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PREFACE

A book should have either intelligibility or correctness;
to combine the two is impossible.

– Bertrand Russell (1901)

This book presents a few basic ideas in logical studies, partic-
ularly some ideas in philosophical logic—logic motivated largely
by philosophical issues. The book aims not only to introduce you
to various ideas and logical theories; it aims to give you a flavor
for logical theorizing—theorizing about logic in the face of appar-
ently logic-relevant phenomena. If the book is successful, you’ll
not only be in position to pursue logic at a deeper level; you’ll be
motivated to do so.

The book takes a wholly one-sided approach to logic: namely,
the so-called ‘semantic’ or ‘model-theoretic’ side. You should be
warned: there is much, much more to logic than is found—or
even hinted at—in this book. A particularly conspicuous omission
is so-called proof theory: no ‘deductive systems’ of any sort are
discussed in this book. This omission is unfortunate in various
ways but—given space limitations on this book—it allows a more
leisurely discussion of a wider array of ideas than would otherwise
be possible. A handful of widely available ‘further readings’ are
suggested throughout, and a few them—namely, ones that are
repeatedly mentioned—provide adequate proof systems for the
canvassed logics (model-theoretically understood).

Unsolicited advice to readers

This book is intended to be read in order, with each chapter pre-
supposing its predecessors. If you’ve already had some elementary
logic training, some of the early chapters can be skipped; how-
ever, the book is intended chiefly for those who have had very
little, if any, logic training.

While mastering them often requires patience and careful think-
ing, logical ideas are often fairly intuitive. Usually, when an idea
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initially seems hard or too abstract, a bit more thinking will even-
tually do the trick. My advice is that in times of initial difficulty
you give the matter a bit more thought. Moreover, don’t just work
to master the given matters. Try hard to think about different
logical options from those explicitly canvassed in the book. For
example (though this won’t make much sense before you read a
few chapters), if a theory claims that the ‘right logic’ works this
way, try to think about an alternative theory according to which
the ‘right logic’ works that way. The benefit of such alternative
thinking is two-fold: you’ll get the chance to do some logical theo-
rizing on your own, and perhaps even come up with a new logical
theory; and, more importantly, the exploration will probably be
quite enjoyable, no matter how hard you have to think.

Unsolicited advice to teachers
This book has been used successfully in three different classroom
settings.
• First course in logic. The text has been used as a fairly gentle

introduction to logical studies for all manner of majors (sci-
ence and humanities/arts), supplemented with handouts giving
adequate ‘proof systems’ (e.g., tableau or natural deduction).
Many students often go on to do a regular classical first-order
logic course, and then proceed to do further studies, either as
a major or minor, in philosophy or philosophical logic.
• Supplement to philosophy of logic. The text has been used as a

required supplemental text in introductory and advanced phi-
losophy of logic courses. In such courses, the focus is the phi-
losophy of logic(s), with this book providing some of the logical
ideas that feed the philosophy.
• Early (post-) graduate course. The text has been used as a

sort of transition text for students entering analytic programs
in philosophy. In this capacity, the text is used as a source of
basic logical ideas, with a slant on philosophically motivated
logical ideas, and is usually used as a predecessor to much
more in-depth study of philosophical logic (i.e., formal logics
motivated by philosophy).

Despite such success, the book can undoubtedly be improved, and
teachers are hereby encouraged to send suggestions for improve-
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ment. (Note that a supplemental manual of answers—and other
material—may be made available to teachers.)

Brief history of the book

I was invited to write a book on logic for the Routledge Basics
series, which I think is a good and useful series, and I was happy
to contribute. The trouble—as logicians and logic teachers will
know—is that the universe cannot possibly fit another introduc-
tory logic textbook; it is already overly stuffed, indeed bursting to
rid itself of elementary logic texts. As a result, this book was not
to be—and, given the state of the universe, could not be—another
introductory logic textbook. And so it isn’t. On the other hand,
the book was not to be another ‘logic for dummies’ or picture-
book presentation of logical ideas. (Actually, the latter would’ve
been good, but, alas, I didn’t—and still don’t—know how to do
it.) Instead, the book was to give at least a bit of ‘real logical
content’ for those wanting to introduce themselves to aspects of
logical theorizing; and the book was to do so with the goal of
breadth over depth; but, again, there was to be ‘real content’,
and so breadth had to suffer a little bit while depth had to be
deep enough—but not too deep.

What you have before you is my first attempt to do what
was to be done. Though it was not my aim when I set about
writing the chapters, I found it difficult not to conform to earlier
ideas expressed in some of my previous work. This is particu-
larly the case with Logical Pluralism (2005), which I wrote with
my friend and longstanding logical colleague Greg Restall. That
book—namely, Logical Pluralism—is suggested as further read-
ing for those who wish to pursue the philosophy of logic, and in
particular the philosophy of logical rivalry, in more depth. While
philosophical issues motivate this book’s contents, the philosophy
of logic is barely discussed.

The tension between breadth, depth, and short-but-intelligible
is a challenging constraint. My hope, in the end, is as above: that
this book not only prepares you for deeper, more detailed logical
study, but that it motivates you to do so.
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Miscellany

‘Further reading’ sections, found at the end of each chapter, at-
tempt not to be historical remarks, but rather only pointers to ei-
ther very broad survey-like material, wherein fuller bibliographic
references are found, or more advanced work that is nonetheless
fairly accessible and full of adequate bibliographical pointers.

I refer to whole chapters using ‘Chapter n’, where n is the
given chapter number. I refer to proper parts of chapters (viz.,
sections or subsections) using ‘§n.m’, which may be read ‘section
m of Chapter n’.

Throughout this book, unless otherwise noted, the word ‘or’
is used in its so-called inclusive usage, which amounts to ei-
ther. . . or. . . or both. Reminders are sometimes given about this,
but it’s useful to take note now (so as to avoid confusion with the
so-called exclusive usage, which involves the not-both reading).

Also, mostly for space-saving reasons (or avoiding an other-
wise bad line break), the abbreviation ‘st’ for such that is some-
times used, though mostly in late chapters. (It is also usually
flagged and explained again when used.) Similarly, the standard
‘iff’ abbreviation for if and only if is frequently used, and is ex-
plained in Chapter 1.

« Parenthetical remark. I should note one other bit of style. In
a few places, so-called parenthetical remarks are displayed in the
way that this parenthetical remark is displayed. This convention
is used in a few places where either footnotes would otherwise
be too long or there are already too many footnotes in the given
area. End parenthetical. »



ACKNOWLEDGEMENTS

Always be thankful. And mean it.
– Dee Dee Long

I am grateful to many people for discussions and lessons that
are reflected in this book. Some of those people are as follows (I
would say ‘all’ were it not for inadvertent omissions): Jeff Blocker,
Ross Brady, Phillip Bricker, Otávio Bueno, Colin Caret, Colin
Cheyne, Matt Clemens, Mark Colyvan, Roy Cook, Aaron Cot-
noir, Max Cresswell, Charlie Donahue, Hartry Field, Jay Garfield,
Chris Gauker, Ed Gettier, Rod Girle, Michael Glanzberg, Geoff
Goddu, Patrick Greenough, Patrick Grim, Gary Hardegree, Ole
Hjortland, Michael Hughes, Dominic Hyde, Carrie Jenkins, the
late David Lewis, Michael Lynch, Maureen Malley, Ed Mares, the
late Maximum Leader (viz., Bob Meyer), Chris Mortensen, Daniel
Nolan, Doug Owings, Graham Priest, Agustín Rayo, Stephen
Read, Greg Restall, David Ripley, Marcus Rossberg, Gill Russell,
Josh Schechter, Jerry Seligman, Lionel Shapiro, Stewart Shapiro,
John Slaney, Nick (J. J.) Smith, Reed Solomon, David Steuber,
Koji Tanaka, Richard Trammell, Bas van Fraassen, Achillé Varzi,
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PART I

BACKGROUND IDEAS





1

Consequences

Everybody, sooner or later,
sits down to a banquet of consequences.

– Robert Louis Stevenson

‘Watch what you say,’ my mother often advised, ‘because what
you say has consequences.’ She was right, and doubly so. There
are two senses in which what one says has consequences. One
sense, not terribly relevant for present purposes, is captured in the
familiar dictum that actions have consequences. To say something
is to do something, and doing something is an action. Actions,
in turn, are events, and events, as experience tells, have conse-
quences, namely, their causal effects. (Example: a consequence—
a causal effect—of your drinking petrol is your being ill, at least
other things being equal.) So, in the causal effects sense of ‘conse-
quences’, my mother was perfectly right, but that sense of ‘con-
sequence’ has little to do with logic.

For present purposes, there is a more relevant sense in which
what one says has consequences. What one says, at least in the
declarative mode,1 has logical consequences, namely, whatever
logically follows from what one said, or whatever is logically im-
plied by what one said. Suppose, for example, that you’re given
the following information.

1. Agnes is a cat.
2. All cats are smart.

1For purposes of this book, a declarative sentence (or a sentence used
in the ‘declarative mode’) is one that is used (successfully or otherwise) to
declare or state something about the world. This is hardly a precise definition,
but it’ll do. (Example. Each of ‘You are reading a book’, ‘Obama is the first
black US president’, and ‘1+1=5’ are declarative sentences, but sentences
such as ‘Shut that door!’ and ‘Do you like Vegemite?’ are not declarative,
since they fail to declare or state anything about the world.)
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A consequence of (1) and (2), taken together, is that Agnes is
smart. In other words, that Agnes is smart logically follows from
(1) and (2); it is implied by (1) and (2), taken together.

1.1 Relations of support
Logical consequence is a relation on sentences of a language,
where ‘sentence’, unless otherwise indicated, is short for ‘mean-
ingful, declarative sentence’.2

Logical consequence is one among many relations over the
sentences of a language. Some of those relations might be called
relations of support. For example, let A1, . . . , An and B be arbi-
trary sentences of some given language—say, English. For some
such sentences, the various Ai jointly ‘support’ B in the following
sense.
S1. If all of A1, . . . , An are true, then B is probably true.

Consider, for example, the following sentences.
3. Max took a nap on Day 1.
4. Max took a nap on Day 2.
5. Max took a nap on Day 3.

...
n. Max took a nap on Day n (viz., today).
m. Max will take a nap on Day n+ 1 (viz., tomorrow).

On the surface, sentences (3)–(n) support sentence (m) in the
sense of (S1): the former, taken together, make the latter more
likely. Similarly, (6) supports (7) in the same way.

6. The sun came up every day in the past.
7. The sun will come up tomorrow.

If (6) is true, then (7) is probably true too.
The relation of support given in (S1) is important for empirical

science and, in general, for rationally navigating about our world.
Clarifying the (S1) notion of ‘support’ is the job of probability
theory (and, relatedly, decision theory), an area beyond the range
of this book.

2Taking consequence to be relation on sentences simplifies matters a great
deal, and sidesteps the issue of so-called ‘truth bearers’, an ongoing issue in
philosophy of logic. For present purposes, simplicity is worth the sidestep.
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1.2 Logical consequence: the basic recipe

Logical consequence, the chief topic of logic, is a stricter relation
of support than that in (S1). Notice, for example, that while (7)
may be very likely true if (6) is true, it is still possible, in some
sense, for (6) to be true without (7) being true. After all, the sun
might well explode later today.

While (S1) might indicate a strong relation of support between
some sentences and another, it doesn’t capture the tightest rela-
tion of support. Logical consequence, on many standard views, is
often thought to be the tightest relation of support over sentences
of a language. In order for some sentence B to be a logical con-
sequence of sentences A1, . . . , An, the truth of the latter needs to
‘guarantee’ the truth of the former, in some suitably strong sense
of ‘guarantee’.

Throughout this book, we will rely on the following (so-called
semantic) account of logical consequence, where A1, . . . , An and
B are arbitrary sentences of some given language (or fragment of
a language).
Definition 1. (Logical Consequence) B is a logical consequence of
A1, . . . , An if and only if there is no case in which A1, . . . , An are
all true but B is not true.
Notice that the given ‘definition’ has two parts corresponding to
the ‘if and only if’ construction, namely,

• If B is a logical consequence of A1, . . . , An, then there is no
case in which A1, . . . , An are all true but B is not true.

• If there is no case in which A1, . . . , An are all true but B is
not true, then B is a logical consequence of A1, . . . , An.

Also notable is that the given ‘definition’ is really just a recipe.
In order to get a proper definition, one needs to specify two key
ingredients:

• what ‘cases’ are;
• what it is to be true in a case.

Once these ingredients are specified, one gets an account of logical
consequence. For example, let A1, . . . , An and B be declarative
sentences of English. If we have a sufficiently precise notion of
possibility and, in turn, think of ‘cases’ as such possibilities, we
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can treat ‘true in a case’ as ‘possibly true’ and get the following
account of logical consequence—call it ‘necessary consequence’.
• B is a (necessary) consequence of A1, . . . , An if and only if there
is no possibility in which A1, . . . , An are all true but B is not
true. (In other words, B is a consequence of A1, . . . , An if and
only if it is impossible for each given Ai to be true without B
being true.)

Presumably, this account has it that, as above, ‘Agnes is smart’
is a consequence of (1) and (2). After all, presumably, it’s not
possible for (1) and (2) to be true without ‘Agnes is smart’ also
being true. On the other hand, (7) is not a necessary consequence
of (6), since, presumably, it is possible for (6) to be true without
(7) being true.

Of course, taking ‘cases’ to be ‘possibilities’ requires some
specification of what is possible, or at least some class of ‘rele-
vant possibilities’. The answer is not always straightforward. Is
it possible to travel faster than the speed of light? Well, it’s not
physically possible (i.e., the physical laws prohibit it), but one
might acknowledge a broader sense of ‘possibility’ in which such
travel is possible—for example, coherent or imaginable or the like.
If one restricts one’s ‘cases’ to only physical possibilities, one gets
a different account of logical consequence from an account that
admits of possibilities that go beyond the physical laws.

In subsequent chapters, we will be exploring different logical
theories of our language (or fragments of our language). A log-
ical theory of our language (or a fragment thereof) is a theory
that specifies the logical consequence relation over that language
(or fragment). Some fragments of our language seem to call for
some types of ‘cases’, while other fragments call for other (or
additional) types. Subsequent chapters will clarify this point.

1.3 Valid arguments and truth

In general, theses require arguments. Consider the thesis that
there are feline gods. Is the thesis true? An argument is required.
Why think that there are feline gods? We need to examine the
argument—the reasons that purport to ‘support’ the given thesis.

Arguments, for our purposes, comprise premises and a con-
clusion. The latter item is the thesis in question; the former pur-
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port to ‘support’ the conclusion. Arguments may be evaluated
according to any relation of support (over sentences). An argu-
ment might be ‘good’ relative to some relation of support, but not
good by another. For example, the argument from (6) to (7) is
a good argument when assessed along the lines of (S1); however,
it is not good when assessed in terms of (say) necessary conse-
quence, since, as noted above, (7) is not a necessary consequence
of (6).

In some areas of rational inquiry, empirical observation is of-
ten sufficient to figure out the truth. Suppose that you want to
know whether there’s a cat on the table. One reliable method
is handy: look at the table and see whether there’s a cat on it!
Of course, ‘real empirical science’ is much more complicated than
checking out cats, but empirical observation—empirical testing—
is nonetheless a critical ingredient.

What about other pursuits for which there is little, if any,
opportunity for settling matters by observation? Consider, for
example, pure mathematics or philosophy. In such areas, theses
cannot be empirically tested, at least in general. How, then, do we
figure out the truth in such areas? Argument is the only recourse.

When argument is the only recourse, as in mathematics or (at
least much of) philosophy, it makes sense to invoke the strictest
relation of support—namely, logical consequence. Traditionally,
an argument is said to be valid—strictly speaking, logically valid—
if its conclusion is a logical consequence of its premises. We will
follow suit.

Of course, a valid argument needn’t be a proof of anything.
After all, the ‘definition’ (or, for now, ‘recipe’) of logical conse-
quence doesn’t require that any of the premises be true. Rather,
the given account requires only the absence of any ‘counterexam-
ple’, where these are defined as follows.

Definition 2. (Counterexample) A counterexample to an argument
is a case in which the premises are true but the conclusion is not
true.

We can say that B is a logical consequence of A1, . . . , An if
and only if there is no counterexample to the argument from
(premises) A1, . . . , An to (conclusion) B. In turn, an argument is
valid just if there is no counterexample to it.
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Accordingly, an argument may be valid—that is, its conclu-
sion be a logical consequence of its premises—even though none
of its premises are true. In mathematics and philosophy, validity
is a necessary condition on suitable arguments; it is not suffi-
cient. What is sufficient, for such pursuits, is a so-called sound
argument.

Definition 3. (Sound Argument) A sound argument is valid and
all its premises are true.

Suppose that, among the ‘cases’ in our definition of validity (or
logical consequence), there is an ‘actual case’ @ such that A is
true-in-@ just if A is true (i.e., actually true). On such an account,
every sound argument has a true conclusion. After all, a sound
argument, by definition, has all true premises. By supposition, a
sentence is true just if true-in-@, and so all premises of a sound
argument are true-in-@. But a sound argument, by definition, is
also valid, and so, by definition, if its premises are true in a case,
then so too is its conclusion. Since, as noted, the premises of any
sound argument are true-in-@, so too is its conclusion.

Logic, in the end, serves the pursuit of truth; however, it does
not principally concern itself with truth. Instead, logic, as above,
has its chief concern with consequence—logical consequence. Logic
aims to precisely specify valid arguments. Once the valid argu-
ments are in order, rational inquiry may proceed to discern the
sound arguments. For our purposes in this book, we will focus on
different accounts of logical consequence, and some of the phe-
nomena that motivate the various accounts.

1.4 Summary, looking ahead, and reading

Summary. Logical consequence is the chief concern of logic. An
argument is valid just if its conclusion is a logical consequence
of its premises. Logical consequence, in this book, will be un-
derstood as absence of counterexample, where a counterexample
is a ‘case’ in which all the premises are true but the conclusion
not true. One of the chief concerns of logic, broadly construed,
is to figure out which ‘cases’ are involved in specifying the con-
sequence relation on a given language (or fragment thereof). In
subsequent chapters, we will look at different accounts of logical



Summary, looking ahead, and reading 9

consequence—different logical theories of our language (or frag-
ments thereof)—and some of the phenomena that have motivated
them.

Looking Ahead. The next two chapters are devoted to stage-
setting. Chapter 2 discusses features of language that are relevant
to logic, and also discusses the general ‘model-building’ enter-
prise of formal logic. Chapter 3 briefly—and, for the most part,
informally—introduces some useful set-theoretic notions. These
two chapters will make subsequent discussion easier.

Further Reading. For related, accessible discussion of logic, see
Read 1995, Haack 1978; Haack 1996. (And see the bibliographies
therein for a host of other sources!) For a more advanced discus-
sion of the ‘recipe’ of logical consequence, see Beall and Restall
2005.

Exercises

1. What is an argument?
2. What is a valid argument?
3. What is a sound argument?
4. What is the general ‘recipe’ for defining logical consequence

(or validity)? What are the two key ingredients that one
must specify in defining a consequence relation?

5. Consider the ‘necessary consequence’ relation, which takes
cases to be possibilities. Assume, as is reasonable (!), that
our actual world is possible—that is, that whatever is true
(actually true) is possibly true. Question: on this account
of logical consequence, are there any sound arguments that
have false conclusions? If so, why? If not, why not?

6. As noted in the chapter, ‘if and only if’ (which is often ab-
breviated as ‘iff’) expresses two conditionals: ‘A iff B’ ex-
presses both of the following conditionals.3

• If A, then B.
• If B, then A.

3Strictly speaking, what is expressed is the ‘conjunction’ of the two con-
ditionals, but we leave the notion of conjunctions for the next chapter.
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For our purposes, a biconditional ‘A iff B’ is true so long as
A and B are either both true or both false (and such bicon-
ditionals are false otherwise). With this in mind, consider
the necessary consequence relation. Is the following argu-
ment valid (where, here, validity is necessary consequence)?
If it is valid—if its conclusion is a necessary consequence of
the premises—explain why it is valid. If not, explain why
not.
(a) Max is happy if and only if Agnes is sleeping.
(b) Agnes is sleeping.
(c) Therefore, Max is happy.
What about the following argument?
(d) Max is happy if and only if Agnes is sleeping.
(e) Agnes is not sleeping.
(f) Therefore, Max is not happy.

7. Using the ‘necessary consequence’ account of validity, spec-
ify which of the following arguments are valid or invalid.
Justify your answer.
(a) Argument 1.

i. If Agnes arrived at work on time, then her car
worked properly.

ii. If Agnes’s car worked properly, then the car’s ig-
nition was not broken.

iii. The car’s ignition was not broken.
iv. Therefore, Agnes arrived at work on time.

(b) Argument 2.
i. Either the sun will rise tomorrow or it will explode

tomorrow.
ii. The sun will not explode tomorrow.
iii. Therefore, the sun will rise tomorrow.

(c) Argument 3.
i. If Max wins the lottery, then Max will be a mil-

lionaire.
ii. Max will not win the lottery.
iii. Therefore, Max will not be a millionaire.
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(d) Argument 4.
i. If Beetle is an extraterrestrial, then Beetle is not

from earth.
ii. Beetle is an extraterrestrial.
iii. Therefore, Beetle is not from earth.

Sample answers

Answer 5. On the necessary-consequence sense of ‘validity’ (the
sense in question), an argument is valid iff every possibility (e.g.,
possible circumstance) in which the premises are all true is one
in which the conclusion is true. Hence, if the actual world—the
‘real’ world, the way things really are—counts as a possibility,
then it itself cannot be a case in which the premises of a valid
argument are true but the conclusion false. But, then, any sound
argument—that is, a valid argument whose premises are all (ac-
tually) true—is one in which the conclusion is true, and so not
false.4

Answer 6. The argument from (6a) and (6b) to (6c) is valid in
the necessary-consequence approach to validity: it is not possible
for both of (6a) and (6b) to be true without (6c) being true. Af-
ter all, recall that (6a) expresses not only that if Max is happy
then Agnes is sleeping ; it also expresses that if Agnes is sleeping
then Max is happy. Now, consider any possibility (and possible
circumstance) in which both (6a) and (6b) are true, that is, a
possible circumstance in which not only Agnes is sleeping, but
if Agnes is sleeping (in that circumstance), then Max is happy
(in that circumstance). Well, then, no matter what possible cir-
cumstance we choose, it’ll be one in which Max is happy if it’s
one in which both (6a) and (6b) are true. (Of course, there are,
presumably, many possibilities in which neither (6a) nor (6b) are
true, but this does not affect the necessary-consequence sense in
which the given argument is valid. Why?)

4This last step—from true to not false—is something that some logical
theories reject, but these theories are left for later chapters.
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Language, Form, and Logical Theories

Traditionally, (formal) logic is concerned with
the analysis of sentences. . . and of proof. . .

with attention to the form in abstraction from the matter.
– Alonzo Church (1956)

The aim of this chapter is to cover three topics: features of
language that are relevant to logic; the aim of ‘formal languages’
with respect to modern logic; and the idea of rivalry among logical
theories. Subsequent chapters, following the brief ‘set-theoretic
toolbox’ in Chapter 3, look at different logical theories and phe-
nomena that motivate them. This chapter, like its predecessor,
remains abstract; its aim is simply to lay out some big-picture
ideas that will be useful for subsequent discussion.

2.1 Language

Languages have a syntax and semantics. The semantics of a lan-
guage involves the meanings of its parts. One cannot have seman-
tics (whatever, exactly, semantics may be) without first having
sentences. That’s where so-called syntax enters. Syntax provides
the uninterpreted sentences of a language, while semantics does
the work of providing meaning. For our purposes, a syntax pro-
vides
• syntactic ingredients—basic building blocks of the language;
• a set of (well-formed) sentences of the language.

The set of syntactic ingredients contains all of the items involved
in the given language’s sentences. Consider, for example, the fol-
lowing sentence of English.

Agnes is sleeping.
There are various syntactic ingredients used in this sentence. To
begin, there are the individual letters ‘A’, ‘g’, ‘n’, and so on.
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Such letters are ingredients for other ingredients, in particular,
the name ‘Agnes’ and the predicate ‘is sleeping’ (which is spelled
with an invisible letter called ‘space’, which falls between the two
occurrences of ‘s’ in ‘is sleeping’). Finally, there is a punctuation
mark, namely, ‘.’. These syntactic ingredients are put together in
the appropriate way to form the given sentence, namely, ‘Agnes
is sleeping.’.

What if we took the above ingredients (e.g., the name ‘Agnes’
and predicate ‘is sleeping’) and put them together as follows?

is sleeping. Agnes
Is this a sentence of English? No. The given string of ingredients is
not among English’s set of sentences. Of course, it’s conceivable
that English could’ve evolved in such a way that ‘is sleeping.
Agnes’ counted as a sentence; however, English’s actual syntax—
in particular, its grammar—doesn’t count the given string as an
English sentence.

For our purposes, one may think of a language’s syntax as
specifying which of its many strings of ingredients count as sen-
tences of the language.

What about the semantics of a language? As above, a lan-
guage’s semantics has to do with the meanings of its parts. For
present purposes, we may think of semantics in a rather limited
sense: namely, whatever is involved in the ‘truth conditions’ of a
sentence—the conditions under which a sentence is true. In ef-
fect, providing truth conditions for the sentences of a language
amounts to filling in the two ingredients involved in the ‘recipe’
for logical consequence (see Chapter 1)—namely, cases and truth
in a case.

Consider an example from the language Enilef (pronounced
‘En-ill-ef’, with accent on ‘En’).1 Among the predicates of Enilef
is ‘mew eow’. Among the names in Enilef is ‘Senga’. The question
is: under what conditions is ‘Senga mew eow’ true? What, in
other words, does it take for ‘Senga mew eow’ to be true? Here
is a natural thought:
• ‘Senga mew eow’ is true if and only if the referent of ‘Senga’

has the property expressed by ‘mew eow’.

1This is a made-up language.
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How do we generalize this to the idea of truth in a case? We first
need to have some idea of what these ‘cases’ are.

For now, we will skip details and think of cases as ‘possible
circumstances’ along familiar—though, admittedly, imprecise—
lines. (E.g., there’s a possible circumstance in which ‘Logic: The
Basics’ refers to a book other than the one you’re reading. There’s
a possible circumstance in which ‘is a cat’ expresses the property
of being a horse. And so on.) Letting c be any such ‘possible
circumstance’, we can generalize the condition above to get an
example of truth-in-a-case conditions.
• ‘Senga mew eow’ is true in a possible circumstance c if and

only if the referent of ‘Senga’ in c has the property expressed
by ‘mew eow’ in c.

Pending further details about the ‘nature’ of c (the nature of
our ‘possible circumstances’), the above account is an example of
truth conditions or, more relevantly, truth-in-a-case conditions.

We will return to this topic in subsequent chapters, where the
interaction between truth-in-a-case conditions and logical conse-
quence will be clearer. For now, one may think of ‘semantics’ as
above: whatever is involved in the truth conditions of sentences.

2.2 Atoms, connectives, and molecules

Chemistry recognizes a distinction between atoms and molecules.
Atoms, at least in the original sense of the term, contain no parts
(other than themselves). Molecules, on the other hand, are com-
posed of atoms. Molecules are what you get by connecting atoms
together.

Language likewise admits of atoms and molecules, in particu-
lar, atomic sentences and molecular sentences. Consider, for ex-
ample, the following sentences.

1. Max is running.
2. Agnes is running.
3. Max likes beans.
4. Agnes likes beans.

Typically, logicians treat (1)–(4) as atomic. For purposes of logic
(or, at least, many standard logical theories), (1)–(4) have no sig-
nificant ‘logical parts’. Such sentences are simple, subject-predicate
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sentences. Unless the given predicates (or, perhaps, names) are
thought to carry special logical significance, the sentences are
treated as basic atomics.

The distinction between atomics and molecular sentences, at
least in logic, turns on the idea of logical connectives, which are
a species of so-called sentential connectives.2 Sentential connec-
tives take sentences and make new (bigger) sentences. Sentential
connectives have a ‘degree’ or ‘arity’, which marks the number
of sentences a given connective requires in order to make a new
sentence. Among commonly recognized connectives in English are
the following.

• Conjunction: . . . and . . .
• Disjunction:3 . . . or . . . (or both)
• Negation: It is not true that . . .

The first two are binary connectives; they take two (not necessar-
ily distinct) sentences to make a new sentence. For example, if we
plug (1) and (2) into the slots for ‘and’, we get the conjunction
of (1) and (2), namely,

5. Max is running and Agnes is running.

Similarly, if we plug (3) and (4) into the slots in ‘or’, we get

6. Max likes beans or Agnes likes beans (or both).

Unlike conjunction and disjunction, negation is a unary connec-
tive; it takes exactly one sentence to make a new sentence, namely,
the negation of the given sentence. For example, the negations of
(1)–(4) are as follows.

7. It is not true that Max is running.
8. It is not true that Agnes is running.
9. It is not true that Max likes beans.

10. It is not true that Agnes like beans.

2This is slightly narrow, but for present purposes will suffice. The broader
category of ‘logical expressions’ is more accurate. We will return to this topic
when we discuss Identity in Chapter 8.

3This connective is called inclusive disjunction, which is different from its
relative exclusive disjunction, which is ‘. . . or . . . (but not both)’.
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Note that, in English, negation is also expressed when it appears
‘inside’ of sentences; it needn’t take its august form at the be-
ginning of sentences. For example, the following are equivalent to
(7)–(10): they too are the negations of (1)–(4).

11. Max is not running.
12. Agnes is not running.
13. Max does not like beans.
14. Agnes does not like beans.

With some sense of connectives in mind, we can now officially
define what it is to be an atomic sentence of a language, and
similarly a molecular sentence of a language. For our purposes,
every language has some set of sentential connectives, and so we
assume as much in the following definitions.4 We will let L be an
arbitrary language (e.g., English or whathaveyou), and A be any
sentence of L.

Definition 4. (Atomic Sentence) A is an atomic sentence of lan-
guage L if and only if A contains none of L’s connectives.

Definition 5. (Molecular Sentence) A is a molecular sentence of
language L if and only if A contains one or more of L’s connec-
tives.

2.3 Connectives and form

With the idea of connectives comes the idea of form—in particu-
lar, logical form.5 Each language has a set of connectives. In doing
logic, logicians traditionally focus on some subset of a language’s
connectives, namely, the ones that are deemed to be logically sig-
nificant. Such connectives are called logical connectives; they are
the ones in virtue of which ‘logical form’ is usually defined.

To get an idea of ‘logical form’, consider again some of the
molecular sentences mentioned above, say, (5). This sentence is

4What makes a connective a logical connective is a topic to which we
briefly turn in §2.4 below. We will not discuss the philosophically challenging
issue of what, exactly, makes a connective a logical connective.

5There are ongoing debates about what, exactly, logical form amounts to.
Given the aims of this book, the current discussion simplifies the situation a
great deal, sidestepping many such issues.
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a conjunction of two atomic sentences, namely, (1) and (2); how-
ever, we could’ve used our conjunction (our connective) to form
the conjunction of any two sentences.

For convenience, let us use the symbol ‘∧’ for conjunction.
In turn, letting A and B be any two sentences, we can say that
conjunctions have the following logical form.

A ∧B

This isn’t to say that every conjunction has the syntactic form
A ∧ B. Quite often, conjunctions have a different surface form.
(Consider, e.g., ‘Max and Agnes like beans’, which is a convenient
way of expressing the conjunction ‘Max likes beans and Agnes
likes beans’.) When we talk about form, we mean logical form,
which is a syntactic ‘form’ relevant to logic.

Of course, a conjunction might have a more illuminating form
if one digs a bit deeper into the given conjuncts.6 To see this,
let us use ‘∨’ for disjunction, and also use ‘¬’ for negation. Now,
consider the conjunction of (4) and (6). This is still a conjunction,
but its particular form is illuminated by the following.

A ∧ (B ∨A)

In this case, conjunction is the ‘main connective’, but instead of
taking two atomics conjunction is now conjoining an atomic (viz.,
(4)) and a molecular sentence (viz., (6)).

Similarly, consider the disjunction of (1) and (7). Since (7) is
the negation of (1), its form—letting A represent (1)—is simply
¬A. In turn, the disjunction of (1) and (7) has the following form.

A ∨ ¬A

You can consider other examples involving the three given con-
nectives.

2.4 Validity and form
Logical consequence (or validity), as in Chapter 1, is absence of
counterexample: B is a logical consequence of A just if there’s

6The conjuncts of a conjunction are the sentences that are conjoined by
conjunction: A and B are the conjuncts of the conjunction A ∧B.



Language, Form, and Logical Theories18

no counterexample to the argument from A to B, that is, just if
there’s no ‘case’ in which A is true but B not true. In contempo-
rary logic (but also in much of traditional logic), a further feature
of logical consequence is highlighted: logical form. Many standard
logical theories maintain that validity is essentially tied to ‘form’.
In particular, the idea is that the validity of an argument is at
least partially in virtue of form.

Sentences, as above, have logical forms. Arguments, in turn,
immediately enjoy logical forms. After all, arguments, which are
(ordered) sets of sentences, have a logical form that derives from
the form of its constituent sentences. For example, consider the
argument from premises (1) and (2) to conclusion (5). (The word
‘Therefore’ is inserted to mark the conclusion of the given argu-
ment; it isn’t really part of the argument.)

1. Max is running.
2. Agnes is running.
5. Therefore, Max is running and Agnes is running.

We can abstract away from the particular content of the above
argument to get the following logical form of the argument—
sometimes called argument form. Here, we use ‘P’ and ‘C’ to
mark premises and conclusion; they are not really part of the
given argument form.

P. A
P. B
C. A ∧B

By using a comma to separate premises, and using ‘∴’ to separate
the premises from the conclusion, we can conveniently display the
above argument form thus: A,B ∴ A ∧B.7

Similarly, the argument from premises (6) and (9) to conclu-
sion (4) has the following argument form: A ∨B,¬A ∴ B.

Why bother thinking about argument forms? As above, logical
consequence, according to standard thinking, has something to

7Note well: ‘∴’ is used as a convenient way of representing an argument or
argument form (separating premises from conclusion in the given form); we
don’t use ‘X ∴ A’ to say anything. Still, if you’d like to pronounce ‘∴’, you
can use its standard pronunciation ‘therefore’. (Again, though, the symbol
is not being used to say anything, but just to represent argument forms.)
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do with logical form. In particular, the validity of an argument
is often thought to be at least partly due to its logical form.
For example, consider, again, the following form: A,B ∴ A ∧ B.
Regardless of what sentences you plug into ‘A’ or ‘B’, you wind
up with a valid argument—at least according to standard logical
theories. For example, let our ‘cases’, once again, be something
like ‘possible circumstances’. Is there any possible circumstance
in which both of A and B are true but their conjunction A ∧ B
is not true? On brief reflection, it is difficult to conceive of such
a case, at least if ∧ is understood as standard conjunction. To
make this plain, we can consider the natural ‘truth conditions’
for conjunctions. A natural approach to the truth conditions for
conjunction goes as follows.8

• A conjunction A∧B is true-in-a-possible-circumstance-c if and
only if A is true-in-c and B is also true-in-c.

Pending further details about our given cases c, this ‘truth condi-
tion’ (i.e., truth-in-a-case-c condition) ensures that any argument
of the form A,B ∴ A∧B is valid. After all, an argument is valid
if and only if it is without counterexample; it is without coun-
terexample iff there is no case in which the premises are true but
the conclusion not true. Can there be a case in which A and B
are both true but A ∧ B is not true? The truth condition above
answers the question. According to the given truth condition, if
A and B are both true-in-some given case c, then A ∧B is true-
in-c too. Hence, given the above truth condition, there cannot
be a case in which both A and B are true but A ∧ B is not
true. Whence, the given argument form, namely A,B ∴ A∧B, is
valid—at least given the above truth condition for conjunction.

2.5 Language and formal languages
Today, the discipline of logic is largely formal logic. In part, for-
mal logic is so called because it often aims to specify valid ar-
gument forms, and it sees logical consequence as being largely
a matter of such forms. Formal logic is also so called for an-
other reason: namely, that contemporary logicians almost always

8Strictly speaking, we are giving truth-in-a-case-c conditions, but it is
cumbersome to always write this, and so sometimes we use ‘truth conditions’
as shorthand for truth-in-a-case conditions.
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construct ‘formal languages’ in their aim to specify logical conse-
quence. Formal languages serve as idealized, heuristic models of
a given natural language (or fragment thereof); they are intended
to illuminate the behavior of logical connectives and, ultimately,
the target consequence relation.

Logic, in the first instance, is about what follows from what in
a given natural language (or some fragment thereof). Natural lan-
guages are familiar languages like English, Spanish, French, Ger-
man, Polish, Mandarin, and so on. Natural languages are pow-
erful and useful tools; however, they are also rife with features
such as ambiguity and vagueness. Such features, while perhaps
partly contributing to the flexibility of natural languages, can be
distracting if one is trying to clearly, precisely specify the logic—
that is, logical consequence relation—of the given language. In
large part, this is why logicians construct ‘artificial languages’ to
help with the task. The situation is familiar from science. Physi-
cists aim to illuminate the real but messy physical world. To
achieve clarity and precision, physicists abstract away from the
messiness; they use idealized models of reality. Similarly, modern
logicians construct precise, artificial languages to model our ‘real
language’. Recourse to artificial languages helps avoid otherwise
distracting features of the target, real language.

To some extent, we have already employed artificial symbols
in an effort to achieve clarity. The use of such ad hoc symbols
doesn’t make for an artificial language, but the idea is similar.
Artificial languages, like natural languages, have a syntax and se-
mantics. Unlike the case of natural languages, artificial languages
are very precise, with the syntax being rigorously defined and
the semantics being precisely, mathematically defined. Indeed,
the semantics of artificial languages is often called formal seman-
tics. Usually, such ‘semantics’ provides little more than what is
required for specifying ‘truth conditions’ (or, more accurately,
truth-in-a-case conditions), as above.

We will see examples of artificial languages in subsequent
chapters. For now, we turn to the idea of ‘rivalry’ among logi-
cal theories.
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2.6 Logical theories: rivalry

It is generally thought that each natural language, on the whole,
has exactly one consequence relation—or, in short, one logic. As-
suming as much, the aim of a logical theory is to specify the logic
of a given language. In doing so, a logical theory aims to clearly
record all of the valid argument forms of the given language.
With respect to English, for example, the aim of a logical theory
is to specify English’s consequence relation, to specify the valid
argument forms of English.

Scientific theories—or theological theories, or psychological
theories, or etc.—often disagree about a given phenomenon. In
such cases, the theories are said to be ‘rival theories’ of the given
phenomenon. For example, one scientific theory might say that
the earth revolves around the sun, while another might say that
the sun revolves around the earth. The two theories give rival
accounts of the same phenomenon—the sun’s rising (as it were).

Can there be rivalry among logical theories? Yes. Not only
can there be rivalry among logical theories; there is rivalry among
logical theories. Subsequent chapters will discuss rival logical the-
ories. For now, it is worth briefly clarifying two common ways in
which logical theories might be rivals.

Logical theories, for our purposes, are always theories about
the consequence relation of a particular language (or fragment
thereof). We will say that logical theories cannot be rivals unless
they are theories of the same language (or the same fragment of
some language). Two common ways in which logical theories may
be rivals are as follows, but will only be illustrated in subsequent
chapters.
• Different Logical Connectives: suppose that two theories aim

to specify the logical consequence relation of some (natural)
language L. The theories might be rivals by disagreeing about
L’s set of logical connectives. (E.g., both theories might say
that ‘and’ is a sentential connective of L, but the theories might
disagree as to whether the given connective should be counted
as properly logical, that is, whether ‘and’ plays any logically
significant role in valid arguments.)

• Different Logical Behavior: suppose that two theories aim to
specify the logical consequence relation of some (natural) lan-
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guage L. Suppose, further, that both theories agree on which of
L’s connectives count as properly logical connectives. The theo-
ries might nonetheless be rivals by disagreeing about the logical
behavior of the given connectives. (E.g., one theory might say
that ¬¬A ∴ A is a valid form in L, while the other theory
disagrees by saying that some instances of the given argument
form have counterexamples.)

For the most part, this book will only cover the second route
towards logical rivalry.

Summary, looking ahead, and reading
Summary. Languages have a syntax and semantics. Syntax pro-
vides the basic ingredients of the language, and in particular a
set of (uninterpreted) sentences. Semantics provides whatever is
required for ‘truth conditions’ of all sentences of the language.
Sentences have logical forms. Arguments, being (ordered) sets of
sentences, likewise have logical forms—argument forms. Validity
is often thought to be at least partly due to the logical form of
arguments. Logic, qua discipline, aims to specify all valid forms
of a given language (or fragment thereof). For convenience and
clarity, artificial languages are constructed to illustrate the log-
ical forms of a given language. Logical theories give an account
of the logical consequence relation of some given language. Rival
logical theories disagree about the behavior of logical connectives
(or disagree about which connectives count as logical). In subse-
quent chapters, we will look at rival logical theories, or at least
the general idea involved in some such rivals.

Looking Ahead. The next chapter discusses a few basic set-theoretic
tools. We will use such tools to talk about various logical theories
in succeeding chapters.

Further Reading. For an accessible, related, but more involved dis-
cussion of this chapter’s various themes, see Sainsbury 2001 and
Read 1995, and also the highly classic ‘Introduction’ in Church
1956. (Also see bibliographies therein!)

Exercises
1. What is a sentential connective? What is a unary connec-

tive? What is a binary connective? (What is the degree or
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arity of a sentential connective?)
2. Relying on the informal idea of ‘possible circumstance’ for

our ‘cases’, and using the ‘truth condition’ in §2.4 for con-
junction, say whether the following argument form is valid:
A∧B ∴ B. Justify your answer by invoking the general def-
inition of ‘validity’ (or logical consequence) and the given
truth condition.

3. In §2.4 we gave a natural truth condition for conjunction.
Give what you’d take to be a natural ‘truth condition’
(strictly, truth-in-a-case condition) for disjunction. Do the
same for negation. (You’ll need these conditions in some of
what follows.)

4. Consider the argument from premises (6) and (9) to con-
clusion (4). Using the symbolism introduced above, give
its argument form. Taking ‘cases’ to be ‘possible circum-
stances’, and using the truth conditions that you provided
for disjunction and negation (and, if need be, the condition
in §2.4 for conjunction), is the given form valid? Justify
your answer.

5. Consider the argument form ¬A∨B,A ∴ B. Taking ‘cases’
to be ‘possible circumstances’, and using the truth condi-
tions that you provided for disjunction and negation, is
the given form valid? Justify your answer. (Your answer
may turn, in part, on your philosophy of ‘possible circum-
stances’ !)

6. Let us say that a sentence is logically true if and only if there
is no case in which it is not true. Using the truth conditions
that you gave for disjunction and negation, say whether the
disjunction of (2) and (8) is logically true. Justify your an-
swer. (Also, what is the logical form of the given sentence?
Is it true that, given your truth conditions, every sentence
of that form is logically true?)

7. Consider the following argument.
(a) Max is a bachelor.
(b) Therefore, Max is unmarried.
Neither sentence has any of our given connectives, and so
both sentences are atomic, at least according to our def-
initions above. As such, atomics have no significant logi-
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cal form. Instead, following the policy according to which
distinct sentences are represented by distinct letters,9 we
would represent the argument form thus: A ∴ B. Is this
argument form valid? If so, why? If not, why not? If there’s
not enough information to tell, what is the missing informa-
tion? What premise might be added to make the argument
valid?

8. Consider, again, the argument above from ‘Max is a bach-
elor’ to ‘Max is unmarried’. Is the conclusion a necessary
consequence of the premise? If so, what, if anything, does
this suggest about the role of ‘logical form’ in the ‘necessary
consequence’ account of validity given in Chapter 1?

9. In your own words, say what it is to give truth-in-a-case
conditions (or, for our purposes, truth conditions) for sen-
tences. Why, if at all, is this activity—that is, giving so-
called truth conditions—essential to an account of logical
consequence as we’ve defined it (in Chapter 1)?

Sample answers

Answer 2. On the current ‘possible circumstance’ approach to
cases, the argument form A∧B ∴ B is valid iff there’s no possible
circumstance in which A ∧ B is true but B not true (for any
sentences A and B). On this account of validity, A ∧ B ∴ B is
valid. Proof: suppose that c is a possible circumstance in which
A∧B is true. By the (given) truth conditions for conjunction (see
§2.4), if A ∧B is true-in-c then both A and B are true-in-c, and
so B is true-in-c. But, by supposition, A ∧B is true-in-c, and so
we conclude that B is true-in-c too. Hence, since what we’ve said
about c applies to any possible circumstance, we conclude that
there can’t be any possible circumstance in which A ∧ B is true
but B not true; and, so, there can’t be a counterexample to the
given argument form.

Answer 3. Here are natural truth conditions (i.e., more accurately,
truth-in-a-case conditions) for disjunction and negation.
• A disjunction A ∨ B is true-in-a-possible-circumstance-c if
and only if A is true-in-c or B is true-in-c (or both).

9This is the policy that we will generally follow.
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• A negation ¬A is true-in-a-possible-circumstance-c if and
only if A is false-in-c.



3

Set-theoretic Tools

Sets are among the most useful things you’ll never see.
– Me

This chapter introduces a few set-theoretic tools. We are not
going to discuss a full set theory (i.e., a full theory of sets), but
rather only get acquainted with some of the ideas. The aim is to
acquire a few useful tools for subsequent chapters.

3.1 Sets

For our purposes, a set is any ‘collection’ of ‘things’. Scare quotes
are used around the words ‘collection’ and ‘things’ to flag that
these words are used in a way that might slightly deviate from
ordinary usage. In particular, a thing, in effect, is whatever exists
or even possibly exists; it needn’t be—although it can be—some
concrete object like a tree or cat or person. In effect, anything
you can talk about is a thing in the target sense.1 Moreover, a
collection, in the relevant sense, needn’t be the result of anyone’s
actually collecting things together. For our purposes, a collection
of things can exist even if nobody has—or will, or could—collect
the given things together. For example, we can acknowledge the
collection of all things that nobody will ever collect together!

3.1.1 Members

The things that are in a set are called its members or elements.
We will use ‘∈’ as our binary predicate for the binary membership
relation, that is, the relation . . . is a member of . . . For example,
if a is a member of set X , we will write ‘a ∈ X ’ to say as much.

1Question: can you talk about a square circle? (This question is posed
only to flag that our account of ‘things’ may not be ideal, but it’ll do for
present purposes.)
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3.1.2 Abstraction and Membership
We will use brace notation to name sets. For example, {2, 4, 6, 8}
is the set containing 2, 4, 6, and 8.

We named {2, 4, 6, 8} by listing its members and employing
the brace notation. This works so long as we have only finitely
many members, but is only convenient when we have a very small
handful of members. Accordingly, we will make use of a much
more powerful way of naming sets, namely, ‘definition by abstrac-
tion’. Consider the English predicate ‘. . . is a cat’. Definition by
abstraction allows us to name the set of all (and only) cats by
writing ‘{x : x is a cat}’, which may be read ‘the set of all x such
that x is a cat’. Similarly, one can name the set of all cats bigger
than Agnes by writing

{x : x is a cat and x is bigger than Agnes}

which, as above, is the set of all x such that x is a cat and x is
bigger than Agnes.

Think of each set as having an entry condition, which is the
condition that is both necessary and sufficient for being a mem-
ber of the given set. On this way of talking, being a cat is the
entry condition for {x : x is a cat}. In general, ‘. . . ’ is the entry
condition for {x : x is . . .}, which is the set of all x that satisfy
the given entry condition. Accordingly, for our purposes, the cri-
terion of membership—what it takes to be a member of a set—is
the following so-called comprehension principle (sometimes ax-
iom).2

Definition 6. (Membership Criterion) x ∈ {y : . . . } iff x satisfies
condition . . .
In other words, something x is in {y : . . .} if and only if x satisfies
the given entry condition. For example, consider, again, the set
{x : x is a cat}, which is the set of all x such that x is a cat (i.e.,
the set of all cats). Our criterion of membership tells us that
Agnes is a member of {x : x is a cat} if and only if Agnes is a
cat.

2Bertrand Russell showed that, at least in classical set theory, not all
predicates can serve as entry conditions, that is, that not any old predicate
determines a set. (To see Russell’s point, consider the predicate ‘x is not a
member of x’.)
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Putting definition by abstraction and comprehension together,
consider our previous example, namely, {2, 4, 6, 8}. If we let ‘Fx’
abbreviate ‘x is an even positive integer strictly less than 10’,3
then we can give another name of {2, 4, 6, 8} via set abstraction
by using ‘{x : Fx}’. Comprehension, in turn, tells us that some-
thing y (no matter what it is) is a member of {x : Fx} iff ‘Fx’
is true of y, that is, that y ∈ {x : Fx} iff y is an even positive
integer strictly less than ten.

3.1.3 Criterion of identity

In order to know whether two sets are the same set, we need what
philosophers call a criterion of identity, something that precisely
individuates sets—something that tells us whether set X counts
as the same set as set Y. The criterion we will use—and the crite-
rion used in contemporary set theory—is the so-called principle of
extensionality, which is as follows. We will use ‘=’ as our binary
predicate for . . . is the same (set) as. . . .4 Accordingly, if X and
Y are the same set, then we express as much by writing ‘X = Y’.
The principle of extensionality is:

Definition 7. (Identity Criterion for Sets; Extensionality) X = Y
if and only if X and Y have exactly the same members.

In other words, same members is all that matters for the ‘identity’
of sets. Accordingly, it doesn’t matter how you specify them; so
long as they have precisely the same members, the specified sets
are the same. Hence, the set of all even prime numbers is exactly
the same set as the set containing Max’s favorite number, and
the same as the set containing only the sum of 1 and 1, namely,
{2}. Similarly, {1, 1, 2, 1} = {1, 2} since there’s no member of the
one set that isn’t a member of the other. (True, some members
‘appear’ more than once, but the criterion of identity says that
that doesn’t matter.)

3It is customary in modern logic to put a predicate before the subject
term(s), and we will follow suit.

4We will also use this symbol for identity, in general, but no serious con-
fusion should arise.
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3.1.4 The empty set
Notice that we have an empty set, that is, a set containing no
members. After all, consider the set {x : x 6= x}, which is the set
of all x such that x is not identical to itself. Is there anything that
satisfies the entry condition ‘x 6= x’? No; everything is identical
to itself. Hence, nothing is in {x : x 6= x}. We have an empty set!

By our criterion of identity, two sets are the same just if they
have the members. Hence, if X has no members, and Y has no
members, then X is the same set as Y. Accordingly, we can have
only one empty set—that is, a set with no members—and, since
we have at least one, we can give it a special (and standard) name,
namely ‘∅’. So, ∅ is the set such that x 6∈ ∅ for all x.

3.1.5 Other sets: sets out of sets
Once we have some sets, we can form new sets by using a few
so-called operations on sets (or set-forming operations).5 There
are a variety of standard such operations, but we need mention
only a few: union and intersection. We define these operations as
follows.
Definition 8. (Union) The union of X and Y is named ‘X ∪ Y’
and defined thus: X ∪ Y = {x : x ∈ X or x ∈ Y}.
Definition 9. (Intersection) The intersection of X and Y is named
‘X ∩ Y’ and defined thus: X ∩ Y = {x : x ∈ X and x ∈ Y}.
Though, in this book, this terminology (union, intersection) is
not explicitly used a lot, it is useful to have in mind.

3.1.6 A few important relations among sets
An important relation between sets is called the subset relation,
which is standardly symbolized with ‘⊆’, and defined as follows.
Definition 10. (Subset) X ⊆ Y iff everything in X is in Y. (Equiv-
alently: there is nothing in X that is not in Y.)
Given this definition, every set is a subset of itself. (After all, if
X is a set, then everything in X is in X !) So, for example, the
(non-empty) subsets of {a, b} are {a}, {b}, and {a, b} itself.6

5This section can be skipped until Chapter 8.
6It turns out that ∅ is a subset of any set. After all, let Y be any set. Since

there’s nothing in ∅, there’s nothing in ∅ that’s not in Y!
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A closely related relation is so-called proper subsethood, which
is defined thus:
Definition 11. (Proper Subset) X ⊂ Y iff X ⊆ Y and there’s
something in Y that is not in X .
Both of these relations among sets are important throughout the
book.

3.2 Ordered sets: pairs and n-tuples

One of our goals, in learning a bit about sets, is to get a handle
on functions. To understand functions, we need to understand re-
lations. To understand relations, at least in a set-theoretic frame-
work, we need to understand the idea of ordered pairs and, in
general, ordered n-tuples. That’s what we’ll do in this section,
and then move to relations and, in turn, functions in the next
few sections.

Recall that, by our criterion of identity, two sets are identical
iff they have the same members. Hence, as above, {1, 1, 2, 1} =
{1, 2}, as there’s no member of the former set that’s not in the
latter set, and no member of the latter set that’s not in the for-
mer set. Our criterion of identity doesn’t care how many times
a member appears in a set, or in what order a member appears;
indeed, as far as sets go, our criterion of identity ignores any
structure among the elements—it treats sets as, in some sense,
structureless entities, entities that are individuated not by any
structure among members but, rather, only by the identity of the
members.

For a variety of reasons, we often want to consider ‘collections’
where the structure or order of elements matters. In other words,
we have reason to acknowledge ‘collections’ that, while being the
same with respect to members (and, hence, the same sets), ought
to count as different entities because the order of elements differs.
For example, in Euclidean geometry one thinks of points as being
ordered pairs, where x is the first coordinate (marking the place
on the x-axis) and y the second coordinate (marking the place
on the y-axis). Clearly, {1, 2} cannot serve as an ordered pair in
geometry, since {1, 2} is the same as {2, 1}.

We can think of ordered pairs as sets that have a stricter
criterion of identity than extensionality (see Def. 7). In particular,
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the identity of an ordered pair is determined by two factors: the
identity of the elements (as before), and the order of the elements.
This is different from our sets, where identity turns entirely on
the one factor, namely, identity of elements. Using angle notation
for ordered pairs, where 〈x, y〉 is the ordered pair whose first
coordinate is x and second coordinate y, we give the following
identity criterion for ordered pairs.

Definition 12. (Ordered Pairs) 〈w, x〉 = 〈y, z〉 if and only if w =
y and x = z.

Hence, while {1, 2} = {2, 1}, the case is different for the ordered
pairs: 〈1, 2〉 6= 〈2, 1〉, since we don’t have it that 1 = 2 and 2 = 1.

Generalizing we can use our ordered pairs to define ordered
n-tuples (e.g., triples, quadruples, quintuples, etc.) as follows.7

Definition 13. (Ordered n-tuples) An ordered n-tuple 〈x1, . . . , xn〉
is the ordered pair 〈〈x1, . . . , xn−1〉, xn〉.
So, an ordered triple of x, y, and z (in that order) will be 〈〈x, y〉, z〉.
For example, the ordered triple of 1, 2, and 3 (in that order) is
〈〈1, 2〉, 3〉. Similarly, an ordered quadruple 〈w, x, y, z〉 is the or-
dered pair whose first coordinate is the ordered triple 〈w, x, y〉
and second coordinate z. For convenience, we also allow for ‘or-
dered 1-tuples’, and identify 〈x〉 with x itself.

« Parenthetical remark. You might be wondering whether, in or-
der to accommodate ordered pairs, we really need to admit en-
tirely new entities in addition to our original sets. Are there al-
ready (unordered) sets that sufficiently play the role of ordered
pairs? The answer, due to mathematician Kazimierz Kuratowski,
is affirmative: we don’t need to acknowledge new entities; our old
sets do the trick. In particular, define 〈x, y〉 to be {{x}, {x, y}}. In
turn, one can prove that {{w}, {w, x}} = {{y}, {y, z}} iff w = y
and x = z, thereby showing that our ordinary (unordered) set

7A related and equally good approach to ordered n-tuples constructs
them in the reverse order from that below: viz., taking ordered n-tuples of
〈x1, . . . , xn〉 to be 〈x1, 〈x2, . . . , xn〉〉. An heuristic surface advantage of our
officially adopted approach in Def. 13 is that it corresponds to the familiar
way of thinking of n-ary functions where the input (viz., an n-tuple) comes
first and the output second.
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{{x}, {x, y}} plays the role of an ordered pair; the given (un-
ordered) set has the target identity criterion (see Def. 12). End
parenthetical. »

3.2.1 Cartesian Product

Now that we have the notion of an ordered set, we can introduce
a useful operation on sets, that is, something that takes sets and
produces sets. The operation in question is the product operation,
which is defined as follows for any sets X and Y.
Definition 14. (Cartesian Product) The product of X and Y is
X ×Y, which is defined to be {〈x, y〉 : x ∈ X and y ∈ Y}. Hence,
X × Y contains all ordered pairs 〈x, y〉 such that the first coordi-
nate is in X and the second coordinate in Y.
So, the product of sets X and Y is a set of ordered pairs, namely,
the set of all pairs that you get by taking the first element from
X and the second from Y. For example, let X = {1, 2} and Y
= {2, 3}. In this case, the product of X and Y, namely, X × Y,
is {〈1, 2〉, 〈1, 3〉, 〈2, 2〉, 〈2, 3〉}. Similarly, X × X and Y × Y are
{〈1, 1〉, 〈1, 2〉, 〈2, 2〉, 〈2, 1〉} and {〈2, 2〉, 〈2, 3〉, 〈3, 3〉, 〈3, 2〉},
respectively.

« Parenthetical remark. Where X is any set, we sometimes write
‘X n’ for the n-fold product of X . For example, X 2 is just X ×X ,
and X 3 is X 2×X , that is, X ×X ×X , and so on. End remark. »

3.3 Relations

For our purposes, we will think of relations as sets. We’ll first
focus on binary relations, and then briefly generalize to all n-ary
relations.8

Definition 15. (Relations) A binary relation R is just a set of
ordered pairs.

For convenience, we will sometimes (perhaps often) use ‘xRy’ to
mean that 〈x, y〉 is in R.

8Actually, as we’ll see, there’s a clear sense in which all relations, at least
treated extensionally, just are binary relations, given our approach to ordered
n-tuples above.
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It is useful to define the domain and range of relations. Where
R is a binary relation, we define the domain ofR, namely dom(R),
and the range of R, namely ran(R), as follows.
Definition 16. (Domain) dom(R) = {x : 〈x, y〉 ∈ R for some y}.

Definition 17. (Range) ran(R) = {y : 〈x, y〉 ∈ R for some x}.

In other words, dom(R) contains all of the things that R relates
to something or other, while ran(R) contains all the things to
which R relates something or other.

Consider the example of loves, which is a binary relation that
obtains between objects x and y just if x loves y. On our account,
the relation loves is a set R that contains ordered pairs 〈x, y〉, in
particular, R contains all and only those pairs 〈x, y〉 such that x
loves y. The domain of R, in this case, contains all of the lovers
(i.e., anyone who loves something), while the range of R contains
all of the beloved (i.e., anyone who is loved by someone or other).
So, if Max loves Agnes, then 〈Max, Agnes〉 ∈ R, and Max is in
dom(R) while Agnes is in ran(R).9

What about n-ary relations, in general? The answer is the
same: they are sets of ordered n-tuples. So, for example, a ternary
relation—e.g., x is between y and z—is a set of triples, and so on.
Of course, given our general account of n-tuples (see above), we
have it that, for any n ≥ 2, an n-ary relation is just a set of
ordered pairs, where the first coordinate is an n− 1-tuple.10

3.3.1 A few features of binary relations

Some (binary) relations have various notable properties. The prop-
erties in question are as follows (where we assume that all of the
x, y, and z are in the given relation’s domain or range, that is, in
the ‘field’ of the relation).
Definition 18. (Reflexivity) A binary relation R is reflexive iff
xRx for all x. (In other words: R is reflexive iff everything stands
in R to itself.)

9Using the idea of ‘union’ above, we can also define the field of a relationR
to be the union of dom(R) and ran(R), that is, field(R) = dom(R)∪ran(R).

10See the Kuratowski definition in §3.2 to see the point. For present pur-
poses, you can just think of n-ary relations as sets of ordered n-tuples.
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Definition 19. (Symmetry) A binary relation R is symmetric iff
if xRy then yRx, for all x and y.

Definition 20. (Transitivity) A binary relation R is transitive iff
if xRy and yRz then xRz, for all x, y, and z.

Definition 21. (Equivalence) A binary relation R is an equiva-
lence relation iff R is reflexive, symmetric, and transitive.

We won’t need to explicitly invoke these notions (e.g., reflexivity,
etc.) until Chapters 8 and 11; however, they’re useful to think
about in general. (Can you come up with examples of a reflexive
relation? What about a symmetric relation? What of an equiva-
lence relation?)

3.4 Functions

The idea of a function will be particularly useful in subsequent
chapters. The foregoing work pays off, since functions are now
very easy to define; they are simply special kinds of relations.
Definition 22. (Functions) An n-ary function is an n-ary relation
R such that, for any x ∈ dom(R), there’s exactly one y such that
xRy.
So, what makes a relation R a function is the special ‘unique
value’ (or ‘unique second coordinate’) constraint, namely, that
functions never relate an item to more than one item. While a
relation, in general, can relate an object x to as many different
objects as it pleases, a function can do no such thing. To be a
function, a relation must satisfy the given unique second coor-
dinate condition: it can never relate something to two different
things. Put in ‘picture’ terms (well, sort of), if you see a relation
that contains the following pairs

〈a, b〉 , 〈a, c〉

then you know that the relation is either not a function or else
b = c.

Notation. Since functions are just relations, we could continue
to use the notation we’ve used for relations; however, it is con-
venient to use more familiar notation in the case of functions.
Accordingly, we’ll use ‘f ’, ‘g’ and the like for functions, and when
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〈x, y〉 ∈ f , we’ll write ‘f(x) = y’. When f(x) = y, we say that y is
the value of f at argument x.11 So, in particular, when f(x) = y,
we say that f(x) is the value of f at x (where, in this case, that
value is y).

A function is said to be a unary function if it takes single
objects as arguments (or ‘inputs’), as opposed to pairs of objects.
So, for example, the function f defined over natural numbers by

f(x) = x+ 1

is a unary function that takes a single number and yields (as
value) the given number’s successor. In particular, the value of
(our given) f at 0 is 1, that is, f(0) = 1. Moreover, f(1) = 2, and
f(2) = 3, and so on.

An example of a so-called binary function, which takes a
pair as ‘input’, is the addition function g over natural numbers,
namely,

g(x, y) = x+ y

Function g, so defined, takes ordered pairs of numbers and yields
a (unique) number.12

Notice that unary and binary functions can be specified in
table form. For example, we can specify a tiny fragment of the
successor function f as follows, where, as above, the successor
function takes any (natural) number x to x+ 1.

f
1 0
2 1
3 2
4 3

Here, the argument (the input) of f is displayed in the right
column and its corresponding value (the output) on the left. (So,

11Yes, this is an unfortunate use of the term ‘argument’ ! Alas, the termi-
nology is fairly settled. Fortunately, context will always clarify whether we’re
talking about a function’s arguments (i.e., its inputs) or an argument in the
sense of premises and conclusion.

12Binary functions, then, are really ternary relations, that is, sets of ordered
triples. So, g, so defined, contains ordered triples like 〈〈0, 0〉, 0〉, 〈〈1, 0〉, 1〉,
and so on.
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e.g., if input x is 0, then the output f(0) is 1, which is displayed
on the left in the first row under ‘f ’ in the table able.) Similarly,
we can specify a tiny fragment of the (binary) addition function g,
as given above, in tabular form, where the arguments (the inputs)
are taken pairwise from the leftmost column and first row (e.g.,
〈0, 0〉, 〈0, 1〉, etc.) and the values from the intersecting cell.

g 0 1 2 3
0 0 1 2 3
1 1 2 3 4
2 2 3 4 5
3 3 4 5 6

Regardless of how they are described, be it in tabular or some
other form, a relation counts as function if and only if it satisfies
the given uniqueness condition: namely, you never have h(x) 6=
h(y) if x = y.

3.5 Sets as tools
For our purposes, the foregoing ideas will give us most of the tools
that we need for subsequent chapters. Modern logic, as suggested
in Chapter 2, uses so-called formal languages to model the con-
sequence relation of some target natural language. Such formal
languages are frequently defined set-theoretically. While we will
not be overly rigorous in subsequent chapters, we will use our
acquired set-theoretic tools to model various accounts of ‘cases’
and, in turn, truth in a case relations. (See previous chapter.)

Summary and looking ahead
Summary. Sets are (possibly empty) collections of things that
satisfy some entry condition, with each set coming equipped with
an entry condition. Something is in a given set if and only if it
satisfies the given entry condition. Two sets are identical iff they
have exactly the same members. Ordered sets are sets with an
ordering constraint: two ordered sets are the same iff they have
the same elements in the same order. Ordered pairs are ordered
sets of two elements. (Ordered n-tuples are ordered pairs where
the first element is an ordered set of n − 1 elements.) Relations
are simply sets of ordered pairs. The domain of a relation R is
whatever is R-related to something else, and the range contains
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everything to which R relates something. Functions are a special
sort of relation, namely, all of those relations that relate nothing
to more than one (distinct) thing.

Looking Ahead. In the next few chapters, we will put such set-
theoretic tools to use in thinking about different logical theories
and the phenomena that motivate them.

Further Reading. Any book on so-called naïve set theory will be
useful for further study. An accessible text for independent study
of contemporary (axiomatic) set theory is Goldrei 1996, which in
turn will point to even further reading.

Exercises

1. Write out Y × Z and Z × Y, where Y = {1, 2} and Z =
{a, b, c}. Are Y × Z and Z × Y the same set? Justify your
answer.

2. Using definition by abstraction, give brace-notation names
(i.e., names formed using ‘{’ and ‘}’ as per the chapter) for
each of the following sets.
(a) The set of all even numbers.
(b) The set of all felines.
(c) The set of all tulips.
(d) The set of all possible worlds.
(e) The set of all people who love cats.

3. Assume that a, b, c, and d are distinct (i.e., non-identical)
things. Which of the following relations are functions? (Also,
if you weren’t given that the various things are distinct,
could you tell whether any of the following are functions?
If so, why? If not, why not?)
(a) {〈a, a〉, 〈b, b〉, 〈c, c〉, 〈d, d〉}
(b) {〈a, d〉, 〈b, d〉, 〈c, d〉, 〈d, d〉}
(c) {〈a, b〉, 〈a, c〉, 〈b, d〉, 〈d, d〉}
(d) {〈b, a〉, 〈c, d〉, 〈a, a〉, 〈b, d〉}
(e) {〈d, d〉, 〈d, b〉, 〈b, d〉, 〈a, d〉}

4. Consider the relation of biological motherhood, which holds
between objects x and y if and only if y is the biological
mother of x. Is this relation a function? Justify your answer.
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5. Consider the relation of loves, which holds between objects
x and y if and only if x loves y. Is this relation a function?
Justify your answer.

6. Since functions are relations, and all relations have a do-
main and range, it follows that functions have a domain
and range. We say that the domain of a function f is the
set of f ’s arguments (or ‘inputs’), and the range of f is
the set of f ’s values (or ‘outputs’). Let the domain of g be
{1, 2, 3}, where g is defined as follows.

g(x) = x+ 22

What is the range of g?
7. Let X = {1, 2} and Y = {Max, Agnes}. Specify all (non-

empty) functions whose domain is X and range is Y.
8. Specify all (non-empty) subsets of {1, 2, 3}.
9. Show why each of the following are true for any sets X and
Y.
(a) If X 6= Y, then X ∩ Y ⊂ X ∪ Y.
(b) If X ⊂ Y, then X ∪ Y = Y.
(c) If X ⊂ Y, then X ∩ Y ⊂ Y.

10. Let f be some function with dom(f) = X (i.e., the do-
main of f is X ), for some arbitrary (non-empty) set X .
We say that our function f is a function from X into Y
if ran(f) ⊆ Y. Given this terminology, specify all (non-
empty) functions from {A,B} into {1, 2, 3}, where A and
B are distinct sentences. (Note that any such function must
map every element of the domain to something in {1, 2, 3}.)

11. Let X be an arbitrary set and f an arbitrary function. We
say that f is an operator on X if and only if the dom(f) = X
and ran(f) ⊆ X . Consider the following operator on {1, 0}.

g(x) = 1− x

Now, imagine a function v that assigns either 1 or 0 to each
atomic sentence of our language, so that, for any atomic
sentence A of our language, we have it that v(A) = 1 or
v(A) = 0. Answer the following questions.
(a) Suppose that v(A) = 1. What is g(v(A))?
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(b) Suppose that v(A) = 0. What is g(v(A))?
(c) If v(A) = 1, what is g(g(v(A)))?
(d) Is it true that g(g(x)) = 1 just when x = 1?
(e) How, if at all, is the given function g similar to nega-

tion (as you thought about it in Chapter 2)?

Sample answers

Here are some sample answers. (In the first one, the answer is
somewhat involved for purposes of illustrating, in a fairly step-by-
step fashion, how one might go about proving the given claims.)

Answer 9b. We have to show that if X ⊂ Y, then X ∪ Y = Y.
We show this (viz., the given conditional) by so-called conditional
proof: we assume that the antecedent is true (viz., that X ⊂ Y),
and then show—via valid steps (!)—that the consequent is true.
(Usually, we do this simply by invoking definitions involved.) So,
suppose that X ⊂ Y, in which case, by definition of proper subset
(see Def. 11), it follows that anything in X is in Y, and that Y
contains something that X doesn’t contain. Now, we need to show
the consequent of our target conditional: viz., that X ∪ Y = Y.
This is an identity claim: it claims that the two given sets are
identical. How do we show that they’re identical? Well, we have
to invoke the definition of identity for sets, which tells us that,
in this case, X ∪ Y = Y iff both X ∪ Y and Y contain exactly
the same things. In other words, we show that X ∪ Y = Y by
showing that something (no matter what it is) is in X ∪Y if and
only if it’s in Y. So, in effect, we have to show that two different
conditionals are true to show that the two sets are identical:
9b.1 If something (no matter what it is) is in X ∪ Y, it is in Y.
9b.2 If something (no matter what it is) is in Y, it is in X ∪ Y.
And here, we can just do so-called conditional proofs again for
each of (9b.1) and (9b.2): we assume the given antecedents and
show, via valid steps (usually just appealing to the definitions),
that the given consequents follow. So, for (9b.1), we assume that
something—call it (no matter what it is) ‘z’—is in X ∪ Y. What
we have to show is that z is in Y. Well, by assumption, we have
that z ∈ X ∪Y, in which case, by definition of union (see Def. 8),
if z ∈ X ∪ Y then z ∈ X or z ∈ Y. In the latter case, we have
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what we want (viz., that z ∈ Y). What about the former case in
which z ∈ X ? Do we also get that z ∈ Y? Yes: we get this from
our initial supposition that X ⊂ Y, which assures that anything
in X is in Y. What this tells us is that, either way, if something
z (no matter what z may be) is in X ∪ Y, then it’s also in Y
(provided that, as we’ve assumed from the start, X ⊂ Y). And
this is what we wanted to show for (9b.1).

With respect to (9b.2), we assume that something z (no mat-
ter what z is) is in Y. We need to show that z ∈ X ∪Y. But this
follows immediately from the definition of union (see Def. 8).13

According to the definition, something is in X ∪ Y if and only if
it’s either in X or in Y. Hence, given that (by supposition) z ∈ Y,
we have it that z ∈ X ∪ Y.

Taking stock of Answer 9.b. What we’ve proved, in showing
(9b.1) and (9b.2), is that, under our assumption that X ⊂ Y,
something (no matter what it is) is in X ∪ Y iff it’s in Y. By
definition of identity for sets (see Def. 7), this tells us that, under
our assumption that X ⊂ Y, the sets X ∪ Y and Y are identical.
And this is what (9b) required us to show.

Answer 11a. If v(A) is 1, then, plugging 1 in for x in the definition
of function g, we have that g(1) = 1− 1, and so g(v(A)) is 0.

13Well, we’re assuming that so-called Addition is valid, that is, that a
disjunction is implied by either of its disjuncts. Some logical theories question
this (see, e.g., Chapter 12 in which one such theory is briefly waved at);
however, we’ll assume it in our reasoning throughout the book.
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Classical Theory

I dreamt that life was wholly precise: black/white, on/off. . .
– Anonymous

In this chapter we introduce the so-called classical approach to
some basic connectives, and, in turn, introduce the corresponding
classical theory of logical consequence.1 The basic connectives in
question are conjunction, disjunction, and negation. These con-
nectives, in addition to a few defined ones (see §4.6), will occupy
our attention in this chapter and the next two chapters.2

A chief aim of logical theories is to specify the logical be-
havior of connectives—in this case, the behavior of our basic
connectives, conjunction, disjunction, and negation. Specifying
the logical behavior of connectives involves giving an account of
logical consequence—of validity—for the language (or fragment
thereof) that contains those connectives. Doing that, as suggested
in Chapters 1 and 2, involves specifying one’s ‘cases’ and giving an
account of truth in a case for the various connectives—in short,
giving ‘truth conditions’ for the various connectives. In this chap-
ter, we’ll look at the basic classical approach to these issues, at
least for the given connectives.

4.1 Cases: complete and consistent
Recall, from Chapter 1, the two chief ingredients involved in our
‘recipe’ for logical consequence: cases and truth in a case. The
latter ingredient concerns truth conditions for connectives, some-
thing to which we explicitly turn below. For now, let us introduce

1The term ‘classical’ in this context is entrenched (and also applies to
richer languages discussed in later chapters). It is controversial as to whether
the target (so-called) classical logical theory is the logical theory endorsed
by classical thinkers (e.g., Aristotle). It is perhaps best to think of the term
‘classical’ along the lines of ‘standard’ or ‘common’.

2We will consider more connectives in subsequent chapters.
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some terminology to talk about different ‘kinds’ of cases—leaving
aside the question of what, exactly, the ‘nature’ of such cases
might be.

In the following definitions, L is a given language with at least
the basic connectives conjunction, disjunction, and negation.3 As
in Chapter 2, we let ¬ be negation, ∧ conjunction, and ∨ disjunc-
tion.
Definition 23. (Complete Cases) A case c is complete if and only
if either A is true-in-c or ¬A is true-in-c, for any A in L.

Definition 24. (Consistent Cases) A case c is consistent if and
only if there is no A in L such that both A and ¬A are true-in c.

We shall use this terminology to classify different sorts of cases
(and corresponding logical theories). In particular, a distinguish-
ing feature of the classical logical theory is that it takes all cases
to be both complete and consistent (in the given sense): noth-
ing is a classical case unless it is complete and consistent. While
this does not fully define classical cases, it marks out a key fea-
ture that distinguishes them from other sorts of cases discussed
in subsequent chapters. Before giving a fuller account of classi-
cal cases, we turn to the matter of ‘truth conditions’ (strictly,
truth-in-a-case conditions) for the basic connectives.

« Parenthetical remark. As will be evident throughout, the tasks
of specifying cases and specifying truth in a case—the two chief
tasks in our approach to specifying theories of consequence—are
intimately related (especially when cases are treated only ab-
stractly as things in which claims are true). We will, in fact,
be mostly focusing on logical theories that take cases to be (in
effect) the same with respect to the logical behavior of disjunc-
tions and conjunctions (and related logical machinery introduced
later). As such, we sometimes speak of completeness and consis-
tency (see definitions above) as being definitive of classical cases,
even though this is not strictly correct. (As will be clear below,
classical cases also have features concerning, e.g., disjunctions and
conjunctions.) End parenthetical. »

3This chapter assumes that the given three connectives are our only (ba-
sic) connectives.
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4.2 Classical ‘truth conditions’

For our purposes, truth conditions are truth-in-a-case conditions.
Each connective determines a type of (molecular) sentence, namely,
a molecular sentence whose principal connective is the given con-
nective.4 For example, consider negation. Suppose that you have
some sentence A. To form a negation (one type of molecular sen-
tence), you simply apply negation, which becomes the principal
connective (of the resulting negation). Given your initial A, you
apply negation to get ¬A, which is the negation of A. Similarly,
suppose that you have two sentences A and B, and you apply
conjunction; you thereby form a conjunction (another type of
molecular sentence), namely, A ∧ B, which is the conjunction of
A and B. The same idea applies to the other connective(s).

With three connectives, then, we have three different types of
molecular sentence: conjunctions, disjunctions, and negations. In
giving truth-in-a-case conditions (what we’re calling ‘truth con-
ditions’), one specifies what it takes for each type of sentence to
be true-in-a-case.

Before turning to the truth conditions for connectives (i.e., for
our different molecular sentences), it’s important to recall that,
in addition to our molecular sentences, we also have our atomic
sentences—sentences with no connectives. What about truth-in-
a-case conditions for such atomics? For present purposes, we will
skip (for now) what it takes for an atomic sentence to be true-
in-a-case, and we’ll just assume—in accord with constraints on
classical cases—that every atomic is either true-in-a-case or it’s
not, in which case its negation is true-in-the-given-case (since
these are classical, and so complete, cases).

To be slightly clearer, let us use ‘c |=1 A’ to abbreviate that
A is true-in-c, and similarly use ‘c 6|=1 A’ to abbreviate that A
is not true-in-c. That classical cases are complete and consistent
amounts to the claim that, for any sentence A and any (classical)
case c, we have it that either c |=1 A or c |=1 ¬A but not both.
In particular, then, we have it that, for any atomic A and any

4If we were being fully rigorous, we would precisely define what it is to
be a ‘principal connective’. This is something that is covered in standard
introductions to formal logic. We will content ourselves with a loose but,
hopefully, adequate account.
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(classical) case c, either c |=1 A or c |=1 ¬A. This leaves open
the question of how atomics ‘get to be true’ in such cases, but
we can set this question aside for now.5 For present purposes, we
don’t really need to know how atomics come to be true-in-a-case;
we just need to know that, for any classical case c, every atomic
is either true-in-c or its negation is true-in-c, in which case the
atomic is not true-in-c.

With the assumption regarding atomics in hand, we can now
specify the classical truth conditions for all sentences (or ‘sen-
tence types’) in our given language.

Definition 25. (Basic Classical Truth Conditions) Where c is any
case, and A and B any sentences of L, the classical conditions
for the basic connectives are as follows.

Conjunction: c |=1 A ∧B iff c |=1 A and c |=1 B.

Disjunction: c |=1 A ∨B iff c |=1 A or c |=1 B (or both).6

Negation: c |=1 ¬A iff c 6|=1 A.

This tells us that, according to the classical theory, a conjuc-
tion is true-in-a-case just if both conjuncts are true-in-that-case.
Similarly, a disjunction is true-in-a-case iff at least one of the dis-
juncts is true-in-the-case. Finally, we have it that a negation is
true-in-a-case just if the negatum is not true-in-the-given-case.

We shall say that a classical case—or, at least, a basic classical
case (i.e., a ‘classical case’ as far as the basic connectives go)—is
any complete and consistent case that ‘obeys’ the basic classical
truth conditions.

For convenience, let us define a standard notion of falsity as
‘truth of negation’. More precisely, let us say that A is false-in-a-
case if and only if ¬A is true-in-the-given-case. Something that
you should think about is that, on the classical account, A is
false-in-c if and only if c 6|=1 A. After all, given the above truth
conditions for negation, we have it that c |=1 ¬A if and only if
c 6|=1 A. By our definition, A is false-in-c if and only if c |=1 ¬A.

5The question is taken up in later chapters.
6This parenthetical ‘or both’ is important; it marks the inclusive usage of

‘or’. This inclusive usage is what, unless otherwise stated, we use throughout
the book, and so such parenthetical notes ‘or both’ are often omitted.



Basic classical consequence 47

Putting these together (plus the constraints on classical cases
above), we see that A is false-in-c if and only if c 6|=1 A.

« Parenthetical remark. Looking ahead, we can present things
more broadly by introducing not only a truth in case c relation
|=1, but also a falsity in c relation |=0. In the classical framework,
|=0 simply winds up being definable as 6|=1 (i.e., the falsity in a
case relation winds up being the so-called complement of the
truth in a case relation—that is, the not true-in-a-case relation.
As such, the separate falsity in a case relation is superfluous in
the classical setting, but it will be important in later chapters.
End parenthetical. »

4.3 Basic classical consequence
With the foregoing truth conditions and account of cases, we
now have an idea of the classical theory of logical consequence
(at least for the basic connectives). Consider, for example, the
following argument form.

¬¬A ∴ A

Is this valid according to the classical theory? The answer is yes.
After all, an argument is valid if and only if there’s no counterex-
ample. Can there be a counterexample to ¬¬A ∴ A? What we’re
asking is whether there can be a (classical) case in which ¬¬A is
true but A false. In other words, we want to know whether there’s
a (classical) case c such that c |=1 ¬¬A but c 6|=1 A.7

To answer the current question, we have to rely on the classical
account of ‘cases’ and, in particular, the given truth conditions
for negation. To see that ¬¬A ∴ A is classically valid (i.e., valid
according to the classical account of consequence), we can reason
as follows. Let c be an arbitrary classical case in which ¬¬A is
true, i.e., a classical case c such that c |=1 ¬¬A. According to the
truth condition for negation, we have it that

c |= ¬¬A if and only if c 6|= ¬A

7Using the observation concerning falsity, the question may also be put
thus: is there a (classical) case c such that c |=1 ¬¬A but c |=1 ¬A? (Why
is this an equivalent, and perhaps more telling, way of asking the going
question?)
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that is, that ¬¬A is true-in-c if and only if ¬A is not true-in-c.
Since, by supposition, c |=1 ¬¬A, we have it that c 6|=1 ¬A. But,
now, recall that c is a classical case, c is complete, in which case,
if c 6|=1 ¬A (i.e., if ¬A is not true-in-c), then c |=1 A (i.e., A is
true-in-c). Hence, any (classical) case in which ¬¬A is true is a
case in which A is true. Equivalently, there’s no (classical) case
c such that c |=1 ¬¬A but c 6|=1 A, which means that there’s no
counterexample to the given argument form. Hence, by definition,
the given argument form is valid. Consider another argument
form, namely, A ∧ B ∴ A. Once again, we can see that this is
classically valid by invoking our knowledge of classical cases and,
in particular, the classical truth condition for conjunction. Can
there be a (classical) case in which A ∧ B is true but A not?
Equivalently, can we have a (classical) case c such that c |=1 A∧B
but c 6|=1 A? No. The classical truth condition for conjunction
tells us that, for any (classical) case c, if c |=1 A∧B then c |=1 A
and c |=1 B, in which case c |=1 A. So, there’s no counterexample,
and hence the argument is valid.

With respect to disjunction, consider the argument form A ∴
A∨B. Is this valid according to the classical theory? Yes. After all,
the relevant truth condition tells us that if at least one disjunct
is true-in-a-given-case, then the entire disjunction is true-in-the-
given-case. In other words, we have it that if either c |=1 A or
c |=1 B (or both), then c |=1 A∨B. Hence, in particular, if c |=1 A
then c |=1 A ∨ B. So, there cannot be a case in which A is true
but A ∨B not true, and so cannot be a counterexample.

Also notable is that A ∨ ¬A is logically true, that is, true-in-
all (classical) cases, that is, c |=1 A ∨ ¬A for all (classical) c. In
effect, the logical truth of A ∨ ¬A falls out of the completeness
feature of classical cases and the truth conditions for disjunction.
The truth conditions for disjunction tell us that a disjunction is
true-in-a-case iff at least one of the disjuncts is true-in-the-given-
case. Hence, the disjunction A ∨ ¬A is such that c |=1 A ∨ ¬A
iff c |=1 A or c |=1 ¬A. Any classical case c is complete, which,
in our terminology, means that either c |=1 A or c |=1 ¬A (but
not both, by consistency). So, there cannot be a (classical) case
in which A ∨ ¬A fails to be true. Hence, as above, A ∨ ¬A is
logically true, according to the classical theory.
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4.4 Motivation: precision

Before moving to a standard, formal picture of the basic classi-
cal account, one might wonder about the motivation behind the
classical theory. Why, for example, think that our cases are com-
plete and consistent? There are many answers that one might
give to this question, but the basic idea is that our language—or
the relevant fragment of it—is precise, in some sense.

The language of mathematics is often taken to be an exam-
ple of a precise language. In mathematics,8 we assume that every
(mathematical) sentence is either true or false—that is, that ei-
ther A or ¬A is true, for every (mathematical) sentence A. More-
over, in mathematics, we assume that no sentence can be both
true and false—that is, that not both A and ¬A can be true. If
one focuses chiefly on mathematics, or even takes mathematics
to be the ‘ideal example’ of deductive validity, then the classical
theory is well-motivated. Indeed, what is today called ‘classical
logic’ (which includes the basic connectives above but also a bit
more) was formulated as an account of logical consequence in
(classical) mathematics.

Of course, one might—and many have—thought that the clas-
sical theory is the right theory for our language, in general (at
least for the basic connectives). One might think, for example,
that—even apart from mathematics—the very meaning of nega-
tion (in English, say) enjoys the classical truth conditions, and
similarly enjoys the logical behaviour captured in the classical
account. One might think the same thing about disjunction and
conjunction, namely, that the classical truth conditions get things
right. In particular, one might think that A ∨ ¬A is ‘necessarily
true’, in some sense, and is as much in virtue of the very mean-
ing of negation and disjunction. In short, one might think—and,
again, many have thought—that the classical account gets more
than our mathematical language right; it gets our language, in
general, right (at least for the given basic connectives).

8Strictly speaking, what follows focuses on so-called classical mathemat-
ics, which is what most people think of when they think of mathematics.
So-called constructive mathematics takes a different approach, one that we
will ignore (only for simplicity).
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On this way of thinking, we have it that every sentence, not
only mathematical ones, are either true or false (but not both).
Of course, given our finite circumstances, we might not be able to
know the truth or falsity of every sentence, but this is a limitation
on our part, not a blemish against the classical theory of logic.
According to the classical theory, there’s no ‘indeterminacy’ in
the language at all, in the sense that, as above, every meaningful
sentence is either true or false.

In subsequent chapters, we will (lightly) explore a few phe-
nomena that challenge the classical approach to our basic con-
nectives, at least when one applies that account beyond the lan-
guage of mathematics. For now, we turn to a slightly more precise
account of the classical theory; we turn to a ‘formal picture’ of
the idea.

4.5 Formal picture
As throughout, the main aim of a logical theory is to specify
the consequence relation of a given language. For our purposes,
we are concentrating on a language with only a few basic con-
nectives, and we are ignoring any structure within our atomic
sentences. Our aim in this section is to briefly sketch a formal
picture of the classical logical theory of such a language. Towards
that end, we will give a sketch of a formal language, a sketch
of the ‘semantics’ (viz., ‘truth conditions’) for the language, and
then define the consequence relation on the given language. What
follows presupposes the set-theoretic tools from Chapter 3.

4.5.1 Syntax of L
Recall that, for our purposes, the syntax of a language specifies
the basic (syntactic) ingredients of a language and defines what
counts as a (grammatical) sentence in the language. We will define
a simple syntax for the language L.
Definition 26. (Syntax of L) The syntax of a language L contains
ingredients and sentences.

1. Ingredients of L
(a) A set A of atomic sentences. This set contains the low-

ercase letters ‘p’, ‘q’, and ‘r’ with or without numerical
subscripts.
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(b) A set C of basic connectives. This set contains ‘¬’,
which is a unary connective, and also the binary con-
nectives ‘∧’ and ‘∨’.

(c) A set P of punctuation marks. This set contains ‘(’
and ‘)’.

2. The set S of L’s sentences is defined as follows.
(a) Everything in A is in S.
(b) If A and B are in S, then so too are ¬A, (A∧B), and

(A ∨B).
(c) Nothing else is in S (except what follows from the

above two clauses).
Clauses (1a)–(1c) of the definition specify the basic ingredients
of L, and in particular our basic connectives. Clauses (2a)–(2c)
specify the set of sentences of L. For example, we know that p is
a sentence of L. How do we know that? Well, we know, from (1a)
that p is in A, that is, that p is an atomic sentence of L. In turn,
(2a) tells us that everything in A (i.e., all atomics) is in S, that
is, that everything in A is a sentence of L.

Likewise, we know that (p ∨ q22) is a sentence of L. After all,
(1a) tells us that p and q22 are in A, and so, by (2a), we know that
p and q22 are in S (i.e., sentences of L). Finally, (2b) tells us that
the result of putting ‘∨’ between two sentences, and enclosing the
result with our punctuation marks, gives us a sentence of L. So,
since, as above, p and q22 are sentences, then so too is (p ∨ q22).

On the other hand, we can see that, for example, ‘¬ ∧ p’ is
not a sentence of L. After all, clause (2c) tells us that nothing is
a sentence of L unless it counts as such via clauses (2a) or (2b)
or both. But there’s no way to get ‘¬ ∧ p’ from (2a) or (2b), and
so it isn’t a sentence. (Question: is ¬(p) a sentence of L?)

The foregoing, while quick, is enough syntax for our purposes.
The pressing concern is the semantics—the ‘truth conditions’ for
our sentences.

4.5.2 Semantics of L
The chief aim of logic, as above, is to specify logical consequence
for a given language. We are concentrating on the language L,
as above. To specify logical consequence, we have to say what
our cases are and, in turn, give truth-in-a-case conditions for all
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sentences.
Since our concern, in this chapter, is with the basic classical

theory, we need to think about how to ‘model’ our classical cases.
We need our cases to be complete and consistent, in the sense
above. One way of doing this is to take our cases to be special
sets of sentences, and define truth in a case as nothing more than
being a member of a case. This approach is natural and sufficient
for our basic connectives, but we will resort to a slightly different
approach that makes it easier to assess the classical theory. (See
exercises.)

We begin with a set of ‘semantic values’,9 in particular V =
{1, 0}. Intuitively, we can think of 1 as representing the semantic
status ‘truth’, and 0 as representing ‘falsity’. Our cases, in turn,
will be functions from S (sentences) into V. Let v be any such
function. Since v is a function from S into V, we have it that
v(A) = 1 or v(A) = 0 for any sentence A. Hence, every atomic
sentence of L gets assigned either 1 or 0 by any such function.

Let us define truth in a case as follows: A is true-in-a-case
v (remember that our ‘cases’ are now functions) if and only if
v(A) = 1. Similarly, A is false-in-a-case v if and only if v(A) = 0.

Notice that we do not want to allow just any old function
from S into V to count as a classical case! After all, there are
certainly functions from S into V that do not respect the classical
truth conditions. Consider, for example, a function v such that
v(A∨¬A) = 0. The classical theory, of course, has it that A∨¬A is
true-in-every case, and so our given function fouls up the classical
theory if we allow it among our cases.

To rule out such ‘unwanted’ functions from our set of cases, we
invoke the following truth conditions. In particular, we say that
a function v, from S into V, is a classical case if and only if it
‘obeys’ the following clauses—the following truth conditions—for
all sentences A in B. (Here, ‘or’ is inclusive!)

• Conjunction: v(A ∧B) = 1 iff v(A) = 1 = v(B).
• Disjunction: v(A ∨B) = 1 iff v(A) = 1 or v(B) = 1.
• Negation: v(¬A) = 1 iff v(A) = 0.

9These values are sometimes called ‘truth values’, but we’ll use the broader
term.
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Equivalently, we can give such conditions via the following tables—
sometimes called ‘truth tables’. (For purposes of ‘input’ and ‘out-
put’ values, these tables may be read along the lines of the unary-
and binary-function tables displayed in §3.4.)

¬
0 1
1 0

∧ 1 0
1 1 0
0 0 0

∨ 1 0
1 1 1
0 1 0

Either way, we have succeeded in specifying both the truth-in-a-
case conditions and, in turn, the ‘right’ set of cases—namely, the
ones that ‘obey’ the given truth conditions.

The final step, in giving the semantics, is to specify our target
relation: namely, logical consequence. The definition is just an
instance of our recipe in Chapter 1.
Definition 27. (Basic Classical Consequence) B is a logical con-
sequence of A if and only if there is no classical case v such that
v(A) = 1 but v(B) = 0.
To make this more general, let us say that v satisfies a sentence
A iff v(A) = 1 (i.e., iff A is true-in-the-given-case). In turn, let X
be any set of L sentences. We say that v satisfies X iff v satisfies
every member of X . With this terminology, we can give a more
general definition of basic classical consequence (instead of, as
above, single-premise arguments).
Definition 28. (General Basic Classical Consequence) A is a log-
ical consequence of X if and only if there is no classical case v
that satisfies X but not A.
You should think about this definition, compare it with the ‘gen-
eral recipe’ of logical consequence, and also evaluate various ar-
gument forms for (basic classical) validity.

By way of terminology, we will write ‘X ` A’ to mean that
A is logical consequence of X . One may also read ‘X ` A’ as
saying that X implies A, which is shorthand for ‘A is a logical
consequence of X ’.10 For example, we have seen that, according

10More accurately but somewhat more cumbersome: in saying that X im-
plies A, where X is a set of sentences (versus a sentence), we really mean that
the members of X , taken together, imply A. For simplicity, we shall often
slide over this distinction.
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to the classical theory, ¬¬A ` A, that is, that ¬¬A implies A.
Similarly, we have seen that A ` A ∨ B, that is, that A ∨ B is a
consequence of A, that A implies A ∨B.

« Long parenthetical remark. In this book, we’ll be looking at a
handful of different logical theories, each pointing to a different
consequence relation. At the moment, we have our basic classi-
cal consequence relation, which we might explicitly write as ‘`bc’
(for basic classical). Other consequence relations may be denoted
via different subscripts: `x, `y, or whathaveyou. While such sub-
scripts will be important when more than one consequence rela-
tion (more than one logical theory) is under discussion, the sub-
scripts can usually be dropped—and will be dropped. Throughout
this book, we shall simply use the turnstile to mark the conse-
quence relation under discussion: ‘X ` A’ may be read as saying
that X implies A according to the logical theory under discussion.
(So, e.g., in the current chapter, ‘X ` A’ says that X implies
A according to the basic classical theory, where the basic classi-
cal consequence relation is defined as above. In the next chap-
ter, where we look at a so-called paracomplete theory, ‘X ` A’
says that X implies A according to the basic paracomplete the-
ory, where this theory—and its target consequence relation—are
defined in the next chapter. And so on.) Again, when more than
one consequence relation is being discussed (e.g., for comparative
purposes), a subscript shall be introduced. End long parentheti-
cal. »

4.6 Defined connectives

Before examining the classical theory a little bit further, it is
important to note that, in addition to our basic three connectives
(above), we can also recognize some so-called derivative or defined
connectives, in particular, some conditional-like connectives.

For example, suppose that we write ‘A→ B’ as shorthand for
¬A ∨B. In many ways, ‘A→ B’ behaves like a conditional, that
is, like (some uses of) an ‘If . . . then . . .’ sentence. Treating → as
a conditional, we call A the antecedent of A→ B, and we call B
the consequent.

Since → is a defined connective—that is, it’s defined in terms
of ones we already have—we don’t need to give further truth
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conditions for it. The truth conditions for A→ B are simply the
truth conditions for ¬A∨B, which can be figured out by looking
at our basic truth-in-a-case conditions above. In particular:

v(A→ B) = 1 iff either v(A) = 0 or v(B) = 1 (or both).

So, our conditional—which, when defined in terms of negation
and disjunction, is called a material conditional—is true-in-a-case
iff it has a false antecedent or a true consequent in the given case.

Similarly, we can introduce another defined connective, namely,
a biconditional. We will let ‘A↔ B’ abbreviate (A→ B)∧ (B →
A). (Notice that we’re already utilizing our first defined connec-
tive, our material conditional.) Like the conditional, we need
not introduce new truth conditions for ↔, since its truth-in-
a-case conditions are already given by the conditions for con-
junction and the conditional (whose truth conditions, as above,
are given in terms of disjunction and negation). In particular,
the truth-in-a-case conditions for A ↔ B are simply those for
(A→ B) ∧ (B → A), which are

v(A↔ B) = 1 iff v(A) = v(B)

So, a biconditional is true-in-a-case exactly if the two component
sentences have the same semantic value in that case; otherwise,
the biconditional is false-in-the-given-case.

The truth conditions for → and ↔ may be equivalently given
via the following tables.

→ 1 0
1 1 0
0 1 1

↔ 1 0
1 1 0
0 0 1

4.7 Some notable valid forms

Any logical theory of a language provides an account of the (log-
ical) behavior of the language’s connectives. In part, a theory of
the connectives is largely reflected in the theory’s given truth con-
ditions for the connectives, and the associated account of ‘cases’.
Still, where the behavior is manifest is in the consequence relation,
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in particular, the valid argument forms involving those connec-
tives. Some representative forms that, on the classical theory, are
valid are as follows.11

• Excluded Middle (LEM): ` A ∨ ¬A
• Non-Contradiction: ` ¬(A ∧ ¬A)
• Modus Ponens: A→ B,A ` B
• Modus Tollens: A→ B,¬B ` ¬A
• Disjunctive Syllogism: A ∨B,¬A ` B
• Contraposition: A→ B a` ¬B → ¬A
• Explosion (EFQ):12 A,¬A ` B
• Addition: A ` A ∨B
• Adjunction: A,B ` A ∧B
• Simplification: A ∧B ` A
• De Morgan: ¬(A ∨B) a` ¬A ∧ ¬B
• De Morgan: ¬(A ∧B) a` ¬A ∨ ¬B
• Double Negation: ¬¬A a` A

There are other notable forms that are valid according to the
classical theory, but the foregoing give a representative flavor.

In establishing that an argument form is valid according to
a given theory, one must invoke the theory’s account of conse-
quence, and in particular its account of cases and truth in a case.
By way of example, we will close with establishing the validity of
Disjunctive Syllogism and Contraposition, respectively.

To see that A∨B,¬A ` B, that is, that Disjunctive Syllogism
is valid, we can reason as follows. The given argument form is valid
iff there is no classical case in which the premises are true and
the conclusion false. Our classical cases are functions that obey
the given truth conditions (see above). Let v be such a function,
and suppose that the given premises are all true in (or according
to) v, that is, that v(A ∨ B) = 1 = v(¬A). Since v(¬A) = 1, the
truth conditions for negation tell us that v(A) = 0. But, now, the

11Notation: we let ‘` A’ (without anything to the left of the turnstile)
mean that A is logically true according to the given theory. Also, we write
‘A a` B’ to mean that A implies B and B implies A (according to the given
theory). Finally, for readability’s sake, outermost parentheses are dropped,
which are otherwise strictly required by the syntax of L.

12This is sometimes called Ex Falso Quodlibet.
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truth conditions for disjunction tell us that v(A∨B) = 1 iff either
v(A) = 1 or v(B) = 1. By supposition, v(A ∨ B) = 1, and so,
since we have it that v(A) = 0, it must be that v(B) = 1. Given
that v was an arbitrary case, we conclude that there cannot be
any classical case in which both A ∨ B and ¬A are true but B
is false. Hence, there’s no counterexample to the given argument
form. Hence, Disjunctive Syllogism is classically valid.

For the other example, namely, Contraposition, we want to
show that there’s no case in which A→ B is true but ¬B → ¬A
is false. Again, we simply use our given truth conditions. Let v be
an arbitrary classical case. According to the truth condition for
A → B, we have it that if v(A → B) = 1, then either v(A) = 0
or v(B) = 1. If the former holds, then v(¬B → ¬A) = 1, given
that its consequent is true (see the truth condition for negation).
If the latter holds, v(¬B → ¬A) = 1, since its antecedent is
false. Hence, either way, so long as v(A → B) = 1, we have it
that v(¬B → ¬A) = 1. Given that v was arbitrary, we conclude
that there cannot be a classical case in which A→ B is true but
¬B → ¬A not true. Hence, Contraposition is classically valid.

4.8 Summary and looking ahead

Summary. Concentrating only on the basic language L, the clas-
sical theory takes cases to be ‘complete and consistent’, where
such cases are modeled by functions from sentences into the se-
mantic value set {1, 0}. The truth conditions for L’s connectives
are fairly natural, namely, that a negation is true-in-c iff its ne-
gand (or negatum) is false-in-c; a conjunction is true-in-c iff both
conjuncts are true-in-c; and a disjunction is true-in-c iff at least
one disjunct is true-in-c. Logical consequence is defined as per
the recipe of Chapter 1, with the ingredients of cases and truth
in a case filled out classically as above. In addition to our ba-
sic connectives—namely, negation, conjunction, disjunction—we
also have defined connectives, a (material) conditional and bicon-
ditional. The truth conditions for these defined connectives are
already given via the connectives (and their truth conditions) in
terms of which the defined connectives are defined.

Philosophically, the classical theory has it that our language
is entirely ‘precise’. Every sentence is true or false: there’s no



Classical Theory58

‘indeterminacy’. Moreover, there’s no ‘over-determinacy’, in the
sense that no sentence is both true and false.

Looking Ahead. In the next chapter, we will briefly explore a rival
logical theory, a theory that agrees with the classical theory about
the set of basic logical connectives, but disagrees about the truth
conditions and, in particular, the ‘cases’. The next chapter briefly
examines a theory that rejects the idea that our language is fully
precise, instead accepting that, in some sense, our language allows
for ‘indeterminacy’.

Further Reading. Almost any of the many, many, many introduc-
tory logic textbooks will provide useful, supplemental discussion
of the classical theory of our basic connectives. Three slightly
more advanced books that are closely related to the presentation
here but go into much more detail than this book does are Beall
and van Fraassen 2003, Priest 2008, and Restall 2005. (These
three books go over not only the classical theory, which is often
the only theory considered by introductory logic textbooks, but
also a host of so-called non-classical theories, some of which are
sketched in later chapters. As a result, these three books are cited
for further reading in many chapters in this book.) Bibliographies
in those books point to a (huge) host of alternative sources.

Exercises

1. Show that, on the classical theory, A ∴ ¬¬A is valid.
2. Show that, according to the classical theory, A,B ∴ A ∧B

is valid.
3. In addition to our definition of logical truth (true-in-every

case), let us define contingent and logically false as follows.
• Sentence A is logically false iff it is false-in-every case.
• Sentence A is contingent iff it is true-in-some case, and
false-in-some case.

For each of the following sentences of L, say whether, ac-
cording to the classical theory, it is logically true, logically
false, or contingent.13

13Again, for convenience, otherwise requisite parentheses are dropped when
confusion won’t arise.
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(a) p→ p
(b) p→ ¬p
(c) p ∧ ¬p
(d) q ∨ p
(e) q ∧ (p ∨ q)
(f) q ∨ (p ∧ q)
(g) q ↔ ¬p
(h) (p ∧ (p→ q))→ q

4. For each of the valid forms in §4.7, give a proof that they’re
valid. (Carefully consider whether there can be a classical
case in which the premises are true and the conclusion false.
To do this, you’ll need to keep going back to the truth con-
ditions for the various connectives. One useful method for
doing this is called Reductio. The idea, in this context, is to
assume that there is a counterexample to the given argu-
ment, that is, that there is a classical case v that satisfies the
premises but assigns 0 to the conclusion. If this assumption
leads to a contradiction—in particular, that some sentence
gets assigned both 1 and 0, which is impossible—you con-
clude, via Reductio, that the initial assumption was wrong,
that is, that there can’t, contrary to your initial assumption,
be a classical counterexample.)

5. Prove that, where ` is our basic classical consequence re-
lation, each of the following are true (i.e., that the given
argument forms are valid in the basic classical theory).
(a) A→ B,B → C ` A→ C.
(b) (A ∨B) ∧ C,A→ ¬C ` B.
(c) (A ∨B) ∧ C a` (A ∧ C) ∨ (B ∧ C).
(d) (A ∧B) ∨ C a` (A ∨ C) ∧ (B ∨ C).
(e) A→ B,¬A→ B ` B.

6. Suppose that, instead of functions, we model our classical
cases as sets of sentences. A case, on this approach, is a
set X of L sentences. In turn, we say that truth in a case
is just membership—i.e., being an element—in such a set.
Your task is two-fold:
(a) What constraints do we impose on the given cases for

them to be classical—i.e., ‘complete’ and ‘consistent’?
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(b) What are the truth conditions for conjunctions, dis-
junctions, and negations on this approach?

7. Can you think of a way of defining ∨ in terms of ¬ and ∧?
(Hint: see whether you can come up with a sentence that
uses only ¬ and ∧ but has exactly the same ‘truth table’
as ∨.) If so, you’ve shown that, strictly speaking, we can
reduce our number of basic connectives to just ¬ and ∧
(and treat ∨, like the others, as defined).

8. Related to the previous question, can you think of a way of
defining ∧ in terms of ∨ and ¬?

Sample answers

Answer 3b. The sentence p → ¬p is contingent: it is true-in-
some case and false-in-some case. Proof: p is atomic, and so there
are cases in which p is true, and also cases in which p is false.
Let v be any case in which p is true, that is, v(p) = 1. By the
classical treatment of negation, v(¬p) = 0. By definition, p→ ¬p
is equivalent to ¬p∨¬p.14 By the truth conditions for disjunction,
¬p ∨ ¬p is true iff one of its disjuncts is true; but ¬p is the only
disjunct, and it is not true-in-the-given-case, since v(¬p) = 0.
So, v is a case in which p → ¬p is not true. On the other hand,
consider any case v′ in which p is false, that is, v′(p) = 0. By
the truth conditions for negation, v′(¬p) = 1, in which case, by
the truth conditions for disjunction, v′(¬p ∨ ¬p) = 1, and hence
v′(p→ ¬p) = 1. So, v′ is a case in which p→ ¬p is true. Hence,
there are cases in which p → ¬p is true and cases in which it is
false.

Answer 4-LEM. To see that LEM is a valid form (i.e., that all of
its instances are logically true sentences), we need to show that
there’s no case in which A ∨ ¬A is false (for any sentence A).
We do this by Reductio. Suppose, for reductio, that there’s some
case v such that v(A∨¬A) = 0 (for some sentence A). The truth
conditions for disjunction tell us that v(A ∨ ¬A) = 1 if and only
if v(A) = 1 or v(¬A) = 1. Since, by supposition, v(A ∨ ¬A) 6= 1
(since v is a function which has assigned 0 to A ∨ ¬A), we have
it that v(A) 6= 1 and v(¬A) 6= 1. But since v has to assign

14Recall from §4.6 that A→ B is defined to be ¬A ∨B.
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either 1 or 0 to every sentence, we conclude that v(A) = 0 and
v(¬A) = 0. But this is impossible, since, by truth conditions for
negation, v(¬A) = 1 iff v(A) = 0. So, we conclude that our initial
supposition—namely, that there’s some case v in which A ∨ ¬A
(for some A) is false—is itself untrue. Hence, we conclude that
there cannot be a (classical) case in which A ∨ ¬A (for some A)
is false, which is to say that LEM is valid.

Answer 4-Simplification. To see that A∧B implies A in the clas-
sical theory, we can use Reductio.15 Suppose, for reductio, that
there’s a counterexample to A ∧ B ∴ A, that there’s some (clas-
sical) case v such that v(A ∧ B) = 1 but v(A) = 0. The truth
conditions for conjunction tell us that v(A ∧B) = 1 iff v(A) = 1
and v(B) = 1. But, then, we have it that v(A) = 1, since (by
supposition) we have it that v(A ∧ B) = 1. But, by supposi-
tion, we also have it that v(A) = 0. This is impossible, since v
is a function and, so, cannot assign anything to both 1 and 0. (If
you’ve forgotten the chief feature of functions, you should turn
back to Chapter 3 for a quick review!) Hence, we reject our initial
assumption that there’s a counterexample to Simplification, and
conclude that there’s no counterexample—and, hence, that the
given form is valid.

15NB: we certainly do not need to use Reductio, since the answer falls
directly out of the truth conditions for conjunction; however, it may be useful
to give a few examples of Reductio reasoning.
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A Paracomplete Theory

A hard fact of life is that life is unsettled.
– Max Bealliggins

In this chapter, we briefly explore a variation on the classi-
cal theory of our basic connectives. The target theory is a non-
classical rival of the classical theory; it agrees with the classical
theory on what the (basic) logical connectives are, but it disagrees
on how they work.

We will begin the discussion with some philosophical moti-
vation (unsettledness), and then turn to an informal characteri-
zation of the given theory, and then a brief sketch of the target
formal language.

5.1 Apparent unsettledness

Some philosophers have thought that natural languages (e.g., En-
glish) are ‘unsettled’, that they are ‘indeterminate’ in places, the
idea being that some sentences, in some sense, are ‘neither true
nor false’.

A variety of phenomena motivate such a view of our language.
Perhaps the strongest motivation arises from the apparent vague-
ness of (some fragments of) our language.1

Why is it that legal courts stipulate a legal meaning for ‘child’,
‘adult’, and so on? Why not simply use the ordinary meanings
of such terms? The answer is not that such terms are meaning-
less; rather, such terms are not sufficiently settled over all cases.
Because matters of law require—or, at least, strive towards—
precision, courts simply stipulate a new word (say, ‘child*’), one
with precise meaning to take the place of our otherwise vague

1I should note that there is much controversy over how, exactly, vagueness
is to be characterized. What follows is a very simplified, and very limited,
discussion.
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words. Of course, wise courts try to preserve the original, ordi-
nary meanings as far the meanings go (e.g., they don’t declare
that a 91 year old man is a legal child); however, they stipulate
a new, precise (or more precise) term for legal matters.

The ordinary meaning of ‘child’ (or the like) is settled with
respect to some objects, in the sense that ‘child’ is true of some
objects and false of others; however, there are some objects of
which ‘child’ seems neither true nor false. To see such unsettled-
ness, simply consider the following task.
• Task: figure out exactly when—that is, at what precise

moment—you ceased being a child!
The task is seemingly impossible to carry out, unless you substi-
tute some precise sense of ‘child’ (e.g., a stipulated legal sense) for
the intended, ordinary meaning. At one time, you were clearly a
child, but now you are not. At the former time(s), ‘child’ was true
of you; at the latter time(s), ‘child’ was false of you. The unset-
tledness is apparent when you consider the ‘in-between’ stages,
what philosophers sometimes call the borderline region. In this
example, the borderline comprises those times at which ‘child’
is neither true nor false of you; it’s the region over which the
ordinary meaning of the term is unsettled.2

The relevant sense of ‘unsettledness’, whatever exactly it might
be, is not an epistemic sense.3 We aren’t ignorant of the pre-
cise meaning of ‘child’, but rather the ordinary meaning is not
fully precise and fully exhaustive. The ordinary meaning of ‘child’
doesn’t exhaustively cover all objects; it fails to exhaustively di-
vide objects into those of which ‘child’ is true and those of which
‘child’ is false. Instead, the ordinary meaning seems to leave gaps:
there seem to be some objects such that the predicate ‘child’ nei-
ther definitely applies nor definitely fails to apply. In some—non-

2If the term ‘child’ is not a good example, try the same task with the
term ‘short’. At what exact moment did you cease to be short? (Of course,
you can stipulate a precise meaning for ‘short’, e.g. less than n feet in height,
but that’s not the task.)

3Some philosophers think that it is an epistemic sense. They think that
our language is entirely precise, but that we’re somehow unable—in principle
unable—to fully know the precise meanings of our language. For present
purposes, such epistemicist views will be set aside, despite the interesting
issues that such views raise.
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epistemic—sense, the matter is simply unsettled; there’s ‘no fact
of the matter’ one way or the other.

The ancient sorites puzzle (pronounced ‘so-right-tees’) is often
invoked to highlight the apparent unsettledness of (much of) our
language. Consider the following argument.
p1. 1 grain of sand is not a heap (of sand).
p2. If 1 grain of sand is not a heap, then 2 grains is not a heap.
p3. If 2 grains of sand is not a heap, then 3 grains is not a heap.
p4. If 3 grains of sand is not a heap, then 4 grains is not a heap.

...
c. Therefore, a billion zillion grains of sand is not a heap.

The ordinary meaning of ‘heap’ is such that a small difference
makes no difference in its application. Adding only one grain of
sand to something that is definitely not a heap does not suddenly
produce a heap of sand. This is the import of the conditional
premises.

The trouble, at least for the classical theory, is that the above
argument is valid according to the classical theory. If we let pn

be ‘n many grains of sand makes a heap of sand’ (and letting ?
be our ‘billion zillion’ number), then the above argument can be
rewritten with the following form (using our defined connective,
the conditional).

¬p1

¬p1 → ¬p2

¬p2 → ¬p3

¬p3 → ¬p4

...
¬p?

As you can check, this is valid in the basic classical theory.
If the above argument is sound, then we must conclude that

there are no heaps of sand at all. (If you don’t care about heaps
of sand, just run the same sorites for children and moments of
time or etc.) On the other hand, if (p1) is true but one of the
conditionals is false, then the classical theory saddles us with
something very difficult to believe: namely, that exactly one grain
of sand makes all the difference between a heap and a non-heap.
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One response to the sorites is that the classical theory gets
things wrong. This is not surprising. The classical theory is mo-
tivated by the idea of a precise language. If, as the foregoing sug-
gests, our language has pockets of imprecision—that is, meaning-
ful but nonetheless unsettled sentences—then the classical theory
is too narrow for an account of consequence in our broader lan-
guage.

Such unsettledness, at least on the surface, seems to motivate
a broadening of our logical theory. We will look at a natural such
broadening, a non-classical logical theory that is motivated by
apparent ‘unsettledness’.4

5.2 Cases: incomplete
What the foregoing considerations motivate is not a rejection of
classical cases; rather, such considerations motivate a broadening
of our account of cases. In addition to complete and consistent
cases (as per Chapter 4), considerations of ‘unsettledness’ moti-
vate incomplete cases, cases in which, for some A, neither A nor
¬A is true.

We will use the term ‘paracomplete’ for any logical theory that
recognizes incomplete cases—cases in which, for some A, neither
A nor ¬A is true.
Definition 29. (Paracomplete) A logical theory is paracomplete if
it recognizes a case c such that c 6|=1 A and c 6|=1 ¬A, for some
sentence A.
The term ‘paracomplete’ comes from the Greek word ‘para’ for
beyond, the idea being that we’re moving beyond having only
‘complete cases’.

In principle, one could certainly advocate a paracomplete the-
ory according to which all cases are incomplete; however, the mo-
tivation for such a theory is not clear. For our purposes, we will
focus on a fairly conservative paracomplete theory, one that re-
tains all classical cases, but simply moves beyond the classical
cases by also recognizing incomplete cases.

4I should note that I’m not giving an historically accurate account of
the motivation behind this chapter’s logical theory. Still, the given logical
theory—so-called (basic) Strong Kleene—is often thought to be a natural
first thought about how our unsettled language and its logic might work.
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In short, then, paracomplete cases are either complete and con-
sistent (i.e., classical cases) or incomplete and consistent. Hence,
since classical cases are complete and consistent, any classical
case counts as a paracomplete case. On the other hand, some
paracomplete cases—namely, the incomplete ones—are not clas-
sical. So, the paracomplete theory expands the classical account
of cases; it retains classical cases, but adds another type of case,
namely, incomplete and consistent cases.

5.3 Paracomplete truth and falsity conditions

The philosophical picture behind our paracomplete theory has it
that some sentences—some meaningful, declarative sentences—
are ‘neither true nor false’. Such ‘unsettled sentences’, according
to a common metaphor, are gaps; they fall into the ‘gap’ between
truth and falsity. Metaphor aside, the important point is that
such ‘gaps’ are not meaningless; they are meaningful sentences
that, for whatever reason, simply fail to be either true or false.

What, now, are the truth conditions (i.e., truth-in-a-case con-
ditions) for our given connectives—the same ‘basic connectives’
(plus defined connectives) from Chapter 4? A natural idea, which
we will pursue, is—in effect—to retain the same truth conditions
for molecular sentences ; the only change occurs in the truth con-
ditions for atomics.

5.3.1 Atomics and Falsity

Recall that, in Chapter 4, we didn’t really give explicit truth
conditions for atomic sentences. Instead, we simply stipulated
the following classical constraint.

• Classical Constraint for Atomics. For any atomic A and any
case c, either c |=1 A or c |=1 ¬A.

Given the definition of ‘complete case’ (from Chapter 4), this
amounts to saying that any case is complete with respect to
atomic A, which is certainly right for the classical theory.

In the current, paracomplete theory, we should drop the clas-
sical constraint on atomics. After all, the main paracomplete idea
is that there are cases that are incomplete with respect to atomic
A, that is, cases c such that c 6|=1 A and c 6|=1 ¬A. The ques-
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tion is: what constraint on atomics should be imposed for the
paracomplete theory?

Unfortunately, an issue concerning falsity—or, more accurately,
falsity in a case—arises at this stage. Recall that, with classical
cases, we said that A is false-in-c iff c |=1 ¬A, and that c |=1 ¬A
iff c 6|=1 A (i.e., ¬A is true-in-c iff A is untrue or not true-in-c).
This is not accurate for our paracomplete cases.

For our paracomplete theory, we retain the classical idea that
A is false-in-c iff c |=1 ¬A (i.e., a sentence is false-in-a-case iff
its negation is true-in-that-case). The trouble, however, is that
untruth and falsity come apart in the paracomplete logical the-
ory. On one hand, our paracomplete theory maintains, as above,
that cases are consistent; hence, for all sentences A and all para-
complete cases c, if c |=1 ¬A then c 6|=1 A. On the other hand,
as above, our paracomplete theory acknowledges cases that are
entirely incomplete with respect to A, that is, some case c such
that c 6|=1 A and c 6|=1 ¬A, for some A. Accordingly, on the para-
complete theory, we can have some A and some case c such that
c 6|=1 A, but this does not mean that c |=1 ¬A. The upshot is that
we can no longer define false-in-a-case to be not true-in-a-case,
at least for the paracomplete theory.

How, then, are we to understand false-in-a-case for the para-
complete theory? The answer, in part, can be given if we were
to spell out the explicit truth (and falsity!) conditions for atomic
sentences.5 We won’t do that in this chapter. Instead, we will
simply assume that, for any paracomplete case c, every atomic A
is either true-in-c, false-in-c, or neither true-in-c nor false-in-c.

To make things clearer, let us slightly change our notation
to accommodate the broader, paracomplete theory. In particular,
let us continue to use ‘c |=1 A’ to abbreviate ‘A is true-in-c’, but
now also use ‘c |=0 A’ to abbreviate ‘A is false-in-c’. While we
still won’t give explicit truth (or falsity!) conditions for atomics
(at least in this chapter), we will give the following constraint on
atomics.

5For convenience, the term ‘truth conditions’ (or, more accurately, ‘truth-
in-a-case conditions’), unless otherwise stated, will henceforth be shorthand
for ‘truth and falsity conditions’ (or, again, for ‘truth-in-a-case and falsity-
in-a-case conditions’).



