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Foreword

This book is all about new links in logic. The “First Indian Conference on Logic and

its Relationship with Other Disciplines” took place in Mumbai at IIT Bombay, from

January 8 to 12, 2005, as an initiative of the Mumbai logic circle, bringing together

Indian logicians from various disciplinary backgrounds and different locations with

a group of open-minded and active international colleagues.

The conference took place over 6 days: two of them devoted to tutorials and four

to advanced talks. Tutorials as well as advanced talks were given by Indian logi-

cians and by visitors from abroad. The visitors responding to the Call for the Mum-

bai event came from Australia, the Czech Republic, Finland, Great Britain, Italy,

Israel, Japan, the Netherlands, the USA, and other nations. Together, they formed a

distinguished galaxy seldom found even with conferences in the West. The papers

emphasized novel approaches and perspectives emanating from research by some

of the masters of logic and its interfaces with surrounding disciplines.

The Conference venue were the outstanding logistical and scenic facilities at IIT

Bombay, with smooth organizational efforts and crucial support provided by faculty,

and especially also by student volunteers. The geese, the pond, and the view of the

lake provided most people with the needed inspiration to think of deeper matters.

Talks ranged from reflections on the range of mathematical proof and definability

to recent developments in computational logic, as well as new interfaces between

logic, information dynamics, and games. In addition, there was a wide range of pre-

sentations on schools of Indian logic. One term used nowadays for this broad view

of logic is “intelligent interaction”. The Mumbai Conference took this term in the

double sense of both information exchange and community formation, and indeed

both processes were in evidence. Accordingly, the “Second Indian Conference on

Logic and its Relationship with Other Disciplines” was held from January 9 to 11 in

2007 at IIT Bombay, Mumbai, with equal success. Besides these two Conferences,

a first Indian Winter School with the same topic and title was held at IIT Bombay,

Mumbai from January 1 to 15, 2006, primarily for students and researchers.

The current volume contains a broad selection of material from the first Confer-

ence, while further volumes will document the follow-up. We see this publication

venture as providing information, but also as a means of shaping a community. Our

v



vi Foreword

aim is to present an Indian audience with what we see as a representative sample

of modern logic, in the hands of some of its best practitioners. This volume is not

a textbook, however, accessible throughout to absolute beginners. But we do expect

that the papers collected here will give a sense of vitality, strength and direction, and

that, through the story-lines and references, our chapters will open further doors to

the field as the reader gets inspired.

We also hope that this volume will help the Indian logic community take shape

and flight, and indeed, there are some very encouraging signs. Since this book was

put together, an ‘Association for Logic in India’ has been formed that has taken the

IIT Bombay initiative as well as other congenial events in Kolkata 2007 under its

aegis. The website http://ali.cmi.ac.in/ shows its lively past and current activities.

Thus the Mumbai founding events have found a natural continuation in a national

series of conferences and schools.

Finally, on a still larger scale, we hope that the present publication initiative

will maintain the ties between the Indian community and its friends and colleagues

worldwide. In particular, we see the papers on Indian Logic in this volume as reach-

ing out to more classical communities in the field while informing their modern

colleagues. One day, we envision that logic will have one history, with Gotama and

Gangesa along with Aristotle and Boole. Be that as it may be, our book may be a

first gentle push toward joining forces between historically different, but maybe in

the final analysis, not all that different strands in our fascinating field.

The editors of this volume have had an easy task in some ways. The positive re-

sponse and generous cooperation from both Indian and international colleagues has

been overwhelming. Editing is easy with authors of this energy and quality, while se-

rious referees were easy to find. Nevertheless, producing this volume has also meant

solving a host of non-trivial logistic problems, which could only have been done by

our Mumbai experts. Special thanks are due to Mr. Abhisekh Sankaran, who has

provided vital technical support to our efforts in putting the act together. We must

not fail to register here our appreciation to Allied Publishers, especially Mr. Sharad

Gupta, for their concern, persistence and endurance to see the project through in its

first Indian instalment. We are grateful that we now have a chance to bring this book

to an even wider audience through the medium of Springer Publishers.

We would like to record here the support and advice given to the organizers of

the First Conference by several faculty members from various departments and au-

thorities at IIT Bombay, Mumbai, as well as the Institute of Mathematical Sciences,

Chennai and TIFR, Mumbai. Furthermore, generous financial support was received,

for the Conference and this publication, from Infosys Technologies Ltd., the De-

partment of Science and Technology, Government of India, the Indian Council of

Philosophical Research, New Delhi and Microsoft, India. All this is hereby grate-

fully acknowledged.

Mumbai Amitabha Gupta

New York Rohit Parikh

Amsterdam Johan van Benthem



Preface

Logic: A View from the Cross-roads

Logic stands at the cross-roads of many disciplines and cultures. The discovery that

human reasoning and argumentation contains stable patterns that can be studied as

such has been made independently in Antiquity in the Greek, Indian, and Chinese

traditions, showing a remarkable unity to human thought. Ever since those days,

logic has had a special relationship with disciplines where pure reasoning is of the

essence, in particular, philosophy and mathematics.

Modern logic as we have today began with developments in the 19th century

due to Frege, Boole, Peirce, Cantor and others concerned with logic as well as with

the foundations of mathematics. They were followed by early 20th century figures

like Russell, Wittgenstein, and Ramsey. A sense of crisis provoked by Russell’s

and other paradoxes eventually led to Hilbert’s program and to deep technical re-

sults in the first half of the 20th century on provability, computability, truth, and

definability found by Hilbert, Herbrand, Gödel, Gentzen, Skolem, Tarski, Turing,

and others. Since that time, mathematical notions and techniques have pervaded the

field, and this book contains several chapters devoted to the great themes from that

mathematics-oriented tradition.

But modern logic is also a meeting ground of many further disciplines. The study

of decidability and undecidability of mathematical questions led to the foundations

of computing and eventually, to the birth of computers. Thus, nowadays, there is

a wide family of interfaces between logic and computer science, ranging from the

study of programming languages to the design of databases or intelligent multi-

agent systems, and sometimes even straight into practical matters of information

technology. This trend, too, is well-represented in various chapters of this volume,

and ‘computational logic’ broadly conceived may indeed be the bulk of all logic

research today.

Still, this is by no means the complete picture of current developments. Logic

is being used extensively in the study of topics beyond narrower proof or compu-

tation, with a particular emphasis on the behaviour of rational agents which have

knowledge, beliefs, preferences, and obligations, and need to adjust these in a world

vii



viii Preface

that changes over time. All this has traditionally been the domain of “philosophical

logic” at the interface of logic and philosophy, with ties to epistemology, philosophy

of action, philosophy of science, and ethics. But over the last decades, this stream

of research has started converging with computational logic, as computer systems

become more and more sophisticated, alone or in networked societies, thus becom-

ing more and more like us. This is why AI, in particular, has been a large scale

“consumer” of logic.

Finally, logic in the last century has had extensive contacts with linguistics, since

its account of meaning and definability provides intriguing interfaces with natural

language in all its facets, from syntax to semantics and pragmatics. Frege, with

his distinction between “sense” and “reference” already gave us the morning star –

evening star problem central to both semantics and the philosophy of language. But

more recent influences have been those of Lewis with his somewhat controversial

notion of common knowledge, and Grice with his notion of implicature which has

made pragmatics deeply embedded into semantics. Another important figure has

been Saul Kripke whose semantics of modal logic and whose notion of rigid desig-

nator have played central roles in recent developments.

Right now, it seems fair to say that the discipline of logic also finds itself at

a crossroads in the other sense, that of choosing its future directions. This book

documents what are arguably the major ones.

First, the study of rational agency as a broader goal beyond computation and

deduction naturally leads to the logical study of intelligent interaction and social

behaviour. Let’s not forget that logic probably arose in the first place as a study of

legal, philosophical and political debate! An inspiring paradigm for this is “Social

Software”, the study of patterns of social interaction by means of techniques from

logic and computer science. In this way, logic also joins forces with the social sci-

ences such as game theory in economics, or social choice theory, or even the Law,

as our most famous historical example of rational social engineering.

Next, even though logic has traditionally viewed itself as normative, and not as a

description of actual behaviour, connections between logic and empirical psychol-

ogy and cognitive science are on the rise, as more facts about actual behaviour and

even about the human brain are becoming available for inspection. Logical theo-

ries suddenly find themselves at the forefront of theorizing about human reasoning

skills. In a sense, this was already implicit in earlier studies of logic and natural

language, where actual facts of meaning and inference in human practice have long

served as a constraint on theory.

Finally, the future is sometimes opened up by paying proper attention to one’s

past. There is a rising interest in logic in other traditions than the Western one,

including the independent origins in the Indian and Chinese traditions (a fact which

by itself should suffice for shaking up some received cultural stereotypes), but also,

its transformation in the golden age of early medieval Arabic culture. Some first

explorations have already exposed fascinating vistas.

It was in this lively current setting that a group of Indian logicians decided to

start a series of meetings in Mumbai devoted to the full width of logic today, and its

modern and ancient roots in Indian cultural life. One purpose of these meetings was
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to restore India to its rightful place in the logical world. While India has been one

of the traditional homes of logic, in recent days, Indian contributions in logic have

remained a small part of Indian contributions to science or even to mathematics and

philosophy. One could say that the Indian genius has been inadequately harnessed

in this important area.

As has already been pointed out that the current volume contains a representative

selection of material from the first Conference, while the planned further volumes

in this book series will document the follow-up.

Here is a brief guide to the chapters in this volume.

The first two chapters in Part I, entitled “Views of Logic Today,” provide a grand

setting to what is to follow. John Crossley gives a masterful survey of mathematical

logic, which highlights the essential and far-ranging insights that have accumulated

by now into proof, computation, and definability via formal systems. Rohit Parikh

then follows up with an extended view of logic as a way of studying patterns and

procedures in social agency, showing how the perspective of “social software” can

systematize this field, while bringing out interesting aspects of different cultures.

Part II comprising a group of three papers on “Logic and Mathematics” demon-

strates the continued vitality of mathematical logic and foundations of mathematics.

John Crossley examines what is a mathematical proof, a question which continues to

inspire new logical theory. Petr Hajek develops a rigorous treatment of fuzzy logic,

once thought to be a “soft” subject, but by now fully respectable mathematically.

Finally, Wilfrid Hodges takes us back to the formative years of model theory and

recursion theory, and Tarski’s seminal results joining expressive power and com-

plexity in arithmetical settings.

As a counter-point to this grand tradition in logic, we have placed in Part III some

papers from another grand tradition providing “Perspectives from Indian Logic”.

K. Ramasubramanian presents an overview that will help Western readers under-

stand the rich tapestry of this field, while even teaching Indian readers a thing or

two. Moreover, the same author adds a concrete sample, in the form of an exposition

of the subtlety of a specific theme in Indian Logic, viz. the concept of hetvabhasa in

the Nyāya-sastra. Finally, Sundar Sarukkai positions Indian logic in its connections

with philosophical epistemology and the philosophy of science, showing how topics

ran naturally into each other. This interface seems especially relevant in understand-

ing logic/philosophy interfaces today.

The next groups of papers spread over three sections document some major

streams in contemporary logic. We start with Part IV, viz., “Logic and Computa-

tion,” an area which is richly represented in India today. John Crossley examines the

entangled and complementary notions of “proof” and “program”, and charts their

marriage in current theories, including Combinatory Logic and Hoare Logic. Yuri

Gurevich and Andreas Blass discuss the state of the art concerning Zero-One Laws,

the mysterious statistical regularities underlying the expressive power of many log-

ical systems that were first brought to light in the 1970s. Ron van der Meyden de-

velops another strand, the penetration of systems from philosophical logic, such

as epistemic and temporal logic, into the study of computational systems and net-

work security. Daniele Mundici and and Ferdinando Cicalese then take up the topic
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of coding theory, and its deep and surprising connections with many-valued logics

which came originally from the Polish School in the early 20th century. Finally,

Noson Yanofsky gives a masterful yet light-footed survey of the new paradigm of

quantum computing, which both students and experts will find both informative and

delightful.

It may be said with some exaggeration that modern computing is rational agency

in societies of interacting agents, which pass information, correct themselves, and

engage in purposeful strategic behaviour. Thus, connections between logic, philoso-

phy of action, computer sciences, and social sciences come to the fore. The next part,

i.e. Part V on “Logic, Agency, and Games” has some samples of this recent trend.

Johan van Benthem presents an extensive survey of ways in which games have been

used to model logical core activities such as model checking, model building, or ar-

gumentation, and then relates this interactive view of logic to standard notions from

game theory such as strategies, equilibrium, and imperfect information. Eric Pacuit

tackles one specific issue in social software, viz. the correctness and scope of the

algorithm of “Adjusted Winner” in fair division, and shows how logical techniques

provide general viewpoints and more reliable conclusions about what such proce-

dures achieve. Next, Krister Segerberg discusses the more general phenomenon of

belief revision in the light of dynamic logics of computation and action, and shows

how this systematic stance can solve the problem of “iterated belief revision” which

has plagued belief revision theory in AI and philosophy for a long time. Finally,

G. Venkatesh develops systems of temporal preference logic which can describe

players’ goals and evaluations over time, as different parts of a game tree become

available when successive moves are played. This points the way toward rich logics

of games as a paradigm for intelligent interaction over time.

While social phenomena suggest some more careful attention to empirical facts

than what has been the norm for logicians, game-theoretic analyses may still be nor-

mative flashes of brilliance, rather than the outcome of genuine painstaking obser-

vation of behaviour. Our final part, Part VI, is on “Logic, Language and Cognition”.

It moves closer to the realities of at least one major empirical phenomenon, the “sea

of discourse” that we all live in, viz. Natural Language. D.B. Acharya and Shalini

Joshi start by exploring the scope and limits of discrete mathematical models (most

logical systems are) for the behavioral, cognitive, and social sciences. Then Wil-

frid Hodges gives a masterful analysis of the Principle of Compositionality and the

emergence of meaning from sentence understanding. This theme has been crucial

to understanding the recursive learnability of language since, not just Frege and the

modern semanticists, but even, as the author shows, all the way back into medieval

Arabic Logic, another relevant historical and cultural tradition.

In their totality, these contributions offer a view of reasoning, computation, and

rational agency in a wide modern sense, with logic acting as a common language,

and indeed, an intellectual catalyst.

Amsterdam Johan van Benthem

New York Rohit Parikh

Mumbai Amitabha Gupta
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Part I

Logic Today: Some Reflections





Chapter 1

What Is Mathematical Logic? A Survey

John N. Crossley

1.1 Introduction

What is mathematical logic? Mathematical logic is the application of mathematical

techniques to logic.

What is logic? I believe I am following the ancient Greek philosopher Aristotle

when I say that logic is the (correct) rearranging of facts to find the information that

we want.

Logic has two aspects: formal and informal. In a sense logic belongs to everyone

although we often accuse others of being illogical. Informal logic exists whenever

we have a language. In particular Indian Logic has been known for a very long time.

Formal (often called, “mathematical”) logic has its origins in ancient Greece in

the West with Aristotle. Mathematical logic has two sides: syntax and semantics.

Syntax is how we say things; semantics is what we mean.

By looking at the way that we behave and the way the world behaves, Aristotle

was able to elicit some basic laws. His style of categorizing logic led to the notion

of the syllogism.

The most famous example of a syllogism is

All men are mortal

Socrates is a man

[Therefore] Socrates is mortal

Nowadays we mathematicians would write1 this as

∀x(Man(x) → Mortal (x))
Man(S)

Mortal (S)
(1.1)

John N. Crossley
School of Information Technology, Monash University, Clayton, VIC 3800, Australia,
e-mail: John.Crossley@infotech.monash.edu.au

1 A list of the symbols used is included in the appendix.

J. van Benthem et al. (eds.), Proof, Computation and Agency, Synthese Library 352, 3
DOI 10.1007/978-94-007-0080-2 1, c© Springer Science+Business Media B.V. 2011
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One very general form of the above rule is

A (A → B)
B

(1.2)

otherwise know as modus ponens or detachment: the A is “detached” from the for-

mula (A → B) leaving B. This is just one example of a logical rule.

This rule, and other rules of logic such as

A B

(A∧B)
or

(A∧B)

A

where ∧ is read “and”, have obvious interpretations. These rules come from observ-

ing how we use concepts.

This analytic approach was that taken by George Boole, an Irish mathematician

in the 19th century. It is from his work that we have Boolean algebra or Boolean

logic or, as it is often known today, propositional calculus.

Later in the 19th century Gottlob Frege developed a small suite of logical laws

that are with us today and suffice for all of mathematics. These are the rules of the

predicate calculus. The rules relate only to the syntax. Although they are abstracted

from the way we talk and think, the meaning, the semantics, is something quite

separate.

The most familiar example of semantics is given by truth-tables such as the one

for conjunction (or “and”, ∧):

∧ T F

T T F

F F F

Here we are given the truth-values of the formulae A and B and we work out the

truth of the conjunction (A∧B) by taking the value for A at the side and the value

for B at the top and finding the value where column and row intersect. In general, de-

termining the truth of a syntactic expression (formula) A requires looking carefully

at its constituents.

At this point we should pause because we are now dealing with two completely

different things, two different aspects of languages.

On the one hand we have the rules for working with strings of symbols – rules

such as modus ponens above; on the other hand we are looking at meanings. This

latter is the study of semantics. The former is syntax – the study of the way that

language is put together from symbols. In English this latter includes the way we

put words together to make a sentence.

Consider something we, in essence, wrote earlier (in (1.1)), or rather a slight

variant of it.

∀x(M(x) → D(x)) (1.3)

If M(x) is interpreted as “x is a man” and D(x) as “x will die”, then this formula is

obviously true under this interpretation. However, if we interpret M(x) as “x is an
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animal” and D(x) as “x has at most two legs”, then it is obviously false under this

different interpretation.

Note that the formula itself is neither true nor false, it is a formula – a piece of

syntax.

1.2 Syntax and Semantics

The first concern of mathematical logic is the relation between syntax and seman-

tics.

First let us consider syntax a little more closely.

Any logic starts from certain basic symbols. In ordinary mathematical logic, and

I will say what “ordinary” means later in Section 1.4, we have symbols (letters) for

variables: x,y,z, . . . and letters for predicates or properties, such as M and D above.

We also have letters for relations and functions. For example, L(x,y) might arise in

a context: “there is a line between the points x and y”, or in a context “x is married

to y”. We use small letters for functions, f1, f2 . . .. Such arise in arithmetic where we

may use f1 for +, or have a function i, say, in group theory that is intended to denote

the inverse of an element. Applying these function letters (perhaps repeatedly) gives

rise to (individual) terms.

Together all of these give us atomic formulae – basic formulae such as L(x,y) or

M( f3(x, f1(y2))) or D(y).
Atomic formulae can the be joined together by logical connectives to form more

complicated formulae, sometimes called “well-formed formulae”, such as

(M(x)∧D(y)) or (M(x) → D(x)) or ∀x(M(x) → D(x)).

These have been joined using connectives: propositional connectives ∧ (read as

“and”), ∨ (read as “or”), → (read as “implies”), ¬ (read as “not”); and the quan-

tifiers: ∀ (read as “for all”) and ∃ (read as “there exists”).2 The precise rules for

constructing formulae can be found in any logic textbook, such as [22].

We then have rules for generating more formulae. We have already met modus

ponens in (1.2). This rule is also know as implication elimination, (→-E): the →
above the line is eliminated below it.

In Fig. 1.1 we give the rules3 that were discovered in the late 19th century by

Frege (though Leibniz knew many of them long before in the 17th century). The

formulation here is known as Natural Deduction since the rules (with two excep-

tions) look very close to our actual practice in reasoning. In this formulation we do

not have axioms but we may have hypotheses, i.e. formulae that we assume.

2 Some people avoid using negation, ¬. They employ a constant ⊥ for the false formula. Then they
use the formula (A →⊥) instead of ¬A.
3 The phrase “x is free/not free in [some formula]” is a technical condition that avoids misunder-
standings.
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⊢ A
(Axiom-I)

A ⊢ A
(Ass-I)

∆ ,A ⊢ B

∆ ⊢ (A → B)
(→-I)

∆ ⊢ A ∆ ′ ⊢ (A → B)

∆ ,∆ ′ ⊢ B
(→-E)

∆ ⊢ A

∆ ⊢ ∀x.A
(∀-I)

∆ ⊢ ∀x.A

∆ ⊢ A[c/x]
(∀-E)

x is free in A, not free in ∆

∆ ⊢ P[a/y]

∆ ⊢ ∃y.P
(∃-I)

∆1 ⊢ ∃y.P ∆2,P[x/y] ⊢C

∆1,∆2 ⊢C
(∃-E)

where x is not free in C

∆ ⊢ A ∆ ′ ⊢ B

∆ ,∆ ′ ⊢ (A∧B)
(∧-I)

∆ ⊢ (A1 ∧A2)

∆ ⊢ A1
(∧-E1)

∆ ⊢ (A1 ∧A2)

∆ ⊢ A2
(∧-E2)

∆ ⊢ A1

∆ ⊢ (A1 ∨A2)
(∨-I1)

∆ ⊢ A2

∆ ⊢ (A1 ∨A2)
(∨-I2)

∆ ⊢ (A∨B) ∆1,A ⊢C ∆2,B ⊢C

∆1,∆2,∆ ⊢C
(∨-E)

∆ ⊢ ⊥
∆ ⊢ A

(⊥-E)

A[a/x] is read “A with a for x” and denotes the formula A with a substituted for the variable x.

Fig. 1.1 The basic rules of predicate calculus.

Here an expression such as ∆ ,A ⊢ B is read “from the formulae in ∆ and the

formula A we can prove the formula B”.

The rules should be easy to read with at most two exceptions. These are (∨-

E) and (∃-E). The former corresponds to proof by cases. We can paraphrase it as

follows: “If, from A we can prove C and from B we can prove C, then we can prove

C from (A∨B)”. Likewise (∃-E) can be paraphrased as: “If we can prove C from

some particular x such that P (with x replacing y), and we can also prove that there

is some y such that P, then we can prove C”.

It is obvious that these rules are “good” rules if we just interpret them in an

intuitive way. That is to say, when so interpreted they lead from true assertions to

other true assertions.

We build proofs by repeatedly applying the rules. Since some of the rules have

two premises (top lines) we actually get a tree. The tree is a proof of the formula at

the root of the tree.
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1.3 The Completeness Theorem and Model Theory

It should be quite surprising that when we analyze the sort of language we use in

mathematics, and elsewhere too, that the few basic rules, given above and originally

due to Frege, suffice to yield all those syntactic expression that are always true –

and no others. This is the most dramatic result that mathematical logic produced in

the first half of the twentieth century:

Theorem 1.1 (The Completeness Theorem) There is a finite (small) set of logi-

cal rules which will yield all, and only, those formulae which are true under any

interpretation.

What is an interpretation? We have given a hint when discussing (1.3) above.

First we have to establish what domain we are talking about, e.g. people, or

natural numbers. Then we have to interpret the predicates in the language and these

will usually be interpreted as relations, one such example in the case of numbers is

the relation ≤. Here is a different example. If we have a language involving P(x,y)
and we consider interpreting this predicate P as “x divides y” and we only allow x,y,
etc. to be interpreted as natural numbers, then we can see that

(P(x,y)∧P(y,z)) → P(x,z)

is always true.

On the other hand

(P(x,y)∨P(y,x)) (1.4)

is sometime true and sometimes false, while

∀x¬P(x,x) (1.5)

is false since every number divides itself.

However if we interpret P(x,y) as “y is strictly greater than x”, then (1.4) is

sometimes true and sometimes false and (1.5) is true.

If we go to a completely different interpretation and let the variables range over

human beings and now interpret P(x,y) as “x is married to y” then we get different

results.

The actual formal definition of “true in an interpretation” is quite complicated

(see e.g. [22]), so we omit it here.

Those formulae, which are true under all possible interpretations, are called uni-

versally valid or, sometimes, simply “valid”. One example is any formula of the

form (A∨¬A).
Formally we say that an interpretation, M , is a model of a formula A (or a set of

formulae ∆ ) if A is true in M (if every formula in ∆ is true in M ).

In [17], Kreisel pointed out that the Completeness Theorem actually catches our

intuitive notion of truth. The argument is simple. The Completeness Theorem says

that every formula true in all (formal, mathematical) interpretations is provable.

Clearly, anything provable is true in all interpretations (including informal ones).
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Finally anything true in all interpretations is true in all formal interpretations. Thus

these three classes: A: provable in predicate calculus, B: true in all interpretations,

and C: true in all formal interpretations, are such that A ⊆ B ⊆C ⊆ A and therefore

A,B and C all coincide.

One half of the Completeness Theorem is more powerful in the following form.

Theorem 1.2 (The Compactness Theorem) If a set, Σ , of formulae is consistent,

then it has a model, i.e. an interpretation in which all formulae in Σ are true.

Here consistent means, as you would expect, that we cannot prove a contradiction

(such as (A∧¬A)) from Σ .

The idea of model gives rise to Model Theory. This got a great impetus from

the Completeness Theorem. Model Theory is the study of interpretations of a set

of sentences of logic. The area is basically a grand exploitation of the semantics

of logic. Surprisingly, one can obtain significant results simply by looking at the

style of the sentences. At its simplest level it gives us beautiful results such as the

following.

Theorem 1.3 If a formula ∀x1∀x2 . . .∀xnA(x1, . . . ,xn) with no quantifiers inside the

formula A is true in an interpretation then it is true in any (non-empty) sub-

interpretation.

A simple application of this is the following. If we write down axioms for a

group involving the inverse function (as mentioned above) and a function m,

say for group multiplication, then all these axioms can be written in the form

∀x1∀x2 . . .∀xnA(x1, . . . ,xn) with no quantifiers inside the formula A. It follows that

if G is a model of these axioms, i.e. a group, then any non-empty subset of the

elements of G closed under inverses and multiplication, is actually a sub-group.4

But Model Theory has much more powerful results too and allows us to do calcu-

lus in a new way: the Non-standard analysis of Abraham Robinson [23]. It has given

us deep insights into group theory and into models of set theory, and has become an

autonomous discipline (see [1]).

1.4 Intuitionist or Constructive Logic

Now there is not just one “true” logic. At the beginning of the 19th century Brouwer

questioned the law of the excluded middle and gave a new interpretation to the

syntax that we use in mathematics. He regarded a proof as telling us how to make

a construction. For Brouwer, a proof of (A∨¬A) was only acceptable if one could

give either a proof of A or a proof of ¬A. In the ordinary mathematics of that time,

as used by Hilbert, (A∨¬A) was trivially true. This was, roughly speaking, based

4 Some people take this as the definition of a sub-group but other examples can be given, see [21]
or [5].
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on the idea that A was either true or not, even if we do not know which: there was

no middle alternative. This was unacceptable, indeed meaningless, for Brouwer.

Now the ordinary logic that is (still!) commonly used by mathematicians and

most philosophers5 relies on the law of the excluded middle:

(A ∨ ¬A)

or, equivalently, the law of double negation:

¬¬A

A

Both of these are equivalent to our last rule in Fig. 1.1:

∆ ⊢ ⊥
∆ ⊢ A

(⊥-E)

For many computer scientists and philosophers, it is better not to use this rule.6 This

gives so-called constructive or intuitionist logic.

When I was a student this kind of logic was regarded as odd.

In the 1960s Saul Kripke, then a young student, produced a different kind of

interpretation in order to prove a Completeness Theorem for intuitionist logic. His

“interpretations” were not single models in the sense we met above, they were fam-

ilies of such interpretations with relations between them. They are know as possible

world interpretations. Intuitively speaking, a formula is then provable if (and only

if) it is true in all possible worlds. For a detailed treatment see [8, 19] or [2].

Nowadays there are lots of different logics that all have their value and applica-

tion. These logics include various kinds of modal logics. Modal logics have modal-

ities which are indicated by new symbols. Thus we may have ✸ for possibly and

� for necessarily. One of the most famous of these is the logic called S5. This is a

propositional logic in which the formulae are built up from propositional variables

p,q, . . . using the propositional connectives (see above Section 1.2) and also allow-

ing prefixing of formulae by � or ✸. (Thus (p∨✸(q∧�r)) is a formula of S5. It

has all the true formulae of ordinary propositional calculus as axioms together with

the rules shown in Fig. 1.2.

Many of these logics also have completeness theorems analogous to Theo-

rem 1.1. The proofs of these have similarities with the proof of the completeness

of intuitionist logic. Indeed, Kripke proved completeness results for modal logics

first [18] and only subsequently used his ideas there to prove the completeness of

intuitionist logic. Details of such theorems may be found in [8].

5 But not as much by computer scientists.
6 This is not a question of the rule being right or wrong, it is a question of what one can say
about what computers do. There are certainly problems which a compute cannot decide (see below,
Section 1.5, so the computer does not necessarily “know” whether A is true or ¬A is true.
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If ⊢ A then ⊢�A ⊢�(A → B) → (�A →�B)

�A ⊢ A ✸A →�✸A

Fig. 1.2 The rules for the modal logic S5.

1.5 Recursive Functions

When one turns to specific domains, for example the natural numbers, 0,1,2, . . .,
the power of the logic changes. In order to study the natural numbers, the theory of

formal arithmetic was described by axioms. These axioms are known as the Peano

axioms but they are really due to Richard Dedekind (see [13]).

Kurt Gödel showed, in 1931, that there is no finite system of axioms that will

give you all the true statements of arithmetic.7 This is his famous Incompleteness

Theorem.

So logic, in one sense, fails. But this weakness is also a strength. In proving the

theorem Gödel developed the notion of recursive or computable function.8 These

functions are those that are representable in formal arithmetic. That is to say there

are predicates that exactly mirror these functions. Later, however, it was found that

there are many other ways of describing exactly the same functions.

Alan Turing [27] showed that the functions that can be computed on his idealized

machines, now known as Turing machines, are exactly the same as Gödel’s recur-

sive functions. All our computers developed from this notion of Turing’s.9 It is now

almost universally believed that a function is computable if, and only if, it can be

programmed on some computer and, for every type of computer so far developed,

it has been shown that those functions that can be computed are amongst Turing’s

computable functions. So recursive functions are exactly the functions we can com-

pute. This work also showed that some functions cannot be computed. In particular

it is not possible to compute whether a given Turing machine with a given program

will stop or not. This is the Halting problem.

The development of recursion theory has spawned a whole sub-industry of math-

ematical logic in which I have played a part.

In advancing the theory of computable functions several different approaches

have been adopted including the Turing machines mentioned above and the Lambda

calculus which we shall treat below (see Section 1.7).

7 In fact he even showed that there is no finite complete system of axiom schemes for formal
arithmetic.
8 To be precise, attention actually focussed on partial functions, those that may not be defined for
all arguments.
9 At least as far as we can tell. It seems obvious that John von Neumann used Turing’s ideas but
there is no record of him admitting to that! See Martin Davis [11].
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Z → 0

Z → Z +1

If Z 6= 0 GO TO L

Z stands for an arbitrary register name.
Instructions are labelled with labels L,L1,L2, . . . .

Fig. 1.3 The programming instructions for Shepherdson-Sturgis machines.

One of the nicest approaches is that of Shepherdson-Sturgis machines or Unlim-

ited Register Machines (see [16]). An excellent description of these can be found in

Davis, Sigal and Weyuker [12]. We consider an abstract machine, very much like a

modern computer. It has a finite number of registers in which natural numbers are

stored. The registers are identified by variables X1,X2, . . . ,Y,Z1, Z2, . . .. The Xi are

the input registers. There is also an output register, where the answer will be found.

The Z j are auxiliary ones. Initially each register has zero in it. The whole program-

ming language is very simple and is shown in Fig. 1.3. All recursive functions can

be computed using programs in this language!

It was some time before people were able to prove that there are different degrees

of computability. However this has now become a large industry, strongly developed

by Sacks in the latter half of last century. (See Barwise [1].)

One of the areas which still requires considerable development, in my view, is

that of higher order recursive functions. Although a great deal of work was done

last century by Kleene, Sacks and others, our understanding of the kinds of functions

that will take a program as an argument and always yield another program is not very

well understood (even though such higher order functions are extensively used).

1.6 Set Theory

Besides arithmetic logic has also been applied to set theory. Indeed, one of the major

impetuses for mathematical logic was the problem, in the nineteenth century, of the

foundations of analysis, including, in particular, the infinitesimal calculus.

Cantor [3, 4] started investigating Fourier series and came across difficulties. The

first thing was that one could count beyond infinity. This had been remarked long

ago by Galileo in his Discorsi e dimostrazioni matematiche intorno a due nuove

scienze (1638) (which I have not seen) where he showed there are the same number

of square numbers as there are numbers. Here is an even simpler example. Suppose

we arrange all the even numbers first and then all the odd numbers, then we get a

list

0,2,4, . . . ,1,3,5, . . . .
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So if we start counting we count 1,2,3, . . . and then run out of counting numbers

before we get to the end. Cantor introduced infinite (ordinal) numbers to be able to

count this far. He counted

1,2,3, . . . ,ω,ω +1,ω +2, . . . .

And this process could be carried much further to ω ×ω or ωω or even to ωωωω

...

which is now known as ε0 and even that was not the end. There is no end.

In developing his theories of large cardinal and ordinal numbers he introduced set

theory. Sets can be thought of as being formed in two different styles. The first is by

building them up, e.g. by taking unions of smaller sets, etc. The other is by defining

them by what they comprehend: defining a set as the set of x such that A(x). The

naı̈ve axiom of comprehension says that {x : A(x)} always exists. This gives rise to

Russell’s paradox (1.6):

If R is the set of x such that x 6∈ x, then we have both x ∈ R and x 6∈ R.

The basic axioms of set theory were not troublesome and were formulated by

Zermelo and Fraenkel. The axiom of comprehension, however, had to be circum-

scribed.

Thanks to the formulations available through the mathematization of logic, set

theory has developed enormously.

Nevertheless this (finite) set of axiom schemes did not succeed in resolving all the

open questions. Not merely was it incomplete (as it had to be because it was possible

to develop arithmetic in set theory, see my remarks on incompleteness above in

Section 1.5) but it did not resolve the status of the Axiom of Choice. The Axiom

of Choice says that, given a non-empty set of non-empty sets, there is a set that has

exactly one element from each of those sets. Russell [24] gives the nice example:

given an infinite set of pairs of socks, how do you pick one sock from each pair?

The first problem was the problem of consistency. This has been attacked by

building models of set theory. Gödel was the first to do this in spectacular fashion

by building models of set theory within set theory, see [14]. However, such models

do not solve all the problems.

Now Gödel [14] had established the consistency, but not the independence, of

both the Axiom of Choice and the Continuum Hypothesis10 back in 1940.

About the time I obtained my PhD (1963) Paul Cohen [6, 7] showed the inde-

pendence of the Axiom of Choice (and the Continuum Hypothesis) from the other

axioms of set theory. He applied a kind of model theory which we now know is

closely related to the model theory that Saul Kripke used for modal and intuitionist

logic. The technique is known as forcing and depends on being able to create possi-

ble worlds that behave in unusual ways. Since that time very many other statements

10 The Continuum Hypothesis says that there are no infinite cardinal numbers between the smallest
infinite cardinal number, that of the set of natural numbers and the cardinal number of the set of all
subsets of the natural numbers.
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with mathematical import have been proved independent of the other axioms of set

theory.

The search for “nice” axioms for set theory continues. Although the concept of

set appears simple from an intuitive point of view, we have no precise conception

of what a set is. Moreover, since about 1970, the field of Set Theory has become

extremely complicated and difficult. It is perhaps not surprising that even its practi-

tioners use words such as “morass”.

1.7 Proof Theory

Finally there is Proof Theory. This studies the formal proofs in mathematical logic

in the same way that one studies the real numbers, for example. Originally this was

done by Gerhard Gentzen in the 1940s when he tried to prove that the Peano axioms

for arithmetic are consistent.

Gödel had not only proved the Incompleteness Theorem (see above Section 1.5)

but had also shown that it was impossible to prove the consistency of formal arith-

metic in the theory itself. Gentzen devised a new way of presenting proofs, in fact

closely related to the system of natural deduction we used in Section 1.2. He was

then able to show that one could simplify certain proofs.

For example, suppose we are given two proofs: where the first is a proof of A:

....
A (1.6)

and the second is a proof of B from A from which we get a proof11 of A → B:

[A]
....
B

(A → B) (1.7)

Then suppose that we use modus ponens to remove the A from (A → B) thus:

We now have a proof:

....
A

[A]
....
B

(A → B)

B (1.8)

But if instead we had simply put the first proof, (1.6) of A, on top of the second

proof, (1.7), of (A → B), then we no longer need the hypothesis [A] in the second

11 The square brackets indicate that A can be discharged, i.e. is not needed for the proof of B,
though it is for the proof of B, of course.
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proof in order to get a proof of B. Previously we had made an unnecessary detour

since we already had a proof of B.

That is to say, we can reduce the proof in (1.8) to a simple proof of B of the form

....
A....
B

This removal of unnecessary detours is known as cut elimination.

Gentzen [26] showed, by using a special form of induction, transfinite induc-

tion,12 that there could be no proof of a contradiction, i.e. that arithmetic was con-

sistent. The actual technique was to assume that there was a proof of a contradiction

and then to reduce that proof, by cut elimination, until it was, in fact, of a very

simple form. From there it was obvious that there could be no such proof.

Gentzen’s techniques have been greatly developed by Feferman in the USA and

Schütte and his group in Germany. These people have extended his results to much

more complicated systems of logic than simple arithmetic.

However, the work started by Gentzen about 60 years ago has started a new and

perhaps surprising industry in computer science. Although Gentzen was aware of

the information contained in a proof, it was not until Bill Howard showed in his [16]

that propositional calculus (which is even simpler than predicate calculus and can

be, at least partially, identified with Boolean algebra) reflects the lambda calculus.

Thereby the usefulness of Gentzen’s work for producing computer programs was

realized.

This is despite the fact that the lambda calculus was one of the ways that recursive

functions were developed. It was an alternative to Turing machines. More recently

lambda calculus has formed the basis for the programming language, LISP, and in

fact one can obtain programs directly from formal proofs by developing Howard’s

ideas further. For more about this you may care to look at my lecture in this confer-

ence [9]: What is the difference between proofs and programs? which is devoted to

this topic of extracting programs from proofs.

1.8 Conclusion

Over little more than a century mathematical logic has developed from nothing to

a very multi-faceted subject. It has thrown a great deal of light on many areas of

philosophy: particularly through modal logics; mathematics: especially through set

theory; and computer science: through the analysis it has permitted and the (correct)

programs it has allowed to be generated. It has also shown the limits of computa-

bility.

12 In fact he only needed transfinite induction up to ε0, see Section 1.6, in order to prove his result.
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At present, mathematical logic encompasses model theory, set theory, recursion

theory and proof theory. Although modal logics have long been used, especially by

philosophers, in my lifetime I believe that the most important change in mathemati-

cal logic has been the development of many, many other kinds of logics, which have

supplemented the standard or classical one used in mathematics. I have touched

on but a few of these. Some of the others are the subjects of other lectures in this

conference. There is still more work to be done and I hope I have encouraged you

to find out what there is to do in the areas in which you yourselves are interested.
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Appendix: A Brief Guide to the Symbols

Symbol Read

∀ forall

→ implies

A (A → B)
B

From A and (A → B)infer B

∧ and

T True

F False

∨ or

¬ not

∃ there exists

(→-E) →−elimination

(∨-E) ∨− elimination

(∧-E) ∧− elimination

(∃-E) ∃− elimination

(∀-E) ∀− elimination

(→-I) →−introduction

(∨-I) ∨− introduction

(∧-I) ∧− introduction

(∃-I) ∃− introduction

(∀-I) ∀− introduction

⊥ False(the false proposition)

� necessarily

✸ possibly

∈ is a member of

6∈ is not a member of

....
A a proof of A

A....
B a proof of B from A





Chapter 2

Is There a Logic of Society?

Rohit Parikh

2.1 Introduction

Continuing the discussion above, we came to identify “valid proof” with “proof

in first order logic,” proved complete by Gödel. And we came to identify effective

procedures with procedures which could be carried out (or somehow simulated) by

Turing machines.

But reasoning precedes first order logic; in India and Greece, as well as in China,

Logic has existed for several thousand years. And the notion of algorithm is implicit

in so many things which happen in everyday life. We humans are tool-making crea-

tures (as are chimps to a somewhat smaller extent) and both individual and social

life are over-run with routines, from cooking recipes to elections.

So it would seem that here is another area, dealing with people rather than com-

puters, crying out for development and study. Such a study seems to have been

neglected until recently, but the work of [11, 14, 16, 19] has constituted a start.

But let us start first with logic.

2.2 Logic vs Rationality

When we come to the question of why we want an argument to be logically rigorous,

one answer is that a logically correct argument leads from true premises to true con-

clusions. This criterion may be modified somewhat and we may require, as Adams

[1] does, that an argument should lead from premisses true with high probability to

conclusions also true with high probability. But the point stands.

But what is important in social contexts is not just that one should be logical but

also that one should be rational. The two requirements are related, but of course

Rohit Parikh
City University of New York, New York, NY, USA, e-mail: rparikh@gc.cuny.edu

J. van Benthem et al. (eds.), Proof, Computation and Agency, Synthese Library 352, 19
DOI 10.1007/978-94-007-0080-2 2, c© Springer Science+Business Media B.V. 2011
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not identical. And the requirement of rationality enters into Grice’s defense of the

material conditional. The material conditional A ⊃ B of two formulas A and B is

defined to be equivalent to ¬A∨B or ¬(A∧¬B). The material conditional is truth

functional in that the truth value of A ⊃ B depends only on the truth values of A and

of B. It is true if A is false, or if B is true. No connection between A and B is needed.

But is A ⊃ B the same as “If A then B”?

Dorothy Edgington [20] shows that if “If P then Q” is truth-functional, then it

must coincide with the material conditional. But then she gives a nice argument

against interpreting “if A then B” as A ⊃ B. For consider the following statement,

X = If God does not exist, then it is not the case that if I pray, my prayers will be

answered. Surely this seems right. Now there are two “if”s in X . If we formalize

both the “if”s as material conditionals, we get ¬G ⊃ ¬(P ⊃ A). Suppose now that I

don’t pray. Then P is false, and hence P ⊃ A is true. Thus ¬(P ⊃ A) is false. Thus if

X is true, which we granted, ¬G must be false, and hence G is true. I can prove the

existence of God simply by not praying!

But surely the existence of God cannot be proved so simply and it would seem

that “if A then B” cannot always be represented as A ⊃ B.

Can the material conditional be defended in spite of such examples? The best known

defense of material conditionals is due to Paul Grice [6] who introduced his notion

of implicature to this end.

Grice brings in rationality considerations in his celebrated defense of the material

conditional. The material conditional A ⊃ B is true if A is false or B is true. But then

why do we resist that interpretation for if A then B ?

Grice’s answer is that it is a social convention that when making a statement one

should supply the maximum relevant information. If I know ¬A then it is misleading

to say A ⊃ B because the person who hears me will assume that I did not know ¬A;

otherwise why not just say that rather than the longer formula A ⊃ B? Similarly, if

I already know B, then it is true according to Grice, that “if A then B”. But it is

misleading to say that.

Coming back to our God example, suppose I say to someone, “Every time I

pray to God, my prayers are answered.” This is true if I do not pray. But the hearer

assumes that this simple sentence “I don’t pray” could not be what I intended to

say because I have said something more complex instead. So he assumes that it was

necessary to make the more complex statement, that I do pray, and that there is a

connection between my praying and my prayers being answered. If I don’t pray,

then my statement, “Every time I pray to God, my prayers are answered” is true, but

misleading.

Thus Grice proposes to defend the material conditional by saying that when it

appears to differ in sense from “if A then B”, that is because of the conventions of

conversation.

Grice’s analysis of conditionals, although brilliant, is not generally accepted be-

cause there are other problems (which we shall not discuss here) with his analysis.

But the notion of implicature which he introduced has proved to be of great value.

The implicature of a statement is something which is conveyed by the act of making

that statement and goes beyond the mere truth of it. If a child says, “I am hungry,”
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and I say, “Your mother will be back in a few minutes,” I have implicated but not

said that the mother will bring food. The child infers this from the fact that if the

mother was not going to bring food, then my remark, even if true, is pointless.

This view of Grice has led to new developments in our understanding of conver-

sation, that it does not consist merely of exchanging true assertions, but that it is

an activity with a social purpose which is usually helpful (but sometimes not so). If

a professor is asked for a letter of recommendation for a student and the professor

says, “She always came regularly to class,” and nothing else, then the professor has

not said but he has implicated that there is nothing good about the student which is

of relevance to the application.

We have seen how the logic which goes on within a social context is different

from the logic of textbooks. But there is also a logic about social situations to which

I shall now turn.

2.3 Plans

Suppose that I am going from my apartment to a hotel in Chicago. Then my sched-

ule (or program) will consist of several steps. Taking a cab to Laguardia airport,

checking in, boarding the plane, and then in Chicago, taking a cab to the hotel. Each

step needs to be tested for correctness. For instance, if I do not have a picture ID,

I cannot board the plane, and it is irrelevant that the other steps would have gone

well.

The schedule I described is a simple straight line program. There could also be

decision points like, take a taxi if available, otherwise take a bus. A plan with many

such decision points would look like a tree rather than a line. But the entire schedule

does have to be checked for correctness – something we do informally.

But other social procedures like organizing a conference or a wedding can be far

more complex. We can invite aunt Betsy only if her ex-husband Eric has said he

cannot come. Formal instruments can come in useful when the complexity sur-

passes some modest level. And we have not developed such instruments for social

contexts. A logic is needed.

The paradigm of that logic comes (in part) from the logic of computer programs.

A social procedure, to be useful, should serve some purpose, and it should be de-

signed so that in normal circumstances the purpose is indeed fulfilled. The same

holds for computer programs, and there is a well developed field devoted to proving

that they work.

2.3.1 Proving Computer Programs Correct

Let us look quickly at an example of the use of Hoare logic for proving a program

correct [8].
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Consider the program αg for computing the greatest common divisor gcd(u,v)
of two positive integers u,v. We want this program to have the property

{u > 0,v > 0} αg {x = gcd(u,v)}

This property has three components: the pre-condition u > 0,v > 0, the desired post-

condition {x = gcd(u,v)} and the program αg itself. We want that if we start with

two integers u,v which are both positive, then the program αg when it ends will have

set x to the gcd of u,v. One such program αg, Euclid’s algorithm, is given by

(x := u);(y := v); (while (x 6= y do

(if x < y then y := y− x else x := x− y))).

The program sets x to u and y to v respectively, and then repeatedly subtracts the

smaller of x, y from the larger until the two numbers become equal. If u, v are pos-

itive integers then this program terminates with x = gcd(u,v), the greatest common

divisor of u, v.

The reason is that after the initial (x:=u);(y:=v), clearly gcd(x,y) = gcd(u,v).
Now it is easy to see that both the instructions x := x−y and y := y−x leave the gcd

of x,y unchanged. Thus if B is gcd(x,y) = gcd(u,v), and β is (i f x < y then y :=
y− x else x := x− y), then {B}β{B} holds. β preserves B.

Thus if the program αg terminates, then by Hoare’s rule for “while,” x 6= y will

be false, i.e. x = y will hold, and moreover B will hold. Since gcd(x,x) = x, we will

now have gcd(u,v) = gcd(x,y) = gcd(x,x) = x.

Hoare’s rules allow us to derive the properties of complex programs from those of

simpler ones. Given program β let α =“while A do β”. A,B are first order formulas.

Then the Hoare rule says that if we know {B}β{B} i.e. that β preserves the truth

of B,1 then we can conclude {B}α{B∧¬A}. That is that α will also preserve B and

will moreover falsify A.

{B}β{B}
———————–

{B}while A do β{B∧¬A}
In other words, provided that β preserves the truth of B and that B holds when α

begins, then B will still hold when α ends and moreover, A will be false. This rule

allows us to predict that when the gcd program terminates, gcd(u,v) = gcd(x,y)
will still hold and x 6= y will be false, i.e. x will equal y.

A social algorithm may have a similar proof of correctness, which essentially

amounts to showing that provided the steps are performed correctly, the result will

also be correct. Since social algorithms consist of a series of steps organized in some

logical sequence, logical methods similar to those used for computer programs will

sometimes work. Reference [14] shows how formal methods can be used to prove

the correctness of the Banach-Knaster algorithm for fairly dividing a cake.

However, this sort of logic works only for sequential computer programs. When it

comes to people taking part in social algorithms, four other factors enter. They are

1 Indeed it is sufficient if β , applied once, yields B under the precondition that both A and B hold.
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• Communication and Knowledge

• Preferences and Incentives

• Co-ordination and Conflict

• Culture and Tradition

Of these four, the first enters already in computer science, i.e., in distributed com-

puting. When several processors are co-operating on a task, then each needs to

know what the others are doing so that actions can be co-ordinated [15]. Reference

[17] provides a model of knowledge acquired in the course of activity and relies on

a Kripke model based on histories to develop a theory of the knowledge of each

agent, whether a human or a computer.

2.4 Communication and Knowledge

Here is a discussion from [13]. The following examples illustrate the type of situa-

tions we have in mind.

Example 1: Uma is a physician whose neighbour is ill. Uma does not know and

has not been informed. Uma has no obligation (as yet) to treat the neighbour.

Example 2: Uma is a physician whose neighbour Sam is ill. The neighbour’s

daughter Ann comes to Uma’s house and tells her. Now Uma does have an obli-

gation to treat Sam, or perhaps call in an ambulance or a specialist.

The difference between Uma’s responsibilities in examples 1 and 2 is that in the

second one she has knowledge of a situation which requires action on her part. In

the first case, none of us would expect her to address a problem whose existence she

does not know of. Thus any decent social algorithm must allow for the provision

of requisite knowledge. However, in the example 3 below, it is the agent’s own

responsibility to acquire the proper knowledge.

Example 3: Mary is a patient in St. Gibson’s hospital. Mary is having a heart attack.

The caveat which applied in case (1) does not apply here. The hospital cannot plead

ignorance, but rather it has an obligation to be aware of Mary’s condition at all

times and to provide emergency treatment as appropriate.

In all the cases we mentioned above, the issue of an obligation arises. This obligation

is circumstantial in the sense that in other circumstances, the obligation might not

apply. Moreover, the circumstances may not be fully known. In such a situation,

there may still be enough information about the circumstances to decide on the

proper course of action. If Sam is ill, Uma needs to know that he is ill, and the

nature of the illness, but not where Sam went to school.

To see that such matters can have serious political consequences, consider the fol-

lowing from the New York Times.

By CLAUDIO GATTI and JAD MOUAWAD

Published: May 8, 2007

Chevron, the second-largest American oil company, is preparing to acknowledge that it
should have known kickbacks were being paid to Saddam Hussein on oil it bought from
Iraq as part of a defunct United Nations program, according to investigators.
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The admission is part of a settlement being negotiated with United States prosecutors and
includes fines totaling $25 million to $30 million, according to the investigators, who de-
clined to be identified because the settlement was not yet public.
The penalty, which is still being negotiated, would be the largest so far in the United States
in connection with investigations of companies involved in the oil-for-food scandal.

[13] contains a detailed discussion of such cases relying on the semantics from

[17] which is used to calculate the obligations.

Such knowledge issues arise all the time in real life. Suppose a shy student is in

your office and you wonder if it is time for your next appointment. If you look at

your watch, then you will know the time, but the student will also realize that you

wanted to know the time, and may, being shy, leave even though he need not.

But we turn now to the other two aspects.

2.5 Incentives and Preferences

This aspect is of course what decision theory is all about. In decision theory, an

agent is faced with some uncertainty as to how things are, and needs to make a

decision. Suppose for instance that a die is to be tossed and the agent has to choose

between (A) getting $30 if a six shows up, and (B) getting $12 if a six does not

show up. Now the probability of a six is of course 1/6 (assuming that the die is fair)

and that of a non-six is 5/6. Thus the expected value of the first choice is $30/6 or

$5. That of the second choice is $12(5/6) or $10. It seems that the second choice is

better and the theory says that that is what the agent should choose.

This situation was clear enough, but when an agent needs to choose between two

jobs or two men who want to marry her, then numbers in the form of value or prob-

abilities in the form of reals in [0,1] may be hard to come by. Still, it can be argued

that some of the theory which we applied with the die will continue to apply. Savage

[22] following on ideas of Ramsey and de Finetti shows that if the choices made by

an agent (both in simple situation and in probabilistic bets) satisfy certain axioms,

then there exists a utility function for that agent, and a subjective probability over

the outcome space, such that the agent’s actions can be seen as seeking to maximize

the expected utility of an action.

We saw how an agent who believed that the die was fair and whose utility was

linearly proportional to the amount of money would choose option (B) above. If the

agent chooses (A) instead, then we would conclude that either the agent’s subjective

probability for a six was more than 1/6, i.e., the agent thought the die was not fair,

or perhaps the utility of $30 to the agent was more than 2.5 times the utility of $12.

The latter could happen if the agent needed to get to her home town, and the busfare

was $27. Then a 1/6 chance of getting $30 would be better than a 5/6 chance of

getting $12. Yet another possibility is that the agent did not know probability theory

[18].

Sen [24] points out that our reliance on utility theory is a bit naive, for people

want many things which may not be comparable.
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I argue in favour of focusing on the capability to function, i.e., what a person can do or can
be and argue against the more standard concentration on opulence (as in ‘real income’ esti-
mates) or on utility (as in traditional ‘welfare economic’ formulations). Insofar as opulence
and utility have roles (and they certainly do), these can be seen in terms of their indirect
connections with well-being and advantage, in particular, (1) the causal importance of op-
ulence, and (2) the evidential importance of utility (in its various forms, such as happiness,
desire-fulfilment and choice)

Thus Sen emphasizes abilities rather than utilities. However, of course he did not

have (I assume) access to the relevant material from computer science like analysis

of algorithms, or logic of programs. Naturally he does not offer a detailed theory of

abilities.

But such a detailed theory is crucial. For instance, when a bus line from town

A to town B going through towns C,D,E is established, then the presence of the

bus line increases the abilities of people living in these towns. Or alternately, when

cellphones are invented and services established, then that too increases the abilities

of people. Such things enter into the GNP, but only in an indirect way, via what

people are willing to pay for a cellphone and not in terms of how it actually improves

the abilities of people. This is why an expensive treatment for cancer or an expensive

divorce turns out to have enormous (positive) implications for the GNP – not what

we would intuitively expect.

Now decision theory is a theory of a single agent facing uncertainty.

2.6 Co-ordination and Conflict

Game theory extends this to a theory of an agent trying to maximize his utility in a

situation where others are also trying to maximize theirs. Since the agent wants to

maximize his own utility which depends on the actions of others, he needs a theory

of what they want. The earliest major contributions here are due to von Neumann

and Morgenstern, and to John Nash [10, 26].

A Nash equilibrium (for two players) is a pair of choices (a,b) by them which

has the property that given that one agent is choosing a, the other’s best bet is to

choose b and vice versa.

Suppose for instance that a husband and wife want to go to a music concert and

she prefers Mozart, whereas he prefers Stravinsky. Still each would rather go with

the other than go alone.

Thus, putting the wife’s location (or choice) first in the pairs below, their orderings

are,

for the wife: (M,M) > (S,S) > (M,S) > (S,M), and

for the husband, (S,S) > (M,M) > (M,S) > (S,M).
Then there will be two Nash equilibria, one where they both go to Mozart and are

both happy but the wife is happier. She gets her top choice and the husband gets his

second choice. But if she is going to Mozart, then M is his best choice, For now

he can only choose between (M,M) and (M,S) and the second possibility, (M,S) is

worse for him. The other Nash equilibrium is where they both go to Stravinsky, and

this time the husband is the happier one.
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In so called zero sum games, a profit to one agent is a loss to the other, and each

tries to outsmart the other. In such a case, pure strategy Nash equilibria like (M,M)
do not usually exist, but mixed strategies do exist which are equilibria.

Suppose Jack and Ann are playing the game of matching pennies and Jack is the

matcher and Ann is the mismatcher. Thus Jack gets both pennies if the pennies

match and Ann gets them both if they do not. Then Jack wants to show heads if Ann

does and tails if she shows tails. Ann wants the opposite and so each tries to guess

what the other is going to do. There is no (pure) equilibrium here as there was in the

Mozart-Stravinsky scenario.

The following story of either Indian or Iranian origin is very instructive of the

game theoretic situation.

2.6.1 The Two Horsemen

Suppose we want to find out which of two horses is faster. This is easy, we race

them against each other. The horse which reaches the goal first is the faster horse.

And surely this method should also tell us which horse is slower, it is the other one.

However, there is a complication which will be instructive.

Two horsemen are on a forest path chatting about something. A passerby M, the

mischief maker, comes along and having plenty of time and a desire for amusement,

suggests that they race against each other to a tree a short distance away and he will

give a prize of $100. However, there is an interesting twist. He will give the $100

to the owner of the slower horse. Let us call the two horsemen Bill and Joe. Joe’s

horse can go at 35 miles/h, whereas Bill’s horse can only go 30 miles/h. Since Bill

has the slower horse, he should get the $100.

The two horsemen start, but soon realize that there is a problem. Each one is

trying to go slower than the other and it is obvious that the race is not going to

finish. There is a broad smile on the canny passerby’s face as he sees that he is

having some amusement at no cost. Figure 2.1, below, explains the difficulty. Here

Bill is the row player and Joe is the column player. Each horseman can make his

horse go at any speed upto its maximum. But he has no reason to use the maximum.

And in Fig. 2.1, the left columns are dominant (yield a better payoff) for Joe and the

top rows are dominant for Bill. Thus they end up in the top left hand corner, with

both horses “going” at 0 miles/h.

However, along comes another passerby, let us call her S, the problem solver,

and the situation is explained to her. She turns out to have a clever solution. She

advises the two men to switch horses. Now each man has an incentive to go fast,

because by making his competitor’s horse go faster, he is helping his own horse to

win! Figure 2.2 shows how the dominant strategies have changed. Now Joe (playing

row) is better off to the bottom, and Bill playing column is better off to the right –

they are both urging the horse they are riding (their opponents’ horse) as fast as the

horse can go. Thus they end up in the bottom right corner of figure II. Joe’s horse,

ridden by Bill comes first and Bill gets the $100 as he should.
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2.7 The Free-Rider Problem

When many agents participate in an activity where the benefit is to all, the so called

free rider problem can arise. If all households are asked to use less water to avoid a

shortage, then someone who surreptitiously used more water will benefit. Whether

there is water shortage or not will depend on the actions of thousands of others, and

his own action will not decide whether he has to endure a water shortage. On the

other hand by taking long showers he will get more pleasure, and if the others save,

he will also get the benefit of more water in the future.

Some readers may be familiar with the Tragedy of the Commons. In [7], Hardin

introduces a hypothetical example of a pasture shared by local herders. The herders

are assumed to wish to maximize their yield, and so will increase their herd size

whenever possible. The utility of each additional animal has both a positive and

negative component:

• Positive: the herder receives all of the proceeds from each additional animal

• Negative: the pasture is slightly degraded by each additional animal

Crucially, the division of these components is unequal: the individual herder gains

all of the advantage, but the disadvantage is shared among all herders using the pas-

ture. Consequently, for an individual herder weighing up these utilities, the rational

course of action is to add an extra animal. And another, and another. However, since

all herders reach the same conclusion, overgrazing and degradation of the pasture is

its long-term fate.

2.7.1 Akbar and Birbal

There is a wonderful Indian story about the Mughal emperor Akbar2 and his min-

ister Birbal [2] about the way in which incentives (and knowledge) affect a social

algorithm. Birbal had asserted to the emperor that all wise people think alike and

had been challenged.

Then at Birbal’s instance, all men in Agra, the capital, were ordered to come

at night to the palace grounds, and pour one potful of milk into the pool on the

palace grounds. The punishment for not doing so was severe, so one by one, all the

residents came at night and poured a potful into the pool which was covered by a

white sheet. When the sheet was removed in the morning, it turned out that the pool

was entirely full of water! Birbal explained, “Your majesty, each man thought that

if he, and he alone were to pour a potful of water into the pool, it would not make

much difference, and no one would notice. So, since all wise men think alike, and

of course all of your subjects are wise, they all did the same thing and the pool is

full of water.”

2 Akbar was the grandfather of Shah Jehan who built the Taj Mahal in memory of his wife Mumtaz.
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Akbar was a emperor of India during the second half of the 16th century, so this

fable predates William Forster Lloyd’s 1833 parable of the Tragedy of the Commons

by some 300 years. However, Aristotle, who said, “That which is common to the

greatest number has the least care bestowed upon it,” predates Birbal by almost two

thousand years!

There is a similar situation which we might call the Tragedy of the Beer. Suppose

that ten people go out to eat dinner and there is a convention that the total bill is to

be split equally. Many restaurants in fact encourage this convention by refusing to

give itemized bills. Suppose that a beer costs $7 which is a bit high. But if you, as

a diner, are thinking whether to have that extra beer, its cost to you will only be 70

cents (plus tax and tip). Again, the game theoretic situation is the same as before,

the benefit is to the individual and the cost is to the whole group; an individual who

acts irresponsibly will gain.

2.8 Culture and Tradition

Finally we come to culture, which is our shorthand for inherited algorithms, so that

we are using the word culture in a fairly wide sense.

One interesting example of the influence of culture is the ultimatum game, what

the theory predicts about it and what actually happens in practice. Suppose I offer a

hundred rupees to Laxmi and Ram in the following way. First Laxmi decides who

is to get how much of the hundred each of them will get. Then Ram has to decide if

he accepts her division. If he does, then the money is allocated as Laxmi decided. If

he rejects, neither gets anything.

Suppose Laxmi decides that she gets 90 and Ram gets 10. Now it is Ram’s turn

to decide. According to conventional game theory, 10 is better than nothing which

is what he will get if he rejects. So he should accept and take the 10. In practice,

it is quite unlikely that Ram will accept less than 30. Moreover, in some cultures,

Laxmi may offer 40:60 with 40 for herself and 60 for Ram, and Ram may reject this

division as being excessively generous.

So actual behavior differs from theoretical prediction and seems to follow some

pre-existing cultural pattern. Essentially our view is that in game theoretic situa-

tions, a complex calculation needs to be made and the correctness of the calculation

depends on the other party making a corresponding calculation.

Theoretical considerations cannot work out these scenarios and in practice people

use ready made solutions which are part of culture or tradition.

Thus both Lewis and Schelling [9, 23] refer to the notion of saliency. If two people

in New York city get separated, how will they find each other? One solution is to

say that they will make their way to the giant clock in Grand Central station which

is a salient point.

But what makes that a salient point? Surely that is part of the culture. If the two

people are Chinese they may go to the Buddhist temple in Chinatown instead!
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Group membership is crucial here. People tend to use algorithms which they have

learned or inherited from their group, which may be a group defined by nationality,

or ethnicity, or religion, or even by some subfield of some area. Thus the same kind

of object, a subset of some space W will be called a proposition by a philosopher

and an event by an economist. When a philosopher talks to an economist, they may

use different conventions, and there could be confusion.

in [3] Michael Bacharach suggests that identifying oneself as a member of a group

is crucial to making choices when co-ordinated action is needed.

What produces team reasoning? Team reasoning — in any of its versions — is unmysteri-
ous; it is an algorithm, or routine, for arriving at decisions. As many things could get people
to execute it, as could get them to do long division. It could be done as a game, or as a
mathematical exercise, or because someone in control of a group of people found it in her
interest that they should. (p. 135)

Recently, when attending a logic conference at IIT Mumbai, I met the young

graduate student Tithi Bhatnagar who was doing research in what was important

to human beings. She has found that regardless of age, gender or class, the most

important thing for people is relationship. This aspect of human beings, that we

value relationships above most everything, is crucial to understanding human beings

who have, for far too long, been thought of primarily as selfish individuals looking

out only for ourselves.

In sum, we have suggested that a study of society and its social algorithms requires

logic (especially the logic of programs), but also requires attention to the other three

legs of knowledge, incentive, and culture. With all these things in hand a good theory

can be worked out.

Acknowledgements Thanks to Johan van Benthem, Jongjin Kim and Eric Pacuit for comments.
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Part II

Logic and Mathematics





Chapter 3

What Is a Proof?

John N. Crossley§

3.1 Prelude

The term “form” [of a logical argument] . . . is not easy to define but it is easy to illustrate.
(Prior [56], p. 1.)

This paper is principally concerned with the logic of predicate calculus and its

development, principally in the West. I leave it to others to discuss the development

of other methods of proof, such as are found in, for example, Indian logic or modal

logics. Moreover, I am much more concerned with the practicalities of proofs rather

than with the philosophy of logic.

The paper starts off with quite concrete and simple systems. It then moves on to

somewhat more complicated considerations that mirror the development of proofs

in formal logics. The changing rôle of logics, so that in the twentieth century the

distinction between proof systems and computational systems has become blurred,

is brought into sharp focus. Finally the place of formal proofs and the changing

natures of them are discussed.

3.2 Introduction

“What is a formal system?”

I was asked this as the very first question in my viva voce examination for my

doctorate in 1963. It was, I was later told, intended as a friendly opening. I did

John N. Crossley
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J. van Benthem et al. (eds.), Proof, Computation and Agency, Synthese Library 352, 35
DOI 10.1007/978-94-007-0080-2 3, c© Springer Science+Business Media B.V. 2011



36 J.N. Crossley

not know how to answer the question but, after coaxing, I eventually trotted out an

answer referring to an alphabet, predicate letters, logical connectives, etc.

I considered, even then, that this answer was not satisfactory. It gave an example

of a formal system rather than a definition.1 In a recent paper [17], I have made

tentative steps towards a definition of what a (formal) logic is. In that paper I said

that in addition to a syntax and semantics, one needed an inference mechanism. Even

in 1989 it seemed clear to me that we logicians were not at all clear as to what a rule

(of inference) was. Since rules of inference are inextricably involved with formal

proofs, it follows that the idea of a proof is also not clear. I shall therefore begin by

looking at history in Section 3.3. I begin with the ideas of axioms in Section 3.3.1,

and move on to rules of inference. I stress the importance of the purpose of a proof

in a logic, and its dependence on the human situation. After that, in Sections 3.3.2

and 3.3.3, I trace the development of formal proofs through Leibniz, Boole and

Frege to Russell and Hilbert.

Next, in Section 3.4, I consider some different systems of logics, which provide

different styles of proofs, and discuss some relations between them. This section

also treats the blurring of the distinction between proof and computation, which is

a subject that has intrigued me for a very long time. Things take a more practical

turn in Sectionapplied. First comes the question of constraints on proofs, in par-

ticular those imposed by the finiteness of our lives. Penultimately, in Section 3.6

I look rather more at mathematicians’ proofs, following Devlin in his differentia-

tion between right- and left-wing proofs. I also raise some questions about how we

know that actually have a proof, and the lack of formal certification for this. Finally

I present a brief summing up of my argument in Section 3.7.

3.3 A Little History

3.3.1 Aristotle and Euclid

Mathematicians of the 20th century, especially the first half, have been particularly

bad at explaining why they are doing things. So it is worthwhile stating explicitly

that in my view logic is the study of the structure of arguments; that it derives from

the study of human discourse; and that, to be effective, it must relate back to human

activity. I therefore criticize those mathematicians who seize on an abstract structure

and explore it for all it is worth, without caring about its connexions with anything

else. To quote von Bertalanffy [9], p. 99 (from a slightly different context): “The

danger is to consider too early the theoretical model as being closed and definitive.”

So let us trace some developments in the history of proofs. It is also appropri-

ate to bring in anthropological and linguistic considerations alongside the more

1 Likewise Curry, in [25], pp. 14–15, does not give a definition. He says: The definition does not tell
us what a formal system is, in the philosophical sense, but describes the nature of the conventions
made in setting one up.
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philosophical and mathematical ones. To quote von Bertalanffy again [9], p. 237:

“Conceptualization is culture-bound because it depends on the symbolic systems

we apply.”

Logic, as discussed here and in [17], is an applied discipline.2 There is a certain

(varying) subject matter usually presented in linguistic form, whose structure we

wish to model mathematically, or at lest abstractly. So my focus is more on symbolic

logic and its proofs than on philosophical logic, but not exclusively so.

The earliest person I know of who produced proofs is Thales of Miletus (640–546

BC). According to Gow, [37], pp. 138–139, Thales is responsible for five theorems

including “The circle is bisected by its diameter.” The obvious way to prove this (if

one thinks it needs a proof!)is to fold the circle along the diameter. Then, because

every point on the circle is the same distance from the centre, the two halves fit

exactly.3

Here there is no hint of a formal system until one starts to define a circle, for

example as Euclid did, by fixing a point and saying that all points on the circle are

an equal distance from the centre (Euclid I.17, see [38], vol. I, p. 131).

Another theorem of Thales was that if the base angles of a triangle are equal, then

the sides are also equal. The natural method of proof4 is again to fold the triangle

over. Euclid I. 26 does not do this. He argues verbally, not visually, about lengths.

Indeed, if you look carefully at the proof you will see that he makes no distinc-

tion between right and left, no reference to moving the triangle – a two-dimensional

figure – through the third dimension. Euclid’s argument considers only two dimen-

sions. the form of the argument is quite precise and logical. The interpretation of the

formal terms is up to the reader. And a reader who lived in a two-dimensional world

would have no difficulty with Euclid’s proof.

Exercise 3.1 Try and explain to someone who has no point of reference in common

with you, what is left and right. Do not cheat by assuming your interlocutor has the

same sort of body as yourself.

Here we see the importance of the distinction between syntax and semantics (cf.

also [17]).

Aristotle, who remains of major importance in logic, introduces us to the natural

history of logic in his Prior Analytics.

We must first state the subject of our enquiry and the faculty to which it belongs; its subject
is demonstration and the faculty that carries it out demonstrative science. ([5], 24a, p. 65.)

Aristotle does not investigate systems (plural), he looks at the system. His study

of logic is restricted to classifying various kinds of propositions. The ground rules

are laid down:

2 Many in the West may dispute this; few who know anything at all about Navya-Nyāya would
question it.
3 Euclid did not give a proof of this result. However, Proclus (ca. 410–485) [57] appears to suggest
it was proved by superposition.
4 That is to say “natural” to one trained in a Western Euclidean tradition.
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Yet every sentence is not a proposition; only such are propositions as have in them either
truth or falsity. . . . Let us therefore dismiss all other types of sentences but the proposition.
([3], 17a, p. 42.)

A premiss then is a sentence affirming or denying one thing of another. ([5], 24a, p. 65.)

In view of these remarks we are committed to a two-valued logic. This commit-

ment has (almost completely) dominated Western logic ever since. It is only in the

last few decades that there has been much exploration of other logics (cf. [21]).

With Aristotle we start with premises and infer a conclusion. Notice that Aristotle

does not begin with axioms; each argument has its own beginning: the premises ( [5],

65b, p. 95). Euclid and his successors, on the other hand, believed that their axioms

were true. This explains why the advent of non-Euclidean geometry, where Euclid’s

fifth postulate is replaced by another that contradicts it, was so striking (cf. [10, 47]).

Logicians tend to look at axioms as merely selected statements and require noth-

ing more than that they be consistent, i.e. do not permit the deduction of a contradic-

tion. Mathematicians select axioms that they believe are true. Philosophers vary in

their practice. John Lucas [48] claims that all that is necessary is for the interlocutors

to agree on the premises. Imre Lakatos [44] beautifully demonstrates how axioms

(and definitions) in the case of the proof of the formula V + F −E = 2 for polyhe-

dra, that have seemed clear and definite at one point in time, may subsequently need

further refinement, especially in the light of technical developments or new insights.

In Indian logic the premises seem usually to be assumed to be true, and to reflect

the world. Thus Matilal [49], p. 75, says: “There must be observed data and other

principles which could be used as premises of the argument to follow.”

It is an interesting exercise to go through the Posterior Analytics check that “nec-

essary premises” and similar phrases can be replaced by “unquestioned, but assume

true, premises” without disturbing Aristotle’s analysis of arguments.5 Aristotle is

characterizing arguments in general, rather than in any particular subject matter.

Finally, of course, we have the formal descriptions of the figures of the syllogism

([4], 75b, pp. 121–122). When, however, we look for the justification of the figure

we find that Aristotle is again doing natural history. He observes that some figures

work, some do not. The “proofs” he adduces can be reduced to the study of the

obtaining of contradictions. He simply asserts, he does not argue for, the validity

of his arguments. Thus, for example, in On interpretation ([3], 17b, p. 44) we read:

‘We see that in a pair of this sort both propositions cannot be true.’ (Present author’s

emphasis.)

When we turn to Euclid, who was born about the same time as Aristotle (c.

320 BC) we find further refinements of Aristotle’s approach, albeit in the restricted

context of geometry and arithmetic.

Euclid’s main contribution, a far as the present paper is concerned, is his delin-

eation of axioms. He has three basic pronouncements: definitions, postulates and

common notions.

5 Thus Aristotle is detaching the logical arguments from the empirical data in a way that is not
done in Navya-Nyāya logic.
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Although his idea of a definition does not meet present-day standards, the aim is

to define some object or property in terms of simpler, or previously known, objects

and properties. Sometimes definitions and theorems get conflated, as in Euclid I.7:

A diameter of the circle is any straight line drawn through the centre and terminate

in both directions by the circumference of the circle, and such a straight line also

bisects the circle. The emphasis is mine, and the italicized clause seems to present

a theorem. The common notions are often what we would today call “axioms”.

Finally the postulates are axioms specific to geometry. Some of these are, in

effect, axioms that assert the existence of geometrical entities. For example “To

describe a circle with any centre and distance.” (Postulate I.3 [38] I, p. 154.) In

modern terminology we would say: there exists a circle with given centre and radius.

However, in Euclid’s time it was necessary, having given the construction, to prove

the existence of the figure (see [38], vol. I, pp. 121ff.).

It is hard for the modern reader to distinguish the three types: definitions, pos-

tulates and common notions. We tend to think in terms of definitions and axioms.

However, since Euclid was concerned to construct geometrical figures, he needed

to have axioms asserting that certain figures could indeed be constructed.

We do not have any precise classification of his axioms, but there are essentially

two classes: those asserting general properties and existential axioms. In the modern

setting these roughly correspond to logical and non-logical axioms.

Just how advanced Euclid’s work was is suggested by the comparative ease with

which Hilbert put Euclid’s geometry into modern logical language (see [41]).

3.3.2 Leibniz to Boole

The formalization of mathematics in the sense of the development of a symbolic

language using letters for elements, functions, and other objects, had begun in the

sixteenth century with, for example, Maurolico [50], but Leibniz took it consider-

ably further. He started his various attempts at formalization quite early in De arte

combinatoria, published in 1666, when he was 20 years old. There he used num-

bers for concepts and tried to establish an arithmetic of concepts. However, his most

interesting pieces – looked at from the point of view of formalization– are his Non

inelegans specimen (see [46] or [16], pp. 239–243). In Non inelegans he presents

what is generally regarded as a precursor of Boolean algebra. He represents inter-

sections of classes and also uses “+” for exclusive “or”. He had, in essence all the

machinery needed for Boolean algebra. Why did he not achieve what Boole did?

The answer is one that is quite usual for Leibniz: “It s that amongst lots of attempts

and various projects he did not know how to discern what was best and then to adopt

it and develop it systematically.” ([15], present author’s translation.) The most im-

portant thing that Leibniz did sort out was the idea of making a formal language that

could be manipulated in a mechanical way ([30], vol. 7, p. 200, or [16]):
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. . . when controversies arise, there will be no more dispute between two philosophers, than
between two [human] computers. For it will suffice to take their pens in their hands and sit
down at abaci, and say to each other (if it pleases his summoned friend): ‘Let us calculate.’

So Leibniz’s aim was to get a mechanical presentation of arguments or proofs.

he made various attempts. When he was fifty he wrote a short letter to Professor

Vagetius at Giessen ([29], vol. III, pp. 338–339) in which he laid down the ba-

sic construction for a formal language for mathematics/ He starts off with simple

terms (termini simplices), which are almost the same as the formal terms we use

today. Then come atomic statements (enunciationes). The latter include equalities,

inequalities and proportions, for he is dealing with arithmetic. Then come rule con-

sequentiae, which involve operations such as addition and composition. Finally the

method methodus is the way of getting theorems or finding solutions.

It could be argued that the consequentiae are not quite the same as formal rules

of inference, but it could equally well be argued that they are formal rules for ma-

nipulating the operations (such as addition). They therefore correspond to axioms

for such operations, and include, for example, axioms of commutativity and asso-

ciativity for addition and multiplication.

Thus we have terms, atomic formulae, axioms, rules of inference and formal

theorems all foreshadowed.

3.3.3 Frege and Hilbert

Between Leibniz and Boole I have been unable to find any significant contribu-

tion to the notion of proof system. Boole completed the Leibnizian task of giving a

mathematical formalization of a calculus of classes. However it appears that Boole

was unaware of Leibniz’s work.6 Slightly later Frege developed what has become

a standard node of treating formal languages: first order logic or predicate calcu-

lus. However Frege’s system was inconsistent. This arises because it was, in fact,

a higher order logic7 that allowed in Russell’s paradox, indeed Russell pointed this

out to Frege as is well known (see e.g. [19]).

Frege’s approach was axiomatic and this idea spilt over into other mathematical

disciplines, for example, group theory (see, e.g., [11]). The aim of the mathemati-

cians was to give ultimate descriptions, definitive accounts. It appears that Hilbert

felt this had been achieved for formal systems. However, there was a fly in the

ointment. Formalization did not mean the automatic avoidance of inconsistency.

Hilbert [39], p. 130, says: “Rather, from the very beginning a major goal of the in-

vestigations into the notion of umber should be to avoid contradictions [such as that

obtained by Russell in Frege’s work] and to clarify these paradoxes.”

6 There is no concrete evidence that Boole knew of Leibniz’s work, though this is not impossible
(see Dipert [28]).
7 Nevertheless, it is often referred to as a second order-logic in many publications.
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Hilbert’s way of dealing with the problem, that is, the formalist approach, was

to attempt to provide a consistency proof to go alongside, or perhaps to cover, the

formal logic. This immediately brings up questions of meaning. There are several

difficulties here that I do not wish to dwell on. Brouwer and others have questioned

the value of this formalist approach to mathematics. Formalism can be charged with

distorting the meaning of mathematical assertions, since it was previously assumed

that mathematical assertions were assertions about the world ( even if it was an ideal

or Platonic world) and now they seem to be only about, for example, marks on paper.

Hilbert and the formalists’ approach leaves the question of the interpretation of all

these marks on paper unanswered.8 What it did do, and this is a point of interest

for the present paper, was to make mathematical proofs, albeit formalized ones, into

objects of mathematical interest, which are open to investigation by the methods of

mathematics.

In his second lecture on the foundations of mathematics ([40], p. 64), Hilbert

says: “With this new [formalist] way of providing foundations for mathematics,

which we may appropriately call a proof theory, I pursue a significant goal, for I

should like to eliminate once and for all the questions regarding the foundations

of mathematics, . . . , by turning every mathematical proposition into a formula that

can be concretely exhibited and strictly derived.” Hilbert thereby opened the way

not only to a study of proofs but to a study of systems that embrace proofs: proof

systems.

Hilbert’s method of producing a consistency proof, a method still commonly used

today, is to transform a given proof (for example of 0 = 1 in arithmetic), into an-

other “simpler” proof of the same conclusion. The way this is done is by specifying

methods for rewriting (parts of) the proof so as to “simplify” it. In addition to this

we need also to prove that the process of simplification does actually come to a stop

after a finite number of steps. If it does, we say that we have a normal form for the

proof. How this is done depends on what kind of proof system we have.

3.4 Differing Proof Systems

We take the notions of “formula”, etc. as given. Hilbert-style systems then com-

prise a set of axioms together with a couple of rules of inference of which the most

important is modus ponens. (The other is generalization: from A(x) infer ∀xA(x).)
Natural deduction systems were introduced by Gerhard Gentzen (see [61]). These

are aimed at mimicking the informal arguments that we use. For example, the rule

for ∧-introduction (and-introduction) is:

∆ ⊢ A ∆ ′ ⊢ B

∆ ,∆ ′ ⊢ (A∧B)
(∧-I)

8 For further discussion of this see my earlier paper [17]).
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where ∆ and ∆ ′ are sets of formulae. In addition to the introduction rules for the

various connectives are the elimination rules. The one for ∧-elimination on the left

is:

∆ ⊢ (A1 ∧A2)

∆ ⊢ A1
(∧-E1)

Normalization for proofs in such a natural deduction formalization of logic pro-

ceeds by eliminating occurrences of an introduction rule that is immediately fol-

lowed by an elimination rule for the same connective. Strong normalization, that

is to say, normalization where it does not matter in what order the reductions take

place, is provable for the predicate calculus and also for arithmetic (see e.g. Girard’s

book [32]).

Besides the natural deduction formalization Gentzen also introduced various Se-

quent calculi. These have rules similar to natural deduction but they allow the in-

troduction of connectives at both sides of the provability symbol ⊢. In this case one

does not need elimination rules.9

There is one major problem about proving strong normalization. Kurt Gödel

showed, in his [35] of 1931, that there is no finite system of axioms that will give you

all (and only) the true statements of arithmetic: his first incompleteness theorem.10

The second incompleteness theorem showed that, if arithmetic is consistent, then

one cannot prove that consistency within arithmetic, something further is required.

Gentzen’s proof involved using transfinite induction up to the ordinal ε0. (We start

counting 1,2,3, . . . for finite ordinals. Cantor introduced infinite (ordinal) numbers

to be able to count further, and he counted

1,2,3, . . . ,ω,ω +1,ω +2, . . . .

This process could be carried much further to ω ×ω or ωω or even to ωωωω

...
which

is the infinite ordinal ε0.) Thus a new proof-technique has been introduced.

Note that in the normalization process one does not deal with actual proofs but

with schemes. We operate on proofs to get other proofs. In this way I believe we are

getting closer to ordinary mathematical practice, a point to which I shall return later

(see Section 3.6).

There is another way of formalizing logic. This is to use the lambda calculus of

Church [7, 14, 33]. This calculus arose because Church wanted a non-set-theoretic

version of mathematics and he therefore based the calculus on the notions of func-

tion and argument. (Shortly afterwards it was shown by Turing [62] that the func-

tions that could be computed in the lambda calculus were exactly the (partial) recur-

sive functions. See [20] for a survey.)

9 Roughly speaking introduction of a connective on the right of the ⊢ corresponds to introduction
in natural deduction, and introduction of a connective on the left to elimination.
10 In fact he even showed that there is no finite complete system of axiom schemes for formal
arithmetic.
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Definition 3.1 (Lambda terms) The alphabet comprises variables x1,y1, . . ., to-

gether with λ and “.”, and the brackets ( and ).
The lambda terms, Λ , are formed as follows (in Panini or Backus-Naur notation):

T = x|λx.T |(T1T2)

The lambda calculus has two major constructions: abstraction and application.

Consider the following:

What is the function denoted by xy? We have several choices: as a function of

two variables, as a function of x only with y held constant and as a function of y

only with x held constant. These are usually denoted by

λxλy.xy(often written as λxy.xy), λx.xy and λy.xy.

This is abstraction.

Application is written in a familiar way: thus (T1T2) denotes the application of

the lambda term T1 to the lambda term T2. In particular f a is the application of the

lambda term f to the lambda term a. (We omit brackets where there is no ambiguity.)

These notations have the obvious interpretations.

In ordinary mathematics if we apply the function λx. f to a then we get f [a/x],
which is read “ f with a for x”. In the lambda calculus however this is not the same

as the (application) term (λx. f )a, i.e. λx. f applied to a. That is to say they are

syntactically different. We therefore have to introduce the notion of β -reduction11

(λx. f )a✄ f [a/x]

(Here ✄ is read “reduces to”.)

Some time after Church’s work, Curry [24, 25] and Howard [42] observed that

ordinary propositional logic can also be viewed as a functional (i.e. a programming)

language by making them into a lambda-calculus that has types. Thus programs

are contained, in a certain sense, in proofs in mathematical logic. The underlying

reason (in the present author’s view) is because of the formal, that is to say, purely

syntactic, similarities between logical rules and those of the lambda calculus.

The special kind of typed lambda calculus involves taking formulae of logic as

the types. Now this is a strange idea to accept but it is easier to work with it if you

just think of a type (formula) as the set of proofs of that formula. Instead, therefore,

of variables, we use typed variables of the form a : A.

The rule of modus ponens then becomes:

a : A g : (A → B)

(ga) : B (3.1)

where we have changed f to g to avoid confusion in what follows.

11 α-reduction refers to the simple renaming of one variable by another (without clashes).
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If we had a proof of B from A then we would get an expression λx : A. f : B by

the rule of (→-I) which has type (A → B). If the g in the expression (3.1) is actually

of the form (λx : A. f : B) : (A → B), then we get

a : A (λx : a. f : B) : (A → B)

((λx : A. f : B) : (A → B))a : A) : B

which is somewhat hard to read. However the bottom line has the formula B as its

type, and the expression reduces to

f : B[a : A/x : A] (3.2)

where the substitution of a : A for x : A takes place throughout the term f : B.

If we translate this back into proofs it means that the corresponding proofs look

as follows. On the one hand we have the complicated proof:

A

[A]
....
B

(A → B)

B (3.3)

and on the other hand, by putting the proof of A from the left on top of the proof of

B, and not introducing the →, we no longer need the hypothesis [A] in the proof on

the right in order to get a proof of B.

That is to say, we reduce the proof in (3.3) to a simple proof of B of the form

A....
B

This corresponds in the lambda calculus to the reduction12 that resulted in (3.2).

So we have a direct correspondence between proofs and terms of our typed lambda

calculus. This is called the Curry-Howard correspondence.13 (For more details see

e.g. [18] and Howard’s original [42]).

Now Church’s work was in a tradition initiated by Schönfinkel [59] and devel-

oped by Curry and Feys (see e.g. [25]).

Two special lambda terms interest us here. We denote the lambda term λxλy.x
by k and λxλyλ z.(xz).yz) by S. Thus

Kxy = x

Sxyz = (xz)(yz).

12 This process of reduction is also called cut elimination.
13 Some people use the term isomorphism but there are technical difficulties involved in making
the correspondence one to one, so I prefer the weaker terminology.
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The combinators K,S, as they are called, were first introduced by Schönfinkel [59].

His aim was simply to be able to represent all logical formulae (of predicate calcu-

lus) by means of one connective. At the time he wrote this connective as |x writing,

for example, A(x)|xB(x). |x is a generalization of the Sheffer stroke and the above

formula is equivalent to∀x(¬A(x)∧¬B(x). However, Schönfinkel needed to get any

finite number of variables, not just one, so he reduced functions of several arguments

to functions of one argument.14

He showed that by using the combinators K and S one gets a combinatorially

complete algebra (see [8], p. 100), i.e. all functions that are combinations explicitly

definable by means of application and substitution have a name built up out of S and

K. Now all the terms of the lambda calculus can also be represented by combinations

of the combinators K and S, since we can inductively define

λx.x = SKK

λx.y = K if y is a variable different from x

λx.(uv) = S(λx.u)(λx.v)

(Note that SKK is the identity, usually denoted by I, since SKKx = (Kx)(Kx) = x.)

Hence the lambda calculus and the theory of the combinators S and K, otherwise

known as combinatory logic are equivalent. It turns out that, at times, it is more

convenient to deal with one presentation than the other.

These combinators have very close connexions with logical calculi. We take such

a lambda or combinatorial calculus with formulae as types. In usual mathematics we

think of λx : α.t : β as a function f : α → β . In this way, since Kx : αy : β = x : α ,

Kx : α maps β → α and K maps α into β → α: the set of all functions from β into

α . We may write this as K : α → (β → α). A similar calculation shows that from

S(x : α)(y : β )(z : γ) we get

S : (γ → (β → α)) → ((γ → β ) → (γ → α)).

The two expressions in Greek letters and arrows are, of course, familiar as the

first two axioms in a Hilbert-style presentation of propositional calculus (see e.g.

Mendelson [52]).

Proceeding in this way we are able to replace the proof system by an equivalent

computation system. The crucial point needed here is that the semantics should be

correct.15

When we look more closely we see that in general we have been doing meta-

mathematics when dealing with the various logical systems: we have usually not

dealt with the formulae themselves but with place-holders for the formulae. Con-

sider the simple rule of modus ponens once more. We do not usually think of spe-

14 This process is nowadays known as “Currying” but should perhaps better be called
“Schönfinkelling”.
15 A nice presentation of this is in the work of Lauchli [45], where he considers types as non-empty
sets and “A is provable” is translatable as “the type A is non-empty”.
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cific formulae A and A → B, we simply think of one formula, and then the same

formula followed by an implication sign and a second formula.

This technique was often used in the literature. A nice example is in Schütte’s

treatment of positive and negative parts of formulae in his [60]. He uses “Formel-

variablen” (“formula variables”) as the place-holders. Another example is in

Parikh [55] where they are essential in his analysis of proofs.

It is worth pointing out, however, that there is no “nice” algorithm for going be-

tween these systems. This is even true between the various kinds of system Gentzen

devised. For example, although a proof in natural deduction can be transformed in

a natural way into one in the two-sided Gentzen systems, nevertheless there is no

similar natural way of going back. Of course there is an algorithm, since the two

systems proved equivalent theorems. This algorithm, however, simply says: “Look

for the first proof that proves the same result”!

There is also a positive side to these different ways of formalizing. In particular

the lambda calculus teaches us to look at the same system in different ways at the

same time since, in the typed form, it is both a proof system and a computation

system.

3.5 Applied Logic

The Curry-Howard correspondence has also been important in facilitating the study

of other logical systems. At this point I feel that the study of applied logic has really

begun. “Applied” in the sense of finding out the logic of actual systems other than

the logic of humans. Here, of course, it is very clear that if we find such logics

then the justification of the logic is a purely inductive one:16 it models the system

accurately. Such logics are, for example, the logics of certain kinds of computers.

This immediately leads us to the question of resources.

It is well known that some quite simply described functions take impracti-

cally long to compute. First define the auxiliary function α(a,0) = 0,α(a,1) =
1,α(a,n) = a for n > 1. Now the Ackermann function, φ , is defined by

φ(a,b,0) = a+b

φ(a,0,n+1) = α(a,n)

φ(a,b+1,n+1) = φ(a,φ(a,b,n+1),n)

and this is a function which is much more time consuming to compute than expo-

nentiation. However, even exponentiation to base 2 is generally regarded as imprac-

tical to compute. The values rapidly become astronomical. The limit of functions

which are considered (theoretically) feasible to compute are the polynomial-time

16 “Inductive” is used here in the sense of scientific induction, as opposed to logical deduction.
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computable functions, that is to say, computations that can be completed in a time

bounded by a polynomial (of some fixed degree) in the length of the data.17

The functions that are representable in arithmetic(see [52]) are exactly the recur-

sive functions. Parikh [54] looked at restricting the size of proofs in a standard logic.

This work was subsequently developed into an elegant calculus in which the repre-

sentable functions were exactly the polynomial-time computable functions by Sam

Buss [12]. (See also [13] for the connexion between feasibility and the lengths of

proofs.) The major difference between Buss’s system of arithmetic and the familiar

Dedekind-Peano one is a simple limitation on the form of the induction axiom. The

induction schema becomes:

(A(0)∧∀x(A(⌊x/2⌋) → A(x))) →∀xA(x)

where ⌊x/2⌋ is the last integer not exceeding x/2, i.e. x in binary notation with the

last digit deleted [12], p. 27.

Other directions have been explored looking at different machines and different

ways of computation (see e.g. [22, 23, 34, 53], the last of these being based on Gi-

rard’s linear logic [31]). In [23] we attacked the question of how difficult it is to

compute (or check) even atomic formulae. Little attention seems to have been paid

to this question and it perhaps worth expanding upon. Suppose one has developed

a theory with certain predicates, for example, for addition and multiplication, and

then, in the light of further research one wishes to work instead with simpler predi-

cates such as the successor predicate.18 Then the atomic predicates become “split”:

they are replaced by longer formulae.

We may therefore think of atomic predicates that can, despite, the name, be split

at any time. We can also look at the time required to read an atomic formula, or

even a variable. In the context of a machine it does make sense to think that reading

a variable x 1000000 takes longer than to read x 1; and how long does it take to

read “next x”? It is in fact possible to press this kind of analysis even further, but

the only person I know who has done so is Yesenin-Volpin. In a lecture that I heard

in SUNY, Buffalo, NY, in 1972, he was even looking at the question of recognizing

that two occurrences of a symbol were indeed occurrence of the same symbol. (See

also [64]).

Hilbert seems to have thought that there was a final description of a formal sys-

tem. Yesenin-Volpin’s approach questions this.

17 This characterization of “feasible” seems too weak if one thinks in the terms of a practical
engineer. For example, using the finite element method (see e.g. [26]) for a calculation that requires
time proportional to the square of the number of data points, then if one increases the number of
points considered by a factor of ten, the whole calculation takes a hundred times longer. Engineers
therefore tend to restrict their calculations to problems that take less than quadratic time.
18 The same argument, of course, applies to functions just as to predicates.
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3.6 Comprehending and Constructing Roofs

Now let us turn to the opposite end of the scale: large proofs. We have already noted

the question of which functions are feasible to compute. We now turn to the ques-

tion of what proofs are, in a somewhat different sense, feasible. Parikh in his [55]

discussed the question, brought up by Yesenin-Volpin [64] about having an upper

bound for the length of human activities, in particular the construction of proofs.

Work by Appel and Haken [1, 2] in the late 1970s, which reduced the proof of the

four-colour theorem, after a very long conventional proof, to a billion cases which,

clearly, could not be done by hand in one lifetime but were done by computer.19

(In further development the number of cases was very significantly reduced but that

does not affect our argument.) Perhaps inevitably, the use of the computer immedi-

ately made the status of the proof a subject for debate.

Two other major results have also caused debate about the status of very long

proofs. One is the classification of finite simple groups. Even though the classifica-

tion was claimed to be complete in the 1950s apart from a small number of so-called

“sporadic groups”, the very length of the proof, amounting to hundreds of printed

pages, is still debated (see [6]). In this case no computer was required. A simi-

lar case is cited by Devlin [27] (and discussed at many places on the web and in

a symposium “Paradise Lost? The changing nature of mathematical proof” at the

2006 AAAS Annual Meeting), namely Hales’s claimed solution of Kepler’s Sphere

Packing Conjecture. These are not questions about the reliability of computers; they

are questions about human comprehension and certification.

We have already mentioned the shift from mathematics to metamathematics in

Section 3.4 above. How do we check a proof? Devlin [27] roughly distinguishes

between what he calls right- and left-wing proofs.

The right wing (‘right-or-wrong’, ‘rule-of-law’) definition is that a proof is a logically cor-
rect argument that establishes the truth of a given statement. The left wing answer (fuzzy,
democratic, and human centered) is that a proof is an argument that convinces a typical
mathematician of the truth of a given statement.

Most logicians aspire to right-wing proofs. Mathematicians on the other hand

are usually content with left-wing proofs. Training as a mathematician shows one

how to understand or check a proof by breaking it up into pieces. These pieces

are then regarded as wholes in themselves and not further analyzed once they are

understood. If there is a failure to understand then one of these pieces may be ana-

lyzed further. The process will continue until understanding is achieved or the proof

rejected. (See [48].) Thus the mathematician’s understanding of what a proof is

changes over time, as is usually the case with human concepts. Why should logic

be any different? Indeed, I believe it is not. Many years ago, Bertrand Russell com-

plained in his autobiography [58] about the amount of effort required to produce

all the formal proofs in [63]. Sadly for him, very few people have studied even a

19 Recently a totally formal proof using the proof assistant Coq has been used by Gonthier [36] to
produce a formal proof, which itself has been formally checked. Of course this changes the kind
of guarantee that we have the result from the ordinary formal language level to a meta-level.
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few of those proofs. They are routine exercises in a predicate calculus and, once

the basic tricks are learnt, they are exceedingly repetitious rather than intellectually

demanding.20 The subsequent development of logic led to the use of metamathe-

matical arguments, and the subsequent development of mathematics usually led to

proofs that were accepted by mathematicians, though an increasing number of the-

orems have now been given proofs in formal logic and verified–by computers (cf.

Gonthier’s work [36] mentioned above).

So logicians having developed the machinery for right-wing proofs, have now

moved to giving left-wing ones. Future formalization, perhaps following the layered

approach sketched in [43], may lead to some of those becoming right-wing proofs.

It is hard to see that left-wing proofs will ever cease to be found and cherished. The

layering, that is the use of metamathematics at higher and higher levels, reduces

the scale of (some proofs) to dimensions that are accessible to practising human

mathematicians.

3.7 Conclusion

We have traced a little of the history of the development of formal proofs in logic

and, to a much lesser extent, mathematics. Until the 20th century the development

was at a manageable level, but the advent of computing machines brought with it

both the capacity to perform large calculations and the practical need to complete

those computations in a “reasonable” time. Large machine computations or proofs

are very hard to comprehend, though we have begun to develop a layered approach,

which treats them in a coarser way. Moreover, absolute limitations on what can be

calculated in a given time means that certain proofs and calculations can not be

performed on a machine in a human lifetime.21

The mathematicians’ view that we submit proofs to our peers for appraisal has

worked reasonably well, even though it is possible to find examples, as Lakatos [44]

did, where proofs and definitions have had to be changed over time. In this case

there was increasing precision in both as mathematicians became more knowledge-

able and sophisticated. It seems reasonable to expect a similar history unrolling for

formal logic.

I believe it is important to bear in mind that our expectations of proofs, and

our production of them, and systems for them, emerge in response to our (human)

environment and must therefore change as that environment changes.

20 The whole work contains little deep mathematics, being principally a very formal exposition of
others’ work.
21 Although the speed and capabilities of machines continue to increase, there is always a limit to
what a given machine can achieve in a specified time.
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Appendix: A Brief Guide to the Symbols

Symbol Read Symbol Read

∀ for all ∃ there exists
∧ and ∨ or
→ implies
� necessarily ✸ possibly

....
A a proof of A

A....
B a proof of B from A

A (A → B)
B

from A and
(A → B) infer B

¬ not (Sometimes a swung dash, ∼, is used for ‘not’.)



Chapter 4

A Visit to Tarski’s Seminar on Elimination of
Quantifiers

Wilfrid Hodges

In Spring 1928, 13 years before I was born, I paid an imaginary visit to Warsaw in

Poland and attended Alfred Tarski’s seminar on the methodology of the deductive

sciences. The sanserif text below is my imaginary record of what was said in the

seminar. But the serif text, interspersed and at the end, is factual.

Though the seminar proceedings are imaginary, they are based on published

texts, chiefly the paper of Presburger [16] and reports by Tarski himself on the

achievements of his seminar.

Seminar, 10 April 1928.

Leader: Mr Mojżesz Presburger.

Today we are going to study the science of integers with the concept of addition, using
logic without quantification over classes or relations. Our method will be the method of
elimination of quantifiers, which Dr Tarski showed us how to apply to the calculus of classes
and to the concepts ‘b lies between a and c’ and ‘the distance from a to b equals the distance
from c to d’. Dr Tarski has explained to us that this method was first used by Thoralf Skolem
and has recently been applied to the theory of dense order by C. H. Langford in America.

In the 1920s it was common to think of mathematics as consisting of various

“sciences”, each with its own subject matter. These sciences were said to be “de-

ductive”, meaning that they proceeded by making logical deductions from stated

axioms. In 1919 Bertrand Russell ([17] p. 5) had referred to “the whole series of

sciences that have been deduced from the theory of the natural numbers”; I presume

he meant at least the sciences of integers, rational numbers, real numbers and com-

plex numbers, and possibly some kinds of geometric science too. Tarski sometimes

referred to deductive sciences as “deductive theories”; this notion evolved into the

‘theories’ of model theory.

First we must establish a domain of individuals and a set of concepts relating to this domain.
Our domain will be the set of integers. For concepts we choose addition, the number zero
and the number one. This domain and these concepts are intuitively clear. We choose the
symbols +, 0 and 1 to represent addition, zero and one. We call these symbols the primitives.

Wilfrid Hodges
Queen Mary, University of London, London, UK, e-mail: w.hodges@qmw.ac.uk

J. van Benthem et al. (eds.), Proof, Computation and Agency, Synthese Library 352, 53
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A student: Don’t we also need a symbol to represent the concept ‘integer’? Langford used
a symbol K for his domain of individuals.

Dr Tarski: If we were looking at ‘models’ of the formal language, i.e. re-interpretations, then
it would be convenient to have a symbol N for the domain. It would allow us to describe a
model by re-interpreting N, +, 0 and 1. But our present task is to study the integers, and for
this task the symbol N is not needed.

In fact Tarski did use a symbol for the domain of individuals when he was dis-

cussing general theory (for example the illustration in [22] §34, or §37 in the English

translation), but generally not when he was studying particular theories in depth. In

1948 Tarski’s ex-student Andrzej Mostowski ([15], chapter ix) systematically used

a symbol for the domain in his examples of formal theories. On the other hand sym-

bols for the domain are missing from Tarski’s address to the 1935 Paris Congress

of Scientific Philosophy (xvi “On the concept of logical consequence” in [24]); ev-

idently Tarski regarded their use as a matter of convenience rather than principle.

Domain symbols disappeared from general use with the advent of model theory

around 1950.

We build up a language for talking about addition of integers. We need a countably infinite
set of symbols to serve as variables ranging over individuals; for this we will use the symbols

x,x′,x′′,x′′′, . . .

(though informally we will write x, y, z etc. for variables, following usual mathematical
practice). A term is either a variable or 0 or 1, or an expression built up from these by ap-
plying + any number of times. An atomic formula is an expression (s = t) where s and t

are terms. A formula is either an atomic formula or an expression built up from atomic for-
mulas by applying any of the following three operations any number of times: (1) Given a
formula φ , form its negation (¬φ); (2) given formulas φ and ψ , form the formula (φ → ψ)
expressing ‘if φ then ψ’; (3) given a formula φ and a variable x, form the formula ∃xφ
which expresses ‘there is x such that φ ’. We write L for the set of all formulas.

A boolean combination of formulas φ1, . . . ,φn is a formula that is either one of these formu-
las, or can be built up from them using ¬ and →. Two examples of boolean combinations
are ((¬φ) → ψ), which we will abbreviate as (φ ∨ψ), and (¬(φ → (¬ψ))) which we will
abbreviate as (φ ∧ψ). We will leave out brackets in the usual ways; for example (φ ∧ψ∧χ)
is an abbreviation for ((φ ∧ψ)∧ χ). We also write ∀xφ as an abbreviation for (¬∃x(¬φ)),
and (s 6= t) for the inequation (¬(s = t)).

We will assume known the rules of logic for a language of this kind.

My notes have modernised the logic used in the seminar. Presburger’s logic in

[16] differed from standard first-order logic in the following ways:

• The function and constant symbols had fixed meanings, just as the logical sym-

bols did.

• There were two sets of variables, one for integers and the other for propositions.

Both sets were infinite (though this was said by writing “. . . ”, not explicitly). In

the 1920s the need for infinitely many variables over individuals was presum-

ably understood, but it was often ignored. In 1922 Hilbert [7] proposed to base

“the whole of mathematics” on a logical system with exactly eight individual

variables, and in 1936 Tarski himself ([23] p. 1) said he would use the lower-

case italic letters – a set of size around two dozen – as variables. The first paper
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known to me which says precisely what the variables are is Tarski [21]; it defines

the individual variables to be the expressions x′′ , x′′′ etc., with any finite number

of superscript dashes.

• As the previous point implies, the definition of “formula” was not precise.

• No consistent distinctions were made between formulas, sentences and sentence

schemas. An axiom containing free variables was interpreted as if the free vari-

ables were universally quantified. So for example an axiom with propositional

variables could be used to deduce a formula got by substituting formulas for the

variables.

• The axioms of the logic (including the axioms for identity) were listed among

the axioms of the theory. Today we make a stricter separation between logical

and non-logical axioms.

Presburger used the logical axioms and inference rules proposed by Jan L- ukasiewicz

in [12] (1929), which Presburger edited for publication.

Every formula of L says something meaningful about addition of integers. The formulas
that say something true or false are called sentences. In fact sentences are those formulas of
L in which every occurrence of a variable x is bound by a quantifier ∃x.

If a formula φ has some variables with free occurrences, say x1, . . . ,xn, then by assigning
integers α(x1), . . . ,α(xn) to these variables we again make φ into a true or false statement
about the integers. We say that the assignment α satisfies φ if this statement is true. We say
that two formulas with the same free variables are equivalent if they are satisfied by exactly
the same assignments.

Tarski discovered his definition of truth, and along with it the formal definition of

the notion “assignment α satisfies formula φ”, in 1929 ([24] p. 152). But in [21],

the first paper to apply the formal definition of satisfaction, he describes this notion

as “intuitive” and “seemingly clear and unambiguous” ([24] p. 117).

Our main work will be to choose three things, namely

• A set of formulas of L that we call basic;
• a set of sentences of L that we call axioms;
• for each formula φ of L, a boolean combination |φ | of basic formulas of L,

so that the following hold:

(a) The axioms are all evidently true.
(b) Each formula φ of L has the same free variables as |φ |, and we can prove from the

axioms that φ and |φ | are equivalent.

We can satisfy these requirements in a trivial way by taking all formulas to be basic, the set
of axioms to be empty, and |φ | to be equal to φ . The aim of the method of elimination of
quantifiers is to do it more helpfully than this.

For example the following would be helpful to have:

(c) There is an effectve procedure for telling, given a basic formula φ , whether φ is true (if
φ is a sentence), and which assignments satisfy φ (if φ is not a sentence).

(d) There is an effective procedure for finding |φ |, given a formula φ .
(e) For every basic sentence φ , we can prove φ from the axioms if φ is true, and we can

prove ¬φ from the axioms if φ is false.
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If we can make (c) and (d) true, then we have a decision procedure for addition of integers:
in other words we can compute, for each sentence φ of L, whether or not φ is true. If (e) is
true, then by (b) the axioms are sufficient to deduce all true sentences of L, and by (a) they
do not allow us to deduce any false sentences of L; we can summarise these two properties
by saying that the set of axioms is a complete axiomatisation of addition of the integers.

FIRST ATTEMPT. We take the basic formulas to be the atomic formulas. If natural numbers
are assigned to all variables in the terms s and t, then we can easily calculate the resulting
integer values of s and t, and so check whether the statement (s = t) is true. This assures (c).

For (e) we require a set of axioms that will allow us to prove all true atomic sentences. Our
first attempt is

ζass : ∀x0∀x1∀x2(((x0 + x1)+ x2) = (x0 +(x1 + x2))).
ζcom : ∀x0∀x1((x0 + x1) = (x1 + x0)).
ζzero : ∀x0((x0 +0) = x0).
ζcanc : ∀x0∀x1∀x2((x0 + x2) = (x1 + x2) → (x0 = x1)).
ζdiff : ∀x0∀x1∃x2((x0 + x2) = x1).

(4.1)

These axioms tell us that the integers form an abelian group under addition, and so they
are clearly true, guaranteeing (a). For each non-negative integer n we write n̄ for the term
defined as follows: 0̄ is 0, and for each n, n+1 is the term (n̄ + 1). Also we write nx for
x+ . . .+ x (where ‘x’ occurs n times), taking 0x to be 0.

We can easily check that for every term s with no variables, the axioms imply (s = n̄) for
the unique non-negative integer n that is the value of s. If (s = t) is a true atomic sentence,
then the terms s and t have the same value n, and so the axioms entail (s = n̄) and (t = n̄),
and hence they entail (s = t) by the rules for equality.

So half of (e) holds. But we must also show that if φ is a false atomic sentence then the
axioms entail (¬φ). For example the axioms should entail (0 6= 1). We can see no way of
deducing this sentence from the five axioms above.

The axioms ζass, ζcom, ζzero and ζdiff include the usual axioms for abelian groups,

and hence they imply ζcanc. (Presburger removed the redundant axiom in his supple-

mentary note to [16].) In fact the presence of a redundant axiom does no significant

harm to the quantifier elimination procedure. For the same reason, there is no need

to prove that our axioms don’t entail (0 6= 1) before we set out to repair them. The

worst that could happen is that we add a new axiom which we didn’t need.

SECOND ATTEMPT. We keep the same basic formulas and axioms as before, but we add
axioms to refute all false basic sentences. The new axioms are as follows:

ηn : ∀x(0 6= nx+1)

where n is any integer > 2.

These axioms give us (0 6= k̄) for each k > 2. But (0 = 2̄) implies

0 = 0+ 2̄ = 2̄+ 2̄ = 4̄,

contradicting (0 6= 4̄); so the axioms prove (0 6= 2̄). Putting 0 for x in any ηn yields (0 6= 1)
too. Hence our present axioms imply that the additive group of integers is torsion-free, and
from this we can deduce the negations of all false atomic sentences. We have ensured (a),
(c) and (e). For (b) and (d) we need to define |φ | for each formula φ .

The seminar is in danger of falling into a trap here. The present axioms express

that the integers with addition form an abelian group with an element 1 that is not
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divisible by any integer n > 1. This implies that the subgroup generated by 1 is

torsion-free; and in fact this subgroup is the whole group of integers. But the axioms

don’t logically imply that the group is torsion-free; the group Z× (Z/2Z), with

1 interpreted as (1,0), is a counterexample. Hence the axioms can’t be complete

yet. However, we will see that the method of quantifier elimination itself leads to a

correction.

If the seminar had noticed this trap, they might have been tempted to try to find

axioms saying that the whole group is generated by 1. The compactness theorem for

first-order languages shows that this is impossible with first-order axioms. The com-

pactness theorem (for countable languages) first appeared as Theorem X of Gödel

[5] in 1930, but apparently the first person to see how to apply it to get useful infor-

mation was Mal’tsev [13] around 1940. We should remember that Tarski’s seminar

belonged to an age before model theory, and admire it all the more for its achieve-

ments.

We begin by defining |φ | in the following cases. First, if φ is basic then we take |φ | to be φ .
Second, if |φ | and |ψ| have been defined but |(φ → ψ)| has not, we take |(φ → ψ)| to be

(|φ | → |ψ|).

Similarly if |(¬φ)| is not yet defined, we take it to be (¬|φ |). We note that if |φ | and |ψ| are
boolean combinations of basic formulas, then so are |(φ → ψ)| and |(¬φ)|, as required.
Suppose that |φ | has been defined, and we seek to define |∃xφ |. Now ∃x|φ | is not a boolean
combination of basic formulas. Instead of enlarging the class of basic formulas, we try to
show that ∃x|φ | is equivalent to a boolean combination of basic formulas, provably from
the axioms. This is the stage at which we eliminate a quantifier.

We can simplify the problem. Since |φ | is a boolean combination of basic formulas, we can
find an equivalent formula of the form

(φ1 ∨ . . .∨φm)

where each φi is a conjunction of one or more formulas that are either basic or negations of
basic formulas. The formula ∃x|φ | is equivalent to the boolean combination

(∃xφ1 ∨ . . .∨∃xφm).

This reduces our problem to the case where ∃x|φ | has the form

∃x(χ1 ∧ . . .∧χk)

where each χi is either basic or the negation of a basic formula. We note also that if for
some j the variable x does not occur in χ j , then we can move χ j outside the scope of the
quantifier; so we can assume that x occurs in each formula χi.
typical case might be the formula

∃x(3x+ 2̄ = y∧1+ z 6= 2x).

The coefficients of x are 3 and 2, with least common multiple 6. Since we are in a torsion-
free abelian group, each equation or inequation is equivalent to the formula that results
from multiplying its terms by a nonzero integer. In particular 3x + 2̄ = y is equivalent to
6x+ 4̄ = 2y, and 1+ z 6= 2x is equivalent to 3̄+3z 6= 6x. Also we can add the same number
to both sides of an equation, so that 3̄ + 3z = 6x is equivalent to 7̄ + 3z = 6x + 4̄. So the
formula that we are analysing is equivalent to
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∃x(6x+ 4̄ = 2y∧ 7̄+3z 6= 6x+ 4̄).

We can use the equation on the left to rewrite the inequation on the right, and the whole
formula becomes

∃x(6x+ 4̄ = 2y∧ 7̄+3z 6= 2y),

and now since x does not occur in the inequation, this formula is equivalent to

(∃x(6x+ 4̄ = 2y)∧ (7̄+3z 6= 2y)).

If we can find a boolean combination of basic formulas equivalent to ∃x(6x + 4̄ = 2y), our
analysis succeeds.

Unfortunately we meet difficulties here. We consider a simpler case: ∃x(2x = 1). This is
clearly false, and in fact the axiom η2 allows us to refute it. If 2m = 1 then 2(−m)+1 = 0,
and this contradicts η2. So there is hope that we can reduce ∃x(6x+ 4̄ = 2y) in a similar way.

Dr Tarski closes the seminar after inviting the members to think about this problem.

Seminar reconvenes on 17 April 1928. Again Mr Presburger leads.

It appears that the set of basic formulas must be expanded. The formula ∃x(2x = y) ex-
presses that y is even, and it is intuitively clear that no boolean combination of atomic
formulas expresses this. It also appears that we need basic formulas to express that the
difference between two terms is divisible by a certain positive integer. We write

(n|s− t)

as an abbreviation for the formula ∃x(s = nx + t), which expresses that s− t is divisible by
n. Here n is any integer > 0.

We call a formula (n|s− t) a congruence. We abbreviate its negation to (n 6 | s− t), and we
call this formula an incongruence. We call the number n the modulus of (n|s− t), and of
(n 6 | s− t).

Habits change. If Presburger had been a model theorist writing in 1960 or later,

he would probably not have extended the class of basic formulas within L. Instead

he would have expanded the language L to a first-order language with new relation

symbols Mn(x,y) that are interpreted so that Mn(s, t) means (n|s−t). The advantages

of the modern view are technical: (1) it simplifies the statement of the required

recursions (see Comment 3 at the end), and (2) it relates quantifier elimination to

model-theoretic preservation results. Keisler [9] is a revealing pointer to the change

in habits that set in around 1960.

THIRD ATTEMPT. We keep our axioms as in our Second Attempt, but now we take as
basic formulas all atomic formulas and all congruences.

Adding new basic formulas is a costly move, since we have to re-prove (c) and (e). In the
present case (c) is straightforward, because for any integers k, m and n we can easily check
whether k−m is a multiple of n. But we need to check that our axioms will prove all true
sentences (n|s− t) and refute all false ones.

If the sentence (n|s− t) is true then there is an integer c such that s = nc + t. If c > 0 then
we can write the true sentence (s = nc + t) in L, and we saw in our First Attempt that this
equation is provable from our axioms. Hence so is (n|s− t). On the other hand if c < 0 then
we can write (s+nd = t), where d = −c, and proceed as before. So all true basic sentences
are provable from the axioms.
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If the sentence (n|s−t) is false, suppose (transposing s and t if necessary) that s> t. Then by
the division algorithm there are integers q> 0 and r with 0 < r < n, such that s− t = nq+r;
as a true sentence in L this equation is provable from our axioms. Also this equation and
(n|s− t) together entail that n divides r; so it remains only to show that our axioms refute
the false basic sentence (n|r̄−0). We can do this as follows.

Let d be the greatest common divisor of n and r, and put n′ = n/d, r′ = r/d. Then the
sentence (n′|r′ − 0) is also false (whence n′ > 2). We refute this sentence as follows. For
some positive integers a and b, ar′ = bn′ + 1. Suppose for contradiction that for some x,
n′x = r′. Then

(an′)x = ar′ = bn′ +1

and hence by rearrangement 0 = n′y+1 for some y. Since n′ > 2, this contradicts the axiom
ηn′ . The false sentence (n|r̄−0) is refuted by first assuming for contradiction that for some
z, nz = r, and dividing this equation by d.

A student objects: How do our axioms imply that we can divide an equation by a common
factor of its coefficients? After some discussion, it is agreed that further axioms are required
to prove this when the equation contains free variables.

The seminar has just realised the trap that they nearly fell into at the Second

Attempt. They discovered it by trying to carry out a first-order proof required by the

method of quantifier elimination.

FOURTH ATTEMPT. We adopt axioms telling us that we can divide an equation by a
common factor. They are the sentences

θn : ∀x∀y (nx = ny → x = y)

for each positive integer n.

It would have been simpler to write θn as

∀x (nx = 0 → x = 0).

But the version used in the seminar is not wrong.

By previous arguments we now have (a), (c) and (e). But now we must revisit (b), since we
have expanded the class of basic formulas.

We can still take |φ | to be φ when φ is basic, and proceed as before for boolean combi-
nations. But the elimination of quantifiers becomes more complicated. As in the Second
Attempt, we can suppose that φ is a formula

∃x(χ1 ∧ . . .∧χk)

where each χi is either basic or the negation of a basic formula, i.e. it is either an equation
or an inequation or a congruence or an incongruence. We are required to find a boolean
combination of basic formulas that is equivalent to this formula φ .

We can carry out some normalisations. Each χi is of the form either (mx + s = t) or
(mx + s 6= t) or (n|(mx + t)− s) or (n 6 | (mx + t)− s), where m is an integer > 1 and s,
t are terms in which x never occurs. Here m, s and t need not be the same in different for-
mulas χi. If x doesn’t occur in a formula χi, the formula can be brought outside the scope
of the quantifier ∃x.
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In our Second Attempt we saw how to deal with the case where at least one of the
χi, say χ1, is an equation. Our axioms imply that if k is any positive integer, then the
equation (mx + s = t) is equivalent to the equation (kmx + ks = kt), and the congruence
(n|(mx+ s)− t) is equivalent to the congruence (kn|(kmx+ks)−kt). Hence we can assume
that the coefficient of x is the same, say m, in all the χi. The axioms also imply that for any
term r, the equation (mx + s = t) is equivalent to the equation (mx + s+ r = t + r), and the
congruence (n|(mx + s)− t) is equivalent to the congruence (n|(mx + s + r)− (t + r)). So
we can assume that if χ1 is (mx + s = t), then the term mx + s occurs in every formula χi.
As in our Second Attempt, we can use the equation (mx+ s = t) to replace each occurrence
of mx + s (except in χ1) by an occurrence of t. After this replacement, x occurs only in χ1,
and so the other conjuncts can be moved out of the scope of the quantifier. There remains
∃x(mx + s = t), which is equivalent to the basic formula (m|s− t). All the variables that
were free in φ are still free in the resulting boolean combination of basic formulas.

Henceforth we assume that none of the formulas χi are equations. Let k be the least com-
mon multiple of the moduli of the congruences and incongruences among the χi. If α is an
assignment to all the free variables, which satisfies all the formulas χi that are congruences
or incongruences, consider an assignment β which is the same as α except that the inte-
ger assigned to x is increased by some positive multiple of k. Clearly β again satisfies the
congruences and incongruences. By choosing a large enough multiple of k we can ensure
that all the formulas χi that are inequations are also satisfied by β . Our axioms are strong
enough to justify this argument and show that the formula φ is equivalent to the formula got
by deleting all the formulas χi that are inequations. (If all of the χi are inequations, then φ
is equivalent to the basic formula (y = y)∧ (z = z)∧ . . ., where we list all the variables free
in φ .)

There remains the case where the formulas χi are all either congruences or incongruences.
A typical example is

∃x ((2 6 | x− 0̄)∧ (2 6 | x− 1̄)).

This sentence is clearly false, since for every integer x, one of x and x − 1 is even. Dr
Lindenbaum has suggested an efficient way of dealing with such sentences. It requires us to
add some new axioms.

Presburger records ([16] p. 98) that Adolf Lindenbaum suggested the following

idea for eliminating incongruences.

FIFTH ATTEMPT. We keep the same basic formulas as before, but we add to our previous
axioms the following new ones. For each integer n> 2 we adopt the axiom

ιn : ∀x ((n|x− 0̄)∨ (n|x− 1̄)∨ . . .∨ (n|x−n−1)).

These axioms are clearly true, so that (a) still holds.

We have to deal with formulas φ of the form

∃x(χ1 ∧ . . .∧χk)

where each χi is either a congruence or an incongruence. We can assume the normalisations
that we made in our previous attempt.

Suppose that χi is an incongruence (n 6 | (mx+s)− t). Assuming that n> 2 (since otherwise
the congruence holds trivially), the axiom ιn tells us that this incongruence is equivalent to
the disjunction

((n|(mx+ s)− (t + 1̄))∨ . . .∨ (n|(mx+ s)− (t +n−1))
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of congruences. By elementary logical manipulations this brings us to the case where each
formula χi is a congruence.

This is the final case that we have to deal with. By a similar adjustment to those in the
Fourth Attempt, we can assume that each congruence χi has the form (n|(mix + si)− ti),
where n is independent of i. Now suppose m1 > m2. The congruences χ1 and χ2 state that
there are y and z such that m1x+ s1 = ny+ t1 and m2x+ s2 = nz+ t2. This pair of equations
is equivalent to

((m1 −m2)x+ s1 + t2 = n(y− z)+ t1 + s2)
∧(m2x+ s2 = nz+ t2).

It follows that in φ we can replace χ1 by the congruence (n|((m1 −m2)x + s1 + t2)− (t1 +
s2)); the resulting formula is equivalent to φ , and our axioms suffice to prove this. If m1 =
m2 then we can move this new congruence outside the scope of ∃x. We can repeat this
move as long as there are at least two congruences within the scope of ∃x. The process must
eventually halt, since it lowers the sum of the coefficients of x. So eventually we reach a
formula

∃x(n|(mx+ s)− t).

This congruence is equivalent to (n′|s− t) where n′ is the greatest common divisor of n and
m; again the axioms suffice to prove this.

We have shown:

LEMMA. If ψ is a conjunction of formulas that are basic or negated basic, then the formula
∃xψ is equivalent to a conjunction ψ ′ of formulas that are basic or negated basic, where ψ ′

has the same free variables as ∃xψ , and the equivalence of ∃xψ and ψ ′ is provable from the
axioms stated above.

We have already described |ψ ′|; we define |∃xψ| to be |ψ ′|, and (b) and (d) are established.

This lemma, which appears in Presburger [16], is false. A counterexample is the

formula

∃x((3 6 | u− x)∧ (3 6 | v− x)∧ (3 6 | w− x))

which expresses that at least two of u, v and w are congruent modulo 3. Presburger

should have said that ψ ′ is a boolean combination of basic formulas. Also the def-

inition of |ψ ′| is unsound as it stands, since ψ ′ is not uniquely determined by the

Lemma. This gap could be plugged by describing explicitly the algorithm for finding

ψ ′.

THEOREM. For every sentence φ of L there is a sentence φ ′ of L which is a boolean com-
bination of basic sentences, and is such that the equivalence of φ and φ ′ is provable from
the axioms stated above. Moreover there is an algorithm which, given φ , will find φ ′ and
the proof of equivalence.

PROOF. Given φ , we can find a sentence which is logically equivalent to φ and is in prenex
form (i.e. has the form

Q1x1 . . .Qnxnψ

where each Qi is either ∃ or ∀, and ψ has no quantifiers). By the Lemma we can find a
formula ψ ′ which is equivalent to Qnxnψ and is a boolean combination of basic formulas.
Then we apply the Lemma again to Qn−1xn−1ψ ′, and so on through the n quantifiers. QED
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Dr Tarski: This makes a good place to close today’s proceedings. Those of you who at-
tended my lectures last year should observe that the axioms we have reached today are
exactly those which I proposed as an axiomatisation of the science of integers with addition.

A student: Next week, should we ask whether we can prove similar results when multipli-
cation is also a primitive?

Mr Presburger: We will not succeed. In the language of integers with symbols for addition
and multiplication, it is possible to write down, for each integer n > 2, a sentence stating
Fermat’s Last Theorem for exponent n. A decision procedure for this language would enable
us to calculate the truth or falsehood of each instance of Fermat’s conjectured theorem.

4.1 Tarski’s Seminar

Our primary sources of information about Tarski’s Warsaw seminar are the footnotes

on page 205 of Tarski [24] and page 95 of Presburger [16]. Tarski studied several

“sciences”, and in each case his aim was to give a “structural description of all

complete [axiom] systems” for the given science ([24] p. 205). One example was

the family of subsets of a given set of cardinality k, with set inclusion as primitive

notion; he gave a complete axiom system for each finite k and a complete axiom

system for the case where k is infinite. These results are reported on pages 201–

208 of [24]. The two footnotes mention some other types of structure to which he

applied similar methods. In all cases he used the method of quantifier elimination (or

at least he left no trace of any other method). Later Tarski and his students applied

the same method to other cases. The best known case is probably the field of real

numbers, which he began to study in 1929 [21] and published fully in 1951 [23]. His

student Wanda Szmielew [20] generalised Presburger’s result by applying quantifier

elimination to the theory of abelian groups.

Many years later, in a paper reporting another quantifier elimination done jointly

with Mostowski ([2] p. 2), Tarski said “the procedure of eliminating quantifiers in a

theory may prove valuable as a heuristic source and deductive base for a many-sided

metamathematical study of this theory leading to substantial results not involving

decidability”. The implication is that we learn useful things about a theory by finding

suitable axioms and basic formulas for eliminating quantifiers. So the “method” is at

least partly a method of research. I first learned this from Robert Vaught. In writing

my imaginary notes I tried to emphasise the heuristic side of quantifier elimination.

Tarski’s reference to his ‘seminar exercises’ in Warsaw ([23] p. 205) allows us to

imagine that some research took place in the seminar itself.

4.2 Presburger Arithmetic

On Presburger himself see Zygmunt [25]. The set of logical consequences of Pres-

burger’s axioms, which is the complete first-order theory of the integers with addi-

tion, is known as Presburger Arithmetic. Presburger attributes the “logical schema”
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(does he mean the axiomatisation?) of Presburger Arithmetic to lectures of Tarski in

1927–1928 ([16] p. 95 footnote).

A quantity of good work allegedly on “Presburger Arithmetic” is in fact about the

complete first-order theory of the natural numbers N with a symbol for addition (e.g.

[14]), a theory that Presburger never considered. Quantifier elimination for N with

addition is not straightforwardly derivable from Presburger’s results. (The theory

of the natural numbers is unstable since the linear ordering is definable; Presburger

Arithmetic is stable, like the theory of any abelian group.) But it is derivable from

an extension of Presburger’s results where the primitives are 0, 1, + and >. Pres-

burger states this extension in the supplementary note to [16]. A direct quantifier

elimination for the natural numbers with addition appears in Hilbert and Bernays

[8] pp. 368–377, though with a different set of axioms from Presburger’s.

What about the theory of (N,×), the natural numbers with multiplication but

not addition? If we overlook zero, (N,×) is isomorphic to the product of count-

ably many copies of (N,+), one for each prime. Skolem [19] sketched a quantifier

elimination for this structure in 1930.

In 1934 Gödel ([6] p. 367) mentioned these results of Presburger and Skolem,

and remarked that a consequence of his own incompleteness theorem [5] is that

there is no decision method for the arithmetic of the integers with both addition

and multiplication. What would have happened if Tarski’s seminar had tried to do

a quantifier elimination on the ring of integers? It would have found that it kept

needing to add further kinds of basic formula. Also quite soon it would have reached

sentences whose truth value is unknown.

4.3 The Algorithm

From p. 374 of Tarski [24] it seems that “method of quantifier elimination” means in

the first instance the argument used to prove the Theorem at the end of the seminar

notes. Namely, “reducing the sentences to normal form and successively eliminating

the quantifiers”. On the same page Tarski attributes this method to Skolem [18].

Tarski’s emphasis would be surprising today. The reduction to prenex normal

form is completely unnecessary; its only function is to simplify the statement of

an induction needed in the proof of the Theorem. By contrast neither Tarski nor

Presburger considers what seem more pressing questions:

(i) to show formally that the algorithm finding |φ | from φ terminates;

(ii) to show formally that for each φ the equivalence of φ and |φ | is provable from

the axioms.

(A further question is to show that the function |.| is well-defined. But since we

defined it in terms of the algorithm, this question reduces to (i).) Today we control

both arguments by assigning ordinal ranks to formulas, so that in case (i) each step

of the algorithm takes us to formulas of lower rank, and in case (ii) the result holds

for φ provided that it holds for all formulas of lower rank than φ .
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It’s helpful to split both proofs into two parts. The first part is for formulas with at

most one existential quantifier, which occurs (if at all) at the beginning. The second

part is for general formulas, assuming the first part.

The first part is complicated by the fact that in removing an incongruence we may

greatly increase the size of the formula. So a simple measure of complexity won’t

work. Instead we should assign (possibly transfinite) ranks so that φ has lower rank

than ψ whenever φ has fewer congruences in negative position than ψ does; I omit

details.

The second part is basically an induction on the number of existential quantifiers,

but with a twist. Each time we apply the first part, we eliminate an existential quan-

tifier, but we may introduce many new existential quantifiers inside congruences.

The twist is to ignore existential quantifiers inside basic formulas. We can avoid this

twist by introducing new atomic formulas where Presburger expanded the class of

basic formulas.

Martin Davis implemented a decision procedure for Presburger arithmetic on the

Johnniac computer, and reported the outcome to the 1957 Cornell Summer Institute

[1] (according to [3] p. 229; I have never seen the Cornell volume).

Around 1970 complexity theory came into being, and one of its earliest results

was a lower bound on the complexity of decision procedures for Presburger Arith-

metic. In 1973 Michael Fischer and Michael Rabin ([4] Theorem 2) showed that

“There exists a constant c > 0 such that for every decision procedure [for Pres-

burger Arithmetic], there exists an integer n0 so that for every n > n0 there exists a

sentence F of L of length n for which [the procedure] requires more than 22cn
com-

putational steps to decide whether F [is true]”. The central idea of their argument

is that although exponentiation is not definable in L, if n is a large positive integer

then we can write down a formula of L that has length much less than n and serves

to define exponentiation for positive integers < n. In 1977 Tarski and Doner ([2] p.

2) comment that “recent research into the complexity of algorithms has deprived the

pure decidability results of some of their luster”.

4.4 The Definition of Truth

In 1929 Tarski discovered his mathematical definition of truth for languages of for-

mal deductive theories ([24] p. 152). Its form is in some ways very like the definition

of |φ | from φ ; in fact he twice suggests that the truth definition is a generalisation of

results of quantifier elimination, got by eliminating the “accidental” features of par-

ticular theories ([24] pp. 135 on elementary definability, 208 on truth). This could

well be how he discovered the truth definition, as follows.

For a boolean combination φ , Presburger’s definition of |φ | is not relative to the

particular language. The interesting case is where φ begins with a quantifier. In

order to avoid reduction to an equivalent formula, which obviously does depend on

the particular theory, Tarski’s truth definition redefines |φ | in all cases to be the set
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of assignments that satisfy φ . With this definition the clause for ∃x is just as general

as the clauses for → and ¬.

With this adjustment, the recursive form of the definition of |φ | becomes tech-

nically simpler. In fact |φ | now depends only on the values |ψ| where ψ are the

immediate subformulas of φ , together with the syntactic rule for building φ from

these ψ . A definition of a function |.| of expressions, where |φ | for compound φ
depends only on |ψ| for the immediate subexpressions ψ of φ and the syntactic op-

eration combining them, is said to be compositional. Tarski’s truth definition seems

to be the first place where a semantic function of phrases of a language is given

explicitly and precisely by a compositional definition. (People have found partial

anticipations in work of Abu H. ayyān, Leibniz, Boole, Husserl, Frege.)
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Chapter 5

Deductive Systems of Fuzzy Logic

Petr Hájek

5.1 Introduction

Lotfi Zadeh [23] is the author of the theory of fuzzy sets. A fuzzy subset A of a

(crisp) set X is characterized by assigning to each element x of X the degree of mem-

bership of x in A In particular, if X is a set of propositions then its elements may be

assigned their degree of truth, which may be “absolutely true”, “absolutely false” or

some intermediate truth degree: a proposition may be more true than another propo-

sition. This is obvious in the case of vague (imprecise) propositions like “this person

is old” (beautiful, rich, etc.). And this leads to fuzzy logic. In the analogy to various

definitions of operations on fuzzy sets (intersection, union, complement,. . . ) one

may ask how propositions can be combined by connectives (conjunction, disjunc-

tion, negation,. . . ) and if the truth degree of a composed proposition is determined

by the truth degrees of its components, i.e. if the connectives have their correspond-

ing truth functions (like truth tables of classical logic). Saying “yes” (which is the

mainstream of fuzzy logic) makes fuzzy logic to something principally different

from probability theory since e.g. the probability of conjunction of two propositions

is not determined by the probabilities of those propositions1.

In broad sense, the term “fuzzy logic” is often used as synonymous with the-

ory and applications of fuzzy sets in general. Fuzzy logic in narrow sense is sym-

bolic logic with a comparative notion of truth developed fully in the spirit of classi-

cal logic (syntax, semantics, axiomatization, truth-preserving deduction, complete-

ness, etc.; both propositional and predicate logic). It is a branch of many-valued

logic based on the paradigm of inference under vagueness. (Observe that this is

very different from probability theory, which may be said to study inference under

Petr Hájek
Institute of Computer Science, Academy of Sciences of the Czech Republic, 182 07 Prague, Czech
Republic, e-mail: hajek@cs.cas.cz

1 For example, if the probability of ϕ is 0.5 and probability of ψ is also 0.5 then clearly the
probability of ϕ&ψ can be anything between 0 and 0.5.

J. van Benthem et al. (eds.), Proof, Computation and Agency, Synthese Library 352, 67
DOI 10.1007/978-94-007-0080-2 5, c© Springer Science+Business Media B.V. 2011



68 P. Hájek

randomness)2. This fuzzy logic is a relatively young discipline, both serving as a

foundation for the fuzzy logic in a broad sense and of independent logical interest,

since it turns out that strictly logical investigation of this kind of logical calculi can

go rather far. A basic monograph is my [11], further recommended monographs are

[20, 22]; also recent monographs dealing with many-valued logic (not specifically

oriented to fuzziness), namely [2, 9] are highly relevant.

This paper presents information on fuzzy connectives and a survey of a logical

system called the basic fuzzy propositional and predicate logic together with three

stronger systems – Łukasiewicz, Gödel and product logic; a short discussion on

paradoxes and fuzzy logic; some comments on other formal systems of fuzzy logic,

on the relation of fuzziness and probability (the fuzzy notion of being probable) and

finally, a few remarks on fuzzy description logic.

5.2 Fuzzy Connectives

The standard set of truth degrees is the real interval [0,1] with its natural ordering

≤ . (1 standing for absolute truth, 0 for absolute falsity); but one can work with

diferent domains, finite or infinite, linearly or partially ordered. Truth functions of

connectives have to behave classically on the extremal values 0,1. It is broadly

accepted that t-norms (triangular norms) are possible truth functions of conjunction.

Definition 5.1 A binary operation ∗ on the interval [0,1] is a t-norm if it is commu-

tative, associative, non-decreasing and 1 is its unit element, i.e. the following holds

for each x,y,z ∈ [0,1] :

x∗ y = y∗ x, x∗ (y∗ z) = (x∗ y)∗ z,

x ≤ y implies x∗ z ≤ y∗ z,

1∗ x = x

(It follows that 0 is a zero element, i.e. 0∗ x = 0 for all x.)

Let us remark that minimum min(x,y) is the most popular t-norm. The truth

function of negation has to be non-increasing (and assign 0 to 1 and vice versa);

the function 1− x (Łukasiewicz negation) is the most well-known candidate. But a

serious analysis leads us to different negations for different t-norms, see below. Im-

plication is sometimes disregarded but is of fundamental importance for fuzzy logic

in the narrow sense. Logically most interesting are R-implications: an R-implication

is defined as a residuum of a t-norm. This is well-defined only if the t-norm is left-

continuous.

2 For example, the statement “Tom will die today” is crisp, not vague, but has some probability.
The statement “Tom is a tall man” is a vague statement, is true in a certain degree.
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Definition 5.2 Let ∗ be a (left-) continuous t-norm. The residuum ⇒ of ∗ is defined,

for each x,y ∈ [0,1] as x ⇒ y = max{x|x∗ z ≤ y}. The corresponding pseudocom-

plement neg is defined as neg(x) = x ⇒0.

The following are three most important continuous t-norms, their residua and the

corresponding pseudocomplements:3

Łukasiewicz: x∗ y = max(0,x+ y−1),
Gödel: x∗ y = min(x,y)
product: x∗ y = x · y.

For all of them, x ⇒ y = 1 if x ≤ y, otherwise:

Łukasiewicz: x ⇒ y = 1− x+ y,

Gödel: x ⇒ y = y,

product: x ⇒ y = y/x.

This gives the following pseudocomplement:

Łukasiewicz: neg(x) = 1− x,
Gödel and product: neg(0) = 1,neg(x) = 0 for x > 0.

Note that there are infinitely (uncountably many) continuous t-norms and their

structure is well-known. Without telling details, let us just mention the theorem of

Mostert and Shields saying that each continuous t-norm is an ordered sum of copies

of Łukasiewicz, Gödel and product t-norms (in a well defined meaning of “ordered

sum”).

5.3 Basic Fuzzy Propositional Logic

This is the logic of continuous t-norms (developed in [11]). Formulas are built

from propositional variables using connectives & (conjunction), → (implication)

and truth constant 0̄ (denoting falsity). Further connectives are defined as follows:
ϕ ∧ψ is ϕ&(ϕ ⇒ ψ),
ϕ ∨ψ is ((ϕ → ψ) → ψ)∧ ((ψ → ϕ) → ϕ),
¬ϕ is ϕ → 0̄,
ϕ ≡ ψ is (ϕ → ψ)&(ψ → ϕ).
An evaluation of propositional variables is a mapping e assigning to each propo-

sitional variable p its truth value e(p) ∈ [0,1].

This extends, given a continuous t-norm ∗ and its residuum ⇒, to the evaluation

e∗ (ϕ) of each formula ϕ:

e∗(0̄) = 0,
e∗(ϕ → ψ) = (e∗(ϕ) ⇒ e∗(ψ)),
e∗(ϕ&ψ) = (e∗(ϕ)∗ e∗(ψ)).

3 The Polish logician Jan Łukasiewicz was the first to publish papers on many-valued logics (since
1920, see [19]). Kurt Gödel, the most famous mathematical logician of the past century, celebrated
by his completeness and incompleteness theorems, has just one very short but rather influential
paper [8] on many-valued logic published in 1932.
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Note that the truth function of ∧ is minimum and that of ∨ is maximum, inde-

pendently from the choice of ∗.

Definition 5.3 A formula ϕ is a ∗-tautology if e∗(ϕ) = 1 for each e. A formula ϕ is

a t-tautology or standard BL-tautology if e∗(ϕ) = 1 for each evaluation e and each

continuous t-norm ∗. The following t-tautologies are taken to be axioms of the logic

BL:
(A1) (ϕ → ψ) → ((ψ → χ) → (ϕ → χ))
(A2) (ϕ&ψ) → ϕ
(A3) (ϕ&ψ) → (ψ&ϕ)
(A4) (ϕ&(ϕ → ψ)) → (ψ&(ψ → ϕ))
(A5a) (ϕ → (ψ → χ)) → ((ϕ&ψ) → χ)
(A5b) ((ϕ&ψ) → χ) → (ϕ → (ψ → χ))
(A6) ((ϕ → ψ) → χ) → (((ψ → ϕ) → χ) → χ)
(A7) 0̄ → ϕ

The deduction rule of BL is modus ponens (saying that from ϕ and ϕ → ψ we

may infer ψ , for each ϕ,ψ). Given this, the notions of a proof and of a provable

formula in BL are defined in the obvious way: a proof in BL is a sequence ϕ1, . . . ,ϕn

of formulas such that each ϕi either is an axiom or it follows from some preceding

members of the sequence by the inference rule. A formula is provable in BL if it is

the last member of a proof.

All axioms of BL are ∗-tautologies for each ∗ and so is each formula provable in

BL.

Note that Łukasiewicz logic is the extension of BL by the axiom ¬¬ϕ → ϕ;

Gödel logic is the extension of BL by the axiom ϕ → (ϕ&ϕ). Finally, product logic

is the extension of BL by the following two axioms:

¬¬χ → (((ϕ&χ) → (ψ&χ)) → (ϕ → ψ)),

ϕ ∧¬ϕ → 0̄.

Now we present a more general semantics of the logic BL.

Definition 5.4 A BL-algebra is an algebra

L = (L,∩,∪,∗,⇒,0,1)

with four binary operations and two constants such that

(i) (L,∩,∪,0,1) is a lattice with the largest element 1 and the least element 0 (with

respect to the lattice ordering ≤),

(ii) (L,∗,1) is a commutative semigroup with the unit element 1, i.e. ∗ is commu-

tative, associative, 1∗ x = x for all x (thus L is a residuated lattice, and

(iii) the following conditions hold for all x,y,z:

(1) z ≤ (x ⇒ y) iff x∗ z ≤ y (residuation),
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(2) x∩ y = x∗ (x ⇒ y) (divisibility),

(3) (x ⇒ y)∪ (y ⇒ x) = 1 (prelinearity).

Define neg(x) = (x ⇒ 0).

Definition 5.5 MV-algebras are BL-algebras satisfying (−)(−)x = x. G-algebras

are BL-algebras satisfying x∗ x = x. Product algebras are BL-algebras satisfying

x∩ (−)x = 0

[(−)(−)z ⇒ ((x∗ z = y∗ z) ⇒ x = y)] = 1.

Let L be a BL-algebra. An L-evaluation of propositional variables is any map-

ping e assigning to each propositional variable p an element e(p) of L. This extends

in the obvious way to an evaluation eL(ϕ) of all formulas ϕ using the operations

on L as truth functions. A formula ϕ is in L-tautology if eL(ϕ) = 1 for each L-

evaluation e.

Theorem 5.1 BL is complete, i.e. for each formula ϕ the following three conditions

are mutually equivalent:

(i) ϕ is provable in BL,

(ii) for each linearly ordered BL-algebra L, ϕ is an L-tautology;

(iii) for each BL-algebra L, ϕ is an L-tautology (say, ϕ is a BL-tautology).

Note that we also get strong completeness (for provability in theories over BL).

A theory is just a set of formulas (axioms of the theory). A proof in a theory T (over

BL) is a sequence of formulas whose each member is an axiom of BL or an axiom

of T or follows from some preceding formulas by modus ponens.

Theorem 5.2 For each theory T over BL, T proves ϕ iff for each [linearly ordered]

BL-algebra L, ϕ is true in all L-models of T . (Here e is an L model of T if eL(α) =
1L for each axiom α of T .)

Definition 5.6 (1) A t-algebra is a BL-algebra ([0,1],∩,∪,∗,⇒,0,1) whose lattice

part is the real interval [0,1] with min and max and ∗ is a continuous t-norm (whereas

⇒ is its residuum).

(2) A formula ϕ is a t-tautology if it is an L-tautology for each t-algebra L.

Theorem 5.3 (Cignoli-Esteva-Godo-Torrens [3]) Each t-tautology is provable in

BL, i.e. t-tautologies coincide with BL-tautologies (and hence with formulas prov-

able in BL).

Remark (Decidability) t-tautologicity (= BL-tautologicity) is decidable (is co-

NP complete). Similarly for ∗-tautologicity for any fixed continuous t-norm, like

Łukasiewicz, product or Gödel t-norm, is provable in BL. (See [1, 11, 16].) Note that

the logics of the three named t-norms are completely axiomatized by the following:
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Ł by BL plus the axiom ¬¬ϕ → ϕ of double negation,

G by BL plus the axiom ϕ → (ϕ&ϕ) of idempotence of conjunction,

Π by BL plus the axiom ¬¬ϕ → ((ϕ → (ϕ&ψ)) → (ψ&¬¬ψ)).

5.4 Basic Fuzzy Predicate Logic

Definition 5.7 A predicate language consists of predicates P,Q,. . . , each together

with its arity (number of arguments) and object constants c,d, . . . . Logical symbols

are object variables x,y . . . , connectives &,→, truth constants 0̄, 1̄ and quantifiers

∀,∃. Other connectives (∧,∨,¬,≡) are defined as in propositional calculus. Terms

are object variables and object constants.

Atomic formulas have the form P(t1, . . . , tn) where P is a predicate of arity

n and t1, . . . , tn are terms. If ϕ,ψ are formulas and x is an object variable then

ϕ → ψ,ϕ&ψ,(∀x)ψ,(∃x)ϕ, 0̄, 1̄ are formulas; each formula results from atomic

formulas by iterated use of this rule.

Let J be a predicate language and let L be a BL-algebra. An L-structure M =
〈M,(rP)P,(mc)c〉 for J consists of the following:, a set M 6= /0 (the domain), for

each n-ary predicate P a L-fuzzy n-ary relation rP: Mn →L on M and for each object

constant c, an element mc of M. An M-evaluation of object variables is a mapping v

assigning to each variable x an element v(x) of M denoted also ‖x‖M,v; the M-value

of a constant c is ‖c‖M,v = mc.

Truth values of formulas (in a given interpretation M, with the evaluation v of

variables and with the truth functions given by the algebra L) are defined by induc-

tion as follows: for atomic formulas

‖P(t1, . . . , tn)‖L
M,v = rP(‖t1‖M,v, . . . ,‖tn‖M,v);

furthermore

‖ϕ → ψ‖L
M,v = ‖ϕ‖L

M,v ⇒‖ψ‖L
M,v;

‖ϕ&ψ‖L
M,v = ‖ϕ‖L

M,v ∗‖ψ‖L
M,v;

‖0̄‖M,v; ‖1̄‖M,v;

‖(∀x)ϕ‖L
M,v = inf{‖ϕ‖L

M,v′ |v ≡x v′};

‖(∃x)ϕ‖L
M,v = sup{‖ϕ‖L

M,v′ |v ≡x v′};

provided the infimum/supremum exists in the sense of L.

The structure M is L-safe if all the needed infima and suprema exist, i.e. ‖ϕ‖L
M,v

is defined for all ϕ,v.
Next define the (global) truth degree of a formula in an interpretation using a

BL-algebra of truth functions:

‖ϕ‖M = inf{‖ϕ‖M,v M – evaluation.}
A formula ϕ of a language J is an L-tautology if ‖ϕ‖M = 1L for each safe

L-structure M.
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Definition 5.8 The following are logical axioms on quantifiers:

(∀1) (∀x)ϕ(x) → ϕ(t) (for t substitutable for x in ϕ(x))
(∃1)ϕ(t) → (∃x)ϕ(x) (for t substitutable for x in ϕ(x))
(∀2)(∀x)(ν → ϕ) → (ν → (∀x)ϕ) (for x not free in ν)

(∃2)(∀x)(ϕ → ν) → ((∃x)ϕ → ν) (x not free in ν)

∀3)(∀x)(ν ∨ϕ) → (ν ∨ (∀x)ϕ) (x not free in ν)4

The fuzzy predicate calculus C ∀ (for a given fuzzy propositional calculus C) has

the following axioms:

All formulas resulting from the axioms of C by substituting arbitrary formulas

of J for propositional variables, and

The axioms (∀1), (∀2), (∃1), (∃2), (∀3) for quantifiers.

Deduction rules are modus ponens (from ϕ , ϕ → ψ) infer ψ and generalization

(from ϕ infer (∀x)ϕ).

In particular, we have the logic BL∀ and three stronger logics: Ł∀ (Łukasiewicz),

G∀ (Gödel), Π∀ (product).

Lemma 5.1 The axioms (∀1)−(∃2) are L-tautologies for each BL-algebra L; (∀3)
for each BL-chain.

A theory is a set T of formulas (special axioms of the theory). An L-model of

T is a safe L-structure in which all special axioms of T are true (have the L-truth

value 1L. One can prove the following

Completeness theorem Let C ∀ be the predicate calculus given by an extension

C of BL by some additional axiom schemas, let T be a theory over C ∀ let ϕ be a

formula of the language of T . T proves ϕ iff for each linearly ordered C-algebra L

and each L-model of T , ϕL
M = 1L.

Let us stress that similarly as in classical logic, provability in BL∀ (and in

stronger logic like Łukasiewicz, Gödel and product predicate logic) is not decid-

able; it is of the same degree of unsolvability as classical logic (Σ1-complete). By

completeness, provability in such a logic is equivalent to tautologicity over all cor-

responding linearly ordered algebras (BL-chains, MV-chains etc.)

In contradistinction to propositional case, tautologicity over t-norm algebras

(standard tautologicity) differs from tautologicity over BL-chains (general tauto-

logicity) and is of different degree of unsolvability: the set of standard tautologies

for BL∀ it is outside of arithmetical hierarchy (extremely undecidable). For stronger

logics the situation is as follows: the set of standard tautologies of G∀ (tautologies

over [0,1]G is Σ1-complete, for Ł∀ it is Π2-complete, for Π∀ not arithmetical. (See

[10, 18].)

This ends our survey of the basic notions and facts of the fuzzy predicate logic

BL∀ and some stronger fuzzy logics; next we show some applications and general-

izations.

4 Substitutability of a term and freeness of a variable are natural syntactical restrictions defined in
the same way as in the classical predicate logic.
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5.5 Probability

Probability on formulas (of classical logic) cannot be understood as an assignment

of truth values in the sense of a (truth-functional) fuzzy logic; but still there are

bridges between probability and fuzziness. Compare the sentence “Temperature is

high.” and “The probability of . . . is high” or just “. . . is probable”. Here evidently

“probably” acts as a fuzzy modality.

This can be formalized as follows: Work with propositional language with two

kinds of formulas: non-modal and modal formulas. Non-modal formulas are just

formulas of the classical propositional calculus. Atomic modal formulas have the

form Pϕ where ϕ is any non-modal formula (Pϕ is read “ϕ is probable”) and

other modal formulas are built from the atomic modal formulas using connectives

of Łukasiewicz logic.

A model (interpretation) of such a langauge is a (Kripke) structure K = (W,e,µ)
where W is a non-empty set of possible worlds, e is a boolean evaluation (for each

propositional variable p and each possible world w,e(p,w) ∈ {0,1}); µ is a finitely

additive probability on subsets of W such that for each propositional variable p

the set {w|e(p,w) = 1} is measurable. Evidently, e uniquely determines for each

possible world w which non-modal formulas are true in w and which are false in w.

The truth value of an atomic modal formula ‖Pϕ‖K is the probability of ϕ , i.e.

µ{w|ϕ true in w}).
The following axioms are postulated:

(FP1) P(¬ϕ) ≡ ¬Pϕ
(FP2) P(ϕ → ψ) → (Pϕ → Pψ),
(FP3) P(ϕ ∨ψ) → ((Pϕ → P(ϕ ∧ψ)) → Pψ).
Postulating axioms of classical logic for non-modal formulas, axioms of

Łukasiewicz logic plus our (FP1) to (FP3) for modal formulas and taking as de-

duction rules modus ponens and necessitation (from ϕ infer Pϕ) you get a logic

complete with respect to the above semantics.

5.6 Sorites Paradox

One grain does not form a heap. Adding one grain to what is not

yet a heap does not make a heap. Consequently, there are no heaps.

So in classical logic. The problem is if we can deal with a notion of a small or

feasible number (a heap must have a large – non-feasible number of grains). There

were various attempts to formalize it (Parikh, Vopěnka). We show a solution in fuzzy

logic.

We extend the basic predicate logic BL∀ by a new unary connective At (At(ϕ)

being read “it is almost true that ϕ”) and by the following two axiom schemata.

ϕ → At(ϕ),
(ϕ → ψ) → (At(ϕ) → At(ψ)).
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Extend the language of the well known Peano arithmetic PA by a new unary

predicate Fe (Fe(x) is read “x is feasible”). Work with the variant of BL∀ with

function symbols. Thus the language consists of the binary equality predicate =,

unary predicate Fe, constant 0̄ (zero), unary function symbol S (successor), binary

function symbols +, · (addition, multiplication).

The axioms of PAat are as follows:

x = y∨ x 6= y (crispness axiom for =),

all axioms of Peano arithmetic (including the definition of x ≤ y as (∃z)(z+x = y)),
x < y → (Fe(y) → Fe(x)),
Fe(x) → (At(Fe(S(x))∧At(Fe(x+ x))∧At(Fe(x · x)).

Fact (1) For each formula ϕ of PA (i.e. not containing the predicate Fe), PAat

proves ϕ ∨¬ϕ (tertium non datur).

(2) A formula not containing Fe is provable in PA over classical logic iff it is prov-

able in PAat over BL∀at .
(3) PAat proves

Fe(x)∧Fe(y) → (At(Fe(x+ y))∧At(Fe(x · y)).

In words: if x and y are feasible then it is almost true that also x+y, x ·y are feasible.

Example: let p be a truth constant for a non-extremal truth value (say, 0.99)

and define at(ϕ) ≡ (p → ϕ). Clearly, this satisfies our axioms; furthermore, the

following becomes provable:

At(ϕ → ψ)→(ϕ → At(ψ)),

(At(ϕ)&At(ϕ → ψ))→ At(At(ψ)).

5.7 The Big Family of Fuzzy Logics

We quickly survey important more general logic of left-continuous t-norms (Esteva-

Godo [6]): MTL – the monoidal t-norm-based logic has the language of BL extended

by an additional binary connective ∧, axioms (A1), (A2), (A3), (A5a), (A5b), (A6),

(A7), plus the following three axioms which replace (A4):

(A4a) (ϕ&(ϕ → ψ))→(ϕ ∧ψ)
(A4b) (ϕ ∧ψ)→ ϕ
(A4c) (ϕ ∧ψ)→(ψ ∧ϕ)

Recall that in BL, ∧ is defined in terms of & and →: ϕ ∧ψ = ϕ&(ϕ → ψ).
But this is not the case in MTL. ¬ϕ and ϕ ∨ψ are abbreviations for ϕ → 0̄ and

((ϕ → ψ)→ ψ)∧ ((ψ → ϕ) → ϕ) respectively (as in BL).

An MTL algebra is a system L = 〈L,∗,⇒,∩,0,1〉 satisfying all the axioms of a

BL algebra except divisibility.
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Theorem 5.4 (Completeness) MTL is complete with respect to the class of standard

MTL algebras, linearly ordered MTL algebras as well as general MTL algebras.

(Similarly for stronger logic IMTL corresponding to Łukasiewicz (add double nega-

tion axiom) and some other logics. Furthermore, MTL is decidable.

The predicate MTL logic, MTL∀ is defined in the obvious way and has general

completeness as BL: provability in MTL∀ equals to tautologicity over MTL-chains.

BUT: MTL∀ has also standard completeness: provability in MTL∀ equals to tau-

tologicity over all algebras [0,1]∗ where ∗ is a left-continuous t-norm. (Montagna-

Ono).

Complexity: MTL∀ is undecidable (Montagna-Ono).

5.8 Making Fuzzy Description Logic More General

Description logic has become extensively studied in last years (in relation to web

mining). It is known to be a fragment of classical predicate calculus and has several

variants; we restrict ourselves to that named ALC.

The language: unary predicates A1, . . . (atomic concepts), binary predicates

R1, . . . (roles), variables x1, . . . and constants a1, . . . Concepts are built from atomic

concepts using connectives ∧,∨,¬ and quantification constructs denoted ∀R.C,∃R.C.
Think of instances of atomic concepts as of formulas Ai(t) (t being a fixed constant

or variable); this extends to (instances of) concepts defined by connectives.

Furthermore,

(∀R.C)(t) is to be read as (∀y)(R(t,y) →C(y))

(∃R.C)(t) as (∃y)(R(t,y)∧C(y)).

(For each construct always a new variable y is used.) Axioms may have the form

C(ai) (C a concept), R(ai,a j) (R a role) and (∀x)(C(x) → D(x)) (subsumption of

concepts). Typical problems are:

satisfiability: does C(a) have a model?

validity: is (∀x)C(x) true in all models?

in particular: subsumption: is (∀x)(C(x) → D(x)) true in all models?

Over classical logic, both problems are decidable (and are PSPACE-complete).

It is very natural, due to the intended applications, to make this system (and

related systems) fuzzy. Our main contribution is a systematic reduction of problems

of satisfiability and validity of concepts to problems of satisfiability and validity

of some theories in propositional logic, problems that are known to be decidable,

using as much of the richness of fuzzy logic as possible (cf. [15] and the references

thereof). What follows is a short summary of the paper [15].

Generalized atoms are instances of quantified concepts, i.e. (∀R.C)(t), (∃R.C)(t).
Evidently, each instance C(t) of any concept is a propositional combination of some

atoms and generalized atoms; the latter will be called generalized atoms of C(t).
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Assign to each generalized atom G(a) (G atomic concept or a quantified con-

cept, a a constant) a propositional variable pG,a. Extend this to all instances C(a) of

concepts by defining

prop(0̄(a)) = 0̄,
prop((C&D)(a)) = prop(C(a))& prop(D(a)) and similarly for (C → D)(a).
If T is a set of formulas (instances of concepts) let prop(T ) be the set of all

prop(α),α ∈ T.
There is an algorithm assigning to each (closed) instance C0(a0) of a concept C0

with a constant a0 a finite “witnessing” theory T (C0(a0)) important in what follows.

From now on, fix a continuous t-norm ∗ (and its residuum); this gives semantics

of your fuzzy propositional and predicate calculus. In particular, each evaluation e

of propositional atoms by truth values from the real interval [0,1] defines uniquely

the truth value e∗(ϕ) of each propositional formula built from these atoms.

Definition 5.9 For any M, a closed formula (∀y)ϕ(y) is ∗-witnessed if ‖(∀y)ϕ(y)‖∗M
(which is the infimum of values of M-instances of ϕ(y)) is in fact equal to ‖ϕ(u)‖∗M
for some u ∈ M, thus the infimum is in fact the minimum. Similarly for witnessed

‖(∃y)ϕ(y)‖∗M (maximum). More generally, (∀y)ϕ(y,x1, . . . ,xn) is ∗-witnessed

in M if for any choice v1, . . . , ,vn ∈ M of values of x1, . . . ,xn, the truth value

‖(∀y)ϕ(y,v1, . . . ,vn)‖∗M equals to ‖ϕ(u,v1, . . . ,vn)‖∗M for some u ∈ M.

Similarly for (∃y)ϕ(y,x1, . . . ,xn) and maximum. M is ∗-witnessed if all quantified

formulas are ∗-witnessed in M.

Theorem 5.5 (1) Over Łukasiewicz logic, a concept C is satisfiable iff it is satisfi-

able by a finite model iff the associated finite set prop(C(a))∪ prop(T (C(a))) is

propositionally satisfiable.

(2) Over Łukasiewicz logic, a concept C is valid iff it is valid in all finite models iff

the propositional theory prop(T (C(a)) entails prop(C(a)), i.e. each evaluation e

of propositional variables which is an Ł-model of prop(T (C(a))) gives prop(C(a))
the Ł-value 1.

Corollary 5.1 Over Łukasiewicz logic, the (standard) satisfiability and (standard)

validity of a concept are decidable problems.

Theorem 5.6 For any continuous t-norm ∗ an any concept C, the following are

equivalent:

1. (1) C is valid in all witnessed ∗-models

2. (2) C is valid in all finite ∗-models

3. (3) prop(T (C(a))) ∗-entails prop(C(a)).

Corollary 5.2 For an arbitrary continuous t-norm ∗, witnessed ∗-satisfiability and

witnessed ∗-validity of a concept is decidable.

This is because propositional ∗-satisfiability and propositional ∗-entailment are

decidable.
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16. Hájek P. Making fuzzy description logic more general, Fuzzy Sets Syst., 154: 1–15, 2005
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Part III

Logic and Computation





Chapter 6

What Is the Difference Between Proofs and
Programs?

John N. Crossley

6.1 Introduction

About the year 1900 there was just “one true logic”: classical logic. In such a logic

one would expect that everything was clear. Certainly, in that logic, any statement

was either true or false: there was the law of the excluded middle, (A∨¬A). But

how do we check an infinite number of instances? What does it mean to say that

there is no largest pair of twin primes, that is to say that there is an end to such pairs

such as 5 and 7; 11 and 13 or even 202289 and 202291?

On the other hand, saying there are infinitely many pairs of twin primes has a

clear meaning if we can show that, for every pair, there is a larger pair. In this con-

text compare the way that Euclid established that there were infinitely many prime

numbers (although he did not phrase it like that). He gave a method for constructing

a larger prime from a given (finite) set of prime numbers.

It was because of questioning by Brouwer, a Dutch mathematician, indeed a

topologist, of the “one true logic”, that “constructive logic” or “intuitionist logic”

arose.

When you look at this logic it is not evident, at first glance, that the logic actu-

ally gives you the way of performing the necessary construction. However, that is

perhaps the wrong way to look at it. Brouwer was concerned only with constructing

mathematical objects that were claimed to exist. He did not like mathematical logic

and did not consider it relevant. However, when his approach is formalized, the de-

tails are buried inside the proof. Are they perhaps buried in the way that algorithms

are buried inside computer programs?

Thus arose “constructive logic” or “intuitionist(ic) logic”. In the 1960s I went to a

course on Intuitionism taught by Michael Dummett. The lectures have since become

a book [8]. I was a student then and I must admit that I found it very odd. Odd, but

John N. Crossley
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also very interesting, indeed, fascinating. The subject matter seemed strange to us

in the audience because it did not use the law of the excluded middle. Nowadays

intuitionist logic has become a very standard subject as you can see from Michael

Dummett’s book.

The most important thing about constructive proofs is that they contain the infor-

mation that allows one to construct the objects considered. For example if we prove

∀x∃yA(x,y) constructively then, given an x, we can actually construct a y such that

A(x,y) is true, indeed, is provable. The information required for the construction is

embedded in the proof.

For further details of the actual logical system that I use please see the tutorial at

this conference [5]. The system is outlined in Fig. 6.1. Here ∆ ,A ⊢Int B means “B

can be inferred from A and the formulae in ∆”. The restriction to Harrop formulae

is a technical one.1

6.2 The Lambda Calculus and the Curry-Howard

Correspondence

How do we extract the information from a proof in mathematical logic? Curry

started, and Bill Howard [13] developed, the basic idea. To show this we need

some notation. We begin with the lambda calculus, but this calculus will slowly

get extended. (For the present state of the art see the work of Barendregt, in parti-

cular [1, 2].) Here is the formal definition of lambda terms.

Definition 6.1 (Lambda terms) The alphabet comprises variables x1,y1, . . ., to-

gether with λ and “.”, and the brackets ( and ).
The lambda terms, Λ , are formed as follows (in Backus-Naur notation):

T = x|λx.T |(T1T2)

The lambda calculus has two major constructions: abstraction and application.

Where does the lambda calculus come from? Consider the following:

What is the function denoted by xy? We have several choices: as a function of

two variables, as a function of x only with y held constant and as a function of y

only with x held constant. These are usually denoted by

λxλy.xy(often written as λxy.xy), λx.xy and λy.xy.

This is abstraction.

1 A formula F is a Harrop formula if it is (1) an atomic formula, (2) of the form (A∧B) where A and
B are Harrop formulae, (3) of the form (A→B) where B (but not necessarily A) is a Harrop formula,
or (4) of the form ∀x.A where A is a Harrop formula. Harrop formulae, in a sense, contribute no
information for the program. However, the rule (⊥-E) easily extends, through a proof by induction,
to provide a proof of any formula A from the false formula ⊥ since atomic formulae are Harrop
and so are their negations (A →⊥).
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Application is written in a familiar way: thus (T1T2) denotes the application of

the lambda term T1 to the lambda term T2. In particular f a is the application of the

lambda term f to the lambda term a. (We omit brackets where there is no ambiguity.)

These notations have the obvious interpretations. (Try them on xy and specific

values of x and y.)

In ordinary mathematics if we apply the function λx. f to a then we get f [a/x],
which is read “ f with a for x”. In the lambda calculus however this is not the same

as the (application) term (λx. f )a, i.e. λx. f applied to a. That is to say they are

syntactically different. We therefore have to introduce the notion of β -reduction2

(λx. f )a✄ f [a/x]

(Here ✄ is read “reduces to”.)

Now note the similarities between →-introduction, the rule (→-I), and →-

elimination (→-E) (in Fig. 6.1) on the one hand, and λ -introduction and λ -elimination

on the other, the β -rule.

Next consider a proof of B from A from which we get a proof3 of A → B (by the

rule (→-I):

[A]
....
B

(A → B)

and lambda abstraction (which abstracts a function from the process where a ∈ A

gives us f (a) ∈ B): that is λx. f . Consider the figure4:

a....
f (a)

λx. f

What is the connexion?

The most obvious thing, I hope, is that the shapes are the same!

The typed lambda calculus that we shall consider, that is to say lambda calculus

with each term having a type assigned to it, can be regarded as the amalgam of the

two systems: logic, or more precisely, systems of predicate calculus, and the lambda

calculus.

A special kind of typed lambda calculus involves taking formulae of logic as the

types. Now this is a strange idea to accept but it is easier to work with it if you just

think of a type (formula) as the set of proofs of that formula. Instead, therefore, of

variables, we use typed variables of the form a : A.

2 α-reduction refers to the simple renaming of one variable by another (without clashes).
3 The square brackets indicate that A can be discharged, i.e. is not needed for the proof of B, though
it is for the proof of B, of course.
4 Here we have written f (a) to show that we think of a as being involved in f .
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Assume that x,y are individual variables, and that t and t ′ are individual terms.

A ⊢Int A
(Ass-I)

∆ ,A ⊢Int B

∆ ⊢Int (A → B)
(→-I)

∆ ⊢Int A ∆ ′ ⊢Int (A → B)

∆ ,∆ ′ ⊢Int B
(→-E)

∆ ⊢Int A

∆ ⊢Int ∀x.A
(∀-I)

∆ ⊢Int ∀x.A

∆ ⊢Int A[t/x]
(∀-E)

x is free in A, not free in ∆

∆ ⊢Int P[t ′/y]

∆ ⊢Int ∃y.P
(∃-I)

∆1 ⊢Int ∃y.P ∆2,P[x/y] ⊢Int C

∆1,∆2 ⊢Int C
(∃-E)

where x is not free in C

∆ ⊢Int A ∆ ′ ⊢Int B

∆ ,∆ ′ ⊢Int (A∧B)
(∧-I)

∆ ⊢Int (A1 ∧A2)

∆ ⊢Int A1
(∧-E1)

∆ ⊢Int (A1 ∧A2)

∆ ⊢Int A2
(∧-E2)

∆ ⊢Int A1

∆ ⊢Int (A1 ∨A2)
(∨-I1)

∆ ⊢Int A2

∆ ⊢Int (A1 ∨A2)
(∨-I2)

for any Harrop formula A

∆ ⊢Int A∨B ∆1,A ⊢Int C ∆2,B ⊢Int C

∆1,∆2,∆ ⊢Int C
(∨-E)

∆ ⊢Int ⊥
∆ ⊢Int A

(⊥-E)

provided A is Harrop

A[a/x] is read “A with a for x” aand denotes the formula A with a substituted for the variable x.

Fig. 6.1 The basic rules of intuitionistic logic, Int.

The rule of modus ponens then becomes:

a : A g : (A → B)

(ga) : B (6.1)

where we have changed f to g to avoid confusion in what follows.

If we had a proof of B from A then we would get an expression λx : A. f : B by

the rule of (→-I) which has type (A → B). If the g in the expression (6.1) is actually

of the form (λx : A. f : B) : (A → B), then we get

a : A (λx : a. f : B) : (A → B)

((λx : A. f : B) : (A → B))a : A) : B
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which is somewhat hard to read. However the bottom line has the formula B as its

type, and the expression reduces to

f : B[a : A/x : A] (6.2)

where the substitution of a : A for x : A takes place throughout the term f : B.

If we translate this back into proofs it means that the corresponding proofs look

as follows. On the one hand we have the complicated proof:

....
A

[A]
....
B

(A → B)

B (6.3)

and on the other hand, by putting the proof of A from the left on top of the proof of

B, and not introducing the →, we no longer need the hypothesis [A] in the proof on

the right in order to get a proof of B.

That is to say, we reduce the proof in (6.3) to a simple proof of B of the form

....
A....
B

This corresponds in the lambda calculus to the reduction5 that resulted in (6.2). So

we have a direct correspondence between proofs and terms of our typed lambda

calculus. This is called the Curry-Howard correspondence.6

6.3 Strong Normalization and Program Extraction

Now it is obvious that a long and complicated formal proof has an even longer

typed lambda calculus expression associated with it. If, however, all the possible

reductions are carried out it may become considerably simpler. Indeed, in the cases

with which we are concerned, we can usually omit all the types. (They will have

served their purpose of ensuring that we get a result of the correct type when the

proof is complete. This is related to the use of types in computer programming

languages.)

The maximum benefit is when we have a Strong Normalization Theorem for

the system. Such a theorem says that, whatever the order of the reductions (and

5 This process of reduction is also called cut elimination.
6 Some people use the term isomorphism but there are technical difficulties involved in making the
correspondence one to one, so I prefer the weaker terminology.
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there may be many possible different reductions for a long lambda term) the process

always stops. (One reason the process might be expected not to stop is clear when

you look at substituting x + x for x: the number of xs goes up each time and the

expression gets longer!)

The Curry-Howard correspondence can be extended to the other logical con-

nectives by modifying the lambda calculus. Surprisingly, in addition to the above

operations involving lambdas, we only need the formation of ordered pairs and the

projections onto the first and second elements of those pairs in order to capture all

first order logic.7 We give only a few examples; the full details can be found in [7].

The Curry-Howard term for a conjunction (A∧B) obtained by the rule (∧)-I) is the

ordered pair (p : A,q : B) where p : A is the Curry-Howard term for the proof of A,

and similarly for B. Conversely we use the projections fst and snd for the rules (∧)-
E1) and (∧)-E2). For the rule (∃)-I we get the term (t, p : A(t)) where the premise

has the Curry-Howard term p : A(t). Thus the Curry-Howard term contains the term

t that was proved to exist.

The major consequence of the Strong Normalization theorem is then that, if we

prove a formula of the form ∃xA(x), we can actually extract, from the normalized

proof (i.e. the lambda, or Curry-Howard, term in which no more reductions are

possible), an x such that A(x). Further, if we can prove ∀x∃yA(x,y) then we can

actually get a program such that, given an x, it will compute a corresponding y.

Moreover, we have a proof of A(x,y) for this x and y so the program is “correct” in

the sense that it meets its specification.8

Curry-Howard terms are, in general, a generalization of the idea known variously

as formulae-as-types or, better, as proofs-as-types: the terms code up a whole proof

by successively encoding the applications of the logical rules in a proof.

Not surprisingly, not all rules of logic allow us to prove a strong normalization

theorem. One major obstacle is the law of double negation: From ¬¬A infer A. If we

had a rule that would allow us to prove ∃xA(x) from ¬¬∃xA(x), how do we obtain

such an x? So we generally restrict ourselves to constructive logic and all is well.

Changing to other systems, e.g. arithmetic, may bring in other axioms. Here the

most dramatic is the rule of induction. Fortunately the induction axiom

A(0) ∀x(A(x) → A(x+1))

∀xA(x)

gives rise to a reduction exactly corresponding to the recursion

f (a,0) = g(a) ; f (a,x+1) = h(a,x, f (a,x))

Happily we can prove a strong normalization theorem for arithmetic (see [7]).

7 The process can also be extended to higher order logic.
8 Intuitively speaking, the specification is the statement about the result of the program. See also
below Section 6.4.1.
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6.4 Beyond Traditional Logic

6.4.1 Algebraic Specifications

We now turn to an application of the above ideas to software engineering. Producing

programs that satisfy their specifications is a primary goal of software engineering.

What is an algebraic specification? It is a description in formal logic of a struc-

ture, for example, the natural numbers.

We use the Common Algebraic Specification Language (CASL, see [4]) but the

technique could be employed in other specification languages, indeed originally we

ourselves used a different language.

Structured specifications in CASL are built from basic (or flat) specifications by

means of translation (or renaming), written with, taking unions of specifications,

written and, hiding signatures, and the extension of specifications. A typical exam-

ple of a flat specification, this one is for natural numbers, is given in Fig. 6.2.

When we change a specification, then what is true changes – even if simply

because we use new names, e.g. “car” instead of “auto”, “boot” instead of “trunk”,

etc. but we may also add new predicates (relations).

We have developed logical systems to reflect the interaction between such

changes and the logic statements.

Originally Martin Wirsing studied a logical calculus for structured specifications

(see [17]). This was subsequently extended by Wirsing and his student Peterreins

(see [15]). Next Wirsing and the present author extended the idea to algebraic spec-

ifications, and then we went even further with Iman Poernomo to include even

parametrized specifications in the language CASL.

Abstractly speaking we have an annotated or labelled deductive system.9 The

basic form of a rule in such a logic can be written in the form

spec NAT 0 = isorts

Nat iops0 : Nat;s : Nat → Nat;+ : Nat×Nat → Nat ipreds

≥: Nat×Nat iaxioms
∀x : Nat • x+0 = x %(Nat 0.1)%
∀x;y : Nat • x+ s(y) = s(x+ y) %(Nat 0.2)%
∀x : Nat • x ≥ 0 %(Nat 0.3)%
∀x;y : Nat • x+ y = y+ x %(Nat 0.4)%
∀x : Nat • s(x) ≥ x %(Nat 0.5)%
∀x;y;v;w : Nat • x ≥ v∧ y ≥ w → x+ y ≥ v+w %(Nat 0.6)%

iend

Fig. 6.2 The specification NAT 0.

9 The logical system that we then have is therefore related to the labelled deduction systems of
Gabbay [9].
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p : A q : B

s(p,q) : σ(A,B)

It is convenient to use “contexts” also. That is to say, the actual hypotheses with

which we are working. These will be written in the standard logical style using the

“turnstile” symbol vdash. We shall use Γ , possibly with subscripts, to denote a set

of logical formulae. Thus we write Γ ⊢ A to indicate that A is provable in the context

Γ (or equivalently, from the hypotheses Γ ).

When we wish to extract programs from proofs from algebraic specifications

the Curry-Howard terms that we use are now more complicated for two reasons. In

addition to the information from, for example, the logical rule being used, the Curry-

Howard term also has to “remember” the specification. We have a similar situation

for the structural rules. However, the message is as before: the Curry-Howard term

carries all the information as to how we have constructed the proof so far.

The annotations we shall use will also involve Curry-Howard terms, specification

names and the logical connectives. We have two kinds of rules: those for the logical

connectives, logical rules; and those for the structural changes in the specifications,

structural rules. Even with the purely logical rules, the specification of the conclu-

sion depends on those in the premises. Thus the full rule for modus ponens we have

is
Γ1 ⊢ a.SP : A Γ2 ⊢ d.SP : (A → B)

Γ1 ∪ Γ2 ⊢ (da).SP : B
(→ E)

Let me explain what is going on in the rule for implication elimination (→−E). We

are working within a single specification SP. We have Curry-Howard terms d for

the proof of (A → B) and a for the proof of A. Therefore we have, just as in (6.1),

(da) as the Curry-Howard term for the resulting proof of B. As usual the contexts

Γ1 and Γ2 are added together. The specification SP is unchanged throughout.

Now here is the rule for implication introduction:

Γ ,x : A ⊢ d.SP : : B

Γ ⊢ λx : A.d.SP : (A → B)
(→-I)

For the structural rules, the change in the structure is reflected in the specification of

the conclusion. The full rule for translations, including the lambda calculus elements

and the specifications, is as follows:

Γ ⊢ d.SP •A

ρ ‘(Γ ) ⊢ ρ •d.SPwithρ •ρ •A
(trans)

In the structural rule for translation the formula A is unchanged in meaning but

the language is changed, therefore A has to be changed into its translation ρ •A.

Similarly the context Γ has to be translated. This is written (by us) as ρ‘(Γ ). In

addition, the Curry-Howard term for A has to be changed (translated) into the new

language. So the new Curry-Howard term is ρ • d. Finally the new specification is

the translated one: SPwithρ .
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A ⊢ SP •A
(Ass-I)

/0 ⊢ 〈Σ ,Ax〉 •A
(Ax-I)

where SigA ⊆ Sig(SP) where Ax are the axioms

Fig. 6.3 Two new logical rules for structured specification logic.
SP is any structured specification expression. Sig indicates taking the signature.

Γ ⊢ SP •A

ρ‘(Γ ) ⊢ SP with ρ •ρ • (A)
(trans)

Γ ⊢ SP •A

Γ ⊢ SP hide SL•A
(hide)

where Γ ∪{A} ⊆WFF(Sig(SP)/SL,Var)

Γ ⊢ SP 1 •A

Γ ⊢ SP 1 and SP 2 •A
(union1)

Γ ⊢ SP 2 •A

Γ ⊢ SP 1 and SP 2 •A
(union2)

Γ ⊢ SP 1 •A

Γ ⊢ SP 1 then SP EXT •A
(ext1)

Γ ⊢ SP EXT •A

Γ ⊢ SP 1 then SP EXT •A
(ext2)

Fig. 6.4 The structural rules of structured specification logic.
Here the condition Γ ∪{A} ⊆WFF(Sig(SP)/SL,Var) means that none of the well-formed formu-
lae in Γ and A contains any letter from the hidden signature SL.
We have omitted the lambda calculus parts of the Curry-Howard terms for clarity.

The logical rules for our system Structured Specification Logic are very similar

to those in Fig. 6.1 with two exceptions that we give in Fig. 6.3. In order to make the

figures less complicated the rules are presented without their Curry-Howard terms.

Likewise the structural rules may be found in Fig. 6.4. The complete set of rules we

have for CASL, with their Curry-Howard terms, may be found in [6] or [16].

In this situation we are again able to prove strong normalization.

From this strong normalization theorem we are then able to give an extraction

map, that is to say, we give a formal process that, given a Curry-Howard term for a

proof of ∀x∃yA(x,y) for a given specification, the extraction map returns a suitable

y for a given x. Indeed it gives a program in the programming language ML. The

extraction map works recursively and, in particular, the cases for →-introduction

and elimination correspond directly to the procedure we have outlined above.
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6.4.2 Imperative Programming

My recent PhD student, Iman Poernomo, now at King’s College, London, has de-

veloped a protocol for integrating ordinary computer programs into the kind of de-

ductive system we have been discussing. This protocol he calls the Curry-Howard

protocol. The logical system for such a situation includes the state of the system (i.e.

the contents of registers in the machine) and accounts for the changes that take place

when a program is run. Despite the complications this produces it is still possible

to produce a constructive version of a Hoare logic (cf. [12]) for reasoning about

imperative programs to which the Curry-Howard isomorphism may be adapted.

Note that a theorem in the Hoare logic consists of an imperative program and a

truth about the program. Because of this the logic can be used to synthesize pro-

grams.

However we are also concerned to use programs already in the programming lan-

guage that we regard as “reliable”. We do not use the word “correct” here, reserving

that word for programs that have been formally proved to meet their specifications.

Here we simply mean that we have programs that we are satisfied will give the

correct answers. Such programs include very simple ones such as programs for the

multiplication of natural numbers. This achieves a significant saving in the length

of the programs extracted. Otherwise we would have to prove a formula in formal

arithmetic that allows us to extract a program, for example for the multiplication

function. The proof would be inordinately long, involving several applications of

induction and its corresponding program would then involve the same number of

recursions. This is obviously very uneconomical, because we know it is possible

to write a relatively simple program for multiplication (if one is not built into the

computer already).

Imperative computer programs have side-effects: they change the state of the ma-

chine and, in particular, the values in various registers. The presence of side-effects

is what distinguishes the imperative programming paradigm from the functional

one. However, side-effect-free functions are also important in imperative programs

because they enable access to data, obtaining views of state and producing return

values. Imperative programs involve both side-effects and side-effect-free return

values. Consider, for instance, a program that triples the number in the register s

and returns the value twice the value in s. In Standard ML the program is

s :=!s∗3; !s∗2

It has a side-effect producing assignment statement, s :=!s∗3, followed by the

return value !s∗2. In many popular imperative languages such return values are

potentially complex, involving higher-order functional aspects that are difficult to

program correctly.

Our goal is to specify, reason about and synthesize both aspects of imperative

programs – side-effects and functional return values.

Our approach is as follows. We use a version of Hoare logic to synthesize the

side-effect producing aspect of a program, specified in terms of pre- and post-
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conditions. Hoare logic involves considering triples of the form

{pre-condition}program step{post-condition}

The pre-condition is true before the program step commences and the post-

condition is true after the step.

The formula

s f > si

specifies a side-effect where the final value of state s, denoted by s f , is greater than

the initial value, denoted by si. We can use Hoare logic to synthesize a Standard ML

program that satisfies this specification, by producing, for example, a theorem of the

form

⊢ s :=!s∗3• s f > si

where the left-hand-side of the • symbol is the required Standard ML program (writ-

ten in teletype font), and the right-hand-side is a true statement about the program.

The structural rules may be found in Fig. 6.5. The operation tologici indicates the

operation of the Curry-Howard protocol taking the name of the variable in the pro-

gramming language into the logical language. Thus tologici(b) yields the variable

coming from the register b. The remaining items in teletype font are standard imper-

ative programming constructs. Thus p;q means the program p is pipelined into the

program q and while b do q;done is the usual while-loop that repeats the program

q while the assertion q is satisfied.

The logical rules are the same as we had much earlier in Fig. 6.1, but with the

state information added. This is because the intuitionistic rules are concerned with

⊢K s := v• s f = tologici(v)
(assign)

where s is a state reference.

⊢K p• (tologici(b) = true →C) ⊢K q• (tologici(b) = f alse →C)

⊢K if b then p else q•C
(ite)

⊢K p• (A[s̄i/v̄] → B[s̄ f /v̄]) ⊢K q• (B[s̄i/v̄] →C[s̄ f /v̄])

⊢K p;q• (A[s̄i/v̄] →C[s̄ f /v̄])
(seq)

where A and B are free of state identifiers.

⊢K q• (tologici(b) = true∧A[s̄i/v̄]) → A[s̄ f /v̄]

⊢K while b do q;done•A[s̄i/v̄] → (A[s̄ f /v̄]∧ tologicf(b) = f alse)
(loop)

where A is free of state identifiers.

⊢K p•P ⊢Int (P → A)

⊢K p•A
(cons)

Fig. 6.5 The structural rules for our logic for imperative programming.
Intuitionistic deduction ⊢Int is given in Fig. 6.1.
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truths that are universal to all programs. That is to say, they can be used to infer

properties that hold over any side-effect.

Example 6.1 For instance, an application of the logical (∧-I) rule

s f = si ∗2 ⊢Int s f ≥ si s f = si ∗2 ⊢Int Even(s f )

s f = si ∗2 ⊢Int s f ≥ si ∧Even(s f )
(∧-I)

tells us that, any program that makes s f = si ∗ 2 true, makes s f ≥ si and Even(s f )
true, and therefore the statement: s f ≥ si ∧Even(s f ) must also be true of the pro-

gram.

To specify and synthesize return values of a program we adapt realizability and

the extraction of programs from proofs. We have already treated the latter,so now

we consider realizability.

When we extract a program we wish to demonstrate that it is “correct”. This

requires the notion of realizing. This is a different way of verifying proofs in intu-

itionistic logic by means of computable functions. It was first developed by Kleene,

see the last chapter of [14]. The basic idea is that we produce a program for a (par-

tial) recursive function that is a witness to the proof of an assertion. Such witnesses

can be produced recursively by going down through the proof. Such a program can

be regarded as a number (for example, the binary string that encodes the program).

For example if we have partial recursive functions with programs p,q realizing A,B,

then we take (p,q) as the realizer of (A∧B). The full details, which may be found

in Kleene [14] for the basic system of intuitionist logic and in our book [16] for the

systems we discuss here.

Here is an example. Given the theorem

s := s∗3• s f > si ∧ (∃x : int.Even(x)∧ x > si)

we can synthesize a program of the form

s := s∗3;f

where the function f is a side-effect-free function (such as !s ∗ 2) that realizes the

existential statement of the post-condition (∃x : int.Even(x)∧ x > si), by providing

a witness for the x.

With our program extraction users will have no need to manually code the return

value, instead they can work within the Hoare logic. There they prove a theorem

from which the return value is then synthesized.

Here is an outline of a specific example about an electronic banking system. In

the logic here we are using a many-sorted system, that is to say, individual variables

have their own sorts or varieties. This is a small and natural modification of the

logic.10

10 It can be avoided by adding extra predicates, one for each sort. In this case instead of x : s

meaning “x is of sort s” we have a predicate s and we write s(x) → . . ., which can be read as “If x

is of sort s, then . . . ”.
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Consider an Automatic Bank Teller machine (ATM) example with the following

domain conditions:

1. The ATM permits the user to enter a Personal Identification Number (PIN) and

to withdraw money. In order to withdraw money, the user must enter their PIN

and a database connection to the bank’s server must be made. The machine has a

screen on which it displays messages to the user.

2. The integer state reference pin stores the PIN number entered by the user, the

boolean state reference canWithdraw stores a flag to determine whether or not

the user may withdraw money from the machine, and the boolean state reference

isConnected stores a flag to determine whether or not there is a connection to

the bank’s server.

3. We use the predicate appMessage(m) to assert that a string m is an appropriate

message to display on the screen for the user, given that the ATM is in some

particular state.

4. There is a program p satisfying the following property. Given the user has entered

their Personal Identification Number (PIN) correctly, the program allows the user

to withdraw money. This property is formally given by an axiom

⊢K p•PINCorrect(pini) → canWithdraw f = true

5. There is a program q such that, if the user is permitted to withdraw money, then

a database connection is established, and also it is the case that there is an appro-

priate message that can be displayed. These properties are formally given by the

axiom

⊢K q• canWithdrawi = true →
(isConnected f = true∧∃x : string•appMessage(x))

For the sake of argument, we simplify our domain with the following assump-

tions:

1. We assume two Standard ML record datatypes have been defined, user and

account. Instances of the former contain information to represent a user in the

system, while instances of the latter represent bank accounts. We do not detail

the full definition of these types.

However, we assume that an account record type contains a user element in the

owner field to represent the owner of the account. So the owner of the account

element myAccount : account is accessed by myAccount.owner.

We also assume that user is an equivalence type in Standard ML, so that its

elements may be compared using the boolean valued comparison function =.

We assume a constant currentUser : user that represents the current user who

is the subject of the account search.

2. The database is represented in Standard ML as an array of accounts,

db : account array
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Following the Standard ML API, the array is 0-indexed, with the ith element

accessed as

sub(db,i)

and the size of the array given as

length db

Assume we have an array of size Size, called accounts. Although Standard ML

arrays are mutable, for the purposes of this example, we will consider db to be an

immutable value. Consequently, it will be represented in our logic as a constant.

3. We assume a state reference counter : int ref, to be used as a counter in

searches through the database.

We take a predicate

allAccountsAt(u : user,x : acount list,y : int)

whose meaning is that x is a list of all accounts found to be owned by the user u, up

to the point y in the database db. The predicate is defined by the following axioms

in A X

∀u : user •∀x : (acount list)•∀y : int • (allAccountsAt(u,x,y) →
(∀z : int • z ≤ y → sub(db,z).owner = u)) (6.4)

∀u : user •∀x : (acount list)•∀y : int•
((y < (length db)−1)∧ sub(db,y+1).user = u∧allAccountsAt(u,x,y)) →

allAccountsAt(u,sub(db,y+1) :: x,y+1) (6.5)

∀u : user •∀x : (acount list)•∀y : int•
(y < (length db)−1∧¬sub(l,y+1).user = u∧allAccountsAt(u,x,y)) →

allAccountsAt(u,x,y+1) (6.6)

∀u : user •∀y : int • y = 0 → allAccountsAt(u, [],y) (6.7)

Observe that these are intuitionistic axioms that will be used in Hoare logic.

We develop a program that satisfies the following property: Given a user’s details,

it is possible to obtain a list of all accounts held at the bank by the user, by searching

through the database. This is formally stated as the following

Specification:

∃y : (acount list)• listAllAccounts(currentUser,y,counter f ) ∧
(counter f < (length db)−1) = f alse (6.8)
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The post-condition requirement of counter f signifies that a complete search of the

database should be completed by the program.

We also have an axiom that is needed because, since we are working in intuition-

ist logic, we do not automatically have the law of the excluded middle.

y < (length db)−1 → sub(l,y+1).owner = u∨¬sub(l,y+1).owner = u (6.9)

From these we can eventually prove the theorem

⊢ counter :=!counter+1;

while !counter < (length db)−1 do counter :=!counter+1 •
∃y : (acount list)•allAccountsAt(currentUser,y,counter f ) ∧

(counter f < (length db)−1) = f alse (6.10)

The program that we extract by a special extraction function satisfies the specifica-

tion (6.8). We omit details of the extraction function. Suffice it to say that it works

recursively in the same spirit as we extracted our programs in Section 6.4.1.

Essentially, when viewed as a specification of a return value, the specification

(6.8) requires a program that, given a user’s details, will search through a database

to obtain all accounts held at the bank by the user, and then return this list.

6.5 Programs and Proofs

So far we have seen how to obtain programs from proofs in constructive systems of

logic. Therefore we could conclude that all proofs are already programs, or at least,

that every proof in (constructive) logic contains a program.11

What if we were to write the program first? Would we automatically have a

proof? The answer is obviously “No!” if we simply write computer programs as

many people do. However, a thoughtful computer programmer would wish to know

that the program written would do what it was expected to do, that is to say, would

meet its specification.12 Therefore, as part of the task of writing the program, a proof

should be produced at the same time.

The approach that we have presented shows how to accomplish both of these

tasks at the same time. It does not require a separate investigation to produce a

proof that the program will be correct.

From a practical point of view it is sometimes obvious how to write the proof.

I studied a program for quicksort.13 Then I wrote a proof corresponding to the pro-

gram and extracted a program from it. The resulting program was essentially the

11 The restriction to constructive systems of logic is essential for us.
12 This is a very serious issue when it comes to the control of powerful systems, in particular, the
control of nuclear weapons.
13 This was inspired by looking at work of Helmut Schwichtenberg on program extraction in [3].
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quicksort program from which I had started. However I have not yet been able to

formalize the procedure that I used in producing the proof from the program. It

would appear that one needs to know the algorithm rather than the program in or-

der to construct the proof. This in itself indicates that one also needs to know that

the program is a correct implementation of the algorithm. But this is work for the

future.

6.6 Conclusion

The techniques we have presented here are based on a variant of Gabbay’s labelled

deductive systems [9]. Our logical rules are of the form

Logical context, State, Curry-Howard term ⊢ Formula

New Logical context, New State, New Curry-Howard term ⊢ New Formula

although the actual order may vary. Further, each of the items on the lower line may

depend on, that is to say, be functions of, any or all of those on the top line, and of

course there may be two or more sequences on the top line.

The semantics of these rules will depend on the structures that we are using. Also

the interpretation of the informal terms: Logical context, State, etc. will also vary.

What seems to be most important is that we have extended the notion of logic in

two ways. First of all we now have programs or other constructions (for example,

specifications) interacting with the standard logical connectives. Secondly, the con-

text of the logic may change in the course of a proof. This certainly happens in the

context of algebraic specifications. Thirdly, we are now discussing logics (plural)

and we arrive at such logics by an analysis of a technical setting. This seems to me

to be following Aristotle’s approach of looking at the real world, or a small part of

it, and then abstracting the logical principles that work in that arena. But we have

come a long way from the “one true logic” that I mentioned at the beginning of the

introduction!
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Chapter 7

Zero-One Laws: Thesauri and Parametric
Conditions

Andreas Blass and Yuri Gurevich

Quisani: I’ve been thinking about zero-one laws for first-order logic. I know it’s a

rather old topic, but I noticed something in the literature that I’d like to understand

better. The first proof [6] established that, for any first-order sentence σ in a finite

relational vocabulary ϒ , the proportion of models of σ among all ϒ -structures with

base set {1,2, . . . ,n} approaches 0 or 1 as n tends to infinity. Fagin [5] rediscovered

the result (with a simpler proof) and added, near the end of his paper, some remarks

about what happens if, instead of considering all ϒ -structures, we consider only

those satisfying some specified sentence τ . He pointed out that for some but not all

choices of τ , there is still a 0-1 law: The proportion of models of σ among models

of τ with base set {1,2, . . . ,n} approaches 0 or 1 as n tends to infinity. He gave two

examples of such τ , both in the language with just a single binary relation symbol E,

the language of digraphs. One example was the sentence saying that τ is symmetric

and irreflexive, so the models are undirected loopless graphs. The other example

defined the class of tournaments. The case of undirected graphs was rediscovered in

[3], where another example was added, pure d-dimensional simplicial complexes,

formulated using a completely symmetric and completely irreflexive (d + 1)-ary

relation.

I’d think there should be some general result explaining these variants of the 0-1

law.

Authors: There is such a result in Oberschelp’s paper [7], but it seems he never

published the proof. His result covers the variants that you mentioned as well as

others, for example involving graphs with several colors of edges. It is based on the

Andreas Blass
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same approach, via extension axioms, as the work in [5] and many later works. So

it doesn’t cover the 0-1 laws obtained by other methods, for example by Compton

(see [4] and the references given there) for slowly-growing classes of structures.

Later, not knowing of Oberschelp’s work, we introduced in [1] the notion of

a thesaurus as a suitable context for Shelah’s proof of the 0-1 law for choiceless

polynomial time. It also provides a suitable context for the 0-1 law in the more

restrictive context of first-order logic, once that logic is appropriately defined for

thesauri.

Q: Does the thesaurus approach also depend on the extension axioms? And should

it be combined with parametric conditions to produce a common generalization?

A: Both of your questions are answered – the first affirmatively and the second

negatively – by the fact that the two approaches, parametric conditions and thesauri,

are essentially equivalent, at least when applied to the case of uniform probability

distributions on structures of any given size.

Q: That leaves me with a lot of questions: What are parametric conditions? What

are thesauri? What exactly does “essentially equivalent” mean in this context? And

what happens when the probability distributions aren’t uniform?

A: Let’s start with Oberschelp’s parametric conditions. These are conjunctions of

first-order universal formulas, for a relational vocabulary, having the special form

∀x1 . . .∀xk (D(x) →C(x))

where x stands for the n-tuple of variables x1, . . . ,xk, where D(x) is the formula
∧

1≤i< j≤k xi 6= x j saying that the values of these variables are distinct, and where

C(x) is a propositional combination of atomic formulas such that, in each atomic

subformula of C(x), all k of the variables occur.

Q: I assume that k is allowed to vary from one conjunct to another in a parametric

condition, and that when k ≤ 1 the empty conjunction D is interpreted as true. So, for

example, irreflexivity of a binary relation is expressed by the parametric condition

∀x(true→¬R(x,x)).
A: That’s right, and it’s easy to express the other conditions you mentioned earlier

– symmetry for undirected graphs, asymmetry for tournaments, and complete ir-

reflexivity and symmetry for simplicial complexes – as parametric conditions.

Q: I see that, but I don’t yet see the significance of the requirement that all atomic

subformulas of C use all the variables.

A: The simplest explanation is that if you drop this requirement then the extension

axioms need not have asymptotic probability 1. For example, for almost all finite

partially ordered sets, the longest chain has length three (see the proof of [4, The-

orem 5.4]). So there are configurations, like a four-element chain, that can arise in

partial orders but are absent with asymptotic probability 1. Traditional extension ax-

ioms, in contrast, imply that any configuration permitted by the underlying assump-

tion τ must occur. The trouble comes from the transitivity clause in the definition of

partial orders; it involves three variables but each atomic subformula uses only two

of them.
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Q: The example shows that some requirement is needed to eliminate the case of

partial orders, but how does the “use all the variables” requirement connect with

extension axioms? I guess what I’m really asking for is a sketch of Oberschelp’s

proof.

A: The crucial contribution of parametricity is that it permits a reformulation of the

uniform probability measure on structures of a fixed size n in terms of independent

choices of the truth values of instances of the relations.

Recall that, when we consider the class of all structures (of a given relational

vocabulary) with universe {1,2, . . . ,n}, the uniform probability measure on these

structures can be described by saying that each instance R(a1, . . . ,ar) (where R

ranges over the relations of the structure and a over tuples of appropriate length

from {1,2, . . . ,n}) is independently assigned truth value true or false, with equal

probability. When we deal with, say, loopless undirected graphs, this description

must be modified, since R(a,a) must be false and since R(a1,a2) must have the

same truth value as R(a2,a1). Nevertheless, the uniform distribution can still be de-

scribed in terms of independent flips of a fair coin: flip a coin for each 2-element

subset {a1,a2} of {1,2, . . . ,n} to determine both R(a1,a2) and R(a2,a1). Similarly

in the case of tournaments, a single flip of a fair coin decides which one of R(a1,a2)
and R(a2,a1) shall hold. And similarly in the other examples.

Something similar happens for arbitrary parametric conditions τ . To describe it,

we need the notion of a k-type relative to τ . Temporarily fix a positive integer k, less

than or equal to the maximum arity of the relation symbols in the vocabulary of τ .

Consider all the atomic formulas that use exactly the variables x1, . . . ,xk, possibly

more than once. A k-type is an assignment of truth values to these atomic formulas

that makes C(x) true whenever ∀x(D(x)→C(x)) is a conjunct of τ (up to renaming

bound variables, so that x is x1, . . . ,xk). In other words, a k-type is an assignment of

truth values that can be realized by a k-tuple of distinct elements in a model of τ .

Now the uniform distribution on models of τ with base set {1,2, . . . ,n} admits

the following equivalent description: For each k and each k-element subset {a1 <
a2 < · · · < ak} ⊆ {1,2, . . . ,n}, choose, uniformly at random, a k-type to be realized

by the k-tuple (a1, . . . ,ak). This works because each of these types is realized by

(a1, . . . ,ak) in equally many models of τ with base set {1,2, . . . ,n} and because

different increasing tuples (a1, . . . ,ak) behave independently. Furthermore, once the

k-types of increasing tuples a are chosen, they determine all the relations of the

structure.

Q: What about instances of the relations where the arguments are not in increasing

order?

A: They’re included, because the atomic formulas to which a k-type assigns truth

values include those in which the variables x occur out of order.

Once one has this alternative description of the uniform distribution on models,

one can easily imitate the traditional proof of 0-1 laws. There is an extension axiom

for each k-type with k > 0; it says that, for any distinct x1, . . . ,xk−1, there is an

xk, distinct from all of them, such that the tuple (x1, . . . ,xk−1,xk) realizes the given

k-type. It is easy to check that each extension axiom has asymptotic probability

1 and that the theory axiomatized by the extension axioms is complete. (To prove
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completeness, one can proceed as in [5] because the theory is ℵ0-categorical, or one

can eliminate quantifiers as in [3].)

The role of parametricity in this argument is to ensure that all the information

about any k-tuple of distinct elements can be isolated in its k-type and the k′-types

of its subtuples, a finite amount of information, whose size is independent of the

size n of the base set. That allows us to formulate extension axioms and verify their

asymptotic validity. Contrast this with the situation for, say, partial orders. Here the

requirement of transitivity imposes correlations between a truth value R(a,b) and

many other truth values R(a,c) and R(b,c), for all c in the base set. The number of

relation instances correlated with a single R(a,b) thus grows with the structure and

the proof described above breaks down. Oberschelp [7] summarizes this (in the case

of a vocabulary with only one relation symbol) by saying “A parametric property

defines a class of relations which can be determined by the independent choice of

values (parameters) in fixed regions of the adjacency array.”

Q: OK. I see that parametricity seems to be just what’s needed to carry out the

traditional proof of the 0-1 law via extension axioms. Now what are thesauri?

A: A thesaurus is a finite set of signa, so of course we have to say what a signum

is, but let’s first deal with a simplified notion of signum, which turns out to have the

same generality as parametric conditions. A signum in this simplified sense consists

of

• a symbol R (assumed to be different for the different signa in a thesaurus),

• a natural number j called the arity,

• a finite set V called the value set1,

• a group G of permutations of {1,2, . . . , j}, and

• a homomorphism from G to the group of permutations of V .

For notational convenience, one often writes simply the symbol R when one really

means the whole signum.

Q: That sounds pretty complicated; what’s really going on here?

A: The symbol R and the arity j are analogous to what you have in a relational

vocabulary of ordinary first-order logic – a symbol and the number of its argument

places. Our R’s, however, will not necessarily be 2-valued as in first-order logic, but

v-valued, where v is the cardinality of the value set V . So we could, for example,

treat a graph with colored edges by having a single binary signum where V is the

set of colors plus one additional value to indicate the absence of an edge.

The other two constituents of the signum, the group G and the homomorphism

h, describe the symmetry properties that we intend R to satisfy. The idea is that

permuting the j arguments of R by a permutation π in G results in a change of

the value given by h(π). More precisely, a structure A for a thesaurus consists of a

base set A together with, for each signum 〈R, j,v,G,h〉 (often abbreviated as just R),

an interpretation RA assigning to each j-tuple of distinct elements a1, . . . ,a j in A a

value RA(a), subject to the symmetry requirement

1 In [1], the value set was always of the form {1,2, . . . ,v} for some positive integer v. Allowing
arbitrary finite sets of values makes no essential difference but is technically convenient.
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RA(a1, . . . ,a j) = h(π)(RA(aπ(1), . . . ,aπ( j))).

Q: The following variation seems more natural to me:

RA(aπ(1), . . . ,aπ( j)) = h(π)(RA(a1, . . . ,a j))

It explains how to obtain RA(aπ(1), . . . ,aπ( j)) from RA(a1, . . . ,a j).

A: This doesn’t work unless you either put π−1 on one side of the equation or make

h an anti-homomorphism. Here’s the calculation, using your proposed variation. Let

π and σ be two permutations in the group, let a be a j-tuple of elements of A, and

let b be the j-tuple defined by bi = aσ i.

h(π)h(σ)RA(a1, . . . ,a j) = h(π)RA(aσ1, . . . ,aσ j)

= h(π)RA(b1, . . . ,b j)

= RA(bπ1, . . . ,bπ j)

= RA(aσπ1, . . . ,aσπ j)

= h(σπ)RA(a1, . . . ,a j),

where I’ve applied your variation three times, once with σ , once with π , and once

with σπ . So for this to work, we’d need h(σπ) = h(π)h(σ), i.e., h should be an

anti-homomorphism.

Q: I suppose using an anti-homomorphism wouldn’t be a disaster, but it would de-

feat the purpose of my suggestion, increased naturality.

Now why does RA apply only to j-tuples of distinct elements?

A: Distinctness is technically convenient. For example, in tournaments, one wants

the truth value of R(a,b) to be negated if a and b are interchanged, except when

a = b. So we think of a binary relation R as being given by two signa, one binary

signum for distinct arguments and one unary signum for equal arguments. Similarly,

a relation of higher arity would be represented by several signa, one for each way of

partitioning the argument places into blocks with equal arguments.

Q: I see that, just as with parametric conditions, you can represent the uniform prob-

ability distributions on structures with base set {1,2, . . . ,n} in terms of independent

random choices for some instances R(a). For each signum R, choose a representa-

tive from each G-orbit of j-tuples of distinct elements, and assign R random values

at these representatives. Then propagate these assignments through the whole orbits

by means of the symmetry requirement.

A: That’s right. To be precise about these G-orbits, one should say that G acts

naturally on the set of j-tuples of elements from any set by

π(a1, . . . ,a j) = (aπ−1(1), . . . ,aπ−1( j)).

Q: With this formulation in terms of independent random choices, it should be pos-

sible to prove something analogous to extension axioms for the thesaurus context.

I’d expect almost all ϒ -structures to have the following property, for each n: Given
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any n distinct points a1, . . . ,an, there is a point b, distinct from all the ai, and giving

prescribed values for all signum instances RA(c1, . . . ,c j) where one of the ci is b

and the others are distinct elements of {a1, . . . ,an}.

A: That’s right, provided the prescribed values obey the symmetry requirement

for thesaurus models. We’re pleased that you remembered that the arguments

of a signum are supposed to be distinct, so that b should occur only once in

RA(c1, . . . ,c j) and each ai should occur at most once.

Q: This result should yield 0-1 laws for thesauri, except that you haven’t yet defined

first-order logic in the context of thesauri.

A: Indeed, we have not introduced a syntax to go with these semantical notions in

[1], but it is not difficult to do so. Take atomic formulas to be R(x) = c where R

is a signum (or the symbol part of it), x is a sequence of variables of length equal

to the arity of R, and c ∈ V . Also allow equality as usual in first-order logic. Then

form compound formulas using propositional connectives and quantifiers, just as in

ordinary first-order logic. The semantics is obvious. (If the values of the variables

in x are not all distinct, then R(x) = c is naturally taken to be false.)

If one is willing to stretch the notion of syntax a bit, then it would be appropri-

ate to identify the atomic formulas R(x1, . . . ,x j) = c and R(xπ−1(1), . . . ,xπ−1( j)) =

h(π)(c) for any π in the group of the signum R, since the symmetry requirement for

structures implies that these will always have the same truth value.

Once these definitions are in place, it is, as you said, not difficult to show, via

extension axioms, that first-order sentences have asymptotic probabilities 0 or 1

over the class of all structures of a thesaurus.

Q: This should also be clear for another reason, once you explain how thesauri and

parametric conditions are essentially equivalent. Having the 0-1 law for parametric

conditions, we should be able to use the essential equivalence to deduce the 0-1 law

for thesauri. But what exactly did you mean by essential equivalence?

A: Essential equivalence has several components. First, for each thesaurus ϒ , there

is a parametrtic condition τ (in some vocabulary) such that the ϒ -structures with

any particular base set (for example {1,2, . . . ,n}) are in (natural) one-to-one cor-

respondence with models of τ on the same base set. Second, for each first-order

sentence of the thesaurus, there is a first-order sentence of the vocabulary of τ such

that the models of these sentences match up under the correspondence above. Third,

conversely, for each parametric condition τ there is a thesaurus ϒ with a one-to-one

correspondence as before. And fourth, for every first-order sentence of the vocabu-

lary of τ , there is a first-order sentence of ϒ with the corresponding models.

Q: That seems to be exactly what’s needed in order to convert 0-1 laws from either

of the two contexts to the other. So how do these correspondences work?

A: One direction is implicit in the syntax for thesauri described above. Given a

thesaurus ϒ , form a first-order vocabulary ϒ ′ with the same atomic formulas. That

is, for each j-ary signum R of ϒ and each value c, let Rc be a j-ary relation symbol

in ϒ ′. The intended interpretation is that Rc(a) should mean R(a) = c. Every ϒ -

structure gives, in this way, a structure (in the ordinary, first-order sense) for ϒ ′.
The converse is in general false, but the collection of ϒ ′-structures arising from ϒ -

structures in this way can be described by a parametric condition τ . The conjuncts
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in τ express the symmetry requirements of the thesaurus, i.e.,

∀x(D(x) → (Rc(x) → Rh(π)(c)(xπ−1(1), . . . ,xπ−1( j))))

for each signum R and each π in its group. There are also conjuncts saying that

every j-tuple of distinct elements satisfies Rc for exactly one c ∈ V and that Rc is

false whenever two of its arguments are equal. We trust this makes the first two parts

of “essentially equivalent” clear.

Q: Yes; “essentially equivalent” is now half clear. But I suspect that this was the

easier half. How do you handle the reverse direction?

A: Here we have to convert a parametric condition τ into a thesaurus ϒ . Let ϒ
consist of one j-ary signum Tj for each j up to the maximum arity of the relation

symbols in the vocabulary of τ .

Q: Just one signum per arity, no matter how rich the vocabulary of τ is?

A: That’s right. We compensate by using a rich set of values. Take the values of

the j-ary signum Tj to be the j-types relative to τ . (This is one place where it’s

convenient to allow a signum to have any finite set of values, rather than only an

initial segment of the positive integers as in [1].)

The group associated to the j-ary signum Tj is the symmetric group of all per-

mutations of {1,2, . . . , j}. To describe its action on the set of values, i.e., on the set

of j-types, just let it act on the j variables occurring in the types. That is, the truth

value assigned to an atomic formula θ by the type h(π)(c) is the same as the truth

value assigned by c to the formula obtained from θ by substituting xπ−1(i) for xi for

all i.

A structure for this thesaurus provides, for each j-tuple a of elements of the base

set, a j-type to be realized by this j-tuple. This specifies which atomic formulas

are to be true of this a and of all permutations of a. The symmetry requirement on

thesaurus structures is exactly what is needed to ensure that these specified truth

values for the various permutations of a are consistent and thus describe a structure

for the vocabulary of τ . Furthermore, since we use only j-types relative to τ , the

resulting structures will be models of τ . And it is easy to check that every model of

τ arises from exactly one ϒ -structure.

Q: That takes care of the third part of essential equivalence. For the fourth part,

you have to translate formulas in the vocabulary of τ into ϒ -formulas. Since the

syntax and semantics of thesauri treats connectives and quantifiers the same way as

first-order logic does, it suffices to consider atomic formulas.

A: Right, and handling these is mainly just bookkeeping. Given an atomic formula

θ in the vocabulary of τ , let {x1, . . . ,xk} be the set of distinct free variables in it. For

each equivalence relation E on this set of variables, we can write a quantifier-free

formula θ ′
E , in the syntax associated to the thesaurus ϒ , with variables x1, . . . ,xk,

saying that

• the equality pattern of the xi is given by E, i.e.,

∧

(i. j)∈E

(xi = x j)∧
∧

(i, j)/∈E

¬(xi = x j),
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and

• the type realized by distinct values of xi’s gives θ the value true, i.e.,

∨

c

(Tr(xi1 , . . . ,xir) = c),

where xi1 , . . . ,xir are chosen representatives of the equivalence classes of E and

where c ranges over those r-types that assign true to the formula obtained from θ
by replacing each variable by the chosen representative of its equivalence class.

Then the disjunction of these formulas θ ′
E , over all equivalence relations E, is satis-

fied by a tuple of elements a in exactly those ϒ -structures that correspond to models

of τ in which θ is satisfied by a.

Q: This bookkeeping sounds complicated, but I think I get it. Your ϒ -translation of

θ just says that the values of the xi’s satisfy some pattern of equations and negated

equations (an equality-type) and that the distinct ones among those values give Tr a

value that corresponds to θ being true.

A: Right. So this finishes the explanation of how parametric conditions and thesauri

are essentially equivalent.

Q: Yes, except you said earlier that you were using a simplified notion of signum.

What’s the full-scale notion?

A: In [1], our definition of a signum included, in addition to R, j,V,G,h as above2, a

probability distribution p on the set {1, . . . ,v} of values, subject to the requirements

that each value has non-zero probability and that the distribution is invariant under

the group h(G).
The purpose of p is to modify the probability distribution on the structures with

a fixed base set {1,2, . . . ,n}. Previously, we chose a representative j-tuple from

each G-orbit in {1,2, . . . ,n} j, and we chose the values of R at these representatives

uniformly at random. Now, we choose these values according to the probability

distribution p. And then, as before, we propagate the chosen values to all the other

j-tuples by means of the symmetry requirement for thesaurus-structures.

Q: You require that p is invariant under h(G) to ensure that the probability distribu-

tion on structures is independent of the choice of representative tuples.

A: Exactly. And of course the requirement that each value have non-zero probability

is just a normalization. Any value whose probability is zero could be omitted, since

it is unused in almost all structures.

Q: Is this more general notion of thesaurus equivalent to anything in the parametric

condition world?

A: As far as we know, parametric conditions have been used only in connection with

the uniform probability distribution on the structures that satisfy the conditions. But

there is nothing to prevent one from introducing non-uniform distributions in this

context, in a way that is equivalent to general thesauri, via the essential equivalence

described above.

2 Actually, as noted in an earlier footnote, it had a number v rather than a set V , but the difference
is irrelevant.
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Q: Apart from non-uniform probabilities, are the other advantages to thinking in

terms of thesauri rather than in terms of parametric conditions?

A: Yes, we see a few.

First, certain structures are naturally thought of as having multi-valued relations.

For example, colored graphs, where the values of the edge relation would be the

colors and “false” (the latter for where there is no edge). Similarly, a tournament

in which the outcome of a game can be a tie or a win for either player seems to be

naturally viewed as a three-valued binary relation on the set of players.

Second, thesauri suggest a generalization that may be worth exploring. Instead

of a fixed set of values for each signum, we could let the number of values grow

slowly with the size of the structure.

Q: Won’t that mess up the extension axioms?

A: Not if “slowly” is taken seriously. The usual computation showing that extension

axioms have asymptotic probability 1 still works if the number of values of any

relation grows more slowly than nε for each positive real number ε , as n, the number

of elements in the structure, tends to infinity. So for example, logn values would be

OK.

Q: What does it mean that the computation still works?

A: It means that, using the same ideas as in the proof of the usual first-order exten-

sion axioms, one finds that almost all finite models for a generalized thesaurus of

this sort have the following property for each fixed natural number k. Take k vari-

ables, say x1, . . . ,xk and specify possible values for all the (finitely many) atomic

formulas that use only these variables, at most once each, and really do use xk. Here

“posisble values” means that

• if an atomic formula begins with the signum R then the value must be in the value

set of that signum, and

• if two atomic formulas begin with R, and their variables differ only by a per-

mutation π of argument places, and π is in the group G of the signum R, then

the values must correspond via h(π), as required in the definition of thesaurus

structures.

Then, if one interprets x1, . . . ,xk−1 as any k− 1 distinct elements of the structure,

there will be an interpretation for xk, distinct from these, and realizing all the given

values for atomic formulas.

Q: OK, so it’s really analogous to traditional extension axioms. How does the “usual

computation” work in this situation.

A: Well, fix k and fix an assignment of values to atomic formulas as above. We

want to show that, with asymptotic probability 1, given any distinct x1, . . . ,xk−1,

there is some xk realizing the given values. Consider a structure of size n, and let

v be the largest of the cardinalities of the value sets, in this structure, for all the

signa. Notice that the number of atomic formulas to which values are assigned is a

constant f , because k and the thesaurus are fixed. So there are at most v f possible

assignments of values to these atomic formulas.

Temporarily, fix the interpretations of x1, . . . ,xk−1. There are n− k + 1 possible

interpretations, distinct from these, for xk. Each of these will, with the given inter-
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pretations of x1, . . . ,xk−1, realize one of the ≤ v f possible assignments of values to

atomic formulas, so it has probability ≥ 1/v f of realizing the assinment we want.

Therefore, the probability that no interpretation of xk realizes our desired assignment

is at most
(

1− 1

v f

)n−k+1

.

Since 1− t ≤ e−t for all t, this is at most e−n/(2v f ), where the factor 2 (more than)

compensates for omitting −k + 1 once n is larger than 2k. Our assumption that v

grows slowly compared with n means, in particular, that 2v f <
√

n once n is large

enough. For such large n, we conclude that the probability that no xk realizes the

desired values is < e−
√

n.

Now un-fix the interpretation of x1, . . . ,xk−1. There are at most nk−1 such inter-

pretations, so the probability that at least one of them has no suitable xk is < nke−
√

n.

That’s the probability that our analog of the kthextension axiom fails, and the upper

bound nke−
√

n approaches 0 as n → ∞.

We have not studied possible applications of this idea, or even the appropriate

extensions of the syntax and semantics of first-order logic. Once the number of

values isn’t constant, relations seem intuitively to behave more like functions than

like relations in the traditional first-order world. One could also equip the set V of

values with some relations or functions so that it becomes a structure in its own

right.

Q: You’ll need some structure on V , at least implicitly, in order to formulate first-

order sentences over such a generalized thesaurus. For ordinary thesauri, your first-

order language had, in effect, names for all the values c∈V . But with V now allowed

to grow, that would make the language vary with the structure – not a good idea if

you want to talk about the asymptotic probability of fixed sentences as the structure

grows.

A: The idea could still work if, as the structure grows, the language also grows, so

that any fixed sentence would make sense in all sufficiently large structures. But in

fact, in at least one situation, V is naturally a relational structure.

Q: What situation is that?

A: Consider a tournament in which the result of each game (i.e., the relationship

between a pair of players) is not merely a win for one or the other (as in traditional

tournaments) or a tie (as in a generalization mentioned above) but can be any one

of several “degrees of victory”, where these degrees come from a small, linearly

ordered set V . As before, “small” should mean of cardinality < nε for each fixed ε >
0 and all large n. The outcomes of the games are modeled by a V -valued function R

subject to the (anti-)symmetry requirement that R(x,y) and R(y,x) are symmetrically

located in V , i.e., each is the image of the other under the unique order-reversing

permutation of V .

In this situation, it is natural to admit the linear ordering of V as part of the

structure, so that there are atomic formulas like R(x,y) < R(u,v).
Q: Do you also want to allow names for the elements of V ? If so, then it seems

that your suggestion of a growing language depends on making some arbitrary con-
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ventions here. How shall the interpretation of a particular name vary while n and

therefore V grow? There would be no problem with names for the first element, the

second, the last, etc., but what about names for the element one third of the way up,

or the element in position ⌊
√

|V |⌋?

A: For the purposes of the present discussion, we’d want a language for which the

0-1 law holds. Apart from that, the choice of language would be guided by potential

applications.

Notice, though, that as long as we have the ordering relation on V available,

names for the first element, the second, the last, etc. are not really needed, with

asymptotic probability 1, because these elements are definable in terms of the or-

dering.

Q: Wait a minute. Those definitions use quantifiers. Do you intend to allow quan-

tification over V in your language?

A: With asymptotic probability 1, we have quantification over V automatically, since

the elements of V are almost surely the same as the values of R. So, for example, we

can almost surely express “R(x,y) is the first element of V ” by the formula

∀u∀v¬(R(u,v) < R(x,y))
Q: I get it. This formula doesn’t express the desired property in all structures, but

it does in those structures where, as u and v range over the players, R(u,v) ranges

over all elements of V – and that’s almost all structures.

A: Such expressive power requires some caution in the definition of structures,

specifically in the choice of how V is allowed to grow. For example, we had better

insist that the cardinality of V has the same parity in almost all structures, because

that parity is definable by the truth value of the sentence

∃x∃y(R(x,y) = R(y,x))
Fortunately, this parity issue turns out to be the only such problem, in this partic-

ular example. That is, if we restrict |V | to have a fixed parity and to grow slowly with

n, then there will be a 0-1 law for the first-order properties of tournaments of this

sort. (Here the atomic sentences are of the forms x = u and R(x,y) < R(u,v), where x

and y are distinct variables and u and v are distinct variables, but other pairs of vari-

ables might coincide. It would make no difference if we also allow R(x,y) = R(u,v),
since it can be defined in terms of <.) We’ll put a sketch of the argument into an

appendix of this paper.

There is another possibility suggested by thesauri, namely the possibility of play-

ing with the groups in the signa, and perhaps bringing some group theory to bear on

these topics.

Q: That reminds me of something that occurred to me while you were proving the

equivalence between thesauri and parametric conditions. Although thesauri allow

arbitrary groups of permutations of {1,2, . . . , j} for a j-ary signum, you used only

the full symmetric group in the thesauri that simulate given parametric conditions.

Combining this with the simulation in the other direction, you’ve shown, in effect,

that any thesaurus is equivalent to one in which all the groups involved in the signa

are full symmetric groups. I’d think this equivalence, involving only thesauri, should

have a proof that involves only thesauri, rather than going from thesauri to paramet-

ric conditions and back.
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A: Yes, one can obtain the same result by working only with thesauri. Let 〈R, j,V,G,h〉
be a signum, and let S be the full symmetric group of all permutations of {1,2, . . . , j}.

Then the signum 〈R, j,V,G,h〉 is essentially equivalent to a signum 〈R+, j,V+,S,h+〉,
where of course we have to define V+ and h+ (not R+ because it’s just a label).

Q: Before you start defining V+ and h+, please tell me what “essentially equivalent”

means here.

A: It means that there is, for each set A, a canonical bijection between the possible

interpretations in A for the two signa.

Q: OK. Now what are V+ and H+.

A: V+ is the set of functions f : S → V that are G-equivariant in the sense that, for

each π ∈ G and each σ ∈ S,

f (πσ) = h(π)( f (σ)).

The action h+ of S on V+ is given by

(h+(σ)( f ))(τ) = f (τσ).

It is straightforward to calculate that h+ is a homomorphism3 from S into the group

of permutations of V .

Q: On the basis of my recent experience, I suppose that, if you had written στ
instead of τσ , then h+ would have been an anti-homomorphism.

A: That’s right.

The essential equivalence between the two signa is obtained as follows. Given

an interpretation RA of the original signum, i.e., a G-equivariant map A j → V , we

obtain an interpretation R
A+
+ of the new signum, an S-equivariant map A j →V+ by

letting R
A+
+ (a) be the element of V+ defined by

R
A+
+ (a)(σ) = RA(aσ−1(1), . . . ,aσ−1( j)).

The transformation in the other direction takes any S-equivariant map R
A+
+ : A j →

V+ to the G-equivariant map RA : A j →V defined by

RA(a) = (R
A+
+ (a))(1),

where 1 is the identity permutation. Of course, there’s a lot to be checked here: that

the two transformations are well-defined and that they’re inverse to each other. That

should be a good exercise for you.

Q: OK, I’ll check it when I have some spare time. But, in view of this equivalence,

why did you define thesauri in terms of arbitrary permutation groups G rather than

just the full symmetric group?

A: We weren’t aware of the equivalence until recently. But it seems worthwhile to

retain the generality of arbitrary groups, since some forms of symmetry are more

3 Category theorists would describe the operation sending any G-set (V,h) to the S-set (V+,h+) as
the right adjoint of the forgetful functor from S-sets to G-sets.
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naturally expressed using groups smaller than the full symmetric group. Notice also

that the conversion from a thesaurus using arbitrary groups to one using full sym-

metric groups makes the value sets V considerably larger and more complicated,

especially if the original groups were small.

Appendix

We outline here the proof of the 0-1 law for the generalized tournaments described

above. In fact, we prove somewhat more, namely the 0-1 law for first-order sen-

tences in certain two-sorted structures. Here is the precise formulation.

Define (for the purposes of this appendix only) a generalized tournament to be a

finite two-sorted structure A = (A,V,<,π,R), where A and V interpret the two sorts,

where < is a linear ordering of V , where π is the unique order-reversing permutation

of V , and where R is a function A2 →V , subject to the requirements that

• R(a,b) = π(R(b,a)) for all a,b ∈ A and

• |V | is odd.

The main reason for the second of these requirements is that, as we saw above, the

parity of |V | is definable and must therefore be fixed (at least almost surely) if we are

to have a 0-1 law. We chose “odd” rather than “even” so that the first requirement

makes sense even when a = b. For even |V |, a similar argument would apply, but we

would have to either make R a partial function defined only when the arguments are

distinct, or modify the first requirement to accommodate some convention for the

case of equal arguments.

We say that a generalized tournament A as above has size (n,v) if |A| = n and

|V | = v. For a first-order sentence θ in the language of generalized tournaments, we

define the (n,v)-probability of θ as the proportion of models of θ among generalized

tournaments of size (n,v). We say that θ has asymptotic probability 1 if, for each

ε > 0, there exist M ∈ N and δ > 0 such that, whenever M < v < nδ , then the (n,v)-
probability of θ is at least 1− ε . Note that our definition of asymptotic probability

incorporates the requirement that v is small compared to n, namely v < nδ ; just how

small this is (i.e., the choice of δ ) depends on θ and ε . This definition of asymptotic

probability is intended specifically for use with generalized tournaments; we do not

propose it for more general contexts, though we expect that something similar would

be appropriate in greater generality.

Theorem 7.1 Let θ be any sentence in the first-order language of generalized tour-

naments. Then one of θ and ¬θ has asymptotic probability 1.

Proof. Consider the first-order theory RG T (which stands for “random general-

ized tournaments”), in the language of generalized tournaments, given by the fol-

lowing axioms.
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• R is a binary function from A to V .

• < is a linear ordering of V .

• V has a first element and a last element.

• Each element of V but the first (resp. last) has an immediate predecessor (resp.

successor).

• V is infinite (i.e., infinitely many axioms, saying |V | > k for each k ∈ N).

• π is an order-reversing permutation of V .

• R(x,y) = π(R(y,x)).
• π has a fixed point.

• The extension axioms

(∀x)(∀u)
[
D(x) → (∃y)

k∧

i=1

(y 6= xi ∧R(xi,y) = ui)
]

where the variables x = x1, . . . ,xk and y range over the first sort and u = u1, . . . ,uk

over the second.

We computed above that each extension axiom has asymptotic probability 1. Each

of the axioms saying |V |> k has asymptotic probability 1; just take M > k in the def-

inition of asymptotic probability. The remaining axioms of RG T have asymptotic

probability 1 for the trivial reason that they are true in all generalized tournaments.

Just as with the usual (one-sorted) notion of asymptotic probability, one sees

that any conjunction of finitely many sentences of asymptotic probability 1 also has

asymptotic probability 1 (just take the largest of the relevant M’s and the smallest

of the δ ’s) and that any logical consequence of a sentence of asymptotic probability

1 also has asymptotic probability 1. Therefore, the theorem will follow if we can

show that the theory RG T is complete.

We prove completeness by presenting a winning strategy for Duplicator in an

Ehrenfeucht – Fraı̈ssé game of an arbitrary but specified length (i.e., number of

rounds) r, between two models of RG T . The essential part of Duplicator’s work

takes place in V . Here, Duplicator uses a familiar strategy for discrete linear orders

with endpoints. The involution π and the A of the models are handled by suitable

bookkeeping devices, described below in terms of imaginary pebbles.

For convenient reference, we first summarize the usual strategy for the Duplicator

in the r-round Ehrenfeucht – Fraı̈ssé game on two discrete linear orders without

endpoints. In order to win, Duplicator must (by definition of the game) ensure that

corresponding pebbles are ordered the same way in both models. His winning strat-

egy is to ensure that, in addition, the distances between corresponding pebbles are

not too different. Specifically, if, after m moves, two pebbles are at a distance ≤ 2r−m

on one model, then the corresponding pebbles on the other model are the same dis-

tance apart. Distances greater than 2r−m need not be matched exactly, though of

course if the distance between two pebbles is > 2r−m on one model then the dis-

tance between the corresponding pebbles on the other model will also be > 2r−m.

The key to the proof is that, because the distance 2r−m, below which matching is

required, decreases by a factor 2 from each move to the next, Duplicator can always

move so as to maintain the required matching. By doing so, he ensures that he wins

the game.
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For infinite discrete linear orders with endpoints, Duplicator’s strategy is the same

except that he pretends that, already at the start of the game, there is a pair of corre-

sponding pebbles on the first elements of the models and another pair of correspond-

ing pebbles on the last elements. (In fact, the strategy doesn’t really need that the

models are infinite; it suffices that they have large enough cardinalities so that the

Duplicator’s matching requirements are satisfied by the initial imaginary pebbles.)

With these preliminaries, we now present Duplicator’s strategy for models of

RG T . It involves a more elaborate scheme of imaginary pebbles. At the start of

the game, Duplicator should imagine pebbles already placed on the first, last, and

middle elements of the V sort in both models. Here “middle element” means the

unique element fixed by π . In addition, during the course of the game, whenever a

pebble is on an element q ∈ V , Duplicator should imagine an associated pebble at

π(q). Furthermore, whenever pebbles are on two elements a and b of A, Duplicator

should imagine an associated pebble at R(a,b).
As in the proof for plain linear orderings, Duplicator must ensure that corre-

sponding pebbles on the V sorts of the two models are ordered the same way, and he

will, in addition, voluntarily ensure that sufficiently small distances between cor-

responding pebbles match exactly. But now, “sufficiently small” does not mean

≤ 2r−m (after m rounds of an r-round game) but rather ≤ 2r2−m2
. The reason for

this change will become clear in a moment, but for now notice that, like 2r−m, this

new boundary of smallness, 2r2−m2
, decreases by at least a factor 2 at every move.

It is clear that, if Duplicator can follow this strategy, then doing so guarantees

that he wins. It remains to show that Duplicator always has a move that maintains

the required matching of distances. The proof of this is in two cases, depending on

which sort Spoiler adds a pebble to.

Suppose first that Spoiler puts a new pebble on the V sort of one of the two

models. Then, exactly as in the proof for plain linear orders, Duplicator can find a

suitable spot for the corresponding pebble on the other model, because the distance

below which matching is required has decreased by at least a factor 2. The new peb-

bles played in this round give rise to a new pair of imaginary pebbles, located at π
of the real pebbles. But the required matching of distances between these imaginary

pebbles and the played pebbles at earlier moves is automatic because π preserves

distances. We must also consider the distance between the new real pebble and the

new imaginary pebble, but since these locations are related by π they lie on opposite

sides of the middle of V . Their distance is twice the distance from either of them to

the (initially imagined) pebble at the middle. Since the distance to the middle pebble

is matched (if small), so is the distance between the real and imaginary new pebbles.

This completes the proof for the case where Spoiler’s new pebble is on the V part.

Now suppose that Spoiler puts a new pebble on the A sort of one of the models.

This results in many new imaginary pebbles on the V part. If there were already

m moves before the current one, then there could be as many as m pebbles already

in the A part, say at elements a1, . . . ,am. The new pebble, say at b, gives rise to as

many as 2m new imaginary pebbles, at the elements R(ai,b) and (their π-images)

R(b,ai). In this situation, Duplicator should proceed as follows. Pretend that, instead

of a single move of Spoiler producing all these imaginary pebbles, there were m+1
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moves, that during the first m of these moves Spoiler put pebbles on the elements

R(ai,b) one at a time (resulting in imaginary pebbles at R(b,ai)), and that at the

last of the m + 1 moves Spoiler put the (real) pebble at b. Let Duplicator pretend

to respond to the first of these m moves as described in the preceding paragraph,

i.e., let him put imaginary new pebbles in the appropriate places. At each step, the

maximum distance below which he can maintain exact matching decreases by a

factor 2, so in these m moves, it has decreased by 2m. Fortunately, this is still large

enough, because 2r2−m2
(from before these moves) decreased by a factor 2m is still

larger than 2r2−(m+1)2
, the required distance for matching after these moves. (This

is of course why we used 2r2−m2
rather than 2r−m. Our choice is not the smallest,

since it could accommodate a decrease by a factor 22m+1, but it seems to be the

simplest.) Finally, after all the imaginary pebbles have been placed in V , Duplicator

must find a place for his real pebble in A. It together with previous pebbles must

produce, as values of R, the elements of V bearing the imaginary pebbles just placed.

Fortunately, an extension axiom guarantees the existence of an appropriate element

to receive this pebble.

Bibliographic Remark: Two useful survey papers on 0-1 laws, Oberschelp’s [7]

and Compton’s [4], were not treated kindly by the printing process. The title of

[4], though given correctly in the table of contents of the book in which it appears,

had “0-1” deleted on the first page of the paper itself. As a result, “0-1” is also

missing in the MathSciNet entry and perhaps elsewhere. In [7], some of the pages

were printed out of order, and numbered in the printed order rather than the intended

order. Fortunately, all the pages are present and can be found in correct order by a

local search.
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Chapter 8

Recent Developments of Feedback Coding and
Its Relations with Many-Valued Logic

Ferdinando Cicalese∗ and Daniele Mundici

8.1 Basic Facts in Feedback Coding

8.1.1 Introduction

The basic problem of feedback coding is vividly described by Rényi [23, p. 47] as a

problem of fault-tolerant adaptive search with errors, as follows:

[. . . ] I made up the following version, which I called “Bar-kochba with lies”. Assume that
the number of questions which can be asked to figure out the “something” being thought of
is fixed and the one who answers is allowed to lie a certain number of times. The questioner,
of course, doesn’t know which answer is true and which is not. Moreover the one answering
is not required to lie as many times as is allowed. For example, when only two things can
be thought of and only one lie is allowed, then 3 questions are needed [. . . ] If there are
four things to choose from and one lie is allowed, then five questions are needed. If two or
more lies are allowed, then the calculation of the minimum number of questions is quite
complicated [. . . ] It does seem to be a very profound problem [. . . ]

The same problem is posed by Ulam in his book “Adventures of a Mathemati-

cian” [25, p. 281], as the problem of searching for an unknown m-bit number by

asking a minimum of yes-no questions, in a game of Twenty Questions with up to e

lies in the answers.
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Someone thinks of a number between one and one million (which is just less than 220).
Another person is allowed to ask up to twenty questions, to each of which the first person is
supposed to answer only yes or no. Obviously the number can be guessed by asking first: Is
the number in the first half million? then again reduce the reservoir of numbers in the next
question by one-half, and so on. Finally the number is obtained in less than log2(1000000).
Now suppose one were allowed to lie once or twice, then how many questions would one
need to get the right answer? One clearly needs more than n questions for guessing one of
the 2n objects because one does not know when the lie was told. This problem is not solved
in general.

The Rényi-Ulam game is an interesting variant of the familiar game of Twenty

Questions. Here, the two players, named Carole and Paul, first agree on fixing

a finite space S with |S| elements. Then Carole chooses an element xsecret ∈ S

and Paul must find it by asking a minimum of yes-no questions. Both Rényi and

Ulam were interested in a situation where up to e of Carole’s answers may be

erroneous/mendacious/inaccurate. From Paul’s viewpoint it is immaterial whether

wrong answers arise just because Carole is unable to answer correctly, or because

she is (moderately) mendacious, or else Carole is always sincere and accurate, but

distortion may corrupt up to e of the bits carrying her yes-no answers. Under this

latter representation, Rényi-Ulam games pertain to Berlekamp’s communication the-

ory with feedback [4]. Here one has a noisy channel (for answers) and a noiseless

channel (for questions). Carole sends xsecret to Paul bitwise, on the noisy channel,

each bit b being the correct answer to Paul’s question. It may happen, up to e times,

that Paul receives a distorted version b′ = 1−b of Carole’s bit. In this co-operative

model Carole knows Paul’s questioning strategy: his (t + 1)th question Qt+1 only

depends on the previous bits b′1, . . . ,b
′
t . Thus for Carole to know Qt+1 and to formu-

late the correct answer b j+1, it is enough that Paul sends her the sequence b′1, . . . ,b
′
t

via the noiseless (feedback) channel. The shortest sequence of bits b1,b2, . . . ,bq

constitutes an optimal encoding of xsecret, allowing Paul to recover xsecret even if ≤ e

of the received b′i are different from bi.

The particular case when all questions are asked non-adaptively corresponds to

a situation where no feedback bits are sent by Paul. Strategies in such nonadaptive

Rényi-Ulam games boil down to e-error-correcting codes. As we shall see, adaptive-

ness (=feedback) makes the difference between traditional error-correcting codes

and Rényi-Ulam coding with feedback.

8.1.2 Symmetric Coding

Under the assumption that both bits 1 and 0 are equally liable to distortion, one

easily sees that xsecret cannot be found using less than Nmin(|S|,e) questions, where

the sphere-packing bound Nmin(|S|,e) is the smallest integer q ≥ 0 satisfying the

classical inequality

2q ≥ |S|
e

∑
j=0

(
q

j

)

. (8.1)
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The right hand term is the number of Carole’s answering strategies. This is the num-

ber of q-bit tuples that Paul may receive when Carole sends her q yes-no answers

over a channel that flips up to e of the transmitted bits. Specifically, for any possible

choice of xsecret ∈ S, and for each i = 0,1, . . . ,e, if exactly i bits are flipped by noise,

then Carole’s undistorted q-tuple may be received by Paul as one among
(

q
i

)
differ-

ent corrupted q-tuples. Equation (8.1) amounts to asking that q is large enough for

xsecret to be uniquely identifiable by Paul.

Definition 8.1 Let us agree to say that the secret number xsecret ∈ S can be guessed

by a perfect strategy with e errors/lies iff the number of questions coincides with the

smallest q satisfying inequality (8.1).

If no feedback is available, the problem of finding a perfect searching strategy

for the Rényi-Ulam game with e errors over the search space S, is formulated in the

theory of error-correcting codes as follows:

In the metric space {0,1}q of all q-bit tuples with Hamming distance, find |S| points such
that the spheres of radius e centered at any two points do not overlap.

The following negative result [24, 26] (also see [17]) is well known to researchers

in error-correcting codes:

Fact 0: Non-existence of perfect error-correcting codes

If no feedback is allowed, a perfect strategy does not exist in general, already in

case of 2 errors.

The situation is radically different if feedback is allowed. Now Paul can make his

ith question dependent on what he already knows from Carole’s previous answers.

The following result is the output of extensive research during the last two

decades (see the survey papers [9, 21] and references therein):

Fact 1: Existence of perfect error-correcting codes with feedback

If feedback is allowed then for every number e of errors, a number can be guessed

in general, using a perfect strategy.

More importantly, it turns out [6, 9, 10] that perfect error-correcting codes also

exist under very weak conditions on feedback:

Fact 2: Minimum feedback is sufficient for perfect coding

Perfect strategies that use feedback only once enable Paul to find xsecret by asking

a first batch of nonadaptive questions, and then, only depending on the answers to

these questions, asking a second batch of nonadaptive questions.

In the light of Fact 0, the above result states that perfect error-correcting codes

exist provided one allows minimum feedback.

We shall sketch a proof of Fact 2. Minimum feedback perfect strategies rely on

perfect questions and Gilbert-packing. To give an operative definition of perfect

(= maximum information) question, let us recall that a question is a subset Q of

the search space S. Answers are most conveniently defined in the non-cooperative
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model where Carole can lie up to e times. 2 Then an answer to Q is just a set

A ∈ {Q,S \Q} telling Paul that xsecret ∈ A. An element z ∈ S is said to satisfy A iff

z ∈ A. Otherwise, z falsifies A.

During the game/transmission, Paul’s current knowledge is given by the record

A of Carole’s answers. Suppose t answers/bits have been received. For each z ∈ S let

f (z) be the number of answers in A that are falsified by z. Thus, if xsecret = z at most

e−̇ f (z) new errors can affect the remaining q−t answers3. Let wA(z) be the number

of Carole’s answering strategies for the rest of the game, under the assumption that

xsecret = z. The same counting argument leading to the sphere packing bound (8.1),

now yields

wA(z) =
e−̇ f (z)

∑
j=0

(
q− t

j

)

.

Therefore, Paul can infallibly identify xsecret only if

∑
z∈S

wA(z) ≤ 2q−t . (8.2)

For each j = 0,1, . . . ,e, let S j = {z∈ S | f (z)= j}. The (e+1)-tuple (S0,S1, . . . ,Se)
is the state of the game determined by A. Inequality (8.2) is equivalent to

e

∑
i=0

|Si|
e−i

∑
j=0

(
q− t

j

)

≤ 2q−t . (8.3)

The weight of record A is defined by

w(A) = ∑
z∈S

wA(z) =
e

∑
i=0

|Si|
e−i

∑
j=0

(
q− t

j

)

.

Let Q be the next question asked by Paul, and Ano and Ayes be the new records

according as Carole’s answer is no or yes. The following conservation law (for the

number of answering strategies) is easy to prove:

w(A) = w(Ano)+w(Ayes). (8.4)

Then, we say that question Q is perfect for the state corresponding to A iff

w(Ano) = w(Ayes). (8.5)

Condition (8.5) is related to the familiar balancing property of optimal binary

search procedures, e.g., in the game of Twenty Question without lies. Any perfect

question Q guarantees that Paul gains from Carole the maximum amount of infor-

mation: If Paul were able to keep on asking perfect questions for the whole duration

2 The reader may provide the necessary reformulation of “answer” for the cooperative model where
Carole knows Paul’s searching strategy.
3 Here −̇ denotes subtraction truncated to 0.
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of the game he would identify xsecret with the a smallest possible number q ques-

tions, as given by the sphere packing bound (8.1).

How many perfect questions can Paul ask? To answer this question, fix integers

e,m ≥ 0. Let |S| = 2m. Let q = q(m) be the smallest integer ≥ 0 satisfying the

sphere packing bound (8.1). For each i = 1, . . . ,m, the ith question asked by Paul is

as follows:

“Is the i-th bit of the number xsecret equal to 1?”.

It is immediately checked that all these questions are perfect. Thus, no matter

Carole’s answers, Paul’s resulting state of knowledge satisfies the identity

|Si| =
(

m

i

)

,

for each i = 0,1, . . . ,e, independently of the distribution of the i distorted bits. This

is so because Si contains exactly those binary numbers z ∈ S = {0,1}m differing in

exactly i positions from the sequence of bits received by Paul. While the sets Si’s

depend on record A their cardinality is independent of the record.

After receiving the m-bit tuple b of answers to the above perfect questions, Paul

knows that the secret number belongs to
⋃e

i=0 Si.
4 Paul also knows that if xsecret ∈ S j

then already j of Carole’s answers are wrong, whence at most e− j more erroneous

answers can be received ( j = 0,1, . . . ,e). Only depending on b, Paul will now send

a final minibatch of q−m nonadaptive questions enabling him to guess xsecret.

To see this we recall the Gilbert packing bound (see, e.g., [10]):

Lemma 8.1 There exist disjoint sets C1,C2 of binary tuples of length q−m satisfy-

ing the following conditions:

(i) |C1| = ∑
e−1
j=0 |S j|;

(ii) |C2| = |Se|;
(iii) For any two distinct tuples z1,z2 ∈ C1 if z′1 and z′2 are respectively obtained

by flipping up to e bits in z1 and z2, then z′1 and z′2 are distinct, and neither

belongs to C2.

Building on this lemma Paul will first of all choose a function ϕ sending all el-

ements of
⋃e−1

j=0 S j one-one onto C1, and all elements of Se one-one onto C2. Paul’s

final batch of questions is about the binary number ϕ(xsecret). More precisely, for

each i = 1, . . . ,q−m, Paul’s (m + i)th question is (the subset of {0,1}q−m corre-

sponding to)

“Is the ith bit of ϕ(xsecret) equal to 1?”.

Let a ∈ {0,1}q−m be the uncorrupted tuple of Carole’s answers – before distor-

tion. Let ã ∈ {0,1}q−m be the tuple of answers to these questions, as received by

Paul. The properties of the sets C1,C2 ensure that from the corrupted tuple ã, Paul

4 The dependence of the Si’s on b is understood.
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will infallibly xsecret . As a matter of fact, by Lemma 8.1, a coincides with the ele-

ment of C1 ∪C2 having the shortest Hamming distance from ã – and this is easily

computable by Paul who knows C1 ∪C2 = ϕ(
⋃

Si). Finally, by computing ϕ−1(a)
he will recover xsecret , as required.

8.1.3 Asymmetric Coding: Basic Facts

Feedback coding for the asymmetric channel is a different matter. As usual, the

channel carrying Carole’s answers is said to be asymmetric if the two bits 0 and 1

are not equally liable to distortion. Consider, e.g., an optical channel [22] where one

transmits the bit 1 by sending a photon, and transmits 0 by not sending a photon.

Since photons can be lost but spurious photons cannot be received when none has

been sent, it follows that the only possible type of error in this channel occurs when

answer 1 is received as 0.

In the classical theory of error-correcting codes, this type of channel is known

as the Z-channel. Optimization problems for coding in asymmetric channels are

especially challenging, because the usual basic facts for symmetric channels, e.g.,

the sphere packing inequality (8.1), do not seem to have an immediate asymmetric

counterpart. Still, the paper [7] gives a complete solution of the case e = 1, and

a characterization of “perfect” strategies. The techniques introduced in [7] were

subsequently generalized in [3, 12].5

For the Z-channel with e errors we have the following result: For all sufficiently

large q and for all sets S, there exists an encoding of length q for S if, and only if,

|S| ≤ 2q+e

(
q
e

) . (8.6)

While this inequality is reminiscent of (8.1), from (8.6) no weight function for

states, nor any conservation law can be directly obtained from it. This makes it

difficult to derive optimal strategies and bounds for the asymmetric channel. In fact,

only for the case e = 1 an exact (non-asymptotic) analysis is available [7]. The more

recent papers [3, 12], provide more comprehensive and general results, but only

give asymptotic estimates. For our purposes in this paper we shall limit ourselves to

sketch the main ideas leading to the characterization of optimal strategies. We shall

closely follow [7, 12].

We shall first argue that inequality (8.6) provides an a priori lower bound on the

size of any search strategy for the Z-channel with e errors.

By a strategy with q questions we understand a binary tree of depth q, where

each node ν is mapped into a question Qν , and the two edges ηleft,ηright generated

by ν are respectively labeled yes and no. Let η = η1, . . . ,ηq be a path in S , from

the root to a leaf, with respective labels b1, . . . ,bq, generating nodes ν1, . . . ,νq and

associated questions Qν1
, . . . ,Qνq . Then the state associated to the leaf of ηq is the

5 This latter paper gives the state of the art on the asymmetric Rényi-Ulam game.
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tuple (S0,S1, . . . ,Se) where, for i = 1, . . . ,e, Si is the set of elements in S that satisfy

all negative answers along the path η and falsify exactly i of the positive answers.

A strategy is said to be winning iff for every path η in it, the state associated to the

leaf ηq contains at most one element. A strategy is said to be non-adaptive iff all

nodes at the same depth of the tree are mapped into the same question.

Now, let Σ be a strategy of minimum length q for the search space S. By a path in

Σ we shall understand a path from the root to a leaf of Σ . For each x ∈ S there exists

precisely one path µx in Σ leading to the final state ({x}, /0, . . . , /0). This final state is

obtained if Carole chooses x as the secret number and all her answers are received

without distortion. Let yesx be the number of branches whose label is “yes” in this

path. The yesx many branches of µx are a record of Carole’s “yes” answers, once

she decides to choose x as the secret number. As an effect of noise, the sequence of

answers received by Paul may deviate from this path in yesx many ways, replacing

a “yes” true answer by a mendacious “no” answer and entering a new path.6 Since

Σ is a winning strategy, there exist in Σ precisely yesx many paths leading to a final

state ( /0,x, /0, . . . , /0). On the other hand, over each of these paths noise can affect a yes

edge entering a new path that will lead to a final state of the type ( /0, /0,x, /0, . . . , /0),
and so on, to the effect that the strategy will also contain paths leading to a final

state ( /0, . . . , /0,x).
Roughly speaking, for all large q and almost all binary trees of height q, al-

most all paths contain an almost equal number of left and right branches. It follows

that, for each x ∈ S there are
(

q/2
e

)
possible paths in Σ leading to a state of the

form ( /0, . . . , /0,{x}). The assumption that Σ is a winning strategy implies that Σ

must contain at least |S|
(

q/2
e

)
∼ |S|

2e

(
q
e

)
different paths, whence, we have the desired

bound (8.6).

Conversely we shall explain why, for any fixed e and all large q, and for all sets S

satisfying (8.6), Paul has an e-error correcting encoding for S of length q on the Z-

channel.7 Again, Paul’s strategy is based on perfect questions and Gilbert-packing.

However, in the absence of a conservation law for information in the asymmetric

channel, perfect questions have the following definition:

Definition 8.2 We say that a question is perfect for a state (S0,S1, . . . ,Se) iff the two

resulting states (Syes
0 ,Syes

1 , . . . ,Syes
e ) and (Sno

0 ,Sno
1 , . . . ,Sno

e ), respectively arising from

a yes or a no answer, satisfy the identity

|Syes
i | = |Sno

i |

for each i = 0,1, . . . ,e.8

Let (S0,S1, . . . ,Se) be an arbitrary state of the game. If for each i = 0,1, . . . ,e, we

have the inequality |Si| ≥ ∑
i
j=0 |S j|/2i− j then each question Q with

6 Note the asymmetric effect of noise.
7 For a rigorous treatment the interested reader is referred to [3, 7, 12].
8 Definition 8.1 is a generalization of the present one, but only applies to the symmetric channel.
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|Q∩Si| =
i

∑
j=0

|S j|/2i− j+1 (8.7)

is perfect.

To avoid unnecessary complications, let us consider the case when the size of the

search space has 2m′
elements, whence the initial state (S

(0)
0 ,S

(0)
1 , . . . ,S

(0)
e ) satisfies

|S(0)
0 | = 2m′

, and |S(0)
i | = 0, for i = 1, . . . ,e.

A moment’s reflection shows that, for each j = 0,1, . . . ,m′ − e − 1, Paul can

adaptively choose his ( j + 1)th question Q( j+1) according to the following rule,

which is a minor variant of (8.7):

|Q( j+1) ∩S
( j)
i | = min{

i

∑
j=0

|S( j)
j |/2i− j+1, |S( j)

i |}, (8.8)

where (S
( j)
0 ,S

( j)
1 , . . . ,S

( j)
e ) is Paul’s state resulting from the first j answers.

Let m = m′− e. Then [3, Lemma 4] (see also [12, Lemma 3.7]) there are pos-

itive constants c0, c1, . . . , ce such that, for all sufficiently large q, Paul’s state

(S
(m)
0 ,S

(m)
1 , . . . ,S

(m)
e ) satisfies

|S(m)
i | ≤ ci

(
m

i

)

for each i = 0, . . . ,e.
It turns out that Lemma 8.1 holds for this state, too (the papers [3, 10, 12] pro-

vide different proofs of this fact). Thus Paul can use it to finish his search within

the allowed q questions: it is sufficient for him to proceed as if the channel were

symmetric. 9

Let N
asym
min (|S|,e) be the smallest integer q ≥ 0 satisfying the following variant of

(8.1):

2q+e ≥ |S|
(

q

e

)

. (8.9)

We then say that the secret number can be guessed by a perfect strategy in

the asymmetric Rényi-Ulam game iff the number of questions coincides with

N
asym
min (|S|,e). Direct inspection shows that, for any fixed e ≥ 1 and all sufficiently

large cardinalities |S|, N
asym
min (|S|,e) < Nmin(|S|,e).

Our analysis has shown that perfect questions allow strategies for the asymmetric

variant of the Rényi-Ulam game that are asymptotically perfect. Therefore, optimal

strategies for the asymmetric variant of the Rényi-Ulam game violate the sphere-

packing bound (8.1).

9 Since search on a symmetric channel is harder than on the Z-channel, a fortiori Paul can success-
fully use Gilbert packing for this part of his strategy on the asymmetric channel.
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Note that the strategies yielding the above results make extensive use of the feed-

back channel. Indeed, the appropriate questions satisfying conditions (8.7) and (8.8)

crucially depend on Paul’s detailed knowledge of the Si’s.

8.2 Part Two: The Logic of Feedback Coding

In [18] it was proved that Paul’s states of knowledge in Rényi-Ulam games obey

the infinite-valued Łukasiewicz calculus. Also see [19, 20], or [11, Chapter 5]. Gen-

eralizing the analysis of [18] we shall prove that Hájek Basic Logic is the logic of

multichannel Rényi-Ulam games.

To avoid unnecessary syntactic complications we shall work in the context of BL-

algebras [14]. We assume the reader of this part of the paper has some acquaintance

with the elementary properties and constructions of BL-algebras [14]. For the proof

of the main theorem we shall also need some background material from the theory

of MV-algebras [11], and Wajsberg hoops [5].

8.2.1 Asymmetry and Multichannels

The prototypical example of asymmetric coding is provided by the Z-channel. The

latter can be equivalently represented by equipping Carole with two channels, de-

noted 1 and 2: the more expensive Channel 1 is noiseless; channel 2 is e-noisy.

Carole and Paul stipulate that, whenever the correct answer to a question is “no” she

sends bit 0 only on channel 1. On the other hand, all 1 bits are to be sent on channel

2 only. Assuming that Paul does not know whether the received bit b has traveled

via channel 1 or 2, he can still conclude that any received bit b = 1 is undistorted:

for, the distortion pattern 0 7→ 1 is impossible. Since the converse pattern 1 7→ 0

may occur up to e times, Paul concludes that up to e of the 0’s received by him may

be wrong, but all 1’s are to be taken for granted – precisely as is the case for the

Z-channel with e errors.

As a simple variant of this two-channel game, let us suppose Carole is equipped

with m increasingly noisy channels 1,2, . . . ,m: when asking a question Paul also

tells Carole which channel should be used for her answer. Let us finally assume

that for all i < j, any piece of negative information supplied via channel i pointwise

supersedes all information given by the noisier channel j. In other words, once an

element z ∈ S falsifies an answer given via channel i, then any past and future piece

of information about z supplied via channel j has no value.10

10 Of course, answers sent on channel j may still contain relevant information about any w 6= z. In
accordance with our aims in this section, we shall not be interested in defining the various types
of optimization problems concerning search in a multichannel game: suffice to say that commu-
nication on a noisy channel is cheaper than on a low-noise channel. Thus Paul’s minimum cost
search of xsecret will require a careful analysis of which channels should be used when: generally
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8.2.2 Search Space, Questions, Answers

Let us inspect a round of the multichannel game, played by Paul (on behalf of all

of us) and Carole: Carole and Paul agree to fix a finite nonempty set S of num-

bers, called the search space. We let |S| denote the cardinality of S. Answers can

be sent on m channels 1,2,3, . . . ,m, each channel i allowing an expected maximum

number ei of lies/errors/distortions, 0 ≤ e1 < .. . < em. All ei’s are known to both

players. Then Carole chooses a number xsecret ∈ S. Paul must find xsecret by ask-

ing yes-no questions. Each question comes together with Paul’s specification of the

channel j for Carole’s answer to be sent. In more detail, a question Q is a subset

of S: thus for instance, the question “is xsecret odd?” is the set of all odd numbers

in S. Question Q is sent on the noiseless feedback channel, together with an in-

teger j ∈ {1,2, . . . ,m}; Carole must send her answer on channel j. An answer to

Q is a pair ( j,T ), where j is the chosen channel, and T ∈ {Q,S \Q}.11 An ele-

ment z ∈ S satisfies answer A = ( j,T ), in symbols, z |= A, iff z ∈ T . Otherwise, z

falsifies A.

8.2.3 The Truth-Value

In the traditional, error-free game of Twenty Questions, a complete record of our

knowledge about xsecret is the set of Carole’s answers (two equal answers carrying

the same information as one). To see when two records A and B are equivalent, let

the function A# : S →{0,1} compute for every z ∈ S the truth-value of z. This is the

quantity

1 −̇ |{answers in A falsified by z}|, (8.10)

where −̇ denotes truncated addition. Stated otherwise, for each z ∈ S,

A#(z) = 1 iff z does not falsify any answer; A#(z) = 0 iff z falsifies at least one

answer A ∈ A. Then two records A and B are equivalent iff A# = B#. For exam-

ple, {xsecret is odd,xsecret is even} and {xsecret is ≥ 6, xsecret is < 6} are equivalent

records. Both records are to the effect that no possible candidate for xsecret survives

in S.

Also in the m-channel game with e = (e1 < .. . < em) lies, our knowledge about

xsecret is given by the finite record A of Carole’s answers, each answer being a pair

( j,T ) with j ∈ {1, . . . ,m} and T ⊆ S. Note however that A is now a multiset –

because repeated equal answers to the same repeated question carry more informa-

tion than single answers. Thus each answer A ∈ A carries a multiplicity, telling how

speaking, an expensive channel is to be sparingly used, after the search space has been greatly
reduced by preliminary extensive use of noisy channels.
11 In the co-operative model where Carole knows Paul’s strategy and errors are due to distortion,
Carole sends honest bits b = 0,1 to signify her negative or positive answers. It is expected that up
to e j of these answers may be erroneous/mendacious.
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many times A occurs in A. For any channel c we denote Ac the sub-multiset of those

answers A = (i,T ) of A with i = c.

Definition 8.3 Fix an element z ∈ S and a record A. Then the truth-value A#(z) of

z in A is the pair ( j,r) where ( j,r) = (m,1) if z satisfies all answers in A, and

otherwise







j = first channel c ∈ {1, . . . ,m} such that ∃A ∈ Ac with z 6|= A

r = 1 −̇ |{answers in Ac falsified by z}|
ec+1 .

(8.11)

Intuitively, letting c be the least noisy channel of an answer falsified by z, the truth-

value of z decreases proportionally to the number of answers sent on channel c

and falsified by z. Like a truth-value in Łukasiewicz logic [18–20], [11, (5.3)], the

quantity A#(z) measures (in units of ec + 1) the distance of z from the condition of

being excluded from the possible candidates for xsecret as an effect of the information

sent on channel c. 12 Needless to say, formula (8.11) is also a generalization of

(8.10).

The juxtaposition A⊙B of two records A and B is the record obtained by giv-

ing each answer A a multiplicity equal to the sum of its multiplicity in A plus its

multiplicity in B.

Truth-values form a totally ordered set, by stipulating

( j,r) < ( j′,r′) iff [either j < j′ or ( j = j′ and r < r′)]. (8.12)

This is a precise formulation of the condition, stated in Section 8.2.1 that cheap

noisy channels are pointwise superseded by low-noise expensive channels.

8.2.4 The Partially Ordered Monoid of States of Knowledge

Paul’s current state of knowledge about xsecret is uniquely determined by recording

Carole’s answers. As in the error-free case, two records A and B are said to be

equivalent iff they assign the same truth-value to each z ∈ S, in symbols,

A ≡ B iff A#(z) = B#(z) ∀z ∈ S. (8.13)

We denote by [A] the equivalence class of A.

12 Even if Carole’s answers sent on a noisy channel d > 1 may suggest that z is not a possible
candidate for xsecret, Carole’s further answers on a more reliable channel d′ < d may well have
the contrary effect. When this happens we are led to revise the error parameter ed , or to conclude
that an exceptionally large number of errors has affected channel d during this particular session.
The essential role of each ed is to tentatively fix an upper bound for our counting of distorted bits
sent through channel d: thus, ed + 1,ed + 2, . . . wrong bits are counted as ed . While it is true that
only the first channel can give a definitive verdict about which x’s should be excluded as possible
candidates for xsecret, also the other (less expensive) channels are useful in the search of xsecret: in
most concrete applications they can be used to substantially reduce the size of the search space.
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Definition 8.4 A state (of knowledge) 13 in an m-channel Rényi-Ulam game over

search space S with e = (e1 < .. . < em) lies, is an equivalence class of records. The

initial state of knowledge 1 is the equivalence class of the empty record (no answer

received). It assigns truth value (m,1) to each z ∈ S. We let KS,e denote the set of

states.

Given states a = [A] and b = [B] we write a ≤ b (read: “a is more restrictive

than b”) iff A#(z) ≤ B#(z) ∀z ∈ S.

Direct inspection shows that KS,e has an interesting algebraic structure:

Proposition 8.1 Adopt the above notation and terminology. We then have:

1. The binary relation ≤ is a partial order over the set KS,e of states.

2. Juxtaposition ⊙ of records canonically equips the set KS,e with an operation, also

denoted ⊙, given by

[A]⊙ [B] = [A⊙B].

The ⊙ operation is commutative, associative, and has the initial state 1 as its

neutral element.

3. Given two states a and b, among all t ∈ KS,e such that a⊙ t ≤ b there is a least

restrictive state, denoted a → b.

4. The set KS,e equipped with the ⊙ and → operations and the distinguished con-

stant 1, is a BL-algebra.

5. The partial order of KS,e is definable in 〈KS,e,⊙,→,1〉 via the stipulation a ≤
b iff a → b = 1.

Since the (⊙,→,1)-structure of KS,e is rich enough to reconstruct the order

structure, one is naturally led to study the equational properties of the class of BL-

algebras KS,e for all possible multichannel Rényi-Ulam games.

8.2.5 Multichannel Games vs. Hájek Basic Logic

In this section we shall provide a natural semantics for propositional Hájek Basic

Logic in terms of multichannel games.

Let A be an MV -algebra. Define x → y = ¬x⊕ y and x⊙ y = ¬(¬x⊕¬y). Then

the structure A′ obtained from A replacing ¬ and ⊕ by ⊙ and → is called a Wa-

jsberg algebra. Wajsberg algebras are definitionally equivalent to MV -algebras. By

[5, p. 241], a Wajsberg hoop can be defined as a subalgebra of a reduct of a Wajsberg

algebra obtained by deleting 0 from the language. Every Wajsberg hoop inherits the

natural MV-algebraic order, and we have [11, Lemma 1.1.2], x ≤ y iff x → y = 1. A

Wajsberg hoop with an additional constant interpreted as its bottom element is said

to be bounded. Thus bounded Wajsberg hoops coincide with Wajsberg algebras. By

a finite Łukasiewicz chain we mean the Wajsberg algebra L corresponding to a finite

13 This is a generalization of the notion of state given in the first part of this paper.
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simple MV-algebra. Thus [11, Corollary 3.5.4] L = {0, 1
n
, . . . , n−1

n
,1} for some

integer n ≥ 1, equipped with conjunction x⊙ y = max(0,x+ y−1) and implication

x → y = min(1,1− x+ y).

Let 〈I,≤〉 be a linearly ordered set with smallest element i0. For all i ∈ I let Hi be a
Wajsberg hoop such that for i 6= j, Hi∩H j = {1}. Assume Hi0 has a bottom element.
Then the ordinal sum

⊕

i∈I Hi is the structure whose universe is given by
⋃

i∈I Hi,

and whose operations are defined by14

x → y =







x
Hi→ y if x,y ∈ Hi

y if ∃ j < i(x ∈ Hi, y ∈ H j)
1 if ∃i < j(1 6= x ∈ Hi, y ∈ H j)

x⊙ y =







x⊙Hi y if x,y ∈ Hi

y if ∃ j < i(x ∈ Hi, 1 6= y ∈ H j)
x if ∃i < j(1 6= x ∈ Hi, y ∈ H j)

and whose bottom element is the bottom element of Hi0 .

Theorem 8.1 Given BL-terms σ = σ(x1, . . . ,xn) and τ = τ(x1, . . . ,xn), the following

conditions are equivalent for the equation σ = τ:

(i) For every finite set S 6= /0 and increasing m-tuple e = (e1 < .. . < em) of integers

≥ 0, the equation is valid in the BL-algebra KS,e of states in the m-channel

Rényi-Ulam game over search space S with e errors.

(ii) For every increasing m-tuple of integers e and singleton set {s}, the equation

holds in the BL-algebra K{s},e .

(iii) The equation holds in every finite ordinal sum of finite Łukasiewicz chains of

increasing cardinalities.

(iv) The equation holds in every BL-algebra.

Proof. (i) ⇒ (ii) is trivial. To prove (i) ⇐ (ii) let s be an arbitrary element of S. Then

direct inspection shows that KS,e is the product of |S| many copies of K{s},e.

To prove (ii) ⇔ (iii) in the light of Proposition 8.1 it is sufficient to note that

when S = {s} is a singleton, the structure K{s},e is the most general possible finite

ordinal sum of increasingly large finite Łukasiewicz chains.

(iv) ⇒ (iii) is trivial. For the proof of (iii) ⇒ (iv) we prepare

Claim A. [2, 16] Up to isomorphism, linearly ordered BL-algebras coincide with

ordinal sums of indexed families of Wajsberg hoops whose first component is a

Wajsberg algebra.15

Claim B. [2] Suppose the linearly ordered BL-algebra A can be represented as

A =
⊕n

i=0 Wi for finitely many Wajsberg components W0,. . . ,Wn. Then the nontrivial

subalgebras of A are precisely the ordinal sums B =
⊕n

i=0 Ui, where U0 is a nontrivial

subalgebra of W0, and for each i = 1, . . . ,n, Ui is a possibly trivial (= singleton)

subalgebra of Wi.

14 Compare with [5, p. 247].
15 For any linearly ordered BL-algebra A, the Wajsberg hoops Wi such that A ∼=

⊕
Wi will be called

the Wajsberg components of A.
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This result has a straightforward generalization to infinite ordinal sums.

Claim C. [5] Wajsberg hoops have the finite embeddability property. In other

words, every finite partial subalgebra of a Wajsberg hoop can be embedded into

a finite Wajsberg hoop.

As an immediate consequence of the definition of ordinal sum, for any BL-chain

A and elements a1, . . . ,an ∈ A, all in the same Wajsberg component W of A, the

subalgebra generated by {a1, . . . ,an} is contained in W . We then have

Claim D. Every finitely generated BL-chain is the ordinal sum of finitely many

Wajsberg hoops, in such a way that every Wajsberg component contains at least one

generator.

We are now in a position to prove:

Claim E. [1] The variety of BL-algebras is generated by its finite linearly ordered

members.

Proof of Claim E. Suppose an identity σ(x1, . . . ,xn) = τ(x1, . . . ,xn) fails in some BL-

algebra. Then by [14, Lemma 2.3.18] it fails in some linearly ordered BL-algebra

C. Letting e be an evaluation in C that falsifies σ = τ , we may replace C by its

subalgebra generated be e(x1), . . . ,e(xn). Thus we may safely assume C to be finitely

generated. Let C′ be the finite partial subalgebra of C consisting of all elements of

the form e(ρ), where ρ ranges over all subterms of σ and of τ . By Claim D, C

is the ordinal sum of finitely many Wajsberg hoops, each containing at least one

generator. Arguing by induction on the cardinality n of C′, it is not hard to see

that C′ embeds into a finite BL-chain. Indeed, if n = 1, then C consists of a single

Wajsberg component, and the desired conclusion follows from Claim C. For the

induction step, in case n > 1, let W be the top Wajsberg component of C, and write

C = E ⊕W , for some BL-chain E. Since W has the finite embeddability property,

again by Claim C, C′ ∩W embeds into a finite linearly ordered Wajsberg hoop S.

W contains at least one generator, and the cardinality of E ∩C′ is < n. By induction

hypothesis E∩C′ embeds into a finite BL-chain B. It follows that C′ embeds into the

finite BL-chain B⊕S, as promised. Let j be such an embedding. Then the composite

map j◦e is an evaluation into the finite BL-chain B⊕S that falsifies σ = τ . The proof

of Claim E is complete.

Conclusion of the proof of (iii) ⇒ (iv). By Claim A every finite BL-chain can

be identified with a finite ordinal sum of finite Wajsberg hoops. Since every fi-

nite Wajsberg hoop W is (the reduct of) a bounded Wajsberg hoop, W coin-

cides with some Łukasiewicz chain. Thus if an equation σ = τ is falsified in

some BL-algebra, then by Claim E, the equation is also falsified in a finite or-

dinal sum
⊕m

t=1 {0, 1
nt

, . . . , nt−1
nt

,1} of finite Łukasiewicz chains, for suitable in-

tegers 1 ≤ n1, . . . ,nm. Let n∗ be the least common multiple of n1, . . . ,nm. Direct

inspection shows that a Łukasiewicz chain {0, 1
r
, . . . , r−1

r
,1} is embeddable into

{0, 1
s
, . . . , s−1

s
,1} provided16 r is a divisor of s. We then have an embedding

16 In fact also the converse is true.
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{0,
1

nt

, . . . ,
nt −1

nt

,1} →֒ {0,
1

t ·n∗ , . . . ,
t ·n∗−1

t ·n∗ ,1},

for each t = 1, . . . ,m. By Claim B, we have an embedding

m⊕

t=1

{0,
1

nt

, . . . ,
nt −1

nt

,1} →֒
m⊕

t=1

{0,
1

t ·n∗ , . . . ,
t ·n∗−1

t ·n∗ ,1}.

We conclude that the equation σ = τ can be falsified in an ordinal sum of finite

Łukasiewicz chains of increasing size.

Examples By [14, p. 63] adding to the axioms of BL-algebras the involutive law

(x→ 0)→ 0 one characterizes MV-algebras. By [18, 19], the latter precisely capture

the logic of one-channel games, namely Łukasiewicz infinite-valued calculus. Invo-

lutiveness together with the idempotence equation x⊙ x = x, characterizes boolean

algebras; boolean logic takes care of (one-channel) Rényi-Ulam games with no er-

rors.

Remark The assumption that the m channels have a strictly increasing number of

errors e1 < .. . < em was made only to stress that for c < d, all information supplied

on channel d about z ∈ S is made obsolete by the information sent on (the less

noisy) channel c. The above proof of Theorem 8.1 shows that BL-algebras can also

be characterized via multichannel games where the error m-tuple e is arbitrary.

Further Reading

One can find in the literature several surveys and technical papers treating the Rényi-

Ulam game-theoretic interpretation of infinite-valued logic, and its applications to

error-correcting codes, fault-tolerant search, algorithmic learning and logic pro-

gramming [6, 8, 9, 15, 19–21].

The monograph [14] is the main source for Hájek Basic Logic and BL-algebras.

Also see [13]. The monograph [11] is entirely devoted to Łukasiewicz logic and

its algebras, Chang MV-algebras: these special BL-algebras take care of states of

knowledge in the one-channel game (as originally described by Rényi and Ulam).

The book also discusses other applications and relations of MV-algebras with vari-

ous areas of mathematics.
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simplification of this proof.
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2. Aglianó P., and Montagna F. Varieties of BL-algebras I: general properties, J. Pure Appl.

Algebra, 181: 105–129, 2003.
3. Ahlswede R., Cicalese F., and Deppe C. Searching with lies under error cost constraints. Sub-

mitted, 2004.
4. Berlekamp E. R. Block coding for the binary symmetric channel with noiseless, delayless

feedback. In H. B. Mann, editor, Error-Correcting Codes, pages 330–335. Wiley, New York,
NY, 1968.

5. Blok W. J., and Ferreirim I. M. A. On the structure of hoops, Algebra Universalis, 43:
233–257, 2000.

6. Cicalese F., and Mundici D. Perfect two fault-tolerant search with minimum adaptiveness,
Adv. Appl. Math., 25: 65–101, 2000.

7. Cicalese F., and Mundici D. Optimal coding with one asymmetric error: below the sphere
packing bound, Lecture Notes in Computer Science, Proceedings COCOON-2000, Springer,
1858: 159–169, 2000.

8. Cicalese F., and Mundici D. Learning and the art of fault-tolerant guesswork. In I. Sta-
matescu et al., editors, Handbook Chapter, In: Perspectives on Adaptivity and Learning, pages
117–143. Springer, 2003.

9. Cicalese F., Mundici D., and Vaccaro U. Rota-Metropolis cubic logic and Ulam-Rényi games.
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Chapter 9

Two Applications of Epistemic Logic
in Computer Security

Ron van der Meyden

9.1 Introduction

Epistemic logic has, in the past few decades, grown beyond its origins in philosophy,

to be embraced in several other disciplines, including economics, linguistics and

computer science. Within computer science, its application can be found in several

subdisciplines: artificial intelligence, distributed computing and computer security.

In these tutorial notes, we illustrate some of the ways in which epistemic logic

has come to be applied in computer science by reviewing a number of examples

from our recent work that demonstrate how epistemic logic can bring a clarifying

perspective to issues in computer security. A significant thread in this work has been

to identify situations in which questions about the security of systems and commu-

nication protocol designs are amenable to automated analysis. To address this issue,

we focus on the decidability of logical problems, seeking to identify decidable prob-

lems that encompass interesting questions computer security.

Our examples involve two distinct types of decidability questions: model check-

ing and synthesis. Model checking involves the question of whether a given formula

is satisfied in a given semantic structure. This methodology enables us to study

a communications protocol from the perspective of how information flows to its

trusted participants, or to a passive adversary, who may observe, but not interfere

with, communications between the trusted parties. We discuss a system we have de-

veloped that implements this task, and descibe its application to a protocol designed

to enable information to be transmitted anonymously: Chaum’s Dining Cryptogra-

phers protocol.

Synthesis, the second type of decidability question we consider, concerns the

existence of strategies that lead to the satisfaction of a formula in a given context.

The relevance of this in computer security is that an active adversary, who not only
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observes but also interferes with the system, can be viewed as seeking a strategy

that satisfies certain conditions on the adversary’s knowledge. The system is secure

if no such strategy exists.

Logic itself is broadened and enriched by such encounters with new application

areas, as these frequently raise fresh questions for research on logic itself. Applica-

tions of epistemic logic in computer security are no exception, and raise some quite

challenging question for further study, which we discuss in Section 9.7.

9.2 The Logic of Knowledge and Time

To set the scene for the applications we discuss, we first describe a general frame-

work for the semantics of the logic of knowledge in multi-agent systems that has

found application not just in computer security, but also in distributed computing

and artificial intelligence. Computation being an inherently dynamic phenomenon,

the framework includes not just the logic of knowledge, but also temporal logic. We

refer the reader to [9] for a more leisurely exposition.

A parameter of the framework is the number n of agents in the systems to be

modelled. We refer to agents by a number i = 1 . . .n. Let Prop be a finite set of

propositional variables. The language of knowledge and linear time is the proposi-

tional multi-modal language L with formulas defined as follows. Each proposition

p ∈ Prop is a formula, and if ϕ1 and ϕ2 are formulas, then so are ¬ϕ1, ϕ1 ∧ϕ2, ◦ϕ1

(meaning that ϕ1 holds at the next instant of time) ϕ1Uϕ2 (meaning that ϕ1 holds

until ϕ2 does), and Kiϕ1, for each agent i = 1 . . .n (meaning that agent i knows that

ϕ1 holds). We use all the usual boolean abbreviations, and write ✸ϕ for trueUϕ
(meaning that ϕ holds at some time in the future).

This language can be given a semantics in interpreted systems, a type of semantic

structure that models both temporal and epistemic accessibility relations. We later

present some additional semantic constructs that describe how interpreted systems

arise from concrete computational systems. We suppose that at each moment of

time, the system we are modelling is in a global state in the set S = S0 ×S1 × . . .×
Sn, where S0 is the set of possible states of the environment in which the agents

operate and, for i = 1 . . .n, the set Si is the set of local states of agent i. We work

with a discrete model of time, representing moments of time by elements of the

natural numbers N. A possible history, or run, is a mapping r : N → S that assigns

a global state to each moment of time. Since the behaviour of systems is typically

non-deterministic, we model a system by a set R of runs. A point in a system is a

pair (r,m) consisting of a run r and a time m. We write ri(m) for the local state of

agent i at time m in the run r. An interpreted system is a pair I = (R,π) where R
is a system and π : R×N →P(Prop) is a function that assigns to each point in the

system the set of propositions holding at that point.

The local states play a key role in the interpretation of knowledge in systems.

Intuitively, an agent’s local state captures all the information available to an agent at

a given moment of time. We say two points (r,m) and (r′,m′) are indistinguishable
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to agent i, and write (r,m) ∼i (r′,m′) if the agent has the same local state at those

points, i.e. ri(m) = r′i(m
′).

Given a point (r,m) of an interpreted system I , we define what it means for a

formula ϕ to hold at this point, denoted I ,(r,m) |= ϕ , by:

• I ,(r,m) |= p if p ∈ π(r,m), for p ∈ Prop,

• I ,(r,m) |= ¬ϕ if not I ,(r,m) |= ϕ ,

• I ,(r,m) |= ϕ1 ∧ϕ2 if I ,(r,m) |= ϕ1 and I ,(r,m) |= ϕ2,

• I ,(r,m) |= ◦ϕ if I ,(r,m+1) |= ϕ ,

• I ,(r,m) |= ϕ1Uϕ2 if there exists m′ ≥ m such that I ,(r, l) |= ϕ1 for all l with

m ≤ l < m′, and I ,(r,m′) |= ϕ2,

• I ,(r,m) |= Kiϕ if I ,(r′,m′) |= ϕ for all (r′,m′) with (r,m) ∼i (r′,m′).

The final clause captures the following intuition about knowledge: agent i knows

fact ϕ if ϕ is true at all the points that are consistent with the information available

to agent i, i.e., at all the points that agent i is not able to distinguish from the actual

situation. We write I |= ϕ if I ,(r,0) |= ϕ for all runs r of I .

While interpreted systems provide a clean abstract model for reasoning about

knowledge and time, it is useful in applications to identify some additional types

of structure. We now present some definitions that show how interpreted systems

arise concretely. In broad brush, the picture is as follows: we first define environ-

ments, which model how the actions that can be performed by agents affect the state

of the world. Next, we view agents as executing some protocol that describe how

agents choose an action to perform at each moment of time. When each agent runs

a protocol in the environment, this generates a set of runs of that environment. By

further selecting for the agents a local state at each moment of time, based on some

degree of recollection of the observations the agent has made to that point of time,

we obtain an interpreted system in the form described above.

Suppose that for each agent i = 0 . . .n, ACTi is a finite, non-empty set of actions,

corresponding to the actions that may be performed by each of the agents, and, in the

case i = 0, the actions or nondeterministic events due to the environment. We permit

these actions to occur in a simultaneous fashion, and represent this by defining the

set of joint actions by ACT = ACT0 ×ACT1 × ·· ·×ACTn. When a denotes a joint

action, we write ai for the action of agent i in a.

An environment over a signature is a tuple E = (S0, I,P0,τ,O,π0) where

• S0 is a finite set of states,

• I ⊆ S0 is the set of initial states,

• P0 : S0 →P(ACT0) is the protocol of the environment, which says which actions

can be performed by the environment in a given state,

• τ : ACT → (S0 → S0) is the transition function, which, for every joint action a

specifies a transition function τ(a),
• O = (O1, . . . ,On) is a family of observation functions Oi : S → O for some set O

of observations,

• π0 : S0 → P(Prop) is an interpretation function which assigns to each state the

propositions it satisfies.
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We require P0(s) 6= /0 for each s ∈ S0. An execution of such an environment is an

infinite sequence s0,s1,s2, . . . such that s0 ∈ I and such that for all m there exists

a ∈ ACT with a0 ∈ P0(sm) and τ(a)(sm) = sm+1. When ε denotes such an execution,

and m ∈ N, we write ε(m) for sm.

Executions resemble the runs of systems described above, but they lack the

local states of the agents i = 1 . . .n. There are many ways these could be deter-

mined, depending on factors including how much the agents are able to remember

about their past observations and whether or not the system operates synchronously,

i.e., with a global clock. We focus here on the assumptions that the sytem is syn-

chronous and agents have perfect recall. Given an execution ε , we define a run

rε by r0(m) = ε(m), and, for each agent i = 1 . . .n, defining the local states by

rε
i (m) = 〈Oi(ε(0)),Oi(ε(1)), . . . ,Oi(ε(m)) →. Synchronous perfect recall is partic-

ularly significant for security analyses. This is because a frequent objective in secu-

rity settings is to place restrictions on the information that certain agents are able to

acquire (while not inhibiting certain other flows of information.) An adversary in a

security setting is likely to attempt to make as much use as it can of the informa-

tion it is able to accumulate by observing the system under attack. Thus, an agent

assumed to have perfect recall corresponds to an adversary that makes maximal use

of its inferential capabilities. Ideally, we would like the system to be designed so as

to be secure against even this most powerful adversary.

Given an environment E, we obtain the interpreted system I spr(E) = (R,π) by

taking R to be the set of runs rε for ε an execution of E, and defining the interpre-

tation π by π(rε ,m) = π0(ε(m)).
The system I spr(E) models what agents know if they could perform any action

at any time. In general, it is more interesting to consider situations where the agents

choose their actions according to some rules of behaviour. We model such rules

as follows. A protocol for agent i is a function Pi : O+ → P(ACTi). Intuitively, a

sequence σ ∈ O+ represents the maximal information that the agent could have

acquired at a given moment of time: its synchronous perfect recall local state. Based

on this information, the agent nondeterministically selects one of the local actions

Pi(σ) as the next action it will perform. (In practice, Pi(σ) could depend on only a

small part of σ , and it may not be necessary for an agent to maintain its complete

history of observations in order to determine its next action.)

A joint protocol is a family P = {Pi}i∈[n] where each Pi is a protocol for agent i.

Given such a joint protocol and a run r of I spr(E), we say r is consistent with the

protocol if for every m there exists a joint action a such that r0(m+1) = τ(a)(r0(m))
where a0 ∈ P0(r0(m)) and ai ∈ Pi(ri(m)) for i = 1 . . .n. We write I spr(E,P) for the

interpreted system obtained from I spr(E) by restricting its runs to runs consistent

with the joint protocol P.



9 Two Applications of Epistemic Logic in Computer Security 137

9.3 Model Checking

Model checking is methodology for verification of hardware and software designs

[5] that emerged in the 1980s and is now well entrenched in the computer hardware

industry, and finding increasing applications to software. Generally, it is applied

to finite state systems designs and temporal logic specifications. Given a seman-

tic structure M, often a Kripke structure of some form, and a formula ϕ , one asks

whether ϕ is satisfied in a particular state, or set of states of M. A model checker is a

program that computes the answer to this question (and may also provide some out-

put by way of explanation of why this is the answer, e.g., counter-examples in case

the answer is false.) Model checkers have been developed for a variety of modal

logics, including linear time temporal logic [13], branching time temporal logic [2].

We have developed a model checker MCK [10] that deals with specifications in

the logic of knowledge and time, based on the semantic framework discussed in the

previous section. MCK accepts as input a description of an environment E, a joint

protocol P for the agents in E, and a specification ϕ in the language of knowledge

and time, and determines whether I spr(E,P), |= ϕ for all runs r of I spr(E,P). In

addition to the synchronous perfect recall view that is our focus in this paper, the

system can handle several other ways of defining local states.

9.4 Verifying the Dining Cryptographers Protocol

To illustrate how model checking for the logic of knowledge may be applied to secu-

rity verification, we now discuss the Dining Cryptographers protocol, a protocol for

anonymous broadcast due to [6]. Chaum introduces this protocol by the following

story:

Three cryptographers are sitting down to dinner at their favorite three-star restuarant. Their
waiter informs them that arrangements have been made with the maitre d’hotel for the bill to
be paid anonymously. One of the cryptographers might be paying for the dinner, or it might
have been the NSA (US National Security Agency). The three cryptographers respect each
other’s right to make an anonymous payment, but they wonder if the NSA is paying.

Chaum shows that the following protocol can be used to solve the dining cryptog-

raphers’ quandary. The protocol assumes that at most one cryptographer is paying.

1. Each cryptographer flips an unbiased coin behind his menu, between him and the

cryptographer to his right, so that only the two of them can see the outcome.

2. Each cryptographer then states aloud whether the two coins that he can see - the

one he flipped and the one his left-hand neighbour flipped – fell on the same side

or different sides.

3. As an exception to the previous step, if one of the cryptographers is the payer, he

states the opposite of what he sees.

It can be seen that after running this protocol, all the cryptographers are able to

determine whether it was the NSA or one of the cryptographers who paid for dinner.
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(Each announcement can be seen as the exclusive-or of the two coin tosses known

to the speaker, together with the bit representing whether the speaker paid. Taking

the exclusive or of the announcements, the coins cancel out, leaving the exclusive

or of the bits about payment.) More interestingly, and more subtle, is that this is

all the information that the protocol reveals about the identity of the payer: if a

cryptographer is paying neither of the other two learns anything from the utterances

about which cryptographer it is.

This claim may be automatically verified using the model checker MCK. Fig-

ure 9.1 shows how the situation is represented as an input to the model checker.

We being by declaring some of the variables that make up the state of the envi-

ronment: The boolean vector paid represents whether or not each agent paid. We

model sharing of the information between the agents by having each cryptographer

fip a coin, and then communicate the outcome to an adjacent cryptographer using

the communication channels represented by the boolean vector chan. The boolean

vector said is used to represent the public announcements made by the agents.

Next, we identify the initial states to be those in which at most one agent paid. The

agents themselves are declared in statements of the form “agent name protocol

(parameters)”. The protocol part gives the name of the protocol executed by the

agent being declared, and the parameters are the variables of the environment with

which the agent interacts.

The protocol itself is declared separately in a generic template. Each agent

decaration has the effect of binding an instance of the local variables in the tem-

plate to the matching environment variables in the declaration. An agent’s observa-

tion at each moment of time consists of the variables declared using the keyword

observable, together with their values. The if statement represents a guarded

non-deterministic choice: to execute it, the agent nondeterministically executes one

of the statements for which the guard (to the left of ->) evaluates to true. Variables

v bound to variables in the environment may be read or written by statements of the

form x:= v.read() or v.write(expression). (This form is used to highlight

the fact that there may be conflicts caused by simultaneous read and writes, though

the issue does not arise in this example.)

Finally, the specification statement spec spr xn indicates that knowledge is to

be determined using the synchronous perfect recall view (spr), and (indicated by

xn) that the algorithm to be used for the model checking is a specific algorithm that

has been designed to deal with formulas of the form ◦nϕ , where ϕ is a formula

of the logic of knowledge. In this case, n = 4, since the protocol takes 4 steps to

execute, and ϕ is a formula that states that if cryptographer 1 did not pay, then he

knows either that no cryptographer paid, or knows that one of the other two paid,

but does not know which. (To verify the protocol, it suffices to consider only the

specification for cryptographer 1 above, because of symmetry considerations.) As

remarked above, the use of the perfect recall semantics for knowledge is significant.

In asking for confirmation that the payer’s anonymity is not compromised by the

protocol, we wish to know that it is not compromised even by an agent that makes

maximal inferential use of what it is able to observe during an execution of the

protocol.
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When MCK is run on this input, it computes the answer that the specification is

satisfied in a matter of a few seconds.

Fig. 9.1 The Dining Cryptographers Protocol represented in MCK.
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9.5 Synthesis from Epistemic Specifications

The type of security analysis considered in the previous section is based on the

premise that each of the agents to the protocol is trusted to act according to the

rules of the protocol. In general, this is a stronger assumption than we would wish

to make in a security analysis. If any of the agents in a system is untrustworthy, we

should reason on the assumption that it may behave in any way that may help it to

undermine the security objectives that the system is attempting to enforce. This may

include not just interception of communications, but also performing actions that are

not in accordance with a protocol that it is supposed to be executing, e.g., tampering

with communications between other agents. A careful choice of such malicious be-

haviour may enable it deduce information that it is not entitled to have. To show that

the system is secure, we need to prove that however such an untrustworthy agent

may behave, it will not succeed in subverting the security aims of the system.

The model checking problem discussed above is not able to express this type of

analysis. Instead, we need to consider a version of the synthesis problem: given a

specification ϕ , construct a program P, which, when executed, guarantees that the

execution will satisfy ϕ . The classical literature on program synthesis deals with

this problem for sequential programs and input-output specifications. The literature

on automated verification has considered a version of this problem where P is a

concurrent program running in a nondeterministic environment, and ϕ is a specifi-

cation expressed in temporal logic [7, 18, 19]. It has been shown that, under certain

circumstances, automata-theoretic ideas can be applied to automate this synthesis

process.

For security analyses, a richer set of specifications expressed in the logic of

knowledge and time is appropriate. Whereas for temporal specifications, the defi-

nition of the synthesis problem need refer only to the individual runs of a system

generated by the synthesized protocol, for epistemic specifications we need to con-

sider the interpreted system generated by the protocol. This leads to the following

definition:

Let ϕ be a formula of L and E an environment. We say a formula ϕ is realizable

in the environment E if there exists a joint protocol P such that I (E,P) |= ϕ .

Realizability of specifications in the logic of knowledge and linear time under

the assumption of perfect recall was first studied by van der Meyden and Vardi [17].

Theorem 9.1 [17] Realizability of specifications in the logic of knowledge and lin-

ear time for a single agent in single-agent environments is decidable in double ex-

ponential time.

The situation with respect to multi-agent systems is more complex. In fact this is

the case even for the much weaker set of temporal specifications:

Theorem 9.2 [20] Realizability of specifications in linear time temporal logic in

multi-agent environments is undecidable.

However, with some restrictions on the class of environments we consider, there

exist some decidable cases. Pnueli and Rosner [20] identified some such cases for
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temporal specifications, and their characterization has been given a detailed treat-

ment in [15].

Here we consider a class of environments whose structure has intuitive content

from the perspective of the logic of knowledge. Hierarchical environments [8] are

those in which for all states s, t and agents i = 1 . . .n−1, we have that Oi(s) = Oi(t)
implies Oi+1(s) = Oi+1(t). Intuitively, this means that each agent in the sequence

observes not more than the preceding agent: if agent i is not able to distinguish states

s and t by observation, then neither is agent i + 1. An example of an hierarchical

system is a system of three agents with security clearances to read unclassified,

secret and top-secret documents, respectively (where a security clearance implies a

capability to read documents at or below the security level.)

In order to obtain a decidable case of synthesis from epistemic specifications,

we also need a restriction on the class of formulas. We say a formula ϕ in the lan-

guage of linear time and knowledge is positive if every occurrence of any knowledge

modality Ki is positive, that is, under an even number of negations. More precisely, a

formula is positive if it can be built from p and ¬p for p ∈ Prop, using ∨, ∧, U , R, ◦,

and Ki for i = 1 . . .n. Here R is the binary operator defined by ϕRψ if ¬(¬ϕU¬ψ).

Theorem 9.3 [22] The synthesis problem for multi-agent hierarchical environments

is decidable for positive specifications in the logic of knowledge and linear time.

Thus, while synthesis from epistemic specifications in multi-agent systems is in

general undecidable, there are restrictions on the class of systems and on the class of

formulas that render it decidable. We illustrate in the following sections that these

restrictions nevertheless encompass an interesting application.

9.6 A Strategic Notion of Deducibility

As an example of the application of these results on synthesis to security analysis,

we consider a type of information flow security policy that originates in the context

of multi-level security systems for military applications. Such systems are subject to

stringent requirements concerning the release of information from the high security

domain (which we shall represent by an agent called H, for High) to the low security

domain (represented by agent L, for Low). The simplest type of security policy in

this setting specifies that information is permitted to flow from Low to High, but not

vice versa. (Policies with exceptions to this rule are also of interest, but we will not

consider them here.) One of the concerns that needs to be dealt with is that viruses

or Trojan Horse programs may be downloaded into the High part of the system,

which, when coordinated with actions taken at the Low end of the system, may

lead to secret information being leaked. We show how to formulate a version of this

question as a realizability problem.

Let E = (S0, I,P0,τ,O,π0) be an environment with agents H and L, describing the

possible states of the system whose security we wish to analyse. We would like to

answer the question “can even a single bit of information be communicated by H to
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L?”To this end, we begin by adding a bit to the system: let E+ = (S′0, I
′,P′

0,τ
′,O′,π ′

0)
be the system for the same set of agents and the enriched set of propositions Prop∪
{b} defined as follows:

1. S′0 = S0 ×{0,1}, i.e., we add a single bit to each state;

2. I′ = I ×{0,1}, so that the extra bit may initially have any possible value and we

do not constrain the original initial states;

3. P′
0((s,b)) = P0(s) for s ∈ S and b ∈ {0,1}, so that the environment’s behaviour is

not modified;

4. τ ′(a)((s,b)) = τ(a)(s) for s ∈ S and b ∈ {0,1}, so that actions do not change the

value of the new bit and otherwise behave as in E;

5. O′
L((s,b) = OL(s) and O′

H((s,b)) = (OL(s),OH(s),b), for s ∈ S and b ∈ {0,1};

6. π ′((s,b)) = π(s)∪{b | b = 1}, so that b is interpreted as the value of the new bit.

The observation functions in E+ can be understood as follows. First, the new bit is

not observed by L, but it is observed by H, so it is initially a secret known only to H.

The observation of L has also been added to the observation of H. This captures the

intuition that since L models “publicly available information,” the security analysis

should assume that H has access to any information known to L. Note that this

makes the environment hierarchical with respect to the ordering H, L on the agents.

We may now formalise the question “Can H and L collude in environment E

to reliably pass information from H to L” as the problem of whether the formula

✸(KL(b)∨KL(¬b)) is realizable in E+. If this is not the case, we say that E satisfies

strong nondeducibility on strategies.

The nomenclature is due to the fact that this notion is closely related to, but

somewhat stronger than, the notion of “nondeducibility on strategies” of Wittbold

and Johnson [23], which intuitively says that L cannot deduce any information about

the protocol being executed by H. Some of the differences between these two no-

tions is that nondeducibility on strategies does not take into account L collusion

in the information flow, and it also considers a system insecure if there exists a H

protocol that makes it possible that information will flow from H to L. By contrast,

strong nondeducibility on strategies tests for the existence of a reliable channel for

information flow.

Noting that ✸(KL(p)∨KL(¬p)) is a positive formula and applying Theorem 9.3,

we obtain the following result.

Theorem 9.4 Strong deducibility on strategies is decidable.

This illustrates that the decidability of synthesis from epistemic specifications

has some interesting applications in computer security.

9.7 Conclusion

Our discussion in these notes of the applications of epistemic logic in computer

security has been quite parochial, and we have not attempted to survey what is a
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growing field. However, to conclude we briefly mention some of closely related

work in this space.

The dining cryptographers problem can be considered as an instance of the more

general problem of specifications that require that certain information be kept secret.

Halpern and O’Niell [12] have given a general treatment of the notion of secrecy

from the perspective of the logic of knowledge. Whereas our focus has been on

the logic of knowledge, they also consider probabilistic concerns, which are very

important in security settings.

The dining cryptographers protocol is somewhat unusual amongst security pro-

tocols in that it makes use of the properties of the exclusive-or operation rather than

shared or public-key cryptosystems. One important class of protocols that do ex-

ploit cryptography is authentication protocols. A variant of epistemic logic called

BAN logic (after the initials of its originators) [1] specifically aimed to build a logic

to capture the intuitive reasoning of protocol designers about such protocols. The

epistemic operator in this logic was called “belief” rather than knowledge, since the

reasoning was intended to capture the conclusions that agents could reach in run-

ing the protocol from “trust” assumptions, expressed as an initial set of beliefs. This

work has spawned a significant literature, but the approach has had some contentious

features and involves some quite difficult problems, so that it still constitutes a topic

of current research [3, 4, 21].

One of these difficult problems relates to the question of logical omniscience.

The semantics of knowledge given above has the property that if ψ is a logical

consequence of ϕ , and Kiϕ holds, then so does Kiψ . For many applications of the

logic of knowledge in computer science, this is not a concern. However, public key

cryptography uses a pair of keys, a public key K and a private key K−1, with the

property that the key K−1 may be used to decrypt any messages encrypted with K. In

most implementations, the key K−1 can be deduced from K. Thus, according to the

semantics for knowledge we have discussed, if agent i knows the value of a message

when encrypted with a public key, it also knows the value of the message itself.

This is far too strong a conclusion to be useful for security analyses: the security

of public key cryptography is based on the fact that the amount of time required

to compute the private key from the public key is prohibitively large. How best to

capture this computational aspect of cryptography in an epistemic logic remains

a challenging problem. Current approaches are based on the notions of resource-

bounded knowledge [16], or algorithmic knowledge [11, 14].

In addition to these semantic concerns, there are many open questions concerning

the computational aspects of modal logics with these rich sets of features. For exam-

ple, we still lack results on synthesis from specifications that combine knowledge

with branching temporal operators. Model checking the combination of the logic of

knowledge and probability remains largely unaddressed to date. Moreover, decid-

ability does not imply practicability, and often a great deal of additional research

is required before we have useful tools for model checking or synthesis. There is,

therefore, wide scope for further research of both a pure and an applied nature in

this area.
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Chapter 10

An Introduction to Quantum Computing

Noson S. Yanofsky

10.1 Intuition

Quantum Computing is a fascinating new field at the intersection of computer sci-

ence, mathematics and physics. This field studies how to harness some of the strange

aspects of quantum physics for use in computer science. Many of the texts to this

field require knowledge of a large corpus of advanced mathematics or physics. We

try to remedy this situation by presenting the basic ideas of quantum computing un-

derstandable to anyone who has had a course in pre-calculus or discrete structures.

(A good course in linear algebra would help, but, the reader is reminded of many

definitions in the footnotes.)

The reason why we are able to ignore the higher mathematics and physics is that

we do not aim to teach the reader all of quantum mechanics and all of quantum

computing. Rather, we lower our aim to simply present that part necessary to offer

a taste of what quantum computing is all about. What makes this possible is that

we only need finite dimensional quantum mechanics, i.e., the vector spaces that

represent the states of the system will only be of finite dimension. Such vector spaces

consist of finite vectors with complex entries. These vectors will change by being

them multiplied by operators or matrices. These matrices will be finite and have

complex entries. We do not do any more quantum computing than what is needed

for our final goal: Deutsch’s algorithm. We stress that the reader does not need more

than the ability to do matrix multiplication in order to understand this paper.

To motivate our use of vectors to describe states and matrices as ways of describ-

ing dynamics, we show that it is understandable if one looks at a basic toy models.

Our models deal with childrens’ marbles moving along the edges of a graph. Every

computer scientist and logician who has taken a class in discrete structures knows

how to represent a (weighted) graph as an adjacency matrix. We shall take this basic

Noson S. Yanofsky
Department of Computer and Information Science, Brooklyn College, CUNY, Brooklyn, NY
11210 and Computer Science Department, The Graduate Center, CUNY, New York, NY 10016,
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J. van Benthem et al. (eds.), Proof, Computation and Agency, Synthese Library 352, 145
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idea and generalize it in several straightforward ways. While doing this, we shall

present many concepts that are at the very core of quantum mechanics.

We begin with graphs that are without weights and progress to graphs that are

weighted with real numbers, and finally to graphs that are weighted with complex

numbers. With this in hand, we present a graph theoretic version of the double-

slit experiment. This is the most important experiment in quantum mechanics. We

conclude with a discussion of ways of combining systems to yield larger systems.

Throughout this chapter, we shall present an idea in a toy model, then generalize

it to an abstract point and lastly discuss the connection with quantum mechanics

before moving on to the next idea.

This paper is based on a forthcoming text Quantum Computing for Computer

Scientists coauthored with Mirco Mannucci. The text was accepted for publication

by Cambridge University Press and should see the light of day in the beginning of

2008. In the text we take the reader through the same material and go much further.

The reader who appreciates this paper, will definitely gain from the text.

Acknowledgements I am grateful to Dr. Mirco Mannucci for many helpful discussions and cheery
editing sessions.

10.1.1 Classical Deterministic Systems

We begin with a simple system described by a graph along with some children’s

marbles. Imagine the marbles as being on the vertices of the graph. The state of a

system is described by how many marbles are on each vertex. For example, say that

there are six vertices in the graph and a total of 27 marbles. We might place six

marbles on vertex 0, two marbles on vertex 1 and the rest as described here:

0• 6 1• 2 •2 1

3• 5 4• 3 •5 10

.

We shall denote this state as X = [6,2,1,5,3,10]T . The states of such a system will

simply be a column vector of size 6.

We are not only interested in states of the system, but also in the way that the

states change – or the “dynamics” of the system. This can be represented by a graph

with directed edges. The dynamics might be described by the following directed

graph:
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0•

++WWWWWWWWWWWWWWWWWWWWWWWWWW 1• // •2

wwppppppppppppp

3•
��

4• // •5

OO

The idea is that if there exists an arrow from vertex i to vertex j, then in one time

click, all the marbles on vertex i will move to vertex j. We place the following

restriction on the types of graphs we shall be concerned with: graphs with exactly

one outgoing edge from each vertex. This will correspond to the notion of a classical

determinstic system. At each time click the marbles will have exactly one place to

go. This graph is equivalent to the matrix, M (for “marbles”):

M =













0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 0 0 0 0

2 0 1 0 0 0 1

3 0 0 0 1 0 0

4 0 0 1 0 0 0

5 1 0 0 0 1 0













where M[i, j] = 1 if and only if there is an arrow from vertex j to vertex i1. Our

restricted class of graphs are related to the restricted class of boolean matrices that

have exactly one 1 in each column.

Let us say we multiply M by a state of the system X = [6,2,1,5,3,10]T . Then

we have

MX =











0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 1

0 0 0 1 0 0

0 0 1 0 0 0

1 0 0 0 1 0





















6

2

1

5

3

10











=











0

0

12

5

1

9











= Y

What does this correspond to? If X describes the state of the system at time t, then Y

is the state at time t +1 , i.e., after one time click. We can see this clearly by looking

at the formula for matrix multiplication:

Y [i] = (M ⋆X)[i] =
5

∑
k=0

M[i,k]X [k].

In plain English, this states that the number of marbles that will reach vertex i after

one time step is the sum of all the marbles that are on vertices with edges connecting

1 Although most texts might have M[i, j] = 1 if and only if there is an arrow from vertex i to vertex
j, we shall need it to be the other way for reasons which will become apparent later. The difference
is trivial.
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to vertex i. Notice that the top two entries of Y are zero. This corresponds to the fact

that there are no arrows going to vertex 0 or 1.

In general if X = [x0,x1, . . . ,xn−1]
T is a column vector corresponding to having

xi marbles on vertex i, M is a n by n Boolean matrix, and if MX = Y where Y =
[y0,y1, . . . ,yn−1]

T , then there are y j marbles on vertex j in one time click. M is thus

a way of describing how the state of the marbles can change from time t to time

t +1.

As we shall soon see, (finite dimensional) quantum mechanics works in the same

way. States of a system are represented by column vectors and the way in which the

system changes in one time click is represented by matrices. Multiplying a matrix

with a column vector yields a new state of the system. Quantum mechanics explores

the way states of similar systems evolve over time.

Returning to our marbles, let’s multiply M by itself. MM = M2. However, since

our entries are Boolean, we shall multiply the matrices as Boolean, i.e., 1 + 1 =
1∨1 = 1.











0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 1

0 0 0 1 0 0

0 0 1 0 0 0

1 0 0 0 1 0





















0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 1

0 0 0 1 0 0

0 0 1 0 0 0

1 0 0 0 1 0











=











0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 1 0

0 0 0 1 0 0

0 1 0 0 0 1

0 0 1 0 0 0











Looking at the formula for Boolean matrix multiplication

M2[i, j] =
n−1∨

k=0

M[i,k]∧M[k, j]

we can see that this formula really shows us how to go from vertex j to vertex i in

two time clicks.

And so we have that

M2[i, j] = 1 if and only if there is a path of length 2 from vertex j to vertex i.

For an arbitrary k we have

Mk[i, j] = 1 if and only if there is a path of length k from vertex j to vertex i.

In general, multiplying an n by n matrix by itself several times will correspond to

the whether there is a path after several time clicks. Consider X = [x0,x1, . . . ,xn−1]
T

to be the state where one has x0 marbles on vertex 0, x1 marbles on vertex 1, . . . ,
xn−1 marbles on vertex n−1. Then, after k steps, the state of the marbles is Y where

Y = [y0,y1, . . . ,yn−1]
T = MkX . In other words, y j is the number of marbles on vertex

j after k steps.

In quantum mechanics, if there are two or more matrices or operators that manip-

ulate states, then the action of one followed by another is described by their matrix
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product. We shall take different states of systems and multiply the states by various

matrices (of the appropriate type) to obtain other states. These other states will again

be multiplied by other matrices until we attain the desired state.

10.1.2 Classical Probabilistic Systems

In quantum mechanics, neither the state of a system nor the dynamics of a system are

deterministic. There is an indeterminacy in our knowledge of a state. Furthermore,

the states change with probabilistic laws as opposed to deterministic laws. That

means that states do not change in set ways. Rather, the laws are given by stating

that states will change from one state to another state with a certain likelihood.

In order to capture these probabilistic scenarios, let us generalize what we did in

the last subsection. Instead of dealing with a bunch of marbles moving around, we

shall deal with a single marble. The state of the system will tell us the probabilities

of the single marble being on each vertex. For a three-vertex graph, a typical state

might look like this X = [1
5
, 3

10
, 1

2
]T . This will correspond to the fact that there is a

one-fifth2 chance that the marble is on vertex 0; a three-tenth chance that the marble

is on vertex 1; and a half chance that the marble is on vertex 2. Since the marble

must be somewhere on the graph, the sum of the probabilities is 1.

We must generalize the dynamics as well. Rather than exactly one arrow leaving

each vertex, we will have several arrows leaving each vertex with non-negative real

numbers between 0 and 1 as weights. These weights will describe the probability

of the single marble going from one vertex to another in one time click. We shall

restrict our attention to weighted graphs that satisfy the following two conditions:

a) the sum of all the weights leaving a vertex is 1 and b) the sum of all the weights

entering a vertex is 1. This will correspond to the fact that a marble must go some-

place (there might be loops) and a marble must come from someplace. An example

of such a graph is

0•

1
3

--

2
3

��

•1

1
3

yy

1
6

mm

1
2

��

•2.

5
6

ZZ
1
6

99

The matrix for this graph is

2 Although the theory works with any r ∈ [0,1], we shall deal only with fractions.
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M =







0 1
6

5
6

1
3

1
2

1
6

2
3

1
3

0







The adjacency matrices for our graphs will have non-negative real entries where the

sums of the rows and the sums of the columns are all 1. Such matrices are called

“doubly stochastic matrices.”

Let us see how the states interact with the dynamics. Suppose we have a state

X =
[

1
6
, 1

6
, 2

3

]T

. We will calculate how a state changes: MX = Y







0 1
6

5
6

1
3

1
2

1
6

2
3

1
3

0













1
6
1
6
2
3







=







21
36
9

36
6

36







Notice that the sum of the entries of Y is 1. If we have X expressing the probability

of the position of a marble, and M expressing the probability of the way the marble

moves around, then MX = Y =
[

21
36

, 9
36

, 6
36

]T

is to be interpreted as expressing

the probability of the marble’s location after moving. In other words, if X is the

probability of the marble at time t, then MX is the probability of the marble at time

t +1.

If M is an n by n doubly stochastic matrix and X is an n by 1 column vector whose

entries sum to 1, then MkX = Y can be interpreted as expressing the probability

of the position of a marble after k time clicks. That is, if X = [x0,x1, . . . ,xn−1]
T

means that there is an xi chance that a marble is on vertex i, then MkX = Y =
[y0,y1, . . . ,yn−1]

T means that after k time clicks, there is a y j chance that the marble

is on vertex j.

We are not constrained to multiply M by itself. We may also multiply M by

another doubly stochastic matrix. Let M and N be two n by n doubly stochastic

matrices. M ⋆ N will then describe a probability transition of going from time t to

t +1 to t +2.

In quantum computers, quantum systems are generally in a probabilistic state.

Manipulating the system will correspond to multiplying the state by matrices. Each

time click will correspond to one matrix multiplication. At the end of the computa-

tion, the resulting vector will describe the state of the system.

Before moving on to the next section, we shall examine an interesting exam-

ple. This shall be known as the “probabilistic double slit experiment.” Consider the

picture in figure 10.1 of a shooting gun.
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Fig. 10.1 Double slit experiment with bullets.

There are two slits in the wall. The shooter is a good enough shot to always get

the bullets through one of the two slits. There is a 50–50 chance of which slit the

bullet will go through. Once a bullet is through a slit, there are three targets to the

right of each slit that the bullet can hit with equal probability. The middle target can

get hit in one of two ways: from the top slit going down, or from the bottom slit

going up. It is assumed that it takes the bullet one time click to go from the gun to

the wall and one time click to go from the wall to the targets. The picture correspond

to the following weighted graph.
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Notice that the vertex marked 5 can receive bullets from either of the two slits.

Corresponding to this graph is the matrix B (for “bullets”)

B =



















0 0 0 0 0 0 0 0
1
2

0 0 0 0 0 0 0
1
2

0 0 0 0 0 0 0

0 1
3

0 1 0 0 0 0

0 1
3

0 0 1 0 0 0

0 1
3

1
3

0 0 1 0 0

0 0 1
3

0 0 0 1 0

0 0 1
3

0 0 0 0 1



















In words, B describes the way a bullet will move after one time click.3

Let us calculate the probabilities for the bullet’s position after two time clicks.

3 The matrix B is not a doubly stochastic matrix. The sum of the weights entering vertex 0 is
not 1. The sum of weights leaving vertices 3, 4, 5, 6, and 7 are more than 1. This fact should not
bother you. We are interested in demonstrating the way probabilities behave with respect to these
matrices.
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B⋆B = B2 =


















0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1
6

1
3

0 1 0 0 0 0
1
6

1
3

0 0 1 0 0 0
1
3

1
3

1
3

0 0 1 0 0
1
6

0 1
3

0 0 0 1 0
1
6

0 1
3

0 0 0 0 1


















So B2 indicates the probabilities of the bullet’s position after two time clicks.

If we are sure that we start with the bullet in position 0, i.e., X = [1,0,0,0,0,0,0,0]T ,

then, after two time clicks, the state of the bullets will be

B2X = [0,0,0,
1

6
,

1

6
,

1

3
,

1

6
,

1

6
]T

The key idea is to notice that B2[5,0] = 1
6

+ 1
6

= 1
3

because the bullets start from

position 0, then there are two possible ways of the bullet getting to position 5. The

possibilities sum to 1
3

. This is what we would expect. We shall revisit this example

in the next subsection where strange things start happening!

10.1.3 Quantum Systems

We are now ready to leave the world of classical probabilities and enter the world

of the quantum. One of the central facts about quantum mechanics is that complex

numbers play a major role in the calculations. Probabilities of states and transitions

are not given as a real numbers p between 0 and 1. Rather, they are given is a

complex numbers c such that |c|2 is a real number4 between 0 and 1.

What is the difference how the probabilities are given? What does it matter if

a probability is given as a real number between 0 and 1, or as a complex number

whose modulus squared is a real number between 0 and 1? The difference is – and

this is the core of quantum theory – that real number probabilities can be added to

obtain larger real numbers. In contrast, complex numbers can cancel each other and

lower their probability. In detail, if p1 and p2 are two real numbers between 0 and

1, then (p1 + p2) ≥ p1 and (p1 + p2) ≥ p2. Now let’s look at the complex case. Let

c1 and c2 be two complex numbers with their squares of modulus |c1|2 and |c2|2.

|c1 + c2|2 need not be bigger then |c1|2 and it also does not need to be bigger than

|c2|2.

4 We remind the reader that if c = a+bi is a complex number, then its modulus is |c| =
√

a2 +b2

and |c|2 = a2 +b2.
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For example5 , if c1 = 5+3i and c2 =−3−2i, then |c1|2 = 34 and |c2|2 = 13 but

|c1 + c2|2 = |2+ i|2 = 5. 5 is less than 34 and 5 is less than 13.

This possibility of canceling out complex numbers corresponds to something

called “interference” in quantum mechanics. One complex number might interfere

with another. It is one of the most important ideas in quantum theory.

Let us generalize our states and graphs from the previous subsection. Rather than

insisting that the sum of the entries in the column vector is 1, we insist that the sum

of the modulus squared of the entries is 1. This makes sense since we are considering

the probability as the modulus squared.

For dynamics, rather than talking about graphs with real number weights, we

shall talk about graphs with complex number weights. Instead of insisting that the

adjacency matrix of such a graph be a doubly stochastic matrix, we ask instead that

the adjacency matrix be unitary.6

For example, consider the graph

0•

1√
2

��

−i√
2

-- •1

1√
2

mm

i√
2

ss

•2.

i

��

The corresponding unitary adjacency matrix is

U =







1√
2

1√
2

0

−i√
2

i√
2

0

0 0 i







.

Unitary matrices are related to doubly stochastic matrices as follows. The mod-

ulus squared of the all the complex entries in U forms a doubly stochastic ma-

trix. The i, jth element in U is denoted U [i, j], and its modulus squared is denoted

|U [i, j]|2. By abuse of notation, we shall denote the entire matrix of modulus squares

as |U [i, j]|2:

|U [i, j]|2 =






1
2

1
2

0
1
2

1
2

0

0 0 1




 .

5 The important point here is that the modulus squared is positive. For simplicity of calculations,
we have chosen easy complex numbers.
6 Let us just remember: a matrix U is unitary if U ⋆U† = I = U† ⋆U . The adjoint of U , denoted as

U†, is defined as U† = (U)T = (UT ) or U†[ j,k] = U [k, j].
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It is easy to see that this is a doubly stochastic matrix.

From this graph-theoretic point of view, it is easy to see what unitary means: the

conjugate transpose of the U matrix is

U† =







1√
2

i√
2

0

1√
2

−i√
2

0

0 0 −i







.

This matrix corresponds to the graph
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If U is the matrix that takes a state from time t to time t + 1, then U† is the matrix

that takes a state from time t to time t − 1. If we multiply U and U†, we get the

identity matrix I3 which corresponds to the graph

0•

1

��
•1

1

��

•2.

1

��

This means that if we perform some operation and then “undo” the operation, we

will find ourselves in the same state as we began with probability 1. It is important

to note that unitary does not only mean invertable. It means invertable in a very

easy way, i.e., the inverse is the dagger of the matrix. This “invertibility” is again

an important issue in quantum mechanics. Most of the dynamics will be invertible

(except measurements).

In order to see the interference phenomenon and the related “superposition” phe-

nomenon, we will revisit the double-slit experiment from the last subsection.

Rather than looking at bullets, which are relatively large objects and hence adhere

to the laws of classical physics, we shall look at microscopic objects such as photons

that follow the laws of quantum physics. Rather than having a gun, we shall have a

laser shoot photons through two slits as in Fig. 10.2.

Again we shall make the assumption that a photon will pass through one of the

two slits. Each slit has a 50% chance of the photon going through it. To the left of

each slit there are three measuring devices. It is assumed that it takes one time click

to go from the laser to the slits and one time click to go from the slits to the targets.
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Fig. 10.2 Double slit experiment with photons.

We are not interested in how large the slits are or how far the measuring positions

are from the slits. Physicists are very adapt at calculating many different aspects of

this experiment. We are only interested in the set-up.

Consider the following weighted graph that describes the set-up of the experi-

ment:
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The modulus squared of 1√
2

is 1
2

, which corresponds to the that there is a 50–50

chance of the photon going through either slit.

∣
∣
∣
∣
±1± i√

6

∣
∣
∣
∣

2

= 1
3

which corresponds to

the fact that whichever slit the photon goes through, there is a 1
3

of a chance of its

hitting any of the three measuring positions to the right of that slit.7

The adjacency matrix for this graph is P (for “photons”)8

7 The actual complex number weights are not our interest here. If we wanted to calculate the actual
numbers, we would have to measure the width of the slits, the distance between the slits, the dis-
tance from the slits to the measuring devices etc. However, our goal here is to clearly demonstrate
the interference phenomenon. And so we chose the above complex numbers simply because the
modulus squared are exactly the same as the bullets case.
8 This matrix is not a unitary matrix. Looking carefully at row 0, one can immediately see that P

is not unitary. In our graph, there is nothing entering vertex 0. The reason why this matrix fails
to be unitary is because we have not put in all the arrows in our graph. There are many more
possible ways the photon can travel in a real-life physical situation. In particular, the photon might
go from the right to the left. The diagram and matrix would become too complicated if we put in
all the transitions. We are simply trying to demonstrate the interference phenomenon and we can
accomplish that even with a matrix that is not quite unitary.
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P =























0 0 0 0 0 0 0 0
1√
2

0 0 0 0 0 0 0

1√
2

0 0 0 0 0 0 0

0 −1+ i√
6

0 1 0 0 0 0

0 −1− i√
6

0 0 1 0 0 0

0 1− i√
6

−1+ i√
6

0 0 1 0 0

0 0 −1− i√
6

0 0 0 1 0

0 0 1− i√
6

0 0 0 0 1























.

The modulus squared of the P matrix is exactly the same as the bullets matrix

i.e., |P[i, j]|2 = B. Let us see what happens if we calculate the transitions matrix

after two time clicks.

P2 =





















0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
−1+ i√

12
−1+ i√

6
0 1 0 0 0 0

−1− i√
12

−1− i√
6

0 0 1 0 0 0

0 −1+ i√
6

1− i√
6

0 0 1 0 0

−1− i√
12

0 −1− i√
6

0 0 0 1 0

−1+ i√
12

0 1− i√
6

0 0 0 0 1





















.

How do we interpret this in terms of probability? Let us look at the modulus

squared of each of the entries.

|P2[i, j]|2 =


















0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1
6

1
3

0 1 0 0 0 0
1
6

1
3

0 0 1 0 0 0

0 1
3

1
3

0 0 1 0 0
1
6

0 1
3

0 0 0 1 0
1
6

0 1
3

0 0 0 0 1


















.

This matrix is almost exactly the same as B2 but with one glaring difference.

B2[5,0] = 1
3

because of the two ways of starting at position 0 and ending at position

5. We added the nonnegative probabilities 1
6

+ 1
6

= 1
3

. However with a photon that
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follows the laws of quantum mechanics, the complex numbers are added as opposed

to their probabilities.

1√
2

(−1+ i√
6

)

+
1√
2

(
1− i√

6

)

=
−1+ i√

12
+

1− i√
12

=
0√
12

= 0.

Thus giving us |P2[5,0]|2 = 0. In other words, although there are two ways of a

photon going from vertex 0 to vertex 5, there will be no photon at vertex 5.

How is one to understand this phenomenon? Physicists have a simple explana-

tion for interference: waves. A familiar observation such as a pebble thrown into

a pool of water will easily convince us that waves interfere, sometimes reinforcing

each other, sometimes cancelling each other. In our experiment, photons are going

through both slits at one time and they are canceling each other out at the middle

measuring device. Thus, the double-slit experiment points to the wave-like nature

of light.

The experiment can be done with only one photon shot out from vertex 0. This

ensures that there will not be another wave for it to cancel out with. And yet, when

only one photon goes through a slit, there is still an interference phenomenon. What

is going on here?

The naive probabilistic interpretation of the position of the photon following the

bullet metaphor of the previous section, is thus not entirely adequate. Let the state

of the system be given by X = [c0,c1, . . . ,cn−1]
T ∈ Cn. It is incorrect to say that the

probability of the photon being in position k is |ck|2. Rather, a system in state X

means that the particle is in all positions simultaneously. It is only after we measure

the photon that the chances of it being found in position k is |ck|2. The photon (or its

associated wave) goes through the top slit and the bottom slit simultaneously. And

when the photon exits both slits, it can cancel itself out. A photon is not in a singe

position, rather it is in many positions or a “superposition”.

This might cause some justifiable disbelief. After all, we do not see things in

a superposition of states. Our everyday experience tells us that things are in one

position or (exclusive or!) another position. How can this be? The reason why we

see particles in exactly one position is because we have performed a measurement.

When we measure something at the quantum level, the quantum object that we have

measured is no longer in a superposition of states, rather it collapses to a single

classical state. So we have to redefine what a state of a quantum system means: A

system in state X means that after measuring the photon it will be in position k with

probability |ck|2.

What are we to make of these strange ideas? Are we really to believe them?

Richard Feynman in discussing the double-slit experiment [3] (Vol. III, p. 1–1)

waxes lyrical:

We choose to examine a phenomenon which is impossible, absolutely impossible, to explain
in any classical way, and which has in it the heart of quantum mechanics. In reality, it
contains the only mystery. We can not make the mystery go away by “explaining” how it
works. We will just tell you how it works.



160 N.S. Yanofsky

It is exactly this superposition of states that is the real power behind quantum

computing. Classical computers are in one state at every moment. Quantum com-

puters can be put in a superposition of states. Imagine putting a computer in many

different classical states at one time and then processing with all the states. This is

the ultimate in parallel processing! Such a computer can only be conceived in the

quantum world.

10.1.4 Combining Systems

Quantum mechanics can also deal with systems that have more than one part. In this

section we learn how to combine several systems into one. We shall talk about com-

bining classical probabilistic systems. However, whatever is stated about classical

probabilistic systems is also true for quantum systems.

Consider two different marbles. Imagine that a red marble follows the probabili-

ties of the graph whose corresponding adjacency matrix is

M =







0 1
6

5
6

1
3

1
2

1
6

2
3

1
3

0







.

Consider also a blue marble that follows the transitions given by the graph

GN = a•

1
3

��
2
3

,, •b

1
3

��

2
3

ll

i.e., the matrix

N =

[
1
3

2
3

2
3

1
3

]

.

What does a state for a two marble system look like? Since the red marble can be

on one of three vertices and the blue marble can be on one of two vertices, there are

3× 2 = 6 possible states of the combined system. This is the tensor product of a 3

by 1 vector with a 2 by 1 vector. A typical state might look like:
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X =













0a 1
18

0b 0

1a 2
18

1b 1
3

2a 0

2b 1
2













,

which would correspond to the fact that there is a

1
18

chance of the red marble being on vertex 1 and the blue marble being

on vertex a,

0 chance of the red marble being on vertex 1 and the blue marble being on

vertex b,
...
1
2

chance of the red marble being on vertex 3 and the blue marble being on

vertex b.

Now we may ask, how does a system with these two marbles change? What is

its dynamics? Imagine that the red marble is on vertex 1 and the blue marble is on

vertex a. We may write this as “1a.” What is the probability of the state going from

state 1a to state 2b? Obviously, the red marble must go from vertex 1 to vertex 2

and (multiply) the blue marble must go from vertex a to vertex b. The probability

is 1
3
× 2

3
= 2

9
. In general, for a system to go from state i j to a state i′ j′ we must

multiply the probability of going from state i to state i′ with the probability of going

from state j to state j′.

i j
M[i′,i]×N[ j′, j] // i′ j′ .

For the changes of all the states, we have to do this for all the entries. We are

really giving the tensor product of two matrices9:

9 Formally, the tensor product of matrices is a function

⊗ : Cm×m ×Cn×n −→ Cm×m ⊗Cn×n = Cmn×mn

and it is defined as: (A⊗B)[ j,k] = A[ j/n,k/m]×B[ j MOD n,k MOD m].
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M⊗N =
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9
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1
6
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The graph that corresponds to this matrix, GM ×GN is called the Cartesian product

of two weighted graphs. In quantum theory, the states of two systems are combined

using the tensor product of two vectors and the dynamics of two systems are com-

bined by using the tensor product of two matrices. The tensor product of the matrices

will then act on the tensor product of the vectors.

In general, the Cartesian product of an n-vertex graph with an n′-vertex graph is

an (n×n′)-vertex graph. If we have an n-vertex graph G and we are interested in m

different marbles moving in this system, we would need to look at the graph

Gm = G×G×·· ·×G
︸ ︷︷ ︸

m times

which will have nm vertices. If MG is the associated adjacency matrix, then we will

be interested in

M⊗m
G = MG ⊗MG ⊗·· ·⊗MG

︸ ︷︷ ︸

m times

which will be a nm by nm matrix.

One might think of a bit as a two vertex graph with a marble on the 0 vertex or a

marble on the 1 vertex. If one were then interested in m bits, one would need a 2m

vertex graph or equivalently a 2m by 2m matrix. So there is exponential growth of

the resources needed for the amount of bits discussed.

This exponential growth for a system is actually one of the main reasons why

Richard Feynman started thinking about quantum computing. He realized that be-

cause of this exponential growth, it would be hard for a classical computer to sim-
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ulate such a system. He asked whether a quantum computer with its ability to do

massive parallel processing, might be able to simulate such a system.

10.2 Basic Quantum Theory

Armed with the intuition, we tackle the formal statement of quantum theory. A dis-

claimer is in order: We are only presenting a small part of finite dimensional quan-

tum physics. There is no way that we can give more than a minute fraction of this

magnificent subject in these few pages. It is a sincere hope that this will inspire the

reader to go on and study more. For a mathematician, the best book to start reading

about quantum mechanics is, of course, Dirac’s classic text [2]. However, there are

many other primers available, e.g., [1, 4, 5, 7]. The more advanced mathematician

might want to look at [6].

10.2.1 States

An n dimensional quantum system is a system that can be observed in one of n

possible states. Examples of such systems are

• a particle can be in one of n positions;

• a system might have one of n energy levels;

• a photon might have one of n polarization directions.

For clarity, lets talk of the first example. Lets say we have a particle that can be in

one of n positions.

The states of such a system shall be represented by column vectors of n complex

numbers. We shall denote these vectors with the “ket” | 〉10 notation:

|ϕ〉 = [c0,c1, . . . ,c j, . . . ,cn−1]
T .

How is one to interpret these kets? Let us look at simple cases. The state

|ψ〉 = [0,1, . . . ,0, . . . ,0]T

is to be thought of as saying that our particle will be found in position 1. The state

|ψ ′〉 = [0,0, . . . ,1, . . . ,0]T

is to be interpreted that the particle is in position j. These two states are examples

of what are called “pure states”.

How is one to interpret an arbitrary

10 “Ket” is the second half of “bracket”. However we shall not use the “bra” part in our exposition.
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|ϕ〉 = [c0,c1, . . . ,c j, . . . ,cn−1]
T ?

Let S be the sum of the squares of modulus of the c j, i.e.,

S = |c0|2 + |c1|2 + . . .+ |cn−1|2.

This is the length of the vector |ϕ〉 squared. Then |ϕ〉 is to be interpreted that if one

was to measure the state described by |ϕ〉 we would find the particle in position 0

with probability |c0|2/S, in position 1 with probability |c1|2/S, in position 2 with

probability |c2|2/S, . . ., in position n−1 with probability |cn−1|2/S Such states are

called “superpositions”. They say that the particle is in more than one “position” at

a time. It is important to stress that |ϕ〉 means that the particle is in all positions

simultaneously. It does not mean that the particle is in some single position and the

c j are giving us probabilities of which position.

These superpositions can be added: if

|ϕ〉 = [c0,c1, . . . ,c j, . . . ,cn−1]
T and |ϕ ′〉 = [c′0,c

′
1, . . . ,c

′
j, . . . ,c

′
n−1]

T ,
then

|ϕ〉+ |ϕ ′〉 = [c0 + c′0,c1 + c′1, . . . ,c j + c′j, . . . ,cn−1 + c′n−1]
T .

Also, if there is a complex number c ∈ C, we can multiply a ket by this c:

c|ϕ〉 = [c× c0,c× c1, . . . ,c× c j, . . . ,c× cn−1]
T

These operation satisfy all the properties of being a complex vector space. So the

states of an n dimensional quantum system are represented by the complex vector

space Cn.

Let us add a superposition to itself.

|ϕ〉+ |ϕ〉 = 2|ϕ〉 = [c0 + c0,c1 + c1, . . . ,c j + c j, . . . ,cn−1 + cn−1]
T

= [2c0,2c1, . . . ,2c j, . . . ,2cn−1]
T .

The sum of the modulus squared is
S′ = |2c0|2 + |2c1|2 + . . .+ |2cn−1|2

= 22|c0|2 +22|c1|2 + . . .+22|cn−1|2 = 22(|c0|2 + |c1|2 + . . .+ |cn−1|2).
The chances of a particle being found in position j is

|2c j|2
S′

=
22|c j|2

22(|c0|2 + |c1|2 + . . .+ |cn−1|2)
=

|c j|2

|c0|2 + |c1|2 + . . .+ |cn−1|2
.

In other words, the ket 2|ϕ〉 describes the same physical system as |ϕ〉. This makes

sense, after all when we add two of the same superpositions, we do not expect any

interference. We expect that they should reinforce each other. A similar analysis

shows that for an arbitrary c ∈ C we have that the ket |ϕ〉 and the ket c|ϕ〉 describe

the same physical state. Geometrically, we can say that the vector |ϕ〉 and the exten-

sion c|ϕ〉 describe the same physical state. So the only thing that is important is the

direction of |ϕ〉 not the length of |ϕ〉. We might as well work with a “normalized”
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|ϕ〉, i.e.,
|ϕ〉
||ϕ〉|

which has length 1. In fact, in section 1, we only worked with vectors of length 1.

Given an n dimensional quantum system that is represented by Cn and an m

dimensional quantum system represented by Cm, we can combine these two systems

to form one system. This one system is to represented by the tensor product of the

two vector spaces:

Cn ⊗Cm ∼= Cn×m.

If |ϕ〉 is in the first system and |ϕ ′〉 is in the second system, then we represent the

combined system as

|ϕ〉⊗ |ϕ ′〉 = |ϕ,ϕ ′〉 = |ϕϕ ′〉.
It is important to realize that, in general, there are more elements in the tensor

product of the two systems than in the union of each of the two systems. States

in Cn ⊗Cm that cannot be represented simply as an element in Cn and an element

in Cm are said to be “entangled”.

10.2.2 Dynamics

Quantum systems are not static. The states of the system are constantly changing.

Changes, or “operators”, on an n dimensional quantum system are represented by n

by n unitary matrices. Given a state |ϕ〉 that represents a system at time t, then the

system will be in state U |ϕ〉 at time t +1.

What does unitary really mean? If U |ϕ〉 = |ϕ ′〉 then we can easily form U† and

multiply both sides of the equation by U† to get U†U |ϕ〉= U†|ϕ ′〉 or |ϕ〉= U†|ϕ ′〉.
In other words, because U is unitary, there is a related matrix that can “undo” the

action that U does. U† takes the result of U’s action and gets the original vector

back. In the quantum world, most actions actions are “undoable” or “reversible” in

such a manner.

If U operates on Cn and U ′ operates on Cm, then U ⊗U ′ will operate on Cn⊗Cm

in the following way:

(U ⊗U ′)(|ϕ〉⊗ |ϕ ′〉) = U |ϕ〉⊗U ′|ϕ ′〉.

10.2.3 Observables

There are other types of operations that one can do to a n dimensional quantum

system: one can observe, or “measure”, the system. When we measure a system,

it is no longer in a superposition. The superposition is said to “collapse” to a pure

state.
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|ϕ〉 = [c0,c1, . . . ,c j, . . . ,cn−1]
T  |ϕ ′〉 = [0,0, . . . ,1, . . . ,0].T

The question is which of the n pure states will the state collapse to? The answer

is that it is random. Let S be the sum of all the squares of the modulus, i.e.,

S = |c0|2 + |c1|2 + · · ·+ |c j|2 + · · ·+ |cn−1|2.

There is a |c0|2/S of a chance of the superposition collapsing to the 0th pure state.

There is a |c1|2/S of a chance of the superposition collapsing to the 1th pure state.

etc. There is no known mathematical way to decide which pure state the system will,

in-fact, collapse to.

An observable, or “measurement” on an n dimensional system is represented

by an n by n hermitian matrix. We remind the reader that a n by n matrix A is

hermitian, or “self-adjoint” if A† = A. In other words, A[ j,k] = A[k, j]. Equivalently

A is hermitian if and only if AT = A. For example, the matrix





5 4+5i 6−16i

4−5i 13 7

6+16i 7 −2.1





is hermitian.

For a matrix A in Cn×n, if there is a number c in C and a vector |ψ〉 in Cn such

that

A|ψ〉 = c|ψ〉
then c is called an “eigenvalue” of A and |ψ〉 is called an “eigenvector” of A associ-

ated to c. The eigenvalues of a hermitian matrix are all real numbers. Furthermore,

distinct eigenvectors which have distinct eigenvalues of any hermitian matrix are

orthogonal. The hermitian matrices that represent observables for an n dimensional

system have the further property that there are n distinct eigenvalues and n distinct

eigenvectors. That means that the set of eigenvectors form a basis for the entire com-

plex vector space that represents the quantum system we are interested in. Hence if

we have an observable A and |ϕ〉 an eigenvalue of A then A|ϕ〉 = c|ϕ〉 for some

c ∈ C. c|ϕ〉 represents the same state as |ϕ〉 as we said before. So if the system is in

an eigenvector of the basis, then the system will not change.

10.3 Architecture

In this section we are going to show how the ideas of quantum mechanics are going

to influence our construction of quantum computers. In this paper we do not dwell

on actual hardware implementations. Rather we shall look at the quantum general-

izations of bits and logical gates. In Section 3.1 we go from bits to qubits. We also

discuss the notation that is needed for this. In Section 3.2 we show how to look at

classical computing as matrix manipulations. From the view afforded by this per-

spective, we easily generalize the notion of logical gate to quantum gate. There are
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many quantum gates, but we shall only look at a few that will be needed in the next

section.

10.3.1 Bits and Qubits

What is a bit? A bit is an atom of information that represents one of two disjoint

situations. An example of a bit is electricity going through a circuit or electricity

not going through a circuit; a switch turned on or a switch turned off; a way of

saying true or false. All these examples are saying the same thing: a bit is a way of

describing a system whose set of states is of size two.

A bit can be represented by two 2 by 1 matrices. We shall represent 0 – or better

the state |0〉 as

|0〉 =

[
0 1

1 0

]

We shall represent a 1, or state |1〉 as:

|1〉 =

[
0 0

1 1

]

Since these are two different representations, we have an honest-to-goodness bit.

A bit is either in state |0〉 or in state |1〉. That was sufficient for the classical world.

But that is not sufficient for the quantum world. In that world we have situations

where we are in one state and in the other state simultaneously. In the quantum

world we have systems where a switch is in a superposition of states on and off.

So we define a “quantum bit” or a “qubit” as a way of describing a quantum system

of dimension two. We shall represent any such qubit as a two by one matrix with

complex numbers:

[
0 c0

1 c1

]

where |c0|2 + |c1|2 = 1. Notice that a classical bit is a special type of qubit. |c0|2 is

to be interpreted as the probability that after measuring the qubit, it will be found in

state |0〉. |c1|2 is to be interpreted as the probability that after measuring the qubit it

will be found in state |1〉. Whenever we measure a qubit, it automatically becomes

a bit. So we shall never “see” a general qubit. Nevertheless, they do exist and they

are the core of our tale. The power of quantum computers is due to the fact that a

system can be in many states at the same time.

Following the normalization procedure that we learned in the last section, any

element of C2 can be converted into a qubit. For example, the vector
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V =

[
5+3i

6i

]

has norm

|V | =
√

〈V,V 〉 =

√

[5−3i,−6i]

[
5+3i

6i

]

=
√

34+36 =
√

70.

So V describes the same physical state as the qubit

V√
70

=





5+3i√
70

6i√
70



 .

After measuring the qubit V√
70

, the probability of being in state |0〉 is 34
70

, and the

probability of being in state |1〉 is 36
70

.

It is easy to see that the bits |0〉 and |1〉 are the canonical basis of C2. So any

qubit can be written as

[
c0

c1

]

= c0 ·
[

1

0

]

+ c1 ·
[

0

1

]

= c0|0〉+ c1|1〉.

Let us look at several ways of writing different qubits. 1√
2

[
1

1

]

can be written as





1√
2

1√
2



 =
1√
2
|0〉+ 1√

2
|1〉 =

|0〉+ |1〉√
2

.

Similarly 1√
2

[
1

−1

]

can be written as





1√
2−1√
2



 =
1√
2
|0〉− 1√

2
|1〉 =

|0〉− |1〉√
2

.

It is important to realize that

|0〉+ |1〉√
2

=
|1〉+ |0〉√

2
.

These are both ways of writing





1√
2

1√
2



. In contrast,
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|0〉− |1〉√
2

6= |1〉− |0〉√
2

The first state is





1√
2

− 1√
2



 and the second one is





− 1√
2

1√
2



. However the two states

are related:
|0〉− |1〉√

2
= (−1)

|1〉− |0〉√
2

.

How are qubits to be implemented? While this is not our focus, some examples

of qubit implementations are given:

• An electron might be in one of two different orbits around a nucleus of an atom.

(Ground state and excited state.)

• A photon might be in one of two different polarized states.

• A subatomic particle might be in spinning in one of two different directions.

There will be enough quantum indeterminacy and quantum superposition effects

within all these systems to represent a qubit.

Computers with only one bit of storage are not very interesting. Similarly, we

will need quantum devices with more then one qubit. Consider a byte. A typical

byte might look like

01101011.

We might also write it as

[
1

0

]

,

[
0

1

]

,

[
0

1

]

,

[
1

0

]

,

[
0

1

]

,

[
1

0

]

,

[
0

1

]

,

[
0

1

]

.

Previously, we learned that in order to combine systems one should use the tensor

product. We can describe the above byte as

|0〉⊗ |1〉⊗ |1〉⊗ |0〉⊗ |1〉⊗ |0〉⊗ |1〉⊗ |1〉.

As a qubit, this is an element of

C2 ⊗C2 ⊗C2 ⊗C2 ⊗C2 ⊗C2 ⊗C2 ⊗C2.

This vector space can be written as (C2)⊗8. This is a complex vector space of dimen-

sion 28 = 256. Since there is only one complex vector space (up to isomorphism) of

this dimension, this space is isomorphic to C256.

Our byte can be described as in yet another way: As a 28 = 256 row vector
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00000000 0

00000001 0
...

...

01101010 0

01101011 1

01101100 0
...

...

11111110 0

11111111 0





















.

This is fine for the classical world. However, for the quantum world, a general

qubit can be written as





















00000000 c0

00000001 c1

...
...

01101010 c106

01101011 c107

01101100 c108

...
...

11111110 c254

11111111 c255





















where ∑
255
i=0 |ci|2 = 1.

In the classical world, you need to write the state of each of the eight bits.

This amounts to writing eight bits. In the quantum world, a state of eight qubits

is given by writing 256 complex numbers. This exponential growth was one of the

reasons why researchers started thinking about quantum computing. If you wanted

to emulate a quantum computer with a 64 qubit register, you would need to store

264 = 18,446,744,073,709,551,616 complex numbers. This is beyond our current

ability.

Let us practice writing two qubits in ket notation. The qubits








00 0

01 1

10 0

11 0








can be written as |0〉⊗ |1〉.
Since the tensor product is understood, we might also write these qubits as |0,1〉

or |01〉. The qubit corresponding to
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1√
3







1

0

−1

1







can be written as

1√
3
|00〉− 1√

3
|10〉+ 1√

3
|11〉 =

|00〉− |10〉+ |11〉√
3

.

The tensor product of two states is not commutative.

|0〉⊗ |1〉 = |0,1〉 = |01〉 6= |10〉 = |1,0〉 = |1〉⊗ |0〉.

The first ket says that the first qubit is in state 0 and the second qubit is in state 1.

The second ket says that first qubit is in state 1 and the second state is in state 0.

10.3.2 Classical Gates

Classical logical gates are ways of manipulating bits. Bits go into logical gates and

bits come out. We represent n input bits as a 2n by 1 matrix and m output bits as a

2m by 1 matrix. How should we represent our logical gates? A 2m by 2n matrix takes

a 2n by 1 matrix and outputs a 2m by 1 matrix. In symbols:

(2m ×2n)(2n ×1) = (2m ×1).

So bits will be represented by column vectors and logic gates will be represented by

matrices.

Let us do a simple example. Consider the NOT gate. NOT takes as input one bit,

or a 2 by 1 matrix, and outputs one bit, or a 2 by 1 matrix. NOT of |0〉 equals |1〉
and NOT of |1〉 equals |0〉. The matrix

NOT =

[
0 1

1 0

]

.

This matrix satisfies
[

0 1

1 0

][
1

0

]

=

[
0

1

] [
0 1

1 0

][
0

1

]

=

[
1

0

]

,

which is exactly what we want.

What about the other gates? The other gates will be given by the following ma-

trices:

AND NAND OR NOR
[

1 1 1 0

0 0 0 1

] [
0 0 0 1

1 1 1 0

] [
1 0 0 0

0 1 1 1

] [
0 1 1 1

1 0 0 0

]
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When we perform a computation, often we have to carry out one operation fol-

lowed by another.

A B

We shall call this performing “sequential” operations. If matrix A corresponds

to performing an operation and matrix B corresponds to performing another oper-

ation, then the multiplication matrix B ⋆ A corresponds to performing the operation

sequentially.

Besides sequential operations, there are “parallel” operations:

A

B

Here we are doing A to some bits and B to other bits. This will be represented by

A⊗B, the tensor product of two matrices.

Combination of sequential and parallel operations gates/matrices will be circuits.

A starting point is the realization that the circuit

A B

A′ B′

can be realized as

(B⋆A)⊗ (B′ ⋆A′) = (B⊗B′)⋆ (A⊗A′).

We will of course have some really complicated matrices, but they will all be de-

composable into the sequential and parallel composition of simple gates.

10.3.3 Quantum Gates

A quantum gate is simply any unitary matrix that manipulates qubits. There are

some simple gates that are quantum gates.

The Hadamard matrix:

H =
1√
2

[
1 1

1 −1

]

=





1√
2

1√
2

1√
2
− 1√

2



 .

The Hadamard matrix is also its own inverse. As it turns out, the Hadamard matrix

is one of the most important matrices in quantum computing.

Consider the following controlled-not gate.
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|x〉
•

|x〉

|y〉
��������

|(x⊕ y)〉

This gate has two inputs and has two outputs. The top input is the control bit. It

controls what the output will be. If |x〉 = |0〉, then the output of |y〉 will be the same

as the input. If |x〉 = |1〉 then the output of |y〉 will be the opposite. If we write the

top qubit first and then the bottom qubit, then the controlled-not gate takes |x,y〉 to

|x,x⊕ y〉 where ⊕ is the binary exclusive or operation.

The matrix that corresponds to this reversible gate is








00 01 10 11

00 1 0 0 0

01 0 1 0 0

10 0 0 0 1

11 0 0 1 0








.

One last piece of notation: we shall denote an observation (measurement) by the

following “meter”:

FE


There are many other quantum gates, but we shall not need them for our work in

the next section.

10.4 Deutsch’s Algorithm

The simplest quantum algorithm is Deutsch’s algorithm which is a nice short al-

gorithm that solves a slightly contrived problem. This algorithm is concerned with

functions from the set {0,1} to the set {0,1}. There are four such functions which

we might visualize as

0• � // •0 0• � // •0 0•
�

  B
BB

BB
BB

B •0 0•
�

  B
BB

BB
BB

B •0

1•
<

>>||||||||
•1 1• � // •1 1•

<

>>||||||||
•1 1• � // •1

Call a function f : {0,1} −→ {0,1}, “balanced” if f (0) 6= f (1)). In contrast, call

a function “constant” if f (0) = f (1). Of the four functions, two are balanced and

two are constant.

Deutsch’s algorithm solves the following problem: Given a function f : {0,1}−→
{0,1} as a black-box, where one can evaluate an input, but cannot “look inside” and

“see” how the function is defined, tell if the function is balanced or constant.
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With a classical computer, one would have to first evaluate f on an input, then

evaluate f on the second input and then compare the outputs. The point is that with

a classical computer, f must be evaluated twice. Can we do better?

A quantum computer can be in two states at one time. We shall use this superpo-

sition of states to evaluate both inputs at one time.

In classical computing, evaluating a given function f would correspond to per-

forming the following operation

x
f

f (x)

Such a function could be thought of as a matrix. The function

0• � // •0

1•
<

>>||||||||
•1

is equivalent to the matrix

[
0 1

0 1 1

1 0 0

]

.

Multiplying either state |0〉 or state |1〉 on the right of this matrix would result in

state |0〉. The column name is to be thought of as the input and the row name is to

be thought of as the output.

However, this will not be good for a quantum system. For a quantum system we

need a little something extra. A quantum system must be unitary (reversible). Given

the output, we must be able to find the input. If f is the name of the function, then

the following black-box U f system will be the quantum gate that we shall employ

to evaluate input:

|x〉

U f

|x〉

|y〉 |y⊕ f (x)〉

.

The top input, |x〉, will be the qubit value that one wishes to evaluate and the

bottom input, |y〉, controls the output. The top output will be the same as the input

qubit |x〉 and the bottom output will be the qubit |y⊕ f (x)〉 where ⊕ is XOR, the

exclusive or operation. We are going to write from left to right the top qubit first

and then the bottom. So we say that this function takes the state |x,y〉 to the state

|x,y⊕ f (x)〉. If y = 0 this simplifies: |x,0〉 to |x,0⊕ f (x)〉 = |x, f (x)〉. This gate is

reversible by simply looking at the following system.
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|x〉

U f

|x〉

U f

|x〉

|y〉 |y⊕ f (x)〉 |y〉

State |x,y〉 goes to |x,y⊕ f (x)〉 which further goes to

|x,(y⊕ f (x))⊕ f (x)〉 = |x,y⊕ ( f (x)⊕ f (x))〉 = |x,y⊕0〉 = |x,y〉.

In quantum systems, evaluating f is equivalent to multiplying a state of the input

by a unitary matrix U f . For the function

0•
�

  B
BB

BB
BB

B •0

1•
<

>>||||||||
•1

the corresponding unitary matrix is








00 01 10 11

00 0 1 0 0

01 1 0 0 0

10 0 0 1 0

11 0 0 0 1







.

Remember that the top column name correspond to the input |x,y〉 and the left-

hand row name corresponds to the outputs |x,y⊕ f (x)〉. A 1 in the xy column and

the x′y′ row means for input |x,y〉 the output will be |x′,y′〉.
So we are given such a matrix that expresses a function but we cannot “look in-

side” the matrix to “see” how it is defined. We are asked to determine if the function

is balanced or constant.

10.4.1 First Attempt

Let us take a first stab at a quantum algorithm to solve this problem. Rather than

evaluating f twice, let us try our trick of superposition of states. Instead of having

the top input to be either in state |0〉 or in state |1〉, we shall put the top input in state

|0〉+ |1〉√
2

which is “half-way” |0〉 and “half-way” |1〉. The Hadamard matrix can place a qubit

in such a state.
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H|0〉 =





1√
2

1√
2

1√
2
− 1√

2





[
1

0

]

=





1√
2

1√
2



 =
|0〉+ |1〉√

2
.

The obvious (and not necessarily correct) state to put the bottom input is as state

|0〉. And so we have:

|0〉
H

U f

FE


|0〉

⇑ ⇑ ⇑

|ϕ0〉 |ϕ1〉 |ϕ2〉
In terms of matrices this corresponds to

U f (H ⊗ I)(|0〉⊗ |0〉).

We shall carefully examine the states of the system at every point. The system

starts in

|ϕ0〉 = |0〉⊗ |0〉 = |0,0〉.
We then apply the Hadamard matrix only to the top input – leaving the bottom input

alone – to get

|ϕ1〉 =

[ |0〉+ |1〉√
2

]

|0〉 =
|0,0〉+ |1,0〉√

2
.

After multiplying with U f we have

|ϕ2〉 =
|0, f (0)〉+ |1, f (1)〉√

2

For the function 0 7→ 1 and 1 7→ 0 the state |ϕ2〉 would be

|ϕ2〉 =








00 01 10 11

00 0 1 0 0

01 1 0 0 0

10 0 0 1 0

11 0 0 0 1
















00 1√
2

01 0

10 1√
2

11 0









=










00 0

01 1√
2

10 1√
2

11 0










=
|0,1〉+ |1,0〉√

2

If we measure the top qubit, there will be a 50–50 chance of finding it either in

state |0〉 or in state |1〉. Similarly there is no real information to be gotten by mea-
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suring the bottom qubit. So the obvious algorithm does not work. We need another

trick.

10.4.2 Second Attempt

Let us take another stab at solving our problem. Rather then leaving the bottom

qubit in state |0〉, let us put it in the superposition state:

|0〉− |1〉√
2

=





1√
2

− 1√
2



 .

Notice the minus sign. Even though there is a negation, this state is also “half-way”

in state |0〉 and “half-way” in state |1〉. The change of phase will help us get our

desired results. We can get to this superposition of states by multiplying state |1〉
with the Hadamard matrix. We shall leave the top qubit as an ambiguous |x〉.

|x〉

U f

FE


|1〉
H

⇑ ⇑ ⇑

|ϕ0〉 |ϕ1〉 |ϕ2〉
In terms of matrices, this becomes:

U f (I ⊗H)|x,1〉.

Let us look carefully at how the states of the qubits change.

|ϕ0〉 = |x,1〉.

After the Hadamard matrix, we have

|ϕ1〉 = |x〉
[ |0〉− |1〉√

2

]

=
|x,0〉− |x,1〉√

2
.

Applying U f we get

|ϕ2〉 = |x〉
[ |0⊕ f (x)〉− |1⊕ f (x)〉√

2

]

= |x〉
[

| f (x)〉− | f (x)〉√
2

]
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where f (x) means the opposite of f (x). And so we have

|ϕ2〉 =







|x〉
[

|0〉− |1〉√
2

]

if f (x) = 0

|x〉
[

|1〉− |0〉√
2

]

if f (x) = 1

.

Remembering that a−b = (−1)(b−a) we might write this as

|ϕ2〉 = (−1) f (x)|x〉
[ |0〉− |1〉√

2

]

.

What would happen if we evaluate either the top or the bottom state? Again, this

does not really help us. We do not gain any information. The top qubit will be in

state |x〉 and the bottom qubit will – with equal probability – be either in state |0〉 or

in state |1〉. We need something more.

10.4.3 Deutsch’s Algorithm

Now let us combine both of these attempts to actually give Deutsch’s algorithm.

Deutsch’s algorithm works by putting both the top and bottom qubits into a super-

position. We will also put the results of the top qubit through a Hadamard matrix.

|0〉
H

U f

H
FE



|1〉
H

⇑ ⇑ ⇑ ⇑

|ϕ0〉 |ϕ1〉 |ϕ2〉 |ϕ3〉

In terms of matrices this becomes:

(I ⊗H)U f (H ⊗H)|0,1〉

At each point of the algorithm the states are as follows.

|ϕ0〉 = |0,1〉.
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|ϕ1〉 =

[

|0〉+ |1〉√
2

][

|0〉− |1〉√
2

]

=
+|0,0〉− |0,1〉+ |1,0〉− |1,1〉

2
=










00 +1
2

01 −1
2

10 +1
2

11 −1
2










.

We saw from our last attempt at solving this problem, that when we put the bottom

qubit into a superposition and then multiply by U f we will be in a superposition

(−1) f (x)|x〉
[ |0〉− |1〉√

2

]

.

Now with |x〉 in a superposition, we have

|ϕ2〉 =

[

(−1) f (0)|0〉+(−1) f (1)|1〉√
2

][ |0〉− |1〉√
2

]

.

Let us carefully look at

(−1) f (0)|0〉+(−1) f (1)|1〉.

If f is constant this becomes either

+1(|0〉+ |1〉) or −1(|0〉+ |1〉)

(depending on being constantly 0 or constantly 1.) If f is balanced it becomes either

+1(|0〉− |1〉) or −1(|0〉− |1〉)

(depending on which way it is balanced.) Summing up, we have that

|ϕ2〉 =







(±1)

[

|0〉+ |1〉√
2

][

|0〉− |1〉√
2

]

if f is constant

(±1)

[

|0〉− |1〉√
2

][

|0〉− |1〉√
2

]

if f is balanced

Remembering that the Hadamard matrix is its own inverse and takes
|0〉+ |1〉√

2
to

|0〉 and takes
|0〉− |1〉√

2
to |1〉, we apply the Hadamard matrix to the top qubit to get
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|ϕ3〉 =







(±1)|0〉
[

|0〉− |1〉√
2

]

if f is constant

(±1)|1〉
[

|0〉− |1〉√
2

]

if f is balanced

Now we simply measure the top qubit. If it is in state |0〉, then we know that f is a

constant function, otherwise it is a balanced function. And we did this all with only

one evaluation as opposed to the two evaluations that a classical algorithm demands.

Notice that although the ±1 tells us even more information, namely which of the

two balanced functions or which of the two constant functions, we are not privy to

this information. Upon measuring, if the function is balanced, we will measure |1〉
regardless if the state was (−1)|1〉 or (+1)|1〉.

In conclusion, we have solved a problem that a classical computer would require

two function evaluations. Deutsch’s quantum algorithm solved the same problem

with one function evaluation. Other quantum algorithms are built-up with similar

ideas to the ones presented here.
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Part IV

Logic, Agency and Games





Chapter 11

Logic Games: From Tools to Models
of Interaction

Johan van Benthem

11.1 From Products to Activities: Logic in Games

Logical dynamics Logic is often taken to be about propositions, truth, and proofs:

abstract objects in Heaven, and their Platonic properties. But the discipline arose

in Antiquity by studying activities on Earth: dialogue and argumentation. And the

very terminology of logic still has a double meaning. “Statement” is both a dynamic

activity and the static product of that activity, “proof” is a procedure of establishing

a claim and a formal record of that procedure, etc. These activities are usually kept

in the background, as mainly didactical motivation. Placing the dynamics at centre

stage in logical theory is the program of “logical dynamics” [37].

Logic games The best source in modern logic for structured activities are logic

games. These have been around since the Middle Ages, with the “Obligatio” debates

of authors like Walter Burleigh. Mathematical logic games were defined in the 1950s

and 1960s by Lorenzen [25], Ehrenfeucht-Fraı̈ssé [12], Hintikka [17], and Parikh

(cf. [29]) – not accidentally in conjunction with the new wave in game theory. Today,

two-person games are in wide use for logical tasks of evaluation of propositions in

a model, comparing models, building models for assertions, or constructing proofs

for claims in argumentation. And new varieties are still appearing. For a survey with

many references, see [39].

This paper is based on the lecture notes series [38]. It presents logic games in one

setting, to show their role as a model of “intelligent interaction” which fits well with

game theory. Our presentation is elementary, and mostly in the nature of a survey.

We use existing results, plus an occasional new observation connecting up relevant

strands, to paint a total picture. A word of warning to the reader is in order here. This

paper is not a didactical introduction to logic games, but we hope to motivate the

Johan van Benthem
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reader to seek further information in the many references given here. Conversely,

for those who already know the subject, we hope to add some fresh perspectives

and links to other areas of research.

Before doing all this, let us first look at some basic examples.

11.2 The Basic Logic Games

11.2.1 Gamification

In principle, any logical task can be “gamified”, by pulling it apart into roles for two

players whose dynamic interaction tests the notion involved. Interaction involves

dependence, and gamification works once we have an interplay between a universal

quantifier A (“Abelard”, “Adam”, “Alter”) and an existential E (“Eloise”, “Eve”,

“Ego”). Leibniz already explained the meaning of quantifier forms ∀ε∃δ expressing

dependence in mathematical settings in terms of a game:

A challenger ∀ chooses some number ε at his discretion,

and the defender ∃ has to produce a suitable response δ .

In what follows, we give some sketches of major logic games, referring to the

literature for more detailed exposition and references: cf. [39, 45]. Our aim is to

make the reader aware of the ubiquity of these games, and give some examples for

the general discussions later on in this paper.

11.2.2 Argumentation

Perhaps the oldest example of a logic game is argumentation: one makes a claim

against an opponent, upholding it in the face of objections. We all experience its

game-like character of having to say the right thing at the right time, and also, the

bitter taste of defeat when we have talked ourselves into a corner, contradicting our

earlier statements. The latter are the typical losing stages in argumentation – being at

the same time wins for the other player. Precise dialogue games for argumentation,

in the style of Lorenzen, are found in [32].

Here is the key game-theoretic feature of argumentation – which probably led

to the Greeks discovering logical patterns of reasoning in the first place. Roughly

speaking,

Logically valid propositions ϕ will be precisely those

for which their proponent Eve has a winning strategy:

that is, a way of choosing her conversational moves against opponent Adam

which guarantees that she never loses – no matter how Adam attacks her claim.
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Thus, Eve’s winning strategy is a dynamic counterpart of a logical proof for the

proposition ϕ . Now there may be more than one proof for a claim, and this re-

flects the diversity of rational behavior. Players may have more than one strategy to

win a debate. This adversarial strategy-based style of analysis holds across a wide

range of logic games. (For representative studies of modern argumentation theory,

cf. [13, 54].)

But players are on a par in games, and there is no need to glorify one over the

other. It is their interaction which really matters. In particular, since not all ϕ are

valid, there are argumentation games where Adam has a winning strategy for in-

volving Eve in self-contradictions. Section 11.2.4 below takes up what these look

like.

11.2.3 Obligation

Most conversation is not about argumentation. We tend to believe things people tell

us – even implausible ones like “I love you” – as long as they are consistent. Only

in special settings we will be challenged to prove our assertions, say, in a juridical

procedure, or in teaching mathematics. But maintaining consistency is itself a major

logical task! Medieval training disputations often had a form like this:

Eve has to maintain consistency when Adam confronts her with successive assertions ϕ ,
each of which she has to accept or reject. In the former case, ϕ is added to her cumulative
store of commitments, otherwise ¬ϕ is added. Eve loses if at any stage, her commitments
become inconsistent.

One may ask whether this sort of logic exam is fair. And indeed, in principle,

Eve always has a winning strategy, being a string of YES/NO answers

to any sequence of propositions, keeping her commitments consistent.

To see this, Eve’s strategies for passing the exam are correlated with logical mod-

els: situations that make all her commitments true, and indeed any model will help

her pass the test. Strategic insights into consistency are, alas, also logical skills that

help us misinform and lie. For details of medieval disputations, involving Eve’s ini-

tial knowledge, and an option of giving a third response of “doubt” – cf. [11].

11.2.4 Model Checking

Arguably the most basic logic game today occurs in a different setting. Let a first-

order assertion ϕ be made about a model M and variable assignment s. A game

game (ϕ,M,s) of semantic evaluation or “model checking” lets a “Verifier” Eve

claim the truth of ϕ , while a “Falsifier” Adam defends its falsity:
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With atomic ϕ one checks who is right about M,s, and that player wins. Disjunctions are a
choice for Eve, and play goes on with the disjunct chosen. Conjunctions are an initial choice
for Adam. Negations trigger a role switch, with all turns interchanged between players.
Existential quantifiers ∃xϕ are a move for Eve who picks a witness object d in M, and play
continues with the formula ϕ(d). Universal quantifiers are Adam’s choice of a challenge
object.

The game for the formula ∀x∃y. x 6= y in a model with two distinct objects s, t is

this (writing A for “Adam” and E for “Eve”):

A,∀x∃y.x 6= y

x:=s

mmmmmmmmmmmmm
x:=t

QQQQQQQQQQQQQ

E,∃y.s 6= y

y:=s
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~~ y:=t
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E,∃y.t 6= y

y:=s

~~
~~

~~
~~ y:=t

@@
@@

@@
@@

s 6= s
winA

s 6= t
winE

t 6= s
winE

t 6= t
winA

Note that E has a winning strategy here. Essentially, this perspective pulls one

standard logical formula, say ∀x∃y∀z∃uϕ(x,y,z,u) apart into an interactive alterna-

tion ∀1x∃2y∀1z∃2uϕ(x,y,z,u). A good account of evaluation games is [19], while

[34] has variants for fixed-point languages in computer science. Again, the central

notion involves winning strategies [17]:

Fact 11.1 For all M,s,ϕ , the following assertions are equivalent:

1. M,s |= ϕ ,

2. Eve has a winning strategy in game (ϕ,M,s).

Adam has a winning strategy if ϕ is false in M. Different winning strate-

gies encode different reasons for the truth or falsity of an assertion ϕ . “Rea-

sons” are unusual logical objects – but with quantifier combinations such as a

true ∀x∃y∀z∃uϕ(x,y,z,u), one can think of them as bunches of Skolem functions

f (x),g(x,z) of the right arities providing Eve with her winning response in ϕ to

Adam’s successive choices.

11.2.5 Model Construction

The evaluation task of checking if M,s |= ϕ starts from a given model and formula.

But in the earlier task of checking consistency, only assertions are given, with the

satisfiability question if one can find a model for these. This suggests a model con-

struction game between a “Builder” Eve who tries to create a model making some

initial assertions true and others false, and a “Critic” Adam who raises objections,

making sure that every building task gets scheduled. In particular, Critic can force
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Builder to choose when a disjunct is to be made true, and he can keep calling new

instances of initial universal quantifiers as Builder puts new objects into the model

under construction. Builder loses at any stage if her current schedule tells her to

make the same formula both true and false.

A precise format for the game arises by gamifying semantic tableaus [47], with

decomposition rules for logical operators as game moves. The result is

Fact 11.2 The following assertions are equivalent in tableau construction games:

1. A given set of first-order formulas Σ has a model,

2. Builder has a winning strategy in the construction game for Σ .

Unlike first-order evaluation games, whose depth is bounded by the operator

depth of the initial formula ϕ , construction games can have infinite runs. The reason

is that some first-order formulas have only infinite models, making Builder go on

forever. Again, there is a match between Builder’s winning strategies and different

models (if any) for Σ . More sophisticated construction games are used in [21].

If Builder’s winning strategies are like models, what about Critic’s? The latter are

guaranteed ways of blocking any construction attempt. It can be shown that these

are essentially proofs of the negation of the initial assertion. Thus, the construction

game is like the earlier argumentation game, when we reformulate the roles. Critic

tries to prove some initial assertion, while Builder is looking for a counter-example.

This answers our question in Section 11.2.2 about Adam. His winning strategies

correlate with counter-examples to the claim by Proponent. Thus, argumentation

and model construction games are really two takes on the same logical process.

11.2.6 Model Comparison

In addition to model checking and satisfiability testing, other basic tasks for a mod-

ern logical system have to do with its expressive power. We measure the latter by

seeing which models can be distinguished by our language. The most widely used

logic game performs just this task. Ehrenfeucht-Fraı̈ssé games cast Eve as a “Du-

plicator” who claims that two models M,N are similar, while the “Spoiler” Adam

claims they are different. Each round of the game starts with pointed models

(M,a)− (N,b), where a,b are tuples of objects chosen according to the following

procedure:

In each round, Spoiler chooses a model M or N, and an object x in it, Duplicator then
chooses a corresponding object y in the other model; and the link x− y is then added to the
current match a−b

Duplicator loses whenever the function from M into N defined by the current

match of objects is no longer a partial isomorphism between the two models. She

wins those runs of the game where this failure never occurs. We can play over a fixed

finite number of rounds, or forever. An excellent textbook on Ehrenfeucht-Fraı̈ssé

games is [10]. Here is the key result about the method:
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Fact 11.3 For all models M,N, the following are equivalent:

1. Duplicator has a winning strategy in a k-round comparison game,

2. M,N satisfy the same first-order sentences up to quantifier depth k.

In games with no finite bound, Duplicator’s winning strategies match up with

potential isomorphisms between M,N: a notion of structural similarity for models.

But as always in logic games, the viewpoint of the other player is of independent

interest. In the k-round model comparison game, a winning strategy for Spoiler is

essentially a first-order formula ϕ of depth ≤ k which is true in M and false in N. We

will make this more precise in Section 11.3. This reflects the original goal of testing

the expressive power of our language. In this dual view of the game, then, Spoiler

is the “positive” player, claiming the language is rich, while Duplicator claims it is

poor. A state-of-the-art exposition of model comparison games is [36].

11.2.7 Other Logic Games

New logic games are still emerging today. For example, [20] study when a given

abstract relational algebra A is representable as an algebra S of binary set rela-

tions over some set of individual objects U . Thus, we want to build a model (U,S)
standing in some isomorphism-like relationship E to the model A. Mixing ideas

from model construction and model comparison games, the authors let players cre-

ate “networks”, as stages of a representation in progress, with Builder responding

to challenges made by Critic. An abstract relational algebra A is representable iff

Builder has a winning strategy in this representation game. The result is a perspicu-

ous new axiomatization of the representable relational algebras.

After this survey of logic games, we now turn to their general features.

11.3 The Unifying Role of Strategies

11.3.1 Strategies as a Unifying Notion

Our games all had an “Adequacy Theorem” stating that some standard notion ob-

tains (truth, satisfiability, potential isomorphism) iff some designated player has a

winning strategy. Thus, the typically game-theoretic notion of a strategy becomes

a unifying idea across logic. This leads to surprising connections. For example, in

one and the same type of game, viz. that for model construction, we may encounter

proofs as winning strategies for Critic, and models as winning strategies for Builder.

Thus, logically very different notions turn out cousins after all. Sometimes also,

strategies are new citizens asking for recognition in logic, such as “semantic rea-

sons” for truth or falsity in first-order evaluation games. These analogies suggest
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that underlying logic, there is a calculus of strategies, for combining them and prov-

ing their basic properties. We will return to this issue in Sections 11.6 and 11.11.

11.3.2 ∃∃∃-sickness, and Its Cure

Despite their crucial role, strategies are often hidden in Adequacy Theorems. For

example, truth amounts to the existence of a winning strategy for Verifier in an

evaluation game, but we are not told how. Indeed, there is a wide-spread disease

of ∃-sickness: the wilful hiding of available specific information under existential

quantifiers. Sure symptoms are indefinite articles “a”, or modal affixes “-ility”: cf.

“having a strategy” or “winnab-ility”. ∃-sickness also afflicts completeness theo-

rems relating “provability” to validity, instead of a more informative match from

proofs to semantic structures (but see the strong completeness theorems in [3]). An

early case is in [5], who pointed out the self-inflicted problems of tense logic taking

the past tense in “Lida fell down the stairs” as “at some time in the past”, thereby los-

ing the particular episode we have in mind. Our point here is not that we want some

constructive reading of the existential quantifier. Indeed, curing ∃-sickness may well

involve classical logic. The point is rather the hiding of relevant information when

it is in fact explicitly available.

Fortunately, the disease is often cured with a little exercise. Our first illustration

shows how to make an existential quantifier explicit by analyzing a standard proof -

in this case, adequacy for model comparison games – making the strategies explicit:

Theorem 11.1 There is an explicit correspondence between

1. Winning strategies for S in the k-round comparison game for M,N
2. First-order sentences ϕ of quantifier depth k with M |= ϕ , not N |= ϕ

Proof. From 2 to 1. Every such “difference formula” ϕ of quantifier depth k defines

a winning strategy for Spoiler in a k-round game between arbitrary models. Each

round k−m starts with a match between linked objects chosen so far which differ

on some subformula ψ of ϕ with quantifier depth k−m. By straightforward Boolean

analysis, S then finds some existential subformula ∃x. α of ψ with a matrix formula

α of quantifier depth k−m− 1 on which the two models disagree. S’s next choice

is a witness in that model of the two where ∃x. α holds.

From 1 to 2. Each winning strategy σ for Spoiler induces a distinguishing for-

mula of proper depth. Let S make his first choice d in model M according to σ – and

write down an existential quantifier for d. Our formula under construction will be

true in M, and false in N. We know that each choice of Duplicator for a correspond-

ing object e in N gives a winning position for S in all remaining (k−1)-round games

starting from an initial match d − e. By the inductive hypothesis, these induce dis-

tinguishing formulas of depth k−1. Now, the Finiteness Lemma for first-order logic

over a fixed finite relational signature says that, for any fixed set of free variables

and fixed quantifier depth, only finitely many non-equivalent formulas exist. In par-

ticular, only finitely many of the above distinguishing formulas can occur modulo
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logical equivalence. Some of these will start with “their” first quantifier in M (say

A1, . . . ,Ar) others in N (say B1, . . . ,Bs). The total distinguishing formula for strategy

σ is then the M-true assertion ∃x. (A1 ∧ . . .Ar ∧¬B1 . . .¬Bs).

Thus, Spoiler’s winning strategies in a comparison game correspond to formulas,

logical objects of prime interest. For Duplicator, the objects corresponding to her

winning strategies might be called “analogies”, of a finite quality measured by the

game length k. They are cut-off versions of the potential isomorphisms widely used

in logical model theory.

Of course, even Theorem 11.1 is still ∃-sick! But the outer existential quantifier

in its formulation may be harmless, in that its instantiation is the proof.

Our second illustration shows another way of high-lighting strategies, by ana-

lyzing the available number of them. Consider verification games for propositional

logic. Here is an elementary, but perhaps, unusual observation on counting strate-

gies.

Fact 11.4 One can count the number of verifying (falsifying) strategies, say #(V,ϕ),
#(F,ϕ) for any propositional formula ϕ as follows:

#(V, p) = 1 #(F, p) = 1

#(V,¬ϕ) = #(F,ϕ) #(F,¬ϕ) = #(V,ϕ)
#(V,ϕ ∨ψ) = 2#(V,ϕ) ·#(V,ψ) #(F,ϕ ∨ψ) = #(F,ϕ) ·#(F,ψ)
#(V,ϕ ∧ψ) = #(V,ϕ) ·#(V,ψ) #(F,ϕ ∧ψ) = 2#(F,ϕ) ·#(F,ψ)

Proof. The rationale for these clauses is immediate from the standard definition of

strategies in game trees as functions assigning unique moves to players’ turns.

Such counting is much more complex with first-order evaluation games.

11.3.3 Strategies: Actions or Powers?

Strategies are stepwise instructions for players to act. This detailed level of game

structure was suppressed by existential

quantifiers of “having a strategy”. But upon reflection, one person’s ∃-sickness

may be another’s sanity! In games, we are sometimes not interested in details of

moves and actions, but just in the control that players have over possible outcomes.

For example, that Eve has a winning strategy really says that it is within her power –

whatever Adam does – to make sure that the game ends in some specific set of runs

or outcomes, designated as “winning”. And players may have further powers over

outcomes in games: say, via losing strategies, or strategies that guarantee long runs.

Such powers provide a natural level for describing influence in social settings [30].

This coarser level of control raises a general question. At what level do we want

to describe games – in terms of their global outcomes, or more detailed local ac-

tions? This choice is one of many general game-theoretic issues lying behind logic

games.
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11.3.4 From Logic Games to Game Theory

Logic games, though a very specialized class of activities, high-light issues which

concern all games: playing at cards, competing in markets, or engaging in warfare

(not that far removed from Academia). Some of these issues have arisen indepen-

dently in game theory, others seem new. (A compact lucid source on game theory is

[27].) In our next sections, we look at some pervasive ones – with heuristics inspired

by the evaluation games of Section 11.2.4. An obvious bridge from logic to game

theory are Adequacy Theorems like the one relating the logical notion of truth with

the game-theoretic notion of a strategy. Unimaginative people interpret such results

as a “kiss of death” for the game-theoretic stance, as it “just restates” what we know

from standard logic already. But the opposite is true for the unprejudiced reader!

11.4 Game Equivalences and Game Languages

11.4.1 When Are Two Games the Same?

To raise our first question in a simple manner, consider the propositional distribution

law for conjunction over disjunction:

p∧ (q∨ r) ↔ (p∧q)∨ (p∧ r)

The two finite trees in the following figure correspond to evaluation games for the

two propositional formulas involved, letting A stand for Falsifier and E for Verifier.

This picture raises the following intuitive, and yet fundamental, question

When are two games the same?

In particular, does the logical validity of propositional Distribution mean that the

pictured games are the same in some natural sense?

p∧ (q∨ r) (p∧q)∨ (p∧ r)

A

��
��
�

,,
,,

, E

��
��

�
77

77
77

p E

��
��
�

**
**

* A

��
��
�

++
++

+ A

��
��
�

**
**

*

q r p q p r

Clearly, the answer depends on our viewpoint:

I If we focus on turns and moves, then the two games are not equivalent:

they differ in “etiquette” (who gets to play first) and in choice structure.
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This is the level of what game theorists call “extensive games”, with the familiar

tree pictures involving details of choices and actions. But there are also “strategic

forms” of games, where we are just interested in listing outcomes that players can

control. For example, the fact that the order of players’ turns is reversed by apply-

ing Distribution is immaterial then. At the latter level, the answer to our question

becomes “Yes”:

II Both players have the same powers of achieving outcomes in both games:

A can force the outcome to fall in the sets {p},{q,r}
E can force the outcome to fall in the sets {p,q},{p,r}.

Here, a player’s powers are those sets U of outcomes for which she has a strategy

making sure that the game will end inside U , no matter what the other player does.

On the left, A has strategies “left” and “right”, yielding powers {p} and {q,r}.

Player E also has two strategies, yielding powers {p,q},{p,r}. On the right, E has

two strategies “left” and “right”, which give the same powers for E as on the left.

By contrast, player A now has four strategies, which may be written ad-hoc as

“left: L, right: L”, “left: L, right: R”, “left: R, right: L”, “left: R, right: R”

The first and fourth give the same powers for A as on the left, while the second and

third strategy produce merely weaker powers subsumed by the former.

11.4.2 Game Equivalences and Game Languages

The general issue here are natural equivalences between games, setting coarser or

finer levels of detail. Reference [41] uses an analogy with theories of computation,

and process equivalences such as modal bisimulation. In particular, outcome-control

views are like black-box input-output views of processes, while extensive games

lie closer to views of computation endowing processes with richer internal states,

including choices. Thus, structure theory of games is much like general multi-agent

process theory.

As usual in mathematics, however, invariance relations between structures are

one side of a coin. The other side are the matching properties of games one wants

to define. For example, for strategic games, it does not matter in which schedule E,

A took their turns: for extensive games, this is a relevant property. Such properties

are expressed in game languages appropriate to the chosen “equivalence level”. For

example, [41] shows that a good language for describing extensive game forms of

perfect information is modal logic, plus fixed-point extensions like the modal µ-

calculus. But the appropriate language for describing players’ outcome powers only

are modal logics over neighbourhood semantics, in the spirit of [28].
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11.4.3 Logic and Games: The Plot Thickens

We have reached a delicate point in our story. We started with specific games for

logical notions. But now, logic enters in a different guise, as different description

levels for games correspond to different languages and associated logics. Thus, in

one of those happy Hegelian inversions, in addition to logic games, there are also

game logics describing games in general.

11.5 Players’ Powers and Modal Forcing Languages

In this section, we focus on the input–output level of outcomes and players’ powers

– broadening the connections between logic and game theory. We start with the

global level for games, since it seems most congenial to logic games (see the more

elaborate discussion in Section 11.9.2).

11.5.1 Determinacy

In evaluation games, Verifier has a winning strategy if the relevant formula ϕ is true,

and Falsifier has a winning strategy if ϕ is false. This means that these games have

the following important game-theoretical property:

Fact 11.5 Evaluation games are determined: one of the two players in game (ϕ,M,s)
must always have a winning strategy.

A general proof uses Zermelo’s Theorem which says all zero-sum two-player

games of finite depth are determined. Indeed all infinite games with topologically

open winning conditions for one player are determined by the Gale-Stewart Theo-

rem. This explains why our games of model construction or model comparison are

determined, even though runs may be infinite. Critic (Spoiler) have open winning

conditions, as Builder’s (Duplicator’s) failures always arise at some finite stage. Fi-

nally, Martin’s Theorem says that all infinite games are determined with winning

conditions in the Borel Hierarchy of sets. Non-open Borel winning conditions oc-

cur with some games in computer science. Examples include fairness of runs for

interactive game systems.

With non-Borel conventions, infinite games can become non-determined. We dis-

play one example, to make a general point about players’ powers later on (Section

11.8.2). Take any free ultrafilter U∗ on the natural numbers. Two players pick suc-

cessive neighbouring closed intervals, of any finite sizes, producing a succession

like this:

A : [0,n1], with n1 > 0, E : [n1 +1,n2], withn2 > n1 +1, etc.
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E wins if the union of all her intervals is in U∗, otherwise, A wins. It is easy to

see that winning sets in this game are not open for either player.

Fact 11.6 The interval selection game is not determined.

Proof. If player A had a winning strategy, E could use that with a one-step delay to

copy A’s responses to her own moves disguised as her moves. Both resulting sets of

intervals (disjoint up to some finite initial segment!) would then have their unions

in U∗: which cannot be, as U∗ was free. Likewise, E has no winning strategy.

There is a flourishing literature on determined games in descriptive set theory

(cf. [26]), but we will concentrate on more general game issues here.

Remark This “strategy-stealing” argument is of interest per se, and should be for-

malizable in a suitable logic for explicit strategies.

11.5.2 Powers and Representation

There is more to players’ powers, even in logic games, than just abilities to win.

Consider the game in Section 11.2.4 for ∀x∃y. x 6= y in a first-order model with two

distinct objects s, t – where we now number outcomes:

A,∀x∃y.x 6= y
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That ∀x∃y.Rxy is true is reflected in player E’s winning strategy “choose the

object different from that chosen by A”. But players have more strategies in this

game, and calculating as in Section 11.4.1 we get their true powers:

A can force the sets {1,2},{3,4}
E can force the sets {1,3},{1,4},{2,3},{2,4}

Power families like these satisfy the following properties, which are reminiscent

of the definition of an ultrafilter, but “spread out” over two players:

Monotonicity If Y is a power of i and Y ⊆ Z, then Z is also a power of i.

Consistency If Y is a power of A and Z a power of E, then Y , Z overlap.

Determinacy If Y is not a power of A (E), then its set complement Y in

the total space of outcomes is a power of E (A).

These are also all the relevant properties:
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Fact 11.7 An assignment of non-empty subsets of some set to two players represents

their powers in some finite game iff these powers satisfy Monotonicity, Consistency,

and Determinacy.

In non-determined games, the third condition drops out – after which we can do a

similar representation result for monotone consistent families, in which their powers

are realized in finite games of imperfect information ([40]; see also Section 11.10).

A typical non-determined case is this specification:

powers of A: {1, 2}, {3, 4} powers of E: {1, 3}, {2, 4}
Alternatively, one can represent such families of non-determined powers using

infinite games of perfect information – witness Section 11.8.

Digression The proof of Fact 11.7 allows for identifying different outcome states

of a game. This can happen in first-order evaluation games for states with the same

variable assignment, or in chess, for the same board configurations with different

histories. If we insist on unique outcome states, additional conditions hold, reflect-

ing a closer tie between strategies and powers. In particular, (a) the intersection of

any two inclusion minimal power sets of two players is a singleton, and (b) each sin-

gleton outcome set can be obtained as such an intersection. A representation result

for this case seems open (cf. [45]). This issue will return for logic games in Section

11.9.

11.5.3 Modal Forcing Languages

Games at the level of players’ powers have a natural modal game logic. We just

illustrate this – but cf. [28] for motivation, and [7, 8] for modal logic in general. The

language has proposition letters, Boolean operators, and forcing modalities {G, i}ϕ
saying that player i has a strategy for playing G which guarantees a set of outcomes

all of which satisfy ϕ . Here, ϕ may express winning, or any property of states.

Next, games are associated with modal models M, where states may interpret game-

external proposition letters. We set

M,s |= {G, i}ϕ iff there exists a power X for player i in G played

from state s such that for all x ∈ X : M,x |= ϕ

To bring this in line with modal semantics in its “neighbourhood” version, one

might use binary state-to-set forcing relations ρG
i s,Y , and set

there exists a set X with ρG
i s,Y and for all x in X , M,x |= ϕ

The main effect of this at the level of validities is the following:

Fact 11.8 Modal logic with the forcing interpretation satisfies all principles of the

minimal modal logic K except for distribution of {} over disjunctions.
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In particular, {G, i}ϕ is upward monotone:

if |= ϕ → ψ , then |= {G, i}ϕ →{G, i}ψ

But distribution over disjunctions is not valid:

{G, i}ϕ ∨ψ →{G, i}ϕ ∨{G, i}ψ

This is precisely the point of forcing. Other players may have powers that keep

us from determining results precisely. I may have a winning strategy, but it may

still be up to you exactly where my victory is going to take place. For instance,

in the game of Section 11.5.2, E can force {2,3}, but neither {2} nor {3}. Two

further axioms relate powers of different players: matching the earlier Consistency

and Determinacy.

Finally, this modal language has a matching notion of bisimulation between game

models M, which leaves truth of all modal forcing formulas invariant.

Definition A power bisimulation between two game models M,N is a binary rela-

tion E between states satisfying the following two conditions, for all i:

1. if xEy, then x, y satisfy the same proposition letters.

2. if xEy and ρM
i x,U then there exists a set V with ρN

i y,V and ∀v ∈V∃u ∈U : uEv;

and vice versa.

We will use this notion later. The theory of game logic is much like that of stan-

dard modal logic. Cf. [30, 43] for further details and results.

11.6 Extensive Games and Modal Action Logics

11.6.1 Extensive Games as Modal Process Models

Moving beyond players’ global powers, extensive games have a finer level of states,

turns, and individual moves. Such games are like ordinary models for a standard

modal language with moves as atomic actions, and some special predicates, like

end for being an end point, or turni for turns of player i. Consider again a simple

game as in Section 11.5.2:

A
a

oooooooooo
b

OOOOOOOOOO

E
c

��
��

� d
>>

>>
> E

c

��
��

� d
>>

>>
>

winA winE winE winA

The assertion that E has a winning strategy can be expressed in detail here by

this modal formula true in the root, which records player’s intermediate moves:
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[a]〈b〉winE ∧ [b]〈c〉winE

Alternatively, these models are the labelled transition systems of computer sci-

ence, with a state space for computations by several interactive processors. A sys-

tematic study of extensive games as process models for modal languages is made

in [41]. Here we just remark that the usual process of “solving” a game by means

of a Zermelo-style colouring algorithm (cf. the discussion of determinacy in Sec-

tion 11.5.1) really amounts to stage-wise computing a smallest (or greatest) fixed-

point definition for E’s winning positions. For example, to define the above forcing

modality {G,E}ϕ in more detail, one can use the following modal recursion:

{E}ϕ ↔ ((end∧ϕ)∨ (turnE ∧
∨

a

〈a〉{E}ϕ)∨ (turnA ∧
∧

a

[a]{E}ϕ))

In terms of the modal µ-calculus, this says (using greatest fixed-points) that

{E}ϕ ↔ νp.((end∧ϕ)∨ (turnE ∧
∨

a

〈a〉p)∨ (turnA ∧
∧

a

[a]p))

This means that all games can be solved by model checking some assertion in an

appropriate game logic over them. Moreover, basic game-theoretic arguments, like

the proof of Zermelo’s Theorem or the Gale-Stewart Theorem can be formalized in

modal fixed-point logics. Thus, one particular logic game from Section 11.2, viz.

model checking, may help us understand games in general!

11.6.2 Dynamic Logic as Strategy Calculus

Modal languages also have another use germane to games: they can define players’

strategies explicitly. For, in extensive game trees, strategies for player i are nothing

but binary relations which are functions on the turns for i, while including all pos-

sible moves at other players’ turns. Thus, they are of the same type as the above

actions a,b. More generally, think of a standard dynamic logic with action expres-

sions that can be formed from atomic ones using

choice ∪, sequential composition ;, relational converse ∪, finite iteration ∗, and the usual
test program (ϕ)? for propositions ϕ .

For instance, then, the winning strategy for E in the above game may be defined as

follows (with ⊤ for an assertion which is always true):

(〈a∪〉⊤)? ;d)∪ (〈b∪〉⊤)? ;c)

This means that propositional dynamic logic [16] can be used as a general calcu-

lus of strategies, of the sort mentioned in Section 11.3.1. Thus, one particular modal

game logic can help us understand logic games in general.
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11.7 Game Constructions

The preceding two sections were about game-internal properties, and ways of ex-

pressing these in modal languages. But we can also take an external view of games,

more like in Process Algebra or Category Theory. For a start, games do not occur

by themselves, they live in families. A natural general theme are then game-forming

constructions. Logic games provide many instances of this.

11.7.1 Logical Game Operations

For a start, the evaluation games of Section 11.2.4 provide the following game-

theoretical take on the basic logical operations:

1. conjunction and disjunction are choices for players: G∩H is A’s choice, G∪H

is E’s choice of G or H.

2. negation is a role switch, leading to the dual game Gd with all the turns and win

markings reversed in G.

But clearly, choice and dual are completely general operations forming new

games out of old. In particular, switch stands for the basic rational ability to put

oneself into another person’s position, which has been cited by psychologists and

philosophers as central to human agency. Here is another such operation which op-

erates inside evaluation games. Consider the rule for an existentially quantified for-

mula ∃x. ψ(x):

E must pick an object d in M, and play then continues with ψ(d)

Properly understood, the existential quantifier ∃x does not serve as a game op-

eration here: it clearly denotes an independent atomic game of “object picking” by

Verifier. (The same point occurs in [2].) The general game operation in this clause

hides behind the phrase “continues”, which signals

3. sequential composition of games G;H.

These are just a few natural operations that form new games out of old. To arrive

at others, consider the intuitive idea of “conjunction” of games. So far we have two

candidates. Boolean conjunction ∩ forces a choice right at the start, with the game

not chosen never accessed. Sequential composition ; may lead to play of both games,

if the first is ever completed. But now consider the plight of academics playing

games “family” and “career”. Most of us compromise via a new operation:

4. parallel composition of games G ‖ H.

This means playing a stretch in one game, then switching to the other, and so on –

running around and trying to do the best in both. Logic games also provide examples

of such interleaving (see Section 11.9.6). But even this is just one plausible parallel
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game construction: we might also proceed simultaneously in both games, and so

on. Indeed, no natural complete operational repertoire is known either in logic or in

game theory.

11.7.2 Game Algebra of Sequential Operations

Game operations suggest game algebra: a calculus of equivalent game expressions.

For example, intuitively, the above choices for the two players are related by a De

Morgan duality under role switch:

G∩H = (Gd ∪Hd)d

Like composing of binary relations, game composition is associative. Another

intuitive validity is left-distribution for composition over choice

(G∪H);K = (G;K)∪ (H;K)

By contrast, the right-distribution law is not valid:

G;(H ∪K) = (G;H)∪ (G;K)

E’s choice on the left-, but not on the right-hand side may depend on the outcome

of first playing game G. Another intuitively valid principle concerns role switch:

(G;H)d = Gd ;Hd

These intuitions may be made precise using the notions of Section 11.5 [43]. The

game equivalence that fits best with first-order validity looks at players’ powers for

determining outcomes. One can compute these inductively for complex games using

choice, dual, and composition. We define forcing relations

ρG
i x,Y player i has a strategy in game G which makes sure

that G ends in a state in Y when started from state x

Fact 11.9 The following equivalences hold for forcing relations:

ρG∪G′
E x,Y iff ρG

E x,Y or ρG′
E x,Y

ρG∪G′
A x,Y iff ∃Z,Z′ : ρG

A x,Z and ρG′
A x,Z′ and Y = Z ∪Z′

ρGd

E x,Y iff ρG
A x,Y

ρGd

A x,Y iff ρG
E x,Y

ρG;G′
E x,Y iff ∃Z : ρG

E x,Z and ∀z ∈ Z : ρG′
E z,Y

ρG;G′
A x,Y iff ∃Z : ρG

A x,Z and ∀z ∈ Z : ρG′
A z,Y

Using superset closure of powers, the second clause simplifies to

ρG∪G′
A x,Y iff ρG

A x,Y and ρG′
A x,Y
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Remark If we also assume determinacy, in the earlier sense that for each set Y ,

either one of the players can force Y , or the other can force W −Y , then we just

need to define forcing relations for player E, because all powers for player A follow

automatically by observing that ρGd

A x,Y iff not ρG
E x,W −Y .

Now, take an algebraic language of game expressions starting with variables, and

operations ∪, d , ;. In addition, ι is the idle game staying at the same state.

Definition Two game expressions G,H are equivalent (written G = H) if they have

the same power relations for players in all game models. We also write G ≤ H in

case of a similar valid inclusion between the respective powers.

11.7.3 Excursion: A Complete System

Algebraic game validity [38] validates the preceding observations. There is a simple

complete equational system for this algebra of the game-theoretic analogues of the

usual first-order operations [15]. We display it here, to show a surprising fact behind

our approach. Just underneath standard first-order logic, there lies a systematic game

logic!

Theorem 11.2 Basic Game Algebra consists of the following principles:

1. the laws of De Morgan algebra for choice and dual

2. G;(H;K) = (G;H);K associativity

(G∪H);K = (G;K)∪ (H;K) left-distribution

(G;H)d = Gd ;Hd dualization

3. G ≤ H → K;G ≤ K;H right-monotonicity

4. G; ι = G = ι ;G

De Morgan algebra is essentially Boolean Algebra minus special laws for 0, 1.

For our discussion in Section 11.9, we note that basic game algebra is decidable.

11.7.4 Dynamic Game Logic

Basic game algebra can be embedded into the decidable dynamic game logic which

extends the earlier modal forcing language with modalities {G, i}ϕ with complex

game terms G. Typical for these systems is the interplay of two ingredients in one

language: a dynamic component with expressions G for games, and a static compo-

nent with propositions ϕ about states of play. This is like dynamic logics in com-

puter science which manipulate program expressions and propositions about com-

putational states together. For more on dynamic game logic, cf. [28, 30, 31, 39].
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11.7.5 Logics of Parallel Game Operations

Parallel game constructions have been studied extensively in game semantics for lin-

ear logic whose tensor product involves interleaved games where Adam can switch

between games. Under this interpretation, linear logic is a complete axiomatiza-

tion of several central sequential and parallel game constructions. Cf. [1, 9, 14] for

details. A complete dynamic logic of players’ powers in products that model simul-

taneous games has been proposed in [49].

11.8 Finite Versus Infinite Games

11.8.1 The Importance of Infinite Runs

The emphasis so far has been on finite games and their outcome states. But sev-

eral logic games in Section 11.2 support infinite runs, witness model construction,

model comparison, and even model checking for first-order languages with fixed-

point operators. The same move was behind the shift from Zermelo’s Theorem to

the Gale-Stewart Theorem, where players produce infinite runs, marked as win-

ning or losing. And game theory also has more than just finite matrices or tree

pictures. Infinite games model situations with ongoing behaviour, such as iterated

Prisoner’s Dilemma in studying the possible emergence of social cooperation. Such

ongoing behaviour is just as important as finite termination. A good analogy comes

from computer science, using our process analogy for games. Terminating programs

are meant to find some value, or finish some task. But there are also crucial non-

terminating programs like operating systems which ensure the proper functioning

of some device: the longer the better. (Such infinite computations are at centre stage

in modern co-algebra, cf. [53].) Likewise, in linguistics, language games for con-

versational tasks should terminate. But there is also the Great Game of Language –

with discourse as the “operating system of cognition”. This should keep functioning

forever. Both kinds of game, finite and infinite, make sense.

11.8.2 Extending the Game Logic Perspective

Infinite games can still be studied by the logical techniques of Sections 11.3, 11.4,

11.5, 11.6 and 11.7. Outcomes are now the runs themselves. Then, both power and

action levels still make sense. Here are two illustrations.

First, consider computation of powers. Recall the interval selection game of Sec-

tion 11.5.1, showing that non-determined games exist. Further interesting informa-

tion can be extracted by looking into players’ powers. We can then prove in general

that
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Fact 11.10 Identifying infinite runs that are equal up to finite initial segments, both

players have the same powers in the interval selection game.

In particular, this perfect information game is about the simplest infinite realiza-

tion of a non-determined power specification (cf. Section 11.5.2), viz.

powers of A : {1,2} powers of E : {1,2}

For a finite game realization with imperfect information, see Section 11.10.

Our second example is temporal logic of games. Infinite games need more ex-

pressive logics, to formalize game-theoretic arguments. For example, the proof of

the Gale-Stewart Theorem involves the following result true for all games:

Weak Determinacy Either player E has a winning strategy, or player A has a strategy which
forces infinite branches on which player E never has a winning strategy.

The usual proof for the Gale-Stewart Theorem then runs as follows. Given that

E’s winning set is open, this Weak Determinacy implies that the branch forced by

player A is a loss for E – so A has a winning strategy.

Fact 11.11 Weak Determinacy can be defined in a branching temporal language,

evaluating formulas at pairs 〈h, t〉 of a current branch h and point t on it:

M,h, t |= {G,E}ϕ ∨{G,A}A¬{G,E}ϕ

Here, {G, i}ϕ is a modal-temporal forcing modality extending the a-temporal

one of Section 11.5.3. It says at point t that player i has a strategy ensuring that only

runs result with the current history h up to t as an initial segment, which satisfy the

temporal logic formula ϕ . Temporal logic comes in explicitly once more through

the use of the standard operator A (“always”) in the right-hand disjunct. This says

that a statement is always true on the current branch.

This temporal logic seems very powerful. Most reasonable winning conventions

can be given in this format – such as the earlier safety and liveness properties, as

well as winning conventions of infinite logic games. Also, like dynamic game logic

(Section 11.7.4), temporal game logic involves a merge of internal and external

game languages.

Infinite games are complex structures. In particular, they have huge unwieldy

spaces of strategies – as high-lighted in the “folk theorems” of game theory on a

plethora of equilibria. Another general logical issue then is finitization (cf. Section

11.9). To which extent can we know infinite strategies in a full infinite game through

their finite approximations? This may be a lost cause in general, but things look

brighter if games have finite branching width, and we can use principles like König’s

Lemma.
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11.9 From Game Logics to Logic Games

Having discussed game logics for a while, let us now return to logic games proper,

and see what additional light is cast on these by Sections 11.6, 11.7, and 11.8. We

will see how all earlier themes make sense, and suggest new results and questions.

11.9.1 Questioning Game Equivalence

For a start, take the issue of “equivalence” between logic games. The literature is

full of statements to the effect that one logic game is “equivalent” to another. For

example, [22] says all games are equivalent to full infinite game trees, as we can

disregard all undesired runs by calling them losses for E. But this presupposes just

one notion of game equivalence, and one biased in favour of just one player. Other

authors “reformulate” logic games without stating in what sense the new versions

are equivalent. For example, [6] define infinite model comparison games inverting

the schedule of Section 11.2.6:

The game starts with one finite partial isomorphism between two models. Each round lets
Duplicator D choose some family F of partial isomorphisms, followed by a selection by
Spoiler S of one f in F . In the next round, D must select a set F+ again, S then chooses a
partial isomorphism in F+ again, and so on. The back-and-forth property to be maintained
by D is: For every object a in one model, there exists an object b in the other model such

that f ∪{(a,b)} ∈ F+ – and likewise in the other direction.

Fact 11.12 The inverted model comparison game is equivalent to standard Ehren-

feucht-Fras̈sé games at the level of players’ powers.

The trick is like the distributive law of Section 11.4.1, inverting scopes of

logical

operators. In each round, D offers S a panorama of all choices he could make,

plus her own responses to them. S then selects his own move plus D’s pre-packaged

response – thereby setting the new stage. In human terms, D behaves like a colleague

of mine, who tries to speed up department meetings by saying: “Now you’re going

to say A, and I will say B – or, you’re going to say C, and then I will say D – etc.”

In terms of Section 11.5 versus Section 11.6, logic games seem biased toward

outcomes and powers, rather than the fine-structure of actions and turns. Most intu-

itive equivalences between such games can be justified in this manner.

11.9.2 The Outcome Perspective in Logic Games

Our insights about general game logic have interesting implications in specific

cases. Consider our running example of evaluation games for first-order logic. We

give three concrete illustrations.
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Richer denotations Any game game (M,s,ϕ) assigns a much more structured de-

notation to a formula ϕ than just a truth value, viz. the complete power structure of

the two players. We can think of these as their forcing relations ρG
i s,Y computed

over the model M in the sense of Section 11.7.2. This suggests that there are several

natural levels to assigning meaning, even for standard logical languages.

Power bisimulation At the level of powers, the right notion of equivalence between

two models M, N is the power bisimulation of Section 11.5.3. Translating this back

into standard first-order terms yields a variant of standard potential isomorphism

(Section 11.2.6). This time, states to be related are not tuples of objects from the

models, but variable assignments over them. The bisimulation is then a family of

links satisfying obvious back-and-forth conditions for shifting values for variables.

Well-understood, this also seems a natural notion for first-order logic in general.

Representation of general games Perhaps most strikingly, evaluation games seem

adequate for games in general!

Fact 11.13 Any extensive game is outcome-equivalent to one where players evaluate

an associated game-logical assertion.

Proof. We just give an illustration. The game in Section 11.6.1 is clearly outcome-

equivalent to an evaluation game for its associated modal formula [a]〈d〉winE ∧
[b]〈c〉winE. Modulo outcome equivalence, we can re-arrange any finite extensive

game to one with a uniform alternating schedule, while making all runs of equal

length. This allows us to write up a matching modal formula in iterated [ ]〈 〉 form,

whose evaluation game proceeds like the original game.

Here is a more technical representation result showing how logic games are com-

plete for game logics in one more sense [42]:

Theorem 11.3 The basic algebra of sequential operations on arbitrary games is

precisely the game algebra of first-order or modal evaluation games.

Thus, any non-valid principle of basic game algebra (cf. Section 11.7.3) already

has a counter-example in first-order evaluation games. More delicate issues arise

when we demand uniqueness of outcomes (cf. Section 11.5.2): this causes no loss

of generality in first-order evaluation games, but it does in modal ones [43].

11.9.3 Fine-Structure: The Action Level in Logic Games

Despite the noted power bias, it also makes sense to look at the less well-studied

fine-structure of logic games at their action level. Evidently, in this setting, far fewer

games will be identified.

Finer levels of denotation Consider again first-order evaluation games. We now get

much finer notions of denotation, leading to a subset of game equivalences, viz.

those which leave the move and turn structure intact as far as ordinary modal logic

cares about them. Some axioms of basic game algebra survive this: De Morgan laws,
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or left-distribution of composition over choice. Other axioms fail, as they merely

preserved powers – e.g., the distribution law of Section 11.4.1 reversing players’

turns.

Open problem Determine the complete basic game algebra for modal equivalence

between extensive games.

This analysis suggests that there are many natural levels of equivalence for first-

order formulas. And this again ties up neatly with a persistent philosophical tradition

of looking for various levels of identifying “propositions” (cf. [24]).

Strategy calculus in dynamic logic Individual actions also emerge in players’ strate-

gies in logic games (cf. Section 11.3). These strategies unified such diverse notions

as formulas, “reasons”, proofs, models, or semantic analogies. Underlying all of

these is the dynamic logic of Section 11.7.4. This gives a fresh look at known no-

tions. For example, in first-order evaluation games, the item closest to strategies are

Skolem functions. Dynamic logic suggests a calculus of definable Skolem functions,

taken as relations (a natural generalization). Its major operations are choice, compo-

sition, and iteration of binary relations, allowing, amongst others, the standard se-

quential program constructions IF PTHEN π ELSE π ′ and WHILE PDOπ (cf. [41]).

Such an explicit format for strategies also makes sense in dynamic game logic

(Section 11.7.4). That calculus was ∃-sick in the sense of Section 11.4.2, since it

just says that a strategy exists without naming it. But we can remedy this with a

modality

{G, i,σ}ϕ

stating that, in game G, strategy σ for player i forces a set of outcomes satisfying

proposition ϕ . Dynamic game logic in this guise is still to be developed.

11.9.4 Digression: Strategy Calculus in Type-Theoretic Format

Formats other than dynamic logic may be attractive, too. Type theories (cf. [4])

manipulate statements of the form σ : G interpreted as “σ is a proof of assertion

G”, or “σ is an object having property G”. Strategy calculi might then manipulate

statements

σ : G σ is a winning strategy for player E in game G

Such interpretations are given for linear logic games (cf. Section 11.7.5) in [3].

Here is a simple example. Consider the following sequent derivation for a proposi-

tional validity, whose steps are well-known valid inference rules:
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A ⇒ A B ⇒ B

A,B ⇒ A A,B ⇒ B C ⇒C

A,B ⇒ A∧B A,C ⇒C

A,B ⇒ (A∧B)∨C A,C ⇒ (A∧B)∨C

A,B∨C ⇒ (A∧B)∨C

A∧ (B∨C) ⇒ (A∧B)∨C

We want to make the strategy calculus behind this derivation explicit. This re-

quires the identification of strategy combinations supporting the proof steps. Here

is a concrete format of analysis, written with some ad-hoc notation:

x : A ⇒ x : A y : B ⇒ y : B

x : A,y : B ⇒ x : A x : A,y : B ⇒ y : B z : C ⇒ z : C

x : A,y : B ⇒ (x,y) : A∩B x : A,z : C ⇒ z : C

x : A,y : B ⇒ 〈L,(x,y)〉 : (A∩B)∪C x : A,z : C ⇒ 〈R,z〉 : (A∩B)∪C

x : A,u : (B∪C) ⇒ IFhead(u) = L THEN〈x, tail(u)〉ELSE tail(u) : (A∩B)∪C

v : A∩ (B∪C) ⇒ IFhead((v)2) = L THEN〈(v)1, tail((v)2)〉ELSE tail((v)2) : (A∩B)∪C

This derivation composes strategies in complex games from those in sub-games.

The operations for this task are completely general, not depending on proof theory:

storing strategies for a player who is not to move 〈,〉
using a strategy from a list ()i

computing the first recommendation of a strategy head()

as well as the remaining strategy tail()
making a choice dependent on some information IF THEN ELSE

As strategies encode very different logical objects: proofs, models, analogies,

etc., the above derivation can stand for quite different things. It is a recipe for con-

structing proofs, and the operations then encode what goes on as logical operations

get added. But it also describes how any winning strategy for Verifier in an evalua-

tion game for A∧(B∨C) can be turned into a winning strategy in (A∧B)∨C. Not all

logic games support operations of choice, though – and hence the above recipe may

not make much sense (yet) for games of model construction, or model comparison.

11.9.5 Operations on Logic Games

Logic games are not isolated activities, they can be combined (cf. Section 11.2.7).

And then, they support not just sequential game operations, but also parallel ones

beyond those found in the computational literature. Nice examples are the Wadge

Game in descriptive set theory [26] and the interleaved fixed-point games found in

the proof of the Stage Comparison Theorem of Moschovakis 1974. The operational

structure behind logic games should be a good testing ground for general game

algebra. Here, we only offer one illustration showing the interest of such matters

[38].
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Relating evaluation and comparison games In this excursion, we relate two major

logic games, viz. Ehrenfeucht games of model comparison with Hintikka games of

evaluation. These have the same “back and forth” idea in their object-picking moves.

We make this precise in terms of game operations, proving the following informal

equation

E = H2

The “squaring” operation here is interleaving games, and we can even correlate

strategies in the two games directly. Recall the Adequacy Theorem for finite-depth

Ehrenfeucht-Fraı̈ssé games of Section 11.2.6, ∃-cured in Section 11.4.2. This sug-

gests an explicit link between strategies across comparison and evaluation games

for models M,N. First-order formulas ϕ of quantifier depth k between M,N drove

winning strategies for Spoiler in the k-round comparison game between M,N. But

we can do away with this intermediary! Let M |= ϕ,N |= ¬ϕ . This induces a win-

ning strategy for Verifier in an evaluation game game(ϕ,M) plus one for Falsifier

in game(ϕ,N):

Theorem 11.4 There exists an effective correspondence between

1. Winning strategies for Spoiler in the k-round comparison game,

2. Pairs of winning strategies for Verifier and Falsifier in some

k-round evaluation game, played in opposite models.

Proof. Without loss of generality, formulas can be assumed to be constructed from

atoms with negations, disjunctions, and existential quantifiers only. From 2 to 1. Let

an H-pair of depth k consist of a formula ϕ of quantifier depth k plus a winning

strategy σ for V in the ϕ-game in one of the models, and a winning strategy τ for

F in the ϕ-game in the other model. We sketch how to merge σ ,τ . Spoiler looks at

the two evaluation games. Suppose V wins ϕ in M, and F wins ϕ in N. If ϕ is a

negation ¬ψ , Spoiler switches to the obvious strategies for F and V w.r.t. ψ . (Note

that this is internal computation: the opponent in the comparison game does not see

any action yet.) If ϕ is a disjunction ψ ∨ ξ , Spoiler uses his V-strategy in the one

model to choose a disjunct. His F-strategy in the other model will also win against

that disjunct. Proceeding in this way, the formula is broken down until an existential

subformula ∃xψ is reached. Spoiler then uses his V-strategy σ in the model where

it lives, say M, to pick a witness d. This model M and object d are his opening move

in the first round of the Ehrenfeucht game. Next, what remains for Spoiler is still a

winning strategy σ− for ψ in M after this first move. Now, let Duplicator respond

with any object e in the other model N. This choice can also be seen as a move by

Verifier in the evaluation game for ∃xψ in N. Now we know that Falsifier still has a

winning strategy τ− for ψ in N after this first move. So, by induction, we still have

an H-pair of depth k-1, which can be merged into a follow-up winning strategy for

Spoiler in the (k−1)-round comparison game between M and N. The total effect is

a k-round S-strategy. This argument yields an algorithm for Spoiler’s computation.

From 1 to 2. This direction seems harder, as we have to “decompose” one object:

Spoiler’s winning strategy, into two separate ones that must form a suitable H-pair.
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One proof of this follows our earlier construction of a difference formula of depth k

from an S-strategy (Section 11.4.2). This formula induces two evaluation strategies

effectively. Let us describe “splitting” of a comparison strategy directly. Consider

any winning strategy for S in the k-round comparison game between two models

M,N. In the first move, S chooses, say, model M and object d. Our desired formula

will then start with an existential quantifier, and V has the winning strategy in M. Let

Duplicator now make any response e in N. We know that Spoiler still has a (k−1)-

round winning strategy in the two expanded models (M,d),(N,e). Inductively, we

can find H-pairs of depth k−1 for each choice e that Duplicator makes. Moreover, by

the earlier Finiteness Lemma, only finitely many logically non-equivalent formulas

can be involved in these pairs. Then, one over-all existential quantification over a

suitable conjunction of formulas of depth k-1 defines our desired H-pair of depth k.

In particular, if it is V who has the winning strategy of a relevant H-pair ϕ in the

model M, put itself in the conjunction; otherwise, put its negation.

Operations like interleaving are just the beginning of what may be called a logic

of game architecture.

11.9.6 Finite Versus Infinite

Logic games can have finite or infinite depth, leading to issues of finitization (Sec-

tion 11.8). Say, model construction games can go on forever. Critic’s winning strate-

gies made Builder lose on each run, by a finite stage.

Fact 11.14 Critic’s winning strategies in the Construction game are finite objects.

Proof. How can this be? The reason is that the game tree for the model construction

game is finitely branching. Hence by König’s Lemma, there is some finite level at

which Critic has already blocked every construction attempt. This closed game tree

is a finite object. These strategies are associated with finite objects, viz. proofs.

Such a reduction may fail in infinite comparison games, where Spoiler may be

able to win against Duplicator, blocking each run at some finite stage, without there

being a finite object encoding this. There must be a formula of infinitary first-order

logic witnessing the relevant difference between the two models being compared,

but there need not be a standard first-order one.

Finitization can be very useful. Hirsch and Hodkinson [20] show the following

for their game of Section 11.2.7, using finite branching for Builder’s (though not

Critic’s!) moves: Builder can win the infinite game if she can win all finite cut-offs,

and her winning strategy is easy to piece together from these. Then representability

becomes equivalent to a set of first-order assertions expressing Builder’s being able

to win all finite cut-offs, which leads to a perspicuous axiomatization. Incidentally,

in this game, by the same reasoning, Critic’s winning strategy, if available, must be

a finite object again. It is a sort of proof that the given algebra is not representable.
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11.10 From Game Theory to Logic Games

Logic games are special, in that players’ behaviour is much more constrained than

in ordinary game theory. In real games, players have preferences between outcomes

beyond winning or losing, they operate under uncertainties about what really hap-

pens during a move (think of card games), and there can be more than two players,

leading to coalitions! Importing these concerns into logic games makes them more

realistic, even though there is hardly any theory of the resulting activities.

We will just skim a few issues here – but there are natural motivations for en-

riching logic games, even from the standpoint of reasoning and other logical core

business.

11.10.1 Preferences

Preferences in logic games allows for finer behaviour. Consider the game of Section

11.6.1, where A now has a slight preference for one site of defeat over the other (we

write values for A,E in that order under the outcome nodes):

A
a

rrrrrrrrrr
b

LLLLLLLLLL

E

c

��
��
�� d

77
77

77
E

c

��
��
�� d

88
88

88

winA

x : 1,0
winE

y : ε,1
winE

z : 0,1
winA

u : 1,0

What will happen now? A can assume that, whatever he does, E will go for her

most preferred outcome y or z. So, as he himself prefers y to z, he will choose “left”,

forcing E to end up in y. Thus the game ends in the run “left-right” with outcome

y. This pair of strategies σ ,τ is in Nash Equilibrium: neither player can gain by

deviating from his strategy, assuming the other strategy in the pair does not change.

This story assumes a notion of “rationality”, as in the solution method of Back-

ward Induction computing game values via a Maximin rule. Here is how this works

on the evaluation games of Section 11.4.1, with a preference structure as indicated

below:

p∧ (q∨ r) (p∧q)∨ (p∧ r)

A

��
� ??

??
E

oooooooo

OOOOOOOO

x : 1,0 E

��
� ??

? A

��
� ??

? A

��
� ??

?

y : 0,2 z : 2,1 x : 1,0 y : 0,2 x : 1,0 z : 2,1
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We display all pairs (A-value, E-value) computed bottom-up:

1,0

��
� ??

?
2,1

ooooooo
OOOOOOO

1,0 0,2

��
� ??

?
1,0

��
� ??

?
2,1

��
� ??

?

0,2 2,1 1,0 0,2 1,0 2,1

These trees correspond to different outcomes for the joint behaviour of the play-

ers. We predict outcome x on the left, but z on the right.

There are many new issues of general game logic for games with preferences.

In general, these require combinations of modal logics for moves with preference

logics (cf. [50–52]). Here we just look at one issue which also affects logic games:

viz. how players evaluate the outcome of a game.

Game algebra with preferences Call two game expressions equivalent if their Nash

equilibrium solutions are the same for every concrete realization including play-

ers’ utilities. The preceding example showed that the basic game algebra of Section

11.7.3 no longer qualifies: propositional distribution fails. Vice versa, invalid equiv-

alences may hold for special preference values. Assuming rationality, games A and

A∪B are preference-equivalent whenever E prefers A to B. Of special interest are

antagonistic zero-sum games, where A evaluates all outcomes opposite to E, as in

logic games of winning and losing. Then some standard logic remains. Assume that

different outcomes correspond to different preferences – otherwise, we might just

as well identify them for game-theoretic purposes. Then it is easy to check that

Fact 11.15 With zero-sum preferences, Boolean Absorption A = A∩(A∪B) is valid,

whereas with general preferences, it is not.

Open problem Find the complete basic game algebra under the above defined Nash

equilibrium equivalence in case of

1. arbitrary preferences,

2. zero-sum preferences.

Logic games with preferences Values and preferences also make sense in logic

itself, witness many-valued logics, or preference models for logics of belief and

conditionals. Another concrete source refers to game dynamics. Let us introduce

resource structure into logic games, and say that, other things being equal, players

prefer outcome nodes lying on a shorter path from the root. This assumes that play-

ers want to get to a winning node as soon as possible, or if no such node exists, to a

losing node with the least effort. Then we can make more definite predictions about

the course of games, and adapt definitions of validity and truth accordingly. A final

example are the more realistic logical dialogue games of [44] where arguments may

lose “force” from the moment they were first put on the table.



11 Logic Games: From Tools to Models of Interaction 211

11.10.2 Solving Games

Making these connections does raise conceptual problems. In logic games, central

notions are encoded in winning strategies, and in that case, the precise behaviour

of the other player is unimportant: it will always be in Nash equilibrium with the

winning strategy. But in game theory, a strategy models a type of behaviour vis-á-

vis other players, and hence it is the strategy profile for all players that we are after.

Nevertheless, multi-agent interactive behaviour seems crucial to logic, too. A proof

is a long-term way of responding to objections, an isomorphism is a never-ending

way of simulating one model in another, and sticking to the truth means emerging

victorious no matter where your opponents in life try to push you. From a different

perspective of resource-sensitivity, this also seems a major point of [14]. For similar

ideas in computer science, see [2]. But then, we do seem to need a major change of

perspective in logic. Based on preferences, game theory shows that Nash equilibria

always exist for finite games if we are willing to admit mixed strategies, where

pure actions are played with certain probabilities. What would be the logical point

admitting of such probabilistic solutions?

11.10.3 Imperfect Information

In standard logic game, at each stage, players know exactly where they are. But

in real games, players may have imperfect information as to where they are in the

game tree. For example, in card games we do not know the complete distribution of

the cards. Still players must move despite this partial ignorance.

Peculiarities of imperfect information games Games like this diverge from logic

games in important respects [19]. Consider the evaluation game for the first-order

formula ∀x∃y. x 6= y in Section 11.4.2. Now assume that Verifier is ignorant of the

object chosen by Falsifier in his opening move. In game-theoretic notation, the new

tree looks as follows, with a dotted line indicating E’s uncertainty:

A,∀x∃y. x 6= y

x:=s

kkkkkkkkkkkk
x:=t

SSSSSSSSSSSS

E,∃y.s 6= y

y:=s

}}
}}

}}
}

y:=t

AA
AA

AA
A

E
E,∃y.t 6= y

y:=s

~~
~~

~~
~

y:=t

@@
@@

@@
@

s 6= s
winA

1

s 6= t
winE

2

t 6= s
winE

3

t 6= t
winA

4

This game is quite different from its version with perfect information. In partic-

ular, if we allow only uniform strategies that can be played without resolving the

uncertainty – as seems reasonable – E has only 2 of her original 4 strategies left in
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this game: “left” and “right”. Then determinacy is lost: neither player has a winning

strategy!

Games with imperfect information like this still support game logics as in Sec-

tions 11.6 and 11.7 above, at both power and action levels (cf. [40]). For instance,

Fact 11.16 Player E’s situation in the central nodes of the preceding game can be

defined by the following formulas of an epistemic-dynamic action logic:

1. KE(〈y := t〉winE ∨〈y := s〉winE)
E knows that some move will make her win, picking either s or t

2. ¬KE(〈y := t〉winE)∧¬KE(〈y := s〉winE)
there is no particular move of which E knows that it will make her win.

This is the well-known de re – de dicto distinction from philosophical logic. For

instance, I may know that the ideal partner for me is walking out right there in the

street, without ever finding out which one of these people was that person.

On the other hand, we can also describe games like this at the global level of

powers. For example, with uniform strategies, players’ powers in the above game

are as follows:

powers of A: {1, 2}, {3, 4}, powers of E: {1, 3}, {2, 4}

The analysis of Section 11.5.2 can be extended to this situation. Families of pow-

ers satisfy Monotonicity and Consistency, though not Determinacy. And conversely,

the former two conditions suffice for representability of given powers for two play-

ers as those realized in some game of imperfect information [40].

Logic games with imperfect information There is one exception to the above. Im-

perfect information has been added to logic games in the work of Hintikka and

Sandu on IF logic (cf. [18] for a most recent version plus intended applications). In

the notation of IF logic, the preceding game is written as

∀x∃y/x. x 6= y

expressing that the choice of the existential witness for y must not depend on the

universal challenge for x. As in Section 11.4, a good test question for a notion of

games like this is: when do two given IF formulas define the same games? For

instance,

Is the game ∀x∃y/x. Rxy “equivalent to” the game ∃y∀x. Rxy ?

A popular answer is YES, as E has the same winning powers in both. But in

games of imperfect information, the powers of one player do not automatically tell

us all about the other. Hence A may not agree that these two games are the same.

And indeed, the Thompson transformations of game theory [27] say that the correct

equivalent is rather this game, with switched scheduling:
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E
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��

��
�

x:=t33
33

3

s 6= s
winA

1

s 6= t
winE

3

t 6= s
winE

2

t 6= t
winA

4

Stating this equivalence in terms of IF logic, the real situation involves a much

nicer quantifier exchange:

Fact 11.17 ∀x∃y/x. x 6= y is uniformly outcome-equivalent to the slash formula rep-

resenting the above game, which has the form ∃y∀x/y. x 6= y.

IF games have generated a lot of controversy (cf. [46] for an epistemic analy-

sis). Even so, they show that introducing imperfect information into logic games is

exciting and perhaps even useful. In particular, this may provide a normal form for

validities in all imperfect information games, the way first-order evaluation games

did for the general algebra of perfect information games (Section 11.9.2).

One might try similar moves with the other logic games mentioned in Section

11.2, provided motivations are found. One might speculate about proofs where par-

ticipants have forgotten some things that has been said. Or, one can play model

comparison games with a fixed number of pebbles, representing some finite mem-

ory [23], where players will not be able to distinguish the same assignments of

objects to these pebbles, even when they occur at different stages of the game.

Uncertainty about the future Finally, even in games of perfect information, where

we know our position in the game tree at any time, we have “forward ignorance” of

the future course of play, since we need not know the strategy of the other player.

Nash equilibrium makes some predictions, but in general, we are in deliberation

about future actions and choices, based on beliefs about ourselves and others. There

is a flourishing literature on this, invoking belief revision and counterfactual reason-

ing (cf. [33, 48]). The resulting game logics put ideas from philosophical logic on

top of the mathematical logic of game structure. Such issues, too, make sense for

studying logic games, but we forego them here.

11.10.4 More Agents and Coalitions

Finally, many games involve more than two players, and hence the possibility of

genuine coalitions: cf. [30] for a study with tools from modal logic. Many agents

are the reality in conversation and debate, and they also make sense in logic games

when thinking about teams of players – viewing Adam and Eve rather as some sort

of Bourbaki. This suggestion is in the air today among logicians. The “team logic”

of [35] is a serious contender.
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11.11 Conclusions

This paper has shown how logic games are an interesting subclass of the totality of

all games, raising new issues of game logic beyond standard game theory precisely

since they are somewhat better delineated. On the other hand, the study of logic

games might also benefit from importing ideas from general game theory. Either

way, we think all this supports the idea of viewing logic as a study of the dynamics,

rather than just the statics of agents involved in statement, reasoning, and commu-

nication.
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Chapter 12

In memory of Jasu Magan Bhana Panchia
(1963–1991): Iterated Belief Revision in
Dynamic Doxastic Logic

Krister Segerberg

12.1 Introduction to DDL

In propositional dynamic doxastic logic (DDL) there are two kinds of nonclassi-

cal operators: doxastic and dynamic. The doxastic operators are B and K, with the

duals b and k, respectively. The dynamic ones are [∗ϕ], for every purely Boolean

formula ϕ , with the dual 〈∗ϕ〉. Borrowing from modal terminology, we refer to B,K
and [∗ϕ] as box operators and b,k and 〈∗ϕ〉 as diamond operators. The former are

primitive, the latter are defined by abbreviation (if △ is a box operator, then its dual

is defined as ¬△¬).This object language has been introduced in order to analyse

certain theories about belief change. The following unofficial readings should be

helpful for understanding the motivation:

Bθ “the agent believes that θ”,

bθ “it is consistent with the agent’s beliefs that θ”,

Kθ “the agent is doxastically committed to θ”,

kθ “it is consistent with the agent’s doxastic commitments that θ”,

[∗ϕ]θ “after the agent has revised his beliefs with ϕ it is definitely

the case that θ”,

〈∗ϕ〉θ “after the agent has revised his beliefs with ϕ it is perhaps

the case that θ”.

In practice it is convenient to read “the agent knows that θ” for Kθ and “it is con-

sistent with the agent’s knowledge that θ” for kθ . However, insofar it suggests that

the agent’s doxastic commitments cannot be mistaken, this jargon is misleading.

In other words, in this paper we are not speaking of knowledge in a Platonic or

Cartesian sense but rather of what would be called knowledge in everyday life or

perhaps “knowledge” (with scare quotes).To complete the above informal descrip-

tion of our object language, assume a denumerable set of propositional letters and

Krister Segerberg
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a truth-functionally complete set of Boolean operators. There are two restrictions

on the language: (i) the dynamic operators can be applied only to purely Boolean

formulæ, that is, formulæ containing at most Boolean operators, and (ii) the star

operator ∗, too, applies only to purely Boolean formulæ. By contrast, a dynamic

operator may be applied to any formula whatever. Thus in the language of basic

DDL (the only language considered in this paper)[∗ϕ][∗ψ]θ is always well-formed

if ϕ,ψ and θ are purely Boolean, whereas BBϕ and B[∗ϕ]θ and [∗Bϕ]θ are always

ill-formed. These restrictions reflect three assumptions basic to our analysis: (i) that

purely Boolean formulæ represent possible (partial) states of the environment, (ii)

that the agent holds beliefs about the environment, and (iii) that the agent can pro-

cess new information about the environment. It is of course possible to make other

assumptions; the ones chosen here are the simplest.

12.2 Basic DDL

Our basic axiom system consists of four blocks: classical, modal, AGM proper, and

extra. Each block contains certain postulates, that is, axioms (described by means

of axiom schemata) and rules of inference.The axioms of the classical block are the

tautologies of classical propositional logic. The single rule is modus ponens:

(MP) from ϕ and ϕ → ψ infer ψ.

The postulates of the modal block are, for each modal operator △, enough for the

smallest normal modal logic K, for example,

(NN) △(ϕ ∧ψ) ↔ (△ϕ ∧△ψ),
(N) △⊤,

(RC) from ϕ ↔ ψ infer △ϕ ↔△ψ .

The block AGM proper consists of (in some cases free) translations into DDL lan-

guage of the original AGM-axioms (the original numbering is kept):

(∗2) [∗ϕ]Bϕ,
(∗3) [∗⊤]Bϕ → Bϕ,
(∗4) b⊤→ (Bϕ → [∗⊤]Bϕ),
(∗5) kϕ → 〈∗ϕ〉b⊤,
(∗6) K(ϕ ↔ ψ) → ([∗ϕ]Bθ ↔ [∗ψ]Bθ),
(∗7) [∗(ϕ ∧ψ)]Bθ → [∗ϕ]B(ψ → θ),
(∗8) 〈∗ϕ〉bψ → ([∗ϕ]B(ψ → θ) → [∗(ϕ ∧ψ)]Bθ).

The final extra block consists of postulates that seem to be (more or less) implicit in

the original AGM theory:

(∗0) θ ↔ [∗ϕ]θ , if θ is purely Boolean,

(∗D) [∗ϕ]θ → 〈∗ϕ〉θ ,

(∗F) 〈∗ϕ〉θ → [∗ϕ]θ ,

(K∗) Kθ → [∗ϕ]Kθ ,
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(∗K) [∗ϕ]Kθ → Kθ ,

(KB) Kϕ → Bϕ .

The basic modal logic underlying the present system was studied in [4]. For an anal-

ysis in DDL of one-shot AGM, see [5].Among the several kinds of semantics avail-

able we choose what we call the onion semantics, originally due (under a different

name) to David Lewis [3] and introduced into the theory of belief change by Adam

Grove [2]. By a basic frame we understand a Stone space (U,T ); that is, a compact,

totally separated topological space U , with T its set of open sets. The clopen sets

(that is, those subsets of U that are both closed and open) are also called the proposi-

tions of the frame; and closed sets are also called theories. We write clop(T ) for the

set of clopen sets.An onion is a nonempty set of theories ordered by set inclusion

(NESTEDNESS) and closed under arbitrary nonempty intersection (AINT). It follows

that every onion O will contain the set
⋂

O as an element, often referred to as the

belief set of O. Elements of an onion are called fallbacks, and elements of an onion

other than its belief set are called proper fallbacks. An onion O is said to be trivial

if its only element is the empty set; that is, if O = {Ø}. Thus the trivial onion has

an empty belief set and lacks proper fallbacks.An important condition discussed by

David Lewis is his famous Limit Condition

(LIMIT): If an onion overlaps a proposition, then there is a smallest element of

the onion that intersects that proposition.

More carefully, if O is an onion and P is a clopen set such that P∩⋃
O 6= Ø, then

there is an element Z ∈ O such that P∩ Z 6= Ø and, for all X ∈ O, if P∩X 6= Ø

then Z ⊆ X . It is worth noting that this condition, which is slightly weaker than the

condition that the relation of set inclusion be well-ordered, holds in our version of

the Lewis/Grove semantics:

Observation. In a Stone space, onions satisfy LIMIT.

The set C
⋃

O, where C denotes topological closure, is called the commitment set

of an onion O. Unlike the belief set, the commitment set need not be an element of

O. But it can be, and it is said to be replete if it is. An onion frame is a structure

(U,T,H,R) such that (U,T ) is a basic frame, H is a set of onions, R is a function

from clop(T ) to H ×H, and certain conditions are satisfied:

(o1) If (O,O′) ∈ RP, then
⋂

O′ = P∩⋃
O. (REVISION)

(o2) C
⋃

O = C
⋃

O′, for all O,O′ ∈ H. (CONSTANT COMMITMENT)

(o3) For every O ∈ H there is some O′ ∈ H such that (O,O′) ∈ RP.

(SERIALITY)

(o4) If (O,O′) ∈ RP and (O,O′′) ∈ RP, then O′ = O′′. (FUNCTIONALITY)

We might refer to H as the heap of onions and R as the revision function of the

frame. Notice that in the presence of condition (o2), an onion frame containing

the trivial onion has no other elements.A valuation in a Stone space (U,T ) is a

function from the set of propositional letters to the set clp(T ) of clopen subsets of

the space. It is clear that a valuation V can always be liftedto a function V defined

on the set of all purely Boolean formulæ: V (P) = V (P), for all propositional letters
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P,V (ϕ∧ψ) =V (ϕ)∩V ψ),V (ϕ∨ψ) =V (ϕ)∪V ψ),V (¬ϕ) =U−V (ϕ), etc.When

it is clear what valuation V is understood, we will write [[ϕ]] for V (ϕ). Note that the

notation [[ϕ]] is meaningful only if ϕ is a purely Boolean formula.An onion model

is an onion frame together with a valuation; that is to say, (U,T,H,R,V ) is an onion

model if (U,T,H,R) is an onion frame and V is a valuation in (U,T ). The notion

of truth of a formula in an onion model, symbolized by the symbol �, is defined

relative to a pair (O,u), where O ∈ H and u ∈U . (Intuitively, O is, or represents, the

belief state of the agent, while u is the state of the environment).Truth-conditions:

(O,u) � ϕ iff u ∈ [[ϕ]], for every purely Boolean formula ϕ ,

(O,u) � ¬ϕ iff not (O,u) � ϕ ,

(O,u) � ϕ ∧ ψ iff (O,u) � ϕ and (O,u) � ψ ,(analogous conditions for other

Boolean operators,)

(O,u) � Bϕ iff
⋂

O ⊆ [[ϕ]],
(O,u) �Kϕ iff

⋃
O ⊆ [[ϕ]],

(O,u) � [∗ϕ]θ iff, for all O′, if (O,O′) ∈ R[[ϕ]] then (O′,u) � θ .

Theorem 12.1 The given axiom system is strongly complete with respect to the class

of onion frames.

12.3 Iteration

According to the pattern of analysis employed in this paper (discrete) belief change

is modelled as a change from one belief state (the old belief state) to another (the

new belief state). In revising the old belief state by new information in the form of a

proposition, it seems reasonable to build the new belief state with material supplied

by the old onion and the proposition. Richer modellings may take further aspects

into account, but the proposed restriction will make it possible to discern certain

principles regulating what possibilities of iteration there are. As we are representing

belief states by onions, this suggestion means that the elements of the new onion

should be constructed

• from certain sets: elements of the old onion and the proposition,

• with the help of appropriate set theoretical operations.

Specifically, let O∗ be the old onion waiting to be revised by a proposition P; we are

wondering what a new onion O∗ may look like. (We assume all onions satisfy the

conditions (o1)–(o4) laid down above but also, in addition, that they are replete. Two

consequences of this assumption are worth keeping in mind: revision (in this theory)

always leads to a unique new onion O∗, and all onions contain their own commit-

ment set as an element (in fact, the same commitment set K for every onion).) By

a basic building block let us mean the fallbacks of O∗ and P. In other words, the

set of basic building blocks is O∗ ∪ {P}. Refining the suggestion of the previous

paragraph, we stipulate that, in the case of revision, the elements of any new onion
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should be constructed in terms of basic building blocks with the help of intersection

and union. Let us see where this programme leads. Supposing that O∗ and P over-

lap (otherwise revision is trivial) let Z be the smallest element of O∗ to intersect P.

By a fallback candidate (with respect to revising O∗ by P) we shall mean any set

V ∪PW ,where V ∈ O∗∪{Ø} and W ∈ O∗ and V ⊆ W and Z ⊆ W. (We sometimes

represent set theoretical intersection by juxtaposition; thus V ∪PW = V ∪ (P∩W ).)
We define an onion as an onion candidate (with respect to revision by P) if all its

elements are fallback candidates and, in particular, it contains PZ and K.We say that

an onion candidate O∗ is maximal (with respect to O and P) if it is not propertly

included in any other onion candidate.Moreover, we say that O∗is trusting (with re-

spect to O and P) if PK ∈ O∗, skeptical (with respect to O and P) if Z ∈ O∗. The

strangeness of this terminology may be mitigated by replacing “onion” by “belief

state”. Including the agent in this terminology, we might say that an agent is trusting

in O∗ with respect to P if O∗ is trusting in the sense just defined, and that the agent

is maximally trusting in O∗ with respect to P if O∗ is maximal as well as trusting.

Furthermore, we might say that the agent is generally trusting in O∗ if he is trusting

with respect to all propositions, and that he is maximally generally trusting in O∗ if

he is maximally trusting with respect to all propositions.And we might say that he is

in trusting mood or in maximally trusting mood if in all of his possible belief states

he is generally trusting or maximally trusting, respectively. In an analogous way we

may define notions in which the term “trusting” is replaced by the term “skeptical”.

(This is more terminology than we need here, but the terminology is of some inter-

est in its own right.)It is worth noting that the elements of a trusting (not necessarily

maximal) onion candidate fall into one of two categories: an element is either of

type PW where Z ⊆ W ⊆ K, or of type V ∪PK, where V is an element of the old

onion. Similarly, the elements of a skeptical onion candidate fall into one of three

categories: an element is either of type V ∪PZ where V ⊆ Z or V = Ø, or of typeV

where Z ⊆V ⊆ K,or of type V ∪PW , where V and W , in that order, are consecutive

elements of the old onion such that Z ⊆V ⊆ K. (By definition, two elements X and

Y of O are consecutive, in that order, in O if X ⊂Y and, furthermore, for all W ∈ O,

if X ⊆W ⊆ Y then W = X or W = Y ).

12.4 Two Examples

It is not surprising that revision in different moods generates different logics. In this

section we give two prime examples. Consider the following two schemata:

(∗t) k(ϕ ∧ψ) → ([∗ϕ][∗ψ]Bθ ↔ [∗(ϕ ∧ψ)]Bθ),
(∗s) (b⊤∧Bψ ∧ [∗ϕ]B¬ψ) → (Bθ ↔ [∗ϕ][∗ψ]Bθ).

Lemma 12.1 The schema (∗t) is valid in the maximally trusting mood.

Proof. Let (U,T,H,R) be any onion frame with maximally trusting revision. Fix a

valuation in (U,T ). For any onions O,O′, O′′,O⋆ in H, assume

(1) (O,O′) ∈ R[[ϕ]],
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(2) (O′,O′′) ∈ R[[ψ]],
(3) (O,O⋆) ∈ R[[ϕ∧ψ]].

Furthermore assume, for any point u in the model,

(4) (O,u) � k(ϕ ∧ψ).

It will be enough to prove that O′′ and O⋆ have the same belief set; that is, that
⋂

O′′ =
⋂

O⋆.Let X be the smallest element of O that intersects [[ϕ]], let Y the small-

est element of O′ that intersects [[ψ]], and let Z be the smallest element of O that

intersects [[ϕ ∧ψ]]. (Thanks to (4) and repleteness, we know that those elements

exist.) Note:

(5)
⋂

O′ = X ∩ [[ϕ]],
(6)

⋂
O′′ = Y ∩ [[ψ]],

(7)
⋂

O⋆ = Z ∩ [[ϕ ∧ψ]].

In these terms, it will be enough to prove that

(∗) Y ∩ [[ψ]] = Z ∩ [[ϕ ∧ψ]].

We divide the proof of (∗) into the two natural halves. Since the mood is maximally

trusting andZ is an element of O that intersects [[ϕ]], it follows from (1) that Z∩ [[ϕ]]
is an element of O′. By (3), (4) and (7), Z ∩ [[ϕ]] intersects [[ψ]].Hence Y ⊆ Z ∩ [[ϕ]],
by the minimality of Y . A fortiori, Y ∩ [[ψ]] ⊆ Z ∩ [[ϕ]]∩ [[ψ]] = Z ∩ [[ϕ ∧ψ]], which

yields the first half of (∗).For the other half, note that since Y in an element of O′and

we are in trusting mood, either Y = V ∩ [[ϕ]], for some element V in O, or else Y =
W ∪ (K ∩ [[ϕ]]), for some element W in O, The two subcases are treated separately.

In the first subcase, note that Y intersects [[ψ]] by (2), (4) and (6), and therefore V

intersects [[ϕ ∧ψ]]. Hence Z ⊆V , by the minimality of Z. A fortiori, Z ∩ [[ϕ ∧ψ]] ⊆
V ∩ [[ϕ ∧ψ]] =V ∩ [[ϕ[[∩[[ψ]] =Y ∩ [[ψ]], as we wanted. The second subcase is trivial:

since Z ⊆ K, of course Z ∩ [[ϕ ∧ψ]] ⊆ K ∩ [[ϕ ∧ψ]] ⊆ (W ∩ [[ψ]])∪ (K ∩ [[ϕ ∧ψ]]) =
(W ∩ [[ψ]])∪ (K ∩ [[ϕ]]∩ [[ψ]]) = (W ∪ (K ∩ [[ϕ]]))∩ [[ψ]] = Y ∩ [[ψ]],again what we

wanted. ⊙

Lemma 12.2 (∗t) is not valid in the maximally skeptical mood.

Proof. The problem is to find a particular instance of (∗t) that fails in a particu-

lar maximally skeptical model. We give an outline of the construction but not all

details.What is needed is four sets A,B,P and Q answering to the following speci-

fications: A ⊂ B, PA 6= Ø, QA 6= Ø, PQA = Ø and PQB 6= Ø. Define O = {A,B},

obviously an onion. We wish to define onions O′,O′′ and O⋆ and a revision function

R such that (O,O′) ∈ RP,(O′,O′′) ∈ RQ and (O,O⋆) ∈ RPQ. If our model-to-be is to

be maximally skeptical, we have no choice but to make the following definitions:

O′ = {PA, A, A∪PB, B},

O′′ = {QA, (P∪Q)A, A, A∪PQB, A∪PB, A∪ (P∪Q)B, B},

O⋆ = {PQB, A∪PQB, B}.
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Thus the belief sets QA of O′′ and PQB or O⋆ are disjoint. To build an actual model,

find a set of U of elements in which there are subsets A,B,P and Q as desired.

For example, let U = {0,1,2} and define A = {0,1},B = {0,1,2},P = {0,2} and

Q = {1,2}. Let T be the power set of U . Let H be the heap of onions and R the revi-

sion function generated by O and the condition of maximal skepticality (we already

witnessed the generation of three new onions as well as one onion pair in each of

RP,RQ and RPQ; there are of course several onions and onion pairs to be added).

With the onion frame (U,T,H,R) defined, let P,Q and R be three propositional

letters and consider a valuation in (U,T ) mapping P to P, Q to Q, and R to either

QA or PQB.You get your counterexample(s) by taking P,Q and R as ϕ,ψ and θ ,

respectively. ⊙

Lemma 12.3 The schema (∗s) is valid in the maximally skeptical mood.

Proof. Let O be any onion and u any point in any maximally skeptical onion model

(U,T,H,R,V ). Assume

(1) (O,u) � b⊤,
(2) (O,u) � Bψ,
(3) (O,u) � [∗ϕ]B¬ψ.

Let O′ and O′′ be the onions such that (O,O′) ∈ R[[ϕ]] and (O′,O′′) ∈ R[[ψ]]. Write

X =
⋂

O and Y =
⋂

O′ and Z =
⋂

O′′. Note that by (1)–(3)

(4) X 6= Ø,
(5) X ⊆ [[ψ]],
(6) Y ∩ [[ψ]] = Ø.

Since Y is the smallest element of O′ and the modelling is maximally skeptical,

Y ∪X is the second smallest element of O′. By (6), Y does not intersect [[ψ]] but, by

(4) and (5), X does.Consequently, Z = (Y ∪X)∩ [[ψ]] = X and hence
⋂

O =
⋂

O′′.
But if O and O′′ have the same belief set, then they also support the same beliefs.

⊙

Lemma 12.4 The schema (∗s) is not valid in the maximally trusting mood.

Proof. A finite countermodel can be built along the following lines. As in

Lemma 12.2, we will not give all details.First one has to find nonempty sets A,B,C
and P such that A ⊂ B ⊂ C and PA = Ø and PB 6= Ø. Define O = {A,B,C}. In a

maximally trusting modelling with revision function R, the unique onion O′ such

that (O,O′) ∈ RP is the set {PB,PC,PC∪A,PC∪B,C}. Let Q = B = U −B. There

is a unique onion O′′ such that (O′,O′′)∈RQ; in fact, O′′ = {PBC,BC,PB∪BC,PB∪
A∪BC,C}. Note that the belief sets A of O and PBC of O′′ are disjoint. Now de-

termine a set U of elements and define A,B,C, and P as subsets of U in accor-

dance with the preceding specifications. Most simply, let U = {0,1,2} and define

A = {0},B = {0,1},C = {0,1,2} and P = {1,2}. Let T be the power set of U . Con-

struct the heap H of onions and the revision relation R in accordance with maximal

trust. Let V be a valuation in (U,T ) such that V (P) = P and V (Q) = Q, where P
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and Q are two different propositional letters. Put P for ϕ and Q for ψ . Let R be a

third propositional letter, distinct from both P and Q. The instances of (∗s) obtained

by letting θ be either R or ¬R both fail in the resulting model. ⊙
The following result is an immediate consequence of the four lemmas:

Observation. Of the two logics of maximally trusting revision and maximally skep-

tical revision, respectively, neither is included in the other.

12.5 The Lattice of Fallback Candidates

It is clear that the fallback candidates form a lattice L = L (O∗,P) with set theoret-

ical union as the join and set theoretical intersection as the meet; furthermore, there

is a unit element (K) and a null element (PZ). (See the Fig. 12.1 for an illustration.)

Let us use the term path for any sequence of fallback candidates in the order of

increasing set inclusion. There is a close connexion between paths and onion candi-

dates. Clearly the sequence pO of elements of an onion candidate O, ordered by set

inclusion, is a path from PZ to K. Conversely, the set Op of elements appearing in

a path p from PZ to K is a set of closed sets satisfying NESTEDNESS; hence this set

is an onion candidate if also the condition AINT is satisfied. Let us say that a path p

is meet-complete if
⋂

q is an element of p for every subpath q of p.

Observation. If p is a meet-complete path from PZ to K, then Op is a candidate

onion.

Proof. Assume that p is a meet-complete path from PZ to K. It is clear that Op

contains both PZ and K as elements and that NESTEDNESS is satisfied. Thus it

will be enough to prove that Op satisfies AINT. Let Sbe any nonempty subset of

p. Then there must be a nonempty index set I such that S = {Vi ∪ PWi : i ∈ I},
where, according to the definition in the preceding section, for all i ∈ I,Vi and Wi are

elements of the old onion O∗ such that Vi ∈ O∗∪{Ø} and Wi ∈ O∗ and Vi ⊆Wi and

Z ⊆ Wi.It is readily seen (using the fact that O∗ satisfies NESTEDNESS and AINT)

that there are elements V ′ and W ′ of the old onion such that V ′ ∈ O∗ ∪ {Ø} and

W ′ ∈ O∗ and V ′ ⊆W ′ and Z ⊆W ′ and

⋂

S =
⋂

i∈I

(Vi ∪PWi) = V ′∪PW ′.

Thus
⋂

S is a fallback candidate. By the meet-completeness of p, therefore,
⋂

S is

an element of p. But then
⋂

S is also an element of Op, which is what we wanted to

prove. ⊙

Corollary 12.1 There is a one-one correspondence between meet-complete paths

from PZ to K (inclusive) and onion candidates.

The lattice L offers a picturesque representation of what, under our self-imposed

limitation, can be the result of revising the onion O∗ by the proposition P. By the
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Fig. 12.1 Illustration of the “fallback candidates”.

corollary, any meet-complete path from PZ to K yields an onion. Thus the problem

of finding a method or mood for revision is formally the same as the problem of

finding a strategy for choosing a meet-complete path with certain properties in the

relevant lattice. In this paper, two such strategies have been examined, but obviously

they are just the two extremes among infinitely many possible strategies. We may

say of those two that they are logically distinct, meaning that, as remarked in the

observation at the end of the preceding section, they give rise to different logics in

the object language defined in this paper. It would be interesting to know how many

logically distinct moods of revision there are.

A final note on maximality. If one uses the lattice L for the purpose of finding

onion candidates, one must bear in mind that meet-complete paths need not be maxi-

mal: an onion candiate need not be a maximal onion candidate. This is an interesting

fact and, from the point of view of application, important. The interest springs from

the conflict between information and economy. Choosing anything less than a onion

corresponding to a maximal path means that some memory will be lost. On the

other hand, choosing an onion corresponding to maximal paths typically increases

complexity. To illustrate how complexity grows, let us introduce the simplifying as-

sumption that the elements of the onion O0 is well-ordered by the inclusion relation.

(The belief set of O∗ is first in the well-ordering and the commitment set of O∗ is

last.)Let α and β be ordinals such that α is the order type of the set {X ∈O∗ : X ⊂ Z}
and β is the order type of the set {X ∈ O∗ : Z ⊂ X ⊂ K}. The two extreme strategies
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are t, the maximally trusting one, and and s, the maximally skeptical one. Evidently

the order type of the old onion is

1+α +1+β +1

while that of the maximally trusting new onion is

1+β +1+α +1+β +1

and that of the maximally skeptical new onion is

1+α +2 · (β +1)+1,

where the dot stands for ordinal multiplication (and binding harder than the plus of

ordinal addition). In the finite case, these entities are equal: if we write m for the

finite ordinal α and n for the finite ordinal β , then the order type of the old onion

is m + n + 2 while the trusting order type and the skeptical order type both reduce

to m + 2n + 4. (In the case depicted in the figure, m = 2 and n = 3. Thus both the

maximally trusting onion candidate and the maximally skeptical one have twelve

elements, as compared with the seven of the old onion.) But in the infinite case the

two order types may differ. For example, if α = ω and β = ω + ω = ω · 2 (and

the old onion thus has ω · 3 + 1 elements), the maximally trusting onion candidate

has ω · 5 + 1 elements, while the maximally skeptical onion candidate hasω · 3 + 1

elements. In the latter case, all onion candidates corresponding to maximal paths

have ordinal type ω ·3+1 or ω ·4+1 or ω ·5+1.

12.6 Concluding Remarks

The treatment of belief revision in this paper should be seen as one representative

instance of a general way of analysing belief change (in a static universe). There is

a similar treatment of related kinds of belief revision, in particular contraction, an

operation exhibiting even greater variation. In sum, the approach suggested in this

paper is

• to treat belief change as a relation between belief states,

• to formalize belief states as hypertheories,

• to construct new hypertheories from material deriving from the old hypertheories

and the new information with which the change is to be made.

In this paper, the only hypertheories to be studied are what we have called onions.

But there are also more general alternatives.1

1 The research reported in this paper was first presented on 13 September 2002 at a conference on
formal epistemics at Villa Lanna, Prague and more recently on 13 November 2005 at a conference
on the understanding the dynamics of knowledge at the Certosa di Pontignano, Siena. It is dedicated
to the memory of Jasu, our beloved daughter-in-law.
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Chapter 13

Towards a Logical Analysis of Adjusted Winner

Eric Pacuit

13.1 Introduction

It is often convenient to view a computational procedure, or a program, as a relation

on a set of states, where a state can be thought of as a function that assigns a value to

every possible variable and a truth value to all propositions. This idea was proposed

by Pratt [19] and extends the work of of Floyd [4] and Hoare [6]. Harel, Kozen and

Tiuryn [5] provide a very thorough discussion of computational procedures from

this point of view. In [12], Rohit Parikh suggests that a similar framework can be

developed for studying social procedures, such as fair division algorithms or voting

protocols.

In fact, the first example of such an analysis can be found in an earlier paper of

Parikh [11]. In [11], a PDL-style logic, called game logic, is developed for reason-

ing about multi-agent strategic situations. It is then used to show that the Banach-

Knaster last diminisher procedure to fairly divide a cake is “correct”. Here “correct”

means that each agent has a strategy to ensure that it receives a piece of the cake

that is fair from its point of view. See [11, 16] for a discussion of this result and the

current state of affairs of game logic.

Recently, there have been a number of attempts to answer Parikh’s challenge to

develop logical methods for studying social procedures. The different approaches

can roughly be divided into two categories. The first category makes use of model

checking techniques to verify that a given game-theoretic mechanism satisfies a

particular specification (written in some logical language). The idea is to draw an

analogy with the formal verification of computer systems via model checking tech-

niques where the desired specifications are expressed in some temporal logic. In

the game-theoretic setting, modal strategy logics, such as alternating temporal logic

(see [1]) or coalitional logic (see [14]), are used to express the desired specification.
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See (Pauly M., and Wooldridge M. Logic for Mechanisam Design – a Main festo.

Unpublished Manuscript.) [19], the recent dissertation [18] and references therein

for details of this approach.

The second category of papers follow in the footsteps of Floyd [4], Hoare [6] and

Pratt [19] and develops a formal calculus to reason about social procedures. This is

the direction that Parikh took in [11] and more recently Pauly in [15]. A discussion

of this approach can be found in Section 13.3.

In this paper, we apply the methods of [15] to fair division algorithms. In partic-

ular, we look at Adjusted Winner (AW ) – an algorithm for “fairly ” dividing n goods

among two people invented by Steven Brams and Alan Taylor. See [2] for a discus-

sion of AW and an excellent overview of other fair division algorithms. We will see

that the techniques from [15] cannot be directly applied to the analysis of Adjusted

Winner. The paper is organized as follows. The next section describes the Adjusted

Winner procedure to “fairly” divide n divisible goods between two people. Section

13.3 outlines how to extend Pauly’s framework to reason about Adjusted Winner

and raises some difficulties.

13.2 The Adjusted Winner Procedure

We begin with an example that illustrates how AW works. Suppose there are two

players, called Ann (A) and Bob (B), and n (divisible1) goods (G1, . . . ,Gn) which

must be distributed to Ann and Bob. The goal of the Adjusted Winner algorithm is

to fairly distribute the n goods between Ann and Bob. We begin by discussing an

example which illustrates the Adjusted Winner algorithm.

Suppose Ann and Bob are dividing three goods: G1,G2, and G3. Adjusted Winner

begins by giving both Ann and Bob 100 points to divide among the three goods.

Suppose that Ann and Bob assign these points according to the following table.

Item Ann Bob

G1 10 7

G2 65 43

G3 25 50

Total 100 100

The first step of the procedure is to give G1 and G2 to Ann since she assigned more

points to those items, and item G3 to Bob. However this is not an equitable outcome

since Ann has received 75 points while Bob only received 50 points (each according

to their personal valuation). We must now transfer some of Ann’s goods to Bob. In

order to determine which goods should be transfered from Ann to Bob, we look at

the ratios of Ann’s valuations to Bob’s valuations. For G1 the ratio is 10/7 ≈ 1.43

1 Actually all we need to assume is that one good is divisible. However, since we do not know
before the algorithm begins which good will be divided, we assume all goods are divisible. See
[2, 3, 9] for a discussion of this fact.
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and for G2 the ratio is 65/43 ≈ 1.51. Since 1.43 is less than 1.51, we transfer as

much of G1 as needed from Ann to Bob2 to achieve equitability.

However, even giving all of item G1 to Bob will not create an equitable division

since Ann still has 65 points, while Bob has only 57 points. In order to create equi-

tability, we must transfer part of item G2 from Ann to Bob. Let p be the proportion

of item G2 that Ann will keep. p should then satisfy

65p = 100−43p

yielding p = 100/108 = 0.9259, so Ann will keep 92.59% of item G2 and Bob will

get 7.41% of item G2. Thus both Ann and Bob receive 60.185 points. It turns out

that this allocation (Ann receives 92.59% of item G2 and Bob receives all of item G1

and item G3 plus 7.41% of item G2) is envy-free, equitable and efficient, or Pareto

optimal. In fact, Brams and Taylor show that Adjusted Winner always produces

such an allocation [2]. We will discuss these properties in more detail below.

Suppose that G1, . . . ,Gn is a fixed set of goods, or items. A valuation of these

goods is a vector of natural numbers 〈a1, . . . ,an〉 whose sum is 100. Let α,α ′,α ′′, . . .
denote possible valuations for Ann and β ,β ′,β ′′, . . . denote possible valuations for

Bob. An allocation is a vector of n real numbers where each component is between

0 and 1 (inclusive). An allocation σ = 〈s1, . . . ,sn〉 is interpreted as follows. For each

i = 1, . . . ,n, si is the proportion of Gi given to Ann. Thus if there are three goods,

then 〈1,0.5,0〉 means, “Give all of item 1 and half of item 2 to Ann and all of item 3

and half of item 2 to Bob.” Thus AW can be viewed as a function that accepts Ann’s

valuation α and Bob’s valuation β and returns an allocation σ . It is not hard to

see that every allocation produced by AW will have a special form: all components

except one will be either 1 or 0.

We now give the details of the procedure. Suppose that Ann and Bob are each

given 100 points to distribute among n goods as he/she sees fit. In other words, Ann

and Bob each select a valuation, α = 〈a1, . . . ,an〉 and β = 〈b1, . . . ,bn〉 respectively.

For convenience rename the goods so that

a1/b1 ≥ a2/b2 ≥ ·· ·ar/br ≥ 1 > ar+1/br+1 ≥ ·· ·an/bn

Let α/β be the above vector of real numbers (after renaming of the goods). Notice

that this renaming of the goods ensures that Ann, based on her valuation α , values

the goods G1, . . . ,Gr at least as much as Bob; and Bob, based on his valuation β ,

values the goods Gr+1, . . . ,Gn more than Ann does. Then the AW algorithm proceeds

as follows:

1. Give all the goods G1, . . . ,Gr to Ann and Gr+1, . . . ,Gn to Bob. Let X ,Y be the

number of points received by Ann and Bob respectively. Assume for simplicity

that X ≥ Y .

2. If X = Y , then stop. Otherwise, transfer a portion of Gr from Ann to Bob which

makes X = Y . If equitability is not achieved even with all of Gr going to Bob,

transfer Gr−1,Gr−2, . . . ,G1 in that order to Bob until equitability is achieved.

2 When the ratio is closer to 1, a unit gain for Bob costs a smaller loss for Ann.
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Thus the AW procedure is a function from pairs of valuations to allocations. Let

AW(α,β ) = σ mean that σ is the allocation given by the procedure AW when Ann

announces valuation α and Bob announces valuation β . In [2, 3], it is argued that AW

is a “fair” procedure, where fairness is judged according to the following properties.

Let α = 〈a1, . . . ,an〉 and β = 〈b1, . . .bn〉 be valuations for Ann and Bob respec-

tively. An allocation σ = 〈s1, . . . ,sn〉 is

• Proportional if both Ann and Bob receive at least 50% of their valuation. That

is, ∑
n
i=1 siai ≥ 50 and ∑

n
i=1(1− si)bi ≥ 50.

• Envy-Free if no party is willing to give up its allocation in exchange for the

other player’s allocation. That is, ∑
n
i=1 s1ai ≥ ∑

n
i=1(1−si)ai and ∑

n
i=1(1−si)bi ≥

∑
n
i=1 sibi.

• Equitable if both players receive the same total number of points. That is

∑
n
i=1 siai = ∑

n
i=1(1− si)bi.

• Efficient if there is no other allocation that is strictly better for one party without

being worse for another party. That is for each allocation σ ′ = 〈s′1, . . . ,s′n〉 if

∑
n
i=1 ais

′
i > ∑

n
i=1 aisi, then ∑

n
i=1(1− s′i)bi < ∑

n
i=1(1− si)bi. (Similarly for Bob).

In order to simplify notation, let VA(α,σ) be the total number of points Ann receives

according to valuation α and allocation σ and VB(β ,σ) the total number of points

Bob receives according to valuation β and allocation σ .

It is not hard to see that for two-party disputes, proportionality and envy-freeness

are equivalent. For a proof, notice that

n

∑
i=1

aisi +
n

∑
i=1

ai(1− si) =
n

∑
i=1

aisi +
n

∑
i=1

ai −
n

∑
i=1

aisi = 100

Then if σ is envy free for Ann, then ∑
n
i=1 aisi ≥ ∑

n
i=1 ai(1− si). Hence, 2∑

n
i=1 aisi ≥

∑
n
i=1 ai = 100. And so, ∑

n
i=1 aisi ≥ 50. The argument is similar for Bob.

Conversely, suppose that σ is proportional. Then since ∑
n
i=1 aisi ≥ 50, ∑

n
i=1 aisi +

∑
n
i=1 aisi ≥ 100 = ∑

n
i=1 ai. Then ∑

n
i=1 aisi +∑

n
i=1 aisi−∑

n
i=1 ai ≥ 0. Hence, ∑

n
i=1 aisi−

∑
n
i=1 ai(1−si)≥ 0. And so, ∑

n
i=1 aisi ≥ ∑

n
i=1 ai(1−si). The proof is similar for Bob.

Returning to AW , it is easy to see the AW only produces equitable allocations

(equitability is essentially built in to the procedure). Brams and Taylor go on to

show that AW , in fact, satisfies all of the above properties.

Theorem 13.1 (Brams and Taylor [2]) AW produces an allocation of the goods

based on the announced valuations that is efficient, equitable and envy-free.

A formal proof of this Theorem is provided in [2]. See also [9] for a number of new

results about the Adjusted Winner procedure.

13.3 Towards a Logical Analysis

Hoare logic contains expression of the form {P}α{Q} where α is intended to be a

program and P and Q are intended to be pre- and post-conditions respectively. The
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intended interpretation is that if α starts in some state satisfying P, then α halts

(if it does halt) in a state satisfying Q. Here the program α is a formal expression

in some programming language (for example, the WHILE-language) and P and

Q are formulas in some logical language (say first-order logic). Details are given

below. Pauly’s key idea in [16] is to extend the formal programming language with

expressions chA ({xi | i ∈ A }) intended to mean

“each agent i ∈ A independently chooses a value for the variable xi.”

It is assumed that the agents make their choice simultaneously. Thus, chA ({xi | i ∈
A }) is best thought of as a strategic game form (cf. [8]) where the choices for each

agent i ∈ A is the set of possible values for the variable xi.

13.3.1 Relevant Details

Pauly extends the work of Hoare to develop a formal calculus for reasoning about

game theoretic mechanisms. In the interest of space, we will not go into full details

of Pauly’s framework, but rather sketch the main ideas (the interested reader can

consult [15]).

The Mechanism Programming Language: The mechanism programming language

(MPL) is a simple extension of the well-known WHILE-language (cf. [7]). Assume

A is a non-empty set of agents, V a set of variables, F a set of function symbols

and R a set of relation symbols. Terms t and boolean expressions ϕ are defined in

the usual way:

t =def x | f k(t1, . . . , tk)

ϕ =def ⊤ | Rk(t1, . . . , tk) | ¬ϕ | ϕ1 ∧ϕ2

where f ∈ F and R ∈ R have arity k ∈ N. These boolean expressions and terms are

used to create game expressions.

Definition 13.1 A game expression of MPL is generated according to the following

grammar:

γ =def x := t | γ1;γ2 | if ϕ then γ1 else γ2 | while ϕ do γ |
chA ({xi | i ∈ A })

where t is a term and ϕ a boolean expression.

Pauly shows that this language is quite general in the sense that it can be used to

describe a large number of game-theoretic mechanisms. For example, a solution to

Solomon’s Dilemma and various auctions can be described in this language (see

[15] for details).
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Semantics: As in Hoare logic, a partial correctness assertion has the form {P}γ{Q},

where P and Q are predicates. The intended interpretation is: given an initial state

s0, there is a subgame perfect equilibrium3 of the game described by γ consistent

with the predicate Q. We now make this precise.

Start with a standard first-order model containing a domain D and an interpre-

tation I (which interprets elements of F and R as functions and relations over

D respectively). A state is a function s : V → D. Given an interpretation I and

an initial state s0, game expressions are interpreted as extensive game forms,4 de-

noted G(s0,γ,I ). Instead of giving a formal definition, we work through a simple

example. Suppose that the domains consists of two elements D = {a,b}, there are

four variables V = {x,xi,x j,xk} and three agents A = {i, j,k}. Consider the game

expression

(x := a);ch{i}({xi});ch{ j,k}({x j,xk}).
Suppose the initial state is s0 : V → D is given by s0(v) = b for all v ∈ V . The game

form corresponding to this game expression is pictured below:

Note that the matrices in the above tree represent the fact that agent j and agent

k must simultaneously choose values for the variables x j and xk respectively. In the

above picture, each si is a state where, for example, s2 is the following function:

x 7→ a; xi 7→ a; x j 7→ b; and xk 7→ a. The if and while expressions have the usual

interpretation (branching and iteration). Formally, game expressions are interpreted

as extensive game forms with perfect information and simultaneous moves (cf. [8],

Section 6.3.2).

As we just noted, game expressions do not provide any information about the

agents’ preferences over the terminal histories. This information is provided by the

3 A strategy profile in an extensive game is a subgame perfect equilibrium if no agent has a
reason to deviate from the profile and this is true for all subgames. Consult [8] for details.
4 That is, an extensive game (i.e., a game tree) without the preferences over the outcomes.
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pre- and post-conditions (P and Q above). To that end, elements of the domain are

interpreted as possible outcomes and it is assumed that each agent has a (reflexive,

transitive and complete) preference over the domain. A predicate is any5 collection

of states. Let o be an element of the domain. An e-state is a pair (s,o) and a e-

predicate is any set of e-states. An e-predicate P can be used to turn a semi-game

into a game as follows. For each (s,o) ∈ P, let fo be the function that assigns o to

each terminal history whose last state is s. Given an e-predicate P, let P̂ denote the

set of such functions. In general, for a given semi-game and e-predicate P, P̂ may be

empty or contain more than one function. What is important is that each fo ∈ P̂ turns

the semi-game under consideration into a game. Let P and Q be e-predicates. Given

this machinery we can be more precise about what it means to say that {P}γ{Q} is

valid in some first-order model:

For each (s,o) ∈ P there is a outcome function f ∈ Q̂ and a strategy profile σ such that in
the game generated from γ and f , σ is a subgame perfect equilibrium and the last state on
σ is mapped by f to o.

13.3.2 Formalizing AW

Describing AW in the above mechanism programming language is straightforward:

chA ({xa,xb});
s := wta(xa,xb);
while ¬Eq(s,xa,xb) do

s := t(s,xa,xb);

In the above program, A = {a,b} is the set of agents (Ann and Bob), the variables

xa and xb are intended to represent Ann and Bob’s valuations respectively and s

represents the current allocation. To make this formal, it will be convenient to work

in a two-sorted first-order structure with an allocation sort and a valuation sort.

In what follows, we use s, t,s1,s2, . . . for allocation variables and x,y,x1,x2, . . . for

valuation variables. The intended interpretation of the functions wta and t and the

relation Eq is as expected:

• wta(xa,xb) is intended to represent the winner take all initial allocation given

Ann’s valuation xa and Bob’s valuation xb. That is, wta will be interpreted as a

function from pairs of valuations to allocations where the agent who assigns the

most points to a particular item receives that item.

• t(s,x1,x2) is intended to represent the one-step transfer of goods as described in

Section 13.2. The exact details of which good is transfered from which agent is

described Section 13.2, so we will not repeat it here.

5 Note that Pauly does not restrict to definable sets here. Thus he is provided an extensional se-
mantics rather than an intensional semantics. Issues related to this, such as whether or not certain
properties are expressible in a logical language (say first-order logic), is left for future work. We
agree with Pauly that, although this raises some interesting questions, it will only complicate the
current discussion.
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• The relation Eq is intended to represent equality of each agents’ valuation with

respect to the current allocation. That is, Eq(s,xa,xb) will hold whenever the

allocation s is equitable with respect to the valuations xa and xb. Again, see Sec-

tion 13.2 for details.

We also include in our language relation symbols E f and Pe intended to mean envy-

free and Pareto-efficient respectively. Formally, E f will hold between an allocation

σ and a pair of valuations α and β provided σ is envy-free with respect to α and β
(see the definition in Section 13.2). Similarly for Pareto efficiency: Pe will hold6 for

σ ,α and β provided the allocation σ is Pareto efficient with respect to α and β .

13.3.3 Discussion

After Ann an Bob make their choice, it is clear what we have to prove in order to

show AW is “correct”: we must show that after the while-loop the allocation con-

tained in s is envy-free, equitable and Pareto efficient (with respect to the allocations

chosen by Ann and Bob). This is exactly what Theorem 13.1 says.

The proof from [2] proceeds by first showing that AW produces a Pareto effi-

cient allocation then noting that all Pareto efficient and equitable outcomes must be

envy-free. Thus the real work is in showing that AW produces and Pareto efficient

allocation. In this setting, this amounts to finding an appropriate loop-invariant.

Here we can use the predicate Pe(s,x1,x2) defined above. Thus the crucial part of

the proof of Theorem 13.1 is showing that the winner takes all procedure produces

a Pareto efficient allocation and that Pareto efficiency is preserved under repeated

applications of the transfer function. Although not phrased this way, the relevant

details can be found in [2] (Theorem 4.1, pp. 85–94).

Note that the discussion above is relevant after Ann and Bob have made their

choices. However, the correctness assertions in both Parikh’s framework and Pauly’s

framework are about outcomes that the agents can achieve. In [11], the Banach-

Knaster last diminisher procedure7 is proven correct by showing that a certain for-

mula (in the language of game logic) is derivable. This formula essentially states

that if certain preconditions are satisfied (i.e., the cake is big enough for the group)

then each agent has a strategy to ensure it receives a piece of the cake that is fair

from its point of view. Pauly’s notion of correctness is similar except that there is

6 Note that Pe is an atomic relation symbol. Alternatively, we may first define a relation (σ ,α,β )≻
(σ ′,α ′,β ′) iff either ∑i σiαi > ∑i σ ′

i αi and ∑i(1−σi)βi ≥ ∑i(1−σ ′
i )βi or ∑i σiαi ≥ ∑i σ ′

i αi and

∑i(1−σi)βi > ∑i(1−σ ′
i )βi. Then the we can define the predicate Pe as follows: Pe(σ ,α,β ) :=

∀s((σ ,α,β ) ≻ (s,α,β )). However, this formula is not in the language we described above as a
quantifier is involved.
7 In this cake-cutting algorithm, the first agent cuts a slice of the cake he considers fair. This piece
is then inspected by each of the remaining agents in turn. Each agent can decide either leave the
piece as is or diminish the piece and return the extra portion to the main part of the cake. The last
person to diminish the piece receives that piece of the cake (or if no-one diminishes the piece, the
cutter receives the piece). See [2] for details.
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an additional requirement that the strategy profile must satisfy a certain equilibrium

concept.

Formally verifying the correctness of Adjusted Winner in Pauly’s framework pro-

vides us with an interesting challenge. The main issue is finding the correct notion of

equilibrium for Ann and Bob. Verifying AW is the above framework can be broken

down into two different tasks:

1. Given two valuations from Ann and Bob, prove that AW produces a equitable,

envy-free and efficient allocation.

2. Argue that there is a joint strategy which is a subgame perfect equilibrium in

the game generated by the AW program as described above. Of course, stating

precisely what this means requires specifying a pre- and post-condition.

As argued above, the first step is relatively straightforward. However, solving the

second problem raises some interesting issues. The central problem is making pre-

cise what it means to say that Ann and Bob have a strategy to ensure a fair outcome.

A strategy for an agent amounts to choosing a particular valuation. Now if we as-

sume that for each agent there is one valuation that is that agent’s “true” valuation,8

then Pauly’s notion of correctness may not be applicable. The reason is because

truthful announcement of valuations is not a Nash equilibrium.9 This is illustrated

from the following example from [2]. Suppose that Ann and Bob are dividing two

paintings: one by Matisse and one by Picasso. Suppose that Ann and Bob’s actual

valuations are given by the following table.

Item Ann Bob

Matisse 75 25

Picasso 25 75

Total 100 100

Ann will get the Matisse and Bob will get the Picasso and each gets 75 of his or her

points. However, this is not a Nash equilibrium. Suppose that Ann announces here

valuation according to the following table.

Item Ann Bob

Matisse 26 25

Picasso 74 75

Total 100 100

So Ann will get the Matisse, receiving 26 of her announced (and insincere) points

and Bob gets 75 of his announced points. Let p be the fraction of the Picasso that

Ann will get, then we want

8 This assumes that there are valuations which are, as a matter of fact, the agents’ actual valuations.
However, it may very well be that the players themselves cannot point to a valuation which they
consider their “true” valuation. After all, valuations are simply a way to represent the players’
preferences or utilities over the set of goods. See (Parikh R., and Pacit E. Safe Votes, Sincere Votes,

and Strategizing. Unpublished Manuscript, 2005.) for a relevant discussion in the context of voting.
Nonetheless, for this paper we assume that each player is associated with a unique “true valuation”.
9 Here we need only consider Nash equilibrium and not subgame perfect equilibrium as there is
only one point in AW when the agents make a choice.
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26+74p = 75−75p

Solving for p gives us p = 0.33 and each gets 50 of his or her announced preference.

In terms of Ann’s true preference, however, the situation is very different. She is

getting from her true preference 75+0.33∗25 = 83.33.

There are two directions one can follow to extend Pauly’s analysis to take into

account the above issue. We do not go into details in this essay, but only sketch the

main ideas.

Imperfect Information In order for Ann (or Bob) to take advantage of the fact that

she is not playing her best response in the above example, she must know Bob’s

actual valuation and that he will in fact play that valuation. Note that this second

point is important. For suppose that in the above example, that Bob has knowledge

of Ann’s valuation and decides to deceive Ann in the same way as Ann is deceiv-

ing him: Bob announces 74 for the Matisse and 26 for the Picasso. In this case,

Ann will get the Picasso and Bob will get the Matisse each receiving 74 of their

announced points. However, according to their actual valuations both Ann and Bob

receive only 25 points! Thus, the information that each agent has about the other

agent’s valuation is relevant. This suggests two extensions to Pauly’s framework.

The first is to extend the basic model to include the information each agent has

about the other agents’ preferences.10 The second is to allow agents to misrepresent

their preferences and include “truthfulness” as a post-condition.

Safe Strategies As argued above, if Ann attempts to deceive Bob and is wrong about

Bob’s choice of valuation, then this can lead to devastating results for Ann (i.e.,

receiving less than 50 points). Thus while the honest strategy profile (each agent

reports his/her “true” preference) is not necessarily a Nash equilibrium, it is a safe

strategy, i.e., a strategy that guarantees at least 50 points. This is discussed in [2] and

(Parikh R., and Pacuit E. Safe Votes Sincere Votes, and Strategizing. Unpublished

Manuscript, 2005.). Using this notion of a safe strategy we can be more precise

about what it means to say that a fair division algorithm is “correct”. A fair division

algorithm is correct if there is a safe strategy such that the outcome is envy-free,

Pareto efficient and equitable.

13.4 Conclusion

Evidence of the usefulness of a rigorous analysis of social procedures can already

be seen in many areas of economics and social choice theory. Classic results such

as Arrow’s Theorem have had profound effects on social choice theory and voting

theory. A more concrete example is the analysis of the procedure used by King

Solomon in the well-known biblical story. King Solomon is faced with two women

each claiming that a baby is her own child. Solomon threatens to cut the baby in

half causing one of the mothers to rescind her claim of motherhood; thus revealing

10 Note that this does not mean moving to imperfect information games. Although this may be
an interesting direction for future research, all that is needed here is a formal model of the agents
information about the other agents’ preferences.
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herself as the true mother. However a formal analysis of this procedure reveals a

mistake: it is possible for the false mother to misrepresent her actual preference and

claim, as the true mother would, that the baby should be given to the other woman.

What is often missing from the game-theoretic analyzes of social procedures is a

clear and rigorous analysis of what it means for the social procedure to be correct.

The logics discussed in [15, 18, 19] (Pauly M., and Wooldridge M. Logic for

Mechanism Design – a Manifesto. Unpublished Manuscript.) are all intended to be

tools for providing such a rigorous analysis of social procedures. Focusing on the

framework from [15], this essay highlights an important aspect of the analysis of

many social procedures. This key component is the information, or knowledge, the

agents have during the execution of the procedure (cf. [13] and [10] for an extended

discussion of this point).
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Chapter 14

Temporal Logic with Preferences and Reasoning
About Games

G. Venkatesh

14.1 Introduction

Game theory based semantics has provided good insights into the decidability and

completeness of several modal logics [24]. On the other hand, we can formalise the

language and reasoning used in game theory using appropriate types of modal logic

[1, 3, 12–15, 23, 25]. This paper is concerned with the latter issue. The starting

point in games is a set of players (agents) having certain strategies (decisions) and

preferences on the game’s outcomes. Hence we have to represent both the game

structure and the agents’ preference relations. When reasoning about the games, we

wish to determine the properties that hold in the equilibrium to which the game

naturally evolves.

Specifically, we will be interested in modeling three types of games, that have

a wide range of applications – one stage games with simultaneous moves, finite

games with sequential moves and infinite repeated games. Single stage games can

be easily represented using propositional logic, and the agents’ preference relations

become orderings on the models of this logic. The ordering can be described using

theories of propositional formulas, but we explore whether they can be captured us-

ing preference modal operators that represent the preference relations directly. For

sequential and repeated games, a natural extension is to consider the use of proposi-

tional temporal logic (PTL), since PTL is able to capture both finite sequences and

infinitely repeated sequences in a simple way. Using preference modal operators,

we are also able to represent agents’ preference relations for the finite sequential

and infinitely repeated cases.

Once a game is fully represented, we are able to formulate the notion of game

theoretic consequence which allows us to derive properties that hold in the equi-

librium of the game. We thus introduce the temporal logic with preferences, whose

models are obtained by ordering models of linear time temporal logic. We discuss
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Indian Institute of Management, Bangalore 560076, India

J. van Benthem et al. (eds.), Proof, Computation and Agency, Synthese Library 352, 241
DOI 10.1007/978-94-007-0080-2 14, c© Springer Science+Business Media B.V. 2011



242 G. Venkatesh

with examples the expressive power of such a logic to reason about both finite and

repeated games and their outcomes.

14.1.1 Related Work

The idea of using a temporal logic (CTL) to model finite extensive games and to

reason about backward induction was discussed in [3]. Intuitively, this should work

since CTL frames have sufficient structure to represent the game trees of sequential

games. Moreover, CTL also allows infinite behaviour to be represented, and hence

could in principle represent some kinds of repeated games.

The harder part is to find an adequate representation of the agents’ preference

relations. What we need is a compact preference representation language. Such lan-

guages have been developed by the Knowledge Representation (KR) community.

Most are based on propositional logic, or use utility networks [2, 16] or valued con-

straint satisfaction [27]. We follow the approach taken in [5] and [10], where the

semantics is given by a total ordering of propositional interpretations, with appro-

priate syntax introduced to represent and reason about this.

Applications of such preference modeling to interactive situations, such as vot-

ing and collective choice has been studied in [17]. An attempt is made in [10] to

find links between the interactive decision outcomes of Nash equilibria with those

obtained from preference orderings. In [12], a game theoretic consequence mecha-

nism is defined in which a propositional formula holds in the Nash equlibrium of

a strategic game iff it is a consequence of theories representing the players’ pref-

erence orderings. By using a modal logic, this idea is extended to extensive games

and subgame pefect equilibria in [13].

In [14, 25], a logic programming setting is used to capture the game structure

and players’ preferences, so that properties of the game equilibria can be directly

computed. Using a logic programming setting has the particular advantage that it

allows infinite (repeated) games to be represented. The disadvantage is that it does

not provide the insights that we can gain using model theory.

In [26], we motivate the use of a linear time temporal logic formulation to model

and reason about strategic form, extensive form and infinite repeated games. This

allows us to extend tableau based decision procedures for temporal logic [28] to

compute game theoretic consequences as defined in [12]. The method used is to

represent preferences as orderings on tableau nodes, and to convert the game into a

negotiation game on tableau nodes.

14.1.2 Organisation

The paper is organised as follows: Section 14.1 defines games. Section 14.2 reviews

preference orderings in the propositional logic setting. Section 14.3 extends this
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to propositional temporal logic. Section 14.4 introduces the temporal logic with

preferences (TLP) based on this. Some examples are presented in Section 14.5.

Section 14.6 discusses the expressive power of TLP. Section 14.7 summarises the

paper and indicates the directions for future work.

14.2 Games

14.2.1 Strategic Form Games

Strategic game situations arise when a set of players make their moves simulta-

neously, and the outcome of the game is dependent on the combination of moves

selected by the players. We follow the notation in [20], where the set of players is

denoted by N = {1, ...,n}, and for each player i ∈ N, the (finite set of) actions (also

called choices or strategies) available to her is denoted by Ai, with Ai ∩A j = ϕ for

i 6= j. The set of consequences is denoted by C . A = A1× A2× ...× An is the set of

strategy profiles. If a =< a1, ...,an >∈ A is a strategy profile, we write < a−i,a
′
i >

for the profile < a1, ...,a
′
i, ...,an >.

A strategic game form is given by G = < N,A ,C ,g > where g : A →C is a map

that associates with each strategy profile a consequence. The player’s preferences for

the consequences is given by the complete, reflexive, transitive ordering �i on C .

The preference ordering on the consequences C induces an ordering on the strategy

profiles as follows: a �i a′ if g(a) �i g(a′).
A strategic game < G ,�i> is a strategic game form together with a preference

ordering for each player. A Nash equilibrium of the strategic game is any strategy

profile a =< a1, ...,an > from which no player has the incentive to unilaterally de-

viate, i.e. ∀i ∈ N∀a′i ∈ Ai : g(a) �i g(< a−i,a
′
i >).

To model uncertainty between action and consequence, we consider a set of states

Ω , and write the consequence relation g : A ×Ω → C . It is useful to recall [23],

who considers consequences, acts and states as three ways of partitioning a space

of possible worlds. Consequences partition the space by what matters to the agent,

Acts by what the agent controls (or has the capacity to decide) and States by features

of the world on which the consequences may depend, but over which the agent has

no control.

14.2.2 Extensive Form and Repeated Games

When we have game situations where the players make their moves sequentially in

turns, we use the extensive game form. We can also have repeated game situations

in which the game enters a stage where a sequence of moves of the players is re-
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peated again and again forever. Both sequential and repeated games can be fully

represented by the runs of the games, which are usually modeled by the histories.

A history (see [20]) is a finite or infinite sequence of actions taken from the sets

Ai. If h = a0a1...ak is a finite history, then a0a1...al , with l < k is a called a prefix

of h. Likewise, if h = a0a1...al ... is an infinite history, then all the finite histories

a0a1...al are prefixes of h. We consider finite or infinite sets H of histories that are

prefix closed i.e. if h′ is a prefix of h ∈ H, then h′ ∈ H. The set of terminal histories

Z ⊆ H are those that are not prefixes of any history in H. In particular all infinite

histories are terminal.

We will restrict our attention to the set of histories H for which we can define

the function P : (H\Z) → N that assigns to each prefix h ∈ H a unique player

P(h) = i ∈ N, and if ha ∈ H then a ∈ Ai. This restriction ensures that we are only

concerned with games in which only one player plays at a time, and there is a rule

that determines who will play next. We also place an important restrictions on in-

finite histories in Z, that they are eventually periodic, i.e. each infinite history can

be written in the form a0a1...ak(a
′
0a′1...a

′
l)

ω , with a′r 6= a′s for r 6= s (xω denotes rep-

etition of x infinitely many times). This restriction ensures that the infinite games

we are dealing with are indeed repeated games, i.e. after some initial period in the

game, there is a sequence of moves that will get repeated again and again.

We can now define an extensive game form as a tuple G =< N,Ai,H,P,C ,g >
where g : Z → C is a map that associates with each terminal history a consequence.

An extensive game is such a tuple along with orderings �i of C for each player i.

A strategy fi for player i associates an action fi(h) ∈ Ai with each prefix

h ∈ H for which P(h) = i. A strategy profile is a tuple f =< f1, ..., fn >. A

strategy profile f leads to a unique terminal history z f = a0a1... ∈ Z in which

∀k : ak+1 = fP(a0,...ak)(a0, ...,ak). We write < f−i, f ′i > for the strategy profile

< f1, ..., f ′i , ..., fn >.

A Nash equilibrium of game G is a terminal history z f from which no player has

the incentive to unilaterally deviate, i.e. ∀i ∈ N : g(z f ) �i g(z< f−i, f ′i >
). We define

the subgame Gh rooted at h to consist of the histories Hh = {h′ |hh′ ∈ H} i.e. the

histories with prefix h from each of which we strip off the prefix. The functions

P , g and strategy profiles f can be extended in the obvious way to Hh. A subgame

perfect Nash equilibrium is a terminal history z f such that for all prefixes h of z f , if

z f = hz′f , then z′f is a Nash equilibrium of Gh.

14.3 Preference Orderings in Propositional Logic

To capture uncertainty between action and consequence, we distinguish choices

made by the decision maker and choices imposed by the environment. We will use

the n disjoint sets of propositional variables P = P1 ∪ P2 ∪ ...∪ Pn with typical el-

ements pr
i (which denotes that the agent i has chosen an action ar ∈ Ai). These are

the agents’ decision variables [18] (or controllable propositions [4]). We also use a

set of propositional variables W with typical elements b, c, ... (the world parame-
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ters or uncontrollable propositions) such that P ∩W = /0. Out of these propositional

variables, we distinguish the subset C ⊂ W that represent consequences, which

has typical elements c with subscripts. The propositional languages that are built up

from Pi, P , W , C , P ∪C and P ∪W variables using the usual propositional con-

nectives ∧, ∨, ¬ and the symbols ⊤, ⊥ are denoted by LPi
, LP , LC , LW , LPC

and LPW respectively. Finally, we use variables ϕ, ψ, ... to stand for any sentences

of these languages.

14.3.1 Semantics

A state s is an assignment of truth values to the propositions taking into account the

fact that each agent can choose at most one action, i.e.

s(pr
i ) = True ⇒ ∀r′ 6= r s(pr′

i ) = False. Such a valuation can be extended to all

propositional formulas ϕ in the usual way, so that s(ϕ) = True or s(ϕ) = False. A

model M consists of a single state sM .

We say that M satisfies ϕ (written M |= ϕ) whenever sM(ϕ) = True.

We write Mod(ϕ) for the set of models satisfying ϕ , i.e. Mod(ϕ) = {M |M |= ϕ}.

If Γ is a set of formulas, Mod(Γ ) =
⋂

ϕ∈Γ Mod(ϕ).
The logical consequence relation |= between Γ and formula ϕ is defined by:

Γ |= ϕ iff Mod(Γ ) ⊆ Mod(ϕ).

14.3.2 Preference Ordering of Models

We let M denote the set of all models. Agent i’s preference relation �i is given by

a preorder, i.e., a reflexive and transitive binary relation on M . M �i M′ means that

situation M is at least as good (to the agent i) as the situation M′.
Such a relation is not necessarily complete, that is, it may be that neither M �i M′

nor M′ �i M holds for a pair M, M′ in M .

We write M ≻i M′ for M �i M′ and M′ �i/ M (strict preference of M over M′), and

M ∼i M′ for M �i M′ and M′ �i M (indifference).

It is important to note that M ∼i M′ means that the agent takes M and M′ to be

equally preferred, while the incomparability M �i/ M′ and M′ �i/ M simply means

that no preference between them is expressed [9].

Each preference ordering �i gives rise to a modal operator which we also write

for convenience as �i. We thus use ϕ �i ψ to compactly represent the ordering

between the models satisfying ϕ and those satisfying ψ , i.e. Mod(ϕ �i ψ) = {M �i

M′ |M |= ϕ and M′ |= ψ}.

Example 14.1 (Prisoner’s dilemma)

Game description: Two suspects in a crime are put into separate cells and interro-

gated. If they both confess, each will be sentenced to 3 years in prison. If only one
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of them confesses, he will be freed and used as a witness against the other, who will

receive 5 years. If neither confesses, they will both be convicted for a minor offense

and spend 1 year in prison.

We use four action propositions pc
1, pn

1, pc
2, pn

2, where pc
i means i chooses to confess

and pn
i means i chooses to not confess. The preference ordering of Agent 1 can

be expressed using pc
1 ∧ pn

2 �1 pn
1 ∧ pn

2 �1 pc
1 ∧ pc

2 �1 pn
1 ∧ pc

2 and Agent 2 using

pc
2 ∧ pn

1 �2 pn
2 ∧ pn

1 �2 pc
2 ∧ pc

1 �2 pn
2 ∧ pc

1.

14.3.3 Preferred Models and Non-monotonic Consequence

To provide a model theoretic framework for non-monotonic reasoning, several au-

thors [19, 21] have introduced the notion of preferred models, which are maximal

according to a preference ordering � of models. We write Pre f Mod(Γ ) = {M ∈
Mod(Γ ) |∃/ M′ ∈ Mod(Γ ) : M′ � M}, the maximal models satisfying Γ .

Using this, a non-monotonic consequence relation |=N between Γ and a formula

ϕ is defined by : Γ |=N ϕ iff Pre f Mod(Γ ) ⊆ Mod(ϕ).
The logical cosequence relation is monotonic because Mod(Γ ∪{ϕ})⊆Mod(Γ ).

However this may not hold with preferred models : Pre f Mod(Γ ∪{ϕ}) may not be

included in Pre f Mod(Γ ). To see this, we can create a counter-example as follows:

consider the case where Mod(Γ ) = {M, M′}, with M �M′, and M′ |= ϕ but M |=/ ϕ .

This gives Pre f Mod(Γ ∪{ϕ}) = {M′} and Pre f Mod(Γ ) = {M}.

14.3.4 Modeling Preferences Using Theories

Let [[Γ ]] = {Mod(ϕ) |ϕ ∈ Γ }.

Note that the statement Γ |= ϕ in propositional logic depends only on Mod(Γ ) and

Mod(ϕ), where Mod(Γ ) is defined by the intersection
⋂

[[Γ ]].
In [12], it is observed that the intersection obliterates much of the structure con-

tained in [[Γ ]]. Since [[Γ ]] is a set of sets of models, instead of taking a simple

intersection, we could actually try to define a partial preorder over these models.

For any set of sets X ⊆ 2M , define the ordering relation �X on M such that

for all M,M′ ∈ M : M �X M′ i f f ∀X ∈ X : M ∈ X ⇒ M′ ∈ X .

Intuitively, elements outside a set X ∈ X are not ranked above elements in X in

the order �X . Thus, �[[Γ ]] gives a pre-order of models.

Example 1 (Prisoners’ dilemma ...).

We use only two action propositions p1, p2, where pi means i chooses to confess

and ¬pi means i chooses to not confess. The preference ordering of Agent 1 can be

expressed using the theory Γ1 = {p2 ⇒ p1, ¬p2, ¬p2 ∧ p1} and Agent 2 using the

theory Γ2 = {p1 ⇒ p2, ¬p1, ¬p1 ∧ p2}. To see this, note that:

[[Γ1]] = {{{p1},{p1, p2}, /0}, {{p1}, /0}, {{p1}}} and
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[[Γ2]] = {{{p2},{p1, p2}, /0}, {{p2}, /0}, {{p2}}}
where we let the model M be simply represented by the set of propositions that are

satisfied by M. This gives the following order over models

{p1} ≻1 /0 ≻1 {p1, p2} ≻1 {p2} and {p2} ≻2 /0 ≻2 {p1, p2} ≻2 {p1}.

which is exactly the same order of models that we saw earlier in Section 14.2.2.

14.3.5 Game Theoretic Consequence Relation

If we use Γi to represent the preference ordering of agent i, then the set of theories

{Γ1, ...Γn} represents a game. The game theoretic consequence relation {Γ1, ...Γn} |=G

ϕ holds only if ϕ is true in all the Nash equilibria of the game. We directly state the

characterisation derived in [12]. Let π be a partition of M .

For each X ⊆ M , we define aprπ(X) =
⋃{Y ∈ π|Y ⊆ X}. Define the equiv-

alence relation ∼=−i by: M ∼=−i M′ iff M, M′ differ only in the assignment of

truth values to propositions in Pi. We write π−i to denote the partition of M ob-

tained through the equivalence relation M ∼=−i M′. Define N ({[[Γ1]], ..., [[Γn]]}) =
⋂n

i=1

⋂

X∈[[Γi]]
(X ∪ aprπ−i

(−X)).

Proposition 14.1 (Characterisation of game theoretic consequence)

{Γ1, ...Γn} |=G ϕ i f f N ({[[Γ1]], ..., [[Γn]]}) ⊆ Mod(ϕ). (See [12]) ✷

14.4 Preference Orderings in Propositional Temporal Logic

14.4.1 Propositional Temporal Logic

As before, we use pr
i to denote that player i has chosen an action ar ∈ Ai. Conse-

quences in C are described using propositional variables c j, j = 1, ...,m. We use an

unlimited supply of propositional variables b ∈ W . We will assume that the agents

express all their preferences using only the consequence variables in C . Define PTL

by the BNF grammar:

ϕ ::= pr
i |c j |b |¬ϕ |ϕ1 ∧ϕ2 | ©ϕ |✷ϕ |ϕ1

⋃
ϕ2

We abbreviate ¬(¬ϕ1 ∧¬ϕ2) by ϕ1 ∨ϕ2 , ¬ϕ1 ∨ϕ2 by ϕ1 ⇒ ϕ2,

(ϕ1 ⇒ ϕ2)∧ (ϕ2 ⇒ ϕ1) by ϕ1 ⇔ ϕ2, ϕ1 ⇔¬ϕ2 by ϕ1 ⊕ϕ2 and ¬✷¬ϕ by ✸ϕ .

L ∗
Pi

, L ∗
P , L ∗

C , L ∗
W , L ∗

PC and L ∗
PW refer to the PTL languages with propositional

variables restricted to Pi, P , W , C , P ∪C and P ∪W respectively.
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14.4.2 Using PTL to Model Games

Using temporal logic, we can model the delay between action and consequence.

Example 1 (Prisoners’ dilemma ...).

We use two action propositions p1, p2, where pi means i chooses to confess and

¬pi means i chooses to not confess. The four consequences are: c3y,3y, c5y, f ree,
c f ree,5y, c1y,1y, where cp,q represents sentence p for Agent 1 and q for Agent 2.

The temporal formulas representing this game are:

(F1) p1 ∧ p2⇒©c3y,3y (F2) p1 ∧¬p2 ⇒©c f ree,5y

(F3) ¬p1 ∧ p2 ⇒©c5y, f ree (F4) ¬p1 ∧¬p2 ⇒©c1y,1y

The set Γ = {F1,F2,F3,F4} represents the game.

Example 14.2 (Repeated prisoner’s dilemma)

Game description: Two criminals form a partnership in crime. In each crime event

that they commit together, there is a possibility that they are caught and interrogated,

with the consequences as defined in the prisoners dilemma game.

We use the operator © to represent progression of stages of the game. Then the set

Γ = {✷F1,✷F2,✷F3,✷F4} represents the game.

The repeated game differs from the one-stage game because it provides the scope

for long term agent strategies to emerge. More specifically, agents could form a

partnership pact to co-operate (not confess), and may have individual strategies to

respond appropriately in case their partner “defects” (confesses).

Consider for example Agent 1 who plays a grim strategy written as ϕ1 = ¬p1 ∧
✷(p2 ⇒ ©✷p1)∧✷(¬p2 ⇒ ©¬p1), i.e. Agent 1 will play according to the pact

to not confess, but will forever punish Agent 2 if she defects from the pact. We

can similarly examine the Tit-For-Tat strategy expressed by ϕ1 = ¬p1 ∧✷(p2 ⇒
©p1)∧✷(¬p2 ⇒ ©¬p1) in which Agent 1 punishes Agent 2 only in the next

round, and goes back to co-operating after that.

14.4.3 Semantics of PTL

As before, a state s is an assignment of truth values to the propositions taking into

account the fact that each agent can choose at most one action – i.e. s(pr
i ) = True ⇒

∀r′ 6= r s(pr′
i ) = False.

We let S represent all such states, Sk represent state sequences of length k + 1,

and Sω all the infinite sequences. A PTL model M is a sequence s0,s1, ... ∈ Sω . The

satisfaction relation |= between elements M ∈ Sω and PTL formulas is defined as

follows, for all k ≥ 0:

sk,sk+1... |= pr
i if sk(pr

i ) = True

sk,sk+1... |= c j if sk(c j) = True
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sk,sk+1... |= b if sk(b) = True

sk,sk+1... |= ϕ ∧ψ if sk,sk+1... |= ϕ and sk,sk+1... |= ψ
sk,sk+1... |= ¬ϕ if not sk,sk+1... |= ϕ
sk,sk+1... |= ©ϕ if sk+1,sk+2... |= ϕ
sk,sk+1... |= ✷ϕ if ∀ l ≥ k sl ,sl+1... |= ϕ
sk,sk+1... |= ϕ

⋃
ψ if ∃ l ≥ k sl ,sl+1... |= ψ and ∀u : k ≤ u < l su, ... |= ϕ .

14.4.4 Eventually Periodic Models

We let EP =
⋃

k≥0, l>0 Sk(Sl)ω denote the set of all eventually periodic sequences

M = (s0,s1, ...sk)(s
′
0, ...,s

′
l)

ω with s′i 6= s′j for i 6= j. Mr denotes sr if 0 ≤ r ≤ k, and

s′(r−k−1)mod l
when r > k .

If Γ ⊆PTL, then Mod(Γ ) = {M ∈ Sω |∀ϕ ∈ Γ : M |= ϕ }. Γ is PTL-satisfiable

if Mod(Γ ) 6= /0, and EP-satisfiable if Mod(Γ )∩EP 6= /0.

Proposition 14.2 (Equivalence)

For any set Γ of PTL formulas, Γ is PTL-satisfiable iff it is EP-satisfiable.

Proof. TLP-satisfiability obviously implies PTL-satisfiability. If M ∈ Sω satisfies

Γ , then we can construct an equivalent eventually periodic sequence from M that

also satisfies Γ by using the tableau for Γ (see [28]).

We write Γ |=PT L ϕ if ∀M ∈ Sω : M |= Γ ⇒ M |= ϕ .

Clearly Γ |=PT L ϕ iff Γ ∪{¬ϕ} is not PTL-satisfiable. Similarly, we write Γ |=EP ϕ
if ∀M ∈ EP : M |= Γ ⇒ M |= ϕ . Then Γ |=EP ϕ iff Γ ∪{¬ϕ} is not EP-satisfiable.

Corollary 14.1 Γ |=PT L ϕ iff Γ |=EP ϕ ✷

In the sequel, we will consider the universe of models to be EP, and write Mod(Γ )
for Mod(Γ )∩EP.

14.4.5 Preference Ordering

Representing agents’ preference ordering over models in EP can be quite tricky as

it requires us to represent how agents compare infinite sequence of situations. In

particular, we have to account for agents’ preference for short term outcomes, and

how they compare it with long term outcomes. In [20] (pp. 136–139), three orderings

are suggested for infinite repeated games – Discounting (in which the value of time

is taken into account), Limit of means (in which finite periods of bad circumstances

are ignored), and Overtaking (which favours the long term to the short term). All of
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these are based on cumulating utility values for each period over the infinite time

horizon.

On the other hand, it is not reasonable to assume that agents have the mental

capabilities to compare infinitely many futures of infinite time horizon. This issue

has been raised and addressed by bounded rationality proponents [8, 22]. However

the alternative of defining choice through search procedures could make analysis

difficult or even intractable.

In the rest of this paper, we take a pragmatic approach combining these two

viewpoints. We make three critical assumptions:

• Assumption 1: Agents care only about the consequences, and hence each agent

can always express a preference between two states based only on the conse-

quences in C that are true in the state. The preference order for each agent on the

set of states is thus complete.

• Assumption 2: Agents value for time is modest compared to their value for a con-

sequence. Thus a time delay in the occurrence of a consequence will be ignored.

• Assumption 3: Agents are interested more in the long term outcomes than in

the short term outcomes. We thus adopt the overtaking criterion, and ignore any

initial finite sequence of outcomes.

As in Section 14.2.2, we can introduce a modal operator �i to compactly represent

ordering between models satisfying two formulas – i.e ϕ �i ψ compactly represents

{M �i M′ |M |= ϕ and M′ |= ψ}.

Example 1 (Prisoners’ dilemma ...).

The preference ordering in a single stage game is given by c f ree,5y �1 c1y,1y �1

c3y,3y �1 c5y, f ree, and c5y, f ree �2 c1y,1y �2 c3y,3y �2 c f ree,5y.

Example 2 (Repeated Prisoners’ dilemma ...).

The preference ordering ✸✷c f ree,5y �1 ✸✷c1y,1y �1 ✸✷c3y,3y �1 ✸✷c5y, f ree for

Agent 1 and ✸✷c5y, f ree �2 ✸✷c1y,1y �2 ✸✷c3y,3y �2 ✸✷c f ree,5y describes the long

term interests of both agents – that they are interested only in the asymptotic sus-

tained values of consequences, and no preferences are expressed for histories which

do not lead to such sustained consequences.

14.4.6 Ordering EP Models

Let SC denote the states in which at least one proposition of C is assigned True. Let

EPC be the set of eventually periodic models with states drawn from SC .

Given a reflexive, transitive and complete ordering �i on SC , we can extend �i to

sequences in Sω
C : s1s2...≻∗

i s′s′2... iff ∃k ≥ 1 : sk ≻i s′k and ∀ j ≥ 1 : s′j �i s j ⇒ s j �i

s′j, i.e. at each instant of time, either i prefers the state from the former sequence, or

else i is indifferent between the corresponding states.
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For M = (s0,s1, ...sk)(s
′
0, ...,s

′
l)

ω ∈ EPC , we use Mr to denote the rth state in the

sequence, i.e. Mr = sr if 0 ≤ r ≤ k, and Mr = s′(r−k−1)mod l
when r > k. We also use

Mr+ to denote the tail starting at r, i.e. Mr+ = Mr,Mr+1, ....
Note that by Assumption 1, i has to express a preference between corresponding

states. This ensures that the ordering �i of Sω
C is transitive. When we take into

account Assumption 3 that the agent is more interested in the longer term outcome,

the agent may wish to express the asymptotic relation M ≻i M′ if the relation holds

in the eventually periodic portion of the two models, i.e. when Mu ≻i M′
u occurs

infinitely often.

Thus, for M,M′ ∈EPC , we take the asymptotic case: M ≻i M′ iff there exists t > 0

such that ∀w ≥ t ∃r ≥ w : M r+ ≻∗
i M′ r+, i.e. we can ignore the initial portion (upto

t) of the two models M, M′ after which there are infinitely many occasions at which

M is preferred to M′. Note that in particular we have M t+ ≻∗
i M′ t+. The ordering

will be transitive since if M t1+ ≻∗
i M′ t1+ and M′ t2+ ≻∗

i M′′ t2+, then M t+ ≻∗
i M′′ t+

where t = max(t1, t2).
Note that we have defined orderings only for models in EPC , i.e. for models in

which at least one consequence is true at any point in time. In order to extend it to

models in EP, we will need to allow comparison of states across different points

in time (since for any k, the kth consequence may occur at different times in two

different models). Thus for any model M, we can define the model MC inductively

as follows: If MC = s0s1... and s0 ∈ SC then MC = s0M+
C , else MC = M+

C , where

M+
C = s1.... Then M ≻i M′ iff MC ≻i M′

C .

14.4.7 Modeling Preferences Using Theories

As in Section 14.2.4, we can ask whether the preference ordering of EPC models

can be captured using subsets of L ∗
C . Firstly note that any ordering �i of SC can be

captured by a theory T� i
⊆LC which is also a theory of L ∗

C . Now consider the the-

ory {© lϕ |ϕ ∈ T� i
, l ≥ 0}. This clearly represents the ordering ≻∗

i on sequences

of states.

Let EPr
C =

⋃

k≤r, l≤r Sk(Sl)ω be the eventual periodic sequences each containing

at most 2r distinct states. Note that EP0
C ⊆ EP1

C ⊆ EP2
C ..., and EPC = Limr→∞EPr

C ,

and so we can get arbitrarily close approximations to EPC through the sets EPr
C .

It is easy to check that the theory Γ r
i = {© lϕ |ϕ ∈T� i

, l ≥ 2r} should represent

the order M ≻i M′ for M,M′ ∈ EPr
C and hence we can capture the ordering for

arbitrarily close approximations of EPC through theories of LC
∗.

The question of whether the ordering on EPC or EP can be fully captured through

a theory remains an open problem.
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14.4.8 Nash Equilibrium for Repeated Games

Define the equivalence relation ∼=r
−i by: M ∼=r

−i M′ iff Mk = M′
k for k 6= r and Mr, M′

r

differs only in the assignment of truth values to propositions in Pi. We write πr
−i to

denote the partition of EPC obtained through the equivalence relation M ∼=r
−i M′.

Let N ({[[Γ r
1 ]], ..., [[Γ r

n ]]}) =
⋂n

i=1

⋂

X∈[[Γ r
i ]](X ∪ aprπr

−i
(−X)) be the set of mod-

els from which no agent has the incentive to deviate at a certain time point r. Then

the Nash equilibrium models are given by
⋂

r≥0 N ({[[Γ r
1 ]], ..., [[Γ r

n ]]}).
Given a formula ϕ ∈ L ∗

C , we define the length of the formula |ϕ| to be twice the

number of subformulas occuring in ϕ . Let r(ϕ) = 2|ϕ|.
The tableau for ϕ will have at most r(ϕ) states (see [28]), and hence it is enough

to consider models from EP
r(ϕ)
C . Then {Γ

r(ϕ)
1 , ...Γ

r(ϕ)
n } gives an adequate represen-

tation of the ordering when we restrict our attention to models of ϕ .

The game theoretic consequence defined on formulas in L ∗
C is written as

{Γ
r(ϕ)

1 , ...Γ
r(ϕ)

n } |=G ϕ and holds iff ϕ is true in all the Nash equilibrium models.

Proposition 14.3 (Characterisation of game theoretic consequence)

{Γ
r(ϕ)

1 , ...Γ
r(ϕ)

n } |=G ϕ i f f
⋂

r≥r(ϕ) N ({[[Γ r(ϕ)
1 ]], ..., [[Γ

r(ϕ)
n ]]}) ⊆ Mod(ϕ). ✷

14.5 Temporal Logic with Preferences (TLP)

We are now ready to introduce the temporal logic with preferences, which is built

from PTL formulas using three types of modal operators to represent the agent’s

preferences and selections based on these preferences.

14.5.1 The Language

The set of TLP formulas is defined through the following BNF grammar:

ψ ::= ϕ |ϕ1 ≻i ϕ2 |ϕ1 ✶i ϕ2 |ϕ1 ✄i ϕ2 .

We read ϕ1 ≻i ϕ2 as “i prefers ϕ1 to ϕ2”. This modal operator, as has already

been explained earlier has to be interpreted using a pair of PTL models. Intuitively,

it means that if we take any pair of models M and M′, with M satisfying ϕ1 and M′

satisfying ϕ2, then player i will prefer M to M′.
We read ϕ1 ✶i ϕ2 as “i can select between ϕ1 and ϕ2”. Again, this modal operator

is to be interpreted over a pair of PTL models. Intuitively, it means that if we take

any pair of models M and M′, with M satisfying ϕ1 and M′ satisfying ϕ2, then M

and M′ coincide upto a time point at which it is the turn of player i to move, at which

point, player i can choose an action that either takes the path of M or that of M′.
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Finally, we read ϕ1 ✄i ϕ2 as “i can pick ϕ1 over ϕ2”. This operator has to be

interpreted over a relevant set of PTL models, keeping a specific pair of models

M,M′ in focus. To understand this operator, we consider the situation where player

i prefers M to M′, and can select between M and M′ as above. Then player i can

choose M and discard M′. However, before discarding M′, i must be reasonably sure

that her choice of M is not going to be veto-ed by future players. The operator ✄i

confirms this condition.

Note that this operator gives us a model elimination tool (see [26]) that can lead

to a negation inference rule.

14.5.2 Models of TLP

As we saw in the previous section, we interpret TLP formulas over sets of PTL

models keeping in mind the preferences of the players. Thus, a TLP model is a

tuple M� = < M ,�i> where M ⊆ EP, and �i is a preference ordering of SC for

each agent i. We extend �i to M as in Section 14.3.6 above. We can now order sets

of models: M �i M ′ iff ∀M′ ∈ M ′ ∃M ∈ M : M �i M′, i.e. the maximal models

of M ′ lie below the maximal models of M .

We write s ≡i s′ if s(pr
i ) = s′(pr

i )∀ar ∈ Ai, and M ≡k
i M′ if ∀ l < k Ml ≡i M′

l .

We write M ✶i M′ when ∃k : ¬(M ≡k
i M′) and ∀ j 6= i M ≡k

j M′

i.e. M and M′ co-incide in choices of all agents till i makes a choice.

Let Mϕ = Mod(ϕ)∩M .

The relation |=T LP between TLP models M� and formulas ψ is given by:

M� |=T LP ϕ iff Mϕ = M .

M� |=T LP ϕ ≻i ϕ ′ iff Mϕ�iMϕ ′ but not Mϕ ′�iMϕ .

M� |=T LP ϕ ✶i ϕ ′ iff ∀M ∈ Mϕ ,M′ ∈ Mϕ ′ : M ✶i M′

M� |=T LP ϕ ✄i ϕ ′ iff M� |=T LP ϕ ✶i ϕ ′, M� |=T LP ϕ ≻i ϕ ′ and

∀M ∈ Mϕ ,M′ ∈ Mϕ ′ , M′′ ∈ M , j 6= i : M′
✶i M′′, M ✶ j M′′ ⇒ M � j M′′.

i.e. ϕ ✄i ϕ ′ holds if i’s preference ϕ is assured because agents j who choose after

i also prefer it.

Note that M ✶i M′, M′
✶i M′′ and M ✶ j M′′ necessarily implies that between the

three models, i chooses first between M′ and the remaining two, following which j

chooses between M and M′′.
Note also that the satisfaction relation is not monotonic:

It is possible that we have M ′ ⊂ M : M� |=T LP ϕ ≻i ϕ ′, but M ′
� |=/T LP ϕ ≻i ϕ ′.

As an example, consider M ′ = Mϕ ′ ⊂ M .

Let Γ ,Γ ′ be sets of TLP formulas. We write Γ |=T LP Γ ′ if

∀M� : (∀ψ ∈ Γ M� |=T LP ψ) ⇒ (∀ψ ′ ∈ Γ ′M� |=T LP ψ ′).
When Γ ′ = {ϕ} is a singleton set, we simply write Γ |=T LP ϕ instead of Γ |=T LP

{ϕ}
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14.5.3 Game Theoretic Consequence

We now define game theoretic consequence recursively through a set of rules.

The rules of game theoretic consequence |=G between Γ and TLP formulas are:

If Γ |=T LP ϕ then Γ |=G ϕ (Temporal logic inference)

If Γ |=G ϕ ✄i ϕ ′ then Γ |=G ¬ϕ ′ (Game theoretic inference)

If Γ |=T LP Γ ′ and Γ ′ |=G ϕ then Γ |=G ϕ (Logical Inference)

If Γ ∪{ϕ} |=G ψ , Γ ∪{ϕ ′} |=G ψ ′ and

Γ |=G ψ �i ψ ′ then Γ |=G ϕ �i ϕ ′ (Order Inference)

While TLP consequence is monotonic, game theoretic consequence is not

monotonic. To see this, note that Γ |=G ϕ ✄i ϕ ′ but Γ ∪{¬ϕ} |=/G ϕ ✄i ϕ ′.
The first rule makes all TLP consequences of Γ also game theoretic conse-

quences of Γ (the starting set). The second rule is the negation inference rule aris-

ing from model elimination that we discussed in Section 14.4.1. The third rule fully

utilises the monotonicity of TLP consequence. The last rule allows preferences be-

tween models to be deduced from partial preference specifications.

For any set Γ of PTL formulas, we let ©Γ = {©ϕ|ϕ ∈ Γ }.

Proposition 14.4 (Time invariance of game theoretic consequence)

If Γ |=G ϕ then ©Γ |=G ©ϕ . ✷

14.6 Modeling Games in TLP

14.6.1 Strategic Form Games

To model the statement “If Agent 1 chooses a1 and Agent 2 chooses a2 then the

consequence is c1” we use p1
1∧ p2

2 ⇒©c1. To express that each agent has to choose

exactly one of her actions, we use choice formulas pr
i ⇒

∧

r′ 6=r ¬pr′
i . Let G be a

strategic game form. Γ (G ) denotes all such action-consequence and choice formu-

las arising from the game form G . We abbreviate Γ (G ) to Γ whenever G is clear

from the context. To show that a certain formula ϕ holds in the equilibrium of the

game G , we attempt to use the game theoretic consequence relation Γ (G ) |=G ϕ .

Example 1 (Prisoners’ dilemma ...).

The game is represented by the set Γ = {F1,F2,F3,F4} (see section 14.3.2).

We wish to show that both agents will serve 3 years in prison, i.e. Γ |=G ©c3y,3y.

First, note that Γ |=/ © c3y,3y. So, we will need to use preference orderings.

Let Γ ′ = Γ ∪ {©c f ree,5y �1 ©c1y,1y, ©c1y,1y �1 ©c3y,3y,©c3y,3y �1 ©c5y, f ree}
∪{©c5y, f ree �2 ©c1y,1y, ©c1y,1y �2 ©c3y,3y, ©c3y,3y �2 ©c f ree,5y}

We can prove the following consequences:

Γ ′ |=G ¬© c1y,1y from Γ ′ |=G ©c f ree,5y ✄1 ©c1y,1y

Γ ′ |=G ¬© c5y, f ree from Γ ′ |=G ©c3y,3y ✄1 ©c5y, f ree
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Γ ′ |=G ¬© c f ree,5y from Γ ′ |=G ©c3y,3y ✄2 ©c f ree,5y

Γ ′ |= ©c1y,1y ∨©c3y,3y ∨©c f ree,5y ∨©c5y, f ree

From these we can deduce that Γ ′ |=G ©c3y,3y.

Example 2 (Repeated Prisoners’ dilemma ...).

The game is represented by Γ = {✷F1,✷F2,✷F3,✷F4}.

From Proposition 14.4, we can deduce that:

Γ ′ |=G © lc3y,3y ∀ l > 0, which means both agents will confess in each round,

i.e. their equilibrium strategies are described by ✷pc
2. This is not entirely satisfactory

as agents usually establish their reputation and use it in the game. To remedy this,

we consider the long term preferences of the players. Let Γ ′ = Γ ∪
{✸✷c f ree,5y �1 ✸✷c1y,1y, ✸✷c1y,1y �1 ✸✷c3y,3y, ✸✷c3y,3y �1 ✸✷c5y, f ree}∪
{✸✷c5y, f ree �2 ✸✷c1y,1y, ✸✷c1y,1y �2 ✸✷c3y,3y, ✸✷c3y,3y �2 ✸✷c f ree,5y}

Consider for example Agent 1 who plays a grim strategy written as:

ϕ1 = ¬p1 ∧✷(p2 ⇒ ©✷p1)∧✷(¬p2 ⇒ ©¬p1). Agent 1’s strategy now causes

interaction between the stages of the game. With the grim strategy, ✷p2 results in

the sequence {c5y, f ree}({c3y,3y})ω , i.e. Γ ′∪{ϕ1,✷p2} |=G c5y, f ree ∧©✷c3y,3y.

Similarly, ✷¬p2 results in ({c1y,1y})ω , i.e. Γ ′∪{ϕ1,✷¬p2} |=T LP ✷c1y,1y.

Also, asymptotically ({c1y,1y})ω is preferred by Agent 2 to {c5y, f ree}({c3y,3y})ω ,

i.e. Γ ′ |=G ✸✷c1y,1y ≻2 ✸✷c3y,3y. By order inference, Γ ′∪{ϕ1} |=G ✷¬p2 ≻2 ✷p2.

From the game theoretic consequence this leads to Γ ′∪{ϕ1} |=G ¬✷p2.

We are thus able to conclude that Agent 1 is effective in using a grim strategy to

dissuade Agent 2 from playing p2.

14.6.2 Extensive Form Games

Consider an extensive form game G with histories H and Z ⊆ H being the set of ter-

minal histories. Let a0a1...ak ∈ Z be a finite terminal history, and let P(a0a1...al) =
il , for all l ≤ k. To state that a consequence cr holds in this history, we can use the

TLP formula p
a0
i0
∧©p

a1
i1
∧ ...∧© k p

ak
ik
⇒© (k+1)cr. Let a0a1...ak(a

′
0a′1...a

′
l)

ω ∈ Z

be an eventually periodic (infinite) terminal history, and let P(a0a1...a j) = i j, for

all j ≤ k and P(a′0a′1...a
′
j) = i′j, for all j ≤ l. To state that a consequence cr holds

in this history, we use the TLP formula: p
a0
i0
∧©p

a1
i1
∧ ...∧© k p

ak
ik
∧© (k+1) p

a′0
i′0
∧

© (k+1)
✷((p

a′0
i′0
⇒©p

a′1
i′1

)∧ ...∧ (p
a′l−1
il−1

⇒©p
a′l
i′
l

)) ⇒© (k+1)
✸cr.

Let Γ (G ) be the collection of all such temporal formulas derived from H.

Example 14.3 (Chain store game)

Game description: A single local competitor in each city decides whether to start a

store competing with the chain store. If it does, the chain store could start a price war

(when both make losses) or could accomodate the competitor (in which case they

share the profits). The best situation for the chain store is if the competitor stays out,

when it enjoys monopoly profits.
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We use propositions pE
1 , pO

1 , pF
2 , pA

2 where Agent 1 is the local competitor whose

actions are to enter or stay out, and Agent 2 is the chain store who can fight or

accomodate. We use closs, cmpoly, cshare to model consequences with the ordering

being cshare �1 cmpoly �1 closs and cmpoly �2 cshare �2 closs.

We first consider the one-city case. The consequence formulas are given by:

Γ = {pO
1 ⇒©cmpoly, pE

1 ∧©pF
2 ⇒©© closs, pE

1 ∧©pA
2 ⇒©© cshare}.

Let Γ ′ = Γ ∪ {©© cshare �1 ©cmpoly , ©cmpoly �1 ©© closs}∪
{©cmpoly �2 ©© cshare , ©© cshare �2 ©© closs}

We can prove the following consequences:

Γ ′ |=G ¬©©closs from Γ ′ |= ©© cshare ✄2 ©© closs

Γ ′ |=G ¬© cmpoly from Γ ′ |= ©© cshare ✄1 ©cmpoly

Γ ′ |= ©cmpoly ∨©© cshare ∨©© closs

From these we can deduce that Γ ′ |=G ©© cshare.

Consider a repeated game in which the chain store competes in several cities.

Without loss of generality, let Agent 1 represent all the competitors.

Γ ′′ = {✷ϕ |ϕ ∈ Γ } ∪ {© lϕ �i © lϕ ′ |ϕ �i ϕ ′ ∈ Γ ′, l ≥ 0}.

Using Proposition 4, Γ ′′ |=G ©©© l¬cshare, i.e. the competitor always enters

(✷pE
1 ) and the chain store always shares profits (✷pA

2 ).

The chain store paradox occurs because it is not credible that a chain store

will share profits in all cities. It may choose to create a reputation as a fighter to

deter competition. We can model this through the formula ϕ2 = ✷(pF
2

⋃
pO

1 ). Then

Γ ′′ ∪{ϕ2} |= ✷pO
1 ≻1 ✷pE

1 , which yields Γ ′′ ∪{ϕ2} |=G ¬✷pE
1 , i.e. the reputation

is indeed effective in deterring Agent 1 from always entering.

Note that if Agent 1 chooses the strategy ✷pO
1 of staying out, then ϕ2 does not

require Agent 2 to fight at all. ϕ2 is thus a credible threat.

14.7 Expressive Power of TLP

Proposition 14.5 (Expressive completeness)

(1) For any finite strategic form game G , there is an equivalent set of formulas Γ
such that elements of Mod(Γ ) directly correspond to strategy profiles of G .

(2) For any extensive form game G , there is an equivalent set of formulas Γ such

that elements of Mod(Γ ) directly correspond to histories of G .

Proof. (1) is obvious. (2) follows from the definition of history set through even-

tually periodic sequences, and from the fact that we can express any eventually

periodic sequence in propositional temporal logic using additional propositions in

W .

Proposition 14.6 (Characterising Nash equilibria)

If Γ is the set of temporal formulas representing the strategic game G and Γ ′ the

set of TLP formulas representing the orderings on consequences, then:
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(1) The game has a Nash equilibrium iff Γ ∪Γ ′ |=G True.

(2) ϕ is true in the Nash equilibria iff Γ ∪Γ ′ |=G ϕ

Proof. Follows from the equivalence between the tableau method in [26] and the

game theoretic consequence rules above.

Let Γ be the set of temporal formulas representing a finite extensive form game

and Γ ′ the set of TLP formulas representing the orderings on consequences. The

operator Cl : 2PT L → 2PT L is defined by Cl(Γ ) = {ϕ |Γ ∪Γ ′ |=G ϕ}. The closure

Cl∗(Γ ) of Γ is the fixed point of Cl. Note that Γ ⊆ Cl(Γ ), which means that the

closure Cl∗(Γ ) exists and is unique.

Proposition 14.7 (Characterising Sub-game perfect equilibria)

(1) ϕ holds in the sub-game perfect equilibrium iff Cl∗(Γ )∪Γ ′ |=G ϕ .

(2) Cl∗(Γ )∪Γ ′ |=G True i.e. the game has a subgame perfect equilibrium.

Proof. Follows from the equivalence between the tableau method in [26] and the

game theoretic consequence rules above.

14.8 Conclusions and Possible Extensions

We showed that propositional temporal logic has the expressive power to capture the

structure of finite games and repeated games in which the history sets are eventually

periodic. We extended the preference ordering relationships defined for proposi-

tional logic models to eventual periodic models. We showed how arbitrary approxi-

mations of this preference ordering can be represented using theories.

We then introduced the language and semantics of the temporal logic of prefer-

ences – TLP. TLP allows representation of agents choices and preferences. Using

TLP, we could find an expression for game theoretic consequence.

Agents may not know their preferences. To help agents express their preferences,

interactive elicitation procedures work by finding relevant questions to ask, until the

agents preferences are consistent and complete [6, 7, 11]. In a game situation, agents

may know their own preferences, but may not have knowledge of the other agents’

preferences. The choices made by an agent in a game reveals her preferences to the

other agents. By allowing preferences to be explicitly modeled, we provide a path

for dealing with such game evolutions.
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Chapter 15

From Sentence Meanings to Full Semantics

Wilfrid Hodges

Many questions about meaning are straightforwardly empirical, like the question

whether “Gift” means the same in German as it does in English.

Other questions about meaning are more abstract: for example the question

whether in metaphors a word acquires a new meaning, or simply contributes its

meaning in a different way to a phrase containing it. This is a question about the

architecture of our preferred semantic theory, and perhaps not a question about facts

at all. For some theories of language the notion of meaning, like the notion of cause

in physics, vanishes altogether when we reach fundamentals.

One task of any semantic theory is to draw a line between semantics and gram-

mar/syntax. Noam Chomsky hints at this when he says: ([6] p. 144):

. . . at every point in the stream of discourse the speaker must choose a particular single
word, and it makes sense to ask to what extent his choice of a particular word was governed
by the grammatical structure of the language, and to what extent it was governed by other
factors.

Chomsky’s phrasing suggests an equation:

Language = Syntax + (Other factors), (15.1)

where the other factors presumably include meaning. If (15.1) was an equation in

an abelian group, we could solve for (Other factors) by subtracting Syntax from

Language. Unfortunately the mathematical structure underlying the equation not an

abelian group, but something quite different that I describe in Section 15.2.4 below.

(If mathematical readers detect some resemblance to Galois theory, that’s good.)

In broad outline, if we have a language with a given or presumed grammatical

structure, and an account of how sentences of the language are used, then together

these items induce a formal structure on the rest of the language. Somewhere inside

this formal structure there lies a shadow of meanings. In Section 15.1 I describe the

formal structure, and Section 15.2 is about how one extracts the meanings.

Wilfrid Hodges
Queen Mary, University of London, London, UK, e-mail: w.hodges@qmw.ac.uk

J. van Benthem et al. (eds.), Proof, Computation and Agency, Synthese Library 352, 261
DOI 10.1007/978-94-007-0080-2 15, c© Springer Science+Business Media B.V. 2011
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This paper is an extract from talks given during the last couple of years in meet-

ings at the University of Düsseldorf, the Sorbonne, Stanford University and the In-

dian Institute of Technology, Bombay. I warmly thank my hosts and audiences in all

those places.

15.1 Mathematical Theory

We consider a language L. For the present our grammatical assumptions about L

will be thin. We assume that we can recognise expressions of L, and the grammat-

ical constituents of these expressions. A constituent of an expression is again an

expression in its own right. We know what it is to replace a constituent in an expres-

sion by another expression. To make these notions formal, we adopt the following

definition.

Definition 15.1

(a) By a constituent structure we mean an ordered pair of sets (E,F), where the

elements of E are called the expressions and the elements of F are called the

frames, such that the four conditions below hold. (Here and below, e, f etc. are

expressions. F , G(ξ ) etc. are frames.)

1. F is a set of nonempty partial functions on E. (“Nonempty” means their do-

mains are not empty.)

2. (Nonempty Composition) If F(ξ1, . . . ,ξn) and G(η1, . . . ,ηm) are frames, 16

i6 n and there is an expression

F(e1, . . . ,ei−1,G( f1, . . . , fm),ei+1, . . . ,en),

then

F(ξ1, . . . ,ξi−1,G(η1, . . . ,ηm),ξi+1, . . . ,ξn)

is a frame.

Note that if H(ξ ) is F(G(ξ )) then the existence of an expression H( f ) implies

the existence of an expression G( f ).

3. (Nonempty Substitution) If F(e1, . . . ,en) is an expression, n > 1 and 16 i6 n,

then

F(ξ1, . . . ,ξi−1,ei,ξi+1, . . . ,ξn)

is a frame.

4. (Identity) There is a frame 1(ξ ) such that for each expression e, 1(e) = e.

(b) We say that an expression e is a constituent of an expression f if f is G(e) for

some frame G; e is a proper constituent of f if e is a constituent of f and e 6= f .

(c) We refer to F(e1, f ,e3) as the result of replacing the occurrence of e2 in second

place in F(e1,e2,e3) by f . (This notion depends on F , of course.)



15 From Sentence Meanings to Full Semantics 263

(d) We say that a set Y of expressions is cofinal if every expression of L is a con-

stituent of an expression in Y .

Our only syntactic assumption on L (for the moment) is that L has a constituent

structure. By the expressions of L we mean the expressions of its constituent struc-

ture.

Definition 15.2 By a partial semantics for L we mean a function µ : X → Y where

X is a set of expressions of L. (There are no further requirements on Y or µ .) A

total semantics for L is a partial semantics µ : X → Y where X is the set E of all

expressions.

The constituent structure and the partial semantics µ together induce two equiv-

alence relations on the set of expressions as follows.

Definition 15.3(a) Let e, f be expressions of L and µ a partial semantics for L with

domain X . We write e ≡µ f if for every 1-ary frame G(ξ ),

(i) G(e) is in X if and only G( f ) is in X ;

(ii) if G(e) is in X then µ(G(e)) = µ(G( f )).

We say e, f have the same ≡µ -value, or for short the same fregean value, if

e ≡µ f .

(b) The relation ∼µ is defined exactly as ≡µ but with clause (ii) deleted.

We assume some choice of labels for the equivalence classes of ≡µ , and we write

|e|µ for the label of the equivalence class of the expression e. We call |e|µ the fregean

value of e. The function |.|µ is a total semantics for L. I call it the fregean semantics

(or among computer scientists, the fully abstract semantics).

Lemma 15.1 (Lifting Lemma) Suppose F(e1, . . . ,en) is a constituent of some ex-

pression in X, and for each i, ei ≡µ fi. Then:

(a) F( f1, . . . , fn) is an expression.

(b) F(e1, . . . ,en) ≡µ F( f1, . . . , fn).

Proof. By Nonempty Substitution we can make the replacements one expression at

a time. So it suffices to prove the lemma when n = 1.

Assume F(e) is an expression, H(F(e)) is in X and e ≡µ f .

Claim (a): F( f ) is an expression.

By Nonempty Composition H(F(ξ )) is a frame G(ξ ). Since e ≡µ f and G(e) is

in X , G( f ) is in X . But G( f ) is H(F( f )), proving (a).

Claim (b): F(e) ≡µ F( f ).
Let G(ξ ) be any 1-ary frame such that G(F(e)) is an expression in X . By

Nonempty Composition G(F(ξ )) is a frame J(ξ ). Since e ≡µ f and J(e) is in X ,

J( f ) is in X and µ(J(e)) = µ(J( f )). So µ(G(F(e)) = µ(G(F( f )) as required, prov-

ing (b). ✷
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Note that the Lifting Lemma holds also for ∼µ in place of ≡µ ; in fact the proof

of the lemma already proves this.

Lemma 15.2 Suppose the domain X of µ is cofinal (Definition 15.1(d)). Then there

is, for each n-ary frame F, a n-ary map hF : V n → V , where V is the class of ≡µ -

values, such that whenever F(e1, . . . ,en) is an expression,

|F(e1, . . . ,en)|µ = hF(|e1|µ , . . . , |en|µ).

Proof. By (b) of the Lifting Lemma, if ei ≡µ fi for each i then

F(e1, . . . ,en) ≡µ F( f1, . . . , fn)

provided these expressions exist. So F and the fregean values of the ei determine

the fregean value of F(e1, . . . ,en). ✷

The map hF of the lemma is essentially unique; its values are determined on all

n-tuples that actually occur as values of the constituents e1, . . . , en of an expression

F(e1, . . . ,en). We call this map the Hayyan function of F .

The name is from the distinguished Andalusian linguist Abu H. ayyān al-Gharnāt.ı̄,

who was born in Granada in 1256 and worked in Egypt until his death in 1345. His

claims to fame include a textbook of Turkish for Arabs [7] and a monograph on

Mongolian. See [11] for details of the following quotation from him.

I find it astonishing that people allow a sentence construction in a language, even when they
have never heard a construction like it [before]. Are Arabic constructions different from the
words in the dictionary? Just as one can’t use newly-invented single words, so one can’t use
[newly-invented] constructions. Hence all these matters are subject to convention (wad.

c),
and matters of convention require one to follow the practice of the speakers of the relevant
language. The difference between syntax and lexicography is that syntax studies universal
[rules], whereas lexicography studies items one at a time. These two sciences interlock in
[describing] the conventions [on which language is based].

The word wad.
c is crucial for understanding this passage. It is the term used for the

assumed imposition of words on their meanings in the origins of language. Abu

H. ayyān is arguing that syntactic constructions have meanings just as words do, but

the meaning of a construction is “universal”—in modern terminology, it’s a function

defined for all possible inputs to the construction.

Definition 15.4

(a) Let ≃ be an equivalence relation on expressions. We say that ≃ is compositional

if for every pair of expressions F(e1, . . . ,en) and F( f1, . . . , fn),

e1 ≃ f1 and . . . and en ≃ fn ⇒ F(e1, . . . ,en) ≃ F( f1, . . . , fn).

(b) Let ϕ be a function defined on expressions. We say that ϕ is compositional if for

each expression F(e1, . . . ,en), the value

ϕ(F(e1, . . . ,en))

is determined by F and the values ϕ(ei).
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(Cf. Partee et al. [15] p. 318.) Parts (a) and (b) match; the fregean semantics |.|µ
is compositional if and only if ≡µ is compositional. In this terminology, Lemma

15.2 tells us that ≡µ is in fact compositional. The same argument shows that ∼µ is

compositional too.

Lemma 15.3 Suppose e≡µ f and e is an expression in X. Then f is in X and µ(e) =
µ( f ).

Proof. This is immediate from the definition, by applying the identity frame 1(ξ ).
✷

It follows from Lemma 15.3 that there is a function pµ such that for every expres-

sion e in X , µ(e) = pµ(|e|µ). This function pµ is uniquely determined in a similar

sense to the Hayyan functions. We will call it the read-out function of µ .

Lemma 15.4 The following are equivalent:

(a) For all e, f in X, e ≡µ f if and only if µ(e) = µ( f ).
(b) For all e, f in X and every frame F(η),

µ(e) = µ( f ) and F(e) ∈ X

⇒ F( f ) ∈ X and µ(F(e)) = µ(F( f )).

Proof. Again this is immediate from the definition. ✷

When the conditions of Lemma 15.4 hold, we can assume that the representatives

|e|µ with e in X were chosen so that |e|µ = µ(e). The read-out function pµ is then

the identity function.

Our next result needs a further assumption on the constituent structure.

Definition 15.5

(a) We say that the constituent structure is well-founded if there are no infinite se-

quences of expressions

e0,e1,e2, . . .

where for every n, en+1 is a proper constituent of en.

(b) Assuming that the constituent structure is well-founded, we define the complexity

c(e) of an expression e to be the least ordinal strictly greater than c( f ) for each

proper constituent f of e. A standard set-theoretic argument shows that c is a

well-defined function from the set of expressions to the ordinal numbers. (If L is

any natural language or a finitary formal language, then the complexity of each

expression will be a natural number.) We say that an expression is an atom if its

complexity is 0; otherwise the expression is complex.

Theorem 15.1 (Abstract Tarski theorem) Let L be a language with a well-founded

constituent structure, and µ a function whose domain is a cofinal set X of expres-

sions of L. Then µ has a definition of the following form. A function ν is defined on

all expressions of L by recursion on complexity. The basis clause is
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• ν(e) = |e|µ for each atom e.

The recursion clause is

• ν(F(e1, . . . ,en)) = hF(ν(e1), . . . ,ν(en))
for each complex expression F(e1, . . . ,en).

Then for each expression e in X,

µ(e) = pµ(ν(e)).

This concludes our main mathematical development. Two further directions are

worth mention.

15.1.1 Equivalence of Frames

In analogy to the definition of ≡µ on expressions, we can define ≡µ on frames as

follows. For simplicity I give the definition for binary frames, but it extends straight-

forwardly. Again we suppose we have a partial semantics µ : X → Y .

Definition 15.6 Suppose F(ξ1,ξ2) and F ′(ξ1,ξ2) are frames. Then F(ξ1,ξ2) ≡µ

F ′(ξ1,ξ2) if and only if for all expressions e, f and frames G(η),

(a) G(F(e, f )) is in X if and only if G(F ′(e, f )) is in X , and

(b) if G(F(e, f )) is in X then µ(G(F(e, f )) = µ(G(F ′(e, f )).

Then ≡µ on frames is an equivalence relation, and one can prove analogues of the

results for ≡µ on expressions.

15.1.2 The Case Where X Is Not Cofinal

Lemmas 15.1 and 15.4 extend µ (under the conditions in Lemma 15.4) to a com-

positional semantics ν on the set of all expressions that occur as constituents of

expressions in X . A dual problem is to take a compositional semantics µ on a set

X of expressions that is closed under constituents, and extend µ to a total composi-

tional semantics. There is a trivial solution if we assume that µ(e) = µ( f ) implies

e ∼µ f (a condition called husserlian in [10]). When the husserlian condition fails,

the problem is much harder. Dag Westerståhl [22] gave a positive answer under the

assumption that L is a subset of a term algebra.
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15.2 Commentary

15.2.1 The Freedom to Choose a Grammar

Broadly speaking, the results of Section 15.1 are independent of any choice of gram-

matical theory (at least among the better known theories), but the data delivered

(≡µ ,hF etc.) is highly dependent on the choice of a constituent structure for a given

language.

Lemma 13 of my [10] was a version of the Lifting Lemma under the stronger as-

sumption that the language is a subset of a term algebra. (More precisely I assumed

that it’s a homomorphic image of a subset of a term algebra, but in fact the work all

takes place on the term algebra itself.) In Chapter 2 of his book [18] Mark Steedman

argues for a more flexible notion of constituents. For example they might overlap.

Not being a linguist, I can’t comment on the force of Steedman’s arguments. But

they did convince me that the Lifting Lemma in [10] was not at the right level of

generality. The version in this paper is the result, and it is certainly simpler than the

earlier version (which is now a special case).

Are there other approaches to grammar that won’t accommodate the Lifting

Lemma? Fortunately I didn’t need to hunt around on this, because at exactly the right

time Edward Keenan and Edward Stabler published a notion of “bare grammar” [12]

that is designed to pick out a common core from “otherwise rather different specific

theories of grammar: Relational Grammar, Arc-Pair Grammar, Categorial Grammar,

Lexical Functional Grammar, Head Driven Phrase Structure Grammar, Government

Binding Theory/Minimalism, and others” ([12] p. 1). They build on the two notions

of constituent and category.

Every bare grammar G yields a constituent structure in either of two ways. The

first way is to take as the set of expressions the “language generated by G”, which is

the closure of the lexicon of G under the syntactic rules of G, and as the set of frames

the closure under substitution of the “generating or structure building functions” of

G ([12] p. 14f). The resulting expressions are ordered pairs consisting of (at first

approximation) a phrase and the category of the phrase; for example at word level

we might find two expressions

(win,N), (win,VT) (15.2)

for the noun “win” and the transitive verb “win”. The second way of extracting a

constituent structure from the bare grammar is to ignore the categories and take the

expressions to be the first terms of these pairs.

Bare grammars are general enough to handle non-configurational languages,

where the word order within clauses is not significant. One of the examples in

[12] (p. 59ff) is “free order Korean”, a version of Korean that the authors have

deliberately souped up to make it even less configurational than Korean normally

is. I mention this because I was asked – for example about Sanskrit in Mumbai –

whether the results of Section 15.1 make sense for non-configurational languages.
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For these languages one would expect a large number of equivalences of the form

F(ξ1,ξ2) ≡µ F(ξ2,ξ1).
It’s true that Section 15.1 applies to non-configurational languages. But it’s not

the whole truth. Non-configurational languages tend to decorate each word stem

with a cluster of prefixes, suffixes and infixes that carry the information given in

other languages by the order. In fact most languages go some way down this road;

thus Gothic handus is subject and handu is object. If you want to separate out the

meanings of the stem hand and the suffixes, it makes sense to adopt a grammar

where hand, -us and -u are all atoms. (Then probably you need a frame for combin-

ing stem and suffix into a single word.)

English has separated out the Old Germanic stem hand by dropping the suffixes.

But you may want to think of the old -us and -u as implied constituents of a modern

English sentence. One way of doing this is to have atoms NOM and ACC for nomi-

native and accusative. In the resulting grammar “hand-NOM” and “hand-ACC” will

be distinct expressions, even though “NOM” and “ACC” aren’t pronounced. In the

same spirit you may want to regard the English word “me” as how we spell and

pronounce what is really a compound word “I-ACC”. Or as (15.2) illustrates, you

might want to count one inscription as two different words (for syntactic reasons in

the case of (15.2), but reasons might come from anywhere).

And so on, really. A grammar for a language doesn’t arrive ready-made. To a

great extent it’s a theoretical construct from the empirical data.

In that spirit, one way of looking at the results of Section 15.1 is as follows. We

have a language L, and we propose a grammar for it. The grammar, together with a

function µ describing the usage of sentences, induces fregean values, and we try to

make sense of these values. If they are hopelessly obscure or perversely difficult to

describe, then we look for a different grammar and/or a different way of describing

the usage of sentences, and we try again. This is a familiar kind of heuristic.

15.2.2 Freedom in the Choice of |e|µ

The notion e ≡µ f conveys that e and f make exactly the same contribution to the

µ-values of expressions in X that have them as constituents. Is this the only possible

formalisation of this informal notion?

It seems that it is. The key point to note is that the informal notion is an equiva-

lence relation; so any formalisation of it must be an equivalence relation too. This

immediately knocks out some alternatives that one might propose. Take for example

the relation ≡⋆ defined by:

For any expressions e and f , e ≡⋆ f if and only if for all frames F(ξ ), if F(e) and F( f ) are
both in X then µ(F(e)) = µ(F( f )).

If e and f are so unrelated that there is no frame F(ξ ) for which both F(e) and

F( f ) are expressions, then e ≡⋆ f . That should already make us uneasy. What truly

knocks this definition on the head is that there is no reason at all to expect the defined
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relation ≡⋆ to be transitive. I think if you try out some further possibilities, you will

soon convince yourself that our definition of ≡µ is the only one that makes sense in

all cases.

When we know that two expressions have the same fregean value, this informa-

tion on its own doesn’t tell us what that fregean value actually is. This might

seem a

devastating gap in the theory of Section 15.1, but in practice it isn’t. In concrete

cases, when we find out how to tell whether two expressions have different fregean

values, that information normally gives us all we need for assigning sensible labels

to the equivalence classes. We will see some examples below.

15.2.3 The Centrality of Sentence Meanings

The meanings of sentences of a language are decisive for the meanings of all phrases

of the language. There are many arguments to support this view; here are three.

(1) We express ourselves in sentences.

(2) In practice the normal method for distinguishing the meanings of two closely

related words is to give a sentence using one of them, that would lose its meaning

or become inappropriate if the other was used. As a typical example, Webster’s

Dictionary of English Usage [8] distinguishes between “less” and “lesser” by calling

on sentences from its corpus, including this from Virgil Thompson:

. . . lesser composers analyze music better than they used to. (15.3)

I’m not sure whether the result of putting “less” in place of “lesser” in (15.3) means

anything, but it certainly doesn’t mean the same as (15.3).

(3) Slightly more technical: the meaning of a word includes the semantic argu-

ment structure of the word. For example you don’t know the meaning of the word

“mother” until you know that “my mother” normally means a person who bears a

certain relation to me, not just someone who is both mine and a mother. (This is

a semantic property of “mother”; to the best of my knowledge there are no purely

syntactic differences between these two uses of the phrase “my mother”.) But words

taken on their own don’t show their argument structure. To discover that structure

you have to understand how the words fit into phrases. Granted not all phrases are

sentences; but at least the sentences containing a word give enough evidence to place

its semantic argument structure.

We can almost read off the following

NECESSARY CONDITION FOR DIFFERENCE OF MEANING. Let L be a language,
X the set of sentences of L and for each sentence e let µ(e) be the meaning of e. If two
expressions have different meanings then they have different fregean values.

This condition is in danger of lapsing into triviality. Arguably if e and f are any

two distinct expressions of a natural language, then there will be at least one



270 W. Hodges

sentence e – even a sentence not using quotation – whose meaning changes if we

put one expression in place of the other in e.

But there are degrees of synonymy. Phrases can have broadly similar meanings

and differ in nuances; otherwise we’d have no use for the notion of a synonym. To

investigate a weak kind of synonymy by means of fregean values, there are two

possible moves to make. The first is to restrict to a limited part of the language,

either by shedding vocabulary or by tightening the requirements of grammaticality.

Dropping adverbs of degree removes a distinction between “angry” and “enraged”

(you can be mildly angry but not mildly enraged, cf. Apresjan [1] p. 125). And so

on. The second possible move is to weaken the notion of synonymy on sentences.

For example if we take note only of when sentences are true or false, and ignore

their social status, we cut away the difference in meaning between “intoxicated”

and “pissed”. And so on.

In short, the apparatus of Section 15.1 gets its bite by being applied to limited

parts of language – just as the physicist normally applies physical theory to bounded

systems. Sections 15.2.6 and 15.2.7 will discuss some languages where Section 15.1

applies without any limitation. But these are austere formal languages of logic.

As a consequence, the Necessary Condition above will sometimes fail, but be-

nignly. If there really is a difference between the meanings of e and f , it’s safe to

assume that some difference between meanings of sentences will serve to show this,

though we might have to strengthen the language or the function µ to show this. At

worst we might have to accept interjections like “Ouch!” as sentences.

15.2.4 Splitting Syntax From Semantics

Assume a language L is given, together with a constituent structure and a partial

semantics µ on sentences. We saw how this data yields two equivalence relations

∼µ and ≡µ on the class of expressions. Also ≡µ is a refinement of ∼µ : if e 6∼µ f

then e 6≡µ f too.

Now granting that the class of sentences is syntactically distinguishable, the

relation ∼µ is purely syntactic. Recall Chomsky’s Other Factors and the question

of distinguishing them from syntax. Imagine that we can define a third equivalence

relation ≈µ , where e ≈µ f holds if and only if e and f agree in their their meanings,

i.e. those Other Factors that have a detectable effect on µ . Then we will have

e ≡µ f ⇔ e ∼µ f and e ≈µ f . (15.4)

Equation (15.4) solves equation (15.1). There is always at least one solution of equa-

tion (15.4), namely where ≈µ is ≡µ . It should be obvious that in general there are

bound to be many other solutions. This is where semantic theory takes off.

The common claim that meaning is compositional is a claim about the proper

form of ≈µ . By our general theory, ≡µ and ∼µ are both compositional; but it doesn’t

follows that ≈µ is. Here let me make a comment in passing. Some of the arguments
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in favour of the compositionality of meanings, in particular those which refer to pro-

cesses by which an interpreter of sentences discovers their meanings, are fully met

by the observation that ≡µ is compositional; they provide no evidence that ≈µ as

well as ≡µ must be compositional. But as we’ve seen, the compositionality of ≡µ

is a purely mathematical artefact. Unlike the compositionality of ≈µ , it has no em-

pirical content at all. I believe these facts go a long way towards accounting for the

feeling that compositionality of meaning is both necessary and elusive. (There are

other reasons of a methodological kind for wanting meanings to be compositional.)

My own belief is that the choice of ≈µ within ≡µ is never purely empirical; it

always depends on a mixture of a priori theory and plain subjective taste. This is not

the sort of thing one can hope to prove. But let me discuss four types of example.

Example 15.1 The chief difference between the English phrases “in spite of” and

“notwithstanding” is that “notwithstanding” is usable as a postposition, whereas “in

spite of” is always a preposition:

She looked stunning, her tight schedule notwithstanding.
⋆She looked stunning, her tight schedule in spite of.

Probably most people would say at once that this is a purely syntactic difference

between “in spite of” and “notwithstanding”.

We can analyse this example as follows. Take F(ξ1,ξ2) to be the construction

putting a preposition at ξ1 in front of a noun at ξ2, and F ′(ξ1,ξ2) to be the construc-

tion putting a postposition at ξ1 after a noun at ξ2. Then

F(in spite of,ξ2) ≡µ F ′(notwithstanding,ξ2) (15.5)

in the sense of Definition 15.6, and hence these two 1-ary frames have the same

meaning. But F and F ′ themselves have no semantic content; they are pure con-

structors. Hence the meanings of the 1-ary frames in (15.5) come from their first

arguments. Furthermore these arguments never occur in any other context. So we

should reckon that the two arguments have the same meaning.

Before we rest easy with this argument, take another example. It’s artificial but

I hope it makes its point. Imagine a linguist coming on English for the first time,

and recognising the morphemes “dis-” and “em-”. She notes that “disgruntled” and

“embittered” mean near enough the same, and she infers that the difference between

“gruntled” and “bittered” is the purely syntactic one that the first takes “dis-” and

the second takes “em-”. This is essentially the same argument as above. But here

it doesn’t work, because the prefix “dis-” carries a semantic content not in “em-”,

namely that it negates what follows it.

As this second example emphasises, the argument for Example 15.1 rests on our

already having decided that in English there is no semantic difference between pre-

fixing and postfixing. Technically, it means we have already made some decisions

about ≈µ on frames as well as on expressions. (Not that this particular decision is

controversial.)
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Example 15.2 Another example, already referred to, is the difference between “I”

and “me”. You might want to say that these words have the same meaning, in spite

of the fact that there are almost no sentences in which we can change between “I”

and “me” without altering or losing the sense.

There are several possible arguments to support this view. One crude argument is

that in any context where they are uttered, the two terms have the same reference.

Since it’s hard to maintain that reference is the whole of meaning, this argument is

weak. A stronger argument would point to the practical advantages of analysing “I”

and “me” as “I-NOM” and “I-ACC”, and then observe that the difference between

NOM and ACC is purely syntactic. The use of semantic theory in this argument is

clear. (Also I suspect not everybody would accept that NOM and ACC are semanti-

cally neutral. They have more than a hint of agent and patient.)

My guess is that in Examples 15.1 and 15.2 most people will find it quite easy to

separate the syntax from the semantics. The purpose of the examples was to show

the involvement of background semantic theory even in uncontroversial cases. In

the next two examples it seems to me genuinely puzzling where or how one should

draw the line. Perhaps the distinction in these cases is purely within one’s semantic

theory, without any empirical content to it at all.

Example 15.3 Compare “murderer” and “person who has killed someone”:

A person who has killed someone most often already knew
him or her.
A murderer most often already knew him or her.

The second sentence doesn’t carry the straightforward meaning of the first.

The sentences show that the phrase “person who has killed someone” includes a

term for the object, which anaphoric pronouns can latch onto, whereas “murderer”

has no such term. Is this a semantic difference or a purely syntactic one? How would

one decide?

This example is complicated by the fact that there is another difference between

the two expressions, as shown in

That man is the murderer of Caroline.
That man is the person who has killed someone of Caroline.

The second sentence is syntactically ugly, but the main point is that it can’t mean

the same as the first. Together the sentences show that “murderer” has a semantic

argument place that’s not available in “person who has killed someone”. I think this

is a clear difference of meaning, but I could name leading linguists who seem to

disagree.

Example 15.4 Compare “liked” and “enjoyed”. The general pattern seems to be that

in frames where both words are acceptable, they carry the same sense. But “enjoyed”

is limited to frames where it refers to an activity. For example “He enjoyed Bach”

forces us to interpret as “He enjoyed listening to Bach”, or in some contexts “He

enjoyed playing Bach”. “He enjoyed aluminium” is uninterpretable out of context.

“He enjoyed Susan” strongly suggests an activity. (Pustejovsky [16] p. 135.)
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With examples of this kind, the evidence for a semantic difference is that cer-

tain sentences don’t normally occur. But exactly the same evidence could be used

to make a case that English syntax recognises certain distinctions (here, between

activity verbs and other verbs). So which wins, syntax or semantics?

A formal description of Example 15.4 would say that there are expressions e

and f such that e 6∼µ f but F(e) ≡µ F( f ) in the many cases where F(e) and F( f )
both exist. This seems to be a common phenomenon. An example with adjectives

is “cold” and “cool”. Apresjan ([1] p. 52) notes that we tend not to use “cool” for

felt sensations in particular parts of our bodies: “My fingers feel cool/cold”. In this

case he opts for syntax, but he has an unusually articulate semantic theory in the

background.

15.2.5 The Indeterminacy of Translation

Quine ([17] chapter ii) famously argues that the notion of a correct translation from

one language to another is underdetermined. He allows that languages contain “ob-

servation sentences” which “wear their meanings on their sleeves”. Between sen-

tences of this kind, translations are objectively right or wrong, up to the “normal

inductive” uncertainties. But to extend the translation downwards to constituents of

observation sentences is to make “analytical hypotheses”, and many different and

incompatible analytical hypotheses might do the job.

Markus Werning [21], working as closely as possible from Quine’s own as-

sumptions, argues that the Lifting Lemma (Lemma 15.1) puts serious constraints

on the possible analytical hypotheses, and so very much reduces the indeterminacy

of translation, at least for words and phrases that occur as constituents of observation

sentences. Hannes Leitgeb [13] replies to Werning.

15.2.6 Tarski’s Definition of Truth

In 1933 Tarski [19] undertook to give a definition of the predicate “ϕ is a true

sentence of the language L” where L is a fully interpreted formal language. One

of his requirements was that the definition should use only notions from set theory

and syntax, together with the notions expressible in L.

For the languages L that Tarski had in mind, the class of sentences is cofinal.

Hence Theorem 15.1 applies, where X is the set of sentences and for each sentence

ϕ , µ(ϕ) is the truth value of ϕ . That theorem gives us the format of a truth definition.

For Tarski’s purposes we need only check that syntax, set theory and “the notions
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expressible in L” suffice to define |.|µ on atoms, the Hayyan functions and the read-

out function pµ .

The condition of Lemma 15.4 holds for Tarski’s languages L: If a sentence ϕ is

a constituent of a sentence ψ , and we replace this constituent by a sentence ϕ ′ with

the same truth value as ϕ , the result is again a sentence, and it has the same truth

value as ψ . So we can ignore the read-out function. With any reasonable notion of

constituents for these languages, one can show that two formulas e, f have the same

fregean value if and only if (1) e and f have the same free variables and (2) if α is

an assignment to the free variables of e, then α satisfies e if and only if it satisfies f .

Hence we can take |e|µ to be the ordered pair (FV (e), |e|) where FV (e) is the set of

variables free in e and |e| is the set of assignments to FV (e) which satisfy e. (Except

when e is false under all assignments, |e| determines FV (e) anyway.) The set FV (e)
is defined syntactically, and for atomic formulas R(x1, . . . ,xn) (the atoms of Tarski’s

paper) it’s plausible that |R(x1, . . . ,xn)| is a “notion expressible in L”. It remains to

define the Hayyan functions; Tarski’s set-theoretic definitions of them are familiar.

In short, Tarski’s truth definition in [19] is in all essentials the definition of truth

given by the Abstract Tarski Theorem 15.1.

Actually Tarski doesn’t determine for each formula e the set |e| consisting of

those assignments to the free variables of e that satisfy e; he determines the set

consisting of those assignments to all variables that satisfy e. Some model theorists

have preferred to rewrite his definition using |e|, but it’s not what he wrote.

We can account for this discrepancy as follows. For Tarski’s languages, e ∼µ f

if and only if FV (e) = FV ( f ). Write e ≈µ f if and only if among the assignments

to all variables, those that satisfy e are those that satisfy f . Then Equation (15.4)

holds. As it happens, ≈µ is compositional too.

Later Tarski and Vaught [20] gave a truth definition for uninterpreted model-

theoretic first-order languages. In this setting one can ask for truth definitions at

several different levels of generality:

(a) Given a particular structure A and corresponding language L, define which sen-

tences of L are true in A.

(b) Given a particular signature σ of relation symbols and corresponding language

L, define for each sentence of ϕ the class of σ -structures in which A is true.

(c) The same as (b), but for all signatures simultaneously.

The Abstract Tarski Theorem applies as before. Case (a) is a special case of the

1933 definition. For case (b) one defines µ(ϕ) to be the class of all σ -structures

in which ϕ is true. It turns out that two formulas with the same signature have

the same fregean value if and only if they have the same set of free variables and

are logically equivalent. So the Abstract Tarski Theorem delivers the usual model-

theoretic definition of satisfaction.



15 From Sentence Meanings to Full Semantics 275

Case (c) can be an exercise, as can the question how to deal with constant and

function symbols if they are included as atoms. The Abstract Tarski Theorem brings

home the bacon again. In cases (b) and (c) there is a set-theoretical problem about

the definition of µ and the definition of the resulting fregean value function |.|µ .

But if you know enough set theory to see the problem, you almost certainly know

enough set theory to fix it.

15.2.7 Tarski-Style Semantics for Other Languages

People have sometimes asked whether this or that logical language “has a Tarski-

style truth definition”. In cases where the language has infinitary relations, or its

constituent structure is not well-founded, the Abstract Tarski Theorem doesn’t apply

(at least in its present form). But in the vast majority of cases the Abstract Tarski

Theorem does guarantee that there is a Tarski-style truth definition. That is, unless

you have your own notion of what Tarski’s style is, in which case you should tell us.

One well-known case is the branching quantifier logic of Leon Henkin. Jon Bar-

wise asserts on the first page of [2] that for this logic the meaning of a certain

formula “cannot be defined inductively in terms of simpler formulas, by explaining

away one quantifier at a time”. As it happens, the formula is tree-shaped. Our notion

of constituent structure can cope with that, but there is no need, since Jaakko Hin-

tikka translated Henkin’s formulas into linear form within his IF logic. The Abstract

Tarski Theorem applies straightforwardly to IF logic, so we know that Barwise’s

claim must be wrong. (We can write down the fregean values for Hintikka’s IF logic

explicitly, as in [9].)

At the end of his paper Barwise proves his claim. What he actually proves (p. 75f

with some small changes of notation) is that

The relation “ϕ is true in A” is not an inductive verifiability relation in the sense of Barwise-
Moschovakis [3].

I don’t think anybody with any experience of Henkin quantifiers would have ex-

pected otherwise. In fact it’s possible to show [5] that fregean values for Henkin’s

language can’t be given in terms of any notion of satisfaction by assignments of

elements to variables.

Nevertheless the fregean semantics for IF and similar logics is a close analogue of

Tarski’s; the Hayyan functions have an obvious resemblance to his. The semantics

is natural enough that Rohit Parikh and Jouko Väänänen [14] can use it as a basis for

a semantics for a “finite information logic”. The semantics uses sets of assignments

rather than single assignments, but it’s similar enough to standard model-theoretic

semantics to serve for defining fixed point operators in IF and similar logics, as

Julian Bradfield [4] showed.
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The existence of a tractable fregean semantics for IF logic also has a consequence

for natural language semantics: A discrepancy between syntactic scope and seman-

tic scope of quantifiers is no longer automatically a barrier to a Tarski-style formal

semantics.
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Chapter 16

Some Reflections on Discrete Mathematical
Models in Behavioral, Cognitive and Social
Sciences

B. D. Acharya and Shalini Joshi∗

16.1 Cybernetics and Systems

From times immemorial, man has wondered about nature and has tried hard to un-

derstand it in order to be able to use the knowledge gained through his incessant

endeavours to his advantage. This very spirit underlies his progress, right up to

what we see all around us today. Of course, his ability to conceive of alternative

ways to look at things has led him to diversify fields of his knowledge; principally,

while on hand he analysed an observed phenomenon he synthesized various pieces

of information about the phenomenon towards developing an integrated view of the

phenomenon. These two approaches are in some sense complementary to each other

in accordance with modern system theory, a central theme of cybernetics the essen-

tial feature of which is control of communication processes taking place amongst

various modules that constitute the system. As Stafford Beer [18] put it,

... cybernetics is the science of control and communication whenever these occur in
whichever kinds of systems. The core of cybernetics research is the
discovery that there is unity of natural law in the way control must operate, whether the
system controlled is animate or inanimate, physical or biological, social or economic.

Hence, a cybernetic approach to solve a problem involves the following steps:

(i) the overall system relevant to the problem is defined in terms of its elements and
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their interrelations; (ii) the problem is defined quantitatively (as far as possible) in

terms of elements of the system; (iii) the communication and control mechanisms of

the system are studied by taking into effect the deterministic or stochastic variables

involved in the description of the system; and finally, (iv) a decision mechanism of

how to act under various situations is prescribed. Thus, studying the changes in the

system and adopting decisions accordingly form an essential feature of a cybernetic

approach.

For identifying a system, we have to know its behavioural characteristic which

is represented by (i) the manner in which various elements within the system are

interrelated; (ii) the manner in which the entire system or its elements react to any

external influence, called alternately as the system’s external environment, and (iii)

evolutionary aspects of its overall buildup including existence of functional impres-

sions of its past forms in its presently active or ongoing functions, if any [34]. Effects

of the environment on the system are called stimuli while effects of the system on

the environment are called responses of the system. The response of a system to any

stimulus is dictated to a great extent upon the way the elements are organized to

function within the system.

A system is said to be closed if there is negligible effect of the environment on the

system; it is open if there is considerable effect of the environment on the system;

and it is partially closed if the environment has considerable effect only on a proper

subset or a few such subsets of elements in the system. The role of logic is central

in prescribing the thresholds underlying these definitions.

Formally, a cybernetic system is thus a triple S=(X ,R, f ) where X ={x1,x2, . . . ,xn}
is the set of elements called inputs, R denotes the behavioural pattern (or, the “char-

acteristic set”) of the system and f : (X ,R) → Y is the mapping relation which in-

dicates that Y = (y1,y2, . . . ,ym) (the output vector) is determinable from the knowl-

edge of (X ,R) if the map f is known.

For example, if the system is defined only in terms of the set X and the knowledge

as to whether there is a communication from xi to x j(i, j ∈ η = {1,2, . . . ,n}), then

we can represent it by a simple directed graph (or, a digraph as treated in Harary

et al [33]) D in which Rd = (rd
i j) where rd

i j = 1 if there is a communication from xi

to x j and rd
i j = 0 otherwise; here, by the existence of a communication from xi to x j

we mean existence of a directed path (xi = y0,y1, . . . ,yd = x j) from xi to x j of some

fixed length d in D. If d = 1 in this definition, then “communication from xi to x j”

means “direct communication from xi to x j” whence R := R1 is called the adjacency

matrix of D.

In the foregoing, we have prepared a background to present some of the thoughts

that are basic to lay the foundation of a cybernetic approach to deal with keeping in

view the standpoints of social and behavioral scientists on the use of mathematical

methods in general, and those of combinatorial theory in particular, towards gaining

better insights into some of the intriguing areas of behavioral/social sciences. In fact,

it is not uncommon that in almost all the fields of inquiry in humanities mathematical
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methods are used. One of the most famous examples is in the field of population

studies where well known statistical models have been successfully used.

16.2 Combinatorial Models

In recent times, there has been an unprecedented surge in the application of very

special techniques of network theory in the field of social sciences. Nevertheless,

any modeling effort should keep in view a note of caution that any quantitative

description such as mathematical/statistical/ computer representation of a natural

phenomenon in its entirety is fraught with limitations on its validity in comparison

with the phenomenon as observed. Even in the face of such admonitions, increas-

ing popularity of network analytical methods in behavioural, cognitive and social

sciences appears to be primarily due to the following reasons:

1. Representation of attributes and relationships amongst them distinctly by means

of points on the euclidean plane and line segments interconnecting pairs of them

those are interrelated in a specified way provides accurate structural description

of a social/cognitive system;

2. Possibility of gaining a global view of (usually large scale) social systems en-

dowed with such structures, called networks, thereby enabling identification, and

possibly solution, of problems concerning different categories of attributional

character of specified or specifiable types associated not only with individual

entities but also with groups of them constituting a functional module;

3. Any dynamical aspect may then be brought into the logical framework of math-

ematical modeling by means of specifying functions that describe various states

attained by the nodes at the intervals of observation taken up for investigation and

quantifying the strengths of various links interrelating them, and then subject the

resulting “state matrix” to mathematical analysis by applying the rules typical to

the problem at hand.

4. The “logical framework” referred to in 3 has to have the flexibility to accommo-

date constraints possibly affecting the system from its “hitherto external environ-

ment”.

Here, by an “attribute” one means any generic entity which has an intrinsically

distinctive individual character [40] and the character of one attribute might influ-

ence that of another, depending on their “proximity” in the social network or “fre-

quency” of their contact (or interaction) in the course of evolution of the social

system.

The jump from physical and chemical systems to social systems, which consist of

living and cognitive individuals endowed with ability to make decisions, has always
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seemed to involve concepts, which are beyond simple physics and chemistry. At one

time this “extra ingredient” was explained by the postulate of spirits and vital forces.

Gradually, as more and more of experimental science replaced philosophy, some of

the biochemical components were isolated and identified, fractionation techniques

improved, the question of the existence of vital forces became a joke. Eventually,

the “reductionist view” became dominant. Yet, something was missing. Hints be-

gan to appear that breaking down structure to get to pieces to study in isolation

also broke down function, often those functions which were under investigation.

That “missing something” was named organization. Prominent biologists pointed

out that the reason biology was higher in the hierarchical structure of science than

physics and chemistry was that it dealt with levels of organization not found among

objects of study in those disciplines. Indeed, the molecules and the physicalchem-

ical laws are the same, but things are put together in different ways when they are

alive! Rene Thom [66] labeled these two philosophical trends as reductionism and

vitalism or wholism in more concretized terminology; he further stated that if one

of these approaches is metaphysical, it is reductionism and not vitalism. One main

question of interest in this debate relevant to behavioural, cognitive and social sci-

ences is whether the network approach is of any help in resolving the philosophical

dilemma. The conviction is that to the extent that it provides a method for dealing

with more complicated organizational patterns, it must. On the other hand, reducing

a social or a cognitive system is not far from reducing it to a collection of attributes.

The networks, as models, are more models of our theories and hypotheses about

how the social or cognitive system works than of the actual system itself. By creat-

ing the appropriate network, various notions we have about the workings of a social

or cognitive organization can be quantitatively tested and lot of handwaving and

speculation can be done away with. This, it seems, will be the role of network mod-

els in the next phase of understanding the complex nature of social or cognitive or

social systems. Before the network approach, the task of analyzing highly organized

systems looked hopeless. Now, that part of the problem seems almost trivial, a sit-

uation in tune with the wellknown view of the late Aharon Katzir-Katchalsky that

“The goal of all science is to reduce all its problems to triviality”.

To appreciate the above philosophical points, let us consider the following exam-

ple: If the set of attributes is taken as the set of people in a town and if we categorize

them by their prominent orientations toward various political parties active in the

region then each of the subgroups in such a categorization would specify the set

of people having prominent orientation toward one particular political party; such

a categorization can be modeled invoking an abstract combinatorial object called a

hypergraph in discrete mathematics literature [19]. Further, if we consider people

as points and pairs of them belonging to a given subgroup as lines, one obtains a

network, which is called a 2-section of the hypergraph that represents the catego-

rization (e.g., see Fig. 16.1).

What unusual inferences can one draw out of such a configuration? There is a fine

point we would like to bring to notice, that would become naturally evident from

this model and otherwise difficult to comprehend: While people in each of the sub-
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Fig. 16.1 Network 2-section embedded in a hypergraph.

groups would form a clique in the network, not all members of an arbitrary clique

chosen from the network structure may belong to the same subgroup. For exam-

ple, in the categorization of the social group X = {a,b,c,x,y,z} represented by the

hypergraph H = (X ,E = {E1,E2,E3}) of Fig. 16.1, the clique {x,y,z} does not

represent a subgroup of people with uniform political orientations while every dyad

in it is such a subgroup. While such a possibility led to define one of the most impor-

tant classes of hypergraphs, called conformal hypergraphs in discrete mathematics

literature, implications of this possibility to political psychoanalysts could be quite

perplexing with regard to complexities it poses for planning propaganda campaigns

as it would involve development or implementation of methods to distinguish “right

cliques” (i.e., those which are constituted by people with predominantly similar po-

litical orientations) from “wrong cliques” (i.e., those in which not all the people

have predominantly similar political orientations, possibly some of them might be

under influence of some other political party).

16.3 Opinion Influence Processes

In scientific psychology, one of the fundamental questions arising in situations like

the above is to describe what is meant by behaviour. It has been argued that this

description should start with the axiom: Behaviour is a controlled consequence of

output where the last step is a causal chain that begins in the cognitive environment

created by the brain in response to given external forcing. In this axiom, the term

“control” is meant to be a real objective phenomenon that involves the production

of consistent results under varying environmental constraints. Mathematical con-

trol theory was developed to explain the phenomenon of control [50]. Even though

there have been efforts to quantify behaviour [63], comparison of a quantitative des-

cription of control with a physical analysis of behaviour has shown that the events



282 B.D. Acharya and S. Joshi

referred to as behaviour always involve control. The appearance of behaviour as

programmed output or response to situation has been shown to be a consequence

of ignoring two fundamental characteristics – of control reference states and distur-

bance resistance, a view that allows treating a controlled event as a physical variable

that remains stable in the face of factors that should produce variability. There have

been mathematical models in control theory that enable describing the nature and

dynamics of evolution of behaviour (taken in the sense of the above axiom) to a

reasonable degree of satisfaction. The network that represents correlation matrix

specified by the relative variations in the variables (attributes) of such a description

in any control theory model of social behaviour has been found to be a fundamental

tool to extract important features in the dynamics of evolution of social networks

since many physical and social phenomena are embedded within networks of in-

terdependencies, the so-called “context”, of these phenomena. In determining their

opinions and behaviour in accordance with the constraints and possibilities imposed

by the network, actors are assumed to be responsive to the contextual cues provided

by the opinions and behaviour of significant others. By appropriately taking into ac-

count the opinions and behaviours displayed by their significant others, actors thus

establish their own behaviour. Of course, opinions and behaviours are not solely

determined by those of others (interaction), but also by reaction to various other

constraints and opportunities granted by the social system (local effects). In sociol-

ogy, this type of processes is typically represented as an auto-correlation model of

the form

y = ρWy + xβ + ε

or

y = xβ + ε, ε = ρWε +u

(“Ego’s opinion is a weighted version of the opinions of his alters”.)

Parameter estimates and inferences based on such autocorrelation models hinge

upon the chosen specification of weight matrix W. This matrix represents the in-

fluence process assumed to be present in the network and can be operationalized in

many different ways. W is supposed to represent the theory a researcher has about

the structure of the influence processes in the network. Since any conclusion drawn

on the basis of auto-correlation matrices is conditional upon the specification of W,

the scarcity of attention and justification researchers pay to the chosen operationali-

sation of W would inhibit the conclusion they would draw with inconsistencies.This

is especially so, since different specifications of W typically lead to different empir-

ical results [48]. In view of the seminal work of Shepard & Arabie [61], it would be

of interest to extend this model in which weight matrix W represents the influence

processes that are assumed to be present in the hypergraph whose edges represent

similarity classes of opinions of individuals in the social group.
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16.4 Simmelian Triads

Recently, researchers have begun to draw upon sociological theory and cognitive an-

thropology to forge a social network approach to culture that emphasizes underlying

structures of relations rather than the content of ceremonies and rituals. A focus on

the ways in which patterns of informal relations affect patterns of understanding

can help pose and answer “a novel set of researchable questions” concerning orga-

nizational culture [53]. The genesis of this thought lies in the fact that individuals

who interact with each other are likely to have a higher agreement concerning the

culture than non-interacting individuals. Further, some relations (strong ties, for ex-

ample) are likely to produce more cultural agreements than others. In fact, Simmel

[62] had moved beyond the distinction between strong and weak ties by examining

the special nature of dyadic ties embedded within triads. He suggested that rela-

tions embedded in a triad are stronger, more durable and in particular more able

to produce agreement between actors than relations not so embedded. Research

confirms that dyadic relations embedded in triads (relative to dyadic relations in

general) are more stable over time and exert more pressure on people to conform

to clique norms and behaviour [44, 45]. Due to Simmel’s pioneering work in this

area, dyadic ties embedded in three-person cliques are called simmelian ties. Exten-

sive questionnaire-based survey has led to a hypergraph model. The questionnaire

response data may be used to form the matrix of raw dyadic ties, say R = (Ri j).
To generate the S matrix of simmelian ties from R, the hypergraph H matrix is

first created by recording every instance in which an actor belonged to a complete

triad (defined as a set of three individuals each member of which is tied with every

other in it – in general, a set of any number of such individuals is called a clique);

specifically, if there are n actors then one defines H = (Hi j) by letting Hi j = 1 if

and only if actor ai is a member of the triad Tj and Hi j = 0 otherwise. We can use

this representation to uncover simmelian triads by multiplying the matrix form of

the hypergraph H by its transpose H ′ and then taking the boolean of that matrix,

i.e., S = bool [H ′H ]. S will then be an n×n (read, “n by n”) (0,1) matrix so that

Si j = 1 if actors ai and a j are simmelian tied to each other and Si j = 0 otherwise.

One implication of this matrix S of simmelian ties is that it not only reveals who

are in the same strongly connected informal group (clique) in the organization [45]

but also that two actors being simmelian tied implies that they are co-members of

the same clique and vice-versa, or in other words, S is a dichotomized clique co-

membership matrix.

Using the above hypergraph model, Krackhardt and Kilduff [47] have confirmed

the validity of the following two interesting hypotheses in the theory of organiza-

tional dynamics:

Hypothesis 16.1 Relative to dyads in general, dyads embedded in simmelian triads

are likely to have higher agreement concerning who is tied to whom in the organi-

zation.
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Hypothesis 16.2 Relative to dyads in general, dyads embedded in simmelian triads

are likely to have higher agreement concerning who is embedded together in triads

in the organization.

In general, the role of specific structural type of networks in studying

socio-psychological phenomena can hardly be underemphasized. For instance, in

the very foregoing example, the degree of agreement concerning the informal social

structure of organizations amongst simmelian tied dyads (relative to dyads in gen-

eral) has been observed to vary depending on the type of network and the particular

organization. Structure of an organization consists of the relationships among the

actors of that organization, observed as invariant during a given epoch of time of its

evolution. In network terms, the structure is a set of dyadic statements describing

who is related to whom on particular dimensions.

Cultural agreements are far from uniform across the organization but rather oc-

cur between pairs of actors. Romney et al [60] discovered that the agreement takes

on a group form, and different groups can create their own cultural definitions – this

was an important step. One step further is the suggestion above that dyadic process

of agreement formation becomes particularly powerful in the context of simmelian

triad [47], since disagreements within the clique are more likely to be mediated by

a third party positively oriented toward the two antagonists in a three-person clique

than in a dyad wherein any process of appeasement must be confined within the

dyad itself acting as an autonomous system; further, sense-making processes within

such cliques are likely to be particularly effective in providing individuals with op-

portunities to compare beliefs with similar others, thus facilitating the process of

clarifications concerning many aspects of organizational culture including informa-

tion about who the informal leaders are and who is connected to whom [22]; it is at

such contexts that normal laws of common-sense logic might often fail, yet seem-

ingly transient processes responsible for stability of the system, which are com-

monly referred to as nonlinear processes, might be at work. For instance, in view of

the remark about the “right” and the “wrong” triads made above, we see that there is

a way to identify them as follows: A dyad uv is regarded positive if all the common

“neighbours” of u and v are in just one cultural subgroup Ei containing u and v and

is regarded negative otherwise. For instance, this rule applied to the 2-section H(2)

of the hypergraph H depicted in Fig. 16.1 above would render all the dyads in its

central triad {x,y,z} negative and all the other dyads positive; thus, in this particular

example, all the triads are “wrong” ones because every triad would then contain an

antagonistic dyad, appeasement in which is inhibited by the presence of people from

different cultural subgroups.

Krackhardt & Kilduff [46] argue that cultural beliefs emerge through a nego-

tiated dyadic process. Nevertheless, though cultural agreements are far from being

uniform across the organization it appears more reasonable to expect that they rather

occur between actors in dyads. Subcultures that have evolved as one group Ei within

the system forge agreement on one set of beliefs, say Bi. while other groups em-

phasize different cultural truths; i.e., we may assume that the set-labeling Bi → Ei
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of the edges Ei of the hypergraph H is a bijection (loosely speaking, different sub-

groups receive different sets of beliefs as labels). Thus, “culture” itself then becomes

structured to the extent that different actors agree with other specific actors within

the system specified by the hypergraph H = (X ,E). Hence, each dyad can be char-

acterized by the extent to which the two individuals in the dyad agree on a particular

cultural domain; this level of agreement between the actors constitutes a belief rela-

tionship between those two actors. “Agreement” here may be represented mathemat-

ically as follows: Let B(u) denote the set-theoretical union (
⋃

) of Bis associated

with the edges of H that contain u. Then, “agreement” between u and v is natu-

rally the set-theoretical intersection of B(u) and B(v) , viz., B(u)∩B(v). In other

words, each dyad uv may be thought of being associated with the set B(u)∩B(v)
of beliefs shared in common by the individual actors u and v in the dyad (or, the

so-called “dyadic partners”). The aggregate set of dyadic belief relations among the

actors of an organization can be considered one aspect of the structure of culture;

that is,
⋃

uv∈H(2)

B(u)∩B(v)

is the set of all beliefs which are shared in common by the dyads in the social sys-

tem specified by H . This elaboration supports the theory that the social structure

influences cultural understandings.

One may go on to consider the notion of strength of ties by associating with

each tie uv the cardinality |B(u)∩B(v)| of the set B(u)∩B(v), of beliefs that

are common between u and v, as an instance since Simmel would perhaps have

argued that cocliqued relations will be stronger relations following his notion of

dyads embedded in triads being stronger than those which are not.

16.5 Roberts’ Energy Use Sidigraph Model

We shall next see how to construct a dynamic signed digraph model for describ-

ing the behavioural strategies of a social system involved in its structural evolution

through time. For this purpose, the following definition of human behaviour is used:

“Behaviour is the way in which an individual or a group responds to a stimulus

received from the immediate environment in which it is found imbedded”. The fol-

lowing “Energy Use” dynamical model of Roberts [58] is found to fit the bill!

A signed digraph (or, simply “sidigraph”) consists of a digraph together with an

assignment of a sign “+” or “−” to each of its arcs. In many real-life applications,

the vertices of a digraph are taken to be variables relevant to the problem being

studied (e.g., population, energy capacity in a given region, energy price, level of

public appreciation of a policy, etc.). There is an arc from a vertex x to a vertex y if

change in x has a significant effect on y. This arc (x,y) is assigned a “plus”(+) sign if
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there is an effect of augmenting (or, reinforcement), i.e., all other things being equal,

an increase (decrease) in x leads to an increase (decrease) in y; and a “minus”(−)

sign if the effect is inhibiting (or, weakening), i.e., all other things being equal, an

increase (decrease) in x leads to a decrease (increase) in y.

Figure 16.2 shows a sample sidigraph model for energy demand in electrical

power usage in a given area, constructed for illustration. One can, for example,

interpret the network as follows: There is an arc from population P to energy use

U with a plus sign because as population goes up, energy use goes up. There is

a negative arc from energy use U to quality of (physical) environment Q because

as energy use goes up, the quality of the (physical) environment goes down as the

result of increased smog, thermal pollution, carbon dioxide, etc.

Fig. 16.2 Signed digraph for the energy demand in electrical power (Adapted from Roberts, [59]).

The usage of sign of an arc has an interesting interpretation as noted by Roberts

[58]: According to the present system, for example, the more you use energy (U)

the less you pay (R; per kilowatt hour) so that the arc (U, R) is negative. It has now

been suggested, say, that the rate structure should be inverted, and that large users

should pay more rather than less. This strategy, known as inverting rate structure,

corresponds to changing the sign of the arc (U, R) from − to +. In the same way,

other changes in the sidigraph, in particular other changes of sign, might correspond

to potential strategies for modifying the energy use system. One is hence interested

in evaluating these strategies.
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The sidigraph model has in it many oversimplifications. For example, some ef-

fects of variables on others are stronger than other effects. The sidigraph model,

however, assumes that all effects are equally strong, by placing unit (+1 or −1)

weights on each arc. It might be more reasonable to place a different weight w(x,y)
on each arc (x,y) of a given digraph, thus yielding a weighted digraph (or, what is

commonly known as a directed network). The weight is interpreted as the relative

strength of the effect, and can be still positive or negative in character. Even more

realistic than assigning a weight to each arc is to assume that the strength of an effect

corresponding to the arc (x,y) changes depending on the levels of the variables x

and y. But even weights are hard to estimate in practice, especially if the variables

themselves are hard to measure or even to define.

Most important omission in the sidigraph model is the time lag involved before

a change in x has an effect on y. For example, an increase in population P will lead

almost immediately to an increase in energy use U, while there is a time lag after

an increase in the number of jobs J before that attracts more population P to that

area. The sidigraph model assumes that all effects take place in one unit time. Thus,

a more realistic model would introduce a time lag corresponding to each effect. As

with weights, time lags are hard to estimate, and there is a tradeoff between the

generality of the model and the possibility of estimating its parameters (weights,

time lags, etc.) in a realistic way.

Some rather interesting conclusions can be reached if we introduce a simple dy-

namic model for the propagation of changes through the vertices of a signed or

weighted digraph. Let us for simplicity begin with a signed digraph, and let its ver-

tices be denoted x1,x2, . . . ,xn. We suppose that each vertex xi attains a value vi(t) at

each discrete time t = 1,2, . . . . The succeeding value vi(t + 1) is determined from

vi(t), from an outside pulse p0
i (t +1) introduced at vertex xi at time t +1 and from

information about whether other vertices x j adjacent to xi went up or down at the

last time period. Specifically, it is assumed that if there is an arc x j to xi and x j goes

up by ⊣ units at time t, then as a result xi goes up at time t +1 by an amount equal to

⊣ times the sign of the arc (x j,xi). Moreover, xi must increase by an amount equal to

any external change p0
i (t +1) introduced at xi at time t +1. To make all this precise,

one defines

vi(t +1) = vi(t)+ p0
i (t +1)+Σ jsgn(x j,xi)pi(t) (16.1)

where sgn(x j,xi) is +1, −1 or 0 according to whether the arc (x j,xi) is positive,

negative or nonexistent in the sidigraph, and p j(t) equals v j(t)− v j(t −1) or p0
i (0)

according to whether t > 0 or t = 0. The quantity p j(t) is called the pulse at vertex

x j at time t. A pulse process (Roberts, 1971) on a sidigraph D is then defined by the

rule (1), by an initial vector of values V (0) = (v1(0),v2(0), . . .vn(0)) and by vectors

giving the outside pulse introduced at each vertex at each time period. These vectors

are denoted by P0(t) = (p0
1(t), p0

2(t), . . . , p0
n(t)) . One can also use the pulse vector

P(t) = (p1(t), p2(t), . . . , pn(t)).
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In applications, one usually determines V (0) as follows: Suppose we know

the starting value vi(start) at each vertex xi. Then, vi(0) is defined by vi(0) =
vi(start) + pi(0); that is, vi(0) is the starting value at the vertex xi plus the initial

pulse introduced at vertex xi. Thus, usually the pulse process is defined by giving

the vector V (start) = (v1(start),v2(start), . . . ,vn(start)) rather than the vector V (0).

Using the above notion of a pulse process, Roberts [58] described ways to analyse

and deduce various viable strategies for deriving stability conditions for a complex

system to attain.

As indicated in the beginning of the section, one can apply this very model for

deriving various consistent behavioural patterns of individuals in a social system

given the initial “pulse vector” and the initial “state vector” for the effect of external

environment on the social system and the “cognitive states” of the individuals in

the social system, respectively. The concept of “consistent” or “balanced” states of

a social or cognitive system is itself a highly studied notion of structural stability

of the system (e.g., see [3]). We will present salient features of such a model in the

succeeding sections.

16.6 Structural Balance

Towards understanding the role of network structure in ongoing social processes,

the members of the social group are represented as nodes (often called vertices)

of the network in which any two nodes A and B are interconnected by at most

all of the four arcs (A,B)+,(A,B),(B,A)+ and (B,A) where a “plus” (“ + ”) or a

“minus” (“ − ”) sign in the super fix of an ordered pair represents the fact that the

corresponding (oriented) relation is respectively “positive” or “negative” in charac-

ter; such a network has been called an ambivalent signed digraph or ambisidigraph

in short.

For instance, Fig. 16.3 depicts an ambisidigraph “state” of a “small” social group

consisting of five persons A,B,C,D and E; in this “social network”, (A,C) is a neg-

ative arc, (C,E)+ is a positive, (B,A) is an ambivalent arc in the sense that B has

positive as well as negative evaluations of A each represented by the corresponding

type (positive or negative) of arc, so on. Its basic structure is a digraph in which

every pair of vertices is joined by at most two arcs in each direction.

In fact, ambisidigraph model of a social group takes into account the state of

ambivalence, viz., and simultaneous existence of “positivity” and “negativity” of

evaluative opinions of an individual exhibited in respect of another, in the analyses

of the social group. It also facilitates treatment of the notion of “indifference” by

which we mean a “state of neutrality” that may exist between two individuals in the

social group who exert on each other some sort of “balance of attitudes/feelings”
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Fig. 16.3 An ambisidigraph state of a “small” social group.

that represents a “tacit agreement” to maintain “status quo” in respect of ongoing

processes of interaction between them.

One may further assign a positive real number to each arc to represent the inten-

sity of the interpersonal relation measured on some reasonable scale. However, for

simplicity to begin with, we initiate a study of these networks by disregarding such

assignment of weights (equivalently, by treating all the weights to be unity) to their

arcs.

A concept of fundamental theoretical importance related to the structure of a net-

work is that of traversal of its arcs, like we walk on a street. In fact, the term walk has

been used in literature to mean a sequence Wk = (v0,a1,v1,a2,v2,a3, . . . ,ak,vk) of

vertices v0,v1,v2,v3, . . . ,vk and arcs a1,a2,a3, . . . ,ak of S such that ai = (vi−1,vi) for

each i,1 ≤ i ≤ k; here, the positive integer k is called the length of the walk and the

walk is said to join the initial vertex v0 to the terminal vertex vk, or simply that Wk

is a v0 − vk walk. For example, in the ambisidigraph of Fig. 16.3, the “alternating”

sequence (A,(A,C)−,C,(C,B)+,B,(B,C)−,C,(C,B)+,B,(B,C)−,C,(C,E)+,E) is

an A-E walk of length six. If, in a walk, all the arcs are distinct then the walk is

called a trail and if all the vertices are distinct (then observe that all the arcs must

also be distinct) then the walk is called a path. A walk in which the initial and

the terminal vertices are identical (i.e., one and the same) then the walk is said

to be closed; it is said to be open otherwise. For example, in the ambisidigraph

of Fig. 16.3, (C,(C,B)+,B,(B,C)−,C,(C,B)+,B,(B,C)−,C) is a closed walk of

length four. A closed walk in which all the vertices are distinct is called a cycle;

for example, in Fig. 16.3, (C,(C,B)+,B,(B,C)−,C) is a cycle of length two and

(A,(A,C)−,C,(C,B)+,B,(B,A)−,A) is a cycle of length three (such a cycle is often

called a triangle).
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In the ambisidigraph S of Fig. 16.3, consider the two triangles

T = (A,(A,C)−,C,(C,B)+,B,(B,A)−,A) and

T ′ = (A,(A,C)−,C,(C,B)+,B,(B,A)+,A).
We wish to point out an interesting difference between these two triangles. In T ,

A has a negative opinion about C, C has a positive opinion about B and B has a

negative opinion about A; or, by a simpler interpretation, A dislikes C, C likes B

and B dislikes A. In T ′, with similar interpretation, we have the situation in which

A dislikes C, C likes B and B likes A; what can one infer from this situation about

C’s disposition toward A?

There could be many practically appealing interpretations of the situation. First

of all, considered on their own right as triads, one may easily identify some straight-

forward features in which they differ: (i) in T the number of negative arcs is even

whereas in T ′ this number is odd; (ii) there is exactly one vertex in T at which both

“incoming” arc and the “outgoing” arc are negative whereas in T ′ there is exactly

one vertex at which both incoming and the outgoing arcs are positive.

On an interpretative basis, at the very outset, one can sense some inherent dif-

ferences between T and T ′. Let us try to find out. Towards this end, some realities

in life must be considered! One of the principal concepts in social psychology in

analyzing such situations is that of reciprocity. The behavioural phenomenon of

reciprocity is well imbedded in the so-called “Dyadic Interaction Paradigm” (DIP)

according to which
The defining hallmark of interaction is influence; each partner’s behaviour influences the
other partner’s subsequent behaviour . . . within a single interaction episode and each in-
teraction episode influences future episodes . . . dyadic relationships are maintained by two
individuals . . . the nature of their interaction is determined not by one partner’s properties
but by the interaction of the properties of both partners, by the social and physical envi-
ronments in which they interact, and by how all these causal conditions interact with each
other. [56].

In this light, one can define reciprocity as the behavioural tendency of an individ-

ual (or even a “group”) to respond to another in a manner consistent with the nature

of the latter’s displayed behaviour or actions; in literature, this definition appears

to have been taken as granted (e.g., see [54]; p. 5). However, in real-life, it is not

difficult to notice situations in which response of an individual (or group) need not

be “consistent with” stimulus in general, but it could be even “inconsistent with” the

nature of the stimulus; for example, aiding a habitual cheater may not bring any

benefit. In effect, we need to modify the above definition of the term reciprocity to

mean just a behavioural tendency of an individual (or group) to respond to another

whenever the latter displays certain behaviour or action toward the former.

From the broad points of view mentioned above, we now get back to analyse

the situations presented in the question raised about the inherent differences in the

two triads, T and T ′. Hence, as read from the relational structure of T , A dislikes

C, C likes B and B dislikes A whereas in T ′, A dislikes C, C likes B and B likes A.

Applying the notion of reciprocity to the dyadic relations imbedded in these two

triads, we may deduce the following analysis assuming that in each case expressed
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attitudes or behaviours of one are noticed by the other in each dyadic interaction

and may or may not cause a response by the other.

Situation presented by the structure of T : A dislikes C whence C may or may

not respond to A’s dislike for him. If, however, C decides to respond, his response

to A may either be positive or negative or both (“mixed” or ambivalent reaction). If

it is positive or even mixed, then it would represent some what unnatural situation

in which C’s liking A even to a limited extent despite the fact that C knows A’s

dislike for him would create tension not only between A and C but also between

B and C since B who may have responded positively to C due to C’s liking for B

would not like C’s liking A whom B doesn’t like. Since so much tension in the triad

would render the triad {A,B,C} unstable and since the stability of a larger social

group is perceived to be a commonly felt need for accommodating well being of

its individuals and subgroups C would find it beneficial (or safe!) to maintain status

quo with regard to his being disliked by A. Similar arguments in respect of other

dyadic interaction existing in T would lead to the same conclusion. Thus, there is no

motivation to change the pattern of existing interrelationships among the members

of T . Such a structural state of a social group is termed structurally stable state of

the group and hence the triad is said to be balanced.

Situation presented by the structure of T′ : Here, A likes C whence C may or

may not respond to A’s like for him. If, however, C decides to respond, his response

to A may either be positive or negative or both (“mixed” or ambivalent reaction).

Negative response to a positive stimulus is unnatural and hence unlikely; however,

it may be mixed sometimes, as for instance in the initial or in a fleeting episode of

encounter, expression of A’s liking for C may be met with a response by C inhibited

by suspicion or distrust! But, in any case, some amount of positivity in the reaction

of C toward A in response to A’s expression of liking for C must exist, and this

may be full in the sense that C’s response to A may be fully positive too. However,

since C likes B and B does not like A, C would not tend to be fully positive with

A for otherwise it may alienate him from B who may show his displeasure about

C’s noticeable positivity with A whom B does not like. Thus, C would have to keep

his positive inclinations, if any, toward A to an extent not noticeable by B! This

would cause tension in C which would force him to alienate from A eventually.

On noticing such a subdued and negatively inhibited response from C would then

prompt A to switch his liking for C to dislike whence the triad {A,B,C} would

eventually become identical to T which represents a stable state of the triad. Since

in T ′ there is such a tendency toward transition in to a stable state as described

above, this structurally unstable state presented by T ′ qualifies T ′ to be called an

unbalanced triad.

The kind of sociopsychological arguments to decide whether a given social group

is structurally stable or unstable would become extremely complex and formidable

when the number of individual members in the group, referred to as order of the

corresponding social network, increases and generally the ground situation being so

in practice, we need to appeal to mathematical representation of the essential ideas
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involved in the analysis for then we could apply appropriate mathematical meth-

ods to draw meaningful inferences about the sociopsychological phenomena being

studied. Hence, in what follows, we will provide a glimpse into some elementary

mathematical ideas toward this end.

Before we embark on presenting general theoretical framework to treat problems

on structural stability in social systems, it may be rewarding to understand another

subtle difference in the triads T and T′ considered above. This will be presented in

terms of Matrix Theory, a well-established field of mathematics.

By an m×n matrix, written briefly as A = (ai j)m×n or simply as (ai j) one simply

means an arrangement of given entities in an array consisting of some m number of

rows and some n number of columns, and looks like

A =

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

...
. . .

...

am1 am2 am3 · · · amn

For example, a 3×2 and a 3×3 matrices are shown below.

M =
A B

A A

B A

N =
1 3 7

2 6 5

4 2 1

Next, given any signed digraph S (that is, an ambisidigraph in which every pair of

distinct vertices (representing individuals in the social group) is interconnected by

at most one arc (representing evaluative relation existing between the individuals)

which may be either positive or negative; in sociopsychological literature, such con-

figurations are called sociograms. Given a sociogram S of order p one can associate

with S a p× p matrix whose elements are from the set {1,0,1}, called the adja-

cency matrix of S and denoted A(S) = (ai j), defined as follows: Let the vertices of

S be labeled as v1,v2,v3, . . . ,vp. Then, let ai j = 1,0 or 1 according to whether the

arc (vi,v j) is negative, (vi,v j) is not an arc in S or (vi,v j) is a positive arc in S. For

example, A(T ) and A(T ′) obtained in this manner are given below.

M =
0 0 −1

−1 0 0

0 1 0

N =
0 0 1

−1 0 0

0 1 0

Conversely, given any square (−1,0,1)-matrix A = (ai j) of order p one can con-

struct a signed digraph S(A) uniquely as follows: Take p vertices v1,v2,v3, . . . ,vp

and join the vertex vi to the vertex v j by a positive (negative or no) arc when-

ever ai j = 1 (respectively, 1 or 0). Thus, it is easily seen that signed digraphs are

uniquely represented by their adjacency matrices. This is mathematical representa-
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tion of a signed digraph. In particular, the “three-by-three” (−1,0,1)-matrices A(T )
and A(T ′) shown above uniquely represent the triads T and T ′, respectively. So,

what next? Using this representation, can we show some how show that T and T ′ are

mathematically different in some nontrivial sense? Such a conclusion, as mentioned

already, is essential if we want to derive meaningful inferences about larger social

systems using available mathematical methods. In this particular case, we expect to

use methods of matrix theory to analyse states of socio-psychological stability of

a social group. This, obviously, would need a proper mathematical representation

of the aforesaid socio-psychological notion of structural stability of a social group

of an arbitrarily given order as, in practice, we may encounter social groups of any

order. Hence, in what follows, we shall introduce this notion.

16.7 Theory of Balance in Social Systems

It is now well established that affect (attitude) has a direct influence on behaviour.

Further, the different attitudes that an individual holds are consistent in his or her

mind when they do not cause a state of psychological tension to the person. Psycho-

logical consistency of a person, therefore, depends on holding of attitudes, which are

not contradictory with one another. Based on this fundamental notion in personal

psychology, Heider [36] defined interpersonal interaction between two individuals

as being in a state of balance whenever there is no conflicting attitude noticed be-

tween them, expressed by one and felt by the other, and described the notion also

in the case of a triad, viz., a social group consisting of three persons. In less than

the next 8 years, Harary [28] extended this notion to social groups consisting of any

number of persons thereby laying the foundation of the theory of balance in social

systems. To explain this development one would need the notion of a “cycle” and

“semicycle” in ambisidigraphs.

Given an integer k ≥ 2, by a cycle of length k in an ambisidigraph S we mean a

sequence Ck = (a1,a2,a3, . . . ,ak,a1) of vertices of S such that a1,a2,a3, . . . ,ak are

all distinct and (ai,ai+1) is an arc for each i,1 ≤ i ≤ k, where indices are reduced

modulo k ; if k ≥ 3 then we call Ck a significant cycle in S. Any cycle is said to be

positive (equivalently, “balanced”) or negative (equivalently, “imbalanced”) accord-

ing to whether the number of negative arcs in it is even or odd.

Essentially, then, Harary [28, 33] conceived a social group endowed with inter-

personal interactions as a signed digraph and defined such a social network to be

cycle-balanced if every cycle in the network is balanced. He also defined a signed

digraph to be balanced if every semicycle in it contains an even number of negative

arcs, where by a semicycle one means a closed walk in which all the vertices are dis-

tinct and the directions of the arcs are arbitrary; thus, every cycle is a semicycle but,

conversely, not every semicycle is a cycle. Thus, it is important to observe right at

this stage the following facts: A signed digraph which is cyclebalanced may not be
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balanced as such whereas every balanced signed digraph must be cycle-balanced.

Furthermore, since in a graph every edge may be regarded as being “undirected”

(taken equivalent to the term “symmetric arc” when treated as a digraph), the no-

tions of cyclebalance and balance coincide on sigraphs which are graphs in which

every edge is designated to be positive or negative.

Fig. 16.4 Sociograms of small orders.

Figure 16.4(a) depicts some distinct (up to isomorphism) balanced as well as

some unbalanced sociograms in a triad and Fig. 16.4(b) depicts some other such

“higher order” sociograms.

The spectrum of a matrix: In this section, we shall explain how cyclebalance is

characterized using the notion of the spectrum of a matrix. We have seen that given

any n×n (−1,0,1)-matrix, called a square (1,0,1) matrix of order n) A = (ai j), one

can associate with tbiA its sidigraph S(A) by taking n vertices v1,v2,v3, . . . ,vn and

joining the vertex vi to the vertex v j by a positive (negative or no) arc whenever
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ai j = 1 (respectively, 1 or 0); in fact, this notion can be extended to be valid for any

arbitrary square matrix A = (ai j) of order n just by changing the defining condition

for S(A) to “whenever ai j > 1 (respectively, < l or = 0)”. In this extended sense,

S(A) is called the sign pattern of A.

Fig. 16.5 Sidgraph S(A) for the sample 5-5 matrix A.

For instance, if

A =

0.75 0.25 0 0 0

0 0 0.07 0 0

0 −0.02 0 −0.22 0

0.21 0 −1.55 0 1.23

2.32 0 0 0 −3.02

then the sidigraph so associated with A is shown in Fig. 16.5. Note that S(A)
does not represent the actual values of the entries in the matrix A; however, if one

wishes, one can assign the absolute value |ai j| of the entry ai j on the arc (vi,v j) in

S(A) whence we may regard the so arc-labeled sidigraph as a real network which we

shall denote by Sl(A). Clearly, Sl(A) represents A completely, in the sense that given

one of them the other is completely determined. Hence, the matrix A+ = (|ai j|) is

called the nonnegative associate of A.

The next notion in matrix theory required for our purpose is that of what is known

in that theory as the determinant of a given square matrix

A =

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

...
. . .

...

am1 am2 am3 · · · amn
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of order n, which was first defined by the 17th century German mathematician Leib-

nitz in a letter addressed to a French mathematician L’Hospital dated April 28, 1693

but the term “determinant” was coined by another legendary German mathematician

C.F. Gauss in 1801. The Leibnitz definition is given by

det A = ∏σ∈πn(sgnσ) a1σ(1),a2σ(2),a3σ(3), . . . ,anσ(n)

where ∏ denotes the binary operation of forming the usual product of the terms

indicated and πn denotes the set of all permutations σ : {1,2, . . . ,n}→ {1,2, . . . ,n}
which are defined as functions σ that assign σ(i) to each i ∈ {1,2, . . . ,n} := n

such that {σ(i) : i ∈ n} = n. Further, the quantity sgnσ , called the signature of

σ , is defined as follows: which is defined to be +1 or 1 according to whether the

number of transpositions (which are cycles of length two, viz., tuples of the form

(σ(i),σ( j)) = ( j, i), in the unique decomposition of σ into such cycles) in σ is even

or odd. For example, let

A =
0 0 −1

−1 0 0

0 1 0

Then, σ(1) = (1)(2)(3),σ(2) = (1)(23),σ(3) = (2)(13),σ(4) = (3)(12),σ(5) =
(13)(12),σ(6) = (12)(13) whence by the definition of the determinant we get

detA = (+1)(0)(0)(0) + (1)(0)(0)(1) + (1)(1)(0)(0) + (1)(0)(1)(0) + (+1)(1)
(1)(1) + (+1)(0)(0)(0) = 1.

The quantities in the above expression may be put in terms of basic parameters

of a certain kind of subgraphs of S(A), called “linear subgraphs”; a subgraph L of a

(di)graph G in general is called a linear subgraph of G if every component of L is a

(directed) cycle in G (e.g., see [32]). Some more terminology would be essential to

state this fundamental connection between digraphs and matrices.

Let D = (Du,w) be a directed network, with weight function w defined on the arcs

of its underlying digraph Du,ζt(D) denote the set of all linear subgraphs of order t

in Du, and c(L) denote the number of components in L ∈ ζt(D); for any subgraph H

of D, its weight w(D) is defined as the product of the weights of the arcs in D. The

following result has been independently “discovered” by a number of researchers in

as diverse fields as molecular chemistry and electrical circuit theory (cf.: Acharya,

1980).

Theorem 16.1 [27, 31] For any real matrix A of order n,

det(A) = (1)n ⊓L∈ζn(Sl(A)) (−1)c(L)w(L)

The third idea required for the purpose of expounding what is meant by the spectrum

of a given square real matrix A is that of its characteristic polynomial ϕ(A). It is

defined by
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ϕ(A) = det(A−λ I)

where λ is a real variable and I denotes the unit matrix of order n whose entries in

the diagonal are all 1s and the rest are 0s. It may be written in the polynomial form

as

ϕ(A) = Σi∈{0}∪naiλ
i

where the coefficients ai of λ i can also be expressed in terms of linear subgraphs in

the sidigraph S(A) of A. Since the coefficient ai(A) of λ i in ϕ(A) is (−1) j times the

sum of the determinants of the principal minors of order n− j in A,

ai(A) = (−1)n ⊓L∈ζn− j(Sl(A)) (−1)c(L)w(L).

Two real square matrices A and B are said to be cospectral if ϕ(A) = ϕ(B). The

following important criterion for cospectrality of A with A+ = (|ai j|) is wellknown.

Theorem 16.2 [1] Any real n×n matrix A is cospectral with its nonnegative coun-

terpart A+ if and only if S(A) is cyclebalanced.

This theorem has lead to a number of interesting questions, notions and results in the

mathematical theory of sidigraphs; it is beyond the scope of this lecture to enter into

those excursions, but interested ones can go through [1, 5, 21, 25]. Its implications

to balance theory in social psychology, however, are well enshrined in the seminal

paper by Katai and Iwai [39]; it is neither possible to cover development even in that

direction in this short lecture.

The following is an important corollary of the above theorem, which is of imme-

diate interest to social balance theorists as such.

Corollary 16.1 [1]: A sidigraph S is cyclebalanced if and only if S is cospectral to

its underlying digraph S+.

16.8 Intergroup Relations

Here onwards, we shall treat the terms “individual” and “group” in somewhat equiv-

alent sense, connotation of the term “equivalent” limited to their behaviours and

functions, for extending it beyond is fraught with the danger of conveying simi-

larity in their physical characteristics such as, say, both having the same weight.

We will see the advantage of this approach in studying some very important socio-

psychological phenomena by developing hypothetical models to enrich our con-

ceptual resources to understand them better, even by empirical investigations if



298 B.D. Acharya and S. Joshi

required. Towards this end, first we need the following definition of a “group” due

to Alderfer [14]:

A human group is a collection of individuals (1) who have significantly interdependent
relations with each other, (2) who perceive themselves as a group by reliably distinguishing
members from nonmembers, whose group identity is recognized by nonmembers, (4) who,
as group members acting alone or in concert, have significantly interdependent relations
with other groups, and (5) whose roles in the group are therefore a function of expectations
from themselves, from other group members and from non-group members.

This idea of a group begins with individuals who are interdependent, moves to

the sense of the group as a significant socio-psychological object whence bound-

aries are confirmed from inside and outside, recognizes that the group-as-a-whole is

an interacting unit through representatives or by collective action, and returns to the

individual members whose thoughts, feelings and actions are determined by forces

within the individual and from both group and non-group members. This concep-

tualization of a group makes every individual member into a group representative

whenever he or she deals with members of other groups, and treats every transaction

among individuals as at least in part, an intergroup event [15, 57, 64].

In the study of intergroup relations, which in a generic sense can cover interper-

sonal relations too invoking the above mentioned approach, psychology has fallen

into the problem of taking characteristics of interaction patterns and talking about

them as though they were attributes of the entities engaged in the interaction [17].

Goffman [26] makes distinction between characteristics of the actors in interaction

and the characteristics of interaction patterns; what we observe in a society is the

latter; Smith [65] prefers to analyze the latter since we can only “see” the behaviours

of the entities engaged in the interaction whereas we cannot actually “see” interac-

tions. To observe interactions demands, then, a derivative, analytical approach that

enables us to focus on what transpires, invisibly, in the space between the interac-

tants. Smith [65] gives the following beautiful metaphor to illustrate his point:

Focusing on interaction patterns between people or groups are conceptually analogous to
noticing the wind as it blows through trees. The wind is recognizable primarily by its im-
pacts on objects that move and behave within the realms of the wind’s presence. It would
not make sense for us to claim that leaves ripple and trees bend simply because it is their
nature to do so. When a tree is bending and twisting vigorously in the middle of a storm,
it does make sense to recognize the characteristic of the tree’s flexibility, but we are more
likely to focus on the intensity and direction of the wind. Just as trees express the nature of
the winds blowing against them, a group’s behaviour can be thought of as expressing the
nature of the prevailing interaction patterns. Just as the nature of the wind is detectable only
in the behaviour of the trees, so the nature of the interaction between groups can be derived
only from interpreting the group’s behaviours.

Secondly, the problem about the patterns that are dynamic is that the moment we

attempt to represent fluid, changing phenomena in words, there is a tendency for

the pattern to become reified. Then we find the rich, dynamic, movie-like patterns

becoming reduced to impoverished, static snapshots. This tendency has been most
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evident in sociology, which treats dynamic interactions as the focal point of analy-

sis, yet conceptualizes them as crystallized, institutionalized and stabilized proper-

ties of social structure. As a result, structured characteristics come to be viewed by

sociologists not as crystallized interactions but as entities possessing empirical and

conceptual reality themselves [16].

Perhaps, it is because of the complex nature of the sociopsychological situations

mentioned above, (i) focus of social network theorists’ attention has been mostly

on “egocentered” networks, that is, the set of associations radiating from a particu-

lar individual, (ii) they have tended to employ a static type of analysis which fails

to account for the continuous fluctuations in sociopsychological attitudes, and (iii)

they have avoided forming general conclusions about the patterns that they have

observed.

A notable exception is one of the earliest network models to represent be-

havioural dynamics due to French [24], in his theory of social power. Using directed

graphs to represent power structure in a group, he examined the opinion patterns

that evolved from various influence configurations. Rapoport [55] laid the founda-

tion for probabilistic social network models through his investigation of information

transfer in random nets. Lorrain and White [49] gave a rigorous exposition, using

the theory of categories, of structural classifications in networks of binary opposi-

tions, with their avowed aim to achieve a “global” understanding of social networks

by studying the underlying structure. Subsequently, the idea of cognitive structural

balance first introduced by Cartwright and Harary [20] was placed in a sociometric

setting and generalized by Holland and Leinhardt [37], who invoked the concept of

a partial order.

Fiksel [23] put a step forward by development of a network model explicitly in-

corporating the dynamics of interpersonal associations thereby expanding the scope

of the model to encompass large groups of interrelated individuals as well as permit-

ting a description of patterns of evolution within such groups. Due to its powerful

simplicity, in this lecture, we choose to embark on presenting salient features of this

model and point out some new directions for advanced research.

16.9 Societal Networks

Unlike the freely used term “social network”, the term “societal network” will

be used to denote a mathematical system having certain well-defined properties.

In formal terms, it is a labeled directed network (N ,A ,T ) where N is a fi-

nite set of nodes, T is a finite set of relational types, and A is a set of ordered

triples (x,y,u) such that (x,y) ∈ N 2 := N ×N whence actually A ∈ N 2 ×T =
{
(x,y;u) : (x,y) ∈ N 2,u ∈ T

}
. The set A denotes the set of all the arcs in the

network which link pairs of nodes. Thus, if (x,y;u) ∈ A then there is an arc from
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node x to node y bearing the relational type u. In a social context, the nodes would

represent individual people while the arcs would represent directed relations such

as “mother of” or “superior to”. We will assume throughout that the network is

connected.

Now, let T have the property that if u∈T , then there exists a reciprocal relation

u−1 ∈ T ; this enables one to consider the arc (x,y;u) as being equivalent to an

oppositely directed arc (x,y;u−1). For example, the reciprocal of “superior to” is

“inferior to”, so that x is superior to y if and only if y is inferior to x. When u = u−1,

we are dealing with a symmetric relation such as “friend of”. Let N(x) be the set of

nodes adjacent to x, viz., N(x) = {y ∈ N : (x,y;u) ∈ A and u ∈ T } and let R(x,y)
be the relation u on the arc (x,y;u). Let us not permit selfloops, viz., x /∈ N(x).

We can now endow the network with dynamic properties. Suppose that each node

is always in one of a finite number of possible states, denoted by the set S(x). At

every instant of discrete time (t = 0,1,2, . . .) a node may undergo a change of state;

furthermore, let us assume for the time being that these state transitions are influ-

enced only by the states of adjacent nodes in the network. More precisely, let σx(t)
denote the states of the node x at time t. Then, it is postulated that

σx(t +1) = ψx(σx(t));
{

σy(t),R(x,y) : y ∈ N(x)
}

.

That is, a state transition for node x is determined according to the transition rule

ψx whose arguments are : (i) the previous state of node x, (ii) the previous states of

all the nodes adjacent to x, and (iii) the relations of these nodes to x.

In a societal interpretation, the states of an individual could represent political

beliefs, social attitudes, or even moods! The model described above simply implies

that the major factors determining a change of state are the states of related indi-

viduals. Of course, it is possible that external influences are present as well, as in

Robert’s Energy Use Model, but for a wide range of social contexts it is meaningful

to focus on the network.

Now, given any initial state at time t = 0, the transition rule determines the entire

future evolution of all nodes in the network (note that the underlying network itself

does not change in its structure). One may not be interested here in the detailed state

changes undergone by any one individual, but in the long-term patterns and trends

that emerge when the societal network is viewed as a whole. The key principle un-

derlying this exercise is that local properties of a societal network affect the global

behaviour of the network. In other words, the minute interactions of related individ-

uals collectively influence the macroscopic characteristics of the structure to which

they belong.

This model of dynamic societal networks due to Fiksel [23] can be viewed as a

generalization of the model by French [24] who postulated a group power structure

with a single type of directed relation, denoting influence of one individual over
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another. Harary [30] later formalized and extended these results, and suggested the

consideration of multiple relational types as an open area for research.

In a given state of societal network, if each node x has a different transition

rule ψx then very little can be predicted about the behaviour of the network. State

changes will propagate throughout the network in a chaotic fashion, with no clear

pattern emerging. However, Fiksel [23] showed that in a societal network in which

nodes may be partitioned into certain equivalence classes, equivalent nodes share

certain structural properties. His precise formulation of this seminal notion is given

below.

The circle of two nodes x and y in a societal network is given by the set V (x,y) =
N(x)∪N(x)−{x,y} and the core of x and y is the set

∧
(x,y) = N(x)∩N(x)−{x,y}.

A pair of nodes x and y in the network are called structurally equivalent, written

x ≈ y, if the following conditions are satisfied:

S1 V (x,y) =
∧

(x,y)

S2 for any v ∈ ∧
(x,y),R(x,v) = R(y,v)

S3 if y ∈ N(x),R(x,y) = R(y,x).

This equivalence essentially means that x and y share a common set of relationships

with a particular group of other nodes in the network. Note that x and y need not be

related directly.

Theorem 16.3 (Fiksel [23]) The equivalence relation induces ≈ a partition of N
into disjoint classes satisfying :

1. x and y belong to the same equivalence class if and only if x ≈ y.

2. for y ∈ N(x),R(x,y) is uniquely determined by the equivalence classes of x

and y.

The key import of this theorem is that the multitude of relations in the network

can be summarized by simply observing the relations that exist among equivalence

classes.

Since individuals exposed to the same set of social relationships are likely to

display similar behavior, Fiksel [23] postulates that equivalent nodes have identical

transition rules. One can possibly extend this to a more realistic model by postu-

lating that equivalent nodes tend to have asymptotically identical transition rules

to accommodate the long-term behaviour of the social system represented by the

model. The genesis of this postulation lies in the fact that in reality people exposed

to the same set of social relationships are more likely to exhibit varying behav-

iors initially since behavior, being the response of the individual to the situation,

depends basically on the personality of the individual which is essentially an evo-

lutionary characteristic; however, their continuous exposure over a long period may
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be expected to develop in them similar behaviors. This extended postulate leads to

an open area for research on the above mentioned model of Fiksel [23].

16.10 Conclusions and Scope

As inquisitive investigators, we are always anxious and excited to know what is

appearing or likely to appear, in the horizon we mean, at the frontiers of current

knowledge. In the context of social network analysis, we are thrilled to mention

the latest from our quarters: The longstanding problem on finding an appropriate

definition of structural complement of a signed network raised more than 40 years

ago by Harary [29] has now been solved [10, 11, 13] conclusively, most interestingly

using hints provided in the behavioural science literature! As a result, new insights

into structural stability analysis of the dynamic social processes are emerging [4,

12, 13, 41–43], providing details of which is beyond the scope of this paper.

There are altogether different areas of social sciences in which network structure

plays crucial role. For instance, in management science, functional organization of

tasks to accomplish the organizational goals optimally is of paramount importance

[30, 67]. In such a context, the notion of domination in a graph G (that is, an undi-

rected network or a hypergraph in which every edge has exactly two vertices) comes

handy for modeling. Formally, a set D of nodes in G is said to be dominating if every

node v in G is either in D or is adjacent to some node u in D (c.f.: [19, 35, 52]).

Hence, if we regard G as the interaction network of employees in an organiza-

tion, then D may be taken as a taskoriented formal “grouping” of employees in the

organization represented by G such that D contains the set of Task Group Lead-

ers (TGL) in the organization and every employee of the organization not in D has

to interact with exactly one of the Task Group Leaders, since obeying more than

one TGL might cause confusion or conflict. Existence of such special groupings,

which may be called perfect command groups, depends heavily on the architecture

of the functional network in the organization’s structure. Further, for purposes of op-

timizing the overall “interaction load” of TGLs, it is desirable to have connectivity

within any specific group S of employees through at least one TGL, say u, meaning

thereby the requirement that S∪{u} be connected in the organization’s functional

network G. One may also look for perfect command groups of TGLs along with op-

timal utilization of the command groups in the above sense. Furthermore, in order

to avoid confusion in the command system so set up in the organization, it might

be found necessary that no two TGLs should have direct links between them; this

condition amounts to requiring that the set of nodes in G that represent TGLs be

independent. Thus, the problem reduces to finding what is known in literature as an

independent psd-set in G that are perfect, or as we may call efficiently interactive

command groups. However, very special graphs only can possess independent psd-
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sets (e.g., see [6–9]); most of these architectures are nonhierarchical which could be

quite complex (e.g., see [51]).

(a)

(b)

Fig. 16.6 (a) {a,b} is an independent psd-set of G1, (b) {x,y,z} is an independent psd-set of G2.

For example, Fig. 16.6 depicts two such architectures that possess an independent

psd-set each (viz., {a,b} in the first and {x,y,z} in the second).

A graph possessing no independent psd-set is the hexagon C6. Thus, to configure

a functional network containing an independent psd-set in an organization is itself a

complex task since the architecture of the organizational network might not possibly

admit any!

Hence, if one takes a comprehensive view of social network analysis literature,

it would appear largely confined to socio-psychological phenomena as observed or

valid in short epochs of time during which the network of attributes and relations

involved in the description of particular phenomena remains more or less unaltered;

longitudinal studies which deal with evolutional aspects of processes such as fluctu-

ations in interpersonal interactions and cooperation/coalition processes amongst the

inhabitants of a colony have been relatively less. The national scenario in India has
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only patches of efforts of either kind; specifically, theories of cognitive consistency,

sociopsychological balance and reciprocity seem to be dominant amongst discrete

mathematicians; yet, amongst social psychologists in the country these topics have

not been of any attention thereby creating wide gaps in our understanding of these

theories in the context of the country’s chequered populations and cultural milieu.

We consider these as very important topics for advanced research and rigorous train-

ing amongst behavioural/social science community in the country due to bright pos-

sibilities of application of the knowledge base in these topics, especially invoking an

appropriately suited cybernetic approach, to study a large variety of problems of so-

cial relevance such as conflict resolution, group dynamics, organizational behaviour

and social choice in the wake of new national development policies the Government

has been continually announcing and pressing for their fast implementation.

At length, we have made amply clear our basic point that even though under-

standing behavioural or social phenomena by means of any sort of modeling ap-

proach can never be perfect, such efforts invoking cybernetic methods can yield

better insight into their complexities which perhaps would not be revealed other-

wise. The role of modern logic in this enterprise can hardly be underestimated. Bet-

ter understanding certainly leads to better control and application of the so generated

knowledge more gainfully for the human society to pave ways for better living. We

believe, this is a positive aspect of the whole endeavour that must be pursued to be

cherished by our posterity in the near future.
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Chapter 17

History and Development of Indian Logic: An
Overview

K. Ramasubramanian

17.1 Introduction

It is the unflinching devotion to the search for truth, from time immemorial, that gave

rise to the different schools of philosophy in the Indian tradition as elsewhere in the

world. Though the views presented by the different schools largely differ from each

other, all the six major philosophical systems – popularly known as s.ad. -darśanas,

namely, Mı̄mām. sā, Vedānta, Sāṅkhya, Yoga, Nyāya and Vaíses. ika – believed in

“cessation of miseries” referred to in the literature as moks.a, apavarga, nísreyasa,

etc., to be the ultimate purus. ārtha,1 wherein all the human pursuits culminate. The

six schools mentioned above, are regarded as orthodox schools (āstika-darśanas)

as opposed to the heterodox schools (nāstika-darśanas), which mainly consists of

the Cārvākas (materialists), the Bauddhas and the Jainas. In passing it may be

mentioned here, that the classification of āstika and nāstika-darśanas is not based

on whether they believe in God or not, but on the fact whether they accept the

authority of the Vedas or otherwise.2

Of the six āstika-darśanas, mentioned above the term “Indian logic” primar-

ily refers to the system of philosophy as propounded in the Nyāya and Vaíses. ika
schools. Of course, this is not to completely exclude or ignore the contributions of

some of the famous buddhist logicians such as Nāgārjuna and Diṅnāga (c. 5th cen-

tury AD). Even to present a brief history of Indian logic and its development, the

span to be covered spreads over a few millenia starting from the time of Upanis.ads

K. Ramasubramanian
Cell for Indian Science and Technology in Sanskrit, Department of HSS, IIT Bombay, Mumbai
400 076, India, e-mail: kramas@iitb.ac.in

1 The word purus. ārtha means – that which is sought after by a human being.
2 In fact, among the six āstika-darśanas the schools of Mı̄māmsā and Sāṅkhya (a group of them
known as Nir̄ı́svara-sāṅkhyas) do not accept Īśvara as the creator of the world. However, they
still believe in the authority of the Vedas and hence are grouped under āstikas.
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– passing through different phases, that includes origin the evolution of Navya-
nyāya – till date. The literature to be considered into account is quite enormous.

This comprises some published and huge amount of unpublished works in the form

of vivr. tis (explanations) and krod. apatras
3 which are mostly found in the reposi-

tories of the traditional scholars. Particularly with the advent of commentaries and

super-commentaries on the Tattvacintāman. i of Gaṅgeśa, during 17th century, the

growth in the Navya-nyāya literature has been prodigious.

Hence, it would be a mammoth task to venture into providing a comprehensive

account of the growth and development of Indian logic in general. Our aim in the

present paper is very modest. After briefly tracing the history and mentioning the

purpose of this discipline, we move on to highlight the development of Indian logic

in different phases. Here we present a couple of tables that gives a list of some

important logicians and their major contributions. Then we proceed to discuss the

motivation behind the development of logic and its nature. Here we present a few

observations of the contemporary scholars and finally conclude the paper with a few

remarks.

17.2 Place of Logic in the Scheme of Inquiry and Its Purpose

Kaut.ilya in his Arthaśāstra (∼ 400 BC) broadly dividing the different spheres

of knowledge, recommends human endeavour towards the following branches of

learning and inquiry :

Name Subject matter dealt with includes

Ānv̄ıks. ik̄ı Analytical philosophy that includes logic, epistemology and so on.4

Traȳı Vedas, Vedāṅgas & other śāstras like Dharma, Mı̄māmsā, Vedānta
etc.

Vārtā News to be made available for public related to – Agriculture, Eco-
nomics, Trade and so on.

Dan. d. an̄ıti Study of Polity, Governance and State-craft

Table 17.1 Different branches of knowledge as given by Kaut.ilya.

Thus Arthaśāstra of Kaut.ilya is one of earliest works from which we come to

know that ānv̄ıks. ik̄ı was the name by which Nyāya-śāstra was popularly referred

3 The term krod. apatram is used to refer to a piece of literature that is very deep and highly
technical, which could be understood only by the experts who have specialized on that topic. In the

text Amarakośa the word krod. a is defined to be – naA;na;a;кÒ +:ea;qM Bua:ja;a;nta:=+m,a Á Literally the word
bhujāntaram. means – the portion inbetween the hands, which could be taken as chest. However,
in the present context we simply take it to be referring to the middle portion. Thus krod. apatram.
means – a scholarly note or paper written choosing some section from the “middle” of a text and
lead the discussion of the topic to much deeper levels.
4 To quote – .sa;a;*ñÍËÉ ùÁ+;aM ya;ea;ga;ea l+.ea;к+:a;ya;tMa ..cea;tya;a;nv�a;a;�a;[a;к
 +:a Á
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to in those days. Commenting upon the origin of the word ānv̄ıks. ik̄ı, Vātsyāyana

observes:

:pra;tya;[a;a;ga;ma;a;Bya;Ma IR +.�a;[a;ta;~ya A;nv�a;a;[a;Na;m,a . . .A;a;nv�a;a;�a;[a;к
 +:a Á 5
Logic is that (discipline) with which one investigates (by supplying proper reason) what is
already known through perception or verbal testimony.

The etymological derivation of the word ānv̄ıks. ik̄ı is as follows:

A;nua + IR +.[a;a + F+.V,a + .z� +.a;p,a = A;a;nv�a;a;�a;[a;к
 +:a Á
(ra;va;Na;a;d;nua IR +.[a;a, :pa;ya;Ra;l+.ea;.ca;na;a :pra;ya;ea:ja;nMa A;~ya;aH Á Á 6
The purpose of which is to generate contemplation after listening.

Perhaps, having this etymological derivation of the word ānv̄ıks. ik̄ı in mind,

Kaut.ilya in his Arthaśāstra while classifying and describing the scope of the dif-

ferent branches of learning observes:

....;Da;ma;Ra;Da;ma;ERa �a;yya;a;m,a Á A;Ta;Ra;na;Ta;ERa va;a;ta;Ra;ya;a;m,a Á ba;l+.a;ba;le ..cEa;ta;a;sa;Ma :he ;tua;�a;Ba:=+nv�a;a;[a;ma;a;Na;a
A;a;nv�a;a;�a;[a;к
 +:a l+.ea;к+:~ya;ea;pa;к+.=+ea;�a;ta Á ....v.ya;sa;nea, A;Byua;d;yea ..ca bua;�a:;dÄâ ;ma;va;~Ta;a;pa;ya;�a;ta Á
:pra::]a;a;va;a;к�+.a;
a;кÒ +:ya;a;vEa;Za;dùÅ;aM ..ca к+.=+ea;�a;ta Á 7

Ānv̄ıks. ik̄ı renders great help, by proper reasoning, in distinguishing between right and
wrong in the Vedic disciplines; between profits and non-profits in agro-economy between
correct and the incorrect decisions in the science of polity; determining comparative va-
lidity and invalidity of all these disciplines (under special circumstances). It renders great
help in also keeping one’s mind steady in woe and weal, and produces clarity/dexterity in
understanding, speech and action.

Capturing the essense of the above, he succinctly puts forth the purpose served

by ānv̄ıks. ik̄ı in relation to all spheres of human activity, in the form of a short verse:

:pra;d� ;a;paH .sa;vRa;
a;va;dùÅ;a;a;na;Ma o+.pa;a;yaH .sa;vRa;к+:mRa;Na;a;m,a Á
A;a;(ra;yaH .sa;vRa;Da;ma;Ra;Na;Ma Za:(õ;a;d;a;nv�a;a;�a;[a;к
 +:a ma;ta;a Á Á
It acts as a lamp to all disciplines of learning, serves as a tool to perform all actions and
provides perpetual support for all the activities carried out at all times. Hence (it is rightly)
described as ānv̄ıks. ik̄ı.

Besides being a philosophical system in its own right, the central idea behind pro-

viding a training in ānv̄ıks. ik̄ı is to enhance the analytical skills which a human be-

ing is inherently endowed with. In other words, it tries to equip the student with the

necessary capacity to methodically analyse the knowledge that he receives through

perception (pratyaks.a), inference (anumāna) or verbal testimony (́sabda). In fact,

5 Commentary on the Nyāya-sūtra of Gotama (I.1.1).
6 Śabdakalpadruma, vol I, Reprinted by Rashtriya Sanskrit Samsthan, 2002, p. 177.
7 The Kaut.l̄ıya Arthaśāstra, Adhikaran. a 1, Adhyāya 2 Ed. by R. P. Kangle, II Edition, Bombay
University, 1969. Reprinted Motilal Banarasidass, Delhi, 2000, p. 4
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it is precisely to highlight this aspect of Nyāyaśāstra, it is called pramān. aśāstra
in contrast with the padaśāstra (science of grammar, Vyākaran. a), and vākyaśāstra
(the exegetics, Mı̄māmsā). An oft-quoted maxim that aptly putsforth the idea, is as

follows:

к+:a;Na;a;dM :pa;a;a;Na;n�a;a;yMa ..ca .sa;vRa;Za;a;~:�a;ea;pa;к+:a:=+к+:m,a Á
[A training in] the discipline whose foundation were laid by Kan. āda (logic)8 and Pān. ini

(grammar) will be useful in all other disciplines.

17.3 Rise and Development of Logic in India

When we speak of rise and development of logic, we do not mean the logical think-

ing that human being is endowed with – which is as old as the human species itself –

but the earliest explicit mention or usage of the term logic in the literature and the lit-

erature exclusively devoted to the study and analysis of thinking process. From this

perspective, the growth and development of logic in India can be broadly classified

into three phases.

• Phase 1 : Ārs.a-Nyāya – (before 4th century BC)

• Phase 2 : Nyāya-Vaíses. ika – (4th century BC–12th century AD)

• Phase 3 : Navya-Nyāya – (13th century AD – till date)

17.3.1 Phase 1

A class of texts known as Upanis.ads form a part of the Vedas which are consid-

ered to be the oldest corpus of literature extant today. In one of the Upanis.ads we

find an explicit use of the term tarka to refer to the process of ratiocination which

sometimes leads to futile argumentation.

.nEa;Sa;a ta;кeR +:Na ma;�a;ta:=+a;pa;nea;ya;a Á 9
This knowledge (regarding the nature of the Self) is not attainable by ratiocination.

The above statement is made by Yama (the God of Death) to Naciketa, in the

context of explaining the nature of the Self (Ātmā). Here Yama wants to convey the

message that understanding the nature of Ātmā is beyond the frontiers of the mind

8 Kan. āda is the author of Vaíses. ika-sūtras. Reference to discipline of logic through the name of
Kan. āda is because he preceded Gotama, the author of Nyāya-sūtras. It is preceisely an amalga-
mation of these two, at a much later date, that came to be declared commonly as Nyāyaśāstra in
India.
9 Kat.hopanis.ad, I.2.9. In this mantra, the word matih. refers to the knowledge of the self.
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and intellect. In other words, the domain of intellect is confined to the frontiers of

the world of objects and cannot be extended to the world of “Truth”, which can

be comprehended only by following the foot-paths of the seers as laid down in the

scriptures. This statement should not be misunderstood to mean that reasoning is un-

dermined or ignored in the Vedic literature. In fact, in another Upanis.ad, the process

of reasoning (in a channeled way) is recommended for the proper understanding of

the nature of the Self.

A;a;tma;a va;a A+.=e dÒ +�;v.yaH (ra;ea;ta;v.ya;ea ma;nta;v.ya;ea ;�a;na;
a;d;Dya;a;�a;sa;ta;v.yaH Á 10

Indeed the Self is to be understood, heard, reasoned and contemplated upon.

From these prefigurations appearing in the Upanis.ads, either recommending

the exercise of reasoning or suggesting that mere ratiocination may not help, and

also considering fact that a lot of philosophical debates have been described in the

Upanis.ads – for instance, between Yājñavalkya and other sages in the court of

the King Janaka as portrayed in the Br. hadāran. yakopanis.ad – one is led to con-

clude that some kind of logical doctrines must have been present even during the

Upanis.adic age in some form or other (which is not extant today), if not in a crys-

talline form.

Further there are ample evidences to show that there have been discussions car-

ried at great length in order to resolve the meaning of a Vedic texts. These analysis

and interpretations of the Vedic passages – which at a later period gained the status

of a separate branch of study in the hands of Jaimini known as Mı̄mām. sā-śāstra –

laid solid foundations to the development of logic in the Indian context. Moreover,

around 4th century BC, Jain author Bhadrabāhu talks about 10 step argument11

which is listed in the form of a table below.

1. General thesis 6. Denial of counter-argument
2. Particular thesis 7. Quoting example
3. General reason 8. Doubting example
4. Particular reason 9. Allaying the doubt
5. Counter argument 10. Conclusion

Table 17.2 The ten-step given by Bhadrabāhu around 4th century.

17.3.2 Phase 2

Starting from Kan. āda (4th century BC) and soon followed by Gotama (3rd century

BC), the Nyāya-Vaíses. ika tradition in India seems to have produced an array of

illustrious scholars, commentators and exponents, if not in continuous succession at

10 Br. hadāran. yakopanis.ad, IV.5.
11 See for instance, Ingalls, Logic in India, Encyclopaedia Britannica, p. 225.
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least intermittently as evidenced by the works extant today. The works of Kan. āda
and Gotama form the basic foundation on which the whole edifice of what is known

as Nyāyaśāstra (Indian logic) stands today.

Among the literature on Vaíses. ika philosophy extant today, the earliest one is by

Kan. āda known as Vaíses. ikasūtras. As the name of the work itself suggests, it has

been composed in sūtra style, a style that was commonly employed in those days, as

evidenced from the works of Pan. ini and Bādarāyana.12 The Vaíses. ikasūtras are

368 in number and they are divided in 10 chapters. Briefly indicating the purpose of

the work at the beginning of Chapter 1, the author quickly moves on to categorize

padārthas. Any entity that becomes an object of knowledge is a padārtha. Kan. āda
classifies substances (dravyān. i) into 9 types; qualities (gun. āh. ) into 17 types and

actions (karmān. i) into 5 types.

After this classification (sūtras 4–6), in the very next sūtra he mentions – among

other things – that “generality” and ‘particularity’ (sāmānya and víses.a) is some-

thing which is commonly present in the above three padārthas, namely substances,

qualities and actions. The rest of the text primarily deals with the definitions and

details of what has been covered in sūtras 1–7. The last three chapters touch upon

the means of knowledge such as perception and inference. There is also discussion

about causality. The name Vaíses. ika to the system stems from the belief held by the

philosophers of the school, that every substance has its unique essence or particu-

larity (víses.a) – right from the atomic to the cosmic level – because of which it is

distinguishable from the other.

Nyāya-sūtras of Gotama on the other hand are ≈535 in number – barring minor

variations among different editions – and are distributed in 10 chapters. While most

of the texts belonging to the sūtra literature commence with the word atha (then),

the Nyāyasūtras form an exception. It directly commences with the listing of 16

objects, whose “true” knowledge is supposed to fetch “supreme bliss” (nih. śreyasa).

One of the important discussions that has been carried out by Gotama that merits

mentioning here is – the refutation of the contention that verbal testimony, śabda,

cannot be considered as an independent pramān. a. Gotama, also enlists certain other

pramān. as such as aitihya, arthāpatti, etc., and adduces reason as to why they

cannot be considered as independent means of knowledge (svatantra pramān. as).

Essentially the entire text is an elaboration on the first couple of sūtras that defines

the means for summum bonum, which is what every living being seeks after.

The most prominent logicians, belonging to phase 2 besides Kan. āda and Go-

tama are, Vātsyāyana, Uddyotakara, Śivāditya Mísra, Vācaspati Mísra and

Udayanācārya. The greatest contribution of Vātsyāyana lies in the form of his

commentary to the Nyāyasūtras, which is generally known after his name as

Vātsyāyanabhās.ya. It is the earliest commentary on Nyāyasūtra that is extant to-

day. Here Vātsyāyana presents a detailed exposition of the sūtras with plenty of

references here and there from the Mı̄mām. sā-śāstra. The language and the style of

12 Pan. ini is the renowned author of As.t.ādhyāȳı and Bādarāyana of the Brahmasūtras.
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presentation is somewhat comparable to the Mahābhās.ya of Patañjali. To give a

flavor here we present excerpts from the commentary of the first sūtra followed by

translation.

A;Ta :pra;ya;ea:ja;na;m,a – yea;na :pra;yua;�H :pra;va;tRa;tea ta;t,a :pra;ya;ea:ja;na;m,a; ya;ma;TRa;ma;B�a;a;psa;n,a ;�a:ja;h;a;sa;n,a va;a
к+:ma;Ra:=+Ba;tea; .tea;na;a;nea;na .sa;veRa :pra;a;a;Na;naH , .sa;va;Ra;a;Na к+:ma;Ra;a;Na, .sa;va;Ra;(ãÉa ;
a;va;dùÅ;a;aH v.ya;a;�a;aH Á ta;d;a;(ra;yaH
nya;a;yaH :pra;va;tRa;tea Á кH :pua;na:=+yMa nya;a;yaH? – :pra;ma;a;NEaH A;TRa;pa:=� +a;[a;NMa nya;a;yaH Á
Now [we define] Prayojanam – Prayojana is that, induced by which a man sets into action.
Or it is that, desiring to accomplish or avoid which a man involves into activity. It is by this
(prayojana), all the living beings, all actions, and all the body of knowledge is pervaded.
[Naturally] the Nyāya (́sāstra) too proceeds having it base on that (prayojana). What is
this Nyāya? Examination of things by employing pramān. a (right means of knowledge) is
Nyāya.

Having defined the term Nyāya succinctly in the context of defining prayo-
janam – the fourth of the 16 padarthas listed by Gotama in the first Nyāyasūtra –

Vātsyāyana proceeds to present the etymological derivation of the term ānv̄ıks. ik̄ı.
As mentioned earlier, ānv̄ıks. ik̄ı is this term which has been in vogue during the

early periods to refer to the discipline of Nyāyaśāstra, as evidenced by the us-

age of Kaut.ilya in his Arthaśāstra. The derivation of the term presented here by

Vātsyāyana is quite instructive. Incidentally he also defines what Nyāyābhāsa, a

pseudo-Nyāya or an impostor of Nyāya, is.

:pra;tya;[a;a;ga;ma;a;a;(ra;tMa A;nua;ma;a;nMa, .sa;a A;nv�a;a;[a;a, :pra;tya;[a;a;ga;ma;a;Bya;Ma IR +.�a;[a;ta;~ya A;nv�a;a;[a;NMa
A;nv�a;a;[a;a Á ta;ya;a :pra;va;tRa;tea I+.tya;a;nv�a;a;�a;[a;к
 +:a, nya;a;ya;
a;va;dùÅ;a;a, nya;a;ya;Za;a;~:�a;m,a Á ya;tpua;na:=+nua;ma;a;nMa
:pra;tya;[a;a;ga;ma;
a;va:�+.;dÄâ M nya;a;ya;a;Ba;a;saH .sa I+.�a;ta Á Á
Inference is based on perception or verbal testimony; it is (also called) anv̄ıks. ā. [This is
so because] Assessing whatever that has been gathered/assessed by perception and/or ver-
bal testimony is anv̄ıks. ā. Since this discipline proceeds with this, it is (called) Ānv̄ıks. ik̄ı,
also known as Nyāyavidyā, Nyāyaśāstram. That inference which is opposed to the (right
knowledge obtained through) perception or verbal testimony is an impostor of Nyāya.

We know from our own experiences that any process of investigation carried out

to arrive at the “truth”, more often than not, involves making a lot inferences. The in-

ferences made are necessarily based on the information that has been gathered either

through perception (pratyaks.a) or verbal testimony (āgama). Hence, Vātsyāyana
at the very onset of the text categorically states that – any inference that leads to

a conclusion which is in contradiction to the perception or verbal testimony must

be considered as Nyāyābhāsa. This statement incidentally throws light on one of

the fundamental principles – the “truth value” of the conclusion arrived through the

process of inference, is not to be determined merely by looking at the formal struc-

ture of the propositions, but also by considering the “truth value” of the propositions

themselves – on which the entire edifice of the theory of inference (anumāna) rests

upon.

The commentary of Vātsyāyana underwent adverse criticism on certain topics

by the famous buddhist logician Diṅnāga who lived around the beginning of 5th
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century AD. One of the grounds for the criticism being the acceptance of the Vedic

authority by the Nyāya school, which was not acceptable to the Buddhists. The Bud-

dhist school around that period was very strong and were producing hyper-critical

polemical works. It is in this atmosphere that Uddyotakara’s Nyāya-vārtika – the

earliest extant commentary on Nyāya-bhās.ya of Vātsyāyana – came into being.

Here Uddyotakara refutes the objections raised by Diṅnāga and thereby establishes

the Nyāya stand point on firm grounds. This important contribution of Uddyotakara

has been aptly putforth by Mahāmahopādhyaya Kuppuswāmi Śāstr̄ı, as follows:

Uddyotakara’s great service to Nyāya consists in his successful endeavour to lift it up from
the slough into which it was thrown by Diṅnāga’s confutation on Vātsyāyana’s Bhās.ya.13

Śivāditya Mísra, more commonly known as Śivāditya is well known for his

Saptapadārth̄ı. The title of the text stems from the fact that the author classified the

padārthas (the objects of knowledge)14 into seven categories. The number “seven”

because Śivāditya explicitly included abhāva into the category of padārthas, which

were known to be six right from the time of Kan. āda.15 It is perhaps for the first

time that such a classification is made in the history of Indian logic, as one does not

find any other text available hitherto – that is extant today – taking this approach.

Śivāditya Mísra concludes the work with the following interesting verse:

.sa;�a;dõ� ;a;pa;a ;Da:=+a ya;a;va;t,a ya;a;va;t,a .sa;�a ;Da:=+a;Da:=+aH Á
ta;a;va;t,a .sa;�a;pa;d;a;T�a;Ra;yMa A;~tua va;~tua;pra;к+:a;a;Za;n�a;a Á Á
May this (treatise) Saptapadārth̄ı, be the torch-bearer on the nature of things, as long as
the earth has seven islands (continents)16 and possesses seven mountains.17

The hall mark of Saptapadārth̄ı lies in presenting the entire Vaíses. ika system

in a short and simple manner. Another significant feature and perhaps the most im-

portant one about this text that merits mentioning here is the fact that almost all the

introductory texts – such as Tarkasaṅgraha of Annambhat.t.a or Bhās. āpariccheda
of Vísvanātha – composed more than five centuries later have adopted more or less

the same framework as laid down by Śivāditya.

Among philosophers, Vācaspati Mísra is well known for his highly erudite gloss

on the Brahmasūtrabhās.ya of Ādi Śaṅkara called Bhāmat̄ı.18 Most of the trea-

tises of Vācaspati, though considered authoritative, are primarily in the form of

commentaries or expository glosses. One of the outstanding features of Vācaspati
is that, his erudite compositions spans over almost all systems of Indian philoso-

phy. It is for this reason, many scholarly works refer to him with great reverence

13 S. Kuppuswami Sastri, A Primer of Indian Logic, KSRI, Chennai, 1998, p. 31.
14 Technically a padārtha is defined to be – that which is knowable or nameable.
15 The six leaving abhāva are – dravya, gun. a, karma, sāmānya, víses.a and samavāya.
16 The seven continents are – Jambū, Plaks.a, Śāka, Śālmali, Kuśa, Krauñca and Pus.kara.
17 They are – Himavat, Vindhya, Malaya, Mahendra, Sahya, R. ks.a and Pariyātra.
18 As per the legend, the name Bhāmat̄ı was given by Vācaspati Mísra to his work, as a token of
recognition of the selfless, dedicated services rendered by his wife (called Bhāmat̄ı) while he got
himself completely absorbed in the preparation of the gloss.
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as sarvatantrasvatantra – “one who has achieved par excellence in all branches of

learning”. The two important works by Vācaspati in the field of Nyāya is listed in

Table 17.3. For his monumental contributions in the form of Nyāya-tātparyat̄ıkā,

with due respect, he has been referred to as Tātparyācārya in the Nyāya literature.

Name Period Important contributions
(Generally accepted)

Kan. āda 4th century BC Vaíses. ika-sūtras∗

Gotama 3rd century BC Nyāya-sūtras∗

Vātsyāyana 3rd century AD Nyāyasūtra-bhās.ya - Earliest extant commen-
tary on the Nyāyasūtras

Praśastapāda 19 (?) Vaíses. ikasūtra-bhās.ya

Vasubandhu 4th century AD
1. Abhidharamakośa
2. Mentoring Diṅnāga

Diṅnāga c. 400 AD

1. Hetucakra (Wheel of Reason)
2. Pramān. a-samuccaya
3. Nyāya-dvāra & Nyāya-praveśa

Uddyotakara 6th century AD Nyāya-vārtika – Earliest extant
(later part) commentary on Nyāya-bhās.ya

Dharmak̄ırti20 7th century AD Nyāyabindu – Explains the validity of an in-
ference by resorting to a novel way of classify-
ing hetus21

* - Foundational text

Table 17.3a Prominent logicians of Phase 2 and their major contributions.

Among the logicians till 10th century AD, Udayanācārya is considered to be the

greatest next only to Gotama. Besides erudite commentaries, Udayana has written

19 Randle – one of the western scholars of the early part of the 20th century who has made a
serious study of Indian logic in the early schools – adduces arguments to place Praśastapāda

after Diṅnāga. Certain other scholars like Stcherbatsky have found reasons to believe that
Praśastapāda could be a contemporary of Vasubandhu, the guru of Diṅnāga. Weighing the ev-
idences on both the sides, certian other scholars have opined that the balance swings in favour
of placing Praśastapāda prior to Diṅnāga. See for instance : A. B. Dhruva, Nyāyapraveśa of
Diṅnāga, Bibliotheca Indo Buddhica No. 41, II Edition, Sri Satguru Publications, Delhi, 1987.
20 A famous Buddhist logician who has been referred to by I-tsing – a Chinese Buddhist pilgrim
who left for India in 671 AD and returned to China in 695 AD. During I-tsing’s stay in India he
seems to have resided at the great Nalanda monastery for about 10 years (676–685 AD).
21 Dharmak̄ırti says – There are three and only three types of hetus. In his own words – trirūpān. i
ca tr̄ın. yeva liṅgāni. They are : (i) Anupalabdhi-hetu, (ii) Svabhāva-hetu and (iii) Kārya-hetu.
For details refer to – Rajendra Prasad, Dharmakirti’s Theory of Inference, OUP, 2002.
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three important works (see Table 17.3). Of the three, Nyāya-kusumāñjali is a bril-

liant piece of work primarily aimed at the refutation of the anti-theistic theories. In

this work which is considered as the magnum opus of Udayana, he not only provides

a large number of inferential proofs to establish the reality of god, but also builds

the necessary Nyāya doctrines that would enable the reader to understand/appreciate

the proofs presented in the text later.

Name Period Important contributions
(Generally accepted)

Vācaspati Mísra 9th century AD
1. Nyāya-sūc̄ı-nibandhana

2. Nyāya-vārtika-tātparya-t̄ıkā 22

Jayantabhat.t.a 9th century AD Nyāyamañjar̄ı – Expository gloss on select
sūtras of Gotama

Śivāditya c. 950 AD Saptapadārth̄ı 23

Bhāsarvajña 10th century AD Nyāya-sāra – Book marked with

certain unique features 24

Udayanācārya 10th century AD

1. Prabodhasiddhi
2. Ātmatattvaviveka
3. Nyāyakusumāñjali
4. Kiran. āvali (984 AD)

5. Tātparyaparísuddhi 25

Śr̄ıdhara Mísra 10th century AD Nyāya-kandal̄ı – (A masterpiece in
Vaíses. ika-darśana)

Table 17.3b Prominent logicians of Phase 2 and their major contributions.

In the other voluminous treatise Ātmatattvaviveka, Udayana critically exam-

ines the Buddhist doctrine of momentariness (ks.an. ikavāda), the unreality of the

objective world (asadvāda) and so on and refutes their arguments strictly on log-

22 An erudite work intended to primarily explain certain difficult sections of the Nyāyavārtika of
Uddyotakara and also clarify certian obscure portions of the Vātsyāyana-bhās.ya.
23 This work in all consists of 199 aphorisms. The commentaries that are extant today are the
ones that were written about 5 centuries later. The earliest one by Jinavardhana Sūri around 1415
AD. This was followed by two more commentaries namely Padārthacandrikā (c. 1459 AD) and
Mitabhās. in̄ı (c. 1523 AD).
24 The uniquessness of this work stems primarily from two distinct features : (i) the author does
not accept Upamāna as a separate pramān. a and (ii) while presenting the theory of hetvābhāsa,
besides the accepted five types, he includes a sixth one called anadhyavasita.
25 Of the five texts enlisted, the first three are independent works and the last two are commentaries
on Praśastapāda-bhās.ya and Tātparyat.ı̄kā of Vācaspati Mísra respectively.
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ical grounds thereby defending the Nyāya-Vaíses. ika position on the Nature of

Self (Ātmā). Either from the view point of language or the display of unrelent-

ing polemics, Ātmatattvaviveka seems to stand matchless till date. It is said that

the process of criticism and counter-criticism of each other’s views in the Nyāya-
Vaíses. ika and the Buddhist traditions – which continued unabated for centuries –

almost came to a halt when Ātmatattvaviveka made its appearance on the stage.

Another significant contribution of Udayana lies in his efforts to syncretize the

Nyāya and Vaíses. ika schools which had already made its beginnings in the works

like Saptapadārth̄ı.

Name Period Important contributions
(Generally accepted)

Varadarāja c. 1100 AD Tārkikaraks.a

Vallabhācārya 12th century AD Nyāyal̄ılāvat̄ı – on which a number of com-
mentaries were written during 13–15th century
26

Table 17.3c Prominent logicians of Phase 2 and their major contributions.

17.3.3 Phase 3

This phase of Indian logic, which gave birth to a huge amount of literature – that

is distinct both in the nature and structure that was available hitherto – commences

with the monumental work of Gaṅgeśa, known as Tattvacintāman. i. This is con-

sidered to be one of the most creative works of the highest order on logic and epis-

temology. Though the exact date of composition of this classic is not known, it is

believed to have been authored around the beginning of 13th century.

One of the various reasons for which Gaṅgeśa’s Tattvacintāman. i, more popu-

larly known as Man. i, is considered to be an epoch-making treatise, is the introduc-

tion of several new terminologies and concepts such as anuyogin (possessing cor-

relate), pratiyogin (counter-correlate), avacchedaka (delimitor), avacchedya, (de-

limited) and so on in a very systematic manner. The organization of the text is also

quite different from the ones produced hitherto. Besides other special features, Man. i
presents a beautiful synthesis of both the Nyāya and Vaíses. ika schools. Though the

26 A dissertation – aiming at an understanding of the discourse in Nyāya literature of the post-
Udayana and pre-Gaṅgeśa period – carrying the title “The Happening of Nyāya tradition: Val-

labha on Anumāna in Nyāyal̄ılāvat̄ı”, has been submitted for the award of the degree of Doctor
of Philosophy in January 2007 in the Department of Linguistics and Philosophy, Uppsala Univer-
sity, Sweden.
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germination of this synthesis seems to have begun a couple of centuries earlier dur-

ing the period of Udayana himself, the culmination of it had to wait till Gaṅgeśa

came up with his brilliant contribution in the form of Tattvacintāman. i. In fact, this

seminal work marks the beginning of a new era in the history of Indian logic known

as Navya-nyāya.

Gaṅgeśa’s singular contribution lies in shifting the emphasis from the categoris-

tic approach to epistemological approach. In other words, by laying more emphasis

on the means of knowledge (pramān. a) than categorizing the padārthas, Gaṅgeśa

turned the course of the śāstra from primarily being a padārtha-śāstra to prāmān. a-
śāstra.27 The work of Gaṅgeśa had such a profound and ever-lasting impact on the

logical tradition of India that almost all the later literature produced in logic fol-

lowed the same pattern of organizing the chapters of their works as noted in the

Tattvacintāman. i. The sphere of influence of this work did not remain confined to

the walls of literature in logic. Scholarly literature in all disciplines which includes

Vedānta, Mı̄mām. sā, Vyākaran. a and even Sāhitya started using the new concepts

and terminologies introduced by Gaṅgeśa in order to bring in high degree of pre-

cision, accuracy and brevity in their own writings. In fact, it would be hard to find

even a single polemical text, composed at a later period, which does not employ

these concepts introduced by Gaṅgeśa.

Gaṅgeśa was followed by a galaxy of logicians, which includes his own son

Vardhamānopādhyāya, who wrote several illuminatory expositions generally

known by the name prakāśa (see Table 17.4). Commentaries and illuminatory ex-

positions kept coming in quick succession both on Gaṅgeśa’s Tattvacintāman. i and

the glosses that were written on them. While tracing the development of logic in

India, one would invariably notice a surge in the production of classics during the

16th and 17th century, which in turn laid the foundation for the generation of enor-

mous amount of literature, called Navya-nyāya. It is during this period the most

outstanding work Dı̄dhiti was composed by Raghunātha Śiroman. i. In fact, the

origins of the upsurge can be traced back to one of the greatest gurus, Vāsudeva
Sārvabhauma whose singular contribution lies in training four brilliant disciples

namely Caitanya, Raghunātha Śiroman. i, Raghunandana and Kr.s.n. ānanda. Of

the four disciples Raghunātha Śiroman. i was endowed with exceptional capacities

both as a teacher as well as a writer. This made his contemporaries refer to him as

Tārkika-Śiroman. i – “The crest-jewel among the logicians.”

Raghunātha was followed by a series of illustrious scholars such as

Mathurānātha, Jagad̄ı́sa, Gadādhara, Śaṅkara Mísra, Vísvanātha Pa ncānana,
Annambhat.t.a and so on. Among them Mathurānātha – most famous for his

splendid expositions on Tattvacintāman. i and Dı̄dhiti – was a direct pupil of

Raghunātha. The commentary on Dı̄dhiti by Jagad̄ı́sa and Gadādhara are popu-

27 The very fact that Gaṅgeśa has divided his Tattvacintāman. i into four chapters named after
the four means of knowledge (pramān. as) – namely pratyaks.a, anumāna, upamāna and śabda –
stands testimony to this. However, it is not be misunderstood here, that Gaṅgeśa’s work ceased to
be a padārtha-śāstra. It still continued to be one, with the tools of prāman. a being much sharpened
by introduction of a technical and more formal language.
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Name Period Important contributions
(Generally accepted)

Gaṅgeśopādhyāya 13th century AD Tattvacintāman. i – An epoch-making work
that influenced almost all the later works on
Nyāya

Keśava Mísra c. 1275 AD Tarkabhās. ā

Commentaries called prakāśa on –

Vardhamāna c. 1300 AD

1. Kiran. āvali of Udayana

2. Man. i of Gaṅgeśa
3. Nyāyal̄ılāvat̄ı of Vallabhācārya

Jayasim. hasūri c. 1350 AD Tātparyad̄ıpikā on Nyāyasāra

Bhāvanātha Mísra c. 1410 AD Father and teacher of Śaṅkara Mísra

Vāsudevasūri 15th century AD Pañcapādikā on Nyāyasāra

Śaṅkara Mísra c. 1440 AD

1. Kalpalatā on Ātmatattvaviveka

2. Āmoda on Nyāyakusumāñjali
3. Kan. t.hābharan. a on Nyāyal̄ılāvat̄ı

4. Kan. ādarahasya on Padārtha-
dharmasaṅgraha of Praśastapāda

5. Upaskāra on Vaíses. ikasūtra

Yajñapati c. 1450 AD Prabhā on Tattvacintāman. i and
Upādhyāya teacher of Paks.adhara Mísra

Pragalbha Mísra c. 1455 AD Pragalbh̄ı on Man. i and a few other works –
but not available in full

Table 17.4a Prominent logicians of Phase 3 and their major contributions.

larly known after them as Jāgad̄ı́s̄ı and Gādādhar̄ı. Till date these are considered

to be most important texts that need to be mastered in order to establish oneself as a

scholar in Navya-nyāya.

The other three scholars mentioned above, namely Śaṅkara Mísra, Vísvanātha
Pañc-ānana and Annambhat.t.a lived in the later half of the 17th century. While

Śaṅkara is famous for his commentary on Jāgad̄ı́s̄ı, the latter two are well known

for their introductory hand-books Bhās. āpariccheda and Tarkasaṅgraha. These

primers written by Vísvanātha and Annambhat.t.a also have glosses written on

them by the authors themselves that go by the name Muktāvali and Dı̄pikā respec-

tively. The reception of the work Tarkasaṅgraha of Annam. bhat.t.a has been so

much so, that today every student of Indian logic (traditional or otherwise) gets in-

troduced into the subject with this work its gloss Dı̄pikā. Though the popularity of
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Name Period Important contributions
(Generally accepted)

Commentaries titled viveka on –

Paks.adhara Mísra c. 1460 AD

1. Kiran. āval̄ıprakāśa of Vardhamāna

2. Tattvacintāman. i of Gaṅgeśa
3. Nyāyal̄ılāvat̄ı of Vallabhācārya

Vāsudeva c. 1480 AD Teacher of stalwarts like Raghunātha

Sārvabhauma Śiroman. i and Caitanya28

Raghunātha c. 1500 AD Dı̄dhiti on Man. i
29

Śiroman. i Padārthatattva-nirūpan. a

Keśava Mísra c. 1525 AD Nyāyacandrikā on Tarkabhās. ā
Tarkācārya Prakāśa on Nyāya-sūtras

Mathurānātha c. 1570 AD Commentaries entitled Rahasya on
Kiran. āvali, Man. i and Dı̄dhiti

Jagad̄ı́sa Jāgad̄ı́s̄ı and Setu 30

Tarkālaṅkāra c. 1625 AD Śabdaśaktiprakāśikā, Tarkāmr. tam,
Nyāyadarśanam – own works

Vísvanātha c. 1634 AD Bhās. āpariccheda with an auto-
Pañcānana commentary, Siddhānta-muktāvali

Table 17.4b Prominent logicians of Phase 3 and their major contributions.

Annambhat.t.a reached great heights through this introductory hand-book, his pro-

found scholarship in other disciplines of śāstra such as Vedānta, Mimām. sā and

Vyākaran. a should not be underestimated (see Table 17.4). To summarize, the 16th

and 17th century seems to have been a golden age in the history of Indian logic,

which wittnessed a galaxy of extraordinarily brilliant scholars producing a series of

splendid works on logic and epistemology.

In the centuries that followed, commentaries and super-commentaries got

emerged in prodigious measure, and it would almost be next to impossible to pro-

vide even a partial list of them in an article of this nature. However, in Table 17.4,

we have made an attempt to provide aglimpse of some of the most important works,

28 Chaitanya, a great saint of the early 16th century Bengal, played a major role in cultivating
Bhakti-yoga among the masses. His line of followers, known as Gaud. ı̄ya Vais.navas, consider
him as an avatar of Lord Kr.s.n. a himself.
29 This is such an erudite commentary on Gaṅgeśa’s Tattvacintāman. i that it eclipsed almost all
the earlier existing commentaries and also greatly influenced the later ones.
30 These are commentaries on Didhiti and Praśastapāda-bhās.ya respectively.
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Name Period Important contributions
(Generally accepted)

Gadhādhara c. 1650 AD Gādādhar̄ı on Dı̄dhiti

Bhat.t.ācārya Vyutpattivāda, Śaktivāda, etc.
Tarkasaṅgraha with Dı̄pikā and a comm.
Siddhāñjana on Man. yāloka

Annambhat.t.a c. 17th century AD Commentaries on Nyāya-sudhā,
As.t.ādhyāȳı, Brahmasūtra, etc.

...
...

... 31

Kāl̄ı Śaṅkara c. 1810 AD Krod. apatra on Gādādhar̄ı
Bhat.t.ācārya Krod. apatra on Jāgad̄ı́s̄ı

& several other works
...

...
...

Dharmadatta Jhā 32 c. 1910 AD

1. Vivr. ti on Gādādhar̄ı
2. Vivr. ti on Jāgad̄ı́s̄ı
3. Tippan. i on Nyāyakumāñjali
4. Gūd. hārthatattvāloka

Vāmācaran. a c. 1940 AD Several Krod. apatras on Jāgad̄ı́s̄ı
Bhat.t.ācārya of Jagad̄ı́sa Bhat.t.ācārya

Varadācārya K S c. 1959 AD Nyāyasaurabha on Nyāyamañjar̄ı

Rāmānuja c. 1980 AD 1. Bālapriyā

Tātācārya 2. Series titled Bālabodhin̄ı 33

Table 17.4c Prominent logicians of Phase 3 and their major contributions.

that got evolved during phase 3. It must be admitted that this table is neither com-

plete,34 nor comprehensive i.e., trying to include all the authors. For a more detailed

account, the readers may refer to the remarkable work of Potter35 and his team

venturing to provide list of authors and their works (not merely confining to logic)

chronologically beginning from the 15th century to the present date.

31 The “vertical dots” here and below is used to indicate the enormous amount the literature –
which may take dozens of pages to list – produced during the 18th and 19th centuries.
32 Dharmadatta Jhā was more popularly known as Bacchā Jhā.
33 Of the two, the former is a commentary on Tarkasaṅgrahad̄ıpikā and Nı̄lakan. t.h̄ı (a commen-
tary on Dı̄pikā), while the latter is on different chapters of Gādādhar̄ı such as Pañcalaks.an. ı̄,
Caturdaśalaks.an. ı̄ etc. Besides this, Tātācārya has authored a few works in Vyakaran. a also.
34 Giving a list of all the contributions of a particular author.
35 http://faculty.washington.edu/kpotter/ckeyt/txt4.htm
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17.4 Motivation Behind the Development of Logic in India

Towards the end of R. gveda one finds the following passage –

.sa;ñÍç ÅÅ*:+..cC+.DvMa .sMa;va;d;DvMa .sMa va;ea ma;na;Ma;�a;sa .ja;a;na;ta;a;m,a Á 36

Go and meet each other, speak well, thoroughly understand thy minds.

It is quite evident from the above passage that the Vedic seers, knew that the most

crucial factor in having a congenial relationship has to do with having a clear under-

standing between one another. The latter generally has it roots in having meaningful

discussions with each other, with a clearly defined purpose. For a discussion to be

meaningful and purposeful it needs to fulfill two aspects – (i) there must be clarity in

expression and (ii) it must be free from prejudices. It is precisely these two aspects

that are being conveyed by the Veda when it says “speak well” (samvadadhvam. ).

The desired outcome of any discussion – though more often than not is not

achieved – is to arrive at a conclusion that is “valid”. Validity in the Indian logic is

not merely decided based upon the structure of the propositions, but is also depen-

dent upon the material content of it. This may be contrasted with the development

of logic in the west, which primarily focussed on the structure of propositions – as

distinguished from their content. For instance, the argument –

Whosoever gets admission in IIT is of age > 25.
Rama has got admission into IIT.
Hence, Rama’s age is > 25,

would be accepted as a valid argument in the western formal logic, as there is no

logical fallacy in it, whereas it would not be accepted so in the Indian logic unless

the invariable concomittance (vyāpti) between admission into IIT and age > 25 has

been well established. In other words, the truth value of the content of the argument

is also considered into account in order to decide upon the validity of argument.

The motivation behind the development of logic in India as a separate discipline,

stems from two distinct traditions –

• Vāda tradition – Debate/discussion leading to valid knowledge

• Pramān. a tradition – Inquiry into the accredited source of knowledge

In Indian tradition, a debate (vāda) would be considered meaningful only when

it is based on things known through a certain pramān. a – and the theoretical founda-

tions of both got developed hand in hand like the theory and experiment (in any sci-

entific discipline). Gotama in his Nyāya-sūtra37 classifies debates into three types,

which are summarized below:

36 R. gveda, X.191.2.
37 Gotama, Nyāya-sūtra, I.2.1–3.
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1. va;a;dH – ta:�va;bua;Bua;tsua;к+:Ta;a

• schema for proper argumentation among disputants who are engaged in an

honest, non-eristic, and balanced debate.

• aim of each participant is not victory, but a fair assessment of the best argu-

ments for and against the thesis.

2. .ja;�paH – ;
a;va;�a:ja;g�a;a;Sua;к+:Ta;a

• schema for conducting a sophistical debate employing tricks, underhanded

debating tactics.

• aim is to win at all costs and by any means necessary.

3. ;
a;va;ta;Nq+.a – .~va;pa;[a;~Ta;a;pa;na;h� ;a;na;a, :pa:=+pa;[a;ma;a:�a;�a;na:=+a;к+.=+Na;pa:=+a

• schema adopted by sceptics mererly to refute. (refutation-only debate)

• aim is to argue against a thesis without commitment to any counter-thesis.

It goes without saying that it is only Vāda, (Type (1) above) that is most de-

sirable form of debate, wherein, arguments putforth are equally weighed and fairly

assessed without prejudice or bias. As a result, the debate becomes purposeful and

based on sound logical reasoning one arrives at valid knowledge. In fact, according

to Gotama, “obtaining valid knowledge was the only means to the supreme good

in which all moral values are included or from which they are derived” (summum

bonum) – which he calls as nih. śreyasa.

:pra;ma;a;Na;pra;mea;ya;sMa;Za;ya;pra;ya;ea:ja;na-dx ;�;a;nta;�a;sa:;dÄâ ;a;nta;a;va;ya;va;ta;кR +:�a;na;NRa;ya;va;a;d:ja;�pa;
a;va;ta;Nq+.a-
:he ;tva;a;Ba;a;sa;C+.l+ja;a;�a;ta;�a;na;g{a;h;~Ta;a;na;a;na;Ma ta:�va::]a;a;na;a;a;�aH(rea;ya;sa;a;�a;Da;ga;maH Á 38

It is only by having a true knowledge of – the means of knowledge, the object of knowledge,
[source of] doubt, purpose, example, thesis to be established, members [of anumānaprayoga],
confutation (reductio ad absurdum), ascertainment, discussion, wrangling, cavil, fallacy,
quibble, analogue and the point of defeat that a person can have supreme felicity.

It is this belief that the true knowledge is the source of supreme felicity, which the

Indian logicians held, made them clearly identify the different means of knowledge

(pramān. a) and also build the necessary theory to demonstrate that one pramān. a
does not reduce into the other. This theory is based upon identifying the aggregate

causal conditions that give rise to a certain pramān. a. The Indian logicians have

also developed the theory of inference at great length, which includes methods of

identifying false reason adduced in an argument.39

38 Gotama, Nyāya-sūtra I.1.1.
39 Further details on this can be found in the article – “The concept of Hetvābhāsa”, published in
the present volume.
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17.5 Nature of Indian Logic

On account of the nature of genesis of Indian logic, explained in the previous sec-

tion, it imbibed an epistemological character, that it has retained throughout the his-

tory. Though the focus may vary from text to text, the fact that both logic and epis-

temology forms an integral part of single discipline of study known as Nyāyaśāstra
remains invariant. Actually,

Indian Logic = Vaíses. ika + Nyāya

Here it may be mentioned that the classification – that the Vaíses. ika system repre-

sents the analytic or inductive form of reasoning and that the Nyāya represents the

synthetic or deductive form of reasoning is all based on superficial analysis. In fact,

the Vaíses. ika philosophy is based on the maxim

.sa;a;Da;}yRa;vEa;Da;}ya;Ra;Bya;Ma ta:�va;
a;va::]a;a;na;m,a Á
The comprehension of ‘Truth’ is through (the comprehension of) similarities and dissimi-
larities.40

It is impossible to comprehend similarities and dissimilarities, without employing

both the inductive and deductive techniques. Thus it is obvious that the classifi-

cation as to Vaíses. ika represents inductive system and Nyāya the deductive has no

real basis and does not stand scrutiny. Actually, the two together forms an integrated

system, which later simply came to be known as Nyāyaśāstra. One more important

thing that deserves to be mentioned here, is that the so called Nyāyaśāstra also

combines to some extent, psychology, ethics, ontology and religion. Mixed compo-

sition is not an outcome of ability to appreciate differences, but due to the cultural

ethos of India. To drive the point, as it were, here it may be appropriate to quote to

the first two sūtras of Kan. āda

A;Ta;a;ta;ea ;Da;m a v.ya;a;K.ya;a;~ya;a;maH Á Á 1 Á Á
ya;ta;eaY;Byua;d;ya;�a;naH(rea;ya;sa;�a;sa;�a:;dÄâ H .sa ;Da;mRaH Á Á 2 Á Á
Now (after hearing the queries), therefore (and having confirmed that the student is seri-
ously interested), we proceed to explain Dharma. (1)

That entity which is responsible for attaining abhyudaya (material prosperity for enjoying
this world) and nih. śreyasa (tranquility that gives supreme felicity), is Dharma. (2)

Those who are naive to Indian ethos, may find the commencement of a work on

Vaíses. ika philosophy with the above two sūtras quite odd, as the subject matter

40 This has been aptly putforth by one of the earliest commentators Candrānanda when he in-

troduces the seventh sūtra of the text – ;
a;va::]a;a;ta;sa;a;Da;}yRa;vEa;Da;}ya;Ra;Na;Ma ..ca dÒ +v.ya;a;d� ;a;na;Ma A;Byua;d;ya-
;�a;naH(rea;ya;sa;he ;tua;tva;a;t,a .sa;a;Da;}y a ta;a;va;t,a к+:Ta;ya;�a;ta Á
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of the text – a clear understanding of the padārthas, based on the principle under-

standing of “generality” and “particularity” – seems to be quite different from what

has been mentioned in the above two sūtras. But the moment we realize that all

the systems of philosophy have been constructed with the fundamental principle of

specifying the means for “supreme bliss” called nih. śreyasa, the apparent contradic-

tion noted evaporates into thin air. The ultimate bliss that is sought after is referred

to as Kaivalya by Sāṅkhyās; Moks.a or Brahman by the Vedāntins; and Samādhi
by the Yogins.

Moreover, a philosopher, logician or a scientist does not form an isolated system.

He very much forms a part of the mixed fabric with which the society in which he

lives is weaved. As a result, there is bound to be a certian influence on the values

and norms observed by the society on his thought process. This is something that

is unavoidable. Hence, while reading the literature – philosophical or otherwise –

produced in a society it would be good to keep this ideas as the bottom line in order

to have a better appreciation and judgement. Just to place this thesis on a stronger

footing, we may cite another example (concluding verse Nyāyakusumāñjali by

Udayanācārya):

I+.tyea;vMa (rua;�a;ta;n�a;a;�a;ta;sMa;pìÉÅ;+va:ja;lE H BUa;ya;ea;�a;Ba:=+a;[a;a;�a;l+.tea
yea;Sa;Ma na;a;~å.pa;d;ma;a;d;Da;a;�a;sa &+.d;yea .tea ZEa;l+.sa;a:=+a;Za;ya;aH Á
;
a;к+:ntua :pra;~tua;ta;
a;va;pra;t�a;a;pa;
a;va;Da;ya;ea;pyua;�Ea;BRa;va;a;�a;nta;к+:aH
к+:a;le к+:a:�+:a;Na;к tva;yEa;va кx +:pa;ya;a .tea .=+[a;N�a;a;ya;a na:=+aH Á Á

In spite of cleansing their (atheist’s) minds with huge amounts of water – like the ones
flowing during floods – in the form of śruti, smr. ti, nyāya, etc., if You (Īśvara) are not
able to take a seat in their hearts, then surely, their hearts are made of the essence of rocks.
Though, in this matter (existence of Īśvara), they (atheists) maintain a diametrically oppo-
site view, they indeed keep contemplating on You (perhaps more than what I do to refute
Īśvara). Hence, when the time is ripe, they also need to be protected only by you, the all-
compassionate one!

The above prayer of Udayanācārya, clearly reflects the philosophy held by him,

that it is only through the grace of Īśvara that supreme felicity can be achieved.

Earning grace – according to Udayana’s philosophy – presupposes belief in Īśvara.

As Udayana does not want any one to suffer, he pleads to the Lord, the all-

compassionate one, to shower mercy and thereby save the the non-believers too.

This incidentally mirrors how accommodating Udayana’s heart has been to include

even the rivals,41 into the family of devotees. Udayana’s monumental contribution

to the theistic philosophy in the form Nyāyakusumāñjali and Ātmatattvaviveka –

both of them composed with atmost logical rigor – made the later scholars to place

him on a high pedestal and describe him as Nyāyācārya.

In fact, in the Indian tradition right from its inception, Nyāya-śāstra was never

construed to be merely a “grammar of reasoning”. It was, and till date it is, con-

41 Rivals only in the academic sense of holding diametrically opposite view and not otherwise.
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sidered as one of the six orthodox schools (āstika-darśanas) of Hindu philosophy,

whose purpose is defined to be summum bonum. Here a quotation from Ganeri may

be in order. Towards the end of his introduction to a recently published work Jonar-

don Ganeri observes:

The effort must continually be made to explain the distinctiveness in the goals, methods
and techniques of Indian logic, in order that we might better understand the nature of the
challenge that this alternative tradition of inquiry into the basis of reasoned thought presents,
most particularly when we assume that our own theories are free from commitments specific
to our own history.42

In yet another interesting paper, it has been well-argued by Claus Oetke43 that

Ancient Indian Logic can be construed as a Theory of Non-monotonic reasoning

(NMR). He observes:

The principal aim of this paper is to establish the thesis that a significant relationship exists
between Indian theories of proof and inference (anumāna), in particular the most ancient
varieties of what is commonly called ‘Indian Logic,’ and a number of quite recent develop-
ments in the theory of “commonsense-inference” which are often subsumed under the term
‘Non-monotonic Logic(s).’ . . .

It is claimed that there is a connection both on the, so to speak, “object level” as well as on
the “theoretical level”44

17.6 Concluding Remarks

Indian logic, commonly referred to as, Nyāya-śāstra is not merely a “grammar of

reasoning” but is considered as one of the six orthodox schools (āstika-darśanas)

of Hindu philosophy. The Nyāya school which has its foundational basis on the

Nyāya-sūtras of Gotama, which are believed to have been composed at least by the

end of the 3rd century BC,45 if not earlier has a very long lineage, which continues

till today.

As we turn the pages of the history of Indian logic, it becomes quite evident

that Gaṅgeśa’s Tattvacintāman. i – more popularly known as Man. i composed at

the interface of the 12th and the 13th century46 – has been considered to be a major

landmark, at which the emphasis got shifted from study of prameya to pramān. a. A

lot of new expressions and concepts, that could be considered as thought-measuring

devices, got introduced to achieve more precision in arguments. The successors of

42 J. Ganeri, (ed), Indian Logic. A Reader, Richmond, Surrey: Curzon Press, 2001.
43 Professor, University of Stolkholm.
44 Journal of Indian Philosophy, 24: 447–539, 1996, Kluwer Academic Pub.
45 This is the opinion maintained by the majority of well-informed and unprejudiced Indologists.
46 This is the period agreed upon by a majority of scholars.
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Gaṅgeśa, including his own son, took forward the lineage to great heights. Even as

late as 18th century, it has been recorded that Navadveep – the birth place of Navya-
nyāya – used to be a great center of learning, wherein thousands of students used to

come from distant parts and have rigorous training in śāstra. Incidentally the record

indicates the teacher-student ratio to be less than 1 : 8 in the University of Nuddeah

(Navadveep) that flourished during the 17–18th century. Here is an excerpt from the

records that provides an interesting reading.

The grandeur of the foundation of the Nuddeah university is generally acknowledged. It
consists of three colleges–Nuddeah, Santipore and Gopulparrah. . . . And their resources are
so ample, there are at present about eleven hundred students, and one hundred and fifty
masters. Their numbers, it is true fall very short of those in former days. In Rajah Rood-
dre’s time, there were at Nuddeah, no less than four thousands students, and masters in
proportion. . . . Shankar pundit, is head of the college of Nuddeah, and allowed to be the first
philosopher and scholar in the whole university. His name inspires the youth with the love
of virtue – the pundits with the love of learning – and the greatest Rajahs, with its own ven-
eration. The students that come from distant parts, are generally of a maturity in years, and
proficiency in learning, to qualify them for beginning the study of philosophy, immediately
on their admission; but yet they say, that to become a real pundit, a man ought to spend 20
years at Nuddeah, in close application.47

It is remarkable to note that this lineage continued to be a vibrant tradition not

merely critically examining the earlier works but also evolving new concepts and

taking the discussion to much deeper levels in a specific direction. Notwithstanding

the series of onslaughts that took place in India, which had been greatly detrimental

in many ways in preserving and passing on the traditional knowledge systems, that

Nyāya tradition is still a living tradition producing commentaries and krod. apatras
is indeed a spectacular achievement that is quite gratifying. However laudable the

efforts and the achievements of the Indian tradition in logic may be, they would only

remain confined within the walls of traditional scholarship, unless its relevance is es-

tablished for the contemporary times. Here, it may be in order to cite an observation

from one of the young, energetic, modern scholars.

In conclusion, while the history of logic in India shows a strong tendency towards formali-
sation, the logic of ancient India tried to model informal patterns of case-based reasoning,
patterns that are increasingly becoming recognised as widespread and representative of the
way much actual reasoning takes place.48

The above quotation clearly showcases the relevance of the studies of Indian

logic as presented in the ancient texts. Hence, it seems that it would be a useful

exercise to carry out a thorough analysis as to how the methods and techniques

employed in the texts of Indian logic would be useful – if at all – for the furtherance

of the studies at in logic at levels far deeper than the present, and also explore its

application to other disciplines even in modern times.

47 The Calcutta Monthly Register and India Repository, January 1791, pp. 136–139.
48 Jonardon G., Ancient Indian Logic as a theory of Case Based Reasoning, Journal of Indian

Philosophy, 31: 3345, 2003.





Chapter 18

Indian Logic and Philosophy of Science: The
Logic-Epistemology Link

Sundar Sarukkai

18.1 The Logical and the Empirical in Indian Logic

There are many interesting themes in Indian logic which illustrate not just philo-

sophical complexity and rigour but also their potential use in philosophy of sci-

ence. Matilal describes Indian logic as the “systematic study of informal inference-

patterns, the rules of debate, the identification of sound inference vis-à-vis sophis-

tical argument, and similar topics.” An important task for Indian logicians was to

critically understand which inferences are valid and what conditions they should

obey in order to have certainty in inference. Thus, Indian logicians were deeply con-

cerned about establishing a theory to know which inferential statements one could

be certain about and the methodology to decide on their validity. The early Nyāya

logic is exemplified by the five-step argument and there has been much discussion

on whether it is equivalent to a syllogistic form.

Perhaps the most common representative example of inference in Indian logic is

that of inferring the presence of fire from seeing smoke. The analysis of this example

illustrates a deep and complex engagement with the idea of inference and various

related philosophical themes. Some of the questions concerning this example are the

following. How do we infer that there is fire given that we only see the smoke? How

can we establish the validity of this conclusion? What are the criteria for knowing

that our inference is right, that we are justified in making it? What kind of infer-

ences can give us certainty? There are two kinds of inferences described by the

Naiyāyikās and the Buddhist logicians. One is the inference one makes for oneself.

This occurs when one sees smoke on a hill and then infers to oneself that there is fire

on the hill. There is no further communication or convincing somebody else about

this inference. The other type of inference is called inference-for-another, which is a

Sundar Sarukkai
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demonstration of the inferential process and conclusion for another person. Through

this rational demonstration, one can convince another about the inference that one

has made and explication of the reasons one holds for making a particular inference.

Nyāya has a five-step process to accomplish this. The five parts are (1) the statement

of the thesis of inference, (2) stating the reason or evidence for this thesis, (3) citing

an example of a generalisation supporting the reason and this example is such that

it is well accepted by others, (4) application of the present observation to the gen-

eralisation and (5) conclusion or assertion that the statement of the thesis has been

proven. The well-known illustration of these five steps is as follows.1

1. Proposition: There is fire on the hill.

2. Reason: For there is smoke

3. Example: (Wherever there is smoke, there is fire), as in the kitchen

4. Application: This is such a case (smoke on the hill)

5. Conclusion: Therefore it is so, i.e., there is fire on the hill.

The structure of argument sets out the rational, logical way of convincing others

that the inference one makes is perfectly valid. The reasoning is that we make an

inference of fire when we see smoke because we know, from previous experiences,

that wherever smoke is present so is fire. The second step states the reason, which

is smoke, for making the inference. The reason in conjunction with a more general

principle or natural law that we know allows us to make the inference. But given

Nyāya’s commitment to empiricism, any inference we make has to be grounded

in some observations, as given by examples. These examples should be commonly

accepted and can be both positive and negative examples. Positive examples are

those that support the inference, such as a kitchen because in the kitchen we know

that smoke and fire are seen to occur together. Negative example, such as a lake,

supports the inference by looking at cases where there is no smoke in places where

there is no fire. The fourth step applies this general principle to the case at hand and

finally, the fifth step, states the conclusion.

This five-step process is the Indian logician’s equivalent of Aristotelian syllo-

gisms. Thus, it is the most common example seen in a discussion of Indian logic. In

the way it is presented, it seems clear that this process is not what was understood

as logic in the West, largely because of the use of examples, inference which is of a

singular case and so on.

The Nyāya formulation of inference was modified and replaced by an influen-

tial formalism by Dignāga, the great Buddhist logician. Dignāga reformulated the

question of logic into a question of semiotics. Inference by its very nature is related

to signs. Therefore, smoke, first and foremost, has to be considered as a sign which

is in some sense related to what we infer. Dignāga’s logic is primarily an attempt to

1 Matilal 1999, p. 4. See also Vidyabushan 1920, p. 61.
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clarify what kinds of valid signs are possible and how we can make justified infer-

ences from these signs. In this sense, Dignāga was concerned with justification of

an inductive statement such as, “Wherever there is smoke, there is fire”. The aim is

to know how an inductive cognition can be absolutely certain.

There is yet another peculiarity in his formulation, and this has to do with the

synonymic usage of sign, reason and evidence. These are terms that are often used

interchangeably in Indian logic. Dignāga’s theory of inference sets out a structure of

inference based on the nature of the sign, thereby defining when a sign can properly

stand for another. He formulated the “triple nature of the sign”, three conditions

which a sign must fulfil in order that it leads to valid inference.

1. It should be present in the case (object) under consideration.

2. It should be present in a similar case or a homologue.

3. It should not be present in any dissimilar case, any heterologue.2

These conditions can be used to check whether any sign is a logical sign of an-

other. These conditions are also conditions to check whether a reason is a valid

reason or not. For example, in the thesis, “Sound is impermanent, because it is au-

dible”, the reason is audibility and the inference is the impermanence of sound. If

we want to know if this reason is a valid reason for the conclusion, then we have to

check if the reason satisfies the three conditions.

Dharmakīrti suggests three broad divisions into which inferences can be grouped:

inference based on (1) own-nature, (2) causal relation and (3) non-perception. All

three are not only interesting in their own right but are also kinds that can be dis-

cerned in scientific inference. The relation to science is further illustrated when we

understand that the two kinds of inference based on own-nature and causality are

based on the notion of natural relations and the presence of “natural” properties.

The first kind, namely, inference based on own-nature is illustrated with the com-

mon example, “This is a tree because it is an oak tree”. Considering that Dharmak

īrti also used the term identity to describe this relation, it seems clear that this kind

of inference is based on identifying the oak tree necessarily with a tree. This ex-

ample also suggests, as others have pointed out earlier, that the inference is “based

upon the relation of class inclusion” and can be seen as an analytical statement.3

What is interesting here is the relation of analyticity with inference. The idea that

there is inference in analytic statements is an interesting one, especially given the

fundamental idea that inductive inference increases knowledge content. The second

kind which deals with causal relations describes examples such as the smoke-fire

inference.

The third kind of inference is a unique one based upon non-perception. A com-

monly cited example of this type is “There is no pot here because no pot is perceived

here.” The basic idea here is that we also make inferences based on non-perception

2 Matilal 1999, p. 6.
3 See Prasad 2002.
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of something. This means that not all our inferences arise through perceiving some-

thing positively. For example, the very fact of not seeing smoke (in a situation when

you expect to see it) makes us infer something. So, non-perception of various fac-

tors is also a cause for inference. Dharmakīrti goes on to give eleven varieties of

inference from non-perception. Thus, we see the complex ways of formulating in-

ferences in Indian logical systems.4

18.2 Logic-Epistemology Link in Indian Logic

Matilal points out that logic in India arose out of two different traditions – one,

the tradition of debate and dialectics, and the other, the epistemological, empirical

tradition, because of which the distinction between logic and epistemology, as in

Western logic, is not made in Indian schools of logic. He identifies three essential

differences between Indian and Western logic.5 First, the lack of a clear distinction

between epistemology and logic; second, the apparent presence of psychological

elements in logic; and third, the lack of deduction-induction distinction.

The relation between epistemology and logic, so integral to Indian logic, is what

is erased in Western logic, based on the belief that epistemology which is about

knowledge, empiricism and truth must have no relation to logical structures. In the

Indian case, inference is actually a pramana, a valid means and instrument of knowl-

edge. It is one of the sources of knowledge in all Indian traditions except the materi-

alist Cārvākas. This is also the reason why the notion of evidence is so important in

Indian logic. As we saw earlier, evidence and reason are often synonymously used

in analysing valid inference. In the Western tradition, it is well known that deduc-

tive structures are independent of the truth of the premises. Thus, it is commonly

observed that logic is not about truth, especially truths of the world, the set of em-

pirical truths. In fact, what sets logic apart is this indifference to the dictates of the

nature of our world. But this is where Indian logic significantly departs from West-

ern logic. The use of the example in the nyāya five-step process and the similar and

dissimilar conditions in Dignāga’s formulation illustrate the importance of factor-

ing in empirical truth as part of logical process. This does not mean that there is

no formal argumentative structure which can be discerned in Indian logic and such

analysis are available in the literature.6

The rejection of empty referring terms is another indication of the essential con-

nection between epistemology and logic. For example, one of the premises in Aris-

totelian syllogism could well be “All Martians are blue”. This would be a valid

statement in the syllogism independent of the question whether there are Martians

4 See Matilal 1999. Also R. Prasad 2002.
5 Matilal 1999, pp. 14–18.
6 For example, see S. Bhattacharyya 1987. Also Matilal 1999, Chapter 7.
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and whether they are really blue. Now, one might argue that this is exactly the rea-

son why we have logic so as to be able to transcend the empirical restrictions arising

from the real world. Logic helps us to order empirical facts and so has to be beyond

these facts. Even if this is so, we can understand Indian logic as showing how there

can be logical structures without letting go of a commitment to truth and knowledge

as part of logical argumentation. The real problem would arise only if it is claimed

that empirical truths dictate the logical structure. This is a view that is not found in

the dominant traditions of logic in India. As we have seen, they acknowledge the

logical structure present in moving from some premises to a conclusion but they do

not say that these empirical truths dictate the kind of arguments that are possible.

In fact, it is useful to see the empirical and epistemological content in Indian logic

only in terms of a regulative factor and not as a determining factor. Thus among

all possible logical statements, some are disallowed. Thus, empiricism and issues

of epistemology are ingrained into logic in so far as they are used to delimit the

possible range of logical arguments. The various attempts, with varying degrees of

success, of rewriting Indian logic in terms of formal and modern logic only points

to the essential logical equivalence in the arguments and the use of empiricism and

epistemology to cut down the possible logical structures which are allowed. Finally,

it would be useful to understand the nature of Indian logic as reflecting a worldview

which is not only suspicious of perception but also of reason.

The lack of a clear distinction between epistemology and logic arises because

of the empirical foundations demanded of Indian logical arguments. While formal

deductive structures are present in the Nyāya and Buddhist schemes, the emphasis

on the premises being empirically true, or at least available for empirical judge-

ment, brings logic and epistemology together. However, the use of tarka or suppo-

sitional/reductio arguments is prevalent in Indian logic. The use of tarka is indica-

tive of the conceptualisation of counterfactuals and the use of deductive arguments.

While tarka was seen as an important instrument of reason, it was not seen as a

means to knowledge like ordinary inference was, because of the lack of empiri-

cal validity in counterfactual statements. Such reasoning comes into play when we

want to argue for one position against another by showing the absurd consequences

of holding the opposed position. This is “negative” argumentation in the sense that

a particular thesis is not proved by this reasoning but only that another thesis is

shown to have undesirable consequences. Positive argumentation in this sense is

based on empirical evidence in contrast to tarka. It has also been argued that tarka

is more broad-based than reductio arguments since the undesirable consequences are

more than just contradictions. This larger canvas of tarka is captured by Udayana’s

classification of tarka into five types: self-dependence, mutual dependence, cyclical

dependence, lack of foundation and undesirable consequence.

The second difference which Matilal notes has to do with the presence of psycho-

logical elements in Indian logic. It is precisely the removal of psychology from logic

that distinguishes logic in the modern logical tradition. So retaining these elements

in logic is either a fallback to ancient logical systems or worst, not being aware of

something essential to logic. Matilal counters this by saying that the Indians did not
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commit the bigger blunder of emphasising psychology in logic thereby leading to

psychologism and/or that one could understand the Indian “psychologised” logic as

a different kind of logic. The latter point is reasonable to hold when we see the kinds

of logic present today. In particular, there would be similarities in Indian logic and

in the approach of intuitionist logic and the presence of psychological elements in

it. But there is another argument that we can invoke here and this has to do with the

relation between logic and psychology.

It is well accepted that Indian logic shows explicit psychological elements. Let

me discuss Mohanty’s detailed argument in this context.7 First of all, there is an

explicit psychological description of the process of inference, starting from perceiv-

ing a sign (say smoke), then remembering the connection between smoke and fire,

which then leads to an awareness that this connection is applicable to the present

case, finally leading to the inferential cognition. Further the psychological dimen-

sion is explicit in the invocation of desire (either absence or presence of) as a con-

dition for inference. However, the inferential schema which is used to explain the

inference-for-another does not carry over the consequences of the psychological de-

scription. In some sense, this is like the description of any rational, objective act,

which is dependent on some mental process but whose content is independent of

the consequences of a subjective, psychological act. For example, even in the cre-

ation of scientific theories, ideas arise through a cognitive process which can be de-

scribed in terms of psychological terms but the content of the theory is objectively

accessible. Inference-for-oneself is only based on the recollection of the connection

between smoke and fire whereas inferencefor-another needs the five-step process

described earlier. The argument that Indian logic is psychological also depends on

what is meant by the psychological. If being psychological implies validity only to

subjective experiences then Indian logic is definitely not psychological, especially

because while using the language of psychology it still deals with and exhibits uni-

versal structures of human thought. The greater challenge to the logical character of

Indian logic actually would come from the entanglement of the empirical within the

logical, but as we have seen above this too is not a significant problem. As Mohanty

also notes, tarka is a good example of a formal logical structure and has no mention

or use of examples. So it is not that formal logical structures were unknown to In-

dian logic. The use of examples as part of inferential reasoning does not negate its

formal character. We can understand the use of example along the following lines

suggested by Mohanty: one, because the example should be one that is acceptable

to the opponent, it not only dealt with true premises but it also served an important

role in the “dialogical-disputational context”; two, because of the insistence on the

truth of the premises, example preserves the “epistemic purity” of the inference; and

three, an example succeeds in introducing “an individual by the rule of existential

instantiation.”8

7 Mohanty 1992, pp. 100–132.
8 Ibid., pp. 117–118.
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There are other important points of difference, details of which I will not go into

here. These include the idea of the necessary in Indian logic and whether this logic

is intensional or extensional. We also have to remember that whichever type of logic

we choose, we are making commitments to some underlying worldview; in the case

of Western logic, there is a commitment to the existence of abstract entities such

as propositions. Now whether it is better to make this assumption as against what

Indian logic does is a question that cannot be resolved by logical arguments alone!

Mohanty in the conclusion of his essay on Indian logic notes that Western logic is

framed by oppositions between logical and the empirical, necessary and contingent

and so on, and that Indian logic, taking a middle path, shows that “we need not treat

the logic and the psychological, the epistemic and the causal, the extensional and

the intensional as though they are irreconcilable opposites.”9

Thirdly, Matilal notes that mathematics profoundly influenced Western logic

whereas in India, it was grammar that was most influential. There are two points

we can note about this brief observation. Firstly, in what sense was mathematics a

model for Western logic? It is commonly observed that Plato’s forms, inspired as

they were with geometrical forms, also influenced the importance of formal struc-

tures in logic. In fact, the extreme step of considering premises without any empir-

ical or truth content as part of valid logical reasoning can also be seen as a con-

sequence of privileging the notion of form over content. Thus, while geometrical

forms illustrate the importance of forms in the Greek imagination, and thus might

suggest the influence of mathematics on logic, there is also the added reason that

mathematics was associated with deductive certainty, universal truth and so on. In

a sense, all these characteristics of mathematics (actually of geometry and of early

arithmetic) get transplanted to logic.

What could be the equivalent status in the Indian system? Matilal notes that gram-

mar was the dominant influence on Indian logic. There are two pertinent comments

that are relevant here. Firstly, Indian mathematics was itself quite different in char-

acter compared to ancient Greek mathematics. In particular, the emphasis was not on

models and axiomatic formulation but on algorithms and pragmatic use. Even in the

case of geometric forms, the circle was not the ideal form for Indians but the square.

Mathematics, especially as used in astronomy, was built not from axioms but from

algorithmic rules of manipulation to get the best results for practical use. Therefore,

this pragmatic, result-oriented character of Indian mathematics is part of a larger

worldview which it shares with the pragmatic, empirically oriented character of In-

dian logic. Secondly, Matilal’s point that Sanskrit was the dominant influence in In-

dian logic also indicates a relation between Indian logic and mathematics. Sanskrit

is a highly structured language and it is more like a formal language like mathe-

matics especially in comparison to many natural languages like English. Therefore,

even being influenced by Sanskrit instead of mathematics (of the Greek variety!)

might not indicate an essential difference between Indian and Western logic. Given

these two arguments about the nature of mathematics and of the special nature of

9 Ibid., p. 131.
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Sanskrit (in opposition to English for example) it seems reasonable to believe that

looking to explain the difference between Indian and Western logic as one between

mathematics and grammar might not be too illuminating. However, this does not

mean that the special characteristics of Sanskrit are not reflected in Indian logic.

The language of Indian logic itself is conditioned by the peculiarities of Sanskrit. In

fact, some of the unique themes in Indian logic arise from the demands of Sanskrit.

18.3 Indian Logic and Philosophy of Science10

It is now possible to see the close relation between philosophy of science and Indian

logic. Philosophy of science has drawn upon various philosophical and logical cate-

gories from the Western tradition in order to reflect upon the nature of science. One

essential part of this approach was to clarify the relation between science and logic.

Science’s relation with logic is most clearly exemplified in its use of mathemat-

ics. While the mathematical component of science is seen to reflect the deductive

structure of argument in science, there is much in science which draws upon other

forms of argumentation, particularly inductive inferences. Many of these inferences

in science follow the same structure as the common inferences we make, such as the

inference of fire from smoke. Thus, the philosophical issues that arise in analysing

inferences in science share some common conceptual ground with “ordinary” infer-

ences. Paradoxically, the strong empirical grounding of science places it in potential

conflict with logic, understood in the Western way. Science draws upon observations

and reason, and using them together constructs its narrative of the world.

The relationship between science and logic is fraught with various problems. I

want to suggest two metaphoric images that capture two different ways of analysing

this relation. One is along the lines which philosophy of science has done, and done

so admirably. This I call the logic in science view, which describes the attempt to

fit logical categories from the Western tradition into the practice and discourse of

science. Thus, this becomes a search for elements of logic in science. A consequence

of this approach is that sometimes science is moulded to fit logic and this most

often leads to a belief among many scientists that philosophy of science not only

misunderstands science but also misrepresents it.

However, there is another way of understanding this relation, which is well ex-

emplified by Indian logic. I would like to characterise this approach as science in

logic. As we saw earlier, many conceptual ideas that arise in Indian logic resonate

strongly with scientific methodology and praxis. This does not in any way imply

that Indian logic is “doing” science. What it is doing however, is expecting logic

itself to be scientific, in contrast to the position that science be logical.

10 For a detailed description of this link, see Sarukkai 2005.
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18.4 Indian Logic, Science and Semiotics

Looking at science through the rubric of conceptual themes in Indian logic allows

a reformulation of some standard problems in philosophy of science. For exam-

ple, some new trajectories include analysis of the relation between logic and semi-

otics, the origin of theory through the use of signs and symbols, the natural re-

lation between sign and signified in applied mathematics (in contrast to the con-

ventional understanding of mathematical symbols as being arbitrary), the structure

of Indian logic as manifesting an explanatory structure, particularly the deductive-

nomological model of scientific explanation and so on.

The American philosopher Charles Sanders Peirce made seminal contributions

in the areas of semiotics, logic, pragmatism and on scientific method. In many of

his ideas, he shares an affinity with Indian philosophers and could have passed off

as a member of some of these Indian traditions!

I begin with what Peirce writes about logic. “Logic, in its general sense is . . . only

another name for semiotic (. . . ), the quasi-necessary, or formal, doctrine of signs.”

By this he means that “we observe the characters of such signs as we know, and

from such an observation, by a process which I will not object to naming Abstrac-

tion, we are led to statements, eminently fallible, and therefore in one sense by no

means necessary, as to what must be the characters of all signs used by a ‘scientific’

intelligence, that is to say, by an intelligence capable of learning by experience.”11

Note the use of certain important concepts, which are also those which we discussed

earlier in the context of Indian logic: observation, fallibility, and “scientific” intelli-

gence, which he sees as an intelligence which learns from experience.

Peirce begins by defining sign, in a way similar to Dignāga, as “something which

stands to somebody or something in some respect or capacity.” There are three el-

ements to a sign: the creation of another sign in the mind, the sign standing for an

object, and the presence of an idea in reference to which the sign stands for the

object. The second element of the sign, namely its capacity to stand for some other

object, is what Peirce calls logic. Thus, “logic proper is the formal science of the

conditions of the truth of representations.”12

Buchler in his introduction notes that Peirce’s path-breaking contribution is his

“conception of logic as the philosophy of communication, or theory of signs.”13 He

also says that the “conception of logic as semiotic opens broad, new possibilities”.

Arguably, we can best understand the aims of Indian logic alongside the approach

towards logic and signs by Peirce. Peirce’s ideas about signs share a common con-

ceptual space with Dignāga and other Indian logicians. If, therefore, Peirce is an

important figure in logic, then it seems reasonable to also expect a similar acknowl-

11 Peirce 1955, p. 98.
12 Ibid., p. 99.
13 Ibid., p. 12.



342 S. Sarukkai

edgement for the ancient and medieval Indian logicians who based their logic on the

nature of signs and therefore first understood logic as semiotics.

Is Dignāga formulation of the triple condition of logical sign a precursor to logic

as semiotics? Firstly,Dignāga and Peirce are both interested in valid logical conclu-

sions and judgements. Both of them see the sign as the path towards valid judge-

ments of the logical kind. Both of them have a broad view of signs, ranging from

material signifiers such as smoke to nonmaterial such as words. As a theory of signs,

Peirce’s classification is much more detailed whereas as a theory of logical sign,

Dignāga’s conditions do more than Peirce’s analysis. For example, Peirce’s idea of

similarity as used in iconic signs has no definition of what similarity is, which is

exactly what the similarity condition in Dignāga’s theory tries to answer. In Indian

logic, the sign is synonymously used with reason and evidence. The idea of rea-

son is already inherent in the meaning of a sign since a sign is a sign of something

else and it is conceivable that there is a reason for this connection. The question for

the Indian logicians consisting in knowing that the sign “really” stood for the thing

which it referred to. Therefore, this involved understanding the reason why the sign

comes to stand for another. This could be psychological (by seeing concomitance

for example) or social (linguistic conventions for instance) but still part of the doubt

about inference comes from doubt about the origins of the relation between sign and

the signified object. The conditions of similarity and dissimilarity are also attempts

to clarify this relation as also the origins for making the connection in the first place.

Dharmakīrti’s three types of inference, the ones based on identity, causality and

nonperception, can be seen as a classification that answers as to why some signs

come to stand for another. Identity is based on similarity and is actually a more

comprehensive definition of icon as compared to Peirce. When we say that an oak

tree is a tree our inference is based on a perception of some similarities. In general, it

would seem that our “perception” or inference of universals, such as say cowhood,

is based on recognition of similar characteristics and therefore signs in such an

inference function as icons.

The causal type, with smoke and fire as example, is illustrative of indexical signs.

Smoke is an index, which refers to a fire in that location. Smoke and fire are asso-

ciated through contiguity and smoke obeys all the characteristics of an index which

Peirce describes as follows: “First, that they have no significant resemblance to

their objects; second, that they refer to individuals, single units, single collections of

units, or single continua; third, that they direct the attention to their objects by blind

compulsion.”14 Causal signs are just one type of index signs. The interesting ques-

tion is whether Dharmakīrti’s second type can be extended to indexicals in general

and not be restricted only to causal signs? Or equivalently whether Peirce’s large set

of indexical signs need to be pared only to causal ones?

Given the insistence of Indian logicians on reason for a sign, it is natural that the

arbitrary nature of sign is not available in the logical formulations discussed earlier.

14 Ibid., 108.



18 Indian Logic and Philosophy of Science 343

But it would be wrong to say that the arbitrary nature of sign was not known to

them, since Dignāga’s formulation draws upon his apoha doctrine of language. It

was also very clear for Indian philosophers that words function as signs standing

for something else. Moreover, it was clear to them that this relation between words

and things, for example, was arbitrary. In fact, I think it is reasonable to argue that

the stringent conditions on a valid sign may actually be a reflection of the problems

of arbitrary connection between words and what they stand for. Since philosophy

of language was one of the pillars of ancient Indian thought, the influence of these

philosophies on logic might have succeeded in making the conditions on signs more

rigorous than it perhaps ought to have been!

Therefore, if in the first place, arbitrary relation of sign-signified is what is being

sought to be eliminated in the three conditions of Dignāga, then it is no surprise that

the kinds of valid signs in Indian logic is highly restricted. On the other hand, we

can see that the use of symbolic notation in Western logic, including in the represen-

tation of terms in Aristotelian syllogisms, is itself a use of signs. As is commonly

done, in the premise “All Greeks are mortals”, we can let A stands for Greeks and

B for mortals and this sentence becomes “All A is B”. However, note that this move

of letting A and B stand for something else, is actually a semiotic one, where A is a

sign which stands for a set consisting of Greeks. Symbolising thus is arbitrary and

therefore there can be no necessary pervasion relation between the symbol A and

the set of Greeks. This use of sign is just like the use of language where words are

in arbitrary relation with things. Using a term to stand for something is actually to

create a sign-signified relation.

So once we use arbitrary symbols, we are not inferring but dealing with issues of

language. If we are dealing with issues related to language, then the kinds of ques-

tions that arise are very different than if we are dealing with cognitive inferences.

Use of arbitrary symbols for Indian logicians would be a movement into the do-

main of language and thus perhaps outside inferential cognition. This implies that

even the attempts to symbolise Indian logic is to misunderstand something essential

about it!

18.5 Signs, Symbols and Theory

The basic question that is common to both philosophy and science, and not just

Indian philosophy and modern science, is the problem of understanding how we

move from an empirical observation to a hypothesis or theory about that observation.

We might begin a move of this kind by first describing the observation. Even a mere

description needs language and concepts that belong to that language help us to

describe that observation in a particular way. We move from observation to theory

even in this first step of describing that particular observation in words. Talking

about observations is already taking us into the activity of theory-making. But why
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so? What is that language does? First of all, the use of language to describe what we

observe takes us into a different level, to that of language and not of the phenomenal

event. The use of language that marks a distinct qualitative shift from the universe

of observations to that of expression suggests a character of theory that has been

very influential, namely, the idea that the use of signs and symbols make possible

the shift from the empirical to the theoretical.

This should not be too surprising. After all, the moment we use language to de-

scribe an observation we are already in the world of signs. Words in a language

are signs. The most important and fundamental characteristic of a sign is that a

sign stands for something else. A word “chair” stands for the thing chair. So words

stand for things, properties, relations and so on. How words stand for the things

they stand for is quite a different topic altogether and philosophy of language and

semiotics deal with this issue in great detail. In the case of language it is often the

case that words are arbitrary and are a matter of conventions of a particular lin-

guistic community. There is in general no “natural” association between the word

and the phenomenal world the word describes and talks about. But verbal languages

are not the only examples of signs. There are many different types of signs as we

have already encountered in the discussion on Peirce. In fact, the use and theory

of signs have a long tradition within Western philosophy. In particular, many in-

fluential thinkers have formulated various theories about signs and their relation to

knowledge. Since I am focussing on the philosophy of science, I will summarize a

few of these approaches to an understanding of signs and their role in the creation

of theories. This also illustrates one fundamental similarity in the concerns of the

Indian logicians and philosophers in Western traditions, namely, an understanding

of the relation between sign and signified, and the role of signs in theory-making.

The issues about the meaning and role of signs can also be placed within

the larger distinction between empiricism and rationalism. Empiricism holds that

knowledge of the world needs empirical, observation inputs whereas pure rational-

ism holds that all knowledge can be guaranteed by human reason alone. Leibniz is

an influential philosopher of the rationalist tradition. In rationalism, the problemati-

cal issues have to do with the nature of reason, what is actually meant by reasoning,

how do we reason, what guarantees the truth of reason and so on. Therefore, reason

is enmeshed with mental states, thoughts and so on. Leibniz held the view that we

can think and even know only by using signs. These signs could be natural, in the

sense that we make “natural” associations and the relation between sign and sig-

nified is “natural” or the signs could be artificial, in the sense that we create as a

community a set of arbitrary signs to stand for various other things. For example, a

red light at a signal is a sign indicating stop. We could conceivably have used any

other colour to indicate this so the choice of red is just a convention and arbitrary

in this sense. Now, if we can think or know only through the use of such signs, as

Leibniz would have us believe, then the real fundamental entities of human knowl-

edge and thought are only signs. The consequent problem of this view would then

be to explain how the sign is related to the signified.
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Signs don’t grow on trees (although sometimes “natural” signs do) and the mind

has a constitutive role in creating a whole domain of signs through which we think,

express and know. Since there is no knowledge without the mediating role of signs,

this leads us to a “constitutive” theory of knowledge. Theory, enmeshed as it is in a

world of signs, is therefore possible only by adding something to the empirical world

and this addition consists of the human activity of signcreation and sign-meaning.

Although there is a fundamental role to signs in human thought, signs and sym-

bols take on a primary role in certain disciplines, particularly logic and mathematics.

Frege considered the idea of the sign as a “great discovery”. He also held the posi-

tion that ideas and concepts are possible only through the creation and use of signs.

Further, an added advantage of particular symbolic notations was that they did not

manifest some common problems associated with verbal languages. But sign here

refers largely to an arbitrary set of symbols which are created by us with no specific

natural meaning associated to them. In the same logical tradition, George Boole

understands the discipline of logic as expressed entirely by the world of signs and

symbols, and that the “laws of signs are a visible expression of the formal laws of

thought.”15

Cassirer, much influenced by Leibniz, analyses in detail the central importance of

symbols and science. For him, the structure of science rests on the “logic of things”,

namely, “the material concepts and relations” and this logic of things cannot be sep-

arated from the logic of signs.16 An important consequence of this approach is his

position that “concepts of science are no more imitations of existing things, but only

symbols ordering and connecting the reality in a functional way”. The importance

of this view needs to be stressed again, especially the argument that concepts are

also semiotic. This is important because of the often held belief that the transition

from observation to theory occurs through concepts and that concepts are neither

linguistic nor part of a system of signs. The characterisation of observation by con-

cepts is indeed central to the activity of science. The ability to create new concepts

is at the heart of the scientific and mathematical enterprise but is not restricted to

them. Even philosophical theories generate new concepts. The belief that concepts

mediate observation and theory tend to see concepts as being beyond the symbolic

domain that constitute theories. Concepts, in one view, are objective realities which

are already present in the phenomena and thus they are discovered. But if concepts

themselves belong to the world of symbols they cannot play the mediating factor

between phenomena and description of these phenomena.

The emphasis on signs and symbols leading to their essential role in disciplines

such as logic and mathematics is initiated by the first move of creating signs to

stand for various elements of an observation. But this emphasis on sign and symbol

is not special to the Western tradition. Cassirer observes that, thanks to Leibniz, “at

one stroke the concept of the symbol has become the actual focus of the intellec-

15 Ferrari 2002, p. 15.
16 Ibid., 25.
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tual world.”17 Alas, Cassirer was over 1,000 years off the mark. As we saw earlier,

Dignāga’s logic was actually all about the nature of the sign and Indian philosophers

for centuries after debated and fine-tuned these ideas on signs.

In the context of scientific theories, Helmholtz, Hertz and Duhem considered

the essential role of symbols in theories. Helmholtz, influenced by Kant, believed

in the constitutive view that knowledge about the world cannot be independent of

the organisation of the mind and that signs play this mediating role.18 In particular,

Helmholtz was concerned with the difference between a property that causes a sen-

sation and the nature of that sensation in us. For example, the colour red induces

the quality of redness but this quality is dependent on our constitutive apparatus and

thus is only a sign of the colour that is present in the red object. Thus sensations

only indicate the effect an object or a particular property of the object has on human

subjects. The similarity with Peirce’s classification of qualisin may be noted here.

But Helmholtz also holds a view of natural connection for he sees these signs as

“natural signs” in that the “same sign must be always assigned to the same object.”

An important point in such formulations is that a sign of an object is not the object

and therefore signs do not “capture” the reality of the world but they can be faithful

to the lawful relations that are present in the world.

In many formulations of the sign, we tend to come across such a view that while

signs may be quite different from the object, they more faithfully represent relations

if not the objects. This kind of relational realism is also to be found in some theories

of mathematics, which is after all immersed in the symbolic universe. This relational

aspect is clearly articulated by Heinrich Hertz, another important scientist, who saw

symbols as images that mirror the relations in and of objects. Although he too sees

knowledge as being constitutive, he privileges the importance of the objects which

actually determine the nature of the symbols that are created in the mind, although

what symbols capture are the relations and not the objects themselves. (The problem

in such approaches is that the nature of the mind and its “necessary” structures are

seen to be real on a order different from that of the reality of an object. This is

problematical since it defines reality of the mind in a different way and also does

not expect the mind to be understood symbolically like external objects.)

Finally, it will be useful to consider Pierre Duhem’s conception of a symbol, par-

ticularly since there are some elements in it that are quite different from the Indian

view of sign. Ihmig summarizes five general features of a symbol for Duhem.19

Firstly, signs are arbitrary and conventional. They do not possess any natural rela-

tion and therefore a sign does not have a natural connection with the signified. He

also considers signs to be at a different level than phenomena. Thus, for Duhem,

smoke cannot be a sign for fire since both smoke and fire belong to the same phe-

nomenal level whereas if smoke were to be a sign it has to be qualitatively different

from fire. I think we can see that this difference which Duhem posits is similar to the

17 Cassirer 1957, p. 57.
18 Ibid., p. 17.
19 Ihmig 2002. p. 79.
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semiotic character of language, where a word is an arbitrary sign but is also qualita-

tively different from the phenomenon/object it refers to. Further, for Duhem, signs

are always part of a larger connected universe of symbols and therefore cannot be

understood in isolation. The arbitrary nature of the symbol implies that there cannot

be any truth value associated with them. Since they also represent something else in-

stead of the truth or falsity of a symbol we can only ask whether they are appropriate

or inappropriate. Finally, Duhem makes an important distinction between symbols

associated with scientific formulation and those that arise in ordinary generalisa-

tions. This point is similar to the ones made by others about the difference between

concepts in science and those in everyday life. Concepts in science undergo con-

stant test, modification and rectification, and symbols in science, for Duhem, are

similarly open to complex processes of creation and modification. Given Duhem’s

belief in the intrinsic relation between mathematics and theories, one can see that

his formulation of symbols is very close to the mathematical use of symbols.

With this background, it may be a useful exercise to explore the meaning and

role of signs in Indian logic and where necessary compare with the Western semi-

otic tradition. It is clear that there is fruitful comparison at the junction of Indian

logic, Western semiotics and the nature of scientific theorising. Similarities and dis-

similarities between these fields can illustrate some fundamental lessons about the

nature of these philosophies.

Here is an interesting paradox. The constitutive role of the mind, in the Kantian

sense or otherwise, is a common theme in many of the Western theories that discuss

the relation between symbol and knowledge. Cassirer goes to the extent of remark-

ing that physics does not constitute of “signs of something objective” but only of

“objective signs”. The paradox is this: Indian logic and epistemology, which are

seen to be essentially “psychological”, actually does not offer any simple constitu-

tive pictures. In fact, the sign is not described as arising from an activity of mind

and hence the enormously complicated attempts to define the pervasion-pervaded

relationship.

18.6 Science and Semiotics

Signs are ubiquitous. They are everywhere and occur in all human thought and ac-

tions. Peirce’s classification of sign illustrates the different kinds of signs and the

ways in which they could be classified. The Indian logicians understood inference

through the medium of sign. Science too constructs a universe of signs and its dis-

course is influenced by the ways it uses and interprets signs. Is there a special nature

to signs as used in science?

There is indeed a special relation between signs and science, and this has to do

with how science understands the world and perception. One of the most important
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contributions of science has been its capacity to open up a new world of entities and

processes which are unobservable by our normal perception. The use of instruments

extends our perceptual limits and allows us a glimpse of a world hidden directly

from us. Thus, for science, there are at least two modes of perception, the direct and

the indirect. Not that these modes are special to science; we need only to remember

the Buddhist argument for inference where they argue that while direct perception is

possible, inference functions as an indirect perception. The strict meaning of “indi-

rect” in these cases is slightly different. For the Buddhists, indirect involved reason,

a capacity to infer since the domain was beyond that of perception. For science, per-

ception itself is possible indirectly and instruments extend the range of perception

in order for us to be able to perceive things which we cannot do with our unaided

senses. However, there is an important question we need to consider about this in-

strumental perception: is this perception an inference? Do we really see electrons

or do we infer their presence? And if we infer them, can we develop a method by

which our certainty of this inference increases?

Obviously, there is no one simple answer to these questions. The range of instru-

ments that are used in science are remarkably vast and the meaning of perception

itself is quite different in them. For example, when we use a telescope or microscope

we are able to “directly see” distant or tiny objects. When I see germs in a micro-

scope, I believe that I am really seeing them, just as I see a tree. For science, there is

really no distinction between seeing a tree in front of me and seeing germs through

a microscope because the eye itself is an instrument. Seeing through a microscope

is only an extension of the capabilities of this instrument called the eye.

Also, sceptical questions about these types of “direct” instrumental perception

are answered in the same way that sceptical questions about ordinary perception are

answered. Science understands and accepts to a large extent the appearance/reality

distinction and understands that perception has to do with appearance whereas its

task is to understand the “reality” behind the appearance. So the kind of manipula-

tions it does with our ordinary observations is what it does to instrumental observa-

tion. But it is not as if there is no inference even in direct instrumental perception.

For example, while we may be able to see germs directly through a microscope

there is a systematic reasoning process to conclude that these are microscopic enti-

ties which are magnified by a certain amount and therefore their “real” size etc., are

also correspondingly small. So, information about and meaning of these entities are

often found by methods of scientific reason, in which inference plays an important

role. But at the level of perception, instruments such as telescope and microscope

yield direct perception. The fact that the size of what we see does not correspond to

the “real” size is not important because even in ordinary perception we see objects

having different sizes at different distances.

There is also indirect instrumental perception. In these cases, what we see di-

rectly through instruments is not indicative of the nature of the entity which is per-

ceived unless we make appropriate interpretation. In the case of a microscope, if

I see an object that is circular then it is highly probable that the object is indeed
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circular (given that the microscope does not cause distortion etc.), whereas for in-

strumental detection of various sub-atomic particles, my perceptual data would be

very different perceptually from what the object would “really” be like. (Sub-atomic

particles are of course a bad example since it is anyway difficult to say what they

really look like!) The cloud chamber experiment is one good example. In this exper-

iment, we can detect electrons and even use the data to calculate the ratio of charge

to mass of an electron. The cloud chamber has an electric and magnetic field. The

experimental output, the observational data, can be generated as a photograph which

shows a lot of lines on it. One of these lines (which look more like scratches on the

photograph) corresponds to an electron. There is no direct perceptual content in the

scratchy line that we see and we really cannot infer how an electron “looks” based

on this line. However, this line indicates the presence of an electron. If we do not

hold a theory that can tell us how an electron would behave under the action of elec-

tric and magnetic fields, how to isolate an electron which can first of all be placed

under the effect of these fields and so on, we would not be able to interpret a partic-

ular line as being indicative of the motion of an electron. But given a theory we can

make some inference from the perceptual data.

This process of inferring the existence and motion of an electron from a line

in a photograph is similar to the inference of an object from a sign. The line on the

photograph is like smoke at a locus. Our perceptual data is only the line/smoke from

which we infer that there is an electron/fire. The line/smoke is the sign. Following

Dignāga, we can ask how can we be certain that this sign is indeed referring to an

object? The line to an electron and smoke to the fire.

Let us first do a Dignāgian analysis on this sign. We want to know if the par-

ticular line in a photograph can be a valid sign that indicates with certainty the

presence of an electron. The first condition is satisfied as long as there is at least one

case. The second condition is that there should be some similar cases at the least.

An example of similar case would imply that we should look for similar situations

where we see both the electron and the photographic line. Obviously in an experi-

mental situation such as this, the similarity case is equivalent to reproducibility of

a phenomenon. What does the condition of reproducibility do? It is equivalent to

the homologue condition because for controlled experiments two properties arise

together not in natural situations but under particular experimental conditions. Why

is reproducibility of an experiment important? We think reproducibility verifies a

conclusion, makes it more certain that the relation we see in an experiment indeed

occurs over and over again. In other words, we create homologues by reproducing

the event. Each of these events are different because each time we reproduce the ex-

periment we are doing it at least at a different time, if not at a different place. Thus

each one of the experimental repetitions is a potential homologue. Reproducibility

is weaker than the condition of similar cases but the condition that signs should be

present in similar cases is also very much a part of scientific process. The priority

given to experiments that reach the same conclusion through different processes is

indicative of this move. There are many examples of this, including the well-known

one of finding Avogadro’s number by different means. The fact that all these differ-
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ent means of finding this number yield the same result implies that this number is

an objective fact.

Is it enough just to have similar cases? How would the third condition of het-

erologue play out in this example? The basic point about dissimilar case is that if

there is a similar line in the photograph even when an electron is not present then

we cannot be sure that the line is a mark of an electron. Since the line occurs under

the influence of an electric field the contrary would be a positive charged particle,

say a proton. Now, if a proton’s motion generated the same line in the photograph

then we can say that the presence of the line in the photo is not a valid inference to

an electron. Once again, since these are experimental setups and not natural cases,

if dissimilarity is part of the inferential argument then we can see its presence in

some experimental methodology, just like similar case is part of replicability. The

importance of null experiments in science is well documented. Not finding expected

results after performing an experiment gives an indirect proof of some aspects re-

lated to these results.

The question is this: how can an experimenter be sure that the mark of an elec-

tron is indeed a mark of the electron and not something else? Reproducibility can

only yield the equivalence of similar cases but can reproducibility give us certain

knowledge that the mark is indeed that of an electron?

To answer this, let us look at how this inference is generated in science. First

of all, there is no language of signs and relation of one sign-property to another.

The standard description is as follows. There are two possible general ways of un-

derstanding observational facts. One is that experiments are independent of theory

which they may be trying to prove or disprove and the other is that many experi-

mental results are discovered independent of any theory that one holds while doing

the experiment. The consequence of this is that experimental observations either

make meaning within the context of a particular theory or that these observations

are independent of any theory. The former view is called the theory-laden view of

observations and claims that observations make meaning only when interpreted ac-

cording to the theory one holds. This problem is compounded by the observation

that for a given set of observational facts we can have more than one equivalent

theory, in the sense that we can have theories that postulates very different kinds of

entities and principles and yet give an effective explanation of the facts. This view

is enshrined as the Quine-Duhem thesis. The basic idea here is that observations are

theoryladen and thus doing experiments to test a theory is to be involved in a circle

of validation. In the example of detecting electrons, one can argue that unless we

knew how electrons behaved under an electric field and how electric force modifies

its “trajectory” there is no way of interpreting the line as a trace of an electron’s

motion.
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18.7 Sign-Signified Relation in Applied Mathematics

There is one interesting aspect of the use of symbols in mathematics that is worth

mentioning here. The motivation for doing this is to indicate a formulation that

takes arbitrary symbols and creates signs which have a necessary relation with some

signified. The implication of this is that a sign-signified relation, which is necessary,

as in Indian logic, is closely aligned with formal structures in mathematics.

Symbols in mathematics are arbitrary. We can choose to let “m” stand for mass.

There is no natural relation between “m” and the real property of mass. The im-

plication of this is that in one problem I can choose “m” for mass and in another

I can choose “s” for mass if I like. Similarly for the velocity, which although is

often symbolised by “v” is in principle independent of the symbol I choose to rep-

resent it. This much is obvious but the next step adds an interesting twist. Given m

and v representing mass and velocity of an object, I construct a new symbol, mv2.

Now, if the earlier symbols were arbitrary, then it should follow that any complex

symbol formed from the simpler ones must also be arbitrary. However, the term
1
2 mv2 is the “sign” for another property of the moving object, its kinetic energy.

Interestingly, this sign for kinetic energy is the valid sign for it; no other combina-

tion of the simpler symbols can stand for kinetic energy. Therefore, kinetic energy

of any object (in classical physics) will be represented only by this sign and no other.

Thus, miraculously, from a combination of arbitrary symbols we seem to have con-

structed a sign which is in a natural relation with the signified!

Note that we do not assign an arbitrary symbol for the kinetic energy, which we

could have done if all we wanted to do was to assign symbols to all the properties.

But if we did assign an arbitrary symbol for all properties, including kinetic energy,

we would have missed this interesting occurrence of one property being associated

in an essential sense with one “sign”. Therefore, this suggests that while it is possi-

ble to associate an arbitrary symbol with every property, we might be missing some

important information if we focus only on the arbitrary nature of signs. In West-

ern philosophy, there is a strong move towards privileging the arbitrary nature of

sign. Ironically, one of the reasons for privileging the arbitrary nature is that it en-

ables construction of a rich domain of symbols, one that is very important both for

mathematics and logic.

This shift from the arbitrary to the necessary is not restricted to kinetic energy but

is found in all physical concepts that have a mathematical sign representing them. In

fact, this natural association is a very important methodological tool for theoretical

research since it allows us to detect where physical concepts could lie hidden in

some mathematical description.

What is interesting is that this is not necessarily of that much importance in pure

mathematics as it is in applied mathematics. One of the reasons why mathematics

is so effective in describing the real world lies in its use of this matching between

signs in its discourse and some physical concepts that these signs stand for. It is clear



352 S. Sarukkai

that there is no causal link between these signs and the appropriate physical con-

cepts. But then what gives the notion of necessity in this relation? We can recollect

Dharmakīrti’s classification of the types of inference as being of own-nature along

with causal relation and non-perception. It has been suggested that own-nature infer-

ences are like analytical statements. Associating specific complex signs for specific

physical concepts is made possible through definition. Thus I define kinetic energy

to be 1
2 mv2 but this is not an arbitrary definition. I cannot define kinetic energy in

any other way! And in representing kinetic energy mathematically, I can only use

this sign or its symbolic equivalents (like p2

2m
, where p is the momentum, which

classically is equal to mv).

This suggests that the analysis of the sign-signified relation in the use of mathe-

matical symbols for physical concepts falls under a particular analysis of signs. And

this analysis is well described by Dignāga’s basic question of asking when is a sign

a logical sign? To paraphrase it for the example discussed above, we can ask when

is the sign for kinetic energy a valid sign which really stands for the concept kinetic

energy? More detailed analysis of this issue will take me too far away from what

I want to do in this book. I mention it only to emphasise that the notion of natural

related signs is of central importance to both science and Indian logic.

Mathematics is the best example of a discipline that essentially depends on the

power of symbolisation. However, the notion of arbitrary symbols has been given

undue importance in understanding the nature of this symbolisation. Applied math-

ematics, mathematics that is used in the sciences, poses a challenge to the arbitrary

nature of symbols that occur in “pure” mathematics. That meaning accrue to sym-

bols is a possibility that mathematics has to accept. This is manifested in the prac-

tice of applied mathematics in many different ways. I will briefly discuss two uses

of symbols in mathematics that demand a more sophisticated interpretation of signs

in mathematics, which includes the possibility of certain signs capturing a special

relation to the signified.

The first is the mode of what I have elsewhere called “alphabetisation” in math-

ematics.20 This is a description of how mathematics creates its “alphabets”. Math-

ematical discourse has an interesting way of representing various mathematical en-

tities. The patterns of the symbols actually communicate information. If symbols

are seen as arbitrary it is equivalent to saying that symbols do not carry any prior

meaning. But if we look at how symbols are created, especially complex patterns

representing various mathematical objects, then we can easily see how meaning is

encrypted into the patterns of the symbols. Therefore, to look upon mathematical

symbols as being arbitrary is to misunderstand the creative use of symbols in math-

ematics. There is an intriguing possibility that by looking at symbols we can know

what it signifies by unpácking the meaning of its pattern. That is, the relation be-

tween sign and signified could be hidden in the way the symbol is written! One

illustration of this possibility lies in the importance of visual form and its role in

applied science. From mathematical patterns, physicists can deduce what mass a

20 Sarukkai 2002.
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particle has or what physical concept occurs where in a mathematical description. A

discussion of this will take me too afar but I mention this here to motivate the notion

of the importance of “natural” relations which are captured in particular signs. These

are the kinds of signs that are privileged in Indian logic and we thus see new ways

of drawing upon this tradition to reflect on contemporary science and mathematics.

Indian logic is an exemplar of scientific method. The strict conditions on confir-

mation, verification and falsification are methodological constraints in any inference

that is accepted as valid. The Indian philosopher’s search for necessary relations as

invariable concomitance is similar to the modern day scientist’s search for laws. The

excessive dependence of Indian logicians on causal relations brings their concerns

closer to the revivalist theories of causal description of scientific processes. It is,

therefore, a cause of great surprise that philosophy of science has been immune to

the intellectual charms of Indian logic!21
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Chapter 19

The Concept of Hetvābhāsa in Nyāya-śāstra

K. Ramasubramanian

19.1 Introduction

The singular and unprecedented contribution of the Nyāya school1 that greatly in-

fluenced all other branches of learning in the Indian tradition is the development

of a full-fledged pramān. a theory. The word pramān. a refers to the different means

of knowledge, such as perception, inference, analogy and verbal testimony. Of the

different pramān. as – whose foundational basis, relative strengths and the domain

of applicability have been thoroughly analysed and discussed at great length by

philosophers belonging to different schools – it is the anumāna-pramān. a (theory

of inference) that has received greatest attention amongst the Naiyāyikas2 belong-

ing to the ancient, 3 medieval as well as the recent past.

The influence of the pramān. a theory both on the dialogical and philosophical

discourse has been, and still today is, primarily three fold : (i) it furnishes the re-

quired grounding for the thesis to be backed up by a certain pramān. a, (ii) provides

the necessary platform to incisively weigh/analyse the proposed thesis, and (iii) en-

ables to succinctly summarise the observations, that stem out of the analysis, in the

form of an anumāna or nyāya-prayoga4. The advantages that could be had – in

terms of increased precision, brevity and clarity – either in formulating the problem

or in expressing one’s thoughts in a concise form using the anumāna-pramān. a,

K. Ramasubramanian
Cell for Indian Science and Technology in Sanskrit, Department of HSS, IIT Bombay, Mumbai
400 076, India, e-mail: kramas@iitb.ac.in

1 One of the major philosophical systems that flourished in ancient India which was given a solid
shape by Gotama (c. 3rd century BC) in the form of Nyāya-sūