


Universitext

For further volumes:

http://www.springer.com/series/223





Wolfgang Rautenberg

A Concise Introduction

to Mathematical Logic

Third Edition

123



Prof. Dr. Wolfgang Rautenberg
Fachbereich Mathematik und Informatik
14195 Berlin
Germany
raut@math.fu-berlin.de

Editorial board:
Sheldon Axler, San Francisco State University, San Francisco, CA, USA
Vincenzo Capasso, University of Milan, Milan, Italy
Carles Casacuberta, Universitat de Barcelona, Barcelona, Spain
Angus MacIntyre, Queen Mary, University of London, London, UK
Kenneth Ribet, University of California, Berkeley, CA, USA
Claude Sabbah, Ecole Polytechnique, Palaiseau, France
Endre Süli, Oxford University, Oxford, UK
Wojbor Woyczynski, Case Western Reserve University, Cleveland, OH, USA

Cover illustration: Photographer unknown. Courtesy of The Shelby White and Leon Levy
Archives Center, Institute for Advanced Study, Princeton, NJ, USA.

ISBN 978-1-4419-1220-6 e-ISBN 978-1-4419-1221-3

DOI 10.1007/978-1-4419-1221-3
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2009932782

Mathematics Subject Classification (2000): 03-XX, 68N 17

c© Springer Science+Business Media, LLC 2010
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Foreword
by Lev Beklemishev, Moscow

The field of mathematical logic—evolving around the notions of logical

validity, provability, and computation—was created in the first half of the

previous century by a cohort of brilliant mathematicians and philosophers

such as Frege, Hilbert, Gödel, Turing, Tarski, Malcev, Gentzen, and some

others. The development of this discipline is arguably among the highest

achievements of science in the twentieth century: it expanded mathe-

matics into a novel area of applications, subjected logical reasoning and

computability to rigorous analysis, and eventually led to the creation of

computers.

The textbook by Professor Wolfgang Rautenberg is a well-written in-

troduction to this beautiful and coherent subject. It contains classical

material such as logical calculi, beginnings of model theory, and Gödel’s

incompleteness theorems, as well as some topics motivated by applica-

tions, such as a chapter on logic programming. The author has taken

great care to make the exposition readable and concise; each section is

accompanied by a good selection of exercises.

A special word of praise is due for the author’s presentation of Gödel’s

second incompleteness theorem, in which the author has succeeded in

giving an accurate and simple proof of the derivability conditions and

the provable Σ1-completeness, a technically difficult point that is usually

omitted in textbooks of comparable level. This work can be recommended

to all students who want to learn the foundations of mathematical logic.
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Preface

The third edition differs from the second mainly in that parts of the

text have been elaborated upon in more detail. Moreover, some new

sections have been added, for instance a separate section on Horn formulas

in Chapter 4, particularly interesting for logic programming. The book

is aimed at students of mathematics, computer science, and linguistics.

It may also be of interest to students of philosophy (with an adequate

mathematical background) because of the epistemological applications of

Gödel’s incompleteness theorems, which are discussed in detail.

Although the book is primarily designed to accompany lectures on a

graduate level, most of the first three chapters are also readable by under-

graduates. The first hundred twenty pages cover sufficient material for an

undergraduate course on mathematical logic, combined with a due por-

tion of set theory. Only that part of set theory is included that is closely

related to mathematical logic. Some sections of Chapter 3 are partly

descriptive, providing a perspective on decision problems, on automated

theorem proving, and on nonstandard models.

Using this book for independent and individual study depends less on

the reader’s mathematical background than on his (or her) ambition to

master the technical details. Suitable examples accompany the theorems

and new notions throughout. We always try to portray simple things

simply and concisely and to avoid excessive notation, which could divert

the reader’s mind from the essentials. Line breaks in formulas have been

avoided. To aid the student, the indexes have been prepared very carefully.

Solution hints to most exercises are provided in an extra file ready for

download from Springer’s or the author’s website.

Starting from Chapter 4, the demands on the reader begin to grow. The

challenge can best be met by attempting to solve the exercises without

recourse to the hints. The density of information in the text is rather high;

a newcomer may need one hour for one page. Make sure to have paper and

pencil at hand when reading the text. Apart from sufficient training in

logical (or mathematical) deduction, additional prerequisites are assumed

only for parts of Chapter 5, namely some knowledge of classical algebra,

and at the very end of the last chapter some acquaintance with models of

axiomatic set theory.
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viii Preface

On top of the material for a one-semester lecture course on mathemat-

ical logic, basic material for a course in logic for computer scientists is

included in Chapter 4 on logic programming. An effort has been made to

capture some of the interesting aspects of this discipline’s logical founda-

tions. The resolution theorem is proved constructively. Since all recursive

functions are computable in PROLOG, it is not hard to deduce the un-

decidability of the existence problem for successful resolutions.

Chapter 5 concerns applications of mathematical logic in mathematics

itself. It presents various methods of model construction and contains the

basic material for an introductory course on model theory. It contains in

particular a model-theoretic proof of quantifier eliminability in the theory

of real closed fields, which has a broad range of applications.

A special aspect of the book is the thorough treatment of Gödel’s incom-

pleteness theorems in Chapters 6 and 7. Chapters 4 and 5 are not needed

here. 6.11 starts with basic recursion theory needed for the arithmeti-

zation of syntax in 6.2 as well as in solving questions about decidability

and undecidability in 6.5. Defining formulas for arithmetical predicates

are classified early, to elucidate the close relationship between logic and

recursion theory. Along these lines, in 6.5 we obtain in one sweep Gödel’s

first incompleteness theorem, the undecidability of the tautology problem

by Church, and Tarski’s result on the nondefinability of truth, all of which

are based on certain diagonalization arguments. 6.6 includes among other

things a sketch of the solution to Hilbert’s tenth problem.

Chapter 7 is devoted mainly to Gödel’s second incompleteness theo-

rem and some of its generalizations. Of particular interest thereby is the

fact that questions about self-referential arithmetical statements are al-

gorithmically decidable due to Solovay’s completeness theorem. Here and

elsewhere, Peano arithmetic (PA) plays a key role, a basic theory for the

foundations of mathematics and computer science, introduced already in

3.3. The chapter includes some of the latest results in the area of self-

reference not yet covered by other textbooks.

Remarks in small print refer occasionally to notions that are undefined

and direct the reader to the bibliography, or will be introduced later.

The bibliography can represent an incomplete selection only. It lists most

1 This is to mean Section 6.1, more precisely, Section 1 in Chapter 6. All other boldface

labels are to be read accordingly throughout the book.



Preface ix

English textbooks on mathematical logic and, in addition, some original

papers mainly for historical reasons. It also contains some titles treating

biographical, historical, and philosophical aspects of mathematical logic

in more detail than this can be done in the limited size of our book. Some

brief historical remarks are also made in the Introduction. Bibliographical

entries are sorted alphabetically by author names. This order may slightly

diverge from the alphabetic order of their citation labels.

The material contained in this book will remain with high probability

the subject of lectures on mathematical logic in the future. Its streamlined

presentation has allowed us to cover many different topics. Nonetheless,

the book provides only a selection of results and can at most accentuate

certain topics. This concerns above all Chapters 4, 5, 6, and 7, which go

a step beyond the elementary. Philosophical and foundational problems

of mathematics are not systematically discussed within the constraints of

this book, but are to some extent considered when appropriate.

The seven chapters of the book consist of numbered sections. A ref-

erence like Theorem 5.4 is to mean Theorem 4 in Section 5 of a given

chapter. In cross-referencing from another chapter, the chapter number

will be adjoined. For instance, Theorem 6.5.4 means Theorem 5.4 in

Chapter 6. You may find additional information about the book or con-

tact me on my website www.math.fu-berlin.de/~raut. Please contact me

if you propose improved solutions to the exercises, which may afterward

be included in the separate file Solution Hints to the Exercises .

I would like to thank the colleagues who offered me helpful criticism

along the way. Useful for Chapter 7 were hints from Lev Beklemishev

and Wilfried Buchholz. Thanks also to Peter Agricola for his help in

parts of the contents and in technical matters, and to Michael Knoop and

David Kramer for their thorough reading of the manuscript and finding a

number of mistakes.

Wolfgang Rautenberg, June 2009

http://www.math.fu-berlin.de/~raut
http://www.math.fu-berlin.de/~raut/logic3/hint.pdf
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Introduction

Traditional logic as a part of philosophy is one of the oldest scientific

disciplines. It can be traced back to the Stoics and to Aristotle2 and

is the root of what is nowadays called philosophical logic. Mathematical

logic, however, is a relatively young discipline, having arisen from the en-

deavors of Peano, Frege, and Russell to reduce mathematics entirely to

logic. It steadily developed during the twentieth century into a broad dis-

cipline with several subareas and numerous applications in mathematics,

computer science, linguistics, and philosophy.

One feature of modern logic is a clear distinction between object lan-

guage and metalanguage. The first is formalized or at least formalizable.

The latter is, like the language of this book, a kind of a colloquial language

that differs from author to author and depends also on the audience the

author has in mind. It is mixed up with semiformal elements, most of

which have their origin in set theory. The amount of set theory involved

depends on one’s objectives. Traditional semantics and model theory

as essential parts of mathematical logic use stronger set-theoretic tools

than does proof theory. In some model-theoretic investigations these are

often the strongest possible ones. But on average, little more is assumed

than knowledge of the most common set-theoretic terminology, presented

in almost every mathematical course or textbook for beginners. Much of

it is used only as a façon de parler.

The language of this book is similar to that common to almost all math-

ematical disciplines. There is one essential difference though. In math-

ematics, metalanguage and object language strongly interact with each

other, and the latter is semiformalized in the best of cases. This method

has proved successful. Separating object language and metalanguage is

relevant only in special context, for example in axiomatic set theory, where

formalization is needed to specify what certain axioms look like. Strictly

formal languages are met more often in computer science. In analyzing

complex software or a programming language, as in logic, formal linguistic

entities are the central objects of consideration.

2 The Aristotelian syllogisms are easy but useful examples for inferences in a first-order

language with unary predicate symbols. One of these syllogisms serves as an example

in Section 4.6 on logic programming.

xv



xvi Introduction

The way of arguing about formal languages and theories is traditionally

called the metatheory . An important task of a metatheoretic analysis is

to specify procedures of logical inference by so-called logical calculi, which

operate purely syntactically. There are many different logical calculi. The

choice may depend on the formalized language, on the logical basis, and

on certain aims of the formalization. Basic metatheoretic tools are in any

case the naive natural numbers and inductive proof procedures. We will

sometimes call them proofs by metainduction, in particular when talking

about formalized object theories that speak about natural numbers. In-

duction can likewise be carried out on certain sets of strings over a fixed

alphabet, or on the system of rules of a logical calculus.

The logical means of the metatheory are sometimes allowed or even ex-

plicitly required to be different from those of the object language. But in

this book the logic of object languages, as well as that of the metalang-

uage, are classical, two-valued logic. There are good reasons to argue that

classical logic is the logic of common sense. Mathematicians, computer

scientists, linguists, philosophers, physicists, and others are using it as a

common platform for communication.

It should be noticed that logic used in the sciences differs essentially

from logic used in everyday language, where logic is more an art than a se-

rious task of saying what follows from what. In everyday life, nearly every

utterance depends on the context. In most cases logical relations are only

alluded to and rarely explicitly expressed. Some basic assumptions of two-

valued logic mostly fail, in particular, a context-free use of the logical con-

nectives. Problems of this type are not dealt with here. To some extent,

many-valued logic or Kripke semantics can help to clarify the situation,

and sometimes intrinsic mathematical methods must be used in order to

solve such problems. We shall use Kripke semantics here for a different

goal, though, the analysis of self-referential sentences in Chapter 7.

Let us add some historical remarks, which, of course, a newcomer may

find easier to understand after and not before reading at least parts of this

book. In the relatively short period of development of modern mathemat-

ical logic in the twentieth century, some highlights may be distinguished,

of which we mention just a few. Many details on this development can be

found in the excellent biographies [Daw] and [FF] on Gödel and Tarski,

the leading logicians in the last century.
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The first was the axiomatization of set theory in various ways. The most

important approaches are those of Zermelo (improved by Fraenkel and von

Neumann) and the theory of types by Whitehead and Russell. The latter

was to become the sole remnant of Frege’s attempt to reduce mathematics

to logic. Instead it turned out that mathematics can be based entirely on

set theory as a first-order theory. Actually, this became more salient after

the rest of the hidden assumptions by Russell and others were removed

from axiomatic set theory around 1915; see [Hei]. For instance, the notion

of an ordered pair, crucial for reducing the notion of a function to set

theory, is indeed a set-theoretic and not a logical one.

Right after these axiomatizations were completed, Skolem discovered

that there are countable models of the set-theoretic axioms, a drawback

to the hope for an axiomatic characterization of a set. Just then, two

distinguished mathematicians, Hilbert and Brouwer, entered the scene

and started their famous quarrel on the foundations of mathematics. It

is described in a comprehensive manner for instance in [Kl2, Chapter IV]

and need therefore not be repeated here.

As a next highlight, Gödel proved the completeness of Hilbert’s rules for

predicate logic, presented in the first modern textbook on mathematical

logic, [HA]. Thus, to some extent, a dream of Leibniz became real, namely

to create an ars inveniendi for mathematical truth. Meanwhile, Hilbert

had developed his view on a foundation of mathematics into a program. It

aimed at proving the consistency of arithmetic and perhaps the whole of

mathematics including its nonfinitistic set-theoretic methods by finitary

means. But Gödel showed by his incompleteness theorems in 1931 that

Hilbert’s original program fails or at least needs thorough revision.

Many logicians consider these theorems to be the top highlights of math-

ematical logic in the twentieth century. A consequence of these theorems

is the existence of consistent extensions of Peano arithmetic in which true

and false sentences live in peaceful coexistence with each other, called

“dream theories” in 7.3. It is an intellectual adventure of holistic beauty

to see wisdom from number theory known for ages, such as the Chinese re-

mainder theorem, simple properties of prime numbers, and Euclid’s char-

acterization of coprimeness (page 249), unexpectedly assuming pivotal

positions within the architecture of Gödel’s proofs. Gödel’s methods were

also basic for the creation of recursion theory around 1936.
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Church’s proof of the undecidability of the tautology problem marks an-

other distinctive achievement. After having collected sufficient evidence

by his own investigations and by those of Turing, Kleene, and some oth-

ers, Church formulated his famous thesis (see 6.1), although in 1936 no

computers in the modern sense existed nor was it foreseeable that com-

putability would ever play the basic role it does today.

Another highlight of mathematical logic has its roots in the work of

Tarski, who proved first the undefinability of truth in formalized languages

as explained in 6.5, and soon thereafter started his fundamental work on

decision problems in algebra and geometry and on model theory, which

ties logic and mathematics closely together. See Chapter 5.

As already mentioned, Hilbert’s program had to be revised. A decisive

step was undertaken by Gentzen, considered to be another groundbreaking

achievement of mathematical logic and the starting point of contemporary

proof theory. The logical calculi in 1.4 and 3.1 are akin to Gentzen’s

calculi of natural deduction.

We further mention Gödel’s discovery that it is not the axiom of choice

(AC) that creates the consistency problem in set theory. Set theory with

AC and the continuum hypothesis (CH) is consistent, provided set theory

without AC and CH is. This is a basic result of mathematical logic that

would not have been obtained without the use of strictly formal methods.

The same applies to the independence proof of AC and CH from the axioms

of set theory by Cohen in 1963.

The above indicates that mathematical logic is closely connected with

the aim of giving mathematics a solid foundation. Nonetheless, we confine

ourself to logic and its fascinating interaction with mathematics, which

characterizes mathematical logic. History shows that it is impossible to

establish a programmatic view on the foundations of mathematics that

pleases everybody in the mathematical community. Mathematical logic

is the right tool for treating the technical problems of the foundations of

mathematics, but it cannot solve its epistemological problems.



Notation

We assume that the reader is familiar with the most basic mathematical

terminology and notation, in particular with the union, intersection, and

complementation of sets, denoted by ∪, ∩, and \ , respectively. Here we

summarize only some notation that may differ slightly from author to

author or is specific for this book. N, Z, Q, R denote the sets of natural

numbers including 0, integers, rational, and real numbers, respectively,

and N+, Q+, R+ the sets of positive members of the corresponding sets.

n, m, i, j, k always denote natural numbers unless stated otherwise. Hence,

extended notation like n ∈ N is mostly omitted.

In the following, M, N denote sets, M ⊆ N denotes inclusion, while

M ⊂ N means proper inclusion (i.e., M ⊆ N and M �= N). As a rule, we

write M ⊂ N only if the circumstance M �= N has to be emphasized. If

M is fixed in a consideration and N varies over subsets of M , then M \N

may also be symbolized by \N or ¬N .

∅ denotes the empty set, and PM the power set (= set of all subsets)

of M . If one wants to emphasize that all elements of a set S are sets, S is

also called a system or family of sets.
⋃

S denotes the union of S, that is,

the set of elements belonging to at least one M ∈ S, and
⋂

S stands for

the intersection of a nonempty system S, the set of elements belonging to

all M ∈ S. If S = {Mi | i ∈ I} then
⋃

S and
⋂

S are mostly denoted by
⋃

i∈I Mi and
⋂

i∈I Mi, respectively.

A relation between M and N is a subset of M × N , the set of ordered

pairs (a, b) with a ∈ M and b ∈ N . A precise definition of (a, b) is given

on page 114. Such a relation, f say, is said to be a function or mapping

from M to N if for each a ∈ M there is precisely one b ∈ N with (a, b) ∈ f .

This b is denoted by f(a) or fa or af and called the value of f at a. We

denote a function f from M to N also by f : M → N , or by f : x 
→ t(x),

provided f(x) = t(x) for some term t (see 2.2). ran f = {fx | x ∈ M}

is called the range of f , and dom f = M its domain. idM denotes the

identical function on M , that is, idM (x) = x for all x ∈ M .

f : M → N is injective if fx = fy ⇒ x = y, for all x, y ∈ M , surjective

if ran f = N , and bijective if f is both injective and surjective. The reader

should basically be familiar with this terminology. The phrase “let f be

a function from M to N ” is sometimes shortened to “let f : M → N .”

xix



xx Notation

The set of all functions from a set I to a set M is denoted by M I . If

f, g are functions with ran g ⊆ dom f then h : x 
→ f(g(x)) is called their

composition (or product). It will preferably be written as h = f ◦ g.

Let I and M be sets, f : I → M , and call I the index set. Then f will

often be denoted by (ai)i∈I and is named, depending on the context, an

(indexed) family, an I-tuple, or a sequence. If 0 is identified with ∅ and

n > 0 with {0, 1, . . . , n − 1}, as is common in set theory, then Mn can

be understood as the set of n-tuples (ai)i<n = (a0, . . . , an−1) of length n

whose members belong to M . In particular, M0 = {∅}. Also the set of

sequences (a1, . . . , an) with ai ∈ M will frequently be denoted by Mn. In

concatenating finite sequences, which has an obvious meaning, the empty

sequence (i.e., ∅), plays the role of a neutral element. (a1, . . . , an) will

mostly be denoted by �a. Note that this is the empty sequence for n = 0,

similar to {a1, . . . , an} for n = 0 always being the empty set. f�a means

f(a1, . . . , an) throughout.

If A is an alphabet , i.e., if the elements s ∈ A are symbols or at least

named symbols, then the sequence (s1, . . . , sn) ∈ An is written as s1 · · · sn

and called a string or a word over A. The empty sequence is called in

this context the empty string. A string consisting of a single symbol s is

termed an atomic string. It will likewise be denoted by s, since it will be

clear from the context whether s means a symbol or an atomic string.

Let ξη denote the concatenation of the strings ξ and η. If ξ = ξ1ηξ2 for

some strings ξ1, ξ2 and η �= ∅ then η is called a segment (or substring) of

ξ, termed a proper segment in case η �= ξ. If ξ1 = ∅ then η is called an

initial, if ξ2 = ∅, a terminal segment of ξ.

Subsets P, Q, R, . . . ⊆ Mn are called n-ary predicates of M or n-ary re-

lations. A unary predicate will be identified with the corresponding subset

of M . We may write P�a for �a ∈ P , and ¬P�a for �a /∈ P . Metatheoretical

predicates (or properties) cast in words will often be distinguished from

the surrounding text by single quotes, for instance, if we speak of the

syntactic predicate ‘The variable x occurs in the formula α’. We can do

so since quotes inside quotes will not occur in this book. Single-quoted

properties are often used in induction principles or reflected in a theory,

while ordinary (“double”) quotes have a stylistic function only.

An n-ary operation of M is a function f : Mn → M . Since M0 = {∅}, a

0-ary operation of M is of the form {(∅, c)}, with c ∈ M ; it is denoted by
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c for short and called a constant . Each operation f : Mn → M is uniquely

described by the graph of f , defined as

graph f := {(a1, . . . , an+1) ∈ Mn+1 | f(a1, . . . , an) = an+1}.
1

Both f and graph f are essentially the same, but in most situations it is

more convenient to distinguish between them.

The most important operations are binary ones. The corresponding

symbols are mostly written between the arguments, as in the following

listing of properties of a binary operation ◦ on a set A. ◦ : A2 → A is

commutative if a ◦ b = b ◦ a for all a, b ∈ A,

associative if a ◦ (b ◦ c) = (a ◦ b) ◦ c for all a, b, c ∈ A,

idempotent if a ◦ a = a for all a ∈ A,

invertible if for all a, b ∈ A there are x, y ∈ A

with a ◦x = b and y ◦ a = b.

If H, Θ (read eta, theta) are expressions of our metalanguage, H ⇔ Θ

stands for ‘H iff Θ’ which abbreviates ‘H if and only if Θ’. Similarly,

H ⇒ Θ and H & Θ mean ‘if H then Θ’ and ‘H and Θ’, respectively, and

H∨∨∨Θ is to mean ‘H or Θ.’ This notation does not aim at formalizing the

metalanguage but serves improved organization of metatheoretic state-

ments. We agree that ⇒, ⇔, . . . separate stronger than linguistic binding

particles such as “there is” or “for all.” Therefore, in the statement

‘X ⊢ α ⇔ X � α, for all X and all α’ (Theorem 1.4.6)

the comma should not be dropped; otherwise, some serious misunder-

standing may arise: ‘X � α for all X and all α ’ is simply false.

H :⇔ Θ means that the expression H is defined by Θ. When integrating

formulas in the colloquial metalanguage, one may use certain abbreviating

notation. For instance, ‘α ≡ β and β ≡ γ’ is occasionally shortened

to α ≡ β ≡ γ. (‘the formulas α, β, and β, γ are equivalent’). This is

allowed, since in this book the symbol ≡ will never belong to the formal

language from which the formulas α, β, γ are taken. W.l.o.g. or w.l.o.g. is

a colloquial shorthand of “without loss of generality” used in mathematics.

1 This means that the left-hand term graph f is defined by the right-hand term. A

corresponding meaning has := throughout, except in programs and flow diagrams,

where x := t means the allocation of the value of the term t to the variable x.





Chapter 1

Propositional Logic

Propositional logic, by which we here mean two-valued propositional logic,

arises from analyzing connections of given sentences A, B, such as

A and B, A or B, not A, if A then B.

These connection operations can be approximately described by two-

valued logic. There are other connections that have temporal or local

features, for instance, first A then B or here A there B, as well as unary

modal operators like it is necessarily true that, whose analysis goes beyond

the scope of two-valued logic. These operators are the subject of tempo-

ral, modal, or other subdisciplines of many-valued or nonclassical logic.

Furthermore, the connections that we began with may have a meaning in

other versions of logic that two-valued logic only incompletely captures.

This pertains in particular to their meaning in natural or everyday lan-

guage, where meaning may strongly depend on context.

In two-valued propositional logic such phenomena are set aside. This

approach not only considerably simplifies matters, but has the advantage

of presenting many concepts, for instance those of consequence, rule in-

duction, or resolution, on a simpler and more perspicuous level. This will

in turn save a lot of writing in Chapter 2 when we consider the corre-

sponding concepts in the framework of predicate logic.

We will not consider everything that would make sense in two-valued

propositional logic, such as two-valued fragments and problems of defin-

ability and interpolation. The reader is referred instead to [KK] or [Ra1].

We will concentrate our attention more on propositional calculi. While

there exists a multitude of applications of propositional logic, we will not

consider technical applications such as the designing of Boolean circuits
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2 1 Propositional Logic

and problems of optimization. These topics have meanwhile been inte-

grated into computer science. Rather, some useful applications of the

propositional compactness theorem are described comprehensively.

1.1 Boolean Functions and Formulas

Two-valued logic is based on two foundational principles: the principle of

bivalence, which allows only two truth values, namely true and false, and

the principle of extensionality , according to which the truth value of a

connected sentence depends only on the truth values of its parts, not on

their meaning. Clearly, these principles form only an idealization of the

actual relationships.

Questions regarding degrees of truth or the sense-content of sentences

are ignored in two-valued logic. Despite this simplification, or indeed

because of it, such a method is scientifically successful. One does not even

have to know exactly what the truth values true and false actually are.

Indeed, in what follows we will identify them with the two symbols 1 and

0. Of course, one could have chosen any other apt symbols such as ⊤ and

⊥ or t and f. The advantage here is that all conceivable interpretations of

true and false remain open, including those of a purely technical nature,

for instance the two states of a gate in a Boolean circuit.

According to the meaning of the word and, the conjunction A and B of

sentences A, B, in formalized languages written as A∧B or A & B, is true

if and only if A, B are both true and is false otherwise. So conjunction

corresponds to a binary function or operation over the set {0, 1} of truth

values, named the ∧ -function and denoted by ∧ . It is given by its value

matrix
(

1 0

0 0

)

, where, in general,
(

1◦1 1◦0

0◦1 0◦0

)

represents the value matrix or

truth table of a binary function ◦ with arguments and values in {0, 1}.

The delimiters of these small matrices will usually be omitted.

A function f : {0, 1}n → {0, 1} is called an n-ary Boolean function or

truth function. Since there are 2n n-tuples of 0, 1, it is easy to see that

the number of n-ary Boolean functions is 22n
. We denote their totality by

Bn. While B2 has 24 = 16 members, there are only four unary Boolean

functions. One of these is negation, denoted by ¬ and defined by ¬1 = 0

and ¬0 = 1. B0 consists just of the constants 0 and 1.
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The first column of the table below contains the common binary connec-

tions with examples of their instantiation in English. The second column

lists some of its traditional symbols, which also denote the corresponding

truth function, and the third its truth table. Disjunction is the inclusive

or and is to be distinguished from the exclusive disjunction. The latter

corresponds to addition modulo 2 and is therefore given the symbol +.

In Boolean circuits the functions +, ↓, ↑ are often denoted by xor, nor,

and nand ; the latter is also known as the Sheffer function. Recall our

agreement in the section Notation that the symbols &, ∨, ⇒ , and ⇔

will be used only on the metatheoretic level.

A connected sentence and its corresponding truth function need not be

denoted by the same symbol; for example, one might take ∧ for conjunc-

tion and et as the corresponding truth function. But in doing so one would

only be creating extra notation, but no new insights. The meaning of a

symbol will always be clear from the context: if α, β are sentences of a for-

mal language, then α∧β denotes their conjunction; if a, b are truth values,

then a∧ b just denotes a truth value. Occasionally, we may want to refer

to the symbols ∧ , ∨,¬, . . . themselves, setting their meaning temporarily

aside. Then we talk of the connectives or truth functors ∧ , ∨,¬, . . .

compound sentence symbol truth table

conjunction

A and B; A as well as B
∧ , &

1 0

0 0

disjunction

A or B
∨, ∨

1 1

1 0

implication

if A then B; B provided A
→, ⇒

1 0

1 1

equivalence

A if and only if B; A iff B
↔, ⇔

1 0

0 1

exclusive disjunction

either A or B but not both
+

0 1

1 0

nihilation

neither A nor B
↓

0 0

0 1

incompatibility

not at once A and B
↑

0 1

1 1
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Sentences formed using connectives given in the table are said to be

logically equivalent if their corresponding truth tables are identical. This

is the case, for example, for the sentences A provided B and A or not B,

which represent the converse implication, denoted by A ← B.1 It does

not appear in the table, since it arises by swapping A, B in the implication.

This and similar reasons explain why only a few of the sixteen binary

Boolean functions require notation. Another example of logical equivalent

sentences are if A and B then C, and if B then C provided A.

In order to recognize and describe logical equivalence of compound sen-

tences it is useful to create a suitable formalism or a formal language. The

idea is basically the same as in arithmetic, where general statements are

more clearly expressed by means of certain formulas. As with arithmetical

terms, we consider propositional formulas as strings of signs built in given

ways from basic symbols. Among these basic symbols are variables, for

our purposes called propositional variables, the set of which is denoted by

PV. Traditionally, these are symbolized by p0, p1, . . . However, our num-

bering of the variables below begins with p1 rather than with p0, enabling

us later on to represent Boolean functions more conveniently. Further, we

use certain logical signs such as ∧ , ∨,¬, . . . , similar to the signs +, ·, . . . of

arithmetic. Finally, parentheses ( , ) will serve as technical aids, although

these are dispensable, as will be seen later on.

Each time a propositional language is in question, the set of its logi-

cal symbols, called the logical signature, and the set of its variables must

be given in advance. For instance, it is crucial in some applications of

propositional logic in Section 1.5 for PV to be an arbitrary set, and not

a countably infinite one as indicated previously. Put concretely, we de-

fine a propositional language F of formulas built up from the symbols

( , ) , ∧ , ∨ ,¬ , p1, p2, . . . inductively as follows:

(F1) The atomic strings p1, p2, . . . are formulas, called prime formulas,

also called atomic formulas, or simply prime.

(F2) If the strings α, β are formulas, then so too are the strings (α∧β),

(α ∨ β), and ¬α.

This is a recursive (somewhat sloppily also called inductive) definition

in the set of strings on the alphabet of the mentioned symbols, that is,

1 Converse implication is used in the programming language PROLOG, see 4.6.
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only those strings gained using (F1) or (F2) are in this context formulas.

Stated set-theoretically, F is the smallest (i.e., the intersection) of all sets

of strings S built from the aforementioned symbols with the properties

(f1) p1, p2, . . . ∈ S, (f2) α, β ∈ S ⇒ (α∧β), (α ∨ β),¬α ∈ S.

Example. (p1 ∧ (p2 ∨ ¬p1)) is a formula. On the other hand, its initial

segment (p1 ∧ (p2 ∨ ¬p1) is not, because a closing parenthesis is missing.

It is intuitively clear and will rigorously be proved on the next page that

the number of left parentheses occurring in a formula coincides with the

number of its right parentheses.

Remark 1. (f1) and (f2) are set-theoretic translations of (F1) and (F2). Some
authors like to add a third condition to (F1), (F2), namely (F3): No other strings
than those obtained by (F1) and (F2) are formulas in this context. But this at
most underlines that (F1), (F2) are the only formula-building rules; (F3) follows
from our definition, as its set-theoretic translation by (f1), (f2) indicates. Note
that we do not strictly distinguish between the symbol pi and the prime formula
or atomic string pi. Note also that in the formula definition parentheses are
needed only for binary connectives, not if a formula starts with ¬. By a slightly
more involved definition at least the outermost parentheses in formulas of the
form (α◦β) with a binary connective ◦ could be saved. Howsoever propositional
formulas are defined, what counts is their unique readability, see page 7.

The formulas defined by (F1), (F2) are called Boolean formulas, because

they are obtained using the Boolean signature {∧ , ∨,¬}. Should further

connectives belong to the logical signature, for example → or ↔, (F2) of

the above definition must be augmented accordingly. But unless stated

otherwise, (α →β) and (α ↔ β) are here just abbreviations; the first is

¬(α∧¬β), the second is ((α →β)∧ (β →α)).

Occasionally, it is useful to have symbols in the logical signature for

always false and always true, ⊥ and ⊤ respectively, say, called falsum

and verum and sometimes also denoted by 0 and 1. These are to be

regarded as supplementary prime formulas, and clause (F1) should be

altered accordingly. However, we prefer to treat ⊥ and ⊤ as abbreviations:

⊥ := (p1 ∧¬p1) and ⊤ := ¬⊥.

For the time being we let F be the set of all Boolean formulas, although

everything said about F holds correspondingly for any propositional lan-

guage. Propositional variables will henceforth be denoted by p, q, . . . ,

formulas by α, β, γ, δ, ϕ, . . . , prime formulas also by π, and sets of propo-

sitional formulas by X, Y, Z, where these letters may also be indexed.
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For the reason of parenthesis economy in formulas, we set some conven-

tions similar to those used in writing arithmetical terms.

1. The outermost parentheses in a formula may be omitted (if there

are any). For example, (p ∨ q)∧¬p may be written in place of

((p ∨ q)∧¬p). Note that (p ∨ q)∧¬p is not itself a formula but

denotes the formula ((p ∨ q)∧¬p).

2. In the order ¬, ∧ , ∨, → ,↔, each connective binds more strongly

than those following it. Thus, one may write p ∨ q ∧¬p instead of

p ∨ (q ∧¬p), which means (p ∨ (q ∧¬p)) by convention 1.

3. By the multiple use of → we associate to the right. So p →q →p

is to mean p → (q →p). Multiple occurrences of other binary con-

nectives are associated to the left, for instance, p∧ q ∧¬p means

(p∧q)∧¬p. In place of α0 ∧ · · · ∧αn and α0∨ · · · ∨αn we may write
∧

i�n αi and
∨

i�n αi, respectively.

Also, in arithmetic, one normally associates to the left. An exception is

the term xyz
, where traditionally association to the right is used, that is,

xyz
equals x(yz). Association to the right has some advantages in writing

tautologies in which → occurs several times; for instance in the examples

of tautologies listed in 1.3 on page 18.

The above conventions are based on a reliable syntax in the framework

of which intuitively clear facts, such as the identical number of left and

right parentheses in a formula, are rigorously provable. These proofs are

generally carried out using induction on the construction of a formula. To

make this clear we denote by Eϕ that a property E holds for a string ϕ.

For example, let E mean the property ‘ϕ is a formula that has equally

many right- and left-hand parentheses’. E is trivially valid for prime

formulas, and if Eα, Eβ then clearly also E(α∧β), E(α ∨ β), and E¬α.

From this we may conclude that E applies to all formulas, our reasoning

being a particularly simple instance of the following

Principle of formula induction. Let E be a property of strings that

satisfies the conditions

(o) Eπ for all prime formulas π,

(s) Eα, Eβ ⇒ E(α∧β), E(α ∨ β), E¬α, for all α, β ∈ F.

Then Eϕ holds for all formulas ϕ.
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The justification of this principle is straightforward. The set S of all

strings with property E has, thanks to (o) and (s), the properties (f1)

and (f2) on page 5. But F is the smallest such set. Therefore, F ⊆ S.

In words, E applies to all formulas ϕ. Clearly, if other connectives are

involved, condition (s) must accordingly be modified.

It is intuitively clear and easily confirmed inductively on ϕ that a com-

pound Boolean formula ϕ (i.e., ϕ is not prime) is of the form ϕ = ¬α

or ϕ = (α∧β) or ϕ = (α ∨ β) for suitable α, β ∈ F. Moreover, this de-

composition is unique. For instance, (α∧β) cannot at the same time be

written (α′ ∨ β′) with perhaps different formulas α′, β′. Thus, compound

formulas have the unique readability property, more precisely, the

Unique formula reconstruction property. Each compound formula

ϕ ∈ F is either of the form ¬α or (α ◦ β) for some uniquely determined

formulas α, β ∈ F, where ◦ is either ∧ or ∨.

This property is less obvious than it might seem. Nonetheless, the proof

is left as an exercise (Exercise 4) in order to maintain the flow of things. It

may be a surprise to the novice that for the unique formula reconstruction,

parentheses are dispensable throughout. Indeed, propositional formulas,

like arithmetical terms, can be written without any parentheses; this is

realized in Polish notation (= PN), also called prefix notation, once widely

used in the logic literature. The idea consists in altering (F2) as follows:

if α, β are formulas then so too are ∧αβ, ∨αβ, and ¬α. Similar to PN is

RPN (reverse Polish notation), still used in some programming languages

like PostScript. RPN differs from PN only in that a connective is placed

after the arguments. For instance, (p∧ (q ∨ ¬p)) is written in RPN as

pqp¬∨∧ . Reading PN or RPN requires more effort due to the high density

of information; but by the same token it can be processed very fast by a

computer or a high-tech printer getting its job as a PostScript program.

The only advantage of the parenthesized version is that its decoding is

somewhat easier for our eye through the dilution of information.

Intuitively it is clear what a subformula of a formula ϕ is; for example,

(q ∧¬p) is a subformula of (p ∨ (q ∧¬p)). All the same, for some pur-

poses it is convenient to characterize the set Sf ϕ of all subformulas of ϕ

inductively:

Sf π = {π} for prime formulas π; Sf ¬α = Sf α ∪ {¬α},

Sf(α ◦ β) = Sf α ∪ Sf β ∪ {(α ◦ β)} for a binary connective ◦.
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Thus, a formula is always regarded as a subformula of itself. The above is

a typical example of a recursive definition on the construction of formulas.

Another example of such a definition is the rank rkϕ of a formula ϕ, which

provides a sometimes more convenient measure of the complexity of ϕ

than its length as a string and occasionally simplifies inductive arguments.

Intuitively, rkϕ is the highest number of nested connectives in ϕ. Let

rkπ = 0 for prime formulas π, and if rkα and rkβ are already defined,

then rk¬α = rkα+1 and rk(α◦β) = max{rkα, rk β}+1. Here ◦ denotes

any binary connective. We will not give here a general formulation of

this definition procedure because it is very intuitive and similar to the

well-known procedure of recursive definitions on N. It has been made

sufficiently clear by the preceding examples. Its justification is based

on the unique reconstruction property and insofar not quite trivial, in

contrast to the proof procedure by induction on formulas that immediately

follows from the definition of propositional formulas.

If a property is to be proved by induction on the construction of formulas

ϕ, we will say that it is a proof by induction on ϕ. Similarly, the recursive

construction of a function f on F will generally be referred to as defining

f by recursion on ϕ, often somewhat sloppily paraphrased as defining f

by induction on ϕ. Examples are Sf and rk. Others will follow.

Since the truth value of a connected sentence depends only on the truth

values of its constituent parts, we may assign to every propositional vari-

able of α a truth value rather than a sentence, thereby evaluating α,

i.e., calculating a truth value. Similarly, terms are evaluated in, say,

the arithmetic of real numbers, whose value is then a real (= real num-

ber). An arithmetical term t in the variables x1, . . . , xn describes an

n-ary function whose arguments and values are reals, while a formula ϕ

in p1, . . . , pn describes an n-ary Boolean function. To be precise, a propo-

sitional valuation, or alternatively, a (propositional) model, is a mapping

w : PV → {0, 1} that can also be understood as a mapping from the set

of prime formulas to {0, 1}. We can extend this to a mapping from the

whole of F to {0, 1} (likewise denoted by w) according to the stipulations

(∗) w(α∧β) = wα∧wβ; w(α ∨ β) = wα ∨ wβ; w¬α = ¬wα.2

By the value wϕ of a formula ϕ under a valuation w : PV → {0, 1}

2 We often use (∗) or (⋆) as a temporary label for a condition (or property) that we

refer back to in the text following the labeled condition.
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we mean the value given by this extension. We could denote the ex-

tended mapping by ŵ, say, but it is in fact not necessary to distinguish

it symbolically from w : PV → {0, 1} because the latter determines the

extension uniquely. Similarly, we keep the same symbol if an operation

in N extends to a larger domain. If the logical signature contains further

connectives, for example →, then (∗) must be supplemented accordingly,

with w(α →β) = wα →wβ in the example. However, if → is defined as

in the Boolean case, then this equation must be provable. Indeed, it is

provable, because from our definition of α →β it follows that

w(α →β) = w¬(α ∧ ¬β) = ¬w(α ∧ ¬β) = ¬(wα ∧ ¬wβ) = wα →wβ,

for any w. A corresponding remark could be made with respect to ↔

and to ⊤ and ⊥. Always w⊤ = 1 and w⊥ = 0 by our definition of ⊤,⊥,

in accordance with the meaning of these symbols. However, if these or

similar symbols belong to the logical signature, then suitable equations

must be added to the definition of w.

Let Fn denote the set of all formulas of F in which at most the variables

p1, . . . , pn occur (n > 0). Then it can easily be seen that wα for the

formula α ∈ Fn depends only on the truth values of p1, . . . , pn. In other

words, α ∈ Fn satisfies for all valuations w, w′,

(⋆) wα = w′α whenever wpi = w′pi for i = 1, . . . , n.

The simple proof of (⋆) follows from induction on the construction of for-

mulas in Fn, observing that these are closed under the operations ¬, ∧ , ∨.

Clearly, (⋆) holds for p ∈ Fn, and if (⋆) is valid for α, β ∈ Fn, then also

for ¬α, α∧β, and α ∨ β. It is then clear that each α ∈ Fn defines or

represents an n-ary Boolean function according to the following

Definition. α ∈ Fn represents the function f ∈ Bn (or f is represented

by α) whenever wα = fw�p (:= f(wp1, . . . , wpn)) for all valuations w.

Because wα for α ∈ Fn is uniquely determined by wp1, . . . , wpn, α

represents precisely one function f ∈ Bn, sometimes written as α(n). For

instance, both p1 ∧p2 and ¬(¬p1 ∨ ¬p2) represent the ∧ -function, as can

easily be illustrated using a table. Similarly, ¬p1 ∨ p2 and ¬(p1 ∧¬p2)

represent the → -function, and p1 ∨ p2, ¬(¬p1 ∧¬p2), (p1 →p2) →p2 all

represent the ∨-function. Incidentally, the last formula shows that the

∨-connective can be expressed using implication alone.
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There is a caveat though: since α = p1 ∨ p2, for instance, belongs

not only to F2 but to F3 as well, α also represents the Boolean function

f : (x1, x2, x3) 
→ x1∨x2. However, the third argument is only “fictional,”

or put another way, the function f is not essentially ternary.

In general we say that an operation f : Mn → M is essentially n-ary if f

has no fictional arguments, where the ith argument of f is called fictional

whenever for all x1, . . . , xi, . . . xn ∈ M and all x′
i ∈ M ,

f(x1, . . . , xi, . . . , xn) = f(x1, . . . , x
′
i, . . . , xn).

Identity and the ¬-function are the essentially unary Boolean functions,

and out of the sixteen binary functions, only ten are essentially binary, as

is seen in scrutinizing the possible truth tables.

Remark 2. If an denotes temporarily the number of all n-ary Boolean func-
tions and en the number of all essentially n-ary Boolean functions, it is not
particularly difficult to prove that an =

∑

i�n

(
n
i

)
ei. Solving for en results in

en =
∑

i�n(−1)n−i
(
n
i

)
ai. However, we will not make use of these equations.

These become important only in a more specialized study of Boolean functions.

Exercises

1. f ∈ Bn is called linear if f(x1, . . . , xn) = a0 + a1x1 + · · ·+ anxn for

suitable coefficients a0, . . . , an ∈ {0, 1}. Here + denotes exclusive

disjunction (addition modulo 2) and the not written multiplication

is conjunction (i.e., aixi = xi for ai = 1 and aixi = 0 for ai = 0).

(a) Show that the above representation of a linear function f is

unique. (b) Determine the number of n-ary linear Boolean functions.

(c) Prove that each formula α in ¬,+ (i.e., α is a formula of the

logical signature {¬,+}) represents a linear Boolean function.

2. Verify that a compound Boolean formula ϕ is either of the form

ϕ = ¬α or else ϕ = (α∧β) or ϕ = (α ∨ β) for suitable formulas α, β

(this is the easy part of the unique reconstruction property).

3. Prove that a proper initial segment of a formula ϕ is never a formula.

Equivalently: If αξ = βη with α, β ∈ F and arbitrary strings ξ, η,

then α = β. The same holds for formulas in PN, but not in RPN.

4. Prove (with Exercise 3) the second more difficult part of the unique

reconstruction property, the claim of uniqueness.
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1.2 Semantic Equivalence and Normal Forms

Throughout this chapter w will always denote a propositional valuation.

Formulas α, β are called (logically or semantically) equivalent, and we

write α ≡ β, when wα = wβ for all valuations w. For example α ≡ ¬¬α.

Obviously, α ≡ β iff for any n such that α, β ∈ Fn, both formulas represent

the same n-ary Boolean function. It follows that at most 22n
formulas in

Fn can be pairwise inequivalent, since there are no more than 22n
n-ary

Boolean functions.

In arithmetic one writes simply s = t to express that the terms s, t rep-

resent the same function. For example, (x+y)2 = x2 +2xy +y2 expresses

the equality of values of the left- and right-hand terms for all x, y ∈ R.

This way of writing is permissible because formal syntax plays a minor role

in arithmetic. In formal logic, however, as is always the case when syntac-

tic considerations are to the fore, one uses the equality sign in messages

like α = β only for the syntactic identity of the strings α and β. There-

fore, the equivalence of formulas must be denoted differently. Clearly, for

all formulas α, β, γ the following equivalences hold:

α∧ (β ∧γ) ≡ α∧β ∧γ, α ∨ (β ∨ γ) ≡ α ∨ β ∨ γ (associativity);

α∧β ≡ β ∧α, α ∨ β ≡ β ∨ α (commutativity);

α∧α ≡ α, α ∨ α ≡ α (idempotency);

α∧ (α ∨ β) ≡ α, α ∨ α∧β ≡ α (absorption);

α∧ (β ∨ γ) ≡ α∧β ∨ α∧γ, (∧ -distributivity);

α ∨ β ∧γ ≡ (α∨β)∧ (α∨γ) (∨-distributivity);

¬(α∧β) ≡ ¬α ∨ ¬β, ¬(α ∨ β) ≡ ¬α∧¬β (de Morgan rules).

Furthermore, α ∨ ¬α ≡ ⊤, α∧¬α ≡ ⊥, and α∧⊤ ≡ α ∨ ⊥ ≡ α. It is also

useful to list certain equivalences for formulas containing → , for example

the frequently used α →β ≡ ¬α ∨ β (≡ ¬(α∧¬β), and the important

α →β →γ ≡ α∧β →γ ≡ β →α →γ.

To generalize: α1 → · · · →αn ≡ α1 ∧ · · · ∧αn−1 →αn. Further, we men-

tion the “left distributivity” of implication with respect to ∧ and ∨, namely

α →β ∧γ ≡ (α →β)∧ (α →γ); α →β ∨ γ ≡ (α →β) ∨ (α →γ).

Should the symbol → lie to the right then the following are valid:

α∧β →γ ≡ (α →γ) ∨ (β →γ); α ∨ β →γ ≡ (α →γ)∧ (β →γ).
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Remark 1. These last two logical equivalences are responsible for a curious
phenomenon in everyday language. For example, the two sentences

A: Students and pensioners pay half price,
B: Students or pensioners pay half price

evidently have the same meaning. How to explain this? Let student and pen-
sioner be abbreviated by S, P , and pay half price by H. Then

α : (S → H)∧ (P → H), β : (S ∨ P ) → H

express somewhat more precisely the factual content of A and B, respectively.
Now, according to our truth tables, the formulas α and β are simply logically
equivalent. The everyday-language statements A and B of α and β obscure the
structural difference of α and β through an apparently synonymous use of the
words and and or.

Obviously, ≡ is an equivalence relation, that is,

α ≡ α (reflexivity),

α ≡ β ⇒ β ≡ α (symmetry),

α ≡ β, β ≡ γ ⇒ α ≡ γ (transitivity).

Moreover, ≡ is a congruence relation on F,3 i.e., for all α, α′, β, β′,

α ≡ α′, β ≡ β′ ⇒ α ◦ β ≡ α′ ◦ β′,¬α ≡ ¬α′ (◦ ∈ {∧ , ∨ }).

For this reason the replacement theorem holds: α ≡ α′ ⇒ ϕ ≡ ϕ′,

where ϕ′ is obtained from ϕ by replacing one or several of the possi-

ble occurrences of the subformula α in ϕ by α′. For instance, by re-

placing the subformula ¬p ∨ ¬q by the equivalent formula ¬(p∧q) in

ϕ = (¬p ∨ ¬q)∧ (p ∨ q) we obtain ϕ′ = ¬(p∧ q)∧ (p ∨ q), which is equiva-

lent to ϕ. A similar replacement theorem also holds for arithmetical terms

and is constantly used in their manipulation. This mostly goes unnoticed,

because = is written instead of ≡, and the replacement for = is usually

correctly applied. The simple inductive proof of the replacement theorem

will be given in a somewhat broader context in 2.4.

Furnished with the equivalences ¬¬α ≡ α, ¬(α∧β) ≡ ¬α ∨ ¬β, and

¬(α ∨ β) ≡ ¬α∧¬β, and using replacement it is easy to construct for each

formula an equivalent formula in which ¬ stands only in front of variables.

For example, ¬(p∧q ∨ r) ≡ ¬(p∧q)∧¬r ≡ (¬p ∨ ¬q)∧¬r is obtained in

this way. This observation follows also from Theorem 2.1.

3 This concept, stemming originally from geometry, is meaningfully defined in every

algebraic structure and is one of the most important and most general mathematical

concepts; see 2.1. The definition is equivalent to the condition

α ≡ α′ ⇒ α ◦ β ≡ α′ ◦ β, β ◦ α ≡ β ◦ α′,¬α ≡ ¬α′, for all α, α′, β.
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It is always something of a surprise to the newcomer that independent of

its arity, every Boolean function can be represented by a Boolean formula.

While this can be proved in various ways, we take the opportunity to

introduce certain normal forms and therefore begin with the following

Definition. Prime formulas and negations of prime formulas are called

literals. A disjunction α1∨ · · · ∨αn, where each αi is a conjunction of liter-

als, is called a disjunctive normal form, a DNF for short. A conjunction

β1 ∧ · · · ∧βn, where every βi is a disjunction of literals, is called a con-

junctive normal form, a CNF for short.

Example 1. The formula p ∨ (q ∧¬p) is a DNF; p ∨ q is at once a DNF

and a CNF; p ∨ ¬(q ∧¬p) is neither a DNF nor a CNF.

Theorem 2.1 states that every Boolean function is represented by a

Boolean formula, indeed by a DNF, and also by a CNF. It would suffice

to show that for given n there are at least 22n
pairwise inequivalent DNFs

(resp. CNFs). However, we present instead a constructive proof whereby

for a Boolean function given in tabular form a representing DNF (resp.

CNF) can explicitly be written down. In Theorem 2.1 we temporarily

use the following notation: p1 := p and p0 := ¬p. With this stipulation,

w(px1
1 ∧px2

2 ) = 1 iff wp1 = x1 and wp2 = x2. More generally, induction

on n � 1 easily shows that for all x1, . . . , xn ∈ {0, 1},

(∗) w(px1
1 ∧ · · · ∧pxn

n ) = 1 ⇔ w�p = �x (i.e., wp1 = x1, . . . , wpn = xn).

Theorem 2.1. Every Boolean function f with f ∈ Bn (n > 0) is repre-

sentable by a DNF, namely by

αf :=
∨

f�x=1

px1
1 ∧ · · · ∧pxn

n .4

At the same time, f is representable by the CNF

βf :=
∧

f�x=0

p¬x1
1 ∨ · · · ∨ p¬xn

n .

Proof. By the definition of αf , the following equivalences hold for an

arbitrary valuation w:

4 The disjuncts of αf can be arranged, for instance, according to the lexicographical

order of the n-tuples (x1, . . . , xn) ∈ {0, 1}n. If the disjunction is empty (that is, if f

does not take the value 1) let αf be ⊥ (= p1 ∧¬p1). Thus, the empty disjunction is

⊥. Similarly, the empty conjunction equals ⊤ (= ¬⊥). These conventions correspond

to those in arithmetic, where the empty sum is 0 and the empty product is 1.
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wαf = 1 ⇔ there is an �x with f�x = 1 and w(px1
1 ∧ · · · ∧pxn

n ) = 1

⇔ there is an �x with f�x = 1 and w�p = �x
(
by (∗)

)

⇔ fw�p = 1 (replace �x by w�p).

Thus, wαf = 1 ⇔ fw�p = 1. From this equivalence, and because there

are only two truth values, wαf = fw�p follows immediately. The repre-

sentability proof of f by βf runs analogously; alternatively, Theorem 2.4

below may be used.

Example 2. For the exclusive-or function +, the construction of αf

in Theorem 2.1 gives the representing DNF p1 ∧¬p2 ∨ ¬p1 ∧p2, because

(1, 0), (0, 1) are the only pairs for which + has the value 1. The CNF given

by the theorem, on the other hand, is (p1 ∨ p2)∧ (¬p1 ∨ ¬p2); the equiv-

alent formula (p1 ∨ p2)∧¬(p1 ∧p2) makes the meaning of the exclusive-or

compound particularly intuitive.

p1 ∧p2 ∨ ¬p1 ∧p2 ∨ ¬p1 ∧¬p2 is the DNF given by Theorem 2.1 for the

Boolean function → . It is longer than the formula ¬p1 ∨ p2, which is

also a representing DNF. But the former is distinctive in that each of its

disjuncts contains each variable occurring in the formula exactly once.

A DNF of n variables with the analogous property is called canonical.

The notion of canonical CNF is correspondingly explained. For instance,

the function ↔ is represented by the canonical CNF (¬p1∨p2)∧ (p1∨¬p2)

according to Theorem 2.1, which always provides canonical normal forms

as representing formulas.

Since each formula represents a certain Boolean function, Theorem 2.1

immediately implies the following fact, which has also a (more lengthy)

syntactical proof with the replacement theorem mentioned on page 12.

Corollary 2.2. Each ϕ ∈ F is equivalent to a DNF and to a CNF.

Functional completeness. A logical signature is called functional

complete if every Boolean function is representable by a formula in this

signature. Theorem 2.1 shows that {¬, ∧ , ∨ } is functional complete.

Because of p ∨ q ≡ ¬(¬p∧¬q) and p∧q ≡ ¬(¬p ∨ ¬q), one can further

leave aside ∨, or alternatively ∧ . This observation is the content of

Corollary 2.3. Both {¬, ∧} and {¬, ∨} are functional complete.

Therefore, to show that a logical signature L is functional complete, it

is enough to represent ¬, ∧ or else ¬, ∨ by formulas in L. For example,
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because ¬p ≡ p →0 and p∧q ≡ ¬(p →¬q), the signature { → , 0} is func-

tional complete. On the other hand, { → , ∧ , ∨ }, and a fortiori { →}, are

not. Indeed, wϕ = 1 for any formula ϕ in → , ∧ , ∨ and any valuation w

such that wp = 1 for all p. This can readily be confirmed by induction on

ϕ. Thus, never ¬p ≡ ϕ for any such formula ϕ.

It is noteworthy that the signature containing only ↓ is functional com-

plete: from the truth table for ↓ we get ¬p ≡ p ↓p as well as p∧q ≡ ¬p ↓¬q.

Likewise for { ↑}, because ¬p ≡ p ↑p and p ∨ q ≡ ¬p ↑¬q. That { ↑} must

necessarily be functional complete once we know that { ↓} is will become

obvious in the discussion of the duality theorem below. Even up to term

equivalence, there still exist infinitely many signatures. Here signatures

are called term equivalent if the formulas of these signatures represent the

same Boolean functions as in Exercise 2, for instance.

Define inductively on the formulas from F a mapping δ : F → F by

pδ = p, (¬α)δ = ¬αδ, (α∧β)δ = αδ ∨ βδ, (α ∨ β)δ = αδ ∧βδ.

αδ is called the dual formula of α and is obtained from α simply by inter-

changing ∧ and ∨. Obviously, for a DNF α, αδ is a CNF, and vice versa.

Define the dual of f ∈ Bn by f δ�x := ¬f¬�x with ¬�x := (¬x1, . . . ,¬xn).

Clearly f δ2
:= (f δ)δ = f since (f δ)δ�x = ¬¬f¬¬�x = f�x. Note that

∧ δ = ∨, ∨δ = ∧ , ↔δ= +, ↓ δ = ↑ , but ¬δ = ¬. In other words, ¬ is self-

dual. One may check by going through all truth tables that essentially

binary self-dual Boolean functions do not exist. But it was Dedekind who

discovered the interesting ternary self-dual function

d3 : (x1, x2, x3) 
→ x1 ∧x2 ∨ x1 ∧x3 ∨ x2 ∧x3.

The above notions of duality are combined in the following

Theorem 2.4 (The duality principle for two-valued logic). If α

represents the function f then αδ represents the dual function f δ.

Proof by induction on α. Trivial for α = p. Let α, β represent f1, f2,

respectively. Then α∧β represents f : �x 
→ f1�x∧f2�x, and in view of the

induction hypothesis, (α∧β)δ = αδ ∨ βδ represents g : �x 
→ f δ
1�x ∨ f δ

2�x.

This function is just the dual of f because

f δ�x = ¬f¬�x = ¬(f1¬�x∧f2¬�x) = ¬f1¬�x ∨ ¬f2¬�x = fδ
1�x ∨ f δ

2�x = g�x.

The induction step for ∨ is similar. Now let α represent f . Then ¬α

represents ¬f : �x 
→ ¬f�x. By the induction hypothesis, αδ represents f δ.
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Thus (¬α)δ = ¬αδ represents ¬f δ, which coincides with (¬f)δ because of

(¬f)δ�x = (¬¬f�x)¬�x = ¬(¬f¬�x) = ¬(fδ�x).

For example, we know that ↔ is represented by p∧q ∨ ¬p∧¬q. Hence,

by Theorem 2.4, + (= ↔δ) is represented by (p∨q)∧ (¬p∨¬q). More gener-

ally, if a canonical DNF α represents f ∈ Bn, then the canonical CNF αδ

represents f δ. Thus, if every f ∈ Bn is representable by a DNF then ev-

ery f must necessarily be representable by a CNF, since f 
→ f δ maps Bn

bijectively onto itself as follows from f δ2
= f . Note also that Dedekind’s

just defined ternary self-dual function d3 shows in view of Theorem 2.4

that p∧q ∨ p∧r ∨ q ∧r ≡ (p ∨ q)∧ (p ∨ r)∧ (q ∨ r).

Remark 2. {∧ , ∨, 0, 1} is maximally functional incomplete, that is, if f is any
Boolean function not representable by a formula in ∧ , ∨, 0, 1, then {∧ , ∨, 0, 1, f}
is functional complete (Exercise 4). As was shown by E. Post (1920), there are up
to term equivalence only five maximally functional incomplete logical signatures:
besides {∧ , ∨, 0, 1} only {→ , ∧}, the dual of this, {↔,¬}, and {d3,¬}. The
formulas of the last one represent just the self-dual Boolean functions. Since
¬p ≡ 1 + p, the signature {0, 1,+, ·} is functional complete, where · is written
in place of ∧ . The deeper reason is that {0, 1,+, ·} is at the same time the
extralogical signature of fields (see 2.1). Functional completeness in the two-
valued case just derives from the fact that for a finite field, each operation on
its domain is represented by a suitable polynomial. We mention also that for
any finite set M of truth values considered in many-valued logics there is a
generalized two-argument Sheffer function, by which every operation on M can
be obtained, similarly to ↑ in the two-valued case.

Exercises

1. Verify the logical equivalences

(p →q1)∧ (¬p →q2) ≡ p∧ q1 ∨ ¬p∧ q2,

p1 ∧q1 →p2 ∨ q2 ≡ (p1 →p2) ∨ (q1 →q2).

2. Show that the signatures {+, 1}, {+,¬}, {↔, 0}, and {↔,¬} are all

term equivalent. The formulas of each of these signatures represent

precisely the linear Boolean functions.

3. Show that the formulas in ∧ , ∨, 0, 1 represent exactly the monotonic

Boolean functions. These are the constants from B0, and for n > 0

the f ∈ Bn such that for all i with 1 � i � n,

f(x1, . . . , xi−1, 0, xi+1, . . . , xn) � f(x1, . . . , xi−1, 1, xi+1, . . . , xn).
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4. Show that the logical signature {∧ , ∨, 0, 1} is maximally functional

incomplete.

5. If one wants to prove Corollary 2.2 syntactically with the properties

of ≡ (page 11) one needs generalizations of the distributivity, e.g.,
∨

i�n αi ∧
∨

j�m βj ≡
∨

i�n, j�m(αi ∧βj). Verify the latter.

1.3 Tautologies and Logical Consequence

Instead of wα = 1 we prefer from now on to write w � α and read this w

satisfies α. Further, if X is a set of formulas, we write w � X if w � α

for all α ∈ X and say that w is a (propositional) model for X. A given α

(resp. X) is called satisfiable if there is some w with w � α (resp. w � X).

�, called the satisfiability relation, evidently has the following properties:

w � p ⇔ wp = 1 (p ∈ PV ); w � ¬α ⇔ w � α;

w � α ∧β ⇔ w � α and w � β; w � α ∨ β ⇔ w � α or w � β.

One can define the satisfiability relation w � α for a given w : PV → {0, 1}

also inductively on α, according to the clauses just given. This approach

is particularly useful for extending the satisfiability conditions in 2.3.

It is obvious that w : PV → {0, 1} will be uniquely determined by setting

down in advance for which variables w � p should be valid. Likewise the

notation w � α for α ∈ Fn is already meaningful when w is defined only

for p1, . . . , pn. One could extend such a w to a global valuation by setting,

for instance, wp = 0 for all unmentioned variables p.

For formulas containing other connectives the satisfaction conditions

are to be formulated accordingly. For example, we expect

(∗) w � α →β ⇔ if w � α then w � β.

If → is taken to be a primitive connective, (∗) is required. However, we

defined → in such a way that (∗) is provable.

Definition. α is called logically valid or a (two-valued) tautology , in short

� α, whenever w � α for all valuations w. A formula not satisfiable at all,

i.e. w � α for all w, is called a contradiction.

Examples. p ∨ ¬p is a tautology and so is α ∨ ¬α for every formula α,

the so-called law of the excluded middle or the tertium non datur. On the
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other hand, α∧¬α and α ↔ ¬α are always contradictions. The following

tautologies in → are mentioned in many textbooks on logic. Remember

our agreement about association to the right in formulas in which →

repeatedly occurs.

p →p (self-implication),

(p →q) → (q →r) → (p →r) (chain rule),

(p →q → r) → (q →p → r) (exchange of premises),

p →q →p (premise charge),

(p →q → r) → (p →q) → (p → r) (Frege’s formula),

((p → q) →p) →p (Peirce’s formula).

It will later turn out that all tautologies in → alone are derivable (in a

sense still to be explained) from the last three formulas.

Clearly, it is decidable whether a formula α is a tautology, in that one

tries out the valuations of the variables of α. Unfortunately, no essentially

more efficient method is known; such a method exists only for formulas

of a certain form. We will have a somewhat closer look at this problem

in 4.3. Various questions such as checking the equivalence of formulas

can be reduced to a decision about whether a formula is a tautology. For

notice the obvious equivalence of α ≡ β and � α ↔ β.

Basic in propositional logic is the following

Definition. α is a logical consequence of X, written X � α, if w � α for

every model w of X. In short, w � X ⇒ w � α, for all valuations w.

While we use � both as the symbol for logical consequence (which is a

relation between sets of formulas X and formulas α) and the satisfiability

property, it will always be clear from the context what � actually means.

Evidently, α is a tautology iff ∅ � α, so that � α can be regarded as an

abbreviation for ∅ � α.

In this book, X � α, β will always mean ‘X � α and X � β’. More

generally, X � Y is always to mean ‘X � β for all β ∈ Y ’. We also write

throughout α1, . . . , αn � β in place of {α1, . . . , αn} � β, and more briefly,

X, α � β in place of X ∪ {α} � β.

Examples of logical consequence. (a) α, β � α∧β and α∧β � α, β.

This is evident from the truth table of ∧ . (b) α, α →β � β, because

1 →x = 1 ⇒ x = 1 according to the truth table of → .
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(c) X � ⊥ ⇒ X � α for each α. Indeed, X � ⊥ = p1 ∧¬p1 obviously

means that X is unsatisfiable (has no model), as e.g. X = {p2,¬p2}.

(d) X, α � β & X,¬α � β ⇒ X � β. In order to see this let w � X.

If w � α then X, α � β and hence w � β, and if w � α (i.e., w � ¬α)

then w � β clearly follows from X,¬α � β. Note that (d) reflects our case

distinction made in the naive metatheory while proving (d).

Example (a) could also be stated as X � α, β ⇔ X � α∧β. The

property exemplified by (b) is called the modus ponens when formulated

as a rule of inference, as will be done in 1.6. Example (d) is another

formulation of the often-used procedure of proof by cases: In order to

conclude a sentence β from a set of premises X it suffices to show it to be

a logical consequence both under an additional supposition and under its

negation. This is generalized in Exercise 3.

Important are the following general and obvious properties of �:

(R) α ∈ X ⇒ X � α (reflexivity),

(M) X � α & X ⊆ X ′ ⇒ X ′ � α (monotonicity),

(T) X � Y & Y � α ⇒ X � α (transitivity).

Useful for many purposes is also the closure of the logical consequence

relation under substitution, which generalizes the fact that from p ∨ ¬p

all tautologies of the form α ∨ ¬α arise from substituting α for p.

Definition. A (propositional) substitution is a mapping σ : PV →F

that is extended in a natural way to a mapping σ : F → F as follows:

(α∧β)σ = ασ
∧βσ, (α ∨ β)σ = ασ

∨ βσ, (¬α)σ = ¬ασ.

Thus, like valuations, substitutions are considered as operations on the

whole of F. For example, if pσ = α for some fixed p and qσ = q otherwise,

then ϕσ arises from ϕ by substituting α for p at all occurrences of p in

ϕ. From p ∨ ¬p arises in this way the schema α ∨ ¬α. For X ⊆ F let

Xσ := {ϕσ | ϕ ∈ X}. The observation � ϕ ⇒ � ϕσ turns out to be the

special instance X = ∅ of the useful property
(S) X � α ⇒ Xσ � ασ (substitution invariance).

In order to verify (S), define wσ for a given valuation w in such a way

that wσp = wpσ. We first prove by induction on α that

(∗) w � ασ ⇔ wσ � α.
If α is prime, (∗) certainly holds. As regards the induction step, note that
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w � (α∧β)σ ⇔ w � ασ
∧βσ ⇔ w � ασ, βσ

⇔ wσ � α, β (induction hypothesis)

⇔ wσ � α∧β.

The reasoning for ∨ and ¬ is analogous and so (∗) holds. Now let X � α

and w � Xσ. By (∗), we get wσ � X. Thus wσ � α, and again by (∗),

w � ασ. This confirms (S). Another important property of � that is not

so easily obtained will be proved in 1.4, namely

(F) X � α ⇒ X0 � α for some finite subset X0 ⊆ X.

� shares the properties (R), (M), (T), and (S) with almost all classical

and nonclassical (many-valued) propositional consequence relations. This

is to mean a relation ⊢ between sets of formulas and formulas of an ar-

bitrary propositional language F that has the properties corresponding

to (R), (M), (T), and (S). These properties are the starting point for a

general and strong theory of logical systems created by Tarski, which un-

derpins nearly all logical systems considered in the literature. Should ⊢

satisfy the property corresponding to (F) then ⊢ is called finitary .

Remark 1. Sometimes (S) is not demanded in defining a consequence relation,
and if (S) holds, one speaks of a structural consequence relation. We omit this
refinement. Notions such as tautology, consistency, maximal consistency, and
so on can be used with reference to any consequence relation ⊢ in an arbitrary
propositional language F. For instance, a set of formulas X is called consistent
in ⊢ whenever X � α for some α, and maximally consistent if X is consistent but
has no proper consistent extension. ⊢ itself is called consistent if X � α for some
X and α (this is equivalent to not ⊢ α for all α). Here as always, ⊢ α stands for
∅ ⊢ α. If F contains ¬ then the consistency of X is often defined by X ⊢ α,¬α for
no α. But the aforementioned definition has the advantage of being completely
independent of any assumption concerning the occurring connectives. Another
example of a general definition is this: A formula set X is called deductively
closed in ⊢ provided X ⊢ α ⇒ α ∈ X, for all α ∈ F. Because of (R), this
condition can be replaced by X ⊢ α ⇔ α ∈ X. Examples in � are the set of
all tautologies and the whole of F. The intersection of a family of deductively
closed sets is again deductively closed. Hence, each X ⊆ F is contained in a
smallest deductively closed set, called the deductive closure of X in ⊢. It equals
{α ∈ F | X ⊢ α}, as is easily seen. The notion of a consequence relation can
also be defined in terms of properties of the deductive closure. We mention that
(F) holds not just for our relation � that is given by a two-valued matrix, but
for the consequence relation of any finite logical matrix in any propositional
language. This is stated and at once essentially generalized in Exercise 3 in 5.7

as an application of the ultraproduct theorem.
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A special property of the consequence relation �, easily provable, is

(D) X, α � β ⇒ X � α →β,

called the (semantic) deduction theorem for propositional logic. To see

this suppose X, α � β and let w be a model for X. If w � α then by the

supposition, w � β, hence w � α →β. If w � α then w � α →β as well.

Hence X � α →β in any case. This proves (D). As is immediately seen,

the converse of (D) holds as well, that is, one may replace ⇒ in (D) by

⇔. Iterated application of this simple observation yields

α1, . . . , αn � β ⇔ � α1 →α2 → · · · →αn →β ⇔ � α1 ∧α2 ∧ · · · ∧αn →β.

In this way, β’s being a logical consequence of a finite set of premises is

transformed into a tautology. Using (D) it is easy to obtain tautologies.

For instance, to prove � p →q →p, it is enough to verify p � q →p, for

which it in turn suffices to show that p, q � p, and this is trivial.

Remark 2. By some simple applications of (D) each of the tautologies in the
examples on page 18 can be obtained, except the formula of Peirce. As we shall
see in Chapter 2, all properties of � derived above and in the exercises will carry
over to the consequence relation of a first-order language.

Exercises

1. Use the deduction theorem as in the text in order to prove

(a) � (p →q →r) → (p →q) → (p → r),

(b) � (p →q) → (q →r) → (p →r).

2. Suppose that X � α →β. Prove that X � (γ →α) → (γ →β).

3. Verify the (rule of) disjunctive case distinction : if X, α � γ and

X, β � γ then X, α ∨ β � γ. This implication is traditionally written

more suggestively as

X, α � γ X, β � γ

X, α ∨ β � γ
.

4. Verify the rules of contraposition (notation as in Exercise 3):

X, α � β

X,¬β � ¬α
;

X,¬β � ¬α

X, α � β
.

5. Let ⊢ be a consequence relation and let X be maximally consistent

in ⊢ (see Remark 1). Show that X is deductively closed in ⊢.
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1.4 A Calculus of Natural Deduction

We will now define a derivability relation ⊢ by means of a calculus op-

erating solely with some structural rules. ⊢ turns out to be identical to

the consequence relation �. The calculus ⊢ is of the so-called Gentzen

type and its rules are given with respect to pairs (X, α) of formulas X

and formulas α. Another calculus for �, of the Hilbert type, will be con-

sidered in 1.6. In distinction to [Ge], we do not require that X be finite;

our particular goals here make such a restriction dispensable. If ⊢ applies

to the pair (X, α) then we write X ⊢ α and say that α is derivable or

provable from X (made precise below); otherwise we write X � α.

Following [Kl1], Gentzen’s name for (X, α), Sequenz, is translated as

sequent. The calculus is formulated in terms of ∧ ,¬ and encompasses the

six rules below, called the basic rules. How to operate with these rules will

be explained afterwards. The choice of {∧ ,¬} as the logical signature is

a matter of convenience and justified by its functional completeness. The

other standard connectives are introduced by the definitions

α ∨ β := ¬(¬α∧¬β), α →β := ¬(α∧¬β), α ↔ β := (α →β)∧ (β →α).

⊤,⊥ are defined as on page 5. Of course, one could choose any other

functional complete signature and adapt the basic rules correspondingly.

But it should be observed that a complete calculus in ¬, ∧ , ∨, → , say,

must also include basic rules concerning ∨ and → , which makes induction

arguments on the basic rules of the calculus more lengthy.

Each of the basic rules below has certain premises and a conclusion.

Only (IS) has no premises. It allows the derivation of all sequents α ⊢ α.

These are called the initial sequents, because each derivation must start

with these. (MR), the monotonicity rule, could be weakened. It becomes

even provable if all pairs (X, α) with α ∈ X are called initial sequents.

(IS)
α ⊢ α

(initial sequent) (MR)
X ⊢ α

X ′ ⊢ α
(X ′ ⊇ X),

(∧1)
X ⊢ α, β

X ⊢ α∧β
(∧2)

X ⊢ α∧β

X ⊢ α, β

(¬1)
X ⊢ α,¬α

X ⊢ β
(¬2)

X, α ⊢ β X,¬α ⊢ β

X ⊢ β
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Here and in the following X ⊢ α, β is to mean X ⊢ α and X ⊢ β. This

convention is important, since X ⊢ α, β has another meaning in Gentzen

calculi that operate with pairs of sets of formulas. The rules (∧1) and

(¬1) actually have two premises, just like (¬2). Note further that (∧2)

really consists of two subrules corresponding to the conclusions X ⊢ α

and X ⊢ β. In (¬2), X, α means X ∪ {α}, and this abbreviated form will

always be used when there is no risk of misunderstanding.

α1, . . . , αn ⊢ β stands for {α1, . . . , αn} ⊢ β; in particular, α ⊢ β for

{α} ⊢ β, and ⊢ α for ∅ ⊢ α, just as with �.

X ⊢ α (read from “X is provable or derivable α”) is to mean that the

sequent (X, α) can be obtained after a stepwise application of the basic

rules. We can make this idea of “stepwise application” of the basic rules

rigorous and formally precise (intelligible to a computer, so to speak) in

the following way: a derivation is to mean a finite sequence (S0; . . . ; Sn)

of sequents such that every Si is either an initial sequent or is obtained

through the application of some basic rule to preceding elements in the

sequence. Thus, from X is derivable α if there is a derivation (S0; . . . ; Sn)

with Sn = (X, α). A simple example with the end sequent α, β ⊢ α∧β,

or minutely ({α, β}, α∧β), is the derivation

(α ⊢ α ; α, β ⊢ α ; β ⊢ β ; α, β ⊢ β ; α, β ⊢ α∧β).

Here (MR) was applied twice, followed by an application of (∧1). Not

shorter would be complete derivation of the sequent (∅,⊤), i.e., a proof of

⊢ ⊤. In this example both (¬1) and (¬2) are essentially involved.

Useful for shortening lengthy derivations is the derivation of additional

rules, which will be illustrated with the examples to follow. The second

example, a generalization of the first, is the often-used proof method re-

ductio ad absurdum: α is proved from X by showing that the assumption

¬α leads to a contradiction. The other examples are given with respect

to the defined → -connective. Hence, for instance, the → -elimination

mentioned below runs in the original language
X ⊢ ¬(α∧¬β)

X, α ⊢ β
.

Examples of derivable rules
X,¬α ⊢ α

X ⊢ α
proof applied

(¬-elimination) 1 X, α ⊢ α (IS), (MR)

2 X,¬α ⊢ α supposition

3 X ⊢ α (¬2)
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X,¬α ⊢ β,¬β

X ⊢ α
proof applied

(reductio ad absurdum) 1 X,¬α ⊢ β,¬β supposition

2 X,¬α ⊢ α (¬1)

3 X ⊢ α ¬-elimination

X ⊢ α →β

X, α ⊢ β
( → -elimination) 1 X, α,¬β ⊢ α,¬β (IS), (MR)

2 X, α,¬β ⊢ α∧¬β (∧1)

3 X ⊢ ¬(α∧¬β) supposition

4 X, α,¬β ⊢ ¬(α∧¬β) (MR)

5 X, α,¬β ⊢ β (¬1) on 2 and 4

6 X, α ⊢ β ¬-elimination
X ⊢ α X, α ⊢ β

X ⊢ β
(cut rule) 1 X,¬α ⊢ α supposition, (MR)

2 X,¬α ⊢ ¬α (IS), (MR)

3 X,¬α ⊢ β (¬1)

4 X, α ⊢ β supposition

5 X ⊢ β (¬2) on 4 and 3

X, α ⊢ β

X ⊢ α →β
( → -introduction) 1 X, α∧¬β, α ⊢ β supposition, (MR)

2 X, α∧¬β ⊢ α (IS), (MR), (∧2)

3 X, α∧¬β ⊢ β cut rule

4 X, α∧¬β ⊢ ¬β (IS), (MR), (∧2)

5 X, α∧¬β ⊢ α →β (¬1)

6 X,¬(α∧¬β) ⊢ α →β (IS), (MR)

7 X ⊢ α →β (¬2) on 5 and 6

Remark 1. The example of → -introduction is nothing other than the syntactic
form of the deduction theorem that was semantically formulated in the previous
section. The deduction theorem also holds for intuitionistic logic. However, it is
not in general true for all logical systems dealing with implication, thus indicating
that the deduction theorem is not an inherent property of every meaningful
conception of implication. For instance, the deduction theorem does not hold
for certain formal systems of relevance logic that attempt to model implication
as a cause-and-effect relation.
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A simple application of the → -elimination and the cut rule is a proof

of the detachment rule
X ⊢ α, α →β

X ⊢ β
.

Indeed, the premise X ⊢ α →β yields X, α ⊢ β by → -elimination, and

since X ⊢ α, it follows X ⊢ β by the cut rule. Applying detachment on

X = {α, α →β}, we obtain α, α →β ⊢ β. This collection of sequents is

known as modus ponens. It will be more closely considered in 1.6.

Many properties of ⊢ are proved through rule induction, which we de-

scribe after introducing some convenient terminology. We identify a prop-

erty E of sequents with the set of all pairs (X, α) to which E applies. In

this sense the logical consequence relation � is the property that applies

to all pairs (X, α) with X � α.

All the rules considered here are of the form

R :
X1 ⊢ α1 · · · Xn ⊢ αn

X ⊢ α

and are referred to as Gentzen-style rules. We say that E is closed under

R when E(X1, α1), . . . , E(Xn, αn) implies E(X, α). For a rule without

premises, i.e., n = 0, this is just to mean E(X, α). For instance, consider

the above already mentioned property E : X � α. This property is closed

under each basic rule of ⊢. In detail this means

α � α, X � α ⇒ X ′ � α for X ′ ⊇ X, X � α, β ⇒ X � α∧β, etc.

From the latter we may conclude that E applies to all provable sequents;

in other words, ⊢ is (semantically) sound. What we need here to verify

this conclusion is the following easily justifiable

Principle of rule induction. Let E (⊆ PF × F) be a property closed

under all basic rules of ⊢. Then X ⊢ α implies E(X, α).

Proof by induction on the length of a derivation of S = (X, α). If

the length is 1, ES holds since S must be an initial sequent. Now let

(S0; . . . ; Sn) be a derivation of the sequent S := Sn. By the induction

hypothesis we have ESi for all i < n. If S is an initial sequent then ES

holds by assumption. Otherwise S has been obtained by the application

of a basic rule on some of the Si for i < n. But then ES holds, because E

is closed under all basic rules.
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As already remarked, the property X � α is closed under all basic

rules. Therefore, the principle of rule induction immediately yields the

soundness of the calculus, that is, ⊢ ⊆ �. More explicitly,

X ⊢ α ⇒ X � α, for all X, α.

There are several equivalent definitions of ⊢. A purely set-theoretic
one is the following: ⊢ is the smallest of all relations ⊆ PF × F that are

closed under all basic rules. ⊢ is equally the smallest consequence relation

closed under the rules (∧1) through (¬2). The equivalence proofs of such

definitions are wordy but not particularly contentful. We therefore do not

elaborate further, because we henceforth use only rule induction. Using

rule induction one can also prove X ⊢ α ⇒ Xσ ⊢ ασ, and in particular

the following theorem, for which the soundness of ⊢ is irrelevant.

Theorem 4.1 (Finiteness theorem for ⊢). If X ⊢ α then there is a

finite subset X0 ⊆ X with X0 ⊢ α.

Proof. Let E(X, α) be the property ‘X0 ⊢ α for some finite X0 ⊆ X’.

We will show that E is closed under all basic rules. Certainly, E(X, α)

holds for X = {α}, with X0 = X so that E is closed under (MI). If X has

a finite subset X0 such that X0 ⊢ α, then so too does every set X ′ such

that X ′ ⊇ X. Hence E is closed under (MR). Let E(X, α), E(X, β), with,

say, X1 ⊢ α, X2 ⊢ β for finite X1, X2 ⊆ X. Then we also have X0 ⊢ α, β

for X0 = X1 ∪ X2 by (MR). Hence X0 ⊢ α∧β by (∧1). Thus E(X, α∧β)

holds, and E is closed under (∧1). Analogously one shows the same for

all remaining basic rules of ⊢ so that rule induction can be applied.

Of great significance is the notion of formal consistency. It fully de-

termines the derivability relation, as the lemma to come shows. It will

turn out that consistent formalizes adequately the notion satisfiable. The

proof of this adequacy is the clue to the completeness problem.

Definition. X ⊆ F is called inconsistent (in our calculus ⊢) if X ⊢ α for

all α ∈ F, and otherwise consistent. X is called maximally consistent if

X is consistent but each Y ⊃ X is inconsistent.

The inconsistency of X can be identified by the derivability of a single

formula, namely ⊥ (= p1 ∧¬p1), because X ⊢ ⊥ implies X ⊢ p1,¬p1 by

(∧2), hence X ⊢ α for all α by (¬1). Conversely, when X is inconsistent
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then in particular X ⊢ ⊥. Thus, X ⊢ ⊥ may be read as ‘X is inconsistent’,

and X � ⊥ as ‘X is consistent’. From this it easily follows that X is

maximally consistent iff either α ∈ X or ¬α ∈ X for each α. The latter

is necessary, for if α,¬α /∈ X then both X, α ⊢ ⊥ and X,¬α ⊢ ⊥, hence

X ⊢ ⊥ by (¬2). This contradicts the consistency of X. Sufficiency is

obvious. Most important is the following lemma, in which the properties

C+ and C− can also be understood each as a pair of provable rules.

Lemma 4.2. The derivability relation ⊢ has the properties

C+ : X ⊢ α ⇔ X,¬α ⊢ ⊥, C− : X ⊢ ¬α ⇔ X, α ⊢ ⊥.

Proof. Suppose that X ⊢ α. Then clearly X,¬α ⊢ α and since certainly

X,¬α ⊢ ¬α, we have X,¬α ⊢ β for all β by (¬1), in particular X,¬α ⊢ ⊥.

Conversely, let X,¬α ⊢ ⊥ be the case, so that in particular X,¬α ⊢ α,

and thus X ⊢ α by ¬-elimination on page 23. Property C− is proved

completely analogously.

The claim � ⊆ ⊢, not yet proved, is equivalent to X � α ⇒ X � α,

for all X and α. But so formulated it becomes apparent what needs to

be done to obtain the proof. Since X � α is by C+ equivalent to the

consistency of X ′ := X ∪ {¬α}, and likewise X � α to the satisfiability

of X ′, we need only show that consistent sets are satisfiable. To this end

we state the following lemma, whose proof, exceptionally, jumps ahead of

matters in that it uses Zorn’s lemma from 2.1 (page 46).

Lemma 4.3 (Lindenbaum’s theorem). Every consistent set X ⊆ F

can be extended to a maximally consistent set X ′ ⊇ X.

Proof. Let H be the set of all consistent Y ⊇ X, partially ordered with

respect to ⊆. H �= ∅, because X ∈ H. Let K ⊆ H be a chain, i.e.,

Y ⊆ Z or Z ⊆ Y , for all Y, Z ∈ K. Claim: U :=
⋃

K is an upper bound

for K. Since Y ∈ K ⇒ Y ⊆ U , we have to show that U is consistent.

Assume that U ⊢ ⊥. Then U0 ⊢ ⊥ for some finite U0 = {α0, . . . , αn} ⊆ U .

If, say, αi ∈ Yi ∈ K, and Y is the biggest of the sets Y0, . . . , Yn, then

αi ∈ Y for all i � n, hence also Y ⊢ ⊥ by (MR). This contradicts Y ∈ H

and confirms the claim. By Zorn’s lemma, H has a maximal element X ′,

which is necessarily a maximally consistent extension of X.

Remark 2. The advantage of this proof is that it is free of assumptions regarding
the cardinality of the language, while Lindenbaum’s original construction was
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based on countable languages F and runs as follows: Let X0 := X ⊆ F be
consistent and let α0, α1, . . . be an enumeration of F. Put Xn+1 = Xn ∪ {αn}
if this set is consistent and Xn+1 = Xn otherwise. Then Y =

⋃

n∈ω Xn is a
maximally consistent extension of X, as can be easily verified. In this proof,
Zorn’s lemma, which is equivalent to the axiom of choice, is not required.

Lemma 4.4. A maximally consistent set X ⊆ F has the property

[¬] X ⊢ ¬α ⇔ X � α, for arbitrary α.

Proof. If X ⊢ ¬α, then X ⊢ α cannot hold due to the consistency of X.

If, on the other hand, X � α, then X,¬α is a consistent extension of X

according by C+. But then ¬α ∈ X, because X is maximally consistent.

Consequently X ⊢ ¬α.

Lemma 4.5. A maximally consistent set X is satisfiable.

Proof. Define w by w � p ⇔ X ⊢ p. We will show that for all α,

(∗) X ⊢ α ⇔ w � α.

For prime formulas this is trivial. Further,

X ⊢ α∧β ⇔ X ⊢ α, β (rules (∧1), (∧2) )

⇔ w � α, β (induction hypothesis)

⇔ w � α∧β (definition)

X ⊢ ¬α ⇔ X � α (Lemma 4.4)

⇔ w � α (induction hypothesis)

⇔ w � ¬α (definition).

By (∗), w is a model for X, thereby completing the proof.

Only the properties [∧ ] X ⊢ α∧β ⇔ X ⊢ α, β and [¬] from Lemma 4.4

are used in the simple model construction in Lemma 4.5, which reveals

the requirements for propositional model construction in the base {∧ ,¬}.

Since maximally consistent sets X are deductively closed (Exercise 5

in 1.3), these requirements may also be stated as

(∧ ) α∧β ∈ X ⇔ α, β ∈ X ; (¬) ¬α ∈ X ⇔ α /∈ X.

Lemma 4.3 and Lemma 4.5 confirm the equivalence of the consistency

and the satisfiability of a set of formulas. From this fact we easily obtain

the main result of the present section.

Theorem 4.6 (Completeness theorem). X ⊢ α ⇔ X � α, for all

formula sets X and formulas α.
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Proof. The direction ⇒ is the soundness of ⊢. Conversely, X � α implies

that X,¬α is consistent. Let Y be a maximally consistent extension of

X,¬α according to Lemma 4.3. By Lemma 4.5, Y is satisfiable, hence

also X,¬α. Therefore X � α.

An immediate consequence of Theorem 4.6 is the finiteness property

(F) mentioned in 1.3, which is almost trivial for ⊢ but not for �:

Theorem 4.7 (Finiteness theorem for �). If X � α, then so too

X0 � α for some finite subset X0 of X.

This is clear because the finiteness theorem holds for ⊢ (Theorem 4.1),

hence also for �. A further highly interesting consequence of the com-

pleteness theorem is

Theorem 4.8 (Propositional compactness theorem). A set X of

propositional formulas is satisfiable if each finite subset of X is satisfiable.

This theorem holds because if X is unsatisfiable, i.e., if X � ⊥, then, by

Theorem 4.7, we also know that X0 � ⊥ for some finite X0 ⊆ X, thus

proving the claim indirectly. Conversely, one easily obtains Theorem 4.7

from Theorem 4.8; both theorems are directly derivable from one another.

Because Theorem 4.6 makes no assumptions regarding the cardinality of

the set of variables, the compactness theorem following from it is likewise

valid without the respective restrictions. This means that Theorem 4.8

has many useful applications, as the next section will illustrate.

Let us notice that there are direct proofs of Theorem 4.8 or appropri-

ate reformulations that have nothing to do with a logical calculus. For

example, the theorem is equivalent to
⋂

α∈X Mdα = ∅ ⇒
⋂

α∈X0
Mdα = ∅ for some finite X0 ⊆ X,

where Mdα denotes the set of all models of α. In this formulation the

compactness of a certain naturally arising topological space is claimed.

The points of this space are the valuations of the variables, hence the

name “compactness theorem.” More on this can be found in [RS].

Another approach to completeness (probably the simplest one) is pro-

vided by Exercises 3 and 4. This approach makes some elegant use of

substitutions, hence is called the completeness proof by the substitution

method. This method is explained in the Solution Hints (and in more

detail in [Ra3]). It yields the maximality of the derivability relation ⊢
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(see Exercise 3), a much stronger result than its semantic completeness.

This result yields not only the Theorems 4.6, 4.7, and 4.8 in one go, but

also some further remarkable properties: Neither new tautologies nor new

Hilbert style rules can consistently be adjoined to the calculus ⊢. These

properties (discussed in detail, e.g., in [Ra1]) are known under the names

Post completeness and structural completeness of ⊢, respectively.

Exercises

1. Prove using Theorem 4.7: if X ∪ {¬α | α ∈ Y } is inconsistent and

Y is nonempty, then there exist formulas α0, . . . , αn ∈ Y such that

X ⊢ α0 ∨ · · · ∨ αn.

2. Augment the signature {¬, ∧} by ∨ and prove the completeness of

the calculus obtained by supplementing the basic rules used so far

with the rules

(∨1)
X ⊢ α

X ⊢ α ∨ β, β ∨ α
; (∨2)

X, α ⊢ γ X, β ⊢ γ

X, α ∨ β ⊢ γ
.

3. Let ⊢ be a finitary consistent consequence relation in F{∧ ,¬} with

the properties (∧1) through (¬2). Show that ⊢ is maximal (or

maximally consistent). This means that each consequence relation

⊢′ ⊃ ⊢ in F{∧ ,¬} is inconsistent, i.e., ⊢′ α for all α.

4. Show by referring to Exercise 3: there is exactly one (consistent)

consequence relation in F{∧ ,¬} satisfying (∧1)–(¬2). This clearly

entails the completeness of ⊢.

1.5 Applications of the Compactness Theorem

Theorem 4.8 is very useful in carrying over certain properties of finite

structures to infinite ones. This section presents some typical examples.

While these could also be treated with the compactness theorem of first-

order logic in 3.3, the examples demonstrate how the consistency of cer-

tain sets of first-order sentences can also be obtained in propositional logic.

This approach to consistency is also useful also for Herbrand’s theorem

and related results concerning logic programming.
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1. Every set M can be (totally) ordered.5

This means that there is an irreflexive, transitive, and connex relation <

on M . For finite M this follows easily by induction on the number of

elements of M . The claim is obvious when M = ∅ or is a singleton. Let

now M = N ∪ {a} with an n-element set N and a /∈ N , so that M has

n + 1 elements. Then we clearly get an order on M from that for N by

“setting a to the end,” that is, defining x < a for all x ∈ N .

Now let M be any set. We consider for every pair (a, b) ∈ M × M a

propositional variable pab. Let X be the set consisting of the formulas

¬paa (a ∈ M),

pab ∧pbc →pac (a, b, c ∈ M),

pab ∨ pba (a �= b).

From w � X we obtain an order <, simply by putting a < b ⇔ w � pab.

w � ¬paa says the same thing as a ≮ a. Analogously, the remaining

formulas of X reflect transitivity and connexity. Thus, according to The-

orem 4.8, it suffices to show that every finite subset X0 ⊆ X has a model.

In X0 only finitely many variables occur. Hence, there are finite sets

M1 ⊆ M and X1 ⊇ X0, where X1 is given exactly as X except that a, b, c

now run through the finite set M1 instead of M . But X1 is satisfiable,

because if < orders the finite set M1 and w is defined by w � pab iff a < b,

then w is clearly a model for X1, hence also for X0.

2. The four-color theorem for infinite planar graphs.

A simple graph is a pair (V, E) with an irreflexive symmetrical relation

E ⊆ V 2. The elements of V are called points or vertices. It is convenient

to identify E with the set of all unordered pairs {a, b} such that aEb and

to call these pairs the edges of (V, E). If {a, b} ∈ E then we say that a, b

are neighbors. (V, E) is said to be k-colorable if V can be decomposed

into k color classes C1, . . . , Ck �= ∅, V = C1 ∪ · · · ∪ Ck, with Ci ∩ Cj = ∅

for i �= j, such that neighboring points do not carry the same color; in

other words, if a, b ∈ Ci then {a, b} /∈ E for i = 1, . . . , k.

5 Unexplained notions are defined in 2.1. Our first application is interesting because in

set theory the compactness theorem is weaker than the axiom of choice (AC) which

is equivalent to the statement that every set can be well-ordered. Thus, the ordering

principle is weaker than AC since it follows from the compactness theorem.
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The figure shows the smallest four-colorable graph

that is not three-colorable; all its points neighbor

each other. We will show that a graph (V, E) is

k-colorable if every finite subgraph (V0, E0) is k-

colorable. E0 consists of the edges {a, b} ∈ E with

a, b ∈ V0. To prove our claim consider the following set X of formulas

built from the variables pa,i for a ∈ V and 1 � i � k:

pa,1 ∨ · · · ∨ pa,k, ¬(pa,i ∧pa,j) (a ∈ V, 1 � i < j � k),

¬(pa,i ∧pb,i) ({a, b} ∈ E, i = 1, . . . , k).

The first formula states that every point belongs to at least one color class;

the second ensures their disjointedness, and the third that no neighboring

points have the same color. Once again it is enough to construct some

w � X. Defining then the Ci by a ∈ Ci ⇔ w � pa,i proves that (V, E) is

k-colorable. We must therefore satisfy each finite X0 ⊆ X. Let (V0, E0)

be the finite subgraph of (V, E) of all the points that occur as indices in

the variables of X0. The assumption on (V0, E0) obviously ensures the

satisfiability of X0 for reasons analogous to those given in Example 1, and

this is all we need to show. The four-color theorem says that every finite

planar graph is four-colorable. Hence, the same holds for all graphs whose

finite subgraphs are planar. These cover in particular all planar graphs

embeddable in the real plane.

3. König’s tree lemma. There are several versions of this lemma. For

simplicity, ours refers to a directed tree. This is a pair (V, ⊳) with an

irreflexive relation ⊳⊆ V 2 such that for a certain point c, the root of the

tree, and any other point a there is precisely one path connecting c with

a. This is a sequence (ai)i�n with a0 = c, an = a, and ai ⊳ ai+1 for all

i < n. From the uniqueness of a path connecting c with any other point

it follows that each b �= c has exactly one predecessor in (V, ⊳), that is,

there is precisely one a with a ⊳ b. Hence the name tree.

König’s lemma then reads as follows: If every a ∈ V has only finitely

many successors and V contains arbitrarily long finite paths, then there

is an infinite path through V starting at c. By such a path we mean a

sequence (ci)i∈N such that c0 = c and ck ⊳ ck+1 for each k. In order

to prove the lemma we define the “layer” Sk inductively by S0 = {c}

and Sk+1 = {b ∈ V | there is some a ∈ Sk with a ⊳ b}. Since every point
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has only finitely many successors, each Sk is finite, and since there are

arbitrarily long paths c ⊳ a1 ⊳ · · · ⊳ ak and ak ∈ Sk, no Sk is empty.

Now let pa for each a ∈ V be a propositional variable, and let X consist

of the formulas
(A)

∨

a∈Sk
pa, ¬(pa ∧pb)

(
a, b ∈ Sk, a �= b, k ∈ N

)
,

(B) pb →pa

(
a, b ∈ V, a ⊳ b

)
.

Suppose that w � X. Then by the formulas under (A), for every k there

is precisely one a ∈ Sk with w � pa, denoted by ck. In particular, c0 = c.

Moreover, ck ⊳ ck+1 for all k. Indeed, if a is the predecessor of b = ck+1,

then w � pa in view of (B), hence necessarily a = ck. Thus, (ci)i∈N is a

path of the type sought. Again, every finite subset X0 ⊆ X is satisfiable;

for if X0 contains variables with indices up to at most the layer Sn, then

X0 is a subset of a finite set of formulas X1 that is defined as X, except

that k runs only up to n, and for this case the claim is obvious.

4. The marriage problem (in linguistic guise).

Let N �= ∅ be a set of words or names (in speech) with meanings in a set

M . A name ν ∈ N can be a synonym (i.e., it shares its meaning with other

names in N), or a homonym (i.e., it can have several meanings), or even

both. We proceed from the plausible assumption that each name ν has

finitely many meanings only and that k names have at least k meanings.

It is claimed that a pairing-off exists; that is, an injection f : N → M

that associates to each ν one of its original meanings.

