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Chapter 1 

Introduction 

This book is intended to be an undergraduate introduction to the theory of 
fuzzy sets. We envision, sometime in the future, a curriculum in fuzzy sys­
tems theory, which could be in computer /information sciences, mathematics, 
engineering or economics (business, finance), with this book as the starting 
point. It is not a book for researchers but a book for beginners where you 
learn the basics. 

This course would be analogous to a pre-calculus course where a student 
studies algebra, functions and trigonometry in preparation for more advanced 
courses. Chapters 3 through 11 are on fuzzy algebra, fuzzy functions, fuzzy 
trigonometry, fuzzy geometry, and solving fuzzy equations. However, after 
this course the student doesn't go on to calculus but to more specialized 
courses in fuzzy systems theory like fuzzy clustering, fuzzy pattern recogni­
tion, fuzzy database, fuzzy image processing and computer vision, robotics, 
intelligent agents, soft computing, fuzzy rule based systems (control, expert 
systems), fuzzy decision making, applications to operations research, fuzzy 
mathematics, fuzzy systems modeling, etc. Therefore, very little of most of 
these topics are included in this book. 

There are many new topics included in this book. Let us point out some 
of them here: (1) mixed fuzzy logic (Section 3.5); (2) three methods of solving 
fuzzy equation/problems (Chapter 5); (3) solving fuzzy inequalities (Chapter 
6); (4) inverse fuzzy functions (Section 8.5); (5) fuzzy plane geometry (Chap­
ter 9); (6) fuzzy trigonometry (Chapter 10); and (7) fuzzy optimization based 
on genetic algorithms (Chapter 16). 

As a text book similar to a pre-calculus course the sections are short 
followed by a list of exercises and no references are given. The problems 
at the end of each section may be divided into three groups: (1) easy (just 
put the numbers, or data, into the correct equation or formula); (2) medium 
(determine the correct equation/formula for the data or give an argument for 
some result stated in the text); and (3) hard. 

These problems are all mixed up and we do not indicate their difficulty. 
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Many students would not try a problem if they were told it was a hard prob­
lem. The "hard" problems are not difficult because they are of an advanced 
nature; they are "elementary" hard problems since they are easy to state in 
an introductory course. There are not many of these hard problems but there 
are a few that could warrant publication if solved. 

Prerequisites are algebra, trigonometry and elementary differential calcu­
lus. We do take derivatives, and some partial derivatives, but these are all 
elementary and can be taught within the course. In one place, Section 4.6 , 
we have an integral, and its evaluation can easily be shown by introducing 
the fundamental theorem of calculus. 

It is difficult, in a book with a lot of mathematics, to achieve a uniform 
notation without having to introduce many new specialized symbols. So what 
we have done is to have a uniform notation within each section. What this 
means is that we may use the letters "a" and "b" to represent a closed interval 
[a, b] in one section but they could stand for parameters in an equation in 
another section. 

We will have the following uniform notation throughout the book: 

(1) we place a "bar" over a letter to denote a fuzzy set (A, F, etc.); 

(2) an alpha-cut is always denoted by "a"; 

(3) fuzzy functions are denoted as F, G, etc.; and 

(4) R denotes the set of real numbers. 

The term "crisp" means not fuzzy. A crisp set is a regular set and a crisp 
number is a real number. There is a potential problem with the symbol "~". 
It usually means "fuzzy subset" as A ~ B stands for A is a fuzzy subset 
of B (defined in Chapter 3). However, in Section 4.5 A ~ B means that 
fuzzy set A is less than or equal to fuzzy set B. The symbol "~" , unless we 
are in Section 4.5, will mean "fuzzy subset" except when we explicitly state 
otherwise. 

The basic material is in Chapters 3 through 11. Then you can choose 
from different topics in Chapter 2 or from Chapters 12 through 16. Chapter 3 
introduces fuzzy sets , their a-cuts and the algebra of fuzzy sets. 

Fuzzy numbers and the arithmetic of fuzzy numbers is in Chapter 4. 
There are many properties of the real numbers we use frequently that need 
to be translated over to fuzzy numbers. These include: (1) finding the dis­
tance between two real numbers (lx- yl), becoming the distance between 
fuzzy numbers in Section 3.7, (2) finding the max and min of two real num­
bers, resulting in fuzzy max and fuzzy min in Section 4.4, and (3) having 
inequalities between real numbers (x ~ y), extended to inequalities between 
fuzzy numbers in Section 4.5. 

Something special to fuzzy systems theory, defuzzification, is discussed in 
Section 4.6. Then we go to solving fuzzy equations and fuzzy inequalities in 
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Chapters 5 and 6. Fuzzy relations, including transitive closure, fuzzy equiv­
alence relations and solving fuzzy relational equations, comprises Chapter 7. 

Functions are of great importance in mathematics and fuzzy functions 
are important in fuzzy systems theory. How we usually get fuzzy functions, 
via the extension principle or a-cuts and interval arithmetic, is studied in 
Chapter 8. But also in Chapter 8 we look at types of fuzzy functions, inverse 
fuzzy functions and elementary derivatives of fuzzy functions. 

The geometry of the plane is central to mathematics so we introduce fuzzy 
geometry (fuzzy circles, fuzzy lines, etc.) in Chapter 9. 

To finish off the "basics" we have fuzzy trigonometry and solving systems 
of fuzzy linear equations in Chapters 10 and 11, respectively. 

Discrete possibilities with applications to fuzzy Markov chains are dis­
cussed in Chapter 12. Chapter 14 contains approximate reasoning with 
blocks of fuzzy rules. So called " soft computing", including (fuzzy) neu­
ral nets, fuzzy sets and genetic algorithms is included in Chapters 13 and 
15. 

Fuzzy optimization, based on genetic algorithms is in the last chapter. 
For completeness we have also added the basics of crisp and fuzzy logic 

in Chapter 2. 
We suggest the material to cover in a one semester course is Chapters 3, 

4, 5, 7 and 8, and the choose from the remainder to finish out the term. 
There are a couple of ways to expand the book to surely fill up a two 

semester course. The students can download a training algorithm for layered, 
feedforward, neural nets in Chapter 13 and then do the training needed to 
fully complete the exercises in Section 13.2.1 of that chapter. Also, the 
students can download genetic algorithm software in Chapter 15 to use to 
complete the fuzzy optimization problems (get numerical answers) given in 
the exercises in Chapters 15 and 16. 

Being very optimistic, we hope to have a second edition of this book. So, 
please send us your comments on what material needs to be covered and 
especially you favorite problems. If we include your problem in a second 
edition we will reference you, by name, to be attached to the problem. 



Chapter 2 

Logic 

2.1 Introduction 

This chapter is a brief introduction to fuzzy logic. To see how fuzzy logic 
extends and generalizes classical logic we start in the next section with propo­
sitional logic. Propositional logic deals with finding the truth values of for­
mulas containing atomic propositions, whose truth value is either zero or one, 
connected by "and" (/\), "or" (V), implication (---+ ), etc. 

Then, in the third section we review the basic results from crisp set theory. 
Also in the third section we point out the identification between set theory 
and propositional logic. 

The beginning of fuzzy logic follows in the fourth section where: 

(1) we allow truth values to be any number in [0, 1], and 

(2) we find truth values of formulas using a t-norm for 1\ and a t-conorm 
for V. 

Although t-norms and t-conorms are studied in detail in Chapter 3, we 
only introduce two t-norms (t-conorms) here so we can show how fuzzy logic 
generalizes classical logic. 

2.2 Propositional Logic 

Logic is the analysis of methods of reasoning. The propositional logic is a 
logic which deals with propositions. A proposition is a sentence which is 
either true or false. The "true " and "false" are called the truth values. We 
denote these values by 1 and 0, respectively. Then to any sentence is assigned 
only 1 or 0. The propositional logic based on this preassumption is said to 
be the two-valued or classical propositional logic. Simple sentences or atomic 
propositions are denoted by p, q, ... or Pl, P2, .... 
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Atomic propositions are combined to form more complicated propositions 
where the truth or falsity of the new sentences are determined by the truth 
or falsity of its component propositions. 

Negation, denoted by "', is an operation on propositions. That is, if pis 
a proposition, then "' p is also a proposition, whose truth values are shown 
in the following truth table: 

Table 2.1: Truth Table for Negation 

When p is true, "'p is false, when p is false, "'p is true. 
Another common operation is conjunction "and". The conjunction of 

propositions p and q is denoted by p 1\ q and has the following truth table: 

Table 2.2: Truth Table for Conjunction 

p q pl\q 
1 1 1 
1 0 0 
0 1 0 
0 0 0 

p 1\ q is true if and only if both p and q are true. p and q are called the 
conjuncts of pl\q. Note that there are cases (rows) in the table, corresponding 
to the number of possible assignments to truth values top and q. 

There is an operator on propositions corresponding to "or" called disjunc­
tion. The disjunction of proposition p and q is denoted by p V q. Its truth 
table is as follows: 

Table 2.3: Truth Table for Disjunction 

p q pVq 
1 1 1 
1 0 1 
0 1 1 
0 0 0 
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Thus, p V q is false if and only if both p and q are false. The propositions 
p and q are said to be disjuncts. 

Note that there is another "or" called "exclusive or", whose meaning is p 
or q but not both. 

Another truth operation on propositions is called conditional: if p, then 
q. "If p, then q " is false when the antecedent pis true and the consequent q 
is false, otherwise it is true. We denote "If p, then q" by p -+ q and say that 
p implies q or that q is implied by p. Thus -+ has the following truth table: 

Table 2.4: Truth Table for Implication 

p q p-+q 
1 1 1 
1 0 0 
0 1 1 
0 0 1 

Let us denote "p if and only if q" by p ++ q. Such an expression is called 
a biconditional. Clearly p ++ q is true when and only when p and q have 
the same truth values. Two propositions that have the same truth values are 
said to be equivalent. Its truth table is given below: 

Table 2.5: Truth Table for Equivalence 

p q p++q 
1 1 1 
1 0 0 
0 1 0 
0 0 1 

The symbols '"'"', 1\, V, -+, ++ are called propositional connectives. Any 
proposition built up by application of these connectives has a truth value 
1 or 0 which depends on the truth values of the constituent propositions. In 
order to make this dependence clear, we use the name well-defined formulas 
or simply formulas to an expression build up from the propositional symbols 
p, q, r, etc., by appropriate applications of the proposition connectives. Thus 
we define: 

a. every propositional symbol is a formula; 
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Table 2.6: Truth table for ((p 1\ ('"" q)) --+ r) 

p q r ('"" q) (p/\('"-'q)) ((pi\('"" q))--+ r) 
1 1 1 0 0 1 
1 1 0 0 0 1 
1 0 1 1 1 1 
1 0 0 1 1 0 
0 1 1 0 0 1 
0 1 0 0 0 1 
0 0 1 1 0 1 
0 0 0 1 0 1 

b. if P and Q are formulas, then ('"" P), (P 1\ Q), (P V Q), (P --+ Q) and 
(P ++ Q) are formulas ; and 

c. only those expressions are formulas that are determined by means of 
(a) and (b). 

Example 2.2.1 

The expressions p, ('"" P2), (p3 1\ ('"" q)), ((("' p) V q) --+ r), (("' p) ++ p) ++ 
(q--+ (r V s)) are all formulas. 

Corresponding to each assignment of truth values 1 or 0 to the proposi­
tional symbols occurring in a formula, there is a truth value for the formula 
based on the truth tables for the propositional connectives. Then every for­
mula determines a truth function, which can be represented by a truth table. 
For example, the formula ( (p 1\ ('"" q)) --+ r) has the truth table given in Table 
2.6. 

We note that if there are n distinct symbols in a formula, then there are 
2n possible assignments of truth values to the propositional symbols, i.e., 2n 
rows in the truth table. 

A truth table of m rows defines a truth function of m components which 
in turn defines a function of m arguments, the arguments and values are the 
truth values 1 or 0. Therefore any formula determines a truth function. 

A formula that is always true is called a tautology. A formula is a tau­
tology if and only if its corresponding truth function takes only the value 1, 
or equivalently, if in its truth table, the column under the formula contains 
only 1's. 
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Example 2.2.2 

The following formulas are tautologies: 

1. (p V (......, p)) (excluded middle law); 

2. (......,(pi\("-' p)), (pH(......,("-' p))), ((p--+ q)--+ p); and 

3. (p--+ (p v q)). 

If P and Q are formulas and (P --+ Q) is a tautology, we say that P 
logically implies Q, or Q is a logical consequence of P. For example, (p 1\ q) 
logically implies p, and (......, (......, p)) logically implies p. 

If P and Q are formulas and (PH Q) is a tautology, we say that P and 
Q are logically equivalent. For example, p and (......, (......, p)) are equivalent, as 
are (p--+ q) and((......, p) V q). 

A formula that is false for all possible truth values of its propositional 
symbols is called a contradiction. It's truth table has only O's in the col­
umn under the formula. For example, (p 1\ (......, p)) and (p H (......, p)) are 
contradictions. 

We note that a formula P is a tautology if and only if (......, P) is a contra­
diction. 
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2.2.1 Exercises 

1. Write the following propositions as formulas, using proposition symbols 
to stand for simple sentences. 

a. John is happy or it is raining. 

b. If Mr. Amin is successful, then Mrs. Amin is happy, and if Mrs. 
Amin is not happy, then Mr. Amin is not successful. 

c. Ali goes to the party and Joe does not, or Sam does not go to the 
party and Max goes to the theater. 

d. Maria goes to the movies if a comedy is playing. 

e. A sufficient condition for x to be odd is that x is prime. 

f. If x is positive, x2 is positive. 

2. Write the truth table for ((p-+ q) 1\p) and ((pV (~ q)) ++ q). 

3. Determine whether the following are tautologies: 

a. (p -+ q) -+ (p V q); 

b. (((p-+ q)-+ q)-+ q); 

c. (p-+ (q-+ (q-+ p))); 

d. ((q-+ r)-+ (p-+ q))-+ (p-+ q); 
e. ((p V (~ (q 1\ r)))-+ ((p ++ q) V r)). 

4. Prove or disprove the following: 

a. ((~ p) V q) is logically equivalent to((~ q) V p); 
b. (p ++ q) logically implies (p-+ q); 

c. p is logically implied by (p 1\ q); 
d. (p V q) is logically implied by (p 1\ q); 
e. (p 1\ q) is logically implied by (p-+ q); 
f. ((~ q)-+ (~ p)) is logically implied by (p ++ q); 

g. (p-+ q) is logically implied by (p V q). 

5. Determine whether each of the following is a tautology, a contradiction, 
or neither: 

a. (p-+q)++(~(pl\(~q))); 

b. (~ p)-+ (p (\ q); 

c. pi\(~ (pVq)); 

d. (p-+ q) f-+ ((~ p) v q); 

e. (p-+ q) -+ ((q-+ r) -+ (p-+ r)). 
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6. Show that the following pairs are logically equivalent: 

a. p 1\ ( q V r) and (p 1\ q) V (p 1\ r); 

b. p V (q 1\ r) and (p V q) 1\ (p V r); 

c. "-'(pVq)and("-'p)/\("-'q); 

d. "-'(p/\q)and("-'P)V("-'q). 

7. If P is a formula involving only "-', 1\, and V and P' arises from P by 
replacing each 1\ by V and each V by 1\, show that P is a tautology if 
and only if ("' P') is a tautology. Prove that if P --+ Q is a tautology, 
so is Q' --+ P', and if P ++ Q is a tautology, so is P' ++ Q'. 
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2.3 Crisp Sets 

By a crisp set, or a classical set, or simply a set we mean a collection of distinct 
well-defined objects. These objects are said to be elements or members of 
the set. We usually denote the sets by capital letters A, B, C, etc., and the 
members by a, b, c, etc. To denote a is an element of A we write a E A. The 
negation of a E A is written a f{_ A and means that a does not belong to A. 
A set with no elements is called an empty set and will be denoted by ¢. 

We say that the set A is a subset of B written as A ~ B if every element 
of A is also a member of B. We write A= B if the sets A and B have the 
same elements. Therefore two sets A and B are equal if and only if A ~ B 
and B ~ A. A set A is said to be a proper subset of B, written A C B if 
A ~ B but A =f. B. The set of all subsets of a given set A is called the power 
set of A and is denoted by P(A). 

A set A with elements a1, a2, ... , an is denoted by A = { a1, a2, ... , an} 
and in this case we say that A is finite. There are several ways to denote 
sets describing their elements. For instance the set of even natural numbers 
is denoted by E = {2, 4, 6, ... } or equivalently E = {2klk E N} where N 
is the set of natural numbers. A set A is infinite, or has an infinitely many 
elements, if it is not finite. A set is denumerable if it is in a one-to-one 
correspondence with the set of natural numbers. A set is countable if it is 
finite or denumerable. 

When we are talking about the sets, it is assumed that all sets are subsets 
of a given set called universal set, usually denoted by X. Then a universal 
set is a set which contains all the possible elements we need for a particular 
discussion or application. 

Let X be the universal set, we define operations on P(X) as follows. 
Let A and B be two sets (they are elements of P(X)). Then by Ac, called 
the complement of A, we mean the set of all elements in X which are not 
members of A, or 

Ac ={a E Xla f{_ A}. (2.1) 

The union A U B of sets A and B is defined to be the set of all elements 
which are members of A orB or both, or 

AU B = {x E Ulx E A or x E B}. (2.2) 

The intersectionA n B of sets A and B is defined to be the set of all 
elements which are members of both A and B, in notation 

An B = {x E Ulx E A and x E B}. (2.3) 

The fundamental properties of c, U, n , which are similar to "', V, /\, 
respectively, are: 

Idem potency : A u A = A, A n A = A, (2.4) 
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Commutativity : AU B = B U A, An B = B n A, (2.5) 

Associativity: AU (B U C) = (AU B) U C, (2.6) 

Associativity: An (B n C) = (An B) n C, (2.7) 

Absorption: Au (An B)= A, An (Au B)= A, (2.8) 

Distributivity : An (B u C) = (An B) u (An C), (2.9) 

Distributivity: AU (B n C) = (Au B) n (Au C), (2.10) 

Identity : AU¢ = A, Au X = X, An X = A, An¢ = ¢, (2.11) 

Law of Contradiction: An Ae = ¢, (2.12) 

Law of Excluded Middle: AU Ae =X, (2.13) 

Involution: (Ae)e =A, (2.14) 

De Morgan law: (AU B)e = Ae n Be, (2.15) 

De Morgan law: (An B)e = Ae u Be. (2.16) 

We have a mathematical system, denoted by (P(X),e, U, n, ¢,X), where 
X is the universal set, P(X) is the set of all subsets of X, e is complementa­
tion, n is intersection, U is union and ¢ is the empty set, which obeys all the 
laws given by equations (2.4) to (2.16). Now we turn our attention again to 
propositional logic. 

If we consider the set of all formulas F of propositional logic defined in 
Section 2.1 and define the relation= on F as 

P = Q if and only if P ++ Q, (2.17) 

then = defines an equivalence relation on F. 
A relation is an equivalence relation if it is reflexive, symmetric and tran­

sitive. Equivalence relations are studied in Section 7.4 of Chapter 7. Every 
equivalence relation produces equivalence classes. If P is a formula in F, by 
the equivalence class [P] we mean the set [P] = {Q E FIQ ++ P}. We denote 
the set of all equivalence classes ofF, by [F/=J, i.e., [F/=J = {[P]IP E F}. 

We define the operations""', V, 1\ on [F /=] by 

""'[P] = [""' P], 
[P] V [Q] = [P V Q]. 
[P]/\ [Q] = [P 1\ Q]. 

(2.18) 

(2.19) 

(2.20) 

If 1 stands for (pV ""'p) E F, a tautology, and 0 stands for (pi\""' p) E F, 
a contradiction, we can define [1] E [F/ =J and [OJ E [F/ =:]. 

Now we have the mathematical system ([F / =:], ""', V, /\, [0], [1]). We may 
identify this mathematical system with the previous one built from sets as 
follows: (1) identify [F/ =:]with P(X); (2) ""'withe; (3) V with U; (4) 1\ 
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with n; (5) [OJ with¢>; and (6) [1] with X. Then equations (2.4)-(2.16) hold 
for [P], [Q], [R] in [F/ =J. 

For example, consider equation (2.15). Substitute [P] for A, [Q] forB, "' 
for c, I\ for nand V for U. Then equation (2.15) becomes 

"'([P] V [Q]) = ("' [P]) I\("' [Q]). (2.21) 

In this way equations in crisp set theory become tautologies in proposi­
tional logic. 
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2. 3.1 Exercises 

To show that an equation E 1 = E 2 involving sets is true you show that E 1 

is a subset of E 2 and you show that E 2 is a subset of E 1 . To show that E 1 

is a subset of E 2 you show that each element in the set E 1 also belongs to 
the set E 2 . To show that E 1 -=f. E 2 you find an element in E 1 (or E 2 ) that 
does not belong to E2 (or E 1 ). It is usually easiest to work with finite sets 
(universal set X finite) when showing that E 1 -=f. E 2 . 

1. Show that if A and Bare two sets such that A<;;; B, then P(A) <;;; P(B). 

2. Show that If A<;;; Band B <;;; C, then A<;;; C. 

3. Let n(A) be the number of elements of the finite set A. 

a. Show that if n(A) = k, then n(P(A) )=2k. 

b. Prove or disprove: If A<;;; B, then n(A) ::::; n(B). 

4. Prove or disprove the following: 

a. An (Ae n B) = ¢; 

b. (AUB)uBe=X; 

c. An(AeuB) =AUB; 

d. (AeuB)U(AuBe)=X; 

e. (An Be) n (Ae n B)= X; 

f. (Au Be) n (AU B) =B. 

5. Prove: 

a. (AenB)U(AenBe)=Ae; 

b. AU (An Be)e =X; 

c. (AuXe)u(AeuB)e=A. 

6. Prove or disprove the following: 

a. If A n B = ¢, then A e n Be = ¢; 

b. If An B = ¢, B <;;; C, then An C = ¢. 

7. Prove or disprove the following: 

a. X E { {X}, { x, y }}; 

b. {x} E {x}; 

c.¢={¢}; 

d. cp E {¢}; 

e. If x E A, A E B, then x E B; 
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f. If A cj_ B, B c C, then A cj_ C; 

g. If A~ B, x ~ B, then x ~A. 

8. Give an example of a three element set A whose members are also 
subsets of A. 

9. Prove that if A~ B, then An Be=¢. 

10. Show that if M is a set, there is a one-to-one correspondence between 
P(M) and {0, 1}M where AB stands for the set of all functions from 
B to A. By a one-to-one correspondence we mean there is a function 
from P(M) onto {0, 1}M which is a one-to-one function. 

11. Substitute [P] for A, [Q] forB, "" for c, etc. as outlined in the text 
translating the following equations over into propositional logic, and 
then show, using the results in Section 2.2, that the equation you get 
in propositional logic is true. That is, show the two expressions are 
logically equivalent: 

a. Equation (2.6). 

b. Equation (2.9). 

c. Equation (2.12). 

d. Equation (2.15). 

12. Another identification from propositional logic and set theory is to sub­
stitute ---+ for ~ in set theory to obtain correct expressions in propo­
sitional logic. Write down three correct equations in set theory using 
~, translate to propositional logic and then show that the resulting 
propositional logic statements are true. 



2.4. FUZZY LOGIC 17 

2.4 Fuzzy Logic 

The beginning of fuzzy logic is to allow truth values to be any number in 
the interval [0, 1]. If p is a atomic proposition, then we will now let tv(p) 
denote the truth of p. So, tv(p) E [0, 1] for any proposition in fuzzy logic. 
tv(p) = 1 means that p is absolutely true, tv(p) = 0 is that p is absolutely 
false and tv(p) = 0.65 just means that the truth of p is 0.65. Fuzzy logic 
is an infinite valued logic in that truth values can range from zero to one. 
Like classical logic, fuzzy logic is concerned with the truth of propositions. 
However, in the real world propositions are often only partly true. It is hard 
to characterize the truth of "John is old" as unambiguously true or false if 
John is 60 years old. In some respects he is old, being eligible for senior 
citizen benefits at many establishments, but in other respects he is not old 
since he is not eligible for social security. So, in fuzzy logic we would allow 
tv( John is old) to take on other values in the interval [0, 1] besides just zero 
and one. 

What is added in fuzzy logic is that there are many ways to combine 
these truth values. Negation is the same with tv("' p) = 1- tv(p). To find 
tv(p 1\ q), for two atomic propositions p and q, we usually employ at-norm 
in fuzzy logic. 

t-norms are studied in detail in Section 3.3 so for now we will introduce 
only two t-norms: (1) Tm(a, b)= min( a, b), for a, bE [0, 1]; and (2) n(a, b)= 
max(O, a+ b- 1), for a, b E [0, 1]. Tm is called standard intersection (min) 
and Tb is called "bounded sum". 

Therefore, in fuzzy logic we find the truth value of p 1\ q as 

tv(p 1\ q) = T(tv(p), tv(q)), (2.22) 

fort-norm T ( Tm or Tb)· This generalizes classical propositional logic (section 
2.2) because if tv(p) and tv(q) only have the values zero or one, then we will 
get Table 2.2. 

We obtain the truth value of p V q in fuzzy logic by using a t-conorm, 
studied also in Section 3.3. The two t-conorms related to the two t-norms 
defined above are: (1) Cm(a, b) =max( a, b), for a, bE [0, 1], related to Tm; 
and (2) Cb(a, b) = min(1, a+ b), for a, bE [0, 1], related to Tb. In fuzzy logic 
we compute the truth value of p V q as 

tv(p V q) = C(tv(p), tv(q)), (2.23) 

for t-conorm C ( Cm or Cb)· Also, if tv(p) and tv(q) only equal zero or one, 
then we get Table 2.3. So, in fuzzy logic no matter what t-norm and t-conorm 
we use, if the truth values are restricted to be only zero or one, fuzzy logic 
collapses back to classical logic. 

Another basic operator of classical logic that we can fuzzify is implication 
in Table 2.4. Three different methods of translating implication to fuzzy logic 
are: 

tv(p--+ q) =tv("' pV q), (2.24) 
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tv(p -t q) = min(1, 1- tv(p) + tv(q)), (2.25) 

and 
tv(p -t q) = max(1- tv(p), min(tv(p), tv(q))). (2.26) 

For example we would use a t-conorm to evaluate equation (2.24) as fol­
lows 

tv(p -t q) = C(1- tv(p), tv(q)), (2.27) 

for C = Cm or Cb. In all cases, equations (2.24)-(2.26), we obtain Table 2.4 
if we restrict the values of tv(p) and tv(q) to be only zero and one. However, 
these equations can produce different results when tv(p) and tv(q) can take 
on other values beside only zero and one. 

Having fuzzified /\, V and -t we can go on to find the truth values of 
more complicated expressions. For example, in fuzzy logic we can compute 
the truth value of (p 1\ q) -t r as 

min(1, 1- min(tv(p), tv(q)) + tv(r)), (2.28) 

using equation (2.25) for implication and Tm for/\. 
Fuzzy logic can be extended in various ways. One extension allows truth 

values to be fuzzy numbers in [0, 1]. Fuzzy numbers are to be studied in 
Chapter 4. However, we will not pursue further development of fuzzy logic 
in this book. 
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2.4.1 Exercises 

1. Show that equation (2.22) will give Table 2.2, if the truth values are 
only zero and one, and if the t-norm used is: 

b. n. 
2. Show that equation (2.22) can give different values, using t-norms T m 

and Tb, when the truth values can be any number in [0, 1]. 

3. Show that equation (2.23) will produce Table 2.3, if the truth values 
are only zero or one, and if the t-conorm is: 

4. Show that equation (2.23) will have different values, using t-conorms 
Cm and Cb, when the truth values can be any number in [0, 1]. 

5. Show that equations (2.24)-(2.26) will all reduce to Table 2.4 when the 
truth values are only zero and one. In equation (2.24) use both Cm and 
cb. 

6. Show that equations (2.24)-(2.26) can all give different results when 
the truth values can be any number in [0, 1]. Use both Cm and Cb in 
equation (2.24). 

7. Find the truth value of (p A q) -+ r using: 

a. equation (2.24) and either t-norm (t-conorm) for A (V); 

b. equation (2.26) and either t-norm for A. 

8. We saw in section 2.3, and the exercises in that section, how to obtain 
basic equations in propositional logic by translating equations (2.4)­
(2.16) from set theory into propositional logic. But now, in fuzzy logic, 
not all of these basic equations of propositional logic remain true. Using 
Tm (or n) for A, and using Cm (or Cb) for v determine which of these 
basic equations are still true. 



Chapter 3 

Fuzzy Sets 

3.1 Introduction 

The basic concept of a fuzzy set is introduced in the next section. t-norms 
and t-conorms are used throughout fuzzy set theory and fuzzy logic and they 
are studied in the third section. t-norms (t-conorms) are used to compute 
the intersection (union) offuzzy sets. Once we have intersection and union of 
fuzzy sets, we can study the algebra offuzzy sets in section four. In Section 2.4 
we notice that all the laws of crisp set theory (presented in Section 2.2) do not 
necessarily hold for fuzzy sets. Mixed fuzzy logic is introduced in Section 2.5 
to show one method of getting fuzzy sets to obey all the basic laws of crisp 
set theory. a-cuts, or a way to represent a fuzzy set as a collection of nested 
crisp sets, is then discussed in section six. To initiate a calculus of continuous 
fuzzy subsets of the real numbers, determining the distance between these 
fuzzy sets comprises the final section of this chapter. 

3.2 Fuzzy Sets 

In order to see the connection between regular sets (now called crisp sets) 
and fuzzy sets we first review the basic material on crisp sets. 

Let X be a universal set, which contains all the elements of interest for our 
present discussion(application). Let A be a subset of X. The characteristic 
function (or membership function) of A is a function on X, with values zero 
or one, so that it equals one at x in X whenever x is in A and otherwise it 
equals zero. We write its membership function as A(x). Then A(x) = 1 if x 
is in A and A(x) = 0 if x does not belong to A. The characteristic function 
is sometimes written XA(x) but we will use A(x) for this function. 

The power set of X, written P(X), is the set of all subsets of X. The 
subset of X having no elements is called the empty set ¢. If A and B are two 
subsets of X then we say that A is a subset of B, A~ B, whenever A(x) = 1 
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implies B(x) is also equal to one. So A equals B if A~ B and B ~A. The 
complement of A, Ac, is defined as Ac(x) = 1- A(x), for all x in X. Of 
course, cpc = X and xc = ¢>. 

To obtain our algebra of subsets of X we need to define intersection (n) 
and union (U). 

C is the intersection of A and B, written C = A n B, if 

C(x) = { 1, if A(x) =. B(x) = 1 
0, otherwise. (3.1) 

A and B are said to be disjoint whenever An B = ¢>, or A(x)B(x) = 0 
for all x in X. 

D is the union of A and B, D = A U B, if 

D(x) = { 1, if A(x) =. 1 or B(x) = 1 
0, otherwise. (3.2) 

We have used the membership functions in all these definitions because 
that is what is used when we generalize crisp sets to fuzzy sets. 

We now list the basic properties of complement, union and intersection. 
All sets are subsets of the same X. 

Involution : (A c)c = A. (3.3) 

Commutativity : AU B = B U A, An B = B n A. (3.4) 

Associativity: (AU B) U C =AU (B U C), 
(An B) n C =An (B n C). 

(3.5) 

(3.6) 

Distributivity: An (B U C) = (An B) U (An C), (3.7) 

Au (B n C)= (AU B) n (AU C). (3.8) 

Idem potency : A n A = A, A u A = A. 

Law of Contradiction: An Ac = ¢>. 

Law of Excluded Middle: AU Ac =X. 

De Morgan: (Au BY= Ac n Be, 

(AnB)c=AcuBc. 

Identity : A U ¢> = A, A n ¢> = ¢>, 

AUX = X,AnX =A. 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 
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Absorbtion : AU (An B) = A, 

An (AUB) =A. 
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(3.16) 

(3.17) 

Let us show how these may be proven using membership functions. Let 
us first show the De Morgan identity (An B)e = Ae U Be in equation (3.13). 
Let C = (An B)e and D = Ae U Be and we show that C(x) = D(x) for all x 
in X. Now C(x) = 1 if (An B)(x) = 0 and C(x) = 0 for (An B)(x) = 1. So 
we see 

C(x) _ { 1, if A(x) or B(x) = 0 
- 0, if A(x) and B(x) = 1. 

(3.18) 

Also, D(x) = 1 if Ae(x) or Be(x) = 1 and D(x) = 0 for Ae(x) and 
Be(x) = 0. Hence 

D(x) = { 1, if A(x) or B(x) = 0 
0, if A(x) and B(x) = 1. 

(3.19) 

From equations (3.18) and (3.19), C(x) = D(x), for all x in X, and this 
De Morgan law holds. 

For another proof let us show the absorption law An (AU B) = A of 
equation (3.17). Let C =An (AU B). Then C(x) = 1 if A(x) = 1 and 
(AU B)(x) = 1 and C(x) = 0 if A(x) = 0 or (AU B)(x) = 0. Therefore 
C(x) = 1 if A(x) = 1 and (A(x) = 1 or B(x) = 1) and C(x) = 0 if A(x) = 0 
or (A(x) = 0 and B(x) = 0). Hence, C(x) = 1 if A(x) = 1 and C(x) = 0 
when A(x) = 0 and C(x) = A(x) for all x. 

We will also be using set products. If X and Y are two universal sets, then 
X x Y is the set of all ordered pairs (x, y) for x in X and y in Y. For finite 
sets X and Y we may list all of these ordered pairs. Let X = { x1 , x2, x3} 
andY= {Yt,Y2}· Then X x Y is {(xt,Yt),(xt,Y2), ... ,(x3,Y2)} having six 
elements. 

If R is a subset of X x Y, then R is called a relation between X and Y, 
also called a relation on X x Y. For example, if X is a set of men and Y is 
a set of women, then R could be "x is the husband of y". We let R denote 
the set of real numbers, and R 2 = R x R. A relation on R 2 is "xis less than 
y". For this relation "x is less than y" we would have R( x, y) = 1 if x < y 
and R(x,y) = 0 when x ~ y. 

Before we introduce fuzzy sets let us say a few words about sup (supre­
mum) versus max (maximum) and inf(infimum) versus min (minimum). 
Consider the set S = {xiO ::; x ::; 1}, or the unit interval [0, 1]. This set 
has a maximum member x = 1 so we would write maxS = 1. Now consider 
S' = { xiO ::; x < 1} which has no maximum member so that max S' does not 
exist. In this case we would use sup and supS'= 1. The least upper bound 
of S' is called supS'. A number u is called an upper bound for S' if x ::; u 
for all x in S' and supS' is the smallest upper bound. Any subset of R that 
has an upper bound has a supremum. Therefore, "sup" is more general than 
max and supS = maxS = 1. So, in general, we will use "sup" even when 
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the set can have a maximum value. The dual of sup is inf as the dual of 
max is min. For example if S" = {xiO < x:::; 1}, then minS = infS = 0 but 
inf S" = 0, min S" does not exist. 

Now we define fuzzy subsets of a universal set X. We will use the notation 
of placing a "bar" over a letter (symbol) to denote a fuzzy set. So A, B, ... , 
a, ... all represent fuzzy subsets of X. Fuzzy subsets are also defined by their 
membership function but now their values can be any number between zero 
and one. That is, A(x) the membership function for A a fuzzy subset of X, 
is any number in the interval [0, 1]. If A(x) = 1 we say that x belongs to 
A, A(x) = 0 means that x does not belong to A, and A(x) = 0.6 says x has 
membership value 0.6 in A. Crisp sets are special cases of fuzzy sets where 
A(x) is only zero or one. The universal fuzzy set is X(x) = 1 for all x and 
the empty set is ¢(x) = 0 for all x. The fuzzy power set of X, written :F(X), 
is all fuzzy subsets of X. 

Some examples offuzzy sets are: (1) the set of young people; (2) the set of 
fast cars; (3) the set of smart math students. Chris, who is 25 years old, may 
have membership value 0.6 in the set of young people. Tina has membership 
value 1.0 in the collection of smart math students. 

We say A is a fuzzy subset of B, written A:::; B, if A(x) :::; B(x) for all 
x. If A:::; B, then A(x) = 1 implies B(x) = 1. So, A equals B (A= B) if 
A(x) = B(x) for all x in X. 

The height of a fuzzy set A is defined as 

ht(A) = sup{A(x)lx in X}. (3.20) 

A fuzzy set A is said to be normal whenever ht(A) = 1. 
The complement of A, written Ac, is defined as Ac ( x) = 1 -A( x). Hence, 

Xc = "¢, ¢c =X. 
To determine the algebra of fuzzy subsets of X we have to specify inter­

section and union. We start with intersection. Let C = An B. Clearly, 
C(x) = 1 if A(x) = B(x) = 1 and C(x) = 0 whenever A(x) or B(x) = 0. 
But what is C(x) if A(x) = 0.7 and B(x) = 0.4? The value of C(x) will 
be a function of the two values A(x) and B(x). Let this unknown function 
be called i(a, b), for intersection, with a, b in [0, 1]. Here we let a = A(x), 
b = B(x) so that C(x) = i(a, b). 

This function i(a, b) must have the properties: (1) 0:::; a, b:::; 1 and i(a, b) 
is in [0, 1]; (2) i(1, 1) = 1; and (3) i(O, 1) = i(1, 0) = i(O, 0) = 0. 

We write 
C(x) = i(A(x),B(x)), (3.21) 

for all x in X. Equation (3.21) defines the intersection of two fuzzy sets A 
and B by defining the membership function of C. 

Choices for i( a, b) could be 

i(a, b) = ab, 

i(a, b) =min( a, b), 
(3.22) 

(3.23) 
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and 
i(a, b) = Jmax(O, a 2 + b2 - 1). (3.24) 

Next let D =AU B. We need D = 1 if A(x) or B(x) = 1 and D(x) = 0 
for A(x) = B(x) = 0. The function for union will be written u(a, b) for a, b 
in [0, 1]. 

Its basic properties are: (1) 0 :S a, b :S 1 and u(a, b) is in [0, 1]; (2) 
u(1, 1) = u(O, 1) = u(1, 0) = 1; and (3) u(O, 0) = 0. We have 

D(x) = u(A(x), B(x)), (3.25) 

for all x. 
Choices for u are 

u(a, b) =a+ b- ab, (3.26) 

u(a, b)= max( a, b), (3.27) 

and 
u(a, b) = min(1, J a2 + b2). (3.28) 

Given an i(a, b) and u(a, b) we can check to see if fuzzy sets will have all 
the basic properties of crisp sets given in equations (3.3)- (3.17). Let us look 
at the De Morgan law (An B)c = Ac U Be. If this is true, then we need to 
show 

1- i(A(x), B(x)) = u(1- A(x), 1- B(x)), 

for all x. Or, letting a= A(x), b = B(x), then 

(3.29) 

1- i(a, b) = u(1- a, 1- b), (3.30) 

for all a,b in[O, 1]. 
If this De Morgan law is not true, all you need to do is find one A and B 

(and X) so that equation (3.29) is false. Let us now look at two situations 
where we first show some property does not hold for fuzzy sets, and then 
show some other property does hold. These results all depend on the i(a, b) 
and u(a, b) used. 

Consider the law of contradiction [equation(3.10)] 
fuzzy sets. Choose i(a, b) = min( a, b), u(a, b) 
{small, medium, large} with 

A={~ 1.0 ~} 
small' medium' large · 

An Ac = ¢ for 
max( a, b), X = 

(3.31) 

A is called a discrete fuzzy set and its membership function is given in 
equation (3.31) because A(small) = 0.3, A(medium) = 1.0 and A(large) = 
0.6. Then 

A Ac={~ 0 ~ (3.32) n small' medium' large}, 
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which is not the same as({>. So, An Ac = ({>may not hold using i(a, b) = 
min( a, b). 

Using i(a, b)= ab, u(a, b)= a+b-ab we may show that De Morgan's law 
(AUB)c = AcnF holds. First evaluate (AUB)c to be 1-u(a..J), a~ A(x), 
b = B(x), and 1 - u(a, b) = 1 - (a+ b- ab). Next evaluate A n B to be 
i(1- a, 1- b)= (1- a)(1- b). We see that 1- (a+ b- ab) = (1- a)(1- b) 
so that this De Morgan law is true for i(a, b)= ab, u(a, b) =a+ b- ab. 

A fuzzy subset of X x Y is called a fuzzy relation. For example let 
X= {John,Jim,Bill}, Y = {Fred,Mike,Sam}, and the fuzzy relation R 
between X andY, which we will call "resemblance" might be shown as 

Fred 
John 0.2 
Jim 0.9 
Bill 0.6 

Mike 
0.3 
0.8 
0.4 

Sam 
0.7 
0 

0.7 

(3.33) 

The table in equation (3.33) is called a type 1 fuzzy matrix. A type 1 fuzzy 
matrix has all its elements in [0, 1]. The elements in the fuzzy matrix are all 
the membership values of the fuzzy relation. That is, R(John, Fred) = 0.2, 
... , R(Bill, Sam)= 0.7. 

There are different types of fuzzy sets. A discrete fuzzy set was already 
given in equation (3.31). In equation (3.31) X was finite but we can also 
have discrete fuzzy sets for X infinite. Let X= Rand A a fuzzy subset of 
R so that A(x) "I- 0 only for x in {1, 2, ... , 10}. Then we would write A as 

- {/-Ll /-L2 /-L3} 
A= T'2''''' 10' 

a discrete fuzzy set, where A(i) = J-Li, 1 ~ i ~ 10. 

(3.34) 

As another example of a discrete fuzzy set is the diagnosis of psychiatric 
disorders 

A = { d /-Ll . ' h. J-L~ . ' ... } . epresswn sc ~zop renza 
(3.35) 

At the other extreme of discrete fuzzy sets we have "continuous " fuzzy 
sets, fuzzy subsets of R whose membership functions are continuous. Fig­
ure 3.1 gives an example of a continuous fuzzy subset of R. From Figure 3.1 
we see N(O) = 0, N(2) = 1, N(3.5) = 0.6351, M(2) = 0.5, M(8) = 0, etc. 

The fuzzy sets we have been describing are all called regular fuzzy sets, 
or just fuzzy sets for short. A type 2 fuzzy set has fuzzy membership values. 
If X = { x1, ... , Xn} and A(xi) = J-Li, 1 ~ i ~ n, where J-Li is a fuzzy subset of 
[0, 1], then A is a type 2 discrete fuzzy set. The membership values are not 
known exactly and are described as fuzzy sets. A J-Li is shown in Figure 3.2 
meaning approximately 0.5. 

A level 2 fuzzy set has fuzzy members. For example 

(3.36) 
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Large 

Figure 3.3: Fuzzy Sets for Level 2 Fuzzy Set 

is a level 2 discrete fuzzy set. An example of this type of fuzzy set is given by 
the discrete fuzzy set in equation (3.31) where small, medium and large are 
defined by the fuzzy sets in Figure 3.3. Level 2 fuzzy sets come from :F(:F 
(X)), the fuzzy power set of :F (X). 

Traditional mathematics is based on crisp set theory. Fuzzy mathematics 
is based on fuzzy set theory. Traditional mathematics becomes a special 
case of fuzzy mathematics when we restrict all membership functions to have 
values only zero and one. 
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3.2.1 Exercises 

1. Show, using membership functions, that the following are true for crisp 
sets: 

a. (AUB)c=AcnBc. 

b. An (B U C)= (An B) u (An C). 
c. AU (An B) = A. 

d. A~B ifandonlyif Bc~Ac. 

2. Using i(a, b)= min( a, b), u(a, b) =max( a, b) determine if the following 
are true for fuzzy sets: 

a. An (B u C)= (An B) u (An C). 
b. (An B)c = (Ac u Be). 

c. An (Au B) = A. 
d. Au Ac = X , An Ac = ¢. 

3. Using i = (a, b) = ab, u(a, b)= a+ b- ab determine if the following are 
true for fuzzy sets: 

a. AnAc = ¢. 
b. Au(BnC) = (AUB)n(AuC). 
c. Au (An B) = A. 
d. A~ B implies Au B = B. 

4. Can you find a i(a, b) and u(a, b), subject to i(1, 1) = 1, ... , u(O, 0) = 0 
given in the text, so that equations (3.3)-(3.17) are all true for fuzzy 
sets? 

5. Discuss intersection and union for type 2 fuzzy sets. 

6. Discuss intersection and union for level 2 fuzzy sets. 

7. If A::::; Band B::::; C, then does A::::; C hold? 

8. Answer the following questions: 

a. When does X x Y = Y x X? 

b. If A is crisp subset of X and B,C are crisp subset of Y, does 
A X (B n C) equal (A X B) n (A X C)? 

9. Using i(a, b) =min, show 

i(A(x), B(x)) ::::; ht(A n B) ::::; max{ht(A), ht(B)}, 

for all x. 
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10. Discuss the elements in the sets: 

a. P(P (X)). 

b. P(F (X)). 

c. F(P (X)). 

F(F (X)) gives level 2 fuzzy sets. Do any of the above (a, b, c) give 
type 2 fuzzy sets? 

11. Give other examples of fuzzy sets besides "young", "fast cars", "smart", 
... given in the text. 

12. Can we use the following functions for i(a, b)? 
a. 

(ab)/ max{ a, b, 0.5}. 

b. 

{O a+ b + ab- 1} max , 2 . 

c. 

1- J(l- a)2 + (1- b)2- (1- a)2(1- b)2. 

13. Can we use the following functions for u(a, b)? 
a. 

b. 

min{1, a+ b + 2ab}. 

c. 

1- {max{O, J(l- a) 2 + (1- b)2 -1}}. 

14. Let 

- M1 Tin A={- ... -} -' ,_ ' 
X1 Xn 

when~ the membership value Mi is fuzzy and the members Xi are also 
fuzzy. Present some real world applications of such fuzzy sets (type 2-
level 2 fuzzy sets). 
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3.3 t-norms, t-conorms 
The functions used for intersection of fuzzy sets (i(a, b)) are called t-norms 
and those used for union (u(a, b)) are called t-conorms. We will study t-norms 
first. 

At-norm Tis a function z = T(a, b), 0 :Sa, b, z :S 1, having the following 
four properties: 

1. T(a, 1) = a; 

2. T(a,b) = T(b,a); 

3. if b1 :S b2 , then T(a, b1) :S T(a, b2); 

4. T(a, T(b, c)) = T(T(a, b), c). 

Property 1 is a boundary condition implying T(1, 1) = 1, T(O, 1) = 0. 
Property 2 then says that T(1, 0) = 0 too. From Property 3 we see that 0 :S 1 
implies T(O, 0) :S T(O, 1) = 0 and T(O, 0) = 0. T has those three properties 
required of an intersection i(a, b) given in the previous Section 3.2. In addition 
Tis symmetric (property 2) and non-decreasing in both arguments (property 
2 and 3). Also it is associative (Property 4) which we will need later in this 
section. 

If A and B are fuzzy subsets of X and C = An B, then 

C(x) = T(A(x), B(x)) 

for some t-norm T. 
The basic t-norms are 

Tm(a,b) = min(a,b) 

Tb(a, b) = max(O, a+ b- 1) 

Tp(a, b) = ab 

{ 
if 

T*(a, b)= ~: if 
0, otherwise. 

b=1 
a=1 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

T m is called standard intersection, n is bounded sum, Tp is algebraic 
product and T* is drastic intersection. 

It is not too difficult to see (see the problems at the end of this section) 
that 

T*(a, b) :S n(a, b) :S Tp(a, b) :S Tm(a, b), 

for all a, bin [0, 1]. 
In fact, if T is any t-norm, then 

T*(a,b) :S T(a,b) :S Tm(a,b), 

(3.42) 

(3.43) 
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for all a, bin [0, 1]. 
A t-conorm C is a function z 

following four properties: 
C(a, b), 0 < a, b, z < 1, having the 

1. C(a, 0) =a; 

2. C(a, b) = C(b, a); 

4. C(a,C(b,c)) = C(C(a,b),c). 

Properties 1,2 and 3 give C(1, 1) = C(O, 1) = C(1, 0) = 1, C(O, 0) = 0 the 
basic properties of the union function u(a, b) in Section 3.2. 

If A and B are two fuzzy subsets of X and D = B U B, then 

D(x) = C(A(x), B(x)), 

for all x in X, and some t-conorm C. 
The basic t-conorms are 

Cm(a, b) =max( a, b), 
Cb(a, b) = min(1, a+ b), 

Cp(a, b) = a+ b- ab, 

{ 
a, if b = 0 

C*(a,b)= b, if a=O 
1, otherwise. 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

Cm is standard union, Cb is bounded sum, Cp is algebraic sum, and C* 
is drastic union. 

We see (see the problems) that 

Cm(a,b)::; Cp(a,b)::; Cb(a,b)::; C*(a,b), (3.49) 

for all a, bin [0, 1], and if Cis any t-conorm, then 

Cm(A, b) ::; C(a, b) ::; C*(a, b). (3.50) 

In practice one usually uses a pair of T and C which are dual. We say T 
and C are dual when 

T(a, b) = 1- C(1- a, 1- b), 
C(a, b) = 1- T(1- a, 1- b). 

(3.51) 

(3.52) 

The following are dual: (1) Tm and Cm; (2) n and Cb; (3) Tp and Cp; 
(4) T* and C*, 

It is interesting to compare the results using these different pairs of dual 
t-norms and t-conorms. Apply Tm, Cm and T*, C* to the continuous fuzzy 
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5 
X 

Figure 3.4: Continuous Fuzzy Sets A and B 

0 5 
X 

Figure 3.5: C1 =An BUsing Tm 

y 

1 
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X 

Figure 3.6: D1 =Au B Using Cm 
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5 
X 

Figure 3. 7: D 2 = Au B Using C* 

sets in Figure 3.4. Using Tm we get C1 in Figure 3.5 and D1 from Cm in 
Figure 3.6. If C2 = AnB using T*, then C2 = ¢. Using C* to get D 2 = AUB 
we obtain the result in Figure 3.7. 

Now we use the associativity property ofT and C to extend them to n 
arguments. That is, we wish to define T(a1, az, ... , an) and C(a1, az, ... , an) 
for ai in [0, 1], 1:::; i:::; n. 

For T m and Cm we easily obtain: 

Tm(al, ... , an)= min(a1, ... , an), 
Cm(al, ... , an)= max(a1, ... , an)· 

For n and Cb we obtain: 

n 

n(al, ... 'an)= max(O, Lai-n+ 1), 
i=l 

n 

Cb(a1, ... , an)= min(1, L ai)-
i=l 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

Let us see how we might establish equations (3.55) and (3.56). We start 
with Tb(a1,az,a3) = n(a1,T(az,a3)) which is 

max(O, a1 + max(O, az + a3 - 1) - 1). 

If max(O, az + a3 - 1) = a 2 + a3 - 1, then equation (3.57) is 

max(O, a1 + az + a3 - 2) 

that is the same as (3.55) for n = 3. 

