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Foreword

John Harris 1929–2003

In an engineering career which spanned almost fifty years, John Harris lost none of
his enthusiasm for new fields of exploration. In his late sixties he began his research
into fuzzy logic with his drive and sense of endeavour undimmed. At the time he
was inaugural Chair of Industrial Engineering at the new National University of
Science and Technology, Bulawayo, Zimbabwe, having dedicated almost his en-
tire professional life to the development of educational opportunity in engineering
science in sub Saharan Africa, a career which led him to Chair of the department
of Mechanical Engineering at the University of Nairobi, Kenya, then subsequently
to set up and chair the department of Mechanical Engineering in the University of
Zimbabwe, Harare, thence to the Chair of the Mechanical Engineering department
at the University of Malawi, returning for his last post to Zimbabwe, to the new
university in Bulawayo.

The preface to this text, probably the last words my father ever wrote, reflects
his belief in the relevance of fuzzy logic and its potential for applications at a
functional level in society. He presents fuzzy logic as a theoretical perspective, a
prism, through which he invites the viewer to share his understanding of industrial
systems in our society.

The book was intended to be fourteen chapters. My father completed and edited
the first nine chapters of this volume while fighting a titanic battle against disease.
He chose to leave the expert care and comfort of St Michael’s Hospice to return to
die at home, where, against all odds and with the unfailingly patient and practical
assistance of his son, James Harris, nine chapters were finalised. Chapters ten to
fourteen inclusive existed in unedited form and some of this latter group of chapters
include papers published previously in professional journals, which were intended
to be reworked for inclusion. I am grateful to the Institution of Mechanical Engin-
eers and to the Institution of Chemical Engineers for their permission to reproduce
papers at chapters eleven, twelve and thirteen. The last five chapters therefore
represent work in progress. When I came to work on the manuscript for chapter
fourteen, the last of this volume, I found the pages suddenly empty of my father’s
pencilled edits.
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Primarily, of course, this academic publication was created as an educational
springboard text, to encourage others to take research forward and continue
exploration of the fascinating interface between fuzzy logic and engineering.

I should like to thank all those who have helped and supported the efforts to
bring this book to publication, including Derek Duffet for his kind assistance,
Nathalie Jacobs and all at Springer Science and Business Media and my family,
especially my mother, Marian Harris, to whom this book is principally dedicated.

Julia Harris
March 2005



Preface

Over the ages, there are many who have contemplated the perfect disc of the full
moon in the night sky, the perfection of which we know to be an optical illusion
made possible by the distance between the object and the observer. This is a factor
which dissolves the imperfections that are apparent to the close observer. The per-
fect disc is an abstraction of the type which is of the essential nature of scientific
and therefore engineering thinking. The abstractions enable precise relationships
to be formulated without the hindrance of the complexity of imperfect detail. The
human mind has a propensity to search for abstractions and also to classify and
generalise them. The advance of civilisations, and more specifically here, science
and engineering as we know it, would have been impossible without this phe-
nomenon. It can, however, have penalties as in stereotyping, which have all too
often in history lead to injustices.

Associated with the perfect abstractions of the mind is the concept of precision;
that of flawless conformance to the ideal. This too has its roots in the philosophy of
the Ancient Greeks and has a pervasive influence in many cultures, but especially
in the western world where it has been a salient feature of scientific development.
Another vital element of Ancient Greek philosophy which has governed thought
not only in science but in many other fields such as law, medicine and theology, is
that of classical; (Aristotelian) logic. This represents the strict classification of real
or abstract objects into sets of which they are either perfect members or not.

Judging by the history of the past few centuries, science and engineering have
been remarkably successful in the application of these principles. The fruits of suc-
cess have been the results of the influence of the concepts of abstraction, precision
and classical logic applied in a highly organised manner which the general public
sees in the form of space flight, nuclear power and computers, for example. At the
same time it will be recalled that there have also been periodic disasters that make
national news, some natural others not such as aircraft and rail crashes, nuclear
plant failures, submarine losses and many other types due to technical failures or
human unreliability. Besides the catastrophic disasters that readily spring to mind,
there are also cases of failure, not small in number, that could be traced to design
failures, many of these do not make headline news. This does not include cases
where a system simply does not meet the required performance specification and

xv
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the loss is at the lower end of the criticality scale. Increasingly, system reliability
is high on the public agenda.

Amongst the most valuable assets of any organisation is that of its professional
knowledge base, part of which will be documented and explicit and part of which is
dispersed and will reside in the minds of the organisation’s staff. The latter is “free”
in the sense that it has not been reduced to document form, it is volatile as staff
transfer between different organisations. The total knowledge base governs the ca-
pacity and proficiency of an organisation to react to technical problems. In practice
it would frequently be the case that the induction process for creating relationships
would be accomplished by searching the free knowledge base to obtain consensus
expert opinion, which may include contracted judgement. Fuzzy logic methods fit
naturally and easily into the broader picture of knowledge engineering and more
generally into asset management. These factors are to a large extent unrecognised
in current engineering practice and offer the potential for a profound change in
outlook at the strategic level. This text approaches the issue at a tactical level, but
the full possibilities will be apparent.

Fuzzy logic has a much wider and deeper foundation than is implied in this
practical text. To learn a new language one can study the grammar or learn by
examples. Professional engineers and students with time constraints would usually
opt for the latter method and this is the aim in both this and the companion text,
An Introduction to Fuzzy Logic Applications. The benefits of the new language are;
more flexibility and generality in the formulation and solution of problems; non-
linear problems are easily encompassed. Also input information is often more fully
represented than in conventional treatments and furthermore carried through to the
conclusions which consequently have a higher information content. This is a key
factor, enabling more reliable decisions to be made by professional engineers and
designers.

This work extends and complements that the companion text. It opens up new
avenues of applications and new aspects of fuzzy logic. There is a stronger em-
phasis on the interpretation of the conclusions.

This radical new approach to problems in engineering science and also to pro-
fessional engineering procedures avoids over representing the precision of inform-
ation and knowledge and the approximate use of classical logic which is implicit
in current practice. Applications in the research literature are fairly sparse and in
the professional literature they are practically non-existent. It is anticipated that the
absorption of fuzzy logic methods into engineering practice will take time, but it
is certain that the advantages and the need to reappraise the current processing of
information and formulation of knowledge will prevail and that the methods will
become part of the engineer’s intellectual tool kit. But in the meantime there is the
need for a substantial educational drive to propagate the awareness of the potential
of fuzzy logic methods. The way in which this will happen will be through further
seminars, short courses and undergraduate or postgraduate courses, all of which
require the support of suitable texts. At present there is a very limited selection of
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texts to serve this purpose. This text is addressed to engineering lecturers, research-
ers extending the frontiers of knowledge, professional engineers and designers and
also students. A hallmark of fuzzy logic methods is that the cultural gap between
researchers and practitioners is not apparent, the linguistic formulation of problems
and conclusions is equally coherent to both.

I would like to acknowledge the invaluable help given by Derek Duffett and
James Harris in the final stages of compiling the text. Any flaws that remain are
mine. Comments on any aspects of the text would be welcome.

John Harris
October 2003



Chapter 1
Comments and Definitions

Most people during the course of their education acquire a knowledge of classical
logic, even if it is only of a hazy nature. The hallmark is an acceptance that state-
ments are either “true” or “false”: the car will or will not start, the tennis match has
or has not been postponed. Such is the basis of classical (Aristotelian) logic (CL).
Later, one appreciates that some propositions have an expectation element when
they are concerned with future events: the car probably will not start tomorrow
morning (based upon experience), the tennis match will probably be postponed if
the weather is bad. Such uncertainty is sometimes treated by statistical methods,
based upon historical data, though at a less sophisticated level, more often on
simple guesswork.

Although CL is a special case of fuzzy logic (FL), its greater familiarity makes
it a useful point of departure in this text.

(A guide to fuzzy logic is provided in the companion text, An Introduction to

1.1. Classical Logic Basics

1.1.1. DEFINITIONS

Sets. The basic concept in CL, as in FL, is that of a set. This is conceived as a
collection of objects, which may be tangible or intangible, having some common
attribute or feature, such as shape, colour, type or use (for example). The common
denominator is the categorical characteristic which is the defining feature of the set.
A set may comprise, for example, the whole numbers between 0 and 10, another
example could be the members of staff of a particular hospital. Sets are denoted in
this text by capital letters, thus X.

Subsets. These are sets within sets and have two attributes, one defining the set and
one the subset. Subsets are also denoted by capital letters, thus Y ⊂ X, where ⊂
means subset Y is contained within set X.

1

Fuzzy Logic Applications. See also Further Reading.)



2 Fuzzy Logic Applications in Engineering Science

Figure 1.1. Venn diagrams of classical logic operations. (a) Intersection. (b) Union.

Elements. The individual members of a set are called its elements, and are denoted
by lower case letters, thus p. Also, p ∈ P means that element p is a member
of the set P . Elements may be one or more discrete features, or point values of a
continuum. The set containing only one element is called the unit set.

If the set is to be specified by listing all the elements, it is written thus; {a, b, c},
in which the order of the elements within the brackets is immaterial. As an example,
S = {0, 1} represents the set of electric light switch positions. The switch is either
“on” or “off”.

Special sets.

(i) Universal set. This comprises all the elements in the population. It is denoted
by 1.

(ii) Null set or empty set. This contains no elements. It is denoted by ∅.

Complimentary set. The compliment of set X is set X′, where X + X′ = 1, which
is the universal set. It follows that the complement of the universal set is the null set.

Logic Operations. Several CL operations on sets are defined. The intersection AND
is denoted by ∩. The union OR is denoted by ∪. The two operations are conveni-
ently illustrated by means of the Venn diagrams, as shown in Figures 1.1(a) and
1.1(b).

In the Venn diagrams in Figure 1.1, the surrounding rectangle represents the
universe of all sets in the genre.

The OR operation shown above is the inclusive OR, it must be distinguished
from the exclusive OR labelled XOR. This means set A or B, but not both. The
XOR operation is not used in this text. Other operations in the literature are NAND
and NOR, neither of which are needed here.
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Figure 1.2. Venn diagram showing fuzzy intersection.

Figure 1.3. Comparison of typical set membership patterns. (a) Classical set. (b) Fuzzy set.

1.2. Fuzzy Logic (FL)

1.2.1. FUZZY SETS AND VENN DIAGRAMS

The sets in CL all have precise boundaries. In FL this requirement is relaxed and
therefore the set boundaries in this case are imprecise. The sets on a FL Venn
diagram therefore appear as shading, illustrating boundary zones. The imprecise
shaded zone defining the boundaries of the sets are the zones in which partial
membership, µ (0 < µ < 1.0) of the sets by the elements is attributed. A fuzzy
Venn diagram is illustrated in Figure 1.2

The pattern of membership values of elements of sets is often conveniently
displayed on a diagram. Figure 1.3 compares membership functions in the CL and
FL cases, where the elements are members of a continuum. Values of the elements
are set off along the abscissa and membership values of the elements are set off
along the ordinate. In Figure 1.3(a), for 0 < x < x1, the membership value is zero.
For x1 < x < x4 the membership value is unity, whilst for x > x4 the membership
value is again zero. Figure 1.3(a) defines a CL set. In the case of Figure 1.3(b), for
0 < x < x1 the membership value is zero, whilst for x1 < x < x2 it rises from zero
to unity. For x2 < x < x3 the membership value is unity and for x3 < x < x4 the
membership declines again from unity to zero. Beyond x4 the membership value is
again zero.

1.2.2. FUZZY SET SHAPES

The geometry of fuzzy set shapes may take on a variety of forms, but is subject to
the requirement that any element must not have more than one membership value of
a particular set. Simple possible shapes are illustrated in Figure 1.4. The singleton
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Figure 1.4. Typical fuzzy set membership function shapes.

Figure 1.5. A fuzzy set and its complement.

is a special case of a set with only one element, which has unity membership value.
Fuzzy sets may comprise continuous or discrete distributions of members. It is
sometimes convenient in applications to approximate a continuous distribution of
elements by a discrete distribution. The triangular form of membership function is
the most common, and will be extensively used in this work.

1.2.3. THE COMPLEMENTARY FL SET

If X is a fuzzy set, then the complimentary fuzzy set is defined as X′ = 1−X. The
set and its complement are illustrated in Figure 1.5.

1.2.4. UNIVERSE OF DISCOURSE (UD)

The elements of a universe are usually distributed amongst a number of sets and
in FL they are often members of more than one set. They generally have fractional
membership values of the several sets. The fuzzy sets are defined on a universe of
discourse of categories of a particular attribute. For example, Figure 1.6 shows sets
on a UD of speed in which the categories are varying degrees of “fast”.

1.3. Measurement Scales

Although in engineering practice most elements are described in terms of numer-
ical continua, there are various types of scales that are used. UDs can be described
on several different scales, each with it own application. Four types are described
below:
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Figure 1.6. The universe of discourse of speed.

(i) Ordinal scales. The elements on this scale are placed in some sort of or-
der of progression, for example, the stations on a railway line or items in a
programme.

(ii) Nominal scale. The elements represent discrete categories or conceptual ob-
jects, for example, types of screw thread or types of non-ferrous metal.

(iii) Interval scale. Units or intervals of a given size marked out in sequence, for
example, the intervals on a clock face.

(iv) Ratio scale. An interval scale with a zero point at some arbitrary or agreed
value, for example, a tape measure division.

This offers a range of scales suitable for different applications. The essential
feature of a scale is that it reflects a common theme amongst the elements which
defines the UD.

1.4. Propositions

Logic processes are conducted in the form of propositions, the simplest of which
comprises an antecedent (premise) and a conclusion, IF A THEN B, e.g., if that is
a litre of water then it will weigh one kilogram (at sea level). CL asserts that the
membership value is 1 or 0.

Consider a FL proposition: If the brake pedal is pressed, then the car will stop.
Now there are various levels of brake pressure that may be applied and there are
various levels of stopping from an emergency stop to gradual slowing down. Thus
there are various categories of stopping and a CL conclusion is not possible. The
resolution of this type of problem is the theme of the remainder of this text.

Compound propositions can take several different forms. One of the more im-
portant and frequently used forms is: IF A AND B THEN C, for example, if the
distance of a hotel along a road is possibly between one and five kilometers and
the distance to a garage is possibly between three and seven kilometers (both +ve)
then the distance between them is somewhere between three and five miles. This
case is illustrated in Figure 1.7.
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Figure 1.7. Illustration of fuzzy intersection.

Figure 1.8. Illustration of fuzzy union.

Another important and often used case of a compound proposition is expressed
as: IF A OR B THEN C. For example, if the wind is strong or very strong then it is
unsafe for novice sailors to race. This case is illustrated in Figure 1.8.

1.5. Notation

In this work sets and subsets are labelled with capital letters. The elements of a
set are written in lower case letters and contained in brackets { }. A fuzzy number
is expressed as a fuzzy set. A fuzzy number may be represented in discrete or
continuous form. The discrete form is of the type

A = [µ1//a1 + µ2//a2 + µ3//a3 + · · ·]. (1.1)

The elements with their membership values (µi) are enclosed in square brackets
[ ]. The membership value is separated from its corresponding element (ai) by the
symbol //; this does not denote devision. The + sign within the [ ] brackets denotes
continuation, it does not denote addition.

The continuum form of fuzzy number is expressed as

X =
∫

µ(x)//x, (1.2)

where
∫

does not mean “integral of . . . ”, but “continuous distribution of . . . ”.
In the solution of problems it is often useful to represent fuzzy sets as piecewise

continuous distributions. Discrete values are also used to represent continuous dis-
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Figure 1.9. Assigning input data membership values. (a) Singleton input. (b) More general
fuzzy input.

Figure 1.10. The union of several fuzzy subsets.

tributions. The volume of work in manipulating discrete sets may be reduced by
considering principal sets, as defined in the Appendix.

1.6. Fuzzification and Defuzzification

1.6.1. FUZZIFICATION

The operations in FL are performed in terms of fuzzy sets. In practice, the input
data may also be in terms of fuzzy sets or a singleton (single element with a mem-
bership value of unity), which is infact a special type of fuzzy set. The input data
needs to be assigned membership values of one or more fuzzy sets into which the
UD has been partitioned. The membership values are found from the intersections
of the data sets with the fuzzy sets of the UD. Figure 1.9(b) illustrates the graphical
method of finding membership values in the case of a singleton (Figure 1.9(a)), and
the more general fuzzy input (Figure 1.9(b)).

For the singleton in Figure 1.9(a), there are two intercepts, i.e., at a and b, which
determine the membership values. Whilst for the fuzzy input in Figure 1.9(b) there
are four intercepts at c, d, e and f which determine the membership values.
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1.6.2. DEFUZZIFICATION

This means the reduction of the fuzzy set or subset to a singleton. The fuzzy
set is usually the union of several subsets representing the conclusion of a fuzzy
proposition. Normally, a fuzzy set cannot be represented by a singleton, therefore
defuzzification can only be undertaken with the loss of information. The union
of several subnormal (no membership value equal to unity) fuzzy subsets is illus-
trated in Figure 1.10 and s is the single element on the UD which is deemed to
represent the union of the fuzzy subsets. Such a representation discards the span
of the conclusion and the membership values of the subsets. But for calculations
in design (for example) a specific value is required and provides the motivation for
defuzzifying, but it is important not to loose sight of the whole solution.

There are several ways of finding a representative number. Two common ways
are outlined below.

(i) Centroid method. This is probably the most frequently used method and as
the name suggests, it involves finding the position of the centre of area of the
subsets on the abscissa (s).

Continuous distribution: s =
∫ x=∞

x

∫∫
=0

x da
/ ∫

da, (1.3)

Discrete distribution: s =
i=n∑
i=1

xiδAi/
∑

δAi. (1.4)

(ii) Weighted abscissa method. This is evaluated by taking the sum of the norm-
alised weighting of each of the set principal values, xi(max)

s =
i=n∑
i=1

µixi(max)
/ ∑

µi. (1.5)

In the trapezoidal shape of fuzzy set, it is the mid-support value that is used for
xi . The centroid and weighted abscissa methods generally give somewhat different
values of the defuzzified representative number. It may be observed that given a
representative number, it is generally not possible to recover the original fuzzy
subsets.

1.7. Equivalent (Triangular) Fuzzy Number (EFN)

Given the union of two fuzzy sets, as illustrated in Figure 1.11, it is possible to
find a symmetrical triangular fuzzy number that would produce the same fuzzy
subsets by intersection with the partitioning fuzzy sets on the UD. This is called
the Equivalent Fuzzy Number (EFN). There is less loss of information with this
representation than with the defuzzified number. Given an EFN, it is possible to
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Figure 1.11. An Illustration of the equivalent fuzzy number.

recover two pairs of fuzzy subsets, one of which is the original fuzzy subset, but
generally not with a defuzzified number.

Figure 1.11 shows a symmetrical EFN in which points 1 and 2 represent points
of intersection of the EFN with the two different fuzzy sets on the UD. The mem-
bership values of the intersection points 1 and 2 are m and n, respectively, therefore
from the membership functions of the fuzzy sets the values of z and x at the
intersections may be obtained. Now by similar triangles,

(c − x)/(1 − n) = (c + w − z)/m = w/1.

Hence,

c + w − z = mw. (1.6)

Therefore,

c − z = w(m − 1). (1.7)

Also,

c − x = w(1 − n), (1.8)

Subtracting Equation (1.7) from Equation (1.8),

z − x = w(2 − n − m).

Hence,

w = (z − x)/(2 − m − n). (1.9)

Also from Equation (1.7),

c = x + w(1 − n). (1.10)

Equations (1.9) and (1.10) determine the principal value (c) and the support of the
EFN (2w). At the cross-over point z = x and hence w = 0, the fuzzy number
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degenerates to a singleton. The principal value of the EFN may be viewed as a
representative number of the union of the two fuzzy subsets from which the EFN
was formed.

For symmetrical sets and a symmetrical fuzzy number, if n + m = 1, then
w = y − x. This is generally only true if y − x = 0, i.e., if w = 0. The fuzzy
number then degenerates to a singleton.

1.8. Probability and Identity

The first impressions of fuzzy logic analysis is that it is statistics with another label
and adds nothing to the clarification and solution of non-deterministic problems.
This is a fundamental misunderstanding of the nature of fuzzy logic. To set things
in their proper order, it may be stated that classical two-valued logic is a special
case of fuzzy logic and statistics is based upon CL. The source of the confusion
between the two lies in the use of the word “probably”, which in many cases con-
notes the frequency of an event in a given static population, but can have different
interpretations. However, fuzzy logic is not concerned with frequency but with the
identity of an individual conceptual object, be it real or non-material, and which
may or may not be a member of a population (which may not be static). It is a fact
that both probability theory and fuzzy logic are concerned with uncertainties, but
they are uncertainties of an entirely different nature.

Consider a given bag of mixed black and white balls, the probability of with-
drawing a black ball or a white ball is simply found, given the total number of
black and white balls contained in the bag. The balls are unmarked and one black
(or white) ball is indistinguishable from another. This is a probability problem.
Suppose now that the balls are various shades of grey ranging from pure white
to pure black. In this case each ball would need to be examined and assigned a
membership value on the scale 0–1.0 of the black category and of the white. Each
ball would generally belong partly to the one category and partly to the other. This
is a fuzzy logic problem, not soluble by probability theory, it is a matter of identity.
Engineering practice abounds in problems of uncertainty of the identity kind. In
many ways engineering logic is fuzzy logic.



Chapter 2
Fuzzy Geometry

Geometric considerations arise in the context of engineering studies in many ways,
especially in the mechanical and civil engineering and related fields, also in ar-
chitecture. In many, but not all cases, geometric aspects arise at the design stage
of artefacts and systems, ranging from large one-of-a-kind designs such as bridges,
ships or process plant, to mass produced domestic white goods, furniture and motor
cars, for example. Visual appeal, ease of assembly, safety, performance and inter-
changeability are all important functions which have a greater or lesser dependence
on geometric factors.

Geometry as an academic study is normally concerned with theoretical forms
that have idealised shapes and exact dimensions. But these have no precise realisa-
tion in nature or in industrial artefacts. The latter are produced to dimensions that
have allowable variations from the theoretically exact values, the variations are as
generous as possible (high precision is expensive). These allowances are formal-
ised as tolerances, which means imposed limits to the acceptable variations of the
dimensions, acknowledging that a complete set of theoretically exact dimensions
is improbable. Thermal, wear and load effects also cause dimensional changes that
are additive to the manufacturing errors. There are also measurement errors.

The solution of several cases of exact geometric relations, but with fuzzy input
data is described, which introduces the application of the extension principle. The
solution of a problem with fuzzy geometric relationships and fuzzy input data is
also given. Finally, the blending of planar curves and the fairing of sections is
described.

2.1. Linear Measurement

The accuracy of the linear distance or dimension between two points depends upon
the precision of the identity of the location of the reference points (assuming perfect
accuracy of the measuring instruments). This is a matter of tacit agreement, reached
in practice when the value-at-risk due to differences of opinion on the locations
are insignificant. In manufactured goods, if the value-at-risk due to variations in a
linear dimension is significant, then dimensional limits would be imposed. If the
problem related to surface texture then similar limits would be imposed. In the

11
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Figure 2.1. Illustrations of dimensional tolerances. (a) Conventional CL type. (b) General FL
type.

former case, the limits on a dimension are often the bilinear type (x0 − a, x0 + b)

where x0 is the precise dimension, which has a lower limit of (x0 −a) and an upper
limit of (x0+b). An acceptable dimension is one with the value lying between these
limits. This is a CL type of criterion, as shown in Figure 2.1(a), which defines the
set of acceptable values of x on the UD. The tolerance in this case is (a + b).

If the tolerance zone is now reinterpreted as a fuzzy set, a more general and
flexible specification may be achieved which can accommodate a range of quality
(precision) criteria within the same basic envelope. (a + b) defines the support of
the fuzzy tolerance set.

A series of quality levels may be formed within the envelope in addition to the
basic level with a tolerance of (a + b). For example, a higher quality level could
be specified as “better than m”, referring to Figure 2.1(b). Thus, several quality
levels could be established with different values of µ. Other applications, such as
the example below, utilise a similar concept.

The same principle could clearly be extended to other applications, including
non-geometric cases, such as chemical composition. In the case of natural objects,
variability and uncertainty of size and shape are the rule, nature is exceedingly rich
in its tolerance to variations of natural form. Fuzzy sets are much more compatible
with reality than are classical sets.

EXAMPLE 2.1. The distance between opposite points on the banks of a river have
been measured at two places, namely A and B as shown in Figure Ex 2.1. The
estimates of the distances in metres are given as discrete fuzzy sets in which the
membership values indicate the most likely distance.

A = [0//7.5 + 0.6//7.8 + 1.0//8.0 + 0.5//9.2 + 0//9.4],
B = [0//11.7 + 0.7//11.8 + 1.0//12.0 + 0.3//12.3 + 0//12.5].

Find the difference between these two measurements, assuming that the
measurement errors are negligible.
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Figure Ex 2.1. Distance of opposite river banks.

Solution. The difference (D) between the two fuzzy measurements, A and B,
is given by the Cartesian product of the membership values and the arithmetic
difference of the associated measurements. Thus,

D = B × A//(b − a).

Now,

B × A = min[(µA,µB)]
= [0, 0.7, 1.0, 0.3, 0]x[0, 0.6, 1.0, 0.5, 0]
= (0, 0)(0, 0.6)(0, 1.0)(0, 0.5)(0, 0) = (0, 0, 0, 0, 0), etc.

The complete arrays of membership and arithmetic values are

7.5 7.8 8.0 9.2 9.4

B × A//(b − a) =

11.7
11.8
12.0
12.3
12.5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0
0 0.6 0.7 0.5 0
0 0.6 1.0 0.5 0
0 0.3 0.3 0.3 0
0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
//

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4.2 3.9 3.7 2.5 2.3
4.3 4.0 3.8 2.6 2.4
4.5 4.2 4.0 2.8 2.6
4.8 4.5 4.3 3.1 2.9
5.0 4.7 4.5 3.2 3.1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The principal set values are shown in bold type in the above arrays and are
displayed as a piecewise continuous set in Figure Ex 2.2. The discrete form of the
set is,

D = [0//2.3 + 0.5//2.6 + 1.0//4.0 + 0.3//4.5 + 0//5.0]m
Defuzzifying the principal set using the weighted abscissa method (Equa-

tion 1.5)), gives

Def D = (0.3 ∗ 4.5 + 1.0 ∗ 4.0 + 0.5 ∗ 2.6)/(0.3 + 1.0 + 0.5)

= 3.694 m.
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Figure Ex 2.2. The fuzzy difference (B − A) represented as a piecewise continuous function.

Using average values of A and B, the difference is 3.68 m. But neither this nor the
defuzzified value reflect the full information in the fuzzy value of D, which spans
the range, 2.3 m to 5.0 m, with a value of 4.0 m at the maximum membership level.
It is not suggested that Def D represents a more correct value than the average of
3.68 m. Fuzzy D represents the correct solution.

If the objective was, for example, to span the river with a bridge, then the design
team would need to select the membership value on safety grounds.

2.2. Fuzzy Areas

An area may be bounded by a fuzzy perimeter which makes the calculation of
the area uncertain. A common approach to such a problem would be to define a
mean perimeter and then calculate a precise area based upon this. Consonant with
the previous discussion, such a methodology discards useful information about
the range of the values of area implied within the fuzzy perimeter data. There are
various categories of shape treated by different methods:

(i) Simple geometric shapes whose areas are described by known deterministic
formulae.

(ii) More complex shapes requiring treatment from first principles.
(iii) Forms comprising blended simple shapes.

Types (i) and (ii) are soluble by the application of the extension principle. Type
(iii) can be solved by combining piecewise solutions of component shapes us-
ing membership functions. A simple example of type (i) is that of the area of a
fuzzy rectangle, as described below. Type (iii) problems are considered later in
this chapter. Type (ii) problems may be solved by the application of the extension
principle, they are not treated here.
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2.3. Fuzzy Rectangle

Consider a plane rectangle in which the dimensions of the sides are represented
by fuzzy sets. Let the fuzzy dimensions of the rectangle, B and C, be given by
three-term discrete sets,

B = [µB1//b1 + µB2//b2 + µB3//b3] (2.1)

and

C = [µC1//c1 + µC2//c2 + µC3//c3]. (2.2)

The fuzzy area (A) of the rectangle is then found by the Cartesian product of the
membership functions and the algebraic product of the associated elements,

A = B × C//(b ∗ c). (2.3)

Now,

B × C = min[(µB,µC)], (2.4)

where

min[(µB,µC)] = min[(µB1, µC1), (µB1, µC2) . . . etc. (2.5)

The solution may then be expressed in terms of two arrays, one of which comprises
membership values and the other the algebraic products.

EXAMPLE 2.2. Let the sides of a rectangle be given in discrete fuzzy form by

B = [0//0 + 0.5//0.5 + 1.0//1.0 + 0.5//1.5 + 0//2.0] and

C = [0//1.0 + 0.5//1.5 + 1.0//2.0 + 0.5//2.5 + 0//3.0].
Find the area of the rectangle.

Solution. The sets representing the rectangular sides are illustrated as piecewise
continuous sets in Figure Ex 2.3.

The membership value array obtained by performing the Cartesian product,
formulae (2.3, 2.4) and 2.5) on the given discrete fuzzy sets B and C, together
with the associated arithmetic products array, are tabulated below. The principal
discrete set numbers of the area are shown in bold type. Figure Ex 2.4 shows these
results as a piecewise continuous set.

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0
0 0.5 0.5 0.5 0
0 0.5 1.0 0.5 0
0 0.5 0.5 0.5 0
0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
//

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0.0
05 0.75 1.0 1.25 1.5
1.0 1.5 2.0 2.5 3.0
1.5 2.225 3.0 3.75 4.5
2.0 3.0 4.0 5.0 6.0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Figure Ex 2.3. The sides of the rectangle as piecewise continuous sets.

Figure Ex 2.4. The principal set values of the area of the rectangle as a piecewise continuous
set.

The principal set of the area is

A = [0//0 + 0.5//0.75 + 1.0//2.0 + 0.5//3.75 + 0//6.0].
Defuzzifying the principal fuzzy set using the weighted abscissa function

method gives

Def A = �µiai/�µi

= (0.5 ∗ 0.75 + 1.0 ∗ 2.0 + 0.5 ∗ 3.75)/(0.75 + 1.0 + 0.5).

Therefore,

Def A = 1.89.

The area is not a precise value, Def A indicates a tendency.
The numerical average of the side B is 0.8333 and of side C is 2.000 and the

product of the average values gives an area of 1.667. It will be noted that the
symmetrical sets of the sides of the rectangle produces an asymmetric fuzzy set
area with a support (span) of 6 units.
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Figure Ex 2.5. The area of a circle as a piecewise continuous function.

2.4. Fuzzy Circle

Another simple geometric shape is represented by a circle. In the previous section
the area of a rectangle was found by Cartesian product, in this case the extension
principle will be applied to find the area.

Let r be the radius of a circle in discrete fuzzy set form. The area (a) is given
by the conventional formula

a = πr2. (2.6)

Let the radius of the fuzzy circle be given in discrete form by

R = [µ1//r1 + µ2//r2 + µ3//r3 + µ4//r4 + µ5//r5]. (2.7)

Then by the extension principle the corresponding area (A) is given by

A = [µ1//πr2
1 + µ2//πr2

2 + µ3//πr2
3 + µ4//πr2

4 + µ5//πr2
5 ], (2.8)

or

A = [µ1//r2
1 + µ2//r2

2 + µ3//e
2
3 + µ4//r2

4 + µ5//r2
5 ]π, (2.9)

where it is understood that the π factor applies to each term in Equation (2.9).

EXAMPLE 2.3. A fuzzy circle has a radius given by

R = [0//0.8 + 0.5//0.9 + 1.0//1.0 + 0.5//1.1 + 0//1.2].
From Equation (2.9) the area of the fuzzy circle is

A = [0//0.8 + 0.5//0.9 + 1.0//1.0 + 0.5//1.1 + 0//1.2]π
= [0//0.64 + 0.5//0.81 + 1.0//1.0 + 0.5//1.21 + 0//1.4]π.

This is a slightly asymmetrical set. It is represented as a piecewise continuous set
in Figure Ex 2.5.

The same result may be obtained by the Cartesian product method, A = π(R ×
R). This yields an array in which the principal set provides an identical solution.



18 Fuzzy Logic Applications in Engineering Science

Figure Ex 2.6. Vehicle steering geometry.

The above example demonstrates the use of a simple exact theoretical
relationship with fuzzy data. A more practical type of problem, again using the
Cartesian product principle, is described below.

EXAMPLE 2.4. In a four-wheeled vehicle with front wheel steering, the condition
for the theoretically exact angular relationship between the front wheels is given
by

cot p − cot q = c/b,

where b, c, p and q are defined in Figure Ex 2.6.
Manufacturing and assembly tolerances allow for variations in the ratio c/b. For

this vehicle the ratio is specified as

C/B = [0//0.437 + 0.5//0.499 + 1.0//0.460 + 0.5//0.472 + 0//0.483].
In a worn and poorly assembled condition, the outer wheel in a cornering
manoeuvre has an angle (q) given by

Q = [0//27.6 + 0.5//28.8 + 1.0//30.0 + 0.5//31.2 + 0//32.4] deg.

What would be the corresponding angle (p) of the inside front wheel?

Solution. If

Q = [0//27.6 + 0.5//28.8 + 1.0//30.0 + 0.5//31.2 + 0//32.4] deg,

then

cot Q = [0//1.913 + 0.5//1.819 + 1.0//1.732 + 0.5//1.651 + 0//1.576].
Also if

C/B = [0//0.437 + 0.5//0.449 + 1.0//0.460 + 0.5//0.472 + 0//0.483],
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the Cartesian product of (cot Q − C/B) is

cot Q − C/B =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0
0 0.5 0.5 0.5 0
0 0.5 1.0 0.5 0
0 0.5 0.5 0.5 0
0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
//

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1.476 1.464 1.453 1.441 1.430
1.382 1.370 1.359 1.347 1.336
1.295 1.283 1.272 1.260 1.249
1.214 1.202 1.191 1.179 1.168
1.139 1.111 1.116 1.104 1.093

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The principal values in the above arrays are printed in bold type. The discrete
principal set for cot P is,

cot P = [0//1.093 + 0.5//1.179 + 1.0//1.272 + 0.5//1.370 + 0//1.479].
Therefore,

P = [0//34.12 + 0.5//36.13 + 1.0//38.17 + 0.5//40.30 + 0//42.46] deg.

The spread of the angle q is 4.8 deg, but the spread of the angle p is 8.34 deg.

2.5. Incomplete Restraint

The geometric principles of mechanical systems is treated in the standard theory of
machines texts. The nature of the constraints and connectivity between the adjacent
bodies is fundamental to the analysis. This is determined by the type of constrain-
ing surfaces between them, which are called kinematic elements. If one element of
a kinematic pair is fixed in position, the other is constrained to move in the manner
allowed by the geometry of the surfaces. Relative motion between adjacent bodies
is determined by the following factors:

(i) The possible degrees of freedom of one kinematic element relative to the
other.

(ii) The necessary and sufficient conditions of restraint.

It may be shown that any six independent kinematic conditions will suffice to
define the position of a body at successive time intervals and thus the locus of the
motion of any point on it. But only three independent conditions are necessary if
the motion is coplanar. Constraints may be positive, such as in the case of a bearing
shaft supported in a journal, or there may be force closure, for example, the spring
force applied to a cam follower.
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Figure Ex 2.7. Partitioning of the p and r universes of discourse. (a) Inner wheel angle.
(b) Turning circle radius.

There is frequently an exact theoretical relationship between the motion of
points in constrained adjacent bodies in mechanical systems. In practice however
imperfections or errors in the relationships arise due to any one or more of: design
clearances and tolerances, wear, deflections under load, inertia forces, thermal
expansion or damage. Where the restraint is not positive, for example, if it is by
friction, then the relationship may be of an empirical nature. An example of an
inexact relationship is given below.

EXAMPLE 2.5. In the previous example, the general relationship between the
inner front wheel angle (p) and the turning circle radius (r) measured from the
centre of the circle to a point mid-way between the rear wheels, is described by the
(P,R) relationship

P ZE LO AV HI
R LA ME SM NI

where ZE = Zero, LO = Low, AV = Average, HI = High, NI = Nil, SM = Small
medium, ME = Medium, LA = Large.

Possible partitioning of the p and r UDs is shown in Figure Ex 2.7.
Estimate the turning circle for which the inner front wheel angle is expressed as

a fuzzy set by

P = [0//23 + 0.5//24 + 1.0//25 + 0.5//26 + 0//27] deg.

Solution. Membership functions for the partitioning in Figure Ex 2.7(a) are
tabulated below:

0 ≤ p ≤ 5 5 ≤ p ≤ 15 15 ≤ p ≤ 30 30 ≤ p ≤ 45 deg
µZE 1.0 1.5 − p/10
µLO (p − 5)/10 2.0 − p/15
µAV (p − 15)/15 3.0 − p/15
µHI (p − 3−)/15
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Figure Ex 2.8. The inner front wheel angle as a piecewise continuous set.

Figure Ex 2.9. The inner front wheel angle intersections.

Turning circle radius membership functions, Figure Ex 2.7(b), are shown below:

0 ≤ r ≤ 5 5 ≤ r ≤ 15 15 ≤ r ≤ 45 45 ≤ r ≤ 90 m
µHI 1.0 1.5 − r/10
µSM (r − 5)/10 2.0 − p/15
µME (r − 15)/30 2.0 − r/45
µLA (r − 45)/45

The input (p) is given as a discrete set,

P = [0//23 + 0.5//24 + 1.0//25 + 0.5//26 + 0//27] deg.

This is illustrated as a piecewise continuous set in Figure Ex 2.8.
For the above representation of P , the membership functions are

µi = (p − 23)/2 and µ2 = 13.5 − p/2.

The intersection of the above membership functions with the wheel angle mem-
bership functions provides two angular values on the LO set and two on the AV set.
These are: LO = 23.82 deg; AV = 24.23 deg; LO = 26.54 deg; and AV = 25.59 deg.
The intersections are illustrated in Figure Ex 2.9.

Taking the lowest intercepts on the LO and AV sets, the corresponding
membership values are

µLO = 2.0 − p/15 = 2.0 − 26.54/15 = 0.2507,

µAV = (p − 15)/15 = (24.23 − 15)/15 = 0.6153.

The FL proposition is

IF P THEN R MIN. CONSEQUENCE
AV SM 0.6153 0.6153SM
LO ME 0.2307 0.2307ME
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The conclusion on R is the union of the above consequences

RL = 0.6153SM ∪ 0.2307ME.

With some loss of information, a defuzzified value of R may be found by applying
the weighted abscissa value method,

Def RL = (0.6153 ∗ 15 + 0.2307 ∗ 45)/(0.6153 + 0.2307)

= 23.18 m.

The average value of the fuzzy sets principal values is 30 m.
Now considering the highest intercepts on the LO and AV sets, the corres-

ponding membership values are: LO = 23.82 deg and AV = 25.59 deg. The
corresponding membership values are = 0.4120 and = 0.7060.

The FL proposition is

AV SM 0.7060 0.7060SM
LO ME 0.4120 0.4120ME.

The union of the above consequences provides another turning circle radius

RH = 0.7060SM ∪ 0.4120ME.

This conclusion is illustrated in Figure Ex 2.7b.
The defuzzified value of this set is Def RH = 26.06 m. This consequence sub-

sumes the previous expression. The emphasis in both cases is towards the SM set
for the full range of axle loads and road surface conditions. More detailed and
differentiated data derived from further experimental investigations would enable
a more precise solution.

2.6. Blending Coplanar Curves

It often happens in geometric design that two geometric features require to be
blended or faired together, for example, when two different sections of a structural
member are to be joined. If the resulting feature is free from constraints, other
than that of visual appeal, the designer has freedom in the choice of outline. In
other cases it may be desired to simulate a given feature, for example, the shape
of a tyre-road contact in road research. Such contours may often be represented
by patching together two or more simple geometric curves with transitions based
upon the concepts of FL rather than by creating mathematical expressions. The
method may be exemplified by considering two coplanar circular arcs as shown in
Figure 2.2, in which the symbols are defined.

By inspection of Figure 2.2, it may be noted that for the upper circular arc

r sin w = c sin u − b (2.10)
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Figure 2.2. Blending two coplanar circular arcs.

and

r cos w = c cos u. (2.11)

Also, for the other circular arc

r sin w = d sin v (2.12)

and

r cos w = d cos v − a, (2.13)

where r = r(w).
Dividing Equation (2.10) by Equation (2.11) and Equation (2.13) by Equa-

tion (2.12) yields

tan w = (c sin u − b)/c cos u (2.14)

and

cot w = (d cos v − a)/d sin v. (2.15)

Let

tan w = t; cot w = 1/t; sin u = α sin v = β.

Therefore, t = (cα − b)/c(1 − α2)1/2 and 1/t = [d(1 − β2)1/2 − a]/dβ.
Rearranging these two equations yields

α = t (1 − α2)1/2 + b/c, (2.16)

β = t[(1 − β2)1/2 − a/d]. (2.17)
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Figure 2.3. Partitioning of the w UD. SM = Small. LA = Large.

For given values of a, b, c, d and t , Equations (2.16) and (2.17) may be solved by
numerical methods.

The transition curve is defined by r(w). Both r and w are functions of c(u)

and d(v), modified by membership value functions. In the FL treatment, the angle
w represents the elements of the continuous array, 0 ≤ w ≤ π/2. The UD is
partitioned into two fuzzy sets as shown in Figure 2.3. The transition curve touches
the circular arcs at w = w1 and w2, and the transition curve and circular arcs have
common tangents at these points. The circular arcs are considered to be fuzzy sets
on the w UD, as illustrated in Figure 2.3.

The corresponding membership functions are

µSM = (w2 − w)/(w2 − w1) and µLA = (w − w1)/(w2 − w1).

Referring to Figure 2.2, the rectangular co-ordinates of a point on the transition
curve are obtained by the sum of the fractional parts of the co-ordinates (x, y)

of the circular arcs, the fractions being controlled by the membership functions.
Hence, within the transition zone,

x = µSM h + µLA g, (2.18)

y = µSM e + µLA f, (2.19)

where e = d sin v, g = c cos u, f = c sin u − b and h = d cos v − a.

EXAMPLE 2.6. Assume that two coplanar arcs of 4 and 5 units radius, as shown
in Figure 2.2, are to be blended by a smooth transition curve between w = 10 deg
and w = 30 deg. The axes of the arcs are perpendicular and the arc centres are at
a = 1 unit and b = 3 units. Find suitable polar co-ordinates for the transition curve.

Solution. From Equations (2.16) and (2.17)

α = t (1 − α2)1/2 + 0.6

and

β = t[(1 − β2)1/2 − 0.25].
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Selecting successive values of w = 10, 15, 20, 25, and 30 deg and solving the
above two equations numerically gives the following results for the angles u and
v deg:

w deg α β udeg v deg
10 0.7217 0.1310 46.20 7.527
15 0.7709 0.1958 50.40 11.29
20 0.8126 0.2605 54.35 15.10
25 0.8463 0.3230 57.81 18.84

The rectangular co-ordinates of the two circular arcs may thus be found from
formulae (2.18) and (2.19),

f = 5 sin u − 3, g = 5 cos u,

e = 4 sin v, h = 4 cos v − 1.

Thus,

w deg f g e h

10 0.6085 3.461 0.5240 2.966
15 0.8545 3.187 0.7832 2.923
20 1.063 2.914 1.042 2.862
25 1.232 2.664 1.282 2.786
30 1.373 2.424 1.550 2.687

From the given values of the angle w and Figure 2.3 the membership values are
found and thus the Cartesian and polar co-ordinates of the transition curve,

w deg µSM µLA µ1.045
SM µ1.045

LA
10 1.0 0.0 1.0 0.0
15 0.75 0.25 0.7404 0.2349
20 0.50 0.50 0.4846 0.4846
25 0.25 0.25 0.2349 0.7404
30 0.0 0.0 0.0 1.0

n = 1 n = 1.045
w deg x y x y r

10 2.974 0.524 2.966 0.524 3.912
15 2.989 0.801 2.913 0.7807 3.016
20 2.888 1.053 2.799 1.020 2.979
25 2.695 1.247 2.626 1.216 2.894
30 2.424 1.373 2.424 1.373 2.785

The value of r in the above table is for n = 1.045. The co-ordinates in this case
provide a smoother transition curve than for those with n = 1.0. This is an example
of hedging the membership values.
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Figure 2.4. Loaded cantilever welded to a rigid support.

2.7. Fairing Solid Sections

It is often the case in engineering design that two sections of different geometry
are to be blended together. Moreover, there may also be the requirement to sat-
isfy strength, hydrodynamic or some other criterion. Such constraints must be
considered in formulating the transition between the adjacent sections.

Consider for instance, the case of a cantilever carrying a transverse end load,
f , as shown in Figure 2.4. The loaded end section is circular and the opposite
rectangular section end is welded to a rigid support. The two ends are joined by a
transition zone as shown.

The load (f ) produces a bending moment (m) at any cross-section distance, x,
from the free end,

m = f x. (2.20)

If the transition zone is to be of uniform resistance to bending, then according to
basic solid mechanics theory, the section modulus should increase uniformly in
the transition zone. If the component is critical in a refined design, finite element
or other numerical method could be applied to the problem of determining the
transition shape. The first approximation shape can also be used as a basis for the
finite element approach.

At some section a–a within the transition distant x from the free end, the
geometry of the section will comprise both circular and rectangular features, as
illustrated in Figure 2.5.

From standard solid mechanics theory, the second moment of area (I ) of the
free end circular section is

ILDII = πr4/4 (2.21)

(I is the conventional symbol for the second moment of area).
Also, the opposite end rectangular section second moment of area (IHIII ) is

IHIII = bd3/12. (2.22)
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Figure 2.5. Typical transition zone section (d, v and s are all functions of x, b is constant).

Figure 2.6. Membership function distribution in the transition zone.

For the sector of a circle, the second moment of area about a transverse axis through
its centre is

IS = s4/6{3v/2 − sin 2v + (sin 4v)/8}, (2.23)

where s is the radius of the sector from the centre of the section.
Now the second moments of area ILOII and IHIII may be regarded as interpenetrat-

ing fuzzy sets on the x UD, as illustrated in Figure 2.6.
To allow flexibility in the choice of section shapes, general forms of the

membership functions may be assumed

µHI = k(x − x1)
n and µLO = 1 − µHI (n < 1).

The second moment of area of the whole transition zone section may then be
portrayed as

I (x) = (µLOILOII + µHIIHIII ). (2.24)

Now µLOILOII represents the contribution of the circular component to the total
second moment of area, i(x), i.e., the contribution of two sectors of a circle, as
in Figure 2.5, therefore,

2IS = µLOILOII . (2.25)
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The value of the radius of the sector (s) at each section may be found by iteration
of Equation (2.23), for a given value of IS from Equation (2.25). The following
example outlines the method.

EXAMPLE 2.6. A cantilever is transversely loaded, as shown in Figure 2.4. It
has a circular section at the free end of 20 mm radius which is to be faired into
a rectangular section of 10 mm breadth and 70 mm depth over a distance (x) of
45 mm. The membership functions for the transition may be assumed to be of the
form shown in Figure 2.6, in which k = 0.03864 and n = 0.8547.

Find suitable forms of the transition zone sections at 5 mm intervals. Also
check whether the transition zone dimensions provide a satisfactory bending
strength.

Solution. From the given data, the membership functions are

µHI = 0.03864(x − x1)
0.8547 and µLO = 1 − µHI.

Also from the given data and Equations (2.21) and (2.22), the second moments of
area of the end sections are

ILOII = 1.2757 ∗ 105 mm4 and IHIII = 2.858 ∗ 105 mm4.

The value of the component second moments of area µLOILOII and µHIIHIII at each
interval (x − x1) may therefore be calculated. Assuming that a constant breadth
b = 10 mm of the rectangular component (Figure 2.5), then the depth for each
section may be found from Equation (2.22). The results of these calculations are
tabulated below:

(x − x1) mm 0 10 20 30 40 45
µLO 1.0000 0.7235 0.5000 0.2928 0.0957 0.0000
µHI 0.0000 0.2765 0.5000 0.7072 0.9043 1.0000
µLOILOII ∗ 10−5 mm4 1.257 0.9094 0.6285 0.3680 0.1203 0.0000
µHIIHIII ∗ 10−5 mm4 0.0000 0.7902 1.429 2.021 2.584 2.858
d mm 40.00 45.58 55.53 62.33 67.60 70.00
b mm 10.00 constant

The value of the sector radius, s, (Figure 2.5), at each section is found by apply-
ing Equations (2.23) and (2.25), starting at the circular end section (x − x1) = 1,
where s = 20 mm. The iterations proceed as follows.

At (x − x1) = 10 mm. Assume an initial radius value, s = 20 mm, also given
that b/2 = 5.0 mm, then the angle v = cos −1(5/20) = 75.52 deg or 1.318 rad.

Therefore,

sin 2v = 0.4842 and sin 4v = −0.8473.

From Equation (2.23),

6IS/s
4 = 3 ∗ 1.318/2 − 0.4842 − 0.8473/8 = 1.387.
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But from the above tabulated data IS (= µLOILOII ) = 0.9094 ∗ 105/2 = 0.4547 ∗
105 mm4. Hence,

s4 = 6 ∗ 0.4547 ∗ 105/1.387

or s = 21.06 mm.
Now performing a second iteration at (x − x1) = 10 mm with the new value of

s = 21.06 mm. The angle v = cos −1(5/21.06) = 76.27 deg = 1.331 rad.
Therefore,

sin 2v = 0.4611 and sin 4v = −0.8184,

6IS/s
4 = 3 ∗ 1.331 − 0.4611 − 0.8184/8 = 1.433

Hence,

s4 = 6 ∗ 0.9094 ∗ 105/2 ∗ 1.433,

s = 20.89 mm.

The third iteration gives s = 20.91 mm. The difference is then sufficiently small
for most design purposes for this value to be accepted. Corresponding values of s

for each (x −x1) interval may be found, these values are tabulated below. The total
second moment of area and section modulus are also included.

(x − x1) mm 0 10 20 30 40 45
s mm 20 20.91 19.30 17.24 13.72 5.0
I ∗ 105 mm 1.257 1.700 2.058 2.389 2.704 2.858
z ∗ 105 mm 6.285 7.458 7.410 7.666 8.000 8.160

If the end sections have adequate strength, then the section modulus (z) shows that
the other sections have a margin of reserve strength.

2.8. Remarks

In the present context, Euclidean geometry is unusual, it provides a corpus of
knowledge comprising perfect conceptual objects and exact relationships within
a framework of classical (Aristotelian) logic. There is no empirical content to this
and no scope for the application of fuzzy logic, unlike the semi-theoretical and
sometimes entirely empirical correlations of much of engineering science. Match-
ing the imperfections of reality with Euclidean perfection is where fuzzy logic
provides a unique bridge, because it can encompass uncertainty and vagueness
in identity and also includes classical logic. It maintains the general shape of the
Euclidean relations, whilst operating at the real world level with fuzzy numbers.

A metric for the distance apart of two rough surfaces would typically be chosen
as the normal distance between the centre arithmetic mean line (Standard BS
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1134:Part 1: 1988) of each surface. The metric is then given as a precise num-
ber. In the FL representation the metric would be a fuzzy number, which contains
more information than a single number. The question of the distance apart of rough
surfaces or boundaries then depends upon the membership level in the fuzzy set.

Abstract articulated linkages, such as the ubiquitous four-bar chain assembly,
have theoretically precise loci at each point on the mechanism. This is achieved
by geometric (positive) constraint such as in a journal bearing, or force closure
such as in a cam follower. If there is force closure, then the possibility exists that
the force may be deficient and that the closure may not be exact. There is also the
possibility in this instance and in geometric constraint that design factors, wear and
mal-assembly, for example, may affect the mechanism’s performance and produce
fuzzy loci. If the mechanical closure is not fully effective, then the relationships
between the parts of the system become imprecise and even empirical, which
results in a locus of motion generally represented by a subnormal fuzzy set.



Chapter 3
Material Selection

The selection of the most suitable material for a particular application is a crucial
function in the design of an artefact. The performance of materials is important,
not only under service conditions, but also in processing and in its economic and
environmental effects. The characteristics of a material fundamentally influence
the design geometry of an artefact and its compatibility with the service demands.

Obviously, a wide range of physical properties needs to be addressed in a
comprehensive review of materials, which should also include economic factors.
Indeed, so wide is the range that only a limited selection can be presented here, but
principles of materials assessment based upon FL methods are applied to several
prototype examples to provide patterns for further applications.

There are several complicating factors to be kept in mind. Some physical prop-
erties of engineering interest, such as Young’s Modulus may show significant
directional properties. This anisotropy is apparent, for example, in reinforced fibre
materials and in wood. Cold working of metals also induces anisotropy. There are
other factors too, such as scale effects, whereby a material may show different
strength properties in the bulk to that displayed in relatively small test pieces.
Also, surface stresses are two-dimensional, whereas it is the strains that are two-
dimensional on planes of symmetry in the core. This means that the stress fields in
laboratory test pieces should resemble those found in real artefacts in establishing
failure criteria. With the above caveats in mind it is possible to set forth the prin-
ciples of materials selection based upon simple material properties. In practice, it
may be necessary to express the performance in terms of fuzzy numbers.

The selection of a specific material for a particular application is on the basis
of its rating compared with other possible contenders. This leads to a search for an
index which will most effectively summarise the compatibility of the material with
the envisaged service demands. The relevant material performance is expressed in
terms of several material properties, such as; stiffness, strength, weight, ductility
and cost. To summarise the material properties the various factors are often evalu-
ated and weighted according to their criticality and aggregated into a single index
to provide a basis for comparison.

31
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Table 3.1. A sample classification of some common engineering properties.

Mechanical Electrical Thermal and Surface Miscellaneous
Radiation

Young’s Modulus Dielectric Specific Heat Texture Cost

Strength

Yield Stress Resistivity Conductivity Corrosivity Reliability

Toughness Permativity Expansivity Wear Resist. Durability

Ductility Diffusivity Recycleability

Density Transmissivity Manufacturability

Fatigue Reflectivity

Resistance Emissivity

Compressibility

Hardness

Creep Resistance

3.1. Performance Parameters

The initial step in describing material performance is to classify relevant engin-
eering properties in the types of phenomena. This would produce an extensive
compilation of bulk and surface, physical and chemical properties. Economic
factors should also be include in a fully comprehensive list. However, economic
factors change over time and also from one country to another. Within the restricted
range of engineering solids there are metals, polymers, elastomers, ceramics and
glasses, each with numerous types and each of which passes through the liquid
or powder state during processing prior to being used in the solid state. This still
leaves a substantial volume of properties to consider. A sample classification list of
engineering properties is shown in Table 3.1.

The above physical properties refer to solids. Liquids such as paints, lubricants
and coatings would have other properties.

If there is only one material criterion to satisfy, say stiffness, then the selection
of the material with the highest Young’s modulus would be the obvious choice.
However, such a simple case is unlikely in practice, there are invariably other
factors such as brittleness and cost which would also influence the final choice.

A useful comprehensive approach to the identification of the most suitable ma-
terial type to satisfy given criteria is available in the form of Ashby charts for
properties of engineering solids. These charts group materials into broad categor-
ies for various combinations of properties. An example is shown in Figure 3.1,
which displays Young’s modulus against material density. On this chart, if there is
a constraint of a minimum stiffness then a horizontal line drawn across the chart
divides those materials that are able to satisfy the constraint from those that are not.
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Figure 3.1. An Ashby chart of Young’s Modulus against density for engineering solids.

Figure 3.2. Partitioning of the performance and weight. LO = Low, HI = High.

In the aerospace, automobile and other industries there is also a requirement to
minimise weight. In this case a criterion including density is required.

A useful feature of the chart shown in Figure 3.1 is that on the double log plot
a line drawn with a slope of 1/2 identifies materials with equal stiffness per unit
mass in simple beam bending. Those lying above the line have greater stiffness per
unit mass, whilst those below the line have smaller stiffness per unit mass. This
may be proved as follows. Consider a simply supported uniform cylindrical beam,
length l and diameter d, under the action of a central transverse load w, as shown
in Figure 3.2.

Simple beam theory gives an expression for the central deflection, (δ), under the
load w,

δ = wl3/48EI, (3.1)

where I is the second moment of area of the circular section (I = δd4/64). With
the usual notation the beam stiffness is therefore,

w/δ = 3πd4E/4l3. (3.2)
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The mass of the beam (m) is given by

m = ρπd2/4, (3.3)

where ρ is the material density. Eliminating d between Equations (3.2) and (3.3)
yields

(w/δ)1/2/m = 8(3/ l5)1/2(E1/2/ρ). (3.4)

If the length is constant, then the maximum stiffness/unit mass is obtained when
(E1/2/ρ) is a maximum for simple beam bending. Which verifies the above
assertion.

By a similar analysis for the same physical case of a centrally loaded simply
supported beam, but of ductile material with a yield stress of σy , it may be shown
that

(wl/4)2/3/m = 4(3/2π)2/3(1/ l)(σ 2/3
y /ρ). (3.5)

This means that if the length of the beam is constant, then for various materials, the
maximum sustainable bending moment per unit mass is obtained when σ

2/3
y /ρ is

maximised. Material selection may be conducted on a chart of log σy against log ρ

with lines of 2/3 slope.
It follows that E1/2/ρ and σ

2/3
y /ρ are two possible criteria on which to base ma-

terial selection, depending upon design specifications. There are similar published
criteria for a number of other important cases. To minimise mass in structural
applications for a given level of stiffness, ductile strength or cleavage (brittle)
strength, the general form of the criterion is cEn/ρ, σ n

y /ρ or kn
IC/ρ respectively,

where the index n depends upon the material geometry and the type of loading. c

is a numerical factor. kIC is the critical stress intensity factor for mode 1 {opening
mode} failure. Values of c and n for a number of cases are shown in Table 3.2.
It is assumed in this type of analysis that to a sufficiently good approximation,
G = 3E/8 and ν = 1/3.

For a spring of minimum volume or mass, the maximising criterion is σ 2
y /E.

Obviously, for a load limited displacement free design σy or kIC should be max-
imised, but for a displacement limited but load free design the criterion is σy/E

or kIC/E for ductile or brittle materials respectively. A ductile material is one that
deforms plastically before fracture, and for this condition kIC/σy is the appropriate
criterion.

3.2. Comparison of Material Criteria

There are several steps to the selection of materials for particular applications.
The first of these is the choice of the type of material most suited to the service
environmental conditions, such as operating temperature, corrosion attack, wear,
shock loading, and material and manufacturing costs. At the same time innovative
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Table 3.2. A summary of c and n values for minimum weight.

Case Stiffness Strength

(n, c) Ductile/Brittle

Tie bar 1, 1 1

Torsion bar or tube 1, 3/8 1

Beam bending 1, 1/2 1/2

Column buckling 1, 1/2 –

Plate bending 1, 1/3 1/3

Plate buckling 1, 1/3 –

Internally pressurised cylinder 1, 1 1

Rotating cylinder 1, 1 1

Internally pressurised sphere 3/2, 1 1

design solutions should be considered with new material combinations and fin-
ishes. The preliminary consideration will eliminate large classes of materials and
there remains those worthy of consideration in more detail.

The next step is the consideration of material criteria. The comparison of ma-
terial performance using criteria such as those listed in Table 3.2 provides a broad
design guide. It will be noted however, that the criteria postulate the same type of
artefact geometry for each type of material considered, whereas the material type
can influence the geometry for the same service conditions. Clearly, the optimising
criteria are most useful where the geometry (which may also depend upon the type
of manufacturing process) is not much affected by the material type. In practice, the
number of criteria should be limited to six or less to mitigate the effect of averaging
out of performance.

A study of the performance criteria, such as those listed in Table 3.2, within
an Ashby chart (see Further Reading) can reveal some interesting information. For
example, woods can offer greater stiffness/unit mass than metals and can also be
equally effective as leaf springs. Of course, there are other factors that may detract
from the use of wood. Some material properties may be evaluated more precisely
than others, for example, Young’s modulus compared with the yield stress. The
latter is often a matter of personal judgement. Another factor is that different grades
of the same type of material or the same material with different manufacturing
processes, can affect the properties. For example, shot peening a metal surface can
markedly change its fatigue resistance. This means that in some cases there can be
a lack of precision in the property values, which are then most naturally represented
by fuzzy numbers to avoid over-representing the state of knowledge.

With the above caveats, it is possible to make broad comparisons of materials.
An example is given below.
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EXAMPLE 3.1. Compare the beam bending stiffness, the plate bending or
buckling stiffness and beam bending ductile strength per unit mass of acrylic,
aluminium alloy and mild steel at room temperature.

Solution. Typical mechanical properties of acrylic are:

E (GPa) = 0//2.6 + 0.5//2.7 + 1.0 + //2.95 + 0.5//3.2 + 0//3.2,

y (MPa) = 0//45 + 0.5//50 + 1.0//65 + 0.5//80 + 0//85,

ρ (kg/m3) = 120.

(This fuzzy set has one element.)

(i) Beam bending stiffness/unit mass. Using the above data and the information
in Table 3.2 yields

E1/2/ρ = 0//0.0134 + 0.5//0.0137 + 1.0//0.0143 +
+ 0.5//0.0149 + 0//0.0152.

(ii) Plate bending or buckling stiffness/unit mass

E1/3/ρ = 0//0.0115 + 0.5//0.0116 + 1.0//0.0120 +
+ 0.5//0.0123 + 0//0.0124.

(iii) Beam bending ductile strength/unit mass

σ 2/3
y /ρ = 0//0.1054 + 0.5//0.1131 + 1.0//0.1347 +

+ 0.5//0.1547 + 0//0.1611.

Typical mechanical properties of aluminium alloy are:

E (GPa) = 0//69 + 0.5//70 + 1.0//71 + 0.5//72 + 0//73,

σy (MPa) = 0//250 + 0.5//300 + 1.0//350 + 0.5//400 + 0//450,

ρ (kg/m3) = 0//2626 + 0.5//2667 + 1.0//2708 + 0.5//2749 + 0//2790.

In this case the optimising criteria are found by Cartesian products. The Cartesian
product, E1/2× 1/ρ yields the following arrays for aluminium alloy; (all SI units)

E1/2 × 1/ρ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0
0 0.5 0.5 0.5 0
0 0.5 1.0 0.5 0
0 0.5 0.5 0.5 0
0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
//

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3.16 3.11 3.06 3.02 2.97
3.19 3.14 3.09 3.04 3.00
3.21 3.16 3.11 3.07 3.02
3.23 3.18 3.14 3.09 3.04
3.25 3.20 3.15 3.11 3.06

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∗ 10−3.
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The principal values in the above arrays are shown in bold type, they provide the
following fuzzy number:

E1/2/ρ = [0//2.97 + 0.5//3.04 + 1.0//3.11 +
+ 0.5//3.18 + 0//3.25] ∗ 10−3,

where the 10−3 refers only to the physical values in the above expression.
Similarly, the principal values resulting from the Cartesian product, E1/3 × 1/ρ

gives (SI)

E1/3/ρ = [0//1.438 + 0.5//1.499 + 1.0//1.529 +
+ 0.5//1.560 + 0//1.591] ∗ 10−3.

Also, the principal values resulting from the Cartesian product σ
2/3
y × 1/ρ gives

σ 2/3
y /ρ = [0//1.423 + 0.5//1.631 + 1.0//1.834 +

+ 0.5//2.036 + 0//2.237] ∗ 10−2.

Finally, considering mild steel. The mechanical properties are more sharply defined
as follows:

E = 207 GPa; σy = 280 MPa; and ρ = 7850 kg/m3.

(These fuzzy sets have one element each.)
These values provide the following criteria (SI):

E1/2/ρ = 1.832 ∗ 10−3, E1/3/ρ = 7.534 ∗ 10−4, σ 2/3
y /ρ = 5.453 ∗ 10−3.

The three materials discussed above have widely disparate mechanical properties.
At room temperature, the acrylic material is best on each criterion, whilst mild steel
is worst. But as the temperature is increased the order would be reversed. Another
factor is that polymers, unlike metals, often show significant time-dependency in
their mechanical properties, which becomes more pronounced as the temperature
rises.

A summary of the performance of the three materials is given below using the
principal values (µ = 1) from the fuzzy numbers.

Criterion

Material E1/2/ρ E1/3/ρ σ
2/3
y /ρ σ 2

y /E

Acrylic 0.0143 0.0120 0.1347 1432

Al. Alloy 0.0031 0.0015 0.0183 1725

Mild St. 0.00183 0.00075 0.00545 379
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The final column in the above list represents the maximum energy content of a
spring per unit volume. The aluminium alloy appears to be the best on this criterion
and again mild steel the worst.

3.3. Material Performance Grading

In practice it would be rare for material selection to be based upon just one cri-
terion, more commonly it is a question of selecting the least number of criteria that
would adequately represent the total ability of the material to satisfy all the service
and economic requirements and also the wider interests of the manufacturers and
consumers. The problem of selecting the most suitable material for an application
involves a decision about the most favourable balance of the selected criteria. The
onus of the decision can be removed from the designer, to a certain extent, by an
agreed weighting of each of the criteria according to its relative importance, which
means a management input. The onus may be more fully removed by a method
of aggregating or combining the criteria and weighting to provide an overall ma-
terial performance index (MPI). In effect, this moves the decision upstream in the
information processing system.

One form of aggregation to find an MPI is by summation of the product of
performance and weight for each criterion, thus,

MPI =
∑

i

performance(i, j) ∗ weight(j). (3.6)

Aggregation by the product of products is an alternative to the above method,

MPI =
∏

i

performance(i, j) ∗ weight(j). (3.7)

Forms more suited to FL methods are given later; see Equations (3.9) and (3.10).
Hopgood (see Further Reading) has opined that neither of these two methods

of aggregation are satisfactory because in Equation (3.6), a poor performance by
an important criterion (high weighting) may be balanced by the high performance
of a relatively less important criterion. In the case of Equation (3.7) low product
values, including low performance with high weight and high performance with
low weight, tend to be masked, leaving the final selection to a good average per-
formance. A material with both a low performance and low weighting would have
some good performance values with good weighting.

The above deficiencies in the simple summation and product aggregation meth-
ods has prompted the development of another aggregation method by Hopgood.
This is based upon the product of products, Equation (3.7), but with the empirical
numerical adjustments of offset and scale shift terms, as shown in Equation (3.8),

MPI =
∏

i

{[weight(j)(performance(i, j) − offset)]scale shifting term}. (3.8)
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Table 3.3. AIM scores for several perform-
ance/weight combinations.

Performance Weight AIM Score

0 0 0.46

0 1 0.46

1 0 0.01

1 1 1.00

This is called the AIM score method. By adjustment of the numerical terms neg-
ative values are avoided and so also is the undue influence of poor performance
with low weight combinations. The AIM score for a single criterion of a polymeric
material on the basis of Equation (3.8), in which the performance and weight are
both divided into two classes, high and low, is given in Table 3.3.

An unusual feature of the AIM score is its value for a low performance and
weight. Values of 0.45 and 0.46 are assigned to the offset and scale shift terms
respectively in Equation (3.8).

The AIM score may be displayed in the form of a three-dimensional graph with
axes: Weight, Performance and AIM score (0–1). Although the AIM score method
does appear to achieve some of the desired effects, it does so by the introduction of
empirical numbers that give some impression of precision, but are infact arbitrary.
An alternative is the fuzzy aggregation approach described below, which avoids
overstating the precision of the assumptions.

3.4. Fuzzy Aggregation

Adjustment of the empirical aggregation formula, Equation (3.8) by means of arbit-
rary factors presents the state of knowledge in an unrealistically precise form. The
need for this arises from a too early introduction of a deterministic description at a
stage when only broad trends are important. It will be shown here how a FL rela-
tional base can provide a palette of rules that enables conclusions to be drawn, and
ultimately decisions to be made without an early commitment to precisely defined
formulae. The framework is not prescriptive in detail, only general tendencies are
prescribed.

To construct the FL framework, the logic spaces (UDs) of performance and
weight are defined and also that of the criterion score. In the present work all three
types of UDs will be defined in the interval, 0–1.0. They are partitioned into two
triangular fuzzy sets each in the case of performance and weight and into four
triangular fuzzy sets in the case of the criteria scores. The partitioning for the three
cases is illustrated in Figures 3.2 and 3.3, respectively.
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Figure 3.3. Partitioning of the criteria score. LO = Low, LM = Low Medium, HM = High
Medium, HI = High.

Table 3.4. A relational rule base for
material scores.

Weight

Performance L H

L LM LO

H HM HI

Where L = Low, H = High, and LO
= Low, LM = Low medium, HM =
High medium, HI = High.

The membership functions for the partitioning in Figure 3.2 are

0 ≤ x ≤ 1.0
µLO 1 − x

µHI x

where x denotes performance (p) or weight (w), as the case may be.
The membership functions for the partitioning in Figure 3.3 are

0 ≤ s ≤ 0.333 0 ≤ s ≤ 0.667 0.667 ≤ s ≤ 1.0
µLO 1 − s/0.333
µLM s/0.333 2 − s/0.333
µHM (s − 0.333)/0.333 3 − s/0.333
µHI (s − 0.667)/0.333

The relationship between the material performance criteria, the relevant weight and
the material score is expressed by a relational rule base, a simple example of which
is shown in Table 3.4.

The material score fuzzy sets in Table 3.4 correspond with the partitioning
illustrated in Figure 3.3.

The following example applies the methodology which is described above:

EXAMPLE 3.2. A particular polymeric solid has four performance criteria
relating to a certain application. These values and the corresponding weightings
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are tabulated below:

Criterion (a) (b) (c) (d)

Performance score 0.8 0.8 0.2 0.2

Weight 0.8 0.2 0.8 0.2

Assume the partitioning of the UDs shown in Figures 3.2 and 3.3 and the
relationship array in Table 3.4. Find the material score for each criterion and also
the overall MPI.

Solution. For criterion (a) the respective performance and weight values are:
p = 0.8 and w = 0.8. From Figure 3.2 or the membership function expressions,
the following values may be found:

µPL = 0.2µWL = 0.2,

µPH = 0.8µWH = 0.8,

where the subscripts p and w refer to the performance and weight respectively.
The form of the fuzzy logic proposition relating the performance and weight

antecedents to the score conclusion is

IF P AND W THEN S

This proposition postulates an intersection operation. When applied to the present
problem, it has the form

IF P AND W THEN S MINIMUM CONSEQUENCE
HP HW HI 0.8, 0.8 0.8HI
HP LW HM 0.8, 0.2 0.2HM
LP HW LO 0.2, 0.8 0.2LO
LP LW LM 0.2, 0.2 0.2LM

The conclusion is given by the union of the four consequences, i.e.,

S = 0.2LO ∪ 0.2LM ∪ 0.2HM ∪ 0.8HI.

This conclusion is conveniently displayed in Figure Ex 3.1.
It may be noted from Figure Ex 3.1 that the HI set is the strongest contributor

to the conclusion. Although Figure Ex 3.1 illustrates the full (fuzzy) solution, it is
often desired to find a single representative (non-fuzzy) number There are several
methods of defuzzifying such a solution, though they all involve some loss of
information. Clearly, a single precise number cannot completely represent a fuzzy
set. Methods of defuzzification are discussed in Chapter 1 of this text. Using the
normalised weighting of the set principal values (see Equation (1.6)), gives

sa = (0.2 ∗ 0.333 + 0.2 ∗ 0.666 + 0.8 ∗ 1.0)/(0.2 + 0.2 + 0.8) = 0.833.
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Figure Ex 3.1. Fuzzy score for p = 0.8 and w = 0.8.

Table Ex 3.1. Summary of polymer scores.

Criterion

Scores (a) (b) (c) (d)

Perf.*Wt. 0.64 0.16 0.16 0.04

DefS Wtd Set 0.833 0.799 0.500 0.500

Centroid# 0.663 0.569 0.356 0.407

AIM## 0.74 0.53 0.26 0.41

#By diagram scaling. ##Offset 4.5, scale shift 20.
Results reduced to a scale of 0–10.

The above process may be repeated for the remaining criteria, (b), (c) and (d). The
results are displayed in Figure Ex 3.2 (b), (c) and (d).

Figure Ex 3.2. Fuzzy scores for: (b) p = 0.8, w = 0.2. (c) p = 0.2, w = 0.8 and (d) p = 0.2,
w = 0.2.

For these three scores the defuzzified values (normalised weighted set principal
values) are sb = 0.799, sc = 0.667 and sd = 0.500.

In the case where an overall MPI is needed for comparison of different mater-
ials, a rule for merging the scores for individual criteria is used. There are many
possible arbitrary rules, typical of these are the arithmetic mean or the nth har-
monic mean, Equations (3.9) and (3.10) respectively below, which are modified
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forms of Equations (3.6) and (3.7), and are applicable to both fuzzy and non-fuzzy
aggregation,

MPIav =
(∑

scores
)

/n, (3.9)

MPIha =
(∏

scores
)1/n

. (3.10)

Applying Equations (3.9) and (3.10) to the four types of scores shown in
Table Ex 3.1 yields the following MPIs, to two decimal places:

Perf.*Wt. Def S Wtd. Set Def S Centroid AIM

MPIav 0.25 0.70 0.50 0.30

MPIha 0.16 0.69 0.48 0.22

It may be noted that the above treatment is free from any mathematical
prescription as to how the performance and weight should be combined.

The AIM score is achieved with the insertion of an arbitrary offset and scale
shift values and therefore has less meaning than the other three sets of values.

3.5. Material Benchmarking

New materials, new combinations of materials and new applications are continually
evolving. In the search for continuous product improvement it is a familiar question
whether an alternative material would be superior to that which is already in use in
an application. This may be a crucial question if, for example, the artefact is a high
volume production article and market share can be lost, or if there is the possibility
of legal liability due to product failure. In either case, the value-at-risk is high and
new material appraisal must be conducted in a systematic way.

The previously described MPI provides one way of making a value judge-
ment by comparing the MPIs of possible alternative materials. However, this does
require defuzzifying fuzzy conclusions which means the loss of some of their
information content. Benchmarking provides an alternative way of formulating a
value judgement as an aid to decision making. The method postulates a known
material of proven performance and about which a value judgement is available
for the benchmark material. This is specified by a team of several independent
experts, based upon the specification of the service environment, loading pattern
and economic circumstances. For example, let the management selected criteria be
as follows:

(i) Finished cost of item (material and manufacturing) (CO).
(ii) Resistance to bending per unit mass (RE).
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(iii) User satisfaction (US).
(iv) Corrosion resistance (CR).

Evaluation of the importance of each criterion for the existing material leads
to a fuzzy discrete number in which the membership values express the consensus
importance weighting of each of the criteria yielding set B below:

B = [µCO//CO + µRE//RE + µUS//US + µCR//CR]. (3.11)

Let the selected material provide the benchmark against which to compare other
possible alternative materials. A panel of expert opinion can provide a value judge-
ment of the total rating of the material against the criteria (i)–(iv) listed above. The
polling of opinion will also provide a discrete fuzzy number, V , where,

V = [µIN//PR + µFA//FA + µGD//GD + µSP//SP], (3.12)

where PR = poor, FA = fair, GD = good and SP = superior.
The question then is how to compare a new material with a certain criterion set

with the benchmark set, V , and provide a comparative value judgement within
the set, Equation (3.12). This is accomplished by creating an array which is a
combination of the information contained in Equations (3.11) and (3.12), this is
called the discriminator array (D). D is found from the Cartesian product of the
fuzzy numbers B and V , thus,

D = V × B =

PR FA GD SP
LO µ11 µ12 · ·
RE µ21 · · ·
US · · · µ34

CR · · µ43 µ44

where µ11 = min(µIN, µLO), µ12 = min(µFA, µLO) and µ21 = (µIN, µRE), etc.
Let a new material provide another set of criteria, B ′ corresponding with Equa-

tion (3.11). The value judgement of the new material, V ′, is obtained by the
composition of B ′ with the discriminator array, D, thus let,

B ′ = [µ′
LO//LO + µ′

RE//RE + µ′
US//US + µ′

CR//CR]. (3.13)

Now,

V ′ = B ′ ◦ R = maxmin({µ′
LO, µ11}, {µ′

RE, µ21}, {µ′
US, µ31}, . . .). (3.14)

The result of the composition is another value judgement fuzzy set,

V ′ = [µIN//IN + µ′
FA//FA + µ′

GD//GD + µ′
SP//SP]. (3.15)

This value judgement can be compared with that of the benchmark material,
Equation (3.12) to decide whether or not it represents an improvement.
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EXAMPLE 3.3. Development has been undertaken on an innovative plastic fuel
tank for motor cars. Two versions have achieved prototype assessment status, they
differ in the number of skin layers and their thickness. It is considered that the
plastic tanks will be able to compete with the normal sheet steel tanks on price and
may offer some advantages in mechanical properties and corrosion resistance. As
part of the assessment process, benchmarking against the equivalent steel tank is
required. For the materials section of the benchmarking exercise, four criteria are
selected, namely,

(i) Material cost (CO).
ii) Bending strength/unit mass of the material (RE).

(iii) Impact resistance (SH).
(iv) Corrosion resistance.

The benchmark steel tank material has the following criteria weightings,

B = [0.56//CO + 0.3//RE + 0.55//SH + 0.32//CR].
The value judgement of the steel tank has the following description,

V = [0.2//IN + 0.4//FA + 0.55//GD + 0.3//SP].
The two plastic tank materials have the following material weightings,

B ′ = [0.38//CO + 0.63//RE + 0.48//SH + 0.48//CR],
B ′′ = [0.32//CO + 0.68//RE + 0.55//SH + 0.48//CR].

Compare the two plastic tanks with the steel tank on the basis of the materials.

Solution. From the material weightings and the value judgement set for the
plastic tank, the discriminator array may be found:

D = V × B =

PR FA GD SP
CO 0.2 0.4 0.55 0.3
RE 0.2 0.3 0.33 0.3
SH 0.2 0.4 0.55 0.3
CR 0.2 0.32 0.32 0.3

To find the value judgement of the first plastic tank (V ′), the maxmin composition
is found, this yields

V ′ = B ′ ◦ D = 0.2//PR + 0.4//FA + 0.48//GD + 0.3//SP.

Similarly, for the second plastic tank,

V ′′ = B ′′ ◦ D = 0.2//PR + 0.4//FA + 0.55//GD + 0.3//SP.
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The two plastic tanks have very similar value judgements, the second being slightly
better that the first and as good as the steel tank. The choice of plastic or steel would
have to be made on additional criteria, such as supply chain reliability.

3.6. Remarks

With the steadily widening variety of materials and their combinations available,
the Ashby scheme of performance criteria formulation and the associated charts
provides an invaluable broad classification method for most types of engineering
solids. There is no equivalent at the present time for liquids and gases. The method
could also be extended into non-engineering areas such as the medical and catering
fields, each with their own specialist performance criteria.

In considering the Ashby charts, it will be recalled that material properties, and
therefore performance criteria, are also affected by the material’s service environ-
ment, such as temperature. This can have significant effects on some materials,
especially plastics, and can considerably alter the landscape of the charts. Also,
some materials, again particularly plastics, have time-dependent properties. Metals
also exhibit creep at high temperatures.

Some material properties, such as Young’s modulus for metals, may be quite
precisely defined at a given temperature, but other properties, such as the yield
point of ductile materials can only be approximately evaluated. This lack of
precision can be naturally accommodated within a FL framework. This advant-
age clearly emerges in, for example, the combining of performance criteria with
weighting. Various methods are in use at present, they all suffer from the disadvant-
age of being cast in deterministic mathematical form, which expresses a precision
that is not supported by the state of knowledge. The FL method described does not
portray exact relations and is therefore far more universal in its application.



Chapter 4
Hydrodynamic Lubrication

Intensive study of the physics and chemistry of lubrication, driven by the global
demand for increasing mechanisation of human activities, has resulted in signific-
ant improvements in the efficiency, reliability and avialability of machines. This
has partly resulted from improvements in lubrication technology. The improve-
ments have had an influence on the conservation of the world’s resources and
quality of the environment through reduced energy wastage and rates of machine
deterioration.

The modern study of lubrication is usually considered to have begun with the
experimental work on loaded journal bearings by Beauchamp Towers in the lat-
ter part of the 19th century. Also with the slightly earlier study of friction in an
unloaded bearing, resulting in the well-known formula by Petroff. Osbourne Reyn-
olds applied laminar flow viscous flow theory to the observations of Beauchamp
Towers and obtained the so-called lubrication approximation equations (which neg-
lect fluid inertia effects). Reynolds drew some important basic conclusions from his
studies:

(i) Friction effects are due to fluid friction alone.
(ii) The load bearing capacity depends upon the lubricant viscosity.
(iii) The bearing journal is supported only by the lubricant film.

Reynolds analysis still forms the basis of most hydrodynamic lubrication theory
for steadily loaded journal bearings. The Petroff formula only applies to the case
where the journal is concentric with the bearing shell and is therefore unloaded.
But it was proved by Reynolds that the journal must be eccentric relative to the
shell for the practical case of a loaded bearing. Early in the 20th century, Sommer-
feld derived a formula for the eccentricity of a loaded full film journal bearing in
terms of the system operating parameters. The parameters were collected together
in the form of a dimensionless group, now known as the Sommerfeld number.
Sommerfeld’s theory rests upon the same assumptions as those of Reynolds’.

All these early studies are widely reported in the engineering literature. They
remain the basic lubrication theory for steadily loaded full film journal bearings and
also for slider bearings operating at constant speed. Dynamic loads or fluctuating

47
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speeds requires extension to the basic theory, so too does the cavitating lubricant
film. During start-up and shut-down of a machine, the solid bearing surfaces come
into close contact, then lubrication depends more upon the properties of adsorbed
molecular surface layers, derived from surface active molecules that are dispersed
in the lubricant to reduce solid friction and wear of the surfaces. Under more severe
conditions of load and contact, shearing of the surface asperities occurs, producing
wear, hence the frequent use of a low yield stress material, such as white metal,
on the one surface to provide sacrificial wear. Thus, full-film lubrication merges
into the mixed and the so-called boundary lubrication regimes, before solid contact
occurs.

Unlike the study of geometry, there is an empirical content to the relations found
in lubrication studies, and substantial support is required from experimental work.
The Engineering Sciences Data unit (ESDU), London, has issued a series of public-
ation to summarise current engineering practice and to provide guide lines for the
designer on lubrication technology. These publications provide formulae and charts
spanning a wide range of operating parameters. The treatment is deterministic
throughout, as in publications from other sources. Salient features of the published
work are summarised below to form a basic study of trends in correlations.

4.1. Basic Concepts and Correlations

Lubrication theory usually commences with the case of two-dimensional flow in a
plane slider bearing, which is extended to the journal bearing with a thin lubricant
film. The journal bearing film is also treated as two-dimensional flow.

In the simple case of a steadily loaded journal bearing, the line of action of the
load is perpendicular to the line joining the journal and bearing shell centres, as
illustrated in Figure 4.1(a). This case is discussed at length in standard engineering
texts. The eccentricity (e) is dependent upon the load (w) and it is zero for no load.
The more general case is that of Figure 4.1(b), in which the line of action of the
load is not perpendicular to the eccentricity direction. In this case there is cavitation
within the fluid film, i.e., there is no longer full film lubrication. The extent of the
cavitation is dependent upon the lubricant supply press and the pattern of the supply
grooves within the bearing for a given load and bearing rotational speed.

For full film lubrication, Figure 4.1(a), equilibrium of moments gives

we + mr = m, (4.1)

where m is the shaft torque and mr is the bearing reaction torque.
This provides an indirect means of measuring the eccentricity and therefore

the minimum film thickness. Equation (4.1) does not apply to a cavitating film. In
this case there is no simple direct or indirect means of estimating the eccentricity.
Normally, to utilise the bearing capacity efficiently the dimensionless eccentricity
(2e/c where c is the diametrical clearance) would be designed to operate with 2e/c

between 0.6 to 0.8. Too high a value promotes possible contact between surface
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Figure 4.1. Journal bearing. (a) Full film. (b) Cavitating film.

asperities and therefore wear and energy waste in friction, whilst too low a value
means that the bearing capacity is under-utilised.

Under real service conditions the texture of the two bearing surfaces may be of
the order of 1.5 microns for a fine surface finish, but in practice may be signific-
antly larger. There are also dimensional tolerances of roundness, straightness and
parallelism as well as deflections due to load and thermal effects, and in addition
wear. All of these factors can add up to significant differences in practice to the
theoretical values and those used in research investigations.

The salient design features of a journal bearing performance are:

(i) The virtual coefficient of friction.
(ii) The frictional power loss.
(iii) The minimum film thickness.

These are often expressed in terms of dimensionless parameters, the most common
of these are:

(i) Sommerfeld number, s+ = (d/c)2ηn/p, where p = w/dl, called the specific
bearing pressure due to the load w. This parameter expresses the combined
operating conditions. The reciprocal of the Sommerfeld number is called the
dimensionless load.

(ii) Virtual friction coefficient, φ+ = df +/c, where f + = f/w and f is the
peripheral friction force on the shaft.

(iii) Frictional power loss, l+ = π(df +/c)/S+.
(iv) Minimum film thickness, h+ = 2h0/c or ε = 1−h+, where h0 is the minimum

film thickness.
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Figure 4.2. The virtual friction coefficient (φ+) as a function of the Sommerfeld number (s+).

Turbulent flow may occur in the fluid film under extreme conditions, the onset
is governed by the fluid Reynolds number and the c/d ratio. Whirling of the shaft
may also occur, depending upon the effective shaft mass, the bearing speed, the
clearance c and the applied load w. These factors are not treated in this work.

The published data is often summarised in the form of charts and is condensed
by the use of the dimensionless variables listed above. The data trends are outlined
below.

4.1.1. VIRTUAL FRICTION COEFFICIENT

The boundary zone at the extreme left-hand side of Figure 4.2 is beyond the point
where film lubrication conditions exist. To the right-hand side of this zone the vir-
tual friction coefficient rises with increasing Sommerfeld number at and increasing,
then a decreasing rate. The limiting theoretical case for high Sommerfeld numbers
(load tending to zero), is

φ+ = 2π2s+. (4.2)

4.1.2. FRICTIONAL POWER LOSS

The frictional power loss is the source of lubricant heating which must be con-
trolled within acceptable limits, by ensuring that it is effectively cooled. It is there-
fore a prime design factor. The dimensionless power loss (l+) may be defined in
terms of the virtual friction coefficient and the Sommerfeld number,

l+ = πφ+/s+. (4.3)

It may be noted that φ+ = φ+(s+), thus l+ = l+(s+). The general trend of l+ is
illustrated in Figure 4.3.
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Figure 4.3. The trend of the l+(s+) correlation.

Figure 4.4. The trend of the h+(s+) correlation.

4.1.3. MINIMUM FILM THICKNESS

Under a bearing load the shaft is no longer concentric with the bearing shell.
This eccentric position enables a lubricant wedge to be developed which is able
to support the load. The minimum film thickness (h+) can be difficult to measure
and to define because there is no unique way of defining and measuring surface
roughness. The diametrical clearance is also subject to manufacturing tolerances
and wear and therefore changes in time. The minimum film thickness is therefore
an approximate notion, though in the literature it is normally presented as a well
defined quantity. The general trend of h+(s+) is illustrated in Figure 4.4. The upper
limit tends to h+ = 1 for large values of s+.

4.1.4. LUBRICANT FLOW RATE

In a journal bearing, lubricant is expressed from the interfacial film through the
sides of the bearing and is recycled via a filter, a fluid cooler and a pump. Under
steady operating conditions the replenishment cycle rate and the cooler perform-
ance should be adequate to limit the lubricant temperature rise, inhibiting lubricant
degradation. For a positive displacement pump driven circuit the volumetric flow
rate of fluid is only slightly dependent upon the back pressure at the pump outlet
and therefore the pump delivery rate is mainly dependent upon the pump speed. But
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Figure 4.5. The general form of the k+(s+) correlation.

if fluid is shared between two or more non-identical units, it would be necessary to
regulate the relative distribution of lubricant between the units.

The volumetric flow rate (q) of lubricant through a journal bearing is dependent
upon its delivery pressure to the bearing (p), its viscosity (η), the geometric fea-
tures of the bearing (c, l, d), the specific load (w/dl) and the shaft rotational speed
(n),

Thus,

q = q(η, c, d, l, p,w/dl). (4.4)

By dimensional analysis,

q+ = f ((d/c)2ηn/(w/ld), l/d (4.5)

or

q+ = f (s+)(l/d)m. (4.6)

The value of m depends upon the fluid supply groove geometry, but it may be
deduced that for an axial groove distribution, m is about 0.75. Experimental data
also indicates that f (s+) is approximately

f (s+) = 0.1309 + 0.1963k+2, (4.7)

where k+ = k+(s+).

For 0.02 ≤ s+ ≤ 0.03 k+ = 1.036 − 18s+,

and 0.12 ≤ s+ ≤ 0.2 k+ = 0.2 − 0.6s+.

The general trend of the k+(s+) relationship is shown in Figure 4.5.
If the data for journal bearings, which is summarised in Figures 4.2 to 4.5,

provided information about accuracy and scatter of the experimental data, it would
be possible to formulate a corresponding fuzzified representation of the informa-
tion. Alternatively, viewing the information as sufficiently precise, empirical de-
terministic formulae may be found for the nearly linear parts of the graphs, linked
with fuzzy based transition curves to provide extensive formulae covering the



Chapter 4: Hydrodynamic Lubrication 53

Figure 4.6. Partitioning of the s+ UD.

whole range of the data in each chart. It is observed that this may be overstating
the certainty of the relationships.

4.2. Empirical Deterministic Formulae

4.2.1. VIRTUAL FRICTION COEFFICIENT

The shape of the φ+(s+) curve illustrated in Figure 4.2 may be closely represented
by three linear segments joined by two transition curves. The linear segments are
expressed as follows:

φ+
ME = 13.265 + 0.55 (0.051 ≤ s+ ≤ 0.057), (4.8)

φ+
HI = 6.214s+ + 1.17 (0.105 ≤ s+ ≤ 0.14), (4.9)

φ+
LO = 0.9 constant (at s+ = 0.02). (4.10)

Now define φ by

φ+ = µn
LOφ+

LO + µn
MEφ+

ME. (4.11)

The s+ space is partitioned as shown in Figure 4.6.
The membership functions corresponding with Figure 4.6 are listed below.

0.02 ≤ s+ ≤ 0.0264 0.0264 ≤ s+ ≤ 0.051 0.051 ≤ s+ ≤ 0.0573 0.0573 ≤ s+ ≤ 0.088 0.088 ≤ s+ ≤ 0.105

µLO 2.563 − 78.13S+ 1.0366 − 20.33S+ 0 0 0

µME 78.13S+ − 1.563 20.33S+ − 0.0366 1 1.9332 − 16.29S+ 29.41S+ − 2.088

µHI 0 0 0 16.29S+ − 0.9332 3.088 − 29.41S+

0.105 ≤ s+

µME 0

µHI 1
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Table 4.1. Sample values of l+.

s+ l+

0.02 141.4

0.0264 118.0

0.035 93.17

0.51 75.54

0.57 71.97

0.070 61.35

0.088 53.73

0.105 54.51

0.120 50.16

Referring to Figure 4.2, if on s+ = 0.0264, φ+ = 1.0 and µ = 0.5, also
φ+

LO = φ+
ME = 0.9. Inserting these values in Equation (4.11) yields n = 0.848.

Hence,

φ+ = µ0.848
LO φ+

LO + µ0.848
ME φ+

ME. (4.12)

The same method may be applied to the transition curve between the two linear
curves, ME and HI in Figure 4.2. Assuming that the transition curve passes through
the point (0.105, 1.822), the following expression is obtained:

φ+ = φ+
MEµ1.190

ME + φ+
HIµ

1.190
HI . (4.13)

Finally, by combining Equations (4.12) and (4.13) an extensive deterministic
equation is obtained:

φ+ = µ0.848
LO φ+

LO + (µ0.848
ME + µ1.190

ME )φ+
ME + µ1.190

HI φ+
HI. (4.14)

This equation may be used with either precise or fuzzy input data (through the
extension principle).

4.2.2. FRICTIONAL POWER LOSS

The frictional power loss (l+) is given by Equation (4.3), where φ+ is obtained
from Equation (4.14) above. Sample values are given in Table 4.1.

4.2.3. MINIMUM FILM THICKNESS

The minimum film thickness (h+) is difficult to evaluate in practice even under
the special conditions of the research laboratory. Surface asperities, manufacturing
tolerances and load deflections may lead to significant errors in its evaluation. Con-
fidence in a deterministic relationship is therefore lower than with other quantities.
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Table 4.2. A heuristic relationship
array for h+.

log s+
L/D LO LM HM HI

DZ HZ HL HH

DL HZ HM HH

DM HL HM HV

DH HM HH

DV HZ HM HV

Figure 4.7. Partitioning of the journal bearing parameter UDs. (a) log s+. (b) l/d .

A heuristic relationship which does not require mathematical formulation is more
appropriate. Published data indicates that log s+, rather than s+ is more appropriate
as an independent variable because of the range of s+ compared with h+.

For a given value of s+, h+ is also dependent upon the length to diameter ratio
of the bearing (l/d). From the available published data a heuristic relationship such
as that given in Table 4.2 may be proposed.

The partitioning of the log s+, l/d and h+ UDs is shown in Figure 4.7. A re-
latively coarse partitioning is chosen reflecting the level of knowledge about the
detail.

Relative to h+, the values of l/d and log s+ would be precise and could be
represented by simple numbers.

An example of finding the minimum film thickness using the above method is
given below.

EXAMPLE 4.1. Under service conditions the Sommerfeld number for an oil lub-
ricated journal bearing is estimated to be 0.471 and its design length/diameter ratio
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Figure 4.8. Partitioning of the h+ UD.

Figure Ex 4.1. Journal bearing fuzzy conclusion.

is 0.3. Evaluate the nominal minimum oil film thickness.

Solution. If s+ = 0.0471, then log s+ = −1.327.
Assuming that Figures 4.7(a), 4.7(b) and 4.8 define the partitioning, the follow-

ing membership values may be found:

Figure 4.7(a) µLO = −(−1.327 + 1) = 0.327 and µLM = 1 − 0.327 = 0.673,

Figure 4.7(b) µDM = (0.3 − 0.25) = 0.2 and µDL = 1 − 0.2 = 0.8.

The FL proposition is

IF LOG S+ AND L/D THEN H+ MIN CONSEQUENCE
LO DM −
LO DL −
LM DM HL 0.673, 0.2 0.2HL
LM DL HZ 0.673, 0.8 0.673HZ

The conclusion is h+ = 0.673HZ ∪ 0.2HL. This conclusion is illustrated in Fig-
ure Ex 4.1.

It may easily be shown that for membership values of 0.2 and 0.673, the values
of H+ are 0.05 and 0.0818 respectively. Thus from Equations (1.9) and (1.10) the
EFN may be found.

w = (z − x)/(2 − m − n) (1.9)
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and

c = x + w(1 − n). (1.10)

The values to be used in these equations are: m = 0.673, n = 0.2, x = 0.05 and
z = 0.0818. Hence, w = 0.0724 and c = 0.108. The value of c may used as a
characteristic number.

It may be noted from Figure Ex 4.1 that the dominant part of the solution lies
in the lowest fuzzy set (HZ), which ranges from h+ = 0 to h+ = 0.25. In practice
it may be desirable to use a higher viscosity oil or increase the oil cooling rate to
reduce its temperature and therefore its viscosity (or both). This would introduce
a stronger influence of the HL fuzzy set on the conclusion. At the design stage
there is the option of increasing the l/d ratio. Such a condition as that found above
would suggest that in a real plant it should be closely monitored during the plant
commissioning stage and on a regular basis thereafter with a view to adjusting the
operating conditions. The oil cooler capacity should have sufficient capacity and
controllability to enable the oil temperature to be adjusted independently of its flow
rate to the bearing.

If the nominal bearing diametrical clearance was 200 microns, then the nominal
minimum oil film thickness, based upon the principal value of the EFN (0.108)
would be 10.8 microns.

4.2.4. LUBRICANT FLOW RATE

The basic form of the lubricant flow rate relation has been discussed in Section 4.1.4.
It comprised two near linear portions as reflected in Figure 4.5. A membership
function approach may now be applied to find a transition expression between these
two branches.

Let the membership functions have the form

µ1 = a exp −bs+ and µ2 = 1 − µ1

with boundary conditions µ1 = 0.01 on s+ = 0.12 and µ1 = 1.0 on s+ = 0.02.
Applying the boundary conditions to the membership function yields

µ1 = 2.512 exp −46.05s+.

Now,

f (s+) = 0.1309 + 0.1963k+2, (4.7)

where k+ is given by k+ = µ1k
+
1 + µ2k

+
2 .

For 0.02 ≤ s+ ≤ 0.03, k+
1 = 1.036 − 18s+,

and 0.12 ≤ s+ ≤ 0.2, k+
2 = 0.2 − 0.6s+.
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Table 4.3. Values of the dimension-
less lubricant volumetric flow rate.

s+ q+ s+ q+

0.03 0.179 0.08 0.136

0.04 0.141 0.09 0.136

0.05 0.136 0.10 0.135

0.06 0.135

0.07 0.136

Tabulated values of the values of the lubricant flow rate (q+) for an l/d ratio of
unity are given in Table 4.3.

The lubricant flow rate falls more rapidly at first, then levels to a more-or-less
constant value as the Sommerfeld number increases and the eccentricity becomes
small.

Under steady state conditions, and neglecting radiant and convective cooling,
the lubricant temperature rise of the lubricant passing through the bearing is due to
the friction heating. A heat balance gives

l = ραq�t, (4.15)

where ρ is the lubricant density, α is its specific heat and �t is its temperature rise.

4.3. Fuzzy Input Data

The usual case in the published literature is that of precise input data applied to
deterministic relations, which of course gives precise solutions (conclusions). In
all the relationships in this chapter, whether they are deterministic or fuzzy, either
precise or fuzzy input data can be applied. In both these cases the conclusion is
fuzzy.

Consider the case where the relationships for a system are derived from precise
research data. Service data is obtained which lacks the precision of the research
data and is available in the form of fuzzy numbers. The following example illus-
trates the result of uncertainty in the service viscosity and the bearing diametrical
clearance.

EXAMPLE 4.2. An oil lubricated journal bearing has a shaft diameter of 0.25 m
and its diametrical clearance in the bearing at the half-service life stage is ap-
proximately 200 microns. The steady shaft load is 38 kN and its running speed is
400 rev/min. The bearing length is 0.075 m. The bearing operates at a temperature
of about 50◦, at which temperature the oil viscosity would be 0.037 Pa s. The error
in the diametrical clearance is estimated to be ±10%, whilst the uncertainty in the
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interfacial oil viscosity and the variability due to ambient conditions contribute to
an overall uncertainty of ±20%.

Find the corresponding virtual coefficient of friction.

Solution. In the following solution the piecewise continuous fuzzy values will be
represented as discrete fuzzy factors of the nominal values for ease of manipulation.
Thus, if η0 and c0 are the nominal viscosity and diametrical clearance values, the
fuzzy data values are

η = (0//0.8 + 1//0.9 + 1//1.1 + 0//1.2)η0.

The fractional numbers in this expression are all multipliers for µ0. Also,

c = (0//0.9 + 1//1 + 0//1.1)c0.

Hence,

d/c = (0//1.11 + 1//1 + 0//0.909)(d/c0).

Taking the Cartesian product of the membership values and the algebraic products
of d/c yields

(d/c)2 = (0//1.23 + 1//1 + 0//0.827)(d/c0)
2.

Now forming the Cartesian product array with the viscosity,

0.8 0.9 1.1 1.2

η(d/c)2 =
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1.23 0 0 0 0
1.0 0 1 1 0
0.827 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ //
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.984 1.107 1.353 1.476
0.800 0.900 1.100 1.200
0.662 0.744 0.910 0.992

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ η0(d/c0)
2.

The principal values in the above factor arrays are shown in bold type. These values
may be used to factor the nominal Sommerfeld number to find its spread. The
distribution provided by these values is illustrated in piecewise continuous form in
Figure Ex 4.2.

The Sommerfeld number for a bearing with l/d = 1 may be calculated from the
given data as s+

1 = 0.1903. The present bearing has an l/d = 0.3 and the nominal
Sommerfeld number (s+

0 ) for value is

s+
0 = s+

1 (l/d)1.16 = 0.1903 ∗ 0.31.16 = 0.0471.

The µ(d/c)2 arithmetic factors in the above array may be applied to the nominal
Sommerfeld number (s+

0 ). Only the principal values are required to portray the
resulting distribution. The resulting distribution of the Sommerfeld number (s+) is

s+ =
− 0.0521 −
0.0377 0.0424 0.0518
− − −
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Figure Ex 4.2. The fuzzy factor distribution.

Figure Ex 4.3. The fuzzy Sommerfeld distribution.

This array is illustrated as a piecewise continuous function in Figure Ex 4.3.
Considering each value of the fuzzy Sommerfeld number in turn and substitut-

ing as appropriate into the equations given in Section 4.2.1 provides the results in
Table Ex 4.1.

Table Ex 4.1. Values of the
fuzzy virtual coefficient of fric-
tion factors.

s+ φ+

0.0377 1.121

0.0424 1.149

0.0518 1.237

0.0521 1.243

The values given above are, of course, subject to the membership values given
in the array.

The conclusion is therefore:

φ+ = [0//1.121 + 1//1.149 + 1//1.237 + 0//1.243].
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4.4. Remarks

The published hydrodynamic lubrication correlations are the results of theoretical
and experimental research and are semi-theoretical in nature. The effects of scatter
and errors in the experimental results are generally not reported. The outcome of
the work is reported as deterministic correlations between various parameters such
as; friction coefficient, power loss, minimum film thickness and lubricant flow rate.

In this work empirical representations of the parameters have been patched
together to form extensive equations using the concepts of membership functions.
The exception is the minimum film thickness which has been treated by a fuzzy
relational array. This parameter can be of the order of a few tens of microns and is
difficult to measure. It is therefore more prone to experimental error. Manufacturing
geometric and surface tolerances may have a noticeable effect on its value, hence
a deterministic relationship is not so plausible.

Service conditions are invariably poorly defined compared with those of the
research laboratory and the uncertainty in their values should find more realistic
expression in fuzzy numbers, rather than in precise values, even if these are qual-
ified by the term “approximately”. The deterministic relations may still be used
(if they are plausible) in conjunction with the extension principle. The conclusions
then convey a clearer idea of the possibilities.

No explicit recognition of cavitation is given in the data used in this work. It is
a significant phenomenon in practice and may be associated with foaming of the
lubricant. Within the interface of the bearing, down-stream of the minimum film
thickness the film pressure may fall below the ambient value and this introduces air
entrainment into the lubricant film. This can be associated with lubricant starvation
and bearing overheating. Obviously, the lubricant supply point should be in the
low pressure region of the bearing. At the design stage, cavitation conditions can
be deterred by increasing the bearing length, or by decreasing the load. In service,
increasing the lubricant flow rate, or changing its grade to increase its viscosity
would normally help.



Chapter 5
Elastohydrodynamic Lubrication

In lubrication practice it has been found that some non-conformal rubbing metal
surfaces are able to perform satisfactorily under service conditions that apparently
precluded film lubrication. Important examples being found in gear trains and
roller bearings. The phenomenon remained unexplained until the combined effects
of lubricant compressibility and elastic deformation of the bearing surface were
taken into consideration. The former effect had infact been suggested in various
earlier studies as an explanation of the “oiliness” of lubricants. The combined
effects have explained the fundamental reasons for the satisfactory performance
of gears and also ball and roller bearings under load. It may be mentioned that
natural (animal) joints, where lubricant compressibility is not a factor, benefit from
compliant bearing material (cartilage) and perform remarkably well in the healthy
state. The general term for the phenomenon in engineering is Elastohydrodynamic
Lubrication (EHL).

The EHL treatment applies in practice where there is a low degree of con-
formity between the rubbing surfaces accompanied by high contact pressures. In
extreme circumstances, where the surfaces are separated only by adsorbed molecu-
lar surface films, or are in incipient metal-to-metal contact, such as occurs during
machinery start-up, the problem lies in the field of surface chemistry and physics
rather than fluid dynamics. A major concern in EHL studies is that of the lubricant
film thickness at the contact interface.

5.1. Deterministic Analysis

5.1.1. FILM THICKNESS

Both the theoretical and experimental EHL research conditions are usually rather
different to those prevailing in practice. The former are based upon steady state
conditions, whereas the latter are normally highly transient in nature. For example,
laboratory two and four-ball machines are run at a steady speed and load, whereas
in a spur gear the tooth contact load is not steady and neither is the rubbing/sliding
speed combination steady. Also in the theory the isothermal rather than the adia-
batic lubricant compressibility is used. In service conditions, vibrations, mala-
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lignment, load deflections, manufacturing tolerances, surface texture and wear are
also effects that distinguish the in-service conditions from those of research work,
where the objective is to make the experimental conditions approach those of the
theoretical model as closely as possible. Errors of observation and the repeatability
of experimental results are frequently not disclosed in published work and the
precision and robustness of the resulting physical relationships cannot be asserted
in this case.

Satisfactory lubrication of gears and ball or roller bearings is contingent upon
the existence and maintenance of a sufficient oil film in the contact zone inter-
face under service conditions. Dowson and Higginson (see Further Reading) have
reported extensive theoretical and experimental work aimed at providing semi-
theoretical deterministic steady state equations for the hydrodynamic and the EHL
contact zones. The results are presented as relationships between the dimensionless
sliding speed (u+), the load (w+) and the film thickness (h+). The HL and EHL
zones are bridged by an unspecified transition zone.

In the HL zone the relationship is expressed as

h+ = 4.9u+/w+, (5.1)

where h+ = (film thickness)/r and r is an equivalent contact radius, u+ = (lub.
visc)∗u/E′r and w+ = w/E′r. u is the mean speed and w is the actual surface
load. E′ is the effective Young’s modulus of the metal surfaces.

For the EHL zone, the relationship is

h+ = 1.6G0.6u+0.7/w+0.13, (5.2)

where G = αE′ and α is the (isothermal) pressure exponent of viscosity. For a
steel/mineral oil combination G is approximately 5000. Thus, for this case,

h+ = 256.2u+0.7/w+0.13. (5.3)

Hence, in the HL zone h+ is inversely proportional to w+, but in the EHL zone
it is only a weak function of w+ according to these models. These relationships
are presented in the form of a chart of log u+ as a function of log w+ with h+ as a
parameter. This is illustrated in Figure 5.1.

5.1.2. THE TRANSITION ZONE

The transition zone between the HL and the EHL zones is a mixture of both types
of lubrication in varying degrees. This may be treated on a fuzzy membership basis.
Let Equation (5.1) be rearranged as

u+
1 = 0.2041h+w+ (5.4)

and Equation (5.3) as

u+
2 = 2899h+1.429w+0.1857. (5.5)
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Figure 5.1. An illustration of the lubrication zones.

Figure 5.2. Partitioning of the log u+ UD.

Now finding the intersection of u+
1 and u+

2 with a mid-range trial value of h+ =
10−4,

2.041 ∗ 10−5w+ = 6.962 ∗ 10−10w+0.1857.

Hence,

w+ = 3.67 ∗ 10−6. (5.6)

Then at the intersection,

u+
1 = u+

2 = 6.7 ∗ 10−11. (5.7)

The chart value is in the region of 8 ∗ 10−11 at the intersection point. The limits of
the transition zone for h+ = 10−4 are log u+ = −10.8 and −10. The log u+ UD is
judged to be conveniently partitioned as shown in Figure 5.2.

The membership functions associated with the partitioning in Figure 5.2 are
given below.
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log u+ ≤ 10.8 10.8 ≤ log u+ ≤ −10.2 −10.2 ≤ log u+ ≤ −10 −10 ≤ log u+
µHL 1 −8 − 0.8333 log u+ −25 − 2.5 log u+ 0

µEL 0 0.8333 log u+ + 9 −2.5 log u+ + 26 1

u+ = µn
1u

+
1 + µn

2u
+
2 . (5.8)

The curve for h+ = 10−4 passes through u+ = 6 ∗ 10−11 on w+ = 3.282 ∗ 10−6.
Hence from Equation (5.8),

6 ∗ 10−11 = 2 ∗ 0.5n ∗ 6.7 ∗ 10−11,

which gives

n = 1.16. (5.9)

Therefore, Equation (5.8) becomes

u+ = µ1.16
1 u+

1 + µ1.16
2 u+

2 . (5.10)

Equation (5.10) together with the above membership functions span the whole
range of physical conditions; HL, transition and EHL alike. Within the accuracy of
the basic data. But there is no information about the experimental errors; therefore
the equations may need to be interpreted as deterministic, but with fuzzy coeffi-
cients and indices. In fact, there are some discrepancies in the experimental data
indicating that the index on h+ in Equation (5.5) may be nearer to 2.

5.2. Application to Service Conditions

The form of Equations (5.4), (5.5) and (5.10) may be used as a guide to the for-
mulation of fuzzy relations and suggests that appropriate UDs are log w+, log u+
and log h+. Partitioning of these UDs based upon a judgement of the precision of
research findings, the similarity between the laboratory and real service conditions
(spur gears) and the accuracy of service data, is shown in Figures 5.3, 5.4 and 5.5.

The relationship array corresponding with Figures 5.3, 5.4 and 5.5 is shown in
Table 5.1.

The above partitioning and relationship array describes the lubrication of non-
conforming surfaces in general terms. The description has been guided by the
semi-theoretical results of research studies on idealised conditions intended to be
homologous to actual service conditions. The nearest practical cases are those of
the roller bearing and straight spur gear.

In some cases the available design or in-service data is cast in terms of precise
quantities which need to be translated into terms compatible with the corresponding
fuzzy relationship array. The fuzzification process follows the usual pattern.

EXAMPLE 5.1. In a preliminary straight spur gear design study, it is estimated that
the nominal tooth load is likely to be about w+ = 5.4∗10−4 and the nominal speed
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Figure 5.3. Partitioning of the log w+ UD.

Figure 5.4. Partitioning of the log u+ UD.

u+ = 8.15 ∗ 10−11. Also assume that G = 5000. Find the dimensionless nominal
film thickness between the gear teeth.

Solution. Assuming the partitioning of the parameters as shown in Figures 5.3,
5.4 and 5.5 and also the relationship array in Table 5.1.

From the given data: log w+ = −3.267 and log u+ = −10.09.

Figure 5.5. Partitioning of the log h+ UD.
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Table 5.1. Relationship array for h+.

W

U W1 W2WW W3WW W4WW W5WW

U1 H1 H1 H1

U2UU H3HH H2HH H2HH H2HH

U3UU H4HH H3HH H3HH H2HH H2HH

U4UU H5HH H4HH H3HH H3HH H2HH

U5U H5HH H4HH

Figure Ex 5.1. Fuzzification of the gear data.

From Figure Ex 5.1, membership values of the gear data are

log w+: µW4 = 0.267 and µW5 = 0.733,

log u+: µU3 = 0.09 and µU4 = 0.91.

The fuzzy proposition is:

IF W AND U THEN H MIN CONSEQUENCE

W4 U3 H2 0.267, 0.09 0.09H2

W4 U4 H3 0.267, 0.91 0.267H3

W5 U3 H2 0.733, 0.09 0.09H2

W5 U4 H3 0.733, 0.91 0.733H3

The conclusion is H = 0.09H2HH ∪ 0.733H3HH . This conclusion is illustrated in
Figure Ex 5.2. Clearly, the major contribution is from the H3HH set, which has a
principal value (µ = 1) of −4.1. At a membership level of 0.5 the range of log h+
is −4.6 ≤ log h+ ≤ −3.6, or 2.51∗10−5 ≤ h+ ≤ 25.1∗10−5 . The designer should
recognise this as a possible range of values.
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Figure Ex 5.2. The fuzzy conclusion for h.

The equivalent fuzzy number to the conclusion may be found by applying Equa-
tions (1.9) and (1.10). Thus for the membership values of m = 0.733 and n = 0.09,
the corresponding abscissa values are x = −4.367 and z = −4.19, respectively.

Now,

w = (z − x)/(2 − m − n) (1.9)

and

c = x + w(1 − n). (1.10)

Hence, a = −4.381, b = −4.081 and c = −4.231. The equivalent fuzzy number
as a discrete set is

EFN(H) = [0// − 4.381 + 0.5// − 4.306 + 1// − 4.231 +
+ 0.5// − 4.156 + 0// − 4.081].

The principal value of this fuzzy set is −4.321.
For comparison the fuzzy conclusion may be defuzzified by the weighted ab-

scissa method (see Equation (1.5)). This gives Def log h+ = −4.204.

5.3. Fuzzy Inputs

It is unlikely that precise values of elements of W+ and U+ would be known under
service conditions. The elements of U+ depend upon the lubricant viscosity, which
in turn depends upon its temperature. The values of W+ are not constant but fluc-
tuate throughout the tooth contact cycle. There are also imperfections mentioned
earlier some of which are difficult to quantify, but which add to the uncertainty.
This means that W+ and U+ values will generally both need to be expressed as
fuzzy numbers. To see the effect of this in more detail, consider again the above
example, but now with fuzzy inputs.

Suppose that the range of uncertainty in w+ and u+ is each equal to ±15% of
the nominal value. The fuzzy input sets in the above example then are expressed as
discrete fuzzy sets

W+ = 0// − 3.338 + 1// − 3.268 + 0// − 3.207 (5.12)
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Figure 5.6. Fuzzy input sets on the log w+ and log u+ UDs. (a) Set w+. (b) Set u+.

and

U+ = 0// − 10.16 + 1// − 10.09 + 0// − 10.03. (5.13)

These inputs are shown as piecewise continuous sets on the log w+ and log u+UDs
in Figures 5.6(a) and (b) respectively.

It will be noted that there are pairs of intercepts of the inputs on both the log w+
and log u+ UDs. This means that there are four possible conclusions of log h+. The
conclusions may be found by the same process as before. In terms of membership
values, the intercepts are

log W+: µMW = 0.733, µPW = 0.769,

µNW = 0.231, µQW = 0.308,

log U+: µMU = 0.885, µPU = 0.923,

µNU = 0.038, µQU = 0.192.

Applying the same methods as in the above example and considering the member-
ship value pairs (µMW, µNW) and (µMU, µNU). The two conclusions are

HaHH = 0.09H2HH ∪ 0.733H3HH (5.14)

and

HbHH = 0.192H2HH ∪ 0.763H3HH . (5.15)

Also, for the membership value pairs (µPW, µQW) and (µPU, µQU) the conclusions
are

HcHH = 0.038H2HH ∪ 0.769H (5.16)

HdHH = 0.192H2HH ∪ 0.885H3HH . (5.17)

3HH ,
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Figure 5.7. Fuzzy conclusion and the EFN.

The resultant conclusion is the union of the above conclusions in Equations (5.14)
to (5.17),

H = HaHH ∪ HbHH ∪ HcHH ∪ HdHH (5.18)

= 0.192HbHH ∪ 0.885HcHH . (5.19)

The EFN is given by a = −4.312, b = −4.225, c = −4.038.
The resultant fuzzy conclusion, Equation (5.18) and the EFN are illustrated in

Figure 5.7.

5.4. Remarks

Even if the published relationships of EHL were precise and the experimental data
from two and four ball laboratory tests agreed with negligible error, there would
still be a need to translate the relationships into FL form for practical application.
The reason for this is the difference between the research laboratory conditions and
those found in real applications. (This is usually greater in the case of EHL than
HL.) There is also the usual lack of precision of knowledge of the in-service data.
The FL treatment is particularly appropriate in such circumstances.

The partitioning of the UDs reflects the confidence in the accuracy and re-
producibility of the research data. The relationship array is the key to bridging
the difference between the research results and reality. It fuses the results with
experience and judgement that is otherwise difficult or impossible to achieve with
deterministic formulae. Moreover, the array can be readily modified in the light
of feedback of further service experience. It may also be modified to extend the
application to other types of geometry. For example, a straight spur gear rela-
tionship array may be modified for application to helical gearing on the basis of
practical observation and experience. The convenient merging of research results
and in-service experience is unmatched by any other type of treatment.

In the conventional design practice of applying deterministic formulae (which
requires precise input data), the solutions to problems are given in terms of pre-
cise numbers, sometimes with the caveat, “approximately”. In contrast, the FL
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treatment provides a fuzzy (usually sub-normal) set for the conclusion. This gives
a continuous range of values (within limits) with varying degrees for weighting.
The designer must interpret this by deciding on the cut-off level of weighting that
satisfies the acceptable risk level of reliability. There is a tendency for the result to
cluster around a value which may be determined by defuzzifying the conclusion,
but this cannot be taken as the sole and final solution to a problem because there is
a loss of information and there is risk in the full conclusion.



Chapter 6
Fatigue and Creep

Fatigue and creep are two frequently experienced causes of failure in the operation
of systems such as industrial plant, transport vehicles, railways and aircraft. The
phenomena imply accumulated material damage, often as a result of service loads
and/or elevated temperatures. Common engineering solids, including metals and
plastics, are susceptible to these forms of damage with a concomitant reduction in
remnant life span at any point in the service life of the system. The possibility of
such damage requires in-service inspection and management of maintenance action
to arrest deterioration.

At the design stage, the available information relating to fatigue and creep may
comprise some or all of the following:

(a) forecast load patterns, residual stresses, thermal and other environmental
information relating to in-service conditions; also the component microstruc-
ture;

(b) laboratory model and sample material properties diagnostic test data with the
same microstructure;

(c) knowledge and experience of the performance and problems of similar
systems;

(d) specification of the required system performance and reliability;

(e) specification of the acceptable risk levels.

The nature of fatigue loading is very varied in practice, from the tens of millions
per annum of automobile components at the high endurance end of the fatigue
spectrum, where only small elastic strains are permissible, to that of large systems
such as chemical plant and aircraft which experience a few to the low hundreds of
cycles per annum. The low endurance end of the fatigue spectrum is different in
that stressing in the plastic range of the material is permissible and the system may
have a design service life of perhaps 20 years, representing an extensive reliable
and economic service life.

Creep is more often associated with low-endurance fatigue in which there may
be dwell periods. Turbine blades are rather different in that creep due to centri-
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fugal effects is associated with high-frequency fluctuating bending stresses due to
stator/rotor interactions.

Large structures pose a particularly difficult class of problems in that both the
physical and time scales of the real cases precludes close replication in the laborat-
ory. There is also the problem of scale effects. Prototype proving tests may not be
possible, especially if they are a one-of-a-kind design. Under these circumstances
recourse must be made to model and material specimen test with the knowledge
of the risks involved. It is customary then to take defensive action in generous
factors of safety. The application of probability theory may enable factors of safety
to be reduced, but the theory depends upon the validity of the Gaussian (normal)
probability distribution function, which may or may not be appropriate. Extreme
events are unlikely in this theory, which requires a stationary system and environ-
ment. There is an unexpected nature to some failure events in practice that are not
predicted by current probabilistic theory.

6.1. Deterministic Analysis

6.1.1. BASIC EQUATIONS

Reliability predictions are usually based upon material and system models of the
deterministic type. This entails modelling with sufficient disposable constants to
enable fitting of the available experimental data to be achieved. The most common
correlation in fatigue studies is the well-known sa − n high-endurance data from
material specimen tests. These are conventionally fitted by an empirical formula

san
p = a, (6.1)

where sa is the stress amplitude and n is the number of cycles to failure, a and
p are disposable constants. In some cases where the experimental data appears
better fitted by a bilinear form, then two sets of constants are required for the two
branches of data.

Laboratory test data for low-endurance fatigue is often reported in terms of
plastic strain (εp) rather than stress. In this case an alternative empirical formula is
applied:

εpnq = b, (6.2)

where b and q are other disposable constants. There is inevitably scatter in the
experimental data for both low and high-endurance fatigue tests which are not
reflected in the precise forms of Equations (6.1) and (6.2), and which in reality
provides a significant level of uncertainty.

Detailed examination of metallic components subject to fatigue or creep, by
visual, ultrasonic and other methods of examination, reveals the presence of fine
cracks within the material which grow in size as the number of cycles, or time in
the case of creep, increases. The cracks are initially of microscopic scale, typically
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10−6 to 10−5 m (stage I). It is considered that stage II growth results from stress
concentration at the crack tip; it is observed to be a relatively slow and intermittent
process at this stage and requires the bulk of the required time for rupture, which
occurs during the fast crack growth (stage III) period. At stage II the cracks are of
the same order of magnitude as the grain size. Stage I is intracrystalline whereas
stage II is intercrystalline and grain size and shape are important.

At this scale the theoretical analysis is based upon fracture mechanics con-
cepts. The treatment assumes a homogeneous and isotropic continuum with bulk
properties rather than a grainy, inhomogeneous and possibly anisotropic material
with inclusions (especially around welded joints). This represents a gulf between
reality and its theoretical portrayal which is difficult to bridge using conventional
methods of analysis. At the microscopic level, the concept of a smoothly varying
stress field is not to be interpreted literally. Again, stresses cannot be measured
directly, they are inferred from measured surface strains, perhaps by interpolation
or extrapolation, and assumed material properties.

6.1.2. FRACTURE MECHANICS

The fracture mechanics studies have a point of departure in the Paris–Erdogan
formula which relates the crack growth per cycle to the stress intensity factor �k

da/dn = G(�k)n, (6.3)

where a is the crack length.
Finite elements are also sometimes applied to determine the stress field at the

crack tip based upon similar continuum assumptions. The fracture mechanics rep-
resentation is not considered further in this work. Its application is not as well
established in practice as the empirical deterministic method. It aims to start from a
more fundamental basis and by a process of integration arrives at a formula which is
compatible with the empirical deterministic formula, Equation (6.1). Considering
the objective of formulating a FL approach it offers no advantages.

6.1.3. s–n INTERSECTIONS

High endurance fatigue laboratory data sometimes correlates on a semi-log or a
log-log graph, but with two branches. A typical example is shown in Figure 6.1.
This is another example where a transition zone may be found using membership
functions, similar to the applications in Chapters 4 and 5.

Although there is scatter in the original data, the trend of the data of the alu-
minium alloy in Figure 6.1 is in favour of bilinear graphs on a s–log n graph,
which merge in a transition zone. The two linear plots are fitted by mean lines
of the following form

s1 = 853.42 − 121.48 log n MN/m2 (6.4)
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Figure 6.1. Aluminium alloy fatigue chart (after Benham and Crawford).

Figure 6.2. Partitioning of the log n UD for stress in the transition zone.

and

s2 = 267.00 − 17.75 log n MN/m2. (6.5)

The transition zone is defined in the range; 2∗105 ≤ log n ≤ 30∗105 cycles. At the
extremes of the range the bilinear curves are tangential to the transition curve. The

fuzzy sets on the log n UD with membership functions that define the shape of the
transition curve. The expression for the stress amplitude is given by

s = µb
1s1 + µb

2s2, (6.6)

where the index b is a hedging index. The partitioning of the log n UD in
accordance with the above conditions is illustrated in Figure 6.2.

The membership functions are

µs1 = 5.508 − 0.8503 log n and µs2 = 0.8503 log n − 4.508.

two Equations (6.4) and (6.5) are considered as representing two interpenetrating
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Table 6.1. Stress amplitude val-
ues in the transition zone.

n ∗ 10−5 cycles s MN/m2

2 209

4 183

6 170

10 155

30 152

The bilinear curves intersect at log n = 5.653 and at this point a fair point on the
transition curve is judged to be 179 MN/m2. From Equation (6.6) the index b is
then given as 0.9. The extensive empirical equation for stress is therefore

s = µ0.9
1 s1 + µ0.9

2 s2. (6.7)

Sample values of stress amplitude in the transition zone, given by Equation (6.7)
are listed in Table 6.1.

6.1.4. COMBINED STRESS ENDURANCE LIMIT

Quite often in practice a fluctuating stress is accompanied by a steady stress of
the same type. This case has been studied extensively and the method of plotting
the data on a chart of the semirange of the cyclic stress component as the ordinate
and the mean stress as the abscissa, is called the sa–sm diagram. Various failure
criteria are defined on this diagram as curves joining the two axes drawn from
the (sm, sa) point (0, sa) to (sY , 0) or to (su, 0) depending on the criterion chosen,
where sY is the apparent yield (or proof) stress and su is the ultimate stress. For
anisotropic materials the stress direction in the material is important. These curves
seek to define, for a given endurance limit, the boundary within which the stress
combination is deemed to be safe and outside of which the combination will be
unsafe. The three criteria widely quoted in standard texts are termed the Gerber,
the modified Goodman and the Soderberg criteria. They are deterministic in nature
and in practice are associated with assumed factors of safety whose magnitude is
intuitive and depends in an arbitrary way upon the perceived value at risk.

The solution to a problem in these terms is an exact number of cycles that
is sufficiently distant from the failure boundary to provide a satisfactory level of
confidence for the design management.
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Figure 6.3. Partitioning of the stress UDs. (a) Mean stress sm. (b) Alternating stress sa .

6.2. Fuzzy Analysis

6.2.1. COMBINED STRESSES

The experimental data associated with combined stress fatigue normally exhibits
significant scatter which makes the decision of the location and shape of the failure
criterion as a distinct curve on the (sm,sa) diagram, difficult. The actual stresses
at a point in a design may also be difficult to determine. In the FL treatment what
emerges is a broad view in which the fine detail with a high level of uncertainty is
absent. The uncertainty in the knowledge of the physical processes and of the input
data in practice is carried through the logic processes and remains explicit in the
conclusions.

The method in the FL treatment is to partition the (sm, sa) UDs into fuzzy
sets. The coarseness of the partitioning reflects the level of uncertainty in the
experimental data; the less the uncertainty the more fuzzy sets can be defined on
each UD. The heuristic array of rules which is formed relates the fuzzy sets on
the two UDs, they are synthesised from a palette of available diagnostic physical
data, idealised models and analysis, human knowledge and experience of similar
physical systems. An example of possible partitioning of the (sm, sa) UDs for an
aluminium is shown in Figure 6.3.

The membership functions corresponding with Figure 6.3(a) are

0 ≤ sm ≤ 100 100 ≤ sm ≤ 200 200 ≤ sm ≤ 300
µLO 1 − sm/100
µLM sm/100 2 − sm/100
µHM (sm − 100)/100 3 − sm/100
µHI (sm − 200)/100
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Table 6.2. A combined stress re-
lational array.

sa LO LM HM HI

sm HI HM LM LO

(LO = low; LM = low medium;
HM = high medium; HI = high)

The membership functions corresponding with Figure 6.3(b) are

0 ≤ sa ≤ 25 25 ≤ sa ≤ 75 75 ≤ sa ≤ 125 125 ≤ sa ≤ 175
µLO 1.0 1.5 − sa/50
µLM (sa − 25)/50 2.5 − sa/50
µHM (sa − 75)/50 3.5 − sa/50
µHI (sa − 125)/50

EXAMPLE 6.1. Consider a stepped shaft which has been fine machined from
aluminium stock bar, as shown in Figure Ex 6.1.

Figure Ex 6.1. Aluminium stepped shaft.

The shaft is subject to fatigue failure in rotation about its axis due to a uniform
bending moment in the plane of the paper and also a steady axial tensile force
of 36.78 kN. The elastic stress concentration factor for the fillet is assumed to
be Kt = 1.6 and the fatigue reduction factor is assumed to be Kf = 1.5. Dia-
gnostic laboratory fatigue tests on specimens of the same material machined to a
similar finish and of the same scale give an average endurance limit (106 cycles) of
200 MN/m2 and an average linear elastic limit of 300 MN/m2.

Find the susceptibility of the shaft to fatigue failure due to the bending moment.

Solution. It will be assumed that the partitioning of the (sm, sa) UDs shown in

From basic solid mechanics theory the nominal tensile stress in the smallest
diameter is 74.88 MN/m2 and applying the stress concentration factor gives a
stress peak of 120 MN/m2. This value is shown in Figure 6.3(a). The fuzzified
form is 0.8LM, 0.2HM. The FL proposition is

The type of rule array appropriate for combined stress fatigue is shown in Table 6.2.

Figure 6.3 is valid, also that the relationship array in Table 6.2 is appropriate.
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IF Sm THEN Sa MEM. VALUE CONSEQUENCE

LM HM 0.8 0.8HM

HM LM 0.2 0.2LM

The conclusion is the union of the consequences

S = 0.2LM ∪ 0.8HM.

This is displayed in Figure 6.3(b). It may be noted that the major contribution
is in the HI set with a residual effect in the LM set. This means that there is
possibly some risk of fatigue failure from a low alternating stress of 25 MN/m2

(16.75 MN/m2 nominal stress). Beyond an alternating stress of 175 MN/m2

(117 MN/m2 nominal stress) it is unlikely that any of these components would
survive. These stress values correspond with bending moments of 38 and 267 kN m
respectively. The EFN has a value of 115 MN/m2 and is shown in Figure 6.3(b).
Defuzzifying the conclusion would give a similar value.

For comparison, the conventional diagram with a Soderberg criterion gives an
alternating stress value of 120 MN/m2 (80.2 MN/m2 nominal stress). The nominal
stress would normally be used with a factor of safety. If it was desired that no
failures would be likely, then the factor of safety would need to be 120/25 = 4.8.
Usually, the factor of safety is chosen arbitrarily. The susceptibility of the design
to fatigue is shown in Figure 6.3(b). The design decision depends upon what level
of risk is acceptable.

6.2.2. ENDURANCE LIMITS

The fatigue endurance limit for a particular material at a given stress level is nor-
mally given as a precise value. But it will be recognised that this is idealistic and at
best representing a tendency rather than a definite fact. By casting the discussion
in FL terms the full scope of the possibilities emerges.

For the aluminium considered above, the diagnostic sa-log n fatigue data shows
a bilinear form. Figures 6.4(a) and (b) illustrate the partitioning of the UDs. The

The membership functions for Figure 6.4(a) are

0 ≤ sa ≤ 90 90 ≤ sa ≤ 100 100 ≤ sa ≤ 120 120 ≤ sa ≤ 150 150 ≤ sa ≤ 250
µLO 1.0 10 − sa/10
µLM (sa − 90)/10 6 − sa/20
µHM (sa − 100)/20 5 − sa/30
µHI (sa − 120)/30 2.5 − sa/100
µVH (sa − 150)/100

corresponding heuristic relationship array is shown in Table 6.3.
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Figure 6.4. Partitioning of the UDs. (a) Alternating stress. (b) Log number of cycles.

Table 6.3. Endurance limit relational array.

sa LO LM HM HI VH

log n VH HI HM LM LO

(LO = low; LM = low medium; HM = high
medium; HI = high; VH = very high)

The membership functions for Figure 6.4(b) are

4 ≤ log n ≤ 5 5 ≤ log n ≤ 6 6 ≤ log n ≤ 7 7 ≤ log n ≤ 8 8 ≤ log n ≤ 9
µLO 5 − log n

µLM log n − 4 6 − log n

µHM log n − 5 7 − log n

µHI log n − 6 8 − log n

µVH log n − 7 9 − log n

EXAMPLE 6.2. In the previous example it was found that the EFN of the
alternating stress at the endurance limit of 106 cycles was 116 MN/m2. Find the
number of cycles corresponding with this alternating stress.

Solution. Assuming the partitioning of the alternating stress and log number of
cycles as shown in Figures 6.4(a) and (b) respectively. Also the relational array in
Table 6.3.

From Figure 6.4(a) the membership values are: µLM = 0.2 and µHM = 0.8.
The FL proposition is

IF Sa THEN LOG N MEM VALUE CONSEQUENCE

LM HI 0.2 0.2HI

HM HM 0.8 0.8HM

The conclusion is, log n = 0.2HI ∪ 0.8HM.
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This conclusion is illustrated in Figure 6.4(b). It may be noted that the major
portion of the conclusion lies in the HM set of log m which is centred about 6
on the UD. There is also a minor part in the HI set. The EFN is 6.2, which is
1.58 ∗ 106 cycles, this would need to be compared with the value at risk from
the maintenance perspective. Thus there is a tendency for the shaft to exceed the
required endurance limit, but there is the possibility of failure from 105 cycles.
There is a small possibility that the component may survive to about 108 cycles.

6.3. Low-Endurance Fatigue

In low endurance fatigue the material is cyclically strained beyond that elastic limit.
This leads to a lower endurance limit, perhaps only of the order of several thou-
sand cycles or less. For systems that are only cycled between a few or in the low
hundreds per annum, this means that loading in the plastic range can still provide
a useful and economic service life. Such cases are more commonly found in larger
structures and rarely found in consumer items.

Diagnostic investigations are often reported in terms of plastic strain rather
than stress. Surface strains are directly measurable, but stresses would have to be
inferred using an assumed rheological (or constitutive) equation, which is less reli-
able than in the case of small linear elastic strains associated with high-endurance
fatigue. An empirical deterministic fatigue correlation has been found to describe
the trend of many metals, it is of the form

εpnq = b. (6.2)

This is analogous to the high-endurance fatigue expression, Equation (6.1). The
pattern of the FL treatment described in Section 6.2 for high-endurance fatigue
may provide methodology in some cases for low-endurance fatigue. This has
not been developed up to the present time, but clearly offers the same advant-
ages in providing richer conclusions to problems compared with the conventional
treatment.

6.4. Creep

Laboratory diagnostic data for creep are usually correlated with an empirical ex-
pression comprising strain as the product of functions of stress (s), time (t) and
temperature (θ)

ε = f1ff (s)f2ff (t)f3ff (θ). (6.8)

More complex formulae with some theoretical basis and with sufficient disposable
constants for curve fitting have also been suggested.

For metals, the experimental data is grouped into:

(i) an initial elastic deformation, which is relatively small,
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Figure 6.5. Stages in the creep of metals.

(ii) a primary phase of decreasing plastic strain rate,
(iii) a secondary phase of steady plastic strain rate, and
(iv) a tertiary phase with an accelerating plastic strain rate until rupture occurs.

These phases are illustrated in Figure 6.5. Engineering design beyond the second-
ary phase is not normally undertaken.

Experimental data for the secondary stage of creep often appear to exhibit a near
linear relationship with time or log time, depending upon the case. A relationship
between the creep strain and time spanning the primary and secondary stages may
be expressed as

ε − ε1 = µa(km + ε0), (6.9)

where ε1 is the strain at the onset of inelastic flow, k is the slope of the secondary
stage of the graph, m is t or log t depending upon the case and ε0 is the intercept
of the secondary stage line with the vertical axis. The membership function (µ) is
defined by

µ = (ε − ε1)/(ε2 − ε1) (ε1 ≤ ε ≤ ε2). (6.10)

Strain ε2 defines the end of the primary stage. In Equation (6.9) the index a is
determined from a fair point in the primary stage data.

Consonant with the form of Equation (6.8), various empirical deterministic
stress-strain relations have been proposed for the primary stage of deformation
such as

s = cεq
p. (6.11)

But the alternative treatment above based upon a membership function is more
flexible and can apply over a more extensive range of variables. However, it is
still deterministic in nature. The temperature factor is again often described by an
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empirical series type of expression with sufficient disposable constants to facilitate
curve fitting of the experimental data.

The relationship implied in Equation (6.8) may be expressed in FL terms, thus
avoiding the need for precise mathematical expressions for the functions f1ff (s),
f2ff (t) and f3ff (θ). In the FL framework, the relationship would be expressed in the
form of a two-dimensional array with set parameters of temperature and time (or
logtime). The corresponding FL proposition is

IF θ AND T THEN E MIN CONSEQUENCE

As in all other cases, the FL conclusion yields knowledge of the range of risks in a
given design with the selected material.

6.5. Remarks

Even with carefully prepared specimens it is found that there is significant scatter in
the experimental results of fatigue tests of engineering materials. Assuming a mean
line correlation to provide an empirical deterministic relation inevitably discards
useful and significant information. A statistical analysis is based upon an assumed
probability distribution (assuming that a sufficient number of sample results are
available), which may or may not be appropriate. No formulae are assumed in the
FL treatment and it is therefore more general than the alternatives. The FL frame-
work is a synthesis of the knowledge of trends, accuracy of data and knowledge
of similar systems. Uncertainty or vagueness in the information is carried through
to the conclusions and therefore engineering design management is able to make
decisions based upon knowledge of the risks. Similar remarks apply to the creep
phenomenon.

In the case of large one-of-a-kind designs, it may not be possible to test the
whole artefact because of scale and temporal considerations. Then resort may be
made to model tests. There would generally be too few results for statistical ana-
lysis, but a FL approach would be feasible. In any case it is necessary to be aware
of scale effects, whereby a large scale structure may exhibit different properties to
small scale test pieces.

Another reason in favour of the FL method is that the service conditions are
often not know with any precision. The FL method is more adaptable to this factor.

The more fundamental approach of fracture mechanics offers no advantages be-
cause the formulae modelling the processes assume an idealised continuum which
is not like the micro structure of a real engineering material. Also, because this
treatment depends upon other assumptions, including the size of the initial flaw in
the material and the fatigue crack shape, it is not recommended in British Standard
BS 7608 that it be used to define fatigue strengths or lives.



Chapter 7
Cumulative Fatigue Damage Analysis

It is infrequently found that a component or structure is only subjected to a uniform
sinusoidal load pattern throughout its service life. It is much more usual for the load
to be of variable amplitude in a pattern which may or may not repeat itself. If there
is simple repition it may be possible in some cases to emulate this in laboratory
specimen material or in model or prototype diagnostic tests. This can be time con-
suming and it may be impractical to plan such tests, which with some structures
could take many years. Another factor is that it may be difficult to replicate the
service environmental conditions for models and prototypes, which may include in-
teracting causal factors such as inertia forces, vibrations, pressure changes, thermal
effects, creep, corrosion, ground movement and also freeze/thawing and moisture
fluctuations in concrete structures.

At the design stage it is necessary to predict the likely fatigue behaviour of an
artefact and it would be useful if this could be accomplished by the application of
information from specimen material fatigue laboratory tests, which are frequently
obtained from high-endurance fatigue tests under a constant amplitude load. This
may be possible given the following information:

(i) The stress fields at the critical points within the design.
(ii) The microstructure at the critical points.
(iii) Laboratory specimen material fatigue test data for similar stress fields with a

similar microstructure.
(iv) A criterion for aggregating the effects of varying load patterns.
(v) A method of counting the number of cycles in a variable loading pattern.

In considering items (i) and (iii) above it may be noted that for nominally identical
test specimens

(a) The fatigue strength is usually greatest in bending, followed by axial tension
then torsion.

(b) The fatigue limit follows the same order as above.

85
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Figure 7.1. A repetitive stress pattern.

It may be further noted that in wrought metals the fatigue resistance (and static
strength) across the grain may be about 85% of that along the grain. Also, that
a coarse grained microstructure offers a higher resistance to fatigue than a fine
grained one of the same material.

Various methods have been suggested for aggregating the effects of a variable
load pattern, the most widely quoted is Miner’s hypothesis, which is treated in some
detail in this chapter. Two methods are used in practice to count the number of
cycles in a mixed load pattern, these are known as the Rainflow and the Reservoir
methods. They both give similar results in the long term and only the Reservoir
method is described here.

7.1. Cycle Counting

In most cases, some or all of the inservice loading history will have a repetitive
content. If this can be identified then it is possible to count the number of cycles for
each of a series of load amplitude levels by applying the Reservoir method, which
is advocated by British Standard BS5400: Part 10: 1980 (for example). There is
also computer software available that will provide similar information.

In the Reservoir method it is necessary to have a real or simulated record of the
load history (or stress at a critical point in a design) over a sufficiently long period
of time to establish a stable acceptable average pattern, such as that illustrated in
Figure 7.1.

The method is as follows:

(i) To assist identification, the high points, (a, b) in adjacent stress patterns may
be joined by a line, as shown. This represents the surface of an imaginary full
reservoir.

(ii) Drain the water from the lowest point c. The distance fallen by the water
surface line a–b represents the first stress level, s1.
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(iii) Drain the water from the next lowest point, d. The distance fallen by the water
surface is the second stress level, s2.

(iv) Continue draining from successively lowest points until no water is remaining,
to find the remaining stress levels s3 and s4, etc.

It is then possible to compile a list of the number of stress cycles at each stress
level per pattern cycle, and by this means to find the number of stress cycles at each
stress level over a given service period.

7.2. Miner’s Rule

The most widely quoted hypothesis for fatigue damage aggregation to date is
known as Miner’s rule (also known as the Palmgren–Miner rule). None of the
alternatives have achieved the same level of acceptance or the status of being
incorporated into Standards such as BS 5400: Part 10 and BS 7608, although it
is recognised that in practice the rule is not unequivocally successful. But the
simplicity of the rule is one of its attractions and variants of the rule appear to
show no clear advantages. Miner’s rule is normally expressed in the form∑

ni/nip = 1, (7.1)

where 1 ≤ i ≤ k. ni is the number of repetitions of the applied stress range, si

and nip is the number of repetitions of the same applied stress range to failure. This
formula is normally associated with the empirical s–n fatigue correlation discussed
in Chapter 6. In Equation (7.1) the ni are not constrained to any particular sequence,
nor is each of the ni necessarily in monobloc form according to BS 5400: Part 10
and BS 7608 and any of the other available publications. It is found in practice that
the summation in Equation (7.1) may be more or less than unity by as much as 20%
or more. There is, of course, significant scatter in the experimental results and nip

is not easy to determine. The stress range content, or wave form, is not specified,
although in practice, much of the laboratory test data is gathered under sinusoidal
load (or deformation) conditions.

Both the above Standards also identify a threshold stress range, so, which is
the stress range at a specific endurance and is considered to be the boundary of the
“non-propagating stress range” below which the material can sustain an indefinitely
large number of cycles in clean air (or more generally, a passive environment).
It is noted this does in fact depend upon any modifying factors required to the
(s–n) relationship due to material thickness, the effect of the environment on any
unprotected joints and the effect of weld grinding in steel structures. For example,
for unprotected joints in sea water the recommendation is that so = 0, that is, there
is no fatigue limit. For 0 < s < so the index of the s–n relation is modified to
(m + 2).

In the case where the applied fluctuating load is of varying magnitude such that
some of the si < so will cause crack propagation, resulting in an earlier fatigue
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failure than if all si < so were non-contributory. Both Standards advocate the use
of a weight factor (si/so)

2 applied to the appropriate cycle ratio. Thus the effect of
(si/so)

2 becomes vanishingly small as si/so approaches zero.
The Standards also specify that for acceptability, the summation in Equa-

tion (7.1) should not exceed 1.0 at any design point. In the case where the limit
is exceeded it is recommended that the artefact design should be amended by
strengthening or redesigning until new stress ranges is found that are less than the
original stresses divided by α1/m and α1/(m+2), where α represents the summation
in Equation (7.1).

BS 7910 for fusion welded structures is another Standard which refers to
Miner’s rule. It specifies 2∗106 cycles on the standard (s–n) correlation at constant
stress range (sr ) as a reference for mixed stress ranges. It also defines an equivalent
stress (se) for mixed stress ranges

se =
{(∑

s3
i /nip

)/
2 ∗ 106

}1/3
. (7.2)

7.3. Fuzzy Logic Treatment

7.3.1. METHODOLOGY

In the following discussion, the fatigue damage aggregation is cast in terms of
fuzzy sets rather than in terms of a deterministic formula, as in Miner’s rule. It is
generally accepted that fluctuating loads increase the proclivity of a metal to fail
and that the metal is increasingly “damaged” by the process. Furthermore, it is
reported that if a metal is subjected to a higher fluctuating load range, followed by
a lower one, then the effect of the earlier higher loading is to accelerate the damage
due to the lower load range.

In this work, the area on the s–n chart containing the failure data is called the
p-zone and it represents the zone of limiting material damage. Similarly, there
is a nucleation/crack growth transition zone, which represents the material state
of incipient damage, called here the m-zone. These two zones are illustrated in
Figure 7.2. Between these two zones is a region of progressive material damage as
the number of stress cycles increases.

Also shown in Figure 7.2 is the upper stress limit, su, which represents the
elastic stress limit and also the threshold stress, so, which is the upper boundary of
non-propagating stress range.

In the FL portrayal of fatigue, the stress ranges in the m and p-zones are repres-
ented as fuzzy sets and related to the corresponding number of cycles, which are
also represented as fuzzy sets. The relationship is expressed as a heuristic relational
array, such as that shown in Table 7.1 and a logic proposition of the form

IF S THEN N

The fuzzy sets are defined by partitioning of the stress and number of cycles UDs,
the latter according to whether it refers to the m or p-zone, as shown below. The
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Figure 7.2. Illustration of the material damage zones.

Table 7.1. Relational array for high-endurance fatigue.

Stress Sets

No. Cycles Sets S1 S2S S3S S4 S5

M-zone M1 M2 M3 M4 M5

P-zone P1 P2 P3 P4 P5

number of fuzzy sets defined on each UD depends upon the degree of precision
of the information available, the greater the precision, the finer the partitioning
possible.

A more general treatment is achieved by defining scaled variables as follows
(see Figure 7.2 for reference points). The stress metric element (s+

i ) is defined by

s+
i = log(su/s

+
i )/ log(su/so). (7.3)

The number of cycles metric element is defined by

n+
p = log(np/njp)/ log(no/nj ) (7.4)

n+
m = log(nm/nj)/ log(no/nj) (7.5)

for the incipient damage m-zone.
Within the damaged region on the log n–log s chart, a material damage metric

is defined in terms of the fractional number of cycles by

d+ = log(n/nm)/ log(np/nmp), (7.6)

where nm and np are characteristic numbers of cycles in the m and p-zones
respectively.

for the maximum damage p-zone or by
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(a)

(b)

(c)

Figure 7.3. Typical five set partitioning patterns. (a) Equipartitioned. (b) Left-Biased.
(c) Right-Biased.

Examples of uniform (equipartitioned) and non-uniform partitioning of the gen-
eral UD (x) are illustrated in Figures 7.3(a), (b) and (c) for five fuzzy sets in each
case.

The partitioning patterns shown in Figures 7.3(a), (b) and (c) have membership
functions given below.

Membership functions for Figure 7.3(a)

0 ≤ x ≤ 0.25 0.25 ≤ x ≤ 0.5 0.5 ≤ x ≤ 0.75 0.75 ≤ x ≤ 1.0
µ1 1 − x/0.25
µ2 x/0.25 2 − x/0.25
µ3 (x − 0.25)/0.25 3 − x/0.25
µ4 (x − 0.5)/0.25 4 − x/0.25
µ5 (x − 0.75)/0.25
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Membership functions for Figure 7.3(b)

0 ≤ x ≤ 0.2 0.2 ≤ x ≤ 0.4 0.4 ≤ x ≤ 0.7 ≤ 0.7 ≤ x ≤ 1.0
µ1 1 − x/0.2
µ2 x/0.2 2 − x/0.2
µ3 (x − 0.2)/0.2 (0.7 − x)/0.3
µ4 (x − 0.4)/0.3 (1 − x)/0.3
µ5 (x − 0.7)/0.3

Membership functions for Figure 7.3(c)

0 ≤ x ≤ 0.3 0.3 ≤ x ≤ 0.6 0.6 ≤ x ≤ 0.8 0.8 ≤ x ≤ 1.0
µ1 1 − x/0.3
µ2 x/0.3 2 − x/0.3
µ3 (x − 0.3)/0.3 4 − x/0.2
µ4 (x − 0.6)/0.2 5 − x/0.2
µ5 (x − 0.8)/0.2

7.3.2. APPLICATIONS

The focus in this discussion is on the aggregation of fatigue damage due to mixed
load ranges and as a primary example of this a step change in the load range is
considered, both for increasing and decreasing loads at several damage levels. The
case of a structural steel will be considered and referring to Figure 7.2, typical
fatigue values would be given by

su = 630 MPa, nj = 104 cycles,

so = 100 MPa, no = 2.5 ∗ 106 cycles.

There is very little information about the onset of incipient fatigue damage at dif-
ferent stress levels. Therefore, it will be assumed that it ranges from about 102

cycles at the high stress level to 2.5 ∗ 106 cycles at the non-propagating stress level
(so).

Salient points (g, j, o) on the log s–log n chart are identified in Figure 7.2. In
this diagram, s1 and s2 are two successively applied stress levels in alternate order.
Points a, c and h refer to a common damage state at the stress levels s1, s2 and su

respectively. Points b, d, e and f are found below in the FL treatment.

Case 1. Left-biased partitioning. Salient points.
Salient points in Figure 7.3 are initially found using the left-biased partitioning in
Figure 7.2(b). In the first application, the initial stress range is s2 = 222 MPa, with
a step change in stress level to 132 MPa at several damage states d+

ad , defined by
+
f ≤ d+

ad ≤ d+
bd .Equation (7.6), in the range d
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Figure 7.4. p-zone conclusion.

From the stress range values given and Equation (7.3), the following stress
metric values may be found:

s+
o = 1.0; s+

1 = 0.8492; s+
2 = 0.5667; s+

u = 0.0.

Now assuming that the stress metric UD is equipartitioned into five fuzzy sets, as
illustrated in Figure 7.3(a). The membership values for the stress metrics above
may be found from the membership functions. Their values are as follows:

For s+
o µs5 = 1.0

s+
1 µs4 = 0.6034;µs5 = 0.3966

s+
2 µs3 = 0.7332;µs4 = 0.2668

s+
u µs1 = 1.0

For the p-zone the form of the FL proposition is

IF S THEN P MEM. VALUE CONSEQUENCE

S4 P4 0.6034 0.6034P4

S5 P5 0.3966 0.3966P5

The conclusion is the union of the consequences, thus,

P = 0.6034P4PP ∪ 0.3966P5PP . (7.7)

The interpretation of this expression requires an explicit partitioning of the endur-
ance UD. For this purpose the pattern shown in Figure 7.3(a) is again chosen. The
result is shown in Figure 7.4.

The major contribution is in the P4PP fuzzy set, with a lesser contribution in the P5PP

fuzzy set. There is a tendency for the value of n+ to lie around the EFN of 0.8492,
which is a scaled value of the number of cycles in the p-zone corresponding with
a stress range of 132 MPa. But the range of the conclusion illustrated in Figure 7.4
must be remembered in design work. The physical number of cycles is obtained by
rearranging Equation (7.5):

nb = nj (no/nj)
0.8492 = 104(2.5 ∗ 106/104)0.84926.
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Hence,

nb = 1.0870 ∗ 106 cycles.

Similarly, the FL proposition for s+
2 is

IF S THEN P MEM. VALUE CONSEQUENCE

S3 P3 0.7332 0.7332P3

S4 P4 0.2668 0.2668P4

As before, the conclusion is the union of the consequences

P = 0.7332P3PP ∪ 0.2668P4PP . (7.8)

The EFN is 0.5667 and the physical number of cycles corresponding with this
dimensionless value is 2.2851 ∗ 106 cycles.

Values of the number of cycles in the m-zone may also be found for the stress
metrics s+

1 and s+
2 . Since the nature of the m-zone is less clear than for the p-zone,

two partitioning patterns will be considered, namely the left-bias and the right-bias
as illustrated in Figures 7.3(b) and 7.3(c) respectively. In the present case the left-
bias pattern will be used, the right-bias pattern will be used in Case 2 below for
comparison.

The same procedure outlined below is used for the m-zone and the p-zone. For
s+

1

IF S THEN M MEM. VALUE CONSEQUENCE

S4 M4 0.6034 0.6034M4

S5 M5 0.3966 0.3966M5

The conclusion is

M = 0.6034M4MM ∪ 0.3966M5M . (7.9)

The EFN is n+
f = 0.8190, which yields a physical value

nf = ng(no/ng)
0.8190 = 102(2.5 ∗ 106/102)0.8190

= 3.998 ∗ 105.

Also, for s+
2

IF S THEN M MEM. VALUE CONSEQUENCE

S3 M3 0.7332 0.7332M3

S4 M4 0.2668 0.2668M4

The conclusion is

M = 0.7332M3MM ∪ 0.2668M4MM . (7.10)
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Table 7.2. Summary of Case 1 characteristic no. of cycles.

Stress Range MPa

No. Cycles 100 132 222 630

p-zone 2.5 ∗ 106 1.087 ∗ 106 2.285 ∗ 105 104

m-zone 2.5 ∗ 106 3.998 ∗ 105 1.292 ∗ 104 102

The EFN is n+
e = 0.4800. The physical corresponding physical value is

ne = ng(no/ng)
0.4800 = 102(2.5 ∗ 106/102)0.4800

= 1.2918 ∗ 104.

The above results are summarised in Table 7.2.
The values of nb, nd , ne and nf found above are tendencies not deterministic

precise values. The fuzzy sub-set conclusions represent the full solutions.
It may be recalled that the m-zone and p-zone represent the lower (effectively

zero) and upper bounds of material damage states. To investigate the effect of
mixed loading patterns consideration is now given to step changes in the stress
ranges at different damage states, where the damage is defined by the metric d+.

Case 1. Mixed loading patterns.
Consider a material damage level, d+ = 0.2, then if the points a, c and h in
Figure 7.3 represent states of equal material damage, then from Equation (7.6)

d+
hd = log(nh/ng)/ log(nj/ng), (7.11)

d+
cd = log(nc/ne)/ log(nd/ne) (7.12)

and

d+
ad = log(na/nf )/ log(nb/nf ). (7.13)

Rearranging Equations (7.11)–(7.13) and inserting numerical values yields

nh = 102(104/102)0.2 = 2.512 ∗ 102,

nc = 1.292 ∗ 104(2.285/0.1292)0.2 = 2.295 ∗ 104,

na = 3.998 ∗ 105(1.087/0.3400)0.2 = 4.884 ∗ 105.

Now it may easily be shown that if the sum of the fractional cycles increment is
less for a step decrease than for a step increase then na/nb > nc/nh > nh/nj .
For example, for a step change between s1 and s2, if Path ecab < Path f acd

(Figure 7.3), then

nc/nd + (nb − na)/nb < na/nb + (nd − nc)/nd. (7.14)
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Table 7.3. Fractional cycles summation values for
Case 1.

Damage Load Path

Metric d+
ad ecab f acd echj ghcd

0 0.6887 1.311 1.047 0.9535

0.2 0.6512 1.349 1.075 0.9247

0.4 0.6296 1.370 1.115 0.8847

0.65 0.6612 1.339 1.166 0.8337

0.8 0.7443 1.256 1.165 0.8352

0.9 0.8455 1.155 1.119 0.8807

1.0 1.0 1.0 1.0 1.0

Hence, na/nb > nc/nd , etc.
Therefore, the rule is

na/nb > nc/nd > nh/nj . (7.15)

Finding the fractional number of cycles summation to failure for step changes of
stress range between s1 and s2 and between s2 and su at a damage level, dadd = 0.2
yields the following values:

na/nb = 0.4493; nc/nd = 0.1004; nh/nj = 0.02512.

Thus the inequality, expression (7.14) is satisfied. Now calculating the several path
lengths:

Path

ecab 1 + nc/nd − na/nb = 1.100 − 0.4493 = 0.6512, (7.16)

f acd 1 + na/nb − nc/nd = 1.449 − 0.1004 = 1.349, (7.17)

echj 1 + nc/nd − nh/nj = 1.100 − 0.0251 = 1.075, (7.18)

ghcd 1 + nh/nj − nc/nd = 1.025 − 0.1004 = 0.9247. (7.19)

These results agree with the inequality expression (7.14).
A similar analysis may be conducted for other values of the damage metric d+

ad .
Results for increasing d+

ad values of 0, 0.2, 0.4, 0.65, 0.8, 0.9 and 1.0 are given in
Table 7.3.

It may be noted in Table 7.3 that for all the above damage metrics a step
reduction in stress range corresponds with a fractional cycles summation < 1.0,
whereas for a step increase the summation is > 1.0. Furthermore, for adjacent
pairs of columns the average value is 1.0.
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Case 2. Right-biased partitioning. Salient points.
It is not clear at this point whether the relationship between the step changes in
stress range and the values listed in Table 7.3 are governed by the choice of the
left-biased partitioning of the number of cycles UD in the m-zone. As a check an
alternative right-biased partitioning, as illustrated in Figure 7.2(c) has been used in
the following parallel investigation.

The membership functions of the right-biased partitioning have been given be-
fore. New values of ne, nf and nu are found below. Other values remain as before.
The fuzzy sets for s+

1 and s+
2 are as before, namely,

For s+
1 : M = 0.6034M4MM ∪ 0.3966M5M .

For s+
2 : M = 0.7332M3MM ∪ 0.2668M4MM .

Using the EFN as a tendency value for the number of cycles, it may be shown that
these are

n+
f = 0.8793 and n+

e = 0.6534.

The physical values of ne and nf are given by

ne = ng(no/ng)
0.6534 = 102(2.5 ∗ 106/102)0.6534

= 7.366 ∗ 104 cycles

and

nf = ng(no/ng)
0.8793 = 102(2.5 ∗ 106/102)0.8793

= 7.472 ∗ 105 cycles.

As before, nb = 1.087 ∗ 106 cycles and nd = 2.285 ∗ 105 cycles.
Now considering again a damage metric, d+

ad = 0.2. Rearranging Equa-
tions (7.11)–(7.13) and inserting numerical values yields

nh = 102(104/102)0.2 = 2.512 ∗ 102 (as before),

nc = 7.472 ∗ 104(2.285/0.7472)0.2 = 9.344 ∗ 104,

na = 7.366 ∗ 105(1.087/0.7366)0.2 = 7.962 ∗ 105.

Checking the inequalities (7.14)

na/nb = 0.7325; nc/nd = 0.4089; nh/nj = 0.02512.

The fractional number of cycles summation for stress range steps between s1 and
s2 and between s2 and su for the above damage level yields

Path

ecab 1 + nc/nd − na/nh = 1.409 − 0.7325 = 0.6764, (7.20)

f acd 1 + na/nb − nc/nd = 1.733 − 0.4089 = 1.324, (7.21)

echj 1 + nc/nd − nh/nj = 1.409 − 0.0252 = 1.384, (7.22)

ghcd 1 + nh/nj − nc/nd = 1.025 − 0.4089 = 0.6162. (7.23)
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Table 7.4. Fractional cycles summation values for Case 2.

Damage Load Path

Metric d+
ad ecab f acd echj ghcd

0 0.6493 1.351 1.317 0.6830

0.2 0.6764 1.324 1.384 0.6162

0.4 0.7196 1.280 1.448 0.5517

0.65 0.8035 1.197 1.477 0.5233

0.8 0.8746 1.125 1.402 0.5984

0.9 0.9325 1.068 1.263 0.7367

1.0 1.0 1.0 1.0 1.0

As for Case 1, corresponding results may be found for the damage metric values
of 0, 0.2, 0.4, 0.65, 0.8, 0.9 and 1.0. The results are shown in Table 7.4.

Comparing the results in Tables 7.3 and 7.4 it is clear that the trends in the
fractional cycles summations are similar for both types of partitioning.

7.4. Multiple Stress Range Changes

The above discussion is concerned with the effects of single stress range changes.
In practice, interest extends to cases of multiple changes. Such cases may be treated
by applying the foregoing results in Tables 7.3 and 7.4 and applying a linear frac-
tional cycles summation rule. Other damage levels may be treated by interpolation
of the tables.

Examples of two and three stress range changes are outlined below. Consider
first the two-step change for the damage levels shown in Figure 7.5(a). (It will be
recalled that s1 = 132 MPa and s2 = 222 MPa.)

Case 1. Data.
For the carud path in Figure 7.5(a), the fractional path length, t1, is given by

t1 = nc/nd + (nr − na)/nb + (nd − nu)/nd. (7.24)

Now applying Case 1 results above,

nc/nd = 0.1784; nu/nd = 0.5630; na/nb = 0.5488; nr/nb = 0.8187.

Substituting these values into Equation (7.24) yields t1 = 0.8854.
Again in Figure 7.5(a), consider the path acurb. The fractional path length, t2

in this case is given by

t2 = na/nb + (nu − nc)/nd + (nb − nr)/nb. (7.25)

Substituting the given values into Equation (7.25) yields, t2 = 1.115.
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Figure 7.5. Two and three-step changes in stress range.

Consider next the three-step change in Figure 7.5(b). The fractional path length,
t1, for the path caruvwb is given by

t1 = nc/nd + (nr − na)/nb + (nv − nu)/nd + (nb − nw)/nb. (7.26)

Again using the Case 1 results from Section 7.3.2

na/nb = 0.4493; nr/nb = 0.5488; nw/nb = 0.7047,

nc/nd = 0.1004; nu/nd = 0.1784; nv/nd = 0.3659.

