructed above satisfies
v(A) = 1 and v(α) = 0. Hence A � α. �

3.1.4 Properties

By Theorems 3.9 and 3.11 we have that the consequence operator CCPL induced
either by the syntactic consequence relation �CPL or by the semantic consequence
relation �CPL are equal, i.e.,

CCPL(A) = {α ∈ L : A �CPL α} = {α ∈ L : A �CPL α}
In this section some properties of this operator will be presented.

Proposition 3.12 〈LCPL, CCPL〉 satisfies the AGM assumptions.

Proof Of course the languageLCPL is standard and of course CCPL is supra-classical.
CCPL is compact, since it is induced by � which is compact and satisfies induction.
Finally, deduction follows from Theorem 3.7. �

As a corollary of the above proposition we have the following:

Proposition 3.13 〈LCPL, CCPL〉 is Boolean and, hence decomposable.

Proof Follows directly form Propositions 3.12, 2.14 and 2.10. �
Furthermore, the negation ¬ of CPL is classical.

Proposition 3.14 For every α ∈ LCPL it holds that:

• CCPL({α,¬α}) = L and
• CCPL(α) ∩ Cn(¬α) = Cn(∅).

Proof The first item follows from Proposition 3.8. For the second item assume that
β ∈ CCPL(α) ∩ CCPL(¬α). By deduction α → β,¬α → β ∈ CCPL(∅). Using
Example 3.5 β ∈ CCPL(∅). It follows that CCPL(α) ∩ CCPL(¬α) ⊆ CCPL(∅). The
rest of the proof is trivial. �

As a corollary we have that in CPL the negation satisfiesα-local non contravention.
CPL was presented as a canonical example of well-behaved logic and, hence,

the canonical example of logic where classical belief revision is applicable (Chap.
4). It satisfies all AGM assumptions and, hence, it is Boolean and decomposable.
Furthermore, the negation in CPL is classical.

26 3 Logics

3.2 Intuitionistic Logic

Intuitionistic logic is a formal system that avoids non-constructive proofs allowed
in classical logic. Consider the following informal proof of the existence of two
irrational numbers x and y such that x y is rational [CE06].

Example 3.15 If
√

2
√

2
was rational then we are done. Suppose then that

√
2
√

2
is

irrational. Since (
√

2
√

2
)
√

2 = 2 is rational and
√

2 is irrational, it follows that there
are x and y irrationals such that x y is rational.

Some mathematicians do not accept this kind of proof. The problem they point in
the prove above is that, it does not present the numbers x and y. In other words, this
proof is not constructive.

Intuitionistic logic was developed to avoid this kind of argument. In this section
we will present only the propositional version of intuitionistic logic. For a complete
first-order presentation see [Min00].

The language LInt of Intuitionistic Logic is exactly the same of Classical Propo-
sitional Logic, i.e., LInt = LCPL. The consequence operator CInt, however, must
be different to avoid deductions similar to the one in example 3.15. Notice that this
proof deeply depends on the rule of excluded middle: ξ ∨ ¬ξ. Hence, Intuitionistic
Logic reject this principle.

In what follows a Kripke semantic and an axiomatic system for Int will be pre-
sented. The section ends showing some properties of 〈LInt, CInt〉.

3.2.1 Semantics

Consider an enumerable set P = {p0, p1 . . . } of propositional variables. A Kripke
model for intuitionistic logic is a triple M = 〈W,≤, v〉where W is any enumerable set
whose elements are called worlds, ≤ is a partial order over W called the accessibility
relation and v : P → 2W a function that associates propositional variables to sets of
worlds.

Given a Kripke model M, we define the relation �M⊆ W × LInt as follows:

• w �M p iff w ∈ v(p).

• w �M α ∨ β iff w �v α or w �v β.

• w �M α ∧ β iff w �v α and �v β.

• w �M ¬α iff w′
�v α for every w ≤ w′.

• w �M α → β iff w′
�v β for all w ≤ w′ such that w′ �v α.

This relation intuitively relates worlds to sentences valid in those worlds.
We will write w � A for A ⊆ LInt iff w � β for every β ∈ A, i.e., a set A is valid

in a world w iff each sentence of A is valid in w. A sentence α ∈ LInt is a semantic

3.2 Intuitionistic Logic 27

consequence of A ⊆ LInt, written A �Int α, iff for every world w ∈ W we have that
if w � A then w � α. Again, � will be used instead of �Int when the context is clear.

Example 3.16 Let us show that � p ∨ ¬p.

Consider the following model M = 〈W,≤, v〉:
W = {w1, w2}
≤ = {(w1, w2)}
v(p) = {w2}

Since w1 /∈ v(p), we have that w1 �M p. Furthermore, w1 �M ¬p since w1 ≤ w2
and w2 �M ¬p. Hence, � p ∨ ¬p.

Example 3.17 Now we show that ¬¬p � p.

Consider the model M in the above Example. As already argued w1 �M p. Further-
more, w2 � p and then w1 � ¬p. It follows that w1 � ¬¬p. Hence, ¬¬p � p.

Notice that the relation �Int is Tarskian and not supraclassical, since p ∨ ¬p is a
theorem of CPL.

3.2.2 Axiomatic System

Consider the following axiomatic system:

modus ponens: {ξ1→ξ2,ξ1}
ξ2

axiom 1: ξ1 → (ξ2 → ξ1)

axiom 2: (ξ1 → ξ2) → ((ξ1 → (ξ2 → ξ3)) → (ξ1 → ξ3))

axiom 3: ξ1 → (ξ2 → (ξ1 ∧ ξ2))

axiom 4: (ξ1 ∧ ξ2) → ξ1
axiom 5: (ξ1 ∧ ξ2) → ξ2
axiom 6: ξ1 → (ξ1 ∨ ξ2)

axiom 7: ξ2 → (ξ1 ∨ ξ2)

axiom 8: ¬ξ1 → (ξ1 → ξ2)

axiom 9: (ξ1 → ξ2) → ((ξ1 → ¬ξ2) → ¬ξ1)

axiom 10: (ξ1 ∨ ξ2) → ((ξ1 → ξ3) → ((ξ2 → ξ3) → ξ3))

First notice that axioms 1 to 8 coincide with the rules of the axiomatic system
presented for CPL. Of course if A ��′ α and �′ ⊆ � then A �� α. Hence, some
results from Sect.3.1 hold in this axiomatic system, e.g., Proposition 3.8 and Theorem
3.7.

This axiomatic system is compact, since it does not have any infinitary rule.
Using the same argument presented in previous section we have that � is Tarskian.
Furthermore, �Int is sound w.r.t. �Int.

28 3 Logics

Theorem 3.18 (Soundness) If A � α then A � α.

Proof This proof follows the same lines as the one in Theorem 3.9 and will be
omitted here. �

Now for the completeness we need some definitions and lemmas. We say that a
set X ⊆ LInt is full iff it satisfies the following:

1. X is consistent.
2. If X � α then α ∈ X.

3. If α1 ∨ α2 ∈ X then α1 ∈ X or α2 ∈ X.

If B ⊆ B ′ and B ′ is full then B ′ is called a full extension of B.

Lemma 3.19. If X � α then there is a full extension X ′ of X such that α /∈ X ′

Proof Arrange the elements of LInt in a sequence β1,β2 Let X0 = X and for
i > 0 let:

Xi =
{

Xi−1 ∪ {βi } if Xi−1 � βi → α
Xi−1 otherwise.

Finally, let X ′ = ⋃
Xi .

First let using prove that X ′
� α. By construction X0 � α and for i > 0 if

Xi−1 ∪ {βi } = Xi � α then by deduction theorem (Theorem 3.7) Xi+1 � βi → α
which is a contradiction. It follows that no finite subset of X ′ derives α and by
compactness X � α.

Now we have to prove that X ′ is full. By Proposition 3.8 X ′ is consistent, since
X ′

� α. Now suppose that X ′ � β, but β /∈ X ′. By construction X ′ � β → α and
by modus ponens X ′ � α which is a contradiction. Finally, suppose that β1 ∨ β2 ∈
X ′, β1 /∈ X ′ and β2 /∈ X ′. By construction β1 → α,β2 → α ∈ X ′ and using axiom
10 we have X � α which is a contradiction. �
Theorem 3.20 (Completeness) If A � α then A � α.

Proof Consider the following Kripke model M = 〈W,≤, v〉 :
W = {B ⊆ L : Bis full and A ⊆ B}
≤ = {(B1, B2) ∈ 2LInt × 2LInt : B1 ⊆ B2}

v(p) = {B ⊆ L : p ∈ B}
By Lemma 3.19 W �= ∅. We will show that for any B ⊆ L and any β ∈ L , B �M β
iff β ∈ B.

This is proved inductively in the construction of the formulas in LInt. For the base
β = p ∈ P and it follows B �M p iff p ∈ B by construction.

(∧) B �M β1 ∧ β2 iff B �M β1 and B �M β2 iff, by induction hypothesis, β1 ∈ B
and β2 ∈ B. It follows that β2 ∈ B then using axiom 3 β1 ∧ β2 ∈ B.

Conversely, if β1 ∧ β2 ∈ B then by axiom 4 and 5 β1,β2 ∈ B.

3.2 Intuitionistic Logic 29

(∨) B �M β1 ∨ β2 iff B �M β1 or B �M β2 iff, by induction hypothesis, β1 ∈ B or
β2 ∈ B. It follows, by axioms 6 and 7, that β1 ∨ β2 ∈ B.

Conversely, if β1 ∨ β2 ∈ B then β1 ∈ B or β2 ∈ B, since B is full.
(¬) B �M ¬β iff, by induction hypothesis, β /∈ B ′ for all full extension B ′ of

B. Notice that B ∪ {β} must be inconsistent, otherwise, by Lemma 3.19 there
would be a full extension B ′ of B which included β. Hence, by Proposition 3.8
B ∪ {β} � ¬β and by Theorem 3.7 B � β → ¬β. Finally, using axiom 9 we
have ¬β ∈ B. Conversely if ¬β ∈ B then, by consistency β /∈ B.

(→) B �M β1 → β2 iff, by induction hypothesis, for every full extension B ′ of B
we have that β1 /∈ B ′ or β2 ∈ B ′. First assume that B ∪{β1} is inconsistent, then
B ∪ {β1} � β2 by Proposition 3.8. Now assume that B ∪ {β1} is consistent and
that B ∪ {β1} � β2, then by Lemma 3.19 there is an full extension of B ∪ {β1}
that do not derive β2 which is a contradiction. It follows that B ∪ {β1} � β2 and
by Theorem 3.7 β1 → β2 ∈ B.

Conversely, if for all full extension B ′ of B it holds that β1 → β2 ∈ B ′ then if
β1 ∈ B ′ by modus ponens β2 ∈ B ′. Hence B ′

� β1 or B ′ � β2 and we conclude
that B � β1 → β2.

To conclude the proof, just notice that B �M α. �

3.2.3 Properties

By Theorems 3.18 and 3.20, the consequence operator CInt induced either by the
syntactic consequence relation �Int or by the semantic consequence relation �Int are
the same, i.e.,

CInt(A) = {α ∈ L : A �Int α} = {α ∈ L : A �Int α}
Int is distributive, but it is not decomposable.

Proposition 3.21 Int is distributive.

Proof First notice that if β ∈ Cn(γ1) ∩ Cn(γ2) then by deduction γ1 → β, γ2 →
β ∈ Cn(∅). Using Axiom 10 we have that β ∈ Cn(γ1 ∨γ2). It follows that Cn(γ1)∩
Cn(γ2) ⊆ Cn(γ1 ∨ γ2).

Using the semantic definition it is trivial to verify that Cn({β1, . . . ,βn}) =
Cn(β1 ∧ · · · ∧ βn). Since Int is compact, the rest of the proof follows exactly as
in Lemma 2.13. �
Proposition 3.22 Int is not decomposable.

Proof Let K = {¬p} and A = {¬p∨ p}. We will show that: 1) CInt(∅) ⊂ CInt(A) ⊂
CInt(K) and 2) There is no X such that CInt(X) ⊂ CInt(K) and CInt(X ∪ A) =
CInt(K)

1. Using axiom 6 we have that p ∨ ¬p ∈ CInt(¬p). Consider the following Kripke
model M = 〈W,≤, v〉 :

30 3 Logics

W = {w}
≤ = {(w,w)}

v(p) = {w}

It is easy to verify that �M p ∨ ¬p, but �M ¬p. It follows that CInt(p ∨ ¬p) �=
CInt(¬p).

Furthermore, Example 3.16 shows that p ∨ ¬p /∈ CInt(∅).

2. We will show that for any X ⊆ L such that CInt(X) ⊂ CInt(¬p) there is a model
M such that �M X ∪ {p ∨ ¬p}, but �M ¬p.

Take X such that CInt(X) ⊂ CInt(¬p). Since ¬p /∈ CInt(X) there is a model
M ′ = 〈W ′,≤′, v′〉 such that �M ′ X and there is a w ∈ W ′ with w0 ≤ w and
w ∈ v′(p). Now, consider the following model M = 〈W,≤, v〉

W = {w ∈ W ′ : w ∈ v′(p)}
≤ = {(w1, w2) ∈ W × W : w1 ≤′ w2}
v(p) = v′(p) ∩ W

First notice that ≤ is indeed a partial order. Then notice that �M X, �M p. Of
course, we also have that �M p ∨ ¬p. It follows that X ∪ {p ∨ ¬p} �M ¬p,

hence X ∪ {p ∨ ¬p} � ¬p.

In Intuitionistic logic the connective ¬ is not classical and the logic is not com-
plemented. Hence, Int fails to satisfy AGM-assumptions. �

3.3 Horn Logic (Horn)

The problem of verifying if a sentence α is a consequence of a set of sentences A
in Classical Propositional Logic is hard (CoNP-complete). One way to avoid such
complexity is to restrict the language LCPL. Horn logic is a fragment of CPL whose
inferential problem can be solved in polynomial time.

Of course when the language is restricted it became less expressive. Although,
Horn logic is widely used in computer science, because of its low computational com-
plexity. Several applications in Artificial Intelligence uses Horn logic. Programing
language PROLOG1, for example, is based on Horn logic.

Consider an enumerable set of propositional variables P. The language LHorn of
Horn logic is defined using BNF as follows:

head := p p ∈ P

body := ¬p | (body ∨ body) p ∈ P

clause := head | body | (head ∨ body)

α := clause | (α ∧ α)

1 http://www.swi-prolog.org

3.3 Horn Logic (Horn) 31

A sentence α ∈ LHorn is a conjunction of Horn clauses. A Horn clause has a
body (a disjunction of propositional variables) and may have one head (a negated
propositional variable). Of course we have that LHorn ⊂ LCPL.

Example 3.23

p ∈ LHorn
¬p ∈ LHorn

p1 ∨ ¬p2 ∈ LHorn
(p1 ∨ ¬p2) ∧ (p2 ∨ ¬p3) ∈ LHorn

p1 ∨ p2 /∈ LHorn

The consequence operator CHorn is simply the restriction of CCPL to the language
LHorn, i.e.,

CHorn(A) = {α ∈ LHorn : α ∈ CCPL(A)}

A query in Horn logic is a sentence α with no head. The most important inferential
problem in Horn logic is to decide whether or not a query α follows from a set
A ⊆ LHorn. Let α = ¬p1 ∨ · · · ∨ ¬pn be a query and consider the set A′ =
A ∪ {p1, . . . , pn}. This problem can be reduced to the problem of deciding whether
there is a truth-function v such that v(A′) = 1, i.e., deciding whether A′ is satisfiable
(Horn-SAT). Horn-SAT can be solved in polynomial time.

3.3.1 Properties

Horn logic is compact, but it is neither decomposable, distributive nor complemented.

Proposition 3.24 Horn logic is compact

Proof Let A ⊆ LHorn. Since LHorn ⊆ LCPL ⊆ LCPL. By compactness of CPL we
have that there is a finite A′ ⊆ A such that α ∈ CCPL(A′). Of course A′ ⊆ LHorn
and, hence, α ∈ CHorn(A′). �
Proposition 3.25 Horn logic is not decomposable.

Proof Let Y = Cn({β ∈ L : Cn(β) ⊂ Cn(p)}). For every pi ∈ P, we have
¬pi ∨ p ∈ CHorn(Y). It follows that CHorn(Y) �= CHorn(∅). Consider a sentence β
such that CHorn(β) ⊂ CHorn(p). Every clause in this sentence has at least one ¬pi for
pi �= p, otherwise either β /∈ CHorn(p) or CHorn(β) = CHorn(p). Consider a truth-
function v such that v(p) = 0 for every p ∈ P. Since every clause in β has at least one
¬pi then �v β and, hence, �v Y. Since �v p, we have that CHorn(Y) �= CHorn(p).

Of course CHorn(Y) ⊆ CHorn(p). Hence, CHorn(Y) ⊂ CHorn(p). By Lemma 2.9,
〈L , Cn〉 is not decomposable. �

32 3 Logics

Proposition 3.26 Horn logic is not distributive.

Proof

p ∈ CHorn({p ∨ ¬q, p}) ∩ CHron({p ∨ ¬q, q})
p /∈ CHorn({p ∨ ¬q} ∪ (CHorn(p) ∩ CHorn(q)))

= CHorn({p ∨ ¬q} ∪ CHorn(∅))

= CHorn({p ∨ ¬q}) �

Proposition 3.27 Horn logic is not complemented.

Proof The sentence ¬p ∧ ¬q ∈ LHorn has no complement. There is no A such that
CHorn(A) �= CHorn(∅) and CHorn(¬p ∧ ¬q) ∩ CHorn(A) = CHorn(∅). �

3.4 Description Logics

Description Logics (DLs) are formalisms used to represent relations between
concepts and between concepts and instances in a domain. Differently from their
predecessors (frame systems [Min81] and semantic networks [Qui67]), DLs have
well-defined semantics based on first-order logic. In fact, DLs are fragments of first-
order logic with the advantage of having decidable inference problems.

When modeling a domain it is desirable, on the one hand, an expressive formalism
capable of representing a vast amount of different problems. On the other hand,
it is important to guaranty that the inference problems can be solved efficiently.
Both desiderata are, sometimes, incompatible (see [LB87]). Finding a good balance
between expressivity and computational complexity is one of the main challenges in
knowledge representation.

The research in DLs explored the complexity and expressivity of a wide range
of logics and culminated with the adoption of OWL as the standard language for
representing ontologies in the Web. Both versions of OWL were deeply inspired in
DLs.

Ontology following Grubber [Gru93] is a formal “specification of a conceptual-
ization”. Ontologies in computer science gain attention with the advent of semantic
Web. Semantic Web has been pointed as the evolution of the Web where available
information would be comprehensive by humans as well as artificial agents.

The role of ontologies in the Web would be to provide common vocabulary
between web-agents. In semantic Web, ontologies would be responsible to declare
the terms used by each agent and to make explicit how this terms are semantically
related. In a few words, ontologies would enable a richer communication between
artificial agents.

DLs are a family of logics and each DL has its own language, semantics, etc. In
what follows the language and the semantic consequence relation for a specific DL
will be presented, ALC. After that extensions of ALC will be presented. The section
finishes presenting OWL, the standard language to represent ontologies on the Web.

3.4 Description Logics 33

3.4.1 Language

Before defining the language of ALC we need to present its description language.
The description language consists of the concepts of the logic.

The signature of a description language is a tuple 〈NC , NR, NI 〉 such that NC , NR

and NI are infinite enumerable sets of atomic concepts, atomic roles, and individuals,
respectively. The following is a presentation of the description language of ALC in
BNF (A ∈ NC and R ∈ NR) :

C := A | � | ⊥ | (¬C) | (C � C) | (C C) | (∀R.C) | (∃R.C)

Symbols ¬, �, , ∀ and ∃ are called constructors. A description language is charac-
terized by the constructors it admits. ALC, for example, admits negation (¬), con-
junction (�), disjunction (), value restriction (∀) and qualified existential restriction
(∃).

Example 3.28 Let Man, Mortal be atomic concepts and is Disciple Of a role. The
following are concepts in ALC :
Man : the set of men.
Man � Mortal : the set of mortal men.
Man � ¬Mortal : the set of immortal men.
Man � ∃is DiscipleO f.Man : the set of disciples.

The language of ALC is composed of two parts: the TBox and the ABox. TBox
contains sentences that represent conceptual knowledge while the ABox contains
sentences that represent assertional knowledge.

Sentences in L T Box
ALC (the TBox of ALC) has the following form:

α := C � C

Sentence in L ABox
ALC (the ABox of ALC) has the following form where C is a concept,

R ∈ NR and a, b ∈ NI :
α := C(a) | R(a, b) | a = b | a �= b

Example 3.29 Let Man, Mortal ∈ NC and let SOCRATES, PLATO be instances i.e.
elements of NI . The following are sentences in ALC language LALC = L T Box

ALC ∪
L ABox

ALC :
Man � Mortal
Man(SOCRATES)
(Man � ¬Mortal)(SOC R AT E S)

isDiscipleOf(SOCRATES, PLATO)

34 3 Logics

3.4.2 Semantics

An interpretation is a tuple I = 〈�I , .I〉 such that �I is a non-empty set called
domain and .I is a function called interpretation function. The interpretation function
associates atomic concepts to subsets of the domain, atomic roles to binary relations
on the domain, and individuals with elements of the domain. Formally:

• If A ∈ NC then AI ⊆ �I .

• If R ∈ NR then RI ⊆ �I × �I .

• If a ∈ NI then aI ∈ �I .

The interpretation is extended for complex concepts as follows:

(�)I = �I
(⊥)I = ∅

(¬C)I = �I \ CI
(C � D)I = CI ∩ DI
(C D)I = CI ∪ DI
(∀R.C)I = {a : (a, b) ∈ RI → b ∈ CI}
(∃R.C)I = {a : ∃(a, b) ∈ RI ∧ b ∈ CI}

Example 3.30 Consider the following interpretation I = 〈�I , .I〉 :

�I = {s, p, z}
Man = {s, p}
Mortal = {p}

This interpretation is extended to complex concepts as follows:

(Man � ¬Mortal)I = ManI ∩ (¬Mortal)I
= ManI ∩ (�I \ Mortal)I
= {s, p} ∩ ({s, p, z} \ {p})
= {s}

An interpretation I satisfies (or is a model for) a sentence α ∈ LALC (written �I α)

iff it holds that:

�I C � D iff CI ⊆ DI
�I C(a) iff aI ∈ CI
�I R(a, b) iff (aI , bI) ∈ RI
�I a = b iff aI = bI
�I a �= b iff aI �= bI

As usual, an interpretation satisfies a set A (in symbols �I A) iff A satisfies each
element of the set, i.e., �I A iff �I β for every β ∈ A. A a sentence α is a semantic

3.4 Description Logics 35

consequence of set of sentences A (written A iff every model of A is a model of α,
i.e., for every I if �I A then �I α.

Example 3.31 Let us show that

{Man � Mortal, Man(SOCRATES)} � Mortal(SOCRATES)

Proof For every I if �I Man(SOCRATES) and �I Man � Mortal then we have:

SOCRATESI ∈ ManI
ManI ⊆ MortalI

Hence, SOCRATESI ∈ MortalI .

The consequence operator is defined as usual Cn(A) = {α ∈ LALC : A � α}
and it is Tarskian. Remember that two sets of sentences A and B are equivalent iff
Cn(A) = Cn(B), i.e., A and B are equivalents iff for all interpretations I we have
that �I A iff �I B.

3.4.3 Extensions of ALC

Several extensions for ALC has been proposed in the literature [BCM+03]. We will
show some of these extensions, namely, transitive roles, inverse roles, role hierarchy,
nominals, and numeric restrictions.

A DL that admits transitive roles, besides the constructors for ALC, is called
S. In S transitive roles form a set NR+ ⊆ NR , i.e., for R ∈ NR+ we have that for
every I :

if (x, y) ∈ RI and (y, z) ∈ RI then (x, z) ∈ RI

The names of ALC extensions are build adding letters to ALC or to S. For example
SI is the DL obtained extendingALC with transitive roles and inverse roles. Consider
the set NR ∪ {R− : R ∈ NR}. For every I and every R ∈ NR ∪ {R− : R ∈ NR} :

if (x, y) ∈ RI then (y, x) ∈ (R−)I

If the logic admits transitive roles then R ∈ NR+ implies that R− ∈ NR+ . Further-
more, in order to avoid using symbols like R−,we will use the following abbreviation:

I nv(R) =
{

R− if R ∈ NR

S if R = S−

DLs that admits role hierarchy are represented with the letter H in their name. Such
logics have, besides the TBox and the ABox, an RBox that contains sentences like:

36 3 Logics

α := R � S

Let R be an RBox, define the relation �̃ as the reflexive transitive closure of � on
R ∪ {I nv(R) � I nv(S) : R � S ∈ R} and let R+ be the set of axiom of the type
R � S such that R�̃S. The abbreviation R ≡ S will be used to indicate that R�̃S
and S�̃R.

If R ∈ NR+ and R ≡ S then S is transitive. The symbol T rans(R) will be
used to denote that R is transitive, i.e., T rans(R) iff R ≡ S for some S ∈ NR+ or
I nv(S) ∈ NR+ . Non transitive roles are called simple.

An interpretation I satisfies the RBox R (written �I R) iff for every R � S ∈ R :

RI ⊆ SI

DLs that admits nominals are represented with the letter O. In these DLs it is possible
to define concepts enumerating its individuals (C = {a1, . . . , an} for a1, . . . , an ∈
NI). The interpretation of these concepts are as expected:

{a1, . . . , an}I = {aI
1 , . . . , aI

n }
In DLs that admit nominals, any ABox sentence has an equivalent sentence in the
TBox:

C(a) iff {a} � C
R(a, b) iff {a} � ∃R.{b}
a = b iff {a} � {b}
a �= b iff {a} � ¬{b}

A DL admits qualified numeric restriction (Q) iff it admits the constructions ≤n R.C
and ≥n R.C for any simple (non-transitive) role R, any concept C , and any positive
integer n. The concept ≤n R.C represents the set whose elements are related via
R with at most n elements of C. Formally, using the symbol # to represent the
cardinality of a set:

(≤ R.C)I = {b : #{(b, a) ∈ RI ∧ a ∈ CI} ≤ n}}
(≥ R.C)I = {b : #{(b, a) ∈ RI ∧ a ∈ CI} ≥ n}}

The letter N is used for logics that admit only simple numeric restrictions, i.e.,
concepts of the form ≤n R.� and ≥n R.�. If, besides that, n is restricted to 1 then
we say that the logic admits functional roles (F).

In many situations we need to reason not only about abstract classes such as
Mortal or Man, but also with data types like string and integer. Data types have its
own domain �I

D disjoint from �I . A concrete role is a binary relation in �I × �I
D.

Concrete roles can be used in numeric restrictions, existential restrictions, and value
restrictions. A DL that admits concrete roles is designed by the letter D between
parenthesis.

Table 3.1 sums up the semantics of the DLs presented in this section.

3.4 Description Logics 37

Table 3.1 ALC extensions

Data types (D) D DI ⊆ �I
D

Concrete roles U UI ⊆ �I × �I
D

Data value v vI ∈ �I
D

Existential restriction ∃U.D {x : ∃(x, y) ∈ UI ∧ y ∈ DI}
Value restriction ∀U.D {x : (x, y) ∈ UI → y ∈ DI}
Functional roles (F) ≤1 R {x : #{(x, y) ∈ RI} ≤ 1}

≤1 U {x : #{(x, y) ∈ UI} ≤ 1}
≥1 R {x : #{(x, y) ∈ RI} ≥ 1}
≥1 U {x : #{(x, y) ∈ UI} ≥ 1}

Simple numeric restr. (N) ≤n R {x : #{(x, y) ∈ RI} ≤ n}
≤n U {x : #{(x, y) ∈ UI} ≤ n}
≥n R {x : #{(x, y) ∈ RI} ≥ n}
≥n U {x : #{(x, y) ∈ UI} ≥ n}

Qualified numeric restr. (Q) ≤n R.C {x : #{(x, y) ∈ RI ∧ y ∈ C} ≤ n}
≤n U.D {x : #{(x, y) ∈ UI ∧ y ∈ D} ≤ n}
≥n R.C {x : #{(x, y) ∈ RI ∧ y ∈ C} ≥ n}
≥n U.D {x : #{(x, y) ∈ UI ∧ y ∈ D} ≥ n}

Nominals (O) {a1, . . . , an} {d : d = aI
i }

Inverse roles (I) R− {(x, y) : (y, x) ∈ RI}
Transitive roles (S) R ∈ R+ {RI = (RI)+}
Role hierarchy (H) R � S RI ⊆ SI

3.4.4 OWL

In 2004 W3C2 officially announced the adoption of OWL as the standard language
for representing ontologies on the Web.

This announcement was the climax of several years of studies. During these
years one of the goals of the DL researchers was to study very expressive decidable
fragments of first-order logic. Furthermore, in the end of the 1990s and beginning of
the twenty-first century several inference engines for expressive DLs were developed:
RACER [HM01] and FaCT [Hor98] are two good examples. Those inference engines
based in tableaux methods had a surprisingly good performance for such expressive
formalisms.