(3.57) 

(3.58) 

Now suppose that max(O, a2 + a3 - 1) = 0 or a2 + a3 - 1 < 0. Then 
equation (3.57) is 

max(O, a1 - 1) (3.59) 
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which is zero since a 1 :S: 1. But equation (3.55), for n = 3, is also zero since 
a1 + a2 + a3 - 2 < 0 when a2 + a3 - 1 < 0. 

Next we look at Cb(a1,a2,a3) = Cb(a1,Cb(a2,a3)) which equals 

min(1, a1 + min(1, a2 + a3)). (3.60) 

We show that this equals 

(3.61) 

In equation (3.60) assume a2 + a3 :S: 1 so that min(1, a2 + a 3) = a2 + a3 
and then it equals (3.61). So let a 2 + a 3 > 1. Then the min equals 1 and 
both equation (3.60) and (3.61) equal one. 

For Tp we easily see 

(3.62) 

but the formula for Cp is more complicated. When n = 3 we see 
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3. 3.1 Exercises 

1. Show: 

a. T*(a, b) ~ n(a, b), for all a, bin [0, 1]. 

b. n(a, b) ~ Tp(a, b), for all a, bin [0, 1]. 

c. Tp(a, b)~ Tm(a, b), for all a, bin [0, 1]. 

2. Show that for any t-norm T: 

a. T(a, b)~ Tm(a, b), for all a, bin [0, 1]. 

b. T*(a,b) ~ T(a,b), for all a,b in [0, 1]. 

3. Show: 

a. Cm(a, b)~ Cp(a, b), for all a, bin [0, 1]. 

b. Cp(a, b) ~ Cb(a, b), for all a, bin [0, 1]. 

c. Cb(a, b)~ C*(a, b), for all a, bin [0, 1]. 

4. Show, for any t-conorm C: 

a. C(a, b) ~ C*(a, b), for all a, bin [0, 1]. 

b. Cm(a, b)~ C(a, b), for all a, bin [0, 1]. 

5. Using A and B in Figure 3.4 draw pictures, as in Figures 3.5-3.7 of 
An B and AU B using: 

a. Tp and Cp. 

b. nand cb. 
6, Using B of Figure 3.4 draw pictures of B U Be: 

a. Using Tm and Cm. 

b. Using Tb and Cb. 

c. Discuss the differences in the result of a. and b. That is, does 
either method produce X? 

7. Find the correct expression for Cp(a1, a 2 , ... , an) where: 

a. n=4. 

b. n=5. 

8. Find formulas for: 

a. T*(a1,a2, ... ,an)· 

b. C*(a1,a2, ... ,an)· 
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9. Show that: 

a. Cp and Tp are dual. 

b. C* and T* are dual. 

10. Let T and C be dual t-norms and t-conorms, respectively. Show that 
the De Morgan laws [equations (3.12)-(3.13)] must hold. 

11. Do any of the t-norms Tm, Tp, nor T* have the property T(a,a) =a, 
a in [0, 1], or they are idempotent? 

12. Do any of the t-conorms Cm, Cp, Cb or C* have the property C(a, a) =a 
(idempotent), a in [0, 1]? 

13. Show that Cm and C* give the smallest and largest, respectively, union 
of two fuzzy sets. Or, let D 1 = AU B using Cm, D 2 = AU B using C*, 
D =AU Busing any t-norm, then D 1 is a fuzzy subset of D and D is 
a fuzzy subset of D 2 . That is, show D 1 :S D :S D 2 . 

14. Using the notation of problem 13, show that T m and T* give the largest 
and smallest, respectively, intersection of two fuzzy sets. 

15. Show that equation (2.22) will produce Table 2.2 for any t-norm T 
when the truth values are only zero and one. 

16. Show that equation (2.23) will give Table 2.3 for any t-conorm C if the 
truth values are zero or one. 

17. Let: 

tv(p-+ q) = sup{x E [0, 1]JT(tv(p), x) :S tv(q)}, 

for any t-norm T. Show that this equation will compute Table 2.4 when 
the truth values are 0 or 1. 
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3.4 Algebra of Fuzzy Sets 

Now we would like to evaluate and simplify expressions involving fuzzy sets 
A, B, C, ... and intersections, unions and complements. However we must 
be careful because certain formulas involving crisp sets [like equations (3.3)­
(3.17)] may not be true for fuzzy sets. So the first thing to do is to check 
and see which of these formulas are true, and which can be false, when using 
fuzzy sets. We will only be using the dual pairs Tm and Cm, Tp and Cp, Tb 
and Cb, and T* and C*. All fuzzy sets are fuzzy subsets of universal set X. 

We start with (Ac)c =A from equation (3.3). But this is clearly always 
true since (A)c(x) = 1- A(x) so that (Ac)c(x) = 1- (1- A(x)) = A(x) all 
x in X. Next let us look at the commutativity property in equation (3.4). 
Let A(x) =a, B(x) = b for a, bin [0, 1]. Now (AU B)(x) = C(A(x), B(x)) = 
C(a, b) and (B U A)(x) = C(B(x), A(x)) = C(b, a). But C(a, b) = C(b, a) for 
all t-conorms C so that AUB = BUA. Similarly, T(a,b) = T(A(x),B(x)) = 
T(b,a) = T(B(x),A(x)) = (AnB)(x) = (BnA)(x) and AnB = BnA. The 
commutativity property holds for fuzzy sets. 

The associativity formulas [equations (3.5) and (3.6)] are also true for 
fuzzy sets because in terms oft-norms and t-conorms they are 

C(C(a, b), c) = C(a, C(b, c)), 

T(T(a, b), c)= T(a, T(b, c)), 

(3.64) 

(3.65) 

where C(x) = c in [0, 1]. Equations (3.64) and (3.65) are true for all t-conorms 
and t-norms. 

The distributive laws, equations (3. 7) and (3.8), are 

T(a, C(b, c))= C(T(a, b), T(a, c)), 

C(a, T(b, c))= T(C(a, b), C(a, c)), 

(3.66) 

(3.67) 

for all a, b, c in[O, 1]. It is not clear if equations (3.66) and (3.67) are true for 
0 ~ a, b, c ~ 1 so they need to be checked for our dual pairs. 

The idempotent law states that A n A = A and AU A = A. For this to 
be true we need 

for all a in [0, 1]. 

T(a,a) =a, 
C(a,a) =a, 

(3.68) 

(3.69) 

Equations (3.68) and (3.69) say that T and C have to be idempotent. 
The only idempotent t-norm is T m and the only idempotent t-conorm is Cm 
(see the exercises). So the idempotent laws hold for fuzzy sets only if we use 
Tm and Cm. 

Next we come to the law of contradiction A n A c = (/) and the law of 
excluded middle AU Ac =X. We saw in Section 3.2 that An Ac =J ¢using 
Tm (equation (3.32)). Using the same example (equation (3.31)) we easily 
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see using Cm that AU Ac -1- X. So these two laws may not hold if we use T m 
and Cm. We need to investigate if these laws are true or false if we employ 
Tp and Cp, nand Cb, or T* and C*. 

Now the De Morgan laws (equations (3.12) and (3.13)) hold forT and C 
dual (Exercise 10 in Section 3.3.1). Hence, the De Morgan formulas are true 
for Tm and Cm, or Tp and Cp, or nand Cb, or T* and C*. 

The identities (equations (3.14) and (3.15)) are all true for all t-norms 
and t-conorms. The formula AU'¢ = A translates to C(a, 0) = a which is 
true and An X = A is T(a, 1) = a. Also, An if> is T(a, 0) = 0 (see the 
exercises) and AU X= X is C(a, 1) = 1 (see the exercises). 

Finally we get to the absorbtion laws in equations (3.16) and (3.17). The 
expression AU (An B) = A is 

C(a, T(a, b)) =a, (3. 70) 

and An (Au B) = A is 
T(a, C(a, b)) =a, (3.71) 

for all a, bin [0, 1]. Equations (3.70) and (3.71) must be checked to see if 
they are true or false. 

In summary, this is what needs to be done: (1) see if the distributive laws 
hold; (2) check the law of contradiction and the law of the excluded middle 
for only Tp , Cp and n, Cb and T*, C*; (3) see if the absorbtion laws are 
true. 
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3.4.1 Exercises 

To show a certain formula is true, write in terms oft-norms and t-conorms, 
then show the resulting equation is valid for all a, b (and c) in [0, 1]. To show 
a formula is not true you need only one example and usually the simplest one 
involves discrete fuzzy sets from a universal set having only three members. 

1. Determine if the distributive laws are valid using: 

a. Tm and Cm. 

b. Tp and Cp. 

c. nand cb. 
d. T* and C*. 

2. Show that the only idempotent t-norm is Tm. 

3. Show that the only idempotent t-conorm is Cm. 

4. Determine if the law of contradiction holds for: 

a. Tp and Cp-

b. nand cb. 
c. T* and C*. 

5. Determine if the law of the excluded middle holds for: 

a. Tp and Cp. 

b. nand cb. 
c. T* and C*. 

6. Show, using the definition of a t-norm, that T(a, 0) = 0 for all a in 
[0, 1]. 

7. Show, using the definition of a t-conorm that C(a, 1) = 1 for all a in 
[0, 1]. 

8. Determine if Au (An B) = A is true for: 

a. Tm and Cm. 

b. Tp and Cp. 

c. Tb and Cb. 

d. T* and C*. 

9. Determine if An (AU B) = A holds if we use: 

a. Tm and Cm. 

b. Tp and Cp. 
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c. Tb and Cb. 

d. T* and C*. 

10. List all the basic laws of crisp set theory (equations (3.3)-(3.17)) that 
must hold for fuzzy sets when we use: 

a. Tm and Cm. 

b. Tp and Cp. 

c. Tb and Cb. 

d. T* and C*. 
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3.5 Mixed Fuzzy Logic 

Most people use T m and Cm in all their calculations with fuzzy sets. However, 
you need not always use the same t-norm and t-conorm. Mixed fuzzy logic is 
when you use T = T1 , C = C1 , usually dual operators, for certain calculations 
and switch to T = T2 , C = C2 , probably also dual operators, for other 
calculations. We will look at two applications of mixed fuzzy logic in this 
section but there can be many more since we will be using t-norms and t­
conorms throughout the book. 

We found in the previous section that using Tm, Cm, or Tp, Cp, or Tb, Cb, 
or T*, C* all the basic laws of crisp sets (equations (3.3)-(3.17)) do not hold 
for fuzzy sets. But equations (3.3)-(3.17) can be true for fuzzy sets if we use 
mixed fuzzy logic. 

Let r be a nonempty subset of !1 = { (3.3), (3.4), ... , (3.17) }, r -:f. !1. Our 
objective here is to find t-norm T1 and t-conorm C1 , dual operators, so that 
the equations in r are true using T1 , C1 and the equations not in r are false 
using T1 , C1 . Then find dual operators T2 and C2 so that the equations not 
in rare true using T2 , C2 . We are to choose our t-norm and t-conorm from 
Tm, Cm, Tp, Cp, Tb, Cb, T*, C*. Then using T1, C1 on rand T2, C2 on !1- r 
all the basic laws of crisp sets are true for fuzzy sets using mixed fuzzy logic. 

For example, suppose we want to use T m and Cm. We know that equations 
(3.10) and (3.11) are not true for Tm, Cm. We need to find T2 , C2 from the 
set Tp,Cp, n, Cb, T*, C* so that using T2 , C2 equations (3.10) and (3.11) 
are true. But also, if any equation is false for T m, Cm it must be true for T2 , 

c2. 
There are only six possibilities: (1) T1 = Tm, C1 = Cm and T2 = Tp, 

C2 = Cp; (2) T1 = Tm, C1 = Cm, and T2 = Tb, C2 = Cb; (3) T1 = Tm, 
C1 = Cm and T2 = T*, C2 = C*; (4) T1 = Tp, C2 = Cp and T2 = n, 
C2 = Cb; (5) T1 = Tp, C1 = Cp and T2 = T*, C2 = C*; and (6) T1 = n, 
C1 = Cb and T2 = T*, C2 = C*. 

We claim at least one of these combinations will give us a mixed fuzzy 
logic so that all the basic formulas of crisp sets are also true for fuzzy sets. 
The exercises ask you to investigate all six cases. 

As another application of mixed fuzzy logic suppose we wish to control 
the fuzziness of calculations like A1 n A2 n ... nAn or A1 U A2 U ... U An. 
The fuzziness of a fuzzy set may be measured by its support and the support 
of fuzzy set B is where B(x) > 0. The support of B, written sp(B) is 
{x E XIB(x) > 0}. 

Let B = A1 n ... n An and C = A1 U ... U An. Now sp(B) can vary 
depending on what t-norm we use to compute B and sp( C) can change if 
we use different t-conorms to determine C. We may think that the more 
fuzziness there is in B(C) the more uncertainty there is in the answer. So, 
suppose we want to choose t-norm T to minimize the fuzziness in B, but we 
do not want B = ¢. Also, we wish to minimize the fuzziness in C. We may 
use T = Tm, Tp, Tb, or T* and C = Cm, Cp, Tb, or C*. 
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Let Ai(x) = ai in [0,1), 1:::; i:::; n. Then B(x) = T(a1,a2, ... ,an) and 
C(x) = C(a1 , ... ,an)· We will need to use the results in Section 3.3, and 
problems 7, 8 in that section. Let us look at an example using n and Cb. 
Then 

n 

B(x) = n(al' ... 'an) = max(O, Lai-n+ 1). (3. 72) 
i=l 

The problem with n is that for larger and larger n, B tends towards ¢. 
Suppose Ai(x) = 0.8 all i and n = 10. Then 

B(x) = max(O, -1) = 0. (3. 73) 

Even when all the Ai have membership 0.8 at a given x, B(x) = 0. The 
same is true for Ai(x) = 0.9, n = 10. As you intersect more and more fuzzy 
sets using n you tend to get (jj. We also see that 

n 

C(x) = Cb(a1, ... , an) = min(1, L ai)· (3.74) 
i=l 

Here we tend to get C(x) = 1 all x, since the sum of the ai may exceed one 
for large n. As you union more and more fuzzy sets using Cb you tend to get 
X. 
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Table 3.1: Discrete Fuzzy Sets in Problem 3, Section 3.5.1 

A2 0 0 0.5 0.6 0.7 1 
A3 1 0.5 0.3 0 0 0 
A4 0.3 0.8 0 0 .8 .3 

3.5.1 Exercises 

1. We say a mixed fuzzy logic ((T1, Cl), (T2, C2)) is acceptable if: (1) for 
(T1 , C1 ) the equations in f are true but those in 0 - f are false; and 
(2) for (T2 ,C2 ) those inn-fare true. Determine if the following are 
acceptable mixed fuzzy logics. In each case find r for (T1, Cl): 

a. ((Tm,Cm), (Tp,Cp)). 

b. ((Tm,Cm), (n,cb)). 

c. ((Tm,Cm), (T*,C*)). 

d. ((Tp,Cp), (Tb,Cb)). 

e. ((Tp,Cp), (T* ,C*)). 

f. ((Tb,Cb), (T* ,C*)). 

2. Consider the three continuous fuzzy sets A1 , A2 , A3 in Figure 3.8. 

a. Find B = A1 n A2 n A3 using T = Tm,Tp, nand T*. 

b. Is there any way to control for sp(B)? That is, do all values of 
T give the same value for sp(B), or can we choose a unique T to 
minimize sp( B)?, B =f:- "¢. 

c. Find C = A1 U A2 U A3 using C = Cm, Cp, Cb and C*. 
d. Is there any way to control for sp(C)? Do all the C give the same 

sp(C) or can you choose a unique C to minimize sp(B)? 

e. Repeat parts a through d using only A1 and A2 . 

3. In Table 3.1, X = {0, 1, 2, 3, 4, 5}, the values give the membership values 
for fuzzy sets A1 , A2 , A3 , A4 at x in X. 

a. Find B = A1 n A2 n A3 n A4 using T = Tm, Tp, nand T*. Which 
T minimizes sp(B)? 

b. Find C = A1 UA2 UA3 UA4 using C = Cm, Cp, Cb and C*. Which 
C minimizes sp( C)? 
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Figure 3.8: Continuous Fuzzy Sets in Problem 2, Section 3.5.1 

4. Let B = A1 n A2 , the Ai continuous fuzzy subsets of the real numbers 
(like those in Figure 3.8). Give a general rule on which t-norm to use, 
T = Tb,Tp,Tm,T*, to: 

a. minimize sp(B), B-::/:- "¢. 
b. maximize sp(B). 

5. Let C = A1 U A2 , the Ai continuous fuzzy subsets of the real numbers 
(like those in Figure 3.8). Give a general rule on which t-conorm to 
use, Cb, Cp, Cm, C*, to: 

a. minimize sp( C). 

b. maximize sp(C). 
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Figure 3.9: Continuous Fuzzy Set 

3.6 Alpha-Cuts 

If A is a fuzzy subset of universal set X, then the a-cut of A, written A[ a], 
is defined as {x E XIA(x) ~ a}, for 0 < a :::; 1. The a = 0 cut, or A[O], 
must be defined separately because {x E XIA(x) ~ 0} is always the whole 
universal set X. Notice that A[a] is a crisp set for all a, 0:::; a:::; 1. 

The core of A, written co(A), is A[1] and the support of A, sp(A), is 
not A[O] but {x E XIA(x) > 0}. Notice that if 0 < a 1 < a2 :::; 1, then 
A[a2] ~ A[a1]. So the crisp sets A[a] cannot increase as a increases from 0 
to 1. The family of crisp sets A[ a], 0 < a :::; 1, are said to be a representation 
of the fuzzy set A. 

If A is a fuzzy subset of the real numbers, then we may separately define 
A[O] to be the closure of the support of A. For example, if sp(A) is the open 
interval (1, 5), then A[O] = [1, 5] the closed interval. We may also take the 
closure of the support of A for A a fuzzy subset of R x R. So, when we write 
A[a], 0:::; a :::; 1, we mean that A is a fuzzy subset of R, orR x R, · · · and 
A[O] is the closure of sp(A). We will call A[O] the base of the fuzzy set A. 

Let us now find the a-cuts of some continuous and discrete fuzzy sets. Let 
A be the continuous fuzzy set in Figure 3.9. The a-cut, 0 :::; a :::; 1, gives an 
interval. From Figure 3.9, A[a] = [a1(a),a2 (a)] where a1(a) is the left end 
point and a2(a) is the right end point. The notation x = ai(a), 0 :::; a :::; 1, 
i = 1, 2 is backwards from the normal function notation. The usual functional 
notation is y = f(x), or y is a function f of x. The notation x = ai(a) is the 
inverse of y = f(x) because a is in [0, 1] on they-axis. In Figure 3.9 we see 
that a1(0) = -1,a1(1) = 1 and a2(1) = 1,a2(0) = 4. The properties of the 
ai (a) functions are: a1 (a) is continuous and monotonically increasing from 
-1 to 1 on [0, 1]; and (2) a2 (a) is continuous and monotonically decreasing 
from 4 to 1 on [0, 1]. 

We get the ai(a) functions from first finding y = f(x) for the left and right 
side of the membership function for A. In Figure 3.9 we see that: (1) y = 
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h(x) = ~x + ~' -1 :::; x:::; 1, gives the left side; and (2) y = h(x) = -~x + ~ 
for the right side. Now solve o: = ~x + ~ for x giving x = 2o:- 1 = at(o:) 
and solve o: = -;} x + ~ for x producing x = 4- 3o: = a2(o:). Hence A[o:] = 
[2o: -1,4- 3o:],O:::; o::::; 1, for A in Figure 3.9. In general a1 (o:) = f1 1 (o:) 
and a2(o:) = f2- 1 (o:). If the core of A is not a single point, as in Figure 3.9, 
then we would require a1 (1) < a2(1) since [at(1),a2(1)] = co(A). 

Find o:-cuts of 

where X= {x1 , ... ,x5}. Then 

A[o:] = {x2,x3,X4,x5},0 < o::::; 0.2, 

A[o:] = {x2,x3,x4},0.2 < o::::; 0.5, 

A[o:] = {x2,x3},0.5 < o::::; 0.7, 

A[o:] = {x3}, 0.7 < o::::; 1. 

(3. 75) 

(3. 76) 

(3.77) 

(3. 78) 

(3. 79) 
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Figure 3.10: Continuous Fuzzy Set for Problem 8, Section 3.6.1 

3. 6.1 Exercises 

1. Is (An B)[a] = A[a] n B[a] true or false when the t-norm T used to 
compute An B is 

a. T=Tm. 

b. T = Tp. 

c. T = Tb. 

d. T = T*. 

2. Is (AU B)[ a] =A[ a] U B[a] true or false when the t-conorm C used to 
find Au B is: 

a. C = Cm. 

b. C = Cp. 

c. c = cb. 
d. C = C*. 

3. Is (Ac)[a] = (A[aW true or false? 

4. Show A[a] = n{A[,B]Ia < ,8:::; 1}, foro:::; a< 1. 

5. If A is a crisp set, then what is A[ a], 0 < a :::; 1? 

6. Show A :::; B if and only if A[ a] ~ B[a], 0 < a :::; 1. 

7. Show A= B if and only if A[ a] = B[a], 0 < a :::; 1. 

8. Find A[ a], 0 :::; a :::; 1, for A given in Figure 3.10. 

9. Find A[ a], 0:::; a:::; 1, for A given in Figure 3.11. 
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10. Give an example of a continuous fuzzy subset A of R where A[ a] is not 
an interval for all 0 :::; a :::; 1. 

11. How would you define, if possible, a-cuts of type 2, or level 2, fuzzy 
sets? 

12. How would you define a-cuts of fuzzy subsets of R x R (for example, 
fuzzy relations, Chapter 7)? 

13. Find relationships, if any, between the sets (An B) [a] if we use t-norm 
Tm, n, Tp and T* to calculate An B. 

14. Find relationships, if any, between the sets (AUB)[a] if we use t-conorm 
Cm, Cb, Cp and C* to find Au B. 

15. Determine if the following equations are true or false. All fuzzy sets 
are fuzzy subsets of the real numbers: 

a. 

b. 

c. 
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3.7 Distance Between Fuzzy Sets 

Let F 0 (R) be all continuous fuzzy subsets of R whose a-cuts are always 
bounded intervals. These will be called fuzzy numbers in the next chapter 
and are the fuzzy sets most used in applications. We need to be able to 
compute the distance between any A and Bin F0 (R). 

We know how to find the distance between two real numbers x, y. The 
distance is lx- vi = d(x, y). We also know how to find the distance between 
two points in R 2 . The function d used to compute distance is called a metric. 
The basic properties of any metric for x, y in R are: 

a. d(x,y) 2: 0; 

b. d(x,y) = d(y,x); 

c. d(x, y) = 0 if and only if x = y; and 

d. d(x,y)::; d(x,z) +d(z,y). 

The first three properties of d are obvious: (1) distance is non-negative; 
(2) distance is symmetric; and (3) you get zero distance only when x = y. 
The fourth property says it is shorter to go directly to y from x instead of 
first going to intermediate point z. 

Now we want a metric D for A, B in Fo(R). D will have properties 1-4 
given above. Also we point out that D(A, B) is a real number for A, B fuzzy. 
Why do we want a metric for elements in F 0 (R)? We need it to start the 
calculus of fuzzy functions. 

One usually starts calculus with the theory of limits. Consider a sequence 
Xn of real numbers. We say Xn converges to x if given E > 0 there is a N so 
that d(xn, x) < E, n 2: N. To do this for a sequence An, each An in Fo(R), 
we need a metric D(A, B), A, B in F 0 (R). 

We now present two metrics for F0 (R). You are asked to investigate other 
possible metrics in the exercises. 

Given A,B in Fo(R), set A[a] = [a1(a),a2(a)],B[a] = [b1(a),b2(a)],O::; 
a::; 1. Define L(a) = la1(a)- b1(a)I,R(a) = la2(a)- b2(a)l. Then 

D(A, B)= max{max(L(a), R(a))IO::; a::; 1}. (3.80) 

Since L(a) and R(a) are continuous we used max instead of sup. This D 
is a metric. 

Consider A and Bin Figure 3.12. Then a1 (a) = 1 +a, a2(a) = 4- 2a, 
b1 (a) = 1 + 2a, b2(a) = 4- a. Then L(a) = a, R(a) = a, max(L(a), 
R(a)) =a and max a= 1. This means D(A, B) = 1 for this metric. 

Another metric is 

D(A, B)= lb IA(x)- B(x)ldx, (3.81) 



3. 7. DISTANCE BETWEEN FUZZY SETS 
y 

1 

0 

Figure 3.12: Two Continuous Fuzzy Numbers 

51 

X 

where [a, b] is an interval containing the support of A and B. For the A and 
B in Figure 3.12 we first compute 

Then we integrate this giving D(A, B) = ~· 

if 1 ::; X ::; 2, 
if2::;x::;~, 
if ~ ::; X ::; 3, 
if3::;x::;4 

(3.82) 
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Figure 3.13: Fuzzy Sets in Problems 4 and 5 

3. 7.1 Exercises 

1. For A, Bin Fo(R) define 

D(A, B)= max{jA(x)- B(x)llx E R}. 

Is this D a metric? Justify your answer. 

2. For A in .F0 (R) define the center of A, cen(A), to be the center of the 
core of A. Now set 

D(A,B) = jcen(A)- cen(B)j. 

Is this D a metric? Justify your answer. 

3. For A, Bin Fo(R) with sp(A) = (a1, a2), sp(B) = (b1, b2), define 

Is this D a metric? Justify your answer. 

4. Given A and B in Figure 3.13, compute D(A, B) given in equation 
(3.80). 

5. Given A and Bin Figure 3.13, find D(A, B) in equation (3.81). 

6. Explain why the Din equation (3.80) is called a horizontal metric while 
the D in equation (3.81) is called a vertical metric. 
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7. Convergence of sequences of continuous fuzzy numbers. This conver­
gence is a simple extension of the definition of convergence of a se­
quence of real numbers given in the text. Determine if the sequence 
An, n = 1, 2, 3, · · · converges and if it does converge, then find its limit 
limn-+ooAn = A. A triangular fuzzy number (section 4.2) is defined 
by its base and vertex. The notation (ajbjc) is for a triangular fuzzy 
number (like A and B in Figure 3.12) with base the interval [a, c] and 
vertex at x = b. 

a. An= (~:j:~/1/1 + (0.1)n) 

b. An= (en- ~/cn/Cn +~)for Cn = (1 + ;)n, r a real number. 

c. An= ([ln(n)/n]/1/n). 
d. An= (r jn11n jtan- 1(n)). 

e. A is a triangular fuzzy number, An = A+ r A+ r2A + · · · + rn-l A 
for r E (0, 1). 

8. Define D(A, B) = 0 if A= B and the value is 1 otherwise, for A and 
B in .F0 (R). Is this D a metric? 

9. Define 
D(A, B)= sup{IA(x)- B(x)llx E R}. 

Is this D a metric for A and B in .F0 (R)? 

10. Find D(A, Ac) for A given in Figure 3.13 using: 

a. Equation (3.80); 

b. Equation (3.81). 



Chapter 4 

Fuzzy Numbers 

4.1 Introduction 

Fuzzy numbers are of great importance in fuzzy systems. In the next section 
we give the general definition of a fuzzy number and show that real numbers 
and closed intervals are special cases of fuzzy numbers. The fuzzy numbers 
usually used in applications are the triangular (shaped) and the trapezoidal 
(shaped) fuzzy numbers also defined in section two. Then, in the third sec­
tion, we develop the arithmetic of fuzzy numbers using both the extension 
principle and the a-cut with interval arithmetic method. There are many 
properties of the real numbers we use frequently that can be translated over 
to fuzzy numbers. These include : (1) finding the distance between two real 
numbers, becoming the distance between fuzzy numbers discussed in Section 
3.7; (2) finding the maximum and the minimum of two real numbers, result­
ing in fuzzy max and fuzzy min in Section 4; and (3) ordering real numbers, 
or writing x :5 y and x > y, extended to M :5 N and M > N for fuzzy num­
bers M and N in Section 5. Certain fuzzy systems (Chapter 14) produce a 
fuzzy set as its output and we can not use this fuzzy set to communicate to 
a machine. When this happens the fuzzy set is defuzzified, or mapped to a 
real number, and the resulting real number (for speed, voltage, etc.) is then 
sent to the machine. Defuzzification is discussed in the last section. 

4.2 Fuzzy Numbers 

Fuzzy numbers are very special fuzzy subsets of the real numbers. For exam­
ple, a fuzzy number expressing approximately 2 is in Figure 4.1 and another 
fuzzy number (also called a fuzzy interval) for approximately between 2 and 
4 is shown in Figure 4.2. 

The general definition of a fuzzy number N is a fuzzy subset of R and: 
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Figure 4.2: Approximately Two to Four 
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1. the core of N is non-empty; 

2. a-cuts of N are all closed, bounded, intervals; and 

3. the support of N is bounded. 

The core of N is N[1], the a = 1 cut. So N must be a normal fuzzy 
set. The a-cuts of N, N[a], are always [n1 (a), n 2 (a)], 0 :Sa :S 1. N[a] is a 
closed, bounded, interval for all 0 :Sa :S 1 means that N[a] = [n1 (a),n2 (a)] 
where n 1 (a) is the left end point and n 2 (a) is the right end point of this 
interval. The support of N, {xiN(x) > 0}, bounded means that there is a 
positive number M so that the support of N is a subset of [-M, M]. We do 
not allow intervals like (a, oo), (-oo, b) or (-oo, oo) for the support of N. We 
purposely did not say that the membership function had to be continuous. 

Consider the fuzzy set N in Figure 4.3. The support of N is the interval 
(1, 6) and the core of N is the interval [3, 4]. Notice the jump discontinuity 
at x = 2. The point (2, 0.4) is not on the graph but the point (2, 0.6) is on 
the graph. It must be this way for N[a] to always be a closed interval. 

Continuing our discussion of the fuzzy number in Figure 4.3 let us first 
find x a function of a for x in the intervals [1, 2), [2, 3] and [4, 6]. We did this 
in section 3.6 of Chapter 3. You first find y a function of x, substitute a for y 
and then solve for x. We obtain: (1) x = (5/2)a + 1, 0 :S a < 0.4, 1 :S x < 2; 
(2) x = (5/2)a + (1/2), 0.6 :S a :S 1, 2 :S x :S 3; and (3) x = 6 - 2a, 
0 :S a :S 1, 4 :S x :S 6. Now we may find N[a], 0 :S a :S 1. We see that: 

1. N[O] = [1, 6]; 

2. N[0.2] = [1.5, 5.6]; 

3. N[0.4] = [2, 5.2]; 

4. N[0.5] = [2, 5]; 

5. N[0.6] = [2, 4.8]; 

6. N[0.8] = [2.5, 4.4]; and 

7. N[1] = [3, 4]. 

They are all closed intervals. If we moved the point on the graph at x = 2 
from (2, 0.6) to (2, 0.4) we would get N[0.4] = [2, 5.2], N[0.5] = (2, 5] and 
N[0.6] = (2, 4.8] not all closed intervals. 

Why do we allow such N as in Figure 4.3 to be called a fuzzy number? 
So that all real numbers and all crisp closed intervals become fuzzy numbers. 
Let N be the set of all fuzzy numbers, let x = r be a real number, and let 
I= [a, b] be a closed interval. A fuzzy number M equal to r is 

M(x) = { 
1, if x = r 
0, otherwise. ( 4.1) 



58 CHAPTER 4. FUZZY NUMBERS 

y 

0 X 

Figure 4.3: A General Fuzzy Number 

M is a fuzzy number because its core is [r, r], its support is [r, r] and all its 
a-cuts are [r, r] all closed intervals. So we say r belongs toN. 

Let P be the fuzzy number 

P(x) = { 1, if x E ~a,b] 
0, otherwise, 

(4.2) 

so that P equals I. Hence, I also belongs toN. Therefore, R is a subset of 
N and the set of all closed intervals is also a subset of N. 

The general definition of a fuzzy number was to generalize crisp numbers 
and crisp closed intervals. However, in applications we hardly ever use an 
N as shown in Figure 4.3. In applications we use continuous fuzzy numbers. 
We now define the two basic types of fuzzy numbers used in practice. 

A triangular fuzzy number N, Figure 4.1, is defined by three numbers a< 
b < c where the vertex of the triangle is at x = b and its base is the interval 
[a, c]. We write N = (a/b/c) for a triangular fuzzy number. A triangular 
shaped fuzzy number M is partially defined by a < b < c because its sides are 
continuous curves, not straight lines. We write M ~ (1/2/3) for a triangular 
shaped fuzzy number M shown in Figure 4.4. A trapezoidal fuzzy number T 
is defined by four number a< b < c < d where T(x) = 1 on [b, c] and its base 
is the interval [a, d] as shown in Figure 4.2. We write T = (afb, cfd) for a 
trapezoidal fuzzy number. A trapezoidal shaped fuzzy number U is partially 
defined by a < b < c < d, because its sides need not be straight lines as 
shown in Figure 4.5. We write U ~ (1/2, 3/4) for a trapezoidal shaped fuzzy 
number shown in Figure 4.5. We will usually be using triangular ( shaped) 
and trapezoidal (shaped) fuzzy numbers in this book. For N and M define 
N[O] = M[O] = [a, c] and also define T[O] = U[O] = [a, d], called the base of 
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Figure 4.4: Triangular Shaped Fuzzy Number 

the fuzzy number. For fuzzy numbers the a = 0 cut is the base of the fuzzy 
number. 

If N = (ajbjc), or N ~ (ajbjc), we write: (1) N > 0 if a> 0; (2) N ~ 0 
if a~ 0; (3) N < 0 when c < 0; and (4) N ~ 0 whenever c ~ 0. Similarly we 
define T > 0, T ~ 0, T < 0 and T ~ 0 forT= (ajb,cjd) or T ~ (ajb,cjd). 
It is now obvious how we would define N > r, T ~ r, etc. for real number r. 
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Figure 4.5: Trapezoidal Shaped Fuzzy Number 

4.2.1 Exercises 

1. Let N(x) = exp(x), x :S 0 and N(x) = exp( -x) for x 2: 0. Is N a fuzzy 
number? 

2. Let N(x) = 1/x, x 2: 1 and N(x) = (2- x)-1 , x :S 1. Is N a fuzzy 
number? 

3. Let N(x) = sin(x),O :S x :S 1r and N(x) = 0 otherwise. Is N a fuzzy 
number? 

4. Let N(x) = x, for 0 :S x :S 1 and 0 otherwise. Is N a fuzzy number? 

5. Let N(x) = 1 for x = 0, 1, 2, 3, 4, 5 and N(x) = 0 otherwise. Is N a 
fuzzy number? 

6. Let I = (3, 7) the open interval from 3 to 7. Can you define a fuzzy 
number M so that M equals I? 

7. Let I = ( -oo, 3]. Can you define a fuzzy number V so that V equals 
I? 

8. For the fuzzy number W in Figure 4.6 find W[a] for a = 0.3, 0.6, 0.9. 

9. For the fuzzy number Yin Figure 4.7 find Y[a] for a= 0.3, 0.4, 0.5, 0.7. 

10. For any fuzzy number N find its height ht(N). 

11. If N is a fuzzy number, is Nc a fuzzy number? 
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Figure 4. 7: Fuzzy Number for Problem 9 
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12. If Nand Mare two fuzzy numbers is N U M and/or N n M a fuzzy 
number when we use t-norm T m for intersection and t-conorm Cm for 
union? Will either one be a fuzzy number if we switch to Tb and Cb, 
or Tp,Cp, or T* ,C*? 

13. Let D be a discrete fuzzy subset of R. When can D be a fuzzy number? 

14. Draw a picture of two continuous fuzzy numbers N and M, both ap­
proximately equal to 10, so that N ~ M. 

15. Draw a picture of two continuous fuzzy numbers N and M, both ap­
proximately between -6 to -4 so that N ~ M. 

16. Let A and B be the triangular fuzzy numbers shown in Figure 3.4. 

a. Is C 1 in Figure 3.5 a fuzzy number? 

b. Is D 1 in Figure 3.6 a fuzzy number? 

c. Is D 2 in Figure 3.7 a fuzzy number? 
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Figure 4.8: Finding P = M + N 

4.3 Fuzzy Arithmetic 

Let N be all fuzzy numbers. Given N and M inN we wish to compute 
N + M, N- M, N · M and N-;- M. There are two basic ways to do this: (1) 
using the extension principle; and (2) using a-cuts and interval arithmetic. 
We will discuss the extension principle first. The extension principle will be 
used more extensively in Chapters 5 and 8. 

4.3.1 Extension Principle 

Let M and N be inN and let P = M + N. The extension principle method 
of finding the membership function for P is 

P(z) = sup{min(M(x), N(y))lx + y = z}. (4.3) 

Let us illustrate the computations involved in equation ( 4.3) using M 
and N in Figure 4.8. We first pick a value for z, say z = 2, then evaluate 
min(M(x), N(y)) for x andy which add up to z = 2. We have done this for 
certain values of x and y as shown in Table 4.1. It looks like the max occurs 
for x = 0.5 and y = 1.5 so that P(2) = 0.5. Now do this for other values for 
z. P(3) is easy to find since x+y = 3 for x = 1,y = 2 and M(1) = N(2) = 1 
and then P(3) = 1. When we are all finished we get P = (1/3/5) a triangular 
fuzzy number. 

For subtraction let Q = M - N, then 

Q(z) = sup{min(M(x), N(y))lx- y = z}. ( 4.4) 
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Table 4.1: Finding the Sum of Two Fuzzy Numbers 

I x I M(x) I y I N(y) I min(col#2,col#4) I 
1 1 1 0 0 

0.9 0.9 1.1 0.1 0.1 
0.7 0.7 1.3 0.3 0.3 
0.5 0.5 1.5 0.5 0.5 
0.3 0.3 1.7 0.7 0.3 
0.1 0.1 1.9 0.9 0.1 
0 0 2 1 0 

Table 4.2: Finding the Product of Two Fuzzy Numbers 

x I M(x) I y I N(y) I min(col#2,col#4) I 
2 0 1 0 0 

1.75 0.25 817 117 117 
1.5 0.50 413 113 113 

1.25 0.75 815 315 315 
1 1 2 1 1 

0.75 0.75 813 113 113 
0.50 0.50 4 0 0 
0.25 0.25 8 0 0 

If R = M · N, then its membership function is 

R(z) = sup{min(M(x), N(y))lxy = z }. (4.5) 

We know that if M and N are triangular, or trapezoidal, fuzzy numbers, 
then so is M + N and M- N. However, M · N will be a triangular, or 
trapezoidal, shaped fuzzy number if both are triangular, or trapezoidal, fuzzy 
numbers. Let us find R(2) for M and N in Figure 4.8. Table 4.2 gives 
some computational results. It looks like R(2) = 1. In fact R r::::! (01216), a 
triangular shaped fuzzy number. 

Lastly, letS= MIN. We now have to assume that zero does not belong 
to the interval N[O]. Then 

S(z) = sup{min(M(x),N(y))lxly = z}. (4.6) 

Find MIN forM and N given in Figure 4.8 (see the Exercises at the end 
of this section) . 

Notice that in equations ( 4.3)-( 4.6) we always used t-norm T = T m = 
min. Other t-norms can be used. Let* denote±,·, or 7. Then if P = M *N, 
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we can find P as follows 

P(z) = sup{T(M(x),N(y))lx*y = z}, (4.7) 

for t-norm T. 
To control the fuzziness in the result (see Section 3.5), we might choose 

T -::/:- T m. The fuzziness in a P in N could be measured by the length of 
the interval P[O] and/or the size of P[l]. For example, using T = Tm and 
computing P = M + N for M and N in Figure 4.8, the fuzziness (P[O]) equals 
4 while the fuzziness (base) of M and N is only 2. To reduce the fuzziness, 
or uncertainty, in the result try using another t-norm. 
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Exercises 

1. Using T = Tm find M- N for M and N given in Figure 4.8. Let 
Q = M- N. Find Q(z) at z = -3, -2, -1, 0, 1. Draw a picture of Q. 
Find a< b < c so that Q =(albic) or Q:::::: (albic). 

2. Using T = T m find MIN for M and N in Figure 4.8. Let S = MIN. 
Find S(z) at z = 0, 0.25, 0.50, 1, 1.5, 2. Draw a picture of S. Find 
a< b < c so that S =(albic) or S:::::: (albic). 

3. Using T = T* let P = M +N, with M and N in Figure 4.8. Find P(z) 
for z = 1, 2, 3, 4, 5. Draw a picture of P. Can you find a < b < c so 
that P = (albic) or P:::::: (albic)?. 

4. Use N from Figure 4.8 and use t-norm Tm. 

a. Find 3 + N. Determine a< b < c so that 3 + N = (albic). 

b. Find 2N. Does 2N = N + N? Can you find a < b < c so that 
2N = (albic) or 2N:::::: (albic)? 

c. Find N-;- 2 and 2-;- N. Are they triangular (shaped) fuzzy num­
bers? 

5. Redo Problem 4 using T = Tp. 

6. Let M = (-110,112) and N = (4/6/7). Compute the lengths of 
the intervals (M * N)[O] and (M * N)[1] for * = ±, ·,-;- and for 
T = Tm, n, Tp, T*. Which t-norm minimizes the length of these in­
tervals? 

7. Let P, M, N be fuzzy numbers. Determine if the following equation 
is true or false (use t-norm Tm for intersection and t-conorm Cm for 
union): 

a. P + (M n N) = (P + M) n (P + N). 

b. P + (M U N)=(P + M) U (P + N). 
In addition, now also assume that M:::; N. 

c. P+M :::;P+N. 

d. P-M:::; P-N. 

e. P·M<P·N. 

f. P -;- M :::; P -;- N. 

8. Use N from Figure 4.8 and use t-norm Tm. 

a. Find [-4, -1] + N. Determine a< b < c so that [-4, -1] + N = 
(albic). 
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b. Find [-4, -1]N. Can you find a < b < c so that [-4, -1]N = 
(ajbjc) or [-4, -1]N ::::;j (ajbjc)? 

c. Find N-;- [-4, -1] and [-4, -1]-;-N. Are they triangular (shaped) 
fuzzy numbers? 

9. Redo Problem 8 using T = T*. 

10. If M and N are arbitrary fuzzy numbers, is M * N , for * = ±, ·, -;-, 
always a fuzzy number? 

11. Show that zero always belongs to the support of M - M and that one 
always belongs to the support of M -;- M. 

12. Let X= {x1 ,x2 ,x3 } and 

13. 

14. 

15. 

16. 

17. 

18. 

Give numerical values to the Xi like x1 = -3, x2 = 1 and x 3 = 4. Find, 
using t-norm Tm, A± B, A Band A-;- B. 

Redo Problem 1 using Tb. 

Redo Problem 1 using T*. 

Redo Problem 2 using Tb. 

Redo Problem 2 using T*. 

Redo Problem 3 using Tb. 

Redo Problem 3 using Tp. 



68 CHAPTER 4. FUZZY NUMBERS 

4.3.2 Interval Arithmetic 

Before we can proceed to the second method of doing fuzzy arithmetic we 
first have to learn some of the basics of interval arithmetic. Let I = [a, b] and 
J = [c, d] be two closed intervals. If*= ±, ·,-;- (we also use "/" for -;- ), then 

I *J = {x*ylx E I,y E J}. (4.8) 

For example, if I = [1, 3] and J = [2, 5] and * is subtraction, then 

[1, 3]- [2, 5] = {x- ylx E [1, 3], y E [2, 5]}, (4.9) 

which equals [-4, 1]. You get the end points from 1- 5 = -4 and 3-2 = 1. 
The results from equation ( 4.8) can be summarized as follows: 

1. [a, b] + [c, d] = [a+ c, b + d]; 

2. [a, b] - [c, d] = [a - d, b- c) ; 

3. [a, b] · [c, d] = [a, ,8] ; 
a = min { ac, ad, be, bd}; 
,8 = max{ ac, ad, be, bd}; 

4. [a, b]-;- [c, d] = [a, b]· [1/d, 1/c], 

as long as zero does not belong to [c, d] when we divide by this interval. 
Multiplication can be simplified if you know that the intervals are positive 

or negative. For example, if a ~ 0 and c ~ 0, then 

I· J = [ac,bd], (4.10) 

and if b < 0 and c ~ 0, then 

I· J = [ad,cb]. (4.11) 

An interval [r,r] can be identified with the real number r. Let 1* = [1, 1] 
and 0* = [0, OJ. So we have I+ 0* =I and I· 1 * =I, etc. and we have the 
algebra of intervals. Certain properties of real numbers also hold for intervals 
but some properties of real numbers do not hold for intervals. 
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Exercises 

1. Let I= [a, b] and J = [c, d]. Find I· J if: 

a. b < 0 and d < 0; 

b. a 2: 0 and d < 0; 

c. a 2: 0, c < 0 and d 2: 0; 

d. a < 0, b 2: 0 and c 2: 0; 

e. a < 0, b 2: 0, c < 0 and d 2: 0; 

f. a < 0, b 2: 0 and d < 0; 

g. b < 0, c < 0 and d 2: 0. 

2. Let I= [a, b] and J = [c, d]. Find I...;... J if: 

a. a 2: 0 and c > 0; 

b. b < 0 and c > 0; 

c. a 2: 0, c < 0 and d 2: 0; 

d. a < 0, b 2: 0 and c 2: 0; 

e. a < 0, b 2: 0, c < 0 and d 2: 0; 

f. a < 0, b 2: 0 and d < 0; 

g. b < 0, c < 0 and d 2: 0. 

3. Let I, J and K be closed intervals. If the following equation is true, 
then give an argument showing that it is true. If it is false, then give 
an example which shows it is not true. 

a. I+ (J + K) =(I+ J) + K. 

b. There is a closed interval L so that I + L = 0, where 0 is the 
interval [0, 0] = 0. 

c. I · ( J · K) = (I · J) · K. 

d. There is a closed interval Y so that I · Y 1, where 1 is the 
interval [1, 1] = 1. 

e. I·(J+K)=I·J+I·K. 

f. If I <:;; X and J <:;; Y, where both X and Y are closed intervals, 
then I· J <:;;X· Y and IjJ <:;; X/Y. 

4. Show that the real number zero always belongs to I- I. 

5. Show that the real number one always belongs to I/ I. 

6. Given an equation I+ X = J can you always solve for closed interval 
X? 
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7. Given the equation I· X = J can you always solve for closed interval 
X? 

8. Consider the closed interval I= [a, b] and J = (c, d] as fuzzy subsets of 
R. Use the extension principle to find I* J for* E { ±, ·,-;- }. Are the 
results the same as in interval arithmetic? Explain. 
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4.3.3 Alfa-Cuts and Interval Arithmetic 
Alfa-cuts (a-cuts) of fuzzy numbers are always closed and bounded intervals. 
If M and N are two fuzzy numbers let M[a] = [m1(a),m2(a)] and N[a] = 
[n1(a),n2(a)], for 0 s; as; 1. Then we may define the arithmetic of fuzzy 
numbers in terms of their a-cuts. If P = M + N, then 

P[a] = M[a] + N[a], (4.12) 

or 
(4.13) 

for 0 s; a s; 1. 
We can do the same for subtraction. Let Q = M- N and then we see 

that 
Q[a] = [mt(a)- n2(a),m2(a)- nt(a)], 

for all a. If R = M · N, then 

R[a] = [mt(a), m2(a)]· [nt(a), n2(a)], 

for 0 s; as; 1. Lastly, if S = M / N, then 

(4.14) 

(4.15) 

S[a] = [m1(a),m2(a)]· [1/n2(a),1/n1(a)], (4.16) 

assuming that zero does not belong to N[O]. 
Equations (4.12)-(4.16) give the a-cuts of P, Q, R, S. You put these a­

cuts together to get the fuzzy sets P, Q, R, S. As an example of the compu­
tation let us find these four fuzzy numbers for the M and N in Figure 4.8. 
First you need to find M[a] = [a, 2- a] and N[a] = [1 +a, 3- a]. Then 

1. P[a] = [1 + 2a, 5- 2a], 

2. Q[a] = [-3 + 2a, 1- 2a], 

3. R[a] =[a+ a 2, 6- 5a + a 2], and 

4. S[a] = [a/(3- a), (2- a)/(1 +a)]. 

We see that P = (1/3/5), Q = ( -3/ - 1/1), R ~ (0/2/6) and 
S ~ (0/0.5/2). In order to sketch their graphs you need to find the inverse 
functions. 

Let us first graph Q. We start with -3 + 2a = x and 1- 2a = x. Solve 
for a giving y =a= (x + 3)/2 andy= a= (1- x)/2. The graph of Q is in 
Figure 4.9. 

Let us next do the same for R. Solve a 2 + a = x for a giving y = 
a = ( -1 + yfl + 4x)/2 = ft (x) and solve 6- 5a + a 2 = x for a producing 
y =a= (5- yf1 + 4x)/2 = h(x). In each case we had a choice of ±v1 + 4x. 
In the first case we picked + so that x = 0 gave y = 0. In the second case 
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X 

choose- (minus) since x = 6 is to produce y = 0. The graph oCR is in Figure 
4.10. 

Let us also graphS. Solve a/(3- a) = x for a giving y =a= h(x) = 
3x/(1 + x) and solve (2- a)/(1 +a) = x for a producing y =a= f 4 (x) = 
(2- x)/(1 + x). Sis in Figure 4.11. 

Clearly, this method of fuzzy arithmetic seems much easier than the ex­
tension principle procedure of Section 4.3.1. This method is also easily im­
plemented on a computer. We would discretize the fuzzy numbers by only 
computing their a-cuts for certain values of a, say for a = 0, 0.1, ... , 0.9, 1. 
Then, using equations ( 4.12)-( 4.16) we could quickly, using interval arith­
metic, find P, Q, R, S. But, do the two methods of doing fuzzy arithmetic 
give the same results? It is well-known that for continuous fuzzy numbers 
M and N the two procedures, using t-norm T m = min in equation ( 4. 7) of 
Section 4.3.1, and the a-cut and interval arithmetic method of this section, 
give the same results for P, Q, R, S. 
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Exercises 

1. Let M = ( -3/- 1/1) and N = (1/3/4). Find a-cuts of the following 
fuzzy sets and sketch their graphs. In all cases find y = j(x) for the 
left and right sides of the fuzzy sets as in Figures 4.9-4.11. 

a. P=M+N. 

b. Q=M-N. 

c. R=M·N. 

d. S=M/N. 

2. Let M = ( -4/-3, -1/0) and N = (3/4, 5/6). Same instructions as for 
Problem 1. 

3. Let M = (a/b/c) and r is a real number. 

a. Does r + M =(a+ r/b + r/c + r)? 

b. If r > 0, does r · M = (ar/br/cr)? 

c. If r < 0, does r · M = (cr/br/ar)? 

4. Let M be a fuzzy number. 

a. If Q = M- M, then find Q[O]. 

b. IfS = M/M, then find S[1]. 

