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Foreword 

The path-breaking work of van Neumann-Morgenstern, published in 1946, opened 
the door to a massive intrusion of sophisticated mathematical theories into eco-
nomics, games and decision analysis. In the years that followed, many great minds 
and Nobel Prize winners, among them John Nash, Gerard Debreu, John Harsanyi,  
Herbert Simon and Kahneman and Tversky, contributed greatly to a better under-
standing of decision analysis and economic behavior. Today, we are in possession 
over vast resource, call it R for short, of mathematical concepts, methods and  
theories for addressing problems and issues in economics, decision analysis and 
related fields. Viewed against this backdrop, a puzzling question arises. Why are 
sophisticated mathematical theories of limited use in dealing with problems in  
realistic settings? 

There is a reason, in large measure R is based on classical, Aristotelian, bivalent 
logic. Bivalent logic is intolerant of imprecision and partiality of truth. What follows 
is that bivalent logic is not the right logic to serve as a foundation for mathematical 
theories of economic behavior and decision analysis—realms in which uncertainty, 
imprecision and partiality of truth is the norm rather than exception. Here is a simple 
example. Consider the standard, bivalent-logic-based definition of recession. An 
economic system is in a state of recession if there is a decline in GDP in two succes-
sive quarters. Based on this definition, the National Bureau of Economic Research 
announced in September 2010 that the recession came to an end in June 2009.  
The millions of people who have lost jobs and homes since then would find it hard 
to agree with this conclusion. The problem is that recession is not a bivalent con-
cept—it is a matter of degree, as are many other concepts in economics and decision 
analysis. Realistically, recession should be associated with a Richter-like scale. 
What is widely unrecognized within the economics community is that bivalent logic 
is intrinsically unsuitable for construction of realistic models of economic systems. 
To deal with uncertainty, imprecision and partiality of truth, what is needed is fuzzy 
logic—a logic in which everything is or is allowed to be a matter of degree. Viewed 
in this perspective, Professor Aliev's work, "Fundamentals of the Fuzzy-Logic-
Based Generalized Theory of Decisions" is a major contribution which shifts the 
foundations of decision analysis and economic behavior from bivalent logic to fuzzy 
logic. This shift opens the door to construction of much more realistic models  
of economic behavior and decision systems. The importance of Professor Aliev's 
generalized theory of decision-making is hard to exaggerate. 

Professor Aliev's theory breaks away from traditional approaches. It contains 
many new concepts and ideas. To facilitate understanding of his theory, Professor 
Aliev includes in his book two introductory chapters. The first chapter is a  
succinct exposition of the basics of fuzzy logic, with emphasis on those parts of 
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fuzzy logic which are of prime relevance to decision analysis. Professor Aliev is a 
prominent contributor to fuzzy logic and soft computing, and is a highly skilled 
expositor. His skill and expertise are reflected in this chapter. 

As a preliminary to exposition of his theory, Professor Aliev presents in Chap-
ter 2 a highly insightful review and critique of existing approaches—approaches 
which are based on bivalent logic. Among the theories which are discussed and 
critiqued in this chapter is the classical van Neumann-Morgenstern expected utili-
ty theory, and Kahneman-Tversky prospect theory. The principal problem with 
these theories is that they employ unrealistic models. In particular, they do not ad-
dress a pivotal problem—decision-making with imprecise probabilities. Such 
probabilities are the norm rather than exception in realistic settings. 

Exposition of Professor Aliev's theory begins in Chapter 3. A key concept in 
this theory is what Professor Aliev calls vague preference—preference which in-
volves a mix of fuzzy and probabilistic uncertainties. In this context, a significant 
role is played by linguistic preference relations, exemplified by A is strongly pre-
ferred to B. The concept of a linguistic preference relation was introduced in my 
1976 paper, “The linguistic approach and its application to decision analysis,”  
followed by 1977 paper, “Linguistic characterization of preference relations as a 
basis for choice in social systems,” but Professor Aliev's treatment goes far be-
yond what I had to say in those papers. An example of a question which arises: 
How does the concept of transitivity apply to linguistic preference relations? The 
concept of a vague preference relation is intended to serve as a better model of 
preference in realistic settings. 

The core of Professor Aliev's generalized fuzzy-logic-based decision theory is 
described in Chapter 4. Here one finds detailed analyses of decision-making with 
various kinds of imperfect information. An important issue which is addressed is 
decision-making based on information which is described in natural language. 
Another important issue is decision-making with imprecise probabilities. Impre-
cise probabilities is a subject which is on the periphery of probability theory. 
There is a literature but there is a paucity of papers in which the problem of deci-
sion-making with imprecise probabilities is addressed. There is a reason. The 
problem of decision-making with imprecise probabilities does not lend itself to so-
lution within the conceptual structure of theories based on bivalent logic. 

In an entirely new direction, Professor Aliev describes an application of  
f-geometry to decision analysis. The concept of f-geometry was introduced in my 
2009 paper “Toward extended fuzzy logic—A first step.” In f-geometry, figures are 
drawn by hand with a spray-pen, with no drawing instruments such as a ruler and 
compass allowed.  I am greatly impressed by Professor Aliev's skillful application of 
f-geometry to decision analysis. 

Venturing beyond decision analysis, Professor Aliev develops a theory of fuzzy 
stability. In itself, the theory is an important contribution to the analysis of behav-
ior of complex systems. Professor Aliev concludes his work with applying his 
theory to real-world problems in medicine, production and economics. This part of 
his book reflects his extensive experience in dealing with problems in planning 
and control of large-scale systems. 
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In conclusion, Professor Aliev's work may be viewed as a major paradigm 
shift—a paradigm shift which involves moving the foundation of decision analysis 
from bivalent logic to fuzzy logic. This move opens the door to construction of 
much better models of reality—reality in which uncertainty and imprecision lie at 
the center rather than on the periphery. To say that Professor Aliev's work is a ma-
jor contribution is an understatement. Professor Aliev, the editor of the Series, 
Professor Kacprzyk, and Springer deserve a loud applause for producing a work 
which is certain to have a major and long-lasting impact. 

 
 

Berkeley, California  Lotfi A. Zadeh 
August 28, 2012 
 
 
 
 
 
 
 
 
 
 
 
 



Preface 

Every day decision making and decision making in complex human-centric systems 
are characterized by imperfect decision-relevant information. One main source of 
imperfect information is uncertainty of future, particularly, impossibility to exactly 
predict values of the variables of interest, actual trends, partially known present ob-
jective conditions etc. Even when it is sufficiently clear how events are developing, 
unforeseen contingencies may always essentially shift their trend. As a result, the 
prevailing amount of relevant information is carried not at a level of measurements 
but at a level of subjective perceptions which are intrinsically imprecise and are of-
ten described in a natural language (NL). The other source of imperfect information 
is behavior of a decision maker (DM) influenced by mental, psychological and other 
aspects like feelings, emotions, views etc. The latter are not to be described by num-
bers, information about them is imprecise, partially true and partially reliable,  
approximate, and, in general, is also described in NL. Due to imperfectness of in-
formation and complexity of decision problems, preferences of a DM in the real 
world are vague. Main drawback of the existing decision theories is namely incapa-
bility to deal with imperfect information and modeling vague preferences. Actually, 
a paradigm of non-numerical probabilities in decision making has a long history and 
arose also in Keynes’s analysis of uncertainty. There is a need for further generaliza-
tion – a move to decision theories with perception-based imperfect information de-
scribed in NL on all the elements of a decision problem. Nowadays there are no 
economic models that provide sufficiently feasible descriptions of reality and new 
generation of decision theories is needed. Development of new theories is now pos-
sible due to an increased computational power of information processing systems 
which allows for computations with imperfect information, particularly, imprecise 
and partially true information, which are much more complex than computations 
over precise numbers and probabilities. 

Thus, a new generation of decision theories should to some extent model this 
outstanding capability of humans. This means that the languages of new decision 
models for human-centric systems should be not languages based on binary logic 
and probability theory, but human-centric computational schemes able to operate 
on NL-described information. 

In this book we suggest the developed decision theory with imperfect decision-
relevant information on environment and a DM’s behavior. This theory is based 
on the synthesis of the fuzzy sets theory as a mathematical tool for description and 
reasoning with perception-based information and the probability theory. The main 
difference of this theory from the existing theories is that it is based on a general 
statement of a decision problem taking into account imperfect information on all 
its elements used to describe environment and a behavior of a DM. 
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The book is composed of 8 chapters. The first chapter covers foundations of 
fuzzy sets theory, fuzzy logic and fuzzy mathematics which are the formal basis of 
the decision theory suggested in the present book.  

Chapter 2 is devoted to review of the main existing decision theories. A 
 description of a decision making problem including alternatives, states of nature, 
outcomes, preferences is explained. The key decision theories as von Neumann-
Morgenstern Expected Utility, Subjective Expected Utility of Savage, Maximin 
Expected utility and other multiple priors-based utility models, Choquet Expected 
Utility, Cumulative Prospect theory and others are discussed in terms of the under-
lying motivations, features and disadvantages to deal with real-world imprecise 
and vague information. 

Chapter 3 is devoted to uncertain (vague) preferences and imperfect information 
commonly faced with in real-world decision problems. The existing approaches like 
fuzzy preference relations, linguistic preference relations, probabilistic approaches to 
modeling uncertain preferences, incomplete preferences and basic types of imperfect 
information are explained. The motivation to use the fuzzy set theory for modeling 
uncertain preferences and imperfect information is provided.  

Fuzzy logic-based theories of decision making with information described in nat-
ural language (NL) are suggested in Chapter 4. In Section 4.1 we suggest the theory 
in which vague preferences and a mix of fuzzy and probabilistic uncertainties are 
treated by a fuzzy-valued Choquet integral-based utility function. In section 4.2 two 
models of fuzzy logic-based multi-agent decision making are suggested. Section 
4.3 presents alternative basics of operational approaches to decision making under 
interval and fuzzy uncertainty. Section 4.4 is devoted to a fuzzy optimality princi-
ple based approach of decision making under imperfect information without utility 
function. The approach utilizes a direct comparison of alternatives that may be 
more intuitive and reduces a sufficient loss of information related to the use of 
utility function for encoding preferences. 

In economics, as in any complex humanistic system, motivations, intuition, 
human knowledge, and human behaviour, such as perception, emotions and 
norms, play dominant roles. In Chapter 5 we suggest a new approach to behavioral 
decision making which is based on a joint consideration of an environment condi-
tions and a human behavior at the same fundamental level. In contrast to the basics 
of the existing behavioral decision theories, this allows for a transparent analysis 
of behavioral decision making. There are deeper and more subtle uncertain rela-
tionships between well-being and its determinants. In this chapter we consider two 
approaches which are based on fuzzy and probability theories to modeling of eco-
nomic agents. 

Sometimes perception-based information is not sufficiently clear to be modeled 
by means of fuzzy sets. In contrast, it remains at a level of some cloud images 
which are difficult to be caught by words. However, humans are able to make de-
cisions based on visual perceptions. Modeling of this outstanding capability of 
humans, even to some limited extent, becomes a difficult yet a highly promising  
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research area. This arises as a motivation of the methods of decision making  
suggested in Chapter 6. In this chapter we use Fuzzy Geometry and the extended 
fuzzy logic to cope with uncertain situations coming with unprecisiated decision-
relevant information. 

Many economic dynamical systems naturally become fuzzy due to the uncer-
tain initial conditions and parameters. Stability is one of the fundamental concepts 
of such type of complex dynamical systems as physical, economical, socio-
economical, and technical systems. In Chapter 7 we introduce and develop a  
Generalized Theory of Stability (GTS) for analysis of complex dynamical systems 
described by fuzzy differential equations (FDE). Different human-centric defini-
tions of stability of dynamical systems are introduced. We also discuss and con-
trast several fundamental concepts of fuzzy stability, namely fuzzy stability of  
systems (FS), binary stability of fuzzy system (BFS), and binary stability of sys-
tems (BS) by showing that all of them arise as special cases of the proposed GTS. 
We also apply the obtained results to investigate stability of an economical  
system, including decision making in macroeconomic system. 

Applications of the suggested fuzzy logic-based generalized theory of decisions 
to solving benchmark and real-world problems under imperfect information in 
production, medicine, economics and business are presented in Chapter 8. 

We hope that the present book will be useful for researchers, practitioners and 
anyone who is interested in application of expressive power of fuzzy logic to solv-
ing real-world decision problems. The book is self containing and represents in a 
systematic way the suggested decision theory into the educational systems. The 
book will be helpful for teachers and students of universities and colleges, for 
managers and specialists from various fields of business and economics, produc-
tion and social sphere. 

We are grateful to Professor Lotfi Zadeh, for his suggestion to write this book, 
for his permanent support, invaluable ideas and advices. 

I would like to express my thanks to Professors J. Kacprzyk, W. Pedrycz,  
V. Kreinovich, I. Turksen and B. Fazlollahi for helpful discussions on various  
topics of decision theories. Special thanks are due to Dr. O. Huseynov, A. 
Alizadeh and B. Guirimov for many enjoyable and productive conversations and  
collaborations. 

 
 
 Rafik Aziz Aliev 
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Chapter 1 
Fuzzy Sets and Fuzzy Logic 

1.1   Fuzzy Sets and Operations on Fuzzy Sets 

Definition 1.1 Fuzzy Sets. Let X  be a classical set of objects, called the un-
iverse, whose generic elements are denoted .x  Membership in a classical subset 

A  of X  is often viewed as a characteristic function Aμ  from A  to { }0,1  such 

that  

1
( )

0A

iff x A
x

iff x A
μ

∈
=  ∉

 

where { }0,1  is called a valuation set; 1 indicates membership while 0 - non-

membership. 

If the valuation set is allowed to be in the real interval [ ]0,1 , then A  is called a 

fuzzy set denoted A [2,3,6,8,57,58,114,133], ( )
A

xμ  is the grade of  membership 

of x  in A  

: [0,1]
A

Xμ →   

As closer the value of ( )
A

xμ  is to 1, so much x  belongs to A .  

A  is completely characterized by the set of pairs. 

{( , ( )),   }
A

A x x x Xμ= ∈
   

Fuzzy sets with crisply defined membership functions are called ordinary fuzzy 
sets. 

Properties of Fuzzy Sets 

Definition 1.2. Equality of Fuzzy Sets. Two fuzzy sets A  and B are said to be 
equal if and only if  

   ( ) ( )    .
BA

x X x x A Bμ μ∀ ∈ = = 
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Definition 1.3. The Support and the Crossover Point of a Fuzzy Set. The Sin-
gleton. The support of a fuzzy set A  is the ordinary subset of X  that has nonzero 

membership in A : 

( ){ }+0suppA=A , 0Ax X xμ= ∈ >    

The elements of x  such as ( ) 1 2
A

xμ =  are the crossover points of A .  

A fuzzy set that has only one point in X  with 1
A

μ =  as its support is called a 

singleton.  

Definition 1.4. The Height of a Fuzzy Set. Normal and Subnormal Sets. The 

height of A  is 

( ) ( )sup
A

x X

hgt A Xμ
∈

= 
  

 

i.e., the least upper bound of
A

 ( )xμ  . 

A  is said to be normalized iff x X∃ ∈ , ( ) 1
A

xμ = . This definition implies 

( ) 1hgt A = . Otherwise A  is called subnormal fuzzy set. 

The empty set ∅  is defined as 

, ( ) 0,of course ( ) 1Xx X x x X xμ μ∅∈ = ∀ ∈ =  

Definition 1.5. α-Level Fuzzy Sets. One of important way of representation of 
fuzzy sets is α -cut method. Such type of representation allows us to use proper-
ties of crisp sets and operations on crisp sets in fuzzy set theory. 

The (crisp) set of elements that belongs to the fuzzy set A  at least to the degree 
α  is called the α -level set: 

( ){ },
A

A x X xα μ α= ∈ ≥  
 

( ){ },
A

A x X xα μ α= ∈ >  is called "strong α -level set" or "strong α -cut".  

Now we introduce fuzzy set ,Aα defined as  

( ) (  )A x A xα
α α=  (1.1) 

Then the original fuzzy set A  may be defined as 
[0,1]

A Aα
α∈

=  .   denotes the 

standard fuzzy union. 

Definition 1.6. Convexity of Fuzzy Sets. A fuzzy set A  is convex iff 

1 2 1 2( (1 ) ) min( ( ), ( )) 
A A A

x x x xμ λ λ μ μ+ − >    (1.2) 
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for all 1 2, ,  [0,1]x x R λ∈ ∈ , min denotes the minimum operator. 

Alternatively, a fuzzy set A  on R  is convex iff all its α -level sets are convex 
in the classical sense. 

Definition 1.7. The Cardinality of a Fuzzy Set. When X  is a finite set, the sca-

lar cardinality A of a fuzzy set A  on X  is defined as  

( )
A

x A

A xμ
∈

= 


   

Sometimes A  is called the power of A . A A X=   is the relative cardinality. 

When X  is infinite, A is defined as 

( )
AX

A x dxμ=  
   

Definition 1.8. Fuzzy Set Inclusion. Given fuzzy sets ( ),A B F X∈   A  is said to 

be included in ( )B A B⊆  or A  is a subset of B  if , ( ) ( )
BA

x X x xμ μ∀ ∈ ≤  . 

When the inequality is strict, the inclusion is said to be strict and is denoted as 

A B<  . 
Let consider representations and constructing of fuzzy sets. It was mentioned 

above that each fuzzy set is uniquely defined by a membership function. In the li-
terature one can find different ways in which membership functions are 
represented. 

List Representation. If universal set { }1 2, , , nX x x x=   is a finite set, member-

ship function of a fuzzy set A  on X  ( )
A

xμ  can be represented as table. Such ta-

ble lists all elements in the universe X  and the corresponding membership grades 

as shown below 

1 1
1

( ) / ( ) / ( ) /
n

n n i iA A A
i

A x x x x x xμ μ μ
=

= + + =  
    

Here symbol / (slash) does not denote division, it is used for correspondence be-
tween an element in the universe X  (after slash) and its membership grade in the 

fuzzy set A  (before slash). The symbol + connects the elements (does not denote 
summation). 

If X  is a finite set then 

( ) /
A

X

A x xμ=  
 . 

Here symbol 
X
 is used for denoting a union of elements of set X . 
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Graphical Representation. Graphical description of a fuzzy set A  on the un-

iverse X  is suitable in case when X  is one or two-dimensional Euclidean space. 

Simple typical shapes of membership functions are usually used in fuzzy set 

theory and practice (Table 1.1). 

Fuzzy n  Cube Representation. All fuzzy sets on universe X  with n elements 

can be represented by points in the n-dimensional unit cube – n -cube. Assume that 

universe X  contains n  elements 1 2{ , ,..., }nX x x x= . Each element , 1,ix i n=  

can be viewed as a coordinate in the n dimensional Euclidean space. A subset of 

this space for which values of each coordinate are restricted in [ ]0,1 is called n-

cube. Vertices of the cube, i.e. bit list ( )0,1,...,0 represent crisp sets. The points  

inside the cube define fuzzy subsets. 

Analytical Representation. In case if universe X  is infinite, it is not effective to 

use the above considered methods for representation of membership functions of a 

fuzzy sets. In this case it is suitable to represent fuzzy sets in an analytical form, 

which describes the shape of membership functions. 

There are some typical formulas describing frequently used membership functions 
in fuzzy set theory and practice. 

For example, bell-shaped membership functions often are used for representa-
tion of fuzzy sets. These functions are described by the formula: 

2( )
( ) exp

A

x a
x c

b
μ  −= − 

 
  

which is defined by three parameters, a, b and c. 
In general it is effective to represent the important typical membership func-

tions by a parametrized family of functions.The following are formulas for de-
scribing the 6 families of membership functions 

2 1
1 1( , ) [1 ( ) ]

A
x c c x aμ −= + −  (1.3) 

1

2 2( , ) 1
A

x c c x aμ −
 = + −   (1.4) 

1

3 3( , , ) 1
d

A
x c d c x aμ

−
 = + −   (1.5)

 

4 4( , , ) exp
d

A
x c d c x aμ  = − −   (1.6)
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Table 1.1 Typical membership functions 

 

{ }5 5( , ) max 0, 1
A

x c c x aμ  = − −   (1.7)
 

2

6 6

( )
( , ) exp

A

x a
x c c

b
μ  −= − 

 


 
(1.8)

 

Type of 
Membership 

function 

Graphical 
Representation 

Analytical 
Representation 

     MF

Triangular
 

 
 
 
 
 
 

( )
A

xμ   

    1.0   - 
       r 
 
 
 
 
  1a               2a       3a              x 

1
1 2

2 1

3
2 3

3 2

,   if    ,

,   if    ,( )

0  ,            

A

x a
r a x a

a a

a x
r a x ax

a a

otherwise

μ

− ≤ ≤ −
 − ≤ ≤=  −




  

     MF

Trapezoidal
 

( )
A

xμ   

   1.0 - 
      r 
 
 
 
 
   1a           2a        3a       4a     x 

1
1 2

2 1

2 3

4
3 4

4 3

,    if    ,

 ,              if    , 
( )

,   if    ,

0  ,            

A

x a
r a x a

a a

r a x a
x

a x
r a x a

a a

otherwise

μ

− ≤ ≤ −
 ≤ ≤=  − ≤ ≤
 −





 
 
 

 - 

     MF

S shaped
 

( )
A

xμ   

1 
 
 
 
 
        
 
      a1         a2            a3     x 

1

2

1
1 2

3 1

2

1
2 3

3 1

3

0 ,                     if   x  ,

2 ,     if  <x<  ,

( )

1 2 ,  if  a x<a ,

1 ,                      if   a x 

A

a

x a
a a

a a
x

x a

a a

μ

≤


 −
  − = 

  −− ≤  − 
 ≤


 

      - 

   

     MF

Bell

shaped  

 2( )
( )  exp

A

x a
x c

b
μ  −= ⋅ − 
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Here 0,  1,6 ,  1ic i d> = >  are parameters, a  denotes the elements of corres-

ponding fuzzy sets with the membership grade equal to unity. 
Table 1.1 summarizes the graphical and analytical representations of frequently 

used membership functions (MF). 
The problem of constructing membership functions is problem of knowledge  

engineering. 
There are many methods for estimation of membership functions. They can be 

classified as follows: 

1. Membership functions based on heuristics. 
2. Membership functions based on reliability concepts with respect to the 

particular problem.  
3. Membership functions based on more theoretical demand. 
4. Membership functions as a model for human concepts. 
5. Neural networks based construction of membership functions. 

The estimation methods of membership functions based on more theoretical 
demand use axioms, probability density functions and so on. 

Let consider operations on fuzzy sets. There exist three standard fuzzy opera-
tions: fuzzy intersection, union and complement which are generalization of the 
corresponding classical set operations. 

Let's A  and B  be two fuzzy sets in X  with the membership functions 
A

μ   

and 
B

μ   respectively. Then the operations of intersection, union and complement 

are defined as given below. 

Definition 1.9. Fuzzy Standard Intersection and Union. The intersection ( ) 

and union ( )  of fuzzy sets A  and B  can be calculated by the following  

formulas:  

    ( ) min  ( ( ), ( )) 
BA B A

x X x x xμ μ μ∀ ∈ =    

    ( ) max  ( ( ), ( )) 
BA B A

x X x x xμ μ μ∀ ∈ =    

where 
A B

 ( )xμ    and 
A B

 ( )xμ    are the membership functions of A B   

and A B  , respectively. 

Definition 1.10. Standard Fuzzy Complement. The complement cA  of A  is 
defined by the membership function: 

   ( ) 1 ( )c AA
x X x xμ μ∀ ∈ = −  . 

As already mentioned ( )
A

xμ  is interpreted as the degree to which x  belongs to 

A . Then by the definition  ( )cA
xμ   can be interpreted as the degree to which x 

does not belong to A .  
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The standard fuzzy operations do not satisfy the law of excluded middle 
cA A X=   and the law of contradiction cA A = ∅  of classical set theory. But 

commutativity, associativity, idempotency, distributivity, and De Morgan laws are 
held for standard fuzzy operations. 

For fuzzy union, intersection and complement operations there exist a broad 
class of functions. Function that qualify as fuzzy intersections and fuzzy unions 
are defined as t-norms and t-conorms. 

Definition 1.11. t-Norms. t-norm is a binary operation in [0,1], i.e. a binary func-
tion t from [0,1] into [0,1] that satisfies the following axioms 

( )( ),1 ( )
A A

t x xμ μ=   (1.9) 

if ( ) ( )
A C

x xμ μ≤   and ( ) ( )
B D

x xμ μ≤   then 

( ( ), ( )) ( ( ), ( ))
B DA C

t x x t x xμ μ μ μ≤      (1.10) 

( ( ), ( )) ( ( ), ( ))
B BA A

t x x t x xμ μ μ μ=     (1.11) 

( ( ), ( ( ), ( ))) ( ( ( ), ( ), ( )))
B BA C A C

t x t x x t t x x xμ μ μ μ μ μ=         (1.12) 

Here (1.9) is boundary condition, (1.10)-(1.12) are conditions of monotonicity, 
commutativity and associativity, respectively. 

The function t takes as its arguments the pair consisting of the element mem-

bership grades in set A  and in set B , and yields membership grades of the ele-

ment in the A B   

( )( ) [ ( ), ( )]     x X.A B x t A x B x= ∀ ∈    

The following are frequently used t-norm-based fuzzy intersection operations: 

Standard Intersection 

0 ( ( ), ( )) min{ ( ), ( )}
B BA A

t x x x xμ μ μ μ=     (1.13) 

Algebraic Product 

1( ( ), ( )) ( ) ( )
B BA A

t x x x xμ μ μ μ= ⋅     (1.14) 

Bounded Difference 

2 ( ( ), ( )) ( ) max(0, ( ) ( ) 1)
B BA A B A

t x x x x xμ μ μ μ μ= = + −∩      (1.15) 

Drastic Intersection 

3

min{ ( ), ( )}      if ( ) 1

( ( ), ( ))                                     or ( ) 1

0                                   otherwise 

BA A

B BA

x x x

t x x x

μ μ μ
μ μ μ

=
= =



  

    (1.16) 
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For four fuzzy intersections the following is true  

3 2 1 0( ( ), ( )) ( ( ), ( )) ( ( ), ( )) ( ( ), ( ))
B B B BA A A A

t x x t x x t x x t x xμ μ μ μ μ μ μ μ≤ ≤ ≤% % % % % % % %    (1.17) 

Definition 1.12. t-Conorms. t-conorm is a binary operation in[0,1] , i.e. a binary 

function :[0,1] [0,1] [0,1]S × →  that satisfies the following axioms 

( )( ),0 ( )
A A

S x xμ μ=  ;(boundary condition) (1.18) 

if ( ) ( )
A C

x xμ μ≤   and ( ) ( )
B D

x xμ μ≤   then 

( ( ), ( )) ( ( ), ( ))
B DA C

S x x S x xμ μ μ μ≤    ; (monotonicity)   (1.19) 

( ( ), ( )) ( ( ), ( ))
B BA A

S x x S x xμ μ μ μ=    ; (commutativity)   (1.20) 

( ( ), ( ( ), ( ))) ( ( ( ), ( ), ( )))
B BA C A C

S x S x x S S x x xμ μ μ μ μ μ=      ; 

(associativity). 
(1.21) 

The function S  yields membership grade of the element in the set A B   on the 
argument which is pair consisting of the same elements membership grades in set 

A  and B  

( )( ) [ ( ), ( )]A B X S A x B x=  (1.22) 

The following are frequently used t-conorm based fuzzy union operations. 

Standard Union 

0 ( ( ), ( )) max{ ( ), ( )}
B BA A

S x x x xμ μ μ μ=     (1.23) 

Algebraic Sum 

1( ( ), ( )) ( ) ( ) ( ) ( )
B B BA A A

S x x x x x xμ μ μ μ μ μ= + − ⋅       (1.24) 

Drastic Union 

3

max{ ( ), ( )}      if ( ) 0

( ( ), ( ))                                     or ( ) 0

1                                   otherwise 

BA A

B BA

x x x

S x x x

μ μ μ
μ μ μ

=
= =



  

    (1.25) 

For four fuzzy union operations the following is true  

0 1 2 3( ( ), ( )) ( ( ), ( )) ( ( ), ( )) ( ( ), ( ))
B B B BA A A A

S x x S x x S x x S x xμ μ μ μ μ μ μ μ≤ ≤ ≤         (1.26) 

Definition 1.13. Cartesian Product of Fuzzy Sets. The Cartesian product of 

fuzzy sets 1 2, , , nA A A    on universes 1 2, , , nX X X  respectively is a fuzzy set 
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in the product space 1 2 nX X X× × ×  with the membership func-

tion { }
1 2 1 2...

( ) min ( ) | ( , ..., ),
n i

i n i iA A A A
x x x x x x x Xμ μ× × × = = ∈    . 

Definition 1.14. Power of Fuzzy Sets. m-th power of a fuzzy set mA  is defined as 

+( ) [ ( )]   ,  x X,  m Rm

m
AA

x xμ μ= ∀ ∈ ∀ ∈  (1.27) 

where R+  is positively defined set of real numbers. 

Definition 1.15. Concentration and Dilation of Fuzzy Sets 

Let A  be fuzzy set on the universe: 

( ){ }, /
A

A x x x Xμ= ∈
  

Then the operator {( ,[ ( )] )/x X}m
m A

Con A x xμ= ∈
  is called concentration of A  

and the operator {( , ( )  )/x X}n A
Dil A x xμ= ∈

 is called dilation of A . 

Definition 1.16. Difference of Fuzzy Sets. Difference of fuzzy sets is defined by 
the formula: 

A -
,   ( ) max(0, ( ) ( ))BB A

x X x x xμ μ μ∀ ∈ = −    (1.28) 

A B−   is the fuzzy set of elements that belong to A  more than to B . 

Symmetrical difference of fuzzy sets A  and B  is the fuzzy set A B∇   of ele-

ments that belong more to A  than to B : 

A B
    ( ) ( ) ( )BA

x X x x xμ μ μ∇∀ ∈ = −    (1.29) 

Definition 1.17. Fuzzy Number. A fuzzy number is a fuzzy set A  on R  which 

possesses the following properties: a) A  is a normal fuzzy set; b) A  is a convex 

fuzzy set; c) α-cut of A , Aα  is a closed interval for every ( ]0,1α ∈ ; d) the sup-

port of A , 0A+  is bounded.  

In Fig. 1.1 some basic types of fuzzy numbers are shown. For comparison of a 
fuzzy number with a crisp number in Fig. 1.2 crisp number 2 is given. 

Let consider arithmetic operation on fuzzy numbers. There are different me-
thods for developing fuzzy arithmetic. In this section we present three methods. 

Method based on the extension principle. By this method basic arithmetic oper-

ations on real numbers are extende to operations on fuzzy numbers. Let A  and B  
be two fuzzy numbers and ∗  denote any of four arithmetic operations 
{+, - ,  , : }⋅ . 
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Fig. 1.1 Types of fuzzy numbers 

 

Fig. 1.2 Crisp number 2 

A fuzzy set A B∗   on R  can be defined by the equation 

( * )
  z R     ( ) sup min[ ( ), ( )]BA B A

z=x* y

z =  x  yμ μ μ∀ ∈        (1.30) 

It is shown in [57] that A B∗   is fuzzy number and the following theorem has 
been formulated and proved.  

Theorem 1.1. Let { ,  -,  , : }∗∈ + ⋅ , and let A , B  denote continuous fuzzy num-

bers. Then, the fuzzy set A B∗   defined by (1.30) is a continuous fuzzy number. 
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Then for four basic arithmetic operations on fuzzy numbers we can write 

( )
( ) sup min[ ( ), ( )]BA B A

z x y

z x yμ μ μ+
= +

=    (1.31) 

( )
( ) sup min[ ( ), ( )]BA B A

z x y

z x yμ μ μ−
= −

=    (1.32) 

( )
( ) sup min[ ( ), ( )]BA B A

z x y

z x yμ μ μ⋅
= ⋅

=    (1.33) 

( : )
:

( ) sup min[ ( ), ( )]BA B A
z x y

z x yμ μ μ
=

=    (1.34) 

Method Based on Interval Arithmetic and α-Cuts. This method is based on re-
presentation of arbitrary fuzzy numbers by their α-cuts and use interval arithmetic 

to the α-cuts. Let ,A B R⊂   be fuzzy numbers and ∗  denote any of four opera-

tions. For each (0,1]α ∈ , the α-cut of A B∗   is expressed as  

( )A B A Bα α α∗ = ∗   (1.35) 

For ∗   we assume 0 supp(B)∉  .  

The resulting fuzzy number A B∗   can be defined as 

[0,1]
( )A B A B α

α
α

∈
∗ = ∗    (1.36) 

Next we using (1.35), (1.36) illustrate four arithmetic operations on fuzzy  
numbers. 

Addition. Let A and B  be two fuzzy numbers and Aα  and Bα  their α-cuts 

1 2 1 2[ , ]; [ , ]A a a B b bα α α α α α= =  (1.37) 

Then we can write  

1 2 1 2 1 1 2 2[ , ] [ , ] [ , ]A B a a b b a b a bα α α α α α α α α α+ = + = + + , [0,1]α∀ ∈  (1.38) 

here 

{ / ( ) }; { / ( ) }
BA

A x x B x xα αμ α μ α= ≥ = ≥   (1.39) 

Subtraction. Subtraction of given fuzzy numbers A and B  can be defined as  

1 2 2 1( ) [ , ], [0,1]A B A B a b a bα α α α α α α α− = − = − − ∀ ∈  (1.40) 

We can determine (1.40) by addition of the image B−  to A  
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2 1[0,1], [ , ]B b bα α αα
−

∀ ∈ = − −  (1.41) 

Multiplication. Let two fuzzy numbers A and B  be given. Multiplication A B⋅   
is defined as 

1 2 1 2( ) [ , ] [ , ] [0,1]A B A B a a b bα α α α α α α α⋅ = ⋅ = ⋅ ∀ ∈  (1.42) 

Multiplication of fuzzy number A in R  by ordinary numbers Rk +∈  is 

performed as follows 

RA∀ ⊂ 1 2[ , ]kA ka kaα α α=  (1.43) 

Division. Division of two fuzzy numbers A and B  is defined by 

1 2 1 2: [ , ] :[ , ]A B a a b bα α α α α α= [0,1]α∀ ∈  (1.44) 

Definition 1.18. Absolute Value of a Fuzzy Number. Absolute value of fuzzy 
number is defined as: 

+

-

max( , ),   for   R
( )

0,                    for    R

A A
abs A

 −= 


 
  (1.45) 

Let consider Z-number and operations on Z –numbers [128]. Decisions are based 
on decision-relevant information which must be reliable. Basically, the concept of 
a Z -number relates to the issue of reliability of information. A Z -number, Z , 

has two components, Z=(A, B)  . The first component, A , is a restriction (con-

straint) on the values which a real-valued uncertain variable, X , is allowed to 

take. The second component, B , is a measure of reliability (confidence)of the first 

component. Typically, A  and B  are described in a natural language. 
The concept of a Z -number has a potential for many applications, especially in 

the realms of economics and decision analysis. 
Much of the information on which decisions are based is uncertain. Humans 

have a remarkable capability to make rational decisions based on information 
which is uncertain, imprecise and or incomplete. Formalization of this capability, 
at least to some degree motivates the concepts Z -number [128]. 

The ordered triple (X,A,B)   is referred to as a Z -valuation. A Z -valuation is 

equivalent to an assignment statement, X is (A, B)  . X  is an uncertain random 

variable. For convenience, A  is referred to as a value of X , with the understand-

ing that, A  is not a value of X  but a restriction on the values which X  can take. 

The second component, B , is referred to as confidence(certainty). When X  is a 

random variable, certainty may be equated to probability. Typically, A  and B  
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are perception-based and are described in NL. A  collection of Z -valuations is re-
ferred to as Z -information. It should be noted that much of everyday reasoning 
and decision-making is based on Z -information. For purposes of computation, 

when A  and B  are described in NL, the meaning of A  and B  is precisiated  
through association with membership functions, 

A
μ   and 

B
μ  , respectively. Simple 

examples of Z -valuations are: 

(anticipated budget deficit, about 3 million dollars, likely); 

(price of oil in the near future, significantly over 50 dollars/barrel, veri likely). 

The Z -valuation (X,A,B)   may be viewed as a restriction on X  defined by:  

Prob ( X  is A ) is B .  

In a Z -number, (A, B)  , the underlying probability distribution Xp , is not 

known. What is known is a restriction on Xp  which may be expressed as [128]: 

( ) ( )XA
R

u p u duμ  is B  

An important qualitative attribute of a Z -number is informativeness. Generally, 
but not always, a Z -number is informative if its value has high specificity, that is, 
is tightly constrained [110], and its certainty is high. Informativeness is a desidera-
tum when a Z -number is a basis for a decision. A basic question is: When is the 
informativeness of a Z -number sufficient to serve as a basis for an intelligent  
decision?  

The concept of a Z -number is based on the concept of a fuzzy granule 
[120,121,124]. A concept which is closely related to the concept of a Z -number 

is the concept of a +Z -number. Basically, a +Z -number, +Z , is a combination of 

a fuzzy number, A , and a random number, R , written as an ordered pair 
+Z ( , )A B=   . In this pair, A plays the same role as it does in a Z -number, and 

R  is the probability distribution of a random number. Equivalently, R may be 
viewed as the underlying probability distribution of X  in the Z -valuation 

(X,A,B)  . Alternatively, a +Z -number may be expressed as X(A, p )  or 

XA
( , p )μ  , where 

A
μ   is the membership function of A . A Z + -valuation is ex-

pressed as ( , , )XX A p  or, equivalently, as ( , , )XA
X pμ  , where Xp  is the proba-

bility distribution (density) of X . 
The scalar product of 

A
μ   and Xp , XA

pμ   is the probability measure, 
A

P , of 

A . More concretely, 

( ) ( )X XA A A
R

p P u p u duμ μ= =       (1.46) 

It is this relation that links the concept of a Z -number to that of a +Z -number.  
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More concretely, 

( , ) ( , )XA
Z A B Z A p is Bμ+= 
    

What should be underscored is that in the case of a Z -number what is known is 

not Xp  but a restriction on Xp  expressed as 
A

is BXpμ 
 . 

Let X  be a real-valued variable taking values in U . For our purposes, it will 

be convenient to assume that U  is a finite set { }1U= ,..., nu u . We can associate 

with X  a possibility distribution μ , and a probability distribution p , expressed 

as: 

1 1= / ..., /n nu uμ μ μ+ +  

1 1p= \ ..., \n np pμ μ+ +  

Here /i iuμ  means that ,iμ  1,... ,i n=  is the possibility that iX u= . Similarly, 

\i ip u  means that ip  is the probability that iX u= .  

The possibility distribution, μ , may be combined with the probability distribu-

tion, p , through what is referred to as confluence. More concretely,  

1 1 1: ( , ) / ... ( , ) /n n np p u p uμ μ μ= + +   

As was noted earlier, the scalar product, expressed as µ⋅p, is the probability meas-

ure of A . In terms of the bimodal distribution, the +Z -valuation and the Z -
valuation associated with X  may be expressed as:  

( , , )XX A p  

( , , ),  XA
X A B p is Bμ 
   , 

respectively, with the understanding that B  is a possibilistic restriction on 

A Xpμ  .  

A  key idea which underlies the concept of a Z -mouse [128] is that visual in-
terpretation of uncertainty is much more natural than its description in natural lan-
guage or as a membership function of a fuzzy set. This idea is closely related to 
the remarkable human capability to precisiate (graduate) perceptions, that is, to as-
sociate perceptions with degrees.  

Using a Z -mouse, a Z -number is represented as two f-marks on two different 
scales. The trapezoidal fuzzy sets which are associated with the f-marks serve as 
objects of computation. 

Let us consider computation with Z -numbers. Computation with +Z -numbers 
is much simpler than computation with Z -numbers. Assume that ∗  is a  
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binary operation whose operands are +Z -numbers, +Z ( , )X X XA R=  and 
+Z ( , )Y Y YA R=   By definition, 

+Z ( )X Y X Y X YZ A A R R+∗ = ∗ ∗        (1.47) 

with the understanding that the meaning of ∗  in X YR R∗  is not the same as the 

meaning of ∗  in X YA A∗  . In this expression, the operands of ∗  in X YA A∗   are 

fuzzy numbers; the operands of ∗  in X YR R∗  are probability distributions. 

Assume that ∗  is sum. In this case, X YA A+   is defined by: 

( )
( ) sup ( ( ) ( )), min

X Y X YuA A A A
v u v uμ μ μ+ = ∧ − ∧ =       (1.48) 

Similarly, assuming that XR  and YR  are independent, the probability density 

function of X YR R∗  is the convolution,  , of the probability density functions  

of XR  and YR . Denoting these probability density functions as 
XRp  and

YRp ,  

respectively, we have: 

( ) ( ) ( )
X Y X YR R R R

R
p v p u p v u du+ =  −   (1.49) 

Thus, 

( , )
X Y

X Y X Y R RZ Z A A p p+ ++ = +    (1.50) 

More generally, to compute XZ YZ∗  what is needed is the extension principle of 

fuzzy logic [114,115].  
Turning to computation with Z -numbers, assume for simplicity that sum∗ = . 

Assume that ( , )X X XZ A B=    and ( , )Y Y YZ A B=   . Our problem is to compute the 

sum Z=X+Y . Assume that the associated Z -valuations are ( ,  ,  )X XX A B  , 

( ,  ,  )Y YY A B   and ( ,  ,  )Z ZZ A B  . 

The first step involves computation of Zp . To begin with, let us assume that 

Xp  and Yp  are known, and let us proceed as we did in computing the sum of 
+Z -numbers. Then 

Z X Yp p p=   

or more concretely 

( ) ( ) ( )Z X Y
R

p v p u p v u du=  −

In the case of Z -numbers what we know are not Xp  and Yp  but restrictions on 

Xp  and Yp  
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( ) ( )
X XA

R
u p u duμ  is XB  

( ) ( )
Y YA

R
u p u duμ  is YB  

In terms of the membership functions of XB  and YB , these restrictions may be 

expressed as: 

( ( ) ( ) )
X X XB A

R
u p u duμ μ 

( ( ) ( ) )
Y Y YB A

R
u p u duμ μ 

Additional restrictions on Xp  and Yp  are: 

( ) 1X
R

p u du =

( ) 1Y
R

p u du =

( )

( )
( )

X

X

A
R

X
R

A
R

u u du

up u du
u du

μ

μ
 =









  (compatibility) 

( )

( )
( )

Y

Y

A
R

Y
R

A
R

u u du

up u du
u du

μ

μ
 =









 (compatibility)  

Applying the extension principle, the membership function of Zp  may be ex-

pressed as: 

,( ) sup ( ( ( ) ( ) ) ( ( ) ( ) ))
Z X Y X YX Yp Z p p X YB BA A

R R
p u p u du u p u duμ μ μ μ μ=  ∧    

 
subject to 

Z X Yp p p=   

( ) 1X
R

p u du =

( ) 1Y
R

p u du =

( )

( )
( )

X

X

A
R

X
R

A
R

u u du

up u du
u du

μ

μ
 =
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( )

( )
( )

Y

Y

A
R

Y
R

A
R

u u du

up u du
u du

μ

μ
 =









 

The second step involves computation of the probability of the fuzzy event, Z  is 

ZA , given Zp . As was noted earlier, in fuzzy logic the probability measure of the 

fuzzy event X  is A , where A  is a fuzzy set and X  is a random variable with 
probability density Xp , is defined as:  

( ) ( )XA
R

u p u duμ 

 

Using this expression, the probability measure of ZA  may be expressed as: 

( ) ( ) ,
ZZ ZA

R
B u p u duμ=  

 
where 

( ) sup ( ( ) ( ))
Z X YvA A A

u v u vμ μ μ= ∧ −  
 

It should be noted that ZB  is a number when Zp  is a known probability density 

function. Since what we know about Zp  is its possibility distribution, ( )
Zp Zpμ , 

ZB  is a fuzzy set with membership function 
ZBμ  . Applying the extension prin-

ciple, we arrive at an expression for 
ZBμ  . More specifically, 

( ) sup ( )
Z ZZ p p ZB

w pμ μ=
 

subject to 

( ) ( )
Z ZA

R
w u p u duμ=  

 

Where ( )
Zp Zpμ  is the result of the first step. In principle, this completes compu-

tation of the sum of Z -numbers, XZ  and YZ .  

In a similar way, we can compute various functions of Z -numbers. The basic 
idea which underlies these computations may be summarized as follows.  
Suppose that our problem is that of computing ( , )X Yf Z Z , where XZ  and  

YZ  are Z -numbers, ( , )X X XZ A B=    and ( , )Y Y YZ A B=    respectively, and 

( , ) ( , )X Y Z Zf Z Z A B=   . We begin by assuming that the underlying probability 

distributions Xp  and pY are known. This assumption reduces the computation of 

( , )X Yf Z Z  to computation of ( , )X Yf Z Z+ + , which can be carried out through 
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the use of the version of the extension principle which applies to restrictions 

which are +Z -numbers. At this point, we recognize that what we know are not 

Xp  and Yp  but restrictions on Xp  and Yp . Applying the version of the exten-

sion principle which relates to probabilistic restrictions, we are led to 

( , )X Yf Z Z . We can compute the restriction, ZB , of the scalar product of 

( , )X Yf A A   and ( , )X Yf p p . Since ( , )Z X YA f A A=   , computation of ZB  com-

pletes the computation of ( , )X Yf Z Z . 

There are many important directions which remain to be explored, especially in 
the realm of calculi of Z -rules and their application to decision analysis and mod-
eling of complex systems. 

Computation with Z -numbers may be viewed as a generalization of computation 
with numbers, intervals, fuzzy numbers and random numbers. More concretely, the 
levels of generality are: computation with numbers (ground level1);computation 
with intervals (level1); computation with fuzzy numbers (level 2); and computation 
with Z -numbers (level3). The higher the level of generality, the greater is the capa-
bility to construct realistic models of real-world systems, especially in the realms of 
economics and decision analysis. 

It should be noted that many numbers, especially in fields such as economics 
and decision analysis are in reality Z -numbers, but they are not treated as such 
because it is much simpler to compute with numbers than with Z -numbers. Basi-
cally, the concept of a Z -number is a step toward formalization of the remarkable 
human capability to make rational decisions in an environment of imprecision and 
uncertainty. 

We now consider fuzzy relations, linguistic variables. In modeling systems the 
internal structure of a system must be described first. An internal structure is cha-
racterized by connections (associations) among the elements of system. As a rule 
these connections or associations are represented by means of relation. We will 
consider here fuzzy relations which gives us the representation about degree or 
strength of this connection. 

There are several definitions of fuzzy relation [54,113,117]. Each of them de-
pends on various factors and expresses different aspects of modeling systems. 

Definition 1.19. Fuzzy Relation. Let 1 2, ,..., nX X X  be nonempty crisp sets. 

Then, a 1 2( , ,..., )nR X X X  is called a fuzzy relation of sets 1 2, ,..., nX X X , if 

1 2( , ,..., )nR X X X  is the fuzzy subset given on Cartesian product 

1 2 ... nX X X× × × . 

If 2n = , then fuzzy relation is called binary fuzzy relation, and is denoted as 

( , )R X Y . For three, four, or n sets the fuzzy relation is called ternary, quaternary, 

or n-ary, respectively. 
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In particular, if 1 2 ... nX X X X= = = =  we say that fuzzy relation R  is given 

on set X  among elements 1 2, ,..., nx x x X∈ . 

Notice, that fuzzy relation can be defined in another way. Namely, by two or-
dered fuzzy sets. 

Assume, two fuzzy sets ( )
A

xμ   and ( )
B

yμ   are given on crisp sets X  and Y , 

respectively. Then, it is said, that fuzzy relation ( , )
AB

R X Y   is given on sets X  

and Y , if it is defined in the following way 

,
( , ) min[ ( ), ( )]

ABR BAx y
x y x yμ μ μ=

   
 

 

for all pairs ( , )x y , where x X∈  and y Y∈ . As above, fuzzy relation 
AB

R    is de-

fined on Cartesian product. 
Let fuzzy binary relation on set X  be given. Consider the following three 

properties of relation R : 

1. Fuzzy relation R  is reflexive, if 

( , ) 1
R

x xμ =   

for all x X∈ . If there exist x X∈  such that this condition is violated, then rela-

tion R  is irreflexive, and if ( , ) 0R x x =  for all x X∈ , the relation R  is antiref-

lective; 

2. A fuzzy relation R  is symmetric if it satisfies the following condition: 

( , ) ( , )
R R

x y y xμ μ=    

for all ,x y X∈ . If from ( , ) 0R x y >  and ( , ) 0R y x >  follows x y=  for all 

,x y X∈  relation R  is called antisymmetric; 

3. A fuzzy relation R  is transitive (or, more specifically, max-min transitive) if 

( , ) max  min( ( , ),  ( , ))R R Ry Y
x z x y y zμ μ μ

∈
≥     

is satisfied for all pairs ( , )x z X∈ . 

Definition 1.20. Fuzzy Proximity. A fuzzy relation is called a fuzzy proximity or 

fuzzy tolerance relation if it is reflexive and symmetric. A fuzzy relation is called 

a fuzzy similarity relation if it is reflexive, symmetric, and transitive. 

Definition 1.21. Fuzzy Composition. Let A  and B  be two fuzzy sets on X Y×  

andY Z× , respectively. A fuzzy relation  R on X Z×  is defined as 

{(( , ), ( , ) | ( , ) }
R

R x z x z x z X Zμ= ∈ ×
   (1.51) 
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here 

[ ]: 0,1
R

X Yμ × →  

( , ) ( , ) ( , ) (T( ( , ), ( , )))
R BA B A

y Y
x z x z x z x y y zSμ μ μ μ

∈
= =     (1.52) 

For x X∈ and ,z Z∈  T  and S  are triangular norms and triangular conorms, 

respectively. 

Definition 1.22. Equivalence (Similarity) Relation. If fuzzy relation R  is reflex-

ive, symmetric and transitive then relation R  is an equivalence relation or similar-
ity relation. 

A fuzzy relation R  is a fuzzy compatibility relation if it is reflexive and symme-
tric. This relation is cutworthy. Compatibility classes are defined by means of α -
cut. In fact, using α -cut a class of compatibility relation is represented by means 
of crisp subset. 

Therefore a compatibility relation can also be represented by reflexive undi-
rected graph. 

Now consider fuzzy partial ordering. 
Let X  be nonempty set. It is well known, that to order a set it is necessary to 

give an order relation on this set. But sometimes our knowledge and estimates of 
the elements of a set are not accurate and complete. Thus, to order such set the 
fuzzy order on set must be defined. 

Definition 1.23. Fuzzy Partial Ordering Relation. Let R  be binary fuzzy rela-

tion on X . Then fuzzy relation R  is called fuzzy partial ordering, if it satisfies the 
following conditions: 

1.Fuzzy relation R  is reflexive; 

2.Fuzzy relation R  is antisymmetric; 

3.Fuzzy relation R  is fuzzy transitive. 

If fuzzy partial order is given on set X  then we will say that set X  is fuzzy par-
tially ordered. 

Next we consider projections and cylindric extension. 

Let R  be n-dimensional fuzzy relation on Cartesian product 

1 2 ... nX X X X= × × ×  of nonempty sets 1 2, ,..., nX X X  and 1 2( , ,..., )ki i i  be a  

subsequence of (1,2,..., )n . 

The practice and experimental evidence have shown that decision theories de-
veloped for a perfect decision-relevant information and ‘well-defined’ preferences 
are not capable of adequate modeling of real-world decision making. The reason is 
that real decision problems are characterized by imperfect decision-relevant in-
formation and vaguely defined preferences. This leads to the fact that when solv-
ing real-world decision problems we need to move away from traditional decision 



1.1   Fuzzy Sets and Operations on Fuzzy Sets 21
 

approaches based on exact modeling which is good rather for decision analysis of 
thought experiments. 

More concretely, the necessity to sacrifice the precision and determinacy is by 
the fact that real-world problems are characterized by perception-based informa-
tion and choices, for which natural language is more covinient and close than  
precise formal approaches. Modeling decision making from this perspective is im-
possible without dealing with fuzzy categories near to human notions and imagi-
nations. In this connection, it is valuable to use the notion of linguistic variable 
first introduced by L.Zadeh [119]. Linguistic variables allow an adequate reflec-
tion of approximate in-word descriptions of objects and phenomena in the case if 
there is no any precise deterministic description. It should be noted as well that 
many fuzzy categories described linguistically even appear to be more informative 
than precise descriptions. 

Definition 1.24. Linguistic Variable. A linguistic variable is characterized by the 
set ( , , , , )u T X G M , where u is the name of variable; T denotes the term-set of  u 

that refer to as base variable whose values range over a universe X ; G  is a 

syntactic rule (usually in form of a grammar) generating linguistic terms; M is a 

semantic rule that assigns to each linguistic term its meaning, which is a fuzzy set 

on X . 

A certain t T∈  generated by the syntactic rule G  is called a term. A term con-
sisting of one or more words, the words being always used together, is named an 
atomary term. A term consisting of several atomary terms is named a composite 
term. The concatenation of some components of a composite term (i.e. the result 
of linking the chains of components of the composite term) is called a subterm. 
Here 1 2, ,...t t  are terms in the following expression 

1 2 ...T t t= + +  

The meaning of ( )M t  of the term t is defined as a restriction ( ; )R t x  on the basis 

variable x conditioned by the fuzzy variable X : 

( ) ( ; )M t R t x≡  

it is assumed here that ( ; )R t x  and, consequently, ( )M t can be considered as a 

fuzzy subset of the set X  named as t. 
The assignment equation in case of linguistic variable takes the form in which 

t-terms in T  are names generated by the grammar G , where the meaning as-
signed to the term t is expressed by the equality 

( ) ( )M t R terminT=  

In other words the meaning of the term t is found by the application of the seman-
tic rule M to the value of term t assigned according to the right part of equation. 
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Moreover, it follows that ( )M t  is identical to the restriction associated with the 

term t. 
It should be noted that the number of elements in T  can be unlimited and then 

for both generating elements of the set T  and for calculating their meaning, the 
application of the algorithm, not simply the procedure for watching term-set, is 
necessary. 

We will say that a linguistic variable u is structured if its term-set T  and the 
function M , which maps each element from the term-set into its meaning, can be 
given by means of algorithm. Then both syntactic and semantic rules connected 
with the structured linguistic variable can be considered algorithmic procedures 
for generating elements of the set T  and calculating the meaning of each term 
inT , respectively. 

However in practice we often encounter term-sets consisting of a small number 
of terms. This makes it easier to list the elements of term-set T  and establishes a 
direct mapping from each element to its meaning. For axample, an intuitive de-
scription of possible economic conditions may be represented by linguistic terms 
like “strong econonmic growth”, “weak economic growth” etc. Then the term set 
of linguistic variable “state of economy” can be written as follows: 

T(state of economy) = “strong growth” + “moderate growth” + “static situa-
tion” + “recession”. 

The variety of economic conditions may also be described by ranges of the im-
portant economic indicators. However, numerical values of indicators may not be 
sufficiently clear even for experts and may arise questions and doubts. In contrast, 
linguistic description is well perceived by human intuition as qualitative and 
fuzzy. 

1.2   Classical and Extented Fuzzy Logic 

First we consider classical fuzzy logic. We will consider the logics with multi-
valued and continuous values (fuzzy logic). Let’s define the semantic truth func-

tion of this logic. Let P be statement and ( )T P  its truth value, where  

[ ]( ) 0,1T P ∈  

Negation values of the statement P are defined as: 

( )( ) 1T P T P¬ = − . 

Hence 

( )( )T P T P¬¬ = . 

The implication connective is always defined as follows: 

( ) ( )T P Q T P Q→ = ¬ ∨ , 
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and the equivalence as 

( ) ( ) ( )T P Q T P Q Q P↔ =  → ∧ →   .  

It should be noted that exclusive disjunction ex, disjunction of negations (Shiffer's 

connective) | , conjunction of negations ↓  and ~→  (has no common name) are 

defined as negation of equivalence ↔ , conjunction ∧ , disjunction ∨ , and impli-
cation → , respectively.  

The tautology denoted • and contradiction denoted ° will be, respectively: 

        
( ) ( ); .T P T P P T P T P P

•   = ∨ ¬ = ∧ ¬   
   


 

More generally 

     
( ) ( )( )T PQ T P P Q Q

•  = ∨ ¬ ∨ ∨ 
 

 

( ) ( )( )T PQ T P P Q Q  = ∧ ¬ ∧ ∧ 
 


 

Semantic Analysis of Different Fuzzy Logics. Let A  and B  be fuzzy sets of the 

subsets of non-fuzzy universeU ; in fuzzy set theory it is known that A  is a sub-

set of B  iff  

,
BA

μ μ≤  i.e. ( ) ( ), .
BA

x U x xμ μ∀ ∈ ≤   

Definition 1.25. Power Fuzzy Set. For given fuzzy implication → and fuzzy set 

B  from the universe U , the power fuzzy set PB   from B  is given by member-

ship function 
PB

μ   [3,19]: 

( ( ) ( ))
PB BAX U

A x xμ μ μ
∈

= ∧ →   
  

Then the degree to which A  is subset of B , is 

( )
PB

A B Aπ μ⊆ =  
   

Definition 1.26. If fuzzy implication operator [3,19] is given on the closed unit in-

terval [0,1] then 

a b b a← = →  

( ) ( ) ( ) ( )a b a b a b a b a b↔ = → ∧ ← = → ∧ ←  
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Definition 1.27. Degree of ″Equivalency″. Under the conditions of the definition 

PB  the degree to which fuzzy sets A  and B  are equivalent is: 

( ) ( )A B A Bπ π≡ = ⊆   ∧ ( );B Aπ ⊆   

or 

( ) ( )
x U BA

A B x xπ μ μ
∈

≡ = ∧ →
 

 
 

For practical purposes [3,19] in most cases it is advisable to work with multi-
valued logics in which logical variable takes values from the real interval 

[0,1]I =  divided into 10 subintervals, i.e. by using set 11 [0,0.1,0.2,...,1]V = . 

We denote the truth values of premises A  and B  through ( )T A a=  and 

( )T B b= . The implication operation in analyzed logics [2,3,88] has the following 

form:  

1) min-logic 

min

,

, .

a if a b
a b

b otherwise

≤
→ = 


 

2) #S - logic 

#

1, 1 1,

0 , .S

if a or b
a b

otherwise

 ≠ =
→ = 


 

3) S - logic (″Standard sequence″) 

1, ,

0, .S

if a b
a b

otherwise

≤
→ = 

  

4) G - logic (″Gödelian sequence″) 

1, ,

, .G

if a b
a b

b otherwise

≤
→ = 


 

5) 43G - logic 

43

1, 0,

min(1, / ), .G

if a
a b

b a otherwise

=
→ = 
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6) L - logic (Lukasiewicz's logic)  

( )min 1,1
L

a b a b→ = − + . 

7) KD - logic 

((1 ) max(1 , )
KD

a b a b a b→ = − ∨ = − . 

In turn ALI1-ALI4 - logics, suggested by us, which will be used in further chap-
ters are characterized by the following implication operations [4,5]:  

8) ALI1 – logic 

1

1 , ,

1, ,

,
ALI

a if a b

a b if a b

b if a b

− <
→ = =
 >

 

9) ALI2 - logic 

2

1, ,

(1 ) ,ALI

if a b
a b

a b if a b

≤
→ =  − ∧ >

 

10) ALI3 - logic 

3

1, ,

/[ (1 )], .ALI

if a b
a b

b a b otherwise

≤
→ =  + −

 

11) ALI4 – logic  

4

1 a
, a b,

2
1, a b.

ALI

b
a b

− + >⎯⎯⎯→ = 
 ≤

 

A necessary observation to be made in the context  of this discussion is that with 
the only few exceptions for S -logic (3) and G -logic (4), and ALI1-ALI4 (8)-
(11),  all other known fuzzy logics (1)-(2), (5)-(7) do not satisfy either the classical 
“modus-ponens” principle, or other criteria which appeal to the human perception 
of mechanisms of  a decision making process being formulated in [74]. The pro-
posed fuzzy logics ALI1-ALI4 come with an implication operators, which satisfy 
the classical principle of “modus-ponens” and meets some additional criteria being 
in line with human intuition.  

The comparative analysis of the first seven logics has been given in [19]. The 
analysis of these seven logics has shown that only S - and G - logics satisfy the 
classical principle of Modus Ponens and allow development of improved rule of 
fuzzy conditional inference. At the same time the value of truthness of the impli-
cation operation in G -logic is equal either to 0 or 1; and only the value of  
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truthness of logical conclusion is used in the definition of the implication opera-
tion in S -logic. Thus the degree of “fuzziness” of implication is decreased, which 
is a considerable disadvantage and restricts the use of these logics in approximate 
reasoning.  

Definition 1.28. Top of a Fuzzy Set. The top of fuzzy set B  is  

( ).
B

U

HB xμ= ∨ 
  

Definition 1.29. Bottom of a Fuzzy Set. The bottom of fuzzy set B  is 

( ).
B

U

pB xμ= ∧ 
  

Definition 1.30. Nonfuzziness. Nonfuzziness a U∈  is (1 )ka a a= ∨ − . Then 

nonfuzziness of fuzzy set B  is defined as: 

( )
B

U

kB k xμ= ∧ 
  

Let us give a brief semantic analysis of the proposed fuzzy logics ALI1-ALI3 by 
using the terminology accepted in the theory of power fuzzy sets. For this purpose 
we formulate the following.  

Proposal. Possibility degree of the inclusion of set ( )A Bπ ⊆   in fuzzy logic 

ALI1-ALI3 is determined as:  

( )1

1 ( ), ( ) ( ),

1,              ( ) ( ),

( ) ,         ( ) ( );

BA A

BA

B BA

x if x x

A B if x x

x if x x

μ μ μ
π μ μ

μ μ μ

− <
⊆ = =
 >

  

 

  

   

( ) ( )2

1,  ( ) ( ),

1 ( ) ( ), ( ) ( );

BA

B BA A

if x x
A B

x x if x x

μ μ
π

μ μ μ μ

≤⊆ =  − ∧ >

 

   

   

( )
( )

3

1,    ( ) ( ),

( )
, ( ) ( ).

( ) 1 ( )
B

BA

BA

BA

if x x

A B x
if x x

x x

μ μ
π μ

μ μ
μ μ

≤
⊆ =  > + −



 

 

 

   

We note, that if ( ) 0
A

xμ =  or A ≠ ∅ , then the crisp inclusion is possible for 

fuzzy logic ALI1. Below we consider the equivalence of fuzzy sets.  
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Proposal. Possibility degree of the equivalence of the sets ( )A Bπ ≡ 
  is deter-

mined as: 

( )
( )

( )
1

1 1 ( ) ( ) ,  ( ) ( ),

1,     ,

1 1 ( ) ( ) ,      ( ) ( ),

B BA A

B BA A

x x if x x

A B if A B

x x if x x

μ μ μ μ

π
μ μ μ μ

  − − ∨ < ≡ = =
  − − ∨ >  

   

   

    

( )
( ) ( ){ }

( )
( )

2

1, ,

1 ( ) ( ) , 1 ( ) ( ) ,

0, | | | ( ) 0, ( ) 0     ,

| | | ( ) 1, ( ) 1  ,

BA B A

A B

A B

if A B

x x x x if A B
TA B

if x x x or vice versa

and also x x x or vice versa

μ μ μ μ
π

μ μ

μ μ

 =


   ∧ − ∧ − ∧ ≠       ≡ = 
 ∃ = ≠

 ∃ = ≠

 

 

 

 

 
   

( )
( )

3

1, ( ) ( ),

( )
, ( ) ( ).

( ) 1 ( )

BA

B
BA

BA

if x x

xA B
if x x

x x

μ μ
μπ

μ μ
μ μ

≤
⊆ =  > + −

 


 

 

   

Here the set { }
A B

T x U x xμ μ= ∈ ≠   and A B=   means that x∀  

( ) ( )BA
x xμ μ=   or in other words, T = ∅ .  

The symbol |||  means "such as ". From the expression ( )i A Bπ ≡  , 1,3i = , it 

follows that for ALI1 fuzzy logic the equivalency ( )1 1A Bπ ≡ =   takes place only 

when A B=  . It is obvious that the equivalence possibility is equal to 0 only in 
those cases when one of the statements is crisp, i.e. either true or false, while the 
other is fuzzy.  

Proposal. Degree to which fuzzy set B  is empty ( )Bπ ≡ ∅  is determined as 

( )1

1, ,

0, ;

if B
B

otherwise
π

 = ∅
≡ ∅ = 



  

( )2

1, 1 ,

0, ;

if HB or B
B

otherwise
π

 < = ∅
≡ ∅ = 



   

( )3

1, ,

0, .

if B
B

otherwise
π

 = ∅
≡ ∅ = 
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Here B = ∅  means that for ( ) 0
B

x xμ∀ = , or equivalently 0HB = . 

We introduce the concept of disjointness of fuzzy sets. There are two kinds of 

the disjointness. For a set A  the first kind is defined by degree to which set A  is 

a subset of the complement of cB . The second kind is the degree to which the in-
tersection of sets is empty. Therefore, we formulate the following.  

Proposal. Degree of disjointness of sets A  and B  is degree to which A  and B  

are disjoint 

( ) ( ) ( )1 ,C CA disj B A B B Aπ π π= ⊆ ∧ ⊆      

( ) ( )( )2 .A disj B A Bπ π= ∩ = ∅    

Proposal. Disjointness grade of sets A  and B  is determined as  

  ( ) ( ) ( )1 1

1,   | | | ( ) 1 ( ),

1 ( ) 1 ( ) , ,

0,  ;

BA

BA

if x x x

A disj B x x otherwise

never

μ μ

π μ μ

∃ = −


= − ∧ −



 

 
   

( )
( ) ( )

12

1, ( ) 1 ( ),

0, | | | ( ) 1,    ( ) 0,

( ) 1, ( ) 0,

1 ( ) , 1 ( ) , ;

BA

A B

B A

A B

if x x

if x x but x

A disj B or x but x

x x otherwise
T

μ μ
μ μ

π μ μ

μ μ

≤ −


∃ = ≠=  = ≠

  ∧ − − 



 



 

    

( ) ( ) ( )13

1, ( ) ( ) ( ) 0,

1 ( ) 1 ( )
, , ,

( ) 1 ( ) ( ) 1 ( )

0,                                              .

A B B

B A

A B B A

if x x or x

x x
A disj B otherwise

x x x xT

never

μ μ μ

μ μ
π

μ μ μ μ

= =


  − −  = ∧
 + − + −  




  



  

    

here { | | | ( ) 1 ( )}
BA

T x x xμμ= > −  . 

We note that, the disjointness degree of the set is equal to 0 only for fuzzy logic 
ALI2, when under the condition that one of the considered fuzzy sets is normal, 
the other is subnormal. 

Proposal. Degree to which set is a subset of its complement for the considered 

fuzzy logics ( )C
i A Bπ ⊆   takes  the following form 
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1

1, 0,

( ) 0, 1,

1 , ;

C

if HA

A A if HA

HA otherwise

π

 =
  ⊆ = = 
 −  


  


 

2

1, 0,

( ) 0, 1,

1 , ;

C

if HA

A A if HA

HA otherwise

π

 ≤
  ⊆ = = 
 −  


  


 

3

1, 0.5,

( ) 0, 1,

(1 ) /(2 ), ;

C

if HA

A A if HA

HA HA otherwise

π

 ≤
  ⊆ = = 
 −  


  

 
 

It is obvious that for the fuzzy logic ALI1 the degree to which a set is the subset of 
its complement is equal to the degree to which this set is empty. It should also be 
mentioned that the semantic analysis given in [6,8,9] as well as the analysis given 
above show a significant analogy between features of fuzzy logics ALI1 and KD . 
However, the fuzzy logic ALI1, unlike the KD  logic, has a number of advantages. 
For example, ALI1 logic satisfies the condition ( )

B BA A
x x x xμ μ μ μ∧ → ≤    neces-

sary for development of fuzzy conditional inference rules. ALI2 and ALI3 logics  
satisfy this inequality as well. This allows them to be used for the formalization of 
improved rules of fuzzy conditional inference and for the modeling of relations be-
tween main elements of a decision problem under uncertainty and interaction among 
behavioral factors.  

Extended Fuzzy Logic [127] 

Fuzzy logic adds to bivalent logic an important capability—a capability to reason 
precisely with imperfect information. In classical fuzzy logic, results of reasoning 
are expected to be provably valid, or p -valid for short. Extended fuzzy logic adds 

an equally important capability—a capability to reason imprecisely with imperfect 
information. This capability comes into play when precise reasoning is infeasible, 
excessively costly or unneeded. In extended fuzzy logic, p -validity of results is 

desirable but not required. What is admissible is a mode of reasoning which is 
fuzzily valid, or f -valid for short. Actually, much of everyday human reasoning 

is f -valid reasoning. What is important to note is that f -valid reasoning based 

on a realistic model may be more useful than p -valid reasoning based on an  

unrealistic model. As John Maynard Keynes states, “It is better to be roughly right 
than precisely wrong”  In constructing better models of reality, a problem that has 
to be faced is that as the complexity of a system, increases, it becomes  
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increasingly difficult to construct a model, which is both cointensive, that is, 
close-fitting, and precise. This applies, in particular, to systems in which human 
judgment, perceptions and emotions play a prominent role. Economic systems, le-
gal systems and political systems are cases in point. As the complexity of a system 
increases further, a point is reached at which construction of a model which is both 
cointensive and precise is not merely difficult—it is impossible. It is at this point 
that extended fuzzy logic comes into play. Actually, extended fuzzy logic is not 
the only formalism that comes into play at this point. The issue of what to do 
when an exact solution cannot be found or is excessively costly is associated with 
a vast literature. Prominent in this literature are various approximation theories 
[16], theories centered on bounded rationality [100], qualitative reasoning [106], 
commonsense reasoning [65,78] and theories of argumentation [101]. Extended 
fuzzy logic differs from these and related theories both in spirit and in substance. 
The difference will become apparent in Section 1.3, in which the so-called f -

geometry is used as an illustration. To develop an understanding of extended 
fuzzy logic, it is expedient to start with the following definition of classical fuzzy 
logic. Classical fuzzy logic is a precise conceptual system of reasoning, deduction 
and computation in which the objects of discourse and analysis are, or are allowed 
to be, associated with imperfect information. In fuzzy logic, the results of reason-
ing, deduction and computation are expected to be provably valid ( p -valid) with-

in the conceptual structure of fuzzy logic. In fuzzy logic precision is achieved 
through association of fuzzy sets with membership functions and, more generally, 
association of granules with generalized constraints [126]. What this implies is 
that classical fuzzy logic is what may be called precisiated logic. 

At this point, a key idea comes into play. The idea is that of constructing a 
fuzzy logic, which, in contrast to classical, is unprecisiated. What this means is 
that in unprecisiated fuzzy logic UFL  membership functions and generalized 
constraints are not specified, and are a matter of perception rather than measure-
ment. A question which arises is: What is the point of constructing UFL  - a logic 
in which provable validity is off the table? But what is not off the table is what 
may be called fuzzy validity, or f -validity for short. As will be shown in section 

1.3 a model of UFL  is f -geometry. Actually, everyday human reasoning is pre-

ponderantly f -valid reasoning. Humans have a remarkable capability to perform 

a wide variety of physical and mental tasks without any measurements and any 
computations. In this context, f -valid reasoning is perception-based. The con-

cept of unprecisiated fuzzy logic provides a basis for the concept of extended 
fuzzy logic, EFL . More specifically, EFL is the result of adding UFL to clas-
sical fuzzy logic. Basically, extended fuzzy logic. Effect, extended fuzzy logic 
adds to fuzzy logic a capability to deal imprecisely with imperfect information 
when precision is infeasible, carries a high cost or is unneeded. This capability is a 
necessity when repeated attempts at constructing a theory which is both realistic 
and precise fail to achieve success. Cases in point are the theories of rationality, 
causality and decision-making under second order uncertainty, that is, uncertainty 
about uncertainty. There is an important point to be made. f -Validity is a fuzzy 
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concept and hence is a matter of degree. When a chain of reasoning leads to a con-
clusion, a natural question is: What is the possibly fuzzy degree of validity, call it 
the validity index, of the conclusion? In most applications involving f -valid rea-

soning a high validity index is a desideratum. How can it be achieved? Achieve-
ment of a high validity index is one of the principal objectives of extended fuzzy 
logic. The importance of extended fuzzy logic derives from the fact that it adds to 
fuzzy logic an essential capability—the capability to deal with unprecisiated im-
perfect information. 

1.3   Fuzzy Analyses and Fuzzy Geometry 

In this section we concern with the necessary concepts related to the calculus of 
fuzzy set-valued mappings, for short fuzzy functions. Let X  be an arbitrary set.A 
family τ of fuzzy sets in X  is called a fuzzy topology for X  and the pair ( , )X τ  

a fuzzy topological space if: (i) Xμ τ∈  and φμ τ∈ ; (ii) i
i I

A τ
∈
∪ ∈

 
whenever 

each ( )iA i Iτ∈ ∈ ; and (iii) A B τ∩ ∈  whenever ,A B τ∈  [25]. 

Definition 1.31. Fuzzy Function [25]. A fuzzy function f  from a set X  into a 

set Y assigns to each x in X  a fuzzy subset ( )f x  of Y . We denote it 

by :f X Y→ . We can identify f  with a fuzzy subset 
f

G   of X Y×  and 

( )( ) ( , )
f

f x y G x y= 
 . 

If A  is a fuzzy subset of  X , then the fuzzy set ( )f A   in Y  is defined by 

( )( ) [ ( , ) ( )]sup f
x X

f A y G x y A x
∈

= ∧
  

 

The graph 
f

G 


 of f  is the fuzzy subset of X×Y  associated with f , 

}{( , ) :[ ( )]( ) 0
f

G x y X Y f x y= ∈ × ≠
  

Let X  be a fuzzy topological space. Neighborhood of a fuzzy set A X⊂  is any 

fuzzy set B  for which there is an open fuzzy set V  satisfying A V B⊂ ⊂   . Any 

open fuzzy set V  that satisfies A V⊂   is called an open neighborhood of A . 

A fuzzy function :f X Y→  between two fuzzy topological spaces X  and Y 

is: upper semicontinuous at the point x , if for every open neighborhood U  of 

( ), ( )uf x f U   is a neighborhood of x  in X ; lower semicontinuous at x, if for 

every open fuzzy set V  which intersects ( ), ( )lf x f U  is a neighborhood of x ; 

and  continuous if it is both upper and lower semicontinuous. 



32 1   Fuzzy Sets and Fuzzy Logic
 

Let n  [34,62] be a space of all fuzzy subsets of n . These subsets satisfy the 
conditions of normality, convexity, and are upper semicontinuous with compact 
support. 

Definition 1.32. Fuzzy Closeness [25]. A function :f X Y→  between two 

fuzzy topological spaces is fuzzy closed or has fuzzy closed graph if its graph is a 

closed fuzzy subset of X Y×  

Definition 1.33. Composition [25]. Let :f X Y→  and :g Y Z→  be two fuzzy 

functions. The composition :g f X Z→  :f X Z→  is defined by 

( )( )g f x =  { }( ) :[ ( )]( ) 0g y f x y= ∪ ≠ . 

Theorem 1.2. Convex Hull of a Fuzzy Set [25]. Let X , Y  and Z  be three fuzzy 

topological spaces. Let :f X Y→ and :g Y Z→ be two fuzzy functions. Then 

(i) 0( ) ( ) ( ( ))u u ug f A f g A=     

and 

(ii) 0( ) ( ) ( ( ))l l lg f A f g A=     

where A  is an open fuzzy subset of Z. 

A  fuzzy set A  in E  is called convex if for each 

[0,1],[ (1 ) ]( ) ( )t tA t A x A x∈ + − ≤ . The convex hull of a fuzzy set B  is smallest 

convex fuzzy set containing B  and is denoted by 0 ( )c B . 

Definition 1.34. Fuzzy Topological Vector Space [25]. A fuzzy linear topology 
on a vector space E  over K is a fuzzy topology τ  on E  such that the two  

mappings: 

: , ( , ) ,f E E E f x y x y× → = +  

: , ( , ) ,h K E E h t x tx× → =  

are continuous when K has the usual fuzzy topology and K E× , E E×  the cor-
responding product fuzzy  topologies. A linear space with a fuzzy linear topology 
is called a fuzzy topological vector space. A fuzzy topological vector space E  is 
called locally convex if it has a base at origin of convex fuzzy sets. 

Definition 1.35. Fuzzy Multivalued Functions [25]. If , :f g X Y→   are two 

fuzzy multivalued functions, where Y is a vector space, then we define: 

(1) The sum fuzzy multivalued function f g+   by 

{ }( )( ) ( ) ( ) : ( ) ( )f g x f x g x y z y f x and z g x+ = + = + ∈ ∈      
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(2) The convex hull of a fuzzy multivalued function 0 ( )c f
 
of f  by 

0 0( ( ))( ) ( ( ))c f x c f x=   . 

(3) If Y is a fuzzy topological vector space, the closed convex hull of a fuzzy mul-

tivalued function 0( ( ))cl c f  of f by 

0 0( ( ( )))( ) ( ( ( )))cl c f x cl c f x=    

Below a definition of measurability of fuzzy mapping : nF T →  is given. 

Definition 1.36. Measurability of Fuzzy Mapping [34,62]. We say that a map-

ping : nF T →   is strongly measurable if for all [0,1]α ∈  the set-valued map-

ping : ( )n
KF T Pα →   defined by  

( ) [ ( )]F t F t α
α =  

is (Lebesgue ) measurable , when ( )n
KP   is endowed with the topology generat-

ed by  the Hausdorff  metric Hd . 

If : nF T →   is continuous with respect to the metric Hd  then it is strongly 

measurable [34,62]. 

A mapping : nF T →   is called integrably bounded if there exists an integra-

ble function h such that || || ( )x h t≤  for all 0 ( )x F t∈  . 

Definition 1.37. Integrability of Fuzzy Mapping [34,62]. Let : nF T →   . The 

integral of  F  over T , denoted ( )
T

F t dt   or ( )
b

a
F t dt  , is defined levelwise by 

the equation 

[ ( ) ] ( ) { ( ) | : }n

T T T
F t dt F t dt f t dt f T isameasurableselection for Fα α= = →     

for all 0 1α< ≤ . A strongly measurable and interably bounded mapping 

: nF T →   is said to be integrable over T if ( ) n

T
F t dt ∈   . 

Hausdorff Distance [34,62]. Let ( )n
KP R  denote the family of all nonempty 

compact convex subsets of nR  and define the addition and scalar multiplication 

in ( )n
KP R  as usual. Let C  and D  be two nonempty bounded subsets of nR . 

The distance between C  and D  is defined by using  the Hausdorff metric 

{ }( , ) max(supinf ,sup inf )H
d D c Cc C d D

d C D c d c d
∈ ∈∈ ∈

= − −  

 

   (1.53) 
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where ⋅  denotes the usual Euclidean norm in nR . Then it becomes clear that 

( ( ),n
K HP R d ) becomes a metric space. 

The next necessary concept that will be used in the sequel is the concept of dif-

ference of two elements of n  referred to as Hukuhara difference: 

Definition 1.38. Hukuhara Difference [34,62]. Let , nX Y ∈   . If there exists 
nZ ∈   such that X Y Z= +   , then Z  is called a Hukuhara difference of X  and 

Y  and is denoted as hX Y−  .  

Note that with the standard fuzzy difference for Z  produced of X  

andY , X Y Z≠ +   . We use Hukuhara difference when we need X Y Z= +   . 

Let us consider and example. Let X  and Y  be triangular fuzzy sets 

(3,7,11)X =  and (1,2,3)Y = . Then Hukuhara difference of X  and Y  is 

hX Y−   (3,7,11) (1,2,3)h= − (3 1,7 2,11 3)= − − − = (2,5,8)  Indeed, 

( )hY X Y+ −    (1,2,3)=  (2,5,8)+  (3,7,11) X= =  . 

Definition 1.39. Fuzzy Hausdorff Distance [10,11]. Let , nA B ∈   . The fuzzy 

Hausdorff distance 
f

d Η
  between A  and B  is defined as 

1 1

1[0,1]

( , ) ( , ), sup ( , )
f H Hd A B d A B d A Bα α
Η

α αα
α

≤ ≤∈

 =   
    ,   (1.54) 

where Hd  is the Hausdorff distance [34,62] and 1 1,A B  denote the cores ( 1α =  

level sets) of fuzzy sets ,A B   respectively. Let us denote by hA B− =   

ˆ( ,0)fH hd A B−   a fuzzy norm of the Hukuhara difference. We note that 

ˆ( ,0) ( , )fH h fHd A B d A B− =   . We will be using this difference in further  

considerations. 

Let us consider a small example. Let A  and B  be triangular fuzzy sets 

(2,3,4)A =  and (6,8,12)B = . Then the fuzzy Hausdorff distance 
f

d Η  between 

A  and B  is defined as a triangular fuzzy set ( , ) (5,5,8)
f

d A BΗ =   . 

Fuzzy Norms. Let , nx y E∈  . We denote by h fH
x y−   a fuzzy norm defined as 

( , )h fHfH
x y d x y− =    . 

 

  (1.55) 
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It is the fuzzy Haussdorf distance mentioned above. 

Let 1 2( , ,..., ) n
nu u u u E= ∈    . We denote by || || fu  a fuzzy norm defined by 

the formula  

1 2|| || | | | | ... | |f nu u u u= + + +    . 
 

  (1.56) 

where | . |  is the absolute value of a fuzzy number [3,7]. 

Derivatives of Fuzzy Functions and Fuzzy Derivatives [46,52]. It is necessary to 

distinguish between the following cases:  

–we are given a fuzzy function and our interest is to determine its derivative at a 

particular point a  (see Fig 1.3 (a));  

–we have a function but the information about the point a  at which we are to 

consider the derivative is vague (uncertain) (see Fig 1.3 (b)); 

–we have a fuzzy function and we are interested in its derivative at a vague point 

a  (see Fig 1.3 (c)). 

 y

vague point 

: ( )/a

x

a x x
 
 
 
  μ  

x

( )y f x=  

1

1:

x R

y E

f R E

∈
∈

→

  

1f α=

lf
α

rf
α

(c) 

( )a xμ

y

particular point a  

x

( )y f x=  

1

1:

x R

y E

f R E

∈
∈

→

  

1f α=  
rf
α  

(a) 

( )y f x=y

:

x R

y R

f R R

∈
∈

→

vague point 

: ( )/a

x

a x x
 
 
 
  μ  

(b) 

( )a xμ

x

lf
α

 

Fig. 1.3 Derivatives of fuzzy functions and fuzzy derivatives 

In this paper, we analyze the situations in which the points are not exactly 
known, and therefore they need to be substituted by subjective and vague esti-
mates, viz. could be treated as fuzzy sets (numbers) defined over some interval. 

Strongly Generalized Differentiability [24]. Let : ( ,  )  nf a b E→  and 

0 ( , )t a b∈ . We say that f  is strongly generalized differentiable at 0t  if there 

exists an element 0 ( ) nf t E′ ∈ , such that  
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a) for all 0h >  sufficiently small, ∃  0 0( ) ( )hf t h f t+ − , 0 0( ) ( )hf t f t h− −  

(i.e. the length of ( )( )( )diam f t
α  increases) and the limits (in the supremum 

metric [34])  

0 0

0

(   )  ( )
lim h

h

f t h f t

h+→

+ −
= 0 0

0

( )  (  )
lim h

h

f t f t h

h+→

− −
= 0( )f t′ , 

or 

b) for all 0h >  sufficiently small, ∃  0 0( ) ( )hf t f t h− + , 

0 0( ) ( )hf t h f t− −   (i.e. the length of ( )( )( )diam f t
α

 decreases) and the 

limits (in the supremum metric [34]) interval 

0 0

0

( )  (  )
lim

( )
h

h

f t f t h

h+→

− +
−

= 0 0

0

(  )  ( )
lim

( )
h

h

f t h f t

h+→

− −
−

= 0( )f t′ , 

( h  and ( )h−  shown in the denominators mean 1/ h  and 1/( )h−  respectively). 

Let 1: ( , )f a b E→  be a differentiable function. We introduce the notation 

( ) ( ), ( )l rf t f t f tα α α =   . Then ( )lf tα  and ( )rf tα  are differentiable and 

( ) ( ) ( ) ( ) ( )( ) min ( ) , ( ) ,max ( ) , ( )l r l rf t f t f t f t f t
α α α α α    ′ ′ ′ ′′ =         

. 

If f  is continuous then ( ) ( )
t

a

g t f dτ τ=   is differentiable on ( , )a b  and 

( ) ( )g t f t′ = , ( , )t a b∀ ∈ . Moreover, if f  is differentiable on ( , )a b  and 

( )f ′ ⋅  is integrable on ( , )a b  then for all ( , )t a b∈  we have 

0

0( ) ( ) ( )
t

t

f t f t f dτ τ′= +  , 0a t t b< ≤ < . 

Possibility Measure [3,110,121]. Given two fuzzy sets defined in the same un-

iverse of discourse X , a fundamental question arises as to their similarity or prox-

imity. There are several well-documented approaches covered in the literature. 

One of them concerns a possibility measure. The possibility measure, denoted by 

( , )Poss A X   describes a level of overlap between two fuzzy sets and is ex-

pressed in the form 
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( , ) sup ( ) ( )x XPoss A X A x tX x∈  =  
   , 

where t  is a t -norm. Computationally, we note that the possibility measure is 

concerned with the determination of the intersection between A  and X , 

( ) ( )A x tX x  , that is followed by the optimistic assessment of this intersection. It 

is done by picking up the highest values among the intersection grades of  A  and 

X  that are taken over all elements of the universe of discourse X . For example, 

let a  and b  be fuzzy sets with trapezoidal membership functions: 

1 1
1 1 1 1

1 2 1 2

2 2
2 2 2

1 , 1 ,

1, 1,
( ) ( )

1 , 1 ,

0, 0,

l l
l l

a b

r r r
r r

a x b x
if a x a if b x b

if a x a if b x b
x x

x a x b
if a x a if b x b

otherwise otherwise

α β
α β

μ μ
α β

α β

− − − − ≤ ≤ − − ≤ ≤ 
 
 ≤ ≤ ≤ ≤ = = − − − − ≤ ≤ − − ≤ ≤
 
 
  


 

The graphs of the corresponding membership functions ( )a xμ   and ( )b xμ  are 

shown in Fig.1.4.  

Then the possibility measure of the proposition “ a  is equal to b ” is defined as 
follows: 

 

   lα       rα  
    1a      2a  

( )a xμ  

  x    lβ     rβ       2b  

( )b xμ

   1b    x 
 

Fig. 1.4 Trapezoidal fuzzy numbers a  and b  

1 2
1 2

1 1 2 2

1 2
1 2

1 , 0

1, max( , ) min( , )
( ) ( / ) maxmin( ( ), ( ))

1 , 0

0,

l r
l r

a b

r l
r l

a b
if a b

if a b a b
a b Poss a b x x

b a
if b a

otherwise

α β
α β

μ μ
α β

α β

− − < − < + +
≤= = = = − − < − < +

 +




    (1.57) 
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Fuzzy Geometry 

In general, fuzzy geometry may be considered as extension of conventional geo-
metry to the fuzzy case [29,77,90-94,96,107]. Fuzzy geometry includes the topo-
logical concepts of area, perimeter, compactness, length, adjacency etc. These 
measures can be used to reflect the  ambiguity in decision relevant information. 

Definition 1.40. Fuzzy Point. Fuzzy point 0x  is a convex fuzzy subset of .iR  

Fuzzy point in R  is characterized by kernel x0 whose precise location is only ap-

proximately known. 

A crisp point i
0x R∈  is the kernel, from which membership function decreases in 

all directions monotonically [17]. In Fig. 1.5 and Fig. 1.6 fuzzy points with hyperpy-
ramidal (Fig.1.5) and hyperparaboloidal (Fig. 1.6) membership functions are shown. 
In first case imprecision of location of fuzzy point is expressed by intervals for the 
components, in second case by definite matrix in all directions of the space.  
 

 

Fig. 1.5 Fuzzy points with hyperpyramidal membership 

 

Fig. 1.6 Fuzzy points with hyperparaboloidal membership 

1 

x1 

x2 

μ 

μ 

x1 

x2 
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Definition 1.41. Fuzzy Interval. If fuzzy domain I  of the real line R  is bounded 

by two normalized convex fuzzy sets then it is called fuzzy interval. In Fig. 1.7 
fuzzy interval with fuzzy ends a (x)μ  and 

b
(x)μ   is given. A crisp interval [a, b] is 

the kernel, from which the membership function decreases to zero [17]. 

Analogously, fuzzy region in iR  is represented as a crisp region, which  is 

surrounded  by a  fuzzy   transition   zone,   in  which   the  membership function 

decreases monotonically to zero [18]. 
 

 

Fig. 1.7 Fuzzy interval 

Definition 1.42. Length of a Fuzzy Interval. Length of fuzzy interval I  is de-

fined as 

0

( )  ( )I

I

L I x dxμ= 
  

Here { }0 |  ( ) 0II cl x xμ= >  is support of fuzzy interval. 

Definition 1.43. Distance between Fuzzy Points. A distance between two 
points 1 2d(x ,x ) by using the extension principle translates to a fuzzy distance  

between fuzzy sets. 

The fuzzy distance between two fuzzy sets A  and B  on X  ( X is metric space) 

is defined as [18,81] 

1 2

1 2

1 2( , )
( , )

( , )

( ) sup  min( ( ),  ( ))Bd A B A
x x X X

d x x y

y x xμ μ μ
∈ ×

=

=    

Example. Fuzzy distance in case when 1X R= , 1 2 1 2( , )d x x x x= −  is shown in 

Fig 1.8.  

 

 

a b~ ~ I 

a 

µI(x) 

x 
b
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Some distances frequently used in practical problems are given below (for 1R ): 
 

2
1 2 1 2d(x ,x )= (x -x )    Euclidean distance 

p 1/p
1 2 1 2d(x ,x )= (|x -x | )   Minkowski metric 

1 2 1 2d(x ,x )= c |x -x |   Tschebyscheff metric 

      1 2 1 2d(x ,x )=  |x -x |   Hamming distance 

Definition 1.44. Fuzzy Area. The area of fuzzy subset is defined as the area of 

fuzzy subset A  given on 2R  is defined as 

 

Fig 1.8 Fuzzy distance between fuzzy sets 

0

( ) ( , )
A

A

S A x y dxdyμ=  


  
(1.58) 

Here 0 {( , ) | ( , ) 0}
A

A x y m x y= >
  is support of fuzzy region A . 

For fuzzy region, represented by piecewise membership function, the area is 
defined as [96] 

( ) ( )
i

S A iμ=  (1.59) 

Definition 1.45. Perimeter. In case of fuzzy set A  when 
A

μ   is piecewise con-

stant, the perimeter of fuzzy set A  is defined as 

( ) ( ) ( )
, ,

P * , ,
A

i j k

i j L i j kμ μ= −  (1.60) 
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Here ( )iμ  and ( )jμ  are the membership values of two adjacent regions, 

( , , )L i j k is length of a k-th arc of these regions. 

Definition 1.46. Compactness. The compactness of a fuzzy set A  with area 
A

S   

and perimeter 
A

P  is defined as 

( ) 2P
A

A

S
C A = 




 

(1.61)

 

Definition 1.47. Length and Breadth of a Fuzzy Set. The length of a fuzzy set 

A  is defined as 

( ) ( ){ }max , ,
Ax

l A x y dyμ=  
  (1.62) 

where the integral is taken over the region with ( ), 0.
A

x yμ >  For discrete case 

formula (1.62) takes form 

( ) ( )max ,
Ax

y

l A x yμ
 

=  
 
 

  (1.63) 

The breadth of a fuzzy set A  is defined as 

( ) ( ){ }max ,
Ay

b A x y dxμ=  
  (1.64) 

or 

( ) ( )max ,
Ay

x

b A x yμ =  
 
 

  (1.65) 

Definition 1.48. Index of Area Coverage (IOAC). IOAC of a fuzzy set A  is  

defined as 

( ) ( ) ( )
A

S
IOAC A

l A b A
=

⋅


   (1.66) 

This index for fuzzy region represents the fraction of the maximum area (covered 
by the length and breadth of the region) actually covered by the region. 

Now let us consider f -Geometry and f-transformation suggested by Zadeh 

[127]. 
In the described above geometry  the underlying logic is precisiated fuzzy  

logic. In the world of f -geometry, suggested by Zadeh [127] the underlying  
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logic is unprecisiated fuzzy logic, UFL . This f -Geometry differs both in spirit 

and in substance from Poston’s fuzzy geometry [87], coarse geometry [89], fuzzy 
geometry of Rosenfeld [94], fuzzy geometry of Buckley and Eslami [29], fuzzy 
geometry of Mayburov [71], and fuzzy geometry of Tzafestas [102].  

The counterpart of a crisp concept in Euclidean geometry  is a fuzzy concept in 
this fuzzy geometry. Fuzzy concept may be obtained by fuzzy transformation ( f -

transform) of a crisp concept. 
For example, the f -transform of a point is an f -point, the f -transform of a 

line is an f -line, the f-transform of a triangle is an f -triangle, the f -transform 

of a circle is an f -circle and the f -transform of parallel is f -parallel (Fig. 

1.9). In summary, f -geometry may be viewed as the result of application of f -

transformation to Euclidean geometry. 

 

Fig. 1.9 Examples of f -transformation 

A key idea in f -geometry is the following: if C  is p-valid then its f -

transform, f - C , is f-valid with a high validity index. 

An important f -principle in f -geometry, referred to as the validation prin-

ciple, is the following. Let p  be a p -valid conclusion drawn from a chain of pre-

mises 1 np ,..., p .∗ ∗  Then, using the star notation, p∗ is an f -valid conclusion 

drawn from 1 np ,..., p∗ ∗ , and p∗  has a high validity index. It is this principle that is 

employed to derive f -valid conclusions from a collection of f-premises. 

A  basic problem which arises in computation of f -transforms is the follow-

ing. Let g be a function, a functional or an operator. Using the star notation, let an 
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f-transform , *C  , be an argument of g . The problem is that of computing (* )g C . 

Generally, computing  (* )g C  is not a trivial problem. 

An f -valid approximation to (* )g C  may be derived through application of  

an f -principle which is referred to as precisiation / imprecisiation principle or P/I  

principle, for short [123]. More specifically, the principle may be expressed as 

(* )* * ( )g C g C=  

where*=should be read as approximately equal. In words, (* )g C is approximate-

ly equal to the f -transform of ( )g C . 

1.4   Approximate Reasoning 

In our daily life we often make inferences where antecedents and consequents a 
represented by fuzzy sets. Such inferences cannot be realized adequately by the 
methods, which are based either on two-valued logic or many-valued logic. In or-
der to facilitate such an inference, Zadeh [114,118,119,122,123,125] suggested an 
inference rule called a “compositional rule of inference”. Using this inference rule, 
Zadeh, Mamdani [68], Mizumoto et al [38,74,75], R.Aliev and A.Tserkovny 
[7,9,12,13] suggested several methods for fuzzy reasoning in which the antecedent 
contain a conditional proposition involving fuzzy concepts: 

                                   

Ant 1: If x  is P%  then y  is Q%

Ant2: x is P′%

Cons: y is Q′% .                          

(1.67)

 

Those methods are based on implication operators present in various fuzzy logics. 
This matter has been under a thorough discussion for the last couple decades. 
Some comparative analysis of such methods was presented in [20-
23,38,40,47,50,51,53,69,70,74,75,98,111,112]. A number of authors proposed to 
use a certain suite of fuzzy implications to form fuzzy conditional inference rules 
[7,9,38,39,59,68,74,75]. The implication operators present in the theory of fuzzy 
sets were investigated in [7,9,14,26-28,30-33,35,36,41,42,45,48,55,60,61,63,66, 
67,69,72,73,76,79,80,82,84,86,99,103,104,108,109,112,129,131,132].On the other 
hand, statistical features of fuzzy implication operators were studied in [83,105] In 
turn, the properties of stability and continuity of fuzzy conditional inference rules 
were investigated in [37,39,49,56]. We will begin with a formation of a fuzzy 
logic regarded as an algebraic system closed under all its operations. In the sequel 
an investigation of statistical characteristics of the proposed fuzzy logic will be 
presented. Special attention will be paid to building a set of fuzzy conditional in-
ference rules on the basis of the fuzzy logic proposed in this study. Next, continu-
ity and stability features of the formalized rules will be investigated. Lately in 
fuzzy sets research the great attention is paid to the development of Fuzzy Condi-
tional Inference Rules (CIR) [1,5,36,56,64,72,80,95]. This is connected with the 
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feature of the natural language to contain a certain number of fuzzy concepts (F-
concepts), therefore we have to make logical inference in which the preconditions 
and conclusions contain such F-concepts. The practice shows that there is a huge 
variety of ways in which the formalization of rules for such kind of inferences can 
be made. However, such inferences cannot be satisfactorily formalized using the 
classical Boolean Logic, i.e. here we need to use multi-valued logical systems. 
The development of the conditional logic rules embraces mainly three types of 
fuzzy propositions: 

1P IF x is A THEN y is B=    

2P IF xis A THEN yis B=    

OTHERWISE C  

3 1 1 2 2... ... n nP IF x is A AND x is A AND AND x is A=     

THEN yis B  

The conceptual principle in the formalization of fuzzy rules is the Modus Ponens 
inference (separation) rule that states: 

( )IF α β→ is true and α  is true THEN β  is true. 

The methodological base for this formalization is the compositional rule suggested 

by L.Zadeh [114,116]. Using this rule, he formulated some inference rules in 

which both the logical preconditions and consequences  are conditional proposi-

tions including F -concepts. Later E.Mamdani [68] suggested  inference rule, 

which like Zadeh's rule was developed for  the logical proposition of type P1. In 

other words the following type F -conditional inference is considered: 

 

Proposition 1: IF x is A THEN y is B   

                      Proposition 2: 'x is A  

 

                    Conclusion: y is B , 

   (1.68) 

 

where A  and 'A  are F  -concepts represented as F  -sets in the universe U ; B  
is F  -conceptions or F  -set in the universe V  . It follows that 'B  is the conse-
quence represented as a F -set in V  . To obtain a logical conclusion  based on 
the CIR, the Propositions 1 and 2 must be transformed accordingly to the form of 

binary F -relation 1 2( ( )), ( ))R A x A y  and unary F  -relation 1( ( ))R A x .  
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Here 1( )A x  and 2( )A y  are defined by the attributes x and y which take values 

from the universes U  and V , respectively. Then 

1 ( ( ))R A x A′=     (1.69) 

According to Zadeh-Mamdani's inference rule 1 2( ( )), ( ))R A x A y  is defined as 

follows. 
The maximin conditional inference rule 

1 2( ( ), ( )) ( ) ( )mR A x A y A B A V= × ∪ ¬ ×       (1.70) 

The arithmetic conditional inference rule 

1 2( ( ), ( )) ( ) ( )aR A x A y A V U B= ¬ × ⊕ ×      (1.71) 

The mini-functional conditional inference rule 

1 2( ( ), ( ))cR A x A y A B= ×      (1.72) 

where × , ∪  and ¬  are the Cartesian product, union, and complement operations, 
respectively; ⊕ is the limited summation. 

Thus, in accordance with [68,114,116] the logical consequence 2( ( ))R A y , 

( 'B in (1.72)) can be derived as follows: 

2( ( )) [( )] [ )]R A y A A B A U′= × ∪ ¬ ×     

2( ( )) [( )] [ )]R A y A A V U B′= ¬ × ⊕ ¬ ×    

or 

2( ( )) ( )R A y A A B′= ×    
where − is the F -set maximin composition operator. 

On the base of these rules the conditional inference rules for type 2P  were sug-

gested in [15]: 

4 1 2( ( ), ( ))

[( ) ( )] [( ) ( )]

R A x A y

A V U B A V U C

=

= × ⊕ × ∩ × ⊕ ×

 
         (1.73) 

5 1 2( ( ), ( ))

[( ) ( )] [( ) ( )]

R A x A y

A V U B A V U C

=

= ¬ × ∪ × ∩ × ∪ ×


      (1.74) 

6 1 2( ( ), ( )) [( ) ( )]R A x A y A B A C= × ∪ ¬ ×   
    (1.75) 

Note that in [15] also the fuzzy conditional inference rules for type 3P  were  

suggested: 



46 1   Fuzzy Sets and Fuzzy Logic
 

7 1 2
1,

( ( ), ( )) ( ) [( )]i
i n

R A x A y A V U B
=

 = ∩ ¬ × ⊕ ×  
        (1.76) 

8 1 2
1,

( ( ), ( )) ( ) [( )]i
i n

R A x A y A V U B
=

 = ∩ ¬ × ∪ ×  
    (1.77) 

9 1 2( ( ), ( )) ( ) ( )

1 (1 ( ) ( )) /( , )
BA

U V

R A x A y A V U B

u v u vμ μ
×

= ¬ × ⊕ × =

= ∧ − +  

 
    (1.78) 

In order to analyze the effectiveness of rules (1.68)-(1.78) we use some criteria for F -
conditional logical inference suggested in [38]. The idea of these criteria is to compare 
the degree of compatibility of some fuzzy conditional inference rules with the human 
intuition when making approximate reasoning. These criteria are the following: 

Criterion I  Precondition 1: IF x is A  THEN y is B  

   Precondition 2: x is A   

________________________________________________ 

   Conclusion: y is B  

Criterion II-1 Precondition 1: IF x is A  THEN y is B  

   Precondition 2: x is very A  

___________________________________________________ 

   Conclusion: y is very B  

Criterion II-2 Precondition 1: IF x is A  THEN y is B  

   Precondition 2: x is very A  

___________________________________________________ 

   Conclusion: y is B 

Criterion III  Precondition 1: IF x is A  THEN y is B  

   Precondition 2: x is more or less A  

___________________________________________________ 

   Conclusion: y is more or less B  

Criterion IV-1 Precondition 1: IF x is A  THEN y is B  

   Precondition 2: x is not A  

___________________________________________________ 

   Conclusion: y is unknown 

Criterion IV-2 Precondition 1: IF x is A  THEN y is B  

   Precondition 2: x is not A  

___________________________________________________ 

              Conclusion: y is not B  
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In [38] it was shown that in Zadeh-Mamdani's rules the relations mR , cR  and cR  

do not always satisfy the above criteria. For the case of mini-operational rule cR  it 

has been found that criteria I and II-2 are satisfied while criteria II-1 and III are 
not. 

In [38] an important generalization was made that allows some improvement to 
the mentioned F -conditional logical inference rules. It was shown there that for 
the conditional proposition arithmetical rule defined by Zadeh 

1P IF x is A THEN y is B=    

the following takes place 

9 1 2( ( ), ( )) ( ) ( )

1 (1 ( ) ( )) /( , )
BA

U V

R A x A y A V U B

u v u vμ μ
×

= ¬ × ⊕ × =

= ∧ − +  

 
 

The membership function for this F-relation is 

1 (1 ( ) ( ))
BA

u vμ μ∧ − +   

that obviously meets the implication operation or the Ply-operator for the multi-
valued logic L (by Lukasiewicz), i.e. 

( ), ( )
L

T P Q T P→          (1.79) 

where ( ), ( )
L

T P Q T P→  and ( )T Q  - are the truth values for the logical proposi-

tions ,
L

P Q P→  and Q  respectively. 

In other words, these expressions can be considered as adaptations of implica-
tion in the L -logical system to a conditional proposition. 

Having considered this fact, the following expression was derived: 

1 2( ( ), ( )) ( ) ( )

1 (1 ( ) ( )) /( , )

( ( ) ( )) /( , ) ( ) ( )

a

BA
U V

BA L
U V

R A x A y A V U B

u v u v

u v u v A V U B

μ μ

μ μ
×

∈

= ¬ × ⊕ × =

= ∧ − + =

= → = × → ×





 

 

 

 

 
   (1.80) 

In [38] an opinion was expressed that the implication operation or the Ply-operator 
in the expression (1.80) may belong to any multi-valued logical system.  

The following are guidelines for deciding which logical system to select for de-

veloping F -conditional logical inference rules [38]. Let F -sets A  from U  and 
B  from V  are given in the form: 
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( ) / , ( ) /
BA

V V

A u u B v vμ μ= =  
   

Then, as mentioned above, the conditional logical proposition 1P  can be trans-

formed to the F -relation 1 2( ( ), ( ))R A x A y  by adaptation of the Ply-operator in 

multi-valued logical system, i.e. 

1 2( ( ), ( )) ( ( ) ( )) /( , )
BA

U V

R A x A y A V U B u v u vμ μ
×

= × → × = →  
    (1.81)

where the values ( ) ( )
BA

u vμ μ→   are depending on the selected logical system. 

Assuming 1( ( ))R A x A=   we can conclude a logical consequence 2( ( ))R A y , 

then using the CIR for 1( ( ))R A x  and 1 2( ( ), ( ))R A x A y  , then 

2 1 2( ( )) ( ( ), ( ))

( ) / ( ) ( )) /( , )

[ ( ) ( ( ) ( ))]

BA A
U U V

BA Au V
V

R A y A R A x A y

u u u v u v

u u v

μ μ μ

μ μ μ
×

∈

= =

= → =

= ∨ ∧ →

 



  

  

 

  
(1.82) 

For the criterion I to be satisfied, one of the following equalities must hold true 

2( ( )) ,R A y B=   

[ ( ) ( ( ) ( ))] ( ),
B BA Au V

u u v vμ μ μ μ
∈
∨ ∧ → =     

or 

[ ( ) ( ( ) ( ))] ( )
B BA A

u u v vμ μ μ μ∧ → ≤        (1.83) 

the latter takes place for any u∈U and v∈V or in terms of truth values: 

( ( )) ( )T P P Q T Q∧ → ≤     (1.84) 

The following two conditions are necessary for formalization of F -conditional 
logical inference rules: the conditional logical inference rules (CIR) must meet the 
criteria I-IV; the conditional logical inference  rules (CIR) satisfy the inequality 
(1.84). Now we consider formalization of the fuzzy conditional inference for a dif-
ferent type of conditional propositions.  As was shown above, the logical inference 

for conditional propositions of type 1P  is of the following form: 

Proposition 1: IF x is A THEN y is B   

                    Proposition 2: x is A′
 

 

                    Conclusion: y is B′  

     (1.85) 
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where A , B , and A′  are F -concepts represented as F -sets inU , V , andV , 
respectively, which should satisfy the criteria I, II-1, III, and IV-1. 

For this inference if the Proposition 2 is transformed to an unary F -relation in 

the form 1( ( ))R A x A′=   and the Proposition 1 is transformed to an F -relation 

1 2( ( ), ( ( ))R A x R A y   defined below, then the conclusion 2( ( ))R A y is derived by 

using the corresponding F -conditional logical inference rule, i.e. 

2 1 1( ( ) ( ( )) ( ( ))R A y R A x R A x=       (1.86) 

where 2( ( ))R A y  is equivalent to B′  in (1.85).  

Fuzzy Conditional Inference Rule 1 

Theorem 1.3. If the F -sets A  from U  and B  from V  are given in the tradi-

tional form: 

( ) / , ( ) /
BA

U V

A u u B v vμ μ= =  
      (1.87) 

and the relation for the multi-valued logical system ALI1 

1 1 2 1

1

1

( ( ), ( ))

( ) /( , ) ( ) /( , )

( ( ) ( )) /( , )

ALI

BALIA
U V U V

BALIA
U V

R A x A y A V U B

u u v v u v

u v u v

μ μ

μ μ
× ×

×

= × ⎯⎯⎯→ × =

= ⎯⎯⎯→ =

= ⎯⎯⎯→

 



 

 

 

 
   (1.88) 

where 

1

1 ( ), ( ) ( )

( ) ( ) 1, ( ) ( )

( ), ( ) ( )

BA A

ALI B BA A

B BA

u u v

u v u v

v u v

μ μ μ
μ μ μ μ

μ μ μ

 − < 
 ⎯⎯⎯→ = = 
 > 

  

   

  

 

then the criteria I-IV are satisfied. 
We will consider ALI4 in detailes. 
Consider a continuous function ( , )F p q p q= −  which defines a distance be-

tween p  and q where p , q assume values in the unit interval. Notice that 

( , ) [ 1,1]F p q ∈ − , where min( , ) 1F p q = −  and max( , ) 1F p q = . The normalized 

version of ( , )F p q  is defined as follow 

min

max min

( , ) ( , ) ( , ) 1 1
( , )

( , ) ( , ) 2 2
norm F p q F p q F p q p q

F p q
F p q F p q

− + − += = =
−

 (1.89) 
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It is clear that ( , ) [0,1]normF p q ∈ . This function quantifies a concept of “close-

ness” between two values (potentially the ones for the truth values of antecedent 

and consequent), defined within unit interval, which therefore could play signifi-

cant role in the formulation of the implication operator in a fuzzy logic. 

Definition 1.49. An implication is a continuous function I from [0,1] [0,1]×  into 

[0,1]  such that for  ,p∀ ,p′ ,q q′ [0,1]r ∈   the following properties are  

satisfied  

(I1) If ,p p′≤  then ( , ) ( , )I p q I p q′≥ (Antitone in first argument), 

(I2) If ,q q′≤  then ( , ) ( , )I p q I p q′≤ (Monotone in second argument), 

(I3) (0, ) 1,I q = (Falsity), 

(I4) (1, )I q q≤ (Neutrality), 

(I5) ( , ( , )) ( , ( , ))I p I q r I q I p r= (Exchange), 

(I6) ( , ) ( ( ), ( ))I p q I n q n p= (Contra positive symmetry), where ()n  - is a nega-

tion, which could be defined as ( ) ( ) 1 ( )n q T Q T Q= ¬ = −  
Let us define the implication operation  

1 ( , ) ,
( , )

1,

normF p q p q
I p q

p q

 − >
=  

≤ 
 (1.90) 

where ( , )normF p q  is expressed by (1.89). Before showing that operation ( , )I p q  

satisfies axioms (I1)-(I6), let us show some basic operations encountered in pro-

posed fuzzy logic. 
Let us designate the truth values of the antecedent P  and consequent Q as 

( )T P p= and ( )T P q= , respectively. The relevant set of proposed fuzzy logic 

operators is shown in Table 1.2. 
To obtain the truth values of these expressions, we use well known logical 

properties such as 

, ( )p q p q p q p q→ = ¬ ∨ ∧ = ¬ ¬ ∨ ¬ and alike. 

In other words, we propose a new many-valued system, characterized by the set of 
union ( )∪  and intersection ( )∩  operations with relevant complement, defined as 

( ) 1 ( )T Q T Q¬ = − . In addition, the operators ↓  and ↑  are expressed as nega-

tions of the ∪  and ∪  , respectively. It is well known that the implication opera-
tion in fuzzy logic supports the foundations of decision-making exploited in  
numerous schemes of approximate reasoning. Therefore let us prove that the pro-
posed implication operation in (1.90) satisfies axioms (I1)-(I6). For this matter, let 
us emphasize that we are working with a many-valued system, whose values for 
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our purposes are the elements of the real interval [0,1]R = . For our discussion the 

set of truth values  11 {0,0.1,0.2,...,0.9,1}V =  is sufficient. In further investiga-

tions, we use this particular set 11V . 

Table 1.2 Fuzzy logic operators 

Name Designation Value 

Tautology P
•

 1 

Controversy P


 0 

Negation P¬  1 P−  

Disjunction P Q∨  
, 1,

2
1, 1

p q
p q

p q

+ + ≠

 + =

 

Conjunction P Q∧  
, 1,

2
0, 1

p q
p q

p q

+ + ≠

 + =

 

Implication P Q→  

1
, ,

2
1,

p q
p q

p q

− + ≠

 =

 

Equivalence P Q↔  
min(( ), ( )), ,

1,

p q q p p q

p q

− − ≠
 =

 

Pierce Arrow P Q↓  
1 , 1,

2
0, 1

p q
p q

p q

+ − + ≠

 + =

 

Shaffer Stroke P Q↑  
1 , 1,

2
1, 1

p q
p q

p q

+ − + ≠

 + =

 

 
Theorem 1.4. Let a continuous function ( , )I p q be defined by (1.90) i.e. 

1
,1 ( , ) ,

( , ) , 2
1, 1,

norm p q
p qF p q p q

I p q p q
p q p q

− +  >− > = > =  ≤   ≤

   (1.91) 

where ( , )normF p q  is defined by (1.89). Then axioms (I1)-(I6) are satisfied and, 

therefore (1.91) is an implication operation. 
It should be mentioned that the proposed fuzzy logic could be characterized by 

yet some other three features: 
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0 0, 1,p p∧ ≡ ≤  whereas 1 , 0p p p∧ ≡ ≥ and p p¬¬ = . 
As a conclusion, we should admit that all above features confirm that resulting 

system can be applied to 11V for every finite and infinite n  up to that 

11( , , , , )V ¬ ∧ ∨ →  is then closed under all its operations. 

Let us investigate Statistical Properties of the Fuzzy Logic. In this section, we 
discuss some properties of the proposed fuzzy implication operator (1.91), assum-
ing that the two propositions (antecedent/consequent) in a given compound propo-
sition are independent of each other and the truth values of the propositions are 
uniformly distributed [64] in the unit interval. In other words, we assume that the 
propositions P and Q are independent from each other and the truth values ( )v P  

and ( )v Q are uniformly distributed across the interval [0,1]  . Let ( )p v P=  

and ( )q v Q= . Then the value of the implication ( )I v p q= →  could be repre-

sented as the function ( , )I I p q= . 

Because p and q are assumed to be uniformly and independently distributed 

across[0,1] , the expected value of the implication is 

( ) ( , ) ,
R

E I I p q dpdq=      (1.92) 

Its variance is equal to 

2 2 2 2( ) [( ( )) ] ( ( , ) ( )) [ ] [ ]
R

Var I E I E I I p q E I dpdq E I E I= − = − = −   (1.93)

where {( , ) : 0 1,0 1}R p q p q= ≤ ≤ ≤ ≤  From (1.92) and given (1.93) as well as 

the fact that  

1

2

( , ), ,
( , )

( , ), ,

I p q p q
I p q

I p q p q

>
=  ≤

we have the following 

1 1 1 1

1 1

0 0 0 0

1 2 2

0

1 1
( ) ( , ) , ( (1 ) )

2 2

1 11 1 1 1
( )

0 02 2 2 2 2 2

p q
E I I p q dpdq dpdq p q dp dp

p qp q
p p dq

p q

ℜ

− += = = − + =

    = =
= − + = + =    = =     

    


 (1.94) 

Whereas 2( ) 1E I = Therefore 1 2( ) ( ( ) ( )) / 2 0.75E I E I E I= + =  

From (1.93) we have 

2 2 2 2
1

1 1
( , ) (1 ) (1 2 2 2 )

4 4
I p q p q p q p pq q= − + = − + + − +  
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1 1
2 2 2 2
1 1

0 0

1 12 3 2
2 2

0 0

2 3

1
( ) ( , ) , ( (1 2 2 2 ) )

4

11 1 1
[ 2 2 2 ] ( )

04 2 3 2 4 3

11 7

04 3 2 3 24

E I I p q dpdq p q p pq q dp dq

pp p p
p q q q dq q q dq

p

qq q q

q

ℜ

= = − + + − + =

=
− + − + + = + + =

=

= 
= + + =  = 

  

   

Here 2
2( ) 1E I =  Therefore 2 2 2

1 2

31
( ) ( ( ) ( )) / 2

48
E I E I E I= + =  From (1.93) and 

(1.94) we have 
1

( ) 0.0833
12

Var I = =  

Both values of ( )E I  and ( )Var I demonstrate that the proposed fuzzy implica-

tion operator could be considered as one of the fuzziest from the list of the exiting 
implications [45]. In addition, it satisfies the set of important Criteria I-IV, which 
is not the case for the most implication operators mentioned above. 

As it was mentioned in [38] “in the semantics of natural language there exist a 
vast array of concepts and humans very often make inferences antecedents and 
consequences of which contain fuzzy concepts”. A formalization of methods for 
such inferences is one of the most important issues in fuzzy sets theory. For this 
purpose, let U  and V (from now on) be two universes of discourses and P  and 
Q  are corresponding fuzzy sets: 

( ) /
P

U

P u uμ=  
 , ( ) /

Q
V

Q v vμ=  
    (1.95) 

Given (1.95), a binary relationship for the fuzzy conditional proposition of the 

type: “If x  is P  then y  is Q ” for proposed fuzzy logic is defined as 

  

1 2( ( ), ( )) ( ) /( , ) ( ) /( , )

( ( ) ( )) /( , )

P Q
U V U V

P Q
U V

R A x A y P V U B u u v v u v

u v u v

μ μ

μ μ
× ×

×

= × → × = → =

= →

 



 

 

  

 

 
  (1.96) 

Given (1.90), expression (1.96) reads as  

1 ( ) ( )
, ( ) ( )

( ) ( ) 2
1, ( ) ( )

P Q

P Q
P Q

P Q

u v
u v

u v
u v

μ μ
μ μ

μ μ
μ μ

− +
>→ = 

 ≤

 
 

 

 

   (1.97) 

It is well known that given a unary relationship 1( ( ))R A x  one can obtain the con-

sequence 2( ( ))R A y  by applying a compositional rule of inference (CRI) to 

1( ( ))R A x  and 1 2( ( ), ( ))R A x A y  of type (1.91): 
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2 1 2( ( )) ( ( ), ( )) ( ) / ( ) ( ) /( , )

[ ( ) ( ( ) ( ))] /

P P Q
U U V

P P Qu V
V

R A y P R A x A y u u u v u v

u u v v

μ μ μ

μ μ μ
×

∈

= = → =

∪ ∧ →

 



  

  

   
   (1.98)

In order to have Criterion I satisfied, that is 2( ( ))R A y Q=  from (1.98), the  

equality 

[ ( ) ( ( ) ( ))] ( )
P P Q Qu V

V

u u v vμ μ μ μ
∈
∪ ∧ → =        (1.99) 

has to be satisfied for any arbitrary v  in V . To satisfy (1.99), it becomes neces-

sary that the inequality  

( ) ( ( ) ( )) ( )
P P Q Q

u u v vμ μ μ μ∧ → ≤      (1.100) 

holds for arbitrary u U∈  and v V∈ . Let us define a new method of fuzzy condi-
tional inference of the following type: 

Ant 1: If x  is P%  then y  is Q%

Ant 2: x is P′%

Cons: y is Q′% . 

 

(1.101)

where ,P P U′ ⊆   and ,Q Q V′ ⊆  . Fuzzy conditional inference in the form given 

by (1.101) should satisfy Criteria I-IV. It is clear that the inference (1.100) is de-

fined by the expression (1.98), when 2( ( ))R A y Q′=  . 

Theorem 1.5. If fuzzy sets P U⊆  and Q V⊆ are defined by (1.96) and (1.97), 

respectively and  

1 2( ( ), ( ))R A x A y
 is expressed as  

1 2 4

4

4

( ( ), ( ))

( ) /( , ) ( ) /( , )

( ( ) ( )) /( , )

ALI

ALIP Q
U V U V

ALIP Q
U V

R A x A y P V U Q

u u v v u v

u v u v

μ μ

μ μ
× ×

×

= × ⎯⎯⎯→ × =

= ⎯⎯⎯→ =

= ⎯⎯⎯→

 



 

 

 

 

where 

4

1 ( ) ( )
, ( ) ( )

( ) ( ) 2
1, ( ) ( )

P Q

P Q
P ALI Q

P Q

u v
u v

u v
u v

μ μ
μ μ

μ μ
μ μ

− +
>⎯⎯⎯→ = 

 ≤

 
 

 

 

   (1.102) 
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then Criteria I, II, III and IV-1 [38]  are satisfied [13]. 

Theorem 1.6. If fuzzy sets P U⊆  and Q V⊆ are defined by (1.96) and (1.97), 

respectively, and  

1 2( ( ), ( ))R A x A y
 is defined as 

1 1 2 4 4

4 4

( ( ), ( )) ( ) ( )

( ( ) ( )) ((1 ( )) (1 ( ))) /( , )

ALI ALI

ALI ALIP PQ Q
U V

R A x A y P V U Q P V U Q

u v u v u vμ μ μ μ
×

= × ⎯⎯⎯→ × ∩ ¬ × ⎯⎯⎯→ × ¬ =

= ⎯⎯⎯→ ∧ − ⎯⎯⎯→ −    

   
 (1.103) 

where 

4 4
( ( ) ( )) ((1 ( )) (1 ( )))

1 ( ) ( )
, ( ) ( ),

2
1, ( ) ( ),

1 ( ) ( )
, ( ) ( ),

2

P PALI ALIQ Q

P Q

P Q

P Q

P Q

P Q

u v u v

u v
u v

u v

u v
u v

μ μ μ μ

μ μ
μ μ

μ μ

μ μ
μ μ

⎯⎯⎯→ ∧ − ⎯⎯⎯→ − =

 − +
 >
= =
 − + <

   

 
 

 

 
 

 

Then Criteria I, II, III and IV-2 [38] are satisfied. 
Theorems 1.4 and 1.5 show that fuzzy conditional inference rules, defined in 

(1.103) could adhere with human intuition to the higher extent as the one defined 
by (1.102). The major difference between mentioned methods of inference might 
be explained by the difference between Criteria IV-1 and IV-2. In particular, a sat-
isfaction of the Criterion IV-1 means that in case of logical negation of an original 
antecedent we achieve an ambiguous result of an inference, whereas for the case 
of the Criterion IV-2 there is a certainty in a logical inference. Let us to investigate 
stability and continuity of fuzzy conditional inference in this section. We revisit 
the fuzzy conditional inference rule (1.101). It will be shown that when the mem-

bership function of the observation P  is continuous, then the conclusion Q de-

pends continuously on the observation; and when the membership function of the 

relation R  is continuous then the observation Q  has a continuous membership 

function. We start with some definitions. A fuzzy set A  with membership func-

tion : [0,1]
A

Iμ → =   is called a fuzzy number if A  is normal, continuous, 

and convex. The fuzzy numbers represent the continuous possibility distributions 
of fuzzy terms of the following type 

( ) /AA x xμ= 
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Let A  be a fuzzy number, then for any 0θ ≥  we define ( )Aω θ  the modulus of 

continuity of A  by 

1 2
1 2( ) max ( ) ( )

A A Ax x
x x

θ
ω θ μ μ

− ≤
= −    (1.104) 

An α -level set of a fuzzy interval A  is a non-fuzzy set denoted by [ ]A α and is 

defined by [ ] { ( ) }
A

A t R tα μ α= ∈ ≥  for (0,1]α =  and 0

(0,1]

[ ] [ ]A cl Aα α

α

=

∈

 
=  

 
  

for 0α = . Here we use a metric of the following type 

[0,1]
( , ) sup ([ ] ,[ ] )D A B d A Bα α

α∈
=   (1.105) 

where d  denotes the classical Hausdorff metric expressed in the family of com-
pact subsets of 2R , i.e. 

1 1 2 2([ ] ,[ ] ) max{ ( ) ( ) , ( ) ( )}d A B a b a bα α α α α α= − −
, 

whereas 

1 2 1 2[ ] [ ( ), ( )],[ ] ( ), ( ).A a a B b bα αα α α α= =  When the fuzzy sets A  and B  

have finite support 1{ ,..., }nx x  then their Hamming distance is defined as 

1

( , ) ( ) ( )
n

i iBA
i

H A B x xμ μ
=

= −  
   

In the sequel we will use the following lemma. 

Lemma 1.1 [28]. Let 0δ ≥  be a real number and let A , B  be fuzzy intervals. If 

( , ) ,D A B δ≤ 
 Then 

`sup ( ) ( ) max{ ( ), ( )}B BA A
t

t tμ μ ω δ ω δ
∈

− ≤  


 

Consider the fuzzy conditional inference rule with different observations P  

and P′ : 

Ant 1: If x  is P  then y  is Q  

Ant2: x is P  

Cons: y is Q . 

Ant 1: If x  is P  then y  is Q  

Ant2: x is P′  

Cons: y is Q′ . 
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According to the fuzzy conditional inference rule, the membership functions of the 
conclusions are computed as 

( ) [ ( ) ( ( ) ( ))],
P PQ Qu R

v u u vμ μ μ μ
∈

= ∪ ∧ →     

( ) [ ( ) ( ( ) ( ))],
P PQ Qu R

v u u vμ μ μ μ′′ ∈
= ∪ ∧ →     

or 

( ) sup[ ( ) ( ( ) ( ))],
P PQ Q

v u u vμ μ μ μ= ∧ →     

 

( ) sup[ ( ) ( ( ) ( ))],
P PQ Q

v u u vμ μ μ μ′′ = ∧ →     

(1.106) 

The following theorem shows the fact that when the observations are closed to 
each other in the metric (.)D  of (1.105) type, then there can be only a small devia-

tion in the membership functions of the conclusions. 

Theorem 1.7. (Stability theorem) Let 0δ ≥ and let P , P′ be fuzzy intervals and 

an implication operation in the fuzzy conditional inference rule (1.106) is of type 

(1.97). If ( , )D P P δ′ ≤  ,  then 

sup ( ) ( ) max{ ( ), ( )}
P P P P

v R
v vμ μ ω δ ω δ′ ′

∈
− ≤     

Theorem 1.8. (Continuity theorem) Let binary relationship ( , )R u v =  

4
( ) ( )p ALI Q
u vμ μ= ⎯⎯→   be continuous. Then Q  is continuous and ( )

Q
ω δ  ( )Rω δ≤   

for each 0δ ≥ . 

While we use extended fuzzy logic to reason with partially true statements we 

need to extend logics (6) for partial truth. We consider here only extension at the 
Lukasewicz logic for partial truth. In order to deal with partial truth Pavelka [85] 
extended this logic by adding truth constants for all reals in [0,1]  Hajek [43]  

simplified it by adding these truth constants r  only for each rational [0,1]r ∈   

(so r  is an atomic formula with truth value r). They also added 'book - keeping 

axioms' 

r s r s ≡ → for r, s rational [0,1]∈  . 

This logic is called Rational Pavelka logic (RPL). RPL was introduced in order to 
reason with partially true statements. In this section we note that this can already 
be done in Lukasiewicz logic, and that the conservative extension theorems allow 
us to lift the completeness theorem, that provability degree equals truth  
degree from RPL to Lukasiewicz logic. This may be regarded as an additional 



58 1   Fuzzy Sets and Fuzzy Logic
 

conservative extension theorem, confirming that, even for partial truth, Rational 
Pavelka logic deals with exactly the same logic as Lukasiewicz logic - but in a 
very much more convenient way. RPL extends the language of infinite valued 
Łukasiewicz logic by adding to the truth constants 0 and 1 all rational numbers r  
of the unit interval [0,1]  A  graded formula is a pair ( , )rϕ  consisting of a for-

mula ϕ  of Łukasiewicz logic and a rational element [0,1]r ∈ , indicating that the 

truth value ofϕ  is at least r , rϕ ≥ [107]. For example, ( )1( ), 2p x expresses the 

fact that the truth value of ( ),p x x Dom∈ , is at least 1
2  . The inference rules of 

RPL are the generalization rule  

,
( )( )x

ϕ
ϕ∀

     (1.107) 

and a modified version of the modus ponens rule, 

( , ), ( , )

( , )

r s

r s

ϕ ϕ ψ
ψ

→
⊗

 (1.108) 

Here ⊗  denotes the Łukasiewicz t-norm. Rule (1.108) says that if formula ϕ  holds 

at least with truth value r, and the implication ϕ ψ→  holds at least with truth val-

ue s, then formula ψ  holds at least with truth value r s⊗ . The modified modus 

ponens rule is derived from the so-called book-keeping axioms for the rational truth 
constants r. The book-keeping axioms add to the axioms of Łukasiewicz logic and 
provide rules for evaluating compound formulas involving rational truth constants 
[44]. The use of fuzzy reasoning trades accuracy against speed, simplicity and inter-
pretability for lay users. In the context of ubiquitous computing, these characteristics 
are clearly advantageous. 

References 

1. Aguilo, I., Suner, J., Torrens, J.: A characterization of residual implications derived 
from left-continuous uninorms. Information Sciences 180, 3992–4005 (2010) 

2. Aliev, R.A.: Fuzzy knowledge based Intelligent Robots. Radio i svyaz, Moscow 
(1995) (in Russian) 

3. Aliev, R.A., Aliev, R.R.: Soft Computing and its Application. World Scientific, New 
Jersey (2001) 

4. Aliev, R.A., Aliev, F.T., Babaev, M.D.: Fuzzy process control and knowledge engi-
neering. Verlag TUV Rheinland, Koln (1991) 

5. Aliev, R.A., Aliev, R.R.: Soft Computing, vol. I, II, III. ASOA Press, Baku (1997-
1998) (in Russian) 

6. Aliev, R.A., Bonfig, K.W., Aliev, F.T.: Messen, Steuern und Regeln mit Fuzzy-
Logik. Franzis-Verlag, München (1993) 

7. Aliev, R.A., Fazlollahi, B., Aliev, R.R.: Soft Computing and its Application in Busi-
ness and Economics. Springer, Heidelberg (2004) 



References 59
 

8. Aliev, R.A., Mamedova, G.A., Aliev, R.R.: Fuzzy Sets Theory and its application. 
Tabriz University Press, Tabriz (1993) 

9. Aliev, R.A., Mamedova, G.A., Tserkovny, A.E.: Fuzzy control systems. Energoato-
mizdat, Moscow (1991) 

10. Aliev, R.A., Pedrycz, W.: Fundamentals of a fuzzy-logic-based generalized theory of 
stability. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernet-
ic 39(4), 971–988 (2009) 

11. Aliev, R.A., Pedrycz, W., Fazlollahi, B., Huseynov, O.H., Alizadeh, A.V., Guirimov, 
B.G.: Fuzzy logic-based generalized decision theory with imperfect information. In-
formation Sciences 189, 18–42 (2012) 

12. Aliev, R.A., Tserkovny, A.: The knowledge representation in intelligent robots based 
on fuzzy sets. Soviet Math. Doklady 37, 541–544 (1988) 

13. Aliev, R.A., Tserkovny, A.E.: A systemic approach to fuzzy logic formalization for 
approximate reasoning. Information Sciences 181, 1045–1059 (2011) 

14. Azadeh, I., Fam, I.M., Khoshnoud, M., Nikafrouz, M.: Design and implementation of 
a fuzzy expert system for performance assessment of an integrated health, safety, en-
vironment (HSE) and ergonomics system: The case of a gas refinery. Information 
Sciences 178(22), 4280–4300 (2008) 

15. Baldwin, J.F., Pilsworth, B.W.: A model of fuzzy reasoning through multivalued log-
ic and set theory. Int. J. Man-Machines Studies 11, 351–380 (1979) 

16. Ban, A.I., Gal, S.G.: Defects of Properties in Mathematics. Quantitative Characteriza-
tions. Series on Concrete and Applicable Mathematics, vol. 5. World Scientific, Sin-
gapore (2002) 

17. Bandemer, H., Gottwald, S.: Fuzzy sets, Fuzzy logic, Fuzzy methods with applica-
tions. John Wiley and Sons, England (1995) 

18. Bandemer, H., Nather, W.: Fuzzy data analysis. Kluwer Academic Publishers, Boston 
(1992) 

19. Bandler, W., Kohout, L.: Fuzzy power sets and fuzzy implications operators. Fuzzy 
Sets and Systems 1, 13–30 (1980) 

20. Bandler, W., Kohout, L.J.: Fuzzy relational products as a tool for analysis of complex 
artificial and natural systems. In: Wang, P.P., Chang, S.K. (eds.) Fuzzy Sets; Theory 
and Applications to Policy Analysis and Information Systems, p. 311. Plenum Press, 
New York (1980) 

21. Bandler, W., Kohout, L.J.: Semantics of fuzzy implication operators and relational 
products. International Journal of Man-Machine Studies 12(1), 89–116 (1980) 

22. Bandler, W., Kohout, L.J.: The identification of hierarchies in symptoms and patients 
through computation of fuzzy relational products. In: Parslow, R.D. (ed.) BCS 1981: 
Information Technology for the Eighties, P. 191. Heyden & Sons (1980) 

23. Bandler, W., Kohout, L.J.: The four modes of inference in fuzzy expert systems. In: 
Trappl, R. (ed.) Cybernetics and Systems Research 2, pp. 581–586. North Holland, 
Amsterdam (1984) 

24. Bede, B., Gal, S.G.: Generalizations of the differentiability of fuzzy-number-valued 
functions with applications to fuzzy differential equations. Fuzzy Sets and Sys-
tems 151, 581–599 (2005) 

25. Beg, I.: Fuzzy multivalued functions. Centre for Advanced Studies in Mathematics, 
and Department of Mathematics, Lahore University of Management Sciences 
(LUMS), 54792-Lahore, Pakistan (2012),  
http://wenku.baidu.com/view/71a84c136c175f0e7cd1372d.html 



60 1   Fuzzy Sets and Fuzzy Logic
 

26. Belohlavek, R., Sigmund, E., Zacpal, J.: Evaluation of IPAQ questionnaires sup-
ported by formal concept analysis. Information Science 181(10), 1774–1786 (2011) 

27. Bloch, I.: Lattices of fuzzy sets and bipolar fuzzy sets, and mathematical morphology. 
Information Sciences 181(10), 2002–2015 (2011) 

28. Bobillo, F., Straccia, U.: Reasoning with the finitely many-valued Łukasiewicz fuzzy 
Description Logic SROIQ. Information Sciences 181(4), 758–778 (2011) 

29. Buckley, J.J., Eslami, E.: Fuzzy plane geometry I: Points and lines. Fuzzy Sets and 
Systems 86(2), 179–187 (1997) 

30. Bustince, H., Barrenechea, E., Fernandez, J., Pagola, M., Montero, J., Guerra, C.: 
Contrast of a fuzzy relation. Information Sciences 180, 1326–1344 (2010) 

31. Chajda, I., Halas, R., Rosenberg, I.G.: On the role of logical connectives for primality 
and functional completeness of algebras of logics. Information Sciences 180(8), 
1345–1353 (2010) 

32. Chen, T.: Optimistic and pessimistic decision making with dissonance reduction us-
ing interval valued fuzzy sets. Information Sciences 181(3), 479–502 (2010) 

33. Davvaz, B., Zhan, J., Shum, K.P.: Generalized fuzzy Hv-submodules endowed with 
interval valued membership functions. Information Sciences 178, Nature Inspired 
Problem-Solving 1, 3147–3159 (2008) 

34. Diamond, P., Kloeden, P.: Metric spaces of fuzzy sets. Theory and applications. 
World Scientific, Singapoure (1994) 

35. Dian, J.: A meaning based information theory - inform logical space: Basic concepts 
and convergence of information sequences. Information Sciences 180: Special Issue 
on Modelling Uncertainty 15, 984–994 (2010) 

36. Fan, Z.-P., Feng, B.: A multiple attributes decision making method using individual 
and collaborative attribute data in a fuzzy environment. Information Sciences 179, 
3603–3618 (2009) 

37. Fedrizzi, M., Fuller, R.: Stability in Possibilistic Linear Programming Problems with 
Continuous Fuzzy Number Parameters. Fuzzy Sets and Systems 47, 187–191 (1992) 

38. Fukami, S., Mizumoto, M., Tanaka, K.: Some considerations of fuzzy conditional in-
ference. Fuzzy Sets and Systems 4, 243–273 (1980) 

39. Fuller, R., Zimmermann, H.J.: On Zadeh’s compositional rule of inference. In:  
Lowen, R., Roubens, M. (eds.) Fuzzy Logic: State of the Art, Theory and Decision 
Library, Series D, pp. 193–200. Kluwer Academic Publishers, Dordrecht (1993) 

40. Gerhke, M., Walker, C.L., Walker, E.A.: Normal forms and truth tables for fuzzy log-
ics. Fuzzy Sets and Systems 138, 25–51 (2003) 

41. Grabisch, M., Marichal, J., Mesiar, R., Pap, E.: Aggregation functions: Construction 
methods, conjunctive, disjunctive and mixed classes. Information Sciences 181, 23 
(2011) 

42. Grzegorzewski, P.: On possible and necessary inclusion of intuitionistic fuzzy sets. 
Information Sciences 181, 342 (2011) 

43. Hajek, P.: Fuzzy Logic from the Logical Point of View. In: Bartosek, M., Staudek, J., 
Wiedermann, J. (eds.) SOFSEM 1995. LNCS, vol. 1012, pp. 31–49. Springer, Hei-
delberg (1995) 

44. Hajek, P.: Metamathematics of Fuzzy Logic. Trends in Logic. Kluwer Academic 
Publishers (1998) 

45. Hu, Q., Yu, D., Guo, M.: Fuzzy preference based rough sets. Information Sciences 
180: Special Issue on Intelligent Distributed Information Systems 15, 2003–2022 
(2010) 



References 61
 

46. Buckley, J.J., Feuring, T.: Fuzzy differential equations. Fuzzy Sets and Systems 151, 
581–599 (2005) 

47. Jantzen, J.: Array approach to fuzzy logic. Fuzzy Sets and Systems 70, 359–370 
(1995) 

48. Jayaram, B., Mesiar, R.: I-Fuzzy equivalence relations and I-fuzzy partitions. Infor-
mation Sciences 179, 1278–1297 (2009) 

49. Jenei, S.: Continuity in Zadeh’s compositional rule of inference. Fuzzy Sets and Sys-
tems 104, 333–339 (1999) 

50. Kallala, M., Kohout, L.J.: The use of fuzzy implication operators in clinical evalua-
tion of neurological movement disorders. In: International Symposium on Fuzzy In-
formation Processing in Artificial Intelligence and Operational Research, Christ-
church College, Cambridge University (1984) 

51. Kallala, M., Kohout, L.J.: A 2-stage method for automatic handwriting classification 
by means of norms and fuzzy relational inference. In: Proc. of NAFIPS 1986 
(NAFIPS Congress), New Orleans (1986) 

52. Kalina, M.: Derivatives of fuzzy functions and fuzzy derivatives. Tatra Mountains 
Mathematical Publications 12, 27–34 (1997) 

53. Kandel, A., Last, M.: Special issue on advances in Fuzzy logic. Information 
Sciences 177, 329–331 (2007) 

54. Kaufman, A.: Introduction to theory of fuzzy sets, vol. 1. Academic Press, Orlando 
(1973) 

55. Kehagias, A.: Some remarks on the lattice of fuzzy intervals. Information 
Sciences 181(10), 1863–1873 (2010) 

56. Kiszka, J.B., Kochanska, M.E., Sliwinska, D.S.: The influence of some fuzzy impli-
cation operators on the accuracy of a fuzzy model. Fuzzy Sets and Systems 15, 
(Part1) 111–128, (Part2) 223–240 (1985) 

57. Klir, G.J., Yuan, B.: Fuzzy sets and fuzzy logic. Theory and Applications. PRT Pren-
tice Hall, NJ (1995) 

58. Klir, G.J., Clair, U.S., Yuan, B.: Fuzzy Set Theory. Foundations and Applications. 
PTR Prentice Hall, NJ (1997) 

59. Kohout, L.J. (ed.): Perspectives on Intelligent Systems: A Framework for Analysis 
and Design. Abacus Press, Cambridge (1986) 

60. Kolesarova, A., Mesiar, R.: Lipschitzian De Morgan triplets of fuzzy connectives. In-
formation Sciences 180, 3488–3496 (2010) 

61. Lai, J., Xu, Y.: Linguistic truth-valued lattice-valued propositional logic system lP(X) 
based on linguistic truth-valued lattice implication algebra. Information Sciences 180: 
Special Issue on Intelligent Distributed Information Systems, 1990–2002 (2010) 

62. Lakshmikantham, V., Mohapatra, R.: Theory of fuzzy differential equations and in-
clusions. Taylor & Francis, London (2003) 

63. Levy, P.: From social computing to reflexive collective intelligence: The IEML re-
search program. Information Sciences 180: Special Issue on Collective Intelligence 2, 
71 (2010) 

64. Li, C., Yi, J.: Sirms based interval type–2 fuzzy inference systems properties and ap-
plication. International Journal of Innovative Computing. Information and Con-
trol 6(9), 4019–4028 (2010) 

65. Lifschitz, V. (ed.): Formalizing Common Sense, Papers by John McCarthy. Green-
wood Publishing Group Inc., NJ (1990) 



62 1   Fuzzy Sets and Fuzzy Logic
 

66. Long, Z., Liang, X., Yang, L.: Some approximation properties of adaptive fuzzy sys-
tems with variable universe of discourse. Information Sciences 180, 2991–3005 
(2010) 

67. Ma, H.: An analysis of the equilibrium of migration models for biogeography-based 
optimization. Information Sciences 180, 3444–3464 (2010) 

68. Mamdani, E.H.: Application of fuzzy logic to approximate reasoning using linguistic 
syntheses. IEEE Transactions on Computers C-26(12), 1182–1191 (1977) 

69. Mas, M., Monserrat, M., Torrens, J.: The law of importation for discrete implications. 
Information Sciences 179, 4208–4218 (2009) 

70. Mas, M., Monserrat, M., Torrens, J., Trillas, E.: A Survey on Fuzzy Implication 
Functions. IEEE Transactions on Fuzzy Systems 15(6), 1107–1121 (2007) 

71. Mayburov, S.: Fuzzy geometry of phase space and quantization of massive Fields. 
Journal of Physics A: Mathematical and Theoretical 41, 1–10 (2008) 

72. Medina, J., Ojeda Aciego, M.: Multi-adjoint t-concept lattices. Information 
Sciences 180, 712–725 (2010) 

73. Mendel, J.M.: On answering the question “Where do I start in order to solve a new 
problem involving interval type-2 fuzzy sets?”. Information Sciences 179, 3418–3431 
(2009) 

74. Mizumoto, M., Fukami, S., Tanaka, K.: Some methods of fuzzy reasoning. In: Gupta, 
R., Yager, R. (eds.) Advances in Fuzzy Set Theory Applications. North-Holland, New 
York (1979) 

75. Mizumoto, M., Zimmermann, H.-J.: Comparison of fuzzy reasoning methods. Fuzzy 
Sets and Systems 8, 253–283 (1982) 

76. Molai, A.A., Khorram, E.: An algorithm for solving fuzzy relation equations with 
max-T composition operator. Information Sciences 178, 1293–1308 (2008) 

77. Mordeson, J.N., Nair, P.S.: Fuzzy mathematics: an introduction for engineers and 
Scientists. Physica-Verlag, Heidelberg (2001) 

78. Mueller, E.: Commonsense Reasoning. Morgan Kaufmann, San Francisco (2006) 
79. Munoz-Hernandez, S., Pablos-Ceruelo, V., Strass, H.: R Fuzzy: Syntax, semantics 

and implementation details of a simple and expressive fuzzy tool over Prolog. Infor-
mation Sciences 181(10), 1951–1970 (2011) 

80. Nachtegael, M., Sussner, P., Melange, T., Kerre, E.E.: On the role of complete lattic-
es in mathematical morphology: From tool to uncertainty model. Information 
Sciences (2010); corrected proof, available online 15 (in Press) 

81. Nguyen, H.T., Walker, E.A.: A first Course in Fuzzy logic. CRC Press, Boca Raton 
(1996) 

82. Noguera, C., Esteva, F., Godo, L.: Generalized continuous and left-continuous t-
norms arising from algebraic semantics for fuzzy logics. Information Sciences 180, 
1354–1372 (2010) 

83. Oh, K.W., Bandler, W.: Properties of fuzzy implication operators, Florida State Uni-
versity, Tallahassee, FL, U. S. A. Department of Computer Science, pp. 24–33 (1988) 

84. Ouyang, Y., Wang, Z., Zhang, H.: On fuzzy rough sets based on tolerance relations. 
Information Sciences 180, 532 (2010) 

85. Pavelka, J.: On fuzzy logic I, II, III. Zeitschrift fur Mathematische Logik und Grun-
dlagen der Mathematik 25(45-52), 119–134, 447–464 (1979) 

86. Pei, D.: Unified full implication algorithms of fuzzy reasoning. Information 
Sciences 178, 520 (2008) 

87. Poston, T.: Fuzzy geometry. Ph.D. Thesis, University of Warwick (1971) 
 



References 63
 

88. Rescher, N.: Many-Valued Logic. McGraw–Hill, NY (1969) 
89. Roe, J.: Index theory, coarse geometry, and topology of manifolds. In: CBMS: Re-

gional Conf. Ser. in Mathematics. The American Mathematical Society, Rhode Island 
(1996) 

90. Rosenfeld, A.: The diameter of a fuzzy set. Fuzzy Sets and Systems 13, 241–246 
(1984) 

91. Rosenfeld, A.: Distances between fuzzy sets. Pattern Recognition Letters 3(4),  
229–233 (1985) 

92. Rosenfeld, A.: Fuzzy rectangles. Pattern Recognition Letters 11(10), 677–679 (1990) 
93. Rosenfeld, A.: Fuzzy plane geometry: triangles. Pattern Recognition Letters 15, 

1261–1264 (1994) 
94. Rosenfeld, A.: Fuzzy geometry: an updated overview. Information Science 110(3-4), 

127–133 (1998) 
95. Rutkowski, L., Cpalka, K.: Flexible Neuro-Fuzzy Systems. IEEE Transactions on 

Neural Networks 14(3), 554–573 (2003) 
96. Sankar, K.P., Ghosh, A.: Fuzzy geometry in image analysis. Fuzzy Sets and Sys-

tems 48, 23–40 (1992) 
97. Sankar, K.P.: Fuzzy geometry, entropy, and image information. In: Proceedings of 

the Second Join Technology Workshop on Neural Networks and Fuzzy Logic, vol. 2, 
pp. 211–232 (1991) 

98. Serruier, M., Dubois, D., Prade, H., Sudkamp, T.: Learning fuzzy rules with their im-
plication operator. Data & Knowledge Engineering 60, 71–89 (2007) 

99. Shieh, B.S.: Infinite fuzzy relation equations with continuous t-norms. Information 
Sciences 178, 1961–1967 (2008) 

100. Simon, H.: Models of Bounded Rationality: Empirically Grounded Economic Reason, 
vol. 3. MIT Press, Cambridge (1997) 

101. Toulmin, S.: The Uses of Argument. Cambridge University Press, UK (2003) 
102. Tzafestas, S.G., Chen, C.S., Fokuda, T., Harashima, F., Schmidt, G., Sinha, N.K., Ta-

bak, D., Valavanis, K. (eds.): Fuzzy logic applications in engineering science. Micro-
processor based and Intelligent Systems Engineering, vol. 29, pp. 11–30. Springer, 
Netherlands (2006) 

103. Valle, M.E.: Permutation-based finite implicative fuzzy associative memories. Infor-
mation Sciences 180, 4136–4152 (2010) 

104. Valverde Albacete, F.J., Pelaez Moreno, C.: Extending conceptualization modes for 
generalized Formal Concept Analysis. Information Sciences 181(10), 1888–1909 
(2011) 

105. Wenstop, F.: Quantitative analysis with linguistic values. Fuzzy Sets and Sys-
tems 4(2), 99–115 (1980) 

106. Werthner, H.: Qualitative Reasoning, Modeling and the Generation of Behavior. 
Springer (1994) 

107. Wilke, G.: Approximate Geometric Reasoning with Extended Geographic Objects. 
In: Proceedings of the Workshop on Quality, Scale and Analysis Aspects of City 
Models, Lund, Sweden, December 3-4 (2009),  
http://www.isprs.org/proceedings/XXXVIII/2W11/Wilke.pdf 

108. Xie, A., Qin, F.: Solutions to the functional equation I(x, y) = I(x, I(x, y)) for three 
types of fuzzy implications derived from uninorms. Information Sciences 186(1), 
209–221 (2012) 

109. Xu, Y., Liu, J., Ruan, D., Li, X.: Determination of [alpha]-resolution in lattice-valued 
first-order logic LF(X). Information Sciences 181(10), 1836–1862 (2010) 



64 1   Fuzzy Sets and Fuzzy Logic
 

110. Yager, R.R.: On measures of specificity. In: Kaynak, O., Zadeh, L.A., Turksen, B., 
Rudas, I.J. (eds.) Computational Intelligence: Soft Computing and Fuzzy-Neuro Inte-
gration with Applications, pp. 94–113. Springer, Berlin (1998) 

111. Yager, R.R.: On global requirements for implication operators in fuzzy modus po-
nens. Fuzzy Sets and Systems 106, 3–10 (1999) 

112. Yager, R.R.: A framework for reasoning with soft information. Information 
Sciences 180(8), 1390–1406 (2010) 

113. Yeh, R.T., Bang, S.Y.: Fuzzy relations, fuzzy graphs, and their applications to clus-
tering analysis. In: Zadeh, L.A., Fu, K.S., Shimura, M.A. (eds.) Fuzzy Sets and Their 
Applications, pp. 125–149. Academic Press, NY (1975) 

114. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965) 
115. Zadeh, L.A.: Probability measures of fuzzy events. Journal of Mathematical Analysis 

and Applications 23(2), 421–427 (1968) 
116. Zadeh, L.A.: Fuzzy orderings. Information Sciences 3, 117–200 (1971) 
117. Zadeh, L.A.: Similarity relations and Fuzzy orderings. Information Sciences 3,  

177–200 (1971) 
118. Zadeh, L.A.: Outline of a new approach to the analysis of complex system and deci-

sion processes. IEEE Trans. Systems, Man, and Cybernetics 3, 28–44 (1973) 
119. Zadeh, L.A.: The concept of a linguistic variable and its applications in approximate 

reasoning. Information Sciences 8, 43–80, 301–357; 9, 199–251 (1975) 
120. Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, M., Ragade, R., Ya-

ger, R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18. North-
Holland Publishing Co., Amsterdam (1979) 

121. Zadeh, L.A.: Possibility theory, soft data analysis. In: Cobb, L., Thrall, R.M. (eds.) 
Mathematical Frontiers of the Social and Policy Sciences, pp. 69–129. Westview 
Press, Boulder (1981) 

122. Zadeh, L.A.: Fuzzy logic. IEEE Computer 21(4), 83–93 (1988) 
123. Zadeh, L.A.: Toward a generalized theory of uncertainty — an outline. Information 

Sciences 172, 1–40 (2005) 
124. Zadeh, L.A.: Generalized theory of uncertainty (GTU) – principal concepts and ideas. 

Computational statistics & Data Analysis 51, 15–46 (2006) 
125. Zadeh, L.A.: Is there a need for fuzzy logic? Information Sciences 178, 2751–2779 

(2008) 
126. Zadeh, L.A.: Fuzzy logic. In: Encyclopedia of Complexity and Systems Science,  

pp. 3985–4009. Springer, Berlin (2009) 
127. Zadeh, L.A.: Toward extended fuzzy logic. A first step. Fuzzy Sets and Systems 160, 

3175–3181 (2009) 
128. Zadeh, L.A.: A Note on Z-numbers. Information Sciences 181, 2923–2932 (2010) 
129. Zhang, J., Yang, X.: Some properties of fuzzy reasoning in propositional fuzzy logic 

systems. Information Sciences 180, 4661–4671 (2010) 
130. Zhang, L., Cai, K.Y.: Optimal fuzzy reasoning and its robustness analysis. Int. J. In-

tell. Syst. 19, 1033–1049 (2004) 
131. Zhang, X., Yao, Y., Yu, H.: Rough implication operator based on strong topological 

rough algebras. Information Sciences 180, 3764–3780 (2010) 
132. Zhao, S., Tsang, E.C.C.: On fuzzy approximation operators in attribute reduction with 

fuzzy rough sets. Information Sciences 178, Including Special Issue: Recent Ad-
vances in Granular Computing (2008); Fifth International Conference on Machine 
Learning and Cybernetics, vol. 15, pp. 3163–3176 

133. Zimmermann, H.J.: Fuzzy Set Theory and its applications. Kluwer Academic Pub-
lishers, Norwell (1996) 

 



R.A. Aliev: Fuzzy Logic-Based Generalized Theory of Decisions, STUDFUZZ 293, pp. 65–88. 
DOI: 10.1007/ 978-3-642-34895-2_2                       © Springer-Verlag Berlin Heidelberg 2013 

Chapter 2 
Brief Review of Theories of Decision Making 

2.1   Existing Classical Theories of Decision 

Making sound decisions requires to consistently take into account influence of 
various factors under uncertainty. Such analysis is not compatible with highly 
constrained computational ability of a human’s brain. Thus, decision making 
needs to be based on the use of mathematical methods as a strong language of 
reasoning. This requires at first to formally define the problem of decision making. 
Depending on the decision relevant information on future, various routine decision 
making problems are used. However, all kinds of decision making problems have 
a common stem which is represented by the main elements of any decision 
making problem.  

The first element is a set A  of alternatives (sometimes called alternative actions, 
actions, acts, strategies etc) to choose from:  

1{ ,..., }, 2nA f f n= ≥  

where 2n ≥  means that decision making may take place when at least two 

alternatives exist. In the problem of business development, 1f  may denote “to 

extend business”, 2f – “to improve quality of services”, 3f – “to open a new 

direction”. 
The next element of decision making problem is used to model objective conditions 

on which the results of any alternative action depend. This element is called a set of 
states of nature: 1{ ,..., }mS s s= . A state of nature is  is one possible objective 

condition. S is considered as a “a space of mutually exclusive and exhaustive states”, 
according to a formulation suggested by L. Savage [43]. This means that all possible 
objective conditions (possible conditions of future) are known and only one of them 

, 1,...,is i m=  will take place. The main problem is that it is not known for sure, 

which is  will take place. For example, in the problem of business development, the 

set of states of nature may be considered as 1 2 3 4{ , , , }S s s s s= , where 1s  denotes 

“high demand and low competition”, 2s –  “high demand and medium 

competition” 3s –“medium demand and low competition”, 4s – “medium demand and 

high competition”. 
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The set S  may also be infinite. For example, when considering inflation rate, 
S can be used as a continuous range. 

The third element is results of actions in various states of nature. These results are 
called outcomes or consequences. Any action result in an outcome (lead to some 
consequence) in any state of nature. For example, if someone extends his business 
and high demand occurs then the profit will be high. If a low demand occurs, then 
extension results in a low profit, or even, in a loss. The outcomes may be of any type 
– quantitative or qualitative, monetary or non-monetary. A set of outcomes is 
commonly denoted X . As an outcome x X∈  is a result of an action f  taken at a 

state of nature s , it is formalized as ( )x f s= . So, an action f  is formally a 

function whose domain is a set of states of nature S  and the range is the set of 
outcomes X : :f S X→ . In order to formally compare actions f A∈ , it is needed 

to formally measure all their outcomes x X∈ , especially when the latter are 
qualitative. For this purpose a numeric function :u X R→  is used to measure an 
outcome x X∈  in terms of its utility for a decision maker (DM). Utility ( )u x  of 

an outcome x X∈  represents to what extent x X∈  is good, useful, or desirable 
for a DM. :u X R→ is used to take into account various factors like reputation, 
health, mentality, psychology and others. 

The fourth component is preferences of a DM. Given a set of alternatives A , the 
fact that a DM prefers an alternative f A∈  to an alternative g A∈  is 

denoted f g . Indifference among f  and g  is denoted f g . The fact that f  

is at least as good as g  is denoted f g . Preferences are described as a binary 

relation  A A∈ × . 

In general, a decision making problem is formulated as follows:  
 
Given  
the set of alternatives A ,  
the set of states of nature S ,  
the set of outcomes X . 
 

Determine an action *f A∈  such that *f f  for all f A∈ . 

In some models they formulate decision problem in a framework of outcomes 
and their probabilities only and don’t use such concept as a set of states of nature. 
In this framework an alternative is described as a collection of its outcomes with 
the associated probabilities and is termed as lottery: 1 1( , ;...; , )n nf x p x p= .  

The main issue here is to impose some reasonable assumptions on properties  
of DM’s preferences. The latter critically depend on a type and an amount of 
information on S . Several typical cases exist with respect to this. In the idealized 
case, when it is known which state of nature will take place, we deal with decision 
making under certainty. In the case when objective (actual) probability of  
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occurrence of each state of nature is known we deal with decision making under 
risk. In the situations when we find difficulties in assessment of unique precise 
probabilities to states of nature we deal with decision making under ambiguity. In 
the situations when there is no information on probabilities of states of nature we 
deal with decision making under complete ignorance (in the existing theories this is 
also referred to as decision making under complete ignorance). It is needed to 
mention that these four typical cases are rigorous descriptions of real-life decision 
situations. In general, real decision situations are more complex, diverse and 
ambiguous. In real-life, decisions are made under imperfect information on all 
elements of a decision problem. As Prof. L. Zadeh states, imperfect information is 
information which is in one or more respects is imprecise, uncertain, incomplete, 
unreliable, vague or partially true. For simplicity, imperfect information may be 
degenerated to one of the four typical cases described above. 

From the other side, DM’s preferences are determined by psychological, 
cognitive and other factors.  

The solution of a decision making problem depends both on information and 
preference frameworks and consist in determination of the best action in terms of a 
DM’s preferences. However, it is difficult to determine the best action by direct 
treatment of the preferences as a binary relation. For this purpose, a quantification of 
preferences is used. One approach to quantify preferences is to use a utility function. 
Utility function is a function :U A R→  that for all ,f g A∈  satisfies 

( ) ( )U f U g≥  iff f g . Generally, any utility function is some 

aggregation ( ) ( ( ))
S

U f u f s ds=  . The utility models differ on the type of 

aggregation
S . However, any utility function is a function existence of which is 

proven given the assumptions on properties of preferences. The use of utility 
function is more practical approach than direct treatment of preferences. However, 
the use of this approach leads to loss of information as any utility function 
transforms functions to numbers. From the other side, there exists some type of 
preferences for which a utility function does not exist. 

In this chapter we will consider main categories of decision models suggested in 
the existing literature. Some of them are quite simple being based on idealistic 
assumptions on relevant information and preferences. Those which are based on 
more realistic assumptions are distinguished by an increased complexity. 

Utility theory is one of the main parts of decision analysis and economics. The 
idea of a utility function consists in construction of a function that represents an 
individual’s preferences defined over the set of possible alternatives [4,35,38,44, 
48,49]. Formally speaking, a utility function ( )U ⋅  is such a real-valued function 

that for any two possible alternatives f  and g  an inequality ( ) ( )U f U g≥  

holds if and only if f  is preferred or indifferent to g . For decision making under 

risk the first axiomatic foundation of the utility paradigm was the expected utility  
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(EU) theory of von Neumann and Morgenstern [48]. This model compares finite-
outcome lotteries (alternatives) on the base of their utility values under conditions 
of exactly known utilities and probabilities of outcomes. Formally, let X  be a set 
of outcomes without any additional structure imposed on it. The set of lotteries in 
the expected utility theory is the set of probability distributions over X  with finite 
supports [24]: 

{ }: [0,1] ( ) 1
x X

L P X P x
∈

= → =
 

Each probability distribution represents objective probabilities of possible outcomes. 
The EU model, as initially suggested is not based on a general decision problem 
framework which includes the concept of a set of states of nature. However, it can 
easily be applied in this framework also, once we consider an action f  as a lottery 

{ }: ( ) [0,1] ( ( )) 1
s S

f P f S P f s
∈

= → =  as ( )f S X⊂ . Important issue to 

consider may be more complicated cases when various lotteries L  can be faced 
with various probabilities. Such case is referred to as a compound, or a two-stage 
lottery, that is, a lottery which compose several lotteries as its possible results. To 
model this within L  a convex combination is defined which reduces a compound 
lottery to a lottery in L  as follows: for any ,P Q L∈ and any [0,1]α ∈  

(1 )P Qα α+ − R L= ∈ , where ( )R x ( ) (1 ) ( )P x Q xα α= + − .  The axioms stating the 

assumptions on preference which underlie EU model are the following: 
 

Weak-Order: (a) Completeness. Any two alternatives are comparable with respect 
to 


: for all f  and g  in A : f g  or g f . This means that for all f  and g  

one has f g  or g f ; (b) Transitivity. For all ,f g  and h  in A : If f g  

and g h  then f h .  

 
Continuity: For all ,f g  and h  in A : if f g  and g h  then there are α  and 

β  in ( )0,1  such that (1 ) (1 )f h g f hα α β β+ − + −  .  

 
Independence: For all acts ,f g  and h  in A  if f g , then 

(1 ) (1 )f h g hα α α α+ − + −  for all (0,1)α ∈ . 

The completeness property implies that despite the fact that each alternative f  

or g  has its advantages and disadvantages with respect to the other, a DM supposed 

to be always able to compare two actions f  and g  on the base of his/ 

her preferences either f  is preferred to g  or g  is preferred to f or f  and g  are 

considered equivalent. The problem when f  and g  are absolutely not  

comparable should be resolved before the set of alternatives is completely  
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determined. This problem may be solved by obtaining additional information to 
eliminate “ignorance” of preferences with respect to f  and g . Alternatively, one of 

the alternatives should be disregarded.  
Let us now present the utility representation of the vNM’s axioms (i)-(iii). The 

vNM’s EU representation theorem is given below: 
 

Theorem 2.1 [48]. L L⊂ × satisfies (i)-(iii) if and only if there exists : Ru X →  

such that for every P  and Q  in : 

P Q  iff  ( ) ( ) ( ) ( )
x X x X

P x u x Q x u x
∈ ∈

≥  , 

Moreover, in this case, u is unique up to a positive linear transformation. So, a 

utility value ( )U P  of a finite-outcome lottery 1 1( , ( );...; , ( ))n nP x p x x p x=  is 

defined as
1

( ) ( ) ( )
n

i i
i

U P u x p x
=

= . The problem of decision making is to find 

such  

*P  that *( ) max ( )
P A

U P U P
∈

= . 

The assumptions of von Neumann and Morgenstern expected utility model stating 
that objective probabilities of events are known, makes this model unsuitable for 
majority of real-world applications. For example, what is an actual probability that 
a country will meet an economic crisis during a year? What is an actual 
probability that sales of a new product will bring profit next year? What is an 
actual probability that I will not get the flu upcoming winter? In any of these 
examples we deal either with the completely new phenomena, or phenomena 
which notably differs from the previous events, or phenomena that depends on 
uncertain or unforeseen factors. This means we have no representative 
experimental data or complete knowledge to determine objective probabilities. For 
such cases, L. Savage suggested a theory able to compare alternative actions on 
the base of a DM’s experience or vision [45]. Savage’s theory is based on a 
concept of subjective probability suggested by Ramsey [42] and de Finetti [13]. 
Subjective probability is DM’s probabilistic belief concerning occurrence of an 
event and is assumed to be used by humans when no information on objective 
(actual) probabilities of outcomes is known. Savage’s theory is called subjective 
expected utility (SEU) as it is based on the use of subjective probabilities in the 
expected utility paradigm of von Neumann and Morgenstern instead of objective 
probabilities. SEU became a base of almost all the utility models for decision 
making under uncertainty. The preferences in SEU model is formulated over acts 
as functions from S  to X  in terms of seven axioms.  
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The Savage’s utility representation is as follows: provided that   satisfies all the 

axioms, there exists a unique probability measure μ  on S   and a function 

: Ru X →  such that 

f g iff ( ( )) ( ( ))
S S
u f s d u g s dμ μ≥   

The problem of decision making consist in determination an action *f A∈  such 

that  

*( ) max ( ( ))
Sf A

U f u f s dμ
∈

=  .
 

In quantitative sense, SEU model coincide with vNM’s model – we again have 
expectation with respect to a probability measure. However, qualitatively, these 
theories differ. In vNM’s model it is supposed that actual probabilities of outcomes 
are known. The main implications of SEU model are the following: 1) beliefs of a 
DM are probabilistic; 2) the beliefs are to be used linearly in utility representation of 
an alternative.  

In von Neumann-Morgenstern and Savage theories it is assumed that 
individuals tend to maximize expected utility being motivated by material 
incentives (self-interest) [1] and make decisions in a rational way. In turn 
rationality means that individuals update their beliefs about probability of 
outcomes correctly (following Bayes’ law) and that they can assign consistent 
subjective probabilities to each outcome. These theories are well-composed and 
have strong analytical power. However, they define human behavior as “ideal”, 
i.e. inanimate. Experimental evidence has repeatedly shown that people violate the 
axioms of von Neumann-Morgenstern-Savage preferences in a systematic way. 
Indeed, these models are based on assumptions that people behave as 
“computational machines” functioning according to predefined mathematical 
algorithms. Of course, these don’t correspond to the computational abilities of 
humans. From the other side, these models are developed for a perfect information 
framework, e.g. humans either know actual probabilities or they can assign 
subjective probabilities to each outcome. Really, actual probabilities are very 
seldom known in real life, and the use of subjective probabilities is very often 
questionable or not compatible with human choices.  

Humans’ decision activity is conditioned by psychological issues, mental, social 
and other aspects. These insights inspired a novel direction of studying how people 
actually behave when making decisions. This direction is called behavioral 
economics and takes it start in the Prospect Theory (PT) [32] of D.Kahneman and A. 
Tversky. PT [32,47] is the one of the most famous theories in the new view on a 
utility concept. This theory has a good success because it includes psychological 
aspects that form human behavior. Kahneman and Tversky uncovered a series of 
features of human behavior in decision making and used them to construct their 
utility model. The first feature is that people make decisions considering deviations  
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from their initial wealth, i.e. gains and losses, rather than final wealth. To represent 
this, an alternative in their model is a lottery in which an outcome is considered as a 
change from a DM’s current wealth called reference point, but not as a final wealth. 
They call such a lottery a prospect. 

Furthermore, a so-called gain-loss asymmetry was observed: influence of losses 
on human choices dominates influence of gains. Humans’ attitudes to risk depend on 
whether they deal with gains or losses.  

For representing the features of perception of gains and losses, Kahneman and 
Tversky use value function ()v  to model DM’s tastes over monetary outcomes x  

(as changes from the current wealth), instead of a utility function (which is used in, 
for example, SEU to represent tastes over net wealth). Value function, as based on 
the experimental evidence on attitudes to gains and losses, has the following 
properties: 1) it is steeper in domain of gains than in domain of losses; 2) it is 
concave for gains and is convex for losses; 3) it is steepest in the reference point. 
Schematic view of the value function is given in fig. 2.1: 

 
 

*x  
*x−  

v  

*( )v x  

*( )v x−  

x

 
Fig. 2.1 Value function 
 

The second main insight observed from experimental evidence is distorted 
perception of probabilities. In making decisions, people perceive the values of 
probabilities not exactly as they are but overestimate or underestimate them. This 
comes from the fact that the change of probability from, for example, 0 to 0.1 or 
from 0.9 to 1 is considered by people as notably more sufficient than the change 
from 0.3 to 0.4. The reason was explained as follows: in the first case the situation 
changes qualitatively – from an impossible outcome to some chance, in the second 
case the situation also change qualitatively – from very probable outcome to 
thecertain one. In other words, appearance of a chance or appearance of a guaranteed 
outcome is perceived more important than just the change of probabilty value. As a 
result, people overestimate low and underestimate high probabilities. 

In order to model this evidence Kahneman and Tversky replace probabilities p  

with weights ( )w p  as the values of so-called weighting function :[0,1] [0,1]w → . 

This function non-linearly transforms an actual probability to represent distorted 
perception of the latter. Schematic view of the weighting function ()w  is given in 

fig.  2.2: 
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Fig. 2.2 Weighting function 

 
In Prospect theory, Kahneman and Tversky suggested a new model of choice 

among prospects 1 1( , ( );...; , ( ))n nx p x x p x . In this model, a value function ()v  is 

used instead of utility function ( )u x  and a weighting function ()w  is used 

instead of probability measure in a standard expectation operation. However, this 
model was formulated by Kahneman and Tversky in [32] for at most two non-zero 
outcomes. The model has the following form (compare with the expected utility): 

1 1
1

(( , ( );...; , ( )) ( ) ( ( ))
n

n n i i
i

U x p x x p x v x w p x
=

=
 

There are various forms of a value function ()v  and a weighting function ()w  

suggested by various authors. Many of them are listed in [40]. However, any 
weighting function must satisfy the following: ()w  is non-decreasing with 

(0) 0w = , (1) 1w = . Commonly, ()w  is non-additive, that is, ≠+ )( qpw  
+)( pw 1),( ≤+ qpqw  . 

Prospect theory is a successful theory for decision making under risk and it was 
one of the first descriptive theories. This explains such phenomena as Allais 
paradox, certainty effect and framing effects [32]. 

Choquet Expected Utility (CEU) was suggested by Schmeidler [44] as a model 
with a new view on belief and representation of preferences in contrast to SEU 

model. In SEU model an overall utility is described as ( ) ( ( ))
S

U f u f s dμ=   

where μ  is a probability measure.  However, uncertainty as a vagueness of 

knowledge on occurrence of events may result in a non-additive belief for s S∈ .  
In CEU a belief is described by a capacity [12] – not necessarily additive measure 

v  satisfying the following conditions [44]: 
 

0)(.1 =∅ν  
BASBA ⊂⊂∀ ,,.2 implies )()( BA νν ≤  

1)(.3 =Sv  
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Capacity is a model of a belief used for the cases when it is impossible to definitely 
separate states of nature by using probabilities of their occurrence. In CEU v  is 
referred to as nonadditive probability. 

The use of a capacity is not an only advantage of the CEU. The use of a capacity 
instead of an additive measure in Riemann integration adopted in SEU is not proper. 
Riemann integration of acts with respect to a capacity arises several unavoidable 
problems. Particularly, Riemann integration depends on the way the act is written. 
For example, consider an act f  in expressed in two alternative forms: 

1 2 3($1, ;$1, ;$0, )s s s and 1 2 3($1,{ , };$0, )s s s . Riemann integration will give 

different results for these expressions as, in general, 1 2({ , })v s s ≠  
1 2({ }) ({ })v s v s+ . The other problems such as violation of continuity and 

monotonicity are well explained in [24]. In CEU, Choquet integral is used which is a 
generalization of Lebesgue integral obtained when a capacity is used instead of an 
additive measure. The use of Lebesgue integration removes the problems related to 
Riemann integration. 

CEU is axiomatically developed for the Anscombe-Aumann framework, in which 
acts are functions from states to lotteries, i.e. to probabilistic outcomes. The main 
difference in the underlying assumptions on preferences in CEU from those in the 
expected utility models is a relaxation of the independence axiom. The 
independence property in this model is assumed only for comonotonic actions. Two 
acts f  and g  in A  are said to be comonotonic if for no s  and t  in S , 

( ) ( )f s f t  and ( ) ( )g t g s  hold. That is, as functions, f and g  behave 

analogously. 
 

Comonotonic Independence. For all pair wise comonotonic acts ,f g  and h  in A  

if f g , then (1 ) (1 )f h g hα α α α+ − + −  for all (0,1)α ∈ . 
The other axioms of the CEU model are quite trivial. The utility representation in 

this model is ( ) ( ( ))
S

U f u f s dv=  , where v  is a nonadditive probability 

(capacity) and u  is nonconstant and is unique up to a positive linear transformation. 

For finite S , i.e. for 1{ ,..., }nS s s=  CEU representation is as follows: 

( ) ( 1) (1) ( )
1

( ) ( ( ( )) ( ( ))) ({ ,..., })
n

i i i
i

U f u f s u f s v s s+
=

= −
 

where ( )i  in the index of the states s  implies that they are permuted such that 

( ) ( 1)( ( )) ( ( ))i iu f s u f s +≥  and ( 1)( ( )) 0nu f s + =  by convention. Sometimes they 

use an equivalent expression for CEU representation: 
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( ) (1) ( ) (1) ( 1)
1

( ) ( ( ))( ({ ,..., }) ({ ,..., }))
n

i i i
i

U f u f s v s s v s s −
=

= −
 

with (1) ( 1){ ,..., }is s − = ∅  for 1i = . 

One can see that SEU model is a special case of CEU model when v  is 
additive. The disadvantages of CEU relates to difficulties of satisfactory 
interpretation of v . The typical cases are when v  is taken as a lower envelope of a 
set of probability distributions possible for a considered problem (when a single 
distribution is unknown). Lower envelope is the measure that assigns minimal 
probability to an event among all the probabilities for this event each determined 
on the base of one possible probability distribution. This requires solving 
optimization problems which increases complexity of computations. In general, 
non-additive measure construction is difficult both from intuitive and 
computational points of view. 

Cumulative Prospect Theory [47] (CPT) was suggested by Kahnemann and 
Tversky as a development of PT. PT was originally presented as a model for 
comparison of prospects with at most two non-zero outcomes. However, even for 
such primitive cases, the use of a non-additive weighting function in PT gives rise 
to at least one difficulty.  

In order to overcome this difficulty, Quiggin [41] and Yaari [54] suggested using 
non-linear transformation of not a probability ( )p x  of an outcome x a= , but of a 

cumulative probability ( )p x a≥  that an outcome x  is not less than a predefined 

value a . Consider a prospect 1 1( , ( );...; , ( ))n nf x p x x p x=  with non-negative 

outcomes, such that 1 ... nx x≥ ≥  (this ordering does not lead to loss of generality, as 

this can always be achieved by permutation of indexes). EU of this prospect will be  

1

( ) ( ) ( )
n

i i
i

U f p x u x
=

=
 

that can be rewritten as  

1
1 1

( ) ( ) ( ( ) ( ))
n i

j i i
i j

U f p x u x u x +
= =

 
= − 

 
 

 

where 1 0ix + =  by convention. 
1

( )
i

j
j

p x
=
 is a cumulative probability that an 

outcome of f  is not less than ix . By applying non-linear transformation w  

to
1

( )
i

j
j

p x
=
  one will have: 
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1
1 1

( ) ( ) ( ( ) ( ))
n i

j i i
i j

U f w p x u x u x +
= =

 
= − 

 
 

 

which can be rewritten  

1

1 1 1

( ) ( ) ( ) ( )
n i i

j j i
i j j

U f w p x w p x u x
−

= = =

    
= −         
  

 

As                                

1

1 1

( ) ( ) [0,1]
i i

j j
j j

w p x w p x
−

= =

    
− ∈         

 
  

And           

1

1 1 1 1

( ) ( ) ( ) (1) 1,
n i i n

j j j
i j j j

w p x w p x w p x w
−

= = = =

      
− = = =             

    

 

one can consider 
1

1 1

( ) ( )
i i

i j j
j j

q w p x w p x
−

= =

    
= −         

   as a probability. 

However, iq depends on ranking of outcomes ix  – for various prospects value of 

iq  will be various. For this reason, such representation is called rank-dependent 

expected utility (RDEU). For the case of many outcomes, PT is based on the use 
of RDEU model with a value function: 

1
1 1

( ) ( ) ( ( ) ( ))
n i

j i i
i j

U f w p x v x v x +
= =

 
= − 

 
 

 

The representation of RDEU is a special case of that of CEU. Considering 

1

( )
i

j
j

w p x
=

 
 
 
  as a value of non-additive measure, one arrives at CEU 

representation [24]. CEU is more general than RDEU: RDEU requires that the 
probabilities are known, whereas CEU – not. 

The second problem with PT is that it does not in general satisfy first-order 
stochastic dominance. 

Kahneman and Tversky, the authors of PT, suggested CPT as a more advanced 
theory which is free of the PT’s above mentioned drawbacks. CPT can be applied, in 
contrast to PT, both for decisions under risk and uncertainty. In CPT, gains and 
losses (measured by a value function) aggregated separately by Choquet integrals 
with different capacities and the results of aggregations are summed. The 
representation of CPT is: 

( ) ( ( )) ( ( )) ,
S S

U f v f s d v f s dη η+ + − −= +   
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where ( ) max( ( ),0)f s f s+ =  and ( ) min( ( ),0)f s f s− = , 
S is Choquet integral, 

v is a value function (the same as in PT), and ,η η+ −  are capacities. For the case with 

risky prospects, i.e. with known probabilities of states of nature it uses two weighting 
functions. Consider, without loss of generality, a risky prospect 

1( ( ),f f s= 1( )p s ;...; ( )nf s , ( ))np s with 1( )f s ≥ ,..., ( )kf s≥ 0≥ > 1( )kf s +> ≥      
,..., ( )nf s≥ . The CPT representation for f  is the following: 

1

1 1 1

1 1

( ) ( ) ( ) ( ( ))

( ) ( ) ( ( ))

k i i

j j i
i j j

n n n

j j i
i k j i j i

U f w p s w p s v f s

w p s w p s v f s

−

= = =

= + = = +

    
= − +         
    

+ −         

  

  
 

The use of different weighting functions w+  and w−  for probabilities of gains and 
losses comes from an experimental observation that people differently weight the 
same probability p  depending on whether it is associated with gain or loss; 

however the same experimental evidence showed that both w+  and w−  are S-

shaped [47]. w+  and w− obtained by Kahneman and Tversky from the experimental 
data have the same form with different curvatures: 

1
( )

( (1 ) )

p
w p

p p

γ

γ γ γ
+ =

+ − , 
1

( )
( (1 ) )

p
w p

p p

δ

δ δ δ
− =

+ −  

0.61γ = , 0.69δ = . As a result, w+ is more curved.  

The dependence of beliefs on the sign of outcomes is referred to as sign-
dependence. Sign-dependence for the case of decisions under uncertainty is modeled 

by using two different capacities ,η η+ − . When ( ) 1 (1 )w p w p+ −= − −  

or ( ) 1 ( \ ),A S A A Sη η+ −= − ⊂ , the sign-dependence disappears and CPT is 

reduced to RDEU or CEU respectively.  
CPT is one of the most successful theories – it encompasses reference-

dependence, rank-dependence and sign-dependence. It combines advantages of 
both PT and CEU: describing asymmetry of gains and losses and modeling non-
additive beliefs under uncertainty. As opposed to PT, CPT satisfies first-order 
stochastic dominance. 

However, CPT suffers from a series of notable disadvantages. One main 
disadvantage of CPT is that gains and losses are aggregated separately, and in this 
sense the model is additive. Drawbacks and violations of such additivity were 
empirically and experimentally shown in [5,6,36,53].  
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The other main disadvantage is that CPT, as it is shown in [39], may be good 
for laboratory works but not sufficiently suitable for real applications. The 
research in [39] shows that this is related to the fact that CPT is highly conditioned 
by the combination of parameters’ values used in value and weighting functions. 
Roughly speaking, the same combination works well in one choice problem but 
badly in another. For example, such problems with parameterization is assumed as 
a possible reason of the experiments reported in [2], where it was illustrated that 
CPT fails to capture the choice between mixed gambles with moderate and equal 
probabilities. 

One of the underlying motivations of the CEU is that a DM’s beliefs may not 
be probabilistic in choice problems under uncertainty, i.e. they may be 
incompatible with a unique probability measure. In CEU, this evidence is 
accounted for by using a non-additive probability. Another way to describe non-
probabilistic beliefs is modeling them not by one probability distribution but by a 
set of probability distributions (priors), which led to development of a large class 
of various utility models. This class is referred to as multiple priors models. The 
use of multiple priors allows describing the fact that in situations with insufficient 
information or vague knowledge, a DM can not have a precise (single) 
probabilistic belief on an event’s occurrence, but have to allow for a range of 
values of probabilities, i.e. to have an imprecise belief. Indeed, various priors from 
a considered set will in general assign various probabilities to an event. From the 
other side, imprecise probabilistic beliefs imply existence of a set of priors. 

The first two known examples showing incompatibility of a single probability 
measure with human choices were suggested by Daniel Ellsberg in 1961 [16]. These 
examples uncovered choices under uncertainty in which human intuition does not 
follow the sure thing principle. One example is called Ellsberg two-urn paradox. In 
this experiment they present a DM two urns each with 100 balls. A DM is allowed 
to see that urn I contains 50 white and 50 black balls, whereas no information is 
provided on a ratio of white and black balls in urn II. A DM is suggested choosing 
from bets on a color of a ball drawn at random: on a white color and on a black 
color. Each bet produces a prize of $100. After bet is chosen, a DM needs to choose 
the urn to play. Majority of people were indifferent whether to bet on white or on 
black. However, whatever bet was chosen, most of people strictly preferred to 
choose urn I to play – they prefer betting on an outcome with known probability 0.5 
to betting on an outcome with probability that may take any value from [0,1]. This 
choice is inconsistent with any probabilistic belief on a color of a ball taken at 
random from urn II. Indeed, betting on white and then choosing urn I means that a 
DM believes on the number of white balls in urn II being smaller than in urn I, 
whereas betting on black and then choosing urn I means that a DM believes on the 
number of black balls in urn II being smaller than in urn I. No single probabilistic 
belief on colors for urn II may simultaneously explain these two choices – the 
probabilities of a white and a black balls drawn at random from urn II cannot be 
simultaneously smaller than 0.5. 
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The second example is called Ellsberg single-urn experiment. In this example a 
DM is offered to choose among bets on colors of balls in one urn. This urn contains 
90 balls among which 30 are red and the other 60 are blue and yellow in an 
unknown proportion. The following bets on a color of a ball taken at random are 
suggested (Table 2.1): 
 
Table 2.1 Ellsberg single-urn decision problem 

 Red Blue Yellow 
f  $100 0 0 
g  0 $100 0 

f ′
 

$100 0 $100 

g′
 

0 $100 $100 

 
For example, f yields $100 if a ball drawn is red and 0 otherwise whereas f ′  

yields $100 whether a ball drawn is red or yellow and 0 otherwise. Majority of 
subjects prefer f  to g  (i.e. they prefer an outcome with known probability 1/3 to 

an outcome with unknown probability being somewhere between 0 and 2/3). At 
the same time, majority prefer g′  to f ′ (i.e. they prefer an outcome with known 

probability 2/3 to an outcome with unknown probability being somewhere 
between 1/3 and 1). These two choices cannot be explained by beliefs described 
by a single probability distribution. Indeed, if to suppose that the beliefs are 
probabilistic, then the first choice implies that subjects think that a red ball is more 
probable to be drawn than a blue ball: ( ) ( )p red p blue> . The second choice 

implies subjects thinking that a blue or yellow ball drawn is more probable than a 
red or yellow ball drawn – ( )p blue ( )p yellow+ ( )p red> ( )p yellow+ which 

means ( ) ( )p blue p red> . This contradicts the beliefs underlying the first choice. 

Indeed, information on occurrence of complementary events blue and yellow 
represented only by probability of their union cannot be uniquely separated into 
probabilities of blue and yellow. 

The observed choices contradict the sure thing principle, according to which 

f g  should imply f g′ ′ . Indeed, f ′ and g′  can be obtained from f  and g  

respectively by changing from 0 to $100 the equal outcomes of f  and g  produced 

for yellow ball. However, the evidence shows: f g and g f′ ′ . Violation of the 

sure thing principle also takes place in the Ellsberg two-urns experiment. The 
intuition behind the real choices in these experiments is that people tend to prefer 
probabilistic outcomes to uncertain ones. This phenomenon is referred to as 
uncertainty aversion, or ambiguity aversion. Term ambiguity was suggested by 
Daniel Ellsberg and defined as follows: “a quality depending on the amount, type,  
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reliability and ‘unanimity’ of information, and giving rise to one’s ‘degree of 
confidence’ in an estimate of relative likelihoods” [16]. Mainly, ambiguity is 
understood as uncertainty with respect to probabilities [7]. 

The principle of uncertainty aversion was formalized in form of an axiom by 
Gilboa and Schmeidler [26]. To understand formal description of uncertainty 
aversion, let us recall the Ellsberg two-urn example. Suppose an act f  yielding $100 

for a white ball drawn from an unknown urn and an act g  yielding $100 for a black 

ball drawn from an unknown urn. It is reasonable to consider these acts equivalent: 

f g . Now mix these acts as 
1 1

2 2
f g+ , obtaining an act which yields a lottery of 

getting $100 with probability ½ and 0 with probability ½ no matter what ball is 
drawn. That is, by mixing two uncertain bets we got a risky bet – the hedging effect 
takes place. The obtained act is equivalent to a bet on any color, say white, for a 
known urn that provides the same lottery. But as this bet is preferred to f  and g , we 

may state that 
1 1

2 2
f g f+  . The uncertainty aversion axiom is a generalization of 

this and it states that for equivalent acts f  and g , their mix is weakly preferred to 

each of them: (1 )f g fα α+ −  . This axiom is one of the axioms underlying a 

famous utility model called Maximin Expected Utility (MMEU) [26]. According to 
the axiomatic basis of this model, there exist a unique closed and convex set C  of 
priors (probability measures) P over states of nature, such that 

min ( ( )) min ( ( )) ,
S SP C P C

f g u f s dP u g s dP
∈ ∈

⇔ ≥ 
 

where u  is unique up to a positive linear transformation. In simple words, an 
overall utility of an act is a minimum among all its expected utilities each obtained 
for prior one P C∈ . The consideration of C  as convex does not affect generality. 
Applying MMEU to both Ellsberg paradoxes, one can easily arrive at the observed 
preferences of most people.  

Ghirardato, Maccheroni and Marinacci suggested a generalization of MMEU [20] 
consisting in using all its underlying axioms except uncertainty aversion axiom. The 
obtained model is referred to as α − MMEU and states that f g  iff 

min ( ( )) (1 )max ( ( ))

min ( ( )) (1 )max ( ( ))

S SP C P C

S SP C P C

u f s dP u f s dP

u g s dP u g s dP

α α

α α
∈ ∈

∈ ∈

+ − ≥

≥ + −

 
   

[0,1]α ∈  is referred to as a degree of ambiguity aversion, or an ambiguity 

attitude. The higher α  is the more ambiguity averse a DM is, and when 1α =  we 
get MMEU. When 0α = , the model describes ambiguity seeking, i.e. a DM relies  
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on ambiguity because it includes the best possible realization of priors. The values 
(0,1)α ∈  describe balance between ambiguity aversion and ambiguity seeking to 

reflect the fact that a person may not have extreme attitudes to ambiguity. 
The important issue is the relation between CEU and MMEU. One can easily find 

that the Ellsberg single-urn paradox may be explained by CEU under the capacity v  
satisfying the following: 

1
({ }) ({ , }) ({ , }) ,

3r r b r yv s v s s v s s= = =
 

({ }) ({ }) 0,b yv s v s= =
 

({ }) ({ }) 0,b yv s v s= =
 

2
({ , }) ,

3b yv s s =
 

where , ,r b ys s s  denote states of nature being extractions of a red, a blue and a 

yellow balls respectively. Schmeidler showed that an ambiguity aversion is 
modeled by CEU if and only if a capacity satisfies ( )v A B∪ ( )v A B+ ∩ ≥  

( ) ( )v A v B+ . Such v  is called a convex capacity. Schmeidler proved that under 

assumption of ambiguity aversion, CEU is the special case of the MMEU: 

( ) ( ( )) min ( ( ))
S SP C

Ch u f s dv u f s dP
∈

=   

where ( )
S

Ch  denotes Choquet integral, v is a convex capacity, and C  is a set 

of probability measures defined as { }( ) ( ),C P P A v A A S= ≥ ∀ ⊂ . Such C  is 

called a core of a convex capacity v . The capacity given above that expresses 
Ellsberg paradox, is a capacity whose value for each event is equal to a minimum 
among all the possible probabilities for this event, and therefore, 
satisfies ( ) ( ),v A P A A S≤ ∀ ⊂ . Given a set of priors C , a convex capacity v  

satisfying ( ) min ( )
P C

v A P A
∈

=  is called a lower envelope of C .  

However, MMEU is not always a generalization of CEU. If v  is not convex, 
there is no C  for which CEU and MMEU coincide. Indeed, CEU does not 
presuppose an ambiguity aversion. For example, if you use concave v , CEU will 
model ambiguity seeking behavior [24]. Also, a capacity may not have a core. 

If to compare CEU and MMEU, the latter has important advantages. Choquet 
integration and a non-additive measure are concepts that are not well-known and use 
of them requires specific mathematical knowledge. From the other side, there exist 
difficulties related to interpretation and construction of a capacity. Capacity, as a 
belief, may be too subjective. In contrast, a set of priors is straightforward and clear 
as a possible ‘range’ for unknown probability distribution. The idea to compute 
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minimal EU is very intuitive and accepted easily. At the same time, it often requires 
to solve well-known optimization problems like those of linear programming. 
However, determination of a set of priors as the problem of strict constraining a 
range of possible probabilities is influenced by insufficient knowledge on reality. 
The use of probability itself may be questionable. In such cases, the use of a non-
additive belief obtained from experience-based knowledge may be a good 
alternative. 

The main disadvantages of the MMEU are that in real problems it is difficult to 
strictly constrain the set of priors and various priors should not be considered 
equally relevant to a problem at hand. From the other side, in MMEU each act is 
evaluated on the base of only one prior. In order to cope with these problems 
Klibanoff et al. suggested a smooth ambiguity model as a more general way to 
formalize decision making under ambiguity than MMEU [34]. In this model an 
assessment of a DM’s subjective probabilistic beliefs to various probability 
distributions is used to represent important additional knowledge which 
differentiates priors in terms of their relevance to a decision situation considered. In 
this approach the authors use the following representation: 

( )( ) ( )
C

U f u f dP dφ ν=    

Here P C∈  is a possible prior from a set of priors C , ν  is a probabilistic belief 
over C , φ  is a nonlinear function reflecting extent of ambiguity aversion. φ rules 

out reduction of a second-order probability model to a first-order probability model. 
An introduction of a subjective second-order probability measure defined over 
multiple priors was also suggested by Chew et al.[11], Segal [45], Seo [46] and 
others.  

In [8] they suggested a model in which an overall utility for an action is obtained 

as
1

( ) min ( )
( ) SL

U f u f d
βρ

ρ
ϕ ρ∈

=  . Here ϕ  is a confidence function whose value 

( ) [0,1]ϕ ρ ∈  is the relevance of the distribution ρ  to the decision problem and 

{ : ( ) }, (0,1]Lβ ρ ϕ ρ β β= ≥ ∈  is a set of distributions considered by a DM. 

A wide class of multiple priors models is referred to as variational preferences 
models suggested in [37], robust control idea-based model suggested in [29], ε -
contamination model suggested in [14]. The generalized representation for these 
models is the following: 

( )
( ) min ( ) ( )U f u f d c

ρ
ρ ρ

∈Δ
 = +   

where c  is a “cost function” whose value ( )c ρ  is higher for less relevant 

distribution ρ  and ( )Δ   is the set of all the distributions over . 
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2.2   Analysis of the Existing Theories of Decision 

Analyzing the above mentioned decision theories on the base of preference 
frameworks and types of decision relevant information on alternatives, states of 
nature, probabilities and outcomes, we arrived at conclusion that these theories are 
developed for a well-described environment of thought experiments and 
laboratory examples. Such environment is defined mainly three simplified 
directions of decision making theory: decision making under uncertainty, decision 
making under risk and decision making under ambiguity. We will try to discuss 
main advantages and disadvantages of the existing theories which belong to these 
directions.  

The decision making methods developed for situations of uncertainty includes 
Laplace insufficient reason criterion, Savage minimax regret criterion, Hurwitz 
criterion, Wald maximin solution rule etc. Maximin solution rule models extreme 
pessimism in decision making, whereas its generalization, Hurwitz criterion uses 
linear combination of pessimistic and optimistic solutions. The main shortcoming 
of these methods is that most of them are not developed to deal with any 
information on probabilities of states of nature, whereas in real-life decision 
making DM’s almost always have some amount of such information. 

The main methods of decision making under risk are von Neumann and 
Morgenstern EU, subjective expected utility of Savage, Hodges-Lehmann criterion 
[30], prospect theory (PT) and others. EU theories have strong scientific foundations 
together with simplicity of the utility models. But, unfortunately, they are based on 
idealized preference and information frameworks. A decision maker is considered 
fully rational and relying on coarsely computational, inanimate reasoning. Decision 
relevant information is based on assumption that future may be perfectly described 
by means of states of nature like extraction of a white or a black ball. Likelihood of 
states of nature is described by objective probabilities or subjective probabilistic 
beliefs. However, due to absence of sufficient information, the first ones are 
commonly unknown. On the other hand, even if objective probabilities are known, 
beliefs of a DM do not coincide with them due to psychological aspects. Subjective 
probabilities are slightly more realistic, but are incapable to describe choices under 
uncertainty even in thought experiments.  

Reconsideration of preferences framework underlying EU resulted in 
development of various advanced preferences frameworks as generalizations of the 
former. These generalizations can be divided into two types: rank-dependence 
generalization and sign-dependence generalization [9]. Advanced preference 
frameworks include various reconsiderations and weakening of independence axiom 
[18,21,26,44], human attitudes to risk and uncertainty (rank-dependent 
generalization), gains and losses [32,47] etc. 

PT is suggested for decision making under risk and models such important 
psychological aspects as asymmetry of gains and losses and distorted evaluation of 
probabilities. However, this theory requires probabilities and outcomes to be exactly 
known which sufficiently restricts its application in real-world problems. From the 
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other side, the psychological biases are precisely described in this theory, whereas 
extents of psychological distortion of decision-relevant information (probabilities 
and outcomes) are rather imprecisely known. 

A large number of studies is devoted to decision making under ambiguity 
[3,7,10,15,17-20,22-24,28,31,33]. Ambiguity is commonly referred to the cases 
when probabilities are not known but are supposed to vary within some ranges. The 
terms ‘uncertainty’ and ‘ambiguity’ are not always clearly distinguished and defined 
but, in general, are related to non-probabilistic uncertainty. In turn, decision making 
under uncertainty often is considered as an extreme non-probabilistic case – when 
no information on probabilities is available. From the other side, this case is also 
termed as decision making under complete ignorance. At the same time, sometimes, 
this is considered as ambiguity represented by simultaneous consideration of all the 
probability distributions. The studies on decision making under ambiguity are 
conducted in two directions – a development of models based on multiple 
probability distributions, called multiple priors models [25,26], and a formation of 
approaches based on non-additive measures such as CEU [50-52]. Mainly, these 
models consider so-called ambiguity aversion as a property of human behavior to 
generally prefer outcomes related to non-ambiguous events to those related to 
ambiguous ones.  

CEU is a good model describing common inconsistency of the independence 
assumption with human decision reasoning and non-additivity of beliefs. Non-
additivity is an actual property of beliefs conditioned by scarce relevant information 
on likelihood of events or by psychological distortion of probabilities. This property 
allows CEU to describe the famous Ellsberg and Allais paradoxes. CEU is a one of 
the most successful utility models, it is used as a criterion of decision making under 
ambiguity and decision making under risk.  

However, non-additive measure used in CEU is precise (numerical) the use of 
which is questionable for real-world problems where probabilities are not as 
perfectly (precisely) constrained as in Ellsberg paradoxes. From the other side, 
CEU is developed for precise utility-based measuring of outcomes that also is not 
adequate when the latter are imprecisely known and uncertain being related to 
future. 

CPT encompasses PT and CEU basics, and as a result, is both rank-dependent 
and sign-dependent generalization of EU. Nowadays, CPT is one of the most 
successful theories and allows taking into account both asymmetry of gains and 
losses and ambiguity attitudes. However, no interaction of these behavioral factors is 
considered. It is naive to assume that these factors don’t exhibit some mix in their 
influence on choices, as a human being can hardly consider them independently due 
to psychological issues and restricted computational abilities. From the other side, 
CPT, as well as PT and CEU, is developed for perfectly described information and 
well-defined preferences of a DM (this also restricts its ability to adequately model 
human choices affected by ensemble of behavioral factors).  

Multiple priors models were suggested for situations when objective probabilities 
are not known and a DM cannot assign precise probabilistic beliefs to events but has 
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imprecise beliefs. Indeed, in real world, due to incompleteness of information or 
knowledge rather a range of probabilities but not a single probability is used 
describing likelihood of an event. This requires using a set of probability 
distributions instead of a unique prior. Within such a set all distributions are 
considered equally relevant. In general, it is much more adequate but still poor 
formulation of probability-relevant information available for a DM – in real-life 
problems a DM usually has some information that allows determining which priors 
are more and which are less relevant. Without doubt, a DM has different degrees of 
belief to different relevant probability distributions. In real-world problems, the 
values of probabilities are imprecise but cannot be sharply constrained as in Ellsberg 
paradoxes, which are specially designed problems. For addressing this issue, models 
with second-order probabilities were suggested [3,11,34,45]. For example, in the 
smooth ambiguity model [34] Klibanoff et al. suggested using a subjective 
probability measure to reflect a DM’s belief on whether a considered subset of 
multiple priors contains a ‘true’ prior. The use of this second-order probability 
allows to depart from extreme evaluation of acts by their minimal or/and maximal 
expected utilities, and to take into account influence of each relevant prior to acts’ 
overall utilities. However, for a human being an assessment of a precise subjective 
probability to each prior becomes almost impossible when the number of priors is 
large. Such a hard procedure does not correspond to extremely limited 
computational capability of humans. If probabilistic beliefs over states of nature 
often fail, why they should often work over a more complicated structure – a set  
of priors? 

Second-order precise probability model is a non-realistic description of human 
beliefs characterized by imprecision and associated with some psychological 
aspects that need to be considered as well. The other disadvantage of the belief 
representation suggested in [34] is that the problem of investigation of consistency 
of subjective probability-relevant information is not discussed – consistent 
multiple priors are supposed to be given in advance. However, a verification of 
consistency of beliefs becomes a very important problem. An extensive 
investigation of this issue is covered in [50].  

The other existing multiple priors models like the model based on confidence 
function and the variational preferences models considered in [37] also use 
complicated techniques to account for a relevance of a prior to a considered 
problem. From the other side, in these models each decision is evaluated only on 
one prior and the pessimistic evaluation (min operator) is used.  

We mentioned only main existing models for decision making under ambiguity in 
this chapter. Let us note that the mentioned and other existing utility models for 
decision under ambiguity are based on rather complicated techniques and may be 
too subtle to be applied under vagueness of real-life decision-relevant information. 
In real life, amount, type, reliability and ‘unanimity’ of information, considered in 
Ellsberg’s formulation of ambiguity, are not perfectly known that presents some 
difficulties in application of the existing models and decreases trust to the obtained 
results. 
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Generalizing the above mentioned drawbacks of the existing theories, we may 
conclude that the existing decision models yielded good results, but nowadays there 
is a need in generation of more realistic decision models. The main reason for this is 
that the existing decision theories are in general developed for thought experiments 
characterized by precise, perfect decision relevant information. The paradigm of 
construction of ‘elegant’ models does not match imperfect nature of decision 
making and relevant information supported by perceptions. Indeed, even the most 
advanced utility models are motivated by behavioral phenomena that were observed 
in thought experiment with simplified conditions. However, as David Schmeidler 
states, “Real life is not about balls and urns”. The existing decision theories cannot 
be sufficiently accurate because in real-world decision situations human preferences 
are vague and decision-relevant information on environment and a DM’s behavior is 
imperfect as perception-based. In contrast, humans are able to make proper 
decisions in such imperfect conditions. Modeling of this outstanding capability of 
humans, even to some extent, is a difficult but a promising study which stands for a 
motivation of the research suggested in this book.  Economy is a human-centric 
system and this means that the languages of new decision models should be not 
languages based on binary logic and probability theory, but human-centric 
computational schemes for dealing with perception-based information. In our 
opinion, such languages are natural language (NL), in particular, precisiated NL 
(PNL) [56], and a geometric visual language (GVL) [27] or a geometric description 
language (GDL) [27]. New theories should be based on a more general and adequate 
view on imperfect perception-based information about environment and a DM’s 
behavior. The main purpose of such a generalization is to construct models that are 
sufficiently flexible to deal with imperfect nature of decision-relevant information. 
Such flexibility would allow taking into account more relevant information and 
could yield more realistic (not more precise!) results and conclusions. 

The other main disadvantage of the existing decision theories relates to modeling 
of behavioral factors underlying decision making like risk attitude, ambiguity 
attitude, altruism etc. The most of the existing theories are based on precise 
parametrical modeling which is too coarse and “inanimate” approach to model 
human activity conditioned by emotions, perceptions, mental factors etc. The 
existing non-parametric approaches are more adequate, but, they also are based on 
perfect and precise description of human decision activity. There is a need for a 
fundamental approach to modeling behavioral decision making. In this book we 
suggest a theory of behavioral decision making in which a DM’s behavior, i.e. 
subjective conditions, is taken into a consideration at the same level of abstraction as 
objective conditions. We model a DM’s behavior by a set of his/her states each 
representing one principal behavior or, in other words, one principal subjective 
behavioral condition a DM may exhibit. In line with states of nature, states of a DM 
constitute in the suggested theory a common basis for decision analysis. Such 
framework is more general than behavioral basics of the existing theories like CPT 
and allows for a transparent analysis. 
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In real-world decision making imperfect information is supported by perceptions 
and is expressed in NL or in framework of visual images. In this book we suggest 
new approaches to decision making under imperfect information on decision 
environment and a DM’s behavior. The suggested approaches utilize synthesis of the 
fuzzy sets theory[55,56] as a mathematical tool for description and reasoning with 
perception-based information and probability theory. 

In the subsequent chapters we suggest new approaches to decision making under 
imperfect information on decision environment and a DM’s behavior. 
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Chapter 3 
Uncertain Preferences and Imperfect 
Information in Decision Making 

3.1   Vague Preferences 

One of the main aspects defining solution of a decision problem is a preferences 
framework. In its turn one of the approaches to formally describe preferences is 
the use of utility function. Utility function is a quantitative representation of a 
DM’s preferences and any scientifically ground utility model has its underlying 
preference assumptions.  

The first approach to modeling human preferences was suggested by von 
Neumann and Morgenstern [70] in their expected utility (EU) model. This 
approach is based on axioms of weak order, independence and continuity of 
human preferences over actions set A . As it was shown by many experiments and 
discussions conducted by economists and psychologists, the assumption of 
independence appeared non-realistic [4,9,20]. There were suggested a lot  
of preferences frameworks which departs from that of EU by modeling a series of 
key aspects of human behavior. 

Reconsideration of preferences framework underlying EU resulted in 
development of various advanced preferences frameworks as generalizations of 
the former. These generalizations can be divided into two types: rank-dependence 
generalization and sign-dependence generalization [11]. Advanced preference 
frameworks include various reconsiderations and weakening of the independence 
axiom [24,27,31,63] , human attitudes to risk and uncertainty (rank-dependent 
generalization), gains and losses [42,68] (sign-dependent generalization) etc. 

Various notions of uncertainty aversion (ambiguity aversion) in various 
formulations were included into many preference models starting from 
Schmeidler’s Choquet expected utility (CEU) [63] preferences framework and 
Gilboa and Schmeidler’s maximin expected utility preferences framework [31], to 
more advanced uncertainty aversion formulations of Ghirardato, Maccheroni, 
Marinacci, Epstein, Klibanoff  [10,12,21,23,25,27,28,44,45]. 

In [25] they provide axiomatization for α − MMEU – a convex combination of 
minimal and maximal expected utilities, where minimal expected utility is 
multiplied by a degree of ambiguity aversion (ambiguity attitude). This approach 
allows differentiating ambiguity and ambiguity attitude. However, the approach in 



90 3   Uncertain Preferences and Imperfect Information in Decision Making
 

[25] allows to evaluate overall utility only comparing ambiguity attitudes of DMs 
with the same risk attitudes. The analogous features of comparative ambiguity 
aversion are also presented in [28]. Ambiguity aversion as an extra risk aversion is 
considered in [12,22]. 

In [43] they suggested a smooth ambiguity model as a more general way to 
formalize decision making under ambiguity than MMEU. In this model 
probability-relevant information is described by assessment of DM’s subjective 
probabilistic beliefs to various relevant probability distributions. In contrast to 
other approaches to decision making under ambiguity, the model provides a strong 
separation between ambiguity and ambiguity attitude. To describe whether a DM 
is an ambiguity averse, loving or neutral it is suggested to use well known 
technique of modeling risk attitudes. More concretely, to reflect a considered 
DM’s reaction to ambiguity it is suggested to use a concave nonlinear function 
with a special parameter α  as the degree of ambiguity aversion – the larger α  
correspond to a more ambiguity averse DM. In its turn ambiguity loving is 
modeled by a convex nonlinearity. As opposed to the models in [21,25,28], the 
model in [43] allows for comparison of ambiguity attitudes of DMs whose risk 
attitudes are different. 

The other important property included into some modern preference 
frameworks is a tradeoff-consistency which reflects strength of preferences with 
respect to coordinates of probabilistic outcomes. 

The preference framework of the Cumulative Prospect Theory (CPT), 
suggested by Kahneman and Tversky [68], as opposed to the other existing 
frameworks includes both rank-dependence and sign-dependence features [11].  

But are the modern preferences frameworks sufficiently adequate to model 
human attitudes to alternatives? Unfortunately, the modern preferences 
frameworks miss very important feature of human preferences: human preferences 
are vague [58]. Humans compare even simple alternatives linguistically using 
certain evaluation techniques such as “much better”, “much worse”, “a little 
better”, “almost equivalent” [81] etc. So, a preference is a matter of an imprecise 
degree and this issue should be taken into account in formulation of preferences 
framework. Let us consider an example. 

Suppose that Robert wants to decide among two possible jobs 1 2,a a  based on 

the following criteria: salary, excitement and travel time. The information Robert 
has is that the job 1a  offers notably higher salary, slightly less travel time and is 

significantly less interesting as compared to the job 2a . What job to choose? 

Without doubt, evaluations like these are subjective and context-dependent but 
are often faced. If to suppose that for Robert salary is “notably” more important 
than the time issues and “slightly” more important than excitement then it may be 
difficult to him to compare these alternatives. The relevant information is too 
vague for Robert to clearly give preference to any of the alternatives. Robert may 
feel that superiority of the a1 on the first criterion is approximately compensated  
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by the superiority of the a2 in whole on the second and the third criteria. But, at the 
same time Robert may not consider these jobs equally good. As a result, in 
contrast to have unambiguous preferences, Robert has some “distribution” of his 
preferences among alternatives. In other words, he may think that to some degree 
the job a1 is as good as the job a2 and, at the same time, that to some degree job a2 
is as good as the job a1.  

In this example we see that vagueness of subjective comparison of alternatives 
on the base of some criteria naturally passes to the preferences among alternatives. 
For example, the term “notably higher” is not sharply defined but some vague 
term because various point estimates to various extents correspond to this term – 
for a given point estimate its correspondence to a “notably higher” term may not 
be true or false but partially true. This makes use of interval description of such 
estimates inadequate as no point may partially belong to an interval – it belongs or 
not. It is impossible to sharply differentiate “notably higher” and not “notably 
higher” points. As a result, vague estimates (in our case vague preferences) cannot 
be handled and described by classical logic and precise techniques. Fuzzy logic 
[1,81] is namely the tool to handle vague estimates and there is a solid number of 
works devoted to fuzzy and linguistic preference relations [57,74]. This is due to 
the fact that vagueness is more adequately measured by fuzziness. As a result, 
fuzzy degree-based preference axiomatization is more adequate representation 
from behavioral aspects point of view as it is closer to human thinking. In view of 
this, linguistic preference relations as a natural generalization of classical 
preference relations are an appropriate framework to underlie human-like utility 
model. 

Fuzzy preferences or fuzzy preference relations (FPRs) are used to reflect the 
fact that in real-world problems, due to complexity of alternatives, lack of 
knowledge and information and some other reasons, a DM can not give a full 
preference to one alternative from a pair. Preferences remain “distributed” 
reflecting that one alternative is to some extent better than another. In contrast to 
classical preference relations, FPR shows whether an alternative a is more 
preferred to b than alternative c is preferred to d.   

Given a set of alternatives A , any fuzzy preference relation on A  is a mapping 
:R A A T× →  where T  is a totally ordered set. Very often fuzzy preference 

relation is considered as : [0,1]R A A× →  which assigns to any pair of 

alternatives ,a b A∈  a degree of preference ( , ) [0,1]R a b ∈  to which a  is 

preferred to b . The higher ( , )R a b  is, the more a  is preferred to b . In other 

words, FPR is characterized by membership function ( , ) ( , )R a b R a bμ =  which 

returns a degree of membership of a pair ( , )a b  to R . FPR is a valued extension of 

classical preference relations. For example, a weak order is a special case of FPR 

when { }: 0,1R A A× →  with ( , ) 1R a b =  if and only if a b  and ( , ) 0R a b =  

otherwise.  
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Consider a general case of a classical preference relation (CPR) implying that 
a  is either strictly preferred, or equivalent or incomparable to b . This means that 
CPR is decomposed into a strict preference relation P , indifference preference 
relation I  and incomparability preference relation J , that is, ,a b A∀ ∈  
either ( , )a b P∈ , or ( , )a b I∈  or ( , )a b J∈ . An important extension of this case 

to FPR can be defined as follows:  

( , ) ( , ) ( , ) ( , ) 1P a b P b a I a b J a b+ + + =  

where , , : [0,1]P I J A A× →  are fuzzy strict, fuzzy indifference and fuzzy 

incomparability preference relations respectively.  
Another important type of FPR is described by a function : [0,1]R A A× →  

where ( , ) 1R a b =  means full strict preference of a  over b , which is the same as 

( , ) 0R b a =  (full negative preference) and indifference between a  over b  is 

modeled as ( , ) ( , ) 1/ 2R a b R b a= = . In general, R is an additive reciprocal, 

i.e. ( , ) ( , ) 1R a b R b a+ = . This is a degree-valued generalization of completeness 

property of classical relation, and ( , ) 1/ 2R a b >  is a degree of a strict preference. 

However, such an R  excludes incomparability. 
Consider yet another important type of FPR within which indifference is 

modeled by ( , ) ( , ) 1R a b R b a= = , incomparability – by ( , ) ( , ) 0R a b R b a= =  

and completeness – by max( ( , ), ( , )) 1R a b R b a = . 

FPR are a useful tool to handle vague preferences. Linguistic preferences, or 
linguistic preference relations (LPRs), sometimes called fuzzy linguistic 
preferences, are generalization of FPR used to account for a situations when a DM 
or an expert cannot assign precise degree of preference of one alternative to 
another, but express this degree in a form of linguistic terms like “much better”, “a 
little worse” etc. Indeed, under imperfect environment where relevant information 
is NL-based, there is no sufficient information to submit exact degrees, but is 
natural to express degrees in NL also corresponding to the kind of initial 
information. 

To formalize LPR it is first necessary to define a set of linguistic terms as a set 
of verbal expressions of preference degrees which would be appropriate for a 
considered problem. As a rule, they consider a finite and totally ordered linguistic 
term set { }, {0,..., }iT t i m= ∈  with an odd cardinal ranging between 5 and 13. 

Each term is semantically represented by a fuzzy number, typically triangular or 
trapezoidal, placed over some predefined scale, e.g. [0,1]. For example: “no 
preference” – (0,0,0), “slightly better” – (0,0.3,0.5), “more or less better” – 
(0.3,0.5,0.7), “sufficiently better” – (0.5,0.7,1), “full preference” – (0.7,1,1). The 
cardinality of the term set is usually an odd.  

Consider a finite set of alternatives { , 1,2,..., ( 2)}iA f i n n= = ≥ . Then an 

LPR is formally defined as follows: 
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Definition 3.1 [36]. Let { , 1,2,..., ( 2)}iA f i n n= = ≥  be a finite set of 

alternatives, then a linguistic preference relation R  is a fuzzy set in 2A  
characterized by a membership function 

2:
R

A Tμ →  

( , ) , ,i j ij i jf f r f f Aμ = ∀ ∈
 

indicating the linguistic preference degree of alternative if  over ,jf , i.e. ijr T∈ . 

So, LPR is represented by a membership function whose values are not precise 
degrees in [0,1] but fuzzy numbers in [0,1]. This means that LPR is a kind of FPR 
if to recall that the latter is in general defined by MF whose range is an ordered 
structure. 

Traditional Fuzzy Linguistic Approach (TFLA). TFLA preserves fuzzy information 
about degrees of preference by direct computations over fuzzy numbers and, as a 
result, is of a high computational complexity. There are various other approaches to 
modeling LPR, some of which allow reducing computational complexity of the TFLA 
or suggesting some reasonable trade-off between preserving information and 
computational complexity. One of them is referred to as ordinal fuzzy linguistic 
modeling (OFLM). This approach is based on an idea of the adopting symbolic 
computations [35] over indices of terms in a term set instead of direct computations 
over the terms themselves as fuzzy numbers. This makes the approach sufficiently 
simpler in terms of computational complexity than TFLA. In OFLM, they consider a 
finite linguistic term set with an odd cardinality and the terms described by fuzzy 
numbers over the unit interval [0,1]. Also, a mid term is used to express 
approximate equivalence of alternatives by a fuzzy number with a mode equal to 0.5 
and labeled like “almost equivalent”. The other terms are distributed around the 
mid term expressing successively increasing preference degrees to the right and 
their symmetrical counterparts to the left. For example: “sufficiently worse”, “more 
or less worse”, “slightly worse”, “almost equivalent”, “slightly better”, “more or 
less better”, “sufficiently better”.  

There exist also approaches to model uncertainty of preferences, other than 
FPR. These approaches accounts for comparison of ill-known alternatives under 
crisp (non-fuzzy) preference basis. In one of these approaches, which is used for 
modeling valued tournament relations, ( , )R x y measures the likelihood of a crisp 

weak preference x y  [13,17]. Formally, ( , )R x y  is defined as follows: 

1
( , ) ( ) ( )

2
R x y P x y P x y= + 

, 

where x y x y⇔   and y x , which implies ( , ) ( , ) 1R x y R y x+ = . Thus, 

uncertainty of preference is described by a probability distribution P  over  
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possible conventional preference relations, i.e., iT A A⊂ × with 

( , )i ix y x y T⇔ ∈  and ( ) , 1,...,i iP T p i N= = . Then 

: :

1
( , )

2
i i

i i
i x y i x y

R x y p p= + 
   

For more details one can refer to [14]. This approach to modeling uncertain 
preferences was the first interpretation of fuzzy preference relations in the existing 
literature and was considered in the framework of the voting theory. It is needed to 
mention that such relations may be considered fuzzy because a degree of 
preference is used whereas the approach itself is probabilistic. However, this 
degree is a measured uncertainty about preferences which are themselves crisp but 
are not known with certainty. So, in its kernel, this approach does not support an 
idea underlying FPR – preference itself is a matter of a degree.  

Another application of this approach may be implemented when there exists a 
utility function which quantifies preferences between alternatives a,b,c on some 
numerical scale and the latter is supported by additional information in form of a 
probability distribution. Then, ( , ) ( ( ) ( ))R x y P u x u y= > , where :u S R→  is a 

utility function. 
Other measures of uncertainty can also be used to describe uncertainty of 

preference. One of them is the possibility measure, by using thereof the uncertain 
preference is defined as 

( , ) ( ),R x y P x y=   

where ( )P x y  is the degree of possibility of preference. The use of the 

possibility theory defines max( ( , ), ( , )) 1R x y R y x = . At the same time, in terms 

of the possibility theory, 1 ( , ) ( )R x y N x y− =  is the degree of certainty of a 

strict preference.  
A large direction in the realm of modeling uncertain preferences is devoted to 

modeling incomplete preferences. In line with transitivity, completeness of 
preferences is often considered as a reasonable assumption. However, transitivity 
is used as a consistency requirement whereas completeness is used as a 
requirement which exclude indecisiveness. The reasonability and intuitiveness of 
these basics are not the same: for completeness they may loss their strength as 
compared to transitivity because in real choice problems lack of information, 
complexity of alternatives, psychological biases etc may hamper someone’s 
choice up to indecisiveness. From the other side, indecisiveness may take place in 
group decision making when members’ preferences disagree. The issue that 
completeness may be questionable was first addressed by Aumann [6]: 

“Of all the axioms of utility theory, the completeness axiom is perhaps the most 
questionable. Like others of the axioms, it is inaccurate as a description of real life; 
but unlike them, we find it hard to accept even from the normative viewpoint.  
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For example, certain decisions that [an] individual is asked to make might involve 
highly hypothetical situations, which he will never face in real life; he might feel 
that he cannot reach an “honest” decision in such cases. Other decision problems 
might be extremely complex, too complex for intuitive “insight,” and our individual 
might prefer to make no decision at all in these problems. Is it “rational” to force 
decisions in such cases?” 

If to assume that preferences are not complete, one has to reject the use 
numerical utility functions and has to deal with more complex representations. As 
it is argued in [56], the use of a numerical utility is naturally leads to loss of 
information and then should not be dogmatic if one intends to model bounded 
rationality and imperfect nature of choice. In [56] they suggest to handle 
incomplete preferences by means of a vector-valued utility function as its range is 
naturally incompletely ordered. The other main argument for such an approach is 
that the use of a vector-valued utility is simpler than dealing with preferences 
themselves and in this case well-developed multi-objective optimization 
techniques may be applied. The idea of incomplete preferences underlying the 
approach in [56] is realized by the following assumption: given the set of 
alternatives A  there exist at least one pair of alternatives ,x y A∈  for which 

neither x y  nor y x  is assumed. 

There exist also other approaches dealing with incomplete preferences by 
means of imprecise beliefs and/or imprecise utilities. The following classification 
of these approaches is given in [54]: 

 
1) Probabilities alone are considered imprecise. For this setting preferences are 

represented by a convex set of probability distributions and a unique, utility 
function u(). Such models are widely used in robust Bayesian statistics [41, 
61,73]; 

2) Utilities alone are considered imprecise. In this setting preferences are 
represented by a set of utility functions {u(c)} and a unique probability 
distribution p(s). Such representations were axiomatized and applied to economic 
models by Aumann [6] and Dubra, Maccheroni and Ok [19];  

3) Both probabilities and utilities are considered imprecise. This is represented by sets 
of probability distributions {p(s)} and utility functions {u()}. These sets are 
considered separately from each other allowing for all arbitrary combinations of 
their elements. This is the traditional separation of imprecise information about 
beliefs and outcomes.  Independence of two sets is practically justified and 
simplifies the decision analysis. However, this approach does not have axiomatic 
foundations. From the other side, the set of pairs may be non-convex and 
unconnected [40,41]. 

 
In order to compare adequacy of FPR and incomplete preferences models, we can 
emphasize the following classification of preference frameworks in terms of 
increasing uncertainty: complete orders, FPR, incomplete preferences. The first 
and the third one are idealized frameworks: the first implies that preference is  
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absolutely clear, the third deals with the case when some alternatives are 
absolutely not comparable. Incomplete preference deals with lack of any  
information which can elucidate preferences. This is a very rare case in the sense 
that in most of real-world situations some such information does exist, though it 
requires to be obtained. In its turn FPR implies that preference itself is not “single-
valued” and should reflect competition of alternatives even if the related 
information is precise. 

3.2   Imperfect Information 

In real-life decision making problems DM is almost never provided with perfect, 
that is, ideal decision-relevant information to determine states of nature, outcomes, 
probabilities, utilities etc and has to construct decision background structure based 
on his/her perception and envision. In contrast, relevant information almost always 
comes imperfect. Imperfect information is information which in one or more 
respects is imprecise, uncertain, incomplete, unreliable, vague or partially true 
[79]. We will discuss these properties of imperfect information and relations 
among them. 

Two main concepts of imperfect information are imprecision and uncertainty. 
Imprecision is one of the widest concepts including variety of cases. For purposes 
of differentiation between imprecision and uncertainty, Prof. L.A. Zadeh 
suggested the following example: “For purposes of differentiation it is convenient 
to use an example which involves ethnicity. Assume that Robert's father is German 
and his mother's parents were German and French. Thus, Robert is 3/4 German 
and 1/4 French. Suppose that someone asks me: What is Robert's ethnicity. If my 
answer is: Robert is German, my answer is imprecise or, equivalently, partially 
true. More specifically, the truth value of my answer is 3/4.  No uncertainty is 
involved. Next, assume that Robert is either German or French, and that I am 
uncertain about his ethnicity. Based on whatever information I have, my 
perception of the likelihood that Robert is German is 3/4. In this case, 3/4 is my 
subjective probability that Robert is German. No partiality of truth is involved.” In 
the first case imprecision is only represented by partial truth and no uncertainty is 
involved. As Prof. L.A. Zadeh defines, such imprecision is referred to as strict 
imprecision or s-imprecision for short. In the second case, imprecision is only 
represented by uncertainty and no partial truth is involved. 

Information is partially true if it is neither absolutely true nor absolutely false 
but in an intermediate closeness to reality. For example, suppose you needed to 
write down ten pages of a text and have already written 8 pages. Certainly ‘the 
work is done’ is not absolutely true and is not absolutely false, and, if to assume 
that all pages are written equivalently difficult, ‘the work is done’ is true with 
degree 0.8. Form the other side, ‘the work is not done’ is not true and is not false 
from viewpoint of intuition because it is not informative and requires to be 
substituted by a more concrete evaluation. 
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Another example on imprecision and uncertainty is provided by P. Smets: 
 
“To illustrate the difference between imprecision and uncertainty, consider the 

following two situations: 
 

1. John has at least two children and I am sure about it. 
2. John has three children but I am not sure about it. 
 
In case 1, the number of children is imprecise but certain. In case 2, the number of 
children is precise but uncertain. Both aspects can coexist but are distinct. Often 
the more imprecise you are, the most certain you are, and the more precise, the 
less certain. There seems to be some Information Maximality Principle that 
requires that the ‘product’ of precision and certainty cannot be beyond a certain 
critical level. Any increase in one is balanced by a decrease in the other.” 

Imprecision is a property of the content under consideration: either more than 
one or no realization is compatible with the available information [65].  

One realization of imprecise information is ambiguous information. Ambiguous 
information is information which may have at least to different meanings. For 
example, a statement ‘you are aggressive’ is ambiguous because aggressive may 
mean ‘belligerent’ or ‘energetic’. For example, homonyms are typical carriers of 
ambiguity. 

Ambiguous information may be approximate, e.g. ‘the temperature of water in 
the glass is between 40 and 50°C is approximate if the temperature is 47°C. 
Ambiguous information like ‘the temperature is close to 100C’ is vague. Such 
vague information is fuzzy, because in this case the temperature is not sharply 
bounded. Both 99C and 103 corresponds to this, but the first corresponds stronger. 
Correspondence of a temperature value to ‘the ‘temperature is close to 100C’ 
smoothly decreases as this value moves away from 100C. In general, vague 
information is information which is not well-defined; it is carried by a ‘loose 
concept’. The worst case of vague information is unclear information. Ambiguous 
information may also be incomplete: “the vacation will be in a summer month” 
because a summer month may be either June, July or August.  

Uncertain information is commonly defined as information which is not certain.  
P. Smets defines uncertainty as a property that results from a lack of information 
about the world for deciding if the statement is true or false. The question on 
whether uncertainty is objective or subjective property is still rhetoric.  

Objective uncertainty may be probabilistic or non-probabilistic. Probabilistic 
uncertainty is uncertainty related to randomness – probability of an event is related 
to its tendency to occur. Main kinds of non-probabilistic uncertainty are 
possibilistic uncertainty and complete ignorance. Possibilistic uncertainty reflects 
an event’s ‘ability’ to occur. To be probable, an event has to be possible. At the 
same time, very possible events may be a little probable. The dual concept of 
possibility is necessity. Necessity of an event is impossibility of the contrary event 
to occur. Complete ignorance is related to situations when no information on a 
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variable of interest (e.g. probability) is available. For case of probability complete 
ignorance may be described by a set of all probability distributions. 

Objective uncertainty relates to evidence on a likelihood of phenomena. 
Subjective uncertainty relates to DM’s opinion on a likelihood of phenomena. 
More specifically, subjective uncertainty is a DM’s belief on occurrence of an 
event. Classification of subjective uncertainty is very wide and its primitive forms 
are, analogously to that of objective uncertainty, subjective probability, subjective 
possibility and subjective necessity. The structures of these forms of subjective 
uncertainty are the same as those of objective probability, possibility and 
necessity. However, the sources of them differ: subjective uncertainty is a DM’s 
opinion, whereas objective uncertainty is pure evidence. For example, 
mathematical structure of subjective probability is a probability measure but the 
values of this measure are assigned on the base of a DM’s opinion under lack of 
evidence. Analogously, subjective possibility and necessity are a DM’s opinions 
on possibility and necessity of an event. 

Unreliable information is information to which an individual does not trust or 
trusts weakly due to the source of this information. As a result, an individual does 
not rely on this information. For example, you may not trust to the meteorological 
forecast if it is done by using old technology and equipment. 

Imperfect information is impossible to be completely caught in terms of 
understanding what this concept means (e.g. uncertainty concept), and thus, 
cannot be perfectly classified. Any classification may have contradictions, flows 
and changes of concepts. 

In real-world, imperfect information is commonly present in all the components 
of the decision making problem. States of nature reflects possible future 
conditions which are commonly ill-known whereas the existing theories are based 
on perfect construction – on partition of the future objective conditions into 
mutually exclusive and exhaustive states. Possible realizations of future are not 
completely known. The future may result in a situation which was not thought and 
unforeseen contingencies commonly take place [26]. From the other side, those 
states of nature which are supposed as possible, are themselves vaguely defined 
and it is not always realistic to strictly differentiate among them. The outcomes 
and probabilities are also not well known, especially taking into account that they 
are related to ill-known states of nature. However, the existing theories do not pay 
significant attention to these issues. The most of the theories, including the famous 
and advanced theories, take into account only imperfect information related to 
probabilities. Moreover, this is handled by coarse description of ambiguity – either 
by exact constraints on probabilities (a set of priors) or by using subtle techniques 
like probabilistic constraints or specific non-linear functions. These are, however, 
approaches rather for frameworks of the designed experiments but not for real-
world decision problems when information is not sufficiently good to apply such 
techniques. In the Table 3.1. below we tried to classify decision situations on the  
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Table 3.1 Classification of decision-relevant information 

 Probabilities 

Outcomes Utilities Precise 
Complete 

Ignorance 
Ambiguous Imperfect 

Precise 
Precise Situation 1 Situation 2 Situation 3 Situation 4 

Fuzzy Situation 5 Situation 6 Situation 7 Situation 8 

Complete 

Ignorance 

Precise Situation 9 Situation 10 Situation 11 Situation 12 

Fuzzy Situation 13 Situation 14 Situation 15 Situation 16 

Ambiguous 
Precise Situation 17 Situation 18 Situation 19 Situation 20 

Fuzzy Situation 21 Situation 22 Situation 23 Situation 24 

Imperfect 
Precise Situation 25 Situation 26 Situation 27 Situation 28 

Fuzzy Situation 29 Situation 30 Situation 31 Situation 32 

 
base of different types of decision relevant information that one can be faced with 
and the utility models that can be applied. In this table, we identify three important 
coordinates (dimensions). The first one concerns information available for 
probabilities, the second captures information about outcomes, while the third 
looks at the nature of utilities and their description. The first two dimensions 
include precise information (risk), complete ignorance (absence of information), 
ambiguous information, and imperfect information. Two main types of utilities are 
considered, namely precise and fuzzy. Decision-relevant information setups are 
represented at the crossing of these coordinates; those are cells containing 
Situations from 1 to 32. They capture combinations of various types of 
probabilities, outcomes, and utilities. 

The most developed scenarios are those positioned in entries numbered from 1 
to 4 (precise utility models). A limited attention has paid to situations 5-8 with  
fuzzy utilities, which are considered in [5,7,29,51]. For the situations 9-12 with 
complete ignorance with respect to outcomes and with precise utilities a few 
works related to interactive obtaining of information were suggested. For 
situations 13-16, to our knowledge, no works were suggested.  Few studies are 
devoted to the situations with ambiguous outcomes (situations 17-20) [37,38,39] 
and precise utilities and no works to ambiguous outcomes with fuzzy utilities are 
available (situations 21-24). For situations 25-32 a very few studies were reported 
including the existing fuzzy utility models [5,7,29,51]. The case with imperfect 
probabilities, imperfect outcomes, and fuzzy utilities (situation 32) generalize all 
the other situations. An adequate utility model for this situation is suggested in [3] 
and is expressed in Chapter 4 of the present book. 

The probability theory has a large spectrum of successful applications. 
However, the use of a single probability measure for quantification of uncertainty 
has severe limitations main of which are the following [3]: 1) precise probability 
is unable to describe complete ignorance (total lack of information); 2) one can 
determine probabilities of some subsets of a set of possible outcomes but  
cannot always determine probabilities for all the subsets; 3) one can determine 
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probabilities of all the subsets of a set of possible outcomes but it will require 
laborious computations. 

Indeed, classical probability imposes too strong assumptions that significantly 
limit its use even in simple real-world or laboratory problems. Famous Ellsberg 
experiments and Schmeidler’s coin example are good illustrative cases when 
available information appears insufficient to determine actual probabilities. Good 
discussion of real-world tasks which are incapable to be handled within 
probabilistic framework is given in [30]. In real problems, quality of decision-
relevant information does not require the use of a single probability measure. As a 
result, probabilities cannot be precisely determined and are imprecise. For such 
cases, they use constraints on a probability of an event A  in form of lower and 

upper probabilities denoted ( )P A  and ( )P A  respectively. That is, a probability 

( )P A  of an event A  is not known precisely but supposed to be somewhere 

between ( )P A  and ( )P A : ( ) [ ( ), ( )]P A P A P A∈  where 0 ( ) ( ) 1P A P A≤ ≤ ≤ ; 

in more general formulation, constraints in form of lower and upper expectations 

for a random variable are used. In special case when ( ) ( )P A P A=  a framework 

of lower and upper probabilities degenerates to a single probability ( )P A . 

Complete lack of knowledge about likelihood of A  is modeled by ( ) 0P A =  

and ( ) 1P A = . This means that when likelihood of an event is absolutely 

unknown, they suppose that probability of this event may take any value from 
[0,1] (from impossibility to occur up to certain occurrence). 

Constraints on probabilities imply existence of a set of probability distributions, 
that is, multiple priors, which are an alternative approach to handle incomplete 
information on probabilities. Under the certain consistency requirements the use 
of multiple priors is equivalent to the use of lower and upper probabilities. 
Approaches in which imprecise probabilities are handled in form of intervals 

1 2[ , ]p p . Such representation is termed as interval probabilities. 

An alternative way to handle incomplete information on probabilities is the use 
of non-additive probabilities, typical cases of which are lower probabilities and 
upper probabilities and their convex combinations. However, multiple priors are 
more general and intuitive approach to handle incomplete probability information 
than non-additive probabilities.  

The most fundamental axiomatization of imprecise probabilities was suggested 
by Peter Walley who suggested the term imprecise probabilities. The behavioral 
interpretation of Walley’s axiomatization is based on buying and selling prices for 
gambles. Walley’s axiomatization is more general than Kolmogorov’s 
axiomatization of the standard probability theory. The central concept in Walley’s 
theory is the lower prevision concept which generalizes standard (additive) 
probability, lower and upper probabilities and non-additive measures. However, in 
terms of generality, the concept of lower prevision is inferior to multiple priors. 
Another disadvantage of lower prevision theory is its high complexity that limits 
its practical use. 
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Alternative axiomatizations of imprecise probabilities were suggested by 
Kuznetsov [47] and Weichselbergern [75] for the framework of interval 
probabilities. Weichselberger generalizes Kolmogorov’s axioms to the case of 
interval probabilities but, as compared to Walley, does not suggest a behavioral 
interpretation. However, his theory of interval probability is more tractable in 
practical sense. 

What is the main common disadvantage of the existing imprecise probability 
theories? This disadvantage is missing the intrinsic feature of probability-related 
information which was pointed out by L. Savage even before emergence of the 
existing imprecise probability theories: 

Savage wrote [62]: “…there seem to be some probability relations about which 
we feel relatively ‘sure’ as compared with others…. The notion of ‘sure’ and 
‘unsure’ introduced here is vague, and my complaint  is precisely that neither the 
theory of personal probability as it is developed in this book, nor any other device 
known to me renders the notion less vague”. Indeed, in real-world situations we 
don’t have sufficient information to be definitely sure or unsure in whether that or 
another value of probability is true. Very often, our sureness stays at some level 
and does not become complete being hampered by a lack of knowledge and 
information. That is, sureness is a matter of a strength, or in other words, of a 
degree. Therefore, ‘sure’ is a loose concept, a vague concept. In our opinion, the 
issue is that in most real-world decision-making problems, relevant information 
perceived by DMs involves possibilistic uncertainty. Fuzzy probabilities are the 
tools for resolving this issue to a large extent because they represent a degree of 
truth of a considered numeric probability.  

Fuzzy probabilities are superior from the point of view of human reasoning and 
available information in real-world problems than interval probabilities which are 
rather the first departs from precise probabilities frameworks. Indeed, interval 
probabilities only show that probabilities are imprecise and no more. In real-
world, the bounds of an interval for probability are subjectively ‘estimated’ but 
not calculated or actually known as they are in Ellsberg experiment. Subjective 
assignments of probability bounds will likely inconsistent with human choices in 
real-world problems as well as subjective probabilities do in Ellsberg experiment. 
Reflecting imperfect nature of real-world information, probabilities are naturally 
soft-constrained. 

As opposed to second-order probabilities which are also used to differentiate 
probability values in terms of their relevance to available information, fuzzy 
probabilities are more relaxed constructs. Second-order probabilities are too 
exigent to available information and more suitable for designed experiments. 

Fuzzy probability is formally a fuzzy number defined over [0,1] scale to 
represent an imprecise linguistic evaluation of a probability value. Representing 
likelihoods of mutually exclusive and exhaustive events, fuzzy probabilities are 
tied together by their basic elements summing up to one. Fuzzy probabilities 

define a fuzzy set Pρ  of probability distributions ρ  which is an adequate 

representation of imprecise probabilistic information related to objective 
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conditions especially when the latter are vague. As compared to the use of second-
order probabilities, the use of possibility distribution over probability distributions 
[2,3] is appropriate and easier for describing DM’s (or experts’) confidence. This 
approach does not require from DM to assign beliefs over priors directly. 
Possibility distribution can be constructed computationally from fuzzy 
probabilities assigned to states of nature [7,80]. This means that a DM or experts 
only need to assign linguistic evaluations of probabilities to states of nature as 
they usually do. For each linguistic evaluation a fuzzy probability can then be 
defined by construction of a membership function. After this possibility 
distribution can be obtained computationally [7,80] without involving a DM. 

We can conclude that fuzzy probabilities [8,50,51,66,76] are a successful 
interpretation of imprecise probabilities which come from human expertise and 
perceptions being linguistically described. For example, in comparison to multiple 
priors consideration, for majority of cases, a DM has some linguistic additional 
information coming from his experience or even naturally present which reflects 
unequal levels of belief or possibility for one probability distribution or another. 
This means, that it is more adequate to consider sets of probability distributions as 
fuzzy sets which allow taking into account various degrees of belief or possibility 
for various probability distributions. Really, for many cases, some probability 
distributions are more relevant, some probability distributions are less relevant to 
the considered situation and also it is difficult to sharply differentiate probabilities 
that are relevant from those that are irrelevant. This type of consideration involves 
second-order uncertainty, namely, probability-possibility modeling of decision-
relevant information. 

The existing utility theories are based on Savage’s formulation of states of 
nature as “a space of mutually exclusive and exhaustive states” [62]. This is a 
perfect consideration of environment structure. However, in real-world problems 
it is naïve to suppose that we can so perfectly partition future into mutually 
exclusive objective conditions and predict all possible objective conditions. Future 
is hidden from our eyes and only some indistinct, approximate trends can be seen. 
From the other side, unforeseen contingencies are commonly met which makes 
impossible to determine exhaustive states and also rules out sharp differentiation 
to exclusive objective conditions. This requires tolerance in describing each 
objective condition to allow for mistakes, misperceptions, flaws, that are due to 
imperfect nature of information about future. From the other side, tolerance may 
also allow for dynamic aspects due to which a state of nature may deviate from its 
initial condition. 

In order to see difficulties with determination of states of nature let us consider 
a problem of differentiating future economic conditions into states of economy. 
Commonly, states of economy can be considered as “strong growth”, “moderate 
growth”, “stable economy”, “recession”. These are not ‘single-valued’ and cannot 
be considered as ‘mutually exclusive’ (as it is defined in Savage’s formulation of 
state space): for example, moderate growth and stable economy don’t have sharp 
boundaries and as a result, may not be “exclusive” – they may overlap. The same 
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concerns ‘moderate growth’ and ‘strong growth’ states. For instance, when 
analyzing the values of the certain indicators that determine a state of economy it 
is not always possible to definitely label it as moderate growth or strong growth. 
Observing some actual situation an expert may conclude that it is “somewhere 
between” ‘strong growth’ and ‘moderate growth’, but “closer” to the latter. This 
means that to a larger extent the actual situation concerns the moderate growth and 
to a smaller extent to the strong growth. It is not adequate to sharply differentiate 
the values related to ‘moderate growth’ from those related to the “strong growth”. 
In other words, various conditions labeled as “strong growth” with various extents 
concerns it, not equally. How to take into account the inherent vagueness of states 
of nature and the fact that they are intrinsically not exclusive but overlapping? 
Savage’s definition is an idealized view on formalization of objective conditions 
for such cases. Without doubt, in real-life decision making it is often impossible to 
construct such an ideal formalization, due to uncertainty of relevant information. 
In general, a DM cannot exhaustively determine each objective condition that may 
be faced and cannot precisely differentiate them. Each state of nature is, 
essentially, some area under consideration which collects in some sense similar  
objective conditions one can face, that is some set of “elementary” states or 
quantities [26]. Unfortunately, in the existing decision making theories a small 
attention is paid to the essence and structure of states of nature, consideration of 
them is very abstract (formal) and is unclear from human perception point of view. 

Formally speaking, a state of nature should be considered as a granule - not 
some single point or some object with abstract content. This will result to some 
kind of information granulation of objective conditions. Construction of states of 
nature on the base of similarity, proximity etc of objective conditions may be 
adequately modeled by using fuzzy sets and fuzzy information granulation 
concepts [78]. This will help to model vague and overlapping states of nature. For 
example, in the considered problem economic conditions may be partitioned into 
overlapping fuzzy sets defined over some relative scale representing levels of 
economic welfare. Such formalization will be more realistic for vagueness, 
ambiguity, partial truth, impreciseness and other imperfectness of future-related 
information. 

In real-life decision making a DM almost always cannot precisely determine 
future possible outcomes and have to use imprecise quantities like, for example, 
high profit, medium cost etc. Such quantities can be adequately represented by 
ranges of numerical values with possibility distribution among them. From the 
other side, very often outcomes and utilities are considered in monetary sense, 
whereas a significantly smaller attention is paid to other types of outcomes and 
utilities. Indeed, utilities are usually subjectively assigned and, as a result, are 
heuristic evaluations. In extensive experiments conducted by Kahneman and 
Tversky, which uncovered very important aspects of human behavior only 
monetary outcomes are used. Without doubt, monetary consideration is very 
important, but it is worth to investigate also other types of outcomes which are 
naturally present in real-life decision activity. In this situation it is not suitable to 
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use precise quantities because subjective evaluations are conditioned also by non-
monetary issues such as health, time, reputation, quality etc. The latter are usually 
described by linguistic evaluations. 

In order to illustrate impreciseness of outcomes in real-world problems, let us 
consider a case of an evaluation of a return from investment into bonds of an 
enterprise which will produce new products the next year. Outcomes (returns) of 
investment will depend on future possible economic conditions. Let us suppose 
these conditions of economy to be partitioned into states of nature labeled as 
“strong growth”, “moderate growth”, “stable economy”, and “recession” which 
we considered above. It is impossible to precisely know values of outcomes of the 
investment under these states of nature. For example, the outcome of the 
investment obtained under “strong growth” may be evaluated “high” (off course 
with underlying range of numerical values). The vagueness of outcomes 
evaluations are resulted from uncertainty about future: impreciseness of a demand 
for the products produced by the enterprise in the next year, future unforeseen 
contingencies, vagueness of future economic conditions, political processes etc. 
Indeed, the return is tightly connected to the demand the next year which cannot 
be precisely known in advance. The investor does not really know what will take 
place the next year, but still approximately evaluate possible gains and losses by 
means of linguistic terms. In other words, the investor is not completely sure in 
some precise value of the outcome – the future is too uncertain for precise 
estimation to be reasonably used. The investor sureness is ‘distributed’ among 
various possible values of the perceived outcome. One way to model is the use of 
a probabilistic outcome, i.e. to use probability distribution (if discrete set of 
numerical outcomes is considered) or probability density function (for continuous 
set) over possible basic outcomes [30] to encode the related objective probabilities 
or subjective probabilities. However, this approach has serious disadvantages. 
Using objective probabilities requires good representative data which don’t exist 
as a demand for a new product is considered. Even for the case of a common 
product, a good statistics does not exist because demands for various years take 
place in various environmental conditions. The use of subjective probabilities is 
also not suitable as they commonly fail to describe human behavior and perception 
under ambiguity of information.  

The use of probabilistic outcomes does not also match human perceptions 
which are expressed in form of linguistic evaluations of outcomes. Humans don’t 
think within the probabilistic framework as this is too strong for computational 
abilities of a human brain; thus, a more flexible formalization is needed to use. 
Fuzzy set theory provides more adequate representation of linguistic evaluations. 
By using this theory a linguistic evaluation of an outcome may be formalized by a 
membership function (a fuzzy set) representing a soft constraint on possible basic 
outcomes. In contrast to probabilistic constraint, a membership function is not 
based on strong assumptions and does not require good data. A membership 
function is directly assigned by a DM to reflect his/her experience, perception, 
envision etc. which cannot be described by classical mathematics but may act well 
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under imperfect information. Fuzzy sets theory helps to describe future results as 
imprecise and overlapping, especially under imprecise essence of states of nature. 
Also, a membership function may reflect various basic outcomes’ possibilities, 
which are much easier to determine than probabilities. 

From the other side, the use of fuzzy sets allows to adequately describe non-
monetary outcomes like health, reputation, quality which are often difficult to be 
defined in terms of precise quantities. 

3.3   Measures of Uncertainty 

Uncertainty is intrinsic to decision making environment. No matter whether we 
deal with numerical or non-numerical events, we are not completely sure in their 
occurrence. Numerical events are commonly regarded as values of a random 
variable. Non-numerical events can be encoded by, for example, natural numbers 
and then treated as values of a random variable. To formally take into account 
uncertainty in decision analysis, we need to use some mathematical constructs 
which will measure quantitatively an extent to what that or another event is likely 
to occur. Such constructs are called measures of uncertainty. The most famous 
measure is the probability measure. Probability measure assigns its values to 
events to reflect degrees to which events are likely to occur. These values are 
called probabilities. Probability is a real number from [0,1], and the more likely an 
event to occur the higher is its probability. Probability equal to 0 implies that it is 
impossible for an event to occur or we are completely sure that it cannot occur, 
and probability equal to 1 means that an event will necessary occur or we are 
completely sure in its occurrence. The axiomatization of the standard probability 
measure was suggested by Kolmogorov [46]. Prior to proceeding to the 
Kolmogorov’s axiomatization, let us introduce the necessary concepts. The first 
concept is the space of elementary events. Elementary event, also called an atomic 
event, is the minimal event that may occur, that is, an event that cannot be divided 
into smaller events. Denote S  the space of elementary events and denote s S∈  
an elementary event. A subset H S⊆  of the space of elementary events s S∈  is 

called an event. An event H occurs if any s H∈  occurs. The next concept is a 
σ -algebra of subsets denoted  . 
 
Definition 3.2.σ -algebra [46]. A set , elements of which are subsets of S  (not 
necessarily all) is called σ -algebra if the following hold: 
 
(1)  S ∈  

(2)  if H ∈  then cH ∈  

(3)  if 1 2, ,...H H ∈  then 1 2 ...H H∪ ∪ ∈  

 
Now let us proceed to the Kolmogorov’s axiomatization of a probability measure. 
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Definition 3.3. Probability Measure [46]. Let S  be a space of elementary events  
and   is a σ -algebra of its subsets. The probability measure is a function 

[ ]: 0,1P →  satisfying: 

 
(1)  ( ) 0P H ≥  for any H ∈ . 

(2) For any set 1 2, ,...H H ∈  with ,...i jH H∩ ∅ : 
11

( ) ( )i i
ii

P H P H
∞ ∞

==

=  

(3) ( ) 1P S =  

 
The first condition is referred to as non-negativity. The second condition is 
referred to as additivity condition. The third condition implies that the event S  
will necessary occur. Conditions (1)-(3) are called probability axioms. From (1)-
(3) it follows ( ) 0P ∅ =  which means that it is impossible that no elementary 

event s S∈  will occur. Let us mention that probability of a union H G∪  of two 
arbitrary events is ( ) ( ) ( ) ( )P H G P H P G P H G∪ = + − ∩ . When 

H G∩ = ∅  one has ( ) ( ) ( )P H G P H P G∪ = + . 

Definition 3.3 provides mathematical structure of a probability measure. 
Consider now natural interpretations of a probability measure. There exist two 
main types of probabilities: objective probabilities and subjective probabilities. 
Objective probabilities, also called empirical probabilities, are quantities which 
are calculated on the base of real evidence: experimentations, observations, logical 
conclusions. They also can be obtained by using statistical formulas. Objective 
probabilities are of two types: experimental probabilities and logical probabilities. 
Experimental probability of an event is a frequency of its occurrence. For 
example, a probability that a color of a car taken at random in a city is white is 
equal to the number of white cars divided by the whole number of the cars in the 
city. Logical probability is based on a reasonable conclusion on a likelihood of an 
event. For instance, if a box contains 70 white and 30 black balls, a probability 
that a ball drawn at random is white is 70/100=0.7.  

The use of objective probabilities requires very restrictive assumptions. For 
experimental probabilities the main assumptions are as follows: 

(1) Experimentation (or observations) must take place under the same conditions 
and it must be assumed that the future events will also take place under these 
conditions. Alternatively, there need to be present clear dynamics of conditions 
in future; 

(2) Observations of the past behavior must include representative data (e.g., 
observations must be sufficiently large). 

As to logical probabilities, their use must be based on quite reasonable 
conclusions. For example, if to consider the box with balls mentioned above, an  
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assumption must be made that the balls are well mixed inside the box (not a layer 
of white balls is placed under the layer of black balls) to calculate probability of a 
white ball drawn as 70/100=0.7. 

From the other side, as Kahneman, Tversky and others showed [42] , that even  
if objective probabilities are known, beliefs of a DM don’t coincide with them. As 
being perceived by humans, objective probabilities are affected by some kind of 
distortion – they are transformed into so-called decision weights and mostly small 
probabilities are overweighted, whereas high probabilities are underweighted. The 
overweighting and underweighting of probabilities also are different for positive 
and negative outcomes [68]. 

Subjective probability is a degree of belief of an individual in the likelihood of 
an event. Formally, subjective probabilities are values of a probability measure. 
From interpretation point of view, subjective probability reflects an individual’s 
experience, perceptions and is not based on countable and, sometimes, detailed 
facts like objective probability. Subjective probabilities are more appropriate and 
‘smart’ approach for measuring likelihood of events in real-life problems because 
in such problems the imperfect relevant information conflicts with the very strong 
assumptions underlying the use of objective probabilities. Real-life relevant 
information is better handled by experience and knowledge that motivates the use 
of a subjective basis.  

Subjective probability has a series of disadvantages. One of the main 
disadvantages is that different people would assign different subjective 
probabilities. It is difficult to reason uniquely accurate subjective probabilities 
among those assigned by different people. Indeed, given a lack of information, 
people have to guess subjective probabilities as they suppose. As it is mentioned 
in [52], using subjective probabilities is a “symptom of the problem, not a 
solution”. Subjective probability is based not only on experience but also on 
feelings, emotions, psychological and other factors which can distort its accuracy. 
The other main disadvantage is that subjective probability, due to its preciseness 
and additivity, fails to describe human behavior under ambiguity. 

The use of the additive probability measure is unsuitable to model human 
behavior conditioned by uncertainty of the real-world, psychological, mental and 
other factors. In presence of uncertainty, when true probabilities are not exactly 
known, people often tend to consider each alternative in terms of the worst case 
within the uncertainty and don’t rely on good cases. In other words, most of 
people prefer those decisions for which more information is available. This 
behavior is referred to as ambiguity aversion – people don’t like ambiguity and 
wish certainty. Even when true probabilities are known, most people exhibit non-
linear attitude to probabilities – change of likelihood of an event from 
impossibility to some chance or from a very good chance to certainty are treated 
much more strongly than the same change somewhere in the range of medium 
probabilities. Therefore, attitude to values of probabilities is qualitative.  

Due to its additivity property, the classical (standard) probability measure 
cannot reflect the above mentioned evidence. Axiomatizations of such evidence 
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required to highly weaken assumptions on a DM’s belief which was considered as 
the probability measure. The resulted axiomatizations are based either on non-
uniqueness of probability measure or on non-additivity of a measure of 
uncertainty reflecting humans’ beliefs. The first axiomatization of choices based 
on a non-additive measure was suggested by Schmeidler [63]. This is a significant 
generalization of additive measures-based decisions because the uncovered non-
additive measure inherited only normalization and monotonicity properties from 
the standard probability measure. 

Nowadays non-additive measures compose a rather wide class of measures of 
uncertainty. Below we list non-additive measures used in decision making under 
ambiguity. For these measures a unifying term non-additive probability is used. 

We will express the non-additive probabilities in the framework of decision 
making under ambiguity. Let S  be a non-empty set of states of nature and   be 

a family of subsets of S . We will consider w.l.o.g. 2S= . 
The definition of a non-additive probability is as follows [63]. 

 
Definition 3.4 [63]. Non-additive Probability. A set function : [0,1]v →   is 

called a non-additive probability if it satisfies the following: 

1. ( ) 0v ∅ =  

2. ,H G∀ ∈ , H G⊂  implies ( ) ( )v H v G≤  

3.   ( ) 1v S =  

The non-additive probability is also referred to as Choquet capacity. Condition (2) 
is called monotonicity with respect to set inclusion and conditions (1) and (3) are 
called normalization conditions. Thus, a non-additive probability does not have to 
satisfy ( ) ( ) ( )v H G v H v G∪ = + . A non-additive probability is called super-

additive if ( ) ( ) ( )v H G v H v G∪ ≥ +  and sub-additive if ( ) ( ) ( )v H G v H v G∪ ≤ + , 

provided H G∩ = ∅ . 
There exist various kinds of non-additive probability many of which are 

constructed on the base of a set C  of probability measures P  over S .  The one of 

the well known non-additive probabilities is the lower envelope * : [0,1]v →   

which is defined as follows: 

*( ) min ( )
P C

v H P G
∈

=
 

(3.1)

The dual concept of the lower envelope is the upper envelope * : [0,1]v →   

which is defined by replacing min  operator in (3.1) by max  operator. Lower and 
upper envelopes are respectively minimal and maximal probabilities of an 

event H S⊂ . Therefore, *
*( ) ( ) ( ), ,v H P H v H H S P C≤ ≤ ∀ ⊂ ∈ . Lower 

envelope is super-additive, whereas upper envelope is sub-additive. A non-
additive probability can also be defined as a convex combination of *( )v H  and 
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*( )v H : *
*( ) ( ) (1 ) ( )v H v H v Hα α= + − , [0,1]α ∈ . The parameter α  is 

referred to as a degree of ambiguity aversion. Indeed, α is an extent to which 
belief ( )v H  is based on the smallest possible probability of an event H ; 1 α−  is 

referred to as a degree of ambiguity seeking. 
The generalizations of lower and upper envelopes are lower and upper 

probabilities which are respectively super-additive and sub-additive probabilities. 
Lower and upper probabilities, denoted respectively v  and v , satisfy 

( ) 1 ( )cv H v H= − H S∀ ∈ , where \cH S H= . 

The special case of lower envelopes and, therefore, of lower probabilities are 2-
monotone Choquet capacities, also referred to as convex capacities. A non-
additive probability is called 2-monotone Choquet capacity if it satisfies 

( ) ( ) ( ) ( ), ,v H G v H v G v H G H G S∪ ≥ + − ∩ ∀ ⊂  

A generalization of 2-monotone capacity is an n-monotone capacity. A capacity is 
an n-monotone, if for any sequence 1,..., nH H  of subsets of S  the following 

holds: 

1

{1,..., }

( ... ) ( 1) I
i n i

I n i I
I

v H H v H−

⊂ ∈
≠∅

 ∪ ∪ ≥ −  
 

   

A capacity which is n-monotone for all n  is called infinite monotone capacity or a 
belief function. 

The belief function theory, also known as Dempster-Shafer theory, or 
mathematical theory of evidence, or theory of random sets, was suggested by 
Dempster in [15], and developed by Shafer in [64]. Belief functions are aimed to 
be used for describing subjective degrees of belief to an event, phenomena, or 
object of interest. We will not explain this theory but just mention that it was not 
directly related to decision making. As it was shown in [33,34], axiomatization of 
this theory is a generalization of the Kolmogorov’s axioms of the standard 
probability theory. Due to this fact, a value of a belief function denoted ()Bel  for 

an event H  can be considered as a lower probability, that is, as a lower bound on 
a probability of an event H . An upper probability in the belief function theory is 
termed as a plausibility function and is denoted Pl . So, in the belief functions 
theory probability ( )P H  of an event H  is evaluated as ( ) ( ) ( )Bel H P H Pl H≤ ≤ . 

The motivation of using non-additive probabilities in decision making 
problems is the fact that information on probabilities is imperfect, which can be 
incomplete, imprecise, distorted by psychological factors etc. Non-additive 
measure can be determined from imprecise objective or subjective probabilities of 
states of nature. Impreciseness of objective probabilities can be conditioned by the 
lack of information ruling out determination of actual exact probabilities (as in 
Ellsberg experiments). Impreciseness of subjective probabilities can be 
conditioned by natural impreciseness of human beliefs. Let us consider the case 
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when imprecise information is represented in form of interval probabilities. Given 
a set of states of nature 1 2{ , ,..., }nS s s s= , interval probabilities are defined as 

follows [32]. 
 
Definition 3.5 [32]. Interval Probability. The intervals *

*( ) [ , ]i i iP s p p=  are 

called the interval probabilities of S  if for *
*[ , ]i i ip p p∈  there exist 

*
1 *1 1[ , ]p p p∈ ,…, *

1 * 1 1[ , ]i i ip p p− − −∈  , *
1 * 1 1[ , ]i i ip p p+ + +∈  ,…, *

*[ , ]n n np p p∈   

such that 

1

1
n

i
i

p
=

=  

From this definition it follows, in particular, that interval probabilities cannot be 
directly assigned as numerical probabilities. The issue is that in the case of interval 
probabilities, the requirement to numerical probabilities to sum up to one must be 
satisfied throughout all the probability ranges. Sometimes, interval probabilities 

( )i iP s P=  can be directly assigned consistently to 1n −  states of 

nature 1 2 1 1, ,..., , ,...,j j ns s s s s− + , and on the base of these probabilities, an interval 

probability ( )j jP s P=  for the rest one state of nature js  will be calculated. For 

example, consider a set of states of nature with three states 1 2 3{ , , }S s s s= . Let 

interval probabilities for 2s  and 3s  be assigned as follows: 

2 3[0.2,0.3], [0.5,0.6]P P= =  

Then, according to the conditions in Definition 3.5, 1P will be determined as 

follows: 

1 [1 0.3 0.6, 1 0.2 0.5] [0.1,0.3]P = − − − − = . 

Given interval probabilities *
*[ , ]i i iP p p=  of states of nature is , 1,...,i n=  a value 

*( )v A  of a lower probability for an event A  can be determined as follows: 

*

1

*

*

( ) min

. .

1

i

i
s A

n

i
i

i i

i i

v A p

s t

p

p p

p p

∈

=

=

=

≤
≥





 

(3.2)
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A value *( )v A  of an upper probability for an event A  can be determined by 

replacing min operator by max operator in the above mentioned problem. Consider 

an example. Given interval probabilities 1 [0.1,0.3]P = , 2 [0.2,0.3],P =  

3 [0.5,0.6]P = , the values of the lower and upper probabilities *v  and *v  for 

1 3{ , }A s s= , obtained as solutions of the problem (3.2) are *( ) 0.7v A =  and 
*( ) 0.8v A = .  

The above mentioned measures of uncertainty can be listed in terms of the 
increasing generality between the probability measure and the Choquet capacity as 
follows: 

 
probability measure   belief function   convex capacity lower envelope 

  lower probability   Choquet capacity 
 
In [48], it is suggested a decision model based on a new kind of measure called bi-
capacity. Bi-capacity is used to model interaction between ‘good’ and ‘bad’ 
performances with respect to criteria. As compared to capacity, bi-capacity is a 
two-place set function. The values the bi-capacity takes are from [-1,1]. More 
formally, the bi-capacity is defined as a set function 

: [-1,1]Wη → , where {( , ) : , , }W H G H G I H G= ⊂ ∩ = ∅  

satisfying  

( , ) ( , ), ( , ) ( , )H H H G H G G G H G H Gη η η η′ ′ ′ ′⊂  ≤ ⊂  ≤  

and  

( , ) 1, ( , ) 1, ( , ) 0I Iη η η∅ = ∅ = − ∅ ∅ = . 

I  is the set of indexes of criteria. The attributes in H  are satisfied attributes 
whereas the attributes in G  are dissatisfied ones. The integral with respect to bi-
capacity as a representation of an overall utility of an alternative :f I R→  is 

defined as follows: 

( ) ( 1)
1

( ) ( ( ) ( )) ({(1),..., ( )} ,{(1),..., ( )} )
n

l l
l

U f u f u f l I l Iη + −
+

=

= − ∩ ∩ , (3.3)

provided ( ) ( 1)( ) ( )l lu f u f +≥ ; { : ( ) 0}, \iI i I u f I I I+ − += ∈ ≥ =  where ( )( )lu f  

is a utility of a value of (l)-th criterion for f , ( , )η ⋅ ⋅  is a bi-capacity. 

In special case, when η  is equal to the difference of two capacities 1η  and 2η  

as 1 2( , ) ( ) ( )H G H Gη η η= − , (3.3) reduces to the CPT model. In general case,  
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as compared to CPT, (3.3) is not an additive representation of separately 
aggregated satisfied and dissatisfied criteria that provides more smart way for 
decision making.

 The disadvantage of a bi-capacity relates to difficulties of its determination, in 
particular, to computational complexity. In details the issues are discussed in [48]. 

The bi-capacity-based aggregation which was axiomatized for multicriteria 
decision making [48] can also be applied for decisions under uncertainty due to 
formal parallelism between these two problems [53]. Indeed, states of nature are 
criteria on base of which alternatives are evaluated. 

The non-additive measures provide a considerable success in modeling of 
decision making. However, the non-additive measures only reflect the fact that 
human choices are non-additive and monotone, which may be due to attitudes to 
uncertainty, distortion of probabilities etc, but nothing more. However, in real-
world it is impossible to accurately determine precisely the ‘shape’ of a non-
additive measure due to imperfect relevant information. Indeed, real-world 
probabilities of subsets and subsets themselves, outcomes, interaction of criteria, 
etc are imprecisely and vaguely defined. From the other side, attitudes to 
uncertainty, extent of probabilities distortion and other behavioral issues violating 
additivity are also imperfectly known. These aspects rule out exact determination 
of a uniquely accurate non-additive measure. 

Above we considered non-additive measures which are used in the existing 
decision theories to model non-additivity of DM’s behavior. Main shortcoming of 
using non-additive measures is the difficulty of the underlying interpretation. One 
approach to overcome this difficulty is to use a lower envelope of a set of priors as 
a non-additive probability and then to use it in CEU model. However, in real-
world problems determination of the set of priors itself meets difficulty of 
imposing precise constraint determining what prior should be included and what 
should not be included into this set. In other words, due to lack of information, it 
is impossible to sharply constraint a range for a probability of a state of nature, 
that is, to assign accurate interval probability. From the other side, if the set of 
priors is defined, why to construct lower envelope and use it in the CEU? It is 
computationally simpler to use the equivalent model – MMEU. Let us consider 
very important a class of non-additive measures called fuzzy measures. Fuzzy 
measures have their own interpretations that do not require using a set of priors to 
define them and makes construction of these measures computationally simple. 
Finally, we will consider an effective extension of non-additive measures called 
fuzzy-valued fuzzy measures which have a good suitability for measuring vague 
real-world information. 

The first fuzzy measure we consider is a possibility measure. Possibility means 
an ability of an event to occur. It was recently mentioned that probability of an 
event can hardly be determined due to a series of reason, whereas possibility of 
occurrence of an event is easier to be evaluated. Possibility measure has also its 
interpretation in terms of multiple priors. 
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Possibility measure [77] is a non-additive set function : ( ) [0,1]SΠ →  

defined over a σ -algebra ( )S  of subsets of S  and satisfying the following 

conditions: 

(1) ( ) 0Π ∅ =  

(2) ( ) 1SΠ =  

(3) For any collection of subsets ( )iH S∈  and any set of indexes I  the 

following holds: 

( ) sup ( )i i
i Ii I

H HΠ Π
∈∈

=  

Possibility measure Π  can be represented by possibility distribution function, or 
possibility distribution, for short. Possibility distribution is a function 

: [0,1]Sπ →  and by means of π  possibility measure Π  is determined as 

follows: 

( ) sup ( )
s H

H sΠ π
∈

=  

Condition (2) predetermines normalization condition sup ( ) 1
s S

sπ
∈

= . Given S  as a 

set of states of nature, possibility measure provides information on possibility of 
occurrence of an event H S⊂ . A possibility distribution 1π  is more informative 

than 2π  if 1 2( ) ( ),s s s Sπ π≤ ∀ ∈ . 

The dual concept of the possibility is the concept of necessity. Necessity 
measure is a set function : ( ) [0,1]N SΡ →  that is defined as ),(1)( cHHN Π−=  

HSH c \= . This means, for example, that if an event H  is necessary (will 

necessary happen), then the opposite event cH  is impossible. 
From the definitions of possibility and necessity measures one can find that the 

following hold: 

1) ( ) ( )N H HΠ≤  

2)  if ( ) 1HΠ <  then ( ) 0N H =  

3)  if ( ) 0N H >  then ( ) 1HΠ =  

4)  max( ( ), ( )) 1cH HΠ Π =  

5)  min( ( ), ( )) 0cN H N H =  

The possibility differs from probability in various aspects. First, possibility of two 
sets H  and G  provided H G∪ = ∅  is equal to the maximum possibility 
among those of H  and G : ( ) max( ( ), ( ))H G H GΠ Π Π∪ = . In its turn 

probability GH ∪  is equal to the sum of those of H  and G : 
( ) ( ) ( )P H G P H P G∪ = + . 
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Another difference between possibility measure and probability measure is that 
the first is compositional that make it more convenient from computational point 
of view. For example, given ( )P H  and ( )P G , we cannot determine 

precisely ( )P H G∪ , but can only determine its lower bound which is equal to 

max( ( ), ( ))P H P G  and an upper bound which is equal to 

min( ( ) ( ),1)P H P G+ . At the same time possibility of H G∪  is exactly 

determined based on ( )HΠ  and ( )GΠ : ( ) max( ( ), ( ))H G H GΠ Π Π∪ = . 

However, the possibility of an intersection is not exactly defined: it is only known 
that ( ) min( ( ), ( ))A B A BΠ Π Π∩ ≤ . As to necessity measure, it is exactly 

defined only for an intersection of sets: ( )N H G∩ min( ( ), ( ))N H N G= . 

Yet another difference is that as compared to probability, possibility is able to 
model complete ignorance, that is, absence of any information. Absence of any 
information about H  is modeled in the possibility theory as 

( ) ( ) 1cH HΠ Π= =  and ( ) ( ) 0cN H N H= = . From this it follows 

max( ( ), ( )) 1cH HΠ Π =  and min( ( ), ( )) 0cN H N H = . 

The essence of the possibility is that it models rather qualitative information 
about events than quantitative one. Possibility measure only provides ranking of 
events in terms of their comparative possibilities. For example, 1 2( ) ( )s sπ π≤  
implies that 1s  is more possible than 2s . ( ) 0sπ =  implies that occurrence of s  

is impossible whereas ( ) 1sπ =  implies that s  is one of the most possible 

realizations. The fact that possibility measure may be used only for analysis at 
qualitative, comparative level [69], was proven by Pytyev in [60], and referred to 
as the principle of relativity in the possibility theory. This principle implies that 
possibility measure cannot be used to measure actual possibility of an event but 
can only be used to determine whether the possibility of one event is higher, equal 
to, or lower than the possibility of another event. Due to this feature, possibility 
theory is less self-descriptive than probability theory but requires much less 
information for analysis of events than the latter. 

One of the interpretations of possibility measure is an upper bound of a set of 
probability measures [18,62,72]. Let us consider the following set of probability 
measures coherent with possibility measure Π : 

( ) { : ( ) ( ), }P P H H H SΠ Π= ≤ ∀ ⊆  

Then the upper bound of probability for an event H  is  

( )
( ) sup ( )

P
P H P H

Π∈
=


 

and is equal to possibility ( )HΠ . The possibility distribution is then defined as 

( ) ({ }),s P s s Sπ = ∀ ∈  
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Due to normalization condition sup ( ) 1
s S

sπ
∈

= , the set ( )Π  is always not empty. 

In [18,72] they show when one can determine a set of probability measures given 
possibility measure. 

Analogous interpretation of possibility is its representation on the base of lower 
and upper bounds of a set of distribution functions. Let information about 
unknown distribution function F  for a random variable X  is described by means 

of a lower F and an upper F distribution functions: ( ) ( ) ( ),F x F x F x x X≤ ≤ ∀ ∈ . 

The possibility distribution π  then may be defined as  

( ) min( ( ),1 ( ))x F x F xπ = − . 

Baudrit and Dubois showed that a set of probabilities generated by possibility 
distribution π  is more informative than a set of probabilities generated by 
equivalent distribution functions. 

In order to better explain what possibility and necessity measures are, consider 
an example with a tossed coin. If to suppose that heads and tails are equiprobable, 
then the probabilities of heads and tails will be equal to 0.5. As to possibilities, we 
can accept that both heads and tails are very possible. Then, we can assign the 
same high value of possibility to both events, say 0.8. At the same time, as  
the result of tossing the coin is not intentionally designed, we can state that the 
necessity of both events is very small. It also follows from N({ })heads =  
1 ({ }), N({ }) 1 ({ })tails tails headsΠ Π− = − . As this example suggests, we can 

state that possibility measure may model ambiguity seeking (hope for a good 
realization of uncertainty), where as necessity measure may model ambiguity 
aversion. 

One of the most practically efficient and convenient fuzzy measures are Sugeno 
measures. Sugeno measure is a fuzzy measure : ( ) [0,1]g SΡ →  that satisfies 

 
(1) ( ) 0g ∅ = , 

(2) ( ) 1g S = ; 

(3) ( ) ( )H G g H g G⊂  ≤ ; 

(4) iH H↑ or lim ( ) ( )i i iH H g H g H→+∞↓  =  

 
From these conditions it follows ( )g H G∪ ≥  max( ( ), ( ))g H g G  and 

( )g H G∩ ≤  min  ( ( ), ( ))g H g G . In special case, when ( )g H G∪ =  

max( ( ), ( ))g H g G= , Sugeno measure g  is the possibility measure. When 

( )g H G∩ min( ( ), ( ))g H g G= , Sugeno measure g  is the necessity measure. 

The class of Sugeno measures that became very widespread due to its practical 
usefulness are gλ  measures. gλ measure is defined by the following condition 

referred to as the λ -rule: 
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( ) ( ) ( ) ( ) ( ), [ 1, )g H G g H g G g H g Gλ λ λ λ λλ λ∪ = + + ∈ − +∞  

For the case of H S= , this condition is called normalization rule. λ is called 
normalization parameter of gλ  measure. For 0λ >  gλ  measure satisfy 

( )g H Gλ ∪ ( ) ( )g H g Gλ λ> +  that generates a class of superadditive measures. 

For 0λ >  one gets a class of subadditive measures: ( )g H Gλ ∪ <  
( ) ( )g H g Gλ λ< + . The class of additive measures is obtained for 0λ = . 

One type of fuzzy measures is defined as a linear combination of possibility 
measure and probability measure. This type is referred to as vg  measure. 

vg measure is a fuzzy measure that satisfies the following: 

(1) ( ) 0vg ∅ =  

(2) ( ) 1vg S =  

(3) , ( ),ii N H S i j∀ ∈ ∈ ∀ ≠  

(4) ( ) (1 ) ( ) ( ), 0i j v i v i v i
i N i N

i N

H H g H v g H v g H v
∈ ∈ ∈

∩ = ∅  ∪ = − ∨ + ≥  

(5) , ( ) : ( ) ( )v vH G S H G g H g G∀ ∈ ⊆  ≤  

vg is an extension of a measure suggested by Tsukamoto which is a special case 

obtained when [0,1]v∈  [67]. For [0,1]v∈ one has a convex combination of 

possibility and probability measures. For purposes of decision making this can be 
used to model behavior which is inspired by a mix of probabilistic judgement and 
an extreme non-additive reasoning, for instance, ambiguity aversion. Such 
modeling may be good as reflecting that a person is not only an uncertainty averse 
but also thinks about some ‘average’, i.e. approximate precise probabilities of 
events. This may be justified by understanding that, from one side, in real-world 
situations we don’t know exactly the boundaries for a probability of an event. 
From the other, we don’t always exhibit pure ambiguity aversion by try to guess 
some reasonable probabilities in situations of ambiguity. 

When 0v = , vg  is the possibility measure and when 1v = , vg  is the 

probability measure. For 1v = , vg  describes uncertainty that differs from both 

probability and possibility [59]. 
Fuzzy measures are advantageous type of non-additive measures as compared 

to non-additive probabilities because they mainly have clear interpretation and 
some of them are “self-contained”. The latter means that some fuzzy measures, 
like possibility measure, don’t require a set of priors for their construction. 
Moreover, a fuzzy measure can be more informative than a set of priors or a set of 
priors can be obtained from it. Despite of these advantages, fuzzy measures are 
also not sufficiently adequate for solving real-world decision problems. The issue 
is that fuzzy measures suffer from the disadvantage of all the widespread additive 
and non-additive measures: fuzzy measures are numerical representation of 
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uncertainty. In contrast, real-world uncertainty cannot be precisely described – it 
is not to be caught by a numerical function. This aspect is, in our opinion, one of 
the most essential properties of real-world uncertainty. 

The precise non-additive measures match well the backgrounds of decision 
problems of the existing theories which are characterized by perfect relevant 
information: mutually exclusive and exhaustive states of nature, sharply 
constrained probabilities. However, as we discussed above chapter, real-world 
decision background is much more ‘ill-defined’. Essence of information about 
states of nature makes them rather blurred and overlapping but not perfectly 
separated. For example, evaluations like ‘moderate growth’ and ‘strong growth’ of 
economy cannot be precisely bounded and may overlap to that or another extent. 
This requires to use fuzzy sets as more adequate descriptions of real objective 
conditions. Probabilities of states of nature are also fuzzy as they cannot be 
sharply constrained. This is conditioned by lack of specific information, by the 
fact that human sureness in occurrence of events stays in form of linguistic 
estimations like “very likely”, “probability is medium”, “probability is small” etc 
which are fuzzy. From the other side, this is conditioned by fuzziness of states of 
nature themselves. When the “strong growth” and “moderate growth” and their 
likelihoods are vague and, therefore, relations between them are vague – how to 
obtain precise measure? Natural impreciseness, fuzziness related to states of 
nature must be kept as the useful data medium in passing from probabilities to a 
measure – the use of precise measure cannot be sufficiently reasonable and leads 
to loss of information. From the other side, shape of non-additivity of a DM’s 
behavior cannot be precisely determined, whereas some linguistic, approximate, 
but still ground relevant information can be obtained. Fuzziness of the measure in 
this case serves as a good interpretation. 

Thus, a measure which models human behavior under real-world imperfect 
information should be considered not only as non-additive, but also as fuzzy 
imprecise quantity that will reflect human evaluation technique based on, in 
general, linguistic assessments. In this sense a more adequate construction that 
better matches imperfect real-world information is a fuzzy number-valued fuzzy 
measure. Prior to formally express what is a fuzzy number-valued measure, let us 
introduce some formal concepts. The first concept is a set of fuzzy states of nature 

{ }1,..., nS S=   , where , 1,...,iS i n=  is a fuzzy set defined over a universal set 

U  in terms of membership function : [0,1]
iS

Uμ → . The second concept relates 

to comparison of fuzzy numbers: 
 

Definition 3.6. [82]. For 1, ,A B∈    we say that ,A B≤   if for every 

( ]0,1 ,α ∈ 1 1A Bα α≤ and 2 2A Bα α≤ . 

We consider that ,A B<   if  ,A B≤   and there exists an ( ]0 0,1α ∈  such that 

0 0
1 1 ,A Bα α< or  0 0

2 2A Bα α< . 
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We consider that A B=   if ,A B≤   and B A≤   
The third concept is a fuzzy infinity:   

 
Definition 3.7. Fuzzy Infinity [82]. Let A  be a fuzzy number. For every positive 

real number M , there exists a 0 (0,1]α ∈  such that 0
2M Aα<  or 0

1A Mα < − . 

Then A  is called fuzzy infinity, denoted by ∞ . 

Now denote { }1 0A A+ = ∈ ≥   . Thus, 1
+  is a space of fuzzy numbers 

defined over + . Let Ω  be a nonempty finite set and   be σ -algebra of 

subsets of Ω . A definition of a fuzzy number-valued fuzzy measure as a 
monotone fuzzy number-valued set function suggested by Zhang [82] and referred 
to as a (z)-fuzzy measure, is as follows: 
 
Definition 3.8. Fuzzy Number-Valued Fuzzy Measure ((z)-Fuzzy Measure) 
[82]. A (z) fuzzy measure on   is a fuzzy number-valued fuzzy set function 

1:η +→    with the properties: 

 
(1) ( ) 0η ∅ = ; 

(2) if ⊂   then ( ) ( )η η≤   ; 

(3) if 1 2 ..., ...n⊂ ⊂ ⊂ ∈    , then
1

( ) lim ( )n nn n
η η∞

= →∞
=    ; 

(4) if 1 2 ..., n⊃ ⊃ ∈    , and there exists 0n  such that
0

( )nη ≠ ∞  , then  

1
( ) lim ( )n nn n

η η∞

= →∞
=    . 

 

Here limits are taken in terms of supremum metric d [16,49]. A pair ( , ( ))Ω Ω  

is called a fuzzy measurable space and a triple ( , ( ), )Ω Ω η   is called a (z) fuzzy 

measure space. 

So, a fuzzy number-valued fuzzy measure 1:η +→    assigns to every subset 

of Ω  a fuzzy number defined over [0,1]. Condition (2) of Definition 3.8 is called 

monotonicity condition. 1:η +→    is monotone and is free of additivity 

requirement. Consider an example.  Let 1 2 3{ , , }Ω ω ω ω= . The values of the 

fuzzy number-valued set function η  for the subsets of Ω  can be as the triangular 

fuzzy numbers given in Table 3.2: 

Table 3.2 The values of the fuzzy number-valued set functionη  

Ω⊂  { }1ω  { }2ω  { }3ω  { }1 2,ω ω  { }1 3,ω ω  { }2 3,ω ω  

( )η   (0.3,0.4,0.4) (0,0.1,0.1) (0.3,0.5,0.5) (0.3,0.5,0.5) (0.6,0.9,0.9) (0.3,0.6,0.6) 
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Fuzzy number-valued set function η  is a fuzzy number-valued fuzzy measure.  

For instance, one can verify that condition 2 of Definition 3.8 for η  is satisfied. 

Let us consider η  as a fuzzy number-valued lower probability constructed 

from linguistic probability distribution lP : 

1 1 2 2/ / ... /l
n nP P S P S P S= + + +       

Linguistic probability distribution lP  implies that a state iS ∈   is assigned a 

linguistic probability iP  that can be described by a fuzzy number defined over 

[0,1]. Let us shortly mention that the requirement for numeric probabilities to sum 

up to one is extended for linguistic probability distribution lP  to a wider 
requirement which includes degrees of consistency, completeness and redundancy 

that will be described in details in Chapter 4. Given lP , we can obtain from it a 

fuzzy set Pρ  of possible probability distributions ( )sρ . We can construct a 

fuzzy-valued fuzzy measure from Pρ  as its lower probability function [55] by 

taking into account a degree of correspondence of ( )sρ  to lP . A degree of 

membership of an arbitrary probability distribution ( )sρ  to Pρ  (a degree of 

correspondence of ( )sρ  to lP ) can be obtained by the formula  

1,
( ( )) min( ( ))

i iP Pi n
s pπ ρ π

=
=  , 

where ( ) ( )
ii S

S

p s s dsρ μ=    is numeric probability of fuzzy state iS  defined 

by ( )sρ . ( ) ( ) ( )
i i iiP P S

S

p s s dsπ μ ρ μ
 

=  
 
  

 

is the membership degree of ip  to iP . 

To derive a fuzzy-number-valued fuzzy measure lP
η   we suggest to use the 

following formulas [3]: 

1 2
(0,1]

( ) ( ), ( )α α

α
η α η η

∈

 =      (3.4) 

where 

{ } 1

1

2

1,

( ) inf ( ) max ( ) ( ) ,

( ) inf ( ) max ( ) ( ) ( ) ,

( ) min( ( )) , ( ) ,
i iPi n

s s ds s P

s s ds s core P

P s p core P P

α

α α

α ρ

α ρ

ρ ρ ρ

η ρ μ ρ

η ρ μ ρ

ρ π α
=

∈

∈
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The support of η  is defined as 
(0,1]

supp cl α

α
η η

∈

 
=  

 
  . So, lP

η  is constructed by 

using ( )
S

sμ   which implies that in construction of the non-additive measure lP
η   

we take into account impreciseness of the information on states of nature 
themselves. Detailed examples on construction of a fuzzy number-valued measure 
are considered in the upcoming chapters. 

In this section we will discuss features of various existing precise additive and 
non-additive measures and fuzzy-valued fuzzy measures. The discussion will be 
conducted in terms of a series of criteria suggested in [72]: interpretation, calculus, 
consistency, imprecision, assessment, computation. The emphasis will be given to 
situations in which all the relevant information is described in NL.  
 
Interpretation, Calculus and Consistency. Linguistic probabilities-based fuzzy-
valued lower and upper probabilities and their convex combinations have clear 
behavioral interpretation: they represent ambiguity aversion, ambiguity seeking 
and their various mixes when decision-relevant information is described in NL. 
Updating these measures is to be conducted as updating the underlying fuzzy 
probabilities according to fuzzy Bayes’ rule and new construction of these 
measures from the updated fuzzy probabilities. 

Formal validity of the considered fuzzy-valued measures is defined from 
verification of degrees of consistency, completeness and redundancy of the 
underlying fuzzy probabilities as initial judgments.  

Among the traditional measures, Bayesian probability and coherent lower 
previsions suggested by Walley [72] (these measures are crisp, non-fuzzy) are 
only measures which satisfy the considered criteria. Bayesian probability has 
primitive behavioral interpretation, on base of which the well-defined rules of 
combining and updating are constructed. Coherent lower previsions have clear and 
more realistic behavioral interpretation. The rules for updating, combining and 
verification of consistency of lower previsions are based on the natural extension 
principle [71,72] which is a general method. However, it is very complex both 
from analytical and computational points of view. 

Possibility theory and the Dempster-Shafer theory, as it is mentioned in 
[71,72], suffer from lack of the methods to verify consistency of initial judgments 
and conclusions. 
 
Imprecision. Fuzzy-valued lower and upper previsions and their convex 
combinations are able to transfer additional information in form of possibilistic 
uncertainty from states of nature and associated probabilities to the end up 
measuring of events. As a result, these measures are able to represent vague 
predicates in NL and partial and complete ignorance as degenerated cases of 
linguistic ambiguity. 

Dempster-Shafer theory is a powerful tool for modeling imprecision and 
allows to model complete ignorance. However, this theory suffers from series of 
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significant disadvantages [69]. Determination of basic probabilities in this theory 
may lead to contradictory results. From the other side, under lack of information 
on some elements of universe of discourse, values of belief and plausibility 
functions for these elements become equal to zero which means that occurrence of 
them will not take place. However, this is not justified if the number of 
observations is small. 

Possibility theory is able to model complete ignorance and requires much less 
information for modeling than probability theory. Possibility measure, as opposed 
to probability measure, is compositional, which makes it computationally more 
convenient. However, possibility measure has a serious disadvantage as compared 
with the probability measure. This theory allows only for qualitative comparative 
analysis of events – it allows determining whether one event is more or less 
possible than another, but does not allow determining actual possibilities of 
events. 

Dempster-Shafer theory, lower prevision theory and possibility theory can be 
considered as special cases of multiple priors representations [69]. In this sense, 
belief and plausibility functions can be considered as an upper and lower bounds 
of probability respectively. Possibility theory also can be used for representation 
of bounds of multiple priors and is used in worst cases of statistical information. 

Possibility theory, Dempster-Shafer theory and coherent lower previsions as 
opposed to Bayesian probabilities are able to model ignorance, impreciseness and 
NL-based vague evaluations. However, as these theories are based on precise 
modeling of uncertainty, use of them lead to significant roughening of NL-based 
information. For example, linguistic description of information on states of nature 
and their probabilities creates a too high vagueness for these precise measures to 
be believable or reliable in real-life problems.  
 
Assessment. Fuzzy-valued lower probability is obtained from the linguistic 
probability assessments which are practical and human-like estimations for real-
world problems. Coherent lower prevision can also be obtained from the same 
sources, but, as a precise quantity, it will be not reliable as very much deviated 
from vague and imprecise information on states of nature and probabilities. From 
the other side, fuzzy-valued lower or upper probabilities are computed from fuzzy 
probabilities. 

The other main advantage of fuzzy-valued lower probabilities and fuzzy 
probabilities constructed for NL-based information is that they, as opposed to all 
the other measures, don’t require independence or non-interaction assumptions on 
the measured events, which are not accurate when we deal with overlapping and 
similar objective conditions.  
 
Computation. The construction of unknown fuzzy probability, the use of fuzzy 
Bayes’ formula and construction of a fuzzy-valued lower prevision are quite 
complicated variational or nonlinear programming problems. However, the 
complexity here is the price we should pay if we want to adequately formalize and 
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compute from linguistic descriptions. However, as opposed to the natural 
extension-based complex computations of coherent lower previsions which 
involves linear programming, the computation of fuzzy-valued previsions is more 
intuitive, although arising the well known problems of nonlinear optimization.  

Computations of coherent lower previsions (non-fuzzy) can be reduced to 
simpler computations of possibility measures and belief functions as their special 
cases, but it will lead to the loss of information. 

Adequacy of the use of a fuzzy-valued lower (upper) probability consists in its 
ability to represent linguistic information as the only adequate relevant 
information on dependence between states of nature in real-life problems. The 
existing non-additive measures, being numerical-valued, cannot adequately 
represent such information. To some extent it can be done by lower previsions, but 
in this case one deals with averaging of linguistic information to precise values 
which leads to loss of information. 
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Chapter 4 
A Generalized Fuzzy Logic-Based Decision 
Theory  

4.1   Decision Model 

In real-world decision making problems usually we are not provided with precise 
and credible information. In contrast, available information is vague, imprecise, 
partial true and, as a result, is described in natural language (NL) [2,3]. NL-based 
information creates fuzzy environment in which decisions are commonly made. 
The existing decision theories are not developed for applications in fuzzy 
environment and consequently require more deterministic information. There exist 
a series of fuzzy approaches to decision making like fuzzy AHP [28,49], fuzzy 
TOPSIS [49,74], fuzzy Expected Utility [21,34,50]. However, they are mainly 
fuzzy generalizations of the mathematical structures of the existing theories used 
with intent to account for vagueness, impreciseness and partial truth. Direct 
fuzzification of the existing theories often leads to inconsistency and loss of 
properties of the latter (for example, loss of consistency and transitivity of 
preference matrices in AHP method when replacing their numerical elements by 
fuzzy numbers). Let us consider the existing works devoted to the fuzzy utility 
models and decisions under fuzzy uncertainty [1,17,20,21,24,34-36,50,63]. In [21] 
they presented axioms for LPR in terms of linguistic probability distributions over 
fuzzy outcomes and defined fuzzy expected utility on this basis. But, 
unfortunately, an existence of a fuzzy utility function has not been proved. [20] is 
an extensive work devoted to the representation of FPR. In this paper, an existence 
of a utility function representing a fuzzy preorder is proved. However, in this work 
a utility function itself is considered as a non-fuzzy real-valued function. In [50] it 
is formulated conditions for existence and continuity of a numerical and fuzzy-
valued expected utility under some standard conditions of a FPR (viz. reflexivity, 
transitivity, continuity, etc.). The author proves theorems on existence of a fuzzy 
expected utility for the cases of probabilistic and possibilistic information on 
states of nature. The possibilistic case, as it is correctly identified by the author, 
appears to be more adequate to deal with real-world problems. However, in this 
model, probabilities and outcomes are considered as numerical entities. This 
notably limits the use of the suggested model for real-life decision problems where 
almost all the information is described in NL. A new approach for decision 
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making under possibilistic information on states of nature when probabilistic 
information is absent is considered in [35]. In [34] they suggest representation of a 
fuzzy preference relation by fuzzy number-valued expected utility on the basis of 
fuzzy random variables. However, an existence of a fuzzy utility function has not 
been shown. In [17] they consider a fuzzy utility as a fuzzy-valued Choquet 
integral with respect to a real-valued fuzzy measure obtained based on a set of 
possible probability distributions and with a fuzzy integrand. Unfortunately, the 
existence of the suggested fuzzy utility is not proved.  

We can conclude that the existing fuzzy approaches to decision making have 
significant disadvantages. Fuzzy approaches in which an existence of a utility 
function is proved, uses fuzzy sets to describe only a part of the components of 
decision problems. Those approaches that are based on fuzzy description of the 
most part of a decision problem are lack of mathematical proof of an existence of 
a utility function. From the other side, many of the existing fuzzy approaches 
follow too simple models like EU model. 

It is needed to develop original and mathematically grounded fuzzy decision 
theories which are based on initial fuzzy information on all the components of a 
decision problem. Such fuzzy theories should take into account initial information 
stemming from fuzzy environment in end-up comparison of alternatives. 

In the present chapter we present a fuzzy-logic-based decision theory with 
imperfect information. This theory is developed for the framework of mix of fuzzy 
information and probabilistic information and is based on a fuzzy utility function 
represented as a fuzzy-valued Choquet integral. Being developed for imperfect 
information framework, the suggested theory differs from the CEU theory as 
follows: 

1) Spaces of fuzzy sets [2,3,25,44]  instead of a classical framework are used 
for modeling states of nature and outcomes 2) Fuzzy probabilities are considered 
instead of numerical probability distributions[2,3] 3) Linguistic preference relation 
[21,81] (LPR) is used instead of binary logic-based preference relations 4) Fuzzy 
number-valued utility functions [15,25,44] are used instead of real-valued utility 
functions 5) Fuzzy number-valued fuzzy measure [2,3,86] is used instead of a 
real-valued non-additive probability.  

These aspects form fundamentally a new statement of the problem – the 
problem of decision making with imperfect information.  This problem is 
characterized by second-order uncertainty, namely by fuzzy probabilities. In this 
framework, we prove representation theorems for a fuzzy-valued utility function. 
Fuzzy-valued utility function will be described as a fuzzy-valued Choquet integral 
[6,15,79] with a fuzzy number-valued integrand and a fuzzy number-valued fuzzy 
measure. Fuzzy number-valued integrand will be used to model imprecise 
linguistic utility evaluations. It is contemplated that fuzzy number-valued fuzzy 
measure that can be generated by fuzzy probabilities will better reflect the features 
of impreciseness and non-additivity related to human behavior. The fuzzy utility 
model we consider is more suitable for human evaluations and vision of decision 
problem and related information. 
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Prior to formally state a problem of decision making with imperfect 
information as the problem of decision making under mix of fuzzy and 
probabilistic uncertainties, we will provide the necessary mathematical 
background. This is the background of spaces of fuzzy numbers and fuzzy 
functions and the related operations described below. 

The first concept we consider is the space of all fuzzy subsets of n  denoted 
n  [25,44] which satisfy the conditions of normality, convexity, and are upper 

semicontinuous with compact support. It is obvious that 1  is the set of fuzzy 

numbers defined over  . Then let us denote by 1
[0,1]  the corresponding space of 

fuzzy numbers defined over the unit interval[0,1] . Once the space of fuzzy sets is 

chosen, a metrics on it must be chosen to define other concepts such as limits, 
closures and continuity. We suggest to use fuzzy-valued metrics (the use of which 
is more adequate to measure distances between fuzzy objects) definition of which 
is given in Chapter 1. 

Let Ω  be a nonempty finite set,   be σ -algebra of subsets of Ω  and 
1:η +→    be a fuzzy number valued fuzzy measure (see Definition 3.8 in 

Chapter 3). Let us provide a definition of a fuzzy-valued Choquet integral as a 

Choquet integral of a fuzzy-valued function with respect to 1:η +→   .  

 

Definition 4.1. Fuzzy-Valued Choquet Integral [79]. Let 1:ϕ Ω →   be a 

measurable fuzzy-valued function on Ω  and η  be a fuzzy-number-valued fuzzy 

measure on  . The Choquet integral of ϕ  with respect to η  is defined as 

( )( ) ( 1) ( )
1

( )) ( ) ( )
n

i h i i
i

d
Ω

ϕ η ϕ ω ϕ ω η+
=

= − ⋅      
 

where index ( )i  implies that elements , 1,...,i i nω Ω∈ =  are permuted such that 

( ) ( 1)( )) ( )i iϕ ω ϕ ω +≥  ,  ( 1)( ) 0nϕ ω + =  by convention and ( )i Ω⊆ . 

In the suggested theory η  will be constructed on the base of the linguistic 

information on distribution of probabilities over Ω . This requires using the 
following concepts: 

 
Definition 4.2. Linguistic Probabilities of This Random Variable [21]. The set 
of linguistic probabilities { }1,..., ,...,l

i nP P P P=     and corresponding values 

{ }1,..., ,...,i nX X X  
of a random variable X  are called a distribution of linguistic 

probabilities of this random variable.  
 
Definition 4.3. Fuzzy Set-Valued Random Variable [21]. Let a discrete variable 

X  takes a value from the set { }1,..., nX X   of possible linguistic values, each of 
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which is a fuzzy variable , ,i x ix U X  described by a fuzzy 

set ( ) /
ix

i XU
X x xμ=  
 . Let the probability that X  takes a linguistic value iX  be 

characterized by a linguistic probability l
iP P∈  , { }1

[0,1]
lP P P= ∈    . The variable 

X  is then called a fuzzy set-valued random variable.  
 
Definition 4.4. Linguistic Lottery [21]. Linguistic lottery is a fuzzy set-valued 
random variable with known linguistic probability distribution. Linguistic lottery 
is represented by a vector: 

( )1 1, ;...; , ;...; ,i i n nL P X P X P X=        

Let us consider an example. Let us have the linguistic 

lottery ( )1 1 2 2 3 3, ; , ; ,L P X P X P X=       , where iP  and iX  are described by triangular 

and trapezoidal fuzzy numbers defined over [0,1]: 1 (0.1,0.3,0.5)X =  (‘small’), 

2 (0.3,0.5,0.7)X = (‘medium’), 3 (0.5,0.7,0.9)X = (‘large’), 1 (0.5,0.7,0.9)P =  

(‘high’), 2 (0.0,0.2,0.4)P =  (‘low’), 3 (0.0,0.0,0.1,0.4)P = (‘very low’). Then 

the considered linguistic lottery is: 

(0.5,0.7,0.9), (0.1,0.3,0.5);

(0.0,0.2,0.4),(0.3,0.5,0.7);

(0.0,0.0,0.1,0.4),(0.5,0.7,0.9)

L

 
 =  
 
 

  

On the base of the above mentioned concepts we can proceed to the formal 
statement of problem of decision making with imperfect information. 

Let { }1,..., n
mS S= ⊂    be a set of fuzzy states of nature, 

{ }1,...,
n

lX X= ⊂   be a set of fuzzy outcomes,   be a set of distributions of 

linguistic probabilities over  , i.e.   is a set of fuzzy number-valued functions 

[5,8,10]: [ ]{ }1
0,1:y y= →    . For notational simplicity we identify   with 

the subset { }( ) 1y y X for some X∈ = ∈     of . Denote by   a σ -

algebra of subsets of  . Denote by 0  the set of all  -measurable [54,79] 

fuzzy finite valued step functions [75] from   to  and denote by c  the 

constant fuzzy functions in 0 .  We call a function :f →    a fuzzy finite 

valued step function if there is a finite partition of   to 

, 1,2,..., ,i j ki m⊂ = ∩ = ∅    , for j k≠ , such that ( ) if S y=    for 
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all iS ∈  . In this case :g →   is called a constant fuzzy function if for some 

y ∈   one has ( )g S y=   for all S ∈  . Thus the constant fuzzy function is a 

special case of a fuzzy finite valued step function. 

Let   be a convex subset [56] of   which includes c .   can be 

considered as a subset of some linear space, and   can then be considered as a 
subspace of the linear space of all fuzzy functions from   to the first linear space. 
Let us now define convex combinations in   pointwise [56]: for y  and z  in  , 

and (0,1)λ ∈ , (1 )y z rλ λ+ − =  , where ( ) ( ) (1 ) ( )r X y X z Xλ λ= + −     , 
1
[0,1]( ), ( )y X z X ∈    . The latter expression is defined based on the Zadeh’s 

extension principle. Let ( ) ( ) ( ), , :[0,1] [0,1]r X y X z Xμ μ μ →      denote the membership 

functions of fuzzy numbers ( ), ( ), ( )r X y X z X     , respectively. Then for 

( ) :[0,1] [0,1]r Xμ →  we have: 

( ) ( ) ( )( ) ( ) (1 ) ( )
( ) ( ) 1

( ( )) sup min ( ( ( )), ( ( ))),

( ), ( ), ( ) [0,1]

r X y X z Xr X y X z X
y X z X

r X y X z X

r X y X z X

λ λ
μ μ μ

= + −
+ ≤

=

∈

      
 

  

  
 

Convex combinations in   are also defined pointwise, i.e., for f  and g  in   

(1 )f g hλ λ+ − =  , where ( ) (1 ) ( ) ( )f S g S h Sλ λ+ − =     on . 

To model LPR, let’s introduce a linguistic variable “degree of preference” with 
term-set 1( ,..., )KT T= . Terms can be labeled, for example, as “equivalence”, 

“little preference”, “high preference”, and can each be described by a fuzzy 
number defined over some scale, for example, [0,1]. The fact that preference of 

f  against g  is described by some iT T∈  is expressed as if T g  . We denote 

LPR as l  and below we sometimes, for simplicity, write i
lf g   or i

lf g   

instead of if T g  . 

In the suggested framework, we extend a classical neo-Bayesian nomenclature 
as follows: elements of   are fuzzy outcomes; elements of   are linguistic 

lotteries; elements of   are fuzzy acts; elements of   are fuzzy states of nature; 

and elements of   are fuzzy events. 

 

Definition 4.5. Comonotonic Fuzzy Acts [15]. Two fuzzy acts f  and g  in   

are said to be comonotonic if there are no iS  and jS  in   for which 

( ) ( )i l jf S f S    and ( ) ( )j l ig S g S    hold. 



132 4   A Generalized Fuzzy Logic-Based Decision Theory
 

Two real-valued functions :a S →  and :b S →  are comonotonic iff 

( ( ) ( ))( ( ) ( )) 0i j i ja S a S b S b S− − ≥     for all iS  and jS  in  . 

For a fuzzy number-valued function 1:a →    denote by aα , (0,1]α ∈  its 

α -cut and note that 1 2,a a aα α α =   , where 1 2, :a aα α →  . 

Two fuzzy functions 1, :a b →    are said to be comonotonic iff the real-

valued functions 1 1, :a bα α →   and also 2 2, :a bα α →  , (0,1]α ∈  are 

comonotonic. 

A constant act f y=   for some y  in  , and any act g  are comonotonic. An 

act f  whose statewise lotteries { ( )}f S   are mutually indifferent, i.e., 

( ) lf S y∼   for all S  in  , and any act g  are comonotonic. 

It is common knowledge that under degrees of uncertainty humans evaluate 
alternatives or choices linguistically using certain evaluation techniques such as 
“much worse”, “a little better”, “much better”, “almost equivalent” etc. In contrast 
to the classical preference relation, imposed on choices made by humans, LPR 
consistently expresses “degree of preference” allowing the analysis of preferences 
under uncertainty.  

Below we give a series of axioms of the LPR l  over  [7,15]. 

(i) Weak-Order 
(a) Completeness. Any two alternatives are comparable with respect to LPR: for 

all f  and g  in  : lf g   or lg f  . This means that for all f  and g  there 

exists such iT ∈  that i
lf g   or i

lg f  .  

(b) Transitivity. For all ,f g   and h  in  : If lf g   and lg h   then lf h  . 

This means that if there exist such iT ∈  and jT ∈  that i
lf g   and 

j
lg h  , then there exists such kT ∈  that k

lf h  . Transitivity of LPR is 

defined on the base of the extension principle and fuzzy preference relation [18]. 
This axiom states that any two alternatives are comparable and assumes one of the 
fundamental properties of preferences (transitivity) for the case of fuzzy 
information; 

(ii) Comonotonic Independence: For all pairwise comonotonic acts ,f g   and h  

in   if lf g  , then (1 ) (1 )lf h g hσ σ σ σ+ − + −    for all (0,1)σ ∈ . This 

means that if there exist such iT ∈  that i
lf g   then there exists such kT ∈  

that (1 ) (1 )k
lf h g hσ σ σ σ+ − + −   , with ,f g   and h  pairwise comonotonic. 

The axiom extends the independency property for comonotonic actions for the 
case of fuzzy information; 
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(iii) Continuity: For all ,f g   and h  in : if lf g   and lg h   then there are 

σ  and β  in ( )0,1  such that (1 ) (1 )l lf h g f hσ σ β β+ − + −     . This means 

that if there exist such iT ∈  and jT ∈  that i
lf g   and j

lg h   then there 

exist such kT ∈  and mT ∈  that define preference of fσ +  

(1 ) k m
l lh g gσ β+ −      (1 )hβ+ −  ; 

(iv) Monotonicity: For all f  and g  in  : If ( ) ( )lf S g S    on   

then lf g  . This means that if for any S ∈   there exists such T ∈  that 

( ) ( )lf S g S   , then there exists iT ∈  such that i
lf g  ;  

(v) Nondegeneracy: Not for all ,f g ∈   , lf g  .  

LPR l  on   induces LPR denoted also by l  on : ly z   iff ly z   , 

where y  and z  denotes the constant functions y  and z  on  . 

The presented axioms are formulated to reflect human preferences under a 
mixture of fuzzy and probabilistic information. Such formulation requires the use 
of a fuzzy-valued utility function. Formally, it is required to use a fuzzy-valued 

utility function U  such that  

, , ( ) ( )lf g f g U f U g∀ ∈ ⇔ ≥       

The problem of decision making with imperfect information is formalized as a 4-

tuple ( ), , ,DMII lD =     and consists in determination of an optimal 

*f ∈  , that is, *f ∈  for which *( ) max ( )
f

U f U f
∈

=


  


.  

Fuzzy utility function U  we adopt will be described as a fuzzy number-valued 
Choquet integral with respect to a fuzzy number-valued fuzzy measure. In its turn 
fuzzy number-valued fuzzy measure can be obtained from NL-described 
knowledge about probability distribution over  . NL-described knowledge about 

probability distribution over   is expressed as 1 1 2 2 3 3/ / /lP P S P S P S= + +      = 

small/small + high/medium + small/large, with the understanding that a term such 

as high/medium means that the probability, that 2S ∈   is medium, is high. So, 
lP  is a linguistic (fuzzy) probability distribution. 

Fuzzy Utility Function 

In the discussions above, we have mentioned the necessity of the use of a fuzzy 
utility function as a suitable quantifying representation of vague preferences. 
Below we present a definition of a fuzzy number-valued utility function 
representing LPR (i)-(v) over an arbitrary set   of alternatives. 
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Definition 4.6. Fuzzy Utility Function [7,10,15,16]. Fuzzy number-valued 

function 1( ) :U ⋅ →    is a fuzzy utility function if it represents linguistic 

preferences l  such that for any pair of alternatives 1 2,Z Z ∈   , 1 2
i
lZ Z   holds 

if and only if 1 2(Z ) (Z )U U≥    , where iT  is determined on the base of  

( )1 2(Z ), (Z )fHd U U     . 

Here we consider a set   of alternatives as if they are a set   of 

actions :f →   . 

Below we present representation theorems showing the existence of a fuzzy 
number-valued Choquet-integral-based fuzzy utility function [6,7,15] that 
represents LPR defined over the set   of alternatives. 
 
Theorem 4.1 [15,16]. Assume that LPR l  on 0=   satisfies (i) weak order, 

(ii) continuity, (iii) comonotonic independence, (iv) monotonicity, and (v) 
nondegeneracy. Then there exists a unique fuzzy number-valued fuzzy measure η  

on   and an affine fuzzy number-valued function u  on   such that for all f  

and g  in  : 

lf g    iff  ( ( )) ( ( ))u f S d u g S dη η≥      
 

  

where u is unique up to positive linear transformations. 
 
Theorem 4.2 [15,16]. For a nonconstant affine fuzzy number-valued function u  

on   and a fuzzy number-valued fuzzy measure η  on   a fuzzy number-valued 

Choquet integral ( ) ( ( ))U f u f S dη=    


 induces such LPR on 0  that satisfies 

conditions (i)-(v). Additionally, u  is unique up to positive linear transformations. 
 
The direct  theorem (Theorem 4.1) provides  conditions  for  existence  of  the 
suggested fuzzy utility function representing LPR defined over a set of fuzzy 
actions under conditions of fuzzy probabilities. LPR formulated by using a series 
of axioms reflects the essence of human-like preferences under conditions of 
imperfect information. The converse theorem (Theorem 4.2) provides conditions 
under which a fuzzy utility function described as a fuzzy number-valued Choquet 
integral with a fuzzy number-valued integrand and a fuzzy number-valued fuzzy 
measure induces the formulated LPR. 

In order to  prove these  theorems  we need  to use a  series  of mathematical  
results [15,16] we present below. These results are obtained for a fuzzy-valued 
Choquet integral [79] of a fuzzy number-valued function with respect to a fuzzy 
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number-valued fuzzy measure. The general expression of the considered fuzzy-
valued Choquet integral is 

{ }
0

( ) ( ( ) )I a ad S a S dη η δ δ
∞

= = ∈ ≥         


 , (4.1)

where 1:a →   . In α -cuts we will have 

1 1 2 2( ) ( ), ( )I a I a I a
α α α α α   =   

  , where 

{ }1 1 1 1 1 1 1 1

0

( ) ( ( ) )I a a d S a S dα α α α α α α αη η δ δ
∞

= = ∈ ≥   


 , 

{ }2 2 2 2 2 2 2 2

0

( ) ( ( ) )I a a d S a S dα α α α α α α αη η δ δ
∞

= = ∈ ≥   


 . 

Here 1 2, :I Iα α →   are monotonic and homogenous functions, where   is the 

space of bounded, 
 -measurable, and real-valued functions on . 

1 1 2 2( ) ( ), ( )I a I a I a
α α α α α   =   

   is an α-cut of a fuzzy number because 

1 1 1 1( ) ( )I a I aα α α α≤ , 2 2 2 2( ) ( )I a I aα α α α≥  for α α≤  and 1 1 2 2( ) ( )I a I aα α α α≤  due to 

monotonicity property of 1 2, :I Iα α →   and the fact that 1 1 2 2( ) ( )a aα α α αη η≤ . 

Denote *  the indicator function of  . Consider the following result related 
to a fuzzy number-valued fuzzy measureη . 

 

Theorem 4.3. Let 1:I →   , where   is the space of bounded, 
 -

measurable, fuzzy number-valued functions on  , satisfying *( ) 1I =  , be given. 

Assume also that the functional I  satisfies: 

(i) Comonotonic additivity: for comonotonic , ,a b ∈   ( )I a b+ =   

( ) ( )I a I b= +    holds; 

(ii) Monotonicity: if ( ) ( )a S b S≥    for all S ∈   then ( ) ( )I a I b≥   . 

Under these conditions, defining *( ) ( )Iη =     for all ∈ 
  , where ∗  

denotes the indicator function of  , we have 

( )
0

0

( ) ( ) ( ) 1I a a d a dη δ δ η δ δ
∞

−∞

= ≥ + ≥ −         , a∀ ∈  , (4.2) 
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such that 

( )
0

1 1 1 1 1 1 1 1 1 1

0

( ) ( ) ( ) 1I a a d a dα α α α α α α α α αη δ δ η δ δ
∞

−∞

= ≥ + ≥ − 
 

( )
0

2 2 2 2 2 2 2 2 2 2

0

( ) ( ) ( ) 1I a a d a dα α α α α α α α α αη δ δ η δ δ
∞

−∞

= ≥ + ≥ −  . 

Note that comonotonically additive and monotonic I  on   satisfies 

( ) ( )I a I aλ λ=    for 0λ > . Indeed, α-cut of ( )I aλ   is defined as 

[ ] [ ]1 21 2
( ) ( ), ( )I a I a I a

α α αα αλ λ λ   =   
    , where [ ] 11

a a
α αλ λ= , [ ] 22

a a
α αλ λ=  

because 0λ > . So, 1 1 1 1 2 2 2 2( ) ( ), ( ) ( )I a I a I a I aα α α α α α α αλ λ λ λ= = . 

Thus, we will have: 

1 1 2 2 1 1 2 2

1 1 2 2

( ) ( ), ( ) ( ), ( )

( ), ( ) ( )

I a I a I a I a I a

I a I a I a

α α α α α α α α α

αα α α α

λ λ λ λ λ

λ λ

     = = =    

  = =   

 

 
 

So, ( ) ( )I a I aλ λ=   , 0λ > . 

In order to prove Theorem 4.3 we need to use the following remark. 
 
Remark 4.1. The integrand in (4.2) can be compactly expressed as follows: 

( ), 0
( )

( ) ( ), 0

a
a

a

η δ δ
δ

η δ η δ
∗  ≥ ≥= 

≥ − <

  
    ,

 

in sense that 

1 1 1 1
1 1 1

1 1 1 1 1

( ), 0
( ) ( )

( ) ( ), 0

a
a a

a

α α α α
α α α

α α α α α

η δ δ
δ δ

η δ η δ
∗ ∗  ≥ ≥= = 

≥ − <


 ,
 

2 2 2 2
2 2 2

2 2 2 2 2

( ), 0
( ) ( )

( ) ( ), 0

a
a a

a

α α α α
α α α

α α α α α

η δ δ
δ δ

η δ η δ
∗ ∗  ≥ ≥= = 

≥ − <


 .
 

 

If 1 2,a aα α  are nonnegative, then 1 2, 0a a
α α∗ ∗ =  for 1 2, 0α αδ δ < . If 1

αθ , 2
αθ  are 

negative lower bounds of 1aα , 2aα  respectively then 1 1( ) 0a
α αδ∗ =  and 

2 2( ) 0a
α αδ∗ =  for 1 1

α αδ θ≤  and 2 2
α αδ θ≤  respectively. If 1 2,α αϑ ϑ  are upper 

bound of 1 2,a aα α  respectively, then α -cuts of (4.2) are equivalent to 
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1

1

11 1 1 1( ) ( )I a a d

α

α

ϑ
αα α α α

θ

δ δ∗=  , 

2

2

22 2 2 2( ) ( )I a a d

α

α

ϑ
αα α α α

θ

δ δ∗=  . 

So, (4.2) is equivalent to ( ) ( )I a a d
ϑ

θ

δ δ∗= 




     (the fact that 1 2,α αϑ ϑ  and 1
αθ , 2

αθ  

can be considered as endpoints of α-cut of a fuzzy number is obvious). As 

1 2, :I Iα α →   are comonotonically additive and monotonic, then, based on the 

results in [68], we can claim that α-cuts of (4.2) are implied by α-cuts of (4.1), and 
hence, (4.2) is implied by (4.1). 
 
Proof of Theorem 4.3. Remark 4.1 allows for proof of (4.1) for nonnegative fuzzy 
number-valued functions only. Assuming that (4.1) holds for any fuzzy finite step 

function, we will prove it for an arbitrary nonnegative  -measurable fuzzy 

number-valued function [79] a bounded by some 1λ ∈   (that is, 0 ( )a S λ≤ ≤  , 

hold for all S ∈  ). For 1,2,...n =  and 1 2nk≤ ≤  we define 

{ },1,
1 11

( 1) / 2 ( ) / 2k n n
n S k a S k

αα α αλ λ = ∈ − < ≤ 
   and 

{ },2,
2 22

( 1) / 2 ( ) / 2k n n
n S k a S k

αα α αλ λ = ∈ − < ≤ 
   . 

Define also 
1

( )na S
α

  
  1 ( 1) / 2nkαλ= − , 

2
( )na S

α
  

  2 ( 1) / 2nkαλ= − , 

1
( )nb S

α
  = 
   1 / 2nkαλ= , 22

( ) / 2n
nb S k

α αλ  = 
  .  

Thus, for all S  and n : 

1 11 1 1 1 1
( ) ( ) ( ) ( ) ( )n n n na S a S a S b S b S

α αα α α

+ +        ≤ ≤ ≤ ≤         
        and 

1 12 2 2 2 2
( ) ( ) ( ) ( ) ( )n n n na S a S a S b S b S

α αα α α

+ +        ≤ ≤ ≤ ≤         
         

hold. So, for all S  and n  1 1( ) ( ) ( ) ( ) ( )n n n na S a S a S b S b S+ +≤ ≤ ≤ ≤         hold. 

Monotonicity of 1 2,I Iα α : →   implies 1 1( )nI a αα
1 1( )I aα α≤ 1 1( )nI b αα≤ , 

2 2 2 22 2( ) ( ) ( )n nI a I a I bα αα α α α≤ ≤ , in turn comonotonic additivity of 1 2, :I Iα α →   

implies 
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1 1 11 10 ( ) ( ) / 2 0n
n nI b I aα αα α αλ≤ − = → and  

2 2 22 20 ( ) ( ) / 2 0n
n nI b I aα αα α αλ≤ − = → , n → ∞ . 

Based on the assumption about fuzzy finite step functions, it follows that  

1

1 1 1 11 1
0

( ) ( )n nI a a d

αλ
α αα α α αη δ δ= ≥ , 

2

2 2 2 22 2
0

( ) ( )n nI a a d

αλ
α αα α α αη δ δ= ≥ , and 

1

1 1 1 11 1
0

( ) ( )n nI b b d

αλ
α αα α α αη δ δ= ≥ ,

2

2 2 2 22 2
0

( ) ( )n nI b b d

αλ
α αα α α αη δ δ= ≥ . 

The monotonicity of 1 2,α αη η  and the definitions of 1 1 2 2, , ,n n n na b a bα α α α , 1,2,...n = , 

imply 1 1 1 1 11( ) ( )na aαα α α α αη δ η δ≥ ≤ ≥  1 11( )nb αα αη δ≤ ≥ , 2 22( )na αα αη δ≥ ≤  

2 2 2 2 22( ) ( )na b αα α α α αη δ η δ≤ ≥ ≤ ≥ . From these inequalities it follows that 

1 1 1

1 1 1 1 1 1 1 1 1 11 1
0 0 0

( ) ( ) ( )n na d a d b d

α α αλ λ λ
α αα α α α α α α α α αη δ δ η δ δ η δ δ≥ ≤ ≥ ≤ ≥   a

2 2 2

2 2 2 2 2 2 2 2 2 22 2
0 0 0

( ) ( ) ( )n na d a d b d

α α αλ λ λ
α αα α α α α α α α α αη δ δ η δ δ η δ δ≥ ≤ ≥ ≤ ≥    

hold. 

So, 
1

1 1 1 1 1 1

0

( ) ( )I a a d

αλ
α α α α α αη δ δ= ≥ , 

2

2 2 2 2 2 2

0

( ) ( )I a a d

αλ
α α α α α αη δ δ= ≥ , that is,  

0

( ) ( )I a a d
λ

η δ δ= ≥


    . 

Let us now prove that (4.1) holds for fuzzy finite step functions. Any nonnegative 

fuzzy step function a ∈   has a unique α -cut representation *
1 1

1

k

i i
i

a αα δ
=

=  , 

*
2 2

1

k

i i
i

a αα δ
=

=   for some k , where 1 21 1 1... k
α α αδ δ δ> > > , 1 22 2 2... k

α α αδ δ δ> > >  

and the sets i , 1,...,i k=  are pairwise disjoint. Defining 11 0k
αδ + = , 12 0k

αδ + =  

we have: 

( )
11

1 1 1 1 1 11 1
1 10

( )
ik

i i j
i j

a d

αδ
α αα α α α αη δ δ δ δ η+

= =

 
≥ = −  

 
  , 
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( )
12

2 2 2 2 1 22 2
1 10

( )
ik

i i j
i j

a d

αδ
α αα α α α αη δ δ δ δ η+

= =

 
≥ = −  

 
  . 

So, 

( )
1

1
1 10

( )
ik

i h i j
i j

a d
δ

η δ δ δ δ η+
= =

 
≥ = −  

 




      , (4.3)

Note that throughout the study we use the Hukuhara difference. The induction 
hypothesis implies that for k n<  

( )1
1 1

( )
ik

i h i j
i j

I a δ δ η+
= =

 
= −  

 
      (4.4) 

We need to prove it for k n= . Note that for 1k = *
1 1 1 1( ) ( )Iα α α αδ δ η=  , and 

*
2 2 2 2( ) ( )Iα α α αδ δ η=   hold, i.e, *( ) ( )I δ δη=    holds.  

Given endpoints of α-cut of a  as *
1 1

1

k

i i
i

a αα δ
=

=  , *
2 2

1

k

i i
i

a αα δ
=

=  , 

a b c= +  , where 
1

*
1 11 1

1

( )
k

i i i
i

b α αα δ δ
−

+
=

= −  , 
1

*
2 12 2

1

( )
k

i i i
i

b α αα δ δ
−

+
=

= −  , 

*
1 1

1

k

k j
i

c αα δ
=

 =  
 
 , *

2 2
1

k

k j
i

c αα δ
=

 =  
 
 . From the induction hypothesis 

( 1k n− < ),  

( ) ( )( ) ( )
1 1

1 1
1 11 1

( )
i ik k

i h k h i h k j i h i j
i ij j

I b δ δ δ δ η δ δ η
− −

+ +
= == =

   
= − − − = −   

   
             

and  

1

( )
i

k j
j

I c δ η
=

 
=  

 
   . 

Thus, ( )1
1 1

( ) ( )
ik

i h i j
i j

I b I c δ δ η+
= =

 
+ = −  

 
      . From the other side, as b  and c  

are comonotonic, ( ) ( ) ( )I a I b I c= +    and (4.4) for k n=  has been proved. The 

proof is completed. 
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Remark 4.2. From the opposite direction of Theorem 4.3 it follows that if a fuzzy 

functional I  is defined by (4.2) with respect to some fuzzy number-valued fuzzy 
measure, then it satisfies comonotonic additivity and monotonicity. One can easily 
obtain the proof by reversing the proof of Theorem 4.3 as follows. For a functional 

I  defined by (4.2) with respect to some fuzzy number-valued fuzzy measureη , it 

is needed to prove that it is comonotonically additive and monotonic. 

Monotonicity of I  follows from the fact that a b≥   on   implies * *a b≥   

on 1 .  
So, at first it is needed to show comonotonic additivity for fuzzy finite step 

functions in . To this end the following two claims are given. 
 

Claim 4.1. Two fuzzy finite step functions b , c ∈   are comonotonic iff there 
exists an integer k , a partition of   into k  pairwise disjoint elements 

( ) 1

k

i i=
 of  , and two k -lists of fuzzy numbers 1 2 ... kβ β β≥ ≥ ≥    and 

1 2 ... kγ γ γ≥ ≥ ≥    such that *

1

k

i i
i

b β
=

=   and *

1

k

i i
i

c γ
=

=   . The proof is obvious. 

Claim 4.2. Let ( ) 1

k

i i=
  be 

 -measurable finite partition of  (if i j≠ , 

then i j∩ = ∅  ) and let *

1

k

i i
i

a δ
=

=    with 1 2 ... kα α α≥ ≥ ≥   . Then for any 

fuzzy number-valued fuzzy measure 1:η →    we have: 

*
1

1 1

( ) ( )
ik

i h i j
i j

a dδ δ δ δ η
∞

+
= =−∞

 
= −  

 
        (4.5) 

with 1 0kδ = = .  

For ( )I a   defined by the left side of (4.5) for fuzzy finite step functions, the 

formula (4.5) and Claim 4.1 imply additivity for comonotonic fuzzy finite step 
functions. Extension of this result to any comonotonic functions in   is obtained 

by computing appropriate limits in metrics fHd .  

It can be easily shown that Theorem 4.3 and its converse hold if   is 
substituted by 0 , the set of all fuzzy finite step functions in . Also, for 

comonotonically additive and monotonic 1
0:I →    there exists a unique 

extension to all of , which satisfies comonotonic additivity and monotonicity. 

To prove this it is needed to pass to α -cuts of I  and then easily apply the facts 

that   is the (sup) norm closure of 0  in 1( ) in metrics fHd  and that 

monotonicity implies norm continuity. 
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Now let ( )   denote the set of functions in   with values in , and suppose 

that { }1v vγ γ⊃ ∈ − ≤ ≤    , where 0, 1γ γ γ≥ − = −   . 

 

Corollary 4.1. Let 1: ( )I →     be given such that 

1)  for all λ ∈   ( )I λ λ∗ =    

2) if ,a b  and c  are pairwise comonotonic, and ( ) ( )I a I b>   , then 

( (1 ) ) ( (1 ) )I a c I b cσ σ σ σ+ − > + −    , (0,1)σ ∈ , 

3) if a b≥   on , then ( ) ( )I a I b≥   . 

Then, defining *( ) ( )Iη =     on   we will have for all ( )a ∈   : 

( )
0

0

( ) ( ) ( ) 1I a a d a dη δ δ η δ δ
∞

−∞

= ≥ + ≥ −         . 

The proof consists in extending I  on ( )   to I  on   and showing that 

conditions of Theorem 4.3 are satisfied. As I  is homogeneous on ( )   it can be 

uniquely extended to a homogeneous function on . Next, by homogeneity, the 

extended functional I  satisfies monotonicity on . Comonotonic additivity of I  
on   follows from the following Lemma and homogeneity property. 
 

Lemma. Given the conditions of the Corollary, let a  and b  in ( )   be 

comonotonic such that ( ( ),0) 1fHd a S ε≥ − +  , ( ( ),0) 1fHd b S ε≤ −    for some 

0ε >  and let 0 1λ< < . Then ( (1 ) ) ( ) (1 ) ( )I a b I a I bλ λ λ λ+ − = + −     . 
 

Proof. Denote ( )I a σ=    and ( )I b β=  . By the condition of the Lemma, and by 

(i) and (iii) of the Corollary it is true that * *, ( )σ β ∈    , *( )I σ σ=    and 
*( )I β β=   .  

We need to prove that ( (1 ) ) ( ) (1 ) ( )I a b I a I bλ λ λ λ+ − = + −     . Suppose that 

( (1 ) ) ( ) (1 ) ( )I a b I a I bλ λ λ λ+ − > + −      (the case of the other inequality is 

treated in a similar manner). 

Let 0 ξ ε< < . Then by (i) *( ) (( ) )I Iσ σ ξ< +    , *( ) (( ) )I b I β ξ< +    . Now 

(1 )λσ λ β ξ+ − + = * *( ( ) (1 )( ) )I λ σ ξ λ β ξ+ + − + >   
*( (1 )( ) ) ( (1 ) )I a I a bλ λ β ξ λ λ> + − + > + −    . 
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The equality follows from (i) and each of the two inequalities follows from (ii). 
The inequality above holds for any ξ  ( 0 ξ ε< < ), so we get the required 

contradiction. The proof is completed. 
 
Remark 4.3. The Corollary holds if ( )   is replaced by 0 ( )   the set of 

bounded,  -measurable, fuzzy finite step functions on   with values in . The 

same is true for the Lemma.  
Given the above mentioned auxiliary results on a fuzzy number-valued 

Choquet integral [79] of a fuzzy number-valued function with respect to a fuzzy 
number-valued fuzzy measure η  we can prove the theorems 4.1 and 4.2. Let us 

proceed to the proof of theorem 4.1 
 
Proof of Theorem 4.1 
Step 1. At this step we show the existence of an affine fuzzy-number-valued 
function defined over .  

Affinity of u  implies ( ) ( ) ( )
X

u y y X u X
∈

= 
    


 defined as follows:  

( ) ( ) ( )( ) ( ) ( )

( ) 1

( ( )) sup min ( ( ( )), ( ( )))
X

X

u y u X y Xu y y X u X

y X

u y u X y Xμ μ μ
∈

∈

=
=

=







     


 




 

Positive linear transformation u′ of u implies ( ) ,u Au y B′ = +    1 1,A B+∈ ∈   , 

where addition and multiplication is defined on the base of Zadeh’s extension 
principle. 

Using the implications from von Neumann-Morgenstern theorem, we suppose 
that there exists a fuzzy-number-valued function u  representing LPR l  induced 

on . Now, from nondegeneracy axiom it follows that there exist such *f  and 

*f  in 0  that *
*lf f  . From monotonicity axiom it follows existence of a state 

S  in   such that * *
* *( ) ( )lf S y f S y≡ ≡    . Since u  is given up to a positive 

linear transformation, suppose that  *( )u y v= −    and *( )u y v=   , 1v +∈  . We 

denote ( )u=    which is a convex subset [56] of 1  with ,v v− ∈   .  

 
Step 2. At this step we show the existence of an affine fuzzy-number-valued 
function defined over 0 . 

Denote by { (1 ) |  [0,1]}
f

f y y andσ σ σ= + − ∈ ∈
     for an arbitrary 

0f ∈  . It is clear that 
f  is convex and any two acts in 

f  are comonotonic. 

So we can claim that there exists an affine fuzzy number-valued function over 

f  representing the corresponding LPR l . By using positive linear 
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transformation we can define for this function denoted
f

J 
 : *( )

f
J y v= −
    

and *( )
f

J y v=
   . For any gf

h ∈ ∩ 
   ,  ( ) ( )gf

J h J h= 
    holds. This allows to 

define fuzzy number-valued function ( ) ( )
f

J f J f= 
    on 0 , which represents the 

LPR l  on 0  and satisfies for all y  in : ( ) ( )J y u y=    . 

 
Step 3. At this step we show the existence of a fuzzy-number-valued functional 

[75] defined on the base of u  and 
f

J 
 . 

Denote by 0 ( )   the  -measurable,  -valued fuzzy finite step functions 

on . By means of u  let us define onto function 0 0: ( )Φ →     as 

( )( ) ( ( ))f S u f SΦ =    , 0,S f∈ ∈   . If ( ) ( )f gΦ Φ=    then lf g∼   (it follows 

from monotonicity). So, ( ) ( )f gΦ Φ=    implies ( ) ( )J f J g=   .  

Define a fuzzy number-valued function I  on 0 ( )   as follows: 

( ) ( )I a J f=    for 0 ( )a ∈   , where 0f ∈   is such that ( )f aΦ =  . I  is well 

defined as J  is constant fuzzy number-valued function (that is,  
1, ( ) ,v J f v f∃ ∈ = ∀ ∈    ) on 1( )aΦ −  . 

Fuzzy number-valued function I  satisfies the following conditions:  
 

(i) for all σ  in : *( )I σ σ=   . Indeed, let y ∈   be such that ( )u y σ=   , hence 

( )J y σ=    and *( )yΦ σ=     implying *( )I σ σ=   ; 

(ii) for all pairwise comonotonic functions a , b  and c  in 0 ( )   and [0,1]σ ∈ : 

if ( ) ( )I a I b>   , then ( (1 ) ) ( (1 ) )I a c I b cσ σ σ σ+ − > + −    . This is true 

because Φ  preserves comonotonicity; 

(iii) if ( ) ( )a S b S≥    on   for a  and b  in 0 ( )   then ( ) ( )I a I b≥   . This is true 

because Φ  preserves monotonicity. 
 
Step 4. This step completes the proof of the Theorem 4.1.  

From the Corollary and Remark 4.4 for a fuzzy number-valued function 
on 0 ( )  , which satisfies conditions (i), (ii), and (iii) above, it follows that the 

fuzzy number-valued fuzzy measure η  on 
  defined by *( ) ( )Iη =     

satisfies 

( ) ( )I a I b≥     iff  ad bdη η≥   
 

, 0, ( )a b∀ ∈    (4.6)
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Hence, for all f  and g  in 0 :  

lf g  iff ( ) ( )f d g dΦ η Φ η≥   
 

. 

The proof is completed. 

Proof of Theorem 4.2 
Step 1. At this step we show that LPR, which is induced by u  and η   on 0 , 

satisfies axioms (i)-(v). 
To prove this theorem we use Remarks 4.1-4.3, Theorem 4.3 and other results 

given above, which show that I  on 0 ( )   defined by (4.6) satisfies conditions 

(i)-(iii). Secondly, we can see that J  is defined as a combination of Φ  and I . 

Thus, the LPR on 0  induced by J  satisfies all the required conditions because 

Φ  preserves monotonicity and comonotonicity and adη 


 is a (sup) norm 

continuous function on a  in metrics fHd  (this is based on the analogous property 

of endpoints of α -cuts of adη 


 that are classical functionals of the type 

considered in [68]).  

Step 2. At this step we show the uniqueness of the fuzzy utility representation. 
In order to prove the uniqueness property of the utility representation suppose 

that there exists an affine fuzzy number-valued function u′  on   and a fuzzy 

number-valued fuzzy measure η′  on   such that for all f  and g  in 0 : 

lf g    iff  ( ( )) ( ( ))u f S d u g S dη η′ ′ ′ ′≥      
 

 (4.7) 

Monotonicity of η′  can be derived. Considering (4.7) for all , cf g ∈    we 

obtain, based on implications of von Neumann and Morgenstern theorem and 
Zadeh’s extension principle, that u′  is a positive linear transformation of u . But 
(4.7) is preserved for positive linear transformation of a fuzzy utility. Hence, to 

prove that η η′ =   we may assume w.l.o.g. that u u′ =  . For an arbitrary   in   

let f  in 0  be such that 1( ) ,fΦ λ λ∗= ∈     . Then ( ) ( )f dΦ η λη=    


  and 

( ) ( )f dΦ η λη′ ′=    


 . Let y  in   be such that ( ) ( )u y λη=     . Then 

lf y∼  ,which implies ( ) ( ) ( ) ( )u y u y u y dη λη′ ′ ′ ′= = =       


 .So, ( ) ( )λη λη′=    , 

and therefore, ( ) ( )η η′=   . The proof is completed. 
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In brief, a value of a fuzzy utility function U  for action f  is determined as a 

fuzzy number-valued Choquet integral [6,7,15]: 

( )( ) ( 1) ( )
1

( ) ( ( )) ( ( )) ( ( )) ( )l l

n

i h i iP P
i

U f u f S d u f S u f Sη η+
=

= = − ⋅  
         



  (4.8) 

Here ()lP
η   is a fuzzy number-valued fuzzy measure obtained from linguistic 

probability distribution over   [6,7,13,15] and ( ( ))u f S   is a fuzzy number-

valued utility function used to describe NL-based evaluations of utilities, 

( )i means that utilities are ranked such that (1) ( )( ( )) ... ( ( ))nu f S u f S≥ ≥    , 

{ }( ) (1) ( ),...,i iS S=   , ( 1)( ( )) 0j nu f S + =  , and for each ( )i  there exists 

( ) ( 1)( ( )) ( ( ))i h iu f S u f S +−    . Mutliplication ⋅  is realized in the sense of the 

Zadeh’s extension principle. An optimal *f ∈  , that is *f ∈   for which 

{ }*( ) max ( ( )) lPf
U f u f S dη

∈
=  

   


, can be determined by using a suitable fuzzy 

ranking method. 
Note that for a special case the suggested decision making model and utility 

representation reduces to the model and representation suggested by Schmeidler in 
[68]. 

Fuzzy-Valued Measure Construction from Linguistic Probabilities 

The crucial problem in the determination of an overall fuzzy utility of an 
alternative is a construction of a fuzzy number-valued fuzzy measureη . We will 

consider η  as a fuzzy number-valued lower probability constructed from 

linguistic probability distribution lP . Linguistic probability distribution lP  

implies that a state iS ∈   is assigned a linguistic probability iP  that can be 

described by a fuzzy number defined over [0,1]. However, fuzzy probabilities iP  

cannot initially be assigned for all iS ∈   [15,16]. Initial data are represented by 

fuzzy probabilities for 1n −  fuzzy states of nature whereas for one of the given 
fuzzy states the probability is unknown. Subsequently, it becomes necessary to 

determine unknown fuzzy probability ( )j jP S P=   [10,15,16]. In the framework of 

Computing with Words [9,32,33,51], the problem of obtaining the unknown fuzzy 

probability for state jS  given fuzzy probabilities of all other states is a problem of 

propagation of generalized constraints [82,83,88]. Formally this problem is 
formulated as [83]: 
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Given ( ) { }1
[0,1]; , , 1,..., 1, 1,...,n

i i i iP S P S P i j j n= ∈ ∈ = − +      (4.9) 

find unknown ( ) 1
[0,1],j j jP S P P= ∈     (4.10) 

It reduces to a variational problem of constructing the membership function 

( )
jP

μ ⋅  of an unknown fuzzy probability jP : 

{ }1,..., 1, 1,...,
( ) sup min ( ( ( ) ( ) ))

j i i
jP P Si j j n

p s s dsρμ μ μ ρ
= − +

=   


 (4.11)

subject to ( ) ( )
j

jS
s s ds pμ ρ =


, ( ) 1s dsρ =


 
 (4.12) 

 

here ( )
jS

sμ   is the membership function of a fuzzy state jS . 

When jP  has been determined, linguistic probability distribution lP  for all 

states iS  is determined: 

1 1 2 2/ / ... /l
n nP P S P S P S= + + +       

If we have linguistic probability distribution over fuzzy values of some fuzzy set-

valued random variable S , the important problem that arises is the verification of 
its consistency, completeness, and redundancy [1,21].  

Let the set of linguistic probabilities { }1,...,
l

nP P P=    correspond to the set of 

linguistic values { }1,..., nS S   of the fuzzy set-valued random variable S . For 

special case, a fuzzy probability distribution lP  is inconsistent when the 
condition 

( ) ( )
i

i S
p s s dsμ ρ=  



 (4.13) 

or 

( ) ( ) 1
iP S

s s dsμ μ ρ
 

= 
 
 




 (4.14)

is not satisfied for any density ρ  from the set of evaluations of densities. 

The degree of inconsistency (denoted contr) of a linguistic probability 

distribution lP  could be determined as  
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contr min 1 ( )lP s ds
ρ

ρ
 

= − 
 




 (4.15)

where ρ  satisfies conditions (4.13) and (4.14). Obviously, contr 0lP = if the 

required density ρ  exists. 

Let a fuzzy probability distribution lP  be consistent, that is contr 0lP = . If 

this distribution is given as a set of crisp probabilities ip , then its incompleteness 

(denoted in) and redundancy (denoted red) can be expressed as  

in max 0,1l
i

i

P p
 = − 
 

  (4.16)

red max 0, 1l
i

i

P p
 = − 
 
     (4.17)

If lP  is given using linguistic probabilities iP  then its incompleteness and 

redundancy can be expressed as 

in max 0,1 supP
γ Γ

γ
∈

 = − 
 


  (4.18)

red max 0,inf 1P
γ Γ

γ
∈

 = − 
 


    (4.19)

where { }( ) 1ΛΓ γ μ γ= = . Here Λ  is a sum of linguistic probabilities l
iP P∈  . 

Given consistent, complete and not redundant linguistic probability distribution 
lP  we can obtain from it a fuzzy set Pρ  of possible probability 

distributions ( )sρ . We can construct a fuzzy measure from Pρ  as its lower 

probability function (lower prevision) [58] by taking into account a degree of 

correspondence of ( )sρ  to lP . Lower prevision is a unifying measure as opposed 

to the other existing additive and non-additive measures [72,73]. We denote the 
fuzzy-number-valued fuzzy measure by lP

η   [6,7,10,15] because it is derived from 

the given linguistic probability distribution lP . A degree of membership of an 

arbitrary probability distribution ( )sρ  to Pρ  (a degree of correspondence of 

( )sρ  to lP ) can be obtained by the formula  

1,
( ( )) min( ( ))

i iP Pi n
s pπ ρ π

=
=  , 
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where ( ) ( )
i

i S
p s s dsρ μ=  



 is numeric probability of fuzzy state iS  defined 

by ( )sρ . Furthermore, ( ) ( ) ( )
i i i

iP P S
p s s dsπ μ ρ μ

 
=  

 
  


is the membership degree 

of ip  to iP . 

To derive a fuzzy-number-valued fuzzy measure lP
η   we use the following 

formulas [15]: 

1 2
(0,1]

( ) ( ), ( )l l lP P P

α α

α
η α η η

∈

 =       , (4.20)

where 

{ } 1

1

2

1,

( ) inf ( )max ( ) ( ) ,

( ) inf ( )max ( ) ( ) ( ) ,

( ) min( ( )) , ( ) ,
i iPi n

s s ds s P

s s ds s core P

P s p core P P

α

α α

α ρ

α ρ

ρ ρ ρ

η ρ μ ρ

η ρ μ ρ

ρ π α
=

∈

∈

=

  = ∈ 
  
  = ∈ 
  

= ≥ = ⊂











  


  






 

 (4.21)

The support of lP
η   is defined as

(0,1]

supp l lP P
cl α

α
η η

∈

 
=  

 
   . 

For special case, when states of nature are just some elements, fuzzy number-
valued fuzzy measure lP

η  is defined as 

1 2
(0,1]

( ) ( ), ( )l l lP P P

α α

α
η α η η

∈

 =        , 1{ ,..., }nS s s⊂ =  (4.22)

where  

1( ) inf ( ) ( ( ),..., ( ))l

i

i nP
s

p s p s p s Pα
αρη

∈

  = ∈ 
  


H
  , 

1 1
1

( ( ),..., ( )) ... ( ) 1 .
n

n n i
i

P p s p s P P p s
α α αρ

=

 
= ∈ × × = 
 

  

(4.23)

Here 1 ,..., nP Pα α
 are α-cuts of fuzzy probabilities 1,..., nP P   repectively,  

1( ),..., ( )np s p s  are  basic  probabilities for  1,..., nP P    respectively,  ×  denotes 

the Cartesian product. 
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A General Methodology for Decision Making with Imperfect Information 

The problem of decision making with imperfect information consists in 

determination of an optimal action *f ∈  , that is *f ∈   for which 

{ }*( ) max ( ( )) lPf
U f u f S dη

∈
=  

   


. In this section we present the methodology for 

solving this problem. The methodology consists of the several stages described 
below. 

At the first stage it becomes necessary to assign linguistic utility values 

( ( ))j iu f S   to every action jf ∈   taken at a state iS ∈  .  

The second stage consists in construction of a fuzzy number-valued fuzzy 
measure over   based on partial knowledge available in form of linguistic 

probabilities. First, given known probabilities ( ) ; ,n
i i iP S P S= ∈    1

[0,1] ,iP ∈   

{ }1,..., 1, 1,...,i j j n= − +  one has to find an unknown probability 

( ) 1
[0,1],j j jP S P P= ∈     by solving the problem described by (4.11) - (4.12). As a 

result one would obtain a linguistic probability distribution lP  expressed over all 
the states of nature. If some additional information about the probability over   

is received (e.g. from indicator events), it is required to update lP  on the base of 

this information by using fuzzy Bayes’ formula [22]. Then based on the latest lP  
it is necessary to construct fuzzy number-valued fuzzy measure lP

η   by solving the 

problem expressed by (4.20) – (4.21).   
At the next stage the problem of calculation of a fuzzy-valued Choquet integral 

for every action jf  is solved. At this stage, first it is required for an action jf  to 

rearrange indices of states iS  on the base of Definition 3.8 and find such new 

indices ( )i  that (1) ( )( ( )) ... ( ( ))j j nu f S u f S≥ ≥    . Next it is needed to calculate 

fuzzy values ( )jU f  of a fuzzy-valued Choquet integral for every action jf  by 

using the (4.8). 

Finally, by using a suitable fuzzy ranking method, an optimal *f ∈  , that is 

*f ∈   for which { }*( ) max ( ( )) lPf
U f u f S dη

∈
=  

   


, is determined. 

Multicriteria Decision Analysis with Imperfect Information 

As it was shown in [53], there exists a formal parallelism between decision making 
under uncertainty and multicriteria decision making [23,27,52,55,57,66,69,70]. Let  
us consider a problem of decision making with imperfect information 
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( ), , ,DMII lD =     and multicriteria decision making ( , )MCDM lD =  , 

with 1 ... n= × ×   . As we consider   as a finite set, we can identify acts f ∈   

with the elements of   by considering them as 1( ,..., )nϕ ϕ  , where i iϕ ∈   

denotes ( )if S  . Then the preference relation l  over the acts becomes a preference 

relation over  . For decision making with imperfect information, the preference is 
formally expressed as 

1 1, , ( ,..., ) ( ,..., )l n l nf g f g ϕ ϕ ψ ψ∀ ∈ ⇔         

and for multicriteria decision making, the fact that an alternative X  is preferred to 

X ′  is expressed as 

1 1( ,..., ) ( ,..., )l n l nX X X X X X′ ′ ′⇔       , , ,i i iX X i I′∈ ∀ ∈    , 

The problem of decision analysis with imperfect information can be written as 
multiattribute decision making problem using the following identifications [53]:  

1) States of the nature and criteria: ↔  ; 2) acts and alternatives as values 

of criteria ↔  , and 1 1( ,..., ) ( ,..., )l n l nf g ϕ ϕ ψ ψ⇔      .  

Let us now recall the statement of the multiattribute decision making problem. 

Let us assume that unidimensional utility functions 1:i iu →   , for 1,...,i n=  

are defined. In order to represent the preference relation l  we need to find an 

appropriate aggregate operator n 1H: →   such that lX X ′   holds iff 

1 1 1 1( ) H( ( ),..., ( )) ( ) H( ( ),..., ( ))n n n nU X u X u X U X u X u X′ ′ ′= ≥ =            

In the framework of the methodology proposed here, we use the operator H( )⋅  as 

a fuzzy-valued Choquet integral and hence 

( ) ( ) ( 1) ( 1) ( )
1

( ) ( ) ( 1) ( 1) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ), 2

l

l

n

i i i i iP
i

n

i i i i i iP

U X u X u X U X

u X u X

η

η

+ +
=

+ +

  ′= − ≥ = 

 ′ ′= − ⊂ 









      

    



 
 

(4.24)

Here lP
η   on 2  is obtained from linguistic probability lP  by solving the 

problem (4.11) – (4.12).  

4.2   Multi-agent Fuzzy Hierarchical Models for Decision 
Making 

Economy as a complex system is composed of a number of agents interacting in 
distributed mode.  Advances in distributed artificial intelligence, intelligent agent 



4.2   Multi-agent Fuzzy Hierarchical Models for Decision Making 151
 

theory and soft computing technology make it possible for these agents as 
components of a complex system to interact, cooperate, contend and coordinate in 
order to form global behavior of economic system. Recently, there has been great 
interest in development of Intelligent Agents (IA) and Multi-agent systems in 
economics, in particular in decision analysis and control of economic systems 
[9,31,40,43,48,49,71,76,85]. 

It should be noted that economic agents often deal with incomplete, 
contradictory, missing and inaccurate data and knowledge [4,13,26,41]. 
Furthermore, the agents have to make decisions in uncertain situations, i.e. multi-
agent economical systems in the real world function within an environment of 
uncertainty and imprecision. 

In this section we consider two approaches to multi-agent economic system: 
conventional concept and alternative concept.  

In conventional concept of multi-agent distributed intelligent systems the main 
idea is granulation of functions and powers from a central authority to local 
authorities. In these terms, economy is composed of several agents, which can 
perform their own functions independently, and, therefore, have information, 
authority and power necessary to perform only their own functions.  These 
intelligent agents can communicate together to work, cooperate and be 
coordinated in order to reach a common goal of economy in a system [13]. 

An alternative concept of a multi-agent distributed intelligent decision making 
system  with cooperation and competition among agents, distinguished from the 
conventional approach by the following [9,31]: each intelligent agent acts fully 
autonomously; each intelligent agent proposes full solution of the problem (not 
only for own partial problem); each agent has access to full available input 
information; total solution of the problem is determined as a proposal of one of the 
parallel functioning agents on the basis of a competition procedure (not by 
coordinating and integrating partial solutions of agents, often performed 
iteratively); agents' cooperation produces desired behavior of the system; 
cooperation and competition acts in the systems are performed simultaneously 
(not sequentially). 

A similar idea of decomposition of the overall system into agents with 
cooperation and competition among them is implemented in [40,71,85].   

Zhang proposed a way to synthesize final solutions in systems where different 
agents use different inexact reasoning models to solve a problem. In this approach 
a number of expert systems propose solutions to a given problem. These solutions 
are then synthesized using ego-altruistic approach [43]. 

Below we present the formalism of the conventional approach. 
For simplicity, we will mainly consider systems with so-called “fan” structure 

in which the economic system consists of  N agents in the lower level and one 
element in the higher level (which we call a center). A hierarchy has two levels: 
the focus or overall goal of the decision making problem at the top, and competing 
alternatives at the bottom.  
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The state of i-th agent ( 1,...,i N= ) is characterized by vector iX . The vector 

iX  should meet the local constraints  

      
in

i iX ∈ ⊂    (4.25)

where i - is a set in in  dimensional space in . A specificity of these 

hierarchical systems is information aggregation at the higher level. This means 
that the only agent of the higher level, the center, is concerned not on individual 

values of variables iX , but some indexes evaluating elements’ activities produced 

from those values. Let’s denote the vector of such indexes as: 

1( ) ( ( ),..., ( )), 1,..., .
ii i i i im iF X f X f X i N= =    

 
  (4.26)

The local concerns of i-th agent are represented by vector criteria 

1
( ) ( ( ),..., ( )).

Ki
i i i i i iX X XΦ ϕ ϕ=     Let’s assume that the agents concern in 

increased values fuzzy of criteria: ( ), 1,..., .
ki i iX k Kϕ =  Sometimes the indexes 

may directly mimic the criteria, but in general, the indexes can be related to these 
criteria in a specific manner. It is worth noting that the number of indexes im  and 

criteria iK  is much less than the dimension of vector iX . 

Consider a situation in which all parameters of the objective functions and the 
constraints are fuzzy numbers represented in any form of membership functions. 
The problem can be formulated as follows, in general. 

1 2
1 1 1

max , , ,...,

. . , 0,

Tn n n

i i i i Ki iF
i i i

c X c X c X c X

s t AX B X

= = =

= =

  =  
 

 < >

        

   
 (4.27)

The state of the center is characterized by vector 0F , the components of which are 

the indexes of the agents of the lower level: 

0 1( ,..., ),NF F F=    where ( )i i iF F X=    (4.28) 

The vector 0F  should satisfy the global constraints: 

0
0 0 ,mF ∈ ⊂    where 0

1

N

i
i

m m
=

=  (4.29)

Let’s assume that the set 0  is defined on the constraint set: 

{ }0 0 0/ ( ) ,F H F B= ≥     (4.30)
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where 0( )H F   is some fuzzy vector-function, 1( ,..., )MB B B=   is a vector. The 

objective of the center is to maximize the vector criteria: 

00 0 01 0 0 0( ) ( ( ),..., ( )) maxKF F Fϕ ϕ ϕ= →    
 

We have to use the following notions for solving the optimization problem. 
 

Definition 4.7. Fuzzy Complete Optimal Solution [13,49]. *X  is said to be a 

fuzzy complete optimal solution, if and only if there exists an *X ∈   such that 
*( ) ( )i if X f X≥   , 1,...,i K= , for all X ∈  . 

In general, such a complete optimal solution that simultaneously maximizes (or 
minimizes) all objective functions does not always exist when the objective 
functions conflict with each other. Thus, a concept of a fuzzy Pareto optimal 
solution is taken into consideration. 
 
Definition 4.8. Fuzzy Pareto Optimal Solution [13,49]. *X is said to be a 

fuzzyPareto optimal solution, if and only if there does not exist another X ∈   

such that *( ) ( )i if X f X≥    for all i  and *( ) ( )j jf X f X≠    for at least one j . 

 
Definition 4.9. Weak Fuzzy Optimal Solution [13,49]. *X  is said to be a weak 

fuzzy Pareto optimal solution, if and only if there does not exist another X ∈   

such that *( ) ( )i if X f X>   , 1,...,i K= . 

Let COX , PX  or WPX  denote fuzzy complete optimal, fuzzy Pareto optimal, 
or weak fuzzy Pareto optimal solution sets respectively. Then from above 
definitions, we can easily get the following relations: 

CO P WPX X X⊆ ⊆    (4.31) 

A fuzzy satisfactory solution is a reduced subset of the feasible set that exceeds 
all of the aspiration levels of each attribute. A set of satisfactory solutions is 
composed of acceptable alternatives. Satisfactory solutions do not need to be non-
dominated. And a preferred solution is a non-dominated solution selected as the 
final choice through decision makers’ involvement in the information processing. 

Commonly, the decision making process implies the existence of a person 
making the final decision (Decision Maker-agent) at the higher level. 

As our primary goal is to coordinate the center and the agents of the lower level 
to align their objectives, we consider the objective function of the center as 
known: 

0 0 0 0( ( )) ( ) maxH F H FΦ = →     (4.32)
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or 

0 0 0 00
( ( )) ( ) max.

T
H F H F dtΦ = →     

The coordination (overall optimization) problem can be formulated as follows:  

0 1( ,..., ) max;NH F F →    (4.33)

1( ,..., ) ;NH F F B≥     (4.34)

( ){ }/ ( ), or ,F X X
i i i i i i i i i iF F F F X X P X R∈ = = ∈ ∈          (4.35)

where ( )X X
i iP R
 

 is the set of effective (semi-effective) solutions of the problem 

1( ) ( ( ),..., ( )) max;
ii i i i iK iX X XΦ ϕ ϕ= →      (4.36)

 

i iX ∈    (4.37) 

Because the sets ( )X X
i iP R
 

 and accordingly the set F
i

  can have rather complex 

structures, the condition (4.35) can be replaced by 
F

i iF Q∈     (4.38) 

where F
iQ


 is the set satisfying the condition: 

{ }/ ( ),F F F
i i i i i i i i iQ F F F X X⊂ ⊂ = = ∈            (4.39) 

We suggest two methods to solution to (4.33)-( 4.35)  

a) Non-iterative method 
Non-iterative optimization method includes three main phases. At the first 

stage, the local problems of vector optimization are dealt with. The solutions of 

these problems are sets X
iP


 and sets ( )F F
i iQ
   or any approximations of these 

sets. The second stage implies the implementation of the center’s task (4.33)-
(4.35)  as result of which we get the optimal values of the agents′ criteria 

* * *
1( ..., )NF F F=   . Vector *

iF  is then passed to i-th agent which implements the 

third stage by solving the problem: 

*( ) ;i i i i iF X F X= ∈      (4.40) 

A solution of (4.40) represents local variables *
iX . In case when several solutions 

exist, one is selected based on preferences of the element. 

Note that the center receives the information only about the indexes iF , not 

about the vector iX . Because the dimension of iF  is usually significantly less 
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than the dimension of vector iX , it considerably reduce amount of data 

circulating between the levels. 
b) Iterative method 

Let iK
iΩ ⊂   be a subset in the space of criteria. Let’s call the elements 

i iω Ω∈  from this subset as coordinating signals.  

 

Definition 4.10. Coordinating Function [13]. The function ( )i iF ω =    

1( ( ),...,i if ω=    ( ))
iim if ω   is named a coordinating function if the following 

conditions are satisfied: 

a) For i iω Ω∀ ∈  there exists such element ( ) X
i i iX Rω ∈   , for which 

( ) ( ( ));i i i i iF F Xω ω=    

b) Inversely, for any element 0
iX −  of subset ,X

iP


 there exists such 

coordinating signal 0
i iω Ω∈ , for which 0 0( ) ( ).i i i iF F Xω =    

From the definition above, it follows that the problem (4.33)-( 4.35) is 
equivalent to the problem given below: 

0 1 1( ( ),..., ( )) max;

( ( ),..., ( )) ;

, 1,..., .

N N

i i N N

i i

H F F

H F F B

i N

ω ω

ω ω
ω Ω

→
≥ 
∈ = 

  
   


 (4.41) 

Thus, the variables of problem (4.41) are coordinating signals ,iω  defined on the 

set of acceptable coordinating signals .iΩ The rationale for such transformation is 

simpler structure of set iΩ  compared to the set of effective elements (points). 

Choosing among different coordinating functions ( )i iF ω   and different solution 

approach of problem (4.41) it is possible to construct a large number of iterative 
decomposition coordinating methods [12,13]. It can be shown that for crisp case 
the known decomposition algorithms such as Dantzig-Wolf algorithm or the 
algorithm based on the interaction prediction principle are special cases of the 
more general suggested algorithm [13]. 

Let’s consider the procedure of optimization in two-level multi-agent decision 
making systems [13]. The agents send their solutions to the center for further 
global decision making. Each solution represents a vector of criteria of the agent, 
acceptable within the local constraints. On the basis of the received alternatives 
the center creates a solution optimal to the system as a whole. This solution is 
forwarded to the agents who then implements it. In this case the task of the center 
is in the determination of the optimal values for weight coefficients of the agents’ 
solutions and can be written as follows: 
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0
1 1

0 max;
ij

i

RN i

ij
j

H Zλ
= =

= →   (4.42)

1 1

, 1,..., ;
RN

m ij mij m
i j

i
H Z B m Mλ

= =

= ≥ =    (4.43)

1

1, [1,..., ],
iR

ij
j

i Nλ
=

= =
 

(4.44)

here ijλ  is the weight coefficient sought for j-th alternative of an i-th agent; 

, , 0,..., ;mij mij ij mijZ a F m M a=< > =    are constant coefficients in the 

model of the center; ijF  is the vector criteria of the solution of  i-th agent in j-th 

alternative.  
 

Definition 4.11 Fuzzy Optimality [13]. Vector *λ  giving the maximum of the 

membership function for the set D , “desirability of λ  the viewpoint of 
satisfaction of all indices” is fuzzy optimal solution to (4.42) – (4.44). 

Thus, the decision making process in the center is reduced to solving the fuzzy 
linear programming problem (4.42)-(4.44). Agents’ alternatives are created by 
Pareto optimality (PO) procedures. The complexity of the solution of (4.42)-(4.44) 
rapidly increases as the number of agents’ alternatives increases.  In the interactive 
procedure given below we use the fuzzy optimality principle in the decision 
making process on the base of (4.42)-( 4.44).  

Many decision makers prefer an interactive approach to find an optimal 
solution for a decision problem as such approach enables decision makers to 
directly engage in the problem solving process. In this section, we propose an 
interactive method, which not only allows decision makers to give their fuzzy 
goals, but also allows them to continuously revise and adjust their fuzzy goals. In 
this way, decision makers can explore  various optimal solutions under their goals, 
and then choose the most satisfactory one. 

First of all Decision Maker analyzes agents’ individual solutions received by 
the center. At this preliminary stage the opinion of Decision Maker on the agents’ 
activity, which can be evaluated qualitatively, is taken into consideration.  

Based on the extension principle, for a fixed { }, 1,..., , 1,...,ij ii N j Rλ λ= = =  it 

is possible to obtain the “value of m-th criteria for this λ ”:  

11 11 ...
N Nm m NR mNRH Z Zλ λ λ= ⊕ ⊕    

Then the fuzzy values mB  are constructed having sense of “the value of m-th 

criteria desirable for Decision Maker”, 1,...,m M= . Note that in accordance with 
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the principle of Bellmann-Zadeh [19], the 0H , which is the objective of the 

problem (4.42) - (4.44)  and , 1,...,mH m M= (constraints), are represented by 

fuzzy sets. The sets mb  are constructed by processing preferences of Decision 

Maker such as “it is necessary that m-th criteria be not less than 1
mc  and it is 

desired that it is not less than 2
mc , while the allowable range is m mc cΔ± ”. The 

membership function of the fuzzy set mB  corresponding to the last clause can be 

set as follows: 

0, ;

( ) , ;

, .

m m m m m m

m m m
m m m m m

m

m m m
m m m m

m

if B c c or B c c

B c c
B if c c B c

c

c c B
if с B c c

c

Δ Δ
Δμ Δ

Δ
Δ Δ
Δ

 
 ≤ − ≥ + 
 − + = − ≤ ≤ 
 
 + −

≤ ≤ + 
  

 

Then for each a fixed λ  it can be related the fuzzy set .m m mH Bλ λΦ     The 

membership function of this set ()
mλΦμ   for argument mλΦ  is equal to the smaller 

of the two values: the first value defines the possibility of the fact that m-th 

criteria would take the value of mλΦ  considering the fuzziness of the parameters 

that determine it and the second value defines the degree of desire ability of this 
value for the Decision Maker. 

Let’s consider the fuzzy sets mD  such as “desirability of λ  from the viewpoint 

of m − th criteria”, [0,..., ],m M=  defined on the domain set λ  given by (4.44). 

The membership function of a fuzzy set mD  denoted as ( )mν λ  is determined 

as the height of fuzzy set mλΦ  

*( ) max ( ) ( )
m mm m mλ λλ λΦ Φν λ μ Φ μ Φ=  . 

Let fuzzy sets mH λ
  and mB  are fuzzy numbers ( ), ,m m m mH H H Hλ λ λ λ=  and 

( ), ,mm m mB B B B= . Then from formula (4.44), for determining the height of 

intersection of two fuzzy numbers, we have: 

( )*
m

, 0;

 Ô

, 0.

m m
m m

m m

m m
m m

m m

B H
R if B H

H B

H B
L if B H

H B

λ
λ

λ
λ

λ
λ

λ

μ

  − − ≥  −  = 
 − − ≤  − 
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Thus, we obtained the formulas for the membership functions  of mD  “desirability 

of λ  from the viewpoint of m-th criterion”, 0,...,m M= . Then it is necessary to 

construct the membership function of the fuzzy set mD  “desirability of λ  from the 

viewpoint of satisfaction of all indices”. Let’s assume that the membership function 
of this fuzzy set which we will denote ( )mν λ  is defined via membership functions 

( )mν λ , 0,...,m M=  and vector 0( ,..., )Mπ π π= , where Mπ  is the degree of 

importance of m-th index or the function ( )mν λ  related to this index: 

0 0( , ) ( ( ),..., ( ), ,..., ).M Mν λ π ν μ λ μ λ π π=  

Functions v  can take different forms, such as, for example, 

1 2( ); min{ ( )};k k k k
k

k

ν π μ λ ν π μ λ= =  

3 4( ) ; min{ ( ) }.k k
k k

k
k

π πν μ λ ν μ λ= =∏  

The weight coefficients kπ  is determined by way of processing of Decision 

Maker responses to stated questions. The success of such human-centered 
procedure depends mainly on understandability of the questions to the Decision 
Maker. In our view, the procedure in which Decision Maker is presented two 
alternatives 1q  and 2q  for comparison by using a predefined set of linguistic 

terms is appropriate. We can use the following set: “Can not say which of the 
alternatives is better (worse)”, “Alternative 1q  is somewhat better (worse) than 

alternative 2q ”, “Alternative 1q  is noticeably better (worse) that alternative 2q ”, 

“Alternative 1q  is considerably better (worse) that alternative 2q ”. 

The linguistic expressions presented to Decision Maker can be considered as 
linguistic labels for corresponding fuzzy sets, defined on the universe of discourse 

1 2 1 2{ / ( , ) ( , ) / ,R r r ν λ π ν λ π λ λ= = − are allowable}. 

Because 0 ( , ) 1ν λ π≤ ≤ , then [ 1,1]R ⊂ − . Hence, the membership function for 

the expression “Alternatives 1q  and 2q  are equivalent” can be given by formula:  

2

4

1 25 , 0,2;
( )

0, 0,2;

r if r
r

if r
ρ

 − ≤= 
≥

 

And the membership function for the expression “Alternative 1q  is somewhat 

better than alternative 2q ” can be given by formula: 

2

5

1 25( 0.3) , 0.1 0,5;
( )

0, 0,5;

r if r
r

if r
ρ

 − − ≤ ≤= 
≥
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Membership functions ( )s rρ  of linguistic terms labeled by s=1,2,…,7 (4 – 

“alternatives 1q  and 2q  are equivalent”; 5 – “alternative 1q  is somewhat better 

than alternative 2q ”) for comparison of alternatives are shown in Fig. 4.1. 

 

 

Fig. 4.1 Linguistic terms for comparison of alternatives 

Let a Decision Maker compare Q pairs of alternatives. The alternative q is 
characterized by the vector of decision variables λ  corresponding to this vector 

by values of membership functions ( )mν λ  of fuzzy sets mD  “desirability of λ  

from the viewpoint of m-th criterion” as well as fuzzy sets mH λ
  “value of m-th 

criterion for current λ ”. 
If on comparing alternatives 1q  and 2q  Decision Maker chooses linguistic label s 

with the membership function ( )s rρ , then a fuzzy set ( )qρ π  is defined in space of 

weight coefficientsπ , which can be called as “consistent with the q-th response of 
Decision Maker”. The corresponding membership function is defined as: 

1 2
( ) ( ), ( , ) ( , )q s q qr rρ π ρ ν λ π ν λ π= = −  

Then, consecutively we determine: 
1) Intersection of fuzzy sets ( ) :qp π

 

[1: ]

( ) ( )q
q Q

p pπ π
∈

=   

2) Vector *π  giving the maximum of the function ( )ρ π  

* *max ( )Arg p
π

π π=  

3) Membership function *( , )ν λ π  for fuzzy set D  “desirability of λ  from the 

viewpoint of satisfaction of all objectives”  

4) Vector *λ  giving the maximum of this membership function 

* *max ( , ).Arg
λ

λ ν λ π=  



160 4   A Generalized Fuzzy Logic-Based Decision Theory
 

By revising fuzzy goals, this method will provide decision makers with a series of 
optimal solutions. Hence, decision makers can select the most suitable one on the 
basis of their preference, judgment, and experience. 

Now we consider an alternative concept. 
The main idea of the  proposed  decision  making  system (DMS) is based on 

granulation of the overall system into cooperative autonomous intelligent agents. 
These agents compete and cooperate with each other in order to propose total 
solution to the problem and organize (combine) individual total solutions into the 
final solution. Determination of a total solution is based on multi-criteria fuzzy 
decision making with unequal objectives. Each distributed intelligent agent is 
implemented as Fuzzy Knowledge Based system with modest number of rules. 

In the following we will consider fuzzy DMS aimed at solving multi-attribute 
problems. Consider a set of decision alternatives }u,...,u,u{U N21= . Each 

alternative is characterized by M criteria (attributes) }c,...,c,c{C M21= according 

to which the desirability of the solution is determined. 
Let ]1,0[)u( jci

∈μ be rating estimation value (membership value) of alternative 

ju on criteria ic . The objective is to determine the optimal alternative ju  which is 

better than the others in terms of criteria ic . 

Figure 4.2 shows the structure of the considered multi-agent distributed 
intelligent  

 

Fig. 4.2 Architecture of multi-agent DMS 
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DMS. The system is composed of N parallel agents. All agents receive the 
same fuzzy  (or partly non-fuzzy) input information m11 x,...,x,x .  Each agent, 

which is a knowledge-based system, performs inference and produces its own 
solution of the full problem (not partial problem as in classical distributed 

systems) T
j j1 j2, jlu [u , u ..., u ] , j 1, N= = . 

The architecture of agent is given in Fig. 4.3.  Note that granulation fine, i.e., 
number of agents in DMS is determined by the system designer. 

Each agent N,1j,Ag j =  is an autonomous intelligent agent, capable of 

performing inference to produce solution. The agents are knowledge-based 
systems with modest number of fuzzy rules related through “ALSO”:  

k
1 k1 2 k2 m km

k1 k1 k2 k2 kl kl

R : IF x is A AND x is A AND ...AND x is A THEN

u is B AND u is B AND ... AND u is B , k 1, K=
 

(4.45)

where m,1i,xi =   and l,1j,u j =  are common input and individual agent output 

variables, kjkj B,A are fuzzy sets, and K is the number of rules. Note, that inputs 

m21 x,...,x,x  may be crisp or fuzzy variables. If input data are crisp, then 

fuzzifier (Fig. 4.3) will map these data into fuzzy sets.  The decision of each agent 
is made by the composition rule, which is the basis of inference mechanism, as 
follows: 

N,1j,X
~

RU
~

jj ==  , (4.46) 

 
 
 

Fig. 4.3 Structure of a competitive agent 
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where jU
~

is fuzzy value of decision of j-th agent, jR is the fuzzy relation  

corresponding to the fuzzy model (4.45), and X
~

 is total input information after 
fuzzification. 

Every agent’s solution is evaluated by the fuzzy decision maker on the basis of 

their achievements on M criteria M,1i,Ci = . Among N agents the best agent 

(“winner” agent) is the one that satisfies criteria M,1i,Ci =  best.  The solution of 

this agent will be taken as total solution of the full system. 

Decision Generation in Multi-agent Distributed Intelligent DSS 

A set of solutions of DMS }u,,u,u{ AgN2Ag1Ag  is formed through fuzzy 

reasoning by parallel working agents. Each decision alternative is characterized by 
M criteria, }C,,C,C{ M21  , according to which the desirability of a solution is 

determined. The problem here is to determine optimal alternative (winner), which 
is better than other alternatives in terms of criteria iC . This problem is alternative 

selection under condition of uncertainty, which was considered in 
[14,22,44,77,78,89]. 

We will use the method suggested by Yager [78] for selection of the winner 
alternative. The proposals of agents are evaluated in accordance with the criteria 

iC , i 1, M= . In real decision situation criteria iC  have different importance 

M,1i,i =α . The relative importance of each criterion is determined using the 

criteria comparison procedure. For example, as it is shown in [78], equal 
importance 1bij = , weak importance 3bij = , strong importance ijb 5= , 

( ij
ji

1
b

b
= ) etc. are determined on the scale of importance evaluation. M,1i,i =α  

are obtained by using a matrix composed from ijb . We define the estimation of 

alternative 
iAgu  on criteria iC  through 

i jC Ag( u ) [0, 1]μ ∈  (for simplicity reasons 

we will denote 
i jC Ag( u )μ  as ijμ ). After determining the conformity degree of 

each alternative N,1j,u
jAg = ,  to criteria 

i ji C AgC ( (u ))μ  and M,1i,i =α  we 

derive the following fuzzy sets: 

}u/)(,...,u/)(,u/)({C

}u/)(,...,u/)(,u/)({C

}u/)(,...,u/)(,u/)({C

AgN
M

MN2Ag
M

2M1Ag
M

1M
M

1

AgN
2

N12Ag
2

121Ag
2

11
2

1

AgN
1

N12Ag
1

121Ag
1

11
1

1

αααα

αααα

αααα

μμμ=

μμμ=

μμμ=


 (4.47)
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It is known that optimal alternative selection may be performed by: 

)u( min max)u(
j

i
i AgCij

*
AgD

αμ=μ , (4.48) 

where *
Agu  is the optimal alternative.  

As an example, here we consider a decision marketing system in oligopolistic 
industry. In such industry the number of firms is limited to a few, where the 
actions of one firm have an impact on the industry demand. A number of firms 
compete for three products (x, y, and z). Each firm is managed by a team, which 
pursues profitability and market share goals. The teams make marketing, 
production, and financial decisions each quarter using DMS incorporating data 
and models. Marketing decisions include the decisions on mix and amounts of 
goods to produce, pricing, advertising expenses, and other variables. The firm’s 
price and advertising strategies, as well as prices and advertising expenditures of 
the competitors are the major factors influencing profits, market share, and other 
marketing variables.  

The existing DMS are oriented to econometrics model of the industry history. 
In particular, as is shown in [67], existing econometrics models deal inadequately 
with the information about competitors’ future behavior. The models assume the 
competitor actions are known when the firm makes its decisions. However, the 
information about competitor  future  actions  is at best vague. [67]  presents  
procedure to model  the uncertainties of competitors’ behavior under fuzzy 
information. 

The proposed multi-agent distributed intelligent decision making marketing 
system consists of 5 knowledge based agents, each of which has 9 fuzzy rules.  
Input information are fuzzy variables of average price 1x~ (AvgPrice) and average 

advertising 2x~ (Avg-Adv) of competitors and are the same for all 5 agents.  Using 

fuzzy inference rule each agent produces its output solutions: firms own price 

( 1iu~ ), 5,1i = , and firm’s own advertising 5,1i ,u~ 2i = . Fuzzy rules in knowledge 

base of each agent are of the following type (for example, for the first agent): 

IF Avg Price is HIGH and AvgAdv is LOW, THEN  
Price is HIGH and Advertising is MEDIUM 
IF Avg Price is LOW and AvgAdv is HIGH , THEN  
Price is MEDIUM and Advertising is HIGH 
IF AvgPrice is MEDIUM and Avg Adv is MEDIUM, THEN 
Price is HIGH and Advertising is MEDIUM 

    
For the second agent: 
IF AvgPrice is HIGH and Avg Adv is LOW, THEN 
Price is HIGH and advertising is LOW 
IF Avg Price is LOW and AvgAdv is HIGH, THEN  
Price is MEDIUM and Advertising is HIGH 
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IF AvgPrice is MEDIUM and Avg Adv is MEDIUM, THEN 
Price is HIGH and Advertising is LOW 

    
For the third agent: 
IF Avg Price is HIGH and AvgAdv is LOW, THEN  
Price is LOW and Advertising is LOW 
IF Avg Price is LOW and AvgAdv is HIGH, THEN  
Price is LOW and Advertising is HIGH 
IF AvgPrice is MEDIUM and Avg Adv is MEDIUM, THEN 
Price is LOW and Advertising is MEDIUM 

    
For the fourth agent: 
IF Avg Price is HIGH and AvgAdv is LOW, THEN  
Price is HIGH and Advertising is LOW 
IF Avg Price is LOW and AvgAdv is HIGH, THEN  
Price is LOW and Advertising is HIGH 
IF AvgPrice is MEDIUM and Avg Adv is MEDIUM, THEN 
Price is MEDIUM and Advertising is MEDIUM 

    
Finally, for the fifth agent: 
IF Avg Price is HIGH and AvgAdv is LOW, THEN  
Price is HIGH and Advertising is MEDIUM 
IF Avg Price is LOW and AvgAdv is HIGH, THEN  
Price is LOW and Advertising is HIGH 
IF AvgPrice is MEDIUM and Avg Adv is MEDIUM, THEN 
Price is MEDIUM and Advertising is HIGH 

    
In this example, the firm’s management must decide price and advertising levels 
for each quarter of operations. For the first quarter solutions of each agent for the 
situation where AvgPrice is about $325 and AvgAdv is about $60,000 are shown 
in Table 4.1. 

Table 4.1 Solutions proposed by five agents 

Agent#                       Price                Advertising  

Agent 1                    $331.59                $80,000 

Agent 2                    $331.67                 $53,000             

Agent 3                    $313.61                 $60,000  

Agent 4                    $331.59                 $53,000 

Agent 5                    $331.59                 $70,000 
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The agents in the considered multi-agent distributed intelligent marketing DSS 
are characterized by the following criteria: 

 
• 1C  - conformity to situations; 

• 2C  - confidence factor (CF); 

• 3C - track record. 

 
Conformity to situations  specifies the degree to which an agent’s  expertise is 
adequate for the situation at hand. For example, certain agent’s expertise may be 
most adequate to the situations when there is excess inventories and low demand 
in the industry. Confidence factor measures an agent’s confidence in the submitted 
proposals. Proposals with high degree of confidence tend to be superior to 
proposals with low degree of confidence. Track record indicates an agent’s past 
performance. Agents whose proposals led to profitable decisions in the past 
acquire strong track record.  

Fuzzy sets characterizing alternatives on criteria iC  have the following form: 

}u/25.0,u/4.0,u/4.0,u/6.0,u/8.0{C

}u/3.0,u/6.0,u/5.0,u/7.0,u/8.0{C

}u/4.0,u/7.0,u/6.0,u/8.0,u/7.0{C

5Ag4Ag3Ag2Ag1Ag3

5Ag4Ag3Ag2Ag1Ag2

5Ag4Ag3Ag2Ag1Ag1

=

=

=

 

 

The pairwise comparisons of the above criteria resulted in the following:  

• 1C and 2C ; 1C  is more important than 2C  with the intensity 7. 

• 1C and 3C ; 1C  is more important than 3C  with the intensity 5. 

• 3C  and 2C ; 3C  is more important than 2C  with the intensity 3. 

This results in the following matrix: 

















135/1

3/117/1

571

  

The corresponding eigenvector V with 065.3=λ  is: 

















565.0

243.0

192.2
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Therefore, we derive: 

}u/457.0,u/596.0,u/596.0,u/749.0,u/882.0{C

}u/746.0,u/883.0,u/845.0,u/917.0,u/947.0{C

}u/134.0,u/458.0,u/326.0,u/613.0,u/458.0{C

5Ag4Ag3Ag2Ag1Ag
565.0

3

5Ag4Ag3Ag2Ag1Ag
243.0

2

5Ag4Ag3Ag2Ag1Ag
192.2

1

=

=

=

 (4.49) 

On the basis of the formula (4.48), and using (4.46) and (4.49) we derive: 

( ) ( )
( ) ( )
( )

1 2

3 4

5

*
D Ag Ag Ag

Ag Ag

Ag

(u ) {max[min 0.458,0.947,0.882 / u , min 0.613,0.917,0.749 /u ,

min 0.326,0.845,0.596 / u ,min 0.458,0.883,0.596 /u ,

min 0.134,0.746,0.457 /u ]}

μ =

 

1 2 3

4 5 2

*
D Ag Ag Ag Ag

Ag Ag Ag

(u ) max [0.458 / u ,0.613 / u ,0.326 / u ,

0.458 / u ,0.134 / u ] {0.613 / u }

μ =

=
 

 

The optimal alternative is 
2Agu , So Ag2 is the “winner” agent with the proposal  

Price =$331.67 
Advertising=$53.000 

as the solution of the system. 
The final solution of the problem (price and advertising for quarters 1,2,3, and 

4) consists of the sequence of solutions of agent 2 for quarter 1, agent 5 for quarter 
2, agent 5 for quarter 3, and agent 3 for quarter 4. All five agents competed for the 
total solution of the problem. In each quarter the most suitable agent for the 
situation was the “winner” while the other four agents were losers. For example, 
for the situation in quarter 2 agent 5 was more suitable than the rest of the agents. 

The suggest approach leads to a more effective decision support since it 
facilitates generation of distinct alternatives by different agents. Furthermore, the 
choice of the final decision is supported through consideration of several criteria 
by the evaluator. The suggested multi-agent DMS also promotes user’s learning 
and understanding through different agent’s viewpoints regarding the situation at 
hand. 

4.3   Decision Making on the Basis of Fuzzy Optimality 

In the realm of decision making under uncertainty, the general approach is the use 
of the utility theories. The main disadvantage of this approach is that it is based on 
an evaluation of a vector-valued alternative by means of a scalar-valued quantity. 
This transformation is counterintuitive and leads to loss of information. The latter 
is related to restrictive assumptions on preferences underlying utility models like 
independence, completeness, transitivity etc. Relaxation of these assumptions 
results into more adequate but less tractable models.  
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In contrast, humans conduct direct comparison of alternatives as vectors of 
attributes’ values and don’t use artificial scalar values. Although vector-valued 
utility function-based methods exist, a fundamental axiomatic theory is absent and 
the problem of direct comparison of vectors remains a challenge with wide scope 
of research and applications. 

There also exist situations for which utility function cannot be applied (for 
example, lexicographic ordering).  

In realm of multicriteria decision making there exist approaches like TOPSIS 
and AHP to various extent utilizing components-wise comparison of vectors. 
Basic principle of such comparison is the Pareto optimality which is based on 
counterintuitive assumption that all alternatives within Pareto optimal set are 
considered equally optimal. The above mentioned circumstances mandate 
necessity to develop new decision approaches which, from one side, may be based 
on direct pairwise comparison of vector-valued alternatives. From the other side, 
new approaches should be based on linguistic comparison of alternatives to be 
able to deal with vague vector-valued alternatives because real-life alternatives are 
almost always a matter of a degree. Linguistic modeling of preferences will help 
to reduce Pareto optimal set of alternatives arriving at one optimal alternative or a 
narrowed subset of optimal alternatives when all relevant information is described 
in NL. For this purpose, a fuzzy optimality concept [30] can be used as obtained 
from the ideas of Computing with Words (CW)-based redefinitions of the existing 
scientific concepts [30,83].  

The existing classical decision theories, especially in economics, use utility 
function to transform of a vector to an appropriate scalar value. For many real 
decision problems, information is imperfect that complicates encoding preferences 
by a utility function. From the other side, in the existing theories there are so much 
restrictive assumptions that facilitate decision making where, really, utility 
function does not exists. For such cases, scoring of alternatives may be conducted 
by direct ranking of alternatives. Then, as a rule, instead of a utility function it is 
used binary relations that provide finding an optimal or near to optimal 
alternative(s). There exists a spectrum of works in this area.  

For performing outranking of alternatives, some methods were developed for 
the traditional multiattribute decision making (MADM) problem [49,84]. One of 
the first among these methods was ELECTRE method [37,64,65]. The general 
scheme of this method can be described as follows. A decision maker (DM) 
assigns weights for each criterion and concordance and discordance indices are 
constructed. After this, a decision rule is constructed including construction of a 
binary relation on the base of information received form a DM. Once a binary 
relation is constructed, a DM is provided with a set of non-dominated alternatives 
and chooses an alternative from among them as a final decision. 

Similar methods like TOPSIS [60,78], VIKOR [60,78] are based on the idea  
that optimal vector-valued alternative(s) should have the shortest distance from the 
positive ideal solution and farthest distance from the negative ideal solution. 
Optimal alternative in the VIKOR is based on the measure of “closeness” to the 
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positive ideal solution. TOPSIS and VIKOR methods use different aggregation 
functions and different normalization methods. There exists a series of works 
based on applying interval and fuzzy techniques to extend AHP [28,49], TOPSIS 
[45,49,74]  and VIKOR [46,61] for these methdos to be able to deal with fuzziness 
and imprecision of information.  

In [74] it is suggested fuzzy balancing and ranking method for MADM. They 
appraise the performance of alternatives against criteria via linguistic variables as 
TFNs. Selection of an optimal alternative is implemented on the base of a direct 
comparison of alternatives by confronting their criteria values. 

Main drawbacks of the existing approaches mentioned above are the following: 
1) detailed and complete information on alternatives provided by a DM and 
intensive involving the latter into choosing an optimal or suboptimal alternative(s) 
are required; 2) TOPSIS, ELECTRE, VIKOR and similar approaches require to 
pose the weights of effective decision criteria that may not be always 
implementable; 3) Almost all these methods are based on the use of numerical 
values to evaluate alternatives with respect to criteria; 4) Classical Pareto 
optimality principle which underlies these methods makes it necessary to deal 
with a large space of non-dominated alternatives that sufficiently complicates the 
choice; 5) All these methods are developed only for MADM problems and not for 
problems of decision making under risk or uncertainty. Although there exists 
parallelism between these problems, these methods cannot be directly applied for 
decision making under uncertainty; 6) Absence of a significant impact of fuzzy 
sets theory for decision making. The existing decision approaches are mainly 
fuzzy extensions of the well-known MADM approaches like AHP [42], TOPSIS 
[39,47,87], PROMETHEE, ELECTRE and others. These are approaches where 
fuzzy sets are applied to the original numerical techniques to account for 
impreciseness and vagueness. Some of these fuzzy extensions suffer from 
disadvantages of direct, artificial replacement of numerical quantities by fuzzy 
numbers. This leads to loss of the properties of the original numerical approaches 
(for example loss of consistency and transitivity of preference matrices in AHP 
when replacing their numerical elements by fuzzy numbers). Also, when directly 
fuzzifying existing approaches one deals with hard computational problems or 
even problems which don’t have solutions (some fuzzy equations), or arrives at 
counterintuitive formal constructs. From the other side, in some approaches they 
use defuzzification at an initial or a final stage of computations which lead to loss 
of information. The decision which is obtained by disregarding real-world 
imperfect information may not be reliable and may not be consistent with human 
choices which we try to model. At the same time, it is necessary to mention that 
there exist mathematically correct and tractable extensions of the existing 
approaches to the fuzzy environment. For example, these are constraint-based 
method [59] or an approach suggested in [62] as fuzzy versions of AHP. However, 
these methods don’t resolve disadvantages of the original crisp approaches but 
only model imprecision within these approaches.  These all means that there is a 
need in applying fuzzy theory to model how humans actually think and reason 
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with perceptions in making decisions, i.e. to use original capabilities of fuzzy 
theory to describe human-like intelligent decision making. 

In order to address the above mentioned problems, it is adequate to use CW-
based approaches which are able to cope with imperfect information and to 
provide an intuitive, human friendly way to decision making.  

In [30] they suggested a fuzzy optimality definition for multicriteria decision 
problems. In this approach each Pareto optimal alternative is assigned a degree of 
optimality reflecting to what extent the alternative is optimal. To calculate this 
degree, they directly compare alternatives and arrive at total degrees to which one 
alternative is better than, is equivalent to and is worse than another one. These 
degrees are determined as graded sums of differences between criteria values for 
considered alternatives. Such comparison is closer to the way humans compare 
alternatives by confronting their criteria values. On the base of these degrees an 
overall degree of optimality of an alternative is determined. Thus, the Pareto 
optimal set becomes a fuzzy set reflecting fuzzy constraint on a set of optimal 
solutions and such constraint is closer to human intuition than a crisp constraint 
used in classical Pareto optimality.  

Let 1{ ,..., } n
MS S= ⊂    be a set of fuzzy states of the nature and n⊂   be 

a set of fuzzy outcomes. Fuzziness of states of nature is used for a fuzzy 
granulation of objective conditions when pure partitioning of the latter is 
impossible due to vagueness of the relevant information described in NL. A set of 

alternatives is considered as a set   of fuzzy functions f  from   to   

[15,16]. Linguistic information on likelihood lP  of the states of nature is 

represented by fuzzy probabilities jP  of the states jS : 

1 1 2 2/ / ... /l
M MP P S P S P S= + + +      , 

where 1
[0,1]jP ∈  . 

Vague preferences over a set   of imprecise alternatives is modeled by 
linguistic preference relation over . For this purpose it is adequate to introduce a 
linguistic variable “degree of preference” [21,81] with term-set 1( ,..., )KT T= . 

Terms can be labeled as, for example “equivalence”, “little preference”, “high 
preference”, and each can be described by a fuzzy number defined over some 

scale, for example [0,1] or [0,10] etc. The fact that if  is linguistically preferred to 

kf  is written as i l kf f  . The latter means that there exist some iT ∈  as a 

linguistic degree ( )i l kDeg f f   to which if  is preferred to 

kf : ( )i l k iDeg f f T≈  .  

So, a framework of decision making with fuzzy imperfect information can be 

formalized as a 4-tuple ( ), , , l   . The problem of decision making consist in 
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determination of an optimal alternative as an alternative *f ∈   for which 
* *( ) ( )l i i l iDeg f f Deg f f f≥ ∀ ∈       .  ( )i l kDeg f f   is to be 

determined on the base of degrees of optimality of an alternatives if  and kf . 

Degree of optimality denoted ( )ido f  is an overall degree to which if  dominates 

all the other alternatives [30].  
The fuzzy optimality (FO) formalism suggested in [30] is developed for perfect 

information structure, i.e. when all the decision relevant information is represented 
by precise numerical evaluations. From the other side, this approach is developed 
for multiattribute decision making. We will extend the FO formalism for the 
considered framework of decision making with imperfect information. The 
method of solution is described below.  

At the first stage it is needed for fuzzy probabilities jP  to be known for each 

fuzzy state of nature jS . However, it can be given only partial information 

represented by fuzzy probabilities for all fuzzy states except one. The unknown 
fuzzy probability cannot be assigned but must be computed based on the known 
fuzzy probabilities. Computation of unknown fuzzy probability, as was shown in 
the Section 4.1 is an variational problem as it requires construction of a 
membership function.  

The important problem that arises for the obtained lP , is the verification of its 
consistency, completeness and redundancy (see Section 4.1, formulas (4.13)-(4.19)).  

At the second stage, given consistent, complete and not-redundant distribution 
of fuzzy probabilities over all states of nature it is needed to determine the total 

degrees of statewise superiority, equivalence and inferiority of if  with respect to 

kf  taking into account fuzzy probability jP  of each fuzzy state of nature jS . The 

total degrees of superiority nbF (number of better fuzzy alternatives), 
equivalence neF (number of equivalent fuzzy alternatives), and statewise 

inferiority nwF (number of worse fuzzy alternatives) of if  with respect to kf  

are determined on the base of differences between fuzzy outcomes of if  and kf  

at each fuzzy state of nature as follows: 

1

( , ) ( (( ( ) ( )) )),
M

j
i k b i j k j j

j

nbF f f gmv f S f S Pμ
=

= − ⋅       (4.50) 

1

( , ) ( (( ( ) ( )) )),
M

j
i k e i j k j j

j

neF f f gmv f S f S Pμ
=

= − ⋅       (4.51) 

1

( , ) ( (( ( ) ( )) )).
M

j
i k w i j k j j

j

nwF f f gmv f S f S Pμ
=

= − ⋅       (4.52) 



4.3   Decision Making on the Basis of Fuzzy Optimality 171
 

where , ,j j j
b e wμ μ μ  are membership functions for linguistic evaluations “better”, 

“equivalent” and “worse” respectively, determined as in [30]. For j -th state 

, ,j j j
b e wμ μ μ  are constructed such that Ruspini condition holds, which, in turn, 

results in the following condition [30]: 

1

( , ) ( , ) ( , ) ( )
M

j j j
i k i k i k b e w

j

nbF f f neF f f nwF f f Mμ μ μ
=

+ + = + + =       

 

(4.53) 

 

On the base of ( , )i knbF f f  , ( , )i kneF f f  , and ( , )i knwF f f   we calculate 

(1 )kF− -dominance as a dominance in the terms of its degree. This concepts 

suggests that if  (1 )kF− -dominates kf  iff  

( , )i kneF f f M<  , 
( , )

( , )
1

i k
i k

M neF f f
nbF f f

kF

−≥
+

   , (4.54) 

with [0,1]kF ∈ . 

In order to determine the greatest kF  such that if  (1 )kF− -dominates kf , a 

function d  is introduced: 

( , )
0, ( , )

2
( , )

2 ( , ) ( , )
,

( , )

i k
i k

i k
i k i k

i k

M neF f f
if nbF f f

d f f
nbF f f neF f f M

otherwise
nbF f f

 −≤
=  ⋅ + −


  
 

   
 

 (4.55) 

Given d , the desired greatest kF  is found as 1 ( , )i kd f f−   . 

( , ) 1i kd f f =   implies Pareto dominance of if  over kf  whereas ( , ) 0i kd f f =   

means no Pareto dominance of if  over kf . 

In contrast to determine whether *f  is Pareto optimal in FO formalism we 

determine whether *f  is a Pareto optimal with the considered degree kF . *f  is 

kF  optimal if and only if there is no if ∈   such that if  (1 )kF− -

dominates *f . 

The main idea of fuzzy optimality concept suggests to consider *f  in terms of 

its degree of optimality *( )do f  determined as follows: 
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* *( ) 1 max ( , )
i

i
f

do f d f f
∈

= −


  


. (4.56) 

So, *( )do f is a degree resulted from degrees of preferences of *f  to all the other 

alternatives. 
Function do  can be considered as the membership function of a fuzzy set 

describing the notion of kF -optimality. 
We call kF -Optimal Set kF  and kF -Optimal Front kF  the set of kF -

optimal solutions in the design domain and the objective domain respectively. 

Let ( , )i kD
f fμ 
   be a membership function defined as follows: 

( , ) ( ( , ), ( , ), ( , ))
Di k i k i k i kD

f f nbF f f neF f f nwF f fμμ ϕ=


        . (4.57) 

Then ( , )i kD
f fμ 
   is a fuzzy dominance relation if for any [0,1]α ∈  

( , )i kD
f fμ α>
   implies that if  (1 )kF− -dominates kf . 

Particularly, 
Dμϕ

is defined as follows: 

2 ( , ) ( , )

2D

i k i knbF f f neF f f

Mμϕ ⋅ +=


   
                        (4.58) 

A membership function ( , )i kD
f fμ 
   represents the fuzzy optimality relation if for 

any 0 1kF≤ ≤  *f  belongs to the kF -cut of 
D

μ   if and only if there is no 

if ∈   such that 

 *( , )iD
f f kFμ >
                                             (4.59) 

At the third stage, on the base of values of ( , )i knbF f f  , ( , )i kneF f f  , 

and ( , )i knwF f f  , the value of degree of optimality ( )ido f , as a degree of 

membership to fuzzy Pareto optimal set, is determined by using formulas (4.54)-

(4.58) for each if ∈  . The obtained ()do  allows for justified determination of 

linguistic preference relation l  over .  

At the fourth stage, the degree ( )i l kDeg f f   of preference of if  to kf  for 

any ,i kf f ∈    should be determined based on ()do . For simplicity, one can 

calculate ( )i l kDeg f f   as follows: 

( ) ( ) ( )i l k i kDeg f f do f do f= −    . 
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4.4   An Operational  Approach to Decis ion M aking under Interval  

As it is mentioned in prefers chapter of the book traditional decision theory is 
based on a simplifying assumption that for each two alternatives, a user can 
always meaningfully decide which of them is preferable. In reality, often, when 
the alternatives are close or vauge, the user is either completely unable to select 
one of these alternatives, or selects one of the alternatives only ``to some extent''.  

In the session 4.1 we proposed a natural generalization of the usual decision 
theory axioms to interval and fuzzy cases, and described decision coming from 
this generalization. 

In this section, we make the resulting decisions more intuitive by providing 
commonsense operational explanation [11]. First, we recall the main assumption 
behind the traditional decision theory. We then consider the case when in addition 
to deciding which of the two alternatives is better, the user can also reply that 
he/she is unable to decide between the two close alternatives; this leads to interval 
uncertainty. Finally, we consider the general case when the user makes fuzzy 
statements about preferences. 

Let us assume that for every two alternatives A′  and A ′′ , a user can tell:   

•  whether the first alternative is better for him/her; we will denote this by 
AA ′′′ < ;  

•  or the second alternative is better; we will denote this by AA ′′′ < ;  
•  or the two given alternatives are of equal value to the user; we will denote this 

by AA ′′′ = .  

Under the above assumption, we can form a natural numerical scale for describing 
attractiveness of different alternatives. Namely, let us select a very bad alternative 

0A  and a very good alternative 1A , so that most other alternatives are better than 

0A  but worse than 1A . Then, for every probability [0,1]∈p , we can form a 

lottery )( pL  in which we get 1A  with probability p  and 0A  with the remaining 

probability p−1 . 

When 0=p , this lottery simply coincides with the alternative 0A : 

0=(0) AL . The larger the probability p  of the positive outcome increases, the 

better the result, i.e., pp ′′′ <  implies )(<)( pLpL ′′′ . Finally, for 1=p , the 

lottery coincides with the alternative 1A : 1=(1) AL . Thus, we have a continuous 

scale of alternatives )( pL  that monotonically goes from 0A  to 1A . 

We have assumed that most alternatives A  are better than 0A  but worse than 

1A : 10 << AAA . Since (0)=0 LA  and (1)=1 LA , for such alternatives,  
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we thus get (1)<<(0) LAL . We assumed that every two alternatives can be 

compared. Thus, for each such alternative A , there can be at most one value p  

for which ApL =)( ; for others, we have ApL <)(  or ApL >)( . Due to 

monotonicity of )( pL  and transitivity of preference, if ApL <)( , then 

ApL <)( ′  for all pp ≤′ ; similarly, if )(< pLA , then )(< pLA ′  for all 

pp >′ . Thus, the supremum (= least upper bound) )(Au  of the set of all p  for 

which ApL <)(  coincides with the infimum (= greatest lower bound) of the set 

of all p  for which )(< pLA . For )(< Aup , we have ApL <)( , and for for 

)(> Aup , we have )(< pLA . This value )(Au  is called the  utility of the 

alternative A . 
It may be possible that A  is equivalent to ))(( AuL ; however, it is also 

possible that ))(( AuLA ≠ . However, the difference between A  and ))(( AuL  

is extremely small: indeed, no matter how small the value 0>ε , we have 
))((<<))(( εε +− AuLAAuL . We will describe such (almost) equivalence 

by ≡ , i.e., we write that ))(( AuLA ≡ . 

How can we actually find utility values. The above definition of utility is 
somewhat theoretical, but in reality, utility can be found reasonably fast by the 
following iterative bisection procedure. 

We want to find the probability )(Au  for which AAuL ≡))(( . On each 

stage of this procedure, we have the values uu <  for which )(<<)( uLAuL . 

In the beginning, we have 0=u  and 1=u , with 1|=| uu − . 

To find the desired probability )(Au , we compute the midpoint 
2

=~ uu
u

+
 

and compare the alternative A  with the corresponding lottery )~(uL . Based on 

our assumption, there are three possible results of this comparison:   

•  if the user concludes that AuL <)~( , then we can replace the previous lower 

bound u  with the new one p~ ;  

•  if the user concludes that )~(< uLA , then we can replace the original upper 

bound u  with the new one u~ ;  
•  finally, if )~(= uLA , this means that we have found the desired probability 

)(Au .  

In this third case, we have found )(Au , so the procedure stops. In the first two 

cases, the new distance between the bounds u  and u  is the half of the original 
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distance. By applying this procedure k  times, we get values u  and u  for which 

)(<<)( uLAuL  and kuu −≤− 2|| . One can easily check that the desired 

value )(Au  is within the interval ],[ uu , so the midpoint u~  of this interval is 

an 1)(2 +− k -approximation to the desired utility value )(Au . 

In other words, for any given accuracy, we can efficiently find the 
corresponding approximation to the utility )(Au  of the alternative A .  

 
How to Make a Decision Based on Utility Values. If we know the utilities u(A′) 
and u(A′′) of the alternatives A′ and A′′, then which of these alternatives should we 
choose? By definition of utility, we have A′ ≡ L(u(A′)) and A′′ ≡ L(u(A′′)). Since 
L(p′) < L(p′′) if and only if p′ < p′′,we can thus conclude that A′ is preferable to A′′ 
if and only if u(A′) > u(A′′). In other words, we should always select an alternative 
with the largest possible value of utility. 

How to estimate utility of an action: why expected utility. To apply the above 
idea to decision making, we need to be able to compute utility of different actions. 

For each action, we usually know possible outcomes nss ,,1  , and we can often 

estimate the probabilities 
npp ,,1  , 

=

n

i
ip

1

, of these outcomes. Let 

)(,),( 1 nSuSu   be utilities of the situations nss ,,1  . What is then the utility 

of the action? 

By definition of utility, each situation iS  is equivalent (in the sense of the 

relation ≡) to alottery L(u( iS )) in which we get 1A  with probability u( iS ) and 

0A with the remaining probability )(1 iSu− . Thus, the action in which we get 

iS with probability ip  is equivalent to complex lotteryin which: 

• first, we select one of the situations iS  with probability iii pSPp =)(: ; 

•  then, depending on the selected situation iS , we get 1A with probability 

u( iS ) and 0A  with probability 1 − u( iS ): P( 1A | iS ) = u( iS ) and P( 0A | 

iS ) = 1 − u( iS ). 

In this complex lottery, we end up either with the alternative 1A  or with the 

alternative 0A . The probability of getting 1A  can be computed by using the 

complete probability formula:                     

i

n

i
ii

n

i
i pSuSPSAPAP ⋅=⋅= 

== 11
11 )()()()( . 
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Thus, the original action is equivalent to a lottery in which we get 1A  with 

probability )(
1

i

n

i
i Sup

=

⋅  and 0A  with the remaining probability. By definition of 

utility, this means that the utility of our action is equal to )(
1

i

n

i
i Sup

=

⋅ . 

In probability theory, this sum is known as the expected value of utility u( iS ). 

Thus, we can conclude that the utility of each action is equal to its expected utility; 
in other words, among several possible actions, we should select the one with the 
largest value of expected utility. 

Non-uniqueness of utility. The above definition of utility depends on a 

selection of two alternatives 0A  and 1A . What if we select different alternatives 

0A′   and A′ ? How will utility change? In other words, if A is an alternative with 

utility u(A) in the scale determined by 0A  and 1A , what is its utility u′(A) in the 

scale determined by 0A′  and 1A′ ? Let us first consider the case when 0A′ < 0A < 

1A  < 1A′ . In this case, since 0A  is in between 0A′ and 1A′ , for each of them, there 

exists a probability u′( 0A′ ) for which 0A  is equivalent to a lottery L′(u′( 0A )) in 

which we get 1A with probability u′( 0A ) and 0A′  with the remaining probability 1 

− u′( 0A ). Similarly, there exists a probability u′( 1A ) for which 1A  is equivalent 

to a lottery L′(u′( 1A )) in which we get 1A′  with probability u′( 1A ) and 0A′  with 

the remaining probability 1 − u′( 1A ). 

By definition of the utility u(A), the original alternative A is equivalent to a 

lottery in which we get 1A  with probability u(A) and 0A  with the remaining 

probability 1−u(A). Here, 1A  is equivalent to the lottery L′(u′( 1A )), and 0A  is 

equivalent to the lottery L′(u′( 0A )). Thus, the alternative A is equivalent to a 

complex lottery, in which: 

• first, we select 1A  with probability u(A) and 0A  with probability 1 − u(A); 

• then, depending on the selection iA , we get 1A′ with probability u′( iA ) and 

0A′  with the remaining probability 1 − u′( iA ). 

In this complex lottery, we end up either with the alternative 1A′  or with the 

alternative A′. The probability u′(A) = P( 1A′ ) of getting 1A′  can be computed by 

using the complete probability formula: 
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u′ (A)=P( 1A′ )=P( 1A′ | 1A )·P( 1A )+P( 1A′ | 0A )·P( 0A )= u′ ( 1A )·u(A)+u( 0A )·(1 

−u(A)) = u(A) · (u( 1A ) − u( 0A )) + u( 0A ). 

Thus, the original alternative A is equivalent to a lottery in which we get 1A′  with 

probability u′(A) = u(A) · (u′( 1A ) − u′( 0A )) + u′( 0A ). By definition of utility, this  

 means that the utility u′(A) of the alternative A in the scale determined by the 

alternatives 0A′ and 1A′  is equal to u′(A) = u(A) · (u′( 1A ) − u′( 0A )) + u′( 0A ). 

Thus, in the case when 0A′ < 0A < 1A < 1A′ , when we change the alternatives 

0A  and 1A , the new utility values are obtained from the old ones by a linear 

transformation. In other cases, we can use auxiliary events 0A ′′ and 1A ′′ for which 

0A ′′ < 0A , 0A′  and  1A , 1A′ < A′′. 
1. In this case, as we have proven, transformation from u(A) to u′′(A) is linear 

and transformation from u′(A) to u′′(A) is also linear. Thus, by combining linear 
transformations u(A) → u′′(A) and u′′(A) → u′(A), we can conclude that the 
transformation u(A) → u′(A) is also linear. So, in general, utility is defined modulo 
an (increasing) linear transformation u′ = a·u+b, with a > 0. 

 

Comment. So far, once we have selected alternatives 0A  and 1A , we have defined 

the corresponding utility values u(A) only for alternatives A for which 0A  < A < 1A . 

For such alternatives, the utility value is always a number from the interval [0,1]. 
For other alternatives, we can define their utility u′(A) with respect to different 

pairs 0A′  and 1A′ , and then apply the corresponding linear transformation to re-

scale to the original units. The resulting utility value u(A) can now be an arbitrary 
real number. Subjective probabilities. In our derivation of expected utility, we 

assumed that we know the probabilities ip  of different outcomes. In practice, we 

often do not know these probabilities, we have to rely on a subjective evaluation 
of these probabilities. For each event E, a natural way to estimate its subjective 
probability is to compare the lottery ℓ(E) in which we get a fixed prize (e.g.,$1) if 
the event E occurs and 0 is it does not occur, with a lottery ℓ(p) in which we get 
the same amount with probability p. Here, similarly to the utility case, we get a 
value ps(E) for which ℓ(E) is (almost) equivalent to ℓ(ps(E)) in the sense that 
ℓ(ps(E) − ε) < ℓ(E) < ℓ(ps(E) + ε) for every      ε > 0. This value ps(E) is called the 
subjective probability of the event E.  

From the viewpoint of decision making, each event E is equivalent to an event 

occurring with the probability ps(E). Thus, if an action has n possible nss ,,1  , 

in which iS  happens if the event iE  occurs, then the utility of this action is equal 

to )()(
1

i

n

i
i SuEpS

=
⋅ . 
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Beyond Traditional Decision Making: Towards a More Realistic Description. 
Instead of assuming that a user can always decide which of the two alternatives A′ 
and A′′ is better, let us now consider a more realistic situation in which a user is 
allowed to say that he or she is unable to meaningfully decide between the two 
alternatives; we will denote this option by A′ || A′′. 

In mathematical terms, this means that the preference relation is no longer a 
total (linear) order, it can be a partial order. 

From Utility to Interval-Valued Utility. Similarly to the traditional decision 

making approach, we can select two alternatives 0A < 1A  and compare each 

alternative A which is better than 0A  and worse than A1 with lotteries L(p). The 

main difference is that here, the supremum u(A) of all the values p for which L(p) 
< A is, in general, smaller than the infimum u(A) of all the values p for which A < 
L(p). Thus, for each alternative A, instead of a single value u(A) of the utility, we 
now have an interval [u(A), u(A)] such that: 

• if  p < u(A), then L(p) < A; 
• if p > u(A), then A < L(p); and 
• if u(A) < p < u(A), then A||L(p). 

We will call this interval the utility of the alternative A. 

How to Efficiently Find the Interval-Valued Utility. To elicit the corresponding 
utility interval from the user, we can use a slightly modified version of the above 
bisection procedure. At first, the procedure is the same as before: namely, we 
produce a narrowing interval [u, u] for which L(u) < A < L(u). 

We start with the interval [ uu, ]=[0,1], and we repeatedly compute the 

midpoint  
2

~ uu
u

+=   and compare A with L( u~ ). If  L(u~ ) < A, we replace u  

with u~ ; if A < L( u~ ), we replace u  with u~ . If we get A||L( p~ ), then we switch 

to the new second stage of the iterative algorithm. Namely, now, we have two 
intervals: 

• an interval [ 11,uu ] (which is currently equal to [ u , u~ ]) for which L( 1u )<A 

and L( 1
~u )||A, and 

• an interval [ 22,uu ] (which is currently equal to [ u~ ,u ]) for which L( 2u )||A 

and A < L( 2u ). 

Then, we perform bisection of each of these two intervals. For the first interval, 

we compute the midpoint 
2

~ 11
1

uu
u

+= , and compare the alternative A with the 

lottery L( 1
~u ): 
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• if L( 1
~u ) < A, then we replace 1u  with 1

~u ; 

• if L( 1
~u )||A, then we replace 1u  with 1

~u . 

As a result, after k iterations, we get the value u (A) with accuracy 2−k. 

Similarly, for the second interval, we compute the midpoint 
2

~ 22
2

uu
u

+= , and 

compare the alternative A with the lottery L( 2
~u ): 

• if L( 2
~u )||A, then we replace 2u  with 2

~u ; 

• if A < L( 2
~u ), then we replace 2u  with 2

~u . 

As a result, after k iterations, we get the value u (A) with accuracy 2−k. 
 
Interval-Valued Subjective Probability. Similarly, when we are trying to 
estimate the probability of an event E, we no longer get a single value ps(E), we 

get an interval [ ps (E), ps (E)] of possible values of probability. 

 
Need for Decision Making under Interval Uncertainty. In the traditional 
approach, for each alternative A, we produce a number u(A) – the utility of this 
alternative. Then, an alternative A′ is preferable to the alternative A′′ if and only if 
u(A′) > u(A′′). 

How can we make a similar decision in situations when we only know interval-
valued probabilities? At first glance, the situation may sound straightforward: if 
A′||A′′, it does not matter whether we select A′ or A′′. However, this is not a good 
way to make a decision. For example, let us assume that there is an alternative A 
about which we know nothing. In this case, we have no reason to prefer A or L(p), 

so we have A||L(p) for all p. By definition of u (A) and u (A), this means that we 

have u (A) = 0 and u (A) =1, i.e., the alternative A is characterized by the utility 

interval [0, 1]. 
In this case, the alternative A is indistinguishable both from a good lottery 

L(0.999) (in which the good alternative A1 appears with probability 99.9%) and 
from a bad lottery L(0.001) (in which the bad alternative A0 appears with 
probability 99.9%). If we recommend, to the user, that A is equivalent both to to 
L(0.999) and L(0.001), then this user will feel comfortable exchanging his chance 
to play in the good lottery with A, and then – following the same logic – 
exchanging A with a chance to play in a bad lottery. As a result, following our 
recommendations, the user switches from a very good alternative to a very bad one.  

This argument does not depend on the fact that we assumed complete ignorance 
about A. Every time we recommend that the alternative A is equivalent to L(p) and 
L(p′) with two different values p < p′, we make the user vulnerable to a similar 
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switch from a better alternative L(p′) to a worse one L(p). Thus, there should be 
only a single value p for which A can be reasonably exchanged with L(p). 

In precise terms: we start with the utility interval [ u (A), u (A)], and we need to 

select a single utility value u for which it is reasonable to exchange the alternative 
A with a lottery L(u). How can we find this value u? 

How to make decisions under interval uncertainty? We will use Hurwicz 
optimism-pessimism criterion. The problem of decision making under such 
interval uncertainty was first handled by the future Nobelist L. Hurwicz [38]. 

We need to assign, to each interval ],[ uu , a utility value ),( uuu . 

No matter what value u  we get from this interval, this value will be larger than 

or equal to u  and smaller than or equal to u . Thus, the equivalent utility value 

),( uuu  must satisfy the same inequalities: .),( uuuuu ≤≤  In particular, for 

0=u  and 1=u , we get 1,0 ≤≤ Hα  where we denoted (0,1)=
d

u
ef

Hα . 

We have mentioned that the utility is determined modulo a linear 
transformation buau +⋅′ = . It is therefore reasonable to require that the 
equivalent utility does not depend on what scale we use, i.e., that for every 0>a  
and b , we have  

.),(=),( buuuabuabaau +⋅+⋅+⋅  

In particular, for 0=u  and 1=u , we get  

.=(0,1)=),( babuababu H +⋅+⋅+ α  

So, for every u  and u , we can take ub = , uua −= , and get  

.)(1=)(=),( uuuuuuuu HHH ⋅−+⋅−⋅+ ααα  

This expression is called  Hurwicz optimism-pessimism criterion, because:   

•  when 1=Hα , we make a decision based on the most optimistic possible 

values uu = ;  

•  when 0=Hα , we make a decision based on the most pessimistic possible 

values uu = ;  

•  for intermediate values (0,1)∈Hα , we take a weighted average of the 

optimistic and pessimistic values.  
 
So, if we have two alternatives A′  and A ′′  with interval-valued utilities 

)](),([ AuAu ′′  and )](),([ AuAu ′′′′ , we recommend an alternative for which 
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the equivalent utility value is the largest. In other words, we recommend to select 

A′  if )()(1)(>)()(1)( AuAuAuAu HHHH ′′⋅−+′′⋅′⋅−+′⋅ αααα  and 

A ′′  otherwise. 

Which value Hα  should we choose? An argument in favor of 0.5=Hα .  

To answer this question, let us take an event E  about which we know nothing. 

For a lottery +L  in which we get 1A  if E  and 0A  otherwise, the utility interval 

is [0,1] , thus, from a decision making viewpoint, this lottery should be equivalent 

to an event with utility HHH ααα =0)(11 ⋅−+⋅ . 

Similarly, for a lottery −L  in which we get 0A  if E  and 1A  otherwise, the 

utility interval is [0,1] , thus, this lottery should also be equivalent to an event 

with utility HHH ααα =0)(11 ⋅−+⋅ . 

We can now combine these two lotteries into a single complex lottery, in which 

we select either +L  or −L  with equal probability 0.5. Since +L  is equivalent to a 

lottery )( HL α  with utility Hα  and −L  is also equivalent to a lottery )( HL α  

with utility Hα , the complex lottery is equivalent to a lottery in which we select 

either )( HL α  or )( HL α  with equal probability 0.5, i.e., to )( HL α . Thus, the 

complex lottery has an equivalent utility Hα . 

On the other hand, no matter what is the event E , in the above complex 

lottery, we get 1A  with probability 0.5 and 0A  with probability 0.5. Thus, this 

complex lottery coincides with the lottery (0.5)L  and thus, has utility 0.5. Thus, 

we conclude that 0.5=Hα . 

Which action should we choose? Suppose that an action has n  possible 

outcomes nSS ,,1  , with utilities )](),([ ii SuSu , and probabilities ],[ ii
pp . 

How do we then estimate the equivalent utility of this action? 
We know that each alternative is equivalent to a simple lottery with utility 

)()(1)(= iHiHi SuSuu ⋅−+⋅ αα , and that for each i , the i -th event is -- from 

the viewpoint of decision making -- equivalent to 
iHiHi ppp ⋅−+⋅ )(1= αα . 

Thus, from the viewpoint of decision making, this action is equivalent to a situation in 

which we get utility iu  with probability ip . We know that the utility of such a 

situation is equal to 
ii

n

i

up ⋅
1=

. Thus, the equivalent utility of the original action is 

equivalent to  
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)).()(1)(())(1(=
1=1=

iHiHiHiH

n

i
ii

n

i

SuSuppup ⋅−+⋅⋅⋅−+⋅⋅  αααα
 

The resulting decision depends on the level of detail. We make a decision in a 
situation when we do not know the exact values of the utilities and when we do 
not know the exact values of the corresponding probabilities. Clearly, if gain new 
information, the equivalent utility may change. For example, if we know nothing 
about an alternative A , then its utility is [0,1]  and thus, its equivalent utility is 

Hα . Once we narrow down the utility of A , e.g., to the interval [0.5,0.9] , we 

get a different equivalent utility HHH ααα ⋅+⋅−+⋅ 0.40.5=0.5)(10.9 . On 

this example, the fact that we have different utilities makes perfect sense. 
However, there are other examples where the corresponding difference is not as 

intuitively clear. Let us consider a situation in which, with some probability p , 

we gain a utility u , and with the remaining probability p−1 , we gain utility 0. If 

we know the exact values of u  and p , we can then compute the equivalent 

utility of this situation as the expected utility value uppup ⋅⋅−+⋅ =0)(1 . 

Suppose now that we only know the interval ],[ uu  of possible values of utility 

and the interval ],[ pp  of possible values of probability. Since the expression up ⋅  

for the expected utility of this situation is an increasing function of both variables:   

•  the largest possible utility of this situation is attained when both p  and u  are 

the largest possible: uu =  and pp = , and  

•  the smallest possible utility is attained when both p  and u  are the smallest 

possible: uu =  and pp = .  

In other words, the resulting amount of utility ranges from up ⋅  to up ⋅ . 

If we know the structure of the situation, then, according to our  
derivation, this situation has an equivalent utility 

))(1())(1(= uuppu HHHHk ⋅−+⋅⋅⋅−+⋅ αααα  ( k  for  know). On the other 

hand, if we do not know the structure, if we only know that the resulting utility is 

from the interval ],[ upup ⋅⋅ , then, according to the Hurwicz criterion, the 

equivalent utility is equal to upupu HHd ⋅⋅−+⋅⋅ )(1= αα  ( d  for  don't 

know). One can check that  

×−⋅−⋅⋅−⋅+⋅⋅−⋅⋅⋅−

−⋅+⋅⋅−⋅−⋅⋅−⋅⋅−+⋅⋅−

)(1)(1)(1=)(1

)()(1)(1=
2

2

HHHHHHH

HHHHHkd

upupup

upupupupupuu

ααααααα
ααααα

 

).()()(1=)( uuppupup HH −⋅−⋅−⋅⋅+⋅ αα  
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This difference is always positive, meaning that additional knowledge decreases 
the utility of the situation. (This is maybe what the Book of Ecclesiastes means by 
``For with much wisdom comes much sorrow''?) 
 
From Intervals to General Sets. In the ideal case, we know the exact situation s  
in all the detail, and we can thus determine its utility )(su . Realistically, we have 

an imprecise knowledge, so instead of a single situation s , we only know a  set 
S  of possible situations s . Thus, instead of a single value of the utility, we only 
know that the actual utility belongs to the set }:)({= SssuU ∈ . If this set S  is 

an interval ],[ uu , then we can use the above arguments to come up with its 

equivalent utility value uu HH ⋅−+⋅ )(1 αα . 

What is U  is a generic set? For example, we can have a 2-point set 

},{= uuU . What is then the equivalent utility? 

Let us first consider the case when the set U  contains both its infimum u  and 

its supremum u . The fact that we only know the set of possible values and have 
no other information means that  any probability distribution on this set is possible 
(to be more precise, it is possible to have any probability distribution on the set of 
possible situations S , and this leads to the probability distribution on utilities). In 
particular, for each probability p , it is possible to have a distribution in which we 

have u  with probability p  and u  with probability p−1 . For this distribution, 

the expected utility is equal to upup ⋅−+⋅ )(1 . When p  goes from 0 to 1, 

these values fill the whole interval ],[ uu . Thus, every value from this interval is 

the possible value of the expected utility. On the other hand, when ],[ uuu ∈ , the 

expected value of the utility also belongs to this interval -- no matter what the 
probability distribution. Thus, the set of all possible utility values is the whole 

interval ],[ uu  and so, the equivalent utility is equal to uu HH ⋅−+⋅ )(1 αα . 

When the infimum and/or supremum are not in the set S , then the set S  
contains points as close to them as possible. Thus, the resulting set of possible 

values of utility is as close as possible to the interval ],[ uu  -- and so, it is 

reasonable to assume that the equivalent utility is as close to 

uuu HH ⋅−+⋅ )(1=0 αα  as possible – i.e., coincides with this value 0u . 

 
From Sets to Fuzzy Sets. What if utility is a fuzzy number, described by a 
membership function )(uμ ? One of the natural interpretations of a fuzzy set is  
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via its nested intervals α -cuts })(:{=)](),([=)( αμααα ≥uuuuu HH . For 

example, when we are talking about a measurement error of a given measuring 
instrument, then we know the guaranteed upper bound, i.e., the guaranteed interval 
that contains all possible values of the measurement error. In addition to this 
guaranteed interval, experts can usually pinpoint a narrower interval that contains 
the measurement error with some certainty; the narrower the interval, the smaller 
our certainty. Thus, we are absolutely sure (with certainty 1) that the actual value 
u  belongs to the α -cut (0)u ; also, with a degree of certainty α−1 , we claim 

that )(αux ∈ . Thus, if we select some small value αΔ  and take 

0,Δ ,2Δ,..., Δ,...,nα α= we conclude that:   

•  with probability 0α = , the set of possible values of u  is the interval 

(0)](0),[ uu ;  

•  with probability Δα α= , the set of possible values of u  is the interval 

)](),([ αα ΔΔ uu ;  

•  ...  
•  with probability Δnα α= , the set of possible values of u  is the interval 

[ ( Δ ), ( Δ )]u n u nα α ;  

•  ...  

For each interval, the equivalent utility value is ( ) (1 ) ( )u uα α α α⋅ + − . The 

entire situation is a probabilistic combination of such intervals, so the resulting 
equivalent utility is equal to the expected value of the above utility, i.e., to  

1 1

0 0
( ) (1 ) ( )u d u dα α α α α α⋅ + − ⋅   
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Chapter 5 
Extention to Behavioral Decision Making 

5.1   Decision Making with Combined States  

Decision making is a behavioral process. During the development of decision 
theories scientists try to take into account features of human choices in formal 
models to make the latter closer to human decision activity. Risk issues were the 
first basic behavioral issues which became necessary to consider in construction of 
decision methods. Three main categories of risk-related behaviors: risk aversion, 
risk seeking and risk neutrality were introduced. Gain-loss attitudes [28] and 
ambiguity attitudes [26]  were revealed as other important behavioral features. 
Prospect theory, developed for decision under risk [28] was the first decision 
theory incorporating both risk and gain-loss attitudes into a single utility model. 
Cumulative Prospect theory [45] (CPT), as its development, can be applied both 
for decision under risk and uncertainty and is one of the most successful decision 
theories. CPT is based on the use of Choquet integrals and, as a result, is able to 
represent not only risk and gain-loss attitudes but also ambiguity attitudes. 
Choquet Expected Utility (CEU) is a well-known typical model which can be used 
both for ambiguity and risk situations. 

The first model developed for ambiguity aversion was Maximin expected 
utility [26]  (MMEU). Its generalization, α -MMEU, is able to represent both 
ambiguity aversion and ambiguity seeking [25]. Smooth ambiguity model [29] is a 
more advanced decision model for describing ambiguity attitudes.  

A large stream of investigations led to development of parametric and non-
parametric decision models taking into account such important psychological, 
moral and social aspects of decisions as reciprocity [20,22], altruism [11,21], trust 
[14,20] and others.  

A large area of research in modeling decision makers (DMs) (agents) in line 
with nature (environment) is mental-level models [16-18,40], idea of which was 
suggested in [35,37]. In these models a DM is modeled by a set of states. Each 
state describes his/her possible decision-relevant condition and is referred to as 
“mental state”, “state of mind” etc. In these models, they consider relations 
between mental state and state of environment [19,47] (nature). In [16,42]  a 
mental state and a state of nature compose a state of the whole system called a 
“global state”. Within the scope of mental-level models there are two main 
research areas of a mental state modeling: internal modeling [16,50] and 
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implementation-independent (external) modeling [16]. The first is based on 
modeling a mental state by a set of characteristics (variables) and the second is 
based on modeling a mental state on the base of beliefs, preferences and decision 
criterion [16,39,41].  

Now we observe a significant progress in development of a series of successful 
decision theories based on behavioral issues. Real-life human choices are based on 
simultaneous influence of main aspects of decision situations like risk, ambiguity 
and others. The question arises of how to adequately model joint influence of 
these factors on human choices and whether we should confine ourselves to 
assuming that these determinants influence choices independently. Due to highly 
constrained computational ability of human brain, independent influence of these 
factors can hardly be met. Humans conduct an intelligent, substantive comparison 
of real-life alternatives in whole, i.e. as some mixes of factors without pure 
partitioning of them. This implies interaction of the mentioned aspects in their 
influence on human choices. However, one of the disadvantages of the existing 
theories of decisions under uncertainty is an absence of a due attention to 
interaction of the factors. A vector of variables describing the factors is introduced 
into a decision model without fundamental consideration of how these factors 
really interact, they are considered separately. Also, information on intensity of 
the factors and their interaction is rather uncertain and vague and can mainly be 
described qualitatively and not quantitatively. The mentioned issues are the main 
reasons of why humans are not completely rational but partially, or bounded 
rational DMs and why the existing decision models based on pure mathematical 
formalism become inconsistent with human choices. 

Motivation 

The necessity to take into account that humans are not fully rational DMs was first 
conceptually addressed by Herbert Simon [44]. He proposed the concept of 
bounded rationality which reflects notable limitations of humans’ knowledge and 
computational abilities. Despite their significant importance, the ideas of bounded 
rationality did not found its mathematical fundamentals to form a new consistent 
formal basis adequate to real decisions. The theory which can help to form an 
adequate mathematical formalism for bounded rationality-based decision analysis 
is the fuzzy set theory suggested by L.A. Zadeh [34,52]. The reason for this is that 
fuzzy set theory and its developments deal with the formalization of linguistically 
(qualitatively) described imprecise or vague information and partial truth. Indeed, 
limitation of human knowledge, taken as one of the main aspects in bounded 
rationality, in real world results in the fact that humans use linguistic evaluations 
because the latter as, opposed to precise numbers, are tolerant for impreciseness 
and vagueness of real decision-relevant information. In fuzzy sets theory this is 
formalized by using fuzzy sets and fuzzy numbers. The other aspect – limitation of 
computational ability of humans – leads to the fact that humans think and reason 
in terms of propositions in natural language (NL), but not in terms of pure  
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mathematical expressions. Such activity results in arriving at approximate 
solutions and satisfactory results but not at precise optimal solutions. This 
coincides with what is stated in bounded rationality ideas. In fuzzy logic, this is 
termed as approximate reasoning [12,53]. Fuzzy sets theory was initially 
suggested for an analysis of humanistic systems where perceptions play a pivotal 
role. Perceptions are imprecise, they have fuzzy boundaries [38], and, as a result, 
are often described linguistically. Fuzzy sets theory and its successive 
technologies [53,54] as tools for correct formal processing of perception-based 
information may help to arrive at perceptions-friendly and mathematically 
consistent decisions. So, there is an evident connection between ideas of bounded 
rationality theory and fuzzy set theory [38]. 

So, in addition to missing interaction of behavioral factors in the existing 
theories they don’t extensively take into account that information on a DM’s 
behavior is imperfect. To be more concrete, in CPT they imperatively consider 
that a DM is risk averse when dealing with gains and risk seeking when dealing 
with losses. However it is too simplified view and in reality we don’t have such 
complete information concerning risk attitudes of a considered DM in a 
considered situation. In α -MMEU they consider a balance of ambiguity aversion 
and ambiguity seeking that drives a DM’s choices, but this is modeled by precise 
valueα , whereas real information about the ambiguity attitudes is imprecise. This 
all means that it is needed to model possibilistic uncertainty reflecting incomplete 
and imprecise relevant information on decision variables and not only 
probabilistic uncertainty. 

Necessity of considering interaction of behavioral factors under imperfect 
information is the main insight for development of new decision approaches. 
Following this, we suggest considering a space of vectors of variables describing 
behavioral factors (for example, risk and ambiguity attitudes) as composed of 
main subspaces each describing one principal DM’s behavior. Each subspace we 
suggest to consider as a DM’s state in which he/she may be when making choices 
[3]. Such formalization is in the direction of internal modeling of DMs (or agent) 
within the scope of mental-level models. However, we suggest to consider these 
subspaces as not exclusive, but as some overlapping sets to reflect the facts that 
principal behaviors have indeed some similarity and proximity, which should not 
be disregarded because the state of a DM is uncertain itself and cannot be sharply 
bounded. For this case we suggest to use fuzzy granulation of the considered 
space, i.e. granulation into fuzzy sets each describing one state of a DM. This 
helps to closer model a DM’s condition as the relevant information is mainly 
described in linguistic (qualitative) form and could not be reliably described by 
precise dependencies.  

In our approach, uncertainty related to what state of a DM is likely to occur is 
described by a linguistic (fuzzy) probability. Fuzzy probability describes 
impreciseness of beliefs coming from uncertainty and complexity of interaction of 
the factors, from absence of ideal information.  
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Concerning states of nature, in many real problems there also is no sufficient 
information to consider them as “mutually exclusive”: for example, if one 
considers states of economy, the evaluations like “moderate growth” and “strong 
growth” don’t have sharp boundaries and, as a result, may not be “exclusive” – 
they may overlap. Observing some actual situation an expert may conclude that to 
a larger extent it concerns the moderate growth and to a smaller extent to the 
strong growth. An appropriate way to model this is the use of fuzzy sets. In real-
life it is often impossible to construct exclusive and exhaustive states of nature, 
due to uncertainty of relevant information [24]. In general, a DM cannot 
exhaustively determine each objective condition that may be faced and precisely 
differentiate them. Each state of nature is, essentially, some area which collects 
similar objective conditions, that is some set of “elementary” states or quantities. 
Unfortunately, in the existing decision theories a small attention paid to the 
essence and structure of states of nature. 

We suggest to consider the space of states of nature and space of DM’s states as 
constituting a single space of combined states [3,6] i.e. to considering Cartesian 
product of these two important spaces as basis for comparison of alternatives. 
Likelihood of occurrence of each combined space as a pair consisting of one state 
of nature and one DM’s state is to be described by fuzzy probability of their joint 
occurrence. This fuzzy joint probability (FJP) is to be found on the base of fuzzy 
marginal probabilities of state of nature and state of a DM and, if possible, on the 
base of some information about dependence of these states. Utilities of outcomes 
are also to be distributed over the combined states reflecting naturally various 
evaluation of the outcomes by a DM in his/her various states. 

Consideration of DM’s behavior by space of states and its Cartesian product 
with space of states of nature [3,6] will allow for transparent analysis of decisions. 
In contrast, in the existing utility models human attitudes to risk, ambiguity and 
others are included using complex mathematical expressions – nonlinear 
transformations, second-order probabilities etc. Indeed, most of the existing 
decision theories are based on parametric modeling of behavioral features. As a 
result, they cannot adequately describe human decision activity; they are 
mathematically complex and not transparent. The existing non-parametric 
approaches are more fundamental, but, they also are based on perfect and precise 
description of human decision activity. This is non-realistic because human 
thinking and motivation are perception-based [15]  and cannot be captured by 
precise techniques. Real-life information related to a DM behavior and objective 
conditions is intrinsically imperfect. We mostly make decisions under vagueness, 
impreciseness, partial truth etc. of decision-relevant information and ourselves 
think in categories of ‘smooth’ concepts even under perfect information. 

So, our approach is based on three justifications: necessity of considering 
dependence between various behavioral determinants, necessity to take into 
account uncertainty of what behavior will be present in making choices (e.g. what 
risk attitude), a need for construction transparent behavioral model of decision 
analysis. 
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In the present study we develop investigations started in [2,3,6-8]. We suggest a 
new approach to behavioral decision making under imperfect information, namely 
under mix of probabilistic and possibilistic uncertainties. We show that the 
expected utility [36](EU), CEU [40] and CPT are special cases of the combined 
states-based approach. For a representation in the suggested model we adopt the 
generalized fuzzy Choquet-like aggregation with respect to a fuzzy-valued bi-
capacity. 

Let 1 2{ , ,..., } n
MS S S= ⊂     be a space of fuzzy states of nature and   be a 

space of fuzzy outcomes as a bounded subset of n . Denote by 

{ }1 2H , ,..., n
Nh h h= ⊂     a set of fuzzy states of a DM [3,7]. Then we call 

HΩ = ×  a space “nature-DM”, elements of which are combined states ( , )w S h=   

where , HS h∈ ∈  . 

Denote Ω
  a σ -algebra of subsets of Ω . Then consider 

{ }:f f= ∈ Ω →     the set of fuzzy actions as the set of all Ω
 -measurable 

fuzzy functions from Ω  to  [3,7].  
A problem of behavioral decision making with combined states under imperfect 

information (BDMCSII) can be denoted as ( ), , ,BDMCSII lD = Ω    where l  are 

linguistic preferences of a DM. 
In general, it is not known which state of nature will take place and what state 

of a DM will present at the moment of decision making. Only some partial 
knowledge on probability distributions on   and   is available. An information 
relevant to a DM can be formalized as a linguistic probability distribution over 

his/her states: 1 1 2 2/ / ... /N NP h P h P h+ + +     , where iP  is a linguistic belief degree or 

a linguistic probability. So, /i iP h can be formulated as, for example, “a probability 

that a DM’s state is
 ih  is iP ”. 

For closer description of human behavior and imperfect information on Ω  we 

use a fuzzy number-valued bi-capacity ( , )V Wη η=    , ,V W ⊂ Ω  . A fuzzy-valued 

bi-capacity is defined as follows. 
 

Definition 5.1. Fuzzy Number-Valued Bi-capacity. A fuzzy number-valued bi-
capacity on = ×    is a fuzzy number-valued set function 1

[ 1,1]:η −→    

with the following properties: 
 
(1) ( , ) 0η ∅ ∅ = ; 

(2) if ′⊂   then ( , ) ( , )η η ′≤     ; 

(3) if ′⊂   then ( , ) ( , )η η ′≥     ; 

(4) ( , ) 1η Ω ∅ =  and ( , ) 1η ∅ Ω = − . 
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In special case, values of a fuzzy-valued bi-capacity ( , )η    can be determined 

as the difference of values of two fuzzy-valued measures 1 2( ) ( )η η−   , where 

“ − ” is defined on the base of Zadeh’s extension principle.  

Value or utility of an outcome ( , )X f S h=    in various DM’s states will also be 

various, and then can be formalized as a function ( ) ( ( , ))u X u f S h=    . We can 

claim that the value function of Kahneman and Tversky ( ( ))v v f S= [28] appears 

then as a special case. So, an overall utility ( )U f  of an action f  is to be 

determined as a fuzzy number-valued bi-capacity-based aggregation of ( ( , ))u f S h   

over space Ω . Then the BDMCSII problem consists in determination of an 

optimal action  as an action *f ∈   with *( ) max ( ( ))
f

U f U f w dη
Ω∈

= 
   


. 

Axiomatization. As the basis for our model we use the framework of bi-capacity 
[30] formulated by Labreuche and Grabisch. The bi-capacity is a natural 
generalization of capacities and is able to describe interaction between attractive 
and repulsive values (outcomes, criteria values), particularly, gains and losses. We 
extend this framework to the case of imperfect information by using linguistic 
preference relation [1,9]. The linguistic preference means that the preference 

among actions f  and g  is modeled by a degree ( )lDeg f g   to which f  is at 

least as good as g  and a degree ( )lDeg g f   to which g  is at least as good 

as f . The degrees ()Deg  are from [0,1]. The closer ( )lDeg f g   to 1 the more 

f  is preferred to g . These degrees are used to represent vagueness of 

preferences, that is, situations when decision relevant information is too vague to 
definitely determine preference of one alternative against another. For special 

case, when ( ) 0lDeg g f =   and ( ) 0lDeg f g ≠   we have the classical 

preference, i.e. we say that f  is preferred to g .  

We use bi-capacity-adopted integration [30] at the space “nature-DM” for 
determination of an overall utility of an alternative. The base for our model is 
composed by intra-combined state information and inter-combined states 
information. Intra-combined state information is used to form utilities representing 

preference over outcomes ( )i if w X=  , where 
1 2

( , )i i iw S h=   of an act f ∈   with 

understanding that these are preferences at state of nature 
1i

S
 
conditioned by a 

state 
2i

h  of a DM. 

Inter-combined states information will be used to form fuzzy-valued bi-
capacity representing dependence between combined states as human behaviors 
under incomplete information. 

Proceeding from these assumptions, for an overall utility U  of action f  we 

use an aggregation operator based on the use of a bi-capacity. Bi-capacity is a 
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more powerful tool to be used in a space “nature-DM”. More concretely, we use a 
fuzzy-valued generalized Choquet-like aggregation with respect to fuzzy-valued 
bi-capacity over Ω : 

( ) ( 1) (1) ( ) (1) ( )
1

( ) ( ( ( )) ( ( ))) ({ ,..., } ,{ ,..., } )
N

l h l l l
l

U f u f w u f w w w N w w Nη + −
+

=

= − ∩ ∩           , (5.1) 

provided ( ) ( 1)( ( )) ( ( ))l lu f w u f w +≥     ; { : ( ( )) 0}, \N w u f w N N+ − += ∈ Ω ≥ = Ω   , 

( , )η ⋅ ⋅  is a fuzzy number-valued bi-capacity. 

In (5.1) under level α  we have an interval 1 2( ) [ ( ), ( )]U f U f U fα α α=    of 

possible precise overall utilities, where 1 2( ), ( )U f U fα α   are described as follows: 

 

1 1 (1) 1 (2) 1 (1) (1)

1 (2) 1 (3) 1 (1) (2) (1) (2)

1 ( ) 1 (1) (2) ( ) (1) (2)

( ) ( ( ( )) ( ( ))) ({ } ,{ } )

( ( ( )) ( ( ))) ({ , } ,{ , } )

... ( ( )) ({ , ,..., } ,{ , ,n n

U f u f w u f w w N w N

u f w u f w w w N w w N

u f w w w w N w w

α α α α

α α α

α α

η

η

η

+ −

+ −

+

= − ∩ ∩ +

+ − ∩ ∩ +

+ + ∩

     
      
       ( )..., } ),nw N −∩

 

 

2 2 (1) 2 (2) 2 (1) (1)

2 (2) 2 (3) 2 (1) (2) (1) (2)

2 ( ) 2 (1) (2) ( ) (1) (2)

( ) ( ( ( )) ( ( ))) ({ } ,{ } )

( ( ( )) ( ( ))) ({ , } ,{ , } )

... ( ( )) ({ , ,..., } ,{ , ,n n

U f u f w u f w w N w N

u f w u f w w w N w w N

u f w w w w N w w

α α α α

α α α

α α

η

η

η

+ −

+ −

+

= − ∩ ∩ +

+ − ∩ ∩ +

+ + ∩

     
      
       ( )..., } ),nw N −∩

 

 

provided that 1 (1) 1 ( )( ( )) ... ( ( ))nu f w u f wα α≥ ≥    and 2 (1) 2 ( )( ( )) ... ( ( ))nu f w u f wα α≥ ≥   . 

So, ( ), 1,2iU f iα = is a common Choquet-like precise bi-capacity based functional 

[30], with iuα  and i
αη  1, 2i =  being a precise utility function and a precise bi-

capacity respectively. This representation captures impreciseness of both a utility 
and a bi-capacity arising from impreciseness of outcomes and probabilities in real-
world decision problems. 

An optimal action *f ∈ , that is *f ∈  for which *( , )U f c =   

{ }max ( ( , )
f

u f S h dη
Ω∈

= 
  


 is found by a determination of ( ), ,lDeg f g f g ∈    : 

optimal action *f ∈   is an action for which * *( ) ( )l lDeg f f Deg f f≥      is 

satisfied for all *,f f f∈ ≠   . The determination of ( )lDeg f g   is based on 

comparison of ( )U f  and ( )U g  as the basic values of ( )U f  and ( )U g   

respectively as follows. Membership functions of ( )U f  and ( )U g   describe 

possibilities of their various basic values ( )U f  and ( )U g  respectively, that is, 

possibilities for various precise values of overall utilities of f  and g . In 

accordance with these membership functions, there is possibility (0,1]α ∈  that 



198 5   Extention to Behavioral Decision Making
 

precise overall utilities of f  and g  are equal to 1 2( ), ( )U f U fα α   and 

1 2( ), ( )U g U gα α   respectively. Therefore, we can state that there is possibility 

(0,1]α ∈  that the difference between precise overall utilities of f  and g  

is ( ) ( ), , 1, 2i jU f U g i jα α− =  . As f  is preferred to g  when overall utility of f  is 

larger than that of g , we will consider only positive ( ) ( )i iU f U gα α−  . Consider 

now the following functions: 

2 2

1 1

( ) max( ( ) ( ),0);i j
i j

U f U gα ασ α
= =

= −    

max( ( ) ( ),0)
, ( ) ( ) 0

( ) , 1,2( ) ( )

0,

i j
i j

ij i j

U f U g
if U f U g

i jU f U g

else

α α
α α

α αδ α

 −
− ≠

= =−



   
  . 

2 2

( ) ( )ij
i j

δ α δ α=  

( )σ α  shows the sum of all positive differences between 1 2( ), ( )U f U fα α   and 

1 2( ), ( )U g U gα α   and ( )δ α  shows the number of these differences. Consider now 

the quantity 

1

0
1

0

( )

( )

d

d

ασ α α

αδ α α




 as a weighted average of differences  ,),~()

~
( igUfU ji

αα −  

2,1=j  where weights are their possibilities (0,1]α ∈ . The degree ( )lDeg f g   

is determined then as follows: 
1

0
1

max min

0

( )

( )

( ) ( )
l

d

Deg f g

u u d

ασ α α

αδ α α
=

−




   (5.2) 

In other words, ( )lDeg f g  is determined as a percentage of a weighted average 

of differences ( ) ( ), , 1,2i jU f U g i jα α− =   with respect to max minu u− being 

maximally possible difference ( minu  and maxu  are respectively the lower and upper 

bounds of the universe of discourse for utility u , and, therefore, 

max min( )u U f u≤ ≤  as ( )U f  is an aggregation of u ). By other words, the closer 

the difference ( ) ( )i jU f U gα α−   of the equally possible values of precise overall 

utilities of f  and g  to max minu u−  the higher is the extent to which f  is better 

than g .  
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Let us show that the famous existing utility models are special cases of the 
proposed combined states-based fuzzy utility model. To do this, we simplify our 
model to its non-fuzzy variant and consider its relation with the existing utility 
models. Bi-capacity-based aggregation of ( ( , ))u f s h  on a space Ω  would be a 

natural generalization of an aggregation of ( ( ))u f s  on a space S . We will show 

this by comparing of EU and CEU applied on space 1 2{ , ,... }mS s s s=  with the 

same models applied on a combined states space Ω . For obvious illustration let us 
at first look at a general representation of combined states space HSΩ = ×  given 
in Table 5.1. 

Table 5.1. Combined states space 

 1s  is  … Ns

1h  1 1( , )s h  1( , )is h  … 1( , )Ns h  

jh  1( , )js h  ( , )i js h  … ( , )N js h  

… … … … … 

Mh  1 1( , )s h  ( , )i js h  … ( , )N Ms h  

 
 
EU criterion used for combined states space (Table 5.1) will have the 

following form: 

1 1 1

( ) ( ( )) ( ) ( ( , )) ( , )
MN M N

k k i j i j
k j i

U f u f w p w u f s h p s h
= = =

= =   (5.3)

In traditional EU (i.e., EU applied on a space S  only) they consider that a DM 
exhibits the same behavior in any state of nature. In our terminology this means 
that only one state of a DM can exist. Then, to model a classical EU within (5.3) 
we should exclude all jh  except one, say kh . This immediately means that 

( , ) 0,i jP s h j k= ∀ ≠  (as we consider that all ,jh j k≠  don’t exist) and we have  

1

( ) ( ( , )) ( , )
N

i k i k
i

U f u f s h p s h
=

=  

Now, as a DM is always at a state kh  whatever state is  takes place, we 

have ( , ) ( )i k ip s h p s= . Furthermore, in common EU only risk attitudes as 

behavioral aspects are taken into account. A DM is considered as either risk averse 
or risk seeking or risk neutral. So, kh can represent one of these behaviors. For 

example, if kh  represents risk aversion then ()u  will be concave, if kh  represents 

risk seeking then ()u  will be convex etc. So, kh determines form of ()u . If we use  
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notation ( ( ))u f∗ ⋅  for ( ( , ))ku f h⋅  when kh  represents, for example, risk aversion, 

we have (5.3) as *

1

( ) ( ( )) ( )
N

i i
i

U f u f s p s
=

=  which is nothing but the traditional 

EU. So, the traditional EU is a special case of the EU criterion used for Ω . 
Combined-states based approach as opposed to classical EU allows to take into 
account that a DM can exhibit various risk attitudes at various states of nature. 
This usually takes place in real life and is taken into account in PT and CPT (these 
models are based on experimental observations demonstrating that people exhibit  
risk aversion for gains and risk seeking for losses).  

Let us now show that CEU used for space S  is a special case of the analogous 
aggregation over Ω . CEU over Ω will have the following form: 

( ) ( 1) (1) ( )
1

( ) ( ( ( )) ( ( ))) ({ ,..., })
N

l l l
l

U f u f w u f w w wη+
=

= −  (5.4)

( ) ( , )l j kw s h= , ( ) ( 1)( ( )) ( ( ))l lu f w u f w +≥ . Assuming now that only some kh  exists, 

we have that , ( , )i kw w s h∀ ∈ Ω = , that is { }kS hΩ = × . Then we will have 

( ) ( 1)( ( )) ( ( )) 0l lu f w u f w +− = whenever ( ) ( 1)( , ), ( , )l i k l i kw s h w s h+= = .Only differences  

( ) ( 1)( ( )) ( ( ))l lu f w u f w +−  for which ( ) ( 1)( , ), ( , ),l i k l j kw s h w s h i j+= = ≠  may not be 

equal to zero. As a result, making simple transformations, we will have: 

( ) ( 1) (1) ( )
1

( ) ( ( ( , )) ( (( , )))) ({( , ),..., ( , )})
n

i k i k k i k
i

U f u f s h u f s h s h s hη+
=

= −  

Now, using notations ( ( ))u f∗ ⋅  for ( ( , ))ku f h⋅  and (1) ( )({ ,..., })js sη∗ =  

(1) ( )({( , ),..., ( , )})k j ks h s hη=  we can write 

*
( ) ( 1) (1) ( )

1

( ) ( ( ( )) ( ( ))) ({ ,..., })
N

i i i
i

U f u f s u f s s sη∗ ∗
+

=

= −  

This is nothing but a traditional CEU. Traditional CEU is often used to represent 
uncertainty attitude as an important behavioral aspect. So, if kh  represents 

uncertainty aversion (uncertainty seeking) then (1) ( )({( , ),..., ( , )})k j ks h s hη  can be 

chosen as lower prevision (upper prevision). 
It can also be shown that the utility model used in the CPT is also a special case 

of the combined states approach. This follows from the fact that representation 
used in CPT is a sum of two Choquet integrals. 

The solution of the problem consists in determination of an optimal action 
*f ∈   with { }*( ) max ( ( , ))

f
U f u f S h dη

Ω∈
= 

   


. The problem is solved as follows. 

At the first stage it becomes necessary to assign linguistic utility values 

( ( , ))i ju f S h   to every action f ∈   taken at a state of nature iS S∈  when a 
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DM’s state is jh . The second stage consists in construction of a FJP distribution 
lP  on Ω  proceeding from partial information on marginal distributions over   

and   which is represented by given fuzzy probabilities for all states except one. 
This requires constructing unknown fuzzy probability for each space [8,9]. Given 
marginal distribution of fuzzy probabilities for all the states, it is needed to verify 
consistency, completeness and redundancy of this distribution [7]. Finally, on the 
base of fuzzy marginal distributions (for   and H ) and information on 

dependence between states of nature S ∈   and a DM’s states Hh ∈  it is needed 

to construct FJP distribution lP  on Ω .  
At the third stage it is necessary to construct a fuzzy-valued bi-capacity ( , )η ⋅ ⋅

 
based on FJP lP  on Ω . For simplicity one can determine a fuzzy-valued bi-
capacity as the difference of two fuzzy-valued capacities. 

Next the problem of calculation of an overall utility ( )U f  for every action 

f ∈   is solved by using formula (5.1). In (5.1) differences between fuzzy 

utilities ( ( , ))u f S h   assigned at the first stage are multiplied on the base of the 

Zadeh’s extension principle by the values of the fuzzy valued bi-capacity ( , )η ⋅ ⋅  

constructed at the third stage. 

Finally, an optimal action *f ∈    as the action with the maximal fuzzy 

valued utility { }*( ) max ( ( , ))
f

U f u f S h dη
Ω∈

= 
   


 is determined by comparing fuzzy 

overall utilities ( )U f  for all f ∈  (see formula (5.2)).  

As we mentioned above, in order to solve the considered problem of behavioral 
decision making we need to construct a fuzzy-valued bi-capacity over a space of 
combined states Ω . This fuzzy-valued bi-capacity is used to model relations 
between combined states under imperfect relevant information. One natural 
informational basis to construct a fuzzy-valued bi-capacity is a FJP over combined 
states. The FJP distribution describes dependence of states of a DM on states of 
nature, that is, dependence of a human behavior on objective conditions that is a 
quite natural phenomenon. In order to proceed to construction of FJP we need to 
consider some preliminary concepts that are given below.  

There exist mainly two approaches to construction of a joint probability 
distribution: approaches for modeling dependence among events (e.g. the chance 
that it will be cloudy and it will rain) and approaches modeling dependence among 
random variables (e.g. the chance that an air temperature is in-between 20C and 
30C and an air humidity is in-between 90%-95%). In modeling dependence of 
states of a DM on states of nature we will follow dependence of events 
framework. This framework is more suitable as states of a DM and states of nature 
are not numerical but are rather qualitative. 

To measure a joint probability of two events H and G we need two kinds of 
information: marginal probabilities for H and G and information on a type of 
dependence between H and G referred to as a sign of dependence. There exist 
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three types of dependence: positive dependence, independence and negative 
dependence. Positive dependence implies that H and G have tendency to occur 
together, e.g. one favors occurrence of another. For example, cloudiness and rain 
are positively dependent. Negative dependence implies they don’t commonly 
occur together, e.g. one precludes occurrence of another. For example, sunny day 
and raining are negatively dependent. Independence implies that occurrence of 
one does not affect an occurrence of another. The extreme case of a positive 
dependence is referred to as a perfect dependence. The extreme case of a negative 
dependence is referred to as opposite dependence. It is well known that given 
numerical probabilities ( )P H  and ( )P G  of independent events H and G, the 

joint probability ( , )P H G  is determined as  

( , ) ( ) ( )P H G P H P G=  (5.5)

The perfect dependence is determined as [46,48]  

( , ) min( ( ), ( ))P H G P H P G=  (5.6)

For explanation of this fact one may refer to [46,48]. It is clear 
that ( ) ( ) min( ( ), ( ))P H P G P H P G≤ . Positive dependence among H and G is 

modeled as [46,48] 

[ ]1 2( , ) [ ( , ), ( , )] ( ) ( ),min( ( ), ( ))P H G P H G P H G P H P G P H P G∈ =  (5.7)

Indeed, positively dependent events occur together more often that independent 
ones. 

Opposite dependence among H and G  is determined as 

( , ) max( ( ) ( ) 1,0)P H G P H P G= + −  (5.8)

For explanation of this fact one may refer to [8,46]. It is known that 
max( ( ) ( ) 1,0) ( ) ( )P H P G P H P G+ − ≤ . Negative dependence among H  and 

G  is modeled as [46,48] 

1 2( , ) [ ( , ), ( , )]

[max( ( ) ( ) 1,0), ( ) ( )]

P H G P H G P H G

P H P G P H P G

∈ =
= + −

 (5.9)

Indeed, negatively dependent events occur together less often that independent 
ones. 

Unknown dependence is modeled as [46,48] 

1 2( , ) [ ( , ), ( , )]

[max( ( ) ( ) 1,0),min( ( ), ( ))]

P H G P H G P H G

P H P G P H P G

∈ =
= + −

 (5.10) 
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For the case of interval-valued probabilities of H and G, i.e. when 

1 2( ) [ ( ), ( )]P H P H P H∈  and 1 2( ) [ ( ), ( )]P G P G P G∈  the formulas (5.5)-(5.10) 

are generalized as follows: 

1 2 1 1 2 2( , ) [ ( , ), ( , )] [ ( ) ( ), ( ) ( )]P H G P H G P H G P H P G P H P G∈ =  (5.11) 

1 2

1 1 2 2

( , ) [ ( , ), ( , )]

[min( ( ), ( )),min( ( ), ( ))]

P H G P H G P H G

P H P G P H P G

∈ =
=

 (5.12) 

[ ]1 2 1 1 2 2( , ) [ ( , ), ( , )] ( ) ( ),min( ( ), ( ))P H G P H G P H G P H P G P H P G∈ =  (5.13) 

1 2

1 1 2 2

( , ) [ ( , ), ( , )]

[max( ( ) ( ) 1,0),max( ( ) ( ) 1,0)]

P H G P H G P H G

P H P G P H P G

∈ =
= + − + −

 (5.14) 

1 2

1 1 2 2

( , ) [ ( , ), ( , )]

[max( ( ) ( ) 1,0), ( ) ( )]

P H G P H G P H G

P H P G P H P G

∈ =
= + −

 (5.15) 

1 2

1 1 2 2

( , ) [ ( , ), ( , )]

[max( ( ) ( ) 1,0),min( ( ), ( ))]

P H G P H G P H G

P H P G P H P G

∈ =
= + −

 (5.16)

For more details about dependence one may refer to [46,48]. 
The above mentioned formulas may be extended for the case of fuzzy 

probabilities ( )P H  and ( )P G  as follows. The fuzzy joint probability ( , )P H G  

may be defined as 

1 2
[0,1]

( , ) [ ( , ), ( , )]P H G P H G P H Gα α

α
α

∈

=   

where endpoints of an interval 1 2[ ( , ), ( , )]P H G P H Gα α  are  determined from 

endpoints 1 ( )P Hα , 1 ( )P Gα , 2 ( )P Hα  and 2 ( )P Gα  on the base of one of formulas 

(5.11)-(5.16) depending on a sign of dependence. For example, positive 
dependence is modeled as 

1 1 2 2
[0,1]

( , ) ( ) ( ),min( ( ), ( ))P H G P H P G P H P Gα α α α

α
α

∈

 =  
   

and negative dependence as  

1 1 2 2
[0,1]

( , ) max( ( ) ( ) 1,0), ( ) ( )P H G P H P G P H P Gα α α α

α
α

∈

 = + − 
  . 
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5.2   Behavioral Modeling of an Economic Agent 

We suggest to model an economic agent, a DM, by a set of states. An important 
issue that arises here is a determination of a state of a DM h .  As far as this 
concept is used to model human behavior which is conditioned by psychological, 
mental and other behavioral factors, in general, it should not have an abstract or 
atomic content but should have substantial basis. One approach is a consideration 
of h  as a ‘personal quality’ of a DM which is formalized as a value of a 
multivariable function. Each input variable of this function is to be used for 
measuring one of behavioral factors like risk attitude, ambiguity attitude, altruism, 
trust, fairness, social responsibility. Thus, a personal quality will have different 
‘levels’ ih  each determined by a vector of measured behavioral factors that 

describes a behavioral condition of a DM. 
Another approach is to consider a state of a DM ih  as a vector of variables 

describing behavioral factors without converting it into a single generalized value. 
The first approach is simpler, i.e. more convenient as a state of a DM will enter 

decision model as a single value. However a question arises on how to convert a 
vector into a single value. Anyway, this will lead to a loss of information. The 
second approach is more adequate, however it is more complex. Consider a small 
example. Let a DM consider three possible alternatives for investment: to buy 
stocks, to buy bonds of enterprise or to deposit money in a bank. The results of the 
alternatives are subject to a state of nature as one of the three possible economic 
conditions: growth, stagnation, inflation. As the factors underlying behavioral 
condition of a DM, that is, a state of a DM, we will consider attitudes to risk and 
ambiguity which are main issues and are especially important for investment 
problems. The first approach to model a state of a DM is a convolution of the 
values of the considered factors into a personal quality as a single resulting value. 
For example, a personal quality of a risk averse and an ambiguity averse investor 
may be characterized by the typical term “conservative investor”, the other 
combinations will be described by other personal qualities like “aggressive 
investor” etc. Given such a ‘single-valued’ reference, it is needed to determine 
both a joint probability and a utility of any alternative for this state of a DM and 
any state of nature (economy) – growth, stagnation, inflation. As the state of a DM 
and a state of nature are both ‘single-valued’ it will be rather easy to do this. 
However, this easiness is conditioned by simplistic approach which deprives us of 
useful information. Influence of each factor will be substantially driven out by 
convolution to a single value. The second approach models a state of a DM ‘as is’ 
– as a pair of risk and ambiguity attitudes without a convolution. Such modeling is 
more intuitive and transparent. The determination of joint probability and a utility 
of any alternative as measures of relations between state of nature and state of a 
DM will then be more adequate because greater useful information is considered. 
Indeed, even in the first approach, a researcher may have to ‘return back’ to the 
behavioral factors in order to more substantially model the relations between the 
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corresponding single-valued personal quality and states of nature. However, the 
second approach is more complex in terms of mathematical realization – the 
number of the variables in a model is larger – and this is a price for more adequate 
modeling. 

In this sections we consider two kinds of the first approach to modeling a DM.  
Let us consider an approach to agent behavior modeling under second order 

uncertainty [4,5,50]. It is very difficult to precisely define a term like agent 
[23,32,33,38,49]. There are tens definitions of agent. A definition similar to 
[27,38,49] was suggested by us in 1986 [10] and we will use this definition in this 
work which embraces the following features: autonomy; interaction with an 
environment and other agents; perception capability; learning; reasoning 
capability. In [10] an agent with the mentioned characteristics was called a smart 
agent. 

The architecture of a smart agent in accordance with this definition is given in 
Figure 5.1.  

The mathematical description of knowledge in the knowledge base (KB) of 
agent is based on fuzzy interpretation of antecedents and consequents in 
production rules. 
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Fig. 5.1 Structure of an intelligent agent 

For the knowledge representation the antecedent of each rule contains a 

conjunction of logical connectives like (Figure 5.2): <name of object> 
= 
 ≠ 

 

<linguistic value>  named elementary antecedent . 
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% object name 

Production 
l = 

≠ 

OR 

Ling.value 

 object name 

BEGIN 

END 

Name of current subbase 

IF 

AND 

Operator-function 
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Author’s explanation of the rule BECAUSE 
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(Expression) 

+ 
- 

* 

/ 

 

Fig. 5.2 Production rules 

 
The consequent of the rule is a list of imperatives, among which may be some 

operator-functions (i.e. input and output of objects' values, operations with 
segments of a knowledge base, etc). Each rule may be complemented with a 

confidence degree [ ]0,100Cf ∈ . Each linguistic value has a corresponding 

membership function. The subsystem of fuzzy arithmetic and linguistic values 
processing (see Figure 5.1) provides automatic interpretation of linguistic values 
like "high", "low", "OK", "near...", "from ... to..."   and  so  on;  i.e.  for each  
linguistic value this subsystem automatically  computes parameters of 
membership functions using universes of corresponding variable. The user of the 
system may define new linguistic values, modify built-in ones and explicitly 
prescribe a membership function in any place where linguistic values are useful.  

Learning of agents is based on evolutionary algorithms which includes 
adjusting of agent's KB. The agents are described by a knowledge-base that 
consists of a certain number of fuzzy rules related through “ALSO”: 

1 1 2 2

1 1 2 2

: ...

... , 1,

k
k k m km

k k k k kl kl

R IF x is A and x is A and and x is A THEN

u is B and u is B and and u is B k K=

  

  
  

where , 1,ix i m=  and , 1,ju j l=  are total input and local output variables, 

,ki kjA B  are fuzzy sets, and k is the number of rules.  Note, that inputs 1 2, , ..., mx x x  

may be crisp or fuzzy variables. 
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Efficiency of inference engine considerably depends on the knowledge base 
internal organization. That is why an agent’s model implements paradigm of 
"network of production rules" similar to semantic network. Here the nodes are 
rules and vertexes are objects. Inference mechanism acts as follows. First, some 
objects take some values (initial data). Then, all production rules, containing each 
of these objects in antecedent, are chosen from the knowledge base. For these 
rules the truth degree is computed (in other words, the system estimates the truth 
degree of the fact that current values of objects correspond to values fixed in 
antecedents). If the truth degree exceeds some threshold then imperatives from 
consequent are executed. At that time the same objects as well as a new one take 
new values and the process continues till work area contains "active" objects 
("active" object means untested one).  

The assigned value of the object is also complemented by a number, named 
confidence degree, which is equal to the truth degree of the rule.  

A truth degree of a rule's antecedent is calculated according to the following 
algorithm [4,5].  

Let us consider an antecedent of a rule in the form: 

IF ... AND iw = 
 ≠ 

ija   AND ... AND kw = 
 ≠ 

jka   AND ... 

 

Confidence degree of the rule is [ ]0,100Cf ∈ .   

Objects iw , kw  etc have current values of the form ( v , cf) in the work area 

(here v  is linguistic value with its membership function, [ ]0,100cf ∈ is 

confidence degree of the value v ). Truth value of k-th elementary antecedent is: 

( )k k jk kr Poss v a cf=   , if the sign is "=" and ( )( )1k k jk kr Poss v a cf= −   , if the 

sign is "≠". Poss is defined as 

( ) max min( ( ), ( )) [0,1].v a
u

Poss v a u uμ μ= ∈    

The truth degree of the rule: 

(min )
100

j
j k

k

Cf
R r=  

After the inference is over, the user may obtain for each object the list of its values 
with confidence degree which are accumulated in the work area. The desirable 
value of the object may be obtained using one of the developed algorithms: 

: ( , ),  1,  ,  n n
i i iw v cf n N=   

N is total number of values 
Calculation of resulting value: 
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I. Last - N
iv  

II. The value with maximum confidence degree - / maxm m n
i i i

n
v cf cf=  

III. The value ( )n n
i i i

n
v v cfΛ=  , or ( )n n

i i i
n

v V v cf=   

IV. The average value 

n n
i i

n
i n

i
n

v cf
v

cf
=




  

IF 1 1
jx a=    AND 2 2

jx a=   AND ... THEN 1 1
jy b=   AND 2 2

jy b=   AND ... 

 
IF ... THEN 1 1( )Y AVRG y=  AND 2 2( )Y AVRG y=  AND ... 

This model has a built-in function AVRG which calculates the average value. This 
function simplifies the organization of compositional inference with possibility 
measures. As a possibility measure here a confidence degree is used. So, the 
compositional relation is given as a set of production rules like: 

 

IF 1 1
jx A=  AND 2 2

jx A=   AND ... THEN 1 1
jy B=   AND 2 2

jy B=   AND , 

 
where j is a number of a rule (similar to the row of the compositional relation 
matrix). After all these rules have been executed (with different truth degrees) the 
next rule (rules) ought to be executed: 

 
IF … THEN 1 1( )Y AVRG y=  AND 2 2( )Y AVRG y=  AND ... 

 
Fuzzy Hypotheses Generating and Accounting Systems. Using this model one may 
construct hypotheses generating and accounting systems. Such system contains the 
rules:  

IF <conditionj> THEN jX A=   CONFIDENCE jcf  

Here " "jX A=  is a hypothesis that the object X takes the value jA .Using some 

preliminary information, this system generates elements ( ),j jX A R=  , where jR  

is a truth degree of j-th rule. In order to account the hypothesis (i.e. to estimate the 

truth degree that X takes the value jA ) the recurrent Bayes-Shortliffe formula, 

generalized for the case of fuzzy hypotheses, is used [43]: 

0 0P =  

1
1 0( / ) 1

100
j

j j j

P
P P cf Poss A A −

−
 

= + − 
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This formula is realized as a built-in function BS : 

IF END THEN 0( , )P BS X A=  . 

Let us consider example. Let us describe the model taking into account the private 
characteristic features of a DM by using the following rules (inputs and outputs 
vary within [0,100] range): 
 

Rule 1: 
IF altruism level of a DM is about 45 and emotion level of a DM is about 40  

THEN personal quality of a DM ( iD ) is about 35 and CF is 90 

Rule 2:  
IF altruism level of a DM is about 45 and emotion level of a DM is about 60  

THEN personal quality of a DM ( iD ) is about 45 and CF is 55 

… … … … 
Rule 15:  
IF altruism level of a DM is about 65 and emotion level of a DM is about 20 

THEN personal quality of a DM ( iD ) is about 75 and CF is 60.  

It is required to determine the DM performance (output). 
Suppose that emotion level of a DM is about 65 and altruism level of a DM is 

about 60.  
 

The values of linguistic variable are trapezoidal fuzzy numbers. For example: 
 

30
,30 42

12
1,42 48

45
50

,48 50
2

0,

x
x

x
about

x
x

otherwise

− ≤ ≤


≤ ≤=  − ≤ ≤




50
,50 55

5
1,55 65

60
70

,65 70
5

0,

x
x

x
about

x
x

otherwise

− ≤ ≤


≤ ≤=  − ≤ ≤




50
,50 65

15
1,65 80

75
85

,80 85
5

0,

x
x

x
about

x
x

otherwise

− ≤ ≤


≤ ≤=  − ≤ ≤




 
 
The above described model is realized by using the ESPLAN expert system shell 
[4]. For example, for altruism level being about  65 and emotion level being 60 the 
personal quality is computed as about 45. 
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In addition to the imprecision of human conceptualization reflected in natural 
language many situations that arise in human behavioral modeling entail aspects 
of probabilistic uncertainty [50]. Now we consider an agent behavioral modeling 
using fuzzy and Demster-Shater theories suggested in [50]. 

The Dempster-Shafer approach fits nicely into the fuzzy logic since both 
techniques use sets as their primary data structure and are important components 
of the emerging field of granular computing [13,31]. In [50] the behavioral  model 
is represented by partitioning the input space. We can represent relationship 
between input and output variables by a collection of n “IF-THEN” rules of the 
form: 

If 1X  is 1iA  and 2X  is 2iA , . . . and rX  is irA  then Y  is iD  (5.17)

Here each ijA  typically indicates a linguistic term corresponding to a value of its 

associated variable, furthermore each ijA   is formally represented as a fuzzy 

subset defined over the domain of the associated variable jX .  Similarly iD  is a 

value associated with the consequent variable Y  that is formally defined as a 
fuzzy subset of the domain of Y . To find the output of an agent described by 
(5.17) for given values of the input variables the Mamdani-Zadeh reasoning 
paradigm is used [51]. 

It is needed now to add further modeling capacity to model (5.17) by allowing 
for probabilistic uncertainty in the consequent.  For this we consider the 
consequent to be a fuzzy Dempster-Shafer granule.  Thus we shall now consider 
the output of each rule to be of the form Y  is im  where im  is a belief structure 

with focal elements ijD  which are fuzzy subsets of the universe Y and associated 

weights im ( ijD ).  Thus a typical rule is now of the form 

If 1X  is 1iA  and 2X  is 2iA , . . . and rX  is irA  then Y  is im  (5.18)

Using a belief structure to model the consequent of a rule is essentially saying that 

im ( ijD ) is the probability that the output of the thi  rule lies in the set ijD .  So 

rather than being certain as to the output set of a rule we have some randomness in 

the rule. We note that with im ( ijD ) = 1 for some ijD  we get the (5.17). 

Let us describe the reasoning process in this situation with belief structure 
consequents. Assume the inputs to the system are the values for the antecedent 
variables, jX = jx .  For each rule we obtain the firing level, iτ = Min[ ( )ij jA x ]. 

The output of each rule is a belief structure ˆ i im mτ= ∧ .  The focal elements of 

ˆ im are ijF , a fuzzy subset of Y where ( )ijF y  = Min[ iτ , ( )ijD y ], here ijD  is a  
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focal element of im .The weights associated with these new focal elements are 

simply ˆ ( )i ijm F = ˆ ( )i ijm D .The overall output of the system m is obtained by 

taking a union of the individual rule outputs,
1

ˆ
n

i
i

m m
=

= . 

For every a collection 
1 11 ,...j njF F< >   where 

1ijF  is a focal element of im  we 

obtain a focal element of m,
1ij

i

E F=   and the associated weight is  

1
1

ˆ( ) ( ).
n

i ij
i

m E m F
=

= ∏   

As a result of this step it is obtained a fuzzy D-S belief structure V is m as output 

of the agent.  We denote the focal elements of m as the fuzzy subsets jE , j = 1 to 

q, with weights ( )jm E . 

Let us describe the model taking into account the characteristic features of 
economic agent (DM). Here the basic problem is to evaluate personal quality of a 
DM by using its psychological determinants. For determining psychological 
determinants as basic factors (inputs of a model) influencing to DM performance, 
total index of DM (output of a model), we used the fuzzy Delphi method. We have 
obtained that main psychological determinants (inputs) are following factors:  
trust, altruism, reciprocity, emotion, risk, social responsibility, tolerance to 
ambiguity. 

For a total index (resulting dimension) of a DM as an overall evaluation to be 
determined on the base of the determinants we obtained personal quality or power 
of decision or DM’s performance. So, DM’s behavioral model can be described as 
(for simplicity we use 2 inputs):  

 
Rule 1: IF trust level of a DM is about 76 and altruism level of a DM about 45 
THEN personal quality of a DM (V) is 1m . 

Rule 2: IF trust level of a DM is about 35 and altruism level of a DM about 77 
THEN personal quality of a DM (V) is 2m .  

 
Let us determine the output (personal quality of a DM) if trust level of a DM is 
about 70 and altruism level of a DM is about 70. 

1m  has focal elements 11 46  D =  with 11( ) 0.7m D =  and 12 48  D =  with 

11( ) 0.3m D = ; 

2m  has focal elements 21 76  D =  with 21( ) 0.2m D =  and 22 81  D =  with  

22( ) 0.8m D =  
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The values of linguistic variables are triangle fuzzy numbers: 
 

40
,40 46

6
1, 46

46
65

,46 65
19

0,

x
x

x

x
x

otherwise

− ≤ ≤


==  − ≤ ≤






40
,40 48

8
1, 48

48
65

,48 65
17

0,

x
x

x

x
x

otherwise

− ≤ ≤


==  − ≤ ≤






 
61

,61 76
15

1, 76
76

95
,76 95

19
0,

x
x

x

x
x

otherwise

− ≤ ≤


==  − ≤ ≤






61
,61 81

20
1, 81

81
95

,81 95
14

0,

x
x

x

x
x

otherwise

− ≤ ≤


==  − ≤ ≤






 
 

Let us calculate the belief values for each rule. By using [4] in this example the 
empty set takes the value 0.09. But in accordance with Dempster-Shafer theory m-
value of the empty set should be zero. In order to achieve this, m values of the 
focal elements should be normalized and m value of the empty set made equal to 
zero. The normalization process is as follows: 

 

1) Determine 1 2( ) ( )i i
A Bi i

T m A m B
∩ =∅

= ⋅    

2) For all i iA B∩ = ∅   weights are 

1 2

1
( ) ( ) ( )

1k i jm E m A m B
T

= ⋅
−

   

3) For all kE = ∅  sets   ( ) 0km E =  

 
In accordance with the procedures described above:  

3 ({46}) 0.230769m = = , 

3 ({46, }) 0.384615m y= = , 

({46, }) 0.615385Bel y = . 

For the second rule: ({76, }) 0.753425Bel y = . Firing level of the i-th rule is 

equal to the minimum among all degrees of membership of a system input to  
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antecedent fuzzy sets of this rule: '

1
min[max( ( ) ( ))]

j

n

i j ij j
j X

A x A xτ
=

= ∧ . The firing 

levels of each rule are 1 0.26τ =  and 2 0.28.τ =  The defuzzified values of focal 

elements obtained by using the center of gravity method are the following: 

1 1( ) 61.56;Defuz E y= =  2 2( ) 64.15Defuz E y= = ; 3 3( ) 62.52;Defuz E y= =  

4 4( ) 65.11Defuz E y= = . The defuzzified value of  m is 63.92y = . 

By using the framework described above we arrive at the following Dempster-
Shafer structure: 

IF trust level of a DM is about 70 and altruism level of a DM about 70 THEN 
personal quality of a DM (V) is equal to about 63.92. 
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Chapter 6 
Decision Making on the Basis of Fuzzy 
Geometry 

6.1   Motivation 

Decision making is conditioned by relevant information. This information very 
seldom has reliable numerical representation. Usually, decision relevant 
information is perception-based. A question arises of how to proceed from 
perception-based information to a corresponding mathematical formalism. When 
perception-based information is expressed in NL, the fuzzy set theory can be used 
as a corresponding mathematical formalism and then the theories presented in 
Chapters 3,4,5 can be applied for decision analysis. However, sometimes 
perception-based information is not sufficiently clear to be modeled by means of 
membership functions. In contrast, it remains at a level of some cloud images 
which are difficult to be caught by words. This imperfect information caught in 
perceptions cannot be precisiated by numbers or fuzzy sets and is referred to as 
unprecisiated information. In order to better understand a spectrum of decision 
relevant information ranging from numbers to unprecisiated information, let us 
consider a benchmark problem of decision making under imperfect information 
suggested Prof. Lotfi Zadeh. The problem is as follows. 

Assume that we have two open boxes, A and B, each containing twenty black 
and white balls. A ball is picked at random. If I pick a white ball from A, I win a1 
dollars; if I pick a black ball, I lose a2 dollars. Similarly, if I pick a white ball 
from B, I win b1 dollars; and if I pick a black ball, I lose b2 dollars. Then, we can 
formulate the five problems dependent on the reliability of the available 
information: 

Case 1. I can count the number of white balls and black balls in each box. 
Which box should I choose? 

Case 2. I am shown the boxes for a few seconds, not enough to count the balls. I 
form a perception of the number of white and black balls in each box. These 
perceptions lead to perception-based imprecise probabilities which allow to be 
described as fuzzy probabilities. The question is the same: which box should I choose. 

Case 3. I am given enough time to be able to count the number of white and 
black balls, but it is the gains and losses that are perception-based and can be 
described as fuzzy numbers. The question remains the same. 

Case 4. Probabilities, gains and losses are perception-based and can be 
described as fuzzy probabilities and fuzzy numbers. The question remains the same. 
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Case 5. The numbers of balls of each color in each box cannot be counted. All 
a I have are visual perceptions which cannot be precisiated by fuzzy probabilities. 

Let us discuss these cases. Case 1 can be successfully solved by the existing 
theories because it is stated in numerical information. Cases 2-4 are characterized 
by linguistic decision-relevant information, and therefore, can be solved by the 
decision theory suggested in Chapter 4. No theory can be used to solve Case 5 as 
it is stated, including the theory suggested in Chapter 4, because this case is 
initially stated in informational framework of visual perceptions for which no 
formal decision theory is developed. However, humans are able to make decisions 
based on visual perceptions. Modeling of this outstanding capability of humans, 
even to some limited extent, becomes a difficult yet a highly promising research 
area. This arises as a motivation of the research suggested in this chapter. In this 
chapter we use Fuzzy Geometry and the extended fuzzy logic [15] to cope with 
uncertain situations coming with unprecisiated information. In this approach, the 
objects of computing and reasoning are geometric primitives, which model human 
perceptions when the latter cannot be defined in terms of membership functions. 
The fuzzified axioms of Euclidean geometry are used and the main operations 
over fuzzy geometric primitives are introduced. A decision making method with 
outcomes and probabilities described by geometrical primitives is developed. In 
this method, geometrical primitives like fuzzy points and fuzzy lines represent the 
basic elements of the decision problem as information granules consisting of an 
imprecise value of a variable and the confidence degree for this value. The 
decision model considers a knowledge base with fuzzy geometric “if-then” rules.  

All works on decision analysis assume availability of numeric or measurement-
based information. In other words, the available imperfect information is always 
considered to admit required precision. The fundamental question remains: what if 
the information is not only imperfect and perception-based, but also 
unprecisiated? 

As stated in [15] while fuzzy logic delivers an important capability to reason 
precisely in presence of imperfect information, the extended (or unprecisiated) 
fuzzy logic delivers a unique ability to reason imprecisely with imperfect 
information. The capability to reason imprecisely is used by human being when 
precise reasoning is infeasible, excessively costly or not required at all. A typical 
real-life case example is a case when the only available information is perception-
based and no trustworthy precision or fuzzy numeric models (e.g. articulated 
through membership functions) are possible to obtain. As a model of unprecisiated 
fuzzy logic we consider fuzzy geometry [15]. 

The concept of fuzzy geometry is not new. Many authors suggest various 
versions of fuzzy geometry. Some of well-known ones are the Poston’s fuzzy 
geometry [8], coarse geometry [9], fuzzy geometry of Rosenfeld [10] , fuzzy 
geometry of Buckley and Eslami [2], fuzzy geometry of Mayburov [8],  
fuzzy geometry of Tzafestas [13], and fuzzy incidence geometry of Wilke [14]. 
Along this line of thought, many works are devoted to model spatial objects with 
fuzzy boundaries [3,4,12].  

The study reported in [12] proposes a general framework to represent ill-
defined information regarding boundaries of geographical regions by using the 
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concept of relatedness measures for fuzzy sets. Regions are represented as fuzzy 
sets in a two–dimensional Euclidean space, and the notions of nearness and 
relative orientation are expressed as fuzzy relations. To support fuzzy spatial 
reasoning, the authors derive transitivity rules and provide efficient techniques to 
deal with the complex interactions between nearness and cardinal directions. 

The work presented in [3] introduces a geometric model for uncertain lines that 
is capable of describing all the sources of uncertainty in spatial objects of linear 
type. Uncertain lines are defined as lines that incorporate uncertainty description 
both in the boundary and interior and can model all the uncertainty by which 
spatial data are commonly affected and allow computations in presence of 
uncertainty without oversimplification of the reality. 

Qualitative techniques for spatial reasoning are adopted in [4]. The author 
formulates a computational model for defining spatial constraints on geographic 
regions, given a set of imperfect quantitative and qualitative constraints. 

What is common in all currently known fuzzy geometries is that the underlying 
logic is the fuzzy logic. Fuzzy logic implies existence of valid numerical 
information (qualitative or quantitative) regarding the geometric objects under 
consideration. In situations, when source information is very unreliable to benefit 
from application of computationally-intensive mathematical computations of 
traditional fuzzy logic, some new method is needed. The new fuzzy geometry, the 
concept of which is proposed by Zadeh and referred to as F-Geometry, could be 
regarded as a highly suitable vehicle to model unprecisiated or extended fuzzy 
logic [15].  

Of the geometries mentioned above, the fuzzy incidence geometry of Wilke 
[14] can form a starting point for developing the new F-Geometry. Thus fuzzy 
incidence geometry extends the Euclidean geometry by providing concepts of 
extended points and lines as subsets of coordinate space, providing fuzzy version 
of incidence axioms, and reasoning mechanism by taking into account the 
positional tolerance and truth degree of relations among primitives. To allow for 
partially true conclusions from partially true conditions, the graduated reasoning 
with Rational Pavelka Logic (RPL) is used [7]. 

The purpose of this chapter is to develop a concept and a technique that can be 
used to more adequately reflect the human ability to formally describe perceptions 
for which he/she could hardly suggest acceptable linguistic approximations due to 
their highly uncertain nature or for which such precision, if provided, would lead 
to a loss or degradation of available information. Such unprecisiatable perceptions 
many times form an underlying basis for everyday human reasoning as well as 
decision making in economics and business.  

It is suggested that Fuzzy Geometry or F-geometry (or geometry for extended 
primitives) can be used to more adequately reflect the human ability to describe 
decision-relevant information by means of geometric primitives. Classical 
geometry is not useful in this case. As it was mentioned in [5], classical geometry 
fails to acknowledge that visual space is not an abstract one but its properties are 
defined by perceptions.  

The main idea is to describe uncertain data (which are perceptions of human 
observer, researcher, or a decision maker) in geometric language using extended 
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primitives: points, lines, bars, stripes, curves etc. to prevent possible loss of 
information due to the precision of such data to classical fuzzy sets based models 
(e.g. when using membership functions etc.). 

6.2   Fuzzy Geometry Primitives and Operations 

F-geometry is a simple and natural approach that can be used to express human 
perceptions in a visual form so that they can be used in further processing with 
minimal distortion and loss of information. In F-geometry, we use different 
primitive geometric concepts such as f-points, f-intervals, f-lines etc. as well as 
more complex f-transform concepts such as f-parallel, f-similar, f-convex, f-stable, 
etc. to express the underlying information. The primitive concepts can be entered 
by hand using simple graphic interface tool such as spray-pen or Z-mouse [15]. 

Pieces of information, describing the properties required for decision-making, 
are represented in forms of 2D geometric objects. For one-dimensional properties 
the second dimension can be used for expressing additional information.  

For entering the information regarding a certain property, for example, to 
define a range of probabilities, the decision-maker (DM), instead of entering 
numbers, manually draws strips using a spray can. By doing so, the DM could also 
implicitly express his/her confidence degree about the entered information by 
drawing physically greater objects or thick lines for less confident information 
granules and more compact sized marks, e.g., points or thinner lines with strictly 
defined boundaries, to express more reliable information granules. 

Generally F-geometry primitives can be defined as two-dimensional sets, which 

are subsets of 2R . F-marks are primitives of F-geometry that can be used in 
arithmetic, comparison, and set-theoretic operations. Therefore, we require that F-
marks (but not necessarily their F-transforms) are convex sets. A concept named 
Z-number has been suggested in [16], which also could be used to approximately 
represent F-marks (see Section 1.1). A Z-number consists of a pair of fuzzy sets, 
basically trapezoidal fuzzy numbers, entered by using a specialized graphical 
interface tool. The fundamental difference between a Z-number and an F-mark 
suggested here is that a Z-number is still explicitly based on membership functions 
whereas an F-mark is not. 

Definition 6.1 [6,14]. F-mark. An F-mark is a bounded subset of 2R , 

representing a graphical hand-mark drawn by human being to indicate visually a 

value of a perception-based information granule.  

So, formally an F-mark A can be represented as a bounded subset of 2R : 2A R⊂ . 
But an F-mark is more than just a physical area as it is meant to hold a perception 
of a measurable value. Therefore, we will use two notations: A (when meaning a 
perception, an unprecisiated value) and A  (when meaning an area or a variable to 
hold a measurable value). Usually, an area A , representing an F-mark is assumed 
to be a convex set [14]. 
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If required, we should be able to approximately represent, i.e. precisiate, F-
marks by using two-dimensional membership functions (e.g. of truncated 
pyramidal or con form) based on density, intensity, or width of the spray pen (Z-
mouse) used for the drawing [15]. 

Let us define some basic primitives that we will use in context of decision 
making. 

Any F-mark, which represents a convex subset A  of 2R , can be 
approximately defined by its center ( , )c cc x y=  (which is a Euclidean point) and 

two diameters ( minφ , maxφ ) [14]:  

min max( , , )A P c φ φ=  (6.1) 

 

 

Fig. 6.1 An F-mark with two diameters and its convex hull 

The center c can be computed as a center of gravity of convex hull: 
c=C(ch( A )) while the two diameters are [14]: 

{ }min min ( ) (0,1)T

t
ch A c t Rαφ = ∩ + ⋅  

{ }max max ( ) (0,1)T

t
ch A c t Rαφ = ∩ + ⋅  

where t R∈  and Rα  is the rotation matrix describing rotation by angleα . 

The illustration of the concept is presented in Fig. 6.1. 

Definition 6.2. F-point. The degree to which an F-mark min max( , , )A P c φ φ=  is 

an F-point is determined as follows [14]: 

p( A ) = minφ / maxφ  (6.2) 

Definition 6.3. The degree to which an F-mark A is an F-line is determined as:  

l( A )=1-p( A ). 

minφ

maxφ

),( cc yxc =
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Definition 6.4. Truth Degree of an Incidence of Two F-marks. The truth degree 
of predicate for the incidence of F-marks A  and B  is determined as  [14]: 

( ) ( ) ( ) ( )
( , ) max ,

( ) ( )

ch A ch B ch A ch B
inc A B

ch A ch B

 ∩ ∩
=   

 
,   (6.3) 

here ch( A ) is a convex hull of an f-mark A , |ch( A )| is the area covered by 
ch( A ). 

Definition 6.5. Truth Degree of an Equality of Two F-marks. The truth degree of 
a predicate defining the equality of F-marks A  and B , is determined as follows 
[14]: 

( ) ( ) ( ) ( )
( , ) min ,

( ) ( )

ch A ch B ch A ch B
eq A B

ch A ch B

 ∩ ∩
=   

 
   (6.4) 

Definition 6.6. Measure of Distinctness of Two F-marks. The measure of 
distinctness of f-marks A  and B  is determined as [14]: 

( )max max

max

max ( ), ( )
( , ) max 0,1

( ( ))

A B
dp A B

ch A B

φ φ
φ

 
= − ∪ 

    (6.5) 

Two f-points A  and B  can generate an f-line L  as follows (Fig. 6.2): 

( )L ch A B= ∪  

Axioms of the Fuzzy Incidence Geometry 

The following axioms formalize the behavior of points and lines in incident 
geometry [14]: 

(A1) For every two distinct points p and q, at least one line l exists that is 
incident with p and q. 
 

A  B  A B∪  ( )ch A B∪  L  

 

 

Fig. 6.2 Generation of an f-line from two f-points 
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(A2) Such a line is unique. 

(A3) Every line is incident with at least two points. 

(A4) At least three points exist that are not incident with the same line. 

For fuzzy version of incident geometry each of the above axioms may not evaluate 
to absolute truth for all possible inputs.  

A fuzzy version of the incident geometry, which is suitable to work with  
f-marks can be axiomatized as follows [14]: 

(A1’) [ ] 1( , ) sup ( ) ( , ) ( , ) ,
z

dp x y l z inc x z inc y z r⎛ ⎞→ ⊗ ⊗⎜ ⎟

⎝ ⎠

 

(

[ ] )3

(A2') ( , )

( , ) ( ')
( ) ( , ) ,

( , ') ( , ') ( , ')

dp x y

inc y z l z
l z inc x z r

inc x z inc y z eq z z

→

⎡ ⎤⎡ ⎤→ →⎡ ⎤

⎢ ⎥→ → →⎢ ⎥⎢ ⎥

⎡ ⎤→ → →⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦⎣ ⎦

(A3’) 3
,

( ) ( )
( ) sup ,

( , ) ( , ) ( , )x y

p x p y
l z r

eq x y inc x z inc y z

⎛ ⎞⊗ ⊗ ¬⎧ ⎫→⎜ ⎟⎨ ⎬¬ ⊗ ⊗⎩ ⎭⎝ ⎠

 

 

(A4’) ( ) 4
, , ,

( ) ( ) ( ) ( )
sup ,

( , ) ( , ) ( , )u v w z

p u p v p w l z
r

inc u z inc v z inc w z

⎛ ⎞⊗ ⊗ ⊗ →⎡ ⎤

⎜ ⎟⎢ ⎥
⎜ ⎟→ ¬ ⊗ ⊗

⎣ ⎦⎝ ⎠

, 

 

(6.6)

 

where x, y, z, z’, u, v, and w are measurable variables to hold F-marks, ⊗ denotes 
Lukasiewicz t-norm, 1r , 2r , 3r , and 4r  are truth values of the associated axioms. 

In this study, we consider two basic types of F-marks: F-points and F-lines.  
When it is needed for a concise representation or fast computation, any convex 

F-mark can be approximately represented as (6.1) [14]. Instead of it, we suggest 
an approximation illustrated in Fig. 6.3. 

 

 
Fig 6.3 The suggested approximation of an F-mark 

minφ

maxφ

),( cc yxc =
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The idea behind this method is to find a parallelogram with a minimum square, 
the intersection with f-mark of which is the same f-mark. Then the sides of the 
parallelogram are the two diameters, the shorter one is minφ  and the longer one 

is maxφ . 

If a parallelogram can be specified as ( )( , ), , ,x yS c c h wα , where ( , )x yc c  is its 

center (centroid), α is rotation angle (e.g. counter-clockwise vs. Y axis, which is 
0), and h and w are its sides. 

Then min min( , )h wφ =  and max max( , )h wφ = , where h and w are found by 

solving the optimization task: 

minh w⋅ →  

s.t. ( )( , ), , ,x yS c c h w A Aα ∩ = . 
    (6.7) 

As it can be seen min maxA A A⊆ ⊆ , where minA  and maxA  are 2D disks with 

diameters min min( , )h wφ =  and max max( , )h wφ = , respectively. 

As we pointed above, all F-marks are 2D sets, which are bounded subsets 

of 2R . 

( , )

{( , )}
x y A

A x y
∈

≡  , 

where 2A R⊂ and the integral sign   does not mean integration but denotes a 

collection of all points ( , )x y A∈ . With any desired accuracy an F-mark can be 

represented as a discrete set:  

( , )

{( , )}
i i

i i
x y A

A x y
∈

≡  , 

where 2A R⊂ , and a summation sign   is used to represent a collection of 

elements of a discrete set. 
We define arithmetic operations of summation and subtraction as follows: 

1 1

2 2

1 2 1 2

( , )
( , )

{( , )}
x y A
x y B

A B x x y y
∈
∈

+ = + +     (6.8) 

1 1

2 2

1 2 1 2

( , )
( , )

{( , )}
x y A
x y B

A B x x y y
∈
∈

− = − −     (6.9) 
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Also we define the above arithmetic operations with respect to one of the axes 
X or Y. As we see it below, the operation is done with respect to axis X. For 
example, when the entered data is a scalar value (i.e. 1D) and the axis Y is used to 
represent the user’s confidence degree (or vice versa): 

1 1 1 1

2 2 2 2

1 2 1 1 2 2

( , ) ( , )
( , ) ( , )

{( , )} {( , )}
X

x y A x y A
x y B x y B

A B x x y x x y
∈ ∈
∈ ∈

+ = + ∪ +    (6.10) 

1 1 1 1

2 2 2 2

1 1 2 2 1 2

( , ) ( , )
( , ) ( , )

{( , )} {( , )}
Y

x y A x y A
x y B x y B

A B x y y x y y
∈ ∈
∈ ∈

+ = + ∪ +   
 (6.11) 

1 1 1 1

2 2 2 2

1 2 1 1 2 2

( , ) ( , )
( , ) ( , )

{( , )} {( , )}
X

x y A x y A
x y B x y B

A B x x y x x y
∈ ∈
∈ ∈

− = − ∪ −   
 

 (6.12) 

1 1 1 1

2 2 2 2

1 1 2 2 1 2

( , ) ( , )
( , ) ( , )

{( , )} {( , )}
Y

x y A x y A
x y B x y B

A B x y y x y y
∈ ∈
∈ ∈

− = − ∪ −   
 

 (6.13) 

Let us define an operation of multiplication of an F-mark A  by a numeric 
value k : 

( , )

{( , )}
X

x y A

A k x k y
∈

⋅ = ⋅  
   (6.14) 

We define the Max and Min operations: 

1 1 1 1

2 2 2 2

1 2 1 1 2 2

( , ) ( , )
( , ) ( , )

( , ) {max( , ), } {max( , ), }
X

x y A x y A
x y B x y B

Max A B x x y x x y
∈ ∈
∈ ∈

= ∪   
(6.15) 

1 1 1 1

2 2 2 2

1 2 1 1 2 2

( , ) ( , )
( , ) ( , )

( , ) {min( , ), } {min( , ), }
X

x y A x y A
x y B x y B

Min A B x x y x x y
∈ ∈
∈ ∈

= ∪   
(6.16) 

To compare f-marks A  and B , we use the method adopted from the Jaccard 
compatibility measure to compare degree to which A  exceeds B : ( , )g A B≥ . We 

assume that A B>  if ( , ) ( , )g A B g B A≥ ≥> , A B<  if ( , ) ( , )g A B g B A≥ ≥<  and 

A B=  otherwise. 
For the two extended points A  and B one has [1,6] 

Max( , ) Min( , )1
( , )

2 Max( , ) Min( , )

A B A A B B
g A B

A B A A B B≥

 ∩ ∩
= +  ∪ ∪ 

   (6.17) 

      



226 6   Decision Making on the Basis of Fuzzy Geometry
 

An F-point A  can approximately be represented parametrically as 
(( , ), , )x yA M c c h w= . We use the notation ()M  to denote parametrically a 

general  
F-mark, while the set of parameters in parentheses depends on chosen 

approximation model. Without any loss of generality, we assume that 0 h w< ≤ , 

and, hence, h and w are convenient replacements for minφ  and maxφ , respectively. 

An F-line L can be (approximately) produced from a convex hull of two F-points 

1 1 1 1 1(( , ), , )x yA M c c h w=  and 2 2 2 2 2(( , ), , )x yA M c c h w= : 

( )1 1 1 1 2 2 2 2(( , ), , ), (( , ), , )x y x yL ch M c c h w M c c h w= . 

Let ( )1 1 2 2max , , ,h h w h w= , then an F-line can be represented approximately as 

an F-point: 

( )( )1 2 1 2( ) / 2, ( ) / 2 , ,x x y yM c c c c h w+ + , 

where 2 2
2 1 2 1~ ( ) ( )x x y yw h c c c c+ − + − .  

Therefore, we can parametrically represent both F-line and F-point either 
as (( , ), , )x yM c c h w  or as 1 1 2 2(( , ),( , ), )x y x yM c c c c h .  

The parameter h could visually be interpreted as the height or thickness of an F-
mark. Likewise the parameter w can be regarded as the width or length of an F-
mark. When F-marks representing information regarding a value of a scalar (1D) 
uncertain variable (e.g. a probability of an event or expected profit) are accepted 
from the user (e.g. a decision maker, a DM), the second dimension is assumed to 
express the degree of confidence (or belief or trust) of the user in the entered data. 
For example, thicker (or long) lines would mean less trustworthy data than the one 
associated with the thinner (or short) lines.  

Without loss of generality, we relate the parameter h with the degree of 
confidence of DM in the value of specified F-mark (either F-point or F-line).  

To do so we define a decreasing function ( )hσ  expressing a relationship 

between the height and the associated confidence degree for which the following 
conditions hold true: 

0
lim ( ) 1
h

hσ
→+

=  

1
1 2( , , (0))M c c σ − = ∅ , 

where 1( )dσ −  is the reciprocal function producing a confidence degree d and 

associated value of h. A suitable function could be max( ) 1 /h h hσ − −  for 

which 1
max( ) (1 )d h dσ − = − , where max(0, ]h h∈ , max 0h > . 
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Let us also introduce a function that for any F-mark 

1 1 2 2(( , ),( , ), )x y x yA M c c c c h=  returns its parameter h  ( minφ ): 

( )1 1 2 2( ) (( , ),( , ), )x y x yH A H M c c c c h h= =  

F-geometry can be effectively used in decision-making. The decision-making “if-
then” rules for an uncertain environment can be composed on the basis of F-
geometry concepts used to more adequately reflect the perceived information 
granules and relationships. F-geometry based decision-making allows for better 
modeling of the knowledge of human observer, researcher, or a DM, thereby 
making the inference system’s output more realistic (through minimizing losses of 
meaning and distortion of source information). 

Let us start with a formal problem statement. 
In an unprecisiated perception-based information setting, we consider a 

decision making problem as a 4-tuple ( ), , ,


    where the set of states of 

nature 1 2{ , ,..., }nS S S=  , corresponding probability distribution P  and set of 

outcomes   are generally considered as spaces of F-marks. The set of actions   

is considered as a set of mappings from   to . In turn, preferences 


 are to be 

implicit in some knowledge base described as some “if-then” rules, which include 
, ,   - based description of various decision making situations faced before 

and a DM’s or experts’ opinion-based evaluations of actions’ assessment U  
(combined outcome) which are also to be described by f-marks.  

A typical knowledge base may look as follows: 

If 1 2, ,..., nS S S  and ( )2 2P is iP  and…and ( )P isn inP  

Then 1 1 2 2 mU and U and ... and Ui i imU U U= = = , iα ) ... , ( 1, )i q= . 

Here iP  is the variable describing user entered F-mark for probability of the 

state of nature S j  and ijP  is an F-mark describing the probability of the state of 

nature S j  used in rule i ( 1, )i q= , S j ∈ ( 1, )j n= , n  is the number of states, 

ikU is an F-mark describing the assessment of k -th action ( 1, )k m=  in rule 

i ( 1, )i q= , m  is the number of considered alternative actions, iα is the degree of 

confidence of the expert (designer of the knowledge base) in the rule i ( 1, )i q= .  

The purpose of reasoning is to produce the vector of aggregated assessments 

1 2, ,..., mU U U  for different actions kf ( 1, )k m= . 

The best action then can be selected by ranking of F-marks describing the 
respective integrated assessments. For integrated assessments’ f-marks 

1k
fU  and 

2kf
U  (corresponding to actions 

1kf  and 
1kf  respectively), 

1kf is the better action 

if 
1 2k kf fU U> . 
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6.3   Fuzzy Geometry Gased If-Then Rules and the Reasoning 
Method 

For simplicity, let us consider that the states of nature ( , 1,iS i n= ) remain 

unchanged and thus could be removed from consideration in the rules. Then the 
above mentioned knowledge base takes on the following form: 

If  ( )1 11P is P and ( )2 12P is P  and … and ( )1P isn nP  

Then 1 11 2 12 m 1U ,U ,...,U mU U U= = = , 1α  

 

If ( )1 1P is iP  and ( )2 2P is iP  and … and ( )nP is inP  

Then 1 1 2 2 mU ,U ,...,Ui i imU U U= = = , iα  

 

If and ( )1 1P is qP  and ( )2 2P is qP  and … and ( )nP is qnP  

Then 1 1 2 2 mU ,U ,...,Uq q qmU U U= = = , qα  

 
Assume that based on available cases or expert data, the knowledge base in form 
of F-geometry based “If-Then” rules shown above has been formulated. 

The following steps describe the essence of the underlying methodology and 
reasoning procedure of decision-making using the suggested F-geometry based 
approach. 

1. Obtain the F-lines jP  from the user and apply them for Pj , 1,j n= . 

2. Obtain the minimum value of satisfaction of the fuzzy incidence axioms (A1’)-

(A4’) for all the F-lines jP  generated by the user: ( )r j , 1,j n= . If 

min( ( ))
j

r r j=  is lower than a predefined minimum threshold value (e.g., 0.3), 

ask the user to resubmit the primitives (go to step 1). 

3. For each rule compute ( )( )i ij
j

θ θ= ∧ , where ( )min , (P , )ij j ijr inc Pθ = , 1,i q=  

4. For each rule compute i i iR θ α= ⋅  

5. Find the indexes i  of the rules for which miniR R≥ , where minR  is the 

minimum creditability value that a rule must exhibit to be activated. For all 

such rules ' min , ' 1, ', 'iR R i q q q≥ = ≤ , where 'i  are new indexes for the rules 

after removing those for which the above condition fails. If there are no such 
rules repeat the process starting from step 1. 
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6. Compute aggregated output components from all rules: 

( )
k

' '
' 1, '

f
'

' 1, '

U
k

i k i
i q

f
i

i q

U R

U ch
R

=

=

 ⋅
 

= =  
 
 




, ( 1, )k m= . 

7. Do ranking of the output F-marks kU , ( 1, )k m= , and choose the best action 

depending on the index besti  such that U U
besti k≥ , ( 1, )k m= .  
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Chapter 7 
Fuzzy Logic Based Generalized Theory of 
Stability 

7.1   Underlying Motivation 

Stability is one of the most essential properties of complex dynamical systems, no 
matter whether technical or human-oriented (social, economical, etc.). In classical 
terms, the stability property of a dynamical system is usually quantified in a binary 
fashion. This quantification states whether the system under consideration reaches 
equilibrium state after being affected by disturbances. Even if we define a region 
of stability, in every point of operation of the system we can only conclude that 
“the system is stable” or “the system is unstable”. No particular quantification as 
to a degree of stability could be offered. In many cases when such a standard 
bivalent two-valued definition of stability is being used, we may end up with 
counterintuitive conclusions.  

In contrast, human-generated statements would involve degrees of stability 
which are articulated linguistically and expressed by some fuzzy numbers which 
link with some quantification of stability positioned somewhere in-between states 
of being absolutely stable and absolutely unstable i.e., a stability degree could be 
expressed by a fuzzy number defined over the unit interval in which 0 is treated as 
absolutely unstable and 1 corresponds to that state that is absolutely stable. It is 
then advantageous to introduce linguistic interpretation of degrees of stability, i.e., 
a degree of stability becomes a linguistic variable assuming terms such as 
“unstable”,  “weakly stable”, “more or less stable”, “strongly stable”, “completely 
stable” each of them being described by the corresponding fuzzy numbers defined 
over [0,1] [2] . 

We can conclude that the concept of stability is a fuzzy concept in the sense 
that it is a matter of degree. In general, fuzzy concepts cannot be defined within 
the conceptual framework of bivalent logic [49]. If the concept of stability cannot 
be defined within the conceptual structure of bivalent logic, then how can it be 
defined? What is needed for this purpose is PNL (Precisiated Natural Language) - 
a language that is based on fuzzy logic – on logic in which everything is or is 
allowed to be a matter of degree [47]. To define a concept through the use of PNL, 
with PNL serving as a definition language, the concept is defined in a natural 
language; second, the natural language is precisiated. Since fuzzy sets regarded as 
basic information granules are human-centric, fuzzy stability concept meets  
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user-defined objectives and is not counterintuitive. Unlike bivalent-logic-based 
definitions of stability, PNL-based definitions of stability are context-dependent 
rather than context-free. Human-centricity of stability has become even more 
essential. 

Accuracy has been a dominant facet of mathematics. However, as the systems 
under study become more and more complex, nonlinear or uncertain, the use of 
well-positioned tools of fully deterministic analysis tends to exhibit some 
limitations and show a lack of rapport with the real world problem under 
consideration. As a matter of the fact, this form of limitation has been emphasized 
by the principle of incompatibility [48]. 

In many cases, information about a behavior of a dynamical system becomes 
uncertain. In order to obtain a more realistic model of reality, we have to take into 
account existing components of uncertainty. Furthermore, uncertainties might not 
be of probabilistic type. The generalized theory of uncertainty (GTU), outlined by 
Prof. L.A. Zadeh in [51], breaks with the tradition of viewing uncertainty as a 
province of probability and puts it in a much broader perspective. In this setting, 
the language and formalism of the dynamic fuzzy “if-then” rules and fuzzy 
differential equations (FDE) [1,3,5,7,12-14,17,18,21,24,31] become natural ways 
to model dynamical systems. 

In this study, we propose a setting of the Generalized Theory of Stability (GTS) 
for complex dynamical systems, described by fuzzy differential equations (FDEs). 
Different PNL-based definitions of stability of dynamical systems are introduced. 
Also fuzzy stability (FS) of systems, binary stability of fuzzy systems (BFS), binary 
stability of systems (BS) which are special cases of GTS are considered. The 
introduced definitions offer a continuous classification of stability solutions by 
admitting different degrees of stability. We also show that under some conditions, 
the fuzzy stability coincides with classical notion of stability of a Boolean character. 

7.2   Classical Stability Theory 

In general, in classical stability theory there are two fundamental approaches for 
investigating stability of dynamical systems. The first approach is related to 
Lyapunov stability theory [9], while the second one is based on the Lipschitz 
stability theory [11]. For linear systems, the concepts of stability by Lipschitz and 
Lyapunov are the same, while for nonlinear systems these concepts differ. It can 
be shown that the system identified to be Lipschitz stable, is also Lyapunov stable, 
but not vice-versa [11]. In what follows, we briefly recall the concepts and offer 
some comparative analysis. 

Consider a nonlinear differential system  

0 0( , ), ( ) , nx f t x x t x x R′ = = ∈ , ( ,0) 0f t ≡ . 
 
    (7.1) 

where ( , )f t x  is Lipschitz continuous with respect to x  uniformly in t  and 

piecewise continuous in t . Its associated variational systems are 

                 ( ,0) ,xy f t y′ ′=  
 

(7.2) 
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                     0 0( , ( , , )) ,xz f t x t t x z′ ′=  
 

(7.3) 

where ,n nf C R R R+ ∈ ×   and xf ′  denotes 
f

x

∂
∂

 which exists and continuous 

on nR R+ × , 0 0,t ≥ ( ,0) 0f t ≡ , 0 0( , , )x t t x  is the solution of  (7.1), 

0 0 0 0( , , )x t t x x= . 

The zero solution ( ) 0x t =  of the system (7.1) is called Lyapunov stable, if 

given any 0>ε , +∈ Rt0  there exists 0),( 0 >= tεδδ  that is continuous in 

+∈ Rt0 , such that δ<0x  implies ε<),,( 00 xttx  for 0tt ≥ . If δ  is 

independent of 0t , then the zero solution ( ) 0x t =  of the system (7.1) is called 

uniformly Lyapunov stable. 
The basic theorem of Lyapunov gives sufficient conditions for the stability of the 

origin of a system. Here the problem of ensuring stability is related to the presence of 
a so-called special function of Lyapunov V, and the satisfaction of the inequality 

0
dV

dt
≤ . The indirect method of Lyapunov uses the linearization of the original 

dynamical system (7.1) in order to determine the local stability of the original system.  
Let us now consider the Lipschitz stability [11]. The zero solution 0)( =tx  of 

(7.1) is said to be uniformly Lipschitz stable if 0>∃M  and 0>δ  such that 

0 0 0( , , )x t t x M x≤ , whenever δ≤0x  and 00 ≥≥ tt . Also, if we 

consider its associated variational systems [9] then the zero solution 0)( =tx  of 

(7.1) is said to be uniformly Lipschitz stable in variation, if 0>∃M and 0>δ  

such that Mxtt ≤Φ ),,( 00 , for δ≤0x  and 00 ≥≥ tt , where 

),,( 00 xttΦ  is the fundamental matrix solution of  the variational equation (7.3).  

So far we have reviewed the fundamental concepts pertinent to the two-valued 
(binary) stability of systems (BS). Now let us consider binary stability of fuzzy 
systems (BFS stability). A huge number of books and papers is devoted to stability 
analysis of fuzzy controllers [4,6,10,15,16,19,20,22,25,26,29,30,32,34,36,37,38, 
39,41,44,46,53]. In most of works the describing function, the Popov criterion, the 
circle criterion [15,25,26,34,36] and the criterion of hyperstability are used for 
stability analysis of fuzzy controllers. Often with the purpose  of stability analysis 
of fuzzy control systems Lyapunov functions are used [6,20,41,44], especially for 
systems with TSK representation. But the existence of Lyapunov function is 
normally the critical point of this method. Tanaka and Sugeno [39] demonstrated 
that the stability of a Takagi-Sugeno (T-S) model could be focused on finding a 
common positive definite matrix P to the quadratic Lyapunov equation.  In [37] a 
new approach for the stability analysis of continuous Sugeno Type II and III fuzzy 
systems is proposed. It is based on the use of positive definite and fuzzy negative 
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definite systems under arguments similar to those of standard Lyapunov stability 
theory. Several refinements following the central issue arose in 
[8,23,28,40,43,45,]. Main essential defect of these methods is that they need the 
separation of the dinamical system into a linear and nonlinear parts. However, for 
fuzzy dinamical systems quite often the required separation would not be possible.  

The investigation of stability of fuzzy systems described by FDE is considered 
in [18,31]. Considered is a fuzzy differential system  

( , )x f t x′ =  , 
 

     (7.4) 

where 1 ,n nf C R E E+ ∈ ×  , 0 0 0 0( ) , ,nx t x E t t t R+= ∈ ≥ ∈  , ˆ ˆ( ,0) 0f t ≡  

The stability analysis of (7.4) is reduced to an investigation of a binary stability 
of a scalar differential equation 

0 0( , ), ( ) 0w g t w w t w′ = = ≥ . 

This equation is called a scalar comparative differential equation and is obtained from 
(7.4) by means of Lyapunov-like functions. Stability of the zero solution of the scalar 
comparative differential equation implies stability of the zero solution of (7.4). 

We mention that the existing methods of stability analysis of a fuzzy system 
(not completely fuzzified system) is reduced to an investigation of a crisp system. 

Summarizing, in all these investigations, the stability analysis of a fuzzy system 
is reduced to the use of the binary stability technique (the “yes – no” stability 
outcome) without any further refinement that could involve a possible 
quantification of stability degrees of systems under consideration. The outcome of 
the analysis also stresses that the classical binary stability concepts could become 
quite counterintuitive by ignoring possible gradation of the concept of stability. As 
an example, let us consider the equilibrium states of mechanical systems shown in 
Fig. 7.1, Fig. 7.2, and Fig. 7.3. Fig. 7.1 depicts an equilibrium state of a system 
consisting of a rod and a bar placed on it.  
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Fig. 7.1 The equilibrium state of a mechanical system 
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In the Fig. 7.1 we used the following notation pertaining to the parameters of 
the system: 

h  – the half of the bar’s thickness, 
r  – the radius of the rod,  
ϕ  – an angle of bar’s turn,  

C  – the center of the bar,  

O  – the center of the rod, where we place the origin of the coordinate system,  

Cy  – the distance between the center of the bar and the x axis. 

Potential energy of a gravity of the bar is expressed as ( )Cmg y h rΠ = − −  

(Fig. 7.2). 
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             (a)                                   (b)                                (c) 

Fig. 7.2 Examples of different equilibrium states 

In terms of Lyapunov stability, in all the three cases shown above the system is 
stable no matter how large the thickness of the bar is. But using intuitive or 
qualitative assessment of stability in each case we arrive to different conclusions. By 
reviewing the system more carefully, we note that in Fig. 7.2 (a) the state of the 
system is strongly stable, in Fig. 7.2 (b) the state of the system is more or less stable, 
in Fig. 7.2 (c) the state of the system is weakly stable. The classical theory of stability 
does not offer any classification with respect to the varying degrees of stability.  

Fig. 7.3 brings another set of examples involving different equilibrium states of 
the system which consist of a platform and a ball placed on it. Again, in terms of 
 
 

 
         (a)                                         (b)                               (c) 

Fig. 7.3 Different equilibrium states 
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Lyapunov stability, the system is stable no matter how large the diameter of the 
ball is. Our intuition suggests a certain gradation of the concept of stability. The 
system shown in Fig. 7.3 (a) is strongly stable, in Fig. 7.3 (b) the system is more 
or less stable, and in Fig. 7.3 (c) the system is weakly stable. 

7.3   Fuzzy Stability Concept 

As it has been shown above, we need to introduce the concept of fuzzy stability. 
Prof. L. Zadeh firstly addressed the problem of fuzzy stability of the dynamical 
systems (FS) [50]. He considered a differential system  

( )x f x′ = ,  nx R∈ , 0 0x =  
 
 

(7.5) 

and concluded that system (7.5) is F-stable [50] if its zero solution satisfies fuzzy 

Lipschitz condition with respect to 0xΔ .  

This concept of stability of a dynamical system may be called as fuzzy stability of 
a system. In turn, a stability degree can be expressed by a fuzzy number or a single 
numeric quantity with its values between zero (absolutely unstable) and one 
(absolutely stable). In light of this, it is necessary to introduce linguistic 
interpretation of degree of stability, i.e., a degree of stability itself becomes a 
linguistic variable, whose terms could be, for example, represented as fuzzy sets 
with some well-defined semantics, say “unstable”, “weakly stable”, “more or less 
stable”, “strongly stable”, “completely stable”. In other words, each of these terms is 
expressed by a fuzzy number defined in the closed interval [0,1]. Let us note that we 
sometimes use linguistic terms to evaluate a state of a system under consideration. 
For example, in modeling macro economical processes economists often verbally 
evaluate a stability of an equilibrium point. In particular, for economical inflation 
dynamics described by nonlinear equation, they use such terms as “weakly stable”, 
“semi-stable”, “weakly unstable” to evaluate stability of an equilibrium point.  

Given some concepts of stability discussed so far, we can arrive at certain 
taxonomy, Table 1, in which we involve two axes, namely a type of stability and a 
form of the system under study. This brings forward four general cases. 

Table 7.1 Overview of studies devoted to stability theory versus the classes of systems and 
the concept of stability 

  Stability 

  binary fuzzy 

             
Systems 

system 
Lyapunov stability [9] 
Lipschitz stability [11] 

Fuzzy Lipschitz 
stability [51] 

fuzzy         
system 

Lyapunov stability [6,18,20,31,35, 
41,44,52] 
Lipschitz stability [2,3] 
Popov criterion, circle criterion etc  
[15,25,26,34,36] 
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It becomes apparent that there are no studies devoted to fuzzy stability of fuzzy 
dynamical systems (shaded region of the table). Our intent is to make this table 
complete by considering GTS in the setting of complex dynamical systems 
described by FDE.  

As opposed to the existing technique of stability analysis of fuzzy systems in 
the approach suggested by us an original fuzzy system described by FDE is 
investigated directly. But main advantage of the methodology proposed is to 
consider and investigate linguistic degree of stability. Linguistic stability (fuzzy 
stability) corresponds to human intuition as opposed to binary view of stability 
(stable-unstable) which is counterintuitive. We propose methodology that allows 
constructing systems with the predefined linguistic degrees of stability. This 
provides to design both high-stable control systems when there are high 
requirements for reliability and safety (e.g. for control of atomic and chemical 
reactors, planes etc), and also to save expenses in construction of systems without 
redundant stability factors. Different PNL-based definitions of stability of 
dynamical systems are introduced. Also fuzzy stability of systems (FS), binary 
stability of fuzzy system (BFS), binary stability of systems (BS), which are 
particular cases of GTS, are discussed and contrasted. The introduced definitions 
give a continuous classification of stability solutions into different degrees of 
stability and coincide with classical stability under some conditions. 

7.4   The Statement of the Generalized Stability Problem 

Let us consider a fuzzy differential system 

( , )x f t x′ =   
 

    (7.6) 

where f  in (11) is continuous and has continuous partial derivatives 
f

x

∂
∂

 on 

nR E+ × ,i.e. 1 ,n nf C R E E+ ∈ ×  , and 0 0 0 0( ) , ,nx t y E t t t R+= ∈ ≥ ∈  . 

Definition 7.1. The solution 0 0( , , )x t t y   of the system (7.6) is said to be fuzzy 

Lipschitz stable with respect to the solution 0 0( , , )x t t x   of the system (7.6) for 

0tt ≥ , where 0 0( , , )x t t x   is any solution of the system (7.6), if there exists a 

fuzzy number 0( ) 0M M t= >   , such that   

0 0 0 0 0 0 0( , , ) ( , , ) ( )h hfH fH
x t t y x t t x M t y x− ≤ −       

 
 (7.7) 

If M  is independent on 0t , then the solution 0 0( , , )x t t y   of the system (7.6) is 

said to be uniformly fuzzy Lipschitz stable with respect to the solution 

0 0( , , )x t t x  . 
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Let 0 0( , , )x t t x   be the solution to (7.6) for 0t t≥ . Then  

0 0
0 0

0

( , , )
( , , )

x t t x
t t x

x

∂Φ =
∂

  


 exists and is the fundamental matrix solution of 

the variational equation 

0 0( , ( , , ))
'

f t x t t x
z z

x

∂=
∂
  


,   (7.8) 

and 0 0

0

( , , )x t t x

t

∂
∂

 
 exists, is a solution of (7.8), and satisfies the relation:  

0 0
0 0 0 0

0

( , , )
( , , ) ( , ) 0

x t t x
t t x f t x

t

∂ + Φ =
∂

     ,  for 0t t≥ . 

Definition 7.2. The solution 0 0( , , )x t t y   of the system (7.6) through 0 0( , )t y  for 

0t t≥  is said to be fuzzy Lipschitz stable with respect to the solution  0 0( , , )x t t x   

of (7.6) for 0t t≥ , where 0 0( , , )x t t x   is any solution of the system (7.6) if and 

only if there exist 0( ) 0M M t= >    and 0δ >   such that 

0 0 0 0 0 0 0( , , ) ( , , ) ( )h hf f
x t t y x t t x M t y x− ≤ −       for 0t t≥ ,provided 

0 0 f
y x δ− ≤   . If M  is independent of 0t , then the solution 0 0( , , )x t t y   of 

the system (7.6) is uniformly fuzzy Lipschitz stable with respect to the solution 

0 0( , , )x t t x  . 

Definition 7.3. The solution 0 0( , , )x t t y   of system (7.6) through 0 0( , )t y  for  

0t t≥  is said to be fuzzy Lipschitz stable in variation with respect to the solution 

0 0( , , )x t t x   of (7.6) for 0t t≥ , where 0 0( , , )x t t x   is any solution of the system 

(7.6) if and only if there exist 0( ) 0M M t= >    and 0δ >   such that 

0 0 0( , , ) ( )
f

t t y M tΦ ≤    for 0t t≥ , provided 0 f
y δ≤  , where 0 0( , , )t t yΦ   

is the fundamental matrix solution of (7.8) such that 0 0 0( , , )t t y IΦ =   .  

If M  is independent of 0t , then the solution 0 0( , , )x t t y   of the system (7.6) is 

uniformly fuzzy Lipschitz stable in variation with respect to the solution 

0 0( , , )x t t x  . 
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Definition 7.4. The solution 0 0( , , )x t t x   of system (7.6) through 0 0( , )t x  for 

0t t≥  is said to be asymptotically fuzzy Lipschitz stable in variation if 

0

( , )
t

f

t

t s ds MΦ ≤   for every 0 0t ≥  and all 0t t≥ , where 0( , )t tΦ  is the 

fundamental matrix solution of (7.8) such that 0 0( , )t t IΦ =  .  

Remark. The theory of FDE which utilizes the Hukuhara derivative (H-derivative) 

has a certain disadvantage that the ( )( )( )diam x t
α

 of the solution ( )x t  of FDE 

is a nondecreasing function of time [17,24]. As it was mentioned in [17], this 
formulation of FDE cannot reflect any rich behavior of solutions of ODE, such as 
stability, periodicity, bifurcation and others, is not well suited for modeling 
purposes. In view of this it is useful to utilize b)-type of strongly generalized 
differentiability. For example, let us consider the following FDE: 

x x′ = −  , 

The solution of the numeric analogon of this equation, that is y y′ = −  comes in 

the form 0
ty y e−= . This solution is stable. If we use H-derivative ( a) - type of 

strongly generalized differentiability for the above FDE, then α -cut of its 

solution is 
0 0 0 0

1 1
( ) ( )

2 2
t t

l l r l rx x x e x x eα α α α α −= − + + ,
0 0 0 0

1 1
( ) ( )

2 2
t t

r r l l rx x x e x x eα α α α α −= − + + . 

In general it is not stable, and so, we lose the stability property. But if we use b)-
type of strongly generalized differentiability, then α -cut of its solution is 

0 0,t t
l l r rx x e x x eα α α α− −= = . It is stable and coincides with the solution obtained 

before for the numeric case. 

7.5   Stability Criteria 

In stability theory an object to be investigated is a given solution of some equations 
system. In the case when the general solution of the system is known, it is possible 
to investigate a given solution by a direct analysis of the general solution. But as it is 
difficult to obtain general solutions of nonlinear differential equations, it is needed to 
develop some criteria which allow investigating stability of a given solution when a 
general solution is unknown. Here we present the Direct and Indirect methods for 
Lipschitz stability analysis of the systems described by FDE. 

The Direct Method 

Theorem 7.1. Let us consider the solutions 0 0( , , )x t t y  , 0tt ≥ , and 0 0( , , )x t t x  , 

0tt ≥  of the system (7.6). Let us assume the following 
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1) There exists a fuzzy number 0( )L t , such that 

0

0( ) ( )
t

s ds L tλ
∞

=   , where 

[ )( ) 0, ,s C E Eλ + ∈ ∞ ⊂ 
 , { },supp( ) 0E Eλ λ+ = ∈ ≥  .  

2) f  satisfies the following fuzzy Lipschitz condition with respect to x : 

0 0 0 0 0 0( , ( , , ) ( , , )) ( , ( , , )) ( ) ( )h fH fH
f t v t t v x t t x f t x t t x t v tλ+ − ≤        , where 

0 0 0 0 0 0( , , ) ( , , ) ( , , )hv t t v x t t y x t t x= −      . 

Then the solution 0 0( , , )x t t y   of the system (7.6) is fuzzy Lipschitz stable with 

respect to 0 0( , , )x t t x  . 

Proof. Let us consider the solutions 0 0( , , )x t t y  , 0tt ≥ , and 0 0( , , )x t t x  , 

0tt ≥ , of the system (7.6). Then 

0 0 0 0 0 0( , , ) ( , , ) ( , , )hv t t v x t t y x t t x= −      , 
 

   (7.9) 

0 0 0 0 0 0 0 0( , , ) ( , ) ( , ( , , ) ( , , )) ( , ( , , ))hv t t v F t v f t v t t v x t t x f t x t t x′ = = + −         , 
 

 (7.10) 

0 0 0 0 0 0( , ) ( , ( , , ) ( , , )) ( , ( , , ))h fHfH
F t v f t v t t v x t t x f t x t t x= + −        . 

 
 (7.11) 

Integrating (7.10) with respect to s  from 0t  to t  and taking the norm yields: 

0

0 0 0( , , ) ( ) ( , ( ))
t

t

v t t v v t F s v s ds= +      , 

     

0 0

0 0 0 0 0 0( , , ) ( , ( )) ( , ( ))
t t

h hfH fH fH fH
t tfH

v t t v y x F s v s ds y x F s v s ds≤ − + ≤ − +           

According to (7.11) and condition 2), 

0

0 0 0 0( , , ) ( ) ( )
t

hfH fH fH
t

v t t v y x s v s dsλ≤ − +       . 

Let us denote 0 0( ) ( , , )
fH

z t v t t v=   . Then 

0

0( ) ( ) ( ) ( )
t

t

z t z t s z s dsλ≤ +      
 
(7.12) 
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But as ( ), ( ), ( ), ( ) 0l r l rz t z t t t ≥α α α αλ λ , then  

0

0( ) ( ) ( ) ( )
t

l l l l

t

z t z t s z s dsα α α α≤ + λ , 

0

0( ) ( ) ( ) ( )
t

r r r r

t

z t z t s z s dsα α α α≤ + λ . 

Using Gronwall’s inequality, from (7.12), we get  

0

( )

0( ) ( )

t

l

t

s ds

l lz t z t e

αλ
α α


≤ ,  0

( )

0( ) ( )

t

r

t

s ds

r rz t z t e

αλ
α α


≤ . 

So,  

0

( )

0( ) ( )

t

t

s ds

z t z t e
λ

≤


  . 

Using condition 1) of the Theorem for ( )sλ  yields: 

0( )
0( ) ( ) L tz t z t e≤   . 

This implies  

0( )
0 0 0 0 0 0( , , ) ( , , ) L t

h hfH fH
x t t y x t t x e y x− ≤ −      . 

But as 0( )L t  is fuzzy, 0( )L te


 is also fuzzy, and for some 0( )L tM e≥  ( M  is 

fuzzy, for example, when M  is 0( )L te


) we have 

0 0 0 0 0 0( , , ) ( , , )h hfH fH
x t t y x t t x M y x− ≤ −      . 

The proof is complete.  

In other words, the obtained M  provides the stability of system (7.6) 

according to (7.7). M  must be equal or greater than 0

( )
t

t dt

e
λ

∞

 
. Let us note that 

M  can be crisp too. (7.7) is soft constraint and degree of its satisfaction gives 
degree of stability of a considered dynamical system.  

The Indirect Method 

Theorem 7.2. Let 0( , )t tΦ  be the fundamental matrix of (7.8). If there exist 

positive continuous functions ( )k t  and 1( )h t E∈ , 0t t≥ , such that 
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0

( ) || ( , ) || ( )
t

f

t

h s t s ds k tΦ ≤       for 0 0t t≥ ≥ ,     (7.13) 

and 

1

( )
( ) exp

( )

t

t

h s
k t ds K

k s

 
− ≤  
 

 
   for 1 0t t t≥ ≥ ,     (7.14) 

where 1K E∈  is a fixed positive constant, then the solution 0 0( , , )x t t y   of (7.6) 

is uniformly fuzzy Lipschitz stable. 

Proof. Let 
0

1
( )

|| ( , ) || f

b t
t t

α
α=

Φ
.  

Furthermore, it satisfies 0 0( ,  ) ( ,  ) ( , )t s s t t tα α αΦ Φ = Φ  and 
1

0 0( ,  ) = ( , )t t t tα α−Φ Φ .  

Then 

0 0

0( ) ( ) ( , ) ( , ) ( , ) ( ) ( )
t t

t t

h s b s ds t s t s s t b s h s dsα α α α α α α
 

Φ = Φ Φ  
 
  . 

Hence 

0 0

1
( ) ( ) ( ) || ( , ) || ( )

( )

t t

f

t t

h s b s ds h s t s ds k t
b t

α α α α α
α

 
≤ Φ ≤  

 
  . 

Let 

0

( ) ( ) ( )
t

t

B t h s b s dsα α α=  . Then ( ) ( ) ( )( ( ))h t B t k t B tα α α α′≤  or 

( )
( ( )) ( )

( )

h t
B t B t

k t

α
α α

α′ ≥ . 

Multiplying both sides by 

0

( )
exp

( )

t

t

h s
ds

k s

α

α

 
−  
 
 , for some 1 0t t≥ , we obtain 

1

( )
exp ( ) 0

( )

t

t

d h s
ds B t

dt k s

α
α

α

  
 − ⋅ ≥     

 . 

This implies that 

1

1

( )
exp ( ) ( )

( )

t

t

h s
ds B t B t

k s

α
α α

α

 
− ⋅ ≥  
 
 .  
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Thus 

1

1

( )
( ) ( )exp

( )

t

t

h s
B t B t ds

k s

α
α α

α

 
≥   

 
 .  

It is clear that 

1

1

( )
( ) ( ) ( ) ( )exp

( )

t

t

h s
k t b t B t B t ds

k s

α
α α α α

α

 
≥ ≥   

 
 .  

Hence 

1

0
1

1 ( ) ( )
|| ( , ) || exp

( ) ( ) ( )

t

f

t

k t h s
t t ds

b t B t k s

α α
α

α α α

 
Φ = ≤ −  

 
 . If we now 

take 
1( )

K
N

B t

α
α

α≥ , we obtain 0|| ( , ) || ft t Nα αΦ ≤ . For M N≥   we have 

0 0 0 0 0 0( , , ) ( , , )h hf f
x t t y x t t x M y x− ≤ −      .  

The theorems 7.1, 7.2 provide a possibility to find a number M  (if it exists), 
which determines the maximal value of divergence between the investigated and 

disturbed solutions. The number M  gives information on degree of stability of a 
considered system and we will take into account its value in our measure of degree 
of stability. 

7.6   Examples 

Example 7.1. Let an economical inflation process changes as provided by the 
differential equation: 

2( )

a
y y

b t
′ =

+
  , 1

0( ) ,y t E∈  00 =t ,   (7.15) 

where y  is a value of inflation. At first let a = 1
~

, where 1
~

 is a fuzzy number 

with a membership function shown in Fig. 7.4.  

  0.2       1         1.8

( )a xμ   

x

1 

 

Fig. 7.4. Triangular membership function of the fuzzy number 1
~
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Using α  cuts, we obtain 1 (1 ,1 )l r
α α α= , where 

1 1 0.8(1 ), 1 1 0.8(1 )l r
α αα α= − − = + − . 

Let us verify if the second condition of the Theorem 7.1. is satisfied. Denote 

( , ) , ( , )f t x f f t y f= =  . Using α  cuts, one has 

( , ) ( , )h fH
f t y f t x

α

− =  ( ),l l r rf f f fα α α α− − , 

where  

2 2 2 2

1 1 1 1
, , ,

(1 ) (1 ) (1 ) (1 )l r l r

l r l r

f y f y f x f x
t t t t

α α α α
α α α α       

= = = =       + + + +       
     

Considering the cases when  

0, 0l lx yα α≥ ≥ ; 

0, 0l lx yα α≥ ≤ , 0, 0r rx yα α≥ ≥ ;  

0, 0l lx yα α≥ ≤ , 0, 0r rx yα α≥ ≤ ; 

0, 0l lx yα α≤ ≥ , 0, 0r rx yα α≤ ≥ ; 

0, 0l lx yα α≤ ≥ , 0, 0r rx yα α≥ ≥ ; 

0, 0l lx yα α≤ ≤ , 0, 0r rx yα α≤ ≤ ; 

0, 0l lx yα α≤ ≤ , 0, 0r rx yα α≥ ≥ ; 

0, 0l lx yα α≤ ≤ , 0, 0r rx yα α≤ ≥ ; 

0, 0l lx yα α≤ ≤ , 0, 0r rx yα α≥ ≤  

we found that  

2

1

(1 )
r

l l l lf f y x
t

α
α α α α− ≤ −

+
, 

2

1

(1 )
r

r r r rf f y x
t

α
α α α α− ≤ −

+
 

always hold. But the inequality  

1 1 1 1
2

1

(1 )
f f y x

t
α α α α= = = =− ≤ −

+
 

also always holds. Therefore,  

( )max ,l l r rf f f fα α α α− − ≤
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( )2

1
max ,

(1 )
r

l l r ry x y x
t

α
α α α α− −

+
. 

The fuzzy Haussdorff distance between ( ) ( ), , ,f t y f t x   is defined as 

( ) ( )( ) ( ) ( )( )( ) ( ), , , , , , , max ,fH H l l r rd f t y f t x d f t y f t x f f f fα α α α α α

α α

α= = − −    
 

Using α  cuts  

( ) ( )( )( )
( )( ) ( )( )( )1 1 1 1

, , ,

min ,max , ,max ,max , .

fH

l l r r l l r r

d f t y f t x

f f f f f f f f f f f f

α

α α α α α α α α α α α α= = = =

=

= − − − − − −

 
 

But  

( )( ) ( )( )( )1 1 1 1min ,max , ,max ,max ,l l r r l l r rf f f f f f f f f f f fα α α α α α α α α α α α= = = =− − − − − − =

( )( )1 1 ,max ,l l r rf f f f f fα α α α α α= == − − − , because there exists the 

Hukuhara difference between ( , ), ( , )f t y f t x  , i.e.  

( ) ( )( )( ) ( ) ( )( )( ) 1
, , , , , ,fH fHl

d f t y f t x d f t y f t x
α α =

=    . 

Similarly,  

( )( ) ( )( )1 1, ,max ,fH l l r rd y x y x y x y x
α α α α α α α= == − − −  , 

i.e. ( )( ) ( )( ) 1
, ,fH fHl

d y x d y x
α α =

=    .  

As ( )max ,l l r rf f f fα α α α− − ≤ ( )2

1
max ,

(1 )
r

l l r ry x y x
t

α
α α α α− −

+
, 

and 1 1 1 1
2

1

(1 )
f f y x

t
α α α α= = = =− ≤ −

+
, we can write  

( ) ( )( )( ) ( ) ( )( )( ) 1 1 1
2

1
, , , , , ,

(1 )fH fHl
d f t y f t x d f t y f t x y x

t

α α α α= = == ≤ −
+

   

( ) ( )( )( ) ( )2

1
, , , max ,

(1 )
r

fH l l r rr
d f t y f t x y x y x

t

αα α α α α≤ − −
+

  . 
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Then  

( )( ) ( )( )( )( , ), ( , ) , ( , ), ( , )fH fHl r
d f t y f t x d f t y f t x

α α
≤   

 

( )( )1 1
2 2

1 1
, , max ,

(1 ) (1 )
r

l l r ry x y x y x
t t

α
α α α α α α= = 

≤ − − − + + 
.  

Let us denote ( ) 2 2

11
, ,

(1 ) (1 )
r

l rA A
t t

α
α α  

=  + + 
. Then we can write 

( ) ( )( ) ( )2
, , , ,

(1 )fH fH

A
d f t y f t x d y x

t
≤

+


    , where the obtained fuzzy 

number A  is shown in Fig. 7.5. 

Then 
2

( )
(1 )

=
+

 A
t

t
λ , and 

2
0

(0)
(1 )

∞

= =
+
  A

L dt A
t

. 

Hence, if  

≥ =  L AM e e , i.e  ( ) ( ) ( ), ,l rA AA A A

l r
M e e e e e

α αα α αα    = = =    


. 

Then ( ) ( )( ) ( )0 0, ,fH fHd y t x t Md y x≤     , i.e. the solution ( )( )0 0, ,y t t y t   

of  (7.15) is Lipschitz stable with respect to the solution ( )( )0 0, ,y t t x t  . 

1 

         1         1.8

( )A xμ   

x
 

Fig.7.5 Fuzzy number A  bounding the Hukuhara difference 

Let us at first introduce generic terms of the linguistic variable of the “degree 
of stability”: “Unstable”, “Weakly stable”, “More or less stable”, “Strongly 
stable”, “Completely stable”. They are shown in Fig. 7.6 and reflect our 
perception of qualitative (linguistic) stability of the system. Obviously one could 
use different membership functions, however those presented here have been 
selected because of their underlying semantics and usefulness in further 
processing.  
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Weakly              More or less                        Strongly      Completely
   stable                   stable                                 stable          stable  μ 

x 0         0.25         0.5            0.85              1    

1 

Unstable

 

Fig. 7.6 Linguistic terms – fuzzy sets of degree of stability 

The degree of stability will be determined by considering the scaled distance 

between the left and the right parts of the inequality −)~,,(~
00 ytty  

fHh xtty )~,,(~
00 fHh xyM ~~~

0 −≤ . Formally, to define the degree of stability we 

use the following formula: 

 0 0 0 0 0 0

0 0

( , , ) ( , , ) hfH fH fH

h fH

y t t y y t t x M y x
Deg

M y x

− − −
=

−

     

  
,   (7.16) 

,l rDeg Deg Degα α α = =   

( ) ( )
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

( , , ) ( , , ) ( , , ) ( , , )
,

h hfH fH fH fHfH fHl r

h hfH fHl r

M y x y t t y x t t x M y x y t t y x t t x

M y x M y x

α α

α α

    − − − − − −    
    =
 − − 
  

            

    
 

( ) ( ) ( )( )
( )

( ) ( ) ( )( )
( )

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

, , , , , , , ,

,
l h h r hfH fHfH fHl rl r

l h r hfH fHl r

M y x yt t y xt t x M y x yt t y xt t x

M y x M y x

α αα αα α

α αα α

 
− − − − − − 

 =
 − − 
 

           

   
. 

The initial conditions 0y  and 0x  of the solutions ( )0 0, ,y t t y   (investigated 

solution), and ( )0 0, ,y t t x   (an arbitrary solution) we choose as triangular fuzzy 

numbers. Let us evaluate the distance at 1t = . To present a procedure of Degα  

calculation, let us consider the cases 0,α =  0.5,α =  1α = : 
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[ ]

0 0 0 4*2.718 6.595 4.5*6.05 11.068
, ,

10.873 27.223

10.873 6.595 27.223 11.068
, 0.393,0.593 ;

10.873 27.223

l rDeg Deg Degα= α= α=  − − = = =  
 

 − −
= ≈ 
 

0.5 0.5 0.5 4*2.718 6.595 4.25*4.055 8.558
, ,

10.873 27.223l rDeg Deg Degα= α= α=  − − = = =  
 

[ ]10.873 6.595 17.235 8.558
, 0.393,0.499 ;

10.873 17.235

 − −
= ≈ 
 

 

1 1 1 4*2.718 6.595 4*2.718 6.595
, ,

10.873 10.873

10.873 6.595 10.873 6.595
, 0.393.

10.873 10.873

l rDeg Deg Degα= α= α=  − − = = =  
 

 − −
= ≈ 
 

 

 
Fig. 7.7 displays the degree of stability being the result of the computing shown 

above.  

1

     0.39�         0.59
x�

μDeg(x)�

 

Fig. 7.7 The degree of stability 

The core of this fuzzy number is approximately equal to 0.39. Approximating 
this fuzzy number by a triangular membership function and using (1.57) (section 
1.4)  we calculate the possibility measure of the similarity between the latter and 
the terms present in the codebook (Fig. 7.6). The possibility measure of this fuzzy 
number and the term “weakly stable” is approximately 0.43, whereas that of the 
possibility of this fuzzy number and the term “more or less stable” is 
approximately 0.76. Based on this computing, we conclude that the system is 
more or less stable. 
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Let now consider a = 1
~

, where 1
~

 is defined as shown in Fig. 7.8. The degree 
of stability is calculated following the same procedure as before and the result 
becomes expressed by the fuzzy number, see Fig. 7.9. 

The core of the resulting fuzzy number is approximately 0.39. The possibility 
measure of this fuzzy number and the term “weakly stable” is approximately 0.43, 
whereas that of this fuzzy number and the term “more or less stable” is 
approximately 0.7. Hence we can conclude that the system is more or less stable. 

When 1a = , i.e., it is a single numeric value, the degree of stability is shown 
in Fig. 7.10. In other words, the degree of stability is numeric and equal to 0.39. 
The membership degree of this number vis-a-vis the linguistic term “weakly 
stable” is approximately 0.43, whereas that of this number to the term “more or 
less stable” is approximately 0.57. In conclusion, we note that the linguistic degree 
of stability is somewhere in-between “weakly stable” and “more or less stable”, 
but with a tendency of being closer to the linguistic term “more or less stable”. 

 

1 �

  0.6�       1        1.4
x�

μDeg(x)�

 

Fig. 7.8 Membership function of fuzzy number 

1
~

 

�

1��

     0.39�   0.5
x�

μDeg(x)�

 

Fig. 7.9 The degree of stability 

1 �

    0.39 �  
x�

μDeg(x)�

 

Fig. 7.10 The numeric degree of stability 
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If 3a =  , where 3  is shown in Fig. 11,  we obtain the degree of stability 
illustrated in Fig. 7.12.  

The core of this fuzzy number is approximately 0.77. The resulting possibility 
measure of this fuzzy number and the term “more or less stable” is 0.23 , whereas 
for the term “strongly stable” we obtain the possibility measure of approximately 
0.83. Subsequently, we can conclude that the degree of stability is somewhere in-
between “strongly stable” and “more or less stable” terms, but is closer to the 
linguistic term “strongly stable”. 

 

1 

  2.2       3         3.8 x

( )a xμ  

 

Fig. 7.11 Membership function of fuzzy number 3 

 

1 

         0.75      0.8   0.85

 

x

μDeg(x)�

Fig. 7.12 Fuzzy number of the degree 
of stability 

In order to reveal the relationship between the length of support of a  and the 
length of the support of the fuzzy set of degree of stability, we completed a series 
of computing for different values of cores of a  whose results are summarized in 
Table 7.2 and in Fig. 7.13, respectively.  

Table 7.2 Relationships between the length of support of a  and the length of support of 

the degree of stability for selected values of the core of a  

 

 The length of the support of the degree of stability 

 Core of a  is 1 Core of a  is 2 Core of a  is 3 

The length of the support of a  

0 0 0 0 
0.4 0.06 0.035 0.02 
0.8 0.11 0.067 0.04 
1.6 0.2 0.12 0.07 

 
Furthermore the graphical interpretation of the relationship between the degree 

of stability and the core of a  for various values of the length of support of a  is 
included in Fig. 7.13. 
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Fig. 7.13 The relationship between the length of the support of a  and the degree for 

different values of the cores of a  

The obtained result coincides with our intuition: the level of uncertainty of the 
degree of stability increases as the uncertainty of a  (the length of the support) 
increases. What we obtained is a numeric quantification of this relationship. 

Example 7.2. Let us consider a fuzzy dynamical system described by the 
differential equation: 

3( ) ( ) ( )t
hx t ax t e x t′ = −    , 0 0( )x t x=  ,   (7.17) 

where ( )x t , 1
0x E∈ . We express the α -level set of ( )x t  as the compact 

interval ( ) [ ( ), ( )]l rx t x t x tα α α= , and 0 0 0( ) [ , ]l rx t x xα α α= , and in this way 

obtain the ordinary initial value problem 

( ) ( )
( ) ( )
( ) ( )

3
0 0

11 1 1 3 1 1
0 0

3
0 0

( ) ( ) ( ) , ( )

( ) ( ) ( ) , ( )

( ) ( ) ( ) , ( )

t
l l l ll l

t

t
r r r rr r

x t a x t e x t x t x

x t a x t e x t x t x

x t a x t e x t x t x

αα α α α α

αα α α α α

αα α α α α

== = = = =

 ′ = − =
 ′ = − =

 ′ = − =

  (7.18) 

For (1,1,1)a =  the solution to (7.18) is  

( ) ( )
( )

0 0
2 22 33

0 0

2

0

3
( )

3 2 2

t

l
t tt

l l

l

e
x t

e e x e x

x

α

α α

α

=
+ −

, 



252 7   Fuzzy Logic Based Generalized Theory of Stability
 

  

( ) ( )
( )

0 0
2 22 33

0 0

2

0

3
( )

3 2 2

t

r
t tt

r r

r

e
x t

e e x e x

x

α

α α

α

=
+ −

 

For 1α =  we have 

( ) ( )
( )

0 0

1

2 22 33 1 1
0 0

21
0

3
( )

3 2 2

t

t tt

e
x t

e e x e x

x

α

α α

α

=

= =

=

=
+ −

 

The α - level of the fundamental matrix solution of the variational system of 
(7.17) is 

 

( ) ( ) ( )( )( )
0

0 0

0 0

2

3 23
3 223

0 0 02

0

3

2 2
2 3 2

3 3

t t

l t tt
t tt

l l l

l

e

e e e
e x e x e x

x

α

α α α

α

+

Φ = −
− + − + − +

 

( )
( ) ( )( )( )

0

0 0

0 0

2

3 23
3 223

0 0 02

0

3

2 2
2 3 2

3 3

t t

r t tt
t tt

r r r

r

e

e e e
e x e x e x

x

α

α α α

α

+

Φ = −
− + − + − +

 

For 1α = , the fundamental matrix solution is 

( ) ( ) ( )( )( )
0

0 0

0 0

2
1

3 23
3 223 1 1 1

0 0 021
0

3

2 2
2 3 2

3 3

t t

t tt
t tt

e

e e e
e x e x e x

x

α

α α α

α

+
=

= = =

=

Φ = −
− + − + − +

 

The graphs of the two fuzzy solutions of (7.17), with the initial conditions 
0

0 0.1,lxα = =  1
0 0.2,xα = =  0

0 0.3rxα = = , 0
0 0.8,lyα = =  1

0 0.9,yα = =  0
0 1ryα = =  

respectively, are shown in Fig. 14.  
From Fig. 7.14 one can see that the two solutions converge to each other that 

confirms stability of solution to (7.18) . 

If 0
0 0.1lxα = ≥ , and 0 0t = , then the inequality  

( ) ( )0 0 0 0 0 0 0, , , , ( )h h ff
x t t y x t t x M t y x− ≤ −       
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is satisfied with the triangular fuzzy number ( ) ( )0 1,  1.56063,  2.41925M t = . 

Thus the solution of (7.17) is fuzzy Lipschitz stable, but it is not uniformly fuzzy 
Lipschitz stable. 

 

Fig. 7.14 Fuzzy solutions to (7.17) 

The degree of stability is defined as the degree to which the inequality 

( ) ( )0 0 0 0 0 0 0, , , , ( )h h ff
x t t y x t t x M t y x− ≤ −       is satisfied. This degree 

in its turn depends on the distance between the initial conditions of the given 
solution and arbitrary solutions. Consequently, as the degree of stability of the 
investigated dynamical system we can use the ratio (7.19):  

 ( )
( )

0 00

0 00

|| || || ||

|| ||

f f f

f f

M x x d x
Deg

M x d x

Δ − Δ Δ
=

Δ Δ




   

  

δ

δ    (7.19) 

The resulting degree of stability is a triangular fuzzy number 
 ( )0.312813,0.423109,0.461868Deg = . The possibility measures of this 

fuzzy number and the terms “weakly stable” and “more or less stable” are about 
0.51 and 0.73 respectively. Given this quantification, we can conclude that the 
system is rather more or less stable than weakly stable. 
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If ( )0.5,1,1.5a =  then  ( ) ( )0 1, 1.56063, .15505M t =   3  and the degree 

of stability is represented in the form of the triangular fuzzy number 
 ( )0.35125,0.423109,0.575086Deg = . Here the computed possibility 

measures of the fuzzy number and the terms “weakly stable”, “more or less stable” 
and “strongly stable” are about 0.46, 0.81, 0.15 respectively. In conclusion, the 
system is more or less stable. 

Example 7.3. Let us consider a fuzzy dynamical system described by the 
differential equation 

3( ) 0 ( )t
hx t e x t′ = −   , 0 0( )x t x=  .    (7.20) 

where ( )x t , 1
0x E∈ . The α - cut of the solution to (20) is given in the form 

( ) ( )
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0 0
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1 2 2
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tt
l l
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x t
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α α
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1
( )

1 2 2
r

tt
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If 1α =  then theα - cut of the solution is  

( ) ( )
( )

0

1

2 21 1
0 0

21
0

1
( )

1 2 2 tt

x t
e x e x

x

α

α α

α

=

= =

=

=
+ −

 

The variational equation of (7.20) is  

0 0'( ) ( , , ) ( )z t A t t x z t=    ,   (7.21) 
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where the α -cut of (7.21) is 
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  (7.22) 

 
The fundamental matrix solution of (7.22) is 

( )( )( ) ( )
0 0

3

0 0 2

0

1

1
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l
t tt t

l l
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x e e x e e
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α α
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For 1α = , the fundamental matrix solution is  

( )( )( ) ( )
0 0

1

31 1
21

1

1
2 2 2t tt tx e e x e e

x

α

α α

α

=

= =

=

Φ =
+ − − +

 

The graphs of the two fuzzy solutions to (7.20) with the initial conditions 
0

0 0.1,lxα = =  1
0 0.2,xα = =  0

0 0.3rxα = = , 0
0 0.8,lyα = =  1

0 0.9,yα = =  0
0 1ryα = =  

are shown in Fig. 7.15.  

 

Fig.7.15 Plots of the fuzzy solutions to (7.20) 

If 0
0 0.0lxα = ≥ , and 0 0t = , then the relationship 

0 0 0 0 0 0( , , ) ( , , )h hf f
x t t y x t t x M y x− ≤ −       

is satisfied with ( )1,1,1M = . Thus, the solution of (7.20) is uniformly fuzzy 

Lipschitz stable. The degree of stability is the triangular fuzzy number 
 ( )0.39875,0.472187,0.635312Deg = . Here the possibility measures of 

this fuzzy number and the terms “weakly stable”, “more or less stable” and 
“strongly stable” are about 0.31, 0.93, 0.26 respectively, which gives rise to the 
conclusion that the system is more or less stable. 
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Economical System Application 

Nonlinear Model of a Manufacture Dynamics. A simple nonlinear model 
describing the dynamics of a manufacture represents the relation between the level 
of relative production output and its rate of change [42]: 

2( )
( ) ( )h

dq t
q t q t

dt
= −

   , ( ) 00q q=  , ( ),q t  1
0q E∈ ,    (7.23) 

where ( )q t  is a relative production output. *( ) /q t Q Q= , where Q  is 

production output and *Q  is its equilibrium value [42]. Production output is one 

of the main indices of macroeconomics. 
The α -cut and the core of (7.23) can be written as follows: 
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   (7.24) 

The associated variation system for (7.24)  is 
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   (7.25) 
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The fundamental matrix solution for (7.25) comes in the form 
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For 1α = , the fundamental matrix solution is  
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+
=

= =
Φ =

− −
 

The graphs of the two fuzzy solutions of (7.25) with the initial conditions 
0

0 0.3,lqα = =  
1

0 0.4,q α = =  0
0 0.5rqα = = , 0

0 0.8,lqqα = =  1
0 0.9,qqα = =  

0
0 1rqqα = =  are shown in the Fig. 7.16.  

If 0
0 0.1iqα = ≥  and 0 0t =  then 

0 0|| ( , , ) || ft t q MΦ ≤   , where (1,1,2.8)M = , and 

thus 

0 0 0 0 0 0( , , ) ( , , )h hf f
q t t q q t t q M q q− ≤ −      . 

M  is independent of 0t , and thus solution of (7.25) is uniformly fuzzy Lipschitz 

stable in variation. The degree of stability is 
 (0.396562,0.5404,0.679825)Deg = . The possibility measures computed 

for this fuzzy number and the terms “weakly stable”, “more or less stable” and 
“strongly stable” are about 0.26, 0.918, 0.37 respectively. In essence, the system is 
more or less stable. 

For the system  

2( )
( ) ( )= −

    h

dq t
aq t aq t

dt
, ( ) 00q q=  , ( ),q t  1

0q E∈ , 

where (0.5,1,1.5)a = , and the initial conditions 

0
0 0.3,lqα = =  

1
0 0.4,q α = =  0

0 0.5rqα = = , 0
0 0.8,lqqα = =  1

0 0.9,qqα = =  
0

0 1rqqα = = , 

the degree of stability is  (0.369775,0.5404,0.5975)Deg = . In this case the 

possibility measures of this fuzzy number and the terms “weakly stable”, “more or 
less stable” and “strongly stable” are about 0.31, 0.922, 0.24 respectively. Again 
the system is more or less stable. 
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7.7   Comparison of Ex isting Stability A pproaches wit h the GTS 

 

 

Fig. 7.16 Plot of the fuzzy solutions to (7.25) 

If (2, 2.1, 2.2)a = , and the initial conditions 0
0 0.3,lqα = =  

1
0 0.4,q α = =  

0
0 0.5rqα = = , 0

0 0.8,lqqα = =  1
0 0.9,qqα = =  0

0 1rqqα = = , the degree of stability is 

 (0.7256,0.7812,0.8399)Deg = . In this case the possibility measures of the 

similarities between this fuzzy number and the terms “more or less stable” and 
“strongly stable” are about 0.306, 0.831 respectively, i.e. the system becomes 
strongly stable. 

7.7   Comparison of Existing Stability Approaches with the 
Generalized Theory of Stability (GTS) 

7.7   Comparison of Ex isting Stability A pproaches wit h the GTS 

It is worth to compare the main approaches to stability as far the definitions and 
the ensuring methods are concerned. This type of comparison could offer us a 
certain perspective as to the different points of views and a way in which these 
concepts of stability relate to each other. 

Classical Notions of Stability 

If f  in the system (7.6) is a function of the variable x  and 0( )M t  in 

Definition 7.1 is also a numeric entity, then we encounter the problem of binary 
Lipschitz stability [31] of a system (BS). To show the relationship between the 
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notion of Lipschitz stability and that of Lyapunov stability, let us refer to the 
differential system: 

' ( , )x f t x=  
 

 (7.26) 

where 1 ,n nf C R R R+ ∈ ×  , ( ,0) 0f t ≡ , 0t t≥ , 0t R+∈ .   

As it was shown in [31] if the solution 0 0( , , )x t t x  of  (7.26) is uniformly 

Lipschitz stable then it is uniformly Lyapunov stable. Assume that the solution 

0 0( , , )x t t x  of (7.26) is uniformly Lipschitz stable. Then there exist 0M >  and 

1 0δ > such that 0 0 0 0 0 0( , , ) ( , , )x t t x x t t y M x y− ≤ − whenever 0 0 1x y δ− ≤ , 

0 0t t≥ ≥ . Now given any 0ε > , choose 1min( , / )Mδ δ ε= . Then for 

0 0x y δ− ≤  we have 0 0 0 0 0 0( , , ) ( , , )x t t x x t t y M x y Mδ ε− ≤ − ≤ ≤ . 

It follows that the solution 0 0( , , )x t t x  of (7.26) is uniformly Lyapunov stable. 

Fuzzy Stability of Systems 

If f  in the system (7.6) is a function of some variable x  and 0( )M t  in 

Definition 7.1 is a fuzzy number then GTS is reduced to the problem of fuzzy 
Lipschitz stability [50] of a system (FS). Lipschitz constant for f  in (7.6) may be 

determined from the relationship 
( , )

f

f t x
N

x

∂ ≤
∂




. Then 0( )M t  is determined 

on the basis of N .  

Binary Stability of Fuzzy Systems 

If ( , )f t x  in the system (7.6) is fuzzy function of fuzzy variable x and 0( )M t  

in Definition 7.1 is a numeric entity, then the problem of binary stability of fuzzy 
system (BFS) could be considered [31]. In this case the problem of stability of 
fuzzy system (described by fuzzy differential equations or by dynamic “if-then” 
rules) is reduced to the problem of binary stability viewed in the classical sense.  

When the stability of a fuzzy system described by “if-then” rules (TSK or 
Zadeh model) is considered, the investigation is reduced to the use of the 
Lyapunov stability theory. The studies covered in [27,33,35,39,52] are devoted to 
this direction. 

When the stability of a fuzzy system described by fuzzy differential equations 
is considered, then the comparison principle [31] is used. In this method, a fuzzy 
differential equation is transformed into a scalar comparison differential equation 
by means of some Lyapunov function. After this, it is enough to investigate a 
stability of a simpler comparison equation. 
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Below it is given the theorem on the binary stability of fuzzy differential 
equation (7.6). Consider the following scalar differential equation: 

),( vtgv =′  
 

(7.27) 

where ),( vtg  is nondecreasing in v  for any t  and ( ,0) 0g t ≡  

Theorem 7.3. Assume that  

1. The right part of (7.6) satisfies the conditions of existence and uniqueness in 

some ball )(ρs  of radius ρ (crisp) in nE  with the center in the origin and also 

( ,0) 0f t ≡ . The ball is defined in terms of the supremum metric d  (see [31]), 

used for fuzzy sets. 

2. For ),(,,0 ρsuRth ∈∈> +  

( )
0

1 ˆ ˆ ˆlim sup ( , ),0 ,0 , ,0 ;
+→

      + − ≤         
h

d u hf t u d u g t d u
h

 (7.28)  

3. Function g  from 2
+R  to the reals is continuous and .0)0,( ≡tg  

Then from the uniform Lipschitz stability of the zero solution of (7.28) it follows 
the uniform Lipschitz stability of the zero solution of (7.6). 

 
Example 7.4. Let us consider the fuzzy differential equation [18]: 

2

1

1
′ =

+
 x x

t
 

2 20 0

1 1 1 1ˆ ˆ ˆ ˆ ˆlim ,0 ,0 lim ,0 ,0 ,0
1 1+ +→ →

           − − ≤ + − − =           + +      
     

h h
d x h x d x d x d h x d x

h t h t
 

( )2 2 20

1 1 1 1ˆ ˆ ˆ ˆlim ,0 ,0 ,0 , ,0
1 1 1+→

        = − = = ≤        + + +    
   

h
d h x d x d x g t d x

h t t t
, 

where ( ) 2

1
,

1
=

+
g t w w

t
. The solution 0=w  is uniformly Lipschitz stable. 

Hence the solution 0̂x =  is uniformly Lipschitz stable too. Thus from the GTS it 
follows the binary stability of fuzzy systems (BFS).  
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Chapter 8 
Experiments and Applications 

In real-world problems, as a rule, perceptions are original sources of decision rele-
vant information on environment and a DM’s behavior. Perception-based informa-
tion is intrinsically imperfect and, as a result, is usually described in NL or in form 
of visual images. In this chapter we provide solutions of decision making prob-
lems with perception-based imperfect information by applying decision theories 
suggested in the previous chapters. The considered decision making problems  
include benchmark problems and real-world decision problems in the areas of 
business, economics, production and medicine. The NL-based and visual imper-
fect information in these problems makes the use of the existing decision theories 
inapplicable to solve them. 

8.1   Benchmark Decision Making Problems 

Zadeh’s Two Boxes Problem 

Prof. Lotfi Zadeh suggested a benchmark problem of decision making under im-
perfect information [5] which is described in Chapter 6. Let us solve this problem 
by applying the suggested decision theory with imperfect information. 

At first let us consider solving Case 4 and Cases 2 and 3 as its special cases. 
These cases fall within the category of decision problems for which fuzzy logic-
based decision theory suggested in Chapter 4 is developed. Let us denote boxes as 
A  and B  and colors of balls as w  (white) and b  (black). 

The set of possible events will be represented as{ }, , ,Aw Bw Ab Bb , where 

Aw  means “a white ball picked from box A”, Bb means “a black ball picked 

from box B” etc. Then the set of the states of nature is: { }1 2 3 4, , ,S s s s s= , 

where 1 ( , )s Aw Bw= , 2 ( , )s Aw Bb= , 3 ( , )s Ab Bw= , 4 ( , )s Ab Bb= .  

Denote probabilities of the events as ( ), ( ), ( ), ( )P Aw P Bw P Ab P Bb    . Then the 

probabilities of the states are defined as: 
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1

2

3

4

( , ) ( ) ( );

( , ) ( ) ( );

( , ) ( ) ( );

( , ) ( ) ( ).

P P Aw Bw P Aw P Bw

P P Aw Bb P Aw P Bb

P P Ab Bw P Ab P Bw

P P Ab Bb P Ab P Bb

= =

= =

= =

= =

   
   
   
   

 

Denote the outcomes of the events as ( ), ( ), ( ), ( )X Aw X Bw X Ab X Bb    , where 

( )X Aw  denotes the outcome faced when a white ball is picked from box A  etc. 

The alternatives are: 1f (means choosing box A ), 2f  (means choosing box B). 

As alternatives map states to outcomes, we write: 

1 1

1 2

1 3

1 4

( ) ( );

( ) ( );

( ) ( );

( ) ( );

f s X Aw

f s X Aw

f s X Ab

f s X Ab

=

=

=

=

 
 
 
 

 

2 1

2 2

2 3

2 4

( ) ( );

( ) ( );

( ) ( );

( ) ( ).

f s X Bw

f s X Bb

f s X Bw

f s X Bb

=

=

=

=

 
 
 
 

 

Assume that imperfect decision-relevant information is treated by using fuzzy out-
comes and fuzzy probabilities given in form of the following triangular and trape-
zoidal fuzzy numbers, respectively: 

( ) $(15,20,25),

( ) $( 10, 5,0),

( ) $(80,100,120),

( ) $( 25, 20, 15).

X Aw

X Ab

X Bw

X Bb

=

= − −

=

= − − −






 

( ) (0.25,0.35,0.5,0.6)P Aw = , ( ) (0.1,0.2,0.25,0.35)P Bw = . 

Then the unknown probabilities will be as follows: 

( ) (0.4,0.5,0.65,0.75)P Ab = , ( ) (0.65,0.75,0.8,0.9)P Bb = . 
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The probabilities of the states of nature are computed as follows: 

( , ) (0.25,0.35,0.5,0.6) (0.1,0.2,0.25,0.35) (0.025,0.07,0.125,0.21)P Aw Bw = ⋅ = ; 

( , ) (0.4,0.5,0.65,0.75) (0.1,0.2,0.25,0.35) (0.04,0.1,0.1625,0.2625);P Ab Bw = ⋅ =  

( , ) (0.4,0.5,0.65,0.75) (0.65,0.75,0.8,0.9) (0.26,0.375,0.52,0.675).P Ab Bb = ⋅ =

An overall utility for an alternative , 1,2jf j =  will be determined as a fuzzy-

valued Choquet integral (4.1): 

{ }( )
{ }( )
{ }( )

{ }( )

(1) (2) (1)

(2) (3) (1) (2)

(3) (4) (1) (2) (3)

(4) (1) (2) (3) (4)

( ) ( ( ( )) ( ( )))

( ( ( )) ( ( ))) ,

( ( ( )) ( ( ))) , ,

( ( ( ))) , , ,

l

l

l

l

j j h j P

j h j P

j h j P

j P

U f u f s u f s s

u f s u f s s s

u f s u f s s s s

u f s s s s s

η

η

η

η

= − +

+ − +

+ − +

+









    

   

   

 

 

Here ( )i  means that the states are ordered such that (1)( ( ))ju f s ≥  

(2) (3) (4)( ( )) ( ( )) ( ( ))j j ju f s u f s u f s≥ ≥     , ( )( ( ))j iu f s  denotes utility of an out-

come we face taking action jf  at a state ( )is , ( )lP
η ⋅  is a fuzzy number-valued 

fuzzy measure. For simplicity, we define ( ( ))j iu f s  to be numerically equal to the 

corresponding outcomes ( )j if s . Then the overall utilities of the alternatives are 

determined as follows: 

{ }( )1 1 2( ) (25,25,25) , ( 10, 5,0)lP
U f s sη= + − −
  ; 

{ }( )2 1 3( ) (105,120,135) , ( 25, 20, 15)lP
U f s sη= + − − −
  . 

The α -cuts of { }( ) { }( )1 2 1 3, , ,l lP P
s s s sη η    are found as numerical solutions to 

problem (4.13)-(4.14) (Chapter 4): 

{ }
{ }

1 2

1 2 1 2 3 1 2 3 1 2 3

( , )

inf ( ) ( ) ( ( ), ( ), ( )) , ( ) ( ) ( ) 1

lP
s s

p s p s p s p s p s P P P p S p S p S

α

α α α

η =

= + ∈ × × + + =

  

{ }
{ }

1 3

1 3 1 2 3 1 2 3 1 2 3

( , )

inf ( ) ( ) ( ( ), ( ), ( )) , ( ) ( ) ( ) 1

lP
S S

p s p s p s p s p s P P P p S p S p S

α

α α α

η =

= + ∈ × × + + =



.
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The values of { }( ) { }( )1 2 1 3, , ,l lP P
s s s sη η    we found are triangular fuzzy num-

bers { }( ) { }( )1 2 1 3, (0.25,0.35,0.35), , (0.1,0.2,0.2)l lP P
s s s sη η= =   .  

Now we can compute fuzzy overall utilities 1 2( ), ( )U f U f   . The computed  

1 2( ), ( )U f U f    approximated by triangular fuzzy numbers are shown in Fig. 8.1.  

 
 

 

Fig. 8.1 Computed fuzzy overall utilities 1( )U f  (dashed), 2( )U f (solid) 

Applying Jaccard comparison method [13] we find that: 

1 2( ) ( )U f U f≥   with degree 0.83 

2 1( ) ( )U f U f≥   with degree 0.59 

We determine the linguistic degree of the preference as it is shown in Fig. 8.2 be-

low. According to Fig. 8.2, 1f (choosing box A )  has medium preference over 2f  

(choosing box B ). 
The decision relevant information we considered in this problem is characte-

rized by imperfect (fuzzy) probabilities, imperfect (fuzzy) outcomes and fuzzy 
utilities. Such type of decision-relevant information is presented in Cell 32 of  
Table 1 (see Chapter 3). Below we shortly present the results of solving the  
Zadeh’s problem for its special cases – Cases 2 and 3 when only probabilities or 
outcomes are imprecise: 
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Fig. 8.2 Linguistic preferences 

1. The case of imprecise probabilities described as fuzzy numbers 

( ) (0.25,0.35,0.5,0.6)P Aw T= , ( ) (0.1,0.2,0.25,0.35)P Bw T=  and exactly 

known outcomes X(Aw)=$20, X(Ab)=-$5, X(Bw)=$100, X(Bb)=-$20. This is the 
situation presented in Cell 4 in Table 3.1 (see Chapter 3) – information on proba-
bilities is imperfect and information on outcomes and utilities is precise (as we de-
termine utilities to be numerically equal to outcomes). In this case the suggested 
fuzzy utility model degenerates to a fuzzy-valued utility described as Choquet 
integral with numeric integrand and fuzzy number-valued fuzzy measure. The ob-

tained fuzzy overall utilities for this case are 1( ) (1.25,3.75,3.75)U f =  and 

2( ) ( 8,4,4)U f = − . According to the Jaccard index [13], 1 2( ) ( )U f U f≥   with 

degree 0.708 and 2 1( ) ( )U f U f≥   with degree 0.266, which implies the medium 

preference of 1f  over 2f . In this case we have more strong preference of 1f  

over 2f  than that obtained for the case of fuzzy probabilities and fuzzy outcomes 

(small preference of 1f  over 2f ). The reason for this is that in the present case in-

formation is more precise (outcomes are exactly known) and also ambiguity aver-
sion resulted from fuzzy probabilities is more clearly observed (whereas in the 
previous case it is weaken behind impreciseness of outcomes). 

2. The case of imprecise outcomes described as fuzzy numbers 

( ) $(15,20,25), ( ) $( 10, 5,0), ( ) $(80,100,120),X Aw X Ab X Bw= = − − =  

 ( ) $( 25, 20, 15)X Bb = − − −  and precise probabilities ( ) 0.4,P Aw =  

( ) 0.2P Bw = . This is the situation presented in Cell 29 in Table 3.1 – informa-

tion on probabilities is precise and information on outcomes and utilities is imper-
fect (as we determine utilities to be numerically equal to outcomes). In this case 
the suggested fuzzy utility model degenerates to a fuzzy-valued expected utility 
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with fuzzy number-valued integrand and crisp probability measure. The obtained 

fuzzy overall utilities are 1( ) (0,5,10)U f =  and 2( ) ( 4,4,12)U f = − . According 

to the Jaccard index, 1 2( ) ( )U f U f≥   with degree 0.915 and 2 1( ) ( )U f U f≥    with 

degree 0.651, which implies low preference of 1f  over 2f . So, despite that in this 

case the situation is less uncertain than for the case with fuzzy probabilities and 

fuzzy outcomes, we have in essence the same preference of 1f  over 2f . The rea-

son for this is that for this case ambiguity aversion is absent (due to exact proba-
bilities) and impreciseness of outcomes does not allow for a higher preference. 

Consider now solving Case 5. This case takes place when after having a look at 
boxes (Fig. 8.3), a DM has visual perceptions which are not sufficiently detailed to 
be described by membership functions.  

 
Box A             Box B 
 

 

Fig. 8.3 Two boxes with large number of black and white balls 

A DM can only graphically evaluate the probabilities as F-marks. Such essence 
of the relevant information requires the use of fuzzy geometry-based decision 
theory suggested in Chapter 6 for solution of Case 5.  

Assuming that 1iP , 2iP , 3iP  and 4iP  are implementations of P(Aw), P(Ab), 

P(Bw), and P(Bb), respectively, and 1iU  and 2iU  are the corresponding assess-

ments of the alternatives 1f  and 2f  respectively in an i-th rule, 1, 2i = , a rule 

base collected by a DM can be such as: 

(If ( )1 11isP P and ( )2 12isP P  and ( )3 13isP P  and ( )4 14isP P  Then 

1 11 2 12U ,UU U= = , 0.95) 

(If ( )1 21isP P  and ( )2 22isP P  and ( )3 23isP P  and ( )4 24isP P  Then 

1 21 2 22U ,UU U= = , 0.95). 

For simplicity, we used only 2 rules.  
In our experiments, we tried to reproduce the conditions used in [5] in an at-

tempt to obtain similar solution.  
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The values of generated ijP  and ikU  ( 1,2, 1,4, 1,2i j k= = = ) used in the 

rules are given in the Table 8.1 The user input is given in Table 8.2. 

Table 8.1 The If-Then rules containing values of ijP  and ikU  described by f-marks 

Rule 
# 1iP  2iP  3iP  4iP  1iU  2iU  

1   

2   

Table 8.2. User’s graphically entered probabilities , 1,4iP i =  

1P  2P  3P  4P  

 
 
The values of computed integrated outcomes can be represented approximate-

ly as: 

( )1 1 (0.55,0),(0.85,0),0.05U v M= ≈ , 

( )2 2 (0.33,0), (0.61,0),0.05U v M= ≈ . 

Their comparison gives: 

1 2

1 0.3 0.28
( , ) 1

2 0.3 0.28
g v v≥

 = + = 
 

 

2 1

1 0.06 0.06
( , ) 0.12

2 0.52 0.52
g v v≥

 = + ≈ 
 

. 

This is quite in line with the result presented in [5]: the preference of one of the 
actions over the other and vice versa in classic model was 0.708/0.266 and in FG-
based model 1/0.12.  

8.2   Application in Medicine  

In this example we will consider selection of an optimal treatment under imperfect 
information on stages of the disease and possible results of treatment [1]. In the  
considered problem, probabilities of the two most expressed stages of the disease are 
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assigned linguistically (imprecisely) by the dentist but for the rest and the least ex-
pressed stage the dentist finds difficultly in evaluation of its occurrence probability.  

Case history N583 – patient Vidadi Cabrayil Cabrayilov is entered with symp-
toms of the heavy stage of the periodontitis disease to the polyclinic of Medical 
University. He was examined and it was defined that intoxication indicators are  
approximately of 10%-20% level and exudative indicators are of 60%-80% level. 
The problem is to define an optimal treatment for the considered patient. 

Such problem is essentially characterized by linguistic relevant information due 
to vagueness, imprecision and partial truth related to information on the disease. 
The existing decision theories such as SEU, CEU, CPT and others are inapplicable 
here as they are developed for precisely constrained information. We will apply 
fuzzy logic-based decision theory suggested in Chapter 4 which is able to deal 
with linguistic information of the considered problem.  
 
Formal Description of the Problem [1]. 1) States of nature. States of nature are 
represented by the stages of the disease. During the patient examination it is very 
important to properly identify the actual stage of the disease. Without doubts, the 
“boundaries” of phases are not sharply defined, and one phase slips into another. 
Taking this into account, it is adequately to describe the phases by using fuzzy 
sets. The set of the fuzzy states of nature is  

{ }1 2 3, ,S S S=    , 

where 1S -intoxication phase (1st stage of the disease), 2S -exudative stage (2nd 

stage of the disease), 3S -heavy phase (3rd stage of the disease). Membership func-

tions for 1 2 3, ,S S S    used to describe intoxication, exudative and heavy phases are 

shown in Fig.8.4.  
  

 

Fig. 8.4 Membership functions of 1S (dotted), 2S (solid) 3S (dashed) 
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During a patient examination the development level of the disease is 
represented by a dentist’s linguistic (imprecise) evaluations of likelihoods of vari-
ous stages of the disease. We consider these approximate evaluations as linguistic 

probabilities. So, we have linguistic probability distribution lP  over the fuzzy 
states of nature: 

1 1 2 2 3 3
lP P S P S P S= + +      , 

where 1P  is the linguistic probability of the intoxication phase occurrence, 2P  is 

the linguistic probability of the exudative phase occurrence and 3P  is unknown 

imprecise probability of the heavy phase occurrence. The membership functions 

of the linguistic probabilities 1P , 2P  are shown in the Fig.8.5. 

 

 

Fig. 8.5 Membership functions of linguistic probabilities 1P (curve 1), 2P (curve 2) 

2) Alternatives. Alternatives are represented by the available treatment me-
thods. The effectiveness of application of the available treatment methods at the 
various phases of the disease can be adequately determined in terms of dentist’s 
linguistic (imprecise) evaluations. In view of this the alternatives should be consi-
dered as fuzzy functions [9]. The set of the fuzzy alternatives is as follows: 

{ }1 2 3, ,f f f=    , 

where 1f  - closed treatment method, 2f - open treatment method, 3f  - surgical 

entrance and tooth removal. 

3) Utilities. Utility of an alternative jf  taken at a state iS  is considered as an 

effectiveness of a corresponding treatment method applied at a corresponding 
phase of the disease. Without doubts, due to uncertainty involved, effectiveness of 
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application of a considered treatment method at a considered phase of disease can 
be adequately described by a dentist only in terms of linguistic(imprecise) evalua-

tions. So, utility of an alternative jf  taken at a state iS  will be considered as a 

fuzzy value ( )( )j iu f S   of a fuzzy number-valued utility function  u . 