For finite N , the claim will be proved by induction on the number n of

elements of N . It is trivial for n = 1. Now let n > 1 and assume that the

claim holds for all k-element sets of names whenever 0 < k < n.

Case 1: For each k (0 < k < n): k names in N have at least k + 1

distinct meanings. Then to an arbitrarily chosen ν from N , assign one of

its meanings a to it so that from the names out of N \{ν} any k names

still have at least k meanings �= a. By the induction hypothesis there is a

pairing-off for N \{ν} that together with the ordered pair (ν, a) yields a

pairing-off for the whole of N .

Case 2: There is some k-element K ⊆ N (0 < k < n) such that the

set MK of meanings of the ν ∈ K has only k members. Every ν ∈ K

can be assigned its meaning from MK by the induction hypothesis. From

the names in N \K any i names (i � n − k) still have i meanings not in

MK , as is not hard to see. By the induction hypothesis there is also a
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pairing-off for N \K with a set of values from M \MK . Joining the two

obviously results in a pairing-off for the whole of N .

We will now prove the claim for arbitrary sets of names N : assign to

each pair (ν, a) ∈ N × M a variable pν,a and consider the set of formulas

X :

{
pν,a ∨ · · · ∨ pν,e (ν ∈ N, a, . . . , e the meanings of ν),

¬(pν,x ∧pν,y) (ν ∈ N, x, y ∈ M, x �= y).

Assume that w � X. Then to each ν there is exactly one aν with w � pν,aν ,

so that {(ν, αn) | ν ∈ N} is a pairing-off for N . Such a model w exists by

Theorem 4.8, for in a finite set X0 ⊆ X occur only finitely many names

as indices and the case of finitely many names has just been treated.

5. The ultrafilter theorem.

This theorem is of fundamental significance in topology (from which it

originally stems), model theory, set theory, and elsewhere. Let I be any

nonempty set. A nonempty collection of sets F ⊆ PI is called a filter on

I if for all M, N ⊆ I hold the conditions

(a) M, N ∈ F ⇒ M ∩ N ∈ F , (b) M ∈ F & M ⊆ N ⇒ N ∈ F .

Since F �= ∅, (b) shows that always I ∈ F . As is easily verified, (a) and

(b) together are equivalent to just a single condition, namely to

(∩) M ∩ N ∈ F ⇔ M ∈ F and N ∈ F.

For fixed K ⊆ I, {J ⊆ I | J ⊇ K} is a filter, the principal filter generated

by K. This is a proper filter provided K �= ∅, which in general is to mean

a filter with ∅ /∈ F . Another example on an infinite I is the set of all

cofinite subsets M ⊆ I, i.e., ¬M (= I \M) is finite. This holds because

M1 ∩ M2 is cofinite iff M1, M2 are both cofinite, so that (∩) is satisfied.

A filter F is said to be an ultrafilter on I provided it satisfies, in addition,

(¬) ¬M ∈ F ⇔ M /∈ F.

Ultrafilters on an infinite set I containing all cofinite subsets are called

nontrivial. That such ultrafilters exist will be shown below. It is nearly

impossible to describe them more closely. Roughly speaking, “we know

they exist but we cannot see them.” A trivial ultrafilter on I contains at

least one finite subset. {J ⊆ I | i0 ∈ J} is an example for each i0 ∈ I.

This is a principal ultrafilter. All trivial ultrafilters are of this form,

Exercise 3. Thus, trivial and principal ultrafilters coincide. In particular,

each ultrafilter on a finite set I is trivial in this sense.
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Each proper filter F obviously satisfies the assumption of the following

theorem and can thereby be extended to an ultrafilter.

Theorem 5.1 (Ultrafilter theorem). Every subset F ⊆ PI can be

extended to an ultrafilter U on a set I, provided M0 ∩ · · · ∩Mn �= ∅ for all

n and all M0, . . . , Mn ∈ F .

Proof. Consider along with the propositional variables p
J

for J ⊆ I

X : p
M∩N

↔ p
M

∧p
N

, p
¬M

↔ ¬p
M

, p
J

(M, N ⊆ I, J ∈ F ).

Let w � X. Then (∩), (¬) are valid for U := {J ⊆ I | w � p
J
}; hence U

is an ultrafilter such that F ⊆ U . It therefore suffices to show that every

finite subset of X has a model, for which it is in turn enough to prove the

ultrafilter theorem for finite F . But this is easy: Let F = {M0, . . . , Mn},

D := M0 ∩ · · · ∩ Mn, and i0 ∈ D. Then U = {J ⊆ I | i0 ∈ J} is an

ultrafilter containing F .

Exercises

1. Prove (using the compactness theorem) that every partial order �0

on a set M can be extended to a total order � on M .

2. Let F be a proper filter on I ( �= ∅). Show that F is an ultrafilter iff

it satisfies (∪): M ∪ N ∈ F ⇔ M ∈ F or N ∈ F .

3. Let I be an infinite set. Show that an ultrafilter U on I is trivial iff

there is an i0 ∈ I such that U = {J ⊆ I | i0 ∈ J}.

1.6 Hilbert Calculi

In a certain sense the simplest logical calculi are so-called Hilbert calculi.

They are based on tautologies selected to play the role of logical axioms ;

this selection is, however, rather arbitrary and depends considerably on

the logical signature. They use rules of inference such as, for example,

modus ponens MP: α, α →β/β.6 An advantage of these calculi consists

6 Putting it crudely, this notation should express the fact that β is held to be proved

from a formula set X when α and α → β are provable from X. Modus ponens is an

example of a binary Hilbert-style rule; for a general definition of this type of rule see,

for instance, [Ra1].
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in the fact that formal proofs, defined below as certain finite sequences,

are immediately rendered intuitive. This advantage will pay off above all

in the arithmetization of proofs in 6.2.

In the following we consider such a calculus with MP as the only rule

of inference; we denote this calculus for the time being by |∼ , in order to

distinguish it from the calculus ⊢ of 1.4. The logical signature contains

just ¬ and ∧ , the same as for ⊢. In the axioms of |∼ , however, we will

also use implication defined by α →β := ¬(α∧¬β), thus considerably

shortening the writing down of the axioms.

The logical axiom scheme of our calculus consists of the set Λ of all

formulas of the following form (not forgetting the right association of

parentheses in Λ1, Λ2, and Λ4):

Λ1 (α →β →γ) → (α →β) →α →γ, Λ2 α →β →α∧β,

Λ3 α∧β →α, α∧β →β, Λ4 (α →¬β) →β →¬α.

Λ consists only of tautologies. Moreover, all formulas derivable from Λ

using MP are tautologies as well, because � α, α →β implies � β. We will

show that all 2-valued tautologies are provable from Λ by means of MP.

To this aim we first define the notion of a proof from X ⊆ F in |∼ .

Definition. A proof from X (in |∼ ) is a sequence Φ = (ϕ0, . . . , ϕn) such

that for every k � n either ϕk ∈ X ∪ Λ or there exist indices i, j < k

such that ϕj = ϕi →ϕk (i.e., ϕk results from applying MP to terms of Φ

preceding ϕk). A proof (ϕ0, . . . , ϕn) with ϕn = α is called a proof of α

from X of length n+1. Whenever such a proof exists we write X |∼α and

say that α is provable or derivable from X.

Example. (p, q, p → q →p∧ q, q →p∧q, p∧ q) is a proof of p∧ q from the

set X = {p, q}. The last two terms in the proof sequence derive with MP

from the previous ones, which are members of X ∪ Λ.

Since a proof contains only finitely many formulas, the preceding def-

inition leads immediately to the finiteness theorem for |∼ , formulated

correspondingly to Theorem 4.1. Every proper initial segment of a proof

is obviously a proof itself. Moreover, concatenating proofs of α and α →β

and tacking on β to the resulting sequence will produce a proof for β, as

is plain to see. This observation implies

(∗) X |∼α, α →β ⇒ X |∼β.
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In short, the set of all formulas derivable from X is closed under MP. In

applying the property (∗) we will often say “MP yields . . . ” It is easily seen

that X |∼α iff α belongs to the smallest set containing X ∪ Λ and closed

under MP. For the arithmetization of proofs and for automated theorem

proving, however, it is more appropriate to base derivability on the fini-

tary notion of a proof that was given in the last definition. Fortunately,

the following theorem relieves us of the necessity to verify a property of

formulas α derivable from a given formula set X each time by induction

on the length of a proof of α from X.

Theorem 6.1 (Induction principle for |∼ ). Let X be given and let E

be a property of formulas. Then E holds for all α with X |∼α, provided

(o) E holds for all α ∈ X ∪ Λ,

(s) Eα and E(α →β) imply Eβ, for all α, β.

Proof by induction on the length n of a proof Φ of α from X. If α ∈ X∪Λ

then Eα holds by (o), which applies in particular if n = 1. If α /∈ X ∪ Λ

then n > 1 and Φ contains members αi and αj = αi →α both having

proofs of length < n. Hence, it holds Eαi and Eαj by the induction

hypothesis, and so Eα according to (s).

An application of Theorem 6.1 is the proof of |∼ ⊆ �, or more explicitly,

X |∼α ⇒ X � α (soundness).

To see this let Eα be the property ‘X � α’ for fixed X. Certainly, X � α

holds for α ∈ X. The same is true for α ∈ Λ. Thus, Eα for all α ∈ X ∪Λ,

and (o) is confirmed. Now let X � α, α →β; then so too X � β, thus

confirming the inductive step (s) in Theorem 6.1. Consequently, Eα (that

is, X � α) holds for all α with X |∼α.

Unlike the proof of completeness for ⊢, the one for |∼ requires a whole

series of derivations to be undertaken. This is in accordance with the

nature of things. To get Hilbert calculi up and running one must often

begin with drawn-out derivations. In the derivations below we shall use

without further comment the monotonicity (M) (page 19, with |∼ for �).

(M) is obvious, for a proof in |∼ from X is also a proof from X ′ ⊇ X.

Moreover, |∼ is a consequence relation (as is every Hilbert calculus, based

on Hilbert style rules). For example, if X |∼Y |∼α, we construct a proof of

α from X by replacing each ϕ ∈ Y occurring in a proof of α from Y by a

proof of ϕ from X. This confirms the transitivity (T).
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Lemma 6.2. (a) X |∼α →¬β ⇒ X |∼β →¬α, (b) |∼α →β →α,

(c) |∼α →α, (d) |∼α →¬¬α, (e) |∼β →¬β →α.

Proof. (a): Clearly X |∼ (α →¬β) →β →¬α by Axiom Λ4. From this and

from X |∼α →¬β the claim is derived by MP. (b): By Λ3, |∼β ∧¬α →¬α,

and so with (a), |∼α →¬(β ∧¬α) = α →β →α.

(c): From γ := α, β := α →α in Λ1 we obtain

|∼ (α → (α →α) →α) → (α →α →α) →α →α,

which yields the claim by applying (b) and MP twice; (d) then follows

from (a) using |∼¬α →¬α. (e): Due to |∼¬β ∧¬α →¬β and (a), we get
|∼β →¬(¬β ∧¬α) = β →¬β →α.

Clearly, |∼ satisfies the rules (∧1) and (∧2) of 1.4, in view of Λ2, Λ3.

Part (e) of Lemma 6.2 yields X |∼β,¬β ⇒ X |∼α, so that |∼ satisfies also

rule (¬1). After some preparation we will show that rule (¬2) holds for
|∼ as well, thereby obtaining the desired completeness result. A crucial

step in this direction is

Lemma 6.3 (Deduction theorem). X, α |∼γ implies X |∼α →γ.

Proof by induction in |∼ with a given set X, α. Let X, α |∼γ, and let Eγ

now mean ‘X |∼α →γ’. To prove (o) in Theorem 6.1, let γ ∈ Λ∪X ∪{α}.

If γ = α then clearly X |∼α →γ by Lemma 6.2(c). If γ ∈ X ∪ Λ then cer-

tainly X |∼γ. Because also X |∼γ →α →γ by Lemma 6.2(b), MP yields

X |∼α →γ, thus proving (o). To show (s) let X, α |∼β and X, α |∼β →γ,

so that X |∼α →β, α →β →γ by the induction hypothesis. Applying MP

to Λ1 twice yields X |∼α →γ, thus confirming (s). Therefore, by Theo-

rem 6.1, Eγ for all γ, which completes the proof.

Lemma 6.4. |∼¬¬α →α.

Proof. By Λ3 and MP, ¬¬α∧¬α |∼¬α,¬¬α. Choose any τ with |∼ τ .

The already verified rule (¬1) clearly yields ¬¬α∧¬α |∼¬τ , and in view

of Lemma 6.3, |∼¬¬α∧¬α →¬τ . From Lemma 6.2(a) it follows that
|∼ τ →¬(¬¬α∧¬α). But |∼τ , hence using MP we obtain |∼¬(¬¬α∧¬α)

and the latter formula is just ¬¬α →α.

Lemma 6.3 and Lemma 6.4 are preparations for the next lemma, which

is decisive in proving the completeness of |∼ .
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Lemma 6.5. |∼ satisfies also rule (¬2) of the calculus ⊢.

Proof. Let X, β |∼α and X,¬β |∼α; then X, β |∼¬¬α and X,¬β |∼¬¬α

by Lemma 6.2(d). Hence, X |∼β →¬¬α,¬β →¬¬α (Lemma 6.3), and

so X |∼¬α →¬β and X |∼¬α →¬¬β by Lemma 6.2(a). Thus, MP yields

X,¬α |∼¬β,¬¬β, whence X,¬α |∼¬τ by (¬1), with τ as in Lemma 6.4.

Therefore X |∼¬α →¬τ , due to Lemma 6.3, and hence X |∼τ →¬¬α by

Lemma 6.2(a). Since X |∼τ it follows that X |∼¬¬α and so eventually

X |∼α by Lemma 6.4.

Theorem 6.6 (Completeness theorem). |∼ = �.

Proof. Clearly, |∼ ⊆ �. Now, by what was said already on page 38 and

by the lemma above, |∼ satisfies all basic rules of ⊢. Therefore, ⊢⊆ |∼ .

Since ⊢ = � (Theorem 4.6), we obtain also � ⊆ |∼ .

This theorem implies in particular |∼ϕ ⇔ � ϕ. In short, using MP one

obtains from the axiom system Λ exactly the two-valued tautologies.

Remark 1. It may be something of a surprise that Λ1–Λ4 are sufficient to obtain
all propositional tautologies, because these axioms and all formulas derivable
from them using MP are collectively valid in intuitionistic and minimal logic.
That Λ permits the derivation of all two-valued tautologies is based on the fact
that → was defined. Had → been considered as a primitive connective, this
would no longer have been the case. To see this, alter the interpretation of ¬
by setting ¬0 = ¬1 = 1. While one here indeed obtains the value 1 for every
valuation of the axioms of Λ and formulas derived from them using MP, one does
not do so for ¬¬p → p, which therefore cannot be derived. Modifying the two-
valued matrix or using many-valued logical matrices is a widely applied method
to obtain independence results for logical axioms.

Thus, we have seen that there are very different calculi for deriving

tautologies or to recover other properties of the semantic relation �. We

have studied here to some extend Gentzen-style and Hilbert-style calculi

and this will be done also for first-order logic in Chapter 2. In any case,

logical calculi and their completeness proofs depend essentially on the

logical signature, as can be seen, for example, from Exercise 1.

Besides Gentzen- and Hilbert-style calculi there are still other types

of logical calculi, for example various tableau calculi, which are above all

significant for their generalizations to nonclassical logical systems. Related

to tableau calculi is the resolution calculus dealt with in 4.3.
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Using Hilbert-style calculi one can axiomatize 2-valued logic in other

logical signatures and functional incomplete fragments. For instance, the

fragment in ∧ ,∨, which, while having no tautologies, contains a lot of

interesting Hilbert-style rules. Proving that this fragment is axiomatizable

by finitely many such rules is less easy as might be expected. At least nine

Hilbert rules are required. Easier is the axiomatization of the well-known

→ -fragment in Exercise 3, less easy that of the ∨-fragment in Exercise 4.

Each of the infinitely many fragments of two-valued logic with or without

tautologies is axiomatizable by a calculus using only finitely many Hilbert-

style rules of its respective language, as was shown in [HeR].

Remark 2. The calculus in Exercise 4 that treats the fragment in ∨ alone, is
based solely on unary rules. This fact considerably simplifies the matter, but
the completeness proof is nevertheless nontrivial. For instance, the indispensable
rule (αβ)γ/α(βγ) is derivable in this calculus, since a tricky application of the
rules (3) and (4) yields (αβ)γ ⊢ γ(αβ) ⊢ (γα)β ⊢ β(γα) ⊢ (βγ)α ⊢ α(βγ).
Much easier would be a completeness proof of this fragment with respect to the
Gentzen-style rules (∨1) and (∨2) from Exercise 2 in 1.4.

Exercises

1. Prove the completeness of the Hilbert calculus ⊢ in F{→ ,⊥} with

MP as the sole rule of inference, the definition ¬α := α → ⊥, and

the axioms A1: α →β →α, A2: (α →β →γ) → (α →β) →α →γ,

and A3: ¬¬α →α.

2. Let ⊢ be a finitary consequence relation and let X � ϕ. Use Zorn’s

lemma to prove that there is a ϕ-maximal Y ⊇ X, that is, Y � ϕ

but Y, α ⊢ ϕ whenever α /∈ Y . Such a Y is deductively closed but

need not be maximally consistent.

3. Let ⊢ denote the calculus in F{→} with the rule of inference MP, the

axioms A1, A2 from Exercise 1, and ((α →β) →α) →α (the Peirce

axiom). Verify that (a) a ϕ-maximal set X is maximally consistent,

(b) ⊢ is a complete calculus in the propositional language F{→}.

4. Show the completeness of the calculus ⊢ in F{∨} with the four unary

Hilbert-style rules below. The writing of ∨ has been omitted:

(1) α/αβ, (2) αα/α, (3) αβ/βα, (4) α(βγ)/(αβ)γ.



Chapter 2

First-Order Logic

Mathematics and some other disciplines such as computer science often

consider domains of individuals in which certain relations and operations

are singled out. When using the language of propositional logic, our abil-

ity to talk about the properties of such relations and operations is very

limited. Thus, it is necessary to refine our linguistic means of expres-

sion, in order to procure new possibilities of description. To this end, one

needs not only logical symbols but also variables for the individuals of the

domain being considered, as well as a symbol for equality and symbols

for the relations and operations in question. First-order logic, sometimes

called also predicate logic, is the part of logic that subjects properties of

such relations and operations to logical analysis.

Linguistic particles such as “for all” and “there exists” (called quantifiers)

play a central role here, whose analysis should be based on a well prepared

semantic background. Hence, we first consider mathematical structures

and classes of structures. Some of these are relevant both to logic (in

particular model theory) and to computer science. Neither the newcomer

nor the advanced student needs to read all of 2.1, with its mathemati-

cal flavor, at once. The first five pages should suffice. The reader may

continue with 2.2 and later return to what is needed.

Next we home in on the most important class of formal languages,

the first-order languages, also called elementary languages. Their main

characteristic is a restriction of the quantification possibilities. We discuss

in detail the semantics of these languages and arrive at a notion of logical

consequence from arbitrary premises. In this context, the notion of a

formalized theory is made more precise.
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Finally, we treat the introduction of new notions by explicit definitions

and other expansions of a language, for instance by Skolem functions.

Not until Chapter 3 do we talk about methods of formal logical deduc-

tion. While a multitude of technical details have to be considered in this

chapter, nothing is especially profound. Anyway, most of it is important

for the undertakings of the subsequent chapters.

2.1 Mathematical Structures

By a structure A we understand a nonempty set A together with certain

distinguished relations and operations of A, as well as certain constants

distinguished therein. The set A is also termed the domain of A, or its

universe. The distinguished relations, operations, and constants are called

the (basic) relations, operations, and constants of A. A finite structure

is one with a finite domain. An easy example is ({0, 1}, ∧ , ∨, ¬). Here

∧ , ∨, ¬ have their usual meanings on the domain {0, 1}, and no distin-

guished relations or constants occur. An infinite structure has an infinite

domain. A = (N, <,+, ·, 0, 1) is an example with the domain N; here

<, +, ·, 0, 1 have again their ordinary meaning.

Without having to say so every time, for a structure A the correspond-

ing letter A will always denote the domain of A; similarly B denotes the

domain of B, etc. If A contains no operations or constants, then A is also

called a relational structure. If A has no relations it is termed an algebraic

structure, or simply an algebra. For example, (Z, <) is a relational struc-

ture, whereas (Z,+, 0) is an algebraic structure, the additive group Z (it is

customary to use here the symbol Z as well). Also the set of propositional

formulas from 1.1 can be understood as an algebra, equipped with the

operations (α, β) 
→ (α∧β), (α, β) 
→ (α ∨ β), and α 
→ ¬α. Thus, one

may speak of the formula algebra F whenever it is useful to do so.

Despite our interest in specific structures, whole classes of structures

are also often considered, for instance the classes of groups, rings, fields,

vector spaces, Boolean algebras, and so on. Even when initially just a

single structure is viewed, call it the paradigm structure, one often needs

to talk about similar structures in the same breath, in one language, so to

speak. This can be achieved by setting aside the concrete meaning of the

relation and operation symbols in the paradigm structure and considering
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the symbols in themselves, creating thereby a formal language that en-

ables one to talk at once about all structures relevant to a topic. Thus,

one distinguishes in this context clearly between denotation and what is

denoted. To emphasize this distinction, for instance for A = (A, +, <, 0),

it is better to write A = (A, +A, <A, 0A), where +A, <A, and 0A mean

the relation, operation, and constant denoted by +, <, and 0 in A. Only

if it is clear from the context what these symbols denote may the super-

scripts be omitted. In this way we are free to talk on the one hand about

the structure A, and on the other hand about the symbols +, <, 0.

A finite or infinite set L resulting in this way, consisting of relation,

operation, and constant symbols of a given arity, is called an extralogical

signature. For the class of all groups (see page 47), L = {◦, e} exemplifies

a favored signature; that is, one often considers groups as structures of

the form (G, ◦, e), where ◦ denotes the group operation and e the unit

element. But one can also define groups as structures of the signature

{◦}, because e is definable in terms of ◦, as we shall see later. Of course,

instead of ◦, another operation symbol could be chosen such as ·, ∗, or +.

The latter is mainly used in connection with commutative groups. In this

sense, the actual appearance of a symbol is less important; what matters

is its arity. r ∈ L always means that r is a relation symbol, and f ∈ L

that f is an operation symbol, each time of some arity n > 0, which of

course depends on the symbols r and f , respectively.1

An L-structure is a pair A = (A, LA), where LA contains for every r ∈ L

a relation rA on A of the same arity as r, for every f ∈ L an operation

fA on A of the arity of f , and for every c ∈ L a constant cA ∈ A. We

may omit the superscripts, provided it is clear from the context which

operation or relation on A is meant. We occasionally shorten also the

notation of structures. For instance, we sometimes speak of the ring Z or

the field R provided there is no danger of misunderstanding.

Every structure is an L-structure for a certain signature, namely that

consisting of the symbols for its relations, functions, and constants. But

this does not make the name L-structure superfluous. Basic concepts,

1 Here r and f represent the general case and look different in a concrete situation.

Relation symbols are also called predicate symbols, in particular in the unary case,

and operation symbols are sometimes called function symbols. In special contexts,

we also admit n = 0, regarding constants as 0-ary operations.
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such as isomorphism and substructure, each refer to structures of the

same signature. From 2.2 on, once the first-order language L belonging

to L has been defined, L-structures will mostly be called L-structures.

We then also often say that r, f , or c belongs to L instead of L.

If A ⊆ B and f is an n-ary operation on B then A is closed under f ,

briefly f-closed, if f�a ∈ A for all �a ∈ An. If n = 0, i.e., if f is a constant

c, this simply means c ∈ A. The intersection of any nonempty family of

f -closed subsets of B is itself f -closed. Accordingly, we can talk of the

smallest (the intersection) of all f -closed subsets of B that contain a given

subset E ⊆ B. All of this extends in a natural way if f is here replaced

by an arbitrary family of operations of B.

Example. For a given positive m, the set mZ := {m · n | n ∈ Z} of

integers divisible by m is closed in Z under +, −, and ·, and is in fact the

smallest such subset of Z containing m.

The restriction of an n-ary relation rB ⊆ Bn to a subset A ⊆ B is

rA = rB ∩ An. For instance, the restriction of the standard order of

R to N is the standard order of N. Only because of this fact can the

same symbol be used to denote these relations. The restriction fA of an

operation fB on B to a set A ⊆ B is defined analogously whenever A is

f -closed. Simply let fA�a = fB�a for �a ∈ An. For instance, addition in N
is the restriction of addition in Z to N, or addition in Z is an extension of

this operation in N. Again, only this state of affairs allows us to denote

the two operations by the same symbol.

Let B be an L-structure and let A ⊆ B be nonempty and closed under

all operations of B; this will be taken to include cB ∈ A for constant

symbols c ∈ L. To such a subset A corresponds in a natural way an L-

structure A = (A, LA), where rA and fA for r, f ∈ L are the restrictions

of rB respectively fB to A. Finally, let cA = cB for c ∈ L. The structure A

so defined is then called a substructure of B, and B is called an extension

of A, in symbols A ⊆ B. This is a certain abuse of ⊆ but it does not

cause confusion, since the arguments indicate what is meant.

A ⊆ B implies A ⊆ B but not conversely, in general. For example,

A = (N, <,+, 0) is a substructure of B = (Z, <,+, 0) since N is closed

under addition in Z and 0 has the same meaning in A and B. Here

we dropped the superscripts for <, +, and 0 because there is no risk of

misunderstanding.
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A nonempty subset G of the domain B of a given L-structure B defines

a smallest substructure A of B containing G. The domain of A is the

smallest subset of B containing G and closed under all operations of B.

A is called the substructure generated from G in B. For instance, 3N
(= {3n | n ∈ N}) is the domain of the substructure generated from {3} in

(N,+, 0), since 3N contains 0 and 3, is closed under +, and is clearly the

smallest such subset of N. A structure A is called finitely generated if for

some finite G ⊆ A the substructure generated from G in A coincides with

A. For instance, (Z,+,−, 0) is finitely generated by G = {1}.

If A is an L-structure and L0 ⊆ L then the L0-structure A0 with domain

A and where sA0 = sA for all symbols s ∈ L0 is termed the L0-reduct of

A, and A is called an L-expansion of A0. For instance, the group (Z,+, 0)

is the {+, 0}-reduct of the ordered ring (Z, <,+, ·, 0). The notions reduct

and substructure must clearly be distinguished. A reduct of A has always

the same domain as A, while the domain of a substructure of A is as a

rule a proper subset of A.

Below we list some frequently cited properties of a binary relation ⊳

in a set A. It is convenient to write a ⊳ b instead of (a, b) ∈⊳, and a ⋪ b

for (a, b) /∈⊳. Just as a < b < c often stands for a < b & b < c, we

write a ⊳ b ⊳ c for a ⊳ b & b ⊳ c. In the listing below, ‘for all a’ and

‘there exists an a’ respectively mean ‘for all a ∈ A’ and ‘there exists some

a ∈ A’. The relation ⊳ ⊆ A2 is called

reflexive if a ⊳ a for all a,

irreflexive if a ⋪ a for all a,

symmetric if a ⊳ b ⇒ b ⊳ a, for all a, b,

antisymmetric if a ⊳ b ⊳ a ⇒ a = b, for all a, b,

transitive if a ⊳ b ⊳ c ⇒ a ⊳ c, for all a, b, c,

connex if a = b or a ⊳ b or b ⊳ a, for all a, b.

Reflexive, transitive, and symmetric relations are also called equivalence

relations. These are often denoted by ∼, ≈, ≡, ≃, or similar symbols.

Such a relation generates a partition of its domain whose parts, consisting

of mutually equivalent elements, are called equivalence classes.

We now present an overview of classes of structures to which we will

later refer, mainly in Chapter 5. Hence, for the time being, the beginner

may skip the following and jump to 2.2.
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1. Graphs, partial orders, and orders. A relational structure (A,⊳)

with some relation ⊳ ⊆ A2 is often termed a (directed) graph. If ⊳ is

irreflexive and transitive we usually write < for ⊳ and speak of a (strict)

partial order or a partially ordered set, also called a poset for short. If

we define x � y by x < y or x = y, then � is reflexive, transitive, and

antisymmetric, called a reflexive partial order, the one that belongs to <.

If one starts with a reflexive partial order on A and defines x < y by

x � y & x �= y, then (A, <) is clearly a poset.

A connex partial order A = (A, <) is called a total or linear order, also

termed an ordered or a strictly ordered set. N, Z, Q, R are examples with

respect to their standard orders. Here we follow the traditional habit of

referring to ordered sets by their domains only.

Let U be a nonempty subset of some ordered set A such that for all

a, b ∈ A, a < b ∈ U ⇒ a ∈ U . Such a U is called an initial segment of A.

In addition, let V := A \U �= ∅. Then the pair (U, V ) is called a cut . The

cut is said to be a gap if U has no largest and V no smallest element.

However, if U has a largest element a, and V a smallest element b, then

(U, V ) is called a jump. b is in this case called the immediate successor of

a, and a the immediate predecessor of b, because then there is no element

from A between a and b. An infinite ordered set without gaps and jumps,

like R, is said to be continuously ordered. Such a set is easily seen to be

densely ordered, i.e., between any two elements lies another one.

A totally ordered subset K of a partially ordered set H is called a chain

in H. Such a K is said to be bounded (to the above) if there is some b ∈ H

with a � b for all a ∈ K. Call c ∈ H maximal in H if no a ∈ H exists

with a > c. An infinite partial order need not have a maximal element,

nor need all chains be bounded, as is seen by the example (N, <). With

these notions, a basic mathematical tool can now be stated:

Zorn’s lemma. If every chain in a nonempty poset H is bounded then

H has a maximal element.

A (totally) ordered set A is well-ordered if every nonempty subset of

A has a smallest element; equivalently, there are no infinite decreasing

sequences a0 > a1 > · · · of elements from A. Clearly, every finite ordered

set is well-ordered. The simplest example of an infinite well-ordered set is

N together with its standard order.
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2. Groupoids, semigroups, and groups. Algebras A = (A, ◦) with

an operation ◦ : A2 → A are termed groupoids. If ◦ is associative then A

is called a semigroup, and if ◦ is additionally invertible, then A is said

to be a group. It is provable that a group (G, ◦) in this sense contains

exactly one unit element , that is, an element e such that x ◦ e = e ◦x = x

for all x ∈ G, also called a neutral element. A well-known example is the

group of bijections of a set M . If the group operation ◦ is commutative,

we speak of a commutative or abelian group.

Here are some examples of semigroups that are not groups: (a) the

set of strings on some alphabet A with respect to concatenation, the

word-semigroup or free semigroup generated from A. (b) the set MM

of mappings from M to itself with respect to composition. (c) (N,+)

and (N, ·); these two are commutative semigroups. With the exception of

(MM , ◦), all mentioned examples of semigroups are regular, which is to

mean x ◦ y = x ◦ z ⇒ y = z, and x ◦ z = y ◦ z ⇒ x = y, for all x, y, z.

Substructures of semigroups are again semigroups. Substructures of

groups are in general only semigroups, as seen from (N,+) ⊆ (Z,+). Not

so in the signature {◦, e,−1}, where e denotes the unit element and x−1

the inverse of x. Here all substructures are indeed subgroups. The reason

is that in {◦, e,−1}, the group axioms can be written as universally quan-

tified equations, where for brevity, we omit the writing of “for all x, y, z,”

namely as x ◦ (y ◦ z) = (x ◦ y) ◦ z, x ◦ e = x, x ◦x−1 = e. These equations

certainly retain their validity in the transition to substructures. We men-

tion that from the last three equations, e ◦x = x and x−1 ◦x = e are

derivable, although ◦ is not supposed to be commutative.

Ordered semigroups and groups possess along with ◦ some order, with

respect to which ◦ is monotonic in both arguments, like (N,+, 0, �). A

commutative ordered semigroup (A,+, 0, �) with zero element 0, which

at the same time is the smallest element in A, and where a � b iff there

is some c with a + c = b, is called a domain of magnitude. Everyday

examples are the domains of length, mass, money, etc.

3. Rings and fields. These belong to the most commonly known struc-

tures. Below we list the axioms for the theory TF of fields in +, ·, 0, 1. A

field is a model of TF . A ring is a model of the axiom system TR for rings

that derives from TF by dropping the constant 1 from the signature and

the axioms N×, C×, and I× from TF . Here are the axioms of TF :
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N+ : x + 0==== x N× : x · 1==== x

C+ : x + y ==== y + x C× : x · y ==== y · x

A+ : (x + y) + z ==== x + (y + z) A× : (x · y) · z ==== x · (y · z)

D : x · (y + z)==== x · y + x · z D′ : (y + z) · x==== y · x + z · x

I+ : ∀x∃y x + y ==== 0 I× : 0 �====1∧ (∀x �====0)∃y x · y ==== 1

In view of C×, axiom D′ is dispensable for TF but not for TR. When

removing I+ from TR, we obtain the theory of semirings. A well-known

example is (N,+, ·, 0). A commutative ring that has a unit element 1

but no zero-divisor (i.e., ¬∃x∃y(x, y �==== 0 ∧ x · y ==== 0) is called an integral

domain. A typical example is (Z,+, ·, 0, 1).

Let K,K′ be any fields with K ⊂ K′. We call a ∈ K ′ \K algebraic or

transcendental on K, depending on whether a is a zero of a polynomial

with coefficients in K or not. If every polynomial of degree � 1 with

coefficients in K breaks down into linear factors, as is the case for the

field of complex numbers, then K is called algebraically closed, in short, K

is a.c. These fields will be more closely inspected in 3.3 and Chapter 5.

Each field K has a smallest subfield P, called a prime field. One says that

K has characteristic 0 or p (a prime number), depending on whether P is

isomorphic to the field Q or the finite field of p elements. No other prime

fields exist. It is not hard to show that K has the characteristic p iff the

sentence charp : 1 + · · · + 1
︸ ︷︷ ︸

p

==== 0 holds in K.

Rings, fields, etc. may also be ordered, whereby the usual monotonicity

laws are required. For example, (Z, <,+, ·, 0, 1) is the ordered ring of

integers and (N, <,+, ·, 0, 1) the ordered semiring of natural numbers.

4. Semilattices and lattices. A = (A, ◦) is called a semilattice if ◦ is

associative, commutative, and idempotent. An example is ({0, 1}, ◦) with
◦ = ∧ . If we define a � b :⇔ a ◦ b = a then � is a reflexive partial order

on A. Reflexivity holds, since a ◦ a = a. As can be easily verified, a ◦ b

is in fact the infimum of a, b with respect to �, a ◦ b = inf{a, b}, that is,

a ◦ b � a, b, and c � a, b ⇒ c � a ◦ b, for all a, b, c ∈ A.

A = (A, ∩ , ∪ ) is called a lattice if (A, ∩ ) and (A, ∪ ) are both semi-

lattices and the following so-called absorption laws hold: a ∩ (a ∪ b) = a

and a ∪ (a ∩ b) = a. These imply a ∩ b = a ⇔ a ∪ b = b. As above,

a � b :⇔ a ∩ b = a defines a partial order such that a ∩ b = inf{a, b}.
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In addition, one has a ∪ b = sup{a, b} (the supremum of a, b), which is

to mean a, b � a ∪ b, and a, b � c ⇒ a ∪ b � c, for all c ∈ A. If A

satisfies, moreover, the distributive laws x ∩ (y ∪ c) = (x ∩ y) ∪ (x ∩ c) and

x ∪ (y ∩ c) = (x ∪ y) ∩ (x ∪ c), then A is termed a distributive lattice. For

instance, the power set PM with the operations ∩ and ∪ for ∩ and ∪ re-

spectively is a distributive lattice, as is every nonempty family of subsets

of M closed under ∩ and ∪, a so-called lattice of sets. Another important

example is (N, gcd, lcm). Here gcd(a, b) and lcm(a, b) denote the greatest

common divisor and the least common multiple of a, b ∈ N.

5. Boolean algebras. An algebra A = (A, ∩ , ∪ ,¬) where (A, ∩ , ∪ ) is

a distributive lattice and in which at least the equations

¬¬x = x, ¬(x ∩ y) = ¬x ∪¬y, x ∩¬x = y ∩¬y

are valid is called a Boolean algebra. The paradigm structure is the two-

element Boolean algebra 2 := ({0, 1}, ∧ , ∨,¬), with ∩ , ∪ interpreted as

∧ , ∨, respectively. One defines the constants 0 and 1 by 0 := a ∩¬a for

any a ∈ A and 1 := ¬0. There are many ways to characterize Boolean

algebras A, for instance, by saying that A satisfies all equations valid in 2 .

The signature can also be variously selected. For example, the signature

∧ , ∨,¬ is well suited to deal algebraically with two-valued propositional

logic. Terms of this signature are, up to the denotation of variables,

precisely the Boolean formulas from 1.1, and a valid logical equivalence

α ≡ β corresponds to the equation α = β, valid in 2 . Further examples

of Boolean algebras are the algebras of sets A = (A,∩,∪,¬). Here A

consists of a nonempty system of subsets of a set I, closed under ∩, ∪,

and ¬ (complementation in I). These are the most general examples; a

famous theorem, Stone’s representation theorem, says that each Boolean

algebra is isomorphic to an algebra of sets.

6. Logical L-matrices. These are structures A = (A, LA, DA), where

L contains only operation symbols (the “logical” symbols) and D denotes

a unary predicate, the set of distinguished values of A. Best known is the

two-valued Boolean matrix B = (2 , DB) with DB = {1}. The consequence

relation �A in the propositional language F of signature L is defined as

in the two-valued case: Let X ⊆ F and ϕ ∈ F. Then X �A ϕ if wϕ ∈ DA

for every w : PV → A with wX ⊆ DA (wX := {wα | α ∈ X}). In words,

if the values of all α ∈ X are distinguished, then so too is the value of ϕ.
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Homomorphisms and isomorphisms. The following notions are im-

portant for both mathematical and logical investigations. Much of the

material presented here will be needed in Chapter 5. In the following

definition, n (>0) denotes as always the arity of f or r.

Definition. Let A,B be L-structures and h : A → B (strictly speaking

h : A → B) a mapping such that for all f, c, r ∈ L and �a ∈ An,

(H): hfA�a = fBh�a, hcA = cB, rA�a ⇒ rBh�a
(
h�a = (ha1, . . . , han)

)
.

Then h is called a homomorphism. If the third condition in (H) is replaced

by the stronger condition (S): (∃�b∈An)(h�a=h�b & rA�b ) ⇔ rBh�a 2 then h

is said to be a strong homomorphism (for algebras, the word “strong” is

dispensable). An injective strong homomorphism h : A → B is called an

embedding of A into B. If, in addition, h is bijective then h is called an

isomorphism, and in case A = B, an automorphism.

An embedding or isomorphism h :A → B satisfies rA�a ⇔ rBh�a. Indeed,

since h�a=h�b ⇔ �a=�b, (S) yields rBh�a ⇒ (∃�b∈An)(�a=�b & rA�b) ⇒ rA�a.

A,B are said to be isomorphic, in symbols A ≃ B, if there is an isomor-

phism from A to B. It is readily verified that ≃ is reflexive, symmetric, and

transitive, hence an equivalence relation on the class of all L-structures.

Examples 1. (a) A valuation w considered in 1.1 can be regarded as

a homomorphism of the propositional formula algebra F into the two-

element Boolean algebra 2 . Such a w :F → 2 is necessarily onto.

(b) Let A = (A, ∗) be a word semigroup with the concatenation operation

∗ and B the additive semigroup of natural numbers, considered as L-

structures for L = {◦} with ◦A = ∗ and ◦B = +. Let lh(ξ) denote the

length of a word or string ξ ∈ A. Then ξ 
→ lh(ξ) is a homomorphism

since lh(ξ ∗ η) = lh(ξ) + lh(η), for all ξ, η ∈ A. If A is generated from a

single letter, lh is evidently bijective, hence an isomorphism.

(c) The mapping a 
→ (a, 0) from R to C (= set of complex numbers,

understood as ordered pairs of real numbers) is a good example of an

embedding of the field R into the field C. Nonetheless, in this case, we

are used to saying that R is a subfield of C, and that R is a subset of C.

2 (∃�b∈An)(h�a=h�b & rA�b ) abbreviates ‘there is some �b ∈ An with h�a = h�b and rA�b’.

If h :A → B is onto (and only this case will occur in our applications) then (S) is

equivalent to the more suggestive condition rB = {h�a | rA�a}.
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(d) Let A = (R, +, <) be the ordered additive group of real numbers

and B = (R+, ·, <) the multiplicative group of positive reals. Then for

any b ∈ R+ \{1} there is precisely one isomorphism η :A → B such that

η1 = b, namely η : x 
→ bx, the exponential function expb to the base b.

It is even possible to define expb as this isomorphism, by first proving

that—up to isomorphism—there is only one continuously ordered abelian

group (first noticed in [Ta2] though not explicitly put into words).

(e) The algebras A = ({0, 1},+) and B = ({0, 1},↔) are only apparently

different, but are in fact isomorphic, with the isomorphism δ where δ0 = 1,

δ1 = 0. Thus, since A is a group, B is a group as well, which is not

obvious at first glance. By adjoining the unary predicate D = {1}, A and

B become (nonisomorphic) logical matrices. These actually define the two

“dual” fragmentary two-valued logics for the connectives either . . . or . . . ,

and . . . if and only if . . . , which have many properties in common.

Congruences. A congruence relation (or simply a congruence) in a struc-

ture A of signature L is an equivalence relation ≈ in A such that for all

n > 0, all f ∈ L of arity n, and all �a,�b ∈ An,

�a ≈ �b ⇒ fA�a ≈ fA�b.

Here �a ≈ �b means ai ≈ bi for i = 1, . . . , n. A trivial example is the

identity in A. If h : A → B is a homomorphism then ≈h ⊆ A2, defined

by a ≈h b ⇔ ha = hb, is a congruence in A, called the kernel of h. Let

A′ be the set of equivalence classes a/≈ := {x ∈ A | a ≈ x} for a ∈ A,

also called the congruence classes of ≈, and set �a/≈ := (a1/≈, . . . , an/≈)

for �a ∈ An. Define fA′

(�a/≈) := (fA�a)/≈ and let rA′

�a/≈ :⇔ (∃�b≈�a)rA�b.

These definitions are sound, that is, independent of the choice of the n-

tuple �a of representatives. Then A′ becomes an L-structure A′, the factor

structure of A modulo ≈, denoted by A/≈. Interesting, in particular for

Chapter 5, is the following very general and easily provable

Homomorphism theorem. Let A be L-structure and ≈ a congruence

in A. Then k : a 
→ a/≈ is a strong homomorphism from A onto A/≈,

the canonical homomorphism. Conversely, if h :A → B is a strong homo-

morphism from A onto an L-structure B with kernel ≈ then ı : a/≈ 
→ ha

is an isomorphism from A/≈ to B, and h = ı ◦ k.

Proof. We omit here the superscripts for f and r just for the sake of

legibility. Clearly, kf�a = (f�a)/≈ = f(�a/≈) = fk�a
(
=f(ka1, . . . , kan)

)
,
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and (∃�b∈An)(k�a = k�b & r�b) ⇔ (∃�b≈�a)r�b ⇔ r�a/≈ ⇔ r k�a by definition.

Hence k is what we claimed. The definition of ı is sound, and ı is bijective

since ha = hb ⇒ a/≈ = b/≈. Furthermore, ı is an isomorphism because

ıf(�a/≈) = hf�a = fh�a = fı(�a/≈) and r�a/≈ ⇔ r h�a ⇔ r ı(�a/≈).

Finally, h is the composition ı ◦ k by the definitions of ı and k.

Remark. For algebras A, this theorem is the usual homomorphism theorem of
universal algebra. A/≈ is then named the factor algebra. The theorem covers
groups, rings, etc. In groups, the kernel of a homomorphism is already deter-
mined by the congruence class of the unit element, called a normal subgroup,
in rings by the congruence class of 0, called an ideal. Hence, in textbooks on
basic algebra the homomorphism theorem is separately formulated for groups
and rings, but is easily derivable from the general theorem present here.

Direct products. These provide the basis for many constructions of new

structures, especially in 5.7. A well-known example is the n-dimensional

vector group (Rn, 0, +). This is the n-fold direct product of the group

(R, 0, +) with itself. The addition in Rn is defined componentwise, as is

also the case in the following

Definition. Let (Ai)i∈I be a nonempty family of L-structures. The

direct product B =
∏

i∈I Ai is the structure defined as follows: Its domain

is B =
∏

i∈I Ai, called the direct product of the sets Ai. The elements

a = (ai)i∈I of B are functions defined on I with ai ∈ Ai for each i ∈ I.

Relations and operations in B are defined componentwise, that is,

rB�a ⇔ rAi�ai for all i ∈ I, fB�a = (fAi�ai)i∈I , cB = (cAi)i∈I ,

where �a = (a1, . . . , an) ∈ Bn (here the superscripts count the components)

with aν := (aν
i )i∈I for ν = 1, . . . , n, and �ai := (a1

i , . . . , a
n
i ) ∈ An

i .

Whenever Ai = A for all i ∈ I, then
∏

i∈I Ai is denoted by AI and

called a direct power of the structure A. Note that A is embedded in AI

by the mapping a 
→ (a)i∈I , where (a)i∈I denotes the I-tuple with the

constant value a, that is, (a)i∈I = (a, a, . . . ). For I = {1, . . . , m}, the

product
∏

i∈I Ai is also written as A1 × · · · × Am. If I = {0, . . . , n−1}

one mostly writes An for AI .

Examples 2. (a) Let I = {1, 2}, Ai = (Ai, <
i), and B =

∏

i∈I Ai.

Then a <B b ⇔ a1 <1 b1 & a2 <2 b2, for all a, b ∈ B = A1 × A2. Note

that if A1,A2 are ordered sets then B is only a partial order. The deeper

reason for this observation will become clear in Chapter 5.
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(b) Let B = 2 I be a direct power of the two-element Boolean algebra 2 .

The elements a ∈ B are I-tuples of 0 and 1. These uniquely correspond

to the subsets of I via the mapping ı : a 
→ Ia := {i ∈ I | ai = 1}. As a

matter of fact, ı is an isomorphism from B to (PI,∩,∪,¬), as can readily

be verified; Exercise 4.

Exercises

1. Show that there are (up to isomorphism) exactly five two-element

proper groupoids. Here a groupoid (H, ·) is termed proper if the

operation · is essentially binary.

2. ≈ (⊆ A2) is termed Euclidean if a ≈ b & a ≈ c ⇒ b ≈ c, for all

a, b, c ∈ A. Show that ≈ is an equivalence relation in A if and only

if ≈ is reflexive and Euclidean.

3. Prove that an equivalence relation ≈ on an algebraic L-structure A

is a congruence iff for all f ∈ L of arity n, all i = 1, . . . , n, and all

a1, . . . , ai−1, a, a′, ai+1, . . . , an ∈ A with a ≈ a′,

f(a1, . . . , ai−1, a, ai+1, . . . , an) ≈ f(a1, . . . , ai−1, a
′, ai+1, . . . , an).

4. Prove in detail that 2 I ≃ (PI,∩,∪,¬) for a nonempty index set I.

Prove the corresponding statement for any subalgebra of 2 I .

5. Show that h :
∏

i∈I Ai → Aj with ha = aj is a homomorphism for

each j ∈ I.

2.2 Syntax of First-Order Languages

Standard mathematical language enables us to talk precisely about struc-

tures, such as the field of real numbers. However, for logical (and meta-

mathematical) issues it is important to delimit the theoretical framework

to be considered; this is achieved most simply by means of a formalization.

In this way one obtains an object language; that is, the formalized elements

of the language, such as the components of a structure, are objects of our

consideration. To formalize interesting properties of a structure in this

language, one requires at least variables for the elements of its domain,

called individual variables. Further are required sufficiently many logical
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symbols, along with symbols for the distinguished relations, functions,

and constants of the structure. These extralogical symbols constitute the

signature L of the formal language that we are going to define.

In this manner one arrives at the first-order languages, also termed

elementary languages. Nothing is lost in terms of generality if the set

of variables is the same for all elementary languages; we denote this set

by Var and take it to consist of the countably many symbols v0, v1, . . .

Two such languages therefore differ only in the choice of their extralogical

symbols. Variables for subsets of the domain are consciously excluded,

since languages containing variables both for individuals and sets of these

individuals—second-order languages, discussed in 3.8—have different se-

mantic properties from those investigated here.

We first determine the alphabet , the set of basic symbols of a first-order

language determined by a signature L. It includes, of course, the already

specified variables v0, v1, . . . In what follows, these will mostly be denoted

by x, y, z, u, v, though sometimes other letters with or without indices may

serve the same purpose. The boldface printed original variables are useful

in writing down a formula in the variables vi1 , . . . ,vin , for these can then

be denoted, for instance, by v1, . . . , vn, or by x1, . . . , xn.

Further, the logical symbols ∧ (and), ¬ (not), ∀ (for all), the equality

sign ==== , and, of course, all extralogical symbols from L should belong to

the alphabet. Note that the boldface symbol ==== is taken as a basic symbol;

simply taking = could lead to unintended mix-ups with the metamath-

ematical use of the equality symbol = (in Chapter 4 also identity-free

languages without ==== will be considered). Finally, the parentheses ( , )

are included in the alphabet. Other symbols are introduced by definition,

e.g., ∨, → ,↔ are defined as in 1.4 and the symbols ∃ (there exists) and

∃! (there exists exactly one) will be defined later. Let SL denote the set

of all strings made up of symbols that belong to the alphabet of L.

From the set SL of all strings we pick out the meaningful ones, namely

terms and formulas, according to certain rules. A term, under an inter-

pretation of the language, will always denote an element of a domain,

provided an assignment of the occurring variables to elements of that do-

main has been given. In order to keep the syntax as simple as possible,

terms will be understood as certain parenthesis-free strings, although this

kind of writing may look rather unusual at the first glance.
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Terms in L:

(T1) Variables and constants, considered as atomic strings, are terms,

also called prime terms.

(T2) If f ∈ L is n-ary and t1, . . . , tn are terms, then ft1 · · · tn is a term.

This is a recursive definition of the set of terms as a subset of SL. Any

string that is not generated by (T1) and (T2) is not a term in this context

(cf. the related definition of F in 1.1). Parenthesis-free term notation

simplifies the syntax, but for binary operations we proceed differently in

practice and write, for example, the term ·+xyz as (x+y) · z. The reason

is that a high density of information in the notation complicates read-

ing. Our brain does not process information sequentially like a computer.

Officially, terms are parenthesis-free, and the parenthesized notation is

just an alternative way of rewriting terms. Similarly to the unique recon-

struction property of propositional formulas in 1.1, here the unique term

reconstruction property holds, that is,

ft1 · · · tn = fs1 · · · sn implies si = ti for i = 1, . . . , n (ti, si terms),

which immediately follows from the unique term concatenation property

t1 · · · tn = s1 · · · sm implies n = m and ti = si for i = 1, . . . , n.

The latter is shown in Exercise 2. T (= TL) denotes the set of all terms

of a given signature L. Variable-free terms, which can exist only with

the availability of constant symbols, are called constant terms or ground

terms, mainly in logic programming. With the operations given in T by

setting fT (t1, . . . , tn) = ft1 · · · tn, T forms an algebra, the term algebra.

From the definition of terms immediately follows the useful

Principle of proof by term induction. Let E be a property of strings

such that E holds for all prime terms, and for each n > 0 and each n-ary

function symbol f , the assumptions Et1, . . . , Etn imply Eft1 · · · tn. Then

all terms have the property E.

Indeed, T is by definition the smallest set of strings satisfying the condi-

tions of this principle, and hence a subset of the set of all strings with the

property E . A simple application of term induction is the proof that each

compound term t is a function term in the sense that t = ft1 · · · tn for

some n-ary function symbol f and some terms t1, . . . , tn. Simply consider

the property ‘t is either prime or a function term’. Term induction can

also be executed on certain subsets of T , for instance on ground terms.
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We also have at our disposal a definition principle by term recursion

which, rather than defining it generally, we present through examples.

The set var t of variables occurring in a term t is recursively defined by

var c = ∅ ; varx = {x} ; var ft1 · · · tn = var t1 ∪ · · · ∪ var tn.

var t, and even var ξ for any ξ ∈ SL, can also be defined explicitly using

concatenation. var ξ is the set of all x ∈ Var for which there are strings

η, ϑ with ξ = ηxϑ. The notion of a subterm of a term can also be defined

recursively. Again, we can also do it more briefly using concatenation.

Definition by term induction should more precisely be called definition by

term recursion. But most authors are sloppy in this respect.

We now define recursively those strings of the alphabet of L to be called

formulas, also termed (first-order) expressions or well-formed formulas.

Formulas in L:

(F1) If s, t are terms, then the string s==== t is a formula.

(F2) If t1, . . . , tn are terms and r ∈ L is n-ary, then rt1 · · · tn is a formula.

(F3) If α, β are formulas and x is a variable, then (α∧β), ¬α, and ∀xα

are formulas.

Any string not generated according to (F1), (F2), (F3) is in this context

not a formula. Other logical symbols serve throughout merely as abbre-

viations, namely ∃xα := ¬∀x¬α, (α ∨ β) := ¬(¬α∧¬β), and as in 1.1,

(α →β) := ¬(α∧¬β), and (α ↔ β) := ((α →β)∧ (β →α)). In addition,

s �==== t will throughout be written for ¬ s==== t. The formulas ∀xα and ∃xα

are said to arise from α by quantification.

Examples. (a) ∀x∃y x + y ==== 0 (more explicitly, ∀x¬∀y¬x + y ==== 0) is a

formula, expressing ‘for all x there exists a y such that x+y = 0’. Here we

assume tacitly that x, y denote distinct variables. The same is assumed

in all of the following whenever this can be made out from the context.

(b) ∀x∀x x==== y is a formula, since repeated quantification of the same

variable is not forbidden. ∀z x==== y is a formula also if z �= x, y, although

z does then not appear in the formula x==== y.

Example (b) indicates that the grammar of our formal language is more

liberal than one might expect. This will spare us a lot of writing. The for-

mulas ∀x∀x x==== y and ∃x∀x x==== y both have the same meaning as ∀x x==== y.
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These three formulas are logically equivalent (in a sense still to be defined),

as are ∀z x==== y and x==== y. It would be to our disadvantage to require any

restriction here. In spite of this liberality, the formula syntax corresponds

roughly to the syntax of natural language.

The formulas procured by (F1) and (F2) are said to be prime or atomic

formulas, or simply called prime. As in propositional logic, prime formulas

and their negations are called literals.

Prime formulas of the form s==== t are called equations. These are the

only prime formulas if L contains no relation symbols, in which case L

is called an algebraic signature. Prime formulas that are not equations

begin with a relation symbol, although in practice a binary symbol tends

to separate the two arguments as, for example, in x � y. The official

notation is, however, that of clause (F2). The unique term concatenation

property clearly implies the unique prime formula reconstruction property

rt1 · · · tn = rs1 · · · sn implies ti = si for i = 1, . . . , n.

The set of all formulas in L is denoted by L. If L = {∈} or L = {◦}

then L is also denoted by L∈ or L◦ , respectively. If L is more complex,

e.g. L = {◦, e}, we write L = L{◦, e}. The case L = ∅ is also permitted;

it defines the language of pure identity, denoted by L====.

Instead of terms, formulas, and structures of signature L, we will talk

of L-terms (writing TL for TL), L-formulas, and L-structures respectively.

We also omit the prefix if L has been given earlier and use the same

conventions of parenthesis economy as in 1.1. We will also allow ourselves

other informal aids in order to increase readability. For instance, variously

shaped brackets may be used as in ∀x∃y∀z[z ∈ y ↔ ∃u(z ∈ u∧u∈ x)]. Even

verbal descriptions (partial or complete) are permitted, as long as the

intended formula is uniquely recognizable.

The strings ∀x and ∃x (read “for all x” respectively “there is an x”) are

called prefixes. Also concatenations of these such as ∀x∃y are prefixes. No

other prefixes are considered here. Formulas in which ∀, ∃ do not occur

are termed quantifier-free or open. These are the Boolean combinations

of prime formulas. Generally, the Boolean combinations of formulas from

a set X ⊆ L are the ones generated by ¬, ∧ (and ∨) from those of X.

X, Y, Z always denote sets of formulas, α, β, γ, δ, π, ϕ, . . . denote formu-

las, and s, t terms, while Φ, Ψ are reserved to denote finite sequences of
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formulas and formal proofs. Substitutions (to be defined below) will be

denoted by σ, τ, ω, ρ, and ι.

Principles of proof by formula induction and of definition by formula

induction (more precisely formula recursion) also exist for first-order and

other formal languages. After the explanation of these principles for

propositional languages in 1.1, it suffices to present here some examples,

adhering to the maxim verba docent, exempla trahunt. Formula recursion is

based on the unique formula reconstruction , which is similar to the corre-

sponding property in 1.1: Each composed ϕ ∈ L can uniquely be written

as ϕ = ¬α, ϕ = (α∧β), or ∀xα for some α, β ∈ L and x ∈ Var. A simple

example of a recursive definition is rkϕ, the rank of a formula ϕ. Starting

with rkπ = 0 for prime formulas π it is defined as on page 8, with the

additional clause rk∀xα = rkα+1. Functions on L are sometimes defined

by recursion on rkϕ, not on ϕ, as for instance on page 60.

Useful for some purposes is also the quantifier rank , qrϕ. It represents

a measure of nested quantifiers in ϕ. For prime π let qrπ = 0, and let

qr¬α = qrα, qr(α∧β) = max{qrα, qr β}, qr∀xα = qrα + 1.

Note that qr∃xϕ = qr¬∀x¬ϕ = qr∀xϕ. A subformula of a formula is

defined analogously to the definition in 1.1. Hence, we need say no more

on this. We write x ∈ bnd ϕ (or x occurs bound in ϕ) if ϕ contains the

prefix ∀x. In subformulas of ϕ of the form ∀xα, the formula α is called

the scope of ∀x. The same prefix can occur repeatedly and with nested

scopes in ϕ, as for instance in ∀x(∀x x==== 0 ∧ x<y). In practice we avoid

this way of writing, though for a computer this would pose no problem.

Intuitively, the formulas (a) ∀x∃y x+y ==== 0 and (b) ∃y x+y ==== 0 are differ-

ent in that in every context with a given meaning for + and 0, the former

is either true or false, whereas in (b) the variable x is waiting to be as-

signed a value. One also says that all variables in (a) are bound, while

(b) contains the “free” variable x. The syntactic predicate ‘x occurs free

in ϕ’, or ‘x ∈ free ϕ’ is defined inductively: Let free α = varα for prime

formulas α (varα was defined on page 56), and

free (α∧β) = freeα ∪ free β, free¬α = free α, free∀xα = free α\{x}.

For instance, free (∀x∃y x+y ==== 0) = ∅, while free (x � y ∧ ∀x∃y x+y ==== 0)

equals {x, y}. As the last formula shows, x can occur both free and bound

in a formula. This too will be avoided in practice whenever possible. In

some proof-theoretically oriented presentations, even different symbols are
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chosen for free and bound variables. Each of these approaches has its

advantages and its disadvantages.

Formulas without free variables are called sentences, or closed formulas.

1+1==== 0 and ∀x∃y x+y ==== 0 (= ∀x¬∀y¬x+y ==== 0) are examples. Through-

out take L0 to denote the set of all sentences of L. More generally, let Lk

be the set of all formulas ϕ such that freeϕ ⊆ Vark := {v0, . . . ,vk−1}.

Clearly, L0 ⊆ L1 ⊆ · · · and L =
⋃

k∈N Lk.

At this point we meet a for the remainder of the book valid

Convention. As long as not otherwise stated, the notation ϕ = ϕ(x)

means that the formula ϕ contains at most x as a free variable; more

generally, ϕ = ϕ(x1, . . . , xn) or ϕ = ϕ(�x) is to mean free ϕ ⊆ {x1, . . . , xn},

where x1, . . . , xn stand for arbitrary but distinct variables. Not all of these

variables need actually occur in ϕ. Further, t = t(�x) for terms t is to be

read completely analogously.

The term ft1 · · · tn is often denoted by f�t , the prime formula rt1 · · · tn
by r�t . Here �t denotes the string concatenation t1 · · · tn. Fortunately, �t

behaves exactly like the sequence (t1, . . . , tn) as was pointed out already;

it has the unique term concatenation property, see page 55.

Substitutions. We begin with the substitution t
x of some term t for a

single variable x, called a simple substitution. Put intuitively, ϕ t
x (also

denoted by ϕx(t) and read “ϕ t for x”) is the formula that results from

replacing all free occurrences of x in ϕ by the term t. This intuitive

characterization is made precise recursively, first for terms by

x t
x = t, y t

x = y (x �= y), c t
x = c, (ft1 · · · tn) t

x = ft′1 · · · t′n,

where, for brevity, t′i stands for ti
t
x , and next for formulas as follows:

(t1 ==== t2)
t
x = t′1 ==== t′2, (r�t ) t

x = rt′1 · · · t′n,

(α∧β) t
x = α t

x ∧β t
x , (¬α) t

x = ¬(α t
x),

(∀yα)t
x =

{

∀yα if x = y,

∀y(α t
x) otherwise.

Then also (α →β) t
x = α t

x → β t
x , and the corresponding holds for ∨,

while (∃yα) t
x = ∃yα for y = x, and ∃y(α t

x ) otherwise. Simple substitu-

tions are special cases of so-called simultaneous substitutions

ϕ t1··· tn
x1···xn

(x1, . . . , xn distinct).

For brevity, this will be written ϕ
�t
�x or ϕ�x(�t ) or just ϕ(�t ), provided there is

no danger of misunderstanding. Here the variables xi are simultaneously

replaced by the terms ti at free occurrences. Simultaneous substitutions
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easily generalize to global substitutions σ. Such a σ assigns to every

variable x a term xσ ∈ T . It extends to the whole of T by the clauses

cσ = c and (f�t )σ = ftσ1 · · · tσn, and subsequently to L by recursion on

rkϕ, so that σ is defined for the whole of T ∪ L: (t1 ==== t2)
σ = tσ1 ==== tσ2 ,

(r�t )σ = rtσ1 · · · tσn, (α∧β)σ = ασ ∧βσ, (¬α)σ = ¬ασ, and (∀xϕ)σ = ∀xϕτ ,

where τ is defined by xτ = x and yτ = yσ for y �= x.3

These clauses cover also the case of a simultaneous substitution, because
�t
�x can be identified with the global substitution σ such that xσ

i = ti
for i = 1, . . . , n and xσ = x otherwise. In other words, a simultaneous

substitution can be understood as a global substitution σ such that xσ = x

for almost all variables x, i.e., with the exception of finitely many. The

identical substitution, always denoted by ι, is defined by xι = x for all x;

hence tι = t and ϕι = ϕ for all terms t and formulas ϕ.

Clearly, a global substitution yields locally, i.e. with respect to individual

formulas, the same as a suitable simultaneous substitution. Moreover, it

will turn out below that simultaneous substitutions are products of simple

ones. Nonetheless, a separate study of simultaneous substitutions is useful

mainly for Chapter 4.

It always holds that t1t2
x1x2 = t2t1

x2x1 , whereas the compositions t1
x1

t2
x2 and

t2
x2

t1
x1 are distinct, in general. Let us elaborate by explaining the difference

between ϕ t1t2
x1x2 and ϕ t1

x1
t2
x2

(
= (ϕ t1

x1 ) t2
x2

)
. For example, if one wants

to swap x1, x2 at their free occurrences in ϕ then the desired formula

is ϕ x2x1
x1x2 , but not, in general, ϕ x2

x1
x1
x2 (choose for instance ϕ = x1<x2).

Rather ϕ x2x1
x1x2 = ϕ y

x2
x2
x1

x1
y for any y /∈ varϕ∪{x1, x2}, as is readily shown

by induction on ϕ after first treating terms. We recommend to carry out

this induction in detail. In the same way we obtain

(1) ϕ
�t
�x = ϕ y

xn

t1··· tn-1
x1···xn-1

tn
y (y /∈ varϕ ∪ var �x ∪ var�t , n � 2).

This formula shows that a simultaneous substitution is a suitable product

(composition) of simple substitutions. Conversely, it can be shown that

each such product can be written as a single simultaneous substitution.

In some cases (1) can be simplified. Useful, for example, is the following

equation which holds in particular when all terms ti are variable-free:

(2) ϕ
�t
�x = ϕ t1

x1 · · · tn
xn (xi /∈ var tj for i �= j).

3 Since rk ϕ < rk ∀xϕ, we may assume according to the recursive construction of σ that

ϕτ is already defined for all global substitutions τ .
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Getting on correctly with substitutions is not altogether simple; it

requires practice, because our ability to regard complex strings is not

especially trustworthy. A computer is not only much faster but also more

reliable in this respect.

Exercises

1. Show by term induction that a terminal segment of a term t is a

concatenation s1 · · · sm of terms si for some m � 1. Thus, a symbol

in t is at each position in t the initial symbol of a unique subterm s

of t. The uniqueness of s is an easy consequence of Exercise 2(a).

2. Let L be a first-order language, T = TL, and Et the property ‘No

proper initial segment of t (∈ T ) is a term, nor is t a proper initial

segment of a term from T ’. Prove (a) Et for all t ∈ T , hence

tξ = t′ξ′ ⇒ t = t′ for all t, t′ ∈ T and arbitrary ξ, ξ′ ∈ SL, and

(b) the unique term concatenation property (page 55).

3. Prove (a) No proper initial segment of a formula ϕ is a formula.

(b) The unique formula reconstruction property stated on page 58.

(c) ¬ξ ∈ L ⇒ ξ ∈ L and α, (α∧ ξ) ∈ L ⇒ ξ ∈ L. (c) easily yields

(d) α, (α →ξ) ∈ L ⇒ ξ ∈ L, for all ξ ∈ SL.

4. Prove ϕ t
x = ϕ for x /∈ freeϕ, and ϕ y

x
t
y = ϕ t

x for y /∈ varϕ. It can

be shown that these restrictions are indispensable, provided t �= x.

5. Let X ⊆ L be a nonempty formula set and X∗ = X ∪{¬ϕ | ϕ ∈ X}.

Show that a Boolean combination of formulas from X is equivalent

to a disjunction of conjunctions of formulas from X∗.

2.3 Semantics of First-Order Languages

Intuitively it is clear that the formula ∃y y+y ==== x can be allocated a truth

value in the domain (N,+) only if to the free variable x there corresponds a

value in N. Thus, along with an interpretation of the extralogical symbols,

a truth value allocation for a formula ϕ requires a valuation of at least the

variables occurring free in ϕ. However, it is technically more convenient
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to work with a global assignment of values to all variables, even if in a

concrete case only the values of finitely many variables are needed. We

therefore begin with the following

Definition. A model M is a pair (A, w) consisting of an L-structure A

and a valuation w : Var → A, w : x 
→ xw. We denote rA, fA, cA, and xw

also by rM, fM, cM, and xM, respectively. The domain of A will also

called the domain of M.

Models are sometimes called interpretations, occasionally also L-models

if the connection to L is to be highlighted. Some authors identify models

with structures from the outset. This also happens in 2.5, where we

are talking about models of theories. The notion of a model is to be

maintained sufficiently flexible in logic and mathematics.

A model M allocates in a natural way to every term t a value in A,

denoted by tM or tA,w or just by tw. Clearly, for prime terms the value is

already given by M. This evaluation extends to compound terms by term

induction as follows: (f�t )M = fM�tM, where �tM abbreviates here the

sequence (tM1 , . . . , tMn ). If the context allows we neglect the superscripts

and retain just an imaginary distinction between symbols and their inter-

pretation. For instance, if A = (N, +, ·, 0, 1) and xw = 2, say, we write

somewhat sloppily (0 · x + 1)A,w = 0 · 2 + 1 = 1.

The value of t under M depends only on the meaning of the symbols

that effectively occur in t; using induction on t, the following slightly more

general claim is obtained: if var t ⊆ V ⊆ Var and M,M′ are models with

the same domain such that xM = xM′

for all x ∈ V and sM = sM
′

for

all remaining symbols s occurring in t, then tM = tM
′

. Clearly, tA,w may

simply be denoted by tA, provided the term t contains no variables.

We now are going to define a satisfiability relation � between models

M = (A, w) and formulas ϕ, using induction on ϕ as in 1.3. We read

M � ϕ as M satisfies ϕ, or M is a model for ϕ.

Sometimes A � ϕ [w] is written instead of M � ϕ. A similar notation,

just as frequently encountered, is introduced later. Each of these notations

has its advantages, depending on the context. If M � ϕ for all ϕ ∈ X

we write M � X and call M a model for X. For the formulation of

the satisfaction clauses below (taken from [Ta1]) we consider for given

M = (A, w), x ∈ Var, and a ∈ A also the model Ma
x (generalized to M�a

�x



2.3 Semantics of First-Order Languages 63

below). Ma
x differs from M only in that the variable x receives the value

a ∈ A instead of xM. Thus, Ma
x = (A, w′) with xw′

= a and yw′

= yw

otherwise. The satisfaction clauses then look as follows:

M � s==== t ⇔ sM = tM,

M � r�t ⇔ rM�tM,

M � (α∧β) ⇔ M � α and M � β,

M � ¬α ⇔ M � α,

M � ∀xα ⇔ Ma
x � α for all a ∈ A.

Remark 1. The last satisfaction clause can be stated differently if a name for
each a ∈ A, say a, is available in the signature: M � ∀xα ⇔ M � α a

x for all
a ∈ A. This assumption permits the definition of the satisfaction relation for
sentences using induction on sentences while bypassing arbitrary formulas. If
not every a ∈ A has a name in L, one could “fill up” L in advance by adjoining
to L a name a for each a. But expanding the language is not always wanted and
does not really simplify the matter.

Ma
x is slightly generalized to M�a

�x := Ma1···an
x1···xn

(= (Ma1
x1

)a2
x2

. . . ), which

differs from M in the values of a sequence x1, . . . , xn of distinct variables.

This and writing ∀�xϕ for ∀x1 · · · ∀xnϕ permits a short notation of a useful

generalization of the last clause above, namely

M � ∀�xϕ ⇔ M�a
�x � ϕ for all �a ∈ An.

The definitions of α ∨ β, α →β, and α ↔ β from page 56 readily imply

the additional clauses M � α ∨ β iff M � α or M � β, M � α →β

iff M � α ⇒ M � β, and analogously for ↔. Clearly, if ∨, → ,↔ were

treated as independent connectives, these equivalences would have to be

added to the above ones. Further, the definition of ∃xϕ in 2.2 corresponds

to its intended meaning, because M � ∃xϕ ⇔ Ma
x � ϕ for some a ∈ A.

Indeed, whenever M � ¬∀x¬ϕ (= ∃xϕ) then Ma
x � ¬ϕ does not hold

for all a; hence there is some a ∈ A such that Ma
x � ¬ϕ, or equivalently,

Ma
x � ϕ. And this chain of reasoning is obviously reversible.

Example 1. M � ∃x x==== t for arbitrary M, provided x /∈ var t. Indeed,

Ma
x � x==== t with a := tM, since xMa

x = a = tM = tM
a
x in view of x /∈ var t.

The assumption x /∈ var t is essential. For instance, M � ∃x x==== fx holds

only if the function fM has a fixed point.

We now introduce several fundamental notions that will be treated more

systematically in 2.4 and 2.5, once certain necessary preparations have

been completed.
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Definition. A formula or set of formulas in L is termed satisfiable if it

has a model. ϕ ∈ L is called generally valid, logically valid, or a tautology,

in short, � ϕ, if M � ϕ for every model M. Formulas α, β are called

(logically or semantically) equivalent , in symbols, α ≡ β, if

M � α ⇔ M � β, for each L-model M.

Further, let A � ϕ (read ϕ holds in A or A satisfies ϕ) if (A, w) � ϕ for

all w : Var → A. One writes A � X in case A � ϕ for all ϕ ∈ X. Finally,

let X � ϕ (read from X follows ϕ, or ϕ is a consequence of X) if every

model M of X also satisfies the formula ϕ, i.e., M � X ⇒ M � ϕ.

As in Chapter 1, � denotes both the satisfaction and the consequence

relation. Here, as there, we write ϕ1, . . . , ϕn � ϕ for {ϕ1, . . . , ϕn} � ϕ.

Note that in addition, � denotes the validity relation in structures, which

is illustrated by the following

Example 2. We show that A � ∀x∃y x �==== y, where the domain of A

contains at least two elements. Indeed, let M = (A, w) and let a ∈ A

be given arbitrarily. Then there exists some b ∈ A with a �= b. Hence,

(Ma
x)by = Ma b

xy � x �==== y, and so Ma
x � ∃y x �==== y. Since a was arbitrary,

M � ∀x∃y x �==== y. Clearly the actual values of w are irrelevant in this

argument. Hence (A, w) � ∀x∃y x �====y for all w, that is, A � ∀x∃y x �====y.

Here some care is needed. While M � ϕ or M � ¬ϕ for all formulas,

A � ϕ or A � ¬ϕ (the law of the excluded middle for validity in structures)

is in general correct only for sentences ϕ, as Theorem 3.1 will show. If

A contains more than one element, then, for example, neither A � x==== y

nor A � x �====y. Indeed, x==== y is falsified by any w such that xw �= yw, and

x �====y by any w with xw = yw. This is one of the reasons why models were

not simply identified with structures.

For ϕ ∈ L let ϕg be the sentence ∀x1 · · · ∀xmϕ, where x1, . . . , xm is

an enumeration of free ϕ according to index size, say. ϕg is called the

generalized of ϕ, also called its universal closure. For ϕ ∈ L0 clearly

ϕg = ϕ. From the definitions immediately results

(1) A � ϕ ⇔ A � ϕg ,

and more generally, A � X ⇔ A � X g (:= {ϕg | ϕ ∈ X}). (1) explains

why ϕ and ϕg are often notionally identified, and the information that

formally runs ϕg is often shortened to ϕ. It must always be clear from
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the context whether our eye is on validity in a structure, or on validity in

a model with its fixed valuation. Only in the first case can a generaliza-

tion (or globalization) of the free variables be thought of as carried out.

However, independent of this discussion, � ϕ ⇔ � ϕg always holds.

Even after just these incomplete considerations it is already clear that

numerous properties of structures and whole systems of axioms can ad-

equately be described by first-order formulas and sentences. Thus, for

example, an axiom system for groups in ◦, e,−1, mentioned already in

2.1, can be formulated as follows:

∀x∀y∀z x ◦ (y ◦ z)==== (x ◦ y) ◦ z; ∀x x ◦ e==== x; ∀x x ◦x−1 ==== e.

Precisely, the sentences that follow from these axioms form the elementary

group theory in ◦, e,−1. It will be denoted by T ====
G . In the sense elaborated

in Exercise 3 in 2.6 an equivalent formulation of the theory of groups in
◦, e, denoted by TG, is obtained if the third T ====

G -axiom is replaced by

∀x∃y x ◦ y ==== e. Let us mention that ∀x e ◦x==== x and ∀x∃y y ◦x==== e are

provable in TG and also in T ====
G .

An axiom system for ordered sets can also easily be provided, in that

one formalizes the properties of being irreflexive, transitive, and connex.

Here and elsewhere, ∀x1 · · ·xnϕ stands for ∀x1 · · · ∀xnϕ:

∀x x ≮ x; ∀xyz(x < y ∧ y < z →x < z); ∀xy(x �====y →x < y ∨ y < x).

In writing down these and other axioms the outer ∀-prefixes are very

often omitted so as to save on writing, and we think implicitly of the

generalization of variables as having been carried out. This kind of eco-

nomical writing is employed also in the formulation of (1) above, which

strictly speaking runs ‘for all A, ϕ : A � ϕ ⇔ A � ϕg ’.

For sentences α of a given language it is intuitively clear that the values

of the variables of w for the relation (A, w) � α are irrelevant. The

precise proof is extracted from the following theorem for V = ∅. Thus,

either (A, w) � α for all w and hence A � α, or else (A, w) � α for no w,

i.e., (A, w) � ¬α for all w, and hence A � ¬α. Sentences therefore obey

the already-cited tertium non datur.

Theorem 3.1 (Coincidence theorem). Let V ⊆ Var, free ϕ ⊆ V , and

M,M′ be models on the same domain A such that xM = xM′

for all

x ∈ V , and sM = sM
′

for all extralogical symbols s occurring in ϕ. Then

M � ϕ ⇔ M′ � ϕ.
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Proof by induction on ϕ. Let ϕ = r�t be prime, so that var�t ⊆ V . As was

mentioned earlier, the value of a term t depends only on the meaning of the

symbols occurring in t. But in view of the suppositions, these meanings

are the same in M and M′. Therefore, �t M = �t M′

(i.e., tMi = tM
′

i for

i = 1, . . . , n), and so M � r�t ⇔ rM�t M ⇔ rM
′�t M′

⇔ M′ � r�t . For

equations t1 ==== t2 one reasons analogously. Further, the induction hypoth-

esis for α, β yields M � α∧β ⇔ M � α, β ⇔ M′ � α, β ⇔ M′ � α∧β.

In the same way one obtains M � ¬α ⇔ M′ � ¬α. By the induction step

on ∀ it becomes clear that the induction hypothesis needs to be skillfully

formulated. It must be given with respect to any pair M,M′ of models

and any subset V of Var.

Therefore let a ∈ A and Ma
x � ϕ. Since for V ′ := V ∪ {x} certainly

free ϕ ⊆ V ′ and the models Ma
x, M′ a

x coincide for all y ∈ V ′ (although

in general xM �= xM′

), by the induction hypothesis Ma
x � ϕ ⇔ M′ a

x � ϕ,

for each a ∈ A. This clearly implies

M � ∀xϕ ⇔ Ma
x � ϕ for all a ⇔ M′ a

x � ϕ for all a ⇔ M′ � ∀xϕ.

It follows from this theorem that an L-model M = (A, w) of ϕ for

the case that ϕ ∈ L ⊆ L′ can be completely arbitrarily expanded to an

L′-model M′ = (A′, w) of ϕ, i.e., arbitrarily fixing sM
′

for s ∈ L′ \L

gives M � ϕ ⇔ M′ � ϕ by the above theorem with V = Var. This

readily implies that the consequence relation �L′ with respect to L′ is a

conservative extension of �L in that X �L ϕ ⇔ X �L′ ϕ, for all sets

X ⊆ L and all ϕ ∈ L. Hence, there is no need here for using indices. In

particular, the satisfiability or general validity of ϕ depends only on the

symbols effectively occurring in ϕ.

Another application of Theorem 3.1 is the following fact, which justifies

the already mentioned “omission of superfluous quantifiers.”

(2) ∀xϕ ≡ ϕ ≡ ∃xϕ whenever x /∈ free ϕ.

Indeed, x /∈ freeϕ implies M � ϕ ⇔ Ma
x � ϕ (here a ∈ A is arbitrary)

according to Theorem 3.1; choose M′ = Ma
x and V = freeϕ. Therefore,

M � ∀xϕ ⇔ Ma
x � ϕ for all a ⇔ M � ϕ

⇔ Ma
x � ϕ for some a ⇔ M � ∃xϕ.

Very important for the next theorem and elsewhere is

(3) If A ⊆ B, M = (A, w), M′ = (B, w) and w : Var → A then

tM = tM
′

.
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This is clear for prime terms, and the induction hypothesis tMi = tM
′

i for

i = 1, . . . , n together with fM = fM′

imply

(f�t )M = fM(tM1 , . . . , tMn ) = fM′

(tM
′

1 , . . . , tM
′

n ) = (f�t )M
′

.

For M = (A, w) and xw
i = ai let tA,�a, or more suggestively tA(�a) denote

the value of t = t(�x). Then (3) can somewhat more simply be written as

(4) A ⊆ B and t = t(�x) imply tA(�a) = tB(�a) for all �a ∈ An.

Thus, along with the basic functions, also the so-called term functions

�a 
→ tA(�a) are the restrictions to their counterparts in B. Clearly, if n = 0

or t is variable-free, one may write tA for tA(�a). Note that in these cases

tA = tB whenever A ⊆ B, according to (4).

By Theorem 3.1 the satisfaction of ϕ in (A, w) depends only on the

values of the x ∈ free ϕ. Let ϕ = ϕ(�x)4 and �a = (a1, . . . , an) ∈ An. Then

the statement

(A, w) � ϕ for a valuation w with xw
1 = a1, . . . , x

w
n = an

can more suggestively be expressed by writing

(A,�a) � ϕ or A � ϕ [a1, . . . , an] or A � ϕ [�a]

without mentioning w as a global valuation. Such notation also makes

sense if w is restricted to a valuation on {x1, . . . , xn}. One may accord-

ingly extend the concept of a model and call a pair (A,�a) a model for a

formula ϕ(�x) whenever (A,�a) � ϕ(�x), in particular if ϕ ∈ Ln. We return

to this extended concept in 4.1. Until then we use it only for n = 0. That

is, besides M = (A, w) also the structure A itself is occasionally called a

model for a set S ⊆ L0 of sentences, provided A � S.

As above let ϕ = ϕ(�x). Then ϕA := {�a ∈ An | A � ϕ [�a]} is called the

predicate defined by the formula ϕ in the structure A. For instance, the

�-predicate in (N,+) is defined by ϕ(x, y) = ∃z z + x==== y, but also by

several other formulas.

More generally, a predicate P ⊆ An is termed (explicitly or elementarily

or first-order) definable in A if there is some ϕ = ϕ(�x) with P = ϕA, and

ϕ is called a defining formula for P . Analogously, f : An → A is called

definable in A if ϕA = graph f for some ϕ(�x, y). One often talks in this

4 Since this equation is to mean free ϕ ⊆ {x1, . . . , xn}, �x is not uniquely determined

by ϕ. Hence, the phrase “Let ϕ = ϕ(�x) . . . ” implicitly includes along with a given ϕ

also a tuple �x given in advance. The notation ϕ = ϕ(�x) does not even state that ϕ

contains free variables at all.
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case of explicit definability of f in A, to distinguish it from other kinds

of definability. Much information is gained from the knowledge of which

sets, predicates, or functions are definable in a structure. For instance,

the sets definable in (N, 0, 1, +) are the eventually periodic ones (periodic

from some number on). Thus, · cannot explicitly be defined by +, 0, 1

because the set of square numbers is not eventually periodic.

A ⊆ B and ϕ = ϕ(�x) do not imply ϕA = ϕB ∩ An, in general. For

instance, let A = (N, +), B = (Z,+), and ϕ = ∃z z + x==== y. Then

ϕA = �A, while ϕB contains all pairs (a, b) ∈ Z2. As the next theorem

will show, ϕA = ϕB ∩ An holds in general only for open formulas ϕ, and

is even characteristic for A ⊆ B provided A ⊆ B. Clearly, A ⊆ B is much

weaker a condition than A ⊆ B:

Theorem 3.2 (Substructure theorem). For structures A,B such that

A ⊆ B the following conditions are equivalent:

(i) A ⊆ B,

(ii) A � ϕ [�a] ⇔ B � ϕ [�a], for all open ϕ = ϕ(�x) and all �a ∈ An,

(iii) A � ϕ [�a] ⇔ B � ϕ [�a], for all prime formulas ϕ(�x) and �a ∈ An.

Proof. (i)⇒(ii): It suffices to prove that M � ϕ ⇔ M′ � ϕ, with

M = (A, w) and M′ = (B, w), where w : Var → A. In view of (3) the

claim is obvious for prime formulas, and the induction steps for ∧ ,¬ are

carried out just as in Theorem 3.1. (ii)⇒(iii): Trivial. (iii)⇒(i): By (iii),

rA�a ⇔ A � r�x [�a] ⇔ B � r�x [�a] ⇔ rB�a. Analogously,

fA�a = b ⇔ A � f�x==== y [�a, b] ⇔ B � f�x==== y [�a, b] ⇔ fB�a = b,

for all �a ∈ An, b ∈ A. These conclusions state precisely that A ⊆ B.

Let α be of the form ∀�xβ with open β, where ∀�x may also be the empty

prefix. Then α is a universal or ∀-formula (spoken “A-formula”), and for

α ∈ L0 also a universal or ∀-sentence. A simple example is ∀x∀y x==== y,

which holds in A iff A contains precisely one element. Dually, ∃�xβ with

β open is termed an ∃-formula, and an ∃-sentence whenever ∃�xβ ∈ L0.

Examples are the “how-many sentences”

∃1 := ∃v0 v0 ==== v0; ∃n := ∃v0 · · · ∃vn−1
∧

i<j<n vi �====vj (n > 1).

∃n states ‘there exist at least n elements’, ¬∃n+1 thus that ‘there exist

at most n elements’, and ∃=n := ∃n ∧¬∃n+1 says ‘there exist exactly
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n elements’. Since ∃1 is a tautology, it is convenient to set ⊤ := ∃1,

and ∃0 := ⊥ := ¬⊤ in all first-order languages with equality. Clearly,

equivalent definitions of ⊤, ⊥ may be used as well.

Corollary 3.3. Let A ⊆ B. Then every ∀-sentence ∀�xα valid in B is also

satisfied in A. Dually, every ∃-sentence ∃�xβ valid in A is also valid in B.

Proof. Let B � ∀�xβ and �a ∈ An. Then B � β [�a], hence A � β [�a] by

Theorem 3.2. �a was arbitrary and therefore A � ∀�xβ. Now let A � ∃�xβ.

Then A � β [�a] for some �a ∈ An, hence B � β [�a] by Theorem 3.2, and

consequently B � ∃�xβ.

We now formulate a generalization of certain individual often-used ar-

guments about the invariance of properties under isomorphisms:

Theorem 3.4 (Invariance theorem). Let A,B be isomorphic structures

of signature L and let ı :A → B be an isomorphism. Then for all ϕ = ϕ(�x)

A � ϕ [�a] ⇔ B � ϕ [ı�a]
(
�a ∈ An, ı�a = (ıa1, . . . , ıan)

)
.

In particular A � ϕ ⇔ B � ϕ, for all sentences ϕ of L.

Proof. It is convenient to reformulate the claim as

M � ϕ ⇔ M′ � ϕ
(
M = (A, w), M′ = (B, w′), w′ : x 
→ ıxw

)
.

This is easily confirmed by induction on ϕ after first proving ı(tM) = tM
′

inductively on t. This proof clearly includes the case ϕ ∈ L0.

Thus, for example, it is once and for all clear that the isomorphic image

of a group is a group even if we know at first only that it is a groupoid.

Simply let α in the theorem run through all axioms of group theory.

Another application: Let ı be an isomorphism of the group A = (A, ◦)

onto the group A′ = (A′, ◦) and let e and e′ denote their unit elements,

not named in the signature. We claim that nonetheless ıe = e′, using

the fact that the unit element of a group is the only solution of x ◦x==== x

(Example 2, page 83). Thus, since A � e ◦ e==== e, we get A′ � ıe ◦ ıe==== ıe by

Theorem 3.4, hence ıe = e′. Theorem 3.4, incidentally, holds for formulas

of higher order as well. For instance, the property of being a continuously

ordered set (formalizable in a second-order language, see 3.8) is likewise

invariant under isomorphism.

L-structures A,B are termed elementarily equivalent if A � α ⇔ B � α,

for all α ∈ L0. One then writes A ≡ B. We consider this important notion
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in 3.3 and more closely in 5.1. Theorem 3.4 states in particular that

A ≃ B ⇒ A ≡ B. The question immediately arises whether the converse

of this also holds. For infinite structures the answer is negative (see 3.3),

for finite structures affirmative; a finite structure of a finite signature can,

up to isomorphism, even be described by a single sentence. For example,

the 2-element group ({0, 1},+) is up to isomorphism well determined by

the following sentence, which tells us precisely how + operates:

∃v0∃v1[v0 �====v1 ∧∀x(x==== v0 ∨ x==== v1)

∧ v0 + v0 ==== v1 + v1 ==== v0 ∧ v0 + v1 ==== v1 + v0 ==== v1].

We now investigate the behavior of the satisfaction relation under sub-

stitution. The definition of ϕ t
x in 2.2 pays no attention to collision of

variables , which is taken to mean that some variables of the substitution

term t fall into the scope of quantifiers after the substitution has been

performed. In this case M � ∀xϕ does not necessarily imply M � ϕ t
x ,

although this might have been expected. In other words, ∀xϕ � ϕ t
x is

not unrestrictedly correct. For instance, if ϕ = ∃y x �==== y then certainly

M � ∀xϕ (= ∀x∃y x �==== y) whenever M has at least two elements, but

M � ϕ y
x (= ∃y y �==== y) is certainly false. Analogously ϕ t

x � ∃xϕ is not

correct, in general. For example, choose ∀y x==== y for ϕ and y for t.

One could forcibly obtain ∀xϕ � ϕ t
x without any limitation by renam-

ing bound variables by a suitable modification of the inductive definition

of ϕ t
x in the quantifier step. However, such measures are rather unwieldy

for the arithmetization of proof method in 6.2. It is therefore preferable

to put up with minor restrictions when we are formulating rules of deduc-

tion later. The restrictions we will use are somewhat stronger than they

need to be but can be handled more easily; they look as follows:

Call ϕ, t
x collision-free if y /∈ bnd ϕ for all y ∈ var t distinct from x.

We need not require x /∈ bnd ϕ because t is substituted only at free oc-

currences of x in ϕ, that is, x cannot fall after substitution within the

scope of a prefix ∀x, even if x ∈ var t. For collision-free ϕ, t
x we always

get ∀xϕ � ϕ t
x by Corollary 3.6 below.

If σ is a global substitution (see 2.2) then ϕ, σ are termed collision-free

if ϕ, xσ

x are collision-free for every x ∈ Var. If σ =
�t
�x , this condition clearly

need be checked only for the pairs ϕ, xσ

x with x ∈ var �x and x ∈ freeϕ.
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For M = (A, w) put Mσ := (A, wσ) with xwσ
:= (xσ)M for x ∈ Var,

so that xMσ
= xσM (= (xσ)M). This equation reproduces itself to

(5) tM
σ

= tσM for all terms t.

Indeed, tM
σ

= fM(tM
σ

1 , . . . , tM
σ

n ) = fM(tσ
1
M, . . . , tσ

n
M) = tσM for

t = f�t in view of the induction hypothesis tM
σ

i = t σ
i
M (i = 1, . . . , n).

Notice that Mσ coincides with M�tM

�x for the case σ =
�t
�x .

Theorem 3.5 (Substitution theorem). Let M be a model and σ a

global substitution. Then holds for all ϕ such that ϕ, σ are collision-free,

(6) M � ϕσ ⇔ Mσ � ϕ.

In particular, M � ϕ
�t
�x ⇔ M�t M

�x � ϕ, provided ϕ,
�t
�x are collision-free.

Proof by induction on ϕ. In view of (5), we obtain

M � (t1 ==== t2)
σ ⇔ tσ1

M = tσ2
M ⇔ tM

σ

1 = tM
σ

2 ⇔ Mσ � t1 ==== t2.

Prime formulas r�t are treated analogously. The induction steps for ∧ ,¬

in the proof of (6) are harmless. Only the ∀-step is interesting. The

reader should recall the definition of (∀xα)σ page 60 and realize that the

induction hypothesis refers to an arbitrary global substitution τ .

M �(∀xα)σ ⇔ M � ∀x ατ (xτ = x and yτ = yσ else)

⇔ Ma
x � ατ for all a (definition)

⇔ (Ma
x)τ � α for all a (induction hypothesis)

⇔ (Mσ)ax � α for all a
(
(Ma

x)τ = (Mσ)ax, see below
)

⇔ Mσ � ∀xα.

We show that (Ma
x)τ = (Mσ)a

x. Since ∀xα, σ (hence ∀xα, yσ

y for every y)

are collision-free, we have x /∈ var yσ if y �= x, and since yτ = yσ we get

in this case y(Ma
x)τ

= yτMa
x = yσMa

x = yσM = yM
σ

= y(Mσ)a
x . But also

in the case y = x we have x(Ma
x)τ

= xτMa
x = xMa

x = a = x(Mσ)a
x .

Corollary 3.6. For all ϕ and
�t
�x such that ϕ,

�t
�x are collision-free, the

following properties hold:

(a) ∀�xϕ � ϕ
�t
�x , in particular ∀xϕ � ϕ t

x , (b) ϕ
�t
�x � ∃�xϕ,

(c) ϕ s
x , s==== t � ϕ t

x , provided ϕ, s
x , t

x are collision-free.

Proof. Let M � ∀�xϕ, so that M�a
�x � ϕ for all �a ∈ An. In particular,

M�t M

�x � ϕ. Therefore, M � ϕ
�t
�x by Theorem 3.5. (b) follows easily from

¬∃�xϕ � ¬ϕ
�t
�x . This holds by (a), for ¬∃�xϕ ≡ ∀�x¬ϕ and ¬(ϕ

�t
�x) ≡ (¬ϕ)

�t
�x .
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(c): Let M � ϕ s
x , s==== t, so that sM = tM and MsM

x � ϕ by the theorem.

Clearly, then also MtM
x � ϕ. Hence M � ϕ t

x .

Remark 2. The identical substitution ι is obviously collision-free with every
formula. Thus, ∀xϕ � ϕ (= ϕι) is always the case, while ∀xϕ � ϕ t

x is correct
in general only if t contains at most the variable x, since ϕ, t

x are then collision-
free. Theorem 3.5 and Corollary 3.6 are easily strengthened. Define inductively
a ternary predicate ‘t is free for x in ϕ’, which intuitively is to mean that no free
occurrence in ϕ of the variable x lies within the scope of a prefix ∀y whenever
y ∈ var t. In this case Theorem 3.5 holds for σ = t

x as well, so that nothing
needs to be changed in the proofs based on this theorem if one works with
‘t is free for x in ϕ’, or simply reads “ϕ, t

x are collision-free” as “t is free for x in
ϕ.” Though collision-freeness is somewhat cruder and slightly more restrictive,
it is for all that more easily manageable, which will pay off, for example, in 6.2,
where proofs will be arithmetized. Once one has become accustomed to the
required caution, it is allowable not always to state explicitly the restrictions
caused by collisions of variables, but rather to assume them tacitly.

Theorem 3.5 also shows that the quantifier “there exists exactly one,” de-

noted by ∃!, is correctly defined by ∃!xϕ := ∃xϕ ∧ ∀x∀y(ϕ∧ϕ y
x →x==== y)

with y /∈ varϕ. Indeed, it is easily seen that M � ∀x∀y(ϕ∧ϕ y
x →x==== y)

means just Ma
x � ϕ & Mb

y � ϕ y
x ⇒ a = b. In short, Ma

x � ϕ for at most

one a. Putting everything together, M � ∃!xϕ iff there is precisely one

a ∈ A with Ma
x � ϕ. An example is M � ∃!x x==== t for arbitrary M and

x /∈ var t. In other words, ∃!x x==== t is a tautology. Half of this, namely

� ∃x x==== t, was shown in Example 1, and � ∀x∀y(x==== t∧y ==== t →x==== y) is

obvious. There are various equivalent definitions of ∃!xϕ. For example,

a short and catchy formula is ∃x∀y(ϕ y
x ↔ x==== y), where y /∈ varϕ. The

equivalence proof is left to the reader.

Exercises

1. Let X � ϕ and x /∈ free X. Show that X � ∀xϕ.

2. Prove that ∀x(α →β) � ∀xα →∀xβ, which is obviously equivalent

to � ∀x(α →β) →∀xα →∀xβ.

3. Suppose A′ results from A by adjoining a constant symbol a for

some a ∈ A. Prove A � α [a] ⇔ A′ � α(a) (= α a
x ) for α = α(x),

by first verifying t(x)A,a = t(a)A
′

. This is easily generalized to the

case of more than one free variable in α.
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4. Show that (a) A conjunction of the ∃i and their negations is equiva-

lent to ∃n ∧¬∃m for suitable n, m (∃n ∧¬∃0 ≡ ∃n, ∃1 ∧¬∃m ≡ ¬∃m).

(b) A Boolean combination of the ∃i is equivalent to
∨

ν�n ∃=kν
or

to ∃k ∨
∨

ν�n ∃=kν
, with k0 < · · · < kn < k. Note that

∨

ν�n ∃=kν

equals ∃=0 (≡ ⊥) for n=k0=0 and ¬∃n ≡
∨

ν<n ∃=ν for n>0.

2.4 General Validity and Logical Equivalence

From the perspective of predicate logic α ∨ ¬α (α ∈ L) is a trivial example

of a tautology, because it results by inserting α for p from the propositional

tautology p ∨ ¬p. Every propositional tautology provides generally valid

L-formulas by the insertion of L-formulas for the propositional variables.