5. If M ~ 0, then how would you define M for r = 2, 3, 4, ... ? 

6. How would you define exp(M). 

7. Given M > 0, how would you define ln(M)? 

8. Can you give a definition for sin(M)? 

9. Can you give a definition of tan(M)? 

10. Compute ±, ·,-;- for discrete fuzzy sets 

M = { 0.2 0.4 2 0.3 0.7} 
1'2'3'4'5' 

and 
N = {2 0.4 0.7 2 0.8} 

1' 2' 3 '4' 5 . 

11. Do the two methods, the extension principle and the a-cut with interval 
arithmetic, produce the same results for all fuzzy numbers? 

12. Rework the following problems in the Exercises in Section 4.3.1 using 
the a-cut and interval arithmetic method of this section. 
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a. Problem 1. 

b. Problem 2. 

c. Problem 4. 

d. Problem 8. 

e. Problem 12. 

13. Suppose in section 4.3.1 and equations (4.3)-(4.6) we use another t­
norm T. Do the two methods, extension principle and a-cuts with 
interval arithmetic, still give the same results for ±, ·, ...;- for continuous 
fuzzy numbers? Investigate for: 

a. T = Tb, 

b. T = Tp, and 

c. T = T*. 
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4.3.4 Properties of Fuzzy Arithmetic 

In this section let us be working with only continuous fuzzy numbers. They 
are all the triangular (shaped) and trapezoidal (shapes) fuzzy numbers. Let 
M, N, P be three continuous fuzzy numbers. 

The basic properties we wish to investigate are those of the real numbers 
translated into continuous fuzzy numbers. The first set of basic properties 
involve addition and subtraction. 

1. (closure) M + N is a continuous fuzzy number. 

2. (commutativity) M + N = N + M. 

3. (associativity) M + (N + P) = (M + N) + P. 

4. ( additive identity) There is a continuous fuzzy set 0 so that M + 0 = 
M. 

5. (additive inverse) There is a continuous fuzzy set X so that M +X = 0. 

The question is: "which of these are true for all M, N, P?" We can use 
either method, the extension principle or the a-cut with interval arithmetic, 
to show they are true or false. Let us look at numbers 2 and 3 using the 
a-cut and interval arithmetic method. Clearly number 2 is true because 
I + J = J + I is true for intervals I and J. Number 3 is true or false 
depending on how you answered Problem 3a in the Exercises to section 4.3.2. 
Notice if we allow all fuzzy numbers so that the real number 0 (zero) is a 
fuzzy number, then number 4 is true because M + 0 = M. 

The next set of basic properties involves multiplication and division: 

1. (closure) M · N is a continuous fuzzy number, 

2. (commutativity) M · N = N · M, 

3. (associativity) M · (N · P) = (M · N) · P, 

4. (multiplicative identity) There is a continuous fuzzy number I so that 
M·l=M, and 

5. (multiplicative inverse) There is a continuous fuzzy number Y so that 
M·Y=I. 

Using a-cuts and interval arithmetic we know that number 2 is true be­
cause I· J = J · I is true for intervals. Property 3 for intervals was answered 
in problem 3c in the Exercises to Section 4.3.2. If we allow all fuzzy numbers 
then the real number 1 (one) is a fuzzy number and property 4 is true since 
M·1=M. 
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The last basic property involves the interaction of addition and multipli­
cation and it is called the distributive law 

M · (N + P) = M · N + M · P. (4.17) 

The distributive law was looked at for intervals in problem 3e in the 
Exercises to Section 4.3.2. 

It is known that closure (addition and multiplication) is true for continu­
ous fuzzy numbers. You are now asked if the rest of the basic properties are 
true for continuous fuzzy numbers. 
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Exercises 

1. Determine whether or not the following property is true for continuous 
fuzzy numbers: 

a. M · (N · P) = (M · N) · P, 

b. M + (N +P) = (M +N) +P, 

c. There is an 0 so that M + 0 = M for all M, 

d. For each M there is an X so that M +X= 0, 

e. There is a I so that M ·I= M for all M, and 

f. For each M there is a Y so that M · Y = I. 

2. Show that 

M · (N + P) :S (M · N) + (M · P) 

is true for all continuous fuzzy numbers. 

3. Determine if the distributive law is true if 

a. M is the real number r (soMis not a continuous fuzzy number), 

b. N > 0 and P > 0, 

c. N < 0 and P < 0, and 

d. Any M, N, and P. 
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10 X 

Figure 4.12: Fuzzy Numbers M and N 

4.4 Fuzzy Max and Min 

We are familiar with max{x, y} and min{x, y} for real numbers x, y. We 
now fuzzify max to fuzzy max, written max, and we fuzzify min to fuzzy 
min, written min. Let M and N be two continuous fuzzy numbers. If P = 
max(M, N), then we find the membership function for P using the extension 
principle as follows 

P(z) = sup{min(M(x),N(y))jmax{x,y} = z}, (4.18) 

Also, if we let Q = min(M, N) then 

Q(z) = sup{min(M(x),N(y))lmin{x,y} = z}. (4.19) 

Example 4.4.1 

Let us find P and Q for the two triangular fuzzy numbers M = (0/4/8) and 
N = (1/2/6) shown in Figure 4.12. Tables 4.3 and 4.4 show some of the 
calculations for P(2) and Q(2). Tables 4.5 and 4.6 have computations for 
P(4) and Q(4). From Table 4.3 it looks like P(2) = 0.5 and Table 4.4 implies 
that Q(2) = 1. See Figures 4.13 and 4.14. Table 4.5 implies that P(4) = 1 
and it looks like Q( 4) = 0.5 from Table 4.6. 

We notice that fuzzy max ( max) and fuzzy min (min) are quite different 
from crisp (non-fuzzy) max and min. The difference is when M and N 
overlap, or when M n N -=f.¢ using t-norm min, max(M, N) and min(M, N) 
do not equal MorN. However, if M n N =¢then fuzzy max (min) can 
equal M or N. This is discussed in the exercises. 
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lQ X 

Figure 4.13: P = max(M,N) 

8 10 X 

Figure 4.14: Q = min(M,N) 

Table 4.3: Finding Fuzzy Max at z = max(x,y) = 2 

I x I y I M(x) I N(y) I min(col #3, col #4) I 
2 0 0.5 0 0 
2 1 0.5 0 0 
2 2 0.5 1 0.5 
0 2 0 1 0 
1 2 0.25 1 0.25 
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Table 4.4: Finding Fuzzy Min at z = min(x, y) = 2 

I x I y I M(x) I N(y) I min( col#3,col#4) I 
2 6 0.5 0 0 
2 5 0.5 0.25 0.25 
2 4 0.5 0.5 0.5 
2 3 0.5 0.75 0.5 
2 2 0.33 1 0.33 
3 2 0.75 1 0.75 
4 2 1 1 1 
5 2 0.75 1 0.75 
6 2 0.5 1 0.5 
7 2 0.25 1 0.25 
8 2 0 1 0 

Table 4.5: Finding Fuzzy Max at z = max(x,y) = 4 

I x I y I M(x) I N(y) I min(col#3,#4) I 
4 4 1 0.5 0.5 
4 3 1 0.75 0.75 
4 2 1 1 1 
4 1 1 0 0 
3 4 0.75 0.5 0.5 
2 4 0.5 0.5 0.5 
1 4 0.25 0.5 0.25 
0 4 0 0.5 0 

Table 4.6: Finding Fuzzy Min at z = min(x,y) = 4 

I x I Y I M(x) I N(y) I min(col#3,col#4) I 
4 4 1 0.5 0.5 
4 5 1 0.25 0.25 
4 6 1 0 0 
3 4 0.75 0.5 0.5 
2 4 0.5 0.5 0.5 
1 4 0.25 0.5 0.25 
0 4 0 0.5 0 

81 
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4.4.1 Exercises 

1. Suppose M n N =¢using t-norm min. Show that max(M, N) equals 
MorN and iffuzzy max isM (N ), the fuzzy min equals N (M). 

2. Suppose M:::; N, meaning M(x) :::; N(x) all x. Draw a picture of the 
fuzzy max and the fuzzy min of M and N. 

3. Show that max(M,M) = M and min(M,M) = M. 

4. Show that max(M,N) = max(N,M) and min(M,N) = min(N,M). 

5. If max(M, N) = M, then is it true that 

max(M + P, N + P) = M + P 

for any continuous fuzzy number P ? 

6. Let P = max(M, N) and P[a] = [p1 (a),p2(a)] all a. Can we find these 
a-cuts as follows 

p1 (a) = min{max(a,b)la E M[a],b E N[a]} 

and 
P2(a) =max{ max( a, b)ia E M[a], bE N[a]}. 

7. In the definition of fuzzy max let us use another t-norm T 

P(z) = sup{T(M(x),N(y))imax(x,y) = z}, 

so that P = max(M,N) using t-norm T. Rework Example 4.4.1 using: 

a. T = Tb, 

b. T = Tp, and 

c. T=T*. 

8. Repeat Problem 7 for fuzzy min. 

9. Let M = (1/2/3) and N = (2/3/4). Use t-norm min and draw pictures 
of 

a. max(M, N), 

b. min(M,N). 

10. Repeat Problem 9 forM= ( -1/0/2) and N = (1/3/4). 
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11. Let X = {0, 1, 2, 3, 4, 5} and 

A= {0.4 Q 0.8 ! 0.5 0.2} 
0'1'2'3'4'5' 

B = {0.7 0.5 ! 0.6 0.1 0.8} 
0'1'2'3'4'5. 

Find the fuzzy max and the fuzzy min of A and B. 
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4.5 Inequalities 

In this section we wish to define "<" and "~" between fuzzy numbers and 
discuss their properties. 

Up to now "~" between fuzzy numbers meant "fuzzy subset". M ~ N 
meant that M was a fuzzy subset of N , or M(x) ~ N(x), for all x. In this 
section ~ will mean "less than or equal to". In the rest of the book when "~" 
appears it should be clear, from how it is used, which meaning is attached to 
the symbol; if not we will state the meaning. 

The symbol "~ " is made up of two parts "<" and "=". We will use "<" 
between two fuzzy numbers but we will not use "=" between fuzzy numbers 
because M = N implies that M and N are identically equal. Instead of "=" 
we will use "~" to mean that the two fuzzy numbers are approximately equal 
or identical. So, M ~ N means M = N, or M and N are approximately 
equal. Then "~" will now mean "<" or "~". 

A total (linear, complete) order "~" on the set of fuzzy numbers has the 
following four properties: 

1. (reflexive) M ~ M; 

2. (transitive) M ~Nand N ~ P, implies M ~ P; 

3. M ~ N and N ~ M implies M ~ N; 

4. For any two fuzzy numbers M, N we have M ~ N or N ~ M. 

If "~" only has the first three properties, then it is called a partial order 
on the set of fuzzy numbers. 

The usual ordering on the real numbers is a total ordering. So, we would 
like to have a total ordering on the set of fuzzy numbers. If we can not get 
an "acceptable" total ordering, then we will settle for a partial ordering. 

A common method of defining ~ on the set of fuzzy numbers (Example 
4.5.1 below) is first to define the meaning of M < N. In this method M < M 
is always false, and M < N and N < M can not both be true. Then M ~ N 
whenever M < N is not true and N < M is false. So M ~ N means M < N 
or M ~ N. Notice that when we specify ~ this way properties #1, #3 
and #4 are all automatically satisfied. All we need to do is check to see 
if transitivity is also satisfied for ~ to be a total ordering. But that is the 
problem because transitivity usually fails to hold. Transitivity usually fails 
because: (1) <is transitive (M <Nand N < P implies M < P); but (2) ~ 
is not transitive (M ~ N and N ~ P but M is not approximately equal to 
P). Now~ must be transitive for ~to be transitive (see the exercises). 

The relation ~ fails to be transitive because we may have M ~ N and 
N ~ P but M < P. We can get this result because: (1) N lies a little to 
the right of M so that M ~ N ; (2) P lies a little to the right of N so that 
N ~ P; but (3) Plies far enough to the right of M so that M < P. 

Let us now look at some definitions of ~ on the set of fuzzy numbers. 
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Example 4.5.1 

We first define < between fuzzy numbers M and N. Let 

v(M :=:; N) = sup{min(M(x),N(y))lx :=:; y}, ( 4.20) 

which measures how much N is less than or equal toM. We write N < M 
if v(N :=:; M) = 1 but v(M :=:; N) < (), where () is some fixed fraction in 
(0, 1]. Let us use()= 0.8 in this book. Then N < M if v(N :=:; M) = 1 and 
v(M :=:; N) < 0.8. We define M ~ N when both M <Nand N <Mare 
false. M :=:; N means M <NorM~ N. 

Is this :=:; a total order? Is it a partial order? All we need to do is check 
and see if transitivity holds. 

Example 4.5.2 

For fuzzy numbers M and N let M[a] [m1(a),mz(a)] and N[a] 
[n1(a),n2 (a)]. We define M :=:; N if m1(a) :=:; n1(a) and m2 (a) :=:; nz(a) 
for 0 :=:; a :=:; 1. Here we defined :=:; directly in terms of the a - cuts and not 
from < and ~. Therefore we need to check all four properties in order for :=:; 
to be a total order. Clearly, M :=:; M is true. Also, if M :=:; N and N :=:; M, 
then we see that m1(a) = n1(a) and mz(a) = nz(a) for all a and M = N 
which is property #3. Now check out the other two properties ( #2, #4) to 
see if they are also true. 

Example 4.5.3 

This method is called the defuzzification method because we: (1) first assign 
a real number to each fuzzy number; and (2) then use the natural total 
ordering of the real numbers to get a total ordering for the fuzzy numbers. 
Defuzzification is discussed in more detail in the next section. 

To do this method we need a function 'ljJ mapping fuzzy numbers into the 
real numbers. Let 'lj;(M) = m, M a fuzzy number and m a real number. 
Then M :=:; N if 'lj;(M) = m :=:; n = 'lj;(N). This will always give a total 
ordering on the set of fuzzy numbers. 

As an example of such a function 'ljJ let 'lj;(M) = the midpoint of the 
core of M. Now the core of M is M[1] = [b, c] some closed interval. Then 
'lj;(M) = (b + c)/2. We could have b = c, the core a single point, and 
then 'lj;(M) = b. Let us apply this method to M = (2/3, 5/6) and N = 
(0/4.5/5) shown in Figure 4.11. We compute 'lj;(M) = 4 and 'lj;(N) = 4.5 and 
conclude that M < N. But from Figure 4.15 many of us would disagree with 
this conclusion. This situation is common in the ordering of fuzzy numbers. 
Whatever :=:; you choose to use , some example like in Figure 4.15 can be 
constructed, where you do not agree with the result M < N. 
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y 

1 

X 

Figure 4.15: M < N in Example 4.5.3 

Example 4.5.4 

In this method we first compute measures (scores) for N < M, N ~ M and 
N > M and choose the result that has the highest score. M will be a fixed 
fuzzy number and we compare fuzzy number N to M. 

Fuzzy sets 
Mu(x) = sup{M(y)Jy ~ x}, (4.21) 

and 
M1(x) = sup{M(y)Jy 2:: x}, (4.22) 

are first constructed. For triangular M, Figure 4.16 shows M 1, 1- M1, and 
Figure 4.17 shows Mu and 1- Mu. 

Then we make the comparisons 

v(N < M) = sup{min(1- Mu(x),N(x))J all real x}, (4.23) 

v(M ~ N) = sup{min(M(x),N(x))J all real x}, (4.24) 

and 
v(N > M) = sup{min(1- Ml(x),N(x))J all real x}. (4.25) 

The fuzzy set "less than M" is to be 1 - M u, which is compared to N 
to get v(N < M). The height of the intersection of M and N is v(M ~ N). 
The fuzzy set "greater than M" is 1- M1 which is compared to N for the 
value v(N > M). The largest of these three numbers gives the result. There 
can be ties, or there are two values which are equal. For example (no ties), 
if v(N < M) = 0.25, v(N ~ M) = 0.75 and v(N > M) = 0.67, then we 
conclude that N ~ M. As before,~ means< or~. 
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Figure 4.16: M1 and 1 - M1 for Example 4.5.4 
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Figure 4.17: M u and (1-M u) in Example 4.5.4 
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Clearly, M::; M is true by this method since we would get v(M:::::; M) = 1 
and v(M < M) < 1. Also, it looks like given any two fuzzy numbers M and 
N we will get N ::; N or M ::; N. But does this method give a partial 
ordering? Does it give a total ordering? 
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4.5.1 Exercises 

1. Show that if :::::J is not transitive, then :::;, defined as < or :::::J, is also not 
transitive. 

2. In Example 4.5.1 is the :S defined there transitive? Hint: show that :::::J 

is not transitive. 

3. Is the ordering defined in Example 4.5.2 transitive? Does it satisfy 
property # 2? 

4. Come up with 2 or 3 more defuzzification methods (Example 4.5.3) for 
a total ordering the set of fuzzy numbers. 

5. In Example 4.5.4 does :S satisfy properties #2 (transitive) and #3? 

6. In Example 4.5.4, let a = v(N < M), b = v(N :::::J M) and c = v(N > 
M). If the following result is possible, then determine the final decision 
on comparing Nand M if: 

a. a= b > c, 

b. a< b = c, 

c. a = b = c, and 

d. a= c >b. 

7. Show that if we first define "<" between fuzzy numbers and then say 
M :::::J N if both M <Nand M > N are false, then properties #1, #3 
and #4 automatically hold. 

8. Define M :S N if and only if M(x) :S N(x) for all x. Is this :Sa partial 
order? 

9. How would you define :S between discrete fuzzy subsets of the real 
numbers? 

10. Define M :::; N if and only if min(M, N) = M. Is this < a partial 
order? 

11. Define M :::; N if and only if max(M, N) = N. Is this :::; a partial 
order? 

12. Let max(M, N) = P. Write M < N if D(N, P) < D(M, P) where Dis 
the distance measure (metric) given in equation (3.80 ) of Section 3.7. 
Then write M :::::J N if both M < N and N < M are false. Is this :S a 
partial order? 

13. Suppose :::; is the total ordering obtained from the center of the core 
defuzzification method in Example 4.5.3. Let M, N, P, Q be continuous 
fuzzy numbers. Also assume that M :S N. Determine if the following 
equations are always true: 
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a. If P > 0, then M P:::; N P, 

b. If P < 0, then M P ~ N P, 

c. M+Q :::;N+Q, 

d. M-Q :::;N-Q, 

e. Are any of these results true for any total ordering? 

14. For two intervals I = [a, b] and J = [c, d] we define I :::; J if and only 
if b :::; c. Determine if the following definitions of ":::; " give a partial 
(total) ordering on the set of fuzzy numbers: 

a. M:::; N if and only if base(M) :::; base(N), and 

b. M:::; N if and only if core(M) :::; core(N), 

15. Let ":::; " be a partial order on the set of fuzzy numbers. Define 
X= {(M,N)IM,N fuzzy numbers}. Next define :::Son X as follows: 
(M,N) j (P, Q) if and only if: (1) M:::; P; (2) if M = P, then N:::; Q. 
Is " :::S " a partial order on X? 
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4.6 Defuzzification 

We mentioned defuzzification in the previous section as a method of assigning 
a real number to a fuzzy subset of the real numbers. In this section we will 
look at some methods of defuzzification. The operation of defuzzification is 
a function, which we now call "defuzi', mapping fuzzy subsets of the real 
numbers into the real numbers. We will restrict the discussion to continuous 
fuzzy subsets or to discrete fuzzy subsets of the reals. 

Defizzification is very important in the fuzzy controller. We do not discuss 
the fuzzy controller in this book , but its internal method of processing infor­
mation is very similar to the fuzzy reasoning methods discussed in Chapter 
14. In both systems the final conclusion turns out to be a fuzzy subset of the 
reals, like the one in Figure 14.3. If this final conclusion is to be communi­
cated to a machine (set new speed, new voltage, etc.) it must be defuzzified 
because a machine will not understand a complete fuzzy set. So if the final 
conclusion is fuzzy set B, then defuzz(B) will be sent to the machine. 

Let A= (al/az/a3 ) where a3 -a2 = a 2 -a1 , or A is a symmetric triangular 
fuzzy number. Then many would agree that defuzz(A) = a 2 is a reasonable 
defuzzification. But what if A is not symmetric? We now present some 
popular defuzzification methods through the following examples. 

Example 4.6.1 

The centroid defuzzifier. Let A 
o = defuzz(A) is 

( -2/1, 2/6). The centroid defuzzifier 

o = /_
6

2 
(xA(x))dx 7 (area), ( 4.26) 

where "area" is the area of the trapezoidal fuzzy number. To evaluate o 
we need the functions y = fl(x) ( fz(x)) for the left ( right) side of A. 
Now A[a] = [-2 + 3a,6- 4a], so we find that y = fl(x) = (x + 2)/3 and 
y = fz(x) = (6- x)/4. Then the numerator of o is 

rl xfl(x)dx + /,2 xdx + { 6 xfz(x)dx, 
}_2 1 J2 

( 4.27) 

which equals 

0 + 3/2 + 20/3. ( 4.28) 

The area is easily found to be 4.50. So, o = 49/27. 
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Example 4.6.2 

The centroid defuzzifier for discrete fuzzy sets. Suppose A is a discrete fuzzy 
subset of the real numbers given by 

( 4.29) 

for Xi real numbers and J.li in [0, 1], 1 ::; i ::; n. Then if J = defuzz(A), we 
compute J as 

(4.30) 

Example 4.6.3 

The center of maxima defuzzifier. Let 

Cm = {xiA(x) = ht(A)}, (4.31) 

where ht(A) =height of A (which is one for fuzzy numbers). Then 

defuzz(A) = (minCm + maxCm)/2. ( 4.32) 

If A :::;j (al/a2/a3), then defuzz(A) = az since Cm = {az}. If A :::;j 

(al/a2, a3ja4), then defuzz(A) = (az + a3)/2 because Cm = [az, a3] which 
is the core of A. For discrete A 

A= {Q 0.8 0.6 0.8 0.3 0.1} 
o' 1 ' 2 ' 3 ' 4 ' 5 ' 

( 4.33) 

we have defuzz(A) = (1 +3) /2 . Sometimes, for discrete fuzzy sets defuzz(A) 
does not equal a member of X. When this happens you might round up, or 
round down, to get defuzz(A) equal to a member of X. For example if 

A= {0.5 0.7 0.3 0.6 0.7 Q} 
0'1'2'3'4'5' 

( 4.34) 

then defuzz(A) = (1 + 4)/2 = 2.5. Then we could round to 3 or to 2. 

Example 4.6.4 

Mean of the maxima defuzzifier. For a discrete fuzzy set A define Cm as in 
Example 4.6.3. Then 

K 

defuzz(A) = 2:)xi1Xi E Cm}/K, ( 4.35) 
i=l 

where K is the total number of points in the set Cm· 
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4.6.1 Exercises 

1. Compute the centroid defuzzifier for A= ( -3/- 1/4). 

2. Compute the centroid defuzzifier for 

A_ {0.9 0.7 _Q_ 0.3 0.3 ~ 0.2} 
- -3'-2'-1' 0' 1 '2' 3 . 

3. Extend the mean of the maxima defuzzifier (Example 4.6.4) to contin­
uous fuzzy subsets of the real numbers, not necessarily fuzzy numbers. 

4. Compute the mean of the maxima defuzzifier for the two discrete fuzzy 
sets in Example 4.6.3. 

5. Given a ":S" between continuous fuzzy numbers and if M < N, is 
defuzz(M) :::; defuzz(N) ? Use the centroid defuzzifier and the center 
of maxima defuzzifier. Answer the question for the :::; given in:" 

a. Example 4.5.1, 

b. Example 4.5.2, and 

c. Example 4.5.3. 

6. Given two continuous fuzzy numbers M and N is defuzz(M + N) = 
defuzz(M) + defuzz(N) ? Use t-norm T =min for the sum of fuzzy 
numbers. Also use the centroid defuzzifier and the center of maxima 
defuzzifier. 

7. Given continuous fuzzy number M and real number r, do we get 
defuzz(M + r) = defuzz(M) + r? Use t-norm min for the addition of 
the fuzzy number and the real number. Also, use the centroid defuzzi­
fier and the center of maxima defuzzifier. 

8. Given two continuous fuzzy numbers M and N determine if the follow­
ing equation is true or false. Use t-norm min for n and t-conorm max 
for U and the centroid defuzzifier: 

a. defuzz(M n N) :::; defuzz(M) [and :::; defuzz(N)], and 

b. defuzz(M UN) 2: defuzz(M) [and 2: defuzz(N)]. 

9. If we define D(M, N), the distance between two continuous fuzzy num­
bers M and N, as 

D(M,N) = idefuzz(M)- defuzz(N)I, 

is D a metric (see section 3.7)? Can you define a method of defuzzifi­
cation so that D is a metric? 
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10. Is 

defuzz(max(M,N)) ~ defuzz(M), [~ defuzz(N)], 

true for continuous fuzzy numbers M and N? Use the centroid defuzzi­
fier. 

11. Is 

defuzz(min(M, N)) ~ defuzz(M), [~ defuzz(N)], 

true for continuous fuzzy numbers M and N ? Use the centroid de­
fuzzifier. 

12. How would you defuzzify a level 2 and a type 2 fuzzy set? 



Chapter 5 

Fuzzy Equations 

5.1 lntrod uction 

In this chapter we start solving fuzzy equations. In the next section we look 
at solutions to the simple fuzzy linear equation. However, the problems in­
volved in solving this simple fuzzy linear equation are sufficiently complicated 
to indicate three possible solution techniques: the classical method; the ex­
tension principle procedure; and the a-cut and interval arithmetic method. 
All three solutions are illustrated on the fuzzy linear equation and these three 
methods will be used in the rest of the book. In the third section we then 
apply these solutions to the fuzzy quadratic equation. 

5.2 Linear Equations 

In algebra one of the first things you do is solve linear equations. If 

ax+ b = c, (5.1) 

for given values of a, b, c with a -::/:- 0, you are to solve for x. The solution is 
x = ( c- b)/ a. But to get this solution you first subtracted b from both sides 
of the equation and then you multiplied both sides by (1/a). 

In fuzzy algebra the first thing we want to do is solve 

(5.2) 

for X given triangular fuzzy numbers A, B, C. Let A (al/az/a3 ), 

B = (bl/bz/b3 ) and C = (cl/cz/c3 ) and we assume zero does not belong 
to A[O] = [a1 ,a3]. Assuming X can be a triangular, or a triangular shaped 
fuzzy number, we let X~ (xl/x2/x3)· 

Following the solution to the crisp equation (5.1) we obtain 

(1/A)(A ·X+ B- B)= (C- B)/A. (5.3) 
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But the left hand side of equation (5.3) does not equal X since B- B -::/:- 0 
and A/A -::/:- 1. For example, if B = (1/2/3), then B - B = ( -2/0/2) not 
zero. Also, if A= (1/2/3), then A/A is a triangular shaped fuzzy number 
>=::; ( ~ /1/3) not equal to one. 

This shows a major problem in solving fuzzy equations: some basic op­
erations we use to solve crisp equations do not hold for fuzzy equations. As 
a result of this problem several solution concepts have been introduced for 
fuzzy equations. We will now present three of these solutions. 

5.2.1 Classical Solution 

The classical solution, written X c if it exists, involves substitution of a-cuts 
of A, B, C and Xc into equation (5.2), and using interval arithmetic, solve 
for the a-cuts of X c. Let A[a] = [a1(a),a2 (a)], B[a] = [b1(a),b2 (a)], C[a] = 
[c1(a),c2 (a)] andXc[a] = [x1(a),x2 (a)]. Substitutetheseintoequation (5.2) 
giving 

Now use interval arithmetic to solve for x1(a) and x2 (a). We say this 
method defines a solution X c if [ x1 (a), x 2 (a)] defines the a-cuts of a fuzzy 
number. For this to be true we need: 

1. x1(a) to be a monotonically increasing function of a, 0::; a::; 1; 

2. x2 (a) to be a monotonically decreasing function of a, 0::; a::; 1; and 

Since A, B, Care all continuous fuzzy numbers the Xi(a) will be contin­
uous functions of a. If x1(1) < x2 (1) we get Xc a trapezoidal shaped fuzzy 
number. 

Example 5.2.1.1 

Let A = (1/2/3), B = ( -3/ - 2/ - 1) and C = (3/4/5). Then A[a] 
[I+ a, 3- a], B[a] = [-3 +a, -1- a], C[a] = [3 +a, 5- a]. Since A> 0, 
B < 0 and C > 0 we must have X c > 0. From interval arithmetic equation 
(5.4) becomes 

or 
6 

x1(a)=l+a' 

6 
x2(a) = -3-, 

-a 

(5.6) 

(5.7) 
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Figure 5.1: Solution in Example 5.2.1.2 

after substituting for a1 (a), ... ,c2 (a) and solving for the Xi(a). 
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But x1 (a) is a decreasing function of a and x2 (a) is an increasing function 
of a. Hence, X c does not exist. 

Example 5.2.1.2 

Now let A= (8/9/10), so that A[a] = [8 +a, 10- a], B = ( -3/-2/- 1) as 
in Example 5.2.1.1 and C = (3/5/7) so that C[a] = [3 + 2a, 7- 2a]. Again 
X c > 0 and solving we obtain 

(5.8) 

(5.9) 

We see that x1 (a) is an increasing function of a (its derivative is positive), 
x2 (a) is a decreasing function of a (its derivative is negative) and x1 (1) = 
7/9 = x2 (1). The solution Xc exists and is shown in Figure 5.1. 

Working more examples like Examples 5.2.1.1 and 5.2.1.2 we conclude 
too often the fuzzy linear equation has no X c solution. This motivates us to 
consider other types of solution. 

5.2.2 Extension Principle Solution 

We continue to look for solutions to the fuzzy linear equation in equation 
(5.2). This solution fuzzifies the crisp solution. The crisp solution is x = 
( c - b)/ a and we fuzzify it by substituting A for a, B for b and C for c. The 
result is 

X=(C-B)jA. (5.10) 
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There are two basic ways to evaluate equation (5.10): (1) using the ex­
tension principle; or (2) using a-cuts and interval arithmetic. The extension 
principle procedure gives X e and the a-cut and interval arithmetic method 
produces Xi. In this section we look at X e and Xi is in the next section. 

We have mentioned the extension principle before (Sections 4.3.1 and 
4.4) and it will be used many times in this book. So, now let us formally 
present the extension principle. This principle is used to fuzzify equations 
and functions. Let y = f(x 1 , · · ·, Xn) be a function of n real variables Xi· 

Substitute continuous fuzzy numbers Ai for Xi, 1 ~ i ~ n, giving 

(5.11) 

The extension principle is used to obtain the membership function for Y. 
First define 

(5.12) 

and then 
Y(y) =sup{rr(xl,···,xn)lf(xl,···,xn) =y}. (5.13) 

Apply this to equation (5.10) giving 

Xe(x) = sup{rr(a, b, c)l(c- b)/a= x}, (5.14) 

where 
rr(a, b, c) = min(A(a), B(b), C(c)). (5.15) 

In general, this computation, equations (5.14) and (5.15), looks difficult 
but for continuous functions, the fin equation (5.11), we may find the a-cuts 
of X e as follows: 

x1 (a) = min{(c- b)/alaE A[ a], bE B[a], c E C[a]}, (5.16) 

x2(a) = max{(c- b)/alaE A[ a], bE B[a], c E C[a]}, (5.17) 

where Xe[a] = [x1(a), x2(a)]. Xe always exists and is a triangular shaped 
fuzzy number. 

Example 5.2.2.1 

This continues Example 5.2.1.1. We need to evaluate equations (5.16) and 
(5.17). This is easy because (c- b)/a is: (1) an increasing function of c; and 
(2) a decreasing function of a and b. So 

xl(a) = c1(a)- b2(a) = 4 + 2a, 
a2(a) 3- a 

(5.18) 

x2(a) = c2(a) - b1 (a) = 8- 2a. 
a1(a) 1+a 

(5.19) 
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X e is shown in Figure 5.2. 
If you substitute X e back into the fuzzy linear equation 
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10 X 

(5.20) 

it may, or may not, be true. That is, the extension principle solution may, 
or may not, satisfy the original equation. We would evaluate equation (5.20) 
using a-cuts and interval arithmetic. Equation (5.20) is not true for the X e 
of Example 5.2.2.1. 

5.2.3 Alfa-Cut and Interval Arithmetic Solution 

Xi is obtained from equation (5.10) by using a-cuts and interval arithmetic. 
So, if Xi[a] = [x1 (a),xz(a)], then 

or 

(5.22) 

(5.23) 

if a1 (a) > 0 all a. So, if A> 0 we get the same result as for X e. That is, 
Xi = X e if A > 0. 

In general, X e and Xi always exist but they may not satisfy the original 
fuzzy linear equation. 
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Example 5.2.3.1 

This continues Example 5.2.1.2. As in Example 5.2.2.1 we get for Xi 

(5.24) 

(5.25) 

We also see that Xi= X e. 

In this example X c exists and notice that X c is "inside" X e, or X c ( x) :S 
Xe(x) all x. 
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5.2.4 Exercises 

1. Let A= ( -3/-2/ -1), B = ( -3/-2/ -1) and C = (3/4/5). Assume 
Xc < 0. 

a. Find Xc, if it exists. 

b. Find X e. Does X e satisfy the equation? 

c. Find Xi. Does Xi= Xe? 

2. Show if Xc exists, then Xc(x)::::; Xe(x) all x. 

3. Let A= (1/2/3), B = ( -3/- 2/- 1), C = ( -5/- 4/- 3). Assume 
Xc < 0. 

a. Find Xc, if it exists. 

b. Find X e. Does X e satisfy the equation? 

c. Find Xi. Does Xi= Xe? 

4. Is it true that Xi= Xe for all A, B, C? 

5. Is it true that Xe(x) ::::; X;(x) all x, for all A, B, C? 

6. Is it true that X c, if it exists, always satisfies the original equation 
A·Xc+B = C? 

7. Show that A· Xe + B =/=- C for Xe in Example 5.2.2.1. 

8. Does A· X;+ B = C for Xi in Example 5.2.3.1? 

9. In the following problems solve for Xc (if it exists), Xe and Xi. Show 
Xe ::::; Xi and Xc::::; Xe if Xc exists. Check to see if A· Xe + B = C 
and A· Xi+ B =C. Let U = (1/2/3), V = (3/4/5). 

a. A= U, B = U, C = - V. 
b. A= u, B = u, c = v. 
c. A= u, B = -U, c = - v. 
d. A= -U, B = U, C = V. 
e. A= -U, B = U, C = -V. 
f. A= -U, B = -U, c = - v. 

10. Consider a fuzzy linear equation A X+ B = C where the classical 
solution X c does not exist. Then we define a substitute classical solu­
tion X 8 to be that triangular shaped fuzzy number X that solves the 
following minimization problem 

min[D(A X+ B, C)], 

forD the metric for continuous fuzzy numbers given in equation (3.80) 
in Section 3.7. Apply this method to find Xs in Example 5.2.1.1. 
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5.3 Other Fuzzy Equations 

Now we could go on to fuzzy polynomial equations, systems of fuzzy linear 
equations (Chapter 11 ), etc., but we will only consider the fuzzy quadratic 
equation in this section. 

We have defined three types of solutions to the fuzzy linear equation in the 
previous section. As we start to study other fuzzy equations we should have 
a solution strategy. A solution strategy is to decide which of these solutions 
we prefer, assuming the classical solution exists, and which we do not prefer. 
Our solution strategy will be: (1) use the classical solution if it exists because 
it always satisfies the original fuzzy equation; (2) if the classical solution 
fails to exist, use the extension principle solution, which may or may not 
satisfy the fuzzy equation; and (3) if the classical solution does not exist and 
the extension principle solution is difficult to obtain (equations like (5.16), 
(5.17)), then use the a-cut and interval arithmetic solution, which uses only 
interval arithmetic, as an approximation to the extension principle solution. 

The fuzzy quadratic equation is 

- -2 -- - -
A·X +B·X+C=D, (5.26) 

for triangular fuzzy numbers A, B, C, D and X will be a triangular shaped 
fuzzy number. Notice that we did not write 

- -2 -- -
A · X + B · X + C = 0, (5.27) 

because we could never get the left hand side of equation (5.27) exactly equal 
to (crisp) zero. 

Before discussing solutions to equation (5.26) let us look at the crisp 
equation 

ax2 + bx + c = d, (5.28) 

where now d can equal zero. We know that equation (5.28) can have one, or 
two real solutions for x. If we allow complex numbers, then equation (5.28) 
has two solutions (counting a root of multiplicity two twice). However, in 
this book we will not deal with fuzzy complex numbers. We will only use real 
fuzzy numbers. So the constraints on A, B, C, D in equation (5.26) is that 
the solution for X is a real fuzzy number, otherwise there is no solution. 

We first look for a classical solution. Let A[a] = [a1(a),a2(a)], B[a] = 
[b1(a),b2(a)], C[a] = [c1(a),c2(a)], D[a] = [d1(a),d2(a)], and X[a] = 
[x1(a),x2(a)]. Substitute these a- cuts into equation (5.26) and solve for 
x1 (a) and x2(a). To solve for the xi(a) we need to know if A, Band X are 
positive or negative. Let us assume for now that A> 0, B > 0 and X > 0. 
Then we get two equations 

(5.29) 



5.3. OTHER FUZZY EQUATIONS 103 

i = 1,2. 
For notation define 

sl (a, b, c, d) = [-b + jb2 - 4a(c- d)]j2a, (5.30) 

S2 (a, b, c, d)= [-b- Jb2 - 4a(c- d)]/2a. (5.31) 

Let us solve for the largest fuzzy solution. Then if X = X c, for the classical 
solution, it is the solution whose o:-cuts are [x1(o:),x2 (o:)] and we get 

(5.32) 

i = 1,2. 
For Xc to exist, [x1(o:),x2 (o:)] must define o:-cuts of a triangular shaped 

fuzzy number. That is we need 8x1 / oo: > 0 and oxz / oo: < 0 for 0 < o: < 1 
and x1 (1) = x2 (1). But also equation (5.32) must produce real numbers so 
we also require that 

(5.33) 

i = 1,2, and 0:::; o::::; 1. 
If these conditions are met X c exists and is called the classical solution. 
There could be another classical solution using S2 . Naturally, if A < 0 

and/or B < 0 we may get different results. 
It will be very difficult to meet all of these conditions, so quite often X c 

does not exist, and we go on to X e, the extension principle solution. It 
fuzzifies S1 and S2 . Working with S1 let the o:-cuts of Xe be [x1(o:),x2 (o:)] 
and then 

Xl (o:) =min{ sl (a, b, c, d) Ia E A[o:], ... 'dE D[o:]}, (5.34) 

x2 (o:) = max{S1 (a, b, c, d) Ia E A[o:], .. ·,dE D[o:]}, (5.35) 

for 0 :::; o: :::; 1. 
If it is difficult to find this min and max in equations (5.34) and (5.35), 

respectively, we look at Xi, the o:-cut and interval arithmetic solution. 
We compute Xi by substituting o:-cuts of A, B, C, D into S1 (or S2 ). 

Using S1 let the o:-cut of Xi be [x1(o:),x2 (o:)]. Then we see that 

x1 ( o:) = [ -bz ( o:) + J (b1 ( o:) )2 - 4az( o:) ( Cz ( o:) - d1 ( o:)) ]/2az( o:), (5.36) 

o::;o:::;L 
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X e and Xi always exist, assuming all the square roots exist as real num­
bers, and we believe that Xe ~ Xi (see the exercises). However, Xe and 
Xi may not satisfy equation (5.26). To check this substitute a-cuts of Xe 
(Xi) into equation (5.26), simplify using interval arithmetic, and see if the 
resulting equation is true. 

Example 5.3.1 

Suppose an investment firm wishes to set aside around A dollars to be invested 
at interest rate r so that after one year they may withdraw approximately 
B dollars. And then after two years the amount that is left will accumulate 
to about C dollars. Given values of A, B, and C solve for r. However, A, 
B and C are not known exactly and this uncertainty will be modeled using 
triangular fuzzy numbers A, B and C. Hence r will be a triangular shaped 
fuzzy number. 

After one year the amount will be A+ Ar. Now withdraw B and we have 
(A- B)+ Ar to begin the second year. At the end of the second year we 
have 

[(A- B) + Ar] + [(A- B) + Ar]r. (5.38) 

For positive fuzzy numbers multiplication distributes over addition (Sec­
tion 4.3.4) which means (X + Y)Z = X · Z + Y · Z if X > 0, Y > 0, Z > 0. 
Now r is a fuzzy interest rate so it is a fuzzy subset of [0, 1). We know B will 
be smaller than A so assume A- B > 0. Then equation (5.38) becomes 

(A- B) + Ar + (A- B)r + A(r)2 , 

or 

A(r) 2 +Dr+ E, 

for D = A + (A - B) = 2A - B, E = A - B. 
So we must solve 

A(r) 2 +Dr+E = c, 
for r. 

(5.39) 

(5.40) 

(5.41) 

So now let us put some numbers in for A, B and C and solve for r. Assume 
A= (0.8/1.0/1.2), or approximate one million dollars, B = (0.20/0.25/0.30), 
or around $250,000 and C = (0.60/0.90/1.20) about $900,000. The unit 
1 = one million. Then A[a) = [0.8 + 0.2a, 1.2 - 0.2a), B[a) = [0.20 + 
0.05a, 0.30- 0.05a), C[a) = [0.6 + 0.3a, 1.2- 0.3a) and r[a) = h (a), r 2 (a)). 
Then D[a) = [1.3 + 0.45a, 2.2- 0.45a) and E[a) = [0.5 + 0.25a, 1- 0.25a). 
Substitute these a-cuts into equation (5.41) and solve for ri(a), i = 1, 2. We 
are seeing if the classical solution exists. The equation for r 1 (a) is 
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(0.8 + 0.2o:)(r1 (o:)) 2 + (1.3 + 0.45o:h (o:) + ( -0.1- 0.05o:) = 0, (5.42) 

so that 

r1 (o:) = -(1.3 + 0.45o:) + ~ 
2(0.8 + 0.2o:) , 

(5.43) 

for 

M(o:) = (1.3 + 0.45o:) 2 + 4(0.8 + 0.2o:)(0.1 + 0.05o:). (5.44) 

Similarly, we obtain r 2 (o:). We use the positive square root since r is in 
[0, 1]. We easily see that M(o:) > 0 all o:, and the same result for r 2 (o:). Next 
we check 8rl/8o: > 0, 8r2 j8o: < 0 which are true and also r 1 (1) = r 2 (1) = 
0.0819. The classical solution exists and its graph is in Figure 5.3. Since the 
classical solution exists we do not calculate 'Fe or ri. 
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5. 3.1 Exercises 

1. We stated that Xi will be an approximation of X e. For the fuzzy 
quadratic equation show Xe(x):::; Xi(x) all x. 

2. Explain why equation (5.27) can not have a solution for X if A, B, C 
are triangular fuzzy numbers. 

3. Explain what changes need to be made in solving for Xc, equations 
(5.29)-(5.32), if: 

a. A < 0, X > 0, B > 0; 

b. A > 0, X > 0, B < 0; 

c. A > 0, X < 0, B > 0; 

d. A > 0, X < 0, B < 0; 

e. A < 0, X > 0, B < 0; 

f. A < 0, X < 0, B > 0; 

g. A < 0, X < 0, B < 0. 

4. In Example 5.3.1, find: 

b. ri. 
d. And then compare them to rc in Figure 5.3. 

5. In Example 5.3.1 show that 8rl/8a > 0, 8r2 j8a < 0 and r 1 (1) = r 2 (1). 

6. Let A= 1 (crisp one), B = (2/4/7), C = 0 (real zero) and D > 0, in 
equation (5.26). 

a. Find X c, or show that it does not exist. 

b. Find X e. 

c. Find Xi and show Xe:::; Xi ( Xe(x):::; Xi(x), for all x). 

7. Let A = 1, B = zero, C = (0/0.5/1) and D = (0/4/8), in equation 
(5.26). 

a. Find X c, or show that it does not exist. 

b. Find X e. 

c. Show Xc:::; Xe (if Xc exists). 

--2 -- -
8. Consider A·X = D, A> 0, and D > 0. What conditions, if any, must 

A and D meet so that Xc exists. Find Xe and Xi. 
-2 - -- -

9. Consider X + C = D, C > 0, D > 0. Redo Problem 8 for these 
conditions on C and D. 
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10. Consider the fuzzy quadratic when the classical solution does not exist 
and then look at the substitute classical solution X 8 defined in Problem 
10 in Section 5.2.4. Come up with an example of a fuzzy quadratic 
where X c does not exist and then apply the method of Problem 10, 
Section 5.2.4, to solve for Xs and compare to Xe and Xi. 



Chapter 6 

Fuzzy Inequalities 

6.1 Introduction 

In this chapter we start the solution to fuzzy inequalities. In the next section 
we consider solving fuzzy linear inequalities. The solution set depends on 
what "::::; ", or " < ", we will use between fuzzy numbers. In the text we use 
those described in Examples 4.5.1 to 4.5.3 in Chapter 4. We continue the 
development with discussing the solution set to fuzzy quadratic inequalities 
in the third section. Since the solution set to fuzzy inequalities is usually 
infinite, we try to describe this set for each problem and sometimes exhibit 
a particular member of the solution set. Applications of fuzzy inequalities 
would be in fuzzy optimization (fuzzy constraints) in Chapter 16. 

6.2 Solving A· X+ B < C. 
We wish to describe all solutions to 

(6.1) 

for triangular fuzzy numbers A, B, C. X will be a continuous fuzzy number. 
In the crisp case 

ax+b::=;c (6.2) 

we have x ::::; (c- b)/a for a > 0 and x ~ (c- b)/a if a < 0. In either case 
there are an infinite number of solutions for x. The same will be true for 
equation (6.1). We need to be able to describe all continuous fuzzy numbers 
X which satisfy equation (6.1). 

Let E =A· X+ B. First we need to decide how we are going to compute 
E. We will use a-cuts and interval arithmetic for E. Then the solution for 
X to E ::::; C (E < C) depends on your definition of "::::;" between fuzzy 



110 CHAPTER 6. FUZZY INEQUALITIES 

numbers. We will use the three definitions of ":::;" in Examples 4.5.1-4.5.3 in 
Section 4.5. 

Example 6.2.1 

Let A = (2/4/5), B = ( -6/- 3/ - 1) and C = (10/14/15). Since A > 0 
let us start with assuming X ::=:::! (xtfx2,x3 /x4), X > 0. The a-cuts are 
A[ a]= [2 + 2a, 5- a], B[a] = [-6 + 3a, -1- 2a), C[a) = [10 + 4a, 15- a], 
X[a] = [x1 (a),x2(a)). Then 

E[a] = [(2 + 2a)x1 (a) + ( -6 + 3a), (5- a)x2 (a) + ( -1 - 2a)). (6.3) 

Now we use ":::;" from Example 4.5.1 with B = 0.8. So we wish to solve 
E < C. Then v(E :::; C) = 1 and v(C :::; E) < 0.8 so that E < C. From 
Figure 6.1 we see that X::=:::! (xrfx2,x3 /x 4 ) is a solution if and only if: (1) 
e3 < 13.2; and (2) the graph of y = E(x) on [e3, e4) intersects y = C(x) at 
point Q below point P, or otherwise e4 :::; 10. But e3 = 4x3 - 3 from equation 
(6.3) so x 3 < 4.05. E is trapezoidal shaped, E ::=:::! (er/e2, e3/e4) since X is 
trapezoidal shaped. Now we can put any curve in for y = E(x) on [e3, e4) 
when e4 > 10 as long as Q is below P, but also when we solve for x2 (a) we 
must have dx2jda < 0. 

For example if E[a] = [e1 (a),e2 (a)) let e2(a) = 14- a. Then solving 
14- a = 10 + 4a we get 0.8. So Q = P. Try e2 (a) = 14- 2a, then 
14- 2a = 10 + 4a gives a= 0.67 and Q is below P. Now solve 

(5- a)x2(a) + ( -1- 2a) = 14- 2a, (6.4) 

for x 2 (a) giving 

x2(a) = 15/(5- a). (6.5) 

But dx2/da > 0. Finally try e2(a) = 14- 6a. Then 14- 6a = 10 + 4a 
gives a= 0.4 and solving for x 2 (a) produces 

( ) 15- 4a 
x2 a = 

5-a 
(6.6) 

with dx2/da < 0. 
We summarize these results: X::=:::! (xl/x2 , x3 fx4), X[a] = [xi( a), x2 (a)] 

solves 

A·X+B<C (6.7) 

using "<" from Example 4.5.1 with A = (2/4/5), B = ( -6/- 3/- 1), 
C = (10/14/15) if: (1) X3 < 4.05; and (2) X3 < x4 < 2.2 ( e4 :::; 10) or x 2 (a) 
is chosen so that e2 (a) intersects y = C(x) on [e3,e4 ] below a= 0.8 (See 
Figure 6.1). 



6.2. SOLVING A· X+ B ::::; C. 111 

17 X 

Figure 6.1: Solution to Example 6.2.1 

Example 6.2.2 

This continues Example 6.2.1 but now we will use the "::::;" from Example 
4.5.2. We end up withE::::; Cas before but now this means ei(o:) ::::; ci(o:), 
i = 1, 2. In this problem we wish to solve E ::::; C. From equation (6.3) we 
have 

Or 

(2 + 2o:)x1 (a:)+ ( -6 + 3o:) ::::; 10 + 4o:, 

(5- o:)x2(o:) + (-1- 2o:)::::; 15- a:. 

16 + 0: 
X1(o:)::::; 2 + 20: = l(o:), 

16 + 0: 
x2(o:)::::; 5 _o: =r(o:). 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

The graphs of l(o:) and r(o:) are shown in Figure 6.2. Since dxl/do: > 0, 
dx2/do: < 0 and x1(1) ::::; x2(1) we conclude that the only restriction on 
X:::::: (xl/x2 , x3jx4), for it to be a solution is for X4 ::::; 3.2. 

Example 6.2.3 

This will continue Example 6.2.1 with"::::;" from Example 4.5.3. Solve E::::; C. 
We get E ::::; C if and only if the midpoint of the core of E is ::::; 14. The 
midpoint of the core of E is 2(x2 + x 3 ) - 3. Hence, X is a solution if and 
only if 

X2 + X3 ::::; 8.5 (6.12) 
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1 

3 

Figure 6.2: Constraints for the Solution to Example 6.2.2 

6.3 
--2-----
A· X + B ·X+ C > D (or> D). 

- --2 -- -
Let E = A · X + B · X + C to be found using a-cuts and interval arithmetic. 
Then, as in the previous section, all we need to do is describe all X ~ 
(xdx2,x3jx4) so that E ~ D (or> D). 