Substituting these values into Equation (7.26) yields, t1 = 0.6827.
Evaluating the alternative path acurwvd, the path length, t2, is given by

t2 = na/nb + (nu − nc)/nd + (nw − nr)/nb + (nd − nv)/nd. (7.27)

Substituting the given values into Equation (7.27) yields t2 = 1.317.

Case 2. Data.
The same two and three-step paths are now considered again, but with Case 2 data.

Path carud (Equation (7.24)).
In this case the appropriate values are:

na/nb = 0.7918; nr/nb = 0.9251,

nc/nd = 0.5114; nu/nd = 0.7997.

Substituting these values into Equation (7.24) yields t1 = 0.8450.
The alternative path is acurd (Equation (7.25)). Substituting the values yields

t2 = 1.155.
Again, for the three-step path carnvwb (Equation (7.26)

nc/nd = 0.4089; nu/nd = 0.5114; nv/nd = 0.6762,

na/nh = 0.7325; nr/nh = 0.7918; nw/nh = 0.8727.

Substituting into Equation (7.26) yields t1 = 0.7603.
For the alternative path, acurvwd (Equation (7.27)), substitution gives t2 =

1.240.
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In the above examples the order of the path length values is the same,
independent of which case data is used.

7.5. Remarks

In the FL treatment of cumulative fatigue damage described above no mathematical
modelling is used and no material properties are prescribed. Only the broad obser-
vation is used that in high-endurance fatigue the stress range falls as the number
of cycles to failure increases. There is also the postulate that the incipient micro-
structural damage has a similar pattern, but at lower stresses. The conclusions are
in the form of fuzzy subsets and the implied tendencies (represented by the EFNs)
are expressed as numerical values of the number of cycles.

On this basis the cumulative fatigue damage for decreasing and increasing stress
ranges is considered. It is found that there is a tendency for the cumulative frac-
tional cycles summation to failure to be less than unity for an increase in stress
range, whereas the summation tends to be greater than unity for a decrease in stress
range. This pattern appears to be persistent, even if the conditions are changed.
This portion of the investigation is conducted in terms of dimensionless quantities,
which means that the results are independent of scale. They are quite general and
have significant design implications.

The methods do not depend upon having large numbers of experimental data
available and are thus also suitable for application to model and prototype testing.



Chapter 8
Reliability Assessment

Reliability may be defined as the normalised frequency that a system, equipment
or component can be expected to deliver its specified performance at a given point
in “time”. “Time” being any convenient independent metric of the system’s service
life, such as distance travelled, operational hours or cumulative product volume.
Whether the performance satisfies the service demands depends upon whether or
not the system is well matched to the requirements of the client and the envir-
onmental conditions. In practice, reliability cannot be entirely divorced from the
competence of the operating and maintenance staff, although sometimes there is no
information about this aspect at the design stage. For process plant the performance
may be in terms of product quality and production rate, whilst for a railway system
it may be in terms of the number of journeys per annum and the punctuality. Re-
liability concepts may also be applied to intangible services such as health care or
postal services, for example. Since the reliability of a system is constantly changing
in time, it is important that any expression of reliability should always be explicitly
associated with its time.

The analysis of data to assess system reliability may be conducted at any of
three levels:

(i) system level, in which the boundary is a whole process or plant;
(ii) equipment or assembly level, in which the boundary is a subsystem;
(iii) component level, in which the boundary is a single component or non-

repairable item.

Reliability has important implications for health and safety as well as for
commercial aspects of an operation. There may be legal penalties in some cir-
cumstances and also a substantial value-at-risk. At the design stage a fault mode
and effects analysis (FMEA) may be performed to establish the effects of potential
fault modes at different levels within the system. Fault tree analysis (FTA) is a top-
down approach to system failure analysis, starting with a system failure mode and
tracing the causes down to lower levels ending with component level if required. It
is possible and advisable to initiate a FTA at an early stage in the design to establish
and update its reliability status as the design is developed.

101
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A system may fail by deterioration of its critical parts over time or by sudden
failure of a critical part. The former may be corrected to a certain extent by any
available internal control. The latter by statistical process control and maintenance
intervention (see Chapter 9).

8.1. Basic Formulae

8.1.1. HAZARD RATE AND RELIABILITY FUNCTIONS

In reliability data analysis, a hazard rate function, z(t), is defined by

z(t) = −d ln r(t)/dt, (8.1)

where the reliability function r(t) is related to the cumulative failure function f (t)

by

r(t) + f (t) = 1. (8.2)

Note that in the literature the reliability function and the cumulative failure function
are invariably denoted by capital letters, but here capital letters are again reserved
for sets and lower case letters denote UDs.

The initial and final conditions are: f (tot ) = 0, where tot is the time at the
initiation of operations and f (∞) = 1.

Let φ(t ′ − tot ) be the failure frequency distribution in the interval (tot , t) where
t ′ is non-current time. Then

f (t) =
t∫

to

φ(t ′ − tot ) dt. (8.3)

Integrating Equation (8.1)

r∫
ro

d ln r(t) = −
t∫

to

z(t ′) dt ′. (8.4)

Hence,

r/ro = exp{h(tot ) − h(t)}, (8.5)

where

h(tot ) − h(t) = −
t∫

to

z(t ′) dt ′.

If ro = 1, then

r = exp{h(tot ) − h(t)}. (8.6)
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For a constant hazard rate function, z(t) = 1/λ the reliability function may be
expressed as

r(t) = exp{(t − tot )/λ}. (8.7)

A similar expression to (8.7) is frequently used in the engineering literature.

8.1.2. FAILURE PROBABILITY DISTRIBUTIONS

The conventional approach to the assessment of reliability data is through the fitting
of a continuous or discrete failure probability distribution model with sufficient
disposable constants to laboratory or field data. BS 5760: Part 2 describes this
method. Continuous distributions are applicable to the majority of engineering
data, discrete distributions are appropriate for a given number of “success” or
“failure” tests. The most familiar of the continuous distributions are the normal,
exponential, log normal and gamma forms. The normal (Gaussian) is frequently
applied and has two disposable constants; it provides an “S” shaped cumulative
failure function and a rising hazard rate function with time. It is however rather
unwieldy to manipulate. The exponential function with one disposable constant is
easy to manipulate and is therefore popular; the cumulative failure function rises
monotonically with time, but at a diminishing rate, whilst the hazard rate function
is constant. Its proper application is to cases of constant failure rate. The log normal
and gamma distributions are both more complicated forms and are less frequently
used in practice; both have two disposable constants.

8.1.3. THE WEIBULL FORMULA

The most widely published method of reliability assessment in the engineering
literature is based upon the Weibull empirical formula

f (t) = 1 − exp{−[(t − α)/η]β}, (8.8)

where α < t .
Equation (8.8) represents a three-parameter model in which η is a scale para-

meter or characteristic time (the time required for approximately 63.2% of the
original component population to have failed), β is a shape parameter and α is
a delay period before any failures begin. There is computer software available for
the evaluation of the constants in Equation (8.8). More traditionally, the data may
be plotted on commercially available Weibull charts and this has some advantages
in providing a visual appreciation of the adequacy of the formula and also of
the occurrence of outliers in the data. The Weibull chart has double logarithmic
versus logarithmic axes; such scaling will often obscure physical features and is
efficient at producing an apparently linear graph. Competing failure modes are one
possible cause of non-linearity on a Weibull chart. The two disposable constants β,
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η are obtainable directly from the chart. For an apparently linear Weibull plot, α is
assumed to be zero.

For small values of (t − α)/η a plot of {f (t)}β will provide an estimate of α as
f (t) → 0.

As time progresses the artefacts would usually pass through different failure
modes, but these are not revealed and differentiated in the Weibull chart. The
evaluated constants therefore do not have any fundamental significance.

8.2. Piecewise Constant Hazard Rate Function (PCHRF)

The hazard rate function defined by Equation (8.1) which is constant implies a
loglinear reliability function, Equation (8.7). If the artefact has several dominant
failure modes then these would show as several near loglinear reliability functions
within the dominant zones.

Consider Equation (8.7), then in the more general case of n dominant modes, in
the ith mode at time t the locally appropriate reliability function is

ri(t) = exp{(t − tio)/λi}, i = 1, 2, . . . , n. (8.9)

Let the ri(t) define the support (span) of n interpenetrating fuzzy sets, Ri , on the t

UD. At any time t , the membership functions of the adjacent Ri are µi and µi+1.
The resulting reliability function is defined as

r(t) = µm
i ri + µm

i+1ri+1, (8.10)

where 0 ≤ µi ≤ 1 and usually

µi + µi+1 = 1. (8.11)

Equation (8.10) represents the transition functions between the dominant modes
of failure. Thus a smooth continuous representation of the reliability function is
found by patching together the functions of the dominant modes. As many Ri may
be taken as are required for the desired accuracy of portraying the physical data,
and the number of parameters is not limited to three as is the case for the Weibull
analysis. The index m in Equation (8.10) allows “tuning” of expression for the
transition curve to pass through a fair point in the data.

8.3. Human Reliability Assessment

Human participation in system functioning is very common in control, mainten-
ance and supervision not only in artificial, but also in health and environmental
systems. A total assessment of system reliability cannot be complete without con-
sideration of this factor. To include human reliability within the overall system
reliability assessment requires its quantification. This is not so simply achieved for
several reasons:
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(i) there are significant subjective aspects to all data;
(ii) there is a scarcity of published field data;
(iii) poor performance may be suppressed for publicity reasons;
(iv) simulator studies may be unrepresentative.

Automatic control and expert systems can provide limited alternatives to some of
the roles of the human, but there are reasons such as costs why they are not found
more widely. There are also cases where the versatility and intuitive judgement of
the human is preferred, hence the popularity of the manual car gear box amongst
some drivers.

8.3.1. TYPES OF ERRORS

Human reliability depends upon the frequency of errors in the number of oppor-
tunities. BS 5760: Part 2 identifies four main types of human error:

(i) Omission: failure to execute the necessary action;
(ii) Commission: inadequate action, too much or too little force, inaccurate action,

ill-timed action, wrong action sequence;
(iii) Extraneous actions: unneeded action;
(iv) Corrections: lost error-correction opportunities.

The above are not mutually exclusive categories. Item (i) could be deemed to
include item (iv) for example. But the salient errors found in practice could be
readily fitted into one of these broad categories.

8.3.2. ERROR PROBABILITY

The human error probability (HEP) must be quantified for integration into a total
system reliability assessment. This is defined as the normalised frequency of a
particular type of error in a given period of time,

HEP = ne/no,

where ne is the number of errors in a given period and no is the maximum number of
opportunities for the same error in the same period. In reality it is difficult to obtain
proper field data of this type as discussed above, but BS 5760: Part 2 provides a
table of generic HEPs as shown in Table 8.1. This provides a general basic guide
to failure probabilities, dividing the range of task difficulties into five categories
ranging from easy familiar tasks at one end to demanding unfamiliar tasks.

The right-hand column of the table classifies the probabilities as fuzzy sets.
HEP values are obtained almost entirely from simulator and laboratory exper-

imental tests, there is very little field data available, because it is very difficult to
gather. Organisations would be reluctant to release such information even if it were
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Table 8.1. Task categories and generic HEPs.

Task Category Failure Probability pu
Fuzzy Set

1. Simple, frequently performed tasks, 0.001
minor mental demands.

2. Moderate difficulty, less time, more 0.01
mental demand.

3. Complex task, strong mental demand. 0.1 Medium

4. Higher complexity, very strong mental 0.3 High
demand.

5. Limiting mental demand, unfamiliar 1.0
task.

available. The available data are therefore not entirely realistic and representative of
working conditions. The sharp numerical boundaries of the categories in Table 8.1
express a precision which is not realistic and the position of the boundaries is also
arbitrary. A more natural partitioning is that given by the fuzzy sets in the final
column of the table. This properly describes the uncertainty in the membership
of the interpenetrating sets rather than present an apparently well defined set of
categories.

In a specific case the possible error is identified from an action flow diagram for
a particular task. The skill level of the operator and also the equipment available
will affect the HEP in a given case.

8.3.3. THE EFFECT OF ENVIRONMENT

Where a similar task may be carried out in a variety of environments ranging
from benign to adverse, this would have an effect on the HEP, given that all other
factors remain the same. It is possible to create a framework which reflects the
environmental effects.

For the present purpose it will be adequate to categorise the environment con-
ditions as: Poor (PR), Fair (FA), Good (GD), Excellent (EX). This partitions the
UD into four interpenetrating fuzzy sets as shown in Figure 8.1(a). The UD is
scaled 0–1.0. The task grades shown in Table 8.1 can be retained and represented
by five fuzzy sets labelled G1 to G7 on the UD which is also scaled 0–1.0, shown
in Figure 8.1(b). The failure probability in Table 8.1 spans a thousand fold and
therefore the UD is placed on a logarithmic scale and is partitioned into five sets
similar to the spacing in Table 8.1. These sets are given linguistic terms: Very Low
(VL), Low (LO), Medium (ME), High (HI) and Very High (VH). The sets are
illustrated in Figure 8.2.
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Figure 8.1. Partitioning of the UDs. (a) Task grade. (b) Environmental grade.

Figure 8.2. Partitioning of the log probability UD.

The membership functions corresponding with the partitioning illustrated in
Figures 8.1(a) and (b) and 8.2 are given below.

Task grade 0 ≤ t ≤ 0.25 0.25 ≤ t ≤ 0.5 0.5 ≤ t ≤ 0.75 0.75 ≤ t ≤ 1.0

µG1 1 − t/0.25

µG2 t/0.25 2 − t/0.25

µG3 (t − 0.25)/0.25 3 − t/0.25

µG4 (t − 0.5)/0.25 4 − t/0.25

µG5 (t − 0.75)/0.25

Environment 0 ≤ e ≤ 1/3 1/3 ≤ e ≤ 2/3 2/3 ≤ e ≤ 1.0

µPO 1 − 3t

µFA 3t 2 − 3t

µGD (t − 1/3)/1/3 3(1 − t)

µEX (t − 2/3)/1/3
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Table 8.2. Relationship array for HER
failure probability.

G1 G2 G3 G4 G5

PO ME ME HI VH

FA LO ME ME HI VH

GD VL LO ME HI VH

EX VL VL ME HI VH

Probability −3 ≤ π ≤ −2 −2 ≤ π ≤ −1 −1 ≤ π ≤ −0.5 −0.5 ≤ π ≤ 0

µVL −2 − π

µLO 3 + π −1 − π

µME 2 + π −1 − 2π

µHI (1 + π)/0.5 −2π

µVM (0.5 + π)/0.5

where π = log p.

The corresponding relationship array is created by an induction process based
upon searching the organisation’s free knowledge base to find consensus judge-
ment. A relationship array of the type shown in Table 8.2 is formed.

The above is a broad treatment of environmental influence and could be
applied, for example, to 24 hour outdoor maintenance.

EXAMPLE 8.1. A certain task is assigned a grade of 0.4 and the environmental
grade is judged to be 0.6. Find the probability of failure. Compare this probability
with that of the same task carried out in an environment grade of 0.3.

Solution. In the first case the membership values are:

µG2 = 2 − 0.4/0.25 = 0.4; µG3 = 0.6;
µFA = 2 − 3 ∗ 0.6 = 0.2; µG2 = 0.8.

The FL proposition is

IF T AND E THEN � MIN CONSEQUENCE

G2 FA LO 0.4, 0.2 0.2LO

G2 GD LO 0.4, 0.8 0.4LO

G3 FA ME 0.6, 0.2 0.2ME

G3 GD ME 0.6, 0.8 0.6ME
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The conclusion (�) is the union of the consequences,

� = 0.4LO ∪ 0.6ME.

This shows that the dominant probability element lies in the medium set but with a
lesser element in the low set.

To find a deterministic equivalent, note that µME = 2+π . Hence, 0.6 = 2+π .
Therefore, π = −1.4 or log p = −1.4; p = 0.04.

In the second case where the environmental grade falls to 0.3, the task mem-
bership values remain as before. The new environmental membership values are
µFA = 3 ∗ 0.3 = 0.9; µPO = 0.1.

In this case the FL proposition is

IF T AND E THEN � MIN CONSEQUENCE

G2 FA ME 0.4, 0.9 0.4ME

G2 PO ME 0.4, 0.1 0.1ME

G3 FA ME 0.6, 0.9 0.6ME

G3 PO HI 0.6, 0.1 0.1HI

The conclusion is the union of the consequences

� = 0.6ME ∪ 0.1HI.

The dominant probability lies in the medium set, as before, with a minor
element in the high set.

A deterministic equivalent may be found using the membership weighted values

def � = [0.6(−1) + 0.1(−0.5)]/0.7 = 0.928.

Therefore, log p = −0.928 or p = 0.118.
According to this treatment, the probability of failure increases from 0.04 to

0.118 when the environmental grade falls from 0.6 to 0.3. These probability values
are indicative values of tendencies, the full solutions are given by the fuzzy sets,
�.

8.4. Data Processing

There is no deterministic theory of failure or reliability for systems, equipment or
components. Reliability assessment depends upon laboratory tests or in-service
field data and curve fitting using statistical or empirical models with sufficient
disposable constants. Assessments rely both on the quality of the data and its
subsequent preparation. One of the reliability formulae is then applied to model
reliability or failure correlations and as a basis for performance predictions. For
this purpose the failure data must be a proper representative sample of a population
operating under similar conditions to the population as a whole. The model can
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then be used to make deductions about operational matters such as maintenance
strategy, based upon the same failure criterion, which needs to be well defined.

Cumulative failure metric

Let ti be the failure time of i samples of a total of n items and let tnt be the failure
time of the nth item. It may seem reasonable to quantify the cumulative failure
metric (f ) as f (ti) = i/n. For “small” sample sizes (n < 100), this formula
gives an overestimate of f (ti), which becomes more serious as the sample size
decreases. This error is largely overcome by the application of the widely used
Bernard’s approximation to median rank,

f (t) = (i − 0.3)/(n + 0.4). (8.12)

This is a suitable cumulative failure metric for most engineering data.

Censored data

There are two main types of failure and reliability data: one in which all the
sample items have failed, which is called complete, it would typically result from
laboratory tests. The other is the ‘censored’ data, which may be singly or multiply
censored data, and it might result from either laboratory or field service observa-
tions. Singly censored data means data where all survival ages are equal to or larger
than the largest time to failure in the data. This means that if 15 of a sample of 20
items have failed when the test is terminated, then the sample size is 20 and not 15.

Multiply censored data means that some of the items have been withdrawn
from the test programme for reasons other than the particular type of failure under
observation. This happens more frequently in field than in laboratory data. The
cumulative failure value is calculated from estimates of the cumulative hazard
function {h#(ti)}. At the point at which failure occurs the sample estimate of the
hazard rate function, z#(ti), is

z#(ti) = Number of failures occurring at time ti / Number of survivors at time ti .

The value of h#(ti) is the given by

h#(ti) =
∑

i

z#(ti). (8.13)

Finally, the estimate of the cumulative failure function is

f #(ti) = 1 − exp −h#(ti). (8.14)

EXAMPLE 8.2. Failure data for a sample of 10 items is given in BS 5760: Part
2. Reliability values calculated from the data are given in the following table. The
original failure data were based upon Bernard’s formula, Equation (8.12).
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Failure number Ranked time to failure hrs. Reliability

1 300 0.933
2 410 0.838
3 500 0.741
4 600 0.645
5 660 0.548
6 750 0.452
7 825 0.355
8 900 0.259
9 1050 0.162

10 1200 0.067

Determine whether the data can be represented by a PCHRF and if so, evaluate
the constants. Also,

(i) find the expected % failure at 400 hours life,
(ii)
(iii) the hazard rates.

Solution. It is noted that the data are complete with no censoring. The data
are illustrated (the accuracy is limited by the software) on a loglinear graph in
Figure Ex 8.1. It is apparent on this graph that the data may be reasonably fitted by
three straight lines. An analysis of these graphs gives the following relations:

Curve 1 r1 = exp{−(t − 229)/1025},
Curve 2 r2 = exp{−(t − 325)/567],
Curve 3 r3 = exp{−(t − 650)/198}.

The intersection of curves 1 and 2 is at t = 443.8 hrs and the intersection of
curves 2 and 3 is at t = 824.2 hrs. These intersections will be taken as the cross-
over points of the fuzzy reliability sets. The transition curves between curves 1 and
2, and between curves 2 and 3 will be defined by the partitioning of the reliability
fuzzy sets on the t UD. It is noted from Figure Ex 8.1 that the mutual interpen-
etration between the fuzzy reliability sets is comparatively small and adequately
covered by a value of ±40 hrs about the cross-over points. The partitioning of the
UD is shown in Figure Ex 8.2.

The membership functions corresponding with Figure Ex. 8.2 are given below.

0 ≤ t ≤ 404 404 ≤ t ≤ 484 484 ≤ t ≤ 784 784 ≤ t ≤ 864 864 ≤ t

µ1 1 6.05 − 0.0125t 0 0 0
µ3 0 (t − 404)/80 1 10.8 − 0.0125t 0
µ3 0 0 0 (t − 784)/80 1

the time for 30% failures and for 63.2% failures,
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Figure Ex 8.1. Log r as a function of time.

Figure Ex 8.2. Partitioning of the t UD.

Values of t have been rounded off to the nearest whole number whilst retaining
sufficient accuracy.

At the intersection of curves 1 and 2, µ = 0.5 and r1 = r2, hence from
Equation (8.10)

r(t) = 2(0.5)mr1.

Solving this equation for m would provide a transition curve which passes through
the intersection point, which lies above the required curve. Therefore a fair point on
the curve is selected as 0.98r(t). With this substitution the solution of the equation
gives m = 1.029. Hence the first transition curve is

r(t) = µ1.029
1 r1 + µ1.029

2 r2.

Similarly, the second transition curve is

r(t) = µ1.029
2 r2 + µ1.029

3 r3.
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(i) Noting the partitioning of the t UD, the proportion of failures after a 400 hr
life may be found from

r1 = exp{−(t − 229)/1025},
i.e.

r1(400) = exp{−(400 − 229)/1025}, r1 = 0.8462 and f1ff = 15.38%.

(ii) Figure Ex 8.1 indicates that the time for 30% failures may be found from

r2 = exp{−(t − 325)/567].
Thus

t = 325 − 567 ln r

= 325 − 567 ln 0.7

= 527 hrs.

Similarly for 63.2% failures

r3 = exp{−(t − 650)/198}
or,

t = 650 − 198 ln r,

i.e.

= 650 − 198 ln 0.368

= 849 hrs.

The BS 5670:Part 2 analysis is on the basis of the Weibull formula Equa-
tion (8.8) which provides the following values: (i) 15% (about), (ii) 550 hrs and
820 hrs. These are quite similar to the values found by the above PCHRF model.
There is a difference in that the Weibull analysis gives a zero delay time (α = 0),
whereas the above method gives an initial time delay of 229 hrs. The double log
versus log scale of the Weibull chart is effective in masking detail.

(iii) The hazard rates for curves 1, 2 and 3 are 9.755 ∗ 10−4 hrs−1, 1.764 ∗
10−3 hrs−1 and 5.043 ∗ 10−3 hrs−1. These are found as the respective values of the
1/λi .

8.5. Remarks

Reliability assessment is entirely dependent upon fitting data correlations from
laboratory or field observations using one of the various standard forms of prob-
ability distribution. Most of these are mathematically cumbersome and have either
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two (usually) or three disposable constants for curve fitting. The empirical Weibull
formula has three, but in many practical cases one of these appears to be zero. The
double log versus log Weibull plot is very effective in producing linear plots, but
obscures physical features.

A different approach is to define locally constant hazard rate functions, which
imply reliability functions each with two constants to be determined from the phys-
ical data. This is a flexible treatment in that as many hazard rate functions as are
required may be used. In practice, two or three are sufficient to accurately define
the physical data. The local reliability functions are pasted together adopting FL
precepts in the transition zones enabling an extensive relationship to be formed
covering the whole of the physical data range.

Human reliability assessment depends for the most part upon laboratory data,
which is only partially representative of actual field conditions. There are cases
too where laboratory simulations are not available and data must be synthesised
using generic data. The conventional way of representing the information in math-
ematical and numerical form implies a degree of precision which is not supported
by the underlying uncertainty in the information. A more natural form is in lin-
guistic terms, which does not over represent the inherent lack of precision. This is
exemplified by the FL treatment of the effect of environmental conditions.



Chapter 9
Process Control

The two major types of problem in control are those of tracking and regulation.
They are not different fundamentally, only in emphasis. Process control is of the
regulation type and aims at achieving and maintaining a product stream within
specification. Whether it be a stream comprising components, assemblies, bagged,
packed or containerised solids, fluids or particulate matter, this is not easy to
achieve. The product stream is subject to a range of influences such as:

(i) input materials quality,
(ii) process function and state variability,
(iii) environmental conditions,
(iv) operator reliablity,
(v) reliability and quality of support services such as maintenance.

Statistical process control (SPC) is a well-known and widely publicised tool
which is employed in pursuance of product specification compliance through the
regulation of the production process. It will be obvious from the above list that
SPC is generally effected by external intervention, unlike automatic process control
(APC), which is generally a closed-loop and on-line subsystem of the process.
These characteristics are incorporated into the control strategy described below.

Control charts play a prominent role in SPC applications and although they
originated in the light engineering sector, their use has since spread to other areas
of production and processing, such as the chemical industry and to machinery
condition monitoring. The control chart is conventionally demarcated by upper and
lower control limits (UCLs and LCLs respectively), which are often symmetrically
placed about a central value line. A refinement of this demarcation is by subdivid-
ing each of the two intervals between the central value line, the UCL and the LCL,
into three equally spaced zones.

In the application of control charts it is emphasised that each case needs to be
considered in detail and treated on its own merits to determine the appropriate form
of control chart. This is also true in the wider context of SPC-APC applications.
At the commissioning stage it must be established in the first place, whether or not
the system is capable of providing an output of the requisite specification at the

115
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desired rate. If it is, then some of the control function may be exercised by APC.
Those parts of the control function that cannot be managed under APC, because
of the type or range of action required, must be managed under SPC and external
intervention such as corrective maintenance or change of inputs for example. APC
may, or may not, share a common sampling method with the associated SPC.

In batch processing, steady state is not achieved and therefore successive
samples are not drawn from the same unit and are not statistically uniform,
though sample analysis may, of course, be compared with a specification. However,
statistical conclusions drawn under such circumstances are of questionable validity.

For any control system of whatever type, the time scale of the control (including
the sampling system) response must be of smaller order of magnitude than that of
the production process for it to be effective. The process may need to be stopped for
SPC intervention, but APC is normally on-line. Although it is known that conven-
tional linear APC can sometimes be applied to non-linear systems by tuning using
the Ziegler-Nichols rules (see standard control texts), a fuzzy logic representation
is used in this work, providing a fuzzy automatic process control (FAPC). Such a
representation may be applied even when no mathematical model of the system is
known.

9.1. Basic SPC Concepts

If a system is under control it means that its output is statistically uniform and
that the product is all from the same universe. This does not mean that the product
mostly complies with its quality specification. The quality will be in terms of a
single critical parameter target value (with a tolerance range), typically a dimen-
sion, strength, weight or electrical resistance, for example. The observed average
of the output samples may not coincide with the target values or, even if it does,
the scatter in the values may be too great. The level of process control must match
the quality specification. If the former type of fault is noted, it may be corrected by
process adjustment under APC or SPC, but if the latter type of fault occurs it may
entail more fundamental action with off-line intervention, perhaps up to system
redesign. An alternative is to amend the level of control to match the specification.

In any application of SPC the hypothesis being tested is that any detected vari-
ation in the data is only due to stochastic processes. Two types of variation maybe
observed in sample data:

(i) Chance causes. These are due to unassigned events within the process or
small variations in environmental conditions to which the process is sensitive,
variations in inputs or in operator actions.

(ii) Assignable variations. These are due to accountable causes and usually
produce identifiable patterns on the control chart. They are produced, for
example, by a process deterioration, mechanical faults, a change in source
of raw material or process operator fatigue.
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Figure 9.1. Typical control charts. (a) Sample averages. (b) Sample dispersions.

The effects of both types of variations are additive. In the unassignable chance
causes category, part of this may be due to random effects which can be termed
“noise”. It is well known that integration reduces the effect of signal noise and,
similarly, the effect of averaging sample values of, say, 5–10 production units will
assist in mitigating the effects of random or periodic variations. Clearly, the larger
the sample size, the more effective is the reduction, but subject to control system
and economic efficiency. SPC cannot be applied to chance causes. In the case of
non-random variations in the system output, the identification and classification of
causes are important. Frequently, in system design a fault tree analysis (FTA) is
conducted which provides vital information on the most likely causes of output
variation. If this is not available, the first step is to create those FTAs that are
relevant to the process. The FTAs will provide the most probable cause and effect
relationships which will guide process control.

9.2. Control Charts

Normally, two types of chart are constructed: (a) a chart for sample averages and
(b) a chart for dispersion, which may be either standard deviation or range. Ex-
amples of these two control chart types are illustrated in Figures 9.1(a) and (b).
Figure 9.1(a) is for sample average and shows the outer control limits (OCLs) and
inner control limits (ICLs). For a Gaussian (normal) probability distribution the
OCLs are at xo = xa ± 3.06σ/n1/2, while the ICLs are at xi = xa ± 1.96σ/n1/2,
where σ is the standard deviation of the universe, xa is the central value and n is
the sample size. With these limits, 5% of the samples will lie outside the ICLs, but
only 0.2% will lie outside the OCLs. Sometimes a simpler type of chart is used
with only two control limits, called the upper and lower control limits (UCL and
LCL respectively). These limits correspond closely with the position of the two
OCLs.
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Generally, the control limits may be expressed as:

Average:

OCL: xo = xa ± A(n)σ, (9.1)

ICL: xi = xa ± B(n)σ. (9.2)

Range:

OCL: ro = ra ± C(n)σ, (9.3)

ICL: ri = ra ± D(n)σ. (9.4)

There are tabulated values of A(n), B(n), C(n) and D(n) or the Gaussian distribu-
tion and also for A(n) and C(n) for different types of probability distribution.

9.3. Interpretation of Observations

The simplest rule of SPC is that s sample values lying outside the control limits in-
dicates a process out-of-control condition. If the causes of the observed fluctuations
about the central values are stochastic, then sample values have a 50% probability
of being on either side of the average. If a number of consecutive values fall on
one side of the average, then there is a probability that there is some deterministic
cause. For example, if seven consecutive values lie on one side of the average, the
probability of this is 0.78%, which shows that this is an unlikely event. The prob-
abilities of other patterns, based upon a Gaussian distribution can also be found.
These are further indicators of process out-of-control conditions.

If the sample average continues to be biased on one side of the control chart
whilst the dispersion remains unchanged, then corrective action is indicated. The
process itself is however, likely to be controllable. Figure 9.1 shows control charts
for a process that is out of control, but controllable. If, however, the dispersion
is biased on the positive side, but the sample means remain symmetrical, then a
more fundamental process fault has occurred which is unlikely to be controllable
by APC, but requires off-line correction by repair or replacement maintenance,
or perhaps process modification. If the dispersion is biased on the negative side
of the average, it may be caused by a reduction in accuracy of the sampling and
inspection procedure, which again may require off-line correction. It is clear from
the above discussion that clusters of sample observations that are biased on one
side or the other of the central value of the sample averages or dispersion indicate
a process fault. This has been formalised by introducing zones within the OCLs
at ±σ , ±2σ and ±3σ on both the sample average and dispersion charts. For a
Gaussian distribution, approximately 66.7% of the sample values lie in the 0–σ

zone, 95% lie in the 0–σ zone and 99.75% lie in the 0–σ zone.
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Figure 9.2. PI process control block diagram.

9.4. Fuzzy Automatic Process Control (FAPC)

For process regulation, proportional-integral (PI) control is commonly applied and
this is the type that could be employed in the present context. It is emulated in
fuzzy logic terms in the feed-back control described below. The block diagram in

in the companion volume.
Tracking can also be achieved by the incorporation of a certain degree of de-

rivative control, but with the penalty of increasing instability. There is no general
theory of non-linear process control; however, FAPC as outlined below can be
applied to any type of process, whether or not it is linear, or indeed has any known
mathematical model. Sensitivity and stability are important concepts in APC and
are discussed in standard control theory texts, however stability tends not to be
a problem in PI control. There is no available stability theory for SPC or FAPC,
each case must be studied on its own merits. If the sampling time and the control
response time are together equivalent to nc units of production, while the process
response time is equivalent to np units of production, then the overall system re-
sponse time is O[(nc+np)/q], where q is the system production rate. The sampling
time depends upon the number of consecutive production units per sample and also
the number of samples in a given control rule. An alternative to periodic sampling
is to use rolling values of sample averages and dispersions.

Although both sample averages and dispersion are of interest in process control,
it is noted above that out-of-control dispersion is most likely to be caused by a pro-
cess fault requiring repair or replacement maintenance, which is out of the province
of FAPC. Therefore, in the following discussion only control of the average value
is considered.

At some point in the production, let the error in the specification of a critical
quantity be z and its incremental change be δz. The resulting control signal is δu.

Representations of the partitioning of the z, δz and δu spaces are shown in
Figures 9.3, 9.4 and 9.5 respectively. The z and δz comprise the control inputs. The
QL categories are possible quality ranges, interpreting product faults as quality
levels enables supplier penalties to be imposed.

Figure 9.2 shows the principle of PI-FAPC. The basic theory is described elsewhere
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Table 9.1. Typical PI controller relational base.

δz

z A B C D E F

QL1 L K K K J J

QL2 K K K J J J

QL3 K J J J J H

QL4 K J J J H G

Figure 9.3. Partitioning of the z space.

A typical relational case for a PI-type controller output is shown in Table 9.1.
The control process is governed by the operation of a fuzzy logic intersection form
of proposition

IF Z AND δZ THEN U

The operation is similar to the intersection operation in two-valued logic. Since
both Z and δZ yield two fuzzy sets each, there are four consequences, which, by
logical union, comprise the fuzzy conclusion. The defuzzified numerical value of
the conclusion provides the control input signal to the production process.

Figure 9.4. Partitioning of the δz space.
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Figure 9.5. Partitioning of the δu space.

9.5. Control Strategy

Consideration is now given to the correlation of SPC and FAPC for out-of-control
production process states to provide an overall process control strategy. Each
critical output parameter must be treated individually, as described below.

There are four recognised types of control chart pattern, which are assumed to
signal an out-of-control process state. These are:

(i) Outliers: a single sample beyond the OCLs (or UCL and LCL);
(ii) Trends: consecutively increasing or decreasing sample values;
(iii) Biases: consecutive sample values, the majority of which are biased on one

side or other of the central value;
(iv) Oscillations: a repetitive pattern of consecutive sample values.

An outlier is an isolated value and an unsuitable candidate for FAPC, which es-
sentially takes pre-emptive action on subsequent process output, on the basis of
historical evidence. SPC with production halted is then the only possible course
of action. Trends are caused by progressive process deterioration, environmental
changes or operator fatigue, for example, and these may be compensated for to
a limited extent by FAPC. Biases that are not preceded by a trend are typically
caused by a change of operator, or in input specification, or a sudden shift in the
process state or sampling system. In specific cases these may also be compensated
to a limited extent by FAPC action, but more generally require external interven-
tion. Whether oscillation can be compensated by FAPC action depends upon their
periodicity and amplitude. They will be partially masked if rolling means samples
are used.

The proposed strategy is summarised in Table 9.2. Since FAPC is preferred
to SPC intervention it is possible to consider installation of FAPC for trends and
biases, provided that it can be economically justified. If trends or biases become
sufficiently large they become outliers, the process is stopped and control action
transfers from FAPC to SPC. A correlated SPC-FAPC system is shown in the block
diagram in Figure 9.6. The control system comprises four modules for sample
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Table 9.2. SPC-FAPC control strategy
for process patterns (i) to (iv).

Pattern FAPC SPC

(i) Outliers No Yes

(ii) Trends Limited Yes

(iii) Biases Limited Yes

(iv) Oscillations No Yes

analysis, signal discrimination for sorting data into FAPC or SPC processing, fuzzy
control, an SPC expert function and an FTA knowledge base. The functions of these
units are illustrated in Figure 9.6. The functions of the expert module for dispersion
data are shown in some detail in Figure 9.7. This module operates with IF-THEN
logic operations, e.g. for dispersion data:

IF BELOW LIMIT THEN CHECK SENSOR FUNCTIONS SENSITIVITY
IF ABOVE LIMITS THEN CHECK PROCESS ACCURACY COMPARED
WITH LIMITS

For central values the logic operations for a mechanical system might be:

IF BELOW LIMIT THEN CHECK SENSOR FUNCTIONS
IF ABOVE LIMIT THEN CHECK:
(1) PROCESS FRICTION
(2) LOOSE CONNECTION
(3) EXCESSIVE WEAR

The prioritisation would be obtained from the process fault tree analysis (FTA)
knowledge base.

An illustrative example of an SPC-FAPC strategy, published in the Proceedings
of the Institution of Mechanical Engineers, Part B, is discussed below.

EXAMPLE 9.1. A process comprising the repetitive positioning and spot welding
of a cup (C) onto a sheet metal channel (B), as shown in Figure Ex 9.1. The cup is
picked up from the storage bin and positioned over the channel by a hydraulically
driven actuator arm (A). The critical dimension is D, which has a target value of
5 mm. Small adjustments to the value of D are governed by FAPC through a control
valve. Larger adjustments to the cup position are through the action of SPC guided
maintenance intervention.

Typical observations of the uncontrolled rolling average and range of dimension
D are shown in Figures Ex 9.2(a) and (b). The sample lots are of five items each.
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Figure 9.6. SPC-FAPC control strategy control block diagram.

Figure 9.7. Expert module functions for dispersion data.

UCL and LCL of the central values are set at 6 and 4 mm respectively, whilst those
of range are at 0.32 and 0.05 respectively. FAPC governs the central values of the
UCL-LCL (the in-control) zone, whilst SPC governs the external (out-of-control)
zone. The specification of D is 5 mm ± 10%.

Find the control action required.

Solution. From Figure Ex 9.2(b) it is clear that all the range values are within
limits; no control action is required (only SPC is associated with range control). In



124 Fuzzy Logic Applications in Engineering Science

Figure Ex 9.1. Cup to channel spot welding process.

Figure Ex 9.2. Observations of rolling average and rolling mean (uncontrolled). (a) Rolling
average. (b) Rolling mean.

the case of central values, Figure Ex 9.2(a), FAPC would be initiated after lot 2. The
current outcome of dynamic interaction between the controls and the process would
depend upon the ratio of the process time-scale to that of the FAPC action and the
sampling time-scale. It may be noted that the effect of using rolling averages and
ranges is to suppress the effects of random fluctuations and oscillations in the data
values.

The relationship between the actuator arm position and the control signal, u,
from the FAPC module output will generally be non-linear. For illustration let the
process transfer function in linear form be

δzn = aδun, where a = −0.5.

For the present it will be assumed that the partitioning of the z, δz and δu spaces are
as shown previously in Figures 9.2–9.4 respectively and also that the PI controller
relational base is given by Table 9.1. To illustrate the FAPC action, assume in
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Equation (9.5) that z0 = 0, z1 = 0.2 and δz1 = 0.2. Membership values of fuzzy
sets may be obtained from Figures 9.2–9.4 or from the membership functions, thus,

µQL1 = 0.5; µQL2 = 0.5; µD = 1.0.

The fuzzy logic proposition is expressed as follows:

IF Z AND �Z THEN U MINIMUM CONSEQUENCE

QL1 D K 0.5, 1.0 0.5K

QL2 D J 0.5, 1.0 0.5J

The fuzzy conclusion is the union of the consequences, i.e.,

�U1 = 0.5K ∪ 0.5J.

A controller normally delivers the equivalent of a numerical output which in this
case may be represented by some defuzzified form of �U1, obtained for example
by the weighted membership formula,

δui =
(∑

µiδui

) /∑
µi,

δu2 = (0.5 ∗ 0.1 + 0.5 ∗ 0.2)/1.0 = 0.15.

From the process transfer function,

δz2 = −0.05 ∗ 0.15 = −0.075.

Now

z2 = z1 + δz2 = 0.2 − 0.075 = 0.125.