Let the dentist evaluate the effectiveness of applications of the treatment  
methods at various stages of the disease by using the following linguistic terms 
(Table 8.3): 

Table 8.3 Linguistic evaluations of effectiveness of the treatment methods at the various 
stages of periodontitis 

 Phase 1 ( 1S ) Phase 2 ( 2S ) Phase 3 ( 3S ) 

Alternative 1 ( 1f ) High Low Very Low 

Alternative 2 ( 2f ) Low High Medium 

Alternative 3 ( 3f ) Very Low Medium High 

 
These linguistic evaluations reflect dentist’s subjective opinion expressed in 

NL. For example, linguistic term “high” expresses the dentist’s subjective opinion 

concerning utility of application of the closed treatment method (alternative 1f ) in 

intoxication phase (state 1S ). As a mathematical description for these linguistic 

evaluations we use fuzzy numbers shown in Fig.8.6-8.8 [1]. 
 
 

 

Fig. 8.6 Membership functions of linguistic utilities of the treatment methods application at 
the intoxication phase: Very Low (curve 1), Low (curve 2), Medium (curve 3) 
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Fig. 8.7 Membership functions of linguistic utilities of the treatment methods application at 
the exudative phase: Low (curve 1), Medium (curve 2), High (curve 3) 

 

Fig. 8.8 Membership functions of linguistic utilities of the treatment methods application at  
the heavy phase: Very Low (curve 1), Medium (curve 2), High (curve 3) 

So, on the base of the suggested theory, we will formulate the selection of the 
optimal treatment method of the periodontitis as a determination of a treatment  
method with the highest overall fuzzy utility represented by a fuzzy number-
valued Choquet integral over : 

Find *f ∈   such that *( ) max ( ( )) ,l

j
j i Pf

U f u f S dη
∈

=  
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where lP
η  - fuzzy number-valued fuzzy measure constructed on the base of lin-

guistic probability distribution lP .  
 

Solution. Let us determine the unknown linguistic probability 3P  of the heavy 

stage 3S  by constructing its membership function given membership functions of 

1P , 2P  and membership functions of 1 2 3, ,S S S   . For calculation of membership 

function of 3P  we will apply the methodology suggested in [6,15].  

Membership functions for the given linguistic probabilities 1P  and 2P  and the 

obtained linguistic probability 3P  are shown in the Fig.8.9. 

 

 

Fig. 8.9 Membership functions of imprecise probabilities 1P (curve 1), 2P  (curve 2), and 

3P (curve 3) 

So, we have fuzzy probabilities for all the phases of the disease.  To calculate 
the overall fuzzy utility for each alternative we will adopt the suggested fuzzy util-
ity model. According to this model an overall fuzzy utility of a considered alterna-
tive (treatment method) will be represented by fuzzy number-valued Choquet 
integral with the respect to fuzzy number-valued fuzzy measure as follows: 

( )
3

( ) ( 1) ( )
1

( ) ( ( )) ( ( )) ( )lj j i h j i iP
i

U f u f S u f S η+
=

= − ⋅ 
       , 

where ( )i  means that utilities are ranked such that (1)( ( )) ...ju f S u≥ ≥   , 

( )( ( ))j nf S   { }( ) (1) ( ),...,i iS S=   , ( 1)( ( )) 0j nu f S + =  . 
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At first it is needed to rank ( ( ))j i jiu f S u=    for each alternative jf . For each 

alternative we have: 

Alternative 1f : 11 12 13u high u low u very low= > = > =    

Alternative 2f : 22 23 21u high u medium u low= > = > =    

Alternative 3f : 33 32 31u high u medium u very low= > = > =    

So, fuzzy utilities are ranked as it is shown below. 

Alternative 1f  (closed treatment method): 

1(1) 11u u high= =  ; 1(2) 12u u low= =  ; 1(3) 13u u very low= =   

Alternative 2f  (open treatment method): 

2(1) 22u u high= =  ; 2(2) 23u u medium= =  ;
2(3) 21u u low= =   

Alternative 3f  (Surgical entrance or tooth removal method): 

3(1) 33u u high= =  ; 3(2) 32u u medium= =  ;
3(3) 31u u very low= =   

So, overall fuzzy utilities for alternatives 1 2 3, ,f f f    will be described as follows: 

1 11 12 1 12 13 1 2 13 1 2 3( ) ( ) ({ }) ( ) ({ , }) ({ , , });l l lh hP P P
U f u u S u u S S u S S Sη η η= − + − +  
              

2 22 23 2 23 21 2 3

21 1 2 3

( ) ( ) ({ }) ( ) ({ , })

({ , , });

l l

l

h hP P

P

U f u u S u u S S

u S S S

η η

η

= − + − +

+
 



       
  

 

3 33 32 3 32 31 2 3

31 1 2 3

( ) ( ) ({ }) ( ) ({ , })

({ , , });

l l

l

h hP P

P

U f u u S u u S S

u S S S

η η

η

= − + − +

+
 



       
  

 

We have constructed fuzzy number-valued fuzzy measure from linguistic probabil-

ity distribution lP  as its lower prevision on the base of the methodology suggested 
in [6,15]. Finally, we calculated overall fuzzy utility for each alternative and the ob-
tained values approximated as triangular fuzzy numbers are the following: 

1( ) (0.16; 0.2; 0.24)U f = ; 

2( ) (0.37; 0.38; 0.39)U f = ; 3( ) (0.21; 0.27; 0.33)U f =  
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Membership functions of these fuzzy utilities are shown in Fig. 8.10. 
 
 

 

Fig. 8.10 Membership functions of 1( )U f  (curve 1), 2( )U f (curve 3), 3( )U f  (curve 2) 

Now it is necessary to compare ( ), 1,3jU f j =   and determine the optimal 

treatment method as one with the highest overall fuzzy utility. Comparing fuzzy 

utilities ( ), 1,3jU f j =  we found out that the best alternative is 2f  as one with 

the highest overall fuzzy utility. This means that the optimal treatment method for 
considered patient is an open treatment method. Below we present experimental 
results of applying the suggested approach to determine an optimal treatment me-
thod for patients. 
 
Experimental Results. We examined 62 patients suffering from acute 
periodontitis at the age of 17-65. There were 38 men and 24 women from among 
them. In order to  differentiate  chronic periodontitis and to define diagnosis for 
the patients we held  radiological examinations. To differentiate 3 phases of acute 
periodontitis one from another and to define the diagnosis of each phase together 
with radiological examinations we evaluated clinical situations on the base of 
acute periodontitis symptoms (such as pain, hiperemia, palpation, percussion and 
others) and defined clinical situations. 

In oder to define the effectiveness of treatment during 3 different phases of 
acute periodontitis, together with conduction of the methods of radiological 
examination we observed the dynamics of changes of some clinical symptoms 
(pain, hiperemia, palpation, percussion and others) and evaluated the 
improvements of clinical evidence during the mentioned stages. 

The results of our research on cure rates of the given treatment methods 
depending on 3 different phases of acute periodontitis are given in Table 8.4. 
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Table 8.4 Results of experimental investigation 

Different phases 

of acute 

periodontitis 

development 

The number 

of treated 

patients 

Cure rate for the given methods (in number of 

patients) 

“closed ” 

treatment method 

“open” treatment 

method 

Surgical 

operation 

and the 

tooth 

removal 

Intoxication 

phase 
23 16 6 1 

Exudative phase 23 - 21 2 

Heavy phase 16 - 3 13 

 
 
Using various methods of treatment  during 3 phases of acute periodontitis, we 

have got different findings. The comparative results of our research show that in 
different stages of acute periodontitis “open” and “close” methods were the most 
effective. So, “open” teatment method proved to be more effective and superior 
for 21 patients.  “Close” treatment method was effective for 16 patients, 6 patients 
used “open” treatment method as it positively effected on their treatment. The 
tooth of one patient was removed . 

As to the treatment during heavy phase, it’s necessary to note that at this phase 
periodontitis processes are irreversible as it reached the highest level and 
conservative treatment is less effective(3 patients); most teeth (13 patients), 
mainly multirooted teeth, were removed by surgical method. During the exudative 
phase the surgical method was unsatisfactory for 2 patients among the 23. During 
the intoxication phase for 21 of 23 and during the heavy phase 13 of 16 patients 
the offered method was satisfactory. 

8.3   Applications in Production 

Decision Making on the Base of a Two-Level Hierarchical Model 

Let us consider decision making for an oil refinery plant which includes three 
units: preliminary distillation unit; cat cracker unit; cocker unit (see Fig.8.11). 

Let us provide short description for the manufacturing that is schematically 
shown in Fig. 8.11. Preliminary distillation unit produces eight products: fraction 

OP-85 ( 11f ), fraction OP-85-180 ( 12f ), kerosene ( 13f ), diesel oil ( 14f ), tar 

( 15f ), liquid petroleum gas ( 16f ), scrubber gas ( 17f ), vacuum gasoil ( 18f ). Tar 

enters cocker unit which produces gasoil ( 21f ), coke ( 22f ), heavy gasoil ( 23f ),  
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Crude oil 

Cat cracker 
unit 

Cocker unit 

11f  

12f  

13f  

14f  

15f  

16f  

17f  

22f  

23f  

24f  

25f  

26f  

31f  

32f  

15f  18f  

Preliminary 
distillation 

unit 

21f  
 

Fig. 8.11 Manufacturing scheme of oil refinery 

coke light gasoil ( 24f ), waste ( 25f ), dry gas ( 26f ). Vacuum gasoil and gasoil en-

ter cat cracker unit which produces petrol ( 31f ) and reflux ( 32f ). 

The considered decision making problem is maximization of an overall 
amount of petroleum fractions produced at the plant. The following solutions to a 
Pareto-optimization problem were obtained for each unit at the micro-level, i.e. for 
each unit: 

Table 8.5 Preliminary distillation unit 

Preliminary distillation 

unit 

1st variant 2nd variant 3rd variant 

Center Left Right Center Left Right Center Left Right 

fraction OP-85 ( 11f ) 0,0378 0,0367 0,0390 0,0224 0,0217 0,0231 0,0335 0,0325 0,0345 

OP-85-180 12f ) 0,0750 0,0727 0,0772 0,1023 0,0992 0,1054 0,0916 0,0889 0,0944 

Kerosene ( 13f ) 0,2852 0,2767 0,2938 0,3115 0,3022 0,3209 0,3385 0,3283 0,3486 
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Table 8.6 Cocker 

Cocker unit 
1st variant 2nd variant 

Center Left Right Center Left Right 

Gas oil ( 21f ) 0,4164 0,4039 0,4228 0,4075 0,3953 0,4198 

Coke ( 22f ) 0,2357 0,2287 0,2428 0,2450 0,2376 0,2523 

Table 8.7 Cat cracker 

Cat  

cracker 

unit 

1st variant 2nd variant 

Center Left Right Center Left Right 

Petrol 

( 31f ) 
0,1525 0,1479 0,1571 0,1438 0,1395 0,1481 

Reflux 

( 32f ) 
0,3834 0,3719 0,3949 0,3917 0,3887 0,4117 

 
 

For solving this decision making problem on coordination of the functioning of 
the three units we use the conventional approach to decision making in multi-

agent systems [3,4] explained in Section 4.2. A DM expresses 0H  and 1H  ac-

cording to (4.33)-(4.34): 

0H  is an overall amount of petroleum fractions that should be 

about 0 (0.65,0.58,0.715)b = ,  

1H  is an overall amount of gas oil fractions that should be about 

1 (0.78,0.702,0.858)b = .  

At the next step 0 1( ), ( )v vλ λ  and 0 1 1 2( )v v vλ π π= +  functions are con-

structed. The importance weights 0π  and 1π  are obtained according to the proce-

dure of an involvement of a DM into a decision making process that was described 
above. In our case 0 0.6π =  and 1 0.4π = . 

A vector λ  is determined by solving the maximization problem: max( ( ))v
λ

λ . 

The results of solving this problem are given below: 

11 12 13 21 22 31 320.09; 0.45; 0.46; 0.81; 0.19; 0.75; 0.25λ λ λ λ λ λ λ= = = = = = =  

On the base of calculated ijλ  the scheduled tasks desired in terms of an overall 

goal are calculated for each unit: 
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11 12

13

21 22

31 32

(0.0345,0.0335,0.0356); (0.0850,0.0824,0.0875);

(0.3119,0.3026,0.3213);

(0.1509,0.1463,0.1554); (0.23,0.2070,0.253);

(0.4142,0.4017,0.4220); (0.2380,0.2309,0.2452)

f f

f

f f

f f

= =

=

= =

= =

 


 

 

 

The obtained values of ijf  are sent to the micro-level to be implemented by solv-

ing goal programming problems that completes solving the considered problem. 
The vector of technological parameters ix  determined by solving goal program-

ming problems is sent further for realization. 

Decision Making on Oil Extraction under Imperfect Information [6]  

Assume that a manager of an oil-extracting company needs to make a decision on 
oil extraction at a potentially oil-bearing region. Knowledge about oil occurrence 
the manager has is described in NL and has the following form: 

“probability of “occurrence of commercial oil deposits” is lower than me-
dium” 

The manager can make a decision based on this information, or at first having 
conducted seismic investigation of the region. Concerning the seismic 
investigation used, its accuracy is such that it with the probability “very high” 
confirms occurrence of commercial oil deposits and with the probability “high” 
confirms absence of commercial oil deposits. The manager has a set of alternative 
actions to choose from. The goal is to find the optimal action.  

The considered problem comes within the same information framework as the 
problems considered in Sections 8.1 – this problem is characterized by imperfect 
information described in NL. We will use the theory suggested in Chapter 4 for 
solving of this problem. 

Let us develop a general formal description of the problem. The set of the fuzzy 
states of nature is 

{ }1 2,S S=    

where 1S  denotes “occurrence of commercial oil deposits” and 2S  denotes “ab-

sence of commercial oil deposits”. The states 1S  and 2S  are represented by trian-

gular fuzzy numbers 1 (1;1;0)S = , 2 (0;1;1)S = . 

The linguistic probability distribution lP  over the states of nature that 
corresponds the knowledge of the manager is 

1 1 2 2/ /lP P S P S= +    , 
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where 1P  is a triangular fuzzy number 1 (0.3;0.4;0.5)P =  that represents linguis-

tic term “lower than medium” and 2P  is unknown.  

Taking into account the opportunities available to the manager, we consider the 

following set of the manager’s possible actions: { }1 2 3 4 5 6, , , , ,f f f f f f=       .  

The NL-based description of the manager actions if , 1,6i =  is given below in 

Table 8.8. 

Table 8.8 Possible actions of the manager 

Notation NL-based description 

1f  
Conduct seismic investigation and extract oil if seismic investigation shows oc-

currence of commercial oil deposits 

2f  
Conduct seismic investigation and do not extract oil if seismic investigation 

shows occurrence of commercial oil deposits 

3f  
Conduct seismic investigation and extract oil if seismic investigation shows ab-

sence of commercial oil deposits 

4f  
Conduct seismic investigation and do not extract oil if seismic investigation 

shows absence of commercial oil deposits 

5f  Extract oil without seismic investigation 

6f  Abandon seismic investigation and oil extraction 

 
 
In the problem, we have two types of events: geological events (states of the 

nature) - “occurrence of commercial oil deposits” ( 1S ) and “absence of 

commercial oil deposits” ( 2S ) and two seismic events (results of seismic 

investigation) - “seismic investigation shows occurrence of commercial oil 
deposits” ( 1B ) and “seismic investigation shows absence of commercial oil 

deposits” ( 2B ). Below we list possible combinations of geological and seismic 

events with fuzzy probabilities of their occurrence by taking into account NL-
described information about accuracy of results of seismic investigation: 

1 1/B S - there are indeed commercial oil deposits and seismic investigation 

confirms their occurrence, 1 1( / ) (0.7;0.8;0.9)P B S =  

2 1/B S - there are indeed commercial oil deposits but seismic investigation 

shows their absence, 2 1( / )P B S is unknown; 
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1 2/B S - there are almost no commercial oil deposits but seismic investigation 

shows their occurrence, 1 2( / )P B S is unknown; 

2 2/B S - there are almost no commercial oil deposits and seismic investigation 

shows their absence, 2 2( / ) (0.6;0.7;0.8)P B S =  

According to (4.9)-(4.10) in Chapter 4 we have obtained unknown conditional 

probabilities 2 1( / ) (0.1;0.2;0.3)P B S =  and 1 2( / ) (0.2;0.3;0.4)P B S = .  

Seismic investigation allows updating the prior knowledge about actual state of 
the nature with the purpose to obtain more credible information. Given a result of 
seismic investigation, the manager can revise prior probabilities of the states of the 

nature on the base of linguistic probabilities ( / ), 1,2, 1,2j kP B S k j= =  of 

possible combinations /k jS B of geological and seismic events. These combinati-

ons are shown in Table 8.9. 

Table 8.9 Possible combinations of seismic and geological events 

Seismic events Geological events Notation 

Seismic investigation shows occurrence of commer-

cial oil deposits 

occurrence of commercial oil 

deposits 1 1/S B  

Seismic investigation shows absence of commercial 

oil deposits 

occurrence of commercial oil 

deposits 
1 2/S B  

Seismic investigation shows occurrence of commer-

cial oil deposits 

absence of commercial oil de-

posits 2 1/S B  

Seismic investigation shows absence of commercial 

oil deposits 

absence of commercial oil de-

posits
2 2/S B  

 
 

To revise probability of a state kS  given seismic investigation result jB   we 

obtain a fuzzy posterior probability ( / )k jP S B  of kS  based on the fuzzy Bayes’ 

formula (in α -cuts):  

1

1

( / ) , , 1
K

jk k
k j k k jk jk kK

k
jk k

k

p p
P S B p P p P p

p p

α α α

=

=

 
  = ∈ ∈ = 
 
  




  

The calculated 1( / )jP S B , 1,2j =  are shown in Fig. 8.12 and 8.13. 
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Fig. 8.12 Posterior probability 1 1( / )P S B  
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Fig. 8.13 Posterior probability 1 2( / )P S B  

Now we have new, revised (posterior) linguistic probabilities 1 1( / )P S B  and 

1 2( / )P S B  for the state 1S   obtained on the basis of possible seismic 

investigation results 1 2,B B  , respectively. We will denote them by 1 1( / )P S B  and 

1 2( / )P S B  by 1

1
B

revP  and 2

1
B

revP , respectively. For these cases of unknown 

probabilities of absence of commercial oil deposits 1

2
B

revP  and 2

2
B

revP  we have 

obtained given seismic investigation results 1 2,B B . The membership functions for 

1

1
B

revP  and 1

2
B

revP  are shown in the Fig. 8.14 and for 2

1
B

revP  and 2

2
B

revP in Fig. 8.15. The 

membership functions for 1

1
B

revP  and 1

2
B

revP  are shown in the Fig. 8.14 and for 2

1
B

revP  

and 2

2
B

revP in Fig. 8.15. 
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Fig. 8.14 Posterior probability 1

1
B

revP  (solid curve) and the obtained 1

2
B

revP (dotted curve) 
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Fig. 8.15 Posterior probability 2

1
B

revP (solid curve) and the obtained 2

2
B

revP  (dotted curve) 

For actions 1 2 3 4, , ,f f f f     depending on seismic investigations, the manager will 

use 1

1
B

revP  and 1

2
B

revP  or 2

1
B

revP  and 2

2
B

revP  instead of prior 1P . 

For action 5f  the unknown 2P  is obtained from the 1P   as triangular fuzzy 

number (0.5;0.6;0.7) [5,15]. 

Now we have all required probabilities of the states 1S  and 2S . Assume that the 
manager evaluates utilities for various actions taken at various states of the nature 
from some scale. Because of incomplete and uncertain information about possible 
values of profit from oil sale and possible costs for seismic investigation and 
drilling of a well, the manager linguistically evaluates utilities for various actions 
taken at various states of the nature. Assume that the manager’s linguistic utility 
evaluations for various actions taken at various states of the nature are as shown in 
the Table 8.10:  
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Table 8.10 Lingustic utility evaluations 

 1f  2f  3f  4f  5f  6f  

1S  
Positive 

significant 

Negative 

very high 
High 

Negative 

very high 
Positive high 

0 

2S  Negative low 
Negative 

very low 

Negative 

low 

Negative 

very low 

Negative 

insignificant 

 

Below we give the representation of linguistic utilities for actions if  made at 

the states kS  by triangular fuzzy numbers ( ( ))i k iku f S u=    defined on the 

scale[ 1,1]− : 

11 (0.65;0.75;0.85)u = ; 12 ( 0.11; 0.1; 0.09)u = − − − ; 

21 ( 0.88; 0.85; 0.82)u = − − − ; 22 ( 0.07; 0.04; 0.01)u = − − − ;

31 (0.65;0.75;0.85)u = ;  

32 ( 0.11; 0.1; 0.09)u = − − − ; 41 ( 0.88; 0.85; 0.82)u = − − − ; 

42 ( 0.07; 0.04; 0.01)u = − − − ;  

51 (0.7;0.8;0.9)u = ; 52 ( 0.08; 0.07; 0.06)u = − − − ; 6 0u =  

To find the optimal action based on the methodology suggested in Section 4.1 we 

first calculate for each action if  its utility as a fuzzy-valued Choquet integral 

( ) ( ( )) li i PS
U f u f S dη=  
    , 

where lP
η   is a fuzzy-valued fuzzy measure obtained from the linguistic 

probability distribution as a solution to the problem (4.13) – (4.14) (Chapter 4) 
based on the neuro-fuzzy-evolutionary technique covered in [5,15]. Let us note 
that depending upon actions, a fuzzy-valued measure will be constructed by 

considering either prior or posterior probability distributions. For actions 1 2,f f  , 

fuzzy-valued measure will be constructed on the basis of 1B
revP  and for actions 

3 4,f f   fuzzy-valued measure will be constructed based on  2B
revP  (as the seismic 

investigation has been involved). For action 5f  a fuzzy measure will be 

constructed on the basis of prior distribution. For action 6f  its utility, i.e. Choquet 

integral, is obviously equal to zero.  

Fuzzy measures 1η  and 2η  defined on the base of 1B
revP  and 2B

revP  respectively 

are shown in Table 8.11: 
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Table 8.11 Fuzzy number-valued measures obtained from the posterior probabilities 

⊂   { }1S  { }2S  { }1 2,S S   

1( )η   (0.43, 0.64, 0.64) (0.18, 0.36, 0.36) 1 

2 ( )η   (0.05, 0.16, 0.16) (0.67, 0.84, 0.84) 1 

 
The fuzzy-valued measure η  obtained on the base of prior probability is shown 

in Table 8.12: 

Table 8.12 Fuzzy measure (approximated to triangular fuzzy numbers) obtained from the 
prior probabilities 

⊂   { }1S  { }2S  { }1 2,S S 

( )η   (0.3, 0.4, 
0 4)

(0.5, 0.6, 
0 6)

1 

 
As utilities for iku  are fuzzy numbers, the corresponding values of Choquet 

integrals will also be fuzzy. We calculate a fuzzy utility for every action if  as a 

fuzzy value of a Choquet integral. Then using the fuzzy Jaccard compatibility-
based ranking method, we find an action with the highest value of a fuzzy utility 

as an optimal one. The form of a Choquet integral for action 1f  reads as  

( ) ( )

( ) { }( ) { }( )

2

1 1 ( ) 1 ( 1) ( )
1

1 (1) 1 (2) 1 (1) 1 (2) 1 (1) (2)

( ) ( ( )) ( ( ))

( ( )) ( ( )) ( ( )) ,

li h i iP
i

h

U f u f S u f S

u f S u f S S u f S S S

η

η η

+
=

= − =

= − +

 
     

          


 

As 

1 (1) 11 1 2 12( ( )) (0.65;0.75;0.85), ( ( )) ( 0.11; 0.1; 0.09)u f S u u f S u= = = = − − −      , 

we find that 11 12u u≥  . Then 1 (1) 11( ( ))u f S u=   , 1 (2) 12( ( ))u f S u=    and (1) 1,S S=   

(2) 2S S=  . The Choquet integral for action 1f  is equal to 

( ) { }( ) { }( )
( ) { }( ) { }( ) ( ) { }( )

( )

1 1 1 1 2 1 1 1 2 1 1 2

11 12 1 1 12 1 1 2 11 12 1 1 12

( ) ( ( )) ( ( )) ( ( )) ,

,

(0.65;0.75;0.85) ( 0.11; 0.1; 0.09) (0.43, 0.64, 0.64) ( 0.11; 0.1; 0.09)

h

h h

h

U f u f S u f S S u f S S S

u u S u S S u u S u

η η

η η η

= − + =

= − + = − + =

= − − − − ⋅ + − − −
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The obtained result is approximated by a triangular fuzzy number comes as  

1( ) (0.2168,0.444,0.5116)U f = . 

Based on this procedure, we have computed the fuzzy values of Choquet integrals 

also for the other actions , 1,5if i =  obtaining the following results: 

( ) ( )

( ) { }( ) { }( )
( ) { }( ) { }( )
( ) { }( )

2

2 2 ( ) 2 ( 1) ( )
1

2 (1) 2 (2) 1 (1) 2 (2) 1 (1) (2)

2 2 2 1 1 2 2 1 1 1 2

22 21 1 2

( ) ( ( )) ( ( ))

( ( )) ( ( )) ( ( )) ,

( ( )) ( ( )) ( ( )) ,

li h i iP
i

h

h

h

U f u f S u f S

u f S u f S S u f S S S

u f S u f S S u f S S S

u u S

η

η η

η η

η

+
=

= − =

= − + =

= − + =

= − +

 
     

          

          

  



{ }( )
( )

21 1 1 2,

( 0.07; 0.04; 0.01) ( 0.88; 0.85; 0.82) (0.67, 0.84, 0.84)+

( 0.88; 0.85; 0.82)
h

u S Sη =

= − − − − − − − ⋅
+ − − −

 

 

( ) ( )

( ) { }( ) { }( )
( ) { }( ) { }( )
( ) { }( )

2

3 3 ( ) 3 ( 1) ( )
1

3 (1) 3 (2) 2 (1) 3 (2) 2 (1) (2)

3 1 3 2 2 1 3 2 2 1 2

31 32 2 1

( ) ( ( )) ( ( ))

( ( )) ( ( )) ( ( )) ,

( ( )) ( ( )) ( ( )) ,

li h i iP
i

h

h

h

U f u f S u f S

u f S u f S S u f S S S

u f S u f S S u f S S S

u u S

η

η η

η η

η

+
=

= − =

= − + =

= − + =

= − +

 
     

          

          

  



{ }( )
( )

32 2 1 2,

(0.65;0.75;0.85) ( 0.11; 0.1; 0.09) (0.43, 0.64, 0.64)+

( 0.11; 0.1; 0.09)
h

u S Sη =

= − − − − ⋅
+ − − −

 

 

( ) ( )

( ) { }( ) { }( )
( ) { }( ) { }( )
( ) { }( )

2

4 4 ( ) 4 ( 1) ( )
1

4 (1) 4 (2) 2 (1) 4 (2) 2 (1) (2)

4 2 4 1 2 2 4 1 2 1 2

42 41 2 2

( ) ( ( )) ( ( ))

( ( )) ( ( )) ( ( )) ,

( ( )) ( ( )) ( ( )) ,

li h i iP
i

h

h

h

U f u f S u f S

u f S u f S S u f S S S

u f S u f S S u f S S S

u u S

η

η η

η η

η

+
=

= − =

= − + =

= − + =

= − +

 
     

          

          

  



{ }( )
( )

21 2 1 2,

( 0.07; 0.04; 0.01) ( 0.88; 0.85; 0.82) (0.67, 0.84, 0.84)+

( 0.88; 0.85; 0.82)
h

u S Sη =

= − − − − − − − ⋅
+ − − −
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( ) ( )

( ) { }( ) { }( )
( ) { }( ) { }( )

2

5 5 ( ) 5 ( 1) ( )
1

5 (1) 5 (2) (1) 5 (2) (1) (2)

5 1 5 2 1 5 2 1 2

( ) ( ( )) ( ( ))

( ( )) ( ( )) ( ( )) ,

( ( )) ( ( )) ( ( )) ,

li h i iP
i

h

h

U f u f S u f S

u f S u f S S u f S S S

u f S u f S S u f S S S

η

η η

η η

+
=

= − =

= − + =

= − + =

 
     

          

          



 

( ) { }( ) { }( )
( )

51 52 1 52 1 2,

(0.7;0.8;0.9) ( 0.08; 0.07; 0.06) (0.3, 0.4, 0.4)+

( 0.08; 0.07; 0.06)

h

h

u u S u S Sη η= − + =

= − − − − ⋅
+ − − −

     

 

The obtained results approximated by triangular fuzzy numbers are 

2( ) (-0.5317,-0.3316,-0.3016)U f = ; 3( ) ( 0.072,0.036,0.0604)U f = − ;

4( ) (-0.8395,-0.7204,-0.6904)U f = ; 5( ) (0.154,0.278,0.324)U f = . 

These fuzzy numbers are shown in Fig.8.16 
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Fig. 8.16 Fuzzy values of Choquet integral for possible actions (for 1f  - thin solid line, 

for 2f  thick dotted line, for 3f  - thick dashed line, for 4f  - thin dashed line, for 5f  - 

thick solid line) 

As it can be seen the highest fuzzy utilities are those of alternatives 1f  and 5f . 

The application of the fuzzy Jaccard compatibility-based ranking method [13] to 

compare the fuzzy utility values for 1f  and 5f  gave rise to the following results: 

1 5( ) ( )U f U f≥   is satisfied with the degree 0.8748; 

5 1( ) ( )U f U f≥   is satisfied with the degree 0.1635; 
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The best action is 1f  “Conduct seismic investigation and extract oil if seismic 

investigation shows occurrence of commercial oil deposits” as one with the 

highest fuzzy utility value being equal to  1( ) (0.1953,0.412,0.4796)U f = . 

We also considered the possibility of applying the classical (non-fuzzy) Cho-
quet expected utility model to solve this problem. But as this model cannot take 
into account NL-described information about utilities, states, probabilities etc., we 
had to use only numerical information. Assume that the manager assigns numeric 
subjective probabilities and numerical utilities. Let us suppose that the manager 
assigned the following numerical values: 

 

1 1( ( )) 0.6u f s = ; 1 2( ( )) 0.15u f s = − ; 2 1( ( )) 0.86u f s = − ; 2 2( ( )) 0.038u f s = −

3 1( ( )) 0.6u f s = ; 3 2( ( )) 0.15u f s = − ; 4 1( ( )) 0.86u f s = − ; 4 2( ( )) 0.038u f s = − ;

5 1( ( )) 0.9u f s = ; 5 2( ( )) 0.08u f s = − ; 1( ) 0.35P s = , 1 1( / ) 0.8P b s = ;

2 2( / ) 0.7P b s = ; 2 1( / ) 0.2P b s = ; 1 2( / ) 0.3P b s = . 

 
To find the best alternative we used Choquet expected utility with possibility 
measure and obtained the following results for utilities of actions: 

 

1( ) 0.2775U f = ; 2( ) 0.51U f = − ; 3( ) 0.05U f = − ; 4( ) -0.05U f = ;

5( ) 0.2825U f = . 

The best action is 5f  – “Extract oil without seismic investigation” as one with the 

highest utility value 5( ) 0.2825U f = . This result differs from the above one we 

obtained when applying the suggested model given the NL-described information. 
“Extract oil without seismic investigation” appeared to be the best alternative de-
spite of the fact that the probability of occurrence of commercial oil deposits is not 
high: 1( ) 0.35P s = . The reason for this is that an assignment of subjective numer-

ic values to probabilities and utilities leads to the loss of important partial informa-
tion. In turn, this loss of information may result in choosing a decision that may 
not be suitable.  

We also solved the considered problem with other initial information provided 
by the manager. When the information is “probability of “occurrence of commer-

cial oil deposits” is low”, where “low” is described by 1 (0.3;0.4;0.5)P =  the 

obtained results being approximated by triangular fuzzy numbers are as follows: 

1( ) ( 0.11,0.082857,0.1134)U f = − ; 2( ) (-0.294,-0.168,-0.138)U f = ;

3( ) ( 0.11,-0.07538,-0.0626)U f = − ; 4( ) (-0.1322,-0.0572,-0.0272)U f = ;

5( ) ( 0.08,0.017,0.036)U f = − . 
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These fuzzy numbers are shown in Fig. 8.17: 
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Fig. 8.17 Fuzzy values of Choquet integral for possible actions (for 1f  - thin solid line, 

for 2f  - thick dotted line, for 3f  - thick dashed line, for 4f  - thin dashed line, for 5f  - 

thicksolid line) 

As can be seen, the best actions are 1f  and 5f . The application of the fuzzy 

Jaccard compatibility-based ranking method to compare the fuzzy utility values 

for 1f  and 5f  resulted in the following: 

1 5( ) ( )U f U f≥   is satisfied with the degree 0.9902; 

5 1( ) ( )U f U f≥   is satisfied with the degree 0.4193; 

Here the best action is 1f  “Conduct seismic investigation and extract oil if seismic 

investigation shows occurrence of commercial oil deposits” as the one with the 

highest fuzzy utility value 1( ) (0.1953,0.412,0.4796)U f = . This is due to the fact 

that the probability of occurrence of commercial oil deposits is so low that it is better 
to begin to extract oil only if seismic investigation shows their occurrence. 

When the “probability of “oil’s occurrence” is high” with “high” described as 

1 (0.8;0.9;1)P =  the obtained results approximated by triangular fuzzy numbers 

are the following: 

1( ) (0.539,0.668,0.764)U f = ; 

2( ) (-0.63,-0.5776,-0.5476)U f = ; 

3( ) (0.127,0.476,0.5508)U f = ; 

4( ) (-0.63,-0.4432,-0.4132)U f = ; 

5( ) (0.544,0.713,0.804)U f = . 
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Fig. 8.18 Fuzzy values of Choquet integral for possible actions (for 1f  - thin solid line, 

for 2f  - thick dotted line, for 3f  - thick dashed line, for 4f  - thin dashed line, for 5f  - 

thick solid line) 

Here again the highest fuzzy utilities are those of 1f  and 5f  alternatives. The 

use of the fuzzy Jaccard compatibility-based ranking method [13] to compare the 

fuzzy utility values for 1f  and 5f  produced the following results: 

1 5( ) ( )U f U f≥   is satisfied with the degree 0.6164; 

5 1( ) ( )U f U f≥   is satisfied with the degree 0.9912; 

The best action is 5f  “Extract oil without seismic investigation” as one with the 

highest fuzzy utility value 5( ) (0.544,0.713,0.804)U f = . This is due to the fact 

that the probability of occurrence of commercial oil deposits is so high that it  
is more reasonable not to spend money on seismic investigation and to begin to 
extract oil. 

8.4   Applications in Business and Economics 

Business Development For a Computer Firm [2,15] 

A manager of a computer firm needs to make a decision concerning his business 
over the next five years. There has been good sales growth over the past couple of 
years. The owner sees three options. The first is to enlarge the current store,  
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the second is to move to a new site, and the third is simply wait and do nothing. 
The decision to expand or move would take little time, and, so, the store would not 
lose revenue. If nothing were done the first year and strong growth occurred, then 
the decision to expand would be reconsidered. Waiting longer than one  
year would allow competition to move in and would make expansion no longer 
feasible. 

The description of assumptions and conditions the manager consider is NL-
based and includes linguistically described values of revenues, costs and proba-
bilities for the problem are as follows: 

“Strong growth as a result of the increased population of computer buyers from 
the electronics new firm has “a little higher than medium” probability. Strong 
growth with a new site would give annual returns of a “strong revenue” per year. 
Weak growth with a new site would give annual returns of a “weak revenue”. 
Strong growth with an expansion would give annual returns of an “about strong 
revenue” per year. Weak growth with an expansion would mean annual returns of 
a “lower than weak”. At the existing store with no changes, there would be returns 
of a “medium revenue” per year if there is strong growth and of a “higher than 
weak revenue” per year if growth is weak. Expansion at the current site would cost 
“low”. The move to the new site would cost “high”. If growth is strong and the ex-
isting site is enlarged during the second year, the cost would still be “low”. Oper-
ating costs for all options are equal.” 

The considered decision problem is characterized by linguistically described 
imperfect information on all its elements: alternatives, outcomes, states of nature 
and probabilities. Really, in a broad variety of economic problems decision rele-
vant information can not be represented by precise evaluations. In contrast, we 
deal with evaluations with blurred, not sharply defined boundaries. Moreover, the 
considered problem is characterized by a second-order uncertainty represented as 
a mix of probabilistic and fuzzy uncertainties in form of fuzzy probabilities. Such 
essence of the considered problem makes it impossible to apply the existing deci-
sion theories for solving it. In order to apply any existing theory, one needs to  
precisiate the linguistic relevant information to precise numbers that leads to dis-
tortion and loss of information. As a result, one will arrive at a decision problem 
which is not equivalent to the original one and the resulted solution will not be 
trustful. For solving this problem it is more adequate to apply decision theory sug-
gested in Chapter 4 which is able to deal with linguistic information on all  
elements of decision problems. Below we consider application of this theory to 
solving the considered problem. 

Below it is given representation of linguistic evaluations of revenues and costs 
in form of triangular fuzzy numbers. 

Revenues: “strong revenue” = (175.5;195;214.5); “weak revenue” = (103.5; 
115; 126.5); “about strong revenue” = (171; 190; 209); lower than weak” = 
=(90;100;110); “medium revenue” = (153;170;187); “higher than weak revenue”= 
(94.5;105;115.5). 
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Costs: “high”=(189;210;231); “low”=(78.3; 87; 95.7); “zero”=(0;0;5) 
In Table 8.13. it is given linguistic description of revenues, costs and final val-

ues (outcomes) for each alternative decision. 
Fuzzy values of the outcomes, calculated using the formula “Value of an out-

come = revenue – cost” on the base of the fuzzy values of revenues and costs are 
given below.  

Values of outcomes: “about large” = (646.5;765;841.5); “about medium” = 
(286.5;365;401.5); “a little large”= (759.3;863;949.3); “medium” = (354.3; 
413;454.3); “large2”= (741.3;843;927;3); “large3”= (760;850;930); “higher than 
medium” = (472.5;525;577.5) 

The set of the fuzzy states of the nature is { }1 2,S S=   , where 1S  - “strong 

growth”, 2S - “weak growth”. The membership functions of 1S  and 2S  are shown 

in the Fig. 8.19: 

The linguistic probability distribution lP  over the states of the nature that cor-
responds the knowledge the manager has is: 

1 1 2 2/ /lP P S P S= +     

1P =  “a little higher than medium”, described by triangular fuzzy number 

(0.45;0.55;0.65)  and 2P  is unknown. 

Table 8.13 Linguistic description of revenues, costs and final values 

Alternative Revenue Cost Value of an outcome 

= revenue – cost 

Move to new location, 

strong growth 

Move to new locations, 

weak growth 

Expand store, strong 

growth 

Expand store, weak growth 

Do nothing now, strong 

growth, expand next year 

Do nothing now, strong 

growth, 

do not expand next year 

Do nothing now, wegrowth 

“strong revenue” x 5 

yrs 

“weak revenue” x 5 yrs 

“about strong revenue” 

x 5 yrs 

“lower than weak” x 5 

yrs 

“medium revenue” x 1 

yr + 

+ “about strong reve-

nue” x 4 yrs 

“medium revenue” x 5 

yr 

 “higher than weak 

revenue” 

“high” 

“high” 

 

“low” 

 

“low” 

 

“low” 

 

“zero” 

 

 

“zero” 

“about large” 

“about medium” 

 

“large1” 

 

“medium” 

 

“large3” 

 

“large2” 

 

 

“higher than me-

dium” 
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Fig. 8.19 Fuzzy states of the nature: 1S  (dashed), 2S (solid) 

The set of the manager’s possible actions is { }1 2 3, ,f f f=    , where 1f  de-

notes “move” decision, 2f denotes “expand” decision, 3f denotes “do nothing” 

decision. 

Fuzzy probabilities 1P (given) and 2P  (obtained on the base of solving the 

problem (4.9)-(4.10) (Chapter 4) are given in the Fig.8.20 
 

 

Fig. 8.20 The given (solid curve) and the obtained (dashed curve) fuzzy probabilities 
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The defuzzified values of the fuzzy-valued measure lP
η   obtained from lP  on 

the base of formulas (4.20)-(4.21) (Chapter 4) by using the approach suggested in 
[5,12] are given in Table 8.14. The defuzzified values are used for simplicity of 
further calculations.  

Utility values are calculated as follows: 

(1) (2) (2) (1) (1) (2)( ) ({ , }) ( ( )) ({ })( ( ( )) ( ( )))l lP P
U f S S u f S S u f S u f Sη η= + − 
              

Table 8.14 Fuzzy measure lP
η   

  { }1S  { }2S  { }1 2,S S   

( )lP
η    0.47 0.38 1 

 

The calculated fuzzy utility values of , 1,3if i =  are 

1( )=(419.52; 516.2; 612.8)U f ; 2( ) (480.5; 583.1; 684,7)U f = ; 

3( ) (559.4; 647.85; 750.65)U f = . 

These fuzzy utility values are shown in Fig. 8.21 below: 
 
 

 

Fig. 8.21 Fuzzy utility values of the manager’s possible actions: 1( )U f (dotted), 

2( )U f (dashed), 3( )U f (solid) 
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Using the Fuzzy Jaccard compatibility-based ranking method we got the fol-
lowing results on ranking the alternatives: 

1 2( ) ( )U f U f≥   is satisfied with the degree 0.377; 

2 1( ) ( )U f U f≥   is satisfied with the degree 0.651; 

2 3( ) ( )U f U f≥   is satisfied with the degree 0.3032; 

3 2( ) ( )U f U f≥   is satisfied with the degree 0.6965. 

As can be seen, the best alternative is 3f - “Do nothing”. 

 
Behavioral Decision Making in Investment Problem. In this section we will con-
sider behavioral decision making conditioned by risk attitudes in an investment 
problem. We will consider a DM’s states as fuzzy sets to describe impreciseness 
of concepts of “risk seeking”, “risk averse” and “risk neutrality” as these concepts 
are rather qualitative and are a matter of a degree. 

Let us denote the considered three fuzzy states of a DM as follows: 1h  – risk 

aversion, 2h – risk neutrality, and 3h  – risk seeking. Fuzziness of these states re-

flects impreciseness of the information on the each of the risk attitudes levels. The 

fuzzy states 1h , 2h , 3h  are given in the Fig.8.22: 

 
 

 

Fig. 8.22 Fuzzy states of a DM: 1h (solid), 2h (dashed), 3h (dotted) 

Further, in accordance with Section 5.1, we need to assign fuzzy utilities over 

combined states space Ω . We obtain fuzzy utilities ( ( , ))i ju f S h   on the base of 

the Zadeh’s extension principle and the ideas used in Prospect theory.  
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The next step in solving the considered problem is to determine FJPs for the 
combined states from fuzzy marginal probabilities over the states of nature and the 

DM’s states. As the majority of people are risk averse, we consider a DM with 1h  

(risk aversion) as the most probable state. Let the fuzzy probabilities of fuzzy 

states 1h , 2h , 3h  be defined as follows: 1( )P h (“high” – given), 2( )P h (“small” – 

given), 3( )P h (“very small” –computed) – see Fig.8.23: 

 
 

 

Fig. 8.23 Fuzzy probabilities: 1( )P h (dashed), 2( )P h (dotted), 3( )P h (solid) 

We determine FJPs of the combined states ( , )i jS h  from the fuzzy marginal 

probabilities on the base of the notions of dependence between events by 
assuming positive dependence between “risk aversion” state and gains and also  

between “risk seeking” state and losses, negative dependence – between “risk 
aversion” state and losses and also between “risk seeking” state and gains, and 
independence between “risk neutrality” and both gains and losses. For example, 

the FJPs of combined states for the case of 1f  action (common bonds) are 

described by the following trapezoidal fuzzy numbers: 

1 1 2 1

3 1 4 1

( , ) (0.12,0.35,0.5,0.7), ( , ) (0.04,0.21,0.3,0.5),

( , ) (0,0.105,0.15,0.3), ( , ) (0,0.035,0.15,0.3);

P S h P S h

P S h P S h

= =

= =

   
     

1 2 2 2

3 2 4 2

( , ) (0,0.1,0.1,0.28), ( , ) (0,0.06,0.06,0.2),

( , ) (0,0.03,0.03,0.12), ( , ) (0,0.01,0.03,0.12);

P S h P S h

P S h P S h

= =

= =

   
     

1 3 2 3

3 3 4 3

( , ) (0,0,0.05,0.28), ( , ) (0,0,0.03,0.2),

( , ) (0,0,0.015,0.12), ( , ) (0,0,0.015,0.12).

P S h P S h

P S h P S h

= =

= =
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Given these FJPs, in accordance with Chapter 5, we need to determine fuzzy-
valued bi-capacity ( , )lP

η ⋅ ⋅  over subsets of the combined states space to be used in 

determination of the fuzzy overall utility for each alternative. The fuzzy overall 

utility 1( )U f  is expressed as follows: 

 

1 1 1 1 1 1 2 1 1

1 1 2 1 1 3 1 1 1 2

1 1 3 1 2 1 1 1 1 2 1

( ) ( ( ( , )) ( ( , )) )( ({( , )}, ))

( ( ( , )) ( ( , )) )( ({( , ), ( , )}, ))

( ( ( , )) ( ( , )) ) ({( , ),( , ),( ,

l

l

l

P

P

P

U f u f S h u f S h S h

u f S h u f S h S h S h

u f S h u f S h S h S h S

η

η

η

= − ∅ +

− ∅

−







         

         

           3

1 2 1 1 2 2 1 1 1 2 1 3 2 1

1 2 2 1 2 3 1 1 1 2 1 3 2 1 2 2

1

)}, )

( ( ( , )) ( ( , )) ) ({( , ),( , ),( , ),( , )}, })

( ( ( , )) ( ( , )) ) ({( , ),( , ),( , ),( , ),( , )}, )

( ( (

l

l

P

P

h

u f S h u f S h S h S h S h S h

u f S h u f S h S h S h S h S h S h

u f

η

η

∅ +

− ∅ +

− ∅ +







             

               

 2 3 1 3 1 1 1 1 2 1 3 2 1 2 2 2 3, )) ( ( , )) ) ({( , ),( , ),( , ),( , ),( , ),( , )}, )lP
S h u f S h S h S h S h S h S h S hη− ∅ +
               

1 3 1 1 3 2 1 1 1 2 1 3 2 1 2 2 2 3 3 1

1 3 2 1 3 3 1 1 1 2 1 3 2 1

( ( ( , )) ( ( , )) ) ({( , ),( , ), ( , ),( , ), ( , ), ( , ), ( , )}, )

( ( ( , )) ( ( , )) ) ({ , ),( , ), ( , ),( , ), (

l

l

P

P

u f S h u f S h S h S h S h S h S h S h S h

u f S h u f S h S h S h S h S h S

η

η

− ∅ +
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1 3 1 1 3 2 1 1 1 2 1 3 2 1 2 2 2 3 3 1

1 3 2 1 3 3 1 1 1 2 1 3 2 1
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( ( ( , )) ( ( , ))) ({ , ),( , ),( , ),( , ),(
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P

P
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1 4 1 1

, ),( , ),( , ),( , )}, )

( ( ( , )) ( ( , ))) ({ , ),( , ),( , ),( , ),( , ),( , ),( , ),( , ),( , )}, )
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lP

h S h S h S h

u f S h u f S h S h S h S h S h S h S h S h S h S h
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η
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We will determine the fuzzy-valued bi-capacity ( , )lP

η ⋅ ⋅  as 

( , ) ( ) ( ),l l lP P P
η η η= −        , Ω∈ , where lP

η   is the fuzzy-valued 

lower probability constructed from the FJPs (as it was done in the previous exam-

ple). The calculated fuzzy overall utilities 1 2 3( ), ( ), ( )U f U f U f      approximated by 

TFNs are given in the Fig.8.24: 
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Fig. 8.24 Fuzzy overall utilities 1( )U f (solid) 2( )U f (dashed), 3( )U f (dotted) 

 
Conducting pairwise comparison by using formula (5.2) (see Chapter 5), we got 

the following results: 
 

1 2( ) 0.038lDeg f f =  ; 

2 1( )lDeg f f =  0.0247; 

1 3( )lDeg f f =  0.026; 

3 1( )lDeg f f =  0.01; 

2 3( )lDeg f f =  0.035; 

3 2( )lDeg f f =  0.027. 

 

So, as 1 1( ) ( ), 2,3l i i lDeg f f Deg f f i> =     , then the best solution is 1f . 

 
The Supplier Selection Problem. Consider a problem of decision making with 
imperfect information as a problem of a supplier selection [14] by taking into ac-
count possible economic conditions. The set of alternatives is represented by a set 

of five suppliers: 1 2 3 4 5{ , , , , }f f f f f=      . The set of states of nature is represented 

by five possible economic conditions: 1 2 3 4 5{ , , , , }S s s s s s= . Each economic con-

dition js is characterized by requirements to profitability, relationship closeness, 

technological capability, conformance quality and conflict resolution aspects of a 
supplier. For simplicity,  states of nature are considered in classical sense. Payoff 
table containing fuzzy evaluations of outcomes of the alternatives under the eco-
nomic conditions is given below (Table 8.15): 
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Table 8.15 Payoff table with fuzzy outcomes 

 1s  2s  3s  4s  5s  

1f  (5.0,7.0,9.0) (7.0,9.0,10.0) (3.0,5.0,7.0) (9.0,10.0,10.0) (5.0,7.0,9.0) 

2f  (1.0,3.0,5.0) (3.0,5.0,7.0) (5.0,7.0,9.0) (7.0,9.0,10.0) (1.0,3.0,5.0) 

3f  (3.0,5.0,7.0) (5.0,7.0,9.0) (7.0,9.0,10.0) (5.0,7.0,9.0) (3.0,5.0,7.0) 

4f  (0.0,1.0,3.0) (1.0,3.0,5.0) (0.0,1.0,3.0) (1.0,3.0,5.0) (7.0,9.0,10.0) 

5f  (7.0,9.0,10.0) (0.0,1.0,3.0) (1.0,3.0,5.0) (3.0,5.0,7.0) (0.0,1.0,3.0) 

 
 
Let linguistic information on probabilities of the economic conditions be de-

scribed as follows: 

( ) ( ) ( )
( ) ( )

1 2 3

4 5

0.2,  0.3,  0.4 0.1,  0.2,  0.3 0.0,  0.1,  0.2

0.3,  0.3,  0.5 0.0,  0.1,  0.4

lP s s s

s s

= + + +

+ +


 

It is more convenient to apply fuzzy optimality-based approach to decision mak-
ing under imperfect information without a utility function which is presented in 
Chapter 4. Application of this approach to the considered problem will provide va-
lid results at a notably less complex and time consuming computations. 

By applying fuzzy optimality concept-based approach, the considered problem 
can be solved as follows. At first, according to (4.50)-(4.52), we calculated nbF , 
neF , nwF : 

 

0 0.28667 0.21 0.55667 0.42667

0.02 0 0.056667 0.35667 0.28

0.033333 0.14667 0 0.41333 0.31

0.02 0.086667 0.053333 0 0.15667

0.046667 0.16667 0.10667 0.31333 0

nbF

 
 
 
 =
 
 
  

, 

5 4.6933 4.7567 4.4233 4.5267

4.6933 5 4.7967 4.5567 4.5533

4.7567 4.7967 5 4.5333 4.5833

4.4233 4.5567 4.5333 5 4.53

4.5267 4.5533 4.5833 4.53 5

neF

 
 
 
 =
 
 
  

, 
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0 0.02 0.033333 0.02 0.046667

0.28667 0 0.14667 0.086667 0.16667

0.21 0.056667 0 0.053333 0.10667

0.55667 0.35667 0.41333 0 0.31333

0.42667 0.28 0.31 0.15667 0

nwF

 
 
 
 =
 
 
  

. 

Next we calculated 
D

μ   and ( , )i kd f f   (see formulas (4.8),(4.6)): 

0.5 0.47333 0.48233 0.44633 0.462

0.52667 0.5 0.509 0.473 0.48867

0.51767 0.491 0.5 0.464 0.47967

0.55367 0.527 0.536 0.5 0.51567

0.538 0.51133 0.52033 0.48433 0.5

D
μ

 
 
 
 =
 
 
  

 , 

0 0.93023 0.84127 0.96407 0.89062

0 0 0 0.75701 0.40476

( , ) 0 0.61364 0 0.87097 0.65591

0 0 0 0 0

0 0 0 0.5 0

i kd f f

 
 
 
 =
 
 
  

  . 

Finally we calculated degree of optimality for each of the considered alternatives 
(see formula (4.56)): 

1

0.069767

0.15873

0.035928

0.10938

do

 
 
 
 =
 
 
  

. 

So, the preferences obtained are: 1 3 5 2 4f f f f f        . The degrees of prefe-

rences are the following:  

1 3( ) 0.84lDeg f f =  , 

3 5( ) 0.05lDeg f f =  , 

5 2( ) 0.04lDeg f f =  , 

2 4( ) 0.034lDeg f f =  . 

We have also solved this problem by applying the method suggested in [14].  



304 8   Experiments and Applications
 

The preference obtained by this method is: 1 3 2 5 4f f f f f        . This is 

almost the same ordering as that obtained by the method suggested in this paper. 
However, the suggested method, as compared to the method in [14]  has several 
advantages. The first is that our method not only determines ordering among al-
ternatives, but also determines to what degree the considered alternative is optim-
al. This degree is an overall extent to which the considered alternative is better 
than all the other. The second when one has alternatives which are equivalent ac-
cording to the method in [14]  , by using our approach it is possible to differentiate 
them into more and less optimal ones by determining the corresponding value of 

Fk . Given these two advantages, the method suggested in Section 4.3 is of almost 

the same computational complexity as the method in [14]. 

Decision Making in a Hotel Management [7] 

A management of a hotel should make a decision concerning a construction of an 

additional wing. The alternatives are buildings with 30 ( 1f ), 40 ( 2f ) and 50 ( 3f ) 

rooms. The results of each decision depend on a combination of local government 
legislation and competition in the field. With respect to this, three states of nature 

are considered: positive legislation and low competition ( 1s ), positive legislation 

and strong competition ( 2s ), no legislation and low competition ( 3s ). The out-

comes (results) of each decision are values of anticipated payoffs (in percentage) 
described by Z-numbers. The problem is to find how many rooms to build in order 
to maximize the return on investment. 

Z -information for the utilities of the each act taken at various states of nature 
and probabilities on states of nature are provided in Table 8.16, Table 8.17,  
respectively. 

Table 8.16 The utility values of actions under various states 

 
1s  2s  3s  

1f  (high; likely) (below than high; likely) (medium; likely) 

2f  (below than high; likely) (low; likely) (below than high; likely) 

3f  (below than high; likely) (high; likely) (medium; likely) 

Table 8.17 The values of probabilities of states of nature 

1( )P s =(medium; quite 

sure) 

2( )P s =(more than medium; quite 

sure) 

2( )P s =(low; quite 

sure) 
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Here )
~

)),((~(
~

1))(( RsfvZ jissfv jjijs
= , where the outcomes and correspond-

ing reliability are the trapezoidal fuzzy numbers: 

11 11 11( , )Z A B= = )
~

)),((~(
~

111))(( 1111
RsfvZ ssfvs

= = {high; likely} =[(0.0, 0.8, 

0.9, 1.0), (0.0, 0.7, 0.7, 0.8)], 

12 12 12( , )Z A B= = )
~

)),((~(
~

121))(( 2212
RsfvZ ssfvs

= = {below than high; like-

ly} =[(0.0, 0.7, 0.8, 1.0), (0.0, 0.7, 0.7, 1.0)], 

13 13 13( , )Z A B= = )
~

)),((~(
~

131))(( 3313
RsfvZ ssfvs

= = {medium; likely} =  

=[(0.0, 0.5, 0.6, 1.0), (0.0, 0.7, 0.7, 1.0)], 

21 21 21( , )Z A B= = )
~

)),((~(
~

112))(( 1121
RsfvZ ssfvs

= = {below than high; like-

ly} =[(0.6, 0.7, 0.8, 1.0), (0.0, 0.7, 0.7, 1.0)], 

22 22 22( , )Z A B= = )
~

)),((~(
~

122))(( 2222
RsfvZ ssfvs

= = {low; likely} = 

=[(0.0, 0.4, 0.5, 1.0), (0.0, 0.7, 0.7, 1.0)], 

23 23 23( , )Z A B= = )
~

)),((~(
~

132))(( 3323
RsfvZ ssfvs

= = {below than high; like-

ly} =[(0.0, 0.7, 0.8, 1.0), (0.0, 0.7, 0.7, 1.0)], 

31 31 31( , )Z A B= = )
~

)),((~(
~

113))(( 1131
RsfvZ ssfvs

= = {below than high; likely} 

=[(0., 0.7, 0.8, 1.0), (0.0, 0.7, 0.7, 1.0)], 

32 32 32( , )Z A B= = )
~

)),((~(
~

123))(( 2232
RsfvZ ssfvs

= = {high; likely} = 

=[(0.0, 0.8, 0.9, 1.0), (0.0, 0.7, 0.7, 1.0)], 

33 33 33( , )Z A B= = )
~

)),((~(
~

133))(( 3333
RsfvZ ssfvs

= = {medium; likely} = 

=[(0.0, 0.5, 0.6, 1.0), (0.0, 0.7, 0.7, 1.0)]. 
 

Let the probabilities for 1s  and 2s be Z -numbers )
~

)),(
~

(
~

2)( RsPZ jsP j
= , where 

the probabilities and the corresponding reliability are the triangular fuzzy numbers:  
 

41 41 41( , )Z A B= = )
~

)),(
~

(
~

21)( 1
RsPZ sP = =(medium; quite sure) = 

=[(0.0, 0.3, 0.3, 1.0), (0.0, 0.9, 0.9, 1.0)]. 

42 42 42( , )Z A B= = )
~

)),(
~

(
~

22)( 2
RsPZ sP = =(more than medium quite sure) = 

=[(0.0, 0.4, 0.4, 1.0), (0.0, 0.9, 0.9, 1.0)]. 

In accordance with [3] we have calculated probability for 3s : 

43 43 43( , )Z A B= = )
~

)),(
~

(
~

23)( 3
RsPZ sP = =(low; quite sure) = 

=[(0.0, 0.3, 0.3, 1.0), (0.0, 0.9, 0.9, 1)]. 
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As it is shown in section 1.1. a Z -number ( , )A B  can be interpreted as 

Prob(   )  U is A is B . 

This expresses that we do not know the true probability density over U , but 
have a constraint in form of a fuzzy subset P  of the space P  of all probability 
densities over U . This restriction induces a fuzzy probability B .  Let p be densi-

ty function over U . The probability Prob (   )p U is A (probability that   U is A ) 

is determined on the base of the definition of the probability of a fuzzy subset as 

pProb (   ) ( ) ( )A UU is A u p u duμ
+∞

−∞

=  . 

Then the degree to which p  satisfies the Z -valuation Prob (   )  p U is A is B  is 

( ) (Prob (   )) ( ( ) ( ) )P B p B A Up U is A u p u duμ μ μ μ
+∞

−∞

= =  . 

Here p  is taken as some a parametric distribution. The density function of a nor-

mal distribution is 

2

2

1 ( )
( ) ( , , )) exp

22
U

u m
p u normpdf u m σ

σσ π
 −= = − 
 

. 

In this situation, for any m , σ  we have 

2

, , 2

1 2, 3 4

1 ( )
Prob (   ) ( ) ( ) ( ) exp

22

( ( ,[ , , , ]) * ( , , ), inf, inf)

m A m A

u m
U is A u p u du u du

quad trapmf u a a a a normpdf u m

σ σμ μ
σσ π

σ

+∞ +∞

−∞ −∞

 −= = = 
 

= − +

   

Then the space P  of probability distributions will be the class of all normal dis-
tributions  each uniquely defined by its parameters ,m σ .  

Let   ( , )U UU A B=  and = ( , )V VV A B  be two independent Z-numbers. 

Consider determination of W U V= + . First, we need compute U VA A+ using 

Zadeh’s extension principle: 

( ) (( ) sup ( ) ( ))
U V U VA A A A

u
w u w uμμμ + = ∧ − ,  min∧ = . 

As the sum of random variables involves the convolution of the respective density 

functions we can construct WP , the fuzzy subset of P , associated with the  
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random variable W . Recall that the convolution of density functions 1p  and 

2p is defined as the density function 

1 2p p p= ⊕  

such that 

1 2 1 2( ) ( ) ( ) ( ) ( )p w p u p w u du p w u p u du
+∞ +∞

−∞ −∞

= − = −   

One can then find the fuzzy subset WP . For any Wp ∈ P , one obtains 

,
( ) max[ ( ) ( )]

W U V
U V

P W P U P V
p p

p p pμ μ μ= ∧ , 

subject to  

W U Vp p p= ⊕ , 

that is,  

U V U V( ) ( ) ( ) ( ) ( )Wp w p u p w u du p w u p u du
+∞ +∞

−∞ −∞

= − = −  . 

Given ( ) ( , )
U UP U P U Up mμ μ σ=  and ( ) ( , )

V VP V P V Vp mμ μ σ=  as  

2

2

( )1
( , ) ( ( ) exp

22U U U

U
P U U B A

UU

u m
m u duμ σ μ μ

σσ π

+∞

−∞

 −=  
 

 , 

2

2

( )1
( , ) ( ( ) exp

22V V V

V
P V V B A

VV

u m
m u duμ σ μ μ

σσ π

+∞

−∞

 −=  
 

  

one can define WP  as follows  

, ,U U V VW m mp p pσ σ= ⊕ , 

,

2 2

2 2

( ) [ , , ]

( ( , , )* ( , , ), inf, inf)

( ) ( )1 1
exp exp

2 22 2

W WW m W W

U U V V

U V

U VU V

p w p normpdf w m

quad normpdf u m normpdf w u m

u m w u m
du

σ σ
σ σ

σ σσ π σ π

+∞

−∞

= = =

= − − + =

   − − −=    
   



 



308 8   Experiments and Applications
 

where 

W U Vm m m= +  and 2 2

UW Vσ σ σ= + , 

( ) sup ( ( ) ( ))
W U VP W P U P Vp p pμ μ μ= ∧  

subject to 

, ,U U V VW m mp p pσ σ= ⊕  

WB  is found as follows. 

( ) sup( ( ))
W WB W WP

b pμ μ=   

subject to 

( ) ( )
WW W Ab p w w dwμ

+∞

−∞

=   

Let us now consider determination of W U V= ⋅ .  

U VA A⋅  is defined by: 

( ) (( ) sup ( ) ( ))
U V U VA A A A

u

w
w u

u
μμ μ⋅ = ∧ ,  min∧ = . 

the probability density Wp  associated with W  is obtained as 

, ,U U V VW m mp p pσ σ= ⊗ , 

2
2

, 2 2

( )( )1 1
( ) exp exp

2 22 2W W

V
U

W m
U VU V

w
mu m up w p duσ σ σσ π σ π

+∞

−∞

 −  −= =   
    

 



where 

U V
W

U V

m m
m r

σ σ
= + , 

and  

2 2 2 2 2 2 2 2 22
U VV U U V U V U V U V

W
U V

m m m m r rσ σ σ σ σ σ σ σ
σ

σ σ
+ + + +

= . 

Where r  is correlation coefficient. 
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If U  and V  are two independent random variables, then 

U V
W

U V

m m
m

σ σ
= , and 

2 2 2 2 2 2

U VV U U V

W
U V

m mσ σ σ σ
σ

σ σ
+ +

= . 

If take into account compatibility conditions 1U Vσ σ = . 

The other steps are analogous to those of determination of W U V= + . 

Following the proposed decision making method, and using given Z - informa-

tion we get the values of utility and their reliabilites for acts 1f , 2f , 3f  

231 fff   

Decision Making Problem of One-Product Dynamic Economic Model [11] 

In the present study a problem of optimal control for a single-product dynamic 
macroeconomic model is considered. In this model gross domestic product is di-
vided into productive consumption, gross investment and nonproductive consump-
tion. The model is described by a fuzzy differential equation (FDE) to take into 
account imprecision inherent in the dynamics that may be naturally conditioned by 
influence of various external factors, unforeseen contingencies of future etc 
[8,9,11]. The considered problem is characterized by four criteria. Application of 
the classical Pareto optimality principle for solving such problems leads to a large 
Pareto optimal set that complicates determination of a solution. We applied fuzzy 
Pareto optimality (FPO) formalism to solve the considered problem that allows to 
softly narrow a Pareto optimal set by determining degrees of optimality for consi-
dered alternatives. Five optimal alternatives are obtained with their degrees of op-
timality and the alternative with the degree of optimality equal to one is taken as 
the solution of the considered problem stability. The applied approach is characte-
rized by a low computational complexity as compared with the existing decision 
making methods for solving multiobjective optimal control problems. 

Statement of the Problem. Let us consider a single-product dynamical macroeco-
nomic model which reflects interaction between factors of production when a 
gross domestic product (GDP) is divided into productive consumption, gross in-
vestment and non-productive consumption as the performance of production activ-
ity. In its turn productive consumption is assumed to be completely consumed on 
capital formation and depreciation. These processes are complicated by a presence 
of possibilistic, that is, fuzzy uncertainty which is conditioned by imprecise  
evaluation of future trends, unforeseen contingencies and other vagueness and im-
preciseness inherent in economical processes. Under the above mentioned as-
sumptions the considered dynamical economical model can be described by the 
following fuzzy differential equation: 
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( )1 2

1
(1 )

dK
a u K u

dt q
μ= − − −

  
 

(8.1) 

Here K  is a fuzzy variable describing imprecise information on capital, i.e. fuzzy 

value of capital, 1u  is a fuzzy value of GDP (the first control variable), 2u  (the 

second control variable) – is a fuzzy value of a non-productive consumption, 
, , 0a qμ >  are coefficients related to the productive consumption, net capital 

formation and depreciation respectively. 
Let us consider a multiobjective optimal control problem of (8.1) within the pe-

riod of planning 0[ , ]t T  with four objective functions (criteria): profit ( 1J ), re-

duction of production expenditures of GDP( 2J ), a value of capital at the end of 

period 0[ , ]t T ( 3J ), a discount sum of a direct consumption over 0[ , ]t T ( 4J ) . 

The considered fuzzy multiobjective optimal control problem is formulated below: 

0 0

0

1 2 2 1 3

4 2

sup( ( ) ( ) ( ) , ( ) ( ) , ( )

( ), ( ) ( ) ( ) ))

T T

t t

T
T

t

J p t u t dt J c u t dt J

K T J t u t dtθ

∈
= = − =

=

 



u
u u u

u



      

   



 (8.2) 

subject   to       

             

( ) 1
1 2 0 0 0

1 *
*

2
1 2

1 *
1 1* 1 1

1 *
2 2* 2 2

1
(1 ) , ( ) , [ , ], ( ) ,

( ) ( ),

( )={ : ( ) },

( , ) ,

,

{ : ( ) },

{ : ( ) }

T

dK
a u K u K t t t T K t K

dt q

K T T

T K K K T K

u u

u u u t u

u u u t u

μ= − − − ∈ ∈ =

∈

∈ ≤ ≤

∈ ⊂
×

= ∈ ≤ ≤

= ∈ ≤ ≤

1 2

1

2

u =

=

     


   

  

   
   






  













 

(8.3) 
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Here ( )p t  is the price of production unit, produced at the time t , ( )tθ   - dis-

count function, 0c const= > ,  0[ , ]t T  is a term of forecasting (or planning). 

 
Method of Solution. The considered problem is solved as follows. At the first 
stage it is necessary to determine feasible area defined by (8.3). Each feasible so-

lution is represented by two control actions 1( , )u t K  and 2 ( , )u t K   for which 

(8.3) are satisfied. We choose 1( , )u t K  and 2 ( , )u t K  as  

1 1 1( , )u t K a K b= +  ,     (8.4)

2 2 2( , )u t K a K b= +  ,     (8.5)

and determine such 1 1 2 2, , ,a b a b  for which (8.3) are satisfied. Taking into ac-

count (8.1) and (8.4)-(8.5), the solution for FDE (8.1) under the second case of the 
strongly generalized differentiability [8] is represented as follows: 

  
1 2

(0,1]

( ) [ ( ), ( )]K t K t K tα α

α
α

∈

= 
  

    (8.6)

                                   
1 1 0( ) ( ) tK t K t eα α γβ β

γ γ
 

= − + + 
                                 

2 2 0( ) ( ) tK t K t eα α γβ β
γ γ

 
= − + + 

  . 

where  2 1(1 ),    =(1- ) ( ).1 2b b a a a aβ γ μ= − − − +   

At the second stage, we need to calculate values of the criteria for the feasible 
solutions determined at the previous stage. We will consider discrete form of the 

criteria , 1,..., 4iJ i = : 

1 2 0 21 1
0

N
n

n

J p a K e bα αβ β
γ γ

Δ

=

   = − + + + Δ       
 , 

1 2 0 22 2
0

N
n

n

J p a K e bα αβ β
γ γ

Δ

=

   = − + + + Δ       
  

(8.7) 
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2 1 0 11 2
0

2 1 0 12 1
0

( ( ) ) ,

( ( ) )

N
n

n

N
n

n

J c a K e b

J c a K e b

αα γ

αα γ

β β
γ γ

β β
γ γ

Δ

=

Δ

=

= − − + + + Δ

= − − + + + Δ








 (8.8) 

3 0 3 01 1 2 2
0 0

( ( )) , ( ( ))
N N

n n

n n

J K e J K eα α α αγ γβ β β β
γ γ γ γ

Δ Δ

= =

= − + + = − + +   (8.9) 

1

41 0 2 21
0

1

42 0 2 22
0

(( ( ) ) ),

(( ( ) ) )

N
rn n

n

N
rn n

n

J e K e a b

J e K e a b

α γ

α γ

β β
γ γ
β β
γ γ

−
Δ Δ

=

−
Δ Δ

=

= Δ − + + +

= Δ − + + +




 (8.10) 

At the third stage, given the values of the criteria calculated for feasible solutions 
at the previous stage we need to extract from Pareto optimal solutions them in 
terms of maximization of the criteria (8.7)-( 8.10). 

At the fourth stage, it is needed to calculate  nbF, neF, nwF for each pair of al-

ternatives iu , ku . Let us mention that FO-based formalism is suggested in [10] 
for multicriteria problems with non-fuzzy criteria. In contrast, in our problem we 

consider fuzzy-valued criteria. As a result, instead of calculation of , ,b e wμ μ μ  

suggested in [10] (see Section 4.3), we will calculate possibility measures of simi-

larity of differences ( ) ( )j jJ J−i ku u    to fuzzy sets , ,b e wA A A    describing lin-

guistic evaluations “better”, “equivalent” and “worse” respectively. Then nbF,  
neF, nwF  will be calculated as follows: 

1

( , ) (( ( ) ( )),
b

M

j jA
j

nbF P J J
=

= −i k i ku u u u
      (8.11) 

1

( , ) (( ( ) ( )),
e

M

j jA
j

neF P J J
=

= −i k i ku u u u
      (8.12) 

1

( , ) (( ( ) ( )),
M

j jAw
j

nwF P J J
=

= −i k i ku u u u
      (8.13) 

where 

( )
( ) ( ) ( )

( ( ) ( ))
(( ) ))

( ( ) ( )) ( ( ) ( )) ( ( ) ( ))b

j j b

j jA

j j b j j e j j w

Poss J J A
P J J

Poss J J A Poss J J A Poss J J A

−
− =

− + − + −

i k

i k

i k i k i k

u u
(u (u

u u u u u u
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( )
( ) ( ) ( )

( ( ) ( ))
(( ( ) ( ))

( ( ) ( )) ( ( ) ( )) ( ( ) ( ))e

j j e

j jA

j j b j j e j j w

Poss J J A
P J J

Poss J J A Poss J J A Poss J J A

−
− =

− + − + −

i k

i k

i k i k i k

u u
u u

u u u u u u


  
  

            

 

( )
( ) ( ) ( )

( ( ) ( ))
(( ( ) ( ))

( ( ) ( )) ( ( ) ( )) ( ( ) ( ))w

j j w

j jA

j j b j j e j j w

Poss J J A
P J J

Poss J J A Poss J J A Poss J J A

−
− =

− + − + −

i k

i k

i k i k i k

u u
u u

u u u u u u


  
  

            

 

As  

(( ( ) ( )) (( ( ) ( )) (( ( ) ( )) 1
b e w

j j j j j jA A A
P J J P J J P J J− + − + − =i k i k i ku u u u u u  

            

always holds then 

1

( , ) ( , ) ( , )

( (( ( ) ( )) (( ( ) ( )) (( ( ) ( )))
b e w

M

j j j j j jA A A
j

nbF neF nwF

P J J P J J P J J M
=

+ + =

= − + − + − =

i k i k i k

i k i k i k

u u u u u u

u u u u u u  

     

          
(14) 

The membership functions of , ,b e wA A A    are shown below (Fig.8.25.): 

 

Fig. 8.25 The membership functions of , ,b e wA A A    

At the fifth stage, in accordance with FO-based approach (see Section 4.3), on 

the base of  ( , )nbF i ku u  , ( , )neF i ku u  , and ( , )nwF i ku u   we need to calcu-

late the greatest 1 ( , )kF d= − i ku u   among all ∈ku  , such that iu  

(1 )kF− -dominates ku , where  ( , )d i ku u   is defined as follows: 
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( , )
0, ( , )

2
( , )

2 ( , ) ( , )
,

( , )

M neF
if nbF

d
nbF neF M

otherwise
nbF

 −≤=  ⋅ + −


i k
i k

i k
i k i k

i k

u u
u u

u u
u u u u

u u

  
 

   
 

 

At the final stage it is needed to determine for each iu  its degree of optimality 

( ) 1 max ( , )do d
∈

= −i i

u
u u u


  


 and choose an optimal alternative (solution) as a so-

lution with the highest do. 

Simulation Results 

Let us consider solving of the problem (8.2)-( 8.3) under the following data: 

0 (2000, 2020,2040)K =  
*

* 2000, 3000K K= =  ; *
1 1* 600, 800u u= =  ; *

2 2* 450, 550u u= =  ; 

;1500=p ;5.0=c ;05.0=a ;95.0=q ;08.0=μ  

In accordance with the Section 4, at the first stage we obtained an approximate set 

of the feasible solutions 1 1 1( , )u t K a K b= +   and 2 2 2( , )u t K a K b= +   for the 

considered problem. 

For example, the plots of 1 1 1( , )u t K a K b= +  , 2 2 2( , )u t K a K b= +   and 

( )K t  for feasible solution 1 are shown in Figs. 8.26-8.28: 

 

 

Fig. 8.26 Graphical representation of  )~,(~
1 Ktu (the core and the support bounds) 

Then we calculate values of criteria (8.7)-( 8.10) for the obtained feasible solu-
tions. The calculated fuzzy values as triangular fuzzy numbers are shown in  
Table 8.18. 
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Fig. 8.27 Graphical representation of  )~,(~

2 Ktu (the core and the support bounds) 

 
Fig. 8.28 Fuzzy value of capital (the core and the support bounds) 

Table 8.18 Feasible solutions(in the space of the criteria) 

Feasible 

solution 

Criteria values 

1J  2J  3J  4J  

1 (1354567, 

1368113, 

1381658) 

(-2046.9, 

-2026.83, 

-2006.77) 

(20067.66, 

20268.34, 

20469.01) 

(945.0581, 

954.5087, 

963.9593) 

2 (1351675, 

1365220, 

1378766) 

(-2047.62, 

-2027.55, 

-2007.48) 

(20024.81, 

20225.49, 

20426.16) 

(943.0032, 

952.4537, 

961.9043) 

3 (1384002, 

1397842, 

1411682) 

(-2091.38, 

-2070.88, 

-2050.37) 

(20503.73, 

20708.77, 

20913.81) 

(965.9727, 

975.6324, 

985.2922) 

 
Now given the feasible solutions described in the space of criteria (8.7)-( 8.10) 

we need to determine the corresponding Pareto optimal set. The Pareto optimal set 
is given in Table 8.19. 
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Table 8.19 Pareto optimal set 

Fea

sib-

leso

luti

on 

Criteria values 

1J  2J  3J  4J  

1 (1354567, 1368113, 

1381658) 

(-2046.9,  

-2026.83,  

 -2006.77) 

(20067.66, 

20268.34, 

20469.01) 

(945.0581, 954.5087, 

963.9593) 

3 (1384002, 1397842, 

1411682) 

(-2091.38,   

 -2070.88,  

-2050.37) 

(20503.73, 

20708.77, 

20913.81) 

(965.9727, 975.6324, 

985.2922) 

6 (1456329, 1470892 

1485456) 

(-2063.13, 

 -2042.91,     

 -2022.68) 

(20226.79, 

20429.06, 

20631.33) 

(1016.202, 1026.364, 

1036.526) 

9 (1503380, 1518414, 

1533448) 

(-2044.6,  

-2024.55,  

 -2004.51) 

(20045.07, 

20245.52, 

20445.97) 

(1048.861, 1059.35, 

1069.838) 

11 (1583052, 1598882, 

1614713) 

(-2070.14,  

-2049.85,  

-2029.55) 

(20295.53, 

20498.49, 

20701.44) 

(1104.696, 1115.743, 

1126.789) 

 
Now, given the obtained Pareto optimal set, we need to determine the alterna-

tive with the highest degree of optimality. For this purpose, we need at first to cal-
culate values of ,  nbF neF,  nwF [10]. The values of  ,  nbF neF,  nwF  are 

given in Tables 8.20-8.22: 

Table 8.20 nbF  

( , )nbF i ku u 
 

1u  
2u  

3u  
4u  

5u  

1u  0 0.719504417
 

0.420087801 0.242182752  0.512271202

 
2u  1.587055972

 
0  0.783480605

 

1 0.726849113

 
3u  2.678826696

 

1.957762366  0 0.848204309  0.331291114

 
4u  2.280101146

 

2.740620486  1.365479496
 

0 0.545431948

 
5u  2.914733443

 

2.48284307

 

2.556180883

 

2.513137814  0 
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Table 8.21 neF  

( , )neF i ku u 
 

1u  2u  3u  4u  5u  

1u  0 1.69343961 0.901085504

 
1.477716102

 
0.57299535

 
2u  1.69343961 0 1.258757029

 
0.259379514

 
0.790307817

 
3u  0.901085504  1.258757029  0 1.786316195

 
1.112528002

 
4u  1.477716102  0.259379514  1.786316195 0 0.941430238

 
5u  0.572995355

 
0.790307817

 
1.112528002

 
0.941430238

 
0 

Table 8.22 nwF  

( , )nwF i ku u 
 

1u  
2u  

3u  
4u  

5u  

1u  0 1.587055972

 

2.678826696

 

2.280101146

 
2.914733443 

2u  0.719504417

 

0 1.957762366

 

2.740620486

 

2.48284307  

3u  0.420087801 0.783480605

 

0 1.365479496

 

2.556180883

 
4u  0.242182752

 

1 0.848204309

 

0 2.513137814

 
5u  0.512271202

 

0.726849113

 

0.331291114

 

0.545431948

 

0 

 
Given the calculated values of ,  nbF neF,  nwF  we need to calculate for 

each pair of alternatives i ku , u   the greatest kF such that iu   (1-kF) -dominates 

ku  as 1 ( )d− i ku , u  . The calculated ( )d i ku , u   are given below: 

 

0 0.546642066 0.843182166 0.893784207 0.824247667

0 0             0.599808118 0.635119125 0.707251287

( ,  ) 0 0             0             0.378823109 0.87039606

0 0             0             0             0.78296775
i jd u u =

2

0 0             0             0             0
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Finally, for each u  we calculated its degree of optimality do: 
 

( ) 0.106215793,   ( ) 0.292748713,   ( ) 0.12960394,

( ) 0.217032248,    ( ) 1

do do do

do do

= = =
= =

1 2 3

4 5

u u u

u u

  
 

 

As one can see, the optimal alternative *u  is iu  as it has the highest degree of op-

timality: ( ) 1do =5u . 

Application of FPO formalism allowed obtaining intuitively meaningful solu-
tion for the considered problem complicated by four conflicting criteria and non-
stochastic uncertainty intrinsic to real-world economic problems. This is due to the 
fact that FPO formalism develops Pareto optimality principle by differentiate be-
tween “less” and “more” Pareto optimal solutions. Fuzzy Pareto optimal solutions 
with different degrees of optimality provide an additional information about alter-
natives and a freedom for choosing an appropriate alternative (control actions) 
when the alternative with the highest degree of optimality may not be implement-
able in real-world situation. The obtained results show validity of the applied  
approach. 
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