Example 6.3.1 

This example continues Example 6.2.1 where we use the ">" from Example 
4.5.1. We wish to solve E >D. Assume that X> 0. Let us use the same A, 
B, Cas in Example 6.2.1 and set D = ( -1/0/1). The a-cuts of E are: 

e1(a) = (2 + 2a)(xl(a))2 + ( -6 + 3a)x2(a) + (10 + 4a), (6.13) 

e2(a) = (5- a)(x2(a))2 + ( -1- 2a)x1(a) + (15- a). (6.14) 

Figure 6.3 shows the relationship between E and D for E > D. For 
E > D we must have 0.2 < e2 and the graph of e1(a) intersect 1- a below 
P whenever e1 < 1. Now 0.2 < e2 means 0.2 < 4x~ - 3x3 + 14 where 
X ~ (xdx2, x3jx4). The other constraint is more difficult since it involves 
both x1(a) and x2(a) (equation (6.13)). 

So, if e1 < 1 and 0.2 < 4x~- 3x3 + 14 we choose x1(a) and x2(a) so 
that the solution to e1 (a) = 1- a, call it a*, has a* < 0.8. For example, let 
x1 (a) = 1 + 0.5a and x2(a) = 2- 0.5a so that X= (1/1.5/2). Then e1 = 0, 
4x~ - 3x3 + 14 exceeds 0.2 and the intersection point Q in Figure 6.3 is less 
than 0.1. This X belongs to the solution set. 
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Figure 6.3: Solution for Example 6.3.1 

Example 6.3.2 

Same as Example 6.3.1 but use the "~" from Example 4.5.2. Now we want 
to solve E ~ D. So X is in the solution set when e1 (a) > -1 +a and 
e2 (a) ~ 1 - a. Or 

(2 + 2a)(x1(a)) 2 + ( -6 + 3a)x2(a) + (11 + 3a) ~ 0, (6.15) 

(5- a)(x2(a)) 2 + (-1- 2a)x1(a) + (14) ~ 0, (6.16) 

all 0 < a ~ 1. It is difficult to give general solutions for x1 (a) and x 2 (a) 
from equations (6.15) and (6.16). 

Example 6.3.3 

This continues Example 6.3.1 but use the "~" from Example 4.5.3. Again 
we want to solve E > D. All we need is for the center of the core of E to be 
at least zero, the core of D. That is, X :::::! (xl/x 2 , x 3 jx4 ) is in the solution 
set if and only if 

2(x~ + x~) - 1.5(x2 + x3 ) + 14 > 0. (6.17) 
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6.3.1 Exercises 

1. Work through the details of Example 6.2.1 if X < 0. 

2. Work through the details of Example 6.2.1 if A= ( -5/- 4/ - 2) and 
X< 0. 

3. Work through the details of Example 6.2.2 if X < 0. 

4. Work through the details of Example 6.2.2 if A= ( -5/ - 4/ - 2) and 
X< 0. 

5. Work through the details of Example 6.2.3 if X < 0. 

6. Work through the details of Example 6.2.3 if A= ( -5/- 4/ - 2) and 
X<O. 

7. Work through the details of Example 6.3.1 if X < 0. 

8. Work through the details of Example 6.3.1 if A= ( -5/- 4/ - 2) and 
X <0. 

9. Work through Example 6.3.2 using A= ( -5/- 4/- 2) and X < 0. 

10. Work through Example 6.3.3 using A= ( -5/- 4/- 2) and X < 0. 

11. Discuss solving 
X+A -

==---<C 
BX + 10-

for A = (3/6/7), B = (14/20/26), C = (100/150/200), X > 0 using 
":=:;" from Examples 4.5.1 - 4.5.3. Evaluate using a-cuts and interval 
arithmetic. 

12. Discuss Example 6.2.1 using ":=:;" from Example 4.5.4. 

13. Discuss Example 6.3.1 using " :=:; " from Example 4.5.4. 

14. Find three more X in the solution set in Example 6.2.1. 

15. Find three more X in the solution set in Example 6.3.1. 

16. Solutions to many simple crisp inequalities can be written using interval 
notation. For example, -4 < 2x- 6 :=:; 10 can be written as (1, 8] using 
interval notation. Can you define interval notation for continuous fuzzy 
numbers? Use " :=:; " from Examples 4.5.1 to 4.5.4 in Chapter 4. Then 
solve the examples in this chapter using this interval notation. 



Chapter 7 

Fuzzy Relations 

7.1 Introduction 

Fuzzy relations were briefly introduced in Section 3.2 and now we shall study 
them in more detail. Fuzzy relations are important in fuzzy systems theory 
and we shall use them again in Chapter 14. In the next section we present the 
basic definitions of crisp and fuzzy relations and concentrate on the definition 
and properties of the composition of fuzzy relations. In the third section we 
discuss reflexive, symmetric and transitive fuzzy relations and focus on the 
property of being transitive. If a fuzzy relation is not transitive we can form 
its transitive closure which requires finding powers of type I ( all elements in 
[0, 1] ) fuzzy matrices. Therefore, we have to talk about sequences of powers 
of type I fuzzy matrices which are known to converge or oscillate. Section 
four is about fuzzy equivalence relations whose a-cuts give crisp equivalence 
relations. Solving fuzzy relational equations comprises the final section. 

7.2 Definitions 

We start with crisp (non-fuzzy) relations and then generalize to fuzzy rela­
tions. If X and Y are two sets, then X x Y is the set of all ordered pairs 
(x, y) for x E X and y E Y. A crisp relation R between X and Y is a 
subset of X x Y. So R ~X x Y. We use the notation from Chapter 2 for 
the characteristic function of R which means that R(x, y) = 1 if and only if 
(x,y) E R. That is, R(x,y) = 1 if (x,y) is in Rand R(x,y) = 0 for (x,y) 
not in R. R(x, y) = 1 means that x and yare related (associated) through 
relation Rand R(x, y) = 0 means that they are not related. The inverse of 
R, written R-1 , is defined by R- 1 (x,y) = R(y,x). 

Let Rand S be two relations between X andY. Since they are subsets 
of X x Y we may find R U S, R n S, Rc, etc. 
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Example 7.2.1 

Let X be all people, aged 18 or more, in a certain town FUZZ. Let Y be all 
banks that have an office in FUZZ. Define R1(x,y) = 1 if and only if xis a 
male in X who has an account with y in Y, and R2 ( x, y) = 1 if and only if x 
is a female in X who has an account with y E Y. If S ( x, y) = 1 if and only 
if x is a senior (aged 55 or older) in X with an account with y in Y, then we 
might be interested in finding R1 U R2, S n (R1 U R2), etc. 

Example 7.2.2 

Let X = Y = R so that R will be a subset of R 2. Then R could be: (1) 
R(x, y) = 1 if and only if x:::; y; (2) R(x, y) = 1 if and only if x2 + y2 ~ 1; or 
(3) R(x,y) = 1 if and only if xy:::; 0. 

A fuzzy relation R is just a fuzzy subset of X x Y. So now R( x, y) can 
be any number in the interval (0, 1]. R(x, y) gives the strength (from zero to 
one) of the relationship between x andy. The inverse of R, written as R-1, 

--1 - -- -
is defined by R (x, y) = R(y, x). Since fuzzy relations R, S and T are all 
fuzzy subsets of X x Y, we can computeR US, R n S, Rc, R n (S U T), etc. 
Also R:::; Swill mean that R(x, y) :::; S(x, y) for all (x, y) E X x Y. 

Example 7 .2.3 

If X and Y are finite sets, then R can be represented as a matrix or a diagram. 
Let X = {x1, · · ·, Xm} andY= {yt, · · ·, Yn}· Define R(xi, Yi) = rij E (0, 1] 
for 1 :::; i:::; m, 1:::; j :::; n. Then we may writeR as am x n matrix (rij]· For 
example 

( 
0.7 0.4 ) 

R = 1.0 0.2 
0.5 0.8 

(7.1) 

is a fuzzy relation between X = { x1, X2, X3} and Y = {Y1, Y2} with 
R(x1,y2) = 0.4, R(x3,yt) = 0.5 , etc. Figure 7.1 represents this Rasa 
diagram. 

If R is a crisp relation between X and Y, and S is a crisp relation between 
Y and Z, then the composition Ro S = T creates a new crisp relation between 
X and Z. The definition ofT is T(x, z) = 1 if and only if there is ayE Y so 
that R(x, y) = S(y, z) = 1. We may write T as follows 

T(x, z) = max{min(R(x, y), S(y, z))}. 
y 

(7.2) 
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Figure 7.1: Fuzzy Relation as a Diagram 

We used t-norm T m = min in equation (7.2) but all t-norms could be used 
giving 

T(x, z) = max{T(R(x, y), R(y, z))}, (7.3) 
y 

for any t-norm T. All t-norms will give the same result for R o S. 
Now let R be a fuzzy relation on X x Y and Sa fuzzy relation onYx Z. 

Then T = R o S is defined as 

T(x, z) = sup{T(R(x, y), S(y, z))}, (7.4) 
y 

giving T a fuzzy relation on X x Z for any t-norm T. The standard compo-
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sition is when T = T m = min. We will usually use t-norm min in equation 
(7.4). All t-norms do not give the same result for fuzzy relations. 

We would now like to determine the basic properties of composition of 
fuzzy relations. However, we must be careful because a certain property may 
be true fort-norm min but false for t-norm Tp· For example, using t-norm 
min in equation (7.4) we can show 

(R o s)-1 = s-1 o R-1, 

R o (SoT) = (R o S) o T, 

RoS=f:. SoR. 

(7.5) 

(7.6) 

(7.7) 

But these results may not hold for n, Tp, T*. You are asked to investigate 
this further in the exercises. 

When X, Y and Z are finite sets composition may be done in terms 
of matrices. Let X have m members, Y has n elements and Z contains k 
members. Also let R = [rij] beam x n matrix for a fuzzy relation between 
X and Y, S = ( s id a n x k matrix for the fuzzy relation between Y and Z. If 
T = R o S, then T =[til] am x k matrix for the new fuzzy relation between 
X and Z. Using t-norm min we may find the til as 

til = max{min(ri1, su), · · ·, min(rin, Snl)}. 

Usual matrix multiplication is 

n 

til= l:rijSjl· 
j=1 

(7.8) 

(7.9) 

(7.10) 

But in fuzzy relation composition using t-norm min, you replace multi­
plication with min and addition with max. If we used Tp, we only replace 
addition with max. 

Example 7.2.4 

Let 

and 

( 
0.7 

R = 1.0 
0.5 

0.4 ) 0.2 
0.8 

s = ( 0.4 1.0 ) 
1.0 0.3 

(7.11) 

(7.12) 



7.2. DEFINITIONS 119 

Then if T = R o S, using t-norm Tm, we calculate 

( 
0.4 0.7 ) 

T = 0.4 1.0 
0.8 0.5 

(7.13) 

For example 

t 21 = 0.4 = max{min(l.O, 0.4), min(0.2, 1.0)}. (7.14) 
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7.2.1 Exercises 

1. If X and Y are finite sets and X has m elements, Y has n members, 
then how many distinct crisp relations R are there between X and Y? 

2. Argue that all t-norms, in equation (7.3), will give the same result for 
relation T. 

3. Determine if the following equation is true or false for the given t-norm 
and t-conorm. To show an equation is not true we suggest you consider 
finite sets for X,Y, Z and W. R is a fuzzy relation between X andY, 
5 is between Y and Z, and T is between Z and W. 

a. (R o 5) - 1 = 5-1 o R-1 . 

b. (R o 5) o T = R o (5o T). 
c. Ro5 = 5oR. 
d. Ro (51 u52) = Ro 51 URo52. 

e. R o (51 n 52) = R o 51 n R o 52. 

f. (R1 u R2) o 5 = R1 o 5 u R2 o 5. 
g. (R1 n R2) o 5 = R1 o 5 n R2 o 5. 
h. R1 :S R2 implies R1 o 5 :S R2 o 5 . 
1. 5 1 :S 52 implies R o 5 1 :S R o 5 2. 

-c - -2 -2 
j. R U R =X where X (x, y) = 1 all x, y. 

k. Rc n R =if) where (i)(x, y) = 0 all x, y. 

I. If X = Y = Z = W and · is multiplication, then R · (5 U T) = 
(R · 5) u ( R · T). 

m. If X = Y = Z, then R o 5c = R - R o 5 . 

Use the following t-norms and their dual t-conorms. If you use t-norm 
T for composition, then use the same t-norm (or its dual t-conorm) for 
intersection (union) of fuzzy sets. 

1. t-norm Tm and t-conorm Cm. 

ii. t-norm n and t-conorm cb. 
iii. t-norm Tp and t-conorm Cp. 

iv. t-norm T* and t-conorm C*. 

4. Let 

R(x,y) = { J4- (x -10),
2 - (y -1)2, (x -1)2 + (y -1)2 ::::; 4 

otherwise. 

R represents the idea of "near" the point (1,1) in R 2 . Evaluate : 
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a. R(O,O); 
b. R(1,0); 
c. R(O, 1); 
d. R(1, 1). 

5. In Example 7.2.1 describe in words the relations R 1 UR2 , Sn (R1 UR2 ) 

and Sc n (R1 u R2). 

6. Compute T = R o S in Example 7.2.4 using t-norm: 

a. n; 
b. Tp; 

c. T*. 

7. Let 

and 

0 01.5 ) 
0.2 
0.5 0.6 

( 
0.3 0.6 0 ) s = 0.9 1 0.4 
1 0.6 0.5 

Find the max-min and the max-product (T = Tp) composition of R 
and S. 

8. Let R be a crisp relation on X x Y. Define 

R., = {x E Xl(x,y) E R for some y E Y}, 

Ry = {y E Yl(x, y) E R for some x EX}. 

Show that: 

a. the characteristic function of R., = supy R( x, y); 

b. the characteristic function of Ry =sup., R(x,y); 
c. R ~ Rx x Ry· 

9. Define level 2 fuzzy relations (see Section 3.2). 

a. Give some "real world" applications of this type of fuzzy relation. 
b. Define composition between these types of fuzzy relations. 

10. Define type 2 fuzzy relations (see Section 3.2). 

a. Give some "real world" applications of this type of fuzzy relation. 
b. Define composition between these types of fuzzy relations. 
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7.3 Transitive Closure 

In this section X = Y and X is a finite set. Let X = { x1 , · · ·, xn} and R be 
a crisp relation on X. When X = Y, we will say R is a relation on X instead 
of saying that R is a relation between X and X (Y = X). We may also use 
the terminology of R is a relation on X x X when X= Y. Basic properties 
a relation R may, or may not possess, are: 

1. reflexive : R(x, x) = 1, all x E X ; 

2. symmetric: R(x, y) = R(y, x), all x, y E X ; 

3. transitive: R(x, y) = R(y, z) = 1 implies R(x, z) = 1. 

Example 7.3.1 

Assume X = { X1, X2, X3, X4} and consider the R given by the matrix 

(7.15) 

where R(x1,x4) = 1, R(x3,x2) = 0, etc. R is reflexive since R(xi,Xi) 
1, 1 ~ i ~ 4. Notice also that R is symmetric because R( x1, x2) = 
R(x2,xl),···,R(x3,x4) = R(x4,x3). Now check to see if R is transitive. 
There are many things to check but we finally come up with R(x3 , x4) 
R(x4, x2) = 1 but R(x3, x2) = 0. R is not transitive. 

Another way to check to see if R is transitive is to compute R o R and 
then R is transitive when 

R=RoR. (7.16) 

If R is not transitive one can find its transitive closure Rr. The transitive 
closure of R is defined as follows: 

1. R c Rr; 

2. Rr is transitive ; 

3. if R C SandS is transitive, then Rr ~ S. 

Therefore Rr is the "smallest" transitive relation containing R. We will 
not study the algorithm used to find Rr and instead we will do this for fuzzy 
relations. 

The basic properties of a fuzzy relation R are : 
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1. reflexive: R(x,x) = 1 all x EX; 

2. symmetric: R(x,y) = R(y,x) all x,y EX; 

3. transitive: R oR :S R. 

Let us rewrite the transitive equation for fuzzy relation 

max{min(R(x,y),R(y,z))} :S R(x,z). (7.17) 
y 

We used t-norm min in equation (7.17) but we could also use any other t­
norm. In the future we always need to point out which t-norm we are using 
in the definition of transitive for fuzzy relations. For crisp relations it is 
R o R = R for transitive but for fuzzy relations we require R o R :S R. 

R 2: R o R means that the strength of the link between x and z is not 
less than the maximum strength of paths from x to z through any other 
point y. Choose x, z E X and look at all paths from x to z through an 
intermediary pointy. So we go from x toy to z and the strength ofthis path 
is min(R(x, y), R(y, z)), the strength of its minimum connection. Now R oR 
finds the maximum of the strengths of all paths x to y to z. We do it this 
way for fuzzy relations because R values can be any number in [0,1] whereas 
R values are only zero or one. 

Now we want to discuss the transitive closure of a fuzzy relation assuming, 
of course, that it is not transitive to start with. But first we need to study 
powers of type I fuzzy matrices. A type I fuzzy matrix has all its elements 
numbers in the interval [0,1]. A type II fuzzy matrix has all its elements 
fuzzy numbers. Type I fuzzy matrices arise from fuzzy relations on finite 
sets. We will use type II fuzzy matrices in Chapter 11. Let R(xi,Xj) = Tij 

for 1 :S i, j :S n , for fuzzy relation Ron X and X has n members. Then we 
write R = [rij], an x n matrix whose elements Tij E [0, 1]. Now define the 

-2 - - -3 -2 - =n+1 -n -
sequenceR = R oR, R = R oR, · · ·, R = R oR, · · · using t-norm 
min. 

It is known that the sequence R, R 2 , · · · , K, · · · either converges or oscil­
lates. By converge we mean that there is a positive integer p so that K = RP 

- -2 'T<P -p -p for n 2: p. This means that the sequence becomes R, R , · · · , R , R , R , · · · 
--2 -p -p where R, R , · · ·, R are all different but past the first R they are all 

-p 
the same and equal to R . By oscillate we mean there are n x n fuzzy 

· -s -s d ·t· · t th 'T<PR -s 'T<PR +1 matnces 1, · · · , L an a pos1 1ve m eger p so at = 1, = 
- -p+L-1 - -p+L - - -2 -p s2,''',R = SL,R = s1,''', The sequence R,R ,···,R are all 
different but then the sequence is S 2 , .. · , S L, S 1, .. · , S L, .. · forever. These 
results hold for t-norm T m = min in computing R 2 , R3 , · · ·. You are asked 
to find out what happens to this sequence if you use another t-norm in the 
exercises. 
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Example 7.3.2 

Let 

- ( 1 0.2 0.8) 
R = 0.5 1 0 

0.7 0.6 1 
(7.18) 

Using t-norm min to find If', n ;::::: 2, we obtain 

( 
1 0.6 0.8 ) 

If' = 0.5 1 0.5 
0.7 0.6 1 

(7.19) 

for n ;::::: 2. The sequence R, R2 , • • • converges to the fuzzy matrix in equation 
(7.19). 

Example 7 .3.3 

Let 

R = ( 0 0.2 
0.4 0 
0 1 

(7.20) 

We find, using t-norm min for the composition of fuzzy matrices, that the 
- -2 - -2 =" -6 -5 -=6 . 

sequence R, R , · · · becomes R, R , · · · , R , R , R , R , · · ·. That Is, the se-
-5 -6 - -2 -3 -=4 

quence oscillates between R and R after R, R , R , R . 

Now we may discuss the transitive closure of a fuzzy relation Ron X. The 
properties of the transitive closure Rr are: (1) Rr is transitive; (2) R ~ Rr; 
and (3) if Sis transitive with R ~ S, then Rr ~ S. In this sense Rr is the 
smallest transitive fuzzy relation containing R. The formula for Rr is 

- - -2 -3 
Rr=RUR UR U··· (7.21) 

In equation (7.21) we must decide on the t-conorm to use for union and the 
t-norm to use for RoR. Let us use t-conorm Cm =max for union and t-norm 
min for composition. Then we can argue that the sequence in equation (7.21) 
must terminate. That is, there is a positive integer p so that 

(7.22) 

- -2 =n -nP 
If the sequence R, R , · · · converges, then R = R for n ;::::: p, and we 

get equation (7.22) because we are using max for union. So suppose the 
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- - - T>P-2 
sequence oscillates between S1,S2 and S3 starting at R . Then equation 
(7.22) becomes 

(7.23) 

since we use max for union. Therefore , we obtain equation (7.22) for R!' = 
s3. 

Is Rr in equation (7.22) transitive? Using equation (7.22) we may show 
that Rr o Rr :S Rr which implies it is transitive. Also, we can argue that 
given transitive S, R :S S, then Rr :S S. 

Example 7 .3.4 
- - - -2 

Using the R from Example 7.3.2 we find Rr = R U R , or 

( 
1 0.6 0.8 ) 

Rr = 0.5 1 0.5 
0.7 0.6 1 

(7.24) 

Rr is transitive because we see that Rr oRr= Rr. 
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7.3.1 Exercises 

1. Let R be a crisp relation on X x X. Show that : 

a. if R o R = R, then R is transitive ; 

b. if R is transitive and reflexive , then R oR= R. 

2. Let R be a fuzzy relation on X x X. Show that if R is transitive using 
t-norm Tm, then it is also transitive using t-norm Tp. 

3. Show that R-1 is transitive if R is transitive. 

4. Investigate the truth of all the statements " If R is transitive us­
ing t-norm To:, then R is transitive using t-norm T13 " for To:, T13 E 
{Tm,n,Tp,T*}. 

--2 -
5. Determine what happens to the sequence R, R , · · · for R in Example 

7.3.2 if we use the following t-norm for computing R oR. 

a. Tb. 

b. Tp· 
c. T*. 

--2 -
6. Determine what happens to the sequence R, R , · · · for R in Example 

7.3.3 if we use the following t-norms for finding R oR: 

7. Show that Rr oRr ~ Rr for Rr given in equation (7.22). 

8. For Rr given in equation (7.22) show that Rr ~ S for any transitive 
S,R~S. 

9. Determine what happens to the sequence in equation (7.21), finding 
the transitive closure Rr of fuzzy relation R, if we use t-conorm C for 
union and t-norm T for composition, where: 

10. 

a. C=Cb,T=Tb; 

b. C = Cp,T = Tp; 

c. C = C*, T = T*. 

--2 
Suppose R is reflexive. Show that the sequence R, R , · · · must con-
verge, it can not oscillate, using t-norm T m for composition. Is the 
same for t-norm Tp in computing R o R? 
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11. Find Rr in Example 7.3.2 using t-conorm C for union and t-norm T 
for composition if: 

a. C = Cb,T = n; 
b. C = Cv,T =Tv; 
c. C = C*, T = T*. 

12. Find Rr for the R in Example 7.3.3 using t-conorm C in union and 
t-norm T for composition if: 

a. C=Cm,T=Tm; 

b. C=Cv,T=TP' 
- --2 13. Let R be reflexive. By Problem 10 the sequence R, R , · · · converges to 

-p - -p R , for some positive integer p. Show that Rr = R . 
- --1 -

14. Show that if R is symmetric, then R = R. 

15. If R and S are symmetric fuzzy relations on the same set, is R n S also 
symmetric, using t-norm min for intersection? If we use t-conorm max 
for union, will R US be symmetric? 

16. If R is transitive using t-norm Tm, then show that all its a-cuts R[a] 
define crisp transitive relations. Is this true if we use t-norm n, Tv, T*? 
If R is symmetric (reflexive), then are its a-cuts also symmetric (reflex­
ive)? 

17. If RandS are two fuzzy relations on the same set X and R is reflexive, 
then show that R US, using t-conorm max for union, is also reflexive. 

18. Let R be a crisp relation on X x X, with X a finite set. Assume R is 
not transitive and Rr is the transitive closure of R. An algorithm for 
Rr is 

a. set R1 = R u (R oR) 

b. Does R = R1? 

i. if yes, the Rr = R1 
u. if no, set R = R1, go to a. 

Use t-norm Tm for R oR and regular union for crisp sets. Show that 
Rr is transitive and R C Rr. Find Rr for the R in Example 7.3.1. 

19 Let R and S be transitive fuzzy relations on X. Use T = min for 
intersection and C = max for union. 

a. Is R US transitive? 

b. Is R n S transitive? 
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20. Define crisp relation Ron the set of fuzzy numbers as R(M, N) = 1 if 
and only if M(x) ~ N(x) for all x. Is R transitive? 
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7.4 Fuzzy Equivalence Relation 

We start with a crisp relation R on X x X. R is said to be an equivalence 
relation if it is reflexive, symmetric and transitive. An important property of 
equivalence relations is that they may be used to decompose X into a set of 
disjoint equivalence classes. We did this in propositional logic in Section 2.3. 

For any x E X define 

[x] = {yiR(x, y) = 1}, (7.25) 

and this crisp set [x] is the equivalence class generated by x. Let 

X/R = {[x]lx EX}, (7.26) 

be the set of equivalence classes generated by R. We can show that: 

1. any x E X belongs to one, and only one, equivalence class in X/ R; 

2. if a and b belong to [x], then R(a, b)= 1, or a and bare related; and 

3. if [x] -::/:- [y], then [x] n [y] =¢and if a E [x], bE [y], then R(a, b) = 0. 

It is easy to show #1 above since x belongs to [x] because R is reflex­
ive. The rest of #1 follows from #3, after we prove #3. To show #2 we 
have R(x, a) = R(x, b) = 1, or R(a, x) = R(b, x) = 1 by symmetry and by 
transitivity R(a, b) = 1. If [x] -::/:- [y], then assume that a E [x] n [y] . Then 
by symmetry and transitivity R(x, y) = 1 and it follows that every element 
in [x] is related every member of [y] and [x] = [y], a contradiction. Hence 
[x] n [y] = ¢. 

Example 7.4.1 

Let 

u 0 1 n R= 
1 0 

(7.27) 0 1 
1 0 

which is an equivalence relation on finite set X = { x1 , x2 , x 3 , x4 }. 

We find 
(7.28) 

and 
(7.29) 

A fuzzy relation R on X x X which is reflexive, symmetric and transitive 
is called a fuzzy equivalence relation. Let us assume we are using t-norm 
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T m to calculate R oR. Using t-norm min we have R oR :S R for transitive 
R. We now show that the a-cuts of R give crisp equivalence relations and 
equivalence classes. The a-cuts are 

R[a] = {(x,y) EX x XIR(x,y) ~a}, (7.30) 

for 0 < a :S 1. Define crisp Rc, on X x X as Ra.(x, y) = 1 if and only if 
( x, y) E R[ a]. We can argue that Ra. is a crisp equivalence relation on X x X 
for all 0 < a :S 1. Then we find X/ Ra. and look at the relationship between 
X/ Ra.1 and X/ Ra.2 for 0 < a1 < a2 :S 1. 

Let us show why Ra. is an equivalence relation on X x X. First, Ra. ( x, x) = 
1, and Ra. is reflexive, since (x,x) E R[a] all a because R(x,x) = 1. We 
also have Ra.(x,y) = Ra.(y,x) because: (1) if (x,y) E R[a], so is (y,x) E 
R[a] since R is symmetric and Ra.(x, y) = Ra.(Y, x) = 1; and (2) if (x, y) is 
not in R[a], then neither is (y, x) in R[a] because R is symmetric, so that 
Rc,(x,y) = Ra.(y,x) = 0. Lastly, Ra is transitive because R oR :SR. Let 
Ra(x, y) = Ra(Y, z) = 1. This means that R(x, y) ~ a and R(y, z) ~ a. So 
min(R(x,y),R(y,z)) ~a. Therefore, the supremum ofmin(R(x,y),R(y,z)) 
over all y E X also is at least a. This means, by the transitivity of R, that 
R(x, z) ~a so that Ra.(x, z) = 1 and Ra is transitive. 

Next we wish to investigate the relationships between the equivalence 
classes, or X/ Ra, as a increases from zero to one. 

Example 7.4.2 

Let 

0.2 1 0.2 
R = 1 0.2 1 

( 

1 0.2 1 

0.6 0.2 0.6 
0.2 0.8 0.2 

0.6 0.2) 0.2 0.8 
0.6 0.2 
1 0.2 

0.2 1 

(7.31) 

be a fuzzy relation on finite set X; X has 5 members. We check and see that 
R is reflexive, symmetric and transitive (R oR = R). We obtain different Ra 
for a in the intervals (0, 0.2], (0.2, 0.6], (0.6, 0.8], (0.8, 1]. For a in (0, 0.2] we 
obtain Ra = [rij] with rij = 1 for all i,j. The equivalence classes for this Ra 
is just one set X. So let a be in (0.2, 0.6]. Then 

( ~ 
0 1 1 

~ l 1 0 0 
Ra = 0 1 1 (7.32) 

0 1 1 
1 0 0 

with equivalence classes 
[x1] = {x1,x3,x4}, (7.33) 
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and 
[x2] = {x2,x5}. 

Next let a belong to (0.6, 0.8) and we compute 

with equivalence classes 

and 

R01 = ( ~ ~ ~ ~ ~ l 
0 0 0 1 0 
0 1 0 0 1 

[xi]= {xt, x3}, 

[x2] = {x2,x5}, 

Finally, if a is in (0.8, 1) we find R 01 with equivalence classes 

and 

[xt) = {x1,x3}, 

[x2] = {x2}, 

[x4] = {x4}, 

[x5) = {x5}. 
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(7.34) 

(7.35) 

(7.36) 

(7.37) 

(7.38) 

(7.39) 

(7.40) 

(7.41) 

(7.42) 

We notice that the equivalence classes tend to split up, and become 
smaller, as we increase a from zero to one. 
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7 .4.1 Exercises 

In Problems 7, 9-16 and 20 we use the notation No for the set of continuous 
fuzzy numbers and T = No x No. 

1. Let R be an equivalence relation on X x X. If [x] f:. [y] and a E [x], 
bE [y], then show that R(a, b) = 0. 

2. Let R be a fuzzy equivalence relation on X x X using t-norm T13 for 
R oR. Define Ra. on R[a] as in this section. Is Ra. a crisp equivalence 
relation on X x X for: 

a. T13 = Tb, 
b. T13 = Tp, 

c. T13=T*. 

3. Let R be a fuzzy equivalence relation on X x X using t-norm T m for 
RoR. Describe in detail the relationship between the equivalence classes 
generated by Ra. and R13 if 0 < a < f3 :::; 1. 

4. Is the R given in Example 7.4.2 also transitive if we use t-norm Tb, Tp 
or T* for composition? If so, then find X/ Ra. as a increases from zero 
to one. 

5. Let Ai, 1 :::; i :::; n be a crisp, non-empty, partition of set X. That is, 
Ai n Aj = ¢ for i f:. j and U Ai = X. Define a crisp relation R on 
X x X as follows: (1) R(x, y) = 1 if x andy belong to the same Ai; 
and (2) R(x, y) = 0 if x andy belong to different Ai. Show that R is 
an equivalence relation on X x X. 

6. Let X = R and define a fuzzy relation R on X x X as follows: R( x, y) = 
exp( -lx- yl). Use t-norm Tp for composition. Is R a fuzzy equivalence 
relation on X x X? 

7. Let No be the set of all continuous fuzzy numbers and let '1/J be any 
function mapping No into the real numbers. For example, '1/J(A) could 
be the midpoint of the core of A. Define a crisp relation on No x No as 

R(A, B) = { 1, '1/J(A) = '1/J(B), 
0, otherwise. 

Is R an equivalence relation? 

8. Let R and S be fuzzy equivalence relations on X x X. Determine if 
the following are also fuzzy equivalence relations. Use T = min for 
composition and intersection and C = max for union. 

a. RnS. 
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b. RoS. 

c. RUS. 

9. Let Y =No x N0 . DefineR on Y x Y as below. Determine if R is an 
equivalence relation. If so, describe the equivalence classes. 

a. R((A, B), (M, N)) = 1 if and only if A· M = B · N. 
b. R((A, B), (M, N)) = 1 if and only if A+ M = B + N. 

10. Let 0 = ( -0.1/0/0.1). Also let D(A, B) measure the distance be­
tween the two continuous fuzzy numbers A and B with D(., .) given by 
equation(3.80) in Section 3. 7. Define crisp relation R on No x No as 
R(A, B) = 1 if and only if D(A, 0) = D(B, 0). Is R an equivalence 
relation? If so, describe its equivalence classes. 

11. Let D(., .) be the distance metric defined in equation (3.80) in Section 
3.7. Define a fuzzy relation R on the collection of continuous fuzzy 
numbers as 

R(M,N) = exp(-D(M,N)). 

Is R a fuzzy equivalence relation? 

12. Define a crisp relation R on No x No as R(M, N)) = 1 if and only if 
M n N =1- (j). Is R an equivalence relation? 

13. Suppose ":::; " is a partial (or total) order on Y. See Section 4.5 of 
Chapter 4. Define a crisp relation Ron Y as R(M, N) = 1 if and only 
if M:::; N. Is Ran equivalence relation? 

14. Let "<" and "~" be defined as in Example 4.5.1. Define R on Y as 
R(M, N) = 1 if an only if M ~ N. Is Ran equivalence relation? 

15. Repeat Problem 10 using D(., .) from equation (3.81) in Section 3.7. 

16. Repeat Problem 11 using D(., .) from equation (3.81) in Section 3.7. 

17. If R is a fuzzy equivalence relation, then is R- 1 also a fuzzy equivalence 
relation? 

18. Show that equation (2.17) in Section 2.3 defines an equivalence relation 
on the set of all formulas of propositional logic. 

19. Show that equation (2.21) in Section 2.3 is correct. 

20. Define crisp relation R on Y as R(M, N) = 1 if and only if 
defuzz(M) = defuzz(N) for the centroid defuzzifier in Section 4.6. 
Is R an equivalence relation on Y? 
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7.5 Fuzzy Relation Equations 
In this section R is a fuzzy relation on X x Y, S is a fuzzy relation on Y x Z 
and Tis a fuzzy relation on X x Z. X, Y and Z are all finite sets with X 
having m members, Y having n elements and Z having p members. R, S 
and T can all be represented as matrices whose members are numbers in the 
interval [0, 1). Let R = hi] an m x n matrix, S = [sjt) ann x p matrix and 
T = [tit) an m x p matrix. 

In Chapter 5 we solved simple fuzzy equations, in Chapter 6 we solved 
elementary fuzzy inequalities and now we wish to solve 

(7.43) 

for R givenS and T. This equation (7.43) is called a fuzzy relational equation. 
The other situation is to solve for S given R and T. But this case is already 
covered by solving for R in equation (7.43) because we could solve 

(7.44) 

for S-1 giving s = (S-1)-1 . As usual, within the text, we will use t-norm 
T m for the composition of fuzzy relations. Therefore, R o S is done using the 
max-min composition of the two matrices [rij) and [sjt) (see equation(7.8)). 

Equation (7.43) becomes 

max(min(rij,Sjt)) =til, 
J 

(7.45) 

for 1 :S i ::; m and 1 :S l ::; p. We may write equation (7.45) as m separate 
equations. For each i, 1 :S i :S m, we have 

for 1 :S l :S p. 

max(min(rij, Sjt)) = tu, 
J 

(7.46) 

We solve equation (7.46) for each row in R. To show this another way, 
let ri = (ri1 , ···,Tin) be the ith row of Rand let ti = (til,···, tip) be the ith 
row ofT. Then equation (7.46) is 

(7.47) 

for 1 :S i :S m. 
Let 

(7.48) 

for 1 :S i :S m. S(ti) is the set of solutions to equation (7.47). The rows in 
S(ti) are used to build R a solution to equation (7.43). 

Let us first exclude a situation, which is easy to check, where there is no 
solution for R, or S(ti) = ¢>for at least one value of i. If, for some l, 

(7.49) 

then there is no solution for R. We illustrate this result through the following 
example. 
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Example 7.5.1 

Let 
s = ( 0.7 0.5 ) 

0.9 0.6 

and 
T = ( 0.4 0.7 ) 

0.8 0.5 

and R is a 2 x 2 matrix. 
We find 

maXSjl = 0.9 > 0.8 = m?-Xtil, 
J • 

maxsj2 = 0.6 < 0.7 = m?-Xti2· 
J • 
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(7.50) 

(7.51) 

(7.52) 

(7.53) 

So R o S = T has no solution for R. Look at r1 composed with the second 
column of S giving 

max(min(rn,0.5),min(r12,0.6)) < 0.7, (7.54) 

because min(r11 , 0.5) :=:; 0.5 and min(r12 , 0.6) :=:; 0.6, so the largest of the left 
hand side of equation (7.54) can be is 0.6. No value of r 11 and r 12 can make 
it equal to 0. 7 = t12. 

However, if 
max s jl 2: max til, 

J • 
(7.55) 

for alll, then there may still be no solution for R. 
To explain the structure of S(ti), when it is non-empty, we need to define 

an ordering on Rn. If u = (u1, · · ·, un) and v = (v1, · · ·, vn) are in Rn we 
write u :=:; v if and only if ui :=:;vi, 1 :=:; i :=:; n. Given u,v ERn so that u :=:; v, 
then define 

[u,v] ={wE Rnlu :=:; w :=:; v}. (7.56) 

An ri* in S(ti) is called a maximum solution if for any ri E S(ti) we have 
ri :=:; r;*. An ri in S(ti) is called a minimal solution if for any ri E S(ti) 
if ri :=:; ri, then ri = ri- It is known that if S(ti) is non-empty, then ri* 
is unique (only one maximum solution) but there may be more than one 
minimal solution. We may then describe S(ti) as 

S(ti) = U{[ri,ri*]lri is a minimal solution}. (7.57) 

There are algorithms for both ri* and ri. We shall next present the 
algorithm for ri* but we will omit the one for ri since it is quite complicated. 
Instead of using an algorithm to find the ri we will illustrate, through two 
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elementary examples, how to obtain all minimal solutions. Remember that 
equation (7.57) only gives all solutions for each row in R. 

The algorithm for r;* is to first define, for fixed values of i and j, 

B(s· t·) = { tik, if Sjk > tik, 
Jk, zk 1, otherwise, (7.58) 

for 1 ::=; k ::=; p. Then if ri* = (rit, · · ·, ri~), we have 

(7.59) 

for 1 ::=; j ::=; n. It is known that S(ti) is non-empty if and only if ri* is in 
S(ti), orr;* solves the equation (7.47). 

Example 7.5.2 

Assume n = m = p = 4 with 

1 0.1 0.5 ) 
0 0.9 0.2 
0 0.8 0.5 
0 0.1 0.6 

(7.60) 

and t2 = (0.7,0,0.8,0.5). We are to find all solutions for r2, the second row 
in R. 

We first find r2* to see if it satisfies r2* o S = t 2. Compute 

r;; = min{1, 0, 1, 1} = 0, 

r22 = min{1, 1,0.8, 1} = 0.8, 

r2i = min{0.7, 1, 1, 1} = 0.7, 

r21 = min{1, 1, 1, 0.5} = 0.5. 

(7.61) 

(7.62) 

(7.63) 

(7.64) 

Hence, r2* = (0,0.8,0.7,0.5) which satisfies r2* o S = t2 so the S(t2) is 
non-empty. 

Now for the values of r2. First look at r2 and the second column of S. 
We get r21 = 0 = t 22 • Next consider r2 and the third column of S. Using 
r21 = 0 we get 

max(O, min(r22, 0.9), min(r23, 0.8), min(r24, 0.1)) = 0.8. (7.65) 

We must have r 22 ::=; 0.8. If r 22 < 0.8, then r 23 2: 0.8. From r 2 and the 
first column in S we have (r22 < 0.8, r 23 2: 0.8) 

max(O,min(r22 ,0.7),min(r23 , l),min(r24 ,0.3)) 2:0.8 (7.66) 
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which can never equal 0. 7 = t21· Hence, r22 = 0.8. 
Looking at r2 and the first column in S we conclude r23 ~ 0. 7 and from 

r 2 and the last column of S we see r 24 ~ 0.5. We want minimal solutions 
so first set r23 = 0 which implies r24 = 0.5 and next set r24 = 0 implying 
r 23 = 0.5. The two minimal solutions are: 

r;a = (0, 0.8, 0, 0.5), 

and 
r;b = (0, 0.8, 0.5, 0). 

Then we have all solutions 

Example 7.5.3 

Assume m = n = p = 3 and 

( 
1 0.9 0.6 ) s = 0.5 0.8 0.8 

0.6 0.6 0.4 

with h = (0.5, 0.6, 0.6). Find all solutions for r 1 , the first row in R. 
Apply the algorithm to find ri* giving 

rii = min{0.5, 0.6, 1} = 0.5, 

(7.67) 

(7.68) 

(7.69) 

(7.70) 

(7.71) 

ri; = min{1,0.6,0.6} = 0.6, (7.72) 

rii = min{0.5, 1, 1} = 0.5. (7.73) 

So ri* = (0.5, 0.6, 0.5) which belongs to S(h). 
To find all the minimal solutions first use r1 and the first column of S. 

We find that r 11 ~ 0.5 and r 13 ~ 0.5 must hold. Using this result next use r 1 
and the second column inS to find that r 12 must equal 0.6. Now r 11 ~ 0.5, 
r12 = 0.6 and r13 ~ 0.5 is acceptable because using this and the third column 
of S we do obtain 0.6 = t13. For a minimal solution set rn = r 13 = 0 giving 
one ri = (0, 0.6, 0). All solutions are [ri, ri*J. 

If we were to solve larger fuzzy relational equations, then our method 
would become too involved and we would need that algorithm to find all 
minimal solutions. Or we might employ a genetic algorithm discussed in 
Chapter 15 (see Example 15.1 in Chapter 15). 
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7.5.1 Exercises 

1. Show, by example, that R o S = T may have no solution for R when 
(equation 7.55) 

max s Jl 2: max til, 
J 2 

for alll. 

2. Using S and t 2 from Example 7.5.2 determine if r 2 o S = t 2 has a 
solution for r 2 if we use t-norm T[J for composition. If it has a solution, 
then find a maximum solution. 

a. T!J = Tb. 

b. T!J = Tw 

c. T!3 = T*. 

3. Using S and t1 from Example 7.5.3 determine if r 1 o S = t1 has a 
solution for r 1 if we use t-norm T[J for composition. If it has a solution, 
then find a maximum solution. 

a. T!J = Tb. 

b. T!J = Tp. 

c. T!J = T*. 

4. Using t-norm Tm and 

- c3 0.9 

0:8) s = 0 0.2 
0.7 0 

and c4 0.8 07) T = 0.4 0.9 0.3 
0.7 0.2 1 

determine if R o S = T has a solution for R. If it has a solution, then 
describe the solution sets S(ti) where ti is the ith row in T, 1 :::; i :::; 3. 

5. Using the S and T from problem 4, does R o S = T have a solution 
for R if we are using t-norm T[J for composition? If so, then find one 
solution for R. 

a. T!J = Tb. 

b. T!3 = Tp. 

c. T!J = T*. 
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6. Using t-norm min and 

s = ( 0.6 0.5 ) 
0.9 0.7 

and 
- ( 1 0.8 ) 
T = 0.4 0.3 

does R o S = T have a solution for R? If so, describe all solutions for 
R. 

7. Using t-norm min and 

and 

s = ( 0.5 0.4 0.6 ) 
0.2 0 0.6 

T = ( 0.7 0.8 0.5 ) 
1 0.2 0.6 

does R o S = T have a solution for R? If so, describe all solutions for 
R. 

8. Using t-norm min and 

( 
0.6 1 ) s = 0.4 0.9 
0 0.7 

and 
T = ( 0.5 o) 

0.4 1 

does R o S = T have a solution for R? If so, describe all solutions for 
R. 



Chapter 8 

Fuzzy Functions 

8.1 Introduction 

Just as crisp function are important in mathematical modeling, fuzzy func­
tions are important in fuzzy modeling. The usual way to obtain a fuzzy func­
tion is to extend a crisp function to map fuzzy sets to fuzzy sets, and there 
are two common methods to accomplish this extension. The first method, 
called the extension principle procedure, is discussed in the next section, and 
the second method, called the a-cut and interval arithmetic procedure, is pre­
sented in section three. In a pre-calculus course you study different classes 
of functions including linear, quadratic, polynomial, radical, exponential and 
logarithmic and we do this for fuzzy functions in section four. Fuzzy trigono­
metric functions are in Chapter 10. Also in pre-calculus you would study 
inverse functions and section five is about fuzzy inverse functions. Elemen­
tary differential calculus of fuzzy functions is introduced in the last section, 
section six. 

8.2 Extension Principle 

Let X and Y be two sets and let :F(X) and :F(Y) denote all fuzzy subsets 
of X and Y, respectively. A fuzzy function F is simply a function mapping 
:F(X) into :F(Y). If A is a fuzzy subset of X. then F(A) = B is a fuzzy 
subset of Y. Let !1 = !1(X; Y) denote all such fuzzy functions. 

Example 8.2.1 

Let X= {x1 , x2 , x3 } andY= {y1 , y2 }. A, a fuzzy subset of X, is written as 

(8.1) 

141 
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where the membership values are the ai. That is, A(xi) = ai, 1 ~ i ~ 3. 
If B is a fuzzy subset of Y, then we may write B as 

(8.2) 

If we let b1 = min{a1 ,a2} and b2 = max{a2,a3 }, then this describes a 
fuzzy function. 

Example 8.2.2 

Let X = Y be the set of real numbers and Ei fixed trapezoidal fuzzy numbers, 
i = 1, 2. Then B = (An EI) U (Ac n E2) defines a fuzzy function F(A) = B 
for A any fuzzy subset of the real numbers. 

Where do all the F in n come from? Many members of n come from 
extending non-fuzzy f mapping X into Y to F mapping :F(X) into :F(Y). 
This extension may be accomplished using the extension principle. Before 
we present the extension principle for extending f to F let us review the 
crisp case. We have an f mapping X into Y and we wish to extend it to J 
mapping P(X) into P(Y). P(X) (P(Y)) is called the power set of X (Y) 
and it is the set of all subsets (not fuzzy) of X (Y). If A is a crisp subset of 
X, then i(A) = B, forB being a crisp subset of Y. The usual method of 
obtaining B is 

B = {y E Yly = f(x),x EX}. (8.3) 

Recall that we write the characteristic function for a set D as D(x) which 
equals one when x belongs to D and D(x) = 0 otherwise. Then we can 
rewrite equation (8.3) as 

B(y) = (i(A))(y) = max{A(x)IY = f(x)}, (8.4) 

where we interpret equation (8.4) to give value zero for B(y) if there are no 
x in X such that f(x) = y. We used "max" in equation (8.4) because the 
A(x) values are either zero or one. 

Now we extend this idea in equation (8.4) to f mapping X into Y to 
obtain F in n. If B = F(A) we find the membership values of B as 

B(y) = sup{A(x)lf(x) = y}. (8.5) 

Equation (8.5) gives zero for B(y) if there is no x in X that makes f(x) = 
y. We now use "sup" since the values of A(x) can range throughout [0, 1]. 

Let ne be all F in n which are the extension principle extension of some 
f mapping X into Y. ne is a subset of n. 
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Table 8.1: The Function in Example 8.2.3 
X y 

X1 Y2 

X2 Y1 
X3 Y2 

X4 Y3 
xs Y1 

Example 8.2.3 

Let X = {x1, · · ·, xs} andY = {y1, Y2, y3}. Define f mapping X into Y as 
shown in Table 8.1. 

Next let 

(8.6) 

and 
B = { b1' b2' b3 }. 

Y1 Y2 Y3 
(8.7) 

Extend f to F and then find B where B = F(A). We calculate 

b1 = B(y1) = max{0.3, 0.5} = 0.5, (8.8) 

b2 = B(y2) = max{O, 1} = 1, (8.9) 

b3 = B(y3) = 0.8. (8.10) 

Can De be all of f2? We now argue that there are many F in f2 which 
are not in De· A fuzzy function Gin n is monotone increasing if whenever 
A~ B, A and B being fuzzy subsets of X, then G(A) ~ G(B). Every Fin 
De is monotone increasing. Since there are F in n which are not monotone 
increasing, we see that f2 f= De. Let Dm be all Finn which are monotone 
increasing. Is Dm equal to De? We know that De c Dm c n. 

The above development may be generalized to functions of many inde­
pendent variables. Let X, Y and Z be sets and f a mapping from X x Y 
into Z. That is, z = f(x,y) for x EX, y E Y and z E Z. Also let :F(Z) 
denote all fuzzy subsets of Z. Define f2 = f!(X, Y; Z) be all fuzzy functions 
F mapping :F(X) x :F(Y) into :F(Z). So if A (B) is a fuzzy subset of X(Y), 
then F(A, B) = C for C being a fuzzy subset of Z. The extension principle 
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may be used to extend f to F in n. The membership function for C is then 
defined by 

C(z) = sup{min(A(x),B(y))if(x,y) = z}, (8.11) 

with C(z) = 0 if there is no (x,y) EX x Y that will produce f(x,y) = z. 
This is the extension principle applied to f. Notice that we used t-norm 
Tm in equation (8.11). We could have used Tb,Tp or T* and probably get 
a different value for C. Let Oe be all F in n coming from the extension 
principle. Each F in ne is monotone increasing which now means that if 
A1:::; Az and B1:::; Bz, then F(A1,B1):::; F(Az,Bz). 

Example 8.2.4 

Let X = Y = Z be the real number interval (0, oo) and define 

xy 
z = f(x,y) = --. 

x+y 

The extension principle will give values for C where 

- A·B 
C= =--=, 

A+B 

for A and B fuzzy subsets of (0, oo). 

(8.12) 

(8.13) 

For the rest of this section we will restrict our attention to X = Y = Z 
the set of real numbers. Also, let us only use continuous fuzzy numbers, as 
fuzzy subsets of the real numbers, that will be inputs to our fuzzy functions. 
f will be a function mapping D, an interval in R, into the real numbers. We 
will extend f, via the extension principle, to fuzzy function F mapping A, a 
continuous fuzzy number in D, to B a fuzzy subset of R. 

If f is continuous, then we have a way to find a-cuts of B = F(A). 
Let B = [b1 (a), bz (a)], since a-cuts of B will be closed intervals when f is 
continuous. Then 

b1(a) = min{f(x)lx E A[a]}, 

bz(a) = max{f(x)ix E A[a]}, 

(8.14) 

(8.15) 

for 0 :::; a :::; 1. We may use min and max in equations (8.14) and (8.15), 
respectively, because a continuous function on a closed interval A[ a] takes on 
its max and min. 

Equations (8.14) and (8.15) can give us an easy way to find a-cuts of 
B = F(A). Suppose f is monotonically increasing on D. Then we see that 
b1(a) = j(a1(a)) and bz(a) = j(a2(a)) where A[a] = [a1(a),a2(a)]. This is 
true for y = f(x) =ex, tan(x) on (-7r/2,7r/2) and ln(x) for x > 0, etc. 
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Now we can generalize to f mapping D1 x D2, D1 and D2 intervals in 
R, into the real numbers. Assume that f is a continuous function and using 
the extension principle extend f to F where C = F(A, B), A (B) being a 
continuous fuzzy number in D1 (D2). If C[a] = [c1(a),c2(a)], then 

c1 (a) = min{f(x, y)lx E A[ a], y E B[a]}, 

c2(a) = max{f(x,y)lx E A[a],y E B[a]}, 

(8.16) 

(8.17) 

for 0 :S a :S 1. We see that C depends on which t-norm we are using in the 
extension principle. We have been using Tm so equations (8.16) and (8.17) 
are only known to hold fort-norm min. Suppose aj lax> 0 and aj lay< 0. 
Then we see from equations (8.16) and (8.17) that c1(a) = f(a1(a),b2(a)) 
and c2(a) = j(a2(a),b1(a)) for all a. 