A Paracomplete Theory68

• Paracomplete Constraint for Atomics. For any atomic A and
any case c, exactly one of the following obtains.
c |=1 A and c 6|=0 A

c 6|=1 A and c |=0 A

c 6|=1 A and c 6|=0 A

For present purposes, we don’t need to know how atomics get to
be true-in-a-case or false-in-a-case; we just need to know that,
for any (paracomplete) case c, every atomic is either true-in-c,
false-in-c, or neither true-in-c nor false-in-c.

5.3.2 Molecular sentences
With the paracomplete constraint for atomics, we can give truth-
in-a-paracomplete-case conditions for molecular sentences. There
are various options one might pursue for such truth conditions.6
What is different, in the paracomplete case, is that, in addition
to giving truth conditions, we must also explicitly give falsity
conditions—we must specify the conditions under which sentences
are false in a given case. The reason for this is that, as noted
above, falsity and untruth come apart in the paracomplete case.
As such, from c 6|=1 A we cannot infer c |=0 A.

For present purposes, we will stick as closely to the classical
truth conditions (see Chapter 4) as possible.
Definition 30. (Basic Paracomplete Truth and Falsity Conditions)
Where c is any case, and A and B any sentences of L,7 the para-
complete conditions for the basic connectives are as follows.

Conjunction: c |=1 A ∧B if and only if c |=1 A and c |=1 B.
Conjunction: c |=0 A ∧B if and only if c |=0 A or c |=0 B.

Disjunction: c |=1 A ∨B if and only if c |=1 A or c |=1 B.
Disjunction: c |=0 A ∨B if and only if c |=0 A and c |=0 B.

Negation: c |=1 ¬A if and only if c |=0 A.
Negation: c |=0 ¬A if and only if c |=1 A.

8

6See exercises (concerning ‘Weak Kleene’), and also Chapter 12!
7As in the previous chapter, L is a language with only the basic connec-

tives of conjunction, disjunction, and negation.
8Note: given these conditions on negation, the paracomplete constraint on

atomics (see §5.3.1) yields exactly one of the following for any paracomplete
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This tells us that, according to the paracomplete theory, a con-
junction is true-in-a-case just if both conjuncts are true-in-that-
case, and a conjunction is false-in-a-case just if one of the con-
juncts is false; otherwise, the conjunction is neither true- nor
false-in-the-given-case (i.e., it is gappy). Similarly, a disjunction
is true-in-a-case iff at least one of the disjuncts is true-in-the-
case, and false-in-a-case iff both disjuncts are false-in-the-case;
otherwise, it is gappy in the given case. Finally, we have it that a
negation is true-in-a-case just if the negatum is false-in-the-given-
case, and false-in-the-given-case just if the negatum is true-in-the-
given-case; otherwise, the negation is gappy in the given case.

What is important to observe is that the foregoing condi-
tions are simply the basic classical truth conditions, except that
the cases are now paracomplete (and, so, needn’t be complete).
In particular, notice that the given falsity conditions, which are
redundant in the classical theory (why?), are exactly the con-
ditions under which sentences are false-in-classical cases. If you
think about it, this shouldn’t be surprising, since, as above, our
paracomplete theory simply expands the range of cases beyond
the classical ones; it does not remove any of the classical cases.

In effect, the classical theory is what you get from the para-
complete theory if you ignore incomplete cases. As such, the clas-
sical theory might be seen as a narrow version of the paracom-
plete.

5.4 Paracomplete consequence

As per Chapter 1, B is a consequence of A iff there’s no case in
which A is true but B not true. In the present approach, cases
are paracomplete cases, which are either classical cases or incom-
plete but consistent cases. Given the truth (and falsity) conditions
above, we can see a few notable features of the paracomplete con-
sequence relation.

case c and any sentence A.
c |=1 A and c 6|=1 ¬A
c 6|=1 A and c |=1 ¬A
c 6|=1 A and c 6|=1 ¬A
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5.4.1 Paracomplete and classical consequence

Let us use ‘`bc’ for basic classical consequence and ‘`K3’ for
our given basic paracomplete consequence relation.9 One notable
fact about the relation between the two consequence relations—
namely, the basic classical and basic paracomplete relations—is
the following.
CP. Let X be any set of L sentences, and A any sentence of L.

Fact: if X `K3 A then X `bc A.
To see this, recall that consequence is absence of counterexample—
that is, absence of any (relevant) case in which the premises are
true but conclusion not true. So, suppose X `K3 A, that is, that
there’s no paracomplete case in which everything in X is true but
A not true. Any classical case is a paracomplete case, since para-
complete cases, by definition, are either classical cases or incom-
plete but consistent cases. Hence, since there’s no paracomplete
case that serves as a counterexample to the argument from X to
A, there’s thereby no classical case that serves as a counterexam-
ple to the argument, which means that X `bc A.

CP tells us something important about the relation between
our basic classical consequence relation and our broader paracom-
plete consequence relation: namely, that the latter is a proper part
of the former. In other words, the basic classical consequence re-
lation is ‘stronger’ than the broader paracomplete one; however,
the former has the latter as a proper part—a ‘sub-relation’. CP
tells us that any arguments that are valid according to the para-
complete theory are valid according to the classical theory. As it
turns out, the converse doesn’t hold; there are some arguments—
mainly, involving logical truths—that are valid according to the
classical theory but not the paracomplete theory. The reason is
that the latter theory recognizes more cases than the classical
theory, and hence recognizes more ‘potential counterexamples’.

Philosophically, CP suggests that, while our language may
have an ‘unsettled’ or ‘gappy’ fragment, it may also enjoy an en-

9We use ‘bc’ for basic classical. The name ‘K3’ is standard for our basic
paracomplete consequence relation. The K3 relation (or, generally, logical
theory) is so called for the logician Stephen Kleene’s most famous 3-valued
logic, namely, our current basic paracomplete logic under discussion. (The
given paracomplete theory is also sometimes called Strong Kleene.)
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tirely precise, classical fragment. For example, it might be that
the mathematical or scientific fragment of our language is pre-
cise and, in effect, classical, even though our broader language—
perhaps due to a bit of vague language or the like—is ‘unsettled’
or ‘gappy’. (How does CP suggest as much? This question is left
as an exercise.)

5.4.2 Absence of logical truths
Another notable feature of the basic paracomplete theory is that,
contrary to the classical theory, there are no logical truths! Re-
call that, in general, A is a logical truth iff A is true-in-all cases.
On the paracomplete theory, our cases are either classical or in-
complete but consistent. As above, the paracomplete theory has a
broader range of cases than the classical theory. The result of such
broadening is that there are more ‘potential counterexamples’.

Of course, given the philosophical motivation of the paracom-
plete theory—for example, unsettledness or gaps—one would ex-
pect that Excluded Middle would fail, and it does. To see this,
recall that Excluded Middle fails if there’s a case in which A∨¬A
is not true. On the paracomplete theory, there is certainly such
a case. After all, just consider a case c that is incomplete with
respect to A, that is, a case c such that c 6|=1 A and c 6|=0 A. By
the given truth conditions for negation (see §5.3.2), we have it
that if c 6|=0 A then c 6|=1 ¬A. Hence, in our given case c, we have
it that c 6|=1 A and c 6|=1 ¬A. But, then, by the truth condition
for disjunction, we have it that c 6|=1 A ∨ ¬A (since neither dis-
junct is true-in-c). Hence, there is a paracomplete case in which
A∨¬A is not true. Hence, Excluded Middle is not a logically true
(sentence) form, according to our paracomplete theory.

That there are no logical truths, on the paracomplete theory,
is slightly more difficult to see (until we get to the formal picture,
below). The basic idea, however, is that there is a paracomplete
case—namely, an incomplete but consistent case—in which every
atomic A is neither true nor false. With suitable attention to the
truth and falsity conditions for molecular sentences (see §5.3.2),
one can see that such a case will be one in which no sentence—
atomic or molecular—is true or false. Hence, there is a case in
which no sentence is true, and so no sentence is true in all cases—
and, hence, there are no logical truths. This result, as said, will
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be easier to see in the formal picture, to which we now turn.

5.5 Formal picture

As throughout, the main aim of a logical theory is to specify the
consequence relation of a given language. As in Chapter 4, we are
concentrating on a language with only a few basic connectives,
and we are ignoring any structure within our atomic sentences.
Our aim in this section is to briefly sketch a formal picture of our
given paracomplete logical theory of such a language. Towards
that end, we will give a sketch of a formal language, a sketch
of the semantics (viz., truth conditions) for the language, and
then define the consequence relation on the given language. What
follows, as in Chapter 4, presupposes the set-theoretic tools that
you learned in Chapter 3.

5.5.1 Syntax

The syntax of our language L is exactly the same as in Chapter 4.
The difference between the classical and paracomplete accounts
of L arises at the level of semantics.

5.5.2 Semantics

As you know by now, the key ingredients of logical consequence
are cases and truth-in-a-case (and falsity-in-a-case) conditions.
Our concern, in this chapter, is with a basic paracomplete theory.
The question is: how shall we model our paracomplete cases?

There are various ways of modeling our given (paracomplete)
cases. We will stick to an approach that is similar to the approach
taken towards modeling classical cases. In particular, we will take
our cases to be (modeled by) certain functions—ones obeying
various constraints—from our set S of sentences into our set V
of ‘semantic values’. (See Chapter 4 for the classical approach.)
What’s different, now, is that we will expand our set of ‘semantic
values’ from {1, 0} to {1, n, 0} (where ‘n’ may be thought to mark
the semantic status of being neither true nor false). The idea, in-
tuitively, is that the paracomplete theory retains the classical se-
mantic values; however, it also recognizes more options—namely,
an ‘unsettledness’ or ‘gappy’ semantic value. Intuitively, one can
think of the value n as marking ‘unsettled’ or ‘gappy’ sentences,
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the idea being that if A is assigned n in a case, then, intuitively,
it is ‘unsettled’ or ‘gappy’ in that case.

To be clearer, our semantics begins with a set of semantic
values, namely, V = {1, n, 0}.10 In turn, we let our cases be func-
tions v from S into V, so that we have v(A) = 1 or v(A) = n or
v(A) = 0 for every sentence A and any such case v.

As with the classical language, let us define truth in a case as
follows: A is true-in-a-case v (remember that our ‘cases’ are now
functions) if and only if v(A) = 1. Similarly, A is false-in-a-case
v if and only if v(A) = 0.

Notice that, as in the classical language, we do not want to
allow just any old function from S into V to count as a classical
case! After all, there are certainly functions from S into V that
do not respect the paracomplete truth conditions (see §5.3.2).
Consider, for example, a function v such that v(A∧¬A) = 1. This
is certainly a function from S into V, but it doesn’t respect the
intended consistency of paracomplete cases. Paracomplete cases
are consistent, and so we don’t want to have a case v such that
v(A ∧ ¬A) = 1.

Following the pattern in Chapter 4, we rule out such ‘un-
wanted’ functions from our set of cases by invoking the following
truth conditions. In particular, we say that a function v, from S
into V, is a paracomplete case if and only if it ‘obeys’ the following
truth conditions—this time, given entirely in tables.

¬
0 1
n n
1 0

∧ 1 n 0
1 1 n 0
n n n 0
0 0 0 0

∨ 1 n 0
1 1 1 1
n 1 n n
0 1 n 0

In effect, such conditions, represented in the tables, reflect a fairly
classical approach to ‘unsettledness’. For example, a negation is
true just if its negatum is false, and it’s false just if the negatum
is true—just as in the classical picture. The difference, of course,

10When one’s semantic values go beyond two, the given language is called a
many-valued language. In such semantics, one usually talks about a subset D
of V, where D contains the so-called designated values—the values in terms
of which validity or consequence is defined. This will be important in the
next chapter, but we’ll sidestep this terminology here.
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is that the negatum might be neither true nor false, in which case
the condition (above) tells us that the negation itself is neither
true nor false. Similarly, a disjunction is true iff at least one of
the disjuncts is true; it is false iff both disjuncts are false. This
is exactly as things are in the classical picture. The difference is
that, in the paracomplete picture, a disjunct might be neither true
nor false, in which case, the disjunction is neither true nor false
if the other disjunct fails to be true. conjunctions are similarly
‘classical’ in spirit, as you can check.

The final step, in giving the semantics, is to specify our target
relation: namely, logical consequence. The definition is just an
instance of our recipe in Chapter 1.
Definition 31. (Basic Paracomplete Consequence) B is a logical
consequence of A if and only if there is no paracomplete case v
such that v(A) = 1 but v(B) 6= 1.
To make this more general, let us say that v satisfies a sentence
A iff v(A) = 1 (i.e., iff A is true-in-the-given-case). In turn, let X
be any set of L sentences. We say that v satisfies X iff v satisfies
every member of X . With this terminology, we can give a more
general definition of basic paracomplete consequence (instead of
only single-premise arguments), which, as above, we’ll officially
represent as `K3 but often just write as ` when it is clear that
we are talking about our given paracomplete relation).
Definition 32. (General Basic Paracomplete Consequence) X ` A
iff there is no paracomplete case v that satisfies X but not A.
You should think about this definition, compare it with the ‘gen-
eral recipe’ of logical consequence and the classical account, and
also evaluate various argument forms for (basic paracomplete)
validity. Note that a paracomplete counterexample need not be
a case in which the conclusion is false; it need only be a case
in which the conclusion is not true (i.e., assigned anything other
than 1).

5.6 Defined connectives

As in Chapter 4, we can introduce various defined connectives.
We will use the same defined connectives here, letting ‘A→ B’ be
shorthand for ¬A∨B, and similarly letting ‘A↔ B’ be shorthand
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for (A→ B)∧(B → A). As in Chapter 4, the truth conditions for
these defined connectives are simply the resulting truth conditions
for the corresponding sentences that use only our Basic (primi-
tive) connectives—for example, the truth conditions for ¬A ∨ B
and (¬A∨B)∧ (¬B ∨A). In our given paracomplete setting, the
given conditions are represented in the following tables.

→ 1 n 0
1 1 n 0
n 1 n n
0 1 1 1

↔ 1 n 0
1 1 n 0
n n n n
0 0 n 1

5.7 Some notable forms

As in Chapter 4, any logical theory of a language provides an
account of the (logical) behavior of the language’s connectives.
In part, a theory of the connectives is largely reflected in the
theory’s given truth conditions for the connectives, and the as-
sociated account of ‘cases’. Still, where the behavior is manifest
is in the consequence relation, in particular, the valid argument
forms involving those connectives.

We saw, above (see §5.4.1), that our basic paracomplete con-
sequence relation is a ‘sub-relation’ of the basic classical con-
sequence relation. We also saw that there are no logical truths
according to the paracomplete theory. By way of comparing the
two theories, recall that all of the following forms are classically
valid; however, you’ll see that some of them (marked by 0K3) are
not valid according to the paracomplete theory.
• Excluded Middle: 0K3 A ∨ ¬A
• Non-Contradiction: 0K3 ¬(A ∧ ¬A)
• Modus Ponens: A→ B,A `K3 B

• Modus Tollens: A→ B,¬B `K3 ¬A
• Disjunctive Syllogism: A ∨B,¬A `K3 B

• Contraposition: A→ B a`K3 ¬B → ¬A
• Explosion: A,¬A `K3 B

• Addition: A `K3 A ∨B
• Adjunction: A,B `K3 A ∧B
• Simplification: A ∧B `K3 A
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• De Morgan: ¬(A ∨B) a`K3 ¬A ∧ ¬B
• De Morgan: ¬(A ∧B) a`K3 ¬A ∨ ¬B
• Double Negation: ¬¬A a`K3 A

You should prove, using the formal account (and especially for-
mal truth conditions), that the given argument forms are indeed
valid. (Use the techniques that you used in Chapter 4, but be
sure to consider all semantic values involved in the paracomplete
language.)

5.8 Summary and looking ahead

Summary. Motivated by apparent ‘unsettledness’, our basic para-
complete theory broadens the classical theory’s range of cases. In
particular, the paracomplete theory agrees that all of the classi-
cal cases—namely, all complete and consistent cases—should be
among our cases; however, the paracomplete theory, motivated
by apparent ‘unsettledness’, calls for more cases, namely, incom-
plete but consistent cases. Except for additional such cases, the
paracomplete theory agrees with the classical truth conditions
and falsity conditions for the basic connectives. The paracomplete
approach is modeled by using three semantic values (intuitively,
true, false, and gappy), and its cases are functions from sentences
into the semantic values—in particular, all and only those func-
tions that ‘obey’ the appropriate truth (and falsity) conditions.
Logical consequence, in turn, is specified as per Chapter 1, but
now letting our cases be such (paracomplete) cases and truth in
a case and falsity in a case being defined as having value 1 and 0
(in the given case), respectively. The resulting paracomplete con-
sequence relation enjoys the classical consequence relation as spe-
cial case: the latter is what you get when you ignore ‘incomplete’
cases—formally, when you ignore the value n. One significant dif-
ference between the two consequence relations is that the former
has no logical truths—no sentences true in all (paracomplete)
cases.

Looking Ahead. Whether our given paracomplete theory is the
best way to model unsettledness (and its logic) is an open philo-
sophical question. For our purposes, the theory gives a natural
example of a non-classical ‘rival’ to the classical logical theory,



Summary and looking ahead 77

one motivated by phenomena that, on the surface, are ignored
by the classical theory. In the next chapter, we’ll look at another
rival to both the classical theory and given paracomplete theory,
one that is motivated by other phenomena in our language.

Further Reading. For excellent, though somewhat advanced, dis-
cussions of ‘indeterminacy’ and ‘vagueness’, see Hyde 2008, Keefe
and Smith 1997, Smith 2008, Williamson 1994, and the bibliogra-
phies therein. For further discussion of (and suitable proof sys-
tems for) our target paracomplete theory, see any of Beall and
van Fraassen 2003, Priest 2008, and Restall 2005. (As mentioned
in the previous chapter, these three books give a more advanced
but closely related discussion of logical theories sketched in this
book. Their bibliographies can be consulted for a much broader
range of sources.)

Exercises

1. Answer any questions raised in the text.
2. We noted that Excluded Middle is not a logically true (sen-

tence) form in the paracomplete theory. Question: is there
any case in which A∨¬A is false? If so, give such a case. If
not, say why not.

3. Recall, from Chapter 4, our definitions of logically true, log-
ically false, and contingent, where A is any sentence.
• A is logically true iff it is true-in-every case.
• A is logically false iff it is false-in-every case.
• A is contingent iff it is true-in-some case, and false-in-
some case.

Our given paracomplete theory, as above, has no logical
truths. Give a (paracomplete) counterexample to each of
the following sentences (i.e., a paracomplete case in which
the sentence is not true). In addition, specify which, if any,
of the following sentences are logically false, and which are
contingent.
(a) p→ p
(b) p→ ¬p
(c) p ∧ ¬p
(d) q ∨ p
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(e) q ∧ (p ∨ q)
(f) q ∨ (p ∧ q)
(g) q ↔ ¬p
(h) (p ∧ (p→ q))→ q
(i) p ∨ ¬p
(j) ¬(p ∧ ¬p)

4. Suppose that we define a different, broader sort of ‘contin-
gency’ thus:

• A sentence A is broadly contingent iff it is true-in-some case
and not true-in-some case (i.e., untrue-in-some case).

Which, if any, of the displayed sentences (3a)–(3j), from ex-
ercise 3, are broadly contingent? Also: in the given paracom-
plete theory, can a sentence be broadly contingent without
being contingent?

5. By way of contrast, redo exercises 3 and 4 above in terms
of the classical theory.

6. For each of the valid forms in §5.7, give a proof that they’re
valid.

7. Weak Kleene. An alternative paracomplete theory, one that
is less classical than the one in this chapter, is so-called
Weak Kleene (WK). On this approach, cases are as in our
given paracomplete theory; however, the truth- and falsity-
in-a-case conditions differ quite a bit with respect to the
‘gappy’ value n. In particular, the truth and falsity condi-
tions are the same as our given paracomplete theory with
respect to the classical values (i.e., 1 and 0); however, the
conditions concerning n are as follows. If, for some WK
case v, we have it that either v(A) = n or v(B) = n, then
v(¬A) = n = v(¬B), and similarly v(A∨B) = n = v(A∧B).
On this approach, any whiff of ‘unsettledness’ in a (molec-
ular) sentence renders the entire sentence gappy (or unset-
tled). The question: what, if any, of the argument forms in
§5.7 are valid on the WK logical theory? (Consequence, for
the WK theory, is defined as usual, where truth in a case
and falsity in a case are defined as per our given paracom-
plete theory in terms of 1 and 0, respectively.)
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Sample answers

Answer 3i. The sentence p ∨ ¬p fits into none of our given cate-
gories: it’s not logically true; it’s not logically false; and it’s not
contingent. To establish this, we address each claim in turn.
3i.a. p∨¬p is not logically true, as there are cases in which it is

not true. In particular, let v be any (paracomplete) case in
which p is gappy, that is, v(p) = n. By the truth conditions
for negation (see the table in §5.5.2), v(¬p) = n. By the
truth conditions for disjunction, v(p ∨ ¬p) = n. Hence, any
case in which p is gappy is one in which p ∨ ¬p is gappy,
and so untrue.

3i.b. p∨¬p is not logically false, as there are cases in which it is
not false. In particular, see the case above in (3i.a).

3i.c. p ∨ ¬p is not contingent, as there is no paracomplete case
in which it is false. To see this, note that v(p ∨ ¬p) = 0
iff v(p) = 0 = v(¬p); but the truth conditions for negation
require that v(p) 6= v(¬p).

Answer 4i. p∨¬p is broadly contingent. There are cases in which
it is true: for example, any case v such that v(p) = 1 or v(p) = 0
is one in which v(p ∨ ¬p) = 1. (Why?) Moreover, there are cases
in which p ∨ ¬p is not true: let v be any case such that v(p) = n.
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A Paraconsistent Theory

Contradiction is not a sign of falsity,
nor the lack of contradiction a sign of truth.

– Blaise Pascal

In the last chapter, we expanded our range of cases to in-
clude incomplete but consistent cases. In this chapter, we look
at a logical theory that is a rival to both the classical and basic
paracomplete theories. As before, the target theory agrees with
the preceding theories on what the (basic) logical connectives are,
but it disagrees on how they work.

We will begin the discussion with some philosophical motiva-
tion (overdeterminacy), and then turn to an informal character-
ization of the given theory, and then a brief sketch of the target
formal language.

6.1 Apparent overdeterminacy

In addition to indeterminacy, briefly discussed in the last chapter,
some philosophers have thought that our language also exhibits
overdeterminacy. A sentence is said to be overdetermined if it is
both true and false. Falsity, as in previous chapters, is truth of
negation: a sentence A is false iff its negation ¬A is true. So, to
say that a sentence is overdetermined is to say that it is true and
that its negation is true.

Are there such sentences in our language? The question is
controversial, but we will look at a simple example, namely, the
Liar paradox. Before getting to the paradox, we first need to say
something about truth.

Truth is often thought to work as follows. If a sentence is
true, then what it says is the case.1 Moreover, if what a sentence

1This is a different usage of ‘case’, of course, than we’ve used in previous
chapters.
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says is the case, then the sentence is true. For example, if ‘Agnes
is sleeping’ is true, then Agnes is sleeping. In turn, if Agnes is
sleeping, then ‘Agnes is sleeping’ is true. Such features of truth
can be made formally precise in a richer language than we’re
currently considering, but the idea, as sketched, should be clear
enough for present purposes.

Now, our language is very resourceful. It can be used to say in-
teresting things, beautiful things, funny things, and boring things.
In addition, the language can be used to say paradoxical things.
Consider, in particular, the following, starred sentence—an ex-
ample of the famous Liar paradox.

? The starred sentence on page 81 of §6.1 of Logic: The Basics
is false.

Is the starred sentence true? Well, if it is true, then what it says
is the case. What it says is that it is false. Hence, if the starred
sentence is true, then it is false. On the other hand, if the starred
sentence is false, then it speaks truly (since it says that it is false),
and hence is true. So, if the starred sentence is false, it is true.
Putting all of this together, we see that the starred sentence is
true if and only if it is false.

What we seem to have, then, is a sentence which is both true
and false! In both the classical and our basic paracomplete theory
(of Chapter 5), this is impossible. Such a sentence would require
an inconsistent case, and neither of our previous theories allows
for such a thing.

What you might be thinking is that there’s really no problem
here. After all, we have already expanded our cases to involve
incomplete cases. (See Chapter 5.) In doing so, we have rejected
Excluded Middle; we’ve rejected the idea that every sentence is
true or false. Why can’t we simply say that the starred sentence is
another case of ‘indeterminacy’, a ‘gappy’ sentence that is neither
true nor false? If we do, then the argument that it is both true
and false breaks down.

Such a thought is correct, but the problem lingers. Suppose
that we say, as suggested, that the starred sentence is gappy (i.e.,
neither true nor false). This gets around inconsistency with the
starred sentence, but our language has other such sentences. Con-
sider, in particular, the ticked sentence.
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X The ticked sentence on page 81 of §6.1 of Logic: The Basics is
either false or it’s gappy.

Saying that the ticked sentence is gappy implies that it is true!
After all, a disjunction, at least on the theories we’re considering,
is true iff at least one disjunct is true. Hence, if the ticked sentence
is gappy, then one of its disjuncts is true. Similarly, if the sentence
is false, then the other disjunct is true, and so the ticked sentence
is true. Either way, we seem to have more inconsistency.

The foregoing considerations might not convince you that our
language admits of overdeterminacy. Still, the Liar paradox, and
related such phenomena, have motivated the idea of inconsistent
cases, to which we turn.

6.2 Cases: inconsistent

What the foregoing considerations motivate is not a rejection
of classical cases or, more generally, paracomplete cases. Such
considerations motivate a broadening of our account of cases. In
addition to our classical and paracomplete cases, considerations
of overdeterminacy motivate inconsistent cases, cases in which,
for some A, both A and ¬A are true.

For convenience, let us introduce a special sort of case, namely,
the so-called trivial case.
Definition 33. (Trivial Case) A case c is said to be trivial if and
only if all sentences (of the given language) are true in the case.
For the basic language that we’ve been considering—with only
disjunction, conjunction, negation, and defined connectives—any
trivial case will be both complete and inconsistent, but it will also
be ‘overly complete’ and ‘overly inconsistent’. In particular, any
trivial case c, given the definition above, is such that both A and
¬A are true in c, for all sentences A.2 The trivial case, to say the
least, is wildly strange.

What is worth noting is that in both the classical and (our
previous) paracomplete theories, Explosion holds: A,¬A ` B.
According to those theories, then, if there’s some case in which
both A and ¬A are true, then that case is the trivial case. (Why?)

2Notice that, for any given language, there’s exactly one trivial case. Why?
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We will use the term ‘paraconsistent’ for any logical theory
that recognizes inconsistent but non-trivial cases—cases in which,
for some A, both A and ¬A are true, but not all A are true.
Definition 34. (Paraconsistent) A logical theory is paraconsistent
if it recognizes some case c such that c |=1 A and c |=1 ¬A, for
some A, but also c 6|=1 B, for some B.
The term ‘paraconsistent’, like ‘paracomplete’, comes from the
Greek word ‘para’ for beyond, the idea now being that we’re mov-
ing beyond having only ‘consistent cases’.

Of course, a paraconsistent theory might recognize only in-
consistent cases (at least some of which are non-trivial), but the
motivation for such a theory is not obvious. Similarly, a paracon-
sistent theory might reject incomplete cases, and only recognize
classical cases or complete but inconsistent cases.

For our purposes, we will take neither of those routes. Instead,
we will briefly discuss a paraconsistent logical theory that retains
our previous cases—both classical and incomplete but consistent
cases—but further expands the range by acknowledging inconsis-
tent cases (at least some of which are non-trivial). In this way,
our paraconsistent theory is another broadening—from complete
and consistent, to incomplete and consistent, to inconsistent.

6.3 Paraconsistent ‘truth conditions’

The philosophical picture behind our paraconsistent theory has
it that some sentences—some meaningful, declarative sentences—
are both true and false. Such ‘overdetermined sentences’, accord-
ing to a common metaphor, are gluts; they fall into the intersec-
tion of truth and falsity.

What are the truth conditions for our given connectives—the
same basic connectives (plus defined connectives) from Chapters
4 and 5? A natural idea, which we will pursue, is as in Chapter
5: in effect, retain the same truth conditions for molecular sen-
tences, with the only change occurring in the truth conditions for
atomics.

6.3.1 Atomics and Falsity

Since we’re retaining incomplete cases, we thereby retain the same
‘breakdown’ between falsity and untruth. (See Chapter 5.) As
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such, we will employ the same notation, using ‘c |=1 A’ to abbre-
viate ‘A is true-in-c’, and ‘c |=0 A’ for ‘A is false-in-c’.

As in the previous chapters, we again won’t give explicit truth
conditions for atomic sentences. Instead, we simply stipulate the
following paraconsistent constraint. What is important to see is
that, as above, our aim is to retain the previous ideas—classical
and paracomplete—but, now, merely broaden things to allow in-
consistent cases. As such, our constraint looks a lot like our pre-
vious constraint on atomics (see Chapter 5), but it is slightly
broader.

• Paraconsistent Constraint for Atomics. For any atomic A and
any case c, exactly one of the following obtains.
c |=1 A and c 6|=0 A

c 6|=1 A and c |=0 A

c 6|=1 A and c 6|=0 A

c |=1 A and c |=0 A

For present purposes, we don’t need to know how atomics get to
be true-in-a-case or false-in-a-case; we just need to know that, for
any case c, every atomic is either true-in-c, false-in-c, neither true-
in-c nor false-in-c, or both true-in-c and false-in-c. (You should
compare this constraint with the one from Chapter 5.)

Notice that, because we’re retaining incomplete (and consis-
tent) cases, our basic paraconsistent theory is also a paracomplete
theory; it recognizes incomplete but consistent cases. On the other
hand, this is not the same paracomplete theory as before, since we
now recognize inconsistent cases. (You should think about this!)

6.3.2 Molecular sentences

With the paraconsistent constraint for atomics, we can give truth-
in-a-case conditions for molecular sentences. There are various
options one might pursue for such truth conditions. As in the
basic paracomplete approach (Chapter 5), we have to give both
truth conditions and falsity conditions; we must specify the con-
ditions under which sentences are true-in-a-case, and conditions
under which they’re false-in-a-case.

As with the basic paracomplete approach, we stick as closely
to the classical truth conditions (see Chapter 4) as possible.
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Definition 35. (Basic Paraconsistent Truth and Falsity Conditions)
Where c is any (paraconsistent) case, and A and B any sentences
of L,3 the paraconsistent conditions for the basic connectives are
as follows.

Conjunction: c |=1 A ∧B if and only if c |=1 A and c |=1 B.
Conjunction: c |=0 A ∧B if and only if c |=0 A or c |=0 B.

Disjunction: c |=1 A ∨B if and only if c |=1 A or c |=1 B.
Disjunction: c |=0 A ∨B if and only if c |=0 A and c |=0 B.

Negation: c |=1 ¬A if and only if c |=0 A.
Negation: c |=0 ¬A if and only if c |=1 A.4

Observe that the foregoing conditions are exactly our basic para-
complete conditions, which, as noted in Chapter 5, are (in effect)
just the familiar classical conditions. The difference, of course,
is that now some of our cases are inconsistent. That the given
conditions are (in effect) the same as before shouldn’t be surpris-
ing, since, as above, our paraconsistent theory simply expands the
range of cases beyond our previous ones; it does not remove any
of the previous cases.

As before, one can now see the basic paracomplete theory
(from Chapter 5) as what you get from our basic paraconsistent
theory if you ignore inconsistent cases. In turn, the basic classical
theory is what you get from the paraconsistent theory if you ig-
nore both the inconsistent and the incomplete cases. As such, the
basic classical and the basic paracomplete theories may be seen
as a narrow versions of our broader, basic paraconsistent (and
paracomplete) theory—our basic ‘glutty and gappy’ theory. (Re-

3As in the previous chapter, L is a language with the basic connectives
of conjunction, disjunction, and negation.

4Note: as in Chapter 5, given these conditions on Negation, the paracon-
sistent constraint on atomics yields the following for any paraconsistent case
c.

c |=1 A and c 6|=1 ¬A
c 6|=1 A and c |=1 ¬A
c 6|=1 A and c 6|=1 ¬A
c |=1 A and c |=1 ¬A
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call that we still allow ‘gaps’ in our basic paraconsistent theory;
we now also allow ‘gluts’.)

6.4 Paraconsistent consequence

As you know, B is a consequence of A iff there’s no case in which
A is true but B not true. In the present approach, cases are
paraconsistent cases, which are either classical cases or incomplete
but consistent cases or inconsistent cases. Given the truth (and
falsity) conditions above, we can see a few notable features of our
basic paraconsistent consequence relation.

6.4.1 Paraconsistent and classical consequence

For purposes of comparison, let us use ‘`bc’, as before, for basic
classical consequence, and use ‘`FDE ’ for our given basic para-
consistent consequence relation.5 One notable fact about the re-
lation between the two consequence relations—namely, the basic
classical and basic paraconsistent relations—is the result that we
previously had (Chapter 5).
CP2. Let X be any set of L sentences, and A any sentence of L.

Fact: if X `FDE A then X `bc A.
The reason behind CP2 is just as with CP, from Chapter 5. Con-
sequence is absence of counterexample, absence of any (relevant)
case in which the premises are true but conclusion not true. Since
the paraconsistent theory recognizes all classical cases, and keeps
the same truth (and falsity) conditions, CP2 is straightforward: if
there’s no counterexample to the argument from X to A among
all of the paraconsistent cases (including, of course, the classical
cases), then there’s no classical counterexample to the given ar-
gument. (You should compare this to the proof given for CP in
Chapter 5.)

CP2 tells us something important about the relation between
our basic classical consequence relation and our broader paracon-
sistent consequence relation: namely, that the latter is a proper

5‘FDE’ is the now-fairly-standard name of this particular paraconsistent
(and, as we’ll note below, paracomplete) logic; the name is for what Anderson
and Belnap called a logic of first degree entailment (FDE), or the ‘logic of
tautological entailments’. See Anderson and Belnap 1975; Anderson, Belnap
and Dunn 1992.
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part of the former. In other words, the basic classical consequence
relation is ‘stronger’ than our basic paracomplete one: the former
has the latter as a proper part—a ‘sub-relation’. CP2 tells us
that any arguments that are valid according to the paraconsis-
tent theory are valid according to the classical theory. As it turns
out, the converse doesn’t hold; there are some arguments that are
valid according to the classical theory but not the paracomplete
theory. (Can you think of one?) The reason is that the latter
theory recognizes more cases than the classical theory, and hence
recognizes more ‘potential counterexamples’.

As with CP, from Chapter 5, CP2 tells us that, while our
language may have both gappy and glutty sentences, it may also
enjoy an entirely precise, classical fragment. Once again, for ex-
ample, the mathematical or scientific fragment of our language
might be perfectly precise and, in effect, classical, even though
our broader language is ‘indeterminate’ in parts and ‘overdeter-
minate’ in parts.

6.4.2 Absence of logical truths

Since we still have all of our previous incomplete cases, we still
have all of our previous counterexamples. Hence, there are no
logical truths in our basic paraconsistent theory.6

6.5 Formal picture

As in Chapters 4 and 5, we are concentrating on a language with
only a few basic connectives, and we are ignoring any structure
within our atomic sentences. Our aim in this section is to briefly
sketch a formal picture of our given paraconsistent logical theory
of such a language. Towards that end, we will give a sketch of
a formal language, a sketch of the ‘semantics’ (viz., truth condi-
tions) for the language, and then define the consequence relation
on the given language. What follows, as in Chapter 5, presupposes
the set-theoretic tools that you learned in Chapter 3.

6See this chapter’s exercises for a non-paracomplete variant of our basic
paraconsistent theory.
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6.5.1 Syntax

The syntax of our language L is exactly the same as in Chap-
ters 4 and 5. The difference between the basic classical and basic
paracomplete accounts of L arises at the level of semantics.

6.5.2 Semantics

As before, the key ingredients of logical consequence are cases
and truth-in-a-case (and also falsity-in-a-case) conditions. Our
concern, in this chapter, is with the basic paraconsistent theory.
The question is: how shall we model our paraconsistent cases?

There are various ways of modeling our given cases. We will
stick to an approach that is similar to the approach taken towards
modeling our previous sorts of cases. As before, we will take our
cases to be (modeled by) certain functions—ones obeying various
constraints—from our set S of sentences into our set V of ‘se-
mantic values’. One difference, of course, is that we will expand
our set of ‘semantic values’ from {1, n, 0} to {1, b, n, 0} (where b,
now, may be thought to mark the semantic status of being both
true and false). The idea, intuitively, is that the paraconsistent
theory retains the previous semantic values; however, it also rec-
ognizes more options—namely, ‘overdeterminacy’ or ‘gluts’. Intu-
itively, one can think of the value b as marking ‘overdetermined’
or ‘glutty’ sentences, the idea being that if A is assigned b in a
case, then, intuitively, it is ‘overdetermined’ or ‘glutty’ in that
case.

To be clearer, our semantics begins with a set of semantic
values, namely, V = {1, b, n, 0}. What’s different from our previ-
ous accounts is that we now need to be explicit about our set D
of so-called designated values. Intuitively, the designated values
can be thought of as different ‘ways of being true’. In our pre-
vious logical theories, no sentence could be both true and false;
they were only true, if true at all. In our current, paraconsistent
theory, some sentences can be only true, as before, but they can
also be true and false. As such, we have expanded our semantic
values, and we now designate both 1 and b. It is the designated
values in terms of which we define truth in a case (and, as below,
consequence). Our set D of designated values is {1, b}.

With V so given, and designated values so specified, we let
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our cases be functions v from S into V, so that we have v(A) = 1
or v(A) = b or v(A) = n or v(A) = 0, for every sentence A and
any such case v.

We define truth in a case as follows: A is true-in-a-case v
(remember that our ‘cases’ are now functions) if and only if
v(A) ∈ D, that is, v(A) = 1 or v(A) = b.

What about falsity in a case? As before, we certainly want
that A is false-in-a-case v if v(A) = 0. But notice that we are now
also considering the idea that A may be true and false. Any sen-
tence that is true and false is false. So, any glut, while true, is also
false. Accordingly, since b is representing our ‘glutty’ category, we
also say that A is false in case v if v(A) = b. Our definition of fal-
sity in a case, then, is as follows: A is false-in-a-case v iff v(A) = 0
or v(A) = b.

As with our previous ‘formal models’, we do not want to allow
just any old function from S into V to count as a paraconsistent
case! After all, there are certainly functions from S into V that
do not respect the paraconsistent truth conditions. Consider, for
example, a function v such that v(A∨¬A) = 0. This is certainly
a function from S into V, but it doesn’t respect the given truth
conditions for disjunction and negation.

Following our usual approach (see previous chapters), we rule
out such ‘unwanted’ functions from our set of cases by invoking
the following truth conditions. In particular, we say that a func-
tion v, from S into V, is a paraconsistent case if and only if it
‘obeys’ the following truth conditions.

¬
0 1
b b
n n
1 0

∧ 1 b n 0
1 1 b n 0
b b b 0 0
n n 0 n 0
0 0 0 0 0

∨ 1 b n 0
1 1 1 1 1
b 1 b 1 b
n 1 1 n n
0 1 b n 0

These tables look more complicated than the previous ones, but
that’s only because there are more values to look at. On inspec-
tion, you’ll see that, if you remove the glut value b, the tables are
exactly our previous, basic paracomplete tables.

As before, the given truth conditions are fairly classical. For
example, a negation ¬A is true-in-a-case iff its negatum is false-
in-the-given-case; and ¬A is false-in-a-given-case iff its negatum
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is true-in-the-given-case. What one has to remember, of course, is
that we’re now considering sentences that can be true and false,
that is, sentences that are true but also have true negations. This
is why, for example, v(A) = b iff v(¬A) = b. The idea, as above,
is that if A is true and false, then its negation is also true and
false. And this is represented in the given truth conditions.