But there are tautologies not arising in this way. ∀x(x < x ∨ x ≮ x) is

an example, though it has still a root in propositional logic. Tautologies

without a such a root are ∃x x==== x and ∃x x==== t for x /∈ var t. The former

arises from the convention that structures are always nonempty, the latter

from the restriction to totally defined basic operations. A particularly

interesting tautology is given by the following

Example 1 (Russell’s antinomy). We will show that the “Russellian

set” u, consisting of all sets not containing themselves as a member, does

not exist which clearly follows from � ¬∃u∀x(x∈ u ↔ x /∈ x). We start with

∀x(x∈ u ↔ x /∈ x) � u∈ u ↔ u /∈ u. This holds by Corollary 3.6(a). Clearly,

u∈ u ↔ u /∈ u is unsatisfiable. Hence, the same holds for ∀x(x∈ u ↔ x /∈ x),

and thus for ∃u∀x(x∈ u ↔ x /∈ x). Consequently, � ¬∃u∀x(x∈ u ↔ x /∈ x).

Note that we need not assume in the above argument that ∈ means

membership. The proof of � ¬∃u∀x(x∈ u ↔ x /∈ x) need not be related to

set theory at all. Hence, our example represents rather a logical paradox

than a set-theoretic antinomy. What looks like an antinomy here is the

expectation that ∃u∀x(x∈ u ↔ x /∈ x) should hold in set theory if ∈ is to

mean membership and Cantor’s definition of a set is taken literally.

The satisfaction clause for α →β easily yields α � β ⇔ � α →β,

a special case of X, α � β ⇔ X � α →β. This can be very useful

in checking whether formulas given in implicative form are tautologies, as

was mentioned already in 1.3. For instance, from ∀xα � α t
x (which holds

for collision-free α, t
x ) we immediately get � ∀xα →α t

x .
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As in propositional logic, α ≡ β is again equivalent to � α ↔ β.

By inserting L-formulas for the variables of a propositional equivalence

one automatically procures one of predicate logic. Thus, for instance,

α →β ≡ ¬α ∨ β, because certainly p → q ≡ ¬p ∨ q. Since every L-formula

results from the insertion of propositionally irreducible L-formulas in a

formula of propositional logic, one also sees that every L-formula can be

converted into a conjunctive normal form. But there are also numerous

other equivalences, for example ¬∀xα ≡ ∃x¬α and ¬∃xα ≡ ∀x¬α. The

first of these means just ¬∀xα ≡ ¬∀x¬¬α (= ∃x¬α), obtained by replac-

ing α by the equivalent formula ¬¬α under the prefix ∀x. This is a simple

application of Theorem 4.1 below with ≡ for ≈.

As in propositional logic, semantic equivalence is an equivalence relation

in L and, moreover, a congruence in L. Speaking more generally, an

equivalence relation ≈ in L satisfying the congruence property

CP: α ≈ α′, β ≈ β′ ⇒ α∧β ≈ α′ ∧β′, ¬α ≈ ¬α′, ∀xα ≈ ∀xα′

is termed a congruence in L. Its most important property is expressed by

Theorem 4.1 (Replacement theorem). Let ≈ be a congruence in L

and α ≈ α′. If ϕ′ results from ϕ by replacing the formula α at one or

more of its occurrences in ϕ by the formula α′, then ϕ ≈ ϕ′.

Proof by induction on ϕ. Suppose ϕ is a prime formula. Both for ϕ = α

and ϕ �= α, ϕ ≈ ϕ′ clearly holds. Now let ϕ = ϕ1 ∧ϕ2. In case ϕ = α

holds trivially ϕ ≈ ϕ′. Otherwise ϕ′ = ϕ′
1 ∧ϕ′

2, where ϕ′
1, ϕ

′
2 result from

ϕ1, ϕ1 by possible replacements. By the induction hypothesis ϕ1 ≈ ϕ′
1

and ϕ2 ≈ ϕ′
2. Hence, ϕ = ϕ1 ∧ϕ2 ≈ ϕ′

1 ∧ϕ′
2 = ϕ′ according to CP above.

The induction steps for ¬, ∀ follow analogously.

This theorem will constantly be used, mainly with ≡ for ≈, without

actually specifically being cited, just as in the arithmetical rearrangement

of terms, where the laws of arithmetic used are hardly ever named ex-

plicitly. The theorem readily implies that CP is provable for all defined

connectives such as → and ∃. For example, α ≈ α′ ⇒ ∃xα ≈ ∃xα′,

because α ≈ α′ ⇒ ∃xα = ¬∀x¬α ≈ ¬∀x¬α′ = ∃xα′.

First-order languages have a finer structure than those of propositional

logic. There are consequently further interesting congruences in L. In

particular, formulas α, β are equivalent in an L-structure A, in symbols
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α ≡A β, if A � α [w] ⇔ A � β [w], for all w. Hence, in A = (N, <,+, 0)

the formulas x < y and ∃z (z �====0 ∧ x + z ==== y) are equivalent. The proof

of CP for ≡A is very simple and is therefore left to the reader.

Clearly, α ≡A β is equivalent to A � α ↔ β. Because of ≡ ⊆ ≡A,

properties such as ¬∀xα ≡ ∃x¬α carry over from ≡ to ≡A. But there

are often new interesting equivalences in certain structures. For instance,

there are structures in which every formula is equivalent to a formula

without quantifiers, as we will see in 5.6.

A very important fact with an almost trivial proof is that the intersec-

tion of a family of congruences is itself a congruence. Consequently, for

any class K �= ∅ of L-structures, ≡K :=
⋂

{≡A | A ∈ K} is necessarily a

congruence. For the class K of all L-structures, ≡K equals the logical

equivalence ≡, which in this section we deal with exclusively. Below we

list its most important features; these should be committed to memory,

since they will continually be applied.

(1) ∀x(α∧β) ≡ ∀xα∧∀xβ, (2) ∃x(α ∨ β) ≡ ∃xα ∨ ∃xβ,

(3) ∀x∀yα ≡ ∀y∀xα, (4) ∃x∃yα ≡ ∃y∃xα.

If x does not occur free in the formula β, then also

(5) ∀x(α ∨ β) ≡ ∀xα ∨ β, (6) ∃x(α∧β) ≡ ∃xα∧β,

(7) ∀xβ ≡ β, (8) ∃xβ ≡ β,

(9) ∀x(α →β) ≡ ∃xα →β, (10) ∃x(α →β) ≡ ∀xα →β.

The simple proofs are left to the reader. (7) and (8) were stated in (2)

in 2.3. Only (9) and (10) look at first sight surprising. But in practice

these equivalences are very frequently used. For instance, consider for a

fixed set of formulas X the evidently true metalogical assertion ‘for all α:

if X � α,¬α then X � ∀x x �====x’. This clearly states the same as ‘If there

is some α such that X � α,¬α then X � ∀x x �====x’.

Remark. In everyday speech variables tend to remain unquantified, partly be-
cause in some cases the same meaning results from quantifying with “there exists
a” as with “for all.” For instance, consider the following three sentences, which
obviously tell us the same thing, and of which the last two correspond to the
logical equivalence (9):

• If a lawyer finds a loophole in the law it must be changed.

• If there is a lawyer who finds a loophole in the law it must be changed.

• For all lawyers: if one of them finds a loophole in the law then it must be
changed.
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Often, the type of quantification in linguistic bits of information can be made
out only from the context, and this leads not all too seldom to unintentional (or
intentional) misunderstandings. “Logical relations in language are almost always
just alluded to, left to guesswork, and not actually expressed” (G. Frege).

Let x, y be distinct variables and α ∈ L. One of the most important

logical equivalences is renaming of bound variables (in short, bound re-

naming), stated in

(11) (a) ∀xα ≡ ∀y(α y
x), (b) ∃xα ≡ ∃y(α y

x) (y /∈ varα).

(b) follows from (a) by rearranging equivalently. Note that y /∈ varα is

equivalent to y /∈ free α and α, y
x collision-free. Writing My

x for MyM

x , (a)

derives as follows:

M � ∀xα ⇔ Ma
x � α for all a (definition)

⇔ (Ma
y)

a
x � α for all a (Theorem 3.1)

⇔ (Ma
y)

y
x � α for all a

(
(Ma

y)
y
x = (Ma

y)
a
x

)

⇔ Ma
y � α y

x for all a (Theorem 3.5)

⇔ M � ∀y(α y
x) .

(12) and (13) below are also noteworthy. According to (13), substitu-

tions are completely described up to logical equivalence by so-called free

renamings (substitutions of the form y
x). (13) also embraces the case

x ∈ var t. In (12) and (13) we tacitly assume that α, t
x are collision-free.

(12) ∀x(x==== t →α) ≡ α t
x ≡ ∃x(x==== t ∧ α) (x /∈ var t).

(13) ∀y(y ==== t →α y
x) ≡ α t

x ≡ ∃y(y ==== t ∧ α y
x) (y /∈ varα, t).

Proof of (12): ∀x(x==== t →α) � (x==== t →α) t
x = t==== t →α t

x � α t
x by

Corollary 3.6. Conversely, let M � α t
x . If Ma

x � x==== t then clearly

a = tM. Hence also Ma
x � α, since MtM

x � α. Thus, Ma
x � x==== t →α for

any a ∈ A, i.e., M � ∀x(x==== t →α). This proves the left equivalence in

(12). The right equivalence reduces to the left one because

∃x(x==== t ∧ α) = ¬∀x¬(x==== t ∧ α) ≡ ¬∀x(x==== t → ¬α) ≡ ¬¬α t
x ≡ α t

x .

Item (13) is proved similarly. Note that ∀y(y ==== t →α y
x) � α y

x
t
y = α t

x

by Corollary 3.6 and Exercise 4 in 2.2.

With the above equivalences we can now regain an equivalent formula

starting with any formula in which all quantifiers are standing at the be-

ginning. But this result requires both quantifiers ∀ and ∃, in the following

denoted by Q, Q1, Q2, . . .
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A formula of the form α = Q1x1 · · · Qnxnβ with an open formula β

is termed a prenex formula or a prenex normal form, in short, a PNF.

β is called the kernel of α. W.l.o.g. x1, . . . , xn are distinct and xi occurs

free in β since we may drop “superfluous quantifiers,” see (2) page 66.

Prenex normal forms are very important for classifying definable number-

theoretic predicates in 6.3, and for other purposes. The already mentioned

∀- and ∃-formulas are the simplest examples.

Theorem 4.2 (on the prenex normal form). Every formula ϕ is

equivalent to a formula in prenex normal form that can effectively be con-

structed from ϕ.

Proof. Without loss of generality let ϕ contain only the logical symbols

¬, ∧ , ∀, ∃ (besides ====). For each prefix Qx in ϕ consider the number of

symbols ¬ or ∧ occurring to the left of Qx. Let sϕ be the sum of these

numbers, summed over all prefixes occurring in ϕ. Clearly, ϕ is a PNF iff

sϕ = 0. Let sϕ �= 0. Then ϕ contains some prefix Qx and ¬ or ∧ stands

immediately in front of Qx. A successive application of either

¬∀xα ≡ ∃x¬α, ¬∃xα ≡ ∀x¬α, or β ∧Qxα ≡ Qy( b∧α y
x) (y /∈ varα, β),

inside ϕ obviously reduces sϕ stepwise.

Example 2. ∀x∃y(x �====0 →x ·y ==== 1) is a PNF for ∀x(x �====0 →∃y x ·y ==== 1).

And ∃x∀y∀z(ϕ∧ (ϕ y
x ∧ϕ z

x →y ==== z)) for ∃xϕ∧∀y∀z(ϕ y
x ∧ϕ z

x →y ==== z),

provided y, z /∈ free ϕ; if not, a bound renaming will help. An equivalent

PNF for this formula with minimal quantifier rank is ∃x∀y(ϕ y
x ↔ x==== y).

The formula ∀x(x �====0 →∃y x·y ==== 1) from Example 2 may be abbreviated

by (∀x �====0)∃y x · y ==== 1. More generally, we shall often write (∀x �==== t)α for

∀x(x �==== t →α) and (∃x �==== t)α for ∃x(x �==== t ∧ α). A similar notation is used

for �, <, ∈ and their negations. For instance, (∀x�t)α and (∃x�t)α

are to mean ∀x(x�t →α) and ∃x(x�t ∧ α), respectively. For any binary

relation symbol ⊳, the “prefixes” (∀y⊳x) and (∃y⊳x) are related to each

other, as are ∀ and ∃, see Exercise 2.

Exercises

1. Let α ≡ β. Prove that α
�t
�x ≡ β

�t
�x (α,

�t
�x and β,

�t
�x collision-free).

2. Prove that ¬(∀x⊳y)α ≡ (∃x⊳y)¬α and ¬(∃x⊳y)α ≡ (∀x⊳y)¬α.

Here ⊳ represents any binary relation symbol.



78 2 First-Order Logic

3. Show by means of bound renaming that both the conjunction and

the disjunction of ∀-formulas α, β is equivalent to some ∀-formula.

Prove the same for ∃-formulas.

4. Show that every formula ϕ ∈ L is equivalent to some ϕ′ ∈ L built

up from literals by means of ∧ , ∨, and ∃.

5. Let P be a unary predicate symbol. Prove that ∃x(Px →∀yPy) is

a tautology.

6. Call α, β ∈ L tautologically equivalent if � α ⇔ � β. Confirm that

the following (in general not logically equivalent) formulas are tau-

tologically equivalent: α, ∀xα, and α c
x , where the constant symbol

c does not occur in α.

2.5 Logical Consequence and Theories

Whenever L′ ⊇ L, the language L′ is called an expansion or extension

of L and L a reduct or restriction of L′. Recall the insensitivity of the

consequence relation to extensions of a first-order language, mentioned in

2.3. Theorem 3.1 yields that establishing X � α does not depend on the

language to which the set of formulas X and the formula α belong. For

this reason, indices for �, such as �L, are dispensable.

Because of the unaltered satisfaction conditions for ∧ and ¬, all prop-

erties of the propositional consequence gained in 1.3 carry over to the

first-order logical consequence relation. These include general properties

such as, for example, the reflexivity and transitivity of �, and the seman-

tic counterparts of the rules (∧1), (∧2), (¬1), (¬2) from 1.4, for instance

the counterpart of (∧1),
X � α, β

X � α∧β
.5

In addition, Gentzen-style properties such as the deduction theorem

automatically carry over. But there are also completely new properties.

Some of these will be elevated to basic rules of a logical calculus for first-

order languages in 3.1, to be found among the following ones:

5 A suggestive way of writing “X � α, β implies X � α ∧ β,” a notation that was

introduced already in Exercise 3 in 1.3. A corresponding notation will also be used

in stating the properties of � on the next page.
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Some properties of the predicate logical consequence relation.

(a)
X � ∀xα

X � α t
x

(α, t
x collision-free),

(b)
X � α s

x , s==== t

X � α t
x

(α, s
x and α, t

x collision-free),

(c)
X, β � α

X, ∀xβ � α
(anterior generalization),

(d)
X � α

X � ∀xα
(x /∈ free X, posterior generalization),

(e)
X, β � α

X, ∃xβ � α
(x /∈ free X, α, anterior particularization),

(f)
X � α t

x

X � ∃xα
(α, t

x collision-free, posterior particularization)

(a) follows from X � ∀xα � α t
x , for � is transitive. Similarly, (b) follows

from α s
x , s==== t � α t

x , stated in Corollary 3.6. Analogously (c) results from

∀xβ � β. To prove (d), suppose that X � α, M � X, and x /∈ freeX.

Then Ma
x � X for any a ∈ A by Theorem 3.1, which just means M � ∀xα.

As regards (e), let X, β � α. Observe that by contraposition and by (d),

X, β � α ⇒ X,¬α � ¬β ⇒ X,¬α � ∀x¬β,

whence X,¬∀x¬β � α. (e) captures deduction from an existence claim,

while (f) confirms an existence claim. (f) holds since α t
x � ∃xα according

to Corollary 3.6. Both (e) and (f) are permanently applied in mathemati-

cal reasoning and will briefly be discussed in Example 1 on the next page.

All above properties have certain variants; for example, a variant of (d) is

(g)
X � α y

x

X � ∀xα
(y /∈ free X ∪ varα).

This results from (d) with α y
x for α and y for x, since ∀yα y

x ≡ ∀xα.

From the above properties, complicated chains of deduction can, where

necessary, be justified step by step. But in practice this makes sense only

in particular circumstances, because formalized proofs are readable only

at the expense of a lot of time, just as with lengthy computer programs,

even with well-prepared documentation. What is most important is that a

proof, when written down, can be understood and reproduced. This is why

mathematical deduction tends to proceed informally, i.e., both claims and
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their proofs are formulated in a mathematical “everyday” language with

the aid of fragmentary and flexible formalization. To what degree a proof

is to be formalized depends on the situation and need not be determined

in advance. In this way the strict syntactic structure of formal proofs is

slackened, compensating for the imperfection of our brains in regard to

processing syntactic information.

Further, certain informal proof methods will often be described by a

more or less clear reference to so-called background knowledge, and not

actually carried out. This method has proven itself to be sufficiently

reliable. As a matter of fact, apart from specific cases it has not yet been

bettered by any of the existing automatic proof machines. Let us present

a very simple example of an informal proof in a language L for natural

numbers that along with 0, 1, +, · contains the symbol for divisibility,

defined by m n ⇔ ∃k m · k = n. In addition, let L contain a symbol f for

some given function from N to N. We need no closer information on this

function, but we shall write fi for f(i) in Example 1.

Example 1. We want to prove ∀n∃x(∀i�n)fi x. That is, for every n,

f0, . . . , fn have a common multiple. A careful proof proceeds by induction

on n. Here we focus solely on X, ∃x(∀i�n)fi x � ∃x(∀i�n+1)fi x, the

induction step. X represents our prior knowledge about familiar proper-

ties of divisibility. Informally we reason as follows: Suppose ∃x(∀i�n)fi x

and let x denote any common multiple of f0, . . . , fn. Then x · fn+1 is

clearly a common multiple of f0, . . . , fn+1, hence ∃x(∀i�n+1)fi x. That’s

all. To argue here formally like a proof machine, let us start from the

obvious (∀i�n)fi x � (∀i�n+1)fi (x · fn+1). Posterior particularization of

x yields X, (∀i�n)fi x � ∃x(∀i�n+1)fi x. From this follows the desired

X, ∃x(∀i�n)fi x � ∃x(∀i�n+1)fi x by anterior particularization. Thus,

formalizing a nearly trivial informal argument may need a lot of writing

and turns out to be nontrivial in some sense.

Some textbooks deal with a somewhat stricter consequence relation,

which we denote here by �
g
. The reason is that in mathematics one largely

considers derivations in theories. For X ⊆ L and ϕ ∈ L define X �
g

ϕ if

A � X ⇒ A � ϕ, for all L-structures A. In contrast to �, which may

be called the local consequence relation, �
g

can be considered as the global

consequence relation since it cares only about A, not about a concrete

valuation w in A as does �.
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Let us collect a few properties of �
g
. Obviously, X � ϕ implies X �

g
ϕ, but

the converse does not hold in general. For example, x==== y �
g
∀xy x==== y,

but x==== y � ∀xy x==== y. By (d) from page 79, X � ϕ ⇒ X � ϕg holds

in general only if the free variables of ϕ do not occur free in X, while

X �
g
ϕ ⇒ X �

g
ϕg (hence ϕ �

g
ϕg) holds unrestrictedly. A reduction of �

g

to � is provided by the following equivalence, which easily follows from

M � X g ⇔ A � X g , for each model M = (A, w):

(1) X �
g
ϕ ⇔ X g

� ϕ.

Because of S g = S for sets of sentences S, we clearly obtain from (1)

(2) S �
g
ϕ ⇔ S � ϕ (S ⊆ L0).

In particular, �
g
ϕ ⇔ � ϕ. Thus, a distinction between � and �

g
is apparent

only when premises are involved that are not sentences. In this case the

relation �
g

must be treated with the utmost care. Neither the rule of case

distinction
X, α �

g
β X,¬α �

g
β

X �
g
β

nor the deduction theorem
X, α �

g
β

X �
g
α →β

is

unrestrictedly correct. For example x==== y �
g
∀xy x==== y, but it is false that

�
g
x==== y →∀xy x==== y. This means that the deduction theorem fails to hold

for the relation �
g
. It holds only under certain restrictions.

One of the reasons for our preference of � over �
g

is that � extends the

propositional consequence relation conservatively, so that features such as

the deduction theorem carry over unrestrictedly, while this is not the case

for �
g
. It should also be said that �

g
does not reflect the actual procedures of

natural deduction in which formulas with free variables are frequently used

also in deductions of sentences from sentences, for instance in Example 1.

We now make more precise the notion of a formalized theory in L, where

it is useful to think of the examples in 2.3, such as group theory. Again,

the definitions by different authors may look somewhat differently.

Definition. An elementary theory or first-order theory in L, also termed

an L-theory, is a set of sentences T ⊆ L0 deductively closed in L0, i.e.,

T � α ⇔ α ∈ T , for all α ∈ L0. If α ∈ T then we say that α is valid

or true or holds in T , or α is a theorem of T . The extralogical symbols

of L are called the symbols of T . If T ⊆ T ′ then T is called a subtheory

of T ′, and T ′ an extension of T . An L-structure A such that A � T is

also termed a model of T , briefly a T -model. MdT denotes the class of

all models of T in this sense; MdT consist of L-structures only.
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For instance, {α ∈ L0 | X � α} is a theory for any set X ⊆ L, since �

is transitive. A theory T in L satisfies T � ϕ ⇔ A � ϕ for all A � T ,

where ϕ ∈ L is any formula. Important is also T � ϕ ⇔ T � ϕg . These

readily confirmed facts should be taken in and remembered, since they

are constantly used. Different authors may use different definitions for a

theory. For example, they may not demand that theories contain sentences

only, as we do. Conventions of this type each have their advantages and

disadvantages. Proofs regarding theories are always adaptable enough to

accommodate small modifications of the definition. Using the definition

given above we set the following

Convention. In talking of the theory S, where S is a set of sentences, we

always mean the theory determined by S, that is, {α ∈ L0 | S � α}. A set

X ⊆ L is called an axiom system for T whenever T = {α ∈ L0 | X g
� α},

i.e., we tacitly generalize all possibly open formulas in X. We have always

to think of free variables occurring in axioms as being generalized.

Thus, axioms of a theory are always sentences. But we conform to stan-

dard practice of writing long axioms as formulas. We will later consider

extensive axiom systems (in particular, for arithmetic and set theory)

whose axioms are partly written as open formulas just for economy.

There exists a smallest theory in L, namely the set Taut (= TautL) of all

generally valid sentences in L, also called the “logical” theory. An axiom

system for Taut is the empty set of axioms. There is also a largest the-

ory: the set L0 of all sentences, the inconsistent theory, which possesses

no models. All remaining theories are called satisfiable or consistent .6

Moreover, the intersection T =
⋂

i∈I Ti of a nonempty family of theories

Ti is in turn a theory: if T � α ∈ L0 then clearly Ti � α and so α ∈ Ti for

each i ∈ I, hence α ∈ T as well. In this book T and T ′, with or without

indices, exclusively denote theories.

For T ⊆ L0 and α ∈ L0 let T + α denote the smallest theory that

extends T and contains α. Similarly let T + S for S ⊆ L0 be the smallest

theory containing T ∪S. If S is finite then T ′ = T +S = T +
∧

S is called

a finite extension of T . Here
∧

S denotes the conjunction of all sentences

in S. A sentence α is termed compatible or consistent with T if T + α is

6 Consistent mostly refers to a logic calculus, e.g., the calculus in 3.1. However, it will

be shown in 3.2 that consistency and satisfiability of a theory coincide, thus justifying

the word’s ambiguous use.



2.5 Logical Consequence and Theories 83

satisfiable, and refutable in T if T +¬α is satisfiable. Thus, the theory TF

of fields is compatible with the sentence 1 + 1==== 0. Equivalently, 1 + 1 �====0

is refutable in TF , since the 2-element field satisfies 1 + 1==== 0.

If both α and ¬α are compatible with T then the sentence α is termed

independent of T . The classic example is the independence of the parallel

axiom from the remaining axioms of Euclidean plane geometry, which

define absolute geometry. Much more difficult is the independence proof

of the continuum hypothesis from the axioms for set theory. These axioms

are presented and discussed in 3.4.

At this point we introduce another important concept; α, β ∈ L are

said to be equivalent in or modulo T , α ≡T β, if α ≡A β for all A � T .

Being an intersection of congruences, ≡T is itself a congruence and hence

satisfies the replacement theorem. This will henceforth be used without

mention, as will the obvious equivalence of α ≡T β, T � α ↔ β, and of

T � (α ↔ β)g . A suggestive writing of α ≡T β would also be α====T β.

Example 2. Let TG be as on p. 65. Claim: x ◦x==== x ≡TG
x==== e. The only

tricky proof step is TG � x ◦x==== x → x==== e. Let x ◦x==== x and choose some

y with x ◦ y ==== e. The claim then follows from x==== x ◦ e==== x ◦x ◦ y ==== x ◦ y ==== e.

A strict formal proof of the latter uses anterior particularization.

Another important congruence is term equivalence. Call terms s, t

equivalent modulo (or in) T , in symbols s ≈T t, if T � s==== t, that is,

A � s==== t [w] for all A � T and w : Var →A. For instance, in T = T ====
G ,

(x ◦ y)−1 ==== y−1 ◦x−1 is easily provable, so that (x ◦ y)−1 ≈T y−1 ◦x−1.

Another example: in the theory of fields, each term is equivalent to a

polynomial in several variables with integer coefficients.

If all axioms of a theory T are ∀-sentences then T is called a univer-

sal or ∀-theory. Examples are partial orders, orders, rings, lattices, and

Boolean algebras. For such a theory, MdT is closed with respect to sub-

structures, which means A ⊆ B � T ⇒ A � T . This follows at once

from Corollary 3.3. Conversely, a theory closed with respect to substruc-

tures is necessarily a universal one, as will turn out in 5.4. ∀-theories are

further classified. The most important subclasses are equational, quasi-

equational, and universal Horn theories, all of which will be considered to

some extent in later chapters. Besides ∀-theories, the ∀∃-theories (those

having ∀∃-sentences as axioms) are of particular interest for mathematics.

More about all these theories will be said in 5.4.
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Theories are frequently given by structures or classes of structures. The

elementary theory ThA and the theory ThK of a nonempty class K of

structures are defined respectively by

ThA := {α ∈ L0 | A � α}, ThK :=
⋂

{ThA |A ∈ K}.

It is easily seen that ThA and ThK are theories in the precise sense

defined above. Instead of α ∈ ThK one often writes K � α. In general,

MdThK is larger than K, as we shall see.

One easily confirms that the set of formulas breaks up modulo T (more

precisely, modulo ≡T ) into equivalence classes; their totality is denoted

by BωT . Based on these we can define in a natural manner operations

∧ , ∨,¬. For instance, ᾱ∧ β̄ = α∧β, where ϕ̄ denotes the equivalence

class to which ϕ belongs. One shows easily that BωT forms a Boolean

algebra with respect to ∧ , ∨,¬. For every n, the set BnT of all ϕ̄ in

BωT such that the free variables of ϕ belong to Varn (= {v0, . . . ,vn−1})

is a subalgebra of BωT . Note that B0T is isomorphic to the Boolean

algebra of all sentences modulo ≡T , also called the Tarski–Lindenbaum

algebra of T . The significance of the Boolean algebras BnT is revealed only

in the somewhat higher reaches of model theory, and they are therefore

mentioned only incidentally.

Exercises

1. Suppose x /∈ free X and c is not in X, α. Prove the equivalence of

(i) X � α, (ii) X � ∀xα, (iii) X � α c
x .

This holds then in particular if X is the axiom system of a theory

or itself a theory. Then x /∈ freeX is trivially satisfied.

2. Let S be a set of sentences, α and β formulas, x /∈ free β, and let c

be a constant not occurring in S, α, β. Show that

S � α c
x →β ⇔ S � ∃xα →β.

3. Verify for all α, β ∈ L0 that β ∈ T + α ⇔ α →β ∈ T .

4. Let T ⊆ L be a theory, L0 ⊆ L, and T0 := T ∩ L0. Prove that T0 is

also a theory (the so-called reduct theory in the language L0).
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2.6 Explicit Definitions—Language Expansions

The deductive development of a theory, be it given by an axiom system

or a single structure or classes of those, nearly always goes hand in hand

with expansions of the language carried out step by step. For example,

in developing elementary number theory in the language L(0, 1, +, ·), the

introduction of the divisibility relation by means of the (explicit) definition

x y ↔ ∃z x · z ==== y has certainly advantages not only for purely technical

reasons. This and similar examples motivate the following

Definition I. Let r be an n-ary relation symbol not occurring in L. An

explicit definition of r in L is to mean a formula of the form

ηr : r�x ↔ δ(�x)

with δ(�x) ∈ L and distinct variables in �x, called the defining formula.

For a theory T , the extension Tr := T + η g
r is then called a definitorial

extension (or expansion) of T by r, more precisely, by ηr.

Tr is a theory in L[r], the language resulting from L by adjoining the

symbol r. It will turn out that Tr is a conservative extension of T , which,

in the general case, means a theory T ′ ⊇ T in L′ ⊇ L such that T ′∩L = T .

Thus, Tr contains exactly the same L-sentences as does T . In this sense, Tr

is a harmless extension of T . Our claim constitutes part of Theorem 6.1.

For ϕ ∈ L[r] define the reduced formula ϕrd ∈ L as follows: Starting from

the left, replace every prime formula r�t occurring in ϕ by δ�x(�t ). Clearly,

ϕrd = ϕ, provided r does not appear in ϕ.

Theorem 6.1 (Elimination theorem). Let Tr ⊆ L[r] be a definitorial

extension of the theory T ⊆ L0 by the explicit definition ηr. Then for all

formulas ϕ ∈ L[r] holds the equivalence

(∗) Tr � ϕ ⇔ T � ϕrd.

For ϕ ∈ L we get in particular Tr � ϕ ⇔ T � ϕ (since ϕrd = ϕ). Hence,

Tr is a conservative extension of T , i.e., α ∈ Tr ⇔ α ∈ T , for all α ∈ L0.

Proof. Each A � T is expandable to a model A′ � Tr with the same

domain, setting rA
′

�a :⇔ A � δ [�a] (�a ∈ An). Since r�t ≡Tr δ(�t ) for any �t ,

we obtain ϕ ≡Tr ϕrd for all ϕ ∈ L[r] by the replacement theorem. Thus,

(∗) follows from
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Tr � ϕ ⇔ A′ � ϕ for all A � T (MdTr = {A′ | A � T})

⇔ A′ � ϕrd for all A � T (because ϕ ≡Tr ϕrd)

⇔ A � ϕrd for all A � T (Theorem 3.1)

⇔ T � ϕrd.

Operation symbols and constants can be similarly introduced, though

in this case there are certain conditions to observe. For instance, in TG

(see page 65) the operation −1 is defined by η : y ==== x−1 ↔ x ◦ y ==== e. This

definition is legitimate, since TG � ∀x∃!y x ◦ y ==== e; Exercise 3. Only this

requirement (which by the way is a logical consequence of η) ensures that

TG+η g is a conservative extension of TG. We therefore extend Definition I

as follows, keeping in mind that to the end of this section constant symbols

are to be counted among the operation symbols.

Definition II. An explicit definition of an n-ary operation symbol f not

occurring in L is a formula of the form

ηf : y ==== f�x ↔ δ(�x, y) (δ ∈ L and y, x1, . . . , xn distinct).

ηf is called legitimate in T ⊆ L if T � ∀�x ∃!yδ, and Tf := T + η g
f is

then called a definitorial extension by f , more precisely by ηf . In the case

n = 0 we write c for f and speak of an explicit definition of the constant

symbol c. Written more suggestively y ==== c ↔ δ(y).

Some of the free variables of δ are often not explicitly named, and thus

downgraded to parameter variables. More on this will be said in the

discussion of the axioms for set theory in 3.4. The elimination theorem is

proved in almost exactly the same way as above, provided ηf is legitimate

in T . The reduced formula ϕrd is defined correspondingly. For a constant

c (n = 0 in Definition II), let ϕrd := ∃z(ϕ z
c ∧ δ z

y ), where ϕ z
c denotes the

result of replacing c in ϕ by z (/∈ varϕ). Now let n > 0. If f does not

appear in ϕ, set ϕrd = ϕ. Otherwise, looking at the first occurrence of

f in ϕ from the left, we certainly may write ϕ = ϕ0
f�t
y for appropriate

ϕ0, �t , and y /∈ varϕ. Clearly, ϕ ≡Tf
∃y(ϕ0 ∧ y ==== f�t ) ≡Tf

ϕ1, with

ϕ1 := ∃y(ϕ0 ∧ δf (�t , y)). If f still occurs in ϕ1 then repeat this procedure,

which ends in, say, m steps in a formula ϕm that no longer contains f .

Then put ϕrd := ϕm.

Frequently, operation symbols f are introduced in more or less strictly

formalized theories by definitions of the form

(∗) f�x := t(�x),
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where of course f does not occur in the term t(�x). This procedure is in

fact subsumed by Definition II, because the former is nothing more than

a definitorial extension of T with the explicit definition

ηf : y ==== f�x ↔ y ==== t(�x).

This definition is legitimate, since ∀�x ∃!y y ==== t(�x) is a tautology. It can

readily be shown that η g
f is logically equivalent to ∀�x f�x==== t(�x). Hence,

(∗) can indeed be regarded as a kind of an informative abbreviation of a

legitimate explicit definition with the defining formula y ==== t(�x).

Remark 1. Instead of introducing new operation symbols, so-called iota-terms
from [HB] could be used. For any formula ϕ = ϕ(�x, y) in a given language,
let ιyϕ be a term in which y appears as a variable bound by ι. Whenever
T � ∀�x∃!yϕ, then T is extended by the axiom ∀�x∀y[y ==== ιyϕ(�x, y) ↔ ϕ(�x, y)], so
that ιyϕ(�x, y) so to speak stands for the function term f�x, which could have been
introduced by an explicit definition. We mention that a definitorial language
expansion is not a necessity. In principle, formulas of the expanded language can
always be understood as abbreviations in the original language. This is in some
presentations the actual procedure, though our imagination prefers additional
notions over long sentences that would arise if we were to stick to a minimal set
of basic notions.

Definitions I and II can be unified in a more general declaration. Let

T , T ′ be theories in the languages L, L′, respectively. Then T ′ is called a

definitorial extension (or expansion) of T whenever T ′ = T + Δ for some

list Δ of explicit definitions of new symbols legitimate in T , given in terms

of those of T (here legitimate refers to operation symbols and constants

only). Δ need not be finite, but in most cases it is finite. A reduced

formula ϕrd ∈ L is stepwise constructed as above, for every ϕ ∈ L′.

In this way the somewhat long-winded proof of the following theorem is

reduced each time to the case of an extension by a single symbol:

Theorem 6.2 (General elimination theorem). Let T ′ be a definitorial

extension of T . Then α ∈ T ′ ⇔ αrd ∈ T . In particular, α ∈ T ′ ⇔ α ∈ T

whenever α ∈ L, i.e., T ′ is a conservative extension of T .

A relation or operation symbol s occurring in T ⊆ L is termed explicitly

definable in T if T contains an explicit definition of s whose defining

formula belongs to L0, the language of symbols of T without s. For

example, in the theory TG of groups the constant e is explicitly defined

by x==== e ↔ x ◦x==== x; Example 2 page 83. Another example is presented
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in Exercise 3. In such a case each model of T0 := T ∩L0 can be expanded

in only one way to a T -model. If this special condition is fulfilled then s is

said to be implicitly definable in T . This could also be stated as follows: if

T ′ is distinct from T only in that the symbol s is everywhere replaced by a

new symbol s′, then either T ∪T ′ � ∀�x(s�x ↔ s′�x) or T ∪T ′ � ∀�x(s�x==== s′�x),

depending on whether s, s′ are relation or operation symbols. It is highly

interesting that this kind of definability is already sufficient for the explicit

definability of s in T . But we will go without the proof and only quote

the following theorem.

Beth’s definability theorem. A relation or operation symbol implicitly

definable in a theory T is also explicitly definable in T .

Definitorial expansions of a language should be conscientiously distin-

guished from expansions of languages that arise from the introduction of

so-called Skolem functions. These are useful for many purposes and are

therefore briefly described.

Skolem normal forms. According to Theorem 4.2, every formula α can

be converted into an equivalent PNF, α ≡ Q1x1 · · · Qkxkα
′, where α′ is

open. Obviously then ¬α ≡ Q1x1 · · · Qkxk¬α′, where ∀ = ∃ and ∃ = ∀.

Because � α if and only if ¬α is unsatisfiable, the decision problem for

general validity can first of all be reduced to the satisfiability problem

for formulas in PNF. Using Theorem 6.3 below, the latter—at the cost

of introducing new operation symbols—is then completely reduced to the

satisfiability problem for ∀-formulas.

Call formulas α and β satisfiably equivalent if both are satisfiable (not

necessarily in the same model), or both are unsatisfiable. We construct

for every formula, which w.l.o.g. is assumed to be given in prenex form

α = Q1x1 · · · Qkxkβ, a satisfiably equivalent ∀-formula α̂ with additional

operation symbols such that free α̂ = free α. The construction of α̂ will be

completed after m steps, where m is the number of ∃-quantifiers among the

Q1, . . . , Qk. Take α = α0 and αi to be already constructed. If αi is already

an ∀-formula let α̂ = αi. Otherwise αi has the form ∀x1 · · · ∀xn∃yβi for

some n � 0. With an n-ary operation symbol f (which is a constant

in case n=0) not yet used let αi+1 = ∀�xβi
f�x
y . Thus, after m steps an

∀-formula α̂ is obtained such that free α̂ = free α; this formula α̂ is called

a Skolem normal form (SNF) of α.
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Example 1. If α is the formula ∀x∃y x < y then α̂ is just ∀x x < fx.

For α = ∃x∀y x · y ==== y we have α̂ = ∀y c · y ==== y.

If α = ∀x∀y∃z(x < z ∧ y < z) then α̂ = ∀x∀y(x < fxy ∧ y < fxy).

Theorem 6.3. Let α̂ be a Skolem normal form for the formula α. Then

(a) α̂ � α, (b) α is satisfiably equivalent to α̂.

Proof. (a): It suffices to show that αi+1 � αi for each of the described

construction steps. βi
f�x
y � ∃yβi implies αi+1 = ∀�xβi

f�x
y � ∀�x ∃yβi = αi,

by (c) and (d) in 2.5. (b): If α̂ is satisfiable then by (a) so too is α.

Conversely, suppose A � ∀�x ∃yβi(�x, y, �z) [�c ]. For each �a ∈ An we choose

some b ∈ A such that A � β [�a, b,�c ] (which is possible in view of the

axiom of choice AC) and expand A to A′ by setting fA′

�a = b for the new

operation symbol. Then evidently A′ � αi+1 [�c ]. Thus, we finally obtain

a model for α̂ that expands the initial model.

Now, for each α, a tautologically equivalent ∃-formula α̌ is gained as

well (that is, � α ⇔ � α̌). By the above theorem, we first produce for

β = ¬α a satisfiably equivalent SNF β̂ and put α̌ := ¬β̂. Then indeed

� α ⇔ � α̌, because

� α ⇔ β unsatisfiable ⇔ β̂ unsatisfiable ⇔ � α̌.

Example 2. For α := ∃x∀y(ry → rx) we have ¬α ≡ β := ∀x∃y(ry ∧¬rx)

and β̂ = ∀x(rfx∧¬rx). Thus, α̌ = ¬β̂ ≡ ∃x(rfx → rx). The last formula

is a tautology. Indeed, if rA �= ∅ then clearly A � ∃x(rfx →rx). But the

same holds if rA = ∅, for then never A � rfx. Thus, α̌ and hence also α

is a tautology, which is not at all obvious after a first glance at α. This

shows how useful Skolem normal forms can be for discovering tautologies.

Remark 2. There are many applications of Skolem normal forms, mainly in
model theory and in logic programming. For instance, Exercise 5 permits one to
reduce the satisfiability problem of an arbitrary first-order formula set to a set
of ∀-formulas (at the cost of adjoining new function symbols). Moreover, a set
X of ∀-formulas is satisfiably equivalent to a set X′ of open formulas as will be
shown in 4.1, and this problem can be reduced completely to the satisfiability of
a suitable set of propositional formulas, see also Remark 1 in 4.1. The examples
of applications of the propositional compactness theorem in 1.5 give a certain
feeling for how to proceed in this way.
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Exercises

1. Suppose that Tf results from T by adjoining an explicit definition η

for f and let αrd be constructed as explained in the text. Show that

Tf is a conservative extension of T if and only if η is a legitimate

explicit definition.

2. Let S : n 
→ n+1 denote the successor function in N = (N, 0, S,+, ·).

Show that ThN is a definitorial extension of Th (N, S, ·); in other

words, 0 and + are explicitly definable by S and · in N .

3. Prove that η : y ==== x−1 ↔ x ◦ y ==== e is a legitimate explicit definition

in TG (it suffices to prove TG � x ◦ y ==== x ◦ z →y ==== z). Show in ad-

dition that T ====
G = TG + η. Thus, T ====

G is a definitorial and hence a

conservative extension of TG. In this sense, the theories T ====
G and TG

are equivalent formulations of the theory of groups.

4. As is well known, the natural <-relation of N is explicitly definable

in (N, 0, +), for instance, by x < y ↔ (∃z �====0)z + x==== y. Prove that

the <-relation of Z is not explicitly definable in (Z, 0, +).

5. Construct to each α ∈ X (⊆ L) an SNF α̂ such that X is satisfiably

equivalent to X̂ = {α̂ | α ∈ X} and X̂ � X, called a Skolemization

of X. Since we do not suppose that X is countable, the function

symbols introduced in X̂ must properly be indexed.



Chapter 3

Complete logical Calculi

Our first goal is to characterize the consequence relation in a first-order

language by means of a calculus similar to that of propositional logic. That

this goal is attainable at all was shown for the first time by Gödel in [Gö1].

The original version of Gödel’s theorem refers to the axiomatization of

tautologies only and does not immediately imply the compactness theorem

of first-order logic; but a more general formulation of completeness in

3.2 does. The importance of the compactness theorem for mathematical

applications was first revealed in 1936 by A. Malcev, see [Ma].

The characterizability of logical consequence by means of a calculus

(the content of the completeness theorem) is a crucial result in mathe-

matical logic with far-reaching applications. In spite of its metalogical

origin, the completeness theorem is essentially a mathematical theorem.

It satisfactorily explains the phenomenon of the well-definedness of logical

deductive methods in mathematics. To seek any additional, possibly un-

known methods or rules of inference would be like looking for perpetual

motion in physics. Of course, this insight does not affect the development

of new ideas in solving open questions. We will say somewhat more re-

garding the metamathematical aspect of the theorem and its applications,

as well as the use of the model construction connected with its proof in a

partly descriptive manner, in 3.3, 3.4, and 3.5.

Without beating around the bush, we deal from the outset with the case

of an arbitrary, not necessarily countable first-order language. Nonethe-

less, the proof given, based on Henkin’s idea of a constant expansion [He],

is kept relatively short, mainly thanks to an astute choice of its logical ba-

sis. Although mathematical theories are countable as a rule, a successful
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application of methods of mathematical logic in algebra and analysis relies

essentially on the unrestricted version of the completeness theorem. Only

with such generality does the proof display the inherent unity that tends

to distinguish the proofs of magnificent mathematical theorems.

3.1 A Calculus of Natural Deduction

As in Chapter 2, let L be an arbitrary but fixed first-order language in

the logical signature ¬, ∧ , ∀, ==== . We define a calculus ⊢ by the system

of deductive rules enclosed in the box below. The calculus operates with

sequents as in 1.4. It supplements the basic rules given there with three

predicate-logical rules. We also use the same modes of speaking, for in-

stance, ‘X ⊢ α’ is read as ‘X derivable α’. Note that the initial rule (IR)

is subject to a minor extension. Using (MR), it could be pared down to

α ⊢ α
and

⊢ t==== t
, which are rules without premises like (IR).

(IR)
X ⊢ α

(α ∈ X ∪ {t==== t}) (MR)
X ⊢ α

X ′ ⊢ α
(X ⊆ X ′)

(∧1)
X ⊢ α, β

X ⊢ α∧β
(∧2)

X ⊢ α∧β

X ⊢ α, β

(¬1)
X ⊢ β,¬β

X ⊢ α
(¬2)

X, β ⊢ α X,¬β ⊢ α

X ⊢ α

(∀1)
X ⊢ ∀xα

X ⊢ α t
x

(α, t
x collision-free)

(∀2)
X ⊢ α y

x

X ⊢ ∀xα
(y �∈ free X ∪ varα)

(=)
X ⊢ s==== t, α s

x

X ⊢ α t
x

(α prime)

By (IR), X ⊢ t==== t for arbitrary X and t, in particular ⊢ t==== t. Here as

everywhere, ⊢ ϕ stands for ∅ ⊢ ϕ (read ‘ϕ is derivable’). The remaining

notation from 1.4 is also used here; thus, α ⊢ β abbreviates {α} ⊢ β, etc.

Note also that α ⊢ β ⊢ γ can have only the meaning α ⊢ β and β ⊢ γ.
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⊢ is called a calculus of natural deduction because it models logical

inference in mathematics and other deductive sciences sufficiently well.1

Our aim is to show that � is completely characterized by ⊢. The calculus

is developed in the sequel only insofar as the completeness proof requires.

While undertaking further derivations can be instructive (see the examples

and exercises), this is not the principal point of formalizing proofs unless

one is after specific proof-theoretic goals. It should also be said that an

acute study of formalized proofs does not really promote our ability to

draw correct conclusions in everyday life.

All basic rules are sound in the sense of 1.4. The restrictions in the rules

(∀1), (∀2), and (=) ensure their soundness as shown by the properties (a),

(g), and (b) on page 79. Rule (=) could have been strengthened from the

outset to allow α to be any formula such that α, s
x , t

x are collision-free,

but we get along with the weak version. Also (∀1) could be strengthened

by weakening its restriction that α, t
x are collision-free in various ways.

As already stated in 2.3, we could in fact avoid any kind of restriction

by means of a more involved definition for substitution. However, such

measures would unnecessarily strengthen the calculus. Weakly formulated

logical calculi like the one given here often alleviate certain induction

procedures, for example in verifying these rules in other logical calculi, as

will be done in 3.6 for a certain Hilbert calculus.

Because ⊢ can be understood as an extension of the corresponding cal-

culus from 1.4, all the examples of provable rules given there carry over

automatically, the cut rule included. All further sound rules, such as the

formal versions of generalization and particularization in 2.5, are provable

thanks to the completeness of the calculus. This is also true of the rule
X ⊢ α

X ⊢ ∀xα
(x /∈ freeX), which is sound by (d) in 2.5, though it does not

result directly from (∀2). However, we do not want to spend too much

time on the proofs of other rules; they are irrelevant for the completeness

proof, which can then be used to justify these rules retrospectively.

Just as in the propositional case the following proof method referring to

the base rules above will often be applied; it is legitimate because the proof

1 We deal here with a version of the calculus NK from [Ge] adapted to our purpose;

more involved descriptions of this and related sequent calculi are given in various

textbooks on proof theory; see e.g. [Po].
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of the corresponding principle in 1.4 depends on neither the language nor

the concrete rules.

Principle of rule induction. Let E be a property of sequents (X, α)

such that

(o) E(X, α) provided α ∈ X or α is of the form t==== t,

(s) E(X, α) ⇒ E(X ′, α) for (MR), and similarly for (∧1)–(=).

Then X ⊢ α implies E(X, α), for all X, α.

Since the basic rules are clearly sound, the soundness of the calculus,

that is to say ⊢ ⊆ �, follows immediately by rule induction. Similarly one

obtains the following monotonicity property:

(mon) L ⊆ L′ ⇒ ⊢L ⊆ ⊢L′ .

Here the derivability relation is indexed; note that every elementary lan-

guage defines its own derivability relation, and for the time being we are

concerned with the comparison of these relations in various languages.

Only with the completeness theorem will we see that the indices are su-

perfluous, just as for the consequence relation �. To prove (mon) let

E(X, α) be the property ‘X ⊢L′ α’, for which the conditions (o) and (s) of

rule induction are easily verified. To confirm at least one of the induction

steps (i.e. the verification of (s) for each single rule), let X ⊢L α, β and

suppose X ⊢L′ α, β. Then (∧1), applied in L′, yields X ⊢L′ α∧β as well.

As in propositional logic we have here the easily provable

Finiteness theorem. If X ⊢ α then X0 ⊢ α for some finite X0 ⊆ X.

The only difference to the proof from 1.4 is that a few more rules have

to be considered. Remember that L denotes the signature of L, L0 that

of L0, etc. For the moment we require a somewhat stronger version of the

finiteness theorem, namely

(fin) If X ⊢L α then there exist a finite signature L0 ⊆ L and a finite

subset X0 ⊆ X such that X0 ⊢L0 α.

Herein the claim X0 ⊢L0 α, of course, includes X0 ∪ {α} ⊆ L0. For the

proof, consider the property ‘there exist some finite X0 ⊆ X and L0 ⊆ L

such that X0 ⊢L0 α ’. It suffices to confirm the conditions (o) and (s)

of the principle of rule induction. For α ∈ X ∪ {t==== t} we clearly have

X0 ⊢L0 α, where X0 = {α} or X0 = ∅. Thus, L0 may be chosen to contain

all the extralogical symbols occurring in α or in t==== t, and their number
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is surely finite. This confirms (o). The induction step on (MR) is trivial.

For (∧1) suppose X1 ⊢L1 α1 and X2 ⊢L2 α2 for some finite Xi ⊆ X and

Li ⊆ L, i = 1, 2. Then (mon) gives X0 ⊢L0 αi, where X0 = X1 ∪ X2 and

L0 = L1 ∪ L2. Applying (∧1) in L0, we obtain X0 ⊢L0 α1 ∧α2, which

is what we want. The induction steps for all remaining rules proceed

similarly and are even somewhat simpler. This confirms condition (s),

which in turn proves (fin).

In the foregoing proof, L0 contains at least the extralogical symbols

of X0 and α but perhaps also some others. Only with the completeness

theorem can we know that the symbols occurring in X0, α in fact suf-

fice. This insensitivity of derivation with respect to language extensions

can be derived purely proof-theoretically, albeit with considerable effort,

but purely combinatorially and without recourse to the infinitistic means

of semantics. A modest demonstration of such methods is the constant

elimination by Lemmas 2.1 and 2.2 from the next section.

Now for some more examples of provable rules required later.

Example 1. (a)
X ⊢ s==== t, s==== t′

X ⊢ t==== t′
, (b)

X ⊢ s==== t

X ⊢ t==== s
, (c)

X ⊢ t==== s, s==== t′

X ⊢ t==== t′
.

To show (a) let x /∈ var t′ and let α be the formula x==== t′. Then the premise

of (a) is written X ⊢ s==== t, α s
x . Rule (=) yields X ⊢ α t

x . Now, α t
x equals

t==== t′, since x /∈ var t′; hence X ⊢ t==== t′. (b) is obtained immediately from

(a), choosing there t′ = s because X ⊢ s==== s. And with this follows (c),

for thanks to (b), the premise of (c) now yields X ⊢ s==== t, s==== t′ and hence,

by (a), the conclusion of (c).

Example 2. In (a)–(d), n is as usual the arity of the symbols f and r.

(a) and (c) are provable for i = 1, . . . , n. In order to ease the writing,

X ⊢ �t ==== �t′ abbreviates X ⊢ t1 ==== t′1, . . . , tn ==== t′n, so that, for instance, rule

(b) below has actually n premises:

(a)
X ⊢ ti ==== t

X ⊢ f�t ==== ft1 · · · ti−1tti+1 · · · tn
, (b)

X ⊢ �t ==== �t′

X ⊢ f�t ==== f�t′
,

(c)
X ⊢ ti ==== t, r�t

X ⊢ rt1 · · · ti−1tti+1 · · · tn
, (d)

X ⊢ �t ==== �t′, r�t

X ⊢ r�t′
.

Proof of (a): Let X ⊢ ti ==== t and α := f�t ==== ft1 · · · ti−1xti+1 · · · tn, where

x is not to occur in any of the tj . Since X ⊢ α ti
x (= f�t ==== f�t ), it follows
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that X ⊢ α t
x using (=). This is the conclusion of (a). (b) is then obtained

by considering Example 1(c) and the n-fold iteration of (a), as can best

be seen by first working through the case n = 2. Rule (c) is just another

application of (=) by taking the formula rt1 · · · ti−1xti+1 · · · tn for α, where

again, x is supposed not to occur in any of the tj . Applying (c) n times

then yields (d).

The next example indicates that sometimes considerable effort is needed

in formally deriving what is nearly obvious from the semantic point of

view. Of course, difficulties in formal proofs strongly depend on the cal-

culus in which these proofs are carried out.

Example 3. (a) ⊢ ∃x t==== x, for all x, t with x /∈ var t, (b) ⊢ ∃x x==== x.

(a) holds because (∀1) gives ∀x t �====x ⊢ t �====t, for t �====t equals (t �====x) t
x ; here

x /∈ var t is required. Clearly, ∀x t �====x ⊢ t==== t as well. Thus, by (¬1),

∀x t �====x ⊢ ∃x t==== x.

Trivially, also ¬∀x t �==== x ⊢ ∃x t==== x (= ¬∀x t �==== x). Therefore, by (¬2),

⊢ ∃x t==== x. The assumption x /∈ var t is in fact essential in order to derive

∃x t==== x; cf. Example 1 in 2.3 page 63. (b) is verified similarly, starting

with ∀x x �====x ⊢ x �====x, x==== x.

A set X (⊆ L) is called inconsistent if X ⊢ α for all α ∈ L, and

otherwise consistent , exactly as in propositional logic. A satisfiable set X

is evidently consistent. By (¬1), the inconsistency of X is equivalent to

X ⊢ α,¬α for any α, hence also to X ⊢ ⊥, since ⊥ = ¬⊤ and certainly

X ⊢ ⊤ (= ∃v0 v0 ==== v0) by Example 3.

The relation ⊢ is completely characterized by some inconsistency con-

dition, as in 1.4. Indeed, the proofs of the two properties

C+ : X ⊢ α ⇔ X,¬α ⊢ ⊥, C− : X ⊢ ¬α ⇔ X, α ⊢ ⊥

from Lemma 1.4.2 remain correct for any meaningful definition of ⊥. The

properties C+ and C− will permanently be used in the sequel without our

explicitly referring to them.

As in propositional logic, X ⊆ L is called maximally consistent if X

is consistent but each proper extension of X in L is inconsistent. There

are various characterizations of this property, e.g. the one in Exercise 4,

known already from 1.4. Examples of maximally consistent sets are the

{ϕ ∈ L |M � ϕ} for L-models M, the typical ones as will turn out.
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Exercises

1. Derive the rule
X ⊢ α t

x

X ⊢ ∃xα
(α, t

x collision-free).

2. Prove ∀xα ⊢ ∀y(α y
x) and ∀y(α y

x) ⊢ ∀xα provided y /∈ varα.

3. Using Exercise 2 and the cut rule prove
X ⊢ ∀y(α y

x)

X ⊢ ∀z(α z
x)

(y, z /∈ varα).

4. Show that X ⊆ L is maximal consistent iff either ϕ ∈ X or ¬ϕ ∈ X

for each ϕ ∈ L. This easily implies that a maximally consistent set

X is deductively closed, i.e. X ⊢ ϕ ⇒ ϕ ∈ X, for each ϕ ∈ L.

3.2 The Completeness Proof

Let L be a language and c a constant symbol. Lc is the result of adjoining

c to L. We have Lc = L if c occurs already in L. Similarly LC denotes the

language resulting from L by adjoining a set C of constants, a constant

expansion of L. We shall also come across such expansions in Chapter 5.

Let α z
c (read “α z for c”) denote the formula arising from α by replacing

c with the variable z, and put X z
c := {α z

c | α ∈ X}. c then no longer

occurs in X z
c . We actually require the following assertion only for a single

variable z, but as is often the case, we are able too prove by induction

only a stronger version unproblematically.

Lemma 2.1 (on constant elimination). Suppose X ⊢Lc α. Then

X z
c ⊢L α z

c for almost all variables z.

Proof by rule induction in ⊢Lc . If α ∈ X then α z
c ∈ X z

c is clear; if α is

of the form t==== t, so too is α z
c . Thus, X z

c ⊢L α z
c in either case, even for

all z. Only the induction steps on (∀1), (∀2), and (=) are not immediately

apparent. We restrict ourselves to (∀1), because the induction steps for

(∀2) and (=) proceed analogously. Let α, t
x be collision-free, X ⊢Lc ∀xα,

and assume that X z
c ⊢L (∀xα) z

c for almost all z. In addition, we may

suppose that z /∈ var {∀xα, t} for almost all z. A separate induction on α

readily confirms α t
x

z
c = α′ t′

x with α′ := α z
c and t′ := t z

c . Clearly α′, t′
x

are collision-free as well. By our assumption, X z
c ⊢L (∀x α) z

c = ∀xα′.

Rule (∀1) then clearly yields X z
c ⊢L α′ t′

x = α t
x

z
c , and this holds still for

almost all z which completes the proof of the induction step on (∀1).
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This lemma leads to the following rule of “constant quantification,” the

semantic counterpart of which plays an essential role in Chapter 5:

(∀3)
X ⊢ α c

x

X ⊢ ∀xα
(c not in X, α).

Indeed, suppose that X ⊢ α c
x . Because of the finiteness theorem we may

assume that X is finite. By Lemma 2.1, where in the case at hand Lc = L,

some y not occurring in X∪{α} can be found such that X y
c ⊢ α c

x
y
c = α y

x

(the latter holds because c does not occur in α). Since X y
c = X, we thus

obtain X ⊢ α y
x . Hence X ⊢ ∀xα by (∀2). This confirms (∀3). A likewise

useful consequence of constant elimination is

Lemma 2.2. Let C be any set of constant symbols and L′ = LC. Then

X ⊢L α ⇔ X ⊢L′ α, for all X ⊆ L and α ∈ L. Thus, ⊢L′ is a conservative

expansion of ⊢L.

Proof. (mon) states that X ⊢L α ⇒ X ⊢L′ α. Suppose conversely that

X ⊢L′ α. To prove X ⊢L α we may assume, thanks to (fin) and (MR),

that C is finite. Since the adjunction of finitely many constants can be

undertaken stepwise, we may suppose for the purpose of the proof that

L′ = Lc for a single constant c not occurring in L. Lemma 2.1 then yields

X z
c ⊢L α z

c for at least one variable z. Now, X z
c ⊢L α z

c means the same

as X ⊢L α because c occurs neither in X nor in α.

In the following, we represent the derivability relation in L and in every

constant expansion L′ of L with the same symbol ⊢. By Lemma 2.2 no

misunderstandings can arise from this notation. Since the consistency of

X is equivalent to X � ⊥, there is also no need to distinguish between the

consistency of X ⊆ L with respect to L or L′. This is highly significant

for the proofs of the next two lemmas.

The proof of the completeness theorem essentially proceeds with a model

construction from the syntactic material of a certain constant expansion

of L. We first choose for each variable x and each α ∈ L a constant cx,α

not occurring in L; more precisely, we choose exactly one such constant

for each pair x, α. Define

(1) αx := ¬∀xα ∧ α c
x (c := cx,α).

Here it is insignificant how many free variables α contains, and whether

x occurs at all in α. Note that ¬αx ≡ ∃x¬α →¬α c
x . The formula on

the right side tells us that under the hypothesis ∃x¬α the constant c
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represents a counterexample to the validity of α, that is, an example for

the validity of ¬α. Note also that ¬αx ≡ ⊤ whenever x /∈ free α.

Lemma 2.3. Let ΓL := {¬αx | α ∈ L, x ∈ Var}, where αx is defined as

in (1), and let X ⊆ L be consistent. Then X ∪ ΓL is consistent as well.

Proof. Assume that X ∪ ΓL ⊢ ⊥. There exist some n � 0 and formulas

¬αx0
0 , . . . ,¬αxn

n ∈ ΓL such that (a) X ∪ {¬αxi

i | i � n} ⊢ ⊥. Since X � ⊥,

there is some minimal n with (b) X ′ := X ∪ {¬αxi

i | i < n} � ⊥. Let

x := xn, α := αn, and c := cx,α. By (a), X ′∪{¬αx} ⊢ ⊥. Hence, X ′ ⊢ αx,

and so X ′ ⊢ ¬∀xα, α c
x , by (∧2). But X ′ ⊢ α c

x yields X ′ ⊢ ∀xα using

(∀3), since c does not occur in X ′ and α. Thus, X ′ ⊢ ∀xα,¬∀xα, whence

X ′ ⊢ ⊥, contradicting (b) and hence our assumption.

Call X ⊆ L a Henkin set if X satisfies the following two conditions:

(H1) X ⊢ ¬α ⇔ X � α, (equivalently, X ⊢ α ⇔ X � ¬α),

(H2) X ⊢ ∀xα ⇔ X ⊢ α c
x for all constants c in L.

(H1) and (H2) imply another useful property of a Henkin set X, namely

(H3) For each term t there is a constant c such that X ⊢ t==== c.

Indeed, X ⊢ ¬∀x t �==== x (= ∃xt==== x) for x /∈ var t by Example 3 in 3.1.

Hence, X � ∀x t �====x in view of (H1). Thus, X � t �====c for some c by (H2),

and so X ⊢ t==== c by (H1).

Lemma 2.4. Let X ⊆ L be consistent. Then there exists a Henkin set

Y ⊇ X in a suitable constant expansion LC of L.

Proof. Put L0 := L, X0 := X and assume that Ln and Xn have been

given. Let Ln+1 result from Ln by adopting new constants cx,α,n for all

x ∈ Var, α ∈ Ln; more precisely, Ln+1 = LnCn, with the set Cn of

constants cx,α,n. Further, let Xn+1 = Xn ∪ ΓLn . Here ΓLn is defined as

in Lemma 2.3 so that Xn+1 ⊆ Ln+1. Using Lemma 2.3 we have Xn � ⊥

for each n. Let X ′ :=
⋃

n∈N Xn; hence X ′ ⊆ L′ :=
⋃

n∈N Ln = LC,

where C :=
⋃

n∈N Cn. Then X ′ � ⊥, since X ′, as the union of a chain

of consistent sets, is surely consistent (in L′). Let α ∈ L′, x ∈ Var, and,

say, α ∈ Ln with minimal n, and let αx be the formula defined as in (1)

but with respect to Ln. Then ¬αx belongs to Xn+1. Hence ¬αx ∈ X ′.

Now let (H,⊆) be the partial order of all consistent extensions of X ′ in

L′. Every chain K ⊆ H has the upper bound
⋃

K in H, because if all
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members of K are consistent then so is
⋃

K. Also H �= ∅, e.g. X ′ ∈ H.

By Zorn’s lemma, H therefore contains a maximal element Y . In short,

Y is a maximal consistent extension of X ′. Since ¬αx ∈ X ′ ⊆ Y it holds

(2) Y ⊢ ¬αx for all α ∈ L′.

Further, Y is at the same time a Henkin set. Here is the proof:

(H1) ⇒: Y ⊢ ¬α implies Y � α due to the consistency of Y . ⇐ : If Y � α

then surely α �∈ Y . As a result Y, α ⊢ ⊥, for Y is maximally consistent.

Thus Y ⊢ ¬α by C−. You may also use Exercise 4 in 3.1

(H2) ⇒: Clear by (∀1). ⇐ : Let Y ⊢ α c
x for all c in L′, so also Y ⊢ α c

x for

c := cx,α,n, where n is minimal with α ∈ Ln. Assume that Y � ∀xα. Then

Y ⊢ ¬∀xα by (H1). But Y ⊢ ¬∀xα, α c
x implies Y ⊢ ¬∀xα ∧ α c

x = αx

using (∧1). Now, since Y is consistent, Y ⊢ αx which contradicts (2).

Thus, our assumption was wrong and indeed Y ⊢ ∀xα.

Remark 1. In the original language L, consistent sets are not generally embed-
dable in Henkin sets. For instance, let the signature of L consist of the constants
ci, i ∈ I with any infinite set I. Then the consistent set X = {v0 �==== ci | i ∈ I}
represents a counterexample in L====. In no consistent extension of X can be
derived v0 ==== ci for some i ∈ I. In other words, (H3) is violated.

Lemma 2.5. Every Henkin set Y ⊆ L possesses a model.

Proof. The model constructed in the following is called a term model .

Let t ≈ t′ whenever Y ⊢ t==== t′. The relation ≈ is a congruence in the term

algebra T of L. This means (repeating the definition on page 51) that

(a) ≈ is an equivalence relation,

(b) t1 ≈ t′1, . . . , tn ≈ t′n ⇒ f�t ≈ f�t′, for operation symbols f .

The claim (a) follows immediately from Y ⊢ t==== t and Example 1 in 3.1;

(b) is just another way of formulating 2(b). Let A := {t | t ∈ T }. Here t

denotes the equivalence class of ≈ containing the term t, so that

(c) t̄ = s̄ ⇔ t ≈ s ⇔ Y ⊢ t==== s.

This set A is the domain of the sought model M = (A, w) for Y . The

factorization of T will ensure that ==== means identity in the model. Let C

be the set of constants in L. By (H3) there is for each term t in T some

c ∈ C such that c ≈ t. Therefore even A = {c̄ | c ∈ C}. Now put xM := x

and cM := c for variables and constants in L. An operation symbol f

occurring in L of arity n > 0 is interpreted by fM, defined by

fM(t1, . . . , tn) := ft1 · · · tn.
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This definition is sound because ≈ is a congruence in the term algebra T .

Finally, define rM for an n-ary relation symbol r by

rMt1 · · · tn ⇔ Y ⊢ r�t .

This definition is also sound, since Y ⊢ r�t implies Y ⊢ r�t′ whenever

t1 ≈ t′1, . . . , tn ≈ t′n. Here we use Example 2(d) in 3.1. We shall prove

(d) tM = t; (e) M � α ⇔ Y ⊢ α,

of which (e) may be regarded as the goal of the constructions. (d) fol-

lows by term induction. It is evident for prime terms, and the induction

hypothesis tMi = ti for i = 1, . . . , n leads with t = f�t to

tM = fM(tM1 , . . . , tMn ) = fM(t1, . . . , tn) = ft1 · · · tn = t.

(e) follows by induction on rkα. We begin with formulas of rank 0

(prime formulas). Induction proceeds under consideration of rkα < rk¬α,

rkα, rkβ < rk(α∧β), and rkα t
x < rk∀xα, as in formula induction:

M � t==== s ⇔ tM = sM ⇔ t = s (by (d) )

⇔ Y ⊢ t==== s (by (c) ).

M � r�t ⇔ rMtM1 · · · tMn ⇔ rMt1 · · · tn ⇔ Y ⊢ r�t .

M � α∧β ⇔ M � α, β ⇔ Y ⊢ α, β (induction hypothesis)

⇔ Y ⊢ α∧β (using (∧1), (∧2) ).

M � ¬α ⇔ M � α ⇔ Y � α (induction hypothesis)

⇔ Y ⊢ ¬α (using (H1) ).

M � ∀xα ⇔ Mc
x � α for all c ∈ C (because A = {c | c ∈ C})

⇔ McM
x � α for all c ∈ C (because cM = c)

⇔ M � α c
x for all c ∈ C (substitution theorem)

⇔ Y ⊢ α c
x for all c ∈ C (induction hypothesis)

⇔ Y ⊢ ∀xα (using (H2) ).

Because of Y ⊢ α for all α ∈ Y , (e) immediately implies M � Y .

Just as for propositional logic, the equivalence of consistency and sat-

isfiability, and the completeness of ⊢, result from the above. Information

about the size of the model constructed in the next theorem will be given

in Theorem 4.1.
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Theorem 2.6 (Model existence theorem). Each consistent X ⊆ L

(in particular, each consistent theory T in L) has a model.

Proof. Let Y ⊇ X be a Henkin expansion of X, i.e., a Henkin set in a

suitable constant expansion LC according to Lemma 2.4. By Lemma 2.5,

Y and hence also X has a model M′ in LC. Let M denote the L-reduct

of M′. In other words, “forget” the interpretation of the constants not in

L. Then, by Theorem 2.3.1, M � X holds as well.

Theorem 2.7 (Completeness theorem). Let L denote any first-order

language. Then X ⊢ α ⇔ X � α, for all X ⊆ L and α ∈ L.

Proof. The soundness of ⊢ states that X ⊢ α ⇒ X � α. The converse

follows indirectly. Let X � α, so that X,¬α is consistent. Theorem 2.6

then provides a model for X ∪ {¬α}, whence X � α.

Thus, � and ⊢ can henceforth be freely interchanged. We will often

confirm X ⊢ α by proving X � α in a semi-formal manner as is common

in mathematics. In particular, for theories T , T � α is equivalent to T ⊢ α,

for which in the following we mostly write ⊢T α. Clearly, ⊢T α means

the same as α ∈ T for sentences α. More generally, let X ⊢T α stand for

X ∪T ⊢ α and α ⊢T β for {α} ⊢T β. We will also occasionally abbreviate

α ⊢T β & β ⊢T γ to α ⊢T β ⊢T γ. In subsequent chapters, equivalences

such as α ⊢T β ⇔ ⊢T α →β ⇔ ⊢T+α β and ⊢T α ⇔ ⊢T αg will be used

without further mentioning and should be committed to memory. Several

other useful equivalences are listed in Exercise 4.

Remark 2. The methods in this section easily provide also completeness of
a logical calculus for identity-free (or ==== -free) languages in which ==== does not
appear, considered in the exercises and Chapter 4. Simply discard from the
calculus in 3.1 everything that refers to ====. Most things run as before. The
domain of M is now the set T of all terms of LC without a factorization of
T , so that tM = t. Note that (H3) is not to our disposal anymore so that the
proof of Lemma 2.5 must be modified. We will not go into details, since we need
in 4.1 only a slight generalization of Exercise 1. In any case, consistency of a
==== -free set X means the same, no matter whether X is regarded as belonging to
a language with or without ==== , because X has a model in either case. Moreover,
if X consists of ∀-formulas only, we come along without a Henkin expansion in
constructing a model as will be shown in Theorem 4.1.1. The set of terms of the
original language is sufficient for model construction in this case.
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Exercises

1. Let L be ==== -free, T0 �= ∅ the set of its ground terms, and U ⊆ L

a consistent set of ∀-sentences. Construct a model T � U on the

domain T0 by setting cT = c, fT�t := f�t (hence tT = t for all t ∈ T0,

shown by induction on t), and rT�t :⇔ X ⊢ r�t (�t ∈ T n
0 ; X ⊇ U

maximally consistent, so that X ⊢ ¬ϕ ⇔ X � α, for all α ∈ L, cf.

e.g. Lemma 1.4.4). T is called a Herbrand model ; see also 4.1.

2. Let K �= ∅ be a chain of theories in L, i.e., T ⊆ T ′ or T ′ ⊆ T , for

all T, T ′ ∈ K. Show that
⋃

K is a theory that is consistent iff all

T ∈ K are consistent.

3. Suppose T is consistent and Y ⊆ L. Prove the equivalence of

(i) Y ⊢T ⊥, (ii) ⊢T ¬α for some conjunction α of formulas in Y .

4. Let x /∈ var t and α, t
x collision-free. Verify the equivalence of

(i) ⊢T α t
x , (ii) x==== t ⊢T α, (iii) ⊢T x==== t →α,

(iv) ⊢T ∀x(x==== t →α), (v) ⊢T ∃x(x==== t∧α).

3.3 First Applications: Nonstandard Models

In this section we draw important conclusions from Theorem 2.7 and the

model-construction for proving it. Since the finiteness theorem holds for

the provability relation ⊢, Theorem 2.7 immediately yields

Theorem 3.1 (Finiteness theorem for the consequence relation).

X � α implies X0 � α for some finite subset X0 ⊆ X.

Let us consider a first application. The first-order theory of fields of

characteristic 0 is axiomatized by the set X containing the axioms for

fields and the formulas ¬charp (page 48). We claim that

(1) A sentence α valid in all fields of characteristic 0 is also valid in all

fields of sufficiently high prime characteristic p that depends on α.

Indeed, since X � α, for some finite subset X0 ⊆ X we have X0 � α. If

p is a prime number larger than all prime numbers q with ¬charq ∈ X0,

then α holds in all fields of characteristic p, since these satisfy X0. Thus
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(1) holds. From (1) we obtain, for instance, the information that two given

polynomials coprime over all fields of characteristic 0 are also coprime over

fields of sufficiently high prime characteristic. The statement that given

polynomials are coprime is readily formalized in L{0, 1, +, ·}.

A noteworthy consequence of Theorem 3.1 is also the nonfinite axiom-

atizability of many elementary theories. Before presenting examples, we

explain finite axiomatizability in a somewhat broader context.

A set Z of strings of a given alphabet A is called decidable if there is an

algorithm (a mechanical decision procedure) that after finitely many cal-

culation steps provides us with an answer to the question whether a string

ξ of symbols of A belongs to Z; otherwise Z is called undecidable. Thus it

is certainly decidable whether ξ is a formula. While this is all intuitively

plausible, it nonetheless requires more precision (undertaken in 6.2). A

theory T is called recursively axiomatizable, or just axiomatizable, if it

possesses a decidable axiom system. This is the case, for instance, if T is

finitely axiomatizable, that is, if it has a finite axiom system.

From (1) it follows straight away that the theory of fields of characteris-

tic 0 is not finitely axiomatizable. For were F a finite set of axioms, their

conjunction α =
∧

F would, by (1), also have a field of finite character-

istic as a model. Here is another instructive example. An abelian group

G is called n-divisible if G � ϑn with ϑn := ∀x∃y x==== ny, where ny is the

n-fold sum y + · · · + y, and G is called divisible if G � ϑn for all n � 1.

Thus, the theory of divisible abelian groups, DAG, is axiomatized by the

set X consisting of the axioms for abelian groups plus all sentences ϑn.

Also DAG is not finitely axiomatizable. This follows as above from

(2) A sentence α ∈ L{+, 0} valid in all divisible abelian groups is also

valid in at least one nondivisible abelian group.

To prove (2), let α ∈ DAG, or equivalently X � α. According to The-

orem 3.1, X0 � α for some finite X0 ⊆ X. Let Zp be the cyclic group

of order p, where p is a prime > n for all n with ϑn ∈ X0. The map-

ping x 
→ nx from Zp to itself is surjective for 0 < n < p; otherwise

{na | a ∈ Zp} would be a nontrivial subgroup of Zp which cannot be.

Hence, Zp � ϑn for 0 < n < p. Thus, Zp � X0 and so Zp � α. On the

other hand, Zp is not p-divisible because px = 0 for all x ∈ Zp. In exactly

the same way, we can show that the theory of torsion-free abelian groups

is not finitely axiomatizable. In these groups is na �= 0 whenever n, a �= 0.
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In a similar manner, it is possible to prove for many theories that they

are not finitely axiomatizable. However, this often demands more involved

methods. For instance, consider the theory ACF of a.c. fields (see p. 48).

It results from adjoining to the (finitely axiomatizable) theory of fields the

schema of all sentences ∀�a∃x p(�a, x)==== 0, where p(�a, x) denotes the term

xn+1 + anxn + · · · + a1x + a0 (n = 0, 1, . . . ), called a monic polynomial of

degree n + 1. Here let a0, . . . , an, x denote distinct variables. Thus, in an

a.c. field every monic polynomial has a zero, and so does every polynomial

of positive degree. Nonfinite axiomatizability of ACF follows from the by

no means trivial existence proof of fields in which all polynomials up to a

certain degree do factorize but irreducible polynomials still exist.

As in propositional logic, the finiteness theorem for the consequence

relation leads immediately to the corresponding compactness result:

Theorem 3.2 (Compactness theorem). Any set X of first-order for-

mulas is satisfiable, provided every finite subset of X is satisfiable.

Because of the finer structure of first-order languages, this theorem is

somewhat more amenable to certain applications than its propositional

counterpart. It can be proved in various ways, even quite independent

of a logical calculus; for instance, by means of ultraproducts, as will be

carried out in 5.7. It can also be reduced to the propositional compactness

theorem, see Remark 1 in 4.1. For applications of Theorem 3.2 we will

concentrate on the construction of nonstandard models.

A theory T (⊆ L0) is called complete if it is consistent and has no

consistent proper extension in L0. It is easily seen that the completeness

of T is equivalent to either ⊢T α or ⊢T ¬α but not both, for each α ∈ L0.

Hence, ThA is complete for each L-structure A. Other equivalences of

completeness are given by Theorem 5.2.1. Note that completeness of a

theory is not related to the completeness theorem in 3.2.

We will frequently come across the theory ThN with N = (N, 0, S,+, ·).

Here S : n 
→ n + 1 is the successor function. N is the standard structure

for the arithmetical language Lar := L{0, S,+, ·}. The choice of signature

is a matter of convenience and has a long tradition. Of relations definable

in N , we name just � and <, defined by x � y ↔ ∃z z + x==== y, and

x < y ↔ x � y ∧x �==== y. This will be our standard definitions of the

symbols � and < in Lar .
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Certain axiomatic subtheories of the complete theory ThN are even

more frequently dealt with, in particular the so-called Peano arithmetic

PA, a first-order theory in Lar that is important both for mathematical

foundations as well as for investigations in computer science; see e.g. [Kra].

The axioms of PA are as follows:

∀x Sx �====0, ∀x x + 0==== x, ∀x x · 0==== 0,

∀xy(Sx==== Sy →x==== y), ∀xy x + Sy ==== S(x + y), ∀xy x · Sy ==== x · y + x,

IS: ϕ 0
x ∧∀x(ϕ →ϕ Sx

x ) →∀xϕ.

IS is called the induction schema and should not be mixed up with the

induction axiom IA discussed on page 108. In IS, ϕ runs over all formulas

from Lar , i.e., IS reads more precisely [ϕ 0
x ∧∀x(ϕ →ϕ Sx

x ) →∀xϕ]g ; see

our convention in 2.5. With IS one can prove ⊢PA ∀xϕ by induction on x:

First confirm ⊢PA ϕ 0
x (induction initiation), and then ⊢PA ∀x(ϕ →ϕ Sx

x ),

or equivalently, ϕ ⊢PA ϕ Sx
x (induction step). The latter means the deriva-

tion of the induction claim ϕ Sx
x from the induction hypothesis ϕ.

Example. Let ϕ be the formula x==== 0 ∨ ∃v Sv ==== x. We prove ⊢PA ∀xϕ.

In other words, each x �====0 has a predecessor, not something seen at once

from the axioms. Clearly, ⊢PA ϕ 0
x . Since Sv ==== x ⊢PA SSv ==== Sx, we get

∃vSv ==== x ⊢PA ∃vSv ==== Sx (particularization). Since x==== 0 ⊢PA ∃vSv ==== Sx

as well, we obtain ϕ ⊢PA ∃vSv ==== Sx ⊢PA Sx==== 0 ∨ ∃vSv ==== Sx = ϕ Sx
x . This

confirms the induction step ϕ ⊢PA ϕ Sx
x . Hence, ⊢PA ∀xϕ by IS. The above

is easily supplemented by an inductive proof of ⊢PA ∀x Sx �====x.

Remark 1. Only a few arithmetical facts (for instance, ∀x 0 � x) are derivable in
PA without IS. Already the derivation of such simple statements as ∀x x � Sx and
∀x Sx �====x needs IS. The schema IS is extremely strong. In 7.2 it will then become
clear that PA fully embraces elementary number theory and practically the whole
of discrete mathematics. More about PA in the exercises; these are exclusively
devoted to PA, in order to give the reader familiarity with this important theory
as early as possible. Despite its strength, PA is incomplete, as will be shown
in 6.5. It is not of any import that subtraction is only partially defined in PA.
A theory of integers, formulated similarly to PA, may be more convenient for
number theory, but is actually not stronger than PA; it is interpretable in PA in
the sense of 6.6. We mention that PA is not finitely axiomatizable, shown for
the first time in [Ry]. For this and other historical remarks see, e.g., [HP].

We will now prove that not only PA but also the complete theory ThN

has alongside the standard model N other models not isomorphic to N ,
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called nonstandard models. In these models, exactly the same theorems

hold as in N . The existence proof of a nonstandard model N ′ of ThN is

strikingly simple. Let x ∈ Var and X := ThN ∪ {n < x | n ∈ N}. Here

and throughout the text we use n to denote the term Sn0 := S · · · S
︸ ︷︷ ︸

n

0.

Therefore, 1 = S0, 2 = S1, . . . , and generally Sn = Sn. The term 0

(that is, S00) is mostly denoted by 0. Note that n < x is the formula

n � x∧n �==== x. One may replace x here by a constant symbol c, thus

expanding the language. But both approaches lead to the same result.

Every finite subset X0 ⊆ X possesses a model. Indeed, there is evidently

some m such that X0 ⊆ X1 := ThN ∪{n < x | n < m}, and X1 certainly

has a model: one need only assign to x in N the number m. Thus, by

Theorem 3.2, X has a model (N ′, c) with the domain N′, where c ∈ N′

denotes the interpretation of x. We know that N ′ satisfies all sentences

valid in N , including in particular the sentences Sn==== Sn, n + m==== n + m

and n · m==== n · m. Therefore, n 
→ nN ′

constitutes an embedding from N

into N ′ whose image can be thought of as coinciding with N .2 In other

words, it is legitimate to assume that nN ′

= n so that N ⊆ N ′.

Because N ′ � X, on the one hand N ′ is elementarily equivalent to N ,

and on the other n < a for all n and any a ∈ N′ \N, since in N and

hence in N ′ we have (∀x�n)
∨

i�n x==== i. In short, N is a (proper) initial

segment of N′, or N ′ is an end extension of N . The elements of N′ \N
are called nonstandard numbers. Alongside c, other examples are c + c

and c + n for n ∈ N. Clearly, c has both an immediate successor and an

immediate predecessor in the order, because N ′ � (∀x �====0)∃!y x==== Sy. The

figure gives a rough picture of a nonstandard model N ′:

N′ : · · ·� � �� � �� � �� � �� � �� � �� � �♣ ♣ ♣♣ ♣� �� �� �� �� �� �
0 1 c c+c

︷ ︸︸ ︷
N

N ′ has the same number-theoretic features as N , at least all those that

can be formulated in Lar . These include nearly all the interesting ones, as

will turn out to be the case in 7.1. For example, ∀x∃y(x==== 2y ∨ x==== 2y+1)

holds in every model of ThN , that is, every nonstandard number is either

2 Whenever A is embeddable into B there is a structure B′ isomorphic to B such that

A ⊆ B′. The domain B′ arises from B by interchanging the images of the elements

of A with their originals.
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even or odd. Clearly, the model N′ contains gaps in the sense of 2.1.

The most obvious example is (N, N′ \N).

Remark 2. Theorem 4.1 will show that ThN has also countable nonstandard
models. The order of such a model N ′ is easy to make intuitive: it arises from
the half-open interval [0, 1) of rational numbers by replacing 0 with N and every
other r ∈ [0, 1) by a specimen from Z. On the other hand, neither +N ′

nor ·
N ′

is effectively describable; see for instance [HP].

Replacing the induction schema IS in the axiom system for PA by the

so-called induction axiom

IA: ∀P (P0∧∀x(Px →PSx) →∀xPx) (P a predicate variable)

results in a categorical axiom system that, up to isomorphism, has just

a single model (see e.g. [Ra5]). How is it possible that N is uniquely

determined up to isomorphism by a few axioms, but at the same time

nonstandard models exist for ThN ? The answer is simple: IA cannot be

adequately formulated in Lar . That is, IA is not an axiom or perhaps

an axiom schema of the first-order language of N . It is a sentence of a

second-order language, about which we shall say more in 3.8. However,

this intimated limitation regarding the possibilities of formulation in first-

order languages is merely an apparent one, as the undertakings of the rest

of the book will show, especially the considerations about axiomatic set

theory in 3.4.

In no nonstandard model N ′ is the initial segment N definable, indeed

not even parameter definable, which means that there is no α = α(x, �y)

and no b1, . . . , bn ∈ N′ such that N = {a ∈ N′ | N ′ � α [a,�b]}. Otherwise

we would have N ′ � α 0
x ∧ ∀x(α →α Sx

x ) [�b]. This yields N ′ � ∀xα [�b]

by IS, in contradiction to N′ \N �= ∅. The same reasoning shows that no

proper initial segment A ⊂ N′ without a largest element is definable in

N′; such an A would clearly define a gap in the order of N′. The situation

can also be described as gaps in N′ are not recognizable from within.

Introductory courses in real analysis tend to give the impression that

a meaningful study of the subject requires the axiom of continuity: Ev-

ery nonempty bounded set of real numbers has a supremum. On this

basis, Cauchy and Weierstrass reformed analysis, thus banishing from

mathematics the somewhat mysterious infinitesimal arguments of Leibniz,

Newton, and Euler. But mathematical logic has developed methods that,

to a large extent, justify the original arguments. This is undertaken in the
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framework of nonstandard analysis, developed above all by A. Robinson

around 1950. In the sequel, we provide an indication of its basic idea.

The same construction as for N also provides a nonstandard model for

the theory of R = (R, +, ·, <, {a | a ∈ R}), where for each real number a, a

name a was added to the signature. Consider X = ThR∪{a < x | a ∈ R}.

Every finite subset of X has a model on the domain R. Thus, X is

consistent, and as above, a model of X represents a proper extension R∗

of R, a nonstandard model of analysis. In each such model the same

theorems hold as in R. For instance, in R∗ every polynomial of positive

degree can be decomposed into linear and quadratic factors. In Chapter 5

it will be shown that the nonstandard models of ThR are precisely the

real closed extensions of R. All these are elementarily equivalent to R.

For analysis, it is now decisive that the language can be enriched from

the very beginning, say by the adoption of the symbols exp, ln, sin, cos

for the exponential, logarithmic, and trigonometric functions, and further

symbols for further functions. We denote a thus expanded standard model

once again by R and a corresponding nonstandard model by R∗. The

mentioned real functions available in R carry over to R∗ and maintain

all properties that can be elementarily formulated. That means in fact

almost all properties with interesting applications, for example

∀xy exp(x+y)==== exp x·exp y, (∀x>0) exp lnx==== x, ∀x sin2 x+cos2 x==== 1,

as well as the addition theorems for the trigonometric functions and so

on. All these functions remain continuous and repeatedly differentiable.

However, the Bolzano–Weierstrass theorem and other topological prop-

erties cannot be salvaged in full generality. They are replaced by the

aforementioned infinitesimal arguments.

In a nonstandard model R∗ of ThR with R ⊆ R∗ there exist not only

infinitely large numbers c (i.e., r < c for all r ∈ R), but also infinitely

many small positive numbers. Let c be infinite. Since 1
r < c ⇔ 1

c < r for

all r > 0, 1
c is smaller than each positive real r, and yet positive. That

is, 1
c is fairly precisely what Leibniz once named an infinitesimal . Taking

a somewhat closer look reveals the following picture: Every real number

a is sitting in a nest of nonstandard numbers a∗ ∈ R∗ that are only

infinitesimally distinct from a. In other words, |a∗ − a| is an infinitesimal.

Hence, quantities such as dx, dy exist in mathematical reality, and may
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once again be considered as infinitesimals in the sense of their inventor

Leibniz. These quantities are exactly the elements of R∗ infinitesimally

distinct from 0.

From the existence of nonstandard models for ThR, it can be concluded

that the continuity axiom, just like IA, cannot be elementarily formulated.

For by adjoining this axiom to those for ordered fields, R is characterized,

up to isomorphism, as the only continuously ordered field; see e.g. [Ta4].

Hence, the order of a nonstandard model R∗ of ThR possesses gaps. Here,

too, the gaps are “not recognizable from within,” since every nonempty,

bounded parameter-definable subset of R∗ has a supremum in R∗. That

is the case because in R and thus also in R∗, the following continuity

schema holds, which ensures the existence of a supremum for those sets;

here ϕ = ϕ(x, �y) runs over all formulas such that y, z /∈ free ϕ:

∃xϕ∧∃y∀x(ϕ →x� y) →∃z∀x[(ϕ →x� z) ∧ ∀y((ϕ →x� y) →z � y)].

Analogous remarks can be made on complex numbers. There is an

algebraically closed field R∗[i] ⊇ R∗ in which familiar facts such as Euler’s

formula eix ==== cos x + i · sinx continue to hold, in particular eiπ ==== − 1.

Exercises

1. Prove in PA the associativity, commutativity, and distributivity of

+, ·. Before proving x+y = y+x derive Sx+y ==== x+Sy and 0+y = y

by induction on y. The basic arithmetical laws provable in PA are

collected in the axiom system N on page 235.

2. � was defined in Lar on page 105. Reflexivity and transitivity of �

easily derive in PA. Prove in PA the antisymmetry of �.

3. Prove x < y ≡PA Sx � y (or equivalently, x < Sy ≡PA x � y). Use

this to prove ⊢PA x � y ∨ y � x by induction on x.

4. Verify (a),(b), and (c) for arbitrary formulas α, β, γ ∈ Lar such that

y /∈ var {α, β} and z /∈ var γ.

(a) ⊢PA ∀x((∀y<x)α y
x →α) →∀xα, the schema of <-induction,

(b) ⊢PA ∃xβ →∃x(β ∧ (∀y<x)¬β y
x), the minimum schema,

(c) ⊢PA (∀x<v)∃yγ →∃z(∀x<v)(∃y<z)γ, the schema of collection.
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3.4 ZFC and Skolem’s Paradox

Before turning to further consequences of the results from 3.2, we collect

a few basic facts about countable sets. The proofs are simple and can be

found in any textbook on basic set theory. A set M is called countable if

there is a surjection f : N → M (i.e. M = {an | n ∈ N} provided fn = an)

or M = ∅, and otherwise uncountable. Every subset of a countable set

is itself countable. If f : M → N is surjective and M is countable then

clearly so too is N . Sets M, N are termed equipotent , briefly M ∼ N , if a

bijection from M to N exists. If M ∼ N, then M is said to be countably

infinite. A countable set can only be countably infinite or finite, which is

to mean equipotent to {1, . . . , n} for some n ∈ N.

The best-known uncountable set is R. It is equipotent to PN. The

uncountability of PN is a particular case of an important theorem from

Cantor: The power set PM of a set M has a higher cardinality than M ,

i.e., no injection from M to PM is surjective. The cardinality of sets will

be explained to some extent in 5.1. Here it suffices to know that two sets

M, N are of the same cardinality iff M ∼ N , and that there are countable

and uncountable infinite sets.

If M, N are countable so too are M ∪ N and M × N , as is easy

to see. Moreover, as was shown already by Cantor, a countable union

U =
⋃

i∈N Mi of countable sets Mi is again countable. Cantor’s proof

a00 a01 a02 a03

a20

a10 a11

✲ ✲

�
�✠

❄

�
�✒

�
�✒

�
�✠♣♣♣ � � �

consists in writing down U as an infinite

matrix where the nth line enumerates of

Mn = {anm | m ∈ N}. Then enumer-

ate the matrix in the zigzag manner indi-

cated by the figure on the right, beginning

with a00. Accordingly, for countable M ,

in particular U =
⋃

n∈N Mn, the set of all

finite sequences of elements in M is again countable, because every Mn is

countable. Hence, every first-order language with a countable signature

is itself countable, more precisely countably infinite.3

By a countable theory we always mean a theory formalized in a countable

language. We now formulate a theorem significant for many reasons.

3 Here we use the axiom of choice, since for every Mi some enumeration is chosen. It

can be shown that without the axiom of choice the proof cannot be carried out.
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Theorem 4.1 (Löwenheim–Skolem). A countable consistent theory T

always has a countable model.

Proof. By Theorem 2.6, T (⊆ L) has a model M with domain A, con-

sisting of the equivalence classes c̄ for c ∈ C in the set of all terms of

L′ = LC, where C =
⋃

n∈N Cn is a set of new constants. By construction,

C0 is equipotent to Var×L and thus countable. The same holds for every

Cn, and so C is also countable. The map c 
→ c̄ from C to A is trivially

surjective, so that M has a countable (possibly finite) domain, and this

was the very claim.

In 5.1 we will significantly generalize the theorem, but even in the above

formulation it leads to noteworthy consequences. For example, there are

also countable ordered fields as nonstandard models of the first-order the-

ory Th (R, 0, 1, +, <, ·, exp, sin, . . . ) in which the usual theorems about

real functions retain their validity. Thus, one need not really overstep the

countable to obtain a rich theory of analysis.

Especially surprising is the existence, ensured by Theorem 4.1, of count-

able models of formalized set theory. Although set theory can be regarded

as the basis for the whole of presently existing mathematics, it embraces

only a few set-building principles. The most important system of formal-

ized set theory is ZFC, created at the beginning of the twentieth century.

Remark 1. Z stands for E. Zermelo, F for A. Fraenkel, and C for AC, the axiom
of choice. ZF denotes the theory resulting from the removal of AC. ZFC sets out
from the principle that every element of a set is again a set, so that a distinction
between sets and systems of sets vanishes. Thus, ZFC speaks exclusively about
sets, unlike Russell’s type-theoretic system, in which, along with sets, so-called
urelements (objects that are members of sets but aren’t sets themselves) are
considered. Set theory without urelements is fully sufficient as a foundation of
mathematics and for nearly all practical purposes. Even from the epistemological
point of view there is no evidence that urelements occur in reality: each object
can be identified with the set of all properties that distinguish it from other
objects. Nonetheless, urelements are still in use as a technical tool in certain
set-theoretic investigations. We mention in passing that neither ZF nor ZFC

is finitely axiomatizable. This seems plausible if we look at the axioms given
below, but the proof is not quite easy.

To make clear that ZFC is a countable first-order theory and hence

belongs to the scope of applications of Theorem 4.1, we present in the

following its axioms. Each of the axioms will be briefly discussed. This
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will be at the same time an excellent exercise in advanced formalization

technique. The set-theoretic language already denoted in 2.2 by L∈ is

one of the most conceivably simple languages and is certainly countable.

Alongside ==== it contains only the membership symbol ∈ . This symbol

should be distinguished from the somewhat larger ∈ that is used through-

out in our metatheory. The variables are now called set variables. These

will as a rule be denoted by lowercase letters as in other first-order lan-

guages. In order to make the axioms and its consequences easily legible,

we employ the widely used abbreviations

(∀y∈x)ϕ := ∀y(y ∈ x →ϕ), (∃y∈x)ϕ := ∃y(y ∈ x∧ϕ).

Besides, we define the relation of inclusion by x ⊆ y ↔ ∀z(z ∈ x →z ∈ y).

Note also that all free variables occurring in the axioms below (e.g., x, y in

AE) have to be thought of as being generalized according to our convention

in 2.5. The ZFC axioms are then the following:

AE : ∀z(z ∈ x ↔ z ∈ y) →x==== y (axiom of extensionality).

AS : ∃y∀z(z ∈ y ↔ ϕ ∧ z ∈ x) (axiom of separation).

Here ϕ runs over all L∈-formulas with y /∈ freeϕ. AS is in fact a schema of

axioms. Let ϕ = ϕ(x, z,�a). From AS and AE , ∀x∃!y∀z(z ∈ y ↔ ϕ ∧ z ∈ x)

is derivable. Indeed, observe for y, y′ /∈ freeϕ the obvious derivability of

(z ∈ y ↔ ϕ∧z ∈ x)∧ (z ∈ y′ ↔ ϕ∧z ∈ x) → (z ∈ y ↔ z ∈ y′).

This implies ∀z(z ∈ y ↔ ϕ∧ z ∈ x)∧∀z(z ∈ y′ ↔ ϕ∧ z ∈ x) →y ==== y′ and

hence the claim. Thus, y ==== {z ∈ x | ϕ} ↔ ∀z(z ∈ y ↔ ϕ ∧ z ∈ x) is a legiti-

mate definition in the sense of 2.6. {z ∈ x | ϕ} is called a set term and is

just a suggestive writing of a function term f�ax. This term still depends

on the “parameter” vector �a. It collects the free variables of ϕ distinct from

x, z. Thus, instead of introducing each time a new operation symbol, one

uses the more economical “curled bracket notation.”

