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Chapter 1

Introduction

Logics come in many guises: some semantic, some syntactic. In Classical Logic,

truth (semantics) may be characterized using lines of 1s in truth tables, validity in

Boolean algebras, even winning strategies in dialogue games. At the same time,

proofs (syntax) can be defined in Hilbert systems with axioms and a few simple

rules, Gentzen systems with simple axioms but many rules, and a wide range of other

calculi. These various guises are useful. They exhibit different properties and reveal

hitherto unsuspected connections between logics. They assist both deep theoretical

investigations and the development of applications. Often there is much more to a

logic than a first glance (semantic or syntactic) might suggest.

The aim of this book is to show that certain logics with semantic roots in the real

numbers also have natural and useful syntactic characterizations. Typically, these

logics arise as the basis for systems dealing with vagueness, formalizing reasoning

about natural language expression such as “John is tall” or “the water is hot and

dirty” in the wider field of Fuzzy Logic.1 Indeed, they are usually known as fuzzy

logics. However, logics based on the real numbers turn up in several areas in Logic,

Mathematics, and Computer Science.

Example 1.1 (t-norm based logics). One way to build fuzziness into a logic is to

make “design choices” at the outset. Take the real unit interval [0,1] as a set of truth

values, 0 being falsity and 1 truth, and interpret connectives like “and” and “or” by

suitable functions on [0,1]. In particular, one strategy popularized by Hájek in [105]

is to interpret “and” by a continuous t-norm: a binary function that is commutative,

associative, increasing, and has 1 as a unit element. Each continuous t-norm then

gives rise to a fuzzy logic, e.g.

• Gödel Logic G is based on the t-norm x ∗G y = min(x,y), the only t-norm to

assign the same truth value to both “A and A” and “A”. This key fuzzy logic, also

an important “intermediate logic” between Intuitionistic Logic and Classical

1 Fuzzy Logic, encompassing such diverse topics as fuzzy set theory, fuzzy control, and fuzzy
approximation, was introduced by Zadeh in 1965 [223]. Here we investigate only a small subset of
what Zadeh has called “Fuzzy Logic in the narrow sense”, namely, logical systems for reasoning
about vagueness. For more details of the field, we refer to the comprehensive handbook series [72].
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2 1 Introduction

Logic, was introduced by Dummett in 1959 [73] as the infinite-valued version

of finite-valued logics defined by Gödel in the 1930s [98].

• Łukasiewicz Logic Ł, based on the t-norm x ∗Ł y = max(0,x + y − 1), is the

infinite-valued member of a family of many-valued logics introduced in the

1920s by Łukasiewicz [133, 135]. So-called “many-valued” MV-algebras for Ł,

defined by Chang in the 1950s [45], are an active field of research in their own

right (see e.g. the authoritative monograph [58]). The logic also has a rich and

much-studied geometric interpretation based on the elegant 1951 representation

theorem of McNaughton [139].

• Product Logic P, the third member of this trio of “fundamental t-norm logics”,

is based on the t-norm x ∗P y = x · y. Introduced by Hájek et al. in 1996 [112],

P is a more recent addition to the fuzzy canon, although the implication for this

logic appeared already in a 1969 paper of Goguen [100].

Fuzzy logics can also be defined based on classes of t-norms. Most importantly,

Hájek’s Basic Logic BL [105] and Godo and Esteva’s Monoidal t-norm Logic

MTL [77] are the logics of, respectively, all continuous and left-continuous t-norms.

Example 1.2 (Expert systems). Logical reasoning based on the reals is quite com-

mon in Expert Systems, MYCIN [198] being a famous early example capable of

reasoning under uncertainty. MYCIN diagnoses blood infections using certainty fac-

tors taken from the real interval [−1,1] and rules like:

IF the infection is primary-bacteremia

AND the site of the culture is one of the sterile sites

AND the suspected portal of entry is the gastrointestinal tract

THEN there is suggestive evidence (0.7) that infection is bacteroid.

To combine certainty factors MYCIN uses the function:

x∗M y =







x− y(1− x) if min(x,y) ≥ 0

x+ y

1−min(|x|, |y|)
if min(x,y) < 0 < max(x,y)

x− y(1+ x) if max(x,y) ≤ 0

This rather complicated-looking function is in fact an isomorphic copy of a uninorm:

functions defined like t-norms except that the unit element can lie anywhere in [0,1].
Unlike t-norms, uninorms allow for “compensatory behaviour” in the sense that new

information can have either a negative (decreasing) or a positive (increasing) effect

on the combined value. Uninorms were introduced by Yager and Rybalov in [221]

and are used to define fuzzy logics generalizing the t-norm approach in [144].

Example 1.3 (Resource-based logics). In resource-based logics how often a formula

is used in a proof matters. In some, like Anderson and Belnap’s relevance logics [6],
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they must be used at least once (every formula must be relevant to the proof), in

others, like Girard’s Linear Logic [97], once exactly (two copies of a formula is not

the same as one). One obvious way of modelling resources is to use numbers, e.g.

• In Meyer and Slaney’s Abelian Logic A [149] (also one of Casari’s logics for

modelling comparative reasoning in natural language [43]), conjunction and

implication can be interpreted by ordinary addition and subtraction on the real

numbers. Truth is then associated with being greater than or equal to 0.

• R-Mingle Logic RM, a member of the Anderson and Belnap family [6], can

also have truth values in the reals. In this case, however, one copy of a formula

is the same as any number of copies, and conjunction is interpreted by:

x∗RM y =

{

min(x,y) if x ≤−y

max(x,y) otherwise

so x∗RM x, interpreted as “x and x”, is just x.

Example 1.4 (Residuated lattices). Real numbers and functions on the reals are good

candidates for constructing algebras. Consider the real line R equipped with the

usual order, addition, and subtraction. This is an example of an ordered abelian

group. In fact, it is an especially useful example: if an equation holds in this al-

gebra, then it holds in all ordered abelian groups. Such facts find a natural home

in the framework of residuated lattices, introduced by Ward and Dilworth in the

1930s [217] and intensively investigated (with a more general definition) by Tsi-

nakis and co-workers in [116, 127]. In the commutative case, a residuated lattice is

a set L equipped with binary operations ∧, ∨, ⊙, →, and a constant e, written:

〈L,∧,∨,⊙,→,e〉.

where 〈L,∧,∨〉 is a lattice, 〈L,⊙,e〉 is a monoid, and → is the so-called “residuum”

of ⊙, i.e. x⊙y ≤ z iff x ≤ y → z for all x,y,z ∈ L. Interesting candidates for commu-

tative residuated lattices are obtained when L is [0,1] and ∧ and ∨ are min and max,

respectively. In such cases, the operation ⊙ is always a uninorm.

These examples should give the reader some idea of the kinds of logics and alge-

bras that we are interested in. As mentioned above, our aim is to show that they

have a natural syntactic or “proof-theoretic” characterization. In addition to stipu-

lating when formulas are true using the real numbers, we want algorithmic methods

that determine just when this is the case. In this book we make use of two main

approaches.

Hilbert systems, traceable back to Frege [84] and popularized by Hilbert [118],

generate theorems from a stock of formulas (called axioms) using a small number

of rules, often just one, modus ponens: from A and A → B, conclude B. The advan-

tages of this approach are generality – we can think of as many weird and wonderful

axioms as we want – and a close kinship with Algebra. On the other hand, when it
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comes to actually reasoning and working with proofs, Hilbert systems are extremely

cumbersome. The problem is that to prove a theorem using rules like modus ponens,

it is necessary to guess which formulas should appear in applications of the rule.

Gentzen systems, introduced by Gentzen in the 1930s [93], are much better when

it comes to reasoning about proofs. They gain flexibility by dealing with structures,

typically sequents, that look something like:

Γ ⇒C

where C is a formula and Γ is a structured collection of formulas, usually a set,

multiset, or sequence. The sequent arrow ⇒ is interpreted as “entails” or reading

backwards “follows from”. We can then write rules like:

If Γ ⇒ A and Γ ⇒ B, then Γ ⇒ A∧B.

Sequent systems, built up from such rules, exist for a wide range of logics. However,

fuzzy logics do not fit comfortably into this framework. To get Gentzen systems for

these logics we treat sequents “in parallel” using hypersequents:

S1 | . . . | Sn

where S1 . . .Sn are sequents and the “|” is read as an “or”. Hypersequents were in-

troduced by Avron in 1987 [9] and have been used to define Gentzen systems for

many logics not covered by the sequent approach. The extra flexibility is gained by

defining rules that act on more than one sequent at the same time.

Most important fuzzy logics can be defined in these two frameworks. For Gentzen

systems, many fuzzy logics occur naturally as “hypersequent versions” of ordinary

substructural logics. The key property for such systems is the existence of “ana-

lytic” proofs: proofs where the formulas occurring are built from the same material

(subformulas) as the formula proved. The existence of such proofs – established

via the key proof-theoretic technique of cut elimination – has nice consequences. In

many cases we can deduce decidability and complexity results, obtain interpolation

and conservative extension properties, or use the calculus as the basis for automated

reasoning methods. Most interesting of all, we can use Gentzen systems to tackle

one of the main problems addressed in this book (indeed a central topic in the fuzzy

logics literature): so-called “standard completeness”, establishing that the semantic

and syntactic approaches coincide. For this we make use of another elimination pro-

cedure, this time of a special density rule introduced by Takeuti and Titani in [205].
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Overview of the Book

The intended audience of this book includes readers unfamiliar with either fuzzy

logics or proof theory (possibly both). For the former, we provide an accessible

introduction to core techniques and results, semantic as well as syntactic. For the

latter, we offer algorithmic presentations of fuzzy logics with applications to tra-

ditional problems in the area. A brief overview of the remaining chapters is given

below:

Chapter 2 introduces the semantic building blocks of fuzzy logics: ordered sets of

truth values equipped with functions for interpreting connectives. We pay particular

attention to developing the popular t-norm approach, emphasizing the importance

of the “fundamental” Łukasiewicz, Gödel, and Product t-norms. We also generalize

the setting to cover residuated uninorms, and define fuzzy logics in the framework

of commutative residuated lattices.

Chapter 3 introduces Hilbert systems for fuzzy logics, built by extending a core

set of axioms and rules with axioms reflecting key properties. Soundness and com-

pleteness results are established with respect to classes of commutative residuated

lattices, in particular, classes of linearly ordered, dense, and standard algebras.

Chapter 4 develops Gentzen systems, providing hypersequent calculi for a wide

range of fuzzy logics by extending basic systems with additional structural rules.

Soundness and completeness for these systems (with the cut rule) is established

with respect to the Hilbert systems defined in the previous chapter.

Chapter 5 is the most technically demanding of the book, covering syntactic elim-

inations of rules from calculi. The central topic of cut elimination (and its variant,

cancellation elimination) is developed in detail, as are consequences such as de-

cidability and conservative extension results. We then treat the elimination of the

density rule and its applications for proving standard completeness results.

Chapter 6 introduces proof theory for the fundamental fuzzy logics, including se-

quent and hypersequent calculi for Gödel Logic, Łukasiewicz Logic, and Product

Logic. Since the techniques used depend on the logic under investigation, the chap-

ter may (aside from basic notions) be read independently of Chapters 3–5.

Chapter 7 explores uniformity and efficiency issues for the fundamental logics of

Chapter 6. Proof systems with uniform logical rules are defined in the framework

of relational hypersequents, then refined to give genuine algorithmic presentations

following a “logic programming style” goal-directed methodology. These systems

are then used to obtain complexity results for the logics.

Chapter 8 treats the addition of first-order quantifiers ∀ and ∃ to fuzzy logics, both

the “standard systems” of Chapter 4 and the tricky case of Łukasiewicz Logic, ex-

tending the algebraic, Hilbert system, and Gentzen system presentations of previ-

ous chapters. These presentations are then used to obtain Herbrand theorems and

Skolemization results for the prenex fragments of fuzzy logics.
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Chapter 9 covers a variety of miscellaneous topics, slightly out of the scope of the

main text, including modalities and truth-stressers, propositional quantifiers, non-

commutative fuzzy logics, finite-valued logics, and comparative logics. The difficult

case of Basic Logic is also discussed, along with other open problems in the area.

Finally, let us say what we leave out. There are already a number of fine texts on

algebraic aspects of fuzzy and substructural logics [58, 90, 102, 105, 180, 186], and

a comprehensive monograph on t-norms and related aggregation operators [129].

Hence we follow the maxim here of including only what is needed, and provide

references to the relevant literature at the end of each chapter. With regards to proof

theory, we treat just Hilbert and Gentzen systems, while acknowledging that many

other proof-theoretic frameworks are available: Natural Deduction, Tableaux, Dis-

play Logic, Calculus of Structures, to name just a few. These approaches are too

similar to Gentzen systems to offer a really interesting alternative perspective, and –

to our eyes at least – are not nearly as natural or convenient. Hypersequents are quite

clearly the minimal extension of sequents needed to cover a wide spectrum of fuzzy

logics. Perhaps by extending the formalism, further systems could be captured, but

with an accompanying loss of clarity and usefulness.



Chapter 2

The Semantic Basis

The focus of this book may be proof theory, but the origins of fuzzy logics are

undeniably semantic, rooted in the generalization from the two classical truth values

0 and 1 to the real unit interval [0,1]. In this chapter we examine these origins in

detail, explaining how basic intuitions about truth values and logical connectives

spawn a wide family of interesting and useful logics. Needless to say, not everything

of interest is covered here, just enough to support the chapters to come.

2.1 Truth Values

Typically, truth values come in sets: {0,1} for Classical Logic, {0, 1
2 ,1} for three-

valued logics, the real unit interval [0,1] for most fuzzy logics, and all kinds of other

weird and wonderful collections. We will therefore assume here some familiarity

with basic notions of naive set theory. This includes notation for membership ∈,

set-building {. . . : . . .}, the empty set /0, subsets ⊆ and ⊂, union ∪, intersection ∩,

difference −, cardinality | . . . |, and ordered n-tuples 〈x1, . . . ,xn〉. Arbitrary sets will

be denoted using α and β , where (αi)i∈I stands for a family of sets indexed by a set

I. Direct products of sets will be written as α ×β or ∏i∈I αi, and direct powers as

αn (with α0 = /0). We also recall that:

• n-ary relations on a set α are subsets of αn, called unary if n = 1 and binary if

n = 2. As usual, for a binary relation R, we often write xRy for 〈x,y〉 ∈ R.

• functions from a set α to a set β , written f : α → β , are subsets of α × β
such that for each x ∈ α , 〈x,y〉 ∈ f for exactly one y ∈ β , written f (x) = y. A

function f is injective if for every x,y ∈ α , whenever f (x) = f (y), then x = y,

and surjective if for every y ∈ β , f (x) = y for some x ∈ α .

We adopt some usual conventions for dealing with functions. If f is a function from

the direct power αn to the set α , then f is called an n-ary function or function with

arity n on α . In particular, f is called constant for n = 0, unary for n = 1, and binary

for n = 2. In the latter case, f (a,b) may be written in infix notation as a f b.

7
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We denote the sets of natural numbers {0,1,2, . . .} by N, integers by Z, rationals

by Q, reals by R, extended reals (with extra elements +∞ and −∞) by R̄, and for

α ⊆ R, define α+ =def {x ∈ α : x > 0} and α− =def {x ∈ α : x < 0}. We assume

familiarity with ∑ (sum) and ∏ (product) notation, and other basic functions for

these sets such as min and max. A set α is called countable if there exists an injective

function f : α →N, countably infinite if this f is also surjective. We denote (infinite)

sequences, formally functions f : N → α for some set α , by indexed sets (xi)i∈N.

When dealing with sets of truth values, it is useful to have some built-in notion

of order: a relation “less true than” that tells us something about the relative size or

significance of the values.

Definition 2.1. A binary relation ≤ is a partial order on a set α iff for all x,y,z ∈ α:

1. x ≤ x (reflexivity).

2. If x ≤ y and y ≤ x, then x = y (antisymmetry).

3. If x ≤ y and y ≤ z, then y ≤ z (transitivity).

The ordered pair 〈α,≤〉 is called a partially ordered set (poset).

Each partial order ≤ for α has an accompanying strict partial order defined by:

x < y iff x ≤ y and x 6= y

Using both ≤ and <, we can define intervals for 〈α,≤〉:

[x,y] =def {z ∈ α : x ≤ z ≤ y} [x,y) =def {z ∈ α : x ≤ z < y}

(x,y] =def {z ∈ α : x < z ≤ y} (x,y) =def {z ∈ α : x < z < y}

As usual, we often write x ≥ y rather than y ≤ x, and x > y rather than y < x. We also

combine pairs in the obvious manner, writing e.g. x ≤ y ≤ z for x ≤ y and y ≤ z.

Posets are characterized further by considering upper and lower bounds:

Definition 2.2. Let 〈α,≤〉 be a poset and β ⊆ α:

• a ∈ α is an upper bound for β if x ≤ a for all x ∈ β .

• a ∈ α is a lower bound for β if a ≤ x for all x ∈ β .

• a ∈ α is the supremum of β (a = supβ ) if a is an upper bound of β and a ≤ b

for every upper bound b of β .

• a ∈ α is the infimum of β (a = infβ ) if a is a lower bound of β and b ≤ a for

every lower bound b of β .

Definition 2.3. A poset 〈α,≤〉 is:

• a lattice if every {x,y} ⊆ α has a supremum x∨ y and infimum x∧ y.

• bounded if the bounds supα and infα exist in α .

• complete if for any β ⊆ α , both supβ and infβ exist in α .

• linearly ordered (and called a chain) if x ≤ y or y ≤ x for all x,y ∈ α .
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• dense if whenever x < y for some x,y ∈ α , then x < z < y for some z ∈ α .

• well-ordered if there is no sequence (xi)i∈N in α with xi+1 < xi for all i ∈ N.

Example 2.4. The “classical” structure 〈{0,1},≤〉 (where ≤ is the usual ordering on

the reals) is the best known poset of truth values, but there are other popular choices:

• Dividing the interval [0,1] into finer and finer distinctions gives truth values

suitable for finite-valued logics:

{0,
1

n−1
, . . . ,

n−2

n−1
,1} for n = 2,3, . . .

Each of these posets is a linearly and well-ordered complete bounded (but not

dense) lattice.

• As limits of this dividing process, we obtain infinite sets of truth values, the real

unit interval [0,1] or, remaining countable, the rational unit interval [0,1]∩Q;

both are linearly but not well-ordered dense bounded lattices, and [0,1] is also

complete.

• Doing away with bounds, we might also consider the sets of reals R, rationals

Q, integers Z, or natural numbers N: all linearly ordered, where both R and Q

are dense and only N is well-ordered. None of these posets are complete, but R,

Z, and N may be “completed” by adding top and bottom elements +∞ and −∞

as required to obtain R̄, Z̄, and N̄, respectively.

• Any linearly ordered set with a smaller cardinality than R can be “normalized”

to an order isomorphic (see below) poset of real numbers. We can even restrict

our attention just to subsets of [0,1]. However, for many logics, the truth values

are not linearly ordered. For example, in the “First Degree Entailment” Logic

FDE, there exist values for being both truth and false b, or neither n. The result-

ing order can be represented using the “four corners of truth” Hasse diagram:

! 

" 

b n 

where a value connected upwards by lines to another value is “less true than”

that value. Clearly this poset is a complete bounded and well-ordered lattice,

but it is not linearly or densely ordered.

Further useful examples of posets are obtained by defining the lexicographic or

“dictionary” order on direct products of posets.
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Definition 2.5. Let 〈α1,≤1〉, . . . ,〈αn,≤n〉 be posets. The lexicographic order ≤d is

defined on the direct product α1 × . . .×αn by:

(a1, . . . ,an) ≤d (b1, . . . ,bn) iff ai = bi for i = 1 . . .k and ak+1 <k+1 bk+1 or k = n.

Moreover, if 〈α1,≤1〉, . . . ,〈αn,≤n〉 are well-ordered, then so is 〈α1 × . . .×αn,≤d〉.

Of course in Mathematics, two posets with ostensibly different elements can often

be “matched up” and treated as equivalent.

Definition 2.6. An order isomorphism from the poset 〈α1,≤1〉 to the poset 〈α2,≤2〉
is a surjective function h : α1 → α2 such that for all x,y ∈ α1:

x ≤1 y iff h(x) ≤2 h(y)

In this case, the two posets are said to be order isomorphic.

Example 2.7. Consider the function h : (0,1) → R defined by:

h(x) = log(
x

1− x
)

It is easy to check that h is an order isomorphism from the poset (0,1) to the poset R

(with the usual orders). Moreover, assuming log0 = −∞ and log∞ = ∞, the above

function extends also to an order isomorphism from [0,1] to R̄.

This means that we can quite often treat the intervals [0,1], [0,1), (0,1], and (0,1)
as canonical sets of truth values, without worrying that other choices of a and b for

[a,b], [a,b), (a,b], [a,b] would give different results.

2.2 Ands and Ors

Given a set of truth values for a logic, the next issue is naturally how to interpret

usual logical connectives like “and”, “or”, “if . . . then”, and “not”. In Fuzzy Logic,

such connectives are typically interpreted “truth-functionally”, i.e. by functions on

the set of truth values.1 In particular, appropriate functions for “ands” (conjunc-

tions) and “ors” (disjunctions) are aggregation operators that combine values into

one “representative” value. Such functions are often constructed for a particular

task or application by hand. Here we take a different approach. We make “design

choices” for logics, specifying basic properties that conjunctions and disjunctions

should possess.

1 This is not always the case in Logic; for example, the probability of “A and B” is not a function
of the probability of A and the probability of B.
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2.2.1 Basic Properties

We begin with a selection of basic properties of functions on posets.

Definition 2.8. For a poset 〈α,≤〉, a binary function ∗ : α2 → α is:

• associative iff (x∗ y)∗ z = x∗ (y∗ z) for all x,y,z ∈ α .

• commutative iff x∗ y = y∗ x for all x,y ∈ α .

• unital iff e∗ x = x∗ e = x for some e ∈ α for all x ∈ α .

• idempotent iff x∗ x = x for all x ∈ α .

An n-ary function h : αn → α is:

• increasing (or decreasing) in argument i if whenever y ≤ z (or z ≤ y):

h(x1, . . . ,xi−1,y,xi+1, . . . ,xn) ≤ h(x1, . . . ,xi−1,z,xi+1, . . . ,xn)

• strictly increasing (or decreasing) in argument i if whenever y < z (or z < y):

h(x1, . . . ,xi−1,y,xi+1, . . . ,xn) < h(x1, . . . ,xi−1,z,xi+1, . . . ,xn)

Assuming some basic knowledge of limits, we also adopt the following definitions:

Definition 2.9. A binary function ∗ : [0,1]2 → [0,1] is:

• continuous iff for all x,y ∈ α , given a sequence (xi)i∈N in α such that x =
limi→∞ xi, then also limi→∞(xi ∗ y) = x∗ y.

• left-continuous iff for all x,y ∈ α , given a sequence (xi)i∈N in α such that x > xi

for all i ∈ N and x = limi→∞ xi, then also limi→∞(xi ∗ y) = x∗ y.

Example 2.10. One of the best known aggregation operators for real numbers is the

arithmetic mean. The binary version of this function on [0,1] is:

x∗A y =
x+ y

2

It is easy to see that ∗A is commutative, strictly increasing in both arguments, con-

tinuous, and idempotent. However, ∗A is not associative:

x∗A (y∗A z) = x/2+ y/4+ z/4 but (x∗A y)∗A z = x/4+ y/4+ z/2

There is also no unit element for ∗A: if x∗A y = x, then y = x.

Commutativity tells us that the order of arguments does not matter, and associativ-

ity that bracketing is unimportant. If ∗ is associative, then we often drop brackets

altogether and for n ∈ N+, write x1 ∗ . . .∗ xn for x1 ∗ (x2 ∗ (. . .(xn−1 ∗ xn) . . .) and let:

x
(n)
∗ =def

n
︷ ︸︸ ︷
x∗ . . .∗ x
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Commutativity and associativity are, arguably, essential features of “and-ness” and

“or-ness”, while the fact that the function is increasing in both arguments supports

the intuition that making A or B more true cannot make “A and B” or “A or B” any

less true.2 It is also convenient that such functions be unital, i.e. a particular ele-

ment, thought of perhaps as “the least true truth value”, should play the role of an

identity for “and” or “or”. Other properties are perhaps not so essential. For exam-

ple, idempotence might fail for a fuzzy logic. The truth value of “A and A” could be

different to the truth value of A: a repeated statement could be more or less true than

the statement alone. Also, while assuming continuity is convenient and plausible

for functions interpreting “and”, left-continuity suffices (at least technically) for the

approach taken here.

2.2.2 t-Norms

We will stick with the design choices of commutative, associative, increasing, unital

functions to interpret “ands” and “ors” throughout this book (or at least until the

very last chapter). Typically, we will also take our basic poset of truth values to be

the real unit interval [0,1] equipped with the usual ordering ≤. If we now add one

more quite plausible assumption for interpreting “ands” – that the unit element is 1

– we arrive at the following well known and much studied class of functions.

Definition 2.11. A t-norm is a function ∗ : [0,1]2 → [0,1] satisfying:3

1. x∗ y = y∗ x (commutativity).

2. (x∗ y)∗ z = x∗ (y∗ z) (associativity).

3. x ≤ y implies x∗ z ≤ y∗ z (monotonicity).

4. 1∗ x = x (identity).

One easy consequence of this definition is that 0 is always an “annihilating element”.

That is, 0 ∗ x = x ∗ 0 = 0 for all x ∈ [0,1] for any t-norm ∗. We can use conditions

1–4 to show this as follows:

0∗ x = x∗0 (commutativity)

≤ 1∗0 (monotonicity)

= 0 (identity)

There are uncountably many t-norms, many of which can be classified into fami-

lies possessing special properties or representations, such as the so-called Frank or

Hamacher t-norms. Here we concentrate on classifying families of t-norms using

the plausible properties of conjunctions identified in Definition 2.8.

We start with some fundamental examples of continuous t-norms.

2 Of course non-commutative and non-associative logics can be interesting (see Chapter 9 for a
discussion of the former) but not necessarily for applications in Fuzzy Logic.
3 The prefix notation T (x,y) is often used for t-norms. Here, to emphasize the interpretation of
logical connectives via t-norms, we prefer the infix notation x∗ y.
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Definition 2.12 (Fundamental t-norms).

Łukasiewicz t-norm: x∗Ł y =def max(0,x+ y−1)

Gödel t-norm: x∗G y =def min(x,y)

Product t-norm: x∗P y =def x · y

Continuity is a nice property for interpreting “and”; it means that the function is

not over-sensitive to slight changes in its arguments. The fundamental t-norms play

a special role in this respect. It turns out that any continuous t-norm is “locally

isomorphic” to one of these three. We will make this precise below. First, we make

the following observation.

Proposition 2.13. ∗G is the only idempotent t-norm.

Proof. Let ∗ be an idempotent t-norm. If x ≤ y, then:

x = x∗ x (idempotence)

≤ x∗ y (monotonicity)

≤ x∗1 (monotonicity)

= x (identity)

We have sandwiched x∗ y between x on the left and right, so x∗ y = x. Similarly, if

y ≤ x, then x∗ y = y. So x∗ y = min(x,y). ⊓⊔

More generally, any binary function ∗ can have “idempotents”: elements a such that

a ∗ a = a. The endpoints 0 and 1 are idempotents for any t-norm ∗ since always

1 ∗ 1 = 1 and 0 ∗ 0 = 0. If ∗ is continuous, then idempotents separate intervals of

[0,1] where ∗ acts like either the Łukasiewicz or the product t-norm.

Definition 2.14. A continuous t-norm ∗ is Archimedean iff it has no idempotent

elements except 0 and 1; i.e. x∗ x = x implies x = 0 or x = 1.4

We now describe a method for constructing t-norms using other t-norms, the idea

being to show that all continuous t-norms can be constructed in this way from con-

tinuous Archimedean t-norms.

Definition 2.15. Let ([ai,bi])i∈I be a family of intervals satisfying:

1. 0 ≤ ai < bi ≤ 1 for all i ∈ I.

2. (ai,bi)∩ (a j,b j) = /0 if i 6= j for all i, j ∈ I.

Then the ordinal sum ∑i∈I([ai,bi],∗i) of a family of t-norms (∗i)i∈I is the function

∗ : [0,1]2 → [0,1] defined by:

x∗ y =







ak +(bk −ak)(
x−ak

bk −ak

∗k

y−ak

bk −ak

) if x,y ∈ [ak,bk]

min(x,y) otherwise

4 An equivalent definition (for continuous t-norms) is to say that a continuous t-norm ∗ is

Archimedean iff for all x,y ∈ (0,1), there exists some n ∈ N+ such that x
(n)
∗ < y.
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Fig. 2.1 Construction of an ordinal sum

A visual representation of this construction is given in Fig. 2.1. If I is empty, then the

ordinal sum is just the minimum function, i.e. the Gödel t-norm. If I is a singleton

indexing the whole real unit interval, then the ordinal sum consists of one t-norm.

For continuous t-norms we have the following special situation:

Theorem 2.16. Each continuous t-norm ∗ is the ordinal sum of a family of continu-

ous Archimedean t-norms.

Proof. Consider the set E∗ = {x ∈ [0,1] : x ∗ x = x} of idempotents of ∗. Suppose

that y is the supremum of a set of idempotents of ∗; i.e. y = supα where x∗ x for all

x ∈ α . By continuity, y ∗ y = supα ∗ supα = sup{x ∗ x : x ∈ α} = supα = y. So y

is also idempotent. The same holds if y is the infimum of a set of idempotents of ∗.

Hence E∗ is a union of bounded intervals and for some index set I:

[0,1]−E∗ =
⋃

i∈I

(ai,bi)

where 0 ≤ ai < bi ≤ 1 for i ∈ I and (ai,bi)∩ (a j,b j) = /0 for i 6= j.

It easy to check that the restriction of ∗ to [ai,bi] is mapped to a continuous

Archimedean t-norm by fi(x) = (x−ai)/(bi −ai) for each i ∈ I. Moreover, suppose

that x ∈ (ai,bi) and y ∈ (a j,b j) where i 6= j and x < y. Then there must be an idem-

potent z of ∗ such that x ≤ z ≤ y. By continuity, since z∗0 = 0 ≤ x ≤ z = z∗1, there

exists u ∈ [0,1] such that z∗u = x. But then x ≥ x∗y ≥ x∗z = (u∗z)∗z = u∗(z∗z) =
u∗ z = x. So x∗ y = x = min(x,y) as required. ⊓⊔

Let us take a closer look now at continuous Archimedean t-norms:

Theorem 2.17. The following are equivalent:

(1) ∗ is a continuous Archimedean t-norm.
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(2) ∗ has an additive generator; that is, there exists a strictly decreasing continuous

function t : [0,1] → [0,∞] such that t(1) = 0, and for all x,y ∈ [0,1]:

x∗ y = t(−1)(t(x)+ t(y))

where t(−1)(x) = t−1(min(x, t(0))).

Proof. It is straightforward to show that (2) implies (1). The continuity, com-

mutativity, and monotonicity of ∗ are immediate and x ∗ 1 = t(−1)(t(x) + t(1)) =
t(−1)(t(x)+0) = t(−1)(t(x)) = x so the identity condition is satisfied. For associativ-

ity, we use the fact that t(x∗ y) = min(t(x)+ t(y), t(0)) to derive:

(x∗ y)∗ z = t(−1)(t(x∗ y)+ t(z))

= t(−1)(t(x)+ t(y)+ t(z))

= t(−1)(t(x)+ t(y∗ z))
= x∗ (y∗ z)

Finally, ∗ is Archimedean. If x ∗ x = x, then t(x) = min(t(x) + t(x), t(0)), and so

t(x) = t(0), t(x) = 0, or t(x) = ∞. But t is strictly decreasing, so x = 1 or x = 0.

For the other direction, recall the definition of x
(n)
∗ for n ∈ N. We extend this to

positive rational numbers as follows. For n ∈ N+ and m ∈ N let:

x
(1/n)
∗ =def sup{y ∈ [0,1] : y

(n)
∗ < x} and x

(m/n)
∗ =def (x

(1/n)
∗ )

(m)
∗

Notice that x
(m/n)
∗ = x

(km/kn)
∗ for any k ∈ N+, so this operation is well-defined (i.e.

if r = s, then xr
∗ = xs

∗). Now observe that if x
(n)
∗ = x

(n+1)
∗ for some n ∈ N, then by a

simple induction:

x
(n)
∗ = x

(2n)
∗ = (x

(n)
∗ )2

∗

So, since ∗ is Archimedean, x
(n)
∗ ∈ {0,1}; i.e. x

(n)
∗ > x

(n+1)
∗ whenever x ∈ (0,1).

We can now define the required additive generator. First, fix an arbitrary a∈ (0,1)
and define h : Q∩ [0,∞) → [0,1] by:

h(r) = a
(r)
∗

Since ∗ is continuous and by the Archimedean property limn→∞ x
(1/n)
∗ = 1, we have

that h is also continuous. Moreover for any x ∈ [0,1], m, p ∈ N, and n,q ∈ N+:

x
((m/n)+(p/q))
∗ = x

((mq+np)/nq)
∗

= (x
(1/nq)
∗ )

(mq+np)
∗

= (x
(1/nq)
∗ )

(mq)
∗ ∗ (x

(1/nq)
∗ )

(np)
∗

= x
(m/n)
∗ ∗ x

(p/q)
∗

So for all r,s ∈ Q∩ [0,∞):
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h(r + s) = a
(r+s)
∗ = a

(r)
∗ ∗a

(s)
∗ ≤ a

(r)
∗ = h(r)

I.e. h is decreasing. Moreover, h is strictly decreasing for any (m/n),(p/q) ∈ Q∩
[0,∞) with h(m/n) > 0, since:

h((m/n)+(p/q)) ≤ h((mq+1)/(nq)) = (a
(1/nq)
∗ )

(mq+1)
∗ < (a

(1/nq)
∗ )

(mq)
∗ = h(m/n)

Using the fact that h is decreasing and continuous on Q∩ [0,∞), we can define

h̄(x) : [0,∞] → [0,1] by:

h̄(x) = inf{h(r) : r ∈ Q∩ [0,x]}

Again, h̄ is continuous and decreasing, strictly decreasing for h̄(x) > 0, and h̄(x +
y) = h̄(x)∗ h̄(y) for all x,y ∈ [0,∞]. Define t : [0,1] → [0,∞] by:

t(x) = sup{y ∈ [0,∞] : h̄(y) > x} (where sup /0 = 0)

Then it is straightforward to check that t satisfies the required conditions of (2). ⊓⊔

As key examples, note that an additive generator for the Łukasiewicz t-norm ∗Ł is

tŁ(x) = 1− x, while for the product t-norm ∗P, we have tP(x) = − logx. These two

t-norms form the prototypes for any continuous Archimedean t-norm, and hence

(by Theorem 2.16) the building blocks for any continuous t-norm.

Definition 2.18. Let ∗ be a t-norm. Then a ∈ [0,1] is:

• a nilpotent of ∗ iff there exists n ∈ N+ such that a
(n)
∗ = 0.

• a zero divisor of ∗ iff a∗b = 0 for some b ∈ (0,1).

An Archimedean t-norm is strict if its only nilpotent is 0, and nilpotent otherwise.

Lemma 2.19. Each continuous Archimedean t-norm ∗ is:

either strict and 〈[0,1],∗〉 is order isomorphic to 〈[0,1],∗P〉;

or nilpotent and 〈[0,1],∗〉 is order isomorphic to 〈[0,1],∗Ł〉.

Proof. Consider any continuous Archimedean t-norm ∗. By the previous theorem,

∗ has an additive generator t. We have two cases:

(a) Suppose that t(0) = ∞. If a
(n)
∗ = 0 for some n ∈N+, then t(a

(n)
∗ ) = t(0) = ∞. But

t(a
(n)
∗ ) = nt(a) so t(a) = ∞. Since t is strictly decreasing, a = 0, so ∗ is strict.

Moreover, f (x) = e−t(x) is an order isomorphism from 〈[0,1],∗〉 to 〈[0,1],∗P〉.

(b) Suppose that t(0) 6= ∞. Since t(1) = 0, by continuity there exists c ∈ (0,1] such

that t(c) = t(0)/2. But then c∗ c = t(−1)(t(c)+ t(c)) = t(−1)(t(0)) = 0, so ∗ is

nilpotent. Moreover, g(x) = 1− (t(x)/(t(0)) is the required order isomorphism

from 〈[0,1],∗〉 to 〈[0,1],∗Ł〉. ⊓⊔

Finally, we can put these facts together and obtain the following characterization.



2.2 Ands and Ors 17

Theorem 2.20. Each continuous t-norm is the ordinal sum of a family of t-norms

order isomorphic to either the Łukasiewicz or product t-norm.

Partly as a result of this elegant representation theorem, continuous t-norms – in

particular, the fundamental t-norms – are the most commonly used aggregation op-

erators in Fuzzy Logic. However, important non-continuous t-norms also occur reg-

ularly in the literature. In particular, the nilpotent minimum t-norm:

x∗N y =def

{

min(x,y) if x+ y > 1

0 otherwise

is left-continuous but not continuous, while the drastic product t-norm:

x∗D y =def

{

0 if x,y ∈ [0,1)

min(x,y) otherwise

is not even left-continuous. In fact ∗D is the least t-norm according to the partial

ordering defined on the set of t-norms by:

∗1 ≤T ∗2 iff x∗1 y ≤ x∗2 y for all x,y ∈ [0,1]

The Gödel t-norm x ∗G y = min(x,y) is greatest with respect to this ordering. That

is, ∗D ≤T ∗ ≤T ∗G for all t-norms ∗.

2.2.3 t-Conorms

Many properties that are natural for interpreting “ands” are also very natural for

interpreting “ors”. Again, it is reasonable to assume that such functions are commu-

tative, associative, and increasing. The point of divergence comes from the fact that

0 is now a more suitable identity element.

Definition 2.21. A t-conorm is a function ∗ : [0,1]2 → [0,1] satisfying:

1. x∗ y = y∗ x (commutativity).

2. (x∗ y)∗ z = x∗ (y∗ z) (associativity).

3. x ≤ y implies x∗ z ≤ y∗ z (monotonicity).

4. 0∗ x = x (identity).

Just as for t-norms, 0 is an “annihilator”, so 1 plays this role for t-conorms; i.e.

1∗ x = x ∗1 = 1 for all x ∈ [0,1]. In fact, there is a strong correspondence between

t-norms and t-conorms. Each t-norm can be used to define a dual t-conorm and vice

versa. More precisely, a function ◦ : [0,1]2 → [0,1] is a t-conorm iff there exists a

t-norm ∗ such that for all x,y ∈ [0,1]:

x∗ y = 1− ((1− x)◦ (1− y))

In this case, ∗ is called the dual t-norm of ◦, and ◦ the dual t-conorm of ∗.
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Example 2.22. The dual t-conorms of the fundamental t-norms are:

Bounded sum t-conorm: x◦Ł y =def min(1,x+ y)

Maximum t-conorm: x◦G y =def max(x,y)

Probabilistic sum t-conorm: x◦P y =def x+ y− x · y

All the representation theorems for t-norms of the previous section have dual ver-

sions for t-conorms. However, since here we treat conjunction connectives as prim-

itive and disjunction connectives as defined, we leave the derivation of such results

as exercises for the interested reader.

2.2.4 Uninorms

As we have just seen, “ands” and “ors” interpreted by t-norms and t-conorms have

overlapping properties: commutativity, associativity, and monotonicity. The differ-

ence lies solely with the identity element: 1 for “and” and 0 for “or”. Let us see now

what happens if we allow this element to be any number in [0,1].

Definition 2.23. A uninorm is a function ∗ : [0,1]2 → [0,1] satisfying:

1. x∗ y = y∗ x (commutativity).

2. (x∗ y)∗ z = x∗ (y∗ z) (associativity).

3. x ≤ y implies x∗ z ≤ y∗ z (monotonicity).

4. e∗ ∗ x = x (identity).

For e∗ = 1 or e∗ = 0, we get t-norms or t-conorms, but for e∗ ∈ (0,1), we get some-

thing new: functions with “compensatory behaviour”. While for a t-norm ∗, always

x∗y ≤ x, and for a t-conorm ◦, always x◦ y ≥ x, for uninorms, x∗y can be less than

or greater than x. In this case, the identity element e∗ can be interpreted as the score

or truth value given to a “neutral statement”, and truth is naturally associated with

values greater than or equal to e∗, i.e. the set [e∗,1].
Let us take a closer look at the behaviour of uninorms, beginning with the values

taken at the extremal points 0 and 1. It is easy to see that 0∗0 = 0 and 1∗1 = 1 for

all uninorms. However, the final “classical” value 0∗1 = 1∗0 is not fixed. It can be

1 or 0, being either conjunctive like a t-norm, or disjunctive like a t-conorm.

Proposition 2.24. For any uninorm ∗, one of these two conditions holds:

(1) x∗0 = 0∗ x = 0 for all x ∈ [0,1] and ∗ is called conjunctive.

(2) x∗1 = 1∗ x = 1 for all x ∈ [0,1] and ∗ is called disjunctive.

Proof. Let ∗ be a uninorm. We show first that for any x,y ∈ [0,1], if x ≤ 0 ∗ 1 ≤ y,

then x ∗ y = 0∗1. For x ≤ 0∗1 ≤ y we have by associativity and monotonicity that

0∗1 = (0∗0)∗1 = 0∗ (0∗1)≤ x∗y ≤ (0∗1)∗1 = 0∗ (1∗1) = 0∗1, so x∗y = 0∗1

as required. Now suppose that e∗ ≤ 0∗1. By the previous claim, 1 = e∗ ∗1 = 0∗1.
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Fig. 2.2 The structure of a uninorm with identity e∗ ∈ (0,1)

So by monotonicity, x∗1 = 1∗x = 1 for all x ∈ [0,1]. The case where 0∗1 < e∗ and

∗ is disjunctive is symmetrical. ⊓⊔

Hence conjunctive and disjunctive uninorms coincide with classical conjunction and

disjunction respectively on the set {0,1}. More generally, as shown in Fig. 2.2, a

uninorm with identity e∗ ∈ (0,1) exhibits a “block-like” structure on the unit square,

where the lower corner [0,e∗]
2 is isomorphic to a t-norm, and the upper corner

[e∗,1]2 is isomorphic to a t-conorm.

Proposition 2.25. If ∗ is a uninorm with identity e∗ ∈ (0,1), then:

(i) x∗T y =def
(e∗x)∗ (e∗y)

e∗
is a t-norm.

(ii) x◦S y =def
(e∗ +(1− e∗)x)∗ (e∗ +(1− e∗)y)− e∗

1− e∗
is a t-conorm.

(iii) x∗ y =







e∗(
x

e∗
∗T

y

e∗
) if x,y ∈ [0,e∗]

(e∗ +(1− e∗))(
x− e∗

1− e∗
◦S

y− e∗

1− e∗
) if x,y ∈ [e∗,1]

(iv) min(x,y) ≤ x∗ y ≤ max(x,y) for all (x,y) ∈ [0,1]2 − ([0,e∗]
2 ∪ [e∗,1]2).

Proof. We just check (i), leaving (ii), (iii), and (iv) as exercises. First notice that ∗T

is clearly commutative and increasing by the corresponding conditions for ∗, so we

can just check identity and associativity as follows:

x∗T 1 =
(e∗x)∗ (e∗1)

e∗

=
(e∗x)∗ e∗

e∗

=
e∗x

e∗
= x

(x∗T y)∗T z =
e∗

(e∗x)∗ (e∗y)

e∗
∗ (e∗z)

e∗

=
((e∗x)∗ (e∗y))∗ (e∗z)

e∗

=
(e∗x)∗ ((e∗y)∗ (e∗z))

e∗
= x∗T (y∗T z) ⊓⊔
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We can investigate various classes of uninorms, just as we did with t-norms. Note,

however, that assuming continuity gives nothing new in this case.

Proposition 2.26. If ∗ is a continuous uninorm, then ∗ is a t-norm or a t-conorm.

Proof. Suppose that ∗ is a continuous conjunctive uninorm. Since 0 ∗ 1 = 0 and

1 ∗ 1 = 1, by continuity, there exists x ∈ [0,1] such that e∗ = x ∗ 1. But then 1 =
e∗ ∗1 = (x∗1)∗1 = x∗(1∗1) = x∗1 = e∗ so ∗ is a t-norm. Similar reasoning shows

that a continuous disjunctive uninorm is a t-conorm. ⊓⊔

However, there do exist new uninorms continuous on the open interval (0,1).

Example 2.27. The following “cross-ratio” uninorm is conjunctive and continuous

everywhere except at (1,1):

x∗CR y =







xy

xy+(1− x)(1− y)
if {x,y} 6= {0,1}

0 otherwise

Isomorphic versions of this t-norm have been used to combine degrees of belief in

expert systems such as MYCIN and PROSPECTOR (see the historical remarks at

the end of the chapter for references).

Conjunctive uninorms that are strictly increasing on (0,1) and continuous on the

half-open interval [0,1) can be classified in a nice way with the previous example

as a prototype. The proof of the following theorem, omitted here, is very similar to

the proof of Theorem 2.17 for Archimedean continuous t-norms.

Theorem 2.28. For any uninorm ∗ with e∗ ∈ (0,1), the following are equivalent:

(1) ∗ is strictly increasing on (0,1) and continuous on [0,1).

(2) ∗ has an additive generator; that is, there exists a strictly increasing continuous

function h : [0,1] → R̄ such that h(0) = −∞, h(e∗) = 0, h(1) = +∞, and:

x∗ y = h−1(h(x)+h(y)) for all (x,y) ∈ [0,1]2 −{(0,1),(1,0)}

Clearly, all conjunctive (or disjunctive) uninorms characterized by this theorem

(called representable uninorms) are order isomorphic. So we can take the cross-

ratio uninorm as representative of this class in the same way that e.g. the product

t-norm represents the class of strict Archimedean t-norms.

What about idempotent uninorms? For t-norms there is just one example: the

Gödel t-norm min. For uninorms, however, we can identify a new class of functions:

Theorem 2.29. For a uninorm ∗ with e∗ ∈ (0,1), the following are equivalent:

(1) ∗ is left-continuous and idempotent.

(2) For f (x) = sup{y ∈ [0,1] : x∗ y ≤ e∗}:

x∗ y =

{

min(x,y) if y ≤ f (x)

max(x,y) otherwise
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Proof. It is easy to check that (1) follows from (2). For the other direction, note that

f (x) = sup{y ∈ [0,1] : x∗y ≤ e∗} exists for x ∈ [0,1] by the left-continuity of ∗, and:

y ≤ f (x) iff x∗ y ≤ e∗ iff x ≤ f (y)

Suppose without loss of generality that x ≤ y. If y ≤ f (x), then x = x ∗ x ≤ x ∗ y =
x∗ (x∗ y) ≤ x∗ e∗ = x; i.e. x∗ y = x. Otherwise y > f (x), so x∗ y ≥ e∗ and we have

y = y∗ y ≥ x∗ y = (x∗ y)∗ y ≥ e∗ ∗ y = y; i.e. x∗ y = y. ⊓⊔

Example 2.30. Taking f (x) = 1− x in the previous theorem, we get:

x∗S y =

{

min(x,y) if x+ y ≤ 1

max(x,y) otherwise

This uninorm is order isomorphic to functions used in certain “Sugihara” algebras

over R for the relevance logic RM.

2.3 Nots and Ifs

“Ands” and “ors” are important, but arguably the core connective of a logic is im-

plication “if. . . then”. Below, we take a detailed look at how to interpret such a con-

nective, examining various options and exploring connections with uninorms. Let

us begin, however, by considering the useful related notion of a negation “not”.

Definition 2.31. A negation is a function n : [0,1] → [0,1] satisfying:

1. x ≤ y implies n(y) ≤ n(x) (antitonicity).

2. n(0) = 1 and n(1) = 0 (boundary conditions).

Definition 2.32. A negation n is:

• strict if it is strictly decreasing and continuous.

• an involution if n(n(x)) = x for all x ∈ [0,1].

• strong if it is a strict involution, and weak otherwise.

Example 2.33. The most widely used function for interpreting “not” in Fuzzy Logic

is the strong negation:

nŁ(x) =def 1− x

There are also popular negations which are strict but not strong such as n2(x) =def

1− x2, or more generally, nk(x) =def 1− xk for k ≥ 2. Important negations that are

weak (and not strict) include:

nG(x) =def

{

1 if x = 0

0 otherwise
nD(x) =def

{

1 if x < 1

0 if x = 1
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In fact, nG and nD are, respectively, the least and greatest negations; i.e. nG(x) ≤
n(x) ≤ nD(x) for any negation n and all x ∈ [0,1].

Let us now consider some desirable properties for implications:

Definition 2.34. A binary function →: [0,1]2 → [0,1] satisfies:

• exchange if x → (y → z) = y → (x → z) for all x,y,z ∈ [0,1].

• left antitonicity if x ≤ y implies y → z ≤ x → z for all x,y,z ∈ [0,1].

• right isotonicity if x ≤ y implies z → x ≤ z → y for all x,y,z ∈ [0,1].

• e-degree ranking for e ∈ [0,1], if e ≤ x → y iff x ≤ y for all x,y ∈ [0,1].

• the left boundary condition if 0 → x = 1 for all x ∈ [0,1].

• the right boundary condition if x → 1 = 1 for all x ∈ [0,1].

• the normality condition if 1 → 0 = 0.

• left neutrality if 1 → x = x for all x ∈ [0,1].

• contraposition for a negation n if x → y = n(y) → n(x) for all x,y ∈ [0,1].

• generalized modus ponens for a uninorm ∗ if x∗ (x → y) ≤ y for all x,y ∈ [0,1].

Example 2.35. Consider the function (obtained e.g. as nŁ(x)◦G y):

x →KD y =def max(1− x,y)

This function, the Kleene-Dienes implication, generalizes the characterization x →
y = ¬x ∨ y of classical implication, and is used frequently in Fuzzy Logic. The

exchange, left antitonicity and right isotonicity, left and right boundary, normality,

and left-neutrality conditions, and contraposition with respect to nŁ are all satisfied

by →KD, but the e-degree ranking property fails for any e ∈ [0,1]. More seriously,

there is no uninorm ∗ such that the generalized modus ponens principle holds. For

this last reason it is often claimed that →KD is not a true implication.

The previous example touches on an important point. An implication should ide-

ally “tie in” somehow with the conjunction of the logic. At an intuitive level:

for a conjunction ∗ and implication →, the generalized modus ponens property

x ∗ (x → y) ≤ y should hold, and x → y should be maximal (as true as possible)

subject to this restriction. This motivates the following definition:

Definition 2.36. A commutative function ∗ : α2 →α for a poset 〈α,≤〉 is residuated

iff there exists a function →∗: α2 → α called the residuum of ∗, such that:

x∗ y ≤ z iff x ≤ y →∗ z for all x,y,z ∈ α

When such a function exists, easily:

x →∗ y = max{z ∈ α : z∗ x ≤ y}

Moreover, residuated uninorms can be characterized as follows:
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Proposition 2.37. A uninorm is residuated iff it is left-continuous and conjunctive.

Proof. For the left-to-right direction, note first that 0 ≤ 1 →∗ 0. Hence, by residua-

tion, 0 ∗ 1 ≤ 0; i.e. ∗ is conjunctive. Now for x,y ∈ [0,1], let (xi)i∈N be a sequence

such that x = supi∈N xi. Define w = supi∈N(y∗ xi). Clearly w ≤ y∗ x. Also, for each

i ∈ N, y∗ xi ≤ w. So by residuation, xi ≤ y →∗ w. It follows that x ≤ y →∗ w, and so

by residuation again, y ∗ x ≤ w. Hence ∗ is left-continuous in its second argument,

and so by commutativity, also in the first.

For the right-to-left direction, suppose that ∗ is left-continuous and conjunctive.

Let y →∗ z =def sup{w ∈ [0,1] : w∗y ≤ z}, noting that this exists since 0 = 0∗y ≤ z,

and the set is bounded from above by 1. If x ∗ y ≤ z, then clearly x ≤ y →∗ z. If

x ≤ y →∗ z, then x ∗ y ≤ sup{w ∈ [0,1] : w ∗ y ≤ z} ∗ y. By left-continuity, x ∗ y ≤
sup{w∗ y : w∗ y ≤ z} ≤ z as required. ⊓⊔

Residua for the fundamental t-norms are easily calculated:

Łukasiewicz implication: x →Ł y =def min(1,1− x+ y)

Gödel implication: x →G y =def

{

1 if x ≤ y

y otherwise

Product implication: x →P y =def

{

1 if x ≤ y

y/x otherwise

Moreover, it is straightforward to verify that residua of uninorms (or in some cases,

just certain examples) satisfy many of the key implication properties.

Proposition 2.38. Let ∗ be a residuated uninorm:

(a) →∗ obeys the exchange, left antitonicity and right isotonicity, left and right

boundary, and normality conditions, and the e∗-degree ranking and generalized

modus ponens properties.

(b) →∗ obeys the left neutrality condition iff ∗ is a t-norm.

(c) →CR and →Ł obey contraposition for the negation nŁ(x) = 1− x.

Residuation is a natural way of obtaining implications from uninorms, but it is not

the only way. We could proceed instead as in Example 2.35 and generalize the clas-

sical reading of “A implies B” as “not A or B”. That is, take an involutive nega-

tion such as ¬x =def 1 − x and t-conorm (or disjunctive uninorm) ◦, and define

x → y =def ¬x ◦ y. Functions obtained in this way are called S-implications, while

the residuum based functions studied in this book are called R-implications.

One widely followed practice for defining a negation makes use of both an impli-

cation and the least element (usually 0 in the case of fuzzy logics) or, more generally,

an arbitrary element f. That is, given a residuated uninorm ∗ and f ∈ [0,1], let:

¬f
∗x =def x →∗ f

It is easy to show that ¬f
∗ satisfies antitonicity and ¬f

∗0 = 1. Also, if f = 0, then

¬f
∗1 = 0 and ¬f

∗ is a negation. In particular, we can obtain the Łukasiewicz negation
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as nŁ(x) = x →Ł 0 and the Gödel (product) negation encountered in Example 2.33

as nG(x) = x →G 0 = x →P 0.

A nice feature of continuous t-norms is that together with their residua they can

always be used to define the functions min and max.

Proposition 2.39. For any continuous t-norm ∗:

(a) x ≤ y iff x →∗ y = 1.

(b) x∗ (x →∗ y) = min(x,y).

(c) min((x →∗ y) →∗ y,(y →∗ x) →∗ x) = max(x,y).

Proof. (a) x ≤ y iff x∗1 ≤ y iff 1 ≤ x →∗ y. (b) If x ≤ y, then x∗(x →∗ y) = x∗1 = x.

Suppose that y ≤ x. Then by the continuity of ∗, since x∗0 = 0 ≤ y ≤ x = x∗1, there

exists z such that x ∗ z = y. So clearly also x ∗ (x →∗ y) = y. (c) If x ≤ y, then x →∗

y = 1 and since y ≤ (y →∗ x) →∗ x, we get min((x →∗ y) →∗ y,(y →∗ x) →∗ x) = y.

The case of y ≤ x is symmetrical. ⊓⊔

Finally, note that a bi-implication “iff” connective can be interpreted using min and

implication as follows:

x ⇔∗ y =def min((x →∗ y),(y →∗ x))

It is easy to see that x = y iff e∗ ≤ x ⇔∗ y for any residuated uninorm ∗. Hence ⇔∗

gives us a way of expressing (strict) equality for fuzzy logics.

2.4 Ordered Algebraic Structures

Let us take a moment to recap. So far we have been looking at different partially

ordered sets and a wide range of functions acting on these sets. By making definite

choices – of a poset and a selection of functions – we get examples of ordered

algebraic structures, or more simply, algebras.

2.4.1 Basic Notions

First, we need a way to identify the arities of functions occurring in our algebras.

Definition 2.40. A type is a set ν = (ni)i∈I of natural numbers indexed by a set I.

Algebras are then characterized as structures of a particular type.

Definition 2.41. An algebra of type ν = (ni)i∈I is an ordered pair:

A = 〈LA,FA〉

where LA is a non-empty set called the universe of A and FA = ( f A
i )i∈I is a set of

functions f A
i : L

ni

A → LA called the fundamental operations of A.
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Following convention, when the type is finite, we write A = 〈LA,{ f A
1 , . . . , f A

m }〉
without set brackets as A = 〈LA, f A

1 , . . . , f A
m 〉.

Example 2.42. Taking the min function (the Gödel t-norm) for conjunction, max for

disjunction, and nŁ(x) = 1− x for negation, we have an algebra of type (2,2,1):

〈[0,1],min,max,nŁ〉

This is the algebra most commonly encountered in Fuzzy Logic. However, as dis-

cussed in Example 2.35, the implication definable here as x →KD y = max(1− x,y)
is not very satisfactory.

Often we treat classes of algebras of the same type, that is, algebras having the same

number of fundamental operations with the same arity. Consider for example the

class of algebras of type (2,2,1):

〈[0,1],∗,◦,n〉

where ∗ is a t-norm, ◦ is a t-conorm, and n is a strong negation. The algebra

〈[0,1],min,max,nŁ〉 of Example 2.42 is just one special member of this class.

Example 2.43. Lattices, introduced in Definition 2.3 as special kinds of posets, can

be defined equivalently as algebras of type (2,2):

〈L,∧,∨〉

such that 〈L,≤〉 is a lattice with ordering x ≤ y iff x∧ y = x, where x∧ y = inf{x,y}
and x∨ y = sup{x,y}. Similarly, a bounded lattice is an algebra 〈L,∧,∨,⊥,⊤〉 such

that 〈L,∧,∨〉 is a lattice, ⊥ = infL, and ⊤ = supL.

Another simple but important class of algebras of interest in Fuzzy Logic is the class

of monoids:

Definition 2.44. A monoid is an algebra of type (2,0):

〈L,⊙,e〉

such that ⊙ is an associative binary function on L with unit element e.

We have already encountered many examples of monoids and lattices. In particular,

〈[0,1],∗,e∗〉 is a monoid for any uninorm ∗, while the crucial lattice for Fuzzy Logic

is 〈[0,1],min,max〉.
However, there is another useful way of describing monoids. We can define the

class of all algebras 〈L,⊙,e〉 of type (2,0) that satisfy the following equations:

(x⊙ y)⊙ z = x⊙ (y⊙ z) x⊙ e = x e⊙ x = x

In this case, we can say that monoids form an equational class or variety.
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Definition 2.45. A variety is the class of all algebras of a given type that satisfy a

particular set of equations.5

Example 2.46. The class of lattices, already presented in two ways, can be defined a

third time as the class of algebras 〈LA,∧,∨〉 of type (2,2) satisfying the equations:

x∧ x = x x∨ x = x

x∧ y = y∧ x x∨ y = y∨ x

x∧ (y∧ z) = (x∧ y)∧ z x∨ (y∨ z) = (x∨ y)∨ z

x∧ (x∨ y) = x x∨ (x∧ y) = x

Bounded lattices are algebras 〈LA,∧,∨,⊥,⊤〉 of type (2,2,0,0) satisfying these

equations and also x∧⊥ = ⊥ and x∨⊤ = ⊤.

Often we are interested in the equations satisfied by a particular algebra or class of

algebras. In this case, it is helpful to consider the variety consisting of all algebras

satisfying these equations.

Definition 2.47. If K is a class of algebras of the same type, then V(K), the variety

generated by K, denotes the smallest variety containing all the algebras in K.

Finally, let us introduce some definitions for relating algebras.

Definition 2.48. Let A = 〈LA,( f A
i )i∈I〉 and B = 〈LB,( f B

i )i∈I〉 be algebras of the

same type ν = (ni)i∈I . A function φ : LA → LB is a homomorphism from A to B if

for all i ∈ I and a1, . . . ,ani
∈ LA:

φ( f A
i (a1, . . . ,ani

)) = f B
i (φ(a1), . . . ,φ(ani

))

If φ is injective, then φ is called an embedding of A into B, and if φ is also surjective,

then φ is an isomorphism from A onto B and the algebras are called isomorphic.

Example 2.49. Consider the algebras of type (2,2,0):

〈(0,1],∗P,→P,1〉 and 〈R−∪{0},+,→+,0〉

where ∗P and →P are the product t-norm and its residuum, respectively, + is usual

addition, and x →+ y = min(0,y − x). Define φ : (0,1] → R− ∪ {0} by φ(x) =
logx. Then φ(x ∗P y) = log(xy) = logx + logy = φ(x) + φ(y) and φ(x →P y) =
log(min(1,y/x)) = min(log1, log(y/x)) = min(0, logy − logx) = φ(x) →+ φ(y).
Since φ is both injective and surjective, it is an isomorphism and the two algebras

are isomorphic. This means that in practice we can often switch between the two

when performing calculations or establishing properties.

5 By a famous theorem of Birkhoff, a variety is, equivalently, a class of algebras of the same type
that is closed under homomorphic images, subalgebras, and direct products.
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2.4.2 Commutative Residuated Lattices

In theory, we can accommodate all kinds of algebras for building fuzzy logics. In

practice, however, it is more convenient and interesting to settle on fixed selections

of operations. In particular, the class of residuated lattices – combining the notions

of a lattice of truth values with a monoid operation and its residuum – provides a

versatile framework for dealing with a wide range of non-classical logics, including

fuzzy logics. Here we will restrict our attention to the commutative case and (as is

usual for substructural logics) add an extra constant to the type to model negation.

Definition 2.50. A pointed commutative residuated lattice (pcrl) is an algebra:

A = 〈LA,∧,∨,⊙,→,e, f〉

with binary operations ∧, ∨, ⊙, →, and constants e and f such that:

1. 〈LA,∧,∨〉 is a lattice.

2. 〈LA,⊙,e〉 is a commutative monoid.

3. x⊙ y ≤ z iff x ≤ y → z for x,y,z ∈ LA.

We also define operations:

¬x =def x → f x⊕ y =def ¬x → y

0.x =def f (n+1).x =def x⊕n.x

x0 =def e xn+1 =def x⊙ xn

For convenience, a commutative residuated lattice (crl) may be regarded as a pcrl

where f = e, and the type can be shortened accordingly.

Example 2.51. Examples of (pointed) commutative residuated lattices occur in many

branches of Mathematics, perhaps most pertinently:

Z = 〈Z,min,max,+,−,0〉
Q = 〈Q,min,max,+,−,0〉
R = 〈R,min,max,+,−,0〉

where − is the binary subtraction function, and residuation in such cases amounts

to the fact that x+ y ≤ z iff x ≤ z− y.

Pointed commutative residuated lattices contain most of the functions that we need

for defining logics: ⊙ and → for conjunction and implication, ∧ and ∨ for weak

order defining conjunction and disjunction, e for truth, and f for falsity. However,

for many fuzzy logics, the truth value set is bounded (most commonly by 0 and 1)

and it is helpful to also represent these in the algebra:

Definition 2.52. A bounded pcrl (bpcrl) is an algebra:

A = 〈LA,∧,∨,⊙,→,e, f,⊥,⊤〉
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such that 〈LA,∧,∨,⊙,→,e, f〉 is a pcrl and 〈LA,∧,∨,⊥,⊤〉 is a bounded lattice.

From a fuzzy perspective, the most important examples of bpcrls are based on resid-

uated uninorms.

Definition 2.53. For any residuated uninorm ∗ and f ∈ [0,1], we define the bpcrl:

A(∗, f) =def 〈[0,1],min,max,∗,→∗,e∗, f,0,1〉

Note that the “falsity” value f is maintained here for uniformity. It only really plays a

part in the logic when the negation ¬x =def x → f is an involution. Indeed for t-norm

based logics f = 0, and for the logic based on the cross-ratio uninorm, f = e∗.

Let us denote the classes of pcrls and bpcrls by CRL+ and BCRL+, respectively.

We then observe the following significant fact:

Proposition 2.54. CRL+ and BCRL+ are varieties.

Proof. The equations for a monoid have already been mentioned above, and those

for (bounded) lattices are given in Example 2.46. The following equations then guar-

antee the residuation property:

x⊙ (y∨ z) = (x⊙ y)∨ (x⊙ z) (x⊙ (x → y))∨ y = y

x → (y∧ z) = (x → y)∧ (x → z) (x → (x⊙ y))∧ y = y

Let A be an algebra satisfying these equations, and suppose first that x ≤ y → z; i.e.

x∨ (y → z) = y → z. Then:

y⊙ (y → z) = y⊙ (x∨ (y → z)) = (y⊙ x)∨ (y⊙ (y → z))

But (y⊙(y→ z))∨z = z, so z = (y⊙x)∨(y⊙(y→ z))∨z = (y⊙x)∨z; i.e. y⊙x≤ z.

For the other direction, if x⊙ y ≤ z, i.e. (x⊙ y)∧ z = x⊙ y, then:

(y → (x⊙ y))∧ (y → z) = y → ((x⊙ y)∧ z) = y → (x⊙ y)

But then x∧ (y → z) = x∧ (y → (x⊙ y))∧ (y → z) = x∧ (y → (x⊙ y)) = x; i.e.

x ≤ y → z as required. ⊓⊔

(Bounded) (pointed) commutative residuated lattices provide a common framework

for many important classes of algebras. The only caveat is that we must be rather

loose with the type. Algebras are said to be term equivalent if the fundamental

operations of one are definable using the fundamental operations of the other.

• Boolean algebras, the algebras of Classical Logic, are term equivalent to the

variety BA of pcrls satisfying x⊙ y = x∧ y and (x → f) → f = x.

• Heyting algebras, the algebras of Intuitionistic Logic, are term equivalent to the

variety HA of pcrls satisfying x⊙ y = x∧ y and f = f∧ x.

• MV-algebras, the algebras of Łukasiewicz Logic, are term equivalent to the

variety MV of pcrls satisfying x∨ y = (x → y) → y and f = f∧ x.
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Table 2.1 Properties for commutative residuated lattices

Name Condition

integral e ≤ (x → e)∧ (f → x)
involutive x = ¬¬x

idempotent x = x⊙ x

square-increasing x ≤ x⊙ x

square-decreasing x⊙ x ≤ x

n-contractive xn−1 ≤ xn

splitting e ≤ x∨¬x

strict e ≤ ¬(x∧¬x)
distributive x∧ (y∨ z) = (x∧ y)∨ (x∧ z)
prelinear e ≤ (x → y)∨ (y → y)

• Lattice-ordered abelian groups (abelian ℓ-groups) are term equivalent to the

variety ALG of pcrls satisfying x⊙ (x → e) = e and f = e.

Other important varieties are obtained by mixing and matching the conditions listed

in Table 2.1, recalling that an inequality t ≤ s for these algebras can always be

rewritten as an equality t ∧ s = t. For example, ICRL and DCRL are the varieties

of integral and distributive pcrls, respectively.

Classes of algebras A(∗, f) where ∗ is a residuated uninorm and f ∈ [0,1] do

not form varieties, however. There is no set of equations that are satisfied only by

non-empty collections of these algebras. Instead, we focus on varieties generated by

these classes. For example, let K = {A(∗,0) : ∗ is a t-norm}. We will see later that

V(K), the variety generated by K, is exactly the class of integral prelinear bpcrls.

2.4.3 The Dedekind-MacNeille Completion

In proving generation results for varieties – specifically, generation by algebras

based on the real numbers – we will make key use of Dedekind-MacNeille com-

pletions, based on Dedekind’s construction of the real numbers from the rationals.

Key features of the construction are the fact that the rationals can be embedded into

the reals, and that every subset of the reals has both a supremum and an infimum.

The construction was generalized by MacNeille to arbitrary posets as follows.

Definition 2.55. For a poset P = 〈α,≤〉, let:

DM(P) =def {β ⊆ α : (β u)l = β}

where β u =def {x ∈ α : y ≤ x for all y ∈ β} and β l =def {x ∈ α : x ≤ y for all y ∈ β}.

For any (even infinite) subset D ⊆DM(P), the infimum and supremum of D accord-

ing to the ordering ⊆ are the intersection ∩D and union ∪D, respectively. Moreover,

it is easy to check that ((∩D)u)l = ∩D and ((∪D)u)l = ∪D. Hence:
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Lemma 2.56. 〈DM(P),⊆〉 is a complete lattice.

Just as Dedekind extended the operations of the rationals to the reals, so the opera-

tions of an arbitrary pcrl or bpcrl A can be extended from LA to DM(LA) to obtain

a new algebra.

Definition 2.57. For any pcrl or bpcrl A, DM(A) is an algebra of the same type with

universe DM(LA) and fundamental operations defined (where appropriate) by:

α ∧DM β =def α ∩β eDM =def {e}l

α ∨DM β =def ((α ∪β )u)l fDM =def {f}l

α ⊙DM β =def ({x⊙ y : x ∈ α,y ∈ β}u)l ⊥DM =def {⊥}

α →DM β =def {x ∈ LA : x⊙ y ∈ β for all y ∈ α} ⊤DM =def LA

Theorem 2.58. For any (bounded) pcrl A:

(a) DM(A) is a (bounded) pcrl.

(b) If A is integral, involutive, idempotent, square decreasing or increasing, n-

contractive, splitting, strict, linearly or densely ordered, then so is DM(A).

(c) Φ(x) = {x}l is an embedding of A into DM(A).

Proof. It is easy to see that DM(A) satisfies the (bounded) lattice and monoid prop-

erties. For residuation, observe that:

α ⊙DM β ⊆ γ iff x⊙ y ∈ γ for all x ∈ α and y ∈ β
iff x ∈ β →DM γ for all x ∈ α
iff α ⊆ β →DM γ

It is straightforward also to verify that if A is integral, involutive, idempotent, square

decreasing or increasing, n-contractive, splitting, strict, linearly or densely ordered,

then the same holds for DM(A). Finally for (c), Φ is clearly a homomorphism (pre-

serving infinite joins and meets) and injective since if x 6= y, then either x 6≤ y or

y 6≤ x, so {x}l 6= {y}l . ⊓⊔

The Dedekind-MacNeille completion will be useful in the next chapter when we

use it to show that certain logics are characterized by algebras A where LA = [0,1].
Intuitively, it allows us to step from an algebra that is dense and linearly ordered to

one that is isomorphic to an algebra on the real numbers. Note, however, that not all

our desired properties are preserved by the Dedekind-MacNeille completion. Most

importantly, divisibility – key for the logic of continuous t-norms – may be lost in

this construction.

2.5 Languages and Logics

So far in this chapter we have seen a great many algebras suitable for interpret-

ing fuzzy logics. What we have not yet seen is a general definition of these logics.



2.5 Languages and Logics 31

Table 2.2 Common connectives

Connectives Arity Meaning

∧, ⊙ 2 conjunction: “... and ...”
∨, ⊕ 2 disjunction: “... or ...”
→ 2 implication: “if... then...”
↔ 2 bi-implication: “... if and only if ...’ ’
¬ 1 negation: “not ...”

e, ⊤ 0 truth
f, ⊥ 0 falsity

There is a good reason for this of course. Logics based on the real numbers have

been introduced with different motivations and in a variety of contexts. To place

all of these logics in a single general framework would be difficult, perhaps even

impossible. Nevertheless, as we will see below, there do exist standard uniform pre-

sentations which cover the most important systems of Fuzzy Logic, and have useful

and interesting connections with proof theory.

Our starting point is – as usual – a (formal) language, an essential ingredient

of any logic, whatever the presentation. Languages provide the basic materials for

making (vague) statements like “John is tall”, “I am hungry and thirsty”, “If the

clothes are dirty, then the water is hot”, etc. In propositional logics, we deal with

such statements (propositions) using variables to stand for arbitrary basic proposi-

tions, and logical connectives to combine propositions into more complex ones:

Definition 2.59. A (propositional) language of type ν = (ni)i∈I is a set L = (⋆i)i∈I

where ⋆i is an ni-ary function symbol called an L-connective of arity ni.

In this book we will need more connectives than is usually supplied for Classical

Logic. A selection of these is displayed in Table 2.2, together with their arities and

some clues as to their expected behaviour. Note that for simplicity, we use here

the same symbols for connectives as for operations of (bounded) pcrls, relying on

context to distinguish between the different uses.

Formulas for a language L (and their subformulas), denoted A,B,C . . . , are built

up out of a set of variables, denoted p,q,r, . . . , and connectives as follows:

Definition 2.60. Let L be a language and X a set of variables. Then the set FmL(X)
of L-formulas over X is the smallest set such that:

(1) X ⊆ FmL(X).

(2) ⋆(A1, . . . ,An) ∈ FmL(X) for each n-ary ⋆ ∈ L and A1, . . . ,An ∈ FmL(X).

The subformulas of a formula are defined inductively by:

(1) A is a subformula of A for all A ∈ FmL(X).

(2) each subformula of Ai for i = 1 . . .n is a subformula of ⋆(A1, . . . ,An) for all

n-ary ⋆ ∈ L and {A1, . . . ,An} ⊆ FmL(X).

The complexity of a formula is defined inductively by:
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Table 2.3 Languages appearing in this book

Label Connectives

LB ∧,∨,⊙,→, f,e,⊥,⊤
LF ∧,∨,⊙,→, f,e
LG ∧,∨,→,⊥,⊤
LI ∧,→,⊥,⊤
LT ⊙,→,⊥
LC ⊙,→
LA ∧,→
LL →,⊥
L→ →

(1) cp(p) = 1 for p ∈ X.

(2) cp(⋆(A1, . . . ,An))= 1+∑
n
i=1 cp(Ai) for n-ary ⋆∈L and {A1, . . . ,An}⊆FmL(X).

We call formulas with complexity 1, atoms or atomic formulas.

Definition 2.61. A set of formulas T ⊆ FmL(X) is called an FmL(X)-theory.

Connectives may also be defined as abbreviations of other connectives; in particular:

¬A =def A → f A⊕B =def ¬A → B

0.A =def f (n+1).A =def A⊕n.A

A0 =def e An+1 =def A⊙An

Here the defined connectives, which mirror exactly the defined operations for

(bounded) pcrls, should be thought of just as syntactic conveniences, not present

in the language itself.

For each binary connective ⋆ we swap freely between prefix ⋆(x,y) and infix

notation x ⋆ y. We disregard brackets where readability is not at stake, and assume

that ¬ binds more tightly than other connectives, e.g. reading ¬p∧ q as ¬(p)∧ q

rather than ¬(p∧q). For convenience, when ⋆ ∈ {∧,∨,⊙,⊕}, we sometimes abuse

notation and write ⋆{A1, . . . ,An} for A1 ⋆ (A2 ⋆ . . .(An−1 ⋆ An) . . .). We also define

(when these make sense for the language at hand):

∨

/0 =def ⊥
∧

/0 =def ⊤ ⊙ /0 =def e ⊕ /0 =def f

A selection of the languages used in this book is presented in Table 2.3.

A logic can be presented semantically as a language together with a class of al-

gebras of the same type. That is, for every connective of the language there is an

associated operation of the algebra with the same arity. Indeed, as already men-

tioned, we abuse notation here by using the same symbols for both connectives and

their algebraic counterparts. We begin then by defining mappings from formulas

into algebras of the same type, fixing for now, a countably infinite set of variables

X, and writing FmL rather than FmL(X). For convenience, we will also assume that
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the language L of our formulas and theories matches the language of bpcrls or pcrls,

LB or LF, as appropriate.

Definition 2.62. Let L = (⋆i)i∈I be a language and A = 〈LA,( fi)i∈I〉 an algebra of

the same type ν = (ni)i∈I . An A-valuation for L is a function v : FmL → LA such

that for all i ∈ I:

v(⋆i(A1, . . . ,Ani
)) = fi(v(A1), . . . ,v(Ani

))

Definition 2.63. Let A be a (bounded) pcrl:

• A formula A ∈ FmL is A-valid if v(A) ≥ e for all A-valuations v.

• An A-valuation v is an A-model of an FmL-theory T if v(A) ≥ e for all A ∈ T .

• We write T |=A A if every A-model of T is an A-model of {A}.

For a class of (bounded) pcrls K, we write T |=K A if T |=A A for all A ∈ K.

Logics can then be presented semantically via a class of algebras. The valid formu-

las or tautologies of the logic are those formulas that are valid in every algebra of

the class. In particular, substructural logics are often characterized as logics based

on classes of (bounded) (pointed) (commutative) residuated lattices. However, for

fuzzy logics, something more is required. There are many options, but in this book

we will mostly encounter logics based on bpcrls where the universe is [0,1], the

lattice operations are min and max, and ⊙, →, and e are a uninorm, its residuum,

and unit, respectively. That is, we treat logics based on algebras of the form A(∗, f)
where ∗ is a uninorm and f an arbitrary member of [0,1].

Definition 2.64. A logic L based on a class of (bounded) pcrls K is the set:

{(T,A) : T |=K A}

We write T |=L A for (T,A) ∈ L and say that A is L-valid if |=L A.

Logics based on single algebras include Łukasiewicz Logic Ł, Gödel Logic G, and

Product Logic P, the fundamental fuzzy logics, defined via the algebras A(∗Ł,0),
A(∗G,0), and A(∗P,0), respectively. Logics based on classes of algebras include

Basic Logic BL and Monoidal t-norm Logic MTL, defined via the algebras A(∗,0)
where ∗ is a continuous t-norm and a residuated t-norm, respectively. Other logics

studied in the literature are obtained by requiring that the uninorm be idempotent

or n-contractive, or that the negation be involutive. Table 2.4 provides a reference,

shortening residuated to res., involutive to inv., idempotent to idem., and contractive

to cont.

2.6 Historical Remarks

The study of t-norms – “t” for triangular – has a long and distinguished his-

tory, originating in the context of statistical metric spaces with the 1942 paper of
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Table 2.4 Fuzzy logics

Logic Name Class of algebras

UL Uninorm Logic {A(∗, f) : ∗ a res. uninorm, f ∈ [0,1]}
IUL Involutive UL {A(∗, f) : ∗ an inv. res. uninorm, f ∈ [0,1]}
UML Uninorm Mingle Logic {A(∗, f) : ∗ an idem. res. uninorm, f ∈ [0,1]}
IUML Involutive UML {A(∗,e) : ∗ an idem. inv. res. uninorm}
MTL Monoidal t-norm Logic {A(∗,0) : ∗ a res. t-norm}
IMTL Involutive MTL {A(∗,0) : ∗ an inv. n-cont. res. t-norm}
MTLn n-Contractive MTL {A(∗,0) : ∗ an n-cont. res. t-norm}
IMTLn n-Contractive IMTL {A(∗,0) : ∗ an inv. n-cont. res. t-norm}
SMTL Strict MTL {A(∗,0) : ∗ a res. t-norm; ¬0

∗ is nG}
PMTL Product MTL {A(∗,0) : ∗ a restricted cancellative res. t-norm}

BL Basic Logic {A(∗,0) : ∗ a continuous t-norm}
SBL Strict BL {A(∗,0) : ∗ a continuous t-norm; ¬0

∗ is nG}
Ł Łukasiewicz Logic A(∗Ł,0)
G Gödel Logic A(∗G,0)
P Product Logic A(∗P,0)
A Abelian Logic R

CHL Cancellative Hoop Logic 〈(0,1],∗P,→P,1〉
CRL Cross-Ratio Logic A(∗CRL, 1

2 )

Menger [140] (see also [196] for more details). The key ordinal sum representation

of continuous t-norms described above was established by Mostert and Shields in

1957 [157]. This result and a wealth of further material on t-norms and related op-

erators may be found in the 2000 monograph of Klement, Mesiar, and Pap [129].

The particular use of t-norms in Fuzzy Logic extends back to Zadeh’s 1965 pa-

per [223], and was further developed by Goguen in 1969 [100] and Pavelka in

1979 [181] among many others. The systematic approach followed in this chapter

was expounded by Hájek for continuous t-norms in his 1998 monograph [105] and

extended to left-continuous t-norms by Godo and Esteva in 2001 [77]. Other use-

ful references for the t-norm based methodology are the books of Gottwald [102],

Novák et al. [167], and Turunen [211].

Uninorm aggregation operators were introduced explicitly by Yager and Ry-

balov in 1996 [221], but had already appeared in the 1970s and 1980s in papers by

Silvert [199] (the cross-ratio uninorm), Czogala and Drewniak [65] (representable

uninorms), and Dombi [71] (idempotent uninorms), and as combining functions for

expert systems such as MYCIN [198] (see also [113]). The structural properties

of representable and idempotent uninorms and their residua described in this chap-

ter were obtained (using earlier results) by De Baets, Fodor, Rybalov, and Yager

in [68, 69, 83]. The extension of Hájek’s t-norm approach to uninorm based logics

was developed by Metcalfe and Montagna in [144]. The particular case of the cross-

ratio uninorm was treated with other “[0,1)-continuous uninorm logics” by Gabbay

and Metcalfe in [87].

For a general introduction to partially ordered sets, lattices, and the fundamentals

of Universal Algebra we refer to the textbooks [40, 67]. The more specific study of
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residuated lattices originated in the first half of the 20th century with the theory of

ring ideals, in particular, with Ward and Dilworth’s 1939 paper [217]. Such struc-

tures have appeared repeatedly – often with conflicting definitions – in the Algebra

and Logic literature. Particularly important for fuzzy logics are the 1985 paper of

Ono and Komori [177] which treats algebras for “contraction-free” substructural

logics, and the 1995 paper of Höhle [119] which puts forwards integral commu-

tative residuated lattices as suitable algebras for investigating fuzziness. Also sig-

nificant is the 1999 monograph of Cignoli, D’Ottaviano, and Mundici [58] which

provides an intensive study of Chang’s MV-algebras, the algebraic semantics of

Łukasiewicz logic. The definitions of (pointed) (bounded) (commutative) residu-

ated lattices used in this chapter follow the uniform and comprehensive approach

described by Tsinakis and co-workers in the early 2000s [116, 127, 210]. These

structures and their connections with substructural logics are also investigated in

detail in the 2007 book of Galatos, Jipsen, Kowalski, and Ono [90].

Finally, the Dedekind-MacNeille completion described above is based on Mac-

Neille’s 1937 poset generalization of Dedekind’s construction of the reals [136].

Such completions have proved useful in many different contexts for non-classical

logics, including – as we will see in future chapters – establishing certain complete-

ness results, and even for proving cut admissibility (see e.g. [175]).
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Chapter 3

Hilbert Systems

In the last chapter, we considered semantic aspects of fuzzy logics: what it means

for a formula to be valid in some algebra. Here we turn our attention to syntax

and what it means for formulas (or other structures) to be derivable in a particular

proof system. The challenge is of course to show that the two coincide – derivable

formulas are valid in suitable algebras and vice versa.