For these reasons, the development of OWL was deeply influenced by Descrip-
tion Logics field. The first version of OWL came in three flavors with decreas-
ing expressive powers and computational complexity: OWL-full, OWL-DL, and
OWL-lite. Although completely compliant with RDFS, OWL-full is undecidable.
OWL-DL is a syntactic variant of the Description Logic SHOIN (D), i.e., the
DL that extends ALC with transitive roles (S), role hierarchy (H), nominals (O),

inverse roles (I), simple numeric restrictions (N) and datatypes (D). Besides its
enormous computational complexity, modern inference engines such as Hermit

2 http://www.w3c.org

38 3 Logics

[MSH07], FaCT++ [TH06], and RACER [HM01] are capable of solving infer-
ence problems in SHOIN (D) surprisingly fast in most cases. Finally, OWL-lite
is a syntactic variant of the logic SHIF(D) which is a bit less expressive then
SHOIN (D). The logic SHIF(D) extends ALC with role hierarchy, functionals,
inverse and transitive roles, and datatypes. It turns out, however, that inference prob-
lems in SHIF(D) still had high complexity (ExpTime complete).

In 2009, a new version of OWL was released [OWL09]. This time OWL DL was
a syntactic variation of a DL called SROIQ.SROIQ extends SHOIN (D) with
the following new functionalities:

• disjoint roles: a new type of RBox sentence to express that two roles are disjoint.
• reflexive and irreflexive roles: new types of RBox sentences to express that a roles

is (ir)reflexive.
• negated role assertions: a new type of ABox sentence to express that certain

individuals are not related via certain relation.
• complex role hierarchy: new types of RBox sentences (R ◦ S � R and S ◦ R � R

that guarantees that R contains the composition of R and S and the composition
of S and R, respectively.

• universal role: a new constant U such that UI = �I ×�I for every interpretation
I.

• Self: a concept that allows self-reference, e.g., the following is a definition of the
concept narcissist as someone who likes herself Narcissist ≡ likes.Sel f.

The second version of OWL also defines tractable fragments, i.e., sublanguages
whose inference problems can be solved polynomially. This fragments are called
OWL-profiles [MGH+08]. Each profile was defined for a different purpose:

1. OWL-EL is appropriate to represent ontologies with many simple concepts.
Besides its low expressivity, OWL-EL is enough to model satisfactorily important
medical ontologies such as SNOMED [SR04] and large part of GALEN [RRP96].
The theoretical framework of OWL-EL is the EL family of DLs [BBL08].

2. OWL-QL is appropriate for ontologies with many instances such that the main
use is to answer queries. Besides the low expressivity, in OWL-QL it is possible
to model the main characteristics of UML and ER. The theoretical framework of
OWL-QL is the DL-lite family [ACKZ09].

3. OWL-RL is appropriate for applications that need high computational complexity.
The efficiency of OWL-RL comes from the fact that it can be implemented using
rules.

3.4.5 Properties

Since DLs are fragments of first-order logic, using the same argument from Propo-
sition 3.24, we have that DLs are compact. Other properties hold for certain DLs. To
facilitate our exposure we will split the DLs in two categories: regulars and irregulars.

3.4 Description Logics 39

A DL 〈L , Cn〉 is regular iff every sentence α ∈ L is equivalent to a sentence in
the form:

� � B

Proposition 3.32 If a DL 〈L , Cn〉 admits only TBox sentences and admits negation
and conjunction then 〈L , Cn〉 is regular.

Proof Any sentence C � D is equivalent to � � ¬C D. �
Proposition 3.33 If a DL 〈L , Cn〉 admits TBox and ABox sentences and admits
negation, conjunction, existential restriction, and nominals then 〈L , Cn〉 is regular.

Proof As already argued, if 〈L , Cn〉 admits nominals then every sentence in the
ABox is equivalent to some sentence in the TBox. �

Using Proposition 3.33 it is easy to verify which DLs are regular and which are
not. The following DLs are regular:

• Any logic between ALC and ALCIQ with empty ABox.
• Any logic between S and SIQ with empty ABox.
• Any logic between ALCO and ALCOIQ.

• Any logic between SO and SOIQ.

The following DLs are irregular:

• Any logic between ALC and ALCIQ.

• Any logic between S and SIQ.

• Any logic between ALCH and ALCOIOH.

• Any logic between SH and SHOIN (D) including SHIF(D).

• The logic SROIQ.

Lemma 3.34 If 〈L , Cn〉 is compact and for every finite A, B, C ∈ 2L it holds that

Cn(A ∪ B) ∩ Cn(A ∪ C) ⊆ Cn(A ∪ (Cn(B) ∩ Cn(C)))

then 〈L , Cn〉 is distributive.

Proof Let β ∈ Cn(A ∪ B) ∩ Cn(A ∪ C) then there are finite sets A1 and A2
such that A1 ⊆ A ∪ B, A2 ⊆ A ∪ C and β ∈ Cn(A1) ∩ Cn(A2). Let B ′ =
B ∩ A1, C ′ = C ∩ A2 and A′ = A ∩ (A1 ∪ A2) = (A ∩ A1) ∪ (A ∩ A2). It
follows that B ′ ⊆ B, C ′ ⊆ C and A′ ⊆ A. With a simple set manipulation we
can show that Cn(A1) ∩ Cn(A2) ⊆ Cn(A′ ∪ B ′) ∩ Cn(A′ ∪ C ′). By hypothesis
Cn(A′ ∪ B ′) ∩ Cn(A′ ∪ C ′) ⊆ Cn(A′ ∪ (Cn(B ′ ∩ Cn(C ′)))) and we conclude that
β ∈ Cn(A ∪ (Cn(B ∩ Cn(C)))). �

40 3 Logics

Proposition 3.35 Any regular DL that admits and � is distributive.3

Proof By Lemma 3.34 we need to prove just the finite case and since the logic is
regular we can assume without loss of generality that B = {� � B1, . . . ,� � Bm}
and C = {� � C1, . . . ,� � Cn}.

Let B = B1 � · · · � Bm and C = C1 � . . . Cn . Of course Cn(B) = Cn(� � B)

and Cn(C) = Cn(� � C). Let β ∈ Cn(A ∪ B) ∩ Cn(A ∪ C) = Cn(A ∪ {� �
B}) ∩ Cn(A ∪ {� � C}).

Now notice that the second line below follows from the first.

∀I(�I A and (�I � � B or �I � � C) ⇒ �I α)

∀I(�I A and �I � � B � C ⇒ �I α)

It follows that Cn(A ∪ B) ∩ Cn(A ∪ C) ⊆ Cn(A ∪ {� � B � C}.
Notice also that the second and third lines below follows from the first.

∀I(�I � � B C ⇒ �I α)

∀I(�I � � B ⇒ �I α)

∀I(�I � � C ⇒ �I α)

Hence, Cn(A ∪ {� � B � C}) ⊆ Cn(A ∪ (Cn(B) ∩ Cn(C))). We conclude that
Cn(A ∪ B) ∩ Cn(A ∪ B) ⊆ Cn(A ∪ (Cn(B) ∩ Cn(C)) �

Many irregular DLs, though, are not distributive. Consider two examples:

Example 3.36 Let X = {a = b}, Y = {C(a)} and Z = {C(b)}. Since Cn(Y) ∩
Cn(Z) = Cn(∅)), it follows that C(a) /∈ Cn(X ∪ (Cn(Y) ∩ Cn(Z))). However,
C(a) ∈ Cn(X ∪ Y) ∩ Cn(X ∪ Z). We conclude that ALC is not distributive.

Example 3.37 Let X = {R � S1, R � S2}, Y = {S1 � S3} and Z = {S2 � S3}.
Since Cn(Y)∩Cn(Z) = Cn(∅)), we have that R � S3 /∈ Cn(X∪(Cn(Y)∩Cn(Z))).

However, R � S3 ∈ Cn(X ∪ Y) ∩ Cn(X ∪ Z) We conclude that ALCH is also not
distributive.

Flouris studied decomposability of DLs in this thesis [Flo06]. Two of his main
results are the following:

Proposition 3.38 ([Flo06]) Any regular DL that admits intersection �, value restric-
tion ∀ , and the universal role U (i.e. a role U such that UI = �I × �I for any
interpretation I) is decomposable.

Proof Let K,A ∈ 2L such that K is logically closed, Cn(∅) ⊂ Cn(A) ⊂ K and
A is finitely representable. Since 〈L , Cn〉 is regular then without loss of generality
we can set K = Cn({� � A j : j ∈ J }) and there is A′ equivalent to A such that
A′ = {� � Bi : 1 ≤ i ≤ n. Let B = B1 � · · · � Bn . It is not difficult to verify that
A′′ = {� � B} is equivalent to A′.

3 In some proofs in this section different types of letter will be used to distinguish concepts from
sets of sentences.

3.4 Description Logics 41

Let Z = {B � A j : j ∈ J }. Of course Cn(A′′ ∪Z) = Cn(A∪Z) = K. It is also
trivial to check that Cn(Z) ⊆ K. The only thing left to prove is that Cn(Z) �= K.

Suppose that K ⊆ Cn(Z), then Cn(A) ⊆ Cn(Z). Since Cn(∅) ⊂ Cn(A) there
is an interpretation I such that BI �= �I . For this interpretation I we have that
(∀U.B)I = ∅. It follows that �I Z and �I A. Hence Cn(Z) �= K. �
Proposition 3.39 [Flo06] If a DL admits role hierarchy and at least one of the
constructors:

• value restriction (∀),

• existential restriction (∃) or
• number restriction (≤n).

and does not admit role constructors then it is not decomposable.

Proof Let K = Cn({R � S}) and A = {x ∈ K : Cn(x) � K }. By lemma 2.9 we
only need to prove that (1) Cn(A) �= Cn(∅) and (2) Cn(A) ⊂ K .

1. Since the logic admits value restriction, existential restriction, or number restric-
tion, at least one of the following non-tautological sentences is in Cn(A) :

∃R.B � ∃S.B
∀R.B � ∀S.B
≤n R.B � ≤n R.B

2. Consider the following interpretation I :
�I = {a1, a2, b1, b2}
BI = ∅ for all concept B
R′I = ∅ for all roles R′ different from R and S
RI = {(a1, b1), (b1, a1), (a2, b2), (b2, a2)

SI = {(a1, b2), (b2, a1), (a2, b1), (b1, a2)}
Since the logic does not admit role constructors then every relationship between
roles are tautological. Thus, it is not difficult to verify that this interpretation
satisfies A and do not satisfy K . Hence Cn(A) �= K . �
Two roles R, S are not related in a DL 〈L , Cn〉 iff � R � and � S � R.

Proposition 3.40 If a DL 〈L , Cn〉 is regular admits value restriction and has an
infinite number of unrelated roles in its signature then 〈L , Cn〉 is not complemented.

Proof Let A be a concept such that Cn(� � A) �= L . Since the logic is regular,
the complements of Cn(� � A) must be of the form Cn(� � B). Suppose w.l.g.
that Cn(� � B) is a complement of Cn(� � A). Cn(� � B) �= Cn(∅), otherwise
since Cn(� � A) ∪ Cn(� � B) = L then Cn(� � A) = L which contradicts
the hypothesis. Since Cn(� � A) �= Cn(∅), there is an interpretation I such that
AI �= �I . We split the rest of the proof in two parts.

First assume that for every interpretation I we have that if AI �= �I then BI =
�I . In the case A � B ∈ Cn(∅) and �B ∈ Cn(� � A) ∩ Cn(� � B). Since

42 3 Logics

Table 3.2 Logic properties

Logics Distributive Complemented Decomposable Compact

CPL yes yes yes yes
Horn no no no yes
Int yes no no yes
ALC - ALCIQ (no ABox) yes no yes yes
S - SIQ (no ABox) yes no yes yes
ALCO - ALCOIQ yes no yes yes
SO - SOIQ yes no yes yes
ALCH - ALCHOIQ no no no yes
SH and SROIQ no no no yes
SHIF(D) and SHOIN (D) no no no yes

� � B /∈ Cn(∅) we have that Cn(� � A) ∩ Cn(� � B) �= Cn(∅) which
contradicts the fact that Cn(� � B) is a complement for Cn(� � A).

Now assume that there is an interpretation I such that AI �= �I and BI �= �I .

Let R be a role which is unrelated with every role that occurs in A and in B. Since
AI �= �I and B �= �I there are a, b ∈ �I such that a /∈ A and b /∈ BI .

Let (a, b) ∈ RI then a /∈ ∀R.B. It follows that a /∈ AI ∪ (∀R.B)I . Hence,
� � A ∀R.B /∈ Cn(∅), but � � A ∀R.B ∈ Cn(� � A) ∩ Cn(� � B). �

The literature presents two definitions of consistency in DLs. A concept A is
called satisfiable iff there is at least one interpretation I such that AI �= ∅. The
concept A � ¬A, for example, is not satisfiable since (A � ¬A)I = ∅ for every
interpretation I. The presence of unsatisfiable concepts in a belief set normally
indicates a modeling error. A set of sentence that implies an unsatisfiable concept is
considered inconsistent.

The second type of inconsistency is much more critical. It indicates that there is
no possible interpretation for the base. A set of sentences B is inconsistent if there
is no interpretation I such that �I B.

3.5 Conclusion

Although the abstraction of consequence operator is enough for most results in
the future chapter, it is useful to present examples of concrete logics. For this reason
in this chapter several logics was presented, namely, Classical Propositional Logic,
Intuitionistic Logic, Horn Logic, and some Description Logics.

CPL was presented as a canonical example of well-behaved logic, i.e., logic
that satisfies the AGM assumptions. Other logics such as modal logics are also well
behaved, but were omitted here (see [Che80] for a good introduction in modal logics).
We presented both axiomatic system and semantics of CPL. Our approach followed
[Eps90], but there are lots of other good references for CPL in the literature.

3.5 Conclusion 43

Intuitionistic logic was developed by Heyting (see [Min00] for more details about
Intuitionistic Logic). It was presented here for mainly two reasons: it is well known
by logicians and it has certain interesting properties such as being distributive, but
not decomposable.

Horn Logic and Description Logics were presented because they have compu-
tational interested. Horn Logic is widely used in Artificial Intelligence application
because of its low computational complexity and Description Logics are used as
theoretical framework for ontologies on the Web. For a more detailed presentation
of Description Logics and its applications see [BCM+03].

The main aspects of these logics that we need to focus are the properties that their
consequence operator satisfy. Results on future chapters are applicable to a logic
depending on the properties of its consequence operator. We summed up the results
concerning the properties that the consequence operator of each logic satisfy in
Table 3.2 which should be used as reference.

References

[ACKZ09] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael
Zakharyaschev. The DL-lite family and relations. Technical Report BBKCS-09-
03, School of Computer Science and Information Systems, Birbeck College, 2009.

[AW97] G. Antoniou and M.A. Williams. Nonmonotonic reasoning. Artificial intelligence.
MIT Press, 1997.

[BBL08] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the el envelope further.
In Kendall Clark and Peter F. Patel-Schneider, editors, Proceedings of the OWLED
2008 DC Workshop on OWL: Experiences and Directions, 2008.

[BCM+03] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter
Patel-Schneider, editors. The Description Logic Handbook. Cambridge University
Press, 2003.

[CE06] Walter Carnielli and Richard L. Epstein. Computabilidade Func̃oes Computáveis,
Lógica e os Fundamentos da Matemática. UNESP, 2006.

[Che80] B.F. Chellas. Modal logic: an introduction. Cambridge University Press, 1980.
[EH86] E Allen Emerson and Joseph Y Halpern. Sometimes and not never revisited: on

branching versus linear time temporal logic. Journal of the ACM, 33(1):151–178,
1986.

[Eps90] R. L. Epstein. The Semantics Foundations of Logic. Volume 1: Propositional Logics.
Kluwer, Dordrecht, Netherlands, 1990.

[Flo06] Giorgos Flouris. On Belief Change and Ontology Evolution. PhD thesis, University
of Crete, 2006.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
[Gru93] T. R. Gruber. Towards Principles for the Design of Ontologies Used for Knowledge

Sharing. In N. Guarino and R. Poli, editors, Formal Ontology in Conceptual Analysis
and Knowledge Representation, Deventer, Netherlands, 1993. Kluwer Academic
Publishers.

[HM01] Volker Haarslev and Ralf Möller. Racer system description. In Proceedings of the
International Joint Conference on Automated Reasoning (IJCAR 2001), volume
2083 of Lecture Notes in Artificial Intelligence, pages 701–705. Springer, 2001.

[Hor98] Ian Horrocks. Using an expressive description logic: FaCT or fiction? In A. G.
Cohn, L. Schubert, and S. C. Shapiro, editors, Proceedings of the 6th International

44 3 Logics

Conference on the Principles of Knowledge Representation and Reasoning (KR’98),
pages 636–647, Trento, Italia, Junho, 2-5 1998. Morgan Kaufmann.

[LB87] Hector J. Levesque and Ronald J. Brachman. Expressiveness and tractability in
knowledge representation and reasoning. Computational Intelligence, 3:78–93,
1987.

[MGH+08] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fok-
oue, and Carsten Lutz. OWL 2 web ontology language: Profiles. World
Wide Web Consortium, Working Draft, Dezembro 2008. Available at
http://www.w3.org/TR/2008/WD-owl2-profiles-20081202/.

[Min81] Marvin Minsky. A framework for representing knowledge. In John Haugeland, edi-
tor, Mind Design: Philosophy, Psychology, Artificial Intelligence, pages 95–128.
MIT Press, Cambridge, MA, 1981.

[Min00] Grigori Mints. A short introduction to intuitionistic logic. Kluwer Academic Pub-
lishers, Norwell, MA, USA, 2000.

[MSH07] Boris Motik, Rob Shearer, and Ian Horrocks. Optimized Reasoning in Description
Logics using Hypertableaux. In Frank Pfenning, editor, Proceedings of the 21st
Conference on Automated Deduction (CADE- 21), volume 4603 of LNAI, pages
67–83, Bremen, Germany, July 17-20 2007. Springer.

[OWL09] W3C OWL Working Group. OWL 2 Web Ontology Language: Docu-
ment Overview. W3C Recommendation, 27 October 2009. Available at
http://www.w3.org/TR/owl2-overview/.

[Qui67] Ross M. Quillian. Word concepts: A theory and simulation of some basic semantic
capabilities. Behavioral Science, 12:410–430, 1967.

[RRP96] A. L. Rector, J. E. Rogers, and P. A. Pole. The GALEN high level ontology. In
Proceedings of Medical Informatics Europe 96, pages 174–178. IOS Press, Janeiro
1996.

[SR04] Kent A. Spackman and Guillermo Reynoso. Examining SNOMED from the perspec-
tive of formal ontological principles: Some preliminary analysis and observations .
In Udo Hahn, editor, 1st International Workshop on Formal Biomedical Knowledge
Reprsentation (KR-MED), volume 102 of CEUR Workshop Proceedings, pages 72–
80, Whistler, BC, Canada, Junho, 1 2004. CEUR-WS.org.

[TH06] D. Tsarkov and I. Horrocks. Fact++ description logic reasoner: System descrip-
tion. In Proceedings of the International Joint Conference on Automated Reason-
ing (IJCAR 2006), volume 4130 of Lecture Notes in Artificial Intelligence, pages
292–297. Springer, 2006.

Chapter 4
Classical Belief Revision

Abstract Belief revision is the subarea of knowledge representation which studies
the dynamics of epistemic states of an agent. Belief systems are composed of three
pieces: a representation of epistemic states, a set of epistemic attitudes, and types
of belief change. Two specific belief systems are presented in this chapter, namely,
AGM theory and belief base theory

Keywords Belief revision · Partial meet contraction · AGM theory · Belief base
theory · Belief systems

This chapter introduces the main concepts and results about classical belief revi-
sion theory. Next sections define generic belief systems following [Gar88]. Section
4.2 presents a belief system where epistemic states are represented as a set closed
under logical consequence. This approach is called AGM theory in honor to the
authors of [AGM85]. Section 4.3 presents a belief system where epistemic states are
represented as arbitrary sets of sentences. This approach distinguishes implicit from
explicit beliefs and is called belief base theory.

4.1 Belief Systems

An agent’s epistemic state is the set of beliefs of the agent at certain moment. Gär-
denfors defines it as an idealized representation of the cognitive state of an agent at
certain moment [Gar88]. It is possible to avoid making such strong assumption about
the cognitive state of the agent and defining the epistemic state as a representation
of every belief that can be attributed to it at certain moment, but this is not our main
focus here.

There are several ways of modeling the epistemic state of an agent. This work
considers only models based on sets of sentences. Probabilistic models, as in [Pea88]
for example, would not be considered.

M. M. Ribeiro, Belief Revision in Non-Classical Logics, 45
SpringerBriefs in Computer Science,
DOI: 10.1007/978-1-4471-4186-0_4, © The Author(s) 2013

46 4 Classical Belief Revision

Sections 4.2 and 4.3 present two ways of representing epistemic states: as sets
of sentences logically closed (belief sets) and as arbitrary sets of sentences (belief
bases).

Given a model of the epistemic state, an agent may have a series of epistemic
attitudes toward each element of the model. In a probabilistic model, for example,
an agent may accept or reject a sentence with certain probability. We will see in Sect.
4.2 that, when modeling the epistemic states as a belief set, the agent may have three
attitudes before a sentence: accept, reject, or indeterminate (do not have opinion).
When modeling the epistemic state as a belief base, on the other hand, the agent may
have four attitudes: explicitly accept, implicitly accept, reject, or indeterminate.

Belief revision studies the dynamics of epistemic states of an agent, i.e., how
agents change their attitude toward an element of the model. Following Gärdenfors
[Gär88], these changes are fired by an external trigger called epistemic input. The
form of this input is irrelevant. It can be uttered sentence, a smell, a noise, etc. For
our purposes the only thing that matters is the effect of this input in the epistemic
state of the agent.

An epistemic input can lead to several kinds of epistemic change. We consider
three types of belief change, also called operations, triggered by the epistemic input:

expansion: makes the agent to accept a new sentence.
revision: makes the agent to accept a new sentence in a consistent manner.
contraction: makes the agent to abandon the belief in a sentence.

Picture an agent in certain epistemic state. Imagine now that some external trigger
make it change its mind, i.e., drives it to a different epistemic state. The belief change
is the function that given an epistemic state and an input returns the new epistemic
state.

The main challenge of belief revision is to define rationality criteria for belief
change. What can one expect from an agent when it changes its beliefs? For example,
one such criterion defended by many authors, such as Harman [Har86] for example,
is the minimality criterion. When an agent changes its mind we expect it not to
abandon beliefs unnecessarily.

Sections 4.2.1 and 4.2.2 present a list of rationality postulates for contraction
and for revision in belief sets. Furthermore, these sections also present rationality
postulates for operations in belief bases.

Besides presenting the rationality postulates, we need to show how to construct
each of these operations. A set of postulates characterizes a construction if, on the
one hand, the construction satisfies each postulate and, on the other hand, any opera-
tion that satisfies the postulates can be obtained by the construction. This equivalence
between rationality postulates and certain construction is a central result in belief
revision theory. For each operation defined in this chapter a set of rationality postu-
late, a construction, and the representation theorems showing their equivalence are
presented.

A belief system is a model for epistemic states together with a definition of epis-
temic attitudes, a class of epistemic inputs, and a set of operations.

4.2 AGM Theory 47

4.2 AGM Theory

AGM theory [AGM85, Gar88] studies changes in epistemic states modeled as logi-
cally closed sets of sentences. The set of sentences that represents the agent’s epis-
temic state is called belief set. Let us assume for the rest of this section that the
agents reason according to certain logic 〈L , Cn〉 and that this logic satisfies the
AGM assumptions. Belief sets are sets of sentences closed under logic consequence,
i.e., given an underlying logic 〈L , Cn〉, a belief set K satisfies K = Cn(K) or
equivalently K ∈ KL .

Three types of epistemic attitudes toward a sentence are considered. Let K be the
belief set of an agent. A sentence α can be:

accepted: if α ∈ K
rejected: if K ∪ {α} is inconsistent
indeterminate: if α /∈ K and K ∪ {α} is consistent.

Three types of belief change, called operations, in belief sets are considered:
expansion, contraction, and revision. Let K be a belief set in a logic 〈L , Cn〉, the
symbols K + α, K − α, and K ∗ α represent the belief set of the agent after an
expansion by α, a contraction by α and a revision by α, respectively.

Expansion is certainly the simplest of those operations. An expansion consists
simply of the acceptance of a sentence α. Expansion can easily be achieved using
the following formula:

K + α = Cn(K ∪ {α})

Revision consists of the consistent acceptance of a sentence α. Besides guaranty-
ing that the input is accepted (α ∈ K ∗α) and that the resulting belief set is consistent
(K ∗ α is consistent), revision should guaranty that the change is somehow mini-
mal. Notice that revision is way more complicated than expansion, since it involves
“extra-logical” components.

Consider Example 4.1. To accommodate the belief that Socrates is immortal Aris-
totle has to abandon some of its old beliefs. However, there is no logical criterion
to decide which beliefs should be abandoned. For this reason, revision cannot be
defined in the same way that expansion was. Revision is defined via a set of ratio-
nality postulates (Sect. 4.2.2).

Contraction consists of the removal of a sentence α from the belief set K . Besides
guarantying that the input is indeterminate in the new belief set (α /∈ K − α) con-
traction should guaranty that K − α is a belief set and that the change is somehow
minimal. Contraction also depends on “extra-logical” factors. Its postulates are pre-
sented in the following subsection.

48 4 Classical Belief Revision

4.2.1 AGM Contraction

In this section contraction will be defined through rationality postulates called AGM
postulates for contraction. After that, a construction for contraction called partial
meet is presented. Both postulates and construction were originally presented in
[AGM85]. This seminal work also presented the representation theorem relating the
construction with the postulates. This theorem is also presented in this section.

AGM Postulates
When an agent questions the veracity of some of its beliefs, he evaluates a contraction,
i.e., contraction corresponds with the action of open minding.

Example 4.1 I believe that every man is a mortal man → mortal, but Hannah
believes that this is not the case. I may contract man → mortal for the sake of
argumentation.

Contraction is an operation defined over the actual belief set K that given a
sentence α as input returns a new belief set K − α that does not contain the input
(α /∈ K − α).

Since contraction depends on extra-logical components, we define it indirectly
via a set of rationality postulates. These postulates are known as AGM-postulates for
contraction.

The first of these postulates is called closure. Closure guarantees that the result
K − α of a contraction is a belief set, i.e.,

(closure) K − α = Cn(K − α)

A successful contraction should remove the input α from the original belief set K .

This is possible for every input α except when α is a tautology, i.e., when α ∈ Cn(∅).

If α is tautological, removing α from K would imply that K − α is not closed, i.e.,
it would violate closure. Hence, the second AGM postulate is stated as follows:

(success) If α /∈ Cn(∅) then α /∈ Cn(K − α).

Furthermore, in an epistemic change only the content of the sentences should
matter, not its syntactic form. Hence, if α and β are equivalent then contracting
either of them from K should give us the same resulting belief set.

(extensionality) If Cn(α) = Cn(β) then K − α = K − β.

The following three postulates captures minimality aspects of contraction. Inclu-
sion states that to perform a contraction, there is no need of adding sentences to K .

(inclusion) K − α ⊆ K

4.2 AGM Theory 49

Vacuity deals with an extreme case. If the input α is already not an element of K ,

then the minimal thing to do is to leave K unchanged.

(vacuity) If α /∈ K then K − α = K .

An operation that satisfies the postulates presented so far (i.e., success, closure,
extensionality, inclusion and vacuity) is called withdrawal. Withdrawal was first
presented in [Mak87] as an alternative to contraction. Hansson argues that this oper-
ation does not properly guaranty minimality and illustrates this point with an example
[Han91] Consider the following function – over K :

K − α =
{

K if α /∈ Cn(K)

Cn(∅) otherwise.

Although very unintuitive, this function is a valid withdrawal for any α.

The last and most controversial AGM-postulate tries to capture this notion of
minimality. This postulate, called recovery, guarantees that if α is contracted from
K then the new belief set K − α should retain enough information from K so that
if K − α is expanded by α it recovers every sentence from K .

(recovery) K ⊆ (K − α) + α

Although being a very important minimality criterion, several authors criticize
recovery [Mak87, Han91, FPA06]. An important part of this work is devoted to
analyze this postulate in the context of non-classical logics (see Chap. 5).

The six postulates presented so far are called basic AGM-postulates for contraction
or just AGM-postulates for contraction [AGM85]:

(closure) K − α = Cn(K − α)

(success) If α /∈ Cn(∅) then α /∈ K − α
(inclusion) K − α ⊆ K
(vacuity) If α /∈ K then K − α = K
(recovery) K ⊆ (K − α) + α.

(extensionality) If Cn(α) = Cn(β) then K − α = K − β

In [AGM85], the authors present other two postulates called auxiliaries. These
postulates won’t be discussed in the present work.
Partial Meet Contraction
Belief revision literature presents several constructions for contraction that satis-
fies the AGM postulates (see [Gar88]). In this section it is presented one of these
constructions called partial meet contraction.

Since we are interested in minimal modifications of the belief set, it is worth
investigating the maximal subsets of K that fail to imply the input α. The set of all
these subsets of K is called remainder set:

Definition 4.2 (remainder set) [AGM85] Let B be a set of sentences and α a sentence
in a logic 〈L , Cn〉. The remainder set B⊥α is the set whose elements X are maximal
subsets of B that does not imply α, i.e., X ∈ B⊥α iff:

50 4 Classical Belief Revision

1. X ⊆ B(X is a subset of B).

2. α /∈ Cn(B)(that doesn′t imply α).

3. if X ⊂ X ′ ⊆ B then α ∈ Cn(B ′)(and is maximal).

The following are lemmas about remainder set that are needed for future results:

Lemma 4.3 (upper bound property) [AM81] For every set of sentences B, every
subset X of B and every sentence α in a compact logic 〈L , Cn〉 for which α /∈
Cn(X), there is a X ′ such that X ⊆ X ′ and X ′ ∈ B⊥α.

Proof We adapted the proof of Lindembaum property in [Woj88]. First arrange the
sentences of B into a sequence β1,β2,

Now let X0 = X and for each i ≥ 1 define Xi as follows:

Xi =
{

Xi−1 if α ∈ Cn(Xi−1 ∪ {βi })
Xi−1 ∪ {βi } otherwise.

By construction, for every i we have that α /∈ Cn(Xi). Now let X ′ = ⋃
i Xi .

It is trivial to verify that X ⊆ X ′ ⊆ B. Moreover if β ∈ B and β /∈ X ′ then, by
construction, α ∈ X ′ ∪ {β}.

By compactness, if α ∈ Cn(X ′) then α ∈ Cn(X ′′) for some finite X ′′ ⊆ B. It
would follow that α ∈ Cn(Xi) for some i which is a contradiction. ��
Lemma 4.4 Let B be a set of sentences and α be a sentence in a compact logic
〈L , Cn〉. B⊥α = ∅ if and only if α ∈ Cn(∅).

Proof (⇒) If α /∈ Cn(∅) then by upper bound property (Lemma 4.3) there is X such
that Cn(∅) ⊆ X ∈ B⊥α. Hence B⊥α �= ∅.

(⇐) If α ∈ Cn(∅) then by monotonicity α ∈ X for every X ⊆ B. Hence
B⊥α = ∅. ��
Lemma 4.5 Let K be a belief set and α a sentence in a logic 〈L , Cn〉. If X ∈ K⊥α
then X is closed under logical consequence i.e. X = Cn(X).

Proof If β ∈ Cn(X) then α /∈ Cn(X ∪ {β}) and, since X is maximal, β ∈ X. ��
Lemma 4.6 Let B be a set of sentences and α and β be sentences in a logic
〈L , Cn〉. B⊥α = B⊥β if and only if for every subset B ′ of B it holds that
α ∈ Cn(B ′) iff β ∈ Cn(B ′)

Proof (⇒) Let B ′ ⊆ B and α ∈ Cn(B ′). Suppose that β /∈ Cn(B ′) then by
upper bound property (Lemma 4.3) there is X such that B ′ ⊆ X ∈ B⊥β. Since
α ∈ Cn(B ′), by monotonicity α ∈ Cn(X) and, hence, X /∈ B⊥α.

(⇐) This holds trivially. ��
Lemma 4.7 Let K be a belief set and α and β be sentences in a compact logic
〈L , Cn〉 then the following holds:

1. If Cn(α) = Cn(β) then K⊥α = K⊥β.

2. If α ∈ K and K⊥α = K⊥β then Cn(α) = Cn(β).

4.2 AGM Theory 51

Proof

1. If K ′ ⊆ K then, since Cn(α) = Cn(β), α ∈ Cn(K ′) iff β ∈ Cn(K ′). It follows,
by the previous lemma that K⊥α = K⊥β.

2. If α ∈ K then Cn(α) ∈ K . By the previous lemma, β ∈ Cn(α). Analogously, if
β ∈ K then α ∈ Cn(β) and we conclude that Cn(α) = Cn(β), by monotonicity
and idempotence.
If β /∈ K then K⊥β = {K } and, since K⊥α = K⊥β, we have that α /∈ K .

We conclude that if α ∈ K and K⊥α = K⊥β then Cn(α) = Cn(β). ��
Consider a function γ that selects certain elements of K⊥α when possible and

returns {K } otherwise. This function is called selection function and it intuitively
selects the sets of sentences that are more entrenched in the agents beliefs. Formally:

Definition 4.8 (selection function) [AGM85] Let K be a belief set. A selection
function for K is a function γ such that for every α :
1. ∅ �= γ(K⊥α) ⊆ K⊥α if K⊥α �= ∅.

2. γ(K⊥α) = {K } otherwise.

Partial meet contraction consists of the intersection of the sets selected by γ. For-
mally, let K⊥α be a remainder set and γ a selection function for it. Partial meet
contraction −γ is defined as:

K −γ α =
⋂

γ(K⊥α)

An operation – is a partial meet contraction iff there is a selection function γ such
that for every sentence α we have that K − α = K −γ α.

The main result in [AGM85] shows that AGM postulates fully characterizes
partial meet contraction i.e. every partial meet contraction satisfies AGM postu-
lates and every AGM contraction is a partial meet contraction. In other words an
operation – over a belief set K is an AGM contraction iff it is a partial meet contrac-
tion. This result is known in the literature as the representation theorem for partial
meet contraction:

Representation Theorem 4.9 [AGM85] Let 〈L , Cn〉 be a logic that satisfies the
AGM assumptions. An operation – over a belief set K is a partial meet contraction
iff it satisfies closure, success, inclusion, vacuity, recovery, and extensionality, i.e.,
the basic AGM postulates.

Proof (construction ⇒ postulates)

closure: If α /∈ K then γ(K⊥α) = {K } and
⋂

γ(K⊥α) = K which is closed by
hypothesis. If α ∈ K then ∅ �= γ(K⊥α) ⊆ K⊥α and by Lemma 4.5 every
element of K⊥α is logically closed. Since the intersection of closed sets is
closed (Lemma 2.1),

⋂
γ(K⊥α) is logically closed.

success: Follows directly by Lemma 4.4.
inclusion: Follows directly from construction.

52 4 Classical Belief Revision

vacuity: If α /∈ K then K⊥α = {K } and
⋂

γ(K⊥α) = K .

recovery: If α /∈ K then K − α = K , hence, K ⊆ (K − α) + α. If α ∈ K then
let β ∈ K and suppose that α → β /∈ X for some X ∈ K⊥α. Since X is
maximal α ∈ Cn(X ∪ {α → β}). By deduction (α → β) → α ∈ Cn(X)

and by supraclassicality α ∈ Cn(X) which contradicts the definition of X.

It follows that α → β ∈ X for every X ∈ K⊥α. Hence, α → β ∈ ⋂
γ(K⊥α).

By supraclassicality β ∈ (
⋂

γ(K⊥α)) + α
extensionality: If Cn(α) = Cn(β) then by Lemma 4.7 K⊥α = K⊥β, hence,⋂

γ(K⊥α) = ⋂
γ(K⊥β).

(postulates ⇒ construction)

Let – be an operator satisfying the AGM postulates for contraction and the selec-
tion function γ as follows:

γ(K⊥α) = {X ∈ K⊥α : K − α ⊆ X} if K⊥A �= ∅
= {K } otherwise.

We need to prove (1) γ is well defined (i.e., if K⊥α = K⊥β then γ(K⊥α) =
γ(K⊥β)), (2) γ is a selection function (i.e., ∅ �= γ(K⊥α) ⊆ K⊥α if K⊥α �= ∅)
and (3) K − α = ⋂

γ(K⊥α).

1. If α /∈ K then K⊥α = K⊥β = {K }. Hence γ(K⊥α) = γ(K⊥β) = {K }.
If α ∈ K and K⊥α = K⊥β then, by Lemma 4.7, Cn(α) = Cn(β) and, by
extensionality K − α = K − β. It follows that γ(K⊥α) = γ(K⊥β).

2. It follows directly from construction that γ(K⊥α) ⊆ K . If K⊥α �= ∅ then by
Lemma 4.4 α /∈ Cn(∅). Thus, by success and inclusion α /∈ K − α ⊆ K . By
upper bound property (Lemma 4.3) there is X such that K − α ⊆ X ∈ K⊥α.

Hence, γ(K⊥α) �= ∅.

3. If α /∈ K then K − α = K by vacuity. In this case K⊥α = {K } and, hence,⋂
γ(K⊥α) = K − α = K .

If α ∈ Cn(∅) then K −α = K by recovery and inclusion. In this case K⊥α = ∅,

by Lemma 4.4. It follows that
⋂

γ(K⊥α) = K − α = K .

Now consider the last case where α /∈ Cn(∅) and α ∈ K .

By construction, K − α ⊆ ⋂
γ(K⊥α).

Now let β /∈ K − α and suppose that α ∈ Cn(K − α ∪ {β → α}). By deduction
and closure (β → α) → α ∈ K − α. Furthermore, by recovery and closure
α → β ∈ K − α. By supraclassicality β ∈ K − α which contradicts the
hypothesis. It follows that α /∈ Cn(K − α ∪ {β → α}). Since β → α ∈ Cn(β),

we have that β → α ∈ K . It follows, by upper bound property (Lemma 4.3)
that there is X such that K − α ∪ {β → α} ⊆ X ∈ K⊥α and, of course,
β /∈ X. Otherwise α ∈ X which contradicts the definition of X. We conclude that
β /∈ ⋂

γ(K⊥α). Hence,
⋂

γ(K⊥α) ⊆ K − α. ��

4.2 AGM Theory 53

4.2.2 AGM Revision

AGM revision is an operation ∗ over a belief set K that consistently adds a new
sentence α into K . The result of this operation should be a new belief set K ∗ α.

The operation ∗ is also defined via a set of rationality postulates. After presenting
these postulates we show how to construct the revision. The representation theorem
relating the construction to the postulates is presented in the end of the section.

Revision consists in consistently adding a sentence α into the belief set K . Hence,
we have the following postulates:

(success) α ∈ K∗α

(consistency) If α is consistent then K∗α is consistent.
Some rationality postulates for revision are analogous with certain postulates for

contraction. In these cases we follow the tradition and use the same names for both
postulates.

(closure) K∗α = Cn(K∗α)

(inclusion) K∗α ⊆ K + α
(extensionality) If Cn(α) = Cn(β) then K∗α = K∗β
(vacuity) If K + α is consistent then K∗α = K + α.

The following postulate, although presented in the original paper [AGM85] , had
not been used in more recent works:

(Harper identity) K∗¬α ∩ K = K − α for some AGM contraction – over K .

Makinson [Mak87] argues that this statement should not be used as a postulate,
but rather as a way to construct a contraction given a revision. The AGM postulates
for revision as defined in [Gar88] are:

(closure) K ∗ α = Cn(K ∗ α).

(success) α ∈ K ∗ α.

(inclusion) K ∗ α ⊆ K + α.

(vacuity) If K + α is consistent then K ∗ α = K + α
(consistency) If α is consistent then K ∗ α is consistent.
(extensionality) If Cn(α) = Cn(β) then K ∗ α = K ∗ β.

Levi Identity
The canonical way to construct AGM revision is using the AGM contraction –

via Levi identity.
Let – be an AGM contraction over K . The revision ∗ over K defined using the

Levi identity is the following:

K∗α = (K − ¬α) + α

The revision defined via Levi identity satisfies all the AGM postulates. In fact, if –
is a withdrawal operation, i.e. if – satisfies all AGM postulates for contraction but
recovery, then ∗ defined via Levi identity satisfies the AGM postulates for revision.

Theorem 4.10 [Mak87] Let K be a belief set and α be a sentence in a logic 〈L , Cn〉
that satisfies the AGM assumptions and let – be a withdrawal operation. The revision

54 4 Classical Belief Revision

operation ∗ over K defined via Levi identity using – satisfies the AGM postulates for
revision.

Proof success and closure: Follows directly from the construction.
inclusion: By inclusion of contraction K −¬α ⊆ K . Hence, (K −¬α)+α ⊆ K +

α. extensionality: If Cn(α) = Cn(β) then Cn(¬α) = Cn(¬β). By extensionality
of contraction K − ¬α = K − ¬β. Hence, (K − ¬α) + α = (K − ¬β) + β.

vacuity: If K + α is consistent then ¬α /∈ K . It follows by vacuity of contraction
that K − ¬α = K . Hence, (K − ¬α) + α = K + α. consistency: If α is consistent
then ¬α /∈ Cn(∅). It follows by success of contraction that ¬α /∈ K − ¬α. By
α-local non-contravention that ¬α /∈ (K − ¬α) + α. Hence, (K − ¬α) + α is
consistent. ��

A similar result can be proved using the Harper identity. If ∗ is an AGM revision
then the contraction – defined via Harper identity (i.e., K − α = K ∗ ¬α ∩ K)
satisfies the AGM postulates for contraction.

Theorem 4.11 [Mak87] Let K be a belief set and α be a sentence in a logic 〈L , Cn〉
that satisfies the AGM assumptions and let ∗ be an AGM revision. The contraction
operation – over K defined via Harper identity using – satisfies the AGM postulates
for contraction.

Proof closure: Follows from the closure of revision and the fact that the intersection
of closed sets is closed. success: If α /∈ Cn(∅) then ¬α is consistent. By consistency
of revision K ∗ ¬α is consistent and, by success of revision ¬α ∈ K ∗ ¬α. It
follows that α /∈ K ∗¬α. Hence, α /∈ K ∗¬α∩ K . inclusion: Follows directly from
construction. vacuity: If α /∈ K then K +¬α is consistent and, by vacuity of revision,
K ∗ ¬α = K + ¬α. Hence, K ∩ K ∗ ¬α = K . extensionality: If Cn(α) = Cn(β)

then Cn(¬α) = Cn(¬β) and, by extensionality of revision K ∗ ¬α = K ∗ ¬β. We
conclude that K ∩ K ∗¬α = K ∩ K ∗¬β. recovery: If α /∈ K then K ∩ K ∗¬α = K .

Hence, K ⊆ (K − α) + α If α ∈ K and β ∈ K then α → β ∈ K . Furthermore,
by success of revision ¬α ∈ K ∗ ¬α. It follows that (K ∗ ¬α) + α is not consistent
and, by supraclassicality, trivial.

Hence, β ∈ (K ∗ ¬α) + α and, by deduction and closure of revision, α → β ∈
K ∗ ¬α. We conclude that α → β ∈ K ∩ K ∗ α and, hence, β ∈ (K ∩ K ∗ ¬α) + α

��
Theorems 4.10 show that any method of construction for the AGM contraction –

can be used to define the revision ∗. As a concrete example take a partial meet
contraction −γ . The revision defined using Levi identity K ∗γ α = (K −γ ¬α) + α
is called partial meet revision. Partial meet revision is fully characterized by AGM
postulates for revision.

Representation Theorem 4.12 1 Let K be a belief set in L and let α ∈ L . The
operation ∗ over K is a partial meet revision iff ∗ satisfies closure, success, inclusion,
vacuity, consistency, and extensionality, i.e., the AGM postulates for revision.

1 This result was proved in [Han99], but the proof presented here is new.

4.2 AGM Theory 55

Proof (construction ⇒ postulates)

success, closure, and inclusion: follows directly from construction.
vacuity: If K + α is consistent then ¬α /∈ K . It follows that K⊥¬α = {K } and

(
⋂

γ(K⊥α)) + α = K + α.

consistency: If α is consistent then ¬α /∈ Cn(∅). By upper bound property (Lemma
4.3) there is X ∈ K⊥¬α. It follows that α /∈ ⋂

γ(K⊥¬α) and, by α-local non
contravention, α /∈ (

⋂
γ(K⊥¬α)) + α.

extensionality: If Cn(α) = Cn(β) then Cn(¬α) = Cn(¬β). By Lemma 4.7,
K⊥¬α = K⊥¬β, hence, (

⋂
γ(K⊥¬α)) + α = (

⋂
γ(K⊥¬β)) + β

(postulates ⇒ construction)

Let ∗ be an operation over K that satisfies the AGM postulates for revision and
let the selection function γ be defined as follows:

γ(K⊥α) = {X ∈ K⊥α : K ∩ K ∗ ¬α ⊆ X} if K⊥A �= ∅
= {K } otherwise.

We need to prove (1) γ is well defined, (2) γ is a selection function and (3)
K ∗ α = (

⋂
γ(K⊥¬α)) + α.

1. If α /∈ K then K⊥α = K⊥β = {K }, hence, α ∈ K If γ(K⊥α) = γ(K⊥β) =
{K }. and K ⊥ α = K ⊥ β then, by Lemma 4.7, Cn(α) = Cn(β) and, by
extensionality K − α = K − β. It follows that γ(K ⊥ α) = γ(K ⊥ β).

2. It follows directly from construction that γ(K⊥α) ⊆ K Now if K⊥α �= ∅ then,
by Lemma 4.4, α /∈ Cn(∅). It follows that ¬α is consistent and, by consistency,
K ∗¬α is consistent. Since by success ¬α ∈ K ∗¬α, we have that α /∈ K ∗¬α. By
upper bound property (Lemma 4.3), there is X such that K ∗¬α∩K ⊆ X ∈ K⊥α.

Hence γ(K⊥α) �= ∅
3. By construction K ∩ K ∗ α ⊆ ⋂

γ(K⊥¬α). It follows that (K ∩ K ∗ α) + α ⊆
(
⋂

γ(K⊥¬α))+α. By distributivity (K ∩ K ∗α)+α = (K +α)∩((K ∗α)+α).

By success and inclusion (K + α) ∩ ((K ∗ α) + α) = K ∗ α. We conclude that
K ∗ α ⊆ (

⋂
γ(K⊥¬α)) + α.

Now suppose that β /∈ K∗α.

If ¬α /∈ K then K +α is consistent and, by vacuity, K ∗α = K +α. Furthermore,
K⊥¬α = {K }. Hence, (

⋂
γ(K⊥¬α)) + α = K ∗ α = K + α.

So let ¬α ∈ K and suppose that ¬α ∈ Cn((K ∩ K ∗α)∪{(α → β) → ¬α}. By
deduction and closure ((α → β) → ¬α) → ¬α ∈ K ∩ K ∗α. By supraclassicality
α → β ∈ K ∩ K ∗ α. By success α ∈ K ∗ α, hence, β ∈ K ∗ α which contradicts
the hypothesis.

It follows that ¬α /∈ Cn((K ∩ K ∗ α) ∪ {(α → β) → ¬α}).
Since ¬α ∈ K and (α → β) → ¬α ∈ CCPL(¬α), we have that (α → β) →

¬α ∈ K . By upper bound property (Lemma 4.3), there is X such that (K ∩ K ∗
α) ∪ {(α → β) → ¬α} ⊆ X ∈ K⊥¬α. Of course α → β /∈ X, otherwise ¬α ∈ X
which would contradict the definition of X. Hence α → β /∈ ⋂

γ(K⊥¬α) and
β /∈ (

⋂
γ(K⊥¬α)) + α. We conclude that (

⋂
γ(K⊥¬α)) + α ⊆ K ∗ α. ��

56 4 Classical Belief Revision

Theorems 4.10 and 4.11 showed that given a withdrawal operation an AGM
revision can be defined via the Levi identity and given an AGM revision an AGM
contraction can be defined via Harper identity. The following theorems show that the
relation between contraction and revision is even stronger.

Theorem 4.13 [Mak87] Let – be an AGM contraction over K and let ∗ be a revision
over K obtained via Levi identity from –. For every sentence α ∈ L we have that
K ∩ (K ∗ ¬α) = K − α.

Proof If α /∈ K then K + ¬α is consistent and by vacuity of revision K ∗ ¬α =
K +¬α. It follows that K ∩K ∗¬α = K ∩(K +¬α) = K . By vacuity of contraction
K − α = K . Hence, K ∩ K ∗ ¬α = K − α.

If α ∈ K then by recovery and inclusion of contraction K = (K − α) + α. It
follows that:

K ∩ K ∗ ¬α = K ∩ (K − α + ¬α)

=(K − α + α) ∩ (K − α + ¬α)

=K − α + (Cn(α) ∩ Cn(¬α)) by distributivity

=K − α + Cn(∅)

=K − α ��

Theorem 4.14 [Mak87] Let ∗ be an AGM revision over K and let – be a contraction
over K obtained via Harper identity from ∗. For every sentence α ∈ L we have that
(K − ¬α) + α = K ∗ α.

Proof If ¬α /∈ K then K − ¬α + α = K + α by vacuity of contraction. In
this case, since K + α consistent, K ∗ α = K + α by vacuity of revision. Hence,
(K − ¬α) + α = K ∗ α

If ¬α ∈ K then:

(K − ¬α) + α = (K ∩ K ∗ α) + α

=(K + α) ∩ (K ∗ α + α) by distributivity

=(K + α) ∩ (K ∗ α) by success of revision

=K ∗ α by inclusion of revision ��

4.3 Belief Base Theory

Belief base theory studies the dynamics of epistemic states represented as arbitrary
sets of sentences B. It studies a belief system that admits four types of epistemic
attitudes with respect to a sentence α :

reject: α is not consistent with B.

explicitly accepted: α ∈ B.

4.3 Belief Base Theory 57

implicitly accepted: α ∈ Cn(B), but α /∈ B.

undetermined: α consistent with B and α /∈ Cn(α).

If α ∈ Cn(B) we will simply say that α is accepted, i.e., α is accepted if it is
implicitly or explicitly accepted.

Belief base theory admits the same three types of belief change of AGM theory:
expansion, revision, and contraction. Expansion turns a sentence α to be accepted
and is defined simply as B+α = B∪{α}. Like AGM theory contraction and revision
are defined through a set of rationality postulates.

Some authors such as Nebel [Neb90] use the term belief base in reference to a
finite representation of a belief set. Our approach differs from Nebel and follows
authors such as Fuhrmann, Hansson, and Wassermann [Fuh97, Han99, Was00]. For
this second group of authors belief bases are a distinct belief system. In this belief
system it is possible to distinguish what an agent explicitly believes from what is
merely a consequence of its explicit beliefs.

The following example illustrates the difference between belief set approach and
belief base approach:

Example. 1.15 [Han99] I believe that Paris is the capital of France (α). I also believe
that there is milk in the fridge (β). Hence, I believe that Paris is the capital of France
if and only if there is milk in the fridge (α ↔ β). I open my fridge and I see that
there is no milk in it (¬β). I cannot keep both my beliefs in α and in α ↔ β at the
same time.

Belief set approach: Both α and α ↔ β are elements from the belief set. After
noticing that there is no milk in the fridge I have to chose between retaining α or
α ↔ β in my belief set. The removal of α ↔ β does not follow automatically, it
must be guaranteed by a selection mechanism.

Belief base approach: The sentence α ↔ β is merely derived from the others.
When β is removed α ↔ β is automatically removed.

Both approaches have strong advantages. In belief set approach equivalent epis-
temic states are treated equivalently, i.e., this approach abstracts the syntactic form
of the beliefs. Belief base approach, on the other hand, is more expressive and more
interesting from a computational point of view. From a philosophical point of view
there are authors, such as Harman [Har86] , who defend the distinction between
explicit beliefs and implicit belief. Other authors, such as Stalnaker [Sta84] , defend
the opposite.

4.3.1 Base Contraction

Belief base contraction is an operation in a belief base B that makes a sentence
α to become undetermined. Typically an agent accepts (implicitly or explicitly) a
sentence α and after the contraction it should have no opinion about α. Furthermore,
it is desirable that the change in the agent’s belief base is minimal.

Most AGM postulates for contraction should also hold in belief bases:

58 4 Classical Belief Revision

(success) If α /∈ Cn(∅) then α /∈ Cn(B − α)

(inclusion) B − α ⊆ B
(vacuity) If α /∈ Cn(β) then B − α = B
(extensionality) If Cn(α) = Cn(β) then B − α = B − β
Since epistemic states are now represented as arbitrary sets of sentence, it is obvi-

ous that closure should not hold. For this reason success was adapted. Furthermore,
inclusion now is much more controversial (see [RW08]).

Example 4.16 Consider an agent whose epistemic state is represented by the fol-
lowing base in the Description Logics ALC :

B ={Man � Mortal

Man(SOC R AT E S)}
This agent must accept the sentence Mortal(SOC R AT E S). It may want to remove
this sentence from its belief. In the belief set approach one of its possibilities is
to believe that every man except Socrates is mortal. In belief base approach, how-
ever, since it must respect inclusion the only possibilities the agent have are: B,

{Man � Mortal}, {Man(SOC R AT E S)} and ∅. Of course the third is not possi-
ble by success.

Although controversial, inclusion is mostly accepted in the belief base literature.
Recovery, however, is even more problematic. It is not even compatible with inclusion
and success:

Example 4.17 [Han99] Let – be an operation over B = {p ∧q} that satisfies success
and inclusion. By these two postulates we have that B − p ⊆ ∅ i.e. B = ∅. However,
∅ + p = ∅ ∪ {p} = {p} �= B. Hence, in this case if – satisfies success and inclusion
then it cannot satisfy recovery.

The above example is a strong justification for not considering recovery in belief
bases. However, as argued in Sect. 4.2.1, recovery postulate is an important mini-
mality postulate. Hence, in order to drop this postulate we need a new postulate to
replace it. In the literature we find two postulates suggested for this purpose [Han91]:

(relevance) If β ∈ B and β /∈ B −α then there is a B ′ such that B −α ⊆ B ′ ⊆ B
and α /∈ Cn(B ′), but α ∈ Cn(B ′ ∪ {β}).

(core-retainment) If β ∈ B and β /∈ B − α then there is a B ′ such that B ′ ⊆ B
and α /∈ Cn(B ′), but α ∈ Cn(B ′ ∪ {β}).

The main idea behind these postulates is to guaranty that a sentence β may be
removed only if it somehow helps to derive α. Notice that relevance is stronger than
core-retainment i.e. every operation that satisfies relevance satisfies core-retainment,
but the opposite is not always true.

Furthermore, vacuity become redundant in the presence of core-retainment (or
relevance which is stronger) and inclusion:

4.3 Belief Base Theory 59

Proposition 1.18 [Han99] Let – be an operation over B that satisfies core-retainment
and inclusion then – satisfies vacuity.

Proof Let α /∈ Cn(B) and suppose that B − α �= B. By inclusion B − α ⊂ B and,
hence, there is β ∈ B such that β /∈ B − α. By core-retainment there is B ′ ⊆ B
such that α /∈ Cn(B ′), but α ∈ Cn(B ′ ∪ {β}). Since α /∈ Cn(B), by monotonicity,
α /∈ Cn(K ′ ∪ {β}) which is a contradiction. We conclude that K − α = K

In AGM theory extensionality guarantees that equivalent sentences contracted
from the same belief set result in the same belief set. In belief bases extensionality
is too weak for this purpose. The following postulate is used instead:

(uniformity) If for every subset B ′ of B it holds that α ∈ Cn(B ′) iff β ∈ Cn(B ′)
then it holds that B − α = B − β.

In the presence of uniformity and core-retainment both vacuity and extensionality
are redundant. It follows that we need only four postulates to characterize belief base
contraction: success, inclusion, uniformity, and a minimality criterion that may be
relevance or core-retainment. Each possible minimality criterion corresponds to one
of the constructions presented in the following sections: the former corresponds to
partial meet contraction and the latter to kernel contraction.

Partial Meet Base Contraction
Partial meet contraction in belief bases is very similar to partial meet contraction

in belief sets. The only difference here is that it starts with an arbitrary set of sentences
B instead of a belief set K . The rest is identical: first get the remainder set B⊥α and
then, given a selection function γ, get the intersection of the elements chosen by γ :

B −γ α =
⋂

γ(B⊥α)

This construction is completely characterized by success, inclusion, uniformity
and relevance. Formally:

Representation Theorem 4.19 [HW02] Let 〈L , Cn〉 be a monotonic and compact
logic. The operation – is a partial meet contraction for a belief base B iff – satisfies
inclusion, success, uniformity, and relevance.

(construction ⇒ postulates)
success: If α /∈ Cn(∅) then by Lemma 4.4 B⊥α /∈ ∅. α /∈ Cn(X) for X ∈ B⊥α,

hence, α /∈ Cn(
⋂

γ(B⊥α))

inclusion: Follows directly from the construction.
uniformity: Follows from Lemma 4.6.
relevance: If α ∈ Cn(∅) then

⋂
γ(B⊥α) = B and relevance is vacuously satis-

fied.
Let α /∈ Cn(∅) and β ∈ B \ B − α. Then there is some X ∈ γ(B⊥α) such

that β /∈ X. Of course B − α ⊆ X ⊆ B and α /∈ Cn(X). Furthermore, since X is
maximal and β /∈ X then α ∈ Cn(X ∪ {β}).

(postulates ⇒ construction)

Let – be an operation over B that satisfies success, inclusion, uniformity and
relevance and let γ be a selection function defined as follows:

60 4 Classical Belief Revision

γ(B⊥α) = {X ∈ B⊥α : B − α ⊆ X} if B⊥A �= ∅
= {B} otherwise.

By uniformity and Lemma 4.6 we have that γ is well defined. We will prove (1) if
B⊥α �= ∅ then γ(B⊥α) �= ∅ and (2)

⋂
γ(B⊥α) = B − α.

1. If B⊥α �= ∅ then, by Lemma 4.4, α /∈ Cn(∅). By success and inclusion α /∈
B − α ⊆ B. It follows, by upper bound property (Lemma 4.3), that there is X
such that B − α ⊆ X ∈ B⊥α and, hence, γ(B⊥α) �= ∅.

2. If B⊥α = ∅ then, by Lemma 4.4, α ∈ Cn(∅). It follows that
⋂

γ(B⊥α) = B.

By relevance, if β ∈ B and β /∈ B − α then there is B′ such that α /∈ Cn(B ′).
Since α ∈ Cn(∅), there is no such B ′, hence, B ⊆ B − α. It follows, by
inclusion, that B − α = B. Let B⊥α �= ∅. It follows, by construction, that
B−α ⊆ ⋂

γ(B⊥α). Now let β /∈ B−α. If β /∈ B then trivially β /∈ ⋂
γ(B⊥α).

So let β ∈ B. By relevance there is B′ such that B − α ⊆ B ′ ⊆ B, α /∈ Cn(B ′)
and α ∈ Cn(B ′ ∪ {β}). By upper bound property (Lemma 4.3) there is X such
that B ′ ⊆ X ∈ B⊥α. Since B ′ ⊆ X α ∈ Cn(B ′ ∪ {β}) and α /∈ Cn(X), we have
that β /∈ X. It follows that β /∈ X ∈ γ(B⊥α), hence, β /∈ ⋂

γ(B⊥α). ��
Notice that this Representation Theorem holds for every compact while Repre-

sentation Theorem 4.9 holds only for logics that satisfies the AGM assumptions.
Kernel Base Contraction
In partial meet contraction maximal subsets of B that do not imply α are consid-

ered. Kernel contraction [Han94], instead of considering these maximal subsets of
B, considers minimal subsets of B that do imply α. Formally:

Definition 4.20 (kernel) [Han94] Let B be a belief base, i.e., B ⊆ L and let α ∈ L .

The set B⊥⊥ α is a set such that X ∈ B⊥⊥ α iff:

1. X ⊆ B (X is a subset of B).
2. α ∈ Cn(X) (that implies α)
3. if X ′ ⊂ X then α /∈ Cn(X ′) (and is minimal)

Lemma 4.21 Let B be a set of sentences in a compact logic 〈L , Cn〉 and let B ′ be a
subset of B and β be an element of B such that α ∈ Cn(B′ ∪ {β}), but α /∈ Cn(B ′).
There is a set X ⊆ B ′ ∪ {β} such that β ∈ X ∈ B⊥⊥ α

Proof By compactness there is a finite subset B ′′ of B ′ ∪ {β} such that α ∈ Cn(B ′′).
Suppose without loss of generality that B ′′ = {β0,β1, . . . ,βn} and that β0 = β.

Let X0 = B ′′ and for every i such that 1 ≤ i ≤ n let Xi be defined recursively as
follows:

Xi =
{

Xi−1 \ {βi } if α ∈ Cn(Xi−1 \ {βi })
Xi−1 otherwise.

Notice that Xn ⊆ B ′′ ⊆ B ′ ∪ {β} ⊆ B β ∈ Xn and α ∈ Cn(Xn). Furthermore,
if X ⊂ Xn there is βi ∈ Xn \ X. By construction, either α /∈ Cn(Xi−1 \ {βi }) or

4.3 Belief Base Theory 61

βi = β0 = β. In the former case α /∈ Cn(X) ⊆ Cn(Xi). In the later case, since
α /∈ Cn(B ′) then α /∈ Cn(Xn \ {β}) and, hence, α /∈ Cn(X). ��
Lemma 4.22 Let B be a set of sentence and α and β be sentences in a logic
〈L , Cn〉. B⊥⊥ α = B⊥⊥ β if and only if for every subset B ′ of B it holds that
α ∈ Cn(B ′) iff β ∈ Cn(B ′)

Proof (⇒) Let B ′ ⊆ B and α ∈ Cn(B ′). Then by the previous lemma there is
X ⊆ B ′ such that X ∈ B⊥⊥ α. If β /∈ Cn(B ′) then β /∈ Cn(X) and, hence,
X /∈ B⊥⊥ β.

(⇐) This holds trivially. ��
Each element of the kernel B⊥⊥ α is called an α-kernel. In kernel contraction, at

least one element of each α-kernel chosen by a function called incision function is
removed. Incision function plays a role in kernel contraction analogous to the role
played by selection function in partial meet contraction.

Definition 4.23 (incision function) [Han94] Let B be a belief base. An incision
function for B is a function σ such that for every α :
1. σ(B⊥⊥ α) ⊆ ⋃

B⊥⊥ α.

2. if ∅ �= X ∈ B⊥⊥ α then X ∩ σ(B⊥⊥ α) �= ∅.

Intuitively incision function chooses the sentences which are less entrenched in the
agents beliefs.

Let σ be an incision function for a belief base B. The kernel contraction operation
−σ is formally defined as:

B −σ α = B \ σ(B⊥⊥ α)

Kernel contraction is completely characterized by the following postulates: suc-
cess, inclusion, uniformity, and core-retainment. Formally:

Representation Theorem 4.24 [HW02] Let 〈L , Cn〉 be a monotonic and compact
logic. The operation – is a kernel contraction for a belief base B iff – satisfies
inclusion, success, uniformity, and core-retainment.

Proof (construction ⇒ postulates)

success: Suppose that α ∈ B −σ α for some α /∈ Cn(∅). By Lemma 4.21 there is
X ∈ B⊥⊥ α such that X ⊆ B −σ α. Since α /∈ Cn(∅), we have that X �= ∅ and, by
definition, σ(B⊥⊥ α) ∩ X �= ∅. It follows that X � B −σ α which is a contraction.

inclusion: Follows directly from construction.
uniformity: Follows directly from Lemma 4.22.
core-retainment: Let β ∈ B and β /∈ B −σ α. It follows that β ∈ σ(B⊥⊥ α)

and, hence, β ∈ X ∈ B⊥⊥ α. Of course X \ {β} ⊆ B and α ∈ Cn(X) =
Cn((X \ {β}) ∪ {β}). Furthermore, since X is minimal, α /∈ Cn(X \ {β})

(postulates ⇒ construction)

62 4 Classical Belief Revision

Let – be an operation over B that satisfies success, inclusion, uniformity and
core-retainment and let σ be a selection function defined as follows:

σ(B⊥⊥ α) = B \ (B − α)

By Lemma 4.22, σ is well defined. We will prove that (1) B − α = B −σ α and
(2) σ is an incision function (i.e., σ(B⊥⊥ α) ⊆ ⋃

B⊥⊥ α and if ∅ �= X ∈ B⊥⊥ α
then X ∩ σ(B⊥⊥ α) �= ∅).

1. Follows trivially by inclusion.
2. If β ∈ B \ B −α then, by core-retainment, there is B ′ ⊆ B such that α /∈ Cn(B ′),

butα ∈ Cn(B ′∪{β}).By Lemma 4.21, there is X ∈ B⊥⊥ α such that X ⊆ B ′∪{β}
and β ∈ X. Hence, β ∈ ⋃

B⊥⊥ α.

Now let ∅ �= X ∈ B⊥⊥ α and suppose that X ∩ σ(B⊥⊥ α) = ∅. It follows that
α /∈ Cn(∅) and, by (1), B − α = B \ σ(B⊥⊥ α). It follows that X ⊆ B − α, but
then α ∈ B − α which contradicts the success, hence, X ∩ σ(B⊥⊥ α) �= ∅. ��

4.3.2 Belief Base Revision

Belief base revision is an operation in a belief base B that makes a sentence α to
become explicitly accepted by the agent in a consistent way. Typically an agent
rejects a sentence α (i.e. α is inconsistent with the beliefs of the agent) and after
the revision the agent accepts α and still has a consistent belief base. This operation
should also change the agent’s belief base minimally.

In AGM theory it was shown that it is possible to define a revision from an AGM
contraction via Levi identity:

B ∗ α = (B − ¬α) + α

In the case of belief base there is yet another possibility of defining revision using
a reverted version of Levi identity [Han93] :

B ∗ α = (B + α) − ¬α

In AGM theory the second possibility is not allowed since K + α is typically
trivial. This is not the case in belief bases, since it is possible in belief bases to have
distinct inconsistent bases. For example:

B1 = {p ∧ ¬p}
B2 = {q, p,¬p}

Belief base revision constructed via Levi identity is called internal revision while
the revision constructed via reversed Levi identity is called external revision. Both
internal and external revisions satisfy the following postulates:

4.3 Belief Base Theory 63

(success) α ∈ B ∗ α
(inclusion) B ∗ α ⊆ B + α
(non-contravention) If ¬α /∈ Cn(∅) then ¬α /∈ Cn(B ∗ α).

Besides these postulates both revisions must satisfy some minimally criterion,
core-retainment or relevance, depending whether the contraction used in the con-
struction is kernel or partial meet.

(core-retainment) If β ∈ B and B /∈ B ∗ α then there is a B ′ such that B ′ ⊆
B ∪ {α},¬α /∈ Cn(B ′) and ¬α ∈ Cn(B ′ ∪ {β}).

(relevance) If β ∈ B and B /∈ B ∗ α then there is a B ′ such that B − α ⊆ B ′ ⊆
B ∪ {α},¬α /∈ Cn(B ′) and ¬α ∈ Cn(B ′ ∪ {α}).

Furthermore, internal revision satisfies uniformity:
(uniformity) If it holds that for every B ′ ⊆ B, ¬α ∈ Cn(B ′) iff ¬β ∈ Cn(B ′)

then B ∩ (B ∗ α) = B ∩ (B ∗ β).

Besides the success, inclusion, non-contravention and one of the minimality pos-
tulates, external revision satisfies a weak version of uniformity and a postulate called
pre-expansion.

(weak uniformity) If α,β ∈ B and it holds that for every B ′ ⊆ B ¬α ∈ Cn(B ′)
iff ¬β ∈ Cn(B ′) then B ∩ (B ∗ α) = B ∩ (B ∗ β).

(pre-expansion) (B + α) ∗ α = B ∗ α
Summing up, four types of belief base revision were presented:
internal kernel revision: B ∗σ α = (B \ σ(B⊥⊥ ¬α)) + α
external kernel revision: B ∗σ α = (B + α) \ σ((B + α)⊥⊥ ¬α)

internal partial meet revision: B ∗γ α = (
⋂

γ(B⊥¬α)) + α
external partial meet revision: B ∗γ α = ⋂

γ((B + α)⊥¬α)

Each of these constructions is characterized by a set of postulates. The follow-
ing representation theorems proves these characterization. Each of these theorems
assume that the underlying logic satisfies monotonicity, compactness and α-local
noncontravention.

Representation Theorem 4.25 (IKR) [HW02] Let 〈L , Cn〉 be a logic that satisfies
monotonicity, compactness, and α -local non- contravention. A operation ∗ over a
belief base B is an internal kernel revision iff it satisfies: success, inclusion, non-
contravention, uniformity, and core-retainment.

Proof (construction ⇒ postulates)

success and inclusion: Follows directly from construction.
uniformity: Follows from Lemma 4.22.
non-contravention: If ¬α /∈ Cn(∅) then, by the same argument of previous Rep-

resentation Theorem, ¬α /∈ Cn(B \ σ(B⊥⊥ ¬α)). It follows, by α-local non-
contravention that ¬α /∈ Cn(B ∗σ α).

core-retainment: If ¬α ∈ Cn(∅) then B⊥⊥ ¬α = ∅. It follows that B ⊆ B ∗σ α
and, hence, core-retainment follows vacuously.

Let ¬α /∈ Cn(∅) and β ∈ B \ B ∗σ α. By Lemma 4.21, there is X such that
β ∈ X ∈ B⊥⊥ ¬α. Of course X \ {β} ⊆ B and α ∈ Cn(X) = Cn((X \ {β}) ∪ {β}).
Furthermore, since X is minimal and β ∈ X then α /∈ Cn(X \ {β}).

64 4 Classical Belief Revision

(postulates ⇒ construction)

Let – be an operation over B that satisfies success, inclusion, uniformity, core-
retainment, and non-contravention. Let σ be an incision function defined as follows:

σ(B⊥⊥ ¬α) = B \ (B ∩ B ∗ α)

By Lemma 4.22 and uniformity, σ is well defined. It will be proved that (1) σ is an
incision function and (2) B ∗ α = B ∗σ α.

1. Let β ∈ σ(B⊥⊥ ¬α) then β ∈ B \ (B ∩ B ∗α) = B \ B ∗α. It follows, by core-
retainment, that there is a B ′ ⊆ B such that ¬α /∈ Cn(B ′) and ¬α ∈ Cn(B ′ ∪ {β}).
By Lemma 4.21, there is X such that β ∈ X ∈ B⊥⊥ ¬α. Hence, β ∈ ⋃

B⊥⊥ ¬α.

Now let ∅ �= X ∈ B⊥⊥ ¬α. It follows that ¬α /∈ Cn(∅) and ¬α ∈ Cn(X). If
X ⊆ B⊥⊥ ¬α then ¬α ∈ B ∗ α contracting non-contravention. Hence, X � B⊥⊥
¬α. It follows that there is β ∈ X such that β ∈ B \ (B ∩ B ∗ α) = σ(B⊥⊥ ¬α).

We conclude that X ∩ σ(B⊥⊥ ¬α) �= ∅.

B ∗σ α = (B \ σ(B⊥⊥ ¬α)) + α
= (B \ (B \ (B ∗ α))) + α by inclusion
= B ∗ α + α
= B ∗ α by success

��
Representation Thoerem 4.26 (EKR) [HW02] Let 〈L , Cn〉 be a logic that satis-
fies monotonicity, compactness, and α-local non-contravention. A operation ∗ over
a belief base B is a external kernel revision iff it satisfies: success, inclusion, non-
contravention, weak uniformity, pre-expansion, and core-retainment.

Proof (construction ⇒ postulates)

inclusion and pre-expansion: Follows directly from construction.
non-contravention: Very similar with success in Representation Theorem 4.24.
weak uniformity: Follows from Lemma 4.22.
core-retainment: If B \ B ∗σ α then β ∈ σ(B + α⊥⊥ ¬α). It follows that there is

X such that β ∈ X ∈ B +α⊥⊥ ¬α. Notice that X \{β} ⊆ B +α, ¬α /∈ Cn(X \{β})
and ¬α ∈ Cn(X).

success: If X ∈ B+α⊥⊥ ¬α then α /∈ X by α-local non contravention. It follows
that α /∈ σ(B + α⊥⊥ ¬α). Hence, α ∈ B ∗σ α.

(postulates ⇒ construction) Let – be an operation over B that satisfies success,
inclusion, non-contravention, weak uniformity, pre-expansion, and core-retainment.
Let σ be an incision function defined as follows:

σ(B⊥⊥ ¬α) = B \ B ∗ α

By Lemma 4.22 and weak uniformity, σ is well defined. Furthermore, the proof
that σ is an incision function is very similar to the one presented in previous Repre-
sentation Theorem. The only thing left to show is that B ∗ α = B ∗σ α.

4.3 Belief Base Theory 65

B ∗σ α = (B + α) \ σ(B + α⊥⊥ ¬α)

= (B + α) \ ((B + α) \ ((B + α) ∗ α))

= (B + α) ∗ α by inclusion
= B ∗ α by success

��
Representation Theorem 4.27 (IPMR) [HW02] Let 〈L , Cn〉 be a logic that satis-
fies monotonicity, compactness, and α -local non contravention. A operation ∗ over
a belief base B is a internal partial meet revision iff it satisfies: success, inclusion,
non-contravention, uniformity and relevance.

Proof (construction ⇒ postulates)

inclusion and success: Follows directly from construction.
uniformity: Follows from Lemma 4.6.
non-contravention: If B⊥¬α = ∅ then, by Lemma 4.4, ¬α ∈ Cn(∅) and the

postulate is vacuously satisfied.
If B⊥¬α �= ∅ then ¬α /∈ Cn(

⋂
γ(B⊥¬α)) and, by α-local non contravention

¬α /∈ Cn(B ∗γ α).

relevance: If β ∈ B \ B ∗γ α then there is some X such that β /∈ X ∈
γ(B⊥¬α). B∗γ α ⊆ X ∪{α} ⊆ B+α ¬α /∈ Cn(X ∪{α}) by α-local non contraven-
tion. Furthermore, ¬α ∈ Cn(X ∪{β}) and, by monotonicity, ¬α ∈ Cn(X ∪{α,β}).

(postulates ⇒ construction) Let - be an operation over B that satisfies success,
inclusion, non-contravention, uniformity, and relevance. Let γ be a selection function
defined as follows:

γ(B⊥α) ={X ∈ B⊥α : B ∩ B ∗ ¬α ⊆ X} if B⊥α �= ∅
={B} otherwise.

From uniformity and Lemma 4.6, we have that γ is well defined. It will be proved
that (1) if B⊥α �= ∅ then γ(B⊥α) �= ∅ and (2) B ∗ α = B ∗γ α.

1. If B⊥α �= ∅ then, by Lemma 4.4, α /∈ Cn(∅). By non-contravention α /∈
B ∗ ¬α. It follows, by upper bound property (Lemma 4.3) that there is X such
that B ∩ B ∗ ¬α ⊆ X ∈ B⊥α. Hence, γ(B⊥α) �= ∅.

2. By inclusion B ∗ α ⊆ B + α ⊆ (B ∩ B ∗ α) + α. It follows that B ∗ α ⊆⋂
γ(B⊥¬α) + α.

Now let β /∈ B ∗α. If β /∈ B then β /∈ B ∗γ α trivially. So let β ∈ B. By relevance,
there is B ′ such that B ∗ αB ′ ⊆ B + α ¬α /∈ Cn(B ′) and ¬α ∈ Cn(B ′ ∪ {β}).
By success, α ∈ B ′ and, since ¬α /∈ Cn(B ′), by α-local non contravention, ¬α /∈
Cn(B ′ \ {α}). It follows, by upper bound property (Lemma 4.3) that there is X such
that B ′ \ {α} ⊆ X ∈ B⊥¬α. Since B ∩ B ∗ α ⊆ B \ {α} ⊆ X, we have that
X ∈ γ(B⊥¬α). Since ¬α ∈ Cn(B ′ ∪ {β}), by α-local non contravention, we have
that ¬α ∈ Cn((B ′ \ {α}) ∪ {β}). Hence, by monotonicity ¬α ∈ Cn(X ∪ {β}). Since
β /∈ X, we have that β /∈ ⋂

γ(B⊥¬α). Hence, B ∗γ α ⊆ B ∗ α. ��

66 4 Classical Belief Revision

Representation Theorem 4.28 (EPMR) [HW02] Let 〈L , Cn〉 be a logic that sat-
isfies monotonicity, compactness and α -local non-contravention. A operation ∗ over
a belief base B is a external partial meet revision iff it satisfies: success, inclusion,
non-contravention, weak uniformity, pre-expansion and relevance.

Proof (construction ⇒ postulates)

inclusion, pre-expansion and non-contravention: Follows directly from construc-
tion.

weak uniformity: Follows from Lemma 4.6.
success: If B + α⊥¬α = ∅ then it follows trivially. If X ∈ B + α⊥¬α then, by

alpha-local non contravention, α ∈ X. Hence, α ∈ B ∗γ α.

(postulates ⇒ construction) Let – be an operation over B that satisfies success,
inclusion, non-contravention, weak uniformity, pre-expansion and relevance. Let γ
be a selection function defined as follows:

γ(B⊥¬α) = {X ∈ B⊥¬α : B ∗ α ⊆ X} ifB⊥α �= ∅
= {B} otherwise.

From weak uniformity and Lemma 4.6, we have that γ is well defined. It will be
proved that (1) if B⊥α �= ∅ then γ(B⊥α) �= ∅ and (2) B ∗ α = B ∗γ α.

1. If B⊥¬α �= ∅ then, by Lemma 4.4, ¬α /∈ Cn(∅). By non-contravention ¬α /∈
Cn(B∗α) and, by upper bound property, there is X such that B∗α ⊆ X ∈ B⊥¬α.

Hence, γ(B⊥¬α) �= ∅.

2. If B⊥¬α = ∅ then B ∗γ α = B + α. Furthermore, by Lemma 4.4, ¬α ∈ Cn(∅).

By relevance if β ∈ B \ B ∗ α then there must be a B ′ such that ¬α /∈ Cn(B ′).
Since ¬α ∈ Cn(∅), this B ′ cannot exist and there is no β ∈ B \ B ∗ α. Hence,
B ⊆ B ∗ α. By success, B + α ⊆ B ∗ α and, by inclusion, B ∗ α ⊆ B + α. We
conclude that B ∗ α = B ∗γ α = B + α.

If B⊥¬α /∈ ∅ then, by pre-expansion B ∗α ⊆ B ∗γ α. Let β ∈ B ∗γ α and β /∈ B ∗α.

By pre-expansion, β ∈ B +α\ (B +α)∗α. Then, by relevance there is a set B ′ such
that (B + α) ∗ α ⊆ B ′ ⊆ B + α ¬α /∈ Cn(B ′) and ¬α ∈ Cn(B ′ ∪ {β}). It follows,
by upper bound property, that there is X such that B ′ ⊆ X ∈ B + α⊥¬α. Since
B ′ ⊆ X ¬α /∈ Cn(X) and ¬α ∈ Cn(B ′ ∪ {β}), we have that β /∈ X ∈ B + α⊥¬α.

It follows that β /∈ B ∗γ α. ��

4.3.3 Belief Base Semi-Revision

Revision operations presented in previous section assume that agent must accept
the input α. This obligation of accepting the input is called principle of primacy
of the input. Hansson suggested to drop this principle and considered an operation
called semi-revision [Han97]. Semi-revision delegates the task of choosing to accept
the input to the selection mechanism (selection or incision function). In terms of

4.3 Belief Base Theory 67

postulate, the main difference between revision and semi-revision is that the latter
does not satisfy success.

In this section we will assume that there is a sentence ⊥ in the language L and
that a set of sentences A is inconsistent if and only if it derives ⊥.

Semi-revision is constructed by first adding the input α to the belief base B and
then removing inconsistencies (consolidation). During consolidation the input may
be removed from the belief base depending on the selection mechanism. It will be
defined two types of consolidation: kernel and partial meet.

Let σ be a incision function over a belief base B. A kernel semi-revision ?σ is
defined as follows:

B?σα = (B + α) \ σ((B + α)⊥⊥ ⊥)

Some postulates that characterize semi-revision were already presented. This is
the case of inclusion, pre-expansion. Some postulates such as relevance and core-
retainment were adapted to deal with consistency instead of non-contravention. Fur-
thermore, there are two new postulates, namely, consistency and internal exchange.

(relevance) If β ∈ B and β /∈ B?α then there is a B ′ such that B?α ⊆ B ′ ⊆ B
and B ′ is consistent, but Cn(B ′ ∪ {β}) is not.

(core-retainment) If β ∈ B and β /∈ B?α then there is a B ′ such that B ′ ⊆ B
and B ′ is consistent, but B ′ ∪ {β} is not.

(internal exchange) If α,β ∈ B then B?α = B?β.

(consistency) If α is consistent then B?α is consistent.

Representation Theorem 4.29 (KSR) [Han97] Let 〈L , Cn〉 be a logic that sat-
isfies monotonicity, compactness. An operation ? over a belief base B is a kernel
semi-revision iff for every α the operation ? satisfies: consistency, inclusion, core-
retainment, pre-expansion and internal exchange.

Proof (construction ⇒ postulates)

consistency, inclusion, pre-expansion, and internal exchange: Follows from con-
struction.

core-retainment: Let β ∈ B \ B?α. It follows that β ∈ σ(B + α⊥⊥ ⊥). Hence,
β ∈ X for some X ∈ B +α⊥⊥ ⊥. Notice that X \ {β} ⊆ B +α X \ {β} is consistent
and X is not.

(postulates ⇒ construction) Let ? be an operation over B that satisfies consis-
tency, inclusion, core-retainment, pre-expansion, and internal exchange. Let σ be an
incision function defined as follows:

σ(B⊥⊥ ⊥) = B \ {β : β ∈ B?α for some α ∈ B}
It will be proved that (1) σ is an incision function (2) B?α = B?σα.

1. If β ∈ σ(B⊥⊥ ⊥) then β ∈ B \ B?α. It follows, by core-retainment, that there is
a B ′ ⊆ B such that B ′ is consistent and B ′ ∪ {β} is not. By Lemma 4.21, there
is X such that β ∈ X ∈ B⊥⊥ ⊥. Hence, β ∈ ⋃

B⊥⊥ ⊥. Let ∅ �= X ∈ B⊥⊥ ⊥

68 4 Classical Belief Revision

and suppose that X ∩ σ(B⊥⊥ ⊥) = ∅. It follows that X ⊆ {β : β ∈ B?α for
some α ∈ B}. Take any α ∈ B consistent. By internal exchange, X ⊆ B?α.

Since X is inconsistent, B?α is inconsistent, by monotonicity, which contradicts
the consistency. Hence, X ∩ σ(B⊥⊥ ⊥) �= ∅.

2.

σ(B + α⊥⊥ ⊥) =B + α \ {β : β ∈ (B + α)?δfor some δ ∈ B}
=B + α \ (B + α)?α by internal exchange

=B + α \ B?α by pre-expansion

It follows that:

B?σα = B + α \ σ(B + α⊥⊥ ⊥)

= B + α \ (B + α \ B?α)

= B?α by inclusion

��
Let γ be a selection function over a belief base B. A partial meet semi-revision ?γ is
defined as follows:

B?γα =
⋂

((B + α)⊥⊥)

Representation Theorem 4.30 (PMSR) [Han97] Let 〈L , Cn〉 be a logic that sat-
isfies monotonicity, compactness. An operation ? over a belief base B is a partial
meet semi-revision iff for every α the operation ? satisfies: consistency, inclusion,
relevance, pre-expansion and internal exchange.

Proof (construction ⇒ postulates)

consistency, inclusion, pre-expansion, and internal exchange: Follows directly from
construction.

relevance: If β ∈ B \ B?α then there is X ∈ γ(B + α⊥⊥) such that β /∈ X. Of
course B?α ⊆ X ⊆ B + α, X is consistent and X ∪ {β} is not.

(postulates ⇒ construction) Let ? be an operation over B that satisfies consis-
tency, inclusion, relevance, pre-expansion, and internal exchange. Let γ be a selection
function defined as follows:

γ(B⊥⊥) = {X ∈ B⊥⊥ : B?α ⊆ X for some α ∈ B}
It will be proved that (1) γ is a selection function (2) B?α = B?σα.

1. By consistency, B?α is consistent. It follows, by upper bound property, that there
is X such that B?α ⊆ X ∈ B⊥⊥.

2. By pre-expansion, B?α ⊆ B?σα. Now let β /∈ B?α. If β /∈ B +α then β /∈ B?σα
trivially. So let β ∈ B +α. By pre-expansion and relevance, there is B ′ consistent
such that B?α ⊆ B ′ ⊆ B + α and B ′ ∪ {β} is not consistent. It follows, by
upper bound property that there is X such that B ′ ⊆ X ∈ B + α⊥⊥. Since X is
consistent, X ⊆ B ′ and B ′ ∪ {β} is inconsistent, then β /∈ X. Hence, β /∈ B?γα.

��

4.4 Conclusion 69

Table 4.1 Representation theorems for classical belief revision

Construction Postulates Logic properties

Partial meet contraction AGM postulates for contraction AGM assumptions
Partial meet revision AGM postulates for revision AGM assumptions
Kernel base contraction Suc, Inc, Uni, CR Compactness
Partial meet base contraction Suc, Inc, Uni, Rel Compactness
External kernel base revision Suc, Cons, Inc, WU, PE, CR Compactness and α-local non contr.
External PM base revision Suc, Cons, Inc, WU, PE, Rel Compactness and α-local non contr.
Internal kernel base revision Suc, Cons, Inc, Uni, CR Compactness and α-local non contr.
Internal PM base revision Suc, Cons, Inc, Uni, Rel Compactness and α-local non contr.
Semi-revision Cons, Inc, PE, IE Compactness

4.4 Conclusion

Belief revision deals with the dynamics of epistemic states. We presented in this
chapter two approaches for belief revision: belief set approach, also called AGM
theory, and belief base approach. In the first approach the epistemic state of the agent
is represented as a set closed under logical consequence, while in the second the
epistemic state is represented as an arbitrary set of sentences.

The dynamics of belief revision is achieved via operations on these sets. Some
operations both on belief set and in belief base were considered, namely, expansion,
revision, contraction, and semi-revision. Each operation was studied in two aspects:
as a set of rationality postulates that they satisfy and as a construction. The main
results on the belief revision literature relate these two aspects showing that certain
set of rationality postulates fully characterizes certain construction.