Similarly, a conjunction is true-in-a-case iff both conjuncts are
true in the case; and it is false-in-a-case iff at least one conjunct is
false-in-the-case. The difference, again, is that we now have gluts,
but the conditions remain classical in spirit. For example, if A is
true and false, and B is just true, then A ∧B is true (since both
conjuncts are true) but it is also false (since at least one conjunct,
namely A, is false), and hence ¬(A∧B) is true and false. (If you
do not see this, you should think about it in relation to the above
tables.) The same ‘classical’ spirit holds also for disjunction.

The final step, in giving the semantics, is to specify our target
relation: namely, logical consequence. The definition, as usual, is
just an instance of our recipe in Chapter 1. To make things sim-
pler, we will explicitly invoke our designated values D = {1, b}.
Definition 36. (Basic Paraconsistent Consequence) B is a logical
consequence of A if and only if there is no paraconsistent case v
such that v(A) ∈ D but v(B) 6∈ D. (In other words, there’s no
case v in which A is true but B not true.)
Generalizing, we say that v satisfies a sentence A iff v(A) ∈ D
(i.e., iff A is true-in-the-given-case). In turn, where X is any set of
L sentences, we say that v satisfies X iff v satisfies every member
of X . With this terminology, we give our more general definition
of basic paraconsistent consequence as follows.
Definition 37. (General Basic Paraconsistent Consequence) X `
A if and only if there is no paraconsistent case v that satisfies X
but not A.
« Parenthetical remark. If disambiguation is required, we will use
‘`FDE ’ for the basic paraconsistent relation defined via paracon-
sistent cases. End parenthetical. »

You should think about this definition, compare it with the ‘gen-
eral recipe’ of logical consequence and the classical account, and
also evaluate various argument forms for (basic paraconsistent)
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validity. Note that a paraconsistent counterexample need not be
a case in which the conclusion is false; it need only be a case in
which the conclusion is not designated—that is, either n or 0.

6.6 Defined connectives
We will use the same defined connectives as before: ‘A → B’ is
shorthand for ¬A ∨ B, and similarly ‘A ↔ B’ is shorthand for
(A → B) ∧ (B → A). As in Chapter 5, the truth conditions for
these defined connectives are simply the resulting truth conditions
for the corresponding sentences that use only our Basic (primi-
tive) connectives—for example, the truth conditions for ¬A ∨ B
and (¬A∨B)∧ (¬B∨A). In our given paraconsistent setting, the
given conditions are represented in the following tables.

→ 1 b n 0
1 1 b n 0
b 1 b 1 b
n 1 1 n n
0 1 1 1 1

↔ 1 b n 0
1 1 b n 0
b b b 1 b
n n 1 n n
0 0 b n 1

6.7 Some notable forms
Logical theories of a language provide an account of the (logical)
behavior of the language’s connectives. Such behavior is manifest
is in the consequence relation, in particular, the valid argument
forms involving those connectives.

Our current, paraconsistent consequence relation, as noted, is
a ‘sub-relation’ of the basic classical consequence relation. More-
over, because we’ve retained all of our incomplete cases and the
same truth- and falsity-in-a-case conditions, there are no logical
truths according to our basic paraconsistent (and paracomplete)
theory (viz., FDE). By way of comparing our current theory with
the previous two, consider the following items.
• Excluded Middle: 0FDE A ∨ ¬A
• Non-Contradiction: 0FDE ¬(A ∧ ¬A)
• Modus Ponens: A→ B,A 0FDE B

• Modus Tollens: A→ B,¬B 0FDE ¬A
• Disjunctive Syllogism: A ∨B,¬A 0FDE B

• Contraposition: A→ B a`FDE ¬B → ¬A
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• Explosion: A,¬A 0FDE B

• Addition: A `FDE A ∨B
• Adjunction: A,B `FDE A ∧B
• Simplification: A ∧B `FDE A

• De Morgan: ¬(A ∨B) a`FDE ¬A ∧ ¬B
• De Morgan: ¬(A ∧B) a`FDE ¬A ∨ ¬B
• Double Negation: ¬¬A a`FDE A

Notice that, in virtue of admitting our inconsistent cases, we have
significantly weakened the logic, that is, that many of the previ-
ously valid arguments are now invalid. This is not terribly surpris-
ing, since we have broadened our range of potential counterex-
amples.

You should provide counterexamples to the given invalid ar-
gument forms, and prove that the given valid forms are valid
(according to the paraconsistent theory). For now, it is worth
noticing an important invalidity, namely, Explosion.

We said, above, that there seem to be sentences of our lan-
guage that are true and false—peculiar sentences, like the starred
sentence or ticked sentence.7 On the other hand, surely not all
sentences of our language are true and false. If Explosion were
valid (i.e., if the form A,¬A ∴ B were valid), then any glut
would explode the language: all sentences would be true and false!
Fortunately, Explosion doesn’t hold, at least according to para-
consistent theories.

That Explosion is not valid according to our basic paracon-
sistent theory may be seen via the following counterexample.
Let v(A) = b and v(B) = 0. (You could also let v(B) = n,
which would provide a different counterexample with the same
effect.) Given the truth conditions for negation, we have it that
v(¬A) = b since v(A) = b. But, then, both premises are true
(i.e., designated) in the given case, but the conclusion is not true
(i.e., not designated) in the given case. This is a counterexample
to Explosion.

Similarly, it might be useful to see a counterexample for Modus
Ponens. Let v(A) = b and v(B) = 0. (Again, you could instead let

7Of course, you might disagree that there are any such gluts in our lan-
guage. For present purposes, the aim is only to explore the basic idea!
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v(B) = n, which, unlike where v(B) = 0, yields v(A → B) = 1
where v(A) = b.) Given the truth conditions for negation, we
have it that v(¬A) = b since v(A) = b. In turn, given the truth
conditions for our conditional, we have it that v(A → B) = b.
But, now, notice that both of our premises are true in the given
case—that is, both sentences have a designated value. Hence, we
have a case in which our premises are all true (designated) but the
conclusion isn’t. This is a counterexample to the given argument
form, namely, Modus Ponens.

6.8 Summary and looking ahead

Summary. Motivated by apparent ‘overdeterminacy’, our basic
paraconsistent theory of logical consequence broadens our previ-
ous range of cases. In particular, we retain all of our previous
cases but we add another type, namely, inconsistent cases—be
they incomplete or complete. The resulting consequence relation
is weaker than our previous relations, but classical logic can still
be seen as a special case of our broad, paraconsistent framework—
namely, it’s the logic you get if you ignore inconsistent and in-
complete cases. One significant feature of our given paraconsistent
theory is the failure of Explosion. Intuitively, we should expect
Explosion to fail, at least if our language has some overdetermi-
nacy but is not entirely overdetermined.

Looking Ahead. In the next chapter, we keep our stock of con-
nectives the same, but we delve deeper into our atomics. Instead
of treating our atomic sentences as having no significant logical
parts, we ‘break them open’ (as it were) to find a few logically
significant bits.

Further Reading. Any of the Beall & van Frassen, Priest, and
Restall textbooks mentioned in previous chapters (under ‘further
reading’) provide useful further reading for our given paraconsis-
tent logical theory. (Priest’s given textbook also provides a fairly
wide discussion of many different approaches to paraconsistent
logical theory.) One of the pioneering cases for gluts is Priest
2006, and a more recent discussion is Beall 2009.
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Exercises

1. Given your understanding of designated values, answer the
following questions. What are the designated values of our
basic classical theory (see Chapter 4)? What are the desig-
nated values of our basic paracomplete theory (see Chapter
5)?

2. One might, as mentioned in the text, have reason to re-
ject indeterminacy but, in light of the Liar (or the like),
nonetheless acknowledge overdeterminacy. A logical theory
along these lines was first advanced by Asenjo (1966) but
known widely from Graham Priest’s work (1979) as LP for
‘logic of paradox’. The difference between LP and our ba-
sic paraconsistent theory is that the former ignores incom-
plete cases. In particular, everything is the same except that
V = {1, b, 0}, but D (the designated values) remains {1, b},
as we have it. Question: are there any logical truths in LP?
If so, prove it. If not, explain why not.

3. Are there any cases in which A ∧ ¬A is true (designated),
according to our basic paraconsistent theory? If so, give an
example. If not, say why not.

4. Are there any cases in which ¬(A ∧ ¬A) is not true (not
designated), according to our basic paraconsistent theory?
If so, give an example. If not, say why not.

5. For each of the valid forms in §6.7, give a proof that they’re
valid. For each of the invalid forms, give a counterexample.

6. Explain why the following claim is true: if X `FDE A then
X `K3 A.

7. Are the following argument forms valid in our basic para-
consistent (and paracomplete) theory (viz., FDE)? Provide
a proof (of validity) or counterexample (for invalidity) in
each case. Also, note whether or not the given forms are
valid in the basic paracomplete (viz., K3) or basic classical
theories (see previous chapters).
(a) A→ B,¬A→ B ∴ B
(b) (A ∨B) ∧ C, A→ ¬C ∴ B
(c) A→ B,B → C ∴ A→ C
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Sample answers

Answer 6. The key point to see is that the FDE and K3 (i.e., our
basic glutty–gappy and basic gappy) theories agree on the truth
conditions for all connectives; it’s just that the former theory
acknowledges more ‘semantic options’ (notably, gluts) than the
latter acknowledges. Close observation shows that, if you ignore
the gluts (e.g., the value b) in the FDE (basic glutty–gappy)
theory, you simply wind up with K3 (i.e., our basic gappy-but-no-
gluts theory)! In other words, FDE and K3 agree on all cases that
don’t involve gluts: whatever the one counts as a counterexample,
the other counts as a counterexample (provided that, as above,
we’re ignoring gluts). In yet other words: any case that K3 counts
as a case (and, hence, as a potential counterexample) is one that
FDE counts as a case (and, hence, as a potential counterexample).
Hence, the K3 cases are a subset of the FDE cases. And that’s the
key insight: if there’s no FDE counterexample to an argument,
then there’s no K3 counterexample to the argument. Hence, if
X `FDE A (i.e., there’s no basic glutty–gappy counterexample
to an argument), then X `K3 A (i.e., there’s no basic gappy
counterexample to the argument).
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Atomic Innards

Humor can be dissected as a frog can,
but the thing dies in the process
and the innards are discouraging

to any but the pure scientific mind.
– E. B. White

So far, we have kept our basic stock of connectives the same,
but expanded our stock of ‘cases’. We have so far ignored any
possible structure within our atomic sentences. As a result, there
was nothing much to say about how an atomic comes to be true
(or whathaveyou) in a given case. Instead, we merely said that
each atomic gets exactly one of the given semantic values (true,
false, whathaveyou). In this chapter we change things. We look
‘inside’ of atomics, bringing out a little bit of structure. In turn,
we will say a little bit about how atomics come to be true, false
or whathaveyou in a given case.

7.1 Atomic innards: names and predicates

Originally, the term ‘atom’ meant indivisible. If you found an
atom, you found a basic, indivisible item. In chemistry and physics,
where one searches for the basic physical atoms, the term ‘atom’
was initially applied to molecules—though they were thought to
be atoms (i.e., fundamental, indivisible, etc.). As it turned out,
such chemical ‘atoms’ could be divided; they were built out of
even more basic parts—what we now call atoms.1

As in Chapter 2, our language has its own sort of atoms and
molecules, namely, atomic and molecular sentences. For our pur-
poses, atomics have no (logical) connectives in them. As such,
and because we have been interested in the basic connectives, we

1As it turned out, even these ‘atoms’ were further divisible; we now have
‘sub-atomic’ parts (quarks, etc.).
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have treated our atomics as structureless items. (In our formal
language, we have let our atoms be structureless, lowercase let-
ters, ‘p’, ‘q’, etc.) Just as in chemistry, it turns out that, in logic,
it’s useful to acknowledge some structure ‘inside’ of our atom-
ics. This is not to say that atomics now contain connectives; they
don’t. The point is that, for purposes of a richer logical theory, we
need to acknowledge various kinds of parts that make up atomics.

Fortunately, the relevant ‘atomic innards’ are familiar items.
In particular, we will (for now) recognize two different types of
expressions that make up atomic sentences: namely, predicates
and names.2 Consider, for example, basic atomic sentences like
the following.

1. Max is happy.
2. Max is bigger than Agnes.
3. Agnes is happier than Max.
4. Katrina is between Max and Agnes.

Each of the above sentences is made up of a predicate and one or
more names. For example, (1) is made up of the unary predicate
‘is happy’ and the name ‘Max’. (2) is made up of the binary
predicate ‘. . . is bigger than . . . ’ and the names ‘Max’ and ‘Agnes’.
Sentence (3) is similar to (2), as it has a binary predicate and two
names. Sentence (4) is made up of the ternary predicate ‘. . . is
between . . . and . . . ’ and the names ‘Katrina’, ‘Max’, and ‘Agnes’.

From a semantic perspective, names, of course, function to
pick out objects, while predicates function to express ‘properties’
or relations—features or characteristics. From a syntactic per-
spective, we will understand n-ary predicates as follows.

Definition 38. (n-ary Predicate) An n-ary predicate (qua syntac-
tic item) takes n many names (or, more broadly, singular terms)
to make a sentence.

2Atomic innards are expanded a bit in subsequent chapters. Due to space,
however, we do not consider other philosophically important sorts of singular
terms (e.g., definite descriptions like ‘the first person to know that 1+1=2’),
but this book (particularly subsequent chapters) gives you sufficient compe-
tence to jump into such areas—e.g., Russell’s theory of definite descriptions
(which is mentioned in just about every book on the philosophy of language
or philosophy of logic).
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Just as an n-ary connective, syntactically conceived, takes nmany
sentences to make a sentence, an n-ary predicate takes n many
names to make a sentence.

What, then, do the innards of our atomics look like? The an-
swer, in short, is that atomics are made up of an n-ary predicate
and n many names. That’s basically it, except for a qualification
about order. In particular, the order in which names occur in
an atomic matters. For example, consider the binary predicate
‘loves’ and the names ‘Max’ and ‘Agnes’. Our predicate, being
binary, requires two names to make a sentence. The point of or-
der is that ‘Max loves Agnes’ and ‘Agnes loves Max’ are different
atomic sentences; they use the same names and the same pred-
icate, but the order of names is different, and so the resulting
(atomic) sentence is different.

7.2 Truth and falsity conditions for atomics

What do names do? As above, they serve to pick out objects.
How names pick out objects is an ongoing philosophical issue;
however, we will ignore the issue and just assume that, at least
in general, names pick out objects. Let us say that the object
picked out by a name is the denotation of the name. In general,
if x is the denotation of a name α,3 we say that α denotes x.
For example, ‘Max’ denotes Max, your name denotes you, and
‘Benjamin Franklin’ denotes the inventor of bifocals.

What about predicates? There are various answers that one
might give to this question. For our purposes, we will assume that
predicates are used to classify objects. In particular, predicates
can be true or false of objects. For example, ‘is a cat’ is true of
Max, but it is false of Katrina. Similarly, ‘is a human’ is true of
Katrina but false of Max. In this way, we classify Max as being a
cat, and Katrina as being a non-cat, and similarly classify Katrina
as being a human and Max as being non-human. (Of course, more
informative classifications are also available.)

Let us say that a predicate’s extension is the set of things of
which the predicate is true, and a predicate’s antiextension is the

3Here, ‘α’ (pronounced alpha), which is the first (lowercase) letter of the
Greek alphabet, is a so-called metavariable ranging over names; you can just
think of α (or, in places, αi) as a name.
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set of things of which a predicate is false. So, for example, Max is
in the extension of ‘is a cat’ while Katrina is in the antiextension
of ‘is a cat’. Similarly, Katrina is in the extension of ‘is a human’
while Max is in the antiextension of ‘is a human’.
Definition 39. (Extension) The extension of a predicate is the set
of things of which the predicate is true.

Definition 40. (Antiextension) The antiextension of a predicate
is the set of things of which the predicate is false.

With this terminology, we can give truth and falsity conditions
of atomics as follows. Concentrate, first, on atomics that involve
only a unary predicate Π.4

• An atomic sentence Πα is true iff the denotation of α is in
the extension of Π.
• An atomic sentence Πα is false iff the denotation of α is in
the antiextension of Π.

This account only covers unary predicates. If, as suggested in
Chapter 3, we equate an ordered 1-tuple 〈x〉 with x itself, then
we can give general truth and falsity conditions for all atomics
(as opposed to those that use only a unary predicate). Here, we
let Π be any n-ary predicate (e.g., unary, binary, etc), and let
α1, . . . , αn be n many names, and we let a1, . . . , an be n many
objects. In turn, let object ai be the denotation of name αi, for
each i (e.g., α2 denotes a2, etc.).

• An atomic Πα1, . . . , αn is true iff 〈a1, . . . , an〉 is in the ex-
tension of Π.
• An atomic Πα1, . . . , αn is false iff 〈a1, . . . , an〉 is in the

antiextension of Π.
So, for example, ‘Max loves Agnes’ is true iff 〈Max, Agnes〉 is in
the extension of ‘loves’. In turn, sentence (4) from §7.1 is true iff
〈Katrina, Max, Agnes〉 is in the extension of ‘. . . is between . . .
and . . .’. And so on.

4I used the Greek (uppercase) letter ‘Π’ (viz., Pi) for a so-called metavari-
able for arbitrary predicates (usually of our formal language). If you want,
just think of ‘Π’ as standing for any predicate (well, in the current case,
unary predicate).
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We can make this a bit more transparent, and perhaps slightly
more general, if we introduce a bit more notation. In particular,
let δ(α) be the denotation of the name α.5 Here, we are supposing
that δ is a function that serves to give our names their respective
denotations. With this in mind, we can put the above truth and
falsity conditions as follows.
• Πα1, . . . , αn is true iff 〈δ(α1), . . . , δ(αn)〉 is in the extension

of Π.
• Πα1, . . . , αn is false iff 〈δ(α1), . . . , δ(αn)〉 is in the antiex-

tension of Π.
Of course, we are chiefly interested in truth-in-a-case and falsity-
in-a-case conditions, but a minor modification of the above gives
us what we want.
• Πα1, . . . , αn is true-in-a-case c iff in case c, 〈δ(α1), . . . , δ(αn)〉
is in the extension of Π.
• Πα1, . . . , αn is false-in-a-case c iff in case c, 〈δ(α1), . . . , δ(αn)〉
is in the antiextension of Π.

Putting things this way raises the obvious question: what, now,
are these cases? What, for example, do we mean by in case c such
and so is in the (anti) extension of a predicate?

7.3 Cases, domains, and interpretation functions
Recall that, for our purposes, ‘cases’ are things in which sentences
may be true or false. Until now, we didn’t need to say much more
about such cases, except just that: viz., that sentences are true-
in-them or false-in-them (or neither true- nor false-, or perhaps
both). Until now, there was little need to talk about how sentences
came to be true- or false-in-cases.

Things are now different. While we haven’t said how a name
comes to denote an object, or how a predicate gets an extension
or antiextension, we have nonetheless said something about how
atomics come to be true- (or false-) in-a-case. In particular, truth
in a case (similarly falsity in a case) turns on denotations of terms
and the extension (or antiextension) of predicates. What this sug-
gests, then, is that our cases—whatever else they may be—come

5The letter ‘δ’ (pronounced delta) is the fourth (lowercase) letter of the
Greek alphabet; we are letting δ be our denotation function.
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equipped with denotations of terms, as well as extensions and
antiextensions of predicates. The idea, in short, is that our cases
come equipped with their own ‘story’ (as it were) about what our
names denote (in that case) and what the extensions (and antiex-
tensions) of our predicates are (in that case). Moreover, our cases
have their own ‘story’ about what objects exist.

The matter might be thought of as follows. Our cases come
equipped with a set D of objects, where D is the domain of the
given case. For example, one case c might be such that D =
{Max,Agnes}, while another case c′ might have a different do-
main, say {1, 2, 3, Katrina, Max}. The domain of any given case
is the set of objects that exist in that case.

Similarly, cases have their own say on the denotations of terms.
As above, each case c comes equipped with a domain D, which
comprises the objects that may serve as denotations in the given
case. In addition to having a domain, we can also think of each
case c as having a denotation function δ, a function from the
names in our language into c’s domain D. Even if, for example,
two cases, say c and c′, have the same domain, they may disagree
on the denotations of terms. In case c, we might have it that δ(α)
is (say) Max, while in case c′ we might have it that δ(α) is (say)
Agnes. In that respect, one can think of the two cases as giving
different denotations to the same name α.

Finally, our cases also have their own say on the extensions
and antiextensions of predicates. In one case, the extension of Π
might be (say) {1, 2, 3}, while the extension of Π in another case
might be different. Of course, the extensions (similarly, antiexten-
sions) will always be sets of (n-tuples of) objects from the given
domain. The point, though, is that even when two cases agree on
the same domain (i.e., they have the same domain), they might
disagree on the extensions and antiextensions of predicates; they
might disagree on which of our predicates are true or false of the
given objects; they might disagree, as it were, on how the given
objects are to be ‘classified’.

Putting all of this together, our cases—whatever else they
may be—provide the following. Where c is any case, we have

• the domain of c, namely, D, which comprises all objects that
exist in (or according to) case c.
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• denotation: to each name α in the language, the case c provides
a denotation of α, namely, δ(α), which is an element of D (c’s
domain).

• extensions and antiextensions: to each n-ary predicate Π in the
language, the case c provides an extension and antiextension
of Π, namely, a set of n-tuples ‘made up of’ elements of D.

7.4 Classical, paracomplete and paraconsistent
We’ve talked broadly about cases. How, if at all, do our given
logical theories differ in their accounts of such cases? All agree,
of course, that cases must provide the basic resources required
for atomics to be true-in-a-case or false-in-a-case (e.g., domain
of objects, denotations of terms, extensions and antiextensions
of predicates). The question concerns how, if at all, our given
theories differ in what such cases are like.

The answer is that each theory places different constraints on
what goes on inside of cases—in particular, on what happens with
extensions and antiextensions. Let us introduce two constraints
on extensions and antiextensions. For convenience, let E+ and E−
be the extension and antiextension of some arbitrary predicate.
• Exhaustion. E+ ∪ E− = D. In other words, for any case c,
any predicate Π, and any object x in c’s domain, x is either
in the extension of Π or in the antiextension of Π (i.e., Π is
either true of x or Π is false of x in the given case).
• Exclusion. E+ ∩E− = ∅. In other words, for any case c, any
predicate Π, and any object x in c’s domain, x is not in the
extension of Π and the antiextension of Π (i.e., Π isn’t true
and false of x in the given case).

Consider the classical theory. According to it, every sentence—
and, hence, every atomic—is either true-in-c or false-in-c (but not
both). Accordingly, the classical theory imposes both the Exhaus-
tion and Exclusion constraints on cases. In turn, a paracomplete
theory drops the Exhaustion constraint. In turn, a paraconsistent
theory drops the Exclusion constraint.

7.5 A formal picture
This will be very brief. As above, our cases are more involved.
For present purposes, we will present a formal picture of the basic
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paraconsistent (and paracomplete) theory, but one that now takes
account of our new atomic sentences.

7.5.1 Syntax
This is the same as before, except we now add a few things.
• A set of predicates: F,G,H, . . . , S, T with or without numerical

subscripts.
• A set of names: a, b, c, d with or without numerical subscripts.
These sets expand our ‘vocabulary’ or ‘building blocks’. We must
now expand our definition of sentences.

1. Atomics: if Π is an n-ary predicate, and α1, . . . , αn are n
many names, then Πα1, . . . , αn is an atomic sentence.

2. All atomics are sentences.
3. IfA andB are sentences, so too are ¬A, (A∧B), and (A∨B).
4. Nothing but what’s from (1)–(3) is a sentence.6

We now move to semantics.

7.5.2 Semantics
What are our cases? We now take (or model) cases to be struc-
tures 〈D, δ〉. So, a given case c is now some such structure 〈D, δ〉
where D is the domain of c, and δ is a function. The job of δ,
in any such case, is to provide denotations to all names, and ex-
tensions and antiextensions to all predicates. In particular, for
any given case 〈D, δ〉, the function δ (in the given case) does the
following two jobs.
1. Denotation: δ provides denotations to all names; so, δ(α) is an

object in D, for every name α.
2. Predication: for any n-ary predicate Π, the function δ assigns

an extension to Π and an antiextension to Π.7 In effect, you
can think of δ(Π) as a pair 〈E+

Π , E
−
Π 〉, where E

+
Π is the extension

of Π and E−Π the antiextension, according to c (i.e., according
to c’s denotation function δ).8

6Since we’re treating→ and↔ as defined connectives, we have these sorts
of defined sentences—e.g., (A→ B), which is covered as (¬A ∨B).

7So, δ(Π) ⊆ Dn ×Dn for any n-ary predicate Π.
8Notation: if no confusion is likely to arise, we sometimes write ‘Π+’ for

the extension of Π, namely, E+
Π , and similarly for the antiextension Π− of Π.
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Given our cases, we now give truth-in-a-case and falsity-in-a-case
conditions. To do this, we resort to our familiar notation from
previous chapters, where ‘c |=1 A’ abbreviates ‘A is true-in-case-
c’ and ‘c |=0 A’ abbreviates ‘A is false-in-case-c’. Moreover, we’ll
also use our notation from above for extension and antiextension.
• Atomics

c |=1 Πα1, . . . , αn iff 〈δ(α1), . . . , δ(αn)〉 ∈ E+
Π .

c |=0 Πα1, . . . , αn iff 〈δ(α1), . . . , δ(αn)〉 ∈ E−Π .
• Negations

c |=1 ¬A iff c |=0 A.
c |=0 ¬A iff c |=1 A.

• Conjunctions
c |=1 A ∧B iff c |=1 A and c |=1 B.
c |=0 A ∧B iff c |=0 A or c |=0 B.

• Disjunctions
c |=1 A ∨B iff c |=1 A or c |=1 B.
c |=0 A ∨B iff c |=0 A and c |=0 B.

With the above truth and falsity conditions, we can now define
consequence as usual, using the recipe from Chapter 1. To make
things general, we say that case c satisfies sentence A iff c |=1 A.
In turn, where X is a set of sentences, we say that c satisfies X iff c
satisfies every sentence in X . Given this terminology, we define—
in effect, our basic paraconsistent account of—consequence (viz.,
FDE) as follows.
• X ` A iff any case that satisfies X satisfies A.

7.6 Summary and looking ahead

Summary. We have introduced ‘atomic innards’, which are pred-
icates and names. We have given truth and falsity conditions for
such atomics. Because our truth-in-a-case and falsity-in-a-case
conditions require more of cases, we have expanded our idea of
cases. In effect, cases now come equipped with a domain of ob-
jects (viz., all that exists in the given case), a denotation function
that assigns objects (from the domain) to all names in our lan-
guage, and a function that assigns extensions and antiextensions
to each predicate. To get the classical logical theory, one puts the
Exhaustion and Exclusion constraints on cases (in particular, on
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extensions and antiextensions of all predicates). To get the para-
complete (but non-paraconsistent) theory, one drops Exhaustion
but retains Exclusion. To enjoy our broad, paraconsistent (and
paracomplete) theory, one drops both Exclusion and Exhaustion.

Looking Ahead. In the next chapter, we introduce no new logical
connectives, but we do introduce new logically significant bits: we
expand our stock of ‘logical expressions’ by adding a new, logical
predicate—namely, Identity.

Further Reading. Any standard textbook that covers so-called
classical first-order logic will be a useful supplement to this chap-
ter’s topic(s); however, for the full non-classical account sketched
here (wherein antiextensions become essential), a good source for
further reading is Priest’s textbook mentioned in previous chap-
ters, namely, Priest 2008.

Exercises

1. Consider a case c = 〈D, v〉 where D = {1, 2, 3}, and δ(a) =
1, δ(b) = 2, and δ(d) = 3, and F+ = {1, 2} and F− = {1}.
For each of the following, say whether it is true or false. If
true, say why. If false, say why.
(a) c |=1 Fa
(b) c |=0 Fa
(c) c |=1 ¬Fa
(d) c |=1 Fb ∨ Fd
(e) c |=1 Fb ∧ Fd
(f) c |=1 ¬(Fb ∨ Fd)
(g) c |=1 Fd→ Fb

2. Construct a case in which Fa ∧ ¬Fb is true.9
3. Construct a case in which Fa ∧ ¬Fa is true.
4. Construct a case in which Fa∨¬Fa is neither true nor false.
5. Notice that, without imposing further constraints, a case
c might let ∅ be both the extension and antiextension of
any (or all!) predicate(s) Π. What does this tell you about
logical truths—sentences true-in-all cases?

9To construct a case, you have to specify the domain, the denotations of
the various names, and the extensions and antiextensions of given predicates.
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Sample answers

Answer 1c. c |=1 ¬Fa iff c |=0 Fa iff δ(a) ∈ F−. Since our
given case c is such that δ(a) ∈ F− (since δ(a) is 1, which is
in the antiextension of F in our given case), we conclude that
c |=1 ¬Fa.

Answer 2. A case in which Fa ∧ ¬Fb is true as follows. Let c =
〈D, δ〉, where D = {1, 2} and δ(a) = 1, δ(b) = 2, and F+ = {1}
and F− = {2}. (NB: there are many other cases in which Fa∧¬Fb
is true.)
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Identity

I am that I am.
– God

Exodus 3:14

In the last chapter, we recognized ‘atomic innards’ by adding
a set of predicates and names. In turn, we expanded our cases to
cover predicates and names. Unlike the last chapter, this chapter
adds a new logical expression (viz., an identity predicate), and in
turn offers truth (and falsity) conditions for the new expression.
(This is done by imposing constraints on our cases.)

8.1 Logical expressions and logical form

In Chapter 2, we noted that logicians tend to think of validity as
a matter of logical form. So far, we have treated logical form as
a matter of logical connectives: we specify different logical forms
of sentences in terms of the logical connectives in our language.
Moreover, we have so far recognized only (let us say) ‘basic forms’,
forms defined out of (what we have called) basic connectives: con-
junctions, disjunctions, and negations.1 All of these basic connec-
tives are sentential connectives: syntactically, they take sentences
and make new sentences.

The notion of logical form need not be tied to sentential con-
nectives. In general, the logical form of a sentence (and, in turn,
that of arguments built from sentences) is defined via the logical

1These connectives are sometimes called Boolean connectives as a tribute
to George Boole’s logical work on them. We have avoided this terminology
because it is sometimes used to mean the classical theory of such (basic)
connectives, and we’ve looked at non-classical theories of such (basic) con-
nectives. To avoid confusion, we simply cal them ‘basic’. (‘Sentential’ or
‘propositional’ can also be used.)



Validity involving identity 111

expressions of the language. As above, we have so far acknowl-
edged only sentential connectives as our logical expressions. Pred-
icates, which we now have in the language, can also be logical
expressions.

8.2 Validity involving identity

The chief aim of logic, as discussed in Chapter 1, is to specify
what follows from what. None of the logical theories canvassed so
far has the resources to count the following argument as valid.

1. Max is big.
2. Max is identical to Boydy.
3. Therefore, Boydy is big.

The only logical expressions that we (or our logical theories) have
acknowledged so far are basic sentential connectives. But since
the argument above is devoid of such connectives, its logical form
amounts to nothing more than A,B ∴ C. And this form is invalid
on all of our canvassed basic theories.

You might object that, since we now have predicates and
names, there is more to the structure of the sentences than is
revealed in form A,B ∴ C. After all, you might say, ‘Max’ and
‘Boydy’ are names, and ‘is big’ is a unary predicate; and ‘is iden-
tical to’ is a binary predicate. With all of this in hand, you might
note (correctly) that a more discriminating form than the simple
A-B-C form is as follows, where ‘m’ and ‘b’ stand in, respectively,
for ‘Max’ and ‘Boydy’, ‘B’ for ‘is big’, and ‘I’ for ‘is identical to’.

Bm, Imb ∴ Bb

But this form, like the simpler (though more abstract) A-B-C
version above, is invalid according to all of our canvassed the-
ories. The reason, once again, is that it is devoid of any logi-
cally significant expressions in terms of which the form would be
counted as valid. To make the point plain: notice that, in the
classical theory, we have counterexamples to the argument form.
In particular, consider a case c where (to keep things simple) the
domain is {2, 3}, and B is true only of object 2, and I (a binary
predicate) is true only of the pair 〈2, 3〉, and m and b denote
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2 and 3, respectively.2 Given the truth-in-a-case conditions for
atomics (see Chapter 7), we have it that c |=1 Imb and c |=1 Bm
but c 6|=1 Bb. Hence, we have a counterexample to the given
argument form, and hence it’s invalid according to the classical
theory. (Since, at least for the current theories, a classical coun-
terexample is also a counterexample in our non-classical theories,
the current counterexample shows the given argument form to be
invalid according to all of the theories canvassed so far.)

What you’re thinking (correctly) is that there’s something
inappropriate about the above counterexample. In particular, the
given case (the given counterexample) fails to respect identity :
it not only errs in treating I as something that holds among
non-identical objects (viz., 2 and 3); it even fails to contain all—
indeed, any—identity pairs 〈1, 1〉 and 〈2, 2〉. What you’re thinking
(correctly) is that the validity of

1. Max is big.
2. Max is identical to Boydy.
3. Therefore, Boydy is big.

turns on treating ‘is identical to’ as identity . What we need, then,
is an identity predicate that gets treated the right way in all
cases—namely, as identity. And this calls for expanding our stock
of logical expressions (in the syntax) and modifying our account
of cases (in the semantics).

8.3 Identity: informal sketch

Following standard practice we shall recognize an identity pred-
icate among our logical expressions. Our stock of logical expres-
sions, then, shall contain logical connectives and a logical predi-
cate.

Consider the (binary) predicate ‘is identical to’ in English.
This predicate is generally thought to be true of all ‘identity
pairs’, that is, true of you and yourself, me and myself, Agnes
and herself, and so on—namely, true of all and only pairs 〈o, o〉

2In slightly more formal terms (from the formal picture of Chapter 7):
D = {2, 3}, I+ = {〈2, 3〉} and B+ = {2}, and δ(m) = 2 and δ(b) = 3. See
Chapter 7 for details of our formal cases.
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for all objects o whatsoever. This is the main feature of identity
that we shall assume throughout.

Notice that out of the (binary) identity predicate arises a host
of unary self-identity predicates (as we might call them):3 for each
name α, we can form ‘is identical to α’. So, for example, we have
‘is identical to Max’, ‘is identical to Boydy’, and so on. The way
that identity works is that each such self-identity predicate is true
of exactly one thing: ‘is identical to Max’ is true of and only of
Max, and ‘is identical to Boydy’ is true of and only of Boydy, and
so on. Hence, ‘is identical to Boydy’ is true of Max if and only
if Max is, well, Boydy—that is, if and only if Max is identical
to Boydy. You can have more than one name, but you can’t be
identical to more than one thing. That’s just the way identity
works, at least for our purposes.

Despite treating it as a logical expression, we are not treating
identity claims as molecular: they do not contain (sentential) con-
nectives. Still, treating identity as a logical expression, as we are
doing, requires giving it its own truth conditions—in short, spec-
ifying how identity claims are to be treated in our cases (models).
In particular, we need to put constraints on how these particular
atomic sentences (viz., our identity sentences) get to be true-in-
cases and false-in-cases.

8.4 Truth conditions: informal sketch

Our truth-in-a-case conditions are pretty much what you’d ex-
pect. Our cases, as in Chapter 7, come equipped with a domain
D of all objects (viz., all objects recognized by the given case), and
also are equipped with a denotation function δ, which provides
denotations for all names, and extensions and antiextensions to
all predicates.

Our concern, for now, is with atomic statements. Atomic sen-
tences, in general, have the following truth conditions, where Π
is any predicate, each αi a name, and c any case.

3Strictly speaking, such ‘derivative predicates’ will not be explicitly ac-
knowledged in the formal picture (syntax), but we will have so-called ‘open
sentences’ (in Chapter 9) that play the same role. (This will become clearer
when, in Chapter 9, we add so-called object variables.)
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• Πα1, . . . , αn is true-in-c iff in c, 〈δ(α1), . . . , δ(αn)〉 is in Π’s
extension.
• Πα1, . . . , αn is false-in-c iff in c, 〈δ(α1), . . . , δ(αn)〉 is in Π’s
antiextension.

What we want to do is simply treat identity sentences as a special
case of the general clauses above: all cases give a specific (and,
I hope, predictable) extension to our identity predicate. Specifi-
cally, letting ‘=’ be our identity predicate,4 the natural constraint
on identity is a constraint on its extension.
• For any case c, the extension of ‘=’ is the set of all (and

only) ‘identity pairs’ 〈δ(α), δ(α)〉 for each object δ(α) in c’s
domain.

In other words, the idea is just as you’d expect: that an identity
claim like m = b is true-in-a-case c iff whatever, according to
c, is the denotation of ‘m’ is also what, according to c, is the
denotation of ‘b’. In yet other words: an identity claim is true-in-
a-case just if, according to the given case, the names flanking the
identity predicate denote the same object. (Hence, e.g., claims
like m = m are true-in-all cases. Why?)

But what about falsity conditions? What falsity clauses do
we give for identity claims? There are numerous options, but we
shall go with a broad, simple approach. In short, we shall leave
the falsity clause for atomics alone: we’ll leave it exactly as per
the general clause above.
• For any case c, the antiextension of ‘=’ is any set of pairs
〈δ(αi), δ(αj)〉 for any objects δ(αi) and δ(αj) in c’s domain.

In other words, the identity predicate is false of a pair of objects
just if that pair is in the antiextension of the predicate. That’s it.
Of course, if one wishes (perhaps for logical-theoretical reasons),
one can mimic what we did for the extension: one can simply
declare that the antiextension of identity contain only such and so
pairs, or never these pairs, or—perhaps what might prima facie be
very natural—comprise all pairs 〈o, o′〉 such that o is not identical
to o′ (all ‘non-identity pairs’, we might say). These options raise

4For familiarity’s sake, we use so-called infix notation and write ‘αi = αj ’
instead of what we have been using (so-called prefix notation) ‘= αiαj ’ (e.g.,
as in ‘Imb’ above, versus ‘mIb’).
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intriguing logical ideas, but they are left for the reader to explore.
We shall assume the simple approach to identity’s antiextension
above.

8.5 Formal picture
There’s not much more to the formal picture than what we’ve
discussed above. The only significant change is our additional
(logical) predicate, added to the syntax, and the corresponding
additional semantic clauses—the truth conditions for the new
predicate. Our cases remain as before, except that δ (the de-
notation function) now has the additional work on the identity
predicate—and must treat the predicate as, well, identity.

Even though there is only a little bit being added to the formal
picture, it will be useful to simply lay out the full picture here,
and so repeat clauses from Chapter 7.

8.5.1 Syntax
This is just as in Chapter 7 but we now add a special (logical)
predicate: a binary identity predicate ‘=’.
• A set of (non-logical) predicates:5 F,G,H, . . . , S, T with or

without numerical subscripts.
• A set of names: a, b, c, d with or without numerical subscripts.
• A logical (binary) predicate: =.
These sets, as before, expand our ‘vocabulary’ or ‘building blocks’.
We must now expand our definition of sentences.
1. Atomics: if Π is an n-ary predicate (logical or non-logical), and
α1, . . . , αn are n many names, then Πα1, . . . , αn is an atomic.6

2. All atomics are sentences.
3. If A and B are sentences, so too are ¬A, (A∧B), and (A∨B).
4. Nothing else is a sentence unless it counts as one via (1)–(3).7

We now move to semantics.
5Calling them non-logical just means that there’s no special semantics

for them except for what is involved in treating them as predicates of the
language.