Hilbert systems are perhaps the best known of the vast panorama of proof sys-

tems existing in the literature. They consist of a (usually small) set of rules that

generate distinguished formulas (theorems) from an initial set of formulas (axioms).

Such systems provide a flexible framework for presenting a wide spectrum of logics.

Usually, they are easily matched with appropriate classes of algebras. On the other

hand, Hilbert systems are not always so convenient for proof search or investigat-

ing algorithmic aspects of logics. For these tasks we will need the Gentzen system

framework described in Chapter 4.

3.1 Structures and Systems

Several proof frameworks appear in this book, so we will make the core definitions

here as general as possible, beginning with the elements of the derivations them-

selves. For Hilbert systems these are just formulas, but in later chapters we will

make use of sequents (ordered pairs of multisets of formulas), hypersequents (mul-

tisets of sequents), and even more complicated constructions. In general, for a proof

system we need only assume some distinguished “set of structures” S. Inferences

and rules for the system are then constructed from members of this set as follows:

Definition 3.1. An inference for a set of structures S is an ordered pair consisting

of a structure W ∈ S called the conclusion, and a finite set (possibly empty) of

structures W1, . . . ,Wn ∈ S called the premises, written as either W1, . . . ,Wn / W or:

W1 . . . Wn

W

37
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An (inference) rule (r) for S is a set of inferences for S, called instances of (r), and

a proof system (calculus) C consists of a set of structures S and a set of rules for S.

The structures for an arbitrary1 Hilbert system HL (the “H” is for Hilbert) are for-

mulas FmL(X) for some language L and a countably infinite set of variables X. As

in the last chapter, let us assume for now that X is fixed, and just speak of formulas

in FmL . Typically, rules for Hilbert systems are presented via schema – formulas

with variables replaced by formula meta-variables A,B,C . . . – where substituting

actual formulas for the meta-variables gives instances of the rule. Schema with no

premises are called axiom schema and their instances are called axioms. Hilbert

systems themselves are often called axiomatizations: they “axiomatize” some logic.

Example 3.2. For L = {¬,∧,∨,→}, the inference for FmL :

¬(p∧ r)∨ (p → q) p∧ r

p → q

is an instance of the “Ackermann gamma rule” for FmL defined by the schema:

¬A∨B A
B

Example 3.3. One famous Hilbert system for Classical Logic – for convenience, call

it HCPC – consists of FmL for L = {→,¬} with axiom schema:

(CL1) A → (B → A)
(CL2) (A → (B →C)) → ((A → B) → (A →C))
(CL3) (¬A →¬B) → (B → A)

and the “modus ponens” rule:

A A → B
B

(MP)

Intuitively, a structure W “follows from” a set of structures S in a proof system C

if, starting with members of S and rule instances of C with no premises, we can use

rule instances of C to arrive at W . More precisely, a derivation is a certain kind of

“labelled finite tree” (in the set-theoretic sense), defined as follows:

Definition 3.4. A finite tree is a finite poset 〈α,≤〉 with a distinguished element x0

called the root such that:

1. x0 ≤ x for all x ∈ α .

2. 〈{y ∈ α : y ≤ x},≤〉 is linearly ordered for all x ∈ α .

The members of α are called nodes and:

1 We will use the roman font L, HL, GL, etc. throughout this book to denote an arbitrary logic or
system, reserving sans serif MTL, HUL, GP, etc. for particular cases.
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• each node x such that {y ∈ α : x < y} = /0 is called a leaf.

• for each leaf x, the set {y ∈ α : y ≤ x} is called a branch.

• a node x is a child of a parent node y if y < x and {z ∈ α : y < z < x} = /0.

• the height of the tree is sup{|{y ∈ α : y ≤ x}| : x ∈ α}.

A finite tree labelled by β consists of a finite tree 〈α,≤〉 and a function f : α → β .

Definition 3.5. Let C be a calculus for a set of structures S. A C-derivation d of

W ∈ S from a finite set T ⊆ S is a finite tree of height ht(d) labelled by S such that:

1. W labels the root and is called the end-structure of d.

2. For each node x labelled W0, either W0 ∈ T or the child nodes of x are labelled

W1, . . . ,Wn and W1, . . . ,Wn / W0 is an instance of a rule of C.

W ∈ S is C-derivable from T ⊆ S if there is a C-derivation d of W from a finite set

T F ⊆ T , written d;T ⊢C W or simply T ⊢C W .

Hilbert system derivations are often displayed in linear format. In this case, an HL-

derivation of a formula A from a set of formulas (i.e. a theory) T is written as a

sequence of formulas A1, . . . ,An such that A = An and for each i = 1 . . .n, Ai is either

an axiom of HL, a member of T , or follows from previous formulas in the sequence

using a rule of HL. Formulas derivable from the empty theory /0 (often written as an

empty space) are called theorems of HL.

Example 3.6. Derivations of the “identity” theorems A → A in the calculus HCPC

of Example 3.3 can be written in linear format as follows:

1. A → ((A → A) → A) (CL1)

2. (A → ((A → A) → A)) → ((A → (A → A)) → (A → A)) (CL2)

3. (A → (A → A)) → (A → A) (MP) 1,2
4. A → (A → A) (CL1)

5. A → A (MP) 3,4

Notice that even derivations of simple theorems like this can be tricky to find.

Before we consider Hilbert systems in greater detail, let us first point out some

useful properties of proof systems that follow immediately from the definitions. In

particular, a structure derivable from a set of structures T is derivable from any

superset of T (expansion) and some finite subset of T (compactness).

Proposition 3.7. If T ⊢C W for some calculus C based on S, then:

(a) T + ⊢C W whenever T ⊆ T + ⊆ S.

(b) T F ⊢C W for some finite subset T F of T .

We also define some general properties of rules.

Definition 3.8. For a calculus C based on S, a rule (r) for S is:

• C-derivable if W1, . . . ,Wn ⊢C W for each instance W1, . . . ,Wn / W of (r).
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• C-admissible if for each instance W1, . . . ,Wn / W of (r), whenever ⊢C Wi for

i = 1 . . .n, then ⊢C W .

• C-invertible if for each instance W1, . . . ,Wn / W of (r), whenever ⊢C W , then

⊢C Wi for i = 1 . . .n.

For an algebra A or logic L (assuming that |=A W or |=L W is defined for W ∈ S), a

rule (r) for S is:

• A-sound (or L-sound) if for each instance W1, . . . ,Wn / W of (r), whenever |=A

Wi (or |=L Wi) for i = 1 . . .n, then |=A W (or |=L W ).

• A-invertible (or L-invertible) if for each instance W1, . . . ,Wn / W of (r), when-

ever |=A W (or |=L W ), then |=A Wi (or |=L Wi) for i = 1 . . .n.

Finally, let us define the general notion of an extension of a calculus.

Definition 3.9. Let Ci be a calculus based on Si with rules Ri for i = 1,2. If S1 ⊆S2

and R1 ⊆ R2, then C2 is called an extension of C1.

C2 is usually obtained by adding schematic rules (r1), . . . ,(rn) to C1, and in this case

we write C2 = C1 +(r1)+ · · ·+(rn). Also, we note the following useful substitution

property for Hilbert systems with schematic rules, established by an easy induction

on the height of a derivation. Let us write A[p/B] for the result of substituting all

occurrences of a variable p in a formula A with a formula B.

Lemma 3.10. For any Hilbert system HL with schematic rules: if ⊢HL A, then ⊢HL

A[p/B].

3.2 Core Axioms and Rules

The goal of this chapter is to define Hilbert systems systematically for a range of

fuzzy logics, the challenge being to capture semantic aspects such as linearity and

continuity using axioms. Our first step is to define elementary Hilbert systems that

characterize validity for general classes of (bounded) pcrls. We then tackle particular

logics as extensions of these systems.

The “implicational core” consists of just three axiom schema and one rule:

Definition 3.11 (Axioms for Implication).

(B) (A → B) → ((B →C) → (A →C)) (transitivity)

(C) (A → (B →C)) → (B → (A →C)) (permutation)

(I) A → A (reflexivity)

Definition 3.12 (Modus Ponens).

A A → B
B

(MP)
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Example 3.13. The following derivation uses transitivity, permutation, and modus
ponens to establish a useful “suffixing” law for implicational formulas:

1. (C → A) → ((A → B) → (C → B)) (B)

2. ((C → A) → ((A → B) → (C → B))) → ((A → B) → ((C → A) → (C → B))) (C)

3. (A → B) → ((C → A) → (C → B)) (MP)

(B), (C), (I), and (MP) provides an axiomatization BCI for the implicational frag-

ment of Linear Logic, one of the most famous substructural logics. To axiomatize

the so-called “multiplicative” fragments, we add axioms connecting ⊙ and → as

conjunction and implication, and fix e as the unit for ⊙.

Definition 3.14 (Axioms for Multiplicative Conjunction).

(⊙1) A → (B → (A⊙B))
(⊙2) (A → (B →C)) → ((A⊙B) →C)

Definition 3.15 (Axioms for the Multiplicative Unit).

(e1) e

(e2) A → (e → A)

Example 3.16. Certain properties of ⊙ are inherited directly from →. For example,

we can prove the commutativity of ⊙ as follows:

1. A → (B → (A⊙B)) (⊙1)
2. (A → (B → (A⊙B))) → (B → (A → (A⊙B))) (C)

3. (B → (A → (A⊙B))) (MP) 1,2
4. (B → (A → (A⊙B))) → ((B⊙A) → (A⊙B)) (⊙2)
5. (B⊙A) → (A⊙B) (MP) 3,4

To characterize the “additive” connectives ∧ and ∨, we need more axioms and also

a further rule:

Definition 3.17 (Axioms for Additive Conjunction).

(∧1) (A∧B) → A

(∧2) (A∧B) → B

(∧3) ((A → B)∧ (A →C)) → (A → (B∧C))

Definition 3.18 (Adjunction Rule).

A B
A∧B

(ADJ)
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Definition 3.19 (Axioms for Additive Disjunction).

(∨1) A → (A∨B)
(∨2) B → (A∨B)
(∨3) ((A →C)∧ (B →C)) → ((A∨B) →C)

Sometimes the schema A → (B → (A∧B)) is used in axiomatizations instead of

(ADJ). However, in such cases, “weakening” formulas A → (B → A) are derivable,

which may not always be a desirable feature of the logic under consideration.

Example 3.20. A nice example using (ADJ) is provided by the following derivation

of the commutativity law for ∧:

1. (A∧B) → A (∧1)
2. (A∧B) → B (∧2)
3. ((A∧B) → B)∧ ((A∧B) → A) (ADJ) 1,2
4. (((A∧B) → B)∧ ((A∧B) → A)) → ((A∧B) → (B∧A)) (∧3)
5. (A∧B) → (B∧A) (MP) 3,4

Many of the logics we consider also make use of the additive constants ⊥ and ⊤:

respectively, the “bottom falsity” and “top truth”. For fuzzy logics, these represent

the endpoints 0 and 1 of the real unit interval. Intuitively, axioms for these constants

tell us that “⊥ proves everything” and “⊤ is proved by everything”.

Definition 3.21 (Axioms for the Additive Constants).

(⊥) ⊥→ A

(⊤) A →⊤

In this setting, ⊤ and ⊥ are different from e and f (the latter has no core axioms

to characterize it). In fact, as we will see, identifying e with ⊤ and f with ⊥ is one

route to logics with weakening.

3.3 Axiomatic Extensions

By combining all the axioms and rules above, we obtain HMAILL: a Hilbert sys-

tem for Multiplicative Additive Intuitionistic Linear Logic in the language LB =
{∧,∨,⊙,→, f,e,⊥,⊤}, recalled for the reader’s convenience in its entirety in Fig. 3.1.

Its additive-constant-free cousin HMAILL− in the language LF = {∧,∨,⊙,→, f,e}
will be the most elementary Hilbert system treated in this book. Axiomatizations for

all the other logics, fuzzy or otherwise, that we encounter are obtained by adding

further axiom schema to this system. In particular, we will make use of the following

conventions:

Definition 3.22. An HL-extension for a Hilbert system HL based on FmLF
or

FmLB
consists of HL extended with axiom schema based on FmLB

. Also, for any

HMAILL-extension HL, the Hilbert system HL− is HL with (⊥) and (⊤) removed.
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(B) (A → B) → ((B →C) → (A →C))
(C) (A → (B →C)) → (B → (A →C))
(I) A → A

(⊙1) A → (B → (A⊙B))
(⊙2) (A → (B →C)) → ((A⊙B) →C)
(e1) e
(e2) A → (e → A)
(∧1) (A∧B) → A

(∧2) (A∧B) → B

(∧3) ((A → B)∧ (A →C)) → (A → (B∧C))
(∨1) A → (A∨B)
(∨2) B → (A∨B)
(∨3) ((A →C)∧ (B →C)) → ((A∨B) →C)
(⊥) ⊥→ A

(⊤) A →⊤

A A → B

B
(MP)

A B

A∧B
(ADJ)

Fig. 3.1 The Hilbert system HMAILL

To perform derivations in Hilbert systems, it will be helpful to have some shortcuts:

Lemma 3.23. For any HMAILL−-extension HL:

(i) If T ⊢HL A and T ⊢HL A → B, then T ⊢HL B.

(ii) If T ⊢HL A and T ⊢HL B, then T ⊢HL A∧B and T ⊢HL A⊙B.

(iii) If T ⊢HL A → B and T ⊢HL B →C, then T ⊢HL A →C.

(iv) If T ⊢HL A → B and T ⊢HL A →C, then T ⊢HL A → (B∧C).
(v) If T ⊢HL A →C and T ⊢HL B →C, then T ⊢HL (A∨B) →C.

(vi) T ⊢HL A → (B →C) iff T ⊢HL B → (A →C).

Proof. (i) Suppose that d1;T ⊢HL A and d2;T ⊢HL A → B. Then d;T ⊢HL B where d

is a tree with root labelled B having child nodes labelled A and A → B, themselves

roots of trees d1 and d2. (ii) Similarly to (i), if d1;T ⊢HL A and d2;T ⊢HL B, then

d;T ⊢HL A∧B where d is the tree obtained by attaching the roots of d1 and d2 as

child nodes of a root labelled A∧B. Also, since T ⊢HL A → (B → (A⊙B)), by two

applications of (i), T ⊢HL A⊙B. Each case of (iii)–(vi) then follows easily using (i),

(ii), and a particular axiom of HMAILL−. ⊓⊔

We also collect some useful theorems.

Lemma 3.24. The following are derivable in any HMAILL−-extension:

(i) (A∧B) → (B∧A)
(ii) ((A∧B)∧C) → (A∧ (B∧C))

(iii) A → (A∧A)
(iv) (A∨B) → (B∨A)
(v) ((A∨B)∨C) → (A∨ (B∨C))
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(vi) (A∨A) → A

(vii) A → (A∧ (A∨B))
(viii) (A∨ (A∧B)) → A

(ix) (A⊙B) → (B⊙A)
(x) ((A⊙B)⊙C) → (A⊙ (B⊙C))

(xi) (A⊙ (A → B)) → B

(xii) A ↔ (A⊙ e)
(xiii) (A ↔ B) → ((A⊙C) ↔ (B⊙C))
(xiv) (A ↔ B) → ((A →C) ↔ (B →C))
(xv) (A ↔ B) → ((C → A) ↔ (C → B))

(xvi) (A ↔ B) → ((A∧C) ↔ (B∧C))
(xvii) (A ↔ B) → ((A∨C) ↔ (B∨C))

Proof. We just give a derivation for (xi) and leave the rest as exercises:

1. (A → B) → (A → B) (I)

2. A → ((A → B) → B) Lemma 3.23 (vi) 1

3. (A → ((A → B) → B)) → ((A⊙ (A → B)) → B) (⊙2)
4. (A⊙ (A → B)) → B (MP) 2,3 ⊓⊔

As we will see soon enough, derivability in any HMAILL−-extension corresponds to

validity in a suitable class of (bounded) pcrls. This generality notwithstanding, we

first describe some key axioms that capture important properties for substructural

and fuzzy logics. For the reader’s convenience, these axioms and the Hilbert systems

they help to axiomatize are collected in Tables 3.1 and 3.2, respectively.

3.3.1 Truth, Falsity, Negation

The axiom schema and rules of HMAILL do not mention the constant f explicitly.

Nevertheless, the defined connective ¬A =def A → f already possesses many prop-

erties of a negation. Namely:

• contraposition: (A → B) → (¬B →¬A) is an instance of (B).

• non-contradiction: ¬(A⊙¬A) is an instance of (A⊙ (A → B)) → B.

• the weak DeMorgan law: ¬(A∨B) ↔ (¬A∧¬B) is HMAILL−-derivable. One

direction, (¬A∧¬B) → ¬(A∨B), is an instance of the axiom (∨3), while the

other direction is established as follows:
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1. A → (A∨B) (∨1)
2. (A → (A∨B)) → (¬(A∨B) →¬A) (B)

3. ¬(A∨B) →¬A (MP) 1,2
4. B → (A∨B) (∨2)
5. (B → (A∨B)) → (¬(A∨B) →¬B) (B)

6. ¬(A∨B) →¬B (MP) 4,5
7. ¬(A∨B) → (¬A∧¬B) Lemma 3.23 (iv) 3,6

For the strong De Morgan law, one direction (¬A∨¬B)→¬(A∧B) is HMAILL−-

derivable (an easy exercise), but the other is not.

• involution: A→¬¬A is an instance of the HMAILL−-theorem A→ ((A→ B)→
B). However, the other direction ¬¬A → A is not HMAILL−-derivable.

To obtain stronger properties for negation, more axioms are needed. In particular,

an involutive negation can be characterized by the following schema:

Definition 3.25 (Involution Axioms).

(INV) ¬¬A → A

Adding (INV) to HMAILL gives an axiomatization HMALL for Multiplicative Ad-

ditive Linear Logic. Several important fuzzy logics are axiomatized as HMALL-

extensions, including Łukasiewicz Logic and Involutive Monoidal t-norm Logic.

Indeed, by adding the involution axioms, we obtain an “involutive version” of any

HMAILL−-extension.

Example 3.26. Adding (INV) to a logic gives tighter connections between connec-

tives. E.g. in any HMALL−-extension we can derive:

(A → B) ↔¬(A⊙¬B)

(INV) also allows us to complete the missing part of De Morgan’s laws. Using the

weak DeMorgan law, ⊢HMAILL− ¬(¬A∨¬B)→ (¬¬A∧¬¬B). So by contraposition

and Lemma 3.23 (iii), ⊢HMAILL− ¬(¬¬A∧¬¬B) →¬¬(¬A∨¬B). But then easily

⊢HMALL− ¬(A∧B) → ¬(¬¬A∧¬¬B) and ⊢HMALL− ¬¬(¬A∨¬B) → (¬A∨¬B)
using (INV). So using Lemma 3.23 (iii) twice, ⊢HMAILL− ¬(A∧B) → (¬A∨¬B).

Negation may be characterized further by fixing relationships between truth con-

stants, e.g. stipulating whether e is more or less true than f.

Definition 3.27 (Axioms for e and f).

(e) f → e

(f) e → f

These rather innocuous looking axioms can have interesting consequences. For ex-

ample, in the presence of (e), the following rule is admissible for any HMAILL−-

extension HL:
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A B
A⊕B

If ⊢HL A and ⊢HL B, then also ⊢HL e → B. So by (e) and Lemma 3.23 (iii), ⊢HL f →
B. But ⊢HL A → ((A → f) → f). So by Lemma 3.23 (i), ⊢HL (A → f) → f and by

Lemma 3.23 (iii), ⊢HL (A → f) → B.

3.3.2 Distributivity and Prelinearity

To axiomatize fuzzy logics, in particular, to ensure that the logics are characterized

by linearly ordered algebras, we require two rather special axiom schema.

Definition 3.28 (Distributivity Axioms).

(DIS) (A∧ (B∨C)) → ((A∧B)∨ (A∧C))

Definition 3.29 (Prelinearity Axioms).

(PRL) (A → B)∨ (B → A)

These are the fundamental axiom schema of the fuzzy logics in this book. Adding

them to HMAILL and HMALL gives Hilbert systems HUL and HIUL for the elemen-

tary fuzzy logics Uninorm Logic and Involutive Uninorm Logic, respectively.

Note that prelinearity alone is not in general enough to secure linearity: distribu-

tivity is also required. A good example showing this (non-distributive RM) will be

given in the next chapter. Nevertheless, it is possible to combine the two in a nice

way in the single axiom schema:

(LIN) ((A → B)∧ e)∨ ((B → A)∧ e)

(LIN) can be used to derive (PRL) as follows:

1. ((A → B)∧ e)∨ ((B → A)∧ e) (LIN)

2. ((A → B)∧ e) → (A → B) (∧1)
3. ((B → A)∧ e) → (B → A) (∧1)
4. (A → B) → ((A → B)∨ (B → A)) (∨1)
5. (B → A) → ((A → B)∨ (B → A)) (∨2)
6. ((A → B)∧ e) → ((A → B)∨ (B → A)) Lemma 3.23 (iii) 2,4
7. ((B → A)∧ e) → ((A → B)∨ (B → A)) Lemma 3.23 (iii) 3,5
8. (((A → B)∧ e)∨ ((B → A)∧ e)) → ((A → B)∨ (B → A)) Lemma 3.23 (v) 6,7
9. (A → B)∨ (B → A) Lemma 3.23 (i) 1,8

We can also prove (DIS) using (LIN) but the derivation is more complicated and is

left here as an exercise for the interested reader.

Finally, this is a good place to establish some properties of axiomatizations with

distributivity that will be helpful later on for proving completeness results.
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Lemma 3.30. Let HL be any HMAILL−-extension plus (DIS):

(a) If ⊢HL (A∧B) →C, then ⊢HL ((A∨D)∧ (B∨D)) → (C∨D).

(b) If ⊢HL (A⊙B) →C, then ⊢HL (((A∨D)∧ e)⊙ ((B∨D)∧ e)) → (C∨D).

Proof. (a) Suppose that ⊢HL (A∧B)→C. Then using (∨1)−(∨3) and Lemma 3.23

(iii) and (v):

⊢HL ((A∧B)∨D) → (C∨D)

So using (DIS) and Lemma 3.23 (i), ⊢HL ((A∨D)∧(B∨D))→ (C∨D) as required.

(b) Using the core axioms for the connectives and Lemma 3.23 (various parts):

⊢HL (A∧e)→ ((B∧e)→ ((A⊙B)∨D)) and ⊢HL (D∧e)→ ((B∧e)→ ((A⊙B)∨D))

Hence by Lemma 3.23 (v) and (vi):

⊢HL ((A∧ e)∨ (D∧ e)) → ((B∧ e) → ((A⊙B)∨D))

But then using (DIS) and Lemma 3.23 (i):

⊢HL ((A∨D)∧ e) → ((B∧ e) → ((A⊙B)∨D))

Also using the core axioms for the connectives and Lemma 3.23 (various parts):

⊢HL ((A∨D)∧ e) → ((D∧ e) → ((A⊙B)∨D))

Hence using Lemma 3.23 (v) and (vi):

⊢HL ((A∨D)∧ e) → (((B∧ e)∨ (D∧ e)) → ((A⊙B)∨D))

So now using (DIS), (⊙2), and Lemma 3.23 (various parts):

⊢HL (((A∨D)∧ e)⊙ ((B∨D)∧ e)) → ((A⊙B)∨D)

But finally, if ⊢HL (A⊙B) → C, then ⊢HL ((A⊙B)∨D) → (C∨D), using (∨1)−
(∨3) and Lemma 3.23 (iii) and (v). So by Lemma 3.23 (iii), ⊢HL (((A∨D)∧ e)⊙
((B∨D)∧ e)) → (C∨D) as required. ⊓⊔

3.3.3 Weakening

Weakening axioms are key for axiomatizing t-norm based logics. They capture the

fact that the unit element e is also the top element ⊤ of the algebra (in particular, for

uninorms e∗ = 1), and consequently, always x⊙y ≤ x. Here we make use of the fact

that f and e are in the language of HMAILL− to give the following characterization:
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Definition 3.31 (Weakening Axioms).

(W) (A → e)∧ (f → A)

If ⊥ and ⊤ are in the language, then using (W), these constants collapse to f and e,

respectively. That is, ⊥→ f and f → ⊥ follow from (⊥) and (W), and e → ⊤ and

⊤ → e from (⊤) and (W). In this case, (W) can even be replaced with the single

axiom (⊤→ e)∧ (f →⊥).

Example 3.32. The weakening axiom schema more commonly found in the litera-

ture, in particular, when e or f are not present in the language, is A → (B → A).
These formulas are derivable using (W) as follows:

1. A → (e → A) (e2)
2. e → (A → A) Lemma 3.23 (vi) 1

3. (B → e)∧ (f → B) (W)

4. ((B → e)∧ (f → B)) → (B → e) (∧1)
5. B → e (MP) 3,4
6. B → (A → A) Lemma 3.23 (iii) 2,5
7. A → (B → A) Lemma 3.23 (vi) 6

However, note that while formulas A → e are derivable using the schema A → (B →
A), this is not true for formulas f → A. So (W) is a little stronger.

Extending HMAILL and HMALL with the weakening axioms gives axiomatizations

HML and HAMALL for Monoidal Logic and Affine Multiplicative Additive Linear

Logic, respectively. Adding prelinearity and distributivity (or weakening axioms to

HUL and HIUL) gives HMTL and HIMTL for Monoidal t-norm Logic and Involutive

Monoidal t-norm Logic, respectively.

Example 3.33. For fuzzy logics with weakening, the axiom (PRL) is sufficient to

prove (DIS). Also, we can make use of an implicational version of (PRL):

((A → B) →C) → (((B → A) →C) →C)

Let F be an instance of this schema, and HL an HMTL−-extension. Easily using

(W), ⊢HL (A → B) → F and ⊢HL (B → A) → F . So by Lemma 3.23 (v), ⊢HL ((A →
B)∨ (B → A)) → F . But then using (PRL) and Lemma 3.23 (i), ⊢HL F . On the

other hand, replace C in the schema by (A → B)∨ (B → A), and observe that (A →
B) → ((A → B)∨ (B → A)) and (B → A) → ((A → B)∨ (B → A)) are HMAILL−-

derivable. Then by Lemma 3.23 (i), (A→ B)∨(B→ A) is derivable in any extension

of HMAILL− with the schema.

3.3.4 Contraction and Mingle

Contraction and mingle axioms are also important for axiomatizing substructural

logics. They tell us when a repeated formula A⊙A is more or less true than A alone,

and together ensure that the monoid operation (or uninorm) is idempotent.
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Definition 3.34 (Contraction and Mingle Axioms).

(C2) A → (A⊙A)
(M) (A⊙A) → A

Indeed, sometimes these axioms are combined to give:

(ID) A ↔ (A⊙A)

Extending HUL or HIUL with the contraction and mingle axioms (or just (ID)) gives

Hilbert systems HUML and HRM for Uninorm Mingle Logic and the relevance

logic RM, respectively. An axiomatization HIUML for Involutive Uninorm Mingle

Logic is obtained by adding (f) to HRM. In the case of logics with weakening, (M)

is already derivable. Hence an axiomatization for Gödel Logic HG is HMTL plus

(C2), while adding (C2) to HIMTL (or indeed HAMALL) gives an axiomatization

HCL for Classical Logic.

Example 3.35. Sometimes an implicational axiom schema is used instead of (C2),

namely, (A → (A → B)) → (A → B). It is easy to see that each can be derived using

the other. For one direction:

1. A → (A⊙A) (C2)

2. (A⊙A) → (((A⊙A) → B) → B) Lemma 3.24 (xi)

3. A → (((A⊙A) → B) → B) Lemma 3.23 (iii) 1,2
4. ((A⊙A) → B) → (A → B) Lemma 3.23 (vi) 3

5. (A → (A → B)) → ((A⊙A) → B) (⊙2)
6. (A → (A → B)) → (A → B) Lemma 3.23 (iii) 4,5

For the other direction, just replace B with A⊙A in (A → (A → B))→ (A → B) and

note that A → (A → (A⊙A)) is an instance of (⊙1).

We also mention a common generalization of the contraction axioms:

Definition 3.36 (N-Contraction Axioms).

(Cn) An−1 → An

Axiomatizations HMTLn and HIMTLn for “n-contractive” MTL and IMTL where

n ≥ 2 are obtained by extending HMTL and HIMTL with (Cn), noting that for n = 2,

this gives Hilbert systems for Gödel Logic and Classical Logic, respectively.

3.3.5 Divisibility

Choosing axioms to characterize properties is not always as easy as the above

cases might suggest. In particular, it is not entirely obvious how to characterize
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the property of continuity for t-norms. Following intensive investigation, however,

an elegant solution has emerged making use of the related notion of divisibility.

Definition 3.37 (Divisibility Axioms).

(DIV) (A∧B) → (A⊙ (A → B))

In logics with weakening, (A⊙ (A → B))→ (A∧B) is derivable. Hence in this case,

divisibility corresponds to characterizing A∧B as A⊙ (A → B). Also, (DIV) could

be replaced with:

(A⊙ (A → B)) → (B⊙ (B → A))

Our axiomatization HBL for Basic Logic (the logic of continuous t-norms) is ob-

tained by extending HMTL with (DIV). However, ∧ and ∨ are definable in terms of

the other connectives for this logic. Hence a more common axiomatization based on

formulas of the reduced language LT = {⊙,→,⊥} (with A∧B =def A⊙ (A → B)
and A∨B =def ((A → B) → B)∧ ((B → A) → A)) consists of the following axiom

schema with (MP):

(A1) (A → B) → ((B →C) → (A →C))
(A2) (A⊙B) → A

(A3) (A⊙B) → (B⊙A)
(A4) (A⊙ (A → B)) → (B⊙ (B → A))

(A5a) (A → (B →C)) → ((A⊙B) →C)
(A5b) ((A⊙B) →C) → (A → (B →C))
(A6) ((A → B) →C) → (((B → A) →C) →C)
(A7) ⊥→ A

Simple extensions of HBL include two of the most famous and important fuzzy

logics. An axiomatization HŁ for Łukasiewicz Logic is obtained by extending HBL

with (INV), while Gödel Logic can be axiomatized as HBL extended with (C2).

3.3.6 Excluded Middle and Non-Contradiction

Many familiar theorems of Classical Logic fail in logics lacking weakening or con-

traction. However, there may be good reasons to add them to a Hilbert system as

extra axioms. In particular, consider the well-known classical principles:

Definition 3.38 (Excluded Middle Axioms).

(EM) A∨¬A

Definition 3.39 (Non-Contradiction Axioms).

(NC) ¬(A∧¬A)
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Adding (NC) to HMTL and HBL gives Hilbert systems HSMTL and HSBL, respec-

tively, for the “strict negation” logics SMTL and SBL. In these logics, the t-norm

based negation x →∗ 0 is 1 if x = 0 and 0 otherwise. It is easy to see that this is the

case iff the (NC) axioms are valid in the algebra A(∗,0).
The excluded middle axiom schema (EM) may seem odd, given that we are aim-

ing for fuzzy logics. Indeed, adding this to any HMAILL−-extension with weaken-

ing gives either triviality or Classical Logic. For logics without weakening, however,

(EM) can be used to split truth values into exactly two parts: the true (e.g. ≥ e∗) and

the false (e.g. < e∗).

3.3.7 Cancellation

Other interesting axioms deal with the cancellation property “if A⊙C implies B⊙C,

then A implies B”. In particular, to axiomatize Product Logic and Cross Ratio Logic,

a form of cancellation is needed that holds except when the cancelled formula takes

the top or bottom truth value.

Definition 3.40 (Cancellation Axioms).

(CAN) (A → (A⊙B)) → B

(RCAN) (⊤→ A)∨ (A →⊥)∨ ((A → (A⊙B)) → B)

An axiomatization HP for Product Logic is obtained by extending HBL with

(RCAN), while HCHL for Cancellative Hoop Logic is obtained by extending HBL−

with (CAN), (e), and (f). For logics with weakening, the disjunct ⊤ → A can be

removed from (RCAN). Alternatively, (RCAN) can be replaced by (NC) together

with:

(Π) ¬¬A → ((A → (A⊙B)) → B)

To see that (RCAN) helps us to derive the (NC) axioms, take an instance of the

former with B replaced by ⊥. Then using weakening, A∨¬A∨¬¬A is derivable,

so also ¬(A∧¬A) is derivable. Note, however, that adding (RCAN) to HMTL ax-

iomatizes a different logic to P, known as Product Monoidal t-norm Logic PMTL.

Finally, note that two other interesting logics make use of cancellation. An axiom-

atization HA for Abelian Logic consists of HMALL− plus (CAN), (e), and (f). For

Cross Ratio Logic, the Hilbert system HCRL consists of HMALL plus (RCAN), (e),

and (f).

3.4 A Local Deduction Theorem

For axiomatizations of Classical Logic, there is an elegant and useful connection

between the left and right hand sides of the derivability turnstile, namely:
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T ∪{A} ⊢ B iff T ⊢ A → B.

For substructural logics, this relationship – the so-called deduction theorem – usu-

ally fails. In particular:

• in weakening-free logics, {B} ⊢ A → A but 6⊢ B → (A → A).

• in contraction-free logics, {A} ⊢ A⊙A but 6⊢ A → (A⊙A).

These failures hold the key to the problem, and also to its solution. We have to allow

the formula A in T ∪{A} ⊢ B to be used either more than once or not at all in the

implication on the right. We do this by combining A into so-called “confusions”

(conjunctions and fusions) of A. Since the appropriate confusion depends on the

derivation, what we obtain is often called a “local” deduction theorem.

Definition 3.41. A confusion of a theory T is defined inductively by:

(1) e, ⊤ (if in the language), and any element of T are confusions of T .

(2) If C1 and C2 are confusions of T , then so are C1 ⊙C2 and C1 ∧C2.

Lemma 3.42. T ⊢HL A for any HMAILL−-extension HL and confusion A of T .

Proof. We proceed by induction on cp(A). For the base case, if A ∈ T , A is e, or A

is ⊤, then easily T ⊢HL A. For the inductive step, A is C1 ⊙C2 or C1 ∧C2 where both

C1 and C2 are confusions of T . By the induction hypothesis twice, T ⊢HL C1 and

T ⊢HL C2. Since T ⊢HL C1 → (C2 → (C1 ⊙C2)) by (⊙1) and Lemma 3.23 (i) twice,

T ⊢HL C1 ⊙C2. Also by Lemma 3.23 (ii), directly T ⊢HL C1 ∧C2. ⊓⊔

Theorem 3.43. Let HL be any HMAILL−-extension:

(a) T ∪{A} ⊢HL B iff T ⊢HL C → B for some confusion C of {A}.

(b) T ⊢HL B iff ⊢HL C → B for some confusion C of T .

Proof. We show, simultaneously establishing both (a) and (b), that:

T1 ∪T2 ⊢HL B iff T1 ⊢HL C → B for some confusion C of T2

For the right-to-left direction, suppose that T1 ⊢HL C → B for some confusion C

of T2. By Lemma 3.42, T2 ⊢HL C. So by Proposition 3.7 (a) twice, T1 ∪ T2 ⊢HL C

and T1 ∪T2 ⊢HL C → B. Hence by Lemma 3.23 (i), T1 ∪T2 ⊢HL B. For the opposite

direction, we assume that d;T1 ∪T2 ⊢HL B and show that T1 ⊢HL C → B for some

confusion C of T2, proceeding by induction on ht(d). For the base case, if B ∈ T1 or

B is an axiom, then easily T1 ⊢HL e → B, and if B ∈ T2, then T1 ⊢HL B → B. For the

inductive step, there are two possibilities:

• Suppose that B follows by (MP) from T1 ∪T2 ⊢HL D → B and T1 ∪T2 ⊢HL D.

Then by the induction hypothesis twice, there exist confusions C1 and C2 of

T2 such that T1 ⊢HL C1 → (D → B) and T1 ⊢HL C2 → D. Using Lemma 3.23

(vi) and (iii), T1 ⊢HL C2 → (C1 → B). Hence by (⊙2) and Lemma 3.23 (i),

T1 ⊢HL (C2 ⊙C1) → B. So C2 ⊙C1 is the required confusion of T2.
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• Suppose that B is B1 ∧B2 and follows by (ADJ) from T1 ∪T2 ⊢HL B1 and T1 ∪
T2 ⊢HL B2. Then by the induction hypothesis twice, there exist confusions C1

and C2 of T2 such that T1 ⊢HL C1 → B1 and T1 ⊢HL C2 → B2. So by Lemma 3.23

(ii), T1 ⊢HL (C1 →B1)∧(C2 →B2). But also T1 ⊢HL ((C1 →B1)∧(C2 →B2))→
((C1 ∧C2) → (B1 ∧B2)). Hence by Lemma 3.23 (i), T1 ⊢HL (C1 ∧C2) → (B1 ∧
B2). So C1 ∧C2 is the required confusion of T2. ⊓⊔

There may be other local forms of the deduction theorem that hold. E.g. for any

HMAILL−-extension HL:

T ∪{A} ⊢HL B iff T ⊢HL (A∧ e)n → B for some n ∈ N

In the case of logics with weakening, this simplifies to:

T ∪{A} ⊢HL B iff T ⊢HL An → B for some n ∈ N

We can also characterize substructural logics having the deduction theorem proper.

Proposition 3.44. The following are equivalent for any HMAILL−-extension HL:

(a) T ∪{A} ⊢HL B iff T ⊢HL A → B.

(b) ⊢HL A → (A⊙A) and ⊢HL A → e.

Proof. If (a) (i.e. the deduction theorem) holds for HL, then since {A} ⊢HL A⊙A

and {A} ⊢HL e, we get ⊢HL A → (A⊙A) and ⊢HL A → e as required. Now suppose

that (b) holds. Easily if T ⊢HL A → B, then T ∪{A} ⊢HL B. For the other direction

suppose that T ∪{A} ⊢HL B. By Theorem 3.43, T ⊢HL C → B for some confusion C

of {A}, so by Lemma 3.23 (iii), it is sufficient to show:

Claim. ⊢HL A →C for every confusion C of {A}.

Proof of claim. We proceed by induction on cp(C). If C is A or ⊤, then ⊢HL A → A

and ⊢HL A →⊤ so we are done. If C is e, then ⊢HL A → e by assumption. For the

induction step, C is C1 ⊙C2 or C1 ∧C2. Then by the induction hypothesis twice,

⊢HL A → C1 and ⊢HL A → C2. Hence by Lemma 3.23 (iv), ⊢HL A → (C1 ∧C2).
Also, ⊢HL C1 → (C2 → (C1 ⊙C2)) is an instance of (⊙1). So using Lemma 3.23

(iii), ⊢HL A→ (C2 → (C1⊙C2)). But then using Lemma 3.23 (vi) and (iii), ⊢HL A→
(A → (C1 ⊙C2)), and using (⊙2) and Lemma 3.23 (iii), ⊢HL (A⊙A) → (C1 ⊙C2).
Hence since A → (A⊙A), by Lemma 3.23 (iii), ⊢HL A → (C1 ⊙C2). ⊓⊔

This means in particular that any HUL−-extension having the deduction theorem is

an extension of some version of Gödel Logic G (possibly with the extra constant f

and without ⊥). Indeed, since any proper HG-extension gives a finite-valued logic,

G may be said to be the only fuzzy logic having the deduction theorem proper.
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Table 3.1 Common axioms for substructural logics

Label Axiom

(INV) ¬¬A → A

(e) f → e
(f) e → f

(PRL) (A → B)∨ (B → A)
(DIS) (A∧ (B∨C)) → ((A∧B)∨ (A∧C))
(DIV) (A∧B) → (A⊙ (A → B))
(W) (A → e)∧ (f → A)
(C2) A → (A⊙A)
(M) (A⊙A) → A

(ID) A ↔ (A⊙A)
(Cn) An−1 → An

(NC) ¬(A∧¬A)
(EM) A∨¬A

(CAN) (A → (A⊙B)) → B

(RCAN) (A →⊥)∨ (A →⊤)∨ ((A → (A⊙B)) → B)

Table 3.2 Common substructural and fuzzy logics

Label Name Axiomatization

HMALL Multiplicative Additive Linear Logic HMAILL + (INV)
HML Monoidal Logic HMAILL + (W)

HAMALL Affine MALL HML + (INV)
HIL Intuitionistic Logic HML + (C2)
HCL Classical Logic HAMALL + (C2)
HUL Uninorm Logic HMAILL + (PRL) + (DIS)
HIUL Involutive UL HUL + (INV)
HMTL Monoidal t-norm Logic HML + (W)
HIMTL Involutive MTL HMTL + (INV)

HG Gödel Logic HMTL + (C2)
HUML Uninorm Mingle Logic HUL + (C2) + (M)
HRM Relevance Mingle Logic HIUL + (C2) + (M)

HIUML Involutive UML HRM + (f)
HMTLn N-Contractive MTL HMTL + (Cn)
HIMTLn N-Contractive IMTL HIMTL + (Cn)

HBL Basic Logic HMTL + (DIV)
HŁ Łukasiewicz Logic HBL + (INV)

HSMTL Strict MTL HMTL + (NC)
HSBL Strict BL HBL + (NC)
HP Product Logic HBL + (RCAN)

HCHL Cancellative Hoop Logic HBL− + (e) + (f) + (CAN)
HPMTL Product MTL HMTL + (RCAN)

HA Abelian Logic HIUL− + (e) + (f) + (CAN)
HCRL Cross Ratio Logic HIUL + (e) + (f) + (RCAN)
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Table 3.3 Classes of L-algebras

Label Name Class of algebras

GEN(L) L-algebras See Definition 3.45
LIN(L) L-chains Linearly ordered L-algebras
DEN(L) Dense L-chains Dense linearly ordered L-algebras
STAN(L) Standard L-algebras L-algebras with universe [0,1] and the usual ordering

3.5 Soundness and Completeness

The reader will have noticed that there is not really much difference between

HMAILL−-extensions and varieties of (bounded) pointed commutative residuated

lattices. We simply “translate” axioms into equations and vice versa. Indeed this

translation is well behaved enough in general to support a comprehensive theory of

“algebraizable logics” (see historical remarks). Here, however, the focus will be on

establishing just the elements of this correspondence that we need.

The axiom schema and axiomatizations introduced above are collected together

for easy reference in Tables 3.1 and 3.2. Let us assume for now that we are dealing

with an HMAILL−-extension HL based on formulas of the language L (either LF

or LB). It is easy to check that the axioms of HMAILL− (HMAILL) are valid in any

pcrl (bpcrl). Hence we can define a class of algebras for HL as follows:

Definition 3.45. An L-algebra is a pcrl (bpcrl) in which the axioms of HL are valid.

Example 3.46. Recall that HUL is HMAILL plus (DIS) and (PRL). Then an UL-

algebra A is any bpcrl where for all A-valuations v and formulas A, B, and C:

e ≤ v((A → B)∨ (B → A)) and e ≤ v((A∧ (B∨C)) → ((A∧B)∨ (A∧C)))

That is, UL-algebras are bpcrls satisfying prelinearity and distributivity.

As the previous example illustrates, each algebraic condition listed in Table 2.1

corresponds to an axiom schema in Table 3.1. Integral bpcrls are ML-algebras, in-

volutive bpcrls are MALL-algebras, and so on.

In Table 3.3 we pick out certain classes of these L-algebras as being of particular

interest. Standard L-algebras are just the algebras A(⊙, f) of the previous chapter,

where the monoid operation ⊙ is a residuated uninorm and f ∈ [0,1]. Our aim is to

show that certain choices of HL are “complete” with respect to standard L-algebras.

This is often called the “standard completeness problem” for HL.

Our starting point is the following (unsurprising) result:

Theorem 3.47. If T ⊢HL A, then T |=GEN(L) A.

Proof. Suppose that d;T ⊢HL A. We prove that T |=GEN(L) A by induction on ht(d).
The base case clearly holds if A ∈ T . Also, if A is an axiom of HL, then A is valid

in all L-algebras by definition. For the induction step, let v be an A-model of T for
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an L-algebra A. If T ⊢HL A follows from T ⊢HL B → A and T ⊢HL B by (MP), then

by the induction hypothesis twice, e ≤ v(B → A) and e ≤ v(B). From the former, we

get e ≤ v(B) → v(A), and by residuation, v(B) ≤ v(A). So using the latter, e ≤ v(A).
If T ⊢HL A follows by (ADJ) from T ⊢HL A1 and T ⊢HL A2 where A = A1 ∧A2,

then by the induction hypothesis twice, e ≤ v(A1) and e ≤ v(A2). Hence also e ≤
v(A1)∧ v(A2) = v(A1 ∧A2) as required. ⊓⊔

The other direction requires a little more care. For each theory T , we define a special

L-algebra LINDL
T – the so-called Lindenbaum algebra for T – such that a formula A

is LINDL
T -valid iff T ⊢HL A. The basic intuition here is to treat formulas themselves

as elements of the algebra. However, this does not quite work. Instead we use sets

of formulas that are “provably equivalent with respect to T ”. Let us write:

A ∼ B iff T ⊢HL A ↔ B

Then ∼ is an equivalence relation on the set of formulas; i.e.

(i) A ∼ A.

(ii) If A ∼ B, then B ∼ A.

(iii) If A ∼ B and B ∼C, then A ∼C.

Moreover, ∼ is a congruence. For each n-ary connective ⋆ ∈ L, if Ai ∼ Bi for i =
1 . . .n, then, using the equivalences established in Lemma 3.24:

⋆(A1, . . . ,An) ∼ ⋆(B1, . . . ,Bn)

For example, suppose that A1 ∼ B1 and A2 ∼ B2; i.e. T ⊢HL A1 ↔ B1 and T ⊢HL

A2 ↔ B2. To show that A1 ∧A2 ∼ B1 ∧B2, we need a derivation for T ⊢HL (A1 ∧
A2) ↔ (B1 ∧B2). By (∧1), T ⊢HL (A1 ∧A2) → A1 and since T ⊢HL A1 → B1, by

Lemma 3.23 (iii), T ⊢HL (A1∧A2)→ B1. Similarly, using (∧2), T ⊢HL (A1∧A2)→
B2, so by Lemma 3.23 (iv), T ⊢HL (A1 ∧A2) → (B1 ∧B2). The other direction fol-

lows symmetrically. We leave the checking of other connectives for the reader’s

amusement.

These observations allow us to define an algebra of equivalence classes of for-

mulas as follows.

Definition 3.48. For an FmL-theory T , let:

[A]LT =def {B ∈ FmL : T ⊢HL A ↔ B} and LL
T =def {[A]LT : A ∈ FmL}

Then the Lindenbaum algebra of T for HL is defined as:

LINDL
T =def 〈L

L
T ,{⋆L

T : ⋆ ∈ L}〉 where ⋆L
T ([A1]

L
T , . . . , [An]

L
T ) =def [⋆(A1, . . . ,An)]

L
T

Lemma 3.49. LINDL
T is an L-algebra for any FmL-theory T .

Proof. The lattice and monoid properties of LINDL
T follow easily from the theorems

of HMAILL− collected in Lemma 3.24. For residuation observe that:
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[A]LT ≤ [B]LT iff T ⊢HL A ↔ (A∧B) iff T ⊢HL A → B

Hence [A]LT ≤ [B]LT → [C]LT = [B →C]LT iff T ⊢HL A → (B → C) iff T ⊢HL (A ⊙

B) → C iff [A⊙B]LT = [A]LT ⊙ [B]LT ≤ [C]LT . Finally, for each axiom A of HL, since

T ⊢HL e → A, it follows that [e]LT ≤ [A]LT . So A is LINDL
T -valid, and hence LINDL

T is

an HL-algebra. ⊓⊔

To show that LINDL
T -validity corresponds to HL-derivability from T , we make use

of a specially defined valuation for this algebra that maps each formula to its corre-

sponding equivalence class.

Lemma 3.50. For any FmL-theory T and A ∈ FmL:

T ⊢HL A iff [e]LT ≤ vL
T (A)

where vL
T is the LINDL

T -valuation defined by vL
T (p) = [p]LT for each variable p.

Proof. We prove that vL
T (B) = [B]LT for all formulas B by induction on cp(B). The

case where B is a variable follows by definition. For the other cases, just note that

for any n-ary connective ⋆ ∈ L (using the induction hypothesis for the second line):

vL
T (⋆(C1, . . . ,Cn)) = ⋆(vL

T (C1), . . . ,v
L
T (Cn))

= ⋆([C1]
L
T , . . . , [Cn]

L
T )

= [⋆(C1, . . . ,Cn)]
L
T

The result then follows since [e]LT ≤ [A]LT iff T ⊢HL e → A iff T ⊢HL A. ⊓⊔

Suppose then that T 6⊢HL A. By the previous lemma, vL
T is a LINDL

T -model of T where

[e]LT 6≤ vL
T (A). So T 6|=GEN(L) A. Hence, putting this together with Theorem 3.47:

Theorem 3.51. T ⊢HL A iff T |=GEN(L) A.

This completeness result holds for any HMAILL−-extension HL. However, if HL in-

cludes (DIS) and (PRL) (i.e. is an HUL−-extension), then we can go one step further

and obtain completeness with respect to L-chains. Suppose as before that T 6⊢HL A.

Then there is a LINDL
T -model of T that is not a LINDL

T -model of {A}. The idea now

is that while LINDL
T might not itself be linearly ordered, we can nevertheless find

T̂ ⊇ T such that LINDL
T̂

is an L-chain and still T̂ 6⊢HL A.

We begin with a useful property of theories.

Definition 3.52. An FmL-theory T is L-linear if for each pair A,B ∈ FmL :

either T ⊢HL A → B or T ⊢HL B → A

Notice immediately that T is L-linear iff for all A,B ∈ FmL , either [A]LT ≤ [B]LT or

[B]LT ≤ [A]LT , i.e. iff LINDL
T is an L-chain.

To extend theories to linear theories, we also make use of a key property of

Hilbert systems with distributivity.
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Definition 3.53. HL has the proof-by-cases property if:

whenever T ∪{A} ⊢HL C and T ∪{B} ⊢HL C, then T ∪{A∨B} ⊢HL C.

Lemma 3.54. Any HMAILL−-extension plus (DIS) has the proof-by-cases property.

Proof. Let HL be an HMAILL−-extension plus (DIS). Suppose that T ∪{A} ⊢HL C

and T ∪{B} ⊢HL C. Then T ⊢HL A′ →C and T ⊢HL B′ →C for some confusion A′

of {A} and B′ of {B}. So by Lemma 3.23 (ii), T ⊢HL (A′ →C)∧ (B′ →C). But then

using (DIS) and Lemma 3.23 (iii), also T ⊢HL (A′∨B′) →C. Hence it is enough to

prove the following:

Claim. If A′ is a confusion of {A} and B′ is a confusion of {B}, then ⊢HL E →
(A′∨B′) for some confusion E of {A∨B}.

Just notice that in this case, by Lemma 3.42, T ∪{A∨B} ⊢HL E. But then using

Lemma 3.23 (iii), T ∪{A∨B} ⊢HL C as required.

Proof of Claim. By induction on cp(A′)+ cp(B′). If A′ and B′ are just A and B, then

the claim is immediate. Also if A′ or B′ is e or ⊤, then we can just let E = e. For the

inductive step, suppose without loss of generality that A′ = A′
1 ∧A′

2 or A′ = A′
1 ⊙A′

2

where A′
1 and A′

2 are confusions of {A}. Then by the induction hypothesis twice:

⊢HL E1 → (A′
1 ∨B′) and ⊢HL E2 → (A′

2 ∨B′)

for some confusions E1 and E2 of {A∨B}. But also by (DIS) and Lemma 3.30 (b):

⊢HL ((A′
1 ∨B′)∧ (A′

2 ∨B′)) → ((A′
1 ∧A′

2)∨B′).

⊢HL (((A′
1 ∨B′)∧ e)⊙ ((A′

2 ∨B′)∧ e)) → ((A′
1 ⊙A′

2)∨B′).

Hence easily, using Lemma 3.23 (various parts):

⊢HL (E1 ∧E2) → ((A′
1 ∧A′

2)∨B′).

⊢HL ((E1 ∧ e)⊙ (E2 ∧ e)) → ((A′
1 ⊙A′

2)∨B′).

But E1 ∧E2 and (E1 ∧ e)⊙ (E2 ∧ e) are confusions of {A∨B}, so we are done. ⊓⊔

We now show that for any HUL−-extension, theories can be extended to linear the-

ories while still preserving the non-derivability of some formula C. The idea is that

for each pair of formulas A and B, we can always choose one of A → B and B → A

to add without making C derivable.

Lemma 3.55. Let HL be an HUL−-extension. If T 6⊢HL C, then T̂ 6⊢HL C for some

L-linear theory T̂ ⊇ T .

Proof. Suppose that T 6⊢HL C for some HUL−-extension HL. We enumerate all pairs

of formulas 〈An,Bn〉 for n ∈ N and define a sequence (Tn)n∈N of theories as follows:

T0 = T and Tn+1 =

{

Tn ∪{An → Bn} if Tn ∪{An → Bn} 6⊢HL C

Tn ∪{Bn → An} otherwise
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We prove that Tn 6⊢HL C for all n ∈ N by induction on n. The base case is immediate.

For the inductive step, assume that Tn 6⊢HL C. It is sufficient to show that:

Tn ∪{An → Bn} 6⊢HL C or Tn ∪{Bn → An} 6⊢HL C

Suppose otherwise. Then by the proof-by-cases property for HL (Lemma 3.54):

Tn ∪{(An → Bn)∨ (Bn → An)} ⊢HL C

But ⊢HL (An → Bn)∨ (Bn → An). So Tn ⊢HL C, a contradiction.

Finally, define T̂ =
⋃

n∈N Tn, an L-linear theory by construction. Also T̂ 6⊢HL C

since otherwise, Tk ⊢HL C for some k ∈ N, a contradiction. ⊓⊔

Suppose now that T 6⊢HL A. Then by the previous lemma, T̂ 6⊢HL A for some L-linear

theory T̂ . So using Lemma 3.50, we have the following result.

Theorem 3.56. Let HL be an HUL−-extension. Then T ⊢HL A iff T |=LIN(L) A.

This theorem is of course only one step towards showing that an HUL−-extension is

“fuzzy” in the sense of being complete with respect to standard algebras.

3.6 The Density Rule

We take another step towards fuzziness in this section. We establish completeness

of certain Hilbert systems with respect to algebras that are not only linearly ordered

but also dense. To do this, we make use of a further rule.

Definition 3.57 (Density Rule).

(A → p)∨ (p → B)∨C

(A → B)∨C
(DENSITY)

where p does not occur in A, B, or C

Adding (DENSITY) to a Hilbert system is fine for proving theorems. However, for

derivations from a theory T , we have to be a bit careful. We have to ensure that

the condition on the new variable p applies also to T . Let us assume as before that

HL is an HMAILL−-extension for FmL(X), and that theories and formulas, unless

otherwise stated, are also based on FmL(X).

Definition 3.58. HLD is HL+ (DENSITY) where HLD-derivations from a finite the-

ory T are restricted so that the new variable p does not occur in T . As before,

T ⊢HLD A iff there is an HLD-derivation of A from some finite subset of T .

Example 3.59. Observe that extending the axiomatization HCL of Classical Logic

with the density rule gives triviality:
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⊢HCLD p∨ (p →⊥) the law of excluded middle

⊢HCLD (⊤→ p)∨ (p →⊥)∨⊥ using ⊢HCL p ↔ ((⊤→ p)∨⊥)
⊢HCLD (⊤→⊥)∨⊥ by (DENSITY)

⊢HCLD ⊥ since ⊢HCL ⊥↔ ((⊤→⊥)∨⊥)

Several key properties are preserved by the extension with (DENSITY).

Proposition 3.60.

(a) If T ⊢HL A, then T ⊢HLD A.

(b) If T ⊢HLD A and T + ⊇ T , then T + ⊢HLD A.

(c) If T ⊢HLD A, then T F ⊢HLD A for some finite subset T F of T .

(d) If A is a confusion of T , then T ⊢HLD A.

To see that (DENSITY) is sound for dense HL-chains, suppose that for such an al-

gebra A, there is an A-model v of a finite theory T such that e 6≤ v((A → B)∨C).
Since A is a chain, it follows that:

v(B) < v(A) and v(C) < e

But now since A is dense, there exists an element x ∈ LA such that:

v(B) < x < v(A)

But suppose that p does not occur in T , A, B, or C. Then we can extend the A-model

v of T with v(p) = x. So v((A → p)∨ (p → B)∨C) < e as required.

Soundness for HLD with respect to dense L-chains follows: if T ⊢HLD A, then

T |=DEN(L) A. We just proceed as in the proof of Theorem 3.47 by induction on the

height of a derivation for T ⊢HLD A, the only new case being the soundness of the

density rule.

Moreover, HUL−-extensions with density still admit the local deduction theorem

and the proof-by-cases property.

Theorem 3.61. Let HL be an HUL−-extension:

(a) T ∪{A} ⊢HLD B iff T ⊢HLD C → B for some confusion C of {A}.

(b) T ⊢HLD A iff ⊢HL C → A for some confusion C of T .

(c) HLD has the proof-by-cases property.

Proof. Note first that (c) follows from (a) exactly as in the proof of Lemma 3.54.

For (a) and (b), we proceed as in Theorem 3.43 by showing that T1 ∪ T2 ⊢HLD B

iff T1 ⊢HLD C → B for some confusion C of T2. Let us concentrate on the trickier

left-to-right direction. We can assume by compactness that T1 and T2 are both finite.

We then prove the claim by induction on the height of an HLD-derivation of B

from T1 ∪ T2, the only new case to consider being (DENSITY). Suppose that B is

(B1 → B2)∨B3 and:

T1 ∪T2 ⊢HLD (B1 → p)∨ (p → B2)∨B3
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where p does not occur in T1, T2, B1, B2, or B3. Then by the induction hypothesis,

there exists a confusion C of T2 such that:

T1 ⊢HLD C → ((B1 → p)∨ (p → B2)∨B3)

So using the fact that ⊢HUL (A → (B∨C)) → ((A → B)∨ (A →C)):

T1 ⊢HLD ((C⊙B1) → p)∨ (p → (C → B2))∨ (C → B3)

Hence by (DENSITY):

T1 ⊢HLD ((C⊙B1) → (C → B2))∨ (C → B3)

It then follows easily using HMAILL−-derivabilities that:

T1 ⊢HLD ((C∧ e)⊙ (C∧ e)) → ((B1 → B2)∨B3)

and since C is a confusion of T2, so also is (C∧ e)⊙ (C∧ e). ⊓⊔

We are now ready to give a completeness proof with respect to dense chains. Just as

we can extend a theory so that the corresponding Lindenbaum algebra is a chain, so

we can extend a theory using (DENSITY) so that this algebra is also dense.

Definition 3.62. An FmL-theory T is L-dense if for each pair A,B ∈ FmL :

T 6⊢HL A → B implies T 6⊢HL A →C and T 6⊢HL C → B for some C ∈ FmL .

Suppose now that T is L-linear. It follows that T is L-dense iff whenever [A]LT < [B]LT ,

then [A]LT < [C]LT and [C]LT < [B]LT for some formula C, i.e. iff LINDL
T is dense.

Lemma 3.63. Let HL be an HUL−-extension for FmL(X) and T ∪{C} ⊆ FmL(X).
If T 6⊢HLD C, then T̂ 6⊢HLD C for some countable L-dense L-linear FmL(X∪Y)-
theory T̂ ⊇ T .

Proof. Let HL be an HUL−-extension for FmL(X) and T ∪{C} ⊆ FmL(X). Sup-

pose that T 6⊢HLD C. Now consider HL for FmL(X∪Y) where Y is a countably

infinite set of variables disjoint from X, noting that in this extended system we still

have T 6⊢HLD C. We enumerate all pairs of formulas in FmL(X∪Y) as 〈An,Bn〉 for

n ∈ N. We then define a sequence (Tn)n∈N of FmL(X∪Y)-theories and a sequence

(Cn)n∈N of members of FmL(X∪Y), starting with T0 = T and C0 = C.

Suppose that at step n we have defined Tn and Cn such that:

(i) For each i < n, either Ai → Bi ∈ Tn or Bi → Ai ∈ Tn.

(ii) For each i < n, there is a variable qi (depending on i but not on n) such that:

1. If Ai → Bi /∈ Tn, then (Ai → qi)∨ (qi → Bi) ⊢HLD Cn.

2. If Bi → Ai /∈ Tn, then (Bi → qi)∨ (qi → Ai) ⊢HLD Cn.

(iii) Tn 6⊢HLD Cn.

(iv) ⊢HLD Ci →Cn for all i < n.
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Note that (i). . . (iv) are satisfied for n = 0. We now define Tn+1 and Cn+1 such that

(i) . . . (iv) are satisfied when n is replaced by n + 1. First, if Tn ∪{An → Bn, Bn →
An} 6⊢HLD Cn, then define:

Tn+1 = Tn ∪{An → Bn, Bn → An} and Cn+1 = Cn

and note that (i) . . . (iv) hold for n+1.

Suppose that the previous case does not apply. Let qn be a variable not in Tn ∪
{An,Bn}∪{Ci : i≤ n}. We claim that (at least) one of the following conditions holds:

(a) Tn ∪{An → Bn} 6⊢HLD Cn ∨ (Bn → qn)∨ (qn → An).

(b) Tn ∪{Bn → An} 6⊢HLD Cn ∨ (An → qn)∨ (qn → Bn).

Suppose that (a) does not hold. Then by the density rule:

Tn ∪{An → Bn} ⊢HLD Cn ∨ (Bn → An)

But since Tn ∪{An → Bn, Bn → An} ⊢HLD Cn and Tn ∪{An → Bn,Cn} ⊢HLD Cn, by

the proof-by-cases property, Tn ∪{An → Bn,Cn ∨ (Bn → An)} ⊢HLD Cn. So:

Tn ∪{An → Bn} ⊢HLD Cn

Similarly, if (b) does not hold, then:

Tn ∪{Bn → An} ⊢HLD Cn

Hence by the proof-by-cases property, if neither (a) or (b) holds, then:

Tn ∪{(An → Bn)∨ (Bn → An)} ⊢HLD Cn

But ⊢HLD (An → Bn)∨ (Bn → An) so Tn ⊢HLD Cn, a contradiction. Hence:

If (a) holds, let Tn+1 = Tn∪{An → Bn} and Cn+1 =Cn∨(Bn → qn)∨(qn → An).

If (b) holds, let Tn+1 = Tn∪{Bn → An} and Cn+1 =Cn∨(An → qn)∨(qn → Bn).

In both cases conditions (i) . . . (iv) are preserved.

Now let T̂ =
⋃

n∈N Tn. For each n ∈ N, T̂ 6⊢HLD Cn. Otherwise by compactness

there exists k such that Tk ⊢HLD Cn. Without loss of generality we can assume that

k ≥ n. But since ⊢HLD Cn →Ck, we get Tk ⊢HLD Ck which contradicts property (iii).

Finally, observe that T̂ is L-linear and L-dense by construction. ⊓⊔

It follows then as before that if T 6⊢HLD A, then T̂ 6⊢HLD A for some L-linear L-dense

theory T̂ . Hence T̂ 6⊢HL A and LINDL
T̂

is a dense chain. Moreover, by Lemma 3.50,

v(A) < e for some LINDL
T̂

-model v of T .

Theorem 3.64. For any HUL−-extension HL: T ⊢HLD A iff T |=DEN(L) A.

Let us take stock. What we have just shown is that any HUL−-extension with

(DENSITY) is complete for dense L-chains. Now in many cases, we can take one
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step further and obtain completeness with respect to standard L-algebras. To do this,

we make use of the Dedekind-MacNeille completion defined in the previous chap-

ter. This tells us that for certain classes of pcrls and bpcrls, each countable dense

chain from the class can be embedded into a standard algebra of the same class.

Theorem 3.65. For any extension HL of HUL− with axiom schema taken from the

set {(⊥),(⊤), (e), (f), (INV), (W), (M), (EM), (NC)}∪{(Cn) : n ≥ 3}:

T ⊢HLD A iff T |=STAN(L) A

Proof. The left-to-right direction follows as above by induction on the height of

a derivation for T ⊢HLD A. For the other direction, suppose that T 6⊢HLD A. By

Lemma 3.63, v(A) < e for some countable dense L-chain A and A-model v of T .

Since A is a countable dense L-chain, we can without loss of generality assume that

LA = [0,1]∩Q with the usual ordering of the rationals. Now consider DM(A), the

Dedekind-MacNeille completion of A, where DM(LA) is the real unit interval [0,1]
with the usual ordering of the reals. Moreover, by Theorem 2.58, the characteris-

tic properties of L-algebras corresponding to the axiom schema taken from the set

{(⊥),(⊤), (INV), (e), (f), (W), (M), (Cn), (EM), (NC)} are all preserved. So DM(A)
is a standard L-algebra. Finally, we can use the embedding Φ of A into DM(A) of

Theorem 2.58. We define w(p) = Φ(v(p)), where w is a DM(A)-model of T such

that w(A) < eDM. So T 6|=STAN(L) A as required. ⊓⊔

In particular, extending the Hilbert systems for UL, IUL, MTL, IMTL, UML, IUML,

G, MTLn (n ≥ 2), IMTLn (n ≥ 3), and SMTL, with density ensures standard com-

pleteness. Note however that since the divisibility condition is not preserved by the

Dedekind-MacNeille completion, corresponding systems for logics such as BL are

not covered by this method.

These results are nice. However, really we would like to show that the original

density-free axiomatizations are standard complete. In later chapters we will give a

uniform method that achieves this by eliminating a version of the density rule from

corresponding Gentzen systems. In some cases, however, it is possible to show se-

mantically that (DENSITY) is admissible for the axiomatization. Intuitively, what

we need to show is that given two elements a < b in a chain with no elements be-

tween, we can always add a third element c such that a < c < b, while preserving the

required properties of the algebra. Let us consider the case of MTL as an example.

Lemma 3.66. (DENSITY) is HMTL-admissible.

Proof. We proceed by contraposition. Suppose that 6⊢HL (A → B)∨C. Then by The-

orem 3.56, v((A → B)∨C) < e for some MTL-chain A and A-valuation v. It follows

easily that:

a = v(A) > b = v(B) and e > v(C)

If there exists c in LA such that a > c > b, then we can extend v with v(p) = c and

v((A → p)∨ (p → B)∨C) < e as required. If not, then it is enough to extend A with

a new element between a and b such that A embeds into the new MTL-chain Â since

then v((A → B)∨C) < e also in Â. Let:
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LÂ =def LA ∪{c}

and extend the linear order ≤ of LA to LÂ so that a > c > b. We extend ⊙ to ⊙̂ first

with c⊙̂c = min(a⊙a,c) and then for all x ∈ LA with:

c⊙̂x = x⊙̂c = min(a⊙ x,c)

We claim that 〈LÂ,⊙̂,e〉 is a commutative monoid. Easily x⊙̂y = y⊙̂x for all x,y ∈
L̂A and c⊙̂e = e⊙̂c = min(a⊙ e,c) = min(a,c) = c. The only tricky thing to check

here is associativity. Take x,y ∈ LA and consider the two expressions:

(x⊙̂c)⊙̂y = min(a⊙ x,c)⊙̂y and x⊙̂(c⊙̂y) = x⊙̂min(a⊙ y,c)

Observe that a⊙ x ≤ a and a⊙ y ≤ a, and, since c is the greatest element below

a, either a⊙ x = a or a⊙ x ≤ c, and either a⊙ y = a or a⊙ y ≤ c. If a⊙ x ≤ c and

a⊙y≤ c, then the two expressions are equal using the associativity of ⊙. If a⊙x = a

and a⊙ y = a, then both expressions reduce to c. If a⊙ x = a and a⊙ y ≤ c, then

the first expression becomes c⊙̂y = a⊙ y and the second becomes x⊙ (a⊙ y) =
(x⊙a)⊙y = a⊙y. The situation where a⊙y = y and a⊙x ≤ c is symmetrical. Now

consider:

(x⊙̂y)⊙̂c = min(a⊙ (x⊙ y),c) and x⊙̂(y⊙̂c) = x⊙̂min(a⊙ y,c)

If a⊙ y ≤ c, then also a⊙ (x⊙ y) ≤ c and the two expressions are clearly equal.

Hence suppose that a⊙ y = a. Then the first expression becomes min(a⊙ x,c) and

the second becomes x⊙̂c = min(a⊙ x,c).
Clearly ⊙̂ has a residual →̂ (since we have just added one element), so letting

x∧̂y = min(x,y) and x∨̂y = max(x,y), Â = 〈LÂ, ∧̂, ∨̂,⊙̂,→̂,e, f,⊥,⊤〉 is an MTL-

algebra. Moreover, x→̂y = x → y for all x,y ∈ LA. This could only fail if x⊙̂c ≤ y

and x⊙̂a > y. But this implies that x⊙̂c = min(x⊙ a,c) = c and x⊙ a = a. Hence

a = x⊙a > y≥ x⊙̂c = c and y = c, a contradiction. So the identity function Φ(x) = x

is the required embedding of A into Â. ⊓⊔

Theorem 3.67. T ⊢HMTL A iff T |=STAN(MTL) A.

Proof. We have the following chain of reasoning:

T ⊢HMTL A iff ⊢HMTL C → A for some confusion C of T Theorem 3.43

iff ⊢HMTLD C → A for some confusion C of T Lemma 3.66

iff T ⊢HMTLD A Theorem 3.61

iff T |=STAN(MTL) A Theorem 3.65 ⊓⊔

With some adaptations, this method can be used to establish standard completeness

for HIMTL, HSMTL, and several other fuzzy logics with weakening. However, in

cases without weakening such as HUL, it is not at all easy to see how the relevant

algebras could be appropriately extended.
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Fig. 3.2 Relationships between fuzzy logics

3.7 Historical Remarks

Hilbert systems take their name from the famous mathematician David Hilbert who

popularized the axiomatic approach to Logic in the early part of the twentieth cen-

tury in works such as [118]. Such systems are also found (with very different nota-

tion) in the earlier work of Frege [84] and are hence often called Frege systems.

Hilbert systems are a common feature of the several diverse strands in the litera-

ture on substructural logics, including the relevance logics developed by Anderson

and Belnap and co-workers in the 1960s and 1970s [6, 7], the contraction-free log-

ics studied by Ono and Komori in their 1985 paper [177], and Linear Logic, intro-

duced by Girard in 1987 [10, 97]. A useful “toolkit” for building axiomatizations

for a wide range of substructural logics, including MAILL, MALL, ML, AMALL,

and RM, can be found in the 1999 book of Restall [186], as can the notion of a

confusion used in this chapter. For fuzzy logics, the main source for the modern

axiomatic approach is Hájek’s 1998 monograph [105]. This includes Hilbert sys-

tems and (standard) completeness proofs for the three fundamental logics Ł, G, and

P.2 Also provided is an axiomatization for Basic Logic BL, proved complete with

respect to algebras based on continuous t-norms (using an ordinal sum character-

ization of BL-chains) a year later by Cignoli et al. [59]. Related work of Esteva,

Godo, and co-workers includes extensions of continuous t-norm based logics with

2 We defer historical remarks for these logics to Chapter 6.
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an involutive negation [79], motivating the introduction of the “strict negation” basic

logic SBL, and logics combining Łukasiewicz and Product Logics such as ŁP [80],

Monoidal t-norm Logic MTL and extensions such as SMTL and IMTL were in-

troduced via Hilbert systems – essentially by dropping the divisibility axioms from

Hájek’s axiomatization of BL – by Esteva and Godo in 2001 [77]. However, a frag-

ment of MTL, known as C, was already introduced in Urquhart’s 1986 handbook

chapter on many-valued logics [212] in the context of defining Kripke semantics for

Łukasiewicz Logic. Standard completeness was established for Godo and Esteva’s

axiomatization by Jenei and Montagna in 2002 [125], the crucial step being an em-

bedding of countable MTL-chains into countable dense MTL-chains. This method

was subsequently extended to SMTL and IMTL in [76] and n-contractive logics

MTLn and IMTLn (for n ≥ 3) in [49]. Other extensions of MTL to have been inves-

tigated include logics obeying certain restricted cancellation properties. The logic

PMTL, axiomatized by adding the axioms of P to MTL, was proved distinct from

P by Hájek in [107], and standard complete by Horčı́k in [121]. Related “weakly

cancellative” logics extending MTL have been considered by Montagna, Noguera,

and Horčı́k in [154]. Finally, an investigation of “hoop” logics – fuzzy logics with-

out negation in the language – by Esteva et al. [78] led to an axiomatization and

standard completeness proof for Cancellative Hoop Logic CHL.

Weakening-free Hilbert systems for Uninorm Logic UL and its extensions IUL,

UML, and IUML, were introduced by Metcalfe and Montagna in 2007 [144], and for

Cross Ratio Logic CRL and other “[0,1)-continuous” uninorm logics by Metcalfe

and Gabbay the same year [87]. Related work includes the weakly implicative fuzzy

logics of Cintula [60]: a broad approach that treats implication as the fundamental

connective and characterizes fuzziness as completeness with respect to chains. The

systematic approach presented in this chapter using the density rule to axiomatize

fuzzy logics, first appeared in Metcalfe and Montagna’s [144]. However, the den-

sity rule itself was introduced by Takeuti and Titani already in 1984 to axiomatize

“Intuitionistic Fuzzy Logic”, better known as first-order Gödel Logic [205]. The se-

mantic elimination of this rule given for HMTL is a simplification of the embedding

step used in the standard completeness proof of Jenei and Montagna [125].

Finally, we remark that the general approach described here relating Hilbert sys-

tems to classes of residuated lattices falls easily into the framework of algebraizable

logics developed in particular by Blok and Pigozzi in their 1989 work [36]. In this

powerful and very general approach, a Hilbert system is guaranteed a corresponding

class of algebras and vice versa by the existence of certain formulas and equations

that serve to translate between the two presentations. A detailed exposition of this

phenomenon in the context of residuated lattices may be found in [90].



Chapter 4

Gentzen Systems

Hilbert systems are good for presenting a wide range of logics and connecting them

with classes of algebras, not so good when it comes to proving theorems in those

logics: even simple cases like A → A might be tricky. The problem is that at each

step in a derivation we should guess which axioms or instances of rules like modus

ponens to use next. A better option would be proof systems with more restrictions

on how to proceed, ideally, systems where derivations are analytic: built from the

raw material (subformulas) of the formula to be proved.

Several proof frameworks are well-suited to this task: Tableaux, Resolution, and

Display Logic, to name just a few, each with their own distinct advantages and

disadvantages. In this book, however, we choose to proceed with Gentzen systems,

a popular framework that offers the twin virtues of simplicity – our systems will be

reasonably natural and easy to understand – and flexibility – most of the logics that

we are interested in can be covered.

4.1 Sequents and Hypersequents

While Hilbert systems treat formulas directly, Gentzen systems gain flexibility by

treating structured collections of formulas: typically sequences, sets, or multisets.

Just which structures are appropriate depends on the properties of the logics under

consideration. With sets, order and multiplicity are lost: A,A,B is the same as A,B is

the same as B,A. Even with sequences, where both order and multiplicity do matter,

associativity is implicit (for non-associative logics, trees of formulas are needed). In

this book, we mostly assume commutativity, so the order of formulas is irrelevant.

On the other hand, the number of occurrences of a formula does matter: we will

want A,A to be different from A.

These considerations lead us to the following well-known definitions:

Definition 4.1. A multiset over α is an ordered pair 〈α, f 〉 where:

1. α is a set.
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2. f is a function f : α → N.

We say that 〈α, f 〉 is finite if Set(〈α, f 〉) =def {x ∈ α : f (x) > 0} is finite.

Definition 4.2. Let 〈α, f1〉 and 〈α, f2〉 be multisets over α:

• 〈α, f1〉⊎ 〈α, f2〉 =def 〈α, f 〉 where f (x) = f1(x)+ f2(x).

• 〈α, f1〉⊖〈α, f2〉 =def 〈α, f 〉 where f (x) = max( f1(x)− f2(x),0).

• 〈α, f1〉 ⊆ 〈α, f2〉 iff f1(x) ≤ f2(x) for all x ∈ α .

• x ∈ 〈α, f 〉 iff x ∈ α and f (x) > 0.

Multisets are also written using set-like notation with brackets [ and ] (rather than {
and }) where elements can be repeated. E.g. [a,a,b,b,b] stands for a multiset 〈α, f 〉
where {a,b} ⊆ α; f (a) = 2, f (b) = 3, and f is 0 elsewhere.

Let us assume again in this chapter that a set of formulas FmL is given by a

language L and a fixed countably infinite set of variables X. Finite multisets of

formulas, 〈FmL , f 〉, will be denoted by upper case Greek letters Γ,∆,Π,Σ. We often

write – particularly in Gentzen systems – Γ,Π and Γ,A to denote the multiset sums

Γ⊎Π and Γ⊎ [A], respectively. Sometimes we write A for the multiset [A] and a

blank space for the empty multiset []. Also, for any multiset Γ, we let:

Γ0 = [] and Γn+1 = Γn ⊎Γ for all n ∈ N

For ⋆ ∈ {∧,∨,⊙,⊕}, we implicitly assume an ordering on formulas, and let:

⋆[A1, . . . ,An] = A1 ⋆ . . . ⋆An

where ∧[] = ⊤, ∨[] = ⊥, ⊙[] = e, and ⊕[] = f.

We take the complexity of a finite multiset of formulas to be the multiset of the

complexities of its elements, i.e. a finite multiset of natural numbers:

Definition 4.3. For a finite multiset of formulas Γ = 〈FmL , f 〉:

cp(Γ) =def 〈N
+,g〉 where g(n) = ∑{ f (A) : A ∈ FmL and cp(A) = n}

We will also make use of a well-known ordering on sets of finite multisets.

Definition 4.4. For a well-ordered poset 〈α,≤〉:

• m(α) is the set of all finite multisets over α .

• 〈α, f 〉≤m〈α,g〉 if f (x) > g(x) implies y > x and g(y) > f (y) for some y ∈ α .

Intuitively, Γ ≤m ∆ holds if Γ can be obtained from ∆ by replacing elements with

finitely many (possibly zero) smaller elements. For example, for the set of all finite

multisets over N+ and the usual ordering of natural numbers:

[1,1,2,2,2] ≤m [1,1,1,3]
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Just notice that we can replace 3 on the right hand side with 2,2,2 and 1 with

nothing, to get the left hand side.

We will make quite frequent use of the following result:

Theorem 4.5. If 〈α,≤〉 is well-ordered, then 〈m(α),≤m〉 is well-ordered.

Proof. We define the well-ordered part W of m(α) with respect to ≤m inductively

by Γ ∈ W if ∆ ∈ W for all ∆ <m Γ. Clearly, it is enough to prove that W = m(α).
Let us define K(Γ) to mean:

For all a ∈ α , if ∆⊎ [b] ∈W for all ∆ ∈W and b < a, then Γ⊎ [a] ∈W .

We show that K(Γ) holds for all Γ ∈ W . By the definition of W , it is sufficient to

establish the following:

Claim 1. For Γ ∈W , K(Γ′) for all Γ′ <m Γ, implies K(Γ).

Proof of Claim 1. Let a ∈ α and suppose that ∆⊎ [b] ∈W for all ∆ ∈W and b < a.

We will show that Π∈W for all Π <m Γ⊎ [a] and hence that Γ⊎ [a]∈W as required.

There are two cases:

• Π = Γ′⊎ [a] for some Γ′ <m Γ. Since K(Γ′) holds, Γ′⊎ [a] ∈W as required.

• Π = Γ⊎ [b1, . . . ,bm] where bi < a for i = 1 . . .m. The result follows by induction

on m using the fact that ∆⊎ [b] ∈W for all ∆ ∈W and b < a.

Claim 2. Let L(a) mean: Γ⊎ [a] ∈W for all Γ ∈W . Then L(a) holds for all a ∈ α .

Proof of Claim 2. We proceed inductively using the fact that 〈α,≤〉 is well-ordered.

Suppose that L(b) holds for all b < a; i.e. Γ⊎ [b] ∈W for all b < a and Γ ∈W . But

K(Γ) holds for all Γ ∈W . So Γ⊎ [a] ∈W for all Γ ∈W as required.

Finally, to prove the theorem, we show that each finite multiset 〈α, f 〉 ∈ m(α) is in

W , proceeding by induction on ∑{ f (x) : x ∈ α}. The empty multiset [] is in W by

definition, and the inductive step follows immediately from Claim 2. ⊓⊔

4.1.1 Sequents

In Logic it is often useful to think of one collection of formulas “following from”

or being “a consequence of” another collection of formulas. In Gentzen systems,

this situation is represented using sequents: multisets (or sets, sequences, . . . ) of

formulas separated by the “entails” symbol ⇒. Formally:

Definition 4.6. An L-sequent for a language L is an ordered pair of finite multisets

of L-formulas, written:

A1, . . . ,An ⇒ B1, . . . ,Bm

An L-sequent Γ ⇒ ∆ is:

• single-conclusion if ∆ contains at most one formula.
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• multiple-conclusion if it is not single-conclusion.

• atomic if Γ and ∆ contain only atoms.

• strictly atomic if Γ and ∆ contain only variables.

We define cp(Γ ⇒ ∆) =def cp(Γ)⊎ cp(∆).

Intuitively, we might read (A1, . . . ,An ⇒ B1, . . . ,Bm) as:

“A1 and . . . and An entails B1 or . . . or Bm”

Or algebraically (to look ahead a little), sequents can be read as inequations: the

sequent arrow ⇒ will correspond to ≤, and the comma will correspond to ⊙ on the

left and ⊕ on the right.

We refer to L-sequents using the letter S with various subscripts and superscripts,

omitting the prefix L when the language is clear from the context. The notions of

sequent rule, proof system, and derivation follow from the general definitions of the

previous chapter, but let us recap. A sequent rule for a language L is a set of sequent

rule instances: ordered pairs consisting of an L-sequent S called the conclusion and

a finite set of L-sequents S1, . . . ,Sn called the premises, written S1, . . . ,Sn / S or:

S1 . . . Sn

S

Sequent rules where n = 0 are often called initial sequents. As for Hilbert sys-

tem rules we usually write sequent rules using schemas involving meta-variables

A,B,C, . . . standing for formulas and here also meta-variables Γ,∆,Π,Σ, . . . stand-

ing for finite multisets of formulas. Moreover, we make the following distinction:

Definition 4.7. A sequent rule is single-conclusion if all of its instances consist of

single-conclusion sequents, multiple-conclusion otherwise. The single-conclusion

version of a sequent rule consists of all of its single-conclusion instances.

