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Introduction

The special role of logic in rational inquiry

What do the fields of astronomy, economics, finance, law, mathematics, med-
icine, physics, and sociology have in common? Not much in the way of sub-
ject matter, that’s for sure. And not all that much in the way of methodology.
What they do have in common, with each other and with many other fields, is
their dependence on a certain standard of rationality. In each of these fields,
it is assumed that the participants can differentiate between rational argu-
mentation based on assumed principles or evidence, and wild speculation or
nonsequiturs, claims that in no way follow from the assumptions. In other
words, these fields all presuppose an underlying acceptance of basic principles
of logic.

For that matter, all rational inquiry depends on logic, on the ability of logic and rational
inquirypeople to reason correctly most of the time, and, when they fail to reason

correctly, on the ability of others to point out the gaps in their reasoning.
While people may not all agree on a whole lot, they do seem to be able to agree
on what can legitimately be concluded from given information. Acceptance of
these commonly held principles of rationality is what differentiates rational
inquiry from other forms of human activity.

Just what are the principles of rationality presupposed by these disciplines?
And what are the techniques by which we can distinguish correct or “valid”
reasoning from incorrect or “invalid” reasoning? More basically, what is it
that makes one claim “follow logically” from some given information, while
some other claim does not?

Many answers to these questions have been explored. Some people have
claimed that the laws of logic are simply a matter of convention. If this is so, logic and convention
we could presumably decide to change the conventions, and so adopt different
principles of logic, the way we can decide which side of the road we drive
on. But there is an overwhelming intuition that the laws of logic are somehow
more fundamental, less subject to repeal, than the laws of the land, or even the
laws of physics. We can imagine a country in which a red traffic light means
go, and a world on which water flows up hill. But we can’t even imagine a
world in which there both are and are not nine planets.

The importance of logic has been recognized since antiquity. After all, no
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2 / Introduction

science can be any more certain than its weakest link. If there is something
arbitrary about logic, then the same must hold of all rational inquiry. Thus
it becomes crucial to understand just what the laws of logic are, and evenlaws of logic
more important, why they are laws of logic. These are the questions that one
takes up when one studies logic itself. To study logic is to use the methods of
rational inquiry on rationality itself.

Over the past century the study of logic has undergone rapid and im-
portant advances. Spurred on by logical problems in that most deductive of
disciplines, mathematics, it developed into a discipline in its own right, with its
own concepts, methods, techniques, and language. The Encyclopedia Brittan-
ica lists logic as one of the seven main branches of knowledge. More recently,
the study of logic has played a major role in the development of modern day
computers and programming languages. Logic continues to play an important
part in computer science; indeed, it has been said that computer science is
just logic implemented in electrical engineering.

This book is intended to introduce you to some of the most importantgoals of the book
concepts and tools of logic. Our goal is to provide detailed and systematic
answers to the questions raised above. We want you to understand just how
the laws of logic follow inevitably from the meanings of the expressions we
use to make claims. Convention is crucial in giving meaning to a language,
but once the meaning is established, the laws of logic follow inevitably.

More particularly, we have two main aims. The first is to help you learn
a new language, the language of first-order logic. The second is to help you
learn about the notion of logical consequence, and about how one goes about
establishing whether some claim is or is not a logical consequence of other
accepted claims. While there is much more to logic than we can even hint at
in this book, or than any one person could learn in a lifetime, we can at least
cover these most basic of issues.

Why learn an artificial language?

This language of first-order logic is very important. Like Latin, the language is
not spoken, but unlike Latin, it is used every day by mathematicians, philoso-
phers, computer scientists, linguists, and practitioners of artificial intelligence.
Indeed, in some ways it is the universal language, the lingua franca, of the sym-
bolic sciences. Although it is not so frequently used in other forms of rational
inquiry, like medicine and finance, it is also a valuable tool for understanding
the principles of rationality underlying these disciplines as well.

The language goes by various names: the lower predicate calculus, the
functional calculus, the language of first-order logic, and fol. The last ofFOL
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Why learn an artificial language? / 3

these is pronounced ef–oh–el, not fall, and is the name we will use.
Certain elements of fol go back to Aristotle, but the language as we know

it today has emerged over the past hundred years. The names chiefly associ-
ated with its development are those of Gottlob Frege, Giuseppe Peano, and
Charles Sanders Peirce. In the late nineteenth century, these three logicians
independently came up with the most important elements of the language,
known as the quantifiers. Since then, there has been a process of standard-
ization and simplification, resulting in the language in its present form. Even
so, there remain certain dialects of fol, differing mainly in the choice of the
particular symbols used to express the basic notions of the language. We will
use the dialect most common in mathematics, though we will also tell you
about several other dialects along the way. Fol is used in different ways in
different fields. In mathematics, it is used in an informal way quite exten- logic and mathematics
sively. The various connectives and quantifiers find their way into a great deal
of mathematical discourse, both formal and informal, as in a classroom set-
ting. Here you will often find elements of fol interspersed with English or
the mathematician’s native language. If you’ve ever taken calculus you have
probably seen such formulas as:

∀ε > 0 ∃δ > 0 . . .

Here, the unusual, rotated letters are taken directly from the language fol.
In philosophy, fol and enrichments of it are used in two different ways. As logic and philosophy

in mathematics, the notation of fol is used when absolute clarity, rigor, and
lack of ambiguity are essential. But it is also used as a case study of making
informal notions (like grammaticality, meaning, truth, and proof) precise and
rigorous. The applications in linguistics stem from this use, since linguistics
is concerned, in large part, with understanding some of these same informal
notions.

In artificial intelligence, fol is also used in two ways. Some researchers logic and artificial
intelligencetake advantage of the simple structure of fol sentences to use it as a way to

encode knowledge to be stored and used by a computer. Thinking is modeled
by manipulations involving sentences of fol. The other use is as a precise
specification language for stating axioms and proving results about artificial
agents.

In computer science, fol has had an even more profound influence. The logic and computer
sciencevery idea of an artificial language that is precise yet rich enough to program

computers was inspired by this language. In addition, all extant programming
languages borrow some notions from one or another dialect of fol. Finally,
there are so-called logic programming languages, like Prolog, whose programs
are sequences of sentences in a certain dialect of fol. We will discuss the

Why learn an artificial language?
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logical basis of Prolog a bit in Part III of this book.
Fol serves as the prototypical example of what is known as an artificialartificial languages

language. These are languages that were designed for special purposes, and
are contrasted with so-called natural languages, languages like English and
Greek that people actually speak. The design of artificial languages within the
symbolic sciences is an important activity, one that is based on the success of
fol and its descendants.

Even if you are not going to pursue logic or any of the symbolic sciences,
the study of fol can be of real benefit. That is why it is so widely taught. For
one thing, learning fol is an easy way to demystify a lot of formal work. It will
also teach you a great deal about your own language, and the laws of logic it
supports. First, fol, while very simple, incorporates in a clean way some of thelogic and ordinary

language important features of human languages. This helps make these features much
more transparent. Chief among these is the relationship between language
and the world. But, second, as you learn to translate English sentences into
fol you will also gain an appreciation of the great subtlety that resides in
English, subtlety that cannot be captured in fol or similar languages, at least
not yet. Finally, you will gain an awareness of the enormous ambiguity present
in almost every English sentence, ambiguity which somehow does not prevent
us from understanding each other in most situations.

Consequence and proof

Earlier, we asked what makes one claim follow from others: convention, or
something else? Giving an answer to this question for fol takes up a signif-
icant part of this book. But a short answer can be given here. Modern logic
teaches us that one claim is a logical consequence of another if there is no waylogical consequence
the latter could be true without the former also being true.

This is the notion of logical consequence implicit in all rational inquiry.
All the rational disciplines presuppose that this notion makes sense, and that
we can use it to extract consequences of what we know to be so, or what we
think might be so. It is also used in disconfirming a theory. For if a particular
claim is a logical consequence of a theory, and we discover that the claim is
false, then we know the theory itself must be incorrect in some way or other.
If our physical theory has as a consequence that the planetary orbits are
circular when in fact they are elliptical, then there is something wrong with our
physics. If our economic theory says that inflation is a necessary consequence
of low unemployment, but today’s low employment has not caused inflation,
then our economic theory needs reassessment.

Rational inquiry, in our sense, is not limited to academic disciplines, and so
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Essential instructions about homework exercises / 5

neither are the principles of logic. If your beliefs about a close friend logically
imply that he would never spread rumors behind your back, but you find that
he has, then your beliefs need revision. Logical consequence is central, not
only to the sciences, but to virtually every aspect of everyday life.

One of our major concerns in this book is to examine this notion of logical
consequence as it applies specifically to the language fol. But in so doing, we
will also learn a great deal about the relation of logical consequence in natural
languages. Our main concern will be to learn how to recognize when a specific
claim follows logically from others, and conversely, when it does not. This is
an extremely valuable skill, even if you never have occasion to use fol again
after taking this course. Much of our lives are spent trying to convince other
people of things, or being convinced of things by other people, whether the
issue is inflation and unemployment, the kind of car to buy, or how to spend
the evening. The ability to distinguish good reasoning from bad will help you
recognize when your own reasoning could be strengthened, or when that of
others should be rejected, despite superficial plausibility.

It is not always obvious when one claim is a logical consequence of oth-
ers, but powerful methods have been developed to address this problem, at
least for fol. In this book, we will explore methods of proof—how we can proof and

counterexampleprove that one claim is a logical consequence of another—and also methods
for showing that a claim is not a consequence of others. In addition to the
language fol itself, these two methods, the method of proof and the method
of counterexample, form the principal subject matter of this book.

Essential instructions about homework exercises

This book came packaged with software that you must have to use the book.
In the software package, you will find a CD-ROM containing four computer
applications—Tarski’s World, Fitch, Boole and Submit—and a manual that Tarski’s World, Fitch,

Boole and Submitexplains how to use them. If you do not have the complete package, you will
not be able to do many of the exercises or follow many of the examples used in
the book. The CD-ROM also contains an electronic copy of the book, in case
you prefer reading it on your computer. When you buy the package, you also
get access to the Grade Grinder, an Internet grading service that can check the Grade Grinder
whether your homework is correct.

About half of the exercises in the first two parts of the book will be com-
pleted using the software on the CD-ROM. These exercises typically require
that you create a file or files using Tarski’s World, Fitch or Boole, and then
submit these solution files using the program Submit. When you do this, your
solutions are not submitted directly to your instructor, but rather to our grad-

Essential instructions about homework exercises
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ing server, the Grade Grinder, which assesses your files and sends a report to
both you and your instructor. (If you are not using this book as a part of a
formal class, you can have the reports sent just to you.)

Exercises in the book are numbered n.m, where n is the number of the
chapter and m is the number of the exercise in that chapter. Exercises whose
solutions consist of one or more files that you are to submit to the Grade
Grinder are indicated with an arrow (➶), so that you know the solutions are➶ vs. ✎

to be sent off into the Internet ether. Exercises whose solutions are to be
turned in (on paper) to your instructor are indicated with a pencil (✎). For
example, Exercises 36 and 37 in Chapter 6 might look like this:

6.36
➶

Use Tarski’s World to build a world in which the following sentences
are all true. . . .

6.37
✎

Turn in an informal proof that the following argument is logically
valid. . . .

The arrow on Exercise 6.36 tells you that the world you create using
Tarski’s World is to be submitted electronically, and that there is nothing
else to turn in. The pencil on Exercise 6.37 tells you that your solution should
be turned in directly to your instructor, on paper.

Some exercises ask you to turn in something to your instructor in addition
to submitting a file electronically. These are indicated with both an arrow and
a pencil (➶|✎). This is also used when the exercise may require a file to be
submitted, but may not, depending on the solution. For example, the next
problem in Chapter 6 might ask:

6.38
➶|✎

Is the following argument valid? If so, use Fitch to construct a formal
proof of its validity. If not, explain why it is invalid and turn in your
explanation to your instructor.

Here, we can’t tell you definitely whether you’ll be submitting a file or
turning something in without giving away an important part of the exercise,
so we mark the exercise with both symbols.

By the way, in giving instructions in the exercises, we will reserve the word
“submit” for electronic submission, using the Submit program. We use “turnsubmitting vs. turning

in exercises in” when you are to turn in the solution to your instructor.
When you create files to be submitted to the Grade Grinder, it is important

that you name them correctly. Sometimes we will tell you what to name the
files, but more often we expect you to follow a few standard conventions. Our
naming conventions are simple. If you are creating a proof using Fitch, thennaming solution files
you should name the file Proof n.m, where n.m is the number of the exercise. If
you are creating a world or sentence file in Tarski’s World, then you should call
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it either World n.m or Sentences n.m, where n.m is the number of the exercise.
Finally, if you are creating a truth table using Boole, you should name it
Table n.m. The key thing is to get the right exercise number in the name,
since otherwise your solution will be graded incorrectly. We’ll remind you of
these naming conventions a few times, but after that you’re on your own.

When an exercise asks you to construct a formal proof using Fitch, you
will find a file on your disk called Exercise n.m. This file contains the proof set starting proofs
up, so you should open it and construct your solution in this file. This is a lot
easier for you and also guarantees that the Grade Grinder will know which
exercise you are solving. So make sure you always start with the packaged
Exercise file when you create your solution.

Exercises may also have from one to three stars (?, ??, ???), as a rough ? stars
indication of the difficulty of the problem. For example, this would be an
exercise that is a little more difficult than average (and whose solution you
turn in to your instructor):

6.39
✎?

Design a first-order language that allows you to express the following
English sentences. . . .

Remember

1. The arrow (➶) means that you submit your solution electronically.

2. The pencil (✎) means that you turn in your solution to your instruc-
tor.

3. The combination (➶|✎) means that your solution may be either a
submitted file or something to turn in, or possibly both.

4. Stars (?, ??, ???) indicate exercises that are more difficult than average.

5. Unless otherwise instructed, name your files Proof n.m, World n.m,
Sentences n.m, or Table n.m, where n.m is the number of the exercise.

6. When using Fitch to construct Proof n.m, start with the exercise file
Exercise n.m, which contains the problem setup.

Throughout the book, you will find a special kind of exercise that we
call You try it exercises. These appear as part of the text rather than in You try it sections
the exercise sections because they are particularly important. They either
illustrate important points about logic that you will need to understand later
or teach you some basic operations involving one of the computer programs
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that came with your book. Because of this, you shouldn’t skip any of the You
try it sections. Do these exercises as soon as you come to them, if you are in
the vicinity of a computer. If you aren’t in the vicinity of a computer, come
back and do them as soon as you are.

Here’s your first You try it exercise. Make sure you actually do it, right
now if possible. It will teach you how to use Submit to send files to the Grade
Grinder, a skill you definitely want to learn. You will need to know your email
address, your instructor’s name and email address, and your Book ID number
before you can do the exercise. If you don’t know any of these, talk to your
instructor first. Your computer must be connected to the internet to submit
files. If it’s not, use a public computer at your school or at a public library.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 1. We’re going to step you through the process of submitting a file to the
Grade Grinder. The file is called World Submit Me 1. It is a Tarski’s World
file, but you won’t have to open it using Tarski’s World in order to sub-
mit it. We’ll pretend that it is an exercise file that you’ve created while
doing your homework, and now you’re ready to submit it. More complete
instructions on running Submit are contained in the instruction manual
that came with the software.

I 2. Find the program Submit on the CD-ROM that came with your book.
Submit has a blue and yellow icon and appears inside a folder called Sub-
mit Folder. Once you’ve found it, double-click on the icon to launch the
program.

I 3. After a moment, you will see the main Submit window, which has a rotat-
ing cube in the upper-left corner. The first thing you should do is fill in the
requested information in the five fields. Enter your Book ID first, then your
name and email address. You have to use your complete email address—
for example, claire@cs.nevada-state.edu, not just claire or claire@cs—since
the Grade Grinder will need the full address to send its response back to
you. Also, if you have more than one email address, you have to use the
same one every time you submit files, since your email address and Book ID
together are how Grade Grinder will know that it is really you submitting
files. Finally, fill in your instructor’s name and complete email address. Be
very careful to enter the correct and complete email addresses!
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J4. If you are working on your own computer, you might want to save the
information you’ve just entered on your hard disk so that you won’t have
to enter it by hand each time. You can do this by choosing Save As. . .
from the File menu. This will save all the information except the Book ID
in a file called Submit User Data. Later, you can launch Submit by double-
clicking on this file, and the information will already be entered when the
program starts up.

J5. We’re now ready to specify the file to submit. Click on the button Choose
Files To Submit in the lower-left corner. This opens a window showing
two file lists. The list on the left shows files on your computer—currently,
the ones inside the Submit Folder—while the one on the right (which is
currently empty) will list files you want to submit. We need to locate the
file World Submit Me 1 on the left and copy it over to the right.

The file World Submit Me 1 is located in the Tarski’s World exercise files
folder. To find this folder you will have to navigate among folders until it
appears in the file list on the left. Start by clicking once on the Submit
Folder button above the left-hand list. A menu will appear and you can
then move up to higher folders by choosing their names (the higher folders
appear lower on this menu). Move to the next folder up from the Submit
Folder, which should be called LPL Software. When you choose this folder,
the list of files will change. On the new list, find the folder Tarski’s World
Folder and double-click on its name to see the contents of the folder. The
list will again change and you should now be able to see the folder TW Exer-
cise Files. Double-click on this folder and the file list will show the contents
of this folder. Toward the bottom of the list (you will have to scroll down
the list by clicking on the scroll buttons), you will find World Submit Me
1. Double-click on this file and its name will move to the list on the right.

J6. When you have successfully gotten the file World Submit Me 1 on the right-
hand list, click the Done button underneath the list. This should bring you
back to the original Submit window, only now the file you want to submit
appears in the list of files. (Macintosh users can get to this point quickly by
dragging the files they want to submit onto the Submit icon in the Finder.
This will launch Submit and put those files in the submission list. If you
drag a folder of files, it will put all the files in the folder onto the list.)

J7. When you have the correct file on the submission list, click on the Sub-
mit Files button under this list. Submit will ask you to confirm that you
want to submit World Submit Me 1, and whether you want to send the
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results just to you or also to your instructor. In this case, select Just Me.
When you are submitting finished homework exercises, you should select
Instructor Too. Once you’ve chosen who the results should go to, click
the Proceed button and your submission will be sent. (With real home-
work, you can always do a trial submission to see if you got the answers
right, asking that the results be sent just to you. When you are satisfied
with your solutions, submit the files again, asking that the results be sent
to the instructor too. But don’t forget the second submission!)

I 8. In a moment, you will get a dialog box that will tell you if your submission
has been successful. If so, it will give you a “receipt” message that you can
save, if you like. If you do not get this receipt, then your submission has
not gone through and you will have to try again.

I 9. A few minutes after the Grade Grinder receives your file, you should get
an email message saying that it has been received. If this were a real home-
work exercise, it would also tell you if the Grade Grinder found any errors
in your homework solutions. You won’t get an email report if you put in
the wrong, or a misspelled, email address. If you don’t get a report, try
submitting again with the right address.

I 10. When you are done, choose Quit from the File menu. Congratulations on
submitting your first file.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

Here’s an important thing for you to know: when you submit files to the
Grade Grinder, Submit sends a copy of the files. The original files are stillwhat gets sent
on the disk where you originally saved them. If you saved them on a public
computer, it is best not to leave them lying around. Put them on a floppy disk
that you can take with you, and delete any copies from the public computer’s
hard disk.

To the instructor

Students, you may skip this section. It is a personal note from us, the authors,
to instructors planning to use this package in their logic courses.

Practical matters

We use the Language, Proof and Logic package (LPL) in two very different
sorts of courses. One is a first course in logic for undergraduates with no
previous background in logic, philosophy, mathematics, or computer science.
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This important course, sometimes disparagingly referred to as “baby logic,”
is often an undergraduate’s first and only exposure to the rigorous study of
reasoning. When we teach this course, we cover much of the first two parts
of the book, leaving out many of the sections indicated as optional in the
table of contents. Although some of the material in these two parts may seem
more advanced than is usually covered in a traditional introductory course,
we find that the software makes it completely accessible to even the relatively
unprepared student.

At the other end of the spectrum, we use LPL in an introductory graduate-
level course in metatheory, designed for students who have already had some
exposure to logic. In this course, we quickly move through the first two parts,
thereby giving the students both a review and a common framework for use
in the discussions of soundness and completeness. Using the Grade Grinder,
students can progress through much of the early material at their own pace,
doing only as many exercises as is needed to demonstrate competence.

There are no doubt many other courses for which the package would be
suitable. Though we have not had the opportunity to use it this way, it would
be ideally suited for a two-term course in logic and its metatheory.

Our courses are typically listed as philosophy courses, though many of the
students come from other majors. Since LPL is designed to satisfy the logical
needs of students from a wide variety of disciplines, it fits naturally into logic
courses taught in other departments, most typically mathematics and com-
puter science. Instructors in different departments may select different parts
of the optional material. For example, computer science instructors may want
to cover the sections on resolution in Part III, though philosophy instructors
generally do not cover this material.

If you have not used software in your teaching before, you may be con-
cerned about how to incorporate it into your class. Again, there is a spectrum
of possibilities. At one end is to conduct your class exactly the way you always
do, letting the students use the software on their own to complete homework
assignments. This is a perfectly fine way to use the package, and the students
will still benefit significantly from the suite of software tools. We find that
most students now have easy access to computers and the Internet, and so
no special provisions are necessary to allow them to complete and submit the
homework.

At the other end are courses given in computer labs or classrooms, where
the instructor is more a mentor offering help to students as they proceed at
their own pace, a pace you can keep in step with periodic quizzes and exams.
Here the student becomes a more active participant in the learning, but such
a class requires a high computer:student ratio, at least one:three. For a class
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of 30 or fewer students, this can be a very effective way to teach a beginning
logic course.

In between, and the style we typically use, is to give reasonably traditional
presentations, but to bring a laptop to class from time to time to illustrate
important material using the programs. This requires some sort of projection
system, but also allows you to ask the students to do some of the computer
problems in class. We encourage you to get students to operate the computer
themselves in front of the class, since they thereby learn from one another,
both about strategies for solving problems and constructing proofs, and about
different ways to use the software. A variant of this is to schedule a weekly
lab session as part of the course.

The book contains an extremely wide variety of exercises, ranging from
solving puzzles expressed in fol to conducting Boolean searches on the World
Wide Web. There are far more exercises than you can expect your students
to do in a single quarter or semester. Beware that many exercises, especially
those using Tarski’s World, should be thought of as exercise sets. They may, for
example, involve translating ten or twenty sentences, or transforming several
sentences into conjunctive normal form. Students can find hints and solutions
to selected exercises on our web site. You can download a list of these exercises
from the same site.

Although there are more exercises than you can reasonably assign in a
semester, and so you will have to select those that best suit your course, we
do urge you to assign all of the You try it exercises. These are not difficult
and do not test students’ knowledge. Instead, they are designed to illustrate
important logical concepts, to introduce students to important features of the
programs, or both. The Grade Grinder will check any files that the students
create in these sections.

We should say a few words about the Grade Grinder, since it is a truly
innovative feature of this package. Most important, the Grade Grinder will
free you from the most tedious aspect of teaching logic, namely, grading those
kinds of problems whose assessment can be mechanized. These include formal
proofs, translation into fol, truth tables, and various other kinds of exercises.
This will allow you to spend more time on the more rewarding parts of teaching
the material.

That said, it is important to emphasize two points. The first is that the
Grade Grinder is not limited in the way that most computerized grading
programs are. It uses sophisticated techniques, including a powerful first-order
theorem prover, in assessing student answers and providing intelligent reports
on those answers. Second, in designing this package, we have not fallen into
the trap of tailoring the material to what can be mechanically assessed. We
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firmly believe that computer-assisted learning has an important but limited
role to play in logic instruction. Much of what we teach goes beyond what
can be assessed automatically. This is why about half of the exercises in the
book still require human attention.

It is a bit misleading to say that the Grade Grinder “grades” the home-
work. The Grade Grinder simply reports to you any errors in the students’
solutions, leaving the decision to you what weight to give to individual prob-
lems and whether partial credit is appropriate for certain mistakes. A more
detailed explanation of what the Grade Grinder does and what grade reports
look like can be found at the web address given on page 15.

Before your students can request that their Grade Grinder results be sent
to you, you will have to register with the Grade Grinder as an instructor. This registering with

the Grade Grindercan be done by going to the LPL web site and following the Instructor links.

Philosophical remarks

This book, and the supporting software that comes with it, grew out of our
own dissatisfaction with beginning logic courses. It seems to us that students
all too often come away from these courses with neither of the things we
want them to have. They do not understand the first-order language or the
rationale for it, and they are unable to explain why or even whether one claim
follows logically from another. Worse, they often come away with a complete
misconception about logic. They leave their first (and only) course in logic
having learned what seem like a bunch of useless formal rules. They gain little
if any understanding about why those rules, rather than some others, were
chosen, and they are unable to take any of what they have learned and apply
it in other fields of rational inquiry or in their daily lives. Indeed, many come
away convinced that logic is both arbitrary and irrelevant. Nothing could be
further from the truth.

The real problem, as we see it, is a failure on the part of logicians to find a
simple way to explain the relationship between meaning and the laws of logic.
In particular, we do not succeed in conveying to students what sentences
in fol mean, or in conveying how the meanings of sentences govern which
methods of inference are valid and which are not. It is this problem we set
out to solve with LPL.

There are two ways to learn a second language. One is to learn how to
translate sentences of the language to and from sentences of your native lan-
guage. The other is to learn by using the language directly. In teaching fol,
the first way has always been the prevailing method of instruction. There are
serious problems with this approach. Some of the problems, oddly enough,

To the instructor



14 / Introduction

stem from the simplicity, precision, and elegance of fol. This results in a dis-
tracting mismatch between the student’s native language and fol. It forces
students trying to learn fol to be sensitive to subtleties of their native lan-
guage that normally go unnoticed. While this is useful, it often interferes with
the learning of fol. Students mistake complexities of their native tongue for
complexities of the new language they are learning.

In LPL, we adopt the second method for learning fol. Students are given
many tasks involving the language, tasks that help them understand the mean-
ings of sentences in fol. Only then, after learning the basics of the symbolic
language, are they asked to translate between English and fol. Correct trans-
lation involves finding a sentence in the target language whose meaning ap-
proximates, as closely as possible, the meaning of the sentence being trans-
lated. To do this well, a translator must already be fluent in both languages.

We have been using this approach for several years. What allows it to
work is Tarski’s World, one of the computer programs in this package. Tarski’s
World provides a simple environment in which fol can be used in many of
the ways that we use our native language. We provide a large number of
problems and exercises that walk students through the use of the language in
this setting. We build on this in other problems where they learn how to put
the language to more sophisticated uses.

As we said earlier, besides teaching the language fol, we also discuss basic
methods of proof and how to use them. In this regard, too, our approach
is somewhat unusual. We emphasize both informal and formal methods of
proof. We first discuss and analyze informal reasoning methods, the kind
used in everyday life, and then formalize these using a Fitch-style natural
deduction system. The second piece of software that comes with the book,
which we call Fitch, makes it easy for students to learn this formal system
and to understand its relation to the crucial informal methods that will assist
them in other disciplines and in any walk of life.

A word is in order about why we chose a Fitch-style system of deduction,
rather than a more semantically based method like truth trees or semantic
tableau. In our experience, these semantic methods are easy to teach, but
are only really applicable to arguments in formal languages. In contrast, the
important rules in the Fitch system, those involving subproofs, correspond
closely to essential methods of reasoning and proof, methods that can be used
in virtually any context: formal or informal, deductive or inductive, practical
or theoretical. The point of teaching a formal system of deduction is not
so students will use the specific system later in life, but rather to foster an
understanding of the most basic methods of reasoning—methods that they
will use—and to provide a precise model of reasoning for use in discussions of
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soundness and completeness.
Tarski’s World also plays a significant role in our discussion of proof, along

with Fitch, by providing an environment for showing that one claim does
not follow from another. With LPL, students learn not just how to prove
consequences of premises, but also the equally important technique of showing
that a given claim does not follow logically from its premises. To do this, they
learn how to give counterexamples, which are really proofs of nonconsequence.
These will often be given using Tarski’s World.

The approach we take in LPL is also unusual in two other respects. One
is our emphasis on languages in which all the basic symbols are assumed to
be meaningful. This is in contrast to the so-called “uninterpreted languages”
(surely an oxymoron) so often found in logic textbooks. Another is the inclu-
sion of various topics not usually covered in introductory logic books. These
include the theory of conversational implicature, material on generalized quan-
tifiers, and most of the material in Part III. We believe that even if these topics
are not covered, their presence in the book illustrates to the student the rich-
ness and open-endedness of the discipline of logic.

Web address

In addition to the book, software, and grading service, additional material can
be found on the Web at the following address:

http://www-csli.stanford.edu/LPL/

Note the dash (-) rather than the more common period (.) after “www” in
this address.

Web address



16



Part I

Propositional Logic

17



18



Chapter 1

Atomic Sentences

In the Introduction, we talked about fol as though it were a single language.
Actually, it is more like a family of languages, all having a similar grammar
and sharing certain important vocabulary items, known as the connectives
and quantifiers. Languages in this family can differ, however, in the specific
vocabulary used to form their most basic sentences, the so-called atomic sen-
tences.

Atomic sentences correspond to the most simple sentences of English, sen- atomic sentences
tences consisting of some names connected by a predicate. Examples are Max
ran, Max saw Claire, and Claire gave Scruffy to Max. Similarly, in fol atomic
sentences are formed by combining names (or individual constants, as they
are often called) and predicates, though the way they are combined is a bit
different from English, as you will see.

Different versions of fol have available different names and predicates. We names and predicates
will frequently use a first-order language designed to describe blocks arranged
on a chessboard, arrangements that you will be able to create in the program
Tarski’s World. This language has names like b, e, and n2, and predicates
like Cube, Larger, and Between. Some examples of atomic sentences in this
language are Cube(b), Larger(c, f), and Between(b, c,d). These sentences say,
respectively, that b is a cube, that c is larger than f , and that b is between c

and d.
Later in this chapter, we will look at the atomic sentences used in two

other versions of fol, the first-order languages of set theory and arithmetic.
In the next chapter, we begin our discussion of the connectives and quantifiers
common to all first-order languages.

Section 1.1

Individual constants

Individual constants are simply symbols that are used to refer to some fixed
individual object. They are the fol analogue of names, though in fol we
generally don’t capitalize them. For example, we might use max as an individ-
ual constant to denote a particular person, named Max, or 1 as an individual
constant to denote a particular number, the number one. In either case, they
would basically work exactly the way names work in English. Our blocks
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language takes the letters a through f plus n1, n2, . . . as its names.
The main difference between names in English and the individual constants

of fol is that we require the latter to refer to exactly one object. Obviously,names in fol

the name Max in English can be used to refer to many different people, and
might even be used twice in a single sentence to refer to two different people.
Such wayward behavior is frowned upon in fol.

There are also names in English that do not refer to any actually existing
object. For example Pegasus, Zeus, and Santa Claus are perfectly fine names
in English; they just fail to refer to anything or anybody. We don’t allow such
names in fol.1 What we do allow, though, is for one object to have more than
one name; thus the individual constants matthew and max might both refer
to the same individual. We also allow for nameless objects, objects that have
no name at all.

Remember

In fol,

◦ Every individual constant must name an (actually existing) object.

◦ No individual constant can name more than one object.

◦ An object can have more than one name, or no name at all.

Section 1.2

Predicate symbols

Predicate symbols are symbols used to express some property of objects or
some relation between objects. Because of this, they are also sometimes calledpredicate or relation

symbols relation symbols. As in English, predicates are expressions that, when com-
bined with names, form atomic sentences. But they don’t correspond exactly
to the predicates of English grammar.

Consider the English sentence Max likes Claire. In English grammar, this
is analyzed as a subject-predicate sentence. It consists of the subject Max
followed by the predicate likes Claire. In fol, by contrast, we view this as
a claim involving two “logical subjects,” the names Max and Claire, and alogical subjects

1There is, however, a variant of first-order logic called free logic in which this assumption
is relaxed. In free logic, there can be individual constants without referents. This yields a
language more appropriate for mythology and fiction.
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predicate, likes, that expresses a relation between the referents of the names.
Thus, atomic sentences of fol often have two or more logical subjects, and the
predicate is, so to speak, whatever is left. The logical subjects are called the
“arguments” of the predicate. In this case, the predicate is said to be binary, arguments of a

predicatesince it takes two arguments.
In English, some predicates have optional arguments. Thus you can say

Claire gave, Claire gave Scruffy, or Claire gave Scruffy to Max. Here the
predicate gave is taking one, two, and three arguments, respectively. But in
fol, each predicate has a fixed number of arguments, a fixed arity as it is arity of a predicate
called. This is a number that tells you how many individual constants the
predicate symbol needs in order to form a sentence. The term “arity” comes
from the fact that predicates taking one argument are called unary, those
taking two are binary, those taking three are ternary, and so forth.

If the arity of a predicate symbol Pred is 1, then Pred will be used to
express some property of objects, and so will require exactly one argument (a
name) to make a claim. For example, we might use the unary predicate symbol
Home to express the property of being at home. We could then combine this
with the name max to get the expression Home(max), which expresses the
claim that Max is at home.

If the arity of Pred is 2, then Pred will be used to represent a relation
between two objects. Thus, we might use the expression Taller(claire, max) to
express a claim about Max and Claire, the claim that Claire is taller than
Max. In fol, we can have predicate symbols of any arity. However, in the
blocks language used in Tarski’s World we restrict ourselves to predicates
with arities 1, 2, and 3. Here we list the predicates of that language, this time
with their arity.

Arity 1: Cube, Tet, Dodec, Small, Medium, Large

Arity 2: Smaller, Larger, LeftOf, RightOf, BackOf, FrontOf, SameSize, Same-
Shape, SameRow, SameCol, Adjoins, =

Arity 3: Between

Tarski’s World assigns each of these predicates a fixed interpretation, one
reasonably consistent with the corresponding English verb phrase. For exam-
ple, Cube corresponds to is a cube, BackOf corresponds to is in back of, and
so forth. You can get the hang of them by working through the first set of
exercises given below. To help you learn exactly what the predicates mean,
Table 1.1 lists atomic sentences that use these predicates, together with their
interpretations.

In English, predicates are sometimes vague. It is often unclear whether vagueness
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Table 1.1: Blocks language predicates.

Atomic
Sentence Interpretation

Tet(a) a is a tetrahedron
Cube(a) a is a cube
Dodec(a) a is a dodecahedron
Small(a) a is small
Medium(a) a is medium
Large(a) a is large
SameSize(a, b) a is the same size as b

SameShape(a,b) a is the same shape as b

Larger(a, b) a is larger than b

Smaller(a,b) a is smaller than b

SameCol(a, b) a is in the same column as b

SameRow(a, b) a is in the same row as b

Adjoins(a, b)
a and b are located on adjacent (but
not diagonally) squares

LeftOf(a, b)
a is located nearer to the left edge of
the grid than b

RightOf(a, b)
a is located nearer to the right edge
of the grid than b

FrontOf(a, b)
a is located nearer to the front of the
grid than b

BackOf(a, b)
a is located nearer to the back of the
grid than b

Between(a, b, c)
a, b and c are in the same row, col-
umn, or diagonal, and a is between b

and c

an individual has the property in question or not. For example, Claire, who
is sixteen, is young. She will not be young when she is 96. But there is no
determinate age at which a person stops being young: it is a gradual sort of
thing. Fol, however, assumes that every predicate is interpreted by a deter-
minate property or relation. By a determinate property, we mean a propertydeterminate property
for which, given any object, there is a definite fact of the matter whether or
not the object has the property.

This is one of the reasons we say that the blocks language predicates are
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somewhat consistent with the corresponding English predicates. Unlike the
English predicates, they are given very precise interpretations, interpretations
that are suggested by, but not necessarily identical with, the meanings of the
corresponding English phrases. The case where the discrepancy is probably
the greatest is between Between and is between.

Remember

In fol,

◦ Every predicate symbol comes with a single, fixed “arity,” a number
that tells you how many names it needs to form an atomic sentence.

◦ Every predicate is interpreted by a determinate property or relation
of the same arity as the predicate.

Section 1.3

Atomic sentences

In fol, the simplest kinds of claims are those made with a single predicate
and the appropriate number of individual constants. A sentence formed by a
predicate followed by the right number of names is called an atomic sentence. atomic sentence
For example Taller(claire, max) and Cube(a) are atomic sentences, provided
the names and predicate symbols in question are part of the vocabulary of
our language. In the case of the identity symbol, we put the two required
names on either side of the predicate, as in a = b. This is called “infix” no- infix vs. prefix notation
tation, since the predicate symbol = appears in between its two arguments.
With the other predicates we use “prefix” notation: the predicate precedes
the arguments.

The order of the names in an atomic sentence is quite important. Just
as Claire is taller than Max means something different from Max is taller
than Claire, so too Taller(claire, max) means something completely different
than Taller(max, claire). We have set things up in our blocks language so that
the order of the arguments of the predicates is like that in English. Thus
LeftOf(b, c) means more or less the same thing as the English sentence b is
left of c, and Between(b, c, d) means roughly the same as the English b is
between c and d.

Predicates and names designate properties and objects, respectively. What
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makes sentences special is that they make claims (or express propositions).claims
A claim is something that is either true or false; which of these it is we call
its truth value. Thus Taller(claire, max) expresses a claim whose truth value istruth value
true, while Taller(max, claire) expresses a claim whose truth value is false.
(You probably didn’t know that, but now you do.) Given our assumption
that predicates express determinate properties and that names denote definite
individuals, it follows that each atomic sentence of fol must express a claim
that is either true or false.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 1. It is time to try your hand using Tarski’s World. In this exercise, you
will use Tarski’s World to become familiar with the interpretations of the
atomic sentences of the blocks language. Before starting, though, you need
to learn how to launch Tarski’s World and perform some basic operations.
Read the appropriate sections of the user’s manual describing Tarski’s
World before going on.

I 2. Launch Tarski’s World and open the files called Wittgenstein’s World and
Wittgenstein’s Sentences. You will find these in the folder TW Exercises. In
these files, you will see a blocks world and a list of atomic sentences. (We
have added comments to some of the sentences. Comments are prefaced
by a semicolon (“;”), which tells Tarski’s World to ignore the rest of the
line.)

I 3. Move through the sentences using the arrow keys on your keyboard, men-
tally assessing the truth value of each sentence in the given world. Use
the Verify button to check your assessments. (Since the sentences are all
atomic sentences the Game button will not be helpful.) If you are sur-
prised by any of the evaluations, try to figure out how your interpretation
of the predicate differs from the correct interpretation.

I 4. Next change Wittgenstein’s World in many different ways, seeing what hap-
pens to the truth of the various sentences. The main point of this is to
help you figure out how Tarski’s World interprets the various predicates.
For example, what does BackOf(d, c) mean? Do two things have to be in
the same column for one to be in back of the other?

I 5. Play around as much as you need until you are sure you understand the
meanings of the atomic sentences in this file. For example, in the original
world none of the sentences using Adjoins comes out true. You should try
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to modify the world to make some of them true. As you do this, you will
notice that large blocks cannot adjoin other blocks.

J6. In doing this exercise, you will no doubt notice that Between does not mean
exactly what the English between means. This is due to the necessity of
interpreting Between as a determinate predicate. For simplicity, we insist
that in order for b to be between c and d, all three must be in the same
row, column, or diagonal.

J7. When you are finished, close the files, but do not save the changes you
have made to them.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

Remember

In fol,

◦ Atomic sentences are formed by putting a predicate of arity n in front
of n names (enclosed in parentheses and separated by commas).

◦ Atomic sentences are built from the identity predicate, =, using infix
notation: the arguments are placed on either side of the predicate.

◦ The order of the names is crucial in forming atomic sentences.

Exercises

You will eventually want to read the entire chapter of the user’s manual on how to use Tarski’s World. To
do the following problems, you will need to read at least the first four sections. Also, if you don’t remember
how to name and submit your solution files, you should review the section on essential instructions in
the Introduction, starting on page 5.

1.1 If you skipped the You try it section, go back and do it now. This is an easy but crucial
exercise that will familiarize you with the atomic sentences of the blocks language. There is
nothing you need to turn in or submit, but don’t skip the exercise!

1.2
➶

(Copying some atomic sentences) This exercise will give you some practice with the Tarski’s
World keyboard window, as well as with the syntax of atomic sentences. The following are all
atomic sentences of our language. Start a new sentence file and copy them into it. Have Tarski’s
World check each formula after you write it to see that it is a sentence. If you make a mistake,
edit it before going on. Make sure you use the Add Sentence command between sentences,
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not the return key. If you’ve done this correctly, the sentences in your list will be numbered
and separated by horizontal lines.

1. Tet(a)
2. Medium(a)
3. Dodec(b)
4. Cube(c)
5. FrontOf(a,b)
6. Between(a, b, c)
7. a = d
8. Larger(a, b)
9. Smaller(a, c)

10. LeftOf(b, c)

Remember, you should save these sentences in a file named Sentences 1.2. When you’ve finished
your first assignment, submit all of your solution files using the Submit program.

1.3
➶

(Building a world) Build a world in which all the sentences in Exercise 1.2 are simultaneously
true. Remember to name and submit your world file as World 1.3.

1.4
➶

(Translating atomic sentences) Here are some simple sentences of English. Start a new sentence
file and translate them into fol.

1. a is a cube.
2. b is smaller than a.
3. c is between a and d.
4. d is large.
5. e is larger than a.
6. b is a tetrahedron.
7. e is a dodecahedron.
8. e is right of b.
9. a is smaller than e.

10. d is in back of a.
11. b is in the same row as d.
12. b is the same size as c.

After you’ve translated the sentences, build a world in which all of your translations are true.
Submit your sentence and world files as Sentences 1.4 and World 1.4.

1.5
➶

(Naming objects) Open Lestrade’s Sentences and Lestrade’s World. You will notice that none of
the objects in this world has a name. Your task is to assign the objects names in such a way
that all the sentences in the list come out true. Remember to save your solution in a file named
World 1.5. Be sure to use Save World As. . . , not Save World.
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1.6
➶?

(Naming objects, continued) Not all of the choices in Exercise 1.5 were forced on you. That
is, you could have assigned the names differently and still had the sentences come out true.
Change the assignment of as many names as possible while still making all the sentences true,
and submit the changed world as World 1.6. In order for us to compare your files, you must
submit both World 1.5 and World 1.6 at the same time.

1.7
➶|✎

(Context sensitivity of predicates) We have stressed the fact that fol assumes that every
predicate is interpreted by a determinate relation, whereas this is not the case in natural
languages like English. Indeed, even when things seem quite determinate, there is often some
form of context sensitivity. In fact, we have built some of this into Tarski’s World. Consider,
for example, the difference between the predicates Larger and BackOf. Whether or not cube a is
larger than cube b is a determinate matter, and also one that does not vary depending on your
perspective on the world. Whether or not a is back of b is also determinate, but in this case it
does depend on your perspective. If you rotate the world by 90◦, the answer might change.

Open Austin’s Sentences and Wittgenstein’s World. Evaluate the sentences in this file and
tabulate the resulting truth values in a table like the one below. We’ve already filled in the first
column, showing the values in the original world. Rotate the world 90◦ clockwise and evaluate
the sentences again, adding the results to the table. Repeat until the world has come full circle.

Original Rotated 90◦ Rotated 180◦ Rotated 270◦

1. false

2. false

3. true

4. false

5. true

6. false

You should be able to think of an atomic sentence in the blocks language that would produce
the following pattern:

true false true false

Add a seventh sentence to Austin’s Sentences that would display the above pattern.
Are there any atomic sentences in the blocks language that would produce this pattern?

false true false false

If so, add such a sentence as sentence eight in Austin’s Sentences. If not, leave sentence eight
blank.

Are there any atomic sentences that would produce a row in the table containing exactly
three true’s? If so, add such a sentence as number nine. If not, leave sentence nine blank.

Submit your modified sentence file as Sentences 1.7. Turn in your completed table to your
instructor.
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Section 1.4

General first-order languages

First-order languages differ in the names and predicates they contain, and so in
the atomic sentences that can be formed. What they share are the connectives
and quantifiers that enable us to build more complex sentences from these
simpler parts. We will get to those common elements in later chapters.

When you translate a sentence of English into fol, you will sometimestranslation
have a “predefined” first-order language that you want to use, like the blocks
language of Tarski’s World, or the language of set theory or arithmetic de-
scribed later in this chapter. If so, your goal is to come up with a translation
that captures the meaning of the original English sentence as nearly as pos-
sible, given the names and predicates available in your predefined first-order
language.

Other times, though, you will not have a predefined language to use for
your translation. If not, the first thing you have to do is decide what names and
predicates you need for your translation. In effect, you are designing, on the fly,designing languages
a new first-order language capable of expressing the English sentence you want
to translate. We’ve been doing this all along, for example when we introduced
Home(max) as the translation of Max is at home and Taller(claire, max) as the
translation of Claire is taller than Max.

When you make these decisions, there are often alternative ways to go.
For example, suppose you were asked to translate the sentence Claire gave
Scruffy to Max. You might introduce a binary predicate GaveScruffy(x, y),
meaning x gave Scruffy to y, and then translate the original sentence as
GaveScruffy(claire, max). Alternatively, you might introduce a three-place pred-
icate Gave(x, y, z), meaning x gave y to z, and then translate the sentence as
Gave(claire, scruffy, max).

There is nothing wrong with either of these predicates, or their resulting
translations, so long as you have clearly specified what the predicates mean.
Of course, they may not be equally useful when you go on to translate other
sentences. The first predicate will allow you to translate sentences like Maxchoosing predicates
gave Scruffy to Evan and Evan gave Scruffy to Miles. But if you then run into
the sentence Max gave Carl to Claire, you would be stuck, and would have
to introduce an entirely new predicate, say, GaveCarl(x, y). The three-place
predicate is thus more flexible. A first-order language that contained it (plus
the relevant names) would be able to translate any of these sentences.

In general, when designing a first-order language we try to economize on
the predicates by introducing more flexible ones, like Gave(x, y, z), rather than
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less flexible ones, like GaveScruffy(x, y) and GaveCarl(x, y). This produces a
more expressive language, and one that makes the logical relations between
various claims more perspicuous.

Names can be introduced into a first-order language to refer to anything
that can be considered an object. But we construe the notion of an “object” objects
pretty flexibly—to cover anything that we can make claims about. We’ve al-
ready seen languages with names for people and the blocks of Tarski’s World.
Later in the chapter, we’ll introduce languages with names for sets and num-
bers. Sometimes we will want to have names for still other kinds of “objects,”
like days or times. Suppose, for example, that we want to translate the sen-
tences:

Claire gave Scruffy to Max on Saturday.
Sunday, Max gave Scruffy to Evan.

Here, we might introduce a four-place predicate Gave(w, x, y, z), meaning w
gave x to y on day z, plus names for particular days, like last Saturday and
last Sunday. The resulting translations would look something like this:

Gave(claire, scruffy, max, saturday)
Gave(max, scruffy, evan, sunday)

Designing a first-order language with just the right names and predicates
requires some skill. Usually, the overall goal is to come up with a language
that can say everything you want, but that uses the smallest “vocabulary”
possible. Picking the right names and predicates is the key to doing this.

Exercises

1.8
✎

Suppose we have two first-order languages: the first contains the binary predicates
GaveScruffy(x, y) and GaveCarl(x, y), and the names max and claire; the second contains the
ternary predicate Gave(x, y, z) and the names max, claire, scruffy, and carl.

1. List all of the atomic sentences that can be expressed in the first language. (Some of
these may say weird things like GaveScruffy(claire, claire), but don’t worry about that.)

2. How many atomic sentences can be expressed in the second language? (Count all of
them, including odd ones like Gave(scruffy, scruffy, scruffy).)

3. How many names and binary predicates would a language like the first need in order
to say everything you can say in the second?
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Table 1.2: Names and predicates for a language.

English fol Comment

Names:

Max max
Claire claire
Folly folly The name of a certain dog.
Carl carl The name of another dog.
Scruffy scruffy The name of a certain cat.
Pris pris The name of another cat.
2 pm, Jan 2, 2001 2:00 The name of a time.
2:01 pm, Jan 2, 2001 2:01 One minute later.

...
... Similarly for other times.

Predicates:

x is a pet Pet(x)
x is a person Person(x)
x is a student Student(x)
t is earlier than t′ t < t′ Earlier-than for times.
x was hungry at time t Hungry(x, t)
x was angry at time t Angry(x, t)
x owned y at time t Owned(x, y, t)
x gave y to z at t Gave(x, y, z, t)
x fed y at time t Fed(x, y, t)

1.9
➶

We will be giving a number of problems that use the symbols explained in Table 1.2. Start a
new sentence file in Tarski’s World and translate the following into fol, using the names and
predicates listed in the table. (You will have to type the names and predicates in by hand.
Make sure you type them exactly as they appear in the table; for example, use 2:00, not 2:00
pm or 2 pm.) All references to times are assumed to be to times on January 2, 2001.

1. Claire owned Folly at 2 pm.
2. Claire gave Pris to Max at 2:05 pm.
3. Max is a student.
4. Claire fed Carl at 2 pm.
5. Folly belonged to Max at 3:05 pm.
6. 2:00 pm is earlier than 2:05 pm.

Name and submit your file in the usual way.
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1.10
✎

Translate the following into natural sounding, colloquial English, consulting Table 1.2.
1. Owned(max, scruffy,2:00)
2. Fed(max, scruffy, 2:30)
3. Gave(max, scruffy, claire, 3:00)
4. 2:00 < 2:00

1.11
✎?

For each sentence in the following list, suggest a translation into an atomic sentence of fol. In
addition to giving the translation, explain what kinds of objects your names refer to and the
intended meaning of the predicate you use.

1. Max shook hands with Claire.
2. Max shook hands with Claire yesterday.
3. AIDS is less contagious than influenza.
4. Spain is between France and Portugal in size.
5. Misery loves company.

Section 1.5

Function symbols

Some first-order languages have, in addition to names and predicates, other
expressions that can appear in atomic sentences. These expressions are called
function symbols. Function symbols allow us to form name-like terms from function symbols
names and other name-like terms. They allow us to express, using atomic
sentences, complex claims that could not be perspicuously expressed using
just names and predicates. Some English examples will help clarify this.

English has many sorts of noun phrases, expressions that can be combined
with a verb phrase to get a sentence. Besides names like Max and Claire,
other noun phrases include expressions like Max’s father, Claire’s mother,
Every girl who knows Max, No boy who knows Claire, Someone and so forth.
Each of these combines with a singular verb phrase such as likes unbuttered
popcorn to make a sentence. But notice that the sentences that result have
very different logical properties. For example,

Claire’s mother likes unbuttered popcorn

implies that someone likes unbuttered popcorn, while

No boy who knows Claire likes unbuttered popcorn

does not.
Since these noun phrases have such different logical properties, they are terms

treated differently in fol. Those that intuitively refer to an individual are
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called “terms,” and behave like the individual constants we have already dis-
cussed. In fact, individual constants are the simplest terms, and more complex
terms are built from them using function symbols. Noun phrases like No boy
who knows Claire are handled with very different devices, known as quanti-
fiers, which we will discuss later.

The fol analog of the noun phrase Max’s father is the term father(max).
It is formed by putting a function symbol, father, in front of the individual
constant max. The result is a complex term that we use to refer to the fathercomplex terms
of the person referred to by the name max. Similarly, we can put the function
symbol mother together with the name claire and get the term mother(claire),
which functions pretty much like the English term Claire’s mother.

We can repeat this construction as many times as we like, forming more
and more complex terms:

father(father(max))
mother(father(claire))

mother(mother(mother(claire)))

The first of these refers to Max’s paternal grandfather, the second to Claire’s
paternal grandmother, and so forth.

These function symbols are called unary function symbols, because, like
unary predicates, they take one argument. The resulting terms function just
like names, and can be used in forming atomic sentences. For instance, the
fol sentence

Taller(father(max),max)

says that Max’s father is taller than Max. Thus, in a language containing
function symbols, the definition of atomic sentence needs to be modified to
allow complex terms to appear in the argument positions in addition to names.

Students often confuse function symbols with predicates, because bothfunction symbols vs.
predicates take terms as arguments. But there is a big difference. When you combine a

unary function symbol with a term you do not get a sentence, but another
term: something that refers (or should refer) to an object of some sort. This is
why function symbols can be reapplied over and over again. As we have seen,
the following makes perfectly good sense:

father(father(max))

This, on the other hand, is total nonsense:

Dodec(Dodec(a))

To help prevent this confusion, we will always capitalize predicates of fol and
leave function symbols and names in lower case.
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Besides unary function symbols, fol allows function symbols of any ar-
ity. Thus, for example, we can have binary function symbols. Simple English arity of function

symbolscounterparts of binary function symbols are hard to come up with, but they
are quite common in mathematics. For instance, we might have a function
symbol sum that combines with two terms, t1 and t2, to give a new term,
sum(t1, t2), which refers to the sum of the numbers referred to by t1 and t2.
Then the complex term sum(3, 5) would give us another way of referring to
8. In a later section, we will introduce a function symbol to denote addition,
but we will use infix notation, rather than prefix notation. Thus 3 + 5 will be
used instead of sum(3, 5).

In fol, just as we assume that every name refers to an actual object,
we also assume that every complex term refers to exactly one object. This
is a somewhat artificial assumption, since many function-like expressions in
English don’t always work this way. Though we may assume that

mother(father(father(max)))

refers to an actual (deceased) individual—one of Max’s great-grandmothers—
there may be other uses of these function symbols that don’t seem to give
us genuinely referring expressions. For example, perhaps the complex terms
mother(adam) and mother(eve) fail to refer to any individuals, if Adam and Eve
were in fact the first people. And certainly the complex term mother(3) doesn’t
refer to anything, since the number three has no mother. When designing a
first-order language with function symbols, you should try to ensure that your
complex terms always refer to unique, existing individuals.

The blocks world language as it is implemented in Tarski’s World does not functions symbols for
blocks languagecontain function symbols, but we could easily extend the language to include

some. Suppose for example we introduced the function expressions fm, bm, lm
and rm, that allowed us to form complex terms like:

fm(a)
lm(bm(c))

rm(rm(fm(d)))

We could interpret these function symbols so that, for example, fm(a)
refers to the frontmost block in the same column as a. Thus, if there are
several blocks in the column with a, then fm(a) refers to the one closest to
you. If a is the only block in the column, or is the frontmost in its column,
then fm(a) would refer to a. Analogously, bm, lm and rm could be interpreted
to mean backmost, leftmost and rightmost, respectively.

With this interpretation, the term lm(bm(c)) would refer to the leftmost
block in the same row as the backmost block in the same column as c. The
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atomic sentence Larger(lm(bm(c)), c) would then be true if and only if this
block is larger than c.

Notice that in this expanded language, the sentence lm(bm(c)) = bm(lm(c))
is not always true. (Can you think of an example where it is false?) On the
other hand, fm(fm(a)) = fm(a) is always true. Can you think of any other
atomic sentences using these function symbols that are always true? How
about sentences that are always false?

Remember

In a language with function symbols,

◦ Complex terms are typically formed by putting a function symbol of
arity n in front of n terms (simple or complex).

◦ Complex terms are used just like names (simple terms) in forming
atomic sentences.

◦ In fol, complex terms are assumed to refer to one and only one object.

Exercises

1.12
✎

Express in English the claims made by the following sentences of fol as clearly as you can.
You should try to make your English sentences as natural as possible. All the sentences are,
by the way, true.

1. Taller(father(claire), father(max))
2. john = father(max)
3. Taller(claire, mother(mother(claire)))
4. Taller(mother(mother(max)), mother(father(max)))
5. mother(melanie) = mother(claire)

1.13
✎

Assume that we have expanded the blocks language to include the function symbols fm, bm, lm
and rm described earlier. Then the following formulas would all be sentences of the language:

1. Tet(lm(e))
2. fm(c) = c
3. bm(b) = bm(e)
4. FrontOf(fm(e), e)
5. LeftOf(fm(b),b)
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6. SameRow(rm(c), c)
7. bm(lm(c)) = lm(bm(c))
8. SameShape(lm(b),bm(rm(e)))
9. d = lm(fm(rm(bm(d))))

10. Between(b, lm(b), rm(b))

Fill in the following table with true’s and false’s according to whether the indicated sentence
is true or false in the indicated world. Since Tarski’s World does not understand the function
symbols, you will not be able to check your answers. We have filled in a few of the entries for
you. Turn in the completed table to your instructor.

Leibniz’s Bolzano’s Boole’s Wittgenstein’s
1. true

2.
3.
4.
5. false

6. true

7.
8. false

9.
10.

1.14
➶

As you probably noticed in doing Exercise 1.13, three of the sentences came out true in all
four worlds. It turns out that one of these three cannot be falsified in any world, because of
the meanings of the predicates and function symbols it contains. Your goal in this problem is
to build a world in which all of the other sentences in Exercise 1.13 come out false. When you
have found such a world, submit it as World 1.14.

1.15
✎

Suppose we have two first-order languages for talking about fathers. The first, which we’ll
call the functional language, contains the names claire, melanie, and jon, the function symbol
father, and the predicates = and Taller. The second language, which we will call the relational
language, has the same names, no function symbols, and the binary predicates =, Taller, and
FatherOf, where FatherOf(c, b) means that c is the father of b. Translate the following atomic
sentences from the relational language into the functional language. Be careful. Some atomic
sentences, such as claire = claire, are in both languages! Such a sentence counts as a translation
of itself.

1. FatherOf(jon, claire)
2. FatherOf(jon, melanie)
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3. Taller(claire, melanie)

Which of the following atomic sentences of the functional language can be translated into atomic
sentences of the relational language? Translate those that can be and explain the problem with
those that can’t.

4. father(melanie) = jon
5. father(melanie) = father(claire)
6. Taller(father(claire), father(jon))

When we add connectives and quantifiers to the language, we will be able to translate freely
back and forth between the functional and relational languages.

1.16
✎

Let’s suppose that everyone has a favorite movie star. Given this assumption, make up a first-
order language for talking about people and their favorite movie stars. Use a function symbol
that allows you to refer to an individual’s favorite actor, plus a relation symbol that allows
you to say that one person is a better actor than another. Explain the interpretation of your
function and relation symbols, and then use your language to express the following claims:

1. Harrison is Nancy’s favorite actor.
2. Nancy’s favorite actor is better than Sean.
3. Nancy’s favorite actor is better than Max’s.
4. Claire’s favorite actor’s favorite actor is Brad.
5. Sean is his own favorite actor.

1.17
✎?

Make up a first-order language for talking about people and their relative heights. Instead of
using relation symbols like Taller, however, use a function symbol that allows you to refer to
people’s heights, plus the relation symbols = and <. Explain the interpretation of your function
symbol, and then use your language to express the following two claims:

1. George is taller than Sam.
2. Sam and Mary are the same height.

Do you see any problem with this function symbol? If so, explain the problem. [Hint: What
happens if you apply the function symbol twice?]

1.18
✎?

For each sentence in the following list, suggest a translation into an atomic sentence of fol. In
addition to giving the translation, explain what kinds of objects your names refer to and the
intended meaning of the predicates and function symbols you use.

1. Indiana’s capital is larger than California’s.
2. Hitler’s mistress died in 1945.
3. Max shook Claire’s father’s hand.
4. Max is his father’s son.
5. John and Nancy’s eldest child is younger than Jon and Mary Ellen’s.
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Section 1.6

The first-order language of set theory

Fol was initially developed for use in mathematics, and consequently the
most familiar first-order languages are those associated with various branches
of mathematics. One of the most common of these is the language of set
theory. This language has only two predicates, both binary. The first is the predicates of set theory
identity symbol, =, which we have already encountered, and the second is the
symbol ∈, for set membership.

It is standard to use infix notation for both of these predicates. Thus, in
set theory, atomic sentences are always formed by placing individual constants
on either side of one of the two predicates. This allows us to make identity
claims, of the form a = b, and membership claims, of the form a ∈ b (where
a and b are individual constants).

A sentence of the form a ∈ b is true if and only if the thing named by b is membership (∈)
a set, and the thing named by a is a member of that set. For example, suppose
a names the number 2 and b names the set {2, 4, 6}. Then the following table
tells us which membership claims made up using these names are true and
which are false.2

a ∈ a false

a ∈ b true

b ∈ a false

b ∈ b false

Notice that there is one striking difference between the atomic sentences
of set theory and the atomic sentences of the blocks language. In the blocks
language, you can have a sentence, like LeftOf(a,b), that is true in a world,
but which can be made false simply by moving one of the objects. Moving
an object does not change the way the name works, but it can turn a true
sentence into a false one, just as the sentence Claire is sitting down can go
from true to false in virtue of Claire’s standing up.

In set theory, we won’t find this sort of thing happening. Here, the analog
of a world is just a domain of objects and sets. For example, our domain
might consist of all natural numbers, sets of natural numbers, sets of sets of
natural numbers, and so forth. The difference between these “worlds” and
those of Tarski’s World is that the truth or falsity of the atomic sentences is
determined entirely once the reference of the names is fixed. There is nothing
that corresponds to moving the blocks around. Thus if the universe contains

2For the purposes of this discussion we are assuming that numbers are not sets, and that
sets can contain either numbers or other sets as members.
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the objects 2 and {2,4, 6}, and if the names a and b are assigned to them,
then the atomic sentences must get the values indicated in the previous table.
The only way those values can change is if the names name different things.
Identity claims also work this way, both in set theory and in Tarski’s World.

Exercises

1.19
➶

Which of the following atomic sentences in the first-order language of set theory are true
and which are false? We use, in addition to a and b as above, the name c for 6 and d for
{2,7, {2,4, 6}}.

1. a ∈ c
2. a ∈ d
3. b ∈ c
4. b ∈ d
5. c ∈ d
6. c ∈ b

To answer this exercise, submit a Tarski’s World sentence file with an uppercase T or F in each
sentence slot to indicate your assessment.

Section 1.7

The first-order language of arithmetic

While neither the blocks language as implemented in Tarski’s World nor the
language of set theory has function symbols, there are languages that use
them extensively. One such first-order language is the language of arithmetic.
This language allows us to express statements about the natural numbers
0, 1, 2,3, . . . , and the usual operations of addition and multiplication.

There are several more or less equivalent ways of setting up this language.
The one we will use has two names, 0 and 1, two binary relation symbols, =predicates (=, <) and

functions (+, ×) of
arithmetic

and <, and two binary function symbols, + and ×. The atomic sentences are
those that can be built up out of these symbols. We will use infix notation
both for the relation symbols and the function symbols.

Notice that there are infinitely many different terms in this language (for
example, 0, 1, (1 + 1), ((1 + 1) + 1), (((1 + 1) + 1) + 1), . . . ), and so an infinite
number of atomic sentences. Our list also shows that every natural number is
named by some term of the language. This raises the question of how we can
specify the set of terms in a precise way. We can’t list them all explicitly, since
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there are too many. The way we get around this is by using what is known as
an inductive definition.

Definition The terms of first-order arithmetic are formed in the following terms of arithmetic
way:

1. The names 0,1 are terms.

2. If t1, t2 are terms, then the expressions (t1 + t2) and (t1 × t2) are also
terms.

3. Nothing is a term unless it can be obtained by repeated application of
(1) and (2).

We should point out that this definition does indeed allow the function
symbols to be applied over and over. Thus, (1 + 1) is a term by clause 2 and
the fact that 1 is a term. In which case ((1 + 1) × (1 + 1)) is also a term, again
by clause 2. And so forth.

The third clause in the above definition is not as straightforward as one
might want, since the phrase “can be obtained by repeated application of” is
a bit vague. In Chapter 16, we will see how to give definitions like the above
in a more satisfactory way, one that avoids this vague clause.

The atomic sentences in the language of first-order arithmetic are those atomic sentences of
arithmeticthat can be formed from the terms and the two binary predicate symbols, =

and <. So, for example, the fol version of 1 times 1 is less than 1 plus 1 is
the following:

(1 × 1) < (1 + 1)

Exercises

1.20
✎

Show that the following expressions are terms in the first-order language of arithmetic. Do this
by explaining which clauses of the definition are applied and in what order. What numbers do
they refer to?

1. (0 + 0)
2. (0 + (1 × 0))
3. ((1 + 1) + ((1 + 1) × (1 + 1)))
4. (((1 × 1) × 1) × 1)

1.21
✎

Find a way to express the fact that three
is less than four using the first-order lan-
guage of arithmetic.

1.22
✎?

Show that there are infinitely many
terms in the first-order language of
arithmetic referring to the number one.
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Section 1.8

Alternative notation

As we said before, fol is like a family of languages. But, as if that were not
enough diversity, even the very same first-order language comes in a variety
of dialects. Indeed, almost no two logic books use exactly the same notational
conventions in writing first-order sentences. For this reason, it is important
to have some familiarity with the different dialects—the different notational
conventions—and to be able to translate smoothly between them. At the end
of most chapters, we discuss common notational differences that you are likely
to encounter.

Some notational differences, though not many, occur even at the level of
atomic sentences. For example, some authors insist on putting parentheses
around atomic sentences whose binary predicates are in infix position. So
(a = b) is used rather than a = b. By contrast, some authors omit parentheses
surrounding the argument positions (and the commas between them) when
the predicate is in prefix position. These authors use Rab instead of R(a,b).
We have opted for the latter simply because we use predicates made up of
several letters, and the parentheses make it clear where the predicate ends
and the arguments begin: Cubed is not nearly as perspicuous as Cube(d).

What is important in these choices is that sentences should be unambigu-
ous and easy to read. Typically, the first aim requires parentheses to be used in
one way or another, while the second suggests using no more than is necessary.
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Chapter 2

The Logic of Atomic Sentences

A major concern in logic is the concept of logical consequence: When does
one sentence, statement, or claim follow logically from others? In fact, one of
the main motivations in the design of fol was to make logical consequence
as perspicuous as possible. It was thought that by avoiding the ambiguities
and complexities of ordinary language, we would be able to recognize the
consequences of our claims more easily. This is, to a certain extent, true; but
it is also true that we should be able to recognize the consequences of our
claims whether or not they are expressed in fol.

In this chapter, we will explain what we mean by “logical consequence,” or
equivalently, what we mean when we say that an argument is “logically valid.”
This is a fairly simple concept to understand, but it can also be devilishly dif-
ficult to apply in specific cases. Indeed, in mathematics there are many, many
examples where we do not know whether a given claim is a consequence of
other known truths. Mathematicians may work for years or decades trying
to answer such questions. After explaining the notion of consequence, we will
describe the principal techniques for showing that a claim is or is not a con-
sequence of other claims, and begin presenting what is known as a formal
system of deduction, a system that allows us to show that a sentence of fol is
a consequence of others. We will continue developing this system as we learn
more about fol in later chapters.

Section 2.1

Valid and sound arguments

Just what do we mean by logical consequence? Or rather, since this phrase
is sometimes used in quite different contexts, what does a logician mean by
logical consequence?

A few examples will help. First, let’s say that an argument is any series arguments, premises,
and conclusionsof statements in which one (called the conclusion) is meant to follow from, or

be supported by, the others (called the premises). Don’t think of two people
arguing back and forth, but of one person trying to convince another of some
conclusion on the basis of mutually accepted premises. Arguments in our
sense may appear as part of the more disagreeable sort of “arguments”—
the kind parents have with their children—but our arguments also appear
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in newspaper editorials, in scholarly books, and in all forms of scientific and
rational discourse. Name calling doesn’t count.

There are many devices in ordinary language for indicating premises and
conclusions of arguments. Words like hence, thus, so, and consequently areidentifying premises

and conclusions used to indicate that what follows is the conclusion of an argument. The words
because, since, after all, and the like are generally used to indicate premises.
Here are a couple of examples of arguments:

All men are mortal. Socrates is a man. So, Socrates is mortal.

Lucretius is a man. After all, Lucretius is mortal and all men are
mortal.

One difference between these two arguments is the placement of the con-
clusion. In the first argument, the conclusion comes at the end, while in the
second, it comes at the start. This is indicated by the words so and after all,
respectively. A more important difference is that the first argument is good,
while the second is bad. We will say that the first argument is logically valid,
or that its conclusion is a logical consequence of its premises. The reason welogical consequence
say this is that it is impossible for this conclusion to be false if the premises are
true. In contrast, our second conclusion might be false (suppose Lucretius is
my pet goldfish), even though the premises are true (goldfish are notoriously
mortal). The second conclusion is not a logical consequence of its premises.

Roughly speaking, an argument is logically valid if and only if the conclu-logically valid
arguments sion must be true on the assumption that the premises are true. Notice that

this does not mean that an argument’s premises have to be true in order for it
to be valid. When we give arguments, we naturally intend the premises to be
true, but sometimes we’re wrong about that. We’ll say more about this possi-
bility in a minute. In the meantime, note that our first example above would
be a valid argument even if it turned out that we were mistaken about one
of the premises, say if Socrates turned out to be a robot rather than a man.
It would still be impossible for the premises to be true and the conclusion
false. In that eventuality, we would still say that the argument was logically
valid, but since it had a false premise, we would not be guaranteed that the
conclusion was true. It would be a valid argument with a false premise.

Here is another example of a valid argument, this time one expressed in
the blocks language. Suppose we are told that Cube(c) and that c = b. Then it
certainly follows that Cube(b). Why? Because there is no possible way for the
premises to be true—for c to be a cube and for c to be the very same object
as b—without the conclusion being true as well. Note that we can recognize
that the last statement is a consequence of the first two without knowing that
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the premises are actually, as a matter of fact, true. For the crucial observation
is that if the premises are true, then the conclusion must also be true.

A valid argument is one that guarantees the truth of its conclusion on
the assumption that the premises are true. Now, as we said before, when we
actually present arguments, we want them to be more than just valid: we also
want the premises to be true. If an argument is valid and the premises are also
true, then the argument is said to be sound. Thus a sound argument insures sound arguments
the truth of its conclusion. The argument about Socrates given above was not
only valid, it was sound, since its premises were true. (He was not, contrary
to rumors, a robot.) But here is an example of a valid argument that is not
sound:

All rich actors are good actors. Brad Pitt is a rich actor. So he must
be a good actor.

The reason this argument is unsound is that its first premise is false.
Because of this, although the argument is indeed valid, we are not assured
that the conclusion is true. It may be, but then again it may not. We in fact
think that Brad Pitt is a good actor, but the present argument does not show
this.

Logic focuses, for the most part, on the validity of arguments, rather than
their soundness. There is a simple reason for this. The truth of an argument’s
premises is generally an issue that is none of the logician’s business: the truth
of “Socrates is a man” is something historians had to ascertain; the falsity of
“All rich actors are good actors” is something a movie critic might weigh in
about. What logicians can tell you is how to reason correctly, given what you
know or believe to be true. Making sure that the premises of your arguments
are true is something that, by and large, we leave up to you.

In this book, we often use a special format to display arguments, which we
call “Fitch format” after the logician Frederic Fitch. The format makes clear Fitch format
which sentences are premises and which is the conclusion. In Fitch format, we
would display the above, unsound argument like this:

All rich actors are good actors.
Brad Pitt is a rich actor.

Brad Pitt is a good actor.

Here, the sentences above the short, horizontal line are the premises, and
the sentence below the line is the conclusion. We call the horizontal line the
Fitch bar. Notice that we have omitted the words “So . . . must be . . .” in the Fitch bar
conclusion, because they were in the original only to make clear which sen-
tence was supposed to be the conclusion of the argument. In our conventional
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format, the Fitch bar gives us this information, and so these words are no
longer needed.

Remember

1. An argument is a series of statements in which one, called the conclu-
sion, is meant to be a consequence of the others, called the premises.

2. An argument is valid if the conclusion must be true in any circum-
stance in which the premises are true. We say that the conclusion of
a logically valid argument is a logical consequence of its premises.

3. An argument is sound if it is valid and the premises are all true.

Exercises

2.1
➶|✎

(Classifying arguments) Open the file Socrates’ Sentences. This file contains eight arguments
separated by dashed lines, with the premises and conclusion of each labeled.

1. In the first column of the following table, classify each of these arguments as valid or
invalid. In making these assessments, you may presuppose any general features of the
worlds that can be built in Tarski’s World (for example, that two blocks cannot occupy
the same square on the grid).

Sound in Sound in
Argument Valid? Socrates’ World? Wittgenstein’s World?

1.
2.
3.
4.
5.
6.
7.
8.

2. Now open Socrates’ World and evaluate each sentence. Use the results of your evaluation
to enter sound or unsound in each row of the second column in the table, depending on
whether the argument is sound or unsound in this world. (Remember that only valid
arguments can be sound; invalid arguments are automatically unsound.)
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3. Open Wittgenstein’s World and fill in the third column of the table.
4. For each argument that you have marked invalid in the table, construct a world in

which the argument’s premises are all true but the conclusion is false. Submit the
world as World 2.1.x, where x is the number of the argument. (If you have trouble
doing this, you may want to rethink your assessment of the argument’s validity.) Turn
in your completed table to your instructor.

This problem makes a very important point, one that students of logic sometimes forget. The
point is that the validity of an argument depends only on the argument, not on facts about
the specific world the statements are about. The soundness of an argument, on the other hand,
depends on both the argument and the world.

2.2
✎

(Classifying arguments) For each of the arguments below, identify the premises and conclusion
by putting the argument into Fitch format. Then say whether the argument is valid. For the
first five arguments, also give your opinion about whether they are sound. (Remember that
only valid arguments can be sound.) If your assessment of an argument depends on particular
interpretations of the predicates, explain these dependencies.

1. Anyone who wins an academy award is famous. Meryl Streep won an academy award.
Hence, Meryl Streep is famous.

2. Harrison Ford is not famous. After all, actors who win academy awards are famous,
and he has never won one.

3. The right to bear arms is the most important freedom. Charlton Heston said so, and
he’s never wrong.

4. Al Gore must be dishonest. After all, he’s a politician and hardly any politicians are
honest.

5. Mark Twain lived in Hannibal, Missouri, since Sam Clemens was born there, and Mark
Twain is Sam Clemens.

6. No one under 21 bought beer here last night, officer. Geez, we were closed, so no one
bought anything last night.

7. Claire must live on the same street as Laura, since she lives on the same street as Max
and he and Laura live on the same street.

2.3
✎

For each of the arguments below, identify the premises and conclusion by putting the argument
into Fitch format, and state whether the argument is valid. If your assessment of an argument
depends on particular interpretations of the predicates, explain these dependencies.

1. Many of the students in the film class attend film screenings. Consequently, there must
be many students in the film class.

2. There are few students in the film class, but many of them attend the film screenings.
So there are many students in the film class.
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3. There are many students in the film class. After all, many students attend film screen-
ings and only students in the film class attend screenings.

4. There are thirty students in my logic class. Some of the students turned in their
homework on time. Most of the students went to the all-night party. So some student
who went to the party managed to turn in the homework on time.

5. There are thirty students in my logic class. Some student who went to the all-night
party must have turned in the homework on time. Some of the students turned in their
homework on time, and they all went to the party.

6. There are thirty students in my logic class. Most of the students turned in their home-
work on time. Most of the students went to the all-night party. Thus, some student
who went to the party turned in the homework on time.

2.4
✎

(Validity and truth) Can a valid argument have false premises and a false conclusion? False
premises and a true conclusion? True premises and a false conclusion? True premises and a
true conclusion? If you answer yes to any of these, give an example of such an argument. If
your answer is no, explain why.

Section 2.2

Methods of proof

Our description of the logical consequence relation is fine, as far as it goes.
But it doesn’t give us everything we would like. In particular, it does not tell
us how to show that a given conclusion S follows, or does not follow, from
some premises P, Q, R, . . . . In the examples we have looked at, this may not
seem very problematic, since the answers are fairly obvious. But when we are
dealing with more complicated sentences or more subtle reasoning, things are
sometimes far from simple.

In this course you will learn the fundamental methods of showing when
claims follow from other claims and when they do not. The main technique
for doing the latter, for showing that a given conclusion does not follow from
some premises, is to find a possible circumstance in which the premises are
true but the conclusion false. In fact we have already used this method to
show that the argument about Lucretius was invalid. We will use the method
repeatedly, and introduce more precise versions of it as we go on.

What methods are available to us for showing that a given claim is a
logical consequence of some premises? Here, the key notion is that of a proof.
A proof is a step-by-step demonstration that a conclusion (say S) followsproof
from some premises (say P,Q,R). The way a proof works is by establishing a
series of intermediate conclusions, each of which is an obvious consequence of
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the original premises and the intermediate conclusions previously established.
The proof ends when we finally establish S as an obvious consequence of the
original premises and the intermediate conclusions. For example, from P,Q, R
it might be obvious that S1 follows. And from all of these, including S1, it
might be obvious that S2 follows. Finally, from all these together we might
be able to draw our desired conclusion S. If our individual steps are correct,
then the proof shows that S is indeed a consequence of P, Q, R. After all, if
the premises are all true, then our intermediate conclusions must be true as
well. And in that case, our final conclusion must be true, too.

Consider a simple, concrete example. Suppose we want to show that Socrates
sometimes worries about dying is a logical consequence of the four premises
Socrates is a man, All men are mortal, No mortal lives forever, and Everyone
who will eventually die sometimes worries about it. A proof of this conclusion
might pass through the following intermediate steps. First we note that from
the first two premises it follows that Socrates is mortal. From this intermedi-
ate conclusion and the third premise (that no mortal lives forever), it follows
that Socrates will eventually die. But this, along with the fourth premise,
gives us the desired conclusion, that Socrates sometimes worries about dying.

By the way, when we say that S is a logical consequence of premises
P,Q, . . . , we do not insist that each of the premises really play an essen-
tial role. So, for example, if S is a logical consequence of P then it is also a
logical consequence of P and Q. This follows immediately from the definition
of logical consequence. But it has a corollary for our notion of proof: We do
not insist that each of the premises in a proof actually be used in the proof.

A proof that S follows from premises P1, . . . , Pn may be quite long and
complicated. But each step in the proof is supposed to provide absolutely
incontrovertible evidence that the intermediate conclusion follows from things
already established. Here, the logician’s standards of rigor are extreme. It is demand for rigor
not enough to show that each step in a purported proof almost certainly
follows from the ones that come before. That may be good enough for getting
around in our daily life, but it is not good enough if our aim is to demonstrate
that S must be true provided P1, . . . , Pn are all true.

There is a practical reason for this demand for rigor. In ordinary life,
we frequently reason in a step-by-step fashion, without requiring absolute
certainty at each step. For most purposes, this is fine, since our everyday
“proofs” generally traverse only a small number of intermediate conclusions.
But in many types of reasoning, this is not the case.

Think of what you did in high school geometry. First you started with a
small number of axioms that stated the basic premises of Euclidean geometry.
You then began to prove conclusions, called theorems, from these axioms. As
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you went on to prove more interesting theorems, your proofs would cite earlier
theorems. These earlier theorems were treated as intermediate conclusions in
justifying the new results. What this means is that the complete proofs of
the later theorems really include the proofs of the earlier theorems that they
presuppose. Thus, if they were written out in full, they would contain hundreds
or perhaps thousands of steps. Now suppose we only insisted that each step
show with probability .99 that the conclusion follows from the premises. Then
each step in such a proof would be a pretty good bet, but given a long enough
proof, the proof would carry virtually no weight at all about the truth of the
conclusion.

This demand for certainty becomes even more important in proofs done by
computers. Nowadays, theorems are sometimes proven by computers, and the
proofs can be millions of steps long. If we allowed even the slightest uncertainty
in the individual steps, then this uncertainty would multiply until the alleged
“proof” made the truth of the conclusion no more likely than its falsity.

Each time we introduce new types of expressions into our language, we will
discuss new methods of proof supported by those expressions. We begin bymethods of proof
discussing the main informal methods of proof used in mathematics, science,
and everyday life, emphasizing the more important methods like indirect and
conditional proof. Following this discussion we will “formalize” the methods
by incorporating them into what we call a formal system of deduction. Aformal systems
formal system of deduction uses a fixed set of rules specifying what counts as
an acceptable step in a proof.

The difference between an informal proof and a formal proof is not one of
rigor, but of style. An informal proof of the sort used by mathematicians isinformal proofs
every bit as rigorous as a formal proof. But it is stated in English and is usu-
ally more free-wheeling, leaving out the more obvious steps. For example, we
could present our earlier argument about Socrates in the form of the following
informal proof:

Proof: Since Socrates is a man and all men are mortal, it follows
that Socrates is mortal. But all mortals will eventually die, since
that is what it means to be mortal. So Socrates will eventually die.
But we are given that everyone who will eventually die sometimes
worries about it. Hence Socrates sometimes worries about dying.

A formal proof, by contrast, employs a fixed stock of rules and a highly styl-formal proofs
ized method of presentation. For example, the simple argument from Cube(c)
and c = b to Cube(b) discussed in the last section will, in our formal system,
take the following form:
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1. Cube(c)
2. c = b

3. Cube(b) = Elim: 1, 2

As you can see, we use an extension of the Fitch format as a way of presenting
formal proofs. The main difference is that a formal proof will usually have more
than one step following the Fitch bar (though not in this example), and each
of these steps will be justified by citing a rule of the formal system. We will
explain later the various conventions used in formal proofs.

In the course of this book you will learn how to give both informal and formal vs. informal
proofsformal proofs. We do not want to give the impression that formal proofs are

somehow better than informal proofs. On the contrary, for purposes of proving
things for ourselves, or communicating proofs to others, informal methods are
usually preferable. Formal proofs come into their own in two ways. One is that
they display the logical structure of a proof in a form that can be mechanically
checked. There are advantages to this, if you are a logic teacher grading lots
of homework, a computer, or not inclined to think for some other reason. The
other is that they allow us to prove things about provability itself, such as
Gödel’s Completeness Theorem and Incompleteness Theorems, discussed in
the final section of this book.

Remember

1. A proof of a statement S from premises P1, . . . , Pn is a step-by-step
demonstration which shows that S must be true in any circumstances
in which the premises P1, . . . , Pn are all true.

2. Informal and formal proofs differ in style, not in rigor.

Proofs involving the identity symbol

We have already seen one example of an important method of proof. If we can
prove, from whatever our premises happen to be, that b = c, then we know
that anything that is true of b is also true of c. After all, b is c. In philosophy,
this simple observation sometimes goes by the fancy name the indiscernibility indiscernibility of

identicalsof identicals and sometimes by the less pretentious name substitution. Shake-
speare no doubt had this principle in mind when he wrote “A rose, by any
other name, would smell as sweet.”

We will call the formal rule corresponding to this principle Identity Elimi- identity elimination
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nation, abbreviated = Elim. The reason for this name is that an application
of this rule “eliminates” a use of the identity symbol when we move from the
premises of the argument to its conclusion. We will have another rule that
introduces the identity symbol.

The principle of identity elimination is used repeatedly in mathematics.
For example, the following derivation uses the principle in conjunction with
the well-known algebraic identity x2 − 1 = (x − 1)(x + 1):

x2 > x2 − 1

so
x2 > (x − 1)(x + 1)

We are all familiar with reasoning that uses such substitutions repeatedly.
Another principle, so simple that one often overlooks it, is the so-called

reflexivity of identity. The formal rule corresponding to it is called Identityreflexivity of identity or
identity elimination Introduction, or = Intro, since it allows us to introduce identity statements

into proofs. It tells us that any sentence of the form a = a can be validly
inferred from whatever premises are at hand, or from no premises at all. This
is because of the assumption made in fol that names always refer to one and
only one object. This is not true about English, as we have noted before. But
it is in fol, which means that in a proof you can always take any name a
that is in use and assert a = a, if it suits your purpose for some reason. (As a
matter of fact, it is rarely of much use.) Gertrude Stein was surely referring
to this principle when she observed “A rose is a rose is a rose.”

Another principle, a bit more useful, is that of the symmetry of identity. Itsymmetry of identity
allows us to conclude b = a from a = b. Actually, if we wanted, we could derive
this as a consequence of our first two principles, by means of the following
proof.

Proof: Suppose that a = b. We know that a = a, by the reflexivity
of identity. Now substitute the name b for the first use of the name
a in a = a, using the indiscernibility of identicals. We come up with
b = a, as desired.

The previous paragraph is another example of an informal proof. In an
informal proof, we often begin by stating the premises or assumptions of the
proof, and then explain in a step-by-step fashion how we can get from these
assumptions to the desired conclusion. There are no strict rules about how
detailed the explanation needs to be. This depends on the sophistication of
the intended audience for the proof. But each step must be phrased in clear
and unambiguous English, and the validity of the step must be apparent. In
the next section, we will see how to formalize the above proof.
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A third principle about identity that bears noting is its so-called transitivity. transitivity of identity
If a = b and b = c are both true, then so is a = c. This is so obvious that there
is no particular need to prove it, but it can be proved using the indiscernibility
of identicals. (See Exercise 2.5.)

If you are using a language that contains function symbols (introduced
in the optional Section 1.5), the identity principles we’ve discussed also hold
for complex terms built up using function symbols. For example, if you know
that Happy(john) and john = father(max), you can use identity elimination to
conclude Happy(father(max)), even though father(max) is a complex term, not
a name. In fact, the example where we substituted (x − 1)(x + 1) for x2 − 1
also applied the indiscernibility of identicals to complex terms.

Remember

There are four important principles that hold of the identity relation:

1. = Elim: If b = c, then whatever holds of b holds of c. This is also
known as the indiscernibility of identicals.

2. = Intro: Sentences of the form b = b are always true (in fol). This
is also known as the reflexivity of identity.

3. Symmetry of Identity: If b = c, then c = b.

4. Transitivity of Identity: If a = b and b = c, then a = c.

The latter two principles follow from the first two.

Proofs involving other predicates and relations

Sometimes there will be logical dependencies among the predicate symbols in
a first-order language, dependencies similar to those just discussed involving
the identity symbol. This is the case, for example, in the blocks language.
When this is so, proofs may need to exploit such relationships. For example,
the sentence Larger(a, c) is a consequence of Larger(a,b) and Larger(b, c). This
is because the larger-than relation, like the identity relation, is transitive. It is other transitive

relationsbecause of this that any world where the latter two sentences are true will also
be one in which the first is true. Similar examples are given in the problems.

Another example of this sort that is used frequently in mathematics in-
volves the transitivity of the less-than relation. You frequently encounter
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proofs written in the following form:

k1 < k2

k2 < k3

k3 < k4

so
k1 < k4

This proof contains two implicit uses of the transitivity of <.
There is no way to catalog all the legitimate inferences involving predicate

and relation symbols in all the languages we might have occasion to deal with.
But the example of identity gives us a few things to look for. Many relations
besides identity are transitive: larger than and less than are just two examples.
And many are reflexive and/or symmetric: being the same size as and being inreflexive and symmetric

relations the same row as are both. But you will run across other logical dependencies
that don’t fall under these headings. For instance, you might be told that b

is larger than c and want to infer that c is smaller than b. This holds because
larger than and smaller than are what is known as “inverses”: they refer toinverse relations
the same relation but point, so to speak, in opposite directions. Usually, you
will have no trouble spotting the logical dependencies among predicates, but
in giving a proof, you need to make explicit the ones you are assuming.

Let’s look at one final example before trying our hand at some exercises.
Suppose we were asked to give an informal proof of the following argument:

RightOf(b, c)
LeftOf(d, e)
b = d

LeftOf(c, e)

Our informal proof might run like this:

Proof: We are told that b is to the right of c. So c must be to the
left of b, since right of and left of are inverses of one another. And
since b = d, c is left of d, by the indiscernibility of identicals. But we
are also told that d is left of e, and consequently c is to the left of e,
by the transitivity of left of. This is our desired conclusion.
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Exercises

2.5
✎

(Transitivity of Identity) Give an in-
formal proof of the following argument
using only indiscernibility of identicals.
Make sure you say which name is be-
ing substituted for which, and in what
sentence.

b = c
a = b

a = c

2.6
✎

Give an informal proof that the follow-
ing argument is valid. If you proved the
transitivity of identity by doing Exer-
cise 2.5, you may use this principle; oth-
erwise, use only the indiscernibility of
identicals.

SameRow(a, a)
a = b
b = c

SameRow(c, a)

2.7
✎

Consider the following sentences.

1. Max and Claire are not related.
2. Nancy is Max’s mother.
3. Nancy is not Claire’s mother.

Does (3) follow from (1) and (2)? Does (2) follow from (1) and (3)? Does (1) follow from (2) and
(3)? In each case, if your answer is no, describe a possible circumstance in which the premises
are true and the conclusion false.

Given the meanings of the atomic predicates in the blocks language, assess the following arguments for
validity. (You may again assume any general facts about the worlds that can be built in Tarski’s World.)
If the argument is valid, give an informal proof of its validity and turn it in on paper to your instructor.
If the conclusion is not a consequence of the premises, submit a world in which the premises are true
and the conclusion false.

2.8
➶|✎

Large(a)
Larger(a, c)

Small(c)

2.9
➶|✎

LeftOf(a,b)
b = c

RightOf(c, a)

2.10
➶|✎

SameSize(b, c)
SameShape(b, c)

b = c

2.11
➶|✎

LeftOf(a,b)
RightOf(c, a)

LeftOf(b, c)

2.12
➶|✎

BackOf(a,b)
FrontOf(a, c)

FrontOf(b, c)

2.13
➶|✎

SameSize(a,b)
Larger(a, c)
Smaller(d, c)

Smaller(d,b)
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2.14
➶|✎

Between(b, a, c)
LeftOf(a, c)

LeftOf(a, b)

Section 2.3

Formal proofs

In this section we will begin introducing our system for presenting formal
proofs, what is known as a “deductive system.” There are many differentdeductive systems
styles of deductive systems. The system we present in the first three parts of
the book, which we will call F , is a “Fitch-style” system, so called becausethe system F
Frederic Fitch first introduced this format for giving proofs. We will look at
a very different deductive system in Part IV, one known as the resolution
method, which is of considerable importance in computer science.

In the system F , a proof of a conclusion S from premises P, Q, and R, looks
very much like an argument presented in Fitch format. The main difference is
that the proof displays, in addition to the conclusion S, all of the intermediate
conclusions S1, . . . , Sn that we derive in getting from the premises to the
conclusion S:

P
Q
R

S1 Justification 1
...

...
Sn Justification n
S Justification n+1

There are two graphical devices to notice here, the vertical and horizontal
lines. The vertical line that runs on the left of the steps draws our attention
to the fact that we have a single purported proof consisting of a sequence
of several steps. The horizontal Fitch bar indicates the division between the
claims that are assumed and those that allegedly follow from them. Thus the
fact that P, Q, and R are above the bar shows that these are the premises of
our proof, while the fact that S1, . . . , Sn, and S are below the bar shows that
these sentences are supposed to follow logically from the premises.
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Notice that on the right of every step below the Fitch bar, we give a
justification of the step. In our deductive system, a justification indicates justification
which rule allows us to make the step, and which earlier steps (if any) the rule
is applied to. In giving an actual formal proof, we will number the steps, so
we can refer to them in justifying later steps.

We already gave one example of a formal proof in the system F , back on
page 48. For another example, here is a formalization of our informal proof of
the symmetry of identity.

1. a = b

2. a = a = Intro
3. b = a = Elim: 2, 1

In the right hand margin of this proof you find a justification for each step
below the Fitch bar. These are applications of rules we are about to introduce.
The numbers at the right of step 3 show that this step follows from steps 2
and 1 by means of the rule cited.

The first rule we use in the above proof is Identity Introduction. This = Intro
rule allows you to introduce, for any name (or complex term) n in use in
the proof, the assertion n = n. You are allowed to do this at any step in the
proof, and need not cite any earlier step as justification. We will abbreviate
our statement of this rule in the following way:

Identity Introduction (= Intro):

. n = n

We have used an additional graphical device in stating this rule. This is
the symbol . . We will use it in stating rules to indicate which step is being
licensed by the rule. In this example there is only one step mentioned in the
rule, but in other examples there will be several steps.

The second rule of F is Identity Elimination. It tells us that if we have = Elim
proven a sentence containing n (which we indicate by writing P(n)) and a
sentence of the form n = m, then we are justified in asserting any sentence
which results from P(n) by replacing some or all of the occurrences of n by m.
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Identity Elimination (= Elim):

P(n)
...
n = m
...

. P(m)

When we apply this rule, it does not matter which of P(n) and n = m occurs
first in the proof, as long as they both appear before P(m), the inferred step.
In justifying the step, we cite the name of the rule, followed by the steps in
which P(n) and n = m occur, in that order.

We could also introduce rules justified by the meanings of other predicates
besides = into the system F . For example, we could introduce a formal rule
of the following sort:

Bidirectionality of Between:

Between(a,b, c)
...

. Between(a, c, b)

We don’t do this because there are just too many such rules. We could state
them for a few predicates, but certainly not all of the predicates you will
encounter in first-order languages.

There is one rule that is not technically necessary, but which will makeReiteration
some proofs look more natural. This rule is called Reiteration, and simply
allows you to repeat an earlier step, if you so desire.

Reiteration (Reit):

P
...

. P

To use the Reiteration rule, just repeat the sentence in question and, on the
right, write “Reit: x,” where x is the number of the earlier occurrence of the
sentence.
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Reiteration is obviously a valid rule of inference, since any sentence is a
logical consequence of itself. The reason for having the rule will become clear
as proofs in the system F become more complicated. For now, let’s just say
that it is like remarking, in the course of giving an informal proof, “we have
already shown that P.” This is often a helpful reminder to the person reading
the proof.

Now that we have the first three rules of F , let’s try our hand construct-
ing a formal proof. Suppose we were asked to prove SameRow(b, a) from the
premises SameRow(a, a) and b = a. We might begin by writing down the
premises and the conclusion, leaving space in between to fill in the inter-
mediate steps in our proof.

1. SameRow(a, a)
2. b = a

...
?. SameRow(b, a)

It might at first seem that this proof should be a one step application of
= Elim. But notice that the way we have stated this rule requires that we
replace the first name in the identity sentence, b, for the second, a, but we
want to substitute the other way around. So we need to derive a = b as an
intermediate conclusion before we can apply = Elim.

1. SameRow(a, a)
2. b = a

...
?. a = b
?. SameRow(b, a) = Elim: 1, ?

Since we have already seen how to prove the symmetry of identity, we can
now fill in all the steps of the proof. The finished proof looks like this. Make
sure you understand why all the steps are there and how we arrived at them.

1. SameRow(a, a)
2. b = a

3. b = b = Intro
4. a = b = Elim: 3, 2
5. SameRow(b, a) = Elim: 1, 4
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Section 2.4

Constructing proofs in Fitch

Writing out a long formal proof in complete detail, let alone reading or check-
ing it, can be a pretty tedious business. The system F makes this less painful
than many formal systems, but it’s still not easy. This book comes with a sec-
ond program, Fitch, that makes constructing formal proofs much less painful.the program Fitch
Fitch can also check your proof, telling you whether it is correct, and if it isn’t,
which step or steps are mistaken. This means you will never be in any doubt
about whether your formal proofs meet the standard of rigor demanded of
them. And, as a practical matter, you can make sure they are correct before
submitting them.

There are other ways in which Fitch makes life simpler, as well. One is that
Fitch is more flexible than the system F . It lets you take certain shortcutsFitch vs. F
that are logically correct but do not, strictly speaking, fall under the rules of
F . You can always go back and expand a proof in Fitch to a formally correct
F proof, but we won’t often insist on this.

Let us now use Fitch to construct a simple formal proof. Before going on,
you will want to read the first few sections of the chapter on how to use Fitch
in the manual.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 1. We are going to use Fitch to construct the formal proof of SameRow(b, a)
from premises SameRow(a, a) and b = a. Launch Fitch and open the file
Identity 1. Here we have the beginnings of the formal proof. The premises
appear above the Fitch bar. It may look slightly different from the proofs
we have in the book, since in Fitch the steps don’t have to be numbered,
for reasons we’ll soon find out. (If you would like to have numbered steps,
you can choose Show Step Numbers from the Proof menu. But don’t
try this yet.)

I 2. Before we start to construct the proof, notice that at the bottom of the
proof window there is a separate pane called the “goal strip,” contain-
ing the goal of the proof. In this case the goal is to prove the sentence
SameRow(b, a). If we successfully satisfy this goal, we will be able to get
Fitch to put a checkmark to the right of the goal.

I 3. Let’s construct the proof. What we need to do is fill in the steps needed
to complete the proof, just as we did at the end of the last section. Add
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a new step to the proof by choosing Add Step After from the Proof
menu. In the new step, enter the sentence a = b, either by typing it in or
by using the toolbar at the top of the proof window. We will first use this
step to get our conclusion and then go back and prove this step.

J4. Once you have entered a = b, add another step below this and enter the
goal sentence SameRow(b, a). Use the mouse to click on the word Rule?
that appears to the right of SameRow(b, a). In the menu that pops up, go
to the Elimination Rules and select =. If you did this right, the rule name
should now say = Elim. If not, try again.

J5. Next cite the first premise and the intermediate sentence you first entered.
You do this in Fitch by clicking on the two sentences, in either order. If
you click on the wrong one, just click again and it will be un-cited. Once
you have the right sentences cited, choose Verify Proof from the Proof
menu. The last step should now check out, as it is a valid instance of =
Elim. The step containing a = b will not check out, since we haven’t yet
indicated what it follows from. Nor will the goal check out, since we don’t
yet have a complete proof of SameRow(b, a). All in good time.

J6. Now add a step before the first introduced step (the one containing a = b),
and enter the sentence b = b. Do this by moving the focus slider (the
triangle in the left margin) to the step containing a = b and choosing
Add Step Before from the Proof menu. (If the new step appears in
the wrong place, choose Delete Step from the Proof menu.) Enter the
sentence b = b and justify it by using the rule = Intro. Check the step.

J7. Finally, justify the step containing a = b by using the = Elim rule. You
will need to move the focus slider to this step, and then cite the second
premise and the sentence b = b. Now the whole proof, including the goal,
should check out. To find out if it does, choose Verify Proof from the
Proof menu. The proof should look like the completed proof on page 57,
except for the absence of numbers on the steps. (Try out Show Step
Numbers from the Proof menu now. The highlighting on support steps
will go away and numbers will appear, just like in the book.)

J8. We mentioned earlier that Fitch lets you take some shortcuts, allowing
you to do things in one step that would take several if we adhered strictly
to F . This proof is a case in point. We have constructed a proof that falls
under F but Fitch actually has symmetry of identity built into = Elim.
So we could prove the conclusion directly from the two premises, using a
single application of the rule = Elim. We’ll do this next.
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I 9. Add another step at the very end of your proof. Here’s a trick you will find
handy: Click on the goal sentence at the very bottom of the window. This
puts the focus on the goal sentence. Choose Copy from the Edit menu,
and then click back on the empty step at the end of your proof. Choose
Paste from the Edit menu and the goal sentence will be entered into this
step. This time, justify the new step using = Elim and citing just the two
premises. You will see that the step checks out.

I 10. Save your proof as Proof Identity 1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

Since the proof system F does not have any rules for atomic predicates
other than identity, neither does Fitch. However, Fitch does have a mecha-
nism that, among other things, lets you check for consequences among atomic
sentences that involve many of the predicates in the blocks world language.1

This is a rule we call Analytic Consequence or Ana Con for short. AnaAnalytic Consequence
Con is not restricted to atomic sentences, but that is the only application
of the rule we will discuss at the moment. This rule allows you to cite some
sentences in support of a claim if any world that makes the cited sentences
true also makes the conclusion true, given the meaning of the predicates as
used in Tarski’s World. Let’s get a feeling for Ana Con with some examples.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I 1. Use Fitch to open the file Ana Con 1. In this file you will find nine premises

followed by six conclusions that are consequences of these premises. Indeed,
each of the conclusions follows from three or fewer of the premises.

I 2. Position the focus slider (the little triangle) at the first conclusion following
the Fitch bar, SameShape(c,b). We have invoked the rule Ana Con but
we have not cited any sentences. This conclusion follows from Cube(b) and
Cube(c). Cite these sentences and check the step.

I 3. Now move the focus slider to the step containing SameRow(b, a). Since
the relation of being in the same row is symmetric and transitive, this
follows from SameRow(b, c) and SameRow(a, c). Cite these two sentences
and check the step.

1This mechanism does not handle the predicates Adjoins and Between, due to the com-
plexity of the ways the meanings of these predicates interact with the others.
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J4. The third conclusion, BackOf(e, c), follows from three of the premises. See
if you can find them. Cite them. If you get it wrong, Fitch will give you
an X when you try to check the step.

J5. Now fill in the citations needed to make the fourth and fifth conclusions
check out. For these, you will have to invoke the Ana Con rule yourself.
(You will find the rule on the Con submenu of the Rule? popup.)

J6. The final conclusion, SameCol(b,b), does not require that any premises be
cited in support. It is simply an analytic truth, that is, true in virtue of
its meaning. Specify the rule and check this step.

J7. When you are done, choose Verify Proof to see that all the goals check
out. Save your work as Proof Ana Con 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

The Ana Con mechanism is not really a rule, technically speaking, though rules vs. Con
mechanismswe will continue to call it that since it appears on the Rule? menu in Fitch.

This mechanism, along with the two others appearing on the Con submenu,
apply complicated procedures to see whether the sentence in question follows
from the cited sentences. As we will explain later, these three items try to find
proofs of the sentence in question “behind the scenes,” and then give you a
checkmark if they succeed. The proof they find may in fact apply many, many
different rules in getting from the cited steps to the target sentence.

The main difference you will run into between the genuine rules in Fitch
and the mechanisms appearing on the Con menu is that the latter “rules”
will sometimes fail even though your step is actually correct. With the genuine
rules, Fitch will always give your step either a checkmark or an X, depending
on whether the rule is applied correctly. But with the Con mechanisms, Fitch
will sometimes try to find a proof of the target sentence but fail. In these
cases, Fitch will give the step a question mark rather than a check or an X,
since there might be a complicated proof that it just couldn’t find.

To mark the difference between the genuine rules of F and the three con-
sequence mechanisms, Fitch displays the rule names in green and the conse-
quence mechanisms in blue. Because the Con mechanisms look for a proof
behind the scenes, we will often ask you not to use them in giving solutions to
homework problems. After all, the point is not to have Fitch do your home-
work for you! In the following problems, you should only use the Ana Con
rule if we explicitly say you can. To see whether a problem allows you to use
any of the Con mechanisms, double click on the goal or choose See Goal
Constraints from the Goal menu.
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Remember

The deductive system you will be learning is a Fitch-style deductive sys-
tem, named F . The computer application that assists you in constructing
proofs in F is therefore called Fitch. If you write out your proofs on paper,
you are using the system F , but not the program Fitch.

Exercises

2.15
➶

If you skipped the You try it sections, go back and do them now. Submit the files Proof
Identity 1 and Proof Ana Con 1.

2.16
➶

Use Fitch to give a formal version of the informal proof you gave in Exercise 2.5. Remember,
you will find the problem setup in the file Exercise 2.16. You should begin your proof from this
saved file. Save your completed proof as Proof 2.16.

In the following exercises, use Fitch to construct a formal proof that the conclusion is a consequence of
the premises. Remember, begin your proof by opening the corresponding file, Exercise 2.x, and save your
solution as Proof 2.x. We’re going to stop reminding you.

2.17
➶

SameCol(a, b)
b = c
c = d

SameCol(a, d)

2.18
➶

Between(a, d,b)
a = c
e = b

Between(c, d, e)

2.19
➶

Smaller(a,b)
Smaller(b, c)

Smaller(a, c)

You will need to use Ana Con in this
proof. This proof shows that the pred-
icate Smaller in the blocks language is
transitive.

2.20
➶

RightOf(b, c)
LeftOf(d, e)
b = d

LeftOf(c, e)
Make your proof parallel the informal
proof we gave on page 52, using both
an identity rule and Ana Con (where
necessary).
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Section 2.5

Demonstrating nonconsequence

Proofs come in a variety of different forms. When a mathematician proves
a theorem, or when a prosecutor proves a defendant’s guilt, they are show-
ing that a particular claim follows from certain accepted information, the
information they take as given. This kind of proof is what we call a proof of proofs of

consequenceconsequence, a proof that a particular piece of information must be true if the
given information, the premises of the argument, are correct.

A very different, but equally important kind of proof is a proof of nonconse- proofs of
nonconsequencequence. When a defense attorney shows that the crime might have been com-

mitted by someone other than the client, say by the butler, the attorney is
trying to prove that the client’s guilt does not follow from the evidence in the
case. When mathematicians show that the parallel postulate is not a conse-
quence of the other axioms of Euclidean geometry, they are doing the same
thing: they are showing that it would be possible for the claim in question (the
parallel postulate) to be false, even if the other information (the remaining
axioms) is true.

We have introduced a few methods for demonstrating the validity of an
argument, for showing that its conclusion is a consequence of its premises. We
will be returning to this topic repeatedly in the chapters that follow, adding
new tools for demonstrating consequence as we add new expressions to our
language. In this section, we discuss the most important method for demon-
strating nonconsequence, that is, for showing that some purported conclusion
is not a consequence of the premises provided in the argument.

Recall that logical consequence was defined in terms of the validity of
arguments. An argument is valid if every possible circumstance that makes
the premises of the argument true also makes the conclusion true. Put the
other way around, the argument is invalid if there is some circumstance that
makes the premises true but the conclusion false. Finding such a circumstance
is the key to demonstrating nonconsequence.

To show that a sentence Q is not a consequence of premises P1, . . . , Pn,
we must show that the argument with premises P1, . . . , Pn and conclusion Q
is invalid. This requires us to demonstrate that it is possible for P1, . . . , Pn to
be true while Q is simultaneously false. That is, we must show that there is
a possible situation or circumstance in which the premises are all true while
the conclusion is false. Such a circumstance is said to be a counterexample to counterexamples
the argument.

Informal proofs of nonconsequence can resort to many ingenious ways for
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showing the existence of a counterexample. We might simply describe what isinformal proofs of
nonconsequence clearly a possible situation, one that makes the premises true and the conclu-

sion false. This is the technique used by defense attorneys, who hope to create
a reasonable doubt that their client is guilty (the prosecutor’s conclusion) in
spite of the evidence in the case (the prosecution’s premises). We might draw
a picture of such a situation or build a model out of Lego blocks or clay.
We might act out a situation. Anything that clearly shows the existence of a
counterexample is fair game.

Recall the following argument from an earlier exercise.

Al Gore is a politician.
Hardly any politicians are honest.

Al Gore is dishonest.

If the premises of this argument are true, then the conclusion is likely. But
still the argument is not valid: the conclusion is not a logical consequence of
the premises. How can we see this? Well, imagine a situation where there are
10,000 politicians, and that Al Gore is the only honest one of the lot. In such
circumstances both premises would be true but the conclusion would be false.
Such a situation is a counterexample to the argument; it demonstrates that
the argument is invalid.

What we have just given is an informal proof of nonconsequence. Are
there such things as formal proofs of nonconsequence, similar to the formal
proofs of validity constructed in F? In general, no. But we will define the
notion of a formal proof of nonconsequence for the blocks language used in
Tarski’s World. These formal proofs of nonconsequence are simply stylized
counterparts of informal counterexamples.

For the blocks language, we will say that a formal proof that Q is not aformal proofs of
nonconsequence consequence of P1, . . . ,Pn consists of a sentence file with P1, . . . , Pn labeled

as premises, Q labeled as conclusion, and a world file that makes each of
P1, . . . ,Pn true and Q false. The world depicted in the world file will be called
the counterexample to the argument in the sentence file.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 1. Launch Tarski’s World and open the sentence file Bill’s Argument. This
argument claims that Between(b, a,d) follows from these three premises:
Between(b, c,d), Between(a, b, d), and Left(a, c). Do you think it does?

I 2. Start a new world and put four blocks, labeled a, b, c, and d on one row
of the grid.
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J3. Arrange the blocks so that the conclusion is false. Check the premises. If
any of them are false, rearrange the blocks until they are all true. Is the
conclusion still false? If not, keep trying.

J4. If you have trouble, try putting them in the order d, a, b, c. Now you will
find that all the premises are true but the conclusion is false. This world is
a counterexample to the argument. Thus we have demonstrated that the
conclusion does not follow from the premises.

J5. Save your counterexample as World Counterexample 1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

Remember

To demonstrate the invalidity of an argument with premises P1, . . . , Pn

and conclusion Q, find a counterexample: a possible circumstance that
makes P1, . . . ,Pn all true but Q false. Such a counterexample shows that
Q is not a consequence of P1, . . . , Pn.

Exercises

2.21
➶

If you have skipped the You try it section, go back and do it now. Submit the world file World
Counterexample 1.

2.22
✎

Is the following argument valid? Sound? If it is valid, give an informal proof of it. If it is not
valid, give an informal counterexample to it.

All computer scientists are rich. Anyone who knows how to program a computer is a
computer scientist. Bill Gates is rich. Therefore, Bill Gates knows how to program a
computer.

2.23
✎

Is the following argument valid? Sound? If it is valid, give an informal proof of it. If it is not
valid, give an informal counterexample to it.

Philosophers have the intelligence needed to be computer scientists. Anyone who be-
comes a computer scientist will eventually become wealthy. Anyone with the intelli-
gence needed to be a computer scientist will become one. Therefore, every philosopher
will become wealthy.
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Each of the following problems presents a formal argument in the blocks language. If the argument is
valid, submit a proof of it using Fitch. (You will find Exercise files for each of these in the usual place.)
Important: if you use Ana Con in your proof, cite at most two sentences in each application. If the
argument is not valid, submit a counterexample world using Tarski’s World.

2.24
➶

Larger(b, c)
Smaller(b, d)
SameSize(d, e)

Larger(e, c)

2.25
➶

FrontOf(a, b)
LeftOf(a, c)
SameCol(a, b)

FrontOf(c,b)

2.26
➶

SameRow(b, c)
SameRow(a,d)
SameRow(d, f)
LeftOf(a, b)

LeftOf(f, c)

2.27
➶

SameRow(b, c)
SameRow(a,d)
SameRow(d, f)
FrontOf(a, b)

FrontOf(f, c)

Section 2.6

Alternative notation

You will often see arguments presented in the following way, rather than
in Fitch format. The symbol .·. (read “therefore”) is used to indicate the
conclusion:

All men are mortal.
Socrates is a man.
.·. Socrates is mortal.

There is a huge variety of formal deductive systems, each with its own
notation. We can’t possibly cover all of these alternatives, though we describe
one, the resolution method, in Chapter 17.
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Chapter 3

The Boolean Connectives

So far, we have discussed only atomic claims. To form complex claims, fol pro-
vides us with connectives and quantifiers. In this chapter we take up the three
simplest connectives: conjunction, disjunction, and negation, corresponding
to simple uses of the English and, or, and it is not the case that. Because they Boolean connectives
were first studied systematically by the English logician George Boole, they
are called the Boolean operators or Boolean connectives.

The Boolean connectives are also known as truth-functional connectives. truth-functional
connectivesThere are additional truth-functional connectives which we will talk about

later. These connectives are called “truth functional” because the truth value
of a complex sentence built up using these connectives depends on nothing
more than the truth values of the simpler sentences from which it is built.
Because of this, we can explain the meaning of a truth-functional connective
in a couple of ways. Perhaps the easiest is by constructing a truth table, a truth table
table that shows how the truth value of a sentence formed with the connec-
tive depends on the truth values of the sentence’s immediate parts. We will
give such tables for each of the connectives we introduce. A more interesting Henkin-Hintikka game
way, and one that can be particularly illuminating, is by means of a game,
sometimes called the Henkin-Hintikka game, after the logicians Leon Henkin
and Jaakko Hintikka.

Imagine that two people, say Max and Claire, disagree about the truth
value of a complex sentence. Max claims it is true, Claire claims it is false. The
two repeatedly challenge one another to justify their claims in terms of simpler
claims, until finally their disagreement is reduced to a simple atomic claim,
one involving an atomic sentence. At that point they can simply examine the
world to see whether the atomic claim is true—at least in the case of claims
about the sorts of worlds we find in Tarski’s World. These successive challenges
can be thought of as a game where one player will win, the other will lose. The
legal moves at any stage depend on the form of the sentence. We will explain
them below. The one who can ultimately justify his or her claims is the winner.

When you play this game in Tarski’s World, the computer takes the side
opposite you, even if it knows you are right. If you are mistaken in your initial
assessment, the computer will be sure to win the game. If you are right,
though, the computer plugs away, hoping you will blunder. If you slip up, the
computer will win the game. We will use the game rules as a second way of
explaining the meanings of the truth-functional connectives.
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Section 3.1

Negation symbol: ¬

The symbol ¬ is used to express negation in our language, the notion we
commonly express in English using terms like not, it is not the case that, non-
and un-. In first-order logic, we always apply this symbol to the front of a
sentence to be negated, while in English there is a much more subtle system
for expressing negative claims. For example, the English sentences John isn’t
home and It is not the case that John is home have the same first-order
translation:

¬Home(john)

This sentence is true if and only if Home(john) isn’t true, that is, just in case
John isn’t home.

In English, we generally avoid double negatives—negatives inside other
negatives. For example, the sentence It doesn’t make no difference is problem-
atic. If someone says it, they usually mean that it doesn’t make any difference.
In other words, the second negative just functions as an intensifier of some
sort. On the other hand, this sentence could be used to mean just what it
says, that it does not make no difference, it makes some difference.

Fol is much more systematic. You can put a negation symbol in front of
any sentence whatsoever, and it always negates it, no matter how many other
negation symbols the sentence already contains. For example, the sentence

¬¬Home(john)

negates the sentence
¬Home(john)

and so is true if and only if John is home.
The negation symbol, then, can apply to complex sentences as well as to

atomic sentences. We will say that a sentence is a literal if it is either atomicliterals
or the negation of an atomic sentence. This notion of a literal will be useful
later on.

We will abbreviate negated identity claims, such as ¬(b = c), using 6=, asnonidentity symbol (6=)
in b 6= c. The symbol 6= is available on the keyboard palettes in both Tarski’s
World and Fitch.

Semantics and the game rule for negation

Given any sentence P of fol (atomic or complex), there is another sentence
¬P. This sentence is true if and only if P is false. This can be expressed in
terms of the following truth table.
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P ¬P
true false

false true

truth table for ¬

The game rule for negation is very simple, since you never have to do game rule for ¬
anything. Once you commit yourself to the truth of ¬P this is the same as
committing yourself to the falsity of P. Similarly, if you commit yourself to
the falsity of ¬P, this is tantamount to committing yourself to the truth of
P. So in either case Tarski’s World simply replaces your commitment about
the more complex sentence by the opposite commitment about the simpler
sentence.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

J1. Open Wittgenstein’s World. Start a new sentence file and write the following
sentence.

¬¬¬¬¬Between(e, d, f)

J2. Use the Verify button to check the truth value of the sentence.

J3. Now play the game, choosing whichever commitment you please. What
happens to the number of negation symbols as the game proceeds? What
happens to your commitment?

J4. Now play the game again with the opposite commitment. If you won the
first time, you should lose this time, and vice versa. Don’t feel bad about
losing.

J5. There is no need to save the sentence file when you are done.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

Remember

1. If P is a sentence of fol, then so is ¬P.

2. The sentence ¬P is true if and only if P is not true.

3. A sentence that is either atomic or the negation of an atomic sentence
is called a literal.
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Exercises

3.1 If you skipped the You try it section, go back and do it now. There are no files to submit,
but you wouldn’t want to miss it.

3.2
➶

(Assessing negated sentences) Open Boole’s World and Brouwer’s Sentences. In the sentence file
you will find a list of sentences built up from atomic sentences using only the negation symbol.
Read each sentence and decide whether you think it is true or false. Check your assessment. If
the sentence is false, make it true by adding or deleting a negation sign. When you have made
all the sentences in the file true, submit the modified file as Sentences 3.2

3.3
➶

(Building a world) Start a new sentence file. Write the following sentences in your file and save
the file as Sentences 3.3.

1. ¬Tet(f)
2. ¬SameCol(c, a)
3. ¬¬SameCol(c,b)
4. ¬Dodec(f)
5. c 6= b
6. ¬(d 6= e)
7. ¬SameShape(f, c)
8. ¬¬SameShape(d, c)
9. ¬Cube(e)

10. ¬Tet(c)

Now start a new world file and build a world where all these sentences are true. As you modify
the world to make the later sentences true, make sure that you have not accidentally falsified
any of the earlier sentences. When you are done, submit both your sentences and your world.

3.4
✎

Let P be a true sentence, and let Q be formed by putting some number of negation symbols
in front of P. Show that if you put an even number of negation symbols, then Q is true, but
that if you put an odd number, then Q is false. [Hint: A complete proof of this simple fact
would require what is known as “mathematical induction.” If you are familiar with proof by
induction, then go ahead and give a proof. If you are not, just explain as clearly as you can
why this is true.]

Now assume that P is atomic but of unknown truth value, and that Q is formed as before.
No matter how many negation symbols Q has, it will always have the same truth value as a
literal, namely either the literal P or the literal ¬P. Describe a simple procedure for determining
which.
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Section 3.2

Conjunction symbol: ∧

The symbol ∧ is used to express conjunction in our language, the notion we
normally express in English using terms like and, moreover, and but. In first-
order logic, this connective is always placed between two sentences, whereas in
English we can also conjoin other parts of speech, such as nouns. For example,
the English sentences John and Mary are home and John is home and Mary
is home have the same first-order translation:

Home(john) ∧ Home(mary)

This sentence is read aloud as “Home John and home Mary.” It is true if and
only if John is home and Mary is home.

In English, we can also conjoin verb phrases, as in the sentence John slipped
and fell. But in fol we must translate this the same way we would translate
John slipped and John fell :

Slipped(john) ∧ Fell(john)

This sentence is true if and only if the atomic sentences Slipped(john) and
Fell(john) are both true.

A lot of times, a sentence of fol will contain ∧ when there is no visible
sign of conjunction in the English sentence at all. How, for example, do you
think we might express the English sentence d is a large cube in fol? If you
guessed

Large(d) ∧ Cube(d)

you were right. This sentence is true if and only if d is large and d is a cube—
that is, if d is a large cube.

Some uses of the English and are not accurately mirrored by the fol

conjunction symbol. For example, suppose we are talking about an evening
when Max and Claire were together. If we were to say Max went home and
Claire went to sleep, our assertion would carry with it a temporal implication,
namely that Max went home before Claire went to sleep. Similarly, if we were to
reverse the order and assert Claire went to sleep and Max went home it would
suggest a very different sort of situation. By contrast, no such implication,
implicit or explicit, is intended when we use the symbol ∧. The sentence

WentHome(max) ∧ FellAsleep(claire)

is true in exactly the same circumstances as

FellAsleep(claire) ∧ WentHome(max)
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Semantics and the game rule for ∧

Just as with negation, we can put complex sentences as well as simple ones
together with ∧. A sentence P ∧ Q is true if and only if both P and Q are true.
Thus P ∧ Q is false if either or both of P or Q is false. This can be summarized
by the following truth table.

P Q P ∧ Q
true true true

true false false

false true false

false false false

truth table for ∧

The Tarski’s World game is more interesting for conjunctions than nega-
tions. The way the game proceeds depends on whether you have committedgame rule for ∧
to true or to false. If you commit to the truth of P ∧ Q then you have
implicitly committed yourself to the truth of each of P and Q. Thus, Tarski’s
World gets to choose either one of these simpler sentences and hold you to the
truth of it. (Which one will Tarski’s World choose? If one or both of them are
false, it will choose a false one so that it can win the game. If both are true,
it will choose at random, hoping that you will make a mistake later on.)

If you commit to the falsity of P ∧ Q, then you are claiming that at least
one of P or Q is false. In this case, Tarski’s World will ask you to choose one of
the two and thereby explicitly commit to its being false. The one you choose
had better be false, or you will eventually lose the game.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 1. Open Claire’s World. Start a new sentence file and enter the sentence

¬Cube(a) ∧ ¬Cube(b) ∧ ¬Cube(c)

I 2. Notice that this sentence is false in this world, since c is a cube. Play
the game committed (mistakenly) to the truth of the sentence. You will
see that Tarski’s World immediately zeros in on the false conjunct. Your
commitment to the truth of the sentence guarantees that you will lose the
game, but along the way, the reason the sentence is false becomes apparent.

I 3. Now begin playing the game committed to the falsity of the sentence.
When Tarski’s World asks you to choose a conjunct you think is false,
pick the first sentence. This is not the false conjunct, but select it anyway
and see what happens after you choose OK.
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J4. Play until Tarski’s World says that you have lost. Then click on Back a
couple of times, until you are back to where you are asked to choose a
false conjunct. This time pick the false conjunct and resume the play of
the game from that point. This time you will win.

J5. Notice that you can lose the game even when your original assessment
is correct, if you make a bad choice along the way. But Tarski’s World
always allows you to back up and make different choices. If your original
assessment is correct, there will always be a way to win the game. If it
is impossible for you to win the game, then your original assessment was
wrong.

J6. Save your sentence file as Sentences Game 1 when you are done.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

Remember

1. If P and Q are sentences of fol, then so is P ∧ Q.

2. The sentence P ∧ Q is true if and only if both P and Q are true.

Exercises

3.5
➶

If you skipped the You try it section, go back and do it now. Make sure you follow all the
instructions. Submit the file Sentences Game 1.

3.6
➶

Start a new sentence file and open Wittgenstein’s World. Write the following sentences in the
sentence file.

1. Tet(f) ∧ Small(f)
2. Tet(f) ∧ Large(f)
3. Tet(f) ∧ ¬Small(f)
4. Tet(f) ∧ ¬Large(f)
5. ¬Tet(f) ∧ ¬Small(f)
6. ¬Tet(f) ∧ ¬Large(f)
7. ¬(Tet(f) ∧ Small(f))
8. ¬(Tet(f) ∧ Large(f))
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9. ¬(¬Tet(f) ∧ ¬Small(f))
10. ¬(¬Tet(f) ∧ ¬Large(f))

Once you have written these sentences, decide which you think are true. Record your eval-
uations, to help you remember. Then go through and use Tarski’s World to evaluate your
assessments. Whenever you are wrong, play the game to see where you went wrong.

If you are never wrong, playing the game will not be very instructive. Play the game a
couple times anyway, just for fun. In particular, try playing the game committed to the falsity
of sentence 9. Since this sentence is true in Wittgenstein’s World, Tarski’s World should be able
to beat you. Make sure you understand everything that happens as the game proceeds.

Next, change the size or shape of block f , predict how this will affect the truth values of
your ten sentences, and see if your prediction is right. What is the maximum number of these
sentences that you can get to be true in a single world? Build a world in which the maximum
number of sentences are true. Submit both your sentence file and your world file, naming them
as usual.

3.7
➶

(Building a world) Open Max’s Sentences. Build a world where all these sentences are true.
You should start with a world with six blocks and make changes to it, trying to make all the
sentences true. Be sure that as you make a later sentence true you do not inadvertently falsify
an earlier sentence.

Section 3.3

Disjunction symbol: ∨

The symbol ∨ is used to express disjunction in our language, the notion we
express in English using or. In first-order logic, this connective, like the con-
junction sign, is always placed between two sentences, whereas in English we
can also disjoin nouns, verbs, and other parts of speech. For example, the
English sentences John or Mary is home and John is home or Mary is home
both have the same first-order translation:

Home(john) ∨ Home(mary)

This fol sentence is read “Home John or home Mary.”
Although the English or is sometimes used in an “exclusive” sense, to sayexclusive vs. inclusive

disjunction that exactly one (i.e., one but no more than one) of the two disjoined sentences
is true, the first-order logic ∨ is always given an “inclusive” interpretation: it
means that at least one and possibly both of the two disjoined sentences is
true. Thus, our sample sentence is true if John is home but Mary is not, if
Mary is home but John is not, or if both John and Mary are home.
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If we wanted to express the exclusive sense of or in the above example, we
could do it as follows:

[Home(john) ∨ Home(mary)] ∧ ¬[Home(john) ∧ Home(mary)]

As you can see, this sentence says that John or Mary is home, but it is not
the case that they are both home.