Once this result, called representation theorem, is achieved one can focus sep-
arately on the postulates to understand the properties of the operation and on the
construction to study computational aspects. Representation theorems presented in
this chapter assume certain properties on the underlying logic. Representation theo-
rems for belief set operations assume that the logic satisfies AGM assumptions and
for belief base revision assumes that the logic is compact and closed under nega-
tion. Hence, most of these results do not hold for most logics presented in Chap. 3.
Two exceptions are semi-revision and contraction in belief base revision that hold
for every compact logic. Table 4.1 sums up the logical property required for each
representation theorem of this chapter. The first column of the table indicates the
construction, the second column contains the abbreviations of the postulates that
characterizes the construction and the last column indicates which logical properties
are required by the representation theorem.

The seminal article by Alchourràn Gärdenfors and Makinson [AGM85] is still
the main work about AGM theory. More details on classical AGM theory can be
found in [Gar88] and in [Han99]. Belief base operations were extensively studied by
Hansson in [Han99] and by Wassermann in [Was00].

70 4 Classical Belief Revision

References

[AGM85] Carlos Alchourrón, Peter Gärdenfors, and David Makinson On the logic of theory
change. Journal of Symbolic Logic, 50(2):510–530, 1985.

[AM81] Carlos Alchourrón and David Makinson. Hierarchies of regulation and their logic. In
Hilpinen, editor, New studies in deontic logic, pages 125–148. D. Reidel Publishing
Company, 1981.

[FPA06] Giorgos Flouris, Dimitris Plexousakis, and Grigoris Antoniou. On generalizing the
AGM postulates. In Proceedings of the 3rd European Starting AI Researcher Sym-
posium (STAIRS-06), 2006.

[Fuh97] André Fuhrmann. An Essay on Contraction. CSLI Publications, Stanford University,
USA, 1997.

[Gar88] Peter Gärdenfors. Knowledge in Flux: Modeling the Dynamics of Epistemic States.
MIT Press, Cambridge, UK, 1988.

[Han91] Sven Ove Hansson Belief contraction without recovery. Studia Logica, 50(2):251–
260, 1991.

[Han93] Sven Ove Hansson. Reversing the Levi identity. Journal of Philosophical Logic,
22:637–669, 1993.

[Han94] Sven Ove Hansson. Kernel contraction. Journal Symbolic Logic, 59(3):845–859,
1994.

[Han97] Sven Ove Hansson. Semi-revision (invited paper). Journal of Applied Non-Classical
Logics, 7(2), 1997.

[Han99] Sven Ove Hansson. A Textbook of Belief Dynamics. Kluwer Academic, 1999.
[Har86] Gilbert Harman. Change In View: Principles of Reasoning. Bradford Books. MIT

Press, 1986.
[HW02] Sven Ove Hansson and Renata Wassermann. Local change. Studia Logica, 70(1):49–

76, 2002.
[Mak87] David Makinson. On the status of the postulate of recovery in the logic of theory

change. Journal of Philosophical Logic, 16:383–394, 1987.
[Neb90] Bernhard Nebel. Reasoning and revision in hybrid representation systems. Springer-

Verlag New York, Inc., New York, NY, USA, 1990.
[Pea88] J. Pearl Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-

ence. Morgan Kaufmann, 1988.
[RW08] Márcio M. Ribeiro and Renata Wassermann. Degrees of recovery and inclusion in

belief base dynamics. In Maurice Pagnucco and Michael Thielscher, editors, Pro-
ceedings of the 12th International Workshop on Non-Monotonic Reasoning (NMR
2008), Sidney, Australaia, Setembro 13–15, 2008, Sidney, Australia, Setembro 13–
15 2008.

[Sta84] Robert C. Stalnaker. Inquiry. The MIT Press, Cambridge, MA, 1984.
[Was00] Renata Wassermann. Resource Bounded Belief Revision. PhD thesis, Universiteit van

Amsterdan, Janeiro 2000.
[Woj88] R. Wójcicki. Theory of logical calculi: basic theory of consequence operations.

Synthese library. Kluwer Academic Publishers, 1988.

Chapter 5
AGM Contraction in Non-Classical Logics

Abstract Recovery is certainly the most controversial AGM postulate. Since the
first publications in the area many works criticize several aspects of recovery. In order
to avoid the undesirable consequences of recovery, Hansson proposes to exchange it
by a postulate called relevance. However, in classical logics relevance and recovery
are equivalent. In this chapter, we defend the use of relevance instead of recovery
in non-classical logics for mainly three reasons: relevance deals more directly with
minimality, it is compliant with a wider class of logics, and it better characterizes
partial meet contraction.

Keywords Contraction · Relevance · Recovery · Partial meet contraction · Mini-
mality · AGM-compliance · Non-classical logics

This chapter presents contraction in belief sets. Our main goal is to show how to
apply this theory in non-classical logics.

Recovery is the most controversial AGM postulate [Mak87], [Han91], [FPA06],
[Lev91], [Nie91]. The oldest and most commented criticism is from Makinson.
Makinson argues that recovery is the only postulate which is unnecessary to construct
a revision via Levi identity [Mak87]. He argues that recovery should be dropped and
defines an operation called withdrawal. A withdrawal satisfies all the AGM postulates
for contraction but recovery.

Hansson rejects withdrawal arguing that dropping recovery altogether is too
drastic [Han91]. He agrees, though, that the postulate is unintuitive presenting the
following example:

Example 5.1 “I believe that ‘Cleopatra had a son’ α1 and that ‘Cleopatra had a
daughter’ α2, hence, I also believe that ‘Cleopatra had a child’ α1 ∨ α2. Then I
receive the information that makes me give up my belief in α1 ∨ α2, and make me
contract my belief accordingly K −α1 ∨α2. After that I learn from a reliable source
that Cleopatra did have a child. It seems plausible to me to add α1 ∨ α2 to my belief
base without neither adding α1 nor α2 to it.”

M. M. Ribeiro, Belief Revision in Non-Classical Logics, 71
SpringerBriefs in Computer Science,
DOI: 10.1007/978-1-4471-4186-0_5, © The Author(s) 2013

72 5 AGM Contraction in Non-Classical Logics

What Hansson proposes, instead of simply dropping recovery, is to exchange it
with some other, more intuitive, minimality postulate. For this purpose relevance
was introduced:

(relevance) If β ∈ K and β /∈ K −α then there is a K ′ such that K −α ⊆ K ′ ⊆ K ,

α /∈ Cn(K ′), but α ∈ Cn(K ′ ∪ {β}).
Relevance guarantees minimality of contraction preventing the removal of sen-

tences which are irrelevant to infer the input α. Hansson, however, proved that rel-
evance and recovery are equivalent in the presence of AGM assumptions and the
other contraction postulates. He concludes the paper claiming that recovery should
be accepted as an “emerging property, rather than as a fundamental postulate, of
belief set contraction”.

Another criticism against the use of recovery as a postulate for contraction can be
found in [FPA06]. In this article, it is showed that AGM postulates are not applicable
to a wide class of non-classical logics and that recovery is the main reason behind
this failure.

The main goal of this chapter is to show that relevance is indeed a good replacement
for recovery. To facilitate the exposure we call relevance-contraction the operation
that satisfies the AGM postulates for contraction with recovery exchanged by rel-
evance. We defend that this is a good choice of postulates for non-classical logics
with three arguments:

1. compliance: relevance-contraction postulates are compliant with a wide class of
logics.

2. equivalence with partial meet: relevance-contraction postulates are equivalent to
partial meet in a wide class of logics.

3. rationality: although relevance and recovery are equivalent in many logics, this
is not the case in general.

Next section presents a straightforward generalization of the AGM postulates for
the case where the input is a set of sentences. Section 5.2 shows that most logics are
not compliant with AGM postulates. Section 5.3 shows that every compact logic is
compliant with AGM postulates with recovery exchanged by relevance. Section 5.4
proves a representation theorem that characterizes partial meet contraction in any
compact logic. Section 5.5 shows that in certain logics relevance and recovery are
equivalent while in others they are not. Finally, Sect. 5.6 concludes the chapter.

5.1 Generalized AGM Postulates

In CPL every finite set a1, . . . , an is equivalent to a single sentence a1 ∧· · ·∧an , i.e.,
CC P L({a1, . . . , an}) = CC P L(a1 ∧ · · · ∧ an). However, in some logics that we are
interested in, such as Description Logics, it is not possible to represent finite sets with
a single sentence. For this reason it is convenient to generalize contraction in order

5.1 Generalized AGM Postulates 73

for it to accept finitely representable sets of sentences as input. Such generalized
operation is called multiple contraction in [FH94].

This generalization was first proposed by Fuhrmann and Hansson in [FH94] and
then defined by Flouris in [Flo06]. Notice that it is a straightforward generalization
of the AGM postulates.

Let K be a belief set and A be a finitely representable set over L . The generalized
AGM postulates for contraction are the following:

(closure) K − A = Cn(K − A).

(success) If A � Cn(∅) then A � K − A.

(inclusion) K − A ⊆ K .

(vacuity) If A � K then K − A = K .

(recovery) K ⊆ (K − A) + A.

(extensionality) If Cn(A) = Cn(B) then K − A = K − B.

Although straightforward, this generalization is not the only one found in the
literature. The set of postulates presented above interpret the input conjunctively,
i.e., the contraction K − A should remove at least one element of A (see the postulate
of success). Alternatively, we could interpret the input set disjunctively. In this case
K − A should remove every element of A. In [FH94] the former operation is called
choice contraction while the later is called package contraction. In our approach
only choice contraction will be considered.

In the previous section relevance was presented. It is convenient to present a
generalization of this postulate also.

(relevance) If β ∈ K and β /∈ K − A then there is a K ′ such that K − A ⊆ K ′ ⊆ K ,
A � Cn(K ′), but A ⊆ Cn(K ′ ∪ {β}).

5.2 AGM Compliance

In Sect. 4.2 postulates for AGM contraction were presented and it was shown that
they fully characterize a construction called partial meet contraction. The equivalence
between AGM postulates and partial meet contraction holds for logics that satisfies
certain conditions called AGM assumptions. However, most logics listed in Chap. 3
do not satisfy these assumptions.

In [FPA05] the authors argue that AGM postulates for contraction are not even
applicable to certain logics. Consider the logic from Example 2.3:

L = {a, b}
Cn(L) = Cn({b}) = L

Cn({a}) = {a}
Cn(∅) = ∅

74 5 AGM Contraction in Non-Classical Logics

Let K = L and A = {a}. By inclusion, success and closure the only candidate
for K − A in this logic is ∅. However, if K − A = ∅ we would have (K − A)+ A =
{a} 	= K , i.e., recovery would not be satisfied.

This is an example of a logic which is not AGM-compliant. As we will see most
logics listed in Chap. 3 are not AGM-compliant.

Definition 5.2 (AGM-compliance) [FPA05] A logic 〈L , Cn〉 is AGM compliant
iff for every belief set K there is at least one operation − over K that satisfies the
generalized AGM postulates for contraction.

As illustrated by Example 2.3, not every Tarskian logic is AGM compliant. In
[FPA05] the authors showed that the necessary and sufficient condition for AGM
compliance of a logic is decomposability:

Theorem 5.3 [FPA05] A logic 〈L , Cn〉 is AGM compliant iff it is decomposable.

Proof (⇒) Let K be a belief set and A be a finitely representable set of sentences in
a logic 〈L , Cn〉 and let Cn(∅) ⊂ Cn(A) ⊂ K . We will show that there is a set K ′
such that (1) Cn(K ′) ⊂ K and (2) Cn(K ′ ∪ A) = K .

1. Let − be an AGM contraction over K. Since 〈L , Cn〉 is AGM compliant, − is
defined for every finitely representable set A. Now let K ′ = K − A.

By inclusion K ′ ⊆ K and, since Cn(∅) ⊂ Cn(A), by success A � K . Hence
K ′ 	= K .

2. K ⊆ K ′+A follows directly from recovery. Furthermore, since Cn(A) ⊂ Cn(K)

and, by inclusion, K ′ ⊆ K , we have that K ′ + A ⊆ K .

(⇐) Let K be a belief set and A be a finitely representable set in a logic 〈L , Cn〉.
Consider a function γ that given a non-empty set K −(A) returns one element of
K −(A), i.e., γ(K −(A)) ∈ K −(A). Let us define an operation – over K as follows:

K − A = Cn(γ(K −(A)) if Cn(∅) ⊂ Cn(A) ⊂ K
= K if Cn(∅) = Cn(A) or A � K
= Cn(∅) if Cn(A) = K

Notice that K −(A) 	= ∅, because the underlying logic is decomposable. The
operation − defined above is an AGM contraction.
closure, inclusion, vacuity: Follows directly from construction.
extensionality: If Cn(A) = Cn(B) then it is not difficult to notice that K −(A) =
K −(B). Since γ is a function, γ(K − A) = γ(K −B). Hence, K − A = K − B.

success: If A � Cn(∅) then we have two cases.
If A = K then K − A = Cn(∅) and, since A � Cn(∅), the success is satisfied.
If A 	= K then K − A = K ′ such that Cn(K ′) ⊂ K and K ′ + A = K .

Now suppose that A ⊆ Cn(K ′) then K ′ + A = K ′ which is contradiction.
Hence, A � Cn(K ′).
recovery: If Cn(A) = Cn(∅) or A � K then K − A = K , hence, K ⊆ (K − A)+ A.

If Cn(A) = K then K − A = Cn(∅) and (K − A) + A = Cn(A), hence, K ⊆
(K − A) + A.

5.2 AGM Compliance 75

Finally, if Cn(∅) ⊂ Cn(A) ⊂ K then K − A = K ′ for some K ′ ∈ K −(A) and,
hence, K ′ + A = K . We conclude that K ⊆ (K − A) + A. ��

From this result we have as corollary the following:
Corollary 5.4 All Boolean logics are AGM compliant.

Proof It follows directly from Theorem 5.3 and Proposition 2.10. ��

5.3 Relevance Compliance

Chapter 3 listed several logics such as intuitionistic logic, Horn logic, and many
DLs which are not decomposable and, hence, not AGM compliant. Are these logics
compliant with relevance, i.e., are they compliant with the postulates for relevance
contraction? In other words, are this logics relevance-compliant?

Definition 5.5 (relevance-compliance) A logic 〈L , Cn〉 is relevance-compliant iff
for every belief set K there is at least one operation − over K that satisfies the
generalized postulates for relevance-contraction.

The following theorem shows that compactness is a sufficient condition for a logic
to be relevance-compliant.

Theorem 5.6 Every compact logic is relevance-compliant.1

Proof Let K be a belief set and A be a finitely representable set A in a compact
logic 〈L , Cn〉. Consider a function γ that given a non empty set K ⊥ A returns one
element of it, i.e., γ(K ⊥ A) ∈ K ⊥ A. Let − be an operation over K defined as
follows:

K − A = K if A ⊆ Cn(∅)

= γ(K ⊥ A) otherwise

Notice that when A � Cn(∅), by Lemma 5.9, K ⊥ A 	= ∅. Let us show that − is a
relevance-contraction:

inclusion: Follows directly from construction.
extensionality: If Cn(A) = Cn(B) then K ⊥ A = K ⊥ B, by Lemma 5.13. Since
γ is a function then γ(K ⊥ A) = γ(K ⊥ B).

closure: Follows from Lemma 5.10.
vacuity: If A � K then K − A = K ′ ∈ K ⊥ A = {K }. Hence, K − A = K .

success: If A � Cn(∅) then K − A = K ′ ∈ K ⊥ A. Hence, A � K − A.

relevance: If A ⊆ Cn(∅) then K − A = K and relevance is vacuously satisfied.

If A � Cn(∅) then K − A = K ′ ∈ K ⊥ A. Let β ∈ K such that β /∈ K − A.

Of course K − A ⊆ K ′ ⊆ K and A � Cn(K ′). Furthermore, since K ′ is maximal,
A ⊆ Cn(K ′ ∪ {β}) ��

1 This theorem uses some lemmas presented in the following section.

76 5 AGM Contraction in Non-Classical Logics

Since all logics from Chap. 3 are compact, they are all relevance-compliant. How-
ever, as shown in the following example, not every logic is relevance-compliant.

Example 5.7 The logic below is AGM-compliant but not relevance-compliant. It is
also closed under negation. The logic 〈L , Cn〉 is defined as follows:

L = {a, xi , y j | i, j = 1, 2, . . . }
Cn(a) = {a}

Cn(y1) = {x1, y1}
Cn(yi) = {yi } for i > 1

Cn(xi) = {x j , y j | j ≤ i}
Cn(X) = L if |X | > 1 and a ∈ X

Cn(X) = Cn(xi) if X is finite, |X | > 1, a /∈ X

and xi ∈ X or yi ∈ X

and there is no j > i such that x j ∈ X or y j ∈ X

Cn(X) = L if X is infinite

Cn(∅) = ∅
To verify that this logic is AGM-compliant just check each pair K, A and identify
one contraction result that satisfies the AGM postulates.
The logic is not relevance-compliant. There is no candidate set that satisfies relevance
and success for the operation L −{a}. If X is infinite then it would not satisfy success.
Let X be finite then there is a xi such that xi /∈ Cn(X). By relevance there must be
a K ′ such that a /∈ Cn(K ′), but a ∈ Cn(K ′ ∪ {xi }). By monotony and the fact that
a /∈ K ′ we have that K ′ must be finite. In this case, a /∈ Cn(K ′ ∪ {xi }).

5.4 Relevance and Partial Meet Contraction

We already showed that if the underlying logic satisfies the AGM assumptions then
partial meet contraction is equivalent to the AGM postulates. This result is central to
the AGM theory and it is called representation theorem for partial meet contraction.

We also showed that AGM postulates are not compliant with several interesting
logics and relevance was proposed as a replacement for recovery.

The main result in this section shows that the postulates for relevance-contraction
fully characterizes partial meet contraction for a wider class of logics. More precisely
partial meet contraction is fully characterized by relevance-contraction postulates in
every compact logic.

Before showing this result let us generalize remainder set to accept finitely rep-
resentable sets as input:

5.4 Relevance and Partial Meet Contraction 77

Definition 5.8 (generalized remainder set) Let K be a belief set and A and finitely
representable set of sentences. The remainder set K ⊥ A is the set such that X ∈
K ⊥ A iff:

1. X ⊆ K (X is a subset of K).
2. A � Cn(K) (that does not imply A).
3. if X ⊂ X ′ ⊆ K then A ⊆ Cn(X ′) (and is maximal).

The proof of the representation theorem we are about to enunciate depends on the
following lemmas:

Lemma 5.9 (generalized upper-bound property) If 〈L , Cn〉 is compact then for
every K ⊆ L , every X ⊆ K and every finitely representable A ⊆ L for which
A � Cn(X), there is a X ′ such that X ⊆ X ′ and X ′ ∈ K ⊥ A.

Proof Arrange the elements of K in a sequence β1,β2, Let X0 = X and for all
i ≥ 1 defined Xi as follows:

Xi =
{

Xi−1 if A ⊆ Cn(Xi−1 ∪ {βi })
Xi−1 ∪ {βi } otherwise.

Let K ′ = ⋃
i Xi . Since A is finitely representable, there is A′ finite which is equivalent

to A. If A ⊆ Cn(K ′), by Lemma 2.2, then A′ ⊆ Cn(K ′). Suppose without loss of
generality that A′ = {a1, . . . , an}. By compactness for every a j with 1 ≤ j ≤ n there
is a finite K j such that K j ⊆ K ′ and a j ∈ Cn(K j). It follows that A′ ⊆ Cn(

⋃
j K j)

and, since
⋃

j K j is finite, A ⊆ Cn(Xi) for some i. By Lemma 2.2 A ⊆ Cn(Xi)

which is a contraction. It follows that A � Cn(K ′).
Furthermore, if K ′ ⊂ K ′′ ⊆ K then there is β ∈ K such that β ∈ K ′′ and β /∈ K ′.

By construction we have that A ⊆ Cn(K ′ ∪ {β}, hence, A ⊆ Cn(K ′′).
Of course X ⊆ K ′ ⊆ K which concludes the proof that X ⊆ K ′ ∈ K ⊥ A. ��

Lemma 5.10 Let K be a belief set and A a finitely representable set of sentences in
a logic 〈L , Cn〉. If X ∈ K ⊥ A then X is closed under logical consequence, i.e.,
X = Cn(X).

Proof If β ∈ Cn(X) then A � Cn(X ∪ {β}) and, since X is maximal, β ∈ X. ��
Lemma 5.11 Let 〈L , Cn〉 be a compact logic. Let K be a belief set and A be
finitely representable set of sentences in a logic 〈L , Cn〉. Then K ⊥ A = ∅ iff
A ⊆ Cn(∅).

Proof (⇒) If A � Cn(∅) then by generalized upper bound property (Lemma 5.9)
there is X ∈ K ⊥ A.

(⇐) If A ⊆ Cn(∅) then there is no X ⊆ K such that A � Cn(X). ��
Lemma 5.12 Suppose that 〈L , Cn〉 is compact and let K be a belief set. Then
K ⊥ A = K ⊥ B iff for every X ⊆ K it holds that A ⊆ Cn(X) iff B ⊆ Cn(X).

Proof Consider a set X ⊆ K and suppose that A ⊆ Cn(X) and B � Cn(X).
By generalized upper-bound property (Lemma 5.9) there is X ′ such that X ⊆ X ′

78 5 AGM Contraction in Non-Classical Logics

∈ K ⊥ B. Since A ⊆ Cn(X) then, by monotonicity, A ⊆ Cn(X ′). However, in this
case, X ′ /∈ K ⊥ A which contradicts the hypothesis. The converse is trivial. ��
Lemma 5.13 Let K be a belief set and let A and B be finitely representable sets of
sentences in a compact logic 〈L , Cn〉 then the following hold:

1. If Cn(A) = Cn(B) then K ⊥ A = K ⊥ B.

2. If A ⊆ K and K ⊥ A = K ⊥ B then Cn(A) = Cn(B).

Proof

1. If K ′ ⊆ K then A ⊆ Cn(K ′) iff B ⊆ Cn(K ′), because Cn(A) = Cn(B). It
follows, by the previous lemma that K ⊥ A = K ⊥ B.

2. If A ⊆ K then Cn(A) ⊆ K by monotonicity. By the previous lemma, B ∈ Cn(A).
Analogously, if B ⊆ K then A ∈ Cn(B) and, hence, Cn(A) = Cn(B).

If B � K then K ⊥ B = {K } and, since K ⊥ A = K ⊥ B, we have that A � K .

��
With these lemmas we are able to prove the following representation theorem:

Representation Theorem 5.14 Let 〈L , Cn〉 be a compact logic, let K be a belief
set and A be a finitely representable set. K − A satisfies the postulates for relevance-
contraction iff K − A = ⋂

γ(K ⊥ A) for some selection function γ.

Proof (construction ⇒ postulates)

inclusion: Follows directly from construction.
closure: Follows from Lemma 5.10 and the fact that the intersection of closed sets
is closed.
extensionality: Follows from Lemma 5.13.
vacuity: If A � K then K ⊥ A = {K }. It follows that γ(K ⊥ A) = K .

success: If A � Cn(∅) then, by Lemma 5.11, K ⊥ A 	= ∅.Hence A �
⋂

γ(K ⊥ A).
relevance: If β ∈ K \ K − A then there is X ∈ γ(K ⊥ A) such that β /∈ X . By
definition, K −γ A ⊆ X ⊆ K , A � Cn(X) and A ⊆ Cn(X ∪ {β}).
(postulates ⇒ construction)

Let − be an operator satisfying the six postulates and define the selection function
γ as follows:

γ(K ⊥ A) = {X ∈ K ⊥ A : K − A ⊆ X} if K ⊥ A 	= ∅
= {K } otherwise.

We have to prove that (1) γ is well defined, (2) γ is a selection function, and (3)
K −γ A = K − A.

1. If K ⊥ A = K ⊥ B then, by Lemma 5.13, K − A = K − B. It follows that
γ(K ⊥ A) = γ(K ⊥ B)

2. If K ⊥ A 	= ∅ then, by Lemma 5.11, A � Cn(∅). By success, A � K − A and, by
Lemma 5.9, there is X such that K − A ⊆ X ∈ K ⊥ A. Hence, γ(K ⊥ A) 	= ∅.

5.4 Relevance and Partial Meet Contraction 79

3. If A ⊆ Cn(∅) then K −γ A = K . Furthermore, by relevance, if β ∈ K \ K − A
then there must be a K ′ such that A � Cn(K ′). Since A ⊆ Cn(∅), this K ′ cannot
exist. It follows that there is no β ∈ K \ K − A i.e. K ⊆ K − A. By inclusion,
K − A ⊆ K , hence, K − A = K −γ A = K .
If A � Cn(∅) then, by construction K − A ⊆ K −γ A. Now let β /∈ K − A. If
β /∈ K then β /∈ K −γ A trivially. So let β ∈ K . By relevance, there is K ′ such that
K − A ⊆ K ′ ⊆ K , A � Cn(K ′) and A ⊆ Cn(K ′ ∪ {β}). It follows, by Lemma
5.9, that there is X such that K ′ ⊆ X ∈ K ⊥ A. Since K ′ ⊆ X , A ⊆ Cn(K ′∪{β})
and A � Cn(X), we have that β /∈ X . Hence, β /∈ ⋂

γ(K ⊥ A) ��

5.5 Rationality

It was showed that relevance is compliant with every compact logic and, further-
more, in these logics relevance-contraction postulates fully characterize partial meet
contraction. This chapter will explore yet another aspect of this set of postulates: its
rationality.

First, notice that relevance tries to capture the minimality intuition directly. It states
that no sentences can be removed from the belief set unless it “helps” to derive the
input. Although much less elegant, relevance treats minimality much more directly
than recovery.

Second, relevance is not that different from recovery. In fact, as noticed by
Hansson, recovery and relevance are equivalent in every logic that satisfies the AGM
assumptions. Since partial meet contraction is fully characterized by AGM postulates,
we have that if a logic satisfies the AGM assumptions then relevance-contraction pos-
tulates, AGM postulates, and partial meet contraction are all equivalent.

It is not difficult to show that the equivalence between relevance and recovery can
be generalized to Boolean logics.

Lemma 5.15 Let K be a belief set and A be a finitely representable set of sentences
in a Boolean logic 〈L , Cn〉. If an operation − over K satisfies recovery and β ∈ K
then for every complement A′ of A, Cn(A′) ∪ Cn(β) ⊆ K − A.

Proof If β ∈ K then, by recovery, β ∈ (K − A) + A. Let A′ be a complement of
A. Since A′ ⊆ (K − A) + A′, we have that Cn(β) ∩ Cn(A′) ⊆ ((K − A) + A) ∩
((K − A) + A′). It follows, by distributivity, that Cn(β) ∩ Cn(A′) ⊆ K − A +
(Cn(A) ∩ Cn(A′)). Hence, Cn(β) ∩ Cn(A′) ⊆ K − A. ��
Theorem 5.16 If a logic 〈L , Cn〉 is Boolean, K is a belief set and A is finitely
representable then relevance and recovery are equivalent (in the presence of the
other AGM postulates).

Proof (relevance ⇒ recovery) Let β /∈ (K − A) + A and suppose that β ∈ K .

Take A′ a complement of A (which exists because the logic is complemented) and
let X = Cn(A′) ∩ Cn(β). It follows that X + A = Cn(Cn(A′) ∩ Cn(β) ∪ A) and,
by distributivity, this is equal to Cn(A ∪ A′) ∩ Cn(A ∪ {β}) = Cn(A ∪ {β}. Hence,

80 5 AGM Contraction in Non-Classical Logics

β /∈ X + A. Since β /∈ (K − A) + A, we have that X � K − A i.e., there is
β ∈ X ⊆ K such that β /∈ K − A. It follows, by relevance, that there is K ′ such
that K − A ⊆ K ′ ⊆ K , A � Cn(K ′) and A ⊆ Cn(K ′ ∪ {β}. Since β ∈ X , we have
that:

A ⊆ Cn(K ′ ∪ X)

= Cn(K ′ ∪ (Cn(A′) ∩ Cn(β)))

= Cn(K ′ ∪ A′) ∩ Cn(K ′ ∪ {β}) by distributivity

⊆ Cn(K ′ ∪ A′)

Furthermore, A ⊆ Cn(K ′ ∪ A), hence, A ⊆ Cn(K ′ ∪ A) ∩ Cn(K ′ ∪ A′). By dis-
tributivity, A ⊆ Cn(K ′ ∪ (Cn(A) ∩ Cn(A′))) = Cn(K ′). However, this contradicts
the definition of K ′. We conclude that β /∈ K .

(recovery ⇒ relevance)
If A � K then, by vacuity K − A = K and relevance is vacuously satisfied.

If A ⊆ K then let β ∈ K \ K − A and B ′ be a complement of β. Now let K ′ =
Cn(K − A ∪ (Cn(A) ∩ Cn(B ′))). We will show that (1) K − A ⊆ K ′ ⊆ K ,

(2) A ⊆ Cn(K ′ ∪ {β} and (3) A � Cn(K ′).