A (single-conclusion) L-sequent calculus GL for a language L then consists of all

(single-conclusion) sequents for L and a set of (single-conclusion) sequent rules.1

Whereas Hilbert systems typically have many axiom schema with just one or

two further rules, sequent calculi usually have just a few initial sequent schema and

many other rules. Common initial sequent schema are:

A ⇒ A
(ID)

Γ,⊥⇒ ∆
(⊥⇒)

Γ ⇒⊤,∆
(⇒⊤)

The identity schema (ID) tells us that every formula “follows from itself”. (⊥⇒)
and (⇒⊤) tell us that a sequent always holds if ⊥ is on the left or ⊤ is on the right.

Other rules can be grouped together into different classes:

1 We use “G” for Gentzen here to distinguish our calculi from others in the literature characterizing
the same logics but with different languages and rules.
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• Logical rules deal with connectives. Usually, there are one or two rules, labelled

(⋆⇒) or (⇒ ⋆) (with subscripts), for each appearance of the connective ⋆ on

the left or right of a sequent. E.g. typical sequent rules for →, ∧, and ∨ are:

Γ1 ⇒ A,∆1 Γ2,B ⇒ ∆2

Γ1,Γ2,A → B ⇒ ∆1,∆2
(→⇒)

Γ,A ⇒ B,∆

Γ ⇒ A → B,∆
(⇒→)

Γ,A ⇒ ∆

Γ,A∧B ⇒ ∆
(∧⇒)1

Γ,B ⇒ ∆

Γ,A∧B ⇒ ∆
(∧⇒)2

Γ,A ⇒ ∆ Γ,B ⇒ ∆

Γ,A∨B ⇒ ∆
(∨⇒)

Γ ⇒ A,∆ Γ ⇒ B,∆

Γ ⇒ A∧B,∆
(⇒∧)

Γ ⇒ A,∆

Γ ⇒ A∨B,∆
(⇒∨)1

Γ ⇒ B,∆

Γ ⇒ A∨B,∆
(⇒∨)2

The formula ⋆(A1, . . . ,An) in the conclusion of an instance of a logical rule for

⋆ is called the principal formula of the instance, the subformulas A1, . . . ,An

occurring in the premises are called active formulas, and other formulas are

called context formulas.

• Structural rules allow modifications of sequents without reference to the com-

position of individual formulas. For example, these “weakening” and “contrac-

tion” rules allow formulas in a sequent to be added and removed respectively.

Γ ⇒ ∆

Γ,A ⇒ ∆
(WL)

Γ ⇒ ∆

Γ ⇒ A,∆
(WR)

Γ,A,A ⇒ ∆

Γ,A ⇒ ∆
(CL)

Γ ⇒ A,A,∆

Γ ⇒ A,∆
(CR)

Structural rules are often built into the definition of a sequent. In particular,

we have defined sequents here as consisting of multisets. To treat sequences of

formulas we would also need the “exchange” rules:

Γ,B,A,Π ⇒ ∆

Γ,A,B,Π ⇒ ∆
(EL)

Γ ⇒ ∆,B,A,Σ

Γ ⇒ ∆,A,B,Σ
(ER)

The absence or presence of different structural rules in Gentzen systems pro-

duces a wide spectrum of “substructural logics”. For example, relevant logics

omit weakening rules, while Linear Logic does without both weakening and

contraction rules.

• The cut rule expresses the transitivity of deduction. If B proves A and A proves

C, then B proves C:

Γ1,A ⇒ ∆1 Γ2 ⇒ A,∆2

Γ1,Γ2 ⇒ ∆1,∆2
(CUT)
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The cut-formula A occurring in the premises of an instance of this rule may not

occur in the conclusion, making proof search difficult. Crucially, however, it is

often possible to do without this rule in a calculus, or even (the topic of Chapter

5) “eliminate” its instances from derivations.

Our choice of examples of initial sequents and rules here is not accidental. Taken

together they form a sequent calculus GK for Classical Logic in the language LG =
{∧,∨,→,⊥,⊤}. Note, however, that this is not “the” sequent calculus for Classical

Logic, just one among many options. For example, it is possible to define a version

with no structural rules in which weakening and contraction rules are “absorbed”

into the logical rules and initial sequents.

Using the general definitions in Chapter 3, a GL-derivation d for a sequent calcu-

lus GL of a sequent S from a finite set of sequents U is a labelled finite tree (usually

written with the root at the bottom) such that:

• S labels the root of the tree and is called the end-sequent.

• For each node x labelled S0, either S0 ∈ U or the child nodes of x are labelled

S1, . . . ,Sn and S1, . . . ,Sn / S0 is an instance of a rule of GL.

S is GL-derivable from U if there is a GL-derivation d of S from a finite set UF ⊆U ,

written d;U ⊢GL S or just U ⊢GL S.

Example 4.8. Peirce’s axioms are derivable in GK as follows:

A ⇒ A
(ID)

A ⇒ A
(ID)

A ⇒ B,A
(WR)

⇒ A → B,A
(⇒→)

(A → B) → A ⇒ A,A
(→⇒)

(A → B) → A ⇒ A
(CR)

⇒ ((A → B) → A) → A
(⇒→)

The sequent framework is remarkably flexible. One of its most interesting features

is that by restricting GK (or a calculus like it) to single-conclusion rules, we obtain a

calculus for Intuitionistic Logic. For example, the rules (⇒∧) and (→⇒) become:

Γ ⇒ A Γ ⇒ B
Γ ⇒ A∧B

(⇒∧)
Γ1 ⇒ A Γ2,B ⇒ ∆

Γ1,Γ2,A → B ⇒ ∆
(→⇒)

The rule (CR) is lost altogether since the premise is multiple-conclusion, blocking

the derivation in Example 4.8. More generally, the step from single to multiple con-

clusion permits a derivation of the involution axioms ¬¬A → A, and corresponds to

the addition of this axiom schema to Hilbert systems.

The flexibility of sequent calculi is illustrated further by removing structural

rules. For example, without weakening rules it is no longer possible to prove the

classically valid A → (B → A). Also, alternative rules for logical connectives be-

come available. Compare for example, the rules for ∧ of GK with:
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Γ,A,B ⇒ ∆

Γ,A⊙B ⇒ ∆
(⊙⇒)

Γ1 ⇒ A,∆1 Γ2 ⇒ B,∆2

Γ1,Γ2 ⇒ A⊙B,∆1,∆2
(⇒⊙)

With both weakening and contraction rules it is easy to derive (A∧B ⇒ A⊙B) and

(A⊙B ⇒ A∧B). Removing these rules, however, the derivations of equivalence

break down and the connectives “split”. Of course this is no surprise to readers

familiar with algebraic structures like residuated lattices. In that framework, the

split is into lattice (additive) and group (multiplicative) operations.

Removing structural rules and adding new connectives in this way gives charac-

terizations of different logics. In particular, removing the weakening and contrac-

tion rules from GK and adding both the rules for ⊙ above and some more for e and

f (which split from ⊤ and ⊥), we get sequent calculi for Multiplicative Additive

Linear Logic MALL, and, restricting to single-conclusion rules, its “intuitionistic”

version MAILL. Removing just contraction rules gives calculi for Affine Multiplica-

tive Additive Linear Logic AMALL and Monoidal Logic ML, respectively, while

removing just weakening rules gives calculi for distribution-less relevant logics.

4.1.2 Hypersequents

We can do quite a lot with sequents: treat substructural logics, modal logics, and

many other logical families. However, for fuzzy logics, sequents are not enough. To

see why, consider a potential cut-free derivation of one of the prelinearity axioms.

Such a derivation would have as an end-sequent:

⇒ (A → B)∨ (B → A)

The derivation of this in GK uses both contraction and weakening rules:

A ⇒ A
(ID)

A,B ⇒ A
(WL)

A,B ⇒ A,B
(WR)

A ⇒ B,B → A
(⇒→)

⇒ A → B,B → A
(⇒→)

⇒ A → B,(A → B)∨ (B → A)
(⇒∨)2

⇒ (A → B)∨ (B → A),(A → B)∨ (B → A)
(⇒∨)1

⇒ (A → B)∨ (B → A)
(CR)

In fact, a “weaker form” of weakening is enough here: the so-called “mix rule”. Just

replace the top three lines of the above derivation with:

A ⇒ A
(ID)

B ⇒ B
(ID)

A,B ⇒ A,B
(MIX)
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However, if contraction or weakening is unavailable, we have just two options. We

can tinker with different sequent calculi, e.g. by taking non-standard rules or inter-

pretations. This approach is taken for some logics in Chapter 6. Or we can extend

the sequent framework itself.

Take another look at ⇒ (A → B)∨ (B → A). To work further on the constituents

of this sequent, it would be helpful to represent in some way:

⇒ A → B “or” ⇒ B → A

Then we could operate on A → B and B → A in parallel. Let us take the symbol | to

stand for this meta-level “or”.

Definition 4.9. An L-hypersequent is a non-empty finite multiset of the form:

Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n

where each (Γi ⇒ ∆i) is an L-sequent for i = 1 . . .n.

An L-hypersequent S1 | . . . | Sn is:

• single-conclusion if S1, . . . ,Sn are all single-conclusion.

• multiple-conclusion if it is not single-conclusion.

• (strictly) atomic if S1, . . . ,Sn are all (strictly) atomic.

We define the complexity of S1 | . . . | Sn as cp(S1 | . . . | Sn) =def [cp(S1), . . . ,cp(Sn)].

We will drop the L as before when the language is clear from the context, and use

G and H to refer to arbitrary hypersequents.

Example 4.10. To get some idea of how the complexity of a hypersequent is calcu-

lated, consider:

G = (p,q,(p∨q) → r ⇒ r | q ⇒ p → r | q∧ p,r,⊥⇒ p → q |⇒)

For the sequents, we have:

cp(p,q,(p∨q) → r ⇒ r) = [1,1,1,5] cp(q ⇒ p → r) = [1,3]

cp(q∧ p,r,⊥⇒ p → q) = [1,1,3,3] cp(⇒) = []

So putting this together, we get:

cp(G) = [[1,1,1,5], [1,3], [1,1,3,3], []]

Recall that the usual well-ordering ≤ over N+ gives rise (via Definition 4.4 and

Theorem 4.4) to a well-ordering ≤m of finite multisets of positive natural numbers.

But then this well-ordering also gives rises to a new well-ordering ≤mm of finite

multisets of finite multisets of positive natural numbers. Hence for example:

[[1,1,1,1,2,2,2], [1,1,3,3], [2,2,3]] ≤mm [[1,2,3,3], [1,1,1,2]] ≤mm [[4]]
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Just as for sequents where each side is a multiset, here the use of multisets of se-

quents rather than sets or sequences means that the multiplicity but not the order

of sequents is important. Sometimes we find it convenient to write a hypersequent

S1 | . . . | Sn directly as a multiset [S1, . . . ,Sn], possibly using brackets ( and ) to distin-

guish the sequents. Also we will frequently use G, H, etc. in rule schema to denote

(perhaps empty) hypersequents, called side-hypersequents.

Definitions for hypersequent rules, derivations, and calculi follow from the gen-

eral definitions, and are in any case, very similar to those for sequent calculi. More-

over, there is a simple method for stepping from sequent rules to hypersequent rules:

Definition 4.11. The hypersequent version of a (single-conclusion) sequent rule (r)

is the set of inferences:
G | S1 . . . G | Sn

G | S

where S1, . . . ,Sn / S is an instance of (r) and G a (single-conclusion) hypersequent.

For example, the single-conclusion hypersequent versions of (→⇒) and (⇒→) are:

G | Γ1 ⇒ A G | Γ2,B ⇒ ∆

G | Γ1,Γ2,A → B ⇒ ∆
(→⇒)

G | Γ,A ⇒ B

G | Γ ⇒ A → B
(⇒→)

There is also a natural way of stepping in the opposite direction:

Definition 4.12. The sequent version of a rule consists of all its instances which

have sequents as both premises and conclusion.

Except when confusion might occur, we will make use of the same label for a hy-

persequent rule and also its various single-conclusion and sequent versions.

The fact that | is supposed to represent disjunction between sequents is reflected

in a couple of key “external” structural rules: external weakening and external con-

traction.
G

G | H
(EW)

G | H | H

G | H
(EC)

These rules add and contract (or, reading upwards, remove and multiply) sequents.

However, they do not really add much to the expressivity of sequent calculi. This

is achieved only when we add rules that allow interaction between sequents. For

example, the following single-conclusion rule “splits” a sequent in two:

G | Γ1,Γ2 ⇒ ∆

G | Γ1 ⇒ ∆ | Γ2 ⇒
(SPLIT)

We can use (SPLIT) to obtain a single-conclusion contraction-free calculus for Clas-

sical Logic. Just take single-conclusion hypersequent versions of the initial se-

quents, logical and weakening rules of GK together with (EW), (EC), and (SPLIT).

To see how this works, compare the following derivation of Peirce’s axioms in this

calculus with the GK-derivation of Example 4.8:
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A ⇒ A
(ID)

A ⇒ A |⇒ A
(EW)

A ⇒ A
(ID)

A ⇒|⇒ A
(SPLIT)

A ⇒ B |⇒ A
(WR)

⇒ A → B |⇒ A
(⇒→)

(A → B) → A ⇒ A |⇒ A
(→⇒)

(A → B) → A ⇒ A | (A → B) → A ⇒ A
(WL)

(A → B) → A ⇒ A
(EC)

⇒ ((A → B) → A) → A
(⇒→)

Of course, contraction does occur in this calculus, but at the level of whole sequents

rather than formulas.

Finally, we mention a property for hypersequent calculi with schematic rules

that will prove very useful in the next chapter. Let us write G[p/A] for the result of

substituting all occurrences of a variable p in a hypersequent G with a formula A.

Then the following is established by an easy induction on the height of a derivation:

Lemma 4.13. Let GL be a hypersequent calculus with schematic rules. If ⊢GL G,

then ⊢GL G[p/A].

4.2 Core Systems

Initial sequents or hypersequents – rules with no premises – provide the basic build-

ing blocks for derivations in Gentzen systems. The systems presented in this book

all contain a stock of such rules that express just “A follows from A”:

Definition 4.14 (Identity Hypersequents).

G | A ⇒ A
(ID)

The core of a Gentzen system, uniform across almost all the systems in this chapter,

consists of (ID) plus a fixed set of logical rules characterizing the behaviour of

connectives on the left and right of sequents. Let us start with implication.

Definition 4.15 (Rules for Implication).

G | Γ1 ⇒ A,∆1 G | Γ2,B ⇒ ∆2

G | Γ1,Γ2,A → B ⇒ ∆1,∆2
(→⇒)

G | Γ,A ⇒ B,∆

G | Γ ⇒ A → B,∆
(⇒→)

Note that we can take both single-conclusion and sequent versions of these rules.

That is, each rule counts four times (although we use the same label in each case).

E.g. for (⇒→), we have additionally:

G | Γ,A ⇒ B

G | Γ ⇒ A → B
(⇒→)

Γ,A ⇒ B,∆

Γ ⇒ A → B,∆
(⇒→)

Γ,A ⇒ B

Γ ⇒ A → B
(⇒→)
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Example 4.16. The transitivity (B), permutability (C), and reflexivity (I) axioms are

all derivable using the implication rules and (ID). E.g. for (B):

C ⇒C
(ID)

B ⇒ B
(ID)

A ⇒ A
(ID)

A → B,A ⇒ B
(→⇒)

A → B,B →C,A ⇒C
(→⇒)

A → B,B →C ⇒ A →C
(⇒→)

A → B ⇒ (B →C) → (A →C)
(⇒→)

⇒ (A → B) → ((B →C) → (A →C))
(⇒→)

The rule (⇒→) also gives us a good idea of how to interpret the “,” on the left of

sequents. Since A → (B → C) is equivalent to (A⊙B) → C in our logics, reading

“⇒” as a meta-level →, it makes sense to read “,” as a meta-level ⊙. Bearing this

in mind, the rules for ⊙ are:

Definition 4.17 (Rules for Multiplicative Conjunction).

G | Γ,A,B ⇒ ∆

G | Γ,A⊙B ⇒ ∆
(⊙⇒)

G | Γ1 ⇒ A,∆1 G | Γ2 ⇒ B,∆2

G | Γ1,Γ2 ⇒ A⊙B,∆1,∆2
(⇒⊙)

Rules for the multiplicative unit e are based on the idea that e should be both the

unit element for ⊙, and the meaning of the empty multiset on the left. Similarly, f

takes the role of the unit for ⊕, and the meaning of the empty multiset on the right:

Definition 4.18 (Rules for Multiplicative Constants).

G | Γ ⇒ ∆

G | Γ,e ⇒ ∆
(e⇒)

G |⇒ e
(⇒e)

G | f ⇒
(f⇒)

G | Γ ⇒ ∆

G | Γ ⇒ f,∆
(⇒ f)

The comma on the right of sequents (for multiple-conclusion calculi) is interpreted

by the “multiplicative disjunction” connective ⊕ defined by A⊕ B =def ¬A → B

where ¬A =def A → f. Derived rules for ⊕ and ¬ are then:

G | Γ1,A ⇒ ∆1 G | Γ2,B ⇒ ∆2

G | Γ1,Γ2,A⊕B ⇒ ∆1,∆2
(⊕⇒)

G | Γ ⇒ A,B,∆

G | Γ ⇒ A⊕B,∆
(⇒⊕)

G | Γ ⇒ A,∆

G | Γ,¬A ⇒ ∆
(¬⇒)

G | Γ,A ⇒ ∆

G | Γ ⇒¬A,∆
(⇒¬)

For example, in the case of (⊕⇒), we have:

G | Γ1,A ⇒ ∆1

G | Γ1,A ⇒ f,∆1
(⇒ f)

G | Γ1 ⇒ A → f,∆1
(⇒→)

G | Γ2,B ⇒ ∆2

G | Γ1,Γ2,(A → f) → B ⇒ ∆1,∆2
(→⇒)

and for (⇒⊕):
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G | f ⇒
(f⇒)

G | Γ ⇒ A,B,∆

G | Γ,A → f ⇒ B,∆
(→⇒)

G | Γ ⇒ (A → f) → B,∆
(⇒→)

It is easy to see how the single-conclusion / multiple-conclusion distinction affects

derivations in Gentzen systems. In the multiple-conclusion case for example, we are

able to prove the involution axioms (INV):

A ⇒ A
(ID)

⇒ A,¬A
(⇒¬)

¬¬A ⇒ A
(¬⇒)

⇒¬¬A → A
(⇒→)

But in single-conclusion calculi the crucial application of (⇒¬) is blocked.

Taking multiple or single-conclusion sequent versions of the rules introduced

so far gives “cut-free” multiplicative fragments of Linear Logic. To introduce the

additive connectives ∧ and ∨ for these (and other) logics, we have:

Definition 4.19 (Rules for Additive Conjunction).

G | Γ,A ⇒ ∆

G | Γ,A∧B ⇒ ∆
(∧⇒)1

G | Γ,B ⇒ ∆

G | Γ,A∧B ⇒ ∆
(∧⇒)2

G | Γ ⇒ A,∆ G | Γ ⇒ B,∆

G | Γ ⇒ A∧B,∆
(⇒∧)

Definition 4.20 (Rules for Additive Disjunction).

G | Γ,A ⇒ ∆ G | Γ,B ⇒ ∆

G | Γ,A∨B ⇒ ∆
(∨⇒)

G | Γ ⇒ A,∆

G | Γ ⇒ A∨B,∆
(⇒∨)1

G | Γ ⇒ B,∆

G | Γ ⇒ A∨B,∆
(⇒∨)2

Example 4.21. The axioms (∧1)–(∧3) and (∨1)–(∨3) are easily derived using the

above rules together with those for implication. For example, the axioms of (∧3)
are derived as follows:

B ⇒ B
(ID)

A ⇒ A
(ID)

A → B,A ⇒ B
(→⇒)

(A → B)∧ (A →C),A ⇒ B
(∧⇒)1

C ⇒C
(ID)

A ⇒ A
(ID)

A →C,A ⇒C
(→⇒)

(A → B)∧ (A →C),A ⇒C
(∧⇒)2

(A → B)∧ (A →C),A ⇒ B∧C
(⇒∧)

(A → B)∧ (A →C) ⇒ A → (B∧C)
(⇒→)

⇒ ((A → B)∧ (A →C)) → (A → (B∧C))
(⇒→)

However, the distributivity axioms (DIS) cannot be proved using these rules.
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The top truth ⊤ and bottom falsity ⊥ are characterized, if required, by the following

rules (or, initial hypersequents):

Definition 4.22 (Rules for Additive Constants).

G | Γ,⊥⇒ ∆
(⊥⇒)

G | Γ ⇒⊤,∆
(⇒⊤)

The rules introduced so far in this section have an important feature. The only for-

mulas occurring in the premises are subformulas of formulas occurring in the con-

clusion. This is called the “subformula property”. It ensures that each derivation

using only these rules can be viewed (reading upwards) as a decomposition of for-

mulas in which no new material is added. In fact we can decompose to such an

extent that (ID) can be restricted to strictly atomic instances (i.e. containing only

variables).

Proposition 4.23. For L ⊆LB, let GL consist of the appropriate logical rules for L
and the strictly atomic instances of (ID). Then ⊢GL A ⇒ A for all A ∈ FmL .

Proof. We proceed by induction on cp(A). If A is a variable p, then (A ⇒ A) is a

strictly atomic instance of (ID). If A is a constant, then the cases of ⊥ and ⊤ follow

immediately using (⊥⇒) and (⇒⊤), respectively, and if A is f or e, then we have

the derivations:

⇒ e (⇒e)

e ⇒ e (e⇒)
f ⇒

(f⇒)

f ⇒ f
(⇒ f)

Now suppose that A is B⋆C for ⋆ ∈ {→,⊙,∧,∨}. Then by the induction hypothesis

twice ⊢GL B ⇒ B and ⊢GL C ⇒ C, and we can construct derivations using the left

and right rules for ⋆. E.g. for → and ∨, we have:

B ⇒ B C ⇒C

B →C,B ⇒C
(→⇒)

B →C ⇒ B →C
(⇒→)

B ⇒ B
B ⇒ B∨C

(⇒∨)1
C ⇒C

C ⇒ B∨C
(⇒∨)2

B∨C ⇒ B∨C
(∨⇒)

⊓⊔

Our core set of rules is completed by a rule that fails the subformula property, how-

ever: the so-called “cut rule”, corresponding to the transitivity of deduction or the

introduction of lemmas into derivations.

Definition 4.24 (Cut Rule).

G | Γ1,A ⇒ ∆1 G | Γ2 ⇒ A,∆2

G | Γ1,Γ2 ⇒ ∆1,∆2
(CUT)

Example 4.25. The cut rule is closely related to the modus ponens rule used in

Hilbert systems. Indeed we can simulate (MP) in systems with (CUT) as follows:

⇒ A

⇒ A → B
A ⇒ A

(ID)
B ⇒ B

(ID)

A,A → B ⇒ B
(→⇒)

A ⇒ B
(CUT)

⇒ B
(CUT)
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As we have hinted, (CUT) is not needed for most of the calculi that we consider

(at least, the good ones). Everything that we can prove with cuts, we can prove

without cuts. However, there are good reasons to have (CUT) as a primitive rule

of Gentzen systems. First, it is easy to prove soundness and completeness for such

systems. Second, we can investigate the impact of introducing or eliminating cuts

from derivations, one of the major themes of Proof Theory.

We now have everything we need to identify some core systems. GMALL, a cal-

culus for Multiplicative Additive Linear Logic, consists of the sequent versions of

the initial hypersequents, logical rules, and cut rule presented above (also collected

in Fig. 4.1). GMAILL, for the intuitionistic partner of the logic, is obtained as the

single-conclusion version of GMALL. As for Hilbert systems, we also introduce

notation to denote counterparts of systems such as these without ⊥ and ⊤.

Definition 4.26. A GL-extension for an LF or LB hypersequent calculus GL con-

sists of GL extended with LB hypersequent rule schema. Also, for any GMAILL-

extension GL, the Gentzen system GL− is GL with (⊥⇒) and (⇒⊤) removed.

Before moving on to study particular extensions of GMAILL−, let us investigate

some useful invertibility properties of the logical rules that hold for any such exten-

sion GL. Consider an instance of the rule (⊙⇒). If the conclusion (G |Γ,A⊙B⇒∆)
is GL-derivable, then the premise (G | Γ,A,B ⇒ ∆) is GL-derivable. We just make

use of the derivation:

G | A ⇒ A
(ID)

G | B ⇒ B
(ID)

G | A,B ⇒ A⊙B
(⇒⊙)

G | Γ,A⊙B ⇒ ∆

G | Γ,A,B ⇒ ∆
(CUT)

That is, (⊙⇒) is GL-invertible. Moreover, the same property can be shown to hold

for many other logical rules (typically either for the left rules or right rules for each

connective, but not both), left as simple exercises for the reader.

Proposition 4.27. The logical rules (⊙⇒), (⇒→), (⇒f), (e⇒), (∨⇒), and (⇒∧)
are GL-invertible for any GMAILL−-extension GL. Also, if GL extends GMALL−,

then the derived rule (⇒⊕) is GL-invertible.

4.3 Adding Structural Rules

Structural rules manipulate sequents and formulas with no regard to their internal

composition. If we fix the logical rules of our systems, then it is these manipulations

that give each calculus its distinctive properties. Here we consider important exam-

ples of two kinds of structural rules: internal rules that manipulate formulas within

individual sequents, and external rules that manipulate whole sequents. We also in-

troduce along the way many different sequent and hypersequent calculi, collecting

these definitions together for the reader’s convenience in Table 4.1.



4.3 Adding Structural Rules 81

Initial Sequents

G | A ⇒ A
(ID)

Structural Rules
G

G |H
(EW)

G |H |H

G |H
(EC)

Logical Rules

G | Γ,⊥⇒ ∆
(⊥⇒)

G | Γ ⇒⊤,∆
(⇒⊤)

G | Γ ⇒ ∆

G | Γ,e ⇒ ∆
(e⇒)

G |⇒ e
(⇒e)

G | f ⇒
(f⇒)

G | Γ ⇒ ∆

G | Γ ⇒ f,∆
(⇒ f)

G | Γ1 ⇒ A,∆1 G | Γ2,B ⇒ ∆2

G | Γ1,Γ2,A → B ⇒ ∆1,∆2

(→⇒)
G | Γ,A ⇒ B,∆

G | Γ ⇒ A → B,∆
(⇒→)

G | Γ,A,B ⇒ ∆

G | Γ,A⊙B ⇒ ∆
(⊙⇒)

G | Γ1 ⇒ A,∆1 G | Γ2 ⇒ B,∆2

G | Γ1,Γ2 ⇒ A⊙B,∆1,∆2

(⇒⊙)

G | Γ,A ⇒ ∆

G | Γ,A∧B ⇒ ∆
(∧⇒)1

G | Γ,B ⇒ ∆

G | Γ,A∧B ⇒ ∆
(∧⇒)2

G | Γ,A ⇒ ∆ G | Γ,B ⇒ ∆

G | Γ,A∨B ⇒ ∆
(∨⇒)

G | Γ ⇒ A,∆ G | Γ ⇒ B,∆

G | Γ ⇒ A∧B,∆
(⇒∧)

G | Γ ⇒ A,∆

G | Γ ⇒ A∨B,∆
(⇒∨)1

G | Γ ⇒ B,∆

G | Γ ⇒ A∨B,∆
(⇒∨)2

Cut Rule
G | Γ1,A ⇒ ∆1 G | Γ2 ⇒ A,∆2

G | Γ1,Γ2 ⇒ ∆1,∆2

(CUT)

Fig. 4.1 The standard rule set

4.3.1 External Weakening and External Contraction

External weakening and external contraction, (EW) and (EC), are core external

structural rules that appear in all our hypersequent calculi. Essentially they char-

acterize “|” as an additive disjunction: they add and remove sequents.

Definition 4.28 (External Weakening and External Contraction Rules).

G
G | H

(EW)
G | H | H

G | H
(EC)
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These rules offer greater flexibility for recording choices in a derivation. In particu-

lar, the rules for ∨ on the right can be combined, as can those for ∧ on the left. Let

us see how.

Definition 4.29 (Hypersequent Rules for ∧ and ∨).

G | Γ,A ⇒ ∆ | Γ,B ⇒ ∆

G | Γ,A∧B ⇒ ∆
(∧⇒)

G | Γ ⇒ A,∆ | Γ ⇒ B,∆

G | Γ ⇒ A∨B,∆
(⇒∨)

Lemma 4.30. Let GL be any calculus with (EW) and (EC). Then (∧⇒) and (⇒∨)
are derivable in GL extended with (∧⇒)1, (∧⇒)2, (∨⇒)1, and (∨⇒)2, and vice

versa: these rules are derivable in GL extended with (∧⇒) and (⇒∨).

Proof. We just consider the rules for ∨. To show that (⇒∨) is derivable using (⇒
∨)1 and (⇒∨)2, we have:

G | Γ ⇒ A,∆ | Γ ⇒ B,∆

G | Γ ⇒ A,∆ | Γ ⇒ A∨B,∆
(⇒∨)2

G | Γ ⇒ A∨B,∆ | Γ ⇒ A∨B,∆
(⇒∨)1

G | Γ ⇒ A∨B,∆
(EC)

and for the other direction:

G | Γ ⇒ A,∆

G | Γ ⇒ A,∆ | Γ ⇒ B,∆
(EW)

G | Γ ⇒ A∨B,∆
(⇒∨)

G | Γ ⇒ B,∆

G | Γ ⇒ A,∆ | Γ ⇒ B,∆
(EW)

G | Γ ⇒ A∨B,∆
(⇒∨)

⊓⊔

However, adding (EW) and (EC) to the hypersequent version of a sequent calculus

has no effect on which sequents are derivable. To get more, we will need to add

rules that allow sequents to interact.

Proposition 4.31. Let GLH consist of the hypersequent versions of the rules of a

sequent calculus GL plus (EW) and (EC). Then ⊢GLH G iff ⊢GL S for some S ∈ G.

Proof. Clearly if ⊢GL S for some S ∈ G, then using (EW), ⊢GLH G. For the other

direction, we prove that if d ⊢GLH G, then ⊢GL S for some S ∈ G, proceeding by

induction on ht(d). For the base case, some S ∈ G is an initial sequent of GL. For

the inductive step, consider first G =H1 | H2. If the last step in d is an application of

(EW) to H1, then by the induction hypothesis, ⊢GL S for some S ∈ H1 as required.

Similarly, for (EC), we can apply the induction hypothesis to H1 | H2 | H2, to get

⊢GL S for some S ∈H1 ⊎H2. Suppose finally that d ends with:

H | S1 . . . H | Sn

H | S

where S1, . . . ,Sn / S is an instance of a rule of GL. By the induction hypothesis

n times, either ⊢GL S′ for some S′ ∈ H or ⊢GL Si for i = 1 . . .n. The first case is

immediate and for the second we just apply the sequent rule to get ⊢GL S. ⊓⊔
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Example 4.32. Even when not strictly necessary, hypersequents can still be useful

for recording options in a derivation, e.g.

A ⇒ B | B ⇒ B | A ⇒C | B ⇒C
(ID)

A∧B ⇒ B | A ⇒C | B ⇒C
(∧⇒)

A∧B ⇒ B | A∧B ⇒C
(∧⇒)

A∧B ⇒ B∨C
(⇒∨)

Here, we do not have to guess which conjunct or disjunct to work on first. We just

decompose them all and see which one is most useful; no backtracking is required.

It is often convenient (in particular, for fitting derivations onto the page) to use rules

combined with applications of (EW) and (EC). We will denote such combinations

with a ∗. For example, we can make use of a version of (CUT) where the context

side-hypersequents are added rather than merged:

G1 | Γ,A ⇒ ∆ G2 | Π ⇒ A,Σ

G1 | G2 | Γ,Π ⇒ Σ,∆
(CUT)∗

4.3.2 Communication and Split

For Hilbert systems, it is the prelinearity and distributivity axioms that are key for

characterizing linearity. For Gentzen systems, it is the communication rule, so-called

because formulas – pieces of information – are “communicated” between different

sequents.

Definition 4.33 (Communication Rule).

G | Γ1,Π1 ⇒ Σ1,∆1 G | Γ2,Π2 ⇒ Σ2,∆2

G | Γ1,Γ2 ⇒ ∆1,∆2 | Π1,Π2 ⇒ Σ1,Σ2
(COM)

The single-conclusion version of (COM) simplifies a little to:

G | Γ1,Π1 ⇒ ∆ G | Γ2,Π2 ⇒ Σ

G | Γ1,Γ2 ⇒ ∆ | Π1,Π2 ⇒ Σ
(COM)

Example 4.34. The best way to understand communication is by returning to the

tricky prelinearity axioms (A → B)∨(B → A). The following derivation uses (COM)

and (EC) (implicit in the derived rule (⇒∨)) but no other structural rules:
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A ⇒ A
(ID)

B ⇒ B
(ID)

A ⇒ B | B ⇒ A
(COM)

A ⇒ B |⇒ B → A
(⇒→)

⇒ A → B |⇒ B → A
(⇒→)

⇒ (A → B)∨ (B → A)
(⇒∨)

Notice that the hypersequent (A ⇒ B | B ⇒ A) two lines down might be read as just

a “hypersequent translation” of (A → B)∨ (B → A).

Example 4.35. Consider also these derivations of a helpful property of disjunction:

A ⇒ A | A∨B ⇒ B
(ID)

A ⇒ A
(ID)

B ⇒ B
(ID)

B ⇒ A | A ⇒ B
(COM)

A ⇒ B | B ⇒ B
(ID)

B ⇒ A | A∨B ⇒ B
(∨⇒)

A∨B ⇒ A | A∨B ⇒ B
(∨⇒)

and conjunction:

A ⇒ A | B ⇒ A∧B
(ID)

A ⇒ A
(ID)

B ⇒ B
(ID)

A ⇒ B | B ⇒ A
(COM)

A ⇒ B | B ⇒ B
(ID)

A ⇒ B | B ⇒ A∧B
(∨⇒)

A ⇒ A∧B | B ⇒ A∧B
(⇒∧)

Example 4.36. The communication rule is crucial for deriving the prelinearity ax-

ioms. But also the distributivity axioms are derivable in any extension of the core

rules with (EC), (EW), and (COM). In fact, it is not easy to see how hypersequent

calculi can be defined that derive only one of (PRL) and (DIS). For convenience, let

us first consider the following rule, easily derived using the rules for ∧:

G | B ⇒C

G | A∧B ⇒ A∧C
(∧CAN)

Then we obtain the following derivation, where the top hypersequent is derived as

in Example 4.35:

B∨C ⇒ B | B∨C ⇒C

B∨C ⇒ B | A∧ (B∨C) ⇒ A∧C
(∧CAN)

A∧ (B∨C) ⇒ A∧B | A∧ (B∨C) ⇒ A∧C
(∧CAN)

A∧ (B∨C) ⇒ (A∧B)∨ (A∧C)
(⇒∨)

⇒ (A∧ (B∨C)) → ((A∧B)∨ (A∧C))
(⇒→)

We are ready now to identify Gentzen systems for the most elementary of our fuzzy

logics. We let GIUL consist of the initial hypersequents, logical rules, and cut rule

of the previous section (i.e. the hypersequent version of GMALL), together with
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(EC), (EW), and (COM). GUL is then the single-conclusion version of GIUL (i.e. the

hypersequent version of GMAILL).

The step up to hypersequents also gains us a couple of helpful extra invertibilities

to add to those in Proposition 4.27. Consider first the defined rule (∨⇒). In any

GUL−-extension, we can derive the premise of an instance of this rule from its

conclusion:

A∨B ⇒ A | A∨B ⇒ B G | Γ ⇒ A∨B,∆

G | A∨B ⇒ A | Γ ⇒ B,∆
(CUT)∗

G | Γ ⇒ A∨B,∆

G | Γ ⇒ A,∆ | Γ ⇒ B,∆
(CUT)∗

where again the leftmost hypersequent is derived as in Example 4.35. A similar

derivation works for the defined rule (∧⇒), so we get the following result.

Proposition 4.37. (∧⇒) and (⇒∨) are GL-invertible for any GUL−-extension GL.

Finally, a related rule that also allows interaction between sequents is the “split rule”

which divides one sequent in the premise into two sequents in the conclusion.

Definition 4.38 (Split Rule).

G | Γ1,Γ2 ⇒ ∆1,∆2

G | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2
(SPLIT)

Example 4.39. Just as (COM) corresponds to (PRL) and (DIS), so (SPLIT) corre-

sponds to the law of excluded middle (EM):

A ⇒ A
(ID)

⇒ A | A ⇒
(SPLIT)

⇒ A |⇒ ¬A
(⇒¬)

⇒ A∨¬A
(⇒∨)

Note that there are no sequent instances of (COM) and (SPLIT), or indeed of (EW)

and (EC), so sequent versions of these rules are simply empty.

4.3.3 Weakening

Weakening axioms (or theorems) are a common feature of fuzzy logics based on t-

norms, including MTL and the fundamental logics Ł, G, and P. In Gentzen systems,

weakening rules typically come in pairs, introducing new formulas on the left and

right of sequents. E.g.

G | Γ ⇒ ∆

G | Γ,A ⇒ ∆
(WL)

G | Γ ⇒ ∆

G | Γ ⇒ A,∆
(WR)
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Here, for simplicity, we combine these left and right rules into one:

Definition 4.40 (Weakening Rule).

G | Γ ⇒ ∆

G | Γ,Π ⇒ Σ,∆
(W)

Example 4.41. Unsurprisingly, the weakening rule allows us to derive weakening

axioms:

⇒ e (ID)

A ⇒ e
(W)

⇒ A → e
(⇒→)

f ⇒
(f⇒)

f ⇒ A
(W)

⇒ f → A
(⇒→)

⇒ (A → e)∧ (f → A)
(⇒∧)

In fact, we can use the weakening rule to prove that f and ⊥ and ⊤ and e collapse:

that is, f ↔⊥ and e ↔⊤ are derivable using (W) (assuming that ⊥ and ⊤ are in the

language).

Gentzen systems for Affine Multiplicative Additive Linear Logic and its intuition-

istic version, Monoidal Logic, are obtained by adding the multiple and single-

conclusion versions of (W) to GMALL and GMAILL, respectively. The systems

GIMTL and GMTL are then obtained by extending the hypersequent versions of

these calculi with (COM). Or put another way: GIMTL and GMTL are GIUL and

GUL plus (W).

A further (weaker) kind of weakening allows two sequents to be combined or

“mixed” into one. There is also an extreme case. The empty sequent is a “nullary

mix” where there are no formulas to combine.

Definition 4.42 (Mix and Nullary Mix Rules).

G | Γ1 ⇒ ∆1 G | Γ2 ⇒ ∆2

G | Γ1,Γ2 ⇒ ∆1,∆2
(MIX)

G |⇒
(EMP)

Example 4.43. (MIX) and (EMP) provide a link between the multiplicative constants

e and f. The former allows us to prove (not unreasonably) that f is less true than e.

The latter (more bizarrely) allows us to prove the converse.

⇒ (EMP)
e ⇒ (e⇒)

e ⇒ f
(⇒ f)

⇒ e → f
(⇒→)

f ⇒
(f⇒)

⇒ e (⇒e)

f ⇒ e
(MIX)

⇒ f → e
(⇒→)

Notice also that (COM) is derivable using (SPLIT) and (MIX) (and so is redundant

in Gentzen systems where these are present):

G | Γ1,Π1 ⇒ Σ1,∆1 G | Γ2,Π2 ⇒ Σ2,∆2

G | Γ1,Γ2,Π1,Π2 ⇒ Σ1,Σ2,∆1,∆2
(MIX)

G | Γ1,Γ2 ⇒ ∆1,∆1 | Π1,Π2 ⇒ Σ1,Σ2
(SPLIT)
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Conversely, it is easy to see that (SPLIT) is derivable using (COM) and (EMP). Note

finally that in the presence of weakening, (EMP) is a route to triviality. For any

formula A, the sequent (⇒ A) is derivable from the empty sequent using (W). This

fits of course, since the corresponding axioms would allow us to derive e → f and

f →⊥, and hence e →⊥ and ⊥.

4.3.4 Contraction

The other (alongside weakening) core structural manipulation for Gentzen systems

is contraction: reduction of the number of occurrences of a formula in a sequent.

Typically, we encounter rules that contract single formulas on the left and right:

G | Γ,A,A ⇒ ∆

G | Γ,A ⇒ ∆
(CL)

G | Γ ⇒ A,A,∆

G | Γ ⇒ A,∆
(CR)

Again however, as for weakening, we will consider here a more general version:

Definition 4.44 (Contraction Rule).

G | Γ,Π,Π ⇒ Σ,Σ,∆

G | Γ,Π ⇒ Σ,∆
(C)

Example 4.45. This rule helps us derive its Hilbert counterpart (C2) as follows:

A ⇒ A
(ID)

A ⇒ A
(ID)

A,A ⇒ A⊙A
(⇒⊙)

A ⇒ A⊙A
(C)

⇒ A → (A⊙A)
(⇒→)

Adding the single-conclusion version of (C) to GMTL gives the hypersequent cal-

culus GG for Gödel Logic. Or, from a different perspective, GG is the hypersequent

version of a calculus for Intuitionistic Logic plus (EW), (EC), and (COM). In the

multiple-conclusion case, adding (C) to GIMTL or GAMALL leads directly to cal-

culi for Classical Logic.

The situation for calculi without weakening is more complicated. Adding (C)

and (MIX) to GMALL gives a calculus for the non-distributive relevant logic RMND.

The calculus GRM (which does prove distributivity) is defined at the hypersequent

level by adding (C) and (MIX) to GIUL. However, as we will see later, it is useful to

consider also a calculus GIUML defined as the extension of GRM with (EMP).

Example 4.46. Sometimes structural rules interact in unexpected ways. For exam-

ple, in the presence of (W) and (SPLIT), we can derive the contraction rule (C):
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G | Γ,Π,Π ⇒ Σ,Σ,∆

G | Π ⇒ Σ | Γ,Π ⇒ Σ,∆
(SPLIT)

G | Γ,Π ⇒ Σ,∆ | Γ,Π ⇒ Σ,∆
(W)

G | Γ,Π ⇒ Σ,∆
(EC)

In fact, GMTL extended with (SPLIT) is a single-conclusion hypersequent calculus

for Classical Logic.

Contraction rules are sometimes matched with “anti-contraction” rules that multiply

(or selectively weaken) formulas:

G | Γ,A ⇒ ∆

G | Γ,A,A ⇒ ∆
(ML)

G | Γ ⇒ A,∆

G | Γ ⇒ A,A,∆
(MR)

However, these rules often cause problems for cut elimination (see Chapter 5), and

so will not be considered any further here.

A more complicated rule, which contracts formulas selectively, is “mingle”

where (as the name suggests) elements from two sequents are combined into one:

Definition 4.47 (Mingle Rule).

G | Γ1,Π ⇒ Σ,∆1 G | Γ2,Π ⇒ Σ,∆2

G | Γ1,Γ2,Π ⇒ Σ,∆1,∆2
(MINGLE)

The single-conclusion version of this rule (which includes (MIX) as a special case)

is particularly useful:

G | Γ1,Π ⇒ Σ G | Γ2,Π ⇒ Σ

G | Γ1,Γ2,Π ⇒ Σ
(MINGLE)

The calculus GUL extended with single-conclusion (MINGLE) and (C) is called

GUML. The multiple-conclusion version provides an alternative calculus for the

relevant logic RM.

Example 4.48. Consider the following derivation in a single-conclusion calculus

with (MINGLE):

A ⇒ A
(ID)

C ⇒C
(ID)

A →C,A ⇒C
(→⇒)

(A →C)∧ (B →C),A ⇒C
(∧⇒)1

B ⇒ B
(ID)

C ⇒C
(ID)

B →C,B ⇒C
(→⇒)

(A →C)∧ (B →C),B ⇒C
(∧⇒)2

(A →C)∧ (B →C),A,B ⇒C
(MINGLE)

(A →C)∧ (B →C),A⊙B ⇒C
(⊙⇒)

(A →C)∧ (B →C) ⇒ (A⊙B) →C
(⇒→)

⇒ ((A →C)∧ (B →C)) → ((A⊙B) →C)
(⇒→)

To obtain a derivation of the same sequent using (C) and (MIX) would require a

multiple-conclusion calculus.
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The contraction rule (C) can also be generalized to allow contraction from n copies

of a formula to n−1 copies. The idea is simple, but the rule required to take care of

this is a little complicated.

Definition 4.49 (N-Contraction Rule).

G | Γ,Πn
1 ⇒ Σn

1,∆ . . . G | Γ,Πn
n−1 ⇒ Σn

n−1,∆

G | Γ,Π1, . . . ,Πn−1 ⇒ Σ1, . . . ,Σn−1,∆
(Cn) n = 2,3, . . .

Adding this rule to GMTL and GIMTL gives calculi GMTLn and GIMTLn, respec-

tively, for n-contractive logics.

Example 4.50. The n-contraction rule (Cn) corresponds to the axiom schema (Cn):

A ⇒ A
(ID)

...

(⇒⊙)

. . .

A ⇒ A
(ID)

...

(⇒⊙)

[A]n ⇒ An
(⇒⊙)

. . .

A ⇒ A
(ID)

...

(⇒⊙)

. . .

A ⇒ A
(ID)

...

(⇒⊙)

[A]n ⇒ An
(⇒⊙)

[A]n−1 ⇒ An
(Cn)

...

(⊙⇒)

An−1 ⇒ An
(⊙⇒)

⇒ An−1 → An
(⇒→)

Notice that in the case where n = 2, (Cn) is just A → (A⊙A), and (Cn) is (C).

Finally, let us consider one more form of contraction: the contraction of a whole

sequent n times.

Definition 4.51 (Global N-Contraction Rules).

G | Γn ⇒ ∆n

G | Γ ⇒ ∆
(SCn) n = 2,3, . . .

The single-conclusion versions of these rules are sometimes useful. Notice that in

such cases ∆ must necessarily be empty, i.e. we have:

G | Γn ⇒

G | Γ ⇒
(SCn) n = 2,3, . . .

Example 4.52. It is not immediately obvious which axioms correspond to the global

n-contraction rules. Here, we just point out that in the case where n = 2, we can

derive the non-contradiction axioms (NC):
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A ⇒ A
(ID)

A,¬A ⇒
(¬⇒)

A,A∧¬A ⇒
(∧⇒)2

A∧¬A,A∧¬A ⇒
(∧⇒)1

A∧¬A ⇒
(SC2)

⇒¬(A∧¬A)
(⇒¬)

In particular, adding (SC2) to GMTL gives a calculus GSMTL for Strict Monoidal

t-norm Logic.

4.3.5 Cancellation

Not all properties are as easy as weakening and contraction to characterize via struc-

tural rules. In particular, no rule has yet been discovered that corresponds to divis-

ibility (see Chapter 9 for further comments). Even in cases where an obvious rule

is available, it may not be so benign. Consider the following rule permitting the

“cancellation” of formulas occurring on both sides of a sequent.

Definition 4.53 (Cancellation Rule).

G | Γ,A ⇒ A,∆

G | Γ ⇒ ∆
(CAN)

The cancellation rule is useful for defining calculi for varieties of cancellative resid-

uated lattices. For example, it is not hard to show that GMALL− plus (MIX) and

(CAN) where (⇒→) is single-conclusion is a calculus for the variety of cancellative

pcrls. We can derive the cancellation axioms (CAN) in such a calculus as follows:

A ⇒ A
(ID)

A ⇒ A
(ID)

B ⇒ B
(ID)

A,B ⇒ A,B
(MIX)

A⊙B ⇒ A,B
(⊙⇒)

A → (A⊙B),A ⇒ A,B
(→⇒)

A → (A⊙B) ⇒ B
(CAN)

⇒ (A → (A⊙B)) → B
(⇒→)

Like the cut rule, however, (CAN) does not have the subformula property. Any for-

mula A can be cancelled. In fact, in the presence of (MIX), the cut rule is even

derivable using (CAN):

G | Γ,A ⇒ ∆ G | Π ⇒ A,Σ

G | Γ,Π,A ⇒ A,Σ,∆
(MIX)

G | Γ,Π ⇒ Σ,∆
(CAN)
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We will have more to say on this topic in Chapter 5.

4.4 Non-Standard Logical Rules

One of the nice things about the systems discussed so far is their uniformity: essen-

tially we fix the rules for connectives and tinker with the structural rules. However,

sometimes it is useful (essential even) to be more flexible. In Chapter 6 we will see

that by making some fairly radical changes to the logical rules, we obtain calculi

for the fundamental Łukasiewicz and Product logics. Our first example, however,

requires only minor modifications. We alter slightly the rules (→⇒) and (⇒⊙) to

obtain a calculus for Abelian Logic A, the logic of lattice-ordered abelian groups:

Definition 4.54 (Abelian Logic Rules).

G | Γ,B ⇒ A,∆

G | Γ,A → B ⇒ ∆
(→⇒)A

G | Γ ⇒ A,B,∆

G | Γ ⇒ A⊙B,∆
(⇒⊙)A

The calculus GA is obtained by extending GIUL with (EMP) and (MIX), and replac-

ing (→⇒) and (⇒⊙) with (→⇒)A and (⇒⊙)A.

Example 4.55. Consider this GA-derivation of the so-called “axioms of relativity”:

B ⇒ B
(ID)

A ⇒ A
(ID)

B,A ⇒ B,A
(MIX)

B ⇒ A → B,A
(⇒→)

(A → B) → B ⇒ A
(→⇒)A

⇒ ((A → B) → B) → A
(⇒→)

This derivation fails in all of the other systems that we have seen up to now, and

rightly so; the formula ((A → B) → B) → A is not even classically valid.

One way of looking at the Abelian Logic rules is as building cancellation properties

into the connectives. It is easy to see for instance that both (→⇒)A and (⇒⊙)A are

derivable using the standard logical rules and (CAN). E.g. for (→⇒)A:

G | A ⇒ A
(ID)

G | Γ,B ⇒ A,∆

G | Γ,A → B,A ⇒ A,∆
(→⇒)

G | Γ,A → B ⇒ ∆
(CAN)

Moreover, in the presence of (→⇒)A it is possible to derive (CAN) using (CUT).

G | Γ,A ⇒ A,∆

G | Γ,A → A ⇒ ∆
(→⇒)A

G | A ⇒ A
(ID)

G |⇒ A → A
(⇒→)

G | Γ ⇒ ∆
(CUT)
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To whet the appetite for Chapter 6, let us mention now that the rule (→⇒)A can

also be used to define a calculus for Łukasiewicz Logic. In this case, however, we

will need a further non-standard implication rule on the right:

G | Γ ⇒ ∆ G | Γ,A ⇒ B,∆

G | Γ ⇒ A → B,∆
(⇒→)Ł

These implication rules, together with the initial sequents (EMP), (ID), and (⊥⇒)
(single-conclusion) and the structural rules (EW), (EC), (SPLIT), and (MIX), provide

a calculus for Ł in the (fully expressive) language LL = {→,⊥}.

4.5 Density Again

In the previous chapter we introduced a special “density rule” for Hilbert systems

with the nice property that adding it to any HUL−-extension HL gives a system

HLD complete with respect to dense L-chains. We can do something similar here

for Gentzen systems by defining a hypersequent density rule, understandable as a

“hypersequent translation” of the Hilbert-style density rule.2

Definition 4.56 (Density Rule).

G | Γ1, p ⇒ ∆1 | Γ2 ⇒ p,∆2

G | Γ1,Γ2 ⇒ ∆1,∆2
(DENSITY)

where p does not occur in G, Γ1, Γ2, ∆1, or ∆2

As in the Hilbert system case, we can rework our definition of a derivation to account

for systems with (DENSITY). However, since the only derivations we will consider

for such systems are from the empty set of hypersequents, the standard definition

will do well enough here.

Example 4.57. Adding the density rule to a calculus can have a dramatic effect. Let

GL be any multiple-conclusion calculus with (DENSITY), (COM), and the contrac-

tion rule (C). Then the empty sequent is derivable in GL:

p ⇒ p (ID) p ⇒ p (ID)

p, p ⇒|⇒ p, p
(COM)

p, p ⇒|⇒ p
(C)

p ⇒|⇒ p
(C)

⇒ (DENSITY)

2 In the single-conclusion case, this can be seen by interpreting | as ∨, ⇒ as →, and the comma
on the left as ⊙. For multiple-conclusion calculi, the rule seems a little stronger (it is not) than its
Hilbert counterpart since there may be extra formulas in ∆2 occurring with p on the right.
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This shows that adding (DENSITY) to Classical Logic gives inconsistency, since

any sequent is derivable from the empty sequent using (W). It also shows that

(DENSITY) is not admissible for the calculus GRM (GIUL plus (C) and (MIX)) since

(EMP) is derivable in GRM with (DENSITY) but not without.

Like (CUT), the density rule does not have the subformula property, by definition in

fact, since p in the premise should always be a new variable. On the other hand, a

judicious use of the rule can be beneficial for proof search. It can be used to shorten

derivations and reduce the size of hypersequents.

Example 4.58. Suppose that we want to try to prove a sequent of the form (A∧B ⇒
C∨D) in the Gentzen system GUL. We might begin our attempted derivation with:

A ⇒C | B ⇒C | A ⇒ D | B ⇒ D

A ⇒C | B ⇒C | A∧B ⇒ D
(∧⇒)

A∧B ⇒C | A∧B ⇒ D
(∧⇒)

A∧B ⇒C∨D
(⇒∨)

Notice that each subformula A, B, C, and D occurs twice in the top hypersequent,

which could be very costly if these formulas are large. Using (DENSITY), on the

other hand, we obtain:

p ⇒C | p ⇒ D | A ⇒ p | B ⇒ p

p ⇒C | p ⇒ D | A∧B ⇒ p
(∧⇒)

p ⇒C∨D | A∧B ⇒ p
(⇒∨)

A∧B ⇒C∨D
(DENSITY)

Here we need to apply (∧⇒) only once, and, depending on the complexity of A, B,

C, and D, we may have a much smaller top hypersequent.

Moreover, reckless applications of (DENSITY) can always be retracted using com-

munication. That is, the density rule is invertible for any calculus with (COM). Just

consider the derivation:

G | p ⇒ p
(ID)

G | Γ1,Γ2 ⇒ ∆1,∆2

G | Γ1, p ⇒ ∆1 | Γ2 ⇒ p,∆2
(COM)

4.6 Soundness and Completeness

With rules and systems proliferating, it is high time that we made precise the con-

nections between this and the preceding chapters. What we want to show is that

Gentzen systems and Hilbert systems (and hence varieties of pcrls and bpcrls)
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Table 4.1 Some sequent and hypersequent calculi

Calculus Initial sequents and rules Sequent Single-conclusion

GMAILL Standard Rules yes yes
GMALL Standard Rules yes no
GML GMAILL + (W) yes yes

GAMALL GMALL + (W) yes no
GIL GML + (C) yes yes
GCL GAMALL + (C) yes no
GUL Standard Rules + (COM) no yes
GIUL Standard Rules + (COM) no no
GMTL GUL + (W) no yes
GIMTL GIUL + (W) no no
GMTLn GMTL + (Cn) no yes
GIMTLn GIMTL + (Cn) no no
GSMTL GMTL + (SC2) no yes

GG GMTL + (C) no yes
GUML GUL + (C) + (MINGLE) no yes
GRM GIUL + (C) + (MIX) no no

GIUML GRM + (EMP) no no

characterize the same logics. Our starting point for this task is a “standard trans-

lation” of sequents and hypersequents into formulas, recalling from earlier that

⋆[A1, . . . ,An] = (A1 ⋆ . . . ⋆An) for ⋆ ∈ {⊙,⊕}, where ⊙[] = e and ⊕[] = f.

Definition 4.59 (Standard Interpretation).

I(Γ ⇒ ∆) =def ⊙Γ →⊕∆

I(S1 | . . . | Sn) =def I(S1)∨ . . .∨ I(Sn)

Example 4.60. Consider the following hypersequent:

G = (A,A →C ⇒ B |⇒ A,B | A,B,C ⇒)

To find the standard interpretation of G, we first interpret the sequents:

I(A,A →C ⇒ B) = (A⊙ (A →C)) → B

I(⇒ A,B) = e → (A⊕B)
I(A,B,C ⇒) = (A⊙B⊙C) → f

and then take the disjunction, to get:

I(G) = ((A⊙ (A →C)) → B)∨ (e → (A⊕B))∨ ((A⊙B⊙C) → f)

Let us assume for the rest of this section that GL is a GMAILL−-extension. It is easy

to see that if a single-conclusion sequent S is GL-derivable, then so is I(S). We just

use (⇒→), (⊙⇒), (e⇒), and (⇒f) to derive the latter from the former. Moreover,

since by Proposition 4.27, these rules are GL-invertible, the opposite direction also



4.6 Soundness and Completeness 95

Table 4.2 Matching rules and axioms

Structural rule Matching axioms

G | Γ1,Π1 ⇒ Σ1,∆1 G | Γ2,Π2 ⇒ Σ2,∆2

G | Γ1,Γ2 ⇒ ∆1,∆2 | Π1,Π2 ⇒ Σ1,Σ2

(COM)
(PRL) (A → B)∨ (B → A)

(DIS) (A∧ (B∨C)) → ((A∧B)∨ (A∧C))

G | Γ1,Γ2 ⇒ ∆1,∆2

G | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2

(SPLIT) (EM) A∨¬A

G | Γ ⇒ ∆

G | Γ,Π ⇒ Σ,∆
(W) (W) (A → e)∧ (f → A)

G | Γ1 ⇒ ∆1 G | Γ2 ⇒ ∆2

G | Γ1,Γ2 ⇒ ∆1,∆2

(MIX) (e) f → e

G |⇒
(EMP) (f) e → f

G | Γ,Π,Π ⇒ Σ,Σ,∆

G | Γ,Π ⇒ Σ,∆
(C) (C2) A → (A⊙A)

G | Γ1,Π ⇒ Σ,∆1 G | Γ2,Π ⇒ Σ,∆2

G | Γ1,Γ2,Π ⇒ Σ,∆1,∆2

(MINGLE) (M) (A⊙A) → A

G | Γ,Πn
1 ⇒ Σn

1,∆ . . . G | Γ,Πn
n−1 ⇒ Σn

n−1,∆

G | Γ,Π1, . . . ,Πn−1 ⇒ Σ1, . . . ,Σn−1,∆
(Cn) (Cn) An−1 → An

G | Γ,Γ ⇒ ∆,∆

G | Γ ⇒ ∆
(SC2) (NC) ¬(A∧¬A)

holds. Similarly, if GL is a GMALL−-extension, we can use (⇒⊕) to get ⊢GL S iff

⊢GL I(S) for any sequent S. For the case where GL is a GUL−-extension, we can use

the invertible rule (⇒∨) to extend the correspondence also to hypersequents.

Let us say that a hypersequent G or a rule (r) is “appropriate for GL” if it is a

sequent or sequent rule when GL is not a GUL−-extension, and single-conclusion

when GL is not a GMALL−-extension. We have argued that:

Proposition 4.61. ⊢GL G iff ⊢GL I(G) where G is appropriate for GL.
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Soundness and completeness for a Gentzen system GL with respect to a Hilbert

system HL now takes the following form. We want to show that ⊢GL G iff ⊢HL

I(G) for all hypersequents G appropriate for GL. We will establish this result for

a wide range of Gentzen systems, taking as a basis the standard rule set displayed

in Fig. 4.1, with popular calculi from the literature listed in Table 4.1. In general, a

correspondence with Hilbert systems can be established by “matching” rules with

axioms. Intuitively, the rule should derive the axioms (in a basic system) and vice

versa.

Definition 4.62. A hypersequent rule (r) and set of axioms A are L-matching if:

(1) For every instance G1, . . . ,Gn / G of (r):

⊢HL+A C → I(G) for some confusion C of {I(G1), . . . , I(Gn)}.

(2) ⊢GL+(r) ⇒A for every axiom A in A.

Example 4.63. Let GL be the standard rule set of Fig. 4.1, and let HL be just HMALL.

Then the set of axioms (DIS) and (PRL) and the rule (COM) are L-matching. We

have already established (2) earlier in the chapter: the axioms are derivable in GL+
(COM) (i.e. GIUL). For (1), we define:

Ai = I(Γi,Πi ⇒∆i,Σi) for i = 1,2 and B = I(Γ1,Γ2 ⇒∆1,∆2 |Π1,Π2 ⇒Σ1,Σ2)

It is enough to prove that ⊢HL (A1 ∧ A2) → B, since then by Lemma 3.30, ⊢HL

((I(G)∨ A1)∧ (I(G)∨ A2)) → (I(G)∨ B) as required. First, we can show, using

various parts of Lemma 3.23, that:

⊢HL (I(Π1 ⇒ Σ1) → I(Γ2 ⇒ ∆2)) → ((A1 ∧A2) → B)

⊢HL (I(Γ2 ⇒ ∆2) → I(Π1 ⇒ Σ1)) → ((A1 ∧A2) → B)

So by Lemma 3.23 (v):

⊢HL ((I(Π1 ⇒Σ1)→ I(Γ2 ⇒∆2))∨(I(Γ2 ⇒∆2)→ I(Π1 ⇒Σ1)))→ ((A1∧A2)→B)

But then ⊢HL (A1 ∧A2) → B, using (PRL) and (MP).

Other matching relationships between axioms from Chapter 3 and hypersequent

rules introduced above are displayed in Table 4.2.

Lemma 4.64. For each rule (r) and set of axioms A matched in Table 4.2:

(i) (r) and A are IUL−-matching.

(ii) the sequent version of (r) (if non-empty) and A are MALL−-matching.

(iii) the single-conclusion version of (r) and A are UL−-matching.

(iv) the single-conclusion sequent version of (r) (if non-empty) and A are

MAILL−-matching.
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Proof. Let (r) be a rule and A a set of axioms matched in Table 4.2. We have already

shown in examples scattered throughout the text that the matching axioms are deriv-

able in the appropriate extended systems. So condition (2) holds for (i)–(iv), noting

that the sequent versions of (SPLIT) and (COM) are empty. Establishing condition

(1) is more tedious. It involves finding several Hilbert system derivations. However,

we can simplify the cases (i) and (iii) slightly for each rule (where n can be zero):

G | H1 . . . G | Hn

G | H

Suppose that we can find appropriate derivations of:

either (I(H1)⊙ . . .⊙ I(Hn)) → I(H) or (I(H1)∧ . . .∧ I(Hn)) → I(H)

It then follows, using Lemma 3.30, that we have the required derivations of:

either ((I(G | H1)∧ e)⊙ . . .⊙ (I(G | Hn)∧ e)) → I(G | H)

or (I(G | H1)∧ . . .∧ I(G | Hn)) → I(G | H)

Let us give some examples, leaving other cases for the interested reader:

• (C). Let HL be HMALL− + (C2). Let A = ⊙(Π ⊎ [¬C : C ∈ Σ]) and B =
I(Γ ⇒ ∆). Note that ⊢HL (A → (A → B)) → (A → B) (see Example 3.35). But

also, using various parts of Lemma 3.23, ⊢HL I(Γ,Π,Π ⇒ Σ,Σ,∆) → (A →
(A → B)) and ⊢HL (A → B) → I(Γ,Π ⇒ Σ,∆). So, using Lemma 3.23 (iii),

⊢HL I(Γ,Π,Π ⇒ Σ,Σ,∆) → I(Γ,Π ⇒ Σ,∆) as required. The case where HL is

HMAILL− + (C2) and Σ = [] is very similar.

• (MIX). Let HL be HMALL− + (f). Using Lemma 3.23, we get that (A ⊙
(A → f)) → f, f → e, and e → (B → B) are HL-derivable. Hence also, using

Lemma 3.23 (iii), ⊢HL (A⊙ (A → f)) → (B → B). It then follows easily that

(A⊙B) → ((A → f) → B) is derivable. So ⊢HL (I(Γ1 ⇒ ∆1)⊙ I(Γ2 ⇒ ∆2)) →
I(Γ1,Γ2 ⇒ ∆1,∆2) is derivable. ⊓⊔

Putting everything together, we arrive at the following characterization.

Definition 4.65. Let L ∈ {MAILL,MALL,UL, IUL}. If (ri) and Ai are L-matching

for i = 1 . . .n, then HL+A1 + . . .+An and GL+(r1)+ . . .+(rn) (also HL−+A1 +
. . .+An and GL− +(r1)+ . . .+(rn)) are called matching.

Theorem 4.66. For any HMAILL−-extension HL and matching calculus GL:

⊢GL G iff ⊢HL I(G) and ⊢GLD G iff ⊢HLD I(G)

where G is a hypersequent appropriate for GL.

Proof. We tackle the right-to-left directions first. Suppose that ⊢HL I(G). All the ax-

ioms of HMAILL− are GMAILL−-derivable and the involution axioms are GMALL−-

derivable. Also the axioms for ⊥ and ⊤ are GMAILL-derivable. Moreover, since HL
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and GL are matching, all the extra axioms of HL are GL-derivable. But also the GL-

derivable formulas are closed under (ADJ) and (MP), using (⇒∧) and Example 4.25,

respectively. So ⊢GL⇒ I(G). But then by Proposition 4.61, ⊢GL G.

If ⊢HLD I(G), then we proceed in the same way. We just need to establish the extra

claim that (DENSITY) is GLD-admissible. Suppose that ⊢GLD⇒ (A → p)∨ (p →
B)∨C where p does not occur in A, B, or C. It follows using Proposition 4.61 that

⊢GLD A ⇒ p | p ⇒ B |⇒ C. Hence by (DENSITY), ⊢GLD A ⇒ B |⇒ C. So by (EC)

and (⇒→), ⊢GLD⇒ (A → B)∨C as required.

For the other direction, suppose that d ⊢GL G. We prove that ⊢HL I(G), proceeding

by induction on ht(d). Suppose that G follows by some rule of GL from G1, . . . ,Gn

(this includes the case of initial hypersequents when n = 0). By the induction hy-

pothesis n times, ⊢HL I(G1), . . . ,⊢HL I(Gn). But now ⊢HL C → I(G) for some con-

fusion C of {I(G1), . . . , I(Gn)}. This is easy (if tedious) to show for any rule of GL′

for L′ ∈ {MAILL,MALL,UL, IUL} such that GL extends GL′. For the other rules

of GL, this follows from the assumption that HL and GL are matching, But using

Theorem 3.43 (since C is a confusion of derivable formulas), ⊢HL C. So by (MP),

⊢HL I(G) as required.

If d ⊢GLD G, then we proceed in the same way. We just need to show that

(DENSITY) is HLD-admissible. Suppose that:

⊢HLD I(G)∨ (⊙(Γ1 ⊎ [p]) →⊕∆1)∨ (⊙Γ2 →⊕(∆2 ⊎ [p]))

where p does not occur in G, Γ1, Γ2, ∆1, or ∆2. It follows easily that:

⊢HLD I(G)∨ (p → (⊙Γ1 →⊕∆1))∨ (⊙(Γ2 ⊎ [¬A : A ∈ ∆2]) → p)

Hence by the Hilbert system rule (DENSITY):

⊢HLD I(G)∨ (⊙(Γ2 ⊎ [¬A : A ∈ ∆2]) → (⊙Γ1 →⊕∆1))

It follows easily that ⊢HLD I(G)∨ (⊙(Γ1 ⊎Γ2) →⊕(∆1 ⊎∆2)) as required. ⊓⊔

4.7 Historical Remarks

Gentzen systems have a long and distinguished history. The sequent calculi LK

and LJ for first-order Classical Logic and Intuitionistic Logic were introduced

by Gentzen in the 1930s [93] to aid investigations of another proof-theoretic for-

malism, Natural Deduction. These systems and core topics of the proof theory

of Classical Logic and Intuitionistic Logic are treated in detail in e.g. the mono-

graphs [163, 204, 209] and the handbook [41].

Gentzen systems for substructural logics have many sources. In Linguistics, a

sequent calculus – the so-called “Lambek calculus” – was defined by Lambek in

the 1950s to model the assignment of types such as “adjective” or “verb phrase” to

strings of words in natural language [130]. Since in this context, order (of words
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or types) as well as multiplicity is crucial, sequents consist (as for Gentzen) of se-

quences of formulas, and the calculus lacks not only weakening and contraction but

also exchange rules. Gentzen systems for other non-commutative logics have been

investigated by many authors, including the full Lambek Calculus FL studied by

Ono in [176] and the non-commutative Linear Logic of Ruet and Abrusci [1, 190].

Another important source of substructural logics is Philosophy and the rele-

vance logics developed by Anderson and Belnap and co-workers (in particular

Dunn and Meyer) from the 1960s onwards [6, 7]. In these logics, formulas such

as B → (A → A) are disallowed as theorems because B is not “used” in the proof of

A→A (or B does not “relevantly imply” A→A). This is mirrored proof-theoretically

by dropping weakening rules (e.g. from LK or LJ) to prevent the addition of irrel-

evant formulas to sequents. However, sequent calculi obtained in this way, inves-

tigated by Brady in the 1990s [38, 39], do not derive the distributivity axioms as-

sumed by most relevance logics. Gentzen systems for distributive relevance logics

were defined independently by Dunn [74] and Minc [151] in the 1970s, making use

of sequents with two structural connectives “,” and “;” corresponding to ∧ and ∨,

and ⊙ and ⊕, respectively. This method of replacing logical symbols with structural

connectives was developed even further by Belnap in his 1982 paper [34]. The re-

sult, Display Logic, is a formalism capable of capturing a wide range of systems

(also some hypersequent calculi [216]) but at the cost of introducing a great deal of

extra structure.

A further source of substructural logics is Set Theory. Logics (sequent calculi)

without contraction were introduced by Grishin in the 1980s [103] with the aim of

avoiding paradoxes involving the comprehension principle, and developed further

by Ono and Komori in [173, 177]. Finally, in Computer Science, Girard’s Linear

Logic [97], introduced in 1987, drops weakening and contraction rules from LK

but allows these to be recovered for certain formulas using special modal operators

! and ?. One motivation for Linear Logic is to provide a more careful analysis of

constructive proofs: formulas can be interpreted as resources that are available to be

used once exactly. A good exposition of Linear Logic is given by Troelstra in [208].

More generally, introductions to sequent calculi and other features of substructural

logics are provided in the books [90, 180, 186].

The step up from sequents to hypersequents was first taken by Avron [9] in 1987

in order to provide a Gentzen system for the relevance logic RM. However, hyper-

sequents were also used implicitly (and independently) by Pottinger [182] in 1983

to provide a calculus for the modal logic S5. The first hypersequent calculus for

a fuzzy logic was defined for Gödel Logic by Avron in 1991 [11] (earlier sequent

calculi for the logic are discussed in Chapter 6), and many others have since been

developed for this family. In particular, the calculi for MTL and other fuzzy logics

with weakening were defined by Baaz, Ciabattoni, and co-authors in [17, 49], and

calculi for UL and related logics without weakening, by Metcalfe and Montagna

in [144]. Hypersequent calculi were introduced for Łukasiewicz and Product log-

ics, the subject of Chapter 6, by Metcalfe, Olivetti, and Gabbay in [146, 148], and

for many other logics, fuzzy and otherwise, in the papers [51, 52, 54, 143]. Finally,

in a 2008 paper by Ciabattoni, Galatos, and Terui [53], an algorithm is provided
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for transforming axiom schema in certain syntactic classes into either sequent or

hypersequent (depending on the class) structural rules. As a nice example, a rather

complicated structural rule is obtained for the fuzzy logic based on the nilpotent

minimum t-norm.

Finally, we remark that the useful multiset ordering of Definition 4.4 was intro-

duced by Dershowitz and Manna in their 1979 paper [70]. The proof that this is a

well-ordering is due to Buchholz, written up by Nipkow as [164].



Chapter 5

Syntactic Eliminations

The Gentzen systems defined in Chapter 4 provide a uniform and natural presenta-

tion of a wide range of (fuzzy) logics. But are they useful? Proof search in Hilbert

systems is rendered tedious and difficult by the need to guess formulas A and A → B

as premises when applying modus ponens. The same situation seems to occur for

Gentzen Systems: we have to guess which formula A to use when applying (CUT).

Certainly finding derivations would be much simpler if we could do without this

rule. Then we could just apply rules where formulas in the premises are subfor-

mulas of formulas in the conclusion. Indeed, this “subformula property” is useful

for, among other things, establishing decidability and conservative extension results.

Here we show that this happy situation occurs for most of the Gentzen systems in-

troduced in the previous chapter. For calculi satisfying certain properties we can

algorithmically transform derivations in the calculus with (CUT) into derivations

without this rule, that is, “eliminate” (CUT) from derivations.

We will also treat eliminations of other key rules: (CAN), the “cut rule” of

Abelian Logic, and (DENSITY). Density elimination in particular has an important

application. Since we know from earlier chapters that Gentzen systems extended

with (DENSITY) are complete with respect to dense chains, density elimination im-

plies that the same holds for these calculi without (DENSITY). From this we are

able to deduce standard completeness results for wide classes of Hilbert systems

and Gentzen systems for fuzzy logics.

Since in this chapter we will often be dealing with quite complicated structures,

let us recall some notational conveniences:

• λ ,µ,m,n, i, j,k denote natural numbers.

• Γ,∆,Π,Σ denote multisets of formulas, with Γ0 = [] and Γn+1 = Γ⊎Γn.

• S denotes a sequent and G,H denote hypersequents.

• [Gi]
n
i=1 denotes the hypersequent G1 | . . . | Gn.

• {Gi}
n
i=1 denotes a set of hypersequents {G1, . . . ,Gn} (perhaps the premises of

some rule application).

101
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5.1 Cut Elimination

Let us start with an example. Suppose that we want to eliminate an application of

(CUT) from a derivation in a single-conclusion sequent calculus without structural

rules, e.g. the sequent version of GMAILL. We are confronted by:

...
Γ,A ⇒ ∆

...
Π ⇒ A

Γ,Π ⇒ ∆
(CUT)

The cut-formula A occurs on the left in one premise, and on the right in the other. A

natural strategy for eliminating this application of (CUT) is to look at the derivations

of these premises. If one of the premises is an instance of (ID), then it must be A⇒A

and the other premise must be Γ,Π ⇒ ∆, derived with one fewer applications of

(CUT). Otherwise, we have two possibilities. The first is that one of the premises

ends with an application of a rule where A is not the principal formula, e.g. letting

Γ = Γ1 ⊎Γ2 ⊎ [B →C]:

...
Γ1,C,A ⇒ ∆

...
Γ2 ⇒ B

Γ1,Γ2,B →C,A ⇒ ∆
(→⇒)

...
Π ⇒ A

Γ1,Γ2,B →C,Π ⇒ ∆
(CUT)

In this case, we can “push the cut upwards” in the derivation to get:

...
Γ1,C,A ⇒ ∆

...
Π ⇒ A

Γ1,C,Π ⇒ ∆
(CUT)

...
Γ2 ⇒ B

Γ1,Γ2,B →C,Π ⇒ ∆
(→⇒)

That is, we have a derivation where the left premise in the new application of (CUT)

has a shorter derivation than the application in the original derivation.

The second possibility is that the last application of a rule in both premises in-

volves A as the principal formula, e.g. with Γ = Γ1 ⊎Γ2 and A = B →C:

...
Γ1 ⇒ B

...
Γ2,C ⇒ ∆

Γ1,Γ2,B →C ⇒ ∆
(→⇒)

...
Π,B ⇒C

Π ⇒ B →C
(⇒→)

Γ1,Γ2,Π ⇒ ∆
(CUT)

Here we rearrange our derivation in a different way: we replace the application of

(CUT) with applications of (CUT) with cut-formulas B and C:
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...
Γ2,C ⇒ ∆

...
Π,B ⇒C

Γ2,Π,B ⇒ ∆
(CUT)

...
Γ1 ⇒ B

Γ1,Γ2,Π ⇒ ∆
(CUT)

We now have two applications of (CUT) but with cut-formulas of a smaller com-

plexity than the original application.

This procedure, formalized using a double induction on cut-formula complexity

and the combined height of derivations of the premises, eliminates applications of

(CUT) for many sequent calculi. However, it encounters a problem with rules that

contract formulas in one or more of the premises. Consider the following situation:

...
Γ,A,A ⇒ ∆

Γ,A ⇒ ∆
(C)

...
Π ⇒ A

Γ,Π ⇒ ∆
(CUT)

In this case we need to perform several cuts at once, using a rule something like:

Γ, [A]λ ⇒ ∆ Π ⇒ A

Γ,Πλ ⇒ ∆

For hypersequent calculi, the situation is further complicated by the fact that whole

sequents may be contracted using (EC). This means that a cut-formula occurring

in the premises of an application of (CUT) may appear in several sequents in a

hypersequent higher up in the derivation, e.g.

...

Γ,A ⇒ ∆ | Γ,A ⇒ ∆

Γ,A ⇒ ∆
(EC)

...
Π ⇒ A

Γ,Π ⇒ ∆
(CUT)

To cope with this situation, we use even more general versions of (CUT) that perform

multiple cuts in different sequents, e.g.

Γ1, [A]λ1 ⇒ ∆1 | . . . | Γn, [A]λn ⇒ ∆n Π ⇒ A

Γ1,Π
λ1 ⇒ ∆1 | . . .Γn,Π

λn ⇒ ∆n

Then, similarly to the sequent calculi case, we can give inductive proofs of the elim-

inations of such rules.

One of our main goals is to apply this method of cut elimination to a general class

of hypersequent calculi satisfying “substitutivity” and “reductivity” conditions. In-

tuitively, substitutivity ensures that we can move cuts upwards in derivations, and

reductivity ensures that when both premises introduce the cut-formula, we can re-
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place the cut with cuts on its subformulas. The general approach avoids repeating

work for different systems and allows cut elimination for new systems to be decided

in a systematic manner. Moreover, we can think of substitutivity and reductivity as

supplying a characterization of calculi that admit cut elimination.

5.1.1 Regular Calculi

In general, a hypersequent calculus is just a set of hypersequent rules. Here we want

to be more precise, while still allowing a wide range of logical and structural rules,

and covering all (or most) of the examples in the previous chapter.

Recall that a “typical” (to be made more precise below) sequent or hypersequent

calculus consists of the axioms (ID), the cut rule (CUT), (internal and external) struc-

tural rules, and logical rules. In particular, the latter consist of possibly empty sets

of rules for each n-ary connective ⋆ where each instance has a distinguished princi-

pal formula ⋆(A1, . . .An) in the conclusion, and premises containing active formulas

from A1, . . . ,An, all other formulas being context formulas. For instances of hyper-

sequent rules, we also speak of the distinguished active sequents in the premises and

conclusion, and other context sequents.

To identify rules suitable for cut elimination, we first need some way of indicating

a distinguished formula in hypersequents, either the cut-formula or the principal

formula of a logical rule.

Definition 5.1. A marked hypersequent is a hypersequent with exactly one occur-

rence of a formula A distinguished, written G | Γ,A ⇒ ∆ or G | Γ ⇒ A,∆. A marked

rule instance is a rule instance with the principal formula, if there is one, marked.

We can now define the result of applying (CUT) multiple times, assuming that all

the usual notions for hypersequents apply also to marked hypersequents.

Definition 5.2. For a (marked) hypersequent G and a marked hypersequent H:

(1) (G | H′) ∈ CUT(G,H) if H = (H′ | Π ⇒ A,Σ) or H = (H′ | Π,A ⇒ Σ).

(2) (G′ | Γ,Π ⇒ Σ,∆) ∈ CUT(G,H) if:

either (G′ | Γ,A ⇒ ∆) ∈ CUT(G,H) and H = (H′ | Π ⇒ A,Σ)

or (G′ | Γ ⇒ A,∆) ∈ CUT(G,H) and H = (H′ | Π,A ⇒ Σ)

noting that the occurrence of A in (G′ |Γ,A⇒∆) or (G′ |Γ⇒A,∆) is unmarked.

Hypersequents obtained in this way have a particular form. Suppose that A does not

occur unmarked in
⊎n

i=1 Γi with:

G = (Γ1, [A]λ1 ⇒ ∆1 | . . . | Γn, [A]λn ⇒ ∆n) and H = (H′ | Π ⇒ A,Σ)

Then CUT(G,H) contains, for all 0 ≤ µi ≤ λi for i = 1 . . .n:
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H′ | Γ1,Π
µ1 , [A]λ1−µ1 ⇒ Σµ1 ,∆1 | . . . | Γn,Π

µn , [A]λn−µn ⇒ Σµn ,∆n

Similarly, suppose that A does not occur unmarked in
⊎n

i=1 ∆i with:

G = (Γ1 ⇒ [A]λ1 ,∆1 | . . . | Γn ⇒ [A]λn ,∆n) and H = (H′ | Π,A ⇒ Σ)

Then CUT(G,H) contains, for all 0 ≤ µi ≤ λi for i = 1 . . .n:

H′ | Γ1,Π
µ1 ⇒ [A]λ1−µ1 ,Σµ1 ,∆1 | . . . | Γn,Π

µn ⇒ [A]λn−µn ,Σµn ,∆n

One of the crucial steps for our method of cut elimination will be shifting applica-

tions of (CUT) upwards over applications of other rules. For example, the derivation:

...
Γ,A,A ⇒ ∆

Γ,A ⇒ ∆
(C)

...
Π ⇒ A,Σ

Γ,Π ⇒ Σ,∆
(CUT)

can be transformed into:

...
Γ,A,A ⇒ ∆

...
Π ⇒ A,Σ

Γ,Π,A ⇒ Σ,∆
(CUT)

...
Π ⇒ A,Σ

Γ,Π,Π ⇒ Σ,Σ,∆
(CUT)

Γ,Π ⇒ Σ,∆
(C)

To ensure that this is possible, we require the following condition. Extending the

convention of the previous chapter, let us say that a hypersequent G is “appropriate

for a rule (r)” if it is a sequent when (r) is a sequent rule, and single-conclusion when

(r) is single-conclusion.