The empty set can explicitly be defined by y ==== ∅ ↔ ∀z z /∈ y. Indeed,

thanks to AS, ∃y∀z(z ∈ y ↔ z /∈ x∧ z ∈ x) is provable. This formula is

equivalent to ∃y∀z z /∈ y, since z ∈ y ↔ z /∈ x∧ z ∈ x ≡ z /∈ y. Clearly, using

AE, ∀z z /∈ y ∧ ∀z z /∈ y′ → y ==== y′ is provable. This, together with ∃y∀z z /∈ y,

yields ∃!y∀z z /∈ y, which legitimates the explicit definition y ==== ∅ ↔ ∀z z /∈ y,

as was explained in detail in 2.6. The next axiom is

AU : ∀x∃y∀z(z ∈ y ↔ (∃u∈ x) z ∈ u) (axiom of union).
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Here again, because of AE, ∃y can be replaced by ∃!y. As in 2.6, we

may therefore define an operator on the universe,4 denoted by x 
→
⋃

x.

We avoid the word “function,” since functions are understood as special

objects of the universe. AU is equivalent to ∀x∃y∀z((∃u∈ x)z ∈ u →z ∈ y),

because
⋃

x can be separated from such a set y by means of AS. The

following axiom could analogously be weakened.

AP : ∀x∃y∀z(z ∈ y ↔ z ⊆ x) (power set axiom).

Let Px denote the y that in view of AE is uniquely determined by x

in AP. What first can easily be proved is ∀x(x∈ P∅ ↔ x==== ∅) as well

as ∀x(x∈ PP∅ ↔ x==== ∅ ∨ x==== P∅). Since ∅ �==== P∅, the set PP∅ contains

precisely two elements. This is decisive for defining {a, b} below.

The following axiom was added to those of Zermelo by Fraenkel.

AR : ∀x∃!yϕ →∀u∃v∀y(y ∈ v ↔ (∃x∈u) ϕ) (axiom of replacement).

Here ϕ = ϕ(x, y,�a) and u, v /∈ free ϕ. If ∀x∃!yϕ is provable, then we know

from 2.6 that an operator x 
→ Fx can be introduced. By AR, the image of

a set u under F is again a set which, as a rule, is denoted by {Fx | x ∈ u}.

F may depend on further parameters a1, . . . , an, so we had better write

F�a for F . AR is very strong; even AS is derivable from it, Exercise 4. An

instructive example of an application of AR, for which ∀x∃!yϕ is certainly

provable, is provided by ϕ = ϕ(x, y, a, b) := x==== ∅∧y ==== a ∨ x �====∅∧y ==== b.

The operator F = Fa,b defined by ϕ clearly satisfies F∅==== a and Fx==== b

if x �= ∅. Accordingly, the image of the two-element set PP∅ under Fa,b

contains the (not necessarily distinct) members a, b. We then define

{a, b} := {Fa,b(x) | x∈ PP∅}

and call this set the pair set of a, b. We next put a ∪ b :=
⋃

{a, b} (while

a ∩ b := {z ∈ a | z ∈ b} already exists from AS). Further, let {a} := {a, a}

and {a1, . . . , an+1} = {a1, . . . , an} ∪ {an+1} for n � 2. Now we can prove

that P∅==== {∅}, PP∅==== {∅, {∅}}, . . . The ordered pair of a, b is defined as

(a, b) := {{a}, {a, b}}. This definition may look artificial but it implies

the basic property (a, b)==== (c, d) ↔ a==== c∧ b==== c. Only this is needed.

We now have at our disposal the tools necessary to develop elementary

set theory. Beginning with sets of ordered pairs it is possible to model

relations and functions and all concepts building upon them, even though

4 A frequently used synonym for the domain of a ZFC-model, mostly denoted by V ,

and ‘for all sets a’ is then often expressed as ‘for all a ∈ V ’.
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the existence of infinite sets is still unprovable. Mathematical require-

ments demand their existence, though then the borders of our experience

with finite sets are transgressed. The easiest way to get infinite sets is

using the set operator x 
→ Sx, with Sx := x ∪ {x}.

AI : ∃u[∅∈ u∧∀x(x∈ u → Sx∈ u)] (axiom of infinity).

Such a set u contains ∅, S∅ = ∅ ∪ {∅} = {∅}, SS∅ = {∅, {∅}}, . . . and

is therefore infinite in the naive sense. This holds in particular for the

smallest set u of this type, denoted by ω. In formalized set theory ω plays

the role of the set of natural numbers. ω contains 0 := ∅, 1 := S0 = {0},

2 := S1 = {∅, {∅}} = {0, 1}, . . . Generally, Sn = {0, 1, . . . , n}. Thus, the

n ∈ N are represented in ZF by certain variable-free terms, called ω-terms.

In everyday mathematics the following axiom is basically dispensable:

AF : (∀x �====∅)(∃y∈x)x ∩ y ==== ∅ (axiom of foundation).

Put intuitively: Every set x �==== ∅ contains an ∈ -minimal element y. AF

precludes the possibility of “∈-circularity” x0 ∈ · · · ∈ xn ∈ x0. In particular,

there is no set x with x∈ x.

Remark 2. In axiomatic set theory, AF plays a highly important role. The most
important consequence of AF is the existence of the von Neumann hierarchy
V =

⋃

α∈On
Vα. Here On denotes the class of all ordinal numbers. These are

generalizations of natural numbers, defined in each textbook on set theory. Vα

is a set for each α∈ On and defined by recursion: V0 = ∅, Vα+1 = PVα, and
Vλ =

⋃

α<λ Vα for limit ordinals λ. All this is more important for the foundations
of mathematics than for applications of set theory.

ZF is the theory with the above axioms. ZFC results from ZF by ad-

joining the axiom of choice AC:

∀u[∅ /∈ u ∧ (∀x∈u)(∀y∈u)(x �====y →x ∩ y ==== ∅) →∃z(∀x∈u)∃!y(y ∈ x ∩ z)].

AC states that for every set u of disjoint nonempty sets x there is a set z,

a choice set, that picks up precisely one element from each x in u. One of

the many equivalences to AC is
∏

i∈I
Ai �= ∅, for any index set I.

The above expositions clearly show that ZFC can be understood as a

first-order theory. In some sense, ZFC is even the purest such theory,

because all sophisticated proof methods that occur in mathematics, for

instance transfinite induction and recursion and every other type of in-

duction and recursion, can be made explicit and derived in the first-order

language L∈ of ZFC without particular difficulty.
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Whereas mathematicians regularly transgress the framework of a theory,

even one that is unambiguously defined by first-order axioms, in that

they make use of combinatorial, number- or set-theoretic tools wherever

it suits them, set theory, as it stands now, imposes upon itself an upper

limit. Within ZFC, all sophisticated proof and definition techniques gain

an elementary character, so to speak. As a matter of fact, there are

no pertinent arguments against the claim that the whole of mathematics

can be treated within the frame of ZFC as a single first-order theory, a

claim based on general mathematical experience that is highly interesting

for the philosophy of mathematics. However, one should not make a

religion out of this insight, because for mathematical practice it is of

limited significance only.

If ZFC is consistent—and no one really doubts this assumption although

there is no way of proving it—then by Theorem 4.1, ZFC must have a

countable model V = (V, ∈ V). The existence of such a model V is at

first glance paradoxical because the existence of uncountable sets is easily

provable within ZFC. An example is Pω. On the other hand, because of

(Pω)V ⊆ V , it must be true (judged from the outside) that also (Pω)V

is countable. Thus, the notion countable has a different meaning “inside

and outside the world V,” which comes rather unexpectedly. This is the

so-called Skolem’s paradox .

The explanation of Skolem’s paradox is that the countable model V, to

put it figuratively, is “thinned out” and contains fewer sets and functions

than expected. Indeed, roughly put, it contains just enough to satisfy the

axioms, yet not, for instance, some bijection from ωV to (Pω)V , which,

seen from the outside, certainly exists. Therefore, the countable set (Pω)V

is uncountable from the perspective of the world V. In other words, count-

ability is not an absolute concept.

Moreover, the universe V of a ZFC-model is by definition a set, whereas

⊢ZFC ¬∃v∀z z ∈ v, i.e., there is no “universal set.” Thus, seen from within,

V is too big to be a set. ¬∃v∀z z ∈ v is derived as follows: the hypothesis

∃v∀z z ∈ v entails with AE and AS the existence of the “Russellian set”

u = {x∈ v | x /∈ x}. That is, ∃v∀z z ∈ v ⊢ZFC ∃u∀x(x∈ u ↔ x /∈ x).

On the other hand, by Example 1 page 73, ⊢ZFC ¬∃u∀x(x∈ u ↔ x /∈ x).

Thus, indeed ⊢ZFC ¬∃v∀z z ∈ v. Accordingly, even the notion of a set

depends on the model. There is no absolute definition of a set.
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None of the above has anything to do with ZFC’s incompleteness.5

Mathematics has no problem with the fact that its basic theory is in-

complete and cannot be rendered complete, at least not in an axiomatic

manner. More of a problem is the lack of undisputed criteria for extending

ZFC in a way coinciding with truth or at least with our intuition.

Exercises

1. Let T be an elementary theory with arbitrarily large finite models.

Prove that T also has an infinite model.

2. Suppose A = (A, <) is an infinite well-ordered set (see 2.1). Show

that there is a not well-ordered set elementarily equivalent to A.

Thus, being well-ordered is not a first-order property.

3. Prove that a consistent theory T coincides with the intersection of

all its complete extensions, i.e., T =
⋂

{T ′ ⊇ T | T ′ complete}.

4. Derive the axiom AS of separation from the replacement axiom AR.

5. fin(a) := ∀s[∅∈ s∧ (∀u∈ s)(a\u �==== ∅ → (∃e∈ a\u)u ∪ {e}∈ s) →a∈ s]

is one of several definitions of ‘a is finite’. Prove for each ϕ ∈ L∈:

fin(a) ⊢ZF ϕx(∅)∧∀u∀e(ϕx(u) →ϕx(u ∪ {e})) →ϕx(a).

3.5 Enumerability and Decidability

Of all the far-reaching consequences of the completeness theorem, perhaps

the most significant is the effective enumerability of all tautologies of a

countable first-order language. Once Gödel had proved this, the hope

grew that the decidability problem for tautologies might soon be resolved.

Indeed, the wait was not long, and a few years after Gödel’s result Church

proved the problem to be unsolvable for sufficiently expressive languages.

This section is intended to provide only a brief glimpse of enumeration

and decision problems as they appear in logic, computer science, and

elsewhere. We consider them more rigorously in Chapters 5 and 6.

The term effectively enumerable will be made more precise in 6.1 by the

notion of recursive enumerability. At this stage, our explanation of this

5 In 6.6 the incompleteness of ZFC and all its axiomatic extensions will be proved.
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notion must be somewhat superficial, though like that for a decidable set

it is highly visualizable. Put roughly, a set M of natural numbers, say, or

syntactic objects, finite structures, or similar objects is called effectively

(or recursively) enumerable if there exists an algorithm that delivers the

elements of M stepwise. Thus, in the case of an infinite set M , the

algorithm does not stop its execution by itself.

The calculus of natural deduction enables first of all an effective enu-

meration of all provable finite sequences of a first-order language with

at most countably many logical symbols, i.e., all pairs (X, α) such that

X ⊢ α and X is finite, at least in principle. First of all, we imagine all ini-

tial sequents as enumerated in an ongoing, explicitly producible sequence

S0, S1, . . . Then it is systematically checked whether one of the sequent

rules is applicable; the resulting sequents are then enumerated in a second

sequence and so on. Leaving aside problems concerning the storage ca-

pacity of such a deduction machine, as well as the difficulties involved in

evaluating the flood of information that would pour from such a device, it

is simply a question of organization to create a program that enumerates

all provable finite sequents.

Moreover, it can be seen without difficulty that the tautologies of a

countable language L are effectively enumerable; one need only pick out

from an enumeration procedure of provable sequents (X, α) those such

that X = ∅. In short, the aforementioned deduction machine delivers

stepwise a sequence α0, α1, . . . (without repetitions if so desired) that

consists of exactly the tautologies of L. This would be somewhat easier

with the calculus in 3.6. However, we cannot in this way obtain a decision

procedure as to whether any given formula α ∈ L is a tautology, for we do

not know whether α ever appears in the produced sequence. We will prove

rigorously in 6.5 that in fact such an algorithm does not exist, provided

L contains at least a binary predicate or operation symbol. Decision

procedures exist only for L==== as will be shown in 5.2, and expansions of

L==== containing only unary predicate and constant symbols, and at most

one unary operation symbol; see also [BGG].

The deduction machine can also be applied to enumerate the theorems

of a given axiomatizable theory T , in that parallel to the enumeration

process for all provable sequents of the language, a process is also set

going that enumerates all axioms of T . It must then continually be checked
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for the enumerated sequents whether all their premises occur as already-

enumerated assertions; if so, then the conclusion of the sequent in question

is provable in T . The preceding considerations constitute an informal

proof of the following theorem. A rigorous proof free of merely intuitive

arguments is provided by Theorem 6.2.4.

Theorem 5.1. The theorems of an axiomatizable theory are effectively

enumerable.

Almost all theories considered in mathematics are axiomatizable, in-

cluding formalized set theory ZFC and Peano arithmetic PA. While the

axiom systems of these two theories are infinite and cannot be replaced

by finite ones, these sets of axioms are evidently decidable.

Our experience hitherto shows us that all theorems of mathematics held

to be proved are also provable in ZFC. Hence, according to Theorem 5.1,

all mathematical theorems can in principle be stepwise generated by a

computer. This fact is theoretically highly important, even if it has little

far-reaching practical significance at present.

Recall the notion of a complete theory. Among the most important

examples is the theory of the real closed fields (Theorem 5.5.5). A note-

worthy feature of complete and axiomatizable theories is their decidability.

We call a theory decidable if the set of its theorems is a decidable set of

formulas, and otherwise undecidable. We shall prove the next theorem in

an intuitive manner. A strict proof, based on the rigorous definition of

decidability based on the theory of recursive functions in 6.1, will later

be provided by Theorem 6.4.4 on page 247.

Theorem 5.2. A complete axiomatizable theory T is decidable.

Proof. By Theorem 5.1 let α0, α1, . . . be an effective enumeration of all

sentences provable in T . A decision procedure consists simply in com-

paring for given α ∈ L0 the sentences α and ¬α in the nth construction

step of α0, α1, . . . with αn. If α = αn then ⊢T α; if α = ¬αn then �T α.

This process certainly terminates, because due to the completeness of T ,

either α or ¬α will appear in the enumeration sequence α0, α1, . . . of the

theorems of T .

Conversely, a complete decidable theory is trivially axiomatizable (by

T itself). Thus, for complete theories, “decidable” and “axiomatizable”
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mean one and the same thing. A consistent theory has a model and hence

at least one completion, i.e., a complete extension in the same language.

The only completion of a complete theory T is T itself. A remarkable

generalization of Theorem 5.2 is Exercise 3.

A (countable) decidable theory has always a decidable completion, see

Exercise 4. Hence, a theory all completions of which are undecidable is

itself undecidable. We will meet such theories in 6.5. On the other hand,

if T has only finitely many completions, T0, . . . , Tn say, all of which are

decidable, then so is T . Indeed, according to Exercise 3 in 3.4, α ∈ T iff

α ∈ Ti for all i � n.6 See also Exercise 3 below.

In the early stages in the development of fast computing machines,

high hopes were held concerning the practical carrying out of mechanized

decision procedures. For various reasons, this optimism has since been

muted, though skillfully employed computers can be helpful not only in

verifying proofs but also in finding them. This area of applied logic is

called automated theorem proving (ATP). Convincing examples include

computer-supported proofs of the four-color theorem, the Robbins prob-

lem about a particular axiomatization of Boolean algebras, Bieberbach’s

conjecture in function theory, and the nonexistence of a projective plane

of order 10. ATP is used today both in hardware and software verification,

for instance in integrated circuit (chip) design and verification. A quick

source of information about ATP is the Internet.

Despite these applications, even a developed artificial-intelligence sys-

tem has presently no chance of simulating the heuristic approach in math-

ematics, where a precise proof from certain hypotheses is frequently only

the culmination of a series of considerations flowing from the imagination.

Creativity in mathematics of today is still a domain of human beings, not

of automata. However, that is not to say that an automatic system may

not be creative in a new way, for it is not necessarily the case that the

human procedural method, influenced by all kinds of pictorial thoughts,

is the sole means of gaining mathematical knowledge.

6 The elementary absolute (plane) geometry T has precisely two completions, Euclidean

and non-Euclidean (or hyperbolic) geometry. Both are axiomatizable, hence decid-

able. Completeness follows in either case from the completeness of the elementary

theory of real numbers, Theorem 5.5.5. Thus, absolute geometry is decidable as well.

Further applications can be found in 5.2.
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Exercises

1. Let T ′ = T + α (α ∈ L0) be a finite extension of T . Show that if T

is decidable so too is T ′ (cf. Lemma 6.5.3).

2. Assume that T is consistent and has finitely many completions only.

Prove that each completion of T is a finite extension of T .

3. Show that an axiomatizable theory with finitely many completions is

decidable (observe Exercise 2, Exercise 3 in 3.4, and Theorem 5.2).

4. Using the Lindenbaum construction in 1.4, show that a decidable

countable theory T has a decidable completion, [TMR, p. 15].

5. Show that a consistent theory T that has finitely many completions

has also only finitely many extensions. More precisely, if T has n

completions then T has 2n − 1 consistent extensions. Clearly, n = 1

if T itself is complete.

3.6 Complete Hilbert Calculi

The sequent calculus of 3.1 models natural deduction sufficiently well.

But it is nonetheless advantageous to use a Hilbert calculus for some pur-

poses, for instance the arithmetization of formal proofs. Such calculi are

based on logical axioms and rules of inference such as modus ponens MP:

α, α →β/β, also called Hilbert-style rules. These rules can be understood

as sequent rules without premises. In a Hilbert calculus, deductions are

drawn from a fixed set of formulas X, e.g., the axioms of a theory, with

the inclusion of the logical axioms. The situation is basically the same as

in 1.6. In the case X = ∅ one deduces from the logical axioms alone, and

only tautologies are derivable.

In the following we prove the completeness of a Hilbert calculus in the

logical symbols ¬, ∧ , ∀, ==== . It will be denoted here by |∼ . MP is its only

rule of inference. |∼ refers to any first-order language L and is essentially

an extension of the corresponding propositional Hilbert calculus treated

in 1.6. Once again, implication, defined by α →β := ¬(α∧¬β), will play

a useful part in presenting the calculus.
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The logical axiom system Λ of our calculus is taken to consist of all

formulas ∀x1 · · · ∀xnϕ, where ϕ is a formula of the form Λ1–Λ10 below,

and n � 0. For example, due to Λ9, x==== x, ∀x x==== x,∀y x==== x, ∀x∀y x==== x

are logical axioms, even though ∀y is meaningless in the last two formulas.

One may also say that Λ is the set of all formulas that can be derived from

Λ1–Λ10 by means of the rule MQ: α/∀xα. Attention: MQ is not a rule

of inference of the calculus |∼ , nor is it provable, although the set of

tautologies is closed under MQ. We will later take a closer look at MQ.

Λ1: (α →β →γ) → (α →β) →α →γ, Λ2: α →β →α∧β,

Λ3: α∧β →α, α∧β →β, Λ4: (α →¬β) →β →¬α,

Λ5: ∀xα →α t
x (α, t

x collision-free), Λ6: α →∀xα (x /∈ free α)

Λ7: ∀x(α →β) →∀xα →∀xβ, Λ8: ∀yα y
x →∀xα (y �∈ varα),

Λ9: t==== t, Λ10: x==== y →α →α y
x (α prime).

It is easy to recognize Λ1–Λ10 as tautologies. For Λ1–Λ4 this is clear by

1.6. For Λ5–Λ8 the reasoning proceeds straightforwardly by accounting

for Corollary 2.3.6 on page 71 and the logical equivalences in 2.4. For Λ9

the claim is trivial, and Λ10 is equivalent to x==== y, α �
y
x , and the latter

is obviously the case.

Axiom Λ5 corresponds to the rule (∀1) of the calculus in 3.1, while

Λ6 serves to deal with superfluous prefixes. The role of Λ7 will become

clear in the completeness proof for |∼ , and Λ8 is part of bound renaming.

Λ9 and Λ10 control the formal treatment of identity. If ϕ is a tautology,

then for any prefix block ∀�x, so too is ∀�xϕ. Thus, Λ consists solely of

tautologies. The same holds for formulas derivable from Λ using MP,

simply because � α, α →β implies � β.

Let X |∼α if there exists a proof Φ = (ϕ0, . . . , ϕn) of α from X, that is,

α = ϕn, and for all k � n either ϕk ∈ X ∪ Λ or there exists some ϕ such

that ϕ and ϕ →ϕk appear as members of Φ before ϕk. This definition

and its consequences are the same as in 1.6. As is the case there and

proved in the same way, it holds that X |∼α, α →β ⇒ X |∼β. Moreover,

Theorem 1.6.1 also carries over unaltered, whose application will often be

announced by the heading “proof by induction on X |∼α.” For instance,

the soundness of |∼ is proved by induction on X |∼α, where soundness is

as usual to mean X |∼α ⇒ X � α, for all X and α. In short, |∼ ⊆ �.

The proof runs exactly as on page 37.
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The completeness of |∼ can now be relatively easily be traced back to

that of the rule calculus ⊢ of 3.1. Indeed, much of the work was already

undertaken in 1.6, and we can immediately formulate the completeness

of the calculus |∼ .

Theorem 6.1 (Completeness theorem for |∼). |∼ = �.

Proof. |∼ ⊆ � has already been verified. � ⊆ |∼ follows from the claim

that |∼ satisfies all nine basic rules of ⊢. This implies ⊢⊆ |∼ , and since

⊢= � we have also �⊆ |∼ . For the rules (∧1) through (¬2) the claim holds

according to their proof for the Hilbert calculus in 1.6. Lemmas 1.6.2

through 1.6.5 carry over word for word, because we have kept the four

axioms on which the proofs are based and have taken no new rules into

account. (∀1) follows immediately from Λ5 using MP, and (IR) is dealt

with by Λ9. Only (∀2) and (=) provide us with a little work, which, by

the way, will clear up the role of axioms Λ6, Λ7, and Λ8.

(∀2): Suppose x �∈ freeX. We first prove X |∼α ⇒ X |∼∀xα by induc-

tion on X |∼α. Initial step: If α ∈ X then x is not free in α. Hence,

X |∼α →∀xα using Λ6, and MP yields X |∼∀xα. If α ∈ Λ then also

∀xα ∈ Λ, and likewise X |∼∀xα. Induction step: Let X |∼α, α →β and

X |∼∀xα,∀x(α →β) according to the induction hypothesis. This yields

X |∼∀xα,∀xα →∀xβ by Axiom Λ7 and MP and, by another application

of MP, the induction claim X |∼∀xβ. Now, to verify (∀2), let X |∼α y
x

and y �∈ freeX ∪ varα. By what we have just proved, we get X |∼∀yα y
x .

This, MP, and X |∼∀yα y
x →∀xα (Axiom Λ8) yield the conclusion of (∀2),

X |∼∀xα. Thus, |∼ indeed satisfies the rule (∀2).

(=): Let α be a prime formula and X |∼s==== t, α s
x . Further, let y be a

variable �= x not in s and α. Then certainly X |∼∀x∀y(x==== y →α →α y
x),

because the latter is a logical axiom in view of Λ10. By the choice of y,

rule (∀1) shows that

X |∼ [∀y(x==== y →α →α y
x)] s

x = ∀y(s==== y →α s
x →α y

x).

Because of y /∈ varα, s and α y
x

t
y = α t

x , another application of (∀1) yields

X |∼ [s==== y →α s
x →α y

x ] t
y = s==== t →α s

x →α y
x

t
y = s==== t →α s

x →α t
x .

Since X |∼s==== t, α s
x by assumption, two applications of MP then leads to

the desired conclusion X |∼α t
x .

A special case of the above completeness theorem is the following
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Corollary 6.2. For any α ∈ L, the following properties are equivalent:

(i) |∼α, that is, α is derivable from Λ by means of MP only,

(ii) α is derivable from Λ1–Λ10 by means of MP and MQ,

(iii) � α, i.e., α is a tautology.

The equivalence of (i) and (iii) renders especially intuitive the possi-

bility to construct a “deduction machine” that effectively enumerates the

set of all tautologies of L. Here, we are dealing with just one rule of in-

ference, modus ponens; hence we need the help of a machine to list the

logical axioms, a “deducer” to check whether MP is applicable, and, if so,

to apply it, and an output unit that emits the results and feeds them back

into the deducer for further processing. However, similar to the case of a

sequent calculus, such a procedure is not actually practicable; the distinc-

tion between significant and insignificant derivations is too involved to be

taken into account. Who would be interested to find in the listing such a

weird-looking tautology as for instance ∃x(rx →∀y ry)?

Next we want to show that the global consequence relation �
g

defined

in 2.5 can also be completely characterized by a Hilbert calculus. It is

necessary only to adjoin the generalization rule MQ to the calculus |∼ .

The resulting Hilbert calculus, denoted by ⊢
g
, has two rules of inference,

MP and MQ. Proofs in ⊢
g

have to be correspondingly redefined.

Like every Hilbert calculus, ⊢
g

is transitive: X ⊢
g

Y & Y ⊢
g

α ⇒ X ⊢
g

α.

This was verified in 1.6 for propositional Hilbert calculi, but the same

argument applies also to Hilbert calculi in first-order languages. With

this remark, the completeness of ⊢
g

follows easily from that of |∼ :

Theorem 6.3 (Completeness theorem for ⊢
g

). ⊢
g
= �

g
.

Proof. Certainly ⊢
g
⊆ �

g
, since both MP and MQ are sound for �

g
. Now let

X �
g
α, so that X g

� α by (1) of 2.5. This yields X g |∼α by Theorem 6.1,

and so X g ⊢
g

α, since |∼ ⊆ ⊢
g

by definition of ⊢
g
. Clearly, X ⊢

g
X g in virtue

of MQ; hence transitivity provides the desired X ⊢
g

α.

We now are going to discuss a notion of equal interest for both logic and

computer science. α ∈ L0 is called generally valid in the finite if A � α for

all finite structures A. Examples of such sentences α not being tautolo-

gies can be constructed in every first-order language L that contains at

least a unary function or a binary relation symbol. For instance, consider
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∀x∀y(fx==== fy →x==== y) →∀y∃x y ==== fx from a language L containing the

function symbol f . This sentence can be refuted only in an infinite L-

structure since an injection in a finite L-structure is surjective. It holds

in all finite L-structures A, but is not in TautL. Thus, TautL is properly

extended by the set of L-sentences valid in the finite, TautfinL.

Tautfin (= TautfinL) is for each L a theory T with the finite model

property , i.e., every α ∈ L0 compatible with T has a finite T -model. More

generally, the theory T = ThK has for any class K of finite L-structures

the finite model property. Indeed, if T +α is consistent, i.e., ¬α /∈ T , then

A � ¬α for some A ∈ K; hence A � α. Examples are the theories FSG

and FG of all finite semigroups and finite groups in L◦ , respectively. Both

theories are undecidable. As regards FSG, the proof is not particularly

difficult; see 6.6. Unlike Taut, the set Tautfin is not axiomatizable for

most languages L. This is the claim of

Theorem 6.4 (Trachtenbrot). TautfinL is not (recursively) axiomatiz-

able for any first-order language L containing at least one binary operation

or a binary relation symbol.

Proof. We restrict ourselves to the first case; for a binary relation symbol,

the same follows easily by means of interpretation (Theorem 6.6.3). If

TautfinL were axiomatizable it would also be decidable because of the

finite model property; Exercise 2. The same is true also for TautfinL◦
,

and by Exercise 1 in 3.5, so too for FSG, because FSG is the extension

of TautfinL◦
by a single sentence, the law of associativity. But as already

mentioned, FSG is undecidable.

The theorem is in fact a corollary of much stronger results that have

been established in the meantime. For the newer literature on decision

problems of this type consult [Id]. Unlike FG, the theory of finite abelian

groups, as well as of all abelian groups, is decidable, [Sz]. The former is a

proper extension of the latter; for instance (as stated in Exercise 4),

∀x∃y y + y ==== x →∀x(x + x==== 0 →x==== 0)

does not hold in all abelian groups, though it does in all finite ones.

As early as 1922 Behmann discovered by quantifier elimination that

Taut possesses the finite model property provided the signature contains

only unary predicate symbols; one can also prove this without difficulty by
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the Ehrenfeucht game of 5.3. In this case, then, Tautfin = Taut, because

α /∈ Taut implies ¬α is satisfiable and therefore has a finite model. Thus,

α /∈ Tautfin. This proves Tautfin ⊆ Taut and hence Tautfin = Taut. With

the Ehrenfeucht game also a quite natural axiomatization of the theory

FO of all finite ordered sets is obtained. See Exercise 3 in 5.3.

Exercises

1. Show that MQ is unprovable in |∼ (that is, X |∼α ⇒ X |∼∀xα does

not hold, in general).

2. Suppose (i) a theory T has the finite model property, (ii) the fi-

nite T -models are effectively enumerable (more precisely, a system

of representatives thereof up to isomorphism). Show that (a) the

sentences α refutable in T are effectively enumerable, (b) if T is

axiomatizable then it is also decidable.

3. Let T be a finitely axiomatizable theory with the finite model prop-

erty. Show by working back to Exercise 2 that T is decidable.

4. Show that ∀x∃y y + y ==== x →∀x(x+x==== 0 →x==== 0) holds in all finite

abelian groups. Moreover, provide an example of an infinite abelian

group for which the above proposition fails.

3.7 First-Order Fragments

Subsequent to Gödel’s completeness theorem it makes sense to investigate

some fragments of first-order languages aiming at a formal characteriza-

tion of deduction inside the fragment. In this section we present some

results in this regard; in the next section we shall do the same for some

extensions. First-order fragments are formalisms that come along without

the full means of expression in a first-order language, for instance by the

omission of some or all logical connectives, or restricted quantification.

These formalisms are interesting for various reasons, partly because of

the growing interest in automatic information processing with its more or

less restricted user interface. The poorer a linguistic fragment, the more

modest the possibilities for the formulation of sound rules. Therefore, the

completeness problem for fragments is in general nontrivial.
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A useful example dealt with more closely is the language of equations,

whose only formulas are equations of a fixed algebraic signature. We think

of the variables in the equations as being tacitly generalized and call these

generalizations identities, though we often speak somewhat sloppily of

equations. Theories with axiom systems of identities are called equational

theories and their model classes equational-defined classes or varieties.

Let Γ denote a set of identities defining an equational theory, γ a single

equation, and assume Γg
� γ. By Theorem 2.7 there is a formal proof

for γ from Γ. But because of the special form of the equations, it can be

expected that one does not need the whole formalism to verify Γg ⊢ γ.

Indeed, Theorem 7.2 states that the Birkhoff rules (B0)–(B4) below, taken

from [Bi], suffice. This result is so pleasing because when operating with

(B0)–(B4), we remain completely inside the language of equations. The

rules define a Hilbert-style calculus denoted by ⊢
B

and look as follows:

(B0) /t==== t, (B1) s==== t/t==== s, (B2) t==== s, s==== t′/t==== t′,

(B3) t1 ==== t′1, . . . , tn ==== t′n/ft1 · · · tn ==== ft′1 · · · t′n, (B4) s==== t/sσ ==== tσ.

Here σ is a global substitution, though as explained in 2.2 it would suf-

fice to consider just simple σ. (B0) has no premise, which means that

t==== t is derivable from any set of identities (or t==== t is added as an ax-

iom to Γ). These rules are formally stated with respect to unquantified

equations. However, we think of all variables as being generalized in a

formal derivation sequence. We are forced to do this by the soundness

requirement of (B4), because in general only (s==== t)g
� sσ ==== tσ. To verify

Γ ⊢
B

γ ⇒ Γg
� γ, we need only to show that the property Γg

� γ is closed

under (B0)–(B4), i.e., A � t==== t (which is trivial), A � s==== t ⇒ A � t==== s,

etc. We have already come across the rules of ⊢
B

in 3.1, stated there as

Gentzen-style rules; they ensure that by s ≈ t :⇔ Γ ⊢
B

s==== t, a congru-

ence in the term algebra T is defined as in Lemma 2.5. (B4) states the

substitution invariance of ≈, which is to mean s ≈ t ⇒ sσ ≈ tσ.

Let F denote the factor structure of T with respect to ≈ (no distinction

is made between the algebra T and its domain), and let t denote the

congruence class modulo ≈ to which the term t belongs, so that

(1) t1 = t2 ⇔ Γ ⊢
B

t1 ==== t2.

Further, let w : Var → F , say xw = tx, with arbitrary tx ∈ xw. Any such

choice determines a global substitution σw : x 
→ tx. Induction on t yields

(2) tF ,w = tσ (σ := σw).
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Lemma 7.1. Γ ⊢
B

t1 ==== t2 ⇔ F � t1 ==== t2.

Proof. Let Γ ⊢
B

t1 ==== t2, w : Var → F , and σ = σw. By (B4) then also

Γ ⊢
B

tσ1 ==== tσ2 , so that tσ1 = tσ2 by (1). Thus, tF ,w
1 = tF ,w

2 using (2). Since

w was arbitrary, F � t1 ==== t2. Now suppose the latter and let κ be the

so-called canonical valuation x 
→ x. Here we choose σκ = ι (the identical

substitution), hence tF ,κ
i = ti by (2). F � t1 ==== t2 implies tF ,κ

1 = tF ,κ
2 , and

in view of tF ,κ
i = ti, we get t1 = t2 and so Γ ⊢

B
t1 ==== t2 by (1).

Theorem 7.2 (Birkhoff’s completeness theorem). Let Γ be a set of

identities and t1====t2 an equation. Then Γ ⊢
B

t1====t2 ⇔ Γg
� t1====t2.

Proof. The direction ⇒ is the soundness of ⊢
B
. Now let Γg

� t1 ==== t2.

Then certainly F � Γ according to Lemma 7.1, or equivalently F � Γg .

Thus, F � t1 ==== t2. Using Lemma 7.1 once again yields Γ ⊢
B

t1 ==== t2.

This proof is distinguished on the one hand by its simplicity and on

the other by its highly abstract character. It has manifold variations and

is valid in a corresponding sense, for example, for sentences of the form

∀�xπ with arbitrary prime formulas π of any given first-order language. It

is rather obvious how to strengthen the Birkhoff rules to cover this more

general case: Keep (B0), (B1), and (B3) and replace the conclusions of

(B3) and (B4) by arbitrary prime formulas of the language.

There is also a special calculus for sentences of the form

(3) ∀�x (γ1 ∧ · · · ∧γn →γ0) (n � 0, all γi equations),

called quasi-identities. Theories whose axioms are of the form (3) are

called quasi-equational theories and their model classes quasi-varieties.

The latter are important both for algebra and logic. (B0) is retained and

(B1)–(B3) are replaced by the rules without premises (axioms)

/x==== y → y ==== x, /x==== y ∧y ==== z → x==== z, /
∧n

i=1 xi ==== yi → f�x==== f�y.

Besides an adaptation of (B4), some rules are required for the formal

handling of the premises γ1, . . . , γn in (3), for instance their permutability

(for details see e.g. [Se]). A highly important additional rule is here a

variant of the cut rule, namely the binary Hilbert-style rule

α∧ δ →γ, α →δ/α →γ (α a conjunction of equations).

The most interesting case for automated information processing, where

Hilbert rules remaining inside the fragment still provide completeness, is

that of universal Horn theories. Here, roughly speaking, the equations γi
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in (3) may be any prime formulas. Horn theories are treated in Chapter 4.

But for enabling a real machine implementation, the calculus considered

there, the resolution calculus, is different from a Hilbert- or a Gentzen-

style calculus.

Exercises

1. Show that a variety K is closed with respect to homomorphic im-

ages, taking subalgebras, and forming arbitrary direct products of

members of K; in short, K has the properties H, S, and P.7

2. Develop a calculus for quasi-varieties as indicated in the text and

prove its completeness. This exercise is a comprehensive task; we

recommend to start with a study of [Se].

3.8 Extensions of First-Order Languages

Now we consider a few of the numerous possibilities for extending first-

order languages to increase the power of expression: We say that a lan-

guage L′ ⊇ L of the same signature as L is more expressive than L if for

at least one sentence α ∈ L′, Mdα is distinct from all Mdβ for β ∈ L.

In L′, some of the properties of first-order languages are lost. Indeed,

the claim of the next theorem is that first-order languages are optimal in

regard to the richness of their applications.

Lindström’s Theorem (see [EFT] or [CK]). There is no language of

a given signature that is more expressive than the first-order language

and for which both the compactness theorem and the Löwenheim–Skolem

theorem hold.

Many-sorted languages. In describing geometric facts it is convenient

to use several variables, for points, lines, and, depending on dimension,

also for geometrical objects of higher dimension. For every argument

of a predicate or operation symbol of such a language, it is useful to

fix its sort. For instance, the incidence relation of plane geometry has

arguments for points and lines. For function symbols, the sort of their

7 Conversely, if a class K has these three properties then K is a variety. This is

Birkhoff’s HSP theorem, a basic theorem of universal algebra; see e.g. [Mo].
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values must additionally be given. If L is of sort k and vs
0, v

s
1, . . . are

variables of sort s (1 � s � k) then every relation symbol r is assigned

a sequence (s1, . . . , sn); in a language without function symbols, prime

formulas beginning with r have the form rxs1
1 · · ·xsn

n , where xsi

i denotes a

variable of the sort si.

Many-sorted languages represent only an inessential extension of the

concept hitherto expounded, provided the sorts are given equal rights.

Instead of a language L with k sorts of variables, we can consider a one-

sorted language L′ with additional unary predicate symbols P1, . . . , Pk

and the adoption of certain new axioms: ∃xPix for i = 1, . . . , k (no sort

is empty, for otherwise it is dispensable) and ¬∃x(Pix∧Pjx) for i �= j

(sort disjunction). For example, plane geometry could also be described

in a one-sorted language with the additional predicates pt (to be a point)

and li (to be a line). Apart from a few differences in dealing with term

insertion, many-sorted first-order languages behave almost exactly like

one-sorted languages.

Second-order languages. Some frequently quoted axioms, e.g., the in-

duction axiom IA, may be looked upon as second-order sentences. The sim-

plest extension of a first-order language to one of higher order is the

monadic second-order language, a two-sorted language. Let us consider

such a language L with variables x, y, z, . . . for individuals and variables

X, Y, Z, . . . for sets of these individuals, along with at least one binary re-

lation symbol ∈ but without function symbols. Prime formulas are x==== y,

X ==== Y, and x∈ X. An L-structure is generally of the form (A, B, ∈), where

∈ ⊆ A × B. The goal is that by formulating additional axioms such as

∀XY [∀x(x∈ X ↔ x∈ Y ) →X ==== Y ] (which corresponds to the axiom of

extensionality AE in 3.4), the relation symbol ∈ should be interpretable

as the membership relation ∈; hence B should consist of the subsets of A.

This goal is not fully attainable, but nearly so. Axioms on A, B can be

found such that B is interpretable as a subset of PA, with ∈ interpreted

as ∈. The same works by adding sort variables for members of PPA,
PPPA, etc. This “completeness of the theory of types” plays a basic role,

for instance, in the higher nonstandard analysis.

A more enveloping second-order language, LII , is won by adopting

quantifiable variables for relations of each finite arity on the domains

of individuals. But LII then fails to satisfy both the finiteness and the
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Löwenheim–Skolem theorem (Theorem 4.1), even for L = L====. The former

fails because a sentence αfin can be given in LII such that A � αfin iff A

is finite. For note that A is finite iff every injective f : A → A is bijective.

This can effortlessly be formalized using a single universally quantified

binary predicate variable characterizing the graph of f .

The Löwenheim–Skolem theorem is also easily refutable for LII ; one

need only write down in LII the sentence ‘there exists a continuous order

on A without smallest or largest element’. This sentence has no countable

model. For if there were such a model, it would be isomorphic to the

ordered set of rationals according to a theorem of Cantor (Example 2 in

5.2) and therefore has gaps, contradicting our assumption.

There is still a more serious problem as regards LII : The ZFC-axioms,

seen as axioms of the underlying set theory, do not suffice to establish

what a tautology in LII should actually be. For instance, the continuum

hypothesis CH (see page 174) can be easily formulated as an LII -sentence,

αCH. But CH is independent of ZFC. Thus, if CH is true, αCH is an

LII-tautology, otherwise not. It does not look as though mathematical

intuition suffices to decide this question unambiguously.

New quantifiers. A simple syntactic extension L∼O
of a first-order

language L is obtained by taking on a new quantifier denoted by ∼O,

which formally is to be handled as the ∀-quantifier. However, in a model

M = (A, w), a new interpretation of ∼O is provided by means of the

satisfaction clause

(0) M � ∼Oxα ⇔ there are infinitely many a ∈ A with Ma
x � α.

With this interpretation, we write L0
∼O

instead of L∼O
, since yet another

interpretation of ∼O will be discussed. L0
∼O

is more expressive than L,

as seen by the fact, for example, that the finiteness theorem for L0
∼O

no

longer holds: Let X be the collection of all sentences ∃n (there exist at

least n elements) plus αfin := ¬∼Ox x==== x (there exist only finitely many

elements). Every finite subset of X has a model, but X itself does not. All

the same, L0
∼O

still satisfies the Löwenheim–Skolem theorem. This can be

proved straightforwardly with the methods of 5.1. Once again, because

of the missing finiteness theorem there cannot be a complete rule calculus

for L0
∼O

. Otherwise, just as in 3.1, one could prove the finiteness theorem

after all. However, there are several nontrivial, correct Hilbert-style rules

for L0
∼O

, for instance the four rules
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(Q1) /¬∼Ox(x==== y ∨ x==== z), (Q2) ∼Oxα/∼Oyα y
x (y /∈ free α),

(Q3) ∀x(α →β)/∼Oxα →
∼Oxβ, (Q4) ∼Ox∃yα,¬∼Oy∃xα/∃y∼Ox α.

In rule (Q1), which has no premises, clearly x �= y, z. Intuitively, this

rule tells us that the pair set {y, z} is finite. (Q2) is bound renaming.

(Q3) says that a set containing an infinite subset is itself infinite. (Q4) is

rendered intuitive with α = α(x, y) as follows:

Suppose that A � ∼Ox∃yα,¬∼Oy∃xα and let Ab = {a ∈ A | A � α(a, b)}.

Then A � ∼Ox∃y α states ‘
⋃

b∈A Ab is infinite’, and A � ¬∼Oy∃x α says

‘there exist only finitely many b such that Ab �= ∅’. The conclusion ∃y∼Oxα

tells us therefore ‘Ab is infinite for at least one index b’. Hence, (Q4)

expresses altogether that the union of a finite system of finite sets is finite.

Now let us replace the satisfaction clause (0) by

(1) M � ∼Oxα ⇔ there are uncountably many a ∈ A with Ma
x � α.

Also with this interpretation, (Q1)–(Q4) are sound for L1
∼O

(= L∼O
with

the interpretation (1) ). Rule (Q4) now evidently expresses that a count-

able union of countable sets is again countable. Moreover, the logical

calculus ⊢
1

resulting from the basic rules of 3.1 by adjoining (Q1)–(Q4)

is, surprisingly, complete for these semantics when restricted to countable

sets X. Thus, X ⊢
1

α ⇔ X � α, for any countable X ⊆ L1
∼O

, [CK].

This implies the following compactness theorem for L1
∼O

: If every finite

subset of a countable set X ⊆ L1
∼O

has a model then so too does X. For

uncountable sets of formulas this is false in general; Exercise 1.

The above is a fairly incomplete listing of languages with modified quan-

tifiers. There are also several other extensions of first-order languages, for

instance languages with infinite formulas (containing infinitely long con-

junctions and disjunctions). In this respect we refer to the literature on

model theory.

Programming languages. All languages hitherto discussed are of

static character inasmuch as there are spatially and temporally indepen-

dent truth values for given valuations w in a structure A. But one can

also connect a first-order language L in various ways with a programming

language having dynamic character and aiming at the description of cer-

tain types of information processing. The choice of L depends on what

the programming language is aiming at. L can as a rule be reconstructed

from the description of the programming language’s syntax.
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The theory of programming languages, both syntax and semantics, has

its roots in mathematical logic. Nonetheless, it has assumed an indepen-

dent status and belongs rather to computer science than to logic. Hence

our considerations will be rather brief.

We describe here a simple example of such a language, PL, where L

is a fixed first-order language. Only the open formulas of L will be used

in PL, not the quantifiers. The elements of PL are certain strings, called

programs, denoted by P,Q, . . . , and defined below.

The dynamic character of PL arises by modifying traditional semantics

as follows: A program P starts with a valuation w : Var → A where A

is the domain of a given L-structure A. The program P alters stepwise

the values of the variables as a run of the program proceeds in time. If P

terminates upon feeding in w, i.e., the calculation ends after finitely many

steps of calculation, then the result is a new valuation wP. Otherwise we

take wP to be undefined. The precise description of this in general only

partially defined operation w 
→ wP is called the procedural semantics of

PL. A closer description will be given below.

It is possible to meaningfully consider issues of completeness, say, for

procedural semantics as well. For instance, if L speaks about natural

numbers one may ask what conditions have to be posed on L such that

each computable function is programmable in PL.

The syntax of PL is specified as follows: The logical signature of L

is extended by the symbols WHILE , DO , END , :==== , and ; (the semicolon

serves only as a separator for concatenated programs and could be omitted

if programs are arranged 2-dimensionally). Programs on L are defined

inductively as strings of symbols in the following manner:

• For any x ∈ Var and term t ∈ TL, the string x :==== t is a program.

• If α is an open formula in L and P,Q are programs, so too are the

strings P ; Q and WHILEα DOP END.

No other strings are programs in this context. P ; Q is to mean that

first P and then Q are executed. Let Pn denote the n-times repeated

execution of P, more precisely, P0 is the empty program (wP0
= w) and

Pn+1 = Pn ; P.

The procedural semantics for the programming language PL is made

precise by the following stipulations:
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(a) wx :==== t = w tw
x (i.e., w alters at most the value of the variable x).

(b) If wP and (wP)Q are defined, so too is wP;Q, and wP;Q = (wP)Q.

(c) For Q := WHILEα DOP END let wQ = wPk
with k specified below.

According to our intuition regarding the “WHILE loop,” k is the smallest

number such that A � α [wPi
] for all i < k and A � α [wPk

], provided

such a k exists and all wPi
for i � k are well defined. Otherwise wQ is

considered to be undefined. If k = 0, that is, A � α [w], then wQ = w,

which amounts to saying that P is not executed at all, in accordance with

the meaning of WHILE in standard programming languages.

Example. Let L = L{0, S, Pd} and consider A = (N, 0, S, Pd), where S

denotes the successor function and Pd the predecessor function, defined

by y ==== Pdx ↔ y ==== 0 ∨ x==== Sy (so that Pd 0==== 0). Let P be the program

z :==== x ; v :==== y ; WHILE v �====0 DO z :==== Sz ; v :==== Pd v END.

If x and y initially have the values xw = m and yw = n, the program ends

with zwP

= m + n. In other words, P terminates for every input m, n

for x, y and computes the output m + n in the variable z, while x, y keep

their initial values.

In PL, the self-explanatory program schema IFα THENP ELSEQ END is

definable by the following composed program:

x :==== 0 ; WHILEα∧x==== 0 DO P ; x :==== S0 END ; WHILEx==== 0 DOQ ; x :==== S0 END,

where x is a variable not appearing in P, Q, and α.

Exercises

1. Show (a) both LII and L1
∼O

violate the Löwenheim–Skolem theorem,

(b) the finiteness theorem is false for uncountable sets of formulas

in L1
∼O

, in general (although it holds for countable sets of formulas).

2. Express the continuum hypothesis as a (possibly false) theorem of

LII .

3. Verify the correctness of the definition of IFα THENP ELSEQ END

given at the end of the above text.

4. Define the D0P UNTILα END loop in the programming language PL.

In this loop, P is executed before the test α is started. That is, P is

executed at least once.



Chapter 4

Foundations of Logic Programming

Logic programming aims not so much at solving numerical problems in

science and technology, as at treating information processing in general,

in particular at the creation of expert systems of artificial intelligence.

A distinction has to be made between logic programming as theoretical

subject matter and the widely used programming language for practical

tasks of this kind, PROLOG. In regard to the latter, we confine ourselves

to a presentation of a somewhat simplified version, which nonetheless

preserves the typical features.

The notions dealt with in 4.1 are of fairly general nature. Their origin

lies in certain theoretical questions posed by mathematical logic, and they

took shape before the invention of the computer. For certain sets of

formulas, in particular for sets of universal Horn formulas, which are very

important for logic programming, term models are obtained canonically.

The newcomer need not understand all details of 4.1 at once, but should

learn about Horn formulas in 4.2 and after a glance at the theorems may

then continue with 4.3.

The resolution method and its combination with unification applied

in PROLOG were directly inspired by mechanical information processing.

This method is also of significance for tasks of automated theorem proving,

which extends beyond logic programming. We treat resolution first in

the framework of propositional logic in 4.3. Its highlight, the resolution

theorem, is proved constructively, without recourse to the propositional

compactness theorem. In 4.5, unification is dealt with, and 4.6 presents

the combination of resolution with unification and its application to logic

programming. An introduction to this area is also offered by [Ll].
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4.1 Term Models and Herbrand’s Theorem

In the proof of Lemma 3.2.5 as well as in Lemma 3.7.1 we have come

across models whose domains are equivalence classes of terms of a first-

order language L. In general, a term model is to mean an L-model F

whose domain F is the set of congruence classes t = t/≈ of a congruence

≈ (= ≈F ) on the algebra T = TL. If ≈ is the identity in T , one identifies

F with T so that then t = t. Function symbols and constants are always

interpreted canonically: fF (t1, . . . , tn) := ft1 · · · tn and cF := c, while no

particular condition is imposed on realizing the relation symbols in F .

Further, let κ : x 
→ x (x ∈ Var). This is called the canonical valuation.

In the terminology of 2.3, F = (F, κ), where F = T/≈T denotes the L-

structure belonging to the model F with the domain F = {t | t ∈ T }. We

claim that independent of a specification of ≈F and of the rF ,

(1) tF = t for all t ∈ T ,

(2) F � ∀�xα ⇔ F � α
�t
�x for all �t ∈ T n (α open).

(1) is verified by an easy term induction (cf. the proof of (d) page 101). (2)

follows from left to right by Corollary 2.3.6. The converse runs as follows:

F � α
�t
�x for all �t ∈ T n implies F t1···tn

x1···xn
= F�t F

�x � α for all t1, . . . , tn ∈ T in

view of (1) and of Theorem 2.3.5. But this means that F � ∀�xα, because

the t for t ∈ T exhaust the domain of F .

Interesting for both theoretical logic and automated theorem proving

including logic programming, is the question, for which consistent X ⊆ L

can a term model be constructed in L. An answer to this question is

given by Theorems 1.1 and 2.1 below. First, we associate with each given

X ⊆ L a special term model as follows.

Definition. The term model F = FX (associated with a set X ⊆ L) is

the term model for which ≈FX and rFX are defined by

s ≈FX t :⇔ X ⊢ s==== t; rFXt1 · · · tn :⇔ X ⊢ rt1 · · · tn .

It is easily verified that ≈FX is a congruence in T and that the definition

of rFX does not depend on the representatives. If X is the axiom system

of some theory T , then we write also FT for FX, and s ≈T t for s ≈FX t.

By (1), FX � s==== t ⇔ s = t ⇔ X ⊢ s==== t. Similarly FX � r�t ⇔ X ⊢ r�t .

In general, FX is not a model for X. Our definition merely implies

(3) FX � π ⇔ X ⊢ π (π prime).
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Here is a simple example in which the associated term model FT is a

model for T . It will turn out to be a special case of Theorem 2.1.

Example 1. Let T be the theory of semigroups and F the algebra belong-

ing to the term model FT . Every term t is equivalent in T to a term in left

association, denoted by x1 · · ·xn (the operation symbol is not written and

x1, . . . , xn is an enumeration of the variables of t in order of appearance

in t from left to right, possibly with repetitions). Thus, t ≈T x1 · · ·xn.

For instance, v0((v1v0)v1) ≈T v0v1v0v1. It is easy to see that ı :S → F

with ı(x1, . . . , xn) = x1 . . . xn is an isomorphism, where S is the semigroup

of strings over the alphabet Var, and (x1, . . . , xn) denotes here the string

with the letters x1, . . . , xn. Thus, with S also F is a semigroup, hence

F � T . This amounts to the same as saying F � T .

As already announced earlier, we slightly extend the concept of a model.

Let Lk and Vark be defined as in 2.2. Pairs (A, w) with dom w ⊇ Vark

are called Lk-models. Here w need not be defined for vk, vk+1, . . . One

may also say that an allocation to these variables has deliberately been

“forgotten.” In the case k = 0 Choose is w = ∅, so that an L0-model

coincides with an L-structure. Put Tk := {t ∈ T | var t ⊆ Vark}. To

ensure that the set T0 of ground terms is nonempty, we tacitly assume in

this chapter that L contains at least one constant when considering T0.

Clearly, Tk is a subalgebra of T , since t1, . . . , tn ∈ Tk ⇒ f�t ∈ Tk.

The concept of a term model can equally be related to Lk: Let ≈ be

a congruence in Tk and Fk the factor structure Tk/≈ whose domain is

Fk = {t | t ∈ Tk} with t = t/≈, together with some interpretation of the

relation symbols in Tk. We extend Fk canonically to an Lk-model Fk by

the (partial) valuation x 
→ x for x ∈ Vark, which is empty for k = 0

so that F0 and F0 can be identified. For each k, the following conditions

are verified similarly as with (1), (2), (3). The Lk-model FkX in (3k) is

defined analogously to FX on the domain Tk/≈ with s ≈ t ⇔ X ⊢ s==== t

for s, t ∈ Tk; in particular, F0X arises by factorizing T0.

(1k) tFk = t for all t ∈ Tk,

(2k) Fk � ∀�xα ⇔ Fk � α
�t
�x for all �t ∈ T n

k (α open),

(3k) FkX � π ⇔ X ⊢ π (π a prime formula from Lk).

Let ϕ = ∀�xα a universal formula (∀-formula). Then α
�t
�x is called an

instance of ϕ. And if �t ∈ T n
k then α

�t
�x is called a Tk-instance, for k = 0



138 4 Foundations of Logic Programming

also called a ground instance of ϕ. If U is a set of universal formulas,

let GI(U) denote the set of ground instances of all ϕ ∈ U . Note that

GI(U) �= ∅ for U �= ∅, provided L contains constants.

Theorem 1.1. Let U (⊆ L) be a set of ∀-formulas and Ũ the set of all

instances of the formulas in U . Then the following are equivalent:

(i) U is consistent, (ii) Ũ is consistent, (iii) U has a term model in L.

The same holds if U ⊆ Lk (in particular for sets U ⊆ L0 of ∀-sentences),

where Ũ now denotes the set of all Tk-instances of the formulas in U .

Proof. (i)⇒(ii): Clear since U ⊢ Ũ . (ii)⇒(iii): Choose some maximally

consistent X ⊇ Ũ . Then FX � π ⇔ X ⊢ π for prime formulas π, by (3).

Induction on ∧ ,¬ easily yields FX � α ⇔ X ⊢ α, for all open α. Since

X ⊇ Ũ we obtain FX � Ũ . But this yields FX � U for the term model

F = FX according to (2). (iii)⇒(i): Trivial. For the case U ⊆ Lk the

proof runs similarly using (3k), (2k), and Fk = FkX.

By Theorem 1.1, a consistent set U of universal sentences has a term

model F0. For our purposes, the important case is that U is ==== -free. Then

U has a model T on the set T0 of all ground terms, since F0X (that replaces

FX in the proof of Theorem 1.1 for k = 0) is then constructed without

a factorization of T0. Such a model T � U is called a Herbrand model

(cf. also Exercise 1 in 3.2). Its domain T0 is called the Herbrand universe

of T. In general, U has many Herbrand models on the same domain T0

with the same canonical interpretation of constants and functions: cT = c

and fT(t1, . . . , tn) = f�t for all �t ∈ T n
0 . Only the relations may vary.

If U is a universal Horn theory (to be explained in 4.2), then U has a

distinguished Herbrand model, the minimal Herbrand model. It will be

defined on page 142.

Example 2. Let U ⊆ L{0, S, <} consist of the ==== -free universal sentences

(a) ∀x x < Sx, (b) ∀x∀y∀z(x < y ∧ y < z → x < z).

Here the Herbrand universe T0 consists of all ground terms n (= Sn0).

Obviously, N := (N, 0, S, <) � Ũ . Since SN t = St for each t ∈ T0 (canon-

ical interpretation), N itself is then a Herbrand model. There are sever

other Herbrand models for U , since < may be interpreted in various ways

as will be seen in Example 3 in 4.2.

Remark 1. With Theorem 1.1 the problem of satisfiability for X ⊆ L can
basically be reduced to a propositional satisfiability problem. By Exercise 5
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in 2.6, X is—after adding new operation symbols—satisfiably equivalent to a
set U of ∀-formulas which, by Theorem 1.1, is in turn satisfiably equivalent to
the set of open formulas Ũ . Now replace the prime formulas π occurring in
the formulas of Ũ with propositional variables pπ, distinct variables for distinct
prime formulas, as in 1.5. In this way one obtains a satisfiably equivalent set of
propositional formulas. This works immediately on ==== -free sets of ∀-formulas.
By dealing with the congruence conditions for ==== (page 141), this method can
be generalized for sets of arbitrary ∀-formulas but is slightly more involved.

Although we will focus on a certain variant of the next theorem, its basic

concern (the construction of explicit solutions of existential assertions) is

the same in logic programming and related areas.

Theorem 1.2 (Herbrand’s theorem). Let U ⊆ L be a set of univer-

sal formulas, ∃�xα ∈ L, α open, and let Ũ be the set of all instances of

members from U . Then the following properties are equivalent:

(i) U ⊢ ∃�xα,

(ii) U ⊢
∨

i�m α
�t i

�x for some m and some �t0, . . . , �tm ∈ T n,

(iii) Ũ ⊢
∨

i�m α
�t i

�x for some m and some �t0, . . . , �tm ∈ T n.

The same holds if L is replaced here by Lk, T by Tk, and T n by T n
k , for

each k � 0, where Ũ is now the set of all Tk-instances.

Proof. Because U ⊢ Ũ , certainly (iii)⇒(ii)⇒(i). It remains to be shown

that (i)⇒(iii): According to (i), X = U ∪ {∀�x¬α} is inconsistent; hence

also Ũ ∪ {¬α
�t
�x | �t ∈ T n} by Theorem 1.1. Replacing here the prime

formulas with propositional variables as indicated in Remark 1 above,

(iii) follows already propositionally according to Exercise 1 in 1.4 (with

Y = {α t
x | t ∈ T }). The proof for Lk, Tk, and T n

k runs analogously.

Remark 2. Herbrand’s theorem was originally a proof-theoretic statement. It
has several versions. The theorem’s assumption that α is open is essential, as
can be seen from the example ⊢ ∃xα with α := ∀y(ry → rx) and U = ∅. Indeed,
⊢ ∃xα holds, for ∃xα is a tautology, Example 2 in 2.6. But there are no terms
t0, . . . , tm (variables in this case) such that ⊢

∨

i�m α ti

x . The last formula can
be falsified in a model with n + 2 elements in its domain as is readily seen.

Exercises

1. Verify the conditions (1k), (2k), (3k) in detail.

2. Prove Herbrands theorem also for Lk instead of L.
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4.2 Horn Formulas

We will define Horn formulas (after [Hor]) for a given language L recur-

sively. The following definition covers also the propositional case; simply

omit everything that refers to quantification.

Definition. (a) Literals (i.e. prim formulas and their negations) are basic

Horn formulas. If α is prime and β a basic Horn formula, then α →β is a

basic Horn formula. (b) Basic Horn formulas are Horn formulas. If α, β

are Horn formulas then so too are (α∧β), ∀xα, and ∃xα.

For instance, ∀y(ry → rx) and ∀x(y ∈ x →x /∈ y) are Horn formulas. Ac-

cording to our definition, α1 → · · · →αn →β (n � 0) is the general form

of a basic Horn formula, where α1, . . . , αn are prime and β is a literal.

Note that in the propositional case, the αi are propositional variables and

β is a propositional literal. We also call a formula a (basic) Horn formula

if it is equivalent to an original (basic) Horn formula. Thus, since

α1 → · · · →αn →β ≡ β ∨ ¬α1 ∨ · · · ∨ ¬αn

and by writing α0 for β in case β is prime, and β = ¬α0 if β is negated,

basic Horn formulas are up to logical equivalence of the type

I: α0 ∨ ¬α1 ∨ · · · ∨ ¬αn or II: ¬α0 ∨ ¬α1 ∨ · · · ∨ ¬αn

for prime formulas α0, . . . , αn. I and II are disjunctions of literals of which

at most one is a prime formula. Basic Horn formulas are often defined in

this way. But our definition above has pleasant advantages in inductive

proofs as we shall see, for instance, in the proof of Theorem 2.1. Basic

Horn formulas of type I are called positive and those of type II negative.

A propositional Horn formula, i.e., a conjunction of propositional basic

Horn formulas, can always be conceived of as a CNF whose disjunctions

contain at most one nonnegated element. It is possible to think of an open

Horn formula of L as resulting from replacing the propositional variables

of some suitable propositional Horn formula by prime formulas of L.

Each Horn formula is equivalent to a prenex Horn formula. If its prefix

contains only ∀-quantifiers, then the formula is called a universal Horn

formula. If the kernel of a Horn formula ϕ in prenex form is a conjunction

of positive basic Horn formulas, ϕ is termed a positive Horn formula. Horn

formulas without free variables are called Horn sentences . The universal

Horn sentences in the following example are all positive.
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Example 1. Identities and quasi-identities are universal Horn sentences,

as are transitivity (x � y ∧ y � z → x � z)g , reflexivity, and irreflexivity,

but not connexity (x � y ∨ y � x)g . Also the congruence conditions for ====

are Horn sentences. Therein �x==== �y is to mean
∧n

i=1 xi ==== yi:

(x==== x)g , (x==== y ∧x==== z →y ==== z)g ,

(�x==== �y → r�x → r�y)g , (�x==== �y →f�x==== f�y )g .

∀x∃y x ◦ y ==== e is a Horn sentence, while ∀x∃y(x �==== 0 →x · y ==== 0) is not,

and is even not equivalent to a Horn sentence in the theory TF of fields.

Otherwise MdTF would be closed under direct products; see Exercise 1.

This is not the case: Q × Q is a ring that has zero-divisors, for example

(1, 0) · (0, 1) = 0. Thus, Q × Q cannot be a field.

A Horn theory is to mean a theory T with an axiom system of Horn

sentences. If these axioms are universal Horn sentences, then T is called

a universal Horn theory. Examples are the theories of groups in various

languages, of rings, and all equational and quasi-equational theories.

Theorem 2.1. Let U be a consistent set of universal Horn formulas in

a language L with term set T . Then F := FU is a model for U . In the

case U ⊆ Lk, Fk := FkU is a model for U as well.

Proof. F � U follows from (∗) : U ⊢ α ⇒ F � α, for Horn formulas α.

(∗) is proved inductively on the construction of α in the definition of

Horn formulas. For prime formulas π, (∗) is clear, for then (3) reads as
(
∗
∗

)
: U ⊢ π ⇔ F � π. Now suppose that U ⊢ ¬π. Then U � π, for U is

consistent. Hence F � π by
(
∗
∗

)
, and so F � ¬π. This confirms (∗) for

all literals. Now let α be prime, β a basic Horn formula, U ⊢ α →β, and

assume F � α. Then U ⊢ α; hence U ⊢ β, and so F � β by the induction

hypothesis. This proves F � α →β. Induction on ∧ is clear. Finally, let

U ⊢ ∀�xα for some open Horn formula α, and �t ∈ T n. Since then certainly

U ⊢ α
�t
�x , we get F � α

�t
�x by the induction hypothesis. �t was arbitrary

and hence F � ∀�xα by (2) from 4.1. This proves (∗). The case U ⊆ Lk

is treated analogously. Consider (2k), (3k) and take Fk for F .

Incidentally, U ’s consistency in the theorem is always secured if U con-

sists of positive Horn formulas; Exercise 2. The most interesting case in

Theorem 2.1 is that U is the axiom system of a universal Horn theory.

Then FU � T , and since U ⊆ Lk for each k, also FkU � T .
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Example 2. Let T be the simple universal Horn theory from Example 1

in 4.1. That F � T for the algebra F underlying FT was shown there

by proving that F is isomorphic to the word-semigroup on the alphabet

Var, while Theorem 2.1 yields F � T directly. It is easily seen that F

is generated by v0, v1, . . . F is called the free semigroup with the free

generators v0, v1, . . . Also T ====
G is a universal Horn theory so that the free

group generated from v0,v1, . . . is defined as well.

Remark 1. A universal Horn theory T is said to be nontrivial if �T ∀xy x==== y.
The generators v0,v1, . . . of F are then distinct and FT is called the free model
of T with the free generators vi. The word “free” comes from the fact that if
M = (A, w) is any T -model, then the mapping x 
→ xM (x ∈ Var) generates
a homomorphism h : F 
→ A; moreover, we can make “free use” of the values
hx of the free generators x, keeping A fixed and choosing suitable valuations
in M = (A, w). h is given by ht = tM. Note that h is well defined, for
t1 ==== t2 ⇒ T ⊢ t1 ==== t2 ⇒ M � t1 ==== t2 ⇒ tM1 ==== tM2 ⇒ ht1 ==== ht2, and it is a
matter of routine to check the homomorphism conditions p. 50. E.g., if f is
n-ary then hf(t1, . . . , tn) = hft1 . . . tn = (f�t )M = f(�tM) = f(ht1, . . . , htn).
Similarly, FkT is the free model of T with the free generators v0, . . . , vk−1. We
will not make use of these remarks, made for the more advanced reader.

Let U ⊆ L0 be as in Theorem 2.1 but ==== -free, and T be axiomatized by

U . Let F0U be well defined, i.e. L contains constant symbols. Then F0U

is a Herbrand model for T , called the free or minimal Herbrand model

for T , and henceforth denoted by CU or CT . The domain of CU is the

set of ground terms. A not too simple example of describing the minimal

Herbrand model for a set U of =-free universal Horn sentences is

Example 3. Let U and N be as in Example 2 in 4.1. Both (a) and (b)

are universal Horn sentences. We determine the minimal Herbrand model

CU (whose domain consists of the terms n) by proving N ≃ CU , with the

isomorphism n 
→ n. Since CU � m < k ⇔ U ⊢ m < k by the definition

page 136, it suffices to prove (∗): m < k ⇔ U ⊢ m < k. The direction ⇒

is shown by induction on k, beginning with k = Sm. The initial step is

clear since U ⊢ m < Sm by (a). Let m < Sk. By the induction hypothesis

we then get U ⊢ m < k, or m = k. In both cases, U ⊢ m < Sk by (a) and

(b). The direction ⇐ in (∗) is obvious because N is a model of U .

Remark 2. The set U in Example 2 in 4.1 has many models on the Herbrand
universe N. One may interpret < by any transitive relation on N that extends
<N, e.g., by �N. This interpretation will be excluded by adding ∀x x �< x to U ,
but the minimal Herbrand model remains the same if enlarging U this way.
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Most useful for logic programming is the following variant of Herbrand’s

theorem. The main difference is that for sets U of universal Horn formulas

we get a single solution γ
�t
�x whenever U ⊢ ∃�xγ. The theorem does also

hold with the same proof if k is dropped throughout.

Theorem 2.2. Let U ⊆ Lk (k � 0) be a consistent set of universal Horn

formulas, γ = γ0 ∧ · · · ∧γm, where all γi are prime, and ∃�xγ ∈ Lk. Then

the following are equivalent:

(i) FkU � ∃�xγ, (ii) U ⊢ γ
�t
�x for some �t ∈ T n

k , (iii) U ⊢ ∃�xγ.

In particular, for a consistent universal Horn theory T of any ==== -free

language with constants, CT � ∃�xγ is always equivalent to ⊢T ∃�xγ.

Proof. (i)⇒(ii): Let FkU � ∃�xγ. Then FkU � γ
�t
�x for some �t , because

FkU � ¬γ
�t
�x for all �t implies FkU � ∀�x¬γ by (2k), contradicting (i). Thus,

for all i � m, FkU � γi
�t
�x . Therefore U ⊢ γi

�t
�x by (3k), and so U ⊢ γ

�t
�x .

(ii)⇒(iii): Trivial. (iii)⇒(i): Theorem 2.1 states that FkU � U . Hence

(iii) implies FkU � ∃�xγ. The particular case follows from (i)⇔(iii) when

we choose k = 0 and observe that CT = F0T by definition.

Exercises

1. Show that MdT for a Horn theory T is closed under direct products

(i.e. (∀i∈I)Ai � T ⇒
∏

i∈I Ai � T ), and if T is a universal Horn

theory, then also under substructures (A′ ⊆ A � T ⇒ A′ � T ).

2. Prove that a set of positive Horn formulas is always consistent.

3. Prove CU ≃ (N, 0, S,�), where U consists of the universal Horn

sentences ∀x x � x, ∀x x � Sx, ∀x∀y∀z(x � y ∧ y � z → x � z).

4.3 Propositional Resolution

We recall the problem of quickly deciding the satisfiability of propositional

formulas. This problem is of eminent practical importance, for many non-

numerical (sometimes called “logical”) problems can be reduced to this.

The truth table method, practical for formulas with few variables, grows

in terms of calculation effort exponentially with the number of variables;

even the most powerful computers of the forseeable future will not be able
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to carry out the table method for propositional formulas with just 100

variables. As a matter of fact, no essentially better procedure is known,

unless one is dealing with formulas of a particular shape, for instance with

certain normal forms. The general case represents an unsolved problem

of theoretic computer science, not discussed here, the so-called P=NP

problem; see for instance [GJ] or look for progress on the Internet.

For conjunctive normal forms, the optimal procedure for contempo-

rary computers is the resolution procedure introduced in the following.

For the sake of a sparing presentation one switches from a disjunction

λ1 ∨ · · · ∨ λn of literals λi to the set {λ1, . . . , λn}. In so doing, the order

of the disjuncts and their possible repetition, inessential factors for the

question of satisfiability, are eliminated. For instance, λ1 ∨ λ2 ∨ λ1 is

equally represented by {λ1, λ2}.

A finite, possibly empty set of literals is called a (propositional) clause.

By a clause in p1, . . . , pn is meant a clause K with varK ⊆ {p1, . . . , pn}.

In the following, K, H, G, L, P, N denote clauses and K, H, P,N sets of

clauses. K = {λ1, . . . , λn} corresponds to the formula λ1 ∨ · · · ∨ λn. The

empty clause (i.e., n = 0) is denoted by . It corresponds to the empty

disjunction (which is ⊥, see the footnote page 13).

K = {q1, . . . , qm,¬r1, . . . ,¬rk} (qi, rj ∈ PV) is called a positive clause if

m > 0, for m = 1 also a definite, and for m = 0 a negative clause. These

conventions will also be adopted when the qi and ri later denote prime

formulas of a first-order language.

Write w � K (a propositional valuation w satisfies the clause K) if K

contains some λ with w � λ. K is termed satisfiable if there is some w

with w � K. Note that the empty clause , as the definition’s wording

suggests, is not satisfiable. w is a model for a set K of clauses if w � K for

all K ∈ K. If K has a model then K is called satisfiable. In contrast to

the empty clause , the empty set of clauses is clearly satisfied by every

valuation, again by the definition’s wording.

w satisfies a CNF α iff w satisfies all its conjuncts, and hence all

of the clauses corresponding to these conjuncts. Since every proposi-

tional formula can be transformed into a CNF, α is satisfiably equiv-

alent to a corresponding finite set of clauses. For instance, the CNF

(p ∨ q) ∧ (¬p ∨ q ∨ r) ∧ (q ∨ ¬r) ∧ (¬q ∨ s) ∧ ¬s is satisfiably equivalent to

the corresponding set of clauses {{p, q}, {¬p, q, r}, {q,¬r}, {¬q, s}, {¬s}}.
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It will turn out later that this set is not satisfiable. We write K � H

if every model of K also satisfies the clause H. A set of clauses K is

accordingly unsatisfiable if and only if K � .

For λ /∈ K we frequently denote the clause K ∪ {λ} by K, λ. Moreover,

let λ̄ = ¬p for λ = p, λ̄ = p for λ = ¬p (hence ¯̄λ = λ in any case), and set

K̄ = {λ̄ | λ ∈ K}. The resolution calculus operates with sets of clauses

and individual clauses, and has a single rule working with these objects,

the so-called resolution rule

RR:
K, λ L, λ̄

K ∪ L
(λ, λ̄ /∈ K ∪ L).

RR may be read as follows: If the clauses K, λ and L, λ̄ are derivable,

then also the clause K ∪L, called a resolvent of the clauses K, λ and L, λ̄.

A clause H is said to be derivable from a set of clauses K, in symbols

K ⊢
RR

H, if H can be obtained from K by the stepwise application of RR;

equivalently, if H belongs to the resolution closure RcK of K, which is

the smallest set of clauses H ⊇ K closed with respect to applications of

RR. The definition of the resolution closure corresponds completely to the

definition of an MP-closed set of formulas in 1.6.

Example 1. Let K = {{p,¬q}, {q,¬p}}. Application of RR leads to the

resolvents {p,¬p} and {q,¬q}, from which we see that a pair of clauses

has several resolvents, in general. Every subsequent application of RR

yields already available clauses, so that RcK contains only the clauses

{p,¬q}, {q,¬p}, {p,¬p}, and {q,¬q}.

Applying RR to {p}, {¬p} yields the empty clause . Hence K ⊢
RR

,

with the unsatifiable set of clauses K = {{p}, {¬p}}. By the resolution

theorem below, the derivability of the empty clause from a set of clauses

K is characteristic of the nonsatisfiability of K. To test this one needs

only to check whether K ⊢
RR

, i.e., ∈ RcK. This question is effectively

decidable for finite sets K because then RcK is finite as well. Indeed, a

resolvent that results from applying RR to clauses in p1, . . . , pn contains

at most these very same variables. Further, there are only finitely many

clauses in p1, . . . , pn, exactly 22n. But that is still an exponential increase

as n increases. Aside from this, the mechanical implementation of the

resolution calculus mostly involves potentially infinite sets of clauses. We

consider this problem more closely at the end of 4.6.
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The derivation of a clause H from a set of clauses K, especially the

derivation of the empty clause, can best be graphically represented by a

resolution tree as in Example 2. This is a tree that branches “upward”

with an endpoint H without edge exits, called the root of the tree. Points

without entering edges are called leaves. A point that is not a leaf has

two entrances, and the points leading to them are called their predecessors.

The points of a resolution tree bear sets of clauses in the sense that a point

not being a leaf is a resolvent of the two clauses above it.

Example 2. The following figure shows one of the many resolution trees

for the already-mentioned collection of clauses

K0 = {{p, q}, {¬p, q, r}, {q,¬r}, {¬q, s}, {¬s}}.

{¬q}

{¬q, s}

✧
✧
✧
✧✧

{¬s}

{q}
❚
❚❚

{p, q} {¬p, q}

�
��

❚
❚
❚❚

{¬p, q, r}

✡
✡
✡✡

❡
❡
❡

✜
✜
✜

{q,¬r}
The leaves of this tree are all

occupied by clauses in K0. It

should be clear that an ar-

bitrary clause H belongs to

the resolution closure of a set

of clauses K just when there

exists a resolution tree with

leaves in K and root H. A

resolution tree with leaves in

K and the root as shown

in the figure on the left for

K = K0 is called a resolution

for K, or more precisely, a successful resolution for K. Thus, because of

∈ RcK0, the set of clauses K0 is unsatisfiable, and hence so is the con-

junctive normal form that corresponds to the set K0, namely the formula

(p ∨ q)∧ (¬p ∨ q ∨ r)∧ (q ∨ ¬r)∧ (¬q ∨ s)∧¬s.

Remark 1. If a resolution tree ends with a point �= , either to which RR
cannot be applied or where upon application the points are simply reproduced,
then one talks of an unsuccessful resolution. In this case, most interpreters of the
resolution calculus will “backtrack,” which means the program searches backward
along the tree for the first point where one of several resolution alternatives was
chosen, and picks up another alternative. Some kind of selection strategy must
in any case be implemented, since just as with any logical calculus, the resolution
calculus is nondeterministic, that is, no natural preferences exist regarding the
order of the derivations leading to a successful resolution, even if the existence
of such a resolution is known for other reasons.
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We remark that despite the derivability of the empty clause, for infinite

unsatisfiable sets of clauses K there also may exist infinite resolution trees

with nonrepeating points, where never appears. Such a tree has no root.

For example, the set of clauses

K = {{p1}, {¬p1}, {p1,¬p2}, {p2,¬p3}, . . . }

���
{¬p3}

♣

{¬p2}{p2,¬p3}

❏
❏❏

✡
✡✡

✁
✁
✁✁

❏
❏
❏

{¬p1}{p1,¬p2}is not satisfiable. Here we obtain the infinite re-

solution tree in the figure on the right, occupied

by leaves from K, which has no root and does

not reflect that is derivable by just a single

application of RR to the first two clauses of K.

In the diagram, the resolution calculus is run-

ning on K with a rather stupid strategy. This

and similar examples indicate that the resolu-

tion calculus is incapable in general of deciding

the satisfiability of infinite sets K of clauses. In-

deed, this will be confirmed in 4.6. Nonetheless, by Theorem 3.2 below

there does exist—if K is in actual fact unsatisfiable—a successful resolu-

tion for K that can in principle be found in finitely many steps.

We commence the more detailed study of the resolution calculus with

Lemma 3.1 (Soundness lemma). Let K be a set of clauses and K a

single clause. Then K ⊢
RR

H ⇒ K � H.

Proof. As in the case of a Hilbert calculus, it suffices to confirm the

soundness of the rule RR, that is, to prove that a model for K, λ and L, λ

is also one for K ∪ L. Thus let w � K, λ and w � L, λ̄. Case 1: w � λ.

Then there must be a literal λ′ ∈ K with w � λ′. Hence w � K and

therefore w � K ∪ L. Case 2: w � λ. Then w � λ̄. Similar to the above

we get w � L. Hence w � K ∪ L as well.

For the case K ⊢
RR

the lemma shows K � , that is, the unsatisfiability

of K. The converse of Lemma 3.1 is in general not valid; for instance

{{p}} � {p, q}, but {{p}} �
RR

{p, q}. It does hold, though, for H = .

This follows from Theorem 3.2 below, often stated as “K is unsatisfiable

iff K ⊢
RR

.” In its proof we recursively construct a global valuation w

from partial valuations, defined only for p1, . . . , pn.



148 4 Foundations of Logic Programming

Theorem 3.2 (Resolution theorem). K is satisfiable iff K �
RR

.

Proof. Clearly K � if K is satisfiable, so K �
RR

by Lemma 3.1. Now let

K �
RR

, or equivalently, /∈ H with H := RcK. Let Λ(n) denote the set

of all literals in p1, . . . , pn, and H(n) be the set of all K ∈ H with K ⊆ Λ(n)

such that pn or ¬pn or both belong to K. Note that Λ(0) = H(0) = ∅,

varH(n) ⊆ {p1, . . . , pn}, and H =
⋃

n∈N H(n). We will construct a model

for H (hence for K) stepwise. vn := wpn will be defined recursively on n

(more precisely, by naive course-of-value recursion, discussed e.g. in 6.1)

such that wn := (v1, . . . , vn) has the property (∗) : wn �
⋃

i�n H(i).

We agree to say that the “empty valuation” satisfies H(0) = ∅, hence (∗)

holds trivially for n = 0. Let v1, . . . , vn be defined so that (∗) is true.

We will define vn+1 = wpn+1 such that (+) : wn+1 � H(n+1) is satisfied.

This clearly implies wn+1 �
⋃

i�n+1 H(i), hence wn � H(n) for all n, so

that w = (v1, v2, . . . ) is a model for the whole of H. In order to verify (+)

we need to consider only those K ∈ H(n+1) containing no λ ∈ Λ(n) with

wn � λ and not both pn+1 and ¬pn+1. These K will be called sensitive

clauses during this proof, since every other K ∈ H(n+1) either contains

some λ ∈ Λ(n) with wn � λ or else both pn+1 and ¬pn+1, and hence is

satisfied by any expansion of wn to wn+1.
1 We may assume that there is

a sensitive K ∈ H(n+1) (otherwise put vn+1 = 0) and prove the following

claim: Either pn+1 ∈ K for all sensitive K—then put vn+1 = 1—or else

¬pn+1 ∈ K for all sensitive K, in which case put vn+1 = 0, so that (+)

holds in either case. To prove this claim assume that there are sensitive

K, H ∈ H(n+1) with pn+1 ∈ K and ¬pn+1 ∈ H, hence ¬pn+1 /∈ K and

pn+1 /∈ H. Applying RR to H, K, we then obtain either (a contradiction

to /∈ H), or else a clause from H(i) for some i � n whose literals are

not satisfied by wn, a contradiction to (∗), i.e. to wn � H(i) for all i � n.

This confirms the claim and completes the proof.

Remark 2. The foregoing proof is constructive, that is, if K �
RR

and the H(n)

in the proof above are computable, then a valuation satisfying K is computable
as well. Moreover, we incidentally proved the propositional compactness theorem
for countable sets of formulas X once again. Here is the argument: Every formula
is equivalent to some KNF, and hence X is satisfiably equivalent to a set of
clauses KX . So if X is not satisfiable, the same is true of KX . Consequently,

1 The newcomer should write down all eight candidates for the subset H(1) of

Λ(n) = {{p1}, {¬p1}, {p1,¬p1}}. Only {p1} and {¬p1} are sensitive to v1 = wp1.
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KX ⊢
RR

by Theorem 3.2. Therefore K0 ⊢
RR

for some finite subset K0 ⊆ KX ,
for there must be some successful resolution tree whose leaves are collected in
K0. Having this, it is obvious that just a finite subset of X is not satisfiable,
namely the one that corresponds to the set of clauses K0.

4.4 Horn Resolution

A clause belonging to a propositional basic Horn formula is called a

(propositional) Horn clause. It is called positive or negative if the cor-

responding Horn formula is positive or negative. Positive Horn clauses

are of the form {¬q1, . . . ,¬qn, p} with n � 0, negative ones of the form

{¬q1, . . . ,¬qk}. The empty clause (k = 0) is counted among the negative

ones. It is important in practice that the resolution calculus can be for-

mulated more specifically for Horn clauses. The empty clause, if it can

be obtained from a set of Horn clauses at all, can also be obtained using

a restricted resolution rule, which is applied only to pairs of Horn clauses

in which one premise is positive (the left one in HR below) and the other

one is negative. This is the rule of Horn resolution

HR :
K, p | L,¬p

K ∪ L
(K, L negative, p,¬p /∈ K ∪ L).

Nℓ+1

✪
✪✪

Nℓ

❡
❡❡

Pℓ

� � �N2

✪
✪✪

N1

❡
❡❡

P1

✪
✪✪
N0

❡
❡❡

P0

The calculus operating with Horn

clauses and rule HR is denoted by ⊢
HR

.

A positive Horn clause is clearly def-

inite. Hence, the resolvent of an ap-

plication of HR is unique and always

negative. An H-resolution tree is there-

fore of the simple form illustrated by the

figure on the right. Therein P0, . . . , Pℓ

denote positive and N0, . . . , Nℓ+1 neg-

ative Horn clauses. Such a tree is also

called an H-resolution for P, N—where

P here and elsewhere is taken to mean a

set of positive Horn clauses and N is a negative clause �= —if it satisfies

(1) Pi ∈ P for all i � ℓ, and (2) N0 = N & Nℓ+1 = . It is evidently pos-

sible to regard an H-resolution for P, N simply as a sequence (Pi, Ni)i�ℓ

with the properties (0) Ni+1 = HR(Pi, Ni) for all i � ℓ, (1), and (2).

Here HR(P, N) denotes the uniquely determined resolvent resulting from

applying HR to the positive clause P and the negative clause N .
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Before proving the completeness of ⊢
HR

we require a little preparation.

Let P be a set of positive Horn clauses. In order to gain an overview of

all models w of P, consider the natural correspondence

w ←→ Vw := {p ∈ PV | w � p}

between valuations w and subsets of PV. Put w � w′ : ⇔ Vw ⊆ Vw′ .

Clearly, P is always satisfied by the “maximal” valuation w with Vw = PV,

for w satisfies every positive clause and P contains only such clauses. It

is obvious that w � P iff V = Vw satisfies the following two conditions:

(a) p ∈ V provided {p} ∈ P,

(b) q1, . . . , qn ∈ V ⇒ p ∈ V , provided {¬q1, . . . ,¬qn, p} ∈ P (n > 0).

Of all subsets V ⊆ PV satisfying (a) and (b) there is clearly a smallest

one, namely VP :=
⋂

{Vw | w � P}. Let wP be the P-model corresponding

to VP and call it the minimal P-model. We may define VP for the minimal

model wP of P also as follows: Put V0 = {p ∈ PV | {p} ∈ P} and

Vk+1 = Vk ∪
{
p ∈ PV | {¬q1, . . . ,¬qn, p} ∈ P for some q1, . . . , qn ∈ Vk

}
.

Then VP =
⋃

k∈N Vk. Indeed, Vk ⊆ Vw for all k and all w � P. Hence,
⋃

k∈N Vk ⊆ VP. Also VP ⊆
⋃

k∈N Vk, since w � P with Vw =
⋃

k∈N Vk.

The minimal m with p ∈ Vm is termed the P-rank of p, denoted by ρ
P
p.

Those p with {p} ∈ P are of P-rank 0. The variables arising from these

by applying (b) have P-rank 1 if not already in V0, and so on.

Lemma 4.1. Let P be a set of positive Horn clauses and q0, . . . , qk ∈ VP.

Then P, N ⊢
HR

, where N = {¬q0, . . . ,¬qk}.

Proof. For r0, . . . , rn ∈ VP set ρ
P
(r0, . . . , rn) := max{ρ

P
r0, . . . , ρP

rn}. Let

μ(r0, . . . , rn) be the number of i � n such that ρ
P
ri = ρ

P
(r0, . . . , rn). The

claim is proved inductively on ρ := ρ
P
(q0, . . . , qk) and μ := μ(q0, . . . , qk).

First suppose ρ = 0, i.e., {q0}, . . . , {qk} ∈ P. Then there is certainly

an H-resolution for P, N , namely the tree ({qi}, {¬qi, . . . ,¬qk})i�k. Now

take ρ > 0 and w.l.o.g. ρ = ρ
P
q0. Then there are qk+1, . . . , qm ∈ VP

such that P := {¬qk+1, . . . ,¬qm, q0} ∈ P and ρ
P
(qk+1, . . . , qm) < ρ.

Thus, ρ
P
(q1, . . . , qk, qk+1, . . . , qm) is either <ρ, or it is =ρ, in which case

μ(q1, . . . , qm) < μ. By the induction hypothesis, in both cases P, N1 ⊢
HR

for N1 := {¬q1, . . . ,¬qm}. Hence, an H-resolution (Pi, Ni)1�i�ℓ for P, N1

exists. But then (Pi, Ni)i�ℓ, with P0 := P and N0 := N , is just an

H-resolution for P, N .
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Theorem 4.2 (the H-Resolution theorem). A set K of Horn clauses

is satisfiable iff K �
HR

.

Proof. The condition K �
HR

is certainly necessary if K is satisfiable.

For the converse assume that K is unsatisfiable, K = P ∪ N, all P ∈ P

are positive and all N ∈ N negative. Since wP � P but wP � P ∪ N

there is some N = {¬q0, . . . ,¬qk} ∈ N such that wP � N . Consequently,

wP � q0, . . . , qk and therefore q0, . . . , qk ∈ VP. By Lemma 4.1 we then

obtain P, N ⊢
HR

, and a fortiori K ⊢
HR

.

Corollary 4.3. Let K = P∪N be a set of Horn clauses, all P ∈ P positive

and all N ∈ N negative. Then the following conditions are equivalent:

(i) K is unsatisfiable, (ii) P, N is unsatisfiable for some N ∈ N.

Proof. (i) implies K ⊢
HR

by Theorem 4.2. Hence, there is some N ∈ N

and some H-Resolution for P, N , whence P, N is unsatisfiable. (ii)⇒(i) is

trivial because P, N is a subset of K.

Thus, the investigation of sets of Horn clauses as regards satisfiability

can completely be reduced to the case of just a single negative clause.

The hitherto illustrated techniques can without further ado be carried

over to quantifier-free formulas of a first-order language L, in that one

thinks of the propositional variables to be replaced by prime formulas of

L. Clauses are then finite sets of literals in L. By Remark 1 in 4.1 a set of

L-formulas is satisfiably equivalent to a set of open formulas, which w.l.o.g.

are given in conjunctive normal form. Splitting these into their conjuncts

provides a satisfiably equivalent set of disjunctions of literals. Converting

these disjunctions into clauses, one obtains a set of clauses for which, by

the remark just cited, a consistency condition can be stated proposition-

ally. Now, because predicate-logical proofs are always reducible to the

demonstration of certain inconsistencies by virtue of the equivalence of

X ⊢ α with the inconsistency of X,¬α, these proofs can basically also be

carried out by resolution.

To sum up, resolution by Theorem 3.2 and 4.2 is not at all restricted

to propositional logic but includes application to sets of literals of first-

order languages. Theorem 7.3, the predicate logic version of Theorem 3.2,

will essentially be reduced to the latter. Moreover, questions concerning

resolution in first-order languages can basically be treated propositionally,

as indicated by the exercises below.
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Before elaborating on this, we consider an additional aid to automated

proof procedures, namely unification. This will later be combined with

resolution, and it is this combination that makes automated proof pro-

cedures fast enough for modern computers equipped with efficient inter-

preters of PROLOG.

Exercises

1. Prove that the satisfiable set of clauses P = {{p3}, {¬p3, p1, p2}}

does not have a smallest model. The 2nd clause in P is not a Horn

clause. Thus, in general only Horn clauses have a smallest model.

2. Let pm,n,k for m, n, k ∈ N be propositional variables, S the successor

function, and P the set of all clauses belonging to the Horn formulas

pm,0,m ; pm,n,k →pm,Sn,Sk (m, n, k ∈ N).2

Let the standard model ws be defined by ws � pm,n,k ⇔ m+n = k.

Show that the minimal model wP coincides with ws.

3. Let P be the set of Horn clauses of Exercise 2. Prove that

(a) P,¬pn,m,n+m ⊢
HR

, (b) P,¬pn,m,k ⊢
HR

⇒ k = n + m.

(a) and (b) together are equivalent to the the single condition

(c) P,¬pn,m,k ⊢
HR

⇔ k = n + m.

4.5 Unification

A decisive aid in logic programming is unification. This notion is mean-

ingful for any set of formulas, but we confine ourself to ¬-free clauses

K �= of an identity-free language. K contains only unnegated prime

formulas, each starting with a relation symbol. Such a clause K is called

unifiable if a substitution σ exists, a so-called unifier of K, such that

Kσ := {λσ | λ ∈ K} contains exactly one element; in other words, Kσ is a

singleton. Here σ can most easily be understood as a simultaneous substi-

tution, that is, σ is globally defined and xσ = x for almost all variables x.

2 In 4.6 these formulas will be interpreted as the ground instances of a logic program

for computing the sum of two natural numbers.
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Simultaneous substitutions form a semigroup with respect to composition,

with the neutral element ι, a fact we will heavily make use of.

Example 1. Consider K = {rxfxz, rfyzu}, r and f binary. Here

ω = fyz
x

ffyzz
u is a unifier: Kω = {rfyzffyzz}, as is readily confirmed.

Clearly, ω as a composition of simple substitutions can be understood as

a simultaneous substitution, see page 60.

Obviously, a clause containing prime formulas that start with distinct

relation symbols is not unifiable. A further obstacle to unification is high-

lighted by

Example 2. Let K = {rx, rfx} (r, f unary). Assume (rx)σ = (rfx)σ.

This clearly implies rxσ = rfxσ and hence xσ = fxσ. This is impossible,

for xσ and fxσ are clearly of different lengths. Hence, K is not unifiable.

If σ is a unifier then so too is στ for any substitution τ . Call ω a

generic or a most general unifier of K if any other unifier τ of K has a

representation τ = ωσ for some substitution σ. By Theorem 5.1 below,

each unifiable clause has a generic unifier. For instance, it will turn out

below that ω in Example 1 is generic.

A renaming of variables, a renaming for short, is for the sake of simplic-

ity a substitution ρ such that ρ2 = ι. This definition could be rendered

more generally, but it suffices for our purposes. ρ is necessarily bijective

and maps variables to variables. Let x ρ
i = yi ( �= xi) for i = 1, . . . , n and

zρ = z otherwise. Then clearly y ρ
i = xi, that is, ρ swaps the variables xi

and yi. In this case we shall write ρ =
(
x1···xn
y1···yn

)
.

If ω is a generic unifier of K then so too is ω′ = ωρ, for any renaming

ρ. Indeed, for any given unifier τ of K there is some σ such that τ = ωσ.

For σ′ := ρσ then τ = ωρ2σ = (ωρ)(ρσ) = ω′σ′. Choosing in Example 1

for instance ρ :=
(
y z
u v

)
, we obtain the generic unifier ω′ = ωρ for K, with

Kω′

= {rfuvffuvv}.

We now consider a procedure in the form of a flow diagram, the unifica-

tion algorithm, denoted by U. It checks each nonempty clause K of prime

formulas of an identity-free language for unifiability, and in the positive

case it produces a generic unifier. U uses a variable σ for substitutions

with initial value ι, and a variable L for clauses with initial value K. Later

on, L contains Kσ for the actual value of σ that depends on the actual

state of the procedure. Here the diagram of U:
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Input L := K. Do all α∈K
start with same symbol ?

no

no

yes

OUTPUT: K cannot be
unified

❄
yes

yes

no

yes

OUTPUT: K is unifiable
with generic unifier σ

Choose α1 �= α2 from L and
determine the first distinction
letters s1 in α1 and s2 in α2.

Is s1 or s2 a variable?

Let s1 = x ∈ Var and t be
the subterm of α2 starting

with s2. Is x /∈ var t ?

✛

σ := σ t
x

L := Kσ

✓
✒

✏
✑

✓
✒

✏
✑

★
✧

✥
✦

✛

✲Is L a singleton?
☛✡ ✟✠

✲

❄

✛

✲

✲

❄

no

The first distinction letters of two strings are the first symbols from the

left that distinguish the strings. The first letter of α ∈ L is a relation

symbol. By Exercise 1 in 2.2, any further symbol s in α determines

uniquely at each position of its occurrence a subterm of α whose initial

symbol is s. The diagram has just one (thick-lined) loop that starts and

ends in the test ‘Is L a singleton?’. The loop runs through the operation

σ := σ t
x , L := Kσ, which assigns a new value to σ and then the new

value Kσ to L. This reduces the number of variables in L, since x /∈ varL.

Hence, U necessarily leaves the loop after finitely many steps, and must

stop and halt in one of the two OUTPUT boxes of U. But we do not yet

know whether U always ends up in the “right” box, i.e., whether U answers

correctly. The final value σ is printed in the lower OUTPUT box.

Example 3. Let U be executed on K from Example 1. The first distinc-

tion letters of the two members α1, α2 ∈ K are s1 = x and s2 = f at

the second position. The subterm beginning with s2 in α2 is t = fyz.

Hence, after the first run through the loop with σ := ι fyz
x = fyz

x we get

Kσ = {rfyzffyzz, rfyzu}. Here the first distinction letters are f and u

at position 5. The term beginning with f at this position is t = ffyzz.

Since u /∈ var ffyzz, the loop is run through once again and we obtain

σ := σ ffyzz
u = fyz

x
ffyzz

u . This is a unifier, and U comes to a halt with

OUTPUT ‘K is unifiable with the generic unifier σ = fyz
x

ffyzz
u ’.

We recommend a thorough study of this example. That the σ at the

end of the example is indeed generic follows from
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Theorem 5.1. The unification algorithm U is sound, i.e., upon input of

a negation-free clause K it always answers correctly.3 U unifies with a

generic unifier.

Proof. This is obvious if two elements of K are already distinguished

by the first letter. Assume therefore that all α ∈ K begin with the same

letter. If U stops with the output ‘K is unifiable . . . ’, K is in fact unifiable,

since it must have been previously verified that L = Kσ is a singleton.

Conversely, we claim that U also halts with the correct output, provided

K is unifiable. The latter will be our assumption till the end of the proof,

along with the choice of an arbitrary but fixed unifier τ of K.