Many students are tempted to say that the English expression either . . . or
expresses exclusive disjunction. While this is sometimes the case (and indeed
the simple or is often used exclusively), it isn’t always. For example, suppose
Pris and Scruffy are in the next room and the sound of a cat fight suddenly
breaks out. If we say Either Pris bit Scruffy or Scruffy bit Pris, we would not
be wrong if each had bit the other. So this would be translated as

Bit(pris, scruffy) ∨ Bit(scruffy, pris)

We will see later that the expression either sometimes plays a different logical
function.

Another important English expression that we can capture without intro-
ducing additional symbols is neither. . . nor. Thus Neither John nor Mary is
at home would be expressed as:

¬(Home(john) ∨ Home(mary))

This says that it’s not the case that at least one of them is at home, i.e., that
neither of them is home.

Semantics and the game rule for ∨

Given any two sentences P and Q of fol, atomic or not, we can combine them
using ∨ to form a new sentence P ∨ Q. The sentence P ∨ Q is true if at least
one of P or Q is true. Otherwise it is false. Here is the truth table.

P Q P ∨ Q
true true true

true false true

false true true

false false false

truth table for ∨

The game rules for ∨ are the “duals” of those for ∧. If you commit yourself game rule for ∨
to the truth of P ∨ Q, then Tarski’s World will make you live up to this by
committing yourself to the truth of one or the other. If you commit yourself to
the falsity of P ∨ Q, then you are implicitly committing yourself to the falsity
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of each, so Tarski’s World will choose one and hold you to the commitment
that it is false. (Tarski’s World will, of course, try to win by picking a true
one, if it can.)

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 1. Open the file Ackermann’s World. Start a new sentence file and enter the
sentence

Cube(c) ∨ ¬(Cube(a) ∨ Cube(b))

Make sure you get the parentheses right!

I 2. Play the game committed (mistakenly) to this sentence being true. Since
the sentence is a disjunction, and you are committed to true, you will
be asked to pick a disjunct that you think is true. Since the first one is
obviously false, pick the second.

I 3. You now find yourself committed to the falsity of a (true) disjunction.
Hence you are committed to the falsity of each disjunct. Tarski’s World
will then point out that you are committed to the falsity of Cube(b). But
this is clearly wrong, since b is a cube. Continue until Tarski’s World says
you have lost.

I 4. Play the game again, this time committed to the falsity of the sentence.
You should be able to win the game this time. If you don’t, back up and
try again.

I 5. Save your sentence file as Sentences Game 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

Remember

1. If P and Q are sentences of fol, then so is P ∨ Q.

2. The sentence P ∨ Q is true if and only if P is true or Q is true (or both
are true).

Exercises

3.8
➶

If you skipped the You try it section, go back and do it now. You’ll be glad you did. Well,
maybe. Submit the file Sentences Game 2.
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3.9
➶

Open Wittgenstein’s World and the sentence file Sentences 3.6 that you created for Exercise 3.6.
Edit the sentences by replacing ∧ by ∨ throughout, saving the edited list as Sentences 3.9.
Once you have changed these sentences, decide which you think are true. Again, record your
evaluations to help you remember them. Then go through and use Tarski’s World to evaluate
your assessment. Whenever you are wrong, play the game to see where you went wrong. If you
are never wrong, then play the game anyway a couple times, knowing that you should win. As
in Exercise 3.6, find the maximum number of sentences you can make true by changing the
size or shape (or both) of block f . Submit both your sentences and world.

3.10
➶

Open Ramsey’s World and start a new sentence file. Type the following four sentences into the
file:

1. Between(a, b, c) ∨ Between(b, a, c)
2. FrontOf(a,b) ∨ FrontOf(c, b)
3. ¬SameRow(b, c) ∨ LeftOf(b, a)
4. RightOf(b, a) ∨ Tet(a)

Assess each of these sentences in Ramsey’s World and check your assessment. Then make a single
change to the world that makes all four of the sentences come out false. Save the modified world
as World 3.10. Submit both files.

Section 3.4

Remarks about the game

We summarize the game rules for the three connectives, ¬, ∧, and ∨, in
Table 3.1. The first column indicates the form of the sentence in question,
and the second indicates your current commitment, true or false. Which
player moves depends on this commitment, as shown in the third column.
The goal of that player’s move is indicated in the final column. Notice that commitment and rules
although the player to move depends on the commitment, the goal of that
move does not depend on the commitment. You can see why this is so by
thinking about the first row of the table, the one for P ∨ Q. When you are
committed to true, it is clear that your goal should be to choose a true
disjunct. But when you are committed to false, Tarski’s World is committed
to true, and so also has the same goal of choosing a true disjunct.

There is one somewhat subtle point that should be made about our way of
describing the game. We have said, for example, that when you are committed
to the truth of the disjunction P ∨ Q, you are committed to the truth of one
of the disjuncts. This of course is true, but does not mean you necessarily
know which of P or Q is true. For example, if you have a sentence of the form
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Table 3.1: Game rules for ∧, ∨, and ¬

Form Your commitment Player to move Goal

true you Choose one of
P ∨ Q P, Q that

false Tarski’s World is true.

true Tarski’s World Choose one of
P ∧ Q P, Q that

false you is false.

Replace ¬P
¬P either — by P and

switch
commitment.

P ∨ ¬P, then you know that it is true, no matter how the world is. After all,
if P is not true, then ¬P will be true, and vice versa; in either event P ∨ ¬P
will be true. But if P is quite complex, or if you have imperfect information
about the world, you may not know which of P or ¬P is true. Suppose P
is a sentence like There is a whale swimming below the Golden Gate Bridge
right now. In such a case you would be willing to commit to the truth of the
disjunction (since either there is or there isn’t) without knowing just how to
play the game and win. You know that there is a winning strategy for the
game, but just don’t know what it is.

Since there is a moral imperative to live up to one’s commitments, the
use of the term “commitment” in describing the game is a bit misleading.
You are perfectly justified in asserting the truth of P ∨ ¬P, even if you do
not happen to know your winning strategy for playing the game. Indeed, it
would be foolish to claim that the sentence is not true. But if you do claim
that P ∨ ¬P is true, and then play the game, you will be asked to say which
of P or ¬P you think is true. With Tarski’s World, unlike in real life, you can
always get complete information about the world by going to the 2D view,
and so always live up to such commitments.

Chapter 3



Ambiguity and parentheses / 79

Exercises

Here is a problem that illustrates the remarks we made about sometimes being able to tell that a sentence
is true, without knowing how to win the game.

3.11
✎

Make sure Tarski’s World is set to display the world in 3D. Then open Kleene’s World and
Kleene’s Sentences. Some objects are hidden behind other objects, thus making it impossible
to assess the truth of some of the sentences. Each of the six names a, b, c,d, e, and f are in use,
naming some object. Now even though you cannot see all the objects, some of the sentences in
the list can be evaluated with just the information at hand. Assess the truth of each claim, if
you can, without recourse to the 2-D view. Then play the game. If your initial commitment is
right, but you lose the game, back up and play over again. Then go through and add comments
to each sentence explaining whether you can assess its truth in the world as shown, and why.
Finally, display the 2-D view and check your work. We have annotated the first sentence for you
to give you the idea. (The semicolon “;” tells Tarski’s World that what follows is a comment.)
When you are done, print out your annotated sentences to turn in to your instructor.

Section 3.5

Ambiguity and parentheses

When we first described fol, we stressed the lack of ambiguity of this language
as opposed to ordinary languages. For example, English allows us to say things
like Max is home or Claire is home and Carl is happy. This sentence can be
understood in two quite different ways. One reading claims that either Claire
is home and Carl is happy, or Max is home. On this reading, the sentence
would be true if Max was home, even if Carl was unhappy. The other reading
claims both that Max or Claire is home and that Carl is happy.

Fol avoids this sort of ambiguity by requiring the use of parentheses, much
the way they are used in algebra. So, for example, fol would not have one
sentence corresponding to the ambiguous English sentence, but two:

Home(max) ∨ (Home(claire) ∧ Happy(carl))
(Home(max) ∨ Home(claire)) ∧ Happy(carl)

The parentheses in the first indicate that it is a disjunction, whose second
disjunct is itself a conjunction. In the second, they indicate that the sentence
is a conjunction whose first conjunct is a disjunction. As a result, the truth
conditions for the two are quite different. This is analogous to the difference
in algebra between the expressions 2 + (x × 3) and (2 + x) × 3. This analogy
between logic and algebra is one we will come back to later.
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Parentheses are also used to indicate the “scope” of a negation symbolscope of negation
when it appears in a complex sentence. So, for example, the two sentences

¬Home(claire) ∧ Home(max)
¬(Home(claire) ∧ Home(max))

mean quite different things. The first is a conjunction of literals, the first of
which says Claire is not home, the second of which says that Max is home. By
contrast, the second sentence is a negation of a sentence which itself is a con-
junction: it says that they are not both home. You have already encountered
this use of parentheses in earlier exercises.

Many logic books require that you always put parentheses around any pair
of sentences joined by a binary connective (such as ∧ or ∨). These books do
not allow sentences of the form:

P ∧ Q ∧ R

but instead require one of the following:

((P ∧ Q) ∧ R)
(P ∧ (Q ∧ R))

The version of fol that we use in this book is not so fussy, in a couple of ways.
First of all, it allows you to conjoin any number of sentences without usingleaving out parentheses
parentheses, since the result is not ambiguous, and similarly for disjunctions.
Second, it allows you to leave off the outermost parentheses, since they serve
no useful purpose. You can also add extra parentheses (or brackets or braces)
if you want to for the sake of readability. For the most part, all we will require
is that your expression be unambiguous.

Remember

Parentheses must be used whenever ambiguity would result from their
omission. In practice, this means that conjunctions and disjunctions must
be “wrapped” in parentheses whenever combined by means of some other
connective.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 1. Let’s try our hand at evaluating some sentences built up from atomic
sentences using all three connectives ∧, ∨, ¬. Open Boole’s Sentences and
Wittgenstein’s World. If you changed the size or shape of f while doing
Exercises 3.6 and 3.9, make sure that you change it back to a large tetra-
hedron.
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J2. Evaluate each sentence in the file and check your assessment. If your as-
sessment is wrong, play the game to see why. Don’t go from one sentence
to the next until you understand why it has the truth value it does.

J3. Do you see the importance of parentheses? After you understand all the
sentences, go back and see which of the false sentences you can make true
just by adding, deleting, or moving parentheses, but without making any
other changes. Save your file as Sentences Ambiguity 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

Exercises

To really master a new language, you have to use it, not just read about it. The exercises and problems
that follow are intended to let you do just that.

3.12
➶

If you skipped the You try it section, go back and do it now. Submit the file Sentences
Ambiguity 1.

3.13
➶

(Building a world) Open Schröder’s Sentences. Build a single world where all the sentences
in this file are true. As you work through the sentences, you will find yourself successively
modifying the world. Whenever you make a change in the world, be careful that you don’t
make one of your earlier sentences false. When you are finished, verify that all the sentences
are really true.

3.14
➶

(Parentheses) Show that the sentence

¬(Small(a) ∨ Small(b))

is not a consequence of the sentence

¬Small(a) ∨ Small(b)

You will do this by submitting a coun-
terexample world in which the second
sentence is true but the first sentence is
false.

3.15
➶

(More parentheses) Show that

Cube(a) ∧ (Cube(b) ∨ Cube(c))

is not a consequence of the sentence

(Cube(a) ∧ Cube(b)) ∨ Cube(c)

You will do this by submitting a coun-
terexample world in which the second
sentence is true but the first sentence is
false.

3.16
➶

(DeMorgan Equivalences) Open the file DeMorgan’s Sentences. Construct a world where all the
odd numbered sentences are true. Notice that no matter how you do this, the even numbered
sentences also come out true. Submit this as World 3.16.1. Next build a world where all the
odd numbered sentences are false. Notice that no matter how you do it, the even numbered
sentences also come out false. Submit this as World 3.16.2.

Section 3.5



82 / The Boolean Connectives

3.17
✎

In Exercise 3.16, you noticed an important fact about the relation between the even and odd
numbered sentences in DeMorgan’s Sentences. Try to explain why each even numbered sentence
always has the same truth value as the odd numbered sentence that precedes it.

Section 3.6

Equivalent ways of saying things

Every language has many ways of saying the same thing. This is particularly
true of English, which has absorbed a remarkable number of words from other
languages in the course of its history. But in any language, speakers always
have a choice of many synonymous ways of getting across their point. The
world would be a boring place if there were just one way to make a given
claim.

Fol is no exception, even though it is far less rich in its expressive capaci-
ties than English. In the blocks language, for example, none of our predicates
is synonymous with another predicate, though it is obvious that we could
do without many of them without cutting down on the claims expressible in
the language. For instance, we could get by without the predicate RightOf by
expressing everything we need to say in terms of the predicate LeftOf, sys-
tematically reversing the order of the names to get equivalent claims. This is
not to say that RightOf means the same thing as LeftOf—it obviously does
not—but just that the blocks language offers us a simple way to construct
equivalent claims using these predicates. In the exercises at the end of this
section, we explore a number of equivalences made possible by the predicates
of the blocks language.

Some versions of fol are more parsimonious with their basic predicates
than the blocks language, and so may not provide equivalent ways of express-
ing atomic claims. But even these languages cannot avoid multiple ways of
expressing more complex claims. For example, P ∧ Q and Q ∧ P express the
same claim in any first-order language. More interesting, because of the su-
perficial differences in form, are the equivalences illustrated in Exercise 3.16,
known as DeMorgan’s laws. The first of DeMorgan’s laws tells us that theDeMorgan’s laws
negation of a conjunction, ¬(P ∧ Q), is logically equivalent to the disjunction
of the negations of the original conjuncts: ¬P ∨ ¬Q. The other tells us that
the negation of a disjunction, ¬(P ∨ Q), is equivalent to the conjunction of
the negations of the original disjuncts: ¬P ∧ ¬Q. These laws are simple con-
sequences of the meanings of the Boolean connectives. Writing S1 ⇔ S2 to
indicate that S1 and S2 are logically equivalent, we can express DeMorgan’s
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laws in the following way:

¬(P ∧ Q) ⇔ (¬P ∨ ¬Q)
¬(P ∨ Q) ⇔ (¬P ∧ ¬Q)

There are many other equivalences that arise from the meanings of the
Boolean connectives. Perhaps the simplest is known as the principle of double double negation
negation. Double negation says that a sentence of the form ¬¬P is equivalent
to the sentence P. We will systematically discuss these and other equiva-
lences in the next chapter. In the meantime, we simply note these important
equivalences before going on. Recognizing that there is more than one way of
expressing a claim is essential before we tackle complicated claims involving
the Boolean connectives.

Remember

(Double negation and DeMorgan’s Laws) For any sentences P and Q:

1. Double negation: ¬¬P ⇔ P

2. DeMorgan: ¬(P ∧ Q) ⇔ (¬P ∨ ¬Q)

3. DeMorgan: ¬(P ∨ Q) ⇔ (¬P ∧ ¬Q)

Exercises

3.18
➶

(Equivalences in the blocks language) In the blocks language used in Tarski’s World there are
a number of equivalent ways of expressing some of the predicates. Open Bernays’ Sentences.
You will find a list of atomic sentences, where every other sentence is left blank. In each blank,
write a sentence that is equivalent to the sentence above it, but does not use the predicate
used in that sentence. (In doing this, you may presuppose any general facts about Tarski’s
World, for example that blocks come in only three shapes.) If your answers are correct, the odd
numbered sentences will have the same truth values as the even numbered sentences in every
world. Check that they do in Ackermann’s World, Bolzano’s World, Boole’s World, and Leibniz’s
World. Submit the modified sentence file as Sentences 3.18.

3.19
✎

(Equivalences in English) There are also equivalent ways of expressing predicates in English.
For each of the following sentences of fol, find an atomic sentence in English that expresses
the same thing. For example, the sentence Man(max) ∧ ¬Married(max) could be expressed in

Section 3.6



84 / The Boolean Connectives

English by means of the atomic sentence Max is a bachelor.
1. FatherOf(chris, alex) ∨ MotherOf(chris, alex)
2. BrotherOf(chris, alex) ∨ SisterOf(chris, alex)
3. Human(chris) ∧ Adult(chris) ∧ ¬Woman(chris)
4. Number(4) ∧ ¬Odd(4)
5. Person(chris) ∧ ¬Odd(chris)
6. mother(mother(alex)) = mary ∨ mother(father(alex)) = mary [Notice that mother and

father are function symbols. If you did not cover Section 1.5, you may skip this sen-
tence.]

Section 3.7

Translation

An important skill that you will want to master is that of translating from
English to fol, and vice versa. But before you can do that, you need to know
how to express yourself in both languages. The problems below are designed
to help you learn these related skills.

How do we know if a translation is correct? Intuitively, a correct translationcorrect translation
is a sentence with the same meaning as the one being translated. But what
is the meaning? Fol finesses this question, settling for “truth conditions.”
What we require of a correct translation in fol is that it be true in the same
circumstances as the original sentence. If two sentences are true in exactly
the same circumstances, we say that they have the same truth conditions. Fortruth conditions
sentences of Tarski’s World, this boils down to being true in the very same
worlds.

Note that it is not sufficient that the two sentences have the same truth
value in some particular world. If that were so, then any true sentence of
English could be translated by any true sentence of fol. So, for example,
if Claire and Max are both at home, we could translate Max is at home by
means of Home(claire). No, having the same actual truth value is not enough.
They have to have the same truth values in all circumstances.

Remember

In order for an fol sentence to be a good translation of an English sen-
tence, it is sufficient that the two sentences have the same truth values
in all possible circumstances, that is, that they have the same truth con-
ditions.
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In general, this is all we require of translations into and out of fol. Thus,
given an English sentence S and a good fol translation of it, say S, any other
sentence S′ that is equivalent to S will also count as an acceptable translation
of it, since S and S′ have the same truth conditions. But there is a matter of
style. Some good translations are better than others. You want sentences that
are easy to understand. But you also want to keep the fol connectives close
to the English, if possible.

For example, a good translation of It is not true that Claire and Max are
both at home would be given by

¬(Home(claire) ∧ Home(max))

This is equivalent to the following sentence (by the first DeMorgan law), so
we count it too as an acceptable translation:

¬Home(claire) ∨ ¬Home(max)

But there is a clear stylistic sense in which the first is a better translation, since
it conforms more closely to the form of the original. There are no hard and
fast rules for determining which among several logically equivalent sentences
is the best translation of a given sentence.

Many stylistic features of English have nothing to do with the truth con-
ditions of a sentence, and simply can’t be captured in an fol translation. For
example, consider the English sentence Pris is hungry but Carl is not. This
sentence tells us two things, that Pris is hungry and that Carl is not hungry.
So it would be translated into fol as

Hungry(pris) ∧ ¬Hungry(carl)

When it comes to truth conditions, but expresses the same truth function
as and. Yet it is clear that but carries an additional suggestion that and does but, however, yet,

nonethelessnot, namely, that the listener may find the sentence following the but a bit sur-
prising, given the expectations raised by the sentence preceding it. The words
but, however, yet, nonetheless, and so forth, all express ordinary conjunction,
and so are translated into fol using ∧. The fact that they also communicate
a sense of unexpectedness is just lost in the translation. Fol, as much as we
love it, sometimes sacrifices style for clarity.

In Exercise 21, sentences 1, 8, and 10, you will discover an important
function that the English phrases either. . . or and both. . . and sometimes play. either. . . or, both. . . and
Either helps disambiguate the following or by indicating how far to the left
its scope extends; similarly both indicates how far to the left the following
and extends. For example, Either Max is home and Claire is home or Carl
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is happy is unambiguous, whereas it would be ambiguous without the either.
What it means is that

[Home(max) ∧ Home(claire)] ∨ Happy(carl)

In other words, either and both can sometimes act as left parentheses act in
fol. The same list of sentences demonstrates many other uses of either and
both.

Remember

1. The English expression and sometimes suggests a temporal ordering;
the fol expression ∧ never does.

2. The English expressions but, however, yet, nonetheless, and moreover
are all stylistic variants of and.

3. The English expressions either and both are often used like parentheses
to clarify an otherwise ambiguous sentence.

Exercises

3.20
➶

(Describing a simple world) Open Boole’s World. Start a new sentence file, named Sen-
tences 3.20, where you will describe some features of this world. Check each of your sentences
to see that it is indeed a sentence and that it is true in this world.

1. Notice that f (the large dodecahedron in the back) is not in front of a. Use your first
sentence to say this.

2. Notice that f is to the right of a and to the left of b. Use your second sentence to say
this.

3. Use your third sentence to say that f is either in back of or smaller than a.
4. Express the fact that both e and d are between c and a.
5. Note that neither e nor d is larger than c. Use your fifth sentence to say this.
6. Notice that e is neither larger than nor smaller than d. Use your sixth sentence to say

this.
7. Notice that c is smaller than a but larger than e. State this fact.
8. Note that c is in front of f ; moreover, it is smaller than f . Use your eighth sentence

to state these things.
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9. Notice that b is in the same row as a but is not in the same column as f . Use your
ninth sentence to express this fact.

10. Notice that e is not in the same column as either c or d. Use your tenth sentence to
state this.

Now let’s change the world so that none of the above mentioned facts hold. We can do this as
follows. First move f to the front right corner of the grid. (Be careful not to drop it off the
edge. You might find it easier to make the move from the 2-D view. If you accidentally drop
it, just open Boole’s World again.) Then move e to the back left corner of the grid and make
it large. Now none of the facts hold; if your answers to 1–10 are correct, all of the sentences
should now be false. Verify that they are. If any are still true, can you figure out where you went
wrong? Submit your sentences when you think they are correct. There is no need to submit
the modified world file.

3.21
➶

(Some translations) Tarski’s World provides you with a very useful way to check whether your
translation of a given English sentence is correct. If it is correct, then it will always have the
same truth value as the English sentence, no matter what world the two are evaluated in. So
when you are in doubt about one of your translations, simply build some worlds where the
English sentence is true, others where it is false, and check to see that your translation has
the right truth values in these worlds. You should use this technique frequently in all of the
translation exercises.

Start a new sentence file, and use it to enter translations of the following English sentences
into first-order logic. You will only need to use the connectives ∧, ∨, and ¬.

1. Either a is small or both c and d are large.
2. d and e are both in back of b.
3. d and e are both in back of b and larger than it.
4. Both d and c are cubes, however neither of them is small.
5. Neither e nor a is to the right of c and to the left of b.
6. Either e is not large or it is in back of a.
7. c is neither between a and b, nor in front of either of them.
8. Either both a and e are tetrahedra or both a and f are.
9. Neither d nor c is in front of either c or b.

10. c is either between d and f or smaller than both of them.
11. It is not the case that b is in the same row as c.
12. b is in the same column as e, which is in the same row as d, which in turn is in the

same column as a.

Before you submit your sentence file, do the next exercise.
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3.22
➶

(Checking your translations) Open Wittgenstein’s World. Notice that all of the English sentences
from Exercise 3.21 are true in this world. Thus, if your translations are accurate, they will also
be true in this world. Check to see that they are. If you made any mistakes, go back and fix
them. But as we have stressed, even if one of your sentences comes out true in Wittgenstein’s
World, it does not mean that it is a proper translation of the corresponding English sentence.
All you know for sure is that your translation and the original sentence have the same truth
value in this particular world. If the translation is correct, it will have the same truth value as
the English sentence in every world. Thus, to have a better test of your translations, we will
examine them in a number of worlds, to see if they have the same truth values as their English
counterparts in all of these worlds.

Let’s start by making modifications to Wittgenstein’s World. Make all the large or medium
objects small, and the small objects large. With these changes in the world, the English sen-
tences 1, 3, 4, and 10 become false, while the rest remain true. Verify that the same holds for
your translations. If not, correct your translations. Next, rotate your modified Wittgenstein’s
World 90◦ clockwise. Now sentences 5, 6, 8, 9, and 11 should be the only true ones that remain.

Let’s check your translations in another world. Open Boole’s World. The only English sen-
tences that are true in this world are sentences 6 and 11. Verify that all of your translations
except 6 and 11 are false. If not, correct your translations.

Now modify Boole’s World by exchanging the positions of b and c. With this change, the
English sentences 2, 5, 6, 7, and 11 come out true, while the rest are false. Check that the same
is true of your translations.

There is nothing to submit except Sentences 3.21.

3.23
➶

Start a new sentence file and translate the following into fol. Use the names and predicates
presented in Table 1.2 on page 30.

1. Max is a student, not a pet.
2. Claire fed Folly at 2 pm and then ten minutes later gave her to Max.
3. Folly belonged to either Max or Claire at 2:05 pm.
4. Neither Max nor Claire fed Folly at 2 pm or at 2:05 pm.
5. 2:00 pm is between 1:55 pm and 2:05 pm.
6. When Max gave Folly to Claire at 2 pm, Folly wasn’t hungry, but she was an hour

later.

3.24
✎

Referring again to Table 1.2, page 30, translate the following into natural, colloquial English.
Turn in your translations to your instructor.

1. Student(claire) ∧ ¬Student(max)
2. Pet(pris) ∧ ¬Owned(max, pris,2:00)
3. Owned(claire, pris, 2:00) ∨ Owned(claire, folly,2:00)
4. ¬(Fed(max, pris, 2:00) ∧ Fed(max, folly,2:00))
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5. ((Gave(max, pris, claire,2:00) ∧ Hungry(pris, 2:00)) ∨
(Gave(max, folly, claire, 2:00) ∧ Hungry(folly, 2:00))) ∧
Angry(claire, 2:05)

3.25
✎?

Translate the following into fol, introducing names, predicates, and function symbols as
needed. Explain the meaning of each predicate and function symbol, unless it is completely
obvious.

1. AIDS is less contagious than influenza, but more deadly.
2. Abe fooled Stephen on Sunday, but not on Monday.
3. Sean or Brad admires Meryl and Harrison.
4. Daisy is a jolly miller, and lives on the River Dee.
5. Polonius’s eldest child was neither a borrower nor a lender.

Section 3.8

Alternative notation

As we mentioned in Chapter 2, there are various dialect differences among
users of fol. It is important to be aware of these so that you will not be
stymied by superficial differences. In fact, you will run into alternate symbols
being used for each of the three connectives studied in this chapter.

The most common variant of the negation sign, ¬, is the symbol known
as the tilde, ∼. Thus you will frequently encounter ∼P where we would write
¬P. A more old-fashioned alternative is to draw a bar completely across the
negated sentence, as in P. This has one advantage over ¬, in that it allows
you to avoid certain uses of parentheses, since the bar indicates its own scope
by what lies under it. For example, where we have to write ¬(P ∧ Q), the
bar equivalent would simply be P ∧ Q. None of these symbols are available
on all keyboards, a serious problem in some contexts, such as programming
languages. Because of this, many programming languages use an exclamation
point to indicate negation. In the Java programming language, for example,
¬P would be written !P.

There are only two common variants of ∧. By far the most common is
&, or sometimes (as in Java), &&. An older notation uses a centered dot, as
in multiplication. To make things more confusing still, the dot is sometimes
omitted, again as in multiplication. Thus, for P ∧ Q you might see any of the
following: P&Q, P&&Q, P · Q, or just PQ.

Happily, the symbol ∨ is pretty standard. The only exception you may
encounter is a single or double vertical line, used in programming languages.
So if you see P | Q or P ‖ Q, what is meant is probably P ∨ Q. Unfortunately,
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though, some old textbooks use P | Q to express not both P and Q.

Alternatives to parentheses

There are ways to get around the use of parentheses in fol. At one time, a
common alternative to parentheses was a system known as dot notation. Thisdot notation
system involved placing little dots next to connectives indicating their relative
“power” or scope. In this system, the two sentences we write as P ∨ (Q ∧ R)
and (P ∨ Q) ∧ R would have been written P ∨. Q ∧ R and P ∨ Q .∧ R, respec-
tively. With more complex sentences, multiple dots were used. Fortunately,
this notation has just about died out, and the present authors never speak to
anyone who uses it.

Another approach to parentheses is known as Polish notation. In PolishPolish notation
notation, the usual infix notation is replaced by prefix notation, and this
makes parentheses unnecessary. Thus the distinction between our ¬(P ∨ Q)
and (¬P ∨ Q) would, in prefix form, come out as ¬ ∨ PQ and ∨¬PQ, the
order of the connectives indicating which includes the other in its scope.

Besides prefix notation, Polish notation uses certain capital letters for
connectives (N for ¬, K for ∧, and A for ∨), and lower case letters for its atomic
sentences (to distinguish them from connectives). So an actual sentence of the
Polish dialect would look like this:

ApKNqr

Since this expression starts with A, we know right away that it is a disjunction.
What follows must be its two disjuncts, in sequence. So the first disjunct is p
and the second is KNqr, that is, the conjunction of the negation of q and of r.
So this is the Polish version of

P ∨ (¬Q ∧ R)

Though Polish notation may look hard to read, many of you have already
mastered a version of it. Calculators use two styles for entering formulas. One
is known as algebraic style, the other as RPN style. The RPN stands forreverse Polish notation
“reverse Polish notation.” If you have a calculator that uses RPN, then to
calculate the value of, say, (7 × 8) + 3 you enter things in this order: 7, 8, ×,
3, +. This is just the reverse of the Polish, or prefix, ordering.

In order for Polish notation to work without parentheses, the connectives
must all have a fixed arity. If we allowed conjunction to take an arbitrary num-
ber of sentences as arguments, rather than requiring exactly two, a sentence
like KpNKqrs would be ambiguous. It could either mean P ∧ ¬(Q ∧ R) ∧ S or
P ∧ ¬(Q ∧ R ∧ S), and these aren’t equivalent.
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Remember

The following table summarizes the alternative notations discussed so far.

Our notation Common equivalents
¬P ∼ P, P, !P, Np

P ∧ Q P&Q, P&&Q, P · Q, PQ, Kpq

P ∨ Q P | Q, P ‖ Q, Apq

Exercises

3.26
➶

(Overcoming dialect differences) The
following are all sentences of fol. But
they’re in different dialects. Submit a
sentence file in which you’ve translated
them into our dialect.

1. P&Q
2. !(P ‖ (Q&&P))
3. (∼ P ∨ Q) · P
4. P(∼ Q ∨ RS)

3.27
➶

(Translating from Polish) Try your hand
at translating the following sentences
from Polish notation into our dialect.
Submit the resulting sentence file.

1. NKpq
2. KNpq
3. NAKpqArs
4. NAKpAqrs
5. NAKApqrs

3.28
✎

(Boolean searches) You have probably heard of tools for searching data that permit “full
Boolean searches.” This means that the search language allows you to use the Boolean connec-
tives we have been studying. Before you can do a search, though, you have to figure out what
dialect the search mechanism uses. Let’s try out a search engine that uses !, &, and |.

Using your web browser, go to the Alta Vista search page at http://www.altavista.com/.
Click on the link for Advanced Search, since only the advanced search page allows full
Boolean searches. Suppose you want to find information about the use of Tarski’s World at
other colleges and universities.

1. Type tarski in the search field and then click Search. You will find that there are way
too many web sites that mention Tarski, who was, after all, a famous logician.

2. Type tarski’s world in the search field and then click Search. This will find all sites
that contain the words “tarski’s world.” There are still quite a few, and many of them
are not colleges or universities, but book dealers and such. We need to exclude sites
whose web addresses end with “.com” or “.org.”
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Figure 3.1: Boolean combinations of solids: A ∨ B,
A ∧ ¬B, ¬A ∧ B, and A ∧ B.

3. Type tarski’s world & !(domain:com | domain:org) in the search field and then click
Search. This will find all sites that contain “tarski’s world” but do not contain either
the “.com” or “.org” domains in their web addresses.

4. Type tarski’s world & !(domain:com | domain:org) & (fitch | proof) in the search field
and then click Search. This will find all sites that contain “tarski’s world,” do not
contain either the “.com” or “.org” domains in their web addresses, but do contain
either the word “fitch” or the word “proof.”

5. Construct a search to find any web pages containing references to Tarski’s World and
Boole, but neither Fitch nor Submit. Print the list of sites that result from your search,
write your Boolean expression at the top, and turn it in to your instructor.

3.29
✎

(Boolean solids) When we do a Boolean search, we are really using a generalization of the
Boolean truth functions. We specify a Boolean combination of words as a criterion for finding
documents that contain (or do not contain) those words. Another generalization of the Boolean
operations is to spatial objects. In Figure 3.1 we show four ways to combine a vertical cylinder
(A) with a horizontal cylinder (B) to yield a new solid. Give an intuitive explanation of how the
Boolean connectives are being applied in this example. Then describe what the object ¬(A ∧ B)
would be like and explain why we didn’t give you a picture of this solid.
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Chapter 4

The Logic of Boolean
Connectives

The connectives ∧, ∨, and ¬ are truth-functional connectives. Recall what
this means: the truth value of a complex sentence built by means of one of
these symbols can be determined simply by looking at the truth values of the
sentence’s immediate constituents. So to know whether P ∨ Q is true, we need
only know the truth values of P and Q. This particularly simple behavior is
what allows us to capture the meanings of truth-functional connectives using
truth tables.

Other connectives we could study are not this simple. Consider, the sen-
tence it is necessarily the case that S. Since some true claims are necessarily truth-functional vs.

non-truth-functional
operators

true, that is, could not have been false (for instance, a = a), while other true
claims are not necessarily true (for instance, Cube(a)), we can’t figure out the
truth value of the original sentence if we are only told the truth value of its
constituent sentence S. It is necessarily the case, unlike it is not the case, is
not truth-functional.

The fact that the Boolean connectives are truth functional makes it very
easy to explain their meanings. It also provides us with a simple but power-
ful technique to study their logic. The technique is an extension of the truth
tables used to present the meanings of the connectives. It turns out that we
can often calculate the logical properties of complex sentences by construct-
ing truth tables that display all possible assignments of truth values to the
atomic constituents from which the sentences are built. The technique can,
for example, tell us that a particular sentence S is a logical consequence of
some premises P1, . . . ,Pn. And since logical consequence is one of our main
concerns, the technique is an important one to learn.

In this chapter we will discuss what truth tables can tell us about three
related logical notions: the notions of logical consequence, logical equivalence,
and logical truth. Although we’ve already discussed logical consequence at
some length, we’ll tackle these in reverse order, since the related truth table
techniques are easier to understand in that order.
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Section 4.1

Tautologies and logical truth

We said that a sentence S is a logical consequence of a set of premises P1, . . . , Pn

if it is impossible for the premises all to be true while the conclusion S is false.
That is, the conclusion must be true if the premises are true.

Notice that according to this definition there are some sentences that are
logical consequences of any set of premises, even the empty set. This will be
true of any sentence whose truth is itself a logical necessity. For example,
given our assumptions about fol, the sentence a = a is necessarily true. So
of course, no matter what your initial premises may be, it will be impossible
for those premises to be true and for a = a to be false—simply because it is
impossible for a = a to be false! We will call such logically necessary sentences
logical truths.logical truth

The intuitive notions of logical possibility and logical necessity have al-
ready come up several times in this book in characterizing valid arguments
and the consequence relation. But this is the first time we have applied them
to individual sentences. Intuitively, a sentence is logically possible if it couldlogical possibility and

necessity be (or could have been) true, at least on logical grounds. There might be some
other reasons, say physical, why the statement could not be true, but there are
no logical reasons preventing it. For example, it is not physically possible to
go faster than the speed of light, though it is logically possible: they do it on
Star Trek all the time. On the other hand, it is not even logically possible for
an object not to be identical to itself. That would simply violate the meaning
of identity. The way it is usually put is that a claim is logically possible if
there is some logically possible circumstance (or situation or world) in which
the claim is true. Similarly, a sentence is logically necessary if it is true in
every logically possible circumstance.

These notions are quite important, but they are also annoyingly vague.
As we proceed through this book, we will introduce several precise concepts
that help us clarify these notions. The first of these precise concepts, which
we introduce in this section, is the notion of a tautology.tautology

How can a precise concept help clarify an imprecise, intuitive notion? Let’s
think for a moment about the blocks language and the intuitive notion of
logical possibility. Presumably, a sentence of the blocks language is logically
possible if there could be a blocks world in which it is true. Clearly, if we can
construct a world in Tarski’s World that makes it true, then this demonstrates
that the sentence is indeed logically possible. On the other hand, there are
logically possible sentences that can’t be made true in the worlds you can
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build with Tarski’s World. For example, the sentence

¬(Tet(b) ∨ Cube(b) ∨ Dodec(b))

is surely logically possible, say if b were a sphere or an icosahedron. You can’t
build such a world with Tarski’s World, but that is not logic’s fault, just as it’s
not logic’s fault that you can’t travel faster than the speed of light. Tarski’s
World has its non-logical laws and constraints just like the physical world.

The Tarski’s World program gives rise to a precise notion of possibility
for sentences in the blocks language. We could say that a sentence is tw- tw-possible
possible if it is true in some world that can be built using the program. Our
observations in the preceding paragraph could then be rephrased by saying
that every tw-possible sentence is logically possible, but that the reverse is
not in general true. Some logically possible sentences are not tw-possible.

It may seem surprising that we can make such definitive claims involving
a vague notion like logical possibility. But really, it’s no more surprising than
the fact that we can say with certainty that a particular apple is red, even
though the boundaries of the color red are vague. There may be cases where
it is hard to decide whether something is red, but this doesn’t mean there
aren’t many perfectly clear-cut cases.

Tarski’s World gives us a precise method for showing that a sentence of
the blocks language is logically possible, since whatever is possible in Tarski’s
World is logically possible. In this section, we will introduce another precise
method, one that can be used to show that a sentence built up using truth-
functional connectives is logically necessary. The method uses truth tables truth table method
to show that certain sentences cannot possibly be false, due simply to the
meanings of the truth-functional connectives they contain. Like the method
given to us by Tarski’s World, the truth table method works only in one
direction: when it says that a sentence is logically necessary, then it definitely
is. On the other hand, some sentences are logically necessary for reasons that
the truth table method cannot detect.

Suppose we have a complex sentence S with n atomic sentences, A1, . . . , An.
To build a truth table for S, one writes the atomic sentences A1,. . . , An across
the top of the page, with the sentence S to their right. It is customary to
draw a double line separating the atomic sentences from S. Your truth table
will have one row for every possible way of assigning true and false to the
atomic sentences. Since there are two possible assignments to each atomic
sentence, there will be 2n rows. Thus if n = 1 there will be two rows, if n = 2 number of rows in a

truth tablethere will be four rows, if n = 3 there will be eight rows, if n = 4 there will
be sixteen rows, and so forth. It is customary to make the leftmost column
have the top half of the rows marked true, the second half false. The next
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row splits each of these, marking the first and third quarters of the rows with
true, the second and fourth quarters with false, and so on. This will result
in the last column having true and false alternating down the column.

Let’s start by looking at a very simple example of a truth table, one for the
sentence Cube(a) ∨ ¬Cube(a). Since this sentence is built up from one atomic
sentence, our truth table will contain two rows, one for the case where Cube(a)
is true and one for when it is false.

Cube(a) Cube(a) ∨ ¬Cube(a)
T
F

In a truth table, the column or columns under the atomic sentences are
called reference columns. Once the reference columns have been filled in, wereference columns
are ready to fill in the remainder of the table. To do this, we construct columns
of T’s and F’s beneath each connective of the target sentence S. These columns
are filled in one by one, using the truth tables for the various connectives. We
start by working on connectives that apply only to atomic sentences. Once
this is done, we work on connectives that apply to sentences whose main
connective has already had its column filled in. We continue this process until
the main connective of S has had its column filled in. This is the column that
shows how the truth of S depends on the truth of its atomic parts.

Our first step in filling in this truth table, then, is to calculate the truth
values that should go in the column under the innermost connective, which in
this case is the ¬. We do this by referring to the truth values in the reference
column under Cube(a), switching values in accord with the meaning of ¬.

Cube(a) Cube(a) ∨ ¬Cube(a)
t F
f T

Once this column is filled in, we can determine the truth values that should
go under the ∨ by looking at the values under Cube(a) and those under the
negation sign, since these correspond to the values of the two disjuncts to
which ∨ is applied. (Do you understand this?) Since there is at least one T in
each row, the final column of the truth table looks like this.

Cube(a) Cube(a) ∨ ¬Cube(a)
t T f

f T t

Chapter 4



Tautologies and logical truth / 97

Not surprisingly, our table tells us that the sentence Cube(a) ∨ ¬Cube(a)
cannot be false. It is what we will call a tautology, an especially simple kind
of logical truth. We will give a precise definition of tautologies later. Our
sentence is in fact an instance of a principle, P ∨ ¬P, that is known as the law law of excluded middle
of the excluded middle. Every instance of this principle is a tautology.

Let’s next look at a more complex truth table, one for a sentence built up
from three atomic sentences.

(Cube(a) ∧ Cube(b)) ∨ ¬Cube(c)

In order to make our table easier to read, we will abbreviate the atomic
sentences by A, B, and C. Since there are three atomic sentences, our table
will have eight (23) rows. Look carefully at how we’ve arranged the T’s and
F’s and convince yourself that every possible assignment is represented by one
of the rows.

A B C (A ∧ B) ∨ ¬C
T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

Since two of the connectives in the target sentence apply to atomic sen-
tences whose values are specified in the reference column, we can fill in these
columns using the truth tables for ∧ and ¬ given earlier.

A B C (A ∧ B) ∨ ¬C
t t t T F
t t f T T
t f t F F
t f f F T
f t t F F
f t f F T
f f t F F
f f f F T

This leaves only one connective, the main connective of the sentence. We fill
in the column under it by referring to the two columns just completed, using
the truth table for ∨.
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A B C (A ∧ B) ∨ ¬C
t t t t T f

t t f t T t

t f t f F f

t f f f T t

f t t f F f

f t f f T t

f f t f F f

f f f f T t

When we inspect the final column of this table, the one beneath the con-
nective ∨, we see that the sentence will be false in any circumstance where
Cube(c) is true and one of Cube(a) or Cube(b) is false. This table shows that
our sentence is not a tautology. Furthermore, since there clearly are blocks
worlds in which c is a cube and either a or b is not, the claim made by our
original sentence is not logically necessary.

Let’s look at one more example, this time for a sentence of the form

¬(A ∧ (¬A ∨ (B ∧ C))) ∨ B

This sentence, though it has the same number of atomic constituents, is con-
siderably more complex than our previous example. We begin the truth table
by filling in the columns under the two connectives that apply directly to
atomic sentences.

A B C ¬(A ∧ (¬A ∨ (B ∧ C))) ∨ B
t t t F T
t t f F F
t f t F F
t f f F F
f t t T T
f t f T F
f f t T F
f f f T F

We can now fill in the column under the ∨ that connects ¬A and B ∧ C by
referring to the columns just filled in. This column will have an F in it if and
only if both of the constituents are false.
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A B C ¬(A ∧ (¬A ∨ (B ∧ C))) ∨ B
t t t f T t

t t f f F f

t f t f F f

t f f f F f

f t t t T t

f t f t T f

f f t t T f

f f f t T f

We now fill in the column under the remaining ∧. To do this, we need to
refer to the reference column under A, and to the just completed column. The
best way to do this is to run two fingers down the relevant columns and enter
a T in only those rows where both your fingers are pointing to T’s.

A B C ¬(A ∧ (¬A ∨ (B ∧ C))) ∨ B
t t t T f t t

t t f F f f f

t f t F f f f

t f f F f f f

f t t F t t t

f t f F t t f

f f t F t t f

f f f F t t f

We can now fill in the column for the remaining ¬ by referring to the previously
completed column. The ¬ simply reverses T’s and F’s.

A B C ¬(A ∧ (¬A ∨ (B ∧ C))) ∨ B
t t t F t f t t

t t f T f f f f

t f t T f f f f

t f f T f f f f

f t t T f t t t

f t f T f t t f

f f t T f t t f

f f f T f t t f

Finally, we can fill in the column under the main connective of our sentence.
We do this with the two-finger method: running our fingers down the reference
column for B and the just completed column, entering T whenever at least
one finger points to a T.
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A B C ¬(A ∧ (¬A ∨ (B ∧ C))) ∨ B
t t t f t f t t T
t t f t f f f f T
t f t t f f f f T
t f f t f f f f T
f t t t f t t t T
f t f t f t t f T
f f t t f t t f T
f f f t f t t f T

We will say that a tautology is any sentence whose truth table has only T’stautology
in the column under its main connective. Thus, we see from the final column
of the above table that any sentence of the form

¬(A ∧ (¬A ∨ (B ∧ C))) ∨ B

is a tautology.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 1. Open the program Boole from the software that came with the book. We
will use Boole to reconstruct the truth table just discussed. The first thing
to do is enter the sentence ¬(A ∧ (¬A ∨ (B ∧ C))) ∨ B at the top, right of
the table. To do this, use the toolbar to enter the logical symbols and
the keyboard to type the letters A, B, and C. (You can also enter the
logical symbols from the keyboard by typing &, |, and ∼ for ∧, ∨, and
¬, respectively. If you enter the logical symbols from the keyboard, make
sure you add spaces before and after the binary connectives so that the
columns under them will be reasonably spaced out.) If your sentence is
well formed, the small “(1)” above the sentence will turn green.

I 2. To build the reference columns, click in the top left portion of the table to
move your insertion point to the top of the first reference column. Enter C
in this column. Then choose Add Column Before from the Table menu
and enter B. Repeat this procedure and add a column headed by A. To fill
in the reference columns, click under each of them in turn, and type the
desired pattern of T’s and F’s.

I 3. Click under the various connectives in the target sentence, and notice
that turquoise squares appear in the columns whose values the connective
depends upon. Select a column so that the highlighted columns are already
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filled in, and fill in that column with the appropriate truth values. Continue
this process until your table is complete. When you are done, click on the
button Verify Table to see if all the values are correct and your table
complete.

J4. Once you have a correct and complete truth table, click on the Assess-
ment button under the toolbar. This will allow you to say whether you
think the sentence is a tautology. Say that it is (since it is), and check your
assessment by clicking on the button Verify Assess. Save your table as
Table Tautology 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

There is a slight problem with our definition of a tautology, in that it
assumes that every sentence has a main connective. This is almost always the
case, but not in sentences like: main connectives

P ∧ Q ∧ R

For purposes of constructing truth tables, we will assume that the main con-
nective in conjunctions with more than two conjuncts is always the rightmost
∧. That is to say, we will construct a truth table for P ∧ Q ∧ R the same way
we would construct a truth table for:

(P ∧ Q) ∧ R

More generally, we construct the truth table for:

P1 ∧ P2 ∧ P3 ∧ . . . ∧ Pn

as if it were “punctuated” like this:

(((P1 ∧ P2) ∧ P3) ∧ . . .) ∧ Pn

We treat long disjunctions similarly.
Any tautology is logically necessary. After all, its truth is guaranteed sim- tautologies and logical

necessityply by its structure and the meanings of the truth-functional connectives.
Tautologies are logical necessities in a very strong sense. Their truth is inde-
pendent of both the way the world happens to be and even the meanings of
the atomic sentences out of which they are composed.

It should be clear, however, that not all logically necessary claims are
tautologies. The simplest example of a logically necessary claim that is not
a tautology is the fol sentence a = a. Since this is an atomic sentence, its
truth table would contain one T and one F. The truth table method is too
coarse to recognize that the row containing the F does not represent a genuine
possibility.
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Figure 4.1: The relation between tautologies, logical truths, and tw-
necessities.

You should be able to think of any number of sentences that are not
tautological, but which nonetheless seem logically necessary. For example, the
sentence

¬(Larger(a, b) ∧ Larger(b, a))

cannot possibly be false, yet a truth table for the sentence will not show this.
The sentence will be false in the row of the truth table that assigns T to both
Larger(a, b) and Larger(b, a).

We now have two methods for exploring the notions of logical possibility
and necessity, at least for the blocks language. First, there are the blocks
worlds that can be constructed using Tarski’s World. If a sentence is true
in some such world, we have called it tw-possible. Similarly, if a sentence is
true in all worlds that we can construct using Tarski’s World, we can call it
tw-necessary. The second method is that of truth tables. If a sentence comes
out true in every row of its truth table, we could call it tt-necessary or, more
traditionally, tautological. If a sentence is true in at least one row of its truth
table, we will call it tt-possible.tt-possible

None of these concepts correspond exactly to the vague notions of logi-
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cal possibility and necessity. But there are clear and important relationships
between the notions. On the necessity side, we know that all tautologies are
logically necessary, and that all logical necessities are tw-necessary. These
relationships are depicted in the “Euler circle” diagram in Figure 4.1, where
we have represented the set of logical necessities as the interior of a circle
with a fuzzy boundary. The set of tautologies is represented by a precise cir-
cle contained inside the fuzzy circle, and the set of Tarski’s World necessities
is represented by a precise circle containing both these circles.

There is, in fact, another method for showing that a sentence is a logical
truth, one that uses the technique of proofs. If you can prove a sentence using proof and logical truth
no premises whatsoever, then the sentence is logically necessary. In the fol-
lowing chapters, we will give you some more methods for giving proofs. Using
these, you will be able to prove that sentences are logically necessary without
constructing their truth tables. When we add quantifiers to our language, the
gap between tautologies and logical truths will become very apparent, making
the truth table method less useful. By contrast, the methods of proof that we
discuss later will extend naturally to sentences containing quantifiers.

Remember

Let S be a sentence of fol built up from atomic sentences by means of
truth-functional connectives alone. A truth table for S shows how the
truth of S depends on the truth of its atomic parts.

1. S is a tautology if and only if every row of the truth table assigns true

to S.

2. If S is a tautology, then S is a logical truth (that is, is logically neces-
sary).

3. Some logical truths are not tautologies.

4. S is tt-possible if and only if at least one row of the truth table assigns
true to S.
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Exercises

In this chapter, you will often be using Boole to construct truth tables. Although Boole has the capability
of building and filling in reference columns for you, do not use this feature. To understand truth tables,
you need to be able to do this yourself. In later chapters, we will let you use the feature, once you’ve
learned how to do it yourself. The Grade Grinder will, by the way, be able to tell if Boole constructed
the reference columns.

4.1
➶

If you skipped the You try it section, go back and do it now. Submit the file Table Tautology 1.

4.2
➶

Assume that A, B, and C are atomic sentences. Use Boole to construct truth tables for each of
the following sentences and, based on your truth tables, say which are tautologies. Name your
tables Table 4.2.x, where x is the number of the sentence.

1. (A ∧ B) ∨ (¬A ∨ ¬B)
2. (A ∧ B) ∨ (A ∧ ¬B)
3. ¬(A ∧ B) ∨ C
4. (A ∨ B) ∨ ¬(A ∨ (B ∧ C))

4.3
✎?

In Exercise 4.2 you should have discovered that two of the four sentences are tautologies, and
hence logical truths.

1. Suppose you are told that the atomic sentence A is in fact a logical truth (for example,
a = a). Can you determine whether any additional sentences in the list (1)-(4) are
logically necessary based on this information?

2. Suppose you are told that A is in fact a logically false sentence (for example, a 6= a).
Can you determine whether any additional sentences in the list (1)-(4) are logical
truths based on this information?

In the following four exercises, use Boole to construct truth tables and indicate whether the sentence
is tt-possible and whether it is a tautology. Remember how you should treat long conjunctions and
disjunctions.

4.4
➶

¬(B ∧ ¬C ∧ ¬B) 4.5
➶

A ∨ ¬(B ∨ ¬(C ∧ A))

4.6
➶

¬[¬A ∨ ¬(B ∧ C) ∨ (A ∧ B)] 4.7
➶

¬[(¬A ∨ B) ∧ ¬(C ∧ D)]

4.8
✎

Make a copy of the Euler circle diagram on page 102 and place the numbers of the following
sentences in the appropriate region.

1. a = b
2. a = b ∨ b = b
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3. a = b ∧ b = b
4. ¬(Large(a) ∧ Large(b) ∧ Adjoins(a, b))
5. Larger(a, b) ∨ ¬Larger(a,b)
6. Larger(a, b) ∨ Smaller(a, b)
7. ¬Tet(a) ∨ ¬Cube(b) ∨ a 6= b
8. ¬(Small(a) ∧ Small(b)) ∨ Small(a)
9. SameSize(a,b) ∨ ¬(Small(a) ∧ Small(b))

10. ¬(SameCol(a, b) ∧ SameRow(a,b))

4.9
➶|✎

(Logical dependencies) Use Tarski’s World to open Weiner’s Sentences. Fill in a table of the
following sort for the ten sentences in this file.

Sentence tw-possible tt-possible
1
2
3
...

10

1. In the first column, put yes if the sentence is tw-possible, that is, if it is possible to
make the sentence true by building a world, and no otherwise. If your answer is yes
for a sentence, then construct such a world and save it as World 4.9.x, where x is the
number of the sentence in question. Submit these worlds.

2. In the second column, put yes if the sentence is tt-possible, that is, if there is a row of
the truth table which makes the sentence true. If you think any sentence is tt-possible
but not tw-possible, construct a truth table in Boole for the sentence and submit it
as Table 4.9.x, where x is the number of the sentence in question.

3. Are any of the sentences tw-possible but not tt-possible? Explain why not. Turn in
your table and explanation to your instructor.

4.10
✎?

Draw an Euler circle diagram similar to the diagram on page 102, but this time showing the
relationship between the notions of logical possibility, tw-possibility, and tt-possibility. For
each region in the diagram, indicate an example sentence that would fall in that region. Don’t
forget the region that falls outside all the circles.

All necessary truths are obviously possible: since they are true in all possible circumstances,
they are surely true in some possible circumstances. Given this reflection, where would the
sentences from our previous diagram on page 102 fit into the new diagram?

4.11
✎??

Suppose that S is a tautology, with atomic sentences A, B, and C. Suppose that we replace
all occurrences of A by another sentence P, possibly complex. Explain why the resulting sentence
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is still a tautology. This is expressed by saying that substitution preserves tautologicality.
Explain why substitution of atomic sentences does not always preserve logical truth, even
though it preserves tautologies. Give an example.

Section 4.2

Logical and tautological equivalence

In the last chapter, we introduced the notion of logically equivalent sentences,
sentences that have the same truth values in every possible circumstance.
When two sentences are logically equivalent, we also say they have the same
truth conditions, since the conditions under which they come out true or false
are identical.

The notion of logical equivalence, like logical necessity, is somewhat vague,
but not in a way that prevents us from studying it with precision. For here toological equivalence
we can introduce precise concepts that bear a clear relationship to the intuitive
notion we aim to understand better. The key concept we will introduce in this
section is that of tautological equivalence. Two sentences are tautologicallytautological equivalence
equivalent if they can be seen to be equivalent simply in virtue of the meanings
of the truth-functional connectives. As you might expect, we can check for
tautological equivalence using truth tables.

Suppose we have two sentences, S and S′, that we want to check for tau-
tological equivalence. What we do is construct a truth table with a reference
column for each of the atomic sentences that appear in either of the two sen-
tences. To the right, we write both S and S′, with a vertical line separating
them, and fill in the truth values under the connectives as usual. We call this
a joint truth table for the sentences S and S′. When the joint truth table isjoint truth tables
completed, we compare the column under the main connective of S with the
column under the main connective of S′. If these columns are identical, then
we know that the truth conditions of the two sentences are the same.

Let’s look at an example. Using A and B to stand for arbitrary atomic
sentences, let us test the first DeMorgan law for tautological equivalence. We
would do this by means of the following joint truth table.

A B ¬(A ∧ B) ¬A ∨ ¬B
t t F t f F f

t f T f f T t

f t T f t T f

f f T f t T t

In this table, the columns in bold correspond to the main connectives of the
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two sentences. Since these columns are identical, we know that the sentences
must have the same truth values, no matter what the truth values of their
atomic constituents may be. This holds simply in virtue of the structure of
the two sentences and the meanings of the Boolean connectives. So, the two
sentences are indeed tautologically equivalent.

Let’s look at a second example, this time to see whether the sentence
¬((A ∨ B) ∧ ¬C) is tautologically equivalent to (¬A ∧ ¬B) ∨ C. To construct a
truth table for this pair of sentences, we will need eight rows, since there are
three atomic sentences. The completed table looks like this.

A B C ¬((A ∨ B) ∧ ¬C) (¬A ∧ ¬B) ∨ C
t t t T t f f f f f T
t t f F t t t f f f F
t f t T t f f f f t T
t f f F t t t f f t F
f t t T t f f t f f T
f t f F t t t t f f F
f f t T f f f t t t T
f f f T f f t t t t T

Once again, scanning the final columns under the two main connectives reveals
that the sentences are tautologically equivalent, and hence logically equivalent.

All tautologically equivalent sentences are logically equivalent, but the
reverse does not in general hold. Indeed, the relationship between these no- tautological vs. logical

equivalencetions is the same as that between tautologies and logical truths. Tautological
equivalence is a strict form of logical equivalence, one that won’t apply to
some logically equivalent pairs of sentences. Consider the pair of sentences:

a = b ∧ Cube(a)
a = b ∧ Cube(b)

These sentences are logically equivalent, as is demonstrated in the following
informal proof.

Proof: Suppose that the sentence a = b ∧ Cube(a) is true. Then
a = b and Cube(a) are both true. Using the indiscernibility of identi-
cals (Identity Elimination), we know that Cube(b) is true, and hence
that a = b ∧ Cube(b) is true. So the truth of a = b ∧ Cube(a) logically
implies the truth of a = b ∧ Cube(b).

The reverse holds as well. For suppose that a = b ∧ Cube(b) is true.
Then by symmetry of identity, we also know b = a. From this and
Cube(b) we can conclude Cube(a), and hence that a = b ∧ Cube(a)
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is true. So the truth of a = b ∧ Cube(b) implies the truth of a = b ∧
Cube(a).

Thus a = b ∧ Cube(a) is true if and only if a = b ∧ Cube(b) is true.

This proof shows that these two sentences have the same truth values in
any possible circumstance. For if one were true and the other false, this would
contradict the conclusion of one of the two parts of the proof. But consider
what happens when we construct a joint truth table for these sentences. Threenumber of rows in

joint table atomic sentences appear in the pair of sentences, so the joint table will look
like this. (Notice that the ordinary truth table for either of the sentences alone
would have only four rows, but that the joint table must have eight. Do you
understand why?)

a = b Cube(a) Cube(b) a = b ∧ Cube(a) a = b ∧ Cube(b)
t t t T T
t t f T F
t f t F T
t f f F F
f t t F F
f t f F F
f f t F F
f f f F F

This table shows that the two sentences are not tautologically equivalent,
since it assigns the sentences different values in the second and third rows.
Look closely at those two rows to see what’s going on. Notice that in both
of these rows, a = b is assigned T while Cube(a) and Cube(b) are assigned
different truth values. Of course, we know that neither of these rows corre-
sponds to a logically possible circumstance, since if a and b are identical, the
truth values of Cube(a) and Cube(b) must be the same. But the truth table
method doesn’t detect this, since it is sensitive only to the meanings of the
truth-functional connectives.

As we expand our language to include quantifiers, we will find many logical
equivalences that are not tautological equivalences. But this is not to say
there aren’t a lot of important and interesting tautological equivalences. We’ve
already highlighted three in the last chapter: double negation and the two
DeMorgan equivalences. We leave it to you to check that these principles are,
in fact, tautological equivalences. In the next section, we will introduce other
principles and see how they can be used to simplify sentences of fol.
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Remember

Let S and S′ be a sentences of fol built up from atomic sentences
by means of truth-functional connectives alone. To test for tautological
equivalence, we construct a joint truth table for the two sentences.

1. S and S′ are tautologically equivalent if and only if every row of the
joint truth table assigns the same values to S and S′.

2. If S and S′ are tautologically equivalent, then they are logically equiv-
alent.

3. Some logically equivalent sentences are not tautologically equivalent.

Exercises

In Exercises 4.12-4.18, use Boole to construct joint truth tables showing that the pairs of sentences are
logically (indeed, tautologically) equivalent. To add a second sentence to your joint truth table, choose
Add Column After from the Table menu. Don’t forget to specify your assessments, and remember,
you should build and fill in your own reference columns.

4.12
➶

(DeMorgan)
¬(A ∨ B) and ¬A ∧ ¬B

4.13
➶

(Associativity)
(A ∧ B) ∧ C and A ∧ (B ∧ C)

4.14
➶

(Associativity)
(A ∨ B) ∨ C and A ∨ (B ∨ C)

4.15
➶

(Idempotence)
A ∧ B ∧ A and A ∧ B

4.16
➶

(Idempotence)
A ∨ B ∨ A and A ∨ B

4.17
➶

(Distribution)
A ∧ (B ∨ C) and (A ∧ B) ∨ (A ∧ C)

4.18
➶

(Distribution)
A ∨ (B ∧ C) and (A ∨ B) ∧ (A ∨ C)

4.19
✎

(tw-equivalence) Suppose we introduced the notion of tw-equivalence, saying that two sen-
tences of the blocks language are tw-equivalent if and only if they have the same truth value
in every world that can be constructed in Tarski’s World.

1. What is the relationship between tw-equivalence, tautological equivalence and logical
equivalence?

2. Give an example of a pair of sentences that are tw-equivalent but not logically equiv-
alent.
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Section 4.3

Logical and tautological consequence

Our main concern in this book is with the logical consequence relation, of
which logical truth and logical equivalence can be thought of as very special
cases: A logical truth is a sentence that is a logical consequence of any set
of premises, and logically equivalent sentences are sentences that are logical
consequences of one another.

As you’ve probably guessed, truth tables allow us to define a precise notion
of tautological consequence, a strict form of logical consequence, just as they
allowed us to define tautologies and tautological equivalence, strict forms of
logical truth and logical equivalence.

Let’s look at the simple case of two sentences, P and Q, both built from
atomic sentences by means of truth-functional connectives. Suppose you want
to know whether Q is a consequence of P. Create a joint truth table for P
and Q, just like you would if you were testing for tautological equivalence.
After you fill in the columns for P and Q, scan the columns under the main
connectives for these sentences. In particular, look at every row of the table in
which P is true. If each such row is also one in which Q is true, then Q is saidtautological consequence
to be a tautological consequence of P. The truth table shows that if P is true,
then Q must be true as well, and that this holds simply due to the meanings
of the truth-functional connectives.

Just as tautologies are logically necessary, so too any tautological conse-
quence Q of a sentence P must also be a logical consequence of P. We can
see this by proving that if Q is not a logical consequence of P, then it can’t
possibly pass our truth table test for tautological consequence.

Proof: Suppose Q is not a logical consequence of P. Then by our def-
inition of logical consequence, there must be a possible circumstance
in which P is true but Q is false. This circumstance will determine
truth values for the atomic sentences in P and Q, and these values
will correspond to a row in the joint truth table for P and Q, since
all possible assignments of truth values to the atomic sentences are
represented in the truth table. Further, since P and Q are built up
from the atomic sentences by truth-functional connectives, and since
the former is true in the original circumstance and the latter false,
P will be assigned T in this row and Q will be assigned F. Hence, Q
is not a tautological consequence of P.

Let’s look at a very simple example. Suppose we wanted to check to see
whether A ∨ B is a consequence of A ∧ B. The joint truth table for these sen-
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tences looks like this.
A B A ∧ B A ∨ B
t t T T
t f F T
f t F T
f f F F

When you compare the columns under these two sentences, you see that the
sentences are most definitely not tautologically equivalent. No surprise. But
we are interested in whether A ∧ B logically implies A ∨ B, and so the only
rows we care about are those in which the former sentence is true. A ∧ B is only
true in the first row, and A ∨ B is also true in that row. So this table shows
that A ∨ B is a tautological consequence (and hence a logical consequence) of
A ∧ B.

Notice that our table also shows that A ∧ B is not a tautological conse-
quence of A ∨ B, since there are rows in which the latter is true and the former
false. Does this show that A ∧ B is not a logical consequence of A ∨ B? Well,
we have to be careful. A ∧ B is not in general a logical consequence of A ∨ B,
but it might be in certain cases, depending on the sentences A and B. We’ll
ask you to come up with an example in the exercises.

Not every logical consequence of a sentence is a tautological consequence
of that sentence. For example, the sentence a = c is a logical consequence of logical vs. tautological

consequencethe sentence (a = b ∧ b = c), but it is not a tautological consequence of it.
Think about the row that assigns T to the atomic sentences a = b and b = c,
but F to the sentence a = c. Clearly this row, which prevents a = c from being
a tautological consequence of (a = b ∧ b = c), does not respect the meanings
of the atomic sentences out of which the sentences are built. It does not
correspond to a genuinely possible circumstance, but the truth table method
does not detect this.

The truth table method of checking tautological consequence is not re-
stricted to just one premise. You can apply it to arguments with any number
of premises P1, . . . ,Pn and conclusion Q. To do so, you have to construct a
joint truth table for all of the sentences P1, . . . ,Pn and Q. Once you’ve done
this, you need to check every row in which the premises all come out true to
see whether the conclusion comes out true as well. If so, the conclusion is a
tautological consequence of the premises.

Let’s try this out on a couple of simple examples. First, suppose we want
to check to see whether B is a consequence of the two premises A ∨ B and ¬A.
The joint truth table for these three sentences comes out like this. (Notice
that since one of our target sentences, the conclusion B, is atomic, we have
simply repeated the reference column when this sentence appears again on
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the right.)

A B A ∨ B ¬A B
t t T F T
t f T F F
f t T T T
f f F T F

Scanning the columns under our two premises, A ∨ B and ¬A, we see that
there is only one row where both premises come out true, namely the third.
And in the third row, the conclusion B also comes out true. So B is indeed a
tautological (and hence logical) consequence of these premises.

In both of the examples we’ve looked at so far, there has been only one
row in which the premises all came out true. This makes the arguments easy
to check for validity, but it’s not at all something you can count on. For
example, suppose we used the truth table method to check whether A ∨ C
is a consequence of A ∨ ¬B and B ∨ C. The joint truth table for these three
sentences looks like this.

A B C A ∨ ¬B B ∨ C A ∨ C
t t t T f T T
t t f T f T T
t f t T t T T
t f f T t F T
f t t F f T T
f t f F f T F
f f t T t T T
f f f T t F F

Here, there are four rows in which the premises, A ∨ ¬B and B ∨ C, are
both true: the first, second, third, and seventh. But in each of these rows the
conclusion, A ∨ C, is also true. The conclusion is true in other rows as well, but
we don’t care about that. This inference, from A ∨ ¬B and B ∨ C to A ∨ C, is
logically valid, and is an instance of an important pattern known in computer
science as resolution.

We should look at an example where the truth table method reveals that
the conclusion is not a tautological consequence of the premises. Actually, the
last truth table will serve this purpose. For this table also shows that the
sentence A ∨ ¬B is not a tautological consequence of the two premises B ∨ C
and A ∨ C. Can you find the row that shows this? (Hint: It’s got to be the
first, second, third, fifth, or seventh, since these are the rows in which B ∨ C
and A ∨ C are both true.)
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Remember

Let P1, . . . , Pn and Q be sentences of fol built up from atomic sentences
by means of truth functional connectives alone. Construct a joint truth
table for all of these sentences.

1. Q is a tautological consequence of P1, . . . ,Pn if and only if every row
that assigns T to each of P1, . . . , Pn also assigns T to Q.

2. If Q is a tautological consequence of P1, . . . , Pn, then Q is also a logical
consequence of P1, . . . , Pn.

3. Some logical consequences are not tautological consequences.

Exercises

For each of the arguments below, use the truth table method to determine whether the conclusion is a
tautological consequence of the premises. Your truth table for Exercise 4.24 will be fairly large. It’s good
for the soul to build a large truth table every once in a while. Be thankful you have Boole to help you.
(But make sure you build your own reference columns!)

4.20
➶

(Tet(a) ∧ Small(a)) ∨ Small(b)

Small(a) ∨ Small(b)

4.21
➶

Taller(claire, max) ∨ Taller(max, claire)
Taller(claire, max)

¬Taller(max, claire)

4.22
➶

Large(a)
Cube(a) ∨ Dodec(a)

(Cube(a) ∧ Large(a)) ∨ (Dodec(a) ∧ Large(a))

4.23
➶?

A ∨ ¬B
B ∨ C
C ∨ D

A ∨ ¬D

4.24
➶?

¬A ∨ B ∨ C
¬C ∨ D
¬(B ∧ ¬E)

D ∨ ¬A ∨ E

4.25
✎?

Give an example of two different sentences A and B in the blocks language such that A ∧ B is
a logical consequence of A ∨ B. [Hint: Note that A ∧ A is a logical consequence of A ∨ A, but
here we insist that A and B be distinct sentences.]
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Section 4.4

Tautological consequence in Fitch

We hope you solved Exercise 4.24, because the solution gives you a sense
of both the power and the drawbacks of the truth table method. We were
tempted to ask you to construct a table requiring 64 rows, but thought better
of it. Constructing large truth tables may build character, but like most things
that build character, it’s a drag.

Checking to see if Q is a tautological consequence of P1, . . . , Pn is a me-
chanical procedure. If the sentences are long it may require a lot of tedious
work, but it doesn’t take any originality. This is just the sort of thing that
computers are good at. Because of this, we have built a mechanism into Fitch,
called Taut Con, that is similar to Ana Con but checks to see whether aTaut Con mechanism
sentence is a tautological consequence of the sentences cited in support. Like
Ana Con, Taut Con is not really an inference rule (we will introduce infer-
ence rules for the Boolean connectives in Chapter 6), but is useful for quickly
testing whether one sentence follows tautologically from others.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 1. Launch Fitch and open the file Taut Con 1. In this file you will find an
argument that has the same form as the argument in Exercise 4.23. (Ignore
the two goal sentences. We’ll get to them later.) Move the focus slider to
the last step of the proof. From the Rule? menu, go down to the Con
submenu and choose Taut Con.

I 2. Now cite the three premises as support for this sentence and check the
step. The step will not check out since this sentence is not a tautological
consequence of the premises, as you discovered if you did Exercise 4.23,
which has the same form as this inference.

I 3. Edit the step that did not check out to read:

Home(max) ∨ Hungry(carl)

This sentence is a tautological consequence of two of the premises. Figure
out which two and cite just them. If you cited the right two, the step
should check out. Try it.

I 4. Add another step to the proof and enter the sentence:

Hungry(carl) ∨ (Home(max) ∧ Hungry(pris))
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Use Taut Con to see if this sentence follows tautologically from the three
premises. Choose Verify Proof from the Proof menu. You will find that
although the step checks out, the goal does not. This is because we have
put a special constraint on your use of Taut Con in this exercise.

J5. Choose See Goal Constraints from the Goal menu. You will find that
in this proof, you are allowed to use Taut Con, but can only cite two
or fewer support sentences when you use it. Close the goal window to get
back to the proof.

J6. The sentence you entered also follows from the sentence immediately above
it plus just one of the three premises. Uncite the three premises and see
if you can get the step to check out citing just two sentences in support.
Once you succeed, verify the proof and save it as Proof Taut Con 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

You are probably curious about the relationship between Taut Con and
Ana Con—and for that matter, what the other mysterious item on the Con
menu, FO Con, might do. These are in fact three increasingly strong methods Taut Con, FO Con,

and Ana Conthat Fitch uses to test for logical consequence. Taut Con is the weakest. It
checks to see whether the current step follows from the cited sentences in virtue
of the meanings of the truth-functional connectives. It ignores the meanings of
any predicates that appear in the sentence and, when we introduce quantifiers
into the language, it will ignore those as well.

FO Con, which stands for “first-order consequence,” pays attention to the
truth-functional connectives, the quantifiers, and the identity predicate when
it checks for consequence. FO Con would, for example, identify a = c as a
consequence of a = b ∧ b = c. It is stronger than Taut Con in the sense that
any consequence that Taut Con recognizes as valid will also be recognized
by FO Con. But it may take longer since it has to apply a more complex
procedure, thanks to identity and the quantifiers. After we get to quantifiers,
we’ll talk more about the procedure it is applying.

The strongest rule of the three is Ana Con, which tries to recognize con-
sequences due to truth-functional connectives, quantifiers, identity, and most
of the blocks language predicates. (Ana Con ignores Between and Adjoins,
simply for practical reasons.) Any inference that checks out using either Taut
Con or FO Con should, in principle, check out using Ana Con as well. In
practice, though, the procedure that Ana Con uses may bog down or run
out of memory in cases where the first two have no trouble.

As we said before, you should only use a procedure from the Con menu
when the exercise makes clear that the procedure is allowed in the solution.
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Moreover if an exercise asks you to use Taut Con, don’t use FO Con or Ana
Con instead, even if these more powerful rules seem to work just as well. If
you are in doubt about which rules you are allowed to use, choose See Goal
Constraints from the Goal menu.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I 1. Open the file Taut Con 2. You will find a proof containing ten steps whose

rules have not been specified.

I 2. Focus on each step in turn. You will find that the supporting steps have
already been cited. Convince yourself that the step follows from the cited
sentences. Is it a tautological consequence of the sentences cited? If so,
change the rule to Taut Con and see if you were right. If not, change it
to Ana Con and see if it checks out. (If Taut Con will work, make sure
you use it rather than the stronger Ana Con.)

I 3. When all of your steps check out using Taut Con or Ana Con, go back
and find the one step whose rule can be changed from Ana Con to the
weaker FO Con.

I 4. When each step checks out using the weakest Con rule possible, save your
proof as Proof Taut Con 2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

Exercises

4.26
➶

If you skipped the You try it sections, go back and do them now. Submit the files Proof Taut
Con 1 and Proof Taut Con 2.

For each of the following arguments, decide whether the conclusion is a tautological consequence of the
premises. If it is, submit a proof that establishes the conclusion using one or more applications of Taut
Con. Do not cite more than two sentences at a time for any of your applications of Taut Con. If
the conclusion is not a consequence of the premises, submit a counterexample world showing that the
argument is not valid.

4.27
➶

Cube(a) ∨ Cube(b)
Dodec(c) ∨ Dodec(d)
¬Cube(a) ∨ ¬Dodec(c)

Cube(b) ∨ Dodec(d)

4.28
➶

Large(a) ∨ Large(b)
Large(a) ∨ Large(c)

Large(a) ∧ (Large(b) ∨ Large(c))
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4.29
➶

Small(a) ∨ Small(b)
Small(b) ∨ Small(c)
Small(c) ∨ Small(d)
Small(d) ∨ Small(e)
¬Small(c)

Small(a) ∨ Small(e)

4.30
➶

Tet(a) ∨ ¬(Tet(b) ∧ Tet(c))
¬(¬Tet(b) ∨ ¬Tet(d))
(Tet(e) ∧ Tet(c)) ∨ (Tet(c) ∧ Tet(d))

Tet(a)

Section 4.5

Pushing negation around

When two sentences are logically equivalent, each is a logical consequence of
the other. As a result, in giving an informal proof, you can always go from
an established sentence to one that is logically equivalent to it. This fact
makes observations like the DeMorgan laws and double negation quite useful
in giving informal proofs.

What makes these equivalences even more useful is the fact that logically
equivalent sentences can be substituted for one another in the context of a substitution of logical

equivalentslarger sentence and the resulting sentences will also be logically equivalent.
An example will help illustrate what we mean. Suppose we start with the
sentence:

¬(Cube(a) ∧ ¬¬Small(a))

By the principle of double negation, we know that Small(a) is logically equiv-
alent to ¬¬Small(a). Since these have exactly the same truth conditions, we
can substitute Small(a) for ¬¬Small(a) in the context of the above sentence,
and the result,

¬(Cube(a) ∧ Small(a))

will be logically equivalent to the original, a fact that you can check by con-
structing a joint truth table for the two sentences.

We can state this important fact in the following way. Let’s write S(P)
for an fol sentence that contains the (possibly complex) sentence P as a
component part, and S(Q) for the result of substituting Q for P in S(P). Then
if P and Q are logically equivalent:

P ⇔ Q

it follows that S(P) and S(Q) are also logically equivalent:
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S(P) ⇔ S(Q)

This is known as the principle of substitution of logical equivalents.
We won’t prove this principle at the moment, because it requires a proof

by induction, a style of proof we get to in a later chapter. But the observation
allows us to use a few simple equivalences to do some pretty amazing things.
For example, using only the two DeMorgan laws and double negation, we can
take any sentence built up with ∧, ∨, and ¬, and transform it into one where
¬ applies only to atomic sentences. Another way of expressing this is that any
sentence built out of atomic sentences using the three connectives ∧, ∨, and
¬ is logically equivalent to one built from literals using just ∧ and ∨.

To obtain such a sentence, you simply drive the ¬ in, switching ∧ to ∨,
∨ to ∧, and canceling any pair of ¬’s that are right next to each other, not
separated by any parentheses. Such a sentence is said to be in negation normalnegation normal form

(NNF) form or NNF. Here is an example of a derivation of the negation normal form
of a sentence. We use A, B, and C to stand for any atomic sentences of the
language.

¬((A ∨ B) ∧ ¬C) ⇔ ¬(A ∨ B) ∨ ¬¬C
⇔ ¬(A ∨ B) ∨ C
⇔ (¬A ∧ ¬B) ∨ C

In reading and giving derivations of this sort, remember that the symbol
⇔ is not itself a symbol of the first-order language, but a shorthand way of
saying that two sentences are logically equivalent. In this derivation, the first
step is an application of the first DeMorgan law to the whole sentence. The
second step applies double negation to the component ¬¬C. The final step is
an application of the second DeMorgan law to the component ¬(A ∨ B). The
sentence we end up with is in negation normal form, since the negation signs
apply only to atomic sentences.

We end this section with a list of some additional logical equivalences
that allow us to simplify sentences in useful ways. You already constructed
truth tables for most of these equivalences in Exercises 4.13-4.16 at the end
of Section 4.2.

1. (Associativity of ∧) An fol sentence P ∧ (Q ∧ R) is logically equivalentassociativity
to (P ∧ Q) ∧ R, which is in turn equivalent to P ∧ Q ∧ R. That is,

P ∧ (Q ∧ R) ⇔ (P ∧ Q) ∧ R ⇔ P ∧ Q ∧ R

2. (Associativity of ∨) An fol sentence P ∨ (Q ∨ R) is logically equivalent
to (P ∨ Q) ∨ R, which is in turn equivalent to P ∨ Q ∨ R. That is,

P ∨ (Q ∨ R) ⇔ (P ∨ Q) ∨ R ⇔ P ∨ Q ∨ R
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3. (Commutativity of ∧) A conjunction P ∧ Q is logically equivalent to commutativity
Q ∧ P. That is,

P ∧ Q ⇔ Q ∧ P

As a result, any rearrangement of the conjuncts of an fol sentence is
logically equivalent to the original. For example, P ∧ Q ∧ R is equivalent
to R ∧ Q ∧ P.

4. (Commutativity of ∨) A conjunction P ∨ Q is logically equivalent to
Q ∨ P. That is,

P ∨ Q ⇔ Q ∨ P

As a result, any rearrangement of the disjuncts of an fol sentence is
logically equivalent to the original. For example, P ∨ Q ∨ R is equivalent
to R ∨ Q ∨ P.

5. (Idempotence of ∧) A conjunction P ∧ P is equivalent to P. That is, idempotence

P ∧ P ⇔ P

More generally (given Commutativity), any conjunction with a repeated
conjunct is equivalent to the result of removing all but one occurrence
of that conjunct. For example, P ∧ Q ∧ P is equivalent to P ∧ Q.

6. (Idempotence of ∨) A disjunction P ∨ P is equivalent to P. That is,

P ∨ P ⇔ P

More generally (given Commutativity), any disjunction with a repeated
disjunct is equivalent to the result of removing all but one occurrence
of that disjunct. For example, P ∨ Q ∨ P is equivalent to P ∨ Q.

Here is an example where we use some of these laws to show that the first
sentence in the following list is logically equivalent to the last. Once again (as
in what follows), we use A, B, and C to stand for arbitrary atomic sentences
of fol. Thus the result is in negation normal form.

(A ∨ B) ∧ C ∧ (¬(¬B ∧ ¬A) ∨ B) ⇔ (A ∨ B) ∧ C ∧ ((¬¬B ∨ ¬¬A) ∨ B)
⇔ (A ∨ B) ∧ C ∧ ((B ∨ A) ∨ B)
⇔ (A ∨ B) ∧ C ∧ (B ∨ A ∨ B)
⇔ (A ∨ B) ∧ C ∧ (B ∨ A)
⇔ (A ∨ B) ∧ C ∧ (A ∨ B)
⇔ (A ∨ B) ∧ C
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We call a demonstration of this sort a chain of equivalences. The first stepchain of equivalences
in this chain is justified by one of the DeMorgan laws. The second step involves
two applications of double negation. In the next step we use associativity to
remove the unnecessary parentheses. In the fourth step, we use idempotence
of ∨. The next to the last step uses commutativity of ∨, while the final step
uses idempotence of ∧.

Remember

1. Substitution of equivalents: If P and Q are logically equivalent:

P ⇔ Q

then the results of substituting one for the other in the context of a
larger sentence are also logically equivalent:

S(P) ⇔ S(Q)

2. A sentence is in negation normal form (NNF) if all occurrences of ¬
apply directly to atomic sentences.

3. Any sentence built from atomic sentences using just ∧, ∨, and ¬ can
be put into negation normal form by repeated application of the De-
Morgan laws and double negation.

4. Sentences can often be further simplified using the principles of asso-
ciativity, commutativity, and idempotence.

Exercises

4.31
➶

(Negation normal form) Use Tarski’s World to open Turing’s Sentences. You will find the fol-
lowing five sentences, each followed by an empty sentence position.

1. ¬(Cube(a) ∧ Larger(a, b))
3. ¬(Cube(a) ∨ ¬Larger(b, a))
5. ¬(¬Cube(a) ∨ ¬Larger(a, b) ∨ a 6= b)
7. ¬(Tet(b) ∨ (Large(c) ∧ ¬Smaller(d, e)))
9. Dodec(f) ∨ ¬(Tet(b) ∨ ¬Tet(f) ∨ ¬Dodec(f))

In the empty positions, write the negation normal form of the sentence above it. Then build
any world where all of the names are in use. If you have gotten the negation normal forms
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correct, each even numbered sentence will have the same truth value in your world as the odd
numbered sentence above it. Verify that this is so in your world. Submit the modified sentence
file as Sentences 4.31.

4.32
➶

(Negation normal form) Use Tarski’s World to open the file Sextus’ Sentences. In the odd
numbered slots, you will find the following sentences.

1. ¬(Home(carl) ∧ ¬Home(claire))
3. ¬[Happy(max) ∧ (¬Likes(carl, claire) ∨ ¬Likes(claire, carl))]
5. ¬¬¬[(Home(max) ∨ Home(carl)) ∧ (Happy(max) ∨ Happy(carl))]

Use Double Negation and DeMorgan’s laws to put each sentence into negation normal form in
the slot below it. Submit the modified file as Sentences 4.32.

In each of the following exercises, use associativity, commutativity, and idempotence to simplify the
sentence as much as you can using just these rules. Your answer should consist of a chain of logical
equivalences like the chain given on page 119. At each step of the chain, indicate which principle you
are using.

4.33
✎

(A ∧ B) ∧ A 4.34
✎

(B ∧ (A ∧ B ∧ C))

4.35
✎

(A ∨ B) ∨ (C ∧ D) ∨ A 4.36
✎

(¬A ∨ B) ∨ (B ∨ C)

4.37
✎

(A ∧ B) ∨ C ∨ (B ∧ A) ∨ A

Section 4.6

Conjunctive and disjunctive normal forms

We have seen that with a few simple principles of Boolean logic, we can
start with a sentence and transform it into a logically equivalent sentence
in negation normal form, one where all negations occur in front of atomic
sentences. We can improve on this by introducing the so-called distributive
laws. These additional equivalences will allow us to transform sentences into
what are known as conjunctive normal form (CNF) and disjunctive normal
form (DNF). These normal forms are quite important in certain applications
of logic in computer science, as we discuss in Chapter 17. We will also use
disjunctive normal form to demonstrate an important fact about the Boolean
connectives in Chapter 7.

Recall that in algebra you learned that multiplication distributes over ad-
dition: a×(b+c) = (a×b)+(a×c). The distributive laws of logic look formally distribution
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much the same. One version tells us that P ∧ (Q ∨ R) is logically equivalent to
(P ∧ Q) ∨ (P ∧ R). That is, ∧ distributes over ∨. To see that this is so, notice
that the first sentence is true if and only if P plus at least one of Q or R
is true. But a moment’s thought shows that the second sentence is true in
exactly the same circumstances. This can also be confirmed by constructing
a joint truth table for the two sentences, which you’ve already done if you did
Exercise 4.17.

In arithmetic, + does not distribute over ×. However, ∨ does distribute
over ∧. That is to say, P ∨ (Q ∧ R) is logically equivalent to (P ∨ Q) ∧ (P ∨ R),
as you also discovered in Exercise 4.18.

Remember

(The distributive laws) For any sentences P, Q, and R:

1. Distribution of ∧ over ∨: P ∧ (Q ∨ R) ⇔ (P ∧ Q) ∨ (P ∧ R)

2. Distribution of ∨ over ∧: P ∨ (Q ∧ R) ⇔ (P ∨ Q) ∧ (P ∨ R)

As you may recall from algebra, the distributive law for × over + is in-
credibly useful. It allows us to transform any algebraic expression involving +
and ×, no matter how complex, into one that is just a sum of products. For
example, the following transformation uses distribution three times.

(a + b)(c + d) = (a + b)c + (a + b)d
= ac + bc + (a + b)d
= ac + bc + ad + bd

In exactly the same way, the distribution of ∧ over ∨ allows us to transform
any sentence built up from literals by means of ∧ and ∨ into a logically
equivalent sentence that is a disjunction of (one or more) conjunctions of
(one or more) literals. That is, using this first distributive law, we can turn
any sentence in negation normal form into a sentence that is a disjunction of
conjunctions of literals. A sentence in this form is said to be in disjunctivedisjunctive normal

form (DNF) normal form.
Here is an example that parallels our algebraic example. Notice that, as

in the algebraic example, we are distributing in from the right as well as the
left, even though our statement of the rule only illustrates distribution from
the left.

(A ∨ B) ∧ (C ∨ D) ⇔ [(A ∨ B) ∧ C] ∨ [(A ∨ B) ∧ D]
⇔ (A ∧ C) ∨ (B ∧ C) ∨ [(A ∨ B) ∧ D]
⇔ (A ∧ C) ∨ (B ∧ C) ∨ (A ∧ D) ∨ (B ∧ D)
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As you can see, distribution of ∧ over ∨ lets us drive conjunction signs
deeper and deeper, just as the DeMorgan laws allow us to move negations
deeper. Thus, if we take any sentence and first use DeMorgan (and double
negation) to get a sentence in negation normal form, we can then use this
first distribution law to get a sentence in disjunctive normal form, one in
which all the conjunction signs apply to literals.

Likewise, using distribution of ∨ over ∧, we can turn any negation normal
form sentence into one that is a conjunction of one or more sentences, each of
which is a disjunction of one or more literals. A sentence in this form is said
to be in conjunctive normal form (CNF). Here’s an example, parallel to the conjunctive normal

form (CNF)one given above but with ∧ and ∨ interchanged:

(A ∧ B) ∨ (C ∧ D) ⇔ [(A ∧ B) ∨ C] ∧ [(A ∧ B) ∨ D]
⇔ (A ∨ C) ∧ (B ∨ C) ∧ [(A ∧ B) ∨ D]
⇔ (A ∨ C) ∧ (B ∨ C) ∧ (A ∨ D) ∧ (B ∨ D)

On page 118, we showed how to transform the sentence ¬((A ∨ B) ∧ ¬C)
into one in negation normal form. The result was (¬A ∧ ¬B) ∨ C. This sen-
tence just happens to be in disjunctive normal form. Let us repeat our earlier
transformation, but continue until we get a sentence in conjunctive normal
form.

¬((A ∨ B) ∧ ¬C) ⇔ ¬(A ∨ B) ∨ ¬¬C
⇔ ¬(A ∨ B) ∨ C
⇔ (¬A ∧ ¬B) ∨ C
⇔ (¬A ∨ C) ∧ (¬B ∨ C)

It is important to remember that a sentence can count as being in both
conjunctive and disjunctive normal forms at the same time. For example, the
sentence

Home(claire) ∧ ¬Home(max)

is in both DNF and CNF. On the one hand, it is in disjunctive normal form
since it is a disjunction of one sentence (itself) which is a conjunction of two
literals. On the other hand, it is in conjunctive normal form since it is a
conjunction of two sentences, each of which is a disjunction of one literal.

In case you find this last remark confusing, here are simple tests for
whether sentences are in disjunctive normal form and conjunctive normal
form. The tests assume that the sentence has no unnecessary parentheses and
contains only the connectives ∧, ∨, and ¬.

To check whether a sentence is in DNF, ask yourself whether all the test for DNF
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negation signs apply directly to atomic sentences and whether all
the conjunction signs apply directly to literals. If both answers are
yes, then the sentence is in disjunctive normal form.

To check whether a sentence is in CNF, ask yourself whether alltest for CNF
the negation signs apply directly to atomic sentences and all the
disjunction signs apply directly to literals. If both answers are yes,
then the sentence is in conjunctive normal form.

Now look at the above sentence again and notice that it passes both of
these tests (in the CNF case because it has no disjunction signs).

Remember

1. A sentence is in disjunctive normal form (DNF) if it is a disjunction
of one or more conjunctions of one or more literals.

2. A sentence is in conjunctive normal form (CNF) if it is a conjunction
of one or more disjunctions of one or more literals.

3. Distribution of ∧ over ∨ allows you to transform any sentence in nega-
tion normal form into disjunctive normal form.

4. Distribution of ∨ over ∧ allows you to transform any sentence in nega-
tion normal form into conjunctive normal form.

5. Some sentences are in both CNF and DNF.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 1. Use Tarski’s World to open the file DNF Example. In this file you will find
two sentences. The second sentence is the result of putting the first into
disjunctive normal form, so the two sentences are logically equivalent.

I 2. Build a world in which the sentences are true. Since they are equivalent,
you could try to make either one true, but you will find the second one
easier to work on.

I 3. Play the game for each sentence, committed correctly to the truth of the
sentence. You should be able to win both times. Count the number of steps
it takes you to win.
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J4. In general it is easier to evaluate the truth value of a sentence in disjunctive
normal form. This comes out in the game, which takes at most three steps
for a sentence in DNF, one each for ∨, ∧, and ¬, in that order. There is
no limit to the number of steps a sentence in other forms may take.

J5. Save the world you have created as World DNF 1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

Exercises

4.38
➶

If you skipped the You try it section, go back and do it now. Submit the file World DNF 1.

4.39
➶

Open CNF Sentences. In this file you will find the following conjunctive normal form sentences
in the odd numbered positions, but you will see that the even numbered positions are blank.

1. (LeftOf(a, b) ∨ BackOf(a,b)) ∧ Cube(a)
3. Larger(a, b) ∧ (Cube(a) ∨ Tet(a) ∨ a = b)
5. (Between(a, b, c) ∨ Tet(a) ∨ ¬Tet(b)) ∧ Dodec(c)
7. Cube(a) ∧ Cube(b) ∧ (¬Small(a) ∨ ¬Small(b))
9. (Small(a) ∨ Medium(a)) ∧ (Cube(a) ∨ ¬Dodec(a))

In the even numbered positions you should fill in a DNF sentence logically equivalent to the
sentence above it. Check your work by opening several worlds and checking to see that each
of your sentences has the same truth value as the one above it. Submit the modified file as
Sentences 4.39.

4.40
➶

Open More CNF Sentences. In this file you will find the following sentences in every third
position.

1. ¬[(Cube(a) ∧ ¬Small(a)) ∨ (¬Cube(a) ∧ Small(a))]
4. ¬[(Cube(a) ∨ ¬Small(a)) ∧ (¬Cube(a) ∨ Small(a))]
7. ¬(Cube(a) ∧ Larger(a, b)) ∧ Dodec(b)

10. ¬(¬Cube(a) ∧ Tet(b))
13. ¬¬Cube(a) ∨ Tet(b)

The two blanks that follow each sentence are for you to first transform the sentence into negation
normal form, and then put that sentence into CNF. Again, check your work by opening several
worlds to see that each of your sentences has the same truth value as the original. When you
are finished, submit the modified file as Sentences 4.40.
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In Exercises 4.41-4.43, use a chain of equivalences to convert each sentence into an equivalent sentence
in disjunctive normal form. Simplify your answer as much as possible using the laws of associativity,
commutativity, and idempotence. At each step in your chain, indicate which principle you are applying.
Assume that A, B, C, and D are literals.

4.41
✎

C ∧ (A ∨ (B ∧ C)) 4.42
✎

B ∧ (A ∧ B ∧ (A ∨ B ∨ (B ∧ C)))

4.43
✎

A ∧ (A ∧ (B ∨ (A ∧ C)))

Chapter 4



Chapter 5

Methods of Proof for Boolean
Logic

Truth tables give us powerful techniques for investigating the logic of the
Boolean operators. But they are by no means the end of the story. Truth
tables are fine for showing the validity of simple arguments that depend only
on truth-functional connectives, but the method has two very significant lim-
itations.

First, truth tables get extremely large as the number of atomic sentences limitations of truth
table methodsgoes up. An argument involving seven atomic sentences is hardly unusual, but

testing it for validity would call for a truth table with 27 = 128 rows. Testing
an argument with 14 atomic sentences, just twice as many, would take a table
containing over 16 thousand rows. You could probably get a Ph.D. in logic for
building a truth table that size. This exponential growth severely limits the
practical value of the truth table method.

The second limitation is, surprisingly enough, even more significant. Truth
table methods can’t be easily extended to reasoning whose validity depends
on more than just truth-functional connectives. As you might guess from the
artificiality of the arguments looked at in the previous chapter, this rules out
most kinds of reasoning you’ll encounter in everyday life. Ordinary reasoning
relies heavily on the logic of the Boolean connectives, make no mistake about
that. But it also relies on the logic of other kinds of expressions. Since the
truth table method detects only tautological consequence, we need a method
of applying Boolean logic that can work along with other valid principles of
reasoning.

Methods of proof, both formal and informal, give us the required exten-
sibility. In this chapter we will discuss legitimate patterns of inference that
arise when we introduce the Boolean connectives into a language, and show
how to apply the patterns in informal proofs. In Chapter 6, we’ll extend our
formal system with corresponding rules. The key advantage of proof methods
over truth tables is that we’ll be able to use them even when the validity of
our proof depends on more than just the Boolean operators.

The Boolean connectives give rise to many valid patterns of inference.
Some of these are extremely simple, like the entailment from the sentence
P ∧ Q to P. These we will refer to as valid inference steps, and will discuss
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them briefly in the first section. Much more interesting are two new methods
of proof that are allowed by the new expressions: proof by cases and proof by
contradiction. We will discuss these later, one at a time.

Section 5.1

Valid inference steps

Here’s an important rule of thumb: In an informal proof, it is always legiti-
mate to move from a sentence P to another sentence Q if both you and your
“audience” (the person or people you’re trying to convince) already knowimportant rule of thumb
that Q is a logical consequence of P. The main exception to this rule is when
you give informal proofs to your logic instructor: presumably, your instructor
knows the assigned argument is valid, so in these circumstances, you have to
pretend you’re addressing the proof to someone who doesn’t already know
that. What you’re really doing is convincing your instructor that you see that
the argument is valid and that you could prove it to someone who did not.

The reason we start with this rule of thumb is that you’ve already learned
several well-known logical equivalences that you should feel free to use when
giving informal proofs. For example, you can freely use double negation or
idempotence if the need arises in a proof. Thus a chain of equivalences of the
sort we gave on page 119 is a legitimate component of an informal proof. Of
course, if you are asked to prove one of the named equivalences, say one of
the distribution or DeMorgan laws, then you shouldn’t presuppose it in your
proof. You’ll have to figure out a way to prove it to someone who doesn’t
already know that it is valid.

A special case of this rule of thumb is the following: If you already know
that a sentence Q is a logical truth, then you may assert Q at any point in
your proof. We already saw this principle at work in Chapter 2, when we
discussed the reflexivity of identity, the principle that allowed us to assert a
sentence of the form a = a at any point in a proof. It also allows us to assert
other simple logical truths, like excluded middle (P ∨ ¬P), at any point in a
proof. Of course, the logical truths have to be simple enough that you can be
sure your audience will recognize them.

There are three simple inference steps that we will mention here that don’t
involve logical equivalences or logical truths, but that are clearly supported
by the meanings of ∧ and ∨. First, suppose we have managed to prove a
conjunction, say P ∧ Q, in the course of our proof. The individual conjuncts
P and Q are clearly consequences of this conjunction, because there is no way
for the conjunction to be true without each conjunct being true. Thus, we
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are justified in asserting either. More generally, we are justified in inferring,
from a conjunction of any number of sentences, any one of its conjuncts. This conjunction

elimination
(simplification)

inference pattern is sometimes called conjunction elimination or simplification,
when it is presented in the context of a formal system of deduction. When it
is used in informal proofs, however, it usually goes by without comment, since
it is so obvious.

Only slightly more interesting is the converse. Given the meaning of ∧, it
is clear that P ∧ Q is a logical consequence of the pair of sentences P and Q:
there is no way the latter could be true without former also being true. Thus
if we have managed to prove P and to prove Q from the same premises, then
we are entitled to infer the conjunction P ∧ Q. More generally, if we want to conjunction

introductionprove a conjunction of a bunch of sentences, we may do so by proving each
conjunct separately. In a formal system of deduction, steps of this sort are
sometimes called conjunction introduction or just conjunction. Once again,
in real life reasoning, these steps are too simple to warrant mention. In our
informal proofs, we will seldom point them out explicitly.

Finally, let us look at one valid inference pattern involving ∨. It is a simple
step, but one that strikes students as peculiar. Suppose that you have proven
Cube(b). Then you can conclude Cube(a) ∨ Cube(b) ∨ Cube(c), if you should disjunction

introductionwant to for some reason, since the latter is a consequence of the former.
More generally, if you have proven some sentence P then you can infer any
disjunction that has P as one of its disjuncts. After all, if P is true, so is any
such disjunction.

What strikes newcomers to logic as peculiar about such a step is that using
it amounts to throwing away information. Why in the world would you want
to conclude P ∨ Q when you already know the more informative claim P? But
as we will see, this step is actually quite useful when combined with some
of the methods of proof to be discussed later. Still, in mathematical proofs,
it generally goes by unnoticed. In formal systems, it is dubbed disjunction
introduction, or (rather unfortunately) addition.

Matters of style

Informal proofs serve two purposes. On the one hand, they are a method of
discovery; they allow us to extract new information from information already
obtained. On the other hand, they are a method of communication; they allow
us to convey our discoveries to others. As with all forms of communication,
this can be done well or done poorly.

When we learn to write, we learn certain basic rules of punctuation, capi-
talization, paragraph structure and so forth. But beyond the basic rules, there
are also matters of style. Different writers have different styles. And it is a
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good thing, since we would get pretty tired of reading if everyone wrote with
the very same style. So too in giving proofs. If you go on to study mathemat-
ics, you will read lots of proofs, and you will find that every writer has his or
her own style. You will even develop a style of your own.

Every step in a “good” proof, besides being correct, should have two prop-
erties. It should be easily understood and significant. By “easily understood”
we mean that other people should be able to follow the step without undue
difficulty: they should be able to see that the step is valid without having to
engage in a piece of complex reasoning of their own. By “significant” we mean
that the step should be informative, not a waste of the reader’s time.

These two criteria pull in opposite directions. Typically, the more signif-
icant the step, the harder it is to follow. Good style requires a reasonable
balance between the two. And that in turn requires some sense of who yourknowing your audience
audience is. For example, if you and your audience have been working with
logic for a while, you will recognize a number of equivalences that you will
want to use without further proof. But if you or your audience are beginners,
the same inference may require several steps.

Remember

1. In giving an informal proof from some premises, if Q is already
known to be a logical consequence of sentences P1, . . . , Pn and each of
P1, . . . , Pn has been proven from the premises, then you may assert Q
in your proof.

2. Each step in an informal proof should be significant but easily under-
stood.

3. Whether a step is significant or easily understood depends on the
audience to whom it is addressed.

4. The following are valid patterns of inference that generally go unmen-
tioned in informal proofs:

◦ From P ∧ Q, infer P.

◦ From P and Q, infer P ∧ Q.

◦ From P, infer P ∨ Q.
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Exercises

In the following exercises we list a number of patterns of inference, only some of which are valid. For
each pattern, determine whether it is valid. If it is, explain why it is valid, appealing to the truth tables
for the connectives involved. If it is not, give a specific example of how the step could be used to get from
true premises to a false conclusion.

5.1
✎

From P ∨ Q and ¬P, infer Q. 5.2
✎

From P ∨ Q and Q, infer ¬P.

5.3
✎

From ¬(P ∨ Q), infer ¬P. 5.4
✎

From ¬(P ∧ Q) and P, infer ¬Q.

5.5
✎

From ¬(P ∧ Q), infer ¬P. 5.6
✎?

From P ∧ Q and ¬P, infer Q.

Section 5.2

Proof by cases

The simple forms of inference discussed in the last section are all instances of
the principle that you can use already established cases of logical consequence
in informal proofs. But the Boolean connectives also give rise to two entirely
new methods of proof, methods that are explicitly applied in all types of
rigorous reasoning. The first of these is the method of proof by cases. In our
formal system F , this method will be called disjunction elimination, but don’t
be misled by the ordinary sounding name: it is far more significant than, say,
disjunction introduction or conjunction elimination.

We begin by illustrating proof by cases with a well-known piece of math-
ematical reasoning. The reasoning proves that there are irrational numbers b

and c such that bc is rational. First, let’s review what this means. A number
is said to be rational if it can be expressed as a fraction n/m, for integers
n and m. If it can’t be so expressed, then it is irrational. Thus 2 is rational
(2 = 2/1), but

√
2 is irrational. (We will prove this latter fact in the next sec-

tion, to illustrate proof by contradiction; for now, just take it as a well-known
truth.) Here now is our proof:

Proof: To show that there are irrational numbers b and c such that
bc is rational, we will consider the number

√
2

√
2
. We note that this

number is either rational or irrational.
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If
√

2
√

2
is rational, then we have found our b and c; namely, we take

b = c =
√

2.

Suppose, on the other hand, that
√

2
√

2
is irrational. Then we take

b =
√

2
√

2
and c =

√
2 and compute bc:

bc = (
√

2
√

2
)
√

2

=
√

2
(
√

2·
√

2)

=
√

2
2

= 2

Thus, we see that in this case, too, bc is rational.

Consequently, whether
√

2
√

2
is rational or irrational, we know that

there are irrational numbers b and c such that bc is rational.

What interests us here is not the result itself but the general structure of
the argument. We begin with a desired goal that we want to prove, say S, and
a disjunction we already know, say P ∨ Q. We then show two things: that Sproof by cases
follows if we assume that P is the case, and that S follows if we assume that
Q is the case. Since we know that one of these must hold, we then conclude
that S must be the case. This is the pattern of reasoning known as proof by
cases.

In proof by cases, we aren’t limited to breaking into just two cases, as we
did in the example. If at any stage in a proof we have a disjunction containing
n disjuncts, say P1∨ . . . ∨ Pn, then we can break into n cases. In the first we
assume P1, in the second P2, and so forth for each disjunct. If we are able to
prove our desired result S in each of these cases, we are justified in concluding
that S holds.

Let’s look at an even simpler example of proof by cases. Suppose we want
to prove that Small(c) is a logical consequence of

(Cube(c) ∧ Small(c)) ∨ (Tet(c) ∧ Small(c))

This is pretty obvious, but the proof involves breaking into cases, as you will
notice if you think carefully about how you recognize this. For the record,
here is how we would write out the proof.

Proof: We are given

(Cube(c) ∧ Small(c)) ∨ (Tet(c) ∧ Small(c))

as a premise. We will break into two cases, corresponding to the two
disjuncts. First, assume that Cube(c) ∧ Small(c) holds. But then (by
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conjunction elimination, which we really shouldn’t even mention) we
have Small(c). But likewise, if we assume Tet(c) ∧ Small(c), then it
follows that Small(c). So, in either case, we have Small(c), as desired.

Our next example shows how the odd step of disjunction introduction
(from P infer P ∨ Q) can be used fruitfully with proof by cases. Suppose we
know that either Max is home and Carl is happy, or Claire is home and Scruffy
is happy, i.e.,

(Home(max) ∧ Happy(carl)) ∨ (Home(claire) ∧ Happy(scruffy))

We want to prove that either Carl or Scruffy is happy, that is,

Happy(carl) ∨ Happy(scruffy)

A rather pedantic, step-by-step proof would look like this:

Proof: Assume the disjunction:

(Home(max) ∧ Happy(carl)) ∨ (Home(claire) ∧ Happy(scruffy))

Then either:
Home(max) ∧ Happy(carl)

or:
Home(claire) ∧ Happy(scruffy).

If the first alternative holds, then Happy(carl), and so we have

Happy(carl) ∨ Happy(scruffy)

by disjunction introduction. Similarly, if the second alternative holds,
we have Happy(scruffy), and so

Happy(carl) ∨ Happy(scruffy)

So, in either case, we have our desired conclusion. Thus our conclu-
sion follows by proof by cases.

Arguing by cases is extremely useful in everyday reasoning. For example,
one of the authors (call him J) and his wife recently realized that their parking
meter had expired several hours earlier. J argued in the following way that
there was no point in rushing back to the car (logicians argue this way; don’t
marry one):
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Proof: At this point, either we’ve already gotten a ticket or we
haven’t. If we’ve gotten a ticket, we won’t get another one in the
time it takes us to get to the car, so rushing would serve no purpose.
If we haven’t gotten a ticket in the past several hours, it is extremely
unlikely that we will get one in the next few minutes, so again,
rushing would be pointless. In either event, there’s no need to rush.

J’s wife responded with the following counterargument (showing that many
years of marriage to a logician has an impact):

Proof: Either we are going to get a ticket in the next few minutes or
we aren’t. If we are, then rushing might prevent it, which would be
a good thing. If we aren’t, then it will still be good exercise and will
also show our respect for the law, both of which are good things. So
in either event, rushing back to the car is a good thing to do.

J’s wife won the argument.
The validity of proof by cases cannot be demonstrated by the simple truth

table method introduced in Chapter 4. The reason is that we infer the con-
clusion S from the fact that S is provable from each of the disjuncts P and
Q. It relies on the principle that if S is a logical consequence of P, and also a
logical consequence of Q, then it is a logical consequence of P ∨ Q. This holds
because any circumstance that makes P ∨ Q true must make at least one of P
or Q true, and hence S as well, by the fact that S is a consequence of both.

Remember

Proof by cases: To prove S from P1 ∨ . . . ∨ Pn using this method, prove
S from each of P1, . . . , Pn.

Exercises

The next two exercises present valid arguments. Turn in informal proofs of the arguments’ validity. Your
proofs should be phrased in complete, well-formed English sentences, making use of first-order sentences
as convenient, much in the style we have used above. Whenever you use proof by cases, say so. You don’t
have to be explicit about the use of simple proof steps like conjunction elimination. By the way, there is
typically more than one way to prove a given result.
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5.7
✎

Home(max) ∨ Home(claire)
¬Home(max) ∨ Happy(carl)
¬Home(claire) ∨ Happy(carl)

Happy(carl)

5.8
✎

LeftOf(a,b) ∨ RightOf(a, b)
BackOf(a,b) ∨ ¬LeftOf(a, b)
FrontOf(b, a) ∨ ¬RightOf(a,b)
SameCol(c, a) ∧ SameRow(c, b)

BackOf(a,b)

5.9
➶|✎

Assume the same four premises as in Exercise 5.8. Is LeftOf(b, c) a logical consequence of
these premises? If so, turn in an informal proof of the argument’s validity. If not, submit a
counterexample world.

5.10
✎

Suppose Max’s favorite basketball team is the Chicago Bulls and favorite football team is the
Denver Broncos. Max’s father John is returning from Indianapolis to San Francisco on United
Airlines, and promises that he will buy Max a souvenir from one of his favorite teams on the
way. Explain John’s reasoning, appealing to the annoying fact that all United flights between
Indianapolis and San Francisco stop in either Denver or Chicago. Make explicit the role proof
by cases plays in this reasoning.

5.11
✎

Suppose the police are investigating a burglary and discover the following facts. All the doors
to the house were bolted from the inside and show no sign of forced entry. In fact, the only
possible ways in and out of the house were a small bathroom window on the first floor that
was left open and an unlocked bedroom window on the second floor. On the basis of this, the
detectives rule out a well-known burglar, Julius, who weighs two hundred and fifty pounds and
is arthritic. Explain their reasoning.

5.12
✎

In our proof that there are irrational numbers b and c where bc is rational, one of our steps

was to assert that
√

2
√

2
is either rational or irrational. What justifies the introduction of this

claim into our proof?

5.13
✎

Describe an everyday example of reasoning by cases that you have performed in the last few
days.

5.14
✎?

Give an informal proof that if S is a tautological consequence of P and a tautological conse-
quence of Q, then S is a tautological consequence of P ∨ Q. Remember that the joint truth
table for P ∨ Q and S may have more rows than either the joint truth table for P and S, or the
joint truth table for Q and S. [Hint: Assume you are looking at a single row of the joint truth
table for P ∨ Q and S in which P ∨ Q is true. Break into cases based on whether P is true or Q
is true and prove that S must be true in either case.]
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Section 5.3

Indirect proof: proof by contradiction

One of the most important methods of proof is known as proof by contradic-
tion. It is also called indirect proof or reductio ad absurdum. Its counterpart
in F is called negation introduction.

The basic idea is this. Suppose you want to prove a negative sentence, say
¬S, from some premises, say P1, . . . , Pn. One way to do this is by temporarilyindirect proof or proof

by contradiction assuming S and showing that a contradiction follows from this assumption. If
you can show this, then you are entitled to conclude that ¬S is a logical conse-
quence of the original premises. Why? Because your proof of the contradiction
shows that S, P1, . . . , Pn cannot all be true simultaneously. (If they were, the
contradiction would have to be true, and it can’t be.) Hence if P1, . . . ,Pn are
true in any set of circumstances, then S must be false in those circumstances.
Which is to say, if P1, . . . , Pn are all true, then ¬S must be true as well.

Let’s look at a simple indirect proof. Assume Cube(c) ∨ Dodec(c) and
Tet(b). Let us prove ¬(b = c).

Proof: In order to prove ¬(b = c), we assume b = c and attempt
to get a contradiction. From our first premise we know that either
Cube(c) or Dodec(c). If the first is the case, then we conclude Cube(b)
by the indiscernibility of identicals, which contradicts Tet(b). But
similarly, if the second is the case, we get Dodec(b) which contra-
dicts Tet(b). So neither case is possible, and we have a contradiction.
Thus our initial assumption that b = c must be wrong. So proof by
contradiction gives us our desired conclusion, ¬(b = c). (Notice that
this argument also uses the method of proof by cases.)

Let us now give a more interesting and famous example of this method of
proof. The Greeks were shocked to discover that the square root of 2 could
not be expressed as a fraction, or, as we would put it, is irrational. The proof
of this fact proceeds via contradiction. Before we go through the proof, let’s
review some simple numerical facts that were well known to the Greeks. The
first is that any rational number can be expressed as a fraction p/q where at
least one of p and q is odd. (If not, keep dividing both the numerator and
denominator by 2 until one of them is odd.) The other fact follows from the
observation that when you square an odd number, you always get an odd
number. So if n2 is an even number, then so is n. And from this, we see that
if n2 is even, it must be divisible by 4.

Now we’re ready for the proof that
√

2 is irrational.
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Proof: With an eye toward getting a contradiction, we will assume
that

√
2 is rational. Thus, on this assumption,

√
2 can be expressed

in the form p/q, where at least one of p and q is odd. Since p/q =
√

2
we can square both sides to get:

p2

q2 = 2

Multiplying both sides by q2, we get p2 = 2q2. But this shows that
p2 is an even number. As we noted before, this allows us to conclude
that p is even and that p2 is divisible by 4. Looking again at the
equation p2 = 2q2, we see that if p2 is divisible by 4, then 2q2 is
divisible by 4 and hence q2 must be divisible by 2. In which case, q is
even as well. So both p and q are even, contradicting the fact that at
least one of them is odd. Thus, our assumption that

√
2 is rational

led us to a contradiction, and so we conclude that it is irrational.

In both of these examples, we used the method of indirect proof to prove a
sentence that begins with a negation. (Remember, “irrational” simply means
not rational.) You can also use this method to prove a sentence S that does not
begin with a negation. In this case, you would begin by assuming ¬S, obtain
a contradiction, and then conclude that ¬¬S is the case, which of course is
equivalent to S.

In order to apply the method of proof by contradiction, it is important
that you understand what a contradiction is, since that is what you need
to prove from your temporary assumption. Intuitively, a contradiction is any contradiction
claim that cannot possibly be true, or any set of claims which cannot all
be true simultaneously. Examples are a sentence Q and its negation ¬Q, a
pair of inconsistent claims like Cube(c) and Tet(c) or x < y and y < x, or a
single sentence of the form a 6= a. We can take the notion of a contradictory
or inconsistent set of sentences to be any set of sentences that could not all
be true in any single situation.

The symbol ⊥ is often used as a short-hand way of saying that a contra- contradiction
symbol (⊥)diction has been obtained. Different people read ⊥ as “contradiction,” “the

absurd,” and “the false,” but what it means is that a conclusion has been
reached which is logically impossible, or that several conclusions have been
derived which, taken together, are impossible.

Notice that a sentence S is a logical impossibility if and only if its negation
¬S is logically necessary. This means that any method we have of demonstrat-
ing that a sentence is logically necessary also demonstrates that its negation
is logically impossible, that is, a contradiction. For example, if a truth table
shows that ¬S is a tautology, then we know that S is a contradiction.
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Similarly, the truth table method gives us a way of showing that a col-
lection of sentences are mutually contradictory. Construct a joint truth table
for P1, . . . , Pn. These sentences are tt-contradictory if every row has an F as-tt-contradictory
signed to at least one of the sentences. If the sentences are tt-contradictory,
we know they cannot all be true at once, simply in virtue of the meanings
of the truth functional connectives out of which they are built. We have al-
ready mentioned one such example: any pair of sentences, one of which is the
negation of the other.

The method of proof by contradiction, like proof by cases, is often encoun-
tered in everyday reasoning, though the derived contradiction is sometimes
left implicit. People will often assume a claim for the sake of argument and
then show that the assumption leads to something else that is known to be
false. They then conclude the negation of the original claim. This sort of rea-
soning is in fact an indirect proof: the inconsistency becomes explicit if we
add the known fact to our set of premises.

Let’s look at an example of this kind of reasoning. Imagine a defense
attorney presenting the following summary to the jury:

The prosecution claims that my client killed the owner of the KitKat
Club. Assume that they are correct. You’ve heard their own experts
testify that the murder took place at 5:15 in the afternoon. We also
know the defendant was still at work at City Hall at 4:45, according
to the testimony of five co-workers. It follows that my client had to
get from City Hall to the KitKat Club in 30 minutes or less. But
to make that trip takes 35 minutes under the best of circumstances,
and police records show that there was a massive traffic jam the day
of the murder. I submit that my client is innocent.

Clearly, reasoning like this is used all the time: whenever we assume some-
thing and then rule out the assumption on the basis of its consequences.
Sometimes these consequences are not contradictions, or even things that we
know to be false, but rather future consequences that we consider unaccept-
able. You might for example assume that you will go to Hawaii for spring
break, calculate the impact on your finances and ability to finish the term
papers coming due, and reluctantly conclude that you can’t make the trip.
When you reason like this, you are using the method of indirect proof.

Remember

Proof by contradiction: To prove ¬S using this method, assume S and
prove a contradiction ⊥.

Chapter 5



Indirect proof: proof by contradiction / 139

Exercises

In the following exercises, decide whether the displayed argument is valid. If it is, turn in an infor-
mal proof, phrased in complete, well-formed English sentences, making use of first-order sentences as
convenient. Whenever you use proof by cases or proof by contradiction, say so. You don’t have to be
explicit about the use of simple proof steps like conjunction elimination. If the argument is invalid, con-
struct a counterexample world in Tarski’s World. (Argument 5.16 is valid, and so will not require a
counterexample.)

5.15
➶|✎

b is a tetrahedron.
c is a cube.
Either c is larger than b or else they
are identical.

b is smaller than c.

5.16
✎

Max or Claire is at home but either
Scruffy or Carl is unhappy.
Either Max is not home or Carl is
happy.
Either Claire is not home or Scruffy is
unhappy.

Scruffy is unhappy.

5.17
➶|✎

Cube(a) ∨ Tet(a) ∨ Large(a)
¬Cube(a) ∨ a = b ∨ Large(a)
¬Large(a) ∨ a = c
¬(c = c ∧ Tet(a))

a = b ∨ a = c

5.18
➶|✎

Cube(a) ∨ Tet(a) ∨ Large(a)
¬Cube(a) ∨ a = b ∨ Large(a)
¬Large(a) ∨ a = c
¬(c = c ∧ Tet(a))

¬(Large(a) ∨ Tet(a))

5.19
✎

Consider the following sentences.
1. Folly was Claire’s pet at 2 pm or at 2:05 pm.
2. Folly was Max’s pet at 2 pm.
3. Folly was Claire’s pet at 2:05 pm.

Does (3) follow from (1) and (2)? Does (2) follow from (1) and (3)? Does (1) follow from (2)
and (3)? In each case, give either a proof of consequence, or describe a situation that makes the
premises true and the conclusion false. You may assume that Folly can only be one person’s
pet at any given time.

5.20
✎

Suppose it is Friday night and you are going out with your boyfriend. He wants to see a romantic
comedy, while you want to see the latest Wes Craven slasher movie. He points out that if he
watches the Wes Craven movie, he will not be able to sleep because he can’t stand the sight of
blood, and he has to take the MCAT test tomorrow. If he does not do well on the MCAT, he
won’t get into medical school. Analyze your boyfriend’s argument, pointing out where indirect
proof is being used. How would you rebut his argument?
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5.21
✎

Describe an everyday example of an indirect proof that you have used in the last few days.

5.22
✎?

Prove that indirect proof is a tautologically valid method of proof. That is, show that if
P1, . . . , Pn,S is tt-contradictory, then ¬S is a tautological consequence of P1, . . . ,Pn.

In the next three exercises we ask you to prove simple facts about the natural numbers. We do not expect
you to phrase the proofs in fol. You will have to appeal to basic facts of arithmetic plus the definitions
of even and odd number. This is OK, but make these appeals explicit. Also make explicit any use of proof
by contradiction.

5.23
✎?

Assume that n2 is
odd. Prove that n is
odd.

5.24
✎?

Assume that n + m

is odd. Prove that
n × m is even.

5.25
✎?

Assume that n2 is
divisible by 3. Prove
that n2 is divisible
by 9.

5.26
✎??

A good way to make sure you understand a proof is to try to generalize it. Prove that
√

3 is
irrational. [Hint: You will need to figure out some facts about divisibility by 3 that parallel the
facts we used about even and odd, for example, the fact expressed in Exercise 5.25.] Can you
generalize these two results?

Section 5.4

Arguments with inconsistent premises

What follows from an inconsistent set of premises? If you look back at our
definition of logical consequence, you will see that every sentence is a conse-
quence of such a set. After all, if the premises are contradictory, then there
are no circumstances in which they are all true. Thus, there are no circum-
stances in which the premises are true and the conclusion is false. Which is
to say, in any situation in which the premises are all true (there aren’t any
of these!), the conclusion will be true as well. Hence any argument with analways valid
inconsistent set of premises is trivially valid. In particular, if one can establish
a contradiction ⊥ on the basis of the premises, then one is entitled to assert
any sentence at all.

This often strikes students as a very odd method of reasoning, and for very
good reason. For recall the distinction between a valid argument and a sound
one. A sound argument is a valid argument with true premises. Even though
any argument with an inconsistent set of premises is valid, no such argument
is sound, since there is no way the premises of the argument can all be true.
For this reason, an argument with an inconsistent set of premises is not worth
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much on its own. After all, the reason we are interested in logical consequence never sound
is because of its relation to truth. If the premises can’t possibly be true, then
even knowing that the argument is valid gives us no clue as to the truth or
falsity of the conclusion. An unsound argument gives no more support for its
conclusion than an invalid one.

In general, methods of proof don’t allow us to show that an argument
is unsound. After all, the truth or falsity of the premises is not a matter of
logic, but of how the world happens to be. But in the case of arguments with
inconsistent premises, our methods of proof do give us a way to show that at
least one of the premises is false (though we might not know which one), and
hence that the argument is unsound. To do this, we prove that the premises
are inconsistent by deriving a contradiction.

Suppose, for example, you are given a proof that the following argument
is valid:

Home(max) ∨ Home(claire)
¬Home(max)
¬Home(claire)

Home(max) ∧ Happy(carl)

While it is true that this conclusion is a consequence of the premises, your
reaction should not be to believe the conclusion. Indeed, using proof by cases
we can show that the premises are inconsistent, and hence that the argument
is unsound. There is no reason to be convinced of the conclusion of an unsound
argument.

Remember

A proof of a contradiction ⊥ from premises P1, . . . , Pn (without addi-
tional assumptions) shows that the premises are inconsistent. An argu-
ment with inconsistent premises is always valid, but more importantly,
always unsound.

Exercises

5.27
✎

Give two different proofs that the premises of the above argument are inconsistent. Your first
should use proof by cases but not DeMorgan’s law, while your second can use DeMorgan but
not proof by cases.
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Chapter 6

Formal Proofs and Boolean
Logic

The deductive system F is what is known as a system of natural deduction.natural deduction
Such systems are intended to be models of the valid principles of reasoning
used in informal proofs. In this chapter, we will present the inference rules of
F that correspond to the informal principles of Boolean reasoning discussed in
the previous chapter. You will easily recognize the rules as formal counterparts
of some of the principles we’ve already discussed.

Although natural deduction systems like F are meant to model informal
reasoning, they are also designed to be relatively spare or “stripped down”
versions of such reasoning. For example, we told you that in giving an informal
proof, you can always presuppose steps that you and your audience already
know to be logically valid. So if one of the equivalence laws is not at issue
in a proof, you can simply apply it in a single step of your informal proof.
However, in F we will give you a very elegant but restricted collection of
inference rules that you must apply in constructing a formal proof. Many of
the valid inference steps that we have seen (like the DeMorgan Laws) are not
allowed as single steps; they must be justified in terms of more basic steps.
The advantage to this “lean and mean” approach is that it makes it easier to
prove results about the deductive system, since the fewer the rules, the simpler
the system. For example, one of the things we can prove is that anything you
could demonstrate with a system that contained rules for all of the named
logical equivalences of Chapter 4 can be proved in the leaner system F .

Systems of natural deduction like F use two rules for each connective,
one that allows us to prove statements containing the symbol, and one that
allows us to prove things from statements containing the symbol. The former
are called introduction rules since they let us introduce these symbols intointroduction and

elimination rules proofs. By contrast, the latter are called elimination rules. This is similar to
our treatment of the identity predicate in Chapter 2. If you go on to study
proof theory in more advanced logic courses, you will see that that this elegant
pairing of rules has many advantages over systems that include more inference
steps as basic.

The formal rules of F are all implemented in the program Fitch, allowing
you to construct formal proofs much more easily than if you had to write
them out by hand. Actually, Fitch’s interpretation of the introduction and
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elimination rules is a bit more generous in spirit than F . It doesn’t allow you
to do anything that F wouldn’t permit, but there are cases where Fitch will
let you do in one step what might take several in F . Also, many of Fitch’s
rules have “default applications” that can save you a lot of time. If you want rule defaults
the default use of some rule, all you have to do is specify the rule and cite
the step or steps you are applying it to; Fitch will then fill in the appropriate
conclusion for you. At the end of each section below we’ll explain the default
uses of the rules introduced in that section.

Section 6.1

Conjunction rules

The simplest principles to formalize are those that involve the conjunction
symbol ∧. These are the rules of conjunction elimination and conjunction
introduction.

Conjunction elimination

The rule of conjunction elimination allows you to assert any conjunct Pi of a
conjunctive sentence P1 ∧ . . . ∧ Pi ∧ . . . ∧ Pn that you have already derived
in the proof. (Pi can, by the way, be any conjunct, including the first or the
last.) You justify the new step by citing the step containing the conjunction.
We abbreviate this rule with the following schema:

Conjunction Elimination (∧ Elim):

P1 ∧ . . . ∧ Pi ∧ . . . ∧ Pn
...

. Pi

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

J1. Open the file Conjunction 1. There are three sentences that you are asked
to prove. They are shown in the goal strip at the bottom of the proof
window as usual.

J2. The first sentence you are to prove is Tet(a). To do this, first add a new
step to the proof and write the sentence Tet(a).
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I 3. Next, go to the popup Rule? menu and under the Elimination Rules,
choose ∧.

I 4. If you try to check this step, you will see that it fails, because you have
have not yet cited any sentences in support of the step. In this example,
you need to cite the single premise in support. Do this and then check the
step.

I 5. You should be able to prove each of the other sentences similarly, by means
of a single application of ∧ Elim. When you have proven these sentences,
check your goals and save the proof as Proof Conjunction 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

Conjunction introduction

The corresponding introduction rule, conjunction introduction, allows you to
assert a conjunction P1 ∧ . . . ∧Pn provided you have already established each
of its constituent conjuncts P1 through Pn. We will symbolize this rule in the
following way:

Conjunction Introduction (∧ Intro):

P1

⇓
Pn
...

. P1 ∧ . . . ∧ Pn

In this rule, we have used the notation:

P1

⇓
Pn

to indicate that each of P1 through Pn must appear in the proof before you
can assert their conjunction. The order in which they appear does not matter,
and they do not have to appear one right after another. They just need to
appear somewhere earlier in the proof.

Here is a simple example of our two conjunction rules at work together. It
is a proof of C ∧ B from A ∧ B ∧ C.
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1. A ∧ B ∧ C

2. B ∧ Elim: 1
3. C ∧ Elim: 1
4. C ∧ B ∧ Intro: 3, 2

Let’s try our hand using both conjunction rules in Fitch.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

J1. Open the file Conjunction 2. We will help you prove the two sentences
requested in the goals. You will need to use both of the conjunction rules
in each case.

J2. The first goal is Medium(d) ∧ ¬Large(c). Add a new step and enter this
sentence. (Remember that you can copy the sentence from the goal pane
and paste it into the new step. It’s faster than typing it in.)

J3. Above the step you just created, add two more steps, typing one of the
conjuncts in each. If you can prove these, then the conclusion will follow
by ∧ Intro. Show this by choosing this rule at the conjunction step and
citing the two conjuncts in support.

J4. Now all you need to do is prove each of the conjuncts. This is easily done
using the rule ∧ Elim at each of these steps. Do this, cite the appropriate
support sentences, and check the proof. The first goal should check out.

J5. Prove the second goal sentence similarly. Once both goals check out, save
your proof as Proof Conjunction 2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

Default and generous uses of the ∧ rules

As we said, Fitch is generous in its interpretation of the inference rules of F .
For example, Fitch considers the following to be an acceptable use of ∧ Elim:

17. Tet(a) ∧ Tet(b) ∧ Tet(c) ∧ Tet(d)
...

26. Tet(d) ∧ Tet(b) ∧ Elim: 17
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What we have done here is pick two of the conjuncts from step 17 and assert
the conjunction of these in step 26. Technically, F would require us to de-
rive the two conjuncts separately and, like Humpty Dumpty, put them back
together again. Fitch does this for us.

Since Fitch lets you take any collection of conjuncts in the cited sentence
and assert their conjunction in any order, Fitch’s interpretation of ∧ Elim
allows you to prove that conjunction is “commutative.” In other words, you
can use it to take a conjunction and reorder its conjuncts however you please:

13. Tet(a) ∧ Tet(b)
...

21. Tet(b) ∧ Tet(a) ∧ Elim: 13

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 1. Open the file Conjunction 3. Notice that there are two goals. The first goal
asks you to prove Tet(c) ∧ Tet(a) from the premise. Strictly speaking, this
would take two uses of ∧ Elim followed by one use of ∧ Intro. However,
Fitch lets you do this with a single use of ∧ Elim. Try this and then check
the step.

I 2. Verify that the second goal sentence also follows by a single application of
Fitch’s rule of ∧ Elim. When you have proven these sentences, check your
goals and save the proof as Proof Conjunction 3.

I 3. Next try out other sentences to see whether they follow from the given
sentence by ∧ Elim. For example, does Tet(c) ∧ Small(a) follow? Should
it?

I 4. When you are satisfied you understand conjunction elimination, close the
file, but don’t save the changes you made in step 3.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

The ∧ Intro rule implemented in Fitch is also less restrictive than our dis-
cussion of the formal rule might suggest. First of all, Fitch does not care about
the order in which you cite the supporting sentences. Second, if you cite a sen-
tence, that sentence can appear more than once as a conjunct in the concluding
sentence. For example, you can use this rule to conclude Cube(a) ∧ Cube(a)
from the sentence Cube(a), if you want to for some reason.

Chapter 6



Conjunction rules / 147

Both of the conjunction rules have default uses. If at a new step you cite
a conjunction and specify the rule as ∧ Elim, then when you check the step default uses of

conjunction rules(or choose Check Proof), Fitch will fill in the blank step with the leftmost
conjunct in the cited sentence. If you cite several sentences and apply ∧ Intro,
Fitch will fill in the conjunction of those steps, ordering conjuncts in the same
order they were cited.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
J1. Open the file Conjunction 4.

J2. Move the focus to the first blank step, the one immediately following the
premises. Notice that this step has a rule specified, as well as a support
sentence cited. Check the step to see what default Fitch generates.

J3. Then, focus on each successive step, try to predict what the default will
be, and check the step. (The last two steps give different results because
we entered the support steps in different orders.)

J4. When you have checked all the steps, save your proof as Proof Conjunc-
tion 4.

J5. Feel free to experiment with the rule defaults some more, to see when they
are useful.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

One final point: In applying conjunction introduction, you will sometimes
have to be careful about parentheses, due to our conventions about dropping parentheses and

conjunction rulesoutermost parentheses. If one of the conjuncts is itself a conjunction, then
of course there is no need to add any parentheses before forming the larger
conjunction, unless you want to. For example, the following are both correct
applications of the rule. (The first is what Fitch’s default mechanism would
give you.)

Correct: 1. A ∧ B
2. C

3. (A ∧ B) ∧ C ∧ Intro: 1, 2

Correct: 1. A ∧ B
2. C

3. A ∧ B ∧ C ∧ Intro: 1, 2
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However, if one of the conjuncts is a disjunction (or some other complex
sentence), to prevent ambiguity you may need to reintroduce the parentheses
that you omitted before. Thus the first of the following is a correct proof, but
the second contains a faulty application of conjunction introduction, since it
concludes with an ambiguous sentence.

Correct: 1. A ∨ B
2. C

3. (A ∨ B) ∧ C ∧ Intro: 1, 2

Wrong: 1. A ∨ B
2. C

3. A ∨ B ∧ C ∧ Intro: 1, 2

Section 6.2

Disjunction rules

We know: the conjunction rules were boring. Not so the disjunction rules,
particularly disjunction elimination.

Disjunction introduction

The rule of disjunction introduction allows you to go from a sentence Pi to
any disjunction that has Pi among its disjuncts, say P1 ∨ . . . ∨ Pi ∨ . . . ∨ Pn.
In schematic form:

Disjunction Introduction (∨ Intro):

Pi
...

. P1 ∨ . . . ∨ Pi ∨ . . . ∨ Pn

Once again, we stress that Pi may be the first or last disjunct of the conclusion.
Further, as with conjunction introduction, some thought ought to be given to
whether parentheses must be added to Pi to prevent ambiguity.

As we explained in Chapter 5, disjunction introduction is a less peculiar
rule than it may at first appear. But before we look at a sensible example of
how it is used, we need to have at our disposal the second disjunction rule.
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Disjunction elimination

We now come to the first rule that corresponds to what we called a method
of proof in the last chapter. This is the rule of disjunction elimination, the
formal counterpart of proof by cases. Recall that proof by cases allows you
to conclude a sentence S from a disjunction P1 ∨ . . . ∨ Pn if you can prove
S from each of P1 through Pn individually. The form of this rule requires us
to discuss an important new structural feature of the Fitch-style system of
deduction. This is the notion of a subproof.

A subproof, as the name suggests, is a proof that occurs within the context subproofs
of a larger proof. As with any proof, a subproof generally begins with an as-
sumption, separated from the rest of the subproof by the Fitch bar. But the
assumption of a subproof, unlike a premise of the main proof, is only temporar- temporary

assumptionsily assumed. Throughout the course of the subproof itself, the assumption acts
just like an additional premise. But after the subproof, the assumption is no
longer in force.

Before we give the schematic form of disjunction elimination, let’s look at
a particular proof that uses the rule. This will serve as a concrete illustration
of how subproofs appear in F .

1. (A ∧ B) ∨ (C ∧ D)

2. A ∧ B

3. B ∧ Elim: 2
4. B ∨ D ∨ Intro: 3

5. C ∧ D

6. D ∧ Elim: 5
7. B ∨ D ∨ Intro: 6

8. B ∨ D ∨ Elim: 1, 2–4, 5–7

With appropriate replacements for A, B, C, and D, this is a formalization
of the proof given on page 133. It contains two subproofs. One of these runs
from line 2 to 4, and shows that B ∨ D follows if we (temporarily) assume
A ∧ B. The other runs from line 5 to 7, and shows that the same conclu-
sion follows from the assumption C ∧ D. These two proofs, together with the
premise (A ∧ B) ∨ (C ∧ D), are just what we need to apply the method of proof
by cases—or as we will now call it, the rule of disjunction elimination.

Look closely at this proof and compare it to the informal proof given
on page 133 to see if you can understand what is going on. Notice that the
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assumption steps of our two subproofs do not have to be justified by a rule any
more than the premise of the larger “parent” proof requires a justification.
This is because we are not claiming that these assumptions follow from what
comes before, but are simply assuming them to show what follows from their
supposition. Notice also that we have used the rule ∨ Intro twice in this proof,
since that is the only way we can derive the desired sentence in each subproof.
Although it seems like we are throwing away information when we infer B ∨ D
from the stronger claim B, when you consider the overall proof, it is clear that
B ∨ D is the strongest claim that follows from the original premise.

We can now state the schematic version of disjunction elimination.

Disjunction Elimination (∨ Elim):

P1 ∨ . . . ∨ Pn
...

P1

...
S

⇓

Pn

...
S

...
. S

What this says is that if you have established a disjunction P1∨. . . ∨Pn, and
you have also shown that S follows from each of the disjuncts P1 through Pn,
then you can conclude S. Again, it does not matter what order the subproofs
appear in, or even that they come after the disjunction. When applying the
rule, you will cite the step containing the disjunction, plus each of the required
subproofs.

Let’s look at another example of this rule, to emphasize how justifications
involving subproofs are given. Here is a proof showing that A follows from the
sentence (B ∧ A) ∨ (A ∧ C).
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1. (B ∧ A) ∨ (A ∧ C)

2. B ∧ A

3. A ∧ Elim: 2

4. A ∧ C

5. A ∧ Elim: 4

6. A ∨ Elim: 1, 2–3, 4–5

The citation for step 6 shows the form we use when citing subproofs. The
citation “n–m” is our way of referring to the subproof that begins on line n

and ends on line m.
Sometimes, in using disjunction elimination, you will find it natural to use

the reiteration rule introduced in Chapter 3. For example, suppose we modify
the above proof to show that A follows from (B ∧ A) ∨ A.

1. (B ∧ A) ∨ A

2. B ∧ A

3. A ∧ Elim: 2

4. A

5. A Reit: 4

6. A ∨ Elim: 1, 2–3, 4–5

Here, the assumption of the second subproof is A, exactly the sentence we
want to prove. So all we need to do is repeat that sentence to get the subproof
into the desired form. (We could also just give a subproof with one step, but
it is more natural to use reiteration in such cases.)

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

J1. Open the file Disjunction 1. In this file, you are asked to prove

Medium(c) ∨ Large(c)

from the sentence

(Cube(c) ∧ Large(c)) ∨ Medium(c)
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We are going to step you through the construction of the following proof:

1. (Cube(c) ∧ Large(c)) ∨ Medium(c)

2. Cube(c) ∧ Large(c)

3. Large(c) ∧ Elim: 2
4. Medium(c) ∨ Large(c) ∨ Intro: 3

5. Medium(c)

6. Medium(c) ∨ Large(c) ∨ Intro: 5

7. Medium(c) ∨ Large(c) ∨ Elim: 1, 2–4, 5–6

I 2. To use ∨ Elim in this case, we need to get two subproofs, one for each
of the disjuncts in the premise. It is a good policy to begin by specifying
both of the necessary subproofs before doing anything else. To start a
subproof, add a new step and choose New Subproof from the Proof
menu. Fitch will indent the step and allow you to enter the sentence you
want to assume. Enter the first disjunct of the premise, Cube(c) ∧ Large(c),
as the assumption of this subproof.

I 3. Rather than work on this subproof now, let’s specify the second case before
we forget what we’re trying to do. To do this, we need to end the first
subproof and start a second subproof after it. You end the current subproof
by choosing End Subproof from the Proof menu. This will give you a
new step outside of, but immediately following the subproof.

I 4. Start your second subproof at this new step by choosing New Subproof
from the Proof menu. This time type the other disjunct of the premise,
Medium(c). We have now specified the assumptions of the two cases we
need to consider. Our goal is to prove that the conclusion follows in both
of these cases.

I 5. Go back to the first subproof and add a step following the assumption. (Fo-
cus on the assumption step of the subproof and choose Add Step After
from the Proof menu.) In this step use ∧ Elim to prove Large(c). Then
add another step to that subproof and prove the goal sentence, using ∨
Intro. In both steps, you will have to cite the necessary support sentences.

I 6. After you’ve finished the first subproof and all the steps check out, move
the focus slider to the assumption step of the second subproof and add a
new step. Use ∨ Intro to prove the goal sentence from your assumption.
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J7. We’ve now derived the goal sentence in both of the subproofs, and so are
ready to add the final step of our proof. While focussed on the last step of
the second subproof, choose End Subproof from the Proof menu. Enter
the goal sentence into this new step.

J8. Specify the rule in the final step as ∨ Elim. For support, cite the two
subproofs and the premise. Check your completed proof. If it does not
check out, compare your proof carefully with the proof displayed above.
Have you accidentally gotten one of your subproofs inside the other one?
If so, delete the misplaced subproof by focusing on the assumption and
choosing Delete Step from the Proof menu. Then try again.

J9. When the entire proof checks out, save it as Proof Disjunction 1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

Default and generous uses of the ∨ rules

There are a couple of ways in which Fitch is more lenient in checking ∨ Elim
than the strict form of the rule suggests. First, the sentence S does not have
to be the last sentence in the subproof, though usually it will be. S simply has
to appear on the “main level” of each subproof, not necessarily as the very
last step. Second, if you start with a disjunction containing more than two
disjuncts, say P ∨ Q ∨ R, Fitch doesn’t require three subproofs. If you have
one subproof starting with P and one starting with Q ∨ R, or one starting
with Q and one starting with P ∨ R, then Fitch will still be happy, as long as
you’ve proven S in each of these cases.

Both disjunction rules have default applications, though they work rather default uses of
disjunction rulesdifferently. If you cite appropriate support for ∨ Elim (i.e., a disjunction

and subproofs for each disjunct) and then check the step without typing a
sentence, Fitch will look at the subproofs cited and, if they all end with the
same sentence, insert that sentence into the step. If you cite a sentence and
apply ∨ Intro without typing a sentence, Fitch will insert the cited sentence
followed by ∨, leaving the insertion point after the ∨ so you can type in the
rest of the disjunction you had in mind.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

J1. Open the file Disjunction 2. The goal is to prove the sentence

(Cube(b) ∧ Small(b)) ∨ (Cube(b) ∧ Large(b))
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The required proof is almost complete, though it may not look like it.

I 2. Focus on each empty step in succession, checking the step so that Fitch
will fill in the default sentence. On the second empty step you will have to
finish the sentence by typing in the second disjunct, (Cube(b) ∧ Large(b)),
of the goal sentence. (If the last step does not generate a default, it is
because you have not typed the right thing in the ∨ Intro step.)

I 3. When you are finished, see if the proof checks out. Do you understand the
proof? Could you have come up with it on your own?

I 4. Save your completed proof as Proof Disjunction 2.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

Exercises

6.1
➶

If you skipped any of the You try it sections, go back and do them now. Submit the files Proof
Conjunction 1, Proof Conjunction 2, Proof Conjunction 3, Proof Conjunction 4, Proof Disjunction
1, and Proof Disjunction 2.

6.2
➶

Open the file Exercise 6.2, which contains an incomplete formal proof. As it stands, none of
the steps check out, either because no rule has been specified, no support steps cited, or no
sentence typed in. Provide the missing pieces and submit the completed proof.

Use Fitch to construct formal proofs for the following arguments. You will find Exercise files for each
argument in the usual place. As usual, name your solutions Proof 6.x.

6.3
➶

a = b ∧ b = c ∧ c = d

a = c ∧ b = d

6.4
➶

(A ∧ B) ∨ C

C ∨ B

6.5
➶

A ∧ (B ∨ C)

(A ∧ B) ∨ (A ∧ C)

6.6
➶

(A ∧ B) ∨ (A ∧ C)

A ∧ (B ∨ C)

Section 6.3

Negation rules

Last but not least are the negation rules. It turns out that negation introduc-
tion is our most interesting and complex rule.
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Negation elimination

The rule of negation elimination corresponds to a very trivial valid step, from
¬¬P to P. Schematically:

Negation Elimination (¬ Elim):

¬¬P
...

. P

Negation elimination gives us one direction of the principle of double nega-
tion. You might reasonably expect that our second negation rule, negation
introduction, would simply give us the other direction. But if that’s what you
guessed, you guessed wrong.

Negation introduction

The rule of negation introduction corresponds to the method of indirect proof
or proof by contradiction. Like ∨ Elim, it involves the use of a subproof, as
will the formal analogs of all nontrivial methods of proof. The rule says that
if you can prove a contradiction ⊥ on the basis of an additional assumption
P, then you are entitled to infer ¬P from the original premises. Schematically:

Negation Introduction (¬ Intro):

P

...
⊥

. ¬P

There are different ways of understanding this rule, depending on how
we interpret the contradiction symbol ⊥. Some authors interpret it simply
as shorthand for any contradiction of the form Q ∧ ¬Q. If we construed the
schema that way, we wouldn’t have to say anything more about it. But we
will treat ⊥ as a symbol in its own right, to be read “contradiction.” This
has several advantages that will become apparent when you use the rule. The
one disadvantage is that we need to have rules about this special symbol. We
introduce these rules next.
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⊥ Introduction

The rule of ⊥ Introduction (⊥ Intro) allows us to obtain the contradiction
symbol if we have established an explicit contradiction in the form of some
sentence P and its negation ¬P.

⊥ Introduction (⊥ Intro):

P
...
¬P...

. ⊥

Ordinarily, you will only apply ⊥ Intro in the context of a subproof, to
show that the subproof’s assumption leads to a contradiction. The only time
you will be able to derive ⊥ in your main proof (as opposed to a subproof) is
when the premises of your argument are themselves inconsistent. In fact, this
is how we give a formal proof that a set of premises is inconsistent. A formalformal proofs of

inconsistency proof of inconsistency is a proof that derives ⊥ at the main level of the proof.
Let’s try out the rules of ⊥ Intro and ¬ Intro to see how they work.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 1. To illustrate these rules, we will show you how to prove ¬¬A from A.
This is the other direction of double negation. Use Fitch to open the file
Negation 1.

I 2. We will step you through the construction of the following simple proof.

1. A

2. ¬A

3. ⊥ ⊥ Intro: 1, 2

4. ¬¬A ¬ Intro: 2–3

I 3. To construct this proof, add a step immediately after the premise. Turn it
into a subproof by choosing New Subproof from the Proof menu. Enter
the assumption ¬A.

I 4. Add a new step to the subproof and enter ⊥, changing the rule to ⊥ Intro.
Cite the appropriate steps and check the step.
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J5. Now end the subproof and enter the final sentence, ¬¬A, after the sub-
proof. Specify the rule as ¬ Intro, cite the preceding subproof and check
the step. Your whole proof should now check out.

J6. Notice that in the third line of your proof you cited a step outside the
subproof, namely the premise. This is legitimate, but raises an important
issue. Just what steps can be cited at a given point in a proof? As a first
guess, you might think that you can cite any earlier step. But this turns
out to be wrong. We will explain why, and what the correct answer is, in
the next section.

J7. Save your proof as Proof Negation 1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

The contradiction symbol ⊥ acts just like any other sentence in a proof. In
particular, if you are reasoning by cases and derive ⊥ in each of your subproofs,
then you can use ∨ Elim to derive ⊥ in your main proof. For example, here
is a proof that the premises A ∨ B, ¬A, and ¬B are inconsistent.

1. A ∨ B
2. ¬A
3. ¬B

4. A

5. ⊥ ⊥ Intro: 4, 2

6. B

7. ⊥ ⊥ Intro: 6, 3

8. ⊥ ∨ Elim: 1, 4–5, 6–7

The important thing to notice here is step 8, where we have applied ∨
Elim to extract the contradiction symbol from our two subproofs. This is
clearly justified, since we have shown that whichever of A or B holds, we
immediately arrive at a contradiction. Since the premises tell us that one or
the other holds, the premises are inconsistent.

Other ways of introducing ⊥

The rule of ⊥ Intro recognizes only the most blatant contradictions, those
where you have established a sentence P and its negation ¬P. What if in the
course of a proof you come across an inconsistency of some other form? For
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example, suppose you manage to derive a single tt-contradictory sentence
like ¬(A ∨ ¬A), or the two sentences ¬A ∨ ¬B and A ∧ B, which together form
a tt-contradictory set?

It turns out that if you can prove any tt-contradictory sentence or sen-
tences, the rules we’ve already given you will allow you to prove ⊥. It may
take a fair amount of effort and ingenuity, but it is possible. We’ll eventually
prove this, but for now you’ll have to take our word for it.

One way to check whether some sentences are tt-contradictory is to try to
derive ⊥ from them using a single application of Taut Con. In other words,introducing ⊥

with Taut Con enter ⊥, cite the sentences, and choose Taut Con from the Rule? menu. If
Taut Con tells you that ⊥ follows from the cited sentences, then you can be
sure that it is possible to prove this using just the introduction and elimination
rules for ∧, ∨, ¬, and ⊥.

Of course, there are other forms of contradiction besides tt-contradictions.
For example, suppose you manage to prove the three sentences Cube(b), b = c,
and ¬Cube(c). These sentences are not tt-contradictory, but you can see
that a single application of = Elim will give you the tt-contradictory pair
Cube(c) and ¬Cube(c). If you suspect that you have derived some sentences
whose inconsistency results from the Boolean connectives plus the identity
predicate, you can check this using the FO Con mechanism, since FO Conintroducing ⊥

with FO Con understands the meaning of =. If FO Con says that ⊥ follows from the cited
sentences (and if those sentences do not contain quantifiers), then you should
be able to prove ⊥ using just the introduction and elimination rules for =, ∧,
∨, ¬, and ⊥.

The only time you may arrive at a contradiction but not be able to prove
⊥ using the rules of F is if the inconsistency depends on the meanings of
predicates other than identity. For example, suppose you derived the contra-
diction n < n, or the contradictory pair of sentences Cube(b) and Tet(b). The
rules of F give you no way to get from these sentences to a contradiction of
the form P and ¬P, at least without some further premises.

What this means is that in Fitch, the Ana Con mechanism will let youintroducing ⊥
with Ana Con establish contradictions that can’t be derived in F . Of course, the Ana Con

mechanism only understands predicates in the blocks language (and even
there, it excludes Adjoins and Between). But it will allow you to derive ⊥
from, for example, the two sentences Cube(b) and Tet(b). You can either do
this directly, by entering ⊥ and citing the two sentences, or indirectly, by
using Ana Con to prove, say, ¬Cube(b) from Tet(b).
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You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

J1. Open Negation 2 using Fitch. In this file you will find an incomplete proof.
As premises, we have listed a number of sentences, several groups of which
are contradictory.

J2. Focus on each step that contains the ⊥ symbol. You will see that various
sentences are cited in support of the step. Only one of these steps is an
application of the ⊥ Intro rule. Which one? Specify the rule for that step
as ⊥ Intro and check it.

J3. Among the remaining steps, you will find one where the cited sentences
form a tt-contradictory set of sentences. Which one? Change the justifi-
cation at that step to Taut Con and check the step. Since it checks out,
we assure you that you can derive ⊥ from these same premises using just
the Boolean rules.

J4. Of the remaining steps, the supports of two are contradictory in view of the
meaning of the identity symbol =. Which steps? Change the justification
at those step to FO Con and check the steps. To derive ⊥ from these
premises, you would need the identity rules (in one case = Elim, in the
other = Intro).

J5. Verify that the remaining steps cannot be justified by any of the rules ⊥
Intro, Taut Con or FO Con. Change the justification at those steps to
Ana Con and check the steps.

J6. Save your proof as Proof Negation 2. (Needless to say, this is a formal proof
of inconsistency with a vengeance!)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

⊥ Elimination

As we remarked earlier, if in a proof, or more importantly in some subproof,
you are able to establish a contradiction, then you are entitled to assert any
fol sentence P whatsoever. In our formal system, this is modeled by the rule
of ⊥ Elimination (⊥ Elim).

⊥ Elimination (⊥ Elim):

⊥
...

. P
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The following You try it section illustrates both of the ⊥ rules. Be sure
to go through it, as it presents a proof tactic you will have several occasions
to use.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 1. It often happens in giving proofs using ∨ Elim that one really wants
to eliminate one or more of the disjuncts, because they contradict other
assumptions. The form of the ∨ Elim rule does not permit this, though.
The proof we will construct here shows how to get around this difficulty.

I 2. Using Fitch, open the file Negation 3. We will use ∨ Elim and the two ⊥
rules to prove P from the premises P ∨ Q and ¬Q.

I 3. Start two subproofs, the first with assumption P, the second with assump-
tion Q. Our goal is to establish P in both subproofs.

I 4. In the first subproof, we can simply use reiteration to repeat the assump-
tion P.

I 5. In the second subproof, how will we establish P? In an informal proof,
we would simply eliminate this case, because the assumption contradicts
one of the premises. In a formal proof, though, we must establish our goal
sentence P in both subproofs, and this is where ⊥ Elim is useful. First use
⊥ Intro to show that this case is contradictory. You will cite the assumed
sentence Q and the second premise ¬Q. Once you have ⊥ as the second
step of this subproof, use ⊥ Elim to establish P in this subproof.

I 6. Since you now have P in both subproofs, you can finish the proof using ∨
Elim. Complete the proof.

I 7. Save your proof as Proof Negation 3.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

It turns out that we do not really need the rule of ⊥ Elim. You can prove
any sentence from a contradiction without it; it just takes longer. Suppose, for
example, that you have established a contradiction at step 17 of some proof.
Here is how you can introduce P at step 21 without using ⊥ Elim.
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17. ⊥
18. ¬P

19. ⊥ Reit: 17

20. ¬¬P ¬ Intro: 18–19
21. P ¬ Elim: 20

Still, we include ⊥ Elim to make our proofs shorter and more natural.

Default and generous uses of the ¬ rules

The rule of ¬ Elim allows you to take off two negation signs from the front of
a sentence. Repeated uses of this rule would allow you to remove four, six, or
indeed any even number of negation signs. For this reason, the implementation
of ¬ Elim in Fitch allows you to remove any even number of negation signs
in one step.

Both of the negation rules have default applications. In a default application default uses of
negation rulesof ¬ Elim, Fitch will remove as many negation signs as possible from the front

of the cited sentences (the number must be even, of course) and insert the
resulting sentence at the ¬ Elim step. In a default application of ¬ Intro,
the inserted sentence will be the negation of the assumption step of the cited
subproof.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

J1. Open the file Negation 4. First look at the goal to see what sentence we
are trying to prove. Then focus on each step in succession and check the
step. Before moving to the next step, make sure you understand why the
step checks out and, more important, why we are doing what we are doing
at that step. At the empty steps, try to predict which sentence Fitch will
provide as a default before you check the step.

J2. When you are done, make sure you understand the completed proof. Save
your file as Proof Negation 4.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

Exercises

6.7
➶

If you skipped any of the You try it sections, go back and do them now. Submit the files
Proof Negation 1, Proof Negation 2, Proof Negation 3, and Proof Negation 4.
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6.8
➶

(Substitution) In informal proofs, we allow you to substitute logically equivalent sentences
for one another, even when they occur in the context of a larger sentence. For example, the
following inference results from two uses of double negation, each applied to a part of the whole
sentence:

P ∧ (Q ∨ ¬¬R)

¬¬P ∧ (Q ∨ R)

How would we prove this using F , which has no substitution rule? Open the file Exercise 6.8,
which contains an incomplete formal proof of this argument. As it stands, none of the proof’s
steps check out, because no rules or support steps have been cited. Provide the missing justi-
fications and submit the completed proof.

Evaluate each of the following arguments. If the argument is valid, use Fitch to give a formal proof using
the rules you have learned. If it not valid, use Tarski’s World to construct a counterexample world. In
the last two proofs you will need to use Ana Con to show that certain atomic sentences contradict one
another to introduce ⊥. Use Ana Con only in this way. That is, your use of Ana Con should cite
exactly two atomic sentences in support of an introduction of ⊥. If you have difficulty with any of these
exercises, you may want to skip ahead and read Section 6.5.

6.9
➶

Cube(b)
¬(Cube(c) ∧ Cube(b))

¬Cube(c)

6.10
➶

Cube(a) ∨ Cube(b)
¬(Cube(c) ∧ Cube(b))

¬Cube(c)

6.11
➶

Dodec(e)
Small(e)
¬Dodec(e) ∨ Dodec(f) ∨ Small(e)

Dodec(f)

6.12
➶

Dodec(e)
¬Small(e)
¬Dodec(e) ∨ Dodec(f) ∨ Small(e)

Dodec(f)

6.13
➶

Dodec(e)
Large(e)
¬Dodec(e) ∨ Dodec(f) ∨ Small(e)

Dodec(f)

6.14
➶

SameRow(b, f) ∨ SameRow(c, f)
∨ SameRow(d, f)

¬SameRow(c, f)
FrontOf(b, f)
¬(SameRow(d, f) ∧ Cube(f))

¬Cube(f)
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In the following two exercises, determine whether the sentences are consistent. If they are, use Tarski’s
World to build a world where the sentences are both true. If they are inconsistent, use Fitch to give a
proof that they are inconsistent (that is, derive ⊥ from them). You may use Ana Con in your proof,
but only applied to literals (that is, atomic sentences or negations of atomic sentences).

6.15
➶

¬(Larger(a, b) ∧ Larger(b, a))
¬SameSize(a, b)

6.16
➶

Smaller(a, b) ∨ Smaller(b, a)
SameSize(a, b)

Section 6.4

The proper use of subproofs

Subproofs are the characteristic feature of Fitch-style deductive systems. It
is important that you understand how to use them properly, since if you are
not careful, you may “prove” things that don’t follow from your premises. For
example, the following formal proof looks like it is constructed according to
our rules, but it purports to prove that A ∧ B follows from (B ∧ A) ∨ (A ∧ C),
which is clearly not right.

1. (B ∧ A) ∨ (A ∧ C)

2. B ∧ A

3. B ∧ Elim: 2
4. A ∧ Elim: 2

5. A ∧ C

6. A ∧ Elim: 5

7. A ∨ Elim: 1, 2–4, 5–6
8. A ∧ B ∧ Intro: 7, 3

The problem with this proof is step 8. In this step we have used step
3, a step that occurs within an earlier subproof. But it turns out that this
sort of justification—one that reaches back inside a subproof that has already
ended—is not legitimate. To understand why it’s not legitimate, we need to
think about what function subproofs play in a piece of reasoning.

A subproof typically looks something like this:
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P
...
Q

R
...
S

T...

Subproofs begin with the introduction of a new assumption, in this exam-
ple R. The reasoning within the subproof depends on this new assumption,discharging

assumptions by ending
subproofs

together with any other premises or assumptions of the parent proof. So in
our example, the derivation of S may depend on both P and R. When the
subproof ends, indicated by the end of the vertical line that ties the subproof
together, the subsequent reasoning can no longer use the subproof’s assump-
tion, or anything that depends on it. We say that the assumption has been
discharged or that the subproof has been ended.

When an assumption has been discharged, the individual steps of its sub-
proof are no longer accessible. It is only the subproof as a whole that can be
cited as justification for some later step. What this means is that in justifying
the assertion of T in our example, we could cite P, Q, and the subproof as a
whole, but we could not cite individual items in the subproof like R or S. For
these steps rely on assumptions we no longer have at our disposal. Once the
subproof has been ended, they are no longer accessible.

This, of course, is where we went wrong in step 8 of the fallacious proof
given earlier. We cited a step in a subproof that had been ended, namely,
step 3. But the sentence at that step, B, had been proven on the basis of the
assumption B ∧ A, an assumption we only made temporarily. The assumption
is no longer in force at step 8, and so cannot be used at that point.

This injunction does not prevent you from citing, from within a subproof,
items that occur earlier outside the subproof, as long as they do not occur in
subproofs that ended before that step. For example, in the schematic proof
given above, the justification for S could well include the step that contains Q.

This observation becomes more pointed when you are working in a sub-
proof of a subproof. We have not yet seen any examples where we needed to
have subproofs within subproofs, but such examples are easy to come by. Here
is one, which is a proof of one direction of the first DeMorgan law.
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1. ¬(P ∧ Q)

2. ¬(¬P ∨ ¬Q)

3. ¬P

4. ¬P ∨ ¬Q ∨ Intro: 3
5. ⊥ ⊥ Intro: 4, 2

6. ¬¬P ¬ Intro: 3–5
7. P ¬ Elim: 6

8. ¬Q

9. ¬P ∨ ¬Q ∨ Intro: 8
10. ⊥ ⊥ Intro: 9, 2

11. ¬¬Q ¬ Intro: 8–10
12. Q ¬ Elim: 11
13. P ∧ Q ∧ Intro: 7, 12
14. ¬(P ∧ Q) Reit: 1
15. ⊥ ⊥ Intro: 13, 14

16. ¬¬(¬P ∨ ¬Q) ¬ Intro: 2–15
17. ¬P ∨ ¬Q ¬ Elim: 16

Notice that the subproof 2–15 contains two subproofs, 3–5 and 8–10. In
step 5 of subproof 3–5, we cite step 2 from the parent subproof 2–15. Similarly,
in step 10 of the subproof 8–10, we cite step 2. This is legitimate since the
subproof 2–15 has not been ended by step 10. While we did not need to in
this proof, we could in fact have cited step 1 in either of the sub-subproofs.

Another thing to note about this proof is the use of the Reiteration rule at
step 14. We did not need to use Reiteration here, but did so just to illustrate
a point. When it comes to subproofs, Reiteration is like any other rule: when
you use it, you can cite steps outside of the immediate subproof, if the proofs
that contain the cited steps have not yet ended. But you cannot cite a step
inside a subproof that has already ended. For example, if we replaced the
justification for step 15 with “Reit: 10,” then our proof would no longer be
correct.

As you’ll see, most proofs in F require subproofs inside subproofs—what
we call nested subproofs. To create such a subproof in Fitch, you just choose nested subproofs
New Subproof from the Proof menu while you’re inside the first subproof.
You may already have done this by accident in constructing earlier proofs. In
the exercises that follow, you’ll have to do it on purpose.
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Remember

◦ In justifying a step of a subproof, you may cite any earlier step con-
tained in the main proof, or in any subproof whose assumption is still
in force. You may never cite individual steps inside a subproof that
has already ended.

◦ Fitch enforces this automatically by not permitting the citation of
individual steps inside subproofs that have ended.

Exercises

6.17
✎

Try to recreate the following “proof” using Fitch.

1. (Tet(a) ∧ Large(c)) ∨ (Tet(a) ∧ Dodec(b))

2. Tet(a) ∧ Large(c)

3. Tet(a) ∧ Elim: 2

4. Tet(a) ∧ Dodec(b)

5. Dodec(b) ∧ Elim: 4
6. Tet(a) ∧ Elim: 4

7. Tet(a) ∨ Elim: 1, 2–3, 4–6
8. Tet(a) ∧ Dodec(b) ∧ Intro: 7, 5

What step won’t Fitch let you perform? Why? Is the conclusion a consequence of the premise?
Discuss this example in the form of a clear English paragraph, and turn your paragraph in to
your instructor.

Use Fitch to give formal proofs for the following arguments. You will need to use subproofs within
subproofs to prove these.

6.18
➶

A ∨ B

A ∨ ¬¬B

6.19
➶

A ∨ B
¬B ∨ C

A ∨ C

6.20
➶

A ∨ B
A ∨ C

A ∨ (B ∧ C)
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Section 6.5

Strategy and tactics

Many students try constructing formal proofs by blindly piecing together a se-
quence of steps permitted by the introduction and elimination rules, a process
no more related to reasoning than playing solitaire. This approach occasion-
ally works, but more often than not it will fail—or at any rate, make it harder
to find a proof. In this section, we will give you some advice about how to
go about finding proofs when they don’t jump right out at you. The advice
consists of two important strategies and an essential maxim.

Here is the maxim: Always keep firmly in mind what the sentences in your an important maxim
proof mean! Students who pay attention to the meanings of the sentences avoid
innumerable pitfalls, among them the pitfall of trying to prove a sentence that
doesn’t really follow from the information given. Your first step in trying to
construct a proof should always be to convince yourself that the claim made
by the conclusion is a consequence of the premises. You should do this even if
the exercise tells you that the argument is valid and simply asks you to find a
proof. For in the process of understanding the sentences and recognizing the
argument’s validity, you will often get some idea how to prove it.

After you’re convinced that the argument is indeed valid, the first strategy
for finding a formal proof is to try giving an informal proof, the kind you might try informal proof
use to convince a fellow classmate. Often the basic structure of your informal
reasoning can be directly formalized using the rules of F . For example, if
you find yourself using an indirect proof, then that part of the reasoning will
probably require negation introduction in F . If you use proof by cases, then
you’ll almost surely formalize the proof using disjunction elimination.

Suppose you have decided that the argument is valid, but are having trou-
ble finding an informal proof. Or suppose you can’t see how your informal
proof can be converted into a proof that uses just the rules of F . The second
strategy is helpful in either of these cases. It is known as “working backwards.” working backwards
What you do is look at the conclusion and see what additional sentence or
sentences would allow you to infer that conclusion. Then you simply insert
these steps into your proof, not worrying about exactly how they will be jus-
tified, and cite them in support of your goal sentence. You then take these
intermediate steps as new goals and see if you can prove them. Once you do,
your proof will be complete.

Let’s work through an example that applies both of these strategies. Sup-
pose you are asked to give a formal proof of the argument:
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¬P ∨ ¬Q

¬(P ∧ Q)

You’ll recognize this as an application of one of the DeMorgan laws, so you
know it’s valid. But when you think about it (applying our maxim) you may
find that what convinces you of its validity is the following observation, which
is hard to formalize: if the premise is true, then either P or Q is false, and
that will make P ∧ Q false, and hence the conclusion true. Though this is
a completely convincing argument, it is not immediately clear how it would
translate into the introduction and elimination rules of F .

Let’s try working backwards to see if we can come up with an informal
proof that is easier to formalize. Since the conclusion is a negation, we could
prove it by assuming P ∧ Q and deriving a contradiction. So let’s suppose
P ∧ Q and take ⊥ as our new goal. Now things look a little clearer. For the
premise tells us that either ¬P or ¬Q is true, but either of these cases directly
contradicts one of the conjuncts of our assumption. So proof by cases will
allow us to derive a contradiction. For the record, here is how we would state
this as an informal proof:

Proof: We are given ¬P ∨ ¬Q and want to prove ¬(P ∧ Q). For pur-
poses of reductio, we will assume P ∧ Q and attempt to derive a con-
tradiction. There are two cases to consider, since we are given that
either ¬P or ¬Q is true. But each of these contradicts the assump-
tion P ∧ Q: ¬P contradicts the first conjunct and ¬Q contradicts the
second. Consequently, our assumption leads to a contradiction, and
so our proof is complete.

In the following, we lead you through the construction of a formal proof
that models this informal reasoning.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 1. Open the file Strategy 1. Begin by entering the desired conclusion in a new
step of the proof. We will construct the proof working backwards, just
like we found our informal proof. Add a step before the conclusion you’ve
entered so that your proof looks something like this:

1. ¬P ∨ ¬Q

2. . . . Rule?
3. ¬(P ∧ Q) Rule?
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J2. The main method used in our informal proof was reductio, which corre-
sponds to negation introduction. So change the blank step into a subproof
with the assumption P ∧ Q and the contradiction symbol at the bottom.
Also add a step in between these to remind you that that’s where you still
need to fill things in, and enter your justification for the final step, so you
remember why you added the subproof. At this point your proof should
look roughly like this:

1. ¬P ∨ ¬Q

2. P ∧ Q

3. . . . Rule?
4. ⊥ Rule?

5. ¬(P ∧ Q) ¬ Intro: 2–4

J3. Our informal proof showed that there was a contradiction whichever of ¬P
or ¬Q was the case. The formal counterpart of proof by cases is disjunction
elimination, so the next step is to fill in two subproofs, one assuming ¬P,
the other assuming ¬Q, and both concluding with ⊥. Make sure you put
in the justification for the step where you apply ∨ Elim, and it’s a good
idea to add empty steps to remind yourself where you need to continue
working. Here’s what your proof should look like now:

1. ¬P ∨ ¬Q

2. P ∧ Q

3. ¬P

4. . . . Rule?
5. ⊥ Rule?

6. ¬Q

7. . . . Rule?
8. ⊥ Rule?

9. ⊥ ∨ Elim: 1, 3–5, 6–8

10. ¬(P ∧ Q) ¬ Intro: 2–9

J4. Filling in the remaining steps is easy. Finish your proof as follows:
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1. ¬P ∨ ¬Q

2. P ∧ Q

3. ¬P

4. P ∧ Elim: 2
5. ⊥ ⊥ Intro: 4, 3

6. ¬Q

7. Q ∧ Elim: 2
8. ⊥ ⊥ Intro: 7, 6

9. ⊥ ∨ Elim: 1, 3–5, 6–8

10. ¬(P ∧ Q) ¬ Intro: 2–9

I 5. Save your proof as Proof Strategy 1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

Working backwards can be a very useful technique, since it often allows
you to replace a complex goal with simpler ones or to add new assumptions
from which to reason. But you should not think that the technique can bepitfalls of working

backwards applied mechanically, without giving it any thought. Each time you add new
intermediate goals, whether they are sentences or subproofs, it is essential
that you stop and check whether the new goals are actually reasonable. If
they don’t seem plausible, you should try something else.

Here’s a simple example of why this constant checking is so important.
Suppose you were asked to prove the sentence A ∨ C from the given sentence
(A ∧ B) ∨ (C ∧ D). Working backwards you might notice that if you could
prove A, from this you could infer the desired conclusion by the rule ∨ Intro.
Sketched in, your partial proof would look like this:

1. (A ∧ B) ∨ (C ∧ D)

2. A Rule?
3. A ∨ C ∨ Intro

The problem with this is that A does not follow from the given sentence,
and no amount of work will allow you to prove that it does. If you didn’t no-
tice this from the outset, you could spend a lot of time trying to construct an
impossible proof! But if you notice it, you can try a more promising approach.
(In this case, disjunction elimination is clearly the right way to go.) Work-
ing backwards, though a valuable tactic, is no replacement for good honest
thinking.
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When you’re constructing a formal proof in Fitch, you can avoid trying
to prove an incorrect intermediate conclusion by checking the step with Taut
Con. In the above example, for instance, if you use Taut Con at the second checking with Con

mechanismsstep, citing the premise as support, you would immediately find that it is
hopeless to try to prove A from the given premise.

Many of the problems in this book ask you to determine whether an argu-
ment is valid and to back up your answer with either a proof of consequence
or a counterexample, a proof of non-consequence. You will approach these
problems in much the same way we’ve described, first trying to understand
the claims involved and deciding whether the conclusion follows from the
premises. If you think the conclusion does not follow, or really don’t have a
good hunch one way or the other, try to find a counterexample. You may
succeed, in which case you will have shown the argument to be invalid. If you
cannot find a counterexample, trying to find one often gives rise to insights
about why the argument is valid, insights that can help you find the required
proof.

We can summarize our strategy advice with a seven step procedure for
approaching problems of this sort.

Remember

In assessing the validity of an argument, use the following method:

1. Understand what the sentences are saying.

2. Decide whether you think the conclusion follows from the premises.

3. If you think it does not follow, or are not sure, try to find a counterex-
ample.

4. If you think it does follow, try to give an informal proof.

5. If a formal proof is called for, use the informal proof to guide you in
finding one.

6. In giving consequence proofs, both formal and informal, don’t forget
the tactic of working backwards.

7. In working backwards, though, always check that your intermediate
goals are consequences of the available information.

One final warning: One of the nice things about Fitch is that it will give
you instant feedback about whether your proof is correct. This is a valuable
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learning tool, but it can be misused. You should not use Fitch as a crutch,using Fitch as a crutch
trying out rule applications and letting Fitch tell you if they are correct. If
you do this, then you are not really learning the system F . One way to check
up on yourself is to write a formal proof out on paper every now and then. If
you try this and find you can’t do it without Fitch’s help, then you are using
Fitch as a crutch, not a learning tool.

Exercises

6.21
➶

If you skipped the You try it section, go back and do it now. Submit the file Proof Strategy 1.

6.22
➶

Give a formal proof mirroring the in-
formal proof on page 136 of ¬(b = c)
from the premises Cube(c) ∨ Dodec(c)
and Tet(b). You may apply Ana Con
to literals in establishing ⊥.

6.23
✎

Give an informal proof that might have
been used by the authors in construct-
ing the formal proof shown on page 165.

In each of the following exercises, give an informal proof of the validity of the indicated argument. (You
should never use the principle you are proving in your informal proof, for example in Exercise 6.24,
you should not use DeMorgan in your informal proof.) Then use Fitch to construct a formal proof that
mirrors your informal proof as much as possible. Turn in your informal proofs to your instructor and
submit the formal proof in the usual way.

6.24
➶|✎

¬(A ∨ B)

¬A ∧ ¬B

6.25
➶|✎

¬A ∧ ¬B

¬(A ∨ B)

6.26
➶|✎

A ∨ (B ∧ C)
¬B ∨ ¬C ∨ D

A ∨ D

6.27
➶|✎

(A ∧ B) ∨ (C ∧ D)
(B ∧ C) ∨ (D ∧ E)

C ∨ (A ∧ E)

In each of the following exercises, you should assess whether the argument is valid. If it is, use Fitch to
construct a formal proof. You may use Ana Con but only involving literals and ⊥. If it is not valid,
use Tarski’s World to construct a counterexample.

6.28
➶

Cube(c) ∨ Small(c)
Dodec(c)

Small(c)

6.29
➶

Larger(a,b) ∨ Larger(a, c)
Smaller(b, a) ∨ ¬Larger(a, c)

Larger(a,b)
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6.30
➶

¬(¬Cube(a) ∧ Cube(b))
¬(¬Cube(b) ∨ Cube(c))

Cube(a)

6.31
➶

Dodec(b) ∨ Cube(b)
Small(b) ∨ Medium(b)
¬(Small(b) ∧ Cube(b))

Medium(b) ∧ Dodec(b)

6.32
➶

Dodec(b) ∨ Cube(b)
Small(b) ∨ Medium(b)
¬Small(b) ∧ ¬Cube(b))

Medium(b) ∧ Dodec(b)

Section 6.6

Proofs without premises

Not all proofs begin with the assumption of premises. This may seem odd,
but in fact it is how we use our deductive system to show that a sentence is
a logical truth. A sentence that can be proven without any premises at all is
necessarily true. Here’s a trivial example of such a proof, one that shows that demonstrating

logical trutha = a ∧ b = b is a logical truth.

1. a = a = Intro
2. b = b = Intro
3. a = a ∧ b = b ∧ Intro: 1, 2

The first step of this proof is not a premise, but an application of = Intro.
You might think that any proof without premises would have to start with
this rule, since it is the only one that doesn’t have to cite any supporting steps
earlier in the proof. But in fact, this is not a very representative example of
such proofs. A more typical and interesting proof without premises is the
following, which shows that ¬(P ∧ ¬P) is a logical truth.

Section 6.6



174 / Formal Proofs and Boolean Logic

1. P ∧ ¬P

2. P ∧ Elim: 1
3. ¬P ∧ Elim: 1
4. ⊥ ⊥ Intro: 2, 3

5. ¬(P ∧ ¬P) ¬ Intro: 1–4

Notice that there are no assumptions above the first horizontal Fitch bar,
indicating that the main proof has no premises. The first step of the proof is
the subproof ’s assumption. The subproof proceeds to derive a contradiction,
based on this assumption, thus allowing us to conclude that the negation
of the subproof’s assumption follows without the need of premises. In other
words, it is a logical truth.

When we want you to prove that a sentence is a logical truth, we will use
Fitch notation to indicate that you must prove this without assuming any
premises. For example the above proof shows that the following “argument”
is valid:

¬(P ∧ ¬P)

We close this section with the following reminder:

Remember

A proof without any premises shows that its conclusion is a logical truth.

Exercises

6.33
➶

(Excluded Middle) Open the file Exercise 6.33. This contains an incomplete proof of the law
of excluded middle, P ∨ ¬P. As it stands, the proof does not check out because it’s missing
some sentences, some support citations, and some rules. Fill in the missing pieces and submit
the completed proof as Proof 6.33. The proof shows that we can derive excluded middle in F
without any premises.
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In the following exercises, assess whether the indicated sentence is a logical truth in the blocks language.
If so, use Fitch to construct a formal proof of the sentence from no premises (using Ana Con if
necessary, but only applied to literals). If not, use Tarski’s World to construct a counterexample. (A
counterexample here will simply be a world that makes the purported conclusion false.)

6.34
➶

¬(a = b ∧ Dodec(a) ∧ ¬Dodec(b))

6.35
➶

¬(a = b ∧ Dodec(a) ∧ Cube(b))

6.36
➶

¬(a = b ∧ b = c ∧ a 6= c)

6.37
➶

¬(a 6= b ∧ b 6= c ∧ a = c)

6.38
➶

¬(SameRow(a,b) ∧ SameRow(b, c) ∧ FrontOf(c, a))

6.39
➶

¬(SameCol(a, b) ∧ SameCol(b, c) ∧ FrontOf(c, a))

The following sentences are all tautologies, and so should be provable in F . Although the informal proofs
are relatively simple, F makes fairly heavy going of them, since it forces us to prove even very obvious
steps. Use Fitch to construct formal proofs. You may want to build on the proof of Excluded Middle
given in Exercise 6.33. Alternatively, with the permission of your instructor, you may use Taut Con,
but only to justify an instance of Excluded Middle. The Grade Grinder will indicate whether you used
Taut Con or not.

6.40
➶?

A ∨ ¬(A ∧ B)

6.41
➶?

(A ∧ B) ∨ ¬A ∨ ¬B

6.42
➶?

¬A ∨ ¬(¬B ∧ (¬A ∨ B))

Section 6.6



Chapter 7

Conditionals

There are many logically important constructions in English besides the Boolean
connectives. Even if we restrict ourselves to words and phrases that connect
two simple indicative sentences, we still find many that go beyond the Boolean
operators. For example, besides saying:

Max is home and Claire is at the library,

and

Max is home or Claire is at the library,

we can combine these same atomic sentences in the following ways, among
others:

Max is home if Claire is at the library,
Max is home only if Claire is at the library,
Max is home if and only if Claire is at the library,
Max is not home nor is Claire at the library,
Max is home unless Claire is at the library,
Max is home even though Claire is at the library,
Max is home in spite of the fact that Claire is at the library,
Max is home just in case Claire is at the library,
Max is home whenever Claire is at the library,
Max is home because Claire is at the library.

And these are just the tip of the iceberg. There are also constructions that
combine three atomic sentences to form new sentences:

If Max is home then Claire is at the library, otherwise Claire is
concerned,

and constructions that combine four:

If Max is home then Claire is at the library, otherwise Claire is
concerned unless Carl is with him,

and so forth.
Some of these constructions are truth functional, or have important truth-

functional uses, while others do not. Recall that a connective is truth func-
tional if the truth or falsity of compound statements made with it is completely
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determined by the truth values of its constituents. Its meaning, in other words,
can be captured by a truth table.

Fol does not include connectives that are not truth functional. This is non-truth-functional
connectivesnot to say that such connectives aren’t important, but their meanings tend to

be vague and subject to conflicting interpretations. The decision to exclude
them is analogous to our assumption that all the predicates of fol have precise
interpretations.

Whether or not a connective in English can be, or always is, used truth
functionally is a tricky matter, about which we’ll have more to say later in
the chapter. Of the connectives listed above, though, there is one that is very
clearly not truth functional: the connective because. This is not hard to prove.

Proof: To show that the English connective because is not truth
functional, it suffices to find two possible circumstances in which the
sentence Max is home because Claire is at the library would have
different truth values, but in which its constituents, Max is home
and Claire is at the library, have the same truth values.

Why? Well, suppose that the meaning of because were captured by a
truth table. These two circumstances would correspond to the same
row of the truth table, since the atomic sentences have the same
values, but in one circumstance the sentence is true and in the other
it is false. So the purported truth table must be wrong, contrary to
our assumption.

For the first circumstance, imagine that Max learned that Claire
would be at the library, hence unable to feed Carl, and so rushed
home to feed him. For the second circumstance, imagine that Max
is at home, expecting Claire to be there too, but she unexpectedly
had to go the library to get a reference book for a report. In both
circumstances the sentences Max is home and Claire is at the library
are true. But the compound sentence Max is home because Claire
is at the library is true in the first, false in the second.

The reason because is not truth functional is that it typically asserts some
sort of causal connection between the facts described by the constituent sen-
tences. This is why our compound sentence was false in the second situation:
the causal connection was missing.

In this chapter, we will introduce two new truth-functional connectives,
known as the material conditional and the material biconditional, both stan-
dard features of fol. It turns out that, as we’ll show at the end of the chapter,
these new symbols do not actually increase the expressive power of fol. They
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do, however, make it much easier to say and prove certain things, and so are
valuable additions to the language.

Section 7.1

Material conditional symbol: →

The symbol → is used to combine two sentences P and Q to form a new
sentence P → Q, called a material conditional. The sentence P is called the
antecedent of the conditional, and Q is called the consequent of the conditional.
We will discuss the English counterparts of this symbol after we explain its
meaning.

Semantics and the game rule for the conditional

The sentence P → Q is true if and only if either P is false or Q is true (or
both). This can be summarized by the following truth table.

P Q P → Q
t t T
t f F
f t T
f f T

truth table for →

A second’s thought shows that P → Q is really just another way of saying
¬P ∨ Q. Tarski’s World in fact treats the former as an abbreviation of the
latter. In particular, in playing the game, Tarski’s World simply replaces agame rule for →
statement of the form P → Q by its equivalent ¬P ∨ Q.

Remember

1. If P and Q are sentences of fol, then so is P → Q.

2. The sentence P → Q is false in only one case: if the antecedent P is
true and the consequent Q is false. Otherwise, it is true.

English forms of the material conditional

We can come fairly close to an adequate English rendering of the material
conditional P → Q with the sentence If P then Q. At any rate, it is clear thatif . . . then
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this English conditional, like the material conditional, is false if P is true and
Q is false. Thus, we will translate, for example, If Max is home then Claire is
at the library as:

Home(max) → Library(claire)

In this course we will always translate if. . . then. . . using →, but there
are in fact many uses of the English expression that cannot be adequately
expressed with the material conditional. Consider, for example, the sentence,

If Max had been at home, then Carl would have been there too.

This sentence can be false even if Max is not in fact at home. (Suppose the
speaker mistakenly thought Carl was with Max, when in fact Claire had taken
him to the vet.) But the first-order sentence,

Home(max) → Home(carl)

is automatically true if Max is not at home. A material conditional with a
false antecedent is always true.

We have already seen that the connective because is not truth functional
since it expresses a causal connection between its antecedent and consequent.
The English construction if. . . then. . . can also be used to express a sort of
causal connection between antecedent and consequent. That’s what seems to
be going on in the above example. As a result, many uses of if. . . then. . .
in English just aren’t truth functional. The truth of the whole depends on
something more than the truth values of the parts; it depends on there being
some genuine connection between the subject matter of the antecedent and
the consequent.

Notice that we started with the truth table for → and decided to read
it as if. . . then. . . . What if we had started the other way around, looking for
a truth-functional approximation of the English conditional? Could we have
found a better truth table to go with if. . . then. . . ? The answer is clearly no.
While the material conditional is sometimes inadequate for capturing sub-
tleties of English conditionals, it is the best we can do with a truth-functional
connective. But these are controversial matters. We will take them up further
in Section 7.3.

Necessary and sufficient conditions

Other English expressions that we will translate using the material conditional
P → Q include: P only if Q, Q provided P, and Q if P. Notice in particular only if, provided
that P only if Q is translated P → Q, while P if Q is translated Q → P. To
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understand why, we need to think carefully about the difference between only
if and if.

In English, the expression only if introduces what is called a necessarynecessary condition
condition, a condition that must hold in order for something else to obtain.
For example, suppose your instructor announces at the beginning of the course
that you will pass the course only if you turn in all the homework assignments.
Your instructor is telling you that turning in the homework is a necessary
condition for passing: if you don’t do it, you won’t pass. But the instructor is
not guaranteeing that you will pass if you do turn in the homework: clearly,
there are other ways to fail, such as skipping the tests and getting all the
homework problems wrong.

The assertion that you will pass only if you turn in all the homework
really excludes just one possibility: that you pass but did not turn in all the
homework. In other words, P only if Q is false only when P is true and Q is
false, and this is just the case in which P → Q is false.

Contrast this with the assertion that you will pass the course if you turn
in all the homework. Now this is a very different kettle of fish. An instructor
who makes this promise is establishing a very lax grading policy: just turn in
the homework and you’ll get a passing grade, regardless of how well you do
on the homework or whether you even bother to take the tests!

In English, the expression if introduces what is called a sufficient condition,sufficient condition
one that guarantees that something else (in this case, passing the course) will
obtain. Because of this an English sentence P if Q must be translated as
Q → P. The sentence rules out Q being true (turning in the homework) and
P being false (failing the course).

Other uses of →

In fol we also use → in combination with ¬ to translate sentences of the form
Unless P, Q or Q unless P. Consider, for example, the sentence Claire is at theunless
library unless Max is home. Compare this with the sentence Claire is at the
library if Max is not home. While the focus of these two sentences is slightly
different, a moment’s thought shows that they are false in exactly the same
circumstances, namely, if Claire is not at the library, yet Max is not home
(say they are both at the movies). More generally, Unless P, Q or Q unless
P are true in the same circumstances as Q if not P, and so are translated as
¬P → Q. A good way to remember this is to whisper if not whenever you see
unless. If you find this translation of unless counterintuitive, be patient. We’ll
say more about it in Section 7.3.

It turns out that the most important use of → in first-order logic is not
in connection with the above expressions at all, but rather with universally
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quantified sentences, sentences of the form All A’s are B’s and Every A is a
B. The analogous first-order sentences have the form:

For every object x (A(x) → B(x))

This says that any object you pick will either fail to be an A or else be a B.
We’ll learn about such sentences in Part II of this book.

There is one other thing we should say about the material conditional,
which helps explain its importance in logic. The conditional allows us to reduce
the notion of logical consequence to that of logical truth, at least in cases reducing logical

consequence to
logical truth

where we have only finitely many premises. We said that a sentence Q is a
consequence of premises P1, . . . , Pn if and only if it is impossible for all the
premises to be true while the conclusion is false. Another way of saying this
is that it is impossible for the single sentence (P1 ∧ . . . ∧ Pn) to be true while
Q is false.

Given the meaning of →, we see that Q is a consequence of P1, . . . ,Pn if
and only if it is impossible for the single sentence

(P1 ∧ . . . ∧ Pn) → Q

to be false, that is, just in case this conditional sentence is a logical truth. Thus,
one way to verify the tautological validity of an argument in propositional
logic, at least in theory, is to construct a truth table for this sentence and see
whether the final column contains only true. In practice, this method is not
very practical, since the truth tables quickly get too large to be manageable.

Remember

1. The following English constructions are all translated P → Q: If P
then Q; Q if P; P only if Q; and Provided P, Q.

2. Unless P, Q and Q unless P are translated ¬P → Q.

3. Q is a logical consequence of P1, . . . , Pn if and only if the sentence
(P1 ∧ . . . ∧ Pn) → Q is a logical truth.

Section 7.2

Biconditional symbol: ↔

Our final connective is called the material biconditional symbol. Given any
sentences P and Q there is another sentence formed by connecting these by
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means of the biconditional: P ↔ Q. A sentence of the form P ↔ Q is true if
and only if P and Q have the same truth value, that is, either they are both
true or both false. In English this is commonly expressed using the expression
if and only if. So, for example, the sentence Max is home if and only if Claireif and only if
is at the library would be translated as:

Home(max) ↔ Library(claire)

Mathematicians and logicians often write “iff” as an abbreviation for “ififf
and only if.” Upon encountering this, students and typesetters generally con-
clude it’s a spelling mistake, to the consternation of the authors. But in fact it
is shorthand for the biconditional. Mathematicians also use “just in case” as ajust in case
way of expressing the biconditional. Thus the mathematical claims n is even
iff n2 is even, and n is even just in case n2 is even, would both be translated
as:

Even(n) ↔ Even(n2)

This use of “just in case” is, we admit, one of the more bizarre quirks of
mathematicians, having nothing much to do with the ordinary meaning of
this phrase. In this book, we use the phrase in the mathematician’s sense,
just in case you were wondering.

An important fact about the biconditional symbol is that two sentences
P and Q are logically equivalent if and only if the biconditional formed from
them, P ↔ Q, is a logical truth. Another way of putting this is to say that
P ⇔ Q is true if and only if the fol sentence P ↔ Q is logically necessary.
So, for example, we can express one of the DeMorgan laws by saying that the
following sentence is a logical truth:

¬(P ∨ Q) ↔ (¬P ∧ ¬Q)

This observation makes it tempting to confuse the symbols ↔ and ⇔. This↔ vs. ⇔
temptation must be resisted. The former is a truth-functional connective of
fol, while the latter is an abbreviation of “is logically equivalent to.” It is
not a truth-functional connective and is not an expression of fol.

Semantics and the game rule for ↔

The semantics for the biconditional is given by the following truth table.

P Q P ↔ Q
t t T
t f F
f t F
f f T

truth table for ↔
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Notice that the final column of this truth table is the same as that for
(P → Q) ∧ (Q → P). (See Exercise 7.3 below.) For this reason, logicians often
treat a sentence of the form P ↔ Q as an abbreviation of (P → Q) ∧ (Q → P).
Tarski’s World also uses this abbreviation in the game. Thus, the game rule game rule for ↔
for P ↔ Q is simple. Whenever a sentence of this form is encountered, it is
replaced by (P → Q) ∧ (Q → P).

Remember

1. If P and Q are sentences of fol, then so is P ↔ Q.

2. The sentence P ↔ Q is true if and only if P and Q have the same truth
value.

Exercises

For the following exercises, use Boole to determine whether the indicated pairs of sentences are tauto-
logically equivalent. Feel free to have Boole build your reference columns and fill them out for you. Don’t
forget to indicate your assessment.

7.1
➶

A → B and ¬A ∨ B. 7.2
➶

¬(A → B) and A ∧ ¬B.

7.3
➶

A ↔ B and (A → B) ∧ (B → A). 7.4
➶

A ↔ B and (A ∧ B) ∨ (¬A ∧ ¬B).

7.5
➶

(A ∧ B) → C and A → (B ∨ C). 7.6
➶

(A ∧ B) → C and A → (B → C).

7.7
➶

A → (B → (C → D)) and
((A → B) → C) → D.

7.8
➶

A ↔ (B ↔ (C ↔ D)) and
((A ↔ B) ↔ C) ↔ D.

7.9
✎

(Just in case) Prove that the ordinary (nonmathematical) use of just in case does not express
a truth-functional connective. Use as your example the sentence Max went home just in case
Carl was hungry.

7.10
➶

(Evaluating sentences in a world) Using Tarski’s World, run through Abelard’s Sentences, eval-
uating them in Wittgenstein’s World. If you make a mistake, play the game to see where you
have gone wrong. Once you have gone through all the sentences, go back and make all the false
ones true by changing one or more names used in the sentence. Submit your edited sentences
as Sentences 7.10.
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7.11
➶

(Describing a world) Launch Tarski’s World and choose Hide Labels from the Display menu.
Then, with the labels hidden, open Montague’s World. In this world, each object has a name,
and no object has more than one name. Start a new sentence file where you will describe some
features of this world. Check each of your sentences to see that it is indeed a sentence and that
it is true in this world.

1. Notice that if c is a tetrahedron, then a is not a tetrahedron. (Remember, in this world
each object has exactly one name.) Use your first sentence to express this fact.

2. However, note that the same is true of b and d. That is, if b is a tetrahedron, then d

isn’t. Use your second sentence to express this.
3. Finally, observe that if b is a tetrahedron, then c isn’t. Express this.
4. Notice that if a is a cube and b is a dodecahedron, then a is to the left of b. Use your

next sentence to express this fact.
5. Use your next sentence to express the fact that if b and c are both cubes, then they

are in the same row but not in the same column.
6. Use your next sentence to express the fact that b is a tetrahedron only if it is small.

[Check this sentence carefully. If your sentence evaluates as false, then you’ve got the
arrow pointing in the wrong direction.]

7. Next, express the fact that if a and d are both cubes, then one is to the left of the
other. [Note: You will need to use a disjunction to express the fact that one is to the
left of the other.]

8. Notice that d is a cube if and only if it is either medium or large. Express this.
9. Observe that if b is neither to the right nor left of d, then one of them is a tetrahedron.

Express this observation.
10. Finally, express the fact that b and c are the same size if and only if one is a tetrahedron

and the other is a dodecahedron.

Save your sentences as Sentences 7.11. Now choose Show Labels from the Display menu.
Verify that all of your sentences are indeed true. When verifying the first three, pay particular
attention to the truth values of the various constituents. Notice that sometimes the conditional
has a false antecedent and sometimes a true consequent. What it never has is a true antecedent
and a false consequent. In each of these three cases, play the game committed to true. Make
sure you understand why the game proceeds as it does.

7.12
➶

(Translation) Translate the following English sentences into fol. Your translations will use all
of the propositional connectives.

1. If a is a tetrahedron then it is in front of d.
2. a is to the left of or right of d only if it’s a cube.
3. c is between either a and e or a and d.
4. c is to the right of a, provided it (i.e., c) is small.
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5. c is to the right of d only if b is to the right of c and left of e.
6. If e is a tetrahedron, then it’s to the right of b if and only if it is also in front of b.
7. If b is a dodecahedron, then if it isn’t in front of d then it isn’t in back of d either.
8. c is in back of a but in front of e.
9. e is in front of d unless it (i.e., e) is a large tetrahedron.

10. At least one of a, c, and e is a cube.
11. a is a tetrahedron only if it is in front of b.
12. b is larger than both a and e.
13. a and e are both larger than c, but neither is large.
14. d is the same shape as b only if they are the same size.
15. a is large if and only if it’s a cube.
16. b is a cube unless c is a tetrahedron.
17. If e isn’t a cube, either b or d is large.
18. b or d is a cube if either a or c is a tetrahedron.
19. a is large just in case d is small.
20. a is large just in case e is.

Save your list of sentences as Sentences 7.12. Before submitting the file, you should complete
Exercise 7.13.

7.13
➶

(Checking your translations) Open Bolzano’s World. Notice that all the English sentences from
Exercise 7.12 are true in this world. Thus, if your translations are accurate, they will also be
true in this world. Check to see that they are. If you made any mistakes, go back and fix them.

Remember that even if one of your sentences comes out true in Bolzano’s World, it does not
mean that it is a proper translation of the corresponding English sentence. If the translation is
correct, it will have the same truth value as the English sentence in every world. So let’s check
your translations in some other worlds.

Open Wittgenstein’s World. Here we see that the English sentences 3, 5, 9, 11, 12, 13, 14,
and 20 are false, while the rest are true. Check to see that the same holds of your translations.
If not, correct your translations (and make sure they are still true in Bolzano’s World).

Next open Leibniz’s World. Here half the English sentences are true (1, 2, 4, 6, 7, 10, 11, 14,
18, and 20) and half false (3, 5, 8, 9, 12, 13, 15, 16, 17, and 19). Check to see that the same
holds of your translations. If not, correct your translations.

Finally, open Venn’s World. In this world, all of the English sentences are false. Check to
see that the same holds of your translations and correct them if necessary.

There is no need to submit any files for this exercise, but don’t forget to submit Sentences
7.12.
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7.14
➶

(Figuring out sizes and shapes) Open Euler’s Sentences. The nine sentences in this file uniquely
determine the shapes and sizes of blocks a, b, and c. See if you can figure out the solution just
by thinking about what the sentences mean and using the informal methods of proof you’ve
already studied. When you’ve figured it out, submit a world in which all of the sentences are
true.

7.15
➶?

(More sizes and shapes) Start a new sentence file and use it to translate the following English
sentences.

1. If a is a tetrahedron, then b is also a tetrahedron.
2. c is a tetrahedron if b is.
3. a and c are both tetrahedra only if at least one of them is large.
4. a is a tetrahedron but c isn’t large.
5. If c is small and d is a dodecahedron, then d is neither large nor small.
6. c is medium only if none of d, e, and f are cubes.
7. d is a small dodecahedron unless a is small.
8. e is large just in case it is a fact that d is large if and only if f is.
9. d and e are the same size.

10. d and e are the same shape.
11. f is either a cube or a dodecahedron, if it is large.
12. c is larger than e only if b is larger than c.

Save these sentences as Sentences 7.15. Then see if you can figure out the sizes and shapes of
a, b, c, d, e, and f . You will find it helpful to approach this problem systematically, filling in
the following table as you reason about the sentences:

a b c d e f
Shape:
Size:

When you have filled in the table, use it to guide you in building a world in which the twelve
English sentences are true. Verify that your translations are true in this world as well. Submit
both your sentence file and your world file.

7.16
➶?

(Name that object) Open Sherlock’s World and Sherlock’s Sentences. You will notice that none
of the objects in this world has a name. Your task is to assign the names a, b, and c in such a
way that all the sentences in the list come out true. Submit the modified world as World 7.16.

7.17
➶??

(Building a world) Open Boolos’ Sentences. Submit a world in which all five sentences in this
file are true.
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7.18
➶

Using the symbols introduced in Table 1.2, page 30, translate the following sentences into fol.
Submit your translations as a sentence file.

1. If Claire gave Folly to Max at 2:03 then Folly belonged to her at 2:00 and to him at
2:05.

2. Max fed Folly at 2:00 pm, but if he gave her to Claire then, Folly was not hungry five
minutes later.

3. If neither Max nor Claire fed Folly at 2:00, then she was hungry.
4. Max was angry at 2:05 only if Claire fed either Folly or Scruffy five minutes before.
5. Max is a student if and only if Claire is not.

7.19
✎

Using Table 1.2 on page 30, translate the following into colloquial English.
1. (Fed(max, folly, 2:00) ∨ Fed(claire, folly, 2:00)) → Pet(folly)
2. Fed(max, folly, 2:30) ↔ Fed(claire, scruffy,2:00)
3. ¬Hungry(folly,2:00) → Hungry(scruffy, 2:00)
4. ¬(Hungry(folly, 2:00) → Hungry(scruffy, 2:00))

7.20
✎

Translate the following into fol as best you can. Explain any predicates and function symbols
you use, and any shortcomings in your first-order translations.

1. If Abe can fool Stephen, surely he can fool Ulysses.
2. If you scratch my back, I’ll scratch yours.
3. France will sign the treaty only if Germany does.
4. If Tweedledee gets a party, so will Tweedledum, and vice versa.
5. If John and Mary went to the concert together, they must like each other.

7.21
➶|✎

(The monkey principle) One of the stranger uses of if. . . then. . . in English is as a roundabout
way to express negation. Suppose a friend of yours says If Keanu Reeves is a great actor, then
I’m a monkey’s uncle. This is simply a way of denying the antecedent of the conditional, in
this case that Keanu Reeves is a great actor. Explain why this works. Your explanation should
appeal to the truth table for →, but it will have to go beyond that. Turn in your explanation
and also submit a Boole table showing that A → ⊥ is equivalent to ¬A.

Section 7.3

Conversational implicature

In translating from English to fol, there are many problematic cases. For
example, many students resist translating a sentence like Max is home unless
Claire is at the library as:

¬Library(claire) → Home(max)
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These students usually think that the meaning of this English sentence would
be more accurately captured by the biconditional claim:

¬Library(claire) ↔ Home(max)

The reason the latter seems natural is that when we assert the English sen-
tence, there is some suggestion that if Claire is at at the library, then Max is
not at home.

To resolve problematic cases like this, it is often useful to distinguish be-
tween the truth conditions of a sentence, and other things that in some sense
follow from the assertion of the sentence. To take an obvious case, suppose
someone asserts the sentence It is a lovely day. One thing you may conclude
from this is that the speaker understands English. This is not part of what
the speaker said, however, but part of what can be inferred from his saying it.
The truth or falsity of the claim has nothing to do with the speaker’s linguistic
abilities.

The philosopher H. P. Grice developed a theory of what he called con-
versational implicature to help sort out the genuine truth conditions of a
sentence from other conclusions we may draw from its assertion. These other
conclusions are what Grice called implicatures. We won’t go into this theoryconversational

implicatures in detail, but knowing a little bit about it can be a great aid in translation,
so we present an introduction to Grice’s theory.

Suppose we have an English sentence S that someone asserts, and we
are trying to decide whether a particular conclusion we draw is part of the
meaning of S or, instead, one of its implicatures. Grice pointed out that if
the conclusion is part of the meaning, then it cannot be “cancelled” by somecancelling implicatures
further elaboration by the speaker. Thus, for example, the conclusion that
Max is home is part of the meaning of an assertion of Max and Claire are
home, so we can’t cancel this conclusion by saying Max and Claire are home,
but Max isn’t home. We would simply be contradicting ourselves.

Contrast this with the speaker who said It is a lovely day. Suppose he
had gone on to say, perhaps reading haltingly from a phrase book: Do you
speak any French? In that case, the suggestion that the speaker understands
English is effectively cancelled.

A more illuminating use of Grice’s cancellability test concerns the expres-
sion either. . . or. . . . Recall that we claimed that this should be translated into
fol as an inclusive disjunction, using ∨. We can now see that the suggestion
that this phrase expresses exclusive disjunction is generally just a conversa-
tional implicature. For example, if the waiter says You can have either soup or
salad, there is a strong suggestion that you cannot have both. But it is clear
that this is just an implicature, since the waiter could, without contradicting
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himself, go on to say And you can have both, if you want. Had the original
either. . . or. . . expressed the exclusive disjunction, this would be like saying
You can have soup or salad but not both, and you can have both, if you want.

Let’s go back now to the sentence Max is at home unless Claire is at the
library. Earlier we denied that the correct translation was

¬Library(claire) ↔ Home(max)

which is equivalent to the conjunction of the correct translation

¬Library(claire) → Home(max)

with the additional claim

Library(claire) → ¬Home(max)

Is this second claim part of the meaning of the English sentence, or is it
simply a conversational implicature? Grice’s cancellability test shows that it
is just an implicature. After all, it makes perfectly good sense for the speaker
to go on to say On the other hand, if Claire is at the library, I have no idea
where Max is. This elaboration takes away the suggestion that if Claire is at
the library, then Max isn’t at home.

Another common implicature arises with the phrase only if, which people
often construe as the stronger if and only if. For example, suppose a father
tells his son, You can have dessert only if you eat all your lima beans. We’ve
seen that this is not a guarantee that if the child does eat his lima beans he
will get dessert, since only if introduces a necessary, not sufficient, condition.
Still it is clear that the father’s assertion suggests that, other things equal, the
child can have dessert if he eats the dreaded beans. But again, the suggestion
can be cancelled. Suppose the father goes on to say: If you eat the beans, I’ll
check to see if there’s any ice cream left. This cancels the implication that
dessert is guaranteed.

Remember

If the assertion of a sentence carries with it a suggestion that could be
cancelled (without contradiction) by further elaboration by the speaker,
then the suggestion is a conversational implicature, not part of the content
of the original claim.
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Exercises

7.22
✎

Suppose Claire asserts the sentence Max managed to get Carl home. Does this logically imply,
or just conversationally implicate, that it was hard to get Carl home? Justify your answer.

7.23
✎

Suppose Max asserts the sentence We can walk to the movie or we can drive. Does his assertion
logically imply, or merely implicate, that we cannot both walk and drive? How does this differ
from the soup or salad example?

7.24
✎?

Consider the sentence Max is home in spite of the fact that Claire is at the library. What would
be the best translation of this sentence into fol? Clearly, whether you would be inclined to use
this sentence is not determined simply by the truth values of the atomic sentences Max is home
and Claire is at the library. This may be because in spite of the fact is, like because, a non-truth-
functional connective, or because it carries, like but, additional conversational implicatures. (See
our discussion of because earlier in this chapter and the discussion of but in Chapter 3.) Which
explanation do you think is right? Justify your answer.

Section 7.4

Truth-functional completeness

We now have at our disposal five truth-functional connectives, one unary
(¬), and four binary (∧, ∨, →, ↔). Should we introduce any more? Though
we’ve seen a few English expressions that can’t be expressed in fol, like
because, these have not been truth functional. We’ve also run into others, like
neither. . . nor. . . , that are truth functional, but which we can easily express
using the existing connectives of fol.

The question we will address in the current section is whether there are any
truth-functional connectives that we need to add to our language. Is it possible
that we might encounter an English construction that is truth functional but
which we cannot express using the symbols we have introduced so far? If so,
this would be an unfortunate limitation of our language.

How can we possibly answer this question? Well, let’s begin by thinking
about binary connectives, those that apply to two sentences to make a third.
How many binary truth-functional connectives are possible? If we think about
the possible truth tables for such connectives, we can compute the total num-
ber. First, since we are dealing with binary connectives, there are four rows
in each table. Each row can be assigned either true or false, so there are
24 = 16 ways of doing this. For example, here is the table that captures the
truth function expressed by neither. . . nor. . . .
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P Q Neither P nor Q
t t F
t f F
f t F
f f T

Since there are only 16 different ways of filling in the final column of such
a table, there are only 16 binary truth functions, and so 16 possible binary
truth-functional connectives. We could look at each of these tables in turn
and show how to express the truth function with existing connectives, just as
we captured neither P nor Q with ¬(P ∨ Q). But there is a more general and
systematic way to show this.

Suppose we are thinking about introducing a binary truth-functional con-
nective, say ?. It will have a truth table like the following, with one of the
values true or false in each row.

P Q P ? Q
t t 1st value
t f 2nd value
f t 3rd value
f f 4th value

If all four values are false, then we can clearly express P ? Q with the
sentence P ∧ ¬P ∧ Q ∧ ¬Q. So suppose at least one of the values is true.
How can we express P ? Q? One way would be this. Let C1, . . . ,C4 stand for
the following four conjunctions:

C1 = (P ∧ Q)
C2 = (P ∧ ¬Q)
C3 = (¬P ∧ Q)
C4 = (¬P ∧ ¬Q)

Notice that sentence C1 will be true if the truth values of P and Q are as
specified in the first row of the truth table, and that if the values of P and Q
are anything else, then C1 will be false. Similarly with C2 and the second row
of the truth table, and so forth. To build a sentence that gets the value true

in exactly the same rows as P ? Q, all we need do is take the disjunction of the
appropriate C’s. For example, if P ? Q is true in rows 2 and 4, then C2 ∨ C4 is
equivalent to this sentence.

What this shows is that all binary truth functions are already expressible
using just the connectives ¬, ∧, and ∨. In fact, it shows that they can be ex-
pressed using sentences in disjunctive normal form, as described in Chapter 4.
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It’s easy to see that a similar procedure allows us to express all possible
unary truth functions. A unary connective, say \, will have a truth table like
this:

P \P
t 1st value
f 2nd value

If both of the values under \P are false, then we can express it using the
sentence P ∧ ¬P. Otherwise, we can express \P as a disjunction of one or
more of the following:

C1 = P
C2 = ¬P

C1 will be included as one of the disjuncts if the first value is true, and C2

will be included if the second value is true. (Of course, in only one case will
there be more than one disjunct.)

Once we understand how this procedure is working, we see that it will
apply equally well to truth-functional connectives of any arity. Suppose, for
example, that we want to express the ternary truth-functional connective
defined by the following truth table:

P Q R ♣(P, Q, R)
t t t T
t t f T
t f t F
t f f F
f t t T
f t f F
f f t T
f f f F

A fairly good English translation of ♣(P, Q, R) is if P then Q, else R. When
we apply the above method to express this connective, we get the following
sentence:

(P ∧ Q ∧ R) ∨ (P ∧ Q ∧ ¬R) ∨ (¬P ∧ Q ∧ R) ∨ (¬P ∧ ¬Q ∧ R)

More generally, if ♠ expresses an n-ary connective, then we can use this
procedure to get a sentence that is tautologically equivalent to ♠(P1, . . . , Pn).
First, we define the conjunctions C1, . . . ,C2n that correspond to the 2n rows
of the truth table. We then form a disjunction D that contains Ck as a disjunct
if and only if the kth row of the truth table has the value true. (If all rows
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contain false, then we let D be P1 ∧ ¬P1.) For reasons we’ve already noted,
this disjunction is tautologically equivalent to ♠(P1, . . . , Pn).

We have just sketched a proof that any truth function, of any arity what-
soever, can be expressed using just the Boolean connectives ¬, ∧, and ∨. This
is a sufficiently interesting fact that it deserves to be highlighted. We’ll say
that a set of connectives is truth-functionally complete if the connectives in truth-functional

completenessthe set allow us to express any truth function. We can then highlight this
important fact as a theorem:

Theorem The Boolean connectives ¬, ∧, and ∨ are truth-functionally com-
plete.

A theorem is just a conclusion the author finds particularly interesting or is
particularly proud of having proven.

There are other collections of operators that are truth-functionally com-
plete. In fact, we could get rid of either ∧ or ∨ without losing truth-functional
completeness. For example, P ∨ Q can be expressed using just ¬ and ∧ as
follows:

¬(¬P ∧ ¬Q)

What this means is that we could get rid of all the occurrences of ∨ in our
sentences in favor of ¬ and ∧. Alternatively, we could get rid of ∧ in favor
of ¬ and ∨, as you’ll see in Exercise 7.25. Of course either way, the resulting
sentences would be much longer and harder to understand.

We could in fact be even more economical in our choice of connectives.
Suppose we used P ↓ Q to express neither P nor Q. It turns out that the
connective ↓ is, all by itself, truth-functionally complete. To see this, notice
that ¬P can be expressed as:

P ↓ P

which says neither P nor P, and P ∧ Q can be expressed as:

(P ↓ P) ↓ (Q ↓ Q)

which says neither not P nor not Q. Thus in theory we could use just this one
truth-functional connective and express anything we can now express using
our current five.

There are two disadvantages to economizing on connectives. First, as we’ve disadvantages of
economyalready said, the fewer connectives we have, the harder it is to understand our

sentences. But even worse, our proofs become much more complicated. For
example, if we always expressed ∧ in terms of ¬ and ∨, a single application of
the simple rule of ∧ Intro would have to be replaced by two uses of ⊥ Intro,
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one use of ∨ Elim, and one use of ¬ Intro (see Exercise 7.26). This is why
we haven’t skimped on connectives.

Remember

1. A set of connectives is truth-functionally complete if the connectives
allow us to express every truth function.

2. Various sets of connectives, including the Boolean connectives, are
truth-functionally complete.

Exercises

7.25
➶

(Replacing ∧, →, and ↔) Use Tarski’s World to open the file Sheffer’s Sentences. In this file,
you will find the following sentences in the odd-numbered positions:

1. Tet(a) ∧ Small(a)
3. Tet(a) → Small(a)
5. Tet(a) ↔ Small(a)
7. (Cube(b) ∧ Cube(c)) → (Small(b) ↔ Small(c))

In each even-numbered slot, enter a sentence that is equivalent to the one above it, but which
uses only the connectives ¬ and ∨. Before submitting your solution file, you might want to try
out your sentences in several worlds to make sure the new sentences have the expected truth
values.

7.26
➶

(Basic versus defined symbols in proofs) Treating a symbol as basic, with its own rules, or as a
defined symbol, without its own rules, makes a big difference to the complexity of proofs. Use
Fitch to open the file Exercise 7.26. In this file, you are asked to construct a proof of ¬(¬A ∨ ¬B)
from the premises A and B. A proof of the equivalent sentence A ∧ B would of course take a
single step.

7.27
➶

(Simplifying if. . . then. . . else) Assume that P, Q, and R are atomic sentences. See if you can
simplify the sentence we came up with to express ♣(P, Q, R) (if P then Q, else R), so that it
becomes a disjunction of two sentences, each of which is a conjunction of two literals. Submit
your solution as a Tarski’s World sentence file.
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7.28
➶?

(Expressing another ternary connective) Start a new sentence file using Tarski’s World. Use the
method we have developed to express the ternary connective ♥ defined in the following truth
table, and enter this as the first sentence in your file. Then see if you can simplify the result
as much as possible. Enter the simplified form as your second sentence. (This sentence should
have no more than two occurrences each of P, Q, and R, and no more than six occurrences of
the Boolean connectives, ∨, ∧ and ¬.)

P Q R ♥(P, Q, R)
t t t T
t t f T
t f t T
t f f F
f t t F
f t f T
f f t T
f f f T

7.29
✎?

(Sheffer stroke) Another binary connective that is truth-functionally complete on its own is
called the Sheffer stroke, named after H. M. Sheffer, one of the logicians who discovered and
studied it. It is also known as nand by analogy with nor. Here is its truth table:

P Q P | Q
t t F
t f T
f t T
f f T

Show how to express ¬P, P ∧ Q, and P ∨ Q using the Sheffer stroke. (We remind you that
nowadays, the symbol | has been appropriated as an alternative for ∨. Don’t let that confuse
you.)

7.30
✎?

(Putting monkeys to work) Suppose we have the single binary connective →, plus the symbol
for absurdity ⊥. Using just these expressions, see if you can find a way to express ¬P, P ∧ Q,
and P ∨ Q. [Hint: Don’t forget what you learned in Exercise 7.21.]

7.31
✎?

(Another non-truth-functional connective) Show that truth value at a particular time of the
sentence Max is home whenever Claire is at the library is not determined by the truth values
of the atomic sentences Max is home and Claire is at the library at that same time. That is,
show that whenever is not truth functional.
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7.32
✎?

(Exclusive disjunction) Suppose we had introduced 5 to express exclusive disjunction. Is the
following a valid method of proof for this connective?

P 5 Q

P

...
S

Q

...
T

. S 5 T

If you say yes, justify your answer; if no, give an example where the method sanctions an
invalid inference.

State valid introduction and elimination rules for 5 using the same format we use to state
the introduction and elimination rules of F . You may need more than one of each.

Section 7.5

Alternative notation

As with the other truth-functional connectives, there are alternative notations
for the material conditional and biconditional. The most common alternative
to P → Q is P ⊃ Q. Polish notation for the conditional is Cpq. The most com-
mon alternative to P ↔ Q is P ≡ Q. The Polish notation for the biconditional
is Epq.
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Remember

The following table summarizes the alternative notations discussed so far.

Our notation Common equivalents

¬P ∼ P, P, !P, Np

P ∧ Q P&Q, P&&Q, P · Q, PQ, Kpq
P ∨ Q P | Q, P ‖ Q, Apq

P → Q P ⊃ Q, Cpq

P ↔ Q P ≡ Q, Epq
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Chapter 8

The Logic of Conditionals

One thing the theorem on page 193 tells us is that introducing the material
conditional and biconditional symbols did not increase the expressive power of
fol. Since → and ↔ can be defined using the Boolean connectives, we could
always eliminate them from claims or proofs by means of these definitions.
Thus, for example, if we wanted to prove P → Q we could just prove ¬P ∨ Q,
and then use the definition. In practice, though, this is a terrible idea. It is far
more natural to use rules that involve these symbols directly, and the resulting
proofs are simpler and easier to understand.1

The material conditional, in particular, is an extremely useful symbol to
have. For example, many claims and theorems that we will run across can
only be expressed naturally using the conditional. In fact, quite a few of the
examples we’ve already used are more naturally stated as conditional claims.
Thus in an earlier exercise we asked you to prove Even(n × m) from the premise
Odd(n + m). But really, the fact we were interested in was that, no matter
what numbers n and m you pick, the following conditional claim is true:

Odd(n + m) → Even(n × m)

Given the importance of conditional claims, and the frequency you’ll en-
counter them, we need to learn how to prove these claims.

Section 8.1

Informal methods of proof

As before, we will first look at informal proofs involving conditionals and later
incorporate the key methods into the system F . Among the informal methods,
we distinguish simple valid steps from more important methods of proof.

Valid steps

The most common valid proof step involving → goes by the Latin name modusmodus ponens or
conditional elimination ponens, or by the English conditional elimination. The rule says that if you

1In Exercise 8.38 we ask you to construct proofs of (P ∧ Q) → P and the equivalent
¬(P ∧ Q) ∨ P, so that you can see for yourself how much simpler the first is than the second.
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have established both P → Q and P, then you can infer Q. This rule is obvi-
ously valid, as a review of the truth table for → shows, since if P → Q and P
are both true, then so must be Q.

There is a similar proof step for the biconditional, since the biconditional
is logically equivalent to a conjunction of two conditionals. If you have estab-
lished either P ↔ Q or Q ↔ P, then if you can establish P, you can infer Q. biconditional

eliminationThis is called biconditional elimination.
In addition to these simple rules, there are a number of useful equivalences

involving our new symbols. One of the most important is known as the Law of
Contraposition. It states that P → Q is logically equivalent to ¬Q → ¬P. This contraposition
latter conditional is known as the contrapositive of the original conditional. It
is easy to see that the original conditional is equivalent to the contrapositive,
since the latter is true if and only if ¬Q is true and ¬P is false, which is
to say, when P is true and Q is false. Contraposition is a particularly useful
equivalence since it is often easier to prove the contrapositive of a conditional
than the conditional itself. We’ll see an example of this in a moment.

Here are some logical equivalences to bear in mind, beginning with contra-
position. Make sure you understand them all and see why they are equivalent.
Use Boole to construct truth tables for any you don’t immediately see.

P → Q ⇔ ¬Q → ¬P
P → Q ⇔ ¬P ∨ Q

¬(P → Q) ⇔ P ∧ ¬Q
P ↔ Q ⇔ (P → Q) ∧ (Q → P)
P ↔ Q ⇔ (P ∧ Q) ∨ (¬P ∧ ¬Q)

Remember

Let P and Q be any sentences of fol.

1. Modus ponens: From P → Q and P, infer Q.

2. Biconditional elimination: From P and either P ↔ Q or Q ↔ P, infer
Q.

3. Contraposition: P → Q ⇔ ¬Q → ¬P

The method of conditional proof

One of the most important methods of proof is that of conditional proof, a
method that allows you to prove a conditional statement. Suppose you want
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to prove the conditional claim P → Q. What you do is temporarily assume
the antecedent, P, of your desired conditional. Then if, with this additional
assumption, you are able to prove Q, conditional proof allows you to infer thatconditional proof
P → Q follows from the original premises.

Let’s look at a simple example that uses both modus ponens and condi-
tional proof. We will show that Tet(a) → Tet(c) is a logical consequence of
the two premises Tet(a) → Tet(b) and Tet(b) → Tet(c). In other words, we’ll
show that the operator → is transitive. This may seem obvious, but the proof
is a good illustration of the method of conditional proof.

Proof: We are given, as premises, Tet(a) → Tet(b) and Tet(b) → Tet(c).
We want to prove Tet(a) → Tet(c). With an eye toward using condi-
tional proof, let us assume, in addition to our premises, that Tet(a)
is true. Then, by applying modus ponens using our first premise,
we can conclude Tet(b). Using modus ponens again, this time with
our second premise, we get Tet(c). So we have established the conse-
quent, Tet(c), of our desired conditional on the basis of our assump-
tion of Tet(a). But then the rule of conditional proof assures us that
Tet(a) → Tet(c) follows from the initial premises alone.

Conditional proof is clearly a valid form of reasoning, one that we use all
the time. If Q follows logically from some premises plus the additional assump-
tion P, then we can be sure that if those premises are true, the conditional
P → Q must be true as well. After all, the conditional can only be false if P is
true and Q is false, and our conditional proof shows that, given the premises,
this can never happen.

Let’s look at a more interesting example. This example will use both con-
ditional proof and proof by contradiction. We will prove:

Even(n2) → Even(n)

Proof: The method of conditional proof tells us that we can proceed
by assuming Even(n2) and proving Even(n). So assume that n2 is
even. To prove that n is even, we will use proof by contradiction.
Thus, assume that n is not even, that is, that it is odd. Then we can
express n as 2m + 1, for some m. But then we see that:

n2 = (2m + 1)2

= 4m2 + 4m + 1
= 2(2m2 + 2m) + 1

But this shows that n2 is odd, contradicting our first assumption.
This contradiction shows that n is not odd, i.e., that it is even. Thus,
by conditional proof, we have established Even(n2) → Even(n).
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Did you get lost? This proof has a pretty complicated structure, since we
first assumed Even(n2) for the purpose of conditional proof, but then immedi-
ately assumed ¬Even(n) to get an indirect proof of Even(n). The contradiction
that we arrived at was ¬Even(n2), which contradicted our first assumption.

Proofs of this sort are fairly common, and this is why it is often easier to
prove the contrapositive of a conditional. The contrapositive of our original
claim is this:

¬Even(n) → ¬Even(n2)

Let’s look at the proof of this contrapositive.

Proof: To prove ¬Even(n) → ¬Even(n2), we begin by assuming ¬Even(n),
i.e., that n is odd. Then we can express n as 2m + 1, for some m.
But then we see that:

n2 = (2m + 1)2

= 4m2 + 4m + 1
= 2(2m2 + 2m) + 1

But this shows that n2 is also odd, hence ¬Even(n2). Thus, by con-
ditional proof, we have established ¬Even(n) → ¬Even(n2).

By proving the contrapositive, we avoided the need for an indirect proof
inside the conditional proof. This makes the proof easier to understand, and
since the contrapositive is logically equivalent to our original claim, our second
proof could serve as a proof of the original claim as well.

The method of conditional proof is used extensively in everyday reason-
ing. Some years ago Bill was trying to decide whether to take English 301,
Postmodernism. His friend Sarah claimed that if Bill takes Postmodernism,
he will not get into medical school. Sarah’s argument, when challenged by Bill,
took the form of a conditional proof, combined with a proof by cases.

Suppose you take Postmodernism. Then either you will adopt the
postmodern disdain for rationality or you won’t. If you don’t, you will
fail the class, which will lower your GPA so much that you will not get
into medical school. But if you do adopt the postmodern contempt
toward rationality, you won’t be able to pass organic chemistry, and
so will not get into medical school. So in either case, you will not get
into medical school. Hence, if you take Postmodernism, you won’t
get into medical school.

Unfortunately for Bill, he had already succumbed to postmodernism, and
so rejected Sarah’s argument. He went ahead and took the course, failed chem-
istry, and did not get into medical school. He’s now a wealthy lobbyist in
Washington. Sarah is an executive in the computer industry in California.
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Proving biconditionals

Not surprisingly, we can also use conditional proof to prove biconditionals,
though we have to work twice as hard. To prove P ↔ Q by conditional proof,
you need to do two things: assume P and prove Q; then assume Q and prove
P. This gives us both P → Q and Q → P, whose conjunction is equivalent to
P ↔ Q.

There is another form of proof involving ↔ that is common in math-
ematics. Mathematicians are quite fond of finding results which show that
several different conditions are equivalent. Thus you will find theorems that
make claims like this: “The following conditions are all equivalent: Q1, Q2,Q3.”
What they mean by this is that all of the following biconditionals hold:

Q1 ↔ Q2

Q2 ↔ Q3

Q1 ↔ Q3

To prove these three biconditionals in the standard way, you would have
to give six conditional proofs, two for each biconditional. But we can cut ourproving a cycle of

conditionals work in half by noting that it suffices to prove some cycle of results like the
following:

Q1 → Q2

Q2 → Q3

Q3 → Q1

These would be shown by three conditional proofs, rather than the six that
would otherwise be required. Once we have these, there is no need to prove the
reverse directions, since they follow from the transitivity of →. For example,
we don’t need to explicitly prove Q2 → Q1, the reverse of the first conditional,
since this follows from Q2 → Q3 and Q3 → Q1, our other two conditionals.

When we apply this technique, we don’t have to arrange the cycle in
exactly the order in which the conditions are given. But we do have to make
sure we have a genuine cycle, one that allows us to get from any one of our
conditions to any other.

Let’s give a very simple example. We will prove that the following condi-
tions on a natural number n are all equivalent:

1. n is even
2. n2 is even
3. n2 is divisible by 4.

Proof: Rather than prove all six biconditionals, we prove that (3) →
(2) → (1) → (3). Assume (3). Now clearly, if n2 is divisible by 4, then
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it is divisible by 2, so we have (3) → (2). Next, we prove (2) → (1)
by proving its contrapositive. Thus, assume n is odd and prove n2

is odd. Since n is odd, we can write it in the form 2m + 1. But then
(as we’ve already shown) n2 = 2(2m2 + 2m) + 1 which is also odd.
Finally, let us prove (1) → (3). If n is even, it can be expressed as 2m.
Thus, n2 = (2m)2 = 4m2, which is divisible by 4. This completes
the cycle, showing that the three conditions are indeed equivalent.

When you apply this method, you should look for simple or obvious impli-
cations, like (1) → (3) above, or implications that you’ve already established,
like (2) → (1) above, and try to build them into your cycle of conditionals.

Remember

1. The method of conditional proof: To prove P → Q, assume P and prove
Q.

2. To prove a number of biconditionals, try to arrange them into a cycle
of conditionals.

Exercises

8.1
✎

In the following list we give a number of inference patterns, some of which are valid, some
invalid. For each pattern, decide whether you think it is valid and say so. Later, we will return
to these patterns and ask you to give formal proofs for the valid ones and counterexamples for
the invalid ones. But for now, just assess their validity.

1. Affirming the Consequent: From A → B and B, infer A.
2. Modus Tollens: From A → B and ¬B, infer ¬A.
3. Strengthening the Antecedent: From B → C, infer (A ∧ B) → C.
4. Weakening the Antecedent: From B → C, infer (A ∨ B) → C.
5. Strengthening the Consequent: From A → B, infer A → (B ∧ C).
6. Weakening the Consequent: From A → B, infer A → (B ∨ C).
7. Constructive Dilemma: From A ∨ B, A → C, and B → D, infer C ∨ D.
8. Transitivity of the Biconditional: From A ↔ B and B ↔ C, infer A ↔ C.

8.2
➶|✎

Open Conditional Sentences. Suppose that the sentences in this file are your premises. Now
consider the five sentences listed below. Some of these sentences are consequences of these
premises, some are not. For those that are consequences, give informal proofs and turn them
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in to your instructor. For those that are not consequences, submit counterexample worlds in
which the premises are true but the conclusion false. Name the counterexamples World 8.2.x,
where x is the number of the sentence.

1. Tet(e)
2. Tet(c) → Tet(e)
3. Tet(c) → Larger(f, e)
4. Tet(c) → LeftOf(c, f)
5. Dodec(e) → Smaller(e, f)

The following arguments are all valid. Turn in informal proofs of their validity. You may find it helpful
to translate the arguments into fol before trying to give proofs, though that’s not required. Explicitly
note any inferences using modus ponens, biconditional elimination, or conditional proof.

8.3
✎

The unicorn, if it is not mythical, is
a mammal, but if it is mythical, it is
immortal.
If the unicorn is either immortal or a
mammal, it is horned.
The unicorn, if horned, is magical.

The unicorn is magical.

8.4
✎

The unicorn, if horned, is elusive and
dangerous.
If elusive or mythical, the unicorn is
rare.
If a mammal, the unicorn is not rare.

The unicorn, if horned, is not a
mammal.

8.5
✎

The unicorn, if horned, is elusive
and magical, but if not horned, it is
neither.
If the unicorn is not horned, it is not
mythical.

The unicorn is horned if and only if
magical or mythical.

8.6
✎

a is a large tetrahedron or a small
cube.
b is not small.
If a is a tetrahedron or a cube, then b

is large or small.
a is a tetrahedron only if b is medium.

a is small and b is large.

8.7
✎

b is small unless it’s a cube.
If c is small, then either d or e is too.
If d is small, then c is not.
If b is a cube, then e is not small.

If c is small, then so is b.

8.8
✎

d is in the same row as a, b or c.
If d is in the same row as b, then it is
in the same row as a only if it’s not in
the same row as c.
d is in the same row as a if and only
if it is in the same row as c.

d is in the same row as a if and only
if it is not in the same row as b.
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8.9
✎

a is either a cube, a dodecahedron, or a tetrahedron.
a is small, medium, or large.
a is medium if and only if it’s a dodecahedron.
a is a tetrahedron if and only if it is large.

a is a cube if and only if it’s small.

8.10
➶|✎

Open Between Sentences. Determine whether this set of sentences is satisfiable or not. If it
is, submit a world in which all the sentences are true. If not, give an informal proof that the
sentences are inconsistent. That is, assume all of them and derive a contradiction.

8.11
✎

Analyze the structure of the informal proof in support of the following claim: If the U.S. does
not cut back on its use of oil soon, parts of California will be flooded within 50 years. Are there
weak points in the argument? What premises are implicitly assumed in the proof? Are they
plausible?

Proof: Suppose the U.S. does not cut back on its oil use soon. Then it will be unable
to reduce its carbon dioxide emissions substantially in the next few years. But then
the countries of China, India and Brazil will refuse to join in efforts to curb carbon
dioxide emissions. As these countries develop without such efforts, the emission of
carbon dioxide will get much worse, and so the greenhouse effect will accelerate. As a
result the sea will get warmer, ice will melt, and the sea level will rise. In which case,
low lying coastal areas in California will be subject to flooding within 50 years. So if
we do not cut back on our oil use, parts of California will be flooded within 50 years.

8.12
✎

Describe an everyday example of reasoning that uses the method of conditional proof.

8.13
✎?

Prove: Odd(n + m) → Even(n × m).
[Hint: Compare this with Exercise 5.24
on page 140.]

8.14
✎?

Prove: Irrational(x) → Irrational(
√

x).
[Hint: It is easier to prove the contra-
positive.]

8.15
✎?

Prove that the following conditions on the natural number n are all equivalent. Use as few
conditional proofs as possible.

1. n is divisible by 3
2. n2 is divisible by 3
3. n2 is divisible by 9
4. n3 is divisible by 3
5. n3 is divisible by 9
6. n3 is divisible by 27

8.16
✎?

Give an informal proof that if R is a tautological consequence of P1, . . . ,Pn and Q, then Q → R
is a tautological consequence of P1, . . . , Pn.
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Section 8.2

Formal rules of proof for → and ↔

We now turn to the formal analogues of the methods of proof involving the
conditional and biconditional. Again, we incorporate an introduction and elim-
ination rule for each connective into F .

Rules for the conditional

The rule of modus ponens or conditional elimination is easily formalized. If you
have proven both P → Q and P then you can assert Q, citing as justification
these two earlier steps. Schematically:

Conditional Elimination (→ Elim):

P → Q
...
P
...

. Q

The corresponding introduction rule is the formal counterpart of the method
of conditional proof. As you would expect, it requires us to construct a sub-
proof. To prove a statement of the form P → Q we begin our subproof with
the assumption of P and try to prove Q. If we succeed, then we are allowed
to discharge the assumption and conclude our desired conditional, citing the
subproof as justification. Schematically:

Conditional Introduction (→ Intro):

P

...
Q

. P → Q

Strategy and tactics

The strategy of working backwards usually works extremely well in proofs
that involve conditionals, particularly when the desired conclusion is itself a
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conditional. Thus if the goal of a proof is to show that a conditional sentence
P → Q is a consequence of the given information, you should sketch in a working backwards
subproof with P as an assumption and Q as the final step. Use this subproof
as support for an application of → Intro. When you check your proof, Q will
become your new intermediate goal, and in proving it you can rely on the
assumption P.

Let’s work through a simple example that involves both of the rules for
the conditional and illustrates the technique of working backwards.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

J1. We will step you through a formal proof of A → C from the premise
(A ∨ B) → C. Use Fitch to open the file Conditional 1. Notice the premise
and the goal. Add a step to the proof and write in the goal sentence.

J2. Start a subproof before the sentence A → C. Enter A as the assumption of
the subproof.

J3. Add a second step to the subproof and enter C.

J4. Move the slider to the step containing the goal sentence A → C. Justify
this step using the rule → Intro, citing the subproof for support. Check
this step.

J5. Now we need to go back and fill in the subproof. Add a step between the
two steps of the subproof. Enter A ∨ B. Justify this step using ∨ Intro,
citing the assumption of the subproof.

J6. Now move the slider to the last step of the subproof. Justify this step using
the rule → Elim, citing the premise and the step you just proved.

J7. Verify that your proof checks out, and save it as Proof Conditional 1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

Once we have conditional introduction at our disposal, we can convert
any proof with premises into the proof, without premises, of a corresponding
conditional. For example, we showed in Chapter 6 (page 156) how to give a
formal proof of ¬¬A from premise A. We can can now use the earlier proof to
build a proof of the logically true sentence A → ¬¬A.
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1. A

2. ¬A

3. ⊥ ⊥ Intro: 1, 2

4. ¬¬A ¬ Intro: 2–3

5. A → ¬¬A → Intro: 1–4

Notice that the subproof here is identical to the original proof given on
page 156. We simply embedded that proof in our new proof and applied con-
ditional introduction to derive A → ¬¬A.

Default and generous uses of the → rules

The rule → Elim does not care in which order you cite the support sentences.
The rule → Intro does not insist that the consequent be at the last step of
the cited subproof, though it usually is. Also, the assumption step might be
the only step in the subproof, as in a proof of a sentence of the form P → P.

The default applications of the conditional rules work exactly as you woulddefault uses of
conditional rules expect. If you cite supports of the form indicated in the rule statements, Fitch

will fill in the appropriate conclusion for you.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 1. Open the file Conditional 2. Click on the goal icon to see what sentence we
are trying to prove. Then focus on each step in succession and check the
step. On the empty steps, try to predict what default Fitch will supply.

I 2. When you are finished, make sure you understand the proof. Save the
checked proof as Proof Conditional 2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations
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Rules for the biconditional

The rules for the biconditional are just what you would expect, given the rules
for the conditional. The elimination rule for the biconditional can be stated
schematically as follows:

Biconditional Elimination (↔ Elim):

P ↔ Q (or Q ↔ P)
...
P
...

. Q

This means that you can conclude Q if you can establish P and either of the
biconditionals indicated.

The introduction rule for the biconditional P ↔ Q requires that you give
two subproofs, one showing that Q follows from P, and one showing that P
follows from Q:

Biconditional Introduction (↔ Intro):

P

...
Q

Q

...
P

. P ↔ Q

Here is a simple example of a proof using biconditional introduction. It
shows how to derive the double negation law within the system F .
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1. P

2. ¬P

3. ⊥ ⊥ Intro: 1, 2

4. ¬¬P ¬ Intro: 2–3

5. ¬¬P

6. P ¬ Elim: 5

7. P ↔ ¬¬P ↔ Intro: 1–4, 5–6

Strategy and tactics

When you are constructing a proof whose conclusion is a biconditional, it
is particularly important to sketch in the proof ahead of time. Add the two
required subproofs and the desired conclusion, citing the subproofs in support.
Then try to fill in the subproofs. This is a good idea because these proofs
sometimes get quite long and involved. The sketch will help you remember
what you were trying to do.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 1. Open the file Conditional 3. In this file, you are asked to prove, without
premises, the law of contraposition:

(P → Q) ↔ (¬Q → ¬P)

I 2. Start your proof by sketching in the two subproofs that you know you’ll
have to prove, plus the desired conclusion. Your partial proof will look like
this:

1. P → Q

2. ¬Q → ¬P Rule?

3. ¬Q → ¬P

4. P → Q Rule?

5. (P → Q) ↔ (¬Q → ¬P) ↔ Intro: 1–2, 3–4
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J3. Now that you have the overall structure, start filling in the first subproof.
Since the goal of that subproof is a conditional claim, sketch in a condi-
tional proof that would give you that claim:

1. P → Q

2. ¬Q

3. ¬P Rule?

4. ¬Q → ¬P → Intro: 2–3

5. ¬Q → ¬P

6. P → Q Rule?

7. (P → Q) ↔ (¬Q → ¬P) ↔ Intro: 1–4, 5–6

J4. To derive ¬P in the subsubproof, you will need to assume P and derive a
contradiction. This is pretty straightforward:

1. P → Q

2. ¬Q

3. P

4. Q → Elim: 1, 3
5. ⊥ ⊥ Intro: 4, 2

6. ¬P ¬ Intro: 3–5

7. ¬Q → ¬P → Intro: 2–6

8. ¬Q → ¬P

9. P → Q Rule?

10. (P → Q) ↔ (¬Q → ¬P) ↔ Intro: 1–7, 8–9

J5. This completes the first subproof. Luckily, you sketched in the second
subproof so you know what you want to do next. You should be able to
finish the second subproof on your own, since it is almost identical to the
first.
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I 6. When you are done, save your proof as Proof Conditional 3.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

Exercises

8.17
➶

If you skipped any of the You try it sections, go back and do them now. Submit the files
Proof Conditional 1, Proof Conditional 2, and Proof Conditional 3.

In the following exercises we return to the patterns of inference discussed in Exercise 8.1. Some of
these are valid, some invalid. For each valid pattern, construct a formal proof in Fitch. For each invalid
pattern, give a counterexample using Tarski’s World. To give a counterexample in these cases, you will
have to come up with sentences of the blocks language that fit the pattern, and a world that makes
those specific premises true and the conclusion false. Submit both the world and the sentence file. In the
sentence file, list the premises first and the conclusion last.

8.18
➶

Affirming the Consequent:
From A → B and B, infer A.

8.19
➶

Modus Tollens:
From A → B and ¬B, infer ¬A.

8.20
➶

Strengthening the Antecedent:
From B → C, infer (A ∧ B) → C.

8.21
➶

Weakening the Antecedent:
From B → C, infer (A ∨ B) → C.

8.22
➶

Strengthening the Consequent:
From A → B, infer A → (B ∧ C).

8.23
➶

Weakening the Consequent:
From A → B, infer A → (B ∨ C).

8.24
➶

Constructive Dilemma:
From A ∨ B, A → C, and B → D,
infer C ∨ D.

8.25
➶

Transitivity of the Biconditional:
From A ↔ B and B ↔ C,
infer A ↔ C.

Use Fitch to construct formal proofs for the following arguments. In two cases, you may find yourself
re-proving an instance of the law of Excluded Middle, P ∨ ¬P, in order to complete your proof. If you’ve
forgotten how to do that, look back at your solution to Exercise 6.33. Alternatively, with the permission
of your instructor, you may use Taut Con to justify an instance of Excluded Middle.

8.26
➶

P → (Q → P)

8.27
➶

(P → (Q → R)) ↔ ((P ∧ Q) → R)

8.28
➶

P ↔ ¬P

⊥

8.29
➶

(P → Q) ↔ (¬P ∨ Q)
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8.30
➶

¬(P → Q) ↔ (P ∧ ¬Q)

The following arguments are translations of those given in Exercises 8.3–8.9. (For simplicity we have
assumed “the unicorn” refers to a specific unicorn named Charlie. This is less than ideal, but the best we
can do without quantifiers.) Use Fitch to formalize the proofs you gave of their validity. You will need
to use Ana Con to introduce ⊥ in two of your proofs.

8.31
➶

(¬Mythical(c) → Mammal(c))
∧ (Mythical(c) → ¬Mortal(c))

(¬Mortal(c) ∨ Mammal(c)) → Horned(c)
Horned(c) → Magical(c)

Magical(c)

8.32
➶

Horned(c) → (Elusive(c)
∧ Dangerous(c))

(Elusive(c) ∨ Mythical(c)) → Rare(c)
Mammal(c) → ¬Rare(c)

Horned(c) → ¬Mammal(c)

8.33
➶

(Horned(c) → (Elusive(c) ∧ Magical(c)))
∧ (¬Horned(c) → (¬Elusive(c)
∧ ¬Magical(c)))

¬Horned(c) → ¬Mythical(c)

Horned(c) ↔ (Magical(c) ∨ Mythical(c))

8.34
➶

(Tet(a) ∧ Large(a)) ∨ (Cube(a)
∧ Small(a))

¬Small(b)
(Tet(a) ∨ Cube(a)) → (Large(b)

∨ Small(b))
Tet(a) → Medium(b)

Small(a) ∧ Large(b)

8.35
➶

¬Cube(b) → Small(b)
Small(c) → (Small(d) ∨ Small(e))
Small(d) → ¬Small(c)
Cube(b) → ¬Small(e)

Small(c) → Small(b)

8.36
➶

SameRow(d, a) ∨ SameRow(d,b)
∨ SameRow(d, c)

SameRow(d, b) → (SameRow(d, a)
→ ¬SameRow(d, c))

SameRow(d, a) ↔ SameRow(d, c)

SameRow(d, a) ↔ ¬SameRow(d, b)

8.37
➶

Cube(a) ∨ Dodec(a) ∨ Tet(a)
Small(a) ∨ Medium(a) ∨ Large(a)
Medium(a) ↔ Dodec(a)
Tet(a) ↔ Large(a)

Cube(a) ↔ Small(a)

8.38
➶?

Use Fitch to give formal proofs of both (P ∧ Q) → P and the equivalent sentence ¬(P ∧ Q) ∨ P.
(You will find the exercise files in Exercise 8.38.1 and Exercise 8.38.2.) Do you see why it is
convenient to include → in fol, rather than define it in terms of the Boolean connectives?
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Section 8.3

Soundness and completeness

We have now introduced formal rules for all of our truth-functional connec-
tives. Let’s step back for a minute and ask two important questions about the
formal system F . The questions get at two desirable properties of a deductive
system, which logicians call soundness and completeness. Don’t be confused
by the names, however. These uses of sound and complete are different from
their use in the notions of a sound argument and a truth-functionally complete
set of connectives.

Soundness

We intend our formal system F to be a correct system of deduction in the
sense that any argument that can be proven valid in F should be genuinely
valid. The first question that we will ask, then, is whether we have succeeded
in this goal. Does the system F allow us to construct proofs only of genuinelysoundness of a

deductive system valid arguments? This is known as the soundness question for the deductive
system F .

The answer to this question may seem obvious, but it deserves a closer look.
After all, consider the rule of inference suggested in Exercise 7.32 on page 196.
Probably, when you first looked at this rule, it seemed pretty reasonable, even
though on closer inspection you realized it was not (or maybe you got the
problem wrong). How can we be sure that something similar might not be the
case for one of our official rules? Maybe there is a flaw in one of them but we
just haven’t thought long enough or hard enough to discover it.

Or maybe there are problems that go beyond the individual rules, some-
thing about the way the rules interact. Consider for example the following
argument:

¬(Happy(carl) ∧ Happy(scruffy))

¬Happy(carl)

We know this argument isn’t valid since it is clearly possible for the premise to
be true and the conclusion false. But how do we know that the rules of proof
we’ve introduced do not allow some very complicated and ingenious proof
of the conclusion from the premise? After all, there is no way to examine all
possible proofs and make sure there isn’t one with this premise and conclusion:
there are infinitely many proofs.

To answer our question, we need to make it more precise. We have seen that
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there is a certain vagueness in the notion of logical consequence. The concept
of tautological consequence was introduced as a precise approximation of the
informal notion. One way to make our question more precise is to ask whether
the rules for the truth-functional connectives allow us to prove only arguments
that are tautologically valid. This question leaves out the issue of whether the
identity rules are legitimate, but we will address that question later.

Let’s introduce some new symbols to make it easier to express the claim
we want to investigate. We will use FT to refer to the portion of our deductive FT

system that contains the introduction and elimination rules for ¬, ∨,∧, →,↔,

and ⊥. You can think of the subscript t as standing for either “tautology” or
“truth-functional.” We will also write P1, . . . ,Pn `T S to indicate that there `T

is a formal proof in FT of S from premises P1, . . . ,Pn. (The symbol ` is
commonly used in logic to indicate the provability of what’s on the right from
what’s on the left. If you have trouble remembering what this symbol means,
just think of it as a tiny Fitch bar.) We can now state our claim as follows.

Theorem (Soundness of FT) If P1, . . . ,Pn `T S then S is a tautological con- Soundness of FT

sequence of P1, . . . , Pn.

Proof: Suppose that p is a proof constructed in the system FT. We
will show that any sentence that occurs at any step in proof p is
a tautological consequence of the assumptions in force at that step.
This claim applies not just to sentences at the main level of p, but also
to sentences appearing in subproofs, no matter how deeply nested.
The assumptions in force at a step always include the main premises
of the proof, but if we are dealing with a step inside some nested
subproofs, they also include all the assumptions of these subproofs.
The soundness theorem follows from our claim because if S appears
at the main level of p, then the only assumptions in force are the
premises P1, . . . , Pn. So S is a tautological consequence of P1, . . . ,Pn.

To prove this claim we will use proof by contradiction. Suppose that
there is a step in p containing a sentence that is not a tautological
consequence of the assumptions in force at that step. Call this an
invalid step. The idea of our proof is to look at the first invalid step
in p and show that none of the twelve rules of FT could have justified
that step. In other words, we will apply proof by cases to show that,
no matter which rule of FT was applied at the invalid step, we get a
contradiction. (Actually, we will only look at three of the cases and
leave the remaining rules as exercises.) This allows us to conclude
that there can be no invalid steps in proofs in FT.
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→ Elim: Suppose the first invalid step derives the sentence R by an
application of → Elim to sentences Q → R and Q appearing earlier
in the proof. Let A1, . . . , Ak be a list of all the assumptions in force
at R. If this is an invalid step, R is not a tautological consequence of
A1, . . . ,Ak. But we will show that this leads us to a contradiction.

Since R is the first invalid step in p, we know that Q → R and Q
are both valid steps, that is, they are tautological consequences of
the assumptions in force at those steps. The crucial observation is
that since FT allows us to cite sentences only in the main proof or
in subproofs whose assumptions are still in force, we know that the
assumptions in force at steps Q → R and Q are also in force at R.
Hence, the assumptions for these steps are among A1, . . . , Ak. An
illustration may help. Suppose our proof takes the following form:

A1

...
Q → R
...

A2

...
Q
...

A3

...
R
...

As should be clear, the restrictions on citing earlier steps guarantee
that all the assumptions in force at the cited steps will still be in
force at the step containing R. In the example shown, assumption
A1 is in force at the step containing Q → R, assumptions A1 and A2

are in force at the step containing Q, and assumptions A1, A2 and
A3 are in force at the step containing R.

Suppose, now, we construct a joint truth table for the sentences
A1, . . . ,Ak, Q, Q → R, and R. By the assumption that R is an invalid
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step, there must be a row h of this table in which A1, . . . ,Ak all come
out true, but R comes out false. However, since Q and Q → R are
tautological consequences of A1, . . . ,Ak, both of these sentences are
true in row h. But this contradicts the truth table for →.

→ Intro: Suppose the first invalid step derives the sentence Q → R
from an application of → Intro to an earlier subproof with assump-
tion Q and conclusion R.

...

Q

...
R

...
Q → R
...

Again let A1, . . . ,Ak be the assumptions in force at Q → R. Note
that the assumptions in force at R are A1, . . . , Ak and Q. Since step
R is earlier than the first invalid step, R must be a tautological con-
sequence of A1, . . . , Ak and Q.

Imagine constructing a joint truth table for the sentences A1, . . . ,Ak,
Q, Q → R, and R. There must be a row h of this table in which
A1, . . . , Ak all come out true, but Q → R comes out false, by the
assumption that this step is invalid. Since Q → R is false in this
row, Q must be true and R must be false. But this contradicts our
observation that R is a tautological consequence of A1, . . . , Ak and
Q.

⊥ Elim: Suppose the first invalid step derives the sentence Q from
⊥. Since this is the first invalid step, ⊥ must be a tautological con-
sequence of the assumptions in force at ⊥. By the same considera-
tions as in the first case, the assumptions in force at ⊥ are also in
force at Q. Hence ⊥ is a tautological consequence of the assumptions
A1, . . . , Ak in force at Q. But the only way that this can be so is for
A1, . . . , Ak to be tt-contradictory. In other words, there are no rows
in which all of A1, . . . ,Ak come out true. But then Q is vacuously a
tautological consequence of A1, . . . ,Ak.
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Figure 8.1: The soundness theorem for FT tells us that only tautologies are
provable (without premises) in FT.

Remaining rules: We have looked at three of the twelve rules.
The remaining cases are similar to these, and so we leave them as
exercises.

Once a contradiction is demonstrated in all twelve cases, we can
conclude that our original assumption, that it is possible for a proof
of FT to contain an invalid step, must be false. This concludes the
proof of soundness.

Having proven the Soundness Theorem, we can be absolutely certain that
no matter how hard someone tries, no matter how ingenious they are, it will
be impossible for them to produce a proof of ¬Happy(Carl) from the premise
¬(Happy(Carl) ∧ Happy(Scruffy)). Why? There is no such proof because the
former is not a tautological consequence of the latter.

A corollary is a result which follows with little effort from an earlier theo-
rem. We can state the following corollary, which simply applies the Soundness
Theorem to cases in which there are no premises.

Corollary If `T S, that is, if there is a proof of S in FT with no premises,
then S is a tautology.

The import of this corollary is illustrated in Figure 8.1. The corollary tells
us that if a sentence is provable in FT, then it is a tautology. The Soundness
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Theorem assures us that this same relationship holds between provability
in FT, with or without premises, and tautological consequence. Notice the
question marks in Figure 8.1. So far we do not know whether there are any
tautologies (or tautologically valid arguments) that are not provable in FT.
This is the second question we need to address: the issue of completeness.

Before turning to completeness, we should reiterate that our use of the
term soundness in this section has little to do with our earlier use of the term sound deductive system

vs. sound argumentsound to describe valid arguments with true premises. What soundness really
means when applied to a deductive system is that the system only allows you
to prove valid arguments. It would be more appropriate to call it a “validness”
theorem, but that is not what it is traditionally called.

Completeness

Sometimes, in doing an exercise on formal proofs, you may have despaired of
finding a proof, even though you could see that the conclusion followed from
the premises. Our second question addresses this concern. Does our deductive completeness of a

deductive systemsystem allow us to prove everything we should be able to prove?
Of course, this raises the question of what we “should” be able to prove,

which again confronts us with the vagueness of the notion of logical conse-
quence. But given the soundness theorem, we know that the most FT will let
us prove are tautological consequences. So we can state our question more pre-
cisely: Can we convince ourselves that given any premises P1, . . . , Pn and any
tautological consequence S of these premises, our deductive system FT allows
us to construct a proof of S from P1, . . . ,Pn? Or could there be tautological
consequences of some set of premises that are just plain out of the reach of the
deductive system FT? The next theorem assures us that this cannot happen.

Theorem (Completeness of FT) If a sentence S is a tautological consequence completeness of FT

of P1, . . . , Pn, then P1, . . . , Pn `T S.

The proof of this result is quite a bit more complicated than the proof of
the Soundness Theorem, and requires material we have not yet introduced.
Consequently, we will not be able to give the proof here, but will prove it in
Chapter 17.

This result is called the Completeness Theorem because it tells us that
the introduction and elimination rules are complete for the logic of the truth-
functional connectives: anything that is a logical consequence simply in virtue
of the meanings of the truth-functional connectives can be proven in FT. As
illustrated in Figure 8.2, it assures us that all tautologies (and tautologically
valid arguments) are provable in FT.

Notice, however, that the Soundness Theorem implies a kind of incompleteness, soundness and
incompleteness
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Figure 8.2: Completeness and soundness of FT tells us that all and only tau-
tologies are provable (without premises) in FT.

since it shows that the rules of FT allow us to prove only tautological conse-
quences of our premises. They do not allow us to prove any logical consequence
of the premises that is not a tautological consequence of those premises. For ex-
ample, it shows that there is no way to prove Dodec(c) from Dodec(b) ∧ b = c
in FT, since the former is not a tautological consequence of the latter. To
prove something like this, we will need the identity rules in addition to the
rules for the truth-functional connectives. Similarly, to prove ¬Larger(c,b)
from Larger(b, c), we would need rules having to do with the predicate Larger.
We will return to these issues in Chapter 19.

The Soundness and Completeness Theorems have practical uses that areuses of soundness and
completeness worth keeping in mind. The Completeness Theorem gives us a method for

showing that an argument has a proof without actually having to find a
such proof: just show that the conclusion is a tautological consequence of
the premises. For example, it is obvious that A → (B → A) is a tautology so
by the Completeness Theorem we know it must have a proof. Similarly, the
sentence B ∧ ¬D is a tautological consequence of ¬((A ∧ B) → (C ∨ D)) so we
know it must be possible to find a proof of the former from the latter.

The Soundness Theorem, on the other hand, gives us a method for telling
that an argument does not have a proof in FT: show that the conclusion is not
a tautological consequence of the premises. For example, A → (A → B) is not
a tautology, so it is impossible to construct a proof of it in FT, no matter how
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hard you try. Similarly, the sentence B ∧ ¬D is a not tautological consequence
of ¬((A ∨ B) → (C ∧ D)), so we know there is no proof of this in FT.

Recall our earlier discussion of the Taut Con routine in Fitch. This proce-
dure checks to see whether a sentence is a tautological consequence of whatever
sentences you cite in support. You can use the observations in the preceding
paragraphs, along with Taut Con, to decide whether it is possible to give
a proof using the rules of FT. If Taut Con says a particular sentence is a
tautological consequence of the cited sentences, then you know it is possible
to give a full proof of the sentence, even though you may not see exactly how
the proof goes. On the other hand, if Taut Con says it is a not tautological
consequence of the cited sentences, then there is no point in trying to find a
proof in FT, for the simple reason that no such proof is possible.

Remember

Given an argument with premises P1, . . . , Pn and conclusion S:

1. (Completeness of FT) If S is a tautological consequence of P1, . . . , Pn,
then there is a proof of S from premises P1, . . . , Pn using only the
introduction and elimination rules for ¬,∨, ∧, →,↔, and ⊥.

2. (Soundness of FT) If S is not a tautological consequence of P1, . . . , Pn,
then there is no proof of S from premises P1, . . . , Pn using only the
rules for ¬, ∨, ∧, →, ↔, and ⊥.

3. Which of these alternatives holds can be determined with the Taut
Con procedure of Fitch.

Exercises

Decide whether the following two arguments are provable in FT without actually trying to find proofs.
Do this by constructing a truth table in Boole to assess their tautological validity. Submit the table. Then
explain clearly how you know the argument is or is not provable by applying the Soundness and Com-
pleteness results. Turn in your explanations to your instructor. (The explanations are more important
than the tables, so don’t forget the second part!)

8.39
➶|✎

A ∧ (B ∨ ¬A ∨ (C ∧ D))
E ∧ (D ∨ ¬(A ∧ (B ∨ D)))

A ∧ B

8.40
➶|✎

A ∧ (B ∨ ¬A ∨ (C ∧ D)) ∧ ¬(A ∧ D)

¬(E ∧ (D ∨ ¬(A ∧ (B ∨ D))))
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In the proof of the Soundness Theorem, we only treated three of the twelve rules of FT. The next three
problems ask you to treat some of the other rules.

8.41
✎?

Give the argument required for the ¬
Elim case of the Soundness proof. Your
argument will be very similar to the one
we gave for → Elim.

8.42
✎??

Give the argument required for the ¬
Intro case of the Soundness proof. Your
argument will be similar to the one we
gave for → Intro.

8.43
✎??

Give the argument required for the ∨
Elim case of the Soundness proof.

Section 8.4

Valid arguments: some review exercises

There is wisdom in the old saying “Don’t lose sight of the forest for the
trees.” The forest in our case is an understanding of valid arguments. The
trees are the various methods of proofs, formal and informal, and the notions
of counterexample, tautology, and the like. The problems in this section are
intended to remind you of the relationship between the forest and the trees,
as well as to help you review the main ideas discussed so far.

Since you now know that our introduction and elimination rules suffice to
prove any tautologically valid argument, you should feel free to use Taut Con
in doing these exercises. In fact, you may use it in your formal proofs from
now on, but with this important proviso: Make sure that you use it only in
cases where the inference step is obvious and would go by without notice in an
informal proof. For example, you may use it to introduce the law of excluded
middle or to apply a DeMorgan equivalence. But you should still use rules like
∨ Elim, ¬ Intro, and → Intro when your informal proof would use proof by
cases, proof by contradiction, or conditional proof. Any one-step proofs that
consist of a single application of Taut Con will be counted as wrong!

Before doing these problems, go back and read the material in the Re-
member boxes, paying special attention to the strategy for evaluating argu-
ments on page 171.

Remember

From this point on in the book, you may use Taut Con in formal proofs,
but only to skip simple steps that would go unmentioned in an informal
proof.
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Exercises

In the following exercises, you are given arguments in the blocks language. Evaluate each argument’s
validity. If it is valid, construct a formal proof to show this. If you need to use Ana Con, use it only to
derive ⊥ from atomic sentences. If the argument is invalid, you should use Tarski’s World to construct
a counterexample world.

8.44
➶

Adjoins(a,b) ∧ Adjoins(b, c)
SameRow(a, c)

a 6= c

8.45
➶

¬(Cube(b) ∧ b = c) ∨ Cube(c)

8.46
➶

Cube(a) ∨ (Cube(b) → Tet(c))
Tet(c) → Small(c)
(Cube(b) → Small(c)) → Small(b)

¬Cube(a) → Small(b)

8.47
➶

Small(a) ∧ (Medium(b) ∨ Large(c))
Medium(b) → FrontOf(a, b)
Large(c) → Tet(c)

¬Tet(c) → FrontOf(c,b)

8.48
➶

Small(a) ∧ (Medium(b) ∨ Large(c))
Medium(b) → FrontOf(a,b)
Large(c) → Tet(c)

¬Tet(c) → FrontOf(a, b)

8.49
➶

(Dodec(a) ∧ Dodec(b))
→ (SameCol(a, c) → Small(a))

(¬SameCol(b, c) ∧ ¬Small(b))
→ (Dodec(b) ∧ ¬Small(a))

SameCol(a, c) ∧ ¬SameCol(b, c)

Dodec(a) → Small(b)

8.50
➶

Cube(b) ↔ (Cube(a) ↔ Cube(c))

Dodec(b) → (Cube(a) ↔ ¬Cube(c))

8.51
➶

Cube(b) ↔ (Cube(a) ↔ Cube(c))

Dodec(b) → a 6= b

8.52
➶

Cube(b) ↔ (Cube(a) ↔ Cube(c))

Dodec(b) → a 6= c

8.53
➶

Small(a) → Small(b)
Small(b) → (SameSize(b, c) → Small(c))
¬Small(a) → (Large(a) ∧ Large(c))

SameSize(b, c) → (Large(c) ∨ Small(c))
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Chapter 9

Introduction to Quantification

In English and other natural languages, basic sentences are made by combining
noun phrases and verb phrases. The simplest noun phrases are names, like Max
and Claire, which correspond to the constant symbols of fol. More complex
noun phrases are formed by combining common nouns with words known as
determiners, such as every, some, most, the, three, and no, giving us noun determiners
phrases like every cube, some man from Indiana, most children in the class,
the dodecahedron in the corner, three blind mice, and no student of logic.

Logicians call noun phrases of this sort quantified expressions, and sen-
tences containing them quantified sentences. They are so called because they quantified sentences
allow us to talk about quantities of things—every cube, most children, and so
forth.

The logical properties of quantified sentences are highly dependent on
which determiner is used. Compare, for example, the following arguments:

Every rich actor is a good actor.
Brad Pitt is a rich actor.

Brad Pitt is a good actor.

Many rich actors are good actors.
Brad Pitt is a rich actor.

Brad Pitt is a good actor.

No rich actor is a good actor.
Brad Pitt is a rich actor.

Brad Pitt is a good actor.

What a difference a determiner makes! The first of these arguments is obvi-
ously valid. The second is not logically valid, though the premises do make the
conclusion at least plausible. The third argument is just plain dumb: in fact
the premises logically imply the negation of the conclusion. You can hardly
get a worse argument than that.

Quantification takes us out of the realm of truth-functional connectives.
Notice that we can’t determine the truth of quantified sentences by looking
at the truth values of constituent sentences. Indeed, sentences like Every rich
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actor is a good actor and No rich actor is a good actor really aren’t made up
of simpler sentences, at least not in any obvious way. Their truth values are
determined by the relationship between the collection of rich actors and the
collection of good actors: by whether all of the former or none of the former
are members of the latter.

Various non-truth-functional constructions that we’ve already looked at
are, in fact, hidden forms of quantification. Recall, for example, the sentence:hidden quantification

Max is home whenever Claire is at the library.

You saw in Exercise 7.31 that the truth of this sentence at a particular time is
not a truth function of its parts at that time. The reason is that whenever is
an implicit form of quantification, meaning at every time that. The sentence
means something like:

Every time when Claire is at the library is a time when Max is at home.

Another example of a non-truth-functional connective that involves implicit
quantification is logically implies. You can’t tell whether P logically implies
Q just by looking at the truth values of P and Q. This is because the claim
means that every logically possible circumstance that makes P true makes Q
true. The claim implicitly quantifies over possible circumstances.

While there are many forms of quantification in English, only two are built
explicitly into fol. This language has two quantifier symbols, ∀ and ∃, mean-quantifiers of fol

ing everything and something respectively. This may seem like a very small
number of quantifiers, but surprisingly many other forms of quantification can
be defined from ∀ and ∃ using predicates and truth-functional connectives, in-
cluding phrases like every cube, three blind mice, no tall student, and whenever.
Some quantified expressions are outside the scope of fol, however, including
most students, many cubes, and infinitely many prime numbers. We’ll discuss
these issues in Chapter 14.

Section 9.1

Variables and atomic wffs

Before we can show you how fol’s quantifier symbols work, we need to intro-
duce a new type of term, called a variable. Variables are a kind of auxiliaryvariables
symbol. In some ways they behave like individual constants, since they can
appear in the list of arguments immediately following a predicate or function
symbol. But in other ways they are very different from individual constants. In
particular, their semantic function is not to refer to objects. Rather, they are
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placeholders that indicate relationships between quantifiers and the argument
positions of various predicates. This will become clearer with our discussion
of quantifiers.

First-order logic assumes an infinite list of variables so that we will never
run out of them, no matter how complex a sentence may get. We take these
variables to be any of the letters t, u, v, w, x, y, and z, with or without
subscripts. So, for example, x, u23, and z6 are all variables in our dialect
of fol. Fitch understands all of these variables, but Tarski’s World does not.
Tarski’s World uses only the six variables u, v, w, x, y, and z without subscripts.
This imposes an expressive limitation on the language used in Tarski’s World,
though in actual practice you’ll seldom have call for more than four or five
variables.

Adding variables expands the set of terms of the language. Up until now, terms with variables
individual constants (names) were the only basic terms. If the language con-
tained function symbols, we built additional terms by repeated application of
these function symbols. Now we have two types of basic terms, variables and
individual constants, and can form complex terms by applying function sym-
bols to either type of basic term. So in addition to the term father(max), we will
have the term father(x), and in addition to (0 + 1) × 1, we have (y + z) × z.

These new terms allow us to produce expressions that look like atomic
sentences, except that there are variables in place of some individual con-
stants. For example, Home(x), Taller(max, y), and Taller(father(z), z) are such
expressions. We call these expressions atomic well-formed formulas, or atomic atomic wffs
wffs. They are not sentences, but will be used in conjunction with quantifier
symbols to build sentences. The term sentence is reserved for well-formed for-
mulas in which any variables that do occur are used together with quantifiers
that bind them. We will give the definitions of sentence and bound variable
in due course.

Remember

1. The language fol has an infinite number of variables, any of t, u, v,
w, x, y, and z, with or without numerical subscripts.

2. The program Fitch understands all of these variables; Tarski’s World
only understands variables u through z without subscripts.

3. Variables can occur in atomic wffs in any position normally occupied
by a name.
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Section 9.2

The quantifier symbols: ∀,∃

The quantifier symbols ∀ and ∃ let us express certain rudimentary claims
about the number (or quantity) of things that satisfy some condition. Specif-
ically, they allow us to say that all objects satisfy some condition, or that
at least one object satisfies some condition. When used in conjunction with
identity (=), they can also be used to express more complex numerical claims,
for instance, that there are exactly three things that satisfy some condition.

Universal quantifier (∀)

The symbol ∀ is used to express universal claims, those we express in English
using quantified phrases like everything, each thing, all things, and anything.everything, each thing,

all things, anything It is always used in connection with a variable, and so is said to be a variable
binding operator. The combination ∀x is read “for every object x,” or (some-
what misleadingly) “for all x.”1 If we wanted to translate the (rather unlikely)
English sentence Everything is at home into first-order logic, we would use the
fol sentence

∀x Home(x)

This says that every object x meets the following condition: x is at home. Or,
to put it more naturally, it says that everything whatsoever is at home.

Of course, we rarely make such unconditional claims about absolutely ev-
erything. More common are restricted universal claims like Every doctor is
smart. This sentence would be translated as

∀x (Doctor(x) → Smart(x))

This fol sentence claims that given any object at all—call it x—if x is a
doctor, then x is smart. To put it another way, the sentence says that if you
pick anything at all, you’ll find either that it is not a doctor or that it is smart
(or perhaps both).

Existential quantifier (∃)

The symbol ∃ is used to express existential claims, those we express in Englishsomething, at least one
thing, a, an using such phrases as something, at least one thing, a, and an. It too is always

1We encourage students to use the first locution when reading formulas, at least for a
few weeks, since we have seen many students who have misunderstood the basic function
of variables as a result of reading them the second way.
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used in connection with a variable, and so is a variable binding operator. The
combination ∃x is read “for some object x,” or (somewhat misleadingly) “for
some x.” If we wanted to translate the English sentence Something is at
home into first-order logic, we would use the fol sentence

∃x Home(x)

This says that some object x meets the following condition: x is at home.
While it is possible to make such claims, it is more common to assert

that something of a particular kind meets some condition, say, Some doctor
is smart. This sentence would be translated as

∃x (Doctor(x) ∧ Smart(x))

This sentence claims that some object, call it x, meets the complex condition:
x is both a doctor and smart. Or, more colloquially, it says that there is at
least one smart doctor.

Section 9.3

Wffs and sentences

Notice that in some of the above examples, we formed sentences out of complex
expressions that were not themselves sentences, expressions like

Doctor(x) ∧ Smart(x)

that contain variables not bound by any quantifier. Thus, to systematically
describe all the sentences of first-order logic, we first need to describe a larger
class, the so-called well-formed formulas, or wffs.

We have already explained what an atomic wff is: any n-ary predicate
followed by n terms, where terms can now contain either variables or individ-
ual constants. We will say that any variable that occurs in an atomic wff is
free or unbound. Using atomic wffs as our building blocks, we can construct free variable
more complicated wffs by repeatedly applying the following rules. Note that
the last two clauses also explain how variables become bound when we apply bound variable
quantifiers to wffs.

1. If P is a wff, so is ¬P. well-formed
formula (wff)2. If P1, . . . , Pn are wffs, so is (P1 ∧ . . . ∧ Pn).

3. If P1, . . . , Pn are wffs, so is (P1 ∨ . . . ∨ Pn).
4. If P and Q are wffs, so is (P → Q).
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5. If P and Q are wffs, so is (P ↔ Q).
6. If P is a wff and ν is a variable (i.e., one of t, u, v, w, x, . . . ), then

∀ν P is a wff, and any occurrence of ν in ∀ν P is said to be bound.
7. If P is a wff and ν is a variable, then ∃ν P is a wff, and any occurrence

of ν in ∃ν P is said to be bound.

By convention, we allow the outermost parentheses in a wff to be dropped,
writing A ∧ B rather than (A ∧ B), but only if the parentheses enclose the
whole wff.

The way these grammatical rules work is pretty straightforward. For ex-
ample, starting from the atomic wffs Cube(x) and Small(x) we can apply rule
2 to get the wff:

(Cube(x) ∧ Small(x))

Similarly, starting from the atomic wff LeftOf(x, y) we can apply rule 7 to get
the wff:

∃y LeftOf(x, y)

In this formula the variable y has been bound by the quantifier ∃y. The variable
x, on the other hand, has not been bound; it is still free.

The rules can also be applied to complex wffs, so from the above two wffs
and rule 4 we can generate the following wff:

((Cube(x) ∧ Small(x)) → ∃y LeftOf(x, y))

A sentence is a wff with no unbound (free) variables. None of the wffssentences
displayed above are sentences, since they all contain free variables. To make
a sentence out of the last of these, we can simply apply rule 6 to produce:

∀x ((Cube(x) ∧ Small(x)) → ∃y LeftOf(x, y))

Here all occurrences of the variable x have been bound by the quantifier ∀x.
So this wff is a sentence since it has no free variables. It claims that for every
object x, if x is both a cube and small, then there is an object y such that x
is to the left of y. Or, to put it more naturally, every small cube is to the left
of something.

These rules can be applied over and over again to form more and more
complex wffs. So, for example, repeated application of the first rule to the wff
Home(max) will give us all of the following wffs:

¬Home(max)
¬¬Home(max)

¬¬¬Home(max)
...

Chapter 9



Wffs and sentences / 233

Since none of these contains any variables, and so no free variables, they are
all sentences. They claim, as you know, that Max is not home, that it is not
the case that Max is not home, that it is not the case that it is not the case
that Max is not home, and so forth.

We have said that a sentence is a wff with no free variables. However, it
can sometimes be a bit tricky deciding whether a variable is free in a wff. For
example, there are no free variables in the wff,

∃x (Doctor(x) ∧ Smart(x))

However there is a free variable in the deceptively similar wff,

∃x Doctor(x) ∧ Smart(x)

Here the last occurrence of the variable x is still free. We can see why this is the
case by thinking about when the existential quantifier was applied in building
up these two formulas. In the first one, the parentheses show that the quantifier
was applied to the conjunction (Doctor(x) ∧ Smart(x)). As a consequence, all
occurrences of x in the conjunction were bound by this quantifier. In contrast,
the lack of parentheses show that in building up the second formula, the
existential quantifier was applied to form ∃x Doctor(x), thus binding only the
occurrence of x in Doctor(x). This formula was then conjoined with Smart(x),
and so the latter’s occurrence of x did not get bound.

Parentheses, as you can see from this example, make a big difference.
They are the way you can tell what the scope of a quantifier is, that is, which scope of quantifier
variables fall under its influence and which don’t.

Remember

1. Complex wffs are built from atomic wffs by means of truth-functional
connectives and quantifiers in accord with the rules on page 231.

2. When you append either quantifier ∀x or ∃x to a wff P, we say that
the quantifier binds all the free occurrences of x in P.

3. A sentence is a wff in which no variables occur free (unbound).
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Exercises

9.1
➶

(Fixing some expressions) Open the sentence file Bernstein’s Sentences. The expressions in this
list are not quite well-formed sentences of our language, but they can all be made sentences by
slight modification. Turn them into sentences without adding or deleting any quantifier symbols.
With some of them, there is more than one way to make them a sentence. Use Verify to make
sure your results are sentences and then submit the corrected file.

9.2
➶

(Fixing some more expressions) Open the sentence file Schönfinkel’s Sentences. Again, the ex-
pressions in this list are not well-formed sentences. Turn them into sentences, but this time,
do it only by adding quantifier symbols or variables, or both. Do not add any parentheses. Use
Verify to make sure your results are sentences and submit the corrected file.

9.3
➶

(Making them true) Open Bozo’s Sentences and Leibniz’s World. Some of the expressions in this
file are not wffs, some are wffs but not sentences, and one is a sentence but false. Read and
assess each one. See if you can adjust each one to make it a true sentence with as little change
as possible. Try to capture the intent of the original expression, if you can tell what that was
(if not, don’t worry). Use Verify to make sure your results are true sentences and then submit
your file.

Section 9.4

Semantics for the quantifiers

When we described the meanings of our various connectives, we told you how
the truth value of a complex sentence, say ¬P, depends on the truth values
of its constituents, in this case P. But we have not yet given you similar rules
for determining the truth value of quantified sentences. The reason is simple:
the expression to which we apply the quantifier in order to build a sentence is
usually not itself a sentence. We could hardly tell you how the truth value of
∃x Cube(x) depends on the truth value of Cube(x), since this latter expression
is not a sentence at all: it contains a free variable. Because of this, it is neither
true nor false.

To describe when quantified sentences are true, we need to introduce the
auxiliary notion of satisfaction. The basic idea is simple, and can be illustratedsatisfaction
with a few examples. We say that an object satisfies the atomic wff Cube(x)
if and only if the object is a cube. Similarly, we say an object satisfies the
complex wff Cube(x) ∧ Small(x) if and only if it is both a cube and small. As
a final example, an object satisfies the wff Cube(x) ∨ ¬Large(x) if and only if
it is either a cube or not large (or both).
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Different logic books treat satisfaction in somewhat different ways. We
will describe the one that is built into the way that Tarski’s World checks
the truth of quantified sentences. Suppose S(x) is a wff containing x as its
only free variable, and suppose we wanted to know whether a given object
satisfies S(x). If this object has a name, say b, then form a new sentence S(b)
by replacing all free occurrences of x by the individual constant b. If the new
sentence S(b) is true, then the object satisfies the formula S(x); if the sentence
is not true, then the object does not satisfy the formula.

This works fine as long as the given object has a name. But first-order logic
doesn’t require that every object have a name. How can we define satisfaction
for objects that don’t have names? It is for this reason that Tarski’s World
has, in addition to the individual constants a, b, c, d, e, and f, a further list
n1, n2, n3, . . . of individual constants. If we want to know whether a certain
object without a name satisfies the formula S(x), we choose the first of these
individual constants not in use, say n6, temporarily name the given object
with this symbol, and then check to see whether the sentence S(n6) is true.
Thus, any small cube satisfies Cube(x) ∧ Small(x), because if we were to use
n6 as a name of such a small cube, then Cube(n6) ∧ Small(n6) would be a true
sentence.

Once we have the notion of satisfaction, we can easily describe when a
sentence of the form ∃x S(x) is true. It will be true if and only if there is at least semantics of ∃
one object that satisfies the constituent wff S(x). So ∃x (Cube(x) ∧ Small(x))
is true if there is at least one object that satisfies Cube(x) ∧ Small(x), that is,
if there is at least one small cube. Similarly, a sentence of the form ∀x S(x)
is true if and only if every object satisfies the constituent wff S(x). Thus semantics of ∀
∀x (Cube(x) → Small(x)) is true if every object satisfies Cube(x) → Small(x),
that is, if every object either isn’t a cube or is small.

This approach to satisfaction is conceptually simpler than some. A more
common approach is to avoid the introduction of new names by defining sat-
isfaction for wffs with an arbitrary number of free variables. We will not need
this for specifying the meaning of quantifiers, but we will need it in some of the
more advanced sections. For this reason, we postpone the general discussion
until later.

In giving the semantics for the quantifiers, we have implicitly assumed
that there is a relatively clear collection of objects that we are talking about.
For example, if we encounter the sentence ∀x Cube(x) in Tarski’s World, we
interpret this to be a claim about the objects depicted in the world window.
We do not judge it to be false just because the moon is not a cube. Similarly,
if we encounter the sentence ∀x (Even(x2) → Even(x)), we interpret this as a
claim about the natural numbers. It is true because every object in the domain
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we are talking about, natural numbers, satisfies the constituent wff.
In general, sentences containing quantifiers are only true or false relative to

some domain of discourse or domain of quantification. Sometimes the intendeddomain of discourse
domain contains all objects there are. Usually, though, the intended domain
is a much more restricted collection of things, say the people in the room,
or some particular set of physical objects, or some collection of numbers. In
this book, we will specify the domain explicitly unless it is clear from context
what domain is intended.

In the above discussion, we introduced some notation that we will use a
lot. Just as we often used P or Q to stand for a possibly complex sentence of
propositional logic, so too we will often use S(x) or P(y) to stand for a possibly
complex wff of first-order logic. Thus, P(y) may stand for a wff like:

∃x (LeftOf(x, y) ∨ RightOf(x, y))

When we then write, say, P(b), this stands for the result of replacing all the
free occurrences of y by the individual constant b:

∃x (LeftOf(x,b) ∨ RightOf(x, b))

It is important to understand that the variable displayed in parentheses
only stands for the free occurrences of the variable. For example, if S(x) is
used to refer to the wff we looked at earlier, where x appeared both free and
bound:

∃x Doctor(x) ∧ Smart(x)

then S(c) would indicate the following substitution instance, where c is sub-
stituted for the free occurrence of x:

∃x Doctor(x) ∧ Smart(c)

Remember

◦ Quantified sentences make claims about some intended domain of dis-
course.

◦ A sentence of the form ∀x S(x) is true if and only if the wff S(x) is
satisfied by every object in the domain of discourse.

◦ A sentence of the form ∃x S(x) is true if and only if the wff S(x) is
satisfied by some object in the domain of discourse.
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Table 9.1: Summary of the game rules

Form Your commitment Player to move Goal

true you Choose one of
P ∨ Q P, Q that

false Tarski’s World is true.

true Tarski’s World Choose one of
P ∧ Q P, Q that

false you is false.

true you Choose some b
∃x P(x) that satisfies

false Tarski’s World the wff P(x).

true Tarski’s World Choose some b
∀x P(x) that does not

false you satisfy P(x).

Replace ¬P
¬P either — by P

and switch
commitment.

Replace P → Q
P → Q either — by ¬P ∨ Q

and keep
commitment.

Replace P ↔ Q by
P ↔ Q either — (P → Q) ∧ (Q → P)

and keep
commitment.

Game rules for the quantifiers

The game rules for the quantifiers are more interesting than those for the
truth-functional connectives. With the connectives, moves in the game in-
volved choosing sentences that are parts of the sentence to which you are
committed. With the quantifier rules, however, moves consist in choosing ob-
jects, not sentences.

Suppose, for example, that you are committed to the truth of ∃x P(x). This game rules for ∃
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means that you are committed to there being an object that satisfies P(x).
Tarski’s World will ask you to live up to this commitment by finding such an
object. On the other hand, if you are committed to the falsity of ∃x P(x), then
you are committed to there being no object that satisfies P(x). In which case,
Tarski’s World gets to choose: it tries to find an object that does satisfy P(x),
thus contradicting your commitment.

The rules for ∀ are just the opposite. If you are committed to the truthgame rules for ∀
of ∀x P(x), then you are committed to every object satisfying P(x). Tarski’s
World will try to find an object not satisfying P(x), thus contradicting your
commitment. If, however, you are committed to the falsity of ∀x P(x), then you
are committed to there being some object that does not satisfy P(x). Tarski’s
World will ask you to live up to your commitment by finding such an object.

We have now seen all the game rules. We summarize them in Table 9.1.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 1. Open the files Game World and Game Sentences. Go through each sentence
and see if you can tell whether it is true or false. Check your evaluation.

I 2. Whether you evaluated the sentence correctly or not, play the game twice
for each sentence, first committed to true, then committed to false.
Make sure you understand how the game works at each step.

I 3. There is nothing to save except your understanding of the game.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

Exercises

9.4
✎

If you skipped the You try it section, go back and do it now. This is an easy but important
exercise that will familiarize you with the game rules for the quantifiers. There is nothing you
need to turn in or submit.

9.5
➶

(Evaluating sentences in a world) Open Peirce’s World and Peirce’s Sentences. There are 30
sentences in this file. Work through them, assessing their truth and playing the game when
necessary. Make sure you understand why they have the truth values they do. (You may need to
switch to the 2-D view for some of the sentences.) After you understand each of the sentences,
go back and make the false ones true by adding or deleting a negation sign. Submit the file
when the sentences all come out true in Peirce’s World.
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9.6
➶

(Evaluating sentences in a world) Open Leibniz’s World and Zorn’s Sentences. The sentences
in this file contain both quantifiers and the identity symbol. Work through them, assessing
their truth and playing the game when necessary. After you’re sure you understand why the
sentences get the values they do, modify the false ones to make them true. But this time you
can make any change you want except adding or deleting a negation sign.

9.7
✎

In English we sometimes say things like Every Jason is envied, meaning that everyone named
“Jason” is envied. For this reason, students are sometimes tempted to write expressions like
∀bCube(b) to mean something like Everything named b is a cube. Explain why this is not well
formed according to the grammatical rules on page 231.

Section 9.5

The four Aristotelian forms

Long before fol was codified, Aristotle studied the kinds of reasoning associ-
ated with quantified noun phrases like Every man, No man, and Some man,
expressions we would translate using our quantifier symbols. The four main
sentence forms treated in Aristotle’s logic were the following.

All P’s are Q’s
Some P’s are Q’s
No P’s are Q’s

Some P’s are not Q’s

Aristotelian forms

We will begin by looking at the first two of these forms, which we have
already discussed to a certain extent. These forms are translated as follows.
The form All P’s are Q’s is translated as:

∀x (P(x) → Q(x))

whereas the form Some P’s are Q’s is translated as:

∃x (P(x) ∧ Q(x))

Beginning students are often tempted to translate the latter more like the
former, namely as:

∃x (P(x) → Q(x))

This is in fact an extremely unnatural sentence of first-order logic. It is mean-
ingful, but it doesn’t mean what you might think. It is true just in case there
is an object which is either not a P or else is a Q, which is something quite
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different than saying that some P’s are Q’s. We can quickly illustrate this
difference with Tarski’s World.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 1. Use Tarski’s World to build a world containing a single large cube and
nothing else.

I 2. Write the sentence ∃x (Cube(x) → Large(x)) in the sentence window. Check
to see that the sentence is true in your world.

I 3. Now change the large cube into a small tetrahedron and check to see if
the sentence is true or false. Do you understand why the sentence is still
true? Even if you do, play the game twice, once committed to its being
false, once to its being true.

I 4. Add a second sentence that correctly expresses the claim that there is a
large cube. Make sure it is false in the current world but becomes true when
you add a large cube. Save your two sentences as Sentences Quantifier 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

The other two Aristotelian forms are translated similarly, but using a
negation. In particular No P’s are Q’s is translated

∀x (P(x) → ¬Q(x))

Many students, and one of the authors, finds it more natural to use the fol-
lowing, logically equivalent sentence:

¬∃x (P(x) ∧ Q(x))

Both of these assert that nothing that is a P is also a Q.
The last of the four forms, Some P’s are not Q’s, is translated by

∃x (P(x) ∧ ¬Q(x))

which says there is something that is a P but not a Q.
The four Aristotelian forms are the very simplest sorts of sentences built

using quantifiers. Since many of the more complicated forms we talk about
later are elaborations of these, you should learn them well.
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Remember

The four Aristotelian forms are translated as follows:

All P’s are Q’s. ∀x (P(x) → Q(x))
Some P’s are Q’s. ∃x (P(x) ∧ Q(x))

No P’s are Q’s. ∀x (P(x) → ¬Q(x))
Some P’s are not Q’s. ∃x (P(x) ∧ ¬Q(x))

Exercises

9.8
➶

If you skipped the You try it section, go back and do it now. Submit the file Sentences
Quantifier 1.

9.9
➶

(Building a world) Open Aristotle’s Sentences. Each of these sentences is of one of the four
Aristotelian forms. Build a single world where all the sentences in the file are true. As you
work through the sentences, you will find yourself successively modifying the world. Whenever
you make a change in the world, you had better go back and check that you haven’t made
any of the earlier sentences false. Then, when you are finished, verify that all the sentences are
really true and submit your world.

9.10
✎

(Common translation mistakes) Open Edgar’s Sentences and evaluate them in Edgar’s World.
Make sure you understand why each of them has the truth value it does. Play the game if
any of the evaluations surprise you. Which of these sentences would be a good translation of
There is a tetrahedron that is large? (Clearly this English sentence is false in Edgar’s World,
since there are no tetrahedra at all.) Which sentence would be a good translation of There is
a cube between a and b? Which would be a good translation of There is a large dodecahedron?
Express in clear English the claim made by each sentence in the file and turn in your answers
to your instructor.

9.11
➶|✎

(Common mistakes, part 2) Open Allan’s Sentences. In this file, sentences 1 and 4 are the
correct translations of Some dodecahedron is large and All tetrahedra are small, respectively.
Let’s investigate the logical relations between these and sentences 2 and 3.

1. Construct a world in which sentences 2 and 4 are true, but sentences 1 and 3 are false.
Save it as World 9.11.1. This shows that sentence 1 is not a consequence of 2, and
sentence 3 is not a consequence of 4.
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2. Can you construct a world in which sentence 3 is true and sentence 4 is false? If so, do
so and save it as World 9.11.2. If not, explain why you can’t and what this shows.

3. Can you construct a world in which sentence 1 is true and sentence 2 is false? If so, do
so and save it as World 9.11.3. If not, explain why not.

Submit any world files you constructed and turn in any explanations to your instructor.

9.12
➶

(Describing a world) Open Reichenbach’s World 1. Start a new sentence file where you will
describe some features of this world using sentences of the simple Aristotelian forms. Check
each of your sentences to see that it is indeed a sentence and that it is true in this world.

1. Use your first sentence to describe the size of all the tetrahedra.
2. Use your second sentence to describe the size of all the cubes.
3. Use your third sentence to express the truism that every dodecahedron is either small,

medium, or large.
4. Notice that some dodecahedron is large. Express this fact.
5. Observe that some dodecahedron is not large. Express this.
6. Notice that some dodecahedron is small. Express this fact.
7. Observe that some dodecahedron is not small. Express this.
8. Notice that some dodecahedron is neither large nor small. Express this.
9. Express the observation that no tetrahedron is large.

10. Express the fact that no cube is large.

Now change the sizes of the objects in the following way: make one of the cubes large, one
of the tetrahedra medium, and all the dodecahedra small. With these changes, the following
should come out false: 1, 2, 4, 7, 8, and 10. If not, then you have made an error in describing
the original world. Can you figure out what it is? Try making other changes and see if your
sentences have the expected truth values. Submit your sentence file.

9.13
➶

Assume we are working in an extension of the first-order language of arithmetic with the
additional predicates Even(x) and Prime(x), meaning, respectively, “x is an even number” and
“x is a prime number.” Create a sentence file in which you express the following claims:

1. Every even number is prime.
2. No even number is prime.
3. Some prime is even.
4. Some prime is not even.
5. Every prime is either odd or equal to 2.

[Note that you should assume your domain of discourse consists of the natural numbers, so
there is no need for a predicate Number(x). Also, remember that 2 is not a constant in the
language, so must be expressed using + and 1.]
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9.14
➶?

(Name that object) Open Maigret’s World and Maigret’s Sentences. The goal is to try to figure
out which objects have names, and what they are. You should be able to figure this out from
the sentences, all of which are true. Once you have come to your conclusion, assign the six
names to objects in the world in such a way that all the sentences do indeed evaluate as true.
Submit your modified world.

Section 9.6

Translating complex noun phrases

The first thing you have to learn in order to translate quantified English
expressions is how to treat complex noun phrases, expressions like “a boy
living in Omaha” or “every girl living in Duluth.” In this section we will
learn how to do this. We concentrate first on the former sort of noun phrase,
whose most natural translation involves an existential quantifier. Typically,
these will be noun phrases starting with one of the determiners some, a, and
an, including noun phrases like something. These are called existential noun existential

noun phrasesphrases, since they assert the existence of something or other. Of course two
of our four Aristotelian forms involve existential noun phrases, so we know
the general pattern: existential noun phrases are usually translated using ∃,
frequently together with ∧.

Let’s look at a simple example. Suppose we wanted to translate the sen-
tence A small, happy dog is at home. This sentence claims that there is an
object which is simultaneously a small, happy dog, and at home. We would
translate it as

∃x [(Small(x) ∧ Happy(x) ∧ Dog(x)) ∧ Home(x)]

We have put parentheses around the first three predicates to indicate that
they were all part of the translation of the subject noun phrase. But this is
not really necessary.

Universal noun phrases are those that begin with determiners like every, universal
noun phraseseach, and all. These are usually translated with the universal quantifier.

Sometimes noun phrases beginning with no and with any are also translated
with the universal quantifier. Two of our four Aristotelian forms involve
universal noun phrases, so we also know the general pattern here: universal
noun phrases are usually translated using ∀, frequently together with →.

Let’s consider the sentence Every small dog that is at home is happy. This
claims that everything with a complex property, that of being a small dog
at home, has another property, that of being happy. This suggests that the
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overall sentence has the form All A’s are B’s. But in this case, to express the
complex property that fills the “A” position, we will use a conjunction. Thus
it would be translated as

∀x [(Small(x) ∧ Dog(x) ∧ Home(x)) → Happy(x)]

In this case, the parentheses are not optional. Without them the expression
would not be well formed.

In both of the above examples, the complex noun phrase appeared at
the beginning of the English sentence, much like the quantifier in the fol

translation. Often, however, the English noun phrase will appear somewherenoun phrases in
non-subject positions else in the sentence, say as the direct object, and in these cases the fol

translation may be ordered very differently from the English sentence. For
example, the sentence Max owns a small, happy dog might be translated:

∃x [(Small(x) ∧ Happy(x) ∧ Dog(x)) ∧ Owns(max, x)]

which says there is a small, happy dog that Max owns. Similarly, the English
sentence Max owns every small, happy dog would end up turned around like
this:

∀x [(Small(x) ∧ Happy(x) ∧ Dog(x)) → Owns(max, x)]

You will be given lots of practice translating complex noun phrases in the
exercises that follow. First, however, we discuss some troublesome cases.

Remember

1. Translations of complex quantified noun phrases frequently employ
conjunctions of atomic predicates.

2. The order of an English sentence may not correspond to the order of
its fol translation.

Conversational implicature and quantification

You will find that translating quantified phrases is not difficult, as long as
quantifiers are not “nested” inside one another. There are, however, a couple
of points that sometimes present stumbling blocks.

One thing that often puzzles students has to do with the truth value of
sentences of the form

∀x (P(x) → Q(x))
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in worlds where there are no objects satisfying P(x). If you think about it,
you will see that in such a world the sentence is true simply because there
are no objects that satisfy the antecedent. This is called a vacuously true vacuously true

generalizationsgeneralization.
Consider, for example, the sentence

∀y(Tet(y) → Small(y))

which asserts that every tetrahedron is small. But imagine that it has been
asserted about a world in which there are no tetrahedra. In such a world the
sentence is true simply because there are no tetrahedra at all, small, medium,
or large. Consequently, it is impossible to find a counterexample, a tetrahedron
which is not small.

What strikes students as especially odd are examples like

∀y(Tet(y) → Cube(y))

On the face of it, such a sentence looks contradictory. But we see that if it is
asserted about a world in which there are no tetrahedra, then it is in fact true.
But that is the only way it can be true: if there are no tetrahedra. In other
words, the only way this sentence can be true is if it is vacuously true. Let’s
call generalizations with this property inherently vacuous. Thus, a sentence of inherently vacuous

generalizationsthe form ∀x (P(x) → Q(x)) is inherently vacuous if the only worlds in which it
is true are those in which ∀x ¬P(x) is true.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

J1. Open Dodgson’s Sentences. Note that the first sentence says that every
tetrahedron is large.

J2. Open Peano’s World. Sentence 1 is clearly false in this world, since the
small tetrahedron is a counterexample to the universal claim. What this
means is that if you play the game committed to the falsity of this claim,
then when Tarski’s World asks you to pick an object you will be able to
pick the small tetrahedron and win the game. Try this.

J3. Delete this counterexample and verify that sentence 1 is now true.

J4. Now open Peirce’s World. Verify that sentence 1 is again false, this time
because there are three counterexamples. (Now if you play the game com-
mitted to the falsity of the sentence, you will have three different winning
moves when asked to pick an object: you can pick any of the small tetra-
hedra and win.)
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I 5. Delete all three counterexamples, and evaluate the claim. Is the result
what you expected? The generalization is true, because there are no coun-
terexamples to it. It is what we called a vacuously true generalization,
since there are no objects that satisfy the antecedent. That is, there are
no tetrahedra at all, small, medium, or large. Confirm that all of sentences
1–3 are vacuously true in the current world.

I 6. Two more vacuously true sentences are given in sentences 4 and 5. How-
ever, these sentences are different in another respect. Each of the first three
sentences could have been non-vacuously true in a world, but these latter
two can only be true in worlds containing no tetrahedra. That is, they are
inherently vacuous.

I 7. Add a sixth generalization to the file that is vacuously true in Peirce’s
World but non-vacuously true in Peano’s World. (In both cases, make sure
you use the unmodified worlds.) Save your new sentence file as Sentences
Vacuous 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

In everyday conversation, it is rare to encounter a vacuously true gener-
alization, let alone an inherently vacuous generalization. When we do find
either of these, we feel that the speaker has misled us. For example, suppose a
professor claims “Every freshman who took the class got an A,” when in fact
no freshman took her class. Here we wouldn’t say that she lied, but we would
certainly say that she misled us. Her statement typically carries the conver-
sational implicature that there were freshmen in the class. If there were noconversational

implicature freshmen, then that’s what she would have said if she were being forthright.
Inherently vacuous claims are true only when they are misleading, so they
strike us as intuitively as false.

Another source of confusion concerns the relationship between the follow-
ing two Aristotelian sentences:

Some P’s are Q’s
All P’s are Q’s

Students often have the intuition that the first should contradict the second.
After all, why would you say that some student got an A if every student got
an A? If this intuition were right, then the correct translation of Some P’s
are Q’s would not be what we have suggested above, but rather
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∃x (P(x) ∧ Q(x)) ∧ ¬∀x (P(x) → Q(x))

It is easy to see, however, that the second conjunct of this sentence does not
represent part of the meaning of the sentence. It is, rather, another example
of a conversational implicature. It makes perfectly good sense to say “Some
student got an A on the exam. In fact, every student did.” If the proposed
conjunction were the right form of translation, this amplification would be
contradictory.

Remember

1. All P’s are Q’s does not imply, though it may conversationally suggest,
that there are some P’s.

2. Some P’s are Q’s does not imply, though it may conversationally sug-
gest, that not all P’s are Q’s.

Exercises

9.15
➶

If you skipped the You try it section, go back and do it now. Submit the file Sentences
Vacuous 1.

9.16
➶

(Translating existential noun phrases) Start a new sentence file and enter translations of the
following English sentences. Each will use the symbol ∃ exactly once. None will use the symbol
∀. As you go, check that your entries are well-formed sentences. By the way, you will find that
many of these English sentences are translated using the same first-order sentence.

1. Something is large.
2. Something is a cube.
3. Something is a large cube.
4. Some cube is large.
5. Some large cube is to the left of b.
6. A large cube is to the left of b.
7. b has a large cube to its left.
8. b is to the right of a large cube. [Hint: This translation should be almost the same as

the last, but it should contain the predicate symbol RightOf.]
9. Something to the left of b is in back of c.
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10. A large cube to the left of b is in back of c.
11. Some large cube is to the left of b and in back of c.
12. Some dodecahedron is not large.
13. Something is not a large dodecahedron.
14. It’s not the case that something is a large dodecahedron.
15. b is not to the left of a cube. [Warning: This sentence is ambiguous. Can you think of

two importantly different translations? One starts with ∃, the other starts with ¬. Use
the second of these for your translation, since this is the most natural reading of the
English sentence.]

Now let’s check the translations against a world. Open Montague’s World.

◦ Notice that all the English sentences above are true in this world. Check that all your
translations are also true. If not, you have made a mistake. Can you figure out what is
wrong with your translation?

◦ Move the large cube to the back right corner of the grid. Observe that English sentences
5, 6, 7, 8, 10, 11, and 15 are now false, while the rest remain true. Check that the same
holds of your translations. If not, you have made a mistake. Figure out what is wrong
with your translation and fix it.

◦ Now make the large cube small. The English sentences 1, 3, 4, 5, 6, 7, 8, 10, 11, and
15 are false in the modified world, the rest are true. Again, check that your translations
have the same truth values. If not, figure out what is wrong.

◦ Finally, move c straight back to the back row, and make the dodecahedron large. All the
English sentences other than 1, 2, and 13 are false. Check that the same holds for your
translations. If not, figure out where you have gone wrong and fix them.

When you are satisfied that your translations are correct, submit your sentence file.

9.17
➶

(Translating universal noun phrases) Start a new sentence file, and enter translations of the
following sentences. This time each translation will contain exactly one ∀ and no ∃.

1. All cubes are small.
2. Each small cube is to the right of a.
3. a is to the left of every dodecahedron.
4. Every medium tetrahedron is in front of b.

Chapter 9



Translating complex noun phrases / 249

5. Each cube is either in front of b or in back of a.
6. Every cube is to the right of a and to the left of b.
7. Everything between a and b is a cube.
8. Everything smaller than a is a cube.
9. All dodecahedra are not small. [Note: Most people find this sentence ambiguous. Can

you find both readings? One starts with ∀, the other with ¬. Use the former, the one
that means all the dodecahedra are either medium or large.]

10. No dodecahedron is small.
11. a does not adjoin everything. [Note: This sentence is ambiguous. We want you to

interpret it as a denial of the claim that a adjoins everything.]
12. a does not adjoin anything. [Note: These last two sentences mean different things,

though they can both be translated using ∀,¬, and Adjoins.]
13. a is not to the right of any cube.
14. (?) If something is a cube, then it is not in the same column as either a or b. [Warning:

While this sentence contains the noun phrase “something,” it is actually making a
universal claim, and so should be translated with ∀. You might first try to paraphrase
it using the English phrase “every cube.”]

15. (?) Something is a cube if and only if it is not in the same column as either a or b.

Now let’s check the translations in some worlds.

◦ Open Claire’s World. Check to see that all the English sentences are true in this world,
then make sure the same holds of your translations. If you have made any mistakes, fix
them.

◦ Adjust Claire’s World by moving a directly in front of c. With this change, the English
sentences 2, 6, and 12–15 are false, while the rest are true. Make sure that the same holds
of your translations. If not, try to figure out what is wrong and fix it.

◦ Next, open Wittgenstein’s World. Observe that the English sentences 2, 3, 7, 8, 11, 12,
and 13 are true, but the rest are false. Check that the same holds for your translations.
If not, try to fix them.

◦ Finally, open Venn’s World. English sentences 2, 4, 7, and 11–14 are true; does the same
hold for your translations?

When you are satisfied that your translations are correct, submit your sentence file.

Section 9.6



250 / Introduction to Quantification

9.18
➶

(Translation) Open Leibniz’s World. This time, we will translate some sentences while looking
at the world they are meant to describe.

◦ Start a new sentence file, and enter translations of the following sentences. Each of the
English sentences is true in this world. As you go, check to make sure that your translation
is indeed a true sentence.

1. There are no medium-sized cubes.
2. Nothing is in front of b.
3. Every cube is either in front of or in back of e.
4. No cube is between a and c.
5. Everything is in the same column as a, b, or c.

◦ Now let’s change the world so that none of the English sentences is true. We can do this
as follows. First change b into a medium cube. Next, delete the leftmost tetrahedron and
move b to exactly the position just vacated by the late tetrahedron. Finally, add a small
cube to the world, locating it exactly where b used to sit. If your answers to 1–5 are
correct, all of the translations should now be false. Verify that they are.

◦ Make various changes to the world, so that some of the English sentences come out true
and some come out false. Then check to see that the truth values of your translations
track the truth values of the English sentences.

9.19
➶?

Start a new sentence file and translate the following into fol using the symbols from Table 1.2,
page 30. Note that all of your translations will involve quantifiers, though this may not be
obvious from the English sentences. (Some of your translations will also require the identity
predicate.)

1. People are not pets.
2. Pets are not people.
3. Scruffy was not fed at either 2:00 or 2:05. [Remember, Fed is a ternary predicate.]
4. Claire fed Folly between 2:00 and 3:00.
5. Claire gave a pet to Max at 2:00.
6. Claire had only hungry pets at 2:00.
7. Of all the students, only Claire was angry at 3:00.
8. No one fed Folly at 2:00.
9. If someone fed Pris at 2:00, they were angry.

10. Whoever owned Pris at 2:00 was angry five minutes later.

9.20
✎?

Using Table 1.2, page 30, translate the following into colloquial English.
1. ∀t ¬Gave(claire, folly,max, t)
2. ∀x (Pet(x) → Hungry(x, 2:00))
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3. ∀y (Person(y) → ¬Owned(y,pris, 2:00))
4. ¬∃x (Angry(x, 2:00) ∧ Student(x) ∧ Fed(x, carl, 2:00))
5. ∀x ((Pet(x) ∧ Owned(max, x, 2:00)) → Gave(max, x, claire, 2:00))

9.21
✎??

Translate the following into fol, introducing names, predicates, and function symbols as
needed. As usual, explain your predicates and function symbols, and any shortcomings in
your translations. If you assume a particular domain of discourse, mention that as well.

1. Only the brave know how to forgive.
2. No man is an island.
3. I care for nobody, not I,

If no one cares for me.
4. Every nation has the government it deserves.
5. There are no certainties, save logic.
6. Misery (that is, a miserable person) loves company.
7. All that glitters is not gold.
8. There was a jolly miller once

Lived on the River Dee.
9. If you praise everybody, you praise nobody.

10. Something is rotten in the state of Denmark.

Section 9.7

Quantifiers and function symbols

When we first introduced function symbols in Chapter 1, we presented them
as a way to form complex names from other names. Thus father(father(max))
refers to Max’s father’s father, and (1 + (1 + 1)) refers to the number 3. Now
that we have variables and quantifiers, function symbols become much more
useful than they were before. For example, they allow us to express in a very
compact way things like:

∀x Nicer(father(father(x)), father(x))

This sentence says that everyone’s paternal grandfather is nicer than their
father, a false belief held by many children.

Notice that even if our language had individual constants naming every-
one’s father (and their fathers’ fathers and so on), we could not express the
above claim in a single sentence without using the function symbol father.
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True, if we added the binary predicate FatherOf , we could get the same point
across, but the sentence would be considerably more complex. It would require
three universal quantifiers, something we haven’t talked about yet:

∀x ∀y ∀z ((FatherOf(x, y) ∧ FatherOf(y, z)) → Nicer(x, y))

In our informal mathematical examples, we have in fact been using func-
tion symbols along with variables throughout the book. For example in Chap-
ter 8, we proved the conditional:

Even(n2) → Even(n)

This sentence is only partly in our official language of first-order arithmetic.
Had we had quantifiers at the time, we could have expressed the intended
claim using a universal quantifier and the binary function symbol ×:

∀y (Even(y × y) → Even(y))

The blocks language does not have function symbols, though we could
have introduced some. Remember the four function symbols, fm, bm, lm and
rm, that we discussed in Chapter 1 (page 33). The idea was that these meant
frontmost, backmost, leftmost, and rightmost, respectively, where, for instance,
the complex term lm(b) referred to the leftmost block in the same row as b.
Thus a formula like

lm(x) = x

is satisfied by a block b if and only if b is the leftmost block in its row. If we
append a universal quantifier to this atomic wff, we get the sentence

∀x (lm(x) = x)

which is true in exactly those worlds that have at most one block in each
row. This claim could be expressed in the blocks language without function
symbols, but again it would require a sentence with more than one quantifier.

To check if you understand these function symbols, see if you can tell
which of the following two sentences is true in all worlds and which makes a
substantive claim, true in some worlds and false in others:

∀x (lm(lm(x)) = lm(x))
∀x (fm(lm(x)) = lm(x))
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In reading a term like fm(lm(b)), remember that you apply the inner func-
tion first, then the outer. That is, you first find the leftmost block in the
row containing b—call it c—and then find the frontmost block in the column
containing c.

Function symbols are extremely useful and important in applications of
fol. We close this chapter with some problems that use function symbols.

Exercises

9.22
✎

Assume that we have expanded the blocks language to include the function symbols fm, bm, lm
and rm described earlier. Then the following formulas would all be sentences of the language:

1. ∃y (fm(y) = e)
2. ∃x (lm(x) = b ∧ x 6= b)
3. ∀x Small(fm(x))
4. ∀x (Small(x) ↔ fm(x) = x)
5. ∀x (Cube(x) → Dodec(lm(x))
6. ∀x (rm(lm(x)) = x)
7. ∀x (fm(bm(x)) = x)
8. ∀x (fm(x) 6= x → Tet(fm(x)))
9. ∀x (lm(x) = b) → SameRow(x, b))

10. ∃y (lm(fm(y)) = fm(lm(y)) ∧ ¬Small(y))

Fill in the following table with true’s and false’s according to whether the indicated sentence
is true or false in the indicated world. Since Tarski’s World does not understand the function
symbols, you will not be able to check your answers. We have filled in a few of the entries for
you. Turn in the completed table to your instructor.

Malcev’s Bolzano’s Boole’s Wittgenstein’s
1. false

2.
3. false

4.
5. true

6.
7.
8. true

9.
10.
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Figure 9.1: A family tree, with heights.

9.23
✎

Consider the first-order language with function symbols mother and father, plus names for each
of the people shown in the family tree in Figure 9.1. Here are some atomic wffs, each with a
single free variable x. For each, pick a person for x that satisfies the wff, if you can. If there is
no such person indicated in the family tree, say so.

1. mother(x) = ellen
2. father(x) = jon
3. mother(father(x)) = mary
4. father(mother(x)) = john
5. mother(father(x)) = addie
6. father(mother(father(x))) = john
7. father(father(mother(x))) = archie
8. father(father(jim)) = x
9. father(father(mother(claire))) = x

10. mother(mother(mary)) = mother(x)

9.24
✎

Again using Figure 9.1, figure out which of the sentences listed below are true. Assume that
the domain of discourse consists of the people listed in the family tree.

1. ∃x Taller(x,mother(x))
2. ∀x Taller(father(x),mother(x))
3. ∃y Taller(mother(mother(y)),mother(father(y)))
4. ∀z [z 6= father(claire) → Taller(father(claire), z)]
5. ∀x [Taller(x, father(x)) → Taller(x, claire)]
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9.25
➶

Assume you are working in an extension of the first-order language of arithmetic with the
additional predicates Even(x) and Prime(x). Express the following in this language, explicitly
using the function symbol ×, as in z × z, rather than z2. Note that you do not have a predicate
Square(x).

1. No square is prime.
2. Some square is odd.
3. The square of any prime is prime.
4. The square of any prime other than 2 is odd.
5. The square of any number greater than 1 is greater than the number itself.

Submit your sentence file.

Section 9.8

Alternative notation

The notation we have been using for the quantifiers is currently the most
popular. An older notation that is still in some use employs (x) for ∀x. Thus,
for example, in this notation our

∀x [Tet(x) → Small(x)]

would be written:
(x) [Tet(x) → Small(x)]

Another notation that is occasionally used exploits the similarity between
universal quantification and conjunction by writing

∧
x instead of ∀x. In this

notation our sentence would be rendered:
∧

x [Tet(x) → Small(x)]

Finally, you will sometimes encounter the universal quantifier written Πx, as
in:

Πx [Tet(x) → Small(x)]

Similar variants of ∃x are in use. One version writes (∃x) or (Ex). Other
versions write

∨
x or Σx. Thus the following are notational variants of one

another.

∃x [Cube(x) ∧ Large(x)]
(Ex)[Cube(x) ∧ Large(x)]∨

x [Cube(x) ∧ Large(x)]
Σx [Cube(x) ∧ Large(x)]
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Remember

The following table summarizes the alternative notations.

Our notation Common equivalents
¬P ∼ P, P, !P, Np

P ∧ Q P&Q, P&&Q, P · Q, PQ, Kpq

P ∨ Q P | Q, P ‖ Q, Apq

P → Q P ⊃ Q, Cpq

P ↔ Q P ≡ Q, Epq
∀x S(x) (x)S(x),

∧
x S(x), Πx S(x)

∃x S(x) (∃x)S(x), (Ex)S(x),
∨

x S(x), Σx S(x)

Exercises

9.26
➶

(Overcoming dialect differences) The following are all sentences of fol. But they’re in different
dialects. Start a new sentence file in Tarski’s World and translate them into our dialect.

1. ∼ (x)(P(x) ⊃ Q(x))

2. Σy((P(y) ≡ Q(y)) & R(y))

3.
∧

x P(x) ≡
∨

x P(x)
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Chapter 10

The Logic of Quantifiers

We have now introduced all of the symbols of first-order logic, though we’re
nowhere near finished learning all there is to know about them. Before we
go on, we should explain where the “first-order” in “first-order logic” comes first-order logic
from. It has to do with the kinds of things that our quantifiers quantify over.
In fol we are allowed to say things like ∃x Large(x), that is, there is something
that has the property of being large. But we can’t say things like there is some
property that Max has: ∃P P(max).

First-order quantifiers allow us to make quantity claims about ordinary
objects: blocks, people, numbers, sets, and so forth. (Note that we are very
liberal about what an ordinary object is.) If, in addition, we want to make
quantity claims about properties of the objects in our domain of discourse—
say we want to claim that Max and Claire share exactly two properties—then
we need what is known as second-order quantifiers. Since our language only second-order

quantifiershas first-order quantifiers, it is known as the language of first-order logic: fol.
Now that we’ve learned the basics of how to express ourselves using first-

order quantifiers, we can turn our attention to the central issues of logical
consequence and logical truth:

What quantified sentences are logical truths?
What arguments involving quantification are valid?
What are the valid inference patterns involving quantifiers?
How can we formalize these valid patterns of inference?

In this chapter we take up the first two questions; the remaining two are
treated in Chapters 12 and 13.

Section 10.1

Tautologies and quantification

Introducing quantifiers required a much more radical change to the language
than introducing additional truth-functional connectives. Because of the way
quantifiers work, we had to introduce the notion of a well-formed formula,
something very much like a sentence except that it can contain free vari-
ables. Quantifiers attach to these wffs, bind their variables, and thereby form
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sentences from formulas that aren’t themselves sentences. This is strikingly
different from the behavior of truth-functional operators.

Given how different quantified sentences are from anything we’ve seen
before, the first thing we need to do is ask how much of the logic of truth
functions applies to sentences containing quantifiers. In particular, do the
notions of tautology, tautological consequence, and tautological equivalence
apply to our new sentences, and if so, how?

The answer is that these notions do apply to quantified sentences, but theyquantified sentences
and tautological
consequence

must be applied with care. Students often ignore the presence of quantifiers
in sentences and try to use what they learned in propositional logic wherever
it seems vaguely applicable. This can be very dangerous. For example, you
might rightly notice that the following arguments are logically valid:

1. ∀x (Cube(x) → Small(x))
∀x Cube(x)

∀x Small(x)

2. ∀x Cube(x)
∀x Small(x)

∀x (Cube(x) ∧ Small(x))

The first of these is valid because if every cube is small, and everything is
a cube, then everything is small. The second is valid because if everything
is a cube, and everything is small, then everything is a small cube. But are
these arguments tautologically valid? Or, to put it another way, can we simply
ignore the quantifiers appearing in these arguments and apply the principles
of modus ponens and ∧ Intro?

It doesn’t take long to see that ignoring quantifiers doesn’t work. For ex-
ample, neither of the following arguments is valid, tautologically or otherwise:

3. ∃x (Cube(x) → Small(x))
∃x Cube(x)

∃x Small(x)

4. ∃x Cube(x)
∃x Small(x)

∃x (Cube(x) ∧ Small(x))

The premises of argument 3 will be true in a world containing a large cube
and a large dodecahedron, but nothing small. The premises of argument 4 will
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be true in a world containing a large cube and a small dodecahedron, but no
small cube.

These counterexamples not only show that arguments 3 and 4 are invalid,
they also show that 1 and 2 are not tautologically valid, that is, valid solely
in virtue of the meanings of the truth-functional connectives. Clearly, the
meaning of ∀ is an essential factor in the validity of 1 and 2, for if it were not,
3 and 4 should be valid as well. Or, to put it the other way around, if ∀ meant
the same thing as ∃, then 1 and 2 would be no more valid than 3 and 4.

A similar point can be made about over-hasty applications of the notion
of tautology. For example, the following sentence, which says that either there tautology and

quantificationis a cube or there is something which is not a cube, is logically true:

∃x Cube(x) ∨ ∃x ¬Cube(x)

But is this sentence a tautology, true simply in virtue of the meanings of
the truth-functional connectives? Again, the answer is no, as we can see by
considering what happens when we replace the existential quantifier with a
universal quantifier:

∀x Cube(x) ∨ ∀x ¬Cube(x)

This sentence says that either everything is a cube or everything is not a
cube, which of course is false in any world inhabited by a mixture of cubes
and non-cubes.

Are there no tautologies in a language containing quantifiers? Of course
there are, but you don’t find them by pretending the quantifiers simply aren’t
there. For example, the following sentence is a tautology:

∀x Cube(x) ∨ ¬∀x Cube(x)

This sentence, unlike the previous one, is an instance of the law of excluded
middle. It says that either everything is a cube or it’s not the case that ev-
erything is a cube, and that’s going to be true so long as the constituent
sentence ∀x Cube(x) has a definite truth value. It would hold equally well if
the constituent sentence were ∃x Cube(x), a fact you could recognize even if
you didn’t know exactly what this sentence meant.

Recall that if we have a tautology and replace its atomic sentences by
complex sentences, the result is still a tautology, and hence also a logical
truth. This holds as long as the things we are substituting are sentences that
have definite truth values (whether true or not). We can use this observation
to discover a large number of quantified sentences that are logical truths.
Consider the following tautology:

(A → B) → (¬B → ¬A)
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If we replace A and B by any quantified sentences of fol, the result is still
a tautology. For example, we might replace A by ∃y (P(y) ∨ R(y)) and B by
∀x (P(x) ∧ Q(x)). The result is the following rather complex sentence, which
we dub “Phred” (pronounced “Fred”):

(∃y (P(y) ∨ R(y)) → ∀x (P(x) ∧ Q(x))) →
(¬∀x (P(x) ∧ Q(x)) → ¬∃y (P(y) ∨ R(y)))

If we just came across Phred, it would be hard to know what it even meant.
But since it is a substitution instance of a tautology, we know that it is in fact
a logical truth. In a similar way, we could make many other substitutions, in
this and other tautologies, to discover many complex logical truths.

There is a small difficulty with this method of identifying the tautologies
of fol. A given sentence can typically be obtained by substitution from many
different sentences, some tautologies, some not. Phred, for example, can be
obtained from all of the following (and many others) by means of substitution:

A

A → B

(A → B) → C

A → (B → C)

(A → B) → (C → D)

(A → B) → (¬B → C)

(A → B) → (¬B → ¬A)

For instance, we can obtain Phred from the fourth of these by substituting as
follows:

◦ Replace A by (∃y (P(y) ∨ R(y)) → ∀x (P(x) ∧ Q(x)))

◦ Replace B by ¬∀x (P(x) ∧ Q(x))

◦ Replace C by ¬∃y (P(y) ∨ R(y)).

But of the seven candidates for substitution, only the last, (A → B) →
(¬B → ¬A), is a tautology. If a sentence can be obtained from so many dif-
ferent formulas by substitution, how do we know which one to look at to see
if it is a tautology?

Here is a simple method for solving this problem: The basic idea is that
for purposes of testing whether a sentence is a tautology, we must treat any
quantified constituent of the sentence as if it is atomic. We don’t look “inside”
quantified parts of the sentence. But we do pay attention to all of the truth-
functional connectives that are not in the scope of a quantifier. We’ll describe
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a procedure for replacing the quantified and atomic constituents of a sentence
with letters, A, B, C, . . . , so that the result displays all and only the truth-
functional connectives that aren’t inside quantified pieces of the sentence.
The result of applying this procedure is called the truth-functional form of truth-functional form
the original sentence.

The procedure has two main steps. The first annotates the sentence by
labeling the constituents that we must treat as atomic, either because they
are quantified or because they really are atomic. Applied to Phred, it yields
the following result:

(∃y (P(y) ∨ R(y))
A

→ ∀x (P(x) ∧ Q(x))
B
) →

(¬∀x (P(x) ∧ Q(x))
B

→ ¬∃y (P(y) ∨ R(y))
A
)

The second step replaces the underlined constituents with the sentence letters
used to label them:

(A → B) → (¬B → ¬A)

We state the procedure as a little algorithm, a series of step-by-step in-
structions for finding the truth-functional form of an arbitrary sentence S of
fol.

Truth-functional form algorithm: Start at the beginning of sentence S and truth-functional
form algorithmproceed to the right. When you come to a quantifier or an atomic sentence,

begin to underline that portion of the sentence. If you encountered a quantifier,
underline the quantifier and the entire formula that it is applied to. (This will
either be the atomic wff that immediately follows the quantifier or, if there are
parentheses, the formula enclosed by the parentheses.) If you encountered an
atomic sentence, just underline the atomic sentence. When you come to the
end of your underline, assign the underlined constituent a sentence letter (A,
B, C, . . . ). If an identical constituent already appears earlier in the sentence,
use the same sentence letter as before; otherwise, assign the first sentence
letter not yet used as a label. Once you’ve labeled the constituent, continue
from that point. Finally, when you come to the end of the sentence, replace
each underlined constituent with the sentence letter that labels it. The result
is the truth-functional form of S.

Let’s see how we would apply this algorithm to another sentence. See if you
understand each of the following steps, which begin with a quantified sentence
of fol, and end with that sentence’s truth-functional form. Pay particular
attention to steps 4 and 5. In step 4, do you understand why the label A
is used again? In step 5, do you understand why ∀y Small(y) gets labeled C
rather than B?

Section 10.1



262 / The Logic of Quantifiers

1. ¬(Tet(d) ∧ ∀x Small(x)) → (¬Tet(d) ∨ ¬∀y Small(y))

2. ¬(Tet(d)
A

∧ ∀x Small(x)) → (¬Tet(d) ∨ ¬∀y Small(y))

3. ¬(Tet(d)
A

∧ ∀x Small(x)
B
) → (¬Tet(d) ∨ ¬∀y Small(y))

4. ¬(Tet(d)
A

∧ ∀x Small(x)
B
) → (¬Tet(d)

A
∨ ¬∀y Small(y))

5. ¬(Tet(d)
A

∧ ∀x Small(x)
B
) → (¬Tet(d)

A
∨ ¬∀y Small(y)

C
)

6. ¬(A ∧ B) → (¬A ∨ ¬C)

We are now in a position to say exactly which sentences of the quantified
language are tautologies.

Definition A quantified sentence of fol is said to be a tautology if and onlytautologies of fol

if its truth-functional form is a tautology.

Here is a table displaying six first-order sentences and their truth-functional
forms. Notice that although four of the sentences in the left column are log-
ically true, only the first two are tautologies, as shown by their t.f. forms in
the right column.

FO sentence t.f. form

∀x Cube(x) ∨ ¬∀x Cube(x) A ∨ ¬A

(∃y Tet(y) ∧ ∀zSmall(z)) → ∀z Small(z) (A ∧ B) → B

∀x Cube(x) ∨ ∃y Tet(y) A ∨ B

∀x Cube(x) → Cube(a) A → B

∀x (Cube(x) ∨ ¬Cube(x)) A

∀x (Cube(x) → Small(x)) ∨ ∃x Dodec(x) A ∨ B

A useful feature of the truth-functional form algorithm is that it can be
applied to arguments as easily as it can be applied to sentences. All you do is
continue the procedure until you come to the end of the argument, rather than
stopping at the end of the first sentence. For example, applied to argument 3
on page 258, we first get the labeled argument:

∃x (Cube(x) → Small(x))
A

∃x Cube(x)
B

∃x Small(x)
C

and then the truth-functional form:
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A
B

C

This shows that argument 3 is not an instance of → Elim. But when we apply
the algorithm to a deceptively similar argument:

∃x Cube(x)
A

→ ∃x Small(x)
B

∃x Cube(x)
A

∃x Small(x)
B

we see that this argument is indeed an instance of modus ponens:

A → B
A

B

The Taut Con procedure of Fitch uses the truth-functional form algo-
rithm so you can use it to check whether a quantified sentence is a tautology,
or whether it is a tautological consequence of other sentences.

The truth-functional form algorithm allows us to apply all of the concepts
of propositional logic to sentences and arguments containing quantifiers. But
we have also encountered several examples of logical truths that are not tau-
tologies, and logically valid arguments that are not tautologically valid. In the
next section we look at these.
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Remember

1. Use the truth-functional form algorithm to determine the truth-
functional form of a sentence or argument containing quantifiers.

2. The truth-functional form of a sentence shows how the sentence is
built up from atomic and quantified sentences using truth-functional
connectives.

3. A quantified sentence is a tautology if and only if its truth-functional
form is a tautology.

4. Every tautology is a logical truth, but among quantified sentences
there are many logical truths that are not tautologies.

5. Similarly, there are many logically valid arguments of fol that are not
tautologically valid.

Exercises

10.1
✎

For each of the following, use the truth-functional form algorithm to annotate the sentence and
determine its form. Then classify the sentence as (a) a tautology, (b) a logical truth but not
a tautology, or (c) not a logical truth. (If your answer is (a), feel free to use the Taut Con
routine in Fitch to check your answer.)

1. ∀x (x = x)
2. ∃x Cube(x) → Cube(a)
3. Cube(a) → ∃x Cube(x)
4. ∀x (Cube(x) ∧ Small(x)) → ∀x (Small(x) ∧ Cube(x))
5. ∀v (Cube(v) ↔ Small(v)) ↔ ¬¬∀v (Cube(v) ↔ Small(v))
6. ∀x Cube(x) → ¬∃x ¬Cube(x)
7. [∀z (Cube(z) → Large(z)) ∧ Cube(b)] → Large(b)
8. ∃x Cube(x) → (∃x Cube(x) ∨ ∃y Dodec(y))
9. (∃x Cube(x) ∨ ∃y Dodec(y)) → ∃x Cube(x)

10. [(∀u Cube(u) → ∀u Small(u)) ∧ ¬∀u Small(u)] → ¬∀uCube(u)
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Turn in your answers by filling in a table of the following form:

Annotated sentence Truth-functional form a/b/c

1.
...

In the following six exercises, use the truth-functional form algorithm to annotate the argument. Then
write out its truth-functional form. Finally, assess whether the argument is (a) tautologically valid, (b)
logically but not tautologically valid, or (c) invalid. Feel free to check your answers with Taut Con.
(Exercises 10.6 and 10.7 are, by the way, particularly relevant to the proof of the Completeness Theorem
for F given in Chapter 19.)

10.2
✎

Cube(a) ∧ Cube(b)
Small(a) ∧ Large(b)

∃x (Cube(x) ∧ Small(x)) ∧ ∃x (Cube(x) ∧ Large(x))

10.3
✎

∀x Cube(x) → ∃y Small(y)
¬∃y Small(y)

∃x ¬Cube(x)

10.4
✎

∀x Cube(x) → ∃y Small(y)
¬∃y Small(y)

¬∀x Cube(x)

10.5
✎?

∀x (Tet(x) → LeftOf(x, b)) ∨ ∀x (Tet(x) → RightOf(x,b))
∃x (Tet(x) ∧ SameCol(x,b)) → ¬∀x (Tet(x) → LeftOf(x, b))
∀x (Tet(x) → RightOf(x, b)) → ¬∃x (Tet(x) ∧ SameCol(x,b))

¬∃x (Tet(x) ∧ SameCol(x, b))

10.6
✎?

∃x (Cube(x) ∧ Large(x)) → (Cube(c) ∧ Large(c))
Tet(c) → ¬Cube(c)
Tet(c)

∀x ¬(Cube(x) ∧ Large(x))
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10.7
✎?

∃x (Cube(x) ∧ Large(x)) → (Cube(c) ∧ Large(c))
∀x ¬(Cube(x) ∧ Large(x)) ↔ ¬∃x (Cube(x) ∧ Large(x))
Tet(c) → ¬Cube(c)
Tet(c)

∀x ¬(Cube(x) ∧ Large(x))

[In 10.6 and 10.7, we could think of the first premise as a way of introducing a new constant, c, by
means of the assertion: Let the constant c name a large cube, if there are any; otherwise, it may name
any object. Sentences of this sort are called Henkin witnessing axioms, and are put to important use
in proving completeness for F . The arguments show that if a constant introduced in this way ends up
naming a tetrahedron, it can only be because there aren’t any large cubes.]

Section 10.2

First-order validity and consequence

When we first discussed the intuitive notions of logical truth and logical con-
sequence, we appealed to the idea of a logically possible circumstance. We
described a logically valid argument, for example, as one whose conclusion is
true in every possible circumstance in which all the premises are true. When
we needed more precision than this description allowed, we introduced truth
tables and the concepts of tautology and tautological consequence. These
concepts add precision by modeling possible circumstances as rows of a truth
table. We have seen that this move does a good job of capturing the intu-
itive notions of logical truth and logical consequence—provided we limit our
attention to the truth-functional connectives.

Unfortunately, the concepts of tautology and tautological consequence
don’t get us far in first-order logic. We need a more refined method for ana-
lyzing logical truths and logically valid arguments when they depend on the
quantifiers and identity. We will introduce these notions in this chapter, and
develop them in greater detail in Chapter 18. The notions will give us, for
first-order logic, what the concepts of tautology and tautological consequence
gave us for propositional logic: precise approximations of the notions of logical
truth and logical consequence.

First, a terminological point. It is a regrettable fact that there is no single
term like “tautological” that logicians consistently use when applying the
various logical notions to first-order sentences and arguments. That is, we
don’t have a uniform way of filling out the table:
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Propositional logic First-order logic General notion

Tautology ?? Logical truth
Tautological consequence ?? Logical consequence
Tautological equivalence ?? Logical equivalence

One option would be to use the terms first-order logical truth, first-order
logical consequence, and first-order logical equivalence. But these are just too
much of a mouthful for repeated use, so we will abbreviate them. Instead of
first-order logical consequence, we will use first-order consequence or simply first-order consequence
FO consequence, and for first-order logical equivalence, we’ll use first-order
(or FO) equivalence. We will not, however, use first-order truth for first-order
logical truth, since this might suggest that we are talking about a true (but
not logically true) sentence of first-order logic.

For first-order logical truth, it is standard to use the term first-order va-
lidity. This may surprise you, since so far we’ve only used “valid” to apply first-order validity
to arguments, not sentences. This is a slight terminological inconsistency, but
it shouldn’t cause any problems so long as you’re aware of it. In first-order
logic, we use valid to apply to both sentences and arguments: to sentences
that can’t be false, and to arguments whose conclusions can’t be false if their
premises are true. Our completed table, then, looks like this:

Propositional logic First-order logic General notion

Tautology FO validity Logical truth
Tautological consequence FO consequence Logical consequence
Tautological equivalence FO equivalence Logical equivalence

So what do we mean by the notions of first-order validity, first-order con-
sequence and first-order equivalence? These concepts are meant to apply to
those logical truths, consequences, and equivalences that are such solely in
virtue of the truth-functional connectives, the quantifiers, and the identity
symbol. Thus, for purposes of determining first-order consequence, we ignore
the specific meanings of names, function symbols, and predicates other than
identity.

There are two reasons for treating identity along with the quantifiers and identity
connectives, rather than like any other predicate. The first is that almost
all first-order languages use =. Other predicates, by contrast, vary from one
first-order language to another. For example, the blocks language uses the
binary predicate LeftOf , while the language of set theory uses ∈, and the
language of arithmetic uses <. This makes it a reasonable division of labor to
try first to understand the logic implicit in the connectives, quantifiers, and
identity, without regard to the meanings of the other predicates, names, and
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function symbols. The second reason is that the identity predicate is crucial for
expressing many quantified noun phrases of English. For instance, we’ll soon
see how to express things like at least three tetrahedra and at most four cubes,
but to express these in fol we need identity in addition to the quantifiers ∀
and ∃. There is a sense in which identity and the quantifiers go hand in hand.

If we can recognize that a sentence is logically true without knowing the
meanings of the names or predicates it contains (other than identity), then
we’ll say the sentence is a first-order validity. Let’s consider some examples
from the blocks language:

∀x SameSize(x, x)
∀x Cube(x) → Cube(b)

(Cube(b) ∧ b = c) → Cube(c)
(Small(b) ∧ SameSize(b, c)) → Small(c)

All of these are arguably logical truths of the blocks language, but only
the middle two are first-order validities. One way to see this is to replace
the familiar blocks language predicates with nonsensical predicates, like thoseusing nonsense

predicates to test for
FO validity

used in Lewis Carroll’s famous poem Jabberwocky.1 The results would look
something like this:

∀x Outgrabe(x, x)
∀x Tove(x) → Tove(b)

(Tove(b) ∧ b = c) → Tove(c)
(Slithy(b) ∧ Outgrabe(b, c)) → Slithy(c)

Notice that we can still see that the second and third sentences must be
true, whatever the predicate Tove may mean. If everything is a tove, and b is
an object in the domain of discourse, then b must surely be a tove. Similarly,
if b is a tove, and c is the same object as b, then c is a tove as well. Contrast
this with the first and fourth sentences, which no longer look logically true
at all. Though we know that everything is the same size as itself, we have no
idea whether everything outgrabes itself! Just so, the fact that b is slithy and
outgrabes c hardly guarantees that c is slithy. Maybe it is and maybe it isn’t!

1The full text of Jabberwocky can be found at http://english-server.hss.cmu.edu/ po-
etry/jabberwocky.html. The first stanza is:

’Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.

“Lewis Carroll” was the pen name of the logician Charles Dodgson (after whom both
Carroll’s World and Dodgson’s Sentences were named).
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The concepts of first-order consequence and first-order equivalence work
similarly. For example, if you can recognize that an argument is logically valid
without appealing to the meanings of the names or predicates (other than
identity), then the conclusion is a first-order consequence of the premises.
The following argument is an example:

∀x (Tet(x) → Large(x))
¬Large(b)

¬Tet(b)

This argument is obviously valid. What’s more, if we replace the predicates
Tet and Large with nonsense predicates, say Borogove and Mimsy, the result
is the following:

∀x (Borogove(x) → Mimsy(x))
¬Mimsy(b)

¬Borogove(b)

Again, it’s easy to see that if the borogoves (whatever they may be) are
all mimsy (whatever that may mean), and if b is not mimsy, then it can’t
possibly be a borogove. So the conclusion is not just a logical consequence of
the premises, it is a first-order consequence.

Recall that to show that a sentence was not a tautological consequence
of some premises, it sufficed to find a truth-value assignment to the atomic
sentences that made the premises true and the conclusion false. A similar pro-
cedure can be used to show that a conclusion is not a first-order consequence
of its premises, except instead of truth-value assignments what we look for is
a bit more complicated. Suppose we are given the following argument:

¬∃x Larger(x, a)
¬∃x Larger(b, x)
Larger(c,d)

Larger(a, b)

The first premise tells you that nothing is larger than a and the second tells you
that b is not larger than anything. If you were trying to build a counterexample
world, you might reason that a must be the largest object in the world (or
one of them) and that b must be the smallest (or one of them). Since the third
premise guarantees that the objects in the world aren’t all the same size, the
conclusion can’t be falsified in a world in which the premises are true.
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Figure 10.1: A first-order counterexample.

Is this conclusion a first-order consequence of the premises? To show thatfirst-order
counterexamples it’s not, we’ll do two things. First, let’s replace the predicate Larger with a

meaningless predicate, to help clear our minds of any constraints suggested
by the predicate:

¬∃x R(x, a)
¬∃x R(b, x)
R(c,d)

R(a, b)

Next, we’ll describe a specific interpretation of R (and the names a, b,
c, and d), along with a possible circumstance that would count as a coun-
terexample to the new argument. This is easy. Suppose R means likes, and we
are describing a situation with four individuals: Romeo and Juliet (who like
each other), and Moriarty and Scrooge (who like nobody, and the feelings are
mutual).

If we let a refer to Moriarty, b refer to Scrooge, c and d refer to Romeo
and Juliet, then the premises of our argument are all true, though the con-
clusion is false. This possible circumstance, like an alternate truth assignment
in propositional logic, shows that our original conclusion is not a first-order
consequence of the premises. Thus we call it a first-order counterexample.

Let’s codify this procedure.

Replacement Method:replacement method

1. To check for first-order validity or first-order consequence, systematically
replace all of the predicates, other than identity, with new, meaningless
predicate symbols, making sure that if a predicate appears more than
once, you replace all instances of it with the same meaningless predicate.
(If there are function symbols, replace these as well.)

2. To see if S is a first-order validity, try to describe a circumstance, along
with interpretations for the names, predicates, and functions in S, in
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which the sentence is false. If there is no such circumstance, the original
sentence is a first-order validity.

3. To see if S is a first-order consequence of P1, . . . , Pn, try to find a cir-
cumstance and interpretation in which S is false while P1, . . . ,Pn are all
true. If there is no such circumstance, the original inference counts as a
first-order consequence.

Recognizing whether a sentence is a first-order validity, or a first-order
consequence of some premises, is not as routine as with tautologies and tau-
tological consequence. With truth tables, there may be a lot of rows to check,
but at least the number is finite and known in advance. With first-order va-
lidity and consequence, the situation is much more complicated, since there recognizing first-

order validityare infinitely many possible circumstances that might be relevant. In fact,
there is no correct and mechanical procedure, like truth tables, that always
answers the question is S a first-order validity? But there are procedures that
do a pretty good job and we have built one into Fitch; it is the procedure
given as FO Con on the consequence menu. In checking applications of FO
Con, Fitch will never give you the wrong answer, though sometimes it will
get stuck, unable to give you any answer at all.

Unfortunately, judging first-order validity is no easier for you than for
the computer. But unless a sentence or argument is quite complicated, the
replacement method should result in a successful resolution of the issue, one
that agrees with an application of FO Con.

As we said earlier, we will make the notions of first-order validity and
first-order consequence more precise later in the book, so that we can prove
theorems involving these notions. But the rough-and-ready characterizations
we’ve given will suffice until then. Even with the current description, we can
see the following:

1. If S is a tautology, then it is a first-order validity. Similarly, if S is a
first-order validity, it is a logical truth. The converse of neither of these
statements is true, though. (See Figure 10.2.)

2. Similarly, if S is a tautological consequence of premises P1, . . . , Pn, then
it is a first-order consequence of these premises. Similarly, if S is a first-
order consequence of premises P1, . . . ,Pn, then it is a logical consequence
of these premises. Again, the converse of neither of these statements is
true.

Let’s try our hand at applying all of these concepts, using the various
consequence mechanisms in Fitch.
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Figure 10.2: The relation between tautologies, first-order validities, and logical
truths

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 1. Open the file FO Con 1. Here you are given a collection of premises, plus a
series of sentences that follow logically from them. Your task is to cite sup-
port sentences and specify one of the consequence rules to justify each step.
But the trick is that you must use the weakest consequence mechanism
possible and cite the minimal number of support sentences possible.

I 2. Focus on the first step after the Fitch bar, ∀x Cube(x) → Cube(b). You will
recognize this as a logical truth, which means that you should not have
to cite any premises in support of this step. First, ask yourself whether
the sentence is a tautology. No, it is not, so Taut Con will not check out.
Is it a first-order validity? Yes, so change the rule to FO Con and see
if it checks out. It would also check out using Ana Con, but this rule is
stronger than necessary, so your answer would be counted wrong if you
used this mechanism.

I 3. Continue through the remaining sentences, citing only necessary support-
ing premises and the weakest Con mechanism possible.

I 4. Save your proof as Proof FO Con 1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations
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Remember

1. A sentence of fol is a first-order validity if it is a logical truth when you
ignore the meanings of the names, function symbols, and predicates
other than the identity symbol.

2. A sentence S is a first-order consequence of premises P1, . . . , Pn if it a
logical consequence of these premises when you ignore the meanings
of the names, function symbols, and predicates other than identity.

3. The Replacement Method is useful for determining whether a sentence
is a first-order validity and whether the conclusion of an argument is
a first-order consequence of the premises.

4. All tautologies are first-order validities; all first-order validities are
logical truths. Similarly for consequence.

Exercises

10.8
➶

If you skipped the You try it section, go back and do it now. Submit the file Proof FO Con 1.

10.9
➶|✎

Open Carnap’s Sentences and Bolzano’s World.
1. Paraphrase each sentence in clear, colloquial English and verify that it is true in the

given world.
2. For each sentence, decide whether you think it is a logical truth. If it isn’t, build a

world in which the the sentence comes out false and save it as World 10.9.x, where
x is the number of the sentence. [Hint: You should be able to falsify three of these
sentences.]

3. Which of these sentences are first-order validities? [Hint: Three are.]
4. For the remaining four sentences (those that are logical truths but not first-order va-

lidities), apply the Replacement Method to come up with first-order counterexamples.
Make sure you describe both your interpretations of the predicates and the falsifying
circumstance.

Turn in your answers to parts 1, 3, and 4; submit the worlds you build in part 2.
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Each of the following arguments is valid. Some of the conclusions are (a) tautological consequences of
the premises, some are (b) first-order consequences that are not tautological consequences, and some are
(c) logical consequences that are not first-order consequences. Use the truth-functional form algorithm
and the replacement method to classify each argument. You should justify your classifications by turning
in (a) the truth-functional form of the argument, (b) the truth-functional form and the argument with
nonsense predicates substituted, or (c) the truth-functional form, the nonsense argument, and a first-
order counterexample.

10.10
✎

Cube(a) ∧ Cube(b)
Small(a) ∧ Large(b)

∃x (Cube(x) ∧ Small(x)) ∧ ∃x (Cube(x) ∧ Large(x))

10.11
✎

Cube(a) ∧ Cube(b)
Small(a) ∧ Large(b)

∃x (Cube(x) ∧ Large(x) ∧ ¬Smaller(x, x))

10.12
✎

∀x Cube(x) → ∃y Small(y)
¬∃y Small(y)

∃x ¬Cube(x)

10.13
✎

∀x Cube(x) → ∃y Small(y)
¬∃y Small(y)

¬∀x Cube(x)

10.14
✎

Cube(a)
Dodec(b)

a 6= b

10.15
✎

Cube(a)
¬Cube(b)

a 6= b

10.16
✎

Cube(a)
¬Cube(a)

a 6= b

10.17
✎

∀x (Dodec(x) → ¬SameCol(x, c))

¬Dodec(c)

10.18
✎

∀z (Small(z) ↔ Cube(z))
Cube(d)

Small(d)

10.19
✎

∀z (Small(z) → Cube(z))
∀w (Cube(w) → LeftOf(w, c))

¬∃y (Small(y) ∧ ¬LeftOf(y, c))
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Section 10.3

First-order equivalence and DeMorgan’s laws

There are two ways in which we can apply what we learned about tautolog-
ical equivalence to first-order sentences. First of all, if you apply the truth-
functional form algorithm to a pair of sentences and the resulting forms are
tautologically equivalent, then of course the original sentences are first-order
equivalent. For example, the sentence:

¬(∃x Cube(x) ∧ ∀y Dodec(y))

is tautologically equivalent to:

¬∃x Cube(x) ∨ ¬∀y Dodec(y)

When you apply the truth-functional form algorithm, you see that this is just
an instance of one of DeMorgan’s laws.

But it turns out that we can also apply DeMorgan, and similar principles,
inside the scope of quantifiers. Let’s look at an example involving the Law of
Contraposition. Consider the sentences:

∀x (Cube(x) → Small(x))

∀x (¬Small(x) → ¬Cube(x))

A moment’s thought will convince you that each of these sentences is a first-
order consequence of the other, and so they are first-order equivalent. But
unlike the previous examples, they are not tautologically equivalent.

To see why Contraposition (and other principles of equivalence) can be
applied in the scope of quantifiers, we need to consider the wffs to which the
principle was applied:

Cube(x) → Small(x)

¬Small(x) → ¬Cube(x)

Or, more generally, consider the wffs:

P(x) → Q(x)

¬Q(x) → ¬P(x)

where P(x) and Q(x) may be any formulas, atomic or complex, containing the
single free variable x.

Now since these formulas are not sentences, it makes no sense to say they
are true in exactly the same circumstances, or that they are logical (or tauto-
logical) consequences of one another. Formulas with free variables are neither
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true nor false. But there is an obvious extension of the notion of logical equiv-
alence that applies to formulas with free variables. It is easy to see that in
any possible circumstance, the above two formulas will be satisfied by exactly
the same objects. Here’s a proof of this fact:

Proof: We show this by indirect proof. Assume that in some circum-
stance there is an object that satisfies one but not the other of these
two formulas. Let’s give this object a new name, say n1. Consider
the results of replacing x by n1 in our formulas:

P(n1) → Q(n1)

¬Q(n1) → ¬P(n1)

Since x was the only free variable, these are sentences. But by our
assumption, one of them is true and one is false, since that is how
we defined satisfaction. But this is a contradiction, since these two
sentences are logically equivalent by Contraposition.

We will say that two wffs with free variables are logically equivalent if, inlogically equivalent wffs
any possible circumstance, they are satisfied by the same objects.2 Or, what
comes to the same thing, two wffs are logically equivalent if, when you re-
place their free variables with new names, the resulting sentences are logically
equivalent.

The above proof, suitably generalized, shows that when we apply any of our
principles of logical equivalence to a formula, the result is a logically equivalent
formula, one that is satisfied by exactly the same objects as the original. This
in turn is why the sentence ∀x (Cube(x) → Small(x)) is logically equivalent
to the sentence ∀x (¬Small(x) → ¬Cube(x)). If every object in the domain of
discourse (or one object, or thirteen objects) satisfies the first formula, then
every object (or one or thirteen) must satisfy the second.

Equipped with the notion of logically equivalent wffs, we can restate the
principle of substitution of equivalents so that it applies to full first-ordersubstitution of

equivalent wffs logic. Let P and Q be wffs, possibly containing free variables, and let S(P) be
any sentence containing P as a component part. Then if P and Q are logically
equivalent:

P ⇔ Q

then so too are S(P) and S(Q):

S(P) ⇔ S(Q)
2Though we haven’t discussed satisfaction for wffs with more than one free variable, a

similar argument can be applied to such wffs: the only difference is that more than one
name is substituted in for the free variables.
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As before, a full proof of the substitution principle requires the method of
proof by induction, which we will get to in Chapter 16. But in the meantime,
our current observations should make it clear why the principle still applies.

Once we see that substitution of equivalents applies to quantified sentences,
the principles we have already learned yield a large number of new equiva-
lences. For example, we can show that the sentence ∀x (Cube(x) → Small(x))
is logically equivalent to ∀x ¬(Cube(x) ∧ ¬Small(x)) by means of the following
chain of equivalences:

∀x (Cube(x) → Small(x)) ⇔ ∀x (¬Cube(x) ∨ Small(x))
⇔ ∀x (¬Cube(x) ∨ ¬¬Small(x))
⇔ ∀x ¬(Cube(x) ∧ ¬Small(x))

Again, these sentences are not tautologically equivalent, because we are
applying our principles inside a quantified sentence. But other than extending
the principle of substitution, no new principles are involved. There are, how-
ever, several important logical equivalences that involve quantifiers in essential
ways. Let’s turn to these now.

DeMorgan laws for quantifiers

In propositional logic, the DeMorgan laws describe important relations be-
tween negation, conjunction, and disjunction. If you think about the mean-
ings of our quantifiers, you will see that there is a strong analogy between ∀
and ∧, on the one hand, and between ∃ and ∨, on the other. For example,
suppose we are talking about a world consisting of four named blocks, say
a, b, c, and d. Then the sentence ∀x Cube(x) will be true if and only if the
following conjunction is true:

Cube(a) ∧ Cube(b) ∧ Cube(c) ∧ Cube(d)

Likewise, ∃x Cube(x) will be true if and only if this disjunction is true:

Cube(a) ∨ Cube(b) ∨ Cube(c) ∨ Cube(d)

This analogy suggests that the quantifiers may interact with negation in a
way similar to conjunction and disjunction. Indeed, in our four-block world,
the sentence

¬∀x Small(x)

will be true if and only if the following negation is true:

¬(Small(a) ∧ Small(b) ∧ Small(c) ∧ Small(d))
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which, by DeMorgan, will hold just in case the following disjunction is true:

¬Small(a) ∨ ¬Small(b) ∨ ¬Small(c) ∨ ¬Small(d)

which in turn will be true if and only if the following holds:

∃x ¬Small(x)

The DeMorgan laws for the quantifiers allow you to push a negation signDeMorgan laws for
quantifiers past a quantifier by switching the quantifier from ∀ to ∃ or from ∃ to ∀. So, for

example, if we know that not everything has some property (¬∀x P(x)), then
we know that something does not have the property (∃x ¬P(x)), and vice versa.
Similarly, if we know that it is not the case that something has some property
(¬∃x P(x)), then we know that everything must fail to have it (∀x ¬P(x)), and
vice versa. We call these the DeMorgan laws for quantifiers, due to the analogy
described above; they are also known as the quantifier/negation equivalences:

¬∀x P(x) ⇔ ∃x ¬P(x)

¬∃x P(x) ⇔ ∀x ¬P(x)

By applying these laws along with some earlier equivalences, we can see
that there is a close relationship between certain pairs of Aristotelian sen-
tences. In particular, the negation of All P’s are Q’s is logically equivalent to
Some P’s are not Q’s. To demonstrate this equivalence, we note the following
chain of equivalences. The first is the translation of It is not true that all P’s
are Q’s while the last is the translation of Some P’s are not Q’s.

¬∀x (P(x) → Q(x)) ⇔ ¬∀x (¬P(x) ∨ Q(x))
⇔ ∃x ¬(¬P(x) ∨ Q(x))
⇔ ∃x (¬¬P(x) ∧ ¬Q(x))
⇔ ∃x (P(x) ∧ ¬Q(x))

The first step uses the equivalence of P(x) → Q(x) and ¬P(x) ∨ Q(x). The sec-
ond and third steps use DeMorgan’s laws, first one of the quantifier versions,
and then one of the Boolean versions. The last step uses the double negation
law applied to ¬¬P(x).

A similar chain of equivalences shows that the negation of Some P’s are
Q’s is equivalent to No P’s are Q’s:

¬∃x (P(x) ∧ Q(x)) ⇔ ∀x (P(x) → ¬Q(x))

We leave the demonstration of this as an exercise.
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Remember

(DeMorgan laws for quantifiers) For any wff P(x):

1. ¬∀x P(x) ⇔ ∃x ¬P(x)

2. ¬∃x P(x) ⇔ ∀x ¬P(x)

Exercises

10.20
✎

Give a chain of equivalences showing that the negation of Some P’s are Q’s (¬∃x (P(x) ∧ Q(x)))
is equivalent to No P’s are Q’s (∀x (P(x) → ¬Q(x))).

10.21
✎

Open DeMorgan’s Sentences 2. This file contains six sentences, but each of sentences 4, 5, and
6 is logically equivalent to one of the first three. Without looking at what the sentences say, see
if you can figure out which is equivalent to which by opening various world files and evaluating
the sentences. (You should be able to figure this out from Ackermann’s, Bolzano’s, and Claire’s
Worlds, plus what we’ve told you.) Once you think you’ve figured out which are equivalent to
which, write out three equivalence chains to prove you’re right. Turn these in to your instructor.

10.22
➶

(∀ versus ∧) We pointed out the similarity between ∀ and ∧, as well as that between ∃ and
∨. But we were careful not to claim that the universally quantified sentence was logically
equivalent to the analogous conjunction. This problem will show you why we did not make this
claim.

◦ Open Church’s Sentences and Ramsey’s World. Evaluate the sentences in this world. You
will notice that the first two sentences have the same truth value, as do the second two.

◦ Modify Ramsey’s World in any way you like, but do not add or delete objects, and do not
change the names used. Verify that the first two sentences always have the same truth
values, as do the last two.

◦ Now add one object to the world. Adjust the objects so that the first sentence is false, the
second and third true, and the last false. Submit your work as World 10.22. This world
shows that the first two sentences are not logically equivalent. Neither are the last two.
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Section 10.4

Other quantifier equivalences

The quantifier DeMorgan laws tell us how quantifiers interact with negation.
Equally important is the question of how quantifiers interact with conjunction
and disjunction. The laws governing this interaction, though less interesting
than DeMorgan’s, are harder to remember, so you need to pay attention!

First of all, notice that ∀x (P(x) ∧ Q(x)), which says that everything is
both P and Q, is logically equivalent to ∀x P(x) ∧ ∀x Q(x), which says thatquantifiers and Boolean

connectives everything is P and everything is Q. These are just two different ways of saying
that every object in the domain of discourse has both properties P and Q. By
contrast, ∀x (P(x) ∨ Q(x)) is not logically equivalent to ∀x P(x) ∨ ∀x Q(x). For
example, the sentence ∀x (Cube(x) ∨ Tet(x)) says that everything is either a
cube or a tetrahedron, but the sentence ∀x Cube(x) ∨ ∀x Tet(x) says that either
everything is a cube or everything is a tetrahedron, clearly a very different
kettle of fish. We summarize these two observations, positive and negative, as
follows:

∀x (P(x) ∧ Q(x)) ⇔ ∀x P(x) ∧ ∀x Q(x)

∀x (P(x) ∨ Q(x)) ⇔/ ∀x P(x) ∨ ∀x Q(x)

Similar observations hold with ∃, ∨, and ∧, except that it works the
other way around. The claim that there is some object that is either P or
Q, ∃x (P(x) ∨ Q(x)), is logically equivalent to the claim that something is
P or something is Q: ∃x P(x) ∨ ∃x Q(x). But this equivalence fails the mo-
ment we replace ∨ with ∧. The fact that there is a cube and a tetrahedron,
∃x Cube(x) ∧ ∃x Tet(x), hardly means that there is something which is both
a cube and a tetrahedron: ∃x (Cube(x) ∧ Tet(x))! Again, we summarize both
positive and negative observations together:

∃x (P(x) ∨ Q(x)) ⇔ ∃x P(x) ∨ ∃x Q(x)

∃x (P(x) ∧ Q(x)) ⇔/ ∃x P(x) ∧ ∃x Q(x)

There is one circumstance when you can push a universal quantifier in past
a disjunction, or move an existential quantifier out from inside a conjunction.
But to explain this circumstance, we first have to talk a bit about a degenerate
form of quantification. In defining the class of wffs, we did not insist that the
variable being quantified actually occur free (or at all) in the wff to which the
quantifier is applied. Thus, for example, the expression ∀x Cube(b) is a wff,
even though Cube(b) does not contain the variable x. Similarly, the sentence
∃y Small(y) doesn’t contain any free variables. Still, we could form the sen-
tences ∀x ∃y Small(y) or even ∀y ∃y Small(y). We call this sort of quantificationnull quantification
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null quantification. Let’s think for a moment about what it might mean.
Consider the case of the sentence ∀x Cube(b). This sentence is true in

a world if and only if every object in the domain of discourse satisfies the
wff Cube(b). But what does that mean, since this wff does not contain any
free variables? Or, to put it another way, what does it mean to substitute a
name for the (nonexistent) free variable in Cube(b)? Well, if you replace every
occurrence of x in Cube(b) with the name n1, the result is simply Cube(b).
So, in a rather degenerate way, the question of whether an object satisfies
Cube(b) simply boils down to the question of whether Cube(b) is true. Thus,
∀x Cube(b) and Cube(b) are true in the same exactly the same worlds, and so
are logically equivalent. The same holds of ∃x Cube(b), which is also equivalent
to Cube(b). More generally, if the variable x is not free in wff P, then we have
the following equivalences:

∀x P ⇔ P

∃x P ⇔ P

If null quantification seems counterintuitive to you, take a moment to do
Exercise 10.23 now.

What does this have to do with conjunctions and disjunctions? Well, there
is a more general observation we can make about null quantification. Suppose
we have the sentence ∀x (Cube(b) ∨ Small(x)), where x does not occur free in
the first disjunct. This sentence will be true if Cube(b) is true (in which case,
every object will satisfy the disjunctive wff trivially), or if every object is small
(in which case, they will all satisfy the disjunctive wff by satisfying the second
disjunct), or both. That is, this sentence imposes the same conditions on a
world as the sentence Cube(b) ∨ ∀x Small(x). Indeed, when the variable x is
not free in a wff P, we have both of the following:

∀x (P ∨ Q(x)) ⇔ P ∨ ∀x Q(x)

∃x (P ∧ Q(x)) ⇔ P ∧ ∃x Q(x)

Compare these two equivalences to the non-equivalences highlighted a mo-
ment ago, and make sure you understand the differences. The equivalences in-
volving null quantification, surprisingly enough, will become very useful later,
when we learn how to put sentences into what is called prenex form, where
all the quantifiers are out in front.

The last principles we mention are so basic they are easily overlooked.
When you are translating from English to fol and find a quantified noun replacing bound

variablesphrase, you must pick some variable to use in your translation. But we have
given you no guidelines as to which one is “right.” This is because it doesn’t
matter which variable you use, as long as you don’t end up with two quanti-
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fiers whose scope overlaps but which bind the same variable. In general, the
variable itself makes no difference whatsoever. For example, these sentences
are logically equivalent:

∃x (Dodec(x) ∧ Larger(x, b)) ⇔ ∃y (Dodec(y) ∧ Larger(y,b))

We codify this by means of the following: For any wff P(x) and variable y that
does not occur in P(x)

∀x P(x) ⇔ ∀y P(y)

∃x P(x) ⇔ ∃y P(y)

Remember

1. (Pushing quantifiers past ∧ and ∨) For any wffs P(x) and Q(x):

(a) ∀x (P(x) ∧ Q(x)) ⇔ ∀x P(x) ∧ ∀x Q(x)

(b) ∃x (P(x) ∨ Q(x)) ⇔ ∃x P(x) ∨ ∃x Q(x)

2. (Null quantification) For any wff P in which x is not free:

(a) ∀x P ⇔ P

(b) ∃x P ⇔ P

(c) ∀x (P ∨ Q(x)) ⇔ P ∨ ∀x Q(x)

(d) ∃x (P ∧ Q(x)) ⇔ P ∧ ∃x Q(x)

3. (Replacing bound variables) For any wff P(x) and variable y that does
not occur in P(x):

(a) ∀x P(x) ⇔ ∀y P(y)

(b) ∃x P(x) ⇔ ∃y P(y)

Exercises

10.23
➶

(Null quantification) Open Null Quantification Sentences. In this file you will find sentences
in the odd numbered slots. Notice that each sentence is obtained by putting a quantifier in front
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of a sentence in which the quantified variable is not free.

1. Open Gödel’s World and evaluate the truth of the first sentence. Do you understand why
it is false? Repeatedly play the game committed to the truth of this sentence, each time
choosing a different block when your turn comes around. Not only do you always lose,
but your choice has no impact on the remainder of the game. Frustrating, eh?

2. Check the truth of the remaining sentences and make sure you understand why they have
the truth values they do. Play the game a few times on the second sentence, committed
to both true and false. Notice that neither your choice of a block (when committed to
false) nor Tarski’s World’s choice (when committed to true) has any effect on the game.

3. In the even numbered slots, write the sentence from which the one above it was obtained.
Check that the even and odd numbered sentences have the same truth value, no matter
how you modify the world. This is because they are logically equivalent. Save and submit
your sentence file.

Some of the following biconditionals are logical truths (which is the same as saying that the two sides of
the biconditional are logically equivalent); some are not. If you think the biconditional is a logical truth,
create a file with Fitch, enter the sentence, and check it using FO Con. If the sentence is not a logical
truth, create a world in Tarski’s World in which it is false. Submit the file you create.

10.24
➶

(∀x Cube(x) ∨ ∀x Dodec(x))
↔ ∀x (Cube(x) ∨ Dodec(x))

10.25
➶

¬∃z Small(z) ↔ ∃z ¬Small(z)

10.26
➶

∀x Tet(b) ↔ ∃w Tet(b) 10.27
➶

∃w (Dodec(w) ∧ Large(w))
↔ (∃w Dodec(w) ∧ ∃w Large(w))

10.28
➶

∃w (Dodec(w) ∧ Large(b))
↔ (∃w Dodec(w) ∧ Large(b))

10.29
➶

¬∀x (Cube(x) → (Small(x) ∨ Large(x)))
↔ ∃z (Cube(z) ∧ ¬Small(z) ∧ ¬Large(z))

Section 10.5

The axiomatic method

As we will see in the coming chapters, first-order consequence comes much
closer to capturing the logical consequence relation of ordinary language than
does tautological consequence. This will be apparent from the kinds of sen-
tences that we can translate into the quantified language and from the kinds
of inference that turn out to be first-order valid.

Still, we have already encountered several arguments that are intuitively
valid but not first-order valid. Let’s look at an example where the replacement
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method reveals that the conclusion is not a first-order consequence of the
premises:

∀x (Cube(x) ↔ SameShape(x, c))

Cube(c)

Using the replacement method, we substitute meaningless predicate symbols,
say P and Q, for the predicates Cube and SameShape. The result is

∀x (P(x) ↔ Q(x, c))

P(c)

which is clearly not a valid argument. If we wanted the conclusion of our
argument to be a first-order consequence of the premises, we would need to
add a new premise or premises expressing facts about the predicates involved
in the original inference. For the present argument, here is what we might do:

∀x (Cube(x) ↔ SameShape(x, c))
∀x SameShape(x, x)

Cube(c)

The premise we’ve added is clearly justified by the meaning of SameShape.
What’s more, the replacement method now gives us

∀x (P(x) ↔ Q(x, c))
∀x Q(x, x)

P(c)

which is logically valid no matter what the predicates P and Q mean. The
conclusion is a first-order consequence of the two premises.

This technique of adding a premise whose truth is justified by the meanings
of the predicates is one aspect of what is known as the axiomatic method. It isaxiomatic method
often possible to bridge the gap between the intuitive notion of consequence
and the more restricted notion of first-order consequence by systematically
expressing facts about the predicates involved in our inferences. The sentences
used to express these facts are sometimes called meaning postulates, a special
type of axiom.meaning postulates

Suppose we wanted to write out axioms that bridged the gap between first-
order consequence and the intuitive notion of consequence that we’ve been
using in connection with the blocks language. That would be a big task, but
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we can make a start on it by axiomatizing the shape predicates. We might
begin by taking four basic shape axioms as a starting point. These axioms
express the fact that every block has one and only one shape.

Basic Shape Axioms:

1. ¬∃x (Cube(x) ∧ Tet(x))

2. ¬∃x (Tet(x) ∧ Dodec(x)) basic shape axioms

3. ¬∃x (Dodec(x) ∧ Cube(x))

4. ∀x (Tet(x) ∨ Dodec(x) ∨ Cube(x))

The first three axioms stem from the meanings of our three basic shape
predicates. Being one of these shapes simply precludes being another. The
fourth axiom, however, is presumably not part of the meaning of the three
predicates, as there are certainly other possible shapes. Still, if our goal is to
capture reasoning about blocks worlds of the sort that can be built in Tarski’s
World, we will want to include 4 as an axiom.

Any argument that is intuitively valid and involves only the three ba-
sic shape predicates is first-order valid if we add these axioms as additional
premises. For example, the following intuitively valid argument is not first-
order valid:

¬∃x Tet(x)

∀x (Cube(x) ↔ ¬Dodec(x))

If we add axioms 3 and 4 as premises, however, then the resulting argument
is

¬∃x Tet(x)
¬∃x (Dodec(x) ∧ Cube(x))
∀x (Tet(x) ∨ Dodec(x) ∨ Cube(x))

∀x (Cube(x) ↔ ¬Dodec(x))

This argument is first-order valid, as can be seen by replacing the shape
predicates with meaningless predicates, say P, Q, and R:

¬∃x P(x)
¬∃x (Q(x) ∧ R(x))
∀x (P(x) ∨ Q(x) ∨ R(x))

∀x (R(x) ↔ ¬Q(x))
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If the validity of this argument is not entirely obvious, try to construct a
first-order counterexample. You’ll see that you can’t.

Let’s look at an example where we can replace some instances of Ana
Con by the basic shape axioms and the weaker FO Con rule.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 1. Open the Fitch file Axioms 1. The premises in this file are just the four basic
shape axioms. Below the Fitch bar are four sentences. Each is justified by
a use of the rule Ana Con, without any sentences cited in support. Verify
that each of the steps checks out.

I 2. Now change each of the justifications from Ana Con to FO Con. Verify
that none of the steps now checks out. See if you can make each of them
check out by finding a single shape axiom to cite in its support.

I 3. When you are finished, save your proof as Proof Axioms 1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

The basic shape axioms don’t express everything there is to say about theother shape axioms
shapes in Tarski’s World. We have not yet said anything about the binary
predicate SameShape. At the very least, we would need the following as a fifth
axiom:

∀x SameShape(x, x)

We will not in fact add this as an axiom since, as we will see in Chapter 12, it
leaves out essential facts about the relation between SameShape and the basic
shape predicates. When we add these other facts, it turns out that the above
axiom is unnecessary.

Axiomatization has another interesting use that can be illustrated with our
axioms about shape. Notice that if we systematically replace the predicates
Cube, Tet, and Dodec by the predicates Small, Medium, and Large, the resulting
sentences are true in all of the blocks worlds. It follows from this that if we
take any valid argument involving just the shape predicates and perform the
stated substitution, the result will be another valid argument.

Presupposing a range of circumstances

The intuitive difference between the first three shape axioms and the fourth,
which asserts a general fact about our block worlds but not one that follows
from the meanings of the predicates, highlights an important characteristic
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of much everyday reasoning. More often than not, when we reason, we do so
against the background of an assumed range of possibilities. When you reason
about Tarski’s World, it is natural to presuppose the various constraints that assuming a range

of possibilitieshave been built into the program. When you reason about what movie to
go to, you implicitly presuppose that your options are limited to the movies
showing in the vicinity.

The inferences that you make against this background may not, strictly
speaking, be logically valid. That is, they may be correct relative to the pre-
supposed circumstances but not correct relative to some broader range of pos-
sibilities. For example, if you reason from ¬Cube(d) and ¬Tet(d) to Dodec(d),
your reasoning is valid within the domain of Tarski’s World, but not relative
to worlds where there are spheres and icosohedra. When you decide that the
latest Harrison Ford movie is the best choice, this may be a correct inference
in your vicinity, but perhaps not if you were willing to fly to other cities.

In general, background assumptions about the range of relevant circum-
stances are not made an explicit part of everyday reasoning, and this can give background

assumptionsrise to disagreements about the reasoning’s validity. People with different as-
sumptions may come up with very different assessments about the validity of
some explicit piece of reasoning. In such cases, it is often helpful to articulate
general facts about the presupposed circumstances. By making these explicit,
we can often identify the source of the disagreement.

The axiomatic method can be thought of as a natural extension of this ev-
eryday process. Using this method, it is often possible to transform arguments
that are valid only relative to a particular range of circumstances into argu-
ments that are first-order valid. The axioms that result express facts about
the meanings of the relevant predicates, but also facts about the presupposed
circumstances.

The history of the axiomatic method is closely entwined with the his-
tory of logic. You were probably already familiar with axioms from studying
Euclidean geometry. In investigating the properties of points, lines, and geo-
metrical shapes, the ancient Greeks discovered the notion of proof which lies
at the heart of deductive reasoning. This came about as follows. By the time
of the Greeks, an enormous number of interesting and important discoveries
about geometrical objects had already been made, some dating back to the
time of the ancient Babylonians. For example, ancient clay tablets show that
the Babylonians knew what is now called the Pythagorean Theorem. But for
the Babylonians, geometry was an empirical science, one whose facts were
discovered by observation.

Somewhere lost in the prehistory of mathematics, someone had a brilliant
idea. They realized that there are logical relationships among the known facts
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of geometry. Some follow from others by logic alone. Might it not be possible
to choose a few, relatively clear observations as basic, and derive all the others
by logic? The starting truths are accepted as axioms, while their consequencesaxioms and theorems
are called theorems. Since the axioms are supposed to be obviously true, and
since the methods of proof are logically valid, we can be sure the theorems
are true as well.

This general procedure for systematizing a body of knowledge became
known as the axiomatic method. A set of axioms is chosen, statements which
we are certain hold of the “worlds” or “circumstances” under consideration.
Some of these may be meaning postulates, truths that hold simply in virtue
of meaning. Others may express obvious facts that hold in the domain in
question, facts like our fourth shape axiom. We can be sure that anything
that follows from the axioms by valid methods of inference is on just as firm
a footing as the axioms from which we start.

Exercises

10.30
➶

If you skipped the You try it section, go back and do it now. Submit the file Proof Axioms 1.

10.31
✎

Suppose we state our four basic shape axioms in the following schematic form:
1. ¬∃x (R(x) ∧ P(x))
2. ¬∃x (P(x) ∧ Q(x))
3. ¬∃x (Q(x) ∧ R(x))
4. ∀x (P(x) ∨ Q(x) ∨ R(x))

We noted that any valid argument involving just the three shape predicates remains valid
when you substitute other predicates, like the Tarski’s World size predicates, that satisfy these
axioms. Which of the following triplets of properties satisfy the axioms in the indicated domain
(that is, make them true when you substitute them for P, Q, and R)? If they don’t, say which
axioms fail and why.

1. Red, yellow, and blue in the domain of automobiles.
2. Entirely red, entirely yellow, and entirely blue in the domain of automobiles.
3. Small, medium, and large in the domain of Tarski’s World blocks.
4. Small, medium, and large in the domain of physical objects.
5. Animal, vegetable, and mineral in the domain of “twenty questions” solutions.
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Chapter 11

Multiple Quantifiers

So far, we’ve considered only sentences that contain a single quantifier symbol.
This was enough to express the simple quantified forms studied by Aristotle,
but hardly shows the expressive power of the modern quantifiers of first-order
logic. Where the quantifiers of fol come into their own is in expressing claims
which, in English, involve several quantified noun phrases.

Long, long ago, probably before you were even born, there was an advertis-
ing campaign that ended with the tag line: Everybody doesn’t like something,
but nobody doesn’t like Sara Lee. Now there’s a quantified sentence! It goes
without saying that this was every logician’s favorite ad campaign. Or con-
sider Lincoln’s famous line: You may fool all of the people some of the time;
you can even fool some of the people all of the time; but you can’t fool all of
the people all of the time. Why, the mind reels!

To express claims like these, and to reveal their logic, we need to juggle
more than one quantifier in a single sentence. But it turns out that, like
juggling, this requires a fair bit of preparation and practice.

Section 11.1

Multiple uses of a single quantifier

When you learn to juggle, you start by tossing balls in a single hand, not
crossing back and forth. We’ll start by looking at sentences that have multiple
instances of ∀, or multiple instances of ∃, but no mixing of the two. Here are
a couple of sentences that contain multiple quantifiers:

∃x ∃y [Cube(x) ∧ Tet(y) ∧ LeftOf(x, y)]

∀x ∀y [(Cube(x) ∧ Tet(y)) → LeftOf(x, y)]

Try to guess what these say. You shouldn’t have any trouble: The first says
that some cube is left of a tetrahedron; the second says that every cube is left
of every tetrahedron.

In these examples, all the quantifiers are out in front (in what we’ll later
call prenex form) but there is no need for them to be. In fact the same claims
could be expressed, perhaps more clearly, by the following sentences:
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∃x [Cube(x) ∧ ∃y (Tet(y) ∧ LeftOf(x, y))]

∀x [Cube(x) → ∀y (Tet(y) → LeftOf(x, y))]

The reason these may seem clearer is that they show that the claims have
an overall Aristotelian structure. The first says that some cube has the prop-
erty expressed by ∃y (Tet(y) ∧ LeftOf(x, y)), namely, being left of some tetra-
hedron. The second says that every cube has the property expressed by
∀y (Tet(y) → LeftOf(x, y)), namely, being left of every tetrahedron.

It is easy to see that these make the same claims as the first pair, even
though, in the case of the universal claim, the structure of the fol sentence
has changed considerably. The principles studied in Chapter 10 would allow
us to prove these equivalences, if we wanted to take the time.

There is one tricky point that arises with the use of multiple existential
quantifiers or multiple universal quantifiers. It’s a simple one, but there isn’t
a logician alive who hasn’t been caught by it at some time or other. It’ll catch
you too. We’ll illustrate it in the following Try It.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 1. Suppose you are evaluating the following sentence in a world with four
cubes lined up in the front row:

∀x ∀y [(Cube(x) ∧ Cube(y)) → (LeftOf(x, y) ∨ RightOf(x, y))]

Do you think the sentence is true in such a world?

I 2. Open Cantor’s Sentences and Cantor’s World, and evaluate the first sentence
in the world. If you are surprised by the outcome, play the game committed
to the truth of the sentence.

I 3. It is tempting to read this sentence as claiming that if x and y are cubes,
then either x is left of y or x is right of y. But there is a conversational
implicature in this way of speaking, one that is very misleading. The use of
the plural “cubes” suggests that x and y are distinct cubes, but this is not
part of the claim made by the first-order sentence. In fact, our sentence is
false in this world, as it must be in any world that contains even one cube.

I 4. If we really wanted to express the claim that every cube is to the left or
right of every other cube, then we would have to write

∀x ∀y [(Cube(x) ∧ Cube(y) ∧ x 6= y) → (LeftOf(x, y) ∨ RightOf(x, y))]

Modify the first sentence in this way and check it in the world.
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J5. The second sentence in the file looks for all the world like it says there are
two cubes. But it doesn’t. Delete all but one cube in the world and check
to see that it’s still true. Play the game committed to false and see what
happens.

J6. See if you can modify the second sentence so it is false in a world with only
one cube, but true if there are two or more. (Use 6= like we did above.)
Save the modified sentences as Sentences Multiple 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

In general, to say that every pair of distinct objects stands in some relation, identity and
variablesyou need a sentence of the form ∀x ∀y (x 6= y → . . . ), and to say that there

are two objects with a certain property, you need a sentence of the form
∃x ∃y (x 6= y ∧ . . . ). Of course, other parts of the sentence often guarantee the
distinctness for you. For example if you say that every tetrahedron is larger
than every cube:

∀x ∀y ((Tet(x) ∧ Cube(y)) → Larger(x, y))

then the fact that x must be a tetrahedron and y a cube ensures that your
claim says what you intended.

Remember

When evaluating a sentence with multiple quantifiers, don’t fall into the
trap of thinking that distinct variables range over distinct objects. In fact,
the sentence ∀x ∀y P(x, y) logically implies ∀x P(x, x), and the sentence
∃x P(x, x) logically implies ∃x ∃y P(x, y)!

Exercises

11.1
➶

If you skipped the You try it section, go back and do it now. Submit the file Sentences Multiple
1.

11.2
➶

(Simple multiple quantifier sentences) The file Frege’s Sentences contains 14 sentences; the first
seven begin with a pair of existential quantifiers, the second seven with a pair of universal
quantifiers. Go through the sentences one by one, evaluating them in Peirce’s World. Though
you probably won’t have any trouble understanding these sentences, don’t forget to use the
game if you do. When you understand all the sentences, modify the size and location of a single
block so that the first seven sentences are true and the second seven false. Submit the resulting
world.
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11.3
➶

(Getting fancier) Open up Peano’s World and Peano’s Sentences. The sentence file contains 30
assertions that Alex made about this world. Evaluate Alex’s claims. If you have trouble with
any, play the game (several times if necessary) until you see where you are going wrong. Then
change each of Alex’s false claims into a true claim. If you can make the sentence true by
adding a clause of the form x 6= y, do so. Otherwise, see if you can turn the false claim into
an interesting truth: don’t just add a negation sign to the front of the sentence. Submit your
corrected list of sentences.

11.4
➶

(Describing a world) Let’s try our hand describing a world using multiple quantifiers. Open
Finsler’s World and start a new sentence file.

1. Notice that all the small blocks are in front of all the large blocks. Use your first
sentence to say this.

2. With your second sentence, point out that there’s a cube that is larger than a tetra-
hedron.

3. Next, say that all the cubes are in the same column.
4. Notice, however, that this is not true of the tetrahedra. So write the same sentence

about the tetrahedra, but put a negation sign out front.
5. Every cube is also in a different row from every other cube. Say this.
6. Again, this isn’t true of the tetrahedra, so say that it’s not.
7. Notice there are different tetrahedra that are the same size. Express this fact.
8. But there aren’t different cubes of the same size, so say that, too.

Are all your translations true in Finsler’s World? If not, try to figure out why. In fact, play
around with the world and see if your first-order sentences always have the same truth values
as the claims you meant to express. Check them out in König’s World, where all of the original
claims are false. Are your sentences all false? When you think you’ve got them right, submit
your sentence file.

11.5
➶

(Building a world) Open Ramsey’s Sentences. Build a world in which sentences 1–10 are all true
at once (ignore sentences 11–20 for now). These first ten sentences all make either particular
claims (that is, they contain no quantifiers) or existential claims (that is, they assert that things
of a certain sort exist). Consequently, you could make them true by successively adding objects
to the world. But part of the exercise is to make them all true with as few objects as possible.
You should be able to do it with a total of six objects. So rather than adding objects for each
new sentence, only add new objects when absolutely necessary. Again, be sure to go back and
check that all the sentences are true when you are finished. Submit your world as World 11.5.
[Hint: To make all the sentences true with six blocks, you will have to watch out for some
intentionally misleading implicatures. For example, one of the objects will have to have two
names.]
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11.6
➶

(Modifying the world) Sentences 11-20 of Ramsey’s Sentences all make universal claims. That is,
they all say that every object in the world has some property or other. Check to see whether the
world you have built in Exercise 11.5 satisfies the universal claims expressed by these sentences.
If not, modify the world so it makes all 20 sentences true at once. Submit your modified world
as World 11.6. (Make sure you submit both World 11.5 and World 11.6 to get credit for both
exercises.)

11.7
➶|✎

(Block parties) The interaction of quantifiers and negation gives rise to subtleties that can be
pretty confusing. Open Löwenheim’s Sentences, which contains eight sentences divided into two
sets. Suppose we imagine a column containing blocks to be a party and think of the blocks in
the column as the attendees. We’ll say a party is lonely if there’s only one block attending it,
and say a party is exclusive if there’s any block who’s not there.

1. Using this terminology, give simple and clear English renditions of each of the sentences.
For example, sentence 2 says some of the parties are not lonely, and sentence 7 says there’s
only one party. You’ll find sentences 4 and 9 the hardest to understand. Construct a lot
of worlds to see what they mean.

2. With the exception of 4 and 9, all of the sentences are equivalent to other sentences on the
list, or to negations of other sentences (or both). Which sentences are 3 and 5 equivalent
to? Which sentences do 3 and 5 negate?

3. Sentences 4 and 9 are logically independent: it’s possible for the two to have any pattern
of truth values. Construct four worlds: one in which both are true (World 11.7.1), one
in which 4 is true and 9 false (World 11.7.2), one in which 4 is false and 9 true (World
11.7.3), and one in which both are false (World 11.7.4).

Submit the worlds you’ve constructed and turn the remaining answers in to your instructor.

Section 11.2

Mixed quantifiers

Ready to start juggling with both hands? We now turn to the important case
in which universal and existential quantifiers get mixed together. Let’s start
with the following sentence:

∀x [Cube(x) → ∃y (Tet(y) ∧ LeftOf(x, y))]

This sentence shouldn’t throw you. It has the overall Aristotelian form
∀x [P(x) → Q(x)], which we have seen many times before. It says that every
cube has some property or other. What property? The property expressed
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Figure 11.1: A circumstance in which ∀x ∃y Likes(x, y) holds versus one in which
∃y ∀x Likes(x, y) holds. It makes a big difference to someone!

by ∃y (Tet(y) ∧ LeftOf(x, y)), that is, the property of being left of a tetrahe-
dron. Thus our first-order sentence claims that every cube is to the left of a
tetrahedron.

This same claim could also be expressed in a number of other ways. The
most important alternative puts the quantifiers all out front, in prenex form.
Though the prenex form is less natural as a translation of the English, Every
cube is left of some tetrahedron, it is logically equivalent:

∀x ∃y [Cube(x) → (Tet(y) ∧ LeftOf(x, y))]

When we have a sentence with a string of mixed quantifiers, the order of
the quantifiers makes a difference. This is something we haven’t had to worryorder of quantifiers
about with sentences that contain only universal or only existential quantifiers.
Clearly, the sentence ∀x ∀y Likes(x, y) is logically equivalent to the sentence
where the order of the quantifiers is reversed: ∀y ∀x Likes(x, y). They are both
true just in case everything in the domain of discourse (say, people) likes
everything in the domain of discourse. Similarly, ∃x ∃y Likes(x, y) is logically
equivalent to ∃y ∃x Likes(x, y): both are true if something likes something.

This is not the case when the quantifiers are mixed. ∀x ∃y Likes(x, y) says
that everyone likes someone, which is true in both circumstances shown in Fig-
ure 11.1. But ∃y ∀x Likes(x, y) says that there is some lucky devil who everyone
likes. This is a far stronger claim, and is only true in the second circumstance
shown in Figure 11.1. So when dealing with mixed quantifiers, you have to be
very sensitive to the order of quantifiers. We’ll learn more about getting the
order of quantifiers right in the sections that follow.
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You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

J1. Open the files Mixed Sentences and König’s World. If you evaluate the two
sentences, you’ll see that the first is true and the second false. We’re going
to play the game to see why they aren’t both true.

J2. Play the game on the first sentence, specifying your initial commitment as
true. Since this sentence is indeed true, you should find it easy to win.
When Tarski’s World makes its choice, all you need to do is choose any
block in the same row as Tarski’s.

J3. Now play the game with the second sentence, again specifying your ini-
tial commitment as true. This time Tarski’s World is going to beat you
because you’ve got to choose first. As soon as you choose a block, Tarski
chooses a block in the other row. Play a couple of times, choosing blocks
in different rows. See who’s got the advantage now?

J4. Just for fun, delete a row of blocks so that both of the sentences come out
true. Now you can win the game. So there, Tarski! She who laughs last
laughs best. Save the modified world as World Mixed 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

Have you noticed that switching the order of the quantifiers does something order of variables
quite different from switching around the variables in the body of the sentence?
For example, consider the sentences

∀x ∃y Likes(x, y)

∀x ∃y Likes(y, x)

Assuming our domain consists of people, the first of these says that everybody
likes somebody or other, while the second says everybody is liked by somebody
or other. These are both very different claims from either of these:

∃y ∀x Likes(x, y)

∃y ∀x Likes(y, x)

Here, the first claims that there is a (very popular) person whom everybody
likes, while the second claims that there is a (very indiscriminate?) person
who likes absolutely everyone.

In the last section, we saw how using two existential quantifiers and the
identity predicate, we can say that there are at least two things with a par-
ticular property (say cubes):

∃x ∃y (x 6= y ∧ Cube(x) ∧ Cube(y))
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With mixed quantifiers and identity, we can say quite a bit more. For example,
consider the sentence

∃x (Cube(x) ∧ ∀y (Cube(y) → y = x))

This says that there is a cube, and furthermore every cube is identical to it.exactly one
Some cube, in other words, is the only cube. Thus, this sentence will be true
if and only if there is exactly one cube. There are many ways of saying things
like this in fol; we’ll run across others in the exercises. We discuss numerical
claims more systematically in Chapter 14.

Remember

When you are dealing with mixed quantifiers, the order is very important.
∀x ∃y R(x, y) is not logically equivalent to ∃y ∀x R(x, y).

Exercises

11.8
➶

If you skipped the You try it section, go back and do it now. Submit the file World Mixed 1.

11.9
➶

(Simple mixed quantifier sentences) Open Hilbert’s Sentences and Peano’s World. Evaluate the
sentences one by one, playing the game if an evaluation surprises you. Once you understand
the sentences, modify the false ones by adding a single negation sign so that they come out
true. The catch is that you aren’t allowed to add the negation sign to the front of the sentence!
Add it to an atomic formula, if possible, and try to make the claim nonvacuously true. (This
won’t always be possible.) Make sure you understand both why the original sentence is false
and why your modified sentence is true. When you’re done, submit your sentence list with the
changes.

11.10
➶

(Mixed quantifier sentences with identity) Open Leibniz’s World and use it to evaluate the
sentences in Leibniz’s Sentences. Make sure you understand all the sentences and follow any
instructions in the file. Submit your modified sentence list.

11.11
➶

(Building a world) Create a world in which all ten sentences in Arnault’s Sentences are true.
Submit your world.

11.12
➶

(Name that object) Open Carroll’s World and Hercule’s Sentences. Try to figure out which objects
have names, and what they are. You should be able to figure this out from the sentences, all
of which are true. Once you have come to your conclusion, add the names to the objects and
check to see if all the sentences are true. Submit your modified world.
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The remaining three exercises all have to do with the sentences in the file Buridan’s Sentences and build
on one another.

11.13
➶

(Building a world) Open Buridan’s Sentences. Build a world in which all ten sentences are true.
Submit your world.

11.14
➶

(Consequence) These two English sentences are consequences of the ten sentences in Buridan’s
Sentences.

1. There are no cubes.
2. There is exactly one large tetrahedron.

Because of this, they must be true in any world in which Buridan’s sentences are all true. So
of course they must be true in World 11.13, no matter how you built it.

◦ Translate the two sentences, adding them to the list in Buridan’s Sentences. Name the
expanded list Sentences 11.14. Verify that they are all true in World 11.13.

◦ Modify the world by adding a cube. Try placing it at various locations and giving it
various sizes to see what happens to the truth values of the sentences in your file. One or
more of the original ten sentences will always be false, though different ones at different
times. Find a world in which only one of the original ten sentences is false and name it
World 11.14.1.

◦ Next, get rid of the cube and add a second large tetrahedron. Again, move it around and
see what happens to the truth values of the sentences. Find a world in which only one of
the original ten sentences is false and name it World 11.14.2.

Submit your sentence file and two world files.

11.15
➶?

(Independence) Show that the following sentence is independent of those in Buridan’s Sentences,
that is, neither it nor its negation is a consequence of those sentences.

∃x ∃y (x 6= y ∧ Tet(x) ∧ Tet(y) ∧ Medium(x) ∧ Medium(y))

You will do this by building two worlds, one in which this sentence is false (call this
World 11.15.1) and one in which it is true (World 11.15.2)—but both of which make all of
Buridan’s sentences true.
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Section 11.3

The step-by-step method of translation

When an English sentence contains more than one quantified noun phrase,
translating it can become quite confusing unless you approach it in a very
systematic way. It often helps to go through a few intermediate steps, treating
the quantified noun phrases one at a time.

Suppose, for example, we wanted to translate the sentence Each cube is
to the left of a tetrahedron. Here, there are two quantified noun phrases: each
cube and a tetrahedron. We can start by dealing with the first noun phrase,
temporarily treating the complex phrase is-to-the-left-of-a-tetrahedron as a
single unit. In other words, we can think of the sentence as a single quantifier
sentence, on the order of Each cube is small. The translation would look like
this:

∀x (Cube(x) → x is-to-the-left-of-a-tetrahedron)

Of course, this is not a sentence in our language, so we need to translate the
expression x is-to-the-left-of-a-tetrahedron. But we can think of this expression
as a single quantifier sentence, at least if we pretend that x is a name. It has
the same general form as the sentence b is to the left of a tetrahedron, and
would be translated as

∃y (Tet(y) ∧ LeftOf(x, y))

Substituting this in the above, we get the desired translation of the original
English sentence:

∀x (Cube(x) → ∃y (Tet(y) ∧ LeftOf(x, y)))

This is exactly the sentence with which we began our discussion of mixed
quantifiers.

This step-by-step process really comes into its own when there are lots of
quantifiers in a sentence. It would be very difficult for a beginner to trans-
late a sentence like No cube to the right of a tetrahedron is to the left of a
larger dodecahedron in a single blow. Using the step-by-step method makes it
straightforward. Eventually, though, you will be able to translate quite com-
plex sentences, going through the intermediate steps in your head.
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Exercises

11.16
➶?

(Using the step-by-step method of translation)

◦ Open Montague’s Sentences. This file contains expressions that are halfway between En-
glish and first-order logic. Our goal is to edit this file until it contains translations of
the following English sentences. You should read the English sentence below, make sure
you understand how we got to the halfway point, and then complete the translation by
replacing the hyphenated expression with a wff of first-order logic.

1. Every cube is to the left of every tetrahedron. [In the Sentence window, you
see the halfway completed translation, together with some blanks that need to
be replaced by wffs. Commented out below this, you will find an intermediate
“sentence.” Make sure you understand how we got to this intermediate stage of
the translation. Then complete the translation by replacing the blank with

∀y (Tet(y) → LeftOf(x, y))

Once this is done, check to see if you have a well-formed sentence. Does it look
like a proper translation of the original English? It should.]

2. Every small cube is in back of a large cube.
3. Some cube is in front of every tetrahedron.
4. A large cube is in front of a small cube.
5. Nothing is larger than everything.
6. Every cube in front of every tetrahedron is large.
7. Everything to the right of a large cube is small.
8. Nothing in back of a cube and in front of a cube is large.
9. Anything with nothing in back of it is a cube.

10. Every dodecahedron is smaller than some tetrahedron.

Save your sentences as Sentences 11.16.

◦ Open Peirce’s World. Notice that all the English sentences are true in this world. Check
to see that all of your translations are true as well. If they are not, see if you can figure
out where you went wrong.

◦ Open Leibniz’s World. Note that the English sentences 5, 6, 8, and 10 are true in this
world, while the rest are false. Verify that your translations have the same truth values.
If they don’t, fix them.

◦ Open Ron’s World. Here, the true sentences are 2, 3, 4, 5, and 8. Check that your trans-
lations have the right values, and correct them if they don’t.
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11.17
➶

(More multiple quantifier sentences) Now, we will try translating some multiple quantifier
sentences completely from scratch. You should try to use the step-by-step procedure.

◦ Start a new sentence file and translate the following English sentences.

1. Every tetrahedron is in front of every dodecahedron.
2. No dodecahedron has anything in back of it.
3. No tetrahedron is the same size as any cube.
4. Every dodecahedron is the same size as some cube.
5. Anything between two dodecahedra is a cube. [Note: This use of two really can be

paraphrased using between a dodecahedron and a dodecahedron.]
6. Every cube falls between two objects.
7. Every cube with something in back of it is small.
8. Every dodecahedron with nothing to its right is small.
9. (?) Every dodecahedron with nothing to its right has something to its left.

10. Any dodecahedron to the left of a cube is large.

◦ Open Bolzano’s World. All of the above English sentences are true in this world. Verify
that all your translations are true as well.

◦ Now open Ron’s World. The English sentences 4, 5, 8, 9, and 10 are true, but the rest are
false. Verify that the same holds of your translations.

◦ Open Claire’s World. Here you will find that the English sentences 1, 3, 5, 7, 9, and 10
are true, the rest false. Again, check to see that your translations have the appropriate
truth value.

◦ Finally, open Peano’s World. Notice that only sentences 8 and 9 are true. Check to see
that your translations have the same truth values.

Section 11.4

Paraphrasing English

Some English sentences do not easily lend themselves to direct translation
using the step-by-step procedure. With such sentences, however, it is often
quite easy to come up with an English paraphrase that is amenable to the
procedure. Consider, for example, If a freshman takes a logic class, then he
or she must be smart. The step-by-step procedure does not work here. If we
try to apply the procedure we would get something like
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∃x (Freshman(x) ∧ ∃y (LogicClass(y) ∧ Takes(x, y))) → Smart(x)

The problem is that this “translation” is not a sentence, since the last occur-
rence of x is free. However, we can paraphrase the sentences as Every freshman
who takes a logic class must be smart. This is easily treated by the procedure,
with the result being

∀x [(Freshman(x) ∧ ∃y (LogicClass(y) ∧ Takes(x, y))) → Smart(x)]

There is one particularly notorious kind of sentence that needs paraphras-
ing to get an adequate first-order translation. They are known as donkey donkey sentences
sentences, because the first and most discussed example of this kind is the
sentence

Every farmer who owns a donkey beats it.

What makes such a sentence a bit tricky is the existential noun phrase “a
donkey” in the noun phrase “every farmer who owns a donkey.” The existential
noun phrase serves as the antecedent of the pronoun “it” in the verb phrase;
its the donkey that gets beaten. Applying the step-by-step method might lead
you to translate this as follows:

∀x (Farmer(x) ∧ ∃y (Donkey(y) ∧ Owns(x, y)) → Beats(x, y))

This translation, however, cannot be correct since it’s not even a sentence; the
occurrence of y in Beats(x, y) is free, not bound. If we move the parenthesis
to capture this free variable, we obtain the following, which means something
quite different from our English sentence.

∀x (Farmer(x) ∧ ∃y (Donkey(y) ∧ Owns(x, y) ∧ Beats(x, y)))

This means that everything in the domain of discourse is a farmer who owns
and beats a donkey, something which neither implies nor is implied by the
original sentence.

To get a correct first-order translation of the original donkey sentence, it
can be paraphrased as

Every donkey owned by any farmer is beaten by them.

This sentence clearly needs two universal quantifiers in its translation:

∀x (Donkey(x) → ∀y ((Farmer(y) ∧ Owns(y, x)) → Beats(y, x)))
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Remember

In translating from English to fol, the goal is to get a sentence that has
the same meaning as the original. This sometimes requires changes in the
surface form of the sentence.

Exercises

11.18
➶?

(Sentences that need paraphrasing before translation) Translate the following sentences by first
giving a suitable English paraphrase. Some of them are donkey sentences, so be careful.

1. Only large objects have nothing in front of them.
2. If a cube has something in front of it, then it’s small.
3. Every cube in back of a dodecahedron is also smaller than it.
4. If e is between two objects, then they are both small.
5. If a tetrahedron is between two objects, then they are both small.

Open Ron’s World. Recall that there are lots of hidden things in this world. Each of the above
English sentences is true in this world, so the same should hold of your translations. Check to
see that it does. Now open Bolzano’s World. In this world, only sentence 3 is true. Check that
the same holds of your translations. Next open Wittgenstein’s World. In this world, only the
English sentence 5 is true. Verify that your translations have the same truth values. Submit
your sentence file.

11.19
➶?

(More sentences that need paraphrasing before translation) Translate the following sentences
by first giving a suitable English paraphrase.

1. Every dodecahedron is as large as every cube. [Hint: Since we do not have anything
corresponding to as large as (by which we mean at least as large as) in our language,
you will first need to paraphrase this predicate using larger than or same size as.]

2. If a cube is to the right of a dodecahedron but not in back of it, then it is as large as
the dodecahedron.

3. No cube with nothing to its left is between two cubes.
4. The only large cubes are b and c.
5. At most b and c are large cubes. [Note: There is a significant difference between this

sentence and the previous one. This one does not imply that b and c are large cubes,
while the previous sentence does.]

Open Ron’s World. Each of the above English sentences is true in this world, so
the same should hold of your translations. Check to see that it does. Now open
Bolzano’s World. In this world, only sentences 3 and 5 are true. Check that the
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same holds of your translations. Next open Wittgenstein’s World. In this world, only the English
sentences 2 and 3 are true. Verify that your translations have the same truth values. Submit
your sentence file.

11.20
➶?

(More translations) The following English sentences are true in Gödel’s World. Translate them,
and make sure your translations are also true. Then modify the world in various ways, and
check that your translations track the truth value of the English sentence.

1. Nothing to the left of a is larger than everything to the left of b.
2. Nothing to the left of a is smaller than anything to the left of b.
3. The same things are left of a as are left of b.
4. Anything to the left of a is smaller than something that is in back of every cube to the

right of b.
5. Every cube is smaller than some dodecahedron but no cube is smaller than every do-

decahedron.
6. If a is larger than some cube then it is smaller than every tetrahedron.
7. Only dodecahedra are larger than everything else.
8. All objects with nothing in front of them are tetrahedra.
9. Nothing is between two objects which are the same shape.

10. Nothing but a cube is between two other objects.
11. b has something behind it which has at least two objects behind it.
12. More than one thing is smaller than something larger than b.

Submit your sentence file.

11.21
➶

Using the symbols introduced in Table 1.2, page 30, translate the following into fol. Do
not introduce any additional names or predicates. Comment on any shortcomings in your
translations. When you are done, submit your sentence file and turn in your comments to your
instructor.

1. Every student gave a pet to some other student sometime or other.
2. Claire is not a student unless she owned a pet (at some time or other).
3. No one ever owned both Folly and Scruffy at the same time.
4. No student fed every pet.
5. No one who owned a pet at 2:00 was angry.
6. No one gave Claire a pet this morning. (Assume that “this morning” simply means

before 12:00.)
7. If Max ever gave Claire a pet, she owned it then and he didn’t.
8. You can’t give someone something you don’t own.
9. Max fed all of his pets before Claire fed any of her pets.

10. Max gave Claire a pet between 2:00 and 3:00. It was hungry.
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11.22
✎

Using the symbols introduced in Table 1.2, page 30, translate the following into colloquial
English. Assume that each of the sentences is asserted at 2 p.m. on January 2, 2001, and
use this fact to make your translations more natural. For example, you could translate
Owned(max, folly,2:00) as Max owns Folly.

1. ∀x [Student(x) → ∃z (Pet(z) ∧ Owned(x, z,2:00))]
2. ∃x [Student(x) ∧ ∀z (Pet(z) → Owned(x, z,2:00))]
3. ∀x ∀t [Gave(max, x, claire, t) → ∃y ∃t′ Gave(claire, x, y, t′)]
4. ∃x [Owned(claire, x, 2:00) ∧ ∃t (t < 2:00 ∧ Gave(max, x, claire, t))]
5. ∃x ∃t (1:55 < t ∧ t < 2:00 ∧ Gave(max, x, claire, t))
6. ∀y [Person(y) → ∃x ∃t (1:55 < t ∧ t < 2:00 ∧ Gave(max, x, y, t))]
7. ∃z {Student(z) ∧ ∀y [Person(y) → ∃x ∃t (1:55 < t ∧ t < 2:00∧

Gave(z, x, y, t))]}

11.23
✎?

Translate the following into fol. As usual, explain the meanings of the names, predicates, and
function symbols you use, and comment on any shortcomings in your translations.

1. There’s a sucker born every minute.
2. Whither thou goest, I will go.
3. Soothsayers make a better living in the world than truthsayers.
4. To whom nothing is given, nothing can be required.
5. If you always do right, you will gratify some people and astonish the rest.

Section 11.5

Ambiguity and context sensitivity

There are a couple of things that make the task of translating between English
and first-order logic difficult. One is the sparseness of primitive concepts in
fol. While this sparseness makes the language easy to learn, it also means
that there are frequently no very natural ways of saying what you want to
say. You have to try to find circumlocutions available with the resources at
hand. While this is often possible in mathematical discourse, it is frequently
impossible for ordinary English. (We will return to this matter later.)

The other thing that makes it difficult is that English is rife with ambi-ambiguity
guities, whereas the expressions of first-order logic are unambiguous (at least
if the predicates used are unambiguous). Thus, confronted with a sentence
of English, we often have to choose one among many possible interpretations
in deciding on an appropriate translation. Just which is appropriate usually
depends on context.

The ambiguities become especially vexing with quantified noun phrases.
Consider, for example, the following joke, taken from Saturday Night Live:
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Every minute a man is mugged in New York City. We are going to
interview him tonight.

What makes this joke possible is the ambiguity in the first sentence. The most
natural reading would be translated by

∀x (Minute(x) → ∃y (Man(y) ∧ MuggedDuring(y, x)))

But the second sentence forces us to go back and reinterpret the first in a
rather unlikely way, one that would be translated by

∃y (Man(y) ∧ ∀x (Minute(x) → MuggedDuring(y, x)))

This is often called the strong reading, the first the weak reading, since
this one entails the first but not vice versa.

Notice that the reason the strong translation is less likely is not determined
by the form of the original sentence. You can find examples of the same form context sensitivity
where the strong reading is more natural. For example, suppose you have been
out all day and, upon returning to your room, your roommate says, “Every
ten minutes some guy from the registrar’s office has called trying to reach
you.” Here it is the strong reading where the existential “some guy” is given
wide scope that is most likely the one intended.

There is another important way in which context often helps us disam-
biguate an ambiguous utterance or claim. We often speak about situations
that we can see, and say something about it in a way that makes perfectly
clear, given that what we see. Someone looking at the same scene typically
finds it clear and unambiguous, while someone to whom the scene is not visible
may find our utterance quite unclear. Let’s look at an example.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

J1. It is a hard to get too many blocks adjacent to a single block in Tarski’s
World, because many of the blocks overflow their squares and so do not
leave room for similar sized blocks on adjacent squares. How many medium
dodecahedra do you think it is possible to have adjacent to a single medium
cube?

J2. Open Anderson’s First World. Notice that this world has four medium do-
decahedra surrounding a single medium cube.

J3. Imagine that Max makes the following claim about this situation:
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At least four medium dodecahedra are adjacent to a medium cube.

The most natural understanding of Max’s claim in this context is as the
claim that there is a single cube to which at least four dodecahedra are
adjacent.

I 4. There is, however, another reading of Max’s sentence. Imagine that a
tyrant tetrahedron is determined to assassinate any medium dodecahe-
dron with the effrontery to be adjacent to a medium cube. Open Ander-
son’s Second World and assume that Max makes a claim about this world
with the above sentence. Here a weaker reading of his claim would be the
more reasonable, one where Max is asserting that at least four medium
dodecahedra are each adjacent to some medium cube or other.

I 5. We would ask you to translate these two readings of the one sentence
into fol, but unfortunately you have not yet learned how translate “at
least four” into fol yet; this will come in Chapter 14 (see Exercise 14.5 in
particular). Instead consider the following sentence:

Every medium dodecahedron is adjacent to a medium cube.

Write the stronger and weaker translations in a file, in that order. Check
that the stronger reading is only true in the first of Anderson’s worlds,
while the weaker reading is true in both. Save your file as Sentences Max 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

The problems of translation are much more difficult when we look at ex-
tended discourse, where more than one sentence comes in. To get a feeling forextended discourse
the difficulty, we start of with a couple of problems about extended discourse.

Remember

A important source of ambiguity in English stems from the order in which
quantifiers are interpreted. To translate such a sentence into fol, you
must know which order the speaker of the sentence had in mind. This
can often be determined by looking at the context in which the sentence
was used.
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Exercises

11.24
➶

If you skipped the You try it section, go back and do it now. Save your sentence file as
Sentences Max 1.

11.25
➶?

(Translating extended discourse)

◦ Open Reichenbach’s World 1 and examine it. Check to see that all of the sentences in the
following discourse are true in this world.

There are (at least) two cubes. There is something between them. It is a medium
dodecahedron. It is in front of a large dodecahedron. These two are left of a small
dodecahedron. There are two tetrahedra.

Translate this discourse into a single first-order sentence. Check to see that your trans-
lation is true. Now check to see that your translation is false in Reichenbach’s World
2.

◦ Open Reichenbach’s World 2. Check to see that all of the sentences in the following
discourse are true in this world.

There are two tetrahedra. There is something between them. It is a medium
dodecahedron. It is in front of a large dodecahedron. There are two cubes. These
two are left of a small dodecahedron.

Translate this into a single first-order sentence. Check to see that your translation is
true. Now check to see that your translation is false in Reichenbach’s World 1. However,
note that the English sentences in the two discourses are in fact exactly the same; they
have just been rearranged! The moral of this exercise is that the correct translation of a
sentence into first-order logic (or any other language) can be very dependent on context.
Submit your sentence file.

11.26
➶?

(Ambiguity) Use Tarski’s World to create a new sentence file and use it to translate the following
sentences into fol. Each of these sentences is ambiguous, so you should have two different
translations of each. Put the two translations of sentence 1 in slots 1 and 2, the two translations
of sentence 3 in slots 3 and 4, and so forth.

1. Every cube is between a pair of dodecahedra.
3. Every cube to the right of a dodecahedron is smaller than it is.
5. Cube a is not larger than every dodecahedron.
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7. No cube is to the left of some dodecahedron.
9. (At least) two cubes are between (at least) two dodecahedra.

Now open Carroll’s World. Which of your sentences are true in this world? You should find that
exactly one translation of each sentence is true. If not, you should correct one or both of your
translations. Notice that if you had had the world in front of you when you did the translations,
it would have been harder to see the ambiguity in the English sentences. The world would have
provided a context that made one interpretation the natural one. Submit your sentence file.

(Ambiguity and inference) Whether or not an argument is valid often hinges on how some ambiguous
claim is taken. Here are two arguments, each of whose first premise is ambiguous. Translate each ar-
gument into fol twice, corresponding to the ambiguity in the first premise. Under one translation the
conclusion follows. Prove it. Under the other, it does not. Describe a situation in which the premises
are true (with this translation) but the conclusion is false.

11.27
✎

Everyone admires someone who has
red hair.
Anyone who admires himself is con-
ceited.

Someone with red hair is conceited.

11.28
✎

All that glitters is not gold.
This ring glitters.

This ring is not gold.

Section 11.6

Translations using function symbols

Intuitively, functions are a kind of relation. One’s mother is one’s mother
because of a certain relationship you and she bear to one another. Similarly,relations and functions
2 + 3 = 5 because of a certain relationship between two, three, and five.
Building on this intuition, it is not hard to see that anything that can be
expressed in fol with function symbols can also be expressed in a version of
fol where the function symbols have been replaced by relation symbols.

The basic idea can be illustrated easily. Let us use mother as a unary
function symbol, but MotherOf as a binary relation symbol. Thus, for example,
mother(max) = nancy and MotherOf(nancy, max) both state that Nancy is the
mother of Max.

The basic claim is that anything we can say with the function symbol we
can say in some other way using the relation symbol. As an example, here is
a simple sentence using the function symbol:

∀x OlderThan(mother(x), x)
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It expresses the claim that a person’s mother is always older than the person.
To express the same thing with the relation symbol, we might write

∀x ∃y [MotherOf(y, x) ∧ OlderThan(y, x)]

Actually, one might wonder whether the second sentence quite manages to
express the claim made by the first, since all it says is that everyone has at
least one mother who is older than they are. One might prefer something like

∀x ∀y [MotherOf(y, x) → OlderThan(y, x)]

This says that every mother of everyone is older than they are. But this too
seems somewhat deficient. A still better translation would be to conjoin one of
the above sentences with the following two sentences which, together, assert
that the relation of being the mother of someone is functional. Everyone has
at least one, and everyone has at most one.

∀x ∃y MotherOf(y, x)

and
∀x ∀y ∀z [(MotherOf(y, x) ∧ MotherOf(z, x)) → y = z]

We will study this sort of thing much more in Chapter 14, where we will
see that these two sentences can jointly be expressed by one rather opaque
sentence:

∀x ∃y [MotherOf(y, x) ∧ ∀z [MotherOf(z, x) → y = z]]

And, if we wanted to, we could then incorporate our earlier sentence and
express the first claim by means of the horrendous looking:

∀x ∃y [MotherOf(y, x) ∧ OlderThan(y, x) ∧ ∀z [MotherOf(z, x) → y = z]]

By now it should be clearer why function symbols are so useful. Look at all
the connectives and additional quantifiers that have come into translating our
very simple sentence

∀x OlderThan(mother(x), x)

We present some exercises below that will give you practice translating
sentences from English into fol, sentences that show why it is nice to have
function symbols around.

Remember

Anything you can express using an n-ary function symbol can also be
expressed using an n+1-ary relation symbol, plus the identity predicate,
but at a cost in terms of the complexity of the sentences used.
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Exercises

11.29
✎

Translate the following sentences into fol twice, once using the function symbol mother, once
using the relation symbol MotherOf.

1. Claire’s mother is older than Max’s mother.
2. Everyone’s mother’s mother is older than Melanie.
3. Someone’s mother’s mother is younger than Mary.

11.30
✎

Translate the following into a version of fol that has function symbols height, mother, and
father, the predicate >, and names for the people mentioned.

1. Mary Ellen’s father is taller than Mary Ellen but not taller than Claire’s father.
2. Someone is taller than Claire’s father.
3. Someone’s mother is taller than their father.
4. Everyone is taller than someone else.
5. No one is taller than himself.
6. Everyone but J.R. who is taller than Claire is taller than J.R.
7. Everyone who is shorter than Claire is shorter than someone who is shorter than

Melanie’s father.
8. Someone is taller than Jon’s paternal grandmother but shorter than his maternal grand-

father.

Say which sentences are true, referring to the table in Figure 9.1 (p. 254). Take the domain of
quantification to be the people mentioned in the table. Turn in your answers.

11.31
➶|✎

Translate the following sentences into the blocks language augmented with the four function
symbols lm, rm, fm, and bm discussed in Section 1.5 (page 33) and further discussed in con-
nection with quantifiers in Section 9.7 (page 252). Tell which of these sentences are true in
Malcev’s World.

1. Every cube is to the right of the leftmost block in the same row.
2. Every block is in the same row as the leftmost block in the same row.
3. Some block is in the same row as the backmost block in the same column.
4. Given any two blocks, the first is the leftmost block in the same row as the second if

and only if there is nothing to the left of the second.
5. Given any two blocks, the first is the leftmost block in the same row as the second if

and only if there is nothing to the left of the second and the the two blocks are in the
same row.

Turn in your answers.
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11.32
✎

Using the first-order language of arithmetic described earlier, express each of the following in
fol.

1. Every number is either 0 or greater than 0.
2. The sum of any two numbers greater than 1 is smaller than the product of the same

two numbers.
3. Every number is even. [This is false, of course.]
4. If x2 = 1 then x = 1. [Hint: Don’t forget the implicit quantifier.]
5. ?? For any number x, if ax2+bx+c = 0 then either x = −b+

√
b2−4ac
2a or x = −b−

√
b2−4ac

2a .
In this problem use a, b, c as constant symbols, but treat x as a variable, as usual in
algebra.

Section 11.7

Prenex form

When we translate complex sentences of English into fol, it is common to
end up with sentences where the quantifiers and connectives are all scrambled
together. This is usually due to the way in which the translations of complex
noun phrases of English use both quantifiers and connectives:

∀x (P(x) → . . . )

∃x (P(x) ∧ . . . )

As a result, the translation of (the most likely reading of) a sentence like
Every cube to the left of a tetrahedron is in back of a dodecahedron ends up
looking like

∀x [(Cube(x) ∧ ∃y (Tet(y) ∧ LeftOf(x, y))) → ∃y (Dodec(y) ∧ BackOf(x, y))]

While this is the most natural translation of our sentence, there are sit-
uations where it is not the most convenient one. It is sometimes important
that we be able to rearrange sentences like this so that all the quantifiers are
out in front and all the connectives in back. Such a sentence is said to be in prenex form
prenex form, since all the quantifiers come first.

Stated more precisely, a wff is in prenex normal form if either it contains
no quantifiers at all, or else is of the form

Q1v1Q2v2 . . . QnvnP

where each Qi is either ∀ or ∃, each vi is some variable, and the wff P is
quantifier-free.
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There are several reasons one might want to put sentences into prenex
form. One is that it gives you a nice measure of the logical complexity of the
sentences. What turns out to matter is not so much the number of quantifiers,
as the number of times you get a flip from ∀ to ∃ or the other way round.
The more of these so-called alternations, the more complex the sentence is,quantifier alternations
logically speaking. Another reason is that this prenex form is quite analogous
to the conjunctive normal form for quantifier-free wffs we studied earlier. And
like that normal form, it is used extensively in automated theorem proving.

It turns out that every sentence is logically equivalent to one (in fact many)
in prenex form. In this section we will present some rules for carrying out this
transformation. When we apply the rules to our earlier example, we will get

∀x ∀y ∃z [(Cube(x) ∧ Tet(y) ∧ LeftOf(x, y)) → (Dodec(z) ∧ BackOf(x, z))]

To arrive at this sentence, we did not just blindly pull quantifiers out inconverting to
prenex form front. If we had, it would have come out all wrong. There are two problems.

One is that the first ∃y in the original sentence is, logically speaking, inside
a ¬. (To see why, replace → by its definition in terms of ¬ and ∨.) The
DeMorgan laws for quantifiers tell us that it will end up being a universal
quantifier. Another problem is that the original sentence has two quantifiers
that bind the variable y. There is no problem with this, but if we pull the
quantifiers out front, there is suddenly a clash. So we must first change one
of the ys to some other variable, say z.

We have already seen the logical equivalences that are needed for putting
sentences in prenex form. They were summarized in a box on page 282. They
allowed us to move negations inside quantifiers by switching quantifiers, to
distribute ∀ over ∧, ∃ over ∨, to replace bound variables by other variables,
and to move quantifiers past formulas in which the variable being quantified
is not free. In order to apply these maneuvers to sentences with → or ↔, one
needs to either replace these symbols with equivalent versions using ¬, ∨ and
∧ (or else derive some similar rules for these symbols).

The basic strategy for putting sentences into prenex form is to work from
the inside out, working on parts, then putting them together. By way of
example, here is a chain of equivalences where we start with a sentence not in
prenex normal form and turn it into a logically equivalent one that is prenex
normal form, explaining why we do each step as we go.

∃x P(x) → ∃y Q(y)

In getting a formula into prenex form, it’s a good idea to get rid of conditionals
in favor of Boolean connectives, since these interact more straightforwardly

Chapter 11



Prenex form / 313

with the quantifiers in our principles. So our first step is to obtain

¬∃x P(x) ∨ ∃y Q(y)

Now we have a disjunction, but the first disjunct is no longer in prenex form.
That can be fixed using DeMorgan’s law:

∀x ¬P(x) ∨ ∃y Q(y)

Now we can use the Null Quantification Principle to move either of the quan-
tifiers. We chose to move ∃y first, for no particular reason.

∃y [∀x ¬P(x) ∨ Q(y)]

Finally, we move ∀x
∃y ∀x (¬P(x) ∨ Q(y))

If we had done it in the other order, we would have obtained the superficially
different

∀x ∃y (¬P(x) ∨ Q(y))

While the order of mixed quantifiers is usually quite important, in this case it
does not matter because of the pattern of variables within the matrix of the
wff.

Here is another example:

(∃x P(x) ∨ R(b)) → ∀x (P(x) ∧ ∀x Q(x))

Again we have a conditional, but this time neither the antecedent nor the
consequent is in prenex normal form. Following the basic strategy of working
from the inside out, let’s first put the antecedent and then the consequent
each into prenex form and then worry about what to do about the conditional.
Using the principle of null quantification on the antecedent we obtain

∃x (P(x) ∨ R(b)) → ∀x (P(x) ∧ ∀x Q(x))

Next we use the principle involving the distribution of ∀ and ∧ on the conse-
quent:

∃x (P(x) ∨ R(b)) → ∀x (P(x) ∧ Q(x))

Now both the antecedent and consequent are in prenex form. Recall that it’s
a good idea to get rid of conditionals in favor of Boolean connectives. Hence,
we replace → by its equivalent using ¬ and ∨:

¬∃x (P(x) ∨ R(b)) ∨ ∀x (P(x) ∧ Q(x))
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Now we have a disjunction, but one of the disjuncts is not in prenex form.
Again, that can be fixed using DeMorgan’s law:

∀x ¬(P(x) ∨ R(b)) ∨ ∀x (P(x) ∧ Q(x))

Now both disjuncts are in prenex form. We need to pull the ∀’s out in front. (If
they were both ∃’s, we could do this easily, but they aren’t.) Here is probably
the least obvious step in the process: In order to get ready to pull the ∀’s out
in front, we replace the x in the second disjunct by a variable (say z) not in
the first disjunct:

∀x ¬(P(x) ∨ R(b)) ∨ ∀z (P(z) ∧ Q(z))

We now use the principle of null quantification twice, first on ∀x:

∀x [¬(P(x) ∨ R(b)) ∨ ∀z (P(z) ∧ Q(z))]

Finally, we use the same principle on ∀z, giving a wff in prenex form:

∀x ∀z [¬(P(x) ∨ R(b)) ∨ (P(z) ∧ Q(z))]

It is at this step that things would have gone wrong if we had not first changed
the second x to a z. Do you see why? The wrong quantifiers would have bound
the variables in the second disjunct.

If we wanted to, for some reason, we could now go on and put the inner
part, the part following all the quantifiers, into one of our propositional normal
forms, CNF or DNF.

With these examples behind us, here is a step-by-step transformation of
our original sentence into the one in prenex form given above. We have ab-
breviated the predicates in order to make it easier to read.

∀x [(C(x) ∧ ∃y (T(y) ∧ L(x, y))) → ∃y (D(y) ∧ B(x, y))] ⇔
∀x [¬(C(x) ∧ ∃y (T(y) ∧ L(x, y))) ∨ ∃y (D(y) ∧ B(x, y))] ⇔
∀x [¬∃y (C(x) ∧ T(y) ∧ L(x, y)) ∨ ∃y (D(y) ∧ B(x, y))] ⇔
∀x [∀y ¬(C(x) ∧ T(y) ∧ L(x, y)) ∨ ∃y (D(y) ∧ B(x, y))] ⇔
∀x [∀y ¬(C(x) ∧ T(y) ∧ L(x, y)) ∨ ∃z (D(z) ∧ B(x, z))] ⇔
∀x ∀y [¬(C(x) ∧ T(y) ∧ L(x, y)) ∨ ∃z (D(z) ∧ B(x, z))] ⇔
∀x ∀y [∃z ¬(C(x) ∧ T(y) ∧ L(x, y)) ∨ ∃z (D(z) ∧ B(x, z))] ⇔
∀x ∀y ∃z [¬(C(x) ∧ T(y) ∧ L(x, y)) ∨ (D(z) ∧ B(x, z))] ⇔
∀x ∀y ∃z [(C(x) ∧ T(y) ∧ L(x, y)) → (D(z) ∧ B(x, z))]

Remember

A sentence is in prenex form if any quantifiers contained in it are out in
front. Any sentence is logically equivalent to one in prenex form.
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Exercises

Derive the following from the principles given earlier, by replacing → by its definition in terms of ∨
and ¬.

11.33
✎

∀x P → Q ⇔ ∃x [P → Q] if x not free in Q

11.34
✎

∃x P → Q ⇔ ∀x [P → Q] if x not free in Q

11.35
✎

P → ∀x Q ⇔ ∀x [P → Q] if x not free in P

11.36
✎

P → ∃x Q ⇔ ∃x [P → Q] if x not free in P

11.37
➶

(Putting sentences in Prenex form) Open Jon Russell’s Sentences. You will find ten sentences,
at the odd numbered positions. Write a prenex form of each sentence in the space below it.
Save your sentences. Open a few worlds, and make sure that your prenex form has the same
truth value as the sentence above it.

11.38
➶

(Some invalid quantifier manipulations) We remarked above on the invalidity of some quantifier
manipulations that are superficially similar to the valid ones. In fact, in both cases one side
is a logical consequence of the other side, but not vice versa. We will illustrate this. Build a
world in which (1) and (3) below are true, but (2) and (4) are false.

1. ∀x [Cube(x) ∨ Tet(x)]
2. ∀x Cube(x) ∨ ∀x Tet(x)
3. ∃x Cube(x) ∧ ∃x Small(x)
4. ∃x [Cube(x) ∧ Small(x)]

Section 11.8

Some extra translation problems

Some instructors concentrate more on translation than others. For those who
like to emphasize this skill, we present some additional challenging exercises
here.
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Exercises

11.39
➶

(Translation) Open Peirce’s World. Look at it in 2-D to remind yourself of the hidden objects.
Start a new sentence file where you will translate the following English sentences. Again, be
sure to check each of your translations to see that it is indeed a true sentence.

1. Everything is either a cube or a tetrahedron.
2. Every cube is to the left of every tetrahedron.
3. There are at least three tetrahedra.
4. Every small cube is in back of a particular large cube.
5. Every tetrahedron is small.
6. Every dodecahedron is smaller than some tetrahedron. [Note: This is vacuously true in

this world.]

Now let’s change the world so that none of the English sentences are true. (We can do this by
changing the large cube in front to a dodecahedron, the large cube in back to a tetrahedron,
and deleting the two small tetrahedra in the far right column.) If your answers to 1–5 are
correct, all of your translations should be false as well. If not, you have made a mistake in
translation. Make further changes, and check to see that the truth values of your translations
track those of the English sentences. Submit your sentence file.

11.40
➶??

(More translations for practice) This exercise is just to give you more practice translating
sentences of various sorts. They are all true in Skolem’s World, in case you want to look while
translating.

◦ Translate the following sentences.

1. Not every cube is smaller than every tetrahedra.
2. No cube is to the right of anything.
3. There is a dodecahedron unless there are at least two large objects.
4. No cube with nothing in back of it is smaller than another cube.
5. If any dodecahedra are small, then they are between two cubes.
6. If a cube is medium or is in back of something medium, then it has nothing to

its right except for tetrahedra.
7. The further back a thing is, the larger it is.
8. Everything is the same size as something else.
9. Every cube has a tetrahedron of the same size to its right.

10. Nothing is the same size as two (or more) other things.
11. Nothing is between objects of shapes other than its own.
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◦ Open Skolem’s World. Notice that all of the above English sentences are true. Verify that
the same holds of your translations.

◦ This time, rather than open other worlds, make changes to Skolem’s World and see
that the truth value of your translations track that of the English sentence. For ex-
ample, consider sentence 5. Add a small dodecahedron between the front two cubes.
The English sentence is still true. Is your translation? Now move the dodecahedron
over between two tetrahedra. The English sentence is false. Is your translation? Now
make the dodecahedron medium. The English sentence is again true. How about your
translation?

Submit your sentence file.

11.41
➶?

Using the symbols introduced in Table 1.2, page 30, translate the following into fol. Do
not introduce any additional names or predicates. Comment on any shortcomings in your
translations.

1. No student owned two pets at a time.
2. No student owned two pets until Claire did.
3. Anyone who owns a pet feeds it sometime.
4. Anyone who owns a pet feeds it sometime while they own it.
5. Only pets that are hungry are fed.

11.42
✎?

Translate the following into fol. As usual, explain the meanings of the names, predicates, and
function symbols you use, and comment on any shortcomings in your translations.

1. You should always except the present company.
2. There was a jolly miller once

Lived on the River Dee;
He worked and sang from morn till night
No lark more blithe than he.

3. Man is the only animal that blushes. Or needs to.
4. You can fool all of the people some of the time, and some of the people all of the time,

but you can’t fool all of the people all of the time.
5. Everybody loves a lover.

11.43
✎?

Give two translations of each of the following and discuss which is the most plausible reading,
and why.

1. Every senior in the class likes his or her computer, and so does the professor. [Treat
“the professor” as a name here and in the next sentence.]

2. Every senior in the class likes his or her advisor, and so does the professor.
3. In some countries, every student must take an exam before going to college.
4. In some countries, every student learns a foreign language before going to college.
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11.44
✎

(Using DeMorgan’s Laws in mathematics) The DeMorgan Laws for quantifiers are quite helpful
in mathematics. A function f on real numbers is said to be continuous at 0 if, intuitively, f(x)
can be kept close to f(0) by keeping x close enough to 0. If you have had calculus then you
will probably recognize the following a way to make this definition precise:

∀ε > 0 ∃δ > 0 ∀x (| x |< δ →| f(x) − f(0) |< ε)

Here “∀ε > 0(. . .)” is shorthand for “∀ε(ε > 0 → . . .)”. Similarly, “∃δ > 0(. . .)” is shorthand
for “∃δ(δ > 0 ∧ . . .)”. Use DeMorgan’s Laws to express the claim that f is not continuous at 0
in prenex form. You may use the same kind of shorthand we have used. Turn in your solution.

11.45
✎?

Translate the following two sentences into fol:
1. If everyone comes to the party, I will have to buy more food.
2. There is someone such that if he comes to the party, I will have to buy more food.

The natural translations of these turn out to have forms that are equivalent, according to the
equivalence in Problem 11.33. But clearly the English sentences do not mean the same thing.
Explain what is going on here. Are the natural translations really correct?
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Chapter 12

Methods of Proof for Quantifiers

In earlier chapters we discussed valid patterns of reasoning that arise from
the various truth-functional connectives of fol. This investigation of valid
inference patterns becomes more interesting and more important now that
we’ve added the quantifiers ∀ and ∃ to our language.

Our aim in this chapter and the next is to discover methods of proof that
allow us to prove all and only the first-order validities, and all and only the
first-order consequences of a given set of premises. In other words, our aim
is to devise methods of proof sufficient to prove everything that follows in
virtue of the meanings of the quantifiers, identity, and the truth-functional
connectives. The resulting deductive system does indeed accomplish this goal,
but our proof of that fact will have to wait until the final chapter of this book.
That chapter will also discuss the issue of logical consequence when we take
into account the meanings of other predicates in a first-order language.

Again, we begin looking at informal patterns of inference and then present
their formal counterparts. As with the connectives, there are both simple proof
steps and more substantive methods of proof. We will start by discussing the
simple proof steps that are most often used with ∀ and ∃. We first discuss
proofs involving single quantifier sentences and then explore what happens
when we have multiple and mixed quantifier sentences.

Section 12.1

Valid quantifier steps

There are two very simple valid quantifier steps, one for each quantifier. They
work in opposite directions, however.

Universal elimination

Suppose we are given as a premise (or have otherwise established) that ev-
erything in the domain of discourse is either a cube or a tetrahedron. And
suppose we also know that c is in the domain of discourse. It follows, of course,
that c is either a cube or a tetrahedron, since everything is.

More generally, suppose we have established ∀x S(x), and we know that c
names an object in the domain of discourse. We may legitimately infer S(c).
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After all, there is no way the universal claim could be true without the specific
claim also being true. This inference step is called universal instantiation oruniversal elimination

(instantiation) universal elimination. Notice that it allows you to move from a known result
that begins with a quantifier ∀x (. . . x . . .) to one (. . . c . . .) where the quantifier
has been eliminated.

Existential introduction

There is also a simple proof step for ∃, but it allows you to introduce the
quantifier. Suppose you have established that c is a small tetrahedron. It
follows, of course, that there is a small tetrahedron. There is no way for the
specific claim about c to be true without the existential claim also being
true. More generally, if we have established a claim of the form S(c) then we
may infer ∃x S(x). This step is called existential generalization or existentialexistential introduction

(generalization) introduction.
In mathematical proofs, the preferred way to demonstrate the truth of

an existential claim is to find (or construct) a specific instance that satisfies
the requirement, and then apply existential generalization. For example, if
we wanted to prove that there are natural numbers x, y, and z for which
x2 + y2 = z2, we could simply note that 32 + 42 = 52 and apply existential
generalization (thrice over).

The validity of both of these inference steps is not unconditional in English.presuppositions
of these rules They are valid as long as any name used denotes some object in the domain

of discourse. This holds for fol by convention, as we have already stressed,
but English is a bit more subtle here. Consider, for example, the name Santa.
The sentence

Santa does not exist

might be true in circumstances where one would be reluctant to conclude

There is something that does not exist.

The trouble, of course, is that the name Santa does not denote anything. So
we have to be careful applying this rule in ordinary arguments where there
might be names in use that do not refer to actually existing objects.

Let’s give an informal proof that uses both steps, as well as some other
things we have learned. We will show that the following argument is valid:

∀x [Cube(x) → Large(x)]
∀x [Large(x) → LeftOf(x, b)]
Cube(d)

∃x [Large(x) ∧ LeftOf(x, b)]
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This is a rather obvious result, which is all the better for illustrating the
obviousness of these steps.

Proof: Using universal instantiation, we get

Cube(d) → Large(d)

and

Large(d) → LeftOf(d, b)

Applying modus ponens to Cube(d) and the first of these conditional
claims gives us Large(d). Another application of modus ponens gives
us LeftOf(d, b). But then we have

Large(d) ∧ LeftOf(d, b)

Finally, applying existential introduction gives us our desired con-
clusion:

∃x [Large(x) ∧ LeftOf(x,b)]

Before leaving this section, we should point out that there are ways to prove
existential statements other than by existential generalization. In particular,
to prove ∃x P(x) we could use proof by contradiction, assuming ¬∃x P(x) and
deriving a contradiction. This method of proceeding is somewhat less satis-
fying, since it does not actually tell you which object it is that satisfies the
condition P(x). Still, it does show that there is some such object, which is all
that is claimed. This was in fact the method we used back on page 131 to
prove that there are irrational numbers x and y such that xy is rational.

Remember

1. Universal instantiation: From ∀x S(x), infer S(c), so long as c denotes
an object in the domain of discourse.

2. Existential generalization: From S(c), infer ∃x S(x), so long as c denotes
an object in the domain of discourse.

Section 12.1



322 / Methods of Proof for Quantifiers

Section 12.2

The method of existential instantiation

Existential instantiation is one of the more interesting and subtle methods of
proof. It allows you to prove results when you are given an existential state-
ment. Suppose our domain of discourse consists of all children, and you are
told that some boy is at home. If you want to use this fact in your reasoning,
you are of course not entitled to infer that Max is at home. Neither are you
allowed to infer that John is at home. In fact, there is no particular boy about
whom you can safely conclude that he is at home, at least if this is all you
know. So how should we proceed? What we could do is give a temporary nametemporary names
to one of the boys who is at home, and refer to him using that name, as long
as we are careful not to use a name already used in the premises or the desired
conclusion.

This sort or reasoning is used in everyday life when we know that someone
(or something) satisfies a certain condition, but do not know who (or what)
satisfies it. For example, when Scotland Yard found out there was a serial
killer at large, they dubbed him “Jack the Ripper,” and used this name in
reasoning about him. No one thought that this meant they knew who the
killer was; rather, they simply introduced the name to refer to whoever was
doing the killing. Note that if the town tailor were already called Jack the
Ripper, then the detectives’ use of this name would (probably) have been a
gross injustice.

This is a basic strategy used when giving proofs in fol. If we have correctly
proven that ∃x S(x), then we can give a name, say c, to one of the objects
satisfying S(x), as long as the name is not one that is already in use. We may
then assume S(c) and use it in our proof. This is the rule known as existentialexistential elimination

(instantiation) instantiation or existential elimination.
Generally, when existential instantiation is used in a mathematical proof,

this will be marked by an explicit introduction of a new name. For example,
the author of the proof might say, “So we have shown that there is a prime
number between n and m. Call it p.” Another phrase that serves the same
function is: “Let p be such a prime number.”

Let’s give an example of how this rule might be used, by modifying our
preceding example. The desired conclusion is the same but one of the premises
is changed.
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∀x [Cube(x) → Large(x)]
∀x [Large(x) → LeftOf(x, b)]
∃x Cube(x)

∃x [Large(x) ∧ LeftOf(x, b)]

The first two premises are the same but the third is weaker, since it does not
tell us which block is a cube, only that there is one. We would like to eliminate
the ∃ in our third premise, since then we would be back to the case we have
already examined. How then should we proceed? The proof would take the
following form:

Proof: We first note that the third premise assures us that there is at
least one cube. Let “e” name one of these cubes. We can now proceed
just as in our earlier reasoning. Applying the first premise, we see
that e must be large. (What steps are we using here?) Applying
the second premise, we see that e must also be left of c. Thus, we
have shown that e is both large and left of c. Our desired conclusion
follows (by what inference step?) from this claim.

In applying existential instantiation, it is very important to make sure you an important condition
use a new name, not one that is already in use or that appears in the conclusion
you wish to prove. Looking at the above example shows why. Suppose we had
thoughtlessly used the name “b” for the cube e. Then we would have been
able to prove ∃x LeftOf(x, x), which is impossible. But our original premises
are obviously satisfiable: they are true in many different worlds. So if we do
not observe this condition, we can be led from true premises to false (even
impossible) conclusions.

Section 12.3

The method of general conditional proof

One of the most important methods of proof involves reasoning about an
arbitrary object of a particular kind in order to prove a universal claim about
all such objects. This is known as the method of general conditional proof. It
is a more powerful version of conditional proof, and similar in spirit to the
method of existential instantiation just discussed.

Let’s start out with an example. This time let us assume that the domain
of discourse consists of students at a particular college. We suppose that we
are given a bunch of information about these students in the form of premises.
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Finally, let us suppose we are able to prove from these premises that Sandy,
a math major, is smart. Under what conditions would we be entitled to infer
that every math major at the school is smart?

At first sight, it seems that we could never draw such a conclusion, unless
there were only one math major at the school. After all, it does not follow
from the fact that one math major is smart that all math majors are. But
what if our proof that Sandy is smart uses nothing at all that is particular to
Sandy? What if the proof would apply equally well to any math major? Then
it seems that we should be able to conclude that every math major is smart.

How might one use this in a real example? Let us suppose that our argu-
ment took the following form:

Anyone who passes Logic 101 with an A is smart.
Every math major has passed Logic 101 with an A.

Every math major is smart.

Our reasoning proceeds as follows.

Proof: Let “Sandy” refer to any one of the math majors. By the
second premise, Sandy passed Logic 101 with an A. By the first
premise, then, Sandy is smart. But since Sandy is an arbitrarily
chosen math major, it follows that every math major is smart.

This method of reasoning is used at every turn in doing mathematics. The
general form is the following: Suppose we want to prove ∀x [P(x) → Q(x)] fromgeneral conditional

proof some premises. The most straightforward way to proceed is to choose a name
that is not in use, say c, assume P(c), and prove Q(c). If you are able to do
this, then you are entitled to infer the desired result.

Let’s look at another example. Suppose we wanted to prove that every
prime number has an irrational square root. To apply general conditional
proof, we begin by assuming that p is an arbitrary prime number. Our goal is
to show that

√
p is irrational. If we can do this, we will have established the

general claim. We have already proven that this holds if p = 2. But our proof
relied on specific facts about 2, and so the general claim certainly doesn’t
follow from our proof. The proof, however, can be generalized to show what
we want. Here is how the generalization goes.

Proof: Let p be an arbitrary prime number. (That is, let “p” refer
to any prime number.) Since p is prime, it follows that if p divides a
square, say k2, then it divides k. Hence, if p divides k2, p2 also divides
k2. Now assume, for proof by contradiction, that

√
p is rational. Write

it in lowest terms as √
p = n/m. In particular, we can make sure that
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p does not divide both n and m without remainder. Now, squaring
both sides, we see that

p =
n2

m2

and hence
pm2 = n2

But then it follows that p divides n2, and so, as we have seen, p

divides n and p2 divides n2. But from the latter of these it follows
that p2 divides pm2 so p divides m2. But then p divides m. So we
have shown that p divides both n and m, contradicting our choice of
n and m. This contradiction shows that √

p is indeed irrational.

It is perhaps worth mentioning an aspect of mathematical discourse illus-
trated in this proof that often confuses newcomers to mathematics. In math-
ematics lectures and textbooks, one often hears or reads “Let r (or n, or f ,
etc.) be an arbitrary real number (natural number, function, etc.).” What is
confusing about this way of talking is that while you might say “Let Sandy
take the exam next week,” no one would ever say “Let Sandy be an arbitrary
student in the class.” That is not the way “let” normally works with names
in English. If you want to say something like that, you should say “Let’s use
‘Sandy’ to stand for any student in the class,” or “Let ‘Sandy’ denote any
student in the class.” In mathematics, though, this “let” locution is a stan-
dard way of speaking. What is meant by “Let r be an arbitrary real number”
is “Let ‘r’ denote any real number.” In the above proof we paraphrased the
first sentence to make it clearer. In the future, we will not be so pedantic.

Universal generalization

In formal systems of deduction, the method of general conditional proof is
usually broken down into two parts, conditional proof and a method for prov-
ing completely general claims, claims of the form ∀x S(x). The latter method
is called universal generalization or universal introduction. It tells us that if universal introduction

(generalization)we are able to introduce a new name c to stand for a completely arbitrary
member of the domain of discourse and go on to prove the sentence S(c), then
we can conclude ∀x S(x).

Here is a very simple example. Suppose we give an informal proof that the
following argument is valid.

∀x (Cube(x) → Small(x))
∀x Cube(x)

∀x Small(x)
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In fact, it was the first example we looked at back in Chapter 10. Let’s give a
proof of this argument.

Proof: We begin by taking a new name d, and think of it as stand-
ing for any member of the domain of discourse. Applying universal
instantiation twice, once to each premise, gives us

1. Cube(d) → Small(d)
2. Cube(d)

By modus ponens, we conclude Small(d). But d denotes an arbitrary
object in the domain, so our conclusion, ∀x Small(x), follows by uni-
versal generalization.

Any proof using general conditional proof can be converted into a proofuniversal generalization
and general conditional
proof

using universal generalization, together with the method of conditional proof.
Suppose we have managed to prove ∀x [P(x) → Q(x)] using general conditional
proof. Here is how we would go about proving it with universal generalization
instead. First we would introduce a new name c, and think of it as standing
for an arbitrary member of the domain of discourse. We know we can then
prove P(c) → Q(c) using ordinary conditional proof, since that is what we did
in our original proof. But then, since c stands for an arbitrary member of the
domain, we can use universal generalization to get ∀x [P(x) → Q(x)].

This is how formal systems of deduction can get by without having an
explicit rule of general conditional proof. One could equally well think of uni-
versal generalization as a special case of general conditional proof. After all,
if we wanted to prove ∀x S(x) we could apply general conditional proof to
the logically equivalent sentence ∀x [x = x → S(x)]. Or, if our language has
the predicate Thing(x) that holds of everything in the domain of discourse,
we could use general conditional proof to obtain ∀x [Thing(x) → S(x)]. (The
relation between general conditional proof and universal generalization will
become clearer when we get to the topic of generalized quantifiers in Sec-
tion 14.4.)

We have chosen to emphasize general conditional proof since it is the
method most often used in giving rigorous informal proofs. The division of this
method into conditional proof and universal generalization is a clever trick,
but it does not correspond well to actual reasoning. This is at least in part
due to the fact that universal noun phrases of English are always restricted by
some common noun, if only the noun thing. The natural counterparts of such
statements in fol have the form ∀x [P(x) → Q(x)], which is why we typically
prove them by general conditional proof.
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We began the discussion of the logic of quantified sentences in Chapter 10
by looking at the following arguments:

1. ∀x (Cube(x) → Small(x))
∀x Cube(x)

∀x Small(x)

2. ∀x Cube(x)
∀x Small(x)

∀x (Cube(x) ∧ Small(x))

We saw there that the truth functional rules did not suffice to establish these
arguments. In this chapter we have seen (on page 326) how to establish the
first using valid methods that apply to the quantifiers. Let’s conclude this
discussion by giving an informal proof of the second.

Proof: Let d be any object in the domain of discourse. By the first
premise, we obtain (by universal elimination) Cube(d). By the second
premise, we obtain Small(d). Hence we have (Cube(d) ∧ Small(d)).
But since d is an arbitrary object in the domain, we can conclude
∀x (Cube(x) ∧ Small(x)), by universal generalization.

Exercises

The following exercises each contain a formal argument and something that purports to be an informal
proof of it. Some of these proofs are correct while others are not. Give a logical critique of the purported
proof. Your critique should take the form of a short essay that makes explicit each proof step or method
of proof used, indicating whether it is valid or not. If there is a mistake, see if can you patch it up by
giving a correct proof of the conclusion from the premises. If the argument in question is valid, you
should be able to fix up the proof. If the argument is invalid, then of course you will not be able to fix
the proof.

12.1
✎

∀x [(Brillig(x) ∨ Tove(x)) → (Mimsy(x) ∧ Gyre(x))]
∀y [(Slithy(y) ∨ Mimsy(y)) → Tove(y)]
∃x Slithy(x)

∃x [Slithy(x) ∧ Mimsy(x)]

Purported proof: By the third premise, we know that something in the domain of
discourse is slithy. Let b be one of these slithy things. By the second premise, we know
that b is a tove. By the first premise, we see that b is mimsy. Thus, b is both slithy
and mimsy. Hence, something is both slithy and mimsy.
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12.2
✎

∀x [Brillig(x) → (Mimsy(x) ∧ Slithy(x))]
∀y [(Slithy(y) ∨ Mimsy(y)) → Tove(y)]
∀x [Tove(x) → (Outgrabe(x, b) ∧ Brillig(x))]

∀z [Brillig(z) ↔ Mimsy(z)]

Purported proof: In order to prove the conclusion, it suffices to prove the logically
equivalent sentence obtained by conjoining the following two sentences:

(1) ∀x [Brillig(x) → Mimsy(x)]

(2) ∀x [Mimsy(x) → Brillig(x)]

We prove these by the method of general conditional proof, in turn. To prove (1), let
b be anything that is brillig. Then by the first premise it is both mimsy and slithy.
Hence it is mimsy, as desired. Thus we have established (1).

To prove (2), let b be anything that is mimsy. By the second premise, b is also tove.
But then by the final premise, b is brillig, as desired. This concludes the proof.

12.3
✎

∀x [(Brillig(x) ∧ Tove(x)) → Mimsy(x)]
∀y [(Tove(y) ∨ Mimsy(y)) → Slithy(y)]
∃x Brillig(x) ∧ ∃x Tove(x)

∃z Slithy(z)

Purported proof: By the third premise, we know that there are brillig toves. Let b

be one of them. By the first premise, we know that b is mimsy. By the second premise,
we know that b is slithy. Hence, there is something that is slithy.

The following exercises each contains an argument; some are valid, some not. If the argument is valid,
give an informal proof. If it is not valid, use Tarski’s World to construct a counterexample.

12.4
➶|✎

∀y [Cube(y) ∨ Dodec(y)]
∀x [Cube(x) → Large(x)]
∃x ¬Large(x)

∃x Dodec(x)

12.5
➶|✎

∀y [Cube(y) ∨ Dodec(y)]
∀x [Cube(x) → Large(x)]
∃x ¬Large(x)

∃x [Dodec(x) ∧ Small(x)]

12.6
➶|✎

∀x [Cube(x) ∨ Dodec(x)]
∀x [¬Small(x) → Tet(x)]

¬∃x Small(x)

12.7
➶|✎

∀x [Cube(x) ∨ Dodec(x)]
∀x [Cube(x) → (Large(x) ∧ LeftOf(c, x))]
∀x [¬Small(x) → Tet(x)]

∃z Dodec(z)
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12.8
➶|✎

∀x [Cube(x) ∨ (Tet(x) ∧ Small(x))]
∃x [Large(x) ∧ BackOf(x, c)]

∃x [FrontOf(c, x) ∧ Cube(x)]

12.9
➶|✎

∀x [(Cube(x) ∧ Large(x)) ∨ (Tet(x) ∧ Small(x))]
∀x [Tet(x) → BackOf(x, c)]

∀x [Small(x) → BackOf(x, c)]

12.10
➶|✎

∀x [Cube(x) ∨ (Tet(x) ∧ Small(x))]
∃x [Large(x) ∧ BackOf(x, c)]

∀x [Small(x) → ¬BackOf(x, c)]

Section 12.4

Proofs involving mixed quantifiers

There are no new methods of proof that apply specifically to sentences with
mixed quantifiers, but the introduction of mixed quantifiers forces us to be
more explicit about some subtleties having to do with the interaction of meth-
ods that introduce new names into a proof: existential instantiation, general
conditional proof, and universal generalization. It turns out that problems can
arise from the interaction of these methods of proof.

Let us begin by illustrating the problem. Consider the following argument:

∃y [Girl(y) ∧ ∀x (Boy(x) → Likes(x, y))]

∀x [Boy(x) → ∃y (Girl(y) ∧ Likes(x, y))]

If the domain of discourse were the set of children in a kindergarten class, the
conclusion would say every boy in the class likes some girl or other, while the
premise would say that there is some girl who is liked by every boy. Since this
is valid, let’s start by giving a proof of it.

Proof: Assume the premise. Thus, at least one girl is liked by every
boy. Let c be one of these popular girls. To prove the conclusion we
will use general conditional proof. Assume that d is any boy in the
class. We want to prove that d likes some girl. But every boy likes
c, so d likes c. Thus d likes some girl, by existential generalization.
Since d was an arbitrarily chosen boy, the conclusion follows.
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This is a perfectly legitimate proof. The problem we want to illustrate,
however, is the superficial similarity between the above proof and the following
incorrect “proof” of the argument that reverses the order of the premise and
conclusion:

∀x [Boy(x) → ∃y (Girl(y) ∧ Likes(x, y))]

∃y [Girl(y) ∧ ∀x (Boy(x) → Likes(x, y))]

This is obviously invalid. The fact that every boy likes some girl or other
doesn’t imply that some girl is liked by every boy. So we can’t really prove
that the conclusion follows from the premise. But the following pseudo-proof
might appear to do just that.

Pseudo-proof: Assume the premise, that is, that every boy likes
some girl or other. Let e be any boy in the domain. By our premise,
e likes some girl. Let us introduce the new name “f” for some girl
that e likes. Since the boy e was chosen arbitrarily, we conclude
that every boy likes f , by general conditional proof. But then, by
existential generalization, we have the desired result, namely, that
some girl is liked by every boy.

This reasoning is fallacious. Seeing why it is fallacious is extremely impor-
tant, if we are to avoid missteps in reasoning. The problem centers on our
conclusion that every boy likes f . Recall how the name “f ” came into thehidden dependencies
proof. We knew that e, being one of the boys, liked some girl, and we chose
one of those girls and dubbed her with the name “f ”. This choice of a girl
depends crucially on which boy e we are talking about. If e was Matt or Alex,
we could have picked Zoe and dubbed her f . But if e was Eric, we couldn’t
pick Zoe. Eric likes one of the girls, but certainly not Zoe.

The problem is this. Recall that in order to conclude a universal claim
based on reasoning about a single individual, it is imperative that we not
appeal to anything specific about that individual. But after we give the name
“f” to one of the girls that e likes, any conclusion we come to about e and
f may well violate this imperative. We can’t be positive that it would apply
equally to all the boys.

Stepping back from this particular example, the upshot is this. Suppose
we assume P(c), where c is a new name, and prove Q(c). We cannot conclude
∀x [P(x) → Q(x)] if Q(c) mentions a specific individual whose choice depended
on the individual denoted by c. In practice, the best way to insure that no
such individual is specifically mentioned is to insist that Q(c) not contain any
name that was introduced by existential instantiation under the assumption
that P(c).
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Figure 12.1: A circumstance in which ∀x [Boy(x) → ∃y (Girl(y) ∧ Likes(x, y))].

A similar restriction must be placed on the use of universal generalization.
Recall that universal generalization involves the introduction of a new con-
stant, say c, standing for an arbitrary member c of the domain of discourse.
We said that if we could prove a sentence S(c), we could then conclude ∀x S(x). a new restriction
However, we must now add the restriction that S(c) not contain any constant
introduced by existential instantiation after the introduction of the constant
c. This restriction prevents invalid proofs like the following.

Pseudo-proof: Assume ∀x ∃y Adjoins(x, y). We will show that, ig-
noring the above restriction, we can “prove” ∃y ∀x Adjoins(x, y). We
begin by taking c as a name for an arbitrary member of the do-
main. By universal instantiation, we get ∃y Adjoins(c, y). Let d be
such that Adjoins(c,d). Since c stands for an arbitrary object, we
have ∀x Adjoins(x, d). Hence, by existential generalization, we get
∃y ∀x Adjoins(x, y).

Can you spot the fallacious step in this proof? The problem is that we
generalized from Adjoins(c,d) to ∀x Adjoins(x, d). But the constant d was in-
troduced by existential instantiation (though we did not say so explicitly) after
the constant c was introduced. Hence, the choice of the object d depends on
which object c we are talking about. The subsequent universal generalization
is just what our restriction rules out.

Let us now give a summary statement of the main methods of proof in-
volving the first-order quantifiers.
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Remember

Let S(x), P(x), and Q(x) be wffs.

1. Existential Instantiation: If you have proven ∃x S(x) then you may
choose a new constant symbol c to stand for any object satisfying S(x)
and so you may assume S(c).

2. General Conditional Proof: If you want to prove ∀x [P(x) → Q(x)] then
you may choose a new constant symbol c, assume P(c), and prove
Q(c), making sure that Q does not contain any names introduced by
existential instantiation after the assumption of P(c).

3. Universal Generalization: If you want to prove ∀x S(x) then you may
choose a new constant symbol c and prove S(c), making sure that S(c)
does not contain any names introduced by existential instantiation
after the introduction of c.

Two famous proofs

There are, of course, endless applications of the methods we have discussed
above. We illustrate the correct uses of these methods with two famous exam-
ples. One of the examples goes back to the ancient Greeks. The other, about a
hundred years old, is known as the Barber Paradox and is due to the English
logician Bertrand Russell. The Barber Paradox may seem rather frivolous, but
the result is actually closely connected to Russell’s Paradox, a result that had
a very significant impact on the history of mathematics and logic. It is also
connected with the famous result known as Gödel’s Theorem. (We’ll discuss
Russell’s Paradox in Chapter 15, and Gödel’s Theorem in the final section of
the book.)

Euclid’s Theorem

Recall that a prime number is a whole number greater than 1 that is not
divisible by any whole numbers other than 1 and itself. The first ten primes
are 2, 3, 5, 7, 11,13, 17,19, 23 and 29. The prime numbers become increasingly
scarce as the numbers get larger. The question arises as to whether there is
a largest one, or whether the primes go on forever. Euclid’s Theorem is theEuclid’s Theorem
statement that they go on forever, that there is no largest prime. In fol, we
might put it this way:

∀x ∃y [y ≥ x ∧ Prime(y)]
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Here the intended domain of discourse is the natural numbers, of course.

Proof: We see that this sentence is a mixed quantifier sentence of
just the sort we have been examining. To prove it, we let n be an
arbitrary natural number and try to prove that there exists a prime
number at least as large as n. To prove this, let k be the product
of all the prime numbers less than n. Thus each prime less than n

divides k without remainder. So now let m = k + 1. Each prime
less than n divides m with remainder 1. But we know that m can
be factored into primes. Let p be one of these primes. Clearly, by
the earlier observation, p must be greater than or equal to n. Hence,
by existential generalization, we see that there does indeed exist a
prime number greater than or equal to n. But n was arbitrary, so we
have established our result.

Notice the order of the last two steps. Had we violated the new condi-
tion on the application of general conditional proof to conclude that p is a
prime number greater than or equal to every natural number, we would have
obtained a patently false result.

Here, by the way, is a closely related conjecture, called the Twin Prime Twin Prime Conjecture
Conjecture. No one knows whether it is true or not.

∀x ∃y [y > x ∧ Prime(y) ∧ Prime(y + 2)]

The Barber Paradox

There was once a small town in Indiana where there was a barber who shaved
all and only the men of the town who did not shave themselves. We might
formalize this in fol as follows:

∃z ∃x [BarberOf(x, z) ∧ ∀y (ManOf(y, z) → (Shave(x, y) ↔ ¬Shave(y, y))]

Now there does not on the face of it seem to be anything logically inco-
herent about the existence of such a town. But here is a proof that there can
be no such town.

Purported proof: Suppose there is such a town. Let’s call it Hoosier-
ville, and let’s call Hoosierville’s barber Fred. By assumption, Fred
shaves all and only those men of Hoosierville who do not shave them-
selves.

Now either Fred shaves himself, or he doesn’t. But either possibility
leads to a contradiction, as we now show. As to the first possibility, if
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Fred does shave himself, then he doesn’t, since by the assumption he
does not shave any man of the town who shaves himself. So now as-
sume the other possibility, namely, that Fred doesn’t shave himself.
But then since Fred shaves every man of the town who doesn’t shave
himself, he must shave himself. We have shown that a contradiction
follows from each possibility. By proof by cases, then, we have estab-
lished a contradiction from our original assumption. This contradic-
tion shows that our assumption is wrong, so there is no such town.

The conflict between our intuition that there could be such a town on the
one hand, and the proof that there can be none on the other hand, has caused
this result to be known as the Barber Paradox.Barber Paradox

Actually, though, there is a subtle sexist flaw in this proof. Did you spot
it? It came in our use of the name “Fred.” By naming the barber Fred, we
implicitly assumed the barber was a man, an assumption that was needed to
complete the proof. After all, it is only about men that we know the barber
shaves those who do not shave themselves. Nothing is said about women,
children, or other inhabitants of the town.

The proof, though flawed, is not worthless. What it really shows is that if
there is a town with such a barber, then that barber is not a man of the town.
The barber might be a woman, or maybe a man from some other town. In other
words, the proof works fine to show that the following is a first-order validity:

¬∃z ∃x [ManOf(x, z) ∧ ∀y (ManOf(y, z) → (Shave(x, y) ↔ ¬Shave(y, y))]

There are many variations on this example that you can use to amaze,
amuse, or annoy your family with when you go home for the holidays. We
give a couple examples in the exercises (see Exercises 12.13 and 12.28).

Exercises

These exercises each contain a purported proof. If it is correct, say so. If it is incorrect, explain what
goes wrong using the notions presented above.

12.11
✎

There is a number greater than every other number.

Purported proof: Let n be an arbitrary number. Then n is less than some other
number, n + 1 for example. Let m be any such number. Thus n ≤ m. But n is an
arbitrary number, so every number is less or equal m. Hence there is a number that
is greater than every other number.
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12.12
✎

∀x [Person(x) → ∃y ∀z [Person(z) → GivesTo(x, y, z)]]

∀x [Person(x) → ∀z (Person(z) → ∃y GivesTo(x, y, z))]

Purported proof: Let us assume the premise and prove the conclusion. Let b be an
arbitrary person in the domain of discourse. We need to prove

∀z (Person(z) → ∃y GivesTo(b, y, z))

Let c be an arbitrary person in the domain of discourse. We need to prove

∃y GivesTo(b, y, c)

But this follows directly from our premise, since there is something that b gives to
everyone.

12.13
✎

Harrison admires only great actors who do not admire
themselves
Harrison admires all great actors who do not admire
themselves.

Harrison is not a great actor.

Purported proof: Toward a proof by contradiction, suppose that Harrison is a great
actor. Either Harrison admires himself or he doesn’t. We will show that either case
leads to a contradiction, so that our assumption that Harrison is a great actor must be
wrong. First, assume that Harrison does admire himself. By the first premise and our
assumption that Harrison is a great actor, Harrison does not admire himself, which
is a contradiction. For the other case, assume that Harrison does not admire himself.
But then by the second premise and our assumption that Harrison is a great actor,
Harrison does admire himself after all. Thus, under either alternative, we have our
contradiction.

12.14
✎

There is at most one object.

Purported proof: Toward a proof by contradiction, suppose that there is more than
one object in the domain of discourse. Let c be any one of these objects. Then there is
some other object d, so that d 6= c. But since c was arbitrary, ∀x (d 6= x). But then, by
universal instantiation, d 6= d. But d = d, so we have our contradiction. Hence there
can be at most one object in the domain of discourse.
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12.15
✎

∀x ∀y ∀z [(Outgrabe(x, y) ∧ Outgrabe(y, z)) → Outgrabe(x, z)]
∀x ∀y [Outgrabe(x, y) → Outgrabe(y, x)]
∃x ∃y Outgrabe(x, y)

∀x Outgrabe(x, x)

Purported proof: Applying existential instantiation to the third premise, let b and
c be arbitrary objects in the domain of discourse such that b outgrabes c. By the
second premise, we also know that c outgrabes b. Applying the first premise (with
x = z = b and y = c we see that b outgrabes itself. But b was arbitrary. Thus by
universal generalization, ∀x Outgrabe(x, x).

The next three exercises contain arguments from a single set of premises. In each case decide whether
or not the argument is valid. If it is, give an informal proof. If it isn’t, use Tarski’s World to construct
a counterexample.

12.16
➶|✎

∀x ∀y [LeftOf(x, y) → Larger(x, y)]
∀x [Cube(x) → Small(x)]
∀x [Tet(x) → Large(x)]
∀x ∀y [(Small(x) ∧ Small(y)) → ¬Larger(x, y)]

¬∃x ∃y [Cube(x) ∧ Cube(y) ∧ RightOf(x, y)]

12.17
➶|✎

∀x ∀y [LeftOf(x, y) → Larger(x, y)]
∀x [Cube(x) → Small(x)]
∀x [Tet(x) → Large(x)]
∀x ∀y [(Small(x) ∧ Small(y)) → ¬Larger(x, y)]

∀z [Medium(z) → Tet(z)]

12.18
➶|✎

∀x ∀y [LeftOf(x, y) → Larger(x, y)]
∀x [Cube(x) → Small(x)]
∀x [Tet(x) → Large(x)]
∀x ∀y [(Small(x) ∧ Small(y)) → ¬Larger(x, y)]

∀z ∀w [(Tet(z) ∧ Cube(w)) → LeftOf(z,w)]

The next three exercises contain arguments from a single set of premises. In each, decide whether the
argument is valid. If it is, give an informal proof. If it isn’t valid, use Tarski’s World to build a coun-
terexample.

Chapter 12



Proofs involving mixed quantifiers / 337

12.19
➶|✎

∀x [Cube(x) → ∃y LeftOf(x, y)]
¬∃x ∃z [Cube(x) ∧ Cube(z) ∧ LeftOf(x, z)]
∃x ∃y [Cube(x) ∧ Cube(y) ∧ x 6= y]

∃x ∃y ∃z [BackOf(y, z) ∧ LeftOf(x, z)]

12.20
➶|✎

∀x [Cube(x) → ∃y LeftOf(x, y)]
¬∃x ∃z [Cube(x) ∧ Cube(z) ∧ LeftOf(x, z)]
∃x ∃y [Cube(x) ∧ Cube(y) ∧ x 6= y]

∃x ¬Cube(x)

12.21
➶|✎

∀x [Cube(x) → ∃y LeftOf(x, y)]
¬∃x ∃z [Cube(x) ∧ Cube(z) ∧ LeftOf(x, z)]
∃x ∃y [Cube(x) ∧ Cube(y) ∧ x 6= y]

∃x ∃y (x 6= y ∧ ¬Cube(x) ∧ ¬Cube(y))

12.22
➶|✎?

Is the following logically true?

∃x [Cube(x) → ∀y Cube(y)]

If so, given an informal proof. If not, build a world where it is false.

12.23
✎

Translate the following argument into fol and determine whether or not the conclusion follows
from the premises. If it does, give a proof.

Every child is either right-handed or intelligent.
No intelligent child eats liver.
There is a child who eats liver and onions.

There is a right-handed child who eats onions.

In the next three exercises, we work in the first-order language of arithmetic with the added predicates
Even(x), Prime(x), and DivisibleBy(x, y), where these have the obvious meanings (the last means that the
natural number y divides the number x without remainder.) Prove the result stated in the exercise. In
some cases, you have already done all the hard work in earlier problems.

12.24
✎

∃y [Prime(y) ∧ Even(y)] 12.25
✎

∀x [Even(x) ↔ Even(x2)]

12.26
✎

∀x [DivisibleBy(x2,3) → DivisibleBy(x2, 9)]

12.27
✎

Are sentences (1) and (2) in Exercise 9.19 on page 250 logically equivalent? If so, give a proof.
If not, explain why not.

12.28
✎

Show that it would be impossible to construct a reference book that lists all and only those
reference books that do not list themselves.
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12.29
✎?

Call a natural number a near prime if its prime factorization contains at most two distinct
primes. The first number which is not a near prime is 2 × 3 × 5 = 30. Prove

∀x ∃y [y > x ∧ ¬NearPrime(y)]

You may appeal to our earlier result that there is no largest prime.

Section 12.5

Axiomatizing shape

Let’s return to the project of giving axioms for the shape properties in Tarski’s
World. In Section 10.5, we gave axioms that described basic facts about the
three shapes, but we stopped short of giving axioms for the binary relation
SameShape. The reason we stopped was that the needed axioms require mul-
tiple quantifiers, which we had not covered at the time.

How do we choose which sentences to take as axioms? The main consid-
eration is correctness: the axioms must be true in all relevant circumstances,correctness of axioms
either in virtue of the meanings of the predicates involved, or because we have
restricted our attention to a specific type of circumstance.

The two possibilities are reflected in our first four axioms about shape,
which we repeat here for ease of reference:

Basic Shape Axioms:

1. ¬∃x (Cube(x) ∧ Tet(x))

2. ¬∃x (Tet(x) ∧ Dodec(x))

3. ¬∃x (Dodec(x) ∧ Cube(x))

4. ∀x (Tet(x) ∨ Dodec(x) ∨ Cube(x))

The first three of these are correct in virtue of the meanings of the predicates;
the fourth expresses a truth about all worlds of the sort that can be built in
Tarski’s World.

Of second importance, just behind correctness, is completeness. We saycompleteness of axioms
that a set of axioms is complete if, whenever an argument is intuitively
valid (given the meanings of the predicates and the intended range of cir-
cumstances), its conclusion is a first-order consequence of its premises taken
together with the axioms in question.

The notion of completeness, like that of correctness, is not precise, depend-
ing as it does on the vague notions of meaning and “intended circumstances.”
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For example, in axiomatizing the basic shape predicates of Tarski’s World,
there is an issue about what kinds of worlds are included among the intended
circumstances. Do we admit only those having at most twelve objects, or do
we also consider those with more objects, so long as they have one of the
three shapes? If we make this latter assumption, then the basic shape axioms
are complete. This is not totally obvious, but we will justify the claim in
Section 18.4. Here we will simply illustrate it.

Consider the following argument:

∃x ∃y (Tet(x) ∧ Dodec(y) ∧ ∀z (z = x ∨ z = y))

¬∃x Cube(x)

This argument is clearly valid, in the sense that in any world in which the
premise is true, the conclusion will be true as well. But the conclusion is
certainly not a first-order consequence of the premise. (Why?) If we treat
the four basic shape axioms as additional premises, though, we can prove the
conclusion using just the first-order methods of proof available to us.

Proof: By the explicit premise, we know there are blocks e and f

such that e is a tetrahedron, f is a dodecahedron, and everything
is one of these two blocks. Toward a contradiction, suppose there
were a cube, say c. Then either c = e or c = f . If c = e then by
the indiscernibility of identicals, c is both a cube and a tetrahedron,
contradicting axiom 1. Similarly, if c = f then c is both a cube and
a dodecahedron, contradicting axiom 3. So we have a contradiction
in either case, showing that our assumption cannot be true.

While our four axioms are complete if we restrict attention to the three
shape predicates, they are clearly not complete when we consider sentences
involving SameShape. If we were to give inference rules for this predicate, it
would be natural to state them in the form of introduction and elimination
rules: the former specifying when we can conclude that two blocks are the
same shape; the latter specifying what we can infer from such a fact. This
suggests the following axioms:

SameShape Introduction Axioms:

5. ∀x ∀y ((Cube(x) ∧ Cube(y)) → SameShape(x, y))

6. ∀x ∀y ((Dodec(x) ∧ Dodec(y)) → SameShape(x, y))

7. ∀x ∀y ((Tet(x) ∧ Tet(y)) → SameShape(x, y))
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SameShape Elimination Axioms:

8. ∀x ∀y ((SameShape(x, y) ∧ Cube(x)) → Cube(y))

9. ∀x ∀y ((SameShape(x, y) ∧ Dodec(x)) → Dodec(y))

10. ∀x ∀y ((SameShape(x, y) ∧ Tet(x)) → Tet(y))

As it happens, these ten axioms give us a complete axiomatization of the
shape predicates in our blocks language. This means that any argument that
is valid and which uses only these predicates can be turned into one where the
conclusion is a first-order consequence of the premises plus these ten axioms.
It also means that any sentence that is true simply in virtue of the meanings
of the four shape predicates is a first-order consequence of these axioms. For
example, the sentence ∀x SameShape(x, x), which we considered as a possible
axiom in Chapter 10, follows from our ten axioms:

Proof: Let b be an arbitrary block. By axiom 4, we know that b

is a tetrahedron, a dodecahedron, or a cube. If b is a tetrahedron,
then axiom 7 guarantees that b is the same shape as b. If b is a
dodecahedron or a cube, this same conclusion follows from axioms 6
or 5, respectively. Consequently, we know that b is the same shape
as b. Since b was arbitrary, we can conclude that every block is the
same shape as itself.

During the course of this book, we have proven many claims about natural
numbers, and asked you to prove some as well. You may have noticed that
these proofs did not appeal to explicit premises. Rather, the proofs freely cited
any obvious facts about the natural numbers. However, we could (and will)
make the needed assumptions explicit by means of the axiomatic method.
In Section 16.4, we will discuss the standard Peano axioms that are used toPeano axioms
axiomatize the obvious truths of arithmetic. While we will not do so, it would
be possible to take each of our proofs about natural numbers and turn it into
a proof that used only these Peano Axioms as premises.

We will later show, however, that the Peano Axioms are not complete, and
that it is in fact impossible to present first-order axioms that are complete forGödel’s Incompleteness

Theorem arithmetic. This is the famous Gödel Incompleteness Theorem and is discussed
in the final section of this book.
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Exercises

Give informal proofs of the following arguments, if they are valid, making use of any of the ten shape
axioms as needed, so that your proof uses only first-order methods of proof. Be very explicit about which
axioms you are using at various steps. If the argument is not valid, use Tarski’s World to provide a
counterexample.

12.30
➶|✎

∃x (¬Cube(x) ∧ ¬Dodec(x))
∃x ∀y SameShape(x, y)

∀x Tet(x)

12.31
➶|✎

∀x (Cube(x) → SameShape(x, c))

Cube(c)

12.32
➶|✎

∀x Cube(x) ∨ ∀x Tet(x) ∨ ∀x Dodec(x)

∀x ∀y SameShape(x, y)

12.33
➶|✎

∀x ∀y SameShape(x, y)

∀x Cube(x) ∨ ∀x Tet(x) ∨ ∀x Dodec(x)

12.34
➶|✎

SameShape(b, c)

SameShape(c, b)

12.35
➶|✎

SameShape(b, c)
SameShape(c, d)

SameShape(b, d)

12.36
✎?

The last six shape axioms are quite intuitive and easy to remember, but we could have gotten
by with fewer. In fact, there is a single sentence that completely captures the meaning of
SameShape, given the first four axioms. This is the sentence that says that two things are the
same shape if and only if they are both cubes, both tetrahedra, or both dodecahedra:

∀x ∀y (SameShape(x, y) ↔ ((Cube(x) ∧ Cube(y))
∨(Tet(x) ∧ Tet(y))
∨(Dodec(x) ∧ Dodec(y)))

Use this axiom and and the basic shape axioms (1)-(4) to give informal proofs of axioms (5)
and (8).

12.37
✎?

Let us imagine adding as new atomic sentences involving a binary predicate MoreSides. We
assume that MoreSides(b, c) holds if block b has more sides that block c. See if you can come
up with axioms that completely capture the meaning of this predicate. The natural way to do
this involves two or three introduction axioms and three or four elimination axioms. Turn in
your axioms to your instructor.

12.38
✎??

Find first-order axioms for the six size predicates of the blocks language. [Hint: use the axiom-
atization of shape to guide you.]
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Formal Proofs and Quantifiers

Now that we have learned the basic informal methods of proof for quantifiers,
we turn to the task of giving formal rules that correspond to them. Again, we
can to do this by having two rules for each quantifier, an introduction rule
and an elimination rule.

Before getting down to the rules, though, we should emphasize that formal
proofs in the system F contain only sentences, never wffs with free variables.
This is because we want every line of a proof to make a definite claim. Wffs
with free variables do not make claims, as we have noted. Some deductive
systems do allow proofs containing formulas with free variables, where such
variables are interpreted universally, but that is not how the system F works.

Section 13.1

Universal quantifier rules

The valid inference step of universal instantiation or elimination is easily for-
malized. Here is the schematic version of the rule:

Universal Elimination (∀ Elim):

∀x S(x)
...

. S(c)

Here x stands for any variable, c stands for any individual constant (whether
or not it has been used elsewhere in the proof), and S(c) stands for the result
of replacing free occurrences of x in S(x) with c.

Next, let us formalize the more interesting methods of general conditional
proof and universal generalization. This requires that we decide how to rep-
resent the fact that a constant symbol, say c, has been introduced to stand
for an arbitrary object satisfying some condition, say P(c). We indicate this
by means of a subproof with assumption P(c), insisting that the constant c in
question occur only within that subproof. This will guarantee, for example,
that the constant does not appear in the premises of the overall proof.
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To remind ourselves of this crucial restriction, we will introduce a new
graphical device, boxing the constant symbol in question and putting it in boxed constant
front of the assumption. We will think of the boxed constant as the formal
analog of the English phrase “Let c denote an arbitrary object satisfying P(c).”

General Conditional Proof (∀ Intro):

c P(c)

...
Where c does not occur out-
side the subproof where it is
introduced.

Q(c)

. ∀x (P(x) → Q(x))

When we give the justification for universal introduction, we will cite the
subproof, as we do in the case of conditional introduction. The requirement
that c not occur outside the subproof in which it is introduced does not pre-
clude it occurring within subproofs of that subproof. A sentence in a subproof
of a subproof still counts as a sentence of the larger subproof.

As a special case of ∀ Intro we allow a subproof where there is no sentential
assumption at all, just the boxed constant on its own. This corresponds to
the method of universal generalization discussed earlier, where one assumes
that the constant in question stands for an arbitrary object in the domain of
discourse.

Universal Introduction (∀ Intro):

c

...
Where c does not occur out-
side the subproof where it is
introduced.

P(c)

. ∀x P(x)

As we have indicated, we don’t really need both forms of ∀ Intro. Either
form could be eliminated in favor of the other. We use both because the first
is more natural while the second is more often used in logic textbooks (and
so something to be familiar with if you go on to study more logic).
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Let’s illustrate how to use these rules by giving a formal proof mirroring
the informal proof given on page 326. We prove that the following argument
is valid:

∀x (P(x) → Q(x))
∀z (Q(z) → R(z))

∀x (P(x) → R(x))

(This is a general form of the argument about all math majors being smart
given earlier.) Here is a completed proof:

1. ∀x (P(x) → Q(x))
2. ∀z (Q(z) → R(z))

3. d P(d)

4. P(d) → Q(d) ∀ Elim: 1
5. Q(d) → Elim: 3, 4
6. Q(d) → R(d) ∀ Elim: 2
7. R(d) → Elim: 5, 6

8. ∀x (P(x) → R(x)) ∀ Intro: 3-7

Notice that the constant symbol d does not appear outside the subproof. It is
newly introduced at the beginning of that subproof, and occurs nowhere else
outside it. That is what allows the introduction of the universal quantifier in
the final step.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 1. Open the file Universal 1. This file contains the argument proven above.
We’ll show you how to construct this proof in Fitch.

I 2. Start a new subproof immediately after the premises. Before typing any-
thing in, notice that there is a blue, downward pointing triangle to the left
of the blinking cursor. It looks just like the focus slider, but sort of stand-
ing on its head. Use your mouse to click down on this triangle. A menu
will pop up, allowing you to choose the constant(s) you want “boxed” in
this subproof. Choose d from the menu. (If you choose the wrong one, say
c, then choose it again to “unbox” it.)

I 3. After you have d in the constant box, enter the sentence P(d) as your
assumption. Then add a step and continue the subproof.
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J4. You should now be able to complete the proof on your own. When you’re
done, save it as Proof Universal 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

Default and generous uses of the ∀ rules

Both of the universal quantifier rules have default uses. If you cite a universal default uses of ∀ rules
sentence and apply ∀ Elim without entering a sentence, Fitch will replace the
universally quantified variable with its best guess of the name you intended. It
will either choose the alphabetically first name that does not already appear
in the sentence, or the first name that appears as a boxed constant in the
current subproof. For example, in steps 4 and 6 of the above proof, the default
mechanism would choose d, and so generate the correct instances.

If you know you want a different name substituted for the universally
quantified variable, you can indicate this by typing a colon (:), followed by indicating substitutions
the variable, followed by the greater-than sign (>), followed by the name
you want. In other words, if instead of a sentence you enter “: x > c”, Fitch
will instantiate ∀x P(x) as P(c), rather than picking its own default instance.
(Think of “: x > c” as saying “substitute c for x.”)

If you apply ∀ Intro to a subproof that starts with a boxed constant on its
own, without entering a sentence, Fitch will take the last sentence in the cited
subproof and universally quantify the name introduced at the beginning of the
subproof. If the cited subproof starts with a boxed constant and a sentence,
then Fitch will write the corresponding universal conditional, using the first
sentence and the last sentence of the proof to create the conditional.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

J1. Open the file Universal 2. Look at the goal to see what sentence we are
trying to prove. Then focus on each step in succession and check the step.
Before moving to the next step, make sure you understand why the step
checks out and, more important, why we are doing what we are doing at
that step. At the empty steps, try to predict which sentence Fitch will
provide as a default before you check the step.

J2. When you are done, make sure you understand the completed proof. Save
the file as Proof Universal 2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations
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Fitch has generous uses of both ∀ rules. ∀ Elim will allow you to remove
several universal quantifiers from the front a sentence simultaneously. For
example, if you have proven ∀x ∀y SameCol(x, y) you could infer SameCol(f, c)
in one step in Fitch. If you want to use the default mechanism to generate this
step, you can enter the substitutions “: x > f : y > c” before checking the step.

In a like manner, you can often prove a sentence starting with more than
one universal quantifier by means of a single application of ∀ Intro. You do
this by starting a subproof with the appropriate number of boxed constants.
If you then prove a sentence containing these constants you may end the
subproof and infer the result of universally quantifying each of these constants
using ∀ Intro. The default mechanism allows you to specify the variables to
be used in the generated sentence by indicating the desired substitutions, for
example “: a > z : b > w” will generate ∀z ∀w R(w, z) when applied to R(b, a).
Notice the order used to specify substitutions: for ∀ Elim it will always be
“: variable > name,” while for ∀ Intro it must be “: name > variable.”

Remember

The formal rule of ∀ Intro corresponds to the informal method of general
conditional proof, including the special case of universal generalization.

Exercises

13.1
➶

If you skipped the You try it sections, go back and do them now. Submit the files Proof
Universal 1 and Proof Universal 2.

For each of the following arguments, decide whether or not it is valid. If it is, use Fitch to give a formal
proof. If it isn’t, use Tarski’s World to give a counterexample. In this chapter you are free to use Taut
Con to justify proof steps involving only propositional connectives.

13.2
➶

∀x (Cube(x) ↔ Small(x))
∀x Cube(x)

∀x Small(x)

13.3
➶

∀x Cube(x)
∀x Small(x)

∀x (Cube(x) ∧ Small(x))

13.4
➶

¬∀x Cube(x)

¬∀x (Cube(x) ∧ Small(x))

13.5
➶

∀x ∀y ((Cube(x) ∧ Dodec(y))
→ Larger(y, x))

∀x ∀y (Larger(x, y) ↔ LeftOf(x, y))

∀x ∀y ((Cube(x) ∧ Dodec(y))
→ LeftOf(y, x))
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13.6
➶

∀x ((Cube(x) ∧ Large(x))
∨ (Tet(x) ∧ Small(x)))

∀x (Tet(x) → BackOf(x, c))
∀x ¬(Small(x) ∧ Large(x))

∀x (Small(x) → BackOf(x, c))

(See Exercise 12.9. Notice that we have
included a logical truth as an additional
premise here.)

13.7
➶

∀x ∀y ((Cube(x) ∧ Dodec(y))
→ FrontOf(x, y)))

∀x (Cube(x) → ∀y (Dodec(y)
→ FrontOf(x, y))

13.8
➶

∀x (Cube(x) → ∀y (Dodec(y)
→ FrontOf(x, y))

∀x ∀y ((Cube(x) ∧ Dodec(y))
→ FrontOf(x, y))

13.9
➶?

∀x ∀y ((Cube(x) ∧ Dodec(y))
→ Larger(x, y))

∀x ∀y ((Dodec(x) ∧ Tet(y))
→ Larger(x, y))

∀x ∀y ((Cube(x) ∧ Tet(y))
→ Larger(x, y))

Section 13.2

Existential quantifier rules

Recall that in our discussion of informal proofs, existential introduction was a
simple proof step, whereas the elimination of ∃ was a subtle method of proof.
Thus, in presenting our formal system, we begin with the introduction rule.

Existential Introduction (∃ Intro):

S(c)
...

. ∃x S(x)

Here too x stands for any variable, c stands for any individual constant, and
S(c) stands for the result of replacing free occurrences of x in S(x) with c.
Note that there may be other occurrences of c in S(x) as well.

When we turn to the rule of existential elimination, we employ the same,
“boxed constant” device as with universal introduction. If we have proven
∃x S(x), then we introduce a new constant symbol, say c, along with the as-
sumption that the object denoted by c satisfies the formula S(x). If, from this
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assumption, we can derive some sentence Q not containing the constant c,
then we can conclude that Q follows from the original premises.

Existential Elimination (∃ Elim):

∃x S(x)
...

c S(c)

...
Where c does not occur out-
side the subproof where it is
introduced.

Q

. Q

Again we think of the notation at the beginning of the subproof as the formal
counterpart of the English “Let c be an arbitrary individual such that S(c).”

The rule of existential elimination is quite analogous to the rule of disjunc-
tion elimination, both formally and intuitively. With disjunction elimination,comparison with

∨ Elim we have a disjunction and break into cases, one for each disjunct, and estab-
lish the same result in each case. With existential elimination, we can think
of having one case for each object in the domain of discourse. We are required
to show that, whichever object it is that satisfies the condition S(x), the same
result Q can be obtained. If we can do this, we may conclude Q.

To illustrate the two existential rules, we will give a formal counterpart to
the proof given on page 323.

1. ∀x [Cube(x) → Large(x)]
2. ∀x [Large(x) → LeftOf(x, b)]
3. ∃x Cube(x)

4. e Cube(e)

5. Cube(e) → Large(e) ∀ Elim: 1
6. Large(e) → Elim: 5, 4
7. Large(e) → LeftOf(e, c) ∀ Elim: 2
8. LeftOf(e, c) → Elim: 7, 6
9. Large(e) ∧ LeftOf(e, c) ∧ Intro: 6, 8
10. ∃x (Large(x) ∧ LeftOf(x,b)) ∃ Intro: 9

11. ∃x (Large(x) ∧ LeftOf(x, b)) ∃ Elim: 3, 4-10
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Default and generous uses of the ∃ rules

Defaults for the existential quantifier rules work similarly to those for the
universal quantifier. If you cite a sentence and apply ∃ Intro without typing default uses of ∃ rules
a sentence, Fitch will supply a sentence that existentially quantifies the al-
phabetically first name appearing in the cited sentence. When replacing the
name with a variable, Fitch will choose the first variable in the list of variables
that does not already appear in the cited sentence. If this isn’t the name or
variable you want used, you can specify the substitution yourself; for example
“: max > z” will replace max with z and add ∃z to the front of the result.

In a default application of ∃ Elim, Fitch will supply the last sentence in
the cited subproof, providing that sentence does not contain the temporary
name introduced at the beginning of the subproof.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

J1. Open the file Existential 1. Look at the goal to see the sentence we are
trying to prove. Then focus on each step in succession and check the step.
Before moving to the next step, make sure you understand why the step
checks out and, more important, why we are doing what we are doing at
that step.

J2. At any empty steps, you should try to predict which sentence Fitch will
provide as a default before you check the step. Notice in particular step
eight, the one that contains “: a > y”. Can you guess what sentence would
have been supplied by Fitch had we not specified this substitution? You
could try it if you like.

J3. When you are done, make sure you understand the completed proof. Save
the file as Proof Existential 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

As with ∀, Fitch has generous uses of both ∃ rules. ∃ Intro will allow
you to add several existential quantifiers to the front a sentence. For example,
if you have proved SameCol(b, a) you could infer ∃y ∃z SameCol(y, z) in one
step in Fitch. In a like manner, you can use a sentence beginning with more
than one existential quantifier in a single application of ∃ Elim. You do this
by starting a subproof with the appropriate number of boxed constants. If
you then prove a sentence not containing these constants, you may end the
subproof and infer the result using ∃ Elim.
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Remember

The formal rule of ∃ Elim corresponds to the informal method of exis-
tential instantiation.

Exercises

13.10
➶

If you skipped the You try it section, go back and do it now. Submit the file Proof Existential 1.

For each of the following arguments, decide whether or not it is valid. If it is, use Fitch to give a formal
proof. If it isn’t, use Tarski’s World to give a counterexample. Remember that in this chapter you are
free to use Taut Con to justify proof steps involving only propositional connectives.

13.11
➶

∀x (Cube(x) ∨ Tet(x))
∃x ¬Cube(x)

∃x ¬Tet(x)

13.12
➶

∀x (Cube(x) ∨ Tet(x))
∃x ¬Cube(x)

∃x Tet(x)

13.13
➶

∀y [Cube(y) ∨ Dodec(y)]
∀x [Cube(x) → Large(x)]
∃x ¬Large(x)

∃x Dodec(x)

13.14
➶

∀x (Cube(x) ↔ Small(x))
∃x ¬Cube(x)

∃x ¬Small(x)

13.15
➶

∃x (Cube(x) → Small(x))
∀x Cube(x)

∃x Small(x)

13.16
➶

∃x ∃y Adjoins(x, y)
∀x ∀y (Adjoins(x, y)

→ ¬SameSize(x, y))

∃x ∃y ¬SameSize(y, x)

In our discussion of the informal methods, we observed that the method that introduces new constants
can interact to give defective proofs, if not used with care. The formal system F automatically prevents
these misapplications of the quantifier rules. The next two exercises are designed to show you how the
formal rules prevent these invalid steps by formalizing one of the fallacious informal proofs we gave
earlier.
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13.17
➶

Here is a formalization of the pseudo-proof given on page 331:

1. ∀x ∃y SameCol(x, y)

2. c

3. ∃y SameCol(c, y) ∀ Elim: 1

4. d SameCol(c,d)

5. SameCol(c,d) Reit: 4

6. SameCol(c, d) ∃ Elim: 3, 4–5

7. ∀x SameCol(x,d) ∀ Intro: 2–6
8. ∃y ∀x SameCol(x, y) ∃ Intro: 7

1. Write this “proof” in a file using Fitch and check it out. You will discover that step
6 is incorrect; it violates the restriction on existential elimination that requires the
constant d to appear only in the subproof where it is introduced. Notice that the other
steps all check out, so if we could make that move, then the rest of the proof would be
fine.

2. Construct a counterexample to the argument to show that no proof is possible.

Submit both files.

13.18
➶

Let’s contrast the faulty proof from the preceding exercise with a genuine proof that ∀x ∃y R(x, y)
follows from ∃y ∀x R(x, y). Use Fitch to create the following proof.

1. ∃y ∀x SameCol(x, y)

2. d ∀x SameCol(x, d)

3. c

4. SameCol(c,d) ∀ Elim: 2
5. ∃y SameCol(c, y) ∃ Intro: 4

6. ∀x ∃y SameCol(x, y) ∀ Intro: 3–5

7. ∀x ∃y SameCol(x, y) ∃ Elim: 1, 2–6

Notice that in this proof, unlike the one in the previous exercise, both constant symbols c
and d are properly sequestered within the subproofs where they are introduced. Therefore the
quantifier rules have been applied properly. Submit your proof.
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Section 13.3

Strategy and tactics

We have seen some rather simple examples of proofs using the new rules. In
more interesting examples, however, the job of finding a proof can get pretty
challenging. So a few words on how to approach these proofs will be helpful.

We have given you a general maxim and two strategies for finding sen-
tential proofs. The maxim—to consider what the various sentences mean—isconsider meaning
even more important with the quantifiers. Only if you remember what they
mean and how the formal methods mirror common-sense informal methods
will you be able to do any but the most boring of exercises.

Our first strategy was to try to come up with an informal proof of theinformal proof as guide
goal sentence from the premises, and use it to try to figure out how your
formal proof will proceed. This strategy, too, is even more important in proofs
involving quantifiers, but it is a bit harder to apply. The key skill in applying
the strategy is the ability to identify the formal rules implicit in your informal
reasoning. This takes a bit of practice. Let’s work through an example, to see
some of the things you should be looking out for.

Suppose we want to prove that the following argument is valid:

∃x (Tet(x) ∧ Small(x))
∀x (Small(x) → LeftOf(x,b))

∃x LeftOf(x, b)

Obviously, the conclusion follows from the given sentences. But ask yourself
how you would prove it, say, to your stubborn roommate, the one who likes
to play devil’s advocate. You might argue as follows:

Look, Bozo, we’re told that there is a small tetrahedron. So we know
that it is small, right? But we’re also told that anything that’s small
is left of b. So if it’s small, it’s got to be left of b, too. So something’s
left of b, namely the small tetrahedron.

Now we don’t recommend calling your roommate “Bozo,” so ignore that bit.
The important thing to notice here is the implicit use of three of our quantifier
rules: ∃ Elim, ∀ Elim, and ∃ Intro. Do you see them?

What indicates the use of ∃ Elim is the “it” appearing in the second
sentence. What we are doing there is introducing a temporary name (in this
case, the pronoun “it”) and using it to refer to a small tetrahedron. That
corresponds to starting the subproof needed for an application of ∃ Elim.
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So after the second sentence of our informal proof, we can already see the
following steps in our reasoning (using “c” for “it”):

1. ∃x (Tet(x) ∧ Small(x))
2. ∀x (Small(x) → LeftOf(x,b))

3. c Tet(c) ∧ Small(c)

4. Small(c) ∧ Elim: 3
...
5. ∃x LeftOf(x, b) ??

6. ∃x LeftOf(x, b) ∃ Elim: 3-5

In general, the key to recognizing ∃ Elim is to watch out for any reference to
an object whose existence is guaranteed by an existential claim. The reference
might use a pronoun (it, he, she), as in our example, or it might use a definite
noun phrase (the small tetrahedron), or finally it might use an actual name
(let n be a small tetrahedron). Any of these are signs that the reasoning is
proceeding via existential elimination.

The third and fourth sentences of our informal argument are where the
implicit use of ∀ Elim shows up. There we apply the claim about all small
things to the small tetrahedron we are calling “it.” This gives us a couple
more steps in our formal proof:

1. ∃x (Tet(x) ∧ Small(x))
2. ∀x (Small(x) → LeftOf(x,b))

3. c Tet(c) ∧ Small(c)

4. Small(c) ∧ Elim: 3
5. Small(c) → LeftOf(c, b) ∀ Elim: 2
6. LeftOf(c,b) → Elim: 4, 5
...
8. ∃x LeftOf(x, b) ?

9. ∃x LeftOf(x, b) ∃ Elim: 3-8

The distinctive mark of universal elimination is just the application of a gen-
eral claim to a specific individual. For example, we might also have said at
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this point: “So the small tetrahedron [there’s the specific individual] must be
left of b.”

The implicit use of ∃ Intro appears in the last sentence of the informal
reasoning, where we conclude that something is left of b, based on the fact that
“it,” the small tetrahedron, is left of b. In our formal proof, this application
of ∃ Intro will be done within the subproof, giving us a sentence that we can
export out of the subproof since it doesn’t contain the temporary name c.

1. ∃x (Tet(x) ∧ Small(x))
2. ∀x (Small(x) → LeftOf(x, b))

3. c Tet(c) ∧ Small(c)

4. Small(c) ∧ Elim: 3
5. Small(c) → LeftOf(c, b) ∀ Elim: 2
6. LeftOf(c, b) → Elim: 4, 5
7. ∃x LeftOf(x,b) ∃ Intro: 6

8. ∃x LeftOf(x, b) ∃ Elim: 1, 3-7

One thing that’s a bit tricky is that in informal reasoning we often leave out
simple steps like ∃ Intro, since they are so obvious. Thus in our example, we
might have left out the last sentence completely. After all, once we conclude
that the small tetrahedron is left of b, it hardly seems necessary to point out
that something is left of b. So you’ve got to watch out for these omitted steps.

This completes our formal proof. To a trained eye, the proof matches the
informal reasoning exactly. But you shouldn’t feel discouraged if you would
have missed it on your own. It takes a lot of practice to recognize the steps
implicit in our own reasoning, but it is practice that in the end makes us more
careful and able reasoners.

The second strategy that we stressed is that of working backwards: startingworking backward
from the goal sentence and inserting steps or subproofs that would enable us
to infer that goal. It turns out that of the four new quantifier rules, only ∀
Intro really lends itself to this technique.

Suppose your goal sentence is of the form ∀x (P(x) → Q(x)). After survey-
ing your given sentences to see whether there is any immediate way to infer
this conclusion, it is almost always a good idea to start a subproof in which
you introduce an arbitrary name, say c, and assume P(c). Then add a step to
the subproof and enter the sentence Q(c), leaving the rule unspecified. Next,
end the subproof and infer∀x (P(x) → Q(x)) by ∀ Intro, citing the subproof
in support. When you check this partial proof, an X will appear next to the
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sentence Q(c), indicating that your new goal is to prove this sentence.

Remember

1. Always be clear about the meaning of the sentences you are using.

2. A good strategy is to find an informal proof and then try to formalize
it.

3. Working backwards can be very useful in proving universal claims,
especially those of the form ∀x (P(x) → Q(x)).

4. Working backwards is not useful in proving an existential claim ∃x S(x)
unless you can think of a particular instance S(c) of the claim that
follows from the premises.

5. If you get stuck, consider using proof by contradiction.

A worked example

We are going to work through a moderately difficult proof, step by step, using
what we have learned in this section. Consider the the following argument:

¬∀x P(x)

∃x ¬P(x)

This is one of four such inferences associated with the DeMorgan rules relating
quantifiers and negation. The fact that this inference can be validated in F
is one we will need in our proof of the Completeness Theorem for the system
F in the final chapter. (The other three DeMorgan rules will be given in the
review exercises at the end of this chapter. Understanding this example will
be a big help in doing those exercises.)

Before embarking on the proof, we mention that this inference is one of the
hallmarks of first-order logic. Notice that it allows us to assert the existence
of something having a property from a negative fact: that not everything has
the opposite property.

In the late nineteenth and early twentieth century, the validity of this sort
of inference was hotly debated in mathematical circles. While it seems obvious
to us now, it is because we have come to understand existence claims in a
somewhat different way than some (the so-called “intuitionists”) understood intuitionists
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them. While the first-order understanding of ∃x Q(x) is as asserting that some
Q exists, the intuitionist took it as asserting something far stronger: that the
asserter had actually found a Q and proven it to be a Q. Under this stronger
reading, the DeMorgan principle under discussion would not be valid. This
point will be relevant to our proof.

Let us now turn to the proof. Following our strategy, we begin with an
informal proof, and then formalize it.

Proof: Since we are trying to prove an existential sentence, our first
thought would be to use existential introduction, say by proving
¬P(c) for some c. But if we think a bit about what our premise
means, we see there is no hope of proving of any particular thing
that it satisfies ¬P(x). From the fact that not everything satisfies
P(x), we aren’t going to prove of some specific c that ¬P(c). So this
is surely a dead end. (It is also why the intuitionist would not accept
the argument as valid, given his or her understanding of ∃.)

This leaves only one possible route to our desired conclusion: proof by
contradiction. Thus we will negation our desired conclusion and try
to obtain a contradiction. Thus, we assume ¬∃x ¬P(x). How can we
hope to obtain a contradiction? Since our only premise is ¬∀x P(x),
the most promising line of attack would be to try for a proof of
∀x P(x) using universal generalization. Thus, let c be an arbitrary
individual in our domain of discourse. Our goal is to prove P(c).
How can we do this? Another proof by contradiction, for if P(c)
were not the case, then we would have ¬P(c), and hence ∃x ¬P(x).
But this contradicts our assumption. Hence P(c) is the case. Since
c was arbitrary, we get ∀x P(x). But this contradicts our premise.
Hence, we get our desired conclusion using the method of proof by
contradiction.

We now begin the process of turning our informal proof into a formal
proof.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 1. Open Quantifier Strategy 1. This contains the skeleton of our proof:

1. ¬∀x P(x)

...
2. ∃x ¬P(x)
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J2. The first step in our informal proof was to decide to try to give a proof by
contradiction. Formalize this idea by filling in the following:

1. ¬∀x P(x)

2. ¬∃x ¬P(x)

...
4. ⊥ ⊥ Intro: ?, ?

5. ∃x ¬P(x) ¬ Intro: 2–4

This step will check out because of the generous nature of Fitch’s ¬ Intro
rule, which lets us either strip off as well as add a negation.

J3. We next decided to try to contradict ¬∀x P(x) by proving ∀x P(x) using
universal generalization. Formalize this as follows:

1. ¬∀x P(x)

2. ¬∃x ¬P(x)

3. c

...
5. P(c) ?

6. ∀x P(x) ∀ Intro: 3–5
7. ⊥ ⊥ Intro: 6, 1

8. ∃x ¬P(x) ¬ Intro: 2–7

J4. Recall how we proved P(c). We said that if P(c) were not the case, then
we would have ¬P(c), and hence ∃x ¬P(x). But this contradicted the as-
sumption at step 2. Formalize this reasoning by filling in the rest of the
proof.
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1. ¬∀x P(x)

2. ¬∃x ¬P(x)

3. c

4. ¬P(c)

5. ∃x ¬P(x) ∃ Intro: 3
6. ⊥ ⊥ Intro: 5, 2

7. ¬¬P(c) ¬ Intro: 4–6
8. P(c) ¬ Elim: 7

9. ∀x P(x) ∀ Intro: 3–8
10. ⊥ ⊥ Intro: 9, 1

11. ∃x ¬P(x) ¬ Intro: 2–10

I 5. This completes our formal proof of ∃x ¬P(x) from the premise ¬∀x P(x).
Verify your proof and save it as Proof Quantifier Strategy 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

Exercises

13.19
➶

If you skipped the You try it section, go back and do it now. Submit the file Proof Quantifier
Strategy 1.

Recall that in Exercises 1–3 on page 327, you were asked to give logical analyses of purported proofs of
some arguments involving nonsense predicates. In the following exercises, we return to these arguments.
If the argument is valid, submit a formal proof. If it is invalid, turn in an informal counterexample. If
you submit a formal proof, be sure to use the Exercise file supplied with Fitch. In order to keep your
hand in at using the propositional rules, we ask you not to use Taut Con in these proofs.

13.20
➶|✎

∀x [(Brillig(x) ∨ Tove(x)) → (Mimsy(x) ∧ Gyre(x))]
∀y [(Slithy(y) ∨ Mimsy(y)) → Tove(y)]
∃x Slithy(x)

∃x [Slithy(x) ∧ Mimsy(x)]

(See Exercise 12.1 on p. 327.)
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13.21
➶|✎

∀x [Brillig(x) → (Mimsy(x) ∧ Slithy(x))]
∀y [(Slithy(y) ∨ Mimsy(y)) → Tove(y)]
∀x [Tove(x) → (Outgrabe(x, b) ∧ Brillig(x))]

∀z [Brillig(z) ↔ Mimsy(z)]

(See Exercise 12.2 on p. 328.)

13.22
➶|✎

∀x [(Brillig(x) ∧ Tove(x)) → Mimsy(x)]
∀y [(Tove(y) ∨ Mimsy(y)) → Slithy(y)]
∃x Brillig(x) ∧ ∃x Tove(x)

∃z Slithy(z)

(See Exercise 12.3, p. 328)

Some of the following arguments are valid, some are not. For each, either use Fitch to give a formal
proof or use Tarski’s World to construct a counterexample. In giving proofs, feel free to use Taut Con
if it helps.

13.23
➶

∀y [Cube(y) ∨ Dodec(y)]
∀x [Cube(x) → Large(x)]
∃x ¬Large(x)

∃x Dodec(x)

13.24
➶

∃x (Cube(x) ∧ Small(x))

∃x Cube(x) ∧ ∃x Small(x)

13.25
➶

∃x Cube(x) ∧ ∃x Small(x)

∃x (Cube(x) ∧ Small(x))

13.26
➶

∀x (Cube(x) → Small(x))
∀x (Adjoins(x, b) → Small(x))

∀x ((Cube(x) ∨ Small(x))
→ Adjoins(x, b))

13.27
➶

∀x (Cube(x) → Small(x))
∀x (¬Adjoins(x, b) → ¬Small(x))

∀x ((Cube(x) ∨ Small(x)) → Adjoins(x, b))

For each of the following, use Fitch to give a formal proof of the argument. These look simple but some
of them are a bit tricky. Don’t forget to first figure out an informal proof. Use Taut Con whenever it
is convenient but do not use FO Con.

13.28
➶?

∀x ∀y Likes(x, y)

∀x ∃y Likes(x, y)

13.29
➶?

∀x (Small(x) → Cube(x))
∃x ¬Cube(x) → ∃x Small(x)

∃x Cube(x)

13.30
➶?

Likes(carl, max)
∀x [∃y (Likes(y, x) ∨ Likes(x, y))

→ Likes(x, x)]

∃x Likes(x, carl)

13.31
➶?

∀x ∀y [Likes(x, y) → Likes(y, x)]
∃x ∀y Likes(x, y)

∀x ∃y Likes(x, y)
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The following valid arguments come in pairs. The validity of the first of the pair makes crucial use of the
meanings of the blocks language predicates, whereas the second adds one or more premises, making the
result a first-order valid argument. For the latter, give a proof that does not make use of Ana Con. For
the former, give a proof that uses Ana Con but only where the premises and conclusions of the citation
are literals (including ⊥). You may use Taut Con but do not use FO Con in any of the proofs.

13.32
➶

¬∃x (Tet(x) ∧ Small(x))

∀x [Tet(x) → (Large(x) ∨ Medium(x))]

13.33
➶

¬∃x (Tet(x) ∧ Small(x))
∀y (Small(y) ∨ Medium(y) ∨ Large(y))

∀x [Tet(x) → (Large(x) ∨ Medium(x))]

13.34
➶

∀x (Dodec(x) → SameCol(x, a))
SameCol(a, c)

∀x (Dodec(x) → SameCol(x, c))

13.35
➶

∀x (Dodec(x) → SameCol(x, a))
SameCol(a, c)
∀x ∀y ∀z ((SameCol(x, y) ∧ SameCol(y, z))

→ SameCol(x, z))

∀x (Dodec(x) → SameCol(x, c))

13.36
➶

∀x (Dodec(x) → LeftOf(x, a))
∀x (Tet(x) → RightOf(x, a))

∀x (SameCol(x, a) → Cube(x))

13.37
➶

∀x (Dodec(x) → LeftOf(x, a))
∀x (Tet(x) → RightOf(x, a))
∀x ∀y (LeftOf(x, y) → ¬SameCol(x, y))
∀x ∀y (RightOf(x, y) → ¬SameCol(x, y))
∀x (Cube(x) ∨ Dodec(x) ∨ Tet(x))

∀x (SameCol(x, a) → Cube(x))

13.38
➶

∀x (Cube(x) → ∀y (Dodec(y)
→ Larger(x, y)))

∀x (Dodec(x) → ∀y (Tet(y) → Larger(x, y)))
∃x Dodec(x)

∀x (Cube(x) → ∀y (Tet(y) → Larger(x, y)))

(Compare this with Exercise 13.9. The
crucial difference is the presence of the
third premise, not the difference in form
of the first two premises.)

13.39
➶

∀x (Cube(x) → ∀y (Dodec(y)
→ Larger(x, y)))

∀x (Dodec(x) → ∀y (Tet(y)
→ Larger(x, y)))

∃x Dodec(x)
∀x ∀y ∀z ((Larger(x, y) ∧ Larger(y, z))

→ Larger(x, z))

∀x (Cube(x) → ∀y (Tet(y)
→ Larger(x, y)))
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Section 13.4

Soundness and completeness

In Chapter 8 we raised the question of whether the deductive system FT was
sound and complete with respect to tautological consequence. The same issues
arise with the full system F , which contains the rules for the quantifiers and
identity, in addition to the rules for the truth-functional connectives. Here,
the target consequence relation is the notion of first-order consequence, rather
than tautological consequence.

The soundness question asks whether anything we can prove in F from soundness of F
premises P1, . . . , Pn is indeed a first-order consequence of the premises. The
completeness question asks the converse: whether every first-order consequence completeness of F
of a set of sentences can be proven from that set using the rules of F .

It turns out that both of these questions can be answered in the affirma-
tive. Before actually proving this, however, we need to add more precision
to the notion of first-order consequence, and this presupposes tools from set
theory that we will introduce in Chapters 15 and 16. We state and prove
the soundness theorem for first-order logic in Chapter 18. The completeness
theorem for first-order logic is the main topic of Chapter 19.

Section 13.5

Some review exercises

In this section we present more problems to help you solidify your understand-
ing of the methods of reasoning involving quantifiers. We also present some
more interesting problems from a theoretical point of view.

Exercises

Some of the following arguments are valid, some are not. For each, either use Fitch to give a formal
proof or use Tarski’s World to construct a counterexample. In giving proofs, feel free to use Taut Con
if it helps.

13.40
➶

∃x Cube(x) ∧ Small(d)

∃x (Cube(x) ∧ Small(d))

13.41
➶

∀x (Cube(x) ∨ Small(x))

∀x Cube(x) ∨ ∀x Small(x)
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13.42
➶

∀x Cube(x) ∨ ∀x Small(x)

∀x (Cube(x) ∨ Small(x))

Each of the following is a valid argument of a type discussed in Section 10.3. Use Fitch to give a proof
of its validity. You may use Taut Con freely in these proofs.

13.43
➶

¬∀x Cube(x)

∃x ¬Cube(x)

13.44
➶

¬∃x Cube(x)

∀x ¬Cube(x)

13.45
➶

∀x ¬Cube(x)

¬∃x Cube(x)

13.46
➶

(Change of bound variables)

∀x Cube(x)

∀y Cube(y)

13.47
➶

(Change of bound variables)

∃x Tet(x)

∃y Tet(y)

13.48
➶

(Null quantification)

Cube(b) ↔ ∀x Cube(b)

13.49
➶

∃x P(x)
∀x ∀y ((P(x) ∧ P(y)) → x = y)

∃x (P(x) ∧ ∀y (P(y) → y = x))

13.50
➶

∃x (P(x) ∧ ∀y (P(y) → y = x))

∀x ∀y ((P(x) ∧ P(y)) → x = y)

13.51
➶??

∃x (P(x) → ∀y P(y))

[Hint: Review your answer to Exer-
cise 12.22 where you should have given
an informal proof of something of this
form.]

13.52
➶

¬∃x ∀y [E(x, y) ↔ ¬E(y, y)]
This result might be called Russell’s
Theorem. It is connected with the fa-
mous result known as Russell’s Paradox,
which is discussed in Section 15.8. In
fact, it was upon discovering this that
Russell invented the Barber Paradox, to
explain his result to a general public.

13.53
➶|✎

Is ∃x ∃y ¬LeftOf(x, y) a first-order consequence of ∃x ¬LeftOf(x, x)? If so, give a formal proof.
If not, give a reinterpretation of LeftOf and an example where the premise is true and the
conclusion is false.
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The next exercises are intended to help you review the difference between first-order satisfiability and
true logical possibility. All involve the four sentences in the file Padoa’s Sentences. Open that file now.

13.54
➶?

Any three of the sentences in Padoa’s Sentences form a satisfiable set. There are four sets of three
sentences, so to show this, build four worlds, World 13.54.123, World 13.54.124, World 13.54.134,
and World 13.54.234,where the four sets are true. (Thus, for example, sentences 1, 2 and 4 should
be true in World 13.54.124.)

13.55
✎?

Give an informal proof that the four sentences in Padoa’s Sentences taken together are incon-
sistent.

13.56
✎?

Is the set of sentences in Padoa’s Sentences first-order satisfiable, that is, satisfiable with some
reinterpretation of the predicates other than identity? [Hint: Imagine a world where one of the
blocks is a sphere.]

13.57
✎?

Reinterpret the predicates Tet and Dodec in such a way that sentence 3 of Padoa’s Sentences
comes out true in World 13.57.124. Since this is the only sentence that uses these predicates,
it follows that all four sentences would, with this reinterpretation, be true in this world. (This
shows that the set is first-order satisfiable.)

13.58
➶|✎??

(Logical truth versus non-logical truth in all worlds) A distinction Tarski’s World helps us to
understand is the difference between sentences that are logically true and sentences that are,
for reasons that have nothing to do with logic, true in all worlds. The notion of logical truth
has to do with a sentence being true simply in virtue of the meaning of the sentence, and so
no matter how the world is. However, some sentences are true in all worlds, not because of
the meaning of the sentence or its parts, but because of, say, laws governing the world. We
can think of the constraints imposed by the innards of Tarski’s World as analogues of physical
laws governing how the world can be. For example, the sentence which asserts that there are at
most 12 objects happens to hold in all the worlds that we can construct with Tarski’s World.
However, it is not a logical truth.