1. By construction, K − A ⊆ K ′ and, since A ⊆ K , K ′ ⊆ K , by inclusion.
2. By distributivity, Cn(K ′ ∪{β}) = Cn(K − A∪ B ′ ∪{β})∩Cn(K − A∪ A∪{β}. It

follows that Cn(K ′ ∪{β} = Cn(K − A∪ A∪{β}) and, hence, A ⊆ Cn(K ′ ∪{β}).
3. Suppose that A ⊆ Cn(K ′) = Cn(K − A∪(Cn(A)∩Cn(B ′)). Since β ∈ Cn(K −

A∪{β}), we have that Cn(A)∩Cn(β) ⊆ Cn(K − A∪ B ′)∩Cn(K − A∪{β}). It
follows, by distributivity, that Cn(A)∩Cn(β) ⊆ Cn(K − A∪(Cn(B ′∩Cn(β))))

and, hence, Cn(A) ∩ Cn(β) ⊆ Cn(K − A).

Furthermore, by Lemma 5.15 and the fact that the logic is complemented, there
is a complement A′ of A and Cn(A′)∩ Cn(β) ⊆ K − A. From this and Cn(A)∩
Cn(β) ⊆ Cn(K − A), we have that Cn((Cn(A)∩Cn(β))∪ (Cn(A)∩Cn(β)) ⊆
Cn(K − A) and, by distributivity, Cn({β} ∪ (Cn(A) ∩ Cn(A′)) ⊆ Cn(K − A).

Hence, by closure, β ∈ K − A which contradicts the definition of β. We conclude
that A � K ′. ��
Although for Boolean logics relevance and recovery are equivalent in the presence

of the other AGM postulates, this is not the case in general. In several interesting
logics relevance and recovery are completely distinct postulates. Example 5.17 shows
a logic which is both AGM-compliant and relevance-compliant such that neither
relevance implies recovery nor the converse.

Example 5.17 This example shows a simple logic which is both AGM-compliant
and relevance-compliant, but for which relevance does not imply recovery or vice
versa; also, in this logic partial meet contraction does not give the same results as
the AGM postulates with recovery. The logic 〈L , Cn〉 is defined as follows:

5.5 Rationality 81

Fig. 5.1 Logic of example 5.17

L = {a, b, c}
Cn({b, c}) = Cn({a, c}) = L

Cn({a, b}) = {a, b}
Cn(a) = {a}
Cn(b) = {b}
Cn(c) = {c}
Cn(∅) = ∅

The logic is finite, thus compact, so it is also relevance-compliant. It is trivial to
see that it is also AGM-compliant.

Consider now the operation L − {a, b}. Note that if {a} is accepted as the result
of this operation, relevance is satisfied, but recovery is not. If {c} is accepted as
the result, then recovery is satisfied, but relevance is not. Hence, neither relevance
implies recovery, nor the converse.

Figure 5.1 shows a diagram with the lattice that illustrates this logic.
This example shows that in non-classical logics, even in logics that are relevance-

compliant and AGM-compliant, relevance and recovery are independent. Hence,
there is no need to accept recovery as an “emerging property” of contraction.

5.6 Conclusion

Most results in the previous chapter hold only for logics that satisfy certain properties.
In particular, representation theorem for contraction in belief sets hold in logics that
satisfy AGM assumptions which is not the case of many logics listed in Chap. 3.

In this chapter we showed that the problem is even bigger. Certain logics are not
even compliant with AGM postulates for contraction. Those logics coincide with
non-decomposable logics which include Horn logic, Intuitionistic logic, and many
Description Logics, for example.

To avoid problems of compliance, it was suggested the exchange of recovery by a
postulate called relevance. In the rest of the chapter several results were presented to

82 5 AGM Contraction in Non-Classical Logics

defend the set of rationality that contains AGM postulates with recovery exchanged
by relevance.

This set of postulates deals with minimality more directly. It is compliant with
every compact logic which includes, in particular, every logic presented in Chap. 3
(see Theorem 5.6). It better characterizes partial meet contraction, i.e., it character-
izes this construction in a wider range of logics (Representation Theorem 5.14).
Furthermore, although it is equivalent with AGM postulates in Boolean logics
(Theorem 5.16), there are several logics such that relevance and recovery are distinct
(see Example 5.17). In these logics recovery and relevance represent are completely
distinct concepts and relevance do not need to be accepted as an emerging property
of contraction.

Relevance captures the notion of minimality while recovery captures the notion
of recoverability. It only happens that in well-behaved logics these notions coincide.
In most other logics this is not the case.

Results about AGM compliance are from Flouris at al. [FPA05], [FPA06], [Flo06].
The other results are from works co-authored by Wassermann [RW06], [RW10] and
works co-authored by Wassermann, Flouris and Antoniou to appear.

References

[FH94] André Fuhrmann and Sven Ove Hansson. A survey of multiple contractions. Journal
of Logic, Language and Information, 3(1):39–75, Janeiro 1994.

[Flo06] Giorgos Flouris. On Belief Change and Ontology Evolution. PhD thesis, University of
Crete, 2006.

[FPA05] Giorgos Flouris, Dimitris Plexousakis, and Grigoris Antoniou. On applying the AGM
theory to DLs and OWL. In Enrico Motta Yolanda Gil, V. Richard Benjamins, and Mark
A. Musen, editors, Proceedings of the 4th International Semantic Web Conference
(ISWC 2005), pages 216–231, Galway, Ireland, November, 6-10 2005. Springer.

[FPA06] Giorgos Flouris, Dimitris Plexousakis, and Grigoris Antoniou. On generalizing the
AGM postulates. In Proceedings of the 3rd European Starting AI Researcher Sympo-
sium (STAIRS-06), 2006.

[Han91] Sven Ove Hansson. Belief contraction without recovery. Studia Logica, 50(2):251–
260, 1991.

[Lev91] Isaac Levi. The Fixation of Belief and its Undoing: Changing Beliefs through Inquiry.
Cambridge University Press, Outubro 1991.

[Mak87] David Makinson. On the status of the postulate of recovery in the logic of theory
change. Journal of Philosophical Logic, 16:383–394, 1987.

[Nie91] Reinhard Niederée. Multiple contraction. a further case against gärdenfors’ principle
of recovery. In Proceedings of the Workshop on The Logic of Theory Change, pages
322–334, London, UK, 1991. Springer-Verlag.

[RW06] Márcio Moretto Ribeiro and Renata Wassermann. First steps towards revising ontolo-
gies. In Proceedings of the 2nd Workshop on Ontologies and their Applications
(WONTO 2006), 2006.

[RW10] Márcio Moretto Ribeiro and Renata Wassermann. More about AGM revision in
description logics. In Proceedings of the 2nd Workshop Automated Reasoning about
Context and Ontology Evolution (ARCOE 10), Lisboa, Portugal, Agosto, 16-17 2010.

Chapter 6
AGM Revision in Logics Without Negation

Abstract AGM revision was defined via Levi identity. Levi identity, however,
assumes that the underlying logic is closed under negation. Many non-classical log-
ics with great philosophical and computational interest, such as Horn logics and
Description Logics, however, are not closed under negation. If we want to use belief
revision techniques in these logics we need a way to define revision that doesn’t
depend on negation. In this chapter we define a construction for revision in belief
sets that doesn’t depend on negation. This construction is characterized by AGM
postulates in well behaved logics. Furthermore, it is presented a set of postulates that
characterizes this construction in any distributive and compact logic.

Keywords Belief set revision · Negation · Non-classical logics · Distributivity· Representation theorems

In Sect. 4.2.2 it was showed how to define revision over belief sets via Levi identity
using an AGM contraction (K ∗ α = (K − ¬α) + α). Levi identity, however, uses
the negation of a sentence α in its formulation. The generalization of Levi identity
to sets of sentences is not trivial. The main candidate for the negation of a set of
sentences A is the complement of A. However, several logics listed in Chap. 3 are
not complemented.

In this Chapter it is presented how to construct revision over belief sets in log-
ics that are not closed under negation. As we did previously, the operations are
defined over a belief set K and the input is a finitely representable set of sentences
A. Besides presenting the construction, postulates that characterize the construction
are presented. If the underlying logic satisfies the AGM assumptions then the con-
struction is characterized by AGM postulates for revision. However, if some of these
assumptions are dropped then other postulates are needed.

Next section presents a straightforward generalization of AGM postulates for
revision. Section 6.2 presents the construction. Section 6.3 proves that the construc-
tion is fully characterized by certain set of postulates in distributive, compact logics.
Section 6.4 concludes the chapter.

M. M. Ribeiro, Belief Revision in Non-Classical Logics, 83
SpringerBriefs in Computer Science,
DOI: 10.1007/978-1-4471-4186-0_6, © The Author(s) 2013

84 6 AGM Revision in Logics Without Negation

6.1 Generalized Postulates

By the same arguments presented in previous chapter, it is convenient to generalize
revision postulates for the case when the input is a set of sentences. This general-
ization is straightforward and it was also presented in [Flo06]. Again the input A is
considered to be a finitely representable set.

(closure) K ∗ A = Cn(K ∗ A).
(success) A ⊆ K ∗ A.
(inclusion) K ∗ A ⊆ K + A.
(vacuity) If K + A is consistent then K ∗ A = K + A
(consistency) If A is consistent then K ∗ A is consistent.
(extensionality) If Cn(A) = Cn(B) then K ∗ A = K ∗ B.

Consider also the following postulates borrowed from belief base literature, which
will be useful in this chapter:

(relevance) If β ∈ K \ K ∗ A then there is K ′ such that K ∩ (K ∗ A) ⊆ K ′ ⊆ K
and K ′ ∪ A is consistent, but K ′ ∪ A ∪ {β} is inconsistent.
(uniformity) If for all K ′ ⊆ K , K ′ ∪ A is inconsistent iff K ′ ∪ B is inconsistent
then K ∩ K ∗ A = K ∩ K ∗ B

Relevance is a minimality postulate. It guarantees that in a revision only sentences
that are somehow involved in the derivation of inconsistencies can be removed.
Uniformity guarantees that two inputs in a revision over K that are inconsistent with
the same subsets of K should give the same result.

Throughout this chapter a set A is considered inconsistent if it is trivial i.e. if
Cn(A) = L .

6.2 Construction

The strategy used to construct Revision Without Negation (RWN) is similar to the
one used by Levi identity. First some sentences are removed from K so that when
the input A is added the resulting belief set is consistent. To achieve this goal we will
define the maximally consistent subsets of K with respect to A.

Definition 6.1 (maximally consistent subsets of K w.r.t A) [Del08] The maximally
consistent subsets of K w.r.t. A form the set K ↓ A which is formally defined as
follows. X ∈ K ↓ A iff:

1. X ⊆ K .
2. X ∪ A is consistent.
3. If X ⊂ X ′ ⊆ K then X ′ ∪ A is inconsistent.

Selection function is defined as usual:

6.2 Construction 85

Definition 6.2 (selection function). [AGM85] A selection function for K ↓ A is a
function γ such that:

• If K ↓ A
= ∅, then ∅
= γ(K ↓ A) ⊆ K ↓ A.
• Otherwise, γ(K ↓ A) = {K }.

Finally, belief set revision without negation (RwN) is defined as the intersection
of those sets chosen by the selection function followed by an expansion:

K ∗γ A =
(⋂

γ(K ↓ A)
)

+ A

The first result of this chapter shows that this construction satisfies AGM postulates
for revision in any Tarskian and compact logic.

Lemma 6.3 [Del08] K ↓ A = K ↓ B iff for all X ⊆ K , X ∪ A is inconsistent iff
X ∪ B is inconsistent.

Proof Let X ⊆ K and suppose that X ∪ A is inconsistent and that X ∪B is consistent.
By Lemma 6.6 there is X ′ such that X ⊆ X ′ ∈ K ↓ B.

Since X ∪ A is inconsistent then, by monotonicity, X ′ ∪ A is also inconsistent and
it follows that X ′ /∈ K ↓ A which contradicts the hypothesis. �
Theorem 6.4 Let the underlying logic be Tarskian and compact. K ∗γ A =
(
⋂

γ(K ↓ A)) + A satisfies the six basic AGM postulates for revision.

Proof closure and success: Follows directly from the construction.

extensionality: Follows from Lemma 6.3.
vacuity: If K + A is consistent then K ↓ A = {K }, hence, K ∗γ A = K + A.
consistency: Assume the consistency of A and the inconsistency of

⋂
γ(K ↓ A) +

A. Since
⋂

γ(K ↓ A) ⊆ X ∈ K ↓ A, by monotonicity X ∪ A is inconsistent,
contradicting the definition. �

This construction also satisfies both relevance and uniformity if the underlying
logic is Tarskian and compact.

Proposition 6.5 If the underlying logic is compact then K ∗γ A satisfies relevance
and uniformity.

Proof relevance: Let β ∈ K \ K ∗γ A, by compactness and Lemma 6.6 there is
X ∈ γ(K ↓ A) such that β /∈ X + A. It also holds that for any X ′ ∈ γ(K ↓ A), it
holds that

⋂
γ(K ↓ A) + A ⊆ X ′ + A. It follows that K ∩ (

⋂
γ(K ↓ A) + A) ⊆

K ∩ (X ′ + A). This holds in particular for the above mentioned X . Now just take K ′
as K ∩ (X + A) and verify that K ∩ (K ∗ A) ⊆ K ′ ⊆ K , K ′ ∪ A is consistent and
K ′ ∪ A ∪ {β} is not.

uniformity: Notice that for every K ′ ⊆ K , it holds that K ′ ∪ A is inconsistent iff
K ′ ∪ B is inconsistent, then by Lemma 6.3, K ↓ A = K ↓ B, hence,

⋂
γ(K ↓

A) = ⋂
γ(K ↓ B). �

86 6 AGM Revision in Logics Without Negation

6.3 Representation Theorems

In previous section it was proved that the construction of RwN satisfies AGM postu-
lates. In this section we have two goals. The first goal is to show a set of postulates
that characterizes RwN in any distributive and compact logic. The second goal is to
show that AGM postulates characterizes RwN if the underlying logic satisfies AGM
assumptions.

Showing a characterization that holds in any distributive and compact logic is
not fully satisfactory, since many logics from Chap. 3 are not distributive. However,
it is enough to characterize belief set revision in some interesting logics such as
intuitionistic logic and certain Description Logics.

In distributive and compact logics vacuity and extensionality are redundant in the
presence of relevance and uniformity.

Lemma 6.6 In any compact logic if X ⊆ K and X ∪ A is consistent, then there is
a X ′ such that X ⊆ X ′ ∈ K ↓ A.

Proof This proof will be omitted because it is analogous with the proofs of Lemmas
5.9 and 4.3. �
Proposition 6.7 In the presence of success and inclusion it holds that:

1. Extensionality follows from uniformity.
2. Vacuity follows from relevance if the underlying logic is distributive.

Proof

1. If K + A is consistent then there is no K ′ ⊆ K such that K ′ + A is inconsistent.
It follows, by relevance that there is no β ∈ K \ K ∗ A. Hence, K ⊆ K ∗ A. By
success we have K + A ⊆ K ∗ A and by inclusion K ∗ A ⊆ K + A.

2. If Cn(A) = Cn(B) for all K ′ ⊆ K then K ′ + A is inconsistent iff K ′ + B is
inconsistent. It follows, by uniformity, that K ∩ K ∗ A = K ∩ K ∗ B. Since
Cn(A) = Cn(B), it follows that (K ∩ K ∗ A) + A = (K ∩ K ∗ B) + B. By
distributivity K + A∩ K ∗ A+ A = K + B ∩ K ∗ B + B. By success and inclusion
we have K ∗ A = K ∗ B. �
Closure, success, inclusion, consistency, relevance and uniformity are enough to

characterize RwN in any distributive and compact.

Representation Theorem 6.8 (RwN). Let 〈L , Cn〉 be compact and distributive
logic. An operation ∗ over a belief set K is a revision without negation (RwN) iff is
satisfies closure, success, inclusion, consistency, relevance and uniformity.

Proof (construction ⇒ postulates)

Theorem 6.4 showed that AGM postulates for revision are satisfied by the con-
struction and proposition 6.5 proved that relevance and uniformity are satisfied.

(postulates ⇒ construction)
Let ∗ be an operator that satisfies AGM postulates and let γ be:

6.3 Representation Theorems 87

γ(K ↓ A) = {X ∈ K ↓ A : K ∩ (K ∗ A) ⊆ X} if A is consistent

= {K } otherwise.

We will show that: (1) γ is well defined, (2) γ is a selection function and (3) K ∗γ A =
K ∗ A.

1. By Lemma 6.3 and uniformity we have that γ is well defined, i.e., if K ↓ B =
K ↓ B then γ(K ↓ A) = γ(K ↓ B).

2. If K ↓ A
= ∅ then A is consistent. It follows from consistency that K ∗ A
is consistent. In this case, (K ∗ A) + A is consistent by closure and success.
Since (K ∩ K ∗ A) ∪ A, it follows from Lemma 6.6 that there is X such that
K ∩ (K ∗ A) ⊆ X ∈ K ↓ A. Hence X ∈ γ(K ↓ A).

3. If A is inconsistent (i.e. Cn(A) = L) then, by closure and success, K ∗ A =
K ∗γ A = L .
If A is consistent, K ∩ (K ∗ A) ⊆ X for all X ∈ γ(K ↓ A). It follows that
K ∩ (K ∗ A) ⊆ ⋂

γ(K ↓ A). By monotonicity, (K ∩ (K ∗ A)) + A ⊆ ⋂
γ(K ↓

A) + A. It follows, by distributivity, that K + A ∩ K ∗ A + A ⊆ K ∗γ A. By
success and inclusion K ∗ A ⊆ K ∗γ A.
Let β ∈ ⋂

γ(K ↓ A) \ K ∗ A. Since
⋂

γ(K ↓ A) ⊆ K , by relevance there is
K ′ such that K ∩ (K ∗ A) ⊆ K ′ ⊆ K , K ′ ∪ A is consistent and K ′ ∪ A ∪ {β}
is inconsistent. Since K ′ ⊆ K and K ′ ∪ A is consistent, by Lemma 6.6 there
is X such that β /∈ X, K ′ ⊆ X ∈ K ↓ A. Furthermore, β /∈ X , because
K ′ ⊆ X, K ′ ∪ A ∪ {β} is inconsistent and X ∪ A is consistent. It follows
that β /∈ X ∈ γ(K ↓ A) and, hence, β /∈ ⋂

γ(K ↓ A). We conclude that⋂
γ(K⊥A) ⊆ K ∗ A. It follows that

⋂
γ(K⊥A) + A ⊆ K ∗ A + A and, by

success K ∗γ A ⊆ K ∗ A. �
The above result is useful for logics that are distributive, but not complemented. In
Chap. 3 some examples of such logic were presented: intuitionistic logic and certain
DLs such as ALC without ABoxes and ALCO. Unfortunately, this result is not
applicable to Horn logic and most DLs, specially those used in Semantic Web.

This section started announcing two goals. The first, already achieved, was to
present a set of postulates that characterize RwN in distributive logics. The second
was to prove that RwN is characterized by AGM postulates in logics satisfying the
AGM assumptions. We will prove this second result showing that AGM postulates are
equivalent to the postulates used to characterize RwN if the underlying logic satisfies
AGM assumptions. For this purpose we will need a lemma proved by Makinson in
[Mak87] and generalized here:

Lemma 6.9 Let the underlying logic be Boolean and let A′ be a complement of A.
If K + A = L then A′ ⊆ Cn(K).

Proof Since K + A = L , we have that A′ ⊆ K + A. It follows that A′ ⊆ K + A′ ∩
K + A and, by distributivity, A′ ⊆ Cn(K). �

88 6 AGM Revision in Logics Without Negation

Lemma 6.10 [Mak87] If the underlying logic satisfies AGM assumptions then if the
operation ∗ over a belief set K satisfies the AGM postulates for revision and A′ is a
complement of A then ∗ also satisfies the following:
(Harper) There is an withdrawal − such that K − A′ = (K ∗ A) ∩ K .

Proof We will prove that − satisfies every AGM postulate.

success: If A′ � Cn(∅) then Cn(A)
= L i.e. A is consistent. It follows by consis-
tency of revision that K ∗ A is consistent.
By success of revision we have that A ⊆ K ∗ A. It follows that A′ � K ∗ A and,
hence, A′ � K − A′.
closure: Follows from closure of revision and the fact that the intersection of closed
sets is closed.
inclusion: Follows directly from definition.
vacuity: If A′ � K then, by lemma 6.9, K + A is consistent. By vacuity of revision
we have that K ∗ A = K + A. It follows that K − A′ = K .
extensionality: If Cn(A′) = Cn(B ′) and B ′ is a complement of B then Cn(A) =
Cn(B) by Proposition 2.8. In this case K ∗ A = K ∗ B by extensionality of revision.
Hence K − A′ = K − B ′.
recovery: (K − A′) + A′ = ((K ∗ A) ∩ K) + A′. By distributivity we have ((K ∗
A)+ A′)∩ (K + A′). By success of revision A ⊆ K ∗ A, hence, (K ∗ A)+ A′ = L .
It follows that K − A′ = L ∩ (K + A′) = K + A′. We conclude that K ⊆ K + A′ =
(K − A′) + A′. �
Representation Theorem 6.11 Let 〈L , Cn〉 satisfy the AGM assumptions. An oper-
ator ∗ over a belief set K satisfies AGM postulates iff it satisfies: closure, success,
inclusion, consistency, relevance and uniformity.

Proof First we will prove that uniformity follows from vacuity, extensionality and
closure and then we will prove that relevance is equivalent to Harper postulate. Since
Harper postulate is redundant (Lemma 6.10) the proposition is proved.

1. Assume that for every set K ′ ⊆ K we have that K ′ + A is inconsistent iff K ′ + B
is inconsistent. We have two cases.
If K + A is consistent then K ∗ A = K + A and K ∗ B = K + B by vacuity. In
this case K = K ∩ (K ∗ A) = K ∩ (K ∗ B).
If K + A is inconsistent then, by closure and Lemma 6.9, A′ ⊆ K for a com-
plement A′ of A. By hypothesis A′ ∪ B is inconsistent. By Lemma 6.9 again we
have that B ′ ⊆ Cn(A′) and A′ ⊆ Cn(B ′) for a complement B ′ of B. It follows
that Cn(A′) = Cn(B ′) and, by Proposition 2.8, Cn(A) = Cn(B). From exten-
sionality it follows that K ∗ A = K ∗ B and, hence, K ∩ (K ∗ A) = K ∩ (K ∗ B).

2. (Harper ⇒ relevance)
Since the underlying logic satisfies the AGM assumptions, by Proposition 2.14
and Theorem 5.16, we have that relevance for contraction follows from AGM
postulates. By Harper postulate we have that there is an AGM contraction
K − A′ = K ∩ (K ∗ A). It follows that if β ∈ K \ K ∗ A then there is K ′
such that A′ � Cn(K ′), but A′ ⊆ Cn(K ′ ∪{β}). It follows that Cn(K ′ ∪ A∪{β})

6.3 Representation Theorems 89

is inconsistent and by the contrapositive of Lemma 6.9 Cn(K ′ ∪ A) is consistent.
(relevance ⇒ Harper)
Since the underlying logic satisfies AGM assumption then, by Lemma 5.16, rel-
evance for contraction and recovery are equivalent in the presence of the other
AGM postulates for contraction. We will show that K − A′ = K ∩ (K ∗ A)

satisfies closure, success, inclusion, extensionality, vacuity and relevance.
Closure and inclusion follows directly from construction. Since the negation
is unique modulo equivalences (Proposition 2.7), by extensionality of revision,
extensionality holds. By consistency and success of revision and Lemma 6.9
A′ � K ∗ A, hence, success holds. If A′ � K , by Lemma 6.9, K + A is consis-
tent. It follows by vacuity of revision that (K ∗ A) ∩ K = (K + A) ∩ K = K .
Hence, vacuity of contraction also holds. Finally, to prove relevance notice that if
β ∈ K \ K − A′ then β ∈ K \ K ∗ A and by relevance of revision there is K ′ such
that K − A′ = K ∩ (K ∗ A) ⊆ K ′ ⊆ K , K ′ ∪ A is consistent, but K ′ ∪ A ∪ {β}
is not. By Lemma 6.9 A′ � Cn(K ′) and A′ ⊆ Cn(K ′ ∪ {β}). �

6.4 Conclusion

The revision in belief set presented in Chap. 4 assume the logic being closed under
negation. However, several logics, such as Horn logic, don’t satisfy this property. In
this chapter it was presented a construction for belief set revision that doesn’t depend
on negation.

This construction was inspired by [Del08] and consists in first removing certain
sentences from the belief set that together with the input would lead to a contradiction.
After removing these sentences the input can securely be added.

This construction satisfies the AGM postulates for revision in any compact logic.
Furthermore, if the underlying logic is well behaved then the AGM postulates fully
characterizes this construction. This characterization is not easily generalized to a
wider class of logics. A representation theorem was proved showing that a certain
set of postulates characterizes the construction for logics that are compact and dis-
tributive. Unfortunately these properties are not satisfied by many logics listed in
Chap. 3. Intuitionistic logic and certain specific DLs such as ALCO are exceptions
i.e. they are examples of distributive and compact logics.

Most results in this Chapter are joint work with Wassermann and were first pub-
lished in [RW09, RW10].

References

[AGM85] Carlos Alchourrón, Peter Gärdenfors, and David Makinson. On the logic of theory
change. Journal of Symbolic Logic, 50(2):510–530, 1985.

[Del08] James P. Delgrande. Horn clause belief change: Contraction functions. In Gerhard
Brewka and Jérôme Lang, editors, Proceedings of the 10th International Conference

90 6 AGM Revision in Logics Without Negation

on the Principles of Knowledge Representation and Reasoning (KR’08), pages 156–
165, Sydney, Australia, Setembro 16-19 2008. AAAI Press.

[Flo06] Giorgos Flouris. On Belief Change and Ontology Evolution. PhD thesis, University
of Crete, 2006.

[Mak87] David Makinson. On the status of the postulate of recovery in the logic of theory
change. Journal of Philosophical Logic, 16:383–394, 1987.

[RW09] Márcio Moretto Ribeiro and Renata Wassermann. AGM revision in description logics.
In Proceedings of the 1st Workshop on Automated Reasoning about Context and
Ontology Evolution (ARCOE 2009), Pasadena, California, USA, Julho, 11-12 2009.

[RW10] Márcio Moretto Ribeiro and Renata Wassermann. More about AGM revision in
description logics. In Proceedings of the 2nd Workshop Automated Reasoning about
Context and Ontology Evolution (ARCOE 10), Lisboa, Portugal, Agosto, 16-17 2010.

Chapter 7
Base Revision in Logics Without Negation

Abstract Since many non-classical logics are not necessarily closed under negation,
we need constructions for belief base revision that do not depend on this assumption.
In this chapter, we present a list of six constructions for revision that do not depend
on negation. Each construction is characterized by a set of postulates. Furthermore,
the representation theorems that prove these characterizations hold in any compact
logic.

Keywords Belief base theory · Partial meet contraction · Kernel contraction · Rep-
resentation theorems · Negation · Non-classical logics

In Chap. 4, several constructions for belief base revision were presented. All these
constructions assume that the underlying logic is monotonic, compact, and closed
under negation that satisfies α-local non-contravention. In this chapter, constructions
for belief base revision in logics that are not necessarily closed under negation are
presented.

Classical belief base revision avoids contravention i.e., the presence of α and ¬α
in the belief base. In semi-revision, we considered that there is a sentence ⊥ that
should be avoided. Now, we take a step further of generalization. It will be assumed
the existence of a previously defined set � of “undesirable” sentences. Given the set
�, a set A is �-consistent iff Cn(A)∩� = ∅. This generalization is powerful enough
to take into account, for example, both notions of consistency in Description Logics.
Furthermore, the revision operations in this chapter take finitely representable sets
as inputs.

Six constructions for belief base revision are proposed, each one presented
in a section. Figure 7.1 shows the organization of the sections in this chapter.
Sections 7.1.1 and 7.1.2 present external kernel revision with strong success (EKRS)
and with strong consistency (EKRC), respectively. Sections 7.1.3 and 7.1.4 present
external partial meet revisions with strong success (EPMRS) and with strong consis-
tency (EPMC), respectively. Section 7.2.2 presents internal kernel revision (IKR) and
Sect. 7.2.1 presents internal partial meet revision (IPMR). The last section concludes
the chapter.

M. M. Ribeiro, Belief Revision in Non-Classical Logics, 91
SpringerBriefs in Computer Science,
DOI: 10.1007/978-1-4471-4186-0_7, © The Author(s) 2013

92 7 Base Revision in Logics Without Negation

KernelRevision PartialMeetRevision

E
xt

er
na

l
In

te
rn

al
strong success

strong consistency

7.1.1

7.1.2

7.1.3

7.1.4

7.2.2 7.2.1

Fig. 7.1 Sections

7.1 External Revision Without Negation

External revision [Han93] consists of an expansion followed by a contraction:

(B + A) − ¬A

This construction, however, depends on the existence of the negation of A. It was
already argued in Chap. 6, negation of a set of sentence is hard to define in certain
logics, specially certain Description Logics.

To avoid the need of negation, constructions for revision that do not depend on it
are presented. Our first approach is inspired in the idea behind semi-revision [Han97]
(see Sect. 4.3.3).

Semi-revision construction consists in first expanding B by the input A and then
removing the inconsistencies. In semi-revision, however, during the second step, the
consolidation phase, elements of A may be removed. For this reason semi-revision
do not satisfy success. To guaranty that success is satisfied, our strategy is to protect
A in the consolidation phase.