Definition 5.3. A rule (r) is substitutive if for any:

1. marked instance G1, . . . ,Gn / G of (r);

2. marked hypersequent H appropriate for (r);

3. G′ ∈ CUT(G,H);

there exist G′
i ∈ CUT(Gi,H) for i = 1 . . .n such that:

G′
1 . . . G′

n

G′
is an instance of (r).
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The name “substitutive” is apt because the condition implies that substituting oc-

currences of A with Π on the left and Σ on the right, in both the conclusion of a rule

instance and suitably in its premises, gives another instance of the rule.1

Example 5.4. Consider a marked instance of the single-conclusion hypersequent

rule (→⇒) of the form:
B∨C ⇒ B C ⇒ D

B∨C,B →C ⇒ D

Suppose that H is any marked hypersequent of the form:

G | Π ⇒ B∨C or G | Π,D ⇒ Σ

Then the following are instances of (→⇒):

G | Π ⇒ B G |C ⇒ D

G | Π,B →C ⇒ D
and

G | B∨C ⇒ B G |C,Π ⇒ Σ

G | B∨C,B →C,Π ⇒ Σ

However, the following “anti-contraction” rule is not substitutive:

G | Γ,Π ⇒ Σ,∆

G | Γ,Π,Π ⇒ Σ,Σ,∆

Just consider an instance of the form A ⇒ / A,A ⇒, and a sequent B ⇒ A. Neither

A ⇒ / A,B ⇒ nor B ⇒ / A,B ⇒ is an instance of the rule.

It is easy to see that the logical and structural rules introduced in Table 4.2 are sub-

stitutive. Apart from the principal formula and active formulas in the logical rules,

each sequent rule schema involves just multiset variables Γ,Π,∆, . . .. Call these mul-

tiset variables “parameters”. All parameters in the multiple-conclusion versions of

these rules occur in pairs in the premises and the conclusion: one variable Γ on the

left and an accompanying variable ∆ on the right. Any parameter occurs just once

in the conclusion and any parameter occurring in the premises occurs in the conclu-

sion. Now for an instance of the rule, suppose that we replace a formula A in the

conclusion with Π on the left and Σ on the right. But A occurs in the instance of

some pair of parameters Γ or ∆. Hence we can also replace the occurrence of A in

the instances of Γ and ∆ in the premises with Π on the left and Σ on the right, to ob-

tain another instance of the rule. The cases for single-conclusion and hypersequent

rules work in a similar way.

Let us now take a closer look at the logical rules. A crucial aspect of our cut

elimination proof is the reduction of a cut with a complex formula A to cuts with the

subformulas of A. Suppose that the premises of the application of (CUT) end with A

introduced on the left in one premise, and on the right in the other. Then we should

1 A more general approach would be to define substitutivity relative to a calculus, and allow the
required derivations to use any rules of the calculus. However, it is always possible to “complete”
the rules of such calculi to satisfy the condition given here, essentially by closing under (CUT).
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be able to use cuts on the premises of those introductions with subformulas of A to

obtain the original conclusion.2 We formalize this as follows:

Definition 5.5. A set of logical rules for a connective ⋆ is reductive if for all in-

stances of left and right rules for ⋆:

G | S1 . . . G | Sk

G | Γ,⋆(A1, . . . ,An) ⇒ ∆
and

G | S′1 . . . G | S′m

G | Π ⇒ ⋆(A1, . . . ,An),Σ

G | Γ,Π ⇒ Σ,∆ is derivable from (G | S1), . . . ,(G | Sk),(G | S′1), . . . ,(G | S′m) using

only (CUT) with cut-formulas from A1, . . . ,An.

The logical rules for connectives collected in Table 4.2 are all reductive. Consider

for example, instances of (→⇒) and (⇒→):

G | Γ1 ⇒ B,∆1 G | Γ2,C ⇒ ∆2

G | Γ1,Γ2,B →C ⇒ ∆1,∆2
and

G | Π,B ⇒C,Σ

G | Π ⇒ B →C,Σ

By applying (CUT) to the premises we obtain the following derivation:

G | Γ1 ⇒ B,∆1 G | Π,B ⇒C,Σ

G | Γ1,Π ⇒C,Σ,∆1
(CUT)

G | Γ2,C ⇒ ∆2

G | Γ1,Γ2,Π ⇒ Σ,∆1,∆2
(CUT)

For ∧ and ∨ there are more rules to consider, e.g.

G | Γ,A ⇒ ∆

G | Γ,A∧B ⇒ ∆

G | Γ,B ⇒ ∆

G | Γ,A∧B ⇒ ∆

G | Π ⇒ A,Σ G | Π ⇒ B,Σ

G | Π ⇒ A∧B,Σ

Hence we need to provide two derivations:

G | Γ,A ⇒ ∆ G | Π ⇒ A,Σ

G | Γ,Π ⇒ Σ,∆
(CUT)

G | Γ,B ⇒ ∆ G | Π ⇒ B,Σ

G | Γ,Π ⇒ Σ,∆
(CUT)

Cases for other connectives are very similar and left as exercises.

Example 5.6. Reductivity as defined here is quite sensitive to the form of the rules.

Consider, for example, implication rules:

G | Γ ⇒ B,∆ G | Γ,C ⇒ ∆

G | Γ,B →C ⇒ ∆
(→⇒)c

G | Π,B ⇒C,Σ

G | Π ⇒ B →C,Σ
(⇒→)

We cannot in general derive instances of (G | Γ,Π ⇒ Σ,∆) from (G | Γ ⇒ B,∆),
(G | Γ,C ⇒ ∆), and (G | Π,B ⇒C,Σ) using just (CUT) with cut-formulas B and C.

So this set of rules for → is not reductive. However, note that the derivations go

through if we allow extra structural rules such as contraction.

2 As with substitutivity, this condition could be broadened to allow applications of other rules as
well as cuts on subformulas.
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We are now able to characterize a class of Gentzen systems suitable for our cut

elimination method, noting that this includes all the calculi defined in Table 4.1.

Definition 5.7. A regular hypersequent calculus consists of

1. the identity axioms (ID) and cut rule (CUT);

2. schematic substitutive reductive logical rules;

3. schematic substitutive structural rules;

restricted possibly to single-conclusion and/or sequent versions.

In particular, any extension of GMAILL, GMALL, GUL, or GIUL (perhaps dropping

rules for some connectives) with substitutive structural rules – such as those in Ta-

ble 4.2 – is regular.

5.1.2 The Main Theorem

Before embarking on our general cut elimination proof, let us review some of the

main ideas. First, note that it is enough just to consider an uppermost application

of (CUT) in a derivation. If we can remove such an application without introducing

any new applications, then we can eliminate applications of (CUT) one by one. Let

us define:

Definition 5.8. GL◦ is the calculus GL without (CUT).

Then to establish cut elimination for GL it is enough to show constructively that

if the premises of an instance of (CUT) are GL◦-derivable, then the conclusion is

GL◦-derivable.

Now recall from our earlier discussion that to make this proof work, we need

to consider a generalization of (CUT). In particular, we show that if two hyperse-

quents G and H are derivable, the first with a marked occurrence of A, the second

with occurrences of A on the opposite side, then repeated applications of (CUT)

give derivable hypersequents; i.e. any hypersequent in CUT(G,H) is derivable. The

proof of this is by induction. Suppose that the marked cut-formula A occurs on the

right in H. We consider a derivation of G, using substitutivity to push applications

of (CUT) upwards until the last rule application is a logical rule applied to an occur-

rence of A on the left. We apply the induction hypothesis to the premises, then turn

our attention to H. Again, applications of (CUT) are pushed upwards until the last

rule application is a logical rule applied to an occurrence of A, this time on the left.

Finally, we use reductivity to replace the application of (CUT) with applications of

(CUT) to the subformulas of A occurring in the logical rules.

Theorem 5.9. Cut elimination holds for any regular hypersequent calculus.

Proof. Let GL be a regular hypersequent calculus. As observed above, it is suffi-

cient to show that an “uppermost” application of (CUT) in any GL-derivation (i.e.

where the premises are GL◦-derivable) can be eliminated without introducing new

applications of (CUT). Hence it is enough to prove the following:
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Claim. For any hypersequent G and hypersequent H with marked formula A:

If dG ⊢GL◦ G and dH ⊢GL◦ H, then ⊢GL◦ CUT(G,H).

We prove the claim by a triple induction on the lexicographically ordered triple:

〈cp(A),e(dH),ht(dG)〉

where e(d) =

{

0 if d ends with a logical rule applied to a marked formula

1 otherwise

We begin by considering the last application of a rule (r) in dG . If (r) is (ID), then

G is of the form (G′ | C ⇒ C). So every member of CUT(G,H) is of the form

(H′ | C ⇒ C) or (H′ | H), and the claim follows using (EW). Otherwise, there are

two cases:

(a) The application of (r) is of the form:

G1 . . . Gn

G

and the principal formula (if there is one) is not an occurrence of A on the opposite

side to the marked occurrence in H. Pick G′ ∈ CUT(G,H). By the substitutivity of

(r), there exist G′
i ∈ CUT(Gi,H) for i = 1 . . .n such that:

G′
1 . . . G′

n

G′
is an instance of (r).

But by the induction hypothesis ⊢GL◦ G′
i for i = 1 . . .n, so also ⊢GL◦ G′ as required.

(b) The application of (r) is of the form:

G1 . . . Gn

G′ | Γ, [A]λ ⇒ ∆
or

G1 . . . Gn

G′ | Γ ⇒ [A]λ ,∆

where the principal formula is an occurrence of A on the opposite side to the marked

occurrence in H, and A 6∈ Γ or A 6∈ ∆ as appropriate. Pick GH ∈ CUT(G,H) where

H is of the form:

H′ | Π ⇒ A,Σ or H′ | Π,A ⇒ Σ

The only tricky case (others follow as above using substitutivity) is when GH is of

the form:

H′ | G′′ | Γ,Πλ ⇒ Σλ ,∆

where G′′ ∈ CUT(G′,H). Notice that also:

H′ | G′′ | Γ,Πλ−1,A ⇒ Σλ−1,∆ or H′ | G′′ | Γ,Πλ−1 ⇒ A,Σλ−1,∆

is a member of CUT(G,H). So by the substitutivity of (r), there exist G′
i ∈CUT(Gi,H)

for i = 1 . . .n such that:
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G′
1 . . . G′

n

H′ | G′′ | Γ,Πλ−1,A ⇒ Σλ−1,∆
or

G′
1 . . . G′

n

H′ | G′′ | Γ,Πλ−1 ⇒ A,Σλ−1,∆

is an instance of (r). Moreover, by the induction hypothesis, ⊢GL◦ G′
i for i = 1 . . .n,

so we have a derivation d ending with such a rule application.

Now we consider two subcases:

(1) e(dH) = 1: i.e. dH does not end with the application of a logical rule to the

marked occurrence of A. Mark the remaining occurrence of A on the left or

right as appropriate in d and remove the underlining in dH. So e(d) = 0 and:

〈cp(A),e(d),ht(dH)〉 <d 〈cp(A),e(dH),ht(dG)〉

Hence by the induction hypothesis and a further application of (EC), ⊢GL◦ GH.

(2) e(dH) = 0: i.e. dH ends with the application of a logical rule to the marked

occurrence of A, and is of the form:

H1 . . . Hm

H′ | Π ⇒ A,Σ
or

H1 . . . Hm

H′ | Π,A ⇒ Σ

By reductivity, GH is derivable from G′
1, . . . ,G

′
n,H1, . . . ,Hm by cuts on subfor-

mulas A1, . . . ,Ak of A. But:

〈cp(Ai),e(dH),ht(d)〉 <d 〈cp(A),e(dH),ht(dG)〉 for i = 1 . . .k.

So by the induction hypothesis and a further application of (EC), ⊢GL◦ GH. ⊓⊔

5.1.3 Conservative Extensions

One immediate consequence of cut elimination for regular calculi is that cut-free

derivations have the subformula property. Any formula occurring in such a deriva-

tion must occur as a subformula in the end-hypersequent. Or put another way, cut-

free derivations do not make use of any “extra materials” to achieve their goal.

The subformula property is key for developing automated reasoning methods

based on Gentzen systems. It is also useful in other ways. Notice for example that the

empty sequent ⇒ (which leads to inconsistency in logics with weakening) can, by

the subformula property, only be derivable if it is an initial sequent of the calculus.

More generally, a hypersequent G is derivable iff it is derivable when the logical

rules are restricted to those for connectives occurring in G.

Let us make this more precise. A system C1 for a set of structures S1 is a con-

servative extension of a system C2 for S2 ⊆ S1 if for all X ∈ S2: ⊢C1
X iff ⊢C2

X .

In this case, C2 is often called the S2-fragment of C1. Our first (easy) example will

be fragments of regular Gentzen systems based on a reduced language. Let GLL

be GL where the logical rules are restricted to the connectives in L. Then by cut

elimination for regular calculi and the subformula property:
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Proposition 5.10. Let GL be any regular extension of GUL and L1 ⊆L2 ⊆LF. Then

GLL2 is a conservative extension of GLL1 .

However, this is cheating slightly. Although rules for ∨ may not be available in

the restricted calculus, we still have plenty of rules for the external disjunction “|”,

namely, (EW), (EC), and (COM). It is therefore more interesting to ask if we can

obtain conservative extension results for Hilbert systems, where only formulas are

involved in derivations. Or to put this another way, can we find axiomatizations

for fragments of Hilbert systems for fuzzy logics? Let us just consider a pertinent

example: the implicational fragment of Monoidal t-norm Logic.

The Hilbert system BCK consists of the modus ponens rule (MP) and the axioms:

(B) (A → B) → ((B →C) → (A →C)) (transitivity)

(C) (A → (B →C)) → (B → (A →C)) (permutation)

(K) A → (B → A) (weakening)

Then let HMTL→ be BCK extended with the axiom schema:

(IPRL) ((A → B) →C) → (((B → A) →C) →C)

Proposition 5.11. HMTL is a conservative extension of HMTL→.

Proof. Suppose that ⊢HMTL A for some implicational formula A. Then ⊢GMTL⇒ A

and by Proposition 5.10, ⊢GMTL→⇒ A. So it remains to show that ⊢GMTL→⇒ A

implies ⊢HMTL→ A. For this we need to eliminate mention of any connective other

than → from our interpretation of hypersequents. Let us define:

Iq(A1, . . . ,An ⇒C) =def A1 → . . . → An →C

Iq(A1, . . . ,An ⇒) =def A1 → . . . → An → q

Iq(S1 | . . . | Sn) =def (Iq(S1) → q) → . . . → (Iq(Sn) → q) → q

where A1 → . . . → An →C is short for A1 → (A2 → (. . . → (An →C) . . .). It is then

enough to prove the following:

Claim. If ⊢GMTL→ G, then ⊢HMTL→ Iq(G) for any q not occurring in G.

Just notice that if ⊢GMTL→⇒ A, then ⊢HMTL→ (A → q) → q for some q not occur-

ring in A. So by Lemma 3.10, substituting A for q, ⊢HMTL→ (A → A) → A. Hence

⊢HMTL→ A.

Proof of claim. We proceed by induction on the height of a cut-free GMTL→-

derivation of G. For the base case, G is of the form G′ | C ⇒ C and we note that

⊢HMTL→ D → (((C → C) → q) → q) for any formula D as required. The induc-

tive step involves a number of tedious Hilbert derivations. For rules of the form

(G | S1) . . .(G | Sn) / (G | S), it is sufficient to show that:

⊢HMTL→ Iq(S1) → . . . → Iq(Sn) → Iq(S)
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For example, in the case of (→⇒), let Γ1 = [C1, . . . ,Ck] and D = Iq(Γ2 ⇒ ∆). Then

we can show that the following formula is derivable in HMTL→:

(C1 → . . . →Ck → A) → (B → D) → (C1 → . . . →Ck → (A → B) → D)

For cases not of this form, we proceed a little differently. E.g. for (EC), suppose that

⊢GMTL→ G | S | S. Then by the induction hypothesis, for suitable D1, . . . ,Dn:

⊢HMTL→ (D1 → q) → . . .(Dn → q) → (Iq(S) → q) → (Iq(S) → q) → q

But then by Lemma 3.10, substituting (D1 → q)→ . . .(Dn → q)→ (Iq(S)→ q)→ q

for q above, we easily get ⊢HMTL→ (D1 → q) → . . .(Dn → q) → (Iq(S) → q) → q

as required. ⊓⊔

To obtain axiomatizations for other fragments, we let HMTLL be HMTL→ extended

with the various axioms for ⊙, ∧, ∨, ⊥, and ⊤ given in Chapter 3, only replacing

(∨3) with the schema (acceptable since we have weakening):

(∨3)′ (A →C) → ((B →C) → ((A∨B) →C))

So, courtesy of a lot of tedious Hilbert-style derivations of the interpretations of

logical rules (as sketched above), we end up with:

Proposition 5.12. Let {→} ⊆ L1 ⊆ L2 ⊆ {→,⊙,∧,∨,⊥,⊤}. Then HMTLL2 is a

conservative extension of HMTLL1 .

These results can be extended to Hilbert systems for other logics with weakening

such as HG and HIMTL. However, in the case of weakening-free logics, we can no

longer simulate the connective ∨ using → or the other multiplicative connectives.

An interesting open question is therefore to provide an axiomatization (if one ex-

ists) of the implicational fragment of HUL. Could it be that HUL is a conservative

extension of BCI? I.e. is the implicational fragment of HUL just the corresponding

fragment of Linear Logic?

5.1.4 Decidability

For sequent calculi, cut elimination can be a key tool for establishing the decidabil-

ity of the validity problem for a logic L: the problem of determining whether a for-

mula of the appropriate language belongs to the set of L-valid formulas. As an easy

case, consider any regular extension of GMAILL or GMALL with “non-expansive”

structural rules, that is, having instances where the (multiset) complexity of each

premise is strictly less than the complexity of the conclusion. Cut-free proof search

proceeding by applying rules of the cut-free calculus backwards must terminate. So

derivability in the calculus is decidable.

This argument fails in the presence of contraction rules. In such cases, premises

can be bigger than the conclusion. Sometimes, e.g. for fragments of the relevance
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Initial S-Hypersequents

G | A ⇒ A
(ID)

G |⇒
(EMP)

Structural Rules

G′ | Π1 ⇒ Σ1 G′ | Π2 ⇒ Σ2

G | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2

(COM)s

where G′ = (G | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2);

Γ1 ∪Γ2 = Π1 ∪Π2; and ∆1 ∪∆2 = Σ1 ∪Σ2.

Logical Rules

G′ | Γ1,B ⇒ ∆1 G′ | Γ2 ⇒ A,∆2

G | Γ,A → B ⇒ ∆
(→⇒)s

G | Γ,A ⇒ B,∆

G | Γ ⇒ A → B,∆
(⇒→)

where Γ1 ∪Γ2 ∪{A → B} = Γ∪{A → B};

∆1 ∪∆2 = ∆; and G′ = (G | Γ,A → B ⇒ ∆).

Fig. 5.1 The hypersequent calculus GIUML→
s

logic R, this can be dealt with by using restricted rules and some kind of loop-

checking mechanism. For hypersequent calculi, however, the approach is further

complicated by the presence of the external contraction rule (EC) that can duplicate

whole sequents. Nevertheless, with both internal and external contraction rules, as

e.g. for GG, GIUML, and GUML, we can again obtain terminating proof search fairly

easily. In such cases, we can replace multisets by sets, and have only a finite number

of possible structures occurring in a derivation.

Let us define s-sequents as expressions Γ ⇒ ∆ where Γ and ∆ are sets rather than

hypersequents of formulas and s-hypersequents as sets of s-sequents (for familiarity,

we retain the same notation). Now consider the set of formulas α occurring in some

s-hypersequent. There is only a finite number of s-sequents containing subformulas

of the formulas in α , and hence also only a finite number of s-hypersequents built

from such s-sequents. E.g. let:

G = (p → q ⇒ q → p | q → p ⇒ q)

Then α = {p → q,q → p,q} and the number of different (multiple-conclusion) se-

quents with subsets of {p → q,q → p, p,q} on the left and right is 24 × 24 = 256.

So the number of different hypersequents is 2256, a very big number indeed, but still

finite.

What this means is that for any s-hypersequent calculus with the subformula

property, applying the rules backwards can lead only to a finite number of possible

s-hypersequents. So using loop-checking, e.g. checking that the premises of a rule

instance have not already occurred lower in the derivation, we get:

Lemma 5.13. Any s-hypersequent calculus with the subformula property is

decidable.
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Hence to show decidability for a logic or proof system, it is sufficient to exhibit a

corresponding (sound and complete) s-hypersequent calculus with the subformula

property. In general we can do this for any regular hypersequent calculus with con-

traction rules. The idea is to build contraction into the other rules of the calculus.

Consider for concreteness, Fig. 5.1, a cut-free s-hypersequent calculus GIUML→s for

the implicational fragment of IUML. Notice that we have removed (EW) as well as

the internal and external contraction rules. Also, the (MIX) of GIUML is subsumed

by the revised communication rule (COM)s.

This s-hypersequent calculus has the subformula property, so it is decidable. The

question then is whether this calculus really characterizes the implicational frag-

ment of IUML. To answer this affirmatively, we just have to show that ⊢GIUML G iff

⊢GIUML→s
Gs for any implicational hypersequent G, where Gs is the s-hypersequent

version of G obtained by removing duplications at the sequent level and then the

hypersequent level. Both directions can be established by induction on the heights

of a derivation. More generally, we can use this method to show that:

Proposition 5.14. The validity problem for UML, IUML, and G is decidable.

5.2 Cancellation Elimination

We now consider a case – the calculus GA for Abelian Logic – where cut elimination

is better treated via an elimination of the “cancellation” rule (CAN). To see how the

usual cut elimination procedure fails for this calculus, consider:

...
Γ,B ⇒ A,∆

Γ,A → B ⇒ ∆
(→⇒)A

...
Π,A ⇒ B,Σ

Π ⇒ A → B,Σ
(⇒→)

Γ,Π ⇒ Σ,∆
(CUT)

The usual trick, applying (CUT) to the premises of (→⇒)A and (⇒→) with cut-

formula A or B, gives (Γ,Π,A ⇒ A,Σ,∆) or (Γ,Π,B ⇒ B,Σ,∆), neither of much use

here. Instead, let us rearrange this derivation a little using (CAN):

...
Γ,B ⇒ A,∆

Γ,A → B ⇒ ∆
(→⇒)A

...
Π,A ⇒ B,Σ

Π ⇒ A → B,Σ
(⇒→)

Γ,Π,A → B ⇒ A → B,Σ,∆
(MIX)

Γ,Π ⇒ Σ,∆
(CAN)

Then making some further changes, we apply (CAN) to A and B rather than A → B:
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Initial Sequents

G | A ⇒ A
(ID)

G |⇒
(EMP)

Structural Rules

G

G |H
(EW)

G |H |H

G |H
(EC)

G | Γ1 ⇒ ∆1 G | Γ2 ⇒ ∆2

G | Γ1,Γ2 ⇒ ∆1,∆2

(MIX)
G | Γ1,Γ2 ⇒ ∆1,∆2

G | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2

(SPLIT)

Logical Rules

G | Γ,B ⇒ A,∆

G | Γ,A → B ⇒ ∆
(→⇒)A

G | Γ,A ⇒ B,∆

G | Γ ⇒ A → B,∆
(⇒→)

G | Γ,A ⇒ ∆ | Γ,B ⇒ ∆

G | Γ,A∧B ⇒ ∆
(∧⇒)

G | Γ ⇒ A,∆ G | Γ ⇒ B,∆

G | Γ ⇒ A∧B,∆
(⇒∧)

Fig. 5.2 The hypersequent calculus GA∗

...
Γ,B ⇒ A,∆

...
Π,A ⇒ B,Σ

Γ,Π,A,B ⇒ A,B,Σ,∆
(MIX)

Γ,Π,A ⇒ A,Σ,∆
(CAN)

Γ,Π ⇒ Σ,∆
(CAN)

The idea of cancellation elimination (as with cuts) is first to reduce all applications

of (CAN) to variables, and then to perform “atomic cancellation elimination”. Since

applications of (CUT) in GA can be replaced by applications of (CAN) (see Sec-

tion 4.3.5), this also provides a cut elimination procedure for GA.

5.2.1 The Proof

For convenience (saving a lot of repetition), we will use a restricted but still fully

expressive language LA = {→,∧} for Abelian Logic, defining:

e =def q → q f =def e

¬A =def A → f A∨B =def ¬(¬A∧¬B)
A⊙B =def ¬A → B A⊕B =def A⊙B

A hypersequent calculus GA∗ for LA is given in Fig. 5.2: essentially the appropri-

ate cut-free fragment of GA with (∧⇒)1 and (∧⇒)2 replaced by (∧⇒). We will

establish cancellation elimination for GA∗ + (CAN). Since the rules for the extra

connectives of GA are GA∗-derivable, we also get cancellation elimination for GA.
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Our proof proceeds in a similar vein to cut elimination, but with one premise

rather than two. Just as we defined CUT(G,H) to capture the result of applications

of (CUT) with a marked cut-formula A, so we define CAN(G,A) to capture the result

of applications of (CAN) with a cancellation-formula A.

Definition 5.15. CAN(G,A) is the smallest set such that:

(1) G ∈ CAN(G,A).

(2) (H | Γ ⇒ ∆) ∈ CAN(G,A) if (H | Γ,A ⇒ A,∆) ∈ CAN(G,A).

The set CAN(G,A) is easy to visualize. Suppose that we have a hypersequent:

G = (Γ1, [A]λ1 ⇒ [A]λ1 ,∆1 | . . . | Γn, [A]λn ⇒ [A]λn ,∆n)

where A 6∈ Γi or A 6∈ ∆i for i = 1 . . .n. Then, letting 0 ≤ µi ≤ λi for i = 1 . . .n,

CAN(G,A) consists of all hypersequents of the form:

Γ1, [A]λ1−µ1 ⇒ [A]λ1−µ1 ,∆1 | . . . | Γn, [A]λn−µn ⇒ [A]λn−µn ,∆n

We begin our proof with a kind of cut elimination for variables.

Lemma 5.16. Suppose that:

(1) d ⊢GA∗ Γ1, [q]λ1 ⇒ ∆1 | . . . | Γn, [q]λn ⇒ ∆n.

(2) ⊢GA∗ Gi | Πi ⇒ [q]λi ,Σi for i = 1 . . .n.

Then ⊢GA∗ G1 | . . . | Gn | Γ1,Π1 ⇒ Σ1,∆1 | . . . | Γn,Πn ⇒ Σn,∆n.

Proof. If λ1 = . . . = λn = 0, then the result follows easily using (MIX) and (EW),

so assume without loss of generality that λ1 ≥ 1. We proceed by induction on ht(d).
For ht(d) = 1, the only possible case is (G′ | q ⇒ q), an instance of (ID). So we

obtain the result by applying (EW). For ht(d) > 1, cases for the logical rules, (EW),

and (EC) all involve straightforward applications of the induction hypothesis and

the corresponding rule.

The remaining structural rules are another matter. Suppose that d ends with:

... d1

[Γi, [q]λi ⇒ ∆i]
n
i=2 | Γ′

1, [q]λ
′
1 ⇒ ∆′

1

... d2

[Γi, [q]λi ⇒ ∆i]
n
i=2 | Γ′′

1 , [q]λ
′′
1 ⇒ ∆′′

1

[Γi, [q]λi ⇒ ∆i]
n
i=2 | Γ1, [q]λ1 ⇒ ∆1

(MIX)

where Γ1 = Γ′
1 ⊎Γ′′

1 , ∆1 = ∆′
1 ⊎∆′′

1 , and λ1 = λ ′
1 +λ ′′

1 . Since ht(d1) < ht(d), by the

induction hypothesis applied to the left premise:

⊢GA∗ G1 | . . . | Gn | [Γi,Πi ⇒ Σi,∆i]
n
i=2 | Γ′

1,Π1 ⇒ [q]λ
′′
1 ,Σ1,∆

′
1

But then since ht(d2) < ht(d), we can apply the induction hypothesis again (replac-

ing (G1 | Π1 ⇒ [q]λ1 ,Σ1) in (2) with the above hypersequent), and the result follows

using (EC).
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Now suppose that d ends with:

... d′

[Γi, [q]λi ⇒ ∆i]
n
i=3 | Γ1,Γ2, [q]λ1+λ2 ⇒ ∆1,∆2

[Γi, [q]λi ⇒ ∆i]
n
i=3 | Γ1, [q]λ1 ⇒ ∆1 | Γ2, [q]λ2 ⇒ ∆2

(SPLIT)

Since ⊢GA∗ Gi | Πi ⇒ [q]λi ,Σi for i = 1,2, by (MIX) and (EW):

⊢GA∗ G1 | G2 | Π1,Π2 ⇒ [q]λ1+λ2 ,Σ1,Σ2

Hence, since ht(d′) < ht(d), by the induction hypothesis:

⊢GA∗ G1 | . . . | Gn | [Γi,Πi ⇒ Σi,∆i]
n
i=3 | Γ1,Γ2,Π1,Π2 ⇒ Σ1,Σ2,∆1,∆2

and the result follows by (SPLIT). ⊓⊔

“Atomic cancellation elimination” can now be established as follows:

Lemma 5.17. If d ⊢GA∗ G, then ⊢GA∗ H for all H ∈ CAN(G,q).

Proof. We proceed by induction on ht(d). The base cases are easy, G is (G′ | q ⇒ q),
(G′ |C ⇒C), or (G′ |⇒), and we can apply again (EMP) or (ID). For the cases where

the last rule applied is (EC), (EW), (SPLIT), or one of the logical rules, the result

follows by the induction hypothesis and an application of the corresponding rule (or

if you like, the substitutivity of that rule).

The only tricky case is when d is of the form:

... d1

H | Γ1, [q]k ⇒ [q]m,∆1

... d2

H | Γ2, [q]n−k ⇒ [q]n−m,∆2

H | Γ1,Γ2, [q]n ⇒ [q]n,∆1,∆2
(MIX)

and the member of CAN(G,q) is (H′ | Γ1,Γ2 ⇒ ∆1,∆2) for some H′ ∈ CAN(H,q).
Without loss of generality, let k ≤ m. Then by the induction hypothesis twice:

⊢GA∗ H′ | Γ1 ⇒ [q]m−k,∆1 and ⊢GA∗ H′ | Γ2, [q]m−k ⇒ ∆2

So the result follows immediately by Lemma 5.16 and (EC). ⊓⊔

We now turn our attention to cancelling complex formulas. In GA∗ the logical rules

are invertible on both sides of the sequent arrow. This means that we can push ap-

plications of (CAN) to complex formulas upwards in the derivation to applications

on subformulas and ultimately to variables, where as we have just seen, they can be

eliminated.

Lemma 5.18. The rules (→⇒)A, (⇒→), (∧⇒), and (⇒∧) are GA∗-invertible.
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Proof. To cope with multiple occurrences of formulas, we will need to show the

invertibility of more general rules. As it is the hardest case, let us just consider the

following more general version of (∧⇒):

[Γi, [A]λi ⇒ ∆i | Γi, [B]λi ⇒ ∆i]
n
i=1

[Γi, [A∧B]λi ⇒ ∆i]
n
i=1

We prove that this rule is GA∗-invertible, proceeding by induction on the height

of a derivation d of the conclusion. If λ1 = . . . = λn = 0, then the result follows

immediately using (EC), so let us assume without loss of generality that λ1 ≥ 1.

Then for the base case, we have ⊢GA∗ G′ | A∧B ⇒ A∧B. But (A ⇒ A∧B | B ⇒
A∧B) is GA∗-derivable (see Example 4.35) so the result holds using (EW). For the

inductive step, the cases of (EW), (EC), (SPLIT), (→⇒)A, and (⇒→) follow easily

by an application of the induction hypothesis and the relevant rule. We consider the

remaining tricky cases below.

Suppose first that d ends with:

G | Π1, [A∧B]µ1 ⇒ Σ1 G | Π2, [A∧B]µ2 ⇒ Σ2

G | Γ1, [A∧B]λ1 ⇒ ∆1

(MIX)

where G = [Γi, [A∧B]λi ⇒ ∆i]
n
i=2, λ1 = µ1 + µ2, Γ1 = Π1 ⊎Π2, and ∆1 = Σ1 ⊎Σ2.

By the induction hypothesis twice:

⊢GA∗ G′ | Π j, [A]µ j ⇒ Σ j | Π j, [B]µ j ⇒ Σ j for j = 1,2

where G′ = [Γi, [A]λi ⇒ ∆i | Γi, [B]λi ⇒ ∆i]
n
i=2. So using (MIX), (SPLIT), and (EC):

⊢GA∗ G′ | Π1, [A]µ1 ⇒ Σ1 | Π2, [B]µ2 ⇒ Σ2

⊢GA∗ G′ | Π2, [A]µ2 ⇒ Σ2 | Π1, [B]µ1 ⇒ Σ1

But then using (MIX), (SPLIT), and (EC) again, as required:

⊢GA∗ G′ | Π1,Π2, [A]µ1+µ2 ⇒ Σ1,Σ2 | Π1,Π2, [B]µ1+µ2 ⇒ Σ1,Σ2

Suppose now that d ends with:

G | Γ1, [A∧B]λ1 ⇒C1,∆
′
1 G | Γ1, [A∧B]λ1 ⇒C2,∆

′
1

G | Γ1, [A∧B]λ1 ⇒C1 ∧C2,∆
′
1

(⇒∧)

where ∆1 = ∆′
1 ⊎ [C1 ∧C2] and G = [Γi, [A∧B]λi ⇒ ∆i]

n
i=2. By the induction hypoth-

esis twice:

⊢GA∗ G′ | Γ1, [A]λ1 ⇒C j,∆
′
1 | Γ1, [B]λ1 ⇒C j,∆

′
1 for j = 1,2

where G′ = [Γi, [A]λi ⇒ ∆i | Γi, [B]λi ⇒ ∆i]
n
i=2. So using (MIX) and (SPLIT):
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⊢GA∗ G′ | Γ1, [A]λ1 ⇒C1,∆
′
1 | Γ1, [B]λ1 ⇒C2,∆

′
1

But then using (⇒∧), we have as required:

⊢GA∗ G′ | Γ1, [A]λ1 ⇒C1 ∧C2,∆
′
1 | Γ1, [B]λ1 ⇒C1 ∧C2,∆

′
1

Finally, suppose that d ends with an application of (∧⇒). If the principal formula is

not A∧B, then the result follows easily using the induction hypothesis. Otherwise,

we have an application of the form:

G | Γ1, [A∧B]λ1−1,A ⇒ ∆1 | Γ1, [A∧B]λ1−1,B ⇒ ∆1

G | Γ1, [A∧B]λ1 ⇒ ∆1

(∧⇒)

By the induction hypothesis:

⊢GA∗ G′ | Γ1, [A]λ1 ⇒ ∆1 | Γ1, [B]λ1 ⇒ ∆1 | Γ1, [A]λ1−1,B ⇒ ∆1 | Γ1, [B]λ1−1,A ⇒ ∆1

Then by multiple applications of (EC), (MIX), and (SPLIT) as required:

⊢GA∗ G′ |Γ1, [A]λ1 ⇒∆1 |Γ1, [B]λ1 ⇒∆1 ⊓⊔

Theorem 5.19. GA∗ + (CAN) admits cancellation elimination.

Proof. It is enough to show that an uppermost application of (CAN) in a derivation

can be eliminated: then we can eliminate all applications one by one.

Claim. If ⊢GA∗ G | Γ,A ⇒ A,∆, then ⊢GA∗ G | Γ ⇒ ∆.

Proof of claim. We proceed by induction on cp(A). The base case where A is a vari-

able q follows immediately from Lemma 5.17. If A is B→C, then by the invertibility

of (→⇒)A and (⇒→) (Lemma 5.18):

⊢GA∗ G | Γ,C,B ⇒ B,C,∆

So by the induction hypothesis twice, ⊢GA∗ G | Γ ⇒ ∆ as required.

If A is B∧C, then by the invertibility of (∧⇒) (Lemma 5.18):

⊢GA∗ G | Γ,B ⇒ B∧C,∆ | Γ,C ⇒ B∧C,∆

Using the invertibility of (⇒∧) twice (Lemma 5.18):

⊢GA∗ G | Γ,B ⇒ B,∆ | Γ,C ⇒C,∆

So by the induction hypothesis twice and (EC), ⊢GA∗ G | Γ ⇒ ∆ as required. ⊓⊔

As mentioned above, cancellation elimination for GA∗+ (CAN) implies cut elimina-

tion for GA. Suppose that a hypersequent G is GA-derivable, assuming harmlessly

that G contains only connectives of the restricted language LA = {→,∧}. Then

as shown in Section 4.3.5, we can use (CAN) to remove all applications of (CUT)



120 5 Syntactic Eliminations

from the derivation to obtain a derivation in GA∗ + (CAN). But then by cancellation

elimination, we obtain a cancellation-free derivation of G in GA∗ and hence also a

cut-free derivation in GA.

Corollary 5.20. GA admits cut elimination.

5.2.2 Abelian ℓ-Groups

Abelian Logic A is rather esoteric, claiming such bizarre theorems as ((A → B) →
B)→ A that fail even in Classical Logic. From an algebraic perspective, however, A

is pretty important. Each A-algebra is term equivalent to a lattice-ordered abelian

group, or for short, abelian ℓ-group. That is, given any A-algebra A = 〈L,∧,∨,⊙,→
, f,e〉, recall that ¬x =def x → f, and consider:

G = 〈L,∧,∨,⊙,¬,e〉

〈L,∧,∨〉 is a lattice, ⊙ is order preserving (x ≤ y implies x ⊙ z ≤ y ⊙ z), and

〈L,⊙,¬,e〉 is a commutative (or abelian) group, so G is an abelian ℓ-group. Con-

versely, the extra operations of A can be expressed in abelian ℓ-groups via the iden-

tities x → y = ¬x⊙ y and f = e.

We will show here that we can use our calculus GA∗ to give “algorithmic” proofs

of some fundamental results for the variety of A-algebras, and hence also for abelian

ℓ-groups. First, we provide a completeness result for GA∗ with an important alge-

braic corollary. Consider the following pcrls based on the integers and real numbers

respectively:

Z = 〈Z,min,max,+,→+,0,0〉 and R = 〈R,min,max,+,→+,0,0〉

where x →+ y = y− x. We will show that Z and hence also R (since any equation

failing in the former, fails in the latter) generates the variety of A-algebras.

Proposition 5.21. If |=Z I(G), then ⊢GA∗ G.

Proof. It is easily checked using regular arithmetic that the logical rules of GA∗

are all Z-invertible. Also, the multiset complexity of each premise of these rules is

strictly less (according to the multiset ordering) than that of the conclusion. Hence

for any hypersequent G, there exist strictly atomic hypersequents G1 . . .Gn such that

G1, . . . ,Gn ⊢GA∗ G and G is Z-valid iff G1, . . . ,Gn are all Z-valid.

Let us assume then that G is strictly atomic. We prove the proposition by in-

duction on the number of different variables occurring in G. For the base case, G
consists only of empty sequents and is therefore derivable using (EW) and (EMP).
For the induction step, fix a variable q, and observe that the following rules are both

Z-invertible and GA∗-derivable:

H | Γ ⇒ ∆

H | Γ,q ⇒ q,∆

H | Γn ⇒ ∆n

H | Γ ⇒ ∆
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So we can assume further that either q does not occur in a sequent of G, or occurs

exactly λ times only on either the left or the right; i.e. G is of the form:

G′ | [Γi, [q]λ ⇒ ∆i]
n
i=1 | [Π j ⇒ [q]λ ,Σ j]

m
j=1

where q does not occur in G′ or Γi, ∆i, Π j, Σ j for i = 1 . . .n and j = 1 . . .m. We now

define the hypersequent:

H = G′ | [Γi,Π j ⇒ Σ j,∆i]
j=1...m
i=1...n

It is not hard to see that G is GA∗-derivable from H using the structural rules and

initial sequents. Working backwards, we use (EC) and (SPLIT) to combine each pair

Γi, [q]λ ⇒ ∆i and Π j ⇒ [q]λ ,Σ j into one sequent, then remove the qs using (MIX)

and (ID). Notice also that H contains fewer distinct variables than G. But this means

that it is enough to show |=Z I(H), since then by the induction hypothesis ⊢GA∗ H
and so ⊢GA∗ G.

Suppose for a contradiction that there exists a Z-valuation v such that v(I(H)) <
0. Easily, v′(I(H)) < 0 for any v′ defined by v′(p) = µv(p) for µ > 0. So we can

assume that every value v(p) is divisible by 2λ . We let:

x = max{∑A∈∆i
v(A)−∑B∈Γi

v(B) : 1 ≤ i ≤ n}

y = min{∑A∈Π j
v(A)−∑B∈Σ j

v(B) : 1 ≤ j ≤ m}

We claim that x < y. Otherwise for some i, j:

∑
B∈Γi

v(B)+ ∑
A∈Π j

v(A) ≤ ∑
B∈Σ j

v(B)+ ∑
A∈∆i

v(A)

But this contradicts the fact that v(I(H)) < 0. Hence we can alter v so that x <
λv(q) < y (recalling that q does not occur in H). It then follows that for i = 1 . . .n
and j = 1 . . .m:

∑
B∈Γi

v(B)+λv(q) > ∑
A∈∆i

v(A) and ∑
A∈Π j

v(A) > λv(q)+ ∑
B∈Σ j

v(B)

So v(I(G)) < 0 which contradicts |=Z I(G) as required. ⊓⊔

Combining this result and the soundness and completeness of GA∗ with respect to

HA and A-algebras, we get the following completeness theorem.

Theorem 5.22. |=R A iff |=Z A iff |=A A iff ⊢HA A.

Moreover, since an equation holds in all abelian ℓ-groups iff it holds in all A-

algebras, we obtain also:

Corollary 5.23. The variety of abelian ℓ-groups is generated by Z.

Finally, notice that the procedure described in Proposition 5.21 provides an algo-

rithm for deciding whether or not a formula is valid in A. We apply the invertible
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logical rules to reduce the problem to strictly atomic hypersequents, then eliminate

occurrences of variables one by one.

Corollary 5.24. The equational theory of abelian ℓ-groups is decidable.

5.3 Density Elimination

In Chapter 3, we showed that adding a special density rule to any HUL−-extension

guarantees completeness with respect to dense chains. Here we will show that

in many cases this rule is unnecessary. That is, we can eliminate applications of

(DENSITY) from derivations in the corresponding hypersequent calculus.

Our method proceeds – like cut elimination – by removing applications which

are uppermost in a derivation. Suppose that we have a derivation d ending:

...

Γ ⇒ p | Π, p ⇒ Σ

Γ,Π ⇒ Σ
(DENSITY)

The idea of our proof is to replace occurrences of p in d in an “asymmetric” way:

with Γ if p occurs on the left, and with Π on the left and Σ on the right, if p occurs

on the right. What we get is not quite a derivation, but still a finite tree labelled with

hypersequents, now ending:

...

Γ,Π ⇒ Σ | Π,Γ ⇒ Σ

Γ,Π ⇒ Σ

The last step in this not-quite-a-derivation is an application of (EC). Moreover, the

applications of logical rules and most structural rules in the original derivation are

preserved by substitutivity. Where the derivation potentially breaks down is in rules

like (COM) where ps can occur in premises on both the left and the right. For exam-

ple, suppose that d ends with:

p ⇒ p (ID)

...

Γ′,Π ⇒ Σ

Γ′ ⇒ p | Π, p ⇒ Σ
(COM)

...

Γ ⇒ p | Π, p ⇒ Σ

Γ,Π ⇒ Σ
(DENSITY)

If we replace ps as before, we get:
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Γ,Π ⇒ Σ

...

Γ′,Π ⇒ Σ

Γ′,Π ⇒ Σ | Γ,Π ⇒ Σ
(COM)

...

Γ,Π ⇒ Σ | Γ,Π ⇒ Σ

Γ,Π ⇒ Σ
(EC)

But now we have a missing part of the derivation: the sub-derivation of (Γ,Π ⇒ Σ),
which was what we wanted to prove in the first place. However, notice that in this

case, if we remove the branch ending with (Γ,Π ⇒ Σ), then we can replace the

application of (COM) with an application of (EW). More generally, we are able to

use (CUT) and cut elimination to repair such derivations.

5.3.1 Calculi with Weakening

We begin our investigations with hypersequent calculi admitting the weakening rule

(W). In fact, for single-conclusion regular calculi with weakening, we will obtain a

very nice result: all such calculi admit density elimination. Let us assume then for

now that we are dealing only with single-conclusion hypersequents. In this case, we

deal in particular with hypersequents where the variable p occurs only in a limited

fashion: not in complex formulas and not on both the left and right in the same

sequent.

Definition 5.25. A hypersequent G is p-regular if it is of the form:

Γ1 ⇒ p | . . . | Γn ⇒ p | Π1, [p]λ1 ⇒ Σ1 | . . . | Πm, [p]λm ⇒ Σm

where p does not occur in Γ1, . . . ,Γn,Π1, . . . ,Πm,Σ1, . . . ,Σm.

We will also need a way of distinguishing the special occurrences of the variable p

introduced by the density rule.

Definition 5.26. A double-p-marked hypersequent has two occurrences of p, both

marked: one on the left in a sequent and one on the right in another sequent, written:

H | Γ ⇒ p | Π, p ⇒ Σ

We will combine a p-regular hypersequent G with a double-p-marked hypersequent

(H | Γ ⇒ p | Π, p ⇒ Σ) in a special way, essentially by applying (CUT) exhaustively

to (G | H) and the sequents (Γ ⇒ p) and (Π, p ⇒ Σ) with cut-formula p.

Definition 5.27. Suppose that:

1. G = [Γi ⇒ p]ni=1 | [Π j, [p]λ j ⇒ Σ j]
m
j=1 is a p-regular hypersequent.
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2. Hp = (H | Γ ⇒ p | Π, p ⇒ Σ) is a double-p-marked hypersequent.

Then DEN(G,Hp) = (H | [Γi,Π ⇒ Σ]ni=1 | [Π j,Γ
λ j ⇒ Σ j]

m
j=1).

Example 5.28. Consider the p-regular and double-p-marked hypersequents:

G = (q → r ⇒ p | q ⇒ p | r → q, p, p ⇒ r) and Hp = (s ⇒ p | s → q, p ⇒ r)

Then DEN(G,Hp) = (q → r,s → q ⇒ r | q,s → q ⇒ r | r → q,s,s ⇒ r).

In particular, a double-p-marked hypersequent Hp = (H | Γ ⇒ p | Π, p ⇒ Σ) is

always p-regular and:

DEN(Hp,Hp) = (H | H | Γ,Π ⇒ Σ | Γ,Π ⇒ Σ)

To preserve p-regularity in derivations, we need to ensure that rules do not allow

context formulas to “jump” from one side of a sequent to another. We will also

restrict the external structural rules allowed in the calculus.

Definition 5.29. A rule is called local if for each of its instances, any context for-

mula occurring on the left (right) in a premise is a context formula on the left (right)

in the conclusion. We call a hypersequent calculus local if all its rules are both local

and – except for (EW), (EC), and (COM) – hypersequent versions of sequent rules.

Example 5.30. Both the following rules (and their hypersequent versions) are local:

Γ1 ⇒ ∆1 Γ2 ⇒ ∆2

Γ1,Γ2 ⇒ ∆1,∆2
(MIX)

Γ1 ⇒ A,∆1 Γ2,B ⇒ ∆2

Γ1,Γ2,A → B ⇒ ∆1,∆2
(→⇒)

Clearly any formula on the left (right) of a premise of (MIX) is on the left (right) in

the conclusion. This is also true of (→⇒) except for the formulas A and B, which

are active. An example of a non-local rule is:

∆ ⇒ Γ

Γ ⇒ ∆

We now have enough tools to tackle our main theorem.

Theorem 5.31. Let GL be a regular and local single-conclusion hypersequent cal-

culus with weakening. Then density elimination holds for GLD.

Proof. For technical reasons, it will be useful to mimic the “,” occurring in hyper-

sequents and its unit by the connectives ⊙ and e (or different symbols, if these are

already taken). To this end, notice that we can assume that GL contains the logical

rules (⊙⇒), (⇒⊙), (e⇒), and (⇒e). If not, then suppose that the theorem holds

for the calculus extended with these rules. Since cut-free derivations in this extended

calculus have the subformula property, the theorem holds also for the original cal-

culus.

As for cut elimination, it is sufficient to consider uppermost applications of

(DENSITY) and remove these one by one. We prove the following:
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Claim. Suppose that:

1. Hp = (H | Γ ⇒ p | Π, p ⇒ Σ) is a double-p-marked hypersequent.

2. G is a p-regular hypersequent.

If d ⊢GL◦ G and d′ ⊢GL◦ Hp, then ⊢GL DEN(G,Hp).

To see that this suffices, we show that a single uppermost application of (DENSITY)

can be eliminated. Let G = (G′ | Γ ⇒ p | Π, p ⇒ Σ) be the premise of such an

application and suppose that ⊢GL G. Then by cut elimination, ⊢GL◦ G and it follows

from the claim, with Hp = (G′ | Γ ⇒ p | Π, p ⇒ Σ), that ⊢GL G′ | G′ | Γ,Π ⇒ Σ |
Γ,Π ⇒ Σ. So by (EC), ⊢GL G′ | Γ,Π ⇒ Σ as required.

Proof of claim. We proceed by induction on ht(d). For the base case, suppose that

G = (G′ | A ⇒ A) (where A cannot be p since G is p-regular). Then DEN(G,Hp) =
(H′ | A ⇒ A) for some H′ and is derivable by (ID). For all other cases, we consider

the last rule (r) applied in d. If (r) is (EC) or (EW), then the claim follows by applying

the induction hypothesis and (r). Otherwise:

• Suppose that (r) is a rule other than (EC), (EW), or (COM), and d ends with:

G′ | S1 . . . G′ | Sn

G′ | S
(r)

(G′ | S) is p-regular by assumption. Also GL is local so occurrences of p cannot

“switch sides” in a sequent from the premises to the conclusion. Hence (G′ |
S1), . . . ,(G

′ | Sn) are all p-regular, and by the induction hypothesis:

⊢GL DEN((G′ | Si),Hp) for i = 1 . . .n.

But DEN((G′ | S),Hp) is the result of multiple applications of (CUT) between

(H | G′ | S) and (Γ ⇒ p) and (Π, p ⇒ Σ). Hence, using the substitutivity of (r)

and the fact that (r) is local (which implies that p cannot occur in the premises

of an instance of (r) with no p in the conclusion):

DEN((G′ | S1),Hp) . . . DEN((G′ | Sn),Hp)

DEN((G′ | S),Hp)

is an instance of (r). So ⊢GL DEN((G′ | S),Hp) as required.

• Suppose now that (r) is (COM). If both premises are p-regular, then the claim

follows by applying the induction hypothesis to the premises and using (COM).

For example, suppose that d ends with:

G′ | Γ1,Π1 ⇒ p G′ | Γ2,Π2, [p]k ⇒ ∆

G′ | Γ1,Γ2, [p]k ⇒ ∆ | Π1,Π2 ⇒ p
(COM)

By the induction hypothesis twice:
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⊢GL DEN(G′,Hp) | Γ1,Π1,Π ⇒ Σ and ⊢GL DEN(G′,Hp) | Γ2,Π2,Γ
k ⇒ ∆

Hence by (COM), as required:

⊢GL DEN(G′,Hp) | Γ1,Γ2,Γ
k ⇒ ∆ | Π1,Π2,Π ⇒ Σ

Suppose then that one of the premises is not p-regular and d ends with:

G′ | Γ1,Π1, [p]m+1 ⇒ p G′ | Γ2, [p]k,Π2 ⇒ ∆

G′ | Γ1,Γ2, [p]k+m+1 ⇒ ∆ | Π1,Π2 ⇒ p
(COM)

Let G1 = DEN(G′,Hp). Then by the induction hypothesis:

d1 ⊢GL G1 | Γ2,Γ
k,Π2 ⇒ ∆

Our aim is to find a derivation for:

⊢GL G1 | Γ1,Γ2,Γ
k+m+1 ⇒ ∆ | Π1,Π2,Π ⇒ Σ

Consider the GL◦-derivation d′ of (H | Γ ⇒ p | Π, p ⇒ Σ). By Lemma 4.13, we

can substitute ⊙Π2 (recalling that ⊙[] = e) for p in this derivation to get:

d2 ⊢GL H | Γ ⇒⊙Π2 | Π,⊙Π2 ⇒ Σ

Let d3 be the (easy) derivation of (H | Π2 ⇒ ⊙Π2) using (⇒⊙), (⇒ e), and

(ID), and let d′
2 be the derivation:

... d2

H | Γ ⇒⊙Π2 | Π,⊙Π2 ⇒ Σ

H | Γm+1 ⇒⊙Π2 | Π,⊙Π2 ⇒ Σ
(W)

H | Γm+1 ⇒⊙Π2 | Π1,⊙Π2,Π ⇒ Σ
(W)

... d3

H | Π2 ⇒⊙Π2

H | Γm+1 ⇒⊙Π2 | Π1,Π2,Π ⇒ Σ
(CUT)

G1 | Γm+1 ⇒⊙Π2 | Π1,Π2,Π ⇒ Σ
(EW)

Also, let d′
1 be the derivation:

... d1

G1 | Γ2,Γ
k,Π2 ⇒ ∆

...

(⊙⇒) or (e⇒)

G1 | Γ2,Γ
k,⊙Π2 ⇒ ∆

(⊙⇒) or (e⇒)

G1 | Γ1,Γ2,Γ
k,⊙Π2 ⇒ ∆

(W)

Finally, putting these pieces together, we obtain the required derivation:
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... d′
1

G1 | Γ1,Γ2,Γ
k,⊙Π2 ⇒ ∆

... d′
2

G1 | Γm+1 ⇒⊙Π2 | Π1,Π2,Π ⇒ Σ

G1 | Γ1,Γ2,Γ
k+m+1 ⇒ ∆ | Π1,Π2,Π ⇒ Σ

(CUT)∗

⊓⊔

This result takes care of several concrete calculi that we have investigated.

Corollary 5.32. GMTLD, GSMTLD, GMTLD
n (n ≥ 2), and GGD admit density elim-

ination.

What of other hypersequent calculi with weakening? Notice first that in such a cal-

culus with (SPLIT), adding (DENSITY) allows us to prove anything:

p ⇒ p (ID)

p ⇒|⇒ p
(SPLIT)

⇒ (DENSITY)

⇒ A
(W)

Let us consider the case of regular multiple-conclusion calculi with weakening.

First, observe the following key fact. If such a calculus has weakening and com-

munication, then any hypersequent G with two occurrences of p on the left of a

sequent and two also on the right of another sequent, is derivable:

H | p ⇒ p
(ID)

H | p ⇒ p
(ID)

H | p, p ⇒|⇒ p, p
(COM)

H | p, p ⇒| Π ⇒ p, p,Σ
(W)

H | Γ, p, p ⇒ ∆ | Π ⇒ p, p,Σ
(W)

In particular, adding (DENSITY) to a multiple-conclusion calculus with weakening

and contraction allows us to derive any formula. Hence, either (as in the case of

calculi for Classical Logic) (DENSITY) is not admissible for such a calculus, or the

calculus is already trivial.

To deal with this feature of multiple-conclusion calculi with weakening, we gen-

eralize the notion of p-regularity for multiple-conclusion hypersequents to disallow

such possibilities. We also update our notions of double-p-marked hypersequents

and DEN(G,H).

Definition 5.33. A hypersequent G is p-regular if:

1. p does not occur in any complex formulas in G.

2. p does not occur on both the left and right of any sequent in G.

3. p does not occur twice on the left in one sequent and twice on the right in

another sequent in G.

A hypersequent G is double-p-marked if it is of the form (H | Γ ⇒ p,∆ | Π, p ⇒ Σ)
where p does not occur in H, Γ, ∆, Π, or Σ. Suppose now that:

1. G = [Γi ⇒ [p]µi ,∆i]
n
i=1 | [Π j, [p]λ j ⇒ Σ j]

m
j=1 is p-regular.
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2. Hp = (H | Γ ⇒ p,∆ | Π, p ⇒ Σ) is double-p-marked.

Then DEN(G,Hp) = (H | [Γi,Π
µi ⇒ Σµi ,∆i]

n
i=1 | [Π j,Γ

λ j ⇒ ∆λ j ,Σ j]
m
j=1).

We can now adapt the previous density elimination proof to the particular case of

IMTL, leaving the classification of a more general class of calculi for which this

works to the ingenuity of the reader.

Theorem 5.34. Density elimination holds for GIMTLD.

Proof. As in Theorem 5.31, it suffices to prove the following:

Claim. Suppose that:

1. Hp = (H | Γ ⇒ p,∆ | Π, p ⇒ Σ) is a double-p-marked hypersequent.

2. G is a p-regular hypersequent.

If d ⊢GL◦ G and d′ ⊢GL◦ Hp, then ⊢GL DEN(G,Hp).

We proceed again by induction on ht(d). For all the rules of GIMTL◦ except (COM),

a p-regular conclusion means p-regular premises and we can follow the proof of

Theorem 5.31. For (COM), we also follow the proof of Theorem 5.31, except when

in one of the premises, p occurs at least twice on the left in one sequent, and at least

twice on the right in another. Suppose for example (other cases are very similar) that

d ends with an application of (COM):

G′ | Γ1,Π1 ⇒ p, p,Σ1,∆1 G′ | Γ2,Π2 ⇒ Σ2,∆2

G′ | Γ1,Γ2 ⇒ p,∆1,∆2 | Π1,Π2 ⇒ p,Σ1,Σ2

where p occurs more than once on the left of some sequent in G′.

Let G1 = DEN(G′,Hp). Our aim is to show:

⊢GL G1 | Γ1,Γ2,Π ⇒ Σ,∆1,∆2 | Π1,Π2,Π ⇒ Σ,Σ1,Σ2

Since p occurs at least twice on the left in some sequent of G′, some sequent in G1

is of the form (Π′,Γ,Γ ⇒ ∆,∆,Σ′). So by (EC) and (W), it is enough to show:

⊢GL G1 | Γ,Γ ⇒ ∆,∆ | Γ2,Π ⇒ Σ,∆2 | Π2,Π ⇒ Σ,Σ2

We now make use again of Lemma 4.13. Since ⊢GL◦ H | Γ ⇒ p,∆ | Π, p ⇒ Σ:

⊢GL H | Γ ⇒ I(Γ2 ⇒ ∆2),∆ | Π, I(Γ2 ⇒ ∆2) ⇒ Σ

⊢GL H | Γ ⇒ I(Γ ⇒ ∆),∆ | Π, I(Γ ⇒ ∆) ⇒ Σ

Using the logical rules and some simple applications of (CUT):

⊢GL H | Γ2 ⇒ I(Γ ⇒ ∆),∆2 | Π, I(Γ2 ⇒ ∆2) ⇒ Σ

⊢GL H | Γ,Γ ⇒ ∆,∆ | Π, I(Γ ⇒ ∆) ⇒ Σ

So then by (EC) and (CUT) with cut-formula I(Γ ⇒ ∆):

⊢GL H | Γ,Γ ⇒ ∆,∆ | Π,Γ2 ⇒ ∆2,Σ | Π, I(Γ2 ⇒ ∆2) ⇒ Σ
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But now, by the induction hypothesis applied to the right premise:

⊢GL G1 | Γ2,Π2 ⇒ ∆2,Σ2

Using the logical rules, we have ⊢GL G1 | Π2 ⇒ I(Γ2 ⇒ ∆2),Σ2 and so by (CUT):

⊢GL G1 | H | Γ,Γ ⇒ ∆,∆ | Π,Γ2 ⇒ ∆2,Σ | Π,Π2 ⇒ Σ2,Σ

The result then follows by (EC). ⊓⊔

5.3.2 Calculi Without Weakening

All our density elimination proofs so far have relied quite considerably on the pres-

ence of the weakening rule (W). In particular, we have made essential use of the fact

that hypersequents of the form (G | Γ, p ⇒ p,∆) and (G | Γ, p, p ⇒ ∆ | Π ⇒ p, p,Σ)
are always derivable in such systems. To deal with hypersequent calculi lacking

weakening, we must think again.

Let us begin once more with the single-conclusion case, and for clarity concen-

trate on GUL, the calculus for Uninorm Logic. The main difficulty in density elimi-

nation arises when the conclusion of a rule instance is p-regular (no ps on both sides

of the same sequent), but one or more of the premises are not, as can happen with

the communication rule. For calculi with weakening, non-p-regular hypersequents

are derivable and, as we have seen, can be factored out of the derivation. Without

weakening, sequents of the form (Γ, p ⇒ p) may not be derivable and hence require

more careful treatment. The key idea in our proof will be to perform a preliminary

surgery on such sequents to make them p-regular.

Theorem 5.35. Density elimination holds for GULD.

Proof. The proof will be similar to those that we have already encountered, but with

a preliminary replacement of sequents (Γ, p ⇒ p) with (Γ ⇒ e). Suppose that G is

p-regular. We define:

(G | Γ1, p ⇒ p | . . . | Γn, p ⇒ p)e = (G | Γ1 ⇒ e | . . . | Γn ⇒ e)

Then it is sufficient to establish the following:

Claim. Let Hp = (H | Γ ⇒ p | Π, p ⇒ Σ) be a double-p-marked hypersequent:

If d ⊢GUL◦ G and d′ ⊢GUL◦ Hp, then ⊢GUL DEN(Ge,Hp) | Γ,Π ⇒ Σ.

Notice that we remove all the problematic occurrences of p on both sides of sequents

from G so that Ge is p-regular.

We prove the claim as before by induction on ht(d). If G = (G′ | p ⇒ p) or

G = (G′ | C ⇒ C) for some other formula C, then the result follows by (⇒ e) or

(ID), respectively. Otherwise, let us consider the last rule (r) applied in d. The cases
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of (EC) and (EW) proceed easily using the induction hypothesis as in Theorem 5.31.

For the logical rules, we have a rule instance of (r) of the form:

G1 | S1 . . . G1 | Sm

G1 | S

If S is p-regular, then we can proceed as in Theorem 5.31 since the premises must

also (since the rule is local) be p-regular. Suppose then that S is of the form:

Γ′, [p]k+1 ⇒ p

where p does not occur in Γ′. If one at least of S1 . . .Sm is not p-regular, then the

claim easily follows by the induction hypothesis and a subsequent application of (r).

Hence assume that all of S1 . . .Sm are p-regular, and so Se
i = Si for i = 1 . . .m. By

the induction hypothesis:

⊢GUL DEN((Ge
1 | Si),Hp) | Γ,Π ⇒ Σ for i = 1 . . .m

But then using the substitutivity of (r):

⊢GUL DEN(Ge
1,Hp) | Γ,Π ⇒ Σ | Γ′,Γk+1,Π ⇒ Σ

So we can complete the required derivation as follows:

DEN(Ge
1,Hp) | Γ,Π ⇒ Σ | Γ′,Γk+1,Π ⇒ Σ DEN(Ge

1,Hp) | Γ,Π ⇒ Σ |⇒ e
(⇒e)

DEN(Ge
1,Hp) | Γ,Π ⇒ Σ | Γ,Π ⇒ Σ | Γ′,Γk ⇒ e

(COM)

DEN(Ge
1,Hp) | Γ,Π ⇒ Σ | Γ′,Γk ⇒ e

(EC)

Suppose now that (r) is (COM), and let us first consider the case where both active

sequents in the conclusion are p-regular. If all the active sequents in the premises are

p-regular, then the claim follows by applying the induction hypothesis and (COM).

Otherwise, we have a situation of the form:

... d1

G1 | Γ1,Π1, [p]k ⇒ ∆1

... d2

G1 | Γ2,Π2, [p]m+1 ⇒ p

G1 | Γ1,Γ2, [p]k+m+1 ⇒ ∆1 | Π1,Π2 ⇒ p
(COM)

Let G2 = (DEN(Ge
1,Hp) | Γ,Π ⇒ Σ). We need to show that:

⊢GUL G2 | Γ1,Γ2,Γ
k+m+1 ⇒ ∆1 | Π1,Π2,Π ⇒ Σ

By the induction hypothesis:

d3 ⊢GUL G2 | Γ1,Π1,Γ
k ⇒ ∆1 and d4 ⊢GUL G2 | Γ2,Π2,Γ

m ⇒ e



5.3 Density Elimination 131

We first apply the rule (e⇒) to the end-hypersequent of d3, obtaining a derivation

of (G2 | Γ1,Π1,Γ
k,e ⇒ ∆1). Then by (CUT) with the end-hypersequent of d4, we

get:

d5 ⊢GUL G2 | Γ1,Γ2,Π1,Π2,Γ
k+m ⇒ ∆1

Now let A = ⊙(Π1 ⊎Π2) and consider:

G2 | Γ ⇒ A | Π,A ⇒ Σ G2 | Γ1,Γ2,Γ
k+m,A ⇒ ∆1 | Π,A ⇒ Σ

G2 | Γ1,Γ2,Γ
k+m+1 ⇒ ∆1 | Π,A ⇒ Σ

(CUT)

The left premise is derivable by (EW) and Lemma 4.13 applied to Hp. The right

premise is derivable by extending d5 with (EW) and (e⇒) and (⊙⇒) as necessary.

The required derivation is then obtained by applying (CUT) to the conclusion with

the easy derivation of (G2 | Γ1,Γ2,Γ
k ⇒ ∆1 | Π1,Π2 ⇒ A).

Now consider the case for (COM) where exactly one active sequent in the con-

clusion of (COM) is p-regular. If one of the active sequents in the premises is not

p-regular, then the claim easily follows by applying the induction hypothesis and

(COM). Otherwise, d ends with:

G1 | Γ1,Π1 ⇒ p G1 | Γ2,Π2, [p]k+m+1 ⇒ ∆1

G1 | Γ1,Γ2, [p]k ⇒ ∆1 | Π1,Π2, [p]m+1 ⇒ p
(COM)

Let G2 = (DEN(Ge
1,Hp) | Γ,Π ⇒ Σ). By the induction hypothesis twice:

d1 ⊢GUL G2 | Γ1,Π1,Π ⇒ Σ and d2 ⊢GUL G2 | Γ2,Π2,Γ
k+m+1 ⇒ ∆1

So we can construct the following derivation:

... d1

G2 | Γ1,Π1,Π ⇒ Σ

... d2

G2 | Γ2,Π2,Γ
k+m+1 ⇒ ∆1

G2 | Γ,Π ⇒ Σ | Γ1,Γ2,Γ
k+m,Π1,Π2 ⇒ ∆1

(COM)

G2 | Γ1,Γ2,Γ
k+m,Π1,Π2 ⇒ ∆1

(EC)
G2 |⇒ e

(⇒e)

G2 | Γ1,Γ2,Γ
k ⇒ ∆1 | Π1,Π2,Γ

m ⇒ e
(COM)

Finally, suppose that neither active sequent in the conclusion of (COM) is p-regular.

If the active sequents in both premises are not p-regular, then the claim follows by

applying the induction hypothesis and (COM). Assume then that exactly one active

sequent in the premises of (COM) is p-regular; i.e. d ends with:

G1 | Γ1,Π1, [p]k+m+2 ⇒ p G1 | Γ2,Π2 ⇒ p

G1 | Γ1,Γ2, [p]k+1 ⇒ p | Π1,Π2, [p]m+1 ⇒ p
(COM)

Let G2 = (DEN(Ge
1,Hp) | Γ,Π ⇒ Σ). By the induction hypothesis twice:

d1 ⊢GUL G2 | Γ1,Π1,Γ
k+m+1 ⇒ e and d2 ⊢GUL G2 | Γ2,Π2,Π ⇒ Σ
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We first apply the rule (e⇒) to the end-hypersequent of d2, obtaining a derivation of

(G2 | Γ2,Π2,Π,e ⇒ Σ). Then by (CUT) with the end-hypersequent of d1, we obtain

a derivation:

d3 ⊢GUL G2 | Γ1,Γ2,Π1,Π2,Γ
k+m+1,Π ⇒ Σ

The required derivation is then:

... d3

G2 | Γ1,Γ2,Π1,Π2,Γ
k+m+1,Π ⇒ Σ G2 |⇒ e

(⇒e)

G2 | Γ,Π ⇒ Σ | Γ1,Γ2,Π1,Π2,Γ
k+m ⇒ e

(COM)

G2 | Γ1,Γ2,Π1,Π2,Γ
k+m ⇒ e

(EC)
G2 |⇒ e

(⇒e)

G2 | Γ1,Γ2,Γ
k ⇒ e | Π1,Π2,Γ

m ⇒ e
(COM)

⊓⊔

This density elimination proof generalizes the proof for GMTLD and works also

for calculi such as GULD extended with rules (MIX), (EMP), or (SC2). However, for

calculi with contraction rules but lacking weakening, such as GUMLD and GIUMLD,

a slightly different strategy is required.

Theorem 5.36. Density elimination holds for GUMLD and GIUMLD.

Proof. We will just sketch the proof for GIUMLD, the case of GUMLD being very

similar. Also, for convenience of exposition let us assume that derivations in this

calculus use the derived rules (SPLIT) and (MIX), rather than (COM). We define:

(Γ, [p]λ ⇒ [p]µ ,∆)c =







(Γ, p ⇒ ∆ | Γ ⇒ p,∆ | Γ ⇒ ∆) if λ ,µ ≥ 1

(Γ, p ⇒ ∆) if λ ≥ 1,µ = 0

(Γ ⇒ p,∆) if λ = 0,µ ≥ 1

(Γ ⇒ ∆) if λ = µ = 0

(S1 | . . . | Sn)
c = (S1)

c | . . . | (Sn)
c

As in previous proofs, it is sufficient to establish the following:

Claim. Let Hp = (H | Γ ⇒ p,∆ | Π, p ⇒ Σ) be a double-p-marked hypersequent. If

d ⊢GIMUL◦ G and d′ ⊢GIUML◦ Hp, then ⊢GIUML DEN(Gc,Hp).

The proof is by induction on ht(d). We will just consider the trickiest case where d

ends with an application of (SPLIT), leaving others for the reader’s entertainment.

Let us write [p]∗ to mean [p]k for some k ≥ 1, and suppose that d ends with:

G1 | Γ1,Γ2, [p]∗ ⇒ [p]∗,∆1,∆2

G1 | Γ1, [p]∗ ⇒ ∆1 | Γ2 ⇒ [p]∗,∆2
(SPLIT)

Let G2 = DEN(Gc
1,Hp). Then by the induction hypothesis:

⊢GIUML G2 | Γ1,Γ2,Γ ⇒ ∆,∆1,∆2 | Γ1,Γ2,Π ⇒ Σ,∆1,∆2 | Γ1,Γ2 ⇒ ∆1,∆2
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As in earlier proofs, by (EW), Lemma 4.13, and (CUT) with Γ1, I(Γ1 ⇒ ∆1) ⇒ ∆1:

⊢GIUML G2 | Γ,Γ1 ⇒ ∆1,∆ | Π, I(Γ1 ⇒ ∆1) ⇒ Σ

But then using the logical rules, (CUT), (EC), and (C):

⊢GIUML G2 | Γ,Γ1 ⇒ ∆1,∆ | Γ1,Γ2,Γ,Π ⇒ Σ,∆,∆1,∆2 | Γ2,Π ⇒ Σ,∆2

So finally using (EC) and (SPLIT), as required:

⊢GIUML G2 |Γ1,Γ⇒∆,∆1 |Γ2,Π⇒Σ,∆2 ⊓⊔

While for single-conclusion calculi with weakening, density elimination goes es-

sentially hand-in-hand with cut elimination, calculi that lack weakening and/or are

multiple-conclusion, are more problematic. In particular, no density elimination

method is yet known for GIUL. The problem here, as may be gleaned from pre-

ceding proofs, is that a hypersequent may contain a sequent with more than one p

on the left and another sequent with more than one p on the right. Such hyperse-

quents are derivable with weakening and do not occur in single-conclusion calculi,

but for GIUL, a multiple-conclusion calculus without weakening, a different strategy

is required.

5.3.3 Standard Completeness

Perhaps the most interesting aspect of density elimination is that it fills a crucial gap

in standard completeness proofs for a wide range of fuzzy logics. First notice that

density elimination for a Gentzen system allows us to eliminate the density rule also

from derivations in the corresponding Hilbert system.

Proposition 5.37. For any HUL−-extension HL and matching Gentzen system GL

admitting density elimination: T ⊢HL A iff T ⊢HLD A.

Proof. We have the following chain of reasoning:

T ⊢HL A iff ⊢HL C → A for some confusion C of T Theorem 3.43

iff ⊢GL C ⇒ A for some confusion C of T Theorem 4.66

iff ⊢GLD C ⇒ A for some confusion C of T Density Elimination

iff ⊢HLD C → A for some confusion C of T Theorem 4.66

iff T ⊢HLD A Theorem 3.61 ⊓⊔

But now we can appeal to Theorem 3.65 which tells us that certain Hilbert systems

extended with (DENSITY) are complete with respect to standard algebras, to obtain:

Theorem 5.38. For L ∈ {UL,MTL,SMTL, IMTL,G,UML, IUML,MTLn (n ≥ 2)}:

T ⊢HL A iff T |=STAN(L) A
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Moreover, the variety of L-algebras is generated by STAN(L).

Density elimination is a neat and uniform method for establishing standard com-

pleteness for many fuzzy logics. However, it does not always work. While adding

(DENSITY) to any HUL−-extension HL gives completeness with respect to dense

L-chains, in some cases such as Ł-algebras (MV-algebras) and BL-algebras, the

Dedekind-MacNeille extension does not guarantee an algebra of the same class.

The density elimination method also relies on the existence of a “suitable” hyper-

sequent calculus. It is reasonable to suppose that the case of GIUL can be solved

by choosing an appropriate induction hypothesis for the elimination proof, but for

other logics the problems run deeper. In particular, although in the next chapter we

define calculi for Ł, P, CRL, CHL, it is unclear whether density elimination can be

obtained or is useful in these cases. Note nevertheless that with the exception of Ł,

we can still use these calculi to obtain standard completeness. For Ł, as indeed for

logics such as BL that (currently) lack a Gentzen system, algebraic techniques are

required for proving standard completeness results.

5.4 Historical Remarks

Cut elimination was first established for the sequent calculi LK for Classical Logic

and LJ for Intuitionistic Logic by Gentzen in the 1930s [93], and has remained

a central topic of Proof Theory ever since (see e.g. the textbooks [204, 209]). Cut

elimination proofs have also appeared regularly in the substructural logics literature,

the most significant examples being the Lambek calculus [130], the contraction-free

logics studied by Ono and Komori [177], and Girard’s Linear Logic [97]. Conditions

that guarantee cut elimination for a wide range of calculi for substructural logics –

very similar to the notions of substitutivity and reductivity defined above – were pro-

vided by Restall in [186], inspired by Belnap’s Display Logic framework [34]. Cia-

battoni and Terui [57, 207] have also given sufficient (and given certain restrictions,

necessary) conditions for cut elimination to hold for classes of single-conclusion

sequent calculi. The semantic conditions used in this work derive from an algebraic

approach to establishing cut admissibility pioneered by Okada in [169, 170].

The first cut elimination proofs at the hypersequent level were given by Avron

in the late 1980s [9, 11] using the “history method”, a rather complicated variant of

Gentzen-style cut elimination. A simpler method, related to Schütte-Tait-style cut

elimination [195, 202], that eliminates the largest cut in a derivation, was used by

Metcalfe in [142] and Baaz, Ciabattoni, and Montagna in [17]. An alternative “cut

elimination by substitutions” method was defined by Ciabattoni in 2004 [48] and

used to obtain uniform proofs (similar to those given in this chapter) for single-

conclusion hypersequent calculi. Finally, the algebraic method mentioned above

for establishing cut admissibility has been extended to a broad class of single-

conclusion hypersequent calculi by Ciabattoni, Galatos, and Terui in [53].

The cancellation elimination method described in this chapter was introduced by

Ciabattoni and Metcalfe in 2004 [54] to establish cut elimination for the hypersequent
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calculus GŁ for Łukasiewicz Logic of Chapter 6. It was extended to Abelian Logic

by Metcalfe in [143]. The generation of the variety of abelian ℓ-groups by Z was es-

tablished by Weinberg in 1963 [218]. The algorithmic proof given here is new, but

bears some similarity to Meyer and Slaney’s 1989 completeness proof for Abelian

Logic [149].

Finally, density elimination was established for a hypersequent calculus for

first-order Gödel Logic by Baaz and Zach in 2000 [29], using a Gentzen-style proof

that shifts applications of (DENSITY) upwards in derivations. This method was ex-

tended to a wide range of hypersequent calculi in [144] and used – as in this chapter

– to establish standard completeness for corresponding fuzzy logics. The more ele-

gant “density elimination by substitutions” method described above, where applica-

tions of (DENSITY) are removed by making suitable substitutions, was introduced

by Ciabattoni and Metcalfe in [55].
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Chapter 6

Fundamental Logics

The efforts of the last two chapters have given us elegant proof-theoretic presen-

tations of a large family of fuzzy logics. We get different logics just by tinkering

with the structural rules. The generality of the framework ensures uniform proofs

of cut and density elimination, and, in many cases, properties such as decidability

and standard completeness. Nevertheless, the reader will have noticed that several of

the most important fuzzy logics mentioned in Chapter 2 are yet to be treated. Basic

Logic remains an open problem (see the final chapter for some remarks). However,

providing proof theory for Łukasiewicz Logic Ł and Product Logic P – together

with Gödel Logic G, the fundamental fuzzy logics – will be the goal of this chapter.

6.1 Gödel Logic

Gödel Logic G is interesting not only from the fuzzy perspective but also as one of

the main intermediate (between Intuitionistic and Classical) logics. It may be viewed

as “the logic of linear order” since the multiplicative connectives ⊙ and ⊕ collapse,

respectively, to the additive connectives ∧ and ∨, interpreted as min and max. For

this reason, it is usual to base G on a reduced language LG = {∧,∨,→,⊥,⊤}, fixing

as before a countably infinite set of variables X. We begin by refreshing our memory

of the standard semantics of G based on the minimum t-norm and its residuum, for

simplicity replacing references to the algebra A(∗G,0) with G:

A G-valuation is a function v : FmLG
→ [0,1] such that v(⊥) = 0, v(⊤) = 1, and:

v(A∧B) = min(v(A),v(B))

v(A∨B) = max(v(A),v(B))
v(A → B) =

{

v(B) if v(A) > v(B)

1 otherwise

An LG-formula A is G-valid, written |=G A, iff v(A) = 1 for all G-valuations v.

However, since we are dealing with just one logic in this section, we will drop the

prefix G for valuations and validity.

137
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Initial Hypersequents

G | A ⇒ A
(ID)

Structural Rules

G

G |H
(EW)

G |H |H

G |H
(EC)

G | Γ1,Π1 ⇒ ∆ G | Γ2,Π2 ⇒ Σ

G | Γ1,Γ2 ⇒ ∆ | Π1,Π2 ⇒ Σ
(COM)

G | Γ,Π,Π ⇒ ∆

G | Γ,Π ⇒ ∆
(C)

G | Γ ⇒ ∆

G | Γ,Π ⇒ ∆
(W)

Logical Rules

G | Γ,⊥⇒ ∆
(⊥⇒)

G | Γ ⇒⊤
(⇒⊤)

G | Γ1 ⇒ A G | Γ2,B ⇒ ∆

G | Γ1,Γ2,A → B ⇒ ∆
(→⇒)

G | Γ,A ⇒ B

G | Γ ⇒ A → B
(⇒→)

G | Γ,A ⇒ ∆

G | Γ,A∧B ⇒ ∆
(∧⇒)1

G | Γ,B ⇒ ∆

G | Γ,A∧B ⇒ ∆
(∧⇒)2

G | Γ,A ⇒ ∆ G | Γ,B ⇒ ∆

G | Γ,A∨B ⇒ ∆
(∨⇒)

G | Γ ⇒ A G | Γ ⇒ B

G | Γ ⇒ A∧B
(⇒∧)

G | Γ ⇒ A

G | Γ ⇒ A∨B
(⇒∨)1

G | Γ ⇒ B

G | Γ ⇒ A∨B
(⇒∨)2

Cut Rule
G | Γ1,A ⇒ ∆ G | Γ2 ⇒ A

G | Γ1,Γ2 ⇒ ∆
(CUT)

Fig. 6.1 The hypersequent calculus GG

The axiomatization HG of Chapter 3 based on the language LB is obtained

by adding the contraction axioms A → (A⊙A) to HMTL. The corresponding G-

algebras are idempotent prelinear integral bcrls (term equivalent to prelinear Heyt-

ing algebras). More commonly, Hilbert systems for G based on the language LG are

obtained by adding the prelinearity axioms (A → B)∨(B → A) to an axiomatization

for Intuitionistic Logic.

6.1.1 The Hypersequent Calculus GG

The hypersequent calculus GG presented in Chapter 4 is an elegant and informative

presentation of Gödel Logic, an extension both of the calculus GMTL for Monoidal

t-norm Logic with contraction, and of a hypersequent version of Gentzen’s calculus

LJ for Intuitionistic Logic with communication. For convenience, we display the

calculus GG in its more concise single-conclusion form in Fig. 6.1.
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Recall from Chapter 4 that the invertible rules (∧⇒) and (⇒∨) are derivable in

this calculus. Also, note that since the connectives for G are both (as in Intuitionistic

Logic and Classical Logic) additive and multiplicative, (∧⇒)1 and (∧⇒)2, and

(→⇒) could be replaced with, respectively:

G | Γ,A,B ⇒ ∆

G | Γ,A∧B ⇒ ∆
(∧⇒)G

G | Γ ⇒ A G | Γ,B ⇒ ∆

G | Γ,A → B ⇒ ∆
(→⇒)G

We could also use the availability of weakening and contraction to simplify the

communication rule slightly to:

G | Γ1,Γ2 ⇒ ∆1 G | Γ1,Γ2 ⇒ ∆2

G | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2
(COM)G

Example 6.1. Notice that both contraction and communication are required in the

following derivation:

A ⇒ A

B ⇒ B C ⇒C

B →C,B ⇒C
(→⇒)

A → (B →C),A,B ⇒C
(→⇒)

A ⇒ A

B ⇒ B C ⇒C

B →C,B ⇒C
(→⇒)

A → (B →C),A,B ⇒C
(→⇒)

A → (B →C),A,A ⇒C | A → (B →C),B,B ⇒C
(COM)

A → (B →C),A,A ⇒C | A → (B →C),B ⇒C
(C)

A → (B →C),A ⇒C | A → (B →C),B ⇒C
(C)

A → (B →C),A ⇒C | A → (B →C) ⇒ B →C
(⇒→)

A → (B →C) ⇒ A →C | A → (B →C) ⇒ B →C
(⇒→)

A → (B →C) ⇒ (A →C)∨ (B →C)
(⇒∨)

⇒ (A → (B →C)) → ((A →C)∨ (B →C))
(⇒→)

That is, (A → (B →C)) → ((A →C)∨ (B →C)) is not a theorem of MTL or IL.