This completes the first cycle. The second cycle is similar, but in this case (and
more generally) the proposition has four terms as follows:

The membership values for new z and u are obtained from Figures 9.2–9.4, as
before,

µQL1 = 0.687; µQL2 = 0.313; µA = 0.75; µB = 0.25.

The second proposition is

IF Z AND �Z THEN U MINIMUM CONSEQUENCE

QL1 A L 0.687, 0.75 0.687L

QL1 B K 0.687, 0.25 0.25K

QL2 A K 0.313, 0.75 0.313K

QL2 B K 0.313, 0.25 0.25K
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Figure 9.8. Illustration of SPC and FAPC action zones. (a) With UCL/LCL boundaries.
(b) With OCL/LCL boundaries.

Then the conclusion is

�U3UU = 0.687L ∪ 0.313K

The defuzzified equivalent of the expression is δu3 = 0.1. Therefore,

δz3 = −0.05 ∗ 0.1 = −0.05,

z3 = z2 + δz3i = 0.125 − 0.05 = 0.075.

This lies within the prescribed limits of ±0.10.

SPC

According to the definitions and strategy followed in this work, the SPC protocol
will be activated above and below the UCL and the LCL respectively, as shown
in Figure 9.8(a). If, however the alternative OCLs and ICLs are defined, then the
protocol will be activated as shown in Figure 9.8(b). In the latter case there is a
soft boundary between the FAPC and SPC action zones which permits a graded
engagement of the external intervention under the SPC regime as the FAPC ap-
proaches the limit of its capabilities. This can be formalised by introducing fuzzy
sets to represent the FAPC and SPC zones.

SPC action is initiated by the diagnosis of sample average outliers and oscil-
lations in the discriminator module, Figure 9.6 and by out-of-control dispersion
data. Then by consultation with its library of causal rules for both sample averages
and ranges, the expert module is able to advise and prioritise remedial action. The
rules may be deduced from FTAs for each type of out-of-control event, such as
actuator position error. FTAs are usually created during the process design stage.
A simplified FTA for the actuator in Figure Ex 9.1 is illustrated in Figure 9.9.

The failure probabilities due to the prime faults are shown in Figure 9.9 and
these enable the ordering of the most likely causes of error in the actuator position.
The prime faults are shown as circles. Each of these could be taken in turn as
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Figure 9.9. Simplified fault tree for the actuator position error (top event).

top events for a fault tree, taking the analysis to greater levels of detail. From
Figure 9.9 the likelihood of position error may have the following causes, in order
of probabilities:

(i) Valve fault 0.15.
(ii) Fluid leak 0.12.
(iii) Electrical fault 0.10.
(iv) Mechanical fault 0.08.

The above list also gives the preferred order of investigation for corrective
maintenance. The dispersion causes are usually more fundamental, as mentioned
earlier.

9.6. Remarks

SPC and FAPC are complementary control functions that can be integrated together
to form a comprehensive control strategy. The broad brush portrayal of a transfer
function in fuzzy logic terms as a relational array is effective and much simpler
than alternative mathematical forms in achieving the desired result. Because no
mathematical expression is used, no specific assumption is made whether the con-
troller is either linear or non-linear. Changes in the controller response can easily
be made by adjusting the sequence of symbols in the transfer function relational
array and the controller can also be made self-adaptive.

Only the control function is portrayed here in FL terms, but the process could
also be similarly described if its behaviour is uncertain or complicated.
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Total Risk and Reliability with Human Factors
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Abstract. Risk is described in terms of an objective and a subjective part. The objective part is
expressed as the probability of an unfavourable event, whilst the subjective part is expressed as value-
at-risk (VaR). In this work a locomotive power train with track-side and on-board warning signals is
considered. The supervisory human element is included in the system and its failure probability is
portrayed through the application of fuzzy logic, which is more general than mathematical modelling.
This enables human factors to be included in the fault tree analysis (FTA), yielding a comprehensive
system failure estimate. The system failure trend is found for a range of human capacities. The
financial liability of an organisation is represented by the product of the system failure probability
and the VaR.

10.1. Introduction

Risk is becoming an increasingly serious issue in the recent past in all areas of
society and has moved up the agenda in corporate thinking to such an extent that
it has been argued by Butterworth [1] that the Risk Manager should have Board of
Director status, reflecting its importance and possible impact on the reputation and
viability of an organisation, especially in view of the increasingly litigious nature of
society. The Risk Manager will assess not only the likelihood of a physical incident,
but also the immediate costs of system or product unreliability or unavailability,
and also the longer term penalties. The total financial consequences are summar-
ised as value-at-risk (VaR), Glasserman [2]. The VaR increases in meaning if it is
scaled against nett asset value of the organisation for a commercial organisation,
or scaled against the cost centre annual income if it is non-commercial, such as a
military or a governmental organisation.

The concept of risk generally implies an objective quantitative estimate of the
probability of an event measured by its magnitude or frequency. In industrial
systems, unreliability (or unavailability) is usually identified with the objective
element in risk. The consequences of risk, identified above as VaR, are subjective
and according to Fenton-O’Creevy and Soane [3], more a matter of opinion. The
conjunction of the objective and subjective aspects of risk define the concept of
criticality, which is useful in selecting defensive strategy for managing risk con-
sequences. The usual definition of reliability, the complement of unreliability, is
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that it represents the probability that a component, sub-system or system of hard-
ware (or software) will function within specification for a given period of time. This
is often assessed by fault tree analysis (FTA) or failure mode and effect analysis
(FMEA) through the application of Boolean logic which is well suited to TRUE
or FALSE (0,1) propositions, see for example Davidson [4] or Andrews and Moss
[5].

The computation of reliability is strongly dependent upon probability theory,
particularly upon approximations to the Newtonian formula for the likelihood of
favourable events, Margenan [6]. One such is the Gaussian (normal) distribution
function, where the total number of events and favourable events are both very
large and the approximation is smoothed to a continuous distribution. The Poisson
distribution is another approximation, valid when the number of events is large and
the number of favourable events is sufficiently small for the mean of the product
to be about the order of unity. Probability is only concerned with random events in
a stationary system, either of which condition may not be met with exactitude in a
system or process.

The human element is an influential feature in system reliability, but unlike
the hardware components and sub-systems, it does not have an easily identifiable
deterministic form. Whereas in-service artefacts normally exhibit a steadily de-
teriorating and increasingly unreliable condition over a period of time, the human
element performance may be approximately constant in the transport industry, be-
cause the operational personnel are drawn from a pool of individuals. But during
the span of a working shift human performance maybe expected to fade. In this
case, the statistics are spread, not only over the available service population, but
also over each daily working shift as individual fatigue arises. This situation is not
mathematically modelled in the present work, but made the subject of fuzzy logic
(FL) analysis. The human element is important and needs to incorporated into the
total reliability assessment; loss of system function (or product function) due to un-
reliability is a commercial matter, but unreliability causing a risk to health, safety or
the environment could be a criminal offence, see for example, Wong [7]. Transport
systems are particularly exposed to the whole spectrum of risk consequences.

10.2. The Structure of Total Risk

It is generally accepted that the concept of risk comprises an objective part, which is
treated by the examination of historic data and the application of statistics, where
appropriate. This is concerned with the uncertainty of events. The other part is
subjective , concerned with value judgements of the effects of events, generally
called VaR, which is the complement of the more common concept of utility.
Figure 10.1 illustrates the components. This work is concerned with the objective
aspects of risk, outlined within the overall context of risk below. The subjective
part is indicated for completeness of presentation.
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Figure 10.1. The basic structure of risk.

Figure 10.2. Categories of risk.

It is customary to identify unreliability, with the objective side of risk. To place
the present work within the wider context it is useful to briefly consider the general
field of risk. According to Knight and Pretty [8], there are four categories of risk,
as illustrated in Figure 10.2. The following list of categories is adapted from their
work. These categories are:

(i) Hazard risk. This relates to physical damage, health and safety, environmental
and similar damage which can be the source of liabilities. Also to commercial
interruptions, industrial espionage, fire, lightening strikes and data losses.

(ii) Operational risk. Worker unavailability, maintenance stoppages, technical
problems, out-of-specification products, business problems, hardware or soft-
ware failure and fading system performance.

(iii) Commercial risk. Deteriorating market conditions, intelligence reports and
information failure or leakage, product obsolescence, hardware obsolescence,
exchange rate deterioration.

(iv) Strategic risk. Management decisions on strategic matters and extreme haz-
ards, including force majeure.

Each of the four categories may contain both an objective and a subjective risk
component. The human element is a significant factor in categories (i) and (ii).
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The main concern in the present work is with the objective aspect of hazard and
operational risk. For completeness, a note on VaR is given in the Appendix.

10.3. Human Factors Analysis

In the well-known top-down FTA approach to system failure, a failure mode is pos-
tulated and propagated down the fault tree to those components and sub-systems
which could have contributed to that specific failure mode. At a particular service
time, the failure probabilities are assigned and the resulting system unreliability
is found by the application of Boolean logic, see for example, Davidson [4] or
Andrews and Moss [5]. In the conventional FTA, the human element remains
unaccounted for, although it can have a significant influence. Unlike the system
hardware, the human element does not have a convenient mathematical model of
the form,

R = exp −t/λ, (10.1)

see for example Davidson [4] or Harris [9].
A treatment is given here in which the human element is portrayed in terms of

fuzzy logic (FL). The human factors arising from the FL analysis are incorporated
into the analysis, yielding a total FTA for the whole system, including the operator.
In the FL methodology outlined below, it is postulated that the human element
observes instrument warning signals both from inside the system (the locomotive
drive system) and external from the trackside. The observations and the associated
human conditioned reactions together constitute the human element contribution
to the FTA. Causes of the alertness of the observations and the nature of the re-
actions to them are the subjects of psychology theory, and will not be considered
further in this work. The key factor here is the probability of a timely and effective
response given an internal or an external warning signal, depending on the state of
the element.

The functional capacity of the human element is governed by its state at any
point in time, and its share between the internal and external signals. Let the
capacity of the human element be assigned on a 0–1.0 scale, where 0 means nil
capacity for understanding and reacting to warning signals, such as that displayed
by an untrained operator, and 1.0 represents the a maximum capacity normally
expected of a fully trained, alert and motivated operator. Most system operators
would be rated between these two extremes, with a value that would tend to fade
from the beginning to the end of a working period.

The human capacity scale is partitioned into a number of overlapping fuzzy sets,
as shown in Figure 10.3. The number of fuzzy sets, that is the level of partitioning
of the space, called the universe of discourse,(as in statistics), reflects the certainty
of their definitions.

The partitioning in Figure 10.3 results in human capacity grades which are
present in more than one set, this is a feature of fuzzy sets. The set membership
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Figure 10.3. Partitioning of the human function capacity. ZE = Zero. LM = Low Medium.
HM = High Medium. HI = High.

Table 10.1. Human capacity function membership functions.

0 ≤ c ≤ 0.4 0.4 ≤ c ≤ 0.6 0.6 ≤ c ≤ 1.0

µZE 1 − c/0.4

µL c/0.4 3 − c/0.2

µHM (c − 0.4)/0.2 2.5 − c/0.4

µHI (c − 0.6)/0.4

values of a specific grade is given by the membership functions as in Table 10.1.
For example, a human factor grade of 0.8 yields membership values of 0.5 in set
HM and HI.

The human failure probability universe of discourse is likewise partitioned
and an example is shown in Figure 10.4 of equi-partitioning into five fuzzy sets.
Table 10.2 shows the corresponding membership functions.

Table 10.2 shows the membership functions for the partitioning illustrated in
Figure 10.4.

Table 10.2. Failure probability membership functions.

0 ≤ p ≤ 0.1 0.1 ≤ p ≤ 0.2 0.2 ≤ p ≤ 0.3 0.3 ≤ p ≤ 0.4

µLO 1 − p/0.1

µLM p/0.1 2 − p/0.1

µME (p − 0.1)/0.1 3 − p/0.1

µHM (p − 0.2)/0.1 4 − p/0.1

µHI (p − 0.3)/0.1
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Figure 10.4. Partitioning of the failure probability universe of discourse. Key: LO = Low. LM
= Low Medium. ME = Medium. HM = High Medium. HI = High.

Table 10.3. Human capacity and failure
probability relational array.

Track- On-board

Side ZE LM HM GD

ZE HI HM ME LM

LM HM ME LM LO

HM ME ME LM LO

GD ME LM LO LO

The human capacity function and failure probability sets are related by a heur-
istic array, which is derived from a study of system performance records of similar
and equivalent cases to that under consideration. An example of a simple array is
given in Table 10.3.

The two-dimensional form of the array in Table 10.3 arises from the capacity of
the human element being shared between the on-board (cb) and the track-side (ct )
warning signals. Thus the total capacity is

cb + ct = cu, (10.2)

where 0 ≤ cb, ct ≤ 1. For robot-like perfection, cu = 2. In practice, lack of
concentration, diversions or ill-health, for example, result in cu falling short of this
limit.

The probability conclusions result from the intersection operations on the
antecedents, Harris [11], in a FL proposition of the form:

IF A AND B THEN P

as shown a posteriori.
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Figure 10.5. Block diagram of locomotive power train.

10.4. Locomotive Power Train

10.4.1. DESCRIPTION OF THE SYSTEM

As an example of the integration of the human element into a FTA, consideration
is now given to the traction system of a diesel locomotive. The system considered
here comprises:

(i) Engine unit with blower, fuel supply and cooling water ancillary systems,
(ii) Transmission sub-system,
(iii) Brake sub-system.

The block diagram of the system is shown in Figure 10.5 and includes the on-board
warning signals presented to the driver.

The logic diagram of the power train system illustrated in Figure 10.5 is shown
in Figure 10.6. For each sub-system, the prime events which could cause failure
are: the equipment hardware, the warning instrumentation or the human element,
these are labelled in Figure 10.6, and the failure probability at a certain service time
is tabulated in the figure. The three prime events are linked together by an inclusive
OR operation in each case.
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Figure 10.6. Reliability logic diagram for locomotive power train example.

Key: Unit No. Code Type Failure probability

1 BLS Blower Unit 0.043

2 BLW Blower Air Pressure 0.022

3 FUS Fuel Supply 0.052

4 FUW Fuel Supply Pressure 0.022

5 CWS Coolant System 0.031

6 CWW Coolant Temperature 0.022

7 BRS Brake System 0.047

8 BRW Brake Warning 0.022

In all the above units in Figure 10.6, HE denotes Human Element. The prob-
ability of failure of this element is required to complete the information for
analysis.

10.4.2. FAULT TREE ANALYSIS

An FTA can be conducted on the system with the inclusion of the human element
failure probability. Consider for example a case in which the capability is shared
unequally, with an on-board grade of cb = 0.7 and a track-side grade of ct = 0.8.
From Table 10.1, the following fuzzy set membership values may be calculated:

µHM = 2.5 − cb/0.4 = 0.75, µHM = 2.5 − ct/0.4 = 0.5,

µGD = (cb − 0.6)/0.4 = 0.25, µGD = (ct − 0.6)/0.4 = 0.5.
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The FL proposition is

IF A AND B THEN P MIN CONSEQUENCE

HM HM LM 0.75, 0.75 0.75LM

HM GD LO 0.75, 0.5 0.5LO

GD HM LO 0.25, 0.5 0.25LO

GD GD LO 0.25, 0.5 0.25LO

The conclusion is the union of the consequences:

P = 0.75LM ∪ 0.5LO. (10.3)

This is the human element failure probability in fuzzy set form. To perform a
FTA a numerical value is required, which may be found by defuzzifying Equa-
tion (10.3) (with some loss of information). A defuzzifying formula is given by
(see for example Harris [10])

pHE =
∑

µipi

/ ∑
µi (i = 1, 2, . . .). (10.4)

Thus,

pHE = (0.75 ∗ 0.1 + 0.5 ∗ 0)/1.25.

Hence, pHE = 0.06.
This failure probability of the human element becomes a prime cause and ap-

plies to each unit, as illustrated in Figure 10.6. The resulting FTA proceeds in the
normal way.

Considering each unit separately, and referring to Figure 10.6:

Blower.

The success probability (q) of the blower unit is
the intersection of the complements of the failure
probabilities,

q = (1 − 0.043)(1 − 0.022)(1 − 0.06) = 0.8793.

Hence, p = 1 − q = 1 − 0.8793 = 0.1202.
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Fuel System.

Similarly, the success probability if the fuel system
unit is

q = (1 − 0.052)(1 − 0.022)(1 − 0.06) = 0.8715,

p = 1 − 0.8715 = 0.1285.

The success and failure probabilities of the remaining units are as follows:

Cooling Unit.

q = 0.8908; p = 0.1092.

Engine Unit.

q = 0.6830; p = 0.3170.
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Transmission Unit.

q = 0.8816; p = 0.1184.

Brake Unit.

q = 0.8716; p = 0.1239.

Power Train System.

q = 0.8908; p = 0.1092.

where pSY is the overall failure probability of
the power train system.

To illustrate the trends with varying values of cb and ct the values of pHE and pSY

been calculated for several equal values of cb and ct . These are given in Table 10.4
and displayed in Figure 10.7.

10.5. Criticality

The VaR (outlined in the Appendix) provides a measure of the potential financial
liabilities of an organisation arising from an unfavourable event, which requires
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Table 10.4. Values of pHE and pSY for
cb = ct .

cb (= ct ) pHE pSY

0 0.4 (min.) 0.9441

0.1 0.34 0.9652

0.2 0.25 0.8294

0.3 0.26 0.9652

0.4 0.20 0.6923

0.5 0.15 0.6810

0.7 0.075 0.5132

0.8 0.05 0.4446

0.9 0.025 0.3666

1.0 0 0.2078

Figure 10.7. Illustration of (a) the Human Element and (b) the System Failure Probability
Trends.

defensive management action. This would often be sought through insurance cover
requiring a premium (x) for a selected duration. If in this period the system failure
probability is pSY, the criticality of the case (y) is defined by

y = VaR ∗ pSY. (10.5)

If x > y it may not be worth seeking external insurance cover. Financial
considerations are not further developed in this work.

The system failure probability represents the expected frequency of unfavour-
able events (in the long term). Therefore, for a given service duration of similar
systems under similar service conditions, the number of unfavourable events can
be calculated and hence the possible corporate financial liability, or criticality, of
this type of event can be found. Extreme events are usually characterised by their
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magnitude rather than by their frequency, they are in another class and are not
included in this work.

10.6. Conclusion

In this work, a comprehensive estimate of the system failure probability is found
by integrating the human element effects into the analysis. The human element
failure probability does not share the same kind of time-dependency as the system
hardware. The capacity (or capability) of the human element to perform its ideal
supervisory and governing role is shared between track-side and on-board warning
signals in the case of a locomotive driver function. The proportional share would
depend upon the prevailing environmental conditions and the total human capacity
available, the latter would depend upon the person’s state. It would naturally be
expected, for example, that the state of alertness would decline during a working
period.

The human element role is portrayed in terms of fuzzy logic, which avoids
the need for mathematical modelling, and is much more general in scope. The
heuristic relational base can be readily updated as operational experience is gained.
Relatively coarse partitioning of the universes of discourse are used, which may
also be refined as knowledge and experience of the human function increases.

The probability of system failure provides the objective side of risk. The po-
tential financial damage to an organisation is expressed in terms of the VaR, which
seeks to quantify, in financial terms, the subjective side of risk. The probability of a
certain level of financial liability at a given point in time is expressed as the product
of the failure probability with the VaR.

10.7. Notation

µA,µB membership values of fuzzy sets
λ time constant
∪ logic union

pSY total system failure probability
pHE human element failure probability
cb on-board human element capacity
ct track-side human element capacity
cu total human element capacity = cb + ct

x insurance cover premium
y system failure criticality, defined by Equation (10.5)

P( ) probability of failure (objective risk)
R reliability
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Figure 10.A1. Composition of the value-at-risk.

Appendix. Comments on Value-at-Risk

The subjective side of risk, expressed by the VaR, has been quite widely con-
sidered recently, mainly in economics and finance, see for example Glasserman
[2], Fenton-O’Creevy and Soame [3], Carey and Turnbull [11] and also Lewin
[12]. VaR is also a composite concept comprising four components as illustrated in
Figure 10.A1. The components are:

(i) Basic value. This represents the accounting value or book value of an asset at
risk, taking into consideration depreciation and other similar factors.

(ii) Premium value. Additional value of the service provided by an asset. Health
and safety liabilities.

(iii) Latent value. Enterprise reputation. Potential developmental value of an asset
at risk. Political credit.

(iv) Intrinsic value. Value due to an historic or cultural interest.

These values are to be aggregated and scaled against a basic measure such as
the nett worth of an enterprise, or the gross annual income of a non-commercial
enterprise.

In the case treated in this work, it is the latent, basic and premium categories
that are likely to be relevant.
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Chapter 11
On System Condition Auditing �

Keywords. Condition metric, Fuzzy logic, Risk, FTA, Maintenance, Knowledge management.

Abstract. Condition monitoring of a variety of systems is widely practised and yields valuable
information about the current status of key functional parts of the system. This is normally used
for the organisation of maintenance functions of industrial systems (or for predictive treatment in the
case of health care). At the executive level, asset management is an important consideration, and is
usually based on financial grounds alone. In this work the methodology of system condition auditing
based on fuzzy logic analysis is described, which results in an overall system condition metric. This
makes fuller use of the information garnered from condition monitoring and provides additional
management knowledge, enabling more informed decisions to be made about such aspects as plant
refurbishment or replacement.

11.1. Introduction

The term “system” in this context connotes any coherent artificial or natural as-
sembly of parts which may perform static or dynamic functions. Typical examples
of various classes are: structures and buildings, process plant, surface or airborne
vehicles and also biological systems. Though for illustration purposes, the dis-
cussion in Section 3 will focus on process plant. Condition monitoring is widely
practised in all sectors of engineering and is at its most intense and sophisticated
in the aero-space sector. It also is very refined in the nuclear industry and in health
care in the more industrialised countries.

At the design stage of artificial systems, reliability analysis and also material
sample, model, prototype and product testing are often undertaken to compare
with performance specifications and as a guide for future maintenance strategies.
This is augmented by in-service condition monitoring. With large-scale one-of-a-
kind systems, such as civil engineering structures, the initial testing is restricted
to material samples and system models. Reliability analysis is itself therefore of
more limited value, due to a number of factors listed below, similar to those given
by Geeker [1]:

� This material has been reproduced from Trans IChemE, Part B, Process Safely and Environ-
mental Protection, 2002, Vol. 80, pp. 197–203, “On System Condition Auditing” by J. Harris, with
permission of the Council of the Institution of Chemical Engineers.
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(i) inadequate system deterioration models,
(ii) inadequate load and environmental models,
(iii) inaccurate testing and analysis methods,
(iv) insufficient information.

Fatigue testing has been one of the commoner methods of providing basic reliabil-
ity data (see Chapter 6). Even if the factors in the above list did not exist, there may
still be differences between the idealisations of a particular system design and its
realisation in practice. Thus, repeated condition monitoring provides updated and
improved knowledge of the actual system states and of its deterioration phenom-
ena. It also provides the means of updating reliability and durability forecasts. This
facilitates reduced life-cycle costs through improved preventative and corrective
maintenance schedules.

Considering that some systems such as bridges, may have a design life of about
100 years, it is clear that predictions of loading and environmental conditions
over the life-span can be highly speculative and subject to significant error in
the forecasts of future system reliability. At the operational level, system condi-
tion observations are compared with target values, which may be qualitative or
quantitative (for example, the notion of a building’s dilapidation may be partly
qualitative). If the system is non-repairable, as in some space satellites, non-
conformance to target values may indicate the end of useful service life, whilst
in the case of a repairable system, some form of maintenance may alternatively be
indicated. Another option in both cases is partial decommissioning by reducing the
system’s service or environmental demands.

System reliability analysis normally distinguishes only between the failed or
non-failed states, which is the lowest level of classification. All systems undergo
inexorable deterioration or ageing in time through a variety of agencies such as
corrosion, wear or fatigue damage, which may or may not influence performance
or value. (Value is not always determined entirely by performance.) Furthermore,
a system may perform adequately, but exhibit some deterioration. Such a state
would be detected, tracked and measured within an efficient condition monitoring
programme.

System condition monitoring is usually undertaken with the support of a variety
of non-destructive test (NDT) methods, such as thermal and acoustic emission,
ultra-sonics, radiography and fluorescent tests and also by operator visual and au-
dio examination. For large systems, destructive material sample and component
tests are sometimes performed. In the high-volume manufacturing industry statist-
ical process control (SPC) is also used as another condition monitoring tool, Wang
and Rowlands [5]. There are often Standards or industry based Codes of Practice
to guide and regulate the acquisition of condition data. Harris [6] has shown how
such Standards may be recast into fuzzy set form to improve their interpretation,
using the ultra-sonics British Standard BS 6208:1990 as an example.
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In this work, attention is directed towards knowledge management of physical
data derived from condition monitoring observations. Not only does this provide a
useful comprehensive view of the system state, but also by repeated observations
the progress of the gross system condition pattern over time is revealed. One of the
benefits of this is that updated and improved system reliability forecasts may be
made based upon new knowledge of actual system behaviour.

At management level, comprehensive and comprehensible information is re-
quired for making strategic decisions. The resulting methodology described in
this work provides a system condition metric which would normally be conjoined
at management level with a utility factor (more generally a value-at risk VaR,
Glasserman [7], which includes financial as well as safety, environmental, social
and other factors deemed by management to be part of the total liability burden of
operations).

11.2. Basic Considerations

It is assumed that the system, of whatever type, can be divided into a finite number
of functionally independent units which are monitored at the same point in “time”
(“time” being any convenient metric of the system condition). The system para-
meters to be measured should be chosen to be sufficient to define its condition for
the purpose of the system audit. (In some cases this may include aesthetic as well
as technical features.) The type of observation may be quantitative or qualitative,
but in either case it is reported on a 0–1.0 scale

Some similarities may be drawn with the well-known methods of fault tree
analysis (FTA), which are widely reported in the engineering literature, see for
example Davidson [9], also Andrews and Moss [10]. There are also some sig-
nificant differences arising from the different purposes of condition monitoring
compared with FTA. This means, for example, that the systems considered may
not have the same definition in general or in detail. Also FTA is concerned with
fail/safe conditions, whereas in the analysis that follows, it is the state of a system’s
deterioration which is of concern.

11.2.1. BOUNDARY DEFINITIONS

External boundary: This depends upon the purpose of the audit. Systems may rely
on supplies from external services which may not be included in the system defin-
ition, access may be another important feature. If, for example, the condition audit
is for purposes of renovation, then different considerations may apply to those for
market valuation.

Internal boundaries: These define the relevant sub-systems or units considered
to comprise the system. Units may be taken to the level of components, depending
on the level of detail desired and also the information that is available.
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In general terms, the external boundary of a system limits the breadth of a
condition audit, whereas the internal boundaries define its depth of detail.

11.2.2. MINIMAL PATH SETS

In FTA the application to a particular case results in an estimated probability that
a system will fail under specified environmental and service conditions, given the
failure probabilities of the basic events. System failure modes are governed by the
so-called minimum cut sets, see for example Andrews and Moss [10]. The converse
concept is that of path set, which defines a set of basic events which, providing that
they occur, ensures that the system will function, in particular, the minimal path set
provides the irreducible set for success. For condition auditing, the minimal path
set provides the simplest combination of conditions that define a minimum audit
for a system. It will be recalled that a condition audit may require more than just
consideration of a minimum set of operational units.

11.2.3. MALFUNCTIONS

In this work, the failure of a unit or a component is defined as a malfunction that
requires only adjustment by plant operators for correction. It does not affect the
system condition audit. On the other hand, a unit or component fault is a malfunc-
tion that requires intervention by maintenance staff repair or replacement action.
This does affect the system condition audit.

An example of the methodology of system auditing is given below. In practice
FTAs may be applied to identify the sources of system failure at which to make
system condition observations.

11.2.4. HYPOTHESIS

The underlying hypothesis in this work is that the overall condition of a system may
be represented by the logical intersection of the several sub-system conditions.

11.3. Heat Exchanger System

As a simple example of a typical industrial system condition audit, consideration
is given in Section 11.4 to a gas/liquid heat exchanger. The external boundary is
taken here to encompass the liquid side only to show auditing methodology, and to
avoid duplication.

11.3.1. SYSTEM DESCRIPTION

The heat exchanger is of the shell and tube type for cooling process gas with water,
in which the gas flows on the shell side whilst the water flows on the tube side.
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Figure 11.1. Heat exchanger block diagram with liquid side instrumentation.

Figure 11.2. Heat exchanger liquid side system condition logic diagram. Prime functions only.
Instruments not included.

The system with auxiliaries is illustrated in the block diagram in Figure 11.1. The
external boundary includes only the system liquid side in this analysis. System
condition data is provided by the instrumentation shown, which provides quant-
itative data. Some observations are also made on a qualitative basis, including
bearing noise, valve and pipe leakage and also valve stiffness. These qualitative
observations are also reduced to a 0–1.0 scale for reporting. The minimal path set
in this case corresponds with the external boundary.

The electric motor is fixed speed. The pump operating point may, or may not
be, at the design operating point, depending upon the state of the system.

Figure 11.2 shows the equivalent condition logic diagram (CLD). This com-
prises relations between system basic (or prime) events, which are defined in this
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Table 11.1. System condition observations.

Unit Observation Condition Rating Design Rating

1. Electric motor Power 0.6 0.5

Bearing noise 0.2 0.0

2. Filter/Pump Flow rate 0.46 0.5

O/P Pressure 0.56 0.5

Noise 0.15 0.0

3. By-Pass Pipe/valve leakage 0.0 0.0

Valve stiffness 0.15 0.0

4. Control valve Stiffness 0.0 0.0

Leakage 0.0 0.0

5. Non-return valve Shut-off 1.0 1.0

6. Heat exchanger Flow rate 0.43 0.5

Temperature rise 0.45 0.5

case as the units that are essential for the system operation. Instrumentation is
not included within the system external boundary. On a 0–0.1 scale, the assumed
observed prime event conditions are given in Table 11.1. The gates are all of the
AND type. Both intersection and logic union operations are used in the analysis,
but only intersection operations show on the CLD in this case.

It is assumed that the system in Figure 11.1 and Table 11.1 has been under the
of supervision of a competent plant operator and also subject to plant maintenance
procedures. The design ratings are those that would be obtained with a “good as
new” properly balanced system.

11.4. System Condition Audit

In the following analysis, the universes of discourse (UDs), x, are equi-partitioned
into five fuzzy sets, Xi , i = 1 to 5. The corresponding membership functions are of
a commonly used form (see Harris [2, 3, 6, 8] and also Wang and Rowlands [5]),
they are shown in Table 11.2.

In Table 11.2, x denotes any of the UDs in the following analysis and X denotes
any corresponding fuzzy set. Although all observations are reduced to a scale of
0–1.0, the range in Table 11.2 is extended from −0.25 to 1.25 to allow completion
of the extreme fuzzy sets.

11.4.1. FILTER

The condition observations are: pressure drop and flow rate. The usual deterioration
is due to progressive blockage of the filter by debris, giving an increased pressure
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Table 11.2. Membership functions (µ) for an equi-partitioned UD.

−0.25 ≤ x ≤ 0 0 ≤ x ≤ 0.25 0.25 ≤ x ≤ 0.5 0.5 ≤ x ≤ 0.75 0.75 ≤ x ≤ 1.0 1.0 ≤ x ≤ 1.25

X1 1 + 4x 1 − 4x

X2 4x 2(1 − 2x)

X3 4x − 1 3 − 4x

X4 2(2x − 1) 4(1 − x)

X5 4x − 3 5 − 4x

drop for a given flow rate. For a particular clear filter, let the filter pressure drop
(ip) be related to the flow rate (q) by

cf = �p/q, (11.1)

where cf is a constant.
Let c′

f be the observed in-service value, then a filter condition metric may be
defined as

f = cf /c′
f . (11.2)

Thus, if cf = 0.46 and c′
f = 0.56, then f = 0.8214.

11.4.2. PUMP AND MOTOR

The condition observations in this case are: the hydraulic head (h) developed for a
given fluid volumetric flow rate (q). The leakage rate at the gland is also noted and
expressed on a scale of 0–1.0, where 1.0 represents effective gland sealing and 0
represents poor gland sealing.

It may be shown by dimensional analysis that a dimensionless group (ch), which
characterises the performance of an impeller type pump, may be expressed as

ch = (gh/q)(d/n), (11.3)

where d is a characteristic pump size and n is the impeller rotational speed. Hence,
for a given pump size and speed the characteristic may be expressed as

ch = constant ∗ (h/q). (11.4)

Let ch be the pump characteristic under design conditions and c′
h be the actual

observed condition, then the pump condition observation may be expressed as

i = (2/π) tan−1 |ch/(c
′
h − ch)|. (11.5)

In the given system, the pump-gland condition is assumed to be 0.8. The design
pump characteristic (ch) is given in Table 11.1 as 0.5 and the observed value (c′

h),
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is 0.6, hence the condition metric is obtained from Equation (11.5) as

i = (2/π) tan−1 |0.5/(0.6 − 0.5)|
= 0.8743.

11.4.3. PUMP AND FILTER CONDITION

In Section 11.4.1 the filter condition observation (f ) is found to be 0.8214. From
Table 11.2, the fuzzy membership values are

ţF4 = 0.7144 and µF5 = 0.2856.

Hence, the fuzzy form of the filter condition observation is

F = 0.7144F4FF ∪ 0.2856F5FF . (11.6)

Similarly, in Section 11.4.2 the pump condition observation (i) is given as 0.8743,
hence from Table 11.2 the membership values are found as follows:

Membership values: µP4 = 0.5028 and µP5 = 0.4972.

The resulting pump condition observation is expressed as

P = 0.5028P4PP ∪ 0.4972P5PP . (11.7)

Also, in Section 11.4.2, the gland condition observation is given as 0.8, whence
from Table 11.2:

Membership values: µG4 = 0.8 and µG5 = 0.2,

i.e.,

G = 0.8G4 ∪ 0.2G5. (11.8)

The pump condition metric is the result of the intersection of expressions (11.7)
and (11.8),

IF P AND G THEN PG

where the relationship between the antecedents and the consequents is governed
by the rule-base shown in Table 11.3. (All rule-bases used are simple plausible
relationships.)

Hence, for the antecedents in Equations (11.7) and (11.8) the following
propositions are formed, relating to the pump and gland:
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Table 11.3. Rule-base for the pump and
gland.

P

G P1 P2 P3 P4 P5

G1 PG1 PG1

G2 PG1 PG2 PG2

G3 PG2 PG3 PG3

G4 PG3 PG4 PG4

G5 PG4 PG5

IF P AND G THEN PG MIN CONCLUSION

P4 G4 PG4 0.5028, 0.8 0.5028PG4

P4 G5 PG4 0.5028, 0.2 0.2PG4

P5 G4 PG4 0.4972, 0.8 0.4972PG4

P5 G5 PG5 0.4972, 0.2 0.2PG5

The overall pump and gland condition metric is found by the union of the above
partial conclusions,

PG = 0.5028PG4 ∪ 0.2PG5. (11.9)

11.4.4. PUMP UNIT CONDITION

The pump unit includes the pump with gland and also the filter. These are conjoined
by an intersection operation to provide a resultant pump unit (PU) condition, thus,

PU = PG ∩ F. (11.10)

The relationship is governed by a rule base such as that shown in Table 11.4.
From Equations (11.6) and (11.9) the resultant pump unit condition metric is

therefore,

PU = (0.5028PG4 ∪ 0.2PG5) ∩ (0.7144F4 ∪ 0.2856F5). (11.11)

Developing the proposition in Equation (11.11):

IF PG AND F THEN MIN. CONCLUSION

PG4 F4 PU4 0.5028, 0.7144 0.5028PU4

PG4 F5 PU4 0.5028, 0.2856 0.2856PU4

PG5 F4 PU4 0.2, 0.7144 0.2PU4

PG5 F5 PU5 0.2, 0.2856 0.2PU5



154 Fuzzy Logic Applications in Engineering Science

Table 11.4. Rule base for the pump unit con-
dition.

P

PG F1 F2 F3 F4 F5

PG1 PU1 PU2

PG2 PU1 PU2 PU2

PG3 PU2 PU3 PU3

PG4 PU3 PU4 PU4

PG5 PU4 PU5

The resultant pump unit fuzzy condition metric is therefore,

PU = 0.5028PU4 ∪ 0.2PU5. (11.12)

This expression may be defuzzified, see Harris [8], to yield a numerical represent-
ation of the condition metric. Noting from Table 11.2 that the maximum value of
the PU4UU set is at 0.75 on the UD and for the PU5U set it is at 1.0, the defuzzified
value (def PU) is obtained by the following calculation:

def PU = (0.5028 × 0.75 + 0.2 × 1.0)/(0.5028 + 0.2)

= 0.8211.

11.4.5. BY-PASS

The by-pass valve is observed for gland sealing (L) and ease of operation (E). Both
these are qualitative observations and scored on a 0–1.0 scale. From Table 11.1, the
ease of operation is assessed as 0.85 and the sealing is 1.0. It is assumed that there
is no pipework leakage. The resultant by-pass condition (B) is derived from the
following logic proposition:

B = L ∩ E. (11.13)

Table 11.5 shows the rule-base for the by-pass condition.
If the observed valve gland seal condition is 1.0, then from Table 11.1 the

corresponding membership function value is µL5 = 1.0, and clearly, L = 1.0L5.
The operational ease condition is 0.85 and from Table 11.2 the corresponding

membership values are as follows:

Membership values: µE1 = 0.4 and µE2 = 0.6.

The fuzzy expression for the operational ease observation is therefore,

E = 0.4E1 ∪ 0.6E2. (11.14)
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Table 11.5. Rule-base for the by-pass
condition.

E

L E5 E4 E3 E2 E1

L1 B1 B1 B1 B1 B1

L2 B1 B2 B2 B2 B2

L3 B1 B2 B3 B3 B3

L4 B1 B2 B3 B4 B4

L5 B1 B2 B3 B4 B5

The intersection of Equation (11.14) set with L = 1.0L5 results in the fuzzy by-
pass condition metric,

B = 1.0L5 ∩ (0.4E1 ∪ 0.6E2). (11.15)

The antecedents in Equations (11.14) and (11.15) provide the following proposition
developments:

IF L AND E THEN B MIN. CONCLUSION

L5 E1 B5 1.0, 0.4 0.4B5

L5 E2 B4 1.0, 0.6 0.6B4

The resultant by-pass condition metric is therefore represented in fuzzy form by

B = 0.6B4 ∪ 0.4B5. (11.16)

As for the pump unit above, the defuzzified value may be found, in this case it is
def B = 0.85.

11.4.6. CONTROL VALVE

The unit condition observation is “as good as new”, hence the resulting condition
metric is

D = 1.0D5. (11.17)

Clearly, the defuzzified value is def D = 1.0.
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11.4.7. NON-RETURN VALVE

The observed condition is assumed to be 0.95, hence from Table 11.2 the
membership values are as follows:

Membership values: µR4 = 0.2 and µR5 = 0.8.

The resultant condition observation is

R = 0.2R4 ∪ 0.8R5. (11.18)

The defuzzified value is def R = 0.95, which of course corresponds with the
observed condition.

11.4.8. HEAT EXCHANGER UNIT

For a given gas/liquid heat exchanger operating in the turbulent region, the per-
formance may be expressed in terms of the Stanton number (st ) and the Reynolds
number (re), where these two dimensionless groups may be expressed as

st = k1η/θq, (11.19)

and

re = k2q. (11.20)

In Equations (11.19) and (11.20) η and q are the heat load and fluid flow rate
respectively and θ is the mean temperature difference, also k1 and k2 are two
specific constants. For a given heat load, the design Stanton number is st . If the
observed Stanton number is s′

t , the heat exchanger observation may be expressed
as

t = (2/π) tan−1 |st /(s
′
t − st )|. (11.21)

If for the given system in Figure 11.1 the Stanton number ratio, s′
t /st =

0.774, then from Equation (11.21) the corresponding numerical observation is
t = 0.8585. Therefore, from Table 11.2 the following membership values may
be found:

Membership values: µT 4 = 0.566 and µT 5 = 0.436.

Hence, the heat exchanger fuzzy condition may be expressed as

T = 0.566T4TT ∪ 0.436T5TT . (11.22)

The defuzzified value in this case is def T = 0.8588, which is consistent with the
numerical observation.
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Table 11.6. Fuzzy set combinations for W .