If A is itself �-inconsistent, it is impossible to guaranty success and the consis-
tency altogether. In this case, we have two options: prioritize success or prioritize
consistency. If we opt to prioritize success then we can have only a weak version of
consistency. On the other hand, if we opt to prioritize consistency we can guaranty
only a weak version of success.

(strong success) A ⊆ B ∗ A.

(weak success) If A is �-consistent then A ⊆ B ∗ A.

(strong consistency) B ∗ A is �-consistent.
(weak consistency) If A is �-consistent then B ∗ A is consistent.
Section 4.3.3 showed two constructions for consolidation: kernel and partial meet.

Since each of them can be combined with strong success or with strong consistency,
we define four types of external revision:

(EKRS) external kernel revision with strong success.
(EKRC) external kernel revision with strong consistency.

7.1 External Revision Without Negation 93

(EPMRS) external partial meet revision with strong success.
(EPMRC) external partial meet revision with strong consistency.

Kernel revision is associated with core-retainment, while partial meet revision is
associated with relevance.

(core-retainment) If β ∈ B and β /∈ B ∗ A there is a B ′ such that B ′ ⊆ B ∪ A, B ′
is �-consistent, but B ′ ∪ {β} is not.

(relevance) If β ∈ B and β /∈ B∗A there is a B ′ such that B∗A ⊆ B ′ ⊆ B∪A, B ′
is �-consistent, but B ′ ∪ {β} is not.

The rest of the postulates must be generalized, but the generalization is straight-
forward:

(inclusion) B ∗ A ⊆ B + A
(pre-expansion) (B + A) ∗ A = B ∗ A
Weak uniformity is not satisfied by the constructions in this chapter. This hap-

pens because in order to protect the input we violate the syntactic independence.
In the following sections we define each of the four constructions and we prove a
representation theorem for each of them.

7.1.1 External Kernel Revision With Strong Success

Kernel external revision is very similar to kernel semi-revision. It consists in adding
the input and then removing the inconsistencies using the kernel consolidation. The
difference here lies on the incision function which protects the input.

Before presenting the incision function, though, let us present a generalized ver-
sion of kernel.

Definition 7.1 (package kernel) Let B be a belief base in L and let � the set of
undesirable sentences of L . The kernel B⊥⊥p � is the set whose elements X are
minimal subsets of B that imply some element of � i.e., X ∈ K⊥⊥p � iff:

1. � ⊆ B (B is a subset of K).
2. � ∩ Cn(B)
= ∅ (that imply some element of �).
3. if B ′ ⊂ � then � ∩ Cn(B ′) = ∅ (and is minimal).

Moreover, we need the following lemma:

Lemma 7.2 Let B be a set of sentences in a compact logic 〈L , Cn〉 and let B ′ be
a subset of B and β be an element of B such that B ′ is � -consistent, but B ′ ∪ {β}
is not. There is a set X ⊆ B ′ ∪ {β} such that β ∈ X ∈ B⊥⊥p �

Proof This proof is omitted because it is very similar to the proof of Lemma 4.21. ��
Incision function σ is a function that chooses at least on element of each α-kernel

to be removed from the base. An incision function that protects any input chooses at
least one element of each α-kernel, but never chooses elements of A. If A is itself

94 7 Base Revision in Logics Without Negation

�-inconsistent then there will be an α-kernel contained in A. In this case, and only
in this case, there will be an α-kernel with no elements chosen by σ.

Definition 7.3 (incision function that protects any input) A incision function σ that
protects any input is a function σ over B that for every finitely representable A we
have:

1. σ(A, (B + A)⊥⊥p �) ⊆ ⋃
((B + A)⊥⊥p �).

2. If A is �-consistent and ∅
= X ∈ (B + A)⊥⊥p � then X ∩ σ(A, (B + A))

3. A ∩ σ(A, (B + A)⊥⊥p �) = ∅
A external kernel revision with strong success (EKRS) is defined using an incision

function that protects the input σ as:

B ∗ A = (B + A) \ σ(A, (B + A)⊥⊥p �)

This construction is characterized by inclusion, pre-expansion, core-retainment,
strong success, and weak consistency. Core-retainment is associated with the fact that
we used kernel contraction to remove �-inconsistencies. Strong success and weak
consistency are related to the use of an incision function that protects any input.

Representation Theorem 7.4 (EKRS) Let 〈L , Cn〉 be Tarskian and compact. An
operation ∗ over a belief base B is a external kernel revision with strong success
(EKRS) iff is satisfies strong success, weak consistency, inclusion, pre-expansion,
and core-retainment.

Proof (construction ⇒ postulates) Let σ be an incision function that protects any
input and let B ∗σ A = (B + A) \ σ(A, (B + A)⊥⊥p �).

inclusion and pre-expansion: Follows directly from construction.
strong success and weak consistency: Follows from the definition of σ.

core-retainment: Let β ∈ B \ B ∗σ A, by construction we have that β ∈ σ(A, (B +
A)⊥⊥p �). It follows that there is X ∈ (B+ A)⊥⊥p � with β ∈ X. Let B ′ = X \{β},
we have that B ′ ⊆ B ∪ A, B ′ is �-consistent and B ′ ∪ {β} is not.

(postulates ⇒ construction) Let ∗ be an operation over B that satisfies the
postulates mentioned and let σ be a function such that for every finitely representable
A we have:

σ(A, (B + A)⊥⊥p �) = B + A \ (B + A ∗ A)

We will show that (1) σ is an incision function that protects the input and (2) B ∗ A =
B ∗σ A.

1. We have to show that the three conditions in Definition 7.3 are satisfied. Let
β ∈ σ(A, (B + A) ⊥⊥ �), we have then that β ∈ B \ (B + A) ∗ A and by
pre-expansion β /∈ B ∗ A. By core-retainment there is B ′ ⊆ B + A such that B ′
is �-consistent, but B ′ ∪ {β} is not. It follows, by Lemma 7.2, that there is some
B ′′ ⊆ B ′ such that B ′′ ∪{β} ∈ (B + A)⊥⊥p � and, hence, β ∈ ⋃

(B + A⊥⊥p �).

7.1 External Revision Without Negation 95

Let A be a �-consistent set and let X such that ∅
= X ∈ (B + A)⊥⊥p �. Assume
by contradiction that X ∩ σ(A, (B + A)⊥⊥p �) = ∅, then X ⊆ B ∗ A. Since X
is �-inconsistent, by monotonicity B ∗ A is �-inconsistent which contradicts weak
consistency.

By strong success we have that A ⊆ B ∗ A. It follows that A ∩σ(A, (B + A)⊥⊥p

�) = ∅.

2. By definition and pre-expasion:

σ(A, (B + A)⊥⊥p �) = (B + A) \ ((B + A) ∗ A)

= (B + A) \ (B ∗ A)

It follows that:

B ∗σ A = (B + A) \ σ(A, (B + A)⊥⊥p �)

= (B + A) \ ((B + A) \ (B ∗ A))

= B ∗ A by inclusion ��

7.1.2 External Kernel Revision with Strong Consistency

Previous construction prioritizes success rather than consistency. The following con-
struction prioritizes consistency.

In this construction it will be used an incision function that protects consistent
inputs. An incision function that protects consistent inputs chooses at least one ele-
ment of each α-kernel. If the input A is itself inconsistent there will be an α-kernel
contained in A. In this case, A would not be protected.

Definition 7.5 (incision function that protects consistent inputs) A incision func-
tion σ that protects consistent input is a function σ over B that for every finitely
representable A we have:

1. σ(A, (B + A)⊥⊥p �) ⊆ ⋃
((B + A)⊥⊥p �).

2. If ∅
= X ∈ (B + A)⊥⊥p � then X ∩ σ(A, (B + A))

3. If A is �-consistent then A ∩ σ(A, (B + A)⊥⊥p �) = ∅
The external kernel revision with strong consistency (EKRC) is defined exactly

as the previous construction, but with an incision function that protects consistent
inputs:

B ∗ A = (B + A) \ σ(A, (B + A)⊥⊥p �)

This construction is characterized by inclusion, pre-expasion, core-retainment,
weak success, and strong consistency. Strong consistency is guarantied by the incision

96 7 Base Revision in Logics Without Negation

function that protects consistent inputs, since this function always chooses at least
one element of each α-kernel.

Representation Theorem 7.6 (EKRC) Let 〈L , Cn〉 be Tarskian and compact. An
operation ∗ over a belief base B is a external kernel revision with strong consistency
(EKRC) iff is satisfies weak success, strong consistency, inclusion, pre-expansion
and core-retainment.

Proof (construction ⇒ postulates) Let σ be a function that protects consistent input
over a belief base B and let B ∗σ A = (B + A) \ σ(A, (B + A)⊥⊥p �).

inclusion and pre-expansion: Follow directly from construction.
weak success and strong consistency: Follow from the definition of the incision
function that protects consistent inputs.
core-retainment: Let β ∈ B \ B ∗σ A. By construction β ∈ σ(A, (B + A)⊥⊥p �).

It follows that β ∈ X ∈ (B + A) ⊥⊥p �. Let B ′ = X \ {β}, then we have that
B ′ ⊆ B ∪ A. Since X is minimally �-consistent, B ′ is �-consistent, but B ′ ∪ {β} is
not.

(postulates ⇒ construction) Let ∗ be an operation that satisfies the postulates
mentioned above and let σ be a function over B such that for every finitely repre-
sentable A satisfies:

σ(A, (B + A)⊥⊥p �) = (B + A) \ ((B + A) ∗ A)

We will prove that (1) σ is a incision function that protects consistent inputs and
(2) B ∗ A = B ∗σ A.

1. We have to show that the three conditions in Definition 7.5 are satisfied. The first
condition follows exactly as in Representation Theorem 7.4.

Let ∅
= X ∈ (B + A)⊥⊥p � and assume by contradiction that X ∩ σ(A,

(B + A)⊥⊥p �) = �. It follows that X ⊆ B ∗ A. Since X is �-inconsistent, B ∗ A is
also
�-inconsistent by monotonicity. However, this contradicts strong consistency.

Now suppose that A is �-consistent. By weak success A ⊆ B ∗ A, hence,
A ∩ σ(A, (B + A)⊥⊥p �).

2. This part follows exactly like Representation Theorem 7.4. ��

7.1.3 External Partial Meet Revision with Strong Success

In previous sections, we showed how to consolidate a belief base using kernel tech-
nique i.e., removing elements from minimal �-inconsistent subsets. In this and the
following sections, we will present an orthogonal strategy that consists in choosing
certain maximal �-consistent subsets.

7.1 External Revision Without Negation 97

Remember that we defined revision with respect to a set � of undesired sen-
tences. A set B is �-consistent iff no element of � can be inferred from B i.e., � ∩
Cn(B) = ∅. Notice that this goal is different from the goal of success in previous
contraction operations where removing one sentence from the input was enough. For
this reason, we need a different definition of remainder set here:

Definition 7.7 (package remainder set) Let B be a belief base in L and let � the set
of undesirable sentences of L . The remainder set B ⊥p � is the set whose elements
X are maximal subsets of B that does not imply any element of � i.e., X ∈ B⊥p�

iff:

1. � ⊆ B (B is a subset of K).
2. � ∩ Cn(B) = ∅ (that does not imply any element of �).
3. if � ⊂ B ′ ⊆ B then � ∩ Cn(B ′)
= ∅ (and is maximal).

Moreover, we need an upper-bound lemma for package remainder set.

Lemma 7.8 [AM81] If 〈L , Cn〉 is compact then for every B ⊆ L , every X ⊆ B
and every � ⊆ L for which � � Cn(X), there is a X ′ such that X ⊆ X ′ and
X ′ ∈ B⊥p A.

Proof This proof follows the same pattern as the ones of Lemmas 5.9, 4.3 and
6.6 ��

To guaranty strong success a special selection function will be used. The selection
function that protects any input chooses only elements from the remainder set that
contains A. If A is itself �-inconsistent this will be impossible. In this case, the
selection function will return the original belief base. Formally:

Definition 7.9 (selection function that protects any input) A selection function that
protects any input γ is function over B that for any finitely representable A :
1. If A is �-consistent then ∅
= γ(A, (B + A)⊥p�) ⊆ (B + A)⊥p� and

A ⊆ ⋂
γ(A, (B + A)⊥p�).

2. Otherwise γ(A, (B + A)⊥p�) = {B}.
An external partial meet revision with strong success is defined using a selection

function that protects any input γ as:

⋂
γ(A, (B + A)⊥p�)

This construction is fully characterized by inclusion, pre-expansion, relevance,
strong success, and weak consistency. Relevance is associated with partial meet
method to remove �-inconsistencies and strong success is associated with the restric-
tions imposed to the selection function.

Representation Theorem 7.10 (EPMRS) Let 〈L , Cn〉 be Tarskian and compact.
An operation ∗ over a belief base B is a external partial meet revision with strong
success (EPMRS) iff is satisfies strong success, weak consistency, inclusion, pre-
expansion and relevance.

98 7 Base Revision in Logics Without Negation

Proof (construction ⇒ postulates)

inclusion, pre-expansion and weak consistency: Follow from construction.
success: If A is �-consistent then B∗A = ⋂

γ(A, (B+A)⊥p�). By compactness
and Lemma 7.8 we have that there is X ∈ (B + A)⊥p� such that A ⊆ X.

If A is �-inconsistent then γ(A, (B+ A)⊥p�) = {B} and, hence, B∗ A = B+ A.

relevance: If A is �-consistent then B ∗ A = ⋂
γ(A, (B + A)⊥p�). Consider

β /∈ ⋂
γ(A, (B + A)⊥p�), there is B ′ ∈ γ(A, (B + A)⊥p�) with β /∈ B ′. By

definition, B ′ is �-consistent, B ′ ∪ {β} is not and
⋂

γ(A, (B + A)⊥p�) ⊆ B ′ ⊆
B + A.

If A is �-inconsistent then γ(A, (B + A)⊥p�) = {B} and relevance is vacuously
satisfied.

(postulates ⇒ construction) Let ∗ be an operation that satisfies the postulates
mentioned in this theorem and let:

γ(A, (B + A)⊥p�) = {X ∈ (B + A)⊥p� : B ∗ A ⊆ X} if A is � − consistent.

= {B + A} otherwise.

We will prove (1) that γ is a selection function that protects any input and (2)
B ∗γ A = B ∗ A.

1. If A is �-consistent then γ(A, (B+ A)⊥p�)
= ∅. By weak consistency, inclusion
and Lemma 7.8 there is B ∗ A ⊆ (B + A)⊥p�

2. Notice that ∅
= B ∗ A ⊆ X for every X ∈ (B + A)⊥p� and that B ∗ A ⊆⋂
γ(A, (B + A)⊥p�).

If A is �-inconsistent then by strong success, inclusion and relevance we have
that B ∗ A = B + A.

If A is �-consistent then
⋂

γ(A, (B + A)⊥p�) ⊆ B ∗ A by relevance and
A ⊆ ⋂

γ(A, (B + A)⊥p�) by strong success. ��

7.1.4 External Partial Meet Revision with Strong Consistency

Selection function that protects any input do not guaranty that �-inconsistencies will
be removed if the input A is itself �-inconsistent. To guaranty strong consistency we
will define a selection function that protects consistent inputs. Differently from the
previously defined selection function, this one always chooses at least one element
of the remainder set. To guaranty weak success, if A is �-consistent then selection
function that protects consistent inputs must select only sets that contains A.

Definition 7.11 (selection function that protects any input) A selection function that
protects any input γ is function over B that for any finitely representable A:
1. ∅
= γ(A, (B + A)⊥p�) ⊆ (B + A)⊥p�.
2. If A is �-consistent then A ⊆ ⋂

γ(A, (B + A)⊥p�).

7.1 External Revision Without Negation 99

External partial meet revision with strong consistency is also defined as follows:

⋂
γ(A, (B + A)⊥p�)

However, in this case the selection function γ protects only consistent inputs.
This construction is fully characterized by the same postulates that characterize

previous construction with strong success and weak consistency exchanged by weak
success and strong consistency.

Representation Theorem 7.12 (EPMRC) Let 〈L , Cn〉 be Tarskian and compact.
An operation ∗ over a belief base B is a external partial meet revision with strong
consistency (EPMRC) iff is satisfies weak success, strong consistency, inclusion,
pre-expansion and relevance.

Proof (construction ⇒ postulates) This part follows exactly as in Representation
Theorem 7.10.

(postulates ⇒ construction) Let ∗ be an operation that satisfies the postulates
mentioned in this theorem:

γ(A, (B + A)⊥p�) = {X ∈ (B + A)⊥p� : B ∗ A ⊆ X}
We will prove (1) that γ is a selection function that protects consistent inputs and

(2) B ∗γ A = B ∗ A

1. By consistency, inclusion and Lemma 7.8 we have that B ∗ A ⊆ B ′ ∈ (B +
A)⊥p�. It follows that γ(A, (B + A)⊥p�)
= ∅. Furthermore, it follows from
weak success that if A is �-consistent then A ∈ γ(A, (B + A)⊥p�)

2. Notice that ∅
= B ∗ A ⊆ X for every X ∈ (B + A)⊥p�, hence, B ∗ A ⊆⋂
γ(A, (B + A)⊥p �).

⋂
γ(A, (B + A)⊥p �) ⊆ B ∗ A follows from rele-

vance. Furthermore, if A is �-consistent then by weak success A ∈ ⋂
γ(A, (B +

A)⊥p�). ��

7.2 Internal Revision Without Negation

External revision consisted in first adding an new set of sentences A to the belief
base B (expansion) and then removing the�-inconsistencies (consolidation). Internal
revision uses a different strategy. First, some sentences are removed from the base B
in order to “open space” to the input A which is added afterwards. Formally, internal
revision is obtained given a contraction using Levi identity:

B ∗ A = (B − ¬A) + A

The problem with internal revision is also the dependence on the existence of a
negation for A. This section presents constructions for internal revision which does

100 7 Base Revision in Logics Without Negation

not depend on negation. The strategy used here is the same used in Chap. 6. First
sentences from the base B that are �-inconsistent together with the input A are
removed and then the result is expanded by A.

To guaranty minimality of change, the least amount of information should be
lost when to “open space” for A. Again we have two options: use maximal sub-
sets of B that are �-consistent with A (internal partial meet revision) or minimal
�-inconsistent subsets (internal kernel revision).

Internal revision do not satisfy pre-expansion. Furthermore, both constructions
that will be presented satisfy uniformity. The following is a generalized version of
this postulate.

(uniformity) If for every B ′ ⊆ B we have that B ′ ∪ A is �-inconsistent iff B ′ ∪ A′
is �-inconsistent then B ∩ B ∗ A = B ∩ B ∗ A′.

The following sections presents two constructions for internal revision that do not
depend on negation: Internal Partial Meet Revision without Negation (IPMRwN)
and Internal Kernel Revision without Negation (IKRwN). Both constructions are
followed by their respective representation theorem.

7.2.1 Internal Partial Meet Revision

The construction of internal partial meet revision is very similar to the construction
of AGM revision without negation (see Chap. 6). The construction consists in the
removal of certain sentences using the construction B ↓ A followed by the expansion
by A:

B ∗ A =
(⋂

γ(B ↓ A)
)

+ A

The only difference between this construction and the one presented in Chap. 6 is
that now B is an arbitrary set of sentences i.e., a belief base. For this reason, closure is
not satisfied. In fact, in terms of the postulates that characterize the construction, this
is the only difference between them. The postulates that characterize this construction
are: strong success, weak consistency, inclusion, relevance and uniformity.

The representation theorem proved in Chap. 6 holds if the underlying logic is
compact and distributive. The following representation theorem, in contrast, holds
for any compact logic i.e., it holds for a much wider class of logics which includes
all logics listed in Chap. 3.

Representation Theorem 7.13 (IPMRwN) Let 〈L , Cn〉 be Tarskian and compact.
An operation ∗ over a belief base B is a internal partial meet revision (IPMR) iff is
satisfies strong success, weak consistency, inclusion, relevance, and uniformity.

Proof (construction ⇒ postulates)

strong success, weak consistency and inclusion: Follow directly from construction.

7.2 Internal Revision Without Negation 101

uniformity: Follows from Lemma 6.3.
relevance: Let B ∗γ A = ⋂

γ(B ↓ A) + A and β ∈ B \ B ∗γ A, then there is
X ∈ γ(B ↓ A) with β /∈ X. By definition of B ↓ A we have that B ∩ B ∗γ A ⊆
X ⊆ B, X is �-consistent, but X ∪ A ∪ {β} is not.

(postulates ⇒ construction) Let ∗ be an operation that satisfies the postulates
mentioned in this theorem.

γ(B ↓ A) = {X ∈ B ↓ A : B ∩ (B ∗ A) ⊆ X} if A is �-consistent.

= {B} otherwise.

We will prove (1) that γ is a selection function and (2) that B ∗γ A = B ∗ A.

1. If B ↓ A = B ↓ A′ then by uniformity and Lemma 6.3 we have that γ(B ↓ A) =
γ(B ↓ A′) i.e., γ is well defined.
If A is �-consistent, by weak consistency B ∗ A is also �-consistent. By inclusion
and strong success (B ∩ (B ∗ A)) ∪ A is �-consistent and by Lemma 6.6 there is
X ∈ B ↓ A such that B ∩ (B ∗ A) ⊆ X. It follows that γ(B ↓ A)
= ∅.

2. B ∩ (B ∗ A) ⊆ X for every X ∈ γ(B ↓ A). It follows that B ∩ (B ∗ A) ⊆⋂
γ(B ↓ A). Now notice that inclusion implies that B ∗ A \ A = B ∩ (B ∗ A).

It follows that (B ∗ A) \ A ⊆ ⋂
γ(B ↓ A), hence, B ∗ A ⊆ B ∗γ A.

Let β ∈ ⋂
γ(B ↓ A) \ B ∗ A. Since

⋂
γ(B ↓ A) ⊆ B, by relevance there is B ′

such that B ∩ (B ∗ A) ⊆ B ′ ⊆ B, B ′ ∪ A is �-consistent, but B ′ ∪ A ∪ {β} is
not. By Lemma 6.6 there is X ∈ B ↓ A such that B ′ ⊆ X and β /∈ X. It follows
that B ∩ (B ∗ A) ⊆ B ⊆ X ∈ B ↓ A and, hence, X ∈ γ(B ↓ A). Since β /∈ X,

we have that β /∈ ⋂
γ(B ↓ A). However, this contradicts the definition of β. We

conclude that there is no β ∈ ⋂
γ(B ↓ A) \ B ∗ A i.e., B ∗γ A ⊆ B ∗ A. ��

7.2.2 Internal Kernel Revision

Like internal partial meet revision, internal kernel revision consists in first removing
certain sentences from the belief base B and then expanding by A. In internal kernel
revision sentences from each of the minimal subsets of B that are �-inconsistent
with the input A are removed during the first step.

Definition 7.14. The minimal subsets of B that are �-inconsistent with A forms the
set B � A defined as follows. X ∈ B � A iff:

1. X ⊆ B. (X is a subset of B)
2. X ∪ A is �- inconsistent. (which is �-inconsistent with A)
3. If X ′ ⊂ X then X ′ ∪ A is �-consistent. (and is minimal)

Incision function is defined as usual:

102 7 Base Revision in Logics Without Negation

Definition 7.15 Let B be a belief base. An incision function for B is a function σ
such that for every finitely representable set A :
1. σ(B � A) ⊆ ⋃

B⊥⊥ A.

2. If ∅
= X ∈ B � A then X ∩ σ(B � A)
= ∅.

The difference between IPMRwN and IKRwN is analogous with the difference
between kernel and partial meet contraction in Sect. 4.3. Not surprisingly the postu-
lates that characterize IPMRwN are the same that characterize RIK with relevance
exchanged by core-retainment.

Lemma 7.16 Let B and A be sets of sentences in a compact logic 〈L , Cn〉 and let
B ′ be a subset of B and β be an element of B such that B ′ ∪ A is � -consistent, but
B ′ ∪ A{β} is not. There is a set X ⊆ B ′ ∪ {β} such that β ∈ X ∈ B � �

Proof This proof is omitted because it is very similar to the proof of Lemma 4.21.
��

Lemma 7.17 Let 〈L , Cn〉 be a compact and monotonic logic. B � A = B � A′
iff for every B ′ ⊆ B we have that B ∪ A is � -inconsistent iff B ∪ A′ is also
� -inconsistent.

Proof (⇒) Suppose by contradiction that there is B ′ ⊆ B such that B ′ ∪ A is
�-inconsistent, but B ′ ∪ A′ is not. By the previous lemma there is X ⊆ B ′ such
that X ∈ B � A. Since B ′ ∪ A′ is �-consistent, X ∪ A′ is also �-consistent by
monotonicity. It follows that X /∈ B � A contradicting the hypothesis.

(⇐) Suppose by contradiction that X ∈ B � A, but X /∈ B � A′. We have two
cases:

1. X ∪ A′ is �-consistent. In this case, X ∪ A′ is �-consistent, while X ∪ A is not
which contradicts the hypothesis.

2. X ∪ A′ is �-inconsistent. In this case, since X /∈ B � A′ there must be X ′ ⊂ X
such that X ′ ∪ A′ is �-inconsistent. It follows that X ′ ⊂ X ∈ B � A and, hence,
X ′ ∪ A is �-consistent contradicting the hypothesis. ��

Representation Theorem 7.18 (IKRwN) Let 〈L , Cn〉 be Tarskian and compact.
An operation ∗ over a belief base B is a internal kernel revision (IKR) iff is satisfies
strong success, weak consistency, inclusion, core-retainment and uniformity.

Proof (construction ⇒ postulates)

strong success, weak consistency and inclusion: Follow from construction.
core-retainment: Let β ∈ B \ (B ∗ A). It follows that β ∈ σ(B � A), hence, there
is X such that β ∈ X ∈ σ(B � A). As consequence (X \ {β}) ∪ A is �-consistent,
but X ∪ A is not.

(postulates ⇒ construction) Let ∗ be an operation that satisfies the postulates
mentioned in this theorem.

σ(B � A) = B \ (B ∗ A)

7.2 Internal Revision Without Negation 103

Table 7.1 Belief base revision without negation

Postulates EKRS EKRC EPMRS EPMRC IKRwN IPMRwN

Success Strong Weak Strong Weak Strong Strong
Consistency Weak Strong Weak Strong Weak Weak
Inclusion Yes Yes Yes Yes Yes Yes
Pre-expansion Yes Yes Yes Yes No No
Minimality Core-ret. Core-ret. Relev. Relev. Core-ret. Relev.
Uniformity No No No No Yes Yes

Let B ∗σ A = (B \σ(B ↓ A))∪ A. We will prove (1) that σ is an incision function
and (2) that B ∗σ A = B ∗ A.

1. If B � A = B � A′ then by uniformity and Lemma 7.17 B ∗ A = B ∗σ A i.e.,
the function is well defined.
If β ∈ σ(B � A) then β ∈ B \ (B ∗ A). By core-retainment there is B ′ ⊆ B such
that B ′ ∪ A is �-consistent, but B ′ ∪ A ∪ {β} is not. It follows, by Lemma 7.16,
that there is X ⊆ B such that X ∪ {β} ∈ B � A and, hence, β ∈ ⋃

B � A.

Let ∅
= X ∈ B � A and assume by contradiction that X ∩ σ(B � A) = ∅.

It follows that X ⊆ B ∗ A and, since X ∪ A is �-inconsistent, it follows by
monotonicity that B ∗ A is �-inconsistent. Since ∅
= X ∈ B � A, we have
that A is �-consistent. It follows by weak consistency that B ∗ A is �-consistent
which is a contradiction. We conclude that X ∩ σ(B � A)
= ∅.

2.

B ∗σ A = B \ σ(B � A) ∪ A

= B \ (B \ (B ∗ A)) ∪ A

= (B ∩ (B ∗ A)) ∪ A

⊆ (B ∗ A) ∪ A

⊆ B ∗ A

The last line follows by strong success.

B ∗σ A = (B ∩ (B ∗ A)) ∪ A

= ((B ∗ A) \ A)

The last line follows by inclusion. By strong success, we have that B ∗ A ⊆
B ∗σ A. ��

7.3 Conclusion

Constructions for base revision presented in Sect. 4.3 hold only if the underlying
logic is closed under negation. In Chap. 3, we showed that several interesting logics
are not closed under negation. One possible solution for this problem is semi-revision

104 7 Base Revision in Logics Without Negation

[Han97], since semi-revision do not depend on negation. Semi-revision, however,
fails to satisfy success which may be desirable. In this Chapter, it was presented how
to revise a belief base in logics that are not closed under negation.

Six constructions for belief base revision that do not depend on negation were
presented. Each construction is characterized by a set of postulates and, as proved by
the representation theorems, this characterization holds for any Tarskian and compact
logic. The main results of this Chapter are summed up in Table 7.1.

Most results in this chapter are joint work with Wassermann and some of the
results were published first in [RW09].

References

[AM81] Carlos Alchourrón and David Makinson. Hierarchies of regulation and their logic. In
Hilpinen, editor, New studies in deontic logic, pages 125–148. D. Reidel Publishing
Company, 1981.