Open Post’s Sentences. Classify each sentence in one of the following ways: (A) a logical
truth, (B) true in all worlds that can be depicted using Tarski’s World, but not a logical truth,
or (C) falsifiable in some world that can be depicted by Tarski’s World. For each sentence of
type (C), build a world in which it is false, and save it as World 13.58.x, where x is the number
of the sentence. For each sentence of type (B), use a pencil and paper to depict a world in
which it is false. (In doing this exercise, assume that Medium simply means neither small nor
large, which seems plausible. However, it is not plausible to assume that Cube means neither a
dodecahedron nor tetrahedron, so you should not assume anything like this.)
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Chapter 14

More about Quantification

Many English sentences take the form

QAB

where Q is a determiner expression like every, some, the, more than half the,
at least three, no, many, Max’s, etc.; A is a common noun phrase like cube,
student of logic, thing, etc.; and B is a verb phrase like sits in the corner or
is small.

Such sentences are used to express quantitative relationships between the
set of objects satisfying the common noun phrase and the set of objects satis-
fying the verb phrase. Here are some examples, with the determiner in bold:

Every cube is small.
Some cube is small.
More than half the cubes are small.
At least three cubes are small.
No cube is small.
Many cubes are small.
Max’s cube is small.

These sentences say of the set A of cubes in the domain of discourse and
the set B of small things in the domain of discourse that

every A is a B,
some A is a B,
more than half the A’s are B’s,
at least three A’s are B’s,
no A is a B,
many A’s are B’s, and
Max’s A is a B.

Each of these can be thought of as expressing a kind of binary relation between
A and B.

Linguistically, these words and phrases are known as determiners. Thedeterminers and
quantifiers relation expressed by a determiner is usually, though not always, a quantita-

tive relation between A and B. Sometimes this quantitative relation can be
captured using the fol quantifiers ∀ and ∃, though sometimes it can’t. For
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example, to express more than half the A’s are B’s, it turns out that we need
to supplement fol to include new expressions that behave something like ∀
and ∃. When we add such expressions to the formal language, we call them
generalized quantifiers, since they extend the kinds of quantification we can generalized quantifiers
express in the language.

In this chapter, we will look at the logic of some English determiners
beyond some and all. We will consider not only determiners that can be ex-
pressed using the usual quantifiers of fol, but also determiners whose mean-
ings can only be captured by adding new quantifiers to fol.

In English, there are ways of expressing quantification other than deter-
miners. For example, the sentences

Max always eats pizza.
Max usually eats pizza.
Max often eats pizza.
Max seldom eats pizza.
Max sometimes eats pizza.
Max never eats pizza.

each express a quantitative relation between the set of times when Max eats
and the set of times when he eats pizza. But in these sentences it is the adverb
that is expressing quantification, not a determiner. While we are going to
discuss the logic only of determiners, much of what we say can be extended to adverbial quantification
other forms of quantification, including this kind of adverbial quantification.

In a sentence of the form QA B, different determiners express very different
relations between A and B and so have very different logical properties. A valid
argument typically becomes invalid if we change any of the determiners. For
instance, while

No cube is small
d is a cube

d is not small

is a valid argument, it would become invalid if we replaced no by any of the
other determiners listed above. On the other hand, the valid argument

Many cubes are small
Every small block is left of d

Many cubes are left of d

remains valid if many is replaced by any of the above determiners other than
no. These are clearly logical facts, things we’d like to understand at a more
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theoretical level. For example, we’ll soon see that the determiners that can
replace Many in the second argument and still yield a valid argument are the
monotone increasing determiners.

There are two rather different approaches to studying quantification. Oneapproaches to
quantification approach studies determiners that can be expressed using the existing re-

sources of fol. In the first three sections, we look at several important English
determiners that can be defined in terms of ∀, ∃, =, and the truth-functional
connectives, and then analyze their logical properties by means of these defini-
tions. The second approach is to strengthen fol by allowing a wider range of
quantifiers, capturing kinds of quantification not already expressible in fol.
In the final three sections, we look briefly at this second approach and its
resulting logic.

Section 14.1

Numerical quantification

We have already seen that many complex noun phrases can be expressed in
terms of ∀ (which really means “everything”, not just “every”) and ∃ (which
means “something,” not “some”). For example, Every cube left of b is small
can be paraphrased as Everything that is a cube and left of b is small, a
sentence that can easily be translated into fol using ∀,∧ and →. Similarly,
No cube is small can be paraphrased as Everything is such that if it is a cube
then it is not small, which can again be easily translated into fol.

Other important examples of quantification that can be indirectly ex-
pressed in fol are numerical claims. By a “numerical claim” we mean a onenumerical claims
that explicitly uses the numbers 1, 2, 3, . . . to say something about the rela-
tion between the A’s and the B’s. Here are three different kinds of numerical
claims:

At least two books arrived this week.
At most two books are missing from the shelf.
Exactly two books are on the table.

First-order languages do not in general allow us to talk directly about
numbers, only about elements of our domain of discourse. The blocks lan-
guage, for example, only talks about blocks, not about numbers. Still, it is
possible to express these three kinds of numerical claims in fol.

Recall that in fol, distinct names do not necessarily refer to distinct
objects. Similarly, distinct variables need not vary over distinct objects. For
example, both of the following sentences can be made true in a world with
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one object:
Cube(a) ∧ Small(a) ∧ Cube(b)

∃x ∃y [Cube(x) ∧ Small(x) ∧ Cube(y)]

In order to say that there are at least two cubes, you must find a way to at least two
guarantee that they are different. For example, either of the following would
do:

Cube(a) ∧ Small(a) ∧ Cube(b) ∧ Large(b)

∃x ∃y [Cube(x) ∧ Small(x) ∧ Cube(y) ∧ LeftOf(x, y)]

The most direct way, though, is simply to say that they are different:

∃x ∃y [Cube(x) ∧ Cube(y) ∧ x 6= y]

This sentence asserts that there are at least two cubes. To say that there are
at least three cubes we need to add another ∃ and some more inequalities:

∃x ∃y ∃z [Cube(x) ∧ Cube(y) ∧ Cube(z) ∧ x 6= y ∧ x 6= z ∧ y 6= z]

You will see in the You try it section below that all three of these inequalities
are really needed. To say that there are at least four objects takes four ∃’s
and six (= 3 + 2 + 1) inequalities; to say there are at least five takes five ∃’s
and 10 (= 4 + 3 + 2 + 1) inequalities, and so forth.

Turning to the second kind of numerical quantification, how can we say
that there are at most two cubes? Well, one way to do it is by saying that at most two
there are not at least three cubes:

¬∃x ∃y ∃z [Cube(x) ∧ Cube(y) ∧ Cube(z) ∧ x 6= y ∧ x 6= z ∧ y 6= z]

Applying some (by now familiar) quantifier equivalences, starting with De-
Morgan’s Law, gives us the following equivalent sentence:

∀x ∀y ∀z [(Cube(x) ∧ Cube(y) ∧ Cube(z)) → (x = y ∨ x = z ∨ y = z)]

We will take this as our official way of expressing at most two.
Notice that while it took two existential quantifiers to express there are

at least two cubes, it took three universal quantifiers to say that there are at
most two cubes. More generally, to translate the determiner at least n into
fol, we need n existential quantifiers, while to translate at most n we need
n + 1 universal quantifiers.

To express the sentence there are exactly two cubes, we could paraphrase exactly two
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it as follows: There are at least two cubes and there are at most two cubes.
Translating each conjunct gives us a rather long sentence using five quantifiers:

∃x ∃y [Cube(x) ∧ Cube(y) ∧ x 6= y] ∧

∀x ∀y ∀z [(Cube(x) ∧ Cube(y) ∧ Cube(z)) → (x = y ∨ x = z ∨ y = z)]

The same claim can be expressed more succinctly, however, as follows:

∃x ∃y [Cube(x) ∧ Cube(y) ∧ x 6= y ∧ ∀z (Cube(z) → (z = x ∨ z = y))]

If we translate this into English, we see that it says there are two distinct
objects, both cubes, and that any cube is one of these. This is a different way
of saying that there are exactly two cubes. (We ask you to give formal proofs
of their equivalence in Exercises 14.12 and 14.13.) Notice that this sentence
uses two existential quantifiers and one universal quantifier. An equivalent
way of saying this is as follows:

∃x ∃y [x 6= y ∧ ∀z (Cube(z) ↔ (z = x ∨ z = y))]

Put in prenex form, this becomes:

∃x ∃y ∀z [x 6= y ∧ (Cube(z) ↔ (z = x ∨ z = y))]

All three expressions consist of two existential quantifiers followed by a single
universal quantifier. More generally, to say that there are exactly n objects
satisfying some condition requires n + 1 quantifiers, n existential followed by
one universal.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 1. In this Try It, you will get to examine some of the claims made above in
more detail. Open Whitehead’s Sentences.

I 2. The first sentence says that there are at least two objects and the second
sentence says that there are at most two objects. (Do you see how they
manage to say these things?) Build a model where the first two sentences
are both true.

I 3. Sentence 3 is the conjunction of the first two. Hence, it asserts, in one
sentence, that there are exactly two objects. Check to see that it is true
in the world you have just built.
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J4. The fourth sentence is in fact equivalent to the third sentence. It is a
shorter way of saying that there are exactly two objects. Play the game
three times with this sentence, committed to true each time. First play it
in a world with one object, then in a world with two objects, then in a
world with three objects. You will be able to win only in the second world.

J5. Sentence 5 appears, at first sight, to assert that there are at least three
objects, so it should be false in a world with two objects. Check to see if
it is indeed false in such a world. Why isn’t it? Play the game to confirm
your suspicions.

J6. The sixth sentence actually manages to express the claim that there are at
least three objects. Do you see how it’s different from the fifth sentence?
Check to see that it is false in the current world, but is true if you add a
third object to the world.

J7. The seventh sentence says that there are exactly three objects in the world.
Check to see that it is true in the world with three objects, but false if you
either delete an object or add another object.

J8. Sentence 8 asserts that a is a large object, and in fact the only large object.
To see just how the sentence manages to say this, start with a world with
three small objects and name one of them “a.” Play the game committed
to true to see why the sentence is false. You can quit the game as soon as
you understand why the sentence is false. Now make a large. Again play
the game committed to true and see why you can now win (does it matter
which block Tarski picks?). Finally, make one of the other objects large as
well, and play the game committed to true to see why it is false.

J9. Sentence 8 asserted that a was the only large object. How might we say
that there is exactly one large object, without using a name for the ob-
ject? Compare sentence 8 with sentence 9. The latter asserts that there is
something that is the only large object. Check to see that it is true only
in worlds in which there is exactly one large object.

J10. If you have understood sentence 9, you should also be able to understand
sentence 10. Construct a world in which sentence 10 is true. Save this
world as World Numerical 1.

J11. Sentence 11 says there is exactly one medium dodecahedron, while sentence
12 says there are at least two dodecahedra. There is nothing incompatible
about these claims. Make sentences 11 and 12 true in a single world. Save
the world as World Numerical 2.
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I 12. Sentence 13 is another way to assert that there is a unique dodecahedron.
That is, sentence 13 is equivalent to sentence 10. Can you see why? Check
three worlds to see that the two sentences are true in the same worlds,
those in which there is a single dodecahedron.

I 13. Sentence 14 says that there are exactly two tetrahedra. Check that it is
true in such worlds, but false if there are fewer or more than two.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

Numerical quantification, when written out in full in fol, is hard to readabbreviations for
numerical claims because of all the inequalities, especially when the numbers get to be more

than 3 or 4, so a special notation has become fairly common:

◦ ∃≥nx P(x) for the fol sentence asserting “There are at least n objects
satisfying P(x).”

◦ ∃≤nx P(x) for the fol sentence asserting “There are at most n objects
satisfying P(x).”

◦ ∃!nx P(x) for the fol sentence asserting “There are exactly n objects
satisfying P(x).”

It is important to remember that this notation is not part of the official
language of fol, but an abbreviation for a much longer fol expression.

The special case of n = 1 is important enough to warrant special comment.
The assertion that there is exactly one object satisfying some condition P(x)exactly one
can be expressed in fol as follows:

∃x [P(x) ∧ ∀y (P(y) → y = x)]

as long as y does not occur already in the wff P(x). According to the con-
ventions we have just established, this should be abbreviated as ∃!1x P(x). In
practice, though, this is used so often that it is further shortened to ∃!x P(x).
It is read “there is a unique x such that P (x).” Again, this is not a new quan-
tifier; wffs in which it occurs are just abbreviations for longer wffs involving
the old quantifiers.

We started out with the goal of learning how to express claims of the form
QAB where Q is a numerical determiner and A is any common noun. But all
we have seen so far is how to express claims of the form there are at least/at
most/exactly n things satisfying P. Having learned how to do this, however,
it’s easy to express claims of the desired form. For example, to say At least
n cubes are small, we say There are at least n things that are small cubes.
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Similarly, to say There are at most n cubes that are small, we say There are
at most n things that are small cubes. Finally, to say There are exactly n cubes
that are small, we say There are exactly n things that are small cubes. These
observations probably seem so obvious that they don’t require mentioning.
But we will soon see that nothing like this holds for some determiners, and that
the consequences are rather important for the general theory of quantification.

Remember

The notations ∃≥n, ∃≤n, and ∃!n are abbreviations for complex fol ex-
pressions meaning “there are at least/at most/exactly n things such that
. . . .”

Exercises

14.1
➶

If you skipped the You try it section, go back and do it now. Submit the files World Numerical 1
and World Numerical 2.

14.2
✎

Give clear English translations of the following sentences of fol. Which of the following are
logically equivalent and which are not? Explain your answers.

1. ∃!x Tove(x) [Remember that the notation ∃! is an abbreviation, as explained above.]
2. ∃x ∀y [Tove(y) → y = x]
3. ∃x ∀y [Tove(y) ↔ y = x]
4. ∀x ∀y [(Tove(x) ∧ Tove(y)) → x = y]
5. ∀x ∀y [(Tove(x) ∧ Tove(y)) ↔ x = y]

14.3
➶?

(Translating numerical claims) In this exercise we will try our hand at translating English
sentences involving numerical claims.

◦ Using Tarski’s World, translate the following English sentences.

1. There are at least two dodecahedra.
2. There are at most two tetrahedra.
3. There are exactly two cubes.
4. There are only three things that are not small.
5. There is a single large cube. No dodecahedron is in back of it.

◦ Open Peano’s World. Note that all of the English sentences are true in this world. Check
to see that your translations are as well.
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◦ Open Bolzano’s World. Here sentences 1, 3, and 5 are the only true ones. Verify that your
translations have the right truth values in this world.

◦ Open Skolem’s World. Only sentence 5 is true in this world. Check your translations.

◦ Finally, open Montague’s World. In this world, sentences 2, 3, and 5 are the only true
ones. Check your translations.

14.4
➶

(Saying more complicated things) Open Skolem’s World. Create a file called Sentences 14.4 and
describe the following features of Skolem’s World.

1. Use your first sentence to say that there are only cubes and tetrahedra.
2. Next say that there are exactly three cubes.
3. Express the fact that every cube has a tetrahedron that is to its right but is neither

in front of or in back of it.
4. Express the fact that at least one of the tetrahedra is between two other tetrahedra.
5. Notice that the further back something is, the larger it is. Say this.
6. Note that none of the cubes is to the right of any of the other cubes. Try to say this.
7. Observe that there is a single small tetrahedron and that it is in front of but to neither

side of all the other tetrahedra. State this.

If you have expressed yourself correctly, there is very little you can do to Skolem’s World without
making at least one of your sentences false. Basically, all you can do is “stretch” things out,
that is, move things apart while keeping them aligned. To see this, try making the following
changes.

1. Add a new tetrahedron to the world. Find one of your sentences that comes out false.
Move the new tetrahedron so that a different sentence comes out false.

2. Change the size of one of the objects. What sentence now comes out false?
3. Change the shape of one of the objects. What sentence comes out false?
4. Slide one of the cubes to the left. What sentence comes out false?
5. Rearrange the three cubes. What goes wrong now?

14.5
➶

(Ambiguity and numerical quantification) In the Try It on page 305, we saw that the sentence

At least four medium dodecahedra are adjacent to a medium cube.

is ambiguous, having both a strong and a weak reading. Using Tarski’s World, open a new
sentence file and translate the strong and weak readings of this sentence into fol as sentences
(1) and (2). Remember that Tarski’s World does not understand our abbreviation for “at least
four” so you will need to write this out in full. Check that the first sentence is true in Anderson’s
First World but not in Anderson’s Second World, while the second sentence is true in both worlds.
Make some changes to the worlds to help you check that your translations express what you
intend. Submit your sentence file.
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14.6
➶

(Games of incomplete information) As you recall, you can sometimes know that a sentence
is true in a world without knowing how to play the game and win. Open Mostowski’s World.
Translate the following into first-order logic. Save your sentences as Sentences 14.6. Now, with-
out using the 2-D view, make as good a guess as you can about whether the sentences are true
or not in the world. Once you have assessed a given sentence, use Verify to see if you are right.
Then, with the correct truth value checked, see how far you can go in playing the game. Quit
whenever you get stuck, and play again. Can you predict in advance when you will be able to
win? Do not look at the 2-D view until you have finished the whole exercise.

1. There are at least two tetrahedra.
2. There are at least three tetrahedra.
3. There are at least two dodecahedra.
4. There are at least three dodecahedra.
5. Either there is a small tetrahedron behind a small cube or there isn’t.
6. Every large cube is in front of something.
7. Every tetrahedron is in back of something.
8. Every small cube is in back of something.
9. Every cube has something behind it.

10. Every dodecahedron is small, medium, or large.
11. If e is to the left of every dodecahedron, then it is not a dodecahedron.

Now modify the world so that the true sentences are still true, but so that it will be clear how
to play the game and win.

14.7
➶|✎

(Satisfiability) Recall that a set of sentences is satisfiable if there is world in which it is true.
Determine whether the following set of sentences is satisfiable. If it is, build a world. If it is
not, use informal methods of proof to derive a contradiction from the set.

1. Every cube is to the left of every tetrahedron.
2. There are no dodecahedra.
3. There are exactly four cubes.
4. There are exactly four tetrahedra.
5. No tetrahedron is large.
6. Nothing is larger than anything to its right.
7. One thing is to the left of another just in case the latter is behind the former.

14.8
➶|✎???

(Numbers of variables) Tarski’s World only allows you to use six variables. Let’s explore what
kind of limitation this imposes on our language.

1. Translate the sentence There are at least two objects, using only the predicate =. How
many variables do you need?

2. Translate There are at least three objects. How many variables do you need?
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3. It is impossible express the sentence There are at least seven objects using only = and
the six variables available in Tarski’s World, no matter how many quantifiers you use.
Try to prove this. [Warning: This is true, but it is very challenging to prove. Contrast
this problem with the one below.] Submit your two sentences and turn in your proof.

14.9
➶?

(Reusing variables) In spite of the above exercise, there are in fact sentences we can express
using just the six available variables that can only be true in worlds with at least seven objects.
For example, in Robinson’s Sentences, we give such a sentence, one that only uses the variables
x and y.

1. Open this file. Build a world where there are six small cubes arranged on the front
row and test the sentence’s truth. Now add one more small cube to the front row, and
test the sentence’s truth again. Then play the game committed (incorrectly) to false.
Can you see the pattern in Tarski’s World’s choice of objects? When it needs to pick
an object for the variable x, it picks the leftmost object to the right of all the previous
choices. Then, when it needs to pick an object for the variable y, it picks the last object
chosen. Can you now see how the reused variables are working?

2. Now delete one of the cubes, and play the game committed (incorrectly) to true. Do
you see why you can’t win?

3. Now write a sentence that says there are at least four objects, one in front of the next.
Use only variables x and y. Build some worlds to check whether your sentence is true
under the right conditions. Submit your sentence file.

Section 14.2

Proving numerical claims

Since numerical claims can be expressed in fol, we can use the methods of
proof developed in previous chapters to prove numerical claims. However, as
you may have noticed in doing the exercises, numerical claims are not always
terribly perspicuous when expressed in fol notation. Indeed, expressing a
numerical claim in fol and then trying to prove the result is a recipe for
disaster. It is all too easy to lose one’s grasp on what needs to be proved.

Suppose, for example, that you are told there are exactly two logic class-
rooms and that each classroom contains exactly three computers. Suppose you
also know that every computer is in some logic classroom. From these assump-
tions it is of course quite easy to prove that there are exactly six computers.
How would the proof go?

Proof: To prove there are exactly six computers it suffices to prove
that there are at least six, and at most six. To prove that there are
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at most six, we simply note that every computer must be in one of
the two classrooms, and that each classroom contains at most three,
so there can be at most six altogether, since 2×3 = 6. To prove that
there are at least six, we note that each classroom contains at least
three. But now we need another assumption that was not explicitly
stated in the exercise. Namely, we need to know that no computer
can be in two classrooms. Given that, we see that there must be at
least six computers, and so exactly six.

This may seem like making pretty heavy weather of an obvious fact, but it
illustrates two things. First, to prove a numerical claim of the form there exist
exactly n objects x such that P (x), which we agreed to abbreviate as ∃!nx P(x),
you need to prove two things: that there are at least n such objects, and that
there are at most n such objects.

The proof also illustrates a point about fol. If we were to translate our formal proofs of
numerical claimspremises and desired conclusion into fol, things would get quite complicated.

If we then tried to prove our fol conclusion from the fol premises using the
rules we have presented earlier, we would completely lose track of the basic
fact that makes the proof work, namely, that 2×3 = 6. Rather than explicitly
state and use this fact, as we did above, we would have to rely on it in a hidden
way in the combinatorial details of the proof. While it would be possible to
give such a proof, no one would really do it that way.

The problem has to do with a syntactic shortcoming of fol. Not having
quantifiers that directly express numerical claims in terms of numbers, such
claims must be translated using just ∀ and ∃. If we were to add numerical
quantifiers to fol, we would be able to give proofs that correspond much
more closely to the intuitive proofs. Still, the theoretical expressive power of
the language would remain the same.

We can think of the above proof as illustrating a new method of proof. a new method of proof
When trying to prove ∃!nx P(x), prove two things: that there are at least n

objects satisfying P(x), and that there are at most n such objects.
A particularly important special case of this method is with uniqueness

claims, those of the form ∃!x P(x), which say there is exactly one object with
some property. To prove such a claim, we must prove two things, existence
and uniqueness. In proving existence, we prove that there is at least one
object satisfying P(x). Given that, we can then show uniqueness by show-
ing that there is at most one such object. To give an example, let us prove
∃!x [Even(x) ∧ Prime(x)].

Proof: We first prove existence, that is, that there is an even prime.
This we do simply by noting that 2 is even and a prime. Thus,
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by existential generalization, there is an even prime. Next we prove
uniqueness. That is, we prove that for any number x, if x is an even
prime, then x = 2, by general conditional proof. Suppose x is an even
prime. Since it is even, it must be divisible by 2. But being prime, it
is divisible only by itself and 1. So x = 2. This concludes our proof
of uniqueness.

With one significant exception (induction, which we take up in Chap-
ter 16), we have now introduced all the major methods of proof. When these
are used in mathematical proofs, it is common to suppress a lot of detail,
including explicit mention of the methods being used. To a certain extent,
we have already been doing this in our proofs. From now on, though, we will
present proofs in a more abbreviated fashion, and expect you to be able to fill
in the details. For example, here is a more abbreviated version of our proof
that there is exactly one even prime. You should check to see that you could
have filled in the details on your own.

Proof: We first prove existence, that is, that there is an even prime.
This we do simply by noting that 2 is even and a prime. We then
prove uniqueness, by proving that any even prime must be 2. First,
since it is even, it must be divisible by 2. But being prime, if it is
divisible by 2, it is 2.

Since the numerical quantifiers are really shorthand for more complicated
expressions in our language, there is no real need to introduce rules that
specifically apply to them. Of course the same could have been said for →,
but we saw that it was much more convenient to have rules of proof for →
than to reduce things to ∨ and ¬ and use their rules of proof. But the situation
is different with numerical quantifiers. In practice, people rarely give formal
proofs of numerical claims expressed in fol, since they quickly become too
complex, with or without special rules for these quantifiers. With numerical
claims, informal proofs are the order of the day.

Remember

To prove ∃!nx P(x), prove two things:

◦ that there are at least n objects satisfying P(x), and

◦ that there are at most n objects satisfying P(x).
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Exercises

Use Fitch to give formal proofs of the following arguments. You may use Taut Con where it is con-
venient. We urge you to work backwards, especially with the last problem, whose proof is simple in
conception but complex in execution.

14.10
➶

∃x (Cube(x) ∧ ∀y (Cube(y) → y = x))

∃x ∀y (Cube(y) ↔ y = x)

14.11
➶

∃x ∀y (Cube(y) ↔ y = x)

∃x (Cube(x) ∧ ∀y (Cube(y) → y = x))

14.12
➶

∃x ∃y (Cube(x) ∧ Cube(y) ∧ x 6= y)
∀x ∀y ∀z ((Cube(x) ∧ Cube(y) ∧ Cube(z)) → (x = y ∨ x = z ∨ y = z))

∃x ∃y (Cube(x) ∧ Cube(y) ∧ x 6= y ∧ ∀z (Cube(z) → (z = x ∨ z = y)))

14.13
➶?

∃x ∃y (Cube(x) ∧ Cube(y) ∧ x 6= y ∧ ∀z (Cube(z) → (z = x ∨ z = y)))

∃x ∃y (Cube(x) ∧ Cube(y) ∧ x 6= y) ∧ ∀x ∀y ∀z ((Cube(x) ∧ Cube(y) ∧ Cube(z))
→ (x = y ∨ x = z ∨ y = z))

The next two exercises contain arguments with similar premises and the same conclusion. If the argument
is valid, turn in an informal proof. If it is not, submit a world in which the premises are true but the
conclusion is false.

14.14
➶|✎

There are exactly four cubes.
Any column that contains a cube con-
tains a tetrahedron, and vice versa.
No tetrahedron is in back of any other
tetrahedron.

There are exactly four tetrahedra.

14.15
➶|✎

There are exactly four cubes.
Any column that contains a cube con-
tains a tetrahedron, and vice versa.
No column contains two objects of the
same shape.

There are exactly four tetrahedra.
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The following exercises state some logical truths or valid arguments involving numerical quantifiers. Give
informal proofs of each. Contemplate what it would be like to give a formal proof (for specific values of
n and m) and be thankful we didn’t ask you to give one!

14.16
✎

∃≤0x S(x) ↔ ∀x ¬S(x)

[The only hard part about this is figuring out what ∃≤0x S(x) abbreviates.]

14.17
✎

¬∃≥n+1x S(x) ↔ ∃≤nx ¬S(x)

14.18
✎

∃≤nx A(x)
∃≤mx B(x)

∃≤n+mx (A(x) ∨ B(x))

14.19
✎

∃≥nx A(x)
∃≥mx B(x)
¬∃x (A(x) ∧ B(x))

∃≥n+mx (A(x) ∨ B(x))

14.20
✎?

∀x [A(x) → ∃!y R(x, y)]
∃≤ny ∃x [A(x) ∧ R(x, y)]

∃≤nx A(x)

14.21
✎?

We have seen that ∃x ∃y R(x, y) is logically equivalent to ∃y ∃xR(x, y), and similarly for ∀.
What happens if we replace both of these quantifiers by some numerical quantifier? In partic-
ular, is the following argument valid?

∃!x ∃!y R(x, y)

∃!y ∃!x R(x, y)

If so, give an informal proof. If not, describe a counterexample.

The following exercises contain true statements about the domain of natural numbers 0, 1, . . . . Give
informal proofs of these statements.

14.22
✎

∃!x [x2 − 2x + 1 = 0] 14.23
✎

∃!2y [y + y = y × y]

14.24
✎

∃!2x [x2 − 4x + 3 = 0] 14.25
✎

∃!x [(x2 − 5x + 6 = 0) ∧ (x > 2)]
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Section 14.3

The, both, and neither

The English determiners the, both, and neither are extremely common. Indeed,
the is one of the most frequently used words in the English language. (We
used it twice in that one sentence.) In spite of their familiarity, their logical
properties are subtle and, for that matter, still a matter of some dispute.

To see why, suppose I say “The elephant in my closet is not wrinkling my
clothes.” What would you make of this, given that, as you probably guessed,
there is no elephant in my closet? Is it simply false? Or is there something else
wrong with it? If it is false, then it seems like its negation should be true. But
the negation seems to be the claim that the elephant in my closet is wrinkling
my clothes. Similar puzzles arise with both and neither:

Both elephants in my closet are wrinkling my clothes.
Neither elephant in my closet is wrinkling my clothes.

What are you to make of these if there are no elephants in my closet, or if
there are three?

Early in the twentieth century, the logician Bertrand Russell proposed an
analysis of such sentences. He proposed that a sentence like The cube is small the
should be analyzed as asserting that there is exactly one cube, and that it is
small. According to his analysis, the sentence will be false if there is no cube,
or if there is more than one, or if there is exactly one, but it’s not small. If
Russell’s analysis is correct, then such sentences can easily be expressed in
first-order logic as follows:

∃x [Cube(x) ∧ ∀y (Cube(y) → y = x) ∧ Small(x)]

More generally, a sentence of the form The A is a B, on the Russellian analysis,
would be translated as:

∃x [A(x) ∧ ∀y (A(y) → x = y) ∧ B(x)]

Noun phrases of the form the A are called definite descriptions and the above definite descriptions
analysis is called the Russellian analysis of definite descriptions.

While Russell did not explicitly consider both or neither, the spirit of his both, neither
analysis extends naturally to these determiners. We could analyze Both cubes
are small as saying that there are exactly two cubes and each of them is small:

∃!2x Cube(x) ∧ ∀x [Cube(x) → Small(x)]
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Similarly, Neither cube is small would be construed as saying that there are
exactly two cubes and each of them is not small:

∃!2x Cube(x) ∧ ∀x [Cube(x) → ¬Small(x)]

More generally, Both A’s are B’s would be translated as:

∃!2x A(x) ∧ ∀x [A(x) → B(x)]

and Neither A is a B would be translated as:

∃!2x A(x) ∧ ∀x [A(x) → ¬B(x)]

Notice that on Russell’s analysis of definite descriptions, the sentence The
cube is not small would be translated as:

∃x [Cube(x) ∧ ∀y (Cube(y) → y = x) ∧ ¬Small(x)]

This is not, logically speaking, the negation of The cube is small. Indeeddefinite descriptions
and negation both sentences could be false if there are no cubes or if there are too many.

The superficial form of the English sentences makes them look like negations
of one another, but according to Russell, the negation of The cube is small
is something like Either there is not exactly one cube or it is not small. Or
perhaps more clearly, If there is exactly one cube then it is not small. Similarly,
the negation of Both cubes are small would not be Both cubes are not small
but If there are exactly two cubes then they are not both small.

Russell’s analysis is not without its detractors. The philosopher P. F.
Strawson, for example, argued that Russell’s analysis misses an important
feature of our use of the determiner the. Return to our example of the ele-
phant. Consider these three sentences:

The elephant in my closet is wrinkling my clothes.
The elephant in my closet is not wrinkling my clothes.
It is not the case that the elephant in my closet is wrinkling my
clothes.

It seems as if none of these sentences is appropriate if there is no elephant in
my closet. That is to say, they all seem to presuppose that there is a unique
elephant in my closet. According to Strawson, they all do presuppose this,
but they do not claim it.

Strawson’s general picture is this. Some sentences carry certain presuppo-presuppositions
sitions. They can only be used to make a claim when those presuppositions
are fulfilled. Just as you can’t drive a car unless there is a car present, you

Chapter 14



The, both, and neither / 381

cannot make a successful claim unless the presuppositions of your claim are
satisfied. With our elephant example, the sentence can only be used to make
a claim in case there is one, and only one, elephant in the speaker’s closet.
Otherwise the sentence simply misfires, and so does not have a truth value at
all. It is much like using an fol sentence containing a name b to describe a
world where no object is named b. Similarly, on Strawson’s approach, if we
use both elephants in my closet or neither elephant in my closet, our statement
simply misfires unless there are exactly two elephants in my closet.

If Strawson’s objection is right, then there will be no general way of trans-
lating the, both, or neither into fol, since fol sentences (at least those without
names in them) always have truth values. There is nothing to stop us from
enriching fol to have expressions that work this way. Indeed, this has been
proposed and studied, but that is a different, richer language than fol.

On the other hand, there have been rejoinders to Strawson’s objection. For
example, it has been suggested that when we say The elephant in my closet is conversational

implicaturenot wrinkling my clothes, the suggestion that there is an elephant in my closet
is simply a conversational implicature. To see if this is plausible, we try the
cancellability test. Does the following seem coherent or not? “The elephant
in my closet is not wrinkling my clothes. In fact, there is no elephant in my
closet.” Some people think that, read with the right intonation, this makes
perfectly good sense. Others disagree.

As we said at the start of this section, these are subtle matters and there is
still no universally accepted theory of how these determiners work in English.
What we can say is that the Russellian analysis is as close as we can come
in fol, that it is important, and that it captures at least some uses of these
determiners. It is the one we will treat in the exercises that follow.

Remember

1. The Russellian analysis of The A is a B is the fol translation of There
is exactly one A and it is a B.

2. The Russellian analysis of Both A’s are B’s is the fol translation of
There are exactly two A’s and each of them is a B.

3. The Russellian analysis of Neither A is a B is the fol translation of
There are exactly two A’s and each of them is not a B.

4. The competing Strawsonian analysis of these determiners treats them
as having presuppositions, and so as only making claims when these
presuppositions are met. On Strawson’s analysis, these determiners
cannot be adequately translated in fol.
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Exercises

14.26
➶

(The Russellian analysis of definite descriptions)
1. Open Russell’s Sentences. Sentence 1 is the second of the two ways we saw in the You

try it section on page 368 for saying that there is a single cube. Compare sentence
1 with sentence 2. Sentence 2 is the Russellian analysis of our sentence The cube is
small. Construct a world in which sentence 2 is true.

2. Construct a world in which sentences 2-7 are all true. (Sentence 7 contains the Rus-
sellian analysis of The small dodecahedron is to the left of the medium dodecahedron.)

Submit your world.

14.27
➶

(The Strawsonian analysis of definite descriptions) Using Tarski’s World, open a sentence file
and write the Russellian analysis of the following two sentences:

1. b is left of the cube.
2. b is not left of the cube.

Build a world containing a dodec named b and one other block in which neither of your
translations is true. To do so, you will need to violate what Strawson would call the common
presupposition of these two sentences. Submit both the sentence and world files.

14.28
➶

(The Russellian analysis of both and neither) Open Russell’s World. Notice that the following
sentences are all true:

1. Both cubes are medium.
2. Neither dodec is small.
3. Both cubes are in front of the tetrahedron.
4. Both cubes are left of both dodecahedra.
5. Neither cube is in back of either dodecahedron.

Start a new sentence file and write the Russellian analysis of these five sentences. Since Tarski’s
World doesn’t let you use the notation ∃!2, you may find it easier to write the sentences on
paper first, using this abbreviation, and then translate them into proper fol. Check that your
translations are true in Russell’s World. Then make some changes to the sizes and positions of
the blocks and again check that your translations have the same truth values as the English
sentences.

14.29
✎?

Discuss the meaning of the determiner Max’s. Notice that you can say Max’s pet is happy, but
also Max’s pets are happy. Give a Russellian and a Strawsonian analysis of this determiner.
Which do you think is better?
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Section 14.4

Adding other determiners to fol

We have seen that many English determiners can be captured in fol, though
by somewhat convoluted circumlocutions. But there are also many determin-
ers that simply aren’t expressible in fol. A simple example is the determiner
Most, as in Most cubes are large. There are two difficulties. One is that the most, more than half
meaning of most is a bit indeterminate. Most cubes are large clearly implies
More than half the cubes are large, but does the latter imply the former? In-
tuitions differ. But even if we take it to mean the same as More than half,
it cannot be expressed in fol, since the determiner More than half is not
expressible in fol.

It is possible to give a mathematical proof of this fact. For example, con-
sider the sentence:

More than half the dodecahedra are small.

To see the problem, notice that the English sentence makes a claim about the
relative sizes of the set A of small dodecahedra and the set B of dodecahe-
dra that are not small. It says that the set A is larger than the set B and
it does so without claiming anything about how many objects there are in
these sets or in the domain of discourse. To express the desired sentence, we
might try something like the following (where we use A(x) as shorthand for
Dodec(x) ∧ Small(x), and B(x) as shorthand for Dodec(x) ∧ ¬Small(x)):

[∃x A(x) ∧ ∀x ¬B(x)] ∨ [∃≥2x A(x) ∧ ∃≤1x B(x)] ∨ [∃≥3x A(x) ∧ ∃≤2x B(x)] ∨ . . .

The trouble is, there is no place to stop this disjunction! Without some
fixed finite upper bound on the total number of objects in the domain, we
need all of the disjuncts, and so the translation of the English sentence would
be an infinitely long sentence, which fol does not allow. If we knew there
were a maximum of twelve objects in the world, as in Tarski’s World, then we
could write a sentence that said what we needed; but without this constraint,
the sentence would have to be infinite.

This is not in itself a proof that the English sentence cannot be expressed
in fol. But it does pinpoint the problem and, using this idea, one can actually unexpressible in fol

give such a proof. In particular, it is possible to show that for any first-order
sentence S of the blocks language, if S is true in every world where more than
half the dodecahedra are small, then it is also true in some world where less
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than half the dodecahedra are small. Unfortunately, the proof of this would
take us beyond the scope of this book.

The fact that we cannot express more than half in fol doesn’t mean there
is anything suspect about this determiner. It just means that it does not fall
within the expressive resources of the invented language fol. Nothing stops
us from enriching fol by adding a new quantifier symbol, say Most. Let’s
explore this idea for a moment, since it will shed light on some topics from
earlier in the book.

How not to add a determiner

We’ll begin by telling you how not to add the determiner Most to the language.
Following the lead from ∀ and ∃, we might start by adding the following clause
to our grammatical rules on page 231:

If S is a wff and ν is a variable, then Most ν S is a wff, and any
occurrence of ν in Most ν S is said to be bound.

We might then say that the sentence Most x S(x) is true in a world just in
case more objects in the domain satisfy S(x) than don’t.1 Thus the sentence
Most x Cube(x) says that most things are cubes.

How can we use our new language to express our sentence Most dodeca-
hedra are small? The answer is, we can’t. If we look back at ∀, ∃, and the
numerical determiners, we note something interesting. It so happens that we
can paraphrase every cube is small and some cube is small using everything
and something; namely, Everything is such that if it is a cube then it is small
and Something is a cube and it is small. At the end of the section on numerical
quantification, we made a similar observation. There is, however, simply no
way to paraphrase Most dodecahedra are small using Most things and expres-
sions that can be translated into fol. After all, it may be that most cubes
are small, even when there are only three or four cubes and millions of dodec-
ahedra and tetrahedra in our domain. Talking about most things is not going
to let us say much of interest about the lonely cubes.

These observations point to something interesting about quantification
and the way it is represented in fol. For any determiner Q, let us mean by
its general form any use of the form Q A B as described at the beginning of
this chapter. In contrast, by its special form we’ll mean a use of the form Q
thing(s) B. The following table of examples makes this clearer.

1For the set-theoretically sophisticated, we note that this definition make sense even if
the domain of discourse is infinite.
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Determiner Special form General form
every everything every cube, every student of logic, . . .
some something some cube, some student of logic, . . .
no nothing no cube, no student of logic, . . .
exactly two exactly two things exactly two cubes, exactly two stu-

dents of logic, . . .
most most things most cubes, most students of logic, . . .

Many determiners have the property that the general form can be reduced
to the special form by the suitable use of truth-functional connectives. Let’s
call such a determiner reducible. We have seen that every, some, no, and the reducibility
various numerical determiners are reducible in this sense. Here are a couple
of the reductions:

Every A B ⇔ Everything is such that if it is an A then it is a B
Exactly two A B ⇔ Exactly two things satisfy A and B

But some determiners, including includes most, many, few, and the, are
not reducible. For non-reducible determiners Q, we cannot add Q to fol by
simply adding the special form in the way we attempted here. We will see how
we can add such determiners in a moment.

There was some good fortune involved when logicians added ∀ and ∃ as
they did. Since every and some are reducible, the definition of fol can get away
with just the special forms, which makes the language particularly simple. On
the other hand, the fact that fol takes the special form as basic also results
in many of the difficulties in translating from English to fol that we have
noted. In particular, the fact that the reduction of Every A uses →, while that
of Some A uses ∧, causes a lot of confusion among beginning students.

How to add a determiner

The observations made above show that if we are going to add a quantifier
like Most to our language, we must add the general form, not just the special new grammatical form
form. Thus, the formation rule should take two wffs and a variable and create
a new wff:

If A and B are wffs and ν is a variable, then Most ν (A, B) is a wff,
and any occurrence of ν in Most ν (A, B) is said to be bound.

The wff Most x (A,B) is read “most x satisfying A satisfy B.” Notice that the
syntactic form of this wff exhibits the fact that Most x (A,B) expresses a binary
relation between the set A of things satisfying A and the set B of things that
satisfy B. We could use the abbreviation Most x (S) for Most x (x = x, S); this
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is read “most things x satisfy S.” This, of course, is the special form of the
determiner, whereas the general form takes two wffs.

We need to make sure that our new symbol Most means what we want it
to. Toward this end, let us agree that the sentence Most x (A, B) is true in a
world just in case most objects that satisfy A(x) satisfy B(x) (where by this
we mean more objects satisfy A(x) and B(x) than satisfy A(x) and ¬B(x)).
With these conventions, we can translate our English sentence faithfully as:

Most x (Dodec(x), Small(x))

The order here is very important. While the above sentences says that most
dodecahedra are small, the sentence

Most x (Small(x), Dodec(x))

says that most small things are dodecahedra. These sentences are true under
very different conditions. We will look more closely at the logical properties
of Most and some other determiners in the next section.

Once we see the general pattern, we see that any meaningful determiner
Q of English can be added to fol in a similar manner.

If A and B are wffs and ν is a variable, then Q ν (A, B) is a wff, and
any occurrence of ν in Q ν (A,B) is said to be bound.

The wff Q x (A,B) is read “Q x satisfying A satisfy B,” or more simply, “Q

A’s are B’s.” Thus, for example,

Few x (Cube(x), Small(x))

is read “Few cubes are small.”
As for the special form, again we use the abbreviation

Q x (S)

for Q x (x = x, S); this is read “Q things x satisfy S.” For instance, the wff
Many x (Cube(x)) is shorthand for Many x (x = x,Cube(x)), and is read “Many
things are cubes.”

What about the truth conditions of such wffs? Our reading of them suggestsnew semantic rules
how we might define their truth conditions. We say that the sentence Q x (A,B)
is true in a world just in case Q of the objects that satisfy A(x) also satisfy
B(x). Here are some instances of this definition:

1. At least a quarter x (Cube(x), Small(x)) is true in a world iff at least a quar-
ter of the cubes in that world are small.
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2. At least two x (Cube(x), Small(x)) is true in a world iff at least two cubes
in that world are small.

3. Finitely many x (Cube(x),Small(x)) is true in a world iff finitely many of
the cubes in that world are small.

4. Many x (Cube(x), Small(x)) is true in a world iff many of the cubes in
that world are small.

The first of these examples illustrates a kind of determiner we have not
even mentioned before. The second shows that we could treat the numerical
determiners of the preceding section in a different manner, by adding them
as new primitives to an expansion of fol. The third example is of another
determiner that cannot be expressed in fol.

But wait a minute. There is something rather unsettling about the fourth
example. The problem is that the English determiner many, unlike the other
examples, is context dependent; just what counts as many varies from one
context to another. If we are talking about a class of twenty, 18 or 19 would
count as many. If we are talking about atoms in the universe, this would count
as very few, not many.

This context dependence infects our definition of the truth conditions for
Many x (Cube(x), Small(x)). What might count as many cubes for one purpose,
or one speaker, might not count as many for another purpose or another
speaker. Logic is supposed to be the science of reasoning. But if we are trying
to be scientific, the incursion of context dependence into the theory is most
unwelcome.

There are two things to say about this context dependence. The first is dealing with context
dependencethat even with context dependent determiners, there are certain clear logical

principles that can be uncovered and explained. We will take some of these up
in the next section. The second point is that the context dependence problem
has a solution. It is possible to model the meaning of context dependent deter-
miners in a perfectly precise, mathematically rigorous manner. Unfortunately,
the modeling requires ideas from set theory that we have not yet covered. The
basic idea, which will only make sense after the next chapter, is to model the
meaning of any determiner as a binary relation on subsets of the domain of
discourse. Just what relation is the best model in the case of a determiner
like Many will depend on the intentions of the person using the determiner.
But all such relations will have certain features in common, features that help
explain the logical properties of the determiners just alluded to. For further
details, see Exercises 18.5 and 18.6.
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Remember

Given any English determiner Q, we can add a corresponding quantifier
Q to fol. In this extended language, the sentence Q x (A, B) is true in a
world just in case Q of the objects that satisfy A(x) also satisfy B(x).

Exercises

14.30
✎

Some of the following English determiners are reducible, some are not. If they are reducible,
explain how the general form can be reduced to the special form. If they do not seem to be
reducible, simply say so.

1. At least three
2. Both
3. Finitely many
4. At least a third
5. All but one

14.31
✎

Open Cooper’s World. Suppose we have expanded fol by adding the following expressions:

∀b1, meaning all but one,
Few, interpreted as meaning at most 10%, and
Most, interpreted as meaning more than half.

Translate the following sentences into this extended language. Then say which are true in
Cooper’s World. (You will have to use paper to write out your translations, since Tarski’s World
does not understand these quantifiers. If the sentence is ambiguous—for example, sentence 5—
give both translations and say whether each is true.)

1. Few cubes are small.
2. Few cubes are large.
3. All but one cube is not large.
4. Few blocks are in the same column as b.
5. Most things are adjacent to some cube.
6. A cube is adjacent to most tetrahedra.
7. Nothing is adjacent to most things.
8. Something is adjacent to something, but only to a few things.
9. All but one tetrahedron is adjacent to a cube.
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14.32
✎

Once again open Cooper’s World. This time translate the following sentences into English and
say which are true in Cooper’s World. Make sure your English translations are clear and
unambiguous.

1. Most y (Tet(y),Small(y))
2. Most z (Cube(z), LeftOf(z,b))
3. Most y Cube(y)
4. Most x (Tet(x), ∃y Adjoins(x, y))
5. ∃y Most x (Tet(x), Adjoins(x, y))
6. Most x (Cube(x), ∃y Adjoins(x, y))
7. ∃y Most x (Cube(x),Adjoins(x, y))
8. Most y (y 6= b)
9. ∀x (Most y (y 6= x))

10. Most x (Cube(x), Most y (Tet(y),FrontOf(x, y))

Section 14.5

The logic of generalized quantification

In this section we look briefly at some of the logical properties of determin-
ers. Since different determiners typically have different meanings, we expect
them to have different logical properties. In particular, we expect the logical
truths and valid arguments involving determiners to be highly sensitive to the
particular determiners involved. Some of the logical properties of determiners
fall into nice clusters, though, and this allows us to classify determiners in
logically significant ways.

We will assume that Q is some determiner of English and that we have
introduced a formal counterpart Q into fol in the manner described at the
end of the last section.

Conservativity

As it happens, there is one logical property that holds of virtually all single-
word determiners in every natural language. Namely, for any predicates A and
B, the following are logically equivalent:

Qx (A(x), B(x)) ⇔ Q x (A(x), (A(x) ∧ B(x)))

This is called the conservativity property of determiners. Here are two instances conservativity property
of the ⇐ half of conservativity, followed by two instances of the ⇒ half:

If no doctor is a doctor and a lawyer, then no doctor is a lawyer.
If exactly three cubes are small cubes, then exactly three cubes
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are small.

If few actors are rich, then few actors are rich and actors.
If all good actors are rich, then all good actors are rich and good
actors.

It is interesting to speculate why this principle holds of single word deter-
miners in human languages. There is no logical reason why there could not be
determiners that did not satisfy it. (See, for example, Exercise 14.52.) It might
have something to do with the difficulty of understanding quantification that
does not satisfy the condition, but if so, exactly why remains a puzzle.

There is one word which has the superficial appearance of a determiner
that is not conservative, namely the word only. For example, it is true that
only actors are rich actors but it does not follow that only actors are rich, as
it would if only were conservative. There are independent linguistic grounds
for thinking that only is not really a determiner. One piece of evidence is the
fact that determiners can’t be attached to complete noun phrases. You can’t
say Many some books are on the table or Few Claire eats pizza. But you can
say Only some books are on the table and Only Claire eats pizza, suggesting
that it is not functioning as a determiner. In addition, only is much more
versatile than determiners, as is shown by the sentences Claire only eats pizza
and Claire eats only pizza. You can’t replace only in these sentences with a
determiner and get a grammatical sentence. If only is not a determiner, it is
not a counterexample to the conservativity principle.

Monotonicity

The monotonicity of a determiner has to do with what happens when we
increase or decrease the set B of things satisfying the verb phrase in a sen-
tence of the form QA B. The determiner Q is said to be monotone increasingmonotone increasing
provided for all A, B, and B′, the following argument is valid:

Q x (A(x), B(x))
∀x (B(x) → B′(x))

Q x (A(x), B′(x))

In words, if Q(A, B) and you increase B to a larger set B ′, then Q(A, B′).
There is a simple test to determine whether a determiner is monotone increas-
ing:

Test for monotone increasing determiners: Q is monotone increasing if
and only if the following argument is valid:
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Table 14.1: Monotonically increasing and decreasing determiners.

Monotone increasing Monotone decreasing Neither
every no all but one
some
the
both neither
many few
several
most
at least two at most two exactly two
infinitely many finitely many
Max’s

Q cube(s) is (are) small and in the same row as c.

Q cube(s) is (are) small.

The reason this test works is that the second premise in the definition of
monotone increasing, ∀x (B(x) → B′(x)), is automatically true. If we try out
the test with a few determiners, we see, for example, that some, every, and
most are monotone increasing, but few is not.

On the other hand, Q is said to be monotone decreasing if things work in monotone decreasing
the opposite direction, moving from the larger set B ′ to a smaller set B:

Q x (A(x), B′(x))
∀x (B(x) → B′(x))

Q x (A(x), B(x))

The test for monotone decreasing determiners is just the opposite as for
monotone increasing determiners:

Test for monotone decreasing determiners: Q is monotone decreasing
if and only if the following argument is valid:

Q cube(s) is (are) small.

Q cube(s) is (are) small and in the same row as c.

Many determiners are monotone increasing, several are monotone decreas-
ing, but some are neither. Using our tests, you can easily verify for yourself
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the classifications shown in Table 14.1. To apply our test to the first column
of the table, note that the following argument is valid, and remains so even if
most is replaced by any determiner in this column:

Most cubes are small and in the same row as c.

Most cubes are small.

On the other hand, if we replace most by any of the determiners in the other
columns, the resulting argument is clearly invalid.

To apply the test to the list of monotone decreasing determiners we observe
that the following argument is valid, and remains so if no is replaced by any
of the other determiners in the second column:

No cubes are small.

No cubes are small and in the same row as c.

On the other hand, if we replace no by the determiners in the other columns,
the resulting argument is no longer valid.

If you examine Table 14.1, you might notice that there are no simple one-
word determiners in the third column. This is because there aren’t any. It
so happens that all the one-word determiners are either monotone increasing
or monotone decreasing, and only a few fall into the decreasing category.
Again, this may have to do with the relative simplicity of monotonic versus
non-monotonic quantification.

Persistence

Persistence is a property of determiners very similar to monotonicity, but
persistence has to do which what happens if we increase or decrease the set
of things satisfying the common noun: the A in a sentence of the form QAB.
The determiner Q is said to be persistent provided for all A, A′, and B, thepersistence
following argument is valid:2

Q x (A(x), B(x))
∀x (A(x) → A′(x))

Q x (A′(x), B(x))

In words, if QA B and you increase A to a larger A′, then QA′ B. On the other
hand, Q is said to be anti-persistent if things work in the opposite direction:anti-persistence

2Some authors refer to persistence as left monotonicity, and what we have been calling
monotonicity as right monotonicity, since they have to do with the left and right arguments,
respectively, when we look at QA B as a binary relation Q(A,B).
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Table 14.2: Persistent and anti-persistent determiners.

Persistent Anti-persistent Neither
some every all but one
several few most
at least two at most two exactly two
infinitely many finitely many many
Max’s no the

both
neither

Q x (A′(x), B(x))
∀x (A(x) → A′(x))

Q x (A(x), B(x))

To test a determiner for persistence or anti-persistence, try out the two argu-
ment forms given below and see whether the result is valid:

Test for Persistence: The determiner Q is persistent if and only if the
following argument is valid:

Q small cube(s) is (are) left of b.

Q cube(s) is (are) left of b.

Test for Anti-persistence: The determiner Q is anti-persistent if and only
if the following argument is valid:

Q cube(s) is (are) left of b.

Q small cube(s) is (are) left of b.

Applying these tests gives us the results shown in Table 14.2. Make sure
you try out some or all of the entries to make sure you understand how the
tests work. You will want to refer to this table in doing the exercises.

The properties of monotonicity and persistence play a large role in ordinary
reasoning with determiners. Suppose, by way of example, that your father is
trying to convince you to stay on the family farm rather than become an
actor. He might argue as follows:
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You want to be rich, right? Well, according to this report, few actors
have incomes above the federal poverty level. Hence, few actors are
rich.

Your father’s argument depends on the fact that few is monotone decreasing.
The set of rich people is a subset of those with incomes above the poverty
level, so if few actors are in the second set, few are in the first. Notice that
we immediately recognize the validity of this inference without even thinking
twice about it.

Suppose you were to continue the discussion by pointing out that the actor
Brad Pitt is extraordinarily rich. Your father might go on this way:

Several organic farmers I know are richer than Brad Pitt. So even
some farmers are extraordinarily rich.

This may seem like an implausible premise, but you know fathers. In any
case, the argument is valid, though perhaps unsound. Its validity rests on the
fact that Several is both persistent and monotone increasing. By persistence,
we can conclude that several farmers are richer than Brad Pitt (since the
organic farmers are a subset of the farmers), and by monotonicity that several
farmers are extraordinarily rich (since everyone richer than Brad Pitt is).
Finally, from the fact that several farmers are extraordinarily rich it obviously
follows that some farmers are (see Exercise 14.51).

There are many other interesting topics related to the study of determiners,
but this introduction should give you a feel for the kinds of things we can
discover about determiners, and the large role they play in everyday reasoning.

Remember

1. There are three properties of determiners that are critical to their
logical behavior: conservativity, monotonicity, and persistence.

2. All English determiners are conservative (with the exception of only,
which is not usually considered a determiner).

3. Monotonicity has to do with the behavior of the second argument of
the determiner. All basic determiners in English are monotone increas-
ing or decreasing, with most being monotone increasing.

4. Persistence has to do with the behavior of the first argument of the
determiner. It is less common than monotonicity.
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Exercises

For each of the following arguments, decide whether it is valid. If it is, explain why. This explanation
could consist in referring to one of the determiner properties mentioned in this section or it could consist
in an informal proof. If the argument is not valid, carefully describe a counterexample.

14.33
✎

Few cubes are large.

Few cubes are large cubes.

14.34
✎

Few cubes are large.

Few large things are cubes.

14.35
✎

Many cubes are large.

Many cubes are not small.

14.36
✎

Few cubes are large.

Few cubes are not small.

14.37
✎

Few cubes are not small.

Few cubes are large.

14.38
✎

Most cubes are left of b.

Most small cubes are left of b.

14.39
✎

At most three cubes are left of b.

At most three small cubes are left of b.

14.40
✎

Most cubes are not small.

Most cubes are large.

14.41
✎

∃x [Dodec(x) ∧ Most y (Dodec(y), y = x))]

∃!x Dodec(x)

14.42
✎

At least three small cubes are left of
b.

At least three cubes are left of b.

14.43
✎

Most small cubes are left of b.

Most cubes are left of b.

14.44
✎

Most tetrahedra are left of b.
a is a tetrahedron in the same column
as b.
a is not right of anything in the same
row as b.

Most tetrahedra are not in the same
row as b.

14.45
✎

Only cubes are large.

Only cubes are large cubes.

14.46
✎

Only tetrahedra are large tetrahedra.

Only tetrahedra are large.
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14.47
✎

Most of the students brought a snack
to class.
Most of the students were late to
class.

Most of the students were late to class
and brought a snack.

14.48
✎

Most of the students brought a snack
to class.
Most of the students were late to
class.

At least one student was late to class
and brought a snack.

14.49
✎?

Most former British colonies are
democracies.
All English speaking countries were
formerly British colonies.

Most English speaking countries are
democracies.

14.50
✎?

Many are called.
Few are chosen.

Most are rejected.

14.51
✎?

In one of our example arguments, we noted that Several A B implies Some A B. In general, a
determiner Q is said to have existential import if Q A B logically implies Some A B. Classify
each of the determiners listed in Table 14.2 as to whether it has existential import. For those
that don’t, give informal counterexamples. Discuss any cases that seem problematic.

14.52
✎

Consider a hypothetical English determiner “allbut.” For example, we might say Allbut cubes
are small to mean that all the blocks except the cubes are small. Give an example to show
that “allbut” is not conservative. Is it monotone increasing or decreasing? Persistent or anti-
persistent? Illustrate with arguments expressed in English augmented with “allbut.”

14.53
✎?

(Only) Whether or not only is a determiner, it could still be added to fol, allowing expressions
of the form Only x (A, B), which would be true if and only if only A’s are B’s.

1. While Only is not conservative, it does satisfy a very similar property. What is it?
2. Discuss monotonicity and persistence for Only. Illustrate your discussion with argu-

ments expressed in English.

14.54
✎?

(Adverbs of temporal quantification) It is interesting to extend the above discussion of quan-
tification from determiners to so-called adverbs of temporal quantification, like always, often,
usually, seldom, sometimes, and never. To get a hint how this might go, let’s explore the
ambiguities in the English sentence Max usually feeds Carl at 2:00 p.m.

Earlier, we treated expressions like 2:00 as names of times on a particular day. To
interpret this sentence in a reasonable way, however, we need to treat such expres-
sions as predicates of times. So we need to add to our language a predicate 2pm(t)
that holds of those times t (in the domain of discourse) that occur at 2 p.m., no mat-
ter on what day they occur. Let us suppose that Usually means most times. Thus,
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Usually t (A(t), B(t))

means that most times satisfying A(t) also satisfy B(t).

1. One interpretation of Max usually feeds Carl at 2:00 p.m. is expressed by

Usually t (2pm(t), Feeds(max, carl, t))

Express this claim using an unambiguous English sentence.
2. A different interpretation of the sentence is expressed by

Usually t (Feeds(max, carl, t), 2pm(t))

Express this claim using an unambiguous English sentence. Then elucidate the differ-
ence between this claim and the first by describing situations in which each is true
while the other isn’t.

3. Are the same ambiguities present in the sentence Claire seldom feeds Folly at 2:00
p.m.? How about with the other adverbs listed above?

4. Can you think of yet a third interpretation of Max usually feeds Carl at 2:00 p.m.,
one that is not captured by either of these translations? If so, try to express it in our
language or some expansion of it.

Section 14.6

Other expressive limitations of first-order logic

The study of generalized quantification is a response to one expressive limi-
tation of fol, and so to its inability to illuminate the full logic inherent in
natural languages like English. The determiners studied in the preceding sec-
tions are actually just some of the ways of expressing quantification that we
find in natural languages. Consider, for example, the sentences

More cubes than tetrahedra are on the same row as e.
Twice as many cubes as tetrahedra are in the same column as f.
Not as many tetrahedra as dodecahedra are large.

The expressions in bold take two common noun expressions and a verb ex-
pression to make a sentence. The techniques used to study generalized quan-
tification in earlier sections can be extended to study these determiners, but
we have to think of them as expressing three place relations on sets, not just three place

quantificationtwo place relations. Thus, if we added these determiners to the language, they
would have the general form Q x (A(x), B(x),C(x)).
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A related difference in expressive power between fol and English comes in
the ability of English to use both singular and plural noun phrases. There is aplurals
difference between saying The boys argued with the teacher and saying Every
boy argued with the teacher. The first describes a single argument between
a teacher and a group of boys, while the second may describe a sequence of
distinct arguments. Fol does not allow us to capture this difference.

Quantification is just the tip of an iceberg, however. There are many ex-
pressions of natural languages that go beyond first-order logic in various ways.
Some of these we have already discussed at various points, both with exam-
ples and exercises. As one example, we saw that there are many uses of the
natural language conditional if. . . then. . . that are not truth functional, and
so not captured by the truth-functional connective →.

Another dimension in which fol is limited, in contrast to English, comes in
the latter’s flexible use of tense. Fol assumes a timeless domain of unchangingtense
relationships, whereas in English, we can exploit our location in time and
space to say things about the present, the past, and locations around us. For
example, in fol we cannot easily say that it is hot here today but it was cool
yesterday. To say something similar in fol, we need to allow quantifiers over
times and locations, and add corresponding argument positions to our atomic
predicates.

Similarly, languages like English have a rich modal structure, allowing usmodality
not only to say how things are, but how they must be, how they might be,
how they can’t be, how they should be, how they would be if we had our
way, and so forth. So, for example, we can say All the king’s horses couldn’t
put Humpty Dumpty together again. Or Humpty shouldn’t have climbed on the
wall. Or Humpty might be dead. Such statements lie outside the realm of fol.

All of these expressions have their own logic, and we can explore and try to
understand just which claims involving these expressions follow logically from
others. Building on the great success of fol, logicians have studied (and are
continuing to study) extensions of fol in which these and similar expressive
deficiencies are addressed. But as of now there is no single such extension of
fol that has gained anything like its currency.

Exercises

14.55
✎

Try to translate the nursery rhyme about Humpty Dumpty into fol. Point out the various
linguistic mechanisms that go beyond fol. Discuss this in class.
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14.56
✎

Consider the following two claims. Does either follow logically from the other? Are they logically
equivalent? Explain your answers.

1. I can eat every apple in the bowl.
2. I can eat any apple in the bowl.

14.57
✎?

Recall the first-order language introduced in Table 1.2, page 30. Some of the following can be
given first-order translations using that language, some cannot. Translate those that can be.
For the others, explain why they cannot be faithfully translated, and discuss whether they
could be translated with additional names, predicates, function symbols, and quantifiers, or if
the shortcoming in the language is more serious.

1. Claire gave Max at least two pets at 2:00 pm.
2. Claire gave Max at most two pets at 2:00 pm.
3. Claire gave Max several pets at 2:00 pm.
4. Claire was a student before Max was.
5. The pet Max gave Claire at 2:00 pm was hungry.
6. Most pets were hungry at noon.
7. All but two pets were hungry at noon.
8. There is at least one student who made Max angry every time he (or she) gave Max a

pet.
9. Max was angry whenever a particular student gave him a pet.

10. If someone gave Max a pet, it must have been Claire.
11. No pet fed by Max between 2:00 and 2:05 belonged to Claire.
12. If Claire fed one of Max’s pets before 2:00 pm, then Max was angry at 2:00 pm.
13. Folly’s owner was a student.
14. Before 3:00, no one gave anyone a pet unless it was hungry.
15. No one should give anyone a pet unless it is hungry.
16. A pet that is not hungry always belongs to someone or other.
17. A pet that is not hungry must belong to someone or other.
18. Max was angry at 2:00 pm because Claire had fed one of his pets.
19. When Max gave Folly to Claire, Folly was hungry, but Folly was not hungry five minutes

later.
20. No student could possibly be a pet.

14.58
✎???

Here is a famous puzzle. There was a Roman who went by two names, “Cicero” and “Tully.”
Discuss the validity or invalidity of the following argument.

Bill claims Cicero was a great orator.
Cicero is Tully.

Bill claims Tully was a great orator.
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What is at stake here is nothing more or less than the principle that if (. . . a . . . ) is true, and
a = b, then (. . . b . . . ) is true. [Hint: Does the argument sound more reasonable if we replace
“claims” by “claims that”? By the way, the puzzle is usually stated with “believes” rather than
“claims.”]

The following more difficult exercises are not specifically relevant to this section, but to the general topic
of truth of quantified sentences. They can be considered as research projects in certain types of classes.

14.59
✎??

(Persistence through expansion) As we saw in Exercise 11.5, page 292, some sentences simply
can’t be made false by adding objects of various sorts to the world. Once they are true, they
stay true. For example, the sentence There is at least one cube and one tetrahedron, if true,
cannot be made false by adding objects to the world. This exercise delves into the analysis of
this phenomenon in a bit more depth.

Let’s say that a sentence A is persistent through expansion if, whenever it is true, it remains
true no matter how many objects are added to the world. (In logic books, this is usually called
just persistence, or persistence under extensions.) Notice that this is a semantic notion. That
is, it’s defined in terms of truth in worlds. But there is a corresponding syntactic notion. Call a
sentence existential if it is logically equivalent to a prenex sentence containing only existential
quantifiers.

◦ Show that Cube(a) → ∃x FrontOf(x, a) is an existential sentence.

◦ Is ∃x FrontOf(x, a) → Cube(a) an existential sentence?

◦ Show that every existential sentence is persistent through expansion. [Hint: You will have
to prove something slightly stronger, by induction on wffs. If you are not familiar with
induction on wffs, just try to understand why this is the case. If you are familiar with
induction, try to give a rigorous proof.] Conclude that every sentence equivalent to an
existential sentence is persistent through expansion.

It is a theorem, due to Tarski and ÃLoś (a Polish logician whose name is pronounced more like
“wash” than like “loss”), that any sentence that is persistent through expansion is existential.
Since this is the converse of what you were asked to prove, we can conclude that a sentence
is persistent through expansion if and only if it is existential. This is a classic example of a
theorem that gives a syntactic characterization of some semantic notion. For a proof of the
theorem, see any textbook in model theory.

14.60
➶

(Invariance under motion, part 1) The real world does not hold still, the way the world of
mathematical objects does. Things move around. The truth values of some sentences change
with such motion, while the truth values of other sentences don’t. Open Ockham’s World and
Ockham’s Sentences. Verify that all the sentences are true in the given world. Make as many
of Ockham’s Sentences false as you can by just moving objects around. Don’t add or remove
any objects from the world, or change their size or shape. You should be able to make false (in a
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single world) all of the sentences containing any spatial predicates, that is, containing LeftOf,
RightOf, FrontOf, BackOf, or Between. (However, this is a quirk of this list of sentences, as we
will see in the next exercise.) Save the world as World 14.60.

14.61
✎??

(Invariance under motion, part 2) Call a sentence invariant under motion if, for every world,
the truth value of the sentence (whether true or false) does not vary as objects move around
in that world.

1. Prove that if a sentence does not contain any spatial predicates, then it is invariant
under motion.

2. Give an example of a sentence containing a spatial predicate that is nonetheless in-
variant under motion.

3. Give another such example. But this time, make sure your sentence is not first-order
equivalent to any sentence that doesn’t contain spatial predicates.

14.62
➶

(Persistence under growth, part 1) In the real world, things not only move around, they also
grow larger. (Some things also shrink, but ignore that for now.) Starting with Ockham’s World,
make the following sentences true by allowing some of the objects to grow:

1. ∀x ¬Small(x)
2. ∃x ∃y (Cube(x) ∧ Dodec(y) ∧ Larger(y, x))
3. ∀y (Cube(y) → ∀v (v 6= y → Larger(v, y)))
4. ¬∃x ∃y (¬Large(x) ∧ ¬Large(y) ∧ x 6= y)

How many of Ockham’s Sentences are false in this world? Save your world as World 14.62.

14.63
✎?

(Persistence under growth, part 2) Say that a sentence S is persistent under growth if, for
every world in which S is true, S remains true if some or all of the objects in that world get
larger. Thus, Large(a) and ¬Small(a) are persistent under growth, but Smaller(a,b) isn’t. Give
a syntactic definition of as large a set of sentences as you can for which every sentence in the
set is persistent under growth. Can you prove that all of these sentences are persistent under
growth?
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Chapter 15

First-order Set Theory

Over the past hundred years, set theory has become an important and useful
part of mathematics. It is used both in mathematics itself, as a sort of universal
framework for describing other mathematical theories, and also in applications
outside of mathematics, especially in computer science, linguistics, and the
other symbolic sciences. The reason set theory is so useful is that it provides
us with tools for modeling an extraordinary variety of structures.

Personally, we think of sets as being a lot like Tinkertoys or Lego blocks:
basic kits out of which we can construct models of practically anything. If modeling in set theory
you go on to study mathematics, you will no doubt take courses in which
natural numbers are modeled by sets of a particular kind, and real numbers
are modeled by sets of another kind. In the study of rational decision making,
economists use sets to model situations in which rational agents choose among
competing alternatives. Later in this chapter, we’ll do a little of this, modeling
properties, relations, and functions as sets. These models are used extensively
in philosophy, computer science, and mathematics. In Chapter 18 we will use
these same tools to make rigorous our notions of first-order consequence and
first-order validity.

In this chapter, though, we will start the other way around, applying
what we have learned about first-order logic to the study of set theory. Since logic and set theory
set theory is generally presented as an axiomatized theory within a first-
order language, this gives us an opportunity to apply just about everything
we’ve learned so far. We will be expressing various set-theoretic claims in fol,
figuring out consequences of these claims, and giving informal proofs of these
claims. The one thing we won’t be doing very much is constructing formal
proofs of set-theoretic claims. This may disappoint you. Many students are
initially intimidated by formal proofs, but come to prefer them over informal
proofs because the rules of the game are so clear-cut. For better or worse,
however, formal proofs of substantive set-theoretic claims can be hundreds or
even thousands of steps long. In cases where the formal proof is manageable,
we will ask you to formalize it in the exercises.

Set theory has a rather complicated and interesting history. Another ob-
jective of this chapter is to give you a feeling for this history. We will start out
with an untutored, or “naive” notion of set, the one that you were no doubt naive set theory
exposed to in elementary school. We begin by isolating two basic principles
that seem, at first sight, to be clearly true of this intuitive notion of set. The
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principles are called the Axiom of Extensionality and the Axiom of Compre-
hension. We’ll state the axioms in the first-order language of set theory and
draw out some of their consequences.

We don’t have to go too far, however, before we discover that we can
prove a contradiction from these axioms. This contradiction will demonstrate
that the axioms are inconsistent. There simply can’t be a domain of discourse
satisfying our axioms; which is to say that the intuitive notion of a set is just
plain inconsistent. The inconsistency, in its simplest incarnation, is known as
Russell’s Paradox.

Russell’s Paradox has had a profound impact on modern set theory andRussell’s Paradox
logic. It forced the founders of set theory to go back and think more critically
about the intuitive notion of a set. The aim of much early work in set theory
was to refine the conception in a way that avoids inconsistency, but retains the
power of the intuitive notion. Examining this refined conception of set leads
to a modification of the axioms. We end the chapter by stating the revised
axioms that make up the most widely used set theory, known as Zermelo-
Frankel set theory, or zfc. Most of the proofs given from the naive theory
carry over to zfc, but not any of the known proofs of inconsistency. zfc is
believed by almost every mathematician to be not only consistent, but true
of a natural domain of sets.

This may seem like a rather tortured route to the modern theory, but it
is very hard to understand and appreciate zfc without first being exposed
to naive set theory, understanding what is wrong with it, and seeing how the
modern theory derives from this understanding.

Section 15.1

Naive set theory

The first person to study sets extensively and to appreciate the inconsistencies
lurking in the naive conception was the nineteenth century German mathe-
matician Georg Cantor. According to the naive conception, a set is just a
collection of things, like a set of chairs, a set of dominoes, or a set of numbers.sets and membership
The things in the collection are said to be members of the set. We write a ∈ b,
and read “a is a member (or an element) of b,” if a is one of the objects that
makes up the set b. If we can list all the members of b, say the numbers 7, 8,
and 10, then we write b = {7,8, 10}. This is called a list description of the set.list description

As you will recall, the first-order language of set theory has two relation
symbols, = and ∈. Beyond that, there are some options. If we want our domain
of discourse to include not just sets but other things as well, then we needsets and non-sets
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some way to distinguish sets from other objects. One way that is sometimes
used is to have a unary predicate symbol Set(x) that holds of all and only
sets. An alternate way of accomplishing the same thing, one that results in
formulas that are easier to read, is to have two sorts of variables. One sort has
a domain that includes all and only the sets, while the other sort ranges over
sets and any other objects in the domain of discourse. This is a common way
to extend fol, and produces what is known as a many-sorted language. We’ve
in fact seen something like this before, when we translated sentences like Max many-sorted language
gave something to Claire between 2:00 and 3:00. In translating such sentences,
we often use one sort of variable for quantifying over ordinary objects (∃x)
and another to quantify over times (∃t).1

This is the approach we will take. We use variables a, b, c, . . . , with and
without subscripts, to range over sets, and variables x, y, z, . . . to range over
everything—ordinary objects as well as sets. Thus, for example, if we wanted
to say that everything is a member of some set or other, we would write

∀x∃a(x ∈ a)

To say the same thing using only one kind of variable and the predicate Set(x),
we would have to write

∀x∃y[Set(y) ∧ x ∈ y]

Later in the chapter, we will sometimes use capital letters such as R and D

as variables ranging over certain kinds of sets, choosing the letter to help us
remember the kind of set we are interested in.

There are other symbols that get used a lot in doing set theory. For exam- other common symbols
ple, there is an individual constant ∅ used to denote the empty set, a relation
symbol ⊆ used to express the subset relation, and function symbols ∩ (inter-
section) and ∪ (union), among others. None of these symbols are necessary to
do set theory, though they simplify formulas a great deal. One of the things
we’ll do in this chapter is introduce abbreviations willy nilly, so we can use
these symbols without officially adding them to the language. Who said you
can’t have your cake and eat it, too?

The Axiom of Extensionality

As we said, there are two principles that capture the naive conception of a
set. One is that a set is completely determined by its members. If you know
the members of a set b, then you know everything there is to know about the
identity of the set. This principle is captured by the Axiom of Extensionality. Axiom of

Extensionality1If you read the section on generalized quantifiers in Chapter 14, you will recognize these
as the quantifiers formed from some and the nouns thing and time respectively.
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Stated precisely, the Axiom of Extensionality claims that if sets a and b have
the same elements, then a = b.

We can express this in fol as follows:

∀a∀b[∀x(x ∈ a ↔ x ∈ b) → a = b]

In particular, the identity of a set does not depend on how it is described.
For example, suppose we have the set containing just the two numbers 7 and
11. This set can be described as {7,11}, or as {11, 7}, it makes no difference.
It can also be described as the set of prime numbers between 6 and 12, or
as the set of solutions to the equation x2 − 18x + 77 = 0. It might even be
the set of Max’s favorite numbers, who knows? The important point is that
the axiom of extensionality tells us that all of these descriptions pick out the
same set.

Notice that if we were developing a theory of properties rather than sets,sets vs. properties
we would not take extensionality as an axiom. It is perfectly reasonable to have
two distinct properties that apply to exactly the same things. For example,
the property of being a prime number between 6 and 12 is a different property
from that of being a solution to the equation x2 − 18x + 77 = 0, and both of
these are different properties from the property of being one of Max’s favorite
numbers. It happens that these properties hold of exactly the same numbers,
but the properties themselves are still different.

The Axiom of Comprehension

The second principle of naive set theory is the so-called Unrestricted Compre-
hension Axiom. It states, roughly, that every determinate property determinesunrestricted

comprehension a set. That is, given any determinate property P , there is a set of all objects
that have this property. Thus, for example, there is a set of objects that have
the following property: being an integer greater than 6 and less than 10. By
the axiom of extensionality, this set can also be written as {7, 8,9}.

This way of stating the Axiom of Comprehension has a certain problem,
namely it talks about properties. We don’t want to get into the business of
having to axiomatize properties as well as sets. To get around this, we use
formulas of first-order logic. Thus, for each formula P(x) of fol, we take as
a basic axiom the following:

∃a∀x[x ∈ a ↔ P (x)]

This says that there is a set a whose members are all and only those things
that satisfy the formula P (x). (To make sure it says this, we demand that the
variable a not occur in the wff P (x).)
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Notice that this is not just one axiom, but an infinite collection of axioms,
one for each wff P (x). For this reason, it is called an axiom scheme. We will axiom scheme
see later that some instances of this axiom scheme are inconsistent, so we
will have to modify the scheme. But for now we assume all of its instances as
axioms in our theory of sets.

Actually, the Axiom of Comprehension is a bit more general than our no-
tation suggests, since the wff P (x) can contain variables other than x, say
z1, . . . , zn. What we really want is the universal closure of the displayed for- universal closure
mula, where all the other variables are universally quantified:

∀z1 . . . ∀zn∃a∀x[x ∈ a ↔ P (x)]

Most applications of the axiom will in fact make use of these additional vari-
ables. For example, the claim that for any objects z1 and z2, there is a pair
set {z1, z2} containing z1 and z2 as its only members, is an instance of this
axiom scheme:

∀z1 ∀z2 ∃a ∀x[x ∈ a ↔ (x = z1 ∨ x = z2)]

In some ways, the Axiom of Comprehension, as we have stated it, is weaker
than the intuitive principle that motivated it. After all, we have already seen
that there are many determinate properties expressible in English that cannot
be expressed in any particular version of fol. These are getting left out of
our axiomatization. Still, the axiom as stated is quite strong. In fact, it is too
strong, as we will soon see.

Combining the Axioms of Extensionality and Comprehension allows us to
prove a claim about sets that clearly distinguishes them from properties.

Proposition 1. For each wff P (x) we can prove that there is a unique set of uniqueness theorem
objects that satisfy P (x). Using the notation introduced in Section 14.1:

∀z1 . . .∀zn∃!a∀x[x ∈ a ↔ P (x)]

This is our first chance to apply our techniques of informal proof to a claim
in set theory. Our proof might look like this:

Proof: We will prove the claim using universal generalization. Let
z1,. . . ,zn be arbitrary objects. The Axiom of Comprehension assures
us that there is at least one set of objects that satisfy P (x). So we
need only prove that there is at most one such set. Suppose a and b

are both sets that have as members exactly those things that satisfy
P (x). That is, a and b satisfy:
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∀x[x ∈ a ↔ P (x)]
∀x[x ∈ b ↔ P (x)]

But then it follows that a and b satisfy:

∀x[x ∈ a ↔ x ∈ b]

(This rather obvious step actually uses a variety of the methods of
proof we have discussed, and would be rather lengthy if we wrote it
out in complete, formal detail. You are asked to give a formal proof
in Exercise 15.5.) Applying the Axiom of Extensionality to this last
claim gives us a = b. This is what we needed to prove.

This shows that given any first-order wff P(x), our axioms allow us to
deduce the existence of the set of objects that satisfy that wff. The set of all
objects x that satisfy P (x) is often written informally as follows:

{x | P (x)}

This is read: “the set of x such that P (x).” Note that if we had used a different
variable, say “y” rather than “x,” we would have had different notation for
the very same set:

{y | P (y)}

This brace notation for sets is, like list notation, convenient but inessential.brace notation
Neither is part of the official first-order language of set theory, since they don’t
fit the format of first-order languages. We will only use them in informal
contexts. In any event, anything that can be said using brace notation can be
said in the official language. For example, b ∈ {x | P (x)} could be written:

∃a[∀x(x ∈ a ↔ P (x)) ∧ b ∈ a]

Remember

Naive set theory has the Axiom of Extensionality and the Axiom Scheme
of Comprehension. Extensionality says that sets with the same members
are identical. Comprehension asserts that every first-order formula deter-
mines a set.
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Exercises

15.1
✎

Are the following true or false? Prove your claims.
1. {7, 8, 9} = {7,8, 10}
2. {7, 8, 9,10} = {7, 8,10, 9}
3. {7, 8, 9,9} = {7, 8, 9}

15.2
✎

Give a list description of the following sets.
1. The set of all prime numbers between 5 and 15.
2. { x | x is a member of your family }
3. The set of letters of the English alphabet.
4. The set of words of English with three successive double letters.

15.3
✎

List three members of the sets defined by the following properties:
1. Being a prime number larger than 15.
2. Being one of your ancestors.
3. Being a grammatical sentence of English.
4. Being a prefix of English.
5. Being a palindrome of English, that is, a phrase whose reverse is the very same phrase,

as with “Madam, I’m Adam”.

15.4
✎

Are the following true or false?
1. y ∈ {x | x is a prime less than 10} if and only if y is one of 2, 3, 5 and 7.
2. {x | x is a prime less than 10} = {2,3, 5, 7}.
3. Ronald Reagan ∈ {x | x was President of the US}.
4. “Ronald Reagan” ∈ {x | x was President of the US}.

15.5
➶

In the Fitch file Exercise 15.5, you are asked to give a formal proof of the main step in our proof
of Proposition 1. You should give a complete proof, without using any of the Con rules. (You
will find the symbol ∈ on the Fitch toolbar if you scroll the predicates using the righthand
scroll button.)

15.6
✎??

Consider the following true statement:

The set whose only members are the prime numbers between 6 and 12 is the same as
the set whose only members are the solutions to the equation x2 − 18x + 77 = 0.

Write this statement using brace notation. Then write it out in the first-order language of
set theory, without using the brace notation. In both cases you may allow yourself natural
predicates like NatNum, Prime, and Set.
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Section 15.2

Singletons, the empty set, subsets

There are two special kinds of sets that sometimes cause confusion. One is
where the set is obtained using the Axiom of Comprehension, but with a
property that is satisfied by exactly one object. The other is when there is no
object at all satisfying the property. Let’s take these up in turn.

Suppose there is one and only one object x satisfying P (x). According to
the Axiom of Comprehension, there is a set, call it a, whose only member is
x. That is, a = {x}. Some students are tempted to think that a = x. But
in that direction lies, if not madness, at least dreadful confusion. After all,
a is a set (an abstract object) and x might have been any object at all, say
the Washington Monument. The Washington Monument is a physical object,
not a set. So we must not confuse an object x with the set {x}, called the
singleton set containing x. Even if x is a set, we must not confuse it with itssingleton set
own singleton. For example, x might have any number of elements in it, but
{x} has exactly one element: x.

The other slightly confusing case is when nothing at all satisfies P (x).
Suppose, for example, that P (x) is the formula x 6= x. What are we to make
of the set

{x | x 6= x}?

Well, in this case the set is said to be empty, since it contains nothing. It is
easy to prove that there can be at most one such set, so it is called the emptyempty set (∅)
set, and is denoted by ∅. Some authors use 0 to denote the empty set. It can
also be informally denoted by {}.

These special sets, singleton sets and the empty set, may seem rather
pointless, but set theory is much smoother if we accept them as full-fledged
sets. If we did not, then we would always have to prove that there were at least
two objects satisfying P (x) before we could assert the existence of {x | P (x)},
and that would be a pain. The next notion is closely related to the membership
relation, but importantly different. It is the subset relation, and is defined as
follows:

Definition Given sets a and b, we say that a is a subset of b, written a ⊆ b,subset (⊆)
provided every member of a is also a member of b.

For example, the set of vowels, {a, e, i, o, u}, is a subset of the set of letters
of the alphabet, {a, b, c, . . . , z}, but not vice versa. Similarly, the singleton set
{Washington Monument} is a subset of the set {x | x is taller than 100 feet}.

It is very important to read the sentences “a ∈ b” and “a ⊆ b” carefully.subset vs. membership
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The first is read “a is a member of b” or “a is an element of b.” The latter is
read “a is a subset of b.” Sometimes it is tempting to read one or the other of
these as “a is included in b.” However, this is a very bad idea, since the term
“included” is ambiguous between membership and subset. (If you can’t resist
using “included,” use it only for the subset relation.)

From the point of view of fol, there are two ways to think of our definition
of “subset.” One is to think of it as saying that the formula “a ⊆ b” is an
abbreviation of the following wff:

∀x[x ∈ a → x ∈ b]

Another way is to think of ⊆ as an additional binary relation symbol in our
language, and to construe the definition as an axiom:

∀a∀b[a ⊆ b ↔ ∀x(x ∈ a → x ∈ b)]

It doesn’t make much difference which way you think of it. Different people
prefer different understandings. The first is probably the most common, since
it keeps the official language of set theory pretty sparse.

Let’s prove a proposition involving the subset relation that is very obvious,
but worth noting.

Proposition 2. For any set a, a ⊆ a.

Proof: Let a be an arbitrary set. For purposes of general conditional
proof, assume that c is an arbitrary member of a. Then trivially (by
reiteration), c is a member of a. So ∀x(x ∈ a → x ∈ a). But then
we can apply our definition of subset to conclude that a ⊆ a. Hence,
∀a(a ⊆ a). (You are asked to formalize this proof in Exercise 15.12.)

The following proposition is very easy to prove, but it is also extremely
useful. You will have many opportunities to apply it in what follows.

Proposition 3. For all sets a and b, a = b if and only if a ⊆ b and b ⊆ a.
In symbols:

∀a∀b(a = b ↔ (a ⊆ b ∧ b ⊆ a))

Proof: Again, we use the method of universal generalization. Let a

and b be arbitrary sets. To prove the biconditional, we first prove
that if a = b then a ⊆ b and b ⊆ a. So, assume that a = b. We need
to prove that a ⊆ b and b ⊆ a. But this follows from Proposition 2
and two uses of the indiscernability of identicals.
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To prove the other direction of the biconditional, we assume that
a ⊆ b and b ⊆ a, and show that a = b. To prove this, we use the
Axiom of Extensionality. By that axiom, it suffices to prove that a

and b have the same members. But this follows from our assumption,
which tells us that every member of a is a member of b and vice versa.

Since a and b were arbitrary sets, our proof is complete. (You are
asked to formalize this proof in Exercise 15.13.)

Remember

Let a and b be sets.

1. a ⊆ b iff every element of a is an element of b.

2. a = b iff a ⊆ b and b ⊆ a.

Exercises

15.7
✎

Which of the following are true?
1. The set of all US senators ⊆ the set of US citizens.
2. The set of all students at your school ⊆ the set of US citizens.
3. The set of all male students at your school ⊆ the set of all males.
4. The set of all John’s brothers ⊆ the set of all John’s relatives.
5. The set of all John’s relatives ⊆ the set of all John’s brothers.
6. {2,3, 4} ⊆ {1 + 1, 1 + 2,1 + 3, 1 + 4}
7. {“2”, “3”, “4”} ⊆ {“1 + 1”,“1 + 2”, “1 + 3”, “1 + 4”}

15.8
✎

Suppose that a1 and a2 are sets, each of which has only the Washington Monument as a
member. Prove (informally) that a1 = a2.

15.9
✎

Give an informal proof that there is only one empty set. (Hint: Use the Axiom of Extensionality.)

15.10
✎

Give an informal proof that the set of even primes greater than 10 is equal to the set of even
primes greater than 100.

15.11
✎

Give an informal proof of the following simple theorem: For every set a, ∅ ⊆ a.
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15.12
➶

In the file Exercise 15.12, you are asked to give a formal proof of Proposition 2 from the
definition of the subset relation. The proof is very easy, so you should not use any of the Con
rules. (You will find the symbol ⊆ if you scroll the predicate window in the Fitch toolbar.)

15.13
➶

In the file Exercise 15.13, you are asked to give a formal proof of Proposition 3 from the Axiom
of Extensionality, the definition of subset, and Proposition 2. The proof is a bit more complex,
so you may use Taut Con if you like.

Section 15.3

Intersection and union

There are two important operations on sets that you have probably seen
before: intersection and union. These operations take two sets and form a
third.

Definition Let a and b be sets.

1. The intersection of a and b is the set whose members are just those intersection (∩)
objects in both a and b. This set is generally written a ∩ b. (“a ∩ b” is a
complex term built up using a binary function symbol ∩ placed in infix
notation.2) In symbols:

∀a∀b∀z(z ∈ a ∩ b ↔ (z ∈ a ∧ z ∈ b))

2. The union of a and b is the set whose members are just those objects in union (∪)
either a or b or both. This set is generally written a ∪ b. In symbols:

∀a∀b∀z(z ∈ a ∪ b ↔ (z ∈ a ∨ z ∈ b))

At first sight, these definitions seem no more problematic than the defini-
tion of the subset relation. But if you think about it, you will see that there
is actually something a bit fishy about them as they stand. For how do we
know that there are sets of the kind described? For example, even if we know
that a and b are sets, how do we know that there is a set whose members
are the objects in both a and b? And how do we know that there is exactly
one such set? Remember the rules of the road. We have to prove everything
from explicitly given axioms. Can we prove, based on our axioms, that there
is such a unique set?

2Function symbols are discussed in the optional Section 1.5. You should read this section
now if you skipped over it.
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It turns out that we can, at least with the naive axioms. But later, we
will have to modify the Axiom of Comprehension to avoid inconsistencies.
The modified form of this axiom will allow us to justify only one of these two
operations. To justify the union operation, we will need a new axiom. But we
will get to that in good time.

Proposition 4. (Intersection) For any pair of sets a and b there is one andexistence and
uniqueness of a ∩ b only one set c whose members are the objects in both a and b. In symbols:

∀a ∀b ∃!c ∀x(x ∈ c ↔ (x ∈ a ∧ x ∈ b))

This proposition is actually just an instance of Proposition 1 on page 409.
Look back at the formula displayed for that proposition, and consider the
special case where z1 is a, z2 is b, and P (x) is the wff x ∈ a ∧ x ∈ b. So
Proposition 4 is really just a corollary (that is, an immediate consequence) of
Proposition 1.

We can make this same point using our brace notation. Proposition 1
guarantees a unique set {x | P (x)} for any formula P (x), and we are simply
noting that the intersection of sets a and b is the set c = {x | x ∈ a ∧ x ∈ b}.

Proposition 5. (Union) For any pair of sets a and b there is one and onlyexistence and
uniqueness of a ∪ b one set c whose members are the objects in either a or b or both. In symbols:

∀a ∀b ∃!c ∀x(x ∈ c ↔ (x ∈ a ∨ x ∈ b))

Again, this is a corollary of Proposition 1, since c = {x | x ∈ a ∨ x ∈ b}.
This set clearly has the desired members.

Here are several theorems we can prove using the above definitions and
results.

Proposition 6. Let a, b, and c be any sets.

1. a ∩ b = b ∩ a

2. a ∪ b = b ∪ a

3. a ∩ b = b if and only if b ⊆ a

4. a ∪ b = b if and only if a ⊆ b

5. a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c)

6. a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c)

We prove two of these and leave the rest as problems.
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Proof of 1: This follows quite easily from the definition of intersec-
tion and the Axiom of Extensionality. To show that a∩ b = b∩ a, we
need only show that a ∩ b and b ∩ a have the same members. By the
definition of intersection, the members of a ∩ b are the things that
are in both a and b, whereas the members of b∩a are the things that
are in both b and a. These are clearly the same things. We will look
at a formal proof of this in the next You try it section.

Proof of 3: Since (3) is the most interesting, we prove it. Let a and
b be arbitrary sets. We need to prove a ∩ b = b iff b ⊆ a. To prove
this, we give two conditional proofs. First, assume a∩b = b. We need
to prove that b ⊆ a. But this means ∀x(x ∈ b → x ∈ a), so we will
use the method of general conditional proof. Let x be an arbitrary
member of b. We need to show that x ∈ a. But since b = a∩ b, we see
that x ∈ a ∩ b. Thus x ∈ a ∧ x ∈ b by the definition of intersection.
Then it follows, of course, that x ∈ a, as desired.

Now let’s prove the other half of the biconditional. Thus, assume that
b ⊆ a and let us prove that a ∩ b = b. By Proposition 3, it suffices to
prove a ∩ b ⊆ b and b ⊆ a ∩ b. The first of these is easy, and does not
even use our assumption. So let’s prove the second, that b ⊆ a ∩ b.
That is, we must prove that ∀x(x ∈ b → x ∈ (a ∩ b)). This is proven
by general conditional proof. Thus, let x be an arbitrary member of
b. We need to prove that x ∈ a ∩ b. But by our assumption, b ⊆ a,
so x ∈ a. Hence, x ∈ a ∩ b, as desired.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

J1. Open the Fitch file Intersection 1. Here we have given a complete formal
proof of Proposition 6.1 from the definition of intersection and the Axiom
of Extensionality. (We have written “int(x, y)” for “x ∩ y.”) We haven’t
specified the rules or support steps in the proof, so this is what you need to
do. This is the first formal proof we’ve given using function symbols. The
appearance of complex terms makes it a little harder to spot the instances
of the quantifier rules.

J2. Specify the rules and support steps for each step except the next to last
(i.e., step 22). The heart of the proof is really the steps in which c ∈ a∧c ∈ b

is commuted to c ∈ b ∧ c ∈ a, and vice versa.
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I 3. Although it doesn’t look like it, the formula in step 22 is actually an
instance of the Axiom of Extensionality. Cite the axiom, which is one of
your premises, and see that this sentence follows using ∀ Elim.

I 4. When you have a completed proof specifying all rules and supports, save
it as Proof Intersection 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

The following reminder shows us that ∩ is the set-theoretic counterpart of
∧ while ∪ is the counterpart of ∨.

Remember

Let b and c be sets.

1. x ∈ b ∩ c if and only if x ∈ b ∧ x ∈ c

2. x ∈ b ∪ c if and only if x ∈ b ∨ x ∈ c

Exercises

15.14
➶

If you skipped the You try it section, go back and do it now. Submit the file Proof Intersection 1.

15.15
✎

Let a = {2,3, 4, 5}, b = {2,4, 6, 8}, and c = {3, 5,7, 9}. Compute the following and express your
answer in list notation.

1. a ∩ b

2. b ∩ a

3. a ∪ b

4. b ∩ c

5. b ∪ c

6. (a ∩ b) ∪ c

7. a ∩ (b ∪ c)

15.16
✎

Give an informal proof of Proposi-
tion 6.2.

15.17
➶

Use Fitch to give a formal proof of
Proposition 6.2. You will find the prob-
lem set up in the file Exercise 15.17. You
may use Taut Con, since a completely
formal proof would be quite tedious.
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15.18
✎

Give an informal proof of Proposi-
tion 6.4.

15.19
➶?

Use Fitch to give a formal proof of
Proposition 6.4. You will find the prob-
lem set up in the file Exercise 15.19. You
may use Taut Con in your proof.

15.20
✎

Give an informal proof of Proposi-
tion 6.5.

15.21
✎

Give an informal proof of Proposi-
tion 6.6.

15.22
✎

Give an informal proof that for every set a there is a unique set c such that for all x, x ∈ c

iff x 6∈ a. This set c is called the absolute complement of a, and is denoted by a. (This result
will not follow from the axioms we eventually adopt. In fact, it will follow that no set has
an absolute complement.) If you were to formalize this proof, what instance of the Axiom of
Comprehension would you need? Write it out explicitly.

Section 15.4

Sets of sets

The Axiom of Comprehension applies quite generally. In particular, it allows
us to form sets of sets. For example, suppose we form the sets {0} and {0,1}.
These sets can themselves be collected together into a set a = {{0}, {0,1}}.
More generally, we can prove the following:

Proposition 7. (Unordered Pairs) For any objects x and y there is a (unique)
set a = {x, y}. In symbols: unordered pairs

∀x ∀y ∃!a ∀w(w ∈ a ↔ (w = x ∨ w = y))

Proof: Let x and y be arbitrary objects, and let

a = {w | w = x ∨ w = y}

The existence of a is guaranteed by Comprehension, and its unique-
ness follows from the Axiom of Extensionality. Clearly a has x and
y and nothing else as elements.

It is worth noting that our previous observation about the existence of
singletons, which we did not prove then, follows from this result. Thus:
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Proposition 8. (Singletons) For any object x there is a singleton set {x}.singleton sets

Proof: To prove this, apply the previous proposition in the case
where x = y.

In order for set theory to be a useful framework for modeling structures of
various sorts, it is important to find a way to represent order. For example, inmodeling order
high school you learned about the representation of lines and curves as sets of
“ordered pairs” of real numbers. A circle of radius one, centered at the origin,
is represented as the following set of ordered pairs:

{〈x, y〉 | x2 + y2 = 1}

But sets themselves are unordered. For example {1, 0} = {0,1} by Extension-
ality. So how are we to represent ordered pairs and other ordered objects?

What we need is some way of modeling ordered pairs that allows us to
prove the following:

〈x, y〉 = 〈u, v〉 ↔ (x = u ∧ y = v)

If we can prove that this holds of our representation of ordered pairs, then we
know that the representation allows us to determine which is the first element
of the ordered pair and which is the second.

It turns out that there are many ways to do this. The simplest and most
widely used is to model the ordered pair 〈x, y〉 by means of the unlikely set
{{x}, {x, y}}.

Definition For any objects x and y, we take the ordered pair 〈x, y〉 to be theordered pair
set {{x}, {x, y}}. In symbols:

∀x∀y 〈x, y〉 = {{x},{x, y}}

Later, we will ask you to prove that the fundamental property of ordered
pairs displayed above holds when we represent them this way. Here we simply
point out that the set {{x}, {x, y}} exists and is unique, using the previous
two results.

Once we have figured out how to represent ordered pairs, the way is open
for us to represent ordered triples, quadruples, etc. For example, we will repre-
sent the ordered triple 〈x, y, z〉 as 〈x, 〈y, z〉〉. More generally, we will representordered n-tuples
ordered n-tuples as 〈x1, 〈x2, . . . xn〉〉.

By the way, as with brace notation for sets, the ordered pair notation
〈x, y〉 is not part of the official language of set theory. It can be eliminated
from formulas without difficulty, though the formulas get rather long.

Chapter 15



Sets of sets / 421

Exercises

15.23
✎

Using the previous two propositions, let a = {2, 3} and let b = {a}. How many members does
a have? How many members does b have? Does a = b? That is, is {2,3} = {{2, 3}}?

15.24
✎

How many sets are members of the set described below?

{{}, {{}, 3, {}}, {}}

[Hint: First rewrite this using “∅” as a notation for the empty set. Then delete from each
description of a set any redundancies.]

15.25
✎

Apply the Unordered Pair theorem to x = y = ∅. What set is obtained? Call this set c. Now
apply the theorem to x = ∅, y = c. Do you obtain the same set or a different set?

15.26
✎?

This exercise and the one to follow lead you through the basic properties of ordered pairs.
1. How many members does the set {{x},{x, y}} contain if x 6= y? How many if x = y?
2. Recall that we defined 〈x, y〉 = {{x}, {x, y}}. How do we know that for any x and y

there is a unique set 〈x, y〉?
3. Give an informal proof that the easy half of the fundamental property of ordered pairs

holds with this definition:

(x = u ∧ y = v) → 〈x, y〉 = 〈u, v〉

4. (??) Finally, prove the harder half of the fundamental property:

〈x, y〉 = 〈u, v〉 → (x = u ∧ y = v)

[Hint: Break into two cases, depending on whether or not x = y.]

15.27
✎?

Building on Problem 15.26, prove that for any two sets a and b, there is a set of all ordered
pairs 〈x, y〉 such that x ∈ a and y ∈ b. This set is called the Cartesian Product of a and b, and
is denoted by a × b.

15.28
✎?

Suppose that a has three elements and b has five. What can you say about the size of a ∪ b,
a ∩ b, and a × b? (a × b is defined in Exercise 15.27.) [Hint: in some of these cases, all you can
do is give upper and lower bounds on the size of the resulting set. In other words, you’ll have
to say the set contains at least such and such members and at most so and so.]
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Section 15.5

Modeling relations in set theory

Intuitively, a binary predicate like Larger expresses a binary relation between
objects in a domain D. In set theory, we model this relation by means of a
set of ordered pairs, specifically the set

{〈x, y〉 | x ∈ D, y ∈ D, and x is larger than y}

This set is sometimes called the extension of the predicate or relation. Moreextension
generally, given some set D, we call any set of pairs 〈x, y〉, where x and y are
in D, a binary relation on D. We model ternary relations similarly, as sets ofrelation in set theory
ordered triples, and so forth for higher arities.

It is important to remember that the extension of a predicate can depend
on the circumstances that hold in the domain of discourse. For example, if we
rotate a world 90 degrees clockwise in Tarski’s World, the domain of objects
remains unchanged but the extension of left of becomes the new extension of
back of. Similarly, if someone in the domain of discourse sits down, then the ex-
tension of is sitting changes. The binary predicates themselves do not change,
nor does what they express, but the things that stand in these relations do,
that is, their extensions change.

There are a few special kinds of binary relations that it is useful to haveproperties of relations
names for. In fact, we have already talked about some of these informally in
Chapter 2. A relation R is said to be transitive if it satisfies the following:

Transitivity: ∀x∀y∀z[(R(x, y) ∧ R(y, z)) → R(x, z)]

As examples, we mention that the relation larger than is transitive, whereas
the relation adjoins is not. Since we are modeling relations by sets of ordered
pairs, this condition becomes the following condition on a set R of ordered
pairs: if 〈x, y〉 ∈ R and 〈y, z〉 ∈ R then 〈x, z〉 ∈ R.

Here are several more special properties of binary relations:

Reflexivity: ∀x R(x, x)
Irreflexivity: ∀x ¬R(x, x)
Symmetry: ∀x∀y(R(x, y) → R(y, x))
Asymmetry: ∀x∀y(R(x, y) → ¬R(y, x))
Antisymmetry: ∀x∀y[(R(x, y) ∧ R(y, x)) → x = y]

Each of these conditions can be expressed as conditions on the extension of
the relation. The first, for example, says that for every x ∈ D, 〈x, x〉 ∈ R.
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To check whether you understand these properties, see if you agree with
the following claims: The larger than relation is irreflexive and asymmetric.
The adjoins relation is irreflexive but symmetric. The relation of being the
same shape as is reflexive, symmetric, and transitive. The relation of ≤ on
natural numbers is reflexive, antisymmetric, and transitive.

These properties of relations are intimately connected with the logic of
atomic sentences discussed in Chapter 2. For example, to say that the follow-
ing argument is valid is equivalent to saying that the predicate in question
(Larger, for example) has a transitive extension under all logically possible
circumstances. In that case the following inference scheme is valid: inference scheme

R(a, b)
R(b, c)

R(a, c)

Similarly, to say of some binary predicate R that

∀x R(x, x)

is logically true is to say that the extension of R is reflexive in all logically
possible circumstances. Identity is an example of this.

In connection with the logic of atomic sentences, let’s look at two partic-
ularly important topics, inverse relations and equivalence relations, in a bit
more detail.

Inverse relations

In our discussion of the logic of atomic sentences in Section 2.2, we noted that
some of the logical relations between atomic sentences stem from the fact that
one relation is the “inverse” of another (page 52). Examples were right of and
left of, larger and smaller, and less than and greater than. We can now see
what being inverses of one another says about the extensions of such pairs of
predicates.

Given any set-theoretic binary relation R on a set D, the inverse (some- inverse or converse
times called the converse) of that relation is the relation R−1 defined by

R−1 = {〈x, y〉 | 〈y, x〉 ∈ R}

Thus, for example, the extension of smaller in some domain is always the
inverse of the extension of larger. In an exercise, we ask you to prove some
simple properties of inverse relations, including one showing that if S is the
inverse of R, then R is the inverse of S.

Section 15.5



424 / First-order Set Theory

Equivalence relations and equivalence classes

Many relations have the properties of reflexivity, symmetry, and transitivity.
We have seen one example: being the same shape as. Such relations are called
equivalence relations, since they each express some kind of equivalence amongequivalence relations
objects. Some other equivalence relations expressible in the blocks language
include being the same size as, being in the same row as, and being in the same
column as. Other equivalence relations include has the same birthday as, has
the same parents as, and wears the same size shoes as. The identity relation
is also an equivalence relation, even though it never classifies distinct objects
as equivalent, the way others do.

As these examples illustrate, equivalence relations group together objects
that are the same in some dimension or other. This fact makes it natural to
talk about the collections of objects that are the same as one another along the
given dimension. For example, if we are talking about the same size relation,
say among shirts in a store, we can talk about all the shirts of a particular size,
say small, medium, and large, and even group them onto three appropriate
racks.

We can model this grouping process very nicely in set theory with an im-
portant construction known as equivalence classes. This construction is widely
used in mathematics and will be needed in our proof of the Completeness The-
orem for the formal proof system F .

Given any equivalence relation R on a set D, we can group together the
objects that are deemed equivalent by means of R. Specifically, for each x ∈ D,
let [x]R be the set

{y ∈ D | 〈x, y〉 ∈ R}

In words, [x]R is the set of things equivalent to x with respect to the relation
R. It is called the equivalence class of x. (If x is a small shirt, then thinkequivalence classes
of [x]SameSize as the store’s small rack.) The fact that this grouping opera-
tion behaves the way we would hope and expect is captured by the following
proposition. (We typically omit writing the subscript R from [x]R when it is
clear from context, as in the following proposition.)

Proposition 9. Let R be an equivalence relation on a set D.

1. For each x, x ∈ [x].

2. For all x, y, [x] = [y] if and only if 〈x, y〉 ∈ R.

3. For all x, y, [x] = [y] if and only if [x] ∩ [y] 6= ∅.

Proof: (1) follows from the fact that R is reflexive on D. (2) is more
substantive. Suppose that [x] = [y]. By (1), y ∈ [y], so y ∈ [x]. But
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then by the definition of [x], 〈x, y〉 ∈ R. For the converse, suppose
that 〈x, y〉 ∈ R. We need to show that [x] = [y]. To do this, it suffices
to prove that [x] ⊆ [y] and [y] ⊆ [x]. We prove the first, the second
being entirely similar. Let z ∈ [x]. We need to show that z ∈ [y]. Since
z ∈ [x], 〈x, z〉 ∈ R. From the fact that 〈x, y〉 ∈ R, using symmetry,
we obtain 〈y, x〉 ∈ R. By transitivity, from 〈y, x〉 ∈ R and 〈x, z〉 ∈ R

we obtain 〈y, z〉 ∈ R. But then z ∈ [y], as desired. The proof of (3)
is similar and is left as an exercise.

Exercises

15.29
➶

Open the Fitch file Exercise 15.29. This file contains as goals the sentences expressing that the
same shape relation is reflexive, symmetric, and transitive (and hence an equivalence relation).
You can check that each of these sentences can be proven outright with a single application
of Ana Con. However, in this exercise we ask you to prove this applying Ana Con only to
atomic sentences. Thus, the exercise is to show how these sentences follow from the meaning
of the basic predicate, using just the quantifier rules and propositional logic.

For the next six exercises, we define relations R and S so that R(a, b) holds if either a or b is a
tetrahedron, and a is in the same row as b, whereas S(a, b) holds if both a and b are tetrahedra, and in
the same row. The exercises ask you to decide whether R or S has various of the properties we have been
studying. If it does, open the appropriate Fitch exercise file and submit a proof. If it does not, submit
a world that provides a counterexample. Thus, for example, when we ask whether R is reflexive, you
should create a world in which there is an object that does not bear R to itself, since R is not in fact
reflexive. In cases where you give a proof, you may use Ana Con applied to literals.

15.30
➶

Is R reflexive? 15.31
➶

Is R symmetric? 15.32
➶

Is R transitive?

15.33
➶

Is S reflexive? 15.34
➶

Is S symmetric? 15.35
➶

Is S transitive?

15.36
✎

Fill in the following table, putting yes or no to indicate whether the relation expressed by the
predicate at the top of the column has the property indicated at the left.

Smaller SameCol Adjoins LeftOf
Transitive
Reflexive
Irreflexive
Symmetric
Asymmetric
Antisymmetric
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15.37
✎

Use Tarski’s World to open the file Venn’s World. Write out the extension of the same column
relation in this world. (It contains eight ordered pairs.) Then write out the extension of the
between relation in this world. (This will be a set of ordered triples.) Finally, what is the
extension of the adjoins relation in this world? Turn in your answers.

15.38
✎

Describe a valid inference scheme (similar to the one displayed on page 423) that goes with
each of the following properties of binary relations: symmetry, antisymmetry, asymmetry, and
irreflexivity.

15.39
✎

What are the inverses of the following binary relations: older than, as tall as, sibling of, father
of, and ancestor of ?

15.40
✎

Give informal proofs of the following simple facts about inverse relations.
1. R is symmetric iff R = R−1.
2. For any relation R, (R−1)−1 = R.

15.41
✎

Use Tarski’s World to open the file Venn’s World. Write out equivalence classes that go with
each of the following equivalence relations: same shape, same size, same row, and identity.
You can write the equivalence classes using list notation. For example, one of the same shape
equivalence classes is {a, e}.

15.42
✎

Given an equivalence relation R on a set D, we defined, for any x ∈ D:

[x]R = {y ∈ D | 〈x, y〉 ∈ R}

Explain how Proposition 1 can be used to show that the set displayed on the right side of this
equation exists.

15.43
✎?

(Partitions and equivalence relations) Let D be some set and let P be some set of non-empty
subsets of D with the property that every element of D is in exactly one member of P . Such a
set is said to be a partition of D. Define a relation E on D by: 〈a, b〉 ∈ E iff there is an X ∈ P
such that a ∈ X and b ∈ X. Show that E is an equivalence relation and that P is the set of its
equivalence classes.

15.44
✎?

If a and b are subsets of D, then the Cartesian product (defined in Exercise 15.27) a × b is a
binary relation on D. Which of the properties of relations discussed in this section does this
relation have? (As an example, you will discover that a×b is irreflexive if and only if a∩b = ∅.)
Your answer should show that in the case where a = b = D, a × b is an equivalence relation.
How many equivalence classes does it have?

15.45
✎

Prove part (3) of Proposition 9.
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Section 15.6

Functions

The notion of a function is one of the most important in mathematics. We
have already discussed functions to some extent in Section 1.5.

Intuitively, a function is simply a way of doing things to things or assign-
ing things to things: assigning license numbers to cars, assigning grades to
students, assigning a temperature to a pair consisting of a place and a time,
and so forth. We’ve already talked about the father function, which assigns
to each person that person’s father, and the addition function, which assigns
to every pair of numbers another number, their sum.

Like relations, functions are modeled in set theory using sets of ordered functions as special
kind of relationpairs. This is possible because we can think of any function as a special type

of binary relation: the relation that holds between the input of the function
and its output. Thus, a relation R on a set D is said to be a function if it
satisfies the following condition:

Functional: ∀x∃≤1y R(x, y)

In other words, a relation is a function if for any “input” there is at most one
“output.” If the function also has the following property, then it is called a
total function on D: total functions

Totality: ∀x∃y R(x, y)

Total functions give “answers” for every object in the domain. If a function
is not total on D, it is called a partial function on D.3 partial functions

Whether or not a function is total or partial depends very much on just
what the domain D of discourse is. If D is the set of all people living or dead,
then intuitively the father of function is total, though admittedly things get a
bit hazy at the dawn of humankind. But if D is the set of living people, then
this function is definitely partial. It only assigns a value to a person whose
father is still living.

There are some standard notational conventions used with functions. First,
it is standard to use letters like f, g, h and so forth to range over functions.
Second, it is common practice to write f(x) = y rather than 〈x, y〉 ∈ f when f(x)
f is a function.

The domain of a function f is the set domain of function

{x | ∃y(f(x) = y)}
3Actually, usage varies. Some authors use “partial function” to include total functions,

that is, to be synonymous with function.
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while its range is
{y | ∃x(f(x) = y)}

It is common to say that a function f is defined on x if x is in the domain of
f . Thus the father of function is defined on the individual Max, but not ondefined vs. undefined
the number 5. In the latter case, we say the function is undefined. The domain
of f will be the entire domain D of discourse if the function f is total, but
will be a subset of D if f is partial.

Notice that the identity relation on D, {〈x, x〉 | x ∈ D}, is a total function
on D: it assigns each object to itself. When we think of this relation as a
function we usually write it as id. Thus, id(x) = x for all x ∈ D.

Later in the book we will be using functions to model rows of truth tables,
naming functions for individual constants, and most importantly in defining
the notion of a first-order structure, the notion needed to make the concept
of first-order consequence mathematically rigorous.

Exercises

15.46
✎

Use Tarski’s World to open the file Venn’s World. List the ordered pairs in the frontmost (fm)
function described in Section 1.5 (page 33). Is the function total or partial? What is its range?

15.47
✎

Which of the following sets represent functions on the set D = {1, 2, 3,4}? For those which are
functions, pick out their domain and range.

1. {〈1, 3〉, 〈2, 4〉, 〈3,3〉}
2. {〈1, 2〉, 〈2, 3〉, 〈3,4〉, 〈4, 1〉}
3. {〈1, 2〉, 〈1, 3〉, 〈3,4〉, 〈4, 1〉}
4. {〈1, 1〉, 〈2, 2〉, 〈3,3〉, 〈4, 4〉}
5. ∅

15.48
✎

What is the domain and range of the square root function on the set N = {0, 1, 2, . . .} of all
natural numbers?

15.49
➶?

Open the Fitch file Exercise 15.49. The premise here defines R to be the frontmost relation.
The goal of the exercise is to prove that this relation is functional. You may use Taut Con as
well as Ana Con applied to literals.

A function f is said to be injective or one-to-one if it always assigns different values to different objects
in its domain. In symbols, if f(x) = f(y) then x = y for all x, y in the domain of f .

15.50
✎

Which of the following functions are one-to-one: father of, student id number of, frontmost, and
fingerprint of ? (You may need to decide just what the domain of the function should be before
deciding whether the function is injective. For frontmost, take the domain to be Venn’s World.)
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15.51
✎

Let f(x) = 2x for any natural number x. What is the domain of this function? What is its
range? Is the function one-to-one?

15.52
✎

Let f(x) = x2 for any natural number x. What is the domain of this function? What is its
range? Is the function one-to-one? How does your answer change if we take the domain to
consist of all the integers, both positive and negative?

15.53
✎

Let E be an equivalence relation on a set D. Consider the relation R that holds between any
x in D and its equivalence class [x]E . Is this a function? If so, what is its domain? What is its
range? Under what conditions is it an one-to-one function?

Section 15.7

The powerset of a set

Once we get used to the idea that sets can be members of other sets, it is
natural to form the set of all subsets of any given set b. The following theorem,
which is easy to prove, shows that there is one and only one such set. This
set is called the powerset of b and denoted ℘b or ℘(b). powersets (℘)

Proposition 10. (Powersets) For any set b there is a unique set whose mem-
bers are just the subsets of b. In symbols:

∀a∃b∀x(x ∈ b ↔ x ⊆ a)

Proof: By the Axiom of Comprehension, we may form the set c =
{x | x ⊆ b}. This is the desired set. By the Axiom of Extensionality,
there can be only one such set.

By way of example, let us form the powerset of the set b = {2, 3}. Thus,
we need a set whose members are all the subsets of b. There are four of these.
The most obvious two are the singletons {2} and {3}. The other two are the
empty set, which is a subset of every set, as we saw in Problem 15.11, and the
set b itself, since every set is a subset of itself. Thus:

℘b = {∅, {2}, {3}, {2, 3}}

Here are some facts about the powerset operation. We will ask you to prove
them in the problems.

Proposition 11. Let a and b be any sets.

1. b ∈ ℘b
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2. ∅ ∈ ℘b

3. a ⊆ b iff ℘a ⊆ ℘b

It is possible for a set to have some of its own subsets as elements. For
example, any set that has the empty set as an element has a subset as an
element, since the empty set is a subset of every set. To take another example,
the set

{Washington Monument}

is both a subset and an element of the set

{Washington Monument, {Washington Monument}}

However, it turns out that no set can have all of its subsets as elements.

Proposition 12. For any set b, it is not the case that ℘b ⊆ b.

Proof: Let b be any set. We want to prove that ℘b 6⊆ b. To prove
this, we construct a particular subset of b that is not an element of
b. Let

c = {x | x ∈ b ∧ x 6∈ x}

by the Axiom of Comprehension. This set c is clearly a subset of b

since it was defined to consist of those members of b satisfying some
additional condition. It follows from the definition of the powerset
operation that c is an element of ℘b. We will show that c 6∈ b.

Toward a proof by contradiction, suppose that c ∈ b. Then either
c ∈ c or c 6∈ c. But which? It is not hard to see that neither can
be the case. First, suppose that c ∈ c. Then by our definition of
c, c is one of those members of b that is left out of c. So c 6∈ c.
Next consider the possibility that c 6∈ c. But then c is one of those
members of b that satisfies the defining condition for c. Thus c ∈ c.
Thus we have proven that c ∈ c ↔ c 6∈ c, which is a contradiction.
So our assumption that c ∈ b must be false, so ℘b 6⊆ b .

This theorem applies to both finite and infinite sets. The proof shows how
to take any set b and find a set c which is a subset of b but not a member of b,
namely the set c = {x | x ∈ b and x 6∈ x}. This is sometimes called the Russell
set for b, after Bertrand Russell. So what we have proved in the preceding canRussell set for b

be restated as:

Chapter 15



The powerset of a set / 431

Proposition 13. For any set b, the Russell set for b, the set

{x | x ∈ b ∧ x 6∈ x},

is a subset of b but not a member of b.

This result is, as we will see, a very important result, one that immediately
implies Proposition 12.

Let’s compute the Russell set for a few sets. If b = {0, 1}, then the Russell
set for b is just b itself. If b = {0, {0,{0, . . . }}} then the Russell set for b is just
{0} since b ∈ b. Finally, if b = {Washington Monument}, then the Russell set
for b is just b itself.

Remember

The powerset of a set b is the set of all its subsets:

℘b = {a | a ⊆ b}

Exercises

15.54
✎

Compute ℘{2, 3, 4}. Your answer should
have eight distinct elements.

15.55
✎

Compute ℘{2, 3, 4,5}.

15.56
✎

Compute ℘{2}. 15.57
✎

Compute ℘∅.

15.58
✎

Compute ℘℘{2,3}. 15.59
✎

Prove the results stated in Proposi-
tion 11.

15.60
✎

Here are a number of conjectures you might make. Some are true, but some are false. Prove
the true ones, and find examples to show that the others are false.

1. For any set b, ∅ ⊆ ℘b.
2. For any set b, b ⊆ ℘b.
3. For any sets a and b, ℘(a ∪ b) = ℘a ∪ ℘b.
4. For any sets a and b, ℘(a ∩ b) = ℘a ∩ ℘b.

15.61
✎

What is the Russell set for each of the following sets?
1. {∅}
2. A set a satisfying a = {a}
3. A set {1, a} where a = {a}
4. The set of all sets
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Section 15.8

Russell’s Paradox

We are now in a position to show that something is seriously amiss with
the theory we have been developing. Namely, we can prove the negation of
Proposition 12. In fact, we can prove the following which directly contradicts
Proposition 12.

Proposition 14. There is a set c such that ℘c ⊆ c.

Proof: Using the Axiom of Comprehension, there is a universal set,
a set that contains everything. This is the set c = {x | x = x}. But
then every subset of c is a member of c, so ℘c is a subset of c.

The set c used in the above proof is called the universal set and is usuallyuniversal set (V )
denoted by “V .” It is called that because it contains everything as a mem-
ber, including itself. What we have in fact shown is that the powerset of the
universal set both is and is not a subset of the universal set.

Let us look at our contradiction a bit more closely. Our proof of Propo-
sition 12, applied to the special case of the universal set, gives rise to the
set

Z = {x | x ∈ V ∧ x 6∈ x}

This is just the Russell set for the universal set. But the proof of Proposition 12
shows that Z is a member of Z if and only if Z is not a member of Z. This
set Z is called the (absolute) Russell set, and the contradiction we have just
established is called Russell’s Paradox.Russell’s Paradox

It would be hard to overdramatize the impact Russell’s Paradox had on
set theory at the turn of the century. Simple as it is, it shook the subject to its
foundations. It is just as if in arithmetic we discovered a proof that 23+27=50
and 23+27 6= 50. Or as if in geometry we could prove that the area of a square
both is and is not the square of the side. But here we are in just that position.
This shows that there is something wrong with our starting assumptions of
the whole theory, the two axioms with which we began. There simply is no
domain of sets which satisfies these assumptions. This discovery was regarded
as a paradox just because it had earlier seemed to most mathematicians that
the intuitive universe of sets did satisfy the axioms.

Russell’s Paradox is just the tip of an iceberg of problematic results inreactions to the paradox
naive set theory. These paradoxes resulted in a wide-ranging attempt to clarify
the notion of a set, so that a consistent conception could be found to use in
mathematics. There is no one single conception which has completely won out
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in this effort, but all do seem to agree on one thing. The problem with the
naive theory is that it is too uncritical in its acceptance of “large” collections
like the collection V used in the last proof. What the result shows is that
there is no such set. So our axioms must be wrong. We must not be able to
use just any old property in forming a set.

The father of set theory was the German mathematician Georg Cantor. His
work in set theory, in the late nineteenth century, preceded Russell’s discovery
of Russell’s paradox in the earlier twentieth century. It is thus natural to
imagine that he was working with the naive, hence inconsistent view of sets.
However, there is clear evidence in Cantor’s writings that he was aware that
unrestricted set formation was inconsistent. He discussed consistent versus
inconsistent “multiplicities,” and only claimed that consistent multiplicities
could be treated as objects in their own right, that is, as sets. Cantor was not
working within an axiomatic framework and was not at all explicit about just
what properties or concepts give rise to inconsistent multiplicities. People
following his lead were less aware of the pitfalls in set formation prior to
Russell’s discovery.

Remember

Russell found a paradox in naive set theory by considering

Z = {x | x 6∈ x}

and showing that the assumption Z ∈ Z and its negation each entails the
other.

Section 15.9

Zermelo Frankel set theory zfc

The paradoxes of naive set theory show us that our intuitive notion of set is
simply inconsistent. We must go back and rethink the assumptions on which
the theory rests. However, in doing this rethinking, we do not want to throw
out the baby with the bath water.

Which of our two assumptions got us into trouble, Extensionality or Com- diagnosing the problem
prehension? If we examine the Russell Paradox closely, we see that it is ac-
tually a straightforward refutation of the Axiom of Comprehension. It shows
that there is no set determined by the property of not belonging to itself. That
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is, the following is, on the one hand, a logical truth, but also the negation of
an instance of Comprehension:

¬∃c∀x(x ∈ c ↔ x 6∈ x)

The Axiom of Extensionality is not needed in the derivation of this fact. So it is
the Comprehension Axiom which is the problem. In fact, back in Chapter 13,
Exercise 13.52, we asked you to give a formal proof of

¬∃y ∀x [E(x, y) ↔ ¬E(x, x)]

This is just the above sentence with “E(x, y)” used instead of “x ∈ y”. The
proof shows that the sentence is actually a first-order validity; its validity does
not depend on anything about the meaning of “∈.” It follows that no coherent
conception of set can countenance the Russell set.

But why is there no such set? It is not enough to say that the set leads
us to a contradiction. We would like to understand why this is so. Various
answers have been proposed to this question.

One popular view, going back to the famous mathematician John von
Neumann, is based on a metaphor of size. The intuition is that some predicateslimitations of size
have extensions that are “too large” to be successfully encompassed as a whole
and treated as a single mathematical object. Any attempt to consider it as a
completed totality is inadequate, as it always has more in it than can be in
any set.

On von Neumann’s view, the collection of all sets, for example, is not itself
a set, because it is “too big.” Similarly, on this view, the Russell collection of
those sets that are not members of themselves is also not a set at all. It is too
big to be a set. How do we know? Well, on the assumption that it is a set, we
get a contradiction. In other words, what was a paradox in the naive theory
turns into an indirect proof that Russell’s collection is not a set. In Cantor’s
terminology, the inconsistent multiplicities are those that are somehow too
large to form a whole.

How can we take this intuition and incorporate it into our theory? That
is, how can we modify the Comprehension Axiom so as to allow the instances
we want, but also to rule out these “large” collections?

The answer is a bit complicated. First, we modify the axiom so that we
can only form subsets of previously given sets. Intuitively, if we are given a
set a and a wff P (x) then we may form the subset of a given by:

{x | x ∈ a ∧ P (x)}

The idea here is that if a is not “too large” then neither is any subset of it.
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Formally, we express this by the axiom

∀a∃b∀x[x ∈ b ↔ (x ∈ a ∧ P (x))]

In this form, the axiom scheme is called the Axiom of Separation. Actually, Axiom of Separation
as before, we need the universal closure of this wff, so that any other free
variables in P (x) are universally quantified.