Example 8.2.5 

Let 
2x- y 

z = f(x,y) = -+-, 
X y 

for x, y E (0, oo). Let us find a-cuts of C where 

- 2A-B c = -=----==-
A+B' 

(8.18) 

(8.19) 

for A, B continuous fuzzy numbers in (0, 00). Since a f I ax > 0 and a f I ay < 0 
we obtain 

cl(a) = 2a1(a)- b2(a) 
a1(a) + b2(a) ' 

c2 (a) = 2a2 (a) - b1 (a) , 
a2 (a) + b1 (a) 

(8.20) 

(8.21) 

for 0 :Sa :S 1. C in equation (8.19) is obtained using the extension principle, 
and using t-norm min, and the a-cuts of Care shown in equations (8.20) and 
(8.21) for B[a] = [b1(a),b2(a)], A[a] = [a1(a),a2(a)]. 

Fuzzy expressions may also be evaluated using the extension principle. 
For example 

would be the extension of 

B = F(A) = 2A + 10 
3A-4' 

y = f(x) = 2x + 10. 
3x- 4 

(8.22) 

(8.23) 
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The fuzzy expression 

- ------ A·W+B 
E = F(A,B,C,D, W) = , 

C·W+D 
(8.24) 

would be the extension of 

(8.25) 

The extension giving equation (8.24) may use any t-norm. If we use 
T m = min, then let 

Then 
E(z) = sup{II(xi,···,x5)IJ(xi,···,x5) = z}. (8.27) 

Of course we could use expressions like equations (8.16) and (8.17) to find 
a-cuts of E. Other t-norms may be used in equation (8.26) to get II. 
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8.2.1 Exercises 

1. Show that equation (8.4) is correct. 

2. Let f map X into Y and let F be the extension principle extension 
of f. If A and Ai, 1 ~ i ~ n are fuzzy subsets of X, then determine 
whether or not the following equations are true or false: 

a. F(U~=1 Ai) = U~= 1 F(Ai), 

b. F(n~=1 Ai) = n~=1 F(Ai), and 

c. f(A[a]) = F(A)[a], 0 ~ a ~ 1. 

3. Show that ifF is the extension principle extension of some f mapping 
X into Y, then F must be monotone increasing. 

4. Find X, Y and F in n so that F is not monotone increasing. 

5. Determine whether or not Om and De are equal. If Om -:f. De, then find 
a X, Y and Fin Om so that F is not in De. 

6. Let f map [0, 1] into [0, 1] given by the expression 

{ 
X 0 ~X~ 0.4 

f(x) = o.4, 0.4 ~ x ~ 0.6 
1 - X, 0.6 ~ X ~ 1 

- 1 2 -Let A = (3 j0.5f3). F is the extension principle extension of f. Let 
B = F(A). 

a. Find B. 

b. Show that B is not a continuous fuzzy number. 

c. Find the a-cuts of B. 

This example shows that B = F(A) need not be a continuous fuzzy 
number even if A is a continuous fuzzy number and f is a continuous 
function. 

7. Let X = {k(1r /6)lk = 0, ±1, · · ·, ±12}, Y = R, f(x) = sin(x) for x in 
X and F the extension principle extension of f. If A is a fuzzy subset 
of X, then find B = F(A). 

8. Using equation (8.11) show that F must be monotone increasing if the 
t-norm is: 
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c. Tp, and 

d. T*. 

9. Let A= (1/3, 5/8) and B = (18/20/24). Find a-cuts of C in Example 
8.2.4 using t-norm: 

a. Tm, 

b. Tb, 

c. Tp, and 

d. T*. 

10. Find a-cuts of C in Example 8.2.5 using t-norm: 

a. n, 
b. Tp, and 

c. T*. 

11. As a result of Problems 9 and 10 what can be said, if anything, about 
the relationship between the C values, C = F(A), using the four t­
norms: Tm,Tb,Tp, and T*. 

12. Let f: X -t Y, X= {x1, · · · ,xn}, Y = {y1, · · · ,ym}, n ~ m and as­
sume that f is one-to-one. Extend f to F from the extension principle. 
If 

A= {J.Ll ... J.Ln} 
' ' ' X1 Xn 

and B = F(A), then show that 

B { f.Ll J.Ln } = f(xl)' ... ' f(xn) ' 

with all other values yin Y having membership value zero. 

13. Let f be a continuous function mapping an interval [a, b] in R into the 
real numbers. F is the extension principle extension of f and A is a 
continuous fuzzy number in [a, b]. Determine if the following equation 
is true or false: 

a. f(co(A)) = co(F(A)), where "co" is core, 

b. f(base(A)) = base(F(A)), where "base" is the a-cut, a = 0. 

14. Let y = f(x) = sin(x) and A= (0/7r/27r). Find F(A). 

15. Fuzzy max and min, see Section 4.4, are fuzzy functions mapping pairs 
of fuzzy numbers into fuzzy subsets of R. Are they monotone increasing 
fuzzy functions? 
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16. Determine if equations (8.16) and (8.17) remain true if we use t-norm: 

a. n, 
b. Tp, and 

c. T*. 

17. Suppose f : R --+ R is one-to-one. Let F be its extension principle 
extension. Give an "easy" way to find C = F(A); A is a fuzzy subset 
of the real numbers. 

18. Let z = f(x,y) be continuous from (x,y) E [a,b] x [c,d] into the real 
numbers. F is the extension principle extension of f. Let C = F(A, B) 
for continuous fuzzy number A (B) in [a, b] ([c, d]). We will measure the 
fuzziness of C by the length of its base (C[O]). Using t-norms Tm,n,Tp, 
and T* which, if any, will always minimize the fuzziness of C? 

19. Find a-cuts of eA for any continuous fuzzy number A. 

20. How would you define a fuzzy function of type 2 (level 2) fuzzy set (see 
Section 3.2). 

21. In crisp mathematics a function is defined as a special type of relation 
(each x in the domain of the function corresponds to exactly one y in 
the range of the function). Is a fuzzy function a special type of fuzzy 
relation? Explain. 
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8.3 Alpha-Cuts and Interval Arithmetic 

In this section all our universal sets (X, Y, Z, · · ·) will be the set of real num­
bers, f is a function on D, an interval in R, with values in R. We will only 
be using continuous fuzzy numbers as input to our fuzzy functions. In this 
case there is another way to extend f to F, where F(A) = B, B a fuzzy 
subset of R and A a continuous fuzzy number in D. 

For all the functions we usually use in engineering and science we have an 
algorithm, using a finite number of additions, subtractions, multiplications 
and divisions, to compute the function to desired accuracy. Such functions 
can be extended, using a-cuts and interval arithmetic, to fuzzy functions. We 
will usually be considering only those crisp functions where the algorithm pro­
vides exact values with no approximation. IT the algorithm does not provide 
exact values for the function, then we explicitly point out that we are using 
an approximation. Let y = f(x) be such a function. We compute a-cuts of 
B = F(A) as 

(8.28) 

We input the interval [a1(a),a2 (a)] = A[a] into J, perform the arith­
metic operations needed to evaluate f on this interval, and obtain the inter­
val [b1(a), b2 (a)] = B[a]. Notice that f(A[a]) in equation (8.28) does not 
necessarily mean {YIY = f(x), x E A[ a]}. 

Example 8.3.1 

Let y = f(x) = 2x2 - 3x + 10 for x in R. Extend f to Fusing a-cuts and 
interval arithmetic. Let A~ (al/a2, a3ja4) with A[a] = [a1(a), a2(a)]. Then 
if B = F(A), we have 

(8.29) 

Let us assume that A> 0, or a1 > 0, so that 

(8.30) 

Then 

B[a] = [2a~(a)- 3a2(a) + 10, 2a~(a)- 3a1(a) + 10], (8.31) 

for 0 ::::; a ~ 1, If a4 < 0, or a1 < 0 < a4, then we would obtain a different 
result. We used interval arithmetic discussed in Section 4.3.2 to evaluate 
f(A[a]). 

If z = f ( x, y) is also one of these usual functions of science and en­
gineering, we can extend f to F via a-cuts and interval arithmetic. Let 
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C = F(A,B), A (B) a continuous fuzzy number in interval D1 (D2), then 

C[a) = f(A[a], B[a)), (8.32) 

for 0 :=:;a:=:; 1. 

Example 8.3.2 

This example continues Example 8.2.5 with z = f(x,y) = (2x- y)/(x + y), 
for x, y E (0, oo). Extend f to F using the method of this section and set 
C = F(A,B). IfA[a) = [a1(a),a2(a)), B[a) = [b1(a),b2(a)), then 

or 

so that 

and 

C[a)- 2[a1(a),a2(a))- [b1(a),b2(a)) 
- [a1(a),a2(a)) + [b1(a),b2(a))' 

C[a) = [2a1(a)- b2(a),2a2(a)- b1(a)), 
[a1 (a)+ b1 (a), a2(a) + b2(a)) 

(8.33) 

(8.34) 

(8.35) 

(8.36) 

for 0 :=:; a :=:; 1. The above interval arithmetic computations are correct since 
A and Bare in (O,oo), or A> 0 and B > 0. 

Fuzzy expressions, equations (8.22) and (8.24) may also be evaluated using 
a-cuts and interval arithmetic. 

Now let us compare these two methods of extending f to F. IfF comes 
from the extension principle (using t-norm T m) let us denote F as Fe and 
write F as F\ if we employ a-cuts and interval arithmetic. For all the usual 
functions of engineering and science we get 

(8.37) 

for all continuous fuzzy numbers A in D. This result also holds for functions 
of more than one independent variable (z = f(x 1 , · · ·, xn),n 2: 2). 

Although we obtain the same results in elementary arithmetic using the 
extension principle (using t-norm Tm), or a-cuts and interval arithmetic (Sec­
tion 4.3.3), for more complicated fuzzy expressions the two procedures can 
produce different results. 
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Example 8.3.3 

Let 
y=f(x)=x(I-x), (8.38) 

for 0::::; x ::::; 1. Let A= (0/0.25/0.5) and set B = F(A). Using Fe write B 
as Be and write Bi forB if it is obtained from Fi. We compute Be[0.5] and 
Bi[0.5] and we find that they are not equal (see Exercises). 

There is no known necessary and sufficient condition on y = f ( x) (or 
y = f(x,y), · · ·) so that Fe = Fi. What we do know is that if each fuzzy 
number appears only once in the expression (and is not squared, etc.), then 
the two methods are expected to produce the same results (Fe= Fi)· 

So, when evaluating fuzzy functions (input-output fuzzy numbers) you 
always need to tell which method you are using. We expect the a-cut and 
interval arithmetic procedure to produce a more fuzzy result (Fe::::; Fi)· Our 
policy will be: (I) always try the extension principle method first, and and 
(2) if it is too difficult to evaluate Fe, see equations (8.14)-(8.17), then use 
F i as an approximation to Fe. 
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8.3.1 Exercises 

1. In Example 8.3.1, is B[a] given in equation (8.31) the same as 

{yif(x) = y,x E A[a]}? 

2. Let Ce[a] be the value of C[a] from Example 8.2.5 and let Ci[a] be the 
value of C[a] in Example 8.3.2. Show Ce[a] c;;; Ci[a] for all a. 

3. Let f be a rational function, or the quotient of two polynomials, for x 
in interval D. Show Fe (A) :::; F i (A) for all continuous fuzzy numbers 
A in D. 

4. Let f map D, an interval in R, into the real numbers. Find necessary 
and sufficient conditions on f so that Fe = Fi. 

5. Find B[a] in Example 8.3.1 if A< 0. 

6. Find C[a] in Example 8.3.2 if: 

a. A < 0 and B < 0, 

b. A < 0 and B > 0, 

c. A > 0 and B < 0. 

7. In Example 8.3.3 find : 

a. Be[O] and Bi[O], 

b. Be[0.5] and Bi[0.5]. 

8. Let z = f(x, y) = (x + y)/x for x > 0. Does Fe = Fi? Try A= B = 
(0/1/2) and compute C = F(A, B) both ways. Use t-norm Tm =min. 

9. Let z = f(x,y) = x+y2 for x andy real numbers. Does Fe= Fi? Try 
A= B = (-1/0/1) and find C = F(A,B) using both procedures. Use 
t-norm Tm. 

10. Redo Problem 8 using t-norm Tp. 

11. Redo problem 9 using t-norm Tp. 

12. Let f : D -+ R, D an interval in R and assume that f is continuous. 
Fi is the fuzzy extension using a-cuts and interval arithmetic. Is Fi 
monotone increasing? 

13. In the following problems you are given y = f(x) and D, x E D an 
interval in the set of real numbers. Determine if Fe = F i or Fe -:j:. F i. 
If they are not equal, then find a triangular fuzzy number A in the 
domain off and a value of a E [0, 1] so the Fe[a]-:j:. Fi[a]. 
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1. y = f(x) = (x + 1)/x, x > 0. 

2. y = f(x) = (x + 1)/x, -1 < x < 0. 

3. y = f(x) = 10x2 - x + 1, x 2: 1. 

4. y = f(x) = 10x2 + x + 1, x 2: 1. 

5. y = f(x) = x2 - x, 0 < x < 1. 

6. y = f(x) = x2 + x, 0 < x < 1. 

7. y = f(x) = xsin(x), 0 < x < 1rj2. 

8. y = f(x) = xsin(x), -1rj2 < x < 0. 

9. y=f(x)=xex,x>l. 

10. y = f(x) = exjx, x > 1. 

11. y = f(x) = xln(x), x 2:3. 

12. y = f(x) = ln(x)jx, x 2: 3. 
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8.4 Types of Fuzzy Functions 

In this section all fuzzy sets will be fuzzy subsets of the real numbers and 
inputs to all fuzzy functions will be continuous fuzzy numbers. We will be 
looking at various types of elementary fuzzy functions up to fuzzy trigono­
metric functions. Fuzzy trigonometry is discussed in Chapter 10. 

We start off with the fuzzy linear function which fuzzifies y = f(x) = 
ax+ b. We can: (I) make x fuzzy and have a and b crisp; (2) make a and b 
fuzzy and have x crisp; or (3) make a, band x fuzzy (the fully fuzzified linear 
function). We again will use subscript "e" if the extension principle is used 
(using t-norm Tm) and subscript "i" when a-cuts and interval arithmetic 
were used to fuzzify the crisp equation. 

The fully fuzzified linear function is 

Y = F(X) =A· X+ B, (8.39) 

where X, Y, A, B are all continuous fuzzy numbers. If X =f. A, then Y e = Y i, 
- - - -2 - -

but if X= A, then Y =A +Band (see problem 9, section 8.3.1) Ye may 
not equal Y i. 

Example 8.4.1 

In this example we only fuzzify a and b giving the fuzzy linear function 
Y = F(x) =Ax+ B for crisp x. 

In measuring the increasing trend in atmospheric concentrations of carbon 
dioxide in parts per million (ppm) from 1965 to 1998 it was found that 
in 1965 it was approximately 315 ppm and the measurement in 1998 was 
about 365 ppm. We model these two measurements as fuzzy numbers Y 0 = 
(285/300,330/345) for 1965 and Y1 = (330/350,380/400) for 1998. We want 
to explain this data using 

Y = F(x) = Ax + B, (8.40) 

where x = 0 corresponds to 1965 and x=33 denotes 1998. Find A and B so 
that F(O) =Yo and F(33) = Y1. Then predict Y for 2001 (x=36). 

We start with x = 0 so that 

AO+B =Yo, (8.41) 

and B = Y 0 . Now set x = 33 and solve for A using a-cuts and interval 
arithmetic. Let Yo= [Yol(o:),Yo2(o:)] and Y1 = [Yn(o:),Y12(o:)]. Then if 
[a1(o:),a2(o:)] = A[a], we get 

a1(o:) = (1/33)(yn(o:)- Yo1(o:)), (8.42) 

or 
a1(o:) = (1/33)(45 +5o:), (8.43) 
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and 
(8.44) 

or 
a2(o:) = (1/33)(55- 5o:). (8.45) 

So, A= 313 (45/50/55) is a triangular fuzzy number. To predict 2001 we 
evaluate F(36) obtaining 

(334.1/354.5, 384.5/405). (8.46) 

What we have just done is a very small introduction to fuzzy regression, 
or the fitting of fuzzy functions to fuzzy data. The calculations become more 
complicated if we had more than two data points. 

The fuzzy quadratic function fuzzifies y = f(x) = ax2 + bx +c. The fully 
fuzzified quadratic will be 

- -- - -2 -- -
Y = F(X) = A ·X + B ·X + C, (8.47) 

which we looked at finding its zeros in Chapter 5. We note that Ye will 
probably not equal Yi (see Example 8.3.3). 

Example 8.4.2 

A company determines its demand function, for a certain product it produces 
and sells, to be approximately 

p = 120- 0.04x, (8.48) 

where x is the number of units it can sell per week at price p. Demand 
functions are never known exactly so we model demand as the fuzzy function 

P = F(x) =A- Bx, (8.49) 

for A= (110/120/130) and B = (0.03/0.04/0.05) and x :2:: 0 so that P :2:: 0. 
That is, x is in some interval [0, M] which guarantees P :2:: 0. 

The cost of producing each unit is approximately C = lOx + 1000, where 
x is the number of units produced per week. The variable cost of production 
(labor, materials, etc.) is around $10/unit, and the fixed costs (insurance, 
taxes, utilities, etc.) are about $1000 per week. These values are always hard 
to determine, especially the fixed costs, so we model costs as 

C = G(x) = Dx + E, (8.50) 
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for D = (9/10/11) and E = (900/1000/1100). The revenue function is Px, 
where now x is the numbers of units we produce and sell each week. We see 
that the fuzzy profit function is 

IT= (A- Bx)x- (Dx +E). (8.51) 

We wish to find x to maximize IT. However, we can not maximize a 
fuzzy set. IT will be a triangular fuzzy number, for each x E [0, M]. Let 
IT= (7rl(x)/7r2(x)/7rs(x)), for x E [O,M]. 

What we do, similar to what is done in finance, where IT is the probability 
density of a random variable, is to find x to: (1) max(1r2(x)), or maximize 
the central value of fuzzy profit; (2) maximize the area in the triangle to 
the right of 1r2, or maximize the possibility of obtaining values more than 
the central value; and (3) minimize the area in the triangle to the left of 
1r2 ( x), or minimize the possibility of getting results less than the central 
value. Let area1 (x) = (1r2(x)- 7r1 (x))/2 and area2(x) = (1r3 (x)- 7r2(x))/2. 
These areas are shown in Figure 8.1. So the optimization problem becomes 
min(area1 (x)), max(1r2(x)) and max(area2 (x)). 

We now change min(area1 (x)) to max[N- area1 (x)], for some large pos­
itive number N. The two problems are equivalent. Then max(IT) becomes 

(8.52) 

subject to x in some interval [0, M]. What is usually done now is for the 
decision maker to choose values for A; > 0, i = 1, 2, 3, and A1 + A2 +As = 1 
and solve the single objective problem 

(8.53) 

for x E [0, M]. The values of the A; show for the decision maker the impor­
tance of the three goals: min(area1 (x)), max(1r2), and max(area2 ). 
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This example will be continued in Chapter 16 on fuzzy optimization. 

The general fully fuzzified polynomial is 

Y = F(X) =AnT+···+ A1X + Ao, (8.54) 

for continuous fuzzy numbers An, · · · , Ao, X. We expect Y e ~ Y i and Y e =f. 
Yi. 

Fuzzy rational functions are quotients of fuzzy polynomials. These fuzzy 
functions have been previously considered in Examples 8.2.4, 8.2.5 and 8.3.2. 

Other special fuzzy functions may be discussed like fuzzifying f(x) = lxl, 
.jX, etc. Since y = .jX, x 2': 0, is monotone increasing we easily find that 
VX(a] = [yfx1(a), Jx2(a)] where X(a] = [x1(a),x2(a)]. 

The fuzzy exponential is also easy to compute because y = e"' is mono­
tonically increasing. Consider 

Y = F(X) = Aexp(B ·X+ C), (8.55) 

for A> 0, X> 0 but B < 0. Then a-cuts of Ye are 

(8.56) 

and 
Y2(a) = a2(a) exp(b2(a)x1(a) + c2(a)). (8.57) 

We see that Y e = Y i in this example. 

Example 8.4.3 

The compound interest formula is 

A= Ao(1 + r)n, (8.58) 

where A0 is the initial investment, r is the interest rate (as a decimal) per 
interest period, n is the number of interest periods and A is the final amount 
after n interest periods. For this formula the interest rate has to be predicted 
over n interest periods and it is assumed to be constant over the n period 
horizon. Let us now model r as a continuous fuzzy number r in the interval 
(0, 1). We will also let Ao be a continuous fuzzy number A0 but we will keep 
n as a crisp positive integer. Then we have 

(8.59) 

Let us show for r and Ao being fuzzy that we do get this equation. That 
is, we now derive equation (8.59). 
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After the first interest period we surely get 

A1 = Ao(1 + r). (8.60) 

So, after two interest periods we have 

(8.61) 

or 
A2 = Ao(1 + r) + Ao(1 + r)r, (8.62) 

which equals 
A2 = Ao(1 + r)[1 + r], (8.63) 

or 
(8.64) 

since for positive fuzzy numbers multiplication distributes over addition (Sec­
tion 4.3.4). We therefore see that equation (8.59) holds in general. Equation 
(8.59) is a fuzzy exponential of the form Y = A0 (a)"' for A0 , a fuzzy but x 
crisp (a= 1 + r is the fuzzy base of the fuzzy exponential). 

The fuzzy logarithmic function is 

Y = F(X) =A ·ln(B ·X+ C), (8.65) 

is also easy to evaluate since y = ln(x), x > 0, is monotonically increasing. 
To simplify things assume that B > 0, X > 0 ,C > 0 so that B · X + C ;::: 1 
(ln(B ·X+ C) ;::: 0). Then a-cuts of Yare 

y;(a) = a;(a) ln(b;(a)x;(a) + c;(a)), (8.66) 

fori= 1,2. In this case we also have Ye = Y;. 
We now question if the well-known properties of logarithms hold for fuzzy 

logarithms? If A > 0, B > 0 and n is a positive integer, then are the following 
equations true or false? 

ln(A ·B) = ln(A) + ln(B). 

ln(A/ B) = ln(A) -In( B). 

ln(An) = n(ln(A)). 

(8.67) 

(8.68) 

(8.69) 

Let us show that equation (8.67) is true. We will use the extension 
principle extension of ln(ab), a > 0 and b > 0. If Y1 = ln(A · B), 
A[a] = [a1(a),a2(a)] and B[a] = [b1(a),b2(a)] we get the a-cuts ofY1[a] = 
[yu(a), Y12(a)] as 

(8.70) 
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Y12(a) = ln(a2(a)b2(a)). 

Now set Y2 = ln(A) +ln(B), Y2[a] = [y21(a),Y22(a)], then 

Y21(a) = ln(a1(a)) + ln(b1(a)), 

Y22(a) = ln(a2(a)) + ln(b2(a)). 

(8.71) 

(8.72) 

(8. 73) 

We see that Yu (a) = Y21 (a) and Yl2 (a) = Y22 (a) for all a. Equation 
(8.67) is therefore true. 
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8.4.1 Exercises 

1. Show that equation (8.46) in Example 8.4.1 is correct. 

2. In Example 8.4.2let P = (P1/P2/P3)· Find the domain of IT in equation 
(8.51). That is, find M so that P 2 0 (Pl 2 0) if and only if x E [0, M]. 

3. In Example 8.4.2 show that lie = IIi. Use A > 0, B > 0, D > 0, E > 0 
and x in [0, M] of Problem 2. 

4. Show that Ye = Yi in equation (8.55). 

5. In Example 8.4.3 : 

a. show Ae = Ai (Ao > O,r > 0); 

b. Evaluate equation (8.64) for r = (0.05/0.06, 0.07 /0.08), Ao 
(90/100/110) and n = 12 (monthly for one year). 

6. In Example 8.4.3 let A0 = (100/101/102) and A = (1980/2000/2020) 
and n being any positive integer. Solve for r. 

a. Find the classical solution (Chapter 5), rc, if it exists. 

b. Find the extension principle solution (Chapter 5) re. 
c. If Tc exists, then show Tc :::; re. 

7. The function y = f(x) = a0 exp(kt), for ao > 0, k > 0, t 2 0, is called 
the exponential growth function. Fu.zzify it toY= F(t) = A 0 exp(Kt), 
for A0 > 0, K > 0, t 2 0. We wish to use this fuzzy function to model 
a fuzzy growth process given by F(O) = Y 0 , F(tl) = Y1 for t1 > 0. 
Given this data find A0 ,K ifY0 = (80/100/120), Y1 = (400/500/600). 

a. Use the classical solution method. 

b. Use the extension principle solution. 

c. Compare the two solutions. 

8. Same as Problem 7 but now k < 0 so it is called an exponential de­
cay function. Given F(O) = Yo = (90/100/110) and F(h) = Y1 = 
(30/40/50), then solve for A0 > 0 and K < 0. 

a. Use the classical solution method. 

b. Use the extension principle solution. 

c. Compare the results. 

9. Let B = ( -12/- 10/- 8), and assume that X < 0, A > 0, C > 1. 
Evaluate Y = Aexp(B ·X+ C) giving Ye and Yi (the a-cut and 
interval arithmetic procedure). Do we get Ye = Yi? 

10. Does ln(A/ B) = ln(A) - ln(B) hold for A > 0, B > 0? 
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11. Does ln(An) = nln(A) hold for A> 0 and n a positive integer? 

12. Consider the fuzzy exponential function Y = exp(K t). Determine if the 
following equations are true or false. Ki is a triangular fuzzy number, 
i = 1, 2, and t 2: 0. 

a. (exp(K1t))(exp(K2t)) = exp((K1 + K 2)t). 

b. exp~K1 tl = exp( (K 1 - K 2)t). 
exp K2t 

c. (exp(K1t))n = exp(nK1t). 

d. exp( -K1t) = (~ ) . 
exp 1t 

13. In Example 8.4.1 given any two triangular fuzzy numbers Yo and Y 1 
can we always solve for A and B? 

14. Let Y = exp(X). Does it follow that X= ln(Y)? 

15. Let Y = ln(X), for X > 0. Will we get X = exp(Y)? 

16. Discuss Example 8.4.2 if we allow x, the number of units we produce 
and sell each week, to be a positive trapezoidal fuzzy number. 

17. Discuss Example 8.4.3 if we allow n, the number of interest periods, to 
be fuzzy. 

18. Show for equation (8.65), under the assumptions given in the text, that 
Ye = Yi. 

19. In Example 8.4.1 consider using a fuzzy quadratic 

Y = F(x) = Ax2 +Ex+ C, 

for triangular shaped fuzzy numbers A, B, C. Given Y = Y 0 > 0 for 
x = 0, Y = Y 1 > 0 for x = x1 > 0 and Y = Y 2 > 0 for x = x2 > x1 
can we always solve for A, B and C so that F(xi) = Yi, i = 0, 1, 2? 

20. Consider the fuzzy function Y = F(t) = Aln(Kt+1). Given Y = Y 0 > 
0 at t = 0 and Y = Y 1 > 0 at t = t1 > 0 solve for A and K so that 
F(xi) = Yi fori = 0, 1. 

a. Use the classical solution method. 

b. Use the extension principle solution. 

c. Compare the results. 
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8.5 Inverse Functions 

In this section all our fuzzy sets will be fuzzy subsets of the real numbers and 
we will use only continuous fuzzy numbers as input to fuzzy functions. 

Let Y = F(X) andY = G(X). We say F and G are inverses of each 
- --1 

other, written G = F , if 

F(G(X)) =X, (8.74) 

and 
G(F(X)) =X, (8. 75) 

for all X for which these equations are defined. 

Example 8.5.1 

We show that Y = F(X) = exp(X) and Y = F(X) = ln(X) are inverses of 
each other. We first argue that 

ln(exp(X)) =X, (8. 76) 

for all continuous fuzzy numbers X. The extension principle, and the a-cuts 
and interval arithmetic procedure, both produce the same result here so let 
use the a-cut method. If X[a] = [x1 (a), x2 (a)], then equation (8. 76) becomes 

ln(exp([x1(a),x2(a)])) = 

ln([exp(x1 (a)), exp(x2 (a))]) = 

[x1 (a), x2(a)], 

which is X[a], 0 :::; a :::; 1. 
Next we show that for X> 0 

exp(ln(X)) =X. 

Substituting a-cuts we get 

an a-cut of X. 

exp(ln([x1(a),x2(a)])) = 

exp([ln(x1 (a)), ln(x2 (a))]) = 

[xi( a), x2(a)], 

(8.77) 

(8. 78) 

(8. 79) 

(8.80) 

(8.81) 

(8.82) 

(8.83) 
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Example 8.5.2 

If y = f(x) = xj(x + 1), for x =fi -1, and if y = g(x) = x/(1- x), for x =fi 1, 
then f and g are inverses of each other. 

Let Y = F(X) = Xj(X + 1), for -1 not in X[O], and let Y = G(X) = 
X/(1- X), for 1 not in X[O]. Will F and G be inverses of each other? 

We first use a-cuts and interval arithmetic to evaluate F(G(X)) and 
G(F(X)). F(G(X)) is 

X/(1- X) 
(8.84) 

(X/(1- X))+ 1 

Substitute [x1(a),x2(a)] for X[a], and first evaluate equation (8.84) as­
sume 0 <X< 1 so that 1- X> 0. Then equation (8.84) becomes 

[xl(a)(1- x2(a)) x2(a)(1- x1(a))] 
1 - x1 (a) ' 1 - x2 (a) ' 

(8.85) 

which is not X[a]. Therefore F and G are not inverses of each other using 
the a-cut method. 

Next try the extension principle to evaluate F(G(X)). This is the exten­
sion of h(x) = f(g(x)) which is 

x/(1- x) 
h(x) = (x/(1- x)) + 1 (8.86) 

Assume x =fi 1, and 1 does not belong to X[O], then his a continuous function 
and let Y = H(X), the extension of h. We find a-cuts of Y as 

Y1(a) = min{h(x) = xlx E X[a]}, 

Y2(a) = max{h(x) = xlx E X[a]}. 

(8.87) 

(8.88) 

We now see that Yi(a) = xi(a) for all a and i = 1, 2. Hence, F(G(X)) = 
X. Also, we may compute, using the extension principle, G(F(X)) =X, and 

- --1 
conclude G = F . 

Example 8.5.3 

Let y = f(x) = ax+ bandy = g(x) = (x- b)/a, for a =fi 0. The functions 
f and g are inverses of each other. Fuzzify to the completely fuzzified Y = 
F(X) =A· X+ BandY= G(X) =(X- B)/A, for zero not in A[O]. Are 
F and G inverses of each other? 
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Using the a-cut procedure to compute F(G(X)) we obtain 

(8.89) 

which can not equal X since A/A #1 and -B + B =I 0. 
Try the extension principle method on F(G(X)) which is the extension 

of 
x-b 

h(x) =a(-)+ b, 
a 

(8.90) 

for a =I 0. Since his a continuous function, the a-cuts of Y = F(G(X)) are 

y1 (a) = min{h(x) = xlx E X[a], a E A[ a], bE B[a]}, (8.91) 

y2 (a) = max{h(x) = xlx E X[a], a E A[a], bE B[a]}. (8.92) 

Hence Yi(a) = xi(a) for all a and i = 1, 2. This means that F(G(X)) = 
X. In a similar manner we can show G(F(X)) = X. By the extension 

- --1 
principle procedure G = F . 
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8.5.1 Exercises 

1. Let Y = F(X) = (X) 2 for X ;::: 0 and Y = G(X) = Vx for X ;::: 0. 
Show that F(G(X)) =X and G(F(X)) =X for X;::: 0. 

a. Using the extension principle. 

b. Using the a-cut method. 

2. Show that equation (8.85) is correct when 0 < X < 1. Find the correct 
expression if X > 1 and for X< 0. In either case do we get F(G(X)) = 
X? 

3. Using the extension principle also compute G(F(X)) in Example 8.5.2. 

4. Show that equations (8.76) and (8.80) are also correct using the exten­
sion principle. 

5. Let y = f(x) = (2x + 1)/(3- x), for x =1- 3, and let y = g(x) = 
(3x - 1)/(2 + x), for x =1- -2. f and g are inverses of each other. 
Extend f to F and g to G. Compute F(G(X)) and G(F(X)): 

a. using the extension principle, and 

b. using the a-cut method. 
- --1 

c. Does either procedure give G = F ? 

6. Let y = f(x) = Jax- b for a > 0, b > 0, x ;::: bja, and let y = 
g(x) = (x2 + b)ja. f and g are inverses of each other. Fuzzify to 
Y = F(X) = J A ·X - B for A > 0, B > 0, A · X - B ;::: 0, and 
- -- -2 - - - - --1 Y = G(X) =(X +B)/A for X;::: 0. Determine if we get G = F : 

a. using the extension principle, and 

b. using the a-cut and interval arithmetic method. 

7. Let y = f(x) = x2 + 6x- 10 for x;::: -3 andy= g(x) = -3 + Jx + 19 
for x ;::: -19. f and g are inverses of each other. Extend f to F and 

- - --1 
extend g to G. Is it true that G = F ? 

a. Using the extension principle? 

b. Using the a-cut method? 

8. Let g = f-1 . Give a description of f and g so that we will obtain 
X= F(G(X)) = G(F(X)) using a-cuts and interval arithmetic. 

9. Let g = f- 1 . Will the extension principle always give G = F-1 ? 

10. Let y = f(x) = x3 and y = g(x) = xl. f and g are inverses of each 
other. Extend f to F and g to G. Find F(G(X))) and G(F(X)): 
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a. using the extension principle, and 

b. using the a-cut method. 
- --1 

c. Does either procedure give G = F ? 

167 

11. Let y = j(t) = aekt for a> 0, k > 0 andy= g(t) = (1/k) ln(t/a) for 
t > 0. 

a. Extend f to F and g to G. Use both methods of extension. Do 
- --1 

we get that G = F ? 

b. Do the same as in part a but extend f to F(T) = A exp[K T] and 
-- --1 --

g to G(T) = K ln[T /A]. 
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8.6 Derivatives 

Throughout this section X = F(t) for t a real number in some interval D 
in R, F a fuzzy function and X a continuous fuzzy number. For example, 
F(t) = At+ B, or F(t) = Aexp(Bt), or F(t) = At2 + Bt, for continuous 
fuzzy numbers A and B. In this section all fuzzy expressions will be evaluated 
using a-cuts and interval arithmetic. 

We first discuss possible definitions of dF I dt, the derivative of fuzzy func­
tion F with respect to t. Let us start with the method used in calculus. If 
y = f(x), then df ldx at xis defined to be 

r f(x +h) - f(x) 
h~ h ' 

(8.93) 

provided the limit exists. 
Try this for X= F(t). First compute (F(t +h)- F(t))lh and then take 

the limit as h approaches zero. This method is not going to work because 
even in the simplest case of X = F(t) =At+ B there is no limit. Suppose 
that A> 0, t ~ 0 and also h > 0. Then 

(F(t +h)- F(t))lh, (8.94) 

equals 
[(A- A)t + (B- B)]lh +A. (8.95) 

We know that (A - A)t "I- 0, unless t = 0, and B - B "I- 0 assuming A and 
B are fuzzy (their support is not a single point). The expression in equation 
(8.95) has no limit as h approaches zero through the positive numbers. This 
definition of dF I dt does not exist. 

As an alternate procedure of defining dF I dt let F ( t) [a] 
[x1(t,a),x2(t,a)] be the a-cuts, which are now considered to be 
functions of both t and a. For example, let X = F(t) = 
Aexp(-Kt) for A[a] [a1(a),a2(a)] and K[a] [k1(a),k2(a)]. 
Then F(t)[a] = [a1(a)exp(-k2(a)t),a2(a)exp(-k1(a)t)] where x1(t,a) = 
a1(a)exp(-k2(a)t) and x2(t,a) = a2exp(-k1(a)t). Then we define 

dF 
dt[a] = [8xd8t,8x2l8t], (8.96) 

provided this interval defines the a-cuts of a continuous fuzzy number for all 
t E D. Then the derivative of F at t is a continuous fuzzy number whose 
a-cuts are given by the intervals 

[8x1 (t, a)l8t, 8x2(t, a)l8t]. (8.97) 

For equation (8.97) to define the a-cuts of a continuous fuzzy number 
we must have: (1) 8xif8t is a continuous monotonically increasing func­
tion of a, 0 ~ a ~ 1, for each t in D; (2) 8x218t is a continuous mono­
tonically decreasing function of a, 0 ~ a ~ 1, for each t in D; and (3) 
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OX! (t, 1)/8t:::; 8x2(t, 1)/8t for all tin D. In other words: (1) 82xi/8a8t > 0; 
(2) 82 x2/8a8t < 0; and (3) same as (3) above. 

Example 8.6.1 

Let X= F(t) =At+ B, t ~ 0 and for A= (-10/- 8,-7/- 5) and 
B = (16/20, 22/26). We see that A[a] = [-10 + 2a, -5- 2a] and B[a] = 
[16 + 4a, 26- 4a]. Then the a-cuts of F(t) are 

[(16 + 4a) + ( -10 + 2a)t, (26- 4a) + ( -5- 2a)t], (8.98) 

so that 
dF 
dt[a] = [-10 + 2a, -5- 2a], (8.99) 

which is A[ a]. Hence the derivative exists and dF jdt =A fort~ 0. 

Example 8.6.2 

Let X = F(t) = At2 + Bt + C for t ~ 0. Also let A[a] = [a1(a), a2(a)], 
B[a] = [b1(a),b2(a)] and C[a] = [c1(a),c2(a)]. Then F(t)[a] = [L(a),R(a)] 
where 

Then 

Hence 

L(a) = a1(a)t2 + b1(a)t + c1(a), 

R(a) = a2(a)e + b2(a)t + c2(a). 

dF - -dt = 2At+B, 

for t ~ 0. If t < 0, then we may get different results. 

Example 8.6.3 

(8.100) 

(8.101) 

(8.102) 

(8.103) 

Let X = F(t) = (At)f(t +B) for A = (10/20/30) and B = (6/7 /8) and 
assume that t ~ 0. Then a-cuts of X are 

[ a1(a)t a2(a)t ] 
t + b2 (a) ' t + b1 (a) · 

(8.104) 
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Next we find 8xl/8t and 8x2 18t giving the interval 

[ a1 (o:)b2 (o:) a2(o:)b1 (o:) ] 
(t + b2(o:)2)' (t + bl(o:))2 . 

(8.105) 

WecalculateB[o:] = [6+o:,8-o:] andA[o:] = [10+10o:,30-10o:]. Substitute 
these values into equation (8.105) and then compute 82xl/8o:8t which turns 
out to be positive, and then find 82x218o:8t which is negative. Let o: = 1 in 
equation (8.105) and it follows that 8x1 (t, 1)18t = 8x2 (t, l)lot. This means 
that equation (8.105) defines the o:-cuts of a continuous fuzzy number dF I dt 
for all t;::: 0. 

Example 8.6.4 

Let X= F(t) = AIVt fort> 0. Then 

F(t)[o:] = [a~)' a::;)], 

so that [8xl/8t,8x2 18t] equals 

-a1(o:) -a2(o:)] 
[ 2t3/2 ' 2t3/2 . 

(8.106) 

(8.107) 

But, the function on the left side of the interval in equation (8.107) is a 
decreasing function of o:. Therefore, dF I dt does not exist. 

Example 8.6.5 

Let X= F(t) = Aexp(-Kt) for A> 0, K > 0 and t;::: 0. Writing A[o:] = 
[a1(o:),a2(o:)] and K[o:] = [k1(o:),k2(o:)] we obtain the o:-cuts 

(8.108) 

so that we can compute [8xl/8t, 8x2 18t] and get 

(8.109) 

Now let A = (90ilOOI110) and K = CVVj). Then A[o:] = [90 + 
lOa:, 110- lOa:] and K[o:] = [~ + io:, j - io:J. Substitute these results into 
equation (8.109) and compute 82xl/8o:8t and we see that it is positive for 
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t E (0, T) for some T > 0. Next we determine 8 2 x 2 f8a8t and it is negative 
fortE (0, T). The derivative ofF with respect tot exists fort in (0, T). 

Example 8.6.6 

Let X= F(t) = A·ln(Bt+C) for A> 0, B > 0, C > 0, t > 0 and Bt+C > 1. 
Then if F(t)(a] = [L(a), R(a)], then 

(8.110) 

(8.111) 

so that the interval [8xl/8t, 8x2 f8t] is 

a1(a)b1(a) a2(a)b2(a) 
[b1(a)t + c1(a)' b2(a)t + c2(a)]. 

(8.112) 

Now assume that A= (70/100/130), B = (20/40/60) and C = (4/5/6). 
Find the a-cuts of A, B and C, then substitute into equation (8.112). Then 
compute 8 2 xl/8a8t and 8 2 x2/8a8t. The first one is positive and the second 
is negative for all t > 0. We also check to see that the two end points in 
equation (8.112) are equal for a= 1. dF/dt exists fort> 0. 

In the rest of this section let us turn to solving elementary differential 
equations having fuzzy initial conditions. Consider solving 

dx 
dt = kx, (8.113) 

for x(O) =a. The unique solution for x = x(t) is 

x = aekt. (8.114) 

Now assume the initial condition is fuzzy so that x(O) =A a continuous fuzzy 
number. Solve for X= F(t). 

As in Chapter 5 we can consider three solution methods: (1) classical 
solution Xc, (2) the extension principle solution Xe, and (3) the a-cut and 
interval arithmetic solution Xi. We only consider the first two in this section. 
We illustrate these two methods through the following example. Assume 
A= (al/a2/a3)· 
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Example 8.6. 7 

Solve equation (8.113) subject to x(O) =A, A[o:] = [a1(o:),a2(o:)], first using 
the classical procedure. Let X(t) = [x1 (t, o:), x2 (t, o:)] and substitute into 
equation (8.113). Assume that now k > 0. We get 

or 
OXi 
8t = kxi, 

for i = 1, 2. Solving for the Xi we get 

for i = 1, 2. The initial conditions are 

Hence 

fori= 1, 2. 
If the intervals 

x1(0,o:) = a1(o:), 

x2(0, o:) = a2(o:). 

(8.115) 

(8.116) 

(8.117) 

(8.118) 

(8.119) 

(8.120) 

(8.121) 

define a continuous fuzzy number for all t in some interval D, we say the 
classical solution X c( t) exists and its o: - cuts are given by equation (8.121). 
These intervals do define a continuous fuzzy numbers so we conclude that 

(8.122) 

Now let us use the extension principle method. This procedure fuzzifies, 
using the extension principle, the crisp solution. The unique crisp solution 
is x = x( t) = aekt where x(O) = a. Hence X e = Jfekt. We will now demand 
that X e must solve the original differential equation to be called a "solution". 
That is, we say the extension principle solution exists when X e (t) = Aekt 
satisfies the differential equation and fuzzy initial conditions. We use o:-cuts 
and interval arithmetic to check to see if Xe(t) satisfies equation (8.113). 
Now X(t)[o:] = [a1(o:)ekt,a2(o:)ekt] so that 

8 
8t[al(o:)ekt,a2(o:)ekt] = (8.123) 

(8.124) 

is true and we see X(O) = A. Hence, Xe(t) exists as a solution and also 
Xc =X e. 
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8.6.1 Exercises 

1. In Example 8.6.1 assume t < 0. Does dFidt exist fort< 0? 

2. In Example 8.6.2 assume t < 0. Show now that dF I dt may not exist 
for all t < 0. Let A= (11213) and B = (5011001150). 

3. In Example 8.6.3 check to see if dF I dt exists for t < 0. 

4. Let X= F(t) = Ayt, t 2: 0 and A~ (al/a2, a3la4). Find dF ldt. 

5. In Example 8.6.5 find T. 

6. Let X = F(t) = Aexp(Kt) for A> 0, K > 0 and t 2: 0. Show that 
dF I dt exists for all t 2: 0 and find its a-cuts. 

7. Rework Example 8.6.6 for A= (21314), B = (51617) and C = (819110). 

8. In Example 8.6.3, find dF I dt at t = 1. 

9. In Example 8.6.5, find dF I dt at t = 0. 

10. In Example 8.6.6, find dF I dt at t = 1. 

11. Work Example 8.6.7 if k < 0. Does Xc(t) exist? Does Xe(t) satisfy the 
differential equation? 

12. Consider 

dx- k 2 
dt- X' 

for k > 0, t 2: 0 and x(O) = a > 0. The unique solution is 

x = al(l- akt). 

Now set x(O) =A> 0 for the fuzzy initial condition. 

a. Does Xc(t) exist? If so, find its a-cuts. 

b. Find Xe(t), find its a-cuts and determine if it satisfies the differ­
ential equation. 

13. Consider 

dx 
dt = k(x- a), 

for k > 0, x > a, t 2: 0 and x(O) = c > a. The unique solution is 

x=a+(c-a)ekt. 

Now let x(O) = C > a, a fuzzy initial condition. 
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a. Does Xc(t) exist? If so, find its a-cuts. 

b. Find Xe(t), find its a-cuts and determine if it satisfies the differ­
ential equation. 



Chapter 9 

Fuzzy Plane Geometry 

Crisp plane geometry starts with points, then lines and parallel lines, circles, 
triangles, rectangles, etc. In fuzzy plane geometry we will do the same. Our 
fuzzy points, lines, circles, etc. will all be fuzzy subsets of R x R. We assume 
the standard xy- rectangular coordinate system in the plane. Since fuzzy 
subsets of R x R will be surfaces in R 3 we can not easily present graphs of 
their membership functions. However, o:-cuts of fuzzy subsets of R x R will 
be crisp subsets of the plane. Using an xy-coordinate system we may draw 
pictures of o:-cuts of fuzzy points in R x R, also for fuzzy lines, etc. In this 
way we can see what the membership functions of fuzzy subsets of R x R 
look like. 

A fuzzy point Pat (x0 , y0 ) will generalize the idea of a triangular shaped 
fuzzy number. Pis defined by its membership function, written z = P(x, y), 
for (x, y) in R 2 and z E [0, 1]. The constraints on the membership function 
are: 

1. z = P(x,y) is continuous, 

2. P(x,y) = 1 if and only if (x,y) = (x0 ,y0 ), and 

3. P[o:] is closed, bounded and convex, 0 :::; o: :::; 1. 

The second condition means Pis a fuzzy point at (x0 , y0 ). In the third 
condition: (1) closed means the set contains its boundary; (2) bounded means 
there is a positive M so that P[o:] is a subset of a circle, center at (0, 0), of 
radius M; and (3) convex means given any two points in P[o:], the straight 
line connecting these points also lies entirely in P[o:]. A circle together with 
its inside is closed, bounded and convex. A circle, with a hole in it, is not 
convex. Figure 9.1 gives other examples of convex, and not convex, subsets 
of the plane. 
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(a) Convex (b) Not Convex 

0 
(c) Convex (d) Not Convex 

Figure 9.1: Examples of Convex Sets 
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Example 9.1 

Let M and N be two triangular shaped fuzzy numbers M ~ 
(ml/m2/m3), N ~ (ndn2/n3). Then 

P(x, y) = min(M(x), N(y)), (9.1) 

is a fuzzy point at ( m2, n2). 

Example 9.2 

Define P by 

if x2 +y2 :=; 1, 
otherwise. (9.2) 

P is a fuzzy point at (0, 0). The graph of z = P(x, y) is a right circular cone 
with vertex at (0, 0), with all points inside and on the circle x2 + y2 = 1. 

A fuzzy line L will generalize the equation ax + by = c whose graph is 
a straight line as long as a or b are not both zero. We use the extension 
principle to define z = L(x, y). Let A, B and C be triangular shaped fuzzy 
numbers, then 

L(x,y) = max{min{A(a),B(b),C(c)}iax +by= c}. (9.3) 

a-cuts of L may be found from 

L[o:] = {(x,y)iax +by= c,a E A[o:],b E B[o:],c E C[o:]}, (9.4) 

0 :=; a :=; 1. L[1] will be a crisp line, and L[O] will be base of the fuzzy line. 

Example 9.3 

A "fat" fuzzy line. Let A = ( -1/0/1), B = ( -1/1/2) and C = (0/1/2). 
Then L[O] = R 2 and L[1] is the line Ox+ y = 1, or y = 1. 

Example 9.4 

A "thin" fuzzy line. Let A= 2, B = 1 and C = (0/1/2). A and B are crisp 
(real) numbers. Then L[1] is the line 2x + y = 1. L[O] is the infinite strip in 
the xy-plane bordered by y = -2x andy= -2x + 2. 
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We say fuzzy line L contains fuzzy point P if P ::::; L (P(x, y) ::::; L(x, y), 
for all (x, y)). Suppose Pis a fuzzy point at (x0 , y0 ) and P ::::; L. Then we 
may easily show (x0 , Yo) belongs to L[1] because 

(9.5) 

We know when two crisp lines are parallel. Fuzzy lines may be parallel 
to varying degrees. Let La and Lb be two fuzzy lines. A measure of the 
parallelness (p) of La and Lb is defined to be 1 - A where 

A= sup{min(La(x, y), Lb(x, y))}. (9.6) 
x,y 

We see that A is just the height of the intersection (using Tm) of La and 
Lb. If La n Lb = """¢, then p = 1 and La and Lb are completely parallel. 
Suppose la (h) is the crisp line in La[1](Lb[1]). If la and lb intersect, then 
p = 0 and La, Lb are definitely not parallel. 

Example 9.5 

Let A = -2, B = 1, C1 = (6/8/10), and C2 = (8/10/12). Let Li be 
-2x + y = Ci, i = 1, 2. Then we calculate p = 0.5 

For fuzzy circles we fuzzify (x- a) 2 + (y- b) 2 = d2 which is the equation 
of a circle, center at (a, b), with radius d 2: 0. A fuzzy circle Cir is defined 
by its membership function 

Cir(x,y) = max{min{A(a),B(b),D(d)}l(x- a) 2 + (y- b) 2 = d2 }, (9.7) 

for continuous fuzzy numbers A, B, D 2: 0. The fuzzy circle has center at 
(A, B) and radius D. a-cuts of Cir may be found from 

Cir[a] = {(x,y)i(x-a) 2 +(y-b) 2 = d2 ,a E A[a],b E B[a],d E D[a]}, (9.8) 

0::::; a::::; 1. Cir[1] is a crisp circle and Cir[O] is the base of the fuzzy circle. 