It has to be confirmed that both tests on the right side of the diagram

do not end with the upper OUTPUT, i.e., the test questions are answered

Yes. For the upper test this is clear, since substitutions preserve the

symbols s1, s2 so that unification would be impossible; this contradicts

our assumption. For the lower test (‘Is x /∈ var t?’) the correctness of the

answer will be verified below. Let i (= 0, . . . , m) denote the moment after

the ith run through the loop has been finished. i = 0 before the first run.

Put σ0 := ι and let σi for i > 0 be the value of σ after the ith run through

the loop. Below we shall prove that

(∗) there exists a substitution τi with σiτi = τ (i = 0, . . . , m).

Assume that x ∈ var t in the (i + 1)th run, with α1, α2 ∈ Kσi chosen as

in the diagram. Choose τi according to (∗). Since σiτi = τ is a unifier,

ατi
1 = ατi

2 . Hence
(
∗
∗

)
: xτi = tτi (the terms xτi and tτi start at the same

position and must be identical; see Exercise 1 in 2.2). But then x ∈ var t

is impossible, since otherwise xτi and tτi were of different length as in

Example 2. This confirms the correctness of the diagram in the unifiable

case as claimed above. (∗) says in particular that σmτm = τ . Since τ

was arbitrary, and the σi do not depend on the choice of τ , it follows that

σ := σm is indeed a generic unifier of K.

It remains to prove (∗) by induction on i � m. This is trivial for

i = 0: choose simply τ0 = τ , so that σ0τ0 = ιτ = τ . Suppose (∗) holds for

i < m. As was shown,
(
∗
∗

)
holds while running through the test ‘x /∈ var t?’

3 The proof will be a paradigm for a so-called correctness proof of an algorithm. Such

a proof is often fairly lengthy and has almost always to be carried out inductively on

the number of runs through a loop occurring in the algorithm.
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We set τi+1 := t
x τi and claim that t

x τi+1 = τi. Indeed, for y �= x we

obtain y
t
x τi+1 = yτi+1 = y

t
x τi = yτi , but in view of xτi = tτi we have also

x
t
x τi+1 = tτi+1 = t

t
x τi = tτi (since x /∈ var t)

= xτi .
t
x τi+1 = τi and σi+1 = σi

t
x yield the induction claim

σi+1τi+1 = σi
t
x τi+1 = σiτi = τ.

This completes the proof.

Exercises

1. Let α, β be prime formulas without shared variables. Show that the

properties (i) and (ii) are equivalent:

(i) {α, β} is unifiable, (ii) there are substitutions σ, τ with ασ = βτ .

2. Show: σ =
�t
�x is idempotent (which is to mean σ2 = σ) if and only if

xi /∈ var tj , for all i, j with 1 � i, j � n.

3. A renaming ρ is termed a separator of a pair of clauses K0, K1 if

varKρ
0 ∩ varK1 = ∅. Show that if K0 ∪ K1 is unifiable then so is

Kρ
0 ∪ K1, but not conversely, in general.

4. Assume s1, s2 /∈ Var for the first distinction letters s1, s2 of the

clauses K1 �= K2. Show rigorously that {K1, K2} is not unifiable.

4.6 Logic Programming

A rather general starting point in dealing with systems of artificial intel-

ligence consists in using computers to draw consequences ϕ from certain

data and facts given in the form of a set of formulas X, that is, proving

X ⊢ ϕ mechanically. That this is possible in theory was the subject of

3.5. In practice, however, such a project is in general realizable only under

certain limitations regarding the pattern of the formulas in X, ϕ. These

limitations refer to any first-order language L adapted to the needs of a

particular investigation. For logic programming the following restrictions

on the set X and the formula ϕ are characteristic:
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• L is identity-free and contains at least one constant symbol,

• each α ∈ X is a positive universal Horn sentence,

• ϕ is a sentence of the form ∃�x(γ0 ∧ · · · ∧γk) with prime formulas γi.

Note that ¬ϕ is equivalent to ∀�x(¬γ0 ∨ · · · ∨ ¬γk) and hence a negative

universal Horn sentence. Because ∀-quantifiers can be distributed among

conjunctions, we may assume that each α ∈ X is of the form

(∗) (β1 ∧ · · · ∧βm →β)g (β, β1, . . . , βm prime formulas, m � 0).

A finite set of sentences of this type is called a logic program and will

henceforth be denoted by P. The availability of a constant symbol just

ensures the existence of a Herbrand model for P. In the programming

language PROLOG, (∗) is formally written without quantifiers as follows

and called a program clause:

β :− β1, . . . , βm (or just β :− in case m = 0).

:− symbolizes converse implication mentioned in 1.1. For m = 0 such

program clauses are called facts, and for m > 0 rules. In the sequel we

make no distinction between a logic program P as a set of formulas and

its transcript in PROLOG. The sentence ϕ = ∃�x(γ0 ∧ · · · ∧γk) in the last

bulleted item above is also called a query to P. In PROLOG, ¬ϕ is mostly

denoted by :− γ0, . . . , γk.
4 ∃�x may be empty. This notation comes from

the logical equivalence of the kernel of ¬ϕ (≡ ∀�x(¬γ0 ∨ · · · ∨ ¬γk)) to

the converse implication ⊥ ← γ0 ∧ · · · ∧γk, omitting the writing of ⊥.

Using rules one not only proceeds from given facts to new facts but may

also arrive at answers to queries. The restriction as regards the abstinence

from ==== is not really essential. This will become clear in Examples 1 and

4 and in the considerations of this section. Whenever required, ==== can

be treated as an additional binary relation symbol by adjoining the Horn

sentences from Example 1 in 4.2.

Program clauses and negated queries can equally well be written as

Horn clauses: β :− β0, . . . , βm as {¬β1, . . . ,¬βn, β}, and :− γ0, . . . , γk as

{¬γ0, . . . ,¬γk}. For a logic program P, let P denote the corresponding

4 Sometimes also ?−γ0, . . . , γk. Like many programming languages, PROLOG also has

numerous “dialects.” We shall therefore not consistently stick to a particular syntax.

We also disregard many details, for instance that variables always begin with capital

letters and that PROLOG recognizes certain unchanging predicates like read, . . . , to

provide a convenient user interface.
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set of positive Horn clauses. P and P can almost always be identified.

To justify this semantically, let A � K for a given L-structure A and

K = {λ0, . . . , λk} simply mean A �
∨

i�k λi, which is clearly equivalent

to A � (
∨

i�k λi)
g . Note that A � , since corresponds to the formula

⊥. For L-models M, let M � K have its ordinary meaning M �
∨

i�k λi.

If A � K for all K ∈ K, then A is called a model for a given set K of

clauses, and K is called satisfiable or consistent if such an A exists. This is

clearly equivalent to the consistency of the set of sentences corresponding

to K. Further, let K � H if every model for K also satisfies H. Evidently

K � Kσ for K ∈ K and arbitrary substitutions σ, since A � K ⇒ A � Kσ.

The clause Kσ is also termed an instance of K, in particular a ground

instance whenever Kσ contains no variables.

A logic program P, considered as a set of positive Horn formulas, is

always consistent. All facts and rules of P are valid in the minimal Her-

brand model CP . This model should be thought of as the model of a

domain of objects about which one wishes to express properties by means

of P. A logic program P is always written such that a real situation is

modeled as precisely as possible by the minimal Herbrand model CP .

Suppose that P ⊢ ∃�xγ, where γ is a conjunction of prime formulas as

at the beginning, i.e., ∃�xγ is a query. Then a central goal of logic pro-

gramming is to gain “solutions” of P ⊢ ∃�xγ in CP , which by Theorem 2.2

always exist. Here γ
�t
�x is called a solution of P ⊢ ∃�xγ whenever P ⊢ γ

�t
�x .

One also speaks of the solution �x := �t , or an answer to the query :− γ.

Logic programming follows the strategy of proving P ⊢ ϕ for a query

ϕ by establishing the inconsistency of P,¬ϕ. To verify this we know

from Theorem 1.1 that an inconsistency proof of GI(P,¬ϕ) suffices. The

resolution theorem shows that for this proof in turn, it suffices to derive the

empty clause from the set of clauses GI(P, N) corresponding to GI(P,¬ϕ).

Here GI(K) generally denotes the set of all ground instances of members

of a set K of clauses, and N = {¬γ1, . . . ,¬γn} is the negative clause

corresponding to the query ϕ, the so-called goal clause.

As a matter of fact, we proceed somewhat more artfully and work not

only with ground instances but also with arbitrary instances. Nor does the

search for resolutions take place coincidentally or arbitrarily, but rather

with the most sparing use of substitutions possible for the purpose of

unification. Before the general formulation of Theorem 6.2, we exhibit
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this method of “unified resolution” by means of two easy examples. In the

first of these, sum denotes the ternary relation graph+ in N.

Example 1. Consider the following program P = P+ in L{0, S, sum}:

∀xsumx0x ; ∀x∀y∀z(sum xyz → sumxSySz).

In PROLOG one may write this program somewhat more briefly as

sumx0x :− ; sumxSySz :− sumxyz.

The first program clause is a “fact,” the second one is a “rule.” The set of

Horn clauses that belongs to P is

P = {{sumx0x}, {¬sumxyz, sumxSySz}}.

P describes sum = graph+ in N together with 0, S; more precisely,

CP ≃ N := (N, 0, S, sum ),

that is, CP � summ n k ⇔ N � summn k (⇔ m + n = k). This is

deduced in Example 3 on page 164, but more directly from Exercise 2

in 4.3. By replacing therein pm,n,k with summ nk, the formulas of this

exercise correspond precisely to the ground instances of P+.

Examples of queries to P are ∃u∃v sumu1v and ∃usumuu6. Another

example is sumn 2 n + 2 (here the ∃-prefix is empty). For each of these

three queries ϕ, clearly CP � ϕ holds. Hence, P ⊢ ϕ by the last part of

Theorem 2.2. But how can this be confirmed by a computer?

As an illustration, let ϕ := ∃u∃v sumu1v. Since P ⊢ sumn, Sn we know

that (u, v) := (n, Sn) is a solution of

(∗) P ⊢ ∃u∃v sumu1v.

We will show that P ⊢ sumx1Sx, where x occurs free in the last for-

mula, is the general solution of (∗). The inconsistency proof of P,¬ϕ

results by deriving from suitable instances of P, N that will be con-

structed by certain substitutions. N := {¬sumu1v} is the goal clause

corresponding to ϕ. The resolution rule is not directly applicable to

P, N . But with ω0 := u
x

0
y

Sz
v it is applicable to Pω0 , Nω0 , with the Horn

clause P := {¬sumxyz, sumxSySz} ∈ P. Indeed, one easily confirms that

Pω0 = {¬sumu0z, sumu1Sz} and Nω0 = {¬sumu1Sz}. The resolvent of

the pair of Horn clauses Pω0 , Nω0 is N1 := {¬sumu0z}. This can be

stated as follows: Resolution is becoming possible thanks to the unifia-

bility of the clause {sumxSySz, sumu1v}, where sumxSySz belongs to P
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and ¬sumu1v to N . But we have still to continue to try to get the empty

clause. Let P1 := {sumx0x} ∈ P. Then P1, N1 can be brought to reso-

lution by unification with ω1 := x
u

x
z . For notice that P ω1

1 = {sumx0x}

and N ω1
1 = {¬sumx0x}. Now simply apply RR to this pair of clauses

✧
✧
✧✧
¬sumu0z

❜
❜
❜❜

sumx0x
ω1 = x

u
x
z

✧
✧
✧✧

¬sumu1v

❜
❜
❜❜

¬sumxyz, sumxSySz

ω0 = u
x

0
y

Sz
v

to obtain . The diagram

on the left makes this kind

of a description more in-

tuitive. Note that the set

braces of the clauses have

been omitted in the dia-

gram. This resolution can

certainly be produced by

a computer; what the computer has to do is just to look for appropriate

unifiers for pairs of clauses. In this way, (∗) is proved by Theorem 6.2(a)

below. At the same time, by Theorem 6.2(b), applied to the resolution

represented by the above diagram, we obtain a solution of (∗), namely

(sumu1v)ω0 ω1 = sumx1Sx. This solution is an example of a most gen-

eral solution of (∗), because by substitution we obtain from sumx1Sx all

individual solutions, namely the sentences sumn 1 Sn.

Example 2. The logic program P = {∀x(hux →mt x), huSocr}, written

hu Socr ; mtx :− hux in PROLOG, formalizes the two premises of the old

classical Aristotelian syllogism

All humans are mortal; Socrates is a human. Hence, Socrates is mortal.

✧
✧
✧✧

¬hux

❜
❜
❜❜

hu Socr

σ= Socr
x

✧
✧
✧✧
¬mtx

❜
❜
❜❜

¬hux,mtxHere CP is just the single-

point model {Socr}, since

Socr is the only constant

and no functions occur.

The figure on the right

shows a resolution of the

query :− mt x (in words,

“Is there a mortal x in the Herbrand model CP?”), with the solution

x := Socr. The familiar logic argument runs as follows: ∀x(hux →mt x)

implies huSocr →mt Socr by specification of x. Thus, since huSocr, MP

yields mt Socr. We learn from this example among other things that proofs

using MP can also be gained by resolution.
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Of course, the above examples are far too simple to display the efficiency

of logic programming in practice. Here we are interested only in illustrat-

ing the methods, which are essentially a combination of resolution and

unification. Clearly, these methods concern basically the implementation

of PROLOG and may be less interesting to the programmer who cares

in the first line about successful programming, whereas the logician cares

about the theory behind logical programming.

Following these preliminary considerations we will now generalize our

examples and start with the following definition of the rules UR and UHR

of unified resolution and unified Horn resolution, respectively. Therein,

K0, K1 denote clauses and ω a substitution.

Definition Let UωR(K0, K1) be the set of all clauses K such that there

are clauses H0, H1 and negation-free clauses G0, G1 �= such that after a

possible swapping of the indices 0, 1,

(a) K0 = H0 ∪ G0 and K1 = H1 ∪ G1 (G1 = {λ | λ ∈ G1}),

(b) ω is a (w.l.o.g. generic) unifier of G0 ∪ G1 and K = H ω
0 ∪ H ω

1 .

K is called a U -resolvent of K0, K1 or an application of the rule UR to

K0, K1 if K ∈ UωR(Kρ
0 , K1) for some ω and some separator ρ of K0, K1.

The restriction of UR to Horn clauses K0, K1 (K0 positive, K1 negative)

is denoted by UHR and UωR(K0, K1) by UωHR(K0, K1). The resolvent

K is then termed a UH-resolvent of K0, K1.

This definition becomes more lucid by some additional explanations.

According to (b), Gω
0 = {π} = Gω

1 for some prime formula π. Hence K

results from applying standard resolution on suitable premises. Applying

UR or UHR to K0, K1 always includes a choice of ω and ρ (ρ may enlarge

the set of resolvents, see Exercise 3 in 4.5). In the examples we used UHR.

In the first resolution step of Example 1 is ¬sumu0z ∈ Uω0HR(P ρ, N)

(with ρ = ι). The splitting of K0 and K1 according (a) above reads

H0 = {¬sumxyz}, G0 = {sumxSySz}, and H1 = ∅, G1 = {sumu1v}.

UHR was used again in the second resolution step, as well as in Example 2,

strictly following the instruction of the above definition.

We write K ⊢
UR

H if H is derivable from the set of clauses K using UR.

Accordingly, let K ⊢
UHR

H be defined for sets of Horn clauses K, where

only UHR is used. As in 4.3, derivations in ⊢
UR

or ⊢
UHR

can be visualized

by means of trees. A (successful) U -Resolution for K is just a U -resolution
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tree with leaves in K and the root , where the applied substitutions are

tied to the resolution nodes as in the diagram below.

A UH-resolution is defined similarly; it may as well be regarded as

a sequence (P ρi

i , Ni, ωi)i�ℓ with Ni+1 ∈ Uωi
HR(P ρi

i , Ni) for i < ℓ and

∈ Uωℓ
HR(P ρℓ

ℓ , Nℓ). If P is a set of positive clauses and N a negative

clause, and if further Pi ∈ P holds for all i � ℓ and N0 = N , one speaks of

a UH-resolution for P, N . In general, P consists of the clauses of some logic

✪
✪✪

Nℓ

❡
❡❡

P ρℓ

ℓ

ωℓ

� � �N2

✪
✪✪ω1

N1

❡
❡❡

P ρ1
1

✪
✪✪
N0

ω0
❡
❡❡

P ρ0
0

program and N is any given

goal clause. In place of UH-

resolution one may also speak

of SLD-resolution (Linear re-

solution with Selection func-

tion for Definite clauses).

This name has nothing to

do with some special strat-

egy for searching a success-

ful resolution, implemented

in PROLOG. For details on

this matter see for instance

[Ll]. The diagram illustrates a UH-resolution (P ρi

i , Ni, ωi)i�ℓ for P, N .

It generalizes the diagrams in Examples 1 and 2, which represent partic-

ularly simple examples of UH-resolutions.

First of all we prove the soundness of the calculus ⊢
UR

in Lemma 6.1.

This clearly covers also the calculus ⊢
UHR

of unified Horn resolution, where

one has to do with special clauses only.

Lemma 6.1 (Soundness lemma). K ⊢
UR

H implies K � H.

Proof. It suffices to show that K0, K1 � H if H is a U -resolvent of K0, K1.

Let H ∈ UωR(Kρ
0 , K1), Kρ

0 = H0 ∪ G0, K1 = H1 ∪ G1, Gω
0 = {π} = Gω

1 ,

H = Hρω
0 ∪Hω

1 , and A � K0, K1. Then A � Kρω
0 , Kω

1 as well. Further, let

w : Var → A, with M := (A, w) � Kρω
0 = Hρω

0 ∪ {π}, M � Hω
1 ∪ {¬π}.

If M � π then evidently M � Hρω
0 . Otherwise M � ¬π, hence M � Hω

1 .

So M � Hω
0 ∪ Hω

1 = H in any case. This states that A � H, because w

was arbitrary.

With respect to the calculus ⊢
UHR

this lemma serves the proof of (a) in
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Theorem 6.2 (Main theorem of logic programming). Let P be a

logic program, ∃�xγ a query, γ = γ0 ∧ · · · ∧γk, and N = {¬γ0, . . . ,¬γk}.

Then the following hold:

(a) P ⊢ ∃�xγ iff P, N ⊢
UHR

(Adequacy).

(b) If (P ρi

i , Ni, ωi)i�ℓ is a UH-resolution for P, N and ω := ω0 · · ·ωℓ,

then P ⊢ γω (Solution soundness).

(c) Suppose that P ⊢ γ
�t
�x (�t ∈ T n

0 ). Then there is some UH-resolution

(Kρi

i , Ni, ωi)i�ℓ and some σ such that xωσ
i = ti for i = 1, . . . , n,

where ω = ω0 · · ·ωℓ (Solution completeness).

The proof of this theorem is undertaken in 4.7. It has a highly technical

character and uses a substantial amount of substitutions. Here are just a

few comments. In view of ¬∃�xγ ≡ ∀�x¬γ it is clear that

(∗) P ⊢ ∃�xγ

is equivalent to the inconsistency of P, ∀�x¬γ, hence also to that of the

corresponding set of Horn clauses P, N . Theorem 6.2(a) states that this

is equivalent to P, N ⊢
UHR

, which is not obvious. (b) tells us how to

achieve a solution of (∗) by a successful resolution. Since γω in (b) may

still contain free variables (like (sumu1v)ω for ω = ω1ω2 in Example 1)

and since P ⊢ γω ⇒ P ⊢ γωτ for any τ , we often obtain whole families of

solutions of (∗) in the Herbrand model CP by substituting ground terms.

By (c), all solutions in CP are gained in this way, though not always with

a single generic resolution as in Example 1. However, the theorem makes

no claim as to whether and under what circumstances (∗) is solvable.

Logic programming is also expedient for purely theoretical purposes.

For instance, it can be used to make the notion of computable functions

on N entirely precise. The definition below provides just one of several

similarly styled, intuitively illuminating possibilities. We will construct

an undecidable problem in Theorem 6.3 below that explains the principal

difficulties surrounding a general answer to the question P ⊢ ∃�xγ. Because

in 6.1 computable functions are equated with recursive functions, we keep

things fairly brief here.

Definition. f : Nn → N is called computable if there is a logic program Pf

in a language that, in addition to 0 and S, contains only relation symbols,

including an (n+1)-ary relation symbol denoted by rf (to mean graph f),

such that for all �k = (k1, . . . , kn) and m the following is satisfied:
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(1) Pf ⊢ rf�k m ⇔ f�k = m
(
�k = (k1, . . . , kn)

)
.5

A function f : Nn → N satisfying (1) is certainly computable in the

intuitive sense: a deduction machine is set to list all formulas provable

from Pf , and one simply has to wait until a sentence r�k m appears. Then

the value m = f�k is computed. By Theorem 6.2(a), the left-hand side

of (1) is for P = Pf equivalent to P, {¬r�k m} ⊢
UHR

. Therefore, f is

basically also computable with the Horn resolution calculus.

The domain of the Herbrand model CPf
is N, and by Theorem 2.2,

Pf ⊢ rf�k m ⇔ CPf
� rf�k m,

so that (1) holds when just the following claim has been proved:

(2) CPf
� rf�k m ⇔ f�k = m, for all �k, m.

Example 3. P+ in Example 1 computes +, more precisely graph+, since

CP+ � sum k n m ⇔ k+n = m was shown there. So (2) holds and hence

also (1). A logic program P× for computing prd := graph · arises from

P+ by expanding the language to L{0, S, sum, prd } and adding to P+ the

program clauses prdx00 :− and prdxSyu :− prdxyz, sum zxu. Here we

see that besides the graph of the target function some additional relations

may be involved in the function’s computation.

Example 4. The program PS in L{0, S, rS }, containing only rS xSx :− ,

computes the graph rS of the successor function. Clearly, PS ⊢ rS nSn,

since PS, {¬rS nSn} ⊢
UHR

( is a resolvent of {rS xSx}σ and {¬rS nSn}σ,

where σ equals S
n0
x ). Let m �= Sn. Then (N, 0, S, graph S) � PS,¬rS nm.

Hence, PS � rS n m. This confirms (1).

It is not difficult to recognize that each recursive function f can be

computed by a logic program Pf in the above sense in a language that

in addition to some relation symbols contains only the operation symbols

0, S. Exercises 1, 2, and 3 provide the main steps in the proof, which

proceeds by induction on the generating operations Oc, Op, and Oµ of

recursive functions from 6.1. Example 4 confirms the induction initiation

for the initial primitive recursive function S. The interested reader should

study 6.1 to some extent in order to understand what is going on.

5 By grounding computability in different terms one could f provisionally call LP -

computable. Our definition is related to the Herbrand–Gödel definition of computable

functions but we will not step into further details in this respect.
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Thus, the concept of logic programming is very comprehensive. On

the other hand, this has the consequence that the question P ⊢ ∃�xγ is,

in general, not effectively decidable. Indeed, this undecidability is the

assertion of our next theorem.

Theorem 6.3. A logic program P exists whose signature contains at least

a binary relation symbol r, but no operation symbols other than 0, S, such

that no algorithm answers the question P ⊢ ∃x rxk for each k.

Proof. Let f : N → N be recursive, but ran f = {m ∈ N | ∃kfk = m} not

recursive. Such a function f exists; see Exercise 5 in 6.5. Then we get

for P := Pf from the definition page 163,

P ⊢ ∃x rxm ⇔ CP � ∃x rxm (Theorem 2.2, r means rf )

⇔ CP � rk m for some k (CP has the domain N)

⇔ fk = m for some k
(
by (2)

)

⇔ m ∈ ran f.

Thus, if the question P ⊢ ∃x rxm were decidable then so too would be the

question m ∈ ran f , and this is a contradiction to the choice of f .

Exercises

1. Let g : Nn → N and h : Nn+2 → N be computable by means of the

logic programs Pg and Ph, and let f : Nn+1 → N arise from g, h by

primitive recursion. This is to mean that

f(�a, 0) = g�a and f(�a, k + 1) = h(�a, k, f(�a, k)) for all �a ∈ Nn.

Provide a logic program for computing (the graph of) f .

2. Let Ph and Pgi
be logic programs for computing h : Nm → N and

gi : Nn → N (i = 1, . . . , m). Further, let the function f be defined

by f�a = h(g1�a, . . . , gm�a) for all �a ∈ Nn. Give a logic program for

computing f .

3. Let g : Nn+1 → N and Pgi
be logic program for computing g. Further

assume that to each �a ∈ Nn there is some b ∈ N with g(�a, b) = 0 and

let h�a for �a ∈ Nn be the smallest m such that g(�a, m) = 0. Give a

logic program for computing h : Nn → N.

These exercises and the examples show that the LP -computable

functions coincide with the general recursive functions.
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4.7 A Proof of the Main Theorem

While we actually require the following lemmas and Theorem 7.3 below

only for the unified Horn resolution, the proofs are carried out here for the

more general U-resolution. These proofs are not essentially more difficult.

As a matter of fact, the only difficulty in the proofs is the handling of

substitutions. The calculi ⊢
RR

and ⊢
HR

from 4.3 now operate with variable-

free clauses of a fixed identity-free first-order language with at least one

constant. The presence of constants assures that variable-free clauses are

available. ρ, σ, τ denote simultaneous substitutions throughout.

Lemma 7.1. Let K0, K1 be clauses with separator ρ and let Kσ0
0 , Kσ1

1 be

variable-free. Suppose that K is a resolvent of Kσ0
0 , Kσ1

1 . Then there are

substitutions ω, τ and some H ∈ UωR(Kρ
0 , K1) such that Hτ = K, i.e., K

is a ground instance of some U -resolvent of K0, K1. Further, for a given

finite set V of variables, ω, τ can be selected in such a way that xωτ = xσ1

for all x ∈ V . The same holds for Horn resolution.

Proof. Suppose w.l.o.g. that Kσ0
0 = L0, π and Kσ1

1 = L1,¬π for some

prime formula π, and K = L0 ∪ L1. Put Hi := {α ∈ Ki | ασi ∈ Li},

G0 := {α ∈ K0 | ασ0 = π}, and G1 := {β ∈ K1 | βσ1 = π}, i = 0, 1.

Then K0 = H0 ∪ G0, K1 = H1 ∪ G1, Hσi

i = Li, Gσi

i = {π}. Let ρ be a

separator of K0, K1 and define σ by xσ = xρσ0 in case x ∈ varKρ
0 , and

xσ = xσ1 else, so that e.g. Kσ
1 = Kσ1

1 . Note that also ρσ = ρρσ0 = σ0,

hence Kρσ
0 = Kσ0

0 . Therefore (Gρ
0 ∪G1)

σ = Gρσ
0 ∪Gσ

1 = Gσ0
0 ∪Gσ1

1 = {π},

that is, σ unifies Gρ
0 ∪ G1. Let ω be a generic unifier of this clause, so

that σ = ωτ for suitable τ . Then H := Hρω
0 ∪ Hω

1 ∈ UωR(Kρ
0 , K1) by

definition of the rule UR, and Hρσ
0 = Hσ0

0 , Hσ
1 = Hσ1

1 yield the desired

Hτ = Hρωτ
0 ∪ Hωτ

1 = Hρσ
0 ∪ Hσ

1 = Hσ0
0 ∪ Hσ1

1 = L0 ∪ L1 = K.

The second part of our lemma is easily confirmed. Since V is finite, ρ can

clearly be chosen such that V ∩ varKρ
0 = ∅, hence xσ = xσ1 for all x ∈ V .

By definition of σ and in view of ωτ = σ it then obviously follows that

xωτ = xσ1 whenever x ∈ V .

The next lemma claims that if the is derivable from GI(K) with

resolution only (i.e., without unification and separation), then is also

directly derivable from K in the calculi ⊢
UR

and ⊢
UHR

, respectively.
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Lemma 7.2 (Lifting lemma). Suppose that GI(K) ⊢
RR

for some set of

clauses K. Then K ⊢
UR

. And if K consists of Horn clauses only, then

also K ⊢
UHR

.

Proof. We shall verify the more general claim

(∗) If GI(K) ⊢
RR

K then K ⊢
UR

H and K = Hτ for some H and τ .

For K = , (∗) is our claim since τ = . (∗) follows straightforwardly

by induction on GI(K) ⊢
RR

K. It is trivial for K ∈ GI(K), by definition of

GI(K). For the inductive step let GI(K) ⊢
RR

Kσ0
0 , Kσ1

1 , with K0, K1 ∈ K

for suitable σ0, σ1 according to the induction hypotheses, and let K be

a resolvent of Kσ0
0 , Kσ1

1 . That then H ∈ UωR(Kρ
0 , K1) and K = Hτ for

suitable H, ω, τ is exactly the first claim of Lemma 7.1. This proves (∗).

The case for Horn clauses is completely similar.

Theorem 7.3 (U-Resolution theorem). A set of clauses K is incon-

sistent iff K ⊢
UR

; a set of Horn clauses K is inconsistent iff K ⊢
UHR

.

Proof. If K ⊢
UR

then K � by Lemma 6.1; hence K is inconsistent.

Suppose now the latter, so that the set U of ∀-sentences corresponding

to K is inconsistent as well. Then GI(U) is inconsistent according to

Theorem 1.1; hence GI(K) as well. Thus, GI(K) ⊢
RR

by Theorem 3.2

and so K ⊢
UR

by the Lifting lemma. For sets of Horn clauses the proof

runs analogously, using Theorem 4.2 instead of Theorem 3.2.

Proof of Theorem 6.2. (a): P ⊢ ∃�xγ is equivalent to the inconsis-

tency of P, ∀�x¬γ or of P, N . But the inconsistency of P, N is, by the

U-Resolution theorem, precisely the same as saying P, N ⊢
UHR

.

(b): Proof by induction on the length ℓ of a (successful) UH-resolution

(P ρi

i , Ni, ωi)i�ℓ for P, N . Let ℓ = 0, so that ∈ UωHR(P ρ
0 , N) for suitable

ρ, ω (= ω0), and P0 ∈ P. Then ω unifies P ρ
0 ∪ N , i.e., P ρω

0 = {π} = γω
i

for some prime formula π and all i � k. Hence trivially Pρω
0 ⊢ γω

i (=

π) for each i � k, and so P ⊢ γω
0 ∧ · · · ∧γω

k = γω as claimed in Theo-

rem 6.2(b) for the case ℓ = 0. Now let ℓ > 0. Then (P ρi

i , Ni, ωi)1�i�ℓ is a

UH-resolution for P, N1 as well. By the induction hypothesis,

(1) P ⊢ αω1···ωℓ whenever ¬α ∈ N1 .

It suffices to verify P ⊢ γω
i for all i � k with ω = ω0 . . . ωn in agreement

with the notation in Theorem 6.2. To this end we distinguish two cases

for given i: if ¬γω0
i ∈ N1 then P ⊢ (γω0

i )ω1···ωℓ by (1), hence P ⊢ γω
i . Now



168 4 Foundations of Logic Programming

suppose ¬γω0
i /∈ N1. Then γω0

i disappears in the resolution step from

P ρ0
0 , N0 (= N) to N1. So P0 takes the form P0 = {¬β1, . . . ,¬βm, β},

where βρ0ω0 = γω0
i and ¬βρ0ω0

j ∈ N1 for j = 1, . . . , m. Thus (1) evidently

yields P ⊢ (βρ0ω0

j )ω1···ωℓ and therefore P ⊢
∧m

j=1 βρ0ω
j . At the same time, it

holds P ⊢
∧m

j=1 βρ0ω
j →βρ0ω because of P ⊢ ¬βρ0ω

1 ∨ . . . ∨¬βρ0ω
m ∨βρ0ω (the

latter holds since P0 = {¬β1, . . . ,¬βm, β}). Using MP we then obtain

P ⊢ βρ0ω. From βρ0ω0 = γω0
i , applying ω1 · · ·ωℓ on both sides, we obtain

βρ0ω = γω
i . Hence P ⊢ γω

i also in the second case. Thus, βρ0ω = γω
i for

all i � n, independent on our case distinction. This proves (b).

(c): Let P ⊢ γτ with τ :=
�t
�x , and P ′ = GI(P). Then P,¬γτ is inconsis-

tent, and so too is P ′,¬γτ by Theorem 1.1 (consider GI(¬γτ ) = {¬γτ}).

According to the H-resolution theorem 4.2, there is some H-resolution

B = (P ′
i , Qi)i�ℓ for P′, N τ with Q0 = N τ . Here let, say, P ′

i = Pσi

i for

appropriate clauses Pi ∈ P and σi. From this facts we will derive

(2) for finite V ⊆ Var there exist ρi, Ni, ωi, τ such that (P ρi

i , Ni, ωi)i�ℓ

is a UH-resolution for P, N . Moreover, xωτ = xσ for ω := ω0 · · ·ωℓ

and all x ∈ V .

This completes our reasoning, because (2) yields (for V = {x1, . . . , xn})

xω τ
i = xσ

i = ti for i = 1, . . . , n, whence (c). For the inductive proof of (2)

look at the first resolution step Q1 = HR(P ′
0, Q0) in B, with P ′

0 = P σ0
0 ,

Q0 = Nσ1 , σ1 := τ . By Lemma 7.1 with K0 := P0, K1 := N0 := N ,

we choose ω0, ρ0, τ0, H such that H ∈ UωHR(P ρ0
0 , N0) and Hτ0 = Q1,

as well as xω0τ0 = xσ for all x ∈ V . If ℓ = 0, that is, if Q1 = , then

also H = and (2) is proved with τ = τ0. Now suppose ℓ > 0. For the

H-resolution (P ′
i , Qi)1�i�ℓ for P′, Q1 and for V ′ := var {xω0 | x ∈ V } there

exist by the induction hypothesis ρi, Ni, ωi for i = 1, . . . , ℓ and some τ ,

such that (P ρi

i , Ni, ωi)1�i�ℓ is a UH-resolution for P, H and simultaneously

yω1···ωℓτ = yτ0 for all y ∈ V ′ (instead of Q0 = Nσ we have now to consider

Q1 = Hτ0). Because of varxω0 ⊆ V ′ and xω0τ0 = xσ for x ∈ V we get

(3) xωτ = (xω0)ω1···ωℓτ = xω0τ0 = xσ, for all x ∈ V .

(P ρi

i , Ni, ωi)i�ℓ is certainly a UH-resolution. Moreover, by virtue of (3),

and by choosing V = {x1, . . . , xn}, it holds xωτ
i = xσ

i = ti for i = 1, . . . , n.

This proves (2), hence (c), and completes the proof of Theorem 6.2.



Chapter 5

Elements of Model Theory

Model theory is a main branch of applied mathematical logic. Here the

techniques developed in mathematical logic are combined with construc-

tion methods of other areas (such as algebra and analysis) to their mutual

benefit. The following demonstrations can provide only a first glimpse in

this respect, a deeper understanding being gained, for instance, from [CK]

or [Ho]. For further-ranging topics, such as saturated models, stability

theory, and the model theory of languages other than first-order, we refer

to the special literature, [Bue], [Mar], [Pz], [Rot], [Sa], [She].

The theorems of Löwenheim and Skolem were first formulated in the

generality given in 5.1 by Tarski. These and the compactness theorem

form the basis of model theory, a now wide-ranging discipline that arose

around 1950. Key concepts of model theory are elementary equivalence

and elementary extension. These not only are interesting in themselves

but also have multiple applications to model constructions in set theory,

nonstandard analysis, algebra, geometry and elsewhere.

Complete axiomatizable theories are decidable; see 3.5. The question of

decidability and completeness of mathematical theories and the develop-

ment of well-honed methods that solve these questions have always been

a driving force for the further development of mathematical logic. Of

the numerous methods, we introduce here the most important: Vaught’s

test, Ehrenfeucht’s game, Robinson’s method of model completeness, and

quantifier elimination. For more involved cases, such as the theories of

algebraically closed and real closed fields, model-theoretic criteria are de-

veloped and applied. For a complete understanding of the material in 5.5

the reader should to some extent be familiar with some basic algebraic

constructions, mainly concerning the theory of fields.
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5.1 Elementary Extensions

In 3.3 nonstandard models were obtained using a method that we now

generalize. For given L and a set A let LA denote the language resulting

from L by adjoining new constant symbols a for all a ∈ A. The symbol a

should depend only on a, not on A, so that LA ⊆ LB whenever A ⊆ B.

To simplify notation we shall write from Theorem 1.3 onward just a rather

than a; there will be no risk of misunderstanding.

Let B be an L-structure and A ⊆ B (the domain of B). Then the

LA-expansion in which a is interpreted by a ∈ A will be denoted by BA.

According to Exercise 3 in 2.3 we have for arbitrary α = α(�x) ∈ L and

arbitrary �a ∈ An,

(1) B � α [�a] ⇔ BA � α(�a) (α(�a) := α a1
x1 · · · an

xn ).

It is important to notice that every sentence from LA is of the form

α(�a) for suitable α(�x) ∈ L and �a ∈ An. Instead of BA � α(�a) (which is

equivalent to B � α [�a]) we later will write just BA � α(�a) or even B � α(�a),

as in Theorem 1.3. Thus, B may also denote a constant expansion of B if it

is not the distinction that is to be emphasized. This notation is somewhat

sloppy but points up the ideas behind the constructions.

Note that for an L-structure A, the LA-expansion AA receives a new

constant symbol for every a ∈ A, even if some elements of A already

possess names in L. The set of all variable-free literals λ ∈ LA such

that AA � λ is called the diagram of A, denoted by DA. For instance,

D(R, <) contains for all a, b ∈ R the literals a==== b, a �====b, a < b, or a ≮ b,

depending on whether indeed a=b, a �=b, a<b, or a≮b for the reals a, b.

Diagrams are important for various constructions in model theory.

The notion of an embedding ı : A → B as defined in 2.1 (that is, the

image of A under ı is an isomorphic copy of A) embraces the notion of a

substructure. Indeed, A ⊆ B iff ı = idA, i.e. if ı is the identical or trivial

embedding of A into B.

Let L0 ⊆ L. In this chapter, the embeddability of an L0-structure A

into a given L-structure B often means the embeddability of A into the

L0-reduct B0 of B, and we shall write A ⊆ B also in such a situation. In

this sense the group Z, for example, is embeddable into the field Q.
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Theorem 1.1. Let L0 ⊆ L, A be an L0-structure, and B an LA-structure.

Then B � DA iff ı : a 
→ aB is an embedding of A in B.

Proof. ⇒: Let B � DA and a, b ∈ A, a �= b. Then a �====b ∈ DA. Hence

B � a �==== b, or equivalently, aB �= bB. Thus ı is injective. For a relation

symbol r from L0 and �a ∈ An we have in view of B � DA,

rA�a ⇔ r�a ∈ DA ⇔ B � r�a ⇔ rBı�a
(
ı�a := (ıa1, . . . , ıan)

)
.

Similarly ıfA�a = fBı�a is obtained, for note that whenever �a ∈ An and

b ∈ A then fA�a = b ⇔ f�a==== b ∈ DA ⇔ B � f�a==== b ⇔ fBı�a = ıb. Thus,

ı is indeed an embedding. ⇐: For variable-free terms t in L0A one easily

verifies ıtA = tB, where here and elsewhere tA means more precisely tAA .

Since ı is injective, it follows for variable-free equations t1 ==== t2 in L0A,

t1 ==== t2 ∈ DA ⇔ tA1 = tA2 ⇔ ıtA1 = ıtA2 ⇔ tB1 = tB2 ⇔ B � t1 ==== t2.

In the same way we get t1 �====t2 ∈ DA ⇔ B � t1 �====t2. Sentences of the form

r�t and their negations are dealt with analogously. Thus, B � DA.

Corollary 1.2. Let A,B be L-structures and B′ an LA-expansion of B.

Then B′ � DA iff A is embeddable into B. Moreover, if A ⊆ B then

BA � DA ⇔ A ⊆ B.

Indeed, by the theorem with L0 = L, the mapping ı : a 
→ aB′

realizes the

embedding, and also the converse of the first claim is obvious. ı is the

identical mapping in case A ⊆ B, which verifies the “Moreover” part with

B′ = BA. Frequent use will be made of this corollary, without mentioning

it explicitly. Taking a prime model for a theory T to mean a model

embeddable into every T -model, the corollary states that AA is a prime

model for DA, understood as a theory. We are using the concept of a

prime model only in this sense. It must be distinguished from the concept

of an elementary prime model for T as defined in Exercise 2.

Probably the most important concept in model theory, for which a first

example appears on the next page, is given by the following

Definition. Let L be a first-order language and let A,B be L-structures.

A is called an elementary substructure of B, and B an elementary extension

of A, in symbols A � B, if A ⊆ B and

(2) A � α [�a] ⇔ B � α [�a], for all α = α(�x) ∈ L and �a ∈ An.
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Clearly, A � B ⇒ A ⊆ B. Terming Del A := {α ∈ LA0 | AA � α} the

elementary diagram of A, A � B is obviously equivalent to A ⊆ B and

BA � Del A. Indeed, (2) already holds given only A � α [�a] ⇒ B � α [�a],

for all α = α(�x) ∈ L and �a ∈ An.

(2) is equivalent to AA � α(�a) ⇔ BA � α(�a), by (1). And since every

α ∈ LA is of the form α(�a) for appropriate α(�x) ∈ L, �a ∈ An, and

n � 0, the property A � B is also characterized by A ⊆ B and AA ≡ BA

(elementary equivalence in LA).

In general, A � B means much more than A ⊆ B and A ≡ B. For

instance, let A = (N+, <) and B = (N, <). Then certainly A ⊆ B, and

since A ≃ B, we have also A ≡ B. But A � B is false. For example,

∃x x < 1 is true in BA, but obviously not in AA. The following theorem

will prove to be very useful for, among other things, the provision of

nontrivial examples for A � B:

Theorem 1.3 (Tarski’s criterion). For arbitrary L-structures A,B with

A ⊆ B the following conditions are equivalent:

(i) A � B,

(ii) For all ϕ(�x, y) ∈ L and �a ∈ An holds the implication

B � ∃yϕ(�a, y) ⇒ B � ϕ(�a, a) for some a ∈ A.

Proof. (i)⇒(ii): Let A � B and B � ∃yϕ(�a, y), so that also A � ∃yϕ(�a, y).

Then A � ϕ(�a, a) for some a ∈ A. But A � B; hence B � ϕ(�a, a). (ii)⇒(i):

Since A ⊆ B, (2) certainly holds for prime formulas. The induction steps

for ∧ ,¬ are obvious. Only the quantifier step needs a closer look:

A � ∀yϕ(�a, y) ⇔ A � ϕ(�a, a) for all a ∈ A

⇔ B � ϕ(�a, a) for all a ∈ A (induction hypothesis)

⇔ B � ∀yϕ(�a, y) (see below).

We prove the direction ⇒ in the last equivalence indirectly: Assume that

B � ∀yϕ(�a, y). Then B � ∃y¬ϕ(�a, y). Hence B � ¬ϕ(�a, a) for some a ∈ A

according to (ii). Thus, B � ϕ(�a, a) cannot hold for all a ∈ A.

Interesting examples for A � B are provided in a surprisingly simple

way by the following theorem, which, unfortunately, is applicable only if

B has “many automorphisms,” as is the case in the example below, and in

geometry, for instance.
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Theorem 1.4. Let A ⊆ B. Suppose that for all n, all �a ∈ An, and all

b ∈ B there is an automorphism ı : B →B such that ı�a = �a, and ıb ∈ A.

Then A � B.

Proof. It suffices to verify (ii) in Theorem 1.3. Let B � ∃yϕ(�a, y), or

equivalently B � ϕ(�a, b) for some b ∈ B. Then B � ϕ(ı�a, ıb) according to

Theorem 2.3.4, and since ı�a = �a, we obtain B � ϕ(�a, a) with a := ıb ∈ A.

This proves (ii).

Example. It is readily shown that for given a1, . . . , an ∈ Q and b ∈ R
there exists an automorphism of (R, <) that maps b to a rational num-

ber and leaves a1, . . . , an fixed (Exercise 3). Thus, (Q, <) � (R, <). In

particular (Q, <) ≡ (R, <).

Here is a look at some less simple examples of elementary extensions,

considered more closely in 5.5. Let A = (A, 0, 1, +, ·) denote the field

of algebraic numbers and C the field of complex numbers. The domain A
consists of all complex numbers that are zeros of (monic) polynomials with

rational coefficients. Then A � C. Similarly, Ar � R where Ar denotes

the field of all real algebraic numbers and R is the field of all reals. The

claim A � C follows from the model completeness of the theory ACF

proved on page 198. Similarly Ar � R will be shown.

Before continuing we will acquaint ourselves somewhat with transfinite

cardinal numbers. It is possible to assign a set-theoretic object denoted

by |M| not only to finite sets but to arbitrary sets M such that

(3) M ∼ N ⇔ |M| = |N| (∼ means equipotency; see page 111).

|M| is called the cardinal number or cardinality of M . This is just the

number of elements in M for a finite M ; for an infinite set M , |M| is

called a transfinite cardinal number, or briefly a transfinite cardinal.

At this stage it is unimportant just how |M| is defined in detail. The

interested reader will find some definition in every textbook on set theory.

Significant are (4) and (5), taken as granted, from which (6) and (7)

straightforwardly follow.

(4) The cardinal numbers are well-ordered according to size, i.e., each

nonempty collection of them possesses a smallest element. Here

let |N| � |M| if there is an injection from N to M . The smallest

transfinite cardinality is |N|, i.e., |N| � |M| for all infinite sets M .
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(5) |M ∪ N| = |M × N| = max{|M|, |N|} for arbitrary sets M and N of

which at least one is infinite.

Remark. With this definition of � it follows that |M| � |N| & |N| � |M| implies
|M| = |N| (without AC). This is called the Cantor–Bernstein theorem. Actually,
the first proof of this theorem without AC (even more elegant than Bernstein’s)
is due to Dedekind, who left it unpublished in his diary from 1887. This theorem
holds under surprisingly weak assumptions; see [De].

We first derive from (4) and (5) that M∗ :=
⋃

n>0 Mn has the same

cardinality as M for infinite M , where M∗ denotes the set of all nonempty

finite sequences of elements of M . In short,

(6) |M∗| = |M| (M infinite).

Indeed, |M1| = |M|, and the hypothesis |Mn| = |M| obviously yields

|Mn+1| = |Mn × M| = |M| by (5). Thus |Mn| = |M| for all n. Therefore

|M∗| = |
⋃

n>0 Mn| = |M × N| = |M|. One similarly obtains from (4), (5)

for every transfinite cardinal κ the property

(7) If A0, A1 . . . are sets and |An| � κ for all n ∈ N then |
⋃

n∈N An| � κ.

The smallest transfinite cardinal number (i.e., |N|) is that of the count-

ably infinite sets, denoted by ℵ0. The next one is ℵ1. Then follows ℵ2,

ℵ3, . . . There is a smallest cardinal larger than all ℵn, denoted by ℵω, etc.

The Cantor–Bernstein theorem shows that the power set PN and the set

R have the same cardinality, denoted by 2ℵ0 . Certainly ℵ0 < 2ℵ0 , hence

ℵ1 � 2ℵ0 . Cantor’s continuum hypothesis (CH) states that ℵ1 = 2ℵ0 .

CH is independent in ZFC; see e.g. [Ku]. While there are axioms ex-

tending beyond ZFC that decide CH one way or another, none of these is

sufficiently plausible to be regarded as “true.” In the last decades some ev-

idence has been collected that suggests that 2ℵ0 = ℵ2, but this seemingly

does not yet convince the majority of mathematicians.

The cardinality of a structure A is always that of its domain, that

is, |A| := |A|. Theorem 1.5 below, essentially due to Tarski and there-

fore sometimes called the Löwenheim–Skolem–Tarski theorem, generalizes

Theorem 3.4.1 (page 112) essentially. The additive “downward” prevents

a mix-up of these theorems. For |B| � |L|, Theorem 1.5 ensures the exis-

tence of some A � B (in particular A ≡ B) such that |A| � |L|.
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Theorem 1.5 (Löwenheim–Skolem theorem downward). Suppose

that B is an L-structure such that |L| � |B| and let A0 ⊆ B be arbitrary.

Then B has an elementary substructure A of cardinality � max{|A0|, |L|}

such that A0 ⊆ A.

Proof. We construct a sequence A0 ⊆ A1 ⊆ · · · ⊆ B as follows. Let Ak

be given. For every α = α(�x, y) and �a ∈ An
k such that B � ∃yα(�a, y)

we select some b ∈ B with B � α(�a, b) and adjoin b to Ak, thus getting

Ak+1. In particular, if α is f�x==== y then certainly B � ∃y f�a==== y. Since

B � ∃!y f�a==== y, there is no alternative selection; hence fB�a ∈ Ak+1. Thus,

A :=
⋃

k∈N Ak is closed under the operations of B, and therefore defines

a substructure A ⊆ B. We shall prove A � B by Tarski’s criterion. Let

B � ∃yα(�a, y) for α = α(�x, y) and let �a ∈ An. Then �a ∈ A n
k for some k.

Therefore, there is some a ∈ Ak+1 (hence a ∈ A) such that B � α(�a, a).

This proves (ii) in Theorem 1.3 and so A � B. It remains to show that

|A| � κ := max{|A0|, |L|}. There are at most κ formulas and κ finite

sequences of elements in A0. Thus, by definition of A1, at most κ new

elements are adjoined to A0. Hence |A1| � κ. Similarly, |An| � κ is

verified for each n > 0. By (7) we thus get |
⋃

n∈N An| � κ.

Combined with the compactness theorem, the above theorem yields

Theorem 1.6 (Löwenheim–Skolem theorem upward). Let C be any

infinite L-structure and κ � max{|C|, |L|}. Then there exists an A � C

with |A| = κ.

Proof. Choose some D ⊇ C with |D| = κ. From (6) it follows that

|LD| = κ, because the alphabet of LD has cardinality κ. Since |C| � ℵ0,

by the compactness theorem, Del C ∪ {c �====d | c, d ∈ D, c �= d} has a model

B. Since d 
→ dB (d ∈ D) is injective, we may assume dB = d for all

d ∈ D, i.e., D ⊆ B. By Theorem 1.5 with LD for L and D for A0, there

is some A � B with D ⊆ A and κ � |D| � |A| � max{|LD|, |D|} = κ.

Hence |A| = κ. From C ⊆ D and A ≡LD B � Del C it follows that

A � Del C. Since C ⊆ D ⊆ A in addition, the L-reduct of A is an

elementary extension of the given structure C.

These theorems show in particular that a countable theory T with at

least one infinite model also has models in every infinite cardinality. Fur-

ther, ⊢T α already holds when merely A � α for all T -models A of a
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single infinite cardinal number κ, as long as T has only infinite models,

because under this assumption every T -model is elementarily equivalent

to a T -model of cardinality κ.

Exercises

1. Let A � C and B � C, where A ⊆ B. Prove that A � B.

2. An embedding ı : A → B is termed elementary if ıA � B, where

ıA denotes the image of A under ı. Show similarly to Theorem 1.1

that an LA-structure B is a model of Del A iff A is elementarily

embeddable into B.

3. Let a1, . . . , an ∈ Q and b ∈ R. Show that there is an automorphism

of (R, <) that maps b to a rational number and leaves all ai fixed.

4. Let A ≡ B. Construct a structure C in which A,B are both elemen-

tarily embeddable.

5. Let A be an L-structure generated from G ⊆ A and TG the set of

ground terms in LG. Prove that (a) for every a ∈ A there is some

t ∈ TG such that a = tA, (b) if A � T and DA ⊢T α (∈ LG) then

DGA ⊢T α. Here DGA := DA ∩ LG.

5.2 Complete and κ-Categorical Theories

According to the definition on page 105, a theory T ⊆ L0 is complete if

it is consistent and each extended theory T ′ ⊃ T in L0 is inconsistent. A

complete theory need not be maximally consistent in the whole of L. For

instance, in general neither ⊢T x==== y nor ⊢T x �====y, even if T is complete.

Some equivalent formulations of completeness, whose usefulness depends

on the situation at hand, are presented by the following

Theorem 2.1. For a consistent theory T the following conditions are

equivalent:1

1 All these conditions are also equivalent (they all hold) if the inconsistent theory is

taken to be complete, which is not the case here, as we agreed upon in 3.3.
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(i) T is complete,

(ii) T = ThA for every A � T ,

(iii) A ≡ B for all A,B � T ,

(iv) ⊢T α ∨ β implies ⊢T α or ⊢T β (α, β ∈ L0),

(v) ⊢T α or ⊢T ¬α (α ∈ L0).

Proof. (i) ⇒ (ii): Since T ⊆ ThA for each model A � T , it must be that

T = ThA. (ii) ⇒ (iii): For A,B � T we have by (ii) ThA = T = ThB,

and therefore A ≡ B. (iii) ⇒ (iv): Let ⊢T α ∨ β, A � T , and A � α,

say. Then B � α for all B � T by (iii), hence ⊢T α. (v) is a special case

of (iv) because ⊢T α ∨ ¬α, for arbitrary α ∈ L0. (v) ⇒ (i): Let T ′ ⊃ T

and α ∈ T ′ \T . Then ⊢T ¬α by (v); hence also ⊢T ′ ¬α. But then T ′ is

inconsistent. Hence, by the above definition, T is complete.

We now present various methods by which conjectured completeness can

be confirmed. The completeness question is important for many reasons.

For example, according to Theorem 3.5.2, a complete axiomatizable theory

is decidable whatever the means of proving completeness might have been.

An elementary theory with at least one infinite model, even if it is

complete, has many different infinite models. For instance, according to

Theorem 1.6, the theory possesses models of arbitrarily high cardinality.

However, sometimes it happens that all of its models of a given finite or

infinite cardinal number κ are isomorphic. The following definition bears

this circumstance in mind.

Definition. A theory T is κ-categorical if there exists up to isomorphism

precisely one T -model of cardinality κ.

Example 1. The theory Taut==== of tautological sentences in L==== is κ-

categorical for every cardinal κ. Indeed, here models A,B of cardinality κ

are naked sets and these are trivially isomorphic under any bijection from

A onto B.

The theory DO of densely ordered sets results from the theory of ordered

sets (formalized in 2.3; see also 2.1) by adjoining the axioms

∃x∃y x �====y ; ∀x∀y∃z(x < y → x < z ∧ z < y).

It is obvious that a densely ordered set is infinite. DO can be extended

by the axioms L := ∃x∀y x � y and R := ∃x∀y y � x to the theory DO11

of densely ordered sets with edge elements. Replacing R by ¬R results in
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the theory DO10 of densely ordered sets with left but without right edge

elements. Accordingly DO01 denotes the theory with right but without

left, and DO00 that of dense orders without edge elements. The paradigm

of a model for DO00 is (Q, <). Another model is (Q+, <).

Example 2. DO00 is ℵ0-categorical (Exercise 1 treats the other DOij).

The following proof is due to Cantor. A function f with dom f ⊆ M

and ran f ⊆ N is said to be a partial function from M to N . Now

let A = {a0, a1, . . . } and B = {b0, b1, . . . } be countable DO00-models.

Define f0 by f0a0 = b0 so that dom f0 = {a0}, ran f0 = {b0} (step 0).

Assume that in the nth step a partial function fn from A to B with finite

domain was constructed with a < a′ ⇔ fna < fna′, for all a, a′ ∈ dom fn

(a so-called partial isomorphism), and that {a0, . . . , an} ⊆ dom fn and

{b0, . . . , bn} ⊆ ran fn. These conditions are trivially satisfied for f0. Let

m be minimal with am ∈ A\dom fn. Choose b ∈ B \ran fn such that

gn := fn ∪{(am, b)} is also a partial isomorphism. This is possible thanks

to the denseness of B. Now let m be minimal with bm ∈ B \ ran gn.

Choose a suitable a ∈ A\dom gn such that fn+1 := gn ∪ {(a, bm)} is a

partial isomorphism too. This “to and fro” construction clearly provides

for both an+1 ∈ dom fn+1 and bn+1 ∈ ran fn+1. Claim: f =
⋃

n∈N fn

is an isomorphism from A onto B. Indeed, f is a function. Moreover,

dom f = A and ran f = B. The isomorphism condition x < y ⇔ fx < fy

is clear, since any x, y ∈ A belong already to dom fn for suitable n.

Example 3. The successor theory Tsuc in L{0, S} has the axioms

∀x 0 �====Sx, ∀xy(Sx==== Sy →x==== y), (∀x �====0)∃y x==== Sy,

∀x0 · · ·xn(
∧

i<n Sxi ==== xi+1 → x0 �====xn) (n = 1, 2, . . . ).

The last axiom says there are no “circles.” Tsuc is not ℵ0-categorical, but

it is ℵ1-categorical. Indeed, each model A � Tsuc with |A| = ℵ1 consists up

to isomorphism of the (countable) standard model (N, 0, S) and ℵ1 many

“threads” of isomorphism type (Z, S), where S : z 
→ z + 1. For if there

were only countably many such threads then the entire model would be

countable. Hence any two Tsuc-models of cardinality ℵ1 are isomorphic.

Example 4. The theory ACFp of a.c. fields of given characteristic p (page

105) is ℵ1-categorical. We sketch here a proof very briefly because ACFp

is analyzed in 5.5 in a different way. The claim follows from the facts

that each field is embeddable into an a.c. field (cf. Example 1 in 5.5) and
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that a transcendental extension K′ of a field K (that is, every a ∈ K ′ \K

is transcendental over K) has a transcendence basis B. This is a maximal

system of algebraically independent elements in K ′ \K. The isomorphism

type of K′ is completely determined by the cardinality of B.

It is fairly plausible that in Examples 3 and 4 κ-categoricity holds for

every cardinal κ > ℵ0. This observation is no coincidence. It is explained

by the following theorem.

Morley’s theorem. If a countable theory T is κ-categorical for some

κ > ℵ0 then it is κ-categorial for all κ > ℵ0.

The proof makes use of extensive methods and must be passed over

here. On the other hand, the proof of the following theorem requires but

little effort.

Theorem 2.2 (Vaught’s test). A countable consistent theory T without

finite models is complete provided T is κ-categorical for some κ.

Proof. Note first that κ � ℵ0 because T possesses no finite models.

Assume that T is incomplete. Choose some α ∈ L0 with �T α and �T ¬α.

Then T, α and T,¬α are consistent. These sets have countable infinite

models by Theorem 1.5, and according to Theorem 1.6 there are also

models A and B of cardinal κ. Since A,B � T , by hypothesis A ≃ B;

hence A ≡ B, which contradicts A � α and B � ¬α.

Example 5. (a) DO00 has only infinite models and is ℵ0-categorical by

Example 2. Hence DO00 is complete by Vaught’s test. This fact confirms

(Q, <) ≡ (R, <) once again. In fact, each DOij is complete (Exercise 1).

Thus, A ≡ B for A,B � DO iff A,B have “the same edge configuration,”

which tells us that the DOij are the only completions of DO. Since DO is

axiomatizable, it follows by Exercise 3 in 3.5 that DO is decidable. The

same applies to each of its finite extensions DOij .

(b) The successor theory Tsuc is ℵ1-categorical (Example 3) and has only

infinite models. Hence it is complete by Vaught’s test and as an axioma-

tizable theory thus decidable (Theorem 3.5.2).

(c) ACFp is ℵ1-categorical by Example 4. Each a.c. field A is infinite.

For assume the converse, A = {a0, . . . , an}, say. Then the polynomial

1 +
∏

i�n(x − ai) would have no root, a contradiction. Thus, by Vaught’s

test, ACFp is complete and decidable (since it is axiomatizable). This

result will be derived by quite different methods in 5.5.
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The model classes of first-order sentences are called elementary classes.

These clearly include the model classes of finitely axiomatizable theories.

For each such theory T , MdT =
⋂

α∈T Mdα is an intersection of ele-

mentary classes, also termed a Δ-elementary class. Thus, the class of

all fields is elementary, and that of all a.c. fields is Δ-elementary. On

the other hand, the class of all finite fields is not Δ-elementary because

its theory evidently has infinite models. An algebraic characterization of

elementary and Δ-elementary classes will be provided in 5.7.

The model classes of complete first-order theories are called elementary

types. MdT is the union of the elementary types belonging to the comple-

tions of a theory T . For instance, DO has just the four completions DOij

determined by the edge configuration, that is, by those of the sentences

L, R,¬L,¬R, valid in the respective completion. For this case, the next

theorem provides more information on T , in particular on ≡T .

Let X ⊆ L be nonempty and T a theory. Take 〈X〉 to denote the

set (still dependent on T ) of all formulas equivalent in T to Boolean

combinations of formulas in X. Clearly, ⊤ ∈ 〈X〉 since ⊤ ≡T α ∨ ¬α

for α ∈ X. Therefore, T ⊆ 〈X〉, because α ≡T ⊤ whenever α ∈ T .

Call X ⊆ L0 a Boolean basis for L0 in T if every α ∈ L0 belongs to

〈X〉, i.e., every sentence in L is a Boolean combination of sentences from

X. Example 6(b) below indicates how useful a Boolean base for decision

problems can be. A ≡X B is to mean A � α ⇔ B � α, for all α ∈ X.

Theorem 2.3 (Basis theorem for sentences). Let T be a theory and

X ⊆ L0 a set of sentences with A ≡X B ⇒ A ≡ B, for all A,B � T .2

Then X is a Boolean basis for L0 in T .

Proof. Let α ∈ L0 and Yα := {β ∈ 〈X〉 | α ⊢T β}. We claim (∗): Yα ⊢T α.

Otherwise let A � T, Yα,¬α. Then TXA := {γ ∈ 〈X〉 | A � γ} ⊢ ¬α;

indeed, for any B � TXA we have B ≡X A and hence B ≡ A. Therefore

γ ⊢T ¬α for some γ ∈ TXA, because 〈X〉 is closed under conjunctions.

This yields α ⊢T ¬γ, i.e., ¬γ ∈ Yα. Thus A � ¬γ, in contradiction

to A � γ. So (∗) holds. Hence there are β0, . . . , βm ∈ Yα such that

β :=
∧

i�m βi ⊢T α. We know that α ⊢T βi and so that α ⊢T β as well.

This and β ⊢T α confirms α ≡T β, and since β ∈ 〈X〉, also α ∈ 〈X〉.

2 This assumption is equivalent to the assertion that {γ ∈ 〈X〉 | A � γ} is complete;

see the subsequent proof. For refinements of the theorem we refer to [HR].
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Example 6. (a) Let T = DO and X = {L, R}. Then A ≡X B ⇒ A ≡ B,

for all A,B � T . Indeed, A ≡X B states that A,B possess the same edge

configuration. But then A ≡ B, because the DOij are all complete; see

Example 5(a). Therefore, L and R form a Boolean basis for L0
< in DO.

This theory has four completions, and so by Exercise 5 in 3.5, exactly

15 (= 24 − 1) consistent extensions.

(b) Let T = ACF and X = {charp | p prime}. Again, A ≡X B ⇒ A ≡ B,

for all A,B � T , because by Example 5(c), ACFp is complete for each p

(including p = 0). Hence, by Theorem 2.3, the charp constitute a Boolean

basis for sentences modulo ACF. This implies the decidability of ACF: let

α ∈ L0 be given; just wait in an enumeration process of the theorems of

ACF until a sentence of the form α ↔ β appears, where β is a Boolean

combination of the charp. Such a sentence definitely appears. Then test

whether β ≡ACF ⊤, for example by converting β into a CNF.

Corollary 2.4. Let T ⊆ L0 be a theory with arbitrarily large finite models,

such that all finite T -models with the same number of elements and all

infinite T -models are elementarily equivalent. Then

(a) the sentences ∃n form a Boolean basis for L0 in T ,

(b) T is decidable provided T is finitely axiomatizable.

Proof. Let X := {∃k | k ∈ N}. Then by hypothesis, A ≡X B ⇒ A ≡ B,

for all A,B � T . Thus, (a) follows by Theorem 2.3. By (a) and Exercise 4

in 2.3 each α ∈ L0 is equivalent in T to
∨

ν�n ∃=kν
with k0 < · · · < kn or

to ∃k ∨
∨

ν�n ∃=kν
for some k. Hence a sentence α that has a T -model

has also a finite T -model by the first assumption on T , i.e., T has the

finite model property. Thus, (b) holds by Exercise 3 in 3.6.

An easy example of application is the theory Taut==== of tautologies in

L====. The formulas constructed from the Boolean base {∃n | n ∈ ω} in the

proof also permit a simple description of the elementary classes of L====.

These are finite unions of classes determined by sentences ∃k and ∃=m.

Another example is the theory FO of finite ordered sets. We prove in the

next section that FO satisfies the assumptions of Corollary 2.4. Hence,

the elementary classes of FO have the same simple description.

These examples illustrate the following: If we know the elementary

types of a theory T—these correspond to the completions of T—then we
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also know their elementary classes. As a rule, the type classification, that

is, finding an appropriate set X satisfying the hypothesis of Theorem 2.3,

is successful only in particular cases. The required work tends to be

extensive. We mention in this regard the theories of abelian groups, of

Boolean algebras, and of other locally finite varieties; see for instance

[MV]. The above examples are just the simplest ones.

Easy to deal with is the case of an incomplete theory T that has finitely

many completions. Example 6(a) is just a special case. According to

Exercise 5 in 3.5, T then has finitely many extensions. Moreover, all these

are finite extensions. Indeed, if T + {αi | i ∈ N} is a nonfinite extension

then w.l.o.g.
∧

i<n αi �T αn, which obviously implies that T has infinitely

many completions, contradicting our hypothesis. Thus, we may assume

that T1, . . . , Tm are the completions of T and that Ti = T + αi for some

αi ∈ L0. Then {α1, . . . , αm} is a Boolean basis for L0 in T . Exercise 4

provides a canonical axiomatization of all consistent extensions of T .

Exercises

1. Prove that also DO10, DO11, and DO01 are ℵ0-categorical and hence

complete. In addition, verify that these theories and DO00 are the

only completions of DO.

2. Prove that Tsuc (page 178) is also completely axiomatized by the first

two given axioms plus IS: ϕ 0
x ∧∀x(ϕ →ϕ Sx

x ) →∀xϕ; here ϕ runs

over all formulas of L{0, S} (the “induction schema” for L{0, S}).

3. Show that the theory T of torsion-free divisible abelian groups is ℵ1-

categorical and complete (hence decidable). This shows, e.g., that

the groups (R, 0, +) and (Q, 0, +) are elementarily equivalent.

4. Let T be incomplete and let T+α0, . . . , T+αm be all the completions

of T . Prove that T +
∨

ν�n αiν are all consistent extensions of T .

Here n � m and i0 < · · · < in � m. (Note that T = T +
∨

i�m αi.)

5. Show that an ℵ0-categorical theory T with no finite models has an

elementary prime model. Example: (Q, <) is an elementary prime

model for DO00.
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5.3 The Ehrenfeucht Game

Unfortunately, Vaught’s criterion has only limited applications because

many complete theories are not categorical in any transfinite cardinality.

Let SO denote the theory of discretely ordered sets, i.e., of all (M, <) such

that every a ∈ M has an immediate successor provided a is not the right

edge element, and likewise an immediate predecessor provided a is not

a left edge element. “SO” is intended to recall “step order,” because the

word “discrete” in connection with orders often has the stronger sense

“each cut is a jump.” SOij (i.j ∈ {0, 1}) is defined analogously to DOij

(see page 177). For instance, SO10 is the theory of discretely ordered sets

with left and without right edge element. Clearly, (N, <) is a prime model

for SO10. The models of SO10 arise from arbitrary orders (M, <) with a

left edge element by replacing the latter by (N, <) and every other element

of M by a specimen of (Z, <). From this it follows that SO10 cannot be κ-

categorical for any κ � ℵ0. Yet this theory is complete, as will be shown,

and the same applies to SO00 and SO01. Only SO11 is incomplete and is

the only one of the four theories that has finite models. It coincides with

the elementary theory of all finite ordered sets; Exercise 3.

We prove the completeness of SO10 game-theoretically using a two-

person game with players I and II, Ehrenfeucht’s game Γk(A,B), which is

played in k rounds, k � 0. Here A,B are given L-structures and L is a re-

lational language, i.e., L does not contain constants or operation symbols.

With regard to our goal this presents no real loss of generality because

each structure can be converted into a relational one by replacing its op-

erations by the corresponding graphs. Another advantage of relational

structures used in the sequel is that there is a bijective correspondence

between subsets and substructures.

We now describe the game Γk(A,B). Player I chooses in each of the

k rounds one of the two structures A and B. If this is A, he selects

some a ∈ A. Then player II has to answer with some element b ∈ B.

If player I chooses B and some b from B then player II must answer

with some element a ∈ A. This is the entire game. Clearly, it has still

to be explained who wins. After k rounds, elements a1, . . . , ak ∈ A and

b1, . . . , bk ∈ B have been selected, where ai, bi denote the elements selected

in round i. Player II wins if the mapping ai 
→ bi (i = 1, . . . , k) is a partial
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isomorphism from A to B; in other words, if the substructure of A with

the domain {a1, . . . , ak} is isomorphic to the substructure of B with the

domain {b1, . . . , bk}. Otherwise, player I is the winner.

We write A ∼k B if player II has a winning strategy in the game

Γk(A,B), that is, in every round player II can answer any move from

player I such that at the end player II is the winner. For the “zero-round

game” let A ∼0 B by definition.

Example. Let A = (N, <) be a proper initial segment of B � SO10. We

show that A ∼k B for arbitrary k > 0. Player II plays as follows: If player

I chooses some b1 in B in the first round then player II answers with

a1 = 2k−1−1 if d(0, b1) � 2k−1−1, otherwise with a1 = d(0, b1).
3 The

procedure is similar if player I begins with A. If player I now selects some

b2 ∈ B such that d(0, b2), d(b1, b2) � 2k−2−1, then player II answers with

a2 = a1 ± 2k−2 depending on whether b2 > b1 or b2 <b1, and otherwise

✉ ✉� �� �� �� �� �� �� �� � � � � � �
✉ � � � � b1b3b2

a3a2 a1

� � �A
B

a1 = 22−1 = 3, a2 = a1−21 = 1

with the element of

the same distance

from 0 or a1 as that

of b2 from 0 or b1 in

B. Similarly in the

third round, etc. The figure shows the course of a 3-round game played in

the described way. Player I has chosen from B only for simplicity. With

this strategy player II wins every game, as can be shown by induction on

k. The reader should play a few rounds before proving this rigorously.

In contrast to the example, for A = (N, <) and B = (Z, <) player II’s

chances have already dropped in Γ2(A,B) if player I selects 0 ∈ A in the

first round. Player II will lose already in the second round. This has to

do with the fact that the existence of an edge element is expressible by a

sentence of quantifier rank 2. We write A ≡k B for L-structures A,B if

A � α ⇔ B � α, for all α ∈ L0 with qrα � k. It is always the case that

A ≡0 B for all A,B, because in relational languages there are no sentences

of quantifier rank 0. Below we will prove the following remarkable

Theorem 3.1. A ∼k B implies A ≡k B. Hence, A ≡ B provided A ∼k B

for all k.

3 The “distance” d(a, b) between elements a, b of some SO-model is 0 for a = b, 1 + the

number of elements between a and b if it is finite, and d(a, b) = ∞ otherwise.
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For finite signatures a somewhat weaker version of the converse of the

theorem is valid as well, though we do not discuss this here. Before

proving Theorem 3.1 we demonstrate its applicability. The theorem and

the above example yield (N, <) ≡k B for all k and hence (N, <) ≡ B

for every B � SO10, because (N, <) is a prime model for SO10 and hence

can always be regarded as an initial segment of B. Therefore SO10 is

complete. For reasons of symmetry the same holds for SO01, and likewise

for SO00. On the other hand, SO11 has the finite model property according

to Exercise 3 and coincides with the theory FO of all finite ordered sets.

For the proof of Theorem 3.1 we first consider a minor generalization

of Γk(A, B), the game Γk(A,B,�a,�b) with prior moves �a ∈ An,�b ∈ Bn. In

the first round player I selects some an+1 ∈ A or bn+1 ∈ B and player II

answers with bn+1 or an+1, etc. The game protocol consists of sequences

(a1, . . . , an+k) and (b1, . . . , bn+k) at the end. Player II has won if ai 
→ bi

(i = 1, . . . , n + k) is a partial isomorphism. Clearly, for n = 0 we obtain

precisely the original game Γk(A,B).

This adjustment brings about an inductive characterization of a winning

strategy for player II independent of more general concepts as follows:

Definition. Player II has a winning strategy in Γ0(A,B,�a,�b) provided

ai 
→ bi for i = 1, . . . , n is a partial isomorphism. Player II has a winning

strategy in Γk+1(A,B,�a,�b) if for every a ∈ A there is some b ∈ B, and

for every b ∈ B some a ∈ A, such that player II has a winning strategy

in Γk(A,B,�a⌣a,�b⌣b). Here �c⌣c denotes the operation of appending the

element c to the sequence �c.

We shall write (A,�a) ∼k (B,�b) if player II has a winning strategy in

Γk(A,B,�a,�b). In particular, A ∼k B (this represents the choice �a = �b = ∅)

is now precisely defined.

Lemma 3.2. Let (A,�a) ∼k (B,�b), where �a ∈ An and �b ∈ Bn. Then

(∗) : A � ϕ(�a) ⇔ B � ϕ(�b), for all ϕ = ϕ(�x) such that qrϕ � k.

Proof by induction on k. Let k = 0. Since ai 
→ bi (i = 1, . . . , n) is a par-

tial isomorphism, (∗) is valid for prime formulas, and since the induction

steps in the proof of (∗) for ¬, ∧ are obvious, it is valid also for all formulas

ϕ with qrϕ = 0. Now let (A,�a) ∼k+1 (B,�b). The only interesting case is

ϕ = ∀yα(�x, y) such that qrϕ = k + 1, because it is easily seen that every
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other formula of quantifier rank k + 1 is a Boolean combination of such

formulas and of formulas of quantifier rank � k. Induction over ¬ and ∧

in proving (∗) is harmless. Let A � ∀yα(�a, y) and b ∈ B. Then Player

II chooses some a ∈ A with (A,�a⌣a) ∼k (B,�b⌣b), so that according to

the induction hypothesis, A � α(�a, a) ⇔ B � α(�b, b). Clearly, the latter

is supposed to hold for sequences �a,�b of elements of arbitrary length. Be-

cause of A � α(�a, a), also B � α(�b, b). Since b was arbitrary, we obtain

B � ∀yα(�b, y). For reasons of symmetry, B � ∀yα(�b, y) ⇒ A � ∀yβ(�a, y)

holds as well.

Theorem 3.1 is just the application of this lemma for the case n = 0

and has therefore been proved. The method illustrated is wide-ranging

and has many generalizations.

Exercises

1. Let A,B be two infinite discretely ordered sets with the same edge

configuration. Prove that A ∼k B for all k. Hence A,B are elemen-

tarily equivalent.

2. Let A,B � SO11, k > 0, and |A|, |B| � 2k − 1. Prove that A ∼k B,

so that A ≡k B according to Theorem 3.1.

3. Infer from Exercise 2 that SO11 has the finite model property and

coincides with the elementary theory FO of all finite ordered sets.

4. Show that L, R, ∃1, ∃2, . . . constitute a Boolean basis modulo SO

and use this to prove the decidability of SO.4

5.4 Embedding and Characterization Theorems

Many of the foregoing theories, for instance those of orders, of groups in

·, e,−1, and of rings, are universal or ∀-theories, considered already on

page 83. We also know that for every theory T of this kind A ⊆ B � T

implies A � T ; in short, T is S-invariant. DO obviously does not have

4 Moreover, the theory of all linear orders is decidable (Ehrenfeucht), and thus each of

its finite extensions; but the proof is incomparably more difficult than for DO or SO.
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this property, and so there cannot exist an axiom system of ∀-sentences for

it. According to Theorem 4.3 the ∀-theories are completely characterized

by the property of S-invariance. This fact presents a particularly simple

example of the model-theoretic characterization of certain syntactic forms

of axiom systems.

T ∀ := {α ∈ T | α is an ∀-sentence} is called the universal part of a

theory T . Note the distinction between the set T ∀ and the ∀-theory T ∀,

which of course contains more than just ∀-sentences. For L0 ⊆ L put

T ∀
0 := L0 ∩ T ∀. If A is an L0-structure and B an L-structure then A ⊆ B

or ‘A is a substructure of B ’ will often mean in this section that A is a

substructure of the L0-reduct of B. The phrase ‘A is embeddable into B ’

introduced in 5.1 is to be understood correspondingly. Examples will be

found below. First we state the following

Lemma 4.1. Every T ∀
0 -model A is embeddable into some T -model.

Proof. It is enough to prove (∗) : T + DA is consistent, because A is

embeddable into each B � T + DA by Theorem 1.1. Assume that (∗)

is false. Then there is a conjunction κ(�a) of sentences in DA such that

κ(�a) ⊢T ⊥, or equivalently, ⊢T ¬κ(�a). Here let �a embrace all the constants

of LA that appear in the members of κ but not in T . By the rule (∀3)

of constant quantification from 3.2, ⊢T ∀�x¬κ(�x). Hence ∀�x¬κ(�x) ∈ T ∀
0

and thus A � ∀�x¬κ(�x), a contradiction to A � κ(�a).

Lemma 4.2. MdT ∀ consists of just the substructures of all T -models.

Proof. Every substructure of a T -model is of course a T ∀-model. Fur-

thermore, each A � T ∀ is (by Lemma 4.1 for L0 = L) embeddable into

some B � T , and this is surely equivalent to B′ ≃ B and A ⊆ B′ for some

B′ � T , because MdT is always closed under isomorphic images.

Example. (a) Let AG be the theory of abelian groups in L{◦}. A sub-

structure of A � AG is obviously a commutative regular semigroup. Con-

versely, it is not hard to prove that every such semigroup is embeddable

into an abelian group. Therefore, the theory AG∀ coincides with the the-

ory of the commutative regular semigroups. Warning : noncommutative

regular semigroups need not be embeddable into groups.

(b) Substructures of fields in L{0, 1, +,−, ·} are integral domains. Con-

versely, according to a basic algebraic construction, every integral domain
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(not every ring) is embeddable into a field, its quotient field. It is con-

structed similarly to the field Q from the integral domain Z. Hence, by

Lemma 4.2, the theory TJ of integral domains, axiomatized by the axioms

for commutative rings with 1 and without zero-divisors, has the same uni-

versal part as the theory TF of fields. Also, ACF has the same universal

part, because every field is embeddable into some algebraically closed field,

its algebraic closure; see [Wae] and Example 1 in 5.5.

Theorem 4.3. T is a universal theory iff T is S-invariant.

Proof. This follows immediately from Lemma 4.2, since for an S-invariant

theory T , clearly MdT = MdT∀. In other words, T is axiomatized by its

universal part T ∀.

This theorem is reminiscent of the HSP theorem cited on page 129.

However, the latter concerns identities only. It has a proof that is akin to

the proof of the following remarkable theorem, which presents an elegant

model-theoretic characterization of universal Horn theories introduced in

4.2. Call a theory T SP-invariant if MdT is closed under direct products

and substructures. Always remember that a statement like A � ϕ(�a) with

�a ∈ An is to mean either A � ϕ(�x) [�a] or AA � ϕ(�a).

Theorem 4.4. T is a universal Horn theory iff T is SP-invariant.

Proof. ⇒: Exercise 1 in 4.2. ⇐ : Trivial if ⊢T ∀xy x==== y, for then T

is axiomatized by ∀xy x==== y. Otherwise let U be the set of all universal

Horn sentences of T . We prove MdT = MdU . Only MdU ⊆ MdT is not

obvious. Let A � U . To verify A � T it suffices to show (∗): T ∪DA � ⊥,

since for B � T, DA w.l.o.g. A ⊆ B, so A � T thanks to S-invariance. Let

P := {π ∈ DA | π prime}, so that DA = P ∪{¬πi | i ∈ I} for some I �= ∅,

all πi prime. We first show
(
∗
∗

)
: P �T πi for all i ∈ I. Indeed, otherwise

⊢T κ(�a) →πi(�a) for some conjunction κ(�a) of sentences in P , with the

tuple �a of constants not in T . Therefore ⊢T α := ∀�x(κ(�x) →πi(�x)).

Hence α ∈ U , for α is a universal Horn sentence in the language of T ,

whence A � α. But this contradicts A � κ(�a)∧¬πi(�a) and confirms
(
∗
∗

)
.

Choose Ai � T, P,¬πi. Then B :=
∏

i∈I Ai � T ∪ P ∪ {¬πi | i ∈ I} =

T ∪DA (note that B � πi is impossible since Ai � ¬πi). This verifies (∗).

The following application of Lemma 4.1 aims in a somewhat different

direction.
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Theorem 4.5. Let L0 ⊆ L and let A be an L0-structure. For T ⊆ L0 the

following are equivalent:

(i) A is embeddable into some T -model,

(ii) every finitely generated B ⊆ A is embeddable into a T -model,

(iii) A � T ∀
0 (= L0 ∩ T ∀).

Proof. (i)⇒(ii): Trivial. (ii)⇒(iii): Let ∀�xα ∈ T ∀
0 with α = α(�x) open,

w.l.o.g. �x = (x1, . . . , xn) �= ∅. Let A0 for �a = (a1, . . . , an) ∈ An be the

substructure in A generated from a1, . . . , an. By (ii), A0 ⊆ B for some

model B � T . Since B � ∀�xα, it holds that A0 � ∀�xα; therefore A0 � α(�a),

so that A � α(�a) by Theorem 2.3.2. Since �a ∈ An was chosen arbitrarily,

A � ∀�xα, and since ∀�xα was arbitrarily taken from T ∀
0 , it follows that

A � T ∀
0 . (iii)⇒(i): This is exactly the claim of Lemma 4.1.

Examples of applications. (a) Let T be the theory of ordered abelian

groups in L = L{0,+,−, <}. Such a group is clearly torsion-free, which

is expressed by a schema of ∀-sentences in L0 = L{0,+,−}. Conversely,

Theorem 4.5 implies that a torsion-free abelian group (the A in the theo-

rem) is orderable, or what amounts to the same thing, is embeddable into

an ordered abelian group. One needs to show only that every finitely gen-

erated torsion-free abelian group G is orderable. By a well-known result

from group theory, G ≃ Zn for some n > 0. But Zn can be ordered lexico-

graphically, as is easily seen by induction on n. For nonabelian groups, the

conditions corresponding to torsion-freeness are somewhat more involved.

(b) Without needing algebraic methods we know that there exists a set of

universal sentences in 0, 1, +,−, ·, whose adoption to the theory of fields

characterizes the orderable fields. Sufficient for this, by Theorem 4.5,

is the set of all ∀-sentences in 0, 1, +,−, · provable from the axioms for

ordered fields. Indeed, even the schema of sentences ‘−1 is not a sum of

squares’ is enough to characterize the orderable fields (see [Wae]).

Not just ∀-theories but also ∀-formulas can be characterized model-

theoretically. Call α(�x) S-persistent or simply persistent in T provided

all A,B � T have the property

(sp) A ⊆ B � α(�a) ⇒ A � α(�a), for all �a ∈ An.

According to the next theorem this property is characteristic for the ∀-

formulas up to equivalence in T .
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Theorem 4.6. If α = α(�x) is persistent in T then α is equivalent to some

∀-formula α′ in T , which can be chosen such that free α′ ⊆ free α.

Proof. Let Y be the set of all formulas ∀�yβ(�x, �y) with α ⊢T ∀�yβ(�x, �y),

where β is open and �x and �y are of length n � 0 and m � 0, respectively.

We shall prove (a): Y ⊢T α(�x). This would complete the proof because

then, thanks to freeY ⊆ {x1, . . . , xn}, there is a conjunction κ = κ(�x)

of formulas from Y with κ ⊢T α. Since also α ⊢T κ, we have α ≡T κ.

Moreover, α′ := κ ∈ Y , since Y is closed under conjunction according

to Exercise 3 in 2.4. This proves the claim. For proving (a) we assume

(b) (A,�a) � T, Y with �a ∈ An. We need to show that (A,�a) � α. This

follows from (c): T, α(�a), DA is consistent, for if B � T, α(�a), DA, then

w.l.o.g. A ⊆ B; and also A � α(�a) since α is persistent. If (c) were false

then α(�a) ⊢T ¬κ(�a,�b) for some conjunction κ(�a,�b) of sentences from

DA with the m-tuple �b of constants of κ from A\{a1, . . . , an}. Thus

α(�a) ⊢T ∀�y¬κ(�a, �y). Since the a1, . . . , an do not appear in T , we get

α(�x) ⊢T ∀�y¬κ(�x, �y) ∈ Y . Therefore, and by (b), (A,�a) � ∀�y¬κ(�x, �y), or

equivalently A � ∀�y¬κ(�a, �y), in contradiction to A � κ(�a,�b).

Remark. Let T be countable and all T -models infinite. Then α is already
equivalent in T to an ∀-formula, provided α is κ-persistent ; this means that
(sp) holds for all T -models A,B of some fixed cardinal κ � ℵ0. For in this
case each T -model is elementarily equivalent to a model of cardinality κ by the
Löwenheim–Skolem theorems. Hence, it suffices to verify (a) in the above proof
by considering only models A,B of cardinality κ.

Sentences of the form ∀�x ∃�yα with kernel α are called ∀∃-sentences.

Many theories, for instance of real or of algebraically closed fields and

of divisible groups, are ∀∃-theories, i.e., they possess axiom systems of

∀∃-sentences. We shall characterize the ∀∃-theories semantically.

A chain K of structures is a set K of L-structures such that A ⊆ B

or B ⊆ A for all A,B ∈ K. Chains are very often given as sequences

A0 ⊆ A1 ⊆ A2 ⊆ · · · . No matter how K is given, a structure C :=
⋃

K

can be defined in a natural way: Let C :=
⋃

{A | A ∈ K} be its domain.

Further, let rC�a ⇔ rA�a for �a ∈ Cn, where A ∈ K is chosen such that

�a ∈ An. Such an A ∈ K exists: Let A simply be the maximum of the

chain members containing a1, . . . , an, respectively. The definition of rC is

independent of the choice of A. Indeed, let A′ ∈ K and a1, . . . , an ∈ A′.

Since A ⊆ A′ or A′ ⊆ A, it holds that rA�a ⇔ rA
′

�a in either case. Finally,
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for function symbols f , let fC�a = fA�a, where A ∈ K is chosen such that

�a ∈ An. Here too the choice of A ∈ K is irrelevant. C was just defined in

such a way that each A ∈ K is a substructure of C.

Example 1. Let Dn be the additive group of n-place decimal numbers

(with at most n decimals after the decimal point). Since Dn ⊆ Dn+1, the

Dn form a chain. Here D =
⋃

n∈N Dn is just the additive group of finite

decimal numbers. The corresponding holds if the Dn are understood as

ordered sets. Because then D � DO, while Dn � SO for all n, MdSO is not

closed under union of chains. Therefore SO is not an ∀∃-theory (in contrast

to DO), as follows from a simple observation in the next paragraph.

It is easy to see that an ∀∃-sentence α = ∀x1 · · ·xn∃y1 · · · ymβ(�x, �y) valid

in all members A of a chain K of structures is also valid in C =
⋃

K. For

let �a ∈ Cn. Then clearly �a ∈ An for some A ∈ K, hence A � ∃�y(�a, �y).

Since A ⊆ C, it follows that C � ∃�y(�a, �y) according to Corollary 2.3.3.

Now, �a was arbitrarily be chosen, hence indeed C � ∀�x∃�yβ(�x, �y). Thus, if

T is an ∀∃-theory then MdT is always closed under union of chains, or as

is said, T is inductive.

This property is characteristic of ∀∃-theories, Theorem 4.9. However,

the proof is no longer simple. It requires the notion of an elementary

chain. This is a set K of L-structures such that A � B or B � A, for all

A,B ∈ K. Clearly, K is then also a chain with respect to ⊆.

Lemma 4.7 (Tarski’s chain lemma). Let K be an elementary chain

and put C =
⋃

K. Then A � C for every A ∈ K.

Proof. We have to show that A � α(�a) ⇔ C � α(�a), with �a ∈ An. This

follows by induction on α = α(�x) and is clear for prime formulas. The

induction steps over ∧ ,¬ are also straightforward. Let A � ∀yα(y,�a) and

a0 ∈ C arbitrary. There is certainly some B ∈ K such that a0, . . . , an ∈ B

and A � B. Thus, B � ∀yα(y,�a) and hence B � α(a0,�a). By the

induction hypothesis (which is supposed to hold for any chain member)

so too C � α(a0,�a). Since a0 ∈ C was arbitrary, C � ∀yα(y,�a). The

converse C � ∀yα(y,�a) ⇒ A � ∀yα(y,�a) follows similarly.

We require yet another useful concept, found in many of the examples

in 5.5. Let A ⊆ B. Then A is termed existentially closed in B, in symbols

A ⊆ec B, provided
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(∗) B � ∃�xϕ(�x,�a) ⇒ A � ∃�xϕ(�x,�a) (�a ∈ An),

where ϕ = ϕ(�x,�a) runs through all conjunctions of literals from LA. (∗)

then holds automatically for all open ϕ ∈ LA. One sees this straight

away by converting ϕ into a disjunctive normal form and distributing ∃�x

over the disjuncts. Clearly A � B ⇒ A ⊆ec B ⇒ A ⊆ B. Moreover, ⊆ec

satisfies a readily proved chain lemma as well: If K is a chain of structures

such that A ⊆ec B or B ⊆ec A for all A,B ∈ K, then A ⊆ec
⋃

K for every

A ∈ K. This is an easy exercise.

The next lemma presents various characterizations of A ⊆ec B. Let D∀A

denote the universal diagram of A, which is the set of all ∀-sentences of

LA valid in A. Clearly D∀A ⊆ Del A. In (iii) the indexing of B with A is

omitted to ease legibility.

Lemma 4.8. Let A,B be L-structures and A ⊆ B. Then are equivalent

(i) A ⊆ec B, (ii) there is an A′ ⊇ B such that A � A′, (iii) B � D∀A.

Proof. (i)⇒(ii): Let A ⊆ec B. We obtain some A′ ⊇ B such that A � A′

as a model of Del A∪DB (more precisely, as the L-reduct of such a model),

so that it remains only to show the consistency. Suppose the opposite, so

that Del A ⊢ ¬κ(�b) for some conjunction κ(�b) of members from DB with

the n-tuple �b of all constants of B \A in κ. Since b1, . . . , bn do not occur in

Del A, we get Del A ⊢ ∀�x¬κ(�x). Thus A � ∀�x¬κ(�x). On the other hand,

B � κ(�b); hence B � ∃�xκ(�x). With (i) and κ(�x) ∈ LA also A � ∃�xκ(�x),

in contradiction to A � ∀�x¬κ(�x). (ii)⇒(iii): Since A � A′, we have

A′ � Del A ⊇ D∀A. Because of B ⊆ A′ � D∀A, evidently B � D∀A.

(iii)⇒(i): By (iii), A � α ⇒ B � α, for all ∀-sentences α of LA. The

latter is equivalent to B � α ⇒ A � α, for all ∃-sentences α ∈ LA, and

hence to property (i).

Theorem 4.9. A theory T is an ∀∃-theory if and only if T is inductive.

Proof. As already shown, an ∀∃-theory T is inductive. Conversely let T

be inductive. We show that MdT = MdT ∀∃, where T ∀∃ denotes the set

of all ∀∃-theorems provable in T . The nontrivial part is the verification

of MdT ∀∃ ⊆ MdT . So let A � T ∀∃. Claim: T ∪ D∀A is consistent.

Otherwise ⊢T ¬κ for some conjunction κ = κ(�a) of sentences of D∀A

with the tuple �a of constants in A appearing in κ but not in T . Hence

⊢T ∀�x¬κ(�x). Now, κ(�x) is equivalent to an ∀-formula, and so ¬κ(�x) to an
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∃-formula. Thus, ∀�x¬κ(�x) belongs up to equivalence to T ∀∃. Therefore

A � ∀�x¬κ(�x), which contradicts A � κ(�a). This proves the claim.

Now let A1 � T ∪ D∀A and w.l.o.g. A1 ⊇ A. Then also A ⊆ec A1

in view of Lemma 4.8. By the same lemma there exists an A2 ⊇ A1

with A0 := A � A2, so that A2 � T ∀∃ as well. We now repeat this

construction with A2 in place of A0 and obtain structures A3,A4 such that

A2 ⊆ec A3 � T , A3 ⊆ A4, and A2 � A4. Continuing this construction

produces a sequence A0 ⊆ A1 ⊆ A2 ⊆ · · · of structures with the inclusion

relation illustrated in the following figure:

A = A0
⊆

A1
⊆

A2
⊆

A3
⊆

A4 ⊆ � � � ⊆ C

✚ ✙✚ ✙� �

Let C :=
⋃

i∈N Ai. Clearly, also C =
⋃

i∈N A2i, and since by construction

A = A0 � A2 � · · · , we get A � C from the chain lemma. At the same

time we also have C =
⋃

i∈N A2i+1, and since by construction A2i+1 � T

for all i, it holds that C � T , for T is inductive. But then too A � T

because A � C. This is what we had to prove.

A decent application of the theorem is that SO10 cannot be axiomatized

by ∀∃-axioms, for SO10 is not inductive according to Example 1. SO10 is

an ∀∃∀-theory, and we see now that at least one ∀∃∀-axiom is needed in

its axiomatization.

The “sandwich” construction in the proof of Theorem 4.9 can still be

generalized. We will not elaborate on this but rather add some words

about so-called model compatibility. Let T0 + T1 be the smallest theory

containing T0 and T1. From the consistency of T0 and T1 we cannot in-

fer that T0, T1 are compatible, i.e., T0 + T1 is consistent, even if T0 and

T1 are model compatible in the following sense: every T0-model is em-

beddable into some T1-model and vice versa. This property is equivalent

to T ∀
0 = T ∀

1 by Theorem 4.5, hence it is an equivalence relation. Thus,

the class of consistent L-theories splits into disjoint classes of pairwise

model compatible theories. That model compatible theories need not be

compatible in the ordinary sense is shown by the following

Example 2. DO and SO are model compatible (Exercise 2) but DO + SO

is clearly inconsistent. Since DO is inductive, we get another argument



194 5 Elements of Model Theory

that SO is not inductive: if it were inductive, DO+SO would be consistent

according to Exercise 3.

Exercises

1. Let X be a set of positive sentences, i.e., the α ∈ X are constructed

from prime formulas by means of ∧ , ∨ , ∀, ∃ only. Prove that if

A � X then also B � X, whenever B is a homomorphic image of A,

that is, MdX is closed under homomorphic images. Once again the

converse holds (Lyndon’s theorem; see [CK]).

2. Show that the theories DO and SO are model compatible.

3. Suppose T0 and T1 are model compatible and inductive. Show that

T0 +T1 is an inductive theory that, in addition is model compatible

with T0 and T1.

4. For inductive T show that of all inductive extensions model com-

patible with T there exists a largest one, the inductive completion

of T . For instance, this is ACF for the theory TF of fields.

5.5 Model Completeness

A theory T is called model complete if for every model A � T the theory

T + DA is complete in LA. This notion was introduced in [Ro1]. For

A,B � T where A ⊆ B (hence BA � DA), the completeness of T + DA

obviously means the same as AA ≡ BA, or equivalently, A � B. In short,

a model complete theory T has the property

(∗) A ⊆ B ⇒ A � B, for all A,B � T .

Conversely, if (∗) is satisfied then T + DA is also complete. Indeed, let

B � T, DA so that w.l.o.g. A ⊆ B and hence A � B. But then all these B

are elementarily equivalent in LA to AA and therefore to each other, which

tells us that T + DA is complete. (∗) is therefore an equivalent definition

of model completeness, and this definition, which is easy to remember,

will be preferred in the sequel.

It is clear that if T ⊆ L is model complete then so too is every theory

that extends it in L. Furthermore, T is then inductive. Indeed, a chain
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K of T -models is always elementary, by (∗). By Lemma 4.7, we obtain

that A �
⋃

K for any A ∈ K, and therefore
⋃

K � T thanks to A � T ,

which confirms the claim. Hence, by Theorem 4.9, only an ∀∃-theory can

be model complete.

An example of an ∀∃-theory that is not model complete is DO. Let Qa be

{x ∈ Q | a � x} for a ∈ Q. Then (Q1, <) ⊆ (Q0, <) but (Q1, <) �� (Q0, <)

so that (∗) does not hold. These two models also show that the complete

theory DO10 is not model complete. Another example of a complete but

not model complete theory is SO10, since as was noticed on page 193,

SO10 is not an ∀∃-theory. Conversely, a model complete theory need

not be complete: A prominent example is ACF, which will be treated in

Theorem 5.4. Nonetheless, with the following theorem the completeness

of a theory can often be obtained more easily than with other methods.

Theorem 5.1. If a theory T is model complete and has a prime model

then T is complete.

Proof. Suppose that A � T and let P � T be a prime model. Then

P ⊆ A up to isomorphism, and so P � A by (∗), in particular P ≡ A.

Hence, all T -models are elementarily equivalent to each other so that T

is in fact complete.

The following theorem states additional characterizations of model com-

pleteness, of which (ii) is as a rule more easily verifiable than the defini-

tion. The implication (ii)⇒(i) carries the name Robinson’s test for model

completeness.

Theorem 5.2. For any theory T the following items are equivalent:

(i) T is model complete,

(ii) A ⊆ B ⇒ A ⊆ec B, for all A,B � T ,

(iii) each ∃-formula α is equivalent in T to an ∀-formula β such that

freeβ ⊆ free α,

(iv) each formula α is equivalent in T to an ∀-formula β such that

freeβ ⊆ free α.

Proof. (i)⇒(ii): evident, since A ⊆ B ⇒ A � B ⇒ A ⊆ec B. (ii)⇒(iii):

According to Theorem 4.6 it is enough to verify that every ∃-formula

α = α(�x) ∈ L is persistent in T . Let A,B � T , A ⊆ B, �a ∈ An, and
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B � α(�a). Then A � α(�a), because A ⊆ec B thanks to (ii). (iii)⇒(iv):

induction on α. (iii) is used only in the ¬-step: Let α ≡ β, β some

∀-formula (induction hypothesis). Then ¬β ≡ γ for some ∀-formula γ,

hence ¬α ≡ γ. (iv)⇒(i): let A,B � T , A ⊆ B, and B � α(�a) with �a ∈ An.

Then A � α(�a), since by (iv), α(�x) ≡T β for some ∀-formula β. This

shows that A � B, hence (i).

Remark 1. If T is countable and has infinite models only, then it is possible to
restrict the criterion (ii) to models A,B of any chosen infinite cardinal number κ.
Then we can prove that an ∃-formula is κ-persistent as defined in the remark on
page 190, which by the same remark suffices to prove the claim of Theorem 5.2
and hence (iii). Once we have obtained (iii) we have also (i). This remark is
significant for Lindström’s criterion, Theorem 5.7.

A relatively simple example of a model complete theory is TVQ, the

theory of (nontrivial) Q-vector spaces V = (V, +, 0, Q), where 0 denotes

the zero vector and each r ∈ Q is taken to be a unary operation on

the set of vectors V . TVQ formulates the familiar vector axioms, where,

for example, the axiom r(a + b)==== ra + rb is reproduced as a schema of

sentences, namely ∀a∀b r(a + b)==== ra + rb for all r ∈ Q. Let V,V ′ � TVQ

with V ⊆ V ′. We claim that V ⊆ec V ′. By Theorem 5.2(iii), TVQ is then

model complete. For the claim let V ′ � ∃�xα, with a conjunction α of

literals in x1, . . . , xn and constants a1, . . . , am, b1, . . . , bk ∈ V . Then α is

essentially a system of the form

(s)

⎧

⎪⎪⎨

⎪⎪⎩

r11x1 + · · · + r1nxn ==== a1 s11x1 + · · · + s1nxn �====b1

...
...

rm1x1 + · · · + rmnxn ==== am sk1x1 + · · · + sknxn �====bk

Indeed, the only prime formulas are term equations, and every term in

x1, . . . , xn is equivalent in TVQ to some term of the form r1x1 + · · ·+rnxn.

Without going into detail, it is plausible by the properties of linear systems

that the system (s) has already a solution in V, provided it is solvable at

all; see for instance [Zi].

For the rest of this section we assume some knowledge of classical alge-

bra, where closure constructions are frequently undertaken. For instance,

a torsion-free abelian group has a divisible closure, a field A has an alge-

braic closure (a minimal a.c. extension of A), and an ordered field has a

real closure; see Example 2 below. Generally speaking, we start from a
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theory T and A � T ∀. By a closure of A in T we mean a T -model Ā ⊇ A

such that A ⊆ B ⇒ Ā ⊆ B, for every B � T . More precisely, if A ⊆ B

then there is an embedding of Ā into B leaving A pointwise fixed. In this

case we say that T permits a closure operation.

Supposing this, let A,B � T , A ⊂ B, and b ∈ B \A. Then there is a

smallest submodel of B containing A ∪ {b}, the T ∀-model generated in B

by A ∪ {b}, denoted by A(b). Its closure in T is denoted by Ab. In view

of A ⊂ Ab ⊆ B, it is called an immediate extension of A in T .

Example 1. Let T := ACF. A T ∀-model A is here an integral domain.

T permits a closure operation: Ā is the so-called algebraic closure of

the quotient field of A. That there exists an a.c. field Ā ⊇ A that in

addition is embeddable into every a.c. field B ⊇ A, is Steinitz’s theorem

regarding a.c. fields, [Wae, p. 201]. Let now A,B � T with A ⊂ B and

b ∈ B \A. Then b is transcendental over A, because A is a.c. Thus,

a0 + a1b + · · · + anbn �= 0, for all a0, . . . , an ∈ A with an �= 0. For this

reason A(b) is isomorphic to the ring A(x) of polynomials
∑

i�n aix
i with

the “unknown” x (the image of b). Hence, A(b) ≃ A(x) ≃ A(c) provided

A,B, C � T , with A ⊂ B, C and b ∈ B \A, c ∈ C \A. The isomorphism of

A(b),A(c) extends in a natural way to their quotient fields (represented

by the field of rational functions over A) and hence to their closures Ab

and Ac. Thus, a T -model has up to isomorphism only one immediate

extension in T . Not so in the next, more involved, example.

Example 2. A real closed field is an ordered field A (such as R) in which

every polynomial of odd degree has a zero and every a � 0 is a square

in A. These properties will turn out to be equivalent to the continuity

scheme CS (p. 110). Let RCF denote the theory of these fields. Although

� is definable in RCF by x � y ↔ ∃z y−x==== z2, order should here be

a basic relation. Let T := RCF. A T ∀-model A is an ordered integral

domain that determines the order of its quotient field Q. According to

Artin’s theorem for real closed fields [Wae, p. 244], some Ā = Q̄ � T can

be constructed, called the real closure of A or of its quotient field Q in T .

Let A,B � RCF, A ⊂ B, and b ∈ B \A. Then b is transcendental

over A, because no algebraic extension of A is orderable—this is another

characterization of real closed fields. Here A(b) is isomorphic to the or-

dered ring A(x) of polynomials over A and determines the isomorphism
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type of its quotient field Q(b) and of its real closure Ab = Q(b). Actu-

ally, <Ab
is determined by its restriction to A ∪ {b}, or by the partition

A = {a ∈ A | a <Ab
b} ∪ {a ∈ A | b <Ab

a}. To see this, note that it

is provable in RCF that a polynomial p(x) with the zeros a1, . . . , an ∈ A

decomposes in A � RCF as c · q(x) ·

∏n
i=1(x − ai) with c ∈ A, n � 0, and

q(x) a product of irreducible polynomials of degree 2 or q(x) = 1. In Q(b)

(and Ab) one has q(b) > 0. Indeed, each irreducible factor b2 + db + e of

q(b) is > 0 since b2 + db + e = (b + d
2)2 + e − d2

4 > 0 (d, e ∈ A). Thus

we know whether p(b) > 0 if we know the signs of b − ai for all zeros ai

of p(x) in A. This suffices to fix the order in Q(b) as is easily seen, and

hence in Ab by Artin’s theorem.

For inductive theories T that permit a closure operation, Robinson’s

test for model completeness can still be simplified as follows:

Lemma 5.3. Let T be inductive, and suppose T permits a closure opera-

tion. Assume further that A ⊆ec A′ for all A,A′ � T in the case that A′

is an immediate extension of A in T . Then T is model complete.

Proof. Let A,B � T, A ⊆ B. By Theorem 5.2(ii) it suffices to show that

A ⊆ec B. Let H be the set of all C ⊆ B such that A ⊆ec C � T . Trivially

A ∈ H. Since T is inductive, a chain K ⊆ H satisfies
⋃

K � T . One easily

verifies A ⊆ec
⋃

K as well, so that
⋃

K ∈ H. By Zorn’s lemma there is

a maximal element Am ∈ H. Claim: Am = B. Assume Am ⊂ B. Then

there is an immediate extension A′
m � T of Am such that Am ⊂ A′

m ⊆ B.

Since A ⊆ec Am, and by hypothesis Am ⊆ec A′
m, we get A ⊆ec A′

m. This,

however, contradicts the maximality of Am in H. Therefore, it must be

the case that Am = B. Consequently, A ⊆ec B.

Theorem 5.4. ACF is model complete and thus so too ACFp, the theory

of a.c. fields of given characteristic p (= 0 or a prime). Moreover, ACFp

is complete.

Proof. Let A,B � ACF, A ⊂ B, and b ∈ B \A. By Lemma 5.3 it suffices

to show that A ⊆ec Ab. Here Ab is an immediate extension of A in ACF.

Let α := ∃�xβ(�x,�a) ∈ LA, β quantifier-free, and Ab � α. We shall prove

A � α and for this we consider

X := ACF ∪ DA ∪ {p(x) �====0 | p(x) a monic polynomial on A}.
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With b for x one sees that (Ab, b) � X (for b is trancendental over A). Let

(C, c) � X, with c for x. Since C � DA, w.l.o.g. A ⊆ C. By Example 1

Ab ≃ Ac, and so Ac � α. Ac ⊆ C implies C � α, for α is an ∃-sentence.

Since (C, c) has been chosen arbitrarily we obtain X ⊢ α, and from this

by the finiteness theorem evidently

DA,
∧

i�k pi(x) �====0 ⊢ACF α,

for some k and monic polynomials p0, . . . , pk. Particularization and the

deduction theorem show that DA ⊢ACF ∃x
∧

i�k pi(x) �==== 0 →α. Every

a.c. field is infinite (Example 5(c) in 5.2), and a polynomial has only

finitely many zeros in a field. Thus, DA ⊢ACF ∃x
∧

i�k pi(x) �====0. Hence,

DA ⊢ACF α and so A � α. This proves A ⊆ec Ab and in view of Lemma 5.3

the first part of the theorem. The algebraic closure of the prime field

of characteristic p is obviously a prime model for ACFp. Therefore, by

Theorem 5.1, ACFp is complete.

The following significant theorem is won similarly. It was originally

proved in [Ta3] by means of quantifier elimination. Incidentally, the claim

of completeness is not obtainable by means of Vaught’s criterion, in con-

trast to the case of ACF.

Theorem 5.5. The theory RCF of real closed fields is model complete

and complete. It is thus identical to the theory of the ordered field of real

numbers, and as a complete axiomatizable theory it is also decidable.

Proof. Let A � RCF. It once again suffices to show that A ⊆ec Ab for

an immediate extension Ab of A in RCF. Let U := {a ∈ A | a <B b},

V := {a ∈ A | b <B a}, with B := Ab. Then U ∪ V = A. Now let

Ab � ∃�xβ(�x,�a), β quantifier-free, �a ∈ Am. The model (B, b) with b for x

then clearly satisfies the set of formulas

X := RCF ∪ DA ∪ {a < x | a ∈ U} ∪ {x < a | a ∈ V }.

Suppose (C, c) � X, interpreting x as c. We may assume A ⊆ C because

C � DA. Since c /∈ U∪V = A, c is transcendental over A (see Example 2).

Hence, the quotient field Q(c) of A(c) is isomorphic to the field of rational

functions over A with the unknown x. The order of Q(c) is fixed by the

partition A = U ∪ V coming from Q(b). Thus, Q(b) ≃ Q(x) ≃ Q(c).

The isomorphism Q(b) ≃ Q(c) extends to one between the real closures

Ab and Ac. As in Theorem 5.4 we thus obtain X ⊢ α, and so for some
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a1, . . . , ak, b1, . . . , bl ∈ A (where k, l � 0 but k + l > 0),

DA ⊢RCF ∃x(
∧k

i=1 ai < x ∧
∧l

i=1 x < bi) →α (ai ∈ U, bi ∈ V ).

Now, an ordered field is densely ordered without edge elements, hence is

infinite. Therefore, ⊢RCF ∃x(
∧k

i=1 ai < x ∧
∧l

i=1 x < bi) which results in

DA ⊢RCF α. Thus, A � α, and A ⊆ec Ab is proved. To verify completeness

observe that RCF has a prime model, namely the real closure of Q, the

ordered field of all real algebraic numbers. Applying Theorem 5.1 once

again confirms the completeness of RCF.

A theory T is called the model completion of a theory T0 of the same

language if T0 ⊆ T and T +DA is complete for every A � T0. Clearly, T is

then model complete; moreover, T is model compatible with T0 (A � T0

implies (∃C∈MdT )A ⊆ C, since T + DA is consistent). The existence

of a model complete extension is necessary for the existence of a model

completion of T0, but not sufficient. See Exercise 1.

Remark 2. A somewhat surprising fact is that a model completion of T is
uniquely determined provided it exists. Indeed, let T, T ′ be model completions
of T0. Both theories are model compatible with T0, and hence with each other.
T, T ′ are model complete and therefore inductive, so that T + T ′ is model com-
patible with T (Exercise 3 in 5.4). Thus, if A � T then there exist some
B � T + T ′ with A ⊆ B, and since T is model complete we obtain A � B.
This implies A ≡ B � T ′, and consequently A � T ′. For reasons of symmetry,
A � T ′ ⇒ A � T as well. Therefore T = T ′.

Example 3. ACF is the model completion of the theory TJ of integral

domains, hence also of the theory TF of fields. Indeed, let A � TJ . By

Theorem 5.4, ACF is model complete, hence also T := ACF+DA (in LA).

Moreover, T is complete, since by Example 1, T has a prime model, the

closure Ā of A in ACF. Using Theorem 5.5, one shows analogously that

RCF is the model completion of the theory of ordered commutative rings

with unit element. Each such ring is embeddable into an ordered field (an

algebraic standard construction) and hence into a real closed field.

A � T is called existentially closed in T , or ∃-closed in T for short, if

A ⊆ec B for each B � T with A ⊆ B. For instance, every a.c. field A is

∃-closed in the theory of fields. For let B ⊇ A be any field and C be any

a.c. extension of B. Then A � C thanks to the model completeness of

ACF. Hence A ⊆ec B by Lemma 4.8(ii). The following lemma generalizes

in some sense the fact that every field is embeddable into an a.c. field.
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Similarly, a group, for instance, is embeddable into a group that is ∃-

closed in the theory of groups.

Lemma 5.6. Let T be an ∀∃-theory of some countable language L. Then

every infinite model A of T can be extended to a model A∗ of T such that

|A∗| = |A|, which is ∃-closed in T .

Proof. For the proof we assume, for simplicity, that A is countable. Then

LA is also countable. Let α0, α1, . . . be an enumeration of the ∃-sentences

of LA and A0 = AA.5 Let An+1 be an extension of An in LA such that

An+1 � T + αn, as long as such an extension exists; otherwise simply put

An+1 = An. Since T is inductive, B0 =
⋃

n∈N An � T . If α = αn is

an ∃-sentence in LA valid in some extension B � T of B0, then already

An+1 � α and thus also B0 � α. Now we repeat this construction with B0

in place of A0 with respect to an enumeration of all ∃-sentences in LB0

and obtain an LB0-structure B1 � T . Subsequent reiterations produce a

sequence B1 ⊆ B2 ⊆ · · · of LBn-structures Bn+1 � T . Let A∗ (� T ) be

the L-reduct of
⋃

n∈N Bn � T and A∗ ⊆ B � T . Assume B � ∃�xβ(�a, �x),

�a ∈ (A∗)n. Then Bm � β(�a,�b) for suitable m. Hence
⋃

n∈N Bn � β(�a,�b),

and so A∗ � ∃�xβ(�a, �x).

With this lemma one readily obtains the following highly applicable

criterion for proving the model completeness of countable κ-categorial

theories, which, by Vaught’s criterion, are always complete.

Theorem 5.7 (Lindström’s criterion). A countable κ-categorical ∀∃-

theory T without finite models is model complete.

Proof. Since all T -models are infinite, T has a model of cardinality κ,

and by Lemma 5.6 also one that is ∃-closed in T . But then all T -models

of cardinality κ are ∃-closed in T , because all these are isomorphic. Thus

A ⊆ B ⇒ A ⊆ec B, for all A,B � T of cardinality κ. Therefore, T is

model complete according to Remark 1 on page 196.

Examples of applications.

(a) The ℵ0-categorical theory of atomless Boolean algebras.

(b) The ℵ1-categorical theory of nontrivial Q-vector spaces.

(c) The ℵ1-categorical theory of a.c. fields of given characteristic.

5 For uncountable A we have |LA| = |A|. In this case one proceeds with an ordinal

enumeration of LA rather than an ordinary one. But the proof is almost the same.
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A few comments: A Boolean algebra B is called atomless if for each

a �= 0 in B there is some b �= 0 in B with b < a (< is the partial lattice

order of B). The proof of (a) is similar to that for densely ordered sets.

Also (b) is easily verified. Observe that a Q-vector space of cardinality

ℵ1 has a base of cardinality ℵ1. From (c) the model completeness of ACF

follows in a new way: If A,B � ACF and A ⊆ B then both fields have the

same characteristic p � 0. Since ACFp is model complete by (c), A � B

follows. This obviously implies that ACF itself is model complete.

Exercises

1. Prove that of the four theories DOij only DO00 is model complete.

Moreover, show that DO00 is the model completion of both DO and

the theory Tord of all orders, but not of the theory of all irreflexive

relations which is not model-compatible with Tord.

2. Let T be the theory of divisible torsion-free abelian groups. Show

that T is the model completion of the theory T0 of torsion-free

abelian groups.

3. T ∗ is called the model companion of T provided T, T ∗ are model

compatible and T ∗ is model complete. Show that if T ∗ exists then

T ∗ is uniquely determined provided it exists. Moreover, show that

each A ∈ MdT ∗ is ∃-closed in T .

4. Prove that an ∀∃-sentence valid in all finite fields is valid also in all

a.c. fields. This fact is highly useful in algebraic geometry.

5.6 Quantifier Elimination

Because ∃x(y < x ∧ x < z) ≡DO y < z, in the theory of densely or-

dered sets the quantifier in the left-hand formula can be eliminated. In

fact, in some theories, including the theory DO00 (see 5.2), the quantifiers

can be eliminated from every formula. One says that T (⊆ L0) allows

quantifier elimination if for every ϕ ∈ L there exists some open formula

ϕ′ ∈ L such that ϕ ≡T ϕ′. Quantifier elimination is the oldest method
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of showing that certain theories are decidable and occasionally also com-

plete. Some presentations demand additionally freeϕ′ = free ϕ, but one

is not obliged to to do so. A theory T that allows quantifier elimina-

tion is model complete by Theorem 5.2(iv), because open formulas are

∀-formulas. Hence, T is an ∀∃-theory, which is a remarkable necessary

condition for quantifier eliminability.

In order to confirm quantifier elimination for a theory T it suffices to

eliminate the prefix ∃x from every formula of the form ∃xα, where α is

open. Indeed, think of all subformulas of the form ∀xα in a formula ϕ

as being equivalently replaced by ¬∃x¬α, so that only the ∃-quantifier

appears in ϕ. Looking at the farthest-right prefix ∃x in ϕ one can write

ϕ = · · · ∃xα · · · with some quantifier-free α. Now, if ∃xα is replaceable

by an open formula α′ then this process can be iterated no matter how

long it takes for all ∃-quantifiers in ϕ to disappear.

Thanks to the ∨-distributivity of ∃-quantifiers we may moreover assume

that the quantifier-free part α of ∃xα from which ∃x has to be eliminated

is a conjunction of literals, and that x explicitly occurs in each of these

literals: simply convert α into a DNF and distribute ∃x over the disjuncts

such that ∃x stands in front of a conjunction of literals only. If x does

not appear in any of these literals, ∃x can simply be discarded. Otherwise

remove the literals not containing x beyond the scope of ∃x, observing

that ∃x(α ∧ β) ≡ ∃xα ∧ β if x /∈ varβ.

Furthermore, it can be supposed that none of the conjuncts is of the form

x==== t with x /∈ var t. Indeed, since ∃x(x==== t ∧ α) ≡ α t
x , the quantifier has

then already been eliminated. We may also assume x �= v0 (using bound

renaming) and that neither x==== x nor x �====x is among the conjuncts. For

x==== x can equivalently be replaced by ⊤, as can x �====x by ⊥. Here one may

define ⊤ and ⊥ as v0 ==== v0 and v0 �==== v0, respectively. Replacement will

then introduce v0 as a possible new free variable, but that is harmless. If

the language contains a constant c one may replace v0 by c in the above

consideration. If not, one may add a constant or even ⊥ as a new prime

formula to the language, similar to what is proposed below for DO00.

Call an ∃-formula simple if it is of the form ∃x
∧

i αi, where every αi

is a literal with x ∈ varαi. Then the above considerations result in the

following theorem.
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Theorem 6.1. T allows quantifier elimination if every simple ∃-formula

∃x
∧

i αi is equivalent in T to some open formula. Here w.l.o.g., none of

the literals αi is x==== x, x �====x, or of the form x==== t with x /∈ var t.

Example 1. T = DO00 allows quantifier elimination. Because of

y ≮ z ≡T z < y ∨ z ==== y and z �====y ≡T z < y ∨ y < z

and since in general (α ∨ β)∧γ ≡ (α∧γ) ∨ (β ∧γ), we may suppose that

the conjunction of the αi in Theorem 6.1 does not contain the negation

symbol. We are therefore dealing with a formula of the form

∃x(y1 < x ∧ · · · ∧ ym < x ∧ x < z1 ∧ · · · ∧ x < zk),

which is equivalent to ⊥ (≡ v0 �====v0) if x is one of the variables yi, zj , or to

⊤ whenever m = 0 or k = 0, and in the remaining case to
∧n

i,j=1 yi < zj .

Who wants to avoid the use of v0 as an extra variable may also regard at

⊥ as an additional 0-ary relation symbol.

DO itself does not allow quantifier elimination, since in α(y) := ∃x x < y

the quantifier is not eliminable. Indeed, if α(y) were equivalent in DO to an

open formula then A,B � DO, A ⊆ B, a ∈ A, and B � α(a) would imply

A � α(a). But this is not so for the densely ordered sets A,B with A =

{x ∈ Q | 1 � x} and B = Q. Choose a = 1. Quantifier elimination does

however become possible if the signature {<} is expanded by considering

L, R as 0-ary predicate symbols. The fact that {L, R} forms a Boolean

basis for sentences in DO is not yet sufficient for quantifier eliminability

if looking at L and R as formulas, for these contain quantifiers.

Also the theory SO does not allow quantifier elimination in the original

language, simply because it is not an ∀∃-theory as was noticed earlier.

The same is true for the expansions SOij of SO.

Example 2. A classical and nontrivial result of quantifier elimination

by Presburger [Pr] refers to Th (N, 0, 1, +, <), with the additional unary

predicate symbols m (m = 2, 3, . . . ), defined by m x ↔ ∃y my ==== x, where

my denotes the m-fold sum y+ · · ·+y of y. We shall prove a related result

with respect to the group Z in L{0, 1, +,−, <, 2 , 3 , . . . }. Denote the k-

fold sum 1 + · · · + 1 by k, and set (−k)x := −kx.

Let ZGE be the elementary theory in L{0, 1, +,−, <, 2 , 3 , . . . } whose

axioms subsume those for ordered abelian groups plus the axioms

∀x(0 < x ↔ 1 � x), ∀x(m x ↔ ∃y my ==== x), and ϑm := ∀x
∨

k<m m x + k
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for m = 2, 3, . . . The reducts of ZGE-models to L := L{0, 1, +,−, <} are

called Z-groups. These are ordered with the smallest positive element 1.

The ϑm state for a Z-group G that the factor groups G/mG are cyclic of

order m. Here mG := {mx | x ∈ G}. Let ZG denote the reduct theory

of ZGE in L. Its models are precisely the Z-groups. ZGE is a definitorial,

hence conservative extension of ZG (cf. 2.6). It will turn out that Z-

groups are just the ordered abelian groups elementarily equivalent to the

paradigm of a Z-group, (Z, 0, 1, +,−, <). Let us notice that ⊢ZG ∀xηn for

each n, where ηn is the formula 0 � x < n →

∨

k<n x==== k.

We are now going to prove that ZGE allows quantifier elimination. Ob-

serve first that since t �==== s ≡ZGE s < t ∨ t < s, m� t ≡ZGE

∨m−1
i=1 m t + i,

and m t ≡ZGE m −t, we may assume that the kernel of a simple ∃-formula

is a conjunction of formulas of the form nix==== t0i , n′
ix < t1i , t2i < n′′

i x, and

mi n′′′
i x+t3i , where x /∈ var tji . By multiplying these formulas by a suitable

integer and using t < s ≡ZGE nt < ns and m t ≡ZGE nm nt for n �= 0, one

sees that all the ni, n
′
i, n

′′
i , n

′′′
i can be made equal to some number n > 1.

Clearly, in doing so, tji and the “modules” mi all change. But the problem

of elimination is thus reduced to formulas of the following form, where the

jth conjunct disappears whenever kj = 0 (j � 3):

(1) ∃x
( ∧k0

i=1 nx==== t0i ∧
∧k1

i=1 t1i < nx ∧
∧k2

i=1 nx < t2i ∧
∧k3

i=1 mi nx + t3i
)
.

With y for nx and m0 = n, (1) is certainly equivalent in ZGE to

(2) ∃y
( ∧k0

i=1 y ==== t0i ∧
∧k1

i=1 t1i < y ∧
∧k2

i=1 y < t2i ∧
∧k3

i=1 mi y + t3i ∧ m0 y
)
.

According to Theorem 6.1 we can at once assume that k0 = 0, so that the

elimination problem, after renaming y back to x, reduces to formulas of

the following form, where x /∈ var tji :

(3) ∃x
( ∧k1

i=1 t1i < x ∧
∧k2

i=1 x < t2i ∧
∧k3

i=0 mi x + t3i
)
.

Let m be the least common multiple of m0, . . . , mk3 .

Case 1: k1, k2 = 0. Then (3) is equivalent in ZGE to
∨m

j=1

∧k3
i=0 mi j + t3i .

Indeed, if an x such that
∧k3

i=0 mi x + t3i exists at all, then so does some

x = j ∈ {1, . . . , m}. For let j with m x + (m − j) be given by axiom ϑm.

Then also m x − j and consequently mi x − j for all i � k3. Therefore

mi x + t3i − (x − j) = j + t3i also holds for i = 0, . . . , k3 as was claimed.

Case 2: k1 �= 0 and j as above. Then (3) is equivalent to

(4)
∨k1

μ=1[
∧k1

i=1 t1i � t1μ ∧
∨m

j=1(
∧k2

i=1 t1μ + j < t2i ∧
∧k3

i=0 mi t1μ + j + t3i )].

This is a case distinction according to the maximum among the values of
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the t1i . From each disjunct in (4) certainly (3) follows in ZGE (consider

t1i < t1μ + j). Now suppose conversely that x is a solution of (3). Then in

the case
∧k1

i=1 t1i � t1μ the μth disjunct of (4) is also valid. To prove this

we need only confirm t1μ + j < t2i , which comes down to t1μ + j � x. Were

x < t1μ + j, i.e., 0 < x − t1μ < j, then x − t1μ = k follows for some k < j by

ηj , that is, x = t1μ + k. Thus, mi t1μ + j − x = j − k for all i � k3. But

this yields the contradiction m j − k < m.

Case 3: k1 = 0 and k2 �= 0. The argument is analogous to Case 2 but

with a distinction according to the smallest term among the t2i .

From this remarkable example we obtain the following

Corollary 6.2. ZGE is model complete. Moreover, ZGE and ZG are both

complete and decidable.

Proof. Since Z determines a prime model for ZGE, completeness follows

from model completeness, which in turn follows from quantifier eliminabil-

ity. Clearly, along with ZGE also its reduct theory ZG is complete. Hence,

as complete axiomatizable theories, both these theories are decidable.

Remark 1. Also ZG is model complete; Exercise 1. Actually, ZG is the model
completion of the theory of discretely ordered abelian groups because every such
group is embeddable into some Z-group (which is not quite easy to prove). This
is a main reason for the interest in ZG. Although model complete, ZG does not
allow quantifier elimination.

We now intend to show that theories ACF and RCF of algebraically and

real closed fields respectively allow quantifier elimination, even without

any expansion of their signatures. Attacking the elimination problem in a

direct manner as above would fill a separate chapter. We therefore under-

take a model-theoretic proof in Theorem 6.4, applying thereby a variant

of Theorem 2.3. Call X ⊆ L a Boolean basis for L in T if every ϕ ∈ L

belongs to 〈X〉, the set of Boolean combinations of formulas from X. Let

M,M′ be L-models. Write M ≡X M′ whenever M � ϕ ⇔ M′ � ϕ, for

all ϕ ∈ X, and M ≡ M′ whenever M � ϕ ⇔ M′ � ϕ, for all ϕ ∈ L.

Theorem 6.3 (Basis theorem for formulas). Let T ⊆ L0 be a theory,

X ⊆ L, and suppose that M ≡X M′ ⇒ M ≡ M′, for all M,M′ � T .

Then X is a Boolean basis for L in T .

Proof. Let α ∈ L and Yα := {γ ∈ 〈X〉 | α ⊢T γ}, where 〈X〉 is defined as

on page 180. One then shows that Yα ⊢T α as in the proof of Theorem 2.3
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by arguing with a model M rather than a structure A. The remainder of

the proof proceeds along the lines of the proof of the mentioned theorem

and is therefore left to the reader.

A theory T is called substructure complete if for all A,B with A ⊆ B � T

the theory T +DA is complete. This generalizes model completeness and

is basically only a reformulation of ‘T is the model completion of T ∀’.

Indeed, let T be substructure complete and A � T ∀. Then by Lemma 4.1,

A ⊆ B for some B � T , hence T + DA is complete. Thus, T is the

model completion of T ∀. Conversely, let T be the model completion of

T ∀ and A ⊆ B � T . Then A � T ∀, so that T + DA is complete. Thus,

T is substructure complete. The criterion (ii) in the next theorem may

therefore also be reformulated. There exist yet other criteria, in particular

the amalgamability of models of T ∀; see e.g. [CK].

Theorem 6.4. For every theory T in L the following are equivalent:

(i) T allows quantifier elimination, (ii) T is substructure complete.

Proof. (i)⇒(ii): Let A be a substructure of a T -model, ϕ(�x) ∈ L, and

�a ∈ An such that A � ϕ [�a]. Further, let B � T, DA so that w.l.o.g.

B ⊇ A. Then also B � ϕ(�a), because in view of (i) we may suppose that ϕ

is open. Since B was arbitrary, DA ⊢T ϕ(�a). Hence T + DA is complete.

(ii)⇒(i): Let X denote the set all of literals of L. It suffices to prove

(∗) M ≡X M′ ⇒ M ≡ M′, for all M,M′ � T,

for then X is a Boolean basis for L in T according to Theorem 6.3. This

obviously amounts to saying that T allows quantifier elimination. Let

M,M′ � T , M = (A, w), M � ϕ(�x), �x �= ∅, and a1 = xw
1 , . . . , an = xw

n .

Let AE be the substructure generated in A from E := {a1, . . . , an}. By

(ii), T + DAE is complete and consistent with ϕ(�a), since AA satisfies

T + DAE + ϕ(�a). Hence DAE ⊢T ϕ(�a). Moreover, DAE ∩ LE ⊢T ϕ(�a)

by Exercise 5 in 5.1. Thus, by the finiteness theorem, there are literals

λ0(�x), . . . , λk(�x) ∈ L with λi(�a) ∈ DAE and
∧

i�k λi(�a) ⊢T ϕ(�a). There-

fore
∧

i�k λi(�x) ⊢T ϕ(�x), because a1, . . . , an do not appear in T . Since

M �
∧

i�k λi(�x) and M ≡X M′, also M′ �
∧

i�k λi(�x) and so M′ � ϕ(�x).

The above holds for arbitrary formulas ϕ(�x) ∈ L provided �x �= ∅. These

include sentences as well which completes the proof of (∗).
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Corollary 6.5. An ∀-theory T permits quantifier elimination if and only

if T is model complete.

Proof. Due to A ⊆ B � T ⇒ A � T , (ii) in Theorem 6.4 is satisfied

provided only that T + DA is complete for all A � T . But this is granted

if T is model complete.

Example 3. Let T be the ∀-theory with two unary function symbols f, g

whose axioms state that f and g are injective, f and g are mutually inverse

(∀x fgx==== x and ∀x gfx==== x), and there are no circles, i.e., no sequences

x0, . . . , xn (n > 0) such that xi+1 = fxi and x0 = xn. This implies in

particular ∀x x �====fx. Note that ∀y∃xfx==== y is provable (choose x = gy).

Hence, f and g are bijective. The T -models consist of disjoint countable

infinite “threads,” which occurred also in Example 3 in 5.2. Hence, T is

ℵ1-categorical and thus model complete by Lindström’s criterion. By the

corollary, T permits the elimination of quantifiers.

Theorem 6.6. ACF and RCF allow quantifier elimination.

Proof. By Theorem 6.4 it is enough to show that ACF and RCF are

substructure complete, or put another way, ACF and RCF are the model

completions of ACF∀ and RCF∀, respectively. Both claims are clear from

Example 3 in 5.5 according to which ACF∀ coincides with the theory of

integral domains, and RCF∀ with the theory of ordered commutative rings

with a unit element.

Theorem 6.6 was originally proved by Tarski in [Ta3]. While thanks to

a host of model-theoretic methods the above proof is significantly shorter

than Tarski’s original, the latter is still of import in many algorithmic

questions. Decidability and eliminability of quantifiers in RCF have great

impact also on other fields of research, in particular on the foundations of

geometry, which are not treated in this book. Let us mention that both

Euclidean and non-Euclidean geometry can entirely be based on RCF and

hence are decidable as well.

Remark 2. Due to the completeness of RCF, one may also say that the first-
order theory of the ordered field R allows quantifier elimination. Incidentally,
the quantifiers in RCF are not eliminable if the order, which is definable in RCF,
is not considered as a basic relation. Also T := Th (R, <, 0, 1,+,−, ·, exp), a
(complete) theory with the exponential function exp in the language, does not
allow quantifier elimination. Nonetheless, T is model complete, as was shown
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in [Wi]. Because of its completeness, the decision problem for T reduces to the
still unsolved axiomatization problem, whose solution hinges on the unanswered
problem concerning transcendental numbers, Schanuel’s conjecture, which lies
outside the scope of logic (consult the Internet). A particular question related
to the conjecture is whether ee is transcendental.

Exercises

1. Show that the theory ZG is model complete in its language, and even

in the language L{0, 1, +,−}.

2. A structure elementarily equivalent to (N, 0, 1, +, <) is called an

N-semigroup. Axiomatize the theory of N-semigroups and show

(by tracing back to ZG) that it allows quantifier elimination in

L{0, 1, +, <, 1 , 2 , . . . }.

3. Let RCF◦ be the theory of real closed fields without order as a basic

notion. Prove that ∃y is not eliminable in α(x) = ∃y y · y ==== x in the

frame of RCF◦.

4. Show that RCF is axiomatized alternatively by the axioms for or-

dered fields and the continuity scheme in 3.3 page 110.

5. Show that the theory T of divisible ordered abelian groups allows

quantifier elimination.

5.7 Reduced Products and Ultraproducts

In order to merely indicate the usefulness of the following constructions

consider for instance Zn, a direct power of the additive group Z. By

componentwise verification of the axioms it can be shown that Zn is itself

an abelian group (n � 2). But in this and similar examples we can save

ourselves the bother, because by Theorem 7.5 below a Horn sentence valid

in all Ai is also valid in the direct product
∏

i∈I Ai, and the group axioms

are Horn sentences in each reasonable signature for groups.

Let (Ai)i∈I be a family of L-structures and F a proper filter on a

nonempty index set I (see page 34). We define a relation ≈F on the

domain B of the product B :=
∏

i∈I Ai by

a ≈F b ⇔ {i ∈ I | ai = bi} ∈ F.
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This is an equivalence relation on B. Indeed, let Ia=b := {i ∈ I | ai = bi}.

≈F is reflexive (since Ia=a = I ∈ F ) and trivially symmetric, but also

transitive, because Ia=b, Ib=c ∈ F ⇒ Ia=c ∈ F , thanks to the obvious fact

Ia=b ∩ Ib=c ⊆ Ia=c.

Furthermore, ≈F is a congruence in the algebraic reduct of B. To

see this let f be an n-ary function symbol and �a ≈F
�b (which for �a =

(a1, . . . , an), �b = (b1, . . . , bn) in Bn abbreviates a1 ≈F b1, . . . , an ≈F bn).

Then clearly I
�a=�b

:=
⋂n

ν=1 Iaν=bν belongs to F . Since certainly I
�a=�b

⊆

I
f�a=f�b

, we get I
f�a=f�b

∈ F and hence fB�a ≈F fB�b.

Let C := {a/F | a ∈ B}, where a/F denotes the congruence class of

≈F to which a ∈ B belongs. Thus, a/F = b/F ⇔ Ia=b ∈ F . This C

becomes the domain of some L-structure C in which first the operations

fC are defined in a canonical way. With �a/F := (a1/F, . . . , an/F ) we set

fC(�a/F ) := (fB�a)/F . This definition is sound because ≈F is a congruence.

For constant symbols c let cC of course be cB/F .

Similar to the identity, the relation symbols are interpreted in C in a

completely natural way as follows:

rC�a/F :⇔ Ir�a ∈ F
(
Ir�a := {i ∈ I | rAi�ai}, �ai := (a1

i , . . . , a
n
i )

)
.

Also this definition is sound, since Ir�a ∈ F and �a ≈F
�b imply I

r�b
∈ F .

Indeed, �a ≈F
�b is equivalent to I

�a=�b
∈ F and it is readily verified that

Ir�a ∩ I
�a=�b

⊆ I
r�b

.

The L-structure C so defined is called a reduced product of the Ai by the

filter F and is denoted by
∏F

i∈I Ai (some authors denote it by
∏

i∈I Ai/F ).

Imagining a filter F as a system of subsets of I each of which contains

“almost all indices,” one may think of
∏F

i∈I Ai as arising from B =
∏

i∈I Ai

by identification of those a, b ∈ B for which the ith projections are the

same for almost all indices i.

Let C =
∏F

i∈I Ai. For w : Var → B (=
∏

i∈I Ai) the valuation x 
→ (xw)i
to Ai is denoted by wi, so that xw = (xwi)i∈I . Induction on t yields

tw = (twi)i∈I . Define the valuation w/F : Var → C by xw/F = xw/F . This

setting generalizes inductively to

(1) tw/F = tw/F , for all terms t and valuations w : Var → B.

(1) follows from (f�t )w/F = fC(�t w/F ) = fC(�t w/F ) = fB(�t w)/F = (f�t )w/F .

It is easily seen that each w′ : Var → C is of the form w/F for a suitable

valuation w : Var → B.
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Let w : Var → B and α ∈ L. Define Iw
α := {i ∈ I | Ai � α [wi]}. Then

(2) Iw
∃xβ ⊆ Iw′

β for some a ∈ B and w′ = wa
x.

Indeed, let i ∈ Iw
∃xβ , i.e., Ai � ∃xβ [wi]. Choose some ai ∈ Ai with

Ai � β [wi
ai
x ]. For i /∈ Iw

∃xβ pick up any ai ∈ Ai. Then clearly (2) holds

with a = (ai)i∈I and w′ = wa
x.

The case that F is an ultrafilter on I is of particular interest. By

Theorem 7.1, all elementary properties valid in almost all factors carry

over to the reduced product, which in this case is called an ultraproduct .

If Ai = A for all i ∈ I then
∏F

i∈I Ai is termed an ultrapower of A, usually

denoted by AI/F .

The importance of ultrapowers is underlined by Shelah’s theorem (not

proved here) that A ≡ B iff A and B have isomorphic ultrapowers. The

proof of Theorem 7.1 uses mainly filter properties; the specific ultrafilter

property is applied only for confirming Iw
¬α ∈ F ⇔ Iw

α /∈ F .

Theorem 7.1 (Łoś’s ultraproduct theorem). Let C =
∏F

i∈I Ai be an

ultraproduct of the L-structures Ai. Then for all formulas α ∈ L and all

w : Var →
∏

i∈I Ai,

(∗) C � α[w/F ] ⇔ Iw
α ∈ F .

Proof by induction on α. (∗) is obtained for equations t1 ==== t2 as follows:

C � t1 ==== t2 [w/F ] ⇔ t
w/F
1 = t

w/F
2 ⇔ tw1/F = tw2 /F

(
by (1)

)

⇔ {i ∈ I | twi
1 = twi

2 } ∈ F
(
tw = (twi)i∈I

)

⇔ {i ∈ I | Ai � t1 ==== t2 [wi]} ∈ F ⇔ Iw
t1 ==== t2 ∈ F.

One similarly proves (∗) for prime formulas r�t . Induction steps:

C � α∧β [w/F ] ⇔ C � α, β [w/F ]

⇔ Iw
α , Iw

β ∈ F (induction hypothesis)

⇔ Iw
α ∩ Iw

β ∈ F (filter property)

⇔ Iw
α∧ β ∈ F (since Iw

α∧ β = Iw
α ∩ Iw

β ).

Further, C � ¬α [w/F ] ⇔ C � α [w/F ] ⇔ Iw
α /∈ F ⇔ I \Iw

α ∈ F ⇔ Iw
¬α ∈ F .

Now let Iw
∀xα ∈ F , a ∈

∏

i∈I Ai, and w′ := wa
x. Since Iw

∀xα ⊆ Iw′

α , also

Iw′

α ∈ F . Hence, C � α [w′/F ] by the induction hypothesis. a was arbitrary,

therefore C � ∀xα [w/F ]. The converse is, with β := ¬α, equivalent to

Iw
∃xβ ∈ F ⇒ C � ∃xβ [w/F ]. This follows from (2), since (∗) holds by the

induction hypothesis for α, hence also for ¬α.
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Corollary 7.2. A sentence α is valid in the ultraproduct
∏F

i∈I Ai iff α

is valid in “almost all” Ai, that is, {i ∈ I | Ai � α} ∈ F . In particular,

AI/F � α ⇔ A � α, for all α ∈ L0. In words, an ultrapower of A is

elementarily equivalent to A.

The last claim is clear, since the validity of α in a structure does not

depend on the valuation chosen. The ultrapower case can be further

strengthened to A � AI/F (Exercise 2), useful for the construction of

special nonstandard models, for instance. From countless applications

of ultraproducts, we present here a very short proof of the compactness

theorem for arbitrary first-order languages. The proof is tricky, but it is

undoubtedly the most elegant proof of the compactness theorem.

Theorem 7.3. Let X ⊆ L and let I be the set of all finite subsets of

X. Assume that every i ∈ I has a model (Ai, wi). Then there exists an

ultrafilter F on I such that
∏F

i∈I Ai � X [w/F ], where xw = (xwi)i∈I for

x ∈ Var. In short, if every finite subset of X ⊆ L has a model then the

same applies to the whole of X.

Proof. Let Jα := {i ∈ I | α ∈ i} for α ∈ X. The intersection of finitely

many members of E := {Jα | α ∈ X} is �= ∅; for instance {α0, . . . , αn}

belongs to Jα0∩· · ·∩Jαn . By the ultrafilter theorem (page 35), there exists

an ultrafilter F ⊇ E. If α ∈ X and i ∈ Jα (that is, α ∈ i) then Ai � α [wi].

Consequently, Jα ⊆ Iw
α ; hence Iw

α ∈ F . Therefore,
∏F

i∈I Ai � α [w/F ] by

Theorem 7.1, as claimed.

A noteworthy consequence of these results is the following theorem in

which KL denotes the class of all L-structures; by Shelah’s theorem men-

tioned above, condition (a) can be converted into a purely algebraic one.

Theorem 7.4. Let K ⊆ KL. Then

(a) K is Δ-elementary iff K is closed under elementary equivalence and

under ultraproducts,

(b) K is elementary iff K is closed under elementary equivalence and

both K and \K (= KL \K) are closed under ultraproducts.

Proof. (a): A Δ-elementary class is trivially closed under elementary

equivalence. The rest of the direction ⇒ holds by Theorem 7.1. ⇐ : Let

T := ThK and A � T , and let I be the set of all finite subsets of ThA.
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For each i = {α1, . . . , αn} ∈ I there exists some Ai ∈ K such that Ai � i,

for otherwise
∨n

ν=1 ¬αν ∈ T which contradicts i ⊆ ThA. According to

Theorem 7.3 (with X = ThA) there is a C :=
∏F

i∈I Ai � ThA, and

if Ai ∈ K then so too C ∈ K. Because of C � ThA we know that

C ≡ A, and therefore A ∈ K. This shows that A � T ⇒ A ∈ K. Hence

A � T ⇔ A ∈ K, i.e., K is Δ-elementary. (b): ⇒ is obvious by (a),

because for K = Mdα we have \K = Md¬α. ⇐ : By (a), K = MdS

for some S ⊆ L0. Let I be the set of all finite nonempty subsets of S.

Claim: There is some i = {α0, . . . , αn} ∈ I with Md i ⊆ K. Otherwise let

Ai � i such that Ai ∈ \K for all i ∈ I. Then there exists an ultraproduct

C of the Ai such that C ∈ \K and C � i for all i ∈ I; hence C � S.

This is a contradiction to MdS ⊆ K. Thus, the claim holds. Since also

K = MdS ⊆ Md i, we obtain K = Md i = Md
∧

ν�n αν .

Application. Let K be the (Δ-elementary) class of all fields of char-

acteristic 0. We show that K is not elementary, and thus in a new way

that ThK is not finitely axiomatizable. Let Pi denote the prime field

of characteristic pi (p0=2, p1=3, . . . ) and let F be a nontrivial ultrafil-

ter on N. We claim that the field
∏F

i∈N Pi has characteristic 0. Indeed,

{i ∈ I | Pi � ¬charp} is for a given prime p certainly cofinite and belongs

to F , so that
∏F

i∈N Pi � ¬charp for all p. Hence \K is not closed under

ultraproducts, and so by Theorem 7.4(b), K cannot be elementary.

We now turn to reduced products. Everything said below on reduced

products remains valid for direct products; these are the special case with

the minimal filter F = {I}. More precisely,
∏{I}

i∈I Ai ≃
∏

i∈I Ai. Filters

are always supposed to be proper in the sequel.

Theorem 7.5. Let C =
∏F

i∈I Ai be a reduced product, w : Var →
∏

i∈I Ai,

and α a Horn formula from the corresponding first-order language. Then

(⋆) Iw
α ∈ F ⇒ C � α [w/F ].

In particular, a Horn sentence valid in almost all Ai is also valid in C.

Proof by induction on the construction of Horn formulas. For prime for-

mulas the converse of (⋆) is also valid, because in the proof of (∗) from

Theorem 7.1 for prime formulas no specific ultrafilter property was used.

Moreover, Iw
¬α ∈ F ⇒ Iw

α /∈ F ⇒ C � α [w/F ] ⇒ C � ¬α [w/F ], provided

α is prime. Hence, (⋆) is correct for all literals. Now suppose (⋆) for a

prime formula α and a basic Horn formula β, and let Iw
α → β ∈ F . We
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show that C � α →β [w/F ]. Let C � α [w/F ]. Then Iw
α ∈ F since α is

prime. Iw
α ∩ Iw

α → β ⊆ Iw
β leads to Iw

β ∈ F ; hence C � β [w/F ] by the

induction hypothesis. This shows that C � α →β [w/F ] and proves (⋆) for

all basic Horn formulas. Induction on ∧ and ∀ proceeds as in Theorem 7.1

and the ∃-step easily follows with the help of (2) above.

According to this theorem the model classes of Horn theories are al-

ways closed under reduced products, in particular under direct products.

This result strengthens Exercise 1 in 4.2 significantly. We mention fi-

nally that also the converse holds: every theory with a model class closed

with respect to reduced products is a Horn theory. But the proof of this

claim, presented in [CK], is essentially more difficult than that for the

similar-sounding Theorem 4.4.

Exercises

1. Show that
∏F

i∈I Ai is isomorphic to Ai0 for some i0 ∈ I if F is a triv-

ial ultrafilter. This applies, for instance, to ultraproducts on a finite

index set (Exercise 3 in 1.5). Thus, ultraproducts are interesting

only if the index set I is infinite.

2. Prove that A is elementarily embeddable into an ultrapower AI/F .

3. (Basic in nonclassical logics). Let �K:=
⋂

{�A | A ∈ K} be the

consequence relation defined by a class K of L-matrices (page 49).

Show that �K is finitary provided K is closed under ultraproducts

(which is the case, for instance, if K = {A} with finite A). Thus,

�A is finitary for each finite logical matrix.

4. Let A,B be Boolean algebras. Prove that A � α ⇔ B � α for

all universal Horn sentences α. This holds in particular for identi-

ties and quasi-identities. Every sentence of this kind valid in 2 is

therefore valid in all Boolean algebras.

5. Let A′
i for each i ∈ I ( �= ∅) be an expansion of the L-structure Ai to

L′ ⊇ L. Prove that the reduced product
∏F

i∈I A′
i is an L′-expansion

of the reduced product
∏F

i∈I Ai (the “expansion theorem”).



Chapter 6

Incompleteness and Undecidability

Gödel’s fundamental results concerning the incompleteness of formal

systems sufficiently rich in content, along with Tarski’s on the nonde-

finability of the notion of truth and Church’s on the undecidability of

logic, as well as other undecidability results, are all based on essentially

the same arguments. A widely known popularization of Gödel’s first in-

completeness theorem runs as follows:

Consider a formalized axiomatic theory T that describes a given domain

of objects A in a manner that we hope is complete. Moreover, suppose

that T is capable of talking in its language L about its own syntax and

proofs from its axioms. This is often possible if T has actually been

devised to investigate other things (numbers or sets, say), namely by

means of an internal encoding of the syntax of L. Then the sentence γ:

“I am unprovable in T ” belongs to L, where “I” refers precisely to the

sentence γ (clearly, this possibility of self-reference has to be laid down

in detail, which was the main work in [Gö2]). Then γ is true in A but

unprovable in T .

Indeed, if we assume that γ is provable, then, like any other provable

sentence in T , γ would be true in A and so unprovable, since this is just

what γ claims. Thus, our assumption leads to a contradiction. Hence, γ

is indeed unprovable, that is, γ’s assertion conforms with truth; moreover,

γ belongs to the sentences from L true in A, as it will turn out.

Put together, our goal of exhaustively capturing all theorems valid in

A by means of the axioms of T has not been achieved and is in fact not

achievable, as we will see. No matter how strong our axiomatic theory T

is, there are always sentences true in A but unprovable in T .
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Clearly, the above is just a rough simplification of Gödel’s theorem that

does not speak at all about a domain of objects, but is rather a proof-

theoretic assertion the proof of which can be carried out in the framework

of Hilbert’s finitistic metamathematics. This in turn means about the

same as being formalizable and provable in Peano arithmetic PA, intro-

duced in 3.3.

This result was a decisive point for a wellfounded criticism of Hilbert’s

program, which aimed to justify infinitistic methods by means of a finitis-

tic understanding of metamathematics. For a detailed description of what

Hilbert was aiming at, see [Kl2] or consult [HB, Vol. 1]. The paradigm

of a domain of objects in the above sense is, for a variety of reasons, the

structure N = (N, 0, S,+, ·). Gödel’s theorem states that even for N a

complete axiomatic characterization in its language is impossible, a result

with far-reaching consequences. In particular, PA, which aims at telling

us as much as possible about N , is shown to be incomplete. PA is the

center point of Chapter 7. It is of special importance because most of

classical number theory and of discrete mathematics can be developed in

it. In addition, known methods for investigating mathematical founda-

tions can be formalized and proved in PA. These methods have stood firm

against all kinds of criticism, leaving aside some objections concerning the

unrestricted use of two-valued logic, not to be discussed here.

Some steps in Gödel’s proof require only modest suppositions regarding

T , namely the numeralwise representability of relevant syntactic predi-

cates and functions in T in the sense of 6.3. It was one of Gödel’s deci-

sive discoveries that all the predicates required in γ’s construction above

are primitive recursive1 and that all predicates and functions of this type

are indeed representable in T . As remarked by Tarski and Mostowski,

the latter works even in certain finitely axiomatizable, highly incomplete

theories T and, in addition, covers all recursive functions. This yields

not only the recursive undecidability of T and all its subtheories in L (in

particular the theory TautL), but also of all consistent extensions of T .

1 All these predicates are also elementary in the recursion-theoretic sense, see e.g. [Mo],

although it requires much more effort to verify this. Roughly speaking, the elemen-

tary functions are the “not too rapidly growing” primitive recursive functions. The

exponential function (m, n) �→ mn is still elementary; however, the hyperexponential

function defined on page 239 is not.
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From this it follows that the first incompleteness theorem as well as

Church’s and Tarski’s results can all be obtained in one go, making es-

sential use of the fixed point lemma in 6.5, also called the diagonalization

lemma because it is shown by some kind of diagonalization on the primi-

tive recursive substitution function. Its basic idea can even be recognized

in the ancient liar paradox, and is also used in the foregoing popularization

of the first incompleteness theorem.

In 6.1 we develop the theory of recursive and primitive recursive func-

tions to the required extent. 6.2 deals with the arithmetization of syntax

and of formal proofs. 6.3 and 6.4 treat the representability of recur-

sive functions in axiomatic theories. In 6.5 all the aforementioned re-

sults are proved, while the deeper-lying second incompleteness theorem

is dealt with in Chapter 7. Section 6.6 concerns the transferability of

decidability and undecidability by interpretation, and 6.7 describes the

first-order arithmetical hierarchy, which vividly illustrates the close re-

lationship between logic and recursion theory. At the end we consider

special Σ1-formulas, important for Chapter 7.

6.1 Recursive and Primitive Recursive Functions

From now on, along with i, . . . , n we take a, . . . , e to denote natural num-

bers, unless stated otherwise. Let Fn denote the set of all n-ary functions

with arguments and values in N, and put F :=
⋃

n∈N Fn. For f ∈ Fm

and g1, . . . , gm ∈ Fn, we call h : �a 
→ f(g1�a, . . . , gm�a) the (canonical)

composition of f and the gi and write h = f [g1, . . . , gm]. The arity of h is

n. Analogously, let P [g1, . . . , gm] for a given predicate P ⊆ Nm (m > 0)

denote the n-ary predicate {�a ∈ Nn | P (g1�a, . . . , gm�a)}.

In an intuitive sense f ∈ Fn is computable if there is an algorithm

for computing f�a for every �a in finitely many steps. Sum and product

are simple examples. There are uncountably many unary functions on

N, and because of the finiteness of every set of computation instructions,

only countably many of these can be computable. Thus, there must be

noncomputable functions. This existence proof brings to mind the one

for transcendental real numbers, based on the countability of the set of

algebraic numbers. Coming up with concrete examples is, in both cases,

much less simple.
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The computable functions in the intuitive sense obviously have the fol-

lowing properties:

Oc: If h ∈ Fm and g1, . . . , gm ∈ Fn are computable, so too is the com-

position f = h[g1, . . . , gm].

Op: If g ∈ Fn and h ∈ Fn+2 are computable then so is f ∈ Fn+1,

uniquely determined by the equations

f(�a, 0) = g�a; f(�a, Sb) = h(�a, b, f(�a, b)).

These are called the recursion equations for f , and f is said to result

from g, h by primitive recursion, or f = Op(g, h) for short.

Oµ: Let g ∈ Fn+1 be such that ∀�a∃b g(�a, b) = 0. If g is computable then

so is f , given by f�a = μb[g(�a, b) = 0]. Here the right-hand term

denotes the smallest b with g(�a, b) = 0. f is said to result from g by

the so-called μ-operation.

Considering Oc, Op, and Oµ as generating operations for obtaining new

functions from already-constructed ones, we state the following definition

due to Kleene:

Definition. The set of p.r. (primitive recursive) functions consists of all

functions on N that can be obtained by finitely many applications of Oc

and Op starting with the following initial functions : the constant 0, the

successor function S, and the projection functions Inν :�a 
→ aν (1 � ν � n,

n = 1, 2, . . . ). With the additional generating schema Oµ one obtains the

set of all recursive or μ-recursive functions. A predicate P ⊆ Nn is called

p.r. or recursive (also decidable) provided the characteristic function χ
P

of P has the respective property, defined by

χ
P�a =

{

1 in case P�a,

0 in case ¬P�a.

Remark 1. It should at least be noticed that it was Dedekind who first proved
that Op defines exactly one function f ∈ Fn in the sense of set theory. Note also
that for n = 0 the recursion equations reduce to f0 = c and fSb = h(b, fb), where
c ∈ F0 and h ∈ F2. If the condition ∀�a∃b g(�a, b) = 0 in Oµ is omitted, then f
is regarded as undefined for those �a for which there is no b with g(�a, b) = 0. In
this way the so-called partially recursive functions are defined. These are very
important for recursion theory. However, we will not require them.
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The following examples make it clear that by means of the functions Inν
our stipulations concerning arity in Oc and Op can be extensively relaxed.

In the examples, however, we will still adjoin the normalized notation each

time in parentheses.

Examples. Let S0 = I11 and Sk+1 = S[Sk], so that clearly Sk : a 
→ a + k.

By Oc these functions are all p.r. The n-ary constant functions Kn
c :�a 
→ c

can be seen to be p.r. as follows: K0
c = Sc[0] for arbitrary c ∈ N, while

K1
c0 = c

(
= K0

c

)
and K1

cSb = c
(
= I22(b, K

1
cb)

)
. Thus, K1

c = Op(K0
c , I

2
1).

For n > 1 we have Kn
c = K1

c [I
n
1 ]. Further, the recursion equations

a + 0 = a
(
= I11(a)

)
; a + Sb = S(a + b)

(
= SI33(a, b, a + b)

)

show addition to be a p.r. function. Since

a · 0 = 0
(
= K1

0a
)

and a · Sb = a · b + a
(
= I33(a, b, a · b) + I31(a, b, a · b)

)
,

it follows that · is p.r. and entirely analogously so is (a, b) 
→ ab. Also the

predecessor function Pd is p.r. since Pd 0 = 0 and Pd(Sb) = b
(
= I21(b, Pd b)

)
.

“Cut-off subtraction” ·−, defined by a ·− b = a − b for a � b, and

a ·− b = 0 otherwise, is p.r. because

a ·− 0 = a
(
= I11(a)

)
and a ·− Sb = Pd(a ·− b)

(
= Pd I33(a, b, a ·− b)

)
.

The absolute difference |a − b| is p.r., for |a − b| = (a ·− b) + (b ·− a).

One sees easily that if f is p.r. (resp. recursive) then so too is every

function that results from f by swapping, equating, or adjoining fictional

arguments. For example, let f ∈ F2 and f1 := f [I22, I
2
1]. Then clearly

f1(a, b) = f(b, a). For f2 := f [I11, I
1
1] we have f2a = f(a, a), and for

f3 := f [I31, I
3
2] we get f3(a, b, c) = f(a, b), for all a, b, c.

From now on we will be more relaxed in writing down applications of

Oc or Op; the Inν will no longer explicitly appear. If f ∈ Fn+1 is p.r.

then so is the function (�a, b) 
→
∏

k<b f(�a, k), since
∏

k<0 f(�a, k) = 1, and
∏

k<Sb f(�a, k) =
∏

k<b f(�a, k) ·f(�a, b). Also (�a, b) 
→
∑

k<b f(�a, k), defined

by
∑

k<0 f(�a, k) = 0 and
∏

k<Sb f(�a, k) =
∑

k<b f(�a, k) + f(�a, b) is p.r.

The δ-function is defined by δ0 = 1, δSn = 0 and hence is p.r. With δ we

easily obtain the characteristic function of the identity relation: χ=(a, b)

equals δ|a − b|. This in turn implies that every finite subset E of N is p.r.

because χ∅ = K1
0 and for E = {a1, . . . , an} �= ∅ we have

χ
E (a) = χ=(a, a1) + · · · + χ=(a, an).
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The inequality relation �= is p.r. because χ
�=(a, b) = σ|a−b| with the

signum function σ, defined by σ0 = 0, σSn = 1. Also � is p.r. because
χ

�(a, b) = σ(Sb ·− a), as is easily verified.

Almost all functions considered in number theory are p.r., in particular

the prime enumeration n 
→ pn (with p0 = 2, p1 = 3, . . . ). The same

is true for standard predicates like (divides) and prim (to be a prime

number). This will all be verified after some additional remarks.

Important is the closure of the set of p.r. functions with respect to

definition by p.r. (resp. recursive) case distinction: If P, g, h are p.r. (resp.

recursive) then so is f , given by f�a = g�a · χ
P�a + h�a · δχP�a, or

f�a =

{

g�a in case P�a,

h�a in case ¬P�a.

A simple example is (a, b) 
→ max(a, b), defined by max(a, b) = b if a � b

and max(a, b) = a otherwise. Case distinction easily generalizes to more

than two cases. Sometimes equations in Op are given by p.r. case distinc-

tion as in a defining equation for rem(a, b), the remainder of dividing a by

b ( �= 0): rem(Sa, b) = 0 if b Sa, and rem(Sa, b) = S rem(a, b) otherwise.

Case distinction yields also that a 
→ bia is p.r., where bia denotes the

ith digit of the binary representation of a ∈ N, a =
∑

i�0 bia · 2i. Indeed,

bia = 0 if rem(a, 2i+1) < 2i and bia = 1 otherwise.

Of fundamental importance is the hypothesis that recursive functions

exhaust all the computable functions over N. This hypothesis is called

Church’s thesis ; all undecidability results are based on it. Though it is

not at all obvious from looking at the definition of recursive functions

that these functions exhaust all computable functions no matter what the

computation procedures look like, all the variously defined computabil-

ity concepts turned out to be equivalent, providing evidence in favor of

the thesis. One of these concepts is computability by means of a Turing

machine [Tu], a particularly simple model of automated information pro-

cessing. Also, programming languages may be used to define the concept

of computability, for instance PROLOG, as was seen in 4.6.

Below we compile a list of the easily provable basic facts about p.r. and

recursive predicates needed in the following. Further insights, above all

concerning the form of their defining formulas, will emerge in 6.3 and

thereafter. P, Q, R now denote exclusively predicates of N. In order to
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simplify the notation of properties of such predicates, we use as abbrevia-

tions in our metatheory the prefixes (∃a<b), (∃a�b), (∀a<b), and (∀a�b)

as in (B) below. Their meaning is self-explanatory.

(A) The set of p.r. (resp. recursive) predicates is closed under forming

the complement, union, and intersection of predicates of the same arity,

as well as under insertion of p.r. (resp. recursive) functions, and finally

under swapping, equating, and adjoining fictional arguments. This is

proved as follows: for P ⊆ Nn, δ[χP ] is exactly the characteristic function

of ¬P := Nn \P ; furthermore, χ
P∩Q = χ

P · χ
Q and χ

P∪Q = sg[χP + χ
Q ]

as well as χ
P [g1,...,gm] = χ

P [g1, . . . , gm]. Since χ
graph f (�a, b) is the same

as χ=(f�a, b), graph f is p.r. provided f is (though the converse need not

hold, see the end of this section). All the other above-mentioned closure

properties are simply obtained from the corresponding properties of the

characteristic functions.

(B) Let P, Q, R ⊆ Nn+1. Suppose that Q(�a, b) ⇔ (∀k<b)P (�a, k) and

R(�a, b) ⇔ (∃k<b)P (�a, k). Then we say that Q, R result from P by

bounded quantification. The same will be said if < in these definitions

is replaced by �. If P is p.r. so too are all these predicates, because
χ

Q(�a, b) =
∏

k<b
χ

P (�a, k), χ
R(�a, b) = sg(

∑

k<b
χ

P (�a, k)), and similarly

if < is replaced by �. The proofs of these equations are so simple

that we may pass over them. Briefly, the set of p.r. (resp. recursive)

predicates is closed under bounded quantification. For instance, since

a b ⇔ (∃k�b)[a ·k = b], also is p.r. So too is the predicate prim, because

prim p ⇔ p �= 0, 1 & (∀a<p)[a p ⇒ a=1]. Note that a p ⇒ a = 1 is

equivalent (at the metatheoretical level) to a� p ∨∨∨ a = 1 and is therefore

the union of p.r. predicates. Hence, this predicate is indeed p.r.

(C) Suppose P ⊆ Nn+1 satisfies ∀�a∃b P (�a, b) and let f�a = μk[P (�a, k)]

be the smallest k such that P (�a, k). Then by Oµ, if P is recursive so

too is the function f , because f�a = μk[δχP (�a, k) = 0]. This important

generalization of Oµ will henceforth likewise be denoted by Oµ. On the

other hand, f need no longer be p.r., provided P is. This does hold,

though, for the bounded μ-operation: if P ⊆ Nn+1 is p.r. so too is f

defined by f(�a, m) = μk�m[P (�a, k)]. Here let

μk�m[P (�a, k)] =

{

the smallest k � m with P (�a, k), if such k exists,

m otherwise.
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Clearly f(�a, 0) = 0, and f(�a, Sm) = f(�a, m) if (∃k�m)P (�a, k), and

f(�a, Sm) = Sm otherwise. To convert this into a p.r. case distinction

we define a p.r. function g by

g(�a, m, b) =

{

b if (∃k�m)P (�a, k),

Sm otherwise.

Then f(�a, Sm) = g(�a, m, f(�a, m)) is readily confirmed. Therefore, f is

indeed a p.r. function.

Let h and P be p.r. and μk�h�a[P (�a, k)] := μk�m[P (�a, k) &m=h�a].

0,0

0,1

0,2

0,3

1,0

1,1

1,2

2,0

2,1

3,0

� � �◗
◗�

◗
◗�

◗
◗�

◗
◗�

◗
◗�

◗
◗�✻ ❅

❅
❅❅■

❅
❅

❅
❅
❅
❅❅■

Then also �a 
→ μk�h�a[P (�a, k)] is p.r. A first

application is the pairing function ℘, a bi-

jective mapping from N2 to N, defined by

℘(a, b) =
∑

i�a+b i + a. It enumerates the

pairs (a, b) as in the figure (cf. Exercise 2).

Using the formula (∗) :
∑

i�n i = 1
2n(n + 1)

we obtain ℘(a, b) = 1
2(a + b)(a + b + 1) + a.

From this equation one easily obtains a def-

inition of ℘ by means of the bounded μ-operation, for instance

℘(a, b) = μk�(a + b)(a + b + 1) + 2a [2k = (a + b)(a + b + 1) + 2a].

The famous formula (∗) was probably first considered by Pythagoras,

� � � �� �� ��
�

1+2+3+4

who counted the number tn of points of a triangle with

n base points as in the right-hand figure in two ways. tn

equals 1+2+· · ·+n if one counts vertically. But two such

triangles, put together appropriately, form a rectangle

with n · (n + 1) points. Thus, in fact tn = 1
2n(n+1).

Clearly, the bounded μ-operation is not really needed in order to see

that ℘ is p.r. A more convincing application of this operation is a rigorous

proof that the prime number enumeration is p.r. If p is prime then p! + 1

is certainly not divisible by a prime q � p. Indeed, if q p! + 1 and q p!,

we obtain q p! + 1 − p! = 1 and hence the contradiction q 1. Thus, a

prime divisor of p! + 1 is necessarily a new prime. Therefore, the function

n 
→ pn is uniquely characterized by the equations

(⋆) p0 = 2 ; pn+1 = μq�pn!+1[prim q & q > pn].

(⋆) is an application of Op, because with f : (a, b) 
→ μq�b[prim q & q > a],

g : a 
→ f(a, a! + 1) is p.r. as well, and the second equation in (⋆) can be

written pn+1 = g(pn), as is easily verified. Hence, n 
→ pn is indeed p.r.
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Remark 2. Unlike the set of p.r. functions, the set of μ-recursive functions can
no longer be effectively enumerated, indeed, not even all unary ones: if (fn)n∈N

were such an effective enumeration then f : n 
→ fn(n) + 1 would be computable
and hence recursive by Church’s thesis. Thus, f = fm for some m, so that
fm(m) = f(m) = fm(m) + 1, a contradiction. While this seemingly speaks
against the thesis, it can in fact be eliminated from the argument using some
basic recursion theory. (C) clarifies the distinction between p.r. and recursive
functions to some extent. The former can be computed with an effort that can
in principle be estimated in advance, whereas the existence condition in the
unbounded μ-operation may be nonconstructive, so that even crude estimates
of the effort required for computation are impossible. It is not very hard to
construct a computable unary function that each p.r. unary function eventually
overtakes. Nonetheless, also a p.r. function may grow extremely fast. For in-
stance, it is physically impossible to compute the digits of f6 for the p.r. function

f : n 
→ 2
2

·
·
·

2

︸︷︷︸

n

. While f5 has “only” 19 729 digits, the number of digits of f6 is

already astronomical.

The following considerations are required in 6.2. They concern the

encoding of finite sequences of numbers of arbitrary length. There are ba-

sically several possibilities for doing this. One of these is to use the pairing

function ℘ (or a similar one, cf. [Shoe]) repeatedly. Here we choose the

particularly intuitive encoding from [Gö2], based on the prime enumera-

tion n 
→ pn and the unique prime factorization.

Definition. 〈a0, . . . , an〉 := pa0+1
0 · · · pan+1

n (=
∏

i�n pai+1
i ) is called the

Gödel number of (a0, . . . , an). The empty sequence has the Gödel number

1, also denoted by 〈〉. Let GN denote the set of all Gödel numbers.

Clearly, 〈a0, . . . , an〉 = 〈b0, . . . , bm〉 implies m = n and ai = bi for

i = 1, . . . , n. Also, (a0, . . . , an) 
→ 〈a0, . . . , an〉 is certainly p.r. and by

(A), (B) above, so is GN, since

a ∈ GN ⇔ a �= 0 & (∀p�a)(∀q�p)[prim p, q & p a ⇒ q a].

We now create a small provision of p.r. functions useful for the encoding

of syntax in 6.2. Using (C) we define a p.r. function a 
→ ℓa as follows:

ℓa = μk�a[pk� a].

We call ℓa for a Gödel number a the “length” of a, since clearly ℓ1 = 0,

and for a = 〈a0, . . . , an〉 =
∏

i�n pai+1
i is ℓa = n + 1, because k = n + 1

is the smallest index such that pk� a. Note that always ℓa � a and for
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a �= 0 even ℓa < a, because pa−1� a in view of pa−1 > a. Also the binary

operation (a, i) 
→ (((a)))i is p.r., where the term (((a)))i is defined by

(((a)))i = μk�a[pk+2
i � a pd].

This is the “component-recognition function.” pk+1
i a and pk+2

i � a imply

k = (((a)))i, hence (((〈a0, . . . , an〉)))i = ai for all i � n. This function, printed

bold in order to catch the eye, always begins counting the components

of a Gödel number with i = 0. Therefore, (((a)))last := (((a)))ℓa ·−1 is the last

component of a Gödel number a �= 1, while (((1)))last = 0. Which values (((a)))i

and ℓ have for arguments outside GN is irrelevant.

From the above definitions it follows that a =
∏

i<ℓa p
(((a)))i+1
i for Gödel

numbers a including a = 1 (because the empty product equals 1). Next

we define the arithmetical concatenation ∗ ∈ F2 by

a ∗ b = a ·

∏

i<ℓb p
(((b)))i+1
ℓa+i for a, b ∈ GN and a ∗ b = 0 otherwise.

Obviously, 〈a1, . . . , an〉∗〈b1, . . . , bm〉 = 〈a1, . . . , an, b1, . . . , bm〉, so that GN

is closed under ∗ . Moreover, a, b ∈ GN ⇒ a, b � a ∗ b, as immediately

follows from the definition. Note also that a ∗ b ∈ GN ⇒ a, b ∈ GN, for all

a, b. Clearly, ∗ is p.r., for its definition is based on p.r. case distinction.

The arithmetical function ∗ is useful for, among other things, a powerful

generalization of Op, the course-of-values recursion explained now. To

every f ∈ Fn+1 corresponds a function f̄ ∈ Fn+1 given by

f̄(�a, 0) = 〈〉
(
= 1

)
; f̄(�a, b) = 〈f(�a, 0), . . . , , f(�a, b − 1)〉 for b > 0.

f̄ encodes the course of values of f in the last argument. Let F ∈ Fn+2.

Then just as for Op there is one and only one f ∈ Fn+1 that satisfies

Oq : f(�a, b) = F (�a, b, f̄(�a, b)).

Namely, f(�a, 0) = F (�a, 0, 〈〉) = F (�a, 0, 1), f(�a, 1) = F (�a, 1, 〈f(�a, 0)〉),

f(�a, 2) = F (�a, 2, 〈f(�a, 0), f(�a, 1)〉), etc. In Oq, f(�a, b) in general depends

for b > 0 on all values f(�a, 0), . . . , f(�a, b − 1), not just on f(�a, b − 1) as in

Op. Hence Oq is called the schema of course-of-values recursion . A simple

example is the Fibonacci sequence (fn)n∈N, defined by f0 = 0, f1 = 1,

and fn = f(n − 1) + f(n − 2) for n � 2. The F in “normal form” Oq is

given here by F (b, c) = b for b � 1 and F (b, c) = (((c)))b−1+(((c)))b−2 otherwise.

Indeed, f0 = 0 = F (0, f̄0), f1 = 1 = F (1, f̄1), and for n � 2, we have

fn = f(n − 1) + f(n − 2) = (((f̄n)))n−1 + (((f̄n)))n−2 = F (n, f̄n).
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Op is a special case of Oq. If f = Op(g, h) and F is defined by the

equations F (�a, 0, c) = g(�a) and F (�a, Sb, c) = h(�a, b, (((c)))b), then f satisfies

Oq with this F , as may straightforwardly be checked while observing that

f(�a, b) equals (((f̄(�a, Sb))))b .

Theorem 1.1. Let f satisfy Oq. If F is p.r. then so too is f .

Proof. Since 〈c0, . . . , cb〉 = 〈c0, . . . , cb−1〉 ∗ 〈cb〉 for b > 0, our f̄ satisfies

f̄(�a, 0) = 1; f̄(�a, Sb) = f̄(�a, b) ∗ 〈f(�a, b)〉 = f̄(�a, b) ∗ 〈F (�a, b, f̄(�a, b))〉.

The second equation can be written f̄(�a, Sb) = h(�a, b, f̄(�a, b)), where h is

defined by h(�a, b, c) = c ∗ 〈F (�a, b, c)〉. With F also the function h is p.r.

Hence, by Op, f̄ is p.r. But then so is f , because in view of Oq, f is a

composition of p.r. functions.

We now make precise the intuitive notion of recursive (or effective)

enumerability. M ⊆ N is called r.e. (recursively enumerable) if there is

some recursive R ⊆ N2 such that M = {b ∈ N | (∃a∈N)Rab}. In short,

M is the range of some recursive relation. Since a ∈ M ⇔ (∃b∈N)R′ab,

where R′ab ⇔ Rba, M is at the same time the domain of some recursive

relation. More generally, P ⊆ Nn is called r.e. if P�a ⇔ (∃x∈N)Q(x,�a) for

some (n + 1)-ary recursive predicate Q. Note that a recursive predicate

P is r.e. Indeed, P�a ⇔ (∃b∈N)P ′(b,�a); here P ′(b,�a) :⇔ P�a (adjoining a

fictional variable). It is not quite easy to present an ad hoc example of an

r.e. predicate that is not recursive. But such examples arise naturally in

6.5, where we prove the undecidability of several axiomatic theories.

It is readily shown that M �= ∅ is r.e. if and only if M = ran f for some

recursive f ∈ F1; Exercise 5. This characterization corresponds perfectly

to our intuition: stepwise computation of f0, f1, . . . provides an effective

enumeration of M in the intuitive sense. This enumeration can be carried

out by a computer that puts out f0, f1, . . . successively and does not stop

its execution by itself.

The empty set is r.e. because it is the domain of the empty binary

relation, which is recursive, and even p.r., since its characteristic function

is the constant function K2
0. In view of the above characterization of r.e.

sets M �= ∅, one could have defined these from the outset as the ranges

of unary recursive functions. But the first definition has the advantage of

immediately expanding to the n-dimensional case.
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It is easily seen that a function f ∈ Fn is recursive provided graph f

is, simply because f�a = μb[graph f(�a, b)] (or in strict terms of property

Oµ, f�a = μb[δχgraph f (�a, b) = 0]), that is, f can immediately be isolated

from graph f with the μ-operator. Conversely, if f is recursive then so is

graph f , because χgraph f (�a, b) = χ=(f�a, b). This equation also shows that

graph f is p.r. whenever f is p.r. The converse need not be true. There

are functions f whose graph is p.r. although f itself is not. A famous

example is the (modified) Ackermann function ◦ ∈ F2, defined by

0 ◦ b = Sb ; Sa ◦ 0 = a ◦ 1 ; Sa ◦ Sb = a ◦ (Sa ◦ b)

(see e.g. [Fel1, pp. 76–84]). Thus, not every recursion is primitive recursive.

Exercises

1. Let a � fa for all a. Prove that if f is p.r. (resp. recursive) then so

is ran f . The same holds for f ∈ Fn if a1, . . . , an � f�a for �a ∈ Nn.

2. Prove in detail that the pairing function ℘ : N2 → N is bijective and

that its diagram in the figure on page 222 is correct.

3. Since ℘ : N2 → N is bijective, there are functions κ1, κ2 ∈ F1 with

℘(κ1n, κ2n) = n, for all n. Prove that κ1, κ2 are p.r. (One need

not exhibit explicit terms for κ1, κ2, although this is not difficult.)

4. Let lcm{fν| ν�n} be the least common multiple of f0, . . . , fn with

f∈F1. Show that n 
→ lcm{fν| ν�n} is p.r. provided f is.

5. Let M ⊆ N be nonempty. Show that M is r.e. iff M = ran f for

some recursive f ∈ F1.

6.2 Arithmetization

Roughly put, arithmetization (or Gödelization) is the description of the

syntax of a formal language L and of formal proofs from an axiom system

by means of arithmetical operations and relations on natural numbers. It

presupposes the encoding of strings from the alphabet of L by natural
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numbers. Syntactic functions and predicates correspond in this way to

welldefined functions and predicates on N.

Thus many goals at once become attainable. First of all, the intuitive

idea of a computable word function can be made more precise using the

notion of recursive functions. Second, syntactic predicates such as, for

instance ‘x ∈ varα’, can be replaced by corresponding predicates of N.

Third, using encoding, statements about syntactic functions, predicates,

and formal proofs can be formulated in theories T ⊆ L able to speak

about arithmetic, and perhaps be proved in T .

We demonstrate the arithmetization of syntax using as an example the

language L = Lar , whose extralogical symbols are 0, S,+, · . This is the

language of Peano arithmetic PA. However, the same procedure can be

carried out analogously for other formal languages, as will be apparent in

the course of our considerations.

The first step is to assign uniquely to every basic symbol s of L a number

♯s, its symbol code. The following table provides an example for L = Lar :

s ==== ¬ ∧ ∀ ( ) 0 S + · v0 v1

♯s 1 3 5 7 9 11 13 15 17 19 21 23
· · ·

Next we encode the string ξ = s0 · · · sn by its Gödel number, which is the

number 〈♯s0, . . . , ♯sn〉 = p1+♯s0
0 · . . . · p1+♯sn

n . The empty string gets Gödel

number 1. This is Gödel’s original encoding, but there are several other

possibilities to encode syntax by natural numbers.

Example. The term 0 and the prime formula 0==== 0 have the still compar-

atively small Gödel numbers 21+♯0 = 214 and 214
· 32

· 514, respectively.

The term 1 has Gödel number 216
· 314. This encoding is not particularly

economical, but that need not concern us here. Nor is it a problem that

the symbol code of ==== is just the Gödel number of the empty string. For

note that ==== , considered as an atomic string or a string of length 1, has

Gödel number 21+1 = 4.

Let ξ̇ be the Gödel number of ξ ∈ SL, and ṫ and α̇ therefore those

of the term t and the formula α, respectively. If we write ξη for the

concatenation of ξ, η ∈ SL, then obviously (ξη)· = ξ̇ ∗ η̇, where ∗ is the

arithmetical concatenation from 6.1. ṠL = {ξ̇ | ξ ∈ SL} is a p.r. subset

of the set of all Gödel numbers. Indeed, since L-symbols are encoded by

odd numbers, n ∈ ṠL ⇔ n ∈ GN & (∀k<ℓn) 2� (((n)))k.
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When arithmetizing the syntax one has to carefully distinguish a sym-

bol s from its corresponding atomic string, although these are normally

denoted identically (see also the Notation). ♯ s is the symbol code of the

symbol s, while ṡ = 21+♯ s is the Gödel number of the atomic string s. For

example, the symbol 0 has the symbol code 13, while the prime term 0

has Gödel number 0̇ = 21+♯0 = 214. We must also distinguish between the

symbol vi and the prime term vi. Thus, the set of prime terms v1, v2, . . . ,

denoted by V, cannot simply be identified with Var.

Remark 1. Nonetheless, one could, right from the beginning, identify symbols
with their codes and strings with their Gödel numbers, so that ϕ̇ = ϕ and ṫ = t
for formulas ϕ and terms t. Then syntactic predicates are arithmetical from the
outset. This would even alleviate some of the following considerations in tech-
nical respect. However, we postpone this until we have convinced ourselves that
syntax can indeed adequately be encoded in arithmetic. Further, the alphabet
of Lar could easily be replaced by a finite one, consisting, say, of the symbols
==== ,¬, . . . , ·,v, in that v0 is replaced by the string v0, v1 by vS0, etc. Other
encodings found in the literature arise from the identification of the letters in
such alphabets with the digits of a suitable number base.

In the following, let Ẇ = {ξ̇ | ξ ∈ W} for sets W ⊆ SL of words. A

corresponding notation will be used for many-place word predicates P . We

call P p.r. or recursive whenever Ṗ is p.r. or recursive, respectively. So, for

example, if we talk about a recursive axiom system X ⊆ L, it is always

understood that Ẋ is recursive. Other properties, such as recursively

enumerable or representable, can be transferred to word predicates by

means of the above or a similar arithmetization.

All these remarks refer not just to L = Lar , but to an arbitrary arith-

metizable (or Gödelizable) language L, by which we simply mean that L

possesses finitely or countably many specified basic symbols, so that each

string can be assigned a number code in a computable way. In this way,

the concepts of an axiomatizable or decidable theory, already used in 3.3,

obtain a precise meaning. Of course, one must clearly distinguish between

the axioms and theorems of an axiomatic theory; the axiom systems of

familiar theories like PA and ZFC are readily seen to be p.r., while these

theories considered as sets of theorems are shown in 6.5 to be undecidable

and cannot even be extended in any way to decidable theories.

The main goal now is the arithmetization of the formal proof method.

We use ⊢ from now on to denote the Hilbert calculus of 3.6 consisting of
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the axiom system Λ with the axiom schemata Λ1–Λ10 given there and the

Modus Ponens MP as the only rule of inference. Here everything refers to

a fixed arithmetizable language L, which, as a rule, will be the arithmetical

language Lar . Just as for strings, for a finite sequence Φ = (ϕ0, . . . , ϕn)

of L-formulas we call Φ̇ := 〈ϕ̇0, . . . , ϕ̇n〉 its Gödel number. This includes

in particular the case that Φ is a proof from X (⊆ L) in the sense of

3.6, which in the general case also contains formulas from Λ. Note that

Φ̇ �= ξ̇ for all ξ ∈ SL, because 2 (((Φ̇)))0 (a proof is not empty), whereas

2� (((ξ̇)))0 because the symbol codes are odd. This is the case in our example

language Lar and may actually be presupposed throughout. Thus, we can

comfortably distinguish the Gödel numbers of formulas and terms from

the Gödel numbers of finite sequences of formulas.

Now let T (⊆ L0) be a theory axiomatized by some fixed axiom system

X ⊆ T . Examples are PA and ZFC.2 A proof Φ = (ϕ0, . . . , ϕn) from X is

also called a proof in T . Here and elsewhere the axiom system X is tacitly

understood to be an essential part of T , which is originally understood

as a set of sentences. First define the p.r. functions ¬̃, ∧̃ , →̃ as follows:

¬̃a := ¬̇ ∗ a, a ∧̃ b := (̇ ∗ a ∗ ∧̇ ∗ b ∗ )̇ and a →̃b := ¬̃(a ∧̃ ¬̃b) (argument

parentheses in the last expression should not be mixed up with parentheses

belonging to the alphabet of L). Clearly, both ṠL and L̇ are closed under

these operations.

Let proofT denote the unary arithmetical predicate that corresponds to

the syntactic predicate ‘Φ is a proof in T ’. We denote the arithmetical

predicates corresponding to ‘Φ is a proof in T for ϕ’ (the last component

of Φ) and to ‘there is a proof for ϕ in T ’ by bewT and bwbT , respectively

(coming from beweis= proof and beweisbar = provable). Precise defini-

tions of these predicates look as follows:

(1) proofT (b) :⇔ b ∈ GN & b �= 1

& (∀k<ℓb)[(((b)))k ∈ Ẋ ∪ Λ̇ ∨∨∨ (∃ i, j < k)(((b)))i = (((b)))j →̃(((b)))k],

(2) bewT (b, a) :⇔ proofT (b) & a = (((b)))last ,

(3) bwbT a :⇔ ∃b bewT (b, a).

Since bwbT is a unary predicate that will be met several times in the

sequel, we dropped the argument parentheses in writing bwbT a. Easily

2 The language L∈ of ZFC is obviously simpler than Lar . It contains no composed terms

and hence only the simplest possible equations, which of course simplifies encoding.
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obtained from (1), (2), and (3) are

(4) ⊢T α ⇔ bwbT α̇ (⇔ ∃b bewT (b, α̇)),

(5) bewT (c, a) & bewT (d, a →̃b) ⇒ bewT (c ∗ d ∗ 〈b〉, b), for all a, b, c, d,

(6) bwbT a & bwbT (a →̃ b) ⇒ bwbT b, for all a, b,

(7) bwbT α̇ & bwbT (α →β)· ⇒ bwbT β̇, for all α, β ∈ L.

The equivalence (4) is clear, for if ⊢T α then there is a proof Φ for α,

hence ∃n bewT (n, α̇) with n = Φ̇, and conversely. (5) tells us in arith-

metical terms the familiar story that concatenating proofs for α, α →β

and tacking on β yields a proof for β. (5) immediately yields (6) by

particularization, and (6) implies (7) since (α →β)· = α̇ →̃ β̇.

Remark 2. We will not need (5)–(7) until 7.1. But it is very instructive for
our later transfer of proofs to PA to verify (5) first naively. This is simple when
we refer to the following facts: ℓ(a ∗ b) = ℓa + ℓb, (∀i<ℓa)(((a ∗ b)))i = (((a)))i and
(∀i<ℓb)(((a ∗ b)))ℓa+i = (((b)))i, for all a, b ∈ GN. Note also that (((〈c〉)))0 = c for all c.
Since it would impede the proof of (5), (∀k<b)(((b)))k ∈ L̇ was not added to the
right-hand side of (1). This is in fact dispensable, for induction on the length
ℓb of the Gödel number b readily shows that proofT (b) implies (∀k<ℓb)(((b)))k ∈ L̇.
Here we need a, a →̃ b ∈ L̇ ⇒ b ∈ L̇, for all a, b ∈ N (Exercise 3 in 2.3).

Now we really get down to work and show that the syntactic basic

notions up to the predicate bewT are p.r. In 6.5 only their recursiveness

is important; not until Chapter 7 do we make essential use of their p.r.

character, which ensures that all involved functions are definable in PA.

We shall return to our example L = Lar only at the end of 6.3, because

the proofs of the following lemmas are not entirely independent of the

language’s syntax and the selected encoding, though they can be proved

for other arithmetizable languages in nearly the same way.

In addition to the already-defined functions ¬̃, ∧̃ , and →̃ , we define

a =̃=== b := a∗ =̇=== ∗b (= a∗22 ∗b) and ∀̃(i, a) := ∀̇∗ i∗a. ∃̃ is defined similarly.

Finally, for the operations S,+, · define S̃a := Ṡ ∗ a, a+̃b := (̇ ∗ a ∗ +̇ ∗ b ∗ )̇,

and similarly for ·. Then, for example, (s==== t)· = ṡ =̃=== ṫ and (St)· = S̃ṫ for

terms s, t, as well as (∀xα)· = ∀̃ẋα̇ (= ∀̃(ẋ, α̇)). All these functions are

obviously primitive recursive.

For arbitrary strings ξ, η let ξ � η mean ξ̇ � η̇ (correspondingly for <).

For example, ξ � η holds if ξ is a substring of η, in particular if ξ is a

subformula of the formula η. This follows immediately from the property

a, b � a ∗ b for Gödel numbers a, b, mentioned already on page 224.
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Lemma 2.1. The set T of all terms is primitive recursive.

Proof. The set V of terms vi is p.r. since n ∈ V̇ ⇔ (∃k�n)n = 222+2k.

Thus Tprim := V ∪ {0}, the set of all prime terms, is p.r. as well. By the

recursive definition of T , t ∈ T if and only if

t ∈ Tprim∨∨∨ (∃ t1, t2 < t)[t1, t2 ∈ T & (t = St1∨∨∨ t = (t1 + t2)∨∨∨ t = (t1 · t2))].

Therefore the corresponding arithmetical equivalence holds as well:

(∗) n ∈ Ṫ ⇔ n ∈ Ṫprim ∨∨∨ (∃ i, k < n)[i, k ∈ Ṫ & Q(n, i, k)],

where Q(n, i, k) ⇔ (n = S̃i ∨∨∨ n = i+̃k ∨∨∨ n = ĩ·k). We now show how

to convert this “informal definition” of Ṫ , which on the right-hand side

makes use of elements of Ṫ smaller than n only, into a course-of-values

recursion for the characteristic function χ
Ṫ

, whence χ
Ṫ

, and so T would

turn out to be p.r. Consider the p.r. predicate P defined by

P (a, n) ⇔ n ∈ Ṫprim ∨∨∨ (∃ i, k < n)[(((a)))i = (((a)))k = 1 & Q(n, i, k)].

We claim that f := χ
Ṫ

satisfies Oq : fn = χ
P (f̄n, n), where f̄n equals

〈f(0), . . . , f(n − 1)〉, and hence f is p.r. by Theorem 1.1. Indeed, since

fi = fk = 1 ⇔ i, k ∈ Ṫ , we obtain in view of (∗)

n ∈ Ṫ ⇔ n ∈ Ṫprim ∨∨∨ (∃ i, k < n)[fi = fk = 1 & Q(n, i, k)]

⇔ P (f̄n, n)
(
because (((f̄n)))i = fi and (((f̄n)))k = fk

)
.

From this it clearly follows that fn = 1 ⇔ χ
P (f̄n, n) = 1, which in turn

implies Oq, since both f and χ
P take values from {0, 1} only.

Lemma 2.2. The set L (= Lar ) of all formulas is primitive recursive.

Proof. Lprim is p.r. simply because

n ∈ L̇prim ⇔ (∃ i, k < n)[i, k ∈ Ṫ & n = i =̃=== k].

If we consider ẋ < ξ̇ for every ξ ∈ SL with x ∈ var ξ (because then ξ = ηxθ

for some strings η, θ ∈ SL), then the predicate ‘ϕ ∈ L’ clearly satisfies

ϕ ∈ Lprim ∨∨∨ (∃α, β, x < ϕ)[α, β ∈ L & x ∈ V

& (ϕ = ¬α ∨∨∨ ϕ = (α∧β)∨∨∨ ϕ = ∀xα)].

This “informal definition” can then be transformed just as in Lemma 2.1

into a course-of-values recursion of the characteristic function of L̇ using

the characteristic function of the certainly p.r. predicate P given by
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P (a, n) ⇔ n ∈ L̇prim ∨∨∨ (∃ i, k, j < n)[(((a)))i = (((a)))k = 1 & j ∈ V̇

& (n = ¬̃i∨∨∨ n = i ∧̃ k ∨∨∨ n = ∀̃jk)].

We now define a ternary p.r. function (m, i, k) 
→ [m]ki such that

(∗) [ξ̇]ṫẋ = (ξ t
x)· for all ξ ∈ L ∪ T , x ∈ V, and t ∈ T .

[m]ki will be constructed essentially by course-of-value recursion on m in

two steps, first for m ∈ Ṫ and then for m ∈ L̇. Step 1: Put [m]ki = 0,

if m /∈ Ṫ or i /∈ V̇ or k /∈ Ṫ . Otherwise let first m ∈ Ṫprim. In case

m = i set [m]ki = k (remember that x t
x = t), and if m �= i set [m]ki = m.

Now let m ∈ Ṫ \ Ṫprim. According to the case distinction in Exercise 2, let

first (∃m0<m)(m = S̃m0 & m0 ∈ Ṫ ). Put [m]ki = S̃[m0]
k
i (m0 is unique).

If (∃m1, m2<m)(m = m1+̃m2 & m1, m2 ∈ Ṫ ), set [m]ki = [m1]
k
i +̃[m2]

k
i ,

and similarly for ·̃. Thus, [m]ki is now well defined and p.r., but (∗) holds

currently only for ξ ∈ T , since [m]ki = 0 for m ∈ L̇. Step 2: We modify

the step 1 definition of [m]ki for the case m ∈ L̇, i ∈ V̇, and k ∈ Ṫ in

a p.r. way. For m = (t1 ==== t2)
· put [m]ki = [ṫ1]

k
i =̃=== [ṫ2]

k
i (t1, t2 ∈ T , prime

formula case). Otherwise, m = ¬̃m0 or m = m0 ∧̃m1 or m = ∀̃(m2, m0)

for suitable m0, m1 < a from L̇ and m2 ∈ V̇ according to Exercise 3. We

then explain [m]ki for all m ∈ L̇ by course-of-value recursion similarly to

what we did in Step 1 and according to the definition of a substitution on

formulas. This results in a p.r. function that satisfies (∗).

As was already noticed, the predicate ‘x occurs in ξ’, or ‘x ∈ var ξ’

for short, is p.r., since x ∈ var ξ ⇔ x ∈ V & (∃ η, ϑ � ξ)(ξ = ηxϑ).

Replacing here ηxϑ by η∀xϑ makes it clear that ‘x ∈ bnd α’ is p.r. as well.

The binary predicate ‘x ∈ free α’ is also p.r. because x ∈ free α if and only

if x ∈ V & α 0
x �= α (⇔ x ∈ V & [α̇]0̇ẋ �= α̇). Consequently L0 is p.r. With

these preparations we now prove

Lemma 2.3. The set Λ of logical axioms is primitive recursive.

Proof. Λ1 is p.r. because ϕ ∈ Λ1 if and only if

(∃α, β, γ < ϕ)[α, β, γ ∈ L & ϕ = (α →β →γ) → (α →β) → (α →γ)].

To characterize the corresponding arithmetical predicate we use the p.r.

function →̃ . One reasons similarly for Λ2–Λ4. For a p.r. characterization

of Λ5 use the fact that the ternary predicate ‘α, t
x collision-free’ is p.r.
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For ‘α, t
x collision-free’ holds iff (∀y<α)(y ∈ bnd α & y ∈ var t ⇒ y = x).

Further, the predicate ‘ϕ = ∀xα →α t
x ’, which depends on ϕ, α, x, t, is

p.r., as can be seen by applying (m, i, k) 
→ [m]ki . Hence, Λ5 is p.r. as

well, because ϕ ∈ Λ5 if and only if

(∃α, x, t < ϕ)(α ∈ L & x ∈ V & t ∈ T

& ϕ = ∀xα →α t
x & α, t

x collision-free).

Similarly it is shown that Λ6–Λ10 are p.r. Thus, each of the schemata Λi

is p.r. and therefore so is Λ0 := Λ1 ∪ · · · ∪ Λ10. But then the same holds

for Λ itself, because k 
→ ♯vk is surely p.r. and every α ∈ Λ can be written

α = ∀�xα0 with some (possibly empty) prefix ∀�x and for some α0 ∈ Λ0,

and then it must hold that

n ∈ Λ̇ ⇔ n ∈ L̇ & (∃m, k < n)(n = m ∗ k & 2 ℓm & k ∈ Λ̇0

& (∀i<ℓm)[2 i & (((m)))i = ♯∀ ∨∨∨ 2� i & (∃k�n)(((m)))i = ♯vk].

The second line of this formula tells us that m is the Gödel number of a

prefix ∀x1 · · · ∀xl. This is a string of length m = 2l.

All of the above holds completely analogously for every arithmetizable

language. Hence, given a p.r. or recursive axiom system X, X ∪ Λ is p.r.

(resp. recursive) as well. This applies in particular to the axiom systems

of PA and ZFC. These are p.r. like every other common axiom system,

despite the difference in their strengths. The proof is carried out in a

manner fairly similar to that of Lemma 2.3.

The main result of this section, which now follows, is completely in-

dependent of the strength of an axiomatic theory T . The strength of a

theory T first comes into the picture when we want to prove something

about bewT and bwbT within T itself.

Theorem 2.4. Let X be a p.r. axiom system for a theory T of an arith-

metizable language. Then the predicate bewT is p.r. The same holds if we

substitute here “recursive” for “primitive recursive.” T is in either case

recursively enumerable.

Proof. Definition (2) on page 229 shows that bewT is p.r. Because of (3)

on the same page, Ṫ = {a ∈ L̇0 | bwbT a} is the range of a (primitive)

recursive relation and thus is r.e. Clearly, the last part of the theorem is

proved in the same manner.
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Theorem 2.4 can be strengthened only under particular circumstances,

for example if T is complete. Although bewT is a (primitive) recursive

predicate for each axiomatic arithmetizable theory T , bwbT need not be

recursive, as, for example, in the case T = Q. This is a famous finitely

axiomatizable theory presented in the next section, whose particular role

for applied recursion theory was revealed in [TMR].

Exercises

1. Prove that if a theory T has a recursively enumerable axiom system

X, then T also possesses a recursive axiom system (W. Craig).

2. Let a ∈ Ṫ \ Ṫprim. Show that there are b, c ∈ Ṫ with a = S̃b or

a = b+̃c or a = b ·̃ c. Moreover, b, c are unique and < a in each case.

3. Let a ∈ L̇\ L̇prim. Show that there are b, c ∈ L̇, d ∈ V̇ with a = ¬̃b

or a = b ∧̃ c or a = ∀̃(d, b, c). b, c, d are unique and < a in each case.

4. Let T be axiomatizable and α ∈ L0
ar

. (a) Define a binary p.r. f such

that bewT+α(Φ̇, ϕ̇) ⇒ bewT (f(Φ̇, α̇), (α →ϕ)·) (the arithmetized de-

duction theorem). (b) Show that bwbT+α ϕ̇ ⇔ bwbT (α →ϕ)·.

6.3 Representability of Arithmetical Predicates

First of all we consider the finitely axiomatized theory Q with the axioms

Q1: ∀x Sx �====0, Q2: ∀xy(Sx==== Sy →x==== y), Q3: (∀x �====0)∃y x==== Sy,

Q4: ∀x x + 0==== x, Q5: ∀xy x + Sy ==== S(x + y),

Q6: ∀x x · 0==== 0, Q7: ∀xy x · Sy ==== x · y + x.

The axioms characterize Q, also called Robinson’s arithmetic, as a modest

subtheory of PA. Both theories are formalized in Lar and are subtheories

of ThN , where N as always denotes the standard model (N, 0, S,+, ·). In

Q, PA and related theories in Lar , �, and < are defined by the formulas

x � y ↔ ∃z z + x==== y and x < y ↔ x � y ∧x �==== y according to our

convention on page 105. The term Sn0 is denoted by n.

From the results of this and the next section, not only will the recursive

undecidability of Q be derived, but also that of every subtheory and every

consistent extension of Q; see 6.5. If we were interested only in undecid-

ability results, we could simplify the proof of Theorem 4.2 by noting that
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all recursive functions can already be obtained with Oc and Oµ from the

somewhat larger set of initial functions 0, S, In
ν , +, ·, ·−. But even ignoring

the considerable effort required to prove the eliminability of the schema

Op at the price of additional initial functions, such an approach would

blur the distinction between primitive recursive and μ-recursive functions,

relevant for some details in Chapter 7.

∀x x �==== Sx is easily provable in PA by induction, but Q is too weak to

allow a proof of this sentence. Its unprovability follows from the fact that

(N ∪ {∞}, 0, S,+, ·) satisfies all axioms of Q, but not ∀x x �====Sx. Here ∞

is a new object and the operations S,+, · are extended to N ∪ {∞} by

putting S∞ = ∞, ∞ · 0 = 0, and for all n and all m �= 0,

∞ + n = n + ∞ = ∞ + ∞ = n · ∞ = ∞ · m = ∞.

This model shows the unprovability in Q of many familiar laws of arith-

metic, which tell us that N is the nonnegative part of a discretely ordered

commutative ring with unit element 1 := S0. These laws are collected in

the following axiom system of a finitely axiomatizable theory N ⊆ Lar ,

with the order defined as in Q above:

N0: x + 0==== x N1: x + y ==== y + x

N2: (x + y) + z ==== x + (y + z) N3: x·1==== x

N4: x·y ==== y·x N5: (x·y)·z ==== x·(y·z)

N6: x·(y + z)==== x·y + x·z N7: Sx==== x + 1

N8: x + z ==== y + z →x==== y N9: x � y ∨ y � x

N10: x � 0 →x==== 0 N11: x < y ↔ Sx � y

∀-quantifiers in the axioms are omitted. N is also denoted by PA− in

the literature, and like Q, a subtheory of PA. All Q-axioms are derivable

in N (a recommendable exercise), so that Q ⊆ N ⊆ PA. Reflexivity,

transitivity, and antisymmetry of � are provable in N, as are the strong

and weak monotonicity laws for + and ·.

In this section we mostly write ⊢α for ⊢Q α and α ⊢ β for α ⊢Q β etc.

We also write occasionally α ⊢ β ⊢ γ for α ⊢ β & β ⊢ γ, and apply further

self-explanatory abbreviations such as ⊢ t1 ==== t2 ==== t3 for ⊢ t1 ==== t2 ∧ t2 ==== t3,

and ⊢ α ≡ β for ‘⊢Q α and α is equivalent to β ’. The use of ⊢ in the subtle

derivations carried out below helps one see what is going on and makes

the metainduction used there more vivid. Some of the proofs can be seen
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as “transplanting inductions from PA into the metatheory.” For instance,

∀x x �====Sx is provable in PA, but not in Q, as was just shown. Nonetheless,

we still can prove ⊢ n �==== Sn for all n, as is seen by metainduction on n.

Indeed, ⊢ 0 �====S0 is clear by Q1. The induction step ⊢ n �====Sn ⇒ ⊢ Sn �====SSn

derives from n �====Sn ⊢ Sn �====SSn. This in turn easily follows with MP from

Sn==== SSn ⊢ n==== Sn, an application of Q2. We now prove

C0: ⊢ Sx + n==== x + Sn,

C1: ⊢ m + n==== m + n, m · n==== m · n, C2: ⊢ n �====m for n �= m,

C3: ⊢ m � n for m � n, C4: ⊢ m � n for m � n,

C5: x � n ⊢ x==== 0 ∨ · · · ∨ x==== n, C6: ⊢ x � n ∨ n � x.

From C5 follows x < n ⊢ x==== 0 ∨ · · · ∨ x==== n − 1 (=
∨

i<n x==== i), which

is ⊥ for n = 0. The proofs of C0–C6 will be carried out by induction

(more precisely, metainduction) on n.

C0: Clear for n = 0, because ⊢ Sx + 0==== Sx==== S(x + 0)==== x + S0 by Q4

and Q5. Our induction hypothesis is ⊢ Sx + n==== x + Sn. It yields, again

by Q5, the induction claim ⊢ Sx + Sn==== S(Sx + n)==== S(x + Sn)==== x + SSn.

C1: Clear for n = 0, because ⊢ m+0==== m==== m + 0 by Q4. The induction

hypothesis ⊢ m + n==== m + n yields ⊢ m + Sn==== S(m + n)==== Sm + n, by

Q5, and the last term is the same as m + Sn. This proves the induction

step. Analogously we derive ⊢ m · n==== m · n with Q6, Q7, and what was

shown already.

C2: Clear for n = 0, since then m = Sk for some k, and so ⊢ 0 �====m by

Q1. Let Sn �= m. By Q1, ⊢ Sn �====m in case m = 0. Otherwise, m = Sk for

some k, so that n �= k; hence ⊢ n �====k by the induction hypothesis. Thus,

⊢ Sn �====Sk==== m by Q2.

C3: m � n implies k + m = n for some k, hence k + m = n. Thus,

⊢k + m==== n by C1. Therefore ⊢ ∃z z + m==== n, i.e., ⊢ m � n.

C4: m � n ⇒ m �= 0, hence m = Sk for some k. Let m � 0. Then

⊢ m � 0 because m � 0 ⊢ Sk � 0 ⊢ ∃v S(v+k)==== 0 ⊢ ⊥ by Q5, Q1. Let

m � Sn. Then k � n, and so ⊢ k � n by the induction hypothesis. Hence

⊢ m � Sn, for x � y ≡Q Sx � Sy (the latter needs only Q5 and Q2).

C5: Clear for n = 0, because x �==== 0, x � 0 ⊢ ∃vSv ==== 0 ⊢ ⊥ by Q3, Q5,

Q1. The induction claim is equivalent to x �====0, x � Sn ⊢
∨n+1

i=1 x==== i. It is

derived as follows:
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x �====0, x � Sn ⊢ ∃y(x==== Sy ∧y � n) (Q3, Q5, and Q2)

⊢ ∃y(x==== Sy ∧
∨

i�n y ==== i) (induction hypothesis)

⊢ ∃y(x==== Sy ∧
∨n+1

i=1 Sy ==== i) ⊢
∨n+1

i=1 x==== i.

C6: Clear for n = 0. Further, n < x ⊢ ∃ySy + n==== x ⊢ ∃yy + Sn==== x, by

Q3, C0, and ⊢ 0 + n==== n by C1. Thus, n < x ⊢ Sn � x. Now, C5 and C3

easily lead to x � n ⊢ x � Sn. This and the former yield the inductive

step, because x � n ∨ n � x ⊢ x � n ∨ n < x ⊢ x � Sn ∨ Sn � x.

With these preparations we now give the following crucial definition, in

which T ⊇ Q is supposed. This will cover all our applications.

Definition. Call a predicate P ⊆ Nn numeralwise representable or simply

representable in T (⊇ Q)3 if there is some α = α(�x), called a representing

formula, such that

R+: P�a ⇒ ⊢T α(�a) ; R−: ¬P�a ⇒ ⊢T ¬α(�a).

Examples. The identity relation {(a, a) | a ∈ N} is represented by x==== y,

because ⊢Q a==== b is trivial if a = b, and ⊢Q a �====b is derivable for a �= b by

C2. By C3 and C4 the formula x � y represents the �-predicate. x �====x

represents the empty set, represented as well by any α with ¬α ∈ Q.

For consistent T ⊇ Q, whenever R+, R− are valid then so too are their

converses, so that in fact P�a ⇔ ⊢T α(�a) and ¬P�a ⇔ ⊢T ¬α(�a). Note

also that a representable P ⊆ Nn is recursive by Church’s thesis. For let

P be represented by α(�x). Simply turn on the enumeration machine for

Q and wait until α(�a) or ¬α(�a) appears. The set of n-ary representable

predicates is closed under union, intersection, and complement, as well as

swapping, equating, and adjoining fictional arguments. If P, Q are repre-

sented respectively by α(�x), β(�x), then so too are P ∩ Q by α(�x) ∧ β(�x)

and ¬P by ¬α(�x). Consequently, P ∪ Q by α(�x) ∨ β(�x), etc.

A predicate P represented in Q by α is clearly representable by the

same α in any consistent extension of Q, in particular in ThN . But

this just means definability of P in N by α in the sense of 2.3, because

N � α [�a] is equivalent to N � α(�a). In short, definability of P in N and

representability of P in ThN coincide. In the main, however, we consider

3 ‘in T ’ will often be omitted; we then always mean ‘in T = Q’. Representable pred-

icates are called entscheidungsdefinit in [Gö2] (translated as decidable in [Hei]), in

[HB] vertretbar, in [Kl1] numeralwise expressible, and in [TMR] definable.
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representability in Q to obtain some strong results needed in 6.5. We

always have to look carefully at the representing formulas.

One could define f ∈ Fn to be representable if graph f is representable.

However, it turns out that this definition is equivalent to a stronger no-

tion of representability for functions that will be introduced after some

additional preparation.

Predicates and functions definable in N , that is, by 0, S.+, ·, are called

arithmetical after [Gö2]. From now on this word will always have this

meaning. The arithmetical predicates encompass the representable ones.

In order to discover more about these objects we consider their defining

formulas more closely. Prime formulas in Lar are equations, also called

Diophantine equations for traditional reasons. If δ(�x, �y) is such an equa-

tion and P�a ⇔ N � ∃�yδ(�a, �y), then P is called Diophantine. A simple

example is �, because a � b ⇔ ∃y y + a = b.4 In fact, all predicates de-

finable in N by ∃-formulas ∃�yϕ from Lar with kernel ϕ are Diophantine.

The proof is not difficult: Think of ϕ as being constructed from literals by

means of ∧ , ∨ (cf. Exercise 4 in 2.4), and use the following easily provable

equivalences in an inductive proof on ϕ of what has been claimed:

s �====t ≡N ∃z(Sz + s==== t ∨ Sz + t==== s),

s1 ==== t1 ∨ s2 ==== t2 ≡N s1s2 + t1t2 ==== s1t2 + s2t1,

s1 ==== t1 ∧ s2 ==== t2 ≡N s 2
1 + t 2

1 + s 2
2 + t 2

2 ==== 2(s1t1 + s2t2).

A classification of arithmetical formulas and predicates helpful not only

for the sake of representability is given by the following definition, to be

generalized in 6.7:

Definition. A formula is called Δ0 or a Δ0-formula if it is generated

from prime formulas of Lar by ∧ ,¬, and bounded quantification, i.e., if

α is Δ0 then so is (∀x�t)α; here t is any Lar -term with x /∈ var t. (It

is not important that x�t is not a prime formula of Lar ). Let ϕ be Δ0

and �x arbitrary. Then ∃�xϕ is called a Σ1-formula, and ∀�xϕ a Π1-formula.

Further, P ⊆ Nn is said to be Δ0, Σ1, or Π1 whenever P is defined in

N by a Δ0-, Σ1-, or Π1-formula, respectively. Δ0, Σ1, and Π1 denote

the sets of Δ0-, Σ1-, and Π1-predicates. In addition, Δ1 := Σ1 ∩ Π1.

There are no Δ1-formulas, for there is no meaningful definition of such

4 The right side of this equivalence is an informal and more easily readable substitute

for the somewhat lengthy notation N � ∃y y + a==== b.
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formulas. ϕ is called Δ0, Σ1, or Π1 also if it is equivalent to an original

Δ0-, Σ1-, or Π1-formula, respectively. In this sense, if α is Δ0 then so too

are (∃x�t)α
(
≡ ¬(∀x�t)¬α

)
and (∀x<t)α

(
≡ (∀x�t)(x==== t ∨ α)

)
.

Clearly, Π1 consists of the complements of the P ∈ Σ1. The P ∈ Δ1 are

both Σ1- and Π1-definable, with possibly distinct formulas. By Exercise 3

in 2.4, Σ1 and Π1 are closed under union and intersection of predicates of

the same arity, and Δ1 like Δ0 moreover under complements. If P ∈ Nm

and g1, . . . , gm ∈ Fn are Σ1, so too is Q = P [g1, . . . , gm], simply because

Q�a ⇔ ∃�y(
∧n

i=1 yi=gi�a & P�y). Note also that if graph f is Σ1 then it is

automatically Δ1, for f�a �=b ⇔ ∃y(f�a=y & y �=b), so that the complement

of graph f is again Σ1. Here some examples of Δ0- and Σ1-formulas and

sentences. Interesting Π1-sentences are found at the end of 6.5.

Examples. Diophantine equations are the simplest Δ0-formulas. To these

belong the formulas y ==== t(�x) with y /∈ var t, which define the term func-

tions �a 
→ tN (�a). Since a b ⇔ (∃c�b)(a · c = b), divisibility and thus also

the predicate prim are Δ0. Because ℘(a, b) = c ⇔ 2c = (a + b)2 + 3a + b,

graph℘ is Δ0. The same holds for the relation of being coprime, denoted

by ⊥ and defined by a⊥b :⇔ (∀c � a + b)(c a, b ⇒ c = 1). Diophantine

predicates are trivially Σ1. Surprisingly, by Theorem 5.6 the converse

holds as well, although it had originally been conjectured that, for in-

stance, the set {a ∈ N | (∀p�a)(prim p & p a ⇒ p = 2)} of all powers of 2

was not Diophantine. This set is Δ0. Even the graph of n 
→ 2n is Δ0.

Remark 1. More generally, the predicate ‘ab = c’ is Δ0, though it is difficult to
prove this fact. Indeed, even the proof in 6.4 that this predicate is arithmetical
requires effort. Earlier results from Bennet, Paris, Pudlak, among others, are
generalized in [BA] as follows: if f ∈ Fn+1 (more precisely, graph f) is Δ0 then so
is g : (�a, n) 
→

∏

i�n f(�a, i), and the recursion equation g(�x, Sy)==== g(�x, y) · f(�x, y)
is provable in IΔ0. This theory is an important weakening of PA. It results from
Q by adjoining the induction schema restricted to Δ0-formulas. IΔ0 plays a role
in various questions, e.g., in complexity theory ([Kra] or [HP]). Induction on the
Δ0-formulas readily shows that all Δ0-predicates are p.r. The converse does not
hold; an example is the graph of the very rapidly growing hyperexponentiation,
recursively defined by hex(a, 0) = 1 and hex(a, Sb) = ahex(a,b). Stated more

suggestively, hex(a, n) = aa·
·
·

a

︸ ︷︷ ︸

n

.

According to Theorem 3.1 below, already the weak theory Q is Σ1-

complete, i.e., each Σ1-sentence true in N is provable in Q. This can be
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confirmed in various ways. For instance, one may use that by C1 and C2,

N is a prime model of Q in the sense of 5.1; in addition, each A � Q is an

end extension of N as defined in 3.3. But we choose here a constructive

approach, which provides some additional information.

Theorem 3.1 (on the Σ1-completeness of Q). Every Σ1-sentence true

in N is already provable in Q and hence in each extension T ⊇ Q.

Proof. We claim that it suffices to prove

(∗) Either ⊢Q α or ⊢Q ¬α, for each Δ0-sentence α.

Indeed, let N � ∃�xϕ(�x) with the Δ0-formula ϕ(�x), say N � α := ϕ(�a).

Then ⊢Q α by (∗), for ⊢Q ¬α is impossible. Hence ⊢Q ∃�xϕ(�x). We verify

(∗) first for prime sentences. If t is a variable-free term then C1 readily

yields ⊢Q t==== tN . For example, ⊢Q (3 + 4)·5==== 35. Thus, if α is the prime

sentence t1 ==== t2, then ⊢Q tN1 ==== tN2 or ⊢Q tN1 �==== tN2 by C2, which confirms

(∗) for α. The induction steps over ∧ ,¬ are simple. For instance, ⊢Q α∧β

if ⊢Q α, β, and ⊢Q ¬α ∨ ¬β ≡ ¬(α∧β) otherwise, i.e. if ⊢Q ¬α or ⊢Q ¬β.

These steps suffice already to prove (∗), because bounded quantifiers are

eliminable from a Δ0-sentence α modulo Q. Indeed, let (∀x�t) be the first

bounded quantifier in α from the left, with the scope β. Then var t = ∅,

because x /∈ var t and any y ∈ var t must have been bounded further

to the left. Moreover, (∀x�t)β(x) ≡Q (∀x�n)β(x) with n := tN , since

⊢Q t==== n. We then easily get (∀x�n)β(x) ≡Q β(0)∧ · · · ∧β(n) with C3

and C5. Thus, (∀x�t) can be eliminated from α and this process can be

repeated if necessary.

If ϕ(�x) is Δ0 then N � ϕ(�a) ⇒ ⊢Q ϕ(�a) and N � ¬ϕ(�a) ⇒ ⊢Q ¬ϕ(�a)

by the theorem, because both ϕ(�a) and ¬ϕ(�a) are trivially Σ1. Thus, we

obtain a first important result on representing formulas:

Corollary 3.2. A Δ0-formula represents in Q the predicate that it defines

in N .

Lemma 3.3. Let α(�x, y) represent P ⊆ Nn+1. Then (∃z<y)α(�x, z) and

(∀z<y)α(�x, z) represent the predicates Q and R, respectively, where

Q(�a, b) :⇔ (∃c<b)P (�a, c) and R(�a, b) :⇔ (∀c<b)P (�a, c).

The same is true if < is replaced by � in this lemma.
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Proof. R+: Suppose Q(�a, b), that is, P (�a, c) for some c < b. Then

⊢ c < b ∧ α(�a, c). Consequently, ⊢ (∃z<b)α(�a, z). To prove R− suppose

¬Q(�a, b), hence ¬P (�a, i), i.e., ⊢ ¬ϕ(�a, i) for all i < b. We thus obtain
∨

i<b z ==== i ⊢ ¬α(�a, z). By C5, z < b ⊢
∨

i<b z ==== i and so z < b ⊢¬α(a, z).

Therefore, ⊢ (∀z<b)¬α(�a, z) ≡ ¬(∃z<b)α(�a, z). This proves R−. For

handling the predicate R simply notice that R(�a, b) ⇔ ¬(∃c<b)¬P (�a, c).

This proof is literally the same if < is replaced by � in the lemma.

Following [Gö2] and [TMR], we now define the notion of a representable

function. Although representability of f is much stronger a notion than

representability of graph f , Lemma 3.4(b) will show that both properties

coincide, provided the axioms of Q are available.

Definition. f ∈ Fn is representable in T if there is a formula ϕ(�x, y) ∈ Lar

such that for all �a ∈ Nn,

R+ : ⊢T ϕ(�a, f�a), R= : ϕ(�a, y) ⊢T y ==== f�a.

If ϕ is Δ0 (respectively Σ1 or Π1) then f is said to be Δ0-representable

(respectively Σ1- or Π1-representable).

For some purposes it is useful to refine this definition: f ⊆ Fn is said to

be Δ1-representable if f is both Σ1- and Π1-representable, with usually

distinct formulas. Corresponding phrases will be used for predicates P

instead of functions f .

Since R+ is equivalent to y ==== f�a ⊢T ϕ(�a, y), it is obvious that R+ and

R= together are replaceable by the single condition y ==== f�a ≡T ϕ(�a, y) for

all �a. If f is represented by ϕ(�x, y) then graph f is represented by the same

formula, because if b �= f�a and hence ⊢ b �====f�a by C2, then ⊢ ¬ϕ(�a, b) by

R=, so that the condition R− holds. The following lemma will show in

particular that f is representable provided graph f is representable.

Lemma 3.4. (a) Let P ⊆ Nn+1 be represented by α(�x, y) and suppose

that ∀�a∃bP (�a, b). Then ϕ(�x, y) := α(�x, y)∧ (∀z<y)¬α(�x, z) represents

the function f :�a 
→ μb[P (�a, b)]. If P is Δ0-representable then so too is f .

If P is Δ1-representable then so is f .

(b) f is representable provided graph f is representable.

(c) If f is Σ1-representable then f is Π1-representable as well.

(d) If χ
P is Σ1-representable then P is Δ1-representable.



242 6 Incompleteness and Undecidability

Proof. By Lemma 3.3, ϕ(�x, y) represents the predicate defined by ϕ(�x, y)

and this is clearly graph f . Hence, R+ holds. We verify R= by proving

(∗) α(�a, y) ∧ (∀z<y)¬α(�a, z) ⊢y ==== f�a.

Suppose b := f�a. Then b < y ⊢ (∃z<y)α(�a, z), because ⊢ α(�a, b). Con-

traposition yields (∀z<y)¬α(�a, z) ⊢ b ≮ y. By C5 and R− we have

y < b ⊢
∨

i<b y ==== i ⊢ ¬α(�a, y). Hence α(�a, y) ⊢ y ≮ b and so, by C6,

α(�a, y)∧ (∀z<y)¬α(�a, z) ⊢ y ≮ b ∧ b ≮ y ⊢ y ==== b.

This confirms (∗). Clearly, ϕ in (a) is Δ0 if α is Δ0. Let P be rep-

resented at the same time by the Π1-formula β. Repeating the above

with α(�x, y)∧ (∀v<y)¬β(�x, v) (a Σ1-formula by Exercise 2) in place of

ϕ shows that f is Σ1-representable. It is then also Δ1-representable by

item (c). (b) follows from applying (a) to P = graph f while noting

that f�a = μb[P (�a, b)]. (c): Let the Σ1-formula ϕ(�x, y) represent f and

z /∈ varϕ. Then ϕ′(�x, y) := ∀z(ϕ(�x, z) →z ==== y) is a Π1-formula that rep-

resents f as well: Application of R= results in ⊢ ϕ′(�a, f�a), which confirms

R+ for ϕ′, and because of ⊢ ϕ(�a, f�a), we obtain R= for ϕ′ from

ϕ′(�a, y) = ∀z(ϕ(�a, z) →y ==== z) ⊢ ϕ(�a, f�a) →y ==== f�a ⊢ y ==== f�a.

(d): Let χ
P be Σ1-represented by ϕ(�x, y). Then P is Σ1-represented by

ϕ(�x, 1) and Π1-represented by ¬ϕ(�x, 0), as is easily confirmed.

Remark 2. α(x, y, z) := z · 2==== (x + y) · S(x + y) + x · 2 represents graph℘ in
Q. Thus, the Δ0-formula α(x, y, z) ∧ (∀u<z)¬α(x, y, u) represents ℘ according
to Lemma 3.4(a). We mention that in PA (but not in Q) the function ℘ is
represented even by the open formula α.

Lemma 3.5. Let P ⊆ Nk be represented by α(�y), and gi ∈ Fn represented

by γi for i = 1, . . . , k. Then β(�x) := ∃�y [
∧

i γi(�x, yi) ∧ α(�y)] represents the

predicate Q := P [g1, . . . , gk]. If the γi are Σ1 and P is Σ1-representable

or Δ1-representable, then the corresponding holds for Q.

Proof. Let bi := gi�a, so that ⊢ γi(�a, bi), and �b = (b1, . . . , bk). If Q�a

holds, hence P�b, then ⊢ α(�b), whence ⊢
∧

i γi(�a, bi) ∧ α(�b), and so

⊢ β(�a). But if ¬Q�a and thus ¬P�b, then clearly ⊢ ¬α(�b). Using R=

for the γi, this then yields
∧

i γi(�a, yi) ⊢
∧

i yi ==== bi ⊢ ¬α(�y). Hence

⊢ ∀�y [
∧

i γi(�a, yi) →¬α(�y)] ≡ ¬β(�a). If the γi and also α are Σ1, then so

too is β. If P is represented by the Π1-formula α′(�x) at the same time,

then the Π1-formula ∀�y [
∧

i γi(�x, yi) →α′(�y)] represents Q as well.
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From this lemma, applied to graphh, follows without difficulty

Corollary 3.6. If h ∈ Fm is representable by β and the gi ∈ Fn by γi,

then ϕ(�x, z) := ∃�y [
∧

i γi(�x, yi) ∧ β(�y, z)] represents f = h[g1, . . . , gm].

Exercises

1. Let ∃�xα be Σ1 and ∀�xα be Π1. Construct Δ0-formulas β and γ

such that ∃�xα ≡N ∃xβ and ∀�xα ≡N ∀xγ (quantifier compression).

Since a Δ0-predicate is p.r. (Remark 1), each Σ1-predicate is r.e.

and w.l.o.g. of the form (∃b∈N)Q(�a, b) with Q ∈ Δ0.

2. Show using (c) from Exercise 4 in 3.3 that Σ1 is closed under

bounded quantification, that is, if α = α(�x, �y, y) and ∃�xα is Σ1

(defines an (m + 1)-ary Σ1-predicate), then also (∀z<y)∃�xα z
y and

(∃z<y)∃�xα z
y are Σ1. Derive the corresponding for Π1 and Δ1.

3. Prove that α(�x)∧y ==== 1 ∨ ¬α(�x)∧y ==== 0 represents χ
P provided α

represents P .

4. Show that every Δ0-formula is equivalent to a Δ0-formula built up

from literals by means of ∧ , ∨, and the bounded quantifiers (∀x�t)

and (∃x�t), a correspondence to Exercise 4 in 2.4.

6.4 The Representability Theorem

For the representability of all recursive or just all p.r. functions, it is

helpful to have a representable g ∈ F2 that satisfies the following: for

every n and every sequence c0, . . . , cn there exists a number c such that

g(c, i) = ci for all i � n. In short, c can be chosen such that the val-

ues g(c, 0), g(c, 1), . . . , g(c, n) are the given ones. Now, there are many

p.r. functions g that can do this, for example g : (c, i) 
→ (((c)))i for choosing

c = p1+c0
0 · · · p1+cn

n . Initially there is no obvious way to show the repre-

sentability of such a function g in Q or in some extension of Q within the

language Lar . Therefore, K. Gödel, who around 1930 was working on this

and related problems, in the words of A. Mostowski “phoned with God.”

Although nowadays several possibilities are known, we follow the original,

which has not lost any of its attraction.
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Let α(a, b, i) := rem(a, (1 + (1 + i)b)), where rem(a, d) denotes the

remainder of a divided by d ( �= 0). In addition, rem(a, 0) := 0. Note that

r = rem(a, d) is well defined, since for any a and d �= 0 there are unique

q, r ∈ N with a = qd + r and r < d (readily shown by induction on a).

Clearly, graphα has the Δ0-definition

α(a, b, i) = k ⇔ (∃q�a)[a = q(1 + (1 + i)b) + k & k < 1 + (1 + i)b].

Hence, the function α is Δ0-representable by Lemma 3.4(b). The same

holds for the pairing function ℘. Because ℘ is bijective there are unary

functions κ1, κ2 such that ℘(κ1k, κ2k) = k for all k. Their explicit form

is insignificant; we just require the obvious property κ1k, κ2k � k. The

function β : (c, i) 
→ α(κ1c, κ2c, i) is called the β-function. Since

β(c, i) = k ⇔ (∃a�c)(∃b�c)[℘(a, b) = c & α(a, b, i) = k],

graphβ is Δ0. Hence, according to Lemma 3.4, β is represented by a Δ0-

formula, which will be denoted by beta. Omitting the argument paren-

theses in beta, this means that

(1) ⊢Q beta c i y ↔ y ==== β(c, i), for all c, i ∈ N.

Clearly, beta also defines the β-function in N . The following simple

number-theoretic facts known for ages will be applied in proving the main

property of the β-function stated in Lemma 4.1 below.

Euclid’s lemma. Let a, b be positive and coprime (a⊥b). Then there

exist x, y ∈ N such that xa + 1 = yb. (The converse of this claim is

obvious: c a, b implies c yb−xa = 1 and hence c = 1.)

Proof by <-induction on s = a + b. Trivial for s � 2, i.e., a = b = 1.

Let s > 2. Then a �= b, say a > b, and clearly a − b⊥b as well. Since

(a− b) + b < s, there are x, y ∈ N with x(a− b) + 1 = yb by the induction

hypothesis. Hence, xa + 1 = y′b with y′ = x + y. In the case a < b

consider a⊥b−a, so that xa+1 = y(b−a) for some x, y by the induction

hypothesis. Hence (x + y)a + 1 = yb.

Chinese remainder theorem. Let ci < di for i = 0, . . . , k and let

d0, . . . , dk be pairwise coprime. Then there exists some a ∈ N such that

rem(a, di) = ci for i = 0, . . . , k.

Proof by induction on k. For k = 0 this is clear with a = c0. Let the

assumptions hold for k > 0. By the induction hypothesis, rem(a, di) = ci
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for some a and all i < k. Since d0, . . . , dk are coprime, m := lcm{dκ | ν<k}

and dk are coprime (Exercise 1c). Thus, by Euclid’s lemma, there are

x, y ∈ N such that xm+1 = ydk. Multiplying both sides by ck(m−1)+a,

we obtain x′m + ck(m − 1) + a = y′dk with new values x′, y′ ∈ N. Put

a′ := (x′ + ck)m + a = y′dk + ck. Then rem(a′, di) = rem(a, di) = ci for

all i < k, since di m. But also rem(a′, dk) = ck, because ck < dk.

Unlike those in most textbooks of number theory, the proof above is

constructive and easily transferable to PA, as will be shown in 7.1. In

logic it is occasionally not just important what you prove, but how you

prove it. The claim of Euclid’s lemma can also be shown by means of the

Euclidean algorithm for determining lcm(a, b).

Lemma 4.1 (on the β-function). For every n and every sequence

c0, . . . , cn there exists some c such that β(c, i) = ci for i = 0, . . . , n.

Proof. It suffices to provide numbers a and b such that α(a, b, i) = ci for

all i � n. Because of β(℘(a, b), i) = α(a, b, i) the claim is then satisfied

with c = ℘(a, b). Let m := max{n, c0, . . . , cn} and b := lcm{1, . . . , m}.

We claim that the numbers di := 1 + (1 + i) · b > ci (i � n) are pairwise

coprime. For otherwise let p be a common prime factor of di, dj with

i < j � n. Then p dj − di = (j − i)b; hence p j − i or p b. But since

j − i b in view of j − i � n � m, it follows that p b in any case. Since

b di − 1 this yields p di − 1, contradicting p di. Hence, d0, . . . , dn are

indeed pairwise coprime. By the Chinese remainder theorem there is an

a such that rem(a, di) = ci, that is, α(a, b, i) = ci for i = 0, . . . , n.

Remark 1. Already at this stage we gain the interesting insight that the expo-
nential function (a, b) 
→ ab is explicitly definable in N , namely by

δexp(x, y, z) := ∃u[β(u, 0)==== S0 ∧ (∀v<y)β(u, Sv)==== β(u, v) · x ∧ β(u, y)==== z].

This is a Σ1-formula, more precisely, the description of a Σ1-formula arising after
the elimination of the occurring β-terms by means of (1), using some further
∃-quantifiers instead. By induction on b one sees that N � δexp(a, b, c) implies
ab = c. Suppose conversely that ab = c. Then Lemma 4.1 guarantees a suitable
u such that N � δexp(a, b, c): choose u such that β(u, i) = ai for all i � b. This
argument is generalized in Theorem 4.2 below. It tells us in particular that each
recursive function is explicitly definable in N .

For simplicity, we assume T ⊇ Q in Theorem 4.2 below, though it

holds as well if Q is merely interpretable in T in the sense of 6.6. For
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the derivation of undecidability results or a simplified version of the first

incompleteness theorem, the theorem’s “Moreover” part is not needed.

Theorem 4.2 (Representability theorem). Each recursive function

f—and hence every recursive predicate—is representable in an arbitrary

consistent axiomatic extension T ⊇ Q. Moreover, f is Σ1-representable.

Proof. It suffices to construct a Σ1-formula that represents f in Q. For

the initial functions 0, S, In
ν we may choose the formulas v0 ==== 0, v1 ==== Sv0,

and vn ==== vν . As regards Oc, let f = h[g1, . . . , gm] and suppose β(�y, z) and

γi(�x, yi) are Σ1-formulas representing h and the gi. Then by Corollary 3.6,

ϕ(�x, z) := ∃�y [
∧

i γi(�x, yi) ∧ β(�y, z)] is such a formula for f . Next let

f = Op(g, h), with g, h both being Σ1-representable. Define

P (�a, b, c) :⇔ β(c, 0) = g�a & (∀v<b)β(c, Sv) = h(�a, v,β(c, v)).

According to Lemmas 3.5 and 3.3, P is Δ1-representable (use composi-

tion, instantiation of Σ1-representable functions, bounded quantification,

and conjunction). Clearly P (�a, b, c) is equivalent to (∗): β(c, i) = f(�a, i)

for all i � b. By Lemma 4.1, for given �a, b there is some c satisfying

(∗); hence we know that ∀�a, b∃cP (�a, b, c). Thus, f̃ : (�a, b) 
→ μc[P (�a, b, c)]

is Σ1-representable; Lemma 3.4(a). Since P (�a, b, f̃(�a, b)), (∗) holds with

c = f̃(�a, b), which yields f(�a, b) = β(f̃(�a, b), b) for i = b. Thus, as a com-

position of Σ1-representable functions, f is Σ1-representable. Finally, let

f result from g by Oµ, f�a = μb[P (�a, b)], where P (�a, b) ⇔ g(�a, b) = 0 and

g is Σ1-representable. By Lemma 3.4(c), g is Π1-representable, too. This

clearly implies that P is Δ1-representable. Hence, f is Σ1-representable

by Lemma 3.4(a).

Let T ⊇ Q be a theory in Lar . To ϕ ∈ Lar corresponds within T the

term n with n := ϕ̇, which will be denoted by �ϕ	 (or ϕ̇) and called the

Gödel term of ϕ. For example, �v0 ==== 0	 is v̇0 =̃=== 0̇ (= 222
· 32

· 514). Anal-

ogously �t	 is defined for terms t. For instance, �1	 = �S0	 = 216
· 314.

If T is axiomatized, also �Φ	 = Φ̇ for proofs Φ in T is well defined. For

instance, (v0 ==== v0) is for such a T a trivial proof of length 1 by axiom

Λ9 in 3.6. Its Gödel term is 2v̇0 =̃=== v̇0 + 1 . The predicate bewT is p.r.

(Theorem 2.4), hence Σ1-representable (Theorem 4.2), by the formula

bewT (y, x), say. Define bwbT (x) := ∃y bewT (y, x). Then Theorem 4.2 and

(4) from page 230 obviously yield the following important
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Corollary 4.3. If T ⊇ Q is axiomatizable then ⊢T ϕ ⇒ ⊢T bewT (n, �ϕ	)

for some n, and �T ϕ ⇒ ⊢T ¬ bewT (n, �ϕ	) for all n. Hence, ⊢T ϕ

implies ⊢T bwbT (�ϕ	) in any case.

The converse ⊢T bwbT (�ϕ	) ⇒ ⊢T ϕ need not hold; see 7.1. The-

orem 4.2 has several important consequences, for example Theorem 4.5

below. Before stating it we will acquaint ourselves with a method of

eliminating Church’s thesis from certain intuitively clear arguments that

demand justification when ‘decidable’ is identified with ‘recursive’. Of

course, such an elimination must in principle always be possible if the

thesis is to retain its legitimacy. For instance, Church’s thesis was essen-

tially used in the proof of Theorem 3.5.2. We reformulate the theorem

and will give a rigorous proof.

Theorem 4.4. A complete axiomatizable theory T is recursive.

Proof. Because of completeness, the function

f : a 
→ μb[a ∈ L̇0 ⇒ bewT (b, a)∨∨∨ bewT (b, ¬̃a)]

is well defined. Indeed, let P (a, b) denote the recursive predicate in square

brackets. Then ∀a∃bP (a, b) (note that P (a, 0) if a /∈ L̇0). By Oµ, then, f

is recursive. We claim (∗): a ∈ Ṫ ⇔ a ∈ L̇0 & bewT (fa, a). This clearly

implies the recursiveness of T . In order to prove (∗) let a ∈ Ṫ , so certainly

a ∈ L̇0. Then for b = fa, the smallest b such that bewT (b, a)∨∨∨bewT (b, ¬̃a),

the first disjunct must hold, because due to the consistency of T , no c ∈ N
with bewT (c, ¬̃a) can exist at all. Hence, bewT (fa, a). The ⇐-direction in

(∗) is obvious.

This proof illustrates sufficiently well the distinction between a primitive

recursive and a recursive decision procedure. Even when X and thus

the predicate P in the proof above are primitive recursive, the defined

recursive function f need not be so, because the completeness of T may

have been established in a nonconstructive way. The use of Church’s

thesis in the proofs of (i)⇒(ii) and (iii)⇒(ii) of the following theorem can

be eliminated in almost exactly the same manner as above, although then

the proof would lose much of its transparency.

Theorem 4.5. For a predicate P ⊆ Nn and any consistent axiomatizable

theory T ⊇ Q the following are equivalent:

(i) P is representable in T , (ii) P is recursive, (iii) P is Δ1.
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Proof. (i)⇒(ii): Suppose P is represented in T by α(�x). Given �a we set

going the enumeration machine of T and wait until α(�a) or ¬α(�a) appears.

Thus, P is decidable and hence recursive by Church’s thesis. (ii)⇒(i),(iii):

By Theorem 4.2, χ
P is representable in T by a Σ1-formula; hence P is

Δ1-representable by Lemma 3.4(d) and of course by the corresponding

formulas also defined in N . Thus, P ∈ Δ1. (iii)⇒(ii): Let P be defined

by the Σ1-formula α(�x) and the Π1-formula β(�x). Given �a we start the

enumeration machine for Q and wait until the Σ1-sentence α(�a) or ¬β(�a)

appears. In the first case P�a holds; in the second it does not. This

procedure terminates because Q is Σ1-complete by Theorem 3.1.

This theorem tells us that in all consistent axiomatic extensions of Q

exactly the same predicates are representable, namely the recursive ones.

Moreover, Δ1 contains precisely the recursive predicates, from which it

easily follows that Σ1 consists just of all r.e. predicates. Theorem 4.5 clar-

ifies fairly well the close relationship between logic and recursion theory.

It is independent of Church’s thesis. Even if the thesis for certain theo-

retical or practical reasons had to be revised, the distinguished role of the

μ-recursive functions would not be affected.

Remark 2. The above results allow us to define recursive or decidable predicates
directly as follows: P ⊆ Nn is recursive iff there is some finitely axiomatizable
theory in which P is representable. We need only to notice that a predicate rep-
resentable in any finitely axiomatizable theory in which representability makes
sense is recursive by Church’s thesis. In this and the previous section we met
several formulas or classes of those that represent predicates in Q and hence
are recursive. It would of course be nice to provide a somewhat more uniform
system of formulas that represent the recursive predicates, or at least that define
them in N . Unfortunately, such a system of formulas cannot be recursively enu-
merated. Indeed, suppose there is such an enumeration. Let α0, α1, . . . be the
resulting subenumeration of its members in L1

ar . These define in N the recursive
sets. Then also {n ∈ N | n /∈ αN

n } is recursive, hence is defined in N by αm,
say, so that n ∈ αN

m ⇔ n /∈ αN
n . However, this equivalence yields for n = m the

contradiction m ∈ αN
m ⇔ m /∈ αN

m .

In 6.5 we need a p.r. “substitution” function and in 7.1 a generalization.

Let cf n := ṅ (= (n)·) denote the Gödel number of the “cipher term”

n (= Sn0). Then n 
→ cf n is p.r., since cf 0 = 0̇ and cf Sn = Ṡ ∗ cf n.

Let sbx(m, n) = [m]cfnẋ and define sb�x ∈ Fn+1 inductively on the length n

of �x ∈ Var
n by sb∅(m) = m and sb�xx(m,�a, a) = sbx(sb�x(m,�a), a). Here

x1, . . . , xn, x denote distinct variables. Clearly, the sb�x are all p.r.
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Let ϕ̇�x(�a) denote the Gödel number of the formula ϕ�x(�a) that arises

from ϕ by stepwise substituting ai at the free occurrences of xi in ϕ

for i = 1, . . . , n (cf. also page 60). Then the main property of the p.r.

functions sb�x is expressed by

Theorem 4.6. sb�x(ϕ̇,�a) = ϕ̇�x(�a), for arbitrary ϕ ∈ L and all �a ∈ Nn.

Proof. Since ϕ�x(�a) results from applying simple substitutions stepwise,

we need only show that sbx(ϕ̇, a) = ϕ̇x(a) for all ϕ ∈ L, x ∈ Var, and

a ∈ N. This holds, since sbx(α̇, a) = [α̇]cf a
ẋ = [α̇]

ȧ
ẋ = (αx(a))· = α̇x(a) in

view of (∗) from page 232.

Example. Let α be Sx==== y. Then sbxy(α̇, a, b) = (Sa==== Sb)· for a, b ∈ N.

Further, sbxy(α̇, a, Sa) = (Sa==== Sa)· = (Sa==== Sa)· = sbx(α̇ Sx
y , a). This

equation will be generalized in Exercise 3c.

Exercises

1. Let a, b, a0, . . . , an (n > 0) be positive natural numbers and p a

prime. Prove (a) p ab ⇒ p a ∨∨∨ p b, (b) p lcm{aν | ν�n} ⇒ p aν

for some ν � n, and (c) lcm{aν|ν<n} and an are coprime provided

a0, . . . , an are pairwise coprime.

2. Provide a defining Σ1-formula for the prime enumeration n 
→ pn.

3. Expand the Lar -structure N by the functions ∧̃ , ¬̃, →̃ , ∀̃, and all

sb�x, and if necessary, further p.r. base functions to a structure N ∗.

Then the terms sb�x(�ϕ	, �x) for ϕ ∈ Lar are well defined in the theory

of N ∗.5 Verify for arbitrary α, β, ϕ ∈ Lar the following equations

in N ∗:

(a) sb�x((α ∧̃β)·, �x) = sb�x(α̇, �x) ∧̃ sb�x(β̇, �x), and analogously for ¬,

→ , and ∀.

(b) sb�x(ϕ̇, �x) = sb�x ′(ϕ̇, �x ′), where �x ′ covers all x ∈ free ϕ such

that x ∈ var �x.

(c) Let y /∈ bnd ϕ. Then sb�x,x(ϕ̇, �x, t) = sb�x,y((ϕ
t
x )·, �x, y) for

t ∈ {0, y, Sy} in case x ∈ free ϕ and y /∈ var �x; otherwise

sb�x,x(ϕ̇, �x, t) = sb�x((ϕ t
x )·, �x).

5 The expansion of N alleviates the later transfer of this exercise to PA. In 7.1 it will

be shown that the additional functions of N ∗ are explicitly definable already in PA.
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Call a theory T ⊆ L arithmetizable if L is arithmetizable and a sequence

(n)n∈N of constant terms is available such that ⊢T n �====m for n �= m and

cf : n 
→ (n)· is p.r. These are minimal requirements that representability

of arithmetical predicates in T make sense. They are trivially satisfied for

T ⊇ Q, but also for ZFC with respect to ω-terms (page 115). Terms and

formulas are coded within T , similarly to what is done in theories in Lar .

In particular, �α	 (= (α̇)) denotes the already defined Gödel term of a

formula α. In order to evoke a concrete picture of the following two fairly

general lemmas, take L = Lar and T = PA as standard examples.

A sentence γ is called a fixed point of α = α(x) in T if γ ≡T α(�γ	);

equivalently, ⊢T γ ↔ α(�γ	). In intuitive terms, γ then says “α applies to

me.” The p.r. function sbx from 6.4 is representable in T under relatively

weak assumptions by Theorem 4.2. Hence, the lemmas below have a large

spectrum of application.

Fixed point lemma. Let T be an arithmetizable theory and suppose

that sbx is representable in T . Then for each α = α(x) ∈ L there is some

γ ∈ L0 such that

(1) γ ≡T α(�γ	).

Proof. Let x1, x2, y �= x and sb(x1, x2, y) be a formula representing sbx

in T . Then sb(�ϕ	, n, y) ≡T y ==== �ϕ(n)	 for all ϕ = ϕ(x) and all n. With

n = �ϕ	 we then get

(2) sb(�ϕ	, �ϕ	, y) ≡T y ==== �ϕ(�ϕ	)	.

Let β(x) := ∀y(sb(x, x, y) →α y
x). Then γ := β(�β	) yields what we

require. Indeed,

γ = ∀y(sb(�β	, �β	, y) →α y
x)

≡T ∀y(y ==== �β(�β	)	 →α y
x)

(
(2) with ϕ := β(x)

)

= ∀y(y ==== �γ	 →α y
x)

(
because γ = β(�β	)

)

≡ α(�γ	).

A fixed point can in the most interesting cases of α be constructed

fairly easily; see 7.5. The following lemma also formulates a frequently

appearing argument.
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Nonrepresentability lemma. Let T be a theory as in the fixed point

lemma. Then T (more precisely Ṫ ) is not representable in T itself.

Proof. Let T be represented by the formula τ(x). We show that even

the weaker assumption (a): (∀α∈L0) �T α ⇔ ⊢T ¬τ(�α	) leads to a

contradiction. Indeed, let γ be a fixed point of ¬τ(x) according to (1), so

that (b): ⊢T γ ⇔ ⊢T ¬τ(�γ	). Choosing α = γ in (a) clearly yields with

(b) the contradiction �T γ ⇔ ⊢T γ.

We now formulate Gödel’s first incompleteness theorem, giving three

versions, of which the second corresponds essentially to the original. For

simplicity, let henceforth L ⊇ Lar and T ⊇ Q, ensuring the applicability

of the two lemmas above. However, all of the following holds for theories

T , such as ZFC, in which Q is just interpretable in the sense of 6.6.

Theorem 5.1 (the popular version). Every consistent (recursively)

axiomatizable theory T ⊇ Q is incomplete.

Proof. If T is complete then it is recursive by Theorem 4.4, hence rep-

resentable in T by Theorem 4.2, which is impossible by the nonrepre-

sentability lemma.

Unlike the proofs of Theorems 5.1′ and 5.1′′, the above proof is noncon-

structive, for it does not explicitly provide a sentence α such that �T α

and �T ¬α.

Stronger than the consistency of T is the so-called ω-consistency of

T (⊆ Lar), i.e., for all ϕ = ϕ(x) such that ⊢T ∃xϕ(x) we have �T ¬ϕ(n)

for at least one n, or equivalently, if ⊢T ¬ϕ(n) for all n, then �T ∃xϕ(x).

Clearly, if N � T then T is surely ω-consistent, because the supposition

⊢T ∃xα and ⊢T ¬α(n) for all n implies the contradiction N � ∃xα,∀x¬α.

Thus, from a semantic perspective the theories Q and PA are certainly

ω-consistent, hence also consistent.6

Theorem 5.1′ (the original version). For every ω-consistent theory

T ⊇ Q axiomatized by a p.r. axiom system X, there is a Π1-sentence α

such that neither ⊢T α nor ⊢T ¬α, i.e., α is independent in T . There is

a p.r. function that assigns such an α to a formula representing X.

6 There are famous (relative) consistency proofs for PA that presuppose considerably

less than the full semantic approach; cf. e.g. [Tak].
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Proof. Let bewT be represented in T by the Σ1-formula bew(y, x), see

page 247. For bwb(x) = ∃ybew(y, x) from Corollary 4.3 we obtain (a):

⊢T ϕ ⇒ ⊢T bwb(�ϕ	), for all ϕ. Let γ be a fixed point of ¬ bwb(x)

according to the fixed point lemma, so that (b): γ ≡T ¬ bwb(�γ	). The

assumption ⊢T γ yields ⊢T bwb(�γ	) by (a), but ⊢T ¬ bwb(�γ	) by (b),

contradicting the consistency of T . Thus, �T γ. Now assume ⊢T ¬γ,

so that ⊢T bwb(�γ	) by (b); hence (c): ⊢T ∃y bew(y, �γ	)). Obviously

�T γ, because T is consistent. Applying Corollary 4.3 once again, we

infer that ⊢T ¬ bew(n, �γ	) for all n. However, this and (c) contradict the

ω-consistency of T . Consequently ⊢T ¬γ is impossible as well. Thus, γ

is independent in T . But then too is the Π1-sentence α := ¬ bwb(�γ	),

which is equivalent to γ in T . The claim of the p.r. assignment follows

evidently from the construction of γ in the proof of (1).

This theorem remains valid without restriction if the axiom system X

is just r.e. In this case X can be replaced by some recursive X ′ (Exercise 1

in 6.2), so that bewT is still recursive according to Theorem 2.4.

Theorem 5.1′′ (Rosser’s strengthening of Theorem 5.1′ ). The

assumption of ω-consistency in Theorem 5.1′ can be weakened to the con-

sistency of T .

Proof. Instead of bew(y, x) we consider the arithmetical predicate

prov(x) := ∃y[bew(y, x) ∧ (∀z<y)¬ bew(z, ¬̃x)],

where bew is bewT and T is consistent. We think here of the p.r. function

¬̃ as having been eliminated in the usual way by a formula representing

it. Because of the consistency of T , prov(x) says essentially the same as

bwb(x) and has the following fundamental properties:

(a) ⊢T α ⇒ ⊢T prov(�α	), (b) ⊢T ¬α ⇒ ⊢T ¬ prov(�α	).7

Indeed, suppose ⊢T α, so that ⊢T bew(n, �α	) for some n (Corollary 4.3).

Since �T ¬α, it follows that ⊢T ¬ bew(k, �¬α	) for all k. Therefore, C5

in 6.3 gives ⊢T (∀z<n)¬ bew(z, �¬α	), and so

⊢T bew(n, �α	) ∧ (∀z<n)¬ bew(z, �¬α	),

7 In particular ⊢T ¬ prov(�⊥	). That the latter is not the case if we write bwb instead of

prov is the import of Gödel’s second incompleteness theorem, Theorem 7.3.2. Thus,

bwb and prov behave within T very differently, although bew(y, x) ≡N prov(y, x).
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whence particularization yields the claim ⊢T prov(�α	). Proof of (b):

Suppose ⊢T ¬α, say ⊢T bew(m, �¬α	). Then ⊢T (∀y�m)¬ bew(y, �α	)

by C5, since �T α. This gives bew(y, �α	) ⊢T y > m by C6. Because of

y > m ⊢T (∃z<y) bew(z, �¬α	) (choose m for z) we clearly obtain that

⊢T ∀y[bew(y, �α	) → (∃z<y) bew(z, �¬α	)] ≡ ¬ prov(�α	). This confirms

(b). Now let (c): γ ≡T ¬ prov(�γ	) by (1). The assumption ⊢T γ yields

with (a) and (c) the contradiction ⊢T prov(�γ	),¬ prov(�γ	), and the

assumption ⊢T ¬γ yields with (b) and (c) the same contradiction. Thus,

neither ⊢T γ nor ⊢T ¬γ.

T ⊆ L0
ar

is called ω-incomplete if there is some ϕ = ϕ(x) such that

⊢T ϕ(n) for all n and yet �T ∀xϕ. We claim that PA is not only incomplete

but ω-incomplete. Let γ ≡PA ¬ bwbPA(�γ	) and ϕ(x) := ¬ bewPA(x, �γ	).

By Theorem 5.1′, �PA γ ≡PA ¬ bwbPA(�γ	) ≡ ∀xϕ, that is, �PA ∀xϕ. On

the other hand, since �PA γ, we know that ⊢PA ϕ(n) (= ¬ bewPA(n, �γ	))

for all n (Corollary 4.3) which confirms our claim. Note that ϕ(x) is even

a Π1-formula, which is particularly interesting.

α ∈ L0 is said to be true in A if A � α. In particular, α ∈ L0
ar

is

called true (more precisely, true in N or true in reality, as some people

like to say) if N � α. If there is some τ(x) ∈ L with a single free variable

such that A � α ⇔ A � τ(�α	), for all α ∈ L0, it is said that truth of

A is definable in A. Clearly, this is equivalent to the representability of

ThA in ThA. For A = N , however, such a possibility is excluded by the

nonrepresentability lemma. We therefore obtain

Theorem 5.2 (Tarski’s nondefinability theorem). The notion of

truth in N is not definable in N ; in other words, ThN is not arithmetical.

In this theorem lies the origin of a highly developed theory of definability

in N (see also 6.7). The theorem holds correspondingly for every domain

of objects A whose language is arithmetizable and in which the function

sbx is representable for some variable x.

We now turn to undecidability results. First of all we prove the claim

in Exercise 1 in 3.5 in a somewhat stronger framework: ‘decidable’ will

now have the precise meaning of ‘recursive’.

Lemma 5.3. Every finite extension T ′ of a decidable theory T of one and

the same (arithmetizable) language L is decidable.



254 6 Incompleteness and Undecidability

Proof. Suppose T ′ extends T by α0, . . . , αn. Put α :=
∧

i�n αi, so that

T ′ = T + α. Since β ∈ T ′ ⇔ α →β ∈ T , we obtain

n ∈ Ṫ ′ ⇔ n ∈ L̇0 & α̇ →̃n ∈ Ṫ .

Now, Ṫ , L̇0, and →̃ are recursive. Hence the same applies to Ṫ ′.

That T ′ belongs to the same language as T is important. A decidable

theory T axiomatized by X ⊆ L0 but considered as a theory in L′ ⊃ L

with the same axiom system X may well be undecidable, due to a higher

complexity of the additional tautologies of L′.

T0 ⊆ L0 is called strongly undecidable if T0 is consistent and each theory

T ⊆ L0 compatible with T0 (i.e., T +T0 is consistent) is undecidable. Then

each T compatible with T0 in a language L ⊇ L0 is also undecidable, for

otherwise T ∩L0 would clearly be decidable. If T0 is strongly undecidable

then so is every consistent T1 ⊇ T0, for if T is compatible with T1 then

it is also compatible with T0. Moreover, each subtheory of T0 in L0 is

then undecidable, or T0 is hereditarily undecidable in the terminology of

[TMR]. The weaker a strongly undecidable theory, the wider the scope

of applications. This will become plain by means of examples in the next

section. The following theorem is the main result from [TMR].

Theorem 5.4. Q is strongly undecidable.

Proof. Let T ∪ Q be consistent. Assume T is decidable. Then the same

does hold for the finite extension T ′ = T + Q of T ; Lemma 5.3. Thus,

by Theorem 4.2, T ′ is representable in itself, which is impossible by the

nonrepresentability lemma.

Theorem 5.5 (Church’s undecidability theorem). The set TautL of

all tautological sentences is undecidable for L ⊇ Lar .

Proof. TautL is surely compatible with Q and hence is undecidable by

Theorem 5.4.

This result readily carries over to the language with a single binary

relation, as will be shown in the next section, and hence to all expansions

of this language. Indeed, it carries over to all languages with the exception

of those containing unary predicate symbols only and at most one unary

function symbol. For the tautologies of these languages there exist various

decision procedures; see [ML, vol. I].
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By Theorem 5.4, in particular ThN is undecidable; likewise is every

subtheory of ThN , for instance Peano arithmetic PA and each of its sub-

theories, as well as all consistent extensions of PA, because these are all

compatible with Q. ThN is not even axiomatizable, since an axiomatiz-

able complete theory is decidable. Further conclusions concerning unde-

cidable theories will be drawn in 6.6.

Alongside undecidability results concerning formalized theories, numer-

ous special results can also be obtained in a similar manner; for instance

negative solutions to word problems of all kinds, and halting problems

(see e.g. [Rog] or [Bar, C2]). Of these perhaps the most spectacular was

the solution to Hilbert’s tenth problem: Does an algorithm exist that for

every polynomial p(�x) with integer coefficients decides whether the Dio-

phantine equation p(�x)==== 0 has a solution in Z? The answer is no, as

Matiyasevich proved in 1970.

We briefly sketch the proof. Note first that it suffices to show that

no algorithm exists for the solvability of all Diophantine equations in N.

Indeed, by a famous theorem from Lagrange, every natural number is the

sum of four squares of integers. Consequently, p(�x)==== 0 is solvable in N iff

p(u 2
1 + v 2

1 + w 2
1 + z 2

1 , . . . , u 2
n + v 2

n + w 2
n + z 2

n )==== 0 is solvable in Z. Thus,

if we could decide the solvability of Diophantine equations in Z, then we

could solve as well the corresponding problem in N. For the latter notice

first of all that the question of solvability of p(�x)==== 0 in natural numbers

is equivalent to the solvability of a Diophantine equation of Lar (i.e., an

equation s(�x)==== t(�x)), by simply bringing all terms of p(�x) preceded by a

minus sign “to the other side.” Thus, Hilbert’s problem is reduced to the

question of a decision procedure for the problem N � ∃�xδ(�x), where δ(�x)

runs through all Diophantine equations s(�x)==== t(�x)) in Lar .

The negative solution to the last question follows easily from the much

further-reaching Theorem 5.6, which establishes a surprising connection

between number theory and recursion theory, proved in detail for instance

in [Mat]. This theorem is a paradigm of the experience that the solution of

certain mathematical questions lead to results whose significance extends

way beyond that of an answer to the original question.

Theorem 5.6. An arithmetical predicate P is Diophantine if and only if

P is recursively enumerable.
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To give at least an indication of the proof, let the Diophantine predicate

P ⊆ Nm be defined by P�a ⇔ N � ∃�xδN (�x,�a), with the equation δ(�x, �y),

�y = (y1, . . . , ym). The defining formula for P is Σ1, and since δN (�x,�a)

is recursive by Theorem 4.5, P is r.e. This is the trivial direction of the

claim. The converse—every r.e. predicate is Diophantine—is too large

in scope to be given here. Much tricky inventiveness is used in order to

show that certain arithmetical predicates and functions are Diophantine,

among them the ternary predicate ‘ab = c ’, which for a long time resisted

the proof of being Diophantine. Theorem 5.6 yields

Corollary 5.7. (a) Hilbert’s tenth problem has a negative answer.

(b) For every axiomatizable theory T ⊇ Q, in particular T = PA, there is

an unsolvable Diophantine equation whose unsolvability is provable in T .

Proof. bwbQ is r.e. by 6.2. Hence, by Theorem 5.6, there is a Diophantine

equation δ(�x, y) such that bwbQ(n) ⇔ N � ∃�x δ(�x, n). We claim that

even for the set {δ(�x, n) | n ∈ N} of equations it is undecidable whether

N � ∃�x δ(�x, n). Otherwise, {n ∈ N | N � ∃�x δ(�x, n)} and hence also bwbQ

would be recursive. This is a contradiction to Theorem 5.4 and proves (a).

(b): If the unsolvability of every unsolvable Diophantine equation δ(�x)

were provable in T , then either ⊢T ¬∃�xδ(�x) (provided δ(�x) is unsolvable)

or else ⊢T ∃�xδ(�x), for T is Σ1-complete. Since the theorems of T are r.e.,

one would then have a decision procedure for the solvability of Diophantine

equations, which contradicts part (a).

Theorem 5.6 can be yet further strengthened; namely, it can be proved

within PA. Thus, one obtains the following theorem, whose name stems

from Matiyasevich, Robinson, Davis, and Putnam, all of whom made

significant contributions to the solution of Hilbert’s tenth problem. Be-

cause of its lengthy proof, we shall not use this theorem, though in fact

many things would thereby be simplified.

MRDP theorem. For every Σ1-formula α there exists an ∃-formula ϕ

in Lar such that α ≡PA ϕ. Here ϕ is without loss of generality of the form

∃�x s==== t with certain Lar -terms s, t.

Π1-formulas and -sentences have a corresponding simple representation.

A famous example of a Π1-sentence is Goldbach’s conjecture

(∗) ∀x(2 < x∧2 x → (∃p, q < x)(prim p, q ∧x = p + q)).
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(each even number >2 is a sum of two primes). (∗) represents an example

of a Π1-sentence in L1
ar

whose truth in N is still unknown, hence may be

independent in PA. Clearly, if (∗) is false then its negation is provable,

even in Q. But (∗) may be true and nevertheless unprovable.

Fermat’s conjecture, which has a still longer history and was finally

proved at the end of the twentieth century, is the statement

(†) (∀x, y, z ∈ N+)(∀n>2) xn + yn �= zn.

This is equivalent to a Π1-sentence, because (a, b) 
→ ab is not only Σ1-

but even Δ0-definable in N , as was noticed in Remark 1 in 6.3. Hence,

(†) is a candidate for a sentence that may be independent in PA.

Remark. It would be interesting to discover whether the proof of Fermat’s
conjecture or a suitable modification of this proof can be carried out in PA. A
demonstration that this is not the case would hardly be less spectacular than the
solution of the problem itself. However, it seems that the proof can be carried
out in a suitable conservative extension of PA (communicated by G. Kreisel).
Note also the following: Since PA is ω-incomplete already for Π1-formulas (see
page 253), it may even be the case that ⊢PA (∀x∀y∀z �====0)xn + yn �====zn for every
single n > 2, although (∗) is not provable in PA. Similarly, it may well be that
∃p, q (prim p, q ∧2n = p + q) is true for each n > 1 but (†) is still unprovable.
This would be no less sensational than a proof of Goldbach’s conjecture itself.

Exercises

1. Show that an ω-incomplete theory in Lar has a consistent but ω-

inconsistent extension.

2. Suppose T is complete; prove the equivalence of

(i) T is strongly undecidable, (ii) T is hereditarily undecidable.

3. A consistent theory T0 ⊆ L0 is called essentially undecidable if each

consistent T ⊇ T0 is undecidable. Show that a finitely axiomatizable

theory T is essentially decidable iff T is strongly undecidable.

4. Let Δ be a finite list containing explicit definitions of new symbols

in terms of those occurring in L. Show that if T is decidable then so

is T + Δ (independent of whether all definitions in Δ are legitimate

in T ; in the worst case T + Δ is inconsistent).

5. Construct a primitive recursive function f : N → N such that ran f

is not recursive (although it is surely recursively enumerable).
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6.6 Transfer by Interpretation

Interpretability is a powerful method to transfer model-theoretic and other

properties, such as undecidability, from one theory to another. Roughly

speaking, interpreting a theory T0 ⊆ L0 into a theory T1 ⊆ L1 means

to make the basic notions of T0 understandable in T1 via explicit defi-

nitions. ‘for all x’ from T0 is replaced in T1 by ‘for all x ∈ P ’, where

P is a new unary predicate symbol for the domains of T0-models, i.e.,

the T0-quantifiers run over the subdomains PA of the domains of the T1-

models A. We consider the most important concepts, interpretability

from Tarski (also called relative interpretability) and interpretability from

Rabin, called model interpretability. All theories considered in this section

are supposed to be consistent.

Let P be a unary predicate symbol not occurring in T1. The formula ϕP,

the P-relativized of a formula ϕ, results from ϕ by replacing all subformulas

of the form ∀xα by ∀x(Px →α). A precise definition of ϕP runs by induc-

tion: ϕP = ϕ if ϕ is a prime formula, (¬ϕ)P = ¬ϕP, (ϕ∧ψ)P = ϕP ∧ψP,

and (∀xϕ)P = ∀x(Px →ϕP), so that ϕP = ϕ for open ϕ. One readily con-

firms (∃xϕ)P ≡ ∃x(Px∧ϕP). The right-side formula shows clearly what

relativation is intending to mean. Set XP := {αP | α ∈ X} for X ⊆ L0.

Example. (∀x∃y y ==== Sx)P ≡ ∀x(Px→∃y(P y ∧ y ==== Sx)) ≡ ∀x(Px→ P Sx).

The last equivalence results from ∃y(P y ∧ y ==== Sx) ≡ P Sx, cf. (12) in 2.4.

Definition. T0 ⊆ L0 is called interpretable in T1 ⊆ L1 (where for simplic-

ity we assume that T0 has finite signature) if there is a list Δ of explicit

definitions legitimate in T1 of the symbols of T0 not occurring in T1 and

of a new unary predicate symbol P such that T P

0 ⊆ T1 +Δ, the definitorial

extension of T1 by Δ.

This definition expresses only that all notions of T0 “are understood” in

T1, and what is provable in T0 is also provable in T1. Examples will be

given later. The theory T + Δ (T ⊆ L1) will henceforth be denoted by

T∆, and its language by L∆
1 . Interpretability generalizes the notion of a

subtheory: If T0 ⊆ T1 then T0 is trivially interpretable in T1, i.e., only the

trivial relativation Px ↔ x==== x belongs to Δ. In this case αP ≡ α.

Let CA denote the set of the so-called closure axioms

∃x Px, P c, ∀�x (
∧n

i=i Pxi → P f�x) (c, f ∈ L0).
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These are equivalent to (∃x x==== x)P, (∃x x==== c)P, and (∀�x ∃y y ==== f�x)P, re-

spectively. Thus, CA is up to equivalence a set of the form F P for some

finite set F of L0-tautologies, so that CA ⊆ T P

0 for each theory T0 ⊆ L0.

The sentences of CA guarantee that for a given L∆
0 -structure B � Δ there

is a well-defined L0-structure A whose domain is A = PB. The relations

and operations of A are the ones defined by Δ but restricted to A. This

structure A will be denoted by B∆. It is a substructure of the L0-reduct

of B, whose role will become clear in the next lemma.

Lemma 6.1. Let B � CA. Then B∆ � α ⇔ B � αP, for all sentences α

of the language L0.

Proof. A := B∆ is an L0-structure. Claim: (A, w) � ϕ ⇔ (B, w) � ϕP,

for any w : Var → A. This proves the lemma, since α is a sentence. We

prove the claim by induction on ϕ ∈ L0. It is clear for prime formulas

π since αP = π. The induction steps for ∧ ,¬ proceed without difficulty,

and the one for ∀ is obtained as follows:

(A, w) � ∀xϕ ⇔ (A, wa
x) � ϕ for all a ∈ A

⇔ (B, wa
x) � ϕP for all a ∈ A (induction hypothesis)

⇔ (B, wa
x) � Px →ϕP, for all a ∈ B (because PB = A)

⇔ (B, w) � ∀x(Px →ϕP) = (∀xϕ)P.

Remark 1. If T0 is axiomatized by X0 then in the definition of interpretability
it suffices to require just XP

0 ∪ CA ⊆ T∆
1 instead of T P

0 ⊆ T∆
1 . That is, we have

only to check αP ∈ T∆
1 for the axioms α of T0, and CA ⊆ T∆

1 (cf. the example
below). This fact is highly important. It follows immediately from

(∗) S ⊢ α ⇒ SP ∪ CA ⊢ αP (S ∪ {α} ⊆ L0

0).

For proving (∗) let S ⊢ α and B � SP ∪ CA. Then B∆ � S by the lemma. Thus,
B∆ � α because S ⊢ α, and so B � αP. Since B � SP ∪ CA was arbitrary, we get
SP ∪ CA ⊢ αP.

Theorem 6.2. Let T0 be interpretable in T1. If T0 is strongly undecidable

so is T1.

Proof. Let T ⊆ L1 be compatible with T1. Then T + T1 is consistent

and so is (T + T1)
∆. Now, S := {α ∈ L0

0 | αP ∈ T∆ + CA} is a theory,

for SP ⊆ T∆ + CA and (∗) yield S ⊢ α ⇒ T∆ ∪ CA ⊢ αP ⇒ α ∈ S. Let

B � (T + T1)
∆ ⊇ T P

0 ∪ CA ∪ SP. Thus, B∆ � T0, S by Lemma 6.1; hence

S is compatible with T0 and so undecidable. If T were decidable, then so

would be T∆ (Exercise 3 in 6.5). Hence also T∆ + CA (Lemma 5.3), and

so clearly S. This is a contradiction.
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Example. Q is interpretable in the theory Td of discretely ordered rings

R = (R, 0, +,×, <). These have a smallest positive element e, defined by

x==== e ↔ 0 < x ∧ ∀y(0 < y → x � y), that need not be a unit element of R.

Ring multiplication is denoted by ×, to distinguish it from multiplication

in Q. Here are the definitions for P, S, · (0,+ remain unaltered):

Px ↔ x� 0 ∧ x × e==== e × x ∧ ∀y∃z z × e==== y × x,

y ==== Sx ↔ y ==== x+e, z ==== x·y ↔ z×e==== x×y ∨ ∀u(u×e �====x×y ∧ z ==== x).

With some patience, all P-relativized Q-axioms can be proved in T∆
d , with

the list Δ of the above definitions. Thus, by Remark 1, Q is interpretable

in Td, and Td is strongly undecidable according to Theorem 6.2.

While Q is not directly interpretable in the theory TF of fields, it is in

a certain finite extension of TF , whereby TF is shown to be undecidable

(Julia Robinson). The same also holds for the theory of groups TG [TMR].

However, none of these theories is strongly undecidable.

Q and also PA are interpretable in ZFC, as is nearly every other theory.

Let Px ↔ x∈ ω, and define S,+, · within ZFC such that their restrictions

to ω coincide with the usual operations. In particular, S is defined by

y ==== Sx ↔ y ==== x ∪ {x}. This immediately yields the incompleteness and

the undecidability of ZFC, assuming of course its consistency. Q is also

interpretable in weak subtheories of ZFC, e.g., in the Tarski fragment TF,

by which we mean the theory in L∈ with the following three axioms.8

Hence, like Q, the theory TF is strongly undecidable.

∃x∀y y /∈ x (∅ exists),

∀x∀y(∀z(z ∈ x ↔ z ∈ y) →x==== y) (extensionality),

∀x∀y∃z∀u(u∈ z ↔ u∈ x ∨ u==== y) (x ∪ {y} exists).

In particular, the set of tautologies in a binary relation is undecidable, even

without identity in the language; for ==== can conservatively be eliminated

from T∈ by means of x==== y ↔ ∀z(z ∈ x ↔ z ∈ y). Q is surely interpretable

in ThN , and ThN in turn in ThZ with Z = (Z, 0, 1, +, ·). This is a

consequence of Lagrange’s theorem. Hence, ThZ is strongly undecidable,

and thus every subtheory is undecidable, e.g., the theory of commutative

rings. ThN and ThZ have the same degree of complexity, because ThZ

is (in various ways) interpretable in ThN ; Exercise 3.

8 Claimed in [TMR, p. 34]. The lengthy proof is presented in [Mo, pp. 283–290].
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Remark 2. Remarkable is the mutual interpretability of PA and ZFCfin, the
theory of (hereditarily) finite sets. It arises from ZFC by replacing AI by the
schema Sfin : ϕ(∅)∧∀xy(ϕ(x) → ϕ(x ∪ {y}) → ∀xϕ(x)) and AF by the schema of
foundation Sfnd : ∃xϕ → ∃(ϕ∧ (∀y ∈ x)¬ϕ y

x ); see [De] or [Ra4]. A surprisingly
simple interpretation of ZFCfin in PA was given by Ackermann in [Ac]: Each
natural number represents a finite set in PA (relativation is trivial), and the
∈ -relation is defined by i∈ a :⇔ bia = 1.9 For instance, 0 represents ∅, since
bi0 = 0 for all i. 1, 2, and 3 (more precisely, 1, 2, and 3) represent {∅}, {1},
and {0, 1} (= {∅, {∅}}), respectively. To see that 3 represents {0, 1}, notice that
b03 = b13 = 1 and bi3 = 0 for i > 1. See also [Fi] for more details.

We now describe a related notion of interpretability. For simplicity,

we omit some details. Let K0 and K be nonempty classes of L0- and

L-structures, respectively. Further, let Δ be a list of definitions of the L0-

symbols and a predicate symbol P, and let L∆, CA, and B∆ for B � CA be

defined as above. A∆ denotes the expansion of A ∈ K in L∆ according

to Δ (the Δ-expansion of A). If γ ∈ L∆ is a sentence, let Kγ denote the

class of all A∆ for A ∈ K such that A∆ � γ.

Definition. K0 (or ThK0) is called model interpretable in K (or in ThK

respectively) if for suitable Δ and a suitable sentence γ ∈ L∆,

(1) Kγ � CA and B∆ ∈ K0 for each B ∈ Kγ ,

(2) For every A ∈ K0 there is some B ∈ Kγ such that A ≃ B∆.

Clearly, we can construct as in 2.6 for each sentence α ∈ L∆ a reduced

sentence αrd ∈ L such that

(3) A∆ � α ⇔ A � αrd, for all A ∈ K.

Theorem 6.3. Let K0 be model interpretable in K. If ThK0 is unde-

cidable then so too is Th K.

Proof. Put α̂ := (γ →αP)rd = γrd
→ (αP)rd for α ∈ L0

0. It suffices to

prove (∗) : K0 � α ⇔ K � α̂, because a decision procedure for ThK

then clearly extends to ThK0. ⇒: Let K0 � α, A ∈ K, A∆ � γ so that

A � γrd by (3), and B := A∆ ∈ Kγ . By (1), B∆ ∈ K0. Thus, B∆ � α.

Hence B � αP by Lemma 6.1, and so A � (αP)rd. This confirms A � α̂

for all A ∈ K, in other words, K � α̂. ⇐ : Assume that K0 � α, say

A � α. Choose some B ∈ Kγ according to (2), so that B∆ � α. Then

B � γ →αP; hence K � α̂. This confirms (∗).

9 a �→ bia (the ith binary digit of a; see 6.1) is a p.r. function and hence explicitly
definable in PA, as is every p.r. function according to Theorem 7.1.1.
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Example. The class K0 of all graphs (A, R) is model interpretable in

the class K of simple graphs (B, S), i.e. S is irreflexive and symmetric.

The figure below shows some A ∈ K0 with aRa, aRb, bRa, bRc, and

on the right some B ∈ K, called the encoding structure of A because it

completely describes A in order to satisfy (2). Roughly put, a set N of

new points is adjoined to A so that B = A ∪ N . Since the edges in B are

undirected, we need new points for coding the edge directions of A.

A: ✉ ✉ ✉✲
a b c✍✌✎☞❲

✯
✙ B:

❚❚ ��❅❅☎☎ ❉❉ ❉❉✔✔ ☎☎

✉ � ✉ � ✉�� � � � � ��
The “old” points in B, the larger dots in the figure, are the ones from

A = PB. Such a point neighbors three or two endpoints (i.e., points in

which only one S-edge ends), depending on whether the point is reflexive

in A or not (only a is reflexive). Informally, the definition for R in B

reads as follows: “xRy iff x, y ∈ PB and either x==== y and x neighbors three

endpoints, or there exists exactly one new point z such that xSzSy, or

there are exactly two new points u, v such that xSuSvSy and uSy.” γ is

rendered informally into “∃x Px and all new points are either endpoints

or neighbor precisely two old points or one old and one new point.”

In the example, ThK0 is the logical theory of a binary relation, al-

ready established as undecidable. Accordingly the theory of all simple

graphs is undecidable. The latter can be used to show, for instance, that

the theory SL of semilattices is undecidable. By Theorem 5.4 the same

then follows for the theory SG of semigroups, for SL is a finite exten-

sion of SG. In order to show that ThK0 is model interpretable in SG,

✉ ✉ ✉ ✉
� �

�
❅
❅

❅❅

▲
▲
▲

❅
❅
❅❅

✆
✆
✆

✆
✆
✆

✁
✁
✁
✁
✁
✁

❡
❡

a b c d

0

it suffices to provide, similarly to the last ex-

ample, for a simple graph (A, S) the encoding

semilattice (B, ◦). The figure on the left shows

the ordering diagram of B for A = {a, b, c, d}

and S = {{a, b}, {a, c}}; here S is understood as

a set of edges. The old points are precisely the

maximal points of B. By construction, B has

a smallest element 0 and is of depth 3, that is, there are at most three

consecutive points in B with respect to <. This must now be expressed

by the sentence γ required in the definition of model interpretability.
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The theory of finite simple graphs with or without some additional

feature (for instance planarity) is undecidable; see e.g. [RZ]. The above

construction shows that the undecidable theory of finite simple graphs

is model interpretable in the theory of finite semilattices, which hence is

undecidable. This clearly implies the undecidability of the theory FSG

of finite semigroups. Setting an element on top of the maximal elements

in the last figure results in the order diagram of a finite lattice, so that

the theory of finite lattices turns out to be undecidable. The same holds

for the theory FPO of finite partial orders because for the description of

(A, S) only the partial order of B is relevant.

Remark 3. Somewhat more mathematics is required to prove the undecidability
of the theory FDL of all finite distributive lattices. The previous figure illustrates
that also FPO is undecidable. But FPO is model interpretable in FDL, in that
one identifies the elements of g with the ∩ -irreducible elements of the lattice,
A say. Here we need to know that A’s structure is completely determined by
the partial order of its irreducible elements and that this order can be given
completely arbitrarily.

Positive results are also transferable. For instance, the (logical) theory

of a unary function is interpretable in the first-order theory of (undirected)

trees [KR], and with the latter the former is also decidable. The decidabil-

ity of the theory of a single unary function was first proved by Ehrenfeucht

with a different method. We mention that the theory of two or more unary

functions is undecidable. Decidability of the theory of simple trees also

follows from the decidability of the second-order monadic theory of binary

trees [Bar, C3], a very strong result with an immense scope of applica-

tions. One of these applications is a simple proof of decidability of all

modal systems considered in Chapter 7 (see e.g. [Ga]).

Exercises

1. Show that if a theory T0 is essentially undecidable and interpretable

in T1 ⊆ L1 then T1 is essentially undecidable as well.

2. Show (informally) that PA is interpretable not only in ZFC but also

in ZFCfin. (Attention: ω is no longer a set in ZFCfin.)

3. Show in detail that Th (Z, 0, 1, +, ·, �) is interpretable in ThN .

4. Prove that all axioms of ZFCfin derive from TF + Sfin + Sfnd. This

makes interpretability of ZFCfin in PA an easy task.
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6.7 The Arithmetical Hierarchy

We now add a little more on the complexity of predicates of N including

subsets of N. The set of the Gödel numbers of all sentences valid in N

is an example of a rather simply defined nonarithmetical subset of N; by

Theorem 5.2 it has no definition in Lar.
10 However, relatively simply

defined arithmetical sets and predicates may be recursion-theoretically

highly complicated. It is useful to classify these according to the com-

plexity of the defining formulas. The result is the arithmetical hierarchy,

also called the first-order Kleene–Mostowski hierarchy. The following def-

inition builds upon the one in 6.3 of the Σ1- and Π1-formulas and the

Σ1-, Π1-, and Δ1-predicates defined by these.

Definition. A Σn+1-formula is a formula of the form ∃�xα(�x, �y), where α

is a Πn-formula from Lar ; analogously, we call ∀�xβ(�x, �y) a Πn+1-formula

if β is a Σn-formula. Here �x, �y are arbitrary tuples of variables. A Σn-

predicate (resp. Πn-predicate) is an arithmetical predicate P defined in

N by a Σn-formula (resp. Πn-formula). If P is both Σn and Πn (i.e., a

Σn- and Πn-predicate) then we say that P is a Δn-predicate, or P is Δn

for short. We denote by Σn, Πn, and Δn the sets of the Σn-, Πn- and

Δn-predicates, respectively. In addition, Σ0 := Π0 := Δ0.

According to this definition, a Σn-formula is a prenex formula ϕ with

n alternating blocks of quantifiers, the first of which is an ∃-block, which

may also be empty. ϕ’s kernel is Δ0. Clearly, each ϕ ∈ Lar is equivalent

to a Σn- or Πn-formula for a suitable n, for ϕ can be brought into prenex

normal form and the quantifiers can be grouped into blocks of the same

quantifiers. Obviously, Δn ⊆ Σn, Πn. When considering the hierarchy it

is convenient to have Σn- and Πn-formulas closed under equivalence in N .

Hence, we say that α is Σn or Πn to indicate that α is equivalent to an

original Σn- or Πn-formula, respectively. Note that since ∃�xϕ ≡ ∀�xϕ ≡ ϕ

in case var �x ∩ varϕ = ∅, every Σn- or Πn-formula is also both Σn+1

and Πn+1. Therefore Σn, Πn ⊆ Δn+1. This yields the following inclusion

diagram, where all the inclusions, indicated by lines, are proper:

10 ThN is definable only in second-order arithmetic, which along with variables for

numbers has variables for sets of natural numbers. However, the set of sentences α

from ThN with bounded quantifier rank, i.e. qr α � n, is definable for each n. In

this sense, ThN has an “approximate” elementary definition.
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Σ1 Σ2 Σ3

�� ❅❅ �� ❅❅ ��

Δ0 Δ1 Δ2 Δ3 · · ·

❅❅ �� ❅❅ �� ❅❅
Π1 Π2 Π3

We have already come across Σ1-, Π1-, and Δ1-predicates; for instance,

the solvability claims of Diophantine equations are Σ1, and the unsolv-

ability claims are Π1. Below we provide an example of a Π2-predicate.

It is also convenient to say that Σn- and Πn-sentences define 0-ary Σn-

and Πn-predicates, respectively. In this sense the consistency of PA (in

arithmetical terms ¬ bwb(�∅ �====∅	)) is Π1, the incompleteness of PA is Σ2,

and the ω-consistency is Π3 (Exercise 3). The hierarchy serves various

purposes. More recent investigations have considered also Δ0- or Σn- or

Πn-induction. Here the schema IS is restricted to the corresponding class

of formulas. An example is IΔ0 mentioned on page 239.

As already shown in 6.4, the Σ1-predicates are the recursively enumer-

able ones, the Π1-predicates their complements, and the Δ1-predicates are

exactly the recursive predicates, which are the ones whose complements

are r.e. as well. Thus, we are provided with a purely recursion-theoretic

way of regarding Σ1, Π1, and Δ1. This underscores the importance of

the arithmetical hierarchy, which is fairly stable with respect to minor

changes in the definition of Δ0.

In view of Theorem 5.6 one could begin, for instance, with a Δ0 consist-

ing of all polynomially (or equivalently, quantifier-free) definable relations.

In some presentations, a system of formulas is effectively enumerated (and

denoted by Δ0) that define exactly the p.r. predicates in N . Section 7.1

will indicate how such a system can be defined. Between these and the

Δ0-formulas (which themselves may still be classified) lie many r.e. sets of

formulas that define computable functions significant in both the theory

and practice of computability, e.g., the elementary functions mentioned

in the introduction to this chapter.

However, by Remark 2 in 6.4 we know that there exists no effectively

enumerable system of formulas in Lar through which all recursive, or equi-

valently all Δ1-predicates, are defined, so that the definition of the arith-

metical hierarchy cannot start in a feasible manner with a representative

“set of Δ1-formulas.”
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Remark. We mention that the first-order arithmetical hierarchy considered so
far extends in a natural way to the second-order arithmetic. Also this extended
hierarchy is closely related to recursion theory (see e.g. [Shoe]). A treatment lies
outside the scope of this book.

Similarly to the case n = 1, one readily shows that a conjunction or dis-

junction of Σn-formulas is equivalent to some other Σn-formula; likewise

for Πn-formulas. The negation of a Σn-formula is equivalent to a Πn-

formula, and vice versa; this is certainly correct for n = 1, which initiates

an easy induction on n. The complement of a Σn-predicate is therefore a

Πn-predicate, and vice versa. From this it easily follows that Δn is closed

under all the mentioned operations, including complementation.

By “compression of quantifiers,” the idea of which was illustrated in

Exercise 1 in 6.3, one obtains a somewhat simpler presentation of the

quantifier blocks. The ∃- and ∀-blocks can each be collapsed into one

quantifier. This procedure is fairly easy, provided we are dealing with

equivalence in N as is the case here, and not in a possibly too weakly

axiomatized theory over N (in fact, PA would suffice for the proof):

Theorem 7.1. A (proper) Σn-predicate is definable by a prenex formula

∃x1∀x2 · · · Qnxnα with a Δ0-formula α, where Qn is either the ∀- or ∃-

quantifier, depending on whether n is even or odd. Similarly, a Πn-

predicate is definable by a formula ∀x1∃x2 · · · Qnxnα.

Proof by (simultaneous) induction on n. Exercise 1 in 6.3 formulates the

case for Σ1- and for Π1-predicates. Assume that this is the case for n and

let ∃�xα be the defining formula of a Σn+1-predicate, where α defines a

Πn-predicate and ∃�x is a block of length m � 1. By using the (defining

Δ0-formula of the) pairing function, ∃�x can be compressed stepwise to

a single ∃-quantifier ∃x. The arising bounded quantifiers commute with

the following ∀-block (Exercise 1). The case m = 0 can also be included

in the argument, using a “vacuous quantifier” ∃x (i.e., x /∈ varα). The

Πn+1-formulas are treated completely analogously.

It is quite often a nontrivial task to determine a well-defined predi-

cate’s exact position in the arithmetical hierarchy, or better, like every

fastidious game, it requires sufficient training. In the example below, we

consider a set that is neither recursive nor r.e. For the sake of simplicity,

we apply Church’s thesis in one place, although it can be eliminated using
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a little recursion theory, as was demonstrated previously in the proof of

Theorem 4.4. The example is also a good preparation for 7.6.

Example. Let Lr denote the set of the α ∈ L1
ar

that represent in Q

recursive subsets of N. Thus, the α ∈ Lr have at most one free variable,

namely the first one. For instance, all Δ0-formulas in L1
ar

belong to this

Lr. Since N and ∅ are recursive and L0
ar

⊆ L1
ar

, all members of the set

Q∗ := Q ∪ {α | ¬α ∈ Q} also belong to Lr, because each α ∈ Q trivially

represents N, and each α with ¬α ∈ Q represents ∅. Conversely, each

closed formula of Lr belongs to Q∗. Obviously then, Q∗ = Lr ∩ L0
ar

.

We now show that Lr is arithmetical; more precisely, it is Π2, and indeed

properly Π2, that is, neither Σ1 nor Π1. By definition,

α ∈ Lr ⇔ α ∈ L1
ar

& ∀n∃Φ[Φ is a proof for α(n) or for ¬α(n)].

This equivalence readily yields a definition of Lr (more exactly, of L̇r)

by a Π2-formula ϕ(x) (that is, a ∀-formula ∀xα such that α is Σ1). Let

the p.r. predicate ‘a ∈ L1
ar

’ be Σ1-defined by the formula λ1(x). With

sb = sbv0 , we then set

ϕ(x) := λ1(x) ∧ ∀y∃u[bewQ(u, sb(x, y)) ∨ bewQ(u, ¬̃ sb(u, y))].

More precisely, ϕ should be the reduced in Lar after eliminating the oc-

curring p.r. function terms using more ∃-quantifiers inside the brackets.

Thus, ϕ describes a Π2-formula, that is, Lr is Π2. It is not Σ1, because

Lr is not r.e. by Remark 2 in 6.4, nor is it Π1. Indeed, assume this were

the case; then Q∗ = Lr ∩ L0
ar

would also be Π1, for L0
ar

is Δ1. Now Q∗ is

certainly r.e. and thus Σ1, and so by Theorem 4.5, Q∗ would be recursive.

But then we obtain a decision procedure for Q (hence a contradiction) as

follows: Let α ∈ L0
ar

be given. If α /∈ Q∗ then also α /∈ Q; if α ∈ Q∗,

we turn on the enumeration machine for Q and wait until either α or ¬α

appears. This obviously is a decision procedure for Q.

Special Σ1-formulas. We end this chapter with a result useful for prov-

ing the Σ1-completeness of PA inside PA in 7.2, the so-called provable

Σ1-completeness. It will be shown that the Σ1-predicates are definable

without reference to Δ0, using special Σ1-formulas. To this end some-

what stronger axioms are considered than those of Q, namely the axioms

of the theory N presented in 6.3. All axioms of N are derivable in PA, as

was pointed out already on page 235.
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Definition. Special Σ1-formulas are defined as follows:

(a) Sx==== y, x+y ==== z, and x ·y ==== z are special Σ1-formulas, where x, y, z

denote distinct variables (the special prime formula condition);

(b) if α, β are special Σ1-formulas then so too are α∧β, α ∨ β, α 0
x , and

α y
x , where x, y are distinct and not in bnd α (prime-term substitu-

tion), as well as ∃xα and (∀x<y)α for y /∈ varα.

Theorem 7.2. Every original Σ1-formula is equivalent to a special Σ1-

formula in the theory N, thus in PA and a fortiori in N .

Proof. It suffices to verify the claim for all Δ0-formulas, since the set of

special Σ1-formulas is closed under ∃-quantification. Since

s==== t ≡ ∃x(x==== s∧x==== t) with x /∈ var s, t,

it is enough to consider prime formulas of the form x==== t. For prime terms

t this clearly follows from x==== 0 ≡ (x==== y) 0
y and x==== y ≡N (x + z ==== y) 0

z .

The induction steps on the operations S,+ are obtained as follows:

x==== St ≡ ∃y(x==== Sy ∧y ==== t), x==== s + t ≡ ∃y∃z(x==== y + z ∧y ==== s∧z ==== t),

and similarly for ·. The claim holds for all literals because

s �====t ≡ ∃y∃z(x �====y ∧x==== s∧y ==== t),

x �====y ≡N ∃u∃z(Su==== z ∧ (x + z ==== y ∨ y + z ==== x)).

By Exercise 4 in 6.3 we need only carry out induction on ∧ , ∨, (∀x�t)

and (∃x�t). For ∧ , ∨ this is clear. For the remainder note that (∀x�t)α

and (∃x�t)α are N-equivalent respectively to ∃y(y ==== t ∧ (∀x<y)α ∧ α y
x)

and ∃x∃y∃z(x + y ==== z ∧ z ==== t ∧ α).

Exercises

1. Show that Σn and Πn and hence Δn are closed under bounded

quantification (bounded quantifiers “commute” with the next ∃- or

∀-block, Exercise 2 in 6.3).

2. Confirm that Δ0 ⊂ Δ1 ⊂ Σ1, Π1, which therefore shows that these

four classes of arithmetical predicates are distinct.

3. Prove that ω-inconsistency is (at most) Σ3. Theorem 7.6.2 will show

that ω-inconsistency is properly Σ3. Hence, ω-consistency is Π3.



Chapter 7

On the Theory of Self-Reference

By self-reference we basically mean the possibility of talking inside a

theory T about T itself or related theories. Here we can give merely

a glimpse into this recently much advanced area of research; see e.g. [Bu].

We will prove Gödel’s second incompleteness theorem, Löb’s theorem, and

many other results related to self-reference, while further results are dis-

cussed only briefly and elucidated by means of applications. All this is of

great interest both for epistemology and the foundations of mathematics.

The mountain we first have to climb is the proof of the derivability condi-

tions for PA and related theories in 7.1, and the derivable Σ1-completeness

in 7.2. But anyone contented with leafing through these sections can be-

gin straight away in 7.3; from then on we will just be reaping the fruits of

our labor. However, one would forgo a real adventure in doing so, namely

the fusion of logic and number theory in the analysis of PA. For a com-

prehensive understanding of self-reference, the material of 7.1 and 7.2

(partly prepared in Chapter 6) should be studied anyway.

Gödel himself tried to interpret the notion “provable” using a modal

operator in the framework of the modal system S4. This attempt reflects

some of his own results, though not adequately. Only after 1970, when

modal logic was sufficiently advanced, could such a program be success-

fully carried out. A suitable instrument turned out to be the modal logic

denoted by G (or GL). The Kripke semantics for G introduced in 7.4

is an excellent tool for confirming or refuting self-referential statements.

Solovay’s completeness theorem and the completeness theorem of Kripke

semantics for G in 7.5 are fortunately of the kind that allows application

without knowing the completeness proof itself, which in both cases are

not quite easy and use several technical tricks.
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There are several extensions of G, for example, the bimodal logic GD

in 7.6. This logic is related to Hilbert’s famous ω-rule. A weakening of it

can expressed by the modal operator 
1 of GD. A comprehensive survey

can be found in [Bu, Chapter VII]; see also [Vi2]. In 7.7 we discuss some

questions regarding self-reference in axiomatic set theory.

7.1 The Derivability Conditions

Put somewhat simply, Gödel’s second incompleteness theorem states that

⊢T ConT cannot hold for a sufficiently strong and consistent axiomatizable

theory T . Here ConT is a sentence reflecting the metatheoretic statement

of consistency of T inside T , more precisely, inside the (first-order) lan-

guage L of T . In a popular formulation: If T is consistent, then this

consistency is unprovable in T . As was outlined by Gödel and will be

verified in this chapter, the italicized sentence is not only true but also

formalizable in L and even provable in the framework of T .

The easiest way to obtain Gödel’s theorem is first to prove the deriv-

ability conditions stated below. Their formulation supposes the arithme-

tizability of T , which includes the distinguishing of a sequence 0, 1, . . . of

ground terms; see page 250. Let bewT (y, x) be a formula that represents

the recursive predicate bewT in T as in 6.4. For bwbT (x) = ∃ybewT (y, x)

we write 
(x), and 
α is to mean bwbT
�α�
x . We may read 
α as “box α”

or more suggestively “α is provable in T ,” because 
α reflects the metathe-

oretic property ⊢T α in T . If 
 refers to some theory T ′ �= T then 
 has

to be indexed correspondingly. For instance, 
ZFCα for α ∈ L∈ can eas-

ily expressed also in Lar . Note that 
α is always a sentence, even if α

contains free variables.

Further, set ✸α := ¬
¬α for α ∈ L. If α is a sentence, ✸α may be

read as α is compatible with T , because it formalizes ‘�T ¬α’, which is,

as we know, equivalent to the consistency of T + α. First of all, we define

ConT in a natural way by

ConT := ¬
⊥
(
= ¬ bwbT (�⊥	)

)
,

where ⊥ is a contradiction, 0 �====0, for instance. We shall see in a moment
that ConT is independent modulo T of the choice of ⊥. The mentioned

derivability conditions then read as follows:
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D1: ⊢T α ⇒ ⊢T 
α,

D2: 
α∧
(α →β) ⊢T 
β,

D3: ⊢T 
α →

α.