6We shall continue to write identity sentences in infix notation: αi = αj

is an atomic.
7We leave → and ↔ as defined. See previous chapters.
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8.5.2 Semantics

In what follows, we modify the picture from Chapter 7 only with
constraints for identity (notably, specifying a constraint on the
extension of identity). As in previous chapters, these clauses serve
not only as truth-/falsity-in-a-case conditions; they also serve to
constrain the target class of cases.

• Atomics
∗ General

c |=1 Πα1, . . . , αn iff 〈δ(α1), . . . , δ(αn)〉 ∈ E+
Π .

c |=0 Πα1, . . . , αn iff 〈δ(α1), . . . , δ(αn)〉 ∈ E−Π .
∗ Logical (viz., identity)

E+
= = {〈δ(α), δ(α)〉 : δ(α) ∈ D}.
E−= ⊆ D ×D.

• Negations
c |=1 ¬A iff c |=0 A.
c |=0 ¬A iff c |=1 A.
• Conjunctions
c |=1 A ∧B iff c |=1 A and c |=1 B.
c |=0 A ∧B iff c |=0 A or c |=0 B.
• Disjunctions
c |=1 A ∨B iff c |=1 A or c |=1 B.
c |=0 A ∨B iff c |=0 A and c |=0 B.

With the above truth (and falsity) conditions, we now define con-
sequence as usual, using the recipe from Chapter 1. For conve-
nience, we invoke terminology from Chapter 7. We say that case
c satisfies sentence A iff c |=1 A. In turn, where X is a set of
sentences, we say that c satisfies X iff c satisfies every sentence in
X . Given this terminology, we define—in effect, our glutty–gappy
FDE (with identity) account of—consequence as follows.8

• X ` A iff any case that satisfies X satisfies A.

8In all subsequent theories discussed, we’ll assume that we have the iden-
tity predicate in the language. So, we will not explicitly subscript the identity
sign to indicate a new consequence relation, but one could write something
like ‘`=

bc’, ‘`
=
K3’, ‘`

=
FDE ’, etc. if one wishes.
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Note that, given the above, the argument form

Bm,m = b ∴ Bb

is now a valid form according to the general theory above. After
all, a counterexample to the given form would have to be a case in
which all premises are true but the conclusion Bb is untrue. But—
given our semantics (in particular, constraints on identity)—any
case c such that c |= m = b is one in which the names b and
m denote the same thing, and so the predicate B is true of the
denotation of b iff true of the denotation of m. (More formally:
given that c |=1 m = b, we have it that δ(b) ∈ B+ iff δ(m) ∈ B+.)
So, there can’t be a countermodel to the given argument form.

8.6 Summary and looking ahead

Summary. We have expanded our stock of logical expressions. In
addition to the basic connectives, we now have a logical predi-
cate, namely, identity. Unlike the other (non-logical) predicates,
whose extensions are unconstrained from case to case, identity’s
extension is governed by the same constraint across all cases: the
extension comprises all and only the ‘identity pairs’ formed from
the given domain. On the other hand, we’ve let the antiextension
of identity be as per the general case: it’s simply any set of pairs
built from the domain. (One can, as the Exercises indicate, get
a non-gappy or non-glutty theory—indeed, specifically, the clas-
sical logical theory—of identity by making adjustments on the
antiextension.)

Looking Ahead. In the next chapter, we expand our set of logi-
cal expressions once again, but this time we add a few so-called
quantifiers, in addition to variables (for objects in our domain).

Further Reading. Any standard textbook that covers so-called
classical first-order logic (e.g., Smith 2003) will be a useful supple-
ment to this chapter’s topic(s); however, for the full non-classical
account sketched here, a good source for further reading is Priest’s
textbook mentioned in previous chapters (under ‘further read-
ing’), namely, Priest 2008.
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Exercises

1. What, in your own words, is the difference between a logical
and non-logical expression? Why is the distinction impor-
tant for specifying a logical theory (a theory’s account of
validity)?

2. Discuss the following argument: not everything is identical
to itself. After all, I weighed less than 10 pounds when I
was born, and I weigh much more than that today. If I
were identical to myself, then I’d both weigh less than 10
pounds and more than 10 pounds, but this is impossible.

3. The following questions concern the broad logical theory as
sketched in this (and the previous) chapter.
(a) Can there be any case c in which b = b is untrue (i.e.,

c 6|=1 b = b)? If so, specify such a case.
(b) Can there be any case c in which b = b is false (i.e.,

c |=0 b = b)? If so, specify such a case.
(c) Can there be cases in which b = c is neither true nor

false?
(d) Can there be cases in which b = c is both true and

false?
4. What constraints would you impose on cases (particularly,

the antiextension of identity) to rule out ‘gappy’ identity
claims (where an identity claim is gappy in a case iff neither
it nor its negation is true-in-the-given-case)?

5. What constraints would you impose on cases to rule out
‘glutty’ identity claims (where an identity claim is glutty
in a case iff both it and its negation are true-in-the-given-
case)?

6. What constraints would you impose on cases to ensure that
(as per classical thinking) every identity sentence is either
true or false but not both (i.e., true-in-a-case or false-in-a-
case, but not both)?

Sample answers

Answer 4. First, notice that some identity claims can never be
gappy since they are true-in-all cases: namely, all of those iden-
tity claims of the form α = α. (A glance at the constraints on
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the extension of ‘=’ shows that α = α is true-in-all of our cases,
for any name α.) On the other hand, we can get gappy iden-
tity claims that involve more than one name (e.g., a = b or the
like). (See your answer to Exercise 3.c above.) To remove such
gaps from identity claims, we simply demand that, for every case
c, the union of the extension and antiextension of identity (i.e.,
of ‘=’) contains all ordered pairs from the c’s domain; in other
words, we impose E+

= ∪ E−= = D × D. (If you’ve forgotten your
set-theoretic notions, you should turn back to Chapter 3 for a
refresher!) With this constraint on the identity predicate, there
can be no pair 〈x, y〉 of objects, with x and y from D, that’s in
neither the extension nor antiextension of the identity predicate.
And this, given the definition of truth in a case and falsity in a
case, ensures that identity claims cannot be gappy.
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Everything and Something

Try to learn something about everything
and everything about something.

– Thomas H. Huxley

The previous chapter introduced a slightly richer language by
giving some structure to our atomics. In this chapter, we enrich
the language some more, this time by adding a few more logical
devices—in particular, the existential and universal quantifiers.
The addition of quantifiers, in turn, requires the addition of so-
called individual variables (variables ranging over objects). De-
spite such additional items, we needn’t alter our basic, expanded
idea of ‘cases’ from Chapter 7.1 We will begin with a few informal
remarks to motivate the quantifiers, and then rely on Chapter 7
to briefly sketch the formal picture.

9.1 Validity involving quantifiers
The chief aim of logic, as you know, is consequence. The aim is
to give an account (a logical theory) of what follows from what
in our language (or some fragment thereof). All of our basic log-
ical theories, so far, agree on the validity of numerous argument
forms.2 For example, all of the given theories would classify the
following argument as valid.

1. Max is happy and Agnes is sleeping.
2. Therefore, Agnes is sleeping.

Given our enriched account of atomics from Chapter 7, we can
think of this argument as having the form: Hm ∧ Sa ∴ Sa. It

1This is partly because we will make a simplifying assumption concerning
available names. (We will skip a detour through so-called satisfaction, which
is due to Tarski.)

2Of course, they disagree on various forms too, which is why they’re dif-
ferent theories.
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is clear, from Chapter 7, that such an argument form is valid in
FDE (our general paraconsistent theory), and hence in both K3
(our gappy-but-non-glutty theory) and the classical theory.3 If
c |=1 Hm ∧ Sa then c |=1 Hm and c |=1 Sa by the conjunction
truth conditions.

There are (many) other argument forms that all three logical
theories take to be valid. On the other hand, what about the
following argument?

3. Every cat is smart.
4. Agnes is a cat.
5. Therefore, Agnes is smart.

On the surface, one would think that this argument is valid. After
all, how could (3) and (4) be true without (5) being true? It’s hard
to imagine how that could be so. As such, one would think that,
whatever our ‘cases’ might be like, an accurate logical theory of
our language should count the given argument as valid.

As it turns out, our basic logical theories, given their minimal
set of logical connectives, cannot count the given argument, from
(3) and (4) to (5), as valid. To see this, recall that our basic
theories recognize only conjunction, disjunction, and negation—
along with the derived conditional and biconditional—among its
connectives. Do any of these connectives appear in the above
argument? No. As such, the given argument contains only atomic
sentences, at least if our connectives are only the given basic ones.
In effect, it has the form p, q ∴ r, which, as you can establish, is
invalid on all of our basic theories.

You might think that the form p, q ∴ r is not digging deeply
enough. After all, we now have predicates and names. As such,
(4) and (5) can be more accurately represented by (say) Ca and
Sa, respectively. The question, however, concerns (3). What is its
form? While ‘is smart’ is certainly a predicate in English, there’s
no obvious candidate for a name in (3). Whatever else it might
be, ‘Every cat’ is not a name!

3Since FDE contains all of the K3 and classical cases, if there’s no FDE
case in which the premise is true and conclusion not true, then there’s no
such K3 or classical case either.
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9.2 Quantifiers: an informal sketch

It is at this stage that a recognition of quantifiers emerges. In
English, ‘every’ and ‘some’ serve as quantifiers—at least in the
contexts of present interest, including the argument above. How
are these to be understood?

There are many sorts of quantifiers in English. We will look
at two of the simplest—but logically very important—quantifiers,
namely, the so-called universal and existential quantifiers.

In effect, quantifiers specify a quantity of objects. The univer-
sal quantifier is so-called because it specifies all or every object.
The existential (or, traditionally, particular) quantifier is so-called
because it specifies some object (or other)—at least one object.

It is standard to let ∀ and ∃ represent our universal and exis-
tential quantifiers, respectively. Such quantifiers are said to range
over a given domain (in effect, the domain of all objects). To
make things easier, we introduce individual variables to play the
role that the term ‘object’ plays in ‘Every object is physical’ or
‘Some object is non-physical’ or the like. As such, we never write
‘∀’ or ‘∃’ without some individual (or object) variable. Instead,
we write, for example, ‘∀x’, or ‘∀y’, or ‘∃z’, or ‘∃x’, or etc., where
‘x’, ‘y’, and ‘z’ serve as our object variables. Given a variable
(say, ‘x’), ‘∀x’ may be read every object x is such that . . . , while
‘∃x’ is read there is at least one object x such that. . .

Consider two (so-called unrestricted) examples, say,

6. Everything is happy.
7. Something is a cat.

On standard readings, logicians read (6) and (7) as follows.4

6′. Every object x is such that x is happy.
7′. Some object x (or other) is such that x is a cat.

In fact, the word ‘object’ can be dropped, since it is understood
that ‘x’ is ranging over objects. So, one could equally write
6′′. Every x is such that x is happy.
7′′. Some x (or other) is such that x is a cat.

4Note that it doesn’t matter which (object) variable you use here; it’s just
important to use some such variable or other.
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Let H serve for our (unary) predicate ‘is happy’, and C for ‘is a
cat’. Given as much, (6) and (7) would generally be formalized
as follows.
F6. ∀xHx
F7. ∃xCx

9.3 Truth and falsity conditions

Our ‘cases’ are as in Chapter 7. Recall that cases now come
equipped with a domain D of objects (viz., all objects that exist,
according to the given case). Cases also provide denotations for
all names, and extensions and antiextensions to all predicates.

The natural truth and falsity conditions are what you’d ex-
pect on brief reflection, but they’re slightly easier to give once
we get clearer on the official syntax. (See next section.) For now,
we’ll simply wave at the basic idea, leaving some of the essential
terminology undefined.

Quantifiers are tied to variables. So, in general (though loosely
speaking), a universally quantified sentence may be thought of as
having something of the structure ‘∀v(. . . v . . .)’, where v is some
(object) variable. Similarly, an existentially quantified sentence
may be thought of as having something of the form ‘∃v(. . . v . . .)’.
Now, the ‘. . . v . . .’ can be thought of as a condition of sorts. As
such, ‘∀v(. . . v . . .)’ says, in effect, that every object satisfies the
condition ‘. . . v . . .’, while ‘∃v(. . . v . . .)’ says that some object (or
other) satisfies the given condition.

So, in effect, the basic idea is that c |=1 ∀v(. . . v . . .) iff every
object in c’s domain D satisfies the condition . . . v . . . In turn,
c |=0 ∀v(. . . v . . .) iff some object in c’s domain D fails to satisfy
the condition . . . v . . . .

Similarly, c |=1 ∃v(. . . v . . .) iff some object in c’s domain D
satisfies the condition . . . v . . .. In turn, c |=0 ∃v(. . . v . . .) iff no
object in c’s domain D satisfies the condition . . . v . . . (i.e., every
object in the domain fails to satisfy the given condition).

This is all fairly intuitive, but it requires a clear account of
what ‘satisfaction’ means. We will officially skip this, and take
a slightly different approach. In particular, we will assume that
every object in the domain (of any case) has a name in our lan-
guage. This allows us to give natural truth and falsity conditions
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for the quantifiers without a detour through the somewhat in-
volved notion of ‘satisfaction’. In effect, we simply define the idea
of an instance of some ‘condition’. In particular, where . . . v . . . is
some ‘condition’,5 an instance of . . . v . . . is the result of replacing
all occurrences of v with some name (using the same name for
every occurrence of the same variable).6 With this in mind, we
can just say
• Existential sentences
∃v(. . . v . . .) is true-in-c iff . . . v . . . is true of some object in D.
∃v(. . . v . . .) is false-in-c iff . . . v . . . is false of every object in D.

• Universal sentences
∀v(. . . v . . .) is true-in-c iff . . . v . . . is true of every object in D.
∀v(. . . v . . .) is false-in-c iff . . . v . . . is false of some object in D.

We turn to the formal picture, where this becomes clearer.

9.4 A formal picture
As above, our cases are as in Chapter 7, except that now we
stipulate that all objects in the domain (of any case) have a name
in the language. We will present the broad, paraconsistent (and
paracomplete) theory. As in Chapter 7, one gets the classical or
(non-paraconsistent) paracomplete theory by putting restrictions
on the extensions and antiextensions of predicates.

9.4.1 Syntax
The syntax is now slightly more involved. We add individual or
object variables, and we add the two new quantifiers. In addi-
tion, for convenience, we have to introduce a few new syntactic
categories (e.g., ‘term’, ‘open sentence’, etc.).

In addition to the older ingredients, we add (with some repe-
tition from Chapter 7) the following.
• A set of object variables: x, y, z with or without numerical

subscripts.
• A set of (non-logical) predicates: F,G,H, . . . , S, T with or with-

out numerical subscripts.

5Such ‘conditions’ will be called open sentences in the formal picture.
6Strictly speaking, one needs to replace all so-called free variables in the

condition. This is easier to state in the formal setting, so we’ll skip that here.
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• A set of names: a, b, c, d with or without numerical subscripts.
• A logical (binary) predicate: =.
• Two quantifiers: ∀ and ∃.
For convenience, we define a term to be either a variable or a
name.

Before we define our sentences, it is useful to detour through
a definition of formulas (expressions of the language that count
as ‘well-formed’ but need not be full sentences).
• Atomic Formulas: if Π is an n-ary predicate, and τ1, . . . , τn

are terms (names or variables), then Πτ1, . . . , τn is an atomic
formula.7

• All atomic formulas are formulas.
• If A and B are formulas, then ¬A, (A ∧ B), and (A ∨ B) are
formulas.8

• If A is any formula and v any variable, then ∀vA and ∃vA are
formulas.

• Nothing else (except the above defined) is a formula.
With formulas so defined, we can now define the notion of an
open formula (or ‘open sentence’). First, we say that an occur-
rence of a variable v is bound iff it occurs in a context ∀v . . . v . . .
or ∃v . . . v . . ..9 In effect, bound variables are always ‘tied’ to a
quantifier. We say that v is free in a formula iff it is not bound.
With this in mind, we can concisely specify our set of sentences:
• A is a sentence of our new language iff it is a formula with no

free variables.
Let us turn to the semantics.

9.4.2 Semantics

Our cases, as above, are as in Chapter 7. In particular, a case is
a structure 〈D, δ〉 where D is the domain and δ provides denota-

7We continue to use infix notation for identity formulas, writing ‘αi = αj ’
(instead of the prefix notation ‘= αiαj ’).

8We also have both (A → B) and (A ↔ B) as defined formulas (see
previous chapters on how we define these).

9There is a precise way of defining bound variable, but it is tedious, and
herein skipped.
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tions of all names, and provides extensions and antiextensions to
all predicates. The new stipulation, as above, is that all objects
of the domain (of any case) have a name in our language.

The stipulation about names allows us to introduce the follow-
ing notation, which will be used in giving the truth (and falsity)
conditions for quantified sentences. In particular, where A(v) is
any open formula (see above), we let A(α/v) be the result of
replacing all occurrences of v in A(v) with the name α. For ex-
ample, let A(x) be the open formula Fx∨∃yGy. (Notice that ‘y’
is bound in the formula, and that only ‘x’ is free.) In this context,
A(b/x) is the sentence (closed formula) Fb∨∃yGy. You can think
of other examples. Notice that A(α/v) is (in effect) an instance
of A(v), as we used the term above.

Retaining the notation from Chapter 7, we can now give the
truth and falsity conditions for all of our sentences. For conve-
nience, the conditions for atomics and non-quantified sentences
(from Chapter 8) are repeated here.10

• Atomics
∗ General

c |=1 Πα1, . . . , αn iff 〈δ(α1), . . . , δ(αn)〉 ∈ E+
Π .

c |=0 Πα1, . . . , αn iff 〈δ(α1), . . . , δ(αn)〉 ∈ E−Π .
∗ Logical (viz., Identity)

E+
= = {〈δ(α), δ(α)〉 : δ(α) ∈ D}.
E−= ⊆ D ×D.

• Negations
c |=1 ¬A iff c |=0 A

c |=0 ¬A iff c |=1 A

• Conjunctions
c |=1 A ∧B iff c |=1 A and c |=1 B

c |=0 A ∧B iff c |=0 A or c |=0 B

• Disjunctions
c |=1 A ∨B iff c |=1 A or c |=1 B

c |=0 A ∨B iff c |=0 A and c |=0 B

10We give truth and falsity conditions only for sentences, not open formu-
las. (There are standard ways of giving ‘truth conditions’ for open formulas
that, in effect, treat the free variables as names. We ignore this for simplicity.)
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• Universal sentences

c |=1 ∀vA iff c |=1 A(α/v) for all α such that δ(α) ∈ D.11

c |=0 ∀vA iff c |=0 A(α/v) for some α such that δ(α) ∈ D.

• Existential sentences

c |=1 ∃vA iff c |=1 A(α/v) for some α such that δ(α) ∈ D.
c |=0 ∃vA iff c |=0 A(α/v) for all α such that δ(α) ∈ D.

With the above truth and falsity conditions, we can now define
consequence as usual. To make things general, we say that case
c satisfies sentence A iff c |=1 A. In turn, where X is a set of
sentences, we say that c satisfies X iff c satisfies every sentence in
X . Given this terminology, we define—in effect, our glutty–gappy
FDE (with quantifiers) account of—consequence as follows.

• X ` A iff any case that satisfies X satisfies A.

« Parenthetical remark. Note that our existential quantifier, com-
bined with identity, may be used to express existence claims. In
particular, we can take claims like ‘b exists’ to have the logi-
cal form ∃x(x = b), which is true (in a case) just if (the object
named) b exists (in the case)—just if, that is, δ(b) ∈ D. (Recall
that the domain D, in a case, comprises everything that exists
according to the given case.) This topic is discussed further in the
next chapter. End remark. »

9.5 Paraconsistent, paracomplete, classical

By now, you should recognize that the foregoing account, with-
out further constraint, is our broad, paraconsistent (and para-
complete) account. To get our non-paraconsistent, paracomplete
account, one adds only the Exclusion constraint on extensions
and antiextensions (see Chapter 7). To get the classical account,
one adds, in addition to Exclusion, the Exhaustion constraint.

11Here, as in the case for existentials (below), α is a name in our language
(and we’ve stipulated that everything in the domain of c has a name αi in
our language, for any case c (and that, in turn, δ assigns a name δ(αi) to each
name in the language). NB: the clause ‘such that δ(α) ∈ D’ is not necessary,
but it is useful for later discussion (see Chapter 10).
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9.6 Summary and looking ahead
Summary. We have introduced the universal and existential quan-
tifiers, and now have a much richer language. In addition to af-
fording ‘general talk’ about something (or other) and everything
(or nothing), our quantifiers also give some sense to outright
existence claims: saying that Max exists may be formalized as
∃x(x = Max).

Looking Ahead. But what about ‘objects’ that don’t exist—but
about which we can still truly or falsely speak? This topic is
briefly addressed in the next chapter, wherein we ‘free up’ our
names.

Further Reading. As with the last few chapters, any standard
textbook that covers so-called classical first-order logic will be
a useful supplement to this chapter’s topic(s); however, for the
full non-classical account sketched here, a good source for fur-
ther reading is Priest’s textbook mentioned in previous chapters
(under ‘further reading’).

Exercises
1. Consider a case c = 〈D, δ〉 where D = {1, 2, 3} and δ(a) =

1, δ(b) = 2, and δ(d) = 3, and F+ = {2, 3} and F− =
{1}. Additionally, where R is a binary predicate, let R+ =
{〈1, 2〉, 〈1, 1〉} and R− = {〈1, 1〉, 〈1, 2〉, 〈1, 3〉}. For each of
the following, say whether it is true or false. If true, say
why. If false, say why.
(a) c |=1 ∀xFx
(b) c |=0 ∀xFx
(c) c |=1 ∃xFx
(d) c |=0 ∃xFx
(e) c |=1 ∀xRxb
(f) c |=0 ∀xRxb
(g) c |=1 ∃xRax
(h) c |=0 ∃xRax
(i) c |=1 ∀x(Rab→ Fx)
(j) c |=1 ∃x∀yRxy
(k) c |=1 ¬∃x∀yRxy
(l) c |=0 ∀x∃yRxy
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2. Construct a case in which ∀xGx ∨ ∀x¬Gx is not true.12

3. Give a case in which ∀x(Gx→ Hx) is true but ∀x(Gx∧Hx)
is not true.

4. The argument from §9.1 about Agnes and cats, from (3) and
(4) to (5), has the form ∀x(Cx → Sx), Ca ∴ Sa. In which
of our three logical theories is this argument valid? (Give
a counterexample for any theory in which the argument is
invalid.)

5. Which of the following best expresses that nothing is hor-
rible? Justify your answer by appealing to the truth and
falsity conditions of the quantifiers.

(a) ¬∀xHx
(b) ¬∃xHx

6. Do the two-way-validity claims hold in our current para-
consistent (and paracomplete) theory with quantifiers—a
theory we’ll call ‘FDE’ (even though we now have quanti-
fiers)? Justify your answer.
(a) ∀xFx a` ¬∃x¬Fx
(b) ∃xFx a` ¬∀x¬Fx

Sample answers

Answer 1a. Claim (1a) is false: ∀xFx is not true-in-our given
case. To show as much, we invoke the truth conditions for the
universal quantifier, which has it that c |=1 ∀xFx iff c |=1 Fα
for all names α such that δ(α) ∈ D. Hence, if each of Fa, Fb,
and Fd are true-in-our given c, then so too is ∀xFx. To figure out
whether these (atomic) sentences are true, we need to consult the
truth conditions for atomics. Quick consultation reveals that Fa
is true in c iff δ(a) is in F+. But δ(a) = 1, and 1 /∈ F+. Hence,
c 6|=1 Fa, and so, as above, c 6|=1 ∀xFx.

Answer 1b. Claim (1b) is true: ∀xFx is false-in-our-given-c. The
falsity conditions (i.e., conditions for |=0) for the universal quanti-
fier tell us that c |=0 ∀xFx if any of Fa, Fb, or Fd are false-in-c.

12As in Chapter 7, to construct a case, you have to specify the domain,
the denotations of the various names, and the extension and antiextensions
of given predicates.
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Figuring out whether any of these (atomic) sentences is false-
in-c involves consulting the falsity conditions for atomics. Quick
consultation reveals that Fa is false-in-c iff δ(a) is in F−. But
δ(a) = 1, and 1 ∈ F−. Hence, c |=0 Fa, and so, as above,
c |=0 ∀xFx.

Answer 1c. The truth conditions for the existential quantifier tell
us that c |=1 ∃xFx iff either Fa, Fb or Fd is true-in-c. Truth
conditions for these atomics reveals that c |=1 Fb (similarly for
Fd) since δ(b) = 2 and 2 ∈ F+ (similarly, δ(d) = 3 and 3 ∈ F+).
So, claim (1c) is true: c |=1 ∃xFx.

Answer 1d. The falsity conditions for the existential quantifier tell
us that c |=0 ∃xFx iff each of Fa, Fb, and Fd is false-in-c. Falsity
conditions for these atomics reveals that c 6|=0 Fb (similarly for
Fd) since δ(b) = 2 but 2 6∈ F− (similarly for d with 3 6∈ F−). So,
claim (1d) is false: c 6|=0 ∃xFx.

Answer 1l. Claim (1l) is true: ∀x∃yRxy is false-in-our-given-case.
By the falsity conditions for the universal quantifier, we have that
c |=0 ∀x∃yRxy if and only if c |=0 ∃yRαy for some name α such
that δ(α) ∈ D. Is there such a name α such that c |=0 ∃yRαy?
Yes: the name a fits the bill: c |=0 ∃yRay. After all, by the falsity
conditions for the existential quantifier, c |=0 ∃yRay iff c |=0 Raα
for all names α (such that δ(α) ∈ D). So, c |=0 ∃yRay iff c |=0

Raa and c |=0 Rab and c |=0 Rad. But that’s exactly what we
have in our given case: each of Raa, Rab and Rad is indeed false-
in-c, since δ(a) = 1, δ(b) = 2, δ(d) = 3, and the antiextension of
R contains each of the pairs 〈1, 1〉, 〈1, 2〉, and 〈1, 3〉.
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Speaking Freely

Imaginary characters don’t exist.
– Guy Stewart

In this chapter we ‘free up’ our names by unloading their so-
called existential import (a term explained below). We do this
by slightly expanding our account of cases (or models)—in par-
ticular, adding a special subset of our domains—and, in turn,
restricting our quantifiers to the new special subset. Such adjust-
ments are required to accommodate a sort of ‘freedom of speech’
(though not in any legal sense of the term).1

10.1 Speaking of non-existent ‘things’

We can and often do talk about all manner of things, even those
things that are merely imaginary—various things that don’t in
fact exist. Consider my imaginary friend Guy Stewart (or Guy,
as some call him). You never have and never will see Guy, since
Guy is invisible to the human eye. But Guy knows what you
look like, and in fact knows all about you—and, indeed, knows
all about everything; Guy is omniscient.

I could go on and on about Guy, about how fun and interesting
he is, and so on. I’m sure that you’d like him, and like learning
more and more about him. But time and page space is limited.

For present purposes, what is important is not so much what
you know or believe about Guy; what’s important is that you’ve
at least thought about Guy. Indeed, you’re probably still thinking
about Guy. But now note: in thinking about Guy you’re think-
ing about something (viz., Guy), but the something about which
you’re thinking does not exist. Guy, after all, is imaginary.

1Let me emphasize that this chapter presents only one sort of motivation
for (some versions of) so-called free logic. Readers, as for all chapters, are
encouraged to pursue further reading.
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10.2 Existential import

A name α carries existential import—or is existentially loaded—
just if there is something named α that exists (just if, in other
words, the name denotes some existing object).2 What Guy Stew-
art teaches us is that, apparently, some names are not existen-
tially loaded; some predicates (e.g., ‘Agnes is thinking about x’,
‘x is imaginary’) can be true of some ‘things’ that don’t exist
(e.g., Guy). As above, the sentence

1. Guy Stewart is imaginary.
is true even though ‘Guy Stewart’ fails to denote any existing
object. Accordingly, sentence (1) does not imply

2. There is some existent object x such that x is Guy Stewart.
But, now, we see the need to expand our Chapter 8 account of
names and quantifiers—and free up our names.

As noted (in passing) in Chapter 9, we take existence claims

α exists

to have the form

∃x(x = α)

The logical theories in Chapter 8, then, involve an existentially
loaded account of names: such theories, one and all, treat the
argument form from Πα to ∃v(v = α) as valid, for any name
α, variable v, and predicate Π. But, as above, a natural lesson
to draw from Guy Stewart is that this argument form is not
ultimately valid.

« Parenthetical remark. You might be wondering why we don’t
treat ‘exists’ as a regular, quantifier-free predicate in some fash-
ion. This issue, partly for space reasons, is left open, but is well
worth your reflection. (See the exercises, where you’re explicitly
asked to explore the topic and come up with your own account.)
End parenthetical. »

2Relativized to cases, we can say that a name α is existentially loaded in
case c if and only if c |=1 ∃x(x = α).
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10.3 Freeing our terms, expanding our domains

What we want to do is free up our terms. What we want to
acknowledge are cases in which some names (e.g., ‘Guy Stewart’)
are ‘free’, cases in which such names fail to denote an existing
object. One way of thinking about this is as follows.

Recall from Chapter 8 that our cases are (or are modeled by)
structures 〈D, δ〉. In such cases, the domain D is thought of as
comprising all that exists: to exist in such cases is just to be in
D. The quantifiers ∃ and ∀ are interpreted in terms of D. In
particular, for any such case c, we have that ∃vA is true-in-case-c
just if A(α/v) is true-in-c for some name α such that δ(α) exists
according to c (i.e., such that δ(α) is in domain D).3

Now, perhaps the easiest way to free up our terms is to restrict
our quantifiers to ‘only the existent objects’ in the domain. In
particular, to each case we add a special—possibly empty though
not necessarily proper—subset E of D, giving us slightly modi-
fied structures 〈D,E, δ〉 that, as it were, wear their ‘existential
features’ on their sleeves. Here, D continues to be non-empty
and comprises all objects (of any manner) in the given case; but
E comprises only the objects that exist in the given case. (Intu-
itively, Guy Stewart would go in D—and, hence, is available to
think about and so on—but not in E.) In turn, the quantifiers are
interpreted not via D, but rather only via E. In effect: all stays
as before except that the truth conditions for quantifiers invoke
E instead of D.

10.4 Truth conditions: an informal sketch

As above, we leave all truth (falsity) conditions the same except
for the quantifiers. In particular, atomics and basic compounds—
that is, atomic and molecular sentences involving only the basic
connectives—have exactly the truth conditions from before (see
Chapter 7).4 The difference—the freedom—shows up in the truth

3As in Chapter 8, A(α/v) is the result of replacing all (free) occurrences
of variable v in formula A by name α. Recall, too, that we assume—and (for
simplicity) shall assume throughout—that all objects in D have names α in
our given language.

4This sort of (so-called positive) approach to free logic is not the only
approach. On other approaches (some of which are hinted at in exercises),
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conditions for quantifiers, which, informally put, run roughly as
follows.5

• Existential sentences
∃v(. . . v . . .) is true-in-c iff . . . v . . . is true of some object in E.
∃v(. . . v . . .) is false-in-c iff . . . v . . . is false of every object in E.

• Universal sentences
∀v(. . . v . . .) is true-in-c iff . . . v . . . is true of every object in E.
∀v(. . . v . . .) is false-in-c iff . . . v . . . is false of some object in E.

The idea, as above, is that our quantifiers range only over what
exists. In any given case, E comprises the objects that, according
to the given case, exist. Of course, in any given case, D comprises
whatever objects can be talked about (or, if you like, thought
about, etc.). In some cases, D contains Guy Stewart-like entities,
‘objects’ that we can talk (truly or falsely) about but, according
to the given case, don’t exist. Hence, if b is ‘Guy Stewart’, and I
is ‘imaginary’, we don’t want it to follow from the truth of Guy
is imaginary that Guy exists; we don’t want ∃x(x = b) to follow
from Ib.

As throughout the book, we define consequence as absence
of counterexample, where a counterexample is a case in which
all premises are true but the conclusion untrue. Our cases—our
‘free cases’, as it were—are just like the cases of Chapter 8 but
now have an additional ‘existence set’ E in terms of which our
quantifiers are interpreted. In particular, truth (and falsity) con-
ditions for atomics like Ib and b = b are just as before. So, for
any ‘free case’ c, the sentence Ib is true in c if and only if δ(b)
is in the extension of I. Moreover, identity claims are treated ex-
actly as before, and so b = b is true-in-every ‘free case’ c since
the extension of identity claims remains as before, namely, the

we would need to adjust truth conditions for atomics.
5Here, we use a variation of notation and notions from Chapter 7. Strictly

speaking, we haven’t defined what it is for a ‘condition’ to be true of an
object, and we do not use this sort of idea in the formal picture. Doing so is
not overly difficult, but it complicates matters more than this ‘basics’ book
is intended to do. We here rely on the informal idea that we’ve assumed
(without explaining) throughout: the idea of a predicate’s being true of an
object. (E.g., the condition . . . is reading is true of you, etc.)
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set of all ‘identity pairs’ formed out of D.6 Accordingly, while the
argument

Ib ∴ ∃x(x = b)

is valid in our previous existentially loaded theories (e.g., Chapter
8), our new ‘free cases’ give us counterexamples. A counterexam-
ple to the given argument is one in which nothing in E is in the
extension of I (i.e., the predicate I isn’t true of anything in E)
but something—say, Guy Stewart qua denotation of b—is in the
extension of I. In this case, the condition x = b is true of δ(b)
(i.e., the denotation of name b) but, since δ(b) is not in E, the
existential claim ∃x(x = b) (i.e., that b exists) is not true. But
since δ(b) is in the extension of I, the sentence Ib is true-in-the-
given-case. Hence, the premise is true-in-the-given-case but the
conclusion untrue-in-the-case, and so we have a counterexample.

Matters are made much clearer by a formal picture of our new
‘freedom’, to which picture we now briefly turn.

10.5 Formal picture

The formal picture is only a slight variation on that of Chapter
9, and so we can be brief.

10.5.1 Syntax

The syntax is exactly that of Chapter 9 (with identity as the only
logical predicate). If we wanted, we could add a distinguished
(logical) existence predicate, but we need not do this. On the
current approach, we can, as mentioned above, take existence
claims of the forms α exists to be of the form ∃x(x = α). In
general, then, we can think of the existence predicate—or, strictly,
open formula—to be ∃x(x = y), where y is the open variable, and
so we needn’t add any additional vocabulary to the syntax.

10.5.2 Semantics

The semantic picture, as discussed above, is basically the same
as Chapter 8, except for adding a special ‘existence’ subset of the

6Note that we are not requiring that the extension of the identity predi-
cate draws its pairs from E. Some free logics do this, but—to avoid further
complexity—we avoid it here.
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domain. Our cases are now structures 〈D,E, δ〉, where D 6= ∅ and
E ⊆ D. Intuitively, D comprises all objects in a particular case,
while E comprises all and only the objects that, according to the
given case, exist. (Note well: E, unlike D, may be empty.) The
role of δ is exactly as in Chapters 7–8: it supplies the given case
with denotations of all predicates and names. Where α is a name,
δ(α) ∈ D.

While the only notable change in the formal truth (and falsity)
conditions involves the quantifiers (and, in turn, involves the only
additional element E in our cases), we nonetheless lay out all
of the conditions here for convenience. As in Chapter 9, α is
any name, and we assume that everything in the domain (of any
case) has a name αi in the language, and A(α/v) is the result of
replacing all (free) occurrences of v in A with the name α.

• Atomics

∗ General
c |=1 Πα1, . . . , αn iff 〈δ(α1), . . . , δ(αn)〉 ∈ E+

Π .
c |=0 Πα1, . . . , αn iff 〈δ(α1), . . . , δ(αn)〉 ∈ E−Π .

∗ Logical (viz., Identity)
E+

= = {〈δ(α), δ(α)〉 : δ(α) ∈ D}.
E−= ⊆ D ×D.

• Basic connectives

c |=1 ¬A iff c |=0 A.
c |=0 ¬A iff c |=1 A.

c |=1 A ∨B iff c |=1 A or c |=1 B.
c |=0 A ∨B iff c |=0 A and c |=0 B.

c |=1 A ∧B iff c |=1 A and c |=1 B.
c |=0 A ∧B iff c |=0 A or c |=0 B.

• Quantifiers

c |=1 ∃vA iff c |=1 A(α/v) for some α such that δ(α) ∈ E.
c |=0 ∃vA iff c |=0 A(α/v) for all α such that δ(α) ∈ E.

c |=1 ∀vA iff c |=1 A(α/v) for all α such that δ(α) ∈ E.
c |=0 ∀vA iff c |=0 A(α/v) for some α such that δ(α) ∈ E.
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We define consequence as we have throughout: absence of coun-
terexample, where a counterexample is now any such ‘free case’
in which the premises are true and conclusion not true.

10.5.3 A few remarks

Notice that while every identity claim of the form

α = α

is logically true (i.e., true-in-all cases) on the current (free) the-
ory,7 it is no longer logically true that something exists, at least
in the sense that sentences of the form

∃x(x = α)

are not logically true. And in this respect, at least, we have some
freedom.

Moreover, as indicated above, the situation with Guy Stewart
is as it should be. In particular, from Guy is imaginary—or from
the fact that you are thinking about Guy—it does not follow
that Guy exists. Our free theory (like any free theory) rejects
so-called Existential Generalization, which (in effect) maintains
that if something satisfies a predicate, then that thing exists. But
Guy (and his ilk) seem to invalidate this. In our formal picture,
a counterexample to the argument form

Πα ∴ ∃v(v = α)

is a case c = 〈D,E, δ〉 such that D = {1} and E = ∅ and δ(α) ∈
Π+. Since the denotation of α is in the extension of Π, we have
c |=1 Πα but, since δ(α) does not exist in c (since not in E), we
have c 6|=1 ∃v(v = α).

Summary and looking ahead

Summary. Imaginary objects like Guy Stewart don’t exist, but
we can also truly say as much. We can truly say as much by
asserting a non-existence claim of the form ¬∃x(x = Guy). And

7As noted before, alternative (e.g., so-called negative and neutral) ap-
proaches to ‘freedom’ do not have the logical truth of all identity claims.
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we can do this by enjoying ‘free names’, that is, names that are not
existentially loaded—they don’t imply that some existing object
bears the given name.

To accommodate all of this, we expand our cases by recogniz-
ing an existence domain within each case: the standard domain
D comprises all objects recognized by the given case (including
objects that, according to the given case, don’t exist), and subset
E of D that contains only the objects that, according to the given
case, exist.

Looking Forward. In the next chapter, we expand our horizons
a bit more by looking at the notions of broad possibility and
broad necessity. These notions are involved in many important
philosophical arguments, but also in ordinary musings (e.g., in
thinking about whether Guy Stewart is necessarily non-existent
or only possibly so).

Further Reading. Useful and state-of-the-art discussions of free
logic are provided in essays by Ermanno Bencivenga and Scott
Lehmann in Volume 5 (published in 2005) of the Gabbay & Gün-
thner multi-volume Handbook of Philosophical Logic (see bibliog-
raphy). An excellent collection of essays by one of the pioneers of
free logic is Lambert 2003.

Exercises

1. Is the following argument valid in our ‘freed up’ theory?
Explain your answer.8

∀xFx ∴ Pb→ Fb

(Hint: don’t forget about cases where δ(b) /∈ E!)
2. Specify a case in which Fb ∧ Ga, ¬∃xFx, and ¬∃xGx are

all true.
3. Specify which of the following are valid arguments, and jus-

tify your answer.
(a) ∀xFx ∴ Fa
(b) Fb ∧Gb ∴ ∃x(Fx ∧Gx)

8Here (and below), we’re using ‘∴’ just to separate premises from conclu-
sion.
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(c) ¬∃xFx ∴ ¬Fb
(d) ¬Fa ∴ ¬∀xFx

4. If only the objects in E exist in a given case, but E ⊆ D
(for any case), what is the ‘ontological status’ of elements
in {x : x ∈ D and x 6∈ E}, the so-called complement of E
relative to D. (The complement of E relative to D is often
denoted by either ‘D \ E’ or ‘D − E’)?