Example 9.6 

A "fat" fuzzy circle. Let A = B = D = (0/1/2). Cir[1] is the crisp circle 
(x- 1) 2 + (y- 1)2 = 1. Cir[O], the base of the fuzzy circle, is a region, inside 
the rectangle [ -2, 4] x [-2, 4], with no holes in it. As we increase a from zero 
to one will be obtain Cir[a] with holes in them. The limit of the Cir[a], as a 
approaches 1, is the crisp circle with the hole, (x- 1) 2 + (y- 1) 2 < 1, inside 
it. 
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Example 9.7 

A "regular" fuzzy circle. By regular we mean a fuzzy circle Cir whose a­
cuts, 0 :::; a :::; 1, all have holes in them. Let A = B = 1 (crisp one) and 
D = (1/2/3). Then Cir[O] = {(x, y)l1 :::; (x- 1) 2 + (y- 1)2 :::; 9}. Similarly, 
Cir[a] = {(x, y)l(1 + a) 2 :::; (x- 1) 2 + (y- 1) 2 :::; (3- a) 2 }, 0:::; a:::; 1. 

We may define the fuzzy area of a fuzzy circle. Let area be a fuzzy subset 
of R defined by its membership function 

area(z) =max{ min(A(a), B(b), D(d))lz = 1rd2 , d =radius of circle at (a, b)}, 
(9.9) 

whose a-cuts can be formed by 

area[a] = {1rd2 ld =radius of circle at (a, b), a E A[a],b E B[a],d E D[a]}, 
(9.10) 

o::;a::;l. 
To study fuzzy triangles and fuzzy rectangles we need the idea of a fuzzy 

line segment LpQ from fuzzy point P to fuzzy point Q. We will not define 
the membership function for LpQ directly but instead we define the a-cuts 
of L PQ. Define 

LpQ[a] = {lll is a line segment from a point inP[a] to a point inQ[a]}, 
(9.11) 

0 :::; a :::; 1. If P[O] c Q[O], or even if P[O] n Q[O] =j:. ¢;, we may not get a 
"regular" fuzzy line segment. So, let us assume P[O] and Q[O] are disjoint in 
the definition of an a-cut of LPQ· 

Now we can give the definition of a fuzzy triangle in terms of its a-cuts. 
Let P, Q, R be three fuzzy points so that P[O], Q[O], R[O] are mutually disjoint. 
Let LpQ, LQR, LRP be fuzzy line segments. P, Q, R define a fuzzy triangle 
T whose a-cuts are 

or generally 
T = LpQ ULQR ULpR, 

where we use max, for t-conorm, for union. 

Example 9.10 

(9.12) 

(9.13) 

P, Q, R will be fuzzy points at VI = (0, 0), v2 = (0, 1), v3 = (1, 0), respectively. 
Each fuzzy point is like the fuzzy point in Example 9.2. P(Q, R) has a 
membership function whose graph is a surface, which is a right circular cone, 
radius of the base circle is 0.1 and vertex is at VI (v2 , v3 ). Then T is the 
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fuzzy triangle generated by P, Q, R. T[O] is a triangular subset of R 2 with a 
triangular hole in it. T[1] is the crisp triangle with vertices (0, 0), (1, 0), (0, 1). 
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9 .1 Exercises 

1. In Example 9.1let M = ( -4/1/2) and N = (6/7 /9). Find P[0.5] and 
P[1]. By "find" we mean draw pictures of these a-cuts with respect to 
an xy-coordinate system. 

2. In Example 9.2, find P[O], P[0.5], P[1]. By "find" we mean draw a 
picture with respect to an xy-coordinate system. 

3. Show that a-cuts of L defined in equation (9.3) are given by equation 
(9.4). 

4. In Example 9.3 show that L[OJ is the whole xy-plane. 

5. In Example 9.4 draw a picture of L[OJ, L[0.5] and L[1]. 

6. In this problem draw pictures of L[OJ, L[0.5] and L[1]. A= ( -1/0/1), 
B = ( -1/1/2) and C = (0/1/2). An equation like Ax+ By = C is 
defined to be a fuzzy line L as in equation (9.3). Find a-cuts from 
equation (9.4). 

a. Ax+ y = 1. 

b. 2x +By= 1. 

c. Ax+ By= 1. 

d. Ax+y =C. 
e. 2x +By= C. 

7. Is the fuzzy point Pin Example 9.2 contained in any of the fuzzy lines 
given in problem 6? 

8. There can be alternate definitions of a fuzzy line. For the following 
specifications of a line give a definition of the corresponding fuzzy line 
(equation (9.3)) and its a-cuts (equation (9.4)): 

a. y = mx + b; 

b. y- v = m(x- u), point (u, v), slope =m; and 
~ _ U2-Vl t " t ( ) ( ) c. x-u1 - u 2 -u1 , wo pmn s u1 ,v1 , u 2 ,v2 . 

9. In Example 9.5 show that p = 0.5. 

10. In 2x +By= 1, let L1 have B1 = ( -1/1/2) and L2 have B2 = ( -2/-
1/1). Find,\ in equation (9.6) and hence p the measure of parallelness 
of L1 and L2. 

11. In this problem draw picture of Cir[O], Cir[0.5] and Cir[1]. Let A= 
B = D = (0/1/2). An equation like (x- A) 2 + (y- B)2 = D is to be 
defined as a fuzzy circle as in equation (9.7) with a-cuts in equation 
(9.8). 
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a. (x- A)2 + (y- 1)2 = 1. 

b. (x- 1)2 + (y- B) 2 = 1 . 

c. (x - A) 2 + (y - B) 2 = 1. 

d. (x - A) 2 + (y - B) 2 = C2 . 

e. (x-1)2 +(y-B)2 =C2 • 

12. Let perimeter be a fuzzy subset of R which is to be the fuzzy circum­
ference of a fuzzy circle Cir. Give a definition for fuzzy circumference, 
as in equation (9.9) for fuzzy area, and give a way to find a-cuts of 
fuzzy circumference, as equation (9.10) for fuzzy area. 

13. Give a definition of the fuzzy area of a fuzzy triangle and then an 
expression to find its a-cuts. 

14. Give a definition of a fuzzy rectangle based on the definition of a fuzzy 
triangle. 

15. Draw a picture of T[O] in Example 9.10. 

16. Draw pictures of T[O], T[0.5] and T[1] if: 

a. P as in Example 9.10, Q = (0, 1), R = (1, 0) crisp points; and 

b. P as in Example 9.10, Q = (0, 1), R as in Example 9.10. 

17. Let T be all crisp triangles in regular plane geometry. Define R, a 
crisp relation on T, as R(t~, h)= 1 if and only if t1 and t2 are similar, 
for h, t2 E /. Now let T be all fuzzy triangles. Define the concept 
of "similar" between fuzzy triangles and then define an equivalence 
relation Ron T as R(t1, t2) = 1 if and only if h and t2 are similar. 

18. In crisp trigonometry we can define sine, cosine and tangent of an angle 
(} in terms of the ratios of the sides of a right triangle. For example, 
sin(O), one of the angles in the right triangle not equal to the 90 degree 
angle, would be the ratio of the opposite side to the hypotenuse. Define 
the idea of a fuzzy right triangle. The side lengths now become con­
tinuous fuzzy numbers. Let 7J be one of the fuzzy angles in this fuzzy 
right triangle, not the fuzzy 90 degree angle. We can then define fuzzy 
sine as sin(O) being the ratio of the fuzzy length of the opposite side to 
the fuzzy hypotenuse. Continue this way to define fuzzy cosine, fuzzy 
tangent and develop fuzzy trigonometry from this point. 

19. All our definitions in the text used t-norm Tm =min. Consider using 
another t-norm: n, Tp or T*. Which one, if any, will minimize the 
fuzziness (also needs to be defined) of a fuzzy line, a fuzzy circle, etc.? 
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20. Consider the following alternate definition of a fuzzy circle. Let A, B 
and D be continuous fuzzy numbers. A fuzzy circle Cir is the set of 
all ordered pairs (X, Y), where X and Y are both continuous fuzzy 
numbers, which satisfy 

Is this a "good", or "not so good", definition of a fuzzy circle? 



Chapter 10 

Fuzzy Trigonometry 

10.1 Introduction 

This chapter completes our study of the basic fuzzy functions. In Section 
8.4 we had the fuzzy functions from linear to logarithmic. The next section 
introduces the fuzzy trigonometric functions, their inverses (see Section 8.5) 
and their derivatives (see Section 8.6). We also see to what extent the basic 
crisp trigonometric identities will hold for the fuzzy trigonometric functions. 
Finally, the fuzzy hyperbolic trigonometric functions are in the third section. 

10.2 Standard Fuzzy Trigonometry 

We first want to fuzzify y = sin(x) and then y = cos(x) andy= tan(x). We 
will always use radians (real numbers) for x since that is what is needed in 
calculus. So let X be a continuous fuzzy number and set Y = F(X) = sin(X). 
We will only use the extension principle to find Y because the a-cut and 
interval arithmetic method (Section 8.3) requires an algorithm, using a finite 
number of arithmetic operations, to approximate y = sin(x) to a certain 
accuracy. This algorithm can involve using a power series for y = sin(x). 
Also we would need to employ similar algorithms for the other trigonometric 
functions if we wanted to find Y from the a-cut procedure. We will omit the 
a-cut method from this section but you are asked to try it for y = sin(x) in 
the exercises. 

If Y = [y1 (a), y2 (a)], then from the extension principle we may find the 
a-cuts of Y = sin(X) as follows 

Y1(a) = min{sin(x)lx E X[a]}, (10.1) 

and 
Yz(a) = max{sin(x)lx E X[a]}, (10.2) 
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for 0 ::; a ::; 1. Since y = sin(x) is periodic with period 21!" we can get very 
different results for Y depending on the size of the support and core of X. 

Example 10.2.1 

Let X= (0/~, 3; /211"). Then we calculate that 

Y(x) _ { 1, -1::; x::; 1, 
- 0, otherwise. 

Y is not a continuous fuzzy number. Y is a fuzzy interval. 

Example 10.2.2 

Now let X= (0/~/11"). Then we find that 

- 1l" 
Y[a] = [sin( 2a), 1], 

(10.3) 

(10.4) 

for 0 ::; a ::; 1, and Y ( x) = 0 if x ::; 0 or x > 1. Again Y is not a continuous 
fuzzy number. 

Example 10.2.3 

Set X= (0/~/~). Then we see that 

Y[a] = [sin(~a),sin(i- ~a)], (10.5) 

for 0 ::; a ::; 1, and Y(x) = 0 if x ::; 0 or x ~ 1. Y is a continuous fuzzy 
number. 

In a similar way we may compute Y = cos(X) for various values of X. 
To fuzzify y = tan(x) let X be a triangular (or trapezoidal) fuzzy number in 
the interval ( -1!" /2, 1l" /2). Then if Y = tan(X) we obtain a-cuts as 

Yl(a) = min{tan(x)lx E X[a]}, (10.6) 

and 
Y2(a) = max{tan(x)lx E X[a]}, (10.7) 

for all a E [0, 1]. Since y = tan(x) is monotonically increasing on 
(-11"/2,11"/2) we get Yl(a) = tan(x1(a)), and y2(a) = tan(x2(a)) where 
X[a] = [x1 (a), x2(a)]. 



10.2. STANDARD FUZZY TRIGONOMETRY 187 

We can not expect crisp trigonometric identities like sin2 (x) +cos2 (x) = 1 
and tan2 (x) + 1 = sec2 (x) to hold for fuzzy trigonometric functions. For 
example, sin2 (X) + cos2 (X) =I- 1 because the left side of this equation is a 
fuzzy subset of the real numbers and the right side is not fuzzy, it is the crisp 
number one. But we can expect one to belong to the core ofsin2 (X)+cos2 (X). 

Example 10.2.4 

If X= (0/V~), then we found the a-cuts ofsin(X) in Example 10.2.3. Now 
let Y = cos(X). Then we determine that the a-cuts of cos(X) are 

(10.8) 

since y = cos(x) is monotonically decreasing on [0,7f/2]. Because sin(X) 2:0 
and cos(X) 2: 0 we may easily find a-cuts of both sin2 (X) and cos2 (X) as 

(10.9) 

and 
cos2 (X)[a] = [cos2 (~- ~a),cos2 (~a)]. (10.10) 

We see that sin2 (X) ~ (0/0.5/1) and cos2 (X) ~ (0/0.5/1). Hence 
sin2 (X) + cos2 (X) ~ (0/1/2). The real number one belongs to the core 
of sin2 (X) + cos2 (X). 

Although the fuzzy trigonometric identities do not hold exactly, the fuzzy 
trigonometric functions are still periodic 

and 

sin(X + 21r) = sin(X), 

cos(X + 27r) = cos(X), 

tan(X + 1r) = tan(X). 

(10.11) 

(10.12) 

(10.13) 

Now let us look at the derivatives of the fuzzy trigonometric func­
tions using the methods of Section 8.6. Consider X = F(t) = sin(At), 
t 2: 0, A > 0 and A a trapezoidal fuzzy number. We let the a-cuts of 
sin(At) be [x1 (t,a),xz(t,a)] and then the a-cuts of dF/dt are defined to be 
[oxtfot, oxzfot], provided that these intervals define the a-cuts of a contin­
uous fuzzy number. However, we will end up as in Example 10.2.1 because 
the core and support of At will grow and exceed a length of 27f. That is, 
t(az- a1) and t(a4- a3), where A= (atfaz, a3ja4), will get larger and larger 
having sin(At) look like what we got, equation (10.3), in Example 10.2.1. 
Then Xl (t, a) = -1 and Xz(t, a) = 1 for all a and then oxtfot = oxzlot = 0 
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all a. dF I dt will eventually be identically zero. We surely do not want this 
to happen. 

To control for the size of the core and support of the input to sine we will 
instead consider X = F(t) = sin(A(t)), where A(t) is a function oft, not A 
times t. For example, let A(t) = (t- 0.11t1t + 0.1) for 0.1:::; t:::; (~- 0.1). 
Now the support of A(t) is always of length 0.2 and the core is always just a 
single point. 

Example 10.2.5 

Let A(t) = (t- 0.11t1t + 0.1) for 0.1 :5 t :5 (~ - 0.1). As in Example 10.2.3 
we get the a-cuts of sin(A(t)) as 

[sin(t- 0.1 + 0.1a), sin(t + 0.1- 0.1a)]. (10.14) 

So, the a-cuts of dF I dt would be 

[cos(t- 0.1 + 0.1a), cos(t + 0.1- 0.1a)], (10.15) 

if these intervals define a continuous fuzzy number. But cos(t- 0.1 + 0.1a) 
decreases as a increases. Hence dFidt does not exist for this A(t). 

Example 10.2.6 

Use the same A(t) and interval fort as in Example 10.2.5. Let X = F(t) = 
tan(A(t)). The a-cuts of X are 

[tan(t- 0.1 + 0.1a), tan(t + 0.1- 0.1a)], 

whose partials on t give the a-cuts 

[sec2 (t- 0.1 + 0.1a), sec2(t + 0.1- 0.1a)]. 

(10.16) 

(10.17) 

These intervals do define a continuous fuzzy number. dF I dt exists and 
its a-cuts are given by equation (10.17). 

The last thing we look at in this section is the fuzzification of the inverse 
trigonometric functions. Let y = f(x) = sin(x) for -7fl2:::; x:::; 1rl2 and let 
its inverse function be y = g(x) = arcsin(x) for -1 :::; x :::; 1. Define Y = 
F(X) = sin(X) for X a continuous fuzzy number in the interval [ -7r 12, 7f 12] 
and also define Y = G(X) = arcsin(X) where now X is a continuous fuzzy 
number in [-1, 1]. Do we obtain F(G(X)) =X and G(F(X)) =X? The 
fuzzy function Y = G(F(X)) is the extension principal extension of y = 
g(f(x)) = arcsin(sin(x)). But for x in [-7rl2,7fl2] we know g(f(x)) = x so 
that G(F(X)) = X. Similarly, we see that F(G(X)) =X. Hence we have 
G(X) = F-1 (X). 
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Example 10.2. 7 

Let X[o:] = [xl(o:), x2 (o:)] the o:-cut of a continuous fuzzy number in 
[-Jr/2,71'/2]. Since y = sin(x) is increasing on the interval [-Jr/2,71'/2] we 
obtain 

sin(X) [o:] = [sin( xi ( o:)), sin(x2 ( o:) )]. 

Then the o:-cuts of arcsin(sin(X)) are 

arcsin[sin( XI ( o:)), sin(xz ( o:))], 

which is, since sin(xi(o:)):::; sin(x2 (o:)) 

[arcsin( sin( XI ( o:)), arcsin(sin(x2 ( o:))], 

or 

an o:-cut of X. 

(10.18) 

(10.19) 

(10.20) 

(10.21) 
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10.2.1 Exercises 

1. Let I = [ -0.1, 0.1]. Then y 
y = sin(x) on I. In fact 

h(x) x - x3 /6 will approximate 

I sin(x) - h(x) I < (8.3) 10-8 , 

for x in I. Use h(x), a-cuts and interval arithmetic, to calculate sin(X) 
for X a triangular fuzzy number in I. Compare your result to the 
extension principle method. Take three cases: (1) X > 0; (2) X < 0; 
and (3) zero belongs to the support of X. 

2. Show that sin(X) in Example 10.2.1 produces the Y given in equation 
(10.3). 

3. Show that sin(X) in Example 10.2.2 has the a-cuts given by equation 
(10.4). 

4. Show that the a-cuts of sin( X) in Example 10.2.3 are those in equation 
(10.5). 

5. Let A be a triangular fuzzy number in (0,7r/2). Defines= tan(A)[l] 
and t = sec(A)[l], the (a = 1 )-cut. Show that s2 + 1 = t 2 . 

6. Show that equations (10.11)-(10.13) are correct. 

7. Show that the intervals in equation (10.17) do define a continuous fuzzy 
number. 

8. Find Y = cos(X) for: 

a. X= (0/~, 3
271" /27r), 

b. X= (O/V1r), and 

c. X= (0/V~). 

9. Let A(t) = (t-0.1/t/t+O.l) fortE [0.1,7r/2-0.l]. Define Y = F(t) = 
cos(A(t)). Find dF/dt or show that it does not exist. 

10. Use the same A(t) as in Problem 9. Define Y = F(t) = sec(A(t)), Find 
dF /dt or show that it does not exist. 

11. In Example 10.2.5 let A= (t- 0.1/t/t + 0.1) but for t in the interval 
[ -1r /2 + 0.1, -0.1]. Does dF /dt exist? 

12. In Example 10.2.6 use the same A(t) but the interval [-7r/2+0.1, -0.1]. 
Does dF / dt exist? 



10.2. STANDARD FUZZY TRIGONOMETRY 191 

13. Let y = f(x) = tan(x) for x E ( -K/2, 7r/2) andy= g(x) = arctan(x) 
for x any real number. Fuzzify f to F for X a triangular fuzzy number 
in ( -1r /2, 1r /2) and fuzzify g to G for X a triangular fuzzy subset of 
the real numbers. Show using the extension principle that G = F-1 . 

14. Let Y = F(t) = arcsin(A(t)) for A(t) a function oft in some interval 
I so that A( t) remains in [ -1, 1]. Does dF / dt exist? Investigate for 
various functions for A ( t). 

15. Let X be a continuous fuzzy number. Is sin(X) and cos(X) always a 
fuzzy subset, not necessarily a fuzzy number, of the interval [-1, 1]? 

16. Let X be a continuous fuzzy number. Determine if the following equa­
tions are true or false. Justify your answer. 

a. sin( -X) =- sin(X). 

b. cos( -X) = cos(X). 
c. sin(X + 1r /2) = cos(X). 

17. In Chapter 9 we introduced fuzzy triangles. All the crisp trigonometric 
functions can be defined for angles, between zero degrees and ninety 
degrees, from a right triangle. Define a fuzzy right triangle and fuzzy 
angles. From this define fuzzy sine, cosine and tangent. Continue 
in this way to develop fuzzy trigonometric and compare to the fuzzy 
trigonometric in this section. See Problem 18 in Section 9.1. 

18. All the fuzzy trigonometric functions were defined with the extension 
principle using the t-norm min. Define, and develop, some of their 
basic properties as in this section, using the extension principle but 
with another t-norm n or Tp or T*. 

19. Show that: 

a. -1 ~ sin(X) ~ 1, and 

b. -1 ~ cos(X) ~ 1. 

20. Solving fuzzy trigonometric equations. Given the crisp trigonometric 
equation 2 cos(x) = 1 we know that one solution for x is x = 1r /3. So 
consider a fuzzy trigonometric equation 

2cos(X) =A, 

for A= (0.5/1/1.5) which is approximately one. Solve for X a contin­
uous fuzzy number in [0,7r/2]. 

a. Using the classical solution method (Section 5.2.1). 

b. Using the extension principle method (Section 5.2.2). 
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10.3 Hyperbolic Trigonometric Functions 
The basic hyperbolic trigonometric functions, written as sinh(x), cosh(x) and 
tanh(x), are important in calculus. In this section we fuzzify them, study 
their inverses and derivatives. 

The hyperbolic sine is defined as y = sinh(x) = (ex - e-x)/2. Since 
dy / dx > 0 for all x we see that it is monotonically increasing for all x with 
sinh(O) = 0. If X is a continuous fuzzy number with X[a] = [x1(a),x2(a)], 
then it is easy to find a-cuts of sinh(X) because they are 

[sinh(x1 (a)), sinh(x2 (a))], (10.22) 

for 0:::; a:::; 1. 
The hyperbolic cosine is y = cosh(x) = (ex+ e-x)/2. Now cosh(x) is: (1) 

monotonically decreasing for x < 0, (2) monotonically increasing for x > 0, 
and (3) cosh(O) = 1. So it is easy to find a-cuts of cosh(X) if X < 0 or 
X> 0. For example, if X< 0, then a-cuts of cosh(X) are 

[cosh(x2 (a)), cosh(x1 (a))]. (10.23) 

The hyperbolic tangent is y = tanh(x) = ~~:~t~). The function tanh(x) 
is: (1) monotonically increasing for all x, (2)limx-+-oo tanh(x) = -1 , (3) 
limx-+oo tanh(x) = 1, and (4) tanh(O) = 0. Like sinh(x) it is easy to find 
a-cuts of tanh( X) for X being a continuous fuzzy number. 

Now let X = F(t) = sinh(A(t)), for A(t) being a continuous fuzzy number 
for t a real number in some interval. We wish to see when dF jdt exists. 
We will need the following results: (1) the derivative of sinh(x) is cosh(x), 
(2) the derivative of cosh(x) is sinh(x), and (3) the derivative of tanh(x) is 
(cosh(x))-2 = (sech(x)) 2, the square of the hyperbolic secant. 

Let A(t)[a] [a1(t,a),a2(t,a)] so that F(t)[a] 
[sinh(ar(t, a)), sinh(a2(t, a))]. Then dF fdt has a-cuts equal to 
[L(t, a), R(t, a)] where 

(10.24) 

and 

(10.25) 

as long as [L, R] defines the a-cuts of a continuous fuzzy number for all t. 
For dF/dt to exist we need 8Lf8a > 0, 8Rf8a < 0 for 0 :::; a :::; 1 and 
L(t, 1) = R(t, 1) for all t. 

Example 10.3.1 

Let A(t) = (t2 jt2 + tjt2 + 2t) fort 2: 0. Then A(t)[a] = [t2 + ta, t2 + 2t- ta]. 
If X= F(t) = sinh(A(t)), then we compute Land R from equations (10.24) 
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and (10.25) to be 
L(t, a) = cosh(t2 + ta)(2t +a), (10.26) 

and 
R(t, a) = cosh(t2 + 2t- ta)(2t + 2- a). (10.27) 

Then we find that 8L/8a > 0, 8Rfaa < 0 for 0 ::; a ::; 1 and fort ~ 0, 
and also L(t, 1) = R(t, 1) for all t ~ 0. Hence, dF /dt exists with a-cuts given 
by the intervals [L(t, a), R(t, a)). 

Two hyperbolic trigonometric identities are (cosh(x)) 2 - (sinh(x)) 2 = 1 
and (tanh(x)) 2 + (sech(x)) 2 = 1. Let us look at how the identity (cosh(x)) 2 -

(sinh(x)) 2 = 1 holds when we substitute X ~ 0 a continuous fuzzy number 
for x. Let X[a) = [x1 (a),x2 (a)). Assume that X~ (xdx2/x3 ). Then a-cuts 
of (cosh(X)) 2 - (sinh(X)) 2 are 

If a = 1, then x1(1) = x2 (1) = x2 and interval (10.28) becomes a single 
point 

(10.29) 

The fuzzy hyperbolic trigonometric identity is satisfied at a = 1. 
We may specify inverses for the hyperbolic trigonometric functions. For 

example, sinh-1 (x) = ln(x+vx2 + 1) for all real numbers x, and tanh- 1 (x) = 
~ ln([1+x)/[1-x)) for -1 < x < 1. The function y = tanh-1 (x) may be used 
in (fuzzy) neural nets as shown in Chapter 13. So let y = f(x) = tanh(x) and 

1 - -- -y = g(x) =tanh- (x). Fuzzify both toY= F(X), for X a continuous fuzzy 
number and Y = G(X), now X a continuous fuzzy number in the interval 
( -1, 1). Using the extension principle we can show that G = F- 1 . 
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10.3.1 Exercises 

1. Find a-cuts of cosh(X) for: 

a. X a continuous fuzzy number and X > 0; 

b. X= ( -11012). 

2. Find a-cuts of tanh(X), for X a continuous fuzzy number whose a-cuts 
are [x1 (a), x2(a)). 

3. In Exan1ple 10.3.1 show that L(t,a) (and R(t,a)) is an increasing (de­
creasing) function of a. 

4. Let A(t) = (sin(t)- tl sin(t)l sin(t) + t) fort~ 0. If F(t) = sinh(A(t)) 
does dF I dt exist for all t ~ 0? 

5. Let A(t) = (t2 1t2 +t1t2 +2t) fort~ 0. If F(t) = tanh(A(t)), then does 
dF I dt exist for all real numbers t ~ 0? 

6. Let A( t) be the san1e as in Problem 5. IfF( t) = cosh(A( t)) does dF I dt 
exist fort ~ 0. 

7. Let X~ (xdx2lxs) a triangular shaped fuzzy number. Let "a" belong 
to the (a = 1)-cut of tanh(X) and let "b" belong to the (a = 1)-cut 
of sech(X). Recall that sech(x) = (cosh(x))-1 . Show that a2 + b2 = 1. 
This verifies (tanh(X))2 + (sech(X))2 = 1 at the a= 1level. 

8. Show, using the extension principle, that for continuous fuzzy number 
X we get sinh(sinh-1 (X)) = sinh-1 (sinh(X)) =X. 

9. Does 2 sinh(ln(X)) =X- (x)-1 for continuous fuzzy number X> 0. 

10. Find sinh-1 (X) by showing its a-cuts. Assume X is a continuous fuzzy 
number. 



Chapter 11 

Systems of Fuzzy Linear 
Equations 

In this chapter we are interested in solutions to systems of fuzzy linear equa­
tions. To keep things as simple as possible we will only work with 2 x 2 
systems, or two equations with two unknowns. As in Chapter 5 we will con­
sider three types of solution: classical, extension principle, and the a-cut 
and interval arithmetic method. Throughout this chapter A ~ B means 
A(x) ~ B(x) for all x. 

We first review the crisp theory for 2 x 2 systems and then fuzzify it. A 
2 x 2 linear system is written as 

(11.1) 

(11.2) 

for crisp constants an,···, a22, b1 and b2. We are to solve these two equations 
simultaneously for x1 and x2. 

Throughout this chapter we will make the necessary assumptions so that 
the system of linear equations has a unique solution. The needed assumption 
here is that ana22 - a21a12 =f 0. Then the unique solution may be written 

b1a22 - b2a12 
Xl = ' an a22 - a21 a12 

(11.3) 

X2 = 
an a22 - a21 a12 

b2an - b1a21 
(11.4) 

Now let us rewrite the linear system of equations in matrix notation. Let 

(11.5) 

be a 2 x 2 matrix of coefficients. Also let 
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(11.6) 

and 

(11. 7) 

be two 2 x 1 matrices (vectors). Then the linear system of equations can be 
written in compact form 

AX=B. (11.8) 

In equation (11.8) you take the first row in A times X and equate to b1 
and you obtain the first of the linear equations (equation (11.1)). 

Now fuzzify equation (11.8). A is a 2 x 2 matrix whose elements aij are 
continuous fuzzy numbers. A is called a Type II fuzzy matrix (Type I fuzzy 
matrices were studied in Chapter 7). Next let X= (Xi) be a 2 x 1 matrix 
whose elements are X 1 and X 2 the unknown continuous fuzzy numbers. Also, 
B = (Bi), another 2 x 1 matrix, with members B1 and B2 given continuous 
fuzzy numbers. The fuzzified equation (11.8) is 

(11.9) 

for given A and Band we are to solve it for X. Let aij [a] = [aijl (a), aij2 (a)] 
for 1 ~ i,j ~ 2 and let Bj[a] = [bj1(a),bj2(a)] for j = 1,2 and set Xi[a] = 
[xil (a), xi2(a)], i = 1, 2. 

We start with the classical solution, written X c, if it exists. In the classical 
solution we: (1) substitute a-cuts of aij, Xi, B j for aij, Xi, B j, respectively; 
(2) simplify using interval arithmetic; (3) solve for Xij(a), 1 ~ i,j ~ 2; and 
(4) if the intervals [xil (a), xi2(a)], i = 1, 2, define continuous fuzzy numbers 
Xi, i = 1,2, then Xc exists and its components are X 1 and X 2. After 
substituting the a-cuts we obtain two interval equations 

and 

to simplify. 

[am (a), an2 (a)][xn (a), X12 (a)]+ 

+ [am(a),a122(a)][x21(a),x22(a)] = 

= [bn (a), b12 (a)], 

[a211 (a), a212 (a)][xn (a), X12(a)]+ 

+ [a221(a),a222(a)][x21(a),x22(a)] = 
= [b21(a), b22(a)], 

(11.10) 

(11.11) 

Now we need to know if the aij are positive or negative and know if the 
Xi are to be positive or negative. Assuming that all the aij and all the 
Bj are triangular fuzzy numbers, what we might do is first solve the crisp 
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problem obtained from the (a= 1)-cut. Suppose the crisp system produces 
solution x1 = 5 and x2 = -7. Then we would start by trying X 1 > 0 whose 
(a= 1)-cut is equal to 5 and x2 < 0 whose (a= 1)-cut is -7. 

Let us assume for this discussion that all the aij > 0 and all the B j > 0 
so that we first try (the crisp solution was positive) for Xi > 0 all i. Then 
from equations (11.10) and (11.11) we get a 4 x 4 system 

am(a)xu(a) + a121(a)x21(a) = bu(a), (11.12) 

a211(a)xu(a) + a221(a)x21(a) = b21(a), 

a212(a)x12(a) + a222(a)x22(a) = b22(a), 

(11.13) 

(11.14) 

(11.15) 

to solve for the Xij(a), 1 :S i,j :S 2, 0 :Sa :S 1. We again assume that this 
4 x 4 system has a unique solution for the Xij(a), 1 :S i,j :S 2, for all a. 

After solving for the Xij (a) we check to see if the intervals [xil (a), xi2 (a)] 
define continuous fuzzy numbers for i = 1, 2. What is needed is: (1) 
8xii/8a > 0, (2) 8xi2/8a < 0, and (3) Xi1(1) :S Xi1(1) (equality for tri­
angular shaped fuzzy numbers), fori= 1, 2. 

Example 11.1 

Let a 11 = (4/5/7), a12 = 0 (real number zero), a 21 = 0 and a 22 = (6/8/12). 
Also set B 1 = (1/2/3) and B2 = (2/5/8). Then a 11 [a] = [4 +a, 7- 2a], 
a22[a] = [6+2a, 12-4a], BI[a] = [1+a,3-a] and B 2[a] = [2+3a,8-3a]. 
Set a = 1 and the crisp solution is x1 = 2/5 and x2 = 5/8 so we assume we 
can get a solution with X 1 > 0, X[1] = 2/5 and X 2 > 0, X[1] = 5/8. 

Substitute these a-cuts into equations (11.12)-(11.15), using a 12 = a 21 = 
0, and solve for the Xij(a). We obtain 

xu(a) = (1 + a)/(4 +a), 

X12(a) = (3- a)/(7- 2a), 

X21(a) = (2 + 3a)/(6 + 2a), 

x22(a) = (8- 3a)/(12- 4a). 

(11.16) 

(11.17) 

(11.18) 

(11.19) 

We see that 8xu/8a > 0, 8x12/8a < 0, 8x21 j8a > 0 8x22/8a < 0, 
x11 (1) = x12 (1) and x21(1) = x22(1). Hence Xc exists with components X 1 
and X 2 and the a-cuts of X 1 are 

and the a-cuts of X 2 are 

1+a 3-a 
[ 4 + a ' 7 - 2a], 

2 + 3a 8- 3a 
[6 + 2a' 12- 4a]. 

(11.20) 

(11.21) 
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Example 11.2 

Define au = (1/2/3), a12 = 0, a21 = 1 (crisp number one), a22 = (2/5/8), 
B1 = (4/5/7) and B2 = (6/8/12). Then au[a] = [1 +a, 3- a], a22[a] = 
[2+3a,8-3a], B 1[a] = [4+a, 7 -2a] and B 2[a] = [6+2a, 12-4a]. If a= 1, 
then the crisp solution is x1 = 5/2 and x2 = 11/2. So we expect a solution 
of the form X 1 > 0 with X 1[1] = 5/2 and X 2 > 0 with X 2[1] = 11/2. 

Substitute the a-cuts into equations (11.12)-(11.15), using a 12 = 0 and 
a 21 = 1, and solve for the Xij(a). We obtain 

xu(a) = (4 + a)/(1 +a), (11.22) 

and 

x12(a) = (7- 2a)/(3- a). (11.23) 

But 8xu/8a < 0. Hence Xc does not exist in this example. 

The extension principle solution, written X e with components X 1 and X 2, 
fuzzifies the crisp solution, usually using the t-norm min, given in equations 
(11.3) and (11.4). X e always exists but it may, or may not, satisfy the original 
system of fuzzy linear equations. That is, A · X e = B may or may not be 
true. We check to see if A· X e equals B using a-cuts and interval arithmetic. 

Let h1 (au,···, a22, b1, b2) be the expression equal to x1 in equation (11.3) 
and set h2 (au, · · · , a22, b1, b2) to be the formula equal to x2 in equation ( 11.4). 
To find X 1 in Xe we substitute au, .. ·, B2 for au, .. · b2 in h1 (au, .. ·, b2) 
and evaluate using the extension principle. We now need to assume that the 
denominators in equations (11.3) and (11.4) are never zero. So we assume 
that au a22 - a21 a12 f:. 0 for all aij E aij [OJ for 1 ~ i, j ~ 2. 

We find the a-cuts of X 1 as 

(11.24) 

(11.25) 

for 0 ~ a ~ 1. Similarly we find a-cuts of X 2 using h2 (au, .. · , b2). Set 
Xe =(Xi) and check to see if A· Xe =B. 

In general, equations (11.24) and (11.25) will be difficult to evaluate. One 
may use a genetic algorithm (Chapter 15) to estimate xli(a) for selected 
values of a. Notice that if you set a = 1 in equations (11.24) and (11.25), 
then you get, assuming that all the aij and B j are triangular shaped fuzzy 
numbers, xu(1) = x12(1) = x1 in the crisp solution. Similarly a= 1 gives 
x2 in the crisp solution using h2(au, · · ·, b2). 
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Example 11.3 

This continues Example 11.1 using the same aij and Bj. Now 
h1(an, .. ·,b2) = bl/an and h2 (an, .. ·,bz) = b2/azz. We easily see that 
using the extension principle we get 

1+a 3-a 
[xn (a), x1z(a)] = [7 _ 2a, 4 +a], 

2 + 3a 8- 3a 
[x21 (a), xzz(a)] = [12 _ 4a, 6 + 2a]. 

Notice that X1[1] = 2/5 and Xz[1] = 5/8 and Xc ~ Xe. 

Example 11.4 

(11.26) 

(11.27) 

This continues Example 11.2 with the same values for the aij but we change 
B 1 = (1.5/2.5/3.5) and B 2 = (10/12/14) because it will be easier to find X e 

using these new values for Bj. We find h1(an, .. ·,b2) = bl/an as before 
but h2 (an, · · ·, bz) = (anbz- bl)/(ana22)· We find X1 as in Example 11.3. 
To find a-cuts of X 2 we need to evaluate equations (11.24) and (11.25) using 
h2 . We find that h2 is: (1) an increasing function of an and bz, but (2) it is 
a decreasing function of a22 and b1. Hence 

x21 (a) = hz (am (a), a222 (a), b12 (a), b21 (a)), 

Xzz(a) = hz(am(a), a221(a), bn(a), bzz(a)), 

(11.28) 

(11.29) 

for 0 ~ a ~ 1. The interval [x21 (a),x22 (a)] defines a-cuts of X 2 . The 
extension principle solution X e = (Xi). 

We note that X c does not exist for these new values of the B j. 

The last solution type, written X I, substitutes a-cuts of the aij, · · ·, B 2 
for an, · · · , b2 , respectively, into h1 and h2, simplifies using interval arith­
metic, giving a-cuts of the components of X I. If A · X I = B, using a-cuts 
and interval arithmetic, then we say that X I satisfies the system of fuzzy 
linear equations. We have changed notation in that we now write X I for 
the a-cut and interval arithmetic solution whereas in Chapter 5 we used Xi 
for this solution. In this chapter we are using Xi for the components of the 
vector X. 

Example 11.5 

This continues Examples 11.1 and 11.3 with the same 7i;j and Bj. We com­
pute 

(11.30) 
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(11.31) 

This defines the a-cuts of X 1 and X 2 the two components of X I. We see 
that Xe =XI. 

Example 11.6 

This continues Example 11.4. Since h1 (an, · · · , b2) = bd an we get the same 
value for X 1, using a-cuts and interval arithmetic, as the extension principle 
(equation (11.26)). For X 2 we obtain 

(11.32) 

All multiplications are easy because all the fuzzy numbers are positive. 
The numerator in equation (11.32) is [N1 (a), N2(a)] where 

N1(a) = am(a)b21(a)- b12(a), (11.33) 

and 
N2(a) = am(a)b22(a) = bn(a). (11.34) 

The denominator is [D1(a),D2(a)] which is 

D1(a) = am(a)a221 (a), (11.35) 

and 
D2(a) = am(a)a222(a). (11.36) 

Then 
X 2[a] = [N1(a), N2(a)]. 

D2(a) D1(a) 
(11.37) 

For example 

x21 (a) = am(a)b21(a)- b12(a) 
(11.38) 

an2(a)a222(a) 

For X e and X I we see that they have the same first component X 1 but 
not the same second component X2. For Xe we have X 2[0] = [0.81,6.75] 
and X 2[1] = 2.15. For XI we get X2[0] = [0.27, 20.25] and X 2[1] = 2.15. 

In general, when X c exists we obtain X c :::; X e :::; X I. If the components 
of Xc(Xe,XI) are Xcj(Xej,XIj), for j = 1,2, then the above inequality 
means that X cj :::; X ej :::; X Ij for j = 1, 2. The fuzziness grows as you go 
from X c to X I. Fuzziness is measured by the length of the support (or base) 
and the length of the core for trapezoidal (shaped) fuzzy numbers. 
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11.1 Exercises 

1. If an > 0, a12 > 0, a21 < 0, a22 > 0, B1 > 0, B2 > 0, X 1 < 0 and 
X 2 > 0, then write down the new equations corresponding to equations 
(11.12)-(11.15) that are needed to find the Xij(o:), 1::::; i,j::::; 2. 

2. In Example 11.1 is it possible to have other fuzzy solutions for X 1 < 0 
and/or X 2 < 0? Explain. 

3. Answer the question in Problem 2 also for Example 11.2. 

4. Let an = a 22 = 0 and a12 = (4/5/7), a21 = (6/8/12), B1 = ( -3/-
2/- 1) and B 2 = (2/5/8). Find o:-cuts for: 

a. X c, or show it does not exist; 

b. Xe and show Xc::::; Xe, if Xc exists; 

c. XI and show that Xe ::::; XI. 

5. Let an = o, a12 = 1, a21 = (1/2/3), a22 
B 2 = (7 /14/27). Find o:-cuts for: 

a. Xc, or show that it does not exist; 

(2/4/8), B1 

b. X e and show that X c ::::; X e, when X c exists; 

c. XI and show that Xe ::::; XI. 

6. Show that, in general, if X c exists, then X c ::::; X e. 

7. Show that, in general, X e ::::; X I. 

8. In Examples 11.1 and 11.3 show that Xc::::; X e. 

3 and 

9. Using the values of B 1 and B 2 given in Example 11.4 show that Xc 
does not exist. 

10. Assuming that an a22 - a12a21 =f=. 0, then A - 1 exists ( A - 1 A = I the 
2 x 2 identity). Use the crisp solution formula 

to compute both X e and X I. Do you get the same results as using h1 
and h2 as was done in the text? Explain. 

11. Suppose we have values of the aij so that an a22- a12a21 = 0 for certain 
values of aij in aij[o:], for some o: in [0, 1). Discuss the problems we 
now face in defining and computing both X e and X I. 

12. Determine if X e in Example 11.3 satisfies the original system offuzzy 
linear equations. 
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13. Same as Problem 12 except for X e in Example 11.4. 

14. Same as Problem 12 except for XI in Example 11.6. 

15. Let a12 = a 21 = 1, a 11 = (4/5/7), a22 = (6/8/12), B1 = (1/2/3) and 
B 2 = (2/5/8). Find a-cuts for : 

a. X c, if it exists; 

b. Xe; 

c. X1. 

16. In defining X e we used the t-norn min in the extension principle. Use 
another t-norm n, or Tp or T* to find Xe in Example 11.3. Also try 
another t-norm in Example 11.4. 

17. Fuzzy Eigenvalues. A fuzzy eigenvalue is a continuous fuzzy number X 
satisfying the equation 

for X =j:. 0. Discuss the definition of, and computation for: 

a. Xc; 

b. Xe; 

c. xi (the o:-cut and interval arithmetic solution). 

18. Apply the results of Problem 17 to Example 11.1. That is, use the data 
in this example to calculate the fuzzy eigenvalues. 

19. Consider the case where Xc does not exist and then substitute classical 
solution X s defined in Problem 10 in Section 5.2.4. X sis that triangular 
shaped fuzzy number that solves the following minimization problem: 

min D(A ·X, B). 

Start with the D given in equation (3.80) in Section 3.7 and extend it 
to a D for finding the distance between A X and B. Discuss a method 
for solving for X s. 

20. Apply the results of Problem 19 to Example 11.2 and compute X 8 • 

Compare your result to X e found in Example 11.4. 



Chapter 12 

Possibility Theory 

12.1 Introduction 
General possibility theory would be part of measure theory, fuzzy measures 
and evidence theory, and as such is beyond the scope of this book and to 
be included in a more advanced course. Instead we will introduce discrete 
possibilities in the next section and compare their properties to discrete prob­
abilities. As an application of discrete possibilities we discuss finite Markov 
chain, based on possibility theory, in the third section. 

12.2 Discrete Possibilities 
In this section we will introduce discrete possibility theory and discuss some 
of its properties. We will also compare to discrete probability theory to see 
the similarities and differences between the two theories. 

Let X = { x 1 , x 2 , · · ·, xn} be a finite set. Poss will stand for possibility 
and Prob will denote probability. A discrete possibility distribution on X is 

Pass= {J-l1 · · · f.-ln} 
' ' ' X1 Xn 

(12.1) 

where the J-li are in the interval (0, 1] and there is at least one J-li equal to one 
(basic constraint of possibilities). 

A discrete possibility distribution on X is a normalized fuzzy subset of 
X. A discrete probability distribution on X is 

Frob = { Pl ' ... ' Pn } ' 
X1 Xn 

(12.2) 

where the Pi are in the interval (0, 1] but the basic constraint on probabilities 
is 

P1 + P2 + · · · + Pn = 1. (12.3) 
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Let U be a set and f a function mapping U into X. f is called a fuzzy 
variable if its values are restricted by a possibility distribution. What this 
means is that if E is a crisp subset of X, and Poss in equation (12.1) is the 
restricting possibility distribution, then 

Poss[f(u) E E] = max{JLilf(u) =Xi E E}, (12.4) 

where u is in U. The possibility that f takes on a value in E is the maximum 
of the possibilities of all the x in E for which there is an u E U so that 
f(u) = x E E. A function g is called a random variable, g also maps U into 
X, if the values of g are restricted by a probability distribution. 

Assuming that Prob in equation (12.2) is the probability distribution re­
stricting the values of g, then 

Prob[g(u) E E] = 2::: {Pilg(u) =Xi E E}. (12.5) 

Here we sum the relevant probabilities. This is the usual analogue between 
fuzzy and crisp: use max in fuzzy and addition in non-fuzzy. 

Now let A and B be two crisp subsets of X. Then 

Poss[A U B] = max[Poss(A), Pass( B)], 

but 
Prob[A U B] = Prob(A) + Prob(B) - Prob(A n B), 

which is 
Prob[A U B] = Prob(A) + Prob(B), 

when An B = ¢. 
We can also easily see that 

but 

Poss(A) + Poss(Ac) 2: 1, 

max(Poss(A), Poss(Ac)) = 1, 

Prob(A) + Prob(Ac) = 1. 

(12.6) 

(12. 7) 

(12.8) 

(12.9) 

(12.10) 

(12.11) 

Total ignorance in possibility theory means that P,i = 1 for all i in equation 
(12.1), but in probability theory total ignorance can mean Pi = ~ for all i, 
called the uniform probability distribution. 

Next we consider joint distributions. Let Y = {y1 , · · · , Ym} be another 
finite set with 

Pass= { el ' ... ' Bm }], 
Y1 Ym 

(12.12) 

Prob = { ql , ... , qm } . 
Y1 Ym 

(12.13) 

We also have function h (k) mapping set V into Y whose values are 
restricted by Poss (Prob) given in equation (12.12) [(12.13)]. Assuming the 
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fuzzy variables f and hare non-interactive (a possibility theory term), then 
their joint possibility distribution is given by 

Poss[f(u) =Xi and h(v) = Yil = min{p,i,Bj}, (12.14) 

1 ~ i ~ n and 1 ~ j ~ m. 
But if random variables g and k are independent, their joint probability 

distribution is 
Prob[g(u) =Xi and k(v) = Yil = PiQj, (12.15) 

for 1 ~ i ~ n and 1 ~ j ~ m. Another difference between the two theories is 
in the use of min for multiplication in the fuzzy case. 
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12.2.1 Exercises 

All problems involve possibility theory. No problems use probabilities. 

1. Show Pass( An B) :=:;min{ Pass(A), Pass(B) }. 

2. Show Pass(A) + Pass(Ac) ~ 1. 

3. Show max(Pass(A), Pass(Ac)) = 1. 

4. Let 

P - {0.6 ~ 0.5 0.3 0.2} 
ass - 0 ' 1 ' 2 ' 3 ' 4 ' 

be a discrete possibility distribution on X = {0, 1, 2, 3, 4}. For every 
subset E of X, and there are 32 such subsets, find Pass[E]. 

5. Let 

Pass= {0.2 ~ 0.7 ~ 0.6 0.5} 
' ' . ' ' ' ' a e z a u y 

be a possibility distribution on X = {a, e, i, a, u, y }. Let U 
{0,1,2,3,4} and f(O) = i,f(1) = u,f(2) = a,J(3) = y,f(4) =a. 
Find the value of Pass[f(u) E E] if 

a. E = {e}. 

b. E = {a,u,y}. 

c. E = {i,e,y}. 

Find the value of Pass[f(u) E (AU B)] if 

d. A= {a,e} and B = {i,e,u}. 

e. A= {i,a,u} and B = {a,e}. 

The following problems have to do with E a fuzzy subset of X x Y for 
X = { x1, · · ·, Xn} and Y = {Yl, · · ·, Ym}· E will be a joint possibility 
distribution on X x Y if it is normalized (membership value one for 
some (xi,Yi) EX x Y). Assume we have 

E(xi,Yj) = Pass[f(u) =Xi and h(v) = Yi], 

for fuzzy variables f : U -+ X and h : V -+ Y. The marginal possibility 
distributions are calculated as follows 
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Possx[x;] = Poss[f(u) = x;] = max.E(x;,y), 
y 

207 

The fuzzy variables f and h, or the possibility distributions Possx and 
Possy, are said to be non-interactive, if 

E(x;,yj) = min{Possx[x;],Possy[yj]}, 

for 1 :S i :S n and 1 :S j :S m. 

6. Let E be given by 

E Y1 Y2 Y3 
X1 0 0.7 0.6 
X2 1 0.4 0.2 
X3 0.9 1 0.3 
X4 0.5 1 0.8 

a. If A= {(x2,y2), (x2,y3), (x4,y1)}, then find Poss[A]. 
b. Find Possx and show that it is a possibility distribution (it is 

normalized) . 

c. Find Possy and show that it is normalized. 

d. Are Possx and Possy non-interactive? Explain your answer. 

7. Let E be 

E Y1 Y2 Y3 Y4 Y5 
X1 0.2 0.3 0.3 0.3 0.3 
X2 0.2 0.3 0.5 0.7 0.7 
X3 0.2 0.3 0.5 0.7 1 
X4 0.2 0.3 0.5 0.6 0.6 
X5 0.2 0.2 0.2 0.2 0.2 

a. If A = {(x3,Y4),(x4,Y2),(x5,Y5),(x2,Y3),(xl,Yl)}, then find 
Poss[A]. 

b. Find Possx. When is Possx[x;] = 1? 
c. Find Possy. 
d. Are Possx and Possy non-interactive? Explain your answer. 
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12.3 Fuzzy Markov Chains 

We first review some of the basic results of finite Markov chains based on 
probability theory and then we present fuzzy finite Markov chains based on 
possibility theory. We look at convergence of powers of the transition matrix 
and absorbing Markov chains for fuzzy Markov chains. We present some of 
the basic results of finite Markov chains based on probability theory so that 
we may see the similarities and differences between the two theories. 

A finite Markov chain has a finite number of possible states (outcomes) 
S1 , · · · , Sr at each step n = 1, 2, 3, · · · in the process. Let 

Pij = Prob{Sj at step n + 1[Si at step n}, (12.16) 

1 ~ i, j ~ r and n = 1, 2, 3, · · ·. The Pij are the transition probabilities which 
do not depend on n. The transition matrix P = (Pij) is a r x r matrix of the 
transition probabilities. An important property of P is that the row sums 
are equal to one (each row is a discrete probability distribution) and each 
Pij 2: 0. Let Pi;) be the probability of starting off in state Si and ending in 
state S1 after n steps. Define pn to be the product of P n-times and it is 
well known that pn = (Pi7)) for all n. If p(O) = (pio), · · · ,p~0)), where Pio) = 

the probability of initially being in state Si, and let p(n) = (Pin),··· ,p~n)), 
where Pin) =the probability of being in state Si after n steps, then we know 
that p(n) = p(0 ) P. 