Here α, β run through all sentences of L. These conditions are due to Löb,

but they were considered in a slightly different setting already in [HB].

Sometimes D2 is written in the equivalent form 
(α →β) ⊢T 
α →
β,

and D3 as 
α ⊢T 

α.

A consequence of D1 and D2 is D0: α ⊢T β ⇒ 
α ⊢T 
β. This

results from the following chain of implications:

α ⊢T β ⇒ ⊢T α →β ⇒ ⊢T 
(α →β) ⇒ ⊢T 
α →
β ⇒ 
α ⊢T 
β.

From D0 it clearly follows that α ≡T β ⇒ 
α ≡T 
β. In particular,

the choice of ⊥ in ConT is arbitrary as long as ⊥ ≡T 0 �====0.

Remark 1. Any operator ∂ :L → L satisfying the conditions d1: ⊢T α ⇒ ⊢T ∂α
and d2: ∂(α → β) ⊢T ∂α → ∂β thus satisfies also d0: α ⊢T β ⇒ ∂α ⊢T ∂β,
and hence d00: α ≡T β ⇒ ∂α ≡T ∂β, for all α, β ∈ L. It likewise satisfies
d∧ : ∂(α∧β) ≡T ∂α∧∂β, for α∧β ⊢T α, β, hence ∂(α∧β) ⊢T ∂α, ∂β ⊢T ∂α∧∂β
in view of d0. The converse direction ∂α∧∂β ⊢T ∂(α∧β) readily follows from
α ⊢T β → α∧β by first applying d0 and then d2.

Whereas D2 and D3 represent sentence schemata in T , condition D1

is of metatheoretic nature and follows obviously from the representability

of bewT in T . Thus, D1 holds even for weak theories such as T = Q. On

the other hand, the converse of D1,

D1∗: ⊢T 
α ⇒ ⊢T α, for all α ∈ L0,

may fail. Fortunately, it holds for all ω-consistent axiomatic extensions

T ⊇ Q such as T = PA. Indeed, �T α implies ⊢T ¬ bewT (n, �α	) for all n

(Corollary 6.4.3). Hence, �T ∃y bewT (y, �α	) in view of the ω-consistency

of T , that is, �T 
α.

Unlike D1, the properties D2 and D3 are not so easily obtained. The

theory T must be able not only to speak about provability in T (perhaps

via arithmetization), but also to prove basic properties about provability.

D3 is nothing else than condition D1 formalized within T , while D2 for-

malizes (7) from page 230, the closure under MP in arithmetical terms.

Let us first realize that D2 holds, provided it has been shown that

D2∗: bewT (u, x)∧ bewT (v, x →̃y) ⊢T bewT (u ∗ v ∗ 〈y〉, y),
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where the p.r. functions →̃ , ∗, and y 
→ 〈y〉 appearing in D2∗ must either

be present or definable in T . Generally speaking, f ∈ Fn is called definable

in an arithmetizable theory T ⊆ L (with respect to the sequence of terms

(n)n∈N in T ) if there is a formula δ(�x, y) ∈ L such that

(1) (a) ⊢T δ(�a, f�a) for all �a, (b) ⊢T ∀�x ∃!yδ(�x, y).

Clearly, f is then also represented by δ(�x, y). For T = PA and related

theories, (1) means that f is explicitly definable in T in the sense of 2.6

and may be introduced in T (using a corresponding symbol). From now

on we will no longer distinguish between T and its definitorial extensions

and apply ⊢T y ==== f�x ↔ δ(�x, y) without comment. This and (1) easily

imply ⊢T f�a==== f�a, e.g. ⊢T a →̃ b==== a →̃ b. With �α	, �β	 for x, y, we thus

obtain from D2∗ in view of �α →β	 = α̇ →̃ β̇ = α̇ →̃ β̇ = �α	 →̃�β	,

bewT (u, �α	)∧ bewT (v, �α →β	) ⊢T bewT (u ∗ v ∗ 〈�β	〉, �β	).

Particularization yields D2. But the real work, the definability of the

functions appearing in D2∗ in theories like T = PA, still lies ahead.

In order to better keep track of things, we restrict our considerations

to the theories ZFC and PA, which are of central interest in nearly all

foundational questions. ZFC is only briefly discussed. Here the proofs of

D2 and D3 (with 
 = 
ZFC) are much easier than in PA and need only a

few lines as follows: D2∗ and hence D2 are clear, because the naive proof

of D2∗ above with bewT = bewZFC can easily be formalized inside ZFC.

This includes the definability of all functions occurring in D2∗, for we did

define them; for instance, the operation ∗ on page 224 may be defined

by setting a ∗ b = ∅ if a /∈ ω or b /∈ ω. We arithmetize L∈ according

to the pattern in 6.2, encoding formulas with Gödel numbers,1 so that

L∈-formulas are encoded within ZFC by certain ω-terms, defined in 3.4.

Formulas from Lar are identified with their ω-relativized in L∈, called the

arithmetical formulas of L∈. Moreover, the arithmetical predicate bewZFC

is certainly representable in ZFC by Theorem 6.4.2, since this theorem can

be viewed, just like every theorem in this book, as a theorem within ZFC.

Thus, the naive proof of D1 based on this theorem (up to Corollary 6.4.3)

can as a whole be carried out in ZFC, and so D3 is proved.

1 This is not actually necessary, since in ZFC one can talk directly about finite sequences

and hence about L∈-formulas (Remark 2 in 6.6), but we do so in order to maintain

coherence with the exposition in 6.2.
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Roughly speaking, D2 and D3 hold for ZFC because ordinary mathe-

matics, in particular the material in Chapter 6, is formalizable in ZFC. In

all of the above, no special set-theoretic constructions such as transfinite

recursion are needed. Only relatively simple combinatorial facts are re-

quired. Hence there is some hope that the proofs of D2 and D3 can also

be carried out in sufficiently strong arithmetical theories like PA. This

is indeed so. The proof of D3 for PA will need the most effort and will

be completed only in 7.2. Our first goal will be to show that the p.r.

functions occurring in D2∗, and in fact all p.r. functions, are explicitly

definable in PA.2 They turn out to be definable even in a sense stronger

than required by (1) from the previous page.

Definition. An n-ary recursive function f is called provably recursive or

Σ1-definable in PA if there is a Σ1-formula δf (�x, y) in Lar such that

(2) (a) ⊢PA δf (�a, f�a) for all �a ∈ Nn; (b) ⊢PA ∀�x ∃!yδf (�x, y).

Since PA is Σ1-complete, 2(a) is equivalent to N � δf (�a, f�a) for all �a,

which is often more easily verified than 2(a) and could replace 2(a). We

will show that all p.r. functions are Σ1-definable in PA, which strengthens

their explicit definability in PA. Thereafter we may treat all occurring p.r.

functions in PA as if they had been available in the language right from the

outset. Essentially this fundamental fact allows a treatment of elementary

number theory and combinatorics within the boundaries of PA and hence

is particularly interesting for a critical foundation of mathematics.

If δf (�x, y) in (2) is Δ0 then f is called Δ0-definable. An example is

the β-function (Exercise 1), which from now on may be supposed to be

present in PA. Basic for the Σ1-definability of all p.r. functions is β’s main

property, Lemma 6.4.1, of which we need, of course, some provable version

in PA. Since Euclid’s lemma and the Chinese remainder theorem are

involved here, these should be derived first. Clearly, the basic arithmetical

laws applied in their proofs in 6.3 should be at our disposal, including

those on the order relation and on a − b for a � b, all provable in N.

The proof of Euclid’s lemma is straightforward, Exercise 2. As for

the Chinese remainder theorem, we avoid the quantification over finite

2 In [Gö2], Gödel presented a list of 45 definable p.r. functions; the last was χ
bew .

Following [WR], Gödel considered a higher-order arithmetical theory. That Gödel’s

theorems also hold in first-order arithmetic was probably first noticed in [HB].
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sequences for the time being, by stating the theorem as a scheme. Let c, d

denote unary provably recursive functions, which may depend on further

parameters. Each such c determines for given n the sequence c0, . . . , cn,

with cν = c(ν) for ν � n. For suggestive reasons from now on also letters

such as n, ν, . . . may denote variables in Lar . With the Δ0-definable re-

lation ⊥ of coprimeness, the Chinese remainder theorem can provisionally

be stated as follows: for arbitrary c, d as arranged above, we get

(3) ⊢PA ∀n[(∀i, j�n)(ci<di ∧ (i �====j →di⊥dj))

→∃a(∀ν�n) rem(a, dν)==== cν ].

To convert the original proof of the remainder theorem to one for (3) we

require, for given provably recursive d, the term lcm{dν | ν�n}, the least

common multiple of d0, . . . , dn. Claim: f : n 
→ lcm{dν|ν�n} is defined

in PA by the Σ1-formula

δf (x, y) := (∀ν�x)dν y ∧ (∀z<y)(∃ν�x) dν � z.

More precisely, δf (x, y) describes a Σ1-formula in Lar that is even Δ0,

provided d is Δ0-definable. Clearly N � δ(n, lcm{dν|ν�n}) for all n.

Thus, 2(a) holds. With the minimum schema (Exercise 4 in 3.3) applied

to β(x, y) := (∀ν�x)dν y, we obtain ⊢PA ∃!yδf (x, y), provided it has been

shown that ⊢PA ∃yβ(x, y) (‘c0, . . . , cx have a common multiple’), which is

easily derived by induction on x; see Example 1 in 2.5. This proves the

claim. After having derived Euclid’s lemma in PA (Exercise 2) we confirm

(3) by following the proof of the remainder theorem in 6.2, and, writing

βst for β(s, t), a suitable version of Lemma 6.4.1 as follows:

(4) ⊢PA ∀n∃u(∀ν�n) cν ==== βuν, for any given provably recursive c.

Theorem 1.1. Each p.r. function f is provably recursive. Moreover, the

recursion equations for f are provable in PA whenever f = Op(g, h).

Proof. For the initial functions and +, · the formulas v0 ==== 0, v1 ==== Sv0,

vn ==== vν along with v2 ==== v0 + v1 and v2 ==== v0 · v1 are obviously defining

Σ1-formulas. For the composition f = h[g1, . . . , gm], let δf (�x, y) be the

formula y ==== h(g1�x, . . . , gm�x). In this case (2) is clear, because we might

think of h, g1, . . . , gm as being already introduced in PA, so that δf (�x, y)

belongs to the expanded language. Only the construction of δf for the

case f = Op(g, h) requires some skill. We may assume that besides β also

g, h have already been introduced in the language. Consider
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(5) δf (�x, y, z) := ∃u[ βu0==== g�x∧ (∀v<y)βuSv ==== h(�x, v,βuv) ∧ βuy ==== z
︸ ︷︷ ︸

γ(u,�x,y,z)

].

δf is similar to δexp from Remark 1 in 6.4. It is Σ1, because β, g, h are

Σ1-definable. Lemma 6.4.1 applied with ci = f(�a, i) for i � b shows that

N � δf (�a, b, f�a), equivalently 2(a). Uniqueness in 2(b), that is,

δf (�x, y, z)∧ δf (�x, y, z′) ⊢PA z ==== z′,

derives easily from γ(u, �x, y, z)∧γ(u′, �x, y, z′) ⊢PA z ==== z′, which clearly

follows from γ(u, �x, y, z)∧γ(u′, �x, y, z′) ⊢PA (∀v�y)βuv ==== βu′v. This is

easily shown by induction on y. Also, ⊢PA ∃zδf (�x, y, z) will be shown

inductively on y. We get ⊢PA ∃uβu0==== g�x (hence ⊢PA ∃zδf (�x, 0, z)) from

(4), choosing c therein such that c0 = g�x and cν = 0 for ν �= 0. c is

provably recursive, for the term g�x is Σ1-definable. The inductive step

will be verified informally, that is, we shall prove

(∗) ∃zδf (�x, y, z) ⊢PA ∃z′δf (�x, Sy, z′).

Suppose γ(u, �x, y, z). Consider the provably recursive c : ν 
→ cν defined by

cν = βuν for ν � Sy and cSy = h(�x, y,βuy). Here u, �x, y are parameters in

the defining Σ1-formula for c. So by (4) (taking Sy for n) there is some u′

with βu′ν = cν = βuν for all ν � y and βu′Sy = cSy = h(�x, y,βuy). With

this u′ and z′ = βu′Sy we obtain γ(u′, �x, Sy, z′), and so ∃z′δf (�x, Sy, z′).

This confirms (∗) and hence 2(b). Thus, f is provably recursive and

may now be introduced in PA. We finally sketch a proof of the recursion

equations for f in PA, which also in PA may be written as usual, i.e.,

(A) ⊢PA f(�x, 0)==== g�x, (B) ⊢PA f(�x, Sy)==== h(�x, y, f(�x, y)).

(A) holds because ⊢PA δf (�x, 0, f(�x, 0)) ≡PA ∃u(βu0==== g�x∧βu0==== f(�x, 0))

and clearly ∃u(βu0==== g�x∧βu0==== f(�x, 0)) ⊢ f(�x, 0)==== g�x. (B) follows by

<-induction on y applied to α = α(�x, y) := f(�x, Sy)==== h(�x, y, f(�x, y)).

Assume that (∀v<y)α v
y . Choosing u in (5) such that γ(u, �x, Sy, f(�x,Sy)),

we readily obtain (∀v�y)f(�x, v)==== βuv, so that

f(�x, Sy)==== βuSy ==== h(�x, y,βuy)==== h(�x, y, f(�x, y)).

This confirms ∀y((∀v<y)α v
y →α), hence ⊢PA ∀yα by <-induction.

We thus have achieved our first goal. Next observe that the properties

of ∗, ℓ, . . . from the remark on page 230 along with the basic property (5)

stated there are also readily proved within PA. This is a little extra pro-

gram that includes the proof of unique prime factorization, see Exercise 4.
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Thus, D2∗ and hence D2 are indeed provable for T = PA. In particular,

the property (6) from page 230 carries over to PA, so that

(6) 
(x →̃y) ⊢PA 
(x) →
(y).

We mention that 
 in (3) may even denote the formula bwbT for any

axiomatizable (and arithmetizable) theory T . D3 will be proved in the

next section in a somewhat broader context.

Remark 2. The formalized equations of Exercise 3 in 6.4 are now also provable
in PA. For instance, item (b) reads ⊢PA sb�x(�ϕ	, �x)==== sb�x ′(�ϕ	, �x ′) for ϕ = ϕ(�x),
where �x ′(⊆ �x) enumerates the free variables of ϕ. As regards (c), consider first a
special case. Let ϕ be Sx==== y. Then sbxy(ϕ̇, x, Sx) = sbx((ϕ Sx

y )·, x), formalized
sbxy(�ϕ	, x, y) Sx

y ==== sbx(�ϕ Sx
y 	, x). For the proof of this equation in PA, just

⊢PA cf Sx==== S̃ cf x is required, which holds by Theorem 1.1. Whoever wants to
write down a detailed proof should follow the example on page 249.

Exercises

1. Prove in PA the Δ0-definability of the remainder function rem, the

pairing function, and the β-function; see 6.4. In particular, rem is

defined by δrem(a, b, r) := (∃q�a)(a==== b · q + r ∧r < b) ∨ b==== r==== 0.

The laws of arithmetic as given by N (page 235) may be used.

2. Prove in PA (a) (∀a, b>0)∃x∃y(a⊥b →ax+1==== by), that is, Euclid’s

lemma. (b) (∀a>1)∃p(prim p∧p a) (‘each number � 2 has a prime

divisor’), (c) ⊢PA (∀a, b>0)∀p(prim p∧p ab →p a ∨ p b).

3. Show that ⊢PA prim p∧p lcm{dν | ν�n} → (∃i�n)p di, required for

carrying out the proof of the Chinese remainder theorem in PA.

4. One of several possibilities of formalizing the prime factorization in

PA is (∀n�2)(∃m�2)n====
∏

i�ℓm p
(((m)))i

i , where m serves as a variable

for the sequence of prime exponents.3 Prove this in PA, as well as

its uniqueness, which is essentially based on Exercise 2.

5. Let T ′ = T + α and T satisfy D1–D3. Show that

(a) ⊢T 
T ′ϕ ↔ 
T (α →ϕ) (the formalized deduction theorem),

(b) D1–D3 hold also for T ′.

3 An equivalent formalization of the prime factorization in PA using the β-function is

(∀k�2)∃u∃n(k ====
∏

i�n
p

βui
i ∧ βun �====0).
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7.2 The Provable Σ1-Completeness

D3 is a special case of the provable Σ1-completeness. This is essentially

the statement ⊢PA α →
α for Σ1-sentences α. The proof demands still

additional preparation, and even good textbooks do not carry out all

proof steps. All steps described in this section and not handled in detail

can easily be completed in full by the sufficiently assiduous reader. Life

could be made easier through the mutual interpretability of PA and ZFCfin

mentioned in 6.6. Let 
 = 
(x) denote the formula bwbPA(x) till the end

of this section. We first introduce an additional notation. Let ϕ = ϕ(�x).

Definition. 
[ϕ] := 
(sb�x(�ϕ	, �x)) (= bwbPA
sb�x(�ϕ�,�x)

x ).

By Remark 2 in 7.1, ⊢PA sb�x(�ϕ	, �x)==== sb�x ′(�ϕ	, �x ′), where �x ′ enu-

merates freeϕ. Hence, we may assume w.l.o.g. that free 
[ϕ] = free ϕ.

Moreover, for α ∈ L0
ar

we have ⊢PA sb�x(�α	, �x)==== sb∅(�α	)==== �α	, hence


[α] and 
α may be identified. ‘⊢PA ϕ(�a) for all �a ∈ Nn’ is reflected

in PA by ‘⊢PA ∀�x 
[ϕ]’. The latter thus reflects in PA the existence of a

collection of proofs which, due to the ω-incompleteness of PA, may be less

than ⊢PA 
∀�xϕ, or what amounts to the same, ⊢PA 
ϕ.

Example. Let ϕ = ϕ(x, y) be Sx==== y. We prove ϕ ⊢PA 
[ϕ], or equiva-

lently, ⊢PA 
[ϕ] Sxy , where w.l.o.g. x, y do not occur bound in 
(x). In

order to prove ⊢PA 
[ϕ] Sxy observe that in view of Remark 2 in 7.1,


[ϕ] Sxy = 
(sbxy(�ϕ	, x, Sy)) ≡PA 
(sbx(�ϕ Sx
y 	, x)) = 
[α(x)]

with α(x) := Sx==== Sx. Thus, it suffices to verify ⊢PA 
[α(x)] (equivalently,

⊢PA ∀x
[α(x)]). This reflects in PA ‘for arbitrary n, ⊢PA Sn==== Sn ’. We

verify ⊢PA 
[α(x)] in detail. Consider the p.r. function α̃ : n 
→ sbx(α̇, n)

(the Gödel number of α(n)). By axiom Λ9, 〈α̃(n)〉 is for each n a trivial

arithmetized proof of length 1. Stated within PA, ⊢PA bewPA(〈α̃(x)〉, α̃(x)).

This clearly yields ⊢PA ∃y bewPA(y, α̃(x)) = 
(α̃(x)) = 
[α].

Next we prove some modifications D1, D2 for α = α(�x) and β = β(�x):

(1) (a) ⊢PA α ⇒ ⊢PA 
[α]; (b) 
[α →β] ⊢PA 
[α] →
[β].

To see (a) let ⊢PA α, hence also ⊢PA ∀�xα and so ⊢PA 
∀�xα. Just as in

the above example, a proof for ∀�xα provides one for α�x(�a) in a p.r. way,

or stated within PA: 
∀�x ⊢PA 
(sb�x(�α	, �x)) (= 
[α]; thus, ⊢PA 
[α]).
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(b) follows from (6) in 7.1 with sb�x(�α	, �x), sb�x(�β	, �x) for x, y, observ-

ing that ⊢PA sb�x(�α →β	, �x)==== sb�x(�α	, �x) →̃ sb�x(�β	, �x), see Exercise 3

in 6.4. (c) of this exercise yields for all not necessarily distinct x, y

(2) 
[α] t
x ≡PA 
[α t

x ] (t ∈ {0, y, Sy} and y /∈ bnd α).

Now, D3 is only a special case of the provable Σ1-completeness of PA,

stated not only for sentences, but for arbitrary formulas as follows:

(3) ϕ ⊢PA 
[ϕ] (equivalently, ⊢PA ϕ →
[ϕ]), for all Σ1-formulas ϕ.

Indeed, choose in (3) for ϕ the Σ1-sentence 
α for any α ∈ L0
ar

. Then


α ⊢PA 
[
α] ≡ 

α, and D3 is proved. We obtain (3) from Theo-

rem 2.1 below, since by (1), (2), and since w.l.o.g. free α = free 
[α], the

operator ∂ :α 
→ 
[α] satisfies the conditions of the theorem.

Theorem 2.1. Let ∂ : Lar
→Lar be any operator with free ∂α ⊆ free α

satisfying

d1: ⊢PA α ⇒ ⊢PA ∂α,

d2: ∂(α →β) ⊢PA ∂α →∂β,

ds: ∂α t
x ≡PA ∂(α t

x ) (t ∈ {0, y, Sy}, y /∈ bnd α).

Then ⊢PA ϕ →∂ϕ holds for all Σ1-formulas ϕ ∈ Lar .

Proof. ∂ satisfies also d0, d00, and d∧ (see Remark 1 in 7.1). Hence,

by Theorem 6.7.2 and d00 we need to carry out the proof only for special

Σ1-formulas. First let ϕ be Sx==== y. Clearly, ⊢PA ϕ →∂ϕ is equivalent

to ⊢PA ∂ϕ Sx
y , and this to ⊢PA ∂ Sx==== Sx by ds, which is obvious from

d1. Now let ϕ be x + y ==== z. We shall prove ⊢PA ∀yz(ϕ →∂ϕ) by induc-

tion on x. Observing that y ==== z ⊢PA ∂ y ==== z (equivalently ⊢PA ∂z ==== z),

we obtain ϕ 0
x ⊢PA y ==== z ⊢PA ∂ y ==== z ≡PA ∂(ϕ 0

x) ≡PA ∂ϕ 0
x . Thus,

⊢PA ∀yz(ϕ →∂ϕ) 0
x . Now ϕSy

y ≡PA ϕSx
x ; hence ∂ϕ Sy

y ≡PA ∂ϕ Sx
x , by d00,

ds. The induction step ∀yz(ϕ→∂ϕ) ⊢PA ∀yz(ϕ→∂ϕ)Sxx follows then from

∀yz(ϕ →∂ϕ) ⊢ ϕ Sy
y →∂ϕ Sy

y ⊢PA ϕ Sx
x →∂ϕ Sx

x = (ϕ →∂ϕ)Sxx .

The formula x·y ==== z is left to the reader, who should observe d∧ , d2, the

induction steps for ∧ and ∃, and Sx·y ==== z ≡PA ∃u(x·y ==== u∧u + y ==== z).

We now treat the logical connectives. The induction steps for ∧ , ∨, ∃

are simple. Indeed, from d∧ we obtain

α∧β ⊢ α, β ⊢PA ∂α∧∂β ⊢PA ∂(α∧β).

For ∨ note that α ⊢PA ∂α ⊢PA ∂(α∨β), and similarly for β. Further, since

ϕ ⊢ ∃xϕ we get ϕ ⊢PA ∂ϕ ⊢PA ∂∃xϕ by d0, and from x /∈ free ∂∃xϕ
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follows ∃xϕ ⊢PA ∂∃xϕ. The prime-term substitution step (t is prime in
t
x ) also runs smoothly: ϕ ⊢PA ∂ϕ yields ϕ t

x ⊢PA ∂ϕ t
x ⊢PA ∂(ϕ t

x ) by ds.

It remains to verify the step for bounded quantification. Suppose that

α ⊢PA ∂α and y /∈ varα. We prove ϕ := (∀x<y)α ⊢PA ∂ϕ by induction

on y. The initial step is obvious: ⊢PA ϕ 0
y , and therefore

⊢PA ∂(ϕ 0
y ) ⊢PA ∂ϕ 0

y ⊢PA ϕ 0
y →∂ϕ 0

y .

Clearly, ϕ Sy
y ≡PA ϕ∧α y

x . Hence α y
x ⊢PA ∂α y

x ⊢PA ∂(α y
x) because of

α ⊢PA ∂α. That leads to

ϕ Sy
y ∧ (ϕ →∂ϕ) ⊢PA ϕ∧α y

x ∧ (ϕ →∂ϕ) ⊢PA ∂ϕ∧∂(α y
x)

⊢PA ∂(ϕ∧α y
x) ⊢PA ∂(ϕSy

y ).

Thus, ϕ →∂ϕ ⊢PA ϕSy
y →∂(ϕSy

y ), which is obviously equivalent to the

inductive step.

Remark 3. D1–D3 are also provable for much weaker theories than PA, e.g.,
for the so-called elementary arithmetic EA = IΔ0 +∀xy∃zδexp(x, y, z). Here IΔ0

is defined in Remark 1 in 6.3 and δexp is a defining Δ0-formula for exp, see also
[FS]. Also Theorem 1.1 can essentially be strengthened and has many variants.
For instance, the provably recursive functions of IΣ1 (like PA but IS restricted
to Σ1-formulas) are precisely the p.r. ones, [Tak]. The same provably recursive
functions has EA augmented by the Π2-induction schema without parameters,
[Be4]. It is noteworthy that the provable recursive functions of EA itself are
precisely the elementary ones, [Si]. For more material on the metatheory of PA

and related theories see [Bar, Part D], and in particular [HP].

7.3 The Theorems of Gödel and Löb

We are now in a position to harvest the yields of our efforts. As long as

not stated otherwise, let T denote any arithmetizable axiomatic theory

in L, that satisfies the derivability conditions D1–D3 of 7.1 along with

the fixed point lemma of 6.5. We direct attention straight away to the

uniqueness statement of Lemma 3.1(b) below. According to this claim,

up to equivalence in T at most 
α →α can be the fixed point of the

formula 
(x) →α. The proof of Theorem 3.2 will show that ¬
(x) too

has only one fixed point modulo T . Beneath all this lies, as we shall see

from Corollary 5.6, a completely general result.
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Lemma 3.1. Let T be as arranged above, and let α, γ ∈ L0 be such that

γ ≡T 
γ →α. Then (a) 
γ ≡T 
α and (b) γ ≡T 
α →α.

Proof. The supposition yields 
γ ⊢T 
(
γ →α) ⊢T 

γ →
α, by D0

and D2. Now by D3, we clearly obtain 
γ ⊢T 

γ, hence 
γ ⊢T 
α.

Since α ⊢T 
γ →α ≡T γ and so α ⊢T γ, it follows that 
α ⊢T 
γ by

D0. Together with the already verified 
γ ⊢T 
α we get (a). Using (a)

we may replace 
γ with 
α in γ ≡T 
γ →α, which results in (b).

Theorem 3.2 (Second incompleteness theorem). PA satisfies along-

side the fixed point lemma also D1–D3. Every theory T with these prop-

erties satisfies the conditions

(1) �T ConT provided T is consistent, (2) ⊢T ConT →¬
 ConT .

Proof. D1–D3 were proved for PA in 7.1. (1) follows from (2). Assume

⊢T ConT . Then ⊢T 
 ConT by D1, as well as ⊢T ¬
 ConT by (2). Thus,

T is inconsistent. To verify (2), let γ be a fixed point of ¬
(x), i.e.,

(∗) γ ≡T ¬
γ (≡ 
γ →⊥).

By Lemma 3.1(b) with α = ⊥, we obtain γ ≡T 
⊥ →⊥ ≡ ¬
⊥ = ConT .

Replacing γ in (∗) with ConT gives ConT ≡T ¬
 ConT . Half of this is the

claim (2).

Thus, by (1), no sufficiently strong consistent theory can prove its own

consistency. In particular, �PA ConPA as long as PA is consistent which

is assumed throughout this book and is a minimal assumption for a far-

reaching metamathematics. The above proof shows that ConT is the only

fixed point of ¬ bwbT modulo T . Actually, it shows a bit more, namely

(3) ConT ≡T ¬
 ConT .

This strengthens (2), but only by a little: ¬
 ConT ⊢T ConT is just a

special case of

(4) ¬
α ⊢T ConT (equivalently, ¬ ConT ⊢T 
α), for every α ∈ L.

This follows from ⊥ ⊢T α, since ¬ ConT ≡ 
⊥ ⊢T 
α by D0. (4) reflects

in T ‘If T is inconsistent then every formula is provable’. From (1) and

(3) we get in particular �PA ¬
PA ConPA, although ‘ConPA is unprovable in

PA’ is true according to (1) (again we tacitly use the consistence of PA).

¬
PA ConPA reflects ‘ConPA is unprovable in PA’; hence �PA ¬
PA ConPA

is just another formulation of the second incompleteness theorem.
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The above claims hold independently of the “truth content” of the sen-

tences provable in T . Namely, a consequence of the second incompleteness

theorem is the existence of consistent theories T ⊇ PA in which along

with claims true in N also false ones are provable, i.e., in which truth and

untruth live in peaceful coexistence with each other. Such “dream theo-

ries” are highly rich in content, for all of them include ordinary number

theory. An example is PA⊥ := PA + ¬ ConPA. This theory is consis-

tent because the consistency of PA⊥ is equivalent to the unprovability of

ConPA in PA. The italicized sentence is even provable in PA, as (5) be-

low will show. By the formalized deduction theorem (Exercise 5 in 7.1),


T+α⊥ ≡T 
(α →⊥) ≡ 
¬α; hence ¬
T+α⊥ ≡T ¬
¬α (≡ ✸α), and

consequently,

(5) ConT+α ≡T ¬
¬α (in particular, ConPA⊥ ≡PA ¬
PA ConPA).

The special cases under (5) and (3) for T = PA now clearly yield

(6) ConPA ≡PA ConPA⊥ (hence also ConPA ≡PA⊥ ConPA⊥).

Put together, PA⊥ contains ordinary number theory as known to us, but

also proves the indubitably false sentence bwbPA(�0 �==== 0	). Moreover,

because of ⊢PA⊥ ¬ ConPA and hence ⊢PA⊥ ¬ ConPA⊥ by (6), PA⊥ proves

(the reflection of) its own inconsistency, although along with PA also PA⊥

is consistent. It claims to have a mysterious proof of ⊥. Thus, consistency

of T can have a different meaning within T and seen from outside, just as

the meanings of countable diverge, depending on whether one is situated

in ZFC or is looking at it from outside. One may even say that PA⊥ is

lying to us with the claim ¬ ConPA⊥ .

We learn from the preceding that the extension T +ConT of a consistent

theory T need not be consistent. T = PA⊥ is a concrete example, and in

fact only one of arbitrarily many others. More on the meaning of ¬ ConT

will be said in Theorem 3.4.

We now discuss what is, along with (3), the most famous example of a

self-referential sentence. Clearly, a fixed point α of 
(x) claims just its

own provability, that is, α ≡T 
α. A trivial example is α = ⊤, because

⊢T 
⊤ →⊤, and since ⊢T ⊤, clearly ⊢T 
⊤, so that ⊤ ≡T 
⊤. What

is surprising here is that ⊤ turns out to be the only fixed point of 
(x)

modulo T . By D4◦ below, ⊢T 
α →α implies ⊢T α and so α ≡T ⊤ (which

confirms the uniqueness), although one might perhaps expect ⊢T 
α →α

for all α ∈ L0 because 
α →α is intuitively true.
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Theorem 3.3 (Löb’s theorem). Take T to satisfy D1–D3 and the fixed

point lemma. Then T has the properties

D4: ⊢T 
(
α →α) →
α, D4◦ : ⊢T 
α →α ⇒ ⊢T α (α ∈ L0).

Proof. Let γ be a fixed point of 
(x) →α, i.e., γ ≡T 
γ →α. Then

γ ≡T 
α →α by Lemma 3.1(b). This and D0 imply 
γ ≡T 
(
α →α).

Lemma 3.1(a) states 
γ ≡T 
α, hence 
α ≡T 
(
α →α). Half of this

is D4. Now suppose ⊢T 
α →α. Then by D1, ⊢T 
(
α →α). Using D4

results in ⊢T 
α, and ⊢T 
α →α yields ⊢T α, thus proving D4◦.

D4 reflects just D4◦ in T . One application of Löb’s theorem is an

extremely easy proof of �PA ConPA. Indeed, ⊢PA ConPA (≡ 
⊥ →⊥) im-

plies ⊢PA ⊥ by D4◦. That’s all. Similarly, D4 implies (2) for α = ⊥

by contraposition. Thus, Löb’s theorem is stronger than Gödel’s second

incompleteness theorem, which is not obvious at first glance.

Unlike PA⊥, PA + ConPA conforms to truth (in N ). Unfortunately it

is not quite clear what ConPA means in number-theoretic terms. This

is clear, however, for an arithmetical statement discovered by Paris and

Harrington (see [Bar]) that implies ConPA; this statement is provable in

ZFC but not in PA. Since then, many such sentences have been found,

mostly of a combinatorial nature. A popular example is

Goodstein’s theorem. Every Goodstein sequence ends in 0.

A Goodstein sequence is a number sequence (an)n∈N, with arbitrary a0

given in advance, such that an+1 is obtained from an as follows: Let

bn = n + 2, so that b0 = 2, b1 = 3, etc. Expand an in b-adic base for

b := bn, so that for suitable k,

(∗) an =
∑

i�k bk−ici, with 0 � ci < b.

Also the powers k − i are represented in b-adic form, so too the powers

of powers, and so on. Now replace b everywhere with b + 1 (= bn+1) and

subtract 1 from the output. The result is an+1. The table below gives an

example beginning with a0 = 11; already a6 has the value 134 217 727.

a0 = 11 = 22+1 + 2 + 1 2 � 3 33+1 + 3 + 1 = 85

a1 = 84 = 33+1 + 3 3 � 4 44+1 + 4 = 1028

a2 = 1027 = 44+1 + 3 4 � 5 55+1 + 3 = 15 628

a3 = 15 627 = 55+1 + 2 5 � 6 66+1 + 2 = 279 938

a4 = 279 937 = 66+1 + 1 6 � 7 77+1 + 1 = 5 764 802
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As one sees from this example, an initially increases enormously, and it

is hardly believable that the sequence ever starts to decrease and ends in

0. But the proof of the theorem is not particularly difficult; one estimates

an from above by the ordinal number λn, which, crudely put, results from

an on replacing the basis b in (∗) by ω. With some ordinal arithmetic

it can readily be shown that λn+1 < λn as long as λn �= 0. Since there

is no properly decreasing infinite sequence of ordinal numbers (these are

well-ordered), the sequence (an)n∈N must eventually end in 0. For more

detailed information see for instance [HP].

Many metatheoretic properties can be expressed using the provability

operator 
 in T , often using sentence schemata. The following ones turn

out to be equivalent and facilitate a better understanding of the meaning

of ¬ ConT within T . None of these properties hold for a consistent T from

the outside (Theorem 6.5.1′), but all of them are provable in T = PA⊥.

(i) ¬ ConT : 
⊥ (provable inconsistency),

(ii) SyComp : 
α ∨ 
¬α (syntactic completeness),

(iii) SeComp : α →
α (semantic completeness),

(iv) ω-Comp : ∀x
[ϕ(x)] →
∀xϕ(x) (ω-completeness).

Theorem 3.4. The properties (i)–(iv) are all equivalent in a theory T

satisfying the properties named at the beginning of this section.

Proof. By (4) (i)⇒(ii),(iii),(iv) are clear. (ii)⇒(i): By Rosser’s theorem

formulated in T (see 7.5), ConT ⊢T ¬
α∧¬
¬α for some α. Thus,


α ∨ 
¬α ⊢T ¬ ConT . (iii)⇒(i): For α := ConT , SeComp and (2)

yield α ⊢T 
α,¬
α and so ⊢T ¬α. (iv)⇒(i): By (3) in 7.2, we obtain

¬ bewT (x, �⊥	) ⊢T 
[¬ bewT (x, �⊥	)], for ¬ bewT (x, �⊥	) is Σ1. Hence,

ConT = ∀x¬ bewT (x, �⊥	) ⊢T ∀x
[¬ bewT (x, �⊥	)].

ω-Comp and (2) yield ConT ⊢T 
∀x¬ bew(x, �⊥	) = 
 ConT ⊢T ¬ ConT .

Therefore, ⊢T ¬ ConT .

Remark. ConT is also equivalent in T to other properties, for example to the
schema 
α → α for Π1-formulas α (the local Π1-reflection principle) as well
as the uniform Π1-reflection principle ∀x
[α(x)] → ∀xα(x) for Π1-formulas α.
Both the theorems of Paris–Harrington and of Goodstein are equivalent in PA

to the uniform Σ1-reflection, or equivalently, to the consistency of PA plus all
true Π1-sentences; see e.g. [Bar, D8].
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Define inductively T 0 = T and T n+1 = Tn + ConT n . This n-times-

iterated consistency extension Tn can be written as Tn = T + ¬
n⊥

with 
 = bwbT , 
0α = α and 
n+1α = 

nα (Exercise 3). Thus, the

consistency of Tn can be expressed by an iterated consistency statement

on T . Let Tω :=
⋃

n∈ω Tn. Since Tn ⊆ Tn+1 and Tn = T + ¬
n⊥ (hence

Tω = T ∪ {¬
n⊥ | n ∈ ω}), the following three items are equivalent:

(i) Tω is consistent, (ii) T n is consistent for all n, (iii) �T 
n⊥ for all n.

Like PA1 = PA + ConPA, also PAω conforms to truth looking at PA

from outside. When considered more closely, this means only that PAω is

relatively consistent with respect to ZFC. In other terms, ⊢ZFC ConPAω .

The argument (to be formalized in ZFC) runs as follows: ⊢PAω ⊥ implies

⊢PAn ⊥ for some n, as was noticed above, hence ⊢PA 
n⊥. But this is

impossible, as is seen by a repeated application of D1∗ (p. 271) on PA.

Exercises

1. Prove D4◦ for T by applying Theorem 3.2 to T ′ = T + ¬α.

2. Show by means of Löb’s theorem that ConPA →¬
¬ ConPA is un-

provable in PA, although this formula is true if seen from outside.

3. Let T n recursively be defined as in the text above. Prove that

Tn = T + ¬
n⊥ and ConT n ≡T ¬
n+1⊥, where 
 is bwbT .

4. Show that ⊢ZFC 
PAα →α for all arithmetical sentences α from L∈

(the L∈-sentences relativized to ω).

7.4 The Provability Logic G

In 7.3 first-order logic was hardly required. It comes then as no surprise

that many of the results there can be obtained propositionally, more pre-

cisely, in a certain modal propositional calculus. This calculus contains

alongside ∧ ,¬ the falsum symbol ⊥, and a further unary connective 
 to

be interpreted as the proof operator in Lar , denoted by 
 as well. First

we define a propositional language F� , whose formulas are denoted by

H, G, F : (a) the variables p1, p2, . . . from PV (page 4) and ⊥ belong to F� ;

(b) if H, G belong to F� then so too (H ∧G), ¬H, and 
H.
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No other strings belong to F� in this context. H ∨ G, H →G, and

H ↔ G are defined as in 1.4, ⊤ := ¬⊥. Further, set ✸H := ¬
¬H and

define recursively 
0H = H, 
n+1H = 

nH. Let G be the set of those

formulas in F� derivable using substitution in F� , modus ponens MP,

and the rule MN: H/
H from the tautologies of two-valued propositional

logic, augmented by the axioms (called also the G-axioms)


(p → q) →
p →
q, 
p →

p,4 
(
p →p) →
p.

For H ∈ G we mostly write ⊢G H (read “H is derivable in G”). Rule MN

corresponds to D1. The first G-axiom reflects D2, the middle D3, and

the last (called Löb’s formula) D4, hence the name provability logic. The

connection between G and PA is described in 7.5. Here we are concerned

with the modal logic G and its Kripke semantics . For simplicity, we

restrict ourselves to finite Kripke frames, which are just finite directed

graphs. We can do so, since all modal logics considered here have the

finite model property. We begin without further ado with the following

Definition. A G-frame or Kripke frame for G is a finite poset (g, <). A

valuation is a mapping w that assigns to every variable p a subset wp of g.

The relation P � H, dependent on w, between points P ∈ g and formulas

H ∈ F� (read “P accepts H”) is defined inductively by

P � p iff P ∈ wp, P � ⊥, P � H ∧G iff P � H & P � G,

P � ¬H iff P � H, P � 
H iff P ′ � H for all P ′ > P.

These conditions easily imply P � ✸H iff P ′ � H for some P ′ > P ,

and P � H →G iff P � H ⇒ P � G. If P � H for all w and all P ∈ g,

we write g � H and say H holds in g. If g � H for all G-frames g, we write

� �✲P P ′�G H and say H is G-valid. The G-frame on the right, consist-

ing of two points P, P ′ with P < P ′, shows that �G p →
p.

Indeed, let wp = {P}. Then P � p, but P � 
p because P ′ � p. Note

also �G 
p →p, for P ′ � p but P ′ � 
p because there is no P ′′ > P ′.

We may tacitly assume that G-frames are initial (have a smallest point),

for g � H is verified pointwise. We write H ≡G H ′ for �G H ↔ H ′. It is

readily seen that ≡G is a congruence in F� that extends the usual logical

equivalence conservatively. For instance, ¬
H ≡G ¬
¬¬H ≡G ✸¬H.

Many more equivalences are presented in the following examples. These

will later be translated into statements about self-reference.

4 This axiom is dispensable; it is provable from the remaining, see e.g. [Boo] or [Ra1].
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Examples. (a) Let g be an arbitrary G-frame. Although always P � ⊥,

we have P � 
⊥, provided P is maximal in g, that is, no Q > P exists.

Likewise, 
¬
⊥ is accepted precisely at the maximal points of g. Thus,


⊥ ≡G 
¬
⊥, or equivalently, ¬
⊥ ≡G ✸
⊥ (= ¬
¬
⊥). This reflects

in G the second incompleteness theorem, as will be seen in 7.5.

(b) Let {P0, . . . , Pn} be the ordered G-frame with Pn < · · · < P0. Clearly,

P0 � 
m⊥ for each m > 0. Induction on n shows that Pn � 
m⊥ for

all m > n, but Pn � 
n⊥, and therefore Pn � 
n+1⊥ →
n⊥. Hence,

�G 
n+1⊥ →
n⊥, and a fortiori �G 
n⊥ and �G ¬
n+1⊥, for all n.

(c) �G 
(
p →p) →
p. For take an arbitrary g and P ∈ g. If P � 
p

then there is, since g is finite, some Q > P with Q � ¬p and Q′ � p for

all Q′ > Q. Thus Q � 
p; hence Q � 
p →p and so P � 
(
p →p).

Consequently, P � 
(
p →p) →
p, which proves our claim. Note also

that �G 
p →

p. Only the transitivity of < is relevant for the proof.

(d) �G ¬
n+1⊥ →✸Rn, where Rn :=
∧n

i=1(
pi →pi). For let P ∈ g,

P � ¬
n+1⊥. Then there must be a chain P = P0 < P1 < · · · < Pn+1

in g. Now, it is a nice separate exercise to verify that each conjunct of

Rn fails to be accepted by at most one of the n + 1 points P1, . . . , Pn+1.

Thus, at least one of these accepts all conjuncts. In other words, Pi � Rn

for some i > 0; hence P � ✸Rn. This nontrivial example will essentially

be employed in the proof of Theorem 7.1.

By induction on ⊢G H one easily proves ⊢G H ⇒ �G H (soundness of

Kripke semantics for ⊢G). Example (c) is a part of the initial step. The

induction steps over the rules are easy. For instance, g � H clearly implies

g � 
H. The converse, �G H ⇒ ⊢G H, holds as well. Thus, ⊢G H can be

confirmed by proving �G H, and vice versa. This is the content of

Theorem 4.1 (Completeness of Kripke semantics for G). For each

formula H from F� it holds that ⊢G H ⇔ �G H.

The nontrivial direction ⇐ follows directly from the finite model property

of G, i.e., each H /∈ G is falsified or refuted by some finite G-frame, proved,

for example, in [Boo], [Ra1], and [CZ]. For the relatively simple formulas

considered here, �G H is in general more easily checked than ⊢G H.

Both the formulas provable in G and those refutable are clearly recur-

sively enumerable, thanks to the finite model property of G. Thus, in

analogy to Exercise 2 in 3.6, we obtain
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Theorem 4.2. G is decidable.

Remark. The finite model property, decidability, and some other properties
such as interpolation can all be proved in one move, see e.g. [Ra2]. An important
fragment of G is G0 := G∩F0

�
, where F0

�
denotes the set of variable-free formulas

of F�. The formulas ¬
n
⊥ (≡G ✸

n
⊤) form a Boolean base in G0. One proves this

most easily by showing that G0 is complete with respect to all (totally) ordered
G-frames, including the infinite ones, and applying Theorem 5.2.3 accordingly.

Exercises

1. Let g be any finite Kripke frame (a graph) that satisfies the axioms

of G. Show that g is necessarily a poset. Only this fact justifies the

identification of G-frames with posets.

2. Prove ⊢G 
p →
(
p →p), the inverse of Löb’s formula. (Only the

first of the three G-axioms is needed in the proof.)

7.5 The Modal Treatment of Self-Reference

Let T be a theory as in 7.3. A mapping ı from PV to L0 with p ı
i = αi

is called an insertion. ı can be extended to the whole of F� by the

clauses ⊥ı = ⊥, (¬H)ı = ¬Hı, (H ∧G)ı = H ı ∧Gı, and (
H)ı = 
H ı

(= bwbT (�H ı	)). Briefly speaking, H ı results from H(p1, . . . , pn) by re-

placing the pν by the sentences αν from L. For instance, if pı = α then

(
p∧¬
⊥)ı = 
α∧¬
⊥, and (¬
⊥)ı = ¬
⊥ = ConT . The following

lemma shows that ⊢G is “sound” for ⊢T . Already this simple fact consid-

erably simplifies proofs about self-referential statements.

Lemma 5.1. For each H with ⊢G H and each insertion ı, ⊢T H ı.

Proof by induction on ⊢G H. If H is a propositional tautology then

Hı ∈ TautL ⊆ T . If H is one of the modal axioms of G, then ⊢T Hı by D2,

D3, or D4. If ⊢G H and σ : F� → F� is a substitution, then ⊢T Hσı, since

Hσı = H ı′ with ı′ : p 
→ pσı, and ⊢T Hı′ holds by the induction hypothesis.

As regards the induction step over MP, consider (F →G)ı = F ı
→Gı.

Finally, if MN is applied, and ⊢T H ı by the induction hypothesis, then

⊢T 
H ı = (
H)ı, due to D1.

Example 1. We prove (3) of Theorem 3.2 with the calculus ⊢G. By

Lemma 5.1 and Theorem 4.1 it suffices to show that �G ¬
⊥ ↔ ¬
¬
⊥.
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This holds by Example (a) in 7.4. Next example: �G 
(p ↔ ✸p) →¬✸p

is easily confirmed. Thus, ⊢T 
(α ↔ ✸α) →¬✸α. This tells us (if every-

thing is related to T = PA) that a sentence claiming its own consistency

with PA is incompatible with PA, which hardly seems plausible. Even the

converse is provable in PA since �G ¬✸p →
(p ↔ ✸p).

We now explain certain facts that expand upon the reasoning of above.

For PA and related theories, the converse of Lemma 5.1 holds as well.

That is to say, the derivability conditions and Löb’s theorem already con-

tain everything worth knowing about self-referential formulas or schemes.

This is essentially the content of Theorem 5.2. For the subtle proofs of

Theorems 5.2, 5.4, and 5.5, the reader is referred to [Boo].

Theorem 5.2 (Solovay’s completeness theorem). For all H ∈ F� :

⊢G H (equivalently �G H) if and only if ⊢PA Hı for all insertions ı.

Example 2 (applications). (a) �PA 
n+1⊥ →
n⊥ because by Exam-

ple (b) in 7.4, �G 
n+1⊥ →
n⊥. In particular, �PA ConPA (≡ 
⊥ →⊥).

(b) �PA ¬
n+1⊥, since �G ¬
n+1⊥. (c) It is easily verified with the 2-point

frame on page 285 that �G ¬
p →
¬
p, in particular �G ¬
⊥ →
¬
⊥.

Therefore, �PA ConPA →
 ConPA. (d) PAn := PA + 
n⊥ is consistent

for n > 0 by (b), but is ω-inconsistent. Otherwise, by D1∗ (page 271),

⊢PAn

n⊥ ⇒ ⊢PAn


n−1⊥ ⇒ · · · ⇒ ⊢PAn
⊥, contradicting �PAn

⊥. Since

⊢PA 
n⊥ →
n+1⊥ by D3, we get PAn ⊇ PAn+1, and since PAn �= PAn+1

by (a), we have PA0 ⊃ PA1 ⊃ · · · ⊃ PA. Observe that PA1 is just PA⊥.

Note also the following: Since �G 
p →p, there must be some α ∈ L0
ar

such that �PA 
α →α. Indeed, choose α = ⊥. The above examples point

out that Theorem 5.2 and the decidability of G are very efficient tools in

deciding the provability of self-referential statements.

Many other theories have the same provability logic as PA, where in

general a modal propositional logic H is the provability logic for T when the

analogue of Theorem 5.2 holds with respect to T and H. For some theories,

the provability logic may be a proper extension of G. For example, the

ω-inconsistent theory PAn from Example 2(d) has the provability logic

Gn := G + 
n⊥, the smallest extension of G closed under all rules of G

with the additional axiom 
n⊥ (Exercise 1; note that G0 is inconsistent).

By the following theorem, which will be proved in 7.7, other extensions

of G to be considered as provability logics are out of the question.
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Theorem 5.3 ([Vi1]). Let T be at least as strong as PA. Then

(a) If Tω (page 284) is consistent, then G is the provability logic of T ;

(b) if ⊢T ω ⊥ and n is minimal such that ⊢T n ⊥, then T ’s provability

logic is Gn.

The formulas H ∈ F� such that N � H ı for all insertions ı in Lar

can also be surprisingly easily characterized. All H ∈ G are obviously

included; but in addition also 
p →p belongs to this sort of formula,

because N � 
α →α for α ∈ L0
ar

. Indeed, if N � 
α then there is some

n that codes a proof of α in PA, hence N � α.

Let GS (⊇ G) be the set of all formulas in F� that can be obtained

from those in G ∪ {
p →p} using substitution and modus ponens only.

Induction in GS readily yields H ∈ GS ⇒ N � H ı for all ı. Again, the

converse holds as well:

Theorem 5.4 ([So]). H ∈ GS if and only if N � H ı for all insertions ı.

GS is decidable as well, because it can be shown that H ∈ GS ⇔ H∗ ∈ G,

where H∗ := [
∧

�G∈Sf� H
(
G →G)] →H. Here Sf� H is the set of sub-

formulas of H of the form 
G. Thus, Theorem 5.4 reduces the decidability

of GS to that of G. Using this theorem, many questions concerning the

relations between provable and true are effectively decidable. For instance,

H(p) := ¬
(¬
⊥ →¬
p∧¬
¬p) �∈ GS

is readily verified. Hence N � ¬H(α) ≡ 
(¬
⊥ →¬
α∧¬
¬α) for some

α ∈ L0
ar

by Theorem 5.4. Translated into English: It is provable in PA that

the consistency of PA implies the independence of α for some sentence α.

This is exactly Rosser’s theorem, which in this way turns out to be prov-

able in PA. As was shown in [Be1], the box in the formulas H ∈ GS in

Theorem 5.4 may denote bwbT for any axiomatizable T ⊇ PA, provided

T ⊆ ThN . However, if T proves false sentences (as does e.g. PA⊥) then

GS has to be redefined in a feasible manner and is always decidable.

A variable p in H is called modalized in H if every occurrence of p

is contained within the scope of a 
, as is the case in ¬
p, ¬
¬p, and


(p → q). By contrast, p is not modalized in 
p →p. Another particularly

interesting theorem is
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Theorem 5.5 (DeJongh–Sambin fixed point theorem). Let p be

modalized in H(p, q1, . . . , qn), n � 0. Then a formula F = F (�q) from F�

can effectively be constructed such that

(a) F ≡G H(F, �q),

(b) ⊢G

∧2
i=1[(pi ↔ H(pi, �q ))∧
(pi ↔ H(pi, �q ))] → (p1 ↔ p2).

This theorem easily yields a corresponding result for theories T :

Corollary 5.6. Let p be modalized in H = H(p, �q ) and suppose T satisfies

D1–D4. Then there is an F = F (�q) ∈ F� with F (�α) ≡T H(F (�α), �α) for

all �α = (α1, . . . , αn), αi ∈ L0. For each �α there is only one β ∈ L0 modulo

T such that β ≡T H(β, �α).

Proof. Choose F as in (a) of the theorem. Then F (�α) ≡T H(F (�α), �α) by

Lemma 5.1 (�q ı = �α). To prove uniqueness let βi ≡T H(βi, �α) for i = 1, 2.

By D1, ⊢T (βi ↔ H(βi, �α))∧
(βi ↔ H(βi, �α)). Inserting βi for pi and αi

for qi in the formula under (b) in the theorem then yields ⊢T β1 ↔ β2 by

Lemma 5.1.

Example 3. For H = ¬
p (n = 0), F = ¬
⊥ is a “solution” of (a)

in Theorem 5.5 because ¬
⊥ ≡G ¬
(¬
⊥). According to Corollary 5.6,

ConT (= ¬
⊥) is modulo T the only fixed point of ¬ bwbT . This is just

the claim of (3) from 7.3.

Many special cases of the corollary represent older self-reference results

from Gödel, Löb, Rogers, Jeroslow, and Kreisel, which, stated in terms of

modal logic, concern fixed points of ¬
p, 
p, ¬
¬p, 
¬p, and 
(p →q)

in PA. Incidentally, one gets the fixed points of these formulas—namely

¬
⊥, ⊤, ⊥, 
⊥, and 
q—according to a simple recipe. All first listed

formulas are of the form H = G �H′

p , where p is not modalized in G(p, �q)

and H ′(p, �q) is chosen appropriately. In this case, F = H G(⊤,�q )
p is the

fixed point of H, as is seen after some calculation. For H = ¬
p from

Example 3 is G = ¬p. Thus, according to the recipe the fixed point is

F = ¬
p ¬⊤
p = ¬
¬⊤ ≡G ¬
⊥.

For Kreisel’s formula 
(p → q) is G = p. Hence, it has the fixed point

F = 
(p → q) ⊤
p = 
(⊤ → q) ≡G 
q.

The recipe also works for H = 
p →q, by choosing G = p → q. Hence

F = (
p →q)⊤ → q
p = 
(⊤ →q) →q ≡G 
q → q is the only fixed point of
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H modulo T . Exactly this is the claim of Lemma 3.1(b), used in Gödel’s

second incompleteness theorem.

Exercises

1. Prove that the theory PAn from Example 2(d) has the provability

logic Gn.

2. Show that PAn
⊥

:= PAn + ¬ ConPAn equals PA + 
n+1⊥∧¬
n⊥ and

that it has the provability logic G1 = G + 
⊥. Here 
 means 
PA.

3. Prove that ⊤, ⊥, and 
⊥ are the fixed points of 
p, ¬
¬p, and 
¬p.

4. (Mostowski). Let T ⊇ PA be axiomatizable and suppose N � T .

Show that there are two mutually independent Σ1-sentences α, β in

T , that is, α →β, α →¬β, β →α, β →¬α (hence also α, β, ¬α, and

¬β) are unprovable in T .

7.6 A Bimodal Provability Logic for PA

Hilbert remarked jokingly that the incompleteness phenomenon can be

forcefully removed from the world by use of the so-called ω-rule

ρω :
X ⊢ ϕ(n) for all n

X ⊢ ∀xϕ
.

ρω has infinitely many premises. It is an easy exercise to derive with the

aid of ρω every sentence α valid in N from the axioms of PA, even from

those of Q. Indeed, all sentences can (up to equivalence) be obtained from

variable-free literals with ∧ , ∨, ∀, ∃, bypassing formulas with free variables.

Due to the Σ1-completeness of Q, all valid variable-free literals are deriv-

able. The inductive steps for ∧ , ∨, ∃ are simple, applying Σ1-completeness

in the ∃-step once again. Only in the ∀-step is ρω used.

Clearly, an unrestricted use of the infinitistic rule ρω (in spite of its rel-

evance for higher order arithmetic) contradicts Hilbert’s own intention of

giving mathematics a finitistic foundation. However, things look different

if we restrict ρω each time to a single application. In view of Remark 1

in 6.2, we no longer distinguish between ϕ and ϕ̇, so that ϕ itself is a

number and �ϕ	 = ϕ is the corresponding Gödel term. Let us define
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1bwbPA(α) := (∃ϕ∈L1
ar

)[bwbPA(∀xϕ →α) & ∀n bwbPA(ϕ(n))].

1bwbPA is arithmetical, in fact it is Σ3, for bwbPA is Σ1 and ∀n bwbPA(ϕ(n))

is Π1. We read 1bwbPA(α) as “α is 1-provable.” Let 1bwb(x) be the Σ3-

formula in Lar defining 1bwbPA. Here let x be v0. Write 
1 α for 1bwb(�α	)

and ✸1 α for ¬
1 ¬α. Clearly, 
α for α ∈ L0
ar

(
 = 
PA) can be read

‘PA + ¬α is inconsistent’, while 
1 α, by Lemma 6.1, formalizes ‘PA + ¬α

is ω-inconsistent’. Thus, ✸1 ⊤ (≡ ¬
1 ⊥) means ‘PA (= PA + ¬⊥) is ω-

consistent’. This explains the interest in the operator 
1 .

If bwbPA(α) then certainly 1bwbPA(α) (choose α for ϕ). The italicized

statement is reflected in PA as ‘⊢PA 
α → 
1 α for every α ∈ L0
ar

’. The

converse fails, since �PA ConPA, while ConPA is easily 1-provable: ⊢PA ϕ(n)

for all n, with ϕ(x) := ¬ bewPA(x,⊥), and trivially ⊢PA ∀xϕ(x) → ConPA.

In what follows, some claims will not be proved in detail.

Define Ω := {ϕ∈L1
ar

| ⊢PA ϕ(n) for all n}. By its definition, Ω and

hence also PAΩ := PA + Ω are formally Σ3. As Theorem 6.2 will show,

PAΩ is properly Σ3 and hence is no longer recursively axiomatizable.

Lemma 6.1. The following properties are equivalent for α ∈ L0
ar

:

(i) 1bwbPA(α), (ii) ⊢PAΩ α, (iii) PA + ¬α is ω-inconsistent.

Proof. (i)⇒(ii) follows with a glance at the definitions (read (i) naively).

(ii)⇒(iii): Let ⊢PAΩ α. Since Ω is closed under conjunctions, there is some

∀xϕ(x) ∈ Ω with ∀xϕ ⊢PA α, hence ⊢PA ¬α →∃x¬ϕ and so ⊢PA+¬α ∃x¬ϕ.

Now, ∀xϕ ∈ Ω, therefore ⊢PA ϕ(n) and a fortiori ⊢PA+¬α ϕ(n), for all n.

Thus, PA + ¬α is ω-inconsistent. (iii)⇒(i): Let ⊢PA+¬α β(n) for all n,

but ⊢PA+¬α ∃x¬β. Then ⊢PA ∀xβ →α. With ϕ(x) := ¬α →β(x) clearly

⊢PA ϕ(n) for all n. Now, ∀xϕ ≡ α ∨ ∀xβ ⊢PA α. Hence ⊢PA ∀xϕ →α.

Thus, altogether 1bwbPA(α).

Theorem 6.2 (the 1-provable Σ3-completeness of PA). All true Σ3-

sentences are 1-provable. Moreover, for every β of this kind, ⊢PA β → 
1 β.

Proof. Let N � β := ∃y∀xγ(y, x) where γ(y, x) is Σ1. Then there is

some m such that N � γ(m, n) for all n. Therefore, ⊢PA γ(m, n) for all

n, because PA is Σ1-complete. Hence, ∀xγ(m, x) ∈ Ω and so ⊢PAΩ ∃z∀xγ,

or equivalently, 1bwbPA(β) by Lemma 6.1. Because of the provable Σ1-

completeness of PA, this argumentation is comprehensible in PA, so that

also ⊢PA β → 
1 β.
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D1–D4 are also valid for the operator 
1 :L0
ar

→ L0
ar

. Indeed, D1 holds

because ⊢PA α ⇒ ⊢PA 
α ⇒ ⊢PA 
1 α, and D2 formalizes (or reflects)

‘⊢PAΩ α, α →β ⇒ ⊢PAΩ β’ in PA (observe Lemma 6.1). D3 follows from

Theorem 6.2 with β = 
1 α. The proof of D4 in 7.3 uses, along with the

fixed point lemma, only D1–D3; so D4 holds as well. Therefore, nearly

everything said in 7.3 on 
 applies also to 
1 , including Theorem 3.2,

which now reads �PA ¬
1 ⊥ (≡ ✸1 ⊤). To put it more concisely, although

the consistency of PA is provable with the extended means, ω-consistency

is not. Hence, this property, which is Π3-definable according to Exercise 3

in 6.7, cannot be Σ3 by Theorem 6.2, and must therefore be properly Π3.

Equivalently, ω-inconsistency is properly Σ3.

Alongside 
α → 
1 α, there are other noteworthy interactions between


 and 
1 , in particular ⊢PA ¬
α → 
1 ¬
α. This formalizes ‘If �PA α then

¬
α is 1-provable’. To verify the latter notice that �PA α implies ⊢PA ϕ(n)

for all n, where ϕ(x) is ¬ bewPA(x, �α	), and since ⊢PA ∀xϕ →¬
α, we

get ⊢PA 
1 ¬
α. On the other hand, ⊢PA ¬
α →
¬
α fails in general;

Example 2(c) in 7.5 yields a counterexample.

The language of the bimodal propositional logic GD now to be defined

results from F� by adding a further connective 
1 to F� , which is treated

syntactically just as 
. The axioms of GD are those of G stated both for


 and 
1 , augmented by the axioms


p → 
1 p and ¬
p → 
1 ¬
p.

The rules of GD are the same as those for G. Insertions ı to L0
ar

are

defined as in 7.5, but with the additional clause (
1 H)ı = 
1 Hı, that is,

(
1 H)ı = 1bwb(�H ı	). By the reasoning above, all axioms and rules of

GD are sound. This proves (the easier) half of the following remarkable

theorem from Dzhaparidze (1985):

Theorem 6.3. ⊢GD H ⇔ ⊢PA Hı for all insertions ı as defined above.

Furthermore, GD is decidable.

Thus, the modal system GD completely captures the interaction be-

tween bwbPA and 1bwbPA; also Theorem 5.5 carries over. However, GD no

longer has an adequate Kripke semantics, which complicates the decision

procedure. For further references see [Boo] or [Be3] .

As an exercise, the reader should derive 
1 (
p →p) from the axioms of

GD. Thus, ⊢PA 
1 (
α →α) for every α ∈ L0
ar

, while ⊢PA 
(
α →α) is the
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case only provided ⊢PA α. In other words, the local reflection principle

{
α →α | α ∈ L0
ar

} is 1-provable in PA. Be careful: GD expands G

conservatively, so that �GD 
p →p.

7.7 Modal Operators in ZFC

Considerations regarding self-reference in ZFC are technically sometimes

easier, but from the foundational point of view more involved because

there is no superordinate theory. If ZFC is consistent, as we assume it

is, then ConZFC is a true arithmetical statement that is unprovable in

ZFC. Thus, true arithmetical statements may even be unprovable in ZFC,

not only in PA or similarly strong arithmetical theories. It makes sense,

therefore, to consider ZFC+ := ZFC + ConZFC, because after all, we want

set theory to embrace as many facts about numbers and sets as possible

from which interesting consequences may result.

As 7.3 shows, the consistency of ZFC alone does not guarantee that

ZFC+ is consistent. The second incompleteness theorem clearly excludes

⊢ZFC ConZFC but does not preclude ⊢ZFC ConZFC → ConZFC+ . In this case

⊢ZFC+ ConZFC+ , and so ⊢ZFC+ ⊥ by the same theorem. On the other

hand, from certain assumptions about the existence of large cardinals, the

consistency of ZFC+ readily follows. These assumptions would have to be

jettisoned in case ⊢ZFC+ ⊥, i.e. ⊢ZFC ¬ ConZFC. Moreover, the consistency

of ZFC would then not correctly be reflected in ZFC, and ZFC proves along

with true arithmetical facts also false ones. This sounds strange, but there

is hardly a convincing argument that this cannot be so.

Even if ZFC+ is consistent, i.e. �ZFC ¬ ConZFC, it may still be that one of

the sentences from the sequence 
¬ ConZFC, 

¬ ConZFC, . . . is provable

in ZFC (where 
 denotes 
ZFC as long as it is not redefined). The latter

is excluded only if we assume that the ω-iterated consistency extension

ZFCω is consistent, hence �ZFC 
n⊥, for all n (see page 284), so that by

Theorem 5.3, G would be the provability logic of ZFC.

In fact, the assumption (∀n∈N) �ZFC 
n⊥ is equivalent to G’s being

the provability logic of ZFC, by the general Theorem 7.1 below. Therein

Rf T := {
α →α | α ∈ L0} denotes the already encountered reflection

principle. Also Theorem 5.3 is a corollary of the theorem, simply because

(∀n∈N) �T 
n+1⊥ is equivalent to the consistency of Tω.
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Theorem 7.1. For a sufficiently expressive theory T 5 the following con-

ditions are equivalent:

(i) T ω is consistent,

(ii) T + Rf T is consistent,

(iii) G is the provability logic of T .

Proof. (i)⇒(ii) indirect: Suppose that T + Rf T is inconsistent. Then

there are formulas α0, . . . , αn such that ⊢T ¬ϕ, ϕ :=
∧n

i=1(
αi →αi).

Hence ⊢T 
¬ϕ ≡T ¬✸ϕ. Now, because ⊢T ω ¬
n+1⊥, by Example (d) in

7.4 and Lemma 5.1, we get ⊢T ω ✸Rı
n (pı

i = αi). Clearly, Rı
n = ϕ and so

⊢T ω ✸ϕ. Since also ⊢T ω ¬✸ϕ, Tω is inconsistent. (ii)⇒(iii): The proof of

Theorem 5.2 for PA, as presented in [Boo], runs nearly in the same way

for T , because PA is transgressed in one place only: one uses the fact that

N � Rf PA. However, the existence of a corresponding T -model is ensured

by (ii). (iii)⇒(i): �G 
n+1⊥, hence �T 
n+1⊥ ≡T ¬ ConT n for all n, and

so T ω is consistent.

The equivalence (i)⇔(ii) is a purely proof-theoretic one. It is called

Goryachev’s theorem; see [Gor] or [Be2]. We obtained it using essentially

some elementary modal logic. For T = ZFC, perhaps a bit more interesting

than (i) or (ii) is the assumption of the ω-consistency of ZFC, that is,

(∗) ⊢ZFC (∃x∈ω)ϕ(x) ⇒ �ZFC ¬ϕ(n) for some n (ϕ(x) ∈ L∈).

This assumption implies D1∗, which in turn ensures �ZFC 
n+1⊥ for all

n, that is, (i), and hence all other conditions in Theorem 7.1 hold for

T = ZFC. It is worthwhile to observe that the consistency of ZFC+Rf ZFC

and thereby the proof of Solovay’s completeness theorem for ZFC follow

directly from (∗), without appealing to Goryachev’s theorem. What is

needed to see that the latter is the case is the following

Lemma. Suppose that ZFC is ω-consistent. Then there exists a model

V � ZFC such that V � Rf ZFC.

Proof. Let Ω := {(∀x∈ ω)α | α=α(x) ∈ L∈, ⊢ZFC α(n) for all n}. Then

ZFC+Ω is consistent. Indeed, otherwise ⊢ZFC ¬(∀x∈ ω)α ≡ (∃x∈ ω)¬α for

some (∀x∈ ω)α ∈ Ω (since Ω is closed under conjunction), in contradiction

to (∗). Any V � ZFC + Ω satisfies the reflection principle Rf ZFC, for if

5 By such a T we mean that the proof steps of Solovay’s Theorem 5.2 not transgressing

PA can be carried out in T . This does not yet imply the provability of the theorem

itself. Which steps are transgressing PA is described in the following proof.
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V � α then �ZFC α and therefore ⊢ZFC ¬ bewZFC(n, �α	) for all n. Hence

(∀y ∈ ω)¬ bewZFC(y, �α	) ∈ Ω, which clearly implies V � 
α.

Now we interpret the modal operator 
 no longer as provable in ZFC,

which is equivalent to valid in all ZFC-models, but rather as valid in

particular classes of ZFC-models. For undefined notions used in the sequel

we refer to [Ku]. A ‘model’ is to mean throughout a ZFC-model.

Particularly interesting are transitive models, i.e. models V = (V, ∈ V),

where the set V is transitive. This is to mean a ∈ b ∈ V ⇒ a ∈ V . In

these models, ∈ V coincides with the ordinary ∈-relation restricted to V (a

set in our metatheory that itself is ZFC). We write V for V. Let ρa denote

the ordinal rank of the set a, i.e., the smallest ordinal ρ with a∈ Vρ+1. To

prove the soundness half of Theorem 7.3 we will need

Lemma 7.2. ([JK]) Let V, W be transitive models such that ρV < ρW

and let V � α. Then W � ‘there is a transitive model U with U � α’.6

Let the modal logic Gi result from augmenting G by the axiom

(i) 
(
p →
q) ∨ 
(
q →p).

Gi is complete with respect to all preference orders g, i.e., g is a finite

poset together with some function π : g → n (= {0, . . . , n−1}) such that

P < Q ⇔ πP < πQ, for all P, Q ∈ g. This implies the finite model

property of Gi, which, as for G, ensures the decidability of Gi. More

suitable for our aims is the characterization of preference orders g by the

property

(p) P < P ′ implies P < Q or Q < P ′, for all P, P ′, Q ∈ g,

which at once follows from the definition: Let P < P ′, hence πP < πP ′.

If P �< Q, i.e. πP �< πQ, then πQ � πP < πP ′, so that Q < P ′. The

✑✑✸
✑✑✸P ′P

Q
O
❳❳③
� � �

�
proof of the converse is Exercise 1. The figure shows a poset g

that is not a preference order (for neither P < Q nor Q < P ′).

Axiom (i) is easily refuted in g choosing wp = {P ′}, wq = ∅,

and verifying that O � ✸(
p∧¬
q) and O � ✸(
q ∧¬p) (for notice that

P � 
p∧¬✸q and Q � 
q ∧¬p). Hence, (i) does not belong to G, so

that Gi is a proper extension of G. We mention that in [So] and in [Boo]

a somewhat more complex axiomatization of Gi has been considered.

6 In transitive models W the sentence in ‘ ’ (which with some encoding can be for-

mulated in L∈) is absolute, and therefore equivalent to the existence of a transitive

model U ∈ W with U � α.
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Remark on splittings in modal logic. The completeness of Gi with respect
to all preference orders follows also from the fact that Gi is the split logic arising
from splitting the lattice of all extensions of G (see e.g. [Kra]) by the subdirect
irreducible G-algebra belonging to the frame from the previous page.

We define insertions ı : F� → L0
∈

as in 7.5 as usual by (
H)ı = 
H ı,

where 
α for the set-theoretic sentence α = H ı ∈ L0
∈

is now to mean ‘α is

valid in all transitive models’. Accordingly, ✸α = ¬
¬α states ‘α holds

in at least one transitive model’.

Theorem 7.3. ⊢Gi H iff ⊢ZFC H ı for all insertions ı as defined above.

We prove only the direction ⇒, that is, soundness. The converse is much

more difficult, see [Boo]. As regards the axioms of Gi, since 
p →

p is

provable from the other axioms of G (see 7.4), it suffices to prove

(A) 
(α →β)∧
α ⊢ZFC 
β, (B) 
(
α →α) ⊢ZFC 
α,

(C) ⊢ZFC 
(
α →
β) ∨ 
(
β →α), for all α, β ∈ L0
∈

.

(A) is trivial, because the sentences valid in any class of models are closed

under MP. (B) is equivalent to (B′): ✸¬α ⊢ZFC ✸(
α∧¬α). Here is the

proof: Suppose ✸¬α, i.e. there is a transitive model in which ¬α holds.

Then there is also one with minimal rank, V say. We claim V � 
α.

Otherwise V � ✸¬α, and hence there would be a transitive model U ∈ V

with U � ¬α and ρU < ρV , contradicting our choice of V . Therefore,

V � 
α∧¬α. Thus, there is a transitive model in which 
α∧¬α holds,

which confirms (B′). Finally, (C) is verified by contraposition: suppose

there are transitive models V, W and sentences α, β such that

(a) V � ‘α holds in all transitive models and there is a transitive model

in which ¬β holds’,

(b) W � ‘β holds in all transitive models’, (c) W � ¬α.

From these assumptions it follows first of all that ρW < ρV . Indeed,

suppose by (a) that U ∈ V is a transitive model for ¬β. If ρV � ρW then

ρU < ρW . Hence, by Lemma 7.2, W � ‘there is a transitive model for ¬β’,

contradicting (b). Now, since W � ¬α by (c) and because of ρW < ρV ,

in V holds ‘there is some transitive model for ¬α’ by Lemma 7.2, in

contradiction to (a). This proves (C). Soundness of the substitution rule

follows as for G in 7.5. MN is trivially sound, because if α is provable

in ZFC then, of course, α is valid in all transitive models. Also MP is

obvious: If α and α →β hold in any class of models, then also β.
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Another interesting model-theoretic interpretation of 
α is ‘α is valid in

all Vκ’. Here κ runs through all inaccessible cardinal numbers. According

to [So], the adequate modal logic for this interpretation of 
 is

Gj := G + 
(
p∧p → q) ∨ 
(
q →p).

More precisely, if there are infinitely many inaccessibles then we have

Theorem 7.4. ⊢Gj H iff ⊢ZFC Hı for all insertions ı, where 
α is to

mean ‘α is valid in all Vκ’, κ running through all inaccessible cardinals.

Gj is also denoted by G.3. This logic is complete with respect to all

finite strict linear orders. These, of course, are also frames for Gi, so that

✑
✑✸P

O
❳❳③
� �

�
Gi ⊆ Gj. The figure shows a Gi-frame, also called “the fork,”

on which the additional axiom is easily refuted at its initial

point O with wp = {P} and wq = ∅. Hence the fork is not

a Gj-frame, and so Gi ⊂ Gj. The completeness of Gj with respect to finite

orders entails the finite model property of Gj and hence its decidability.

We recommend that the reader carry out the proof of the soundness part

of Theorem 7.4, without consulting the hints to the solutions (Exercise 4).

It is easier than the soundness part of Theorem 7.3 proved above. All one

needs to know besides Lemma 7.2 is that each Vκ is a transitive ZFC-

model and that Vκ ∈ Vλ or Vλ ∈ Vκ, for arbitrary inaccessible cardinals

κ �= λ. Maybe the reader can also find a new and lucid proof of the hard

direction of Theorem 7.4: If ⊢ZFC Hı for all ı then H holds in all finite

strict linear orders, or equivalently, Gj ⊢ H.

Exercises

1. Let g be a G-frame with property (p), page 296. Show by induction

on the length of a maximal path in g that g is a preference order.

2. Show (using Exercise 1) that axiom (i) for Gi holds in a G-frame g

iff g is a preference order. This is an essential step in proving the

completeness of Gi with respect to all preference orders.

3. This exercise is a crucial step in the completeness proof of Gj. Show

that a G-frame g is a frame for Gj, i.e., 
(
p∧p →q) ∨ 
(
q →p))

holds in g if and only if g is (totally) ordered.

4. Verify the soundness part of Theorem 7.4, i.e., ⊢Gj ⇒ ⊢ZFC H ı for

all insertions ı.
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A

a.c. (algebraically closed), 48

∀-formula, ∀-sentence, 68

∀-theory, 83

∀∃-sentence, ∀∃-theory, 190

abelian group, 47

divisible, torsion-free, 104

absorption laws, 48

Ackermann function, 226

Ackermann interpretation, 261

algebra, 42

algebraic, 48

almost all, 60, 210

alphabet, xx, 54

antisymmetric, 45

arithmetical, 238

arithmetical hierarchy, 264

arithmetization (of syntax), 226

associative, xxi

automated theorem proving, 120

automorphism, 50

axiom

of choice, 115

of continuity, 108

of extensionality, 113

of foundation, 115

of infinity, 115

of power set, 114

of replacement, 114

of union, 113

axiom system

logical, 36, 121

of a theory, 82

axiomatizable, 104

finitely, recursively, 104

B

β-function, 244

basis theorem

for formulas, 206

for sentences, 180

Behmann, 125

Birkhoff rules, 127

Boolean algebra, 49

atomless, 202

of sets, 49

Boolean basis

for L in T , 206

for L0 in T , 180

Boolean combination, 57

Boolean function, 2

dual, self-dual, 15

linear, 10

monotonic, 16

Boolean matrix, 49

Boolean signature, 5

bounded, 46

Brouwer, xvii
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C

Cantor, 111

cardinal number, 173

cardinality, 173

of a structure, 174

chain, 46

of structures, 190

elementary, 191

of theories, 103

characteristic, 48

Chinese remainder theorem, 244

Church, xviii, 117

Church’s thesis, 220

clause, 144, 151

definite, 144

positive, negative, 144

closed under MP, 37

closure

deductive, 20

of a formula, 64

of a model in T , 197

closure axioms, 258

cofinite, 34

Cohen, xviii

coincidence theorem, 66

collision of variables, 70

collision-free, 70

commutative, xxi

compactness theorem

first-order, 105

propositional, 29

compatible, 82, 254

complementation, xix

completeness theorem

Birkhoff’s, 128

first-order (Gödel’s), 102

for |∼ , 123

for G, 286

for ⊢
g
, 124

propositional, 29

Solovay’s, 288

completion, 120

inductive, 194

composition, xx, 217

computable, 217

concatenation, xx

arithmetical, 224

congruence, 12, 51

in L, 74

congruence class, 51

conjunction, 2

connective, 3

connex, 45

consequence relation, 20, 21

finitary, 20

local, global, 80

predicate logical, 64

propositional, 18

consistency extension, 284

consistent, 20, 26, 82, 96, 158

constant, xxi

constant expansion, 97

constant quantification, 98

continuity schema, 110

continuum hypothesis, 174

contradiction, 17

contraposition, 21

converse implication, 4

coprime, 239

course-of-values recursion, 224

cut, 46

cut rule, 24
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D

Δ-elementary class, 180

δ-function, 219

Δ0-formula, 238

Δ0-induction, 265

Davis, 256

decidable, 104, 218

deduction theorem, 21, 38

deductively closed, 20, 82

definable

Δ0-definable, 273

explicitly, 67, 87

implicitly, 88

in a structure, 67

in a theory, 272

Σ1-definable, 273

with parameters, 108

DeJongh, 290

derivability conditions, 270

derivable, 22, 23, 36, 92

derivation, 23

diagram, 170

elementary, 172

universal, 192

direct power, 52

disjunction, 3

exclusive, 3

distributive laws, 49

divisibility, 239

domain, xix, 42

E

∃-formula, 68

simple, 203

Ehrenfeucht game, 183

elementary class, 180

elementary equivalent, 69

elementary type, 180

embedding, 50

elementary, 176

end extension, 107

enumerable

effectively, 117

recursively, 225

equation, 57

Diophantine, 238, 255

equipotent, 111

equivalence, 3

equivalence class, 45

equivalence relation, 45

equivalent, 11, 64

in (or modulo) T , 83

in a structure, 74

logically or semantically, 11, 64

Euclid’s lemma, 244

existentially closed, 191, 200

expansion, 45, 78, 87

explicit definition, 85, 86

extension, 44, 78, 81

conservative, 66, 85

definitorial, 87

elementary, 171

finite, 82

immediate, 197

of a language, 78

of a theory, 81

transcendental, 179

F

f -closed, 44

factor structure, 51

falsum, 5

family (of sets), xix

Fermat’s conjecture, 257
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Fibonacci sequence, 224

fictional argument, 10

field, 47

algebraically closed, 48

of algebraic numbers, 173

of characteristic 0 or p, 48

ordered, 48

real closed, 197

filter, 34

finitary, 20

finite model property, 125

finitely generated, 45

finiteness theorem, 26, 29, 94, 103

fixed point lemma, 250

formula, 56

arithmetical, 238, 272

Boolean, 5

closed, 59

defining, 85

dual, 15

first-order, 56

open (quantifier-free), 57

prenex, 77

representing, 9, 237

universal, 68

formula algebra, 42

formula induction, 6, 58

formula recursion, 8, 58

four-color theorem, 32

Frege, 76

Frege’s formula, 18

function, xix

bijective, xix

characteristic, 218

identical, xix

injective, surjective, xix

partial, 178

primitive recursive, 218

recursive (= μ-recursive), 218

function term, 55

functional complete, 14

G

gap, 46

generalization, 79

anterior, posterior, 79

generalized of a formula, 64

generally valid, 64

Gentzen calculus, 22

goal clause, 158

Gödel, xvii, 91, 243, 290

Gödel number, 223

of a proof, 229

of a string, 227

Gödel term, 246

Gödelizable, 228

Goldbach’s conjecture, 256

graph, 46

k-colorable, 31

of an operation, xxi

planar, simple, 31

ground instance, 138, 158

ground (or constant) term, 55

group, groupoid, 47

ordered, 47

H

H-resolution, 149

Harrington, 282

Henkin set, 99

Herbrand model, 103, 138

minimal, 142

Herbrand universe, 138
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Hilbert, xvii

Hilbert calculus, 35, 121

Hilbert’s program, xvii, 216

homomorphism, 50

canonical, 51

strong, 50

homomorphism theorem, 51

Horn clause, 149

Horn formula, 140

basic, 140

positive, negative, 140

universal, 140

Horn sentence, 140

Horn theory, 141

universal, nontrivial, 141

hyperexponentiation, 239

I

ι-term, 87

I-tuple, xx

idempotent, xxi

identity, 127

identity-free (==== -free), 102

immediate predecessor, 46

immediate successor, 46

implication, 4

incompleteness theorem

first, 251

second, 280

inconsistent, 26, 96

independent (of T ), 83

individual variable, 53

induction

on ϕ, 8, 58

on t, 55

<-induction, 110

induction axiom, 108

induction hypothesis, 106

induction schema, 106

induction step, 106

infimum, 48

infinitesimal, 109

instance, 137, 158

integral domain, 48

(relatively) interpretable, 258

interpretation, 62

intersection, xix

invariance theorem, 69

invertible, xxi

irreflexive, 45

isomorphism, 50

partial, 178

J

Jeroslow, 290

jump, 46

K

kernel, 51

kernel (of a prenex formula), 77

Kleene, 218, 264

König’s lemma, 32

Kreisel, 257, 290

Kripke frame, 285

for G, 285

Kripke semantics, 285

L

L-formula, 57

L-model, 62

L-structure (= L-structure), 43

language

arithmetizable, 228

first-order (or elementary), 54

of equations, 127
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second-order, 130

lattice, 48

distributive, 49

of sets, 49

legitimate, 86

Lindenbaum, 27

Lindström’s criterion, 201

literal, 13, 57

Löb, 290

Löb’s formula, 285

logic program, 157

logical matrix, 49

logically valid, 17, 64

M

μ-operation, 218

bounded, 221

mapping (see function), xix

Matiyasevich, 255

ϕ-maximal, 40

maximal element, 46

maximally consistent, 20, 26, 30, 96

metainduction, xvi, 236

metatheory, xvi

model

free, 142

minimal, 150

of a theory, 81

predicate logical, 62

propositional, 8

transitive, 296

model companion, 202

model compatible, 193

model complete, 194

model completion, 200

model interpretable, 261

modus ponens, 19, 35

monotonicity rule, 22

Mostowski, 216, 243, 291

N

n-tuple, xx

negation, 2

neighbor, 31

nonrepresentability lemma, 251

nonstandard analysis, 109

nonstandard model, 107

nonstandard number, 107

normal form

canonical, 14

disjunctive, conjunctive, 13

prenex, 77

Skolem, 88

O

ω-consistent, 251

ω-incomplete, 253

ω-rule, 291

ω-term, 115

object language, xv

operation, xx

essentially n-ary, 10

order, 46

continuous, 46

dense, 46, 177

discrete, 183

linear, partial, 46

ordered pair, 114

ordinal rank, 296

P

p.r. (primitive recursive), 218

Π1-formula, 238

pair set, 114

pairing function, 222
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parameter definable, 108

parenthesis economy, 6, 57

Paris, 282

partial order, 46

irreflexive, reflexive, 46

particularization, 79

anterior, posterior, 79

Peano arithmetic, 106

Peirce’s formula, 18

persistent, 189

Polish (prefix) notation, 7

(monic) polynomial, 105

poset, 46

power set, xix

predecessor function, 134

predicate, xx

arithmetical, 238

Diophantine, 238

primitive recursive, 218

recursive, 218

recursively enumerable, 225

preference order, 296

prefix, 57

premise, 22

Presburger, 204

prime field, 48

prime formula, 4, 57

prime model, 171

elementary, 171

prime term, 55

primitive recursion, 218

principle of bivalence, 2

principle of extensionality, 2

product

direct, 52

reduced, 210

programming language, 132

projection, 52

projection function, 218

PROLOG, 157

(formal) proof, 36, 122

propositional variable, 4

modalized, 289

provability logic, 285

for T , 288

provable, 22, 23, 36

provably recursive, 273

Putnam, 256

Q

quantification, 56

bounded, 221, 238

quantifier, 41

quantifier compression, 243

quantifier elimination, 202

quantifier rank, 58

quasi-identity, quasi-variety, 128

query, 157

quotient field, 188

R

r.e. (recursively enumerable), 225

Rabin, 258

range, xix

rank (of a formula), 8, 58

recursion equations, 218

recursive definition, 8

reduced formula, 85, 86

reduct, 45, 78

reduct theory, 84

reductio ad absurdum, 23

reflection principle, 283, 294

reflexive, 45
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refutable, 83

relation, xix

relativised of a formula, 258

renaming, 76, 153

bound, free, 76

replacement theorem, 12, 74

representability

of Boolean functions, 9

of functions, 241

of predicates, 237

representability theorem, 246

(successful) resolution, 146

resolution calculus, 145

resolution closure, 145

resolution rule, 145

resolution theorem, 148, 151, 167

resolution tree, 146

resolvent, 145

restriction, 44

ring, 47

commutative, 48

ordered, 48

Abraham Robinson, 109

Julia Robinson, 256

Robinson’s arithmetic, 234

Rogers, 290

rule, 22, 23, 92

basic, 22, 92

derivable (provable), 23

Gentzen-style, 25

Hilbert-style, 121

of Horn resolution, 149

sound, 25, 93

rule induction, 25, 94

Russell, xvii

Russell’s antinomy, 73

S

S-invariant, 186

Σ1-completeness, 239

provable, 278

Σ1-formula, 238

special, 267

Sambin, 290

satisfiability relation, 17, 62

satisfiable, 17, 64, 82, 144

satisfiably equivalent, 88

scope (of a prefix), 58

segment, xx

initial, xx, 46

terminal, xx

semigroup, 47

free, 47

ordered, 47

regular, 47

semilattice, 48

semiring, 48

ordered, 48

sentence, 59

separator, 156

sequence, xx

sequent, 22

initial, 22

set

countable, uncountable, 111

densely ordered, 46

discretely ordered, 183

finite, 111

ordered, 46

transitive, 296

well-ordered, 46

Sheffer function, 3

signature
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algebraic, 57

extralogical, 43

logical, 4

signum function, 220

singleton, 152

Skolem, xvii

Skolem function, 88

Skolem’s paradox, 116

Skolemization, 90

SLD-resolution, 162

solution, 158

soundness, 26, 94

SP-invariant, 188

Stone’s representation theorem, 49

string, xx

atomic, xx

structure, 42

algebraic, relational, 42

subformula, 7, 58

substitution, 59

global, 60

identical, 60

propositional, 19

simple, 59

simultaneous, 59

substitution function, 248

substitution invariance, 127

substitution theorem, 71

substring, xx

substructure, 44

(finitely) generated, 45

elementary, 171

substructure complete, 207

subterm, 56

subtheory, 81

successor function, 105

supremum, 49

symbol, xx

extralogical, logical, 54

of T , 81

symmetric, 45

system (of sets), xix

T

T -model, 82

Tarski, 20, 169, 216

Tarski fragment, 260

Tarski–Lindenbaum algebra, 84

tautologically equivalent, 78

tautology, 17, 64

term, 55

term algebra, 55, 136

term equivalent, 15

term function, 67

term induction, 55

term model, 100, 136

tertium non datur, 17

theorem

Artin’s, 197

Cantor’s, 111

Cantor–Bernstein, 174

Dzhaparidze’s, 293

Goodstein’s, 282

Goryachev’s, 295

Herbrand’s, 139

Lagrange’s, 255

Lindenbaum’s, 27

Lindström’s, 129

Löb’s, 282

Łoś’s, 211

Löwenheim–Skolem, 112, 175

Morley’s, 179

Rosser’s, 252
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Shelah’s, 211

Steinitz’s, 197

Trachtenbrot’s, 125

Visser’s, 289

theory, 81

(finitely) axiomatizable, 104

arithmetizable, 250

complete, 105

consistent (satisfiable), 82

countable, 111

decidable, 119, 228

elementary or first-order, 81

equational, 127

essentially undecidable, 257

hereditarily undecidable, 254

inconsistent, 82

inductive, 191

κ-categorical, 176

quasi-equational, 128

strongly undecidable, 254

undecidable, 119

universal, 83

transcendental, 48

transitive, 45

(directed) tree, 32

true, 253

truth function, 2

truth functor, 3

truth table, 2

truth value, 2

Turing machine, 220

U

U -resolution, 162

U -resolvent, 161

UH -resolution, 162

ultrafilter, 34

nontrivial, 34

ultrafilter theorem, 35

ultrapower, 211

ultraproduct, 211

undecidable, 104, 119

unifiable, 152

unification algorithm, 153

unifier, 152

generic, 153

union, xix

unique formula reconstruction, 7, 58

unique term concatenation, 55

unique term reconstruction, 55

unit element, 47

universal closure, 64

universal part, 187

universe, 114

urelement, 112

V

valuation, 8, 62, 285

value matrix, 2

variable, 54

free, bound, 58

variety, 127

Vaught, 179

verum, 5

W

w.l.o.g., xxi

word (over A), xx

word semigroup, 47

Z

Z-group, 205

zero-divisor, 48

Zorn’s lemma, 46
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N, Z, Q, R xix

N+, Q+, R+ xix

∪, ∩, \ xix

⊆, ⊂ xix

∅, PM xix
⋃

S,
⋂

S xix

M × N xix

f(a), fa, af xix

f : M → N xix

x 
→ t(x) xix

dom f, ran f xix

idM xix

MI xx

(ai)i∈I xx

(a1, . . . , an) xx

�a, f�a xx

P�a, ¬P�a xx

graph f xxi

⇔,⇒,&,∨∨∨ xxi

:=, :⇔ xxi

Bn 2

∧ , ∨,¬ 3

F, PV 4

→,↔, ⊤,⊥ 5

PN, RPN 7

Sf α 7

wϕ 8

Fn, α(n) 9

α ≡ β 11

DNF, CNF 13

w � α, � α 17

X � α, X � Y 18

⊢ 20

C+, C− 27

MP 35

|∼ 36

rA, fA, cA 43

A ⊆ B 44

TF , TR 47

charp 48

2 49

A ≃ B 50

lh(ξ) 50

a/≈, A/≈ 51
∏

i∈I Ai 52

AI 52

Var 54

∀, ==== 54

SL 54

T (= TL) 55

var ξ, var t 56

∃, ∨ 56

�==== 56

L 57

L◦ , L∈ 57

L==== 57

TL 57

rkϕ, qr ϕ 58

bnd ϕ 58

free ϕ 58

L0, Lk, Vark 59

ϕ(x1, . . . , xn) 59

ϕ(�x), t(�x) 59

�t , f�t , r�t 59

ϕ t
x
, ϕx(t) 59

ϕ
�t
�x
, ϕ�x(�t ) 59

ι (iota) 60

M = (A, w) 62

rM, fM, cM 62

tA,w, tM 62

�tM, tA 62

M � ϕ 62

A � ϕ[w] 62

Ma
x, M�a

�x 62

� ϕ 64

α ≡ β 64

A � ϕ, A � X 64

X � ϕ 64

ϕg , X g 64

TG, T ====
G 65

tA(�a), tA 67

317
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(A,�a) � ϕ 67

A � ϕ [�a] 67

ϕA 67

∃n, ∃=n 68

⊤, ⊥ 69

A ≡ B 69

Mσ 71

∃! 72

≡A, ≡K 75

Q (∀ or ∃) 76

PNF 77

(∀x⊳t),(∃x⊳t) 77

(divides) 80

X �
g
ϕ 80

T, Md T 82

Taut 82

T + α, T + S 82

≡T , ≈T 83

ThA, ThK 84

K � α 84

L[r], ϕrd 85

SNF 88

⊢ 92

mon, fin 94

Lc, LC, α z
c 97

⊢T α 102

X ⊢T α 102

ACF, ACFp 105

N , S 105

Lar 105

�, < 105

PA 106

IS 106

n (= Sn0) 107

IA 108

M ∼ N 111

ZFC, ZF 112

AE, AS, AU 113

{z ∈ x |ϕ} 113

AP, AR 114

{a, b}, {c} 114

(a, b) 114

AI, AF, AC 115

ω 115

Vα, Vω 115

|∼ 121

Λ, Λ1–Λ10 122

MQ 122

Tautfin 125

Γ ⊢
B

γ 127

LII 130

∼O, L∼O
131

Pd 134

F , FX, FT 136

Tk 137

Fk, FkX 137

GI(X) 138

CU , CT 142

144

K � H 145

λ; λ̄, K̄ 145

RR, ⊢
RR

145

Rc 145

HR, ⊢
HR

149

P, N 149

HR(P,N) 149

VP, wP, ρ
P

150

Kσ 152

P, :− 157

GI(K) 158

sum 159

UR, ⊢
UR

161

UHR, ⊢
UHR

161

UωR, UωHR 161

AA, BA 170

DA 170

A � B 171

Del A 172

|M| 173

ℵ0, ℵ1, 2ℵ0 174

CH 174

DO 177

L,R 177

DO00, . . . 178

〈X〉, ≡X 180

SO, SO00, . . . 183

Γk(A,B) 183

A ∼k B 184

A ≡k B 184

T ∀ 187

TJ 188

A ⊆ec B 191

D∀A 192
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RCF 197

ZGE, ZG 204

≈F 209

a/F , w/F 210
∏F

i∈I Ai 210

Iw
α 211

Fn, F 217

h[g1, . . . , gm] 217

P [g1, . . . , gm] 217

Oc, Op, Oµ 218

f = Op(g, h) 218

Inν 218

χ
P 218

Kn
c , ·−, δ 219

σ, max 220

prim, pn 220

rem(a, d) 220

bia 220

μk[P (�a, k)] 221

μk�m[P (�a, k)] 222

℘(a, b), tn 222

〈a1, . . . , an〉 223

GN, ℓ 223

(((a)))k, (((a)))last 224

∗, f̄ , Oq 224

lcm{fν| ν�n} 226

♯s 227

ξ̇, ϕ̇, ṫ 227

V 228

ṡ, Ẇ 228

¬̃, ∧̃ , →̃ 229

bewT , bwbT 229

=̃===, ∀̃ 230

S̃, +̃, ·̃ 230

Tprim, Lprim 231

[m]ki 232

Q 234

N 235

Δ0,Σ1,Π1 238

Δ1 238

⊥ (coprime) 239

IΔ0 239

β, beta 244

�ϕ	, �t	, �Φ	 246

bewT , bwbT 246

cf, ṅ 248

sbx, sb�x 248

ϕ̇�x(�a) 249

prov 252

αP, XP 258

T∆, B∆ 258

CA 258

TF 260

ZFCfin (FST) 261

Sfin, Sfnd 261

Σn, Πn, Δn 264


(x) 270


α, ✸α 270

ConT 270

D0–D3 271

∂, d0, . . . 271

D1∗, D2∗ 271


[ϕ] 277

PA⊥ 281

D4, D4◦ 281

Tn, Tω 284


nα 284

F� 284

✸, 
n 285

MN 285

G, ⊢G 285

P � H 285

�G H 285

G ≡G H 285

Gn 288

GS 289

1bwbPA 292


1 , ✸1 292

GD 293

Rf T 294

ρa 296

Gi 296

Gj 298
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