The crucial result, proved in the last chapter, is that cut elimination holds for GG.

Among other things, this provides an easy proof of decidability, and, via density

elimination, a more complicated proof of standard completeness. GG has its limita-

tions, however. Even with loop-checking, which gives termination of the rules (read

upwards), GG is not particularly efficient for theorem proving. One reason is the

structural rules: external contraction can double the size of hypersequents. Another

is that not all the logical rules of the calculus are invertible, so backtracking is re-

quired for proof search. Moreover, we may simply prefer to have a calculus for this

logic in Gentzen’s original formulation: that is, a sequent calculus. Such a calcu-

lus will also facilitate a more direct proof of standard completeness and help us to

establish complexity bounds for G.



140 6 Fundamental Logics

Γ,A,B ⇒ ∆

Γ,A∧B ⇒ ∆
(∧⇒)G

Γ,A →C ⇒ ∆ Γ,B →C ⇒ ∆

Γ,A → (B →C) ⇒ ∆
(→(→)⇒)

Γ ⇒ A,∆ Γ ⇒ B,∆

Γ ⇒ A∧B,∆
(⇒∧)

Γ,B →C ⇒ A → B,∆ Γ,C ⇒ ∆

Γ,(A → B) →C ⇒ ∆
((→)→⇒)

Γ,A →C,B →C ⇒ ∆

Γ,A → (B∧C) ⇒ ∆
(→∧⇒)

Γ,A →C ⇒ ∆ Γ,B →C ⇒ ∆

Γ,(A∧B) →C ⇒ ∆
(∧→⇒)

Γ ⇒ B →C,A →C,∆

Γ ⇒ (A∧B) →C,∆
(⇒∧→)

Γ ⇒ A → B,∆ Γ ⇒ A →C,∆

Γ ⇒ A → (B∧C),∆
(⇒→∧)

Γ ⇒ A →C,B →C,∆

Γ ⇒ A → (B →C),∆
(⇒→(→))

Γ ⇒ B →C,∆ Γ,A → B ⇒C,∆

Γ ⇒ (A → B) →C,∆
(⇒(→)→)

Fig. 6.2 Sequent decomposition rules for G

6.1.2 A Sequent Calculus

Sequents are not as flexible as hypersequents so we compensate in two ways. First,

we use multiple-conclusion sequents where the right hand side is interpreted as an

additive disjunction ∨ (recalling that
∧

[] =def ⊤ and
∨

[] =def ⊥).

Definition 6.2. IG(Γ ⇒ ∆) =def
∧

Γ →
∨

∆.

In particular, we will call a hypersequent rule G1, . . . ,Gn / G sound if whenever

IG(G1), . . . , IG(Gn) are all valid, then also IG(G) is valid, and invertible if the reverse

implication holds.

Our second innovation is to use more complicated rules for logical connectives

that “decompose” formulas into formulas with a smaller complexity. These are dis-

played in Fig. 6.2. Since the number of these rules increases exponentially with

the number of connectives, we make use of a reduced language LI = {∧,→,⊥,⊤}
with:1

A∨B =def ((A → B) → B)∧ ((B → A) → A)

For the rest of this subsection we assume that all formulas, sequents, and so on are

constructed using this language.

Example 6.3. Decomposition rules (working upwards) serve to reduce complicated

formulas to less complicated formulas, e.g.

q → r,q → p ⇒ p → q,r → p

q → (r∧ p) ⇒ p → q,r → p
(→∧⇒) r, p ⇒ r → p

r∧ p ⇒ r → p
(∧⇒)G

(p → q) → (r∧ p) ⇒ r → p
((→)→⇒)

1 Observe, that this definition of A∨B multiplies the number of occurrences of A and B by three,
and should therefore be avoided for applications.
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Unlike other logical rules we have seen, here there is a choice not only of which

formula to decompose, but also of how to decompose each formula. We first de-

composed (p → q) → (r∧ p) using the rule ((→)→⇒), but we could just as well

have started with (→∧⇒). However, this choice does not affect the success of a

derivation. The rules are all invertible – if the conclusion is valid, then so are the

premises – so backtracking is unnecessary.

In fact, it is easy to see that the decomposition rules (read upwards) reduce all se-

quents to sequents containing only atoms and implications between atoms.

Definition 6.4. We call a sequent or hypersequent atomic implicational if it contain

only atoms and implications of the form a → b where a and b are atoms.

Lemma 6.5. Every sequent is derivable from atomic implicational sequents using

the sequent decomposition rules for G.

Proof. We prove the statement by induction on cp(S) for a sequent S. If S is atomic

implicational, then we are done. Otherwise there is a rule instance S1, . . . ,Sn / S

such that cp(Si)<mcp(S) for i = 1 . . .n. The result then follows by the induction

hypothesis applied to each premise. We consider the rule ((→)→⇒) as an example,

leaving other cases to the reader’s curiosity. Observe first that for the conclusion:

cp(Γ,(A → B) →C ⇒ ∆) = cp(Γ⊎∆)⊎ [cp(A)+ cp(B)+ cp(C)+2]

whereas the premises have strictly smaller (according to <m) complexities:

cp(Γ,C ⇒ ∆) = cp(Γ⊎∆)⊎ cp(C)

cp(Γ,B →C ⇒ A → B,∆) = cp(Γ⊎ [B →C,A → B]⊎∆)
= cp(Γ⊎∆)⊎ [cp(A)+ cp(B)+1,cp(B)+ cp(C)+1] ⊓⊔

The other crucial aspect of the decomposition rules is that they preserve validity in

both directions, premises to conclusion and vice versa. That is, using simple arith-

metic, we can show:

Lemma 6.6. The decomposition rules for G are sound and invertible.

Lemmas 6.5 and 6.6 imply that we can check if a sequent is valid by applying

the decomposition rules (upwards) exhaustively, then checking the validity of the

resulting atomic implicational sequents. For this latter step, it will be helpful to give

a more immediately meaningful presentation of atomic implicational sequents.

Definition 6.7. A set of inequalities is a set α of ordered triples a⊳b where a and b

are atoms and ⊳∈ {<,≤}. We say that α is valid, written |=G α , iff for all valuations

v, v(a)⊳ v(b) for some a⊳b ∈ α .

Lemma 6.8. Let Γ ⇒ ∆ be an atomic implicational sequent and define the set

Ineqs(Γ ⇒ ∆) by the conditions:
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(a ≤ b) ∈ Ineqs(Γ ⇒ ∆) if (a → b) ∈ ∆ (⊤≤ b) ∈ Ineqs(Γ ⇒ ∆) if b ∈ ∆

(a < b) ∈ Ineqs(Γ ⇒ ∆) if (b → a) ∈ Γ (a < ⊤) ∈ Ineqs(Γ ⇒ ∆) if a ∈ Γ

Then |=G IG(Γ ⇒ ∆) iff |=G Ineqs(Γ ⇒ ∆).

Proof. Observe that |=G IG(Γ ⇒ ∆) iff, by the standard deduction theorem for G

(Proposition 3.44), for every valuation v: either v(A) < 1 for some A ∈ Γ or v(B) = 1

for some B ∈ ∆. But since Γ and ∆ contain only atoms and atomic implications, this

means that either v(a → b) = 1 for some (a → b) ∈ ∆, v(b) = 1 for some b ∈ ∆,

v(b → a) < 1 for some (b → a) ∈ Γ, or v(a) < 1 for some a ∈ Γ. But this holds iff

v(a)⊳ v(b) for some (a⊳b) ∈ Ineqs(Γ ⇒ ∆) as required. ⊓⊔

Definition 6.7 gives a criterion for validity of sets of inequalities, but what do valid

sets actually look like? Consider the following examples:

{(p ≤ q),(q < r),(r ≤ s),(s < p)} {(⊥ < p),(p < q),(q ≤ r)}

Notice that in the first case we have a sequence of inequalities beginning and ending

with p, and in the second we have a sequence beginning with ⊥ and ending with r.

This “chain-like” form is a common feature of all such sets.

Lemma 6.9. A finite set of inequalities α is valid iff there exists (ai ⊳i ai+1) ∈ α for

i = 1 . . .n such that one of the following holds:

(1) a1 = an+1 or a1 = ⊥ or an+1 = ⊤, where ⊳i is ≤ for some i ∈ {1, . . . ,n}.

(2) a1 = ⊥ and an+1 = ⊤.

Proof. It is easy to check that α is valid if any of the above conditions are met. For

the other direction, we proceed by induction on the number of different variables k

occurring in α . Note first that if one of a ≤ a, a ≤⊤, ⊥≤ a, or ⊥ < ⊤ occurs in α ,

then we are done. This takes care of the case where k ≤ 1. Now for k > 1, we fix a

variable q occurring in α , and define the following sets:

α< =def {a < b : {a < q,q < b} ⊆ α}

α≤ =def {a ≤ b : {a⊳1 q,q⊳2 b} ⊆ α and ≤∈ {⊳1,⊳2}}

α ′ =def {a⊳b ∈ α : a 6= q,b 6= q}∪α< ∪α≤

α ′ has fewer variables than α . So if α ′ is valid, then applying the induction hy-

pothesis to α ′, we have (ai ⊳i ai+1) ∈ α ′ for i = 1 . . .n, satisfying either (1) or (2)
above. But then easily by replacing the inequalities ai ⊳i ai+1 that occur in α< or

α≤ appropriately by ai ⊳
′ q and q ⊳′′ ai+1, we get that (1) or (2) holds for α . Hence

it is sufficient to show that α ′ is valid. Suppose otherwise, i.e. that there exists a

valuation v such that v(a) ⊳ v(b) does not hold for any a ⊳ b ∈ α ′. We show for a

contradiction that α is not valid. Let:

x = min{v(a) : a⊳q ∈ α} and y = max{v(b) : q⊳b ∈ α}
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Initial Sequents

Γ,A ⇒ A,∆
(IDW)

Γ,⊥⇒ ∆
(⊥⇒)

Γ ⇒⊤,∆
(⇒⊤)

Decomposition Rules: as in Fig. 6.2.

Atomic Sequent Rules:

Γ,b ⇒ ∆ Γ ⇒ a,∆

Γ,a → b ⇒ ∆
(→⇒)a

Γ,a ⇒ b

Γ ⇒ a → b,∆
(⇒→)a

Γ,b → a ⇒ a → b,∆

Γ ⇒ a → b,∆
(LIN)

Fig. 6.3 The sequent calculus GGg

Note first that x ≥ y. Otherwise it follows that for some a, b, we have {a ⊳1 q,q ⊳2

b} ⊆ α and v(a) < v(b). But then (a ⊳ b) ∈ α ′ so v(a) ≥ v(b), a contradiction. So

there are two cases. If x > y, then we extend v such that x > v(q) > y. For any

(a ⊳ q) or (q ⊳ b) in α , we have v(a) ≥ x > v(q) > y ≥ v(b). Hence α is not valid,

a contradiction. Now suppose that x = y and extend v such that v(q) = x. We must

have atoms a0, b0 such that (a0 < q) and (q < b0) are in α and v(a0) = v(b0) = v(q).
Now consider any (a ⊳1 q) or (q ⊳2 b) in α . Since (a ⊳1 b0) and (a0 ⊳2 b) are in α ′,

v(a)⊳1 v(q) = v(b0) and v(a0) = v(q)⊳2 v(b) cannot hold. So α is again not valid, a

contradiction. ⊓⊔

We get a calculus for G using just the decomposition rules and identifying initial

sequents with valid atomic implicational sequents. As we will see in the next chap-

ter, checking the validity of the latter can be done efficiently (in polynomial time,

in fact). Here instead, however, we define a sequent calculus for G with very simple

initial sequents by adding extra rules for atomic implicational sequents.

Take a look at Fig. 6.3. The rule (→⇒)a is the usual classical implication left

rule restricted to atoms, while (⇒→)a combines applications of weakening (W) and

implication right (⇒→) rules. The rule (LIN) is what really extends the calculus

beyond Intuitionistic Logic and characterizes the linearity of the truth values. It

captures the fact that (a → b)∨ (b → a) is always a theorem of G.

Example 6.10. Consider the GGg-derivation:

r ⇒ r,q → p (IDW)
q → r, p → q ⇒ p → q,r,q → p (IDW)

q → r ⇒ p → q,r,q → p (LIN)

(p → q) → r ⇒ r,q → p
((→)→⇒)

Theorem 6.11. ⊢GGg
S iff |=G IG(S).

Proof. For soundness, we proceed by induction on the height of a proof of S in GGg.

Since the decomposition rules are sound and the initial sequents are obviously valid,

it is sufficient to check the atomic sequent rules. (→⇒)a and (⇒→)a are already

known to be sound, and for (LIN), it is enough to observe that for any valuation v, if

v(b → a) < 1, then v(b) > v(a) and so v(a → b) = 1.
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For completeness, suppose that |=G IG(Γ ⇒ ∆). Using Lemmas 6.5 and 6.6, we

can assume that Γ ⇒ ∆ is atomic implicational. Define:

Γ′ = Γ⊎ [a → b : b → a ∈ ∆]

Observe that Γ ⇒ ∆ is derivable from Γ′ ⇒ ∆ using repeated applications of (LIN).

Also, clearly |=G IG(Γ′ ⇒ ∆). Hence there exists a sequence of inequalities (ai ⊳i

ai+1) ∈ Ineqs(Γ′ ⇒ ∆) for i = 1 . . .n satisfying either (1) or (2) from Lemma 6.9.

Moreover, we can assume that ⊳i is ≤ for at most one i. Otherwise, replacing any

one of the two or more occurrences of ≤ with < gives a sequence of inequalities that

still satisfies either (1) or (2). If a ≤ b is replaced with a < b where (a → b) ∈ ∆,

then (b → a) ∈ Γ. Also if b ∈ ∆, then removing ⊤ ≤ b still gives a sequence of

inequalities satisfying (1) or (2).
We use the sequence to consider the form of the sequents. There are several cases.

As a first example, suppose that ∆ contains an atom a1 and we have a sequence

⊤≤ a1 < .. . < ak <⊤. Then the sequent is of the form (Γ′′,ak,ak → ak−1, . . . ,a2 →
a1 ⇒ a1,∆

′′) which is easily derived using (→⇒)a and (IDW). Suppose now that ∆

contains an implication a1 → a2 and we have a sequence a1 ≤ a2 < .. . < ak < a1.

Then the sequent is of the form (Γ′′,a1 → ak, . . . ,a3 → a2 ⇒ a1 → a2,∆
′′) which is

easily derived using (⇒→)a, (→⇒)a, and (IDW). Other cases are very similar. ⊓⊔

Notice that unlike the completeness proof for GG, the above proof is entirely seman-

tic. This allows us to give a simple proof of standard completeness for the Hilbert

system HG.

Theorem 6.12. If |=G A, then ⊢HG A.

Proof. Suppose that |=G A. Then by Theorem 6.11, ⊢GGg
⇒ A. But GGg is sound

with respect to G-chains (the proof is the same as for the standard G-algebra). So A

is valid in all G-chains, and hence by Theorem 3.56, ⊢HG A. ⊓⊔

6.1.3 Another Hypersequent Calculus

The sequent calculus GGg has rather a lot of decomposition rules, even with a lim-

ited language (re-introducing ∨ as a primitive connective adds another four). How-

ever, if we deal with single-conclusion hypersequents, then we can have fewer rules

and also make some modest improvements in efficiency. Proceeding rather infor-

mally to avoid repetition, we define a hypersequent calculus GGh consisting of:

(1) all valid atomic implicational hypersequents.

(2) single-conclusion hypersequent versions of (∧⇒)G, (⇒∧), (∧→⇒), (→∧⇒),
(⇒→), (→(→)⇒), plus:

G | Γ,B →C ⇒ ∆ | A ⇒ B G | Γ,C ⇒ ∆

G | Γ,(A → B) →C ⇒ ∆

G | Γ ⇒ ∆ | p → q ⇒ p G | Γ,q ⇒ ∆

G | Γ, p → q ⇒ ∆
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Example 6.13. Consider the following application of the rule on the left in (2):

p → r ⇒ r | p → q ⇒ p | p ⇒ q r ⇒ r | p ⇒ q

((p → q) → p) → r ⇒ r | p ⇒ q

The right premise is valid because it contains r ⇒ r, and the left is valid because it

contains p ⇒ q (corresponding to p ≤ q) and p → q ⇒ p (corresponding to q < p).

Soundness and completeness results proceed similarly to those above for the sequent

calculus, and it is straightforward also to add rules for deriving atomic implicational

hypersequents. We refer the interested reader to the historical remarks for further

details.

6.1.4 A Sequent of Relations Calculus

There is also a way to have invertible logical rules that feature just one principal

connective at a time: introduce more structure. In particular, we can allow two types

of sequents, corresponding intuitively to ≤ and <, and treat sets of these sequents

where exactly one formula occurs on each side.

Definition 6.14. A sequent of relations is a set of ordered triples:

S = (A1 ⊳1 B1 | . . . | An ⊳n Bn)

where Ai and Bi are formulas and ⊳i ∈ {<,≤} for i = 1 . . .n. S is valid, written |=G S,

iff for all valuations v, v(Ai)⊳i v(Bi) for some i ∈ {1, . . . ,n}.

By introducing more structure we get the best of both worlds: simple rules with the

subformula property that are also invertible. Indeed, since there are not too many

rules, we will return to using the full language LG with ∨ as a primitive connective.

The sequent of relations calculus GGr for this language is presented in Fig. 6.4.

Example 6.15. We illustrate GGr with the following derivation:

p ≤ q | ⊤ ≤ q | ⊤ ≤ p | q < p p ≤ q | ⊤ ≤ q | ⊤ ≤ p | q ≤ p

p ≤ q | ⊤ ≤ q | p → q ≤ p | ⊤ ≤ p
(→≤)

p ≤ q | ⊤ ≤ q | ⊤ ≤ (p → q) → p
(≤→)

⊤≤ p → q | ⊤ ≤ (p → q) → p
(≤→)

⊤≤ (p → q)∨ ((p → q) → p)
(≤∨)

The uppermost sequents of relations of this derivation are valid since for any valua-

tion v, always v(p) ≤ v(q) or v(q) < v(p).

It is easy to show that the logical rules are sound and invertible, i.e. preserve va-

lidity in both directions. The cases of ∧ and ∨ are almost immediate, and for the
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Initial Sequents Of Relations: any valid atomic sequent of relations.

Logical Rules:

G | A⊳C | B⊳C

G | A∧B⊳C
(∧⊳)

G |C ⊳A G |C ⊳B

G |C ⊳A∧B
(⊳∧)

G | A⊳C G | B⊳C

G | A∨B⊳C
(∨⊳)

G |C ⊳A |C ⊳B

G |C ⊳A∨B
(⊳∨)

G | B < A G | B < C

G | A → B < C
(→<)

G | A ≤ B |C < B G |C < ⊤

G |C < A → B
(<→)

G | ⊤ ≤C | B < A G | B ≤C

G | A → B ≤C
(→≤)

G | A ≤ B |C ≤ B

G |C ≤ A → B
(≤→)

Fig. 6.4 The sequent of relations calculus GGr

implication rules, just observe that v(C) ⊳ v(A → B) iff either v(C) ⊳ v(B) or both

v(C)⊳1 and v(A) ≤ v(B). So we can reduce the validity of a sequent of relations to

the validity of atomic sequents of relations, and hence:

Theorem 6.16. ⊢GGr
S iff |=G S.

6.2 Łukasiewicz Logic

Just as G may be considered the logic of order, so Łukasiewicz Logic Ł can be

viewed as the logic of magnitude. In this logic, size matters. Whereas G is based

on the (only) idempotent t-norm min, Łukasiewicz Logic is based on the nilpotent

Archimedean t-norm x ∗Ł y = min(1,1− x + y). For simplicity, let us again use a

restricted (but fully expressive) language, this time LL = {→,⊥} with defined con-

nectives:

¬A =def A →⊥ ⊤ =def ¬⊥
A⊙B =def ¬(A →¬B) A⊕B =def ¬A → B

A∧B =def A⊙ (A → B) A∨B =def (A → B) → B

An Ł-valuation is a function v : FmLL
→ [0,1] such that v(⊥) = 0 and:

v(A → B) = min(1,1− v(A)+ v(B))

where the valuations of the defined connectives emerge as expected as:

v(¬A) = 1− v(A) v(⊤) = 1

v(A⊙B) = max(0,v(A)+ v(B)−1) v(A⊕B) = min(1,v(A)+ v(B))
v(A∧B) = min(v(A),v(B)) v(A∨B) = max(v(A),v(B))
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A formula A is Ł-valid, written |=Ł A, iff v(A) = 1 for all Ł-valuations v.

A Hilbert calculus for Ł in LL consists of the rule (MP) and the axioms:

(Ł1) A → (B → A)
(Ł2) (A → B) → ((B →C) → (A →C))
(Ł3) ((A → B) → B) → ((B → A) → A)
(Ł4) ((A →⊥) → (B →⊥)) → (B → A)

It is straightforward to prove that this axiomatization derives the same theorems

(using the defined connectives) as HŁ (HBL extended with the involution axioms).

Hence it is complete with respect to Ł-chains (term equivalent to MV-chains). More-

over, using the methods of Chapter 3, these systems extended with the density rule

are even complete with respect to dense Ł-chains. Unfortunately, however, a proof

of the key standard completeness theorem is quite involved and beyond the proof-

theoretic scope of this book. Instead, let us just state the theorem, referring to the

historical remarks at the end of the chapter for references.

Theorem 6.17. |=Ł A iff ⊢HŁ A.

For convenience, let us assume for the remainder of this section that all formulas are

based on the language LL, and drop the prefix Ł for valuations and validity.

6.2.1 A Hypersequent Calculus

Unlike Gödel Logic, we have not yet encountered any sequent or hypersequent cal-

culi for Łukasiewicz Logic. The natural and most desirable solution would be just to

add some further structural rules to the calculus GIMTL: the closest we have come

to a calculus for Ł so far. However, no such rules have yet been discovered, nor

indeed do we expect them to be. Instead, we take a different approach: we interpret

sequents outside of the language of Ł. Rather than give a direct interpretation of

sequents and hypersequents as formulas, we define a semantic criterion for validity.

Definition 6.18. Let ⋆v
Ł(Γ) = 1+∑[v(A)−1 : A ∈ Γ]; we define:

|=Ł G iff for all valuations v: ⋆v
Ł (Γ) ≤ ⋆v

Ł(∆) for some (Γ ⇒ ∆) ∈ G.

A hypersequent rule G1, . . . ,Gn / G is called sound if whenever |=Ł Gi for i = 1 . . .n,

also |=Ł G, and invertible if the reverse implication holds.

This definition may seem a little strange. However, notice that in the single-

conclusion case:

|=Ł A1, . . . ,An ⇒ B iff |=Ł (A1 ⊙ . . .⊙An) → B

Moreover, as we will see at the end of this section, there exists a method (based

on McNaughton’s theorem) for interpreting even multiple-conclusion sequents as
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Initial Sequents

G | A ⇒ A
(ID)

G |⇒
(EMP)

G | Γ,⊥⇒ A
(⊥⇒)Ł

Structural Rules:

G

G |H
(EW)

G |H |H

G |H
(EC)

G | Γ ⇒ ∆

G | Γ,Π ⇒ ∆
(W)

G | Γ1,Γ2 ⇒ ∆1,∆2

G | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2

(SPLIT)
G | Γ1 ⇒ ∆1 G | Γ2 ⇒ ∆2

G | Γ1,Γ2 ⇒ ∆1,∆2

(MIX)

Logical Rules

G | Γ,B ⇒ A,∆

G | Γ,A → B ⇒ ∆
(→⇒)A

G | Γ ⇒ ∆ G | Γ,A ⇒ B,∆

G | Γ ⇒ A → B,∆
(⇒→)Ł

Fig. 6.5 The hypersequent calculus GŁ

formulas of Ł. We will also describe alternative interpretations of hypersequents

using Abelian Logic and a two-player dialogue game.

A hypersequent calculus GŁ based on Definition 6.18 is presented in Fig. 6.5.

There are some key differences with calculi of previous chapters. First, but just for

convenience, the calculus is cut-free. More importantly, the logical rules for → are

non-standard. We use the Abelian Logic implication rule on the left, and a new rule

on the right. Observe, however, that the standard implication rule (⇒→) is derivable

for the single-conclusion case:

G |⇒
(EMP)

G | Γ ⇒
(W)

G | Γ,A ⇒ B

G | Γ ⇒ A → B
(⇒→)Ł

Note also that the standard rules for ∧ and ∨ can be added, while the derived initial

hypersequents for ⊤ are of the form (G | Γ ⇒⊤), i.e. (⇒⊤) restricted to the single-

conclusion case like (⊥⇒)Ł. On the other hand, the appropriate rules (derived and

simplified) for the defined connective ⊙ are non-standard, i.e.

G | Γ,A,B ⇒ ∆ G | Γ,⊥⇒ ∆

G | Γ,A⊙B ⇒ ∆
(⊙⇒)Ł

G | Γ ⇒ A,B,∆ | Γ ⇒⊥,∆

G | Γ ⇒ A⊙B,∆
(⇒⊙)Ł

Example 6.19. Consider the following proof of the axioms for (Ł3):
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B ⇒ B
(ID)

A ⇒ A
(ID)

B,A ⇒ A,B
(MIX)

B,B → A ⇒ A
(→⇒)A

B ⇒ B
(ID)

A ⇒ A
(ID)

B,A ⇒ A,B
(MIX)

B,B → A,A ⇒ A,B
(W)

B,B → A ⇒ A,A → B
(⇒→)Ł

(A → B) → B,B → A ⇒ A
(→⇒)A

(A → B) → B ⇒ (B → A) → A
(⇒→)

⇒ ((A → B) → B) → ((B → A) → A)
(⇒→)

In fact, all the axioms (Ł1)−(Ł4) can be proved using just sequents. Other theorems

require the extra flexibility of hypersequents, however. Recall that (r)∗ denotes the

combination of a rule (r) with (EW) and (EC):

C ⇒C
(ID)

C ⇒C
(ID)

A ⇒ A
(ID)

B ⇒ B
(ID)

A,B ⇒ B,A
(MIX)

A ⇒ B | B ⇒ A
(SPLIT)

A ⇒ B |⇒ B → A
(⇒→)

A ⇒ B |C ⇒C,B → A
(MIX)∗

A ⇒ B | (B → A) →C ⇒C
(→⇒)A

⇒ A → B | (B → A) →C ⇒C
(⇒→)

C ⇒C,A → B | (B → A) →C ⇒C
(MIX)∗

(A → B) →C ⇒C | (B → A) →C ⇒C
(→⇒)A

(A → B) →C,(B → A) →C ⇒C | (B → A) →C ⇒C
(W)

(A → B) →C,(B → A) →C ⇒C | (A → B) →C,(B → A) →C ⇒C
(W)

(A → B) →C,(B → A) →C ⇒C
(EC)

(A → B) →C ⇒ ((B → A) →C) →C
(⇒→)

⇒ ((A → B) →C) → ((B → A) →C) →C
(⇒→)

Soundness for GŁ is established with respect to Definition 6.18 as follows.

Theorem 6.20. If d ⊢GŁ G, then |=Ł G.

Proof. We proceed by induction on ht(d). The base cases for the initial sequents are

straightforward, as are the cases of (EC), (EW), and (W). For (→⇒)A, consider a

valuation v and suppose that ⋆v
Ł(Γ⊎ [B]) ≤ ⋆v

Ł(∆⊎ [A]). Unravelling this inequation

a bit we get:

⋆v
Ł(Γ)+(v(B)−1) ≤ (v(A)−1)+⋆v

Ł(∆)

But then rearranging, ⋆v
Ł(Γ) + ((1 − v(A) + v(B)) − 1) ≤ ⋆v

Ł(∆) and hence also

⋆v
Ł(Γ)+(min(1,1− v(A)+ v(B))−1) ≤ ⋆v

Ł(∆); i.e. ⋆v
Ł(Γ⊎ [A → B]) ≤ ⋆v

Ł(∆).
For (⇒→)Ł, consider a valuation v. Then ⋆v

Ł(Γ) ≤ ⋆v
Ł(∆⊎ [A → B]) iff:

⋆v
Ł(Γ) ≤ ⋆v

Ł(∆)+(1−min(1,1− v(A)+ v(B)))

Rearranging a little, this holds iff:
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⋆v
Ł(Γ) ≤ ⋆v

Ł(∆) and ⋆v
Ł (Γ) ≤ ⋆v

Ł(∆) + v(B)− v(A)

where the right inequality holds iff ⋆v
Ł(Γ⊎ [A]) ≤ ⋆v

Ł(∆⊎ [B]). ⊓⊔

We begin our completeness proof by observing a useful equivalence.

Proposition 6.21. For an atomic hypersequent G = (Γ1 ⇒∆1 | . . . |Γn ⇒∆n), ⊢GŁ G
iff there exists λ1, . . . ,λn ∈ N with λi > 0 for some i ∈ {1, . . . ,n}, such that:

n⊎

i=1

∆
λi
i ⊆∗

n⊎

i=1

Γ
λi
i

where ∆⊆∗Γ if ∆ = Π⊎ [A1, . . . ,An] and Γ = Π⊎ [⊥]n ⊎Σ for some Π and Σ.

Proof. For the right-to-left direction, we suppose that the required λ1, . . . ,λn exist

and proceed backwards to obtain a GŁ-derivation of G. First, apply (EC) and (EW)

to arrive at a hypersequent:

λ1
︷ ︸︸ ︷

Γ1 ⇒ ∆1 | . . . | Γ1 ⇒ ∆1 | . . . |

λn
︷ ︸︸ ︷

Γn ⇒ ∆n | . . . | Γn ⇒ ∆n

Now apply (SPLIT) exhaustively to obtain:

Γ
λ1
1 , . . . ,Γλn

n ⇒ ∆
λ1
1 , . . . ,∆λn

n

But since
⊎n

i=1 ∆
λi
i ⊆∗⊎n

i=1 Γ
λi
i , by an easy induction on sequent complexity, this is

derivable using (W), (ID), (MIX), and (⊥⇒)Ł.

For the other direction, we prove that if d ⊢GŁ G, then the condition holds for G,

proceeding by induction on ht(d). The only case that does not follow easily from

the induction hypothesis is (MIX). Let G′ = (Γ2 ⇒ ∆2 | . . . | Γn ⇒ ∆n), and suppose

that ⊢GŁ G′ | Π j ⇒ Σ j for j = 1,2 where Γ1 = Π1 ⊎Π2 and ∆1 = Σ1 ⊎Σ2. By the

induction hypothesis, we have suitable λ j1, . . . ,λ jn such that for j = 1,2:

Σ
λ j1

j ⊎
n⊎

i=2

∆
λ ji

i ⊆∗Π
λ j1

j ⊎
n⊎

i=2

Γ
λ ji

i

But then we take λi = λ11λ2i + λ21λ1i for i = 2 . . .n and λ1 = λ11λ21 and we are

done. ⊓⊔

We now show that the derivability of hypersequents can be reduced using invertible

rules to the derivability of atomic hypersequents.

Lemma 6.22. The following rules are both invertible and GŁ-derivable:

G | Γ ⇒ ∆ | Γ,B ⇒ A,∆

G | Γ,A → B ⇒ ∆
(→⇒)Ł

G | Γ ⇒ ∆ G | Γ,A ⇒ B,∆

G | Γ ⇒ A → B,∆
(⇒→)Ł
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Proof. The rule (⇒→)Ł is trivially GŁ-derivable (being a rule of the system), and

Ł-invertibility was established implicitly in the soundness proof above. For (→⇒)Ł,

we have the derivation:

G | Γ ⇒ ∆ | Γ,B ⇒ A,∆

G | Γ ⇒ ∆ | Γ,A → B ⇒ ∆
(→⇒)A

G | Γ,A → B ⇒ ∆ | Γ,A → B ⇒ ∆
(W)

G | Γ,A → B ⇒ ∆
(EC)

For invertibility, consider a valuation v and suppose that:

⋆v
Ł(Γ)+(v(A → B)−1) ≤ ⋆v

Ł(∆)

If v(A) ≤ v(B), then v(A → B) = 1 and we obtain ⋆v
Ł(Γ) ≤ ⋆v

Ł(∆). If v(A) > v(B),
then v(A→B) = 1−v(A)+v(B) and we get ⋆v

Ł(Γ)+(v(B)−v(A))≤ ⋆v
Ł(∆). Adding

v(A)−1 to each side, ⋆v
Ł(Γ⊎ [A]) ≤ ⋆v

Ł(∆⊎ [B]) as required. ⊓⊔

Lemma 6.23. Every hypersequent G is derivable from atomic hypersequents using

the rules (→⇒)Ł and (⇒→)Ł.

Proof. We proceed by induction on cp(G). If G is atomic, then we are done. Oth-

erwise, we have an occurrence of → and G is derivable using (→⇒)Ł or (⇒→)Ł

from hypersequents with lower complexity, and so by the induction hypothesis, also

from atomic hypersequents. ⊓⊔

Theorem 6.24. If |=Ł G, then ⊢GŁ G.

Proof. By the previous lemmas, we can just consider the case where G is atomic. We

prove the theorem by induction on the number k of distinct propositional variables

occurring on the left hand side of sequents in G. Suppose that there are none. It

follows that only ⊥ occurs on the left of sequents. We claim that there must exist a

sequent where the number of occurrences of ⊥ on the left is greater than or equal

to the number of formulas on the right. If not, then defining a valuation where all

variables take the value 0, we obtain a contradiction. Hence we can easily derive G
using (EW), (W), (MIX), and (⊥⇒)Ł.

For k > 0, we pick a variable q occurring on the left of one of the sequents of G. If

q occurs on both sides in the same sequent, then we apply (MIX) and (ID) backwards

to remove it, noting that the new hypersequent is also valid. Next, we use (EC) and

(SPLIT) backwards to multiply sequents, giving (for some λ ) a hypersequent:

G′ = (G0 | [Γi, [q]λ ⇒ ∆i]
n
i=1 | [Π j ⇒ [q]λ ,Σ j]

m
j=1)

where q does not occur in G0, Γi, ∆i, Π j, or Σ j for i = 1 . . .n and j = 1 . . .m.

Observe that ⊢GŁ G if ⊢GŁ G′. Also |=Ł G′. Now let:

H = (G0 | [Γi,Π j ⇒ Σ j,∆i]
j=1...m
i=1...n | [Γi ⇒ ∆i]

n
i=1 | [Π j ⇒ [q]λ ,Σ j]

m
j=1)
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Clearly H contains fewer distinct variables occurring on the left of sequents. Also

G′ is derivable from H. Reasoning backwards, we apply (EC) and (SPLIT) to G′

to combine sequents of the form (Γi, [q]λ ⇒ ∆i) and (Π j ⇒ [q]λ ,Σ j) into one:

(Γi,Π j, [q]λ ⇒ [q]λ ,∆i,Σ j). Then we apply (MIX) and (ID) backwards to remove the

balanced occurrences of q, and (W) backwards to (Γi, [q]λ ⇒ ∆i) to get (Γi ⇒ ∆i).
Hence it is sufficient to show that H is valid, since then by the induction hypothesis

⊢GŁ H. Suppose otherwise for a contradiction, i.e. that there exists a valuation v

such that ⋆v
Ł(Γ) > ⋆v

Ł(∆) for all (Γ ⇒ ∆) ∈H. Define:

x = max({⋆v
Ł(∆i)−⋆v

Ł(Γi) : 1 ≤ i ≤ n}∪{−λ})

y = min({⋆v
Ł(Π j)−⋆v

Ł(Σ j) : 1 ≤ j ≤ m}∪{0})

We claim that x < y. Otherwise there exists i, j such that ⋆v
Ł(Γi)+⋆v

Ł(Π j)≤ ⋆v
Ł(Σ j)+

⋆v
Ł(∆i), a contradiction. Now extend v such that x < λ (v(q)− 1) < y. Then for i =

1 . . .n and j = 1 . . .m:

⋆
v
Ł(∆i)−⋆

v
Ł(Γi) < λ (v(q)−1) and λ (v(q)−1) < ⋆

v
Ł(Π j)−⋆

v
Ł(Σ j)

Hence ⋆v
Ł(Γi ⊎ [q]λ ) > ⋆v

Ł(∆i) and ⋆v
Ł(Π j) > ⋆v

Ł(Σ j ⊎ [q]λ ). So G′ is not valid, a

contradiction. ⊓⊔

A nice by-product of this completeness proof is a syntactic proof of the decidability

of Ł. A hypersequent is valid iff it is derivable by applying the invertible implication

rules and then iteratively removing occurrences of each variable as described above.

Hence we have a terminating procedure to decide whether any given formula A is or

is not valid in this logic.

Theorem 6.25. The validity problem for Ł is decidable.

We have proved the completeness of GŁ semantically. However, it is also possible

to give a syntactic proof of completeness using cut elimination, following the “can-

cellation elimination” procedure for Abelian Logic of the previous chapter. That is,

we establish the GŁ-invertibility of (→⇒)Ł and (⇒→)Ł. We then show that ana-

logues of Lemmas 5.16 and 5.17 for GA also hold for GŁ. Cancellation elimination

is established by an induction on the complexity of the cancelled formula A. If A is a

variable, then we use these lemmas, otherwise we use the invertibility of the logical

rules to decompose the formula.

6.2.2 A Sequent Calculus

Defining a hypersequent calculus for Ł requires ingenuity, but it does not come as

a complete surprise. The existence of a sequent calculus for Ł on the other hand is

quite unexpected. The key idea here is to represent differences between sequents

occurring in a hypersequent using implicational formulas. Consider again the in-

vertible rule (→⇒)Ł. Using the fact that v(A)+ v(A → B) = v(B)+ v(B → A) for



6.2 Łukasiewicz Logic 153

Initial Sequents:

A ⇒ A
(ID)

⇒ (EMP) Γ,⊥⇒ A
(⊥⇒)Ł

Structural Rules

Γn ⇒ ∆n

Γ ⇒ ∆
(SCn) n ≥ 2

Γ ⇒ ∆

Γ,Π ⇒ ∆
(W)

Γ1 ⇒ ∆1 Γ2 ⇒ ∆2

Γ1,Γ2 ⇒ ∆1,∆2
(MIX)

Logical Rules

Γ,B,B → A ⇒ A,∆

Γ,A → B ⇒ ∆
(→⇒)s

Ł

Γ ⇒ ∆ Γ,A ⇒ B,∆

Γ ⇒ A → B,∆
(⇒→)Ł

Fig. 6.6 The sequent calculus GŁs

all valuations v, we replace this rule at the sequent level with:

Γ,B,B → A ⇒ A,∆

Γ,A → B ⇒ ∆
(→⇒)s

Ł

Notice that the premise (Γ,B,B → A ⇒ A,∆) is derivable both from (Γ,B ⇒ A,∆)
using (W), and from (Γ ⇒ ∆) using (→⇒)s

Ł again together with the sequent rules

(MIX), (ID), and (W). Intuitively, we think of (Γ,B,B → A ⇒ A,∆) as representing

both sequents. Moreover, the combination of such sequents – performed by the split

rule in the hypersequent calculus – is achieved here by the global contraction rules

(SCn) for n ≥ 2. The resulting calculus GŁs is displayed in Fig. 6.6.

Example 6.26. Compare the following GŁs-derivation with the GŁ-derivation of the

same sequent given in Example 6.19:

A ⇒ A
(ID)

B ⇒ B
(ID)

A → B ⇒ A → B
(ID)

B,A → B ⇒ B,A → B
(MIX)

B → (A → B),B,A → B ⇒ B,A → B
(W)

(A → B) → B,A → B ⇒ B
(→⇒)s

Ł

(A → B) → B,A → B,A ⇒ A,B
(MIX)

(A → B) → B,B → A ⇒ A
(→⇒)s

Ł

(A → B) → B ⇒ (B → A) → A
(⇒→)

⇒ ((A → B) → B) → ((B → A) → A)
(⇒→)

Example 6.27. Just as the axioms of Ł can be proved in GŁ without using hyperse-

quents, so they can be proved in GŁs without using (SCn). Nevertheless these rules

are necessary, as illustrated below:



154 6 Fundamental Logics

A ⇒ A

A ⇒ A

C ⇒C

B ⇒ B

B ⇒ B C ⇒C

B,C ⇒ B,C
(MIX)

B,B →C ⇒C
(→⇒)s

Ł + (W)

B,B,B →C ⇒ B,C
(MIX)

B,B,B → (B →C) ⇒C
(→⇒)s

Ł + (W)

B,B,C,B → (B →C) ⇒C,C
(MIX)

A,B,B,C,B → (B →C) ⇒ A,C,C
(MIX)

A,B,B,A →C,B → (B →C) ⇒C,C
(→⇒)s

Ł + (W)

A,A,B,B,A →C,B → (B →C) ⇒ A,C,C
(MIX)

A,A,B,B,A → (A →C),B → (B →C) ⇒C,C
(→⇒)s

Ł + (W)

A,B,A → (A →C),B → (B →C) ⇒C
(sc2)+ (W)

Using the definitions of ∧, ∨, and ⊙ we can derive and simplify (using admissibility

in the calculus or the completeness results below) the following rules, noting that

those for ∧ and ∨ are standard on one side but not the other:

Γ,A,A → B ⇒ ∆

Γ,A∧B ⇒ ∆
(∧⇒)Ł

Γ ⇒ A,∆ Γ ⇒ B,∆

Γ ⇒ A∧B,∆
(⇒∧)

Γ,A ⇒ ∆ Γ,B ⇒ ∆

Γ,A∨B ⇒ ∆
(∨⇒)

Γ,B → A ⇒ A,∆

Γ ⇒ A∨B,∆
(⇒∨)Ł

Γ,A,B ⇒ ∆ Γ,⊥⇒ ∆

Γ,A⊙B ⇒ ∆
(⊙⇒)s

Ł

Γ,(A →⊥) → B ⇒ A,B,∆

Γ ⇒ A⊙B,∆
(⇒⊙)s

Ł

It is easy to see that GŁs is sound. We have already checked the soundness of most of

the rules in our proofs for GŁ. The cases of (SCn) and (→⇒)s
Ł follow immediately

using the definition of validity and the relationship v(A)+v(A→B) = v(B)+v(B→
A) for all valuations v. Completeness is much more complicated. Before getting

started on the tricky proof, we first establish some useful invertibility properties for

the implication rules.

Lemma 6.28. (→⇒)s
Ł and (⇒→)Ł are GŁs-invertible.

Proof. For (→⇒)s
Ł, we make use of the following derivation:

A ⇒ A
(ID)

B ⇒ B
(ID)

Γ,A → B ⇒ ∆

Γ,B,A → B ⇒ B,∆
(MIX)

Γ,B,A,A → B ⇒ B,A,∆
(MIX)

Γ,B,B → A ⇒ A,∆
(→⇒)s

Ł

For (⇒→)Ł, we prove the GŁs-invertibility of a more general rule.

Claim. If d ⊢GŁs
Γ ⇒ [A → B]k,∆, then ⊢GŁs

Γ, [A]i ⇒ [B]i,∆ for i = 0 . . .k.

Proof of claim. We proceed by induction on ht(d). Notice that when k = 0 the claim

is immediate. For the base case, if d ends with (A → B ⇒ A → B), then (A → B ⇒)
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is derivable using (W) and (EMP). Also, (A → B,A ⇒ B) is derivable using (⇒→)Ł,

(W), (MIX), and (ID). If d ends with (Γ′,⊥⇒ A → B), then the result follows using

(⊥⇒)Ł, (W), and (EMP).
For the inductive step, we consider the last rule applied. The cases of (W), (MIX),

(→⇒)s
Ł, and (⇒→)Ł with principal formula not A → B, all involve straightforward

applications of the induction hypothesis. For the remaining possibility for (⇒→)Ł,

suppose that d ends with:

Γ,A ⇒ B, [A → B]k−1,∆ Γ ⇒ [A → B]k−1,∆

Γ ⇒ [A → B]k,∆
(⇒→)Ł

We get that ⊢GŁs
Γ, [A]i ⇒ [B]i,∆ holds for i = 1 . . .k and i = 0 as required, by

applying the induction hypothesis to the left and right premises, respectively.

Finally for (SCn), suppose that d ends with:

Γn ⇒ [A → B]nk,∆n

Γ ⇒ [A → B]k,∆
(SCn)

By the induction hypothesis (Γn, [A]ni ⇒ [B]ni,∆n) is derivable for i = 0 . . .k. Hence

by (SCn), (Γ, [A]i ⇒ [B]i,∆) is derivable for i = 0 . . .k. ⊓⊔

The basic idea of the completeness proof is to show that GŁs simulates GŁ, making

use of labels to track different sequents in hypersequent derivations.

Definition 6.29. The set of labels Lab is built from atomic labels {ai}i∈N as follows:

(1) 1 ∈ Lab and ai ∈ Lab for all i ∈ N.

(2) If x ∈ Lab and y ∈ Lab, then xy ∈ Lab.

A labelled formula is of the form x :A where x ∈ Lab and A is a formula. Also:

• ΓL = [(1:A) : A ∈ Γ] for a multiset of formulas Γ.

• ΓU = [A : (x :A) ∈ Γ] for a multiset of labelled formulas Γ.

A labelled sequent is a structure [Γ ; Σ]⇒ ∆ where Γ and ∆ are multisets of labelled

formulas, and Σ is a multiset of formulas.

We map from labelled to unlabelled sequents using labelling functions that map

the set of labels Lab into the set {0,1}, removing formulas labelled with 0 from a

sequent and leaving behind those labelled with a 1. Unlabelled formulas are ignored

altogether. A labelled sequent S is interpreted by taking the hypersequent formed by

applying all possible labelling functions to S. More formally:

Definition 6.30. A labelling function is a function f : Lab →{0,1} where:

(1) f (1) = 1 and f (ai) ∈ {0,1} for all i ∈ N.

(2) f (xy) = f (x) f (y).

Definition 6.31. For a labelled sequent [Γ ; Σ] ⇒ ∆:
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|=Ł [Γ ; Σ] ⇒ ∆ iff |=Ł [ f (Γ) ⇒ f (∆) : f a labelling function]

where f (Γ) = [A : (x :A) ∈ Γ and f (x) = 1].

Example 6.32. Consider the labelled sequent:

[x : p,1:q ; p → q] ⇒ 1: p,x :q

mapped by a labelling function f to (q ⇒ p) if f (x) = 0, and to (p,q ⇒ p,q) if

f (x) = 1. Hence, the corresponding hypersequent is (q ⇒ p | p,q ⇒ p,q).

We now introduce rules for labelled sequents that record both sequents for a hyper-

sequent derivation in GŁ and formulas added by the (→⇒)s
Ł rule for GŁs. We es-

tablish two useful properties for labelled sequents obtained by applying these rules

upwards to a labelled sequent of the form ([ΓL ; ] ⇒ ∆L). In particular, we show

that if one of the obtained labelled sequents is valid, then removing the labels, it is

GŁs-derivable.

Lemma 6.33. Consider the following intermediate rules for Ł:

[Γ ; Σ] ⇒ ∆ [Γ,x :A ; Σ] ⇒ x :B,∆

[Γ ; Σ] ⇒ x :A → B,∆
(⇒→)l

Ł

[Γ,xy :B ; Σ,B → A] ⇒ xy :A,∆

[Γ,x :A → B ; Σ] ⇒ ∆
(→⇒)l

Ł

where y is a new atomic label not occurring in the conclusion of (→⇒)l
Ł.

Let d be a derivation using the intermediate rules for Ł of [ΓL
0 ; ]⇒ ∆L

0 from a set of

labelled sequents X where the set of labelled sequents at the leaves of d is X. Then:

(a) ⊢GŁs
ΓU ⊖ f (Γ),Σ ⇒ ∆U ⊖ f (∆) for all labelling functions f .

(b) ⊢GŁs
ΓU,Σ ⇒ ∆U for all [Γ ; Σ] ⇒ ∆ ∈ X such that |=Ł [Γ ; Σ] ⇒ ∆.

Proof. (a) We proceed by induction on ht(d). For the base case, X = {[ΓL
0 ; ]⇒∆L

0}.

The only label is 1 and for every labelling function f , f (ΓL
0 ) = Γ0 and f (∆L

0 ) = ∆0.

But ⇒ is derivable in GŁs by (EMP) so we are done. For the inductive step, we

consider the beginning of the derivation and a rule application to members of X .

Suppose first that the rule application is (→⇒)l
Ł and the member of X is the

premise ([Γ,xy : B ; Σ,B → A] ⇒ xy : A,∆). We obtain a shorter derivation by

removing this first rule application and starting the branch from the conclusion

([Γ,x : A → B ; Σ] ⇒ ∆). By the induction hypothesis, the lemma then applies to

all members of X except possibly the premise. However, also by the induction hy-

pothesis for any labelling function f :

⊢GŁs
(ΓU ⊎ [A → B])⊖ f (Γ⊎ [x :A → B]),Σ ⇒ ∆U ⊖ f (∆) (6.1)

We want to show that the following sequent is GŁs-derivable:
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(ΓU ⊎ [B])⊖ f (Γ⊎ [xy :B]),Σ,B → A ⇒ (∆U ⊎ [A])⊖ f (∆⊎ [xy :A])

There are two cases:

1. If f (x) = f (y) = 1, then ⊢GŁs
ΓU ⊖ f (Γ),Σ,B → A ⇒ ∆U ⊖ f (∆) directly by 6.1.

2. If f (x) = 0 or f (y) = 0, then since ⊢GŁs
ΓU ⊖ f (Γ),A → B,Σ ⇒ ∆U ⊖ f (∆), by

Lemma 6.28 as required:

⊢GŁs
ΓU ⊖ f (Γ),B,Σ,B → A ⇒ ∆U ⊖ f (∆),A

Suppose now that the rule application is (⇒→)l
Ł and the members of X are the

premises ([Γ ; Σ] ⇒ ∆) and ([Γ,x :A ; Σ] ⇒ x :B,∆). We obtain a shorter derivation

by removing this first rule application and starting the branch from the conclusion

([Γ ; Σ] ⇒ x : A → B,∆). By the induction hypothesis, the lemma then applies to

all members of X except possibly the premises. However, also by the induction

hypothesis for any labelling function f :

⊢GŁs
ΓU ⊖ f (Γ),Σ ⇒ ∆U ⊎ [A → B]⊖ f (∆⊎ [x :A → B])

Again, there are two cases:

1. If f (x) = 1, then ⊢GŁs
ΓU ⊖ f (Γ),Σ ⇒ ∆U ⊖ f (∆) as required for both premises.

2. If f (x) = 0, then ⊢GŁs
ΓU ⊖ f (Γ),Σ ⇒ ∆U ⊖ f (∆),A → B and the result follows

by Lemma 6.28.

For (b), suppose that |=Ł [Γ ; Σ] ⇒ ∆. We proceed by induction on cp(ΓU ⊎∆U). If

ΓU and ∆U are atomic, then by the completeness of GŁ (Theorem 6.24), and Proposi-

tion 6.21 there exist labelling functions f1, . . . , fn such that
⊎n

i=1 fi(∆)⊆∗⊎n
i=1 fi(Γ).

Consider the following GŁs-derivation for the sequent ΓU,Σ ⇒ ∆U:

[ fi(Γ)]ni=1 ⇒ [ fi(∆)]ni=1 [ΓU ⊖ fi(Γ)]ni=1,Σ
n ⇒ [∆U ⊖ fi(∆)]ni=1

(ΓU)n,Σn ⇒ (∆U)n
(MIX)

ΓU,Σ ⇒ ∆U
(SCn)

The left premise is easily derived using (MIX) and the initial sequents. The right

premise is derived by repeated applications of (MIX) and part (a).

If ΓU and ∆U are not atomic, then we have two cases:

• If |=Ł [Γ′,x : A → B ; Σ] ⇒ ∆, then |=Ł [Γ′,xy : B ; Σ,B → A] ⇒ xy : A,∆. Also,

by the induction hypothesis:

⊢GŁs
Γ′,B,Σ,B → A ⇒ A,∆

So by an application of (→⇒)s
Ł, ⊢GŁs

Γ′,A → B,Σ ⇒ ∆ as required.

• If |=Ł [Γ ; Σ]⇒ x:A→B,∆′, then |=Ł [Γ ; Σ]⇒∆′ and |=Ł [Γ,x:A ; Σ]⇒ x:B,∆′.

By the induction hypothesis twice:

⊢GŁs
Γ,Σ ⇒ ∆ and ⊢GŁs

Γ,A,Σ ⇒ B,∆
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So by an application of (⇒→)Ł, ⊢GŁs
Γ,Σ ⇒ A → B,∆ as required. ⊓⊔

Finally, we can get the following completeness theorem for GŁs. Just observe that if

|=Ł Γ ⇒ ∆, then easily also |=Ł [ΓL ; ] ⇒ ∆L, and hence by part (b) of the previous

lemma, ⊢GŁs
Γ ⇒ ∆.

Theorem 6.34. |=Ł S iff ⊢GŁs
S.

6.2.3 An Embedding into Abelian Logic

While we have given sequent and hypersequent calculi that are sound and complete

for Ł, it is perhaps something of a mystery as to what they actually mean. Can we

interpret sequents and hypersequents in a more concrete fashion than simply stating

when they are valid? We will give three (different) positive answers to this question:

one making use of McNaughton’s theorem, another a dialogue game, and first, here,

by giving an “embedding” of Ł into Abelian Logic A.

The idea for this embedding is to translate implicational formulas B→C of Ł into

formulas of A by bounding the antecedent B from above by e, and the succedent C

from below by a new variable q⊥ playing the role of falsity.

Theorem 6.35. |=Ł A iff |=A A∗ where for a fixed variable q⊥ not occurring in A:

p∗ = p

⊥∗ = q⊥
(B →C)∗ = (B∗∧ e) → (C∗∨q⊥)

Proof. Recall that by Theorem 5.22, |=A C iff |=R C for any C ∈ FmLF
where R =

〈R,min,max,+,→+,0,0〉 with x →+ y = y− x. For the left-to-right direction, we

first check (an easy exercise) that the translated versions of the axioms (Ł1)− (Ł4)
are A-tautologies. We then show that the translated version of (MP) is A-admissible;

i.e. we suppose that |=A A∗ and |=A (A → B)∗, and show that |=A B∗. By the first

assumption, v(A∗) ≥ 0 for all R-valuations v. Hence using the second assumption,

0 ≤ v((A → B)∗) = v((A∗ ∧ e) → (B∗ ∨q⊥)) = v(B∗ ∨q⊥). If B is atomic, then for

v(B) = v(q⊥) = −1 in R we have v((A∗∧ e) → (B∗∨q⊥)) < 0, a contradiction. So

B = C → D and B∗ = (C∗ ∧ e) → (D∗ ∨ q⊥). But then v(B∗) ≥ v(q⊥) and v(B∗) =
v(B∗∨q⊥) ≥ 0 as required.

For the right-to-left direction, suppose that 6|=Ł A where q⊥ does not occur in A.

So v(A) < 1 for some Ł-valuation v. We define an R-valuation v′ as follows:

v′(p) =

{

−1 if p is q⊥

v(p)−1 otherwise.

Claim. v′(B∗∧ e) = v(B)−1 for all B ∈ FmLL
.

Note that if the claim holds, then v′(A∗) = v(A)−1 < 0 so 6|=A A∗ as required.
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Proof of claim. We proceed by induction on cp(B). The base cases hold by definition.

If B = C → D then (using the induction hypothesis for the last step):

v′(B∗∧ e) = v′(((C∗∧ e) → (D∗∨q⊥))∧ e)
= min(0,v′((C∗∧ e) → (D∗∨q⊥)))
= min(0,v′(D∗∨q⊥)− v′(C∗∧ e))
= min(0,max(v′(D∗),−1)− v(C)+1)

Using the induction hypothesis again, v′(D∗∧ e) = v(D)−1. Hence, if v′(D∗) ≤ 0,

then v′(B∗ ∧ e) = min(0,(v(D)− 1)− v(C) + 1) = min(1,1− v(C) + v(D))− 1 =
v(B)−1. Also, if v′(D∗) > 0, then v(D) = 1. So v′(B∗∧e) = min(0,v′(D∗)−v(C)+
1) = 0 = v(B)−1. ⊓⊔

This result can be understood as showing that Łukasiewicz Logic Ł is a (quite natu-

ral) fragment of Abelian Logic A. Moreover, it can be used to give an interpretation

of hypersequents for Ł as formulas of A. Let Γ∗ = [A∗ : A ∈ Γ] for any multiset Γ of

formulas from FmLL
. Then using Theorem 6.35, it is not hard to show that:

|=Ł Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n iff |=A I(Γ∗
1 ⇒ ∆∗

1 | . . . | Γ∗
n ⇒ ∆∗

n)

6.2.4 McNaughton Functions

Let us now consider a different approach. Rather than interpret sequents outside of

Ł (i.e. in A), we can construct a (rather complicated) formula interpretation within

the logic itself. To achieve this, a special class of functions is introduced. For conve-

nience, we use vector notation, writing x̄ and ā for an n-tuple of variables x1, . . . ,xn

or numbers a1, . . . ,an, respectively, and denoting by āx̄ the standard scalar product

∑
n
i=1 aixi of ā and x̄.

Definition 6.36. f : [0,1]n → [0,1] is a McNaughton function (of n variables) if:

1. f is continuous.

2. f is piecewise linear; i.e. there exist gi(x̄) = āix̄+bi with āi,bi ∈Z for i = 1 . . .k,

and for any x̄ ∈ [0,1]n, f (x̄) = g j(x̄) for some j ∈ {1, . . . ,k}.

A McNaughton function f is called simple if there exists g(x̄) = āx̄+b with ā,b ∈Z

such that f (x̄) = g#(x̄) where g#(x̄) =def min(1,max(0,g(x̄))).

It is easy to see that the interpretation of any formula A in the standard algebra for

Ł determines a McNaughton function.

Definition 6.37. A formula A containing variables p1, . . . , pn uniquely determines a

McNaughton function mA : [0,1]n → [0,1] as follows:

(1) If A = pi, then mA(x̄) = xi.

(2) If A = ⊥, then mA(x̄) = 0.

(3) If A = B →C, then mA(x̄) = min(1,1−mB(x̄)+mC(x̄)).
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The tricky part is of course to go the other way. Here we restrict our attention to

certain combinations of simple McNaughton functions, starting with a constructive

procedure that for any simple McNaughton function f (x1, . . . ,xn), outputs a formula

A f (p1, . . . , pn) such that mA f
= f .

Proposition 6.38. Let f = āx̄+b with ā,b ∈ Z. The formula B f is defined by induc-

tion on σ( f ) = ∑i |ai| as follows:

1. If σ( f ) = 0, then f = b and let:

B f =

{

⊤ if b ≥ 1

⊥ if b ≤ 0

2. For σ( f ) > 0, let j = min{ j : a j 6= 0} and let:

B f =

{

(B f−x j
⊕ p j)⊙B f−x j+1 if a j > 0

B f = ¬((B1− f−x j
⊕ p j)⊙B2− f−x j

) if a j < 0

Let A f be B f with occurrences of C⊙⊤ and C⊕⊥ replaced by C. Then mA f
= f #.

Proof. Clearly it is enough to show that mB f
= f #. We proceed by induction on

σ( f ). The base case is immediate. For σ( f ) > 0, assume without loss of generality

that the first a j 6= 0 is a1. For a1 > 0, let h = f −x1. Then from the above definition:

B f = (Bh ⊕ p1)⊙Bh+1

By the induction hypothesis, mBh
= h# and mBh+1

= (h + 1)#. We need to show

that mB f
= (h + x1)

# = f #. We have different cases depending on x̄. The cases

where h(x̄) > 1 or h(x̄) < −1 are immediate. If h(x̄) ∈ [0,1], then h#(x̄) = h(x̄) and

(h(x̄)+1)# = 1. Hence (h(x̄)+x1)
# = min(1,h(x̄)+x1) = mB f

(x̄). If h(x̄)∈ [−1,0],

then h# = 0 and (h(x̄) + 1)# = h(x̄) + 1. So (h(x̄) + x1)
# = max(0,h(x̄) + x1) =

max(0,(x1 +(h(x̄)+1)−1) as required. If a1 < 0, then consider B1− f . By the above

reasoning, we obtain mB1− f
= 1− f #. So since B f = ¬B1− f , we obtain mB f

= f # as

required. ⊓⊔

Example 6.39. Consider these formulas for some basic linear functions:

Ax = p A−x = ⊥
A1−x = ¬p Ax−1 = ⊥
Ax+y = p⊕q Ax+y−1 = p⊙q

Ax−y = p⊙¬q Ax−y+1 = p⊕¬q

Now observe that using the usual distributivity laws for min, max, and +, we have

a way of writing the non-standard interpretation of sequents in Definition 6.18 as

the minimum of maximums of linear functions. A sequent interpretation is then

obtained by taking the conjunction of the disjunction of the formulas associated

with these functions by the previous proposition.
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More formally, let:

m(Γ⇒∆) = 1−∑C∈Γ(mC −1)+∑D∈∆(mD −1)

= mini=1...n max j=1...mi
gi j

where gi j is linear for i = 1 . . .n and j = 1 . . .mi, and define:

IŁ(Γ ⇒ ∆) =def

n∧

i=1

mi∨

j=1

Agi j
and IŁ(S1 | . . . | Sn) =def IŁ(S1)∨ . . .∨ IP(Sn).

Then putting everything together, for any hypersequent G:

|=Ł G iff |=Ł IŁ(G)

Example 6.40. Consider the sequent (p → q ⇒ r). First we calculate:

m(p→q⇒r) = 1− (mp→q −1)+(mr −1)

= 1− (min(1,1− x+ y)−1)+(z−1)

= max(z,x− y+ z)

and then the corresponding formulas:

Az = r

Ax−y+z = (Ax−y ⊕ r)⊙Ax−y+1

= ((p⊙¬q)⊕ r)⊙ (p⊕¬q)

IŁ(p → q ⇒ r) = r∨ (((p⊙¬q)⊕ r)⊙ (p⊕¬q))

Note that this last formula is equivalent in Ł to (p → q) → r.

Now consider the sequent (⇒ p, p):

m(⇒p,p) = 1+(mp −1)+(mp −1)

= 1+(x−1)+(x−1)

= 2x−1

Since A2x−1 = p⊙ p, we get IŁ(⇒ p, p) = p⊙ p. Hence also:

IŁ(p → q ⇒ r |⇒ p, p) = r∨ (((p⊙¬q)⊕ r)⊙ (p⊕¬q))∨ (p⊙ p)

6.2.5 Giles’s Game

We conclude our discussion of interpretations for Ł with a game introduced by

Robin Giles in the 1970s. The situation is as follows: two players – me and you,
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say – assert a number of statements and agree to pay $1 to their opponent for every

false statement made. To focus on the connections with proof theory, let us represent

this state of affairs by a sequent built from formulas (representing the statements) in

the language LL = {→,⊥}:

A1, . . . ,An ⇒ B1, . . . ,Bm

where A1, . . . ,An are asserted by you and B1, . . . ,Bm are asserted by me.

The two players make moves in the game in any order2 according to the following

rule, reflecting the idea that if I (or you) state “A implies B”, then I (or you) should

be prepared to state B if you (or I) state A:

If I assert A→B, then you can choose either to attack this statement by asserting

A, in which case I have to assert also B, or not to attack this statement in which

case it is removed from the statements that I assert. (And vice versa, i.e. for the

roles of me and you switched.)

The choices for me (the left two) and you (the right two) can be written as:

Γ,B ⇒ A,∆

Γ,A → B ⇒ ∆

Γ ⇒ ∆

Γ,A → B ⇒ ∆

Γ,A ⇒ B,∆

Γ ⇒ A → B,∆
Γ ⇒ ∆

Γ ⇒ A → B,∆

Each premise here represents the sequent resulting from you (for the first two) or

me (for the second two) either attacking or not attacking A → B in the conclusion.

What then does it mean to win such a game? For Ł, one answer is to regard

each occurrence of a variable q as stating that “a certain elementary experiment Eq

yields a positive result” where for each run of the game the outcome of Eq has a

fixed probability v(q) of being positive. For the atomic statement ⊥ we let v(⊥) =
0; i.e. the experiment E⊥ always yields a negative answer. To illustrate this idea,

consider the sequent (p ⇒ q,q): the experiment Ep has to be performed once and

the experiment Eq has to be performed twice. If, for example, all three results are

negative, then I owe you $2 and you owe me $1. If the results of Ep and the first trial

of Eq are positive, and the second trial of Eq is negative, then I owe you $1 and you

owe me nothing.

A run of the game for a sequent Γ ⇒ ∆ consists of:

1. a sequence of sequents obtained one from the other by the above rules, starting

with Γ ⇒ ∆ and ending in an atomic sequent.

2. an assignment v of risk values from [0,1] to variables occurring in the game.

I win a run of the game if I do not expect any loss of money resulting from betting

on results of the elementary experiments in the final atomic sequent (Π ⇒ Σ). This

means that for every p that I (or you) assert, i.e. occurring in Σ (or Π), my (or

your) expected loss is 1− v(p). Hence easily, I win iff ⋆v
Ł(Π) ≤ ⋆v

Ł(Σ). Note that

this winning condition refers to average pay-offs and not to a certain instance of

evaluating the final elementary sequent by performing corresponding experiments.

2 Note that an order can be imposed on the moves in the game without affecting the reasoning here,
but we choose to follow Giles’ original description.
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E.g. p ⇒ p is a winning sequent for me, although it may happen that the result of

performing experiment Ep is positive for your assertion of p, while it is negative for

my assertion of p, implying that I owe you $1.

Example 6.41. Consider the game where I initially assert p → q; i.e. the game starts

with the sequent (⇒ p → q). For your turn (there is nothing I could do if it were my

turn), you can either assert p in order to force me to assert q, or explicitly refuse to

attack p → q. In the first case, the game ends with (p ⇒ q), in the second, with (⇒).

For a given assignment v of risk values where v(p) ≥ v(q), I win the game in both

cases. In other words: I have a winning strategy for (⇒ p → q) for all assignments

v satisfying v(p) ≥ v(q). In particular, I have a winning strategy for (⇒ p → p)

independently from the risk value assigned to p.

A winning strategy for me for a sequent (Γ ⇒ ∆) with associated risk function v can

be represented as a finite tree labelled with sequents such that:

1. (Γ ⇒ ∆) labels the root.

2. Every leaf is labelled with an atomic sequent that I win.

3. Every node labelled with a non-atomic sequent has one child node labelled with

a sequent resulting from a move by me (if one exists) and a child node for every

sequent resulting from a move by you.

We will say that there is a winning strategy for me for (Γ ⇒ ∆) if for all assign-

ments of risk values, there exists a winning strategy for (Γ ⇒ ∆). Generalizing even

further, we will say that there is a winning strategy for a hypersequent G if for all

assignments of risk values, there is a winning strategy for me for some S ∈ G.

We can represent winning strategies for hypersequents (and sequents) by deriva-

tions in a suitable calculus:

Definition 6.42. GŁgiles consists of all atomic hypersequents for which I have a win-

ning strategy, plus:

G | [(Γ⊖ [A → B] ⇒ ∆),(Γ⊖ [A → B],B ⇒ A,∆) : A → B ∈ Γ]
{(G | Γ ⇒ ∆⊖ [A → B]),(G | Γ,A ⇒ B,∆⊖ [A → B]) : A → B ∈ ∆}

G | Γ ⇒ ∆
(→)Ł

The first premise corresponds to my choice of moves in the game: two sequents for

each implicational formula asserted by you that I can either attack or disregard. The

remaining premises correspond to the different possible moves made by you: two

for each implicational formula asserted by me that you can attack or disregard. So

there is a winning strategy for the conclusion hypersequent iff there is a winning

strategy for all the premise hypersequents. So it follows by a simple induction on

hypersequent complexity that:

Theorem 6.43. ⊢GŁgiles
G iff there exists a winning strategy for G.

A hypersequent derivation of a sequent may also be interpreted as a non-deterministic

meta-winning strategy for that sequent: for any choices made by you, there is a set
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of choices listed for me, one of which will win. Also, since (→)Ł is both derivable in

GŁ-derivable and GŁ-invertible, there exists a winning strategy for a hypersequent

G iff ⊢GŁgiles
G iff ⊢GŁ G. Hence, using the soundness and completeness of GŁ:

Corollary 6.44. |=Ł A iff there exists a winning strategy for (⇒ A).

6.3 Product Logic

Product Logic P, the third fundamental fuzzy logic, possesses features of both of

its more famous siblings. Roughly speaking, it behaves like Ł on the interval (0,1],
and like G at 0. Let us work again with a more restricted language LT = {⊙,→,⊥}
with defined connectives:

¬A =def A →⊥ A∧B =def A⊙ (A → B)
⊤ =def ¬⊥ A∨B =def ((A → B) → B)∧ ((B → A) → A)

P-valuations are then functions v : FmLT
→ [0,1] such that v(⊥) = 0 and:

v(A⊙B) = v(A) · v(B) v(A → B) =

{

v(B)/v(A) if v(A) > v(B)

1 otherwise

A formula A is P-valid, written |=P A, iff v(A) = 1 for all P-valuations v. As before,

we will drop the prefix P for the rest of the section, and speak just of valuations and

validity.

A Hilbert system for Product Logic in the language FmLT
consists of the axiom-

atization of BL mentioned in Chapter 3 extended with:

(Π1) ¬¬A → ((A → (A⊙B)) → B)
(Π2) (A⊙ (A →⊥)) →⊥

In developing Gentzen systems for P, the problems are similar to those encountered

for Ł. It does not seem to be possible to obtain a calculus by adding structural

rules to a standard calculus like GMTL. Rather, as for Ł, we make use of a non-

standard interpretation for sequents and then develop tailored logical rules for that

interpretation.

Definition 6.45 (Product Interpretation).

IP(Γ ⇒ ∆) =def ⊙Γ →⊙∆

IP(S1 | . . . | Sn) =def IP(S1)∨ . . .∨ IP(Sn)

Hence, letting ⋆v
P(Γ) =def ∏A∈Γ v(A) where ⋆v

P([ ]) = 1, we have |=P IP(G) iff for

all valuations v:

⋆v
P(Γ) ≤ ⋆v

P(∆) for some (Ga ⇒ ∆) ∈ G
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Initial Sequents

G | A ⇒ A
(ID)

G |⇒
(EMP)

G | Γ,⊥⇒ ∆
(⊥⇒)

Structural Rules:

G

G |H
(EW)

G |H |H

G |H
(EC)

G | Γ ⇒ ∆

G | Γ,Π ⇒ ∆
(W)

G | Γ1,Γ2 ⇒ ∆1,∆2

G | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2

(SPLIT)
G | Γ1 ⇒ ∆1 G | Γ2 ⇒ ∆2

G | Γ1,Γ2 ⇒ ∆1,∆2

(MIX)

Logical Rules

G | Γ,A,B ⇒ ∆

G | Γ,A⊙B ⇒ ∆
(⊙⇒)

G | Γ ⇒ A,B,∆

G | Γ ⇒ A⊙B,∆
(⇒⊙)A

G | Γ ⇒ A

G | Γ,¬A ⇒ ∆
(¬⇒)P

G | Γ ⇒ ∆ G | Γ,A ⇒ B,∆

G | Γ ⇒ A → B,∆
(⇒→)Ł

G | Γ,¬A ⇒ ∆ G | Γ,B ⇒ A,∆

G | Γ,A → B ⇒ ∆
(→⇒)P

Fig. 6.7 The hypersequent calculus GP

As before, a hypersequent rule G1, . . . ,Gn / G is sound if whenever IP(G1), . . . , IP(Gn)
are all valid, then also IP(G) is valid, and invertible if the reverse implication holds.

Moreover, we can connect validity in Ł and P in the following useful way:

Lemma 6.46. Let G be a strictly atomic hypersequent. Then |=Ł G iff |=P IP(G).

Proof. Let G = (Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n) be a strictly atomic hypersequent. Then

6|=P IP(G) iff there exists a valuation v such that ⋆v
P(Γi) > ⋆v

P(∆i) for i = 1 . . .n.

Moreover, we can assume that v(p) 6= 0 for each variable p, since it is not possible

that v(p) = 0 for p∈
⋃n

i=1 Γi, and if v(q) = 0 for some q∈
⋃n

i=1 ∆i, then we can easily

take v(q) > 0 small enough so that the inequalities still hold. But now observe that

⋆v
P(Γi) > ⋆v

P(∆i) iff log⋆v
P(Γi) > log⋆v

P(∆i) iff ∑p∈Γi
log(v(p)) > ∑q∈∆i

log(v(q)).
Let w be the least value log(v(p)) for p occurring in G. Then ∑p∈Γi

log(v(p)) >

∑q∈∆i
log(v(q)) for i = 1 . . .n iff ∑p∈Γi

log(v(p))/w > ∑q∈∆i
log(v(q))/w. Also,

−1 ≤ log(v(p))/w ≤ 0 for every p occurring in G. So consider the Ł-valuation

v′(p) = 1 + log(v(p))/w. Then ∑p∈Γi
log(v(p)) > ∑q∈∆i

log(v(q)) for i = 1 . . .n iff

⋆v′

Ł (Γi) > ⋆v′

Ł (∆i) for i = 1 . . .n. So 6|=P IP(G) iff 6|=Ł G as required. ⊓⊔

Our hypersequent calculus for P based on this interpretation is displayed in Fig. 6.7,

where ¬ is used here just as a convenient abbreviation for A → ⊥ and does not

require special rules. Should we choose to expand the language, rules for ∧ and ∨
are just the standard ones introduced in Chapter 4.

Example 6.47. We illustrate the calculus with a derivation of the axioms of (Π1),
noting that the single-conclusion rule (⇒→) is derivable in GP exactly as in GŁ:
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A ⇒ A
(ID)

B ⇒ B
(ID)

A,B ⇒ A,B
(MIX)

A⊙B ⇒ A,B
(⊙⇒)

¬¬A,A⊙B ⇒ A,B
(W)

¬A ⇒¬A
(ID)

¬¬A,¬A ⇒ B
(¬⇒)P

¬¬A,A → (A⊙B) ⇒ B
(→⇒)P

¬¬A ⇒ (A → (A⊙B)) → B
(⇒→)

⇒¬¬A → ((A → (A⊙B)) → B)
(⇒→)

We also point out the following useful derivation:

A ⇒ A
(ID)

B ⇒ B
(ID)

A,B ⇒ A,B
(MIX)

A,B ⇒ A⊙B
(⇒⊙)

¬(A⊙B),A,B ⇒⊥,⊥
(¬⇒)P

¬(A⊙B),A,¬(A⊙B),B ⇒⊥,⊥
(W)

¬(A⊙B),A ⇒⊥ | ¬(A⊙B),B ⇒⊥
(SPLIT)

¬(A⊙B),A ⇒⊥ | ¬(A⊙B) ⇒¬B
(⇒→)

¬(A⊙B) ⇒¬A | ¬(A⊙B) ⇒¬B
(⇒→)

Soundness for GP is proved using the familiar induction on the height of a deriva-

tion. We have to check that for each rule, the conclusion is valid whenever the

premises are valid. Let us take a look at a couple of the more different cases, noting

that we can easily ignore the side-hypersequent G as in previous proofs:

• (→⇒)P. Suppose that (Γ,¬A ⇒ ∆) and (Γ,B ⇒ A,∆) are valid, and let v be

a valuation. If v(A) = 0, then v(¬A) = 1 and v(A → B) = 1, so ⋆v
P(Γ⊎ [A →

B]) = ⋆v
P(Γ)≤ ⋆v

P(∆). Otherwise v(A→ B)≤ v(B)/v(A) and ⋆v
P(Γ⊎ [A→ B])≤

(⋆v
PΓ) · (v(B)/v(A)) ≤ ⋆v

P(∆). So (Γ,A → B ⇒ ∆) is valid.

• (¬⇒)P. Suppose that (Γ ⇒ A) is valid. If v(A) = 0, then ⋆v
P(Γ) ≤ 0 and hence

also ⋆v
P(Γ) · v(¬A) ≤ ⋆v

P(∆). If v(A) > 0, then v(¬A) = 0 and ⋆v
P(Γ) · v(¬A) ≤

⋆v
P(∆). So (Γ,¬A ⇒ ∆) is valid.

Theorem 6.48. If ⊢GP G, then |=P IP(G).

We turn our attention now to completeness. Eliminating a cut rule for GP looks

tricky so we will proceed semantically. First note that the following rule is easily

seen to be GP-derivable using (EC), (W), (→⇒)P, and (EW):

G | Γ,¬A ⇒ ∆ G | Γ ⇒ ∆ | Γ,B ⇒ A,∆

G | Γ,A → B ⇒ ∆
(→⇒)i

P

We will now extend GP with extra invertible “decomposition rules” for negated

formulas ¬A and demonstrate that this extended system is complete. We can then

show that GP is complete by showing that the extra rules can be eliminated.
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Definition 6.49. GP+ is GP extended with the following rules:

G | Γ,¬B ⇒ ∆ | A ⇒ B

G | Γ,¬(A → B) ⇒ ∆
(¬→⇒)

G | Γ,¬A ⇒ ∆ G | Γ,¬B ⇒ ∆

G | Γ,¬(A⊙B) ⇒ ∆
(¬⊙⇒)

The nice thing about these rules is that, along with some but not all of the logical

rules of GP, they are invertible. This allows us to reduce the validity of a hyperse-

quent to the validity of hypersequents containing just atoms and negated atoms.

Lemma 6.50. (⊙⇒), (⇒⊙)A, (⇒→)Ł, (→⇒)i
P, (¬→⇒), and (¬⊙⇒) are in-

vertible.

Proof. Let us just consider some of the less obvious cases, again ignoring side-

hypersequents:

• (→⇒)i
P. Suppose that (Γ,A → B ⇒ ∆) is valid. Fix a valuation v. For the left

premise, if v(A) > 0, then v(¬A) = 0 and ⋆v
P(Γ).v(¬A) ≤ ⋆v

P(∆), and if v(A) =
0, then v(¬A) = v(A → B) = 1 and ⋆v

P(Γ) ≤ ⋆v
P(∆). For the right premise, if

v(A) ≤ v(B), then v(A → B) = 1 and ⋆v
P(Γ) ≤ ⋆v

P(∆), and if v(A) > v(B), then

v(A → B) = v(B)/v(A) and ⋆v
P(Γ) · v(B) ≤ ⋆v

P(∆) · v(A). So both (Γ,¬A ⇒ ∆)
and (Γ ⇒ ∆ | Γ,B ⇒ A,∆) are valid.

• (¬→⇒). Suppose that (Γ,¬(A → B)⇒ ∆) is valid. If v(B) > 0, then v(¬B) = 0

and ⋆v
P(Γ).v(¬B)≤ ⋆v

P(∆). If v(A)= 0, then v(A)≤ v(B). If v(B)= 0 and v(A)>
0, then v(¬B) = v(¬(A → B)) = 1 and ⋆v

P(Γ)≤ ⋆v
P(∆). So (Γ,¬B ⇒ ∆ | A ⇒ B)

is valid. ⊓⊔

Theorem 6.51. If |=P IP(G), then ⊢GP+ G.

Proof. We prove the claim by induction on cp(G). If G is strictly atomic, then by

Lemma 6.46, |=Ł G. Hence ⊢GŁ G and, since they share the same structural rules,

also ⊢GP+ G. If G has either a formula on the left of a sequent which is not an atom

or negated atom, or a formula on the right which is not an atom, then in both cases

we can apply an appropriate invertible rule. Moreover this process is terminating

since all the invertible rules strictly reduce the complexity of the hypersequent with

respect to the multiset order. Three cases remain:

• If there is an occurrence of ⊥ on the left of a sequent, then G is an instance of

(⊥⇒) and we are done.

• Suppose that we have a hypersequent:

G = (G′ | Γ ⇒⊥,∆)

where ⊥ 6∈ Γ. If G′ is valid, then by the induction hypothesis G′ is derivable and

by (EW) so is G. Suppose then that G′ is not valid, i.e. there is a valuation v

such that ⋆v
P(∆′) < ⋆v

P(Γ′) for all (Γ′ ⇒ ∆′) ∈ G′. We define a valuation vε for

0 < ε < 1 as follows:
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vε(p) =

{

ε if v(p) = 0

v(p) otherwise

But now for each (Γ′ ⇒ ∆′) ∈ G′, ⋆vε
P (Γ′) = ⋆v

P(Γ′) and we can take ε small

enough so that ⋆vε
P (∆′) < ⋆vε

P (Γ′). Since also ⋆vε
P (Γ) > 0, we get that G is not

valid, a contradiction.

• Suppose that for an atom (⊥ or variable) a:

G = (Γ1,¬a ⇒ ∆1 | Γ2 ⇒ ∆2 | . . . | Γm ⇒ ∆m)

If a ∈ Γi for some i ∈ {1, . . . ,m}, then G is derivable (working backwards) by

applying (SPLIT) (if needed) to obtain a sequent containing ¬a and a, then

(¬⇒), (W), and (ID). For a 6∈ Γi for i = 1 . . .m, consider:

G′ = (Γ1 ⇒ ∆1 | . . . | Γm ⇒ ∆m)

If G′ is valid, then by the induction hypothesis G′ is derivable. Hence, by (W), so

is G. Suppose for a contradiction then that G′ is not valid; i.e. there is a valuation

v such that ⋆v
P(Γi) > ⋆v

P(∆i) for i = 1 . . .m. Define a new valuation v′ such that

v′(a) = 0 and v′(q) = v(q) for q 6= a. Then v′(¬a) = 1 and ⋆v′

P(Γi) = ⋆v
P(Γi) >

⋆v
P(∆i) ≥ ⋆v′

P(∆i). So G is not valid, a contradiction. ⊓⊔

Lemma 6.52. (¬→⇒) and (¬⊙⇒) can be eliminated from GP+.

Proof. For (¬→⇒), first consider the derivation:

G | Γ,¬(A → B) ⇒ ∆ | A ⇒ B

G | Γ,¬(A → B) ⇒ ∆ | Γ,A ⇒ B
(W)

G | Γ,¬(A → B) ⇒ ∆ | Γ ⇒ A → B
(⇒→)

G | Γ,¬(A → B) ⇒ ∆ | Γ,¬(A → B) ⇒ ∆
(¬⇒)P

G | Γ,¬(A → B) ⇒ ∆
(EC)

This means that to show that ⊢GP G | Γ,¬(A → B) ⇒ ∆ | A ⇒ B follows from ⊢GP

G | Γ,¬B ⇒ ∆ | A ⇒ B, it is enough to establish (by a simple induction):

Claim. If ⊢GP [Γi, [¬B]λi ⇒ ∆i]
n
i=1, then ⊢GP [Γi, [¬(A → B)]λi ⇒ ∆i]

n
i=1.

For (¬⊙⇒), it is enough to show the following:

Claim. Suppose that:

1. H1 = [Γi, [¬A]λi ⇒ ∆i]
k
i=1.

2. H2 = [Γi, [¬B]λi ⇒ ∆i]
n
i=k+1.

3. H = [Γi, [¬(A⊙B)]λi ⇒ ∆i]
n
i=1.

If d1 ⊢GP H1 and d2 ⊢GP H2, then ⊢GP H.
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Proof of claim. We proceed by induction on ht(d1) + ht(d2). If H1 or H2 has no

occurrences of ¬A or ¬B respectively, then clearly H is derivable so we assume that

each has at least one such occurrence. If ⊥ occurs on the left of a sequent of H1 or

H2, then we are done so also assume no such occurrences. For the base case we have

H1 = (¬A ⇒¬A) and H2 = (¬B ⇒¬B). Then H= (¬(A⊙B)⇒¬A | ¬(A⊙B)⇒
¬B) is derived as in Example 6.47. For the inductive step, we consider the last rule

applications in d1 or d2. If d1 or d2 ends with a structural rule or a logical rule on a

side-formula (not a distinguished occurrence of ¬A or ¬B), then we can just use the

induction hypothesis. There are two other possibilities.

Suppose first that d1 and d2 end with, respectively:

G1 | Π1 ⇒ A

G1 | Π1,¬A ⇒ Σ1
(¬⇒)

G2 | Π2 ⇒ B

G2 | Π2,¬B ⇒ Σ2
(¬⇒)

By the induction hypothesis applied to the premise of one of the above with the

conclusion of the other, we obtain GP-derivations of:

G′ | Π′
2,¬(A⊙B) ⇒ Σ2 | Π′

1 ⇒ A and G′ | Π′
1,¬(A⊙B) ⇒ Σ1 | Π′

2 ⇒ B

where G′ = (G′
1 | G

′
2) and H = (G′ | Π′

1,¬(A⊙B) ⇒ Σ1 | Π′
2,¬(A⊙B) ⇒ Σ2).

We give the following GP-derivation of H:

G′ | Π′
2,¬(A⊙B) ⇒ Σ2 | Π′

1 ⇒ A

H | Π′
1 ⇒ A

(EW)
G′ | Π′

1,¬(A⊙B) ⇒ Σ1 | Π′
2 ⇒ B

H | Π′
2 ⇒ B

(EW)

H | Π′
1,Π

′
2 ⇒ A,B

(MIX)

H | Π′
1,Π

′
2 ⇒ A⊙B

(⇒⊙)

H | Π′
1,Π

′
2,¬(A⊙B) ⇒ Σ1,Σ2

(¬⇒)

H | Π′
1,Π

′
2,¬(A⊙B),¬(A⊙B) ⇒ Σ1,Σ2

(W)

H | Π′
1,¬(A⊙B) ⇒ Σ1 | Π′

2,¬(A⊙B) ⇒ Σ2
(SPLIT)

G′ | Π′
1,¬(A⊙B) ⇒ Σ1 | Π′

2,¬(A⊙B) ⇒ Σ2
(EC)

For the second possibility, suppose that d1 ends with (ID) where H1 = (¬A ⇒¬A)
and d2 ends with (¬⇒) applied to an occurrence of ¬B where H2 = (G2 | Π2,¬B ⇒
Σ2). H is of the form (G′

2 | Π′
2,¬(A⊙B)⇒ Σ2 | ¬(A⊙B)⇒¬A). Since (G2 | Π2 ⇒

B) is derivable, by the induction hypothesis, (G′
2 | Π′

2 ⇒ B | ¬(A⊙B) ⇒ ¬A) is

derivable. So H is derivable as follows:
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G′
2 | ¬(A⊙B) ⇒¬A | A ⇒ A

(ID)
G′

2 | Π′
2 ⇒ B | ¬(A⊙B) ⇒¬A

G′
2 | ¬(A⊙B) ⇒¬A | Π′

2,A ⇒ A,B
(MIX)

G′
2 | ¬(A⊙B) ⇒¬A | Π′

2,A ⇒ A⊙B
(⇒⊙)

G′
2 | ¬(A⊙B) ⇒¬A | Π′

2,¬(A⊙B),A ⇒ Σ2,⊥
(¬⇒)

G′
2 | ¬(A⊙B) ⇒¬A | Π′

2,¬(A⊙B),¬(A⊙B),A ⇒ Σ2,⊥
(W)

G′
2 | Π′

2,¬(A⊙B) ⇒ Σ2 | ¬(A⊙B) ⇒¬A | ¬(A⊙B),A ⇒⊥
(SPLIT)

G′
2 | Π′

2,¬(A⊙B) ⇒ Σ2 | ¬(A⊙B) ⇒¬A | ¬(A⊙B) ⇒¬A
(⇒→)

G′
2 | Π′

2,¬(A⊙B) ⇒ Σ2 | ¬(A⊙B) ⇒¬A
(EC)

⊓⊔

Hence, combining the preceding lemma with Theorems 6.48 and 6.51, we have:

Theorem 6.53. |=P IP(G) iff ⊢GP G.

We can even use this calculus to establish standard completeness for HP. That is,

we can show that a formula A is valid in the algebra A(∗P,0), i.e. |=P A, iff A is

derivable in the Hilbert system HP (or equivalently, valid in all P-algebras).

Theorem 6.54. If |=P A, then ⊢HP A

Proof. If |=P A, then by the completeness of GP, ⊢GP (⇒ A). But GP is sound with

respect to P-chains (the proof is the same as for the standard algebra). Hence A is

valid in all P-chains, and so by Theorem 3.56, ⊢HP A. ⊓⊔

Moreover, we can extract a decidability result from our completeness proof for GP+.

A formula A is valid iff applying the logical rules of GP+ backwards to (⇒ A) (a

terminating procedure) ends with valid hypersequents containing only atoms and

negated atoms. But then we can follow the proof of Theorem 6.51 to deal with

constants and negated atoms to arrive at strictly atomic hypersequents. Checking the

validity of such hypersequents is the same for P as for Ł, and therefore decidable.

Theorem 6.55. The validity problem for P is decidable.

We can also develop a sequent calculus GPs for Product Logic, displayed in Fig. 6.8,

proceeding along the same lines as for Ł.

Example 6.56. Below we give a GPs-derivation of the (Π2) axioms:

⇒ (EMP)

¬A ⇒¬A
(ID)

¬A,¬¬A ⇒⊥
(¬⇒)P

A ⇒ A
(ID)

¬A,A ⇒¬A,⊥
(¬⇒)P

¬A,¬A → A ⇒⊥
(→⇒)s

P+(w)

¬A⊙ (¬A → A) ⇒⊥
(⊙⇒)

⇒¬(¬A⊙ (¬A → A))
(⇒→)Ł

Soundness is proved for GPs in the usual way. Proving completeness is much more

complicated, but relies essentially on the same techniques used in the completeness

proof for GŁs. Here, we just state the theorem without proof:

Theorem 6.57. ⊢GPs
Γ ⇒ ∆ iff |=P IP(Γ ⇒ ∆).
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Initial Sequents:

A ⇒ A
(ID)

⇒ (EMP) Γ,⊥⇒ ∆
(⊥⇒)

Structural Rules:

Γn ⇒ ∆n

Γ ⇒ ∆
(SCn) n ≥ 2

Γ ⇒ ∆

Γ,Π ⇒ ∆
(W)

Γ1 ⇒ ∆1 Γ2 ⇒ ∆2

Γ1,Γ2 ⇒ ∆1,∆2
(MIX)

Logical Rules:

Γ,A,B ⇒ ∆

Γ,A⊙B ⇒ ∆
(⊙⇒)

Γ ⇒ A,B,∆

Γ ⇒ A⊙B,∆
(⇒⊙)A

Γ ⇒ A

Γ,¬A ⇒ ∆
(¬⇒)P

Γ ⇒ ∆ Γ,A ⇒ B,∆

Γ ⇒ A → B,∆
(⇒→)Ł

Γ,¬A ⇒ ∆ Γ,B,B → A ⇒ A,∆

Γ,A → B ⇒ ∆
(→⇒)s

P

Fig. 6.8 The sequent calculus GPs

6.4 Related Logics

Some related logics, not as important as the three just covered, but interesting

nonetheless, can be tackled using similar techniques. Recall first that Cancella-

tive Hoop Logic CHL – the logic of cancellative hoops – emerges by removing

⊥ from the language of Product Logic P and restricting P-valuations to the half-

open interval (0,1]. More precisely, CHL is based on the language LC = {⊙,→}
and CHL-valuations are functions v : FmLC

→ (0,1] where v(A⊙B) = v(A) · v(B)
and v(A → B) = v(B)/v(A) if v(A) > v(B); 1 otherwise.

A Hilbert system for CHL in this language consists of the axiomatization for BL

given in Chapter 3 with (A7) removed, extended with the cancellation axiom:

(CAN) (A → (A⊙B)) → B

A hypersequent calculus GCHL, displayed in Fig. 6.9, is obtained by interpreting

hypersequents as in P, removing (⊥⇒)Ł from GŁ and adding the rules (⊙⇒) and

(⇒⊙)P of GP.

Example 6.58. The cancellation axiom is derived in GCHL as follows, noting that

again the single-conclusion version of (⇒→) is derivable in this calculus:

A ⇒ A
(ID)

B ⇒ B
(ID)

A,B ⇒ A,B
(MIX)

A⊙B ⇒ A,B
(⊙⇒)

A → (A⊙B) ⇒ B
(→⇒)A

⇒ (A → (A⊙B)) → B
(⇒→)

Proofs of soundness and completeness for this calculus follow exactly the same pat-

tern as those for GŁ and GP. Namely we show that all the rules of GCHL are sound
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Initial Sequents

G | A ⇒ A
(ID)

G |⇒
(EMP)

Structural Rules:

G

G |H
(EW)

G |H |H

G |H
(EC)

G | Γ ⇒ ∆

G | Γ,Π ⇒ ∆
(W)

G | Γ1,Γ2 ⇒ ∆1,∆2

G | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2

(SPLIT)
G | Γ1 ⇒ ∆1 G | Γ2 ⇒ ∆2

G | Γ1,Γ2 ⇒ ∆1,∆2

(MIX)

Logical Rules

G | Γ,A,B ⇒ ∆

G | Γ,A⊙B ⇒ ∆
(⊙⇒)

G | Γ ⇒ A,B,∆

G | Γ ⇒ A⊙B,∆
(⇒⊙)A

G | Γ,B ⇒ A,∆

G | Γ,A → B ⇒ ∆
(→⇒)A

G | Γ ⇒ ∆ G | Γ,A ⇒ B,∆

G | Γ ⇒ A → B,∆
(⇒→)Ł

Fig. 6.9 The hypersequent calculus GCHL

and that suitable versions of the logical rules are also invertible. It then follows

that any valid hypersequent is derivable from valid atomic hypersequents, which are

themselves shown to be derivable as in e.g. Theorem 6.24 for GŁ.

Theorem 6.59. ⊢GCHL G iff |=CHLIP(G).

A sequent calculus is obtained for CHL by removing (⊥⇒)Ł from GŁs and adding

the rules (⊙⇒) and (⇒⊙)A of GPs.

As a second example, recall that Cross Ratio Logic CRL is the logic based on the

algebra A(∗CR, 1
2 ) where ∗CR is the cross-ratio uninorm. An axiomatization in the

standard language LB = {∧,∨,⊙,→, f,e,⊥,⊤} is obtained by adding to HMALL,

the axioms (e) e → f and (f) f → e, and the restricted cancellation axiom:

(RCAN) (⊤→ A)∨ (A →⊥)∨ ((A → (A⊙B)) → B)

To avoid repetition, however, it will be convenient to define a calculus for CRL based

on a language LE with primitive connectives →, ∧, e, �, and ⋄, where:

⊤ =def ⋄e ⊥ =def �e

¬A =def A → e A∨B =def ¬(¬A∧¬B)
A⊙B =def ¬(A →¬B) A⊕B =def ¬A → B

CRL-valuations are then functions v : FmLE
→ [0,1] satisfying:

v(A → B) =







(1− v(A))v(B)

v(A)(1− v(B))− (1− v(A))v(B)
if {v(A),v(B)} 6∈ {{0},{1}}

1 otherwise
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Initial Sequents

G | A ⇒ A
(ID)

G |⇒
(EMP)

G | Γ,�A ⇒ A,∆
(�)

G | Γ,A ⇒⋄A,∆
(⋄)

G | Γ,�e ⇒ ∆
(⊥)

G | Γ ⇒⋄e,∆
(⊤)

Structural Rules

G

G |H
(EW)

G |H |H

G |H
(EC)

G | Γ1,Γ2 ⇒ ∆1,∆2

G | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2

(SPLIT)
G | Γ1 ⇒ ∆1 G | Γ2 ⇒ ∆2

G | Γ1,Γ2 ⇒ ∆1,∆2

(MIX)

Logical Rules

G | Γ ⇒ ∆

G | Γ,e ⇒ ∆
(e⇒)

G | Γ ⇒ ∆

G | Γ ⇒ e,∆
(⇒e)

G | Γ,B ⇒ A,∆ G | Γ,�(A → B) ⇒ ∆

G | Γ,A → B ⇒ ∆
(→⇒)c

G | Γ,A ⇒ B,∆

G | Γ ⇒ A → B,∆
(⇒→)

G | Γ,A ⇒ ∆ | Γ,B ⇒ ∆

G | Γ,A∧B ⇒ ∆
(∧⇒)

G | Γ ⇒ A,∆ G | Γ ⇒ B,∆

G | Γ ⇒ A∧B,∆
(⇒∧)

G | Γ,A ⇒ �e,∆

G | Γ,⋄A ⇒ ∆
(⋄⇒)

G | Γ,⋄e ⇒ A,∆

G | Γ ⇒ �A,∆
(⇒ �)

G | Γ,�A,�B ⇒ ∆

G | Γ,�(A∧B) ⇒ ∆
(�∧⇒)

G | Γ ⇒⋄A,∆ G | Γ ⇒⋄B,∆

G | Γ ⇒⋄(A∧B),∆
(⇒⋄∧)

G | Γ,�B ⇒ ∆ G | Γ ⇒⋄A,∆

G | Γ,�(A → B) ⇒ ∆
(�→⇒)

G | Γ,�A ⇒ ∆ G | Γ ⇒⋄B,∆

G | Γ ⇒⋄(A → B),∆
(⇒⋄→)

G | Γ,�A ⇒ ∆

G | Γ,��A ⇒ ∆
(��⇒)

G | Γ ⇒ �A,∆

G | Γ ⇒⋄�A,∆
(⇒⋄�)

G | Γ,⋄A ⇒ ∆

G | Γ,�⋄A ⇒ ∆
(�⋄⇒)

G | Γ ⇒⋄A,∆

G | Γ ⇒⋄⋄A,∆
(⇒⋄⋄)

Fig. 6.10 The hypersequent calculus GCRL

v(A∧B) = min(v(A),v(B)) v(e) = 1
2

v(�A) =

{

1 if v(A) = 1

0 if otherwise
v(⋄A) =

{

0 if v(A) = 0

1 if otherwise

Our hypersequent calculus GCRL, displayed in Fig. 6.10, has many non-standard

aspects. The (→⇒) rule fails the subformula property since � occurs in its right

premise but not its conclusion. Also, the last eight logical rules treat combinations

of connectives rather than one principal connective.

Example 6.60. We illustrate GCRL with the following derivation:
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A ⇒ A
(ID)

B ⇒ B
(ID)

A,B ⇒ A,B
(MIX)

A,�B ⇒ B
(�⇒)

A ⇒⋄A,B
(⇒⋄)

A,�(A → B) ⇒ B
(�→⇒)

A,A → B ⇒ B
(→⇒)c

A ⇒ (A → B) → B
(⇒→)

⇒ A → ((A → B) → B)
(⇒→)

Let us just sketch the soundness and completeness proof for GCRL, the details being

very similar to corresponding proofs for other logics. First observe that the logical

rules of GCRL are invertible and hence can be applied (upwards) exhaustively to

valid hypersequents to obtain valid “basic” hypersequents: those containing only

occurrences of ⋄e, p, and �p on the left of sequents, and only occurrences of �e,

p, and ⋄p on the right. Valid basic hypersequents are then derived using similar

techniques to those employed for Product Logic. Namely, we can remove the oc-

currences of �e and ⋄p while maintaining validity, then prove the derivability of

strictly atomic valid hypersequents.

Theorem 6.61. |=CRL IP(G) iff ⊢GCRL G.

6.5 Historical Remarks

Investigations into Łukasiewicz and Gödel logics date back to the early dawn of non-

classical logics. The finite-valued logics Gn (n = 2,3, . . .) were defined by Gödel in

the early 1930s [98] to show that Intuitionistic Logic has no finite characteristic

matrix. Much later, in 1959, Dummett axiomatized the infinite-valued version G

by adding the axiom schema (A → B)∨ (B → A) to Intuitionistic Logic [73], and

for that reason this logic is often better known as Gödel-Dummett Logic or sim-

ply as Dummett Logic LC. Around the same time as Gödel was introducing his

finite-valued logics, the infinite-valued logic Ł was defined by Łukasiewicz [135]

as a generalization of his own finite-valued logics introduced in the 1920s [133].

Łukasiewicz also conjectured the axiomatization for Ł presented in Section 6.2 with

a fifth axiom schema proved redundant (independently) by Chang [46] and Mered-

ith [141]. A completeness proof was obtained by Wajsberg in the 1930s, but the first

published proof by Rose and Rosser appeared in the 1950s [187]. An algebraic com-

pleteness proof was given by Chang [45] around the same time that introduced and

made crucial use of MV-algebras. The book [58] provides a detailed study of this

class of algebras, and also includes details of McNaughton’s 1951 representation

theorem [139]. We also mention alternative completeness proofs of Łukasiewicz’s

axiomatization by Scott [197] and Panti [178].

The third fundamental fuzzy logic, Product Logic P, was defined explicitly by

Hájek et al. in [112], although product implication had been considered by Goguen

much earlier in [100]. The “related logics” considered here, Cancellative Hoop

Logic CHL and Cross Ratio Logic CRL, were defined by Esteva, Godo, Hájek, and

Montagna [78], and Gabbay and Metcalfe [87] respectively. Good overviews of the
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historical development of Ł, G, and other many-valued logics may be found in [137,

212], the key reference for the fuzzy logic perspective being Hájek’s [105].

The first proof systems for fuzzy logics dealt with Gödel Logic. Avron’s ele-

gant hypersequent calculus (GG modulo some inessential changes) was introduced

in 1991 [11], and investigated further by Baaz and co-workers in [15, 29]. An ear-

lier (rather complicated) sequent calculus was defined by Sonobe [200] in 1975,

and improved – terminating and contraction-free – versions were subsequently de-

veloped by Avellone, Ferrari, and Miglioli [8], and Dyckhoff [75]. The sequent

calculus presented in this chapter is adapted from calculi introduced by Avron

and Konikowska [12], while the sequent of relations approach, which applies to

a wider class of “projective” logics, was developed by Baaz and Fermüller in [19].

Developing proof theory for Łukasiewicz and Product logics proved to be more

problematic. The first calculi presented for Ł made essential use of either the

cut rule [183] or extra syntax, see e.g. the labelled Tableaux of [104, 171] and

the Resolution systems of [162, 215]. The sequent and hypersequent calculi for

Łukasiewicz Logic presented above were introduced by Metcalfe, Olivetti, and Gab-

bay in 2005 [148], making use of the translation of Ł into Meyer and Slaney’s

Abelian Logic [149]. A cut elimination proof for GŁ (and calculi for related log-

ics), similar to that provided for GA in the previous chapter was obtained by Ciabat-

toni and Metcalfe [54]. The sequent and hypersequent calculi for Product Logic de-

scribed here were defined by Metcalfe, Olivetti, and Gabbay in 2004 [146]. The re-

lationship of GŁ to Giles game, introduced by Giles in [95, 96] following e.g. [132],

was discussed in [50]. We mention also the related work of Mundici on Ulam’s game

for finite-valued Łukasiewicz logics [160, 161], and work by Fermüller on parallel

dialogue games [81].
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Chapter 7

Uniformity and Efficiency

The proof systems encountered so far in this book provide an elegant presentation of

fuzzy logics and are useful for establishing key properties for this family of logics,

not least standard completeness. However, such systems are not always so conve-

nient from an automated reasoning perspective. In particular, for the fundamental

logics our calculi lack certain desirable properties:

• Uniformity. Suppose that we want to check the validity of a formula in G, Ł,

and P at the same time. All we can do is attempt separate proofs in different

systems. Since each has its own set of rules, there is no hope of obtaining a

derivation common to all three.

• Focus. There are no restrictions on proof search in our systems – either on the

rule to apply next or the formula to apply it to – even though there may be good

choices that avoid backtracking, looping, or treating irrelevant formulas.

• Efficiency. The proof systems are themselves inefficient, duplicating formulas

unnecessarily and repeating steps such as decomposing the same formula sev-

eral times.

In this chapter we try to remedy these defects. We give a uniform framework for

Ł, G, and P by stepping up in complexity from hypersequents to “relational hyper-

sequents” with two types of sequents. We then describe a logic programming style

methodology based on the idea that proof search should be directed by what is to

be proved: the “goal” of the computation. Finally, we use proof systems to estab-

lish lower and upper bounds for the complexity of the set of valid formulas for a

selection of fuzzy logics.

7.1 Uniform Systems

The calculi for the fundamental logics defined in the previous chapter are nice in

many respects, but they do seem rather arbitrary. For each logic we have simply

177
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picked rules that work. In contrast, the systems of Chapter 4 have the same logical

rules and differ only at the structural level. Here we define a similar framework for

Ł, G, and P. That is, we define uniform logical rules and distinguish the logics using

only structural rules. The cost is more structure: hypersequents are generalized to

“relational hypersequents” with two kinds of sequent arrow instead of one.

7.1.1 Uniform Logical Rules

We will use the language LF = {→,⊙,∧,∨,⊥,⊤} (replacing e and f with the more

usual ⊤ and ⊥), recalling its adequacy for Ł, G, and P, and indeed any logic based

on a residuated t-norm.

Definition 7.1. A relational hypersequent (r-hypersequent) is a finite multiset of

ordered triples, written:

Γ1 ⊳1 ∆1 | . . . | Γn ⊳n ∆n

where ⊳i ∈ {<,≤} and Γi and ∆i are finite multisets of formulas for i = 1 . . .n.

A hypersequent can be treated as an r-hypersequent with just one relation symbol,

e.g. letting ⊳i be ≤ for i = 1 . . .n. Similarly, a sequent of relations can be treated

as an r-hypersequent where all multisets Γi, ∆i contain exactly one formula. All

our familiar notions for hypersequents – rules, proof systems etc. – extend to r-

hypersequents, and we will use them here without further comment. Also, we let the

complexity of an r-hypersequent be the complexity of the hypersequent obtained by

treating each symbol ≤ or < as ⇒.

Validity for r-hypersequents is defined for each logic individually, understanding

| as before as a meta-level disjunction, where < and ≤ denote inequalities between

combinations (different for each logic) of truth values of formulas. The symbols <
and ≤ therefore have two uses: a syntactic one as part of an r-hypersequent, and a

semantic one as an inequality holding between mathematical expressions. Often we

will use ⊳ to stand uniformly for ≤ or < (in either sense).

Definition 7.2. An r-hypersequent G is L-valid for L ∈ {Ł,G,P}, written |=L G, iff

for all L-valuations v:

⋆v
LΓ⊳⋆v

L∆ for some (Γ⊳∆) ∈ G

where ⋆v
L([]) = 1 for L ∈ {Ł,G,P}, and:

⋆v
Ł(Γ) = 1+∑[v(A)−1 : A ∈ Γ]

⋆v
G(Γ) = min[v(A) : A ∈ Γ]

⋆v
P(Γ) = ∏[v(A) : A ∈ Γ]

An r-hypersequent rule G1, . . . ,Gn / G is L-sound if whenever |=L Gi for i = 1 . . .n,

also |=L G, and L-invertible if the reverse implication holds.
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G | Γ,B⊳A,∆ | A ≤ B G | Γ⊳∆ | B < A

G | Γ,A → B⊳∆
(→⊳)

G | Γ⊳∆ G | Γ,A⊳B,∆ | A ≤ B

G | Γ⊳A → B,∆
(⊳→)

G | Γ,A,B⊳∆ G | Γ,⊥⊳∆

G | Γ,A⊙B⊳∆
(⊙⊳)

G | Γ⊳⊥,∆ | Γ⊳A,B,∆

G | Γ⊳A⊙B,∆
(⊳⊙)

G | Γ,A⊳∆ | Γ,B⊳∆

G | Γ,A∧B⊳∆
(∧⊳)

G | Γ⊳A,∆ G | Γ⊳B,∆

G | Γ⊳A∧B,∆
(⊳∧)

G | Γ,A⊳∆ G | Γ,B⊳∆

G | Γ,A∨B⊳∆
(∨⊳)

G | Γ⊳A,∆ | Γ⊳B,∆

G | Γ⊳A∨B,∆
(⊳∨)

Fig. 7.1 Uniform rules

Notice immediately that for any formula A and L ∈ {Ł,G,P}:

|=L ≤ A iff |=L A

Hence we can express that a single formula is L-valid, as well as other relationships,

such as |=L A < B, that cannot be expressed using just the L-validity of a formula.

Example 7.3. Consider the r-hypersequent:

r ≤ r,q | p,q < p

This is Ł-valid since for any Ł-valuation v:

If v(q) = 1, then ⋆v
Ł[r] = v(r) = 1+(v(r)−1)+(v(q)−1) = ⋆v

Ł[r,q].

If v(q) < 1, then ⋆v
Ł[p,q] = 1+(v(p)−1)+(v(q)−1) < v(p) = ⋆v

Ł[p].

However, for L ∈ {G,P}, if v(p) = v(q) = 0 and v(r) > 0, then:

⋆v
L[r] = v(r) > 0 = ⋆v

L[r,q] and ⋆v
L [p,q] = 0 = v(p) = ⋆v

L[p]

so the r-hypersequent is not valid in these logics.

Our reward for this greater flexibility – both in the structures and their interpretations

– is the set of uniform rules displayed in Fig. 7.1 (recalling that ⊳ is uniformly either

≤ or < in each instance of a rule). Notice that the rules for →, ∧, and ∨ have the

subformula property, but not the rules for ⊙ (⊥ appears in the premises and possibly

not the conclusion). This is one of the costs of uniformity. In the cases of G and P,

we could remove the right premise of (⊙⊳), and (Γ ⊳⊥,∆) in the premise of (⊳⊙),
while for Ł we could make do with just rules for →.

Example 7.4. Crucially, if we apply these rules upwards to an r-hypersequent, then

we always end up with atomic r-hypersequents, e.g.
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p ≤ q | p,q ≤ p,q p ≤ q | q < p

p, p → q ≤ q
(→≤)

⊥≤ q

p⊙ (p → q) ≤ q
(⊙≤)

Notice that the top r-hypersequents here are valid in all the fundamental logics.

Lemma 7.5. The uniform rules are sound and invertible for Ł, G, and P.

Proof. We consider only the rules for →, disregarding side r-hypersequents since

if S1, . . . ,Sn / S is sound and invertible for one of these logics, then so easily is

(G | S1), . . . ,(G | Sn) / (G | S). Let v be a valuation for Ł, G, or P. If v(A)≤ v(B), then

v(A → B) = 1, and for both (→⊳) and (⊳→), the premises hold iff the conclusion

holds. Now suppose that v(A) > v(B). We consider each rule in turn:

• (→ ⊳). The right premise clearly holds. For Ł and P, by simple arithmetic,

the conclusion holds iff the left premise holds. For G, v(A → B) = v(B).
Moreover, min(⋆v

G(Γ),v(B))⊳min(v(A),⋆v
G(∆)) iff min(⋆v

G(Γ),v(B))⊳v(A) and

min(⋆v
G(Γ),v(A → B))⊳⋆v

G(∆). However, min(⋆v
G(Γ),v(B))⊳v(A) since v(A) >

v(B), so we have that the left premise holds iff the conclusion holds.

• (⊳→). If the conclusion holds, then easily both premises hold. For Ł and P,

again by simple arithmetic, the conclusion holds if the right premise holds. For

G, suppose that min(⋆v
G(Γ),v(A))⊳min(v(B),⋆v

G(∆)). Then min(⋆v
G(Γ),v(A))⊳

v(B), and, since v(A) > v(B), min(⋆v
G(Γ),v(A)) = ⋆v

G(Γ). Hence the conclusion

holds if the right premise holds. ⊓⊔

As for many of the hypersequent calculi developed in the previous chapter, it is

easy to see that the complexity of the premises is strictly less than the complexity

of the conclusion. Moreover, there is always a rule available to apply (upwards) to

non-atomic formulas occurring in an r-hypersequent. Hence a sound and complete

calculus for L where L ∈ {Ł,G,P} consists of the uniform rules extended with (as

initial r-hypersequents) all L-valid atomic r-hypersequents.

7.1.2 Revised Logical Rules

Although our rules are uniform and invertible, they are still far from ideal for proof

search. For one thing, they sometimes (reading upwards) multiply occurrences of

formulas. Consider, for example, the rule (→⊳):

G | Γ,B⊳A,∆ | A ≤ B G | Γ⊳∆ | B < A

G | Γ,A → B⊳∆
(→⊳)

The formulas A and B both occur twice in the left premise, but only once in the

conclusion. We solve this problem with a trick already used in the density rule: we

introduce new variables. Consider, as an intermediate step:
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G | Γ,q⊳∆ | B < q,A

G | Γ,A → B⊳∆
(→⊳)r

G | Γ⊳∆ G | Γ, p⊳q,∆ | p ≤ q | A < p | q < B

G | Γ⊳A → B,∆
(⊳→)r

G | Γ,A,B⊳∆ G | Γ,⊥⊳∆

G | Γ,A⊙B⊳∆
(⊙⊳)

G | Γ⊳q,∆ | q < A,B | q < ⊥

G | Γ⊳A⊙B,∆
(⊳⊙)r

G | Γ, p⊳∆ | A < p | B < p

G | Γ,A∧B⊳∆
(∧⊳)r

G | Γ⊳A,∆ G | Γ⊳B,∆

G | Γ⊳A∧B,∆
(⊳∧)

G | Γ,A⊳∆ G | Γ,B⊳∆

G | Γ,A∨B⊳∆
(∨⊳)

G | Γ⊳ p,∆ | p < A | p < B

G | Γ⊳A∨B,∆
(⊳∨)r

where p and q are variables not occurring in G, Γ, ∆, A, or B.

Fig. 7.2 Revised uniform rules

G | Γ,q⊳∆ | A → B < q

G | Γ,A → B⊳∆

where q does not occur in the conclusion. This rule is sound for each logic L ∈
{Ł,G,P}, since any valuation v for the variables in the conclusion can be extended

with v(q) = v(A → B). Also it is invertible since if ⋆v
L(Γ,A → B)⊳⋆v

L(∆) and v(q)≤
v(A → B), then immediately ⋆v

L(Γ,q)⊳⋆v
L(∆).

Now we try again applying (→⊳):

G | Γ,q⊳∆ | B < q,A | A ≤ B G | Γ,q⊳∆ |< q | B < A

G | Γ,q⊳∆ | A → B < q

There seems to be no improvement here, just one more variable to deal with. But

look again at the right premise: this is valid iff the left premise is valid. Also A ≤ B

can be dropped from the left premise since if v(A) ≤ v(B), then v(A → B) < v(q)
cannot hold in the conclusion. So we arrive at a single premise (G |Γ,q⊳∆ |B < q,A)
and conclusion (G |Γ,A→B⇒∆). Proceeding similarly for the other uniform rules,

we arrive at revised versions, displayed in Fig. 7.2, with the same soundness and

invertibility properties as the original rules.

Lemma 7.6. The revised uniform rules are sound and invertible for Ł, G, and P.

Example 7.7. Consider these applications of the revised rules:

q ≤ D |C < q, p | p < A,B | p < ⊥

q ≤ D |C < q,A⊙B
(<⊙)r

(A⊙B) →C ≤ D
(→≤)r

If we use the original rules to decompose this r-hypersequent, we get (even without

expanding the top occurrence of ⊙):
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Initial R-Hypersequents

G | A ≤ A
(ID)

G | Γ,⊥≤ A
(⊥≤)

G | Γ ≤⊤
(≤⊤)

G |≤
(EMP)

G | Γ,⊥ <
(⊥<)

G | Γ,⊥ < ⊤
(<⊤)

Logical Rules: as in Fig. 7.1

Structural Rules:

G

G |H
(EW)

G |H |H

G |H
(EC)

G | Γ⊳∆

G | Γ,Π⊳∆
(W)

G | Γ1 ⊳∆1 G | Γ2 ⊳∆2

G | Γ1,Γ2 ⊳∆1,∆2

(MIX)⊳

G | Γ1,Γ2 ≤ ∆1,∆2

G | Γ1 ≤ ∆1 | Γ2 ≤ ∆2

(SPLIT)≤
G | Γ1 ≤ ∆2 G | Γ2 ⊳∆1

G | Γ1 ⊳∆1 | Γ2 < ∆2

(SPLIT)<

Fig. 7.3 The basic r-hypersequent calculus GRB

C ≤⊥,D |C ≤ A,B,D | A⊙B ≤ D

C ≤ A⊙B,D | A⊙B ≤ D
(<⊙)

≤ D |C < ⊥ |C < A,B

≤ D |C < A⊙B
(<⊙)

(A⊙B) →C ≤ D
(→≤)

Notice that in the first derivation, not only are two branches combined with (→⊳)r,

but also we avoid duplication of the formulas A, B, C, and D (which could be large).

Each upwards application of a revised rule gives only a constant increase in the

size (number of symbol occurrences) of an r-hypersequent. Hence applying these

rules upwards to an r-hypersequent G terminates with atomic r-hypersequents of

size linear in the size of G.

7.1.3 Structural Rules

The sets of valid atomic r-hypersequents are polynomial time for Ł, G, and P

(see Section 7.3), and hence could be acceptable computationally as initial r-

hypersequents of our systems. Here however, we will show that validity in the dif-

ferent logics can be distinguished using very simple initial r-hypersequents together

with structural rules. Consider first the basic system GRB presented in Fig. 7.3. It is

easy to show that the rules of GRB are sound for Ł, G, and P.

Example 7.8. The following useful initial r-hypersequent is GRB-derivable:

G | Γ,∆ ≤ ∆
(ID)g

Just use (EMP), (MIX), and (ID) to derive (∆ ≤ ∆), then apply (W) and (EW).

Calculi for Ł, G, and P can then be defined by extending GRB with rules reflecting

the characteristic properties of each logic. For G, we just add a contraction rule.
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Theorem 7.9. ⊢GRG G iff |=G G where GRG is GRB extended with:

G | Γ,Π,Π⊳Σ,Σ,∆

G | Γ,Π⊳Σ,∆
(C)

Proof. For soundness, we just note that the extra rule (C) is clearly G-sound. For

completeness, it is enough to show that all G-valid atomic r-hypersequents are

GRG-derivable. We note first that the following rules are both GRG-derivable and

G-invertible:

G | Γ1 ⊳∆ | Γ2 ⊳∆

G | Γ1,Γ2 ⊳∆
(ML)⊳

G | Γ⊳∆1 G | Γ⊳∆2

G | Γ⊳∆1,∆2
(MR)⊳

Hence we can apply these derived rules upwards to a valid atomic r-hypersequent to

obtain a valid r-hypersequent H in which all multisets on the left or right of some

⊳ contain at most one atomic formula (essentially a sequent of relations). Let H′ be

H with ⊤ replacing empty spaces on either side of ⊳. Clearly |=G H iff |=G H′ and,

by an easy induction, ⊢GRG H iff ⊢GRG H′. Moreover, we can regard H′ simply as

a set of inequalities. So by Lemma 6.9, there exists (ai ⊳i ai+1) ∈ H′ for i = 1 . . .n
such that one of the following holds:

(1) a1 = an+1 or a1 = ⊥ or an+1 = ⊤, where ⊳i is ≤ for some i ∈ {1, . . . ,n}.

(2) a1 = ⊥ and an+1 = ⊤.

In either case, we can apply (SPLIT)≤ and (MIX) or (SPLIT)< repeatedly to (ai ⊳i

ai+1) for i = 1 . . .n. For (1), we obtain one of (a1 ≤ a1), (⊥ ≤ an+1), or (a1 ≤ ⊤),
and for (2), (⊥ ⊳⊤), all of which are GRB-derivable. So ⊢GRG H′ and hence also

⊢GRG H. ⊓⊔

For Ł, we need a stronger split rule and a rule for weakening left occurrences of ⊥.

Theorem 7.10. ⊢GRŁ G iff |=Ł G where GRŁ is GRB extended with:

G | Γ1,Γ2 ⊳∆1,∆2

G | Γ1 ⊳∆1 | Γ2 < ∆2
(SPLIT)Ł

G | Γ ≤ ∆

G | Γ,⊥ < ∆
(W)⊥

Proof. For soundness it is easy to see that the extra rules (SPLIT)Ł and (W)⊥ are

Ł-sound. For completeness, we again need consider only the case where G is an Ł-

valid atomic r-hypersequent. We then proceed as in Theorem 6.24 (the completeness

of GŁ) by induction on the number of distinct variables occurring on the left of

sequents in G. We just show as before that there is an Ł-valid r-hypersequent G′ with

one fewer distinct variables on the left of sequents, such that G is GRŁ-derivable

from G′. The details (mostly repeated from the proof of Theorem 6.24) are left as an

exercise for the interested reader. ⊓⊔

Finding a calculus for P is a bit more tricky. Here we require restricted splitting and

contraction rules to cope with the special case of 0.
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Theorem 7.11. ⊢GRP G iff |=P G where GRP is GRB extended with:

G | Γ1,Γ2 ≤ ∆1,∆2 G | ⊥ < ∆2

G | Γ1 ≤ ∆1 | Γ2 < ∆2
(SPLIT)P

G | Γ,⊥,⊥⊳∆

G | Γ,⊥⊳∆
(C)⊥

Proof. Clearly (C)⊥ is sound for P. For (SPLIT)P, let v be a P-valuation. Suppose

contrapositively – disregarding the side r-hypersequent G – that (1) ⋆v
P(Γ1) > ⋆v

P(∆1)
and (2) ⋆v

P(Γ2) ≥ ⋆v
P(∆2). If ⋆v

P(∆2) = 0, then we are done. Otherwise we can mul-

tiply (1) on both sides by ⋆v
P(∆2) to get ⋆v

P(Γ1) ·⋆
v
P(∆2) > ⋆v

P(∆1) ·⋆
v
P(∆2). But then

using (2), ⋆v
P(Γ1) ·⋆

v
P(Γ2) > ⋆v

P(∆1) ·⋆
v
P(∆2) as required.

For completeness, we again need consider only a P-valid atomic r-hypersequent:

G = (Γ1 < ∆1 | . . . | Γn < ∆n | Π1 ≤ Σ1 | . . . | Πm ≤ Σm)

The case where m = 0 is fairly straightforward, so we will leave it as an exercise,

and assume m > 0. Let Ai = IP(Γi ⇒ ∆i) for i = 1 . . .n and H = (Π1 ⇒ Σ1 | . . . |
Πm ⇒ Σm). Then it follows from the definition of P-validity, that:

A1, . . . ,An |=P IP(H)

It now follows from the local deduction theorem for P (Theorem 3.43) and some ad-

ditional derivabilities in this logic, that |=P GH for some hypersequent GH obtained

from H by placing some number of copies of A1, . . . ,An on the left of sequents.

Moreover, by the completeness of GP (Theorem 6.53), we have ⊢GP GH . We can

then prove that G is GRP-derivable, proceeding by induction on the height of a GP-

derivation of any such GH . The key cases are (→⇒) and (¬⇒); for the former, we

make use of (SPLIT)P and for the latter, (SPLIT)<. ⊓⊔

Example 7.12. The following derivations illustrate how the same r-hypersequent

(q ≤ p, p | p,q < q) is proved differently in each system. In GRG, we make cru-

cial use of the (C) rule to multiply copies of p on the left:

q ≤ q
(ID)

p, p ≤ p, p
(ID)g

p ≤ p, p
(C)

p,q ≤ p, p
(W)

q ≤ p, p | p,q < q
(SPLIT)<

In GRŁ, we use the (SPLIT)Ł rule to combine sequents:

p,q,q, p,q ≤ p, p,q,q
(ID)g

q, p,q ≤ p, p,q | p,q < q
(SPLIT)Ł

q ≤ p, p | p,q < q | p,q < q
(SPLIT)Ł

q ≤ p, p | p,q < q
(EC)

Finally for GRP, we use (SPLIT)P to combine sequents, but must also take care of

the extra premise:
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p,q < q | p, p,q,q,q ≤ p, p,q,q
(ID)g

H

q ≤ p, p | p,q < q | p,q,q ≤ p, p,q
(SPLIT)P H

q ≤ p, p | q ≤ p, p | p,q < q | p,q < q
(SPLIT)P

q ≤ p, p | p,q < q
(EC)

where H = (q ≤ p, p | p,q < q | ⊥ < q) is derivable as follows, noting that (G |
Γ,⊥≤ ∆) is a derived initial r-hypersequent of GRP:

q ≤ q
(ID)

⊥≤ p, p

q ≤ p, p | ⊥ < q
(SPLIT)<

q ≤ p, p | p,q < q | ⊥ < q
(EW)

7.2 Goal-Directed Methods

Although completeness results guarantee that derivations of valid formulas exist for

our systems, and can in many cases be found by applying rules exhaustively, there is

no indication of how to apply the rules. In particular, if the structure is large, there is

no strategy for focussing on the parts that might be most relevant. In this section, we

tackle such problems by introducing a style of proof search that is “goal-directed”

in the sense that the next step is guided by the problem to be solved.

7.2.1 The Goal-Directed Methodology

Suppose that Γ is a (possibly large) collection (a set, multiset, or something more

structured) of formulas, called rather grandly a database, and A is a formula, called

the goal. Fixing a logic, we write:

Γ ⇒? A

to stand for a query “does A follow from Γ?”. Derivations for queries are called

goal-directed if the next step is determined by the form of the current goal. For

example, a complex goal might be decomposed until its atomic constituents are

reached. Atomic goals q might then be matched (if possible) with the “head” of a

formula B → q in the database, and its “body” B asked in turn.

Goal-directed proof search can also be refined, e.g. by:

1. putting constraints on databases, restricting formulas available to match goals;

2. adding control mechanisms to ensure termination such as loop-checking or “di-

minishing resources” – removing formulas used to match a goal;
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3. storing goals previously occurring in the derivation in a history and re-asking

them using “restart rules”.

Goal-directed procedures have been defined for a wide range of logics (see the his-

torical remarks at the end of this chapter). Let us just illustrate the approach here

with an algorithm for the implicational fragment of Intuitionistic Logic, adopting

the convention throughout this section of writing:

[A1, . . . ,An] → q for A1 → (A2 → . . .(An → q) . . .)

We also make use of the useful definition:

Head([A1, . . . ,An] → q) = q and Head(Γ) = {Head(A) : A ∈ Γ}

Queries for AIL→ are ordered triples of the form (Γ ⇒? A;H) where Γ is a multiset

(a set would also work fine here) of implicational formulas called the database, A

is a formula called the goal, and H is a sequence of atomic goals called the history

(writing H ∗ (q) for q appended to H). AIL→ then consists of the following rules,

written in goal-directed format with the conclusion first:

(SUCCESS) Γ ⇒? q;H succeeds if q ∈ Γ.

(IMPLICATION) From Γ ⇒? Π → q;H step to Γ,Π ⇒? q;H.

(REDUCTION) From Γ,Π → q ⇒? q;H step to Γ ⇒? A;H ∗ (q) for all A ∈ Π.

(BOUNDED-RESTART) From Γ ⇒? q;H step to Γ ⇒? p;H ∗ (q) if p follows q in H.

Derivations of queries are given by the general definitions in Chapter 3, but to reflect

the algorithmic nature of the systems, we write the initial query first, stepping to

further queries as directed by the rules.

Example 7.13. Consider the following derivation, noting that (BOUNDED-RESTART)

is needed at (2) to compensate for the removal of p → q at (1):

⇒? [(p → q) → p, p → q] → q;() (IMPLICATION)

(1) (p → q) → p, p → q ⇒? q;() (REDUCTION)

(p → q) → p ⇒? p; (q) (REDUCTION)

⇒? p → q; (q, p) (IMPLICATION)

(2) p ⇒? q; (q, p) (BOUNDED-RESTART)

p ⇒? p; (q, p,q) (SUCCESS)

A goal-directed calculus for the same fragment of Classical Logic is obtained by

liberalizing (BOUNDED-RESTART) to allow restarts from any previous atomic goal.

That is, ACL→ has the same rules as AIL→ with (BOUNDED-RESTART) replaced by:

(RESTART) From Γ ⇒? q;H step to Γ ⇒? p;H ∗ (q) if p occurs in H.
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Example 7.14. Peirce’s axioms (which are not intuitionistically valid) are derivable

in ACL→ as follows, using (RESTART) to continue the deduction at (1):

⇒? ((p → q) → p) → p;() (IMPLICATION)

(p → q) → p ⇒? p;() (REDUCTION)

⇒? p → q;(p) (IMPLICATION)

(1) p ⇒? q;(p) (RESTART)

p ⇒? p;(p,q) (SUCCESS)

7.2.2 Uniform Rules

Goal-directed queries for fuzzy logics generalize the above structures for Classical

Logic and Intuitionistic Logic. They consist of a database together with a multiset

of goals (rather than just one), and a history of previous states of the database with

goals (rather than just goals). Restarts are also allowed, but limited this time to at

most one for each multiset of goals.

Definition 7.15. A goal-directed query (query for short) Q is a structure of the form:

Γ1 ⇒
? ∆1;R1;{(Γ2 ⇒

? ∆2;R2), . . . ,(Γn ⇒
? ∆n;Rn)}

where: Γ1, . . . ,Γn are multisets of formulas called databases;

∆1, . . . ,∆n are multisets of formulas called goals;

R1, . . . ,Rn are multisets of at most one atomic formula called restarts.

Q is L-valid for L ∈ {Ł,G,P}, written |=L Q, if for every L-valuation v:

either ⋆v
L (Γi) ≤ ⋆v

L(∆i) or ⋆v
L (Γi ⊎Ri) < ⋆v

L(∆i) for some i ∈ {1, . . . ,n}.

Intuitively, the meaning of a query is that for each valuation for the logic, there

should be a state of the database where the associated goals “follow from” that

database (possibly using a restart). This will remind the reader of hypersequents –

unsurprisingly, since our algorithms are refinements of the Gentzen systems pre-

sented earlier. Note, however, that in goal-directed queries, one “sequent” is given

priority, and also there are restarts, an essentially algorithmic notion.

We could also define validity for queries by first translating into r-hypersequents.

E.g. the query:

p → q ⇒? q → r,s; [p];{(q → p ⇒? r; [])}

is L-valid iff the following r-hypersequent is L-valid:

p → q ≤ q → r,s | p → q, p < q → r,s | q → p ≤ r | q → p < r

Restart formulas give a choice for each state: either the restart is absent from the

database and the relation is “less than or equal to”, or the restart is present and the
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(IMPLICATION) From Γ ⇒? Π → q,∆;R;H step to Γ ⇒? ∆;R;H and Γ,Π ⇒? q,∆;R;H.

(L-REDUCTION) From Γ,Π → q ⇒? q,∆;R;H step to

Γ,q ⇒? Π,q,∆;R;H ∪{(Γ ⇒? q,∆;R)} and ⇒? Π; [q];H ∪{(Γ ⇒? q,∆;R)}.

(R-REDUCTION) From Γ ⇒? q,∆;R1;H ∪{(Γ′,Π → q ⇒? ∆′;R2)} step to

Γ′,q ⇒? Π,∆′;R2;H ∪{(Γ′ ⇒? ∆′;R2),(Γ ⇒? q,∆;R1)} and

⇒? Π; [q];H ∪{(Γ′ ⇒? ∆′;R2),(Γ ⇒? q,∆;R1)}.

(SWITCH) From Γ1 ⇒
? ∆1;R1;H ∪{(Γ2 ⇒

? ∆2;R2)} step to

Γ2 ⇒
? ∆2;R2;H ∪{(Γ1 ⇒

? ∆1;R1)}.

Fig. 7.4 Goal-directed implication rules

relation is “strictly less than”. More simply, however, a formula A is L-valid for

L ∈ {Ł,G,P} iff the query ⇒? A; []; /0 is L-valid.

Uniform goal-directed rules for handling implication in Ł, G, and P are presented

in Fig. 7.4. (IMPLICATION) treats a query with an implicational goal Π → q, and

steps to two further queries: one where this goal is removed, and one where Π is

added to the database and q replaces Π → q as a goal. However, if Π → q is the only

goal, then a (derived) rule with one premise is sufficient, i.e.

(IMPLICATION)1 From Γ ⇒? Π → q;R;H step to Γ,Π ⇒? q;R;H.

The presence of an implicational formula in a state of the database is treated by two

rules. Local reduction (L-REDUCTION) and remote reduction (R-REDUCTION) treat

the cases where a goal matches the head of a formula in the current database, and in

a database of a history state, respectively. Finally, unlike previous calculi, we make

use of a rule (SWITCH) that switches the current state to one in the history.

Example 7.16. We illustrate these rules with a simple example:

⇒? {p, p → q}→ q; []; /0 (IMPLICATION)1

p, p → q ⇒? q; []; /0 (L-REDUCTION)

/ \

p,q ⇒? p,q; [];{(p ⇒? q; /0)} ⇒? p; [q];{(p ⇒? q; /0)}

Lemma 7.17. The implication rules are L-sound and L-invertible for L ∈ {Ł,G,P}.

Proof. We just check (L-REDUCTION), assuming (harmlessly) that the common

part H of the histories of the premises and conclusion is empty. Let v be an

L-valuation for L ∈ {Ł,G,P}. Suppose first that ⋆v
L(Π) ≤ v(q), and hence that
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v(Π → q) = 1. Clearly, both premises hold if the conclusion holds, since (Γ ⇒?

q,∆;R) is present in both histories. Moreover, if the premises hold, then, using

the first premise for ⋆v
L(Π) = v(q) = 1, and the second otherwise, the conclusion

holds. Now assume that ⋆v
L(Π) > v(q). Clearly, the second premise holds. For G,

v(Π → q) = v(q), and for Ł and P, we can use the fact that for any Γ′, ∆′, and

⊳ ∈ {≤,<}:

⋆v
L(Γ′⊎ [Π → q])⊳⋆v

L(∆′) iff ⋆v
L (Γ′⊎ [q])⊳⋆v

L(∆′⊎Π) or ⋆v
L (Γ′)⊳⋆v

L(∆′)

So in all cases the conclusion holds iff the first premise holds. ⊓⊔

The implication rules decompose formulas occurring in the query into subformulas.

Hence, assuming a loop-checking mechanism to stop (SWITCH) repeating ad infini-

tum, these rules terminate with queries where all goals are atomic and fail to match

the head of any non-atomic database formula. Recall that for a multiset of formulas

Γ, Set(Γ) is just the set of members of Γ.

Definition 7.18. A query Γ1 ⇒
? ∆1;R1;{(Γ2 ⇒

? ∆2;R2), . . . ,(Γn ⇒
? ∆n;Rn)} is ir-

reducible if for each i = 1 . . .n:

1. ∆i is atomic.

2. Γi = Πi⊎Σi where Σi is atomic and Head(Π1⊎ . . .⊎Πn)∩Set(∆1⊎ . . .⊎∆n) = /0.

Proposition 7.19. Applying the implication rules with (SWITCH) to queries (using

loop-checking for applications of (SWITCH)) terminates with irreducible queries.

Moreover, if an irreducible query is valid for some logic, then by removing non-

atomic database formulas from the query, we obtain an atomic query that is also

valid. That is, we can disregard “irrelevant” parts of the databases.

Lemma 7.20. Let L ∈ {Ł,G,P} and suppose that the following conditions hold:

1. |=L Γ1,Π1 ⇒
? ∆1;R1;{(Γ2,Π2 ⇒

? ∆2;R2), . . . ,(Γn,Πn ⇒
? ∆n;Rn)}.

2. Γi and ∆i are atomic for i = 1 . . .n.

3. Head(Π1 ⊎ . . .⊎Πn)∩Set(∆1 ⊎ . . .⊎∆n) = /0.

Then |=L Γ1 ⇒
? ∆1;R1;{(Γ2 ⇒

? ∆2;R2), . . . ,(Γn ⇒
? ∆n;Rn)}.

Proof. Suppose that 6|=L Γ1 ⇒? ∆1;R1;{(Γ2 ⇒? ∆2;R2), . . . ,(Γn ⇒? ∆n;Rn)} for a

contradiction. This means that there is an L-valuation v such that ⋆v
L(Γi) > ⋆v

L(∆i)
and ⋆v

L(Γi ⊎Ri) ≥ ⋆v
L(∆i) for i = 1 . . .n. We define a new L-valuation w as follows:

w(q) =

{

1 if q ∈ Head(Π1 ⊎ . . .⊎Πn)

v(q) otherwise

Using the fact that Head(Π1 ⊎ . . .⊎Πn)∩Set(∆1 ⊎ . . .⊎∆n) = /0, we get ⋆w
L(∆i) =

⋆v
L(∆i) for i = 1 . . .n. It also follows that ⋆w

L(Πi) = 1, ⋆w
L(Γi)≥ ⋆v

L(Γi), and ⋆w
L(Ri)≥

⋆v
L(Ri) for i = 1 . . .n. Hence ⋆w

L(Πi⊎Γi) > ⋆w
L(∆i) and ⋆w

L(Πi⊎Γi⊎Ri)≥ ⋆w
L(∆i) for

i = 1 . . .n. So 6|=L Γ1,Π1 ⇒
? ∆1;R1;{(Γ2,Π2 ⇒

? ∆2;R2), . . . ,(Γn,Πn ⇒
? ∆n;Rn)},

a contradiction. ⊓⊔
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Since the implication rules are both sound and invertible for Ł, G, and P, and termi-

nating (modulo loop-checking for (SWITCH)), we are able to reduce checking the

validity of a query in these logics to checking the validity of irreducible queries,

which reduces in turn (by Lemma 7.20) to checking the validity of atomic queries.

An exponential growth in the size of queries is avoided, as for r-hypersequents,

by defining rules that introduce new variables during the reduction process:

(L-REDUCTION)r From Γ,Π → q ⇒? q,∆;R;H step to

Γ,q ⇒? q,∆;R;H and ⇒? p,Π; [q];H ∪{(Γ, p ⇒? q,∆;R)}

where p is a new variable.

(R-REDUCTION)r From Γ ⇒? q,∆;R1;H ∪{(Γ′,Π → q ⇒? ∆′;R2)} step to

Γ ⇒? q,∆;R1;H ∪{(Γ′,q ⇒? ∆′;R2)} and

⇒? Π, p; [q];H ∪{(Γ ⇒? q,∆;R1),(Γ
′, p ⇒? ∆′;R2)}

where p is a new variable.

7.2.3 Goal-Directed Systems

The uniform goal-directed rules given above provide algorithms for reducing impli-

cational queries to atomic queries which can then be tested for validity using some

method such as linear programming (see Section 7.3). However, to obtain a full al-

gorithmic interpretation for the implicational fragments of Ł, G, and P we require

further rules. Let us begin by defining a basic stock of rules that work for all three

logics, featuring a new rule that allows the combination of databases and goals.

Definition 7.21. AB→ consists of the implication rules and:

(COMBINE) From Γ1 ⇒
? q,∆1;R1;H ∪{(Γ2,q ⇒? ∆2;R2)} step to

Γ1,Γ2 ⇒
? ∆1,∆2; [];H ∪{(Γ1 ⇒

? q,∆1;R1),(Γ2,q ⇒? ∆2;R2)}.

Calculi for Ł, G, and P may be defined by extending AB→ with different restart and

success rules. We first consider G.

Theorem 7.22. ⊢AG→ Q iff |=G Q where AG→ is AB→ extended with:

(SUCCESS)G Γ ⇒? ∆;R;H if Set(∆) ⊆ Set(Γ).

(RESTART)G From Γ1 ⇒
? q,∆1;R;H ∪{(Γ2 ⇒

? ∆2; [q])} step to

Γ1,Γ2 ⇒
? ∆1,∆2; [];H ∪{(Γ1 ⇒

? q,∆1;R),(Γ2 ⇒
? ∆2; [q])}.

Proof. For the left-to-right direction, it is sufficient to check the AG→-soundness of

(COMBINE), (SUCCESS)G, and (RESTART)G (an easy exercise). For the right-to-left

direction, we first note the following fact, proved by induction on the height of an

AG→-derivation:

If ⊢AG→ Γ ⇒? ∆1,R;H and ⊢AG→ Γ ⇒? ∆2,R;H, then ⊢AG→ Γ ⇒? ∆1,∆2,R;H.



7.2 Goal-Directed Methods 191

This means that not only can we assume, using Proposition 7.19 and Lemma 7.20

that Q = (Γ1 ⇒
? ∆1;R1;{(Γ2 ⇒

? ∆2;R2), . . . ,(Γn ⇒
? ∆n;Rn)}) is atomic, but also

that |∆i| = 1 for i = 1 . . .n.

Suppose now that |=G Q. Then the following set of inequalities is valid:

n⋃

i=1

{p ≤ q : p ∈ Γi and q ∈ ∆i}∪
n⋃

i=1

{p < q : p ∈ Ri and q ∈ ∆i}

Hence using Lemma 6.9, there is a sequence (pi ⊳i pi+1) with ⊳i ∈ {≤,<} for i =
1 . . .m such that p1 = pm+1 and without loss of generality, ⊳1 is ≤. We prove that

Q is derivable by induction on m. If m = 1, then we have ∆ j = [p1] and p1 ∈ Γ j

for some j ∈ {1, . . . ,n} and Q is derivable using (SWITCH) and (SUCCESS)G. If

m > 1, then we have (p1 ≤ p2) and also (p2 < p3) or (p2 ≤ p3). If we have the first,

then there is p2 ∈ ∆i and p2 ∈ R j for some i, j ∈ {1, . . . ,m}. But then by applying

(SWITCH) and (RESTART)G, we obtain (Γi,Γ j ⇒
? p3;R′;H ′). Since p1 ∈ Γi, we

can shorten the sequence by replacing (p1 ≤ p2) and (p2 < p3) with (p1 ≤ p3),
and apply the induction hypothesis. The other case is very similar, making use of

(COMBINE). ⊓⊔

Theorem 7.23. ⊢AŁ→ Q iff |=Ł Q where AŁ→ is AB→ extended with:

(SUCCESS)Ł Γ,∆ ⇒? ∆;R;H

(RESTART)Ł From Γ1 ⇒
? q,∆1;R1;H ∪{(Γ2 ⇒

? ∆2;R2)}

where q ∈ R1 ⊎R2, let R = (R1 ⊎R2)⊖ [q], and step to

Γ1,Γ2 ⇒
? ∆1,∆2;R;H ∪{(Γ1 ⇒

? q,∆1;R1),(Γ2 ⇒
? ∆2;R2)}.

Proof. Proving the soundness of (COMBINE), (SUCCESS)Ł, and (RESTART)Ł, and

hence AŁ→ for Ł, is left as an exercise in elementary arithmetic. For the right-

to-left direction, it is sufficient to consider an Ł-valid atomic query Q = (Γ1 ⇒?

∆1;R1;{(Γ2 ⇒
? ∆2;R2), . . . ,(Γn ⇒

? ∆n;Rn)}). Using the fact that the corresponding

r-hypersequent is Ł-valid, and the completeness of the calculus GRŁ, we obtain

λ1,µ1, . . . ,λn,µn ∈ N such that λi > 0 for some 1 ≤ i ≤ n and:

n⊎

i=1

∆
λi+µi

i ⊆
n⊎

i=1

Γ
λi+µi

i ⊎R
µi

i

We show that Q succeeds in AŁ→ by induction on γ = ∑
n
i=1(λi + µi). If γ = 1

then ∆i ⊆ Γi for some 1 ≤ i ≤ n. So Q succeeds by an application of (SWITCH) if

necessary and (SUCCESS)Ł. For γ > 1 we consider i such that λi > 0. If ∆i ⊆ Γi,

then again we are done by (SWITCH) if necessary and (SUCCESS)Ł. Otherwise, we

have q ∈ ∆i where one of the following cases occurs:

1. q ∈ Γ j for some j 6= i with λ j > 0. Since we can always apply (SWITCH), we

assume without loss of generality that i = 1 and j = 2. By applying (COMBINE)

to Q we obtain a query Q′:
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Γ1,Γ2 ⊖ [q] ⇒? ∆1 ⊖ [q],∆2; [];{(Γ1 ⇒
? ∆1;R1), . . . ,(Γn ⇒

? ∆n;Rn)}

If λ1 ≥ λ2, then:

∆
λ1−λ2
1 ⊎ (∆1 ⊖ [q]⊎∆2)

λ2 ⊎∆′ ⊆ Γ
λ1−λ2
1 ⊎ (Γ1 ⊎Γ2 ⊖ [q])λ2 ⊎Γ′

for ∆′ =
⋃n

i=3 ∆
λi
i ⊎

⋃n
i=1 ∆

µi

i and Γ′ =
⋃n

i=3 Γ
λi
i ⊎

⋃n
i=1(Γi⊎Ri)

µi . But (λ1−λ2)+
λ2 +∑

n
i=3 λi +∑

n
i=1 µi < λ . So by the induction hypothesis, Q′ succeeds in AŁ→

and we are done. The case where λ2 ≥ λ1 is very similar.

2. q ∈ R j for some j with µ j > 0. If i 6= j, then without loss of generality we

assume that i = 1 and j = 2. Otherwise i = j and observe that either ∆i ⊆ Γi

and we can apply (SUCCESS)Ł, or there exists k 6= i such that either λk > 0 or

µk > 0. If the latter, then assume without loss of generality that i = 1 and k = 2.

Now, in both cases, by applying (RESTART)Ł we obtain:

Q′ = Γ1,Γ2 ⇒
? ∆1 ⊖ [q],∆2;R1;{(Γ1 ⇒

? ∆1;R1), . . . ,(Γn ⇒
? ∆n;Rn)}

We then proceed similarly to above, considering λ1 ≤ µ2 and µ2 ≤ λ1. ⊓⊔

A similar but more complicated system can also be provided for P. We leave finding

suitable rules as an exercise for the interested reader.

Example 7.24. Consider the following atomic query:

p ⇒? q; [q];{(q ⇒? p, p; [])}

For AG→, we apply (COMBINE) to obtain:

p,q ⇒? q, p, p; [];{(p ⇒? q; [q]),(q ⇒? p, p; [])}

which succeeds by (SUCCESS)G since {q, p, p} ⊆ {p,q}. For AŁ→ on the other

hand, we first apply the (RESTART)Ł rule of AŁ→ to obtain:

p,q ⇒? p, p; [];{(p ⇒? q; [q]),(q ⇒? p, p; [])}

We then apply (COMBINE) to get:

p,q, p ⇒? p, p,q; [];{(p ⇒? q; [q]),(q ⇒? p, p; []),(p,q ⇒? p, p; [])}

which succeeds by (SUCCESS)Ł.

7.3 Complexity

A good proof system can often be useful in establishing the complexity class for the

validity problem of a logic L, namely, the problem of determining whether a formula

in the appropriate language is or is not L-valid. Here we show that this is indeed the
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case for several important fuzzy logics, referring to [92] for basic definitions on

complexity.

7.3.1 Co-NP-Hardness

We show first that all the fuzzy logics considered here are co-NP-hard. This is ac-

complished as usual by giving a linear translation of a problem already known to be

co-NP-hard (in this case validity in Classical Logic) into a validity checking prob-

lem for the logic in question.

Theorem 7.25. Let HL be any HUL−-extension such that |=CL A whenever |=L A.

Then the validity problem for L is co-NP-hard.

Proof. Consider a formula of the form:

A =
∨

i∈I

∧

j∈Ji

Li j where each Li j is of the form p or ¬p.

It is well known that the problem of checking the validity of such formulas for Clas-

sical Logic is co-NP-hard [63]. Here we define a linear translation from formulas of

this form to formulas in the language LF = {∧,∨,⊙,→, f,e} as follows:

Ac =
∨

i∈I

∧

j∈Ji

Lc
i j where pc = p⊕ p and (¬p)c = ¬(p⊙ p).

Then to establish the theorem it is sufficient to show:

|=CL A iff |=L Ac

For the right-to-left direction, observe that if |=L Ac, then by assumption, |=CL Ac.

But for all CL-algebras (term equivalent to Boolean algebras), x⊕x = x and x⊙x =
x, so |=CL A. For the other direction, we use distributivity properties of both CL and

L to obtain formulas:

B =
∧

m∈M

∨

n∈Nm
L′

mn where each L′
mn is of the form p or ¬p;

Bc =
∧

m∈M

∨

n∈Nm
L′c

mn where pc = p⊕ p and (¬p)c = ¬(p⊙ p);

such that |=CL A iff |=CL B and |=L Ac iff |=L Bc.

Suppose that |=CL A. Then |=CL B. So for every m ∈ M, there exists n,n′ ∈ Nm

such that L′
mn is p and L′

mn′
is ¬p. But |=UL− (p⊕ p)∨¬(p⊙ p), so also |=L Bc.

Hence finally |=L Ac as required. ⊓⊔

A couple of the logics that we have considered, A and CHL, do not quite fit the

pattern of the above theorem. However, recall the embedding of Ł into A defined in

Theorem 6.35: |=Ł A iff |=A A∗. Since we have just shown that checking Ł-validity
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is co-NP-hard, and the translation ∗ is O(cp(A)), it follows that checking A-validity

must also be co-NP hard. Moreover, there exists a very similar embedding of Ł into

CHL. Hence we can extend our results to obtain:

Theorem 7.26. The validity problems for A and CHL are co-NP-hard.

We will show below that several important fuzzy logics (including the three funda-

mental logics, A, and CHL) are in fact co-NP-complete, although this is not expected

to be the case in general for this family of logics.

7.3.2 Bi-Coloured Graphs

We turn our attention first to Gödel Logic, the logic of order. In this case, as seen in

Chapter 6, checking the validity of formulas can be reduced to checking the validity

of sets of inequalities. A nice “visual” way of showing that this latter problem is

polynomial time is to view each set of inequalities W as a bi-coloured graph GW =
〈V,E〉 where:

• the vertices V of GW are ⊤, ⊥, and the variables occurring in W ;

• the edges E are ordered triples 〈a,b,⊳〉 for each a ⊳ b ∈ W , representing a di-

rected arrow between vertices a and b with “colour” ⊳ ∈ {≤,<}.

A sequence of vertices a1, . . . ,an such that 〈ai,ai+1,⊳〉 ∈E for i = 1 . . .n−1 is called

a path, and a cycle if additionally a1 = an. If there is a path from a to b, then b is

called reachable from a.

Recall that a set of inequalities W is valid iff it satisfies one of the conditions in

Lemma 6.9, or in terms of bi-coloured graphs, iff GW has one of the following:

(1) A cycle passing through a ≤-edge.

(2) A path from ⊥ passing through a ≤-edge.

(3) A path leading to ⊤ passing through a ≤-edge.

(4) A path from ⊥ to ⊤.

Theorem 7.27. Checking the validity of a set of inequalities is polynomial time.

Proof. Let n be the number of symbols occurring in W – called the size of W . We

describe an O(n)-time algorithm (i.e. requiring a number of steps linear in the size

of W ) that returns TRUE if GW satisfies one of the above conditions (1)–(4) and

FALSE otherwise. As a preliminary step we first make the following changes to W

to obtain a new set of inequalities W ′.

1. We add ⊤≤⊥ and p < ⊥ and ⊤ < p for every variable p occurring in W .

2. We remove all inequalities of the form p < p.

It is easy to see that this can be accomplished in polynomial time and that the size

of W ′ is linear in the size of W . Moreover, conditions (1)–(4) above hold for GW iff

condition (1) holds for GW ′ .
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To check the latter, we use a standard linear-time algorithm to compute the

strongly-connected components (SCCs) of the graph: maximal subgraphs where ev-

ery vertex is reachable from every other vertex. Briefly, the algorithm makes a depth-

first traversal of GW ′ = (V,E) and then a depth-first traversal of the transposed graph

GT
W ′ of GW ′ (that is, the graph containing the edges (b,a,⊳) such that (a,b,⊳) ∈ E)

considering the vertices in a special order determined by the first traversal. The

complexity of the SCC algorithm is O(n). For our purposes, we assume that the al-

gorithm returns a function scc : V → V where for each vertex a ∈ V , scc(a) is one

vertex in the same SCC of a and scc(a) = scc(b) iff a and b are in the same SCC.

We then observe that there is a cycle in GW ′ passing through a ≤-edge iff there is

a ≤-edge connecting two vertices in the same SCC. Thus for each edge (a,b,≤), we

just check whether scc(a) = scc(b), returning TRUE if we find one edge satisfying

this condition and FALSE otherwise. Clearly this step is O(n), and so the complexity

of the whole algorithm is O(n). ⊓⊔

Hence checking G-validity for atomic sequent of relations, and by Lemma 6.8, im-

plicational sequents, is polynomial time.

Theorem 7.28. The validity problem for G is co-NP-complete.

Proof. We have already established co-NP-hardness. To show co-NP-inclusion, we

make use of the sequent of relations calculus GGs in the language with connectives

∧, →, and ⊥. First observe that the following rules are derivable in this calculus:

G | A1 ≤ q | . . . | An ≤ q |C ≤ q

G |C ≤ A1 → A2 → . . .An → q

G | A1 ≤ q | . . . | An ≤ q |C < q G |C < ⊤

G |C < A1 → A2 → . . .An → q

We check the non-validity of a formula A by applying the rules of GGs upwards, us-

ing the above derived rules instead of (<→) and (≤→) and restricting (∧⊳) to cases

where the right hand side is atomic. Choosing any branch of the resulting derivation

tree non-deterministically, the leaf is an atomic sequent of relations S. Moreover,

since each application of a rule strictly reduces the number of connectives in the

sequent of relations, we get that both the length of the branch and |S| are O(cp(A)).
But the previous theorem tells us that checking the validity of S is polynomial time.

So since the soundness and invertibility of the rules preserves validity in both direc-

tions, checking the non-validity of A is in NP. ⊓⊔

7.3.3 Linear Programming

Just as checking validity for Gödel Logic – the logic of order – can be translated

into a graph problem, so checking validity in Łukasiewicz Logic – the logic of

magnitude – can be translated into a linear programming problem. More precisely,

the Ł-validity of a strictly atomic hypersequent corresponds to the existence of a

solution for a linear programming problem involving linear inequalities over the
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reals. As we will see, similar correspondences hold also for a number of related

logics, including Product Logic and Abelian Logic.

Definition 7.29. Let x̄ = (x1, . . . ,xn) be a vector of variables, b̄ = (b1, . . . ,bm) a vec-

tor of integers, and A an m × n integer matrix. The strict inequalities feasibility

problem (SIF-problem) is to check whether Ax̄ > b̄ has a solution over R.1

The key to our complexity proofs is the following result from the linear program-

ming literature, based on the proof of Khachiyan [128] that the standard linear pro-

gramming problem is polynomial (see also [193] for details).

Theorem 7.30 ([128]). The SIF-problem is polynomial time.

So to show that checking the L-validity of a strictly atomic hypersequent G for some

logic L is polynomial, it is sufficient to find an integer matrix A and integer vector b̄

linear in the size of G such that 6|=L G iff Ax̄ > b̄ for some x̄ ∈ R. Consider then:

G = (Γ1 ⇒ ∆1 | . . . | Γm ⇒ ∆m) containing variables p1, . . . , pn.

For CHL, Ł, or P, the strictly atomic hypersequent G is valid iff the formula I(G) is

valid in the CHL-algebra (since the hypersequent calculi for these logics share the

same structural rules):

ACHL = 〈(−∞,0],min,max,+,→CHL,0,0〉 where x →CHL y = min(0,y− x).

The idea now is to convert each sequent of G into an inequality over the variables

p1, . . . , pn. Since the coefficients in these inequalities come from the number of oc-

currences of each variable, we revisit the original definition of multisets and suppose

that Γi = 〈FmLF
, fi〉 and ∆i = 〈FmLF

,gi〉. We will also need to represent – using ad-

ditional inequalities – the fact that the values of the variables should be in (−∞,0]
rather than the whole of R.

Let b̄ be the zero m+n-vector, and define A = (ai j) as the (m+n)×n matrix:

ai j =







fi(p j)−gi(p j) for i = 1 . . .m

−1 for i = m+ j

0 otherwise

Then Ax̄ > b̄ for some x̄ ∈ R iff for some ACHL-valuation v:

∑[v(q) : q ∈ Γ j] > ∑[v(q) : q ∈ ∆ j] for j = 1 . . .m.

But easily this latter condition holds iff I(G) is not ACHL-valid.

A similar translation works also for A and CRL using the fact that in these cases,

a strictly atomic hypersequent G is valid iff it is valid in R. Hence:

1 The standard linear programming problem refers to maximizing or minimizing a linear function
with respect to (non-strict) linear inequalities over the reals. However, the problem that we consider
here can be treated using the same techniques; we refer to [193] for details.
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Proposition 7.31. The problem of checking |=L G for a strictly atomic hypersequent

G is polynomial time for L ∈ {Ł,CHL,P,A,CRL}.

Co-NP-hardness for these logics was established in Theorems 7.25 and 7.26. To

show co-NP-inclusion we make use of the above proposition and a relevant hyper-

sequent calculus. First, to ensure that backward application of logical rules does not

increase the size of hypersequents exponentially, we consider the following revised

rules for implication left:

G | Γ, p ⇒ ∆ | B ⇒ p,A

G | Γ,A → B ⇒ ∆

G | Γ,¬A ⇒ ∆ G | Γ, p ⇒ ∆ | B ⇒ p,A

G | Γ,A → B ⇒ ∆

where p does not occur in the conclusion in either rule.

The left rule is sound and invertible for CHL and Ł, and the right rule is sound

and invertible for P. Hence to check the non-validity of a formula A for one of

these logics, we apply the appropriate rule together with the remaining sound and

invertible logical rules of GCHL, GŁ, or GP+ backwards exhaustively, choosing a

branch non-deterministically. This branch will have length O(cp(A)) and end with

a hypersequent G of size O(cp(A)) that is strictly atomic for CHL, atomic for Ł, and

atomic except for occurrences of the form ¬p on the left of sequents for P. By the

previous proposition, checking the validity of G is polynomial time for CHL. For Ł,

we obtain the same result by adding extra sequents (p ⇒⊥) to G for each variable p

occurring in G and treating ⊥ as a variable. For P, we can follow the completeness

proof of Theorem 6.51: essentially we just have to check whether p also occurs on

the left in some sequent in which case the hypersequent is valid, or not, in which

case ¬p can be removed without affecting validity. The cases of A and CRL are very

similar, so we have:

Theorem 7.32. The validity problem for L∈{Ł,A,P,CHL,CRL} is co-NP-complete.

We have used certain proof systems for our logics to establish these complexity re-

sults. We can think of the systems as providing algorithms of “optimal complexity”

(in some sense) for the logics. Finally, we remark that it is not hard using the above

methods to show that checking the validity of atomic r-hypersequents for Ł and P

is polynomial. This is also the case for G, but requires the more complicated tech-

niques of [124]. This is important because it means that applying the uniform rules

of Section 7.1 has some value: it reduces co-NP-complete problems to polynomial

time problems.

7.4 Historical Remarks

The uniform relational hypersequent approach for the fundamental fuzzy logics

was introduced by Ciabattoni, Fermüller, and Metcalfe in their 2005 paper [50].

Also presented in this work was a dialogue game interpretation of the rules based
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Table 7.1 Decidability and complexity results for fuzzy logics

Logic Validity problem References

Ł co-NP-complete [104, 159]
G co-NP-complete [105]
P co-NP-complete [105]
A co-NP-complete [219]

CHL co-NP-complete [78]
CRL co-NP-complete [87]
BL co-NP-complete [23]
SBL co-NP-complete [23]
IUML co-NP-complete [138]
UML co-NP-complete [138]
MTL Decidable [172]
IMTL Decidable [172]
SMTL Decidable [172]
MTLn Decidable [122]
IMTLn Decidable [122]
PMTL Decidable [120]

UL Unknown N/A
IUL Unknown N/A

on the “Giles game” reading of GŁ treated in Chapter 6. Generalizations of the r-

hypersequent approach for Basic Logic BL and related logics have been proposed

by Bova and Montagna [37] and Vetterlein [213]; we will discuss these briefly in

Chapter 9.

The main ideas underlying the goal-directed methodology originated in a 1984

paper by Gabbay and Reyle [89] that introduced extensions of logic programming

capable of hypothetical reasoning. These ideas were further developed and extended

to a wide range of non-classical logics in the 2000 monograph of Gabbay and

Olivetti [88], and to fuzzy logics (as presented in this chapter) by the current authors

in [145, 147]. The closely related Uniform Proof paradigm, developed by Miller and

others in the early 1990s (see e.g. [115, 150]), has been used as the basis for logic

programming in various non-classical (but not fuzzy) logics.

The theory of NP-completeness and complexity has its roots in the work on

computability of Turing, Church, Gödel, and others in the 1930s. NP-completeness

itself was defined in the fundamental paper of Cook in 1971 [63], and developed

further by a number of researchers, including Karp and Levin (see [92] for details).

For fuzzy logics, co-NP-completeness for Łukasiewicz Logic was established by

Mundici in 1987 [159], essentially by reducing the validity of a formula in Ł to va-

lidity in a finite-valued Łukasiewicz logic. A further proof using mixed integer pro-

gramming, more closely related to the one given in this chapter, appears in the 1993

monograph of Hähnle [104]. Co-NP-completeness for Gödel Logic was folklore, but

proofs of this and the same result for Product Logic may be found in Hájek’s [105].

The proof given for Gödel Logic in this chapter, and the correspondence with bi-

coloured graphs, bears some resemblance to the approach of Larchey-Wendling
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in [131]. In [23] it was shown by Baaz et al. that Hájek’s Basic Logic BL is also

co-NP-complete. Similar techniques were subsequently used by Hanikova to show

that the same result holds for any continuous t-norm based logic [114].

Results for other fuzzy logics have a variety of sources. MTL, IMTL, and SMTL,

were proved to be decidable (with no known complexity bound) by Ono in [172]

using the Finite Embeddability Property technique developed by Blok and Van Al-

ten [35]. Regarding logics without weakening, co-NP-completeness was established

for abelian ℓ-groups and hence also for A by Weispfenning [219], for CHL by Es-

teva et al. [78], for CRL by Gabbay and Metcalfe in [87], and for IUML and UML

by Marchioni and Montagna [138]. Finally, we remark that the decidability or oth-

erwise of the validity problems for UL and IUL is unknown. Table 7.1 summarizes

the known situation.
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Chapter 8

First-Order Logics

So far – mostly for clarity – we have considered logics and proof systems only

at the propositional level. However, as we will see below, many of the methods

and results described in previous chapters transfer unscathed to first-order logics.

That is, for many fuzzy logics, we can extend Hilbert and Gentzen systems with

axioms and rules for the universal and existential quantifiers ∀ “for all” and ∃ “there

exists”, and obtain completeness with respect to classes of residuated lattices and

even uninorm-based standard algebras.1 Moreover, although (as we show) all these

logics are undecidable, analogues of Herbrand’s theorem and Skolemization – the

twin pillars of theorem proving in Classical Logic – can be established for their

prenex fragments.

Not all of our efforts for propositional logics transfer so easily, however. Gödel

Logic excepted, the first-order versions of the logics of Chapter 6 – Łukasiewicz

Logic, Product Logic, etc. – are not recursively axiomatizable. There is no hope

in these cases of defining complete Hilbert or Gentzen systems by adding finitely

many rule schema. Nevertheless, for first-order Łukasiewicz Logic at least, some

interesting results can be obtained. Although the usual Herbrand theorem fails in

this case, we show that an “approximate” version holds instead. Also, we use this

fact first to prove that Skolemization holds, and then to establish completeness for a

cut-free hypersequent calculus with an infinitary rule.

8.1 Syntax and Semantics

The core elements of our first-order languages will be taken directly from Classical

Logic, including here also the connectives of an underlying propositional language.

To simplify our presentation, we will assume as in the propositional case that our

first-order languages are all countable. Recall that the arity n of a symbol is just a

1 The fascinating topic of generalized quantifiers is not considered here, although operations for-
malizing linguistic notions such as many and almost all are certainly very relevant for Fuzzy Logic.

201
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natural number (possibly 0) representing the number of arguments accepted by the

symbol, which is then called n-ary.

Definition 8.1. A (countable) first-order language L comprises:

• A (countable) non-empty set P of predicate symbols with associated arities.

• A (countable) set F of function symbols with associated arities.

• A (countable) set X of object variables.

• A (countable) set C of connectives with associated arities.

The set of L-terms is the smallest set such that:

(1) Each x ∈ X is an L-term.

(2) If t1, . . . , tn are L-terms, then f (t1, . . . , tn) is an L-term for each n-ary f ∈ F .

The set of L-formulas FmL is the smallest set such that:

(1) p(t1, . . . , tn) ∈ FmL for each n-ary p ∈ P and L-terms t1, . . . , tn.

(2) ⋆(A1, . . . ,An) ∈ FmL for each n-ary ⋆ ∈ C and A1, . . . ,An ∈ FmL .

(3) (∀x)A ∈ FmL and (∃x)A ∈ FmL for each A ∈ FmL and x ∈ X .

The subformulas of a formula are defined inductively by:

(1) A is a subformula of A for all A ∈ FmL .

(2) Each subformula of Ai for i = 1 . . .n is a subformula of ⋆(A1, . . . ,An) for each

n-ary ⋆ ∈ L and A1, . . . ,An ∈ FmL .

(3) Each subformula of B is a subformula of (∀x)B and (∃x)B.