We say that the Markov chain is regular if pk > 0 for some positive 
integer k, which is Pi;) > 0 for all i and j. This means it is possible to go 
from any state Si to any state S1 in k steps. A property of regular Markov 
chains is that powers of P converge, or limn-too pn = II, where the rows 
of II are all identical. Each row in II is equal to some w = ( w1 , · · · , Wr) 
and p(n) -+ pC0lii = w. After a long time, thinking that each step takes a 
certain amount of time, the probability of being in state Si is Wi, 1 ~ i ~ r, 
independent of the initial conditions given in p(o). In a regular Markov chain 
the process goes on forever jumping from state to state. 

We will call a state Si absorbing if Pii = 1 and Pi1 = 0 for j -::/- i. Once you 
enter Si you can never leave. Suppose there are k absorbing states, 1 ~ k < r, 
and then we may rename the states (if needed) so that the transition matrix 
P can be written as 

(12.17) 

where I is a k x k identity matrix, 0 is the k x (r- k) zero matrix, R is 
(r- k) x k and Q is a (r- k) x (r- k) matrix. The Markov chain is called an 
absorbing Markov chain if it has at least one absorbing state and from every 
non-absorbing state it is possible to reach some absorbing state in a finite 
number of steps. Assuming the Markov chain is absorbing we then know that 
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pn = ( ;R gn) (12.18) 

where S = I + Q + · · · + Qn-1 • Then limn--+oo pn = II where 

(12.19) 

for R* = (I- Q)-1 R. The notation (I- Q)-1 is for the matrix inverse of 
(I- Q), or their product is the identity matrix I. Notice the zero columns 
in II which implies that the probability that the process will eventually enter 
an absorbing state in one. The process eventually ends up in an absorbing 
state. 

Now we can introduce fuzzy Markov chains based on possibility theory. 
We have the same finite number of states 81 , · · · , Sr but now Pii = the 
possibility that the process is in state Sj at step n + 1 given it was in state 
Si at step n, 1 :5 i,j :5 r. The Pii are now the transition possibilities 
independent of n. Let P = (pij) a r x r matrix of possibilities, where now 
each row maximun is one, needed for possibility distributions. Let p~j) = 
the possibility of being in state Sj at step n, given you started in state 
Si· Let pn be the n fold produce of P using the max-min composition of 
fuzzy matrices (relations). That is we use min in place of multiplication 
and max for addition. We claim that pn = (p~j)). Our only assumption 
is that all the possibility distributions are non-interactive. Non-interactive 
for possibility distributions is analogous to assuming random variables are 
independent in probability theory. If p(o) is the initial possibility distribution 
and if p(n) = (pin)' 0 0 0 ,p}n)), where p~n) =the possibility of being in state si 
after n steps, we also see that p(n) = p(o) pn for the max-min composition of 
p(o) and pn_ 

It is known that the sequence pn for n = 1, 2, 3, · · · either converges 
or oscillates (see Section 7.3). If pn converges, then we will call the fuzzy 
Markov chain regular. If pn oscillates, and does not converge, it will be 
called an oscillating fuzzy Markov chain. We will now study absorbing fuzzy 
Markov chains. 

Just like for non-fuzzy absorbing Markov chains we rename the states, if 
needed, to get Pas in equation (12.17). A state Si is absorbing if Pii = 1 and 
Pii = 0 for j "# i. Once in an absorbing state Si, the possibility of leaving is 
zero. We assume there are k absorbing states for 1 :::; k < r. We can show 
that 

pn-(I 0) 
- Rn Qn (12.20) 

where Rn = max{R, QR, .. ·, Qn-1 R}. 
The sequence pn, n = 1, 2, 3 · · · converges, or oscillates, depending on the 

sequence Qn, n = 1, 2, 3 · · ·. If Qn converges to C, then pn converges because 
Rn always converges toR* (see below). When Qn-+ C, than pn-+ II where 
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(12.21) 

and C need not be the zero matrix. Now R* = max{R,QR,···,QcR} for 
some positive integer c. We always have Rn -t R* if Qn converges or oscil­
lates. If Qn -t 0, the zero matrix, then we will call this fuzzy Markov chain 
an absorbing fuzzy Markov chain. 

Example 12.3.1 

Let 

Now 

P- ( ~ ~ - 0 0.3 
1 0.6 

0 
0 

0.7 
0.2 

Q = ( 0.7 1 ) 
0.2 0 

so Q converges to C with Q2 = Q3 = · · · = C for 

c = ( 0.7 0.7) 
0.2 0.2 

We therefore see that R* = max{ R, Q R, Q2 R} and we calculate 

Hence pn -t II and 

R* = ( 1 0.6 ) 
1 0.6 

II-(~ ~ - 1 0.6 
1 0.6 

0 
0 

0.7 
0.2 

(12.22) 

(12.23) 

(12.24) 

(12.25) 

(12.26) 

We have pn = II for n ~ 3. It is not an absorbing fuzzy Markov chain. 

Example 12.3.2 

If 

R = ( 0.5 1 ) 
1 0.6 

(12.27) 
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and 

(12.28) 

then Q2 = Q3 = · · · = C is the zero matrix, and P is the transition matrix 
for an absorbing fuzzy Markov chain. 
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12.3.1 Exercises 

All problems deal only with fuzzy Markov chains. 

1. Let 

( 
0 0.2 

p = 0.4 0 
0 1 

If P is the transition matrix for a fuzzy Markov chain, is it a regular or 
oscillating fuzzy Markov chain? 

2. Let 

( 
1 0.2 0 ) 

p = 0 1 0.2 
0 0.2 1 

Will this produce a regular or oscillating fuzzy Markov chain? 

3. Let 

( 
0.2 0.6 1 ) 

p = 1 0 0.5 
0.2 1 0.4 

Will this be a regular or oscillating fuzzy Markov chain? 

4. Let 

5. 

( 

1 0 

p = 0.4 1 
0 1 
0 0 

0 
0.6 
0.5 
1 

This is the transition matrix for a fuzzy Markov chain with one ab­
sorbing state. Does this transition matrix produce an absorbing fuzzy 
Markov chain? 

Let 

( 0~7 
0 0 0 

0:2) 
1 0 0 

P= 0 1 0.1 
0.5 1 0 0 
0.2 0 0.5 1 

Will this give an absorbing fuzzy Markov chain? 



12.3. FUZZY MARKOV CHAINS 213 

6. Give an argument that R2 = max{R, QR} in equation (12.20). 

7. Give an argument that Rn will eventually equal max{R, QR, · · ·, Qc R} 
for some positive integer c. 

8. Show that P 2 , found using the max-min composition of P and P, gives 
an r x r matrix whose elements p~J) compute the possibility of going 
from state Si to state Si in two steps. 

9. Let P be the transition matrix for a fuzzy Markov chain. Show that 
each row in P 2 is a possibility distribution (maximum value of one). 

10. Let 

p = (au 
a21 

for: (1) au = a22 = 1, (2) au = a21 = 1, (3) a12 = a21 = 1, and (4) 
a 12 = a 22 = 1. In all cases the other aij are arbitrary except their values 
must be in [0, 1]. The four cases give all possible 2 x 2 fuzzy transition 
matrices. Determine when pn converges and when it oscillates. 

11. Let P be the 2 x 2 transition matrix in Problem 10 but now we have 
the cases: (1) au = a22 = 1, a12 = 0 and a21 being an arbitrary 
number in [0, 1] , and (2) au = an = 1, a12 = 0 and a22 being an 
arbitrary number in [0, 1]. These two cases give all possible 2 x 2 fuzzy 
Markov chains with one absorbing state. Find pn and determine when 
pn converges and when we have an absorbing fuzzy Markov chain. 

12. Write down all possible 3 x 3 transition matrices that have two absorbing 
states. Find pn and when it converges. If it converges, then find the 
limit and when it will give an absorbing fuzzy Markov chain. 

13. Let P be a transition matrix for a fuzzy Markov chain. Find a necessary 
and sufficient condition on P so that pn converges (will not oscillate). 

14. Let P be a transition matrix for a regular fuzzy Markov chain. Is pn 
also a transition matrix for a regular fuzzy Markov chain? 

15. Let P be a transition matrix for an absorbing fuzzy Markov chain. Is 
pn also a transition matrix for an absorbing fuzzy Markov chain? 

16. Let P be the transition matrix for a fuzzy Markov chain. P may also 
be considered a fuzzy relation. Decide if the following statements are 
true or false: 

a. If P is reflexive, then P is the transition matrix for a regular fuzzy 
Markov chain. 

b. If P is transitive, the P is the transition matrix for a regular fuzzy 
Markov chain. 



Chapter 13 

Neural Nets 

13.1 Introduction 

We first introduce layered, feedforward, neural nets in the next section and 
go through all the details on how they compute their output given inputs. 
Our applications of these neural nets is to: (1) approximate solutions (the 
a-cut and interval arithmetic solution of Section 5.2.3 in Chapter 5) to fuzzy 
equations, and (2) approximate the values (the a-cut and interval arithmetic 
value of Section 8.3 in Chapter 8) of fuzzy functions. In both cases the neural 
net requires sign constraints on its weights (some weights must be positive 
and the rest must be negative). Then in the third section of this chapter 
we fuzzify to get a fuzzy neural net. Our applications of fuzzy neural nets 
is to construct hybrid fuzzy neural nets for fuzzy functions. There is now 
no approximation, the output from the hybrid fuzzy neural nets will exactly 
equal the values of the fuzzy function. 

13.2 Layered, Feedforward, Neural Nets 

In this section we will first introduce layered, feedforward, neural nets (abbre­
viated simply as "neural net") and then show how they compute outputs from 
inputs. Then we show how certain neural nets can be used to approximate 
fuzzy functions and also approximate solutions to fuzzy equations. 

A simple "2-3-1" neural net is shown in Figure 13.1. The notation "2-3-1" 
means two input neurons, 3 neurons in the second layer and one neuron in 
the output layer. We will usually use three layers in this chapter. 

We first need to explain how the neural net computes its output y from 
its inputs x1 and x2. Real numbers x1 and x2 are sent to the input neurons. 
The input neurons simply distribute the Xi over the directed arcs shown in 
Figure 13.1 to the neurons in the second layer. All neurons have a transfer 
function and a shift term. The transfer function is represented by "f" inside 
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Input Layer Second Layer Output Layer 

y 

u 

Figure 13.1: A 2-3-1 Neural Net 
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the neuron. If there is no "!" inside a neuron, then the transfer function is 
the identity function i(x) = x for all x. Neurons using the identity function, 
only the input neurons in Figure 13.1, have no shift term. 

On each arc, connecting an input neuron to a neuron in the second layer, 
is a real number weight Wij. The neural net multiplies the signal Xi and the 
weight Wij, then adds these results over all incoming arcs, and this sum is the 
input to that neuron in the second layer. For example, the input to neuron 
#2 in the second layer is 

(13.1) 

Each neuron in the second layer adds a shift term ()i and inputs the result 
into the transfer function. The result, the value of the transfer function, is 
the output from that neuron. For example, the output from neuron #2 in 
the second layer is 

(13.2) 

The transfer function f is usually some continuous function mapping 
the real numbers into the interval ( -1, 1). Choices for f include f(x) = 
(1 + exp-x)-1 called the sigmoidal function, f(x) = (2/7r) arctan(x), and 
y = f(x) = tanh(x) (see Section 10.3). These functions, except the sig­
moidal, have the following properties: (1) they are monotonically increasing 
with f(O) = 0, f(x) < 0 for x < 0 and f(x) > 0 for x > 0 ; and (2) 
limx-too f(x) = 1 and limx-t-oo f(x) = -1. The sigmoidal function has the 
following properties: (1) 0 < f(x) < 1, (2) f(O) = 0.5, and (3) limx-too = 1 
and limx-t-oo = 0. We assume all the transfer functions within the neural 
net are the same function. 

The output from each neuron in the second layer is sent, along the di­
rected arcs shown in Figure 13.1, to the output neuron. Each arc connecting 
neurons in the second layer to the output neuron has a weight Ui· The process 
described above is repeated at the output neuron so the input is 

(13.3) 

The output neuron adds a shift term <p tot and inputs this to transfer function 
f. The final output from the neural net is 

y = f(t + <p). (13.4) 

Some, or all, of these shift terms can be zero. 
It is not too difficult now to generalize these computations to a "m-n­

p" neural net with m input neurons, n neurons in the second layer and p 
output neurons. We will abbreviate a neural net as NN so the input-output 
relationships in equations (13.1)-(13.4) are summarized as y = NN(x), for 
x = (x1, x2 ). For an m-n-p neural net we also write y = NN(x) for y = 
(y1, · · · ,yp) and x = (x1, · · · ,xm)· 

We are going to use neural nets to approximate values of functions. Let 
y = g(x) be a continuous function for x E [a, b]. Then it is well-known that 
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there is a 1-m-1 neural net NN so that NN(x) ~ g(x) for all x in [a, b]. 
The symbol "~" means that NN(x) is approximately equal to g(x) for all 
x in [a, b]. This approximation can be made less than 0.0001 or even less 
than 10-8 . By the phrase "there is a 1-m-1 neural net" means there exists a 
1-m-1 neural net with m neurons in the second layer, there are also weights 
Wij, Ui and shift terms and there is a transfer function f so that the required 
approximation holds. Let us fix the transfer function f as the sigmoidal 
transfer function. So given y = g(x) and [a, b] we can find m neurons for the 
second layer and all the weights and shift terms so that NN(x) ~ g(x) for 
all x in [a, b]. 

Now let us assume we know the value of m and the transfer function f is 
sigmoidal. How do we find the values for all the weights and shift terms? The 
weights and shift terms are found using a training (learning) algorithm and 
some data (x andy values) on the function g. We are not going to present 
a training algorithm in this book. There are now many training algorithms 
available by downloading them from websites. In your search engine use 
"neural nets", "neural networks", etc. to locate training (learning) software 
to download. For the rest of this chapter we will assume that any needed 
training ( finding the weights and shift terms) has already been completed. 
One can also use a genetic algorithm (Chapter 15) for training a neural net. 

The approximation result generalizes to y = g(x1 , · • ·, Xn) a continuous 
function for Xi E [ai, bi], 1 ~ i ~ n. Now there is an n-m-1 neural net NN 
so that N N(x1, · · ·, Xn) ~ g(x1, · · ·, Xn) for all Xi E [ai, bi], 1 ~ i ~ n. 

Let us now look at how we are going to design a neural net to: (1) 
approximate solutions to fuzzy equations (Chapter 5), and (2) approximate 
values of fuzzy functions. 

We begin with a neural net to approximate solutions to 

(13.5) 

for A= (ada2/a3) < 0, C = (cdc2/c3) > 0 and unknown X~ (xdx2/x3). 
The neural net will only approximate Xi, the a-cut and interval arithmetic 
solution (see Chapter 5) to equation (13.5). The solution is obtained by 
fuzzifying the crisp solution. The crisp solution to ax = c, a f; 0, is x = cf a. 
We fuzzify cfa by substituting a-cuts of C for c, a-cuts of A for a and simplify 
using interval arithmetic. We find that 

X·_ [c1(a),c2(a)) _ [c2(a) c1(a)) 
•- [a1(a),a2(a)) - a2(a)' a1(a) ' 

where A[a) = [a1(a),a2(a)), C[a) = [c1(a),c2(a)), because A< 0. 

(13.6) 

Now we design the neural net. It will be a 2-m-1, the transfer function 
is sigmoidal , the identity transfer function in the input and output neurons, 
no shift terms in the input and output neurons and sign constraints on the 
weights. The neurons in the second layer have f and shift term (}i and there 
are no sign constraints on the shift terms. By sign constraints on the weights 
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we mean some must be negative and the others must be positive. There are 
training algorithms for neural nets with sign constraints on the weights. 

Assume A is a triangular fuzzy number in the interval Ia = [a1, au], au < 0 
and Cis another triangular fuzzy number in the interval Ic = [cz, cu], c1 > 0. 
We now demand that all Wij < 0 and all Ui > 0. The reasons for these sign 
constraints will become clear as we work through the whole problem. Train 
the NN, with two inputs X1 = c E Ic and X2 = a E Ia, to approximate cja. 
That is, we have a continuous function y = g(a, c) = c/a for a E Ia and 
c E Ic, so there is a 2-m-1 neural net, as described above, with Wij < 0, 
Ui > 0, so that NN(a,c) ~ c/a for all a E Ia and all c E Ic. 

Once trained, input x1 = [c1(o:),c2(o:)] and x2 = [a1(o:),a2(o:)]. We now 
argue that the output y is an interval [y1 ( o:), Y2 ( o:)] and 

(13. 7) 

for all o:. That is, the output approximates o:-cuts of Xi. We stress that now 
the neural net processes intervals and not just real numbers. Also, within 
the neural net it does interval arithmetic. We now go through all the details 
on how you compute the output. 

The input to the lh neuron in the second layer is 

(13.8) 

which equals 

(13.9) 

because w1j < 0 and w2 j < 0. Add the shift term ()i ( a real number, not an 
interval) and input to transfer function f. The output from the jth neuron 
in the second layer is an interval [ Zjl, Zj2] where 

(13.10) 

and 
(13.11) 

because f is monotonically increasing. Now the output equals the input in 
the output neuron so if y = [Yl ( o:), Y2 ( o:)] is the interval output we see that 

(13.12) 

and 
(13.13) 

because all the Ui > 0. We claim that Y1 ( o:) ~ c2 ( o:) / a2 ( o:) and y2 ( o:) ~ 
c1(o:)ja1(o:) for all o: E [0, 1]. 
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To see this we need to go back to the original trained neural net and 
y ::::; c/ a. If the inputs are x1 = c and x2 = a, then 

m 

y = 2::: Ujj(cwlj + aw2j + Bj)::::; cfa. 
j=l 

But from the interval neural net (wij < 0, Ui > 0) we have 

and 

m 

Yl(o:) = 2::: ujj(c2(o:)w1j + a2(o:)w2j + Bj), 
j=l 

m 

Y2(o:) = 2::: Ujj(cl(o:)wlj + a1(o:)w2j + Bj)· 
j=l 

(13.14) 

(13.15) 

(13.16) 

Substitute c2(o:) for c, a2(o:) for a in equation (13.14) and you get equation 
(13.15). Hence y1(o:)::::; c2(o:)/a2(o:). Also substitute c1(o:) for c and a1(o:) 
for a in equation (13.14) and you get equation (13.16). It follows that y2(o:) ::::; 
c1(o:)/a1(o:). Now do you see why we needed all Wij < 0 and all ui > 0? 

Next, let us design a neural net with sign constraints to approximate the 
values of the fuzzy function 

y = F(X) = A-X 
B·X+1' 

(13.17) 

for triangular fuzzy numbers A,B,X and A> 0, B > 0 and X> 0. Assume 
that A(B, X) are in intervals Ia(h, Ix)· 

We train a 3-m-1 neural net, with inputs x1 = a, x2 = band x3 = x, 
with sign constraints w2 j < 0, w3 j < 0 and all other weights positive, so that 
N N(a, b, x)::::; (a- x)/(bx + 1), for all a E I a, bE h and x E Ix. 

Now make the trained neural net process intervals. Input A[o:] = x1, 
B[o:] = x2, X[o:] = x 3 and let the interval output bey= [y1(o:),y2(o:)]. We 
claim that 

(13.18) 

and 

(13.19) 

If we substitute o:-cuts of A, B, X into equation (13.17) and simplify using 
interval arithmetic, then we get an interval [L(o:), R(o:)]. Hence, L(o:) is the 
right side of equation (13.18) and R(o:) is the right side of equation (13.19). 
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So, the interval output from the trained neural net , which processes a­
cuts of A, B, X, approximate [L(a), F(a)], the a-cut and interval arithmetic 
evaluation of F(X). 
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13.2.1 Exercises 

You are asked to design a neural net for a certain problem. The neural net 
will be k-m-1. The identity transfer function, and no shift terms, are in all 
input neurons and also in the output neuron. Assume the sigmoidal transfer 
function for all neurons in the second layer. There will be sign constraints 
on the Wij and the ui but no sign constraints on the shift terms (};. 

To "design" the neural net determine the value of k and the sign con­
straints on the Wij and Ui. Also tell all inputs to the interval neural net: 
x1 =7, · · ·, Xk =?. Assume all fuzzy sets are triangular fuzzy numbers. 

1. For Xi being a solution to A · X = C where: 

a. A> O,C > 0, 

b. A> o,c < o, 
c. A< o,c < o. 

2. For Xi being a solution to A· X+ B = C when: 

a. A > 0, B > 0, C > 0; 

b. A > 0, B > 0, C < 0; 

c. A> 0, B < 0, C > o. 
d. A > 0, B < 0, C > 0; 

e. A < 0, B > 0, C > 0; 

f. A < 0, B > 0, C < 0; 

g. A < 0, B < 0, C > 0; and 

h. A < 0, B < 0, C < 0. 

- -- -- - -2 -- -
3. For Y = F(X) when F(X) =A· X + B ·X+ C, for: 

a. A > 0, B > 0, C > 0 but X < 0; 

b. A > 0, B < 0, C < 0 and X > 0; 

c. A > 0, B < 0, C < 0 and X < 0; and 

d. A > 0, B < 0, C > 0 and X > 0. 

4. For Y = F(X) = Aexp(B ·X+ C) for: 

a. All positive fuzzy numbers; 

b. A > 0, B > 0, X > 0 but C < 0; 

c. A > 0, B < 0, X > 0, C > 0; and 

d. A > 0, B < 0, X > 0, C < 0. 

5. For Y = F(X) = Aln(B ·X+ C) for (in all cases B ·X+ C > 0): 
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a. All positive fuzzy numbers; 

b. A > 0, B > 0, X > 0, C < 0; 

c. A > 0, B < 0, X < 0, C > 0; and 

d. A < 0, B < 0, X < 0, C > 0. 

6. For Y in equation (13.17) for: 

a. A < 0, B > 0, X > 0; 

b. A > 0, B < 0, X > 0; and 

c. A < 0, B < 0, X < 0. 

7. Find, and download, training software for layered, feedforward, neural 
nets allowing for sign constraints on the weights. Then do the training 
for the example A· X= C, A< 0 the rest positive, in the text. Find 
the a-cuts for X using the trained neural net and compare to the exact 
values given in equation (13.6). 
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13.3 Fuzzy Neural Nets 

In Figure 13.1 we get a fuzzy neural net when some of the Xi, Wij, Ui and 
shift terms are continuous fuzzy numbers. We have a Type I fuzzy neural 
net when the only thing fuzzy is the input. Type II when everything can be 
fuzzy except the inputs. If the inputs, weights and shift terms are all fuzzy 
we call it a Type III fuzzy neural net . 

Let us look at a Type III fuzzy neural net and see how the output Y is 
computed from the inputs X 1 and X 2 . The basic computations are the same 
as shown in equations (13.1)-(13.4). Assume a 2-3-1 structure as in Figure 
13.1. First compute XiWii for i = 1, 2 and j = 1, 2, 3. Then add to get 
X 1 W 1j+X2W 2i+8i for j = 1, 2, 3. Put this result into the transfer function 
f producing output Z j for j = 1, 2, 3. The Z i are easily found because f 
will be monotonically increasing. Multiply again ZjUj for j = 1, 2, 3 and 
add W = Z1U1 + · · · + Z 3U3 + cp. Then Y = f(W) is the final output. We 
went through this step-by-step to show that the extension principle method 
and the a-cut and interval arithmetic procedure will give the same result for 
Y. We mentioned in Section 4.3.3 that for elementary fuzzy arithmetic both 
methods produce the same result. That is just what we did, except for using 
a transfer function, to compute Y the output. Both procedures give the same 
result for f because the transfer function is monotonically increasing. So, we 
will employ the a-cut and interval arithmetic method within a fuzzy neural 
net to obtain the output. 

What we would do within a computer to find the output Y is to input 
a-cuts, say a= 0,0.1,···,1, of the fuzzy inputs xl,x2, do interval arith­
metic within the fuzzy neural net, then "stack up" the interval outputs to 
approximate Y. A Type I fuzzy neural net becomes a neural net of Section 
13.2 processing interval input. 

Let FNN denote a fuzzy neural net so that: (I) FNN(X) = Y, X = 
(X1,X2), for Type I; (2) FNN(x) = Y, x = (x1,x2), for Type II; and (3) 
F N N (X) = Y for Type III. X and x are vectors but also Y could be a vector. 
Type I and Type III are monotone increasing fuzzy functions. Let X a = 
(Xal,Xa2) and Xb = (Xbl,Xb2) be two possible input vectors. Monotone 
increasing means that if Xai ~ Xbi fori= 1,2, then Ya = FNN(Xa) ~ 
FNN(Xb) = Yb. The fact that Type I and Type III fuzzy neural nets are 
monotone increasing is important because if we want to use a fuzzy neural 
net to approximate the values of some fuzzy function Y = F(X), then F 
must also be monotone increasing. 

We will not need to discuss training of fuzzy neural nets in this section. 
However, one can use genetic algorithms (Chapter15) to do the training (also 
for crisp neural nets). 

What we want to do now is build hybrid fuzzy neural nets for fuzzy 
functions. A FNN is called a hybrid FNN when we use for transfer functions 
some other continuous operation, not one of those discussed in Section 13.2, 
within a neuron. The transfer function could be multiplication, division, etc. 
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For example, in Figure 13.1 for a hybrid Type III fuzzy neural net let the 
output from the second neuron in the second layer be 

(13.20) 

We multiplied the incoming weighted signals (assume the fuzzy shift term is 
zero). The transfer function was multiplication. The transfer function could 
have been division, or any other continuous operation. In a hybrid FNN 
there will be no restrictions, except that it is continuous, on how we might 
combine the incoming weighted signals. 

These hybrid FNNs will be built to do a specific job. There will be no 
training (learning) algorithm needed. Now let HFNN denote a hybrid fuzzy 
neural net. If we construct a HFNN for a fuzzy function Y = F(X), then 
HFNN(X) = F(X) for all X, this is an exact result and not an approxima­
tion. 

Example 13.3.1 

Build a HFNN for 

y = F(X) = 2X + 3 
X+1' 

(13.21) 

for X > 0 a continuous fuzzy number. The HFNN is shown in Figure 13.2. 
This is a Type I HFNN. If no transfer function "!" is included within a 
neuron, then it is to be the identity (i(x) = x) function. 

The input to neuron #1 in the second layer is 2X, it has the identity 
transfer function and the shift term is 3, so its output is 2X + 3. For neuron 
#2 in the second layer, its input equals 1X, identity transfer, shift term equal 
to one, and then its output is X + 1. The two inputs to the output neuron 
are 2X + 3 and X+ 1, the output neuron performs division with no shift 
term, so the final output is (2X + 3)/(X + 1) the value of F. 

Example 13.3.2 

A Type II HFNN for the fuzzy function 

Y = F(t) = (A.e-t)(Bt +C), (13.22) 

is in Figure 13.3. The function in neuron #1 in the second layer is f(t) = e-t, 
which is its output (zero shift term). The input to neuron #2 in the second 
layer is Bt, it has the identity transfer function and shift term C, so its output 
is Bt +C. The two inputs to the output neuron are Ae-t and Bt + C and 
the output neuron performs multiplication, so its output equals F(t). 
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Input Layer Second Layer Output Layer 

X 

Figure 13.2: Hybrid Fuzzy Neural Net for Example 13.3.1 

Input Layer Second Layer Output Layer 

Figure 13.3: Hybrid Fuzzy Neural Net for Example 13.3.2 
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Example 13.3.3 

A Type III HFNN for 

- - - - - -2 - - - - -2 
Z = F(X, Y) = A ·X + B · X · Y + C · Y , (13.23) 

is shown in Figure 13.4. It is a 2 - 3 - 3 - 1 HFNN, the only time within 
the text of this book that we shall use more than three layers. All neurons, 
except in the second layer, have the identity transfer function, with no shift 
terms. In the second layer h(x) = h(x) = x2 but h(x,y) = xy. All the 
shift terms in the second layer are zero. So the output from the second layer 

-2 --
is: (1) X for neuron #1; (2) X· Y from neuron #2; and (3) neuron #3 gives 
-2 --
Y . The outputs from the third layer are: (1) A· X from neuron #1; (2) 

--- - -2 
neuron #2 produces B ·X· Y; and (3) C · Y from neuron #3. The output 
neuron adds all its inputs, no shift term, so the final output equals F(X, Y). 
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Input Second Layer Third Layer Output 

A 

X 

y 

Figure 13.4: Hybrid Fuzzy Neural Net for Example 13.3.3 
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13.3.1 Exercises 

1. Show that a Type I FNN is a monotone increasing fuzzy function. 

2. Show that a Type III FNN is a monotone increasing fuzzy function. 

In the following problems you are asked to design a HFNN to compute 
the values of a fuzzy function. Draw a network diagram, indicate all weights 
and shift terms and define all transfer functions. You may have to use more 
than three layers. Indicate all inputs to the HFNN. Also state if it is to be 
a Type I, or II, or III HFNN. The A,··· ,E are all constants and X, Y, Z, 
and W and t are the variables. 

3. For the fuzzy linear functions: 

a. Y = At+B, 
b. Y = 6X + 10, and 

c. Y= A·X +B. 

4. For the fuzzy quadratic functions: 

- -2 -
a. Y=6X -2X+10, 

b. Y = At2 + Bt + C, and 

c. Y = A· X 2 + B ·X +C. 

5. For the fuzzy rational functions: 

a Y = ~t+! and 
. Ct±D' 

b y = ~·:!+!. 
. C·X±D 

6. For the fuzzy exponential functions: 

a. Y = 6exp( -2X + 4), 

b. Y = Aexp(Bt +C), and 

c. Y = Aexp(B ·X+ C). 

7. For the fuzzy log functions: 

a. Y = 6ln(2X + 4), 

b. Y = Aln(Bt +C), and 

c. Y=Aln(B·X+C). 

8. For the fuzzy sine functions (input to sine is in the interval [ -7r /2, 1r /2]): 

a. Y = 2sin(7rX + 1), 

b. Y = Asin(Bt +C), and 
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c. Y = Asin(B ·X+ C). 

9. For the fuzzy tangent functions: 

a. Y = -4tan((7r/2)X- 1), 

b. Y =A tan(Bt +C), and 

c. Y =A tan(B ·X+ C). 

10. For the fuzzy hyperbolic sine functions: 

a. Y = 26sinh(7X + 13), 

b. Y = Asinh(Bt +C), and 

c. Y = Asinh(B ·X+ C). 

11. For the fuzzy hyperbolic tangent functions: 

a. Y = -4tanh(3X + 2), 

b. Y =A tanh(Bt +C), and 

c. Y =A tanh(B ·X+ C). 
- - -2 - - - - -2 - - - -

12. Z=A·X +B·X·Y+C·Y +D·X+E·Y. 

13. w = x- VY2 + z2 . 

14. W = (exp(3X + 4Y))(cos(5Z)). Assume the input to cosine is in the 
interval [0,1r]. 



Chapter 14 

Approximate Reasoning 

14.1 Introduction 

A method of processing information (data) through fuzzy rules is called ap­
proximate reasoning. If we have only one fuzzy rule like "if size is big, then 
speed is slow", and we are given a (fuzzy) value for size, then approximate 
reasoning gives us a method of computing a conclusion about speed. The 
terms "big", "slow" and the data for "size" are all represented as fuzzy sets. 
The single rule case is discussed in the next section and multiple fuzzy rules 
are studied in the third section. Also in the third section of this chapter we 
look at two methods of evaluating a block of fuzzy rules: (1) FITA, or first 
infer and then aggregate; and (2) FATI, or first aggregate and then infer. 

In computer applications we usually discretize all the continuous fuzzy 
numbers and this, for multiple fuzzy rules, is explained in the fourth section. 
There are situations of fuzzy rules where approximate reasoning can not be 
used. This happens when we can not assign fuzzy numbers to all the terms 
in a fuzzy rule and examples of this , together with fuzzy rule evaluation for 
this type of fuzzy rule, is in the last section, section five. 

14.2 Approximate Reasoning 

Approximate reasoning is concerned with evaluating a fuzzy rule like 

if xis A, then y is B. (14.1) 

In this rule we have two universal sets X andY, x(y) is a variable taking 
its values in X(Y) and A(or B) is a fuzzy subset of X(or Y). Later on we 
will consider more than one rule. 

Where do these fuzzy sets A and B come from? Usually these fuzzy sets 
come from the values of linguistic variables. Consider two linguistic variables 
Size and Speed. Size has members tiny, small, medium, large, very large and 
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X 

Figure 14.1: Fuzzy Numbers for Linguistic Variable Size 

X 

Figure 14.2: Fuzzy Numbers for Linguistic Variable Speed 

huge. The members of Size are defined by fuzzy numbers and an example of 
this is shown in Figure 14.1. 

We have A1 for tiny, A2 for small, ···,and A6 for huge. We used triangular 
fuzzy numbers for A2 , · · ·, A5 , a trapezoidal fuzzy number A6 for huge and 
half a triangular fuzzy number A1 (since x 2:: 0) for tiny. 

Speed has members very slow, slow, medium, fast and very fast, all defined 
by fuzzy numbers an example of which is in Figure 14.2. 

We use B1 for very slow, · · ·, and B 5 for very fast. 
With this new information the rule in equation (14.1) might now read 

if x is very large, then y is slow. (14.2) 

For very large we substitute A5 and for slow we would use B 2 • 

Given some data x = A', a non-negative continuous fuzzy number repre­
senting the size of some object, what should be the conclusion y = B' about 
its speed? First we usually choose some implication operator I from classical 
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logic. Implication operators I were discussed in Chapter 2 (Section 2.2). I 
is to model the implication 

(x is A) -+ (y is B), (14.3) 

in the rule. I(a, b) will be a number in [0, 1] for all a, b E [0, 1]. We fuzzify 
I by replacing "a" by A(x) and substituting B(y) for "b" producing a fuzzy 
relation (Chapter 7) R on X x Y defined by 

R(x, y) = I[A(x), B(y)]. (14.4) 

Example 14.2.1 

Choose the Lukasiewicz implication operator I( a, b) = min(1, 1- a+ b). So 
R(x,y) = min(1, 1- A(x) + B(y)). For continuous fuzzy numbers A and B, 
so X andY are the sets of real numbers, z = R(x, y) will be a surface in R 3 . 

Given the data x = A' we compute the conclusion y = B' using the com­
positional rule of inference. We discussed the composition of fuzzy relations 
in Section 7.2 of Chapter 7. Symbolically it is written as B' =A' oR. From 
the composition of fuzzy relations we obtain the membership function for B' 
as follows 

B'(y) = sup{min{A'(x), R(x, y)} }, (14.5) 
X 

for each y E Y. Notice that we used t-norm Tm =min in equation (14.5). 
We may also use n, Tp or T*. 

We are only using one rule in equation (14.5). But with only one rule the 
whole process is a mapping (a fuzzy function) from fuzzy subsets A' of X into 
fuzzy subsets B' of Y. Let us call this fuzzy function AR, for approximate 
reasoning, so that 

B' = AR(A'), (14.6) 

for A' fuzzy subset of X and B' fuzzy subset of Y. AR depends on I, the 
implication operator used, and on the t-norm employed in equation (14.5). 

In general it is difficult to evaluate equation (14.5) for continuous fuzzy 
numbers, but if the input is crisp, we may more easily find the conclusion B'. 

Example 14.2.2 

Consider crisp input 

A'(x) = { 1' 0, 
X= Xo, 

otherwise. (14.7) 



234 CHAPTER 14. APPROXIMATE REASONING 

Then we see, using the Lukasiewicz implication operator from Example 
14.2.1, that 

B'(y) = min(1, 1- A(x0 ) + B(y)), (14.8) 

ally E Y. Now B'(y) depends on the value of A(x0 ). IfA(xo) = 1, then B' = 
B. If A(x0 ) = 0, then B'(y) = 1 for ally. We obtain complete uncertainty 
in our conclusion (membership function identically one) for A(x0 ) = 0. 

Example 14.2.3 

There is a popular method of determining a conclusion B' from an input A' 
not depending on an implication operator from classical logic. For the fuzzy 
rule in equation (14.1) the fuzzy relation is simply 

R(x, y) = min(A(x), B(y)). (14.9) 

Then we find the conclusion B' as in equation (14.5). If we have crisp 
input as in Example 14.2.2, then 

B'(y) = min(A(x0 ), B(y)). (14.10) 

If A(x0 ) = 0.6 , then 

B'(y) = { B(y), B(y) ~ 0.6, 
0.6, B(y) > 0.6. 

(14.11) 

The "top" of B(y) was cut off at height 0.6 to determine the conclusion. 

There are two basic and important properties desired of approximate 
reasoning. The first one is consistency, or if the input data x = A' matches 
the antecednt of the fuzzy rule [the A in equation (14.1)], then the conclusion 
should match the conclusion of the fuzzy rule [the B of equation (14.1)). That 
is, if x =A' =A, then y = B' =B. In the approximate reasoning function 
notation 

(14.12) 

for consistency. 
For consistency from equation (14.5) we need 

B(y) = sup{min{A(x), I(A(x), B(y))}, (14.13) 
X 

using implication operator I and the t-norm min. 
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Example 14.2.4 

Let A = (1/2/3) and B = (10/12/14) in equation (14.1) and keep I as 
the Lukasiewicz implication operator in Example 14.2.2. To show that this 
method of approximate reasoning is not consistent all we need to do is find 
some value of y, say y0 , so that B'(y0 ) =J B(y0 ), where we find B' from 
equation (14.5) using A'= A. Choose y0 = 11. Then B(ll) = 0.5. Equation 
(14.5) gives 

B'(ll) = max{min{A(x), min(1, 1.5- A(x))} }, 
X 

(14.14) 

which equals 0.75. This method of approximate reasoning is not consistent. 

Example 14.2.5 

Keep the same A and B as in Example 14.2.4 but change I to 

I( a, b) = { !: ~; ~ (14.15) 

called the Godel implication operator. Form R(x, y) = I(A(x), B(y)) and 
evaluate equation (14.5) using A' =A. Now we have consistency B = AR(A). 

Consistency comes from the modus ponens in classical logic: if a ~ b and 
given "a", then "b". The classical modus tollens is: if a~ band given b (not 
b), then conclude a (not a). This brings us to the second desired property 
of approximate reasoning: given y =Be in the fuzzy rule in equation (14.1), 
then the conclusion should be x = Ae. What this means is input Be for A' 
and get Ae for B'. Or 

(14.16) 

Example 14.2.6 

This continues Example 14.2.5, same A, B and I. We wish to check to see if 

1- A(x) = max{Tb{1- B(y),R(x,y)}}, (14.17) 
y 

for all x. We may argue (see the exercises) that this equation does hold so 
that Ae = AR(Be) is true for this implication operator I and t-norm n. 

The fuzzy inference scheme given by the rule "if x is A, then y is B, given 
xis A', conclude y is B' " is called the generalized modus ponens. The fuzzy 
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inference scheme given by "if x is A, then y is B, given y is B', conclude x is 
A' " is called the generalized modus tollens. 
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14.2.1 Exercises 

1. Let R be a crisp relation on the set of real numbers. That is, R is a 
subset of R x Rand we write R(x, y) = 1 if (x, y) E Rand R(x, y) = 0 
otherwise. Relation R models the implication 

if xis in A, then y is in B, 

for A and B crisp subsets of R. 

Let 
B1 = {y E RIR(x,y) = 1, x E A}, 

and 
B2 = max{min{A(x), R(x, y)} }. 

X 

We write (as in Chapter 3) A(x) for the characteristic function of A 
(A(x) = 1 if and only if x E A). Show that B 1 = B 2 . The expression 
for B2 is the crisp version of equation (14.5). Does this result depend 
on the fact that the universal set was the set of real numbers? That is, 
could we get the same conclusion if R was a crisp relation on arbitrary 
set X? 

2. Let I be the Lukasiewicz implication operator of Example 14.2.1. Using 
t-norm min and equation (14.5) show that if A' n A = "¢ (with t­
norm min for intersection), then B' (y) = 1 for all y in Y (complete 
uncertainty in the conclusion). 

3. Use A and B from Example 14.2.4 and the Lukasiewicz implication 
operator I. Suppose A' = (2/3/4). Show that B' (y) ~ 0.5 for ally in 
Y. Is this a desirable or undesirable result of approximate reasoning? 

4. Use the R from Example 14.2.3. Show that if A' n A= (/J (with min for 
intersection), then equation (14.5) gives B' (y) = 0 for ally in Y. Com­
ment on this result as being desirable or undesirable for approximate 
reasoning. 

5. Show that in Example 14.2.4 that B' (11) does equal 0.75. 

6. Redo Example 14.2.4 using t-norm n for min in equation (14.5). 

7. Show that in Example 14.2.5 that you do get B' =B. 

8. Redo Example 14.2.5 using t-norm T* for min in equation (14.5). 

9. In Example 14.2.6 show that AR(Bc) = Ac. Would this result also be 
true if we used t-norm T m? 
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10. Redo Example 14.2.5 with the data A= (10/12/14) and B = (1/2/3). 
Do we still get B = AR(A)? Do you think this result will hold for all 
A fuzzy subsets of X and all B fuzzy subsets of Y? 

11. Consider the Gaines-Rescher implication operator which is: I( a, b) = 1 
if a :S band I(a, b) = 0 otherwise. Using the A and B from Example 
14.2.4 and equation (14.5) do we obtain B = AR(A)? 

12. Using I from Problem 11, A and B from Example 14.2.4, do we get the 
result AR(Bc) = Ac? 

13. If A is any triangular fuzzy number and I is the Godel (Example 14.2.5) 
or the Gaines-Rescher (Problem 11) implication operator, then show 
that AR(A) = B for any fuzzy subsets A and B of the real numbers. 

14. In Example 14.2.2 find B' (y) for other values of A(x0 ), like 0.25, 0.5, 
0.75. 

15. Another method of finding B' from a given A', not using an implication 
operator from classical logic, is to define the fuzzy relation as 

R(x, y) = A(x)B(y). 

a. Given crisp input A' (x) = 1 if x = x0 and equals zero otherwise, 
find B'(y) if A(x0 ) = 0, 0.5, 1. 

b. Using t-norm min in equation (14.5) and this R, is approximate 
reasoning consistent? 

c. Using this Rand equation (14.5), t-norm min, does AR(Bc) = Ac 
hold? 

16. If X and Y are finite it is usually easier to find B' given x = A'. Let 
X= {x1, · · · ,x4} andY= {y1,y2,Y3}. Then R(xi,Yj) can be shown 
as a 4 x 3 matrix. Let 

and 
B = { 0.5' 0.8, _!_ }. 

Y1 Y2 Y3 

Form R using the Lukasiewicz I and call it RL. Also calculate R using 
the min operator of Example 14.2.3 and call it Rm and find R from the 
Godel I of Example 14.2.5 and call it Ra. Use t-norm min in equation 
(14.5). 

a. Which R makes approximate reasoning consistent? 
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b. Which R satisfies AR(F) = if? 

17. Rework Example 14.2.2 using the Reichenbach implication I(a, b) = 
1- a+ ab. 

18. How would you develop the theory of approximate reasoning if in equa­
tion (14.1) A and B were both type 2 (or both level 2) fuzzy sets? 

19. In approximate reasoning R is a fuzzy relation. So let R be a fuzzy 
equivalence relation on X x Y. In what ways will the theory of approx­
imate reasoning change, if we use this R, from approximate reasoning 
derived from a fuzzy relation computed from a crisp implication oper­
ator from classical logic? 

20. In approximate reasoning we would like both equations (14.13) and 
(14.16) to hold. Consider A and B given and fixed. Can you then 
always solve equations (14.13) and (14.16) for a fuzzy relation R so 
that both equations are true? Use t-norm min in the compositions. 
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14.3 Multiple Rules 
A block of fuzzy if-then rules is 

(14.18) 

1 :::; i :::; N, where the Ai are fuzzy subsets of X and the Bi are fuzzy subsets 
of Y. Usually we need more than one rule to draw a reasonable conclusion. 
We would replace the single rule in equation (14.1) by a block offuzzy rules: 

if xis huge 
if x is very large 

if xis large 

if x is medium 

if xis small 

if x is tiny 

then y is very slow, 

then y is slow, 

, then y is medium, 

, then y is medium, 
, then y is fast, 

, then y is very fast. 

(14.19) 

Now given data on size x = A', what will be the conclusion for y being 
speed? All the terms huge, · · ·, very fast in the above block of rules are 
defined by the fuzzy numbers in Figures 14.1 and 14.2. After we substitute 
the Ai in Figure 14.1 for huge, · · ·, tiny and the Bi in Figure 14.2 for very 
slow, · · ·, very fast, then equation (14.19) becomes equation (14.18), N = 6. 

There are two basic methods to evaluate a block of fuzzy rule in approx­
imate reasoning given some data x = A': (1) FITA, or first infer and then 
aggregate, and and (2) FATI, or first aggregate and then infer. We first 
describe FITA. 

First choose an implication operator I from classical logic and we will 
use the same I in all the rules. For each rule construct the fuzzy relation 
Ri(x, y) = I(Ai(x), Bi(y)), 1:::; i:::; N. Given data x =A' execute (fire) each 
rule using equation (14.5) to obtain conclusion y = B' i, 1 :::; i :::; N. Then 
aggregate the B' i into a final conclusion B*. The aggregation operator could 
be union, defined by some t-conorm. We will assume union is the aggregation 
operation so that 

N 

B*=UB'i· 
i=l 

(14.20) 

We may think of obtaining from each rule B'1 or · · · or B' N and we model 
the "or" with union. 

FATI first aggregates all the rules into one (super or global) rule. This 
single rule is modeled by a fuzzy relation R which is the aggregate of all the 
Ri, 1 :::; i :::; N. If we also aggregate using union then 

N 

R= URi. (14.21) 
i=l 



14.3. MULTIPLE RULES 241 

Given data x = A' we only execute (fire) one rule given by R and we 
compute the final conclusion B* using equation (14.5). 

Let us abbreviate the method of going from A' to B* under FITA as 
B* = FITA(A'), a fuzzy function. Also, let B* = FATI(A') be the fuzzy 
function under FATI. Both methods depend on the implication operator I, 
the t-norm used in equation (14.5) and the method of aggregation. Let us 
assume that FITA and FATI both use the same I in all rules, both use 
the same t-norm in equation (14.5) and both employ union for aggregation. 
We now wonder: (1) what is the relationship, if any, between FITA and 
FATI?; (2) is either method consistent?; and (3) does either procedure satisfy 
Ll(B~) =A~, 1:::; i:::; N, for Ll being FATI or FITA? 

Example 14.3.1 

Given some data on size x = A' we will evaluate the block of rules given in 
equation (14.19). We will first evaluate using a new method that will turn 
out to be equivalent to FATI. We need to put numbers into Figures 14.1 and 
14.2: (1) let a1 = 10, a2 = 20, · · ·, a7 = 70 kilograms for Figure 14.1; and 
(2) b1 = 20, b2 = 40, b3 = 60, b4 = 80, bs = 100, b6 = 120 kph. For input let 
A'= (40/45/50). 

We first find hi the height of the intersection of A' and Ai, or 

(14.22) 

for 1 :::; i :::; 6. Define 
(14.23) 

for 1 :::; i :::; 6 and 

(14.24) 
i=l 

We cut off the top of each Bi at height hi and then union (using the t-conorm 
max) for all the results. 

In this example we find that h1 = · · · = h4 = 0 but h5 = h6 = 2/3. B* 
is shown in Figure 14.3. If we need a crisp answer for speed, then defuzzify 
B*. To defuzzify a fuzzy set is to assign a representable crisp number to the 
fuzzy set. We could use the center of the core, or the center of gravity, as the 
defuzzified value. Defuzzification was discussed in Section 4.6 of Chapter 4. 

Next consider the FATI discussed above. For each rule use the R in 
Example 14.2.3. That is 

(14.25) 

Aggregate all the Rs, 1 :::; s:::; 6, using union (the t-conorm max) to fuzzy 
relation R. Given A' = (40/45/50), use equation (14.5) to obtain B'. Then 
B' = B* in Figure 14.3. 
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0 
X 

Figure 14.3: Conclusion in Example 14.3.1 

14.3.1 Exercises 

1. In Example 14.3.1 use the same R, same data A', etc and find the 
final fuzzy conclusion using FITA. Is FIT A(A') ~ FAT I(A') or is 
FATI(A') ~ FITA(A')? 

2. Can FITA be consistent? Construct a block of two rules (N = 2) 
and find A' equal to A1 (or A2) so that B* =/:- B 1 (or B2). Use any 
implication operator used in Section 14.2. This will show that FITA 
may not be consistent. 

3. Do the same as in Problem 2 for FATI. 

4. Do the same as in Problem 2 to show that FIT A(~) may not equal 
-c 
Ai. 

5. Do the same as in Problem 4 to show that FAT I(~) may not equal 
A~. 

6. In Example 14.3.1 show that FAT I(A') = B*. 

7. Design a HFNN (use the instructions to the problems in Section 13.3.1) 
for FITA. 

8. Design a HFNN for FATI. 

9. Let X= {x1, · · · ,x4} andY= {yl,Y2,Y3}· We have three fuzzy rules 
"if x = Ai, then y = Bi'', 1 ~ i ~ 3, where the membership values of 
these fuzzy sets are: 

a. A1: 1, 0.7, 0.4, 0.2; 

b. A2: 0.2, 0.4, 1, 0.7; 

c. A3 : 0.2, 0.4, 0.7, 1; 
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d. B1: 0.3, 0.8, 1; 

e. B 2 : 0.3, 1, 0.8; and 

f. B 3 : 1, 0.8, 0.3. 

Use the A' given below to find B* for I being the Lukasiewicz implica­
tion operator, for I being the Godel implication and R equal min from 
Example 14.2.3. Also use the t-norm min in equation 14.5 and use the 
t-conorm max for union. Do both FATI and FITA and compare the 
results. 

i. A' = (0.2, 0.4, 1, 0.7); 

ii. A' = (0.5, 0.5, 0.5, 0.5); and 

iii. A' = (1, 1, 1, 1). 

10. We may summarize FITA as B* U(A' o Ri) and FATI as B* 
A' o (URi)· Here we think of connecting the rules with "or" and using 
"union" to model "or". If we think of connecting the rules with "and", 
then we would aggregate using intersection. Let B* = n(A' o Ri) and 
B* =A' o (n Ri)· Model union with Cm =max and intersection with 
T m = min. Consider using the Lukasiewicz I, the Godel I and the 
R equal min of Example 14.2.3. What relationships are there, if any, 
between these four methods of finding B*? 
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14.4 Discrete Case 

Consider evaluating the block of rules in equation (14.18) when all the A;, 
B; and data A' are continuous fuzzy numbers. In computer applications 
we would first discretize all fuzzy numbers. Suppose all the A; and all the 
possible data values A' are continuous fuzzy numbers in an interval [ a1, b1). 
Choose a positive number M and numbers x; so that a1 = x 1 < x2 < · · · < 
XM = b1 . Define A;(xj) = a;j, 1 ::::; i ::::; N, 1 ::::; j ::::; M and aj = A'(xj) , 
1 ::::; j ::::; M for the data. Let a; = ( a;1, · · · , a;M), a' = (a~ , · · · , a~). 