This clearly blocks us from thinking we can form the set of all sets. We
cannot use the Axiom of Separation to prove it exists. (In fact, we will later
show that we can prove it does not exist.) And indeed, it is easy to show that
the resulting theory is consistent. (See Exercise 15.68.) However, this axiom
is far too restrictive. It blocks some of the legitimate uses we made of the
Axiom of Comprehension. For example, it blocks the proof that the union of
two sets always exists. Similarly, it blocks the proof that the powerset of any
set exists. If you try to prove either of these you will see that the Axiom of
Separation does not give you what you need.

We can’t go into the development of modern set theory very far. Instead,
we will state the basic axioms and give a few remarks and exercises. The
interested student should look at any standard book on modern set theory.
We mention those by Enderton, Levy, and Vaught as good examples.

The most common form of modern set theory is known as Zermelo-Frankel Zermelo-Frankel set
theory zfcset theory, also known as zfc. zfc set theory can be thought of what you get

from naive set theory by weakening the Axiom of Comprehension to the Axiom
of Separation, but then throwing back all the instances of Comprehension that
seem intuitively true on von Neumann’s conception of sets. That is, we must
throw back in those obvious instances that got inadvertently thrown out.

In zfc, it is assumed that we are dealing with “pure” sets, that is, there is
nothing but sets in the domain of discourse. Everything else must be modeled
within set theory. For example, in zfc, we model 0 by the empty set, 1 by {∅},
and so on. Here is a list of the axioms of zfc. In stating their fol versions, axioms of zfc

we use the abbreviations ∃x ∈ y P and ∀x ∈ y P for ∃x(x ∈ y ∧ P ) and
∀x(x ∈ y → P ).

1. Axiom of Extensionality: As above.

2. Axiom of Separation: As above.

3. Unordered Pair Axiom: For any two objects there is a set that has both
as elements.

4. Union Axiom: Given any set a of sets, the union of all the members of
a is also a set. That is:

∀a∃b∀x[x ∈ b ↔ ∃c ∈ a(x ∈ c)]
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5. Powerset Axiom: Every set has a powerset.

6. Axiom of Infinity: There is a set of all natural numbers.

7. Axiom of Replacement: Given any set a and any operation F that defines
a unique object for each x in a, there is a set

{F (x) | x ∈ a}

That is, if ∀x ∈ a∃!yP (x, y), then there is a set b = {y | ∃x ∈ aP (x, y)}.

8. Axiom of Choice: If f is a function with non-empty domain a and for
each x ∈ a, f(x) is a non-empty set then there is a function g also with
domain a such that for each x ∈ a, g(x) ∈ f(x). (The function g is
called a choice function for f since it chooses an element of f(x) for
each x ∈ a.)

9. Axiom of Regularity: No set has a nonempty intersection with each of
its own elements. That is:

∀b[b 6= ∅ → ∃y ∈ b(y ∩ b = ∅)]

Of these axioms, only the Axioms of Regularity and Choice are not direct,
straightforward logical consequences of the naive theory. (Technically speak-
ing, they are both consequences, though, since the naive theory is inconsistent.
After all, everything is a consequence of inconsistent premises.)

The Axiom of Choice (ac) has a long and somewhat convoluted history.Axiom of Choice
There are many, many equivalent ways of stating it; in fact there is a whole
book of statements equivalent to the axiom of choice. In the early days of set
theory some authors took it for granted, others saw no reason to suppose it
to be true. Nowadays it is taken for granted as being obviously true by most
mathematicians. The attitude is that while there may be no way to define
a choice function g from f , and so no way to prove one exists by means of
Separation, but such functions exists none-the-less, and so are asserted to
exist by this axiom. It is extremely widely used in modern mathematics.

The Axiom of Regularity is so called because it is intended to rule outAxiom of Regularity or
Foundation “irregular” sets like a = {{{. . . }}} which is a member of itself. It is sometimes

also called the Axiom of Foundation, for reasons we will discuss in a moment.
You should examine the axioms of zfc in turn to see if you think they are

true, that is, that they hold on von Neumann’s conception of set. Many of
the axioms are readily justified on this conception. Two that are not aren’t
obvious are the power set axiom and the Axiom of Regularity. Let us consider
these in turn, though briefly.
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Sizes of infinite sets

Some philosophers have suggested that the power set of an infinite set might
be too large to be considered as a completed totality. To see why, let us start
by thinking about the size of the power set of finite sets. We have seen that sizes of powersets
if we start with a set b of size n, then its power set ℘b has 2n members. For
example, if b has five members, then its power set has 25 = 32 members. But if
b has 1000 members, then its power set has 21000 members, an incredibly large
number indeed; larger, they say, than the number of atoms in the universe.
And then we could form the power set of that, and the power set of that,
gargantuan sets indeed.

But what happens if b is infinite? To address this question, one first has
to figure out what exactly one means by the size of an infinite set. Cantor sizes of infinite sets
answered this question by giving a rigorous analysis of size that applied to all
sets, finite and infinite. For any set b, the Cantorian size of b is denoted | b |. | b |
Informally, | b |=| c | just in case the members of b and the members of c can
be associated with one another in a unique fashion. More precisely, what is
required is that there be a one-to-one function with domain b and range c.
(The notion of a one-to-one function was defined in Exercise 50.)

For finite sets, |b | behaves just as one would expect. This notion of size is
somewhat subtle when it comes to infinite sets, though. It turns out that for
infinite sets, a set can have the same size as some of its proper subsets. The
set N of all natural numbers, for example, has the same size as the set E of
even numbers; that is |N | = |E |. The main idea of the proof is contained in
the following picture:

0 1 2 . . . n . . .

l l l l
0 2 4 . . . 2n . . .

This picture shows the sense in which there are as many even integers as there
are integers. (This was really the point of Exercise 15.51.) Indeed, it turns out
that many sets have the same size as the set of natural numbers, including
the set of all rational numbers. The set of real numbers, however, is strictly
larger, as Cantor proved.

Cantor also showed that that for any set b whatsoever,

|℘b | > |b |

This result is not surprising, given what we have seen for finite sets. (The
proof of Proposition 12 was really extracted from Cantor’s proof of this fact.) questions about

powerset axiomThe two together do raise the question as to whether an infinite set b could be
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“small” but its power set “too large” to be a set. Thus the power set axiom
is not as unproblematic as the other axioms in terms of Von Neumann’s size
metaphor. Still, it is almost universally assumed that if b can be coherently
regarded as a fixed totality, so can ℘b. Thus the power set axiom is a full-
fledged part of modern set theory.

Cumulative sets

If the power set axiom can be questioned on the von Neumann’s conception
of a set as a collection that is not too large, the Axiom of Regularity isregularity and size
clearly unjustified on this conception. Consider, for example, the irregular set
a = {{{. . . }}} mentioned above, a set ruled out by the Axiom of Regularity.
Notice that this set is its own singleton, a = {a}, so it has only one member.
Therefore there is no reason to rule it out on the grounds of size. There might
be some reason for ruling it out, but size is not one. Consequently, the Axiom
of Regularity does not follow simply from the conception of sets as collections
that are not too large.

To justify the Axiom of Regularity, one needs to augment von Neumann’scumulative conception
of sets size metaphor by what is known as the “cumulation” metaphor due to the

logician Zermelo.
Zermelo’s idea is that sets should be thought of as formed by abstract acts

of collecting together previously given objects. We start with some objects
that are not sets, collect sets of them, sets whose members are the objects
and sets, and so on and on. Before one can form a set by this abstract act of
collecting, one must already have all of its members, Zermelo suggested.

On this conception, sets come in distinct, discrete “stages,” each set arising
at the first stage after the stages where all of its members arise. For example,
if x arises as stage 17 and y at stage 37, then a = {x, y} would arise at stage
38. If b is constructed at some stage, then its powerset ℘b will be constructed
at the next stage. On Zermelo’s conception, the reason there can never be a
set of all sets is that as any set b arises, there is always its power set to be
formed later.

The modern conception of set really combines these two ideas, von Neu-
mann’s and Zermelo’s. This conception of set is as a small collection which
is formed at some stage of this cumulation process. If we look back at the
irregular set a = {{{. . . }}}, we see that it could never be formed in the cu-
mulative construction because one would first have to form its member, but
it is its only member.

More generally, let us see why, on the modified modern conception, thatregularity and
cumulation Axiom of Regularity is true. That is, let us prove that on this conception, no

set has a nonempty intersection with each of its own elements.
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Proof: Let a be any set. We need to show that one of the elements
of a has an empty intersection with a. Among a’s elements, pick any
b ∈ a that occurs earliest in the cumulation process. That is, for any
other c ∈ a, b is constructed at least as early as c. We claim that
b ∩ a = ∅. If we can prove this, we will be done. The proof is by
contradiction. Suppose that b ∩ a 6= ∅ and let c ∈ b∩ a. Since c ∈ b, c

has to occur earlier in the construction process than b. On the other
hand, c ∈ a and b was chosen so that there was no c ∈ a constructed
earlier than b. This contradiction concludes the proof.

One of the reasons the Axiom of Regularity is assumed is that it gives one a
powerful method for proving theorems about sets “by induction.” We discuss
various forms of proof by induction in the next chapter. For the relation with
the Axiom of Regularity, see Exercise 16.10.

Remember

1. Modern set theory replaces the naive concept of set, which is incon-
sistent, with a concept of set as a collection that is not too large.

2. These collections are seen as arising in stages, where a set arises only
after all its members are present.

3. The axiom of comprehension of set theory is replaced by the Axiom
of Separation and some of the intuitively correct consequences of the
axiom of comprehension.

4. Modern set theory also contains the Axiom of Regularity, which is
justified on the basis of (2).

5. All the propositions stated in this chapter—with the exception of
Propositions 1 and 14—are theorems of zfc.

Exercises

15.62
✎

Write out the remaining axioms from above in fol.

15.63
✎

Use the Axioms of Separation and Extensionality to prove that if any set exists, then the empty
set exists.
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15.64
✎

Try to derive the existence of the absolute Russell set from the Axiom of Separation. Where
does the proof break down?

15.65
✎?

Verify our claim that all of Theorems 2–13 are provable using the axioms of zfc. (Some of the
proofs are trivial in that the theorems were thrown in as axioms. Others are not trivial.)

15.66
✎?

(Cantor’s Theorem) Show that for any set b whatsoever, |℘b | 6= |b | . [Hint: Suppose that f is
a function mapping ℘b one-to-one into b and then modify the proof of Proposition 12.]

15.67
✎

(There is no universal set)
1. Verify that our proof of Proposition 12 can be carried out using the axioms of zfc.
2. Use (1) to prove there is no universal set.

15.68
✎

Prove that the Axiom of Separation and Extensionality are consistent. That is, find a universe
of discourse in which both are clearly true. [Hint: consider the domain whose only element is
the empty set.]

15.69
✎?

Show that the theorem about the existence of a∩b can be proven using the Axiom of Separation,
but that the theorem about the existence of a∪b cannot be so proven. [Come up with a domain
of sets in which the separation axiom is true but the theorem in question is false.]

15.70
✎

(The Union Axiom and ∪) Exercise 15.69 shows us that we cannot prove the existence of a ∪ b

from the Axiom of Separation. However, the Union Axiom of zfc is stronger than this. It says
not just that a ∪ b exists, but that the union of any set of sets exists.

1. Show how to prove the existence of a ∪ b from the Union Axiom. What other axioms
of zfc do you need to use?

2. Apply the Union Axiom to show that there is no set of all singletons. [Hint: Use proof
by contradiction and the fact that there is no universal set.]

15.71
✎?

Prove in zfc that for any two sets a and b, the Cartesian product a × b exists. The proof you
gave in an earlier exercise will probably not work here, but the result is provable.

15.72
✎

While ∧ and ∨ have set-theoretic counterparts in ∩ and ∪, there is no absolute counterpart
to ¬.

1. Use the axioms of zfc to prove that no set has an absolute complement.
2. In practice, when using set theory, this negative result is not a serious problem. We

usually work relative to some domain of discourse, and form relative complements.
Justify this by showing, within zfc, that for any sets a and b, there is a set c = {x |
x ∈ a ∧ x 6∈ b}. This is called the relative complement of b with respect to a.

15.73
✎?

Assume the Axiom of Regularity. Show that no set is a member of itself. Conclude that, if we
assume Regularity, then for any set b, the Russell set for b is simply b itself.
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15.74
✎?

(Consequences of the Axiom of Regularity)

1. Show that if there is a sequence of sets with the following property, then the Axiom of
Regularity is false:

. . . ∈ an+1 ∈ an ∈ . . . ∈ a2 ∈ a1

2. Show that in zfc we can prove that there are no sets b1, b2, . . . , bn, . . . , where bn =
{n, bn+1}.

3. In computer science, a stream is defined to be an ordered pair 〈x, y〉 whose first element
is an “atom” and whose second element is a stream. Show that if we work in zfc and
define ordered pairs as usual, then there are no streams.

There are alternatives to the Axiom of Regularity which have been explored in recent years.
We mention our own favorite, the axiom afa, due to Peter Aczel and others. The name “afa”
stands for “anti-foundation axiom.” Using afa you can prove that a great many sets exist with
properties that contradict the Axiom of Regularity. We wrote a book, The Liar, in which we
used afa to model and analyze the so-called Liar’s Paradox (see Exercise 19.32, page 555).
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Chapter 16

Mathematical Induction

In the first two parts of this book, we covered most of the important methods
of proof used in rigorous reasoning. But we left out one extremely important
method: proof by mathematical induction.

By and large, the methods of proof discussed earlier line up fairly nicely
with various connectives and quantifiers, in the sense that you can often tell
from the syntactic form of your premises or conclusion what methods you
will be using. The most obvious exception is proof by contradiction, or its
formal counterpart ¬ Intro. This method can in principle be used to prove
any form of statement, no matter what its main connective or quantifier. This
is because any sentence S is logically equivalent to one that begins with a
negation symbol, namely, ¬¬S.

In terms of syntactic form, mathematical induction is typically used toform of statements
proved by induction prove statements of the form

∀x [P(x) → Q(x)]

This is also the form of statements proved using general conditional proof.
In fact, proof by induction is really a pumped-up version of this method:
general conditional proof on steroids, you might say. It works when these
statements involve a predicate P(x) defined in a special way. Specifically, proof
by induction is available when the predicate P(x) is defined by what is called an
inductive definition. For this reason, we need to discuss proof by induction andinductive definition
inductive definitions side by side. We will see that whenever a predicate P(x)
is defined by means of an inductive definition, proof by induction provides a
much more powerful method of proof than ordinary general conditional proof.

Before we can discuss either of these, though, we should distinguish both
from yet a third process that is also known as induction. In science, we useinduction in science
the term “induction” whenever we draw a general conclusion on the basis of a
finite number of observations. For example, every day we observe that the sun
comes up, that dropped things fall down, and that people smile more when
it is sunny. We come to infer that this is always the case: that the sun comes
up every morning, that dropped things always fall, that people are always
happier when the sun is out.

Of course there is no strict logical justification for such inferences. We may
have correctly inferred some general law of nature, or we may have simply ob-
served a bunch of facts without any law that backs them up. Some time in
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the future, people may be happier if it rains, for example after a long drought.
Induction, in this sense, does not guarantee that the conclusion follows neces-
sarily from the premises. It is not a deductively valid form of inference, since
it is logically possible for the premises to be true and the conclusion false.

This is all by way of contrast with mathematical induction, where we can vs. mathematical
inductionjustify a general conclusion, with infinitely many instances, on the basis of a

finite proof. How is this possible? The key lies in the inductive definitions that
underwrite this method of proof. Induction, in our sense, is a logically valid
method of proof, as certain as any we have studied so far.

Usually, discussions of mathematical induction start (and end) with in-
duction on the natural numbers, to prove statements of the form

∀x [NatNum(x) → Q(x)]

We will start with other examples, examples which show that mathematical
induction applies much more widely than just to natural numbers. The reason
it applies to natural numbers is simply that the natural numbers can be
specified by means of an inductive definition. But so can many other things.

Section 16.1

Inductive definitions and inductive proofs

Inductive definitions involve setting things up in a certain methodical, step-
by-step manner. Proofs by induction take advantage of the structure that
results from such inductive definitions. We begin with a simple analogy.

Dominoes

When they were younger, Claire and Max liked to build long chains of domi-
noes, all around the house. Then they would knock down the first and, if
things were set up right, the rest would all fall down. Little did they know
that in so doing they were practicing induction. Setting up the dominoes is
like giving an inductive definition. Knocking them all down is like proving a
theorem by induction.

There are two things required to make all the dominoes fall over. They
must be close enough together that when any one domino falls, it knocks down
the next. And then, of course, you need to knock down the first. In a proof by
induction, these two steps correspond to what are called the inductive step
(getting from one to the next) and the basis step (getting the whole thing
started).
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Notice that there is no need to have just one domino following each domino.
You can have two, as long as the one in front will knock down both of its
successors. In this way you can build quite elaborate designs, branching out
here and there, and, when the time is right, you can knock them all down
with a single flick of the finger. The same is true, as we’ll see, with induction.

Inductive definitions

Inductive definitions are used a great deal in logic. In fact, we have been using
them implicitly throughout this book. For example, our definitions of the wffs
of fol were really inductive definitions. So was our definition of the set of
terms of first-order arithmetic. Both of these definitions started by specifyinginductive definitions
the simplest members of the defined collection, and then gave rules that told
us how to generate “new” members of the collection from “old” ones. This is
how inductive definitions work.

Let’s look at another example, just to make things more explicit. Suppose
that for some reason we wanted to study an ambiguous variant of proposi-
tional logic, maybe as a mathematical model of English that builds in some
ambiguity. Let’s take some primitive symbols, say A1, . . . , An, and call these
propositional letters. Next, we will build up “wffs” from these using our old
friends ¬,∧, ∨, →, and ↔. But we are going to let the language be ambiguous,
unlike fol, by leaving out all parentheses. How will we do this? To distinguish
these strings from wffs, let us call them ambig-wffs. Intuitively, what we wantambig-wffs
to say is the following:

1. Each propositional letter is an ambig-wff.

2. If p is any ambig-wff, so is the string ¬p.

3. If p and q are ambig-wffs, so are p ∧ q, p ∨ q, p → q, and p ↔ q.

4. Nothing is an ambig-wff unless it is generated by repeated applications
of (1), (2), and (3).

In this definition, clause (1) specifies the basic ambig-wffs. It is called the
base clause of the definition. Clauses (2) and (3) tell us how to form newbase clause
ambig-wffs from old ones. They are called inductive clauses. The final clauseinductive clause
just informs us that all ambig-wffs are generated by the earlier clauses, in casefinal clause
we thought that the World Trade Center or the actor Brad Pitt or the set {2}
might be an ambig-wff.
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Remember

An inductive definition consists of

◦ a base clause, which specifies the basic elements of the defined set,

◦ one or more inductive clauses, which tell us how to generate additional
elements, and

◦ a final clause, which tells us that all the elements are either basic or
generated by the inductive clauses.

Inductive proofs

Having set up an inductive definition of the set of ambig-wffs, we are in a
position to prove things about this set. For example, assuming the clauses of
our inductive definition as premises, we can easily prove that A1 ∨ A2 ∧ ¬A3

is an ambig-wff.

Proof: First, A1,A2, and A3 are ambig-wffs by clause (1). ¬A3 is
thus an ambig-wff by clause (2). Then A2 ∧ ¬A3 is an ambig-wff by
clause (3). Another use of clause (3) gives us the desired ambig-wff
A1 ∨A2 ∧¬A3. (Can you give a different derivation of this ambig-wff,
one that applies ∧ before ∨?)

This proof shows us how the inductive definition of the ambig-wffs is sup-
posed to work, but it is not an inductive proof. So let’s try to prove something
about ambig-wffs using the method of inductive proof. Indeed, let’s prove a
few things that will help us identify strings that are not ambig-wffs.

Consider the string ¬∨→. Obviously, this is not an ambig-wff. But how do
we know? Well, clause (4) says it has to be formed by repeated applications of
clauses (1)–(3). Examining these clauses, it seems obvious that anything you
get from them will have to contain at least one propositional letter. But what
kind of proof is that? What method are we applying when we say “examining
these clauses, it seems obvious that . . . ”? What we need is a way to prove the
following simple fact:

Proposition 1. Every ambig-wff contains at least one propositional letter.

Notice that this claim has the form of a general conditional, where the
antecedent involves an inductively defined predicate:
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∀p [(p is an ambig-wff) → Q(p)]

Here, Q is the property of containing at least one propositional letter. What
the method of induction allows us to do is prove just such a claim. The wayproof by induction
we do it is by showing two things. First, we show that all the basic ambig-
wffs, those specified by clause (1), have the property Q. We call this the basisbasis step
step of our inductive proof. Second, we show that if some “old” members of
ambig-wff have the property Q, then so will the “new” members generated
from them by the inductive clauses (2) and (3). We call this the inductiveinductive step
step of the proof. This is just like knocking down dominoes, albeit in reverse:
the inductive step shows that if a domino falls down, so will the next one; the
basis step tips over the initial domino. Here is the actual inductive proof:

Proof: We will prove this proposition by induction on the ambig-an inductive proof
wffs.

Basis: For our basis case, we need to show that all the propositional
letters are strings that contain at least one propositional letter. But
they do, since they in fact consist of exactly one such letter.

Induction: Suppose p and q are ambig-wffs that each contain at least
one propositional letter. We want to show that the new ambig-wffs
generated from these by clauses (2) and (3) will also contain at least
one propositional letter. This is clearly true, since ¬p contains all
the propositional letters contained in p, and so contains at least one
propositional letter; and p ∧ q, p ∨ q, p → q, and p ↔ q contain all
the propositional letters contained in p and q, and so contain at least
one (indeed at least two) propositional letters.

By induction, we can thus conclude that all ambig-wffs contain at
least one propositional letter.

As far as substance goes, this is a pretty trivial proof. But it is important
to have a good grasp of the form of the proof, and particularly the form of the
inductive step. The inductive step is always a subproof whose assumption is
that the property in question, Q, holds of some arbitrarily selected members of
the inductively defined set. In the above example, we assumed that the ambig-
wffs p and q each had Q, that is, each contained at least one propositional
letter. This assumption is called the inductive hypothesis. The goal of theinductive hypothesis
step is to show that it follows from the inductive hypothesis that any new
members generated from these—new ambig-wffs in our example—must have
the property Q as well.

What ultimately justifies the conclusion of an inductive proof is the last
clause of the inductive definition. In our example, since nothing is an ambig-
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wff except the basic elements and things that can be generated from them by
repeated applications of our two rules, we can be sure that all the ambig-wffs
have the property in question.

Let’s try another example. Suppose we want to prove that the string
A1¬ → A2 is not an ambig-wff. Again, this is pretty obvious, but to prove
it we need to prove a general fact about the ambig-wffs, one that will allow
us to conclude that this particular string does not qualify. The following fact
would suffice:

Proposition 2. No ambig-wff has the symbol ¬ occurring immediately before
one of the binary connectives: ∧, ∨, →, ↔.

Once again, note that the desired result has the form of a general condi-
tional claim, where the antecedent is our inductively defined predicate:

∀p [(p is an ambig-wff) → Q(p)]

This time, Q is the property of not having ¬ occurring immediately in front
of a binary connective. To prove this, we need a basis step and an inductive
step. The basis step must show that Q(p) holds for those expressions p that
are ambig-wffs in virtue of clause (1), that is, the propositional letters. The
inductive step involves two cases, one corresponding to premise (2), the other
to premise (3). For (2), we must show that if an ambig-wff p has property
Q, so does ¬p. For (3), we need to prove that if p and q are ambig-wffs with
property Q then so are p ∧ q, p ∨ q, p → q, and p ↔ q. If we can do this,
the proof will be completed by induction, thanks to clause (4). After all, since
every ambig-wff has to be obtained by repeated applications of (1), (2), and
(3), every ambig-wff will have been shown to have the property in question.

But there is a problem when we try to carry out the details of this proof.
Do you see what it is? Think about trying to do either part of the inductive
step, either (2) or (3). For example, in case (2), how do we know that just
because p has property Q so does ¬p? Well, we don’t. For example, →A1 has
property Q but ¬→A1 does not. (Find a similar problem with case (3).)

This is an example of the so-called Inventor’s Paradox. It is not a real inventor’s paradox
paradox, as in the case of Russell’s Paradox, but it is a bit counterintuitive.
It turns out that proofs by induction often get stuck, not because you are
trying to prove something false, but because you are not aiming high enough.
You need to prove more. In this case, what we have to prove to keep the
induction from getting stuck is this stronger claim: no ambig-wff either begins
with a binary connective, or ends with a negation sign, or has a negation
sign immediately preceding a binary connective. So let Q′ be this stronger
property. It is clear that ∀p [Q′(p) → Q(p)]. Thus, what we need to prove by
induction is that
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∀p [(p is an ambig-wff) → Q′(p)]

This turns out to be easy, and is left as an exercise.
Let’s quickly look at another example of an inductively defined set and aanother inductive

definition proof by induction based on this definition. Suppose we defined the set pal as
follows:

1. Each letter in the alphabet (a, b, c,. . . , z) is a pal.

2. If a string α is a pal, so is the result of putting any letter of the alphabet
both in front of and in back of α (e.g., aαa, bαb, cαc, etc.).

3. Nothing is a pal unless it is generated by repeated applications of (1)
and (2).

Make sure you understand how this definition works. For example, come up
with a string of seven letters that is a pal.

Now let’s prove that every pal reads the same way back to front and front
to back, in other words, every pal is a palindrome. Here is our inductive proofpalindromes
of this fact:

Proof: We prove by induction that every pal reads the same forwards
and backwards, that is, when the order of letters in the string is
reversed.

Basis: The basic elements of pal are single letters of the alphabet.
Clearly, any single letter reads the same way forwards or backwards.

Induction: Suppose that the pal α reads the same way forwards or
backwards. (This is our inductive hypothesis.) Then we must show
that if you add a letter, say l, to the beginning and end of α, then
the result, lαl, reads the same way forwards and backwards. When
you reverse the string lαl, you get lα′l, where α′ is the result of
reversing the string α. But by the inductive hypothesis, α = α′, and
so the result of reversing lαl is lαl, i.e., it reads the same forwards
and backwards.

We conclude by induction that every pal is a palindrome.
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Remember

Given an inductive definition of a set, an inductive proof requires

◦ a basis step, which shows that the property holds of the basic elements,
and

◦ an inductive step, which shows that if the property holds of some
elements, then it holds of any elements generated from them by the
inductive clauses.

The assumption that begins the inductive step is called the inductive
hypothesis.

Exercises

16.1
✎

In the state of Euphoria, the following two principles hold:
1. If it is sunny on one day, it is sunny the next day.
2. It is sunny today.

Prove that it is going to be sunny from now on.

16.2
✎

Raymond Smullyan, a famous logician/magician, gives the following good advice: (1) always
speak the truth, and (2) each day, say “I will repeat this sentence tomorrow.” Prove that
anyone who did these two things would live forever. Then explain why it won’t work.

16.3
✎

Give at least two distinct derivations which show that the following is an ambig-wff: A1 →
A2 ↔ ¬A2.

16.4
✎

Prove by induction that no ambig-wff begins with a binary connective, ends with a negation
sign, or has a negation sign immediately preceding a binary connective. Conclude that the
string A1¬→A2 is not an ambig-wff.

16.5
✎

Prove that no ambig-wff ever has two binary connectives next to one another. Conclude that
A1 → ∨A2 is not an ambig-wff.

16.6
✎

Modify the inductive definition of ambig-wff as follows, to define the set of semi-wffs:
1. Each propositional letter is a semi-wff.
2. If p is any semi-wff, so is the string ¬p).
3. If p and q are semi-wffs, so are (p ∧ q), (p ∨ q), (p → q), (p ↔ q).
4. Nothing is a semi-wff except in virtue of repeated applications of (1), (2), and (3).

Prove by induction that every semi-wff has the following property: the number of right paren-
theses is equal to the number of left parentheses plus the number of negation signs.
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16.7
✎

In the text, we proved that every pal is a palindrome, a string of letters that reads the same
back to front and front to back. Is the converse true, that is, is every palindrome a pal? If so,
prove it. If not, fix up the definition so that it becomes true.

16.8
✎

(Existential wffs) In this problem we return to a topic raised in Problem 14.59. In that problem
we defined an existential sentence as one whose prenex form contains only existential quantifiers.
A more satisfactory definition can be given by means of the following inductive definition. The
existential wffs are defined inductively by the following clauses:

1. Every atomic or negated atomic wff is existential.
2. If P1, . . . ,Pn are existential, so are (P1 ∨ . . . ∨ Pn) and (P1 ∧ . . . ∧ Pn).
3. If P is an existential wff, so is ∃νP , for any variable ν .
4. Nothing is an existential wff except in virtue of (1)–(3).

Prove the following facts by induction:

◦ If P is an existential wff, then it is logically equivalent to a prenex wff with no universal
quantifiers.

◦ If P is an existential sentence that is true in some world, then it will remain true if new
objects are added to the world. [You will need to prove something a bit stronger to keep
the induction going.]

Is our new definition equivalent to our old one? If not, how could it be modified to make it
equivalent?

16.9
✎

Give a definition of universal wff, just like that of existential wff in the previous problem, but
with universal quantifiers instead of existential. State and prove results analogous to the results
you proved there. Then show that every universal wff is logically equivalent to the negation of
an existential wff.

16.10
✎??

Define the class of wellfounded sets by means of the following inductive definition:

1. If C is any set of objects, each of which is either not a set or is itself a wellfounded set,
then C is a wellfounded set.

2. Nothing is a wellfounded set except as justified by (1).

This exercise explores the relationship between the wellfounded sets and the cumulative con-
ception set discussed in the preceding chapter.

1. Which of the following sets are wellfounded?

∅, {∅}, {Washington Monument}, {{{. . .}}}

Chapter 16



Inductive definitions in set theory / 451

2. Assume that a is wellfounded. Show that ℘a is wellfounded.
3. Assume that a and b are wellfounded. Is the ordered pair 〈a, b〉 (as defined in the

preceding chapter) wellfounded?
4. Assume that a = {1, b} and b = {2, a}. Are a and b wellfounded?
5. Show that the Axiom of Regularity implies that every set is wellfounded.
6. When using set theory, one often wants to be able to prove statements of the form:

∀x [Set(x) → Q(x)]

One of the advantages of the cumulative conception of set discussed in the preceding
chapter is that it allows one to prove such statements “by induction on sets.” How?

7. Use mathematical induction to show that there is no infinite sequence of wellfounded
sets a1, a2, a3, . . . such that an+1 ∈ an for each natural number n.

Section 16.2

Inductive definitions in set theory

The way we have been stating inductive definitions seems reasonably rigorous.
Still, you might wonder about the status of clauses like

4. Nothing is an ambig-wff unless it can be generated by repeated applica-
tions of (1), (2), and (3).

This clause is quite different in character from the others, since it mentions not
just the objects we are defining, but the other clauses of the definition itself.
You might also wonder just what is getting packed into the phrase “repeated
applications.”

One way to see that there is something different about clause (4) is to note
that the other clauses are obviously expressible using first-order formulas. For
example, if concat is a symbol for the concatenation function (that is, the
function that takes two expressions and places the first immediately to the
left of the second), then one could express (2) as

∀p [ambig-wff(p) → ambig-wff(concat(¬, p))]

In contrast, clause (4) is not the sort of thing that can be expressed in fol.
However, it turns out that if we work within set theory, then we can ex- making the final

clause more precisepress inductive definitions with first-order sentences. Here, for example, is a
definition of the set of ambig-wffs that uses sets. It turns out that this defi-
nition can be transcribed into the language of set theory in a straightforward
way. The English version of the definition is as follows:
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Figure 16.1: The set of ambig-wffs is the intersection of all sets satisfying
(1)–(3).

Definition The set S of ambig-wffs is the smallest set satisfying the following
clauses:

1. Each propositional letter is in S.

2. If p is in S, then so is ¬p.

3. If p and q are in S, then so are p ∧ q, p ∨ q, p → q, and p ↔ q.

What we have done here is replace the puzzling clause (4) by one that
refers to the smallest set satisfying (1)–(3). How does that help? First of all,
what do we mean by smallest? We mean smallest in the sense of subset: we“smallest” set
want a set that satisfies (1)–(3), but one that is a subset of any other set
satisfying (1)–(3). How do we know that there is such a smallest set? We need
to prove a lemma, to show that our definition makes sense.1

Lemma 3. If S is the intersection of a collection X of sets, each of which
satisfies (1)–(3), S will also satisfy (1)–(3).

We leave the proof of the lemma as Exercise 16.11.
As a result of this lemma, we know that if we define the set of ambig-wffs

to be the intersection of all sets that satisfy (1)–(3), then we will have a set
that satisfies (1)–(3). Further, it must be the smallest such set, since when

1A “lemma” is an auxiliary result, one that is of little intrinsic interest, but which is
needed for some larger end. Lemmas have the same formal status as theorems or proposi-
tions, but are usually less important.
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you take the intersection of a bunch of sets, the result is always a subset of
all of the original sets.

The situation is illustrated in Figure 16.1. There are lots of sets that satisfy
clauses (1)–(3) of our definition, most of which contain many elements that are
not ambig-wffs. For example, the set of all finite strings of propositional letters
and connectives satisfies (1)–(3), but it contains strings like A1¬ → A2 that
aren’t ambig-wffs. Our set theoretic definition takes the set S of ambig-wffs
to be the smallest, that is, the intersection of all these sets.

Notice that we can now explain exactly why proof by induction is a valid justifying induction
form of reasoning. When we give an inductive proof, say that all ambig-wffs
have property Q, what we are really doing is showing that the set {x | Q(x)}
satisfies clauses (1)–(3). We show that the basic elements all have property
Q and that if you apply the generation rules to things that have Q, you will
get other things that have Q. But if Q satisfies clauses (1)–(3), and S is the
intersection of all the sets that satisfy these clauses, then S ⊆ Q. Which is to
say: all ambig-wffs have property Q.

Exercises

16.11
✎

Prove Lemma 3.

16.12
✎

Give an inductive definition of the set of wffs of propositional logic, similar to the above
definition, but putting in the parentheses in clause (3). That is, the set of wffs should be
defined as the smallest set satisfying various clauses. Be sure to verify that there is such a
smallest set.

16.13
✎

Based on your answer to Exercise 16.12, prove that every wff has the same number of left
parentheses as binary connectives.

Section 16.3

Induction on the natural numbers

Many students come away from the study of induction in math classes with
the feeling that it has something special to do with the natural numbers. By
now, it should be obvious that this method of proof is far more general than
that. We can prove things about many different kinds of sets using induction.
In fact, whenever a set is defined inductively, we can prove general claims
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about its members using an inductive proof. Still, the natural numbers are
one of the simplest and most useful examples to which induction applies.

Just how are the natural numbers defined? Intuitively, the definition runsdefining natural
numbers as follows:

1. 0 is a natural number.

2. If n is a natural number, then n + 1 is a natural number.

3. Nothing is a natural number except in virtue of repeated applications
of (1) and (2).

In set theory, this definition gets codified as follows. The set N of natural
numbers is the smallest set satisfying:

1. 0 ∈ N

2. If n ∈ N , then n + 1 ∈ N

Based on this definition, we can prove statements about natural numbers
by induction. Suppose we have some set Q of natural numbers and want to
prove that the set contains all natural numbers:

∀x [x ∈ N → x ∈ Q]

If we prove the following two things:induction on N

1. 0 ∈ Q

2. If n ∈ Q, then n + 1 ∈ Q

then we know that N ⊆ Q, since N is defined to be the smallest set satisfying
these clauses. And this is just another way of stating the universal claim we
want to prove.

Let’s work through an example that illustrates induction on the natural
numbers.

Proposition 4. For every natural number n, the sum of the first n natural
numbers is n(n + 1)/2.

Proof: We want to prove the statement ∀n(n ∈ N → Q(n)), where
Q(n) is the statement: the sum of the first n natural numbers is
n(n + 1)/2. We do this by induction.

Basis: The basis step requires that we prove that the sum of the first
0 natural numbers is 0, which it is. (If you don’t like this case, you
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might check to see that Q(1) holds. You might even go so far as to
check Q(2), although it’s not necessary.)

Induction: To prove the inductive step, we assume that we have a
natural number k for which Q(k) holds, and show that Q(k + 1)
holds. That is, our inductive hypothesis is that the sum of the first
k natural numbers is k(k + 1)/2. We must show that the sum of the
first k + 1 natural numbers is (k + 1)(k + 2)/2. How do we conclude
this? We simply note that the sum of the first k+1 natural numbers
is k + 1 greater than the sum of the first k natural numbers. We
already know by the inductive hypothesis that this latter sum is
simply k(k + 1)/2. Thus the sum of the first k + 1 numbers is

k(k + 1)
2

+ (k + 1)

Getting a common denominator gives us

k(k + 1)
2

+
2(k + 1)

2

which we factor to get

(k + 2)(k + 1)
2

the desired result.

Exercises

16.14
✎

Prove by induction that for all natural numbers n, n ≤ 2n.

16.15
✎

Prove by induction that for all natural numbers n, 0 + 1 + . . . + n ≤ n2. Your proof should
not presuppose Proposition 4, which we proved in the text, though it will closely follow the
structure of that proof.

16.16
✎

Prove by induction that for all n,

1 + 3 + 5 + . . . + (2n + 1) = (n + 1)2

16.17
✎?

Prove that for all natural numbers n ≥ 2,

(1 − 1
2
)(1 − 1

3
) . . . (1 − 1

n
) =

1
n
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16.18
✎?

Notice that 13 + 23 +33 = 36 = 62 and that 13 + 23 +33 + 43 + 53 = 225 = 152. Prove that the
sum of the first n perfect cubes is a square. [Hint: This is an instance of the inventor’s paradox.
You will have to prove something stronger than this.]

Section 16.4

Axiomatizing the natural numbers

In giving examples of informal proofs in this book, we have had numerous
occasions to use the natural numbers as examples. In proving things about
the natural numbers, we have made recourse to any fact about the natural
numbers that was obviously true. If we wanted to formalize these proofs, we
would have to be much more precise about what we took to be the “obvious”
facts about the natural numbers.

Over the years, a consensus has arisen that the obviously true claims about
the natural numbers can be formalized in what has come to be known as PeanoPeano Arithmetic (pa)

Arithmetic, or pa for short, named after the Italian mathematician Giuseppe
Peano. This is a certain first-order theory whose main axiom states a form of
induction for natural numbers.

pa is formulated in a first-order language that has constants 0 and 1 to-
gether with the binary function symbols + and × and the identity predicate.
It takes as axioms the following basic facts about the domain of natural num-
bers.

1. ∀x ∀y (x + 1 = y + 1 → x = y)

2. ∀x (x + 1 6= 0)

3. 0 + 1 = 1

4. ∀x (x + 0 = x)

5. ∀x ∀y [x + (y + 1) = (x + y) + 1]

6. ∀x (x × 0 = 0)

7. ∀x ∀y [x × (y + 1) = (x × y) + x]

In addition, pa has an axiom scheme capturing the principle of mathematical
induction on the natural numbers. This can be stated as follows:induction scheme

[Q(0) ∧ ∀x (Q(x) → Q(x + 1))] → ∀xQ(x)
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What this says if that if Q(x) is satisfied by 0, and if its being satisfied by
some number n insures that it is satisfied by n + 1, then Q(x) is satisfied by
all natural numbers. (Actually, as with the axioms of comprehension in the
preceding chapter, the axiom needs to be stated a bit more generally than we
have stated it. The wff Q(x) may have free variables other than x, and these
need to be universally quantified.)

There are many other facts about the natural numbers which are obvious.
Some of these include the familiar commutative, associative, and distributive
laws from addition and multiplication. It turns out, however, that these facts,
and all other “obvious” facts, and many very difficult facts, can be proven
from the axioms as set out above. Here is probably the simplest; we give an
informal proof, using just these axioms, of

∀x (x + 1 = 1 + x)

Proof: The proof is by the formalized version of mathematical in-
duction. The predicate Q(x) in question is (x + 1 = 1 + x). We need
to prove the basis case, Q(0), and the induction step

∀x (Q(x) → Q(x + 1))

The basis case requires us to prove that 0 + 1 = 1 + 0. By axiom 3,
0 + 1 = 1. By axiom 4, 1 + 0 = 1. Hence, 0 + 1 = 1 + 0, as desired.

We now prove the induction step. The proof is by general conditional
proof. Let n be any number such that Q(n). This is our inductive
hypothesis. Using it, we need to prove Q(n + 1). That is, our induc-
tion hypothesis is that n + 1 = 1 + n and our goal is to prove that
(n + 1) + 1 = 1 + (n + 1). This takes two steps, as follows:

(n + 1) + 1 = (1 + n) + 1 by the inductive hypothesis.
= 1 + (n + 1) by axiom 5.

Using this, one can go on to prove that addition is commutative, and so on.
There are, however, truths about the natural numbers that cannot be proven Gödel Incompleteness

Theoremfrom pa. Not only that, but any attempt to set down a list of first-order
axioms true of the natural numbers must, in some sense, fail. We will discuss
this result, known as the Gödel Incompleteness Theorem, in Chapter 19.
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Exercises

16.19
➶?

Use Fitch to give a formal proof of ∀x (x + 1 = 1 + x) from the Peano axioms. You will find
the problem set up in the file Exercise 16.19, which contains the four axioms you will need
as premises (including the appropriate instance of the induction scheme). Your proof should
parallel the informal proof given above.

Give informal proofs, similar in style to the one in the text, that the following statements are consequences
of pa. Explicitly identify any predicates to which you apply induction. When proving the later theorems,
you may assume the results of the earlier problems.

16.20
✎

∀x (0 + x = x) 16.21
✎

∀x (1 × x = x)

16.22
✎

∀x (0 × x = 0) 16.23
✎?

∀x (x × 1 = 1 × x)

16.24
✎?

∀x∀y ∀z ((x + y) + z = x + (y + z)) [Hint: This is relatively easy, but you have to per-
form induction on z. That is, your basis case is to show that (x + y) + 0 = x + (y + 0).
You should then assume (x + y) + n = x + (y + n) as your inductive hypothesis and show
(x + y) + (n + 1) = x + (y + (n + 1)).]

16.25
✎??

∀x∀y (x + y = y + x)

16.26
✎??

∀x∀y (x × y = y × x) [Hint: To prove this, you will first need to prove the lemma
∀x∀y ((x + 1) × y = (x × y) + y). Prove this by induction on y.]

Section 16.5

Proving programs correct

Induction is an important technique for proving facts about computer pro-
grams, particularly those that involve recursive definitions or loops. Imagine
that we ask a programmer to write a program that adds the first n natural
numbers. The program, when given a natural number n as its input, should
return as its result the sum 0+1+2+ . . .+n. We will call this the specificationprogram specification
of the program.

One way to do this is to write a so-called recursive program like this:recursive program
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public natural sumToRec(natural n) {
if(n == 0) return 0;
else return n + sumToRec(n − 1);

}

sumToRec

This program is written in an imaginary, Java-like language. We could para-
phrase what it says as follows. See if you can understand the program even if
you don’t know how to program.

The program defines a function sumToRec that takes a natural num-
ber as argument and produces a natural number as result. Let n be a
natural number given as argument. If n is 0, then the result returned
is 0; otherwise the result is n plus the result returned by calling this
same function with argument n − 1.

It is pretty clear that this produces the right answer, but let’s see how
we would prove it using a simple inductive proof. The goal of the proof is to
show that the program meets its specification, that for any n, sumToRec(n) =
0 + 1 + 2 + . . . + n.

Proof: The proof proceeds by induction. Basis: For our basis case
we need to show that sumToRec(0) = 0. But with argument 0, the
result returned by the program is 0, as required.

Induction: Suppose that the result returned by the program for ar-
gument k is correct, i.e., sumToRec(k) = 0+1+2+ . . .+k. We must
show that the result returned for k + 1 is also correct. Since k + 1
cannot be 0, the program is defined to return sumToRec(k)+ (k +1)
in this case. By the inductive hypothesis

sumToRec(k) + (k + 1) = (0 + 1 + 2 + . . . + k) + (k + 1)

as required. This concludes our inductive proof.

Induction is also useful when the program contains loops rather than direct
recursive definitions as in the program for sumToRec. But it is a bit less
obvious how induction applies in these cases. To see how, let’s look at another
implementation of the same function, one that uses a while loop: while loop

sumUpTo

public natural sumUpTo(natural n) {
natural sum = 0;
natural count = 0;

while(count < n) {
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count += 1;
sum += count;

}
return sum;

}

We could paraphrase this program in English in the following way.

The program defines a function sumUpTo, whose arguments are nat-
ural numbers. Let n be a natural number that is input as argument.
Initialize the variables sum and count, also natural numbers, both
to be 0. Then, so long as the value of count is less than n, repeat
the following two steps: increase count by 1 and then add count to
sum. When finished with the loop, return the value of sum.

How would we prove that this new program meets the specification? A
complete proof requires that we spell out a precise semantics for each pro-
gramming construct in our programming language. Fortunately, the program
above uses only three constructions.

◦ Simple assignment. An example of a simple assignment is the statement
sum = 0. After executing such a statement we know that the value of
the program variable on the left of the assignment (sum) has the value
on the right of the assignment (0).

◦ Additive assignment. An example is the statement sum += count. After
executing such a statement the value of the program variable on the left
(sum) is increased by the value of the variable on the right (count).

◦ While loop. A while loop repeats the statements in the body of the loop
(in the example, the statements sum += count and count += 1) until
the test condition governing the loop (count < n) becomes false. Then
execution resumes with the statement after the while loop.

To prove that our program meets the specification, we will give two inductiveproving correctness
of sumUpTo arguments. The first will show that on input n, the body of the loop is executed

exactly n times. The second will demonstrate that a certain invariant holds
of the loop, namely, that after n loops, the value of sum is 0+1 +2 + . . .+ n.
Putting these together gives us the result we need.

To prove the first claim, we will prove something stronger: that for any
k, if the test at the while loop is reached with the value of n − count equal
to k, then the loop will execute exactly k more times. This will prove the
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claim, since the first time the test is reached, count has the value 0, and so
n− count = n. We prove the claim by induction on k, that is, on the quantity
n − count.

Proof: Basis: Suppose that n − count is 0 when the test is reached.
Then n = count and therefore the test is false. The body of the loop
is not executed again. So when n − count is 0 the loop is executed 0
more times, as required.

Induction: Our inductive hypothesis is that if the test is reached with
n − count = k then the loop executes k more times. We must show
that if the test is reached with n − count = k + 1, then the loop will
execute k + 1 more times. Suppose that n − count = k + 1. The test
in the while loop is therefore true, since n − count is positive and so
count < n. So the body of the loop will execute, and this will result
(in part) in count increasing by 1. So when the test is next reached,
after one execution of the body, n − count = k. This will result in k

more executions of the loop, by the induction hypothesis. So in all,
the body of the loop will execute k + 1 times, as required.

We now know that the program above is guaranteed to terminate, whatever
value of n is passed in as its argument, and that it will execute the loop exactly
n times.

Now we turn our attention to proving that when the program terminates,
the value in the variable sum is the sum of the first n natural numbers. We
again prove something slightly stronger, namely, that after k iterations of the
while loop, the value of the variables sum and count are given by the following
formula:

sum = (0 + 1 + 2 + . . . + k) ∧ count = k

This is called an invariant for the loop. It describes in essence how the program invariant
works: sum accumulates the sum of the initial segment of natural numbers,
increasing by one element each iteration, while count records the number of
iterations that have been completed.

Proof: Basis: When k = 0, we have performed 0 iterations of the
while loop. At this point sum = 0 and count = 0, and so the formula
is obviously true.

Induction: We assume that the formula holds after k iterations of
the body of the loop, and must show that it holds again after k + 1
iterations of the loop. Let sum be the value of sum after k iterations
of the loop, and sum′ be the value of sum after k + 1 iterations.
Similarly for count.
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Then
sum = (0 + 1 + 2 + . . . + count)

by the inductive hypothesis. After k+1 iterations, the value of count

is increased by 1 and sum is increased by count′ (since the loop
increments count before sum), and so we have:

sum′ = sum + count′

= sum + (count + 1)

= 0 + 1 + 2 + . . . + count + (count + 1)

= 0 + 1 + 2 + . . . + k + (k + 1)

This concludes our induction.

Finally, we know that when the condition on the loop becomes false, count

must equal n, and so at this point sum = 0+1+2+ . . .+ count = 0+1+2+
. . . + n. Since sum is the value returned, this shows that the program meets
the original specification.

A third implementation

Suppose that another programmer writes the following code and claims that
this new program also implements a function meeting our specification.

sumDownFrom

public natural sumDownFrom(natural n) {
natural sum = 0;
natural count = n;

while(count > 0) {
sum += count;
count −= 1;

}
return sum;

}

We could paraphrase this program as follows:

Let n be a natural number. Initialize sum and count, also natural
numbers, to 0 and n respectively. Then, so long as count is greater
than zero, repeat the following two steps: add count to sum, and
then decrease count by 1. The desired result is the value of sum.

We need to explain how the one new construct works, though by now you
should be able to guess the meaning of “subtractive assignment.”
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◦ Subtractive assignment. An example is the statement, count −= 1. After
executing such a statement the value of the program variable on the left
is one less than it was before the execution of the statement.

The first thing we need to prove is that for any natural number n, the proving correctness
of sumDownFromprogram terminates after executing exactly n passes through the loop. This

induction is similar (but easier) than the corresponding proof for sumUpTo,
since it involves a direct induction on the value of count. We leave the proof
as Exercise 16.27.

Now let’s prove that when the program terminates, the value in the vari-
able sum is the sum of the first n natural numbers, as desired. This will again
require a proof by induction. We will prove that for any k ≤ n, after k itera-
tions of the while loop, the values of the variables sum and count satisfy the
following equation:

(0 + 1 + 2 + . . . + count) + sum = 0 + 1 + 2 + . . . + n

This invariant is a lot more interesting than the one given for sumUpTo. The
new program again accumulates the desired result in the program variable
sum, but the sum is accumulated “downward,” initially n and then adding
n − 1, n − 2, and so on down to 0, where it stops. The loop invariant reflects
this by saying that at any time you have to add the missing initial segment
(0 + . . .+ count) to the value of sum to get the desired result. But this initial
segment gets shorter and shorter, until finally count = 0 and the program
terminates.

Proof: Basis: After 0 iterations of the while loop, count = n and
sum = 0, and so the equation becomes

(0 + 1 + 2 + . . . + n) + 0 = 0 + 1 + 2 + . . . + n

which is obviously true.

Induction: We assume that the equation holds after k iterations of
the body of the loop, and must show that it holds again after k + 1
iterations of the loop. Let sum be the value of sum after k iterations
of the loop, and sum′ be the value of sum after k + 1 iterations.
Similarly for count.

Then our inductive hypothesis can be expressed as

(0 + 1 + 2 + . . . + count) + sum = 0 + 1 + 2 + . . . + n

We need to show that this holds for sum′ and count′. After k + 1
iterations, the value of sum is increased by count, and the value of
count is decreased by 1, and so we have
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0 + 1 + . . . + count′ + sum′ = 0 + 1 + . . . + (count − 1) + (sum + count)

= 0 + 1 + . . . + (count − 1) + count + sum

= (0 + 1 + . . . + count) + sum

= 0 + 1 + . . . + n

This concludes our induction.

Finally, we know that when the test condition on the loop becomes false,
count must equal 0, and so at this point 0 + . . . + count + sum = 0 +
sum = 0 + 1 + . . . + n. So after n iterations, the program terminates with
sumDownFrom(n) = 0 + 1 + . . . + n.

These proofs may seem to make heavy going of what are fairly straightfor-
ward facts about the example programs we’ve looked at. True enough. But for
more complicated programs, the kind that actually arise in sophisticated ap-
plications, many such recursive and looping constructions are used, and their
properties can be far from obvious. (This is why software fails so often!) Pro-
grammers must be able to think through such inductive proofs easily, whether
they write them down or not, in order to make sure their programs do indeed
do what they intend.

Exercises

16.27
✎

Prove that when given any natural number n as input, the program sumDownFrom terminates
after exactly n iterations of the while loop.

16.28
✎

Give a proof that the following function computes n!, i.e., the factorial of its argument n. (0!
is defined to be 1, while for any other natural number n, n! = 1 × 2 × . . . × n.)

public natural fact(natural n) {
natural f = 1;
natural count = n;

while(count > 0) {
f×= count;
count −= 1;

}
return f ;

}

The construct f×= count multiplies the value of f by count.
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16.29
✎

In the real Java programming language, there is no way to stipulate that a program variable
must contain a natural number. The best that can be done is to specify that the variable must
contain an integer, that is, the value may be positive or negative.

The program below is the same as the sumUpTo example above, except that it uses the
Java keyword “int” to specify the type of the program variables n, count and sum.

Write a specification for this program, and prove that the program implements the speci-
fication. [Hint: it is easiest to decide what the program does when passed a negative number,
and then write the specification to say that that is what the program should do. Then do the
proof.]

public int sumTo(int n) {
int sum = 0;
int count = 0;

while(count < n) {
count += 1;
sum += count;

}
return sum;

}

16.30
✎?

All programming languages have limits on the size of the values that integer typed variables
have. This complicates the job of proving that a real program meets its specification. The
largest integer available in Java is 232 − 1. How would this impact the proof of correctness of
the first program in this section?

16.31
✎??

In this chapter we have not presented a real theory of inductive definitions. Rather, we have
given several examples of inductive definitions, and shown how they are related to proofs
by induction. This is all that most students need. There is, however, an extensive theory of
inductive definitions. In this problem we sketch the start of this theory. The reader interested
in pursuing it further should consult Aczel’s chapter on inductive definitions in The Handbook
of Mathematical Logic.

Let D be some set. By a monotone operator on D we mean a function Γ which assigns to
each X ⊆ D a subset Γ(X) ⊆ D satisfying the following “monotonicity” condition:

∀X ∀Y [X ⊆ Y → Γ(X) ⊆ Γ(Y )]

We can think of any of our inductive definitions as given by such a monotone op-
erator, and we can think of any such monotone operator as giving us an inductive
definition. The first four parts of this problem give examples of monotone operators,
the remainder explores the relation between such operators and inductive definitions.
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1. Let D be the set of real numbers and let Γ(X) =

X ∪ {x + 1 | x = 0 ∨ x ∈ X}

Show that Γ is a monotone operator. Show that Γ(N) = N, where N is the set of natural
numbers. Show that if Γ(X) = X then N ⊆ X.

2. Let D be the set of strings made up from the connectives and the propositional letters
used in the definition of the ambig-wffs. Let Γ(X) be the set of all propositional letters,
together with anything obtained by one application of the connectives to something
in X. Thus, if A1A1 ∈ X then the following would all be members of Γ(X): ¬A1A1,
A1A1 ∧ A1A1, and so forth. Show that Γ is a monotone operator. Show that if S is the
set of ambig-wffs, then Γ(S) = S.

3. Suppose that f is an n-ary function from some set D into D. Let Γf(X) =

X ∪ {f(d1, . . . , dn) | d1, . . . , dn ∈ X}

Show that Γ is a monotone operator.

4. Let Γ1 and Γ2 be monotone operators. Define a new operator by

Γ(X) = Γ1(X) ∪ Γ2(X)

Show that Γ is also monotone.

5. Now let Γ be any monotone operator on a set D.

(a) Show that Γ(Γ(D)) ⊆ Γ(D)

(b) Call a subset X of D Γ-closed if Γ(X) ⊆ X. By the preceding, we know that there
is at least one Γ-closed set. (What is it?) Let I be the intersection of all Γ-closed
sets. Prove that I is Γ-closed. This set I is thus the smallest Γ-closed set. It is said
to be the set inductively defined by the monotone operator Γ.

(c) What is the set inductively defined by the operators in each of 1 and 2?

(d) Let I be the set inductively defined by Γ. Prove that Γ(I) = I.

6. Let I0 = ∅, I1 = Γ(I0), I2 = Γ(I1), . . . , In+1 = Γ(In), for any natural number n. These
sets are called the “finite iterates” of Γ. Show (by induction!) that for each n, In ⊆ I,
where I is the set inductively defined by Γ.
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7. In many cases, the set inductively defined by Γ is just the union of all these finite iterates.
This is the case with all of the inductive definitions we have given in this book. Why? To
answer this, prove that if Γ is “finitely based” (in a sense to be defined in a moment), then
the set inductively defined by Γ is the union of its finite iterates. Now for the definition.
An operator Γ is said to be finitely based provided

∀X ∀x [x ∈ Γ(X) → ∃Y ⊆ X(Y finite ∧ x ∈ Γ(Y ))]

8. When a monotone operator is not finitely based, one typically has to keep iterating Γ
“into the transfinite” if you want to build up the set from below. Trying to make sense of
these transfinite inductions was Cantor’s original motivation for developing his theory of
sets. We have not developed enough set theory to go into this here. But you might like to
try to come up with an example of this phenomenon. You will, of course, need to think
of an operator that is not finitely based.

Section 16.5



Chapter 17

Advanced Topics in
Propositional Logic

This chapter contains some more advanced ideas and results from proposi-
tional logic, logic without quantifiers. The most important part of the chapter
is the proof of the Completeness Theorem for the propositional proof system
FT that you learned in Part I. This result was discussed in Section 8.3 and
will be used in the final chapter when we prove the Completeness Theorem
for the full system F . The final two sections of this chapter treat topics in
propositional logic of considerable importance in computer science.

Section 17.1

Truth assignments and truth tables

In Part I, we kept our discussion of truth tables pretty informal. For example,
we did not give a precise definition of truth tables. For some purposes thismodeling truth tables
informality suffices, but if we are going to prove any theorems about fol,
such as the Completeness Theorem for the system FT, this notion needs to
be modeled in a mathematically precise way. As promised, we use set theory
to do this modeling.

We can abstract away from the particulars of truth tables and capture
what is essential to the notion as follows. Let us define a truth assignment fortruth assignments
a first-order language to be any function h from the set of all atomic sentences
of that language into the set {true, false}. That is, for each atomic sentence
A of the language, h gives us a truth value, written h(A), either true or false.
Intuitively, we can think of each such function h as representing one row of
the reference columns of a large truth table.

Given a truth assignment h, we can define what it means for h to make anmodeling semantics
arbitrary sentence of the language true or false. There are many equivalent
ways to do this. One natural way is to extend h to a function ĥ defined on
the set of all sentences and taking values in the set {true, false}. Thus if
we think of h as giving us a row of the reference column, then ĥ fills in the
values of the truth tables for all sentences of the language, that is, the values
corresponding to h’s row. The definition of ĥ is what you would expect, given
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the truth tables:

1. ĥ(Q) = h(Q) for atomic sentences Q.

2. ĥ(¬Q) = true if and only if ĥ(Q) = false;

3. ĥ(Q ∧ R) = true if and only if ĥ(Q) = true and ĥ(R) = true;

4. ĥ(Q ∨ R) = true if and only if ĥ(Q) = true or ĥ(R) = true, or both.

5. ĥ(Q → R) = true if and only if ĥ(Q) = false or ĥ(R) = true, or
both.

6. ĥ(Q ↔ R) = true if and only if ĥ(Q) = ĥ(R).

A truth assignment h assigns values to every atomic sentence in the lan-
guage. But intuitively, to compute the truth table for a sentence S, we need
only fill out the reference rows for the atomic sentences that actually appear
in S. In Exercise 17.3, we ask you to prove that the only values of h that
matter to ĥ(S) are those assigned to the atomic constituents of S.

With this precise model of a truth assignment, we can give a mathematically modeling tautology
and consequenceprecise version of our definitions of a tautology and a tt-satisfiable sentence.

Namely, we say that S is a tautology if every truth assignment h has S coming
out true, that is, ĥ(S) = true. More generally, we say that a sentence S is a
tautological consequence of a set T of sentences provided every truth assign-
ment that makes all the sentences in T true also makes S true. Similarly, we
say that a sentence S is tt-satisfiable provided there is a truth assignment h tt-satisfiable
such that ĥ(S) = true. Similarly, a set T of sentences is tt-satisfiable if there
is a single assignment h that makes each of the sentences in T true.

Proposition 1. The sentence S is a tautological consequence of the set T if
and only if the set T ∪ {¬S} is not tt-satisfiable.

The proof of this result is left as an exercise.
Note that if T is finite, we can reduce the question of whether S is a

tautological consequence of T to the question of whether a single sentence is
not tt-satisfiable, namely the conjunction of the sentences in T and ¬S.

Remember

A truth assignment is simply a function from the atomic sentences into
the set {true, false}. It models a single row of a complete truth table
for the language.
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Exercises

17.1
✎

Recall the three place symbol ♣ discussed on page 192. Suppose we had included it as a
basic symbol of our language. Write out the clause for ĥ(♣(P, Q,R)) that would be needed to
complete the definition given above.

17.2
✎

Recall the Sheffer stroke symbol from Exercise 7.29, page 195. Suppose we had included it as
a basic symbol of our language. Write out the clause for ĥ(Q | R).

17.3
✎?

Let h1 and h2 be truth assignments that agree on (assign the same value to) all the atomic
sentences in S. Show that ĥ1(S) = ĥ2(S). [Hint: use induction on wffs.]

Section 17.2

Completeness for propositional logic

We are now in a position to prove the Completeness Theorem for propositional
logic first stated on page 219. Recall that we used the notation FT to stand
for that part of F that uses only the introduction and elimination rules for
∧, ∨, ¬,→, ↔ and ⊥. Given a set T of sentences and another sentence S, we
write T `T S to mean that there is a formal proof of S in the system FT with
premises drawn from T . It is not assumed that every sentence in T is actually
used in the proof. For example, it might be that the set T is an infinite set of
sentences while only a finite number can be used in any one proof, of course.
Notice that if T `T S and T is a subset of some other set T ′ of sentences, then
T ′ `T S. We restate the desired result as follows:

Theorem (Completeness of FT) If a sentence S is a tautological consequenceCompleteness of FT

of a set T of sentences then T `T S.

You might think that the way to prove the Completeness Theorem would
be to assume that S is a tautological consequence of T and then try to con-
struct a proof of S from T . But since we don’t know anything about the
meaning of S or of the sentences in T , this strategy would get us nowhere.
In fact, the way we will prove the theorem is by proving its converse: that if
T 6`T S (that is, if there is no proof of S from T ), then S is not a tautological
consequence of T . That is to say, we will show that if T 6`T S, then there is
a truth assignment h that makes all of the sentences in T true, but S false.
In other words, we will show that T ∪ {¬S} is tt-satisfiable. The following
lemma will be helpful in carrying out this proof.
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Lemma 2. T ∪ {¬S} `T ⊥ if and only if T `T S.

Proof: Assume that T ∪ {¬S} `T ⊥, i.e., that there is a proof of
⊥ from premises ¬S and certain sentences P1, . . . , Pn of T . By re-
arranging these premises, we can suppose the formal proof has the
following form:

P1
...
Pn

¬S

...
⊥

We can use this proof to construct a formal proof of S from T . Start
a proof with premises P1, . . . ,Pn. Immediately begin a subproof with
assumption ¬S. In that subproof, repeat the original proof of ⊥. End
the subproof and use ¬ Intro to conclude ¬¬S from P1, . . . ,Pn. Then
apply ¬ Elim to get S. The resulting proof will look like this:

P1
...
Pn

¬S

...
⊥

¬¬S
S

This formal proof shows that T `T S, as desired. Proving the other
direction of this lemma is simple. We leave it as Exercise 17.13.

This lemma shows that our assumption that T 6`T S is tantamount to
assuming that T ∪ {¬S} 6`T ⊥. We can state our observations so far in a more
positive and memorable way by introducing the following notion. Let us say
that a set of sentences T is formally consistent if and only T 6`T ⊥, that is, if formal consistency
and only if there is no proof of ⊥ from T in FT. With this notion in hand,
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we can state the following theorem, which turns out to be equivalent to the
Completeness Theorem:

Theorem (Reformulation of Completeness) Every formally consistent set of
sentences is tt-satisfiable.

The Completeness Theorem results from applying this to the set T ∪ {¬S}.
The remainder of the section is devoted to proving this theorem. The proof isoutline of proof
quite simple in outline.

Completeness for formally complete sets: First we will show that this
theorem holds of any formally consistent set with an additional property,
known as formal completeness. A set T is formally complete if for anyformally complete set

of sentences sentence S of the language, either T `T S or T `T ¬S. This is really an
unusual property of sets of sentences, since it says that the set so strong
that it settles every question that can be expressed in the language,
since for any sentence, either it or its negation is provable from T .

Extending to formally complete sets: Once we show that every formally
consistent, formally complete set of sentences is tt-satisfiable, we will
show that every formally consistent set can be expanded to a set that
is both formally consistent and formally complete.

Putting things together: The fact that this expanded set is tt-satisfiable
will guarantee that the original set is as well, since a truth value assign-
ment that satisfies the more inclusive set will also satisfy the original
set.

The rest of this section is taken up with filling out this outline.

Completeness for formally complete sets of sentences

To prove that every formally consistent, formally complete set of sentences is
tt-satisfiable, the following lemma will be crucial.

Lemma 3. Let T be a formally consistent, formally complete set of sentences,
and let R and S be any sentences of the language.

1. T `T (R ∧ S) iff T `T R and T `T S

2. T `T (R ∨ S) iff T `T R or T `T S

3. T `T ¬S iff T 6`T S

4. T `T (R → S) iff T 6`T R or T `T S
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5. T `T (R ↔ S) iff either T `T R and T `T S or T 6`T R and T 6`T S

Proof: Let us first prove (1). Since it is an “iff,” we need to prove that
each side entails the other. Let us first assume that T `T (R ∧ S).
We will show that T `T R. The proof that T `T S will be exactly
the same. Since T `T (R ∧ S), there is a formal proof of (R ∧ S) from
premises in T . Take this proof and add one more step. At this step,
write the desired sentence R, using the rule ∧ Elim.

Next, let us suppose that T `T R and T `T S. Thus, there are proofs
of each of R and S from premises in T . What we need to do is “merge”
these two proofs into one. Suppose the proof of R uses the premises
P1, . . . , Pn and looks like this:

P1
...
Pn

...
R

And suppose the proof of S uses the premises Q1, . . . ,Qk and looks
like this:

Q1
...
Qk

...
S

To merge these two proofs into a single proof, we simply take the
premises of both and put them into a single list above the Fitch
bar. Then we follow the Fitch bar with the steps from the proof of
R, followed by the steps from the proof of S. The citations in these
steps need to be renumbered, but other than that, the result is a
legitimate proof in FT. At the end of this proof, we add a single step
containing R ∧ S which we justify by ∧ Intro. The merged proof
looks like this:
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P1
...
Pn

Q1
...
Qk

...
R
...
S
R ∧ S

We now turn to (2). One half of this, the direction from right to
left, is very easy, using the rule of ∨ Intro, so let’s prove the other
direction. Thus, we want to show that if T `T (R ∨ S) then T `T R or
T `T S. (This is not true in general, but it is for formally consistent,
formally complete sets.)

Assume that T `T (R ∨ S), but, toward a proof by contradiction,
that T 6`T R and T 6`T S. Since T is formally complete, it follows
that T `T ¬R and T `T ¬S. This means that we have two formal
proofs p1 and p2 from premises in T , p1 having ¬R as a conclusion,
p2 having ¬S as a conclusion. As we have seen, we can merge these
two proofs into one long proof p that has both of these as conclusions.
Then, by ∧ Intro, we can prove ¬R ∧ ¬S. But then using the proof of
the version of DeMorgan from Exercise 25, we can extend this proof
to get a proof of ¬(R ∨ S). Thus T `T ¬(R ∨ S). But by assumption
we also have T `T (R ∨ S). By merging the proofs of ¬(R ∨ S) and
R ∨ S we can get a proof of ⊥ by adding a single step, justified by ⊥
Intro. But this means that T is formally inconsistent, contradicting
our assumption that it is formally consistent.

One direction of part (3) follows immediately from the definition of
formal completeness, while the left to right half follows easily from
the definition of formal consistency.

Parts (4) and (5) are similar to part (2) and are left as an exercise.

With this lemma in hand, we can now fill in the first step in our outline.
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Proposition 4. Every formally consistent, formally complete set of sentences
is tt-satisfiable.

Proof: Let T be the formally consistent, formally complete set of
sentences. Define an assignment h on the atomic formulas of the
language as follows. If T `T A then let h(A) = true; otherwise let
h(A) = false. Then the function ĥ is defined on all the propositional
formulas of our language. We claim that:

for all wffs S, ĥ(S) = true if and only if T `T S.

The proof of this is a good example of the importance of proofs by
induction on wffs. The claim is true for all atomic wffs from the way
that h is defined, and the fact that h and ĥ agree on atomic wffs.
We now show that if the claim holds of wffs R and S, then it holds
of (R ∧ S), (R ∨ S), ¬R, (R → S) and (R ↔ S). These all follow easily
from Lemma 3. Consider the case of disjunction, for example. We
need to verify that ĥ(R ∨ S) = true if and only if T `T (R ∨ S). To
prove the “only if” half, assume that ĥ(R ∨ S) = true. Then, by the
definition of ĥ, either ĥ(R) = true or ĥ(S) = true or both. Then,
by the induction hypothesis, either T `T R or T `T S or both. But
then by the lemma, T `T (R ∨ S), which is what we wanted to prove.
The other direction is proved in a similar manner.

From the fact that we have just established, it follows that the as-
signment h makes every sentence provable from T true. Since every
sentence in T is certainly provable from T , by Reit if you like, it fol-
lows that h makes every sentence in T true. Hence T is tt-satisfiable,
which is what we wanted to prove.

Extending to formally complete sets of sentences

The next step in our proof of completeness is to figure out a way to get from
formally consistent sets of wffs to sets of wffs that are both formally consistent
and formally complete. The next lemma shows us that this is not as hard as
it may seem at first.

Lemma 5. A set of sentences T is formally complete if and only if for every
atomic sentence A, T `T A or T `T ¬A.

Proof: The direction from left to right is just a consequence of the
definition of formal completeness. The direction from right to left
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is another example of a proof by induction on wffs. Assume that
T `T A or T `T ¬A for every atomic sentence A. We use induction
to show that for any sentence S, T `T S or T `T ¬S. The basis of
the induction is given by our assumption. Let’s prove the disjunction
case. That is, assume S is of the form P ∨ Q. By our inductive hy-
pothesis, we know that T settles each of P and Q. If T proves either
one of these, then we know that T `T P ∨ Q by ∨ Intro. So suppose
that T `T ¬P and T `T ¬Q. By merging these proofs and adding a
step, we get a proof of ¬P ∧ ¬Q. We can continue this proof to get
a proof of ¬(P ∨ Q), showing that T `T ¬S, as desired. The other
inductive steps are similar.

We can now carry out the second step in our outline of the proof of the
Completeness Theorem.

Proposition 6. Every formally consistent set of sentences T can be ex-
panded to a formally consistent, formally complete set of sentences.

Proof: Let us form a list A1, A2, A3, . . . , of all the atomic sentences
of our language, say in alphabetical order. Then go through these
sentences one at a time. Whenever you encounter a sentence Ai such
that neither Ai nor ¬Ai is provable from the set, add Ai to the set.
Notice that doing so can’t make the set formally inconsistent. If you
could prove ⊥ from the new set, then you could prove ¬Ai from the
previous set, by Lemma 2. But if that were the case, you wouldn’t
have thrown Ai into the set.

The end result of this process is a set of sentences which, by the
preceding lemma, is formally complete. It is also formally consistent;
after all, any proof of ⊥ is a finite object, and so could use at most
a finite number of premises. But then it would a proof of ⊥ at some
stage of this process, when all those premises had been thrown in.

Putting things together

Just for the record, let’s put all this together into a proof of the Completeness
Theorem for FT.

Proof: Suppose T 6`T S. Then by Lemma 2, T ∪ {¬S} is formally
consistent. This set can be expanded to a formally consistent, for-
mally complete set, which by our first proposition is tt-satisfiable.
Suppose h is a truth value assignment that satisfies this set. Clearly,
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h makes all the members of T true, but S false, showing that S is
not a tautological consequence of T .

There is an interesting and logically important consequence of the Com-
pleteness Theorem, known as the Compactness Theorem. We state it as fol-
lows:

Theorem (Compactness Theorem for Propositional Logic) Let T be any set Compactness Theorem
of sentences of propositional logic. If every finite subset of T is tt-satisfiable,
then T itself is tt-satisfiable.

Proof: We prove the contrapositive of the claim. Assume that T is
not tt-satisfiable. Then by the Completeness Theorem, the set T is
not formally consistent. But this means that T `T ⊥. But a proof of
⊥ from T can use only finitely many premises from T . Let P1, . . . ,Pn

be these premises. By the Soundness Theorem, P1, . . . ,Pn are not
tt-satisfiable. Consequently, there is a finite subset of T that is not
tt-satisfiable.

Remember

1. The Completeness Theorem is proven by showing that every formally
consistent set T of sentences is tt-satisfiable. This is done in two steps.

2. The first step is to show the result for sets T which are also formally
complete.

3. The second step is to show how to extend any formally consistent set
to one that is both formally consistent and formally complete.

Exercises

17.4
➶

Consider the following set T :

{(A ∧ B) → ¬A, C ∨ A, ¬A → A, B}

The Fitch files Exercise 17.4A and Exercise 17.4B contain proofs showing that T `T ¬A and
T `T ¬¬A. Take these two proofs and merge them into a third proof showing that T `T ⊥.
Submit the merged proof as Proof 17.4.
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For the following three exercises, suppose our language contains only two predicates, Cube and Small,
two individual constants, a and b, and the sentences that can be formed from these by means of the
truth-functional connectives.

17.5
✎

Let T be the following set of sentences:

{¬(Cube(a) ∨ Small(a)), Cube(b) → Cube(a), Small(a) ∨ Small(b)}

Show that this set is formally consistent and formally complete. To prove the former, you
will have to appeal to the Soundness Theorem. To prove the latter, you will want to refer to
Lemma 5.

17.6
✎

Let T again be the following set of sentences:

{¬(Cube(a) ∨ Small(a)), Cube(b) → Cube(a), Small(a) ∨ Small(b)}

By Proposition 4, there is a truth assignment h making all these sentences true. What values
does h assign to each of the atomic sentences of the language?

17.7
➶|✎

This time let T be the following set of sentences (note the difference in the first sentence):

{¬(Cube(a) ∧ Small(a)), Cube(b) → Cube(a), Small(a) ∨ Small(b)}

This set is not formally complete. Use the procedure described in the proof of Proposition 6 to
extend this to a formally consistent, formally complete set. (Use alphabetical ordering of atomic
sentences.) What is the resulting set? What is the truth value assignment h that satisfies this
set? Submit a world making the sentences in your formally complete set true.

17.8
✎?

Suppose our language has an infinite number of atomic sentences A1, A2, A3, . . .. Let T be the
following set of sentences:

{A1 → A2, A2 → A3, A3 → A4, . . .}

There are infinitely many distinct truth value assignments satisfying this set. Give a general
description of these assignments. Which of these assignments would be generated from the
procedure we used in our proof of the Completeness Theorem?

Each of the following four exercises contains an argument. Classify each argument as being (A) provable
in FT, (B) provable in F but not in FT, or (C) not provable in F . In justifying your answer, make
explicit any appeal you make to the Soundness and Completeness Theorems for FT and for F. (Of
course we have not yet proven the latter.) Remember that sentences whose main operator is a quantifier
are treated as atomic in the definition of tautological consequence.
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17.9
✎

∀x Dodec(x) → ∀x Large(x)
∀x Dodec(x)

∀x Large(x)

17.10
✎

∀x (Dodec(x) → Large(x))
∀x Dodec(x)

∀x Large(x)

17.11
✎

∀x Dodec(x) → ∀x Large(x)
∃x Dodec(x)

∃x Large(x)

17.12
✎

∀x (Dodec(x) → Large(x))
∃x Dodec(x)

∃x Large(x)

17.13
✎

Prove the half of Lemma 2 that we did not prove, the direction from right to left.

17.14
✎

Prove the right-to-left half of Part (2) of
Lemma 3.

17.15
✎?

Prove the left-to-right half of Part (2) of
Lemma 3.

17.16
✎?

In the inductive proof of Proposition 4, carry out the step for sentences of the form R → S.

Section 17.3

Horn sentences

In Chapter 4 you learned how to take any sentence built up without quantifiers
and transform it into one in conjunctive normal form (CNF), CNF, that is, one
which is a conjunction of one or more sentences, each of which is a disjunction
of one or more literals. Literals are atomic sentences and their negations. We
will call a literal positive or negative depending on whether it is an atomic positive and

negative literalssentence or the negation of an atomic sentence, respectively.
A particular kind of CNF sentence turns out to be important in computer

science. These are the so-called “Horn” sentences, named not after their shape,
but after the American logician Alfred Horn, who first isolated them and stud-
ied some of their properties. A Horn Sentence is a sentence in CNF that has Horn sentences
the following additional property: every disjunction of literals in the sentence
contains at most one positive literal. Later in the section we will find that
there is a more intuitive way of writing Horn sentences if we use the connec-
tive →. But for now we restrict attention to sentences involving only ∧, ∨,
and ¬.

The following sentences are all in CNF but none of them are Horn sen-
tences:
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¬Home(claire) ∧ (Home(max) ∨ Happy(carl))
(Home(claire) ∨ Home(max) ∨ ¬Happy(claire)) ∧ ¬Happy(carl)
Home(claire) ∨ Home(max) ∨ ¬Home(carl)

The first sentence fails to be a Horn sentence because the second conjunct
contains two positive literals, Home(max) and Happy(carl). The second fails to
be a Horn sentence because of the first conjunct. It contains the two positive
literals Home(claire) and Home(max). Why does the third fail to be a Horn
sentence?

By contrast, the following are Horn sentences:

¬Home(claire) ∧ (¬Home(max) ∨ Happy(carl))
Home(claire) ∧ Home(max) ∧ ¬Home(carl)
Home(claire) ∨ ¬Home(max) ∨ ¬Home(carl)
Home(claire) ∧ Home(max) ∧ (¬Home(max) ∨ ¬Home(max))

Examination of each shows that each conjunct contains at most one positive
literal as a disjunct. Verify this for yourself to make sure you understand
the definition. (Remember that the definition of CNF allows some degenerate
cases, as we stressed in Chapter 4.)

The definition of Horn sentences may seem a bit ad hoc. Why is this
particular type of CNF sentence singled out as special? Using the materialconditional form of

Horn sentences conditional, we can put them in a form that is more intuitive. Consider the
following sentence:

(Home(claire) ∧ Home(max)) → Happy(carl)

If we replace → by its equivalent in terms of ¬ and ∨, and then use DeMorgan’s
Law, we obtain the following equivalent form:

¬Home(claire) ∨ ¬Home(max) ∨ Happy(carl)

This is a disjunction of literals, with only one positive literal. Horn sentences
are just conjunctions of sentences of this sort.

Here are some more examples. Assume that A, B, C, and D are atomic
sentences. If we replace → by its definition, and use DeMorgan’s laws, we find
that each sentence on the left is logically equivalent to the Horn sentence on
the right.

(A → B) ∧ ((B ∧ C) → D) ⇔ (¬A ∨ B) ∧ (¬B ∨ ¬C ∨ D)
((B ∧ C ∧ D) → A) ∧ ¬A ⇔ (¬B ∨ ¬C ∨ ¬D ∨ A) ∧ ¬A

A ∧ ((B ∧ C) → D) ⇔ A ∧ (¬B ∨ ¬C ∨ D)

The “typical” Horn sentence consists of a conjunction of sentences, each
of which is a disjunction of several negative literals and one positive literal,
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say,
¬A1 ∨ . . . ∨ ¬An ∨ B

This can be rewritten using ∧ and → as:

(A1 ∧ . . . ∧ An) → B

This is the typical case, but there are the important limiting cases, dis-
junctions with a positive literal but no negative literals, and disjunctions with
some negative literals but no positive literal. By a logical sleight of hand,
though, we can in fact rewrite these in the same conditional form. The sleight
of hand is achieved by introducing a couple of rather odd atomic sentences,
> and our old friend ⊥. The first of these is assumed to be always true. The
second, of course, is always false. Using these,

¬A1 ∨ . . . ∨ ¬An

can be rewritten as:
(A1 ∧ . . . ∧ An) → ⊥

Similarly, we can rewrite the lone atomic sentence B as > → B. We summarize
these observations by stating the following result.

Proposition 7. Any Horn sentence of propositional logic is logically equiv-
alent to a conjunction of conditional statements of the following three forms,
where the Ai and B stand for ordinary atomic sentences:

1. (A1 ∧ . . . ∧ An) → B

2. (A1 ∧ . . . ∧ An) → ⊥

3. >→ B

Using the truth table method, we could program a computer to check to see
if a sentence is tt-satisfiable or not since the truth table method is completely inefficiency of

truth tablesmechanical. You can think of our Taut Con routine as doing something like
this, though actually it is more clever than this brute force method. In general,
though, any method of checking arbitrary formulas for tt-satisfiability is quite
“expensive.” It consumes a lot of resources. For example, a sentence involving
50 atomic sentences has 250 rows in its truth table, a very big number. For
Horn sentences, however, we can in effect restrict attention to a single row. It
is this fact that accounts for the importance of this class of sentences.

This efficient method for checking the satisfiability of Horn sentences, satisfaction algorithm
for Horn sentencesknown as the satisfaction algorithm for Horn sentences, is really quite simple.
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We first describe the method, and then apply it to a couple of examples. The
idea behind the method is to build a one-row truth table by working back and
forth, using the conjuncts of the sentence to figure out which atomic sentences
need to have true written beneath them. We will state the algorithm twice,
once for the Horn sentences in CNF form, but then also for the conditional
form.

Satisfaction algorithm for Horn sentences: Suppose we have a Hornsatisfaction algorithm
for Horn sentences sentence S built out of atomic sentences A1, . . . , An. Here is an efficient

procedure for determining whether S is tt-satisfiable.

1. Start out as though you were going to build a truth table, by listing all
the atomic sentences in a row, followed by S. But do not write true or
false beneath any of them yet.

2. Check to see which if any of the atomic sentences are themselves con-
juncts of S. If so, write true in the reference column under these atomic
sentences.

3. If some of the atomic sentences are now assigned true, then use these to
fill in as much as you can of the right hand side of the table. For example,
if you have written true under A5, then you will write false wherever
you find ¬A5. This, in turn, may tell you to fill in some more atomic
sentences with true. For example, if ¬A1 ∨ A3 ∨ ¬A5 is a conjunct of S,
and each of ¬A1 and ¬A5 have been assigned false, then write true

under A3. Proceed in this way until you run out of things to do.

4. One of two things will happen. One possibility is that you will reach a
point where you are forced to assign false to one of the conjuncts of
S, and hence to S itself. In this case, the sentence is not tt-satisfiable.
But if this does not happen, then S is tt-satisfiable. For then you can
fill in all the remaining columns of atomic sentences with false. This
will give you a truth assignment that makes S come out true, as we will
prove below. (There may be other assignments that make S true; our
algorithm just generates one of them.)

Let’s apply this algorithm to an example.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 1. Consider the sentence

Home(claire) ∧ ¬Home(max) ∧ (Home(max) ∨ ¬Home(claire))
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To make this fit on the page, let’s abbreviate the two atomic sentences
Home(claire) and Home(max) by C and M, respectively. Open Boole and
create the following table (it will be easier if you choose By Row in the
Edit menu):

C M C ∧ ¬M ∧ (M ∨ ¬C)

J2. The first step of the above method tells us to put true under any atomic
sentence that is a conjunct of S. In this case, this means we should put a
true under C. So enter a t under the reference column for C.

J3. We now check to see how much of the right side of the table we can fill in.
Using Boole, check which columns on the right hand side call on columns
that are already filled in. There is only one, the one under ¬C. Fill it in
to obtain the following:

C M C ∧ ¬M ∧ (M ∨ ¬C)
t f

J4. Looking at the last conjunct, we see that if the whole is to be true, we
must also assign true to M. So fill this in to obtain

C M C ∧ ¬M ∧ (M ∨ ¬C)
t t f

J5. But this means the second conjunct gets assigned false, so the whole
sentence comes out false.

C M C ∧ ¬M ∧ (M ∨ ¬C)
t t f f

Thus, the sentence is not tt-satisfiable.

J6. Finish this row of your table and save the table as Table Horn 1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

Let’s restate the satisfaction algorithm for Horn sentences in conditional
form, since many people find it more intuitive, and then apply it to an example.

Satisfaction algorithm for Horn sentences in conditional form: Suppose algorithm for
conditional Horn

sentences
we have a Horn sentence S in conditional form, built out of atomic sentences
A1, . . . , An, as well as > and ⊥.

1. If there are any conjuncts of the form >→ Ai, write true in the refer-
ence column under each such Ai.
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2. If one of the conjuncts is of the form (B1 ∧ . . . ∧ Bk) → A where you
have assigned true to each of B1, . . . , Bk, then assign true to A.

3. Repeat step 2 as often as possible.

4. Again, one of two things will happen. You may reach a point where you
are forced to assign false to one of a conditional of the form (B1 ∧ . . .∧
Bk) → ⊥ because you have assigned true to each of the Bi. In this case
you must assign false to S, in which case S is not tt-satisfiable. If this
does not happen, then fill in the remaining reference columns of atomic
sentences with false. This will give a truth assignment that makes all
the conditionals true and hence S true as well.

This time, let’s look at the sentence

(¬A ∨ ¬B) ∧ (¬B ∨ C) ∧ B

Writing this in conditional form, we obtain

((A ∧ B) → ⊥) ∧ (B → C) ∧ (>→ B)

We won’t actually write out the table, but instead will just talk through the
method. First, we see that if the sentence is to be satisfied, we must assign
true to B, since >→ B is a conjunct. Then, looking at the second conjunct,
B → C, we see that assigning true to B forces us to assign true to C. But at
this point, we run out of things that we are forced to do. So we can assign A
the value false getting get an assignment that makes remaining conditional,
and hence the whole sentence, true.

How do we know that this algorithm is correct? Well, we don’t, yet. Thecorrectness of algorithm
examples may have convinced you, but they shouldn’t have. We really need
to give a proof.

Theorem The algorithm for the satisfiability of Horn sentences is correct, in
that it classifies as tt-satisfiable exactly the tt-satisfiable Horn sentences.

Proof: There are two things to be proved here. One is that any
tt-satisfiable sentence is classified as tt-satisfiable by the algorithm.
The other is that anything classified by the algorithm as tt-satisfiable
really is tt-satisfiable. We are going to prove this result for the form
of the algorithm that deals with conditionals. Before getting down
to work, let’s rephrase the algorithm with a bit more precision. De-
fine sets T 0, T 1, . . . of atomic sentences, together with > and ⊥, as
follows. Let T 0 = {>}. Let T n be the set consisting of > together

Chapter 17



Horn sentences / 485

with all atomic sentences A such that > → A is a conjunct of S. More
generally, given T n, define T n+1 to be T n together with all atomic
sentences A such that for some B1, . . . ,Bk in T n, (B1 ∧ . . .∧Bk) → A
is a conjunct of S. Notice that T n ⊆ T n+1 for each n. Since there are
only finitely many atomic sentences in S, eventually we must have
T N = T N+1. The algorithm declares S to be tt-satisfiable if and only
if ⊥ 6∈ T N . Furthermore, it claims that if ⊥ is not in T N , then we
can get a truth assignment for S be assigning true to each atomic
sentence in T N and assigning false to the rest.

To prove the first half of correctness, we will show that if S is tt-
satisfiable, then ⊥ 6∈ T N . Let h be any truth assignment that makes
S true. An easy proof by induction on n shows that h(A) = true for
each A ∈ T n. Hence ⊥ 6∈ T N , since h(⊥) = false.

To prove the other half of correctness, we suppose that ⊥ 6∈ T N

and define an assignment h by letting h(A) = true for A ∈ T N ,
and letting h(A) = false for the other atomic sentences of S. We
need to show that ĥ(S) = true. To do this, it suffices to show that
ĥ(C) = true for each conditional C that is a conjunct of S. There
are three types of conditionals to consider:

Case 1: The conjunct is of the form >→ A. In this case A is in T 1.
But then ĥ assigns true to the A and so to the conditional.

Case 2: The conjunct is of the form (A1∧. . . ∧An) → B. If each of the
Ai gets assigned true, then each is in T N and so B is in T N+1 = T N .
But then ĥ assigns true to B and so to the conditional. On the other
hand, if one of the Ai gets assigned false then the conditional comes
out true under ĥ.

Case 3: The conjunct is of the form (A1∧ . . . ∧An) → ⊥. Since we are
assuming ⊥ 6∈ T N , at least one of Ai is not T N , so it gets assigned
false by h. But then the antecedent of conditional comes out false
under ĥ so the whole conditional come out true.

Remember

1. A Horn sentence is a propositional sentence in CNF such that every
disjunction of literals in contains at most one positive literal.

2. The satisfaction algorithm for Horn sentences gives an efficient algo-
rithm to tell whether a Horn sentence is tt-satisfiable.
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Exercises

17.17
➶

If you skipped the You try it section, go back and do it now. Submit the file Table Horn 1.

17.18
➶

A sentence in CNF can be thought of as a list of sentences, each of which is a disjunction of
literals. In the case of Horn sentences, each of these disjunctions contains at most one positive
literal. Open Horn’s Sentences. You will see that this is a list of sentences, each of which is a
disjunction of literals, at most one of which is positive. Use the algorithm given above to build
a world where all the sentences come out true, and save it as World 17.18.

17.19
➶

Open Horn’s Other Sentences. You will see that this is a list of sentences, each of which is a
disjunctive Horn sentence. Use the algorithm given above to see if you can build a world where
all the sentences come out true. If you can, save the world as World 17.19. If you cannot, explain
how the algorithm shows this.

17.20
✎

Rewrite the following Horn sentences in conditional form. Here, as usual, A, B, and C are taken
to be atomic sentences.

1. A ∧ (¬A ∨ B ∨ ¬C) ∧ ¬C
2. (¬A ∨ ¬B ∨ C) ∧ ¬C
3. (¬A ∨ B) ∧ (A ∨ ¬B)

Use Boole to try out the satisfaction algorithm on the following Horn sentences (two are in conditional
form). Give the complete row that results from the application of the algorithm. In other words, the table
you submit should have a single row corresponding to the assignment that results from the application
of the algorithm. Assume that A, B, C, and D are atomic sentences. (If you use Verify Table to check
your table, Boole will tell you that there aren’t enough rows. Simply ignore the complaint.)

17.21
➶

A ∧ (¬A ∨ B) ∧ (¬B ∨ C) 17.22
➶

A ∧ (¬A ∨ B) ∧ ¬D

17.23
➶

A ∧ (¬A ∨ B) ∧ ¬B 17.24
➶

¬A ∧ (¬A ∨ B) ∧ ¬B

17.25
➶

((A ∧ B) → C) ∧ (A → B) ∧ A ∧ ((C ∧ B) → D)

17.26
➶

((A ∧ B) → C) ∧ (A → B) ∧ A ∧ ((C ∧ B) → ⊥)
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The programming language Prolog is based on Horn sentences. It uses a slightly different notation,
though. The clause

(A1 ∧ . . . ∧ An) → B

is frequently written
B :− A1, . . . , An

or
B ← A1, . . . ,An

and read “B, if A1 through An.” The following exercises use this Prolog notation.

17.27
✎

Consider the following Prolog “program.”

AncestorOf(a, b) ← MotherOf(a,b)
AncestorOf(b, c) ← MotherOf(b, c)
AncestorOf(a, b) ← Father(a, b)
AncestorOf(b, c) ← Father(b, c)
AncestorOf(a, c) ← AncestorOf(a, b), AncestorOf(b, c)
MotherOf(a, b) ← true

FatherOf(b, c) ← true

FatherOf(b,d) ← true

The first five clauses state instances of some general facts about the relations mother of, father
of, and ancestor of. (Prolog actually lets you say things with variables, so we would not actually
need multiple instances of the same scheme. For example, rather than state both the first two
clauses, we could just state AncestorOf(x, y) ← MotherOf(x, y).) The last two clauses describe
some particular facts about a, b, c, and d. Use the Horn satisfaction algorithm to determine
whether the following set of Horn sentences (in conditional form) is satisfiable.

17.28
✎

The Prolog program in Exercise 17.27 might be considered as part of a database. To ask
whether it entails B, Prolog adds

⊥ ← B

to the database and runs the Horn algorithm on the enlarged database. If the algorithm fails,
then Prolog answers “yes.” Otherwise Prolog answers “no.” Justify this procedure.

17.29
✎

Use the procedure of the Exercise 17.28 to determine whether the following are consequences
of the Prolog program given in Exercise 17.27.

1. Ancestor(a, c)
2. Ancestor(c, d)
3. Mother(a, b)
4. Mother(a, d)
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17.30
✎

Suppose you have a Horn sentence which can be put into conditional form in a way that does
not contain any conjunct of form 3 in Proposition 7. Show that it is satisfiable. Similarly, show
that if it can be put into a conditional form that does not contain a conjunct of form 2, then
it is satisfiable.

Section 17.4

Resolution

People are pretty good at figuring out when one sentence is a tautological
consequence of another, and when it isn’t. If it is, we can usually come up
with a proof, especially when we have been taught the important methods of
proof. And when it isn’t, we can usually come up with an assignment of truth
values that makes the premises true and the conclusion false. But for computer
applications, we need a reliable and efficient algorithm for determining when
one sentence is a tautological consequence of another sentence or a set of
sentences.

Recall that S is a tautological consequence of premises P1, . . . ,Pn if and
only if the set {P1, . . . , Pn,¬S}is not tt-satisfiable, that is to say, its conjunc-
tion is not tt-satisfiable. Thus, the problem of checking for tautological conse-
quence and the problem of checking to see that a sentence is not tt-satisfiable
amount to the same thing. The truth table method provides us with a reliable
method for doing this. The trouble is that it can be highly expensive in terms
of time and paper (or computer memory). If we had used it in Fitch, there
are many problems that would have bogged down your computer intolerably.

In the case of Horn sentences, we have seen a much more efficient method,
one that accounts for the importance of Horn sentences in logic programming.
In this section, we present a method that applies to arbitrary sentences in
CNF. It is not in general as efficient as the Horn sentence algorithm, but
it is often much more efficient than brute force checking of truth tables. It
also has the advantage that it extends to the full first-order language with
quantifiers. It is known as the resolution method, and lies at the heart of many
applications of logic in computer science. While it is not the algorithm that
we have actually implemented in Fitch, it is closely related to that algorithm.

The basic notion in resolution is that of a set of clauses. A clause is justset of clauses
any finite set of literals. Thus, for example,

C1 = {¬Small(a), Cube(a), BackOf(b, a)}

is a clause. So is
C2 = {Small(a), Cube(b)}
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The special notation ¤ is used for the empty clause. A clause C is said to empty clause
be satisfied by a truth assignment h provided at least one of the literals in
C is assigned true by ĥ.1 The empty clause ¤ clearly is not tt-satisfiable by
any assignment, since it does not contain any elements to be made true. If
C 6= ¤ then h satisfies C if and only if the disjunction of the sentences in C

is assigned true by ĥ.
A nonempty set S of clauses is said to be satisfied by the truth assignment

h provided each clause C in S is satisfied by h. Again, this is equivalent to
saying that the CNF sentence formed by conjoining the disjunctions formed
from clauses in S is satisfied by ĥ.

The goal of work on resolution is to come up with as efficient an algorithm
as possible for determining whether a set of clauses is tt-satisfiable. The basic
insight of the theory stems from the observation that in trying to show that
a particular set S is not tt-satisfiable, it is often easier to show that a larger
set S ′ derived from it is not tt-satisfiable. As long as the method of getting
S ′ from S insures that the two sets are satisfied by the same assignments, we
can work with the larger set S ′. Indeed, we might apply the same method
over and over until it became transparent that the sets in question are not
tt-satisfiable. The method of doing this is the so-called resolution method.

Resolution Method: resolution method

1. Start with a set T of sentences in CNF which you hope to show is not
tt-satisfiable. Transform each of these sentences into a set of clauses in
the natural way: replace disjunctions of literals by clauses made up of
the same literals, and replace conjunctions by sets of clauses. Call these
set of all these clauses S. The aim now is to show S is not tt-satisfiable.

2. To show S is not tt-satisfiable, systematically add clauses to the set in
such a way that the resulting set is satisfied by the same assignments
as the old set. The new clauses to throw in are called resolvents of old resolvents
clauses. If you can finally get a set of clauses which contains ¤, and
so obviously cannot be satisfied, then you know that our original set S
could not be satisfied.

To complete our explanation of the resolution method, we need to explain
the idea of a resolvent. To make this more understandable, we first give a
couple of examples. Let C1 and C2 be the clauses displayed earlier. Notice

1Notice that we have now given two incompatible definitions of what it means for an
assignment to satisfy a set of literals: one where we defined what it means for an assignment
to satisfy a set of sentences thought of as a theory, and one where we think of the set as a
resolution clause. It would be better if two different words were used. But they aren’t, so
the reader must rely on context to tell which use is intended.
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that in order for an assignment h to satisfy the set {C1, C2}, h will have
to assign true to at least one of Cube(a), Cube(b), or BackOf(b,a). So let
C3 = {Cube(a), Cube(b), BackOf(b, a)} be an additional clause. Then the set
of clauses {C1, C2} and {C1, C2, C3} are satisfied by exactly the same assign-
ments. The clause C3 is a resolvent of the first set of clauses.

For another example, let C1, C2, and C3 be the following three clauses:

C1 = {Home(max),Home(claire)}
C2 = {¬Home(claire)}
C3 = {¬Home(max)}

Notice that in order for an assignment to satisfy both C1 and C2, you will
have to satisfy the clause

C4 = {Home(max)}

Thus we can throw this resolvent C4 into our set. But when we look at
{C1, C2, C3, C4}, it is obvious that this new set of clauses cannot be satis-
fied. C3 and C4 are in direct conflict. So the original set is not tt-satisfiable.

With these examples in mind, we now define what it means for one clause,
say R, to be a resolvent of two other clauses, say C1 and C2.

Definition A clause R is a resolvent of clauses C1 and C2 if there is an atomicresolvent defined
sentence in one of the clauses whose negation is in the other clause, and if R

is the set of all the other literals in either clause.

Here are some more examples. Assume A, B, C, and D are atomic. We use
¤ as above for the empty clause.

{A,D} {¬A}
{D}

{A,¬A} {A}
{A}

{B,C} {¬B, ¬D}
{C, ¬D}

{D} {¬D}
¤

The key fact about resolution is expressed in the following theorem. The
proof will be outlined in Exercise 17.45.
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Theorem (Completeness of resolution) If S is an not tt-satisfiable set of completeness of
resolutionclauses then it is always possible to arrive at ¤ by successive resolutions.

Here is an example which illustrates the resolution method. Suppose S is
the following sentence in CNF:

¬A ∧ (B ∨ C ∨ B) ∧ (¬C ∨ ¬D) ∧ (A ∨ D) ∧ (¬B ∨ ¬D)

Applying step 1, we convert the sentence S to a the following clauses:

{¬A}, {B, C}, {¬C, ¬D}, {A, D}, {¬B,¬D}

Our new aim is to use resolution to show that this set of clauses (and hence
the original sentence S) is not tt-satisfiable.

Successive applications of step 2 is illustrated by the following picture:

{A, D} {¬A}
{D}

{B, C} {¬C,¬D}
{B, ¬D} {¬B, ¬D}

{¬D}
¤

Since we are able to start with clauses in S and resolve to the empty clause,
we know that the original set T of sentences is not tt-satisfiable. A figure of proof by resolution
this sort is sometimes called a proof by resolution.

A proof by resolution shows that a set of sentences, or set of clauses, is not
tt-satisfiable. But it can also be used to show that a sentence C is a tautological
consequence of premises P1, . . . , Pn. This depends on the observation, made
earlier, that S is a consequence of premises P1, . . . , Pn if and only if the set
{P1, . . . , Pn, ¬S} is not tt-satisfiable.

Remember

1. Every set of propositional sentences can be expressed as a set of
clauses.

2. The resolution method is an important method for determining
whether a set of clauses is tt-satisfiable. The key notion is that of
a resolvent for a set of clauses.

3. A resolvent of clauses C1 and C2 is a clause R provided there is an
atomic sentence in one of the clauses whose negation is in the other
clause, and if R is the set of all the remaining literals in either clause.
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Exercises

17.31
➶|✎

Open Alan Robinson’s Sentences. The sentences in this file are not mutually satisfiable in any
world. Indeed, the first six sentences are not mutually satisfiable. Show that the first five
sentences are mutually satisfiable by building a world in which they are all true. Submit this
as World 17.31. Go on to show that each sentence from 7 on can be obtained from earlier
sentences by resolution, if we think of the disjunction in clausal form. The last “sentence,” ¤,
is clearly not satisfiable, so this shows that the first six are not mutually satisfiable. Turn in
your resolution proof to your instructor.

17.32
➶

Use Fitch to give an ordinary proof that the first six sentences of Alan Robinson’s Sentences are
not satisfiable.

17.33
✎

Construct a proof by resolution showing that the following CNF sentence is not satisfiable:
(A ∨ ¬C ∨ B) ∧ ¬A ∧ (C ∨ B ∨ A) ∧ (A ∨ ¬B)

17.34
✎

Construct a proof by resolution showing that the following sentence is not satisfiable. Since the
sentence is not in CNF, you will first have to convert it to CNF.

¬¬A ∧ (¬A ∨ ((¬B ∨ C) ∧ B)) ∧ ¬C

17.35
✎

Resolution can also be used to show that a sentence is logically true. To show that a sentence
is logically true, we need only show that its negation is not satisfiable. Use resolution to show
that the following sentence is logically true:

A ∨ (B ∧ C) ∨ (¬A ∧ ¬B) ∨ (¬A ∧ B ∧ ¬C)

Give resolution proofs of the following arguments. Remember, a resolution proof will demonstrate that
the premises and the negation of the conclusion form an unsatisfiable set.

17.36
✎

¬B
¬A ∨ C
¬(C ∧ ¬B)

¬A

17.37
✎

C ∨ A
¬C

A ∨ B

17.38
✎

¬A ∨ B
C ∨ ¬(A ∧ B)

¬A ∨ (B ∧ C)

17.39
✎

A → B
A

B

17.40
✎

B → C

(A ∧ B) → C

17.41
✎

A ∨ B
A → C
B → D

C ∨ D
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17.42
✎

A ∨ (B ∧ C)
¬E
(A ∨ B) → (D ∨ E)
¬A

C ∧ D

17.43
✎

¬A → B
C → (D ∨ E)
D → ¬C
A → ¬E

C → B

17.44
✎?

(Soundness of resolution) Let S be a nonempty set of clauses.
1. Let C1 and C2 be clauses in S and let R be a resolvent of C1 and C2. Show that S

and S ∪ {R} are satisfied by the same assignments.
2. Conclude that if S is satisfiable, then it is impossible to obtain ¤ by successive appli-

cations of resolution.

17.45
✎??

(Completeness of resolution) In this exercise we outline the theorem stated in the section to
the effect that the resolution method is complete.

1. Assume that S is a set of clauses and that the only literals appearing in clauses are A
and ¬A. Show that if S is not satisfiable, then ¤ is a resolvent of clauses in S.

2. Next, assume that S is a set of clauses and that the only literals appearing in clauses
are A, B, ¬A, and ¬B. Form two new sets of clauses as follows. First, form sets SB and
S¬B where the first of these consists of all clauses in S that do not contain B and
the second consists of all clauses in S that do not contain ¬B. Notice that these sets
can overlap, since some clauses in S might not contain either. Assume that S is not
satisfiable, and that h is any truth assignment. Show that if h(B) = true, then h

cannot satisfy SB. Similarly, show that if h(B) = false, then h fails to satisfy S¬B.
3. With the same setup as above, we now form new sets of clauses SB and S¬B. The first

results from SB by throwing out ¬B from any clauses that contain it. The second results
from S¬B by throwing out B from its clauses. Show that the observation made above
about h still holds for these new sets. Note, however, that neither B nor ¬B appears
in any clause in either of these sets. Hence, it follows that no assignment satisfies SB

and that no assignment satisfies S¬B.
4. Still continuing with the same setup, show that if S is not satisfiable, then ¤ can be

obtained as a resolvent of each of SB and S¬B. Here the result you obtained in part 1
comes into play.

5. Use this result to show that if S is not satisfiable then either ¤ or {¬B} can be
obtained as a resolvent from SB. Show similarly that either ¤ or {B} can be obtained
as a resolvent from S¬B.

6. Use this to show that if S is not satisfiable, then ¤ can be obtained as an eventual
resolvent of S .
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7. Now you have shown that any unsatisfiable set S of clauses built from just two atomic
sentences has ¤ as an eventual resolvent. Can you see how this method generalizes to
the case of three atomic sentences? You will need to use your results for one and two
atomic sentences.

8. If you have studied the chapter on induction, complete this proof to obtain a general
proof of Theorem 17.4. Nothing new is involved except induction.
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Advanced Topics in FOL

This chapter presents some more advanced topics in first-order logic. The first
three sections deal with a mathematical framework in which the semantics of
fol can be treated rigorously. This framework allows us to make our informal
notions of first-order validity and first-order consequence precise, and culmi-
nates in a proof of the Soundness Theorem for the full system F . The later
sections deal with unification and resolution resolution method, topics of im-
portance in computer science. The Completeness Theorem for F is taken up
in the next chapter, which does not presuppose the sections on unification
and resolution.

Section 18.1

First-order structures

In our treatment of propositional logic, we introduced the idea of logical con-
sequence in virtue of the meanings of the truth-functional connectives. We
developed the rigorous notion of tautological consequence as a precise approx-
imation of the intuitive notion. We achieved this precision thanks to truth ta-
ble techniques, which we later extended by means of truth assignments. Truth
assignments have two advantages over truth tables: First, in assigning truth
values to all atomic sentences at once, they thereby determine the truth or
falsity of every sentence in the language, which allows us to apply the concept
of tautological consequence to infinite sets of sentences. Second, they allow us
to do this with complete mathematical rigor.

In Chapter 10, we introduced another approximation of the intuitive notion
of consequence, that of first-order consequence, consequence in virtue of the
meanings of ∀,∃ and =, in addition to the truth-functional connectives. We
described a vague technique for determining when a sentence was a first-order
consequence of others, but did not have an analog of truth tables that gave
us enough precision to prove results about this notion, such as the Soundness
Theorem for F .

Now that we have available some tools from set theory, we can solve this
problem. In this section, we define the notion of a first-order structure. A first- first-order structures
order structure is analogous to a truth assignment in propositional logic. It
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Figure 18.1: Mary Ellen’s World.

represents circumstances that determine the truth values of all of the sentences
of a language, but it does so in such a way that identity and the first-order
quantifiers ∀ and ∃ are respected. This will allow us to give a precise definition
of first-order consequence and first-order validity.

In our intuitive explanation of the semantics of quantified sentences, we
appealed to the notion of a “domain of discourse,” defining truth and sat-
isfaction relative to such a domain. We took this notion to be an intuitive
one, familiar both from our experience using Tarski’s World and from our
ordinary experience communicating with others about real-world situations.
The notion of a first-order structure results from modeling these domains in
a natural way using set theory.

Let’s begin with a very simple language, a sublanguage of the blocks lan-
guage. Assume that we have only three predicates, Cube, Larger, and =, and
one name, say c. Even with this simple language there are infinitely many
sentences. How should we represent, in a rigorous way, the circumstances that
determine the truth values of sentences in this language?

By way of example, consider Mary Ellen’s World, shown in Figure 18.1.modeling a world
This world has three cubes, one of each size, and one small tetrahedron named
c. Our goal is to construct a mathematical object that represents everything
about this world that is relevant to the truth values of sentences in our toy
language. Later, we will generalize this to arbitrary first-order languages.

Since sentences are going to be evaluated in Mary Ellen’s World, one thing
we obviously need to represent is that the world contains four objects. We do
this by using a set D = {b1, b2, b3, b4} of four objects, where b1 representsdomain of discourse
the leftmost block, b2 the next, and so forth. Thus b4 represents the sole
tetrahedron. This set D is said to be the domain of discourse of our first-
order structure.

To keep first-order structures as clean as possible, we represent only those
features of the domain of discourse that are relevant to the truth of sentences
in the given first-order language. Given our current sublanguage, there are
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many features of Mary Ellen’s World that are totally irrelevant to the truth
of sentences. For example, since we cannot say anything about position, our
mathematical structure need not represent any facts about the positions of our
blocks. On the other hand, we can say things about size and shape. Namely,
we can say that an object is (or is not) a cube and that one object is (or is
not) larger than another. So we will need to represent these sorts of facts. We
do this by assigning to the predicate Cube a certain subset Cu of the domain
of discourse D, namely, the set of cubes. This set is called the extension of extensions of predicates
the predicate Cube in our structure. In modeling the world depicted above,
this extension is the set Cu = {b1, b2, b3}. Similarly, to represent facts about
the relative sizes of the objects, we assign to the predicate Larger a set La of
ordered pairs 〈x, y〉, where x, y ∈ D. If 〈x, y〉 ∈ La, then this represents the
fact that x is larger than y. So in our example, we would have

La = {〈b2, b1〉, 〈b3, b1〉, 〈b3, b2〉, 〈b2, b4〉, 〈b3, b4〉}

La is said to be the extension of Larger in the structure.
There is only one more thing we need to make our representation complete,

at least as far as the present language is concerned. We have to hook up the
individual constant c with the block it names. That is, we need to build into
our structure something that tells us that c is a name of block b1 rather than
one of the other blocks. Or, to put it more technically, we need to represent the
fact that in our world b1 is the referent of the name c. So we need to pair the referents of constants
name c with the object b1 that it names. The simplest way to do this in general
is to have a function which assigns to each name in the language whatever
object in the domain it happens to name. You might call this function the
naming function. (The way we actually handle this when we come to the final
definition incorporates the naming function in a slightly different way.)

We have neglected to say anything about the identity predicate =. That is identity
because its extension is fixed, once we have the domain D. It is always inter-
preted as meaning identity, so the extension is just the set of pairs 〈a, a〉 where
a ∈ D. So in this case, it consists of the set {〈b1, b1〉, 〈b2, b2〉, 〈b3, b3〉, 〈b4, b4〉}.

Let’s stick with our little language a bit longer, but consider how we would
want to represent other worlds. In general we need: a domain of discourse D,
a subset Cu of D to serve as the extension of the predicate Cube, a set La of
pairs from D to serve as the extension of the predicate Larger, and a pairing
of the name c with its referent, some element of the domain D of discourse.
In order to have one single object to represent the whole world, with all
its relevant facts, we package the domain of discourse, the extensions of the
predicates, and the referents of the names, all into one mathematical object.
Just how this packaging is done is not too important, and different textbooks
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do it in somewhat different ways. The most elegant packaging, and the one
we adopt, is to use a single function M. (“M” stands for “model,” which is
another common term for what we are calling a structure.)

The function M is defined on the predicates of the language, the names
of the language, and the quantifier symbol ∀. Such a function is called a first-
order structure provided the following conditions are satisfied:definition of

first-order structure 1. M(∀) is a nonempty set D, called the domain of discourse of M.

2. If P is an n-ary predicate symbol of the language then M(P) is a set of
n-tuples 〈x1, . . . , xn〉 of elements of D. This set is called the extension of
P in M. It is required that the extension of the identity symbol consist
of all pairs 〈x, x〉, for x ∈ D.

3. if c is any name of the language, then M(c) is an element of D, and is
called the referent of c in M.

Instead of writing M(Cube), it is more common to write CubeM , and similarly
for the other predicates and names. And it is common to write just DM for
the domain of discourse M(∀), or even just D if it is clear from context which
structure M we are talking about.

Let’s think for a minute about the conditions we’ve imposed on first-
order structures. If our goal in defining the notion of a structure were simply
to devise set-theoretic models of blocks worlds, then it would be natural to
impose much stronger conditions than we have. For example, we might want
to require that DM be a set of blocks (not just any old objects), that CubeM

always be the set of cubes in DM and that LargerM always be the ordered
pairs 〈x, y〉 where x is larger than y. These requirements would be analogous
to our condition that the extension of the identity symbol always corresponds
to the real identity relation.

But remember what we are trying to capture. We are interested in char-
acterizing the first-order consequence relation, and as we have explained, this
relation ignores the specific meanings of predicates other than =. When we
ignore the specific meanings of Cube and Larger, all that we care about is
which objects in the domain satisfy the atomic wffs Cube(x) and Larger(x, y).
This is why in our definition we allow extensions of these predicates to be
arbitrary sets, so long as the arity of the relation is respected.

Exercises

18.1
✎

Write out a complete description of a first-order structure M that would represent Mary Ellen’s
World. This has been done above except for the packaging into a single function.
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18.2
➶

(Simon says) Open Mary Ellen’s World. The structure M that we have used to model this world,
with respect to the sublanguage involving only Cube, Larger, and c, is also a good model of
many other worlds. What follows is a list of proposed changes to the world. Some of them
are allowable changes, in that if you make the change, the model M still represents the world
with respect to this language. Other changes are not. Make the allowable changes, but not the
others.

1. Move everything back one row.
2. Interchange the position of the tetrahedron and the large cube.
3. Make the tetrahedron a dodecahedron.
4. Make the large cube a dodecahedron.
5. Make the tetrahedron (or what was the tetrahedron, if you have changed it) large.
6. Add a cube to the world.
7. Add a dodecahedron to the world.

Now open Mary Ellen’s Sentences. Check to see that all these sentences are true in the world you
have built. If they are not, you have made some unallowable changes. Submit your modified
world.

18.3
✎

In the text we modeled Mary Ellen’s World with respect to one sublanguage of Tarski’s World.
How would our structure have to be modified if we added the following to the language: Tet,
Dodec, Between? That is, describe the first-order structure that would represent Mary Ellen’s
World, in its original state, for this expanded language. [Hint: One of your extensions will be
the empty set.]

18.4
✎

Consider a first-order language with one binary predicate Outgrabe. Suppose for some reason
we are interested in first-order structures M for this language which have the particular domain
{Alice, Mad Hatter}. List all the sets of ordered pairs that could serve as the extension of the
symbol Outgrabe. How many would there be if the domain had three elements?

18.5
✎?

In Section 14.4 (page 387) we promised to show how to make the semantics of generalized
quantifiers rigorous. How could we extend the notion of a first-order structure to accommo-
date the addition of a generalized quantifier Q? Intuitively, as we have seen, a sentence like
Q x (A(x), B(x)) asserts that a certain binary relation Q holds between the set A of things that
satisfy A(x) and the set B that satisfies B(x) in M. Thus, the natural way to interpret them
is by means of a binary relation on ℘(DM ). What quantifier corresponds to the each of the
following binary relations on sets?

1. A ⊆ B

2. A ∩ B = ∅
3. A ∩ B 6= ∅
4. |A ∩ B |= 1
5. |A ∩ B |≤ 3
6. |A ∩ B | > |A − B |

Section 18.1



500 / Advanced Topics in FOL

18.6
✎?

While we can’t say with precision exactly which binary relation a speaker might have in mind
with the use of some quantifiers, like many, we can still use this framework to illustrate the
nature of the logical properties like conservativity, monotonicity, and so forth discussed in
Section 14.5. Each of the following properties of binary relations Q on subsets of D correspond
to a property of quantifiers. Identify them.

1. Q(A,B) if and only if Q(A, A ∩ B)
2. If Q(A,B) and A ⊆ A′ then Q(A′, B)
3. If Q(A,B) and A′ ⊆ A then Q(A′, B)
4. If Q(A,B) and B′ ⊆ B then Q(A, B′)
5. If Q(A,B) and B ⊆ B′ then Q(A, B′)

Section 18.2

Truth and satisfaction, revisited

In Chapter 9, we characterized the notion of truth in a domain of discourse
rather informally. You will recall that in order to define what it means for
a quantified sentence (either ∀x S(x) or ∃x S(x)) to be true, we had to have
recourse to the notion of satisfaction, what it means for an object b to satisfy a
wff S(x) in a domain of discourse. This was defined in terms of what it means
for the simpler sentence S(c) to be true, where c was a new name.

Now that we have defined the notion of a first-order structure, we can
treat truth and satisfaction more rigorously. The aim here is just to see howmodeling satisfaction

and truth our informal treatment looks when you treat it mathematically. There should
be nothing surprising in this section, unless it is that these intuitive notions
are a bit complicated to define rigorously.

In our earlier discussion, we explained what it meant for an object b in
the domain of discourse to satisfy a wff S(v) with one free variable. That was
enough to serve our needs in discussing truth and the game. However, for
more advanced work, it is important to understand what it means for some
objects to satisfy a wff P(x1, . . . , xn) with n-free variables, for any n ≥ 0. The
case of n = 0 is the important special case where there are no free variables,
that is, where P is a sentence.

Let M be a first-order structure with domain D. A variable assignmentvariable assignments
in M is, by definition, some (possibly partial) function g defined on a set of
variables and taking values in the set D. Thus, for example, if D = {a, b, c}
then the following would all be variable assignments in M:

1. the function g1 which assigns b to the variable x
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2. the function g2 which assigns a, b, and c to the variables x, y, and z,
respectively

3. the function g3 which assigns b to all the variables of the language

4. the function g4 which is the empty function, that is, does not assign
values to any variables

The special case of the empty variable assignment g4 is important, so we empty variable
assignment (g∅)denote it by g∅.

Given a wff P, we say that the variable assignment g is appropriate for P appropriate
assignmentsif all the free variables of P are in the domain of g, that is, if g assigns objects

to each free variable of P. Thus the four variable assignments g1, g2, g3, and
g4 listed above would have been appropriate for the following sorts of wffs,
respectively:

1. g1 is appropriate for any wff with the single free variable x, or with no
free variables at all;

2. g2 is appropriate for any wff whose free variables are a subset of {x, y, z};

3. g3 is appropriate for any wff at all; and

4. g4 (which we just agreed to write as g∅) is appropriate for any wff with no
free variables, that is, for sentences, but not for wffs with free variables.

We next come to the definition of truth by way of satisfaction. The defini-
tion we gave earlier required us to define this by means of substituting names
for variables. The definition we are about to give ends up being equivalent,
but it avoids this detour. It works by defining satisfaction more generally. In
particular, we will define what it means for an assignment g to satisfy a wff
P(x1, . . . , xn) in M. We will define this by induction, with cases corresponding
to the various ways of building up wffs from atomic wffs. This will reduce the
problem gradually to the base case of atomic wffs, where we say explicitly
what satisfaction means.

In order to handle the two inductive clauses in which P starts with a
quantifier, we need a way to modify a variable assignment. For example, if g modified variable

assignmentsis defined on x and we want to say what it means for g to satisfy ∀z Likes(x, z),
then we need to be able to take any object b in the domain of discourse and
consider the variable assignment which is just like g except that it assigns the
value b to the variable z. We will say that g satisfies our wff ∀z Likes(x, z) if
and only if every such modified assignment g′ satisfies Likes(x, z). To make
this a bit easier to say, we introduce the notation “g[z/b]” for the modified
variable assignment. Thus, in general, g[v/b] is the variable assignment whose
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domain is that of g plus the variable v and which assigns the same values as
g, except that the new assignment assigns b to the variable v.

Here are a couple examples, harking back to our earlier examples of vari-
able assignments given above:

1. g1 assigns b to the variable x, so g1[y/c] assigns b to x and c to y. By
contrast, g1[x/c] assigns a value only to x, the value c.

2. g2 assigns a, b, c to the variables x, y, and z, respectively. Then g2[x/b]
assigns the values b, b, and c to x, y, and z, respectively. The assignment
g2[u/c] assigns the values c, a, b, and c to the variables u, x, y, and z,
respectively.

3. g3 assigns b to all the variables of the language. g3[y/b] is the same
assignment, g3, but g3[y/c] is different. It assigns c to y and b to every
other variable.

4. g4, the empty function, does not assign values to any variables. Thus
g4[x/b] is the function which assigns b to x. Notice that this is the same
function as g1.

Notice that what variable assignments do for us is allow us to treat free
variables as if they have a temporary denotation, not one assigned by the
structure, but one assigned for purposes of the inductive definition of satisfac-
tion. Thus, if a variable assignment g is appropriate for a wff P, then between
M and g, all the terms (constants and variables) in P have a denotation. For
any term t, we write [[t]]Mg for the denotation of t. Thus [[t]]Mg is tM if t is an[[t]]Mg
individual constant and g(t) if t is a variable.

We are now in a position to define what it means for a variable assignment
g to satisfy a wff P in a first-order structure M. First, it is always required
that g be appropriate for P, that is, be defined for all the free variables of P,
and maybe other free variables. Second, there is nothing at all surprising in
the following definition. There shouldn’t be, anyway, since we are just trying
to make precise the intuitive idea of satisfaction of a formula by a sequence
of objects. We suggest that you work through the example at the end of the
definition, referring back to the definition as needed, rather than try to read
the definition itself right off.

Definition (Satisfaction) Let P be a wff and let g be an assignment in Mdefinition of
satisfaction which is appropriate for P.

1. The atomic case. Suppose P is R(t1, . . . ,tn), where R is an n-ary predi-
cate. Then g satisfies P in M if and only if the n-tuple 〈[[t1]]Mg , . . . , [[tn]]Mg 〉
is in RM .

Chapter 18



Truth and satisfaction, revisited / 503

2. Negation. Suppose P is ¬Q. Then g satisfies P in M if and only if g

does not satisfy Q.

3. Conjunction. Suppose P is Q ∧ R. Then g satisfies P in M if and only
if g satisfies both Q and R.

4. Disjunction. Suppose P is Q ∨ R. Then g satisfies P in M if and only
if g satisfies Q or R or both.

5. Conditional. Suppose P is Q → R. Then g satisfies P in M if and only
if g does not satisfy Q or g satisfies R or both.

6. Biconditional. Suppose P is Q ↔ R. Then g satisfies P in M if and
only if g satisfies both Q and R or neither.

7. Universal quantification. Suppose P is ∀v Q. Then g satisfies P in M

if and only if for every d ∈ DM , g[v/d] satisfies Q.

8. Existential quantification. Suppose P is ∃v Q. Then g satisfies P in
M if and only if for some d ∈ DM , g[v/d] satisfies Q.

It is customary to write M |= P [g]
M |= P [g]

to indicate that the variable assignment g satisfies wff P in the structure M.
Let’s work through a very simple example. We take a structure M with

domain D = {a, b, c}. Let us suppose that our language contains the binary
predicate Likes and that the extension of this predicate is the following set of
pairs:

LikesM = {〈a, a〉, 〈a, b〉, 〈c, a〉}

That is, a likes itself and b, c likes a, and b likes no one. Let us consider the wff

∃y (Likes(x, y) ∧ ¬Likes(y, y))

with the single free variable x. If the above definition is doing its stuff, it
should turn out that an assignment g satisfies this wff just in case g assigns
a to the variable x. After all, a is the only individual who likes someone who
does not like himself.

Let’s examine the definition of satisfaction to see if this is the way it
turns out. First, note that g has to assign some value to x, since it has to be
appropriate for the formula. Let us call this value e; e is one of a, b, or c. Next,
we see from the clause for ∃ that g satisfies our wff just in case there is some
object d ∈ D such that g[y/d] satisfies the wff

Likes(x, y) ∧ ¬Likes(y, y)
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But g[y/d] satisfies this wff if and only if it satisfies Likes(x, y) but does not
satisfy Likes(y, y), by the clauses for conjunction and negation. Looking at
the atomic case, we see that this is true just in case the pair 〈e, d〉 is in the
extension of Likes, while the pair 〈d, d〉 is not. But this can only happen if
e = a and d = b. Thus the only way our original g can satisfy our wff is if it
assigns a to the variable x, as we anticipated.

Notice in the above example how we started off with a wff with one free
variable and an assignment defined on that one variable, but in order to give
our analysis, we had to move to consider a wff with two free variables and
so to assignments defined on those two free variables. This is typical. After
all, what we are really interested in is truth for sentences, that is, wffs with
no free variables, but in order to define this, we must define something more
general, satisfaction of wffs with free variables by assignments defined on those
variables. Indeed, having defined satisfaction, we are now in a position to look
at the special case where the wffs have no free variables and use it for our
definition of truth.

Definition (Truth) Let L be some first-order language and let M be a struc-definition of truth
ture for L. A sentence P of L is true in M if and only if the empty variable
assignment g∅ satisfies P in M. Otherwise P is false in M.

Just as we write M |= Q [g] if g satisfies a wff Q in M, so too we write:M |= P

M |= P

if the sentence P is true in M.
Let’s look back at the structure given just above and see if the sentence

∃x ∃y (Likes(x, y) ∧ ¬Likes(y, y))

come out as it should under this definition. First, notice that it is a sentence,
that is, has no free variables. Thus, the empty assignment is appropriate
for it. Does the empty assignment satisfy it? According to the definition of
satisfaction, it does if and only if there is an object that we can assign to the
variable x so that the resulting assignment satisfies

∃y (Likes(x, y) ∧ ¬Likes(y, y))

But we have seen that there is such an object, namely, a. So the sentence is
true in M; in symbols, M |= ∃x ∃y (Likes(x, y) ∧ ¬Likes(y, y)).

Consider next the sentence

∀x ∃y (Likes(x, y) ∧ ¬Likes(y, y))
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Does the empty assignment satisfy this? It does if and only if for every object
e in the domain, if we assign e to x, the resulting assignment g satisfies

∃y (Likes(x, y) ∧ ¬Likes(y, y))

But, as we showed earlier, g satisfies this only if g assigns a to x. If it assigns,
say, b to x, then it does not satisfy the wff. Hence, the empty assignment does
not satisfy our sentence, i.e., the sentence is not true in M. So its negation is;
in symbols, M |= ¬∀x ∃y (Likes(x, y) ∧ ¬Likes(y, y)).

A number of problems are given later to help you understand that this
does indeed model the informal, intuitive notion. In the meantime, we will
state a proposition that will be important in proving the Soundness Theorem
for fol. Intuitively, whether or not a sentence is true in a structure should
depend only on the meanings specified in the structure for the predicates and
individual constants that actually occur in the sentence. That this is the case
is a consequence of the following, somewhat stronger claim.

Proposition 1. Let M1 and M2 be structures which have the same domain
and assign the same interpretations to the predicates and constant symbols
in a wff P. Let g1 and g2 be variable assignments that assign the same objects
to the free variables in P. Then M1 |= P[g1] iff M2 |= P[g2].

The proof of this proposition, which uses induction on wffs, is a good
exercise to see if you understand the definition of satisfaction. Consequently,
we ask you to prove it in Exercise 10.

Once we have truth, we can define the important notions of first-order
consequence and first-order validity, our new approximations of the intuitive
notions of logical consequence and logical truth. In the following definitions,
we assume that we have a fixed first-order language and that all sentences
come from that language. By a structure, we mean any first-order structure
that interprets all the predicates and individual constants of the language.

Definition[First-order consequence] A sentence Q is a first-order consequence definition of
FO consequenceof a set T = {P1, . . . } of sentences if and only if every structure that makes

all the sentences in T true also makes Q true.

You can see that this definition is the exact analogue of our definition of
tautological consequence. The only difference is that instead of rows of a truth
table (or truth value assignments), we are using first-order structures in the
definition. We similarly modify our definition of tautology to get the following
definition of first-order validity. definition of

FO validity
Definition (First-order validity) A sentence P is a first-order validity if and
only if every structure makes P true.
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We will also use other notions analogous to those introduced in proposi-
tional logic in discussing first-order sentences and sets of sentences. For exam-
ple, we will call a sentence fo-satisfiable if there is a first-order structure that
makes it true, and call a set of sentences fo-satisfiable if there is a structureFO-satisfiable
that makes all the members of the set true. Sometimes we will leave out the
“fo” if the context make it clear what kind of satisfiability we are referring to.

You may have wondered why Tarski’s World is so named. It is our way of
paying tribute to Alfred Tarski, the logician who played the pivotal role in the
development of the semantic conception of logic. It was Tarski who developed
the notion of a first-order structure, the notion of satisfaction, and who gave
the first analysis of truth, first-order validity, and first-order consequence along
the lines we have sketched here.

One final note. If you go on to study logic further, you will discover that our
treatment of satisfaction is a bit more general that most. Tarski, and most
of those who have followed him, have restricted attention to total variable
assignments, that is, to variable assignments that are defined on all variables.
Then, to define truth, they pick out one of these total assignments and use it,
since they cannot use the empty assignment. The two approaches agree on the
resulting notion of truth, and hence on the notion of logical consequence. The
approach adopted here using partial assignments is more general, seems to us
more natural, and fits in better with our implementation of Tarski’s World. It
is easy to represent finite partial assignments in the computer’s memory, but
not so easy to deal with infinite assignments.

Remember

1. First-order structures are mathematical models of the domains about
which we make claims using fol.

2. Variable assignments are functions mapping variables into the domain
of some first-order structure.

3. A variable assignment satisfies a wff in a structure if, intuitively, the
objects assigned to the variables make the wff true in the structure.

4. Using the notion of satisfaction, we can define what it means for a
sentence to be true in a structure.

5. Finally, once we have the notion of truth in a structure, we can model
the notions of logical truth, and logical consequence.
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Exercises

18.7
✎

(Modifying variable assignments.) Suppose D = {a, b, c, d}and let g be the variable assignment
which is defined only on the variable x and takes value b. Describe explicitly each of the
following:

1. g[y/c]
2. g[x/c]
3. g[z/b]
4. g[x/b]
5. (g[x/c])[z/d]
6. (g[x/c])[x/d]

18.8
✎

Consider the language with only one binary predicate symbol P and let M be the structure
with domain D = {1,2, 3} and where the extension of P consists of those pairs 〈n, m〉 such
that m = n + 1. For each of the following wffs, first describe which variable assignments are
appropriate for it. Then describe the variable assignments which satisfy it, much the way we
described the variable assignments that satisfy the wff ∀z Likes(x, z) on page 501.

1. P(y,z)
2. ∃y P(y, z)
3. ∀z P(y, z)
4. P(x,x)
5. ∃x ¬P(x, x)
6. ∀x P(x, x)
7. P(x, x) ∨ P(y, z)
8. ∃x (P(x, x) ∨ P(y, z))
9. ∃y (P(x, x) ∨ P(y, z))

10. ∀y ∃z P(y, z)
11. ∀y ∃y P(y, z)

Now consider the structure N with the same domain but where the extension of P is the set
of those pairs 〈n, m〉 such that n ≤ m. How do your answers change?

18.9
✎?

Let g be a variable assignment in M which is appropriate for the wff P. Show that the following
three statements are equivalent:

1. g satisfies P in M

2. g′ satisfies P in M for some extension g′ of g

3. g′ satisfies P in M for every extension g′ of g

Intuitively, this is true because whether a variable assignment satisfies P can depend only on
the free variables of P, but it needs a proof. What does this result say in the case where P is
a sentence? Express your answer using the concept of truth. [Hint: You will need to prove this
by induction on wffs.]
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18.10
✎?

Give a proof of Proposition 1.

The next two exercises should be attempted before going on to Chapter 20. They contain some key insights
that will be important in the proof of the Completeness Theorem for F.

18.11
✎

(From first-order structures to truth assignments.) Recall from Section 10.1 that when dealing
with sentences containing quantifiers, any sentence that starts with a quantifier is treated just
like an atomic sentence from the point of view of truth tables and hence truth assignments.
Given a first-order structure M for a language L, define a truth assignment hM as follows: for
any sentence S that is atomic or begins with a quantifier,

hM(S) = true if and only if M |= S

Show that the same “if and only if” holds for all sentences.

18.12
✎

(From truth assignments to first-order structures.) Let h be any truth assignment for a first-
order language without function symbols. Construct a first-order structure Mh as follows. Let
the domain of M be the set of individual constants of the language. Given a relation symbol
R, binary let’s say for simplicity of notation, define its extension to be

{〈c,d〉 | h(R(c, d)) = true}

Finally, interpret each individual constant as naming itself.
1. Show that for any sentence S that does not contain quantifiers or the identity symbol:

Mh |= S iff h(S) = true

[Hint: use induction on wffs.]
2. Show that the result in (1) does not extend to sentences containing the identity symbol.

[Hint: consider an h that assigns false to b = b.]
3. Recall from Section 10.1 that it is possible for a truth assignment h to assign true to

Cube(b) but false to ∃x Cube(x). Show that for such an h, the result in (1) does not
extend to quantified sentences.

18.13
➶|✎

(An important problem about satisfiability.) Open Skolem’s Sentences. You will notice that
these sentences come in pairs. Each even-numbered sentence is obtained from the preceding
sentence by replacing some names with variables and existentially quantifying the variables.
The odd-numbered sentence logically implies the even-numbered sentence which follows it, of
course, by existential generalization. The converse does not hold. But something close to it
does. To see what, open Thoralf’s First World and check the truth values of the sentences in
the world. The even numbered sentences all come out true, while the odd sentences can’t be
evaluated because they contain names not in use in the world.

Extend Thoralf’s First World by assigning the names b, c, d and e in such a way that the odd
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numbered sentences are also true. Do the same for Thoralf’s Second World, saving the resulting
worlds as World 18.13.1 and World 18.13.2. Submit these worlds.

Explain under what conditions a world in which ∃x P(x) is true can be extended to one in
which P(c) is true. Turn in your explanation to your instructor.

Section 18.3

Soundness for fol

Having made the notion of first-order consequence more precise using the
notion of first-order structure, we are now in a position to state and prove
the Soundness Theorem for fol. Given a set T of sentences we write T ` S
to mean there is a proof of S from premises in T in the full system F .1 As
mentioned in Chapter 17, this notation does not mean that all the sentences
in T have to be used in the formal proof of S, only that there is a proof of S
whose premises are all elements of T . In particular, the set T could be infinite
(as in the case of proofs from zfc or pa) whereas only a finite number of
premises can be used in any one proof. This notation allows us to state the
Soundness Theorem as follows.

Theorem (Soundness of F) If T ` S, then S is a first-order consequence of soundness of F
set T .

Proof: The proof is very similar to the proof of the Soundness The-
orem for FT, the propositional part of F , on page 215. We will show
that any sentence that occurs at any step in a proof p in F is a first-
order consequence of the assumptions in force at that step (which
include the premises of p). This claim applies not just to sentences
at the main level of proof p, but also to sentences appearing in sub-
proofs, no matter how deeply nested. The theorem follows from this
claim because if S appears at the main level of p, then the only as-
sumptions in force are premises drawn from T . So S is a first-order
consequence of T .

Call a step of a proof valid if the sentence at that step is a first-order
consequence of the assumptions in force at that step. Our earlier
proof of soundness for FT was actually a disguised form of induction
on the number of the step in question. Since we had not yet discussed

1Recall that the formal proof system F includes all the introduction and elimination
rules, but not the Con procedures.
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induction, we disguised this by assuming there was an invalid step
and considering the first of these. When you think about it, you
see that this is really just the inductive step in an inductive proof.
Assuming we have the first invalid step allows us to assume that all
the earlier steps are valid, which is the inductive hypothesis, and
then prove (by contradiction) that the current step is valid after all.
We could proceed in the same way here, but we will instead make
the induction explicit. We thus assume that we are at the nth step,
that all earlier steps are valid, and show that this step is valid as
well.

The proof is by cases, depending on which rule is applied at step
n. The cases for the rules for the truth-functional connectives work
out pretty much as before. We will look at one, to point out the
similarity to our earlier soundness proof.

→ Elim: Suppose the nth step derives the sentence R from an appli-
cation of → Elim to sentences Q → R and Q appearing earlier in the
proof. Let A1, . . . , Ak be a list of all the assumptions in force at step
n. By our induction hypothesis we know that Q → R and Q are both
established at valid steps, that is, they are first-order consequences
of the assumptions in force at those steps. Furthermore, since F only
allows us to cite sentences in the main proof or in subproofs whose
assumptions are still in force, we know that the assumptions in force
at steps Q → R and Q are also in force at R. Hence, the assump-
tions for these steps are among A1, . . . , Ak. Thus, both Q → R and
Q are first-order consequences of A1, . . . ,Ak. We now show that R is
a first-order consequence of A1, . . . ,Ak.

Suppose M is a first-order structure in which all of A1, . . . ,Ak are
true. Then we know that M |= Q → R and M |= Q, since these sen-
tences are first-order consequences of A1, . . . , Ak. But in that case,
by the definition of truth in a structure we see that M |= R as well.
So R is a first-order consequence of A1, . . . ,Ak. Hence, step n is a
valid step.

Notice that the only difference in this case from the corresponding
case in the proof of soundness of FT is our appeal to first-order
structures rather than rows of a truth table. The remaining truth-
functional rules are all similar. Let’s now consider a quantifier rule.

∃ Elim: Suppose the nth step derives the sentence R from an appli-
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cation of ∃ Elim to the sentence ∃x P(x) and a subproof containing
R at its main level, say at step m. Let c be the new constant intro-
duced in the subproof. In other words, P(c) is the assumption of the
subproof containing R:

...
j. ∃x P(x)
...

c P(c)

...
m. R
...

...
n. R

Let A1, . . . , Ak be the assumptions in force at step n. Our induc-
tive hypothesis assures us that steps j and m are valid steps, hence
∃x P(x) is a first-order consequence of the assumptions in force at
step j, which are a subset of A1, . . . ,Ak, and R is a first-order conse-
quence of the assumptions in force at step m, which are a subset of
A1, . . . , Ak, plus the sentence P(c), the assumption of the subproof
in which m occurs.

We need to show that R is a first-order consequence of A1, . . . ,Ak

alone. To this end, assume that M is a first-order structure in which
each of A1, . . . , Ak is true. We need to show that R is true in M as
well. Since ∃x P(x) is a consequence of A1, . . . , Ak, we know that this
sentence is also true in M. Notice that the constant c cannot occur
in any of the sentences A1, . . . , Ak, ∃x P(x), or R, by the restriction
on the choice of temporary names imposed by the ∃ Elim rule. Since
M |= ∃x P(x), we know that there is an object, say b, in the domain
of M that satisfies P(x). Let M′ be exactly like M, except that it
assigns the object b to the individual constant c. Clearly, M′ |= P(c),
by our choice of interpretation of c. By Proposition 1 on page 505
M′ also makes each of the assumptions A1, . . . ,Ak true. But then
M′ |= R, because R is a first-order consequence of these sentences.
Since c does not occur in R, R is also true in the original structure
M, again by Proposition 1.
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The case of ∀ Intro is very similar to ∃ Elim, and the remaining
two cases are much simpler. We leave these cases as exercises.

The Soundness Theorem for F assures us that we will never prove an in-
valid argument using just the rules of F . It also warns us that we will never be
able to prove a valid argument whose validity depends on meanings of pred-
icates other than identity. The Completeness Theorem for F is significantly
harder to prove than the Soundness Theorem for F , or for that matter, than
the Completeness Theorem for FT. In fact, it is the most significant theorem
that we prove in this book and forms the main topic of Chapter 19.

Exercises

18.14
✎

Prove the inductive step in the sound-
ness proof corresponding to the rule ∧
Intro.

18.15
✎?

Prove the inductive step in the sound-
ness proof corresponding to the rule →
Intro.

18.16
✎?

Prove the inductive step in the sound-
ness proof corresponding to the rule ∃
Intro.

18.17
✎??

Prove the inductive step in the sound-
ness proof corresponding to the rule ∀
Intro.

Section 18.4

The completeness of the shape axioms

In Section 12.5 (on page 339), we promised to convince you that the ten
axioms we gave for shape are complete, that is, that they completely bridged
the gap between first-order consequence and the intuitive notion of logical
consequence for the blocks language, as far as shape is concerned. We list the
axioms again here for your convenience:

Basic Shape Axioms:

1. ¬∃x (Cube(x) ∧ Tet(x))

2. ¬∃x (Tet(x) ∧ Dodec(x))

3. ¬∃x (Dodec(x) ∧ Cube(x))

4. ∀x (Tet(x) ∨ Dodec(x) ∨ Cube(x))

SameShape Introduction Axioms:
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5. ∀x ∀y ((Cube(x) ∧ Cube(y)) → SameShape(x, y))

6. ∀x ∀y ((Dodec(x) ∧ Dodec(y)) → SameShape(x, y))

7. ∀x ∀y ((Tet(x) ∧ Tet(y)) → SameShape(x, y))

SameShape Elimination Axioms:

8. ∀x ∀y ((SameShape(x, y) ∧ Cube(x)) → Cube(y))

9. ∀x ∀y ((SameShape(x, y) ∧ Dodec(x)) → Dodec(y))

10. ∀x ∀y ((SameShape(x, y) ∧ Tet(x)) → Tet(y))

We need to show that any argument that is logically valid in virtue of the
meanings of the shape predicates (and the first-order quantifiers, connectives,
and identity) is first-order valid once we add these ten axioms as premises.
To show this, it suffices to show that any first-order structure M making the
axioms true is just like one where the means of the four shape predicates is
the intended one.2

The reason this suffices is not hard to see. For suppose we have an argument
A that is valid in virtue of the meanings of the shape predicates. We want to
show that the result A′ of adding the ten axioms gives us an argument that is
first-order valid. To do this, it suffices to show that any first-order structure M

making the original premises and the ten axioms true is just like a structure
M′ where the predicates mean what they should. Hence, by the presumed
validity of the argument A in the latter such structures, the conclusion holds
in M′. But since M is just like M′, the conclusion also holds in M. Hence,
since the structure M was an arbitrary one making the original premises and
the ten axioms true, this will show that A′ is first-order valid.

So now let us prove our claim about M and M′. Recall that M is any
first-order structure making our ten shape axioms true. Let Cu,Do, and Te

be the extensions in M of Cube, Dodec, and Tet, respectively. Axiom 1 insures
that Cu and Te are disjoint. Similarly, by Axioms 2 and 3, all three of the
sets are disjoint from the others. Axiom 4 insures us that everything in the
domain D of M is in one of these three sets.

Recall from Exercise 15.43 that a partition of D is a set P of non-empty
subsets of D with the property that every element of D is in exactly one
member of P . As we saw in that exercise, every such partition is the set of
equivalence classes of an equivalence relation, the relation of being in the same
member of the partition. This applied directly to our setting. Not all of these

2What “just like” means here is that the structures are isomorphic, a notion we have
not defined. The intuitive notion should be enough to convince you of our claim.
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sets Cu,Do and Te need be non-empty, but if we restrict attention to those
that are, the preceding paragraph shows that we have a partition of D.

Now let S be the extension of SameShape in M. The remaining six axioms
insure that this relation is the equivalence relation generated by our partition.
Replace each object in Cu by a cube, each object in Do by a dodecahedron,
and each object in Te by a tetrahedron, making sure to use distinct blocks to
replace distinct objects of M. This is possible because we have a partition of
D. Call the resulting structure M′. The extension of SameShape in M′ is just
the like S, except with the new blocks. Hence, the meaning of our predicates
is what we want it to be. Since the structures are otherwise unchanged, the
structures satisfy the same sentences of the blocks language.

Exercises

18.18
✎

Let M be the structure whose domain
is the natural numbers, where Cube,
Dodec, and Tet have as extensions the
sets of natural numbers of the forms 3n,
3n + 1, and 3n + 2. Can we interpret
SameShape so as to make the ten shape
axioms true? If so, in how many ways
can we do this?

18.19
✎

Let M be any first-order structure mak-
ing the first four shape axioms true.
Prove that there is a unique way to in-
terpret SameShape so as to make all ten
axioms true.

Section 18.5

Skolemization

One important role function symbols play in first-order logic is as a way of
simplifying (for certain purposes) sentences that have lots of quantifiers nested
inside one another. To see an example of this, consider the sentence

∀x ∃y Neighbor(x, y)

Given a fixed domain of discourse (represented by a first-order structure M,
say) this sentence asserts that every b in the domain of discourse has at least
one neighbor c. Let us write this as

M |= Neighbor(x, y)[b, c]

rather than the more formal M |= Neighbor(x, y)[g] where g is the variable
assignment that assigns b to x and c to y. Now if the original quantified

Chapter 18



Skolemization / 515

sentence is true, then we can pick out, for each b, one of b’s neighbors, say his
nearest neighbor or favorite neighbor. Let f(b) be this neighbor, so that we
have, for every b

M |= Neighbor(x, y)[b, f(b)]

Now, we would like to say the following: if we had a function symbol f ex-
pressing our function f.

M |= ∀x Neighbor(x, f(x))

This would reduce the quantifier string “∀x ∃y” in the original sentence to the
simpler “∀x.” So we need to expand our first-order language and give ourselves
such a function symbol f to use as a name of f .

This important trick is known as Skolemization, after the Norwegian lo- Skolemization
gician Thoralf Skolem. The function f is called a Skolem function for the Skolem function
original quantified sentence. The new sentence, the one containing the func-
tion symbol but no existential quantifier, is called the Skolem normal form of Skolem normal form
the original sentence.

Notice that we did not say that a sentence is logically equivalent to its
Skolemization. The situation is a little more subtle than that. If our language
allowed existential quantification to apply to function symbols, we could get
a logically equivalent sentence, namely

∃f ∀x P(x, f(x))

This sort of sentence, however, takes us into what is known as second-order
logic, which is beyond the scope of this book.

Skolem functions, and Skolem normal form, are very important in ad-
vanced parts of logic. We will discuss one application of them later in the
chapter, when we sketch how to apply the resolution method to fol with
quantifiers.

One of the reasons that natural language does not get bogged down in lots Skolemization in
natural languageof embedded quantifiers is that there are plenty of expressions that act like

function symbols, so we can usually get by with Skolemizations. Possessives,
for example, act as very general Skolem functions. We usually think of the
possessive “apostrophe s” as indicating ownership, as in John’s car. But it re-
ally functions much more generally as a kind of Skolem function. For example,
if we are trying to decide where the group will eat out, then Max’s restaurant
can refer to the restaurant that Max likes best. Or if we are talking about
logic books, we can use Kleene’s book to refer not to one Kleene owns, but to
one he wrote.
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Remember

(Simplest case of Skolemization) Given a sentence of the form ∀x ∃y P(x, y)
in some first-order language, we Skolemize it by choosing a function sym-
bol f not in the language and writing ∀x P(x, f(x)). Every world that makes
the Skolemization true also makes the original sentence true. Every world
that makes the original sentence true can be turned into one that makes
the Skolemization true by interpreting the function symbol f by a func-
tion f which picks out, for any object b in the domain, some object c
such that they satisfy the wff P(x, y).

Exercises

18.20
✎

Discuss the logical relationship between
the following two sentences. [Hint: One
is a logical consequence of the other, but
they are not logically equivalent.]

∀y ∃z ParentOf(z, y)
∀y ParentOf(bestfriend(y), y)

Explain under what conditions the sec-
ond would be a Skolemization of the
first.

18.21
✎

Skolemize the following sentence using
the function symbol f.

∀z ∃y [(1 + (z × z)) < y]

Which of the following functions on nat-
ural numbers could be used as a Skolem
function for this sentence?

1. f(z) = z2

2. f(z) = z2 + 1
3. f(z) = z2 + 2
4. f(z) = z3

Section 18.6

Unification of terms

We now turn to a rather different topic, unification, that applies mainly to
languages that contain function symbols. Unification is of crucial importance
when we come to extend the resolution method to the full first-order language.

The basic idea behind unification can be illustrated by comparing a couple
of claims. Suppose first that Nancy tells you that Max’s father drives a Honda,
and that no one’s grandfather drives a Honda. Now this is not true, but there is
nothing logically incompatible about the two claims. Note that if Nancy went
on to say that Max was a father (so that Max’s father was a grandfather)
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we could then accuse her of contradicting herself. Contrast Nancy’s claim
with Mary’s, that Max’s grandfather drives a Honda, and that no one’s father
drives a Honda. Mary can be accused of contradicting herself. Why? Because
grandfathers are, among other things, fathers.

More abstractly, compare the following pairs, where P is a unary predicate
symbol, f and g are unary function symbols, and a is an individual constant.

First pair: P(f(a)), ∀x ¬P(f(g(x)))
Second pair: P(f(g(a))), ∀x ¬P(f(x))

The first pair is a logical possibility. It is perfectly consistent to suppose that
the object f(a) has property P but that no object of the form f(g(b)) has
property P . This can only happen, though, if a is not of the form g(b). By con-
trast, the second pair is not a logical possibility. Why? Because if ∀x ¬P(f(x))
holds, so does the instance where we substitute g(a) for x: ¬P(f(g(a))). But
this contradicts P(f(g(a))).

Unification gives us a useful test to see if sets of claims like the above are unification
contradictory or not. You look at the terms involved and see whether they are
“unifiable.” The terms f(a) and f(g(x)) in the first pair of sentences are not
unifiable, whereas the terms in the second pair, f(g(a)) and f(x), are unifiable.
What this means is that in the second case there is a way to substitute a term
for x so that the results coincide. This agreement produces a clash between
the two original sentences. In the first pair of terms, however, there is no such
way to make the terms coincide. No way of substituting a term in for the
variable x in f(g(x)) is going to give you the term f(a), since a is an individual
constant.

These examples motivate the following definition.

Definition Terms t1 and t2 are unifiable if there is a substitution of terms for definition of
unifiable termssome or all of the variables in t1 and t2 such that the terms that result from

the substitution are syntactically identical terms.

Similarly, any set T of terms, of whatever size, is said to be unifiable if there
is a single substitution of terms for some or all of the variables that occur in
terms of T so that all the resulting terms are identical.

Notice that whether or not terms are unifiable is a purely syntactic notion.
It has to do with terms, not with what they denote. The terms father(Max)
and father(father(x)) are not unifiable, regardless of whether or not Max is
a father. On the other hand, the terms father(father(Max)) and father(y) are
unifiable. Just substitute father(Max) in for the variable y. This means that
we can decide whether a pair of terms is unifiable without any idea of what
the terms happen to stand for.
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Let’s give a couple more examples of unification. Suppose we have a binary
function symbol f and two unary function symbols g and h. Here is an example
of three terms that are unifiable. Can you find the substitution that does the
trick?

f(g(z), x), f(y, x), f(y,h(a))

If you said to substitute h(a) for the variable x and g(z) for y you were right.
All three terms are transformed into the term f(g(z), h(a)). Are there any
other substitutions that would work? Yes, there are. We could plug any term
in for z and get another substitution. The one we chose was the simplest in
that it was the most general. We could get any other from it by means of amost general unifiers
substitution.

Here are some examples of pairs, some of which can, others of which can-
not, be unified. See if you can tell which are which before reading on.

g(x), h(y)
h(f(x, x)), h(y)
f(x, y), f(y, x)
g(g(x)), g(h(y))
g(x), g(h(z))
g(x), g(h(x))

Half of these go each way. The ones that are unifiable are the second, third,
and fifth. The others are not unifiable. The most general unifiers of the three
that are unifiable are, in order:

◦ Substitute f(x, x) for y

◦ Substitute some other variable z for both x and y

◦ Substitute h(z) for x

The first pair is not unifiable because no matter what you do, one will always
start with g while the other starts with h. Similarly, the fourth pair is not
unifiable because the first will always start with a pair of g’s, while the second
will always start with a g followed by an h. (The reason the last pair cannot
be unified is a tad more subtle. Do you see why?)

There is a very general procedure for checking when two (or more) terms
are unifiable or not. It is known as the Unification Algorithm. We will notUnification Algorithm
explain it in this book. But once you have done the following exercises, you
will basically understand how the algorithm works.
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Exercises

18.22
✎

Which of the following terms are unifi-
able with father(x) and which are not?
If they are, give the substitution. If they
are not, then explain why not.

1. Max
2. father(Claire)
3. mother(Max)
4. father(mother(Claire))
5. father(mother(y))
6. father(mother(x))

18.23
✎

Which of the following terms are unifi-
able with f(x,g(x)) and which are not?
If they are, give the most general uni-
fier. If they are not, then explain why
not. (Here, as usual, a and b are names,
not variables.)

1. f(a, a)
2. f(g(a), g(a))
3. f(g(x),g(g(x)))
4. h(f(a, g(a)))
5. f(f(a, b), g(f(a,b)))

18.24
✎

Find a set of four terms which can si-
multaneously be unified to obtain the
following term:

h(f(h(a), g(a)))

18.25
✎?

Show that there are an infinite number
of different substitutions that unify the
following pair of terms. Find one that is
most general.

g(f(x, y)), g(f(h(y), g(z)))

18.26
✎

How many substitutions are there that
unify the following pair?

g(f(x, x)), g(f(h(a), g(b)))

Section 18.7

Resolution, revisited

In this section we discuss in an informal way how the resolution method for
propositional logic can be extended to full first-order logic by combining the extending resolution

to foltools we have developed above.
The general situation is that you have some first-order premises P1, . . . , Pn

and a potential conclusion Q. The question is whether Q is a first-order con-
sequence of P1, . . . , Pn. This, as we have seen, is the same as asking if there
is no first-order structure which is a counterexample to the argument that
Q follows from P1, . . . , Pn. This in turn is the same as asking whether the
sentence

P1 ∧ . . . ∧ Pn ∧ ¬Q
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is not fo-satisfiable. So the general problem can be reduced to that of deter-
mining, of a fixed finite sentence, say S, of fol, whether it is fo-satisfiable.

The resolution method discussed earlier gives a procedure for testing this
when the sentence S contains no quantifiers. But interesting sentences do
contain quantifiers. Surprisingly, there is a method for reducing the general
case to the case where there are no quantifiers.

An overview of this method goes as follows. First, we know that we can
always pull all quantifiers in a sentence S out in front by logically valid trans-
formations, and so we can assume S is in prenex form.

Call a sentence universal if it is in prenex form and all of the quantifiersuniversal sentences
in it are universal quantifiers. That is, a universal sentence S is of the form

∀x1 . . . ∀xn P(x1, . . . , xn)

For simplicity, let us suppose that there are just two quantifiers:

∀x ∀y P(x, y)

Let’s assume that P contains just two names, b and c, and, importantly, that
there are no function symbols in P.

We claim that S is fo-satisfiable if and only if the following set T of
quantifier-free sentences is fo-satisfiable:

T = {P(b,b), P(b, c),P(c, b),P(c, c)}

Note that we are not saying the two are equivalent. S obviously entails T , so
if S is fo-satisfiable so is T . T does not in general entail S, but it is the case
that if T is fo-satisfiable, so is S. The reason is fairly obvious. If you have a
structure that makes T true, look at the substructure that just consists of b

and c and the relationships they inherit. This little structure with only two
objects makes S true.

This neat little observation allows us to reduce the question of the un-reducing to
non-quantified
sentences

satisfiability of the universal sentence S to a sentence of fol containing no
quantifiers, something we know how to solve using the resolution method for
propositional logic.

There are a couple of caveats, though. First, since the resolution methodcaveats
for propositional logic gives us truth-assignments, in order for our proof to
work must be able to go from a truth-assignment h for the atomic sentences
of our language to a first-order structure Mh for that language making the
same atomic sentences true. This works for sentences that do not contain =,
as we saw in Exercise 18.12, but not in general. This means that in order to
be sure our proof works, the sentence S cannot contain =.
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Exercise 18.12 also required that the sentence not contain any function
symbols. This is a real pity, since Skolemization gives us a method for taking Skolemizing
any prenex sentence S and finding another one that is universal and fo-
satisfiable if and only if S is: just replace all the ∃’s one by one, left to right, by
function symbols. So if we could only generalize the above method to the case
where function symbols are allowed, we would have a general method. This is
where the Unification Algorithm comes to the rescue. The basic strategy of
resolution from propositional logic has to be strengthened a bit.

Resolution method for fol: Suppose we have sentences S, S′, S′′, . . . and resolution method
for folwant to show that they are not simultaneously fo-satisfiable. To do this using

resolution, we would carry out the following steps:

1. Put each sentence S into prenex form, say

∀x1∃y1∀x2∃y2 . . .P(x1, y1, x2, y2, . . . )

We can always make them alternate in this way by introducing some
null quantifiers.

2. Skolemize each of the resulting sentences, say

∀x1∀x2 . . .P(x1, f1(x1), x2, f2(x1, x2), . . . )

using different Skolem function symbols for different sentences.
3. Put each quantifier free matrix P into conjunctive normal form, say

P1 ∧ P2 ∧ . . . ∧ Pn

where each Pi is a disjunction of literals.
4. Distribute the universal quantifiers in each sentence across the con-

junctions and drop the conjunction signs, ending with a set of sen-
tences of the form

∀x1∀x2 . . . Pi

5. Change the bound variables in each of the resulting sentences so that
no variable appears in two of them.

6. Turn each of the resulting sentences into a set of literals by dropping
the universal quantifiers and disjunction signs. In this way we end up
with a set of resolution clauses.

7. Use resolution and unification to resolve this set of clauses.

Rather than explain this in great detail, which would take us beyond the
scope of this book, let’s look at a few examples.
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Example. Suppose you want to show that ∀x P(x, b) and ∀y ¬P(f(y),b) are
not jointly fo-satisfiable, that is, that their conjunction is not fo-satisfiable.
With this example, we can skip right to step 6, giving us two clauses, each
consisting of one literal. Since we can unify x and f(y), we see that these two
clauses resolve to ¤.

Example. Suppose we are told that the following are both true:

∀x (P(x, b) ∨ Q(x))
∀y (¬P(f(y), b) ∨ Q(y))

and we want to derive the sentence,

∀y (Q(y) ∨ Q(f(y)))

To show that this sentence is a first-order consequence of the first two, we
need to show that those sentences together with the negation of this sentence
are not simultaneously fo-satisfiable. We begin by putting this negation into
prenex form:

∃y (¬Q(y) ∧ ¬Q(f(y)))

We now want to Skolemize this sentence. Since the existential quantifier in
our sentence is not preceded by any universal quantifiers, to Skolemize this
sentence we replace the variable y by a 0-ary function symbol, that is, an
individual constant:

¬Q(c) ∧ ¬Q(f(c)))

Dropping the conjunction gives us the following two sentences:

¬Q(c)
¬Q(f(c))

We now have four sentences to which we can apply step 6. This yields the
following four clauses:

1. {P(x, b),Q(x)}
2. {¬P(f(y), b),Q(y)}
3. {¬Q(c)}
4. {¬Q(f(c))}

Applying resolution to these shows that they are not fo-satisfiable. Here is a
step-by-step derivation of the empty clause.

Resolvent Resolved Clauses Substitution
5. {Q(y), Q(f(y))} 1, 2 f(y) for x
6. {Q(f(c))} 3, 5 c for y
7. ¤ 4, 6 none needed
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Example. Let’s look at one more example that shows the whole method at
work. Consider the two English sentences:

1. Everyone admires someone who admires them unless they admire
Quaid.

2. There are people who admire each other, at least one of whom admires
Quaid.

Suppose we want to use resolution to show that under one plausible reading of
these sentences, (2) is a first-order consequence of (1). The readings we have
in mind are the following, writing A(x, y) for Admires(x, y), and using q for the
name Quaid:

(S1) ∀x [¬A(x, q) → ∃y (A(x, y) ∧ A(y, x))]
(S2) ∃x ∃y [A(x, q) ∧ A(x, y) ∧ A(y, x)]

(When you figure out why S1 logically entails S2 in Problem 18.27, you may
decide that these are not reasonable translations of the English. But that is
beside the point here.)

Our goal is to show that S1 and ¬S2 are not jointly fo-satisfiable. The
sentence ¬S2 is equivalent to the following universal sentence, by DeMorgan’s
Laws:

∀x ∀y (¬A(x, q) ∨ ¬A(x, y) ∨ ¬A(y, x))

The sentence S1 is not logically equivalent to a universal sentence, so we
must Skolemize it. First, note that it is equivalent to the prenex form:

∀x ∃y [A(x, q) ∨ (A(x, y) ∧ A(y, x))]

Skolemizing, we get the universal sentence,

∀x [A(x, q) ∨ (A(x, f(x)) ∧ A(f(x), x))]

Putting the quantifier-free part of this in conjunctive normal form gives us:

∀x [(A(x,q) ∨ A(x, f(x))) ∧ (A(x, q) ∨ A(f(x), x))]

This in turn is logically equivalent to the conjunction of the following two
sentences:

∀x [A(x,q) ∨ A(x, f(x))]
∀x [A(x,q) ∨ A(f(x), x))]

Next, we change variables so that no variable is used in two sentences, drop
the universal quantifiers, and form clauses from the results. This leaves us
with the following three clauses:
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1. {A(x, q),A(x, f(x))}
2. {A(y, q), A(f(y), y)}
3. {¬A(z, q), ¬A(z, w), ¬A(w, z)}

Finally, we apply resolution to derive the empty clause.

Resolvent Resolved Clauses Substitution
4. {A(q, f(q))} 1, 3 q for w, x, z
5. {A(f(q), q)} 2, 3 q for w, y, z
6. {¬A(q, f(q))} 3, 5 f(q) for z, q for w
7. ¤ 4, 6 none needed

The FO Con routine of Fitch

The resolution method provides us with a way to try to demonstrate logicalautomated deduction
consequence that is really rather different from giving an informal proof, or
even giving a formal proof in a system like F that models normal informal
methods. What it really involves is trying to build a counterexample to a claim
of first-order consequence. If the method finds an insurmountable obstacle
to building such a counterexample, in the form of ¤, then it declares the
conclusion a first-order consequence of the premises.

Methods like this turn out to be much more tractable to implement on
computers than trying to find a natural proof in a system like F . The reason
is that one can set things up in a systematic way, rather than requiring the
kind of semantic insight that is needed in giving proofs. After all, computers
cannot, at least not yet, really pay attention to the meanings of sentences, the
way we can.

You have learned that Fitch has a routine, FO Con, that checks for first-FO Con routine
order consequence. While it does not actually use resolution, it uses a method
that is very similar in spirit. It basically tries to build a first-order structure
that is a counterexample to the claim of consequence. If it finds an obstruction
to building such a structure, then it declares the inference valid. Of course
sometimes it is able to build such a counterexample. In these cases, it declares
the inference invalid. And then sometimes it simply runs out of steam, room,
or time, and, like the best of us, gives up.

Exercises

18.27
✎?

Give an informal proof that S2 is a log-
ical consequence of S1.

18.28
✎

Give an informal proof that the sentence
given as a prenex form of S1 really is
logically equivalent to it.
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18.29
✎

There are usually many ways to proceed
in resolution. In our derivation of ¤ in
the last two examples, we chose optimal
derivations. Work out different deriva-
tions for both.

18.30
✎

Use the resolution method to show that
the following sentence is a logical truth:

∃x (P(x) → ∀y P(y))
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Chapter 19

Completeness and
Incompleteness

This introduction to first-order logic culminates in discussions of two very
famous and important results. They are the so-called Completeness Theorem
and Incompleteness Theorem of fol. Both are due to the logician Kurt Gödel,
no doubt the greatest logician yet. We present a complete proof of the first,
together with a explanation of the second, with just a sketch of its proof.

In this book you have learned the main techniques for giving proofs that
one statement is a logical consequence of others. There were simple valid rea-
soning steps and more intricate methods of proof, like proof by contradiction
or the method of general conditional proof. But the definition of logical con-
sequence was fundamentally a semantic one: S is a logical consequence of
premises P1,. . . ,Pn if there is no way for the premises to be true without the
conclusion also being true. The question arises as to whether the methods of
proof we have given are sufficient to prove everything we would like to prove.
Can we be sure that if S is a logical consequence of P1,. . . ,Pn, then we can
find a proof of S from P1,. . . ,Pn?

The answer is both yes and no, depending on just how we make the notion
of logical consequence precise, and what language we are looking at.

The answer to our question is yes if by logical consequence we mean first-
order consequence. Gödel’s Completeness Theorem for fol assures us that if SGödel’s Completeness

Theorem is a first-order consequence of some set T of first-order sentences then there is
a formal proof of S using only premises from T . The main goal of this chapter
is to give a full proof of this important result. The first such completeness
proof was given by Gödel in his dissertation in 1929. (His proof was actually
about a somewhat different formal system, one used by Bertrand Russell and
Alfred North Whitehead in their famous work Pincipia Mathematica, but the
formal systems have the same power.)

Suppose, though, that we are using some specific first-order language and
we are interested in the logical consequence relation where the meaning of the
predicates of the language is taken into account. Do we need other methods
of proof? If so, can these somehow be reduced to those we have studied? OrGödel’s Incompleteness

Theorem is it conceivable that there simply is no complete formal system that captures
the notion of logical consequence for some languages? We will return to these
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questions at the end of the chapter, with a discussion of interpreted languages
and Gödel’s Incompleteness Theorem.

Section 19.1

The Completeness Theorem for fol

The first few sections of this chapter are devoted to giving a complete proof
of the Gödel Completeness Theorem just referred to. We use the terms “the-
ory” and “set of sentences” interchangeably. (Some authors reserve the term theories
“theory” for a set of first-order sentences which is “closed under provability,”
that is, satisfying the condition that if T ` S then S ∈ T .) In this section we
write T ` S to mean there is a proof of S from the theory T in the full system T ` S
F .1 As mentioned in Chapter 17, this notation does not mean that all the
sentences in T have to be used in the formal proof of S, only that there is
a proof of S whose premises are all elements of T . In particular, the set T
could be infinite (as in the case of proofs from zfc or pa) whereas only a finite
number of premises can be used in any one proof. This notation allows us to
state the Completeness Theorem as follows.

Theorem (Completeness Theorem for F). Let T be a set of sentences of a Completeness Theorem
for Ffirst-order language L and let S be a sentence of the same language. If S is a

first-order consequence of T , then T ` S.

Exactly as in the case of propositional logic, we obtain the following as an
immediate consequence of the Completeness Theorem.

Theorem (Compactness Theorem for fol). Let T be a set of sentences of Compactness Theorem
a first-order language L. If for each finite subset of T there is a first-order
structure making this subset of T true, then there are first-order structures
M that makes all the sentences of T true.

The Completeness Theorem for fol was first established by Kurt Gödel, as
we mentioned above. The proof of the Completeness Theorem for first-order
consequence is, as we shall see, considerably subtler than for tautological
consequence. The proof we give here is simpler than Gödel’s original, though,
and is based on a proof known as the Henkin method, named after the logician Henkin method
Leon Henkin who discovered it.

Recall from Section 10.1 that the truth table method is too blunt to take
account of the meaning of either the quantifiers ∀ and ∃ or the identity symbol

1Recall that the formal proof system F includes all the introduction and elimination
rules, but not the Con procedures.
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=. In Exercise 18.12, we illustrated this defect. We noted there, for exam-
ple, that there are truth assignments that assign true to both the sentences
Cube(b) and ¬∃x Cube(x) (since from the point of view of propositional logic,
∃x Cube(x) is an atomic sentence unrelated to Cube(b)), whereas no first-order
structure can make both of these sentences true.

Henkin’s method finds a clever way to isolate the exact gap between the
first-order validities and the tautologies by means of a set of fol sentences H.
In a sense that we will make precise, H captures exactly what the truth table
method misses about the quantifiers and identity.2 For example, H will contain
the sentence Cube(b) → ∃x Cube(x), thereby ruling out truth assignments like
those mentioned above that assign true to both Cube(b) and ¬∃x Cube(x).

Here is an outline of our version of Henkin’s proof.

Adding witnessing constants: Let L be a fixed first-order language. Wewitnessing constants
want to prove that if a sentence S of L is a first-order consequence of
a set T of L sentences, then T ` S. The first step is to enrich L to
a language LH with infinitely many new constant symbols, known as
witnessing constants, in a particular manner.

The Henkin theory: We next isolate a particular theory H in the enrichedHenkin theory (H)
language LH . This theory consists of various sentences which are not
tautologies but are theorems of first-order logic, plus some additional
sentences known as Henkin witnessing axioms. The latter take the form
∃x P(x) → P(c) where c is a witnessing constant. The particular constant
is chosen carefully so as to make the Henkin Construction Lemma and
Elimination Theorem (described next) true.

The Elimination Theorem: The Henkin theory is weak enough, and theElimination Theorem
formal system F strong enough, to allow us to prove the following (The-
orem 19.4): Let p be any formal first-order proof whose premises are all
either sentences of L or sentences from H, with a conclusion that is also
a sentence of L. We can eliminate the premises from H from this proof in
favor of uses of the quantifier rules. More precisely, there exists a formal
proof p′ whose premises are those premises of p that are sentences of L

and with the same conclusion as p.

The Henkin Construction: On the other hand, the Henkin theory is strongHenkin construction
enough, and the notion of first-order structure wide enough, to allow us
to prove the following result (Theorem 19.5): for every truth assignment

2This remark will be further illustrated by Exercises 19.3–19.5, 19.17 and 19.18, which
we strongly encourage you to do when you get to them. They will really help you understand
the whole proof.
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h that assigns true to all wffs in H there is a first-order structure Mh

such that Mh |= S for all first-order sentences S assigned true by h.
This construction of the structure Mh from the truth assignment h is
sometimes called the Henkin construction. final steps

Let us show how we can use these results to prove the Completeness
Theorem. Assume that T and S are all from the original language L

and that S is a first-order consequence of T . We want to prove that
T ` S. By assumption, there can be no first-order structure in which all
of T ∪ {¬S} is true. By the Henkin Construction there can be no truth
assignment h which assigns true to all sentences in T ∪ H ∪ {¬S}; if
there were, then the first-order structure Mh would make T ∪ {¬S} true.
Hence S is a tautological consequence of T ∪ H.3 The Completeness
Theorem for propositional logic tells us there is a formal proof p of S
from T ∪ H. The Elimination Theorem tells us that using the quantifier
rules, we can transform p into a formal proof p′ of S from premises in
T . Hence, T ` S, as desired.

The next few sections of this chapter are devoted to filling in the details
of this outline. We label the sections to match the names used in our outline.

Section 19.2

Adding witnessing constants

Given any first-order language K, we construct a new first-order language K ′.
The language K ′ will have the same symbols as K except that it will have a
lot of new constant symbols. For example, if K is our blocks language, then
in K′ will be able to say things like the following:

1. ∃x (Small(x) ∧ Cube(x)) → Small(c1) ∧ Cube(c1)

2. ∃z (z 6= a ∧ z 6= b) → (c2 6= a ∧ c3 6= b)

3. ∃y Between(y, a,b) → Between(c3, a, b)

4. ∃x ∃y Between(a, x, y) → ∃y Between(a, c4, y)

More generally, for each wff P of L with exactly one free variable, form a new
constant symbol cP, making sure to form different names for different wffs.
This constant is called the witnessing constant for P. witnessing constant

for P3In this chapter we are using the notions of tautology and tautological consequence
defined in Section 10.1, in which every sentence starting with a quantifier is treated as
atomic.
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You might wonder just how we can form all these new constant symbols.
How do we write them down and how do we make sure that distinct wffs
get distinct witnessing constants? Good question. There are various ways we
could arrange this. One is simply to use a single symbol c not in the language
K and have the new symbol be the expression c with the wff as a subscript.
Thus, for example, in our above list, the constant symbol c1 would really be
the symbol

c(Small(x)∧Cube(x))

This is a pretty awkward symbol to write down, but it at least shows us how
we could arrange things in principle.

The language K ′ consists of all the symbols of K plus all these new wit-the language K ′

nessing constants. Now that we have all these new constant symbols, we can
use them in wffs. For example, the language K ′ allows us to form sentences
like

Smaller(a, cBetween(x,a,b))

But then we also have sentences like

∃x Smaller(x, cBetween(x,a,b))

so we would like to have a witnessing constant symbol subscripted by

Smaller(x, cBetween(x,a,b))

Unfortunately, this wff , while in K ′, is not in our original language K, so we
have not added a witnessing constant for it in forming K ′.

Bummer. Well, all is not lost. What we have to do is to iterate this con-
struction over and over again. Starting with a language L, we define an infinite
sequence of larger and larger languages

L0 ⊆ L1 ⊆ L2 ⊆ . . .

where L0 = L and Ln+1 = L′
n. That is, the language Ln+1 results by applying

the above construction to the language Ln. Finally, the Henkin language LHthe Henkin language
LH for L consists of all the symbols of Ln for any n = 0, 1,2, 3, . . ..

Each witnessing constant cP is introduced at a certain stage n ≥ 1 of this
construction. Let us call that stage the date of birth of cP. When we come todate of birth of

witnessing constants proving the Elimination Theorem it will be crucial to remember the following
fact, which is obvious from the construction of LH .

Lemma 1. (Date of Birth Lemma) Let n + 1 be the date of birth of cP. If Q
is any wff of the language Ln, then cP does not appear in Q.
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Exercises

19.1
✎

This exercise and its companion (Exercise 19.2) are intended to give you a better feel for why
we have to keep iterating the witnessing constant construction. It deals with the constants that
would turn out to be important if our original set T contained the sentence ∀x ∃y Larger(x, y).
Write out the witnessing constants for the following wffs, keeping track of their dates of birth.
The constant symbol a is taken from the original language L.

1. Larger(a, x)
2. Larger(c1, x), where c1 is your constant from 1.
3. Larger(c2, x), where c2 is your constant from 2.
4. Larger(c3, x), where c3 is your constant from 3.

Section 19.3

The Henkin theory

We have added witnessing constants for each wff P with exactly one free
variable. The free variable of P is going to be important in what follows so we
often write the wff in a way that reminds us of the free variable, namely, as
P(x).4 Consequently, its witnessing constant is now denoted by cP(x). Notice
that by iterating our construction infinitely often, we have managed to arrange
things so that for each wff P(x) of LH with exactly one free variable, the
witnessing constant cP(x) is also in LH . This allows us to form the sentence

∃x P(x) → P(cP(x))

in LH . This sentence is known as the Henkin witnessing axiom for P(x). The witnessing axioms
intuitive idea is that ∃x P(x) → P(cP(x)) asserts that if there is something that
satisfies P(x), then the object named by cP(x) provides an example (or “wit-
ness”) of one such.

Lemma 2. (Independence lemma) If cP and cQ are two witnessing constants
and the date of birth of cP is less than or equal to that of cQ, then cQ does
not appear in the witnessing axiom of cP.

Proof: If the date of birth of cP is less than that of cQ, the result
follows from the date of birth lemma. If they have the same date

4Really, we should be writing this as P(ν), where ν can be any of the variables of our
language, not just the variable x. We are using x here as a representative variable of our
language.
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of birth, it follows from the fact that different wffs of a language K

have distinct new witnessing constants in K ′.

Definition The Henkin theory H consists of all sentences of the following fiveHenkin theory H
forms, where c and d are any constants and P(x) is any formula (with exactly
one free variable) of the language LH :

H1: All Henkin witnessing axioms

∃x P(x) → P(cP(x))

H2: All sentences of the form

P(c) → ∃x P(x)

H3: All sentences of the form

¬∀x P(x) ↔ ∃x ¬P(x)

H4: All sentences of the form
c = c

H5: All sentences of the form

(P(c) ∧ c = d) → P(d)

Notice that there is a parallel between these sentences of H and the quan-connection to
quantifier rules tifier and identity rules of F :

◦ H1 corresponds roughly to ∃ Elim, in that both are justified by the
same intuition,

◦ H2 corresponds to ∃ Intro,

◦ H3 reduces ∀ to ∃,

◦ H4 corresponds to = Intro, and

◦ H5 corresponds to = Elim.

Just what this correspondence amounts to is a bit different in the various cases.
For example, the axioms of types H2-H5 are all first-order validities, while this
is not true of H1, of course. The witnessing axioms make substantive claims
about the interpretations of the witnessing constants. The following result,
while not needed in the proof of completeness, does explain why the rest of
the proof has a chance of working.
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Proposition 3. Let M be any first-order structure for L. There is a way to
interpret all the witnessing constants in the universe of M so that, under this
interpretation, all the sentences of H are true.

Proof: (Sketch) The basic idea of the proof is that if M |= ∃x P(x),
then pick any element b of the domain that satisfies P(x) and let the
witnessing constant cP(x) name b. If M |= ¬∃x P(x), then let cP(x)

name any fixed element of the domain. This takes care of the axioms
of type H1. As for the other axioms, they are all logical truths, and
so will turn out to be true no matter how we interpret the new
constants.

The proof of Proposition 3 is illustrated in Exercise 19.6. The proposition
shows that our strategy has a chance of working by allowing us to show that
even though the theory H says substantive things about the witnessing con-
stants, it does not add any substantive new claims that can be formulated
in the original language L. More precisely (as we ask you to show in Exer-
cise 19.9) if a sentence S of L is a first-order consequence of T ∪ H, then it
is a first-order consequence of T alone. This at least makes the Elimination
Theorem plausible.

Exercises

19.2
✎

Write out the witnessing axioms associated with the wffs in Exercise 19.1.

The next three exercises are designed to help you understand how the theory H fills the gap between
tautological and first-order consequence. For these exercises we take L to be the blocks language and T
to consist of the following set of sentences:

T = {Cube(a), Small(a), ∃x (Cube(x) ∧ Small(x)) → ∃y Dodec(y)}

19.3
✎

Give informal proofs that both of the
following are first-order consequences of
T :

1. ∃x (Cube(x) ∧ Small(x))
2. ∃y Dodec(y)

19.4
✎

Give informal proofs that none of the
following is a tautological consequence
of T :

1. ∃x (Cube(x) ∧ Small(x))
2. ∃y Dodec(y)
3. Dodec(cDodec(y))

19.5
✎

Give informal proofs that the sentences
in Exercise 19.4 are all tautological con-
sequences of T ∪ H.

Section 19.3



534 / Completeness and Incompleteness

19.6
➶|✎

Use Tarski’s World to open Henkin’s Sentences. Take the constants c and d as shorthand for
the witnessing constant cCube(x) and cDodec(x)∧Small(x), respectively.

1. Show that these sentences are all members of H. Identify the form of each axiom from
our definition of H.

2. By (1) and Proposition 3, any world in which c and d are not used as names can be
turned into a world where all these sentences are true. Open Henkin’s World. Name some
blocks c and d in such a way that all the sentences are true. Submit this world.

19.7
✎

Show that for every constant symbol c of LH there is a distinct witnessing constant d such
that c = d is a tautological consequence of H. [Hint: consider the wff c = x.]

19.8
✎

Show that for every binary relation symbol R of L and all constants c, c′, d, and d′ of LH , the
following is a tautological consequence of H:

(R(c, d) ∧ c = c′ ∧ d = d′) → R(c′, d′)

[Hint: Notice that (R(c,d) ∧ c = c′) → R(c′, d) is one of the H5 axioms of H. So is
(R(c′, d) ∧ d = d′) → R(c′, d′). Show that the desired sentence is a tautological consequence
of these two sentences and hence a tautological consequence of H.]

19.9
✎

Let T be a theory of L. Use Proposition 3 (but without using the Completeness Theorem or
the Elimination Theorem) to show that if a sentence S of L is a first-order consequence of
T ∪ H, then it is a first-order consequence of T alone.

Section 19.4

The Elimination Theorem

It follows from Proposition 3 that if a sentence S of L is a first-order conse-
quence of T ∪ H, then it is a first-order consequence of T alone. (This is what
you established in Exercise 19.9.) This result shows that we’ve constructed H
in such a way that it doesn’t add any substantive new claims, things that give
us new first-order consequences (in L) of T . The Elimination Theorem shows
us that our deductive system is strong enough to give us a similar result on
the formal system side of things.

Proposition 4. (The Elimination Theorem) Let p be any formal first-orderElimination Theorem
proof with a conclusion S that is a sentence of L and whose premises are
sentences P1, . . . , Pn of L plus sentences from H. There exists a formal proof
p′ of S with premises P1, . . . , Pn alone.
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The proof of this result will take up this section. We break the proof down
into a number of lemmas.

Proposition 5. (Deduction Theorem). If T ∪ {P} ` Q then T ` P → Q Deduction Theorem

The proof of this is very similar to the proof of Lemma 17.2 and is left as an
exercise. It is also illustrated by the following.

You try it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

J1. Open Deduction Thm 1. This contains a formal first-order proof of the
following argument:

∀x (Dodec(x) → ∃y Adjoins(x, y))
∀x Dodec(x)

∀x ∃y ∃z (Adjoins(x, y) ∧ Adjoins(y, z))

According to the deduction theorem, we should be able to give a proof of

∀x (Dodec(x) → ∃y Adjoins(x, y))

∀x Dodec(x) → ∀x ∃y ∃z (Adjoins(x, y) ∧ Adjoins(y, z))

We will show you how to do this.

J2. Open Proof Deduction Thm 1, which contains only the first premise from
the file Deduction Thm 1. We’ll construct the desired proof in this file.

J3. For the first step of the new proof, start a subproof with ∀x Dodec(x) as
premise.

J4. Now using Copy and Paste, copy the entire proof (but not the premises)
from Deduction Thm 1 into the subproof you just created in Proof Deduction
Thm 1. After you paste the proof, verify it. You’ll see that you need to
add some support citations to get all the steps to check out, but you can
easily do this.

J5. End the subproof and use → Intro to obtain the desired conclusion. Save
your completed proof as Proof Deduction Thm 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Congratulations

The following is proven using the Deduction Theorem and modus ponens
repeatedly to get rid of each of the Pi. The details are left as an exercise.
Proposition 6. If T ∪ {P1, . . . ,Pn} ` Q and, for each i = 1, . . . , n, T ` Pi

then T ` Q.
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The main step in our proof of the Elimination Theorem is Lemma 9;
Lemmas 7 and 8 help in the proof of Lemma 9. Used judiciously, Lemma 9
will allow us to eliminate the Henkin witnessing axioms from proofs.

Lemma 7. Let T be a set of first-order sentences of some first-order languagetwo simple facts
L, and let P, Q, and R be sentences of L.

1. If T ` P → Q and T ` ¬P → Q then T ` Q.

2. If T ` (P → Q) → R then T ` ¬P → R and T ` Q → R.

Proof: (1) We have already seen that P ∨ ¬P is provable without
any premises at all. Hence, T ` P ∨ ¬P. Thus, our result will follow
from Proposition 6 if we can show that the following argument has
a proof in F :

P ∨ ¬P
P → Q
¬P → Q

Q

But this is obvious by ∨ Elim.

The proof of (2) is similar, using Exercises 19.12 and 19.13.

The following lemma shows how certain constants in proofs can be replaced
by quantifiers, using the rule of ∃ Elim.

Lemma 8. Let T be a set of first-order sentences of some first-order languagereplacing constants
with quantifiers L and let Q be a sentence. Let P(x) be a wff of L with one free variable and

which does not contain c. If T ` P(c) → Q and c does not appear in T or Q,
then T ` ∃x P(x) → Q.

Proof: Assume that T ` P(c) → Q, where c is a constant that does
not appear in T or Q. It is easy to see that for any other constant
d not in T , P(x), or Q, T ` P(d) → Q. Just take the original proof
p and replace c by d throughout; if d happened to appear in the
original proof, replace it by some other new constant, c if you like.
Let us now give an informal proof, from T , of the desired conclusion
∃x P(x) → Q, being careful to do it in a way that is easily formalizable
in F .

Using the method of → Intro, we take ∃x P(x) as a premise
and try to prove Q. Toward this end, we use the rule of
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∃ Elim. Let d be a new constant and assume P(d). But by
our first observation, we know we can prove P(d) → Q. By
modus ponens (→ Elim), we obtain Q as desired.

This informal proof can clearly be formalized within F , establishing
our result. (Exercise 19.16 illustrates this method.)

By combining Lemmas 7 and 8, we can prove the following, which is just
what we need to eliminate the Henkin witnessing axioms.

Lemma 9. Let T be a set of first-order sentences of some first-order language eliminating witnessing
axiomsL and let Q be a sentence of L. Let P(x) be a wff of L with one free variable

which does not contain c. If T ∪ {∃x P(x) → P(c)} ` Q and c does not appear
in T or Q, then T ` Q.

Proof: Assume T ∪ {∃x P(x) → P(c)} ` Q, where c is a constant that
does not appear in T or Q. By the Deduction Theorem,

T ` (∃x P(x) → P(c)) → Q

By (2) of Lemma 7,
T ` ¬∃x P(x) → Q

and
T ` P(c) → Q

From the latter, using (1) of Lemma 8, we obtain T ` ∃x P(x) → Q.
Then by (1) of Lemma 7, T ` Q.

Lemma 9 will allow us to eliminate the Henkin witnessing axioms from
formal proofs. But what about the other sentences in H? In conjunction with
Lemma 6, the next result will allow us to eliminate these as well.

Lemma 10. Let T be a set of first-order sentences, let P(x) be a wff with eliminating other
members of Hone free variable, and let c and d be constant symbols. The following are all

provable in F :
P(c) → ∃x P(x)

¬∀x P(x) ↔ ∃x ¬P(x)

(P(c) ∧ c = d) → P(d)

c = c
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Proof: The only one of these that is not quite obvious from the
rules of inference of F is the DeMorgan biconditional. We essentially
proved half of this biconditional on page 355, and gave you the other
half as Exercise 19.44.

We have now assembled the tools we need to prove the Elimination The-
orem.

Proof of the Elimination Theorem. Let k be any natural numberproof of Elimination
Theorem and let p be any formal first-order proof of a conclusion in L, all of

whose premises are all either sentences of L or sentences from H, and
such that there are at most k from H. We show how to eliminate
those premises that are members of H. The proof is by induction
on k. The basis case is where k = 0. But then there is nothing to
eliminate, so we are done. Let us assume the result for k and prove
it for k + 1. The proof breaks into two cases.

Case 1: At least one of the premises to be eliminated, say P, is
of one of the forms mentioned in Lemma 10. But then P can be
eliminated by Lemma 6 giving us a proof with at most k premises
to be eliminated, which we can do by the induction hypothesis.

Case 2: All of the premises to be eliminated are Henkin witnessing
axioms. The basic idea is to eliminate witnessing axioms introducing
young witnessing constants before eliminating their elders. Pick the
premise of the form ∃x P(x) → P(c) whose witnessing constant c is
as young as any of the witnessing constants mentioned in the set of
premises to be eliminated. That is, the date of birth n of c is greater
than or equal to that of any of witnessing constants mentioned in
the premises. This is possible since there are only finitely many such
premises. By the independence lemma, c is not mentioned in any of
the other premises to be eliminated. Hence, c is not mentioned in any
of the premises or in the conclusion. By Lemma 9, ∃x P(x) → P(c)
can be eliminated. This gets us to a proof with at most k premises
to be eliminated, which we can do by our induction hypothesis.

Exercises

19.10
➶

If you skipped the You try it section, go back and do it now. Submit the file Proof Deduction
Thm 1.
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Give formal proofs of the following arguments. Because these results are used in the proof of Complete-
ness, do not use any of the Con rules in your proofs.

19.11
➶

P → Q
¬P → Q

Q

19.12
➶

(P → Q) → R

¬P → R

19.13
➶

(P → Q) → R

Q → R

19.14
✎

Prove the Deduction Theorem (Proposition 5). [Hint: The proof of this is very similar to the
proof of Lemma 17.2.]

19.15
✎

Prove Proposition 6. [Hint: Use induction on n and the Deduction Theorem.]

19.16
➶

Use Fitch to open Exercise 19.16. Here you will find a first-order proof of the following argument:

∀x (Cube(x) → Small(x))
∀x ∀y (x = y)

Cube(b) → ∀x Small(x)

Using the method of Lemma 8, transform this proof into a proof of

∀x (Cube(x) → Small(x))
∀x ∀y (x = y)

∃y Cube(y) → ∀x Small(x)

Submit your proof as Proof 19.16.

19.17
➶

Open Exercise 19.17. This file contains the following argument:

∀x (Cube(x) → Small(x))
∃x Cube(x)
∃x Cube(x) → Cube(c)
Small(c) → ∃x Small(x)
¬(Cube(c) → Small(c)) → ∃x ¬(Cube(x) → Small(x))
¬∀x (Cube(x) → Small(x)) ↔ ∃x ¬(Cube(x) → Small(x))

∃x Small(x)

First use Taut Con to show that the conclusion is a tautological consequence of the premises.
Having convinced yourself, delete this step and give a proof of the conclusion that uses only
the propositional rules.
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19.18
➶

Open Exercise 19.17 again. Take the constant c as shorthand for the witnessing constant cCube(x).
Take T to be the first two premises of this proof. We saw in Exercise 19.6 that the other
sentences are all members of H. The Elimination Theorem thus applies to show that you could
transform your proof from the preceding exercise into a proof from the first two premises, one
that does not need the remaining premises. Open Exercise 19.18 and give such a proof. [If you
were to actually transform your previous proof, using the method we gave, the result would be
a very long proof indeed. You’ll be far better off giving a new, direct proof.]

Section 19.5

The Henkin Construction

Proposition 3 allows us to take any first-order structure for L and get from it
one for LH that makes all the same sentences true. This, of course, gives rise
to a truth assignment h to all the sentences of LH that respects the truth-
functional connectives: just assign true to all the sentences that are true
in the structure, false to the others. (You may recall that you were asked
to prove this in Exercise 18.11.) The main step in the Henkin proof of the
Completeness Theorem is to show that we can reverse this process.

Theorem (Henkin Construction Lemma) Let h be any truth assignment forHenkin Construction
Lemma LH that assigns true to all the sentences of the Henkin theory H. There is a

first-order structure Mh such that Mh |= S for all sentences S assigned true

by the assignment h.

In giving the proof of this result, we will assume that our language L

contains only relation symbols and constants, no function symbols. We will
return at the end to explain how to modify the proof if there are function
symbols. The proof of this theorem has two parts. We must first show how
to construct Mh from h and then show that Mh does indeed make true all
the sentences to which h assigned true. To construct Mh, we must do threeconstructing Mh

things. We must define the domain D of Mh, we must assign to each n-ary
relation symbol R some set R of n-tuples from D, and we must assign to
each name c of LH some element of D. We first give the basic idea of the
construction. This idea won’t quite work, so it will have to be modified, but
it’s useful to see the flawed idea before digging into the details that correct
the flaw.

The basic (flawed) idea in constructing the first-order structure M is to
use the construction of Exercise 18.12, but to count on the fact that h assigns
true to all the sentences in H to get us past the quantifiers. In more detail,
we build M as follows:
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◦ For the domain of M, use the set of constant symbols of LH .

◦ Let each constant be a name of itself.

◦ To specify the interpretation of a (binary, say) relation symbol R, take
the set R of pairs 〈c, d〉 of constant symbols such that h assigns true

to the sentence R(c,d).

This defines a perfectly good first-order structure M. We would like to be
able to prove that M makes true all and only the sentences to which h assigns
true. That is, we would like to show that for any sentence S of LH , M |= S if
and only if h(S) = true. The natural way to prove this would be by induction
on the complexity of the sentence S. Many of the details of the proof work
out. The main problem has to do with identity statements! The problem is a problem: identity
that inevitably there are distinct constants c and d such that h assigns true
to c = d. (See Exercise 19.7.) But M makes this sentence false since c and d
are distinct and name themselves.

This problem is one that is quite familiar in mathematical situations. What
we need to do is to form what mathematicians call a “quotient” of M. What
this means is that we must “identify” various elements that M considers dis-
tinct. This is just the sort of thing that equivalence relations and equivalence equivalence classes to

the rescueclasses (studied in Chapter 15) are designed to do, and is the reason we in-
cluded them in our discussion of sets.

Define a binary relation ≡ on the domain of M (i.e. on the constants of
LH ) as follows:

c ≡ d if and only if h(c = d) = true.

Lemma 11. The relation ≡ is an equivalence relation.

Proof: This follows immediately from Exercise 19.20.

From this it follows that we can associate with each constant c its equiv-
alence class

[c] = {d | c ≡ d}

This allows us to define our desired first-order structure Mh: definition of Mh

◦ The domain D of our desired first-order structure Mh is the set of all
such equivalence classes.

◦ We let each constant c of LH name its own equivalence class [c].
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◦ We interpret relation symbols R as follows. For this definition let’s again
assume that R is binary, just to make the notation simpler. Then the
interpretation of R is the set

{〈[c], [d]〉 | h(R(c, d)) = true}

It you think about it a second, you will see that there is something not quite
clear about the definition of R in the last item. We have to say which pairs
〈a, b〉 of equivalence classes are in this relation. What happens if a = [c] = [c′]
and b = [d] = [d′]? If we had h(R(c, d)) = true but h(R(c′, d′)) = false

our definition would not really make sense. Thus, we just make sure that this
cannot happen.

Lemma 12. If c ≡ c′, d ≡ d′ and h(R(c, d)) = true then h(R(c′,d′)) = true.

Proof: By Exercise 19.8, the following is a tautological consequence
of the Henkin theory H:

(R(c, d) ∧ c = c′ ∧ d = d′) → R(c′, d′)

Since h assigns everything in H true, and it assigns true to each
conjunct of R(c, d) ∧ c = c′ ∧ d = d′, it must also assign true to
R(c′, d′).

This lemma shows that our definition of Mh does make sense after all.
The proof of the Henkin Construction Lemma will be completed by proving
the following result.

Lemma 13. For any sentence S of LH , Mh |= S if and only if h(S) = true.the crucial lemma

Proof: The basic idea of this proof is to use induction. We have
explicitly defined the structure Mh to make sure the claim is true
for atomic sentences. Further, truth assignments work the same way
on truth-functional connectives as the definition of truth in a first-
order structure. So the only possible problems are the quantifiers and
these, we will see, are taken care of by the quantifier axioms in H.
The only mild complication to this outline is that the quantifier ∀ is
not handled directly, but indirectly through the deMorgan sentences
in H:

¬∀x P(x) ↔ ∃x ¬P(x)

What makes this a complication is that the most obvious measures
of complexity, say by length or number of logical operations, would
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count ∀x P(x) as simpler than the sentence ∃x ¬P(x), whereas any
induction proof is going to need to make sure that the latter works
out right before it can be sure that the former does. We get around
this by defining a different measure of complexity for wffs. Namely,
we define the complexity of an atomic wff to be 0, the complexity
of ¬P and ∃x P to be one greater than the complexity of P, the
complexity of P ∧ Q, P ∨ Q, and P → Q to be one greater than the
maximum of that of P and Q, but the complexity of ∀x P to be three
greater than that of P. Here is a little table showing the complexity
of some wffs in the blocks language:

wff complexity
Small(x) 0
(x = a) 0
¬(x = a) 1
Small(x) → ¬(x = a) 2
¬(Small(x) → ¬(x = a)) 3
∃x ¬(Small(x) → ¬(x = a)) 4
∀x (Small(x) → ¬(x = a)) 5

Notice that the complexity of a wff P(x) is the same as that of P(c).
(See, for example, Exercise 19.21.) With this definition of complexity,
we can prove the lemma, by induction on the complexity of sentences.
As remarked above, the case where the complexity is 0 is true by the
way we defined the structure Mh.

Assume that the lemma holds for all sentences of complexity ≤ k and
let S have complexity ≤ k + 1. There are several cases to consider,
depending on the main connective or quantifier of S. We treat one
of the truth-functional cases, as these are all similar, and then both
of the quantifier cases.

Case 1. Suppose S is P ∨ Q. If Mh |= S, then at least one of P or Q is
true. Assume that P is true. Since the complexity of S is ≤ k+1, the
complexity of P is ≤ k, so by induction hypothesis, h(P) = true. But
then h(P ∨ Q) = true, as desired. The proof in the other direction
is similar.

Case 2. Suppose that S is ∃x P(x). We need to show that Mh |=
∃x P(x) if and only if h assigns the sentence true. Assume first that
the sentence is true in Mh. Then since every object in the domain is
denoted by some constant, there is a constant c such that Mh |= P(c).
But since the complexity of this sentence is less than that of S, our
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induction hypothesis shows us that h(P(c)) = true. But now recall
that our theory H contains the sentence

P(c) → ∃x P(x)

so h assigns this sentence true. But then, by the truth table for →,
h assigns true to ∃x P(x), as desired.

The reverse direction of this case is very similar, but it uses the
Henkin witnessing axiom for P(x). Here is how it goes. Assume that
h assigns true to ∃x P(x). We need to show that Mh |= ∃x P(x). But
recall that h assigns true to the witnessing axiom

∃x P(x) → P(cP(x))

Hence, by the truth table for →, h assigns true to P(cP(x)). Hence,
by induction, this sentence is true in Mh. But then ∃x P(x) is true
as well.

Case 3. Finally, let us assume that S is ∀x P(x). We need to prove
that this sentence is true in Mh if and only if h assigns the sentence
true. Assume first that S is true in Mh. Then ∃x ¬P(x) is false in
Mh. But then, by induction, h assigns false to this sentence. But
recall that H contains the sentence

¬∀x P(x) ↔ ∃x ¬P(x)

From this it follows that h assigns false to ¬∀x P(x) and hence true

to ∀x P(x), as desired. The proof in the other direction is entirely
similar.

Function symbols If there are function symbols in the original
language, we have to explain how to interpret them in our struc-
ture. Suppose, for example, that our language contains a one-place
function symbol f. How should we define its interpretation f? In par-
ticular, if d is some constant symbol, what equivalence class should
f([d]) be? What comes to our rescue here is the witnessing constant
for the sentence

∃x [f(d) = x]

We can define f([d]) to be the equivalence class [cf(d)=x] of the wit-
nessing constant cf(d)=x. Since

∃x [f(d) = x] → f(d) = cf(d)=x
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is in H, it is not hard to check that all the details of the proof then
work out pretty much without change.

This completes our filling in of the outline of the proof of the Completeness
Theorem.

Exercises

19.19
➶|✎

Use Tarski’s World to open Henkin Construction. This file lists eight sentences. Let’s suppose
that the predicates used in these sentences (Cube, Dodec, and Small) exhaust the predicates of
L. (In particular, we banish = to avoid the complications it caused in the proof of the Henkin
Construction Lemma.) Let h be any truth assignment that assigns true to all these sentences.
Describe the first-order structure Mh. (How many objects will it have? What will they be
called? What shape and size predicates will hold of them?) Use Tarski’s World to build a world
that would be represented by this first-order structure. There will be many such. It should, of
course, make all the sentences in this list true. Submit your world.

19.20
➶

Give formal proofs of the following theorems about identity:

1. ∀x (x = x)

2. ∀x ∀y (x = y → y = x)

3. ∀x ∀y ∀x [(x = y ∧ y = z) → x = z]

19.21
✎

What are the complexities of the following wffs, where complexity is measured as in the proof
of the Henkin Construction Lemma?

1. Cube(y)
2. y = x
3. Cube(y) → y = x
4. ∀y (Cube(y) → y = x)
5. ∃x ∀y (Cube(y) → y = x)
6. y = c∀y(Cube(y)→y=x)

7. ∀y (Cube(y) → y = c∀y(Cube(y)→y=x))

19.22
✎

In the inductive proof of Lemma 13, Case 1 considered only one of the truth-functional con-
nectives, namely, ∨. Give an analogous proof that covers the case where S is of the form P ∧ Q.

19.23
✎

In the inductive proof of Lemma 13, Case 3 considered only one direction of the biconditional
for ∀. Prove the other direction.
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Section 19.6

The Löwenheim-Skolem Theorem

One of the most striking things about the proof of completeness is the na-
ture of the first-order structure Mh. Whereas our original language may bethe structure Mh

talking about physical objects, numbers, sets, what-have-you, the first-order
structure Mh that we construct by means of the Henkin construction has as
elements something quite different: equivalence classes of constant symbols.
This observation allows us to exploit the proof to establish something known
as the Löwenheim-Skolem Theorem for fol.

Recall from our discussion of infinite sets in Chapter 15 that there are
different sizes of infinite sets. The smallest infinite sets are those that have
the same size as the set of natural numbers, those that can be put in one-to-
one correspondence with the natural numbers. A set is countable if it is finite
or is the same size as the set of natural numbers. Digging into the details of
the proof of completeness lets us prove the following important theorem, due
originally to the logicians Löwenheim and Skolem. They proved it before Gödel
proved the Completeness Theorem, using a very different method. Löwenheim
proved it for single sentences, Skolem proved it for countably infinite sets of
sentences.

Theorem (Löwenheim-Skolem Theorem) Let T be a set of sentences in aLöwenheim-Skolem
Theorem countable language L. Then if T is satisfied by any first-order structure, it is

satisfied by a structure whose domain is countable.

Proof: (Sketch) By the Soundness Theorem, if T is satisfiable, then
it is formally consistent. The proof of completeness shows that if
T is formally consistent, it is true in a first-order structure of the
form Mh, for some truth assignment h for LH . Let’s assume that
our original language L is countable and ask how big the structure
Mh is. The answer to this is not hard to determine. There cannot
be any more elements of Mh than there are constant symbols in the
language LH . Each of these can be written down using the symbol
c, with subscripts involving symbols from L, though the subscripts
need to be able to be iterated arbitrary far. Still, if we can list the
symbols of L in a list, we can use this list to alphabetize all the
witnessing constants of LH . In this way, it is possible to show that
the domain of the structure Mh is countable.
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The Skolem Paradox

The Löwenheim-Skolem Theorem can seem somewhat puzzling. Consider, for
example, our axiomatization zfc of set theory. In giving these axioms, the
intended range of structures was not terribly clear. It was, roughly speaking,
the universe, or universes, of small cumulative sets. No such universe is count- the Skolem paradox
able, since each will contain among its sets at least one infinite set (by the
axiom of infinity) as well as the powerset of this set (by the powerset axiom).
But the powerset of an infinite set is uncountable. Indeed, suppose c is an
infinite set. We can prove in zfc that the powerset of c is uncountable. How
can it be, then, that the axioms zfc are true in a countable structure, as the
Löwenheim-Skolem Theorem implies?

The resolution to this puzzling state of affairs rests in the nature of the resolution of paradox
structure we constructed in the proof of the Löwenheim-Skolem Theorem as
applied to zfc. As we noted, it is a structure Mh built out of equivalence
classes of constant symbols. It is not at all one of the intended structures we
had in mind in axiomatizing set theory. If we look at this structure, we will
find that it does contain elements which purport to be powersets of infinite
sets. Suppose b and c are members of the domain, where b and c satisfy the
wff “x is the powerset of y and y is infinite.” The “set” b will contain various
“elements,” each of which can be seen as corresponding to a set of “elements”
of c. (Remember that the members of the domain of Mh are really equivalence
classes of constants. When we speak of the “elements” of b, we do not mean
the members of this equivalence class, but rather the members d of the domain
such that d and b satisfy the wff x ∈ y in Mh. This is why we are using scare
quotes around “set,” “element,” and so forth.) But most sets of “elements”
of c will not correspond to anything in b.

Another way of understanding what is going on in Mh is to think about
the definition of a countable set. An infinite set b is countable if there is a one-
to-one function from the set of natural numbers onto b. From outside Mh, we
can see that there is such a function enumerating b, but this function does not
correspond to anything in the structure Mh. That is, there is no “function”
in Mh that enumerates b.

The lesson to be learned from the application of the Löwenheim-Skolem lesson of paradox
Theorem to zfc is that the first-order language of set theory is not rich enough
to be able to capture various concepts that we implicitly assume when thinking
about the intended universe of set theory. In fact, the key concept that we
cannot adequately express is the notion of an arbitrary subset of a set, or
what comes to the same thing, the notion of the powerset of a set. When
we define powerset in the first-order language, no first-order axioms can rule
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out structures, like Mh, in which “powerset” means something quite different
from the intended notion. While more subtle, this is not unlike the fact that
our shape axioms do not rule out structures in which Tet, Cube, Dodec, and
SameShape mean small, medium, large, and same size.

Section 19.7

The Compactness Theorem

As we mentioned before, one of the immediate consequences of the Complete-
ness Theorem is the first-order Compactness Theorem:

Theorem (Compactness Theorem for fol) Let T be a set of sentences of aCompactness Theorem
first-order language L. If every finite subset of T is true in some first-order
structure, then there is a first-order structure M that makes every sentence
of T true.

This follows from Completeness for the simple reason that proofs in F are
finite and so can only use finitely many premises. If T is not satisfiable, then
(by Completeness) there is a proof of ⊥ from sentences in T , and this proof
can only use finitely many premises from T . So that subset of T can’t be
satisfiable (by Soundness).

It turns out that this theorem, like the Löwenheim-Skolem Theorem, shows
some important expressive limitations of fol. In particular, we can show
that it is impossible to come up with axioms in the first-order language of
arithmetic that characterize the structure of the natural numbers.

Theorem (Nonstandard models of arithmetic) Let L be the language of Peanononstandard models
arithmetic. There is a first-order structure M such that

1. M contains all the natural numbers in its domain,

2. M also contains elements greater than all the natural numbers, but

3. M makes true exactly the same sentences of L as are true about the
natural numbers.

Proof: (Sketch) The proof of this result is fairly easy using the
Compactness Theorem. The language of Peano arithmetic, as we
defined it in Chapter 16, did not contain a symbol for greater than,
but we can define x > y by the wff ∃z (z 6= 0 ∧ x = y + z). To say that
an element n of M is greater than all the natural numbers is to say
that n satisfies all the wffs:
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x > 0
x > 1
x > 1 + 1
x > (1 + 1) + 1

...

Let T consist of all sentences of L that are true of the natural num-
bers. Let n be a new constant symbol and let S be the set consisting
of the following sentences:

n > 0
n > 1
n > 1 + 1
n > (1 + 1) + 1

...

Let T ′ = T ∪ S. On the intended interpretation of L, the theory
T ′ is inconsistent. There is no natural number that is greater than
all of the numbers 0, 1, 2, . . . . But when it comes to first-order
consequence, T ′ is perfectly consistent, as we can see by applying
the Compactness Theorem.

To apply compactness, we need to see that any finite subset T 0 of
T ′ is true in some first-order structure. Such a theory will contain
various sentences from T , all true of the natural numbers, plus a finite
number of sentences of the form n > k where we use k as shorthand
for

(((1 + 1) + 1) + · · · + 1)︸ ︷︷ ︸
k

We can make all these sentences true in the natural numbers by
interpreting the constant symbol n as a name for some number m

that is bigger than the largest k for which n > k is in T 0. Hence, the
Compactness Theorem tells us that the whole set T ′ is true in some
first-order structure M.

The axioms of T assure us that M contains a copy of the natural
numbers (and indeed the actual natural numbers, if we replace the
interpretation of k by the number k itself). But structure M has a
“number” that is greater than all of these.

We shouldn’t get too upset or puzzled by this admittedly fascinating result.
What it shows is that there is no way to uniquely characterize arithmetic’s
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intended domain of discourse using just axioms stated in the first-order lan-what nonstandard
models show guage of arithmetic. With first-order axioms, we can’t rule out the existence

of “natural numbers” (that is, members of the domain) that are infinitely far
from zero. The distinction between being finitely far from zero, which holds
of all the genuine natural numbers, and being infinitely far from zero, which
holds of elements like n from the proof, is not one that we can make in the
first-order language.

We can recast this result by considering what would happen if we added
to our language a predicate NatNum, with the intended meaning is a natu-
ral number. If we did nothing to supplement the deductive system F , then
it would be impossible to add sufficient meaning postulates to capture the
meaning of this predicate or to prove all the consequences expressible using
the predicate. For example, if we take the set T ′ = T ∪S from the proof above,
then intuitively the sentence ¬NatNum(n) is a consequence of T ′. There can,
however, be no proof of this in F .

What would happen if we added new rules to F involving the predicate
NatNum? Could we somehow strengthen F in some way that would allow us
to prove ¬NatNum(n) from T ′? The answer is that if the strengthened proof
system allows only finite proofs and is sound with respect to the intended
structure, then our attempt is doomed to fail. Any proof of ¬NatNum(n) would
use only finitely many premises from T ′. This finite subset is satisfiable in the
natural numbers: just assign n to a large enough number. Consequently, by the
soundness of the extended proof system, ¬NatNum(n) must not be provable
from this finite subset.

While these observations are about the natural numbers, they show some-
thing very general about any language that implicitly or explicitly expresses
the concept of finiteness. For example, if the language of set theory is sup-
plemented with a predicate with the intended meaning is a finite set, the
Compactness Theorem can be used to show that there are first-order struc-
tures in which this predicate applies to infinite sets, no matter what meaning
postulates we specify for the new predicate.

For a more down-to-earth example, we could consider the first-order lan-
guage for talking about family relations. If this language has a predicate mean-
ing is an ancestor of, then however we try to capture its meaning with axioms,
we will fail. Implicit in the concept ancestor is the requirement that there are
only finitely many intermediate relatives. But since there is no fixed, finite
limit to how distant an ancestor can be, the Compactness Theorem guaran-
tees that there will be structures allowing infinitely distant ancestors.

These examples are explored in Exercises 19.30 and 19.31.
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Exercises

19.24
➶|✎

Consider the following claims:

Smaller than is irreflexive.
Smaller than is asymmetric.
Smaller than is transitive.
Larger than is the inverse of smaller than.

1. Express these claims in a Tarski’s World sentence file.
2. Verify that (the formal versions of) these claims are all verified as analytical truths by

the Ana Con routine of Fitch.
3. Give an informal argument to the effect that these form a complete set of meaning

postulates for the sublanguage of the blocks language that contains only the predicates
Cube, Smaller, and Larger.

Submit your Tarski’s World file and turn in your informal argument to your instructor. There
is no need to submit a Fitch file.

The next three exercises refer to the following list of sentences. In each exercise, give an informal
argument justifying your answer.

1. ∀x ∀y ∀z [(Larger(x, y) ∧ Larger(y, z)) → Larger(x, z)]
2. ∀x ∀y [Larger(x, y) → ¬Larger(y, x)]
3. ∀x ¬Larger(x, x)
4. ∀x ∀y [Larger(x, y) ∨ Larger(y, x) ∨ x = y]
5. ∀y ∃≤12x Larger(x, y)
6. ∀y ∃x Larger(x, y)

19.25
✎

How large is the
largest first-order
structure making 1–5
true?

19.26
✎

Show that any
structure making 1–4
and 6 true is infinite.

19.27
✎

Is there an infinite
structure making 1–3
and 5 true?

19.28
✎?

Let T be a set of first-order sentences. Suppose that for any natural number n, there is a
structure whose domain is larger than n that satisfies T . Use the Compactness Theorem to
show that there is a structure with an infinite domain that satisfies T . [Hint: Consider the
sentences that say there are at least n things, for each n.]

19.29
✎?

Let L′ be the language of Peano arithmetic augmented with the predicate NatNum, with the
intended interpretation is a natural number. Let T be the set of sentences in this language that
are true of the natural numbers. Let S be as in the proof of the non-standard model theorem.
Show that ¬NatNum(n) is not a first-order consequence of T ∪ S.
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19.30
✎??

Suppose we add the monadic predicate Finite to the first-order language of set theory, where
this is meant to hold of all and only finite sets. Suppose that T consists of the axioms of
zfc plus new axioms involving this predicate, insisting only that the axioms are true in the
intended universe of sets. Use the Compactness Theorem to show that there is a first-order
structure satisfying T and containing an element c which satisfies Finite(x) but has infinitely
many members. [Hint: Add to the language a constant symbol c and infinitely many constants
b1, b2, . . .. Form a theory S that says that the b’s are all different and all members of c. Show
that T ∪ S is satisfiable.]

19.31
✎??

Use the Compactness Theorem to show that the first-order language with the binary predicates
Par(x, y) and Anc(x, y), meaning parent of and ancestor of, respectively, is not axiomatizable.
That is, there is no set of meaning postulates, finite or infinite, which characterize those first-
order structures which represent logically possible circumstances. [Hint: The crucial point is
that a is an ancestor of b if and only if there is some finite chain linking a to b by the parent
of relation, but it is logically possible for that chain to be arbitrarily long.]

Section 19.8

The Gödel Incompleteness Theorem

The theorem showing the existence of nonstandard models of arithmetic shows
a kind of incompleteness of fol. There is, however, a far deeper form of in-
completeness that was discovered by Kurt Gödel a few years after he proved
the Completeness Theorem. This is the famous result known as Gödel’s In-
completeness Theorem.

Students are sometimes puzzled by the fact that Gödel first proved some-
thing called the Completeness Theorem, but then turned around and provedcompleteness vs.

incompleteness the Incompleteness Theorem. Couldn’t he make up his mind? Actually, though,
the senses of “completeness” involved in these two theorems are quite different.
Recall that the Completeness Theorem tells us that our formal rules of proof
adequately capture first-order consequence. The Incompleteness Theorem, by
contrast, involves the notion of formal completeness introduced earlier. Re-
member that a theory T is said to be formally complete if for any sentence S of
its language, either S or ¬S is provable from T . (We now know, by soundness
and completeness, that this is equivalent to saying that S or ¬S is a first-order
consequence of T .)

In the early part of the twentieth century, logicians were analyzing mathe-
matics by looking at axiomatic theories like Peano arithmetic and formal proof
systems like F . The aim was to come up with a formally complete axiomati-
zation of arithmetic, one that allowed us to prove all and only the sentences
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that were true of the natural numbers. This was part of an ambitious project
that came to be known as Hilbert’s Program, after its main proponent, David Hilbert’s Program
Hilbert. By the early 1930s a great deal of progress had been made in Hilbert’s
Program. All the known theorems about arithmetic had been shown to follow
from relatively simple axiomatizations like Peano arithmetic. Furthermore,
the logician Mojżesz Pressburger had shown that any true sentence of the
language not mentioning multiplication could be proven from the relevant
Peano axioms.

Gödel’s Incompleteness Theorem showed the positive progress was mis-
leading, and that in fact the goal of Hilbert’s Program could never be accom-
plished. A special case of Gödel’s theorem can be stated as follows:

Theorem (Gödel’s Incompleteness Theorem for pa) Peano Arithmetic is not Gödel’s Incompleteness
Theoremformally complete.

The proof of this theorem, which we will describe below, shows that the
result applies far more broadly than just to Peano’s axiomatization, or just to
the particular formal system F . In fact, it shows that no reasonable extension
of either of these will give you a formally complete theory of arithmetic, in a
sense of “reasonable” that can be made precise.

We’ll try to give you a general idea how the proof goes. A key insight idea of proof
is that any system of symbols can be represented in a coding scheme like
Morse code, where a sequence of dots and dashes, or equivalently, 0’s and 1’s,
is used to represent any individual symbol of the system. With a carefully
designed coding system, any string of symbols can be represented by a string coding system
of 0’s and 1’s. But we can think of such a sequence as denoting a number in
binary notation. Hence, we can use natural numbers to code strings of our
basic symbols. The first thing Gödel established was that all of the important
syntactic notions of first-order logic can be represented in the language of representability
Peano arithmetic. For example, the following predicates are representable:

n is the code of a wff,

n is the code of a sentence,

n is the code of an axiom of Peano arithmetic,

n and m are codes of sentences, the second of which follows from the
first by an application of ∧ Elim,

n is the code of a proof in F ,

n is the code of a proof of the sentence whose code is m.

When we say these predicates are representable in Peano arithmetic, we
mean something fairly strong: that the axioms and rules of proof allow us to
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prove all and only the true instances of these predicates. So if p is a proof of
S and n and m are their codes, then the formal version of the last sentence
on our list would actually be a first-order consequence of the Peano axioms.

A lot of careful work has to be done to show that these notions are rep-
resentable in Peano arithmetic, work that is very similar to what you have
to do to implement a system like F on a computer. (Perhaps Gödel was the
world’s first real hacker.) But it is possible, and fairly routine once you get
the hang of it.

Gödel’s second key insight was that it is possible to get sentences that
express facts about themselves, relative to the coding scheme. This is known
as the Diagonal Lemma. This lemma states that for any wff P(x) with a singleDiagonal Lemma
free variable, it is possible to find a number n that codes the sentence P(n)
asserting that n satisfies P(x). In other words, P(n) can be thought of as
asserting

This sentence has the property expressed by P.

Depending on what property P expresses, some of these will be true and some
false. For example, the formal versions of

This sentence is a well-formed formula

and

This sentence has no free variables

are true, while the formal versions of

This sentence is a proof

and

This sentence is an axiom of Peano arithmetic

are false.
Now consider the formal version of the following sentence, whose existence

the Diagonal Lemma guarantees:

This sentence is not provable from the axioms of Peano arithmetic.

This sentence (the one above, not this one) is called G, after Gödel. Let’s showthe Gödel sentence G
that G is true but not provable in pa.

Proof: To show that G is true, we give an indirect proof. Suppose G
is not true. Then given what it claims, it must be provable in pa. But
since the axioms of pa are true and F is sound, anything provable

Chapter 19
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from pa must be true. So G is true. This contradicts our assumption,
namely that G was not true. So G is indeed true.

Let us now show that G is not provable in pa. We have already shown
that G is true. But then, given what it claims, G is not provable.

Gödel’s Incompleteness Theorem follows immediately from this. We have
found a true sentence in the language of Peano arithmetic that is not provable
from the Peano axioms. What’s more, the negation of this sentence cannot be
provable, again because the provable consequences of the Peano axioms are
all true. So Peano arithmetic is not formally complete.

Of course there is nothing particularly sacred about the Peano axioms. applying theorem to
other theoriesHaving found a true but unprovable sentence G, we could always add it, or

something that would allow us to prove it, as a new axiom. The problem is
that these attempts to strengthen our axioms don’t escape Gödel’s argument,
since the argument does not depend on the weakness of Peano arithmetic, but
on its strength. As long as the axioms of the extended system T are true, and
the predicate

n encodes an axiom of T

is representable in T , Gödel’s whole argument can be repeated, generating
yet another true sentence that is unprovable in the extended system.

Gödel’s incompleteness result is one of the most important theorems in
logic, one whose consequences are still being explored today. We urge the in-
terested reader to explore it further. Detailed proofs of Gödel’s theorem can be
found in many advanced textbooks in logic, including Smullyan’s Gödel’s In-
completeness Theorems, Enderton’s Mathematical Introduction to Logic, and
Boolos and Jeffrey’s Computability and Logic.

Exercises

19.32
✎?

Gödel’s Incompleteness Theorem was inspired by the famous Liar’s Paradox, the sentence This
sentence is not true.

1. Let us assume that this sentence makes an unambiguous claim. Show that the claim
is true if and only if it is not true.

2. Conclude that the sentence must not be making an unambiguous claim.
3. One possibility for locating the ambiguity is in a shift in the domain of discourse as

the argument proceeds. Discuss this suggestion.
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19.33
✎?

(Undefinability of Truth) Show that the following predicate cannot be expressed in the language
of arithmetic:

n is the code of a true sentence.

This is a theorem due to Alfred Tarski. [Hint: Assume it were expressible. Apply the Diagonal
Lemma to obtain a sentence which says of itself that it is not true.]

19.34
✎?

(Löb’s Paradox) Consider the sentence If this conditional is true, then logic is the most fasci-
nating subject in the world. Assume that the sentence makes an unambiguous claim.

1. Use the method of conditional proof (and modus ponens) to establish the claim.
2. Use modus ponens to conclude that logic is the most fascinating subject in the world.

Surely a good way to end a logic course.
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Summary of Rules

Propositional rules (FT)

Conjunction Introduction
(∧ Intro)

P1

⇓
Pn
...

. P1 ∧ . . . ∧ Pn

Conjunction Elimination
(∧ Elim)

P1 ∧ . . . ∧ Pi ∧ . . . ∧ Pn
...

. Pi

Disjunction Introduction
(∨ Intro)

Pi
...

. P1 ∨ . . . ∨ Pi ∨ . . . ∨ Pn

Disjunction Elimination
(∨ Elim)

P1 ∨ . . . ∨ Pn
...

P1

...
S

⇓

Pn

...
S

...
. S
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Negation Introduction
(¬ Intro)

P

...
⊥

. ¬P

Negation Elimination
(¬ Elim)

¬¬P
...

. P

⊥ Introduction
(⊥ Intro)

P
...
¬P...

. ⊥

⊥ Elimination
(⊥ Elim)

⊥
...

. P

Conditional Introduction
(→ Intro)

P

...
Q

. P → Q

Conditional Elimination
(→ Elim)

P → Q
...
P
...

. Q

Summary of Rules
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Biconditional Introduction
(↔ Intro)

P

...
Q

Q

...
P

. P ↔ Q

Biconditional Elimination
(↔ Elim)

P ↔ Q (or Q ↔ P)
...
P
...

. Q

Reiteration
(Reit)

P
...

. P

First-order rules (F)

Identity Introduction
(= Intro)

. n = n

Identity Elimination
(= Elim)

P(n)
...
n = m
...

. P(m)

First-order rules (F)
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General Conditional Proof
(∀ Intro)

c P(c)

...
Q(c)

. ∀x (P(x) → Q(x))

Universal Introduction
(∀ Intro)

c

...
P(c)

. ∀x P(x)

where c does not occur out-
side the subproof where it is
introduced.

Universal Elimination
(∀ Elim)

∀x S(x)
...

. S(c)

Existential Introduction
(∃ Intro)

S(c)
...

. ∃x S(x)

Existential Elimination
(∃ Elim)

∃x S(x)
...

c S(c)

...
Q

. Q

where c does not occur out-
side the subproof where it is
introduced.
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Inference Procedures (Con Rules)

Fitch also contains three, increasingly powerful inference procedures. They
are not technically inference rules.

Tautological Consequence
(Taut Con)

Taut Con allows you to infer any sentence that follows from the cited sen-
tences in virtue of the meanings of the truth-functional connectives alone.

First-order Consequence
(FO Con)

FO Con allows you to infer any sentence that follows from the cited sentences
in virtue of the meanings of the truth-functional connectives, the quantifiers
and the identity predicate.

Analytic Consequence
(Ana Con)

In theory, Ana Con should allow you to infer any sentence that follows
from the cited sentences in virtue of the meanings of the truth-functional
connectives, the quantifiers, the identity predicate and the blocks language
predicates. The Fitch implementation of Ana Con, however, does not take
into account the meaning of Adjoins or Between due to the complexity these
predicates give rise to.

Inference Procedures (Con Rules)



Glossary

Ambiguity: A feature of natural languages that makes it possible for a single
sentence to have two or more meanings. For example, Max is happy or
Claire is happy and Carl is happy, can be used to claim that either Max
is happy or both Claire and Carl are happy, or it can be used to claim
that at least one of Max and Claire is happy and that Carl is happy.
Ambiguity can also arise from words that have two meanings, as in the
case of puns. Fol does not allow for ambiguity.

Antecedent: The antecedent of a conditional is its first component clause.
In P → Q, P is the antecedent and Q is the consequent.

Argument: The word “argument” is ambiguous in logic.

1. One kind of argument consists of a sequence of statements in which
one (the conclusion) is supposed to follow from or be supported by
the others (the premises).

2. Another use of “argument” refers to the term(s) taken by a pred-
icate in an atomic wff. In the atomic wff LeftOf(x, a), x and a are
the arguments of the binary predicate LeftOf.

Arity: The arity of a predicate indicates the number of arguments (in the
second sense of the word) it takes. A predicate with arity of one is called
unary. A predicate with an arity of two is called binary. It’s possible for
a predicate to have any arity, so we can talk about 6-ary or even 113-ary
predicates.

Atomic sentences: Atomic sentences are the most basic sentences of fol,
those formed by a predicate followed by the right number (see arity) of
names (or complex terms, if the language contains function symbols).
Atomic sentences in fol correspond to the simplest sentences of English.

Axiom: An axiom is a proposition (or claim) that is accepted as true about
some domain and used to establish other truths about that domain.

Boolean connective (Boolean operator): The logical connectives conjunc-
tion, disjunction, and negation allow us to form complex claims from
simpler claims and are known as the Boolean connectives after the logi-
cian George Boole. Conjunction corresponds to the English word and,
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disjunction to or, and negation corresponds to the phrase it is not the
case that. (See also Truth-functional connective.)

Bound variable: A bound variable is an instance of a variable occurring
within the scope of a quantifier used with the same variable. For exam-
ple, in ∀x P(x, y) the variable x is bound, but y is “unbound” or “free.”

Claim: Claims are made by people using declarative sentences. Sometimes
claims are called propositions.

Completeness: “Completeness” is an overworked word in logic.

1. A formal system of deduction is said to be complete if, roughly
speaking, every valid argument has a proof in the formal system.
This sense is discussed in Section 8.3 and elsewhere in the text.
(Compare with Soundness.)

2. A set of sentences of fol is said to be formally complete if for
every sentence of the language, either it or its negation can be
proven from the set, using the rules of the given formal system.
Completeness, in this sense, is discussed in Section 19.8.

3. A set of truth-functional connectives is said to be truth-functionally
complete if every truth-functional connective can be defined using
only connectives in the given set. Truth-functional completeness is
discussed in Section 7.4.

Conclusion: The conclusion of an argument is the statement that is meant to
follow from the other statements, or premises. In most formal systems,
the conclusion comes after the premises, but in natural language, things
are more subtle.

Conditional: The term “conditional” refers to a wide class of constructions
in English including if. . . then. . . , . . . because. . . , . . . unless. . . ., and the
like, that express some kind of conditional relationship between the two
parts. Only some of these constructions are truth functional and can be
represented by means of the material conditional of fol. (See Material
conditional.)

Conditional proof: Conditional proof is the method of proof that allows
one to prove a conditional statement P → Q by temporarily assuming P
and proving Q under this additional assumption.

Conjunct: One of the component sentences in a conjunction. For example,
A and B are the conjuncts of A ∧ B.
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Conjunction: The Boolean connective corresponding to the English word
and. A conjunction of sentences is true if and only if each conjunct is
true.

Conjunctive normal form (CNF): A sentence is in conjunctive normal
form if it is a conjunction of one or more disjunctions of one or more
literals.

Connective: An operator for making new statements out of simpler state-
ments. Typical examples are conjunction, negation, and the conditional.

Consequent: The consequent of a conditional is its second component clause.
In P → Q, Q is the antecedent and P is the consequent.

Context sensitivity: A predicate, name, or sentence is context sensitive
when its interpretation depends on our perspective on the world. For
example, in Tarski’s World, the predicate Larger is not context sensitive
since it is a determinate matter whether one block is larger than another,
regardless of our perspective on the world, whereas the predicate LeftOf
depends on our perspective on the blocks world. In English many words
are context sensitive, including words like I, here, now, friend, home,
and so forth.

Counterexample: A counterexample to an argument is a possible situation
in which all the premises of the argument are true but the conclusion is
false. Finding even a single counterexample is sufficient to show that an
argument is not logically valid.

Contradiction (⊥): Something that cannot possibly be true in any set of
circumstances, for example, a statement and its negation. The symbol
⊥ represents contradiction.

Corollary: A corollary is a result which follows with little effort from an
earlier theorem. (See Theorem.)

Deductive system: A deductive system is a collection of rules and a specifi-
cation of the ways they can be use to construct formal proofs. The system
F defined in the text is an example of a deductive system, though there
are many others.

Determinate property: A property is determinate if for any object there is
a definite fact of the matter whether or not the object has that property.
In first-order logic we assume that we are working with determinate
properties.
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Determiner: Determiners are words such as every, some, most, etc., which
combine with common nouns to form quantified noun phrases like every
dog, some horses, and most pigs.

Disjunct: One of the component sentences in a disjunction. For example, A
and B are the disjuncts of A ∨ B.

Disjunction: The basic Boolean connective corresponding to the English
word or. A disjunction is true if at least one of the disjuncts is true.
(See also Inclusive disjunction and Exclusive disjunction.)

Disjunctive normal form (DNF): A sentence is in disjunctive normal form
if it is a disjunction of one or more conjunctions of one or more literals.

Domain of discourse: When we use a sentence to make a claim, we always
implicitly presuppose some domain of discourse. In fol this becomes
important in understanding quantification, since there must be a set of
objects under consideration when evaluating claims involving quanti-
fiers. For example, the truth-value of the claim “Every student received
a passing grade” depends on our domain of discourse. The truth-values
may differ depending on whether our domain of discourse contains all
the students in the world, in the university, or just in one particular
class.

Domain of quantification: See Domain of discourse.

Empty set: The unique set with no elements, often denoted by ∅.

Equivalence classes: An equivalence class is the set of all things equivalent
to a chosen object with respect to a particular equivalence relation. More
specifically, given an equivalence relation R on a set S, we can define an
equivalence class for any x ∈ D as follows:

{y ∈ D | 〈x, y〉 ∈ R}

Equivalence relation: An equivalence relation is a binary relation that is
reflexive, symmetric, and transitive.

Exclusive disjunction: This is the use of or in English that means exactly
one of the two disjuncts is true, but not both. For example, when a
waiter says “You may have soup or you may have salad,” the disjunction
is usually meant exclusively. Exclusive disjunctions can be expressed in
fol, but the basic disjunction of fol is inclusive, not exclusive.
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Existential quantifier (∃): In fol, the existential quantifier is expressed by
the symbol ∃ and is used to make claims asserting the existence of some
object in the domain of discourse. In English, we express existentially
quantified claims with the use of words like something, at least one thing,
a, etc.

First-order consequence: A sentence S is a first-order consequence of some
premises if S follows from the premises simply in virtue of the meanings
of the truth-functional connectives, identity, and the quantifiers.

First-order structure: A first-order structure is a mathematical model of
the circumstances that determine the truth values of the sentences of
a given first-order language. It is analogous to a truth assignment for
propositional logic but must also model the domain of quantification
and the objects to which the predicates apply.

First-order validity: A sentence S is a first-order validity if S is a logical
truth simply in virtue of the meanings of the truth-functional connec-
tives, identity, and the quantifiers. This is the analog, in first-order logic,
of the notion of a tautology in propositional logic.

Formal proof: See Proof.

Free variable: A free variable is an instance of a variable that is not bound.
(See Bound variable.)

Generalized quantifier: Generalized quantifiers refer to quantified expres-
sions beyond the simple uses of ∀ (everything) and ∃ (something); ex-
pressions like Most students, Few teachers, and Exactly three blocks.

Inclusive disjunction: This is the use of or in which the compound sentence
is true as long as at least one of the disjuncts is true. It is this sense of or
that is expressed by fol’s disjunction. Compare Exclusive disjunction.

Indirect proof: See Proof by contradiction.

Individual constant: Individual constants, or names, are those symbols of
fol that stand for objects or individuals. In fol is it assumed that each
individual constant of the language names one and only one object.

Inductive definition: Inductive definitions allow us to define certain types
of sets that cannot be defined explicitly in first-order logic. Examples of
inductively defined sets include the set of wffs, the set of formal proofs,
and the set of natural numbers. Inductive definitions consist of a base
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clause specifying the basic elements of the defined set, one or more
inductive clauses specifying how additional elements are generated from
existing elements, and a final clause, which tells us that all the elements
are either basic or in the set because of (possibly repeated) application
of the inductive clauses.

Inductive proof: Inductive proofs are used to establish claims about induc-
tively defined sets. Given such a set, to prove that some property holds
of every element of that set we need a basis step, which shows that
the property holds of the basic elements, and an inductive step, which
shows that if the property holds of some elements, then it holds of any
elements generated from them by the inductive clauses. See Inductive
definition.

Infix notation: In infix notation, the predicate or function symbol appears
between its two arguments. For example, a < b and a = b use infix
notation. Compare with Prefix notation.

Informal proof: See Proof.

Intersection (∩): The operation on sets a and b that returns the set a ∩ b

whose members are those objects common to both a and b.

Lemma: A lemma is a claim that is proven, like a theorem, but whose pri-
mary importance is for proving other claims. Lemmas are of less intrinsic
interest than theorems. (See Theorem.)

Literal: A literal is a sentence that is either an atomic sentence or the nega-
tion of an atomic sentence.

Logical consequence: A sentence S is a logical consequence of a set of
premises if it is impossible for the premises all to be true while the
conclusion S is false.

Logical equivalence: Two sentences are logically equivalent if they have the
same truth values in all possible circumstances.

Logical necessity: See Logical truth.

Logical possibility: We say that a sentence or claim is logically possible if
there is no logical reason it cannot be true, i.e., if there is a possible
circumstance in which it is true.
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Logical truth: A logical truth is a sentence that is a logical consequence of
any set of premises. That is, no matter what the premises may be, it
is impossible for the conclusion to be false. This is also called a logical
necessity

Logical validity: An argument is logically valid if the conclusion is a logical
consequence of the premises.

Material conditional: A truth-functional version of the conditional if. . .
then. . . . The material conditional P → Q is false if P is true and Q is
false, but otherwise is true. (See Conditional.)

Modus ponens: The Latin name for the rule that allows us to infer Q from
P and P → Q. Also known as → Elimination.

Names: See Individual constants.

Necessary condition: A necessary condition for a statement S is a condition
that must hold in order for S to obtain. For example, if you must pass
the final to pass the course, then your passing the final is a necessary
condition for your passing the course. Compare with Sufficient condition.

Negation normal form (NNF): A sentence of fol is in negation normal
form if all occurrences of negation apply directly to atomic sentences.
For example, (¬A ∧ ¬B) is in NNF whereas ¬(A ∨ B) is not in NNF.

Numerical quantifier: Numerical quantifiers are those quantifiers used to
express numerical claims, for example, at least two, exactly one, no more
than five, etc.

Predicate: Predicates are used to express properties of objects or relations
between objects. Larger and Cube are examples of predicates in the
blocks language.

Prefix notation: In prefix notation, the predicate or relation symbol pre-
cedes the terms denoting objects in the relation. Larger(a,b) is in prefix
notation. Compare with Infix notation.

Premise: A premise of an argument is one of the statements meant to sup-
port (lead us to accept) the conclusion of the argument.

Prenex normal form: A wff of fol is in prenex normal form if it contains
no quantifiers, or all the quantifiers are “out in front.”
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Proof: A proof is a step-by-step demonstration that one statement (the con-
clusion) follows logically from some others (the premises). A formal proof
is a proof given in a formal system of deduction; an informal proof is
generally given in English, without the benefit of a formal system.

Proof by cases: A proof by cases consists in proving some statement S from
a disjunction by proving S from each disjunct.

Proof by contradiction: To prove ¬S by contradiction, we assume S and
prove a contradiction. In other words, we assume the negation of what
we wish to prove and show that this assumption leads to a contradiction.

Proof by induction: See Inductive proof.

Proof of non-consequence: In a proof of non-consequence, we show that
an argument is invalid by finding a counterexample. That is, to show
that a sentence S is not a consequence of some given premises, we have to
show that it is possible for the premises to be true in some circumstance
where S is false.

Proposition: Something that is either true or false. Also called a claim.

Quantifier: In English, a quantified expression is a noun phrase using a
determiner such as every, some, three, etc. Quantifiers are the elements
of fol that allow us to express quantified expressions like every cube.
There are only two quantifiers in fol, the universal quantifier (∀) and
the existential quantifier (∃). From these two, we can, however, express
more complex quantified expressions.

Reductio ad absurdum: See Proof by contradiction.

Satisfaction: An object named a satisfies an atomic wff S(x) if and only if
S(a) is true, where S(a) is the result of replacing all free occurrences of
x in S(x) with the name a. Satisfaction for wffs with more than one free
variable is defined similarly, using the notion of a variable assignment.

Scope: The scope of a quantifier in a wff is that part of the wff that falls
under the “influence” of the quantifier. Parentheses play an important
role in determining the scope of quantifiers. For example, in

∀x(P(x) → Q(x)) → S(x)

the scope of the quantifier extends only over P(x) → Q(x). If we were to
add another set of parentheses, e.g.,

∀x((P(x) → Q(x)) → S(x))
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the scope of the quantifier would extend over the entire sentence.

Sentence: In propositional logic, atomic sentences are formed by combining
names and predicates. Compound sentences are formed by combining
atomic sentences by means of the truth functional connectives. In fol,
the definition is a bit more complicated. A sentence of fol is a wff with
no free variables.

Soundness: “Sound” is used in two different senses in logic.

1. An argument is sound if it is both valid and all of its premises are
true.

2. A formal system is sound if it allows one to construct only proofs
of valid arguments, that is, if no invalid arguments are provable
within the system. (Compare with Completeness.)

Sufficient condition: A sufficient condition for a statement S is a condition
that guarantees that S will obtain. For example, if all you need to do
to pass the course is pass the final, then your passing the final is a
sufficient condition for your passing the course. Compare with Necessary
condition.

Tautological consequence: A sentence S is a tautological consequence of
some premises if S follows from the premises simply in virtue of the
meanings of the truth-functional connectives. We can check for tauto-
logical consequence by means of truth tables, since S is a tautological
consequence of the premises if and only if every row of their joint truth
table that assigns true to each of premise also assigns true to S. All
tautological consequences are logical consequences, but not all logical
consequences are tautological consequences.

Tautological equivalence: Two sentences are tautologically equivalent if
they are equivalent simply in virtue of the meanings of the truth-functional
connectives. We can check for tautological equivalence by means of truth
tables since two sentences Q and S are tautologically equivalent if and
only if every row of their joint truth table assigns the same value to the
main connectives of Q and S.

Tautology: A tautology is a sentence that is logically true in virtue of its
truth-functional structure. This can be checked using truth tables since
S is a tautology if and only if every row of the truth table for S assigns
true to the main connective.
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Term: Variables and individual constants are terms of a first-order language,
as are the results of combining an n-ary function symbol f with n terms
to form a new term.

Theorem: In formal systems, a theorem of is any statement that has been
proven from some given set of axioms. Informally, the term “theorem”
is usually reserved for conclusions that the author finds particularly
interesting or important. (Compare Corollary and Lemma.)

Truth assignment: A function assigning true or false to each atomic sen-
tence of a first-order language. Used to model the informal notion of a
world or set of circumstances.

Truth-functional connective: A sentence connective with the property that
the truth value of the newly formed sentence is determined solely by the
truth value(s) of the constituent sentence(s), nothing more. Examples
are the Boolean connectives (¬ , ∧ , ∨) and the material conditional and
biconditional (→, ↔).

Truth table: Truth tables show the way in which the truth value of a sen-
tence built up using truth-functional connectives depends on the truth
values of the sentence’s components.

Truth value: The truth value of a statement in some circumstances is true
if the statement is true in those circumstances, otherwise its truth value
is false. This is an informal notion but also has rigorous counterparts
in propositional logic, where circumstances are modeled by truth as-
signments, and in first-order logic where circumstances are modeled by
first-order structures.

Universal quantifier (∀): The universal quantifier is used to express uni-
versal claims. Its corresponds, roughly, to English expressions such as
everything, all things, each thing, etc. (See also Quantifiers.)

Union (∪): The operation on sets a and b that returns the set a ∪ b whose
members are those objects in either a or b or both.

Validity: “Validity” is used in two ways in logic:

1. Validity as a property of arguments: An argument is valid if the
conclusion must be true in any circumstance in which the premises
are true. (See also Logical validity and Logical consequence.)
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2. Validity as a property of sentences: A first-order sentence is said
to be valid if it is logically true simply in virtue of the meanings of
its connectives, quantifiers, and identity. (See First-order validity.)

Variable: Variables are expressions of fol that function somewhat like pro-
nouns in English. They are like individual constants in that they may
be the arguments of predicates, but unlike constants, they can be bound
by quantifiers. Generally letters from the end of the alphabet, x, y, z,
etc., are used for variables.

Variable assignment: A function assigning objects to some or all of the
variables of a first-order language. This notion is used in defining truth
of sentences in a first-order structure.

Well-formed formula (wff): Wffs are the “grammatical” expressions of
fol. They are defined inductively. First, an atomic wff is any n-ary
predicate followed by n terms. Complex wffs are constructed using con-
nectives and quantifiers. The rules for constructing complex wffs are
found on page 231. Wffs may have free variables. Sentences of fol are
wffs with no free variables.
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and the axiomatic method, 287

prime number, 242, 332, 333
Prolog, 3
proof, 46, 49, 103

advantages over truth tables,
127

by cases, 131–134
by contradiction, 136–138
by induction

basis, 449
induction step, 449

conditional, 199
discovery of the notion of, 287

formal vs informal, 48–49
general conditional, 323–327,

329, 342
indirect, 136–138
informal

purposes of, 129–130
style, 48, 129

involving numerical determin-
ers, 374–376

involving the identity symbol,
49

of nonconsequence, 15, 63
of uniqueness claims, 375
purported, 327
step, 198, 319
strategy, 167, 171, 206, 210,

352
with no premises, 173
working backwards, 167

proposition, 24

quantification
numerical, 366–371

and proofs, 374–376
quantified noun phrase, 227, 298,

304
quantifier

equivalences, 280, 282
existential, 230–231
scope, 233
uniqueness, 375
universal, 230

quantifiers, 3, 32, 227, 230–231, 239
alternations of, 312
alternative notation for, 255–

256
DeMorgan laws for, 279
first-order, 257
game rules for, 237–238
generalized
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adding to fol, 383
and vagueness, 387
logic of, 389
semantics of, 499–500

mixed, 293, 296, 329
monotone, 390
multiple, 289
second-order, 257
semantics for, 234–238

range of a function, 428
rational inquiry, 1–2, 4
rational number, 131
reasoning

invalid, 1
valid, 1

reductio ad absurdum, 136–138
reference columns, 96
referent of a name, 497, 498
reflexivity, 52, 422

of identity, 50
reiteration, 56, 151
relations

antisymmetric, 422
asymmetric, 422
binary, 422
equivalence, 424–425
functional, 427
inverse, 423
irreflexive, 422
modeling in set theory, 422–

425
reflexive, 422
transitive, 422

relative complement, 440
replacement method, 270–271
resolution clause, 488
resolution method, 54, 489–491, 519,

524
completeness of, 493
for fol, 516, 521
soundness of, 493

resolvent, 489, 490
rules

default use of, 143, 145, 153,
161, 208, 345, 349

elimination, 142
introduction, 142

Russell
paradox, 406, 432, 433
set for a set, 430, 431

absolute version, 432
Russell, Bertrand, 430
Russell’s Theorem, 362
Russellian analysis of definite de-

scriptions, 379, 382
Strawson’s objection, 381

Russellian analysis of both and nei-
ther, 382

satisfaction, 234, 500, 502, 506
algorithm for Horn sentences,

479, 481, 484
satisfiability, 373, 469
satisfiable

truth table (tt-), 469
Saturday Night Live, 304
scope, 80
second-order logic, 257
semantics

for connectives, 68, 72, 75, 178,
182

for quantifiers, 234–238
semi-wff, 449
sentence, 232, 231–233

atomic, 19, 23, 23, 25, 32, 51
complex, 67
existential, 400
Horn, 479, 481
normal forms, 124
satisfiable, 373
universal, 520
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set
conception of

naive, 405–411, 416, 432–434,
436, 439

von Neumann’s, 435, 436, 438
Zermelo’s, 438

empty, 407, 412
membership, 37
singleton, 412, 420, 440

set theory, 435
first-order language of, 37

sets
cummulative, 438–439
infinite, 437–438
size of, 437

simplification, 129
singleton set, 412, 420, 440
Skolem

function, 515
normal form, 515
paradox, 547

Skolem, Thoralf, 515
Skolem,Thoralf, 546
Skolemization, 514, 515, 521
Smullyan, Raymond, 449, 555
sound

argument, 43, 44, 140
deductive system, 214, 214, 361

Soundness Theorem
for first-order logic, 509
for propositional logic, 215
use of, 220

spatial predicates, 401
step-by-step translation, 298, 299
Strawson, P. F., 380, 381
Strawsonian analysis of definite de-

scriptions, 382
strengthening the antecedent, 203,

212
strengthening the consequent, 203,

212

structure
first-order, 498, 495–498, 500,

506
truth in, 504

Submit, 5–10
subproof, 149–151, 163, 206, 343

end of, 164
proper use of, 163–166

subset relation, 407, 412–414
substitution, 49

of logical equivalents, 118, 276
principle, 277

sufficient condition, 179
summary of game rules, 237
symbolic sciences, 2–4
symmetry, 52, 422

of identity, 50

Tarski, Alfred, 400, 506, 556
Tarski’s World, 5–10, 14, 24
Taut Con, 114–116, 158, 171, 221,

272
and truth-functional form al-

gorithm, 263
tautological consequence, 113, 266,

469
tautology, 94, 97, 100, 101, 103,

137, 218, 219, 266, 469
and FO validity, 271
and quantification, 257–264
of fol, 262

tense, 398
terms, 32, 229

complex, 32, 34
of first-order arithmetic, 39

ternary connective, 195
theorem, 47, 193
theory

formally complete, 472
formally consistent, 471

transitivity, 422
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of <, 52
of ↔, 203, 212
of identity, 51

translation, 13, 28, 84
and meaning, 84
and mixed quantifiers, 289–291,

308
and paraphrase, 300
extra exercises, 315–318
of

a, 231
all, 230
an, 231
and, 71
any, 230, 243
at least n, 366
at least one, 231
at most n, 366
both, 379
but, 71
each, 230, 243
every, 230, 239, 243
everything, 228
exactly n, 366
few, 386
if, 179
if and only if, 182
iff, 182
just in case, 182
many, 386
moreover, 71
most, 386
neither, 379
neither. . . nor, 75
no, 239, 243
non-, 68
not, 68
only if, 180
or, 74
provided, 179
some, 231, 239

something, 228
the, 379
un-, 68
unless, 180

of complex noun phrases, 243–
244

of conditionals, 179
step-by-step method, 298
using function symbols, 308

truth, 500
assignment, 468
conditions, 84, 84, 188
in a structure, 504, 506
in all worlds, 363
logical, 93, 94, 103, 181, 182,

267
non-logical, 363
undefinability of, 556
value, 24, 67

truth table, 67
disadvantages of, 127
for ∧, 72
for ↔, 182
for ¬, 68
for →, 178
for ∨, 75
joint, 106, 110
method, 481
modeling in set theory, 468–

469
number of rows, 95
reference columns, 96

truth-functional
completeness, 190, 193
connective, 67

binary, 190
semantics for, 68, 72, 75, 178,

182
ternary, 195

form, 261
algorithm, 261–264
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tt-satisfiable, 469
twin prime conjecture, 333

unary function symbol, 308
undefinability of truth, 556
unification, 517

algorithm, 518
uninterpreted language, 15
union, 415, 416

axiom, 435, 440
uniqueness

claim, 375
quantifier, ∃!, 375

universal
elimination, 342
generalization, 325, 326, 332,

342
instantiation, 321, 342
introduction, 325, 342, 343
noun phrase, 243, 248
quantifier, 230
sentence, 520
set, 432, 440
wff, 450

unordered pair, 419
axiom, 435

uses of fol, 3–4

vacuously true generalization, 245
vagueness, 21
valid

argument, 140
first-order, 505
proof, 46
step, 127, 128, 319–321

validity
first-order, 266–273

and logical truth, 271
variable, 228–229

assignment, 500, 506
appropriate, 501

empty, 501
bound, 232, 282
free, 231, 232
limited number of, 373
reusing, 374
unbound, 231

Vaught, Robert, 435
von Neumann, John, 434–436, 438

weakening the consequent, 203, 212
Web address, 15
well-formed formula (wff), 231, 231–

233
atomic, 229, 231
existential, 450
universal, 450

wellfounded sets, 450
winning strategy for playing the game,

78
witnessing constant, 528

adding to a language, 529–530
for a wff, 529

You try it exercises, 7, 12

Zermelo, Ernst, 438
Zermelo-Frankel set theory, 435
zfc, 435, 547
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Allan’s Sentences, 241
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Anderson’s First World, 305
Anderson’s Second World, 306
Aristotle’s Sentences, 241
Arnault’s Sentences, 296
Austin’s Sentences, 27
Axioms 1, 286

Bernays’ Sentences, 83
Bernstein’s Sentences, 234
Between Sentences, 205
Bill’s Argument, 64
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279, 300, 302, 372
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Boole’s World, 35, 70, 83, 86, 88
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Cantor’s Sentences, 290
Cantor’s World, 290
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Conditional 1, 207
Conditional 2, 208
Conditional 3, 210

Conditional Sentences, 203
Conjunction 1, 143
Conjunction 2, 145
Conjunction 3, 146
Conjunction 4, 147
Cooper’s World, 388

Deduction Thm 1, 535
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Disjunction 1, 151
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DNF Example, 124
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Existential 1, 349
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Sherlock’s Sentences, 186
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Strategy 1, 168
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Venn’s World, 185, 249, 426, 428

Weiner’s Sentences, 105
Whitehead’s Sentences, 368
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