The scope of quantified subformulas (∀x)B and (∃x)B in a formula A is B, where all

occurrences of x in B are bound by the occurrence of (∀x) or (∃x), respectively. Any

variable occurrence in A that is not bound is free. An L-formula A is an L-sentence

if there are no free occurrences of variables in A. A set of L-sentences T is called

an L-theory.

The complexity of an L-formula is defined inductively by:

(1) cp(p(t1, . . . , tn)) = 1 for all n-ary p ∈ P and L-terms t1, . . . , tn.

(2) cp(⋆(A1, . . . ,An)) = 1+∑
n
i=1 cp(Ai) for all n-ary ⋆ ∈ C and A1, . . . ,An ∈ FmL .

(3) cp((∀x)A) = cp((∃x)A) = cp(A)+1 for all A ∈ FmL and x ∈ X .

We call formulas with complexity 1, atoms or atomic formulas.

For convenience, we call a predicate symbol p with arity 0, a propositional variable,

and a function symbol c with arity 0, an (object) constant. We also write L′ ≥ L to

mean that the language L′ is an extension of the language L with at most countably

many new propositional variables and constants.

We write x̄ for a sequence of variables x1, . . . ,xn and (Qx̄) to mean a sequence of

quantifiers (Q1x1) . . .(Qnxn) where Qi ∈ {∀,∃} for i = 1 . . .n. We write A(x1, . . . ,xn)
or A(x̄) to mean that the free variables of A are among x1, . . . ,xn. We also denote the

result of replacing all free occurrences of xi by ti for i = 1 . . .n in A(x̄, ȳ) by A(t̄, ȳ).
Finally, an existential formula is of the form (∃x̄)P(x̄) and a prenex formula is of the

form (Qx̄)P(x̄) where P is quantifier-free.
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Formulas are interpreted using algebras – here, (bounded) pointed commutative

residuated lattices – as in the propositional case.

Definition 8.2. For a first-order language L, an algebra A for L is an algebra with

operations of the same arity as the connectives in C. An A-structure for L is a triple:

M = (M,(pM)p∈P ,( fM) f∈F )

where M is a non-empty set called the domain, and:

1. fM is a function Mn → M for each n-ary f ∈ F .

2. pM is a function Mn → LA for each n-ary p ∈ P .

Note that this definition includes the cases where f is a constant (nullary function

symbol) and fM is a member of M, and where p is a propositional variable (nullary

predicate symbol) and pM is a member of LA.

We take care of free variables by defining additional assignments from variables

into the domain.

Definition 8.3. Let A be an algebra for L and let M be an A-structure for L:

• An M-assignment is a function m : X → M.

• For an M-assignment m, x ∈ X , and d ∈ M, let:

m[x → d](y) =

{

d if x = y

m(y) otherwise

Let us assume from now on that L is a first-order language with connectives

from one of the propositional languages LB = {∧,∨,⊙,→, f,e,⊥,⊤} or LF =
{∧,∨,⊙,→, f,e}, so that algebras for L have a natural order defined by x ≤ y iff

x∧ y = x. We define the value of a formula in a structure inductively as in the clas-

sical case, interpreting the quantifiers using suprema and infima. The only problem

here is that certain suprema and infima of sets in LA might not exist in LA. One

possibility then is to consider only structures where they do exist (e.g. based on

complete algebras). Here instead we just leave such values undefined.

Definition 8.4. For an algebra A for L, an A-structure M, and M-assignment m:

‖x‖A
M,m = m(x)

‖ f (t1, . . . , tn)‖
A
M,m = fM(‖t1‖

A
M,m, . . . ,‖tn‖

A
M,m) for all n-ary f ∈ F

‖p(t1, . . . , tn)‖
A
M,m = pM(‖t1‖

A
M,m, . . . ,‖tn‖

A
M,m) for all n-ary p ∈ P

For each n-ary ⋆ ∈ C, if ‖A1‖
A
M,m, . . . ,‖An‖

A
M,m are all defined, then:

‖⋆ (A1, . . . ,An)‖
A
M,m = ⋆(‖A1‖

A
M,m, . . . ,‖An‖

A
M,m)

otherwise ‖⋆ (A1, . . . ,An)‖
A
M,m is undefined.
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If ‖A‖A
M,m[x→d] is defined for all d ∈ M, then:

‖(∀x)A‖A
M,m =

{

infd∈M ‖A‖A
M,m[x→d] if infd∈M ‖A‖A

M,m[x→d] exists in M

undefined otherwise

‖(∃x)A‖A
M,m =

{

supd∈M ‖A‖A
M,m[x→d] if supd∈M ‖A‖A

M,m[x→d] exists in M

undefined otherwise

otherwise ‖(∀x)A‖A
M,m and ‖(∃x)A‖A

M,m are both undefined.

M is called safe if ‖A‖A
M,m is defined for each L-formula A and M-assignment m.

Notice that for a sentence A and safe A-structure M for an algebra A, ‖A‖A
M,m is the

same element of LA for any M-assignment m. In general, we define a fixed value for

a formula in a safe A-structure as follows.

Definition 8.5. For an algebra A for L, safe A-structure M, and L-formula A:

‖A‖A
M =def inf{‖A‖A

M,m : m is an M-assignment}

A is A-valid if ‖A‖A
M ≥ e for every safe A-structure M.

• A safe A-structure M is an A-model of a set of L-formulas T if ‖A‖A
M ≥ e for

every A ∈ T , and an A-model of an L-formula A if it is an A-model of {A}.

• We write T |=A A if every A-model of T is an A-model of {A}.

For a class of algebras K for L, we write T |=K A if T |=A A for all A ∈ K.

When the algebra is clear from the context, we write ‖A‖M rather than ‖A‖A
M.

8.2 Hilbert Systems

First-order versions of the Hilbert systems in Chapter 3 can be defined uniformly

by adding extra axiom schema and rules to deal with ∀ and ∃. Let us assume for

the remainder of this section that HL is an HUL−-extension and that L is a fixed

first-order language with the same connectives as HL. We will write “HL extended

to L” to mean the Hilbert system with axioms/rules consisting of the substitution

instances of axiom/rule schema of HL with L-formulas.

Definition 8.6. HL∀ consists of HL extended to L plus the axioms:

(∀1) (∀x)A(x) → A(t) (t substitutable for x in A)
(∀2) (∀x)(A → B) → (A → (∀x)B) (x not free in A)
(∀3) (∀x)(A∨B) → (A∨ (∀x)B) (x not free in A)
(∃1) A(t) → (∃x)A(x) (t substitutable for x in A)
(∃2) (∀x)(A → B) → ((∃x)A → B) (x not free in B)
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and the generalization rule:
A

(∀x)A
(GEN)

where a term t is substitutable for an object variable x in a formula A iff no free

occurrence of x in A is in the scope of (∀y) or (∃y) for some variable y in t.

Adding the axiom schema (∀1), (∀2), (∃1), and (∃2) to a propositional Hilbert sys-

tem is enough for axiomatizing many first-order logics, including first-order Intu-

itionistic Logic and Classical Logic, and first-order versions of substructural logics

such as Linear Logic or Monoidal Logic. However, in the fuzzy case, we want some-

thing more: completeness with respect to linearly ordered algebras. To achieve this,

as we will see, we require the “infinite distributivity” or “shifting law of quantifiers”

axiom schema (∀3).

Example 8.7. We can derive the “opposite direction” of (∀2) in HL∀ for any HUL−-

extension HL as follows, assuming again that x is not free in A:

1. (∀x)B → B (∀1)
2. (A → (∀x)B) → (((∀x)B → B) → (A → B)) (B)

3. ((∀x)B → B) → ((A → (∀x)B) → (A → B)) Lemma 3.23

4. (A → (∀x)B) → (A → B) (MP) 1,3
5. (∀x)((A → (∀x)B) → (A → B)) (GEN)
6. (∀x)((A → (∀x)B) → (A → B)) → ((A → (∀x)B) → (∀x)(A → B)) (∀2)
7. (A → (∀x)B) → (∀x)(A → B) (MP) 5,6

Let us collect together some other useful theorems of these systems.

Lemma 8.8. The following are theorems in HL∀, assuming that x is not free in A:

(i) (∀x)(A → B) ↔ (A → (∀x)B)
(ii) (∀x)(B → A) ↔ ((∃x)B → A)

(iii) (∃x)(A → B) → (A → (∃x)B)
(iv) (∃x)(B → A) → ((∀x)B → A)
(v) (∀x)(B →C) → ((∀x)B → (∀x)C)

(vi) (∀x)(B →C) → ((∃x)B → (∃x)C)
(vii) ((∃x)B⊙ (∃x)C) → (∃x)(B⊙C)

(viii) (∀x)B(x) ↔ (∀y)B(y) (y substitutable for x in B)

(ix) (∃x)B(x) ↔ (∃y)B(y) (y substitutable for x in B)

(x) (∃x)(B⊙A) ↔ ((∃x)B⊙A)
(xi) (∃x)(B⊙B) ↔ ((∃x)B⊙ (∃x)B)

(xii) (∃x)B →¬(∀x)¬B

(xiii) ¬(∃x)B ↔ (∀x)¬B

(xiv) (∃x)(A∧B) ↔ (A∧ (∃x)B)
(xv) (∃x)(A∨B) ↔ (A∨ (∃x)B)

(xvi) (∀x)(A∧B) ↔ (A∧ (∀x)B)
(xvii) (∃x)(B∨C) ↔ ((∃x)B∨ (∃x)C)

(xviii) (∀x)(B∧C) ↔ ((∀x)B∧ (∀x)C)



206 8 First-Order Logics

Note also that just as in Classical Logic where the existential quantifier can be de-

fined using the universal quantifier, the same holds here for fuzzy logics possessing

an involutive negation. Just observe that for any HIUL−-extension HL:

⊢HL∀ (∃x)A ↔¬(∀x)¬A

That is, ⊢HL∀ ¬¬(∃x)A↔¬(∀x)¬A by Lemma 8.8 (xiii) and Lemma 3.24 (xiv), and

the result then follows using the involution axiom schema ¬¬A → A.

Many properties of HUL−-extensions transfer smoothly from the propositional to

the first-order level, including the local deduction theorem and the proof-by-cases

property. Recall Definition 3.41 of a confusion of a set of formulas.

Theorem 8.9. For any L-theory T and L-sentence A:

(a) T ∪{A} ⊢HL∀ B iff T ⊢HL∀ C → B for some confusion C of {A}.

(b) T ⊢HL∀ A iff ⊢HL∀ C → A for some confusion C of T .

(c) HL∀ has the proof-by-cases property, i.e. for any L-theory T and L-sentences

A, B: if T ∪{A} ⊢HL∀ C and T ∪{B} ⊢HL∀ C, then T ∪{A∨B} ⊢HL∀ C.

Proof. For (a) and (b), we show that T1 ∪ T2 ⊢HL∀ B iff T1 ⊢HL∀ C → B for some

confusion C of T2. The right-to-left direction follows exactly as in Theorem 3.43.

For the left-to-right direction, we also proceed as in the proof of Theorem 3.43 by

induction on the height of a derivation for T1 ∪T2 ⊢HL B. The only new case occurs

when the last step is T1 ∪T2 ⊢HL∀ B′(x) and B is (∀x)B′(x). Then by the induction

hypothesis, T1 ⊢HL∀ C → B′(x) for some confusion C of T2. So by (GEN), T1 ⊢HL∀

(∀x)(C → B′(x)). But a confusion of a set of sentences must also be a sentence; i.e

C does not contain any free occurrences of x. Hence T ⊢HL∀ C → (∀x)B′(x) using

(∀2) as required. The proof of (c) then proceeds exactly as in Lemma 3.54. ⊓⊔

A useful substitution property also holds for HL∀, proved by an easy induction on

the height of a derivation.

Lemma 8.10. If d;T ⊢HL∀ A(x), then for any term t substitutable for x in A,

d′;T ⊢HL∀ A(t) for some derivation d′ with ht(d′) = ht(d).

We now turn our attention to the question of completeness for HL∀, beginning with

L-chains, then moving on as before to dense L-chains and standard L-algebras. The

method is very similar to the propositional case. Namely, we show that if T 6⊢HL∀ A

for some theory T and sentence A, then we can extend T to a linear theory T̂ where

T̂ 6⊢HL∀ A. To this end, we recall (in a first-order setting) the notions of a linear and

dense theory, and also introduce the idea of a Henkin theory.

Definition 8.11. An L-theory T is:

• L-linear if for all L-sentences A and B, either T ⊢HL∀ A → B or T ⊢HL∀ B → A.

• L-dense if for all L-sentences A and B, whenever T 6⊢HL A → B, then T 6⊢HL

A →C and T 6⊢HL C → B for some L-sentence C.
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• L-Henkin if for each L-formula A(x) with one free variable x, whenever T 6⊢HL∀

(∀x)A(x), then T 6⊢HL∀ A(c) for some L-constant c.

As in the propositional case, the crucial step is to show that if a sentence is not

derivable from a theory, then it is not derivable from a theory with special properties,

in this case, being both linear and Henkin.

Lemma 8.12. Let T be an L-theory and let C be an L-sentence. If T 6⊢HL∀ C, then

T̂ 6⊢HL∀ C for some L̂-linear L̂-Henkin L̂-theory T̂ ⊇ T such that L ≤ L̂.

Proof. Let L̂ be L extended with countably infinitely many new constants. We enu-

merate all pairs of L̂-sentences 〈Ai,Bi〉 and L̂-formulas with one free-variable Fi for

i ∈ N. We then define sequences Tn of L̂-theories and Cn of L̂-sentences inductively

starting with T0 = T and C0 = C. For each n ∈ N:

(1) If n = 2i for some i ∈ N, then define:

Cn+1 = Cn and Tn+1 =

{

Tn ∪{Ai → Bi} if Tn ∪{Ai → Bi} 6⊢HL∀ Cn

Tn ∪{Bi → Ai} otherwise

(2) If n = 2i+1 for some i ∈ N, then let ci be a L̂-constant not occurring in Tn, Cn,

or Fi, and define:

Cn+1 =

{

Cn ∨Fi(ci) if Tn 6⊢HL∀ Cn ∨Fi(ci)

Cn otherwise

Tn+1 =

{

Tn if Tn 6⊢HL∀ Cn ∨Fi(ci)

Tn ∪{Cn → (∀x)Fi(x)} otherwise

Claim. Tn 6⊢HL∀ Cn for all n ∈ N.

Proof of claim. We proceed by induction on n. The base case is immediate. Sup-

pose that the claim holds for n = 2i for some i ∈ N. If Tn ∪ {Ai → Bi} 6⊢HL∀ Cn

or Tn ∪ {Bi → Ai} 6⊢HL∀ Cn, then the claim holds for n + 1. Otherwise, using the

proof-by-cases property and prelinearity as in the propositional case, Tn ⊢HL∀ Cn, a

contradiction.

Now assume that the claim holds for n = 2i + 1 for some i ∈ N. The case

where Tn 6⊢HL∀ Cn ∨ Fi(ci) is immediate. Suppose then that Tn ⊢HL∀ Cn ∨ Fi(ci)
and hence, replacing the new constant ci in the derivation by a new variable y,

Tn ⊢HL∀ Cn∨Fi(y). Using (GEN) and a change of variables, Tn ⊢HL∀ (∀x)(Cn∨Fi(x)).
So using (∀3), Tn ⊢HL∀ Cn ∨ (∀x)Fi(x). It follows easily that Tn ∪ {(∀x)Fi(x) →
Cn} ⊢HL∀ Cn. Hence Tn ∪ {Cn → (∀x)Fi(x)} 6⊢HL∀ Cn, since otherwise using the

proof-by-cases property and prelinearity, Tn ⊢HL∀ Cn, a contradiction.

Now let T̂ =
⋃

n∈N Tn. Notice that from the previous claim, T̂ 6⊢HL∀ Cn for all

n ∈ N. Moreover, T̂ is clearly L̂-linear by construction. To see that T̂ is L̂-

Henkin, suppose that T̂ 6⊢HL∀ (∀x)Fi(x) for some i ∈ N. If Tn ⊢HL∀ Cn ∨ Fi(ci)
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for n = 2i + 1, then Tn+1 = Tn ∪ {Cn → (∀x)Fi(x)} and Cn+1 = Cn. So as rea-

soned in the proof of the claim above, Tn ⊢HL∀ Cn ∨ (∀x)Fi(x). But then easily,

Tn∪{Cn → (∀x)Fi(x)} ⊢HL∀ (∀x)Fi(x). So T̂ ⊢HL∀ (∀x)Fi(x), a contradiction. Hence

Tn 6⊢HL∀ Cn ∨Fi(ci), Tn+1 = Tn, and Cn+1 = Cn ∨Fi(ci). So T̂ 6⊢HL∀ Fi(ci), since oth-

erwise T̂ ⊢HL∀ Cn+1, contradicting the above claim. ⊓⊔

The Lindenbaum algebra for HL∀ with respect to an L-theory T is defined as for

the propositional case. That is, let [A]L∀T =def {B ∈ FmL : T ⊢HL∀ A ↔ B}. Then:

LINDL∀
T =def 〈L

L∀
T ,{⋆L∀

T : ⋆ ∈ C}〉

where LL∀
T =def {[A]L∀T : A∈FmL} and ⋆L∀

T ([A1]
L∀
T , . . . , [An]

L∀
T )=def [⋆(A1, . . . ,An)]

L∀
T .

We then define a special structure for this algebra for each L-linear L-Henkin L-

theory, using variable-free terms as their own interpretation and mapping predicates

to functions from terms to equivalence classes of formulas.

Definition 8.13. Let T be an L-linear L-Henkin L-theory:

CMT =def (M,(pCMT
)p∈P ,( fCMT

) f∈F )

where M is the set of variable-free L-terms, fCMT
(t1, . . . , tn) = f (t1, . . . , tn) for all

n-ary f ∈ F , and pCMT
(t1, . . . , tn) = [p(t1, . . . , tn)]T for all n-ary p ∈ P .

Lemma 8.14. Let T be an L-Henkin L-theory and A(x) an L-formula with one

free-variable x:

(a) [(∀x)A(x)]T = inf{[A(c)]T : c is an L-constant}.

(b) [(∃x)A(x)]T = sup{[A(c)]T : c is an L-constant}.

Proof. For (a), easily T ⊢HL∀ (∀x)A(x) → A(c) for all L-constants c. Now suppose

that [C]T ≤ [A(c)]T for all L-constants c but [C]T 6≤ [(∀x)A(x)]T . We get T 6⊢HL∀

C → (∀x)A(x), so also T 6⊢HL∀ (∀x)(C → A(x)). But then by the L-Henkin property

T 6⊢HL∀ C → A(c′) for some L-constant c′, a contradiction.

For (b), also T ⊢HL∀ A(c) → (∃x)A(x) for all L-constants c. Suppose then that

[A(c)]T ≤ [C]T for all L-constants c but [(∃x)A(x)]T 6≤ [C]T . It follows that T 6⊢HL∀

(∃x)A(x) → C. So also T 6⊢HL∀ (∀x)(A(x) → C). But then by the Henkin property

T 6⊢HL∀ A(c′) →C for some constant c′, a contradiction. ⊓⊔

Lemma 8.15. Let T be an L-linear L-Henkin L-theory, and A an L-sentence. Then:

(a) ‖A‖CMT
= [A]T .

(b) T ⊢HL∀ A iff A is LINDL∀
T -valid.

Proof. We prove (a) by induction on cp(A). Clearly ‖t‖CMT
= t for any term t,

so also ‖p(t1, . . . , tn)‖CMT
= [p(t1, . . . , tn)]T for any n-ary p ∈ P . The cases of the

propositional connectives follow as in the propositional case. Suppose now that A

is (∀x)A′(x). Then, using Lemma 8.14 and the fact that the theory is L-linear and

L-Henkin:
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‖A‖CMT
= inf

d∈M
‖A′(x)‖CMT ,m[x→d] = inf

d∈M
[A′(d)]T = [(∀x)A′(x)]T

The case where A is (∃x)A′(x) is very similar. Finally, (b) follows from (a) since

T ⊢HL∀ A iff T ⊢HL∀ e → A iff [e]T ≤ [A]T iff e ≤ ‖A‖CMT
in CMT . ⊓⊔

Suppose now that T is an L-theory and A is an L-sentence. By Lemma 8.12, if

T 6⊢HL∀ A, then T̂ 6⊢HL∀ A for some L̂-linear L̂-Henkin L̂-theory T̂ ⊇ T such that

L ≤ L̂. But by (b) of the previous lemma, T̂ 6⊢HL∀ A iff A is LINDL∀
T̂

-valid. So, since

LINDL∀
T̂

is an L-chain, we obtain the following:

Theorem 8.16. For any L-theory T and L-sentence A: T ⊢HL∀ A iff T |=LIN(L) A.

Moreover, just as in the propositional case, adding the density rule to HL∀ for any

HUL−-extension HL, gives a calculus HL∀D that is complete with respect to dense

L-chains. We need the following results, proved by combining the proofs for first-

order logics above with the previous proofs for propositional logics with density.

Lemma 8.17. For any L-theory T :

(a) T ∪{A} ⊢HL∀D B iff T ⊢HL∀D C → B for some confusion C of {A}.

(b) T ⊢HL∀D A iff ⊢HL∀D C → A for some confusion C of T .

(c) HL∀D has the proof-by-cases property.

(d) If T 6⊢HL∀D A for some L-sentence A, then there exists a countable L̂-linear

L̂-Henkin L̂-dense L̂-theory T̂ ⊇ T such that L ≤ L̂ and T̂ 6⊢HL∀D A.

The rest of the completeness proof then proceeds as for chains.

Theorem 8.18. For any L-theory T and L-sentence A: T ⊢HL∀D A iff T |=DEN(L) A.

We can take a step further for some logics and obtain completeness with respect to

standard L-algebras. We just follow the proof of Theorem 3.65, noting that we need

also that the Dedekind-MacNeille embedding Φ into a standard algebra given by

Theorem 2.58 is complete (i.e. Φ(infα) = infΦ(α) and Φ(supα) = supΦ(α)).

Theorem 8.19. Let HL be any extension of HUL− with axiom schema taken from

the set {(⊥),(⊤), (e), (f), (INV), (W), (M), (EM), (NC)} ∪ {(Cn) : n ≥ 3}. Then for

any L-theory T and L-sentence A: T ⊢HL∀D A iff T |=STAN(L) A.

Finally, as an interesting aside to these completeness results, consider the formula:

C = (∀x)(p(x)⊙q) → ((∀x)p(x)⊙q)

C is A-valid for a BL-chain A iff:

inf
i∈I

(ai ⊙b) ≤ (inf
i∈I

ai)⊙b for all {ai}i∈I ∪{b} ⊆ LA (8.1)

We will define a (non-dense) BL-chain where this fails. Let:

A = 〈{⊥,d}∪ (0,1],min,max,⊙,→,⊥,1〉



210 8 First-Order Logics

where ⊥ < d < x for all x ∈ (0,1] and:

x⊙ y =







x · y if x,y ∈ (0,1]

⊥ if x = y = d

min(x,y) otherwise

It is easy to check that A is a BL-chain. Moreover, C is not A-valid since for

{ai}i∈I = (0,1] and b = d in Condition 8.1:

inf
r∈(0,1]

(r⊙d) = d > ⊥ = d ⊙d = ( inf
r∈(0,1]

r)⊙d

However C is valid in all dense HBL-chains. Suppose otherwise. Then for some

dense BL-chain B, we have {ai}i∈I ∪ {b} ⊆ LB such that Condition 8.1 fails. So

using density and linearity, there exists c ∈ LB such that:

inf
i∈I

(ai ⊙b) > c > (inf
i∈I

ai)⊙b

So for all i ∈ I, ai ⊙b > c. By residuation, ai > b → c. Hence infi∈I ≥ b → c. Since

also b > c, by divisibility, (b → c)⊙ b = c. But then we can deduce the following

contradiction:

inf
i∈I

(ai ⊙b) > c > (inf
i∈I

ai)⊙b ≥ (b → c)⊙b = c

So by Theorem 8.18, C is derivable in HBL∀D but not HBL∀. The density rule is not

admissible for HBL∀: we could not eliminate it from HBL∀D however hard we tried.

It therefore remains an intriguing question as to whether HBL∀D can be obtained as

an axiomatic extension of HBL∀. That is, can we add axiom schema – perhaps the

substitution instances of C – to obtain HBL∀D?

8.3 Gentzen Systems

First-order versions of the Gentzen systems introduced in Chapter 4 are easy to

define. We just add hypersequent versions of the usual quantifier rules for first-order

Classical Logic and Intuitionistic Logic. To be more precise, suppose that we have

a matching calculus GL for some HUL−-extension HL and L is a fixed first-order

language with the same connectives as HL. Then to simplify matters, we make a

syntactic distinction between bound variables, denoted by x,y,z and free variables,

denoted by a,b, and assume for the rest of this section that only bound variables

are quantified and only free variables occur freely. As for Hilbert systems, we will

write “GL extended to L” to mean the Gentzen system consisting of substitution

instances of GL rule schema with L-formulas.

Definition 8.20. GL∀ consists of GL extended to L plus:
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G | Γ,A(t) ⇒ ∆

G | Γ,(∀x)A(x) ⇒ ∆
(∀⇒)

G | Γ ⇒ A(a),∆

G | Γ ⇒ (∀x)A(x),∆
(⇒∀)

G | Γ,A(a) ⇒ ∆

G | Γ,(∃x)A(x) ⇒ ∆
(∃⇒)

G | Γ ⇒ A(t),∆

G | Γ ⇒ (∃x)A(x),∆
(⇒∃)

where a does not occur in the lower hypersequent in (⇒∀) or (∃⇒).

Note that unlike in the extra quantifier axioms for HL∀, here we do not require that

t is substitutable for x in (∀⇒) and (⇒∃): no free variable in t can be bound in A(t)
since free variables and bound variables are distinguished.

Example 8.21. We can use these quantifier rules and the standard rules for → to give

sequent derivations of the (∃2) axioms as follows:

A(a) ⇒ A(a)
(ID)

B ⇒ B
(ID)

A(a) → B,A(a) ⇒ B
(→⇒)

(∀x)(A → B),A(a) ⇒ B
(∀⇒)

(∀x)(A → B),(∃x)A ⇒ B
(∃⇒)

(∀x)(A → B) ⇒ (∃x)A → B
(⇒→)

⇒ (∀x)(A → B) → ((∃x)A → B)
(⇒→)

The axioms (∀1)–(∀2) and (∃1)–(∃2) are all derivable in GMAILL∀ using just se-

quents. However, to derive (∀3), hypersequents and the communication rule are

essential. Recall that (⇒∨) and (∧⇒) are derived rules of GUL, and from Exam-

ple 4.35, that ⊢GUL A∨B ⇒ A | A∨B ⇒ B. Then we have a derivation:

A∨B(a) ⇒ A | A∨B(a) ⇒ B(a)

A∨B(a) ⇒ A | (∀x)(A∨B) ⇒ B(a)
(∀⇒)

(∀x)(A∨B) ⇒ A | (∀x)(A∨B) ⇒ B(a)
(∀⇒)

(∀x)(A∨B) ⇒ A | (∀x)(A∨B) ⇒ (∀x)B
(⇒∀)

(∀x)(A∨B) ⇒ A∨ (∀x)B
(⇒∨)

⇒ (∀x)(A∨B) → (A∨ (∀x)B)
(⇒→)

The (∀3) axioms are derivable in sequent calculi for Classical Logic making use of

contraction and weakening right rules, but not in calculi for Intuitionistic Logic or

many other substructural logics. Intriguingly, while it may be interesting to inves-

tigate first-order fuzzy logics lacking (∀3), the hypersequent framework presented

here does not allow it. Communication ensures that these axioms are derivable along

with prelinearity and distributivity.

Soundness and completeness are established for first-order Gentzen systems with

respect to Hilbert systems in similar fashion to the propositional case. Note that

since all formulas, sequents, and hypersequents are assumed to have free and bound

variables distinguished, we must be careful to take this into account in our proofs.
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Theorem 8.22. Let HL and GL be matching. Then ⊢GL∀ G iff ⊢HL∀ I(G).

Proof. For the right-to-left direction, suppose that d ⊢HL∀ A. We prove that ⊢GL∀⇒
A by induction on ht(d). For the base cases, observe that the extra axioms (∀1)–(∀3)
and (∃1)–(∃2) are all derivable in GL∀. For the induction step, (MP) and (ADJ) are

admissible for GL∀ as in the propositional case. So suppose now that A is of the

form (∀x)B(x) and follows from d′ ⊢HL∀ B(x). Note that B(x) is not a formula in the

refined sense of this section. However, by Lemma 8.10, we have that d′′ ⊢HL∀ B(a)
for some new free variable a not occurring in B or d′ where ht(d′′) = ht(d′). Hence

by the induction hypothesis, ⊢GL∀⇒ B(a). But then by (⇒∀), ⊢GL∀⇒ (∀x)B(x) as

required. Finally, if ⊢HL∀ I(G), then ⊢GL∀⇒ I(G). So by Proposition 4.61, ⊢GL∀ G.

For the other direction, suppose that d ⊢GL∀ G. We prove as in the proposi-

tional case, that ⊢HL∀ I(G) by induction on ht(d). The only new cases are where

the last application is of a quantifier rule. For (∀ ⇒), suppose that ⊢GL∀ G |
Γ,A(t) ⇒ ∆. Then by the induction hypothesis, ⊢HL∀ I(G)∨ I(Γ,A(t) ⇒ ∆). But

by (∀1), ⊢HL∀ (∀x)A(x) → A(t). Hence using (B), ⊢HL∀ (I(G)∨ I(Γ,A(t) ⇒ ∆)) →
(I(G)∨ I(Γ,(∀x)A(x) ⇒ ∆)) and by an application of modus ponens we are done.

For (⇒∀), suppose that ⊢GL∀ G | Γ ⇒ A(a),∆. Then by the induction hypothesis,

⊢HL∀ I(G)∨ I(Γ ⇒ A(a),∆). By Lemma 8.10, ⊢HL∀ I(G)∨ I(Γ ⇒ A(x),∆), so by

(GEN), ⊢HL∀ (∀x)(I(G)∨ I(Γ ⇒ A(x),∆)). Now using (∀2) and (∀3) and the fact

that a does not occur in G, Γ, ∆, or A(x), we get ⊢HL∀ I(G)∨ I(Γ ⇒ (∀x)A(x),∆).
The rules for ∃ are very similar. ⊓⊔

Cut elimination follows the same pattern as the propositional case. Let us assume

that GL is a regular hypersequent calculus. The quantifier rules are nearly but not

quite substitutive and reductive. For substitutivity, the problem is that substituting

may spoil the restriction on a in (⇒∀) or (∃⇒). For reductivity, we cannot cut

the premises of (∀⇒) and (⇒∀) (or (∃⇒) and (⇒∃)), (G | Γ,A(t) ⇒ ∆) and

(G | Π ⇒ A(a),Σ), respectively, to get (G | Γ,Π ⇒ Σ,∆). We take care of these

problems, however, with a substitution lemma, proved by a simple induction on the

height of a derivation.

Lemma 8.23. If d;G1(a), . . . ,Gn(a) ⊢GL∀ G(a) and t is a term with variables not

occurring in d, then d′;G1(t), . . . ,Gn(t) ⊢GL∀ G(t), for some derivation d′ with

ht(d′) = ht(d).

Theorem 8.24. Cut elimination holds for GL∀.

Proof. As in Theorem 5.9, it is sufficient to prove that for any hypersequent G and

hypersequent H with marked formula A:

Claim. If dG ⊢GL∀◦ G and dH ⊢GL∀◦ H, then ⊢GL∀◦ CUT(G,H).

We prove the claim as before by induction on the lexicographically ordered triple

〈cp(A),e(dH),ht(dG)〉, recalling that e(d) = 0 if d ends with a rule application

whose principal formula is marked, and e(d) = 1 otherwise. Note first that using
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Lemma 8.23, we can assume that any new free variables introduced (upwards) by

(⇒∀) or (∃⇒) in dG (dH) do not occur in dH (dG).

If dG ends with a rule application where the principal formula is not an occur-

rence of A on the opposite side to dH, then (as in the propositional case), we can

make use of the substitutivity of the rule and apply the induction hypothesis. The

assumption that new free variables are distinct in dG from those in dH and vice versa

ensures that this also works for the quantifier rules. Otherwise, let us assume – since

propositional connectives are treated in the proof of Theorem 5.9 – that A is of the

form (∀x)A′(x) and dG ends with:

G′ | Γ, [(∀x)A′(x)]λ−1,A′(t) ⇒ ∆

G′ | Γ, [(∀x)A′(x)]λ ⇒ ∆
or

G′ | Γ ⇒ A′(a), [(∀x)A′(x)]λ−1,∆

G′ | Γ ⇒ [(∀x)A′(x)]λ ,∆

where A 6∈ Γ or A 6∈ ∆ as appropriate and H is of the form

H′ | Π ⇒ (∀x)A′(x),Σ or H′ | Π,(∀x)A′(x) ⇒ Σ

Let GH ∈ CUT(G,H). The only tricky case is when GH is of the form (H′ | G′′ |
Γ,Πλ ⇒ Σλ ,∆) where G′′ ∈ CUT(G′,H). But then also:

either
H′ | G′′ | Γ,Πλ−1,A′(t) ⇒ Σλ−1,∆

H′ | G′′ | Γ,Πλ−1,(∀x)A′(x) ⇒ Σλ−1,∆

or
H′ | G′′ | Γ,Πλ−1 ⇒ A′(a),Σλ−1,∆

H′ | G′′ | Γ,Πλ−1 ⇒ (∀x)A′(x),Σλ−1,∆

is an instance of the appropriate rule. Moreover, by the induction hypothesis, the

premise is derivable so we have a derivation d ending with such a rule application.

If e(dH) = 1: i.e. dH does not end with the application of a logical rule to the

marked occurrence of A, then we proceed as in the propositional case. Suppose

therefore that e(dH) = 0: i.e. dH ends with an application of (∀⇒) or (⇒∀) to the

marked occurrence of A, and is of the form:

H′ | Π ⇒ A(a),Σ

H′ | Π ⇒ (∀x)A′(x),Σ
or

H′ | Π,A(t) ⇒ Σ

H′ | Π,(∀x)A′(x) ⇒ Σ

By Lemma 8.23, there is a derivation of the same height of (H′ | Π ⇒ A(t),Σ) or

(H′ | G′′ | Γ,Πλ−1 ⇒ A′(t),Σλ−1,∆). But then by the induction hypothesis, since

cp(A′(t)) < cp((∀x)A′(x)), using a further application of (EC), ⊢GL◦ G
H. ⊓⊔

It follows from cut elimination that GL∀ and therefore also HL∀ are conservative

extensions of GL and HL, respectively. Just observe that any GL∀-derivable propo-

sitional hypersequent has a cut-free derivation in GL∀ which does not involve any

quantifiers. Cut elimination will not help us with decidability – indeed, all these log-

ics are undecidable. However, as we will see shortly, we can use this result instead to
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prove versions of Herbrand’s theorem and Skolemization for the prenex fragments

of these logics.

It is also straightforward to extend density elimination to first-order Gentzen sys-

tems: the quantifier rules are treated just like the rules for other connectives.

Theorem 8.25. Let GL be a regular and local single-conclusion hypersequent cal-

culus with weakening, or one of GUL, GIMTL, GUML, GIUML. Then density elimi-

nation holds for GL∀D.

Moreover, as before we can use density elimination to establish equivalence for

Hilbert systems with and without density.

Proposition 8.26. Let HL be an HUL-extension and let GL be a matching hyperse-

quent calculus where GL∀ admits density elimination. Then T ⊢HL∀ A iff T ⊢HL∀D A.

Proof. We have the following chain of reasoning:

T ⊢HL∀ A iff ⊢HL∀ C → A for some confusion C of T Theorem 8.22

iff ⊢GL∀ C ⇒ A for some confusion C of T Theorem 8.9.(b)

iff ⊢GL∀D C ⇒ A for some confusion C of T Density Elimination

iff ⊢HL∀D C → A for some confusion C of T Theorem 8.22

iff T ⊢HL∀D A Theorem 8.17 ⊓⊔

Hence using Theorem 3.65, we obtain the following standard completeness results.

Theorem 8.27. For L ∈ {UL,MTL,SMTL, IMTL,G,UML, IUML,MTLn (n ≥ 2)}:

T ⊢HL∀ A iff T |=STAN(L) A.

8.4 Herbrand’s Theorem and Skolemization

We will be using our systems in a nice way to establish some fundamental properties

of first-order fuzzy logics. However, first we prove a negative result: these logics are

all undecidable. In fact, we can show something stronger, the undecidability of the

existential fragment (with function symbols). Note that this result is not entirely

predictable. Contraction-free first-order logics such as first-order Monoidal Logic

and Multiplicative Additive Linear Logic are decidable.2

Let is assume in what follows that P stands always for a quantifier-free formula,

and recall that existential formulas are of the form (∃x̄)P(x̄).

Theorem 8.28. For any HUL−-extension HL such that ⊢HL A implies ⊢HCL A, the

L-validity problem for existential formulas is undecidable.

2 In the function-free case, we just restrict the term t in (∀⇒) and (⇒∃) to variables occurring
in lower sequents or the first new variable, and notice that every rule of the corresponding sequent
calculus, as in the propositional case, reduces the complexity of the sequent.
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Proof. We just adapt slightly the embedding used in Theorem 7.25 to establish co-

NP-hardness for propositional logics. Let P be any formula of the form
∨

i∈I

∧

j∈Ji
Li j

for index sets I and Ji for i ∈ I where each Li j is of the form p(t̄) or ¬p(t̄) with

variables among x̄. Then we define the translation:

Pc =
∨

i∈I

∧

j∈Ji

Lc
i j where p(t̄)c = p(t̄)⊕ p(t̄) and (¬p(t̄))c = ¬(p(t̄)⊙ p(t̄)).

Claim. ⊢HCL∀ (∃x̄)P(x̄) iff ⊢HL∀ (∃x̄)Pc(x̄).

Proof of claim. The right-to-left direction follows as in Theorem 7.25 from the fact

that ⊢HCL p(t̄)↔ (p(t̄)⊙ p(t̄)), ⊢HCL p(t̄)↔ (p(t̄)⊕ p(t̄)), and every HL-derivable

formula is HCL-derivable. For the other direction, we make us of the classical Her-

brand theorem (see below). If ⊢HCL∀ (∃x̄)P(x̄), then ⊢HCL∀
∨

i∈I P(t̄i) for some finite

index set I and terms t̄i. But then following the proof of Theorem 7.25 (using dis-

tributivity in CL and L), ⊢HL∀
∨

i∈I Pc(t̄i). So also ⊢HL∀ (∃x̄)Pc(x̄) as required.

The result then follows from the classical result of Church [47] that the existential

fragment (with function symbols) of Classical Logic is undecidable. ⊓⊔

Although undecidable, the prenex fragments of fuzzy logics often have nice prop-

erties. In particular, a version of Herbrand’s theorem holds for these logics. The

validity of a prenex formula is equivalent to the validity of a set of propositional

formulas. The key technical tool for establishing this result is a “mid-hypersequent

theorem”, an analogue of Gentzen’s mid-sequent theorem. This tells us that any

GL∀-derivable prenex formula has a GL∀-derivation where the propositional con-

nective inferences precede all quantifier inferences. It then follows that there exist

hypersequents in the derivation with no propositional connective inference below or

quantifier inference above. We establish the result by performing syntactic manipu-

lations on a (cut-free) GL∀◦-derivation, pushing propositional connective inferences

upwards and quantifier inferences downwards.

Full generality is tricky here, so let us assume that GL is GUL or GIUL extended

with rules from {(W), (C), (MIX), (MINGLE), (SPLIT),(EMP)}∪{(Cn) : n ≥ 2}.

Theorem 8.29. Let G be a hypersequent containing only prenex formulas. If ⊢GL∀ G,

then d ⊢GL∀ G for some derivation d where no propositional inference is below a

quantifier inference.

Proof. It will save us some effort to perform manipulations on a slightly different

calculus. Let GL∀∨ be GL∀◦ with (ID) restricted to strictly atomic instances, and

(∨⇒) and (∧⇒) replaced with:

G | Γ1,A ⇒ ∆1 G | Γ2,B ⇒ ∆2

G | Γ1,A∨B ⇒ ∆1 | Γ2,A∨B ⇒ ∆2
(∨⇒)∨

G | Γ1 ⇒ A,∆1 G | Γ2 ⇒ B,∆2

G | Γ1 ⇒ A∧B,∆1 | Γ2 ⇒ A∧B,∆2
(⇒∧)∨
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These rules are easily derived in GL∀ using (CUT), and we leave it as an (easy)

exercise to show that ⊢GL∀ G iff ⊢GL∀∨ G.

Now let the order o(d) of a derivation d be the multiset containing the lengths

(cardinalities) of any sub-branches of d that start (working upwards) with a proposi-

tional connective inference and end with a quantifier inference. Then it is sufficient

to establish the following:

Claim. If d ⊢GL∀∨ G, then d′ ⊢GL∀∨ G for some derivation d′ where o(d′) = [].

Proof of claim. We proceed by induction on o(d) using the multiset ordering ≤m.

The base case where o(d) = [] is immediate. For the inductive step we have a number

of possibilities.

Suppose that a quantifier inference occurs directly above a propositional con-

nective inference. Then we can rearrange the derivation so that the quantifier rule

application is below the propositional connective rule application, and use the in-

duction hypothesis. The only tricky cases are where (⇒∃) appears above (∨⇒)∨,

or (∀⇒) above (⇒∧)∨. Let us consider the former, i.e. d ends with:

... d1

H | Γ1,A ⇒C(t),∆1

H | Γ1,A ⇒ (∃x)C(x),∆1
(⇒∃)

... d2

H | Γ2,B ⇒ ∆2

H | Γ1,A∨B ⇒ (∃x)C(x),∆1 | Γ2,A∨B ⇒ ∆2
(∨⇒)∨

We can replace this with the following derivation d′:

... d1

H | Γ1,A ⇒C(t),∆1

... d2

H | Γ2,B ⇒ ∆2

H | Γ1,A∨B ⇒C(t),∆1 | Γ2,A∨B ⇒ ∆2
(∨⇒)∨

H | Γ1,A∨B ⇒ (∃x)C(x),∆1 | Γ2,A∨B ⇒ ∆2
(⇒∃)

Since o(d′)<mo(d) the induction hypothesis can be applied.

If the previous case does not occur, then there must be a sub-branch with struc-

tural inferences occurring between the propositional connective inference and quan-

tifier inferences. We note without proof that applications of the “contraction rules”

(EC), (C), (MINGLE), or (Cn) can be pushed downwards over the other structural

rules in derivations, and (EW), (W), (SPLIT), and (MIX) can be pushed upwards. If

a quantifier inference is directly above (EW), (COM), (SPLIT), (W), or (MIX), then

we can move the application of the structural rule above the quantifier inference. In

the (most complicated) case of (COM) and (∀⇒), we have the following situation:

... d1

H | Γ1,B(t),Π1 ⇒ Σ1,∆1

H | Γ1,(∀x)B(x),Π1 ⇒ Σ1,∆1
(∀⇒)

... d2

H | Γ2,Π2 ⇒ Σ2,∆2

H | Γ1,(∀x)B(x),Γ2 ⇒ ∆1,∆2 | Π1,Π2 ⇒ Σ1,Σ2
(COM)
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We can replace this with the following derivation d′:

... d1

H | Γ1,B(t),Π1 ⇒ Σ1,∆1

... d2

H | Γ2,Π2 ⇒ Σ2,∆2

H | Γ1,B(t),Γ2 ⇒ ∆1,∆2 | Π1,Π2 ⇒ Σ1,Σ2
(COM)

H | Γ1,(∀x)B(x),Γ2 ⇒ ∆1,∆2 | Π1,Π2 ⇒ Σ1,Σ2
(∀⇒)

Since o(d′)<mo(d) the induction hypothesis can be applied.

The final possibility is that an application of (EC), (C), (MINGLE), or (Cn) occurs

directly above a logical connective inference. Again we are always able to push the

relevant rule application upwards. Suppose for example that d ends with:

... d1

H | Γ1,Γ
2
2 ⇒ [A]2,∆1,∆

2
2

H | Γ1,Γ2 ⇒ A,∆1,∆2
(C)

... d2

H | Γ3,B ⇒ ∆3

H | Γ1,Γ2,Γ3,A → B ⇒ ∆1,∆2.∆3
(→⇒)

We can replace this with the following derivation d′:

... d1

H | Γ1,Γ
2
2 ⇒ [A]2,∆1,∆

2
2

... d2

H | Γ3,B ⇒ ∆3

H | Γ1,Γ
2
2,Γ3,A → B ⇒ A,∆1,∆

2
2,∆3

(→⇒)

... d2

H | Γ3,B ⇒ ∆3

H | Γ1,Γ
2
2,Γ

2
3, [A → B]2 ⇒ ∆1,∆

2
2,∆

2
3

(→⇒)

H | Γ1,Γ2,Γ3,A → B ⇒ ∆1,∆2,∆3
(C)

Again, since o(d′)<mo(d) the induction hypothesis can be applied. ⊓⊔

We now recall some basic notions relating to Herbrand’s theorem.

Definition 8.30. For a formula A, let CA, FA, and PA be, respectively, the constants,

non-nullary function symbols, and predicate symbols occurring in A, adding a con-

stant to CA if it is empty. The Herbrand universe of A is U(A) =
⋃∞

n=0Un(A) where:

U0(A) = CA

Un+1(A) = Un(A)∪{ f (t1, . . . , tk) : t1, . . . , tk ∈ Un(A) and f ∈ FA with arity k}

The Herbrand base of A is then defined as follows:

B(A) = {p(t1, . . . , tn) : t1, . . . , tn ∈ U(A) and p ∈ PA with arity n}

For many fuzzy logics, we obtain the following existential Herbrand theorem.

Theorem 8.31. Let HL be HUL extended with some subset of the axiom schema

{(INV), (W),(e), (M), (EM),(f)}∪{(Cn) : n ≥ 2}. Then:
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|=GEN(L) (∃x̄)P(x̄) iff |=GEN(L)

n∨

i=1

P(t̄i) for some t̄1, . . . , t̄n ∈ U(P).

Proof. The right-to-left direction is immediate. For the other direction, suppose

that |=GEN(L) (∃x̄)P(x̄). So ⊢GL∀⇒ (∃x̄)P(x̄). Hence by Theorem 8.29, we have

a derivation of (⇒ (∃x̄)P(x̄)) where no propositional inference follows a quanti-

fier inference. Moreover, as in the proof of this theorem, we can push applications

of all structural rules except (EC) up over the quantifier rule applications. So we

have a derivation of (⇒ (∃x̄)P(x̄) | . . . |⇒ (∃x̄)P(x̄)) that ends with the only oc-

curring applications of (⇒∃). Hence there exists a GL∀-derivable hypersequent

(⇒ P(t̄1) | . . . |⇒ P(t̄n)) for some t̄1, . . . , t̄n ∈ U(P). But then by the soundness of the

calculus |=GEN(L)
∨n

i=1 P(t̄i) as required. ⊓⊔

Herbrand’s theorem allows us to reduce the validity problem for an existential for-

mula to the validity of formulas that are (essentially) propositional. We can also

make use of this theorem (as in Classical Logic) to do the same for prenex formu-

las. The idea here is to remove universal quantifiers iteratively, replacing the vari-

ables that they bind with terms consisting of a new function symbol with variables

bound by preceding existential quantifiers. This process is called Skolemization for

fuzzy logics, although it is worth noting that for Classical Logic, the usual process

involves removing existential quantifiers and preserving satisfiability.

Definition 8.32. Let A be a prenex formula and assume harmlessly that the ith oc-

currence of ∀ is labelled ∀i and that no function symbol fi of any arity occurs in A.

Then the Skolem form AS of A is defined by induction as follows:

(1) If A is of the form (∃x̄)P(x̄) where P is quantifier-free, then AS is (∃x̄)P(x̄).

(2) If A is of the form (∃x̄)(∀iy)B(x̄,y), then AS is ((∃x̄)B(x̄, fi(x̄)))
S.

Example 8.33. Consider the prenex formula A = (∃x)(∀y)(∃z)(∀u)p(x,y,z,u).
Skolemizing in two steps, we obtain that AS = (∃x)(∃z)p(x, f (x),z,g(x,z)).

Lemma 8.34. Let (∃x̄)PF(x̄) be the Skolem form of (Qȳ)P(ȳ). Then (⇒ (Qȳ)P(ȳ))
is derivable from any hypersequent G ⊆ [PF(t̄) : t̄ ∈ U((∃x̄)PF(x̄))] using (EW),

(EC), (⇒∀), and (⇒∃), where in (⇒∀), any variable-free term not occurring in

the conclusion may be used in the premise.

Proof. Let each occurrence of ∀ in (⇒ (Qȳ)P(ȳ)) be labelled f (z̄) where:

(i) f is the constant or n-ary function symbol in (∃x̄)PF(x̄) introduced by

Skolemization for this occurrence of ∀;

(ii) z1, . . . ,zn are the existentially bound variables preceding this occurrence of

∀ in (Qȳ)P(ȳ).

More generally, we will allow this occurrence of ∀ to be labelled f (t1, . . . , tn) where

t1, . . . , tn are terms. We will also suppose that substituting for a variable in such

labelled formulas extends to substituting also in the labels. In particular, given a la-

belled formula A(x), A(t) is obtained by replacing all free occurrences of x in A(x)



8.4 Herbrand’s Theorem and Skolemization 219

by t, including all those in the labels. We then define a sequence of hypersequents

as follows. Let G0 be (⇒ (Qȳ)P(ȳ)), and given G j, let G j+1 be the smallest hyperse-

quent satisfying:

(1) G j ⊆ G j+1.

(2) If (⇒ (∀x)B(x)) ∈ G j+1 and f (t̄) labels ∀, then (⇒ B( f (t̄))) ∈ G j+1.

(3) If (⇒ (∃x)B(x)) ∈ G j+1, then (⇒ B(s)) ∈ G j+1 for all s ∈ U j((∃x̄)PF(x̄)).

Notice first that each G j can be derived from G j+1 using the given rules. The only

difficulty could be that for (2), the term f (t̄) occurs already in the conclusion. How-

ever, each occurrence of ∀ is labelled with a different constant or function symbol

f with arguments determined uniquely by the terms chosen for the preceding oc-

currences of ∃. Hence the new formula in the premise for such a case must already

occur in the conclusion. The desired result is then a consequence of (EW) and the

following:

Claim. If t̄ ∈ Uk((∃x̄)PF(x̄)) for some k ∈ N, then (⇒ PF(t̄)) ∈ G j for some j ∈ N.

Proof of claim. A simple induction on the number of quantifiers in (Qȳ)P(ȳ). ⊓⊔

Example 8.35. Consider again the formula A = (∃x)(∀y)(∃z)(∀u)p(x,y,z,u) with

Skolem form AS = (∃x)(∃z)p(x, f (x),z,g(x,z)). Following the procedure of the pre-

vious proof (but only adding the sequents we need), we derive A from the hyperse-

quent (⇒ p(a, f (a),a,g(a,a)) |⇒ p(a, f (a),g(a,a),g(a,g(a,a)))):

⇒ p(a, f (a),a,g(a,a)) |⇒ p(a, f (a),g(a,a),g(a,g(a,a)))

⇒ p(a, f (a),a,g(a,a)) |⇒ (∀g(a,g(a,a))u)p(a, f (a),g(a,a),u)
(⇒∀)

⇒ (∀g(a,a)u)p(a, f (a),a,u) |⇒ (∀g(a,g(a,a))u)p(a, f (a),g(a,a),u)
(⇒∀)

⇒ (∀g(a,a)u)p(a, f (a),a,u) |⇒ (∃z)(∀g(a,z)u)p(a, f (a),z,u)
(⇒∃)

⇒ (∃z)(∀g(a,z)u)p(a, f (a),z,u) |⇒ (∃z)(∀g(a,z)u)p(a, f (a),z,u)
(⇒∃)

⇒ (∃z)(∀g(a,z)u)p(a, f (a),z,u)
(EC)

⇒ (∀ f (a)y)(∃z)(∀g(a,z)u)p(a,y,z,u)
(⇒∀)

⇒ (∃x)(∀ f (x)y)(∃z)(∀g(x,z)u)p(x,y,z,u)
(⇒∃)

Theorem 8.36. Let HL be HUL extended with some subset of the axiom schema

{(INV), (W),(e), (M), (EM),(f)}∪{(Cn) : n ≥ 2} and let (∃x̄)PF(x̄) be the Skolem

form of (Qȳ)P(ȳ). Then the following are equivalent:

(i) |=GEN(L) (Qȳ)P(ȳ)

(ii) |=GEN(L) (∃x̄)PF(x̄)

(iii) |=GEN(L)
∨n

i=1 PF(t̄i) for some t̄1, . . . , t̄n ∈ U(PF)

Proof. The equivalence of (ii) and (iii) is just (the existential Herbrand) Theo-

rem 8.31. So it is sufficient to show that (iii) implies (i), and (i) implies (ii). First,

suppose that |=GEN(L)
∨n

i=1 P(t̄i) for some t̄1, . . . , t̄n ∈ U(P). Then by Lemma 8.34,

(⇒ (Qȳ)P(ȳ)) is derivable from (⇒ P(t̄1) | . . . | P(t̄n)) using (EW), (EC), (⇒∀), and
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(⇒∃). Since these rules are sound, it follows that |=GEN(L) (Qȳ)P(ȳ) as required.

To show that (ii) implies (i), it is sufficient to show that |=GEN(L) (∃x̄)(∀y)B(x̄,y)
implies |=GEN(L) (∃x̄)B(x̄, f (x̄)) where f does not occur in B(x̄,y). But it is eas-

ily checked (e.g. in GL∀) that |=GEN(L) (∃x̄)(∀y)B(x̄,y) → (∃x̄)B(x̄, f (x̄)) so we are

done. ⊓⊔

8.5 Łukasiewicz Logic

The first-order situation for Łukasiewicz Logic and its relatives P, A, and CHL, is

more complicated than the cases we have just encountered. For these logics, the set

of valid formulas is not recursively enumerable (for P, not even arithmetical). Finite

sets of rule schema such as the Hilbert and Gentzen systems of the previous section

cannot be enough. Here we take a closer look at this problem for the particular case

of first-order Łukasiewicz Logic Ł∀.

For simplicity, let us use a more restricted first-order language with connectives

∀, ∃, →, and ⊥. Also, since we are interested here only in the bpcrl A(∗Ł,0), let us

assume without further comment that all structures, models, and so on refer just to

this algebra. In particular, T |=Ł A denotes that all models of T are models of A. Let

us also write A ≡Ł B to mean that A and B are Ł∀-equivalent, i.e. ‖A‖M = ‖B‖M for

all structures M.

Before moving on to the deficiencies of Ł∀, let us consider one of its more at-

tractive features. Like Classical Logic, Ł∀ has the full quota of “quantifier shifts”.

That is, when x does not occur free in A:

A → (∀x)B ≡Ł (∀x)(A → B) (∀x)B → A ≡Ł (∃x)(B → A)

A → (∃x)B ≡Ł (∃x)(A → B) (∃x)B → A ≡Ł (∀x)(B → A)

This means that for any first-order formula A, we can rewrite all bound variables

to new variables not occurring elsewhere, then use the above equivalences (left-to-

right) as rewrite rules to push all quantifiers to the outside; i.e.

Theorem 8.37. Any formula is Ł∀-equivalent to a prenex formula.

8.5.1 An Approximate Herbrand Theorem

We show now that the Herbrand Theorem of the previous section cannot hold for

Ł∀. Note first that |=Ł (∃x)p(x) → (∃y)p(y). So using the quantifier-shifting equiv-

alences listed above:

|=Ł (∃y)(∀x)(p(x) → p(y))

and by the easy direction of Skolemization:

|=Ł (∃y)(p( f (y)) → p(y))
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So if Herbrand’s theorem holds for Ł∀, then for some constant c and n ∈ N+:

|=Ł

n∨

i=1

(p( f i(c)) → p( f i−1(c)))

where f 0(c) = c and f i+1(c) = f ( f i(c)) for all i ∈ N. But now let us define a struc-

ture M with ‖p( f i(c))‖M = i/n for i = 0 . . .n, so that:

‖p( f i(c))‖M > ‖p( f i−1(c))‖M for i = 1 . . .n.

Then ‖
∨n

i=1(p( f i(c)) → p( f i−1(c)))‖M < 1, a contradiction. So the Herbrand the-

orem must fail. In fact this argument holds for a wide class of infinite-valued logics

with quantifier shifts, including A and CHL.

Take another look at the formula
∨n

i=1(p( f i(c)) → p( f i−1(c))), however. Al-

though this is not a valid formula of Ł∀, it comes within “one nth” of being one.

Observe that for any r0,r1, . . . ,rn ∈ [0,1]:

min
i∈{1,...,n}

{ri−1 − ri} ≤ 1/n and so also max
i∈{1,...,n}

{1− ri−1 + ri} ≥ 1−1/n.

Let us write for ⊲ ∈ {>,≥} and r ∈ [0,1]:

|=⊲r
Ł A iff ‖A‖M ⊲ r for all structures M.

Then for any r < 1−1/n:

|=>r
Ł

n∨

i=1

(p( f i(c)) → p( f i−1(c)))

That is, we have “Herbrand approximations” of (∃y)(p( f (y)) → p(y)) that come

arbitrarily close to 1. This illustrates a more general phenomenon, captured by the

following approximate Herbrand theorem:

Theorem 8.38. |=Ł (∃x̄)P(x̄) iff for all r < 1:

|=>r
Ł

n∨

i=1

P(t̄i) for some t̄1, . . . , t̄n ∈ U(P).

Proof. We refer to [220] for topological terminology. Suppose that for all r < 1:

|=>r
Ł

∨n
i=1 P(t̄i) for some t̄1, . . . , t̄n ∈ U(P). Then |=>r

Ł (∃x̄)P(x̄) for all r < 1, so

clearly |=Ł (∃x̄)P(x̄). For the other direction, suppose that |=Ł (∃x̄)P(x̄) and fix

r < 1. Notice that each ‖‖M can be viewed as a mapping from B(P) into [0,1]:
a member either of [0,1]k for some k if B(P) is finite, or of the Hilbert cube [0,1]ω

if B(P) is countably infinite. In either case ([0,1]ω using the Tychonoff Theorem),

[0,1]B(P) is a compact space with respect to the product topology. Now for each

t̄ ∈ U(P), define:
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V (t̄) = {‖‖M ∈ [0,1]B(P) : ‖P(t̄)‖M ≤ r}

Since P is quantifier-free and the propositional connectives → and ⊥ are interpreted

by continuous functions on [0,1], each V (t̄) is a closed subset of [0,1]B(P). Consider:

V = {V (t̄) : t̄ ∈ U(P)}

By assumption, ‖(∃x̄)P(x̄)‖M > r for all ‖‖M ∈ [0,1]B(P), so the intersection of

the members of V is empty. Hence by the finite intersection property for compact

spaces, some {V (t̄1), . . . ,V (t̄n)} ⊆V has an empty intersection; i.e. for each ‖‖M ∈

[0,1]B(P), ‖P(t̄i)‖M > r for some i ∈ {1, . . . ,n}. So |=>r
Ł

∨n
i=1 P(t̄i) as required. ⊓⊔

This approximate Herbrand theorem has a nice corollary. Let F = (∀x̄)(∃ȳ)P(x̄, ȳ)
where P is both quantifier-free and function-free. Then |=Ł F iff |=Ł (∃ȳ)P(c̄, ȳ) for

some new constants c̄. Let C be the (finite) set of constants occurring in (∃ȳ)P(c̄, ȳ),
adding one if the set is empty. Using the previous theorem:

|=Ł F iff for all r < 1: |=>r
Ł

∨n
i=1 P(c̄, t̄i) for some t̄1, . . . , t̄n ∈ C

iff |=Ł
∨

d̄∈C P(c̄, d̄)

But the validity problem for propositional Łukasiewicz Logic is decidable (Theo-

rem 6.25), so we have established the following result:

Proposition 8.39. The validity problem for function-free formulas (∀x̄)(∃ȳ)P(x̄, ȳ)
is decidable.

Moreover, suppose that A is a function-free formula with at most one bound variable.

Then we can find a function-free existential formula (∃x̄)P(x̄) such that |=Ł A iff |=Ł

(∃x̄)P(x̄). Just consider the following translations A+ and A−, assuming harmlessly

that the ith occurrence of a quantifier Q in A is annotated as Qi and that each ai is a

free variable not occurring in A:

p(x̄)+ = p(x̄)
⊥+ = ⊥

(B →C)+ = B− →C+

((∀ix)B(x))+ = B(ai)
+

((∃ix)B(x))+ = (∃x)B(x)+

p(x̄)− = p(x̄)
⊥− = ⊥

(B →C)− = B+ →C−

((∀x)iB(x))− = (∀x)B(x)−

((∃x)iB(x))− = B(ai)
−

A is a one-variable formula, so in each subformula (∀x)B(x) or (∃x)B(x) of A, any

bound variable must be bound by a quantifier in the subformula. Hence using the

continuity of the connectives in Ł∀ (pushing sups and infs outwards), it follows by a

simple inductive proof that |=Ł A iff |=Ł A+. But using Ł∀-equivalences to push out

the remaining quantifiers, A+ is equivalent to an existential function-free formula.

Hence, by the previous proposition:

Corollary 8.40. The validity problem for function-free one-bound-variable formu-

las of Ł∀ is decidable.
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Example 8.41. Consider the one-bound-variable formula:

A = ((∃x)p(x) → (∃x)q(x)) → (∀x)(p(x) → q(x))

We annotate A and calculate:

A+ = ((∃1x)p(x) → (∃2x)q(x))− → ((∀3x)(p(x) → q(x)))+

= (((∃1x)p(x))+ → ((∃2x)q(x))−) → (p(a3) → q(a3))

= ((∃x)p(x) → q(a2)) → (p(a3) → q(a3))

But then, using quantifier-shifting equivalences:

A+ ≡Ł (∃x)((p(x) → q(a2)) → (p(a3) → q(a3)))

Now we can use the approximate Herbrand theorem to establish Skolemization for

Ł∀. Since by Theorem 8.37, any formula has an equivalent prenex formula, both

Skolemization and the approximate Herbrand theorem hold for all formulas of Ł∀.

Theorem 8.42. Let A be a formula and (Qȳ)P(ȳ) an equivalent prenex form for A.

Let (∃x̄)PF(x̄) be the Skolem form of (Qȳ)P(ȳ). Then the following are equivalent:

(i) |=Ł A

(ii) |=Ł (Qȳ)P(ȳ)
(iii) |=Ł (∃x̄)PF(x̄)
(iv) For all r < 1: |=>r

Ł

∨n
i=1 PF(t̄i) for some t̄1, . . . , t̄n ∈ U(PF).

Proof. The equivalence of (i) and (ii) is Theorem 8.37 and the equivalence of (iii)

and (iv) is (the approximate Herbrand) Theorem 8.38. Since (ii) implies (iii) as

shown in the proof of Theorem 8.36, it is enough to show that (iv) implies (ii).

Suppose that for all r < 1, there exist t̄1, . . . , t̄n ∈ U(PF) such that |=>r
Ł

∨n
i=1 PF(t̄i).

Then by Lemma 8.34, (⇒ (Qȳ)P(ȳ)) is derivable from (⇒ PF(t̄1) | . . . |⇒ PF(t̄n))
using (EC), (EW), (⇒∃), and the revised version of (⇒∀). Moreover, it is easily

checked that for each instance of these rules with premise G and conclusion H: if

|=≥r
Ł G, then |=≥r

Ł H. So by a simple induction, |=>r
Ł (Qȳ)P(ȳ) for all r < 1. Hence

|=Ł (Qȳ)P(ȳ) as required. ⊓⊔

Finally, we can use this approximate Herbrand theorem to sketch a proof of a special

“approximate completeness” result for the Hilbert system HŁ∀. First notice that for

any formula B and k ∈ N+:

1−1/k ≤ ‖B‖M iff ‖¬B‖M ≤ 1/k

iff k‖¬B‖M ≤ 1

iff (k−1)‖¬B‖M ≤ ‖B‖M

iff 1 ≤ ‖((k−1).¬B) → B‖M

iff 1 ≤ ‖B⊕Bk−1‖M

Now for any formula A, let (∃x̄)PF(x̄) be the Skolem form of a prenex formula

equivalent to A. We note without proof that A is HŁ∀-derivable from (∃x̄)PF(x̄).
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Moreover, if |=Ł A, then by the approximate Herbrand theorem, for all k ∈ N+:

|=
≥1−1/k

Ł

n∨

i=1

PF(t̄i) for some t̄1, . . . , t̄n ∈ U(PF).

But then by the preceding bit of reasoning and the completeness of HŁ∀ with respect

to propositional formulas, for all k ∈ N+:

⊢HŁ∀ B⊕Bk−1 where B =
n∨

i=1

PF(t̄i) for some t̄1, . . . , t̄n ∈ U(PF).

However, (∃x̄)PF(x̄) is HŁ∀-derivable from any such B. So A ⊕ Ak−1 is HŁ∀-

derivable from B⊕Bk−1 for all k ∈ N+. Hence we arrive at the following result.

Theorem 8.43. |=Ł A iff ⊢HŁ∀ A⊕Ak for all k ∈ N+.

8.5.2 Gentzen Systems

A similar situation occurs when dealing with Gentzen systems for Ł∀. Consider

the system GŁ∀, obtained by extending GŁ from Chapter 6 with the rules for the

existential and universal quantifiers.

Example 8.44. It is easy to check that the axioms (∀1), (∀2), (∀3), (∃1), and (∃2)
are GŁ∀-derivable. For example, for (∀2):

B(a) ⇒ B(a)
(ID)

A ⇒ A
(ID)

B(a),A ⇒ A,B(a)
(MIX)

A → B(a),A ⇒ B(a)
(→⇒)A

(∀x)(A → B),A ⇒ B(a)
(∀⇒)

(∀x)(A → B),A ⇒ (∀x)B
(⇒∀)

(∀x)(A → B) ⇒ A → (∀x)B
(⇒→)

⇒ (∀x)(A → B) → (A → (∀x)B)
(⇒→)

Moreover, GŁ∀ is sound with respect to the non-standard interpretation of Chapter 6,

extended to the first-order level as follows:

Definition 8.45. |=Ł G iff for all structures M:

∑
C∈Γ

(‖C‖M −1) ≤ ∑
D∈∆

(‖D‖M −1) for some (Γ ⇒ ∆) ∈ G.

Theorem 8.46. If d ⊢GŁ∀ G, then |=Ł G.
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Proof. We proceed by induction on ht(d). The rules of GŁ were treated in the proof

of Theorem 6.20, so it remains to consider the quantifier rules. For (⇒∀), suppose

contrapositively that for some structure M:

∑
C∈Γ

(‖C‖M −1) > (‖(∀x)A(x)‖M −1)+ ∑
D∈∆

(‖D‖M −1)

Then this inequation holds also when ‖(∀x)A(x)‖M is replaced with ‖A(x)‖
M,m[x→d]

for some d ∈ M. But now for some free variable a not occurring in Γ, ∆, or A(x), we

can extend M so that ‖A(x)‖
M,m[x→d] = ‖A(a)‖M. Hence as required:

∑
C∈Γ

(‖C‖M −1) > (‖A(a)‖M −1)+ ∑
D∈∆

(‖D‖M −1)

For (∀⇒), clearly if ∑C∈Γ(‖C‖M−1)+(‖A(t)‖M−1)≤∑D∈∆(‖D‖M−1) for some

term t, then ∑C∈Γ(‖C‖M −1)+(‖(∀x)A(x)‖M −1) ≤ ∑D∈∆(‖D‖M −1). The cases

of the rules for ∃ are very similar. ⊓⊔

However, it does not follow from this that ⊢GŁ∀⇒ A implies ⊢HŁ∀ A, since HŁ∀ is

itself not complete for first-order Łukasiewicz Logic. This requires an interpretation,

omitted here, of sequents in terms of abelian ℓ-groups and a correspondence with

MV-algebras. The interested reader is referred to [24] for details.

On the other hand, it is easy to show that GŁ∀ extended with (CUT) is complete

with respect to HŁ∀. We can derive all the axioms of HŁ∀ in GŁ∀, (MP) and (ADJ)

are admissible as shown in Chapter 4, and (GEN) is admissible using (⇒∀).

Theorem 8.47. ⊢HŁ∀ I(G) iff ⊢GŁ∀+(CUT) G.

This is all very well. However, unfortunately, cut elimination fails for GŁ∀+ (CUT)

and cancellation elimination fails for GŁ∀+ (CAN), so we do not have an analytic

calculus even for the system HŁ∀. For example, (∃x)(∀y)(p(x) → p(y)) has the

following proof in GŁ∀ + (CAN):

p(a) ⇒ p(a)
(ID)

(∀z)p(z) ⇒ p(a)
(∀⇒)

p(a) ⇒ p(a)
(ID)

p(b) ⇒ p(b)
(ID)

(∀z)p(z) ⇒ p(b)
(∀⇒)

(∀z)p(z), p(a) ⇒ p(b), p(a)
(MIX)

(∀z)p(z) ⇒ p(a) → p(b), p(a)
(⇒→)Ł

(∀z)p(z) ⇒ (∀y)(p(a) → p(y)), p(a)
(⇒∀)

(∀z)p(z) ⇒ (∃x)(∀y)(p(x) → p(y)), p(a)
(⇒∃)

(∀z)p(z) ⇒ (∃x)(∀y)(p(x) → p(y)),(∀z)p(z)
(⇒∀)

⇒ (∃x)(∀y)(p(x) → p(y))
(CAN)

But no GŁ∀-derivation exists for this formula. A simple induction shows that in

such a derivation there would be a branch where any hypersequent G satisfies the

following property: G contains a sequent with an occurrence of a subformula of
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(∃x)(∀y)(p(x) → p(y)) on the right that does not occur on the left in any sequent in

G. But then the branch could not contain an initial sequent, a contradiction.

To obtain a calculus that is complete for the full first-order Łukasiewicz Logic,

we need an infinitary rule. Let us reason as in the approximate completeness proof

for the Hilbert system above. If |=Ł (∃x̄)P(x̄), then for all k ∈ N+: ⊢GŁ∀ ⊥⇒ [B]k

where B =
∨n

i=1 PF(t̄i) for some t̄1, . . . , t̄n ∈ U(PF). But then using Lemma 8.34 k

times, we can apply the quantifier and structural rules of GŁ∀ to derive (⊥⇒ [A]k)
from (⊥⇒ [B]k).

Theorem 8.48. Let A be a prenex formula. Then |=Ł A iff A is derivable in GŁ∀
extended with the rule:

⊥⇒ [A]k for all k ∈ N+

⇒ A

Example 8.49. Consider our earlier problematic formula (∃x)(∀y)(p(x)→ p(y)). To

derive this in our calculus we would have to perform an infinite number of deriva-

tions in GŁ∀. E.g in the case where n = 2, we have:

⊥⇒ p(b) → p(c)

⊥⇒ p(b)

⊥⇒ p(c) p(b) ⇒ p(b)

⊥, p(b) ⇒ p(b), p(c)
(MIX)

⊥⇒ p(b), p(b) → p(c)
(⇒→)Ł

⊥, p(a) ⇒ p(b), p(b) → p(c)
(W)

⊥⇒ p(a) → p(b), p(b) → p(c)
(⇒→)Ł

⊥⇒ p(a) → p(b),(∀y)(p(b) → p(y))
(⇒∀)

⊥⇒ p(a) → p(b),(∃x)(∀y)(p(x) → p(y))
(⇒∃)

⊥⇒ (∀y)(p(a) → p(y)),(∃x)(∀y)(p(x) → p(y))
(⇒∀)

⊥⇒ (∃x)(∀y)(p(x) → p(y)),(∃x)(∀y)(p(x) → p(y))
(⇒∃)

We remark finally that it is possible to extend the above theorem to all hyperse-

quents, proceeding similarly to Lemma 8.34. However, this is rather complicated

and since all formulas admit a prenex form, we omit the details here.

8.6 Historical Remarks

Łukasiewicz Logic was the first fuzzy logic to be investigated at the first-order level.

The disappointing but crucial result that the set of valid formulas is not recursively

enumerable was established by Scarpellini in 1962 [192], and later sharpened by

Ragaz in his 1981 thesis to Π2-completeness [184]. Axiomatizations with an infini-

tary rule were obtained nevertheless, by Hay [117] and Belluce and Chang [32] in

1963 (see also [158, 31]). Pavelka’s Łukasiewicz Logic with (rational) constants,

developed in the late 1970s [181] was extended to the first-order level by Novák

[167] and Hájek [105] in the 1990s. Interesting fragments of first-order Łukasiewicz
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Logic have also been studied. The decidability result for the one-variable fragment

given in this chapter was first obtained by Rutledge in 1959 [191]. Satisfiability for

the monadic fragment (where all predicate symbols are nullary or unary) was shown

to be Π1-complete by Ragaz [184], but the complexity and even decidability for the

valid formulas of this fragment remain important open problems. Finally, the ax-

iomatization given in this chapter of the Σ1-complete logic of (safe structures for)

MV-chains is taken from Hájek’s [105].

The first axiomatization and completeness proof for first-order Gödel Logic, as

the logic based on linearly ordered Heyting algebras, was provided by Horn in

1969 [123]. An alternative axiomatization with the density rule was introduced in-

dependently by Takeuti and Titani in 1984 [205] as Intuitionistic Fuzzy Logic and

used as the basis for a fuzzy set theory. Other axiomatizations closer to the presenta-

tion in this chapter were given by Takano [203] and Hájek [105]. First-order Gödel

logics understood in a wider sense where the set of truth values forms a closed sub-

set of [0,1] including 0 and 1, and connectives are interpreted as in the standard

algebra, have been studied intensively by Baaz, Preining, and Zach (see e.g. [26]).

With this reading, infinite-valued propositional Gödel logics coincide but separate

into infinitely many different logics at the first-order level. Finally, we mention that

Corsi in 1992 [64] investigated the first-order logic characterized by formulas valid

in linearly ordered Kripke models, axiomatized by removing the axiom (∀3) from

HG∀. This compares with the fact (shown by Gabbay in 1972 [85]) that the standard

Gödel Logic studied in this chapter is the first-order logic of linearly ordered Kripke

models with constant domains.

First-order Monoidal t-norm Logic was introduced by Esteva and Godo in

2001 [77]. Standard completeness for their axiomatization was established by Mon-

tagna and Ono a year later [155]. A general argument for the undecidability of the

prenex fragments of first-order fuzzy logics, similar to the one presented here, was

provided by Baaz et al. in [16]. Indeed it has been shown that of the fuzzy logics

based on continuous t-norms, only Gödel Logic is recursively enumerable. Product

Logic and Basic Logic, and uncountably many other such logics, do not even fit into

the arithmetical hierarchy. The key results were proved by Montagna in 2001 [152]

(see also [110] for a survey).

The axiomatic approach to first-order fuzzy logics based on restricting to safe

structures described in this chapter is taken from Hajek’s [105] and the 2006 pa-

per of Cintula and Hájek [62] (see also the survey paper [61]). The completeness

with respect to dense chains (sometimes called rational completeness) of such ax-

iomatizations extended with the density rule is established in a more general setting

in the 2008 paper of Ciabattoni and Metcalfe [55]. Our discussion of the formula

C = (∀x)(p(x)⊙ q) → ((∀x)p(x)⊙ q) is based on two sources: first, a footnote in

Hájek’s [105], in which C is proved valid in all dense BL-chains, and second, a foot-

note in Esteva and Godo’s [77], where a BL-chain (attributed to Bou) is given for

which C is not valid.

There has been relatively little work on Gentzen systems for first-order fuzzy

logics. The hypersequent calculus presented here for Gödel Logic was introduced

by Baaz and Zach in 2000 [29] as an extension of the propositional system of
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Avron [11]. The authors use the system to establish the mid-hypersequent theorem

and hence the Herbrand theorem for the prenex fragment of this logic, and obtain

a syntactic elimination of the density rule. An alternative proof of the Herbrand

theorem is given by Baaz, Ciabattoni, and Fermüller in [14] together with general

conditions (similar to those adopted here) for the prenex fragment to admit Skolem-

ization. Many of these techniques and results (but not density elimination) were

extended to first-order Monoidal t-norm Logic by Baaz, Ciabattoni, and Montagna

in [17]. General conditions for single-conclusion hypersequent calculi to admit den-

sity elimination were provided in Ciabattoni and Metcalfe’s [55].

Finally, the proof-theoretic results obtained here for Ł∀, in particular the approx-

imate Herbrand theorem, Skolemization, and the infinitary hypersequent calculus,

are taken from the papers of Baaz and Metcalfe [24, 25]. We note only that an al-

ternative proof of the approximate Herbrand theorem was given by Novák in [165],

and that related results have been obtained for so-called Continuous Logic (which

allows any connective interpreted by a continuous function) (see e.g. [33]).



Chapter 9

Further Topics

This final chapter is devoted to awkward cases logics that do not quite fit the earlier

presentations. There are two points of divergence here. On the one hand, we extend

our standard languages for fuzzy logics with modalities and propositional quanti-

fiers. On the other, we generalize the semantic basis of fuzzy logics to cover finite

or non-linearly ordered sets of truth values, and non-commutative conjunctions. As

a fitting end to both the chapter and the book, we then discuss open problems, in

particular, the problematic case of Hájek’s Basic Logic BL.

Due to the lack of homogeneity in this material, we proceed rather differently

here to previous chapters. We offer the reader just a taste of each topic, and insert

references and historical comments throughout the text as appropriate.

9.1 Modalities and Truth Stressers

Modalities – unary connectives that modify the meaning of sentences – play a key

role in Logic, dealing with such diverse notions as necessity, obligation, provability,

space, and time (see e.g. [44] for an authoritative survey). Fuzzy logics are no excep-

tion in this respect. There exist many different possible interpretations for modalities

in these contexts, including the following special examples:

• Truth stressers. Natural language expressions like “very true” or “more or less

true” that increase or decrease the truth value of a sentence are an important

topic in Fuzzy Logic (see e.g. [106, 224]). Such “truth stresser” modalities can

be modelled by reading �A as e.g. “A is very true” and making use of axioms

such as �A → A to capture properties like “A is very true” is less true than A”.

• Globalization. One truth stresser widely studied in Fuzzy Logic (and other con-

texts) is “globalization” – also known as the (Baaz) Delta connective – where

�A is interpreted as “A is completely (classically) true” [13, 166, 206]. Global-

ization allows fuzzy logics to model not just vague sentences, but also sentences

with classical or “crisp” truth values.

229
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• Exponentials. Like the exponentials ! and ? of Linear Logic [10, 97] and modali-

ties added to substructural logics [101, 185], � can be used to specify properties

of certain classes of formulas. For example, axioms such as �A → (�A⊙�A)
permit the contraction of “boxed formulas”. This extra flexibility can be used

to embed other logics into the extended logic, just as Intuitionistic Logic can be

embedded into Linear Logic (see e.g. [209]) or S4 (see e.g. [44]). Such modal-

ities can also be used to encode useful semantic properties, an example being

Montagna’s “storage operator” for logics extending BL [153].

These examples have one thing in common, however. The intended interpretation of

the � modality is a unary function on the reals. Conversely, one of the characteristic

features of modalities in Classical Logic is that modalities are not truth-functional.

This is the case also in Fuzzy Logic for modalities such as necessity and probability

(see e.g [105]). However here, since the above examples already provide plenty of

motivation, we will restrict our attention to these truth-functional “truth stresser”

interpretations.

9.1.1 Axioms and Algebras

The first step in investigating modal fuzzy logics is to expand our propositional lan-

guages with a unary connective �. E.g. restricting attention to the bounded language

LB, we let:

L� = {∧,∨,⊙,→, f,e,⊥,⊤,�}

We mention also (but will not use) the dual connective ♦A =def ¬�¬A, having a

reciprocal meaning to the � connective such as “quite true” or “possibly true”.

The key rule for axiomatizing modal logics is “necessitation”, which tells us that

if a formula is true, then it is also necessarily true, very true, completely true, etc.

Definition 9.1 (Necessitation Rule).

A

�A
(NEC)

A Hilbert System HK for the basic classical modal logic K is obtained by adding

(NEC) and the following transitivity axiom schema to an axiomatization such as

HCL of Classical Logic:

(K�) �(A → B) → (�A → �B)

However, axiomatizations for fuzzy modal logics (at least the truth-functional kind

studied here), require also “shifting law of modalities” axioms to preserve the char-

acteristic linearity of the truth value set:

(∨�) �(A∨B) → (�A∨�B)
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Table 9.1 Modal axioms

Label Axioms

(K�) �(A → B) → (�A → �B)
(∨�) �(A∨B) → (�A∨�B)
(T�) �A → A

(4�) �A → ��A

(C�) �A → (�A⊙�A)
(W�) (�A⊙�B) → �A

(S�) �A∨¬�A

Table 9.2 Some fuzzy logics with modalities

Hilbert system Axioms and rules

HLKr HL + (K�) + (∨�) + (NEC)
HLKTr HLKr + (T�)
HLK4r HLKr + (4�)
HLS4r HLKr + (T�) + (4�)
HL∆ HLS4r + (S�)
HL! HLS4r + (W�) + (C�)

This can be compared with the “shifting law of quantifiers” axiom schema (∀3) of

the last chapter. Adding (NEC), (K�), and (∨�) to a HUL-extension HL gives a

Hilbert system HLKr that is sound and complete with respect to linearly ordered

algebras (see below). The superscript “r” stands here for “representability”, empha-

sizing that Hilbert systems defined without (∨�) are not generally complete with

respect to linearly-ordered algebras.

The modality � can be characterized, as in the classical case, by adding further

axioms such as those listed in Table 9.1 (referring to [44] for many other options).

Adding (T�) and (4�) to HK gives an axiomatization for the modal logic S4; adding

just (T�) gives KT and just (4�) gives K4. The other axioms only really make

sense for substructural logics. For example, the weakening and contraction axioms

for boxed formulas, (C�) and (W�), play an important role in Linear Logic, which

can be axiomatized as HMALL extended with (NEC), (K�), (T�), (4�), (W�), and

(C�) [10, 97]. Finally, the law of excluded middle for boxed formulas (S�) can be

used to axiomatize logics with the globalization connective [13, 166, 206]. Table 9.2

lists some of these options for an arbitrary HUL-extension HL.1

Algebras for these logics are bpcrls extended with a unary operation �.