5. If ‘Guy Stewart’ really doesn’t denote anything, then ‘Guy
Stewart’ doesn’t denote anything—full stop. So, if ‘Guy
Stewart’ doesn’t denote anything, then it doesn’t denote
anything in the ‘big domain’ D. What, if anything, does
this suggest about our formal modeling of the matter?

6. You might reject that there are predicates that are true of
objects that don’t exist. (E.g., you might reject that ‘Agnes
is thinking about x’ is true of the so-called object Guy.)
Instead of drawing the lesson that some of our predicates
can be true of objects that don’t exist, what other lessons
might you draw from the Guy Stewart story?

7. We have said (in this and previous chapters) that existence
claims like b exists have the form ∃x(x = b). You might be
wondering about a different approach: treating ‘exists’ as
a more standard, quantifier-free predicate. How might this
go? Is the predicate to be treated as a logical expression? If
so, what are the constraints on its extension and antiexten-
sion? If the predicate is non-logical (i.e., its extension and
antiextension get no special constraints aside from those im-
posed on all predicates by the kind of cases involved), how
do existence claims like b exists relate to existential claims
like ∃x(x = b)? What, in general, is the logic of your pro-
posed existence predicate? (This question is left wide open
as an opportunity for you to construct your own alternative
logical theory of existence.)

Sample answers

Answer 3a. The argument from ∀xFx to Fa is not valid (accord-
ing to the current freed up theory). To see this, let c be any of
our (current, freed-up) cases in which δ(a) 6∈ E (i.e., in which the
denotation of name a is not among the objects that, according
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to c, exist), and let δ(a) 6∈ F+ (i.e., the denotation of a is not in
the set of objects that, according to c, have the property F ), and
let everything else in D be in the extension of F (i.e., be in F+).
This case is a counterexample to the given argument.
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Possibilities

Es gibt viele Möglichkeiten,
aber nicht mehr als die Notwendigkeit erlaubt.

(There are many possibilities,
but not more than necessity permits.)

– Hair Rossberg

In this chapter we briefly explore a few so-called modal con-
nectives: possibility and necessity. To accommodate the notions
of necessity and possibility, we add new connectives to the syntax
of our language and, in turn, modify our account of cases.

11.1 Possibility and necessity
Imagine being a world maker. Imagine that you were in charge
of creating a world. What would your world be like? Would you
make the world just like this one—just like the actual world (the
way things actually are)? Would you make it have cats? Would
there be rocks and trees in your world? What about pain? What
about religion? What about politicians, lawyers, and the like?
Would your world contain thinking beings?

Presumably, there are lots of options for your creation: there
are many ways that you could make your world. On the other
hand, your options aren’t without constraints: you can’t do the
impossible; you can’t transgress what’s necessary. If, for exam-
ple, it’s necessary that circles are right-angle-free, then you can’t
make your world have right-angled circles. Similarly, if it’s neces-
sary that Max is identical to Max, then you can’t make a world
in which Max is not Max. Of course, so long as Max is not a nec-
essary entity—an entity that must exist—you can make a world
in which Max doesn’t exist; however, you can’t make a world in
which Max is not Max.

The broad notion of possibility at work in our imagined world-
making exercise is sometimes called ‘broadly logical possibility’,
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or ‘logical possibility’, or the like. (The terminology, regrettably,
is neither uniform nor precise.) We shall simply use ‘possibility’.
Possibility, in this sense, is about as unconstrained as one can
get; it is constrained only by the limits of logical coherence. As
such, one might think of the target operator along the lines of
it is logically coherent that, and the corresponding necessity op-
erator as it is logically mandatory or the like. In this respect,
what is possible (or, correspondingly, necessary) is controversial.
If the classical logical theory is in force, then it’s impossible for
sentences of the form A∧¬A to be true or, similarly, for A∨¬A
to be untrue. Paracomplete and paraconsistent theories recog-
nize more logical options, and so acknowledge a broader space of
logical coherence—a broader space of possibilities.

For present purposes, we shall set aside the controversial issue
of possibility’s limits (i.e., of the limits of our target notion of
possibility). We shall leave the informal notion rather loose and
vague: we leave the limits of possibility to the limits of your world-
making. If, for your world-making work, there’s a candidate world
at which A is true (i.e., if you can make a world at which A is
true), then A is possible. If not, then A is impossible. And if every
candidate world is one at which A is true, then A is necessary
(i.e., necessarily true).

The target connectives it is possible that and it is neces-
sary that are sometimes called modal connectives—or, more fully,
alethic (from the Greek word for truth) modal connectives—
because they specify a ‘mode’ or ‘way’ in which claims are true
(e.g., necessarily true, or possibly true, etc.). In what follows, we
briefly discuss a standard account of the given modal connectives,
beginning with the issue of truth conditions.

11.2 Towards truth and falsity conditions

Following standard practice, we shall introduce two new connec-
tives: 3 shall be our it is possible that connective, and 2 shall be
our corresponding necessity connective (viz., it is necessary that).
The question at hand is: what are the truth and falsity conditions
for these connectives?
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11.2.1 Truth at a world

In previous chapters, we’ve looked at truth-in-a-case conditions
for various connectives. We still want to do that, but our new
modal connectives involve a prior condition: truth at a world. The
idea, going back to the mathematician and philosopher Leibniz,
is fairly intuitive.

Think of reality as a universe of ‘worlds’. Whatever else they
are, worlds are things at which sentences can be true or false.
Worlds, then, may be ‘complete’ in the sense that, for every
sentence A, either A or its negation ¬A is true at the world.1
Similarly, worlds may be ‘consistent’ in the sense that, for every
sentence A, not both A and ¬A are true at the world. (A classi-
cal conception of worlds has it that they’re one and all complete
and consistent in the given sense.) But, of course, it may be that
some worlds are incomplete, some inconsistent, and some both
incomplete and inconsistent.2

In many respects, then, worlds are like the ‘cases’ encountered
in previous chapters. But our cases, now, are more like the ‘uni-
verses’ that house our worlds. Instead of talking simply of truth
in a case, we now shall talk of truth at a world in a case—or,
more flowery, truth at a world in a universe.3 So, our truth at
relation now has an extra slot: instead of writing

c |=1 A

we now write
[c, w] |=1 A

1A note on notation: to avoid too much hyphenation, I drop hyphens
from ‘true-at-a-world’ and, similarly, from ‘true-at-a-world-in-a-case’ (and
the like).

2I should note that some philosophers reserve the word ‘worlds’ (in this
sort of context) for complete and consistent worlds; any ‘world’ that’s either
incomplete or inconsistent is thought to be something other than a proper
world—perhaps a ‘situation’ or some such item (Barwise and Perry, 1983;
Barwise, 1989). For present purposes, ‘world’ remains neutral on matters of
completeness and consistency.

3Lest some be allergic to flowers, such talk can be put in a colorless
package: truth at a point in a model. But color, as my mother used to say,
makes the world go around.
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where w is a world in the given universe c. Similarly, we write
[c, w] |=0 A for A is false at w in c. For convenience, we often
leave reference to a given case implicit, writing w |=1 A and
w |=0 A.

11.2.2 Truth at a world (in a universe): atomics

We assume, as suggested above, that every universe/case c comes
equipped with a setW of worlds. In addition, we assume that ev-
ery such universe contains a domain D, namely, the set of all
objects whatsoever—the set of all objects that, according to the
given case (universe), one can talk about. Moreover, towards ‘free-
dom of speech’ (see Chapter 10), we assume that, for any universe
(case), every world w in the given universe comes equipped with
a world-relative-existence domain Ew, where Ew is a subset of D
comprising all objects that, according to the given case (or uni-
verse), exist at w. (This existence set, as in previous chapters, is
relevant only when we get to the quantifiers; however, it’s useful
to note it here in combination with D.)

What we need to do is first give truth at a world (in a universe)
conditions for our atomics and, in turn, molecular sentences—
including the new modal sentences.

Atomics. Recall that, in previous chapters, what matters for
the truth (falsity) of atomics are the extensions (antiextensions)
of predicates and denotations of terms. The question, then, is how
these things work in our world-involving framework.

For our purposes, denotation remains exactly as before: our
denotation function δ assigns an object δ(α) from the domain D
to each name α.4 In this respect, our names are so-called rigid
designators: they denote the same object at all worlds—regardless
of whether the object exists at the world, that is, regardless of
the object’s status in Ew.5

4We also assume, as throughout, that each element of the domain has a
name.

5Kripke (1972) coined the term ‘rigid designator’ for this kind of behavior:
denoting the same object at all worlds (at which the the object exists). Can
you think of an alternative account of how our names might work—and how
your alternative might affect truth (falsity) conditions for atomics? (We won’t
go into alternatives here, but the topic rewards reflection.)
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Extensions/antiextensions. In the current world-involving frame-
work, extensions and antiextensions of predicates likewise remain
as before (e.g., Chapters 8–10), except that we now relativize
things to worlds. Consider, for example, the predicate ‘has black
hair’. Agnes actually has black hair, but she could’ve had red
hair or blond hair or even no hair at all. (Imagine your world-
making exercise, and your selection of a world in which Agnes has
red instead of black hair.) So, Agnes is in the extension of ‘has
black hair’ at some worlds, but not in the extension of ‘has black
hair’ at other worlds. What this suggests is that the extensions
of our predicates vary from world to world. Another example, of
course, is ‘exists’. Unless Agnes necessarily exists—that is, ex-
ists at all worlds whatsoever—then Agnes fails to exist at some
worlds (and, so, fails to be in the extension of ‘exists’ at some
worlds). We assume, then, that for each world w, each predicate
Π has an extension and antiextension at w. Intuitively, the ex-
tension of Π at w comprises all objects of which Π is true, and
the antiextension all objects of which Π is false.

With the foregoing ingredients in hand, our world-relative
truth (falsity) conditions for atomics are as you’d expect.
• An atomic Πα1, . . . , αn is true at a world w in universe c if
and only if 〈δ(α1), . . . , δ(αn)〉 is in Π’s extension at w.
• An atomic Πα1, . . . , αn is false at a world w in universe c if
and only if 〈δ(α1), . . . , δ(αn)〉 is in Π’s antiextension at w.

Our logical identity predicate is treated exactly as in previous
chapters, except now relativized to worlds.
• For any case c, the extension of ‘=’ at a world w is the set
of all (and only) ‘identity pairs’ 〈δ(α), δ(α)〉 for each object
δ(α) in c’s domain.

• For any case c, the antiextension of ‘=’ at a world w is any
set of pairs 〈δ(αi), δ(αj)〉 for any objects δ(αi) and δ(αj) in
c’s domain.

So, except for the relativity to worlds, truth (falsity) conditions
for all atomics remain as before.6

6One can tighten (and increase plausibility of?) one’s logical theory of
identity via more restrictions on the antiextension (e.g., requiring that it
contain all non-identity pairs or some variation on this).
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11.2.3 Truth at a world (in a universe): molecular

With the above conditions for atomics, we can now give truth (fal-
sity) conditions for molecular sentences. We break this up into the
non-modal (in effect, the connectives covered in previous chap-
ters) and our new modal connectives.

11.2.3.1 Basic connectives and quantifiers. Conditions for our
basic connectives are as you would expect, now relativized to
worlds.
• A ∧B is true at w in c iff A and B are true at w in c.
• A ∧B is false at w in c iff A or B is false at w in c.

• A ∨B is true at w in c iff A or B is true at w in c.
• A ∨B is false at w in c iff A and B are false at w in c.

• ¬A is true at w in c iff A is false at w in c.
• ¬A is false at w in c iff A is true at w in c.

Clauses for the quantifiers are ‘freed up’ as per Chapter 10, except
now relativized to worlds via the world-relative existence domain
Ew.7 For convenience, we call any object in Ew an Ew object.
• ∃v(. . . v . . .) is true at w in c iff . . . v . . . is true of some Ew

object.
• ∃v(. . . v . . .) is false at w in c iff . . . v . . . is false of every Ew

object.

• ∀v(. . . v . . .) is true at w in c iff . . . v . . . is true of every Ew

object.
• ∀v(. . . v . . .) is false at w in c iff . . . v . . . is false of some Ew

object.
So, again, all remains much as before except for the relativization
to worlds.

7Note that, once again (see Chapter 9), we’re very loosely using talk of a
‘condition’ . . . v . . . being ‘true of’ and/or ‘false of’ objects. We haven’t (and,
for simplicity, won’t) define this; and in fact we use a so-called substitutional
approach to truth conditions in our formal picture. (If one wants, one can
define an Ew name (relative to a given case or universe) to be a name α
such that δ(α) ∈ Ew. If one does this, then we can rewrite the informal
truth conditions invoking an Ew-name instance of . . . v . . .. But these sorts
of detail are left for other, more rigorous, exhaustive introductions to logical
theory.)
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11.2.3.2 Modal connectives: possibility and necessity. The big
question concerns our new connectives: our modal connectives
for possibility and necessity, namely, 3 and 2. Here, the picture
mentioned above is telling: each world in a universe represents—
or just is—a possibility. So, for a possibility claim 3A to be true
at a world w (in universe c, etc.) is for there to be some world w′
(not necessarily distinct from w) at which A is true.
• 3A is true at w in c iff A is true at some w′ in c.
• 3A is false at w in c iff A is false at all w′ in c.

Similarly, since necessity amounts to truth at all possibilities,
2A is true at a world w just if A is true at all worlds w′ in the
universe.
• 2A is true at w in c iff A is true at all w′ in c.
• 2A is false at w in c iff A is false at some w′ in c.

11.3 Cases and consequence
Logical consequence, as throughout this book, is absence of coun-
terexample, absence of any case in which the premises are true
but conclusion untrue. Our cases are now ‘universes’ along the
foregoing lines. The question, though, concerns truth in a case or
truth in a universe. So far, we’ve specified what it is for sentences
to be true at worlds in universes, but we have yet to say what
it is for a sentence to be true-in-a-case/universe simpliciter. We
address that question here, and then turn to a swift, hopefully
slightly clearer account of everything in the ‘formal picture’ in
§11.4.

11.3.1 Actuality and truth in a case
The question is: how is truth in a case to be defined? As it turns
out, there are various (equivalent) options. For present purposes,
we shall take a very intuitive approach. In particular, we shall say
that, in addition to its other worlds in W, each universe c comes
equipped with a special, so-called actual world @. (Intuitively,
we live in the actual world, which is one of many possible worlds
in our actual universe.) And it’s in terms of this special world,
within each universe, that we define truth in a case.
• We say that A is true-in-a-universe (case) c if and only if A is

true at c’s actual world, that is, if and only if [c,@] |=1 A.
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Similarly, we define falsity in a case/universe in terms of the
actual world of the given universe.

• We say that A is false-in-a-universe (case) c if and only if A is
false at c’s actual world, that is, if and only if [c,@] |=0 A.

For clarity, we say that A is untrue–in-a-case-c (similarly, not
true-in-c) just if A does not stand in c’s truth relation to @,
that is, just if [c,@] 6|=1 A. As in previous chapters, without fur-
ther constraints on cases, we can have sentences that are untrue-
in-a-case without those sentences being false-in-a-case; and we
can have sentences that are false-in-a-case without their being
untrue-in-the-case. (If you don’t see this, be sure to think back to
previous FDE-related distinctions, and look again at the few con-
straints governing our cases in this chapter. There are exercises
along these lines.)

11.3.2 Consequence

To have a handy name, let us use ‘Mfde’ for the logical theory
falling out of the present account of necessity and possibility. (The
‘M’ is for ‘modal’, and the ‘fde’ is as before except lowercase—in
effect, our glutty–gappy theory, extended with quantifiers and,
now, modal connectives.) A clearer account of the cases recog-
nized by this theory (Mfde) is given in the formal picture (see
§11.4).

And now, finally, we define our core notion Mfde consequence
as you’d expect: absence of counterexample. In other words: B
is an Mfde consequence of A if and only if there’s no Mfde case
(universe) in which A is true but B untrue.

What are some of the properties of possibility and necessity
delivered by this account? This question is addressed by some of
the exercises at the end of the chapter. For now, we turn to a
slightly more formal sketch of the foregoing ideas.

11.4 Formal picture

The formal picture is only a slight variation on the above, and
largely overlaps with that of Chapter 10, and so we can be brief.
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11.4.1 Syntax
The syntax is exactly that of Chapter 9 except for two additional
logical expressions: 3 and 2 are added as unary connectives.
Accordingly, the definition of sentences is as before, except that
now we add another clause covering our new molecular (and, in
this case, modal) sentences.
• If A is a sentence of the language, so too are 3A and 2A.

11.4.2 Semantics
The semantic picture, as discussed above, is much as before, ex-
cept for adding worlds into the picture. Our cases are now struc-
tures 〈W,@, D, Ew, δ〉, where @, the so-called actual world of the
universe/case, is in W, a non-empty set comprising all worlds of
the given case. D 6= ∅ and, as before, is the domain of all objects
recognized by the given case. Ew, in turn, is a set of world-relative
existence sets Ew, each of which is a subset of D and houses the
‘existing objects’ in the given case. (Note that an existence set
Ew, unlike D, can be empty, in which case nothing exists at w.)
The role of δ is exactly as in previous chapters, except that it as-
signs world-relative extensions and antiextensions to predicates.
In particular, with respect to names, δ assigns an object δ(α)
from D to each name α. With respect to predicates, δ takes ev-
ery world w and predicate Π and assigns pair 〈Π+

w ,Π
−
w〉, where

Π+
w and Π−w are the extension and, respectively, antiextension of

Π at w. Note that, as in earlier chapters, Π+
w and Π−w are subsets

of Dn. (As in Chapter 10, we do not demand that extensions and
extensions be drawn from the given existence set Ew.)

With all of this in mind, the full truth (falsity) conditions are
given as follows, where, as in previous chapters, α is any name,
and we assume that everything in the domain (of any case) has
a name αi in the language, and A(α/v) is the result of replacing
all (free) occurrences of v in A with the name α.

« Note well. Because we are treating the extension and antiexten-
sion of identity (viz., E+

= and E−= ) uniformly across all worlds—the
(anti-) extension is the same at all worlds—we drop the reference
to worlds in the following semantic clauses for identity (thereby
keeping the clause the same as in previous chapters). We also use
‘st’ as an abbreviation for ‘such that’ (a space-saver). End note. »
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• Atomics
∗ General

[c, w] |=1 Πα1, . . . , αn iff 〈δ(α1), . . . , δ(αn)〉 ∈ Π+
w .

[c, w] |=0 Πα1, . . . , αn iff 〈δ(α1), . . . , δ(αn)〉 ∈ Π−w .
∗ Logical (viz., Identity)
E+

= = {〈δ(α), δ(α)〉 : δ(α) ∈ D}.
E−= ⊆ D ×D.

• Basic connectives
[c, w] |=1 ¬A iff [c, w] |=0 A.
[c, w] |=0 ¬A iff [c, w] |=1 A.

[c, w] |=1 A ∨B iff [c, w] |=1 A or [c, w] |=1 B.
[c, w] |=0 A ∨B iff [c, w] |=0 A and [c, w] |=0 B.

[c, w] |=1 A ∧B iff [c, w] |=1 A and [c, w] |=1 B.
[c, w] |=0 A ∧B iff [c, w] |=0 A or [c, w] |=0 B.

• Quantifiers
[c, w] |=1 ∃vA iff [c, w] |=1 A(α/v) for some α st δ(α) ∈ Ew.
[c, w] |=0 ∃vA iff [c, w] |=0 A(α/v) for all α st δ(α) ∈ Ew.

[c, w] |=1 ∀vA iff [c, w] |=1 A(α/v) for all α st δ(α) ∈ Ew.
[c, w] |=0 ∀vA iff [c, w] |=0 A(α/v) for some α st δ(α) ∈ Ew.

• Modal connectives
[c, w] |=1 3A iff there’s some w′ ∈ W st [c, w′] |=1 A.
[c, w] |=0 3A iff every w′ ∈ W is st [c, w′] |=0 A.

[c, w] |=1 2A iff every w′ ∈ W is st [c, w′] |=1 A.
[c, w] |=0 2A iff there’s some w′ ∈ W st [c, w′] |=0 A.

Truth in a case (similarly, falsity in a case) is defined in terms
of the actual world of the case: A is true-in-c iff [c,@] |=1 A, and
similarly false-in-c iff [c,@] |=0 A.

We now define consequence as we have throughout: absence of
counterexample, where a counterexample is now any such Mfde
case in which the premises are true and conclusion untrue.

11.4.3 A few notable forms
Our Mfde account, as some of the exercises indicate, delivers the
validity of standard argument forms involving alethic possibility
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and necessity operators—our it is logically coherent that and it is
logically mandatory that operators. To illustrate the main ones,
let us use the following terminology for any operator or unary
connective Ω (pronounced Omega, the last letter of the Greek
alphabet.)
• Capture: Ω captures iff A implies ΩA for all sentences A.
• Release: Ω releases iff ΩA implies A for all sentences A.8

With this terminology in hand, note that the Mfde account of
2 and 3 has it that 3 captures but does not release while 2

releases but does not capture. In particular, where ` is our given
Mfde consequence relation, we have the following.

A ` 3A

To see this (viz., that 3 captures), simply notice that there cannot
be an Mfde case in which A is true but 3A not true. After all,
if, for some such case c, we have [c,@] |=1 A, then the truth
condition for 3A immediately delivers [c,@] |=1 3A since there’s
a world—viz., @ itself—at which A is true. Since this applies
to any (arbitrary) case c, we conclude that there cannot be a
counterexample to the form A ∴ 3A (i.e., 3 Capture).

On the other hand, 3 does not release:

3A 0 A

That this is so is revealed by a counterexample. For simplicity, let
A be a simple atomic like Fb. Consider a two-world case c in which
W = {@, w} and D = {1} and δ(b) = 1 and F+

@ = ∅ and F+
w =

{1}.9 A careful look at the truth conditions (for atomics and
diamond claims) shows that, since there’s at least one world in
the given universe/case (viz., w) such that [c, w] |=1 Fb, we have
it that [c,@] |=1 3Fb. But since δ(b) 6∈ F+

@ , we have [c,@] 6|=1 Fb.

8Some philosophers use the term factive instead of release, saying that Ω
is ‘factive’ iff ΩA implies A for all sentences A. The reason behind the ‘factive’
terminology arises from the thought that ‘it is a fact that’ is itself an operator
(or connective) that releases. (In this respect, the ‘release’ terminology is
more general.)

9Note that one can let E@ and Ew be whatever one likes, and similarly
let the antiextension of F at @ and w be whatever one likes; none of this
affects the current countermodel. (Why?)
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Hence, this is a case in which 3A is true but A not true (where
A is Fb). Hence, the given argument form (viz., 3 Release) fails
in Mfde.

This is all as we should want. Regardless of whether Agnes
is actually sleeping, if it’s true that Agnes is sleeping, then it’s
logically coherent that Agnes is sleeping. More abstractly: if A
is true, then it’s logically coherent that A is true. This is simply
Capture for our given ‘possibility’ operator. On the other hand,
that it’s logically coherent that Agnes is sleeping hardly implies
that Agnes is sleeping! There are lots of logically coherent things
that never get a taste of actuality (so to speak). Example: it’s
logically coherent that—despite appearances—you are not really
reading a book right now but only seem to be doing so. (You
might, as Rene Descartes feared, be in the grips of an evil demon
who is making it seem like you’re reading a book even though
you’re not.) But—as you well know (contrary to Descartes and his
demon!)—you are reading a book right now. So, our ‘possibility’
operator does not release.

Similar (in fact, so-called dual) considerations establish that,
as mentioned above, our it is logically mandatory that operator
(i.e., our ‘necessity’ operator) releases but does not capture. In
other words, we have 2A ` A but A 0 2A according to our Mfde
theory. That this is so is left as an exercise.

11.5 Remark on going beyond possibility

You might think, as many logicians do, that other common con-
nectives should be handled along similar truth-at-a-world lines.
Consider one prominent example: it is morally obligatory that.
When reading the box as this connective, surely A does not fol-
low from 2A. After all, it’s morally obligatory that nobody be
murdered; however, murder happens. So, the logic of ‘it is morally
obligatory that’ is different from ‘it is necessarily true that’. In
short: the latter releases while the former does not. (Like ‘neces-
sity’, the moral-obligation connective does not capture. You are
reading this sentence, but it’s not morally obligatory that you do
so!) The question is whether the same sort of truth-at-a-world
semantics can be given for the former connective.
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The answer shared by many is affirmative. What we want
to do, however, is constrain the worlds we look at in our truth
(falsity) conditions for the box (now read in the moral-obligation
sense). We don’t want to look at all worlds; we want to look only
at all relevant ones. In the case of moral connectives—the truth
conditions for (say) it is morally obligatory that—we want to look
only at the ‘morally relevant worlds’, the worlds where the moral
laws, whatever they are, are obeyed. (Here, for simplicity, we can
think of the set of moral laws as being fixed across our universe
of all worlds. A world in the universe obeys the moral laws iff all
laws in the set of moral laws are true at the world.) If we think of
the logical coherence reading of the box (i.e., 2) as talking about
all worlds where the ‘laws of logical coherence’ (or, if you want,
‘logical laws’) hold, then we can think of the morally obligatory
reading along analogous lines: it talks about all worlds where the
moral laws are obeyed.

« Parenthetical remark. I noted above that, for simplicity, we sim-
ply think of the set of moral laws being fixed across the universe.
For our present (very limited) purposes, this will do (and is what
we shall do below); however, there’s an alternative way of look-
ing at what’s going on, a very world-relativistic angle of sorts. In
particular, we can imagine that each world comes equipped with
a moral-law book (perhaps written by some Moral Authority), a
book that specifies what, according to that world, count as the
moral laws. The morally relevant worlds, according to a given
world w, are all the worlds that obey w’s moral-law book (i.e., all
of the worlds at which all of w’s moral-law book’s claims are true).
On this way of looking at matters, the morally relevant worlds can
differ from world to world. (A world w’s moral-law book may be
true only of worlds w1, w2, . . . , w5, while another world’s moral-
law book may be true of w6 but none of w1, w2, . . . , w5.) For
present purposes, whether you think of ‘morally relevant worlds’
along this explicitly relativistic line or along the fixed-across-all-
worlds fashion will not matter. (As an exercise, you might con-
sider whether there’s a difference that could make a difference to
the logic of the moral-obligation operator.) End parenthetical. »

To make formal sense of this, we simply expand our account
of cases (our universes) to have a binary relation R onW, so that
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our cases now look like 〈W, R,D, Ew, δ〉. In effect, R tells you what
worlds are relevant to what worlds. For necessity and possibility,
we let R be reflexive, symmetric, and transitive. (For a reminder
on what this amounts to, see §3.3.1.) For our moral connective at
hand, we want to avoid release; we don’t want A following from
2A. One way of doing this is to let R be unconstrained in our
account of cases, and to make a minor modification to the truth
conditions at work in the logic of ‘necessity’. In particular, we
say that our ‘moral cases’ are structures 〈W, R,D, Ew, δ〉 where
R may be any binary relation on W (and, so, R doesn’t have
to be reflexive, etc.). In turn, instead of saying that 2A (now
informally read as ‘it is morally obligatory that A’) is true at a
world w iff A is true at all w′, we say instead that 2A is true
at w iff A is true at all (morally) relevant (or, as it’s sometimes
put, accessible) w′. In other words, we adjust the formal truth
conditions for the box as follows—where, note very well, w′ is a
w-accessible world if and only wRw′.10

[c, w] |=1 2A iff every w-accessible world is st [c, w′] |=1 A.
[c, w] |=0 2A iff there’s some w-accessible world st [c, w′] |=0 A.

How does this adjustment help? Well, consider a case c in which
@ is not morally relevant, not morally obedient—a case such
that 〈@,@〉 /∈ R. One might think of this as a case in which
the moral laws—which, for simplicity, we’re supposing to be the
same throughout the universe—are not obeyed at @.

« Parenthetical remark. On the openly world-relative account
of moral laws mentioned above—invoking a world’s moral-law
book—one can think of the case c at hand as one where @ is not
morally relevant to itself, that is, a case in which @’s moral-law
book is not obeyed by @.) End parenthetical. »

However one thinks of it, the case provides what we need for a
counterexample to 2-Release (where, again, 2 is now thought of
along moral-obligation lines). In particular, ignoring the details of
our sentence A, suppose that W = {@, w}, and that A is true at

10As in previous chapters, ‘st’ is sometimes used as a space-saving short-
hand for ‘such that’.
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w but not at @.11 Moreover, suppose that w is morally relevant to
@, that is, that w is an @-accessible (morally obedient) world in
our given universe—that is, that we have @Rw in the given case
(though not, as said, @R@). Well, then, since the only worlds are
@ and w, it’s clear that every @-accessible world (viz., w) in the
given universe is one at which A is true. Hence, 2A is true at @.
But we have it that A is not true at @. Hence, we have a case
in which 2A but not A is true. Hence, as we wanted (at least on
the moral-obligation reading), 2-Release fails in this setup.

In addition to the moral-obligation and logical-coherence con-
nectives, there are many other connectives in natural language
that appear to be box-like (so to speak). For present purposes,
these are left to your reflection (but some are suggested in exer-
cises too).

Summary and looking ahead

Summary. In this chapter we have briefly explored a few ba-
sic modal notions: broad possibility and broad necessity. We’ve
treated these notions (exactly along standard lines) as, in effect,
quantifiers over possible worlds. To model this idea, we’ve ex-
panded our ‘cases’ with a set of worlds, each world representing
what, according to the case, is a possibility (in the target broad
sense). A necessity claim 2A is true at a world iff A is true at
all worlds, and a possiblity claim 3A is true at a world iff A
is true at some world. Each such case—or universe (in which a
bunch of worlds reside)—comes equipped with an actual world
@ in terms of which truth in a case (similarly for falsity) is de-
fined. Consequence, in turn, is then defined via the guiding recipe
from Chapter 1: absence of a case (universe) in which all premises
are true but conclusion untrue. In order to get logics of different
(modal) connectives (e.g., it is morally obligatory that. . . , among
other connectives), we can invoke an ‘accessibility relation’ on
our universe of worlds: a relation that picks out a subset of our
universe, namely, the set of relevant worlds (worlds relevant to
the ‘nature’ of the connective at hand).

11Strictly speaking, the additional world w is unnecessary for the coun-
terexample, but it avoids a detour explaining the ‘vacuous’ sense in which
all box claims are true at w if there are no w-accessible worlds.
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Looking Ahead. If you’ve made it this far in the book, you might
as well go one more chapter. In the next and final chapter, we very
quickly march through a few variations on themes from previous
chapters, looking at (alas, only a very few) different avenues for
further logical exploration.

Further Reading. Among the accessible and related discussions of
modal logics are Hughes and Cresswell 1996, Chellas 1980, and
Girle 2000. More directly related to the non-classical logical theo-
ries are textbooks mentioned in previous chapters, namely, Beall
and van Fraassen 2003; Priest 2008; Restall 2005. (Of course,
many more sources may be found via the bibliographies of all such
books.) For an accessible history of contemporary possible-worlds
semantics, see Copeland 2002, which gives a broad bibliography
of key sources, and also (for specifically so-called Priorean modal
logic) see the much more advanced Menzel 1991.

Exercises

Unless otherwise stated, the Mfde truth conditions (see §11.4.2)
are assumed in the following exercises.

1. Which of the following arguments are valid? Justify your
answer (with a proof or counterexample).12

(a) 2(Fb ∧ Fa) ∴ 2Fb ∧2Fa
(b) 2Fb ∴ 3Fb
(c) 3Fb ∴ 2Fb
(d) 2(a = a) ∴ 3∃x(x = a)
(e) 2¬∃x(x = a) ∴ ¬(a = a)
(f) 23Fa ∴ 32Fa
(g) ¬3∃x(x = a) ∴ ¬2(a = a)

2. Are there cases in which a = a is not true? If so, provide
one. If not, show as much.

3. Are there cases in which 2(a = a) is not true? If so, provide
one. If not, show as much.

4. Is 3(a = a) logically true?

12Here, we use ‘∴’ merely to separate premises and conclusion. (The fol-
lowing are arguments from our formal language, not argument forms.)
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5. Explain how to modify Mfde to get the following results
(i.e., for the resulting, modified consequence relation). If no
modification is required for a given item, prove as much.
(a) 2A ∧2¬A ` B
(b) ` 2A ∨ ¬2A
(c) ` 2(A ∨ ¬A)
(d) 2A,3¬A ` B
(e) ` ∀x3∃y(y = x)

6. Suppose that we define a world w (of a case c) to be con-
sistent iff there’s no sentence A such that [c, w] |=1 A and
[c, w] |=0 A. Similarly, suppose that we define a world w
(of a case c) to be complete iff there’s no sentence A such
that [c, w] 6|=1 A and [c, w] 6|=0 A (i.e., the world is such
that every sentence is either true at the world or false at
the world). Precisely formulate and explore the following,
narrower (though stronger) variations on Mfde.
(a) K3 Modal: the cases are all Mfde cases that contain

only consistent worlds (though not necessarily com-
plete).

(b) LP Modal: the cases are all Mfde cases that contain
only complete worlds (though not necessarily consis-
tent).

(c) Classical (though ‘free’) Modal: the cases are all Mfde
cases that contain only consistent and complete worlds.13

For each of the resulting logics in (6a)–(6c), go through all
questions from Exercises 1–5 again but focus on the given
narrower logic.

7. What other connectives might be treated along ‘worlds’
lines? What if, instead of thinking of the elements in W
as worlds, we think of W as containing points in time. Now
consider the connectives it is always true that. . . and it is
sometimes true that. . . . If we treat these connectives along
our box and, respectively, diamond lines, what sort of ‘tem-
poral logic’ (i.e., logic of such temporal connectives) do we
get? Related question: what sort of ‘ordering’ on your points

13The freedom comes from our speaking-freely approach to cases. See
Chapter 10.
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in W do you need to give in order to add plausible it will
be true that. . . and it was true that. . . connectives into the
picture? (E.g., do your points of time have to be ordered in
the way that, e.g., the natural numbers are ordered?)

Sample answers

Answer 4. Yes, 3(a = a) is logically true. Suppose, for reductio,
that it is not logically true, in which case there must be a case
(universe) in which 3(a = a) is untrue, that is, a case c such that
[c,@] 6|=1 3(a = a). But, then, by the truth conditions for the
diamond, there must be no world in our given case (universe) at
which a = a is true. But by the constraints on identity (viz., that
the extension of the identity predicate contains all pairs of objects
from the domain of the given case), a = a is true at all worlds.
Hence, we’ve run into an unacceptable contradiction (viz., that
there is both some world in our case and no world in our case in
which a = a is true), and so we reject our initial supposition that
3(a = a) is not logically true. We conclude, then, that 3(a = a)
is logically true.
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Glimpsing Different Logical Roads

Two roads diverged in a wood, and I –
I took the one less traveled by,

And that has made all the difference.
– Robert Frost

‘The Road Not Taken’

In the previous chapters you’ve explored a sample of logi-
cal theories. All of the theories so far discussed are in broad
agreement not only on the set of logical expressions (i.e., on
what should be counted among our logical expressions), but also
roughly on how they should be treated—on what the truth-in-
a-case conditions are for the given expressions. (The differences
among the theories discussed so far are largely differences on what
sort of cases should be acknowledged, but not on how truth-in-a-
case is to be defined for the various expressions.)

There are many more logical theories than mentioned—let
alone discussed—in this book. One route towards difference in-
volves recognizing more (or, for that matter, fewer) connectives
than we have so far discussed. Another route towards difference
retains the same set of logical expressions but, for various philo-
sophical (or other) reasons, treats the logical expressions—that
is, their truth (or truth-in-a-case) conditions—differently.

In this chapter, we briefly glance along a few such roads to-
wards different logical theories—theories that either expand the
logical theories of previous chapters or downright conflict with
them. The aim is not so much to present details of particular
theories, but rather to wave in a few directions towards which
rival, or at least different, logical theories may emerge. Due to
space, only a very, very few such ‘logical roads’ are waved at, and
so the ‘further reading’ section is particularly important at this
stage.
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The chapter proceeds via a rapid march through various—not
necessarily connected—phenomena that motivate logical theories
that go beyond or differ from theories of the previous chapters.
You should think of other phenomena that motivate logical ex-
ploration! There are many more phenomena that bear on logical
theory than are mentioned in this book.

12.1 Other conditionals

One of the most fruitful areas for logical theorizing concerns con-
ditionals. Notice, for example, that the conditional we’ve used
throughout Chapters 1–11 (viz., the so-called material condi-
tional) is true so long as the antecedent is false or the consequent
true. Hence, ‘if Barack Obama is 3-feet tall, then Logic: The Ba-
sics is everyone’s favorite book’ is true when the ‘if’ is treated
along material-conditional lines. (The antecedent is false. I take
no stand on the consequent!) While the material-conditional ac-
count may be true of some conditional—or some (conditional)
usage of if—in our language, it seems not to be true of all. There
also seem to be other conditionals—or (conditional) uses of if—
that require a stronger connection between antecedent and con-
sequent.

There are many (many) different routes towards adding other
conditionals to the language. (See further reading.) But before one
goes about adding a new connective and giving it truth/falsity
conditions, one should pause to consider whether the current lan-
guage already has something that will do the trick. One proposal,
along these lines, is (in effect) from C. I. Lewis; we can get a
stronger conditional than the material conditional by using our
alethic-necessity operator necessarily. In particular, assuming the
treatment of the Box from Chapter 11, we can define (just for con-
venient abbreviation) A ⇒ B to be 2(A → B), where → is our
material conditional (and, so, A→ B is defined as ¬A∨B). Our
truth/falsity conditions for A⇒ B are as you’d expect:

• [c, w] |=1 A⇒ B iff [c, w′] |=1 A→ B for all w′ in c.
• [c, w] |=0 A⇒ B iff [c, w′] |=0 A→ B for some w′ in c.

Hence, A ⇒ B is true at a world (in a case) if and only if at
every world (in the given case) either A is false there or B is
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true there.1 This delivers what we wanted: the mere falsity of the
antecedent or truth of the consequent is insufficient for the truth
of the (stronger) conditional; an all-worlds connection between
the two is required. (Question: on this stronger account of ‘if’,
what do you say about previous Barack-Obama conditional? Is
it true? false? neither? what?)

What this shows is that, at least if we already have a suitable
alethic-necessity connective, we can define a conditional that is
stronger than the material conditional.2

One question to consider (though, for space reasons, not con-
sidered here), is whether our stronger, all-worlds-material condi-
tional gets everything right. After all, consider a sentence with
a necessarily false antecedent: if 1=0 then all suffering will be
eliminated by the year 2012. If we read the given ‘if’ as ⇒, then
the given conditional is true at all worlds, since the correspond-
ing material conditional—in effect, either 1 6= 0 or all suffering
will be eliminated by the year 2012—is true at all worlds. (Why?)
Maybe this sort of result is right for some conditionals, but, at
least intuitively, it seems that there is a common sense of ‘if’ on
which if 1=0 then all suffering will be eliminated by the year 2012
is simply false. A task for the philosophical logician, then, is to
come up with a better account of the conditional, or at least come
up with yet another conditional that can be false even when its
antecedent is ‘false everywhere’ (so to speak).

There are many different routes one might go towards solv-
ing this sort of problem. Further reading is provided to set you
along further paths. For now, even though we’ve barely touched
the huge and philosophically significant topic of conditionals, we
briefly turn to another topic: negation.

« Parenthetical remark. The array of conditional-related phenom-
ena, relevant to logical theory, is vast. For a tiny glimpse into the
vastness see Bennett 2003, Gauker 2005, Lycan 2001, Mares 2004,

1The minimal-hyphenation policy from Chapter 11 remains in effect con-
cerning some of our truth at relations.

2This needn’t mean that exactly one of the two conditionals is ‘the real
conditional’, whatever that might mean. Instead, we may simply have various
conditionals in the language. (I will not elaborate on this point, but it also
applies to other connectives briefly discussed below.)
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Priest 2008, Read 1989, Sider 2009, and also sources cited in the
given bibliographies. End parenthetical. »

12.2 Other negations

Another fruitful area for logical theorizing concerns negations. As
in previous chapters, the classical story of negation has it that,
for every sentence A, either A or its negation ¬A is true, and
that we never have A and ¬A true. The ‘basic gappy’ account
(see Chapter 5) agrees that we never have both A and ¬A true
for any sentence A, but it rejects the exhaustiveness thesis that
either A or ¬A is true for all A. In turn, the ‘basic glutty’ theory
(one that, say, doesn’t posit gaps) agrees with the classical theory
that negation is exhaustive, but it rejects the exclusivity thesis
that we never have A and ¬A true for any A.

Logical theorizing about negation can—and often does—go
further. We might think that we have more than one negation-
like connective in our language. Suppose, for example, that we
embrace the basic gappy and glutty account of negation, the ac-
count reflected in the FDE theory (see Chapter 6). (We can ignore
worlds for present purposes.) On this theory, we have neither ex-
haustion (viz., LEM) nor explosion (viz., EFQ):

0 A ∨ ¬A

and
A,¬A 0 B

At this stage, a question, largely concerned with ‘gaps’, arises:
what negation-like connective are we using when we truly say that
some A is gappy—that A is not true and not false? In the FDE
theory, falsity is simply truth of our regular negation connective:
A is false just if ¬A is true. Hence, if we are using ¬ when we say
that A is not true and not false, we are asserting something of
the form

¬A ∧ ¬¬A

Now, in the FDE theory, we don’t have explosion, and so this
sort of (inconsistent) claim doesn’t lead to absurdity by implying
that every sentence B is true. Still, there’s a problem. To see the
problem, recall the truth conditions for ¬ in our FDE theory (see
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Chapter 6), and in particular what happens when A is ‘gappy’.
On those truth conditions, if A is gappy (modeled by a case c such
that c 6|=1 A and c 6|=0 A), then so too are both ¬A and ¬¬A.
(Again, look back to the truth conditions for ¬ in Chapter 6.)
Moreover, according to the FDE theory, the truth conditions for
∧ are such that a conjunction ¬A∧¬¬A is gappy if both ¬A and
¬¬A are gappy. (See Chapter 6 truth conditions for ∧.) What all
of this tells us is that, according to the FDE theory, ¬A ∧ ¬¬A
is gappy if A itself is gappy.

So what? Well, we were after a sense of ‘not’ (or, as above,
a negation-like connective) that allows us to truly say that A is
gappy—to truly say that A is not true and not false, where the
falsity of A amounts to the truth of ¬A. The foregoing discussion
of FDE truth conditions for ¬ plainly show that ¬ itself will not
do the job.3

What, then, shall we do to find our new ‘not’? One course
might be to change the truth conditions of ¬ employed in the
FDE theory. One might think, though, that the FDE theory of
negation is correct; the trouble, one might think, is that we need
to acknowledge a different negation-like connective in addition
to our regular FDE negation. Towards this end, we might intro-
duce a (unary) connective η into the syntax. The question is: what
truth (and falsity) conditions should it get in the basic gappy and
glutty setting? There are different answers available, and corre-
spondingly different logical theories. One constraint, of course, is
that ηA be true if A is gappy. (See the issue above for why we’re
imposing this constraint!) Along these lines, here is one natu-
ral thought. (Coming up with alternative truth conditions that
satisfy the given constraint is left as an exercise.)
• c |=1 ηA iff c 6|=1 A.
• c |=0 ηA iff c |=1 A.

Assuming that everything else (connectives, consequence, etc.) is
treated as per FDE, this gives us some notable logical behavior
for our negation-like connective.

3I should note that I’m simplifying matters. One could put the weight of
the problem on a new notion of ‘true’ rather than on a sense of ‘not’ (not that
these need be wildly different in the end). These matters are too advanced
for discussion here, but see Field 2008 for a thorough discussion.
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• Exhaustion (for η): ` A ∨ ηA

• Explosion (for η): A, ηA ` B
That we have Exhaustion for η may be seen as follows. The only
way for A ∨ ηA to be untrue is for both disjuncts to be untrue.
But, given the truth conditions for η above, there can’t be a case
in which both A and ηA are untrue. After all, if we have c 6|=1 A
then c |=1 ηA. So, every case is one in which either A or ηA is
true. For Explosion (for η), note that, as the truth condition for η
shows, we can never have a case c in which c |=1 A and c |=1 ηA,
and so we can never have a counterexample to arguments from
A and ηA to B. (The truth condition for η tells us that, for any
case c, if we have c |=1 ηA then c 6|=1 A. So, we can’t have both
ηA and A being true-in-a-case.)

This new negation-like connective does the desired task: we
can truly say that A is gappy—neither true nor false (i.e., not true
and its normal negation not true)—by using η so understood; we
can assert ηA ∧ η¬A, which, as can be verified by looking at the
above truth/falsity conditions, is true-in-c if c is a case in which
A is neither true nor false.

Of course, as with life in general, so too in philosophical logic:
resolving one issue often leaves other issues to resolve. One among
many issue(s) is whether Explosion for η should ultimately be
avoided. If, for example, one considers Liar-like sentences involv-
ing η (e.g., a sentence saying of itself that it’s not true, where
‘not’ is along η lines), then one might think that we have to allow
for η-involving gluts, in which case Explosion for η should fail.
(See Chapter 6 for discussion involving ¬, and apply it to η.) Ul-
timately, this is a matter for theoretical debate, and in particular
debate on the role of η in the language and about the overall
features of the given language in general. This is too much to
go into here; however, it is notable that a simple tweak to the
above truth conditions for η gets rid of Explosion. In particular,
suppose that we give the following truth condition (leaving the
falsity condition as above):

• c |=1 ηA iff c |=0 A or c 6|=1 A (or both).

This tweak delivers a countermodel to Explosion for η. How? The
answer is left to you (viz., the reader). For now, we briefly turn to
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one more example of a logical connective that one might theorize
about: actuality.

« Parenthetical remark. I should note, before moving on, that one
of the most famous non-classical theories of negation is that of
intuitionistic logic, which is motivated directly out of a particular
philosophy of mathematics (notably, intuitionism). This is well
worth your exploration. Alas, giving a short, ‘basic’, but adequate
treatment here would require more space than is available, and
so the matter is left for further reading. End parenthetical. »

12.3 Other alethic modalities: actuality

In Chapter 11 we briefly looked at a few alethic modalities: neces-
sity (in a very broad sense) and, derivatively, possibility. These
notions were treated as unary connectives that quantified over
‘possible worlds’. In turn, we defined truth in a case in terms of
a special actual world of the given case. Intuitively, there’s one
‘real’ universe of worlds (and our formal, world-filled cases serve,
in some way, as different models of the one ‘real’ universe); and
within this real universe of worlds, we inhabit exactly one such
world—the so-called actual world. In some worlds (of the real
universe), you are 14-feet tall, even though actually you’re less
than 14-feet tall.

The issue is how to model this actuality connective, it is actu-
ally true that. . . or in the actual world. . . or, simply, actually. . . .
For present purposes, we look only at a very simple—though en-
tirely natural—proposal.4

Suppose that we add a unary connective ∇ to the language.
We want to interpret it as our actuality operator. Let us leave
our formal picture as per the Mfde framework (see Chapter 11),
so that our cases contain not only a set of worlds W but also the
so-called actual world @. In this sort of set up, a natural idea
gives ∇A the following truth conditions.
• [c, w] |=1 ∇A iff [c,@] |=1 A.
• [c, w] |=0 ∇A iff [c,@] |=0 A.

4Note well: the philosophy of actuality is a controversial topic—and I here
skip the controversy by simply sketching one simple idea on the matter. See
Lewis 1970; Lewis 1986.
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On this account, ∇A is true at a world just if—as you’d expect—
A is true at the actual world, and similarly false at a world just if
A is false at the actual world. This has the happy result that ∇A
implies A and vice versa. (Explain, by invoking the relevant def-
inition of validity, why this result holds!) On the other hand, we
happily get that 3A does not imply ∇A: just because A is true
at some world, it hardly follows that A is true at the (unique) ac-
tual world. (Question: does 2A imply∇A on the current account,
where 2A is treated along Mfde lines?)

As with most topics, there is room for debate about whether
actuality should be treated as above, or even whether there is
more than one notion of actuality in the language. All of this is
left to your future logical investigations.

We now briefly turn to another road towards different logical
theories, this one being somewhat more revisionary, with respect
to earlier chapters, than the foregoing.

12.4 Same connectives, different truth conditions

So far, we have touched on the idea of expanding the language
with different connectives while leaving the rest of the connec-
tives as in previous chapters. One might instead give an entirely
different account of truth/faslity conditions, even for the basic
connectives (conjunction, negation, disjunction). For simplicity,
we illustrate the idea only with respect to the given basic con-
nectives.

For present purposes, we look at only one motivation for
changing our basic FDE picture, and briefly look at the resulting
picture.

The main question concerns our philosophical ideas about
‘gaps’. In Chapter 5 (and forward), we thought of gaps as mean-
ingful sentences that, for one reason or another, were neither true
nor false. What if, instead, we think of gaps as syntactically well-
formed but nonetheless meaningless (declarative) sentences? In
other words, we can think of gappy sentences as grammatical,
declarative sentences that, for one reason or another, are mean-
ingless.

We can still keep our broad FDE categories of true, false,
glutty, and gappy; it’s just that now our gappy category com-
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prises meaningless sentences. This different philosophical picture
of our ‘gaps’ motivates different truth conditions for our basic
connectives from that in the FDE theory (see Chapter 6). In par-
ticular, if we have an entirely meaningless (though syntactically
kosher) sentence A, then this very meaninglessness will infect any
molecular sentence made from the given meaningless sentence. If
A is meaningless, then how can A ∨ B or A ∧ B or even ¬A be
meaningful? In short: if you’ve got a meaningless sentence, the
conjunction (similarly disjunction, negation) of it with anything
else is going to be meaningless—or so one way of thinking goes.

Whether all of this is ultimately correct is for further debate
to tell. What is notable here is that the different philosophical
conception motivates different truth conditions for our various
basic connectives. For present purposes, we can let the truth con-
ditions for negation remain as in the FDE theory. (Why are the
FDE truth/falsity conditions compatible with the current con-
ception of ‘gaps’ qua meaningless? Hint: in FDE, A is gappy iff
¬A is gappy. So, if we’re now simply thinking of our ‘gaps’ as
meaningless, the clause for negation can remain as it was, except
informally reinterpreted: A is meaningless iff ¬A is meaningless.)
What, though, of disjunctions and conjunctions? In FDE, a dis-
junction is true so long as at least one disjunct is true, even if the
other disjunct is gappy. This clashes with the conception of gaps
above, according to which all molecular sentences are ultimately
meaningless if one of their subsentences is meaningless. Similarly,
a conjunction, on FDE, is false if at least one conjunct is false,
even if the other conjunct is gappy. So, this too clashes with the
thought that a molecular sentence cannot be true or false if one
of its subsentences is meaningless.

Given all of this, one approach to the truth/falsity conditions
for disjunctions and conjunctions is as follows. (Here, we ignore
worlds. As an additional exercise, you can fill out the fuller picture
with predicates, quantifiers, etc., and worlds!) For convenience,
let us use c |=! A as shorthand for either c |=1 A or c |=0 A.

• Conjunction.

c |=1 A ∧B iff c |=1 A and c |=1 B.
c |=0 A∧B iff c |=! A, c |=! B, and either c |=0 A or c |=0 B.
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• Disjunction.
c |=1 A∨B iff c |=! A, c |=! B, and either c |=1 A or c |=1 B.
c |=0 A ∨B iff c |=0 A and c |=0 B.

These are slightly long-winded, but they do the trick. Notice, for
example, that there’s no case in which a disjunction is true (or
false) if either disjunct is gappy (i.e., ‘meaningless’). The same
goes for conjunctions. (Verify both claims!)

Does this give us the same logical theory as FDE? There are
similarities (e.g., no LEM or EFQ), but there are also notable
differences. One striking difference is that so-called Addition no
longer holds: the form A ∴ A ∨ B is no longer valid. A coun-
terexample is a case in which A is true but B meaningless! Other
differences are left for the reader’s discovery.

12.5 Another road to difference: consequence

As works in ‘further reading’ attest, there are many roads towards
different logical theories. In this chapter, we’ve looked at two
ways of diverging from the logical theories discussed in previous
chapters: one is to expand by adding new logical expressions; the
other is to keep the same lot of logical expressions but revise the
semantics (e.g., the truth/falsity conditions for the connectives).
And you can think of variations on these themes.

One other notable route should be mentioned (though, for
space reasons, not discussed): one could keep both the lot of
logical expressions and their semantics the same as in previous
chapters, but change the definition of logical consequence! For
example, consider the basic gappy theory K3 (we have gaps but
no gluts), but suppose that we add an additional constraint on
validity (or logical consequence): instead of requiring only that
there be no case in which all premises are true and conclusion
untrue, we also require that there be no case in which the conclu-
sion is false but not all premises false. (This is sometimes called
the requirement of ‘falsity-preservation backwards’.) This minor
change in the definition of consequence has an impact. By way of
illustration, consider the following argument form.

A ∧ ¬A ∴ (A ∧ ¬A) ∧B
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This is valid in K3. After all, on the basic paracomplete (i.e.,
K3) theory, there can’t be a counterexample to the given argu-
ment form, since there’s no K3 case in which A ∧ ¬A is true,
and hence the form is valid. On the other hand, if we now also
require—according to the falsity-preservation-backwards sugges-
tion above—that any K3 case in which (A ∧ ¬A) ∧ B is false is
one in which A ∧ ¬A is false, then the argument is no longer
valid (on the revised account of validity). After all, just consider
a K3 case c such that c |=0 B but c 6|=1 A and c 6|=0 A. (In other
words, we’re considering a K3 case in which B is false but A is
a gap.) According to the K3 falsity conditions for conjunctions,
(A∧¬A)∧B is false-in-c, that is, c |=0 (A∧¬A)∧B. But, since
A is a gap in c, we have that A ∧ ¬A is a gap in c, that is, that
c 6|=0 A ∧ ¬A. So, on the revised—stricter (falsity-preservation-
backwards)—account of consequence, the given argument form is
no longer valid.

A simpler example of the effect of modifying our definition
of consequence in various ways is as follows. Concentrate on the
basic classical theory bc (see Chapter 4). In this theory, Explosion
(EFQ) is valid:

A ∧ ¬A `bc B

Suppose, however, that we modify the bc account of consequence
by requiring not only that there be no bc case in which the
premises are true and conclusion untrue, but—for purposes of
ruling out vacuity or the ‘null situation’ (as some might say)—
we also require that there be at least one bc case in which the
premises are all true. This has an immediate effect on the re-
sulting consequence relation. To see this, note that the Explosion
form A ∧ ¬A ∴ B is now invalid (on the resulting theory). That
this is so is left as an exercise. (Hint: if validity, on the new defi-
nition, now also requires a bc case in which all premises are true,
the issue of Explosion turns on whether there is a bc case in which
A ∧ ¬A is true.)

Summary and looking behind and ahead

Summary. This chapter has highlighted a few different routes to-
wards logical theories that differ from the ones sketched in this
book. The highlights in this chapter barely scratch the surface
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of different directions that logical theories might take, let alone
the many interesting phenomena that might serve to motivate
different logical theories. Still, this chapter serves to point in ba-
sic directions: changing the stock of logical expressions; changing
the truth conditions of various connectives (or expressions, in
general); and changing the definition of consequence. All of these
directions can open up new and interesting logical theories, and
you’re encouraged to so open up!

Looking Behind—and Forward. Since this is the last chapter in
the book, we now look behind but also briefly forward (to further
studies beyond this book). We have, throughout, explored vari-
ous logical theories concerning basic logical expressions. While the
theories themselves may disagree with one another along various
lines, all of them are united in the basic recipe for logical conse-
quence: absence of counterexample—absence of a ‘case’ in which
the premises are true and conclusion untrue. Getting clear on
the logical resources of the language (the stock of logical expres-
sions) and, in turn, the appropriate truth-in-a-case conditions for
the expressions is a large task in specifying logical consequence.
What this book has illustrated, I hope, is that the task is not only
informed by philosophical considerations; it thrives on them.

This book will have accomplished its goal (or, at least, a goal)
if you’re not only still reading it but you’re inspired to do more
work in logical theory. There are many open and unexplored log-
ical roads to pursue. In the spirit of exploration, I encourage you
to go forth! Still, as a next step—and, I must admit, I feel a bit
like Dumbledore sending Harry back to the Dursleys’ house for
the summer—you should probably turn to a proper first course
in classical first-order logic. These courses are available at any
proper university, and widely available via numerous textbooks.
After getting a proper first-order logic course in you (and, if you
choose to really go forth in logic, a proper classical first-order
metatheory course), you should consider pursuing any of the ‘fur-
ther reading’ works, and moving onward and upward from there!

Further Reading. There are many, many, many areas of logical ex-
ploration that have not been mentioned in this book. Not only are
there many different ways of doing ‘semantics’ (or model theory)
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that have not been considered here; there is a very important—
some would say the most important—area of logic that has not
been touched (viz., proof theory or deductive systems). But such
matters are now open to you. To get a sense of what’s out there, it
may be most useful to work through a few surveys: Goble 2001 is
an excellent source from which you can get a basic sense of many
logical areas—intuitionistic logic, quantum logic, relevant logic,
second- (and higher-) order logic, and much, much more. Other
handbooks of philosophical logic are also available (Jacquette,
2002), along with a much wider and more advanced multi-volume
collection (Gabbay and Günthner, 2001). Also, in addition to the
few textbooks mentioned in ‘further reading’ in previous chapters
(Beall and van Fraassen, 2003; Priest, 2008; Restall, 2005), other
recent textbooks have emerged that may be useful (Bell, DeVidi
and Solomon, 2001; Burgess, 2009; Sider, 2009). An ever-so-small
effort will reveal many logic textbooks from which you can learn
a great deal more—and, indeed, a great deal more about the ‘ba-
sics’ of logical theory. Look about and enjoy! The universe of
logical options is in front of you. . .

Exercises

1. Prove that ∇A ` A and A ` ∇A (i.e., that our Actuality
operator, defined above, both Captures and Releases).

2. Do we have that 2A ` ∇A in the Mfde theory (expanded
with ∇ as above)? If so, prove it. If not, give a counterex-
ample.

3. Using the revised truth conditions (see page 166), give a
countermodel to η-Explosion: viz., A, ηA ∴ B.

4. With respect to the ‘meaningless’ approach to disjunction
(see §12.4), provide a case in which A is true but A∨B not
true (for some A and B).

5. How does the ‘meaningless’ approach (see §12.4) compare
with Weak Kleene (see Chapter 5 exercises)?

6. Fill out the ‘meaningless’ approach (see §12.4) by adding
predicates, quantifiers, and a necessity operator. (NB: there
may be more than one way of doing this that is consistent
with the basic ‘meaningless’ idea.)
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7. Invoking the definitions of ‘contingent’ and ‘broadly con-
tingent’ from Chapter 5 exercises, give what you think are
the right truth- and falsity-in-a-case conditions for a con-
tingency operator in the otherwise Mfde setting. (In other
words: add new unary connectives to serve as an it is contin-
gent that. . . and it is broadly contingent that. . . operators
in the otherwise Mfde setting. What is the logic of your
connective(s) like? Explore!

8. How might you add a necessarily consistent connective to
the Mfde? What should the truth conditions for it is neces-
sarily consistent. . . be in a broad Mfde setting? What about
defining our target ‘necessarily consistent’ operator in Mfde
thus: just let CA abbreviate 2¬(A ∧ ¬A). What, then, is
the logic of C in Mfde? Are there Mfde cases in which CA
is a glut—and, so, true but itself ‘inconsistent’ (since also
false)? Is this a problem for a consistency operator?

9. What other phenomena might motivate different logics?
Think and explore!

Sample answers

Answer 2. Yes, 2A implies ∇A in the Mfde theory (expanded
with the given actuality operator). To see this, consider any case
c such that [c,@] |=1 2A, in which case—by the Mfde truth
conditions for the box—every world w in the given universe (case)
is one at which A is true, that is, [c, w] 6|=1 A (for all w in the
universe). Hence, in particular, A is true at @, that is, [c,@] |=1

A. But, then, given the truth conditions for ∇, we have that
[c,@] |=1 ∇A. What we’ve shown here is that any (Mfde) case
in which 2A is true is one in which ∇A is true (given the going
truth conditions for ∇). What we’ve shown, in other words, is
that 2A implies ∇A.



APPENDIX A

List of Common Abbreviations

This appendix lists a few of the abbreviations commonly used in
this book, and indicates the page on which they first appear.

`bc. (General) Basic Classical Consequence, page 54.

`x. Consequence relation for theory X, page 54.

`K3. (General, Basic, and Beyond) Paracomplete (Strong Kleene,
K3) Consequence, page 70.

`FDE . (General, Basic, and Beyond) Paraconsistent (FDE)
Consequence, page 86, and page 90.

`=
bc. (General) Basic Classical Consequence with Identity, page

116.

`=
K3. (General) Basic Paracomplete Consequence with Iden-

tity, page 116.

`=
FDE . (General) Basic Paraconsistent (FDE) Consequence

with Identity, page 116.

Mfde. (Free) Modal paracomplete and paraconsistent theory
(with identity, quantifiers), page 150.



REFERENCES

Anderson, Alan Ross and Belnap, Nuel D. (1975). Entailment:
The Logic of Relevance and Necessity, Volume 1. Princeton
University Press, Princeton.
Anderson, Alan Ross, Belnap, Nuel D., and Dunn, J. Michael
(1992). Entailment: The Logic of Relevance and Necessity, Vol-
ume 2. Princeton University Press, Princeton.
Asenjo, F. G. (1966). A calculus of antinomies. Notre Dame
Journal of Formal Logic, 16, 103–105.

Barwise, Jon (1989). Situations, facts, and true propositions. In
The Situation in Logic, Number 17 in csli Lecture Notes, pp.
221–254. csli Publications, Stanford, CA.

Barwise, Jon and Perry, John (1983). Situations and Attitudes.
MIT Press, Bradford Books, Cambridge, MA.
Beall, Jc (2009). Spandrels of Truth. Oxford University Press,
Oxford.
Beall, Jc and Restall, Greg (2005). Logical Pluralism. Oxford
University Press, Oxford.
Beall, Jc and van Fraassen, Bas C. (2003). Possibilities and
Paradox: An Introduction to Modal and Many-Valued Logic.
Oxford University Press, Oxford.
Bell, John L., DeVidi, David, and Solomon, Graham (2001). Log-
ical Options: An Introduction to Classical and Alternative Log-
ics. Broadview Press.

Bennett, Jonathan (2003). A Philosophical Guide to Condition-
als. Oxford University Press, Oxford.

Burgess, John P. (2009). Philosophical Logic. Princeton Univer-
sity Press, Princeton, NJ.
Chellas, Brian F. (1980). Modal Logic: An Introduction. Cam-
bridge University Press, Cambridge.
Church, Alonzo (1956). Introduction to Mathematical Logic.
Princeton Mathematical Series. Princeton University Press,
Princeton. Originally published in 1944 in the Annals of Math-



References 177

ematical Studies. The latest reprinting, in the Princeton Land-
marks in Mathematics Series, is 1996.
Copeland, B. J. (2002). The genesis of possible world semantics.
Journal of Philosophical Logic, 31, 99–137.
Field, Hartry (2008). Saving Truth from Paradox. Oxford Uni-
versity Press, Oxford.
Gabbay, Dov M. and Günthner, Franz (ed.) (2001). Handbook
of Philosophical Logic (Second edn). Springer, Netherlands.
NB: 2001 marks the publication of the first few volumes in this
multi-volume collection; other volumes appear in later years.
Gauker, Christopher (2005). Conditionals in Context. Bradford
Books. MIT, Cambridge, MA.
Girle, Rod (2000). Modal Logics and Philosophy. McGill-
Queen’s University Press, London.
Goble, Lou (ed.) (2001). The Blackwell Guide to Philosophical
Logic. Blackwell, Oxford.

Goldrei, D. C. (1996). Classic Set Theory: A Guided Independent
Study. Chapman & Hall/CRC.
Haack, Susan (1978). Philosophy of Logics. Cambridge Univer-
sity Press.
——— (1996). Deviant Logic, Fuzzy Logic: Beyond the Formal-
ism. Cambridge University Press, Cambridge.

Hughes, G. and Cresswell, M. (1996). A New Introduction to
Modal Logic. Routledge, London.

Hyde, Dominic (2008). Vagueness, Logic, and Ontology. Ash-
gate, Aldershot.
Jacquette, Dale (ed.) (2002). A Companion to Philosophical
Logic. Blackwell Publishers, Oxford.

Keefe, Rosanna and Smith, Peter (ed.) (1997). Vagueness: A
Reader. MIT Press, Cambridge, MA.

Kripke, Saul A. (1972). Naming and Necessity. Harvard Uni-
versity Press, Cambridge, MA.
Lambert, Karel (2003). Free Logic: Selected Essays. Cambridge
University Press, Cambridge.
Lewis, David (1970). Anselm and actuality. Nous, 175–188.
Reprinted in (Lewis, 1983).



References178

——— (1983). Philosophical Papers, Volume I. Oxford Univer-
sity Press, Oxford.
——— (1986). On the Plurality of Worlds. Blackwell, Oxford.
Lycan, William G. (2001). Real Conditionals. Oxford University
Press, Oxford.
Mares, Edwin (2004). Relevant Logic: A Philosophical Interpre-
tation. Cambridge University Press, Cambridge.
Menzel, Christopher (1991). The true modal logic. Journal of
Philosophical Logic, 20, 331–374.

Priest, Graham (1979). The logic of paradox. Journal of Philo-
sophical Logic, 8, 219–241.

——— (2006). In Contradiction (Second edn). Oxford Univer-
sity Press, Oxford.
——— (2008). An Introduction to Non-Classical Logic (Second
edn). Cambridge University Press, Cambridge.
Read, Stephen (1989). Relevant Logic: A Philosophical Exami-
nation of Inference. Blackwell, Oxford.

——— (1995). Thinking about Logic. Oxford University Press.
Restall, Greg (2005). Logic: An Introduction. New York: Rout-
ledge.
Russell, Bertrand (1901). Recent works on the principles of
mathematics. The International Monthly , 5, 83–101. Reprinted
in Russell 1918.
——— (1918). Mysticism and Logic, and other essays. Long-
mans, Green and Co., New York.
Sainsbury, R. M. (2001). Logical Forms (Second edn). Wiley-
Blackwell, Oxford.
Sider, Theodore (2009). Logic for Philosophy. Oxford University
Press.
Smith, Nicholas J. J. (2008). Vagueness and Degrees of Truth.
Oxford University Press, Oxford.
Smith, Peter (2003). An Introduction to Formal Logic. Cam-
bridge University Press, Cambridge.
Williamson, Timothy (1994). Vagueness. Routledge, Oxford.



INDEX

accessibility
relevant worlds, 156

accessibility relation, 157
actual world, 149, 167
actuality operator, 167
Addition, 40, 56, 75, 92
Adjunction, 56, 75, 92
Anderson, Alan, 86
Anonymous, 43
antiextension
defined, 102

antiextensions
world-relative, 147

argument form, 18, 22
argument forms, 170
argument(s), 6
Aristotle, 43
artificial languages, 20, 22
atomic sentence
definition, 16

atomic sentences, 14, 15, 101
atomics, 99, 101, 107, 116, 126,

138, 152
general, 116, 126
logical, 116, 126, 138, 152
truth at a world, 147
truth conditions, 102, 103
truth-in-a-case conditions, 103

basic classical consequence
defined, 53
general
defined, 53

basic classical theory
formal picture, 50

basic connectives, 138, 152
world-relative, 148

basic paracomplete theory
and logical truth, 71
compare classical, 70

consequence, 70
bc, 54, 70, 86, 171, 175
Bealliggins, Agnes, 10, 11, 15,

18, 27, 100, 120
Bealliggins, Max, 10, 15, 18, 62,

100, 120, 143
Beetle, 11
Bell, John L., 173
Belnap, Nuel, 86
beloved, 33
Bencivenga, Ermanno, 140
Bennett, Jonathan, 163
biconditional, 55
binary relations, 32, 33
defined, 32

Blocker, Jeff, xi
bound variable, 125
bound variables, 125
boxes
truth at a world, 149

Brady, Ross, xi
Bricker, Phillip, xi
Bueno, Otávio, xi
Burgess, John P., 173

Capture
actuality, 173
and morality, 154
general, 153
possibility, 153

Caret, Colin, xi
Cartesian product, 32
n-fold product, 32

cases
denotation functions, 105
domains, 104

cat, 7, 27
Charlie & Bev, xii
Chellas, Brian, 158
chemistry, 99



Index180

Cheyne, Colin, xi
Church, Alonzo, 12, 22
classical theory, 56, 57, 62
Clemens, Matt, xi
Colyvan, Mark, xi
complete, 65
complete cases, 57, 65
defined, 44

conditionals
beyond material, 162

conjunction, 15, 43, 68, 85
conjunctions, 107, 116, 126, 138,

152
and meaninglessness, 169
truth at a world, 148

conjuncts, 17
connectives, 99, 100
actuality, 167
basic, 43
conditional-like, 54
defined, 54
modal, 144
moral obligation, 154

consequence, 116, 139, 152, 171
different approach, 170

consequence relation
theory X, 175

consistent cases, 57, 65
defined, 44

constructive mathematics, 49
contingent, 58, 60, 77, 174
broad, 78

Contraposition, 56, 57, 75, 91
Cook, Roy, xi
Copeland, Jack, 158
Cotnoir, Aaron, xi
counterexample
definition, 7
free case, 139

counterexamples, 22
Cresswell, Max, xi, 158

De Morgan, 56, 76, 92
declarative sentence, 3
defined connectives, 54, 55, 57,

74, 91
definite descriptions
omission, 100

definition by abstraction, 27, 28

denotation, 106
denotation function, 115, 146
denotation functions, 104
DeVidi, David, 173
diamonds
truth at a world, 149

disjunction, 15, 43, 68, 74, 85
Disjunction Syllogism, 56
disjunctions, 107, 116, 126, 138,

152
and meaninglessness, 170
truth at a world, 148

Disjunctive Syllogism, 56, 75, 91
domain of a case, 104–107, 123,

138
domain of a universe, 146
Donahue, Charlie, xi
Double Negation, 56, 76, 92
Dumbledore, Albus, 172

EFQ, see Explosion
empirical observation, 7
empty set, 29
∅, 29
enjoyment, 173
equivalence relation
defined, 34

everything, 120
Excluded Middle, 56, 60, 61, 71,

75, 77, 91, 164, 170
exclusion constraint, 105
exhaustion, 127
exhaustion constraint, 105
existence claims, 127, 134
existence predicate, 137
existence set, 136, 137, 146
Existential Generalization, 139
existential import, 133, 134
existential quantifier, 120, 122,

127, 128, 130, 138
existential sentences, 123
truth at a world, 148

existential sentences, 124, 127,
152

existentially loaded, 134
Explosion, 56, 75, 92, 164, 166,

170
extension
defined, 102



Index 181

extensions
world-relative, 147

falsity in a universe, 150
FDE, 121, 127, 129, 150, 164,

165, 170, 175
Field, Hartry, xi
Field, Harty, 165
follows from, 3, 20
form, 17
formal languages, 12, 20
formal semantics, 20
formula, 125
formulas, 125
atomic, 125

free logic, 133, 135, 137, 140
free variable, 125
freedom, 135, 137, 139, 148
freedom of speech, 133
Frost, Robert, 161
functions, 30, 34, 36
argument of, 35
binary, 35
defined, 34
notation, 34
table form, 35, 36

unary, 35
value of, 35

gaps, 63, 66, 69–72, 116, 121
Garfield, Jay, xi
Gauker, Christopher, xi, 163
General basic paracomplete

consequence
defined, 74

Gettier, Edmund, xi
Girle, Rod, xi, 158
Glanzberg, Michael, xi
gluts, 83, 85–90, 93, 116, 121
Goble, Lou, 173
God, 110
Goddu, Geoff, xi
Goldrei, D. C., 37
Greenough, Patrick, xi
Grim, Patrick, xi

Haack, Susan, 9
Hardegree, Gary, xi
Higgins, Katrina, xii

higher-order logic
omission, 173

Hjortland, Ole, xi
Hughes, Michael, xi
Huxley, Thomas H., 120
Hyde, Dominic, xi, 77

identity, 112, 113, 116, 117, 147
antiextension, 116, 117
extension, 116

identity pairs, 112, 137
identity predicate, 110
incomplete cases, 80
inconsistent case, 81
inconsistent cases, 82, 83
indeterminacy, 58, 80
innards, 100, 110
intersection
definition, 29

intuitionistic logic
omission, 167

Jacquette, Dale, 173
Jenkins, Carrie, xi

K3, 70, 121, 171, 175
Keefe, Rosanna, 77
Kripke, Saul, 146
Kuratowski, Kazimierz, 31, 33

languages, 12
precision, 57
precisions, 49

laws of logical coherence, 155
Lehmann, Scott, 140
LEM, see Excluded Middle
Lewis, C. I., 162
Lewis, David K., xi, 167
logical behavior, 21
logical connectives, 15, 16, 21,

22, 62
logical consequence, 3–5, 8, 20,

107
classical theory, 43, 47
definition, 5

logical expressions, 15, 110–113,
117, 118, 161

logical form, 16–18, 22, 139
logical forms, 75, 153



Index182

valid forms, 55
logical implication, 3
logical pluralism, ix, 9
logical rivalry, ix, 20–22
logical significance, 16
logical theories, 21, 22, 54, 91,

161, 170
downright conflict, 161

logical theory
aim of, 21

logical validity, see validity
logically false, 58, 77
logically true, 77
Long, Dee Dee, xi
love, 33
lovers, 33
Lycan, William, 163
Lynch, Michael, xi

Malley, Maureen, xi, xii
Mares, Edwin, xi, 163
material conditional, 55, 91
defined, 55
paracomplete, 74

mathematics, 49
Me, 26
meaninglessness, 173
membership relation, 26
Menzel, Christopher, 158
Meyer, Robert K., xi
Mfde, 150, 152–154, 158, 159,

167, 173
consequence, 150

modal connectives, 149
Modus Ponens, 56, 75, 91
Modus Tollens, 56, 75, 91
molecular sentence
definition, 16

molecular sentences, 14, 15, 99
moral laws, 155, 156
moral obligation, 154
Mortensen, Chris, xi
murder, 154
My mother, 145

names, 100
natural languages, 20, 62
necessity, 143, 144, 149, 150, 153,

154, 156, 157

connective, 144
truth at a world, 149

necessity claims, 152
negation, 15, 43, 68, 85
negations, 107, 116, 126, 138, 152
gap-characterizing, 165
truth at a world, 148

Nolan, Daniel, xi
Non-Contradiction, 56, 75, 91

Obama, Barack, 3, 162
object variables
bound, 125

open formula, 125
open sentence, 125
order, 30
ordered n-tuples, 30, 31

quadruples, 31
quintuples, 31
triples, 31

ordered pairs, 30, 35
identity criterion, 31
defined, 31

ordered set, 32
ordered sets, 30
identity criterion, 31

over-determinacy, 58
overdeterminacy, 80, 82, 87, 88,

93
overdetermined sentences, 83
Owings, Doug, xi

paracomplete, 65, 66, 68, 80, 91,
108, 127, 144, 171

basic truth conditions, 68
paracomplete case, 68, 71
paracomplete cases, 66, 73
paracomplete theory, 65, 66, 69,

71, 72, 77
atomic constraint, 68
compare classical, 75
formal picture, 72, 74
truth conditions, 73

paraconsistent, 83, 108, 127, 144
paraconsistent theory, 83–86
atomic constraint, 84
consequence, 86, 90, 91
truth conditions, 83

Pascal, Blaise, 80



Index 183

physicists, 20
physics, 99
possibility, 5, 6, 11, 143, 144,

149, 150, 152, 154,
156, 157

connective, 144
limits of, 144
truth at a world, 149

possibility claims, 152
Potter, Harry, 172
predicate
antiextension of, 102
extension of, 102

predicates, 100
n-ary, 100
antiextension, 107
antiextensions, 123, 147
binary, 100
exclusion, 105, 127
exhaustion, 105
existence, 137
extension of, 107
extensions, 123
extensions of, 147
logical, 112
self-identity, 113
ternary, 100
unary, 100

predication, 106
Priest, Graham, xi, 58, 77, 93,

117, 128, 158, 164, 173
product, see Cartesian product
proof theory
omission, vii, 173

proper subset
definition, 30

properties, 100
psychological theories, 21

quantifiers, 120, 122, 124, 125,
127–129, 138, 146

quantum logic
ommission, 173

rational inquiry, 7
Rayo, Agustín, xi
Read, Stephen, xi, 9, 22, 164
Reductio, 61
reflexivity

defined, 33
relations, 30, 32
n-ary, 33
domain of, 33
defined, 33

field of, 33
range of, 33
defined, 33

ternary, 35
Release
actuality, 173
and morality, 154
general, 153
necessity, 154

relevant (-ance) logic
omission, 173

Restall, Greg, ix, xi, 58, 77, 93,
158, 173

Ripley, David, xi
Rossberg, Hair, 143
Rossberg, Marcus, xi
Russell, Bertrand, vii, 27, 100
Russell, Gillian, xi

Sainsbury, Mark, 22
satisfies, 116, 123, 139
Schechter, Josh, xi
Seligman, Jerry, xi
semantics, 12, 13, 20
sentence, see declarative

sentence
sentential connective
main connective, 17

sentential connectives, 15
arity of, 15
binary, 15
unary, 15

set of worlds, 146
set-forming operations, 29
sets, 26
brace notation, 27
comprehension, 27, 28
elements, 26
entry condition, 27
extensionality, 28, 30
identity criterion, 28, 30
members, 26
membership criterion, 27
ordered n-tuples, 30



Index184

ordered pairs, 30
Shapiro, Lionel, xi
Shapiro, Stewart, xi
Sider, Theodore, 164, 173
Simplification, 56, 75, 92
Slaney, John, xi
Smith, Nicholas J. J., xi, 77
Smith, Peter, 117
Solomon, Graham, 173
Solomon, Reed, xi
something, 120
sound argument
definition, 8

Steuber, David, xi
Stevenson, Robert Louis, 3
Stewart, Guy, 133, 134, 136, 137,

139–141
Strong Kleene, 70, 175
subset
definition, 29

symmetry
defined, 34

syntax, 12, 13, 20

table, 7
Tanaka, Koji, xi
Tarski, Alfred, 120
theological theories, 21
things, 26, 33
Trammell, Richard, xi
transitivity
defined, 34

trivial case, 82
defined, 82

truth at a world, 145
truth conditions, 13, 19, 20, 44
basic classical, 45, 46
identity sentences, 114

truth in a case, 14, 43, 56, 152
truth in a universe, 149
truth-in-a-case conditions, 14,

19, 20, 88

basic classical, 45

union
definition, 29

universal quantifier, 120, 122,
128–130, 138

truth at a world, 148
universal sentences, 123

universal sentences, 124, 127, 152
universe of worlds, 146
universes, 149
unsettled, 62–65, 70–73, 76
unsettled sentences, 66
unsettledness, 62
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