[Han93] Sven Ove Hansson. Reversing the Levi identity. Journal of Philosophical Logic,
22:637–669, 1993.

[Han97] Sven Ove Hansson. Semi-revision (invited paper). Journal of Applied Non-Classical
Logics, 7(2), 1997.

[RW09] Márcio Moretto Ribeiro and Renata Wassermann. Base revision for ontology debug-
ging. Journal of Logic and Computation, 19:721–743, 2009. Special Issue: Recent
Advances in Ontology Dynamics.

Chapter 8
Algorithms for Belief Bases

Abstract Computationally the hardest part of revision and contraction operations
in belief bases is finding the kernel/remainder set. In this chapter, we present algo-
rithms for computing these sets. The similarities between the algorithms suggests
that they are deeply related. We present this relation formally and show examples
where computing the remainder set is much easier than computing the kernel and
examples where the opposite is the case.

Keywords Remainder set · Kernel · Reiter’s algorithm · Ontology debugging·Minimal cuts

In Chap. 7 it was shown how to adapt revision over belief base in order to apply
it to logics that are not closed under negation. Computationally, the most difficult
part of the construction is to compute the kernel or the remainder set. This chapter
shows how to compute the kernel and the remainder set of a belief base w.r.t. an
input sentence. These algorithms are adaptions of known algorithms from diagnosis
[Rei87] and ontology debugging [SC03, Kal06].

Section 8.1 presents an algorithm and heuristics to find one element of the kernel.
Section 8.2 defines minimal cuts and presents the Reiter algorithm. Sections 8.3 and
8.4 present algorithms for finding the kernel and the remainder set, respectively. These
algorithms are clearly related with each other and Sect. 8.5 explores this relation.
The last section concludes the chapter.

8.1 Computing One α-Kernel

The algorithm to find an α-kernel is pretty simple (see Algorithm 8.1). It consists in
removing each element of B and testing if the resulting base still implies α. If this
is not the case the element is reintroduced in B. The result of this process is a set
B ′ ⊆ B that do imply α which is minimal, i.e., an α-kernel.

M. M. Ribeiro, Belief Revision in Non-Classical Logics, 105
SpringerBriefs in Computer Science,
DOI: 10.1007/978-1-4471-4186-0_8, © The Author(s) 2013

106 8 Algorithms for Belief Bases

Algorithm 8.1.1 Algorithm to find one α-kernel.

Kernel-black-box(B,α)

1. � Find one element of the kernel B⊥⊥ α.

2. for β ∈ B
3. do if α ∈ Cn(B \ {β})
4. then B ← B \ {β}
5. return B

Example 8.1 Assume that the underlying logic is CPL, let α in the input be q and
B be the following set:

B = {p, q, p→ q, r}

1. The algorithm iterates over the elements of B (line 2). Let’s assume that it iterates
from left to right.

2. Checks that q ∈ Cn({q, p→ q, r}) (line 3) so it removes p from B (line 3).
3. Checks that q /∈ Cn(p→ q, r) (line 3) so it does not change B.

4. Checks that q ∈ Cn(q, r) (line 3), so p→ q is removed (line 4).
5. Checks that q ∈ Cn(q) (line 3), so it removes r (line 4).
6. Returns B which is {q}, an α-kernel of B (line 5).

Algorithm 8.1 is called black-box because it uses the theorem prover as a black
box, i.e., it does not depend on it. A possible heuristic for this algorithm is to prune
the base B before running it. This type of heuristics is based on the following result:

Proposition 8.2 If B ′ ⊆ B, α ∈ Cn(B ′) and X ∈ B ′⊥⊥ α then X ∈ B⊥⊥ α

Proof This proof is straightforward. Of course α ∈ Cn(X), because X ∈ B ′⊥⊥ α.

For the same reason there is no X ′ such that X ′ ⊂ X and α ∈ Cn(X ′). Furthermore
X ⊆ B, because X ⊆ B ′ ⊆ B. Hence X ∈ B⊥⊥ α.
�

From this result we conclude that if we run Algorithm 8.1 in any subset of the
input B that implies α it will return an α-kernel of B. There are two well-known
heuristics of this type.

The first is called expand-shrink (see Algorithm 8.1). It consists of an expansion
phase of adding sentences of B in a set B ′ until B ′ implies the input α followed by
a shrink phase (Algorithm 8.1).

Algorithm 8.1.2 Algorithm expand shrink.

Expand-shrink(B,α)

1. � Heuristic to find one element of B⊥⊥ α
2. B ′ ← ∅
3. for β ∈ B
4. do B ′ ← B ′ ∪ {β}

8.1 Computing One α-Kernel 107

5. if α ∈ Cn(B ′)
6. � Shrink
7. then return Black-Box(B ′)

1. B ′ starts empty (line 2).
2. Iterates over the elements of B (line 3).
3. Inserts p into B ′ (line 4) and checks that q /∈ Cn(B ′) (line 5).
4. Inserts q into B ′ (line 4) and checks that q ∈ Cn(B ′) (line 5).
5. Calls Algorithm 8.1 with inputs B ′ and α (line 7).

Example 8.3. Let the inputs B and α be the same of Example 8.1. The algorithm
incrementally adds elements of B to an auxiliary set B ′ which is empty in the begin-
ning and checks at each iteration if α ∈ Cn(B ′).

When Algorithm 8.1 is called B ′ = {p, q}, so q ∈ Cn(B ′) and B ′ ⊆ B. By
Proposition 8.2, Algorithm 8.1 with B ′ and p as inputs returns a p-kernel for B.

The second heuristic is called glass-box algorithm because it depends on the
inference engine used. This algorithm consists of tracking down which sentences
of B were used to infer α. These sentences forms a set B ′ ⊆ B which implies α.

After this step Algorithm 8.1 can be used. This heuristic, presented in [KPSH05], is
very powerful because it prunes drastically the set B in just one run of the inference
engine. However, the implementation of this algorithm is very difficult because it
depends on the implementation of the inference engine.

8.2 Minimal Cuts

Algorithm 8.1 is used to find one α-kernel. In order to find the whole kernel we can
use an idea presented by Wassermann in [Was00] which is based on Reiter algorithm
[Rei87].

Reiter algorithm is used to find minimal cuts of a class of sets.1

Definition 8.4 (Minimal Cut) A cut for a class of sets B is a set B which intersects
each set in the class B. A cut C is minimal iff there is no cut C ′ properly contained
in C i.e., if C ′ ⊂ C then C ′ is not a cut for B.

Reiter algorithm find all the minimal cuts of a class. Algorithm 8.2 is a simplified
version of Reiter algorithm.

Algorithm 8.2.1 Reiter Algorithm to compute minimal cuts of a class

Reiter(B)

1. Cut ← ∅
2. stack ← empty stack
3. S← any element of B

1 We use here the term class as a synonym for set of sets.

108 8 Algorithms for Belief Bases

4. for s ∈ S
5. do insert {s} in the beginning of stack.

6. While stack not empty
7. do Hn← last element of stack
8. remove last element of stack
9. if ∃C ∈ Cut such that C ⊆ Hn

10. then continue
11. elseIf ∃S ∈ B such that Hn ∩ S = ∅
12. then for s ∈ S
13. do insert Hn ∪ {s} in stack
14. else
15. Cut ← Cut ∪ {Hn}
16. return Cut

Variable Hn is a potential minimal cut of the kernel and it receives an element
from the stack. If there is some cut which contains Hn then Hn is not minimal (lines
9 and 10) and Hn is discarded. Otherwise the algorithm checks if there is some
element of B which does not intersect Hn. If there is none then Hn is a minimal cut
and it is added to the set Cut of minimal cuts (line 15). Otherwise for each element
s of the set that do not intersect Hn we have that Hn ∪ {s} is a potential minimal cut
of B. Every Hn ∪ {s} is added to the stack in order to be verified in another iteration
of the loop. By the end of this process Cut contains every minimal cut of B.

8.3 Computing the Kernel

To find the other elements of the kernel an adaptation of Reiter’s algorithm is applied.
Algorithm 8.3 is a simplified version of this algorithm.

Algorithm 8.3 begins extracting one α-kernel using the previously presented algo-
rithms. At each iteration the least subset S of B \ Hn that implies α is computed. If
there is no cut which is a subset of Hn then Hn is a cut of the kernel. Otherwise S
is an α-kernel.

Algorithm 8.3.1 Algorithm that computes the kernel B⊥⊥ α.

Kernel(B,α)

1. � Find the kernel B⊥⊥ α
2. Cut ← ∅
3. stack ← empty stack
4. S← K ernel − Black − Box(B,α)

5. K ernel ← {S}
6. for s ∈ S
7. do insert {s} in the top of the stack.

8. while stack not empty
9. do Hn← last element of stack

8.3 Computing the Kernel 109

10. remove last element of stack
11. if ∃C ∈ Cut such that C ⊆ Hn
12. then continue
13. elseIf α ∈ Cn(B \ Hn)

14. then S← Black-Box(B \ Hn,α)

15. Kernel← Kernel ∪ {S}
16. for s ∈ S
17. do insert Hn ∪ {s} in the top of the stack
18. else
19. Cut ← Cut ∪ {Hn}
20. return K ernel

Example 8.5 Consider again the same inputs of Example 8.1.

1. The algorithm starts calculating one α-kernel of B using any of the algorithms
presented in Sect. 8.3 and putting the result in S (lines 2–4). Following Example
8.1 we have that S = {q}.

2. The content of S is added to K ernel (line 5).
3. Pushes {s} into the stack (line 6) for every element of s ∈ S. In our case the

stack contains {q}.
4. Hn gets the first element of the stack ({q}), which is removed from the stack

(lines 9 and 10).
5. Checks if there is some cut smaller than Hn (line 11), which is not the case.
6. Checks if α ∈ Cn(B \ Hn) (line 13), which is the case.
7. Runs Algorithm 8.1 again and puts the result in S (line 14), which is now
{p, p→ q}.

8. The content of S is again inserted in K ernel (line 15).
9. For each s ∈ S insert Hn ∪ {s} into the stack (lines 16 and 17). Now the stack

contains {q, p} and {q, p→ q}.
10. Repeats lines 9 to 11.
11. Now Hn = {q, p} and, hence α /∈ Cn(B \ Hn) (line 13).
12. Inserts {Hn} into Cut (line 19).
13. Repeats steps 9 to 11.
14. Hn = {q, p} and again α /∈ Cn(B \ Hn) (line 13).
15. Inserts {Hn} into Cut (line 19).
16. The stack is now empty (line 8).
17. Returns K ernel = {{q}, {p, p→ q}} (line 20).

8.4 Computing the Remainder Set

To find the remainder set we need to invert the algorithms presented above. Instead
of removing elements from B and checking if α is still a consequence, the black-box

110 8 Algorithms for Belief Bases

algorithm for finding an element in the remainder set adds elements from B to a set
B ′ and checks if α is still not a consequence.

Algorithm 8.4.1 Algorithm to find one element of B ⊥ α which includes X.

Remainder-black-box(B,α, X)

1. � Find a set X ′ such that X ⊆ X ′ ∈ B ⊥ A.

2. for β ∈ B
3. do if α /∈ Cn(B ′ ∪ {β})
4. then B ′ ← B ′ ∪ {β}
5. return B ′

To find the other elements of the remainder set an adaption of Reiter’s algorithm
is used (Algorithm 8.4).

Algorithm 8.4 to find the remainder set is very similar to Algorithm 8.3 to find the
kernel. Hn is now a potential cut in the set {B \ Y : Y ∈ B ⊥ α}. At each iteration
if Hn is not yet a cut then the algorithm finds the elements of B ⊥ α which includes
Hn.

8.5 Kernel and Remainder Sets

In previous section it was shown how to calculate the kernel B⊥⊥ α (Algorithm 8.3)
and the remainder set B ⊥ α (Algorithm 8.4). The similarity of these algorithms is
evident. Intuitively, each of these algorithms is the converse of the other. There is in
fact a close formal relation between them which was first studied in [FFKI06]. In
this work, however, the authors focus in the relation between incision function and
selection function. This section presents the formal relation between remainder set
and kernel directly.

Algorithm 8.4.2 Algorithm that computes the remainder set B ⊥ α.

Remainder(B,α)

1. � Find the remainder set B ⊥ α
2. Cut ← ∅
3. stack ← empty stack
4. S← Remainder− Black− Box(B,α,∅)
5. Remainder ← {S}
6. for s ∈ B \ S
7. do insert {s} in the top of the stack.

8. while stack not empty
9. do Hn← last element of stack

10. remove last element of stack
11. if ∃C ∈ Cut such that C ⊆ Hn
12. then continue
13. elseif α /∈ Cn(Hn)

8.5 Kernel and Remainder Sets 111

14. then S← Black− Box(B,α, Hn)

15. Remainder ← Remainder ∪ {S}
16. for s ∈ B \ S
17. do insert Hn ∪ {s} in the top of the stack
18. else
19. Cut ← Cut ∪ {Hn}
20. return Remainder

Lemma 8.6 Let B be a class of sets and let X ⊆ B for every X ∈ B. Every minimal
cut C of B satisfies C ⊆ B.

Proof Suppose that C is a cut of B and that there is β ∈ C such that β /∈ B. Since
β /∈ B and X ⊆ B for each X ∈ B then β does not belong to any element of B. It
follows that (C \ {β}) ∩ X ′ �= ∅ for every X ′ ∈ B. Since S \ {β} ⊂ S then S cannot
be a minimal cut which is an absurd.
�
Theorem 8.7 Let 〈L , Cn〉 be Tarakian and compact, B ⊆ L e α ∈ L :

1. X ∈ {B \ Y : Y ∈ B ⊥ α} iff X is a minimal cut for B⊥⊥ α
2. X ∈ B⊥⊥ α iff X is a minimal cut for {B \ X : X ∈ B ⊥ α}
Proof

1. Since X is a minimal cut of B⊥⊥ α by Lemma 8.6 we have that X ⊆ B. It follows
that there is Y ⊆ B such that X = B \ Y. We will show that Y ∈ B ⊥ α.

• Y ⊆ B trivially.
• Since X ⊆ B and Y = B \ X, by simple set manipulation we have that X = B \Y.

Hence, by success of contraction we know that α /∈ Cn(Y).

• If X ′ ⊂ X then α ∈ Cn(B \ X ′) because X is a minimal cut of B⊥⊥ α and, hence,
there is X ′′ ∈ B⊥⊥ α with X ′ ∩ X ′′ = ∅. It follows that X ′′ ⊆ B \ X ′ since
X ′′ ⊆ B. We conclude that α ∈ Cn(Y ∪ {β}) for every β ∈ B such that β /∈ X.

2. Now let Y ∈ B ⊥ α and let X = B \ Y. By simple set manipulation we have that
Y = B \ X. We will show that X is a minimal cut for B⊥⊥ α.

• Suppose that there is X ′′ ∈ ⊥⊥ α such that X ′′ ∩X = ∅. It follows that X ′′ ⊆ B \X
and, hence, α ∈ Cn(B \ X) = Cn(Y) which violates the definition of Y. We
conclude that for every X ′′ ∈ B⊥⊥ α we have that X ′′ ∩ X �= ∅.

• Let X ′ ⊂ X, then α ∈ Cn(B \ X ′). By success of contraction, it follows that X ′
is not a cut for B⊥⊥ α. We conclude that X is a minimal cut for B⊥⊥ α.
�
This result shows that once the kernel (or the remainder set) is computed, the

remainder (the kernel) can be extract without further calls to the theorem prover.
Hence, we have two options to compute the remainder set, for example: use Algo-
rithm 8.4 or first compute the kernel an then compute the remainder set using
Theorem 8.7.

112 8 Algorithms for Belief Bases

Although partial meet and kernel contractions are intimately related, Example 8.8
shows that in certain cases it is much faster to compute the kernel. Example 8.9, on
the other hand, shows that in certain cases is much faster to compute the remainder
set.

Example 8.8

B = {b1, b1 → a,

b2, b2 → a,

. . . ,

bn, bn → a}

In this example B ⊥ a has a number of elements proportional to 2n, while B⊥⊥ a
has a number of elements proportional to n.

Example 8.9

B = {b1, b
′
1,

(b1 ∨ b
′
1)→ b2, (b1 ∨ b

′
1)→ b

′
2,

(b2 ∨ b
′
2)→ b3, (b2 ∨ b

′
2)→ b

′
3,

. . . ,

bn ∨ bn′ → a}

In this example B ⊥ a has a number of element proportional to n, while B⊥⊥ a has
a number of elements proportional to 2n .

8.6 Conclusion

Computationally the hard part of the construction of base revision and contraction is
finding the kernel and the remainder set. In this chapter, we showed algorithms for
finding both the kernel and the remainder set of a belief base w.r.t. an input. These
algorithms are adaptions of well-known algorithms from other artificial intelligence
fields, namely, ontology debugging and diagnosis. More about these algorithms for
belief debugging can be found in Kalyampur’s thesis [Kal06] and Reiter algorithm
can be found in [Rei87]. See [Was00] for more about how to apply these algorithms
in belief base contraction.

The algorithms for finding the kernel and the remainder set are closely related. We
showed that given one the other can be derived without further calls to the inference
engine. The relation between kernel contraction and partial meet contraction was
first studied in [FFKI06].

Besides this close relation, there are examples where the resulting kernel set is
exponentially large while the resulting remainder set is only linearly large. On the
other hand, there are examples where the remainder set is exponentially large and

8.6 Conclusion 113

the kernel is linearly large. These examples show that for some instances it is faster
to use kernel contraction while for others it is faster to use partial meet contraction.
Whether it is possible to detect when it is better to use one or the other method is
still an open problem.

References

[FFKI06] Marcelo A. Falappa, Eduardo L. Fermé, and Gabriele Kern-Isberner. On the logic
of theory change: Relations between incision and selection functions. In Gerhard
Brewka, Silvia Coradeschi, Anna Perini, and Paolo Traverso, editors, Proceedings
of the 17th European Conference on Artificial Intelligence (ECAI 2006), pages
402–406, Riva del Garda, Italy, 2006. IOS Press.

[Kal06] Aditya Kalyanpur. Debugging and repair of owl ontologies. PhD thesis, University
of Maryland, College Park, MD, USA, 2006.

[KPSH05] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and James Hendler. Debugging unsat-
isfiable classes in OWL ontologies. Journal of Web Semantics, 3(4), 2005.

[Rei87] R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1):
57–95, 1987.

[SC03] Stefan Schlobach and Ronald Cornet. Non-standard reasoning services for the debug-
ging of description logic terminologies. In Georg Gottlob and Toby Walsh, editors,
Proceedings of the Eighteenth International Joint Conference on Artificial Intelli-
gence (IJCAI 03), pages 355–362, Acapulco, Mexico, 2003. Morgan Kaufmann.

[Was00] Renata Wassermann. An algorithm for belief revision. In Anthony G. Cohn, Fausto
Giunchiglia, and Bart Selman, editors, Proceedings of the 7th International Con-
ference on Principles of Knowledge Representation and Reasoning (KR’00), pages
345–352, Breckenridge, Colorado, USA, Abril, 15-20 2000. Morgan Kaufmann.

Chapter 9
Conclusion

Abstract Most results in belief revision assumes that the underlying logic satisfies
certain restrictive assumptions. We showed in this book several examples of logics
that fail to satisfy these assumptions, e.g., most DLs, Horn logic, and intuitionistic
logic. After that we presented ways of adapting classical belief revision in order for
it to be compliant with a wider class of logics. In the case of belief set contraction we
showed that this can be achieved by exchanging recovery by relevance in the AGM
postulates. For belief base revision this can be achieved using selection/incision
functions that protects the input. Finally, the most difficult case is belief set revision
where the characterization is achieved only for distributive logics.

Keywords Belief revision · Non-classical logics · Ontology evolution · Represen-
tation theorems · Belief bases

Belief revision theory is a mature field of research and has applications in many fields
such as philosophy, law, and specially computer science. Most results on belief
revision, however, assume that the logic satisfies very restrictive properties, e.g.,
being supraclassical, closed under the standard connectives, etc.

Inspired by applications in semantic Web, in the past 10 years, some results showed
that classical belief revision theory is not compliant with many logics [Flo06]. Several
Description Logics, for example, was proved not to be compliant with AGM pos-
tulates for contraction [FPA05]. Some year after that Horn logics was also proved
not compliant with AGM theory [LSST08]. As shown in the beginning of this book
intuitionistic logic also adds to this list and probably many others.

However, many interesting applications in artificial intelligence would certainly
profit with the use of belief revision techniques in Horn logic and Description Logics
for example. Ontology evolution is a very good example. Many papers on ontol-
ogy evolution seem to be ignoring years of development of belief revision theory.
The equivalence between postulates and constructions proved by the Representation
Theorem, for example, is a great abstraction that may give important insights into
the field.

M. M. Ribeiro, Belief Revision in Non-Classical Logics, 115
SpringerBriefs in Computer Science,
DOI: 10.1007/978-1-4471-4186-0_9, © The Author(s) 2013

116 9 Conclusion

Table 9.1 Summary of representation theorem presented in the book

Operation Representation theorem Logical property

AGM contraction 4.9 AGM assumptions
AGM revision 4.12 AGM assumptions
Base PM contraction 4.19 Compactness
Base kernel contraction 4.24 Compactness
IKR 4.25 Compactness and α-local non contravention
EKR 4.26 Compactness and α-local non contravention
IPMR 4.27 Compactness and α-local non contravention
EPMR 4.28 Compactness and α-local non contravention
KSR 4.29 Compactness
PMSR 4.30 Compactness
Relevance-contraction 5.14 Compactness
RwN 6.8 Compactness and distributivity
EKRS 7.4 Compactness
EKRC 7.6 Compactness
EPMRS 7.10 Compactness
EPMRC 7.12 Compactness
IPMRwN 7.13 Compactness
IKRwN 7.18 Compactness

Although classical belief revision theory is not compliant with these and other
logics, in this book it was shown that it is possible to adapt the postulates so that it
became compliant. Our first step toward this adaption was to abstract the logic and
deal only with the consequence operations which may satisfy certain properties.

In the case of contraction in belief sets this adaption can be achieved simply
exchanging the postulate of recovery by relevance. We showed that this choice of
postulates for belief set contraction has several advantages. Besides dealing more
directly with minimality, relevance is compliant with any compact logic and it char-
acterizes partial meet contraction in a wider class of logics.

Many results on belief base revision in non-classical logics were already presented
in [HW02]. This work already showed representation theorems for base contraction
that depend only in the logic being monotonic and compact. For belief base revision,
however, the results depend on a strong assumption of the logic being closed under
negation. Horn logic and most Description Logics are examples of logics that are not
closed under negation. For this reason it was presented with several constructions
for base revision that do not depend on negation. Each of these construction is fully
characterized by a set of postulate and the representation theorems that prove these
result assume only that the logic is Tarskian and compact.

Belief set revision is the most difficult scenario. It was presented a construction for
it that does not depend on negation. This construction satisfies the AGM postulates
for revision and this result assumes only that the underlying logic is Tarskian and
compact. The representation theorem, however, makes a strong assumption on the
logic being distributive.

9 Conclusion 117

Table 9.1 summarizes the results of Chaps. 5, 6 and 7. It shows for each repre-
sentation theorem which logical properties was assumed.

Finally, it was also shown how to implement the operations of belief base con-
traction. The algorithms presented here are adaptions of algorithms known in other
fields such as ontology debugging and diagnosis.

References

[Flo06] Giorgos Flouris. On Belief Change and Ontology Evolution. PhD thesis, University
of Crete, 2006.

[FPA05] Giorgos Flouris, Dimitris Plexousakis, and Grigoris Antoniou. On applying the AGM
theory to DLs and OWL. In Enrico Motta Yolanda Gil, V. Richard Benjamins, and
Mark A. Musen, editors, Proceedings of the 4th International Semantic Web Confer-
ence (ISWC 2005), pages 216–231, Galway, Ireland, November, 6-10 2005. Springer.

[HW02] Sven Ove Hansson and Renata Wassermann. Local change. Studia Logica, 70(1):
49–76, 2002.

[LSST08] Marina Langlois, Robert H. Sloan, Balázs Szörényi, and György Turán. Horn com-
plements: Towards Horn-to-Horn belief revision. In Dieter Fox and Carla P. Gomes,
editors, Proceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI
2008), pages 466–471, Chicago, Illinois, USA, Julho 13-17 2008. AAAI Press.

Index

A
a-local non contravention, 15, 25, 54
Agent, 2
AGM assumptions, 15
AGM theory, 45
Axiom schema, 21

B
Belief set revision without negation, 87

C
Choice contraction, 75
Closure, 53
Closure system, 9
Complement, 11
Complete lattice, 9
Consistency, 53
Contradictory set, 15
Core-retainment, 58, 62, 67
Cut, 109

D
Derivation, 21
Descending Chain Condition, 11

E
Epistemic attitudes, 46
Epistemic input, 46
Epistemic state, 2
Extensionality, 53, 57

External kernel revision, 64
External partial meet revision, 65

F
Finitary rule, 22
Finitely representable set, 11

H
Harper identity, 53

I
Idempotence, 8
Inclusion, 8, 53, 57, 62
Infimum, 9
Input, 2
Internal kernel revision, 63
Internal partial meet revision, 64
Interpretation function, 34

K
Kernel

package, 95, 99
Kernel base contraction, 60
Kripke model, 26

L
Levi identity, 53–56
Logic

Boolean, 12

M. M. Ribeiro, Belief Revision in Non-Classical Logics,
SpringerBriefs in Computer Science,
DOI: 10.1007/978-1-4471-4186-0, � The Author(s) 2013

119

L (cont.)
compact, 11
complemented, 11
decomposable, 13
distribuitive, 12
finite, 11
Tarskian, 8
well behaved, 15

M
Minimal cut, 109
Monotonicity, 8

N
Non-contravention, 15, 62

O
Ontologies, 4
Ontology, 32
Operation, 2

P
Package contraction, 75
Partial meet base contraction, 59
Pre-expansion, 63
Propositional variables, 20

R
Rationality postulates, 3
Relative complement, 13

Relevance, 58, 63, 67, 86
Relevance-contraction, 74
Remainder set, 49

package
Representation theorem, 4, 46

S
Satisfiable concept, 42
Schema variable, 21
Semantic consequence, 21
Semantic web, 32
Semi revision, 66
Standard language, 14
Success, 53, 57, 62
Supremum, 9

T
Truth-function, 20

U
Uniformity, 59, 63, 86

V
Vacuity, 53, 57

W
Weak uniformity, 63

120 Index

	Cover
	Belief Revision in Non-Classical Logics
	Preface
	Contents

	1 Introduction
	1.1 Belief Revision
	1.2 Belief Sets and Belief Bases
	1.3 Postulates and Constructions
	1.4 Non-Classical Logics
	1.5 Belief Revision in Non-Classical Logics
	1.6 Organization of the Book
	References

	2 Consequence
	2.1 Tarskian Consequence Operator
	2.2 Consequence Relation
	2.2.1 Properties of the Consequence Operator

	2.3 Standard Languages
	2.4 Conclusion
	References

	3 Logics
	3.1 Classical Propositional Logic
	3.1.1 Language
	3.1.2 Semantic
	3.1.3 Axiomatic System
	3.1.4 Properties

	3.2 Intuitionistic Logic
	3.2.1 Semantics
	3.2.2 Axiomatic System
	3.2.3 Properties

	3.3 Horn Logic (Horn)
	3.3.1 Properties

	3.4 Description Logics
	3.4.1 Language
	3.4.2 Semantics
	3.4.3 Extensions of ALC
	3.4.4 OWL
	3.4.5 Properties

	3.5 Conclusion
	References

	4 Classical Belief Revision
	4.1 Belief Systems
	4.2 AGM Theory
	4.2.1 AGM Contraction
	4.2.2 AGM Revision

	4.3 Belief Base Theory
	4.3.1 Base Contraction
	4.3.2 Belief Base Revision
	4.3.3 Belief Base Semi-Revision

	4.4 Conclusion
	References

	5 AGM Contraction in Non-Classical Logics
	5.1 Generalized AGM Postulates
	5.2 AGM Compliance
	5.3 Relevance Compliance
	5.4 Relevance and Partial Meet Contraction
	5.5 Rationality
	5.6 Conclusion
	References

	6 AGM Revision in Logics Without Negation
	6.1 Generalized Postulates
	6.2 Construction
	6.3 Representation Theorems
	6.4 Conclusion
	References

	7 Base Revision in Logics Without Negation
	7.1 External Revision Without Negation
	7.1.1 External Kernel Revision With Strong Success
	7.1.2 External Kernel Revision with Strong Consistency
	7.1.3 External Partial Meet Revision with Strong Success
	7.1.4 External Partial Meet Revision with Strong Consistency

	7.2 Internal Revision Without Negation
	7.2.1 Internal Partial Meet Revision
	7.2.2 Internal Kernel Revision

	7.3 Conclusion
	References

	8 Algorithms for Belief Bases
	8.1 Computing One α-Kernel
	8.2 Minimal Cuts
	8.3 Computing the Kernel
	8.4 Computing the Remainder Set
	8.5 Kernel and Remainder Sets
	8.6 Conclusion
	References

	9 Conclusion
	References

	Index