Definition 9.2. A ULKr-algebra is an algebra 〈L,∧,∨,⊙,→,e, f,⊥,⊤,�〉 where

〈L,∧,∨,⊙,→,e, f,⊥,⊤〉 is a UL-algebra and � is a unary operation satisfying:

1 Note that it is more common in the literature to define modal fuzzy logics semantically via Kripke

models. E.g. in [105] a logic K(L) is defined for a fuzzy logic L by defining Kripke models where
the non-modal connectives are defined locally for each node of the model as in L. The question
then is how to axiomatize such logics.
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1. �(x → y) ≤ �x → �y.

2. �(x∨ y) = �x∨�y.

3. e ≤ �e.

Other definitions and terminology carry over directly from Chapter 3. That is, val-

uations for ULr-algebras are defined as for UL-algebras except that also v(�A) =
�v(A), and for any HULKr-extension HL, an L-algebra A is any ULKr-algebra such

that the axioms of HL are A-valid.

Establishing soundness and completeness for an HULKr-extension HL with re-

spect to L-algebras proceeds as in Chapter 3. Namely, we extend the definition of a

Lindenbaum algebra LINDL
T with �, and show again that T ⊢HL A iff A is LINDL

T -

valid. To obtain completeness for HL with respect to the class of L-chains LIN(L),
the key step is to show that these logics retain the proof-by-cases property; i.e. if

T ∪{A} ⊢HL C and T ∪{B} ⊢HL C, then T ∪{A∨B} ⊢HL C. As in Chapter 3, it is

easy to prove this using a local deduction theorem, extending the notion of a confu-

sion to that of a modal confusion.

Definition 9.3. A modal confusion of a theory T is defined inductively by:

(1) e, ⊤ (if in the language), and any element of T are confusions of T .

(2) If C1 and C2 are confusions of T , then so are �C1, C1 ⊙C2, and C1 ∧C2.

Theorem 9.4. Let HL be an HULKr-extension:

(a) T ⊢HL A for any modal confusion A of T .

(b) T ∪{A} ⊢HL B iff T ⊢HL C → B for some modal confusion C of {A}.

(c) T ⊢HL B iff ⊢HL C → B for some modal confusion C of T .

(d) HL has the proof-by-cases property.

Proof. For (a), we proceed as in the proof of Lemma 3.42 by induction on cp(A).
The only new case occurs when A is �A′ for some modal confusion A′ of T . But

then by the induction hypothesis, T ⊢HL A′ and so by (NEC), T ⊢HL �A′.

For (b) and (c), we show that T1∪T2 ⊢HL B iff T1 ⊢HL C →B for some modal con-

fusion C of T2. The right-to-left direction follows almost immediately using part (a).

For the left-to-right direction, we proceed as in the proof of Theorem 3.43 by in-

duction on the height of a derivation for T1 ∪T2 ⊢HL B. The only new case occurs

when B is �B′ and the last step in the derivation is an application of (NEC), and

T1 ∪T2 ⊢HL B′. Then by the induction hypothesis, T1 ⊢HL C′ → B′ for some modal

confusion C′ of T2. But then by (NEC), T1 ⊢HL �(C′ → B′). Hence using (K�),
T1 ⊢HL �C′ → �B′ where �C′ is a modal confusion of T2 as required.

Finally, for (d) we follow the same proof as in Lemma 3.54, replacing confusions

with modal confusions. The only change comes in the proof of the claim: if A′

is a modal confusion of {A} and B′ is a modal confusion of {B}, then ⊢HL E →
(A′∨B′) for some modal confusion E of {A∨B}, proved by induction on cp(A′)+
cp(B′). Suppose that A′ is �A1 and B′ is �B1 where A1 and B1 are modal confusions

of {A} and {B}, respectively. Then by the induction hypothesis ⊢HL E ′ → (A1 ∨
B1) for some modal confusion E ′ of {A ∨ B}. But then easily using (K�), ⊢HL
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�E ′ →�(A1∨B1). So using (∨�), ⊢HL �E ′ → (�A1∨�B1) where �E ′ is a modal

confusion of {A∨B} as required. ⊓⊔

The same theorem holds with essentially the same proofs, if we replace HL with

HLD. The proofs of the following results then proceed exactly as in Chapter 3.

Theorem 9.5. For any HULKr-extension HL:

T ⊢HL A iff T |=LIN(L) A and T ⊢HLD A iff T |=DEN(L) A.

9.1.2 Gentzen Systems

Hypersequent calculi for fuzzy logics with modalities (the representable kind) are

easy enough to define. We simply add introduction rules for � to our regular cal-

culi plus extra structural rules characterizing its behaviour. For a finite multiset of

formulas Γ = [A1, . . . ,An], let �Γ stand for [�A1, . . . ,�An].

Definition 9.6 (Modal Logical Rules).

G | Γ ⇒ A

G | �Γ ⇒ �A
(�)

G | Γ,A ⇒ ∆

G | Γ,�A ⇒ ∆
(�⇒)

G | �Γ ⇒ A

G | �Γ ⇒ �A
(⇒�)

Example 9.7. The (K�) axioms are derivable using the implication rules and (�):

A ⇒ A
(ID)

B ⇒ B
(ID)

A → B,A ⇒ B
(→⇒)

�(A → B),�A ⇒ �B
(�)

�(A → B) ⇒ �A → �B
(⇒→)

⇒ �(A → B) → (�A → �B)
(⇒→)

It is also easy to see that (T�) and (4�) are derivable using the implication rules

with (�⇒) and (⇒�).

The rules (�), (�⇒), and (⇒�) are just hypersequent versions of rules familiar

from sequent calculi for the modal logics K, KT, K4, and S4 (see e.g. [168, 174]).

However, all is not quite what it seems here. The step up to hypersequents allows

more modal formulas to be proved than in the classical case.

Example 9.8. The axiom (∨�), which is not derivable even in the modal logic S4,

is derivable here using (�) together with the usual logical rules, (COM), (EW), and

(EC), the top hypersequent being derived as in Example 4.35:
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Table 9.3 Matching rules for modal axioms

Rule Matching axioms

(�⇒) (T�) �A → A

(⇒�) (4�) �A → ��A

(W)� (W�) (�A⊙�B) → �A

(C)� (C�) �A → (�A⊙�A)
(SPLIT)� (S�) �A∨¬�A

A∨B ⇒ A | A∨B ⇒ B

A∨B ⇒ A | �(A∨B) ⇒ �B
(�)

�(A∨B) ⇒ �A | �(A∨B) ⇒ �B
(�)

�(A∨B) ⇒ �A∨�B
(⇒∨)

⇒ �(A∨B) → (�A∨�B)
(⇒→)

One way to think of this is that (COM) corresponds not to the prelinearity and dis-

tributivity axioms, but to the completeness of the logic with respect to chains.

The structural behaviour of � is characterized further by adding “modal versions”

of the usual structural rules. Let us just consider a selection of these:

Definition 9.9 (Modal Structural Rules).

G | Γ ⇒ ∆

G | Γ,�Π ⇒ ∆
(W)�

G | Γ,�Π,�Π ⇒ ∆

G | Γ,�Π ⇒ ∆
(C)�

G | �Γ,Π ⇒ Σ

G | �Γ ⇒| Π ⇒ Σ
(SPLIT)�

The structural rules (C)� and (W)� are hypersequent versions of rules used for the

exponential ! in Linear Logic [97].

Example 9.10. (SPLIT)� ensures that boxed formulas obey the law of excluded mid-

dle (S�):

�A ⇒ �A
(ID)

⇒ �A | �A ⇒
(SPLIT)�

⇒ �A |⇒ ¬�A
(⇒¬)

⇒ �A∨¬�A
(⇒∨)

However, note that for the interpretation where �x is ⊤ for x = ⊤ and ⊥ otherwise

in logics without weakening, a slightly different rule is needed:

G | �Γ1,Π ⇒ Σ

G | �Γ1,Γ2 ⇒ ∆ | Π ⇒ Σ
(SPLIT)w

�

These rules are connected with matching axioms as listed in Table 9.3. Soundness

and completeness results with respect to matching systems follow as in Chapter 4.
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Theorem 9.11. For an HUL-extension HL with matching Gentzen system GL, let

GL� be GL plus (�) and any selection of rules from Table 9.3 and let HL� be

HLKr plus the matching axioms for these rules. Then ⊢GL�
G iff ⊢HL�

I(G).

Cut elimination for these systems proceeds essentially as in Chapter 5 (although

note that the rules for � require a little more care); we refer to [56] for details. This

paper also includes a number of algebraic standard completeness proofs for modal

logics based on HMTL-extensions. The density elimination method also works in

this context, but we leave the details for the reader to investigate.

9.1.3 Embeddings

One motivation for extending a logic with modalities is the opportunity to embed

other logics into this extended logic. Historically, the most famous examples are the

various embeddings of Intuitionistic Logic into S4, also extended to intermediate

logics and extensions of S4 (see e.g. [44]), and of Intuitionistic Logic again into

Linear Logic (see e.g. [209]). In this section we show how the proof theory devel-

oped above allows us to embed certain fuzzy logics into other fuzzy logics with

S4-like modalities.

Let us consider first two mappings found in the literature on modal and substruc-

tural logics (see e.g. [185, 209]), where a is any atom:

a∗ = a a� = �a

(A → B)∗ = �A∗ → B∗ (A → B)� = �(A� → B�)
(A⊙B)∗ = �A∗⊙�B∗ (A⊙B)� = �(A� ⊙B�)
(A∧B)∗ = A∗∧B∗ (A∧B)� = A� ∧B�

(A∨B)∗ = A∗∨B∗ (A∨B)� = A� ∨B�

These two mappings can be related as follows:

Lemma 9.12. For any HULS4r-extension HL:

(a) ⊢HL �A∗ ↔ A�.

(b) ⊢HL A∗ iff ⊢HL A�.

Proof. We prove (a) by induction on cp(A). If A is atomic, then the result follows

by definition. If A is B →C, then �A∗ = �(�B∗ →C∗). It is easy to show that ⊢HL

�(�B∗ → C∗) ↔ �(�B∗ → �C∗). Hence, using the induction hypothesis twice,

⊢HL �(�B∗ →C∗)↔�(B� →C�) as required. If A is B⊙C, then �A∗ = �(�B∗⊙
�C∗) and the result follows by the induction hypothesis twice. Suppose that A is

B⋆C for ⋆∈ {∧,∨}. Then �(A⋆B)∗ = �(B∗ ⋆C∗). In each case, ⊢HL �(B∗ ⋆C∗)↔
�B∗ ⋆�C∗. Hence, using the induction hypothesis twice, ⊢HL �(B∗ ⋆C∗) ↔ (B� ⋆
C�) as required. (b) follows from (a), since ⊢HL A∗ iff (using (NEC) and (T�))
⊢HL �A∗ iff ⊢HL A�. ⊓⊔
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Suppose now that HL1 is HUL extended with axiom schema taken from (SPLIT),

(W), and (C). Let HL�
2 be HIULS4r extended with the corresponding modal axiom

schema from (SPLIT)�, (W)�, and (C)�. Then we can embed HL1 into HL�
2 using

either of the above mappings. For concreteness, let us consider a direct analogue

of the embedding of Intuitionistic Logic into Linear Logic. We will embed Gödel

Logic into the “Fuzzy Linear Logic” IUL! (see Table 9.2).

Theorem 9.13. Let G be a single-conclusion hypersequent in the language LG =
{∧,∨,→,⊥,⊤}. Then ⊢GG G iff ⊢GIUL! G

∗ where:

Γ∗ = [A∗ : A ∈ Γ] and (Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n)
∗ = �Γ∗

1 ⇒ ∆∗
1 | . . . | �Γ∗

n ⇒ ∆∗
n

Proof. For the left-to-right direction, we proceed by induction on the height of a

GG◦-derivation of G. The base cases are easy. E.g. if G is H | A ⇒ A, then G∗ is

H∗ | �A∗ ⇒ A∗ which is GIUL!-derivable using (�⇒) and (ID). Notice also that

for the inductive step, if the last application of a rule is (EW), (EC), or (COM), we

can just apply the induction hypothesis and the same rule for GIUL!. Similarly, for

(W) or (C), we can just apply the induction hypothesis and then the corresponding

modal rule. For the logical rules, let us just consider the implication rules.

Suppose that the derivation ends with:

H | Π,A ⇒ B

H | Π ⇒ A → B
(⇒→)

By the induction hypothesis, we obtain a GIUL!-derivation ending with:

H∗ | �Π∗,�A∗ ⇒ B∗

H∗ | �Π∗ ⇒ �A∗ → B∗ (⇒→)

Suppose that the derivation ends with:

H | Π1 ⇒ A H | Π2,B ⇒ Σ

H | Π1,Π2,A → B ⇒ Σ
(→⇒)

Using the induction hypothesis twice, we obtain a GIUL!-derivation ending with:

H∗ | �Π∗
1 ⇒ A∗

H∗ | �Π∗
1 ⇒ �A∗ (⇒�)

H∗ | �Π∗
2,�B∗ ⇒ Σ∗

H∗ | �Π∗
1,�Π∗

2,�A∗ → �B∗ ⇒ Σ∗ (→⇒)

But ⊢GIUL! H
∗ | �(�A∗ → B∗) ⇒ �A∗ → �B∗, so by (CUT) we have as required:

⊢GIUL! H
∗ | �Π∗

1,�Π∗
2,�(�A∗ → B∗) ⇒ Σ∗

For the right-to-left direction, suppose that ⊢GIUL! G
∗. We claim that there exists a

derivation of G∗ in GIUL!◦ where (⇒→) is restricted to single-conclusion sequents.

Using cut elimination for GIUL! and the invertibility of the rules (⇒→), (⇒∨),
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and (⇒∧), we obtain a cut-free derivation of G∗ where (→⇒) is restricted to cases

where all sequents in the conclusion contain only atoms and boxed formulas. It then

follows by an easy induction that all sequents in such a derivation of G∗ are either

of this special form or single-conclusion. But this means that (⇒→) is restricted to

single-conclusion sequents. Then finally we can show by induction on the height of

a derivation that if G∗ is derivable in GIUL! with the restricted use of (⇒→), then G
is derivable in GG. ⊓⊔

Corollary 9.14. ⊢G A iff ⊢IUL! A∗ iff ⊢IUL! A�.

9.2 Propositional Quantifiers

We turn now to another interesting extension of languages. The addition of propo-

sitional quantifiers ∀p and ∃p – intuitively “for all propositions p” and “for some

proposition p” – can be useful for expressing properties of truth value sets. For ex-

ample, instead of expressing density using a rule, we might use “density axioms” of

the form:

(∀p)((A → p)∨ (p → B)) → (A → B)

More generally, this extra flexibility can be used to express topological properties

of sets of real numbers such as the existence of limit points or successor elements.

In Classical Logic, propositional quantifiers are little more than a notational

convenience: (∀p)A(p) and (∃p)A(p) are interpreted by infima and suprema over

the truth value set {0,1} and can therefore be defined as just A(⊥)∧ A(⊤) and

A(⊥) ∨ A(⊤). However, in non-classical logics propositional quantifiers can in-

crease expressive power quite considerably, an important example of this being

Quantified Intuitionistic Logic [86]. For fuzzy logics, we will consider only the

already tricky case of Quantified Gödel Logic, introduced by Baaz, Fermüller, and

Veith in [21] (see also [15, 18, 28]).

Let us make use of the language LG = {∧,∨,→,⊥,⊤} and add to the definition

of a formula the condition that if A is a formula and p a variable, then (∀p)A and

(∃p)A are formulas. As in the first-order case, we distinguish between bound vari-

ables, denoted p, q, and free variables, denoted a, b. We also write A(ā) to denote

that the free variables of A are among those in ā, using A(B) to denote distinguished

occurrences of a formula B in A.

G-valuations are extended to such formulas as follows, where for each valuation

v and r ∈ [0,1], v[r/p] is defined as v[r/p](q) = r if q = p and v[r/p](q) = v(q)
otherwise:

v((∃p)A) = sup{v[r/p](A) : r ∈ [0,1]}
v((∀p)A) = inf{v[r/p](A) : r ∈ [0,1]}

A formula A is QG-valid, written |=QG A, if v(A) = 1 for all G-valuations v.

A Hilbert system for QG is obtained as an extension of an axiomatization of

Quantified Intuitionistic Logic defined by Gabbay in [86].
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Definition 9.15. HQG consists of the axioms and rules of HG extended with:

(Q∃) A(B) → (∃q)A(q)
(∀Q) (∀q)A(q) → A(B)
(Q∨) (∀q)(A∨B) → (A∨ (∀q)B) q not occurring in A

(QD) (∀q)((A → q)∨ (q → B)) → (A → B) q not occurring in A or B

A(a) → B

(∃q)A(q) → B
(∃Q)

A → B(a)

A → (∀q)B(q)
(Q∀)

where a does not occur in A or B.

It is straightforward to check that HQG is sound with respect to QG-validity. How-

ever, the crucial result for HQG is the following (we omit the rather involved proof):

Theorem 9.16 ([28]). HQG admits quantifier elimination: for every formula A there

is a quantifier-free formula B whose variables occur in A such that ⊢HQG A ↔ B.

By Theorem 3.56, |=QG B iff ⊢HQG B for any quantifier-free formula B. Hence,

combining this with quantifier elimination:

Corollary 9.17. ⊢HQG A iff |=QG A.

In fact it follows from the proof of Theorem 9.16 in [28] that this last result holds for

HQG even when the B in (∀Q) and (Q∃) are restricted to quantifier-free formulas.

Moreover, as shown in [27], quantifier elimination also provides an easy proof of

the interpolation property for Gödel Logic.

Corollary 9.18. Gödel Logic G admits uniform interpolation; i.e. if ⊢HG A → B,

then there exists a formula C with variables occurring in both A and B such that

⊢HG A →C and ⊢HG C → B.

Proof. Suppose that ⊢HG A(ā, b̄) → B(b̄, c̄) where ā and b̄ and b̄ and c̄ are the vari-

ables occurring in A and B, respectively. Then easily ⊢HQG A(ā, b̄) → (∃p̄)A(p̄, b̄)
and ⊢HQG (∃p̄)A(p̄, b̄) → B(b̄, c̄). But then by quantifier elimination, there exists a

propositional formula C(b̄) such that ⊢HQG (∃p̄)A(p̄, b̄) ↔C(b̄) as required. ⊓⊔

A hypersequent calculus for QG is obtained rather easily. We add quantifier rules to

the standard calculus for G, and, crucially in this case, the hypersequent version of

the density rule:

Definition 9.19. GQG consists of GG extended with:

G | Γ,A(B) ⇒ ∆

G | Γ,(∀p)A(p) ⇒ ∆
(∀⇒)Q

G | Γ ⇒ A(a)

G | Γ ⇒ (∀p)A(p)
(⇒∀)Q

G | Γ,A(a) ⇒ ∆

G | Γ,(∃p)A(p) ⇒ ∆
(∃⇒)Q

G | Γ ⇒ A(B)

G | Γ ⇒ (∃p)A(p)
(⇒∃)Q

G | Γ1,a ⇒ ∆ | Γ2 ⇒ a

G | Γ1,Γ2 ⇒ ∆
(DENSITY)
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where B is quantifier-free in (∀⇒)Q and (⇒∃)Q, and a does not occur in the

premises of (⇒∀)Q or (∃⇒)Q or the conclusion of (DENSITY).

Example 9.20. We illustrate this calculus with a derivation of the density axioms (for

space reasons, omitting the easy derivations of A,A → a ⇒ A and a,a → B ⇒ B):

A → a,A ⇒ a

A,A → a ⇒ a a → B,a ⇒ B

a → B,A ⇒ a | A → a,a ⇒ B
(COM)

a → B,a ⇒ B

a → B,A ⇒ a | (A → a)∨ (a → B),a ⇒ B
(∨⇒)∗

(A → a)∨ (a → B),A ⇒ a | (A → a)∨ (a → B),a ⇒ B
(∨⇒)∗

(A → a)∨ (a → B),A ⇒ a | (∀q)((A → q)∨ (q → B)),a ⇒ B
(∀⇒)Q

(∀q)((A → q)∨ (q → B)),A ⇒ a | (∀q)((A → q)∨ (q → B)),a ⇒ B
(∀⇒)Q

(∀q)((A → q)∨ (q → B)),(∀q)((A → q)∨ (q → B)),A ⇒ B
(DENSITY)

(∀q)((A → q)∨ (q → B)),A ⇒ B
(C)

(∀q)((A → q)∨ (q → B)) ⇒ A → B
(⇒→)

⇒ (∀q)((A → q)∨ (q → B)) → (A → B)
(⇒→)

Notice that the contraction rule (C) is essential for this derivation. To find axioma-

tizations of quantified fuzzy logics lacking contraction, alternative density axioms

are required, or the presence of the density rule itself.

Soundness and completeness proofs for GQG follow the usual pattern. It is easy

to see that the quantifier rules preserve validity, so an induction on the height of a

derivation gives soundness, while completeness follows as before from the fact that

the extra axioms of HQG are derivable, and the extra rules are admissible.

Theorem 9.21. ⊢GQG G iff ⊢QG I(G).

Cut elimination also follows the same pattern as described in Chapter 5, but here

there are a couple of important extra points to consider.

Theorem 9.22. Cut elimination holds for GQG.

Proof. As in Theorem 5.9, the result is a consequence of the following:

Claim. For any hypersequent G and hypersequent H with marked formula A:

If dG ⊢GQG◦ G and dH ⊢GQG◦ H, then ⊢GQG◦ CUT(G,H).

However, this time we have to add an extra parameter to our induction hypothesis

to cope with the fact that the complexity of the cut-formula treated can increase

when stepping e.g. from (∀p)B(p) to B(C). We let q(A) be the number of quantifier

occurrences in A, and prove the claim by induction on the lexicographically ordered

quadruple:

〈q(A),cp(A),e(dH),ht(dG)〉

Notice first that we can assume, similarly to the first-order case, that new variables

introduced by the density rule are completely new, i.e. do not occur elsewhere in
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the derivations of G and H. Given this assumption, cases involving the density rule

proceed in the same way as for other structural rules. Where we really need the extra

parameter in the induction hypothesis is the case where both branches end with a

universal (or existential) quantifier rule applied to an occurrence of A = (∀p)B(p)
(or A = (∃p)B(p)). E.g.

...

G′ | Γ,B(C), [(∀p)B(p)]n−1 ⇒ ∆

G′ | Γ, [(∀p)B(p)]n ⇒ ∆
(∀⇒)Q

...

H′ | Π ⇒ B(a)

H′ | Π ⇒ (∀p)B(p)
(⇒∀)Q

Consider a member of CUT(G,H) of the form (the only tricky case):

G′′ | Γ,Πn ⇒ ∆

where G′′ ∈ CUT(G′,H). Then by the induction hypothesis:

⊢GQG◦ G′′ | Γ,B(C),Πn−1 ⇒ ∆

We can substitute C for a in the derivation of H′ | Π ⇒ B(a) (an easy induction)

to obtain a derivation of H′ | Π ⇒ B(C). But q(B(C)) < q((∀p)B(p)). So by the

induction hypothesis again and (EC), ⊢GQG◦ G′′ | Γ,Πn ⇒ ∆ as required. ⊓⊔

As already remarked, density elimination does not hold for this system. How-

ever, GQG without (DENSITY) does enjoy cut elimination. Indeed, it is conjectured

in [15] that this system corresponds to the intersection of all the finite-valued propo-

sitional quantified Gödel logics.

As at the first-order level, infinite-valued Gödel logics with truth values different

to [0,1] (such as, e.g. {1−1/n : n ∈ N+}) that coincide with G at the propositional

level, can diverge when extended with propositional quantifiers. In fact, there are

uncountably many different quantified Gödel logics. For an account of this and many

other interesting facts, we refer to [18].

Finally, note that for other fuzzy logics such as MTL, it is not hard to establish

soundness, completeness, and cut elimination for corresponding hypersequent cal-

culi extended as above with respect to a suitably extended Hilbert system. The tricky

part is to show that such calculi are sound and complete in turn with respect to the

semantics for propositional quantification. The only other fuzzy logic investigated

at this level so far is propositional quantified Łukasiewicz Logic, studied from a

purely semantic perspective in [5].

9.3 Non-Commutative Logics

One of the most natural assumptions made in this book is the commutativity of

conjunction: that “A and B” and “B and A” always have the same truth value. How-

ever, dropping this assumption has played an important role in the development of
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substructural logics. The Lambek calculus – a sequent calculus with sequents as

ordered pairs of sequences that lacks exchange rules – was introduced by Lambek

in the 1950s to model the assignment of types to linguistic expressions in natural

language [130]. Related systems have also been widely studied, including the ex-

tension (with additive connectives) to the Full Lambek Calculus FL (see e.g. [176])

and non-commutative versions of Linear Logic (see e.g. [1, 190]). In Algebra, many

important classes such as lattice-ordered groups and residuated lattices are non-

commutative [66, 127, 210]. The non-commutative case has also received atten-

tion in Fuzzy Logic, spawning generalizations of MV-algebras [91, 94] and related

classes of algebras [108, 109, 126]. Here we consider briefly the possible implica-

tions and interest of non-commutativity for the proof theory of fuzzy logics.

9.3.1 Residuated Lattices

Residuated lattices, originating in the work of Ward and Dilworth in the 1930s [217],

provide a suitable algebraic semantics for a wide range of substructural logics, en-

compassing also other important classes of algebras such as lattice-ordered groups.

A thorough investigation of these algebras and their scope, unifying previous ap-

proaches, has been undertaken by Blount, Jipsen, and Tsinakis in [127, 210].

Pointed residuated lattices (often called FL-algebras after the Full Lambek Calcu-

lus), their subvarieties and corresponding logics, are also the subject of the 2007

monograph of Galatos, Jipsen, Kowalski, and Ono [90].

Definition 9.23. A pointed residuated lattice (prl for short) is an algebra:

A = 〈LA,∧,∨,⊙,\,/,e, f〉

with universe LA, binary operations ∧, ∨, ⊙, \, /, and constants e, f such that:

1. 〈LA,∧,∨〉 is a lattice.

2. 〈LA,⊙,e〉 is a monoid.

3. x⊙ y ≤ z iff x ≤ z/y iff y ≤ x\z for all x,y,z ∈ LA.

Bounded pointed residuated lattices (bprls) are algebras 〈LA,∧,∨,⊙,\,/,e, f,⊥,⊤〉
such that 〈LA,∧,∨,⊙,\,/,e, f〉 is a prl with top and bottom elements ⊤ and ⊥.

As in the commutative case, the classes of residuated lattices RL and bounded resid-

uated lattices BRL can be identified respectively with the classes of prls RL+ and

bprls BRL+ satisfying f = e. Moreover, as shown in [210], all of these classes are

varieties, axiomatized by the equations for (bounded) lattices and monoids of Chap-

ter 2 together with:

x = x∧ (((x⊙ y)∨ z)/y) x⊙ (y∨ z) = (x⊙ y)∨ (x⊙ z)
y = y∧ (x\((x⊙ y)∨ z)) (y∨ z)⊙ x = (y⊙ x)∨ (z⊙ x)
x = x∨ ((x/y)⊙ y) x = x∨ (y⊙ (y\x))
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(idl) A\A (⊙∧) ((A∧ e)⊙ (B∧ e))\(A∧B)
(idl) (A\B)\((C\A)\(C\B)) (∧\) (A∧B)\A

(asll) A\((B/A)\A) (∧\) (A∧B)\B

(a) ((B\C)/A)\(B\(C/A)) (∨\) A\(A∨B)
(⊙\/) ((B⊙ (B\A))/B)\(A/B) (∨\) B\(A∨B)
(\⊙) B\(A\(A⊙B)) (\∧) ((A\B)∧ (A\C))\(A\(B∧C))
(⊙\) (B\(A\C))\((A⊙B)\C) (∨\) ((A\C)∧ (B\C))\((A∨B)\C)

(e) e (e\) e\(A\A)
(\e) A\(e\A) (\⊤) A\⊤
(⊥\) ⊥\A

A A\B

B
(mpl)

A B

A∧B
(ADJ)

A

B\(A⊙B)
(pnl)

A

(B⊙A)/B
(pnr)

Fig. 9.1 The Hilbert system HBFL

For prls satisfying the commutativity equation x⊙ y = y⊙ x, the residuals \ and /
collapse to one operation and are hence (unsurprisingly) term equivalent to pcrls.

Important non-commutative varieties of prls include LG, the class of residu-

ated lattices satisfying x⊙ (x\e) = e, term equivalent to lattice-ordered groups, and,

particularly interesting from the fuzzy logic perspective, the variety generated by

bounded pointed residuated chains BRL+C .

Theorem 9.24 ([210]). BRL+C is the class of bprls satisfying:

e = λu((x∨ y)\x)∨ρv((x∨ y)\y)

where λu(x) = (u\(x⊙u))∧ e and ρu(x) = ((u⊙ x)/u)∧ e, called the left and right

conjugates of x with respect to u, respectively.

As in the commutative case, we can speak about “standard” bprls where LA is the

real unit interval [0,1] with the usual order. In this case the operation ⊙ could be

called a residuated pseudo uninorm: an increasing associative binary function on

[0,1] with unit element e and residuals \ and /. In particular, when e = 1, ⊙ is a

pseudo t-norm. Such functions and their algebras have been investigated in several

papers; see e.g. [82, 108, 109].

9.3.2 Hilbert Systems

Hilbert systems are developed for classes of residuated lattices much as in the com-

mutative case. For simplicity of exposition, we will just consider bprls, making use

of the language LN = {∧,∨,⊙,→,\,/,e, f,⊥,⊤}. Our starting point is then the

Hilbert system HBFL taken from [90] and displayed in Fig. 9.1.

The correspondence between classes of bprls and HBFL-extensions (axiomatic

extensions of HBFL) is developed exactly as in Chapter 3. Let A be a bprl. Then as

before, an A-valuation is a function v : FmLN
→ LA satisfying v(⋆(A1, . . . ,An)) =
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⋆(v(A1), . . . ,v(An)) for each n-ary ⋆ ∈ LN and a formula A is A-valid if v(A) ≥ e

for all A-valuations v. Also an A-valuation v is an A-model of an LN-theory T if

v(A) ≥ e for all A ∈ T , and we write T |=A A if every A-model of T is an A-model

of {A}. For a class of algebras K, we write T |=K A if T |=A A for all A ∈ K. Then

for any HFL-extension HL, a bprl A is an L-algebra iff all the axioms of HL are

A-valid, and GEN(L) is the set of all L-algebras.

Following the same steps as in Chapter 3:

Theorem 9.25. T ⊢HL A iff T |=GEN(L) A for any HBFL-extension HL.

A Hilbert system for the variety BRL+C of bounded pointed residuated chains is

obtained by adding axioms corresponding to the condition in Theorem 9.24.

Definition 9.26. HpsUL consists of HBFL extended with:

(psPRL) (C\(((A∨B)\A)⊙C))∨ ((C⊙ ((A∨B)\B))/C)

It is easy to see that a bprl is a psUL-algebra iff it satisfies the condition in Theo-

rem 9.24. So letting LIN(L) be the set of all L-chains and either using this theorem

or proceeding as in Chapter 3 using the proof-by-cases property:

Theorem 9.27. T ⊢HL A iff T |=LIN(L) A for any HpsUL-extension HL.

9.3.3 Gentzen Systems

We will illustrate the extension of proof theory to non-commutative logics with a

base case: a Gentzen system for the logic of bprls. First, a new definition is needed

for sequents to reflect the fact that we now care about the ordering of formulas.

For convenience and familiarity (and just for this section), let Γ,∆,Π,Σ represent

sequences of formulas, and let Γ,A and Γ,Π denote the concatenation of Γ and (A),
and Γ and Π, respectively. We also write Γ[A] and Γ[Π] for sequences Γ of the form

Γ1,A,Γ2 and Γ1,Π,Γ2.

Definition 9.28. A non-commutative sequent is an ordered pair of finite sequences

of formulas, written Γ ⇒ ∆, and a non-commutative hypersequent is a finite multiset

of non-commutative sequents.

The single-conclusion (non-commutative) hypersequent calculus GpsUL is dis-

played in Fig. 9.2. Its sequent version is essentially the Bounded Full Lambek Cal-

culus BFL, a calculus for the variety of bprls studied in particular by Ono and co-

authors in [90, 176]. Moreover, a calculus for UL is obtained by adding the exchange

rule:
G | Γ1,Π2,Π1,Γ2 ⇒ ∆

G | Γ1,Π1,Π2,Γ2 ⇒ ∆
(EX)
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Initial Sequents

Γ[⊥] ⇒ ∆
(⊥)

Γ ⇒⊤
(⇒⊤)

A ⇒ A
(ID)

Structural Rules

G

G |H
(EW)

G |H |H

G |H
(EC)

G | Γ1[Π2] ⇒ ∆ G | Γ2[Π1] ⇒ Σ

G | Γ1[Π1] ⇒ ∆ | Γ2[Π2] ⇒ Σ
(COM)

Logical Rules

G | Γ ⇒ ∆

G | Γ[e] ⇒ ∆
(e⇒)

G |⇒ e
(⇒e)

G | f ⇒
(f⇒)

G | Γ ⇒

G | Γ ⇒ f
(⇒ f)

G | Π ⇒ A G | Γ[B] ⇒ ∆

G | Γ[Π,A\B] ⇒ ∆
(\⇒)

G | A,Γ ⇒ B

G | Γ ⇒ A\B
(⇒\)

G | Π ⇒ A G | Γ[B] ⇒ ∆

G | Γ[B/A,Π] ⇒ ∆
(/⇒)

G | Γ,A ⇒ B

G | Γ ⇒ B/A
(⇒/)

G | Γ[A,B] ⇒ ∆

G | Γ[A⊙B] ⇒ ∆
(⊙⇒)

G | Γ1 ⇒ A G | Γ2 ⇒ B

G | Γ1,Γ2 ⇒ A⊙B
(⇒⊙)

G | Γ[A] ⇒ ∆

G | Γ[A∧B] ⇒ ∆
(∧⇒)1

G | Γ[B] ⇒ ∆

G | Γ[A∧B] ⇒ ∆
(∧⇒)2

G | Γ[A] ⇒ ∆ G | Γ[B] ⇒ ∆

G | Γ[A∨B] ⇒ ∆
(∨⇒)

G | Γ ⇒ A G | Γ ⇒ B

G | Γ ⇒ A∧B
(⇒∧)

G | Γ ⇒ A

G | Γ ⇒ A∨B
(⇒∨)1

G | Γ ⇒ B

G | Γ ⇒ A∨B
(⇒∨)2

Cut Rule
G | Γ[A] ⇒ ∆ G | Π ⇒ A

G | Γ[Π] ⇒ ∆
(CUT)

Fig. 9.2 The hypersequent calculus GpsUL

Example 9.29. The key prelinearity axioms of HpsUL are derivable in GpsUL as

follows, where the top hypersequent is derived exactly as in Example 4.35 (recall

that (∨⇒) is derivable using (∨⇒)1, (∨⇒)2, and (EC), and (⇒⊙)∗ denotes the

combination of (⇒⊙) with applications of (EC) and (EW)):
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C ⇒C
(ID)

C ⇒C
(ID)

A∨B ⇒ A | A∨B ⇒ B

A∨B ⇒ A |⇒ (A∨B)\B
(⇒/)

⇒ (A∨B)\A |⇒ (A∨B)\B
(⇒/)

⇒ (A∨B)\A |C ⇒C⊙ ((A∨B)\B)
(⇒⊙)∗

C ⇒ ((A∨B)\A)⊙C |C ⇒C⊙ ((A∨B)\B)
(⇒⊙)∗

C ⇒ ((A∨B)\A)⊙C |⇒ (C⊙ ((A∨B)\B))/C
(⇒/)

⇒C\(((A∨B)\A)⊙C) |⇒ (C⊙ ((A∨B)\B))/C
(⇒\)

⇒ (C\(((A∨B)\A)⊙C))∨ ((C⊙ ((A∨B)\B))/C)
(⇒∨)

Soundness and completeness proofs with respect to HpsUL follow the same proce-

dure as in Chapter 4. We keep the same definition of a confusion of a set of formulas,

but redefine the standard interpretation of a sequent as I(Γ ⇒ ∆) = ⊙Γ \⊕∆. We

show that for each rule G1 . . .Gn / G of GpsUL that ⊢HpsUL C\I(G) for some confu-

sion C of {I(G1), . . . , I(Gn)}. The soundness of GpsUL then follows as usual by an

induction on the height of a derivation. For completeness, we check that each axiom

of HpsUL is GpsUL-derivable and that the rules are GpsUL-admissible. The rest of

the proof follows exactly as before.

Theorem 9.30. ⊢GpsUL G iff ⊢HpsUL I(G).

The general characterization of cut elimination in terms of substitutivity and re-

ductivity can be extended to cover non-commutative single-conclusion calculi (see

e.g. [207] for extensions of FL with sequent structural rules). Here for clarity, we

just sketch the particular case of GpsUL.

Theorem 9.31. Cut elimination holds for GpsUL.

Proof. First, we generalize the definition of CUT(G,H) for a (possibly marked) hy-

persequent G and marked hypersequent H in the obvious way to deal with sequences

rather than multisets. Then as before it is sufficient to establish the following:

Claim. For any hypersequent G and hypersequent H with marked formula A:

If dG ⊢GpsUL◦ G and dH ⊢GpsUL◦ H, then ⊢GpsUL◦ CUT(G,H).

We proceed by induction on the lexicographically ordered triple 〈cp(A),e(dH),ht(dG)〉,
recalling that e(d) is 0 if d ends with a logical rule applied to a marked formula, and

1 otherwise. If dG does not end with a rule application having A as principal formula,

then we can use the induction hypothesis and the substitutivity (suitably revised) of

the rule. For example, suppose that H = H′ | Π ⇒ A and dG ends with:

G1 | Γ1(A),Σ2(A),Γ3(A) ⇒ ∆1 G1 | Σ1(A),Γ2(A),Σ3(A) ⇒ ∆2

G1 | Γ1(A),Γ2(A),Γ3(A) ⇒ ∆1 | Σ1(A),Σ2(A),Σ3(A) ⇒ ∆2
(COM)

where Γ(A) indicates some but perhaps not all occurrences of A in Γ. Then the

required derivation for a member of CUT(G,H) is of the form:
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G′
1 | Γ1(Π),Σ2(Π),Γ3(Π) ⇒ ∆1 G′

1 | Σ1(Π),Γ2(Π),Σ3(Π) ⇒ ∆2

G′
1 | Γ1(Π),Γ2(Π),Γ3(Π) ⇒ ∆1 | Σ1(Π),Σ2(Π),Σ3(Π) ⇒ ∆2

(COM)

where G′
1 ∈CUT(G1,H) and the premises are derivable by the induction hypothesis.

Suppose now that both dG and dH end with applications of rules where the

marked formula A in H is principal. Then we can use the reductivity (again, suitable

revised) of the logical rules. For example, suppose that A = B\C and dG and dH end

with, respectively:

G1 | Γ2(A) ⇒ B G1 | Γ1(A),C,Γ3(A) ⇒ ∆

G1 | Γ1(A),Γ2(A),B\C,Γ3(A) ⇒ ∆

H′ | B,Π ⇒C

H′ | Π ⇒ B\C

Then using the induction hypothesis and (EW), the following are GpsUL◦-derivable:

G′
1 | Γ2(Π) ⇒ B G′

1 | Γ1(Π),C,Γ3(Π) ⇒ ∆ G′
1 | B,Π ⇒C

where G′
1 ∈ CUT(G1,H). But now again by the induction hypothesis, we can cut

on the smaller complexity subformulas, first on B and then on C, to get that G′
1 |

Γ1(Π),Γ2(Π),Π,Γ3(Π) ⇒ ∆ is GpsUL◦-derivable as required. ⊓⊔

Adding structural rules such as weakening and contraction to GpsUL does not spoil

cut elimination. However, the multiple-conclusion case is problematic already at the

sequent level and requires further investigation.

The obvious question here is whether the systems HpsUL and GpsUL are standard

complete. A semantic proof of this fact has been given in [126] for HpsMTL, the

extension of HpsUL with weakening axioms of the form (A\e)∧ (f\A). However,

there seems to be no difficulty also to extend the density elimination approach to

the non-commutative case. As a starting point we should adapt the Hilbert system

version of the density rule to:

(A\p)∨ (p\B)∨C

(A\B)∨C

In other respects, the proofs should be fairly similar to the commutative case.

There are in fact a number of further interesting questions here. For example, can

we find Gentzen systems for the important (non-commutative) classes of lattice-

ordered groups or representable lattice-ordered groups? For such classes, the stan-

dard set of logical rules will not be sufficient. We will require a set of rules closer to

those given for Abelian Logic in Chapter 5.

9.4 Finite-Valued Logics

In previous chapters, we assumed a continuum of truth values: typically, the real

unit interval [0,1]. However, sometimes a finite set of values is enough. In this case

we could try restricting a t-norm or uninorm based fuzzy logic to:
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{

0,
1

n−1
, . . . ,

n−2

n−1
,1

}

for n = 2,3, . . .

For Ł and G, this gives us the well-known families of n-valued Łukasiewicz and

Gödel logics. For P, this only works if n = 2 (when we get Classical Logic) since

for n ≥ 3, the set is not closed under multiplication.

More generally, an n-valued logic is fixed by any algebra with n elements, where

some elements are distinguished as “true”. Surprisingly perhaps, there exists a pro-

cedure to find a Gentzen-style system for any such logic, as well as more elegant

calculi for particular cases.

9.4.1 Logical Matrices

Finite-valued logics are usually defined via logical matrices. The method is close to

the algebraic style presentation, but typically just one algebra is specified and the

“true” truth values are determined arbitrarily (i.e. not just as those greater than a

particular element). More precisely:

Definition 9.32. A logical matrix M = [N ,D,C] for a language L consists of:

1. A non-empty set of truth-values N .

2. A set D ⊆N of designated truth values.

3. A set of truth-functions C = {⋆i : Nm →N : ⋆ ∈ L with arity m}.

L = (L,M) is called a (matrix-defined) propositional many-valued logic. If N con-

tains exactly n elements, L is called an n-valued logic and in this case, we also

assume without loss of generality that N is a sequence (w0, . . . ,wn−1).

L-valuations are functions v : FmL →N satisfying:

v(⋆(A1, . . . ,Am)) = ⋆i(v(A1), . . . ,v(Am))

and A ∈ FmL is L-valid, written |=L A, iff v(A) ∈ D for all L-valuations v.

Example 9.33. Three-valued Łukasiewicz Logic Ł3 based on the language {¬,→}
is defined by the matrix:

[(

0,
1

2
,1

)

,{1},{¬i,→i}

]

where the functions ¬i and →i are defined using the truth tables:

¬i

1 0
1
2

1
2

0 1

→i 1 1
2 0

1 1 1
2 0

1
2 1 1 1

2
0 1 1 1
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More generally, n-valued Łukasiewicz logics Łn for n = 2,3, . . . based on the lan-

guage LT = {⊙,→,⊥} are defined by the matrices:

[(

0,
1

n−1
, . . . ,

n−2

n−1
,1

)

,{1},{→i,⊙i,⊥i}

]

where ⊙i and →i are the Łukasiewicz t-norm and its residuum respectively, and

⊥i = 0. Similarly, n-valued Gödel logics are defined by the same matrix where ⊙i

and →i are the Gödel t-norm and its residuum. Of course, letting N be [0,1] in these

cases gives us matrix presentations of the fuzzy logics Ł and G.

Truth values do not have to be numbers (although if the logic is finite-valued, we

can always number them). The logic FDE mentioned way back in Chapter 2 has the

usual truth values 0 and 1 plus b for “both true and false” and n for “neither true nor

false”. For the language {¬,∧,∨}, the FDE matrix is:

[{0,n,b,1},{b,1},{¬i,∧i,∨i}]

with truth-functions:

¬i

1 0

b b

n n

0 1

∧i 1 b n 0

1 1 b n 0

b b b 0 0

n n 0 n 0

0 0 0 0 0

∨i 1 b n 0

1 1 1 1 1

b 1 b 1 b

n 1 1 n n

0 1 b n 0

Interestingly, FDE has no valid formulas: for any formula A, the valuation sending

all variables to n, also sends A to n.

9.4.2 n-sequents

There is a vast literature on proof methods for finite-valued logics. As well as tai-

lored systems for particular cases, there are several general approaches which pro-

vide a calculus for any finite-valued logic.2 These appear in a number of frame-

works – (labelled) tableaux [104], (labelled) sequents [102], n-sequents [20, 222],

etc. – but the underlying ideas (first proposed by Schröter [194] in the 1950s and

Rousseau [188, 189] in the 1960s) are very similar in each case.

Here we will briefly describe the n-sequent approach, following the elegant pre-

sentation of Zach in [222]. While Classical Logic requires two “slots” (think of the

two sides of a sequent, or a label T or F in a tableaux system), an n-valued logic

requires n slots: putting a formula into the ith slot means that it has the ith truth

value. This motivates the following definition:

2 One such approach will even rather cynically output a LATEX paper presenting the calculus; see
http://www.logic.at/multlog.
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Definition 9.34. An n-sequent S for a language L is an n-tuple of finite sets of L-

formulas, written:

T0 | . . . | Tn−1

Definition 9.35. Let L =(L, [N ,D,C]) be an n-valued logic with N =(w0, . . . ,wn−1).
Then S is satisfied by an L-valuation v iff v(A) = wi for some A ∈ Ti and i ∈
{0 . . .n−1}. S is L-valid, written |=L S, iff S is satisfied by every L-valuation v.

Example 9.36. For a logic with truth values (0, 1
2 ,1), let S be the 3-sequent:

p → q | q | p,q

If v(p) = 1 or v(q) ≥ 1
2 , then S is satisfied, no matter how the connectives are inter-

preted. If v(p) = 1
2 and v(q) = 0, then for Ł3, v(p → q) = 1

2 and S is not satisfied.

For G3 on the other hand, v(p → q) = 0 so S is satisfied by v.

Defining rules for connectives for logics is not particularly hard in this context: we

just follow the truth values. That is, let ⋆ be a connective of arity k. Then for every

ith slot of the n-sequent, we derive an introduction rule for ⋆ where the premises are

determined by the values of v(A1), . . . ,v(Ak) such that v(⋆(A1, . . . ,Ak)) takes the ith

truth value. More precisely:

Definition 9.37. Let L = (L, [N ,D,C]) with N = (w0, . . . ,wn−1). An i-th-cf (con-

junctive form) for a k-ary ⋆ ∈ C is a set K⋆
i of n-sequents containing p1, . . . , pk such

that for all L-valuations v: v(⋆(p1, . . . , pk)) = wi iff each S ∈ Ki is satisfied by v.

Note that such forms can be found automatically for the connectives of any finite-

valued logic. For example, a related disjunctive form for ⋆ and truth value wi is

obtained by considering all valuations v such that v(⋆(p1, . . . , pk)) = wi and dealing

with the values of v(p1), . . . ,v(pk). A conjunctive form is then defined (rather ineffi-

ciently) by distributing conjunctions over disjunctions. We refer to [222] for a more

detailed explanation.

Definition 9.38. Let L = (L, [N ,D,C]) with N = (w0, . . . ,wn−1) and an i-th-cf K⋆
i

for each ⋆ ∈ C and i = 0 . . .n−1. Then the ith introduction rule for ⋆ ∈ L is:

{(T0,T
′

0 | . . . | Ti,T
′

i | . . . | Tn−1,T
′

n−1) : (T ′
0 | . . . | T ′

n−1) ∈ K⋆
i (A1, . . . ,Ak)}

T0 | . . . | Ti−1 | Ti,⋆(A1, . . . ,Ak) | Ti+1 | . . . | Tn−1
(⋆i)

where K⋆
i (A1, . . . ,Ak) is K⋆

i with each p j replaced by A j for j = 1 . . .k.

Example 9.39. For any G3-valuation v, we have that v(p → q) = 0 iff v(q) = 0 and

v(p) ≥ 1
2 , which hold iff (q | /0 | /0) and ( /0 | p | p) are satisfied by v. Hence the 0th

introduction rule for → is:

T0,B | T1 | T2 T0 | T1,A | T2,A

T0,A → B | T1 | T2
(→0)
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A calculus for a logic then consists of the introduction rules for all its connectives

and a set of axioms capturing the fact that any formula must take some value in N .

Definition 9.40. Let L = (L, [N ,D,C]) with N = (w0, . . . ,wn−1) and an i-th-cf K⋆
i

for each ⋆ ∈ C and i = 0 . . .n−1. Then GLF is the n-sequent calculus consisting of

the introduction rules for each ⋆ ∈ L and axioms:

T0,A | . . . | Tn−1,A
(ID)n

Example 9.41. We obtain the following calculus for Ł3:

T0 | T1 | T2,A T0,B | T1 | T2

T0,A → B | T1 | T2
(→0)

T0 | T1 | T2,A

T0,¬A | T1 | T2
(¬0)

T0 | T1,A | T2,A T0 | T1,A,B | T2 T0,B | T1 | T2,A

T0 | T1,A → B | T2
(→1)

T0 | T1,A | T2

T0 | T1,¬A | T2
(¬1)

T0,A | T1,A | T2,B T0,A | T1,B | T2,B

T0 | T1 | T2,A → B
(→2)

T0,A | T1 | T2

T0 | T1 | T2,¬A
(¬2)

The beauty of this definition is that it always gives a sound and complete calculus.

Just notice that every rule is sound and invertible for L (by definition) and that the

multiset complexity of each premise is strictly lower than the multiset complexity

of the conclusion. Hence applying these rules upwards exhaustively terminates with

n-sequents containing only variables. But then it is easy to see that such n-sequents

are valid iff some variable occurs in every slot (otherwise just define a valuation

where variables take the value of a slot in which they do not occur).

Theorem 9.42. Let L = (L, [N ,D,C]) with N = (w0, . . . ,wn−1) and an i-th-cf K⋆
i

for each ⋆ ∈ C and i = 0 . . .n−1. Then:

|=L T0 | . . . | Tn−1 iff ⊢GLF T0 | . . . | Tn−1

Hence for any formula A, letting T A
i = {A} if mi ∈ D and T A

i = /0 otherwise:

|=L A iff ⊢GLF T A
0 | . . . | T A

n−1

Example 9.43. As a simple example, which also shows how tedious proofs can be

in this framework, consider the following derivation of the involution axioms in the

calculus for Ł3 given in Example 9.41:

A | A | A
(ID)3

A | ¬A | A
(¬1)

A | ¬¬A | A
(¬1)

/0 | ¬¬A | A,¬A
(¬2)

¬¬A | ¬¬A | A
(¬0)

A | A | A
(ID)3

/0 | A | A,¬A
(¬2)

¬¬A | A | A
(¬0)

/0 | /0 | ¬¬A → A
(→2)
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We have used sets of formulas here in our definitions of n-sequents. However, we

could just as well have used multisets (or sequences) and given axioms of the form

A | . . . | A with weakening and contraction rules:

T0 | . . . | Ti | . . . | Tn−1

T0 | . . . | Ti,A | . . . | Tn−1
(wi)

T0 | . . . | Ti,A,A | . . . | Tn−1

T0 | . . . | Ti,A | . . . | Tn−1
(ci)

We could also have added cut rules of the form (for each i 6= j):

T0 | . . . | Ti,A | . . . | Tn−1 T ′
0 | . . . | T ′

j ,A | . . . | T ′
n−1

T0,T
′

0 | . . . | Tn−1,T
′

n−1

(CUT)i j

The elimination of such rules for first-order finite-valued logics was investigated by

Baaz, Fermüller, and Zach in [22].

Evidently, there is a great deal of redundancy in the general approach described

here. For particular families of logics, the number of rules can be reduced dra-

matically by interpreting n-sequents differently, e.g. by defining satisfaction for

T0 | . . . | Tn−1 by a valuation v as v(A) ≥ mi for some A ∈ Ti (a useful simplifi-

cation for linearly ordered sets of truth values). More generally, formulas can be

labelled with sets of truth values and efficient strategies developed for manipu-

lating these sets. This approach is developed extensively by Hähnle in the mono-

graph [104]. Other methods may be found in the Handbook of Automated Reason-

ing chapter [20].

Sometimes, calculi for finite-valued logics can even be used to reason in infinite-

valued logics. All we need is a way of calculating for any given formula A, a finite-

valued logic such that A is a tautology of this logic iff it is a tautology of the given

infinite-valued logic. This methodology was applied by Aguzzoli and Ciabattoni

in [4] to obtain a calculus for Łukasiewicz Logic by calculating an upper bound for

the finite-valued Łukasiewcz logic falsifying formulas of a given complexity. This

was extended to other continuous t-norm based logics in [3]. However, while the

connections with finite-valued logics are interesting, this approach does not really

provide a proof-theoretic perspective on fuzzy logics or constitute a viable frame-

work for automated reasoning.

9.4.3 Hypersequents

In some special cases, the proof theory of finite-valued logics can be tackled by

adding rules to existing hypersequent calculi. This gives a genuine algorithmic inter-

pretation of the logic in a framework with other non-classical (not just finite-valued)

logics, and allows us to make use of the techniques developed in previous chapters.

As a first example, observe that a calculus for the n-valued Gödel Logic Gn can be

obtained by extending GG (or just a hypersequent calculus for Intuitionistic Logic)

with one extra rule (see [15, 51]):
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Definition 9.44. GGn is GG extended with:

G | Γ1,Γ2 ⇒ ∆1 . . . G | Γn−1,Γn ⇒ ∆n−1

G | Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n

(Gn)

Example 9.45. The extra rule of GGn corresponds to the characteristic axiom schema

A1 ∨ (A1 → A2)∨ . . .∨ (An−1 → An) axiomatizing Gn as an extension of HG. E.g.

A ⇒ A
(ID)

B ⇒ B
(ID)

⇒ A | A ⇒ B | B ⇒C
(G3)

⇒ A | A ⇒ B |⇒ B →C
(⇒→)

⇒ A |⇒ A → B |⇒ B →C
(⇒→)

⇒ A |⇒ (A → B)∨ (B →C)
(⇒∨)

⇒ A∨ (A → B)∨ (B →C)
(⇒∨)

Unfortunately, such a simple extension has not been found for the family of n-valued

Łukasiewicz logics. However, elegant hypersequent calculi have been defined for

the three-valued case [11, 52]:

Definition 9.46. GŁ3 is GIMTL extended with:

G | Γ1,Π ⇒ Σ,∆1 G | Γ2,Π ⇒ Σ,∆2

G | Γ1,Γ2 ⇒ ∆1,∆2 | Π ⇒ Σ
(W3)

Example 9.47. (W3) can be viewed as a generalization of the communication rule

(COM) (which is derivable using (W3) and the weakening rules, and so is redundant

in this calculus). It can be used to derive the characteristic axioms ((A → ¬A) →
A) → A of Ł3 as follows:

⇒ A | A ⇒ A
(ID)

A ⇒ A
(ID)

A ⇒ A
(ID)

⇒ A | A,A ⇒
(W3)

⇒ A | A ⇒¬A
(⇒¬)

⇒ A |⇒ A →¬A
(⇒→)

⇒ A | (A →¬A) → A ⇒ A
(→⇒)

(A →¬A) → A ⇒ A | (A →¬A) → A ⇒ A
(W)

(A →¬A) → A ⇒ A
(EC)

⇒ ((A →¬A) → A) → A
(⇒→)

Soundness and completeness proofs for these systems follow the same pattern as

Chapter 4. Namely, we show that the extra axioms are derivable in the systems, and

that the rules of the systems are sound. Note also that unlike GŁ for infinite-valued

Łukasiewicz Logic, GŁ3 is complete with respect to the standard interpretation of

hypersequents. Cut elimination also proceeds as in Chapter 5, just checking the extra

cases for the additional structural rules (see [11, 15, 52] for details).
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9.5 Comparative Logics

Some logics, not fuzzy in the sense of being characterized by chains, nevertheless

have certain “fuzzy features”. In particular, logics for comparative reasoning intro-

duced by Casari in the 1980s provide an alternative truth degree semantics for mod-

elling vagueness [42, 43]. Algebras for these logics, called lattice-ordered pregroups

(see [43, 179]), although not in general prelinear, have degrees of both truth and fal-

sity related by an involutive negation, and (possibly) intermediate degrees between.

In the language of residuated lattices, they are involutive pcrls satisfying f = f⊙ f

and x → x = e. The corresponding Hilbert System for the “basic comparative logic”

in the language LF = {∧,∨,⊙,→, f,e} is defined as follows:

Definition 9.48. HC is HMALL− extended with:

(C1) f ↔ (f⊙ f)
(C2) (A → A) → e

Casari also considered logics axiomatized by HC extended with (EM), (PRL) and

(DIS), or (f), the latter giving an axiomatization for our old friend Abelian Logic

A. By Theorem 3.51, all these logics are sound and complete with respect to corre-

sponding classes of pcrls. By Theorem 3.56, the logic with (PRL) and (DIS), and of

course A, are also complete with respect to the corresponding class of chains.

We will show here that interesting Gentzen systems can be defined for these

logics. The starting point is a crucial connection between HC and HA:

Proposition 9.49. ⊢HC A⊕ e iff ⊢HA A.

Proof. Note first that the following are HC-derivable:

(i) f → e

(ii) A → (A⊕ e)
(iii) ((A → B)⊕ e) → ((A⊕ e) → (B⊕ e))

(i) Using (C1) and (⊙1), ⊢HC f→ (f→ f). So, since by (C2), ⊢HC (f→ f)→ e, using

Lemma 3.23 (iii), ⊢HC f → e. (ii) By (e2), ⊢HC (A → A) → (e → (A → A)) and by

(I), ⊢HC A → A. Hence by (MP), ⊢HC e → (A → A). Also (e → f) → f is an instance

of (INV). So using (i) and Lemma 3.23 (iii) twice, ⊢HC (e→ f)→ (A→A). But then

using Lemma 3.23 (vi), ⊢HC A → ((e → f) → A); i.e. ⊢HC A → (A⊕ e) as required.

(iii) First note that ⊢HC f → ((f → A) → ((A → (f → B)) → (f → B))) using (B)

and Lemma 3.23 (iii). Hence using Lemma 3.23 (vi), ⊢HC (f → (A → B)) → ((f →
A) → (f → (f → B))). But (f → (f → B)) → (f → B) using (C1) and (⊙2). So by

Lemma 3.23 (iii), ⊢HC (f → (A → B)) → ((f → A) → (f → B)). Finally, using the

fact that ⊢HC (e → f) ↔ f, we obtain ⊢HC ((A → B)⊕ e) → ((A⊕ e) → (B⊕ e)) as

required.

The left-to-right direction of the proposition is straightforward. If ⊢HC A⊕ e, then

⊢HA A⊕e, and since ⊢HA (A⊕e)→ A, we get ⊢HA A. For the right-to-left direction,

we use the fact (easily checked) that ⊢HA A iff ⊢HA∗ A where HA∗ is HC extended
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with f → e, and proceed by induction on the height of an HA∗-derivation of A. For

the base case, if A is an axiom of HC then, since by (ii), ⊢HC A → (A⊕ e), also

⊢HC A⊕ e. If A is e → f, then (e → f)⊕ e is ¬¬e → e, an instance of (INV). For

the inductive step, A follows by either (ADJ) or (MP). For the former, A = B∧C

and B and C are derivable in HA∗. By the induction hypothesis twice we get ⊢HC

B⊕ e and ⊢HC C⊕ e. Hence by (ADJ) we have ⊢HC (B⊕ e)∧ (C⊕ e) and by (∧3),
⊢HC (B∧C)⊕ e. For the case of (MP) we have ⊢HA∗ B and ⊢HA∗ B → A so by the

induction hypothesis twice we get ⊢HC B⊕ e and ⊢HC (B → A)⊕ e. So using (iii)

and (MP) twice, ⊢HC A⊕ e. ⊓⊔

We can use this result to define a Gentzen system for C (and other comparative log-

ics) by “combining” the sequent calculus GMALL− with the cut-free hypersequent

calculus GA◦ for Abelian Logic. The crucial element here is a special mix rule that

allows one of its premises to be derived in GA◦ (denoted by ⊢GA◦ ):

Definition 9.50. GC is GMALL− plus the following combination rule:

Γ1 ⇒ ∆1 ⊢GA◦ Γ2 ⇒ ∆2

Γ1,Γ2 ⇒ ∆1,∆2
(MIX)A

To view GC as a calculus in the sense defined in Chapter 3, we can read ⊢GA◦ Γ2 ⇒
∆2 as denoting any sequent Γ2 ⇒ ∆2 derivable in GA◦. In practice of course, we

would simply switch Gentzen systems mid-derivation.

Example 9.51. Consider the following derivation of the axiom (C2):

⇒ e (⇒e)
⊢GA◦ A ⇒ A

(ID)

⊢GA◦ A → A ⇒
(→⇒)A

A → A ⇒ e
(MIX)A

⇒ (A → A) → e
(⇒→)

Notice that in the left branch of the proof, the initial sequent (⇒e) is from GMALL−,

while in the right branch, the initial sequent (ID) and the rule (→⇒)A are from GA◦.

Similarly, in the proof below for (C1), the rule (MIX)A allows the more extensive

rules of GA◦ to be used in one of the branches:

f ⇒
(f⇒)

⊢GA◦⇒
(EMP)

⊢GA◦⇒ f
(⇒ f)

⊢GA◦⇒ f, f
(⇒ f)

⊢GA◦⇒ f⊙ f
(⇒⊙)A

f ⇒ f⊙ f
(MIX)A

⇒ f → (f⊙ f)
(⇒→)

f ⇒
(f⇒)

⊢GA◦ f ⇒ f
(ID)

f, f ⇒ f
(MIX)A

f⊙ f ⇒ f
(⊙⇒)

⇒ (f⊙ f) → f
(⇒→)

⇒ (f → (f⊙ f))∧ ((f⊙ f) → f)
(⇒∧)

Completeness for GC follows as usual from the fact that we can derive all the axioms

of HC, and the rules (MP) and (ADJ) are admissible. For soundness, the key step is
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to show that (MIX)A preserves derivability in HC. So suppose that ⊢HC I(Γ1 ⇒
∆1) and ⊢HA I(Γ2 ⇒ ∆2). Then, using the link between HA and HC established by

Proposition 9.49, ⊢HC I(Γ2 ⇒ ∆2)⊕e. Hence ⊢HC I(Γ1 ⇒ ∆1)⊕ I(Γ2 ⇒ ∆2), and it

follows easily that ⊢HC I(Γ1,Γ2 ⇒ ∆1,∆2).

Theorem 9.52. ⊢GC Γ ⇒ ∆ iff ⊢HC I(Γ ⇒ ∆).

Of course, the crucial result here is cut elimination.

Theorem 9.53. Cut elimination holds for GC.

Proof. We adapt the general approach presented in Chapter 5 and give a constructive

proof that (CUT) is admissible for GC◦. That is we prove:

Claim. If d1 ⊢GC◦ Γ,A ⇒ ∆ and d2 ⊢GC◦ Π ⇒ A,Σ, then ⊢GC◦ Γ,Π ⇒ Σ,∆.

We prove the claim by a double induction on the lexicographically ordered pair

〈cp(A),ht(d1)+ht(d2)〉. The tricky case here is (MIX)A and we leave other steps to

the reader. Let us suppose that d1 (the situation for d2 being very similar) ends with:

Γ1 ⇒ ∆1 ⊢GA◦ Γ2,A ⇒ ∆2

Γ,A ⇒ ∆
(MIX)A or

Γ1,A ⇒ ∆1 ⊢GA◦ Γ2 ⇒ ∆2

Γ,A ⇒ ∆
(MIX)A

where Γ = Γ1 ⊎Γ2 and ∆ = ∆1 ⊎∆2.

For the first case, we use the fact that GA◦ is a stronger system than GMALL− to

get that ⊢GA◦ Π⇒A,Σ. Hence, since (CUT) is GA◦-admissible, ⊢GA◦ Γ2,Π⇒ Σ,∆2,

and we obtain the GC◦-derivation:

Γ1 ⇒ ∆1 ⊢GA◦ Γ2,Π ⇒ Σ,∆2

Γ,Π ⇒ Σ,∆
(MIX)A

For the second case, by the induction hypothesis, ⊢GC◦ Γ1,Π ⇒ Σ,∆1. So we obtain

the GC◦-derivation:

Γ1,Π ⇒ Σ,∆1 ⊢GA◦ Γ2 ⇒ ∆2

Γ,Π ⇒ Σ,∆
(MIX)A ⊓⊔

One nice result of cut elimination for GC is an algorithm for checking whether or

not a formula A is a theorem of HC. We just search for a proof of the sequent ⇒A

in GC◦ by applying rules (upwards) using e.g. depth-first search, and restricting

applications of (MIX)A so that Γ2 ⊎∆2 6= [] (otherwise the left premise is equal to

the conclusion). But then, reading the right premise of (MIX)A as an initial sequent,

there are only a finite number of possible proofs of ⇒A in GC◦. Since each rule has

a finite number of premises with strictly smaller complexity than the conclusion,

this process terminates with a set of sequents to be proved in GA◦. But the validity

problem for A is decidable, and hence also:

Theorem 9.54. The validity problem for C is decidable.
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This method of combining calculi with GA◦ allows us also to define Gentzen sys-

tems admitting cut elimination for other comparative logics. In the presence of (EM)

we add the rule (SC2) to GC, and for (PRL) we take the hypersequent version of GC

extended with (EW), (EC), and (COM). More details may be found in [143].

9.6 Basic Logic and Other Open Problems

The main aim of this book has been to convince the reader that Gentzen systems ad-

mitting cut elimination – in particular, hypersequent calculi – provide an appropriate

and useful framework for investigating fuzzy logics. Unfortunately such systems are

not always easy to find. In some cases, like Łukasiewicz Logic and Product Logic, a

fair amount of ingenuity is required to determine the right interpretation for hyper-

sequents and then to establish cut-free completeness for a calculus. In other cases, a

suitable Gentzen system has yet to be found, and may (in some restricted sense) not

even exist.

Most notably, no Gentzen system has been presented here for Hájek’s Basic

Logic BL, the logic of continuous t-norms [105]. Basic Logic is one of the most

important and widely studied fuzzy logics, and from an algebraic perspective, is

quite natural. BL-algebras are prelinear integral pcrls (MTL-algebras) that satisfy

the divisibility condition x∧ y = x⊙ (x → y). The variety of BL-algebras is gener-

ated not only by all standard (continuous t-norm based) BL-algebras, as shown by

Cignoli et al. in [59], but even by just one such algebra.

Consider the binary function defined on the lexicographically ordered set (N×
[0,1))∪{(∞,∞)} by:

(n,x)⊙BL (m,y) =

{

(n,max(0,x+ y−1)) if n = m

min((n,x),(m,y)) otherwise

It is easy to see that ⊙BL is order-isomorphic on this set to a continuous t-norm ∗BL:

just take the mapping φ(n,x) = 1−e−(n+x). Moreover, it has been shown by Aglianò

and Montagna in [2] that the algebra A(∗BL,0) = 〈[0,1],min,max,∗BL,→BL,0,1〉
generates the variety of BL-algebras. Moreover, this algebra provides one route to

defining a calculus of sorts. Information about the positioning of the valuations of

the formula can be encoded by structural features of the calculus and ultimately

the question of the validity of a formula in BL can be reduced (as in Łukasiewicz

Logic) to solving linear programming problems. This approach, developed in [37,

156], does not provide an elegant calculus for BL but does at least give a reasonable

algorithm for deciding questions of validity in this logic.

The main difficulty faced in defining Gentzen systems for Basic Logic is to

discover structural rules corresponding to divisibility or continuity. Already for

Łukasiewicz Logic (in some sense a simple limit case of BL) our solution relies

on a non-standard interpretation of hypersequents. A more promising approach is

perhaps to introduce a little more structure, without simply encoding all the alge-
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braic aspects of the standard algebra. In particular, recall the uniform “relational

hypersequent” rules for Ł, G, and P of Fig. 7.1, which make use of two kinds of

sequents. We can use this extra structure to find a reasonable calculus for the im-

plicational fragment of BL (adding connectives ∧, ∨, ⊥, ⊤ is straightforward – the

problem is ⊙). First, we adapt the BL-algebra described above.

Consider a second binary function on the lexicographically ordered set (N×
[0,1)])∪{(∞,∞)}:

(n,x)⊙PBL (m,y) =

{

(n,x · y) if n = m

min((n,x),(m,y)) otherwise

This function is again order-isomorphic to a continuous t-norm ∗PBL. Moreover,

while the algebra A(∗PBL) does not generate the variety of BL-algebras, an impli-

cational formula is valid in this algebra iff it is valid in all BL-algebras.

Now let us define:

⋆v
BL([A1, . . . ,An]) = v(A1)∗PBL . . .∗PBL v(An)

We can prove that the uniform implication rules are sound and invertible with re-

spect to this interpretation. Then as for Ł, G, and P, this means that the question of

the validity of an implicational formula in BL is reduced to the question of the va-

lidity of strictly atomic r-hypersequents. Structural rules and initial r-hypersequents

for deciding this latter question – our (EMP), (ID), (EW), (EC), (SPLIT)≤, (MIX),

plus a rather complicated splitting rule – have been defined by Vetterlein in [213].

A calculus is also defined in this paper for the whole logic but at the cost of intro-

ducing a further modal connective into the language, requiring more complicated

rules. We will not go into details here. It is reasonable to claim that r-hypersequents

provide the right level of generality for defining calculi for BL and other continuous

t-norm based logics, and not too optimistic to hope that more elegant systems can

be obtained in the future.

Let us finish then with a list of other open problems in and around the area of

the proof theory of fuzzy logics, some already the object of active research, others

merely speculative:

• Calculi for other (fuzzy) logics. Basic Logic is the most important fuzzy logic

lacking a Gentzen system, but other interesting cases have also resisted analysis.

These include other logics such as Strict Basic Logic SBL that involve some

form of divisibility, where success should be tied to progress on BL, and also

logics such as Product Monoidal t-norm Logic PMTL [121] involving some

notion of cancellativity. In this latter case, the problem and interest extends

beyond fuzzy logics. Also, no Gentzen system is known for systems such as

HMAILL−+ (CAN), the logic of cancellative crls. Since the decidability of these

logics (varieties) is also open (see [30] for further details), the development of

Gentzen systems, perhaps using the techniques described in this book, could be

very helpful.
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• Decidability and complexity issues. We have used our calculi to answer decid-

ability and complexity questions for a number of fuzzy logics, but there remain

many open problems, in particular, the decidability of Uninorm Logic UL (and

related logics), and the complexity of Monoidal t-norm Logic MTL (and re-

lated logics). As remarked previously, hypersequent calculi for these logics do

not seem to help: the presence of the external contraction rule (EC) being the

most obvious problem. Nevertheless, just as loop-checking mechanisms can be

successful in taming internal contraction, it is possible that a similar approach

could be useful in dealing with external contraction.

• Density elimination and standard completeness. The use of density elimination

for hypersequent calculi to establish standard completeness results for fuzzy

logics is one of the most important applications of the proof theory developed

here. It also promises a characterization of those logics that are “fuzzy” (in

the sense of being standard complete) and those that are not. In the case of

single-conclusion calculi with weakening rules for example, density elimination

is guaranteed by the substitutivity of the structural rules. It would be nice to ob-

tain similar characterizations for multiple-conclusion calculi and calculi without

weakening rules, noting that the particular case of proving density elimination

for GIUL is still open. Perhaps even more challenging is to find conditions that

are both necessary and sufficient (within some framework) for calculi to admit

density elimination.

• First-order logics and their fragments. We have developed hypersequent calculi

for a wide class of first-order fuzzy logics, including MTL and UL. However,

first-order logics based on continuous t-norms are more problematic. First-order

Łukasiewicz Logic is not recursively enumerable; our calculus for this logic

uses an infinitary rule. First-order Product Logic and Basic Logic are not even

arithmetical. More generally, since all first-order fuzzy logics are undecidable,

it is important to investigate and identify fragments that are decidable or at least

recursively enumerable. Of particular interest here are fragments suitable for

fuzzy logic programming [214] and fuzzy description logics [111, 201].
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Classical Logics and their Applications to Fuzzy Subsets, pp. 53–106. Kluwer Academic
Publishers, Dordrecht, 1995.
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Aglianò, P., 256

Aguzzoli, S., 251

algebra, 24

A(∗, f), 28

abelian ℓ-group, 29

BL-algebra, 134

Boolean algebra, 29

chain, 8, 55

commutative residuated lattice, 27

dense chain, 55, 206

FL-algebra, 241

Heyting algebra, 29

L-algebra, 55

lattice-ordered abelian group, 29

lattice-ordered group, 241

lattice-ordered pregroup, 253

Lindenbaum algebra, 56, 208

MV-algebra, 2, 29, 134

pointed commutative residuated lattice, 27

R, the reals, 27, 120

standard, 55, 206

Z, the integers, 27, 120

algebraizable logics, 66

AMAILL, the logic, 48

AMALL, the logic, 48, 65, 73, 86

analytic proof system, 67

Anderson, A. R., 2, 65, 99

approximate Herbrand theorem, 220, 228

arithmetic mean, 11

assignment, 203

atomic

first-order formula, 202

formula, 32

hypersequent, 74

implicational sequent, 141

sequent, 70

Avellone, A., 175

Avron, A., 99, 134, 175, 227

axiom schema, 38

axiomatization, 38

axioms, 38

additive conjunction, 41

additive constants, 42

additive disjunction, 41

cancellation, 51

contraction, 48

distributivity, 46

divisibility, 50

excluded middle, 50

first-order, 204

for e and f, 45

implication, 40

involution, 45

mingle, 48

modal, 230

multiplicative conjunction, 41

multiplicative unit, 41

n-contraction, 49

non-contradiction, 50

Peirce’s, 72, 76, 186

prelinearity, 46

shifting law of quantifiers, 231

transitivity, 230

weakening, 48

269



270 Index

Baaz, M., 99, 134, 135, 175, 198, 227, 229,
251

Basic Logic BL, 2, 34, 50, 65, 197, 209, 227,
256

BCI, the logic, 41, 112

BCK, the logic, 111

Belluce, L. P., 226

Belnap, N. D., 2, 65, 99, 134

bi-coloured graph, 194

bi-implication, 24

BL-algebra, 134

Blok, W. J., 66, 199

Blount, K., 241

Bou, F., 227

bound variable, 202

bounded pointed commutative residuated
lattice, 28

bounded restart, 186

Bova, S., 197

bpcrl, 28

Brady, R. T., 99

Buchholz, W., 100

C, the logic, 253

CAN, 116

cancellation elimination, 114, 134, 225

cancellation rule, 90, 114, 134

cancellation-formula, 115

Cancellative Hoop Logic CHL, 34, 51, 66,
171, 195

Casari, E., 3, 253

chain, 8

Chang, C. C., 2, 35, 174, 226

Church, A., 198, 215

Ciabattoni, A., 99, 134, 175, 197, 227, 251

Cignoli, R., 35, 65, 256

Cintula, P., 66, 227

Classical Logic, 1, 38, 72, 98, 186

co-NP-hardness of fuzzy logics, 193

communication rule, 83

commutative residuated lattice, 3, 27, 202

comparative logics, 2, 253

complexity

computational, 192

first-order formula, 202

hypersequent, 74

multiset of formulas, 68

propositional formula, 32

r-hypersequent, 178

sequent, 70

conclusion, of a rule, 37

confusion, 52, 65, 206, 232

connective, 31, 202

conservative extension, 110

constant, 202

context formula, 71, 104

context sequent, 104

Continuous Logic, 228

continuous t-norms, 1, 12

Cook, S. A., 198

Corsi, G., 227

Cross Ratio Logic CRL, 34, 51, 172, 199

cut admissibility, 134

cut elimination, 4, 102, 108, 120, 134, 212,
225, 235, 245

cut rule, 4, 71, 102, 134

cut-formula, 71, 102

CUT, 104

Czogala, E., 35

D’Ottaviano, I. M. L., 35

De Baets, B., 35

decidability

abelian ℓ-groups, 122

comparative logics, 255

fuzzy logics, 199
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Gödel, 1, 12

idempotent, 13

Łukasiewicz, 2, 12, 34

minimum, 1, 12

nilpotent, 16

nilpotent minimum, 17, 99

ordering, 17

product, 2, 12

residuated, 22

strict, 16

Tableaux, 175, 248

Tait, W. W., 134

Takano, M., 227

Takeuti, G., 4, 66, 227

term, 202

Terui, K., 99, 134

theorem, of a Hilbert system, 39

theory, 202

dense, 61, 206

first-order, 202

Henkin, 206

linear, 57, 206

propositional, 32

Three-Valued Łukasiewicz Logic Ł3, 252

Titani, T., 4, 66, 227

Troelstra, A. S., 99

truth stresser, 229

truth values, 7

truth-functionality, 10

Tsinakis, C., 3, 35, 241

Turing, A., 198

Turunen, E., 34

Tychonoff Theorem, 221

type, 25

undecidability of first-order fuzzy logics, 214

Uniform Proofs, 198

uninorm, 2, 18, 35

conjunctive, 18

continuous, 20

cross-ratio, 20, 35

disjunctive, 18

idempotent, 20, 35

representable, 20, 35

residuated, 22, 35

Uninorm Logic UL, 34, 46, 66, 84, 99, 112,
129, 199

Uninorm Mingle Logic UML, 34, 49, 66, 88,
132, 199

upper bound, 8

Urquhart’s C, the logic, 66

Urquhart, A., 66



276 Index

vagueness, 1
valid, 33

first-order formula, 204
goal-directed query, 187
r-hypersequent, 178

valuation, 33
Van Alten, C. J., 199
variable

bound, 202
free, 202
object, 202
propositional, 32, 38, 202

variety, 26
Vetterlein, T., 197, 257

Wajsberg, M., 174

Ward, M., 3, 35, 241

weak negation, 21

weakly cancellative logics, 66

weakly implicative logics, 66

Weinberg, E. C., 134

Weispfenning, V., 199

Yager, R. R., 2, 35

Zach, R., 135, 227, 248

Zadeh, L. A., 1, 34

zero divisor, 16


	Cover
	Series: APPLIED LOGIC SERIES
	Title: Proof Theory for FuzzyLogics
	Copyright
	Acknowledgements
	Contents
	Chapter 1. Introduction
	Chapter 2. The Semantic Basis
	2.1 Truth Values
	2.2 Ands and Ors
	2.2.1 Basic Properties
	2.2.2 t-Norms
	2.2.3 t-Conorms
	2.2.4 Uninorms

	2.3 Nots and Ifs
	2.4 Ordered Algebraic Structures
	2.4.1 Basic Notions
	2.4.2 Commutative Residuated Lattices
	2.4.3 The Dedekind-MacNeille Completion

	2.5 Languages and Logics
	2.6 Historical Remarks

	Chapter 3. Hilbert Systems
	3.1 Structures and Systems
	3.2 Core Axioms and Rules
	3.3 Axiomatic Extensions
	3.3.1 Truth, Falsity, Negation
	3.3.2 Distributivity and Prelinearity
	3.3.3 Weakening
	3.3.4 Contraction and Mingle
	3.3.5 Divisibility
	3.3.6 Excluded Middle and Non-Contradiction
	3.3.7 Cancellation

	3.4 A Local Deduction Theorem
	3.5 Soundness and Completeness
	3.6 The Density Rule
	3.7 Historical Remarks

	Chapter 4. Gentzen Systems
	4.1 Sequents and Hypersequents
	4.1.1 Sequents
	4.1.2 Hypersequents

	4.2 Core Systems
	4.3 Adding Structural Rules
	4.3.1 External Weakening and External Contraction
	4.3.2 Communication and Split
	4.3.3 Weakening
	4.3.4 Contraction
	4.3.5 Cancellation

	4.4 Non-Standard Logical Rules
	4.5 Density Again
	4.6 Soundness and Completeness
	4.7 Historical Remarks

	Chapter 5. Syntactic Eliminations
	5.1 Cut Elimination
	5.1.1 Regular Calculi
	5.1.2 The Main The Theorem
	5.1.3 Conservative Extensions
	5.1.4 Decidability

	5.2 Cancellation Elimination
	5.2.1 The Proof
	5.2.2 Abelian l-Groups

	5.3 Density Elimination
	5.3.1 Calculi with Weakening
	5.3.2 Calculi Without Weakening
	5.3.3 Standard Completeness

	5.4 Historical Remarks

	Chapter 6. Fundamental Logics
	6.1 Gödel Logic
	6.1.1 The Hypersequent Calculus GG
	6.1.2 A Sequent Calculus
	6.1.3 Another Hypersequent Calculus
	6.1.4 A Sequent of Relations Calculus

	6.2 Łukasiewicz Logic
	6.2.1 A Hypersequent Calculus
	6.2.2 A Sequent Calculus
	6.2.3 An Embedding into Abelian Logic
	6.2.4 McNaughton Functions
	6.2.5 Giles’s Game

	6.3 Product Logic
	6.4 Related Logics
	6.5 Historical Remarks

	Chapter 7. Uniformity and Efficiency
	7.1 Uniform Systems
	7.1.1 Uniform Logical Rules
	7.1.2 Revised Logical Rules
	7.1.3 Structural Rules

	7.2 Goal-Directed Methods
	7.2.1 The Goal-Directed Methodology
	7.2.2 Uniform Rules
	7.2.3 Goal-Directed Systems

	7.3 Complexity
	7.3.1 Co-NP-Hardness
	7.3.2 Bi-Coloured Graphs
	7.3.3 Linear Programming

	7.4 Historical Remarks

	Chapter 8. First-Order Logics
	8.1 Syntax and Semantics
	8.2 Hilbert Systems
	8.3 Gentzen Systems
	8.4 Herbrand’s Theorem and Skolemization
	8.5 Łukasiewicz Logic
	8.5.1 An Approximate Herbrand Theorem
	8.5.2 Gentzen Systems

	8.6 Historical Remarks

	Chapter 9. Further Topics
	9.1 Modalities and Truth Stressers
	9.1.1 Axioms and Algebras
	9.1.2 Gentzen Systems
	9.1.3 Embeddings

	9.2 Propositional Quantifiers
	9.3 Non-Commutative Logics
	9.3.1 Residuated Lattices
	9.3.2 Hilbert Systems
	9.3.3 Gentzen Systems

	9.4 Finite-Valued Logics
	9.4.1 Logical Matrices
	9.4.2 n-sequents
	9.4.3 Hypersequents

	9.5 Comparative Logics
	9.6 Basic Logic and Other Open Problems

	References
	Index