Set PU4 PU5 B4 B5 R4 R5 T4TT T5TT Min Subscript Result

µ 0.5028 0.2 0.6 0.4 0.2 0.8 0566 0.436 i

* * * * 0.2 4 0.2W4WW

* * * * 0.2 4 0.2W4WW

* * * * 0.5028 4 0.5028W4WW

* * * * 0.2 Only effective if i = 5

* * * * 0.2 4 0.2W4WW

* * * * 0.2 Does not affect outcome

* * * * 0.4 Does not affect outcome

* * * * 0.4 5 0.4W5WW

11.4.9. SYSTEM WATER-SIDE CONDITION METRIC

The several fuzzy metrics consistent with the available observations of the units
comprising the water-side system have been established above. The resulting
water-side condition metric (W ) results from the intersection of the unit condition
observations and metrics. Thus,

W = PU ∩ B ∩ D ∩ R ∩ T , (11.23)

where the unit condition observations and metrics; PU , B, D, R and T are obtained
from Equations (11.12), (11.16), (11.17), (11.18) and (11.22), respectively.

Considering the form of D given by Equation (11.17), then Equation (11.23)
may be reduced without loss of information to

W = PU ∩ B ∩ R ∩ T . (11.24)

Table 11.6 shows the combinations of fuzzy sets that are implied in this expression
for W .

The eight other possible combinations involve 0.2PU5, which are all eliminated
in the logic union operation and therefore need not be considered further.

In Table 11.6, column 9 shows the minimum of the active membership values in
each row. Column 10 shows the subscript of the set associated with the minimum
in each row. It is assumed in this case that a preponderance of subscript 4 sets in a
row results in a W4WW set, whilst a preponderance of subscript 5 sets results in a W5WW

set. If there is an equal balance of subscripts in rows 4, 6 and 7, it is only in the case
of row 4 that the intersection result is affected. In the present case, if the subscript
is interpreted as 4, then the final result is

W = 0.5028W4WW ∪ 0.4W5WW . (11.25)
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But if the subscript is interpreted as 5 the final result becomes

W = 0.5028W4WW ∪ 0.436W5WW . (11.26)

The defuzzified value of Equation (11.25) is def = 0.8608. The defuzzified value
of Equation (11.26) differs by only 0.62% from this value. Expression (11.25)
[or (11.26)] represents the result of the water side condition audit for the heat
exchanger system illustrated in Figure 11.1. Periodic condition auditing provides a
means of tracking the system gross condition in time.

11.5. Value at Risk (VaR)

At management level, the system condition is inevitably related to a conceived
VaR, which can have different interpretations depending upon the management
objectives. Consider a prosaic example; the VaR of a used vehicle. The all-round
satisfaction, as conceived by the prospective purchaser and which includes the
vehicle’s notional condition, would be compared with the value offered by the
other alternatives within a selected price range. In all cases the value would be
directly related to its notional condition. But the prospective insurance company
for the same vehicle would consider the vehicle write-off value, the prospective
purchaser’s risk profile and other general accident associated liabilities, as the total
VaR. Similarly, the VaR of practically every other system from nuclear power plant
to health care, is open to various interpretations. Further reading on VaR may be
found in in Glasserman [7].

11.6. Conclusion

Condition monitoring is widely practised and provides valuable data about a sys-
tem’s state and if it is conducted on a well organised basis, also about its historic
pattern. The other important aspect is that of monitoring the corresponding system
operating and environment conditions. This is not so frequently encountered, but
is likely to influence the current condition of a system.

It is shown in this work how some of the principles of fuzzy logic may be
applied to system condition monitoring observations to provide a system condition
audit which results in an overall system condition metric.

The methodology provides additional system knowledge, which is useful at the
strategic decision making level. The overall system condition metric would natur-
ally be linked to a VaR at management level, reflecting management objectives. An
improvement in knowledge management and presentation results from the adoption
of the methodology advocated in this work.

System condition monitoring rarely includes the human operator skills, though
it is acknowledged that this often has a profound influence on the condition of
a system, whether it be of a physical or an intangible service type. There may be
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circumstances where the external boundary should be defined to include the human
operator element.

The state of deterioration of the system is naturally expressed as the complement
of its condition metric.

11.7. Notation

B by-pass fuzzy condition metric
cf ideal filter constant
c′
f observed filter constant

ch ideal pump characteristic
c′
h observed pump characteristic

d characteristic pump size
D fuzzy control valve condition observation
E fuzzy valve ease of operation
f filter condition metric
F fuzzy filter condition observation
g acceleration due to gravity
G fuzzy gland condition observation
h pump head
i pump condition observation, defined by Equation (11.5)
k1 Stanton number coefficient
k2 Reynolds number coefficient
L fuzzy valve gland leakage observation
n impeller rotational speed
p pressure
P fuzzy pump condition observation
PG fuzzy pump and gland condition metric
PU fuzzy pump unit condition metric
q liquid volumetric flow rate
re Reynolds number
R fuzzy non-return valve condition observation
st ideal Stanton number
s′
t observed Stanton number

t heat exchanger condition observation
W liquid side overall fuzzy condition metric
x general universe of discourse
Xi ith general fuzzy set

� an increment of . . .
η head load
µ(x) membership function
θ temperature
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∪ logic union
∩ logic intersection
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Chapter 12
Reframing Standards Using Fuzzy Sets for
Improved Quality Control �

Keywords. British Standard, Quality, Ultrasonics, Steel Castings, Fuzzy Sets.

Summary. British Standard BS 6208:1990 treats the ultrasonic inspection of steel castings and the
consequent assignment of quality levels. This Standard is considered as a case study for reframing
such specifications in terms of fuzzy sets. The advantages of using fuzzy sets are the elimination
of sharp boundaries between quality levels and between cross-section zones with their attendant
borderline cases, thus producing smooth natural changes with improved quality control. The Standard
does not specify a method for estimating a consolidated quality level rating from the individual
quality levels obtained from the several criteria in the Standard. Such a method, consequent on the
fuzzy sets treatment, is proposed here.

12.1. Introduction

One of the hall marks of current activity in all sectors of society, particularly in the
manufacturing and service sectors, is the drive towards continuous improvement
of quality. The concept of quality embraces a wide variety of product (goods and
services) properties, and it effectively defines the user satisfaction levels. Quality
becomes an inherent feature from the initial concept stage, through all the sub-
sequent stages of production or formulation to delivery and use, including servicing
and maintenance support. It is therefore clear that every quality improving change
in operations must be considered as likely value-enhancing.

The various modern paradigms of production are often applied as essentially
quality improving tools, amongst them fuzzy logic is becoming increasingly fa-
miliar. There are many examples of this; Chen [1] applies fuzzy logic at the
engineering design stage, Hinduja and Xu [2] consider tolerances and surface fin-
ishes associated with roughing, semi-finishing and finish machining operations. In
the textile field Lin, Lin and Tsai [3] use fuzzy logic for fabric defects diagnosis

� This material has been reproduced from the Proceedings of the Institution of Mechanical Engin-
eers, Part B, Journal of Engineering Manufacture, 2001, Volume 215 (B3), pp. 315–322, “Reforming
standards using fuzzy sets for improved quality control”, by J. Harris, with permission of the Council
of the Institution of Mechanical Engineers.
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and another different application was published by Harris [4] on raw milk quality
assessment.

Published national and international standards provide a quality reference for
both producers and users, and embody consensus opinion about best practice,
which is a compromise of the significant factors of production and use of a product.
Standards present product specifications and codes of practice as well as guidelines
and glossaries to aid acceptable product quality, which includes reliability, main-
tainability and many other factors. In the foodstuffs industry nutritional value
and hygiene are also important. It is obvious that standards can exhert a decisive
influence on product quality, to list just a few.

Standards are often cast in terms of numerical ranges of parameters with hard
boundaries, BS 6208:1990 which considers the inspection of ferritic steel castings
by ultrasonics, is typical in this respect. It is taken as an example in the reframing
of Standard specifications in terms of fuzzy sets. The interpretation of physical
data affects the decisions on quality as much as the actual data and can lead to the
rejection of products that might be acceptable and vice versa. Also the problem of
borderline cases is removed and therefore also the human element in the judgement
of such cases, which according to Fletcher [5] is the weakest link in a quality
assessment system. Recasting Standards rules in terms of fuzzy sets provides a
more natural system without the artificial sharp boundaries in the present form of
the Standard.

12.2. Method of Ultrasonic Testing of Ferritic Steel Castings Including
Quality Levels. BS 6208:1990

An important feature of BS 6208:1990 is the concept of zoning the casting wall
section into a sandwich of two equal outer zones (OZ) separated by a mid zone
(MZ) with sharp boundaries, as illustrated in Figures 12.1(a) and 12.1(b) for a
varying wall thickness. The zones are defined in the Standard as follows:

(i) Wall thicknesses up to and including 30 mm. The full wall thickness is
designated “the outer zone”.

(ii) Wall thicknesses greater than 30 mm. The wall thickness is divided into layers
designated outer and mid zones. The outer zones are defined as the lesser of

(a) one third of the casting section thickness, or
(b) 30 mm depth.

It will be noted in Figures 12.1(a) and 12.1(b) that there is an anomaly in the
zone depth for a section thickness of 30 mm. Clarification has been sought on this
matter, Harris [6].

In the published Standard, the defects detected by ultrasonic means are divided
into planar defects and non-planar defects, the latter are evaluated in the zones
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Figure 12.1. Zonal definitions (BS 6208:1990). (a) Illustration of zones for varying section
thickness. (b) Outer zone depth v. section thickness (not to scale).

Table 12.1. Planar defect limits.

Criterion Quality Level (QL)

1 2 3 4

Maximum indicated through-wall length
of a single defect mm 0 5 8 11

Maximum indicated area of a single defect mm2 0 75 200 360

Maximum total area of defects mm2 0 150 400 700

described above. The four quality levels (QLs) in both cases are defined by the size
and area of single defects and by their maximum total area. The QL criteria are
summarised below in Tables 12.1 and 12.2 for ease of reference. The QL criteria
for planar and non-planar defects imply that a casting may be assigned different
quality levels according to the several criteria. This is discussed in more detail
elsewhere, but in this work a method of finding a composite QL is proposed.

The test data for comparison with Tables 12.1 and 12.2 is not measured directly
but is inferred from electronic recordings of sonic echoes. The methodology is
indicated below.

12.3. Ultrasonic Defect Detection and Identification

In the ultra sonic method of inspection, sonic waves in the frequency range of
100 kHz to 20 MHz are generated by piezoelectric crystal probe are applied to the
surface of the specimen, Fletcher [5]. The probe is moved across the surface of
the component to provide a cross-section search (B-scan). This does not provide
a direct representation of the cross-section and any present discontinuities, as in
the case of an X-ray, but traces of wave intersections which include reflections,



164 Fuzzy Logic Applications in Engineering Science

Table 12.2. Non-planar defect limits.

Criterion Quality Level (QL)

1 2 3 4

Outer Zone

Maximum indicated single defect size (% of
zonal thickness) 20 20 20 20

Maximum indicated defect area mm2 250 1000 2000 4000

Maximum total defect t area mm2 5000 10000 20000 40000

Mid Zone

Maximum indicated single defect size (% of
section thickness) 10 10 15 15

Maximum total defect area mm2 12500 20000 31000 50000

refraction, diffraction, interference and modal conversion, which are analysed to
form the basis of defect diagnosis.

The ultrasonic radiation within a specimen is uncollimated and therefore a point
defect provides an arc trace which is normal to the incident wave beam direction
at that point. The result of moving the probe across the specimen surface is to
produce a set of intersecting arcs at the location of a point defect. A crack produces
intersections with an approximate plateau, whilst a crack tip, a pore or an inclusion
produce a more sharply defined location. The interpretation of the ultrasonic echoes
requires significant diagnostic skill and to reduce variability of interpretation the
task may be automated. An automated system is based upon an expert system
with integrated artificial intelligence which incorporates a knowledge based sys-
tem able to discount effects due to probe reverberations, back wall echoes and
other false effects. The system knowledge base can also normally discriminate
between symmetrical defects such as gas bubbles and asymmetrical flaws such
as cracks. The latter are much more dependent upon the relative probe position.
The knowledge base system identifies and integrates defect features detected by
the ultrasonic waves and from the knowledge base forms a conclusion about its
likely position, size, shape and nature (e.g., smooth or rough crack, inclusion or
porosity), Halmshaw [7]. Groups of small inclusions may appear to be cracks
and BS 6208:1990 specifies that defects less than 25 mm apart are infact to be
considered as a single larger defect. This is to be accounted for in the QL ratings
based upon defect size and maximum total defect area.

Some knowledge based systems include a learning function, which may be
either supervised or unsupervised. This assists, but does not eliminate uncertainty.
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Figure 12.2. Fuzzy zoning of the casting section.

12.4. Reframing BS6208:1990

12.4.1. FUZZY DATA

It will be evident from the above discussion that ultrasonic detection, identification
and classification of casting defects is not an exact science, but retains an element of
uncertainty which is not eliminated by automation. This is not reflected at present
in the reporting of defect parameters, which could be more realistically be reported
in terms of fuzzy sets. The current edition of BS 6208:1990 is only suited to data in
the form of crisp values, not fuzzy sets. In the following work attention is directed
towards reframing BS 6208:1990 in terms that will accept either fuzzy or crisp
input data. The method of treating fuzzy input data is given by Ross [8] and Harris
[9] and is not persued here.

12.4.2. ZONE PARTITIONING

In BS 6208:1990 zoning of the casting cross-section is an important factor for non-
planar defects in wall thicknesses above 15 mm, whilst for wall thicknesses less
than 15 mm there is no zoning. Thus for a change in wall thickness from slightly
less than 15 mm to slightly more than this value there is a step change in the treat-
ment of non-planar defects. This is a prominent example of the problems caused by
hard classification. The dichotomy is removed by defining two overlapping fuzzy
sets, the extent of the overlap can be conveniently made proportional to the wall
thickness between wall thickness limits of 15 mm and 90 mm in conformity with
the limits given in the Standard. This is illustrated in Figure 12.2.

At a wall section thickness of 90 mm the overlap of OZ and MZ becomes 23.5±
16 mm and thereafter is independent of the section thickness for larger values of
t . This proposed pattern is considered to incorporate the essential features of the
zoning pattern given in BS 6208:1990, but avoids the problems of artificial sharp
boundaries. For a typical value of the section thickness the zone composition would
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Table 12.3. Fuzzy zonal membership values.

z (mm)

t (mm) µ( ) 7.5 10 12.5 15 20 25 30 35 40

15 OZ 1

MZ 0

30 OZ 1 0.609 0.219 0

MZ 0 0.391 0.781 1

45 OZ 1 0.805 0.609 0.414 0.024 0

MZ 0 0.195 0.391 0.586 0.976 1

60 OZ 1 0.870 0.740 0.609 0.350 0.090 0

MZ 0 0.130 0.260 0.391 0.650 0.910 1

75 OZ 1 0.902 0.805 0.707 0.512 0.316 0.121 0

MZ 0 0.098 0.195 0.293 0.488 0.684 0.879 1

90 OZ 1 0.922 0.844 0.766 0.609 0.453 0.297 0.141 0

MZ 0 0.078 0.156 0.234 0.391 0.547 0.703 0.859 1

comprise an outer zone with a membership value ranging from unity at the surface
to a depth of 7.5 mm, then decreasing uniformly to zero at a depth z = (m + s). In
the same range of t values the mid zone would increase from zero to unity. For all
sections in the range of t between 15 and 90 mm, m is the cross-over point for the
OZ and MZ zones and 2s is their overlap. Different interpretations of the Standard
are possible, but the one proposed here in the range of section thicknesses between
15 and 90 mm is

s = 16(t − 15)/75 mm (12.1)

and

m = (s + 7.5) mm. (12.2)

At any section in the above range the membership values (µ) for the OZ and MZ
are given by

µ(OZ) = (m + s − z)/(m + s − 7.5) = (m + s − z)/25, (12.3)

µ(MZ) = 1 − m(OZ). (12.4)

Values are tabulated in Table 12.3 for reference.
Fuzzy membership values (µ) for OZ and MZ are tabulated for various depths

(z) and for a range of casting section thicknesses (t) in Table 12.3, whilst
corresponding values of s and m are tabulated in Table 12.4.
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Table 12.4. Values of m and s.

t (mm) m (mm) s (mm) (m + s) mm

15 7.5 0 7.5

30 10.7 3.2 13.9

45 13.9 6.4 20.3

60 17.1 9.6 26.7

75 20.3 12.8 33.1

90 23.5 16 39.5

Table 12.5. QL membership values for planar defect length.

Defect Length mm

QL 0 2 4 5 6 8 10 11

1 1 0.5 0

2 0 0.5 1 0.5 0

3 0 0.5 1 0.5 0

4 0 0.5 1 1

12.4.3. QUALITY LEVEL ASSESSMENT FOR PLANAR DEFECTS

Quality levels in the published BS 6208:1990 are defined in terms of crisp sets with
the effect that a slight change in a criterion (e.g. maximum through wall length of
a single defect) around a boundary value can make a step change in the quality
level. This makes calibration of test equipment and uniformity of interpretation,
whether human or automatic, a critical issue. In view of the previous discussion this
may make unreal demands, particularly if production is spread across one or more
countries. Casting the QLs and the criteria as fuzzy sets reduces their criticality
without impeaching their standard.

Considering the case of planar defects, and framing the defect length, defect
area and total defect area as fuzzy sets requires a choice of partitioning on the
universes of discourse. Here the cross-over points of the sets are chosen to reflect
the quality limits in the Standard. Figures 12.3(a), 12.3(b) and 12.3(c) illustrate the
resulting partitioning,

Membership values of the fuzzy sets illustrated in Figure 12.3 are shown in
Tables 12.5, 12.6 and 12.7. (It is understood that blank entries are zeros.)

EXAMPLE. As an example of the application of the fuzzy formulation of planar
defects, consider a defect with a measured length of 4.3 mm and an area of
23 mm2. By interpolation of Table 12.5, the membership values are found as
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Figure 12.3. Fuzzified planar defect criteria. (a) Defect length. (b) Defect area. (c) Total defect
area.

Table 12.6. QL membership values for planar defect area.

Defect Area mm2

QL 0 25 50 75 100 200 300 350

1 1 0.5 0

2 0 0.5 1 0.5 0

3 0 0.5 1 0.5 0

4 0 0.5 1 1

follows:

For the defect size of 4.3 mm:

µ(QL2) = 1 − 0.5 ∗ 0.3 = 0.85

and

µ(QL3) = 1 − µ(QL2) = 0.15.
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Table 12.7. QL membership values for planar total defect area.

Total Defect Area mm2

QL 0 50 100 150 200 400 600 700

1 1 0.5 0

2 0 0.5 1 0.5 0

3 0 0.5 1 0.5 0

4 0 0.5 1 1

Therefore the resultant QL is (0.85QL2, 0.15QL3). This may be defuzzified to give
a single value which is fractional. It may be noted that the QL is biased towards
QL2 with a smaller tendency towards QL3. Using the centroid method, the result
is

QL = (0.85 ∗ 2 + 0.15 ∗ 3)/(0.85 + 0.15) = 2.15.

For the defect area of 23 mm2:

µ(QL1) = 1 − 0.5 ∗ 23/25 = 0.54

and

µ(QL2) = 1 − µ(QL1) = 0.46.

The resultant QL in this case is (0.54QL1, 0.46QL2), which may also be
defuzzified as before, giving

QL = 1.46.

The defuzzified QL forms found above are useful for forming a composite QL as
will be shown later.

12.4.4. QUALITY LEVEL ASSESSMENT FOR NON-PLANAR DEFECTS

Unlike the case of planar defects, non-planar defect QLs are influenced by their
depth within the casting, the partitioning of the cross-section discussed in Sec-
tion 4.2 is therefore important. It will be noted that the maximum defect size criteria
for non-planar defects in Table 12.2 are given as a percentage of the zonal thickness
for the outer zone and as a percentage of the section thickness for the mid zone
rather than directly as for planar defects. For the outer zone the percentage is the
same for all QLs (20% of zonal thickness) and hence fuzzification is not relevant.
For the mid zone QL1 = QL2 (10% of section thickness), also QL3 = QL4 (15%
of section thickness), so there is one step change which could be fuzzified into two
sets, but it would not make a significant change to the outcome. Hence only the
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Table 12.8. Minimum and maximum non-planar defect sizes.

Defect Size mm (D)

t mm (m − s) mm (m + s) mm QL1 QL3

Min Max Min Max

15 7.5 7.5 1.5 1.5 1.5 1.5

30 7.5 13.9 2.14 3.00 2.14 3.75

45 7.5 20.3 2.78 4.50 2.78 6.00

60 7.5 26.7 3.42 6.00 3.42 8.25

90 7.5 39.5 4.70 9.00 4.70 12.75

Figure 12.4. Non-planar defect size against casting depth for a casting wall section of 45 mm.

effect of fuzzy zoning will be considered. The defect size criteria may therefore be
expressed as follows:

For QL1 (QL2) D = 0.2mµ(OZ) + 0.1tµ(MZ), (12.5)

For QL3 (QL4) D = 0.2mµ(OZ) + 0.15(t − 5)µ(MZ), (12.6)

where the membership values µ(OZ) and µ(MZ) are obtained from Figure 12.2 or
are interpolated from Table 12.3. The −5 factor is included in the right-hand side of
Equation (12.6) to avoid the anomaly present in the profiles shown in Figure 12.1.

Since in Equations (12.5) and (12.6) the membership values on the right-hand
side are linear in z and m is a constant for a given section, then a table of minimum
and maximum values of D for a range of values of t contains sufficient information
for D(z) to be evaluated. Sample values are given in Table 12.8 and are illustrated
in Figure 12.4.

EXAMPLE. Consider a non-planar defect of 4.32 mm at a depth of 17 mm in
a casting section thickness of 45 mm. The appropriate QL may be evaluated by
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finding the membership values of MZ and OZ, then calculating the D values
using Equation (12.5) for QL1 (or QL2) and Equation (12.6) for QL3 (or QL4).
Finally the measured D may be compared with the calculated values to ascertain
the membership of the adjacent quality levels.

Thus, the membership values of MZ and OZ are first calculated by noting from
Table 12.8 (for example) that (m + s) is 20.3 mm also that (m − s) is 7.5 mm.
Hence at a depth of 17 mm,

µ(MZ) = (17 − 7.5)/(20.3 − 7.5) = 0.742

and

µ(OZ) = 1 − 0.742 = 0.258.

From Equations (12.5) and (12.6) (noting that m = 13.9 mm)

D(QL1) = 0.2 ∗ 13.9 ∗ 0.258 + 0.1 ∗ 45 ∗ 0.742 = 4.056 mm

and

D(QL3) = 0.2 ∗ 13.9 ∗ 0.258 + 0.15 ∗ (45 − 5) ∗ 0.742 = 5.169 mm.

Now comparing the measured value D′ of 4.32 mm,

µ(QL1) = (5.169 − 4.32)/(5.169 − 4.056) = 0.763

and

µ(QL3) = 1 − 0.763 = 0.237.

Hence the QL of the given defect is (0.763QL2, 0.237QL3). (Note, QL1 = QL2.)
It is possible to defuzzify the QL using the centroid method giving

QL′ = 0.763 ∗ 2 + 0.237 ∗ 3 = 2.237.

This value will be used later.

12.4.5. QUALITY LEVEL ASSESSMENT FOR NON-PLANAR DEFECT AREAS

BS 6208:1990 specifies QLs for the maximum indicated defect areas in the outer
zone, but not in the mid zone. The fuzzified chart is shown in Figure 12.5. If the
QLs for the mid zone were also specified by agreement between supplier and
customer, then the principles outlined below could be applied to obtain the QL
distribution across the casting section.
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Figure 12.5. Fuzzified non-planar defect area criteria.

Figure 12.6. Fuzzified non-planar total defect area. (a) Outer zone. (b) Mid zone.

12.4.6. QUALITY LEVEL ASSESSMENT FOR NON-PLANAR TOTAL DEFECT

AREA

Following the same pattern as given above, the maximum total defect area rules for
QLs in Table 12.2 can also be reframed as fuzzy sets. Figures 12.5(a) and 12.5(b) il-
lustrate the partitioning of the total defect area that is compatible with the Standard
specification. For a given total defect area, the fuzzy set diagrams in Figures 12.6(a)
and 12.6(b) below will each be intersected twice yielding membership values µoa

and µob for Figure 12.6(a), and µmc and µmd for Figure 12.6(b). Then weighting
the OZ and MZ QLs with the zonal membership values µ(OZ) and µ(MZ) gives
the following expression for the resultant QL:

QL = µ(OZ)(µoaQLa, µobQLb) + µ(MZ)(µmcQLc, µmdQLd), (12.7)

where QLa, QLb, QLc, and QLd are the corresponding quality levels.
Membership values for the fuzzy sets illustrated in Figure 12.6(a) and 12.6(b)

are shown in Tables 12.9 and 12.10. (It is understood that blank entries are zeros.)
The application of Equation (12.7) is illustrated in the following example.
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Table 12.9. QL membership values for OZ non-planar total defect areas.

Total Defect Area * 10−4 mm2

QL 0 0.25 0.5 0.75 1.0 1.25 2.0 2.75 4.0

1 1 1 0.5 0

2 0 0.5 1 0.5 0

3 0 0.5 1 0.5 0

4 0 0.5 1 1

Table 12.10. QL membership values for MZ non-planar total defect areas.

Total Defect Area * 10−4 mm2

QL 0 0.875 1.25 1.625 2.0 2.375 3.100 3.825 5.0

1 1 1 0.5 0

2 0 0.5 1 0.5 0

3 0 0.5 1 0.5 0

4 0 0.5 1 1

EXAMPLE. As a representative calculation of how the QL fuzzy sets are used
in conjunction with the zoning shown in Figure 12.2, consider a casting section
thickness of 45 mm with a total defect area of 2.148 ∗ 10−4 mm2 at a depth of
15 mm from the surface.

By interpolation of Table 12.9 the OZ QL3 membership value = 0.5 − 0.5 ∗
0.148/0.75 = 0.4. Hence the OZ QL4 membership value is 1 − 0.4 = 0.6.

By interpolation of Table 12.10 the MZ QL2 membership value = 0.5 − 0.5 ∗
0.148/0.375 = 0.303. Hence the MZ QL3 membership value is 1−0.303 = 0.697.

The outer zone QL is therefore expressed by (0.4QL3, 0.6QL4). The inner zone
QL is similarly expressed by (0.303QL2, 0.697QL3). From Table 12.3, at a depth
of 15 mm in a 45 mm thick casting section the membership values are µ(OZ) =
0.414 and µ(MZ) = 0.586.

Hence the overall QL is given by

QL = 0.586(0.303QL2) + (0.414 ∗ 0.4 + 0.586 × 0.697)QL3 + 0.414(0.6QL4)

= 0.178QL2 + 0.574QL3 + 0.248QL4.

This quality level may be simplified by defuzzifying using the centroid method
giving

QL′ = (0.178 ∗ 2 + 0.574 ∗ 3 + 0.248 ∗ 4)/(0.178 + 0.574 + 0.248)

= 3.070.
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Thus QL is slightly greater than QL′3.

12.5. Compound Quality Level

In the above work a number of quality levels have been found for planar and
non-planar defects. The question then arises about the overall quality level of the
casting. BS 6208:1990 does not give any guidance on this aspect. It is therefore
proposed that an overall value may be found for n QLs by taking the nth root
of their product. Thus for the examples used above the following QLs have been
found:

Planar defects: Defect size 2.15
Defect area 1.46

Non-planar defects: Defect size 2.237
Total defect area 2.898

The consolidated QL is therefore,

QL′′ = (2.15 ∗ 1.46 ∗ 2.237 ∗ 3.070)1/4

= 2.150.

This lies between QL2 and QL3, and is biased towards QL2 with a small tendency
towards QL3.

12.6. Conclusion

It is shown in the above work how the specification of quality of steel castings based
upon ultrasonic testing may be formulated in terms of fuzzy sets. The British Stand-
ard BS 6208:1990 is used as the reference for this and it represents a case study
for reframing standards. The fuzzy set type of formulation avoids step changes and
hard boundaries between classes and is therefore a more natural representation of
parameter ranges. The difficulties associated with borderline cases is avoided and
therefore also the associated discrepancies which may arise from different product
sources. Quality control is improved in this way and also by having a more refined
smooth gradation of zones within the material rather than just two exclusive zones
as is the present case.

The methods outlined in this work can be incorporated in an automated system,
whilst for non-automated systems look-up tables of values could be provided which
make no additional demands on the skills of the operator and would infact require
no decision making for border line cases. There is more work involved with the
above treatment compared with the current Standard, but this would be hidden
from the operator if it was programmed for machine operation, then the output
would simply be quality levels.
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In BS 6208:1990 there is an anomaly at a section thickness of 30 mm, the above
treatment eliminates this.
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Chapter 13
On the Correlation of Statistical and Automatic
Process Control �

Keywords. Control chart, Fuzzy logic, FTA, Gauss, Zone rules, Random variations, Assignable
variations.

Abstract. A process control strategy is proposed based upon the twin themes of statistical and
automatic process control. The main categories of product fault are identified and related to the
capabilities of statistical and automatic control. Statistical control is supported by process fault
information from a process specific fault tree analysis, which provides the basis for a corrective
intervention protocol. Application is discussed in terms of fuzzy automatic control, which offers a
greater generality than conventional automatic control modelling. Prior publications which fuzzifies
statistical control zones are arguably incomplete in the application of logic propositions and also
in the identification of process faults. The present work proposes a general strategy, which may be
adapted to specific processes. Both control by variables and control by attributes may be included
within this treatment.

13.1. Introduction

Statistical process control (SPC) and automatic control have had historically sep-
arate paths. The former originated in the 20th century in light engineering mass
production quality control and the latter in the 19th century in servo-mechanisms,
an example of which is the well-known Watt govenor. In automatic control the two
main concerns are system tracking and system regulation, and a substantial corpus
of theory has been published encompassing both linear and non-linear systems, the
most general being for linear systems. Tracking and regulation studies differ mainly
in emphasis tather than fundamentals. In the present context, process regulation is
principal interest.

The ideal of maintaining a product stream which is always within specifica-
tion, be it comprising components, assemblies, bagged, packaged or containerised

� This material has been reproduced from the Proceedings of the Institution of Mechanical En-
gineers, Part B, Journal of Engineering Manufacture, 2003, Volume 217 (B1), pp. 99–109, “On the
correlation of statistical and automatic process control”, by J. Harris, with permission of the Council
of the Institution of Mechanical Engineers.
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solids, fluids or particulate matter from continuous or batch processes is generally
not easy to achieve. The product stream is subject to a range of influences such as:

(i) Input materials specification,
(ii) Process function and state variability,
(iii) Environmental conditions,
(iv) Operator human factors and variability,
(v) Reliability and quality of support services such as maintenance.

SPC is a well-known and widely publicised tool which is employed in pursu-
ance of product specification compliance through the regulation of the production
process. It will be obvious from the above list that SPC is generally effected by
external intervention, unlike automatic process control (APC) which is generally
a closed-loop and on-line sub-system of the process. These characteristics are
incorporated into the control strategy outlined in this work.

Control charts play a prominent role in SPC applications and although they
originated in the light engineering sector, their use has since spread to other areas
of production and processing, such as the chemical industry. The control chart
is conventionally demarcated by upper and lower control limits (UCL and LCL
respectively), which are often symmetrically placed about a central value line.

In the application of control charts, Davies [6] has emphasised that each case
needs to be considered in detail and treated on its own merits to determine the
appropriate form of control chart. This is also true in the wider context of SPC-
APC applications. At the commissioning stage it must be established in the first
place, whether or not the system is capable of providing an output of the requisite
specification at the desired rate. If it is, then some of the control function may
be exercised by APC. Those parts of the control function that cannot be managed
under APC, because of the type or range of action required, must be managed under
SPC and external intervention such as corrective maintenance or change of inputs,
for example. APC may, or may not, share a common sampling method with the
associated SPC.

In batch processing, steady state is not achieved and therefore successive
samples are not drawn from the same universe and are not statistically uniform,
though sample analysis may, of course, be compared with a specification. But
Davies [6] has drawn attention to the questionable validity of statistical conclusions
drawn under such circumstances.

For any control system of whatever type, the time-scale of the control (including
the sampling system) response must be of a smaller order of magnitude than that of
the production process for it to be effective. The process may need to be stopped for
SPC intervention, but APC intervention is normally on-line although it is known
that conventional linear APC can sometimes be applied to non-linear systems by
tuning using the Ziegler–Nichols rules, see for example Thompson [7], a fuzzy
logic representation is used in this work, providing fuzzy automatic process control
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(FAPC). Such a representation may be applied even when no mathematical model
of the system is known.

13.2. Statistical Process Control

13.2.1. BASIC CONCEPTS

If a system is under control it means that its output is statistically uniform and
that the product is all from the same universe. This does not mean that the product
mostly complies with its quality specification. For control by variables the qual-
ity will be in terms of a critical parameter target value (with a tolerance range),
typically a dimension, strength, weight or electrical resistance, for example. The
observed average of the output samples may not coincide with the target values,
or even if it does, the scatter in the values may be too great. The level of process
control must match the quality specification. If the former type of fault is noted, it
may be corrected by process adjustment under APC or SPC, but if the latter type
of fault occurs it may entail more fundamental action with off-line intervention,
perhaps up to system redesign. An alternative is to amend the specification to match
the level of control available.

In any application of SPC the hypothesis being tested is that any detected vari-
ation in the data is only due to stochastic processes. Two types of variation may be
observed in sample data:

(i) Chance causes. These are due to unassigned events within the process or small
sudden variations in environmental conditions, in inputs or in operator actions.

(ii) Assignable variations. These are due to accountable causes and usually pro-
duce identifiable patterns on a control chart. They are produced, for example,
by process deterioration, mechanical faults, a change in source of raw material
or process operator fatigue.

The effects of both the above types of variation are additive. In the unassignable
chance causes category, part of this may be due to random effects which can be
termed “noise”. It is well-known that integration reduces the effect of signal noise
and similarly, the effect of averaging sample values each of say, 5–10 production
units, will assist in mitigating the effects of random or periodic variations. Clearly,
the larger the sample size, the greater the reduction, but subject to control system
and economic efficiency. SPC cannot be applied to chance causes. In the case of
non-random variations in the system output, the identification and classification
of causes is important. Frequently, in system design a fault tree analysis (FTA) is
conducted which will provide vital information on the most likely causes of output
variations. If this is not available, the first step is to create those FTAs that are
relevant to the process. The FTAs will provide the most probable cause and effect
relationships which will guide process control.
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The SPC concepts outlined above are mainly concerned with the observation
of output variables data, where individual measurements are made on specimen
samples. The background theory is based upon a Gaussian (normal) probability
distribution. Where the data is in the form of the number of defective items per
output batch, the theory is based upon the binomial distribution, and where it is
in the form of the number of defects per unit output (as in metal, plastic sheet or
textile production), it is based upon the Poisson distribution. In the first case, this
is termed analysis by variables, whilst in the latter two cases it is termed analysis
by attributes. The SPC concepts are the same in all cases.

13.2.2. CONTROL CHARTS

The conventional use of control charts is as a tool to detect when observed vari-
ations of a critical given output parameter cease to arise solely from chance causes
and deterministic patterns become apparent. If this occurs, the data is no longer
statisically uniform and statisictal conclusions can no longer be reliably drawn. It is
then assumed that within the sample data only chance causes of variation exist, but
between sample groups assignable causes are present. Sample size and sampling
frequency must be chosen with care to minimise internal variation, to represent all
the process variations in the sample groups and to observe economic efficiency.

Normally, two types of chart are constructed: (i) a chart for sample averages and
(ii) a chart for dispersion (either standard deviation or range). Typical control chart
types are illustrated in Figures 13.1(a) and 13.11(b). Figure 13.1(a) is for sample
average and shows outer control limits (OCLs) and inner control limits (ICLs). For
a Gaussian (normal) probability, the OCLs are at xo = xa ± 3.06σ/

√√
n

√√
, whilst the

ICLs are at xi = xa ±1.96σ/
√

n
√√

, where σ is the standard deviation of the universe,
xa is the central value and n is the sample size. With these limits, 5% of the samples
will lie outside the ICLs, but only 0.2% will lie outside the OCLs. Sometimes a
simpler type of chart is used with only two control limits called the upper and
lower control limit (UCL and LCL respectively). These limits correspond closely
with the position of the two OCLs.

Generally, the control limits may be expressed as

Average: OCL xo = xa ± A(n)σ, (13.1)

ICL xi = xa ± B(n)σ. (13.2)

Range: OCL ro = ra ± C(n)σ, (13.3)

ICL ri = ra ± D(n)σ. (13.4)

Tabulated values of A(n), B(n), C(n) and D(n) are available in Davies [6] and
also for A(n) and C(n) for different probability distributions in Raz [11].
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Figure 13.1. Illustration of typical control charts. (a) Sample averages. (b) Sample disper-
sions.

13.2.3. INTERPRETATION OF OBSERVATIONS

The simplest rule of SPC is that a sample value lying outside the control limits in-
dicates a process out-of-control condition. If the causes of the observed fluctuations
about the central values are stochastic, then sample values have a 50% probability
of being on either side of the average. If a number of consecutive values fall on
one side of the average, then there is a probability that there is some deterministic
cause. For example, if seven consecutive values lie on one side of the average, the
probability of this is 0.78%, Raz [10], which shows that this is an unlikely event.
The probabilities of other patterns, based on a Gaussian distribution, can also be
found. These are further indicators of process out-of-control conditions.

If the sample average values continues to be biased on one side of the control
chart whilst the dispersion remains unchanged, then corrective action is indicated.
The process itself is however likely to be controllable. Figure 13.1 shows control
charts for a process that is out of control, but controllable. If, however, the disper-
sion is biased on the +ve side, but the sample means remain symmetrical, then a
more fundamental process fault has occurred which is unlikely to be controllable
by APC, but requires off-line correction by repair or replacement maintenance,
or perhaps process modification. If the dispersion is biased on the −ve side of
the average, it may be caused by a reduction in accuracy of the sampling and
inspection procedure, which again may require off-line correction. It is clear from
the above discussion that clusters of sample observations that are biased on one
side or the other of the central value of the sample averages or dispersion indicates
a process fault. This has been formalised by introducing zones within the OCLs at
±σ , ±2σ and ±3σ on both the sample average and dispersion charts, as shown
in Figure 13.2. For a Gaussian distribution, approximately 66.7% of the sample
values lie in the 0–σ (C) zone, 95% lie in the 0–2σ (C + B) zones and 99.75% lie
in the 0–3σ (C + B + A) zones.
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Figure 13.2. Zoning of the control limits. After Wang and Rowlands [5].

Figure 13.3. PI process control block diagram.

13.3. Fuzzy Automatic Process Control (FAPC)

For process regulation, proportional-integral control (PI) is commonly applied and
it is the type which could be employed in the present context. It is emulated in
fuzzy logic terms in the feed-back control described below. The block diagram in
Figure 13.3 shows the principle of PI-FAPC.

Tracking can also be achieved by the incorporation of a certain degree of de-
rivative control, but with the penalty of increasing instability. There is no general
theory of non-linear process control, however, FAPC as described below, can be
applied to any type of process, whether or not it is linear, or indeed has any known
mathematical model. Sensitivity and stability are important concepts in APC and
are discussed in standard control theory texts, see for example Thompson [7]. There
is no available stability theory for SPC or FAPC, each case must be studied on its
own merits.

Although both sample central values and dispersion are of interest in process
control, it is noted above that out-of-control dispersion is most likely to be caused
by a process fault requiring repair or replacement maintenance which is out of
the province of FAPC. Therefore, in the following discussion only control of the
average value is considered.
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Figure 13.4. Partitioning of the z space.

Figure 13.5. Partitioning of the δz space.

Harris [3] has discussed a typical second-order process model, which in finite
difference form is given by

zn+1 = a
(∑

δui + zn − bzn−1

)
. (13.5)

In the above equation, the δui are the incremental outputs of the PI fuzzy controller
and zn is given by

zn = 1 − xn, (13.6)

where xn is the scaled nth process output sample metric. This metric implies a
specific out-of-control process state.