Example 14.4.1 

Let A1 = (0.5/0.75/1.0) and [a1, b1) = [0, 1). If M=ll and 0 = x1 < 0.1 = 
x2 < · · · < xu = 1.0, then a discrete approximation to A1 is 

Al :=:;;j {an a12 . . . a1,11} 
' ' ' ' Xl X2 Xu 

(14.26) 

or 

A1 :=:;;j {_2_ ... _2_ 0.4 0.8 0.8 0.4 _Q_} 
' ' ' ' ' ' ' 0 Xl X6 X7 Xs Xg XlQ Xu 

(14.27) 

Notice that nowhere in the discrete approximation is the membership 
value equal to one. We can change the Xj values so that somewhere the 
membership is one, but for N = 20 and hundreds of possible values for 
A' we will be unable to choose the x j so that all discrete approximations 
are normalized. The fact that some discrete approximations may not be 
normalized (no membership value equals one) will be important if we want 
to check consistency. 

Now discretize the B;, B' i and B* of Section 14.3. Suppose all of these 
continuous fuzzy numbers are in the interval [a2 , b2 ). Choose positive integer 
P and YJ so that a2 = Y1 < Y2 < · · · < YP = bz. Let f3iJ = B;(YJ),J3L 
B' i (YJ), f3J = B* (YJ) and /3; = (f3il, · · ·, f3;p), /3~ = (/3~1 , · · · , /3~p) and /3* = 
(f3i, · · ·, /3?). Using FITA, or FATI, the input is a' and the output is f3*. 

First choose an implication operator I and compute an M x P (Type I) 
fuzzy matrix Ra whose elements r aij in the interval [0, 1) are 

(14.28) 

for 1 < a < N. We obtain a fuzzy relation Ra for each rule. Then equation 
(14.5) becomes 

a 1 oRa = /3~, (14.29) 

1 ::::; a ::::; N. The composition "o" in the above equation is the max-min 
composition. That is 
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(3~j = m?JC{min{a~,Taij}}, 
• 

(14.30) 

for 1:::; j:::; P. 
Now let us first look at FITA. Fire (execute) each rule given the data a' 

to obtain (3~, 1 :::; a :::; N, and aggregate using t-conorm max to get the final 
conclusion (3* whose components are 

(14.31) 

Under FATI we first aggregate all the Ra using max to get an M x P 
fuzzy matrix R whose elements are 

(14.32) 

The final conclusion is 

(3* =a' oR. (14.33) 

So in FITA we have 

(3* =max{ a' oRa}, 
a 

(14.34) 

but in FATI it is 

(3* =a' o {maxRa}· 
a 

(14.35) 

From these two previous equations we can see that 

FITA(a'):::; FATI(a'), (14.36) 

for all data a'. 

Example 14.4.2 

This example will use FATI, N = 3, M = P = 11 and A1 = B 3 = (0/0.2/0.4) 
, A2 = B2 = (0.3/0.5/0.7) and Ag = B1 = (0.6/0.8/1). There are only three 
rules with linguistic interpretations A1 = Bg = "low", A2 = B 2 = "medium" 
and A3 = B1 = "high". So the first rule would be: "if x is low, then y is 
high". 

All fuzzy sets belong to the same interval [0, 1] with X1 = Y1 = 0, x2 = 
Y2 = 0.1, · · ·, xu = Yu = 1.0. We will use R equal to min from Example 
14.2.3. So we compute ai, a', f3i, (3~ and construct Ra for each rule. Each Ra 
is an 11 x 11 fuzzy matrix. For example R1 is mostly zero except for rows 2 
through 4 and columns 8 through 10 where the values are either 0.5 or 1.0. 
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Also, a 1 = /33 = (0, 0.5, 1, 0.5, · · ·, 0), a2 = /32 = (0, 0, 0, 0, 0.5, 1, 0.5, 0, 0, 0, 0) 
and a 3 = /31 = (0, · · ·, 0, 0.5, 1, 0.5, 0). 

Now form R = maxa{Ra}· If we input A' = A1 , or a' = a1, we easily 
see that /3* = /31. Now input a' = (0, 0, 0, 0.5, 1, 0.5, 0, 0, 0, 0, 0) for A' = 
(0.2/0.4/0.6). Then 

{3* = (0, 0, 0, 0, 0.5, 0.5, 0.5, 0, 0, 0, 0). (14.37) 

What, if any, linguistic term can you assign to this {3*? A' was chosen in 
between A1 and A2. 

We may design a hybrid neural net for FITA and FATI. A hybrid neural 
net is similar to a hybrid fuzzy neural net discussed in Section 13.3 in Chapter 
13 except for that the signals, weights and shift terms are all real numbers 
in a crisp hybrid neural net. 

Figure 14.4 shows a hybrid neural net for FITA when M = P = N = 2. 
Recall, there is no training (learning) needed in a hybrid neural net because 
it is designed to compute the same output as FITA. All neurons have the 
identity transfer function. 

The weights from the input neurons to the second layer are the elements in 
R1 and R2 . We will use min in place of multiplication and max for addition. 
So the input to neuron #3 in the second layer is 

(14.38) 

which is also its output. So the second layer computes f3L and f3b, j = 1, 2. 
The weights to the output neurons are all equal to one and we multiply the 
signal by one but combine using max. The input (which is the same as its 
output) to neuron #1 in the output layer is 

(14.39) 

A hybrid neural net for FITA would be used for fast parallel computation, 
especially when there are many rules in the block of rules and when there are 
multiple clauses in the antecedent part of the rules. 



14.4. DISCRETE CASE 247 

Input Layer Second Layer Output Layer 

Figure 14.4: Hybrid Neural Net for FITA 
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14.4.1 Exercises 

1. Determine the number of neurons needed in each layer in Figure 14.4 
for arbitrary values of N, M and P. 

2. Design a hybrid neural net for FATI when M = N = P = 2. Then 
determine the number of neurons needed in each layer for arbitrary 
values of M, Nand P. 

3. Suppose we have only one rule: "if x = A, then y is B ". Assume 
we discretize A and all the possible data A' so that A(xj) -=/:- 1 for 
1 ::; j ::; M. Given data x = A' = A, show that the conclusion will not 
equal (3, the discretized B, so that approximate reasoning will not be 
consistent. Use any implication operator from Section 14.2. 

4. Show that equation (14.36) is correct. 

5. In Example 14.4.2 find (3* if the data is: 

a. A' = (0.5 /0, 7 /0.9), and 

b. A' = (0.1/0.5/0.9). 

6. Rework Example 14.4.2 using the following implication operators: 

a. I(a, b) = min(1, 1- a+ b), 

b. I(a, b) = 1 if a::; band it is zero otherwise, and 

c. I(a, b) = 1 if a::; band it equals b otherwise. 

7. Show how to simplify Example 14.4.2 if we have crisp input. 

8. Rework Example 14.4.2 using FATI. Compare your answers. 

9. How would FATI be simplified if we had crisp input? 

10. We may also aggregate using min for intersection (Problem 10, Section 
14.3.1). That is B* = n{A'oRi} orB*= A'o{nRi}· Rework Example 
14.4.2 this way for FATI and FITA. 

11. Let R(xi, Yj) = A(xi)B(yj) as in Problem 15 in Section 14.2.1. Use this 
method of finding the fuzzy relation for each rule in Example 14.4.2 and 
compare your results to those in Example 14.4.2. 

12. This continues Problem 3. Assume that we discretize B to (3 so that 
(33 -=/:- 1 for all j. Now input 1- (3 for Be. Use the implication operator I 
from Problem 11 in Section 14.2.1 (the Gaines-Rescher implication and 
t-norm Tm)· Do we get for output 1- a (for A c)? This is the discrete 
version of the equation AR(lf) = Ac studied in Section 14.2. 
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14.5 Other Methods 

Approximate reasoning is not the only method of evaluating a fuzzy rule 
or a block of fuzzy rules. We saw that approximate reasoning has certain 
problems: (1) it may not be consistent; (2) AR(Bc) = Ac may fail to hold; 
(3) the situations pointed out in problems #2, #3 and #4 of Section 14.2.1; 
and (4) we may obtain a fuzzy conclusion (Figure 14.3) which is difficult to 
interpret. So, one may search for other methods of evaluating fuzzy rules 
which do not have these drawbacks. However, there are situations when we 
can not use approximate reasoning. 

The linguistic variables Size and Speed defined in Section 14.2 are called 
numeric linguistic variables because their terms (members) can be specified 
by continuous fuzzy numbers (Figures 14.1 and 14.2). But there are also 
non-numeric linguistic variables. For non-numeric linguistic variables we can 
not define their terms by fuzzy numbers. 

Example 14.5.1 

An example of a non-numeric linguistic variable is "Mental Health" with 
members major-depression, bipolar-disorder and schizophrenia. We can not 
assign continuous fuzzy numbers, in some interval [a, b], to these terms. 

Consider a block of rules to determine the mental disorder of a patient: 

1. if ( · · ·), then diagnosis = major depression, 

2. if(···), then diagnosis= bipolar-disorder, 

3. if(···), then diagnosis= schizophrenia. 

The antecedent [the(···) part] of each rule is not important at this point. 
What the rules are to accomplish is to determine the membership values in 
the discrete fuzzy set 

D. . { f.Ll JL2 f.L3} 
zagnoszs = M _ D, B _ D, S , (14.40) 

where M - D is major-depression, B - D is bipolar-disorder and S denotes 
schizophrenia. We want the block of rules to determine the f.Li in equation 
(14.40). Notice that there are no fuzzy sets in the conclusion part (the "then 
" part) of these rules. Hence, approximate reasoning can not be used. 

The left side of the rules (the antecedent) may or may not contain fuzzy 
sets. Given some data, how do we evaluate this type of rule? Each clause in 
the antecedent (left side) is evaluated using the data and then we combine 
these values, using t-norms and t-conorms, into a final confidence value for the 
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left side of the rule. This final confidence is then assigned to the conclusion 
part of the rule. For example, in the second rule in the block of rules given 
above, suppose this final antecedent confidence is 0.7. Then we assign 0.7 
to the right side (bipolar-disorder) so that J.L2 = 0.7 in the discrete fuzzy set 
called Diagnosis [equation (14.40)]. 

Example 14.5.2 

Let the left hand side of the first rule, in the block of rules above, be: "if (pa­
tient has depressive symptoms) and (symptoms have lasted for at least one 
month), then · · ·". During an interview with the patient a doctor evaluates 
his/her degree of confidence in "has depressive symptoms" as 0.7 and eval­
uates "lasted for at least one month" as 1.0. The two clauses are connected 
by an "and" so we choose at-norm T so that T(0.7, 1) is the final confidence 
in the antecedent. If T = Tm = min, then T(0.7, 1) = 0.7 and /.Ll = 0.7 in 
equation (14.40). 

So we see that this block of rules is evaluated completely different from 
approximate reasoning. The method discussed in this section is usually rec­
ommended for problems where we want to answer a question like "what is it". 
The possible answers are the terms in a discrete fuzzy set like for Diagnosis 
in equation (14.40). 

Example 14.5.3 

We want to decide what some object is that has been picked up on a radar 
screen. It could be a bird, a plane or a missile. Our classification depends on 
its Altitude, its Size and its Speed. Altitude, Size and Speed are all numeric 
linguistic variables whose terms are defined by continuous fuzzy numbers. 
The terms for Altitude will be: very low, low, medium, high, very high and 
very-very high. For Size we use Figure 14.1 and Figure 14.2 for Speed. There 
will be three primary blocks of rules: (1) the first block builds the discrete 
fuzzy for Altitude, (2) the second block produces the discrete fuzzy set Size, 
and (3) the last block of rules gives the discrete fuzzy set Speed. Using these 
three discrete fuzzy sets the final block of rules makes the discrete fuzzy set 
Classification which is 

Cl "j 0 t 0 { /.Ll /.L2 /.L3 } assz zca zon = b" d' -l--' . "l . zr p ane mzssz e 
(14.41) 

An example of a rule for Classification is: "if (size= smal~ and (altitude 
= very high) and (speed = very fast), then it is missile". 
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Given some data the four blocks of rules build the discrete fuzzy set 
Classification. The data is all crisp: real numbers for altitude, size and speed 
from the radar screen and other electronic devices. 
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14.5.1 Exercises 

1. Finish the discussion in Example 14.5.3 which should include: (1) values 
for the ai in Figure 14.1; (2) values for the bi in Figure 14.2; (3) fuzzy 
numbers for the terms in Altitude as in Figures 14.1 and 14.2; (4) 
examples of the rules in each of the blocks of rules for Altitude, Size 
and Speed; (5) examples of rules for the classification of "bird" and 
"plane"; and ( 6) given crisp data x = altitude, y = size and z = speed, 
explain how all the rules are to be evaluated. 

2. Design a rule based system to answer the following examples of "what is 
it?". Your discussion should follow that of Example 14.5.3 and Problem 
1 above. 

a. Diagnosis of why your car will not start. 

b. Classification of a movie as G, PG, R or X. 

3. Discuss other possible applications of this type of fuzzy reasoning. 



Chapter 15 

Genetic Algorithms 

Consider an optimization problem where we want to find the maximum of 
a continuous function y = f(x), x = (x 1 ,···,xn), for xED, where Dis a 
subset of Rn. We may first try calculus methods where we solve the system 
of equations of joxi = 0, 1 :::::; i :::::; n, inside D, for all the critical points (the 
candidates for max or min). But this is an n x n system of non-linear (in 
general) equations to solve simultaneously for all solutions in D. This is, in 
general, a difficult problem to solve. But we will also have to look on the 
boundary of D, assuming that D is a closed subset of R n, for the max. This 
procedure only applies to functions f which are continuously differentiable 
in D. What would we do if f were not differentiable over all of D? What 
would we do to find the maximum of fuzzy functions Y = F(X)? 

When calculus is too difficult to implement, or it is not applicable, we can 
try "search" methods. Random search is one such method. In this method 
we randomly generate M points xi, 1 :::::; i :::::; M, in D, trying to get some on 
the boundary of D when D is a closed set. Then we compute yi = f(xi), 
1 :::::; i :::::; M, and keep the largest value of yi, say y1• That is, y1 ;::: yi, for 
all i -:j; l. Our estimate of the maximum of f over D would then be y1 taken 
on at x = x1• If M is sufficiently large, like in the millions, then we can get 
a good approximation to the true maximum of f on D. Random search is 
considered very inefficient compared to a directed search procedure. Genetic 
algorithms are a type of directed search. 

At the first step of a genetic algorithm we randomly generate an initial 
population Po whose members xi are in D, 1 :::::; i :::::; M. Now M can be 
relatively small, depending on the problem, like 500, 1000 or 2000. Next we 
evaluate f(xi) = yi, 1 :::::; i :::::; M, to see how well we are doing in finding 
the maximum of f. Now select them "best" xi in Po to generate the next 
population P 1 . In this problem by "best" we mean them xi values producing 
the m largest values of f. Set Q to be the set of m best xi and rename them 
q1 , · · · , qm. Of course, 1 :::::; m :::::; M, but m can be much smaller than M as 
m = (0.1)M or m = (0.5)M. 
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We next describe how to get the next population P 1 from Po using 
crossover and mutation. Randomly choose two members of Q, say Qa and 
Qb, where 

Qa = (qal, · · ·, Qan), (15.1) 

and 
Qb = (qbl,'' ·,Qbn)· (15.2) 

Next randomly choose an integer kin {1, 2, · · ·, n }. For example, suppose 
k = 7. Then form q~ and q~, two members of the temporary next population 
P~, as follows 

q~ = (qal,' · ·, Qa6, Qb7, · · ·, Qbn), (15.3) 

and 
(15.4) 

This is the crossover operation. We interchange (qa7, · · ·, Qan) and 
(Qb7, · · ·, Qbn)· However, q~ and q~ may not belong to region D. If q~ or 
q~ do not belong to D, then discard them and do the crossover operation 
until both q~ and q~ are in D. Once q~ and q~ belong to D, place them in 
the temporary population P~. Continue choosing two from Q until you have 
M members in P~. 

Next we have the operation of mutation. Randomly choose s members 
of P~ and put them in set S and rename them r 1 , · · · , r 8 • Normally s is 
small compared toM. The value of s could be (0.01)M, or (0.001)M. If this 
turns out to be less than one, then mutation may, or may not, be done. For 
example, if M = 500 and s = (0.001)M = 0.5, then we could do mutation 
every other population. For each ri in S randomly generate an integer k E 
{ 1, · · · , n}. Suppose that k = 4. Randomly generate a real number x in some 
interval and replace ri4 with x giving 

(15.5) 

If r~ is not in D, then repeat mutation until we get an r~ in D. Then 
replace ri in P~ with r~. This produces the new population P 1 . 

Check the stopping rule. If the stopping rule is fulfilled, stop the process 
and select the best [largest value of f(x)] xi in P 1 as our estimate of an 
x E D that maximizes f. If the stopping rule is not met, then replace Po 
with P 1 and continue to build the next generation. 

There are a number of comments about the algorithm we need to make 
before going on to some examples. First the set D will reflect any constraints 
there are on the variables. In a constrained optimization problem there can 
be constraints like Xi ~ 0, for all i, or x1 < x3 , or the sum of the Xi must 
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equal one, etc. These constraints determine D. D is called the search space 
for the optimization problem. 

The fitness function for a genetic algorithm determines how we choose 
the "best" m in a population to be used to generate the next generation 
(population). In the example discussed above the fitness function was obvious 
since it was a max problem. In some other problems it may be difficult to 
decide on a fitness function. 

The stopping rule can be to terminate the iterations after K populations. 
Another stopping rule can be to end the iterations when the maximum value 
of f, over all members of a population, changes very little from generation 
to generation. However, when you stop the algorithm there is always the 
danger that it has converged to a local, not global, maximum (or minimum). 
To guard against this, run a number of trials. Each trial starts with randomly 
generating the initial population P 0 . Compare the results of the trials and 
if they all give essentially the same results, then you will have confidence in 
the results. 

Also notice that we keep picking two members of Q to do crossover. Some­
times some members of Q will never be picked while others can be picked 
more than once. This means that the temporary population P~ can be a 
mixture of "old" members of Q plus the new members q~ and q£. 

There are many types of crossover operations and we have described only 
one. Another type is the two point crossover. Randomly generate two integers 
k 1 and k 2 so that 1 :S k1 < k2 :S n. Suppose k1 = 2 and k 2 = 6. Then 
equations (15.3) and (15.4) become 

(15.6) 

and 
(15. 7) 

However, let us only use the one point crossover given by equations (15.3) 
and (15.4). 

If n = 1, then we want to find the maximum of continuous y = f(x) for 
x in some interval, say x E [a, b]. Let Pi , 1 :S i :S M, denote the population 
members of the initial population P 0 . Now Pi = x for some x in [a, b], for all 
i. But each Pi has only one element, or it is just a single real number, and 
there is no crossover. What we do when n is small, say n :S 5, is to code each 
Xij in Pi = (xi1, · · · ,Xin) in binary notation (zeros and ones). For example 
if x=32, then 32 = (0)2° + (0)21 + (0)22 + (0)23 + (0)24 + (1)25 so we write 
x = (0, 0, 0, 0, 0, 1) in binary notation. As another example suppose x is in 
[ -100, 100] and we will use only two decimal places. Then x = -56.78 is first 
written as -5678 which is coded as -(0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1) because 
5676 = 21 + 22 + 23 + 25 + 29 + 210 + 212 . Using binary notation each Xij 

in Pi is translated into zeros and ones and concatenated to from Pi· Now 
crossover can be applied to each member of the initial population when n is 
small. However, we may not want to do this for all optimization problems. 
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Consider n = 50, M = 5000, and each Xij E [ -10,000, 10, 000] and we use 
three decimal places. Calculate the length of each Pi in each population. 
They are over 1000 positions in length, and we need 5000 of them at each 
generation. We run into storage problems and the speed of the algorithm 
suffers. 

Genetic algorithms are available from the internet. In your search en­
gine try "genetic algorithm" or "evolutionary algorithm" to download the 
software. Evolutionary algorithm is a more advanced form of a genetic algo­
rithm which emphasizes mutation over crossover. 

Example 15.1 

In this example we design a genetic algorithm to solve a fuzzy relational 
equation. This example will continue Example 7.5.2 of Chapter 7. We wish 
to find the r~ of equation (7.57) because the algorithm for r~* is not difficult 
to implement. Recall from Example 7.5.2 that it was easy to calculate r;* 
but much more difficult to obtain r~. S was given in equation (7.60) and in 
that example we found that r~* = (0, 0.8, 0. 7, 0.5). 

The initial population consists of p = ( r1 , r2 , r3 , r 4 ) so that p o S = 
(0.7, 0, 0.8, 0.5), which is the constraint on the problem. To cut down on 
the search space add the constraint p ~ r~*. The population size M should 
not be too large (say M = 10) because most randomly generated p will not 
satisfy the constraint (difficult to randomly generate a large initial popula­
tion). The fitness function selects those pin a population that are minimal. 
A v = ( v1 , · · · , v4 ) in a population is minimal if there is no u = ( u 1 , · · · , u4 ) 

in the population so that u < v, where u < v means Ui ~ vi, for all i, but 
at least one of the ~ is a strict inequality ( <). The size of Q and the value 
of m can vary from population to population. The stopping rule is when the 
population does not change from generation to generation. We may consider 
a number of trials for this problem. 

Example 15.2 

In this example we design a genetic algorithm to find the extension principle 
solution X e to a system of fuzzy linear equations (see Chapter 11). First 
consider a n x n system of crisp linear equations written in matrix form 

AX=B, (15.8) 

where A= [aij] is ann x n matrix of real numbers, xt (x1 , .. ·,xn) is 
an n x 1 vector of unknowns and Bt = (b1 , · · ·, bn) is an n x 1 vector of 
real numbers. Let Aj be A with the lh column of A replaced by B. We 
write det(C) for the determinant of any n x n matrix C. We assume that 
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det(A) =/; 0. Then the solution for X may be written as 

Xi = det(Ai)/det(A), (15.9) 

-t - - -
for 1 :::; i :::; n from Cramer's rule. Let X e = (X 1, ···,X n) and Xi[ a] = 

[xi1 (a), Xi2 (a)], 1 :::; i :::; n. Xi is the fuzzification of equation (15.9). We see 
that [these are the same as equations (11.24) and (11.25) in Chapter 11] 

(15.10) 

and 

{ det(Ai) _ [ ] - [ ]} Xi2(a) =max det(A) laij E aij a ,bi E bi a , (15.11) 

for 1 :::; i :::; n and 0 :::; a :::; 1. We have also assumed that det(A) =/; 0 for 
all aij E aij [0]. We now wish to design a genetic algorithm to estimate the 
values of equations (15.10) and (15.11) for selected values of a. 

Choose a value for a. The members of any population are 

(15.12) 

and the constraint is 
(15.13) 

for all i and j. 
Let us look at estimating xi1 (a). The fitness function is mm1mum 

[see equation (15.10)]. The constraint for crossover and mutation is equa­
tion (15.13). Of course, for each p in a population we have to compute 
det(Ai)/det(A) to select them best members for the set Q. For xi2(a) the 
fitness function is maximum. Both problems can be run simultaneously. 

Example 15.3 

Here we want to design a genetic algorithm for training a (crisp) neural net. 
It will be the 2-3-1 neural net shown in Figure 13.1. We wish to train this 
neural net to approximate the values of some continuous function z = j(x, y) 
for ( x, y) in some region D in R 2 . First we need a training set. Choose 
(x;, y;) in D and compute Zi = f(xi, y;), for 1 :::; i :::; K. Without any explicit 
information on the behavior of f we would choose the data points (x;, y;) 
uniformly spread throughout D. The training set is ((xi, Yi), zi), 1 :::; i :::; K. 
Given inputs Xi and Yi to the neural net let the output be Oi = NN(xi,Yi)· 
The fitness function could be 

K 

min(2)0i- zi) 2 / K), (15.14) 
i=l 
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or 
(15.15) 

Population members are 

(15.16) 

The objective is to find values for the weights and shift terms so that 
the resulting neural net best fits the data (the training set), where best is 
measured by equation (15.14) or (15.15). Assume that we use the sigmoidal 
transfer function. The stopping rule would be when the objective function 
[equation (15.14) or (15.15)] gets sufficiently close to zero. 
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15.1 Exercises 

1. In Example 15.1 we may get m = 1 for a certain population. What 
should we do then. 

2. Because of the "tight" constraint in Example 15.1 we may have to alter 
the algorithm. Discuss changing each ri in population member p to 
binary notation and using crossover only within each ri value. Will 
this improve the search? 

3. In Example 15.3 there was no constraint on the weights and shift terms. 
This means they can be any real number and the search space becomes 
all of R 13 . This search space is much to large. Discuss how to reduce 
the search space to some subset D of R 13 . Then this D becomes the 
constraint in the algorithm. 

4. Consider a search space D = [-B, B]n whose elements are x = 
(x1 , · · · ,xn)· Each Xi will be measured to d decimal places. Now code 
each Xi in binary notation and concatenate them into p = (p1, · · · ,p£). 
Find the value of L if: 

a. n = 100, B = 100, d = 3; and 

b. n = 20, B = 1000, d = 2. 

In the following problems you are asked to design a genetic algorithm 
for a certain problem. The initial population Po of size M will contain 
members Pi= (pil, ···,Pin), 1 ~ i ~ M. Describe the members of the 
initial population. Also describe any constraints there are on randomly 
generating the initial population. Define the fitness function. Also dis­
cuss, when needed, how you will compute values of the fitness function. 
Discuss any constraints there are on the crossover and mutation oper­
ations. Describe the stopping rule. Do you need binary notation? Any 
special considerations are there on the sizes on M, m and s? Do you 
need to change the crossover operation from the one described in the 
text? 

5. To train a 2-N-1 neural net, with sign constraints, for Problem 1, 
Section 13.2.1, Chapter 13. Also explain how you get the training set. 

6. Same as Problem 5 for Problem 2, Section 13.2.1. 

7. Same as Problem 5 for Problem 3, Section 13.2.1. 

8. Same as Problem 5 for Problem 4, Section 13.2.1. 

9. Same as Problem 5 for Problem 5, Section 13.2.1. 
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10. To approximate the o:-cuts of the extension principle solution X e to: 

a. equations (5.34) and (5.35) of Chapter 5 (assume only real value 
solutions), and . 

b. for the o:-cuts of max and min, Problem 6 in Section 4.4.1, if 
M = (1/2/3) and N = (2/3/4) . 

11. For the o:-cuts of the fuzzy area of a fuzzy circle, equation (9.10), of 
Chapter 9. 

12. For the o:-cuts of the fuzzy perimeter of a fuzzy circle, Problem 12, 
Section 9 .1. 

13. For the o:-cuts of the fuzzy area of a fuzzy triangle, Problem 13, Section 
9.1. 



Chapter 16 

Fuzzy Optimization 

16.1 Introduction 

In fuzzy optimization we wish to maximize, or minimize, a fuzzy set (which 
is usually the value of a fuzzy function) subject to some fuzzy constraints. 
However, we can not maximize, or minimize, a fuzzy set, so we do what is 
commonly done in the area of finance where they wish to maximize (minimize) 
the value of a random variable whose values are restricted by a probability 
density function. To maximize Z we instead maximize the central value of Z, 
maximize the area under the membership function to the right of the central 
value and minimize the area under the membership function to the left of the 
central value. This produces a multiobjective optimization problem subject 
to fuzzy constraints. We then change this multiobjective problem into a 
single crisp objective problem subject to the fuzzy constraints. To solve this 
final problem we propose to generate good approximate solutions using a 
genetic algorithm. This is all discussed in the next section. Other fuzzy 
optimization problems, including training a fuzzy neural net, solving fuzzy 
linear programming problems and fuzzy inventory control, using a genetic 
algorithm, are presented in the final section, section three. 

16.2 Maximum/Mininimum of Fuzzy Func­
tions 

--- --2--- ---
Consider the fuzzy function Y = F(X) = A· X + B ·X+ C for A, B, C being 
triangular fuzzy numbers and X a triangular shaped fuzzy number. We wish 
to find X to maximize (or minimize) Y. It is clear, from calculus, what to do 
in the crisp case. Ify = f(x) = -2x2 +4x+l0, then dyjdx = -4x+4 = 0 at 
x = 1 and max f(x) = f(1) = 12. However, we can not do this in the fuzzy 
case. 
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X 
Y1 Ys 

Figure I6.I: A Fuzzy Set to be Maximized 

We can not maximize/minimize a collection of fuzzy sets like we can max­
imize/minimize a set of real numbers. The usual ordering of the real numbers 
gives a total (linear, complete) ordering and we can find the max/min of a fi­
nite set of real numbers and the supremum (infimum) of an infinite set which 
is bounded above (below). Most orderings of the fuzzy numbers are not a 
total ordering (see Section 4.5 of Chapter 4). The defuzzification method 
(Example 4.5.3) does give a total ordering for fuzzy numbers, but this or­
dering is not without problems (see Figure 4.I5). Also, the defuzzification 
method only uses a central value of the fuzzy number and throws away all 
the other information in the fuzzy number. 

The problem of finding the maximum/minimum of fuzzy Y is similar 
to a problem in finance where Y is the probability density function of a 
random variable Y that we wish to maximize (or minimize). If they wanted 
to max(Y), then they consider maximizing the expected value of Y, minimize 
the variance of Y and maximize the skewness to the right of the expected 
value. Now consider Y as in Figure I6.1. Let A1 be the area under the 
graph from y1 to Y2 and A2 is the area from Y2 to y3 . So for max(Y) we will: 
(I) max(y2 ), or maximize the central value of Y; (2) max(A2 ), or maximize 
the possibility of obtaining values more than y2 ; and (3) minimize A1 , or 
minimize the possibility of values less than y2 • For min(Y) we would use: (I) 
min(y2 ), (2) min(A2 ), and (3) max(Al). 

The fuzzy optimization problem of max(Y) has become 

(I6.I) 

where 
- - -2 -- -
Y=A·X +B·X+C, (I6.2) 

where A, B, C are given triangular fuzzy numbers and X is a triangular 
shaped fuzzy number. 
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Choose M > 0 sufficiently large so that min( A!) is equivalent to max(M­
A1). So now we wish to max(M - Al), max(y2 ) and max(A2 ). Obvious 
changes are for min(Y). Our final problem is 

(16.3) 

subject to 
- - -2 -- -
Y=A·X +B·X+C, (16.4) 

and Ai > 0 for all i and .A1 + A2 + A3 = 1. The Ai are weights on the various 
objectives and are determined by the "decision maker". Suppose the decision 
maker [the one who wants to max(Y)]) believes that max(y2 ) and max(A2 ) 

are equally most important. Then he/she might choose .A2 = .A3 = 0.4 and 
.A1 = 0.2. Of course, different solutions can be generated for different choices 
of the Ai· You might try a variety of values for the Ai, always summing up to 
one, to see what you will obtain, show all these results to the decision maker 
and let he/she choose their best answer. 

Example 16.2.1 
- - -- - -2 - - -Here we wish to find max(Y) if Y = F(X) = A· X + B ·X+ C for 

A= ( -3/- 2/- 1), B = (2/4/6), C = (9/10/11) and X :::::1 (xdx2/x3 ). The 
crisp solution, using a = 1 values, was found to be 12 at x = 1. 

To reduce the search space for X we will assume that X belongs to the 
interval [-10, 10]. Let us use .A1 = 0.2, .A2 = .A3 = 0.4 and M = 1000 in 
equation (16.3). The objective is 

(16.5) 

for 1Y2 

A1 = Y(x)dx, 
Yl 

(16.6) 

1Y3 

A2 = Y(x)dx, 
Y2 

(16. 7) 

and 
- - -2 -- -
Y=A·X +B·X+C. (16.8) 

We will solve for a-cuts of X. Let X[a] = [x1 (a),x2 (a)] and we will 
find xi(a) for a = 0, 0.1, · · ·, 0.9, 1 , i = 1, 2. So we design a genetic algo­
rithm (Chapter 15) to approximate the a-cuts of X. The members of each 
population are 
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Since we are using only eleven a-cuts of X, we evaluate equation (16.8) via 
these a-cuts and obtain eleven a-cuts of Y. The two areas (A1 , A2 ) would 
be approximated using these a-cuts. 

You are asked to finish the design of this genetic algorithm in the Exer­
cises. 

Example 16.2.2 

This continues Example 8.4.2 of Chapter 8. There we wanted to find a value 
of x E [0, 2200] to 

(16.10) 

where 

area1(x) = (1r2(x) -1r1(x))j2,area2(x) = (1r3(x) -1r2(x))j2, 

and 

IT(x) = (A- Bx)x- (Dx +E), (16.11) 

for A = (110/120/130), B = (0.03/0.04/0.05), D = (9/10/11) and E = 
(900/1000/1100). The value of x was restricted to the interval [0, 2200] so 
that A- Ex 2: 0. 

Now design a genetic algorithm to find x in [0,2200] to maximize the 
expression in equation (16.10) for Ai = 1/3 and for all i since the decision 
maker considers all goals are equal. Also choose M = 1000. 

We would randomly generate the initial population whose members would 
be p = x in [0,2200]. Since each p has only one member and crossover 
is undefined and you need to change to binary notation. Without binary 
coding all you have is mutation which ends up like a pure random search. 

You are asked to finish the design of this genetic algorithm in the Exer­
cises. 

Example 16.2.3 

We wish to min(Z) for 

- -2 -- -2 - -
Z = X +X · Y + Y + 3X - 3Y + 4, (16.12) 

for X andY triangular fuzzy numbers in [-10, 10]. We change the optimiza­
tion problem to 
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(16.13) 

where Z ~ (zdzz/z3 ) and A1 (A2 ) is the area under the graph of y = Z(x) 
from z1 to z2 ( z2 to z3 ) and the Ai are positive adding up to one. Let us use 
M = 1000 and .A1 = .A3 = 0.2 and .A2 = 0.6 since the decision maker feels the 
goal of minimizing z2 is the most important objective. 

We will use a genetic algorithm to search for X and Y in [-10, 10] to 
minimize the expression in equation (16.13). Since X and Y are triangu­
lar let X = (xdx2/x3), 10 :S x1 < x2 < X3 :S 10 and Y = (y!/yzly3), 
-10 :::; Yl < Y2 < Y3 :::; 10. So population members can be written as 
p = (xl,x2,X3,Yl,Y2,Y3)· Use a-cuts and interval arithmetic to calculate Z 
with a = 0, 0.1, · · ·, 0.9, 1. You are asked to finish the design of this genetic 
algorithm in the Exercises. 
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16.2.1 Exercises 

The instructions about the design of genetic algorithms are the same as those 
for the Exercises in Chapter 15. 

1. Finish the design of the genetic algorithm in Example 16.2.1. 

2. Same as Problem 1 but for Example 16.2.2. 

3. Same as Problem 1 but for Example 16.2.3. 

4. Design a genetic algorithm for max(Y = X (1 - X)) for X being a 
triangular shaped fuzzy number in [0, 1]. 

5. Extend the definition of fuzzy max, see Section 4.4 of Chapter 4, to 
Z = max{A1 , ···,An}, n;:::: 3 for all the Ai trapeziodal fuzzy numbers. 
Then design a genetic algorithm for Z. 

6. This continues Problem 4. Now we want to find X ~ (xdx2 fx 3 ) in 
[0, 1] so that the fuzzy point (X, Y), where Y = X(1- X), is "closest" 
to the fuzzy point (A, B) for A = (0.2/0.3/0.4), B = (0.8/1/1.2). By 
closest we mean to minimize 

where D(A, X) is given in equation (3.80) in Chapter 3. Design a 
genetic algorithm for this problem. 

7. Design a genetic algorithm to find the a-cuts of the substitute classical 
solution X 8 , using the distance measure D from equation (3.80) in 
Chapter 3, for: 

a. Problem 10, section 5.2.4; 

b. Problem 10, section 5.3.1; 

c. Problem 19, section 11.1. 

8. Repeat Problem 7 using the distance measureD from equation (3.81) 
in Chapter 3. 

9. Let 

{ 
1, 

f(x) = 0, 
-1, 

0 ~ X < 1, 4 ~ X ~ 5 
1 ~ X < 2, 3 ~ X < 4 

2~x<3 

and A = (1.5/2, 3/4.5). Using the extension principle extend f to F 
and let Y = F(A). Find the a-cuts of Y for a = 0, 0.5, 1. Since f is 
not continuous we can not use maximum/minimum of {f(x)lx E A[a]} 
for these a-cuts. Design a genetic algorithm for the (a= 0.5)-cut. 
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10. Consider a fuzzy relational equation R o S = T that has no solution for 
R. See Section 7.5 of Chapter 7. Consider a substitute solution R 8 , a 
fuzzy matrix, that solves the following minimization problem: 

minD(R o S, T), 

for some distance measure D between fuzzy matrices. First define a 
suitable D and then design a genetic algorithm to calculate Rs givenS 
and T. 
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16.3 Fuzzy Problems 

There are fuzzy optimization problems that do not fit exactly into the models 
discussed in the previous section. We shall look at three such cases in this 
section. 

Example 16.3.1 

In this example we are going to train a fuzzy neural net. We want to design 
a genetic algorithm to train a Type III fuzzy neural net. A Type III fuzzy 
neural net was discussed in Section 13.3 of Chapter 13 and it has its inputs, 
weights and shift terms all fuzzy. Consider the 2-3-1 neural net shown in 
Figure 13.1 with inputs X 1 , X 2 , weights WiJ, UJ and shift terms BJ, Tj5 all 
being continuous fuzzy numbers. 

We want to train this fuzzy neural net to approximate the values of the 
fuzzy function Z = F(X, Y), (which is monotone increasing) for X in interval 
[a,b] andY in (c,d]. To obtain training data choose Xi in [a,b] and Yi in 
(c, d] and compute Zi = F(Xi, Yi), 1 :S i :S K. We would usually choose the 
Xi (Yi) uniformly spread throughout [a, b] ((c, d]). 

We will input a-cuts of Xi and Yi into the fuzzy neural net, do interval 
arithmetic within the net, and then the output will be intervals. Let the 
output from the fuzzy neural net be called Oi (different from Y in Section 
13.3). We write Oi = FNN(Xi, Yi), 1 :S i :S K. So if the inputs are Xi[a] 
and Yi(a], the output will be Oi[a] = (oil(a),oi2 (a)], 1 :S i :S K. Assume 
we do this for a= 0, 0.1, · · ·, 0.9, 1. Let aj = (j- 1)/10, 1 :S j :S 11. 

Now we need a fitness function, or some expression to minimize. Define 

(16.14) 

K 10 

E1 = (1/ K) :L ~)zkl (aJ)- okl (aj))2, (16.15) 
k=l j=l 

K 

E2 = (1/K) Z:(zkl(an)- okl(an))2, (16.16) 
k=l 

and 
K 10 

E3 = (1/ K) :L Z:(zk2(aJ) - ok2 (aJ )) 2 , (16.17) 
k=lj=l 

where Zk[a] = [zkl(a), Zk2(a)]. 
We wish to find the fuzzy weights and shift terms to minimize E. The 

transfer function within each neuron in the second and output layer is the 
sigmoidal. Another possible fitness function is 

E = max{E1,E2,E3}, (16.18) 



16.3. FUZZY PROBLEMS 

and 
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(16.19) 

(16.20) 

(16.21) 

Now we are ready to define members of each generation (population). As­
sume all the fuzzy weights and fuzzy shift terms are triangular fuzzy numbers. 
Also, the Xi and Yi are all triangular so that Zi and Oi will be triangular 
shaped fuzzy numbers. Then we may write: (I) Wij = (wijr/Wijz/Wijs); 
(2) Uj = (ujr/Ujz/Ujs); (3) Bj = (Bir/Bjz/Bj3); and (4) (j5 = (rpr/rpz/rp3)· 
Therefore, a population member p may be written as 

(16.22) 

To randomly generate the first population we need intervals for all the 
fuzzy weights and shift terms. Assume this has been done and all the W ij 
belong to interval h, all the U 1 are in lz, the B1 belong to Is and (j5 is a fuzzy 
subset of ! 4 . Notice that each population member p describes a complete 
2-3-1 fuzzy neural net. You are asked to complete the discussion of this 
genetic algorithm in the exercises. 

Example 16.3.2 

In this example we solve a fuzzy linear programming problem. We start with 
a crisp linear programming problem 

max( 4x1 + 5xz) (16.23) 

subject to: 
6x1 + 3xz :S 30, (16.24) 

3xl + 6xz :S 30, (16.25) 

X1, Xz 2 0. (16.26) 

All the values of ( x1 , x2 ) that satisfy the constraints (the inequalities) is 
called the feasible set. The feasible set for this problem is shown in Figure 
16.2. The solution is at (10/3, 10/3) with the maximum value of 30. 

In fuzzy linear programming some of the parameters and variables can be 
fuzzy. We will look at the following fuzzy linear program 

(16.27) 

subject to: 
(16.28) 
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Feasible 
Set 

Figure 16.2: Feasible Set in Example 16.3.2 

10 Xl 

(16.29) 

(16.30) 

where c1, c2, a11 , · · · , a22 , b1, b2 are all triangular fuzzy numbers. The first 
thing we need to do is define the feasible set, or decide on what "~" we 
will use between fuzzy numbers. Let us use the "~" from Example 4.5.2 
in Chapter 4. We write M ~ N when m1(a) ~ n1(a), m 2(a) ~ n2(a), 
0 ~a~ 1, where M[a] = [m1(a),m2(a)], N[a] = [n1(a),n2(a)]. Since the 
Xi are non-negative, the feasible set is all Xi ;:::: 0 so that 

(16.31) 

(16.32) 

a211(a)x1 + a221(a)x2 ~ b21(a), (16.33) 

a212(a)x1 + a222(a)x2 ~ b22(a), (16.34) 

0 ~a~ 1, where Uij[a] = [aijl(a),aij2(a)] and bi[a] = [bil(a),bi2(a)]. 
Let us assume that bi > 0 so that at least (x1 , x2 ) = (0, 0) is feasible. 

That is, the feasible set is not empty. 
Next we have to decide on how we are going to max(Z), Z is a triangular 

fuzzy number. Let Z = (zd z2/ zs). We will do the same as in Section 16.2 
(see Figure 16.1). The objective (fitness function) is to maximize 

(16.35) 

from equation (16.3), where >.i > 0, their sum is one, A1 is the area under 
the graph of the membership from z1 to z2 (which equals (z2 - z1)/2), etc. 

Now design a genetic algorithm to find feasible (x1 , x2 ) to maximize the 
expression in equation (16.35). To randomly generate the first population 
assume that the Xi belong to the interval [0, 10]. But the Xi must also be 
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Z1 Z2 zs ZN 

X1 l x2! xsl X4 • • • 1 XN+l = 0 . l . l . l . 
D1 D2 Ds 

Figure 16.3: Inventory Problem 

feasible [equations (16.31)- (16.34)). Since a population member p has only 
two members ( x1 , x2 ) crossover may have a limited effect. Consider coding 
the Xi in binary notation. Choose values for the Ai, let M = 1000. Also pick 
values for the aij, bi, Ci all triangular fuzzy numbers whose vertex value is at 
the crisp number given in equations (16.23)-(16.25). You are asked to finish 
this discussion in the exercises. 

Example 16.3.3 

Solving a fuzzy inventory control problem. First let us describe the inventory 
problem we shall be studying. The flow is shown in Figure 16.3. The incoming 
inventory x1 will always be a given real (not fuzzy) number. The variables 
are the z1 , z2 , · · · , z N, which are the amounts we are to order each period. 
The Zi, 1 ~ i ~ N, will always be non-negative integers. If we allow the Zi 

to be fuzzy we will have to defuzzify them in the end, so we will start with 
them non-negative integers. The Di represents the demand in the ith period 
and the Xi, 2 ~ i ~ N stand for the outgoing inventory, which will be the 
starting inventory for the next period. So we must have 

(16.36) 

for 1 ~ i ~ N. 
There are only N periods and at the end of the planning horizon we 

assume that the final inventory will be zero. That is, we want XNH = 0. 
Other basic assumptions are: (1) no shortages are allowed, (2) zero delivery 
lag, and (3)instant replenishment at the start of each period. We wish to 
minimize the total inventory cost over the N periods. This cost will be made 
up of the following three components: (1) purchase cost, (2) ordering cost, 
and (3) holding cost. 
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We assume that we buy the item and we do not produce it ourselves. 
There may, or may not, be price breaks. A simple model, that we shall use 
is 

(16.37) 

This means that in the ith period we pay $10 per unit for the first Li 
units and then pay $5/unit for each additional unit. We will assume that 
these are all known numbers and they will not be fuzzy. 

The ordering cost Ki in the ith period is the cost of placing the order, 
checking up on the order and putting the items into inventory when they 
arrive. This number is always difficult to estimate so we will model it using 
a fuzzy number. Then the total cost of obtaining Zi units at the start of the 
ith period is, for fuzzy Ki, 

C. _ { 0, Zi = 0, 
' - Ki + Ci(Zi), Zi > 0, 

(16.38) 

The holding cost is assumed to be proportional to the ending inventory 
Xi+l = Xi+ Zi- Di· The model may be readily extended to cover any holding 
cost function Hi(xi+l) by replacing xi+1 with Hi(xi+d· For example, holding 
cost may be modeled as proportional to (xi+ XiH)/2. Let hi be the holding 
cost per unit for the ith period. This number, depending on interest on 
invested capital, depreciation, etc., is very difficult to determine exactly so it 
will be fuzzy in this problem. The holding cost for the ith period is 

hi(Xi + Zi- Di), (16.39) 

for fuzzy number hi since the end inventory is Xi+ Zi- Di. 
When no shortages are allowed let 

TCi = Ci(Zi) + hi(Xi + Zi- Di), (16.40) 

and 

(16.41) 
i=l 

We wish to find the Zi, 1 :::; i :::; N, to minimize Z. The constraint is 
XN+l = 0. 

Let us use positive trapezoidal fuzzy numbers for Ki and hi. So Z = 
(zd z2, z3j z4) which will also be a trapezoidal fuzzy number. In place of 
min(:Z) we use 

(16.42) 

where Ai > 0 and their sum is one, and A1 (A2 ) is the area under the graph 
of the membership function of Z from z1 to (z2 + z3)/2 (from (z2 + z3)/2 to 
Z4). 
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To summarize, we wish to find non-negative integers Zi to mini­
mize the expression in equation (16.42) subject to XNH = 0, given 
x 1 ,ci(zi),N,Di,>..i,M all crisp and given Ki,hi fuzzy. Use a-cuts and in­
terval arithmetic to evaluate all fuzzy equations. 

Design a genetic algorithm to solve this problem. A population member p 
would be (z1 ,z2, · · · ,zN), but it must be feasible (xN+l = 0). You are asked 
to finish the discussion of this algorithm in the exercises. 
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16.3 .1 Exercises 

The instructions for the design of a genetic algorithm are the same as those 
given in the exercises in Chapter 15. 

1. Finish the discussion of the genetic algorithm for Example 16.3.1. 

2. Explain what changes are needed in the genetic algorithm in Example 
16.3.1 if: 

a. it is a Type I fuzzy neural net; 

b. it is a Type II fuzzy neural net; 

c. all the fuzzy weights, shift terms, xi, yi are trapezoidal fuzzy 
numbers and zi, oi are trapezoidal shaped fuzzy numbers; and 

d. all the fuzzy sets are just continuous fuzzy numbers. 

3. Finish the discussion of the genetic algorithm in Example 16.3.2. 

4. Explain what changes are needed in the genetic algorithm in Example 
16.3.2 if: 

a. X 1 and X 2 are triangular shaped fuzzy numbers but all the pa­
rameters (the aii, ci, bi) are crisp; and 

b. X 1 and X 2 and all the parameters are triangular (shaped) fuzzy 
numbers. 

5. Finish the design of the genetic algorithm in Example 16.3.3. Be sure 
you include how you check to see if a population member p is feasible. 

6. What changes are needed in the genetic algorithm in Example 16.3.3 
if: 

a. Demand is fuzzy? 

b. Demand is fuzzy and shortages are allowed? 

7. Consider a fuzzy circle C given by x 2 + y2 = r 2 , r = (0.5/1/1.5). Let A 
and B be two triangular fuzzy numbers and define P = min(A(x), B(y)) 
a fuzzy point. See Chapter 9 for fuzzy geometry. Assume A and B were 
chosen so that P ::; C. Now let M = (0.5/0.7 /0.9) and N = (2/3/4), 
and set Q = min(M(x), N(y)). Design a genetic algorithm to find 
P::; C closest to Q. By closest we mean to minimize 

for D given by equation (3.80) of Chapter 3. 
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8. Suppose we have a block of rules 

1 ::; i ::; N. Ai are triangular fuzzy numbers all in interval [a, b] and 
the B i are also all triangular fuzzy numbers all in interval [ c, d]. Let 
B* be the conclusion using FITA (Section 14.3 of Chapter 14) using 
t-norm min, any implication operator I and t-conorm max for union. 
Defuzzify B* to J (see Section 4.6 of Chapter 4). Now suppose we have 
some data (xi,Zi), 1 ::; i ::; m, we want the fuzzy system to model. 
It could come from some continuous function. Also we assume the Xi 

are all in [a,b] and the Zi all belong to [c, d]. If the crisp input to the 
block of fuzzy rules is x = Xi, then let the defuzzified outcome be Ji, 
1 ::; i ::; m. Design a genetic algorithm to find the Ai and Bi, 1 ::; i ::; N 
, to minimze 

m 

E = (1/m) 2)zi- Ji) 2 . 

i=l 

9. Redo Problem 8 using FATI. 

10. Let P 1 (0, 0) and P 3 (2, 4) be two fuzzy points which are right circular 
cones of base radius 0.2. See Chapter 9. Also P 2 (2, 0) and P 4 (0, 4) be 
two more fuzzy points which are right circular cones with base radius 
0.4. Let R be the fuzzy rectangle defined by the Pi, 1 ::; i ::; 4. Now 
R,* is the closed fuzzy rectangle formed from R and E as follows 

-* - -R =RUE, 

where 

E = { 1' 0 ::; X ::; 2, 0 ::; y ::; 4 
0, otherwise 

Let C be the fuzzy circle (x- a) 2 + (y- b) 2 = r 2 , r = h/r2 /r3). Let 
the fuzzy area of C be a. Design a genetic algorithm to find the fuzzy 
circle (find a, b, r) of maximum area a insideR* (C::; "R*). 
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