Representations of z, δz and δu spaces are shown in Figures 13.4, 13.5 and 13.6
respectively. The z and δz comprise the control inputs. The QL ranges reflect qual-
ity levels in BS 6208. Interpreting product faults as quality levels enables supplier
penalties to be imposed.

A typical relational base for a PI type controller output is shown in Table 13.1.
The control process is governed by the operation of a fuzzy logic intersection

form of proposition:

IF Z AND δZ THEN U MIN CONSEQUENCE
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Figure 13.6. Partitioning of the δu space.

Table 13.1. Typical PI controller relational base.

δz

z A B C D E F

QL1 G H J J K L

QL2 H J J K K L

QL3 J J J K L L

QL4 J J K L L L

The operation is similar to the intersection operation in two-valued logic.
Since both Z and δZ yield two fuzzy sets each, there are four consequences,

which by logical union, comprise the fuzzy conclusion, see for example Harris [3].
The fuzzy conclusion may be defuzzified to provide the numerical value of the
control input signal to the production process.

13.4. Control Strategy

Consideration is now given to the correlation of SPC and FAPC for out-of-control
production process states to provide an overall process control strategy. Each
critical output parameter must be treated individually as described below.

There are four recognised types of control chart pattern that are assumed to
signal an out-of-control process state, Raz [10], these are:

(i) Outliers. A single sample beyond the OCLs (or UCL and LCL).
(ii) Trends. Consecutively increasing or decreasing sample values.
(iii) Biases. Consecutive sample values the majority of which are biased on one

side or other of the central value.
(iv) Oscillations. A repetitive pattern of consecutive sample values.
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Table 13.2. SPC/FAPC control strategy for
process patterns (i)–(iv).

Pattern FAPC SPC

(i) Outliers No Yes

(ii) Trends Limited Yes

(iii) Biases Limited Yes

(iv) Oscillations No Yes

An outlier is an isolated sample value and an unsuitable candidate for FAPC
which essentially takes pre-emptive action on subsequent process output, on the
basis of historical evidence. SPC with production halted for investigation is the
only possible course of action. Trends are caused by progressive process deteri-
oration, environmental changes or operator fatigue for example and these may
be compensated to a limited extent by FAPC. Biases that are not preceded by a
trend are typically caused by a change of operator, or in an input specification,
or a sudden shift in the process state or sampling system. In specific cases these
may also be compensated to a limited extent by FAPC action, but more generally
require external intervention. Whether oscillations can be compensated by FAPC
action depends upon their periodicity and amplitude. They will be partially masked
if rolling means samples are used.

Of the above control chart patterns (ii) and (iii), i.e. trends and biases are clearly
capable of (limited) FAPC, whilst (i) and (iv) are most clearly SPC candidates. The
proposed control strategy is summarised in Table 13.2.

Since FAPC is preferred to SPC intervention, then it is possible to consider
installation of FAPC for trends and biases, provided that it can be economically
justified. If trends or bias values become sufficiently large they become outliers,
the process is stopped and control action transfers from FAPC to SPC. A correlated
SPC/FAPC system is shown in the block diagram in Figure 13.7. The control
system comprises four modules for sample analysis, signal discrimination for
sorting data into FAPC or SPC processing, fuzzy control, an SPC expert function
and an FTA knowledge base. The functions of these units are shown in Figure 13.7.
The functions of the expert module for dispersion data are shown in some detail in
Figure 13.8. This module operates with IF-THEN logic operations, for example,
for dispersion data:

IF BELOW LIMIT THEN CHECK SENSOR FUNCTIONS SENSITIVITY.

IF ABOVE LIMIT THEN CHECK PROCESS ACCURACY COMPARED WITH LIMITS.

For central values the logic operations for a mechanical system might be:
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Figure 13.7. SPC/FAPC control strategy block diagram.

Figure 13.8. Expert module functions for dispersion data.

IF BELOW LIMIT THEN CHECK SENSOR FUNCTIONS

IF ABOVE LIMIT THEN CHECK (1) PROCESS FRICTION

(2) LOOSE CONNECTION

(3) EXCESSIVE WEAR

where the prioritisation would be obtained from process fault tree analysis (FTA)
knowledge base.
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Table 13.3. Rolling average values of sample lots without control.

Sample Lot 1 2 3 4 5 6 7 8 9 10

Aver. (mm) 5.12 4.54 4.28 4.20 4.16 4.20 3.92 3.84 4.80 5.60

Range (mm) 0.18 0.16 0.16 0.12 0.10 0.10 0.12 0.14 0.16 0.16

Figure 13.9. Cup/channel spot welding process.

An illustrative example of an SPC/FAPC strategy is discussed below.

EXAMPLE. Consider a simple process comprising the repetitive positioning and
spot welding of a cup (C) onto a sheet metal channel (B) as shown in Figure 13.9.
The cup is picked up from the storage bin and positioned over the channel by
a hydraulically driven actuator arm (A). The critical parameter is dimension
D, which has a target value of 5 mm. Small adjustments to the value of D are
governed by FAPC through a control valve. Larger adjustments to the cup position
are through the action of SPC guided maintenance intervention.

Typical observations of the rolling average and range of dimension D are shown in
Table 13.3. The sample lot values are of rolling averages of five items each.

The UCL and LCL of the central values are set at 6 mm and 4 mm respectively,
whilst those of the ranges are at 0.32 mm and 0.05 mm respectively. FAPC governs
the central values UCL-LCL (the in-control) zone, whilst SPC governs the external
(out-of-control) zone, as shown below in Figure 13.13(a).

Discussion

The central and range values listed in Table 13.3 are given in graphical form
in Figures 13.10 and 13.11 respectively. From Figure 13.11 it is clear that all
the range values are within limits, therefore no control action is required (only
SPC intervention is associated with range control). In the case of central values,
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Figure 13.10, FAPC would be initiated after sample lot 2. If the results after lot 6
were unaffected by the FAPC action, then SPC action would be initiated after lot
6. If FAPC had taken effect then lot 10 would become an outlier and SPC would
be triggered at that point. The current outcome of dynamic interaction between the
controls and the process would depend upon the ratio of the process time scale to
that of the FAPC action and sampling time scale. It may be noted that the effect of
using rolling averages and ranges is to suppress the effects of random fluctuations
and oscillations on the data values.

Figure 13.10. Rolling mean v. sample lot. Figure 13.11. Rolling range v. sample lot.

The relationship between the actuator arm position and the control signal, u,
from the FAPC module will generally be non-linear. For illustration it will be
assumed to be of the type given by Equations (13.5) and (13.6), with a = 0.5 and
b = 0.5. Thus,

Process governing equation:

zn+1 = 0.5
(∑

δui + zn − 0.5zn−1

)
, (13.7)

where, as before,

zn = 1 − xn. (13.6)

xn is the current scaled value of the error in Dn. Thus,

xn = (Dn − Da)/(Do − Da). (13.8)

Do is the initial value of D and Da is the specified target value of Dn.
For the present it will be assumed that the partitioning of the z, δz and δu spaces

are as shown previously in Figures 13.4, 13.5 and 13.6 respectively. Also, that the
PI controller relation at array base is given by Table 13.1.
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To illustrate the FAPC action, assume in Equation (13.3) that initial values are
zo = 0, z1 = 0.2 and δz1 = 0.2. Membership values of fuzzy sets for these may be
obtained from Figures 13.4, 13.5 and 13.6 respectively. Thus,

µQL1 = 0.5, µQL2 = 0.5, µD = 1.0.

The fuzzy logic proposition is expressed as follows:

IF Z AND Z THEN U MINIMUM CONSEQUENCE

QL1 D J 0.5, 1.0 0.5J

QL2 D K 0.5, 1.0 0.5K

The fuzzy conclusion is the union of the consequences, that is,

δU1 = 0.5J ∪ 0.5K. (13.9)

The above conclusion may be defuzzified by the application of Equation (13.10).
This provides the (scaled) numerical value of the control movement,

δu1 =
∑

µiδui

/ ∑
µi

= (0.5 ∗ 0.1 + 0.5 ∗ 0.2)/1.0 = 0.15. (13.10)

The value of z2 may be found from Equation (13.3), thus,

z2 = 0.5(δu1 + z1 − 0.5z0)

= 0.5(0.15 + 0.2 − 0) = 0.175.

Also,

δz2 = z2 − z1 = −0.025.

This completes the first cycle. The second cycle is similar, but in this case (and in
general), the proposition has four terms as follows:

µQL1 = 0.563, µQL2 = 0.437, µA = 0.25 and µB = 0.75.

IF Z AND δZ THEN δU MINIMUM CONSEQUENCE

QL1 A G 0.563, 0.25 0.25G

QL1 B H 0.563, 0.75 0.563H

QL2 A H 0.437, 0.25 0.25H

QL2 B J 0.437, 0.75 0.437J

Again, the fuzzy conclusion is the union of the consequences,

δU2UU = 0.25G ∪ 0.563H ∪ 0.437J. (13.11)
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Table 13.4. Evaluation of the scaled error x.

Cycle zn δzn δui �δui zn+1 xn

1 0.200 0.200 0.150 0.150 0.175 0.800

2 0.175 –0.025 0.285 0.435 0.255 0.825

3 0.255 0.080 0.224 0.659 0.413 0.745

4 0.413 0.158 0.384 1.043 0.613 0.587

5 0.613 0.200 0.103 1.146 0.776 0.387

6 0.776 0.163 0.140 1.286 0.878 0.224

7 0.878 0.102 0.128 1.414 0.952 0.122

8 0.952 0.074 0.126 1.540 1.023 0.048

Figure 13.12. Control of error with a fuzzy PI type controller.

Defuzzifying Equation (13.11) using Equation (13.10), as before, gives a second
numerical value of the control increment, δu2 = 0.285. Using Equation (13.7) to
find z3 gives z3 = 0.255. Hence, δz3 = 0.080.

This completes the second cycle. By repeating the above process, successive
values of the control increment, δu, and the corrections to the error, x = 1 − z,
may be found. The results for eight successive cycles are shown in Table 13.4 and
are displayed in Figure 13.12. After eight cycles the value of D is within 5% of its
target value of 5 mm.

By revising the assumed initial value, the cycling process could be repeated to
obtain improved controller input values to the process, if required.

SPC

According to the definitions and strategy adopted in this work, the SPC protocol
will be activated above and below the UCL and LCL respectively as shown in
Figure 13.13(a). If however the alternative OCLs and ICLs are defined, then the
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Figure 13.13. Illustration of SPC and FAPC action zones. (a) With UCL/LCL boundaries.
(b) With OCL/ICL boundaries.

protocol will be activated as shown in Figure 13.13(b). In the latter case there is
a soft boundary between the FAPC and SPC action zones which permits a graded
engagement of the external intervention under the SPC regime as the FAPC ap-
proaches the limit of its capabilities. This can be formalised by introducing fuzzy
sets to represent the FAPC and SPC zones.

SPC action is initiated by the diagnosis of sample average outliers and oscil-
lations in the discriminator module (Figure 13.7) and by out-of-control dispersion
data. Then by consultation with its library of causal rules for both sample averages
and ranges, the expert module is able to advise and prioritise remedial action. The
rules may be deduced from FTAs for each type of out-of-control event, such as
actuator position error. FTAs are usually created during the process design stage.
A simplified FTA for the actuator with sample failure probabilities in Figure 13.9
is illustrated in Figure 13.14.

The failure probabilities due to the prime faults are shown in Figure 13.14 and
these enable the ordering of the most likely causes of error in the actuator position.
The prime faults are shown by circles. Each of these could be taken in turn as
a top event for further FTA taking the analysis to greater levels of detail. From
Figure 13.14, the likelihood of position error may have the following causes, in
order of probabilities:

(i) Pump electric fault (EL),
(ii) Pump mechanical fault (ME),
(iii) Actuator valve fault (VA),
(iv) Hydraulic fluid leak (HY).

The above list also gives the preferred order of investigation for corrective main-
tenance. The order would be subject to revision in the light of further operating
experience. Rules for the causes of errors in the observed averages of the critical
parameter (in this case, dimension D in Figure 13.9) are summarised in Table 13.5.
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Figure 13.14. Simplified fault tree for the actuator average position error (top event).

Table 13.5. Summary of cause and
effect rules for averages.

Effect

Cause OU TR BI OS

EL # # #

ME # # #

VA # # #

HY # # #

OU = outlier, TR = trend, BI = bias,
OS = oscillations.

The dispersion causes are usually more fundamental, as discussed earlier. Com-
binations of the effects in Table 13.5 are possible. This type of information provides
the FTA knowledge base for the expert module, as shown in Figure 13.7. The expert
module functions, such as those shown in Figure 13.8 for example, are the basis of
logical propositions of the form

IF A AND B THEN C1 OR C2 OR C3 OR C4 etc.

EXAMPLE. Consider again the simple manufacturing process shown in
Figure 13.9 and the sample lot data shown in Figure 13.10, but in this case
attention is focused upon the two outliers provided by sample lots 7 and 8.
Assuming the ICL/OCL type of pattern shown in Figure 13.13(b).
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Discussion

If the earlier FAPC action has not changed the outlier nature of sample lots 7
and 8, they could be classed as “outlier plus bias”. From Table 13.5, the causes
are one or more of (EL, ME, VA, HY) in that order of probability. Corrective
maintenance checks in the same order would be advised by the expert module.
If however, the control strategy adopted is that illustrated in Figure 13.13(b), then
some of the sample values may fall within the FAPC/SPC overlap zone. This is the
zone of fading FAPC effectiveness and the expert module would advise SPC alert,
visual process check without process shut-down, moving on to process “stop” and
corrective maintenance if sample data enters the SPC only zone.

13.5. Conclusion

During the commissioning phase of a process it is necessary to establish the normal
average value of a given critical parameter. In some cases this is specified as a
design target value. In this phase a pre-production batch of some fifty to perhaps
several hundred samples will be checked after process adjustments to determine
process performance and an initial statistical profile of the products.

In the mature production phase, the critical parameter raw data includes “noise”
due to random events (including those within the sensing system) and oscillations
which are superimposed on the average values. Averaging by taking samples of
say, five consecutive products will provide some reduction of these effects. Their
effect is further reduced by finding rolling averages of say, five or more consecutive
samples to provide preliminary data somoothing.

For the control function the UCLs (or OCLs) are often located at an estimated
three standard deviations of the universe from the central value, this gives a 99.8%
sample inclusion based upon a Gaussian distribution of the population. The loca-
tion of the control limits (including the ICLs) is of course discretional, they may
be located at any selected point relative to the central value. By convention, sample
values beyond the UCL or LCL (or OCLs) are deemed to signal an “out-of-control”
process state and a requirement for off-line corrective intervention and the same
convention is adopted in this work. Within the UCL-LCL (or OCLs) boundaries
the process is subject to FAPC. Such a control strategy preserves the benefits of
each type and provides optimum control in terms of orocess plant productivity.

The problem of sampling and interpretation of the data is clearly complex and
needs careful consideration. Process control sampling and consequent control ac-
tion should be undertaken as near to the critical parameter production point as
possible to ensure the most effective and economical process operation. The control
response time, in terms of the number of production units, is then a minimum for a
given control strategy.
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13.6. Notation

a, b coefficients in Equation (13.5)
i ith fuzzy set, or non-current cycle number
n current cycle number, or sample number
ra central value of dispersions
ri inner control limit of dispersions
ro outer limit of dispersions
ui ith controller input
x sample average value
xa central value of averages
xo outer control limit of averages
xi inner control limit of averages
zn nth controller input

A(n), B(n), C(n),D(n) tabulated coefficients
U controller output fuzzy set
Z controller input fuzzy set

δ increment of . . .
µi membership value of the ith fuzzy set
σ standard deviation of the universe.

∪ logic union
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Chapter 14
Road Transport Fuzzy Logistics – A Case Study

Keywords. Zoning, Array, Groups, Similitude, Composition, Fuzzy logic.

Abstract. This work reports on an initial investigation for a management study of a small to medium
sized road transport service. The service offers a limited collection and delivery service for small and
large consignments. The geographical range of about 160 km radius is divided into seven zones of
equal area for the study. Using records of recent years, the service demands of each zone are assessed
and tabulated. This data bank is used to identify similar adjacent zones and also for the analysis of
linkage strengths between collection and delivery groups. It provides a rational basis for a higher
level of operational matching of demand with physical and manpower resources and also for a more
detailed financial management control.

14.1. Introduction

Small and medium sized enterprises (SMEs) have strengths in local knowledge
and contacts, in personal service and also in flexibility and adaptability. They are
weakest in economies of scale and in volume trading advantages which confer
economic strengths to large organisations, which are also able to sustain more
powerful advertising campaigns. One of the particularly damaging factors in the
current operations of SME transport companies is that of rising fuel costs and
this pressure is likely to increase in the foreseeable future. Whilst vehicle man-
ufacturers will continue to search for more efficient engine formats and also for
alternatives to the ubiquitous liquid fossil fuel energy sources, these are probably
longer term solutions. In the meantime, SME transport companies must seek ways
of improving their operating efficiencies as one way of ensuring their continued
survival in the short to medium term. It is not only profitability that is of interest,
but also sustainability, reputation and growth that are important. On a broader
front, this also leads to reduced pollution, which is one point where commercial
and environmental interests converge. This work is part of a business development
project to improve competitiveness by maximising the effective use of resources.

Developments in the theory and practice of manufacturing technology have
been very rapid and far reaching during the recent past. Amongst the more signific-
ant paradigms emerging have been the so-called soft computing methods, amongst
which are those of fuzzy logic, artificial neural networks and genetic algorithms.
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These enable studies to be conducted in an entirely different framework to before.
The present work is concerned with the application of similitude to a management
study on an SME road transport service, the antecedents of which are to be found
in the manufacturing technology sector, see for example Harris [1]. To date there
are few publications of fuzzy logic applications available in the service industries
sector, though clearly there is considerable scope for this. Background fuzzy logic
theory and applications may be found in the texts by Ross [2] and by Harris [3].
In applications of operational research, the transportation problem is treated as
a branch of linear programming in which special methods are used, because in
the normal linear programming methodology the number of decision variables,
which in general is the product of the number of sources and destination, and also
the number of constraints, which equals the sum of the number of sources and
constraints, often becomes unwieldy, as described by Lesso [4]. A basic heuristic
is the so-called North-West Corner rule for distributing limited numbers of undif-
ferentiated units from a finite number of sources to a finite number of destinations.
VogelŠs approximation method provides an alternative treatment. The assignment
problem is another special form of transportation problem in which an unlimited
number of differentiated units from a finite number of sources are assigned to a
finite number of destinations on a one-to-one basis. This may be solved by the
stepping stone or the Hungarian method as described, for example, by Urry [4]. (It
may also be solved by a similitude method, similar to the one described here, but
is not treated in this work). In the present work the transfer units are differentiated
and addressed, and in general sources and destinations are linked in a multiplicity
of ways. Moreover (in one case) there is a sorting operation.

14.2. Organisation Outline

The present operations of the Company under study, which would rank as an SME,
are based upon conventional districts surrounding the depot. The topography is
divided into a series of zones of increasing radius from the depot to the outer limit
of operations, which is about 160 km radius. Radial distances previously provided
a basic distance reference to be used in conjunction with a scaling parameter for
tariffs, but there are now software packages which facilitated journey distance
estimation and which are the main pricing tool.

The Company currently has a fleet of 28 vehicles, some suitable for light work
and some for heavier duty. About 24 vehicles are operational at any one time, the
non-functional part of the fleet being on maintenance or without drivers. Shortfalls
can be offset by vehicle hire, provision is also made for surplus capacity to be
hired out. Vehicle running time averages 6 hours per day, giving a road distance
capacity of about 288 km/day or 48 km/hour/vehicle. The fleet capacity is therefore
6,912 km/day. The target operation is 65% of capacity, that is, 4,493 km/day. The
average payload is 75 tonnes, the target fleet load is therefore 3,370 km tonnes/day.
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Figure 14.1. Zoning pattern of the operating area.

The break-even point is estimated as 60% of the target load, that is 2,022 km
tonnes/day.

The fleet operations are organised on a daily basis by the fleet manager, based
upon prior experience. Drivers usually prefer to operate regular districts and part
load aggregation is largely on an ad hoc basis, as is the general matching of demand
and resources.

Tariffs are based upon a two tier system. Tier 1 applies to smaller items up to
40 kg for individual items that have a girth plus length not exceeding 3.5 metres.
Tier 2 applies to larger consignments of up to 250 kg for individual items. These
two tariff tiers are maintained in the following study.

14.3. Analysis of Operations

14.3.1. BASIC DATA

The basic data comprises records of collection and delivery points and also the type
and size of consignment for each of the two tiers mentioned above. Records were
available for about ten years, but only the more recent records were relevant due
to changes in the road system and other developments. The records were recast
in terms of a grid of seven zones comprising; central, east, northeast, northwest,
west, southwest and southeast zones. These zones were numbered 1–7, as shown
in Figure 14.1.

The zones in Figure 14.1 are chosen to have equal areas, thus,

a2
1 = (a2

2 − a2
1)/6. (14.1)

Hence,

a2 = 71/2a1, (14.2)

where a1 is the radius of the inner (central) zone and a2 is the outer radius. Since
a2 is 160 km, then a1 is about 60 km.

Tables showing loading according to a weight/size formula of collection and de-
livery zones, scaled to the maximum values, are shown below. Table 14.1 shows the
results for small consignments, whilst the results for large consignments are shown
in Table 14.2. The horizontal rows in Tables 14.1 and 14.2 may be viewed as fuzzy
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Table 14.1. Tier 1. Small consignment relative loading.

Collection Delivery Zone

Zone 1 2 3 4 5 6 7 Total

1 0.224 0.630 0.597 0.046 0.099 0 0.099 1.695

2 0.450 0.531 0.458 0.024 0.812 0.694 0.471 3.440

3 Negligible 0

4 0.192 0.208 0.721 0.340 0.106 1.000 0.436 3.003

5 0.022 0.250 0.258 0.892 0.634 0.824 0.317 3.197

6 0.191 0.880 0.699 0.447 0.965 0.522 0 3.704

7 0 0.142 0 0.011 0.614 0.550 0.085 1.402

Table 14.2. Tier 2. Large consignment relative loading.

Collection Delivery Zone

Zone 1 2 3 4 5 6 7 Total

1 0.573 0.359 0.276 0.669 0.401 0 0.603 2.881

2 0.016 0.582 0.014 0.031 0.019 0.931 0.063 1.656

3 Negligible

4 0.860 1.000 0.619 0.692 0.587 0.575 0.463 4.796

5 0.529 0.456 0.842 0.411 0.618 0.751 0.608 4.215

6 0.552 0.210 0.636 0.566 0 0.596 0.194 2.754

7 Negligible

sets on the delivery zone universal of discourse. Correspondingly, the columns
in these tables may be viewed as fuzzy sets on the collection zones universe of
discourse.

In these tables, a value of zero or negligible means <0.001. The tabulated values
are scaled to the maximum at {4, 6} in Table 14.1 and {4, 2} in Table 14.2. The total
of each collection zone value is shown in the right-hand column, the maximum is
for Collection Zone 6 in Table 14.1 and Collection Zone 4 in Table 14.2. The
maximum tabulated value is for Delivery Zone 6 in Table 14.1 and it originates
from zone 4, whilst in Table 14.2 the maximum in Delivery Zone 6 originates from
zone 2.

Other features may be noted from Tables 14.1 and 14.2, but rationalisation of the
collection and delivery operations would not be easy by inspection and therefore a
systematic analysis of the data was undertaken as outlined below.
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14.3.2. SMALL CONSIGNMENT ANALYSIS

In the case of small consignments, delivery is normally made to the depot by the
consignor, but collection could be arranged. In either case, consolidation of the
consignments is sought each day on the basis of zoning shown in Figure 14.1,
aimed at maximising vehicle utilisation and other benefits described later. How-
ever, further information was sought on possible favourable combinations of zones
as an additional means of aggregating loads, both for collection and delivery.

As a first step, it was considered that both collection and delivery utilisation of
resources could be improved for part loads by pairing adjacent zones. The most
effective method of achieving this would be by pairing of the most similar zones
with respect to both collection and delivery. Therefore a similarity analysis of the
data in Tables 14.1 and 14.2 was conducted by columns and rows to provide a basis
for selection.

There are various methods of conducting similarity analysis, such as the
min/max, cosine amplitude, correlation coefficient and others, as described by Ross
[2]. All the methods should give corresponding results, though numerical values
will differ. The min/max method (called max-min by Ross [2]) was chosen in this
case as being computationally simple, but effective.

Consider similarity of two rows, i, k, of a table, such as Table 14.1. The
similarity metric rik is defined by

rik = min(xij , xkj )/ max(xij , xkj ) (14.3)

(summation over j : j = 1, . . . , n).
A similar operation is carried out on column pairs. Thus, considering columns

3 and 6 of Table 14.1, the similarity metric is given by

r36 = [min(0.597, 0) + min(0.458, 0.694) + min(0, 0) + min(0.721, 1.000) +
+ min(0.258, 0.824) + (0.699, 0.522) + min(0, 0.550)]/
[max(0.597, 0) + max(0.458, 0.694) + max(0, 0) + max(0.721, 1.00) +
+ max(0.258, 0.824) + (0.699, 0.522) + max(0, 0.550)]

= 0.449 etc.

and obviously, r36 = r63. Also rii = 1 for all i. The resulting array is therefore sym-
metrical and the leading diagonal entries are all unity. The similarity metric arrays
for columns (delivery zones) and rows (collection zones) are given in Tables 14.3
and 14.4 respectively.

At this stage, similitude may be sought from Tables 14.3 and 14.4. This is
accomplished by considering descending levels of cut-off (λ), commencing with
the highest value of rik and proceeding stepwise to successively lower levels of λ,
matching lower values of rik. Consider Table 14.3 with = 0.597 (i.e., r56), the cell
pattern in Table 14.5 is obtained.
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Table 14.3. Delivery zones similitude array.

1 2 3 4 5 6 7

1 1 0.409 0.395 0.201 0.252 0.226 0.443

2 1 0.461 0.282 0.519 0.361 0.421

3 1 0.330 0.373 0.449 0.433

R = 4 1 0.355 0.444 0.303

5 Sym 1 0.597 0.305

6 1 0.340

7 1

Table 14.4. Collection zones similitude array.

1 2 3 4 5 6 7

1 1 0.388 0 0.359 0.188 0.497 0.122

2 1 0 0.490 0.495 0.551 0.408

3 1 0 0 0 0

S = 4 1 0.503 0.445 0.255

5 Sym 1 0.447 0.439

6 1 0.338

7 1

Table 14.5. Similitude pattern for
λ ≥ 0.597 for R.

1 2 3 4 5 6 7

1 1

2 1

3 1

4 1

5 1 1

6 1 1

7 1
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Table 14.6. Similitude pattern for
λ ≥ 0.519 for R.

1 2 3 4 5 6 7

1 1

2 1 1

3 1

4 1

5 1 1 1

6 1 1

7 1

It may be noted from Table 14.5 that columns (and rows) {5, 6} are similar.
Next, the entries in Table 14.3 are selected with λ = 0.519 or above, the

corresponding cell pattern is shown in Table 14.6.
It may be noted that no similarities exist at this cut-off level. Proceeding

through successively lower cut-off levels, the next similarity pattern is found at
λ = 0.395 (i.e. r17), which means that columns (and rows) {1, 7} are similar. Then
at λ = 0.361, etc. A summary of the results is listed below.

λ Delivery Groups λ Delivery Groups

0.597 {5, 6} 0.433 –

0.519 – 0.421 –

0.461 – 0.409 –

0.449 – 0.395 {1, 7}
0.444 – 0.373 {1, 7}
0.443 {1, 7} 0.361 {1, 7}{2, 3}

This exhausts the possible similarity groups. Zone {4} remains to form its own
group.

The order of preference of adjacent zones is: {5, 6}, {1, 7}, {2, 3} and {4}.
By the same procedure the S array in Table 14.4 may also be searched for

similitude of the collection zones. This results in the following list of groups for
descending cut-off levels:



204 Fuzzy Logic Applications in Engineering Science

λ Collection Groups λ Collection Groups

0.551 {2, 6} 0.408 {2, 5}
0.503 {4, 5} 0.388 –

0.497 {4, 5} 0.359 {4, 6}
0.495 {4, 5} 0.338 {2, 6}
0.490 {4, 5} 0.255 {2, 4, 6}{5, 7}
0.447 {2, 5} 0.188 {2, 4, 5, 6}
0.445 {2, 4, 5} 0.122 {1, 2, 4, 5, 6, 7}
0.439 {2, 4}

There are no collections from Zone 3.
According to the above list, the most favourable adjacent pairs are {4, 5}, whilst

{1, 2} and {6, 7} only appear together at the cut-off level, λ = 0.122. The order
of preference of groups is: {4, 5} and {1, 2}, {6, 7}, the latter two being of equal
preference.

Similarity can however be intensified by a composition operation on each of the
above arrays. This operation drives the similitude arrays from a tolerance condition,
Ross [2], towards an equivalence condition. Composition is defined by

R2 = R ◦ R (14.4)

and

S2 = S ◦ S. (14.5)

For example,

r2
46 = max[min(0.201, 0.226), min(0.282, 0.361), min(0.330, 0.449),

min(1.000, 0.444), min(0.355, 0.597), min(0.444, 1.000),

min(0.303, 0.340)]
= 0.444 etc.

With a similar operation to find the S2 array. The resulting arrays are shown in
Tables 14.7 and 14.8.
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Table 14.7. Small load R2 array.

1 2 3 4 5 6 7

1 1 0.421 0.433 0.330 0.409 0.395 0.443

2 1 0.461 0.361 0.519 0.519 0.433

3 1 0.438 0.461 0.449 0.433

R2 = 4 1 0.438 0.444 0.340

5 Sym 1 0.597 0.421

6 1 0.433

7 1

Table 14.8. Small load S2 array.

1 2 3 4 5 6 7

1 1 0.407 0 0.407 0.407 0.407 0.388

2 1 0 0.495 0.495 0.551 0.439

3 1 0 0 0 0

S2 = 4 1 0.503 0.490 0.439

5 Sym 1 0.495 0.439

6 1 0.439

7 1

The above arrays are now searched for similitude, following the same method
as previously. The results of the search for delivery group similarities is listed
below.

λ Delivery Groups λ Delivery Groups

0.597 {5, 6} 0.449 {2, 3, 5, 6}
0.519 {2, 5, 6} 0.444 {2, 3, 5}
0.461 {2, 5} 0.443 {1, 7}{2, 3, 5}

The order of preference in this case is: {5, 6}, {2, 3}, {1, 7} and {4}, which is
achieved in 6 steps in this case, compared with 12 steps required for the R array
above.

The results obtained for the collection group similarities is listed below.
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λ Collection Groups λ Collection Groups

0.551 {2, 6} 0.439 {2, 4, 5, 6, 7}
0.503 {2, 6}{4, 5} 0.407 {2, 4, 5, 6}
0.495 {2, 5} 0.388 {1, 2, 4, 5, 6, 7}
0.490 {2, 4, 5, 6}

The order of preference in this case is: {4, 5}, {6, 7}, and {1, 2}. Seven steps are
required here compared with 15 for the S array above. This illustrates the higher
resolving power obtained by the introduction of the composition operation after
the initial similitude operation.

The forward linkage strengths between the Collection Zone Groups and the De-
livery Zone Groups express the relationship array between Collection and Delivery
Groups. The right-hand column in Table 14.1 shows the total relative load for each
Collection Zone. The linkage strength is defined as the fraction that is destined for
the respective Delivery Zones. Thus, considering the pairs already identified, for
the Collection Zone Group {6, 7} and the Delivery Zone Group {2, 3}, the linkage
strength (w) is

w{6,7}{2,3} = (r62 + r63 + r72 + r73)
/ ∑

(r6k + r7k), (14.6)

where the summation is carried out between the limits 1 ≤ k ≤ 7.

w{6,7}{2,3} = (0.880 + 0.142 + 0.699 + 0)/(3.704 + 1.402)

= 0.337 etc.

The complete array of linkage strengths for small consignment collection and
delivery is shown in Table 14.9.

From this table it may be noted that the strongest linkages are as follows:

Collection Zones Delivery Zones

1, 2 2, 3

4, 5 5, 6

6, 7 5, 6

Whilst for comparison, the weakest linkages are:
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Collection Zones Delivery Zones

1, 2 4

4, 5 1, 7

6, 7 1, 7

Table 14.9. Small consignment linkage strengths.

Collection Zone Delivery Zone Group

Group 5, 6 2, 3 1, 7 4 Row Total

1, 2 0.313 0.432 0.242 0.014 1.001

4, 5 0.414 0.232 0.156 0.199 1.001

6, 7 0.519 0.337 0.054 0.090 1.000

Total 1.246 1.001 0.452 0.303

Table 14.10. Large consignment R2 array.

1 2 3 4 5 6 7

1 1 0.587 0.680 0.845 0.661 0.586 0.661

2 1 0.587 0.587 0.586 0.501 0.587

3 1 0.680 0.594 0.586 0.661

R2 = 4 1 0.655 0.586 0.661

5 Sym 1 0.586 0.722

6 1 0.563

7 1

14.3.3. LARGE CONSIGNMENT ANALYSIS

There are similarities between large and small consignment analyses, but there is
an operational difference in that large consignments are usually delivered direct
without passing through the sorting process. There are also fewer opportunities for
part-load aggregation in the field.

The similarity analysis may proceed as illustrated above in Section 14.3.2. Thus,
the results of composition operations are shown below in Tables 14.10 and 14.11.
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Table 14.11. Large consignment S2 array.

1 2 3 4 5 6 7

1 1 0.571 0 0.571 0.571 0.571 0

2 1 0 0.571 0.571 0.571 0

3 1 0 0 0 0

S2 = 4 1 0.682 0.586 0

5 Sym 1 0.586 0

6 1 0

7 1

As before, the above R and S arrays are now searched for similarities with
descending cut-off levels. The respective lists of zonal groupings are shown below:

λ Delivery Groups λ Delivery Groups

0.845 {1, 4} 0.594 {1, 3, 4, 5, 7}
0.722 {1, 4}{5, 7} 0.587 {1, 3, 4, 7}
0.680 {1, 3, 4}{5, 7} 0.586 {1, 2, 3, 4, 5}
0.661 {1, 7}{3, 4} 0.563 {1, 3, 4, 5, 6, 7}
0.655 {1, 4, 7}

The order of preference of the zonal groups is: {1, 4}, {2, 3} and {5, 6, 7}. Zones 5,
6 and 7 may be paired as {5}{6, 7} or {5, 6}{7}.

Now considering the collection groups:

λ Collection Groups

0.682 {4, 5}
0.586 {4, 5, 6}
0.571 {1, 2, 4, 5, 6}

The order of preference of these groups is: {4, 5} and {1, 2} and {6}. The latter
groups are of equal order.

In this case, the array of linkage strengths for large consignment collection and
delivery zones is shown in Table 14.12.
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Table 14.12. Large consignment linkage strengths.

Collection Zone Delivery Zone Group

Group 1, 4 5, 6 2, 3 7 Row Total

1, 2 0.284 0.298 0.271 1.147 1.000

4, 5 0.277 0.281 0.324 0.119 1.001

6 0.406 0.216 0.307 0.070 0.999

Total 0.967 0.795 0.902 0.336 3.000

From this table it may be noted that the strongest linkages are as follows:

Collection Zones Delivery Zones

1, 2 5, 6

4, 5 2, 3

6 1, 4

Whilst for comparison, the weakest linkages are:

Collection Zones Delivery Zones

1, 2 7

4, 5 7

6 7

14.4. Organisational Effects

A property of the system outlined in this work is that it embodies intelligence based
upon records of prior operations. It is obvious that a judicious combination of zones
can be chosen for both part-load collection and part-load delivery, rather than an
ad hoc selection.

The linkage strengths shown as the relational array in Table 14.9 can be
translated into a best sorting operation layout, as shown in Figure 14.2.

There is a rough sorting process by maintaining the distinction between Collec-
tion Zones {1, 2}, {4, 5} and {6, 7}. By the array in Table 14.9, they can be linked
to the most likely destination. Zone 4 is the most unlikely destination, and can
therefore be located most remotely, but accessible to, the receiving points shown
in Figure 14.2. The collection zone receiving points can be associated closest to
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Figure 14.2. Sorting operation small consignment floor layout.

Table 14.13. Small consignment aggregate relative loads.

Collection Zone Delivery Zone Group

Group 2, 3 5, 6 1, 7 4 Total

1, 2 2.216 1.605 1.244 0.070 5.135

4, 5 1.437 2.564 0.967 1.232 6.200

6, 7 1.721 2.651 0.276 0.458 5.106

the destinations with which they have the strongest links to make an ergonomically
sound floor plan.

To balance resources and demands, the allocation of physical, financial and
manpower resources should be in proportion to the relative aggregate loading of
the various linkages that have been established in the above analysis. The data in
Tables 14.1 and 14.9 may be presented in aggregate form as shown in Table 14.13.

Comparing the heaviest with the most lightly loaded route, {6, 7}/{5, 6} route
is about 38 times that of the {1, 2}/{4} route. The allocation of physical, financial
and manpower resources should be allocated in proportion to the relative loading
shown in Table 14.13.

14.4.1. LARGE CONSIGNMENTS

In the case of large consignments, the sorting process is absent, though there may
be occasional load aggregation in the field, but not as frequently as in the case
of small consignments. The group loading pattern can influence the allocation of
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Table 14.14. Large consignment group relative loads.

Collection Zone Delivery Zone Group

Group 1, 4 2, 3 5, 6 7 Total

4, 5 2.492 2.917 2.531 1.071 9.011

1, 2 1.289 1.231 1.351 0.666 4.537

6 1.118 0.846 0.596 0.194 2.754

resources, as is the case for small consignments. The large consignment group
relative loading pattern is shown in Table 14.14.

Table 14.14 illustrates the relative market demand by zonal groups. Collection
Zone Groups {4, 5} clearly makes the major demand on operational resources and
delivery to Group {2, 3} takes the largest share. The least demand is from Collec-
tion Zone Group {6} and of this the least share is to Group {7} Delivery. A scaling
of this type is obviously useful when transferring resources up or down the demand
pattern to balance the overall load matching, as would also be the case for small
consignments.

The pattern in Table 14.14 (and also in Table 14.13) has finical accounting
implications, in that each Collection/Delivery Zone Group can be viewed as a cost
centre and the nett profitability of the twelve centres can be evaluated and compared
over a given period. On the administrative side, staff responsibility can be allocated
to groups in proportion to the market demand pattern and the costs apportioned to
each cost centre to be included in the evaluation of the nett profitability of each
centre. This enables a refined financial analysis to be conducted to identify the
least profitable centres.

14.5. Conclusions

Data records of a transport company have been reorganised on a cellular zonal
basis with seven zones of equal area. The records of small and large consignment
movements are then analysed on a similarity basis, backed up by composition
which can reduce the searching for similarity. This results in zonal pairs display-
ing the greatest similarity. The operation has been applied to both Collection and
Delivery Zones and enables linkage strengths between the two types of zone to be
evaluated. The relative service demands by the Collection Zone Groups for small
consignments is portrayed in Table 14.13, whilst that for large consignments is
shown in Table 14.14. The management benefits of the analysis are:

1. Efficient aggregation of part loads,
2. An enhanced floor layout for small consignment sorting,
3. A basis for apportioning of physical resources for load matching,
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4. A basis for the allocation of financial resources,
5. Scaling of the allocation of available operational and administrative manpower,
6. The identification of cost centres for comparative profitability analysis,
7. The more formalised presented here renders the business less vulnerable to the

effects of management staff changes.

This methodology extracts the maximum benefit from the data records and
provides a more intelligent system than the alternative non-cellular zones and less
formalised structure. Finer detail could be implemented by reducing the grid size of
the zones in Figure 14.1, which would mean increasing the number of zones. This
would increase the numerical work, but there is no problem about computerising
the process.

It is likely that when fully implemented, the system will be based upon a grid
of nineteen zones of equal area comprising a central zone surrounded by a ring of
6 zones and an outer ring of 12 zones. The radial boundaries being at 37, 97 and
160 km respectively.

14.6. Notation

λ cut-off level

a1 inner zone radius
a2 outer zone radius
rik similarity metric
xik array entry
w linkage strength

R delivery zone array
S collection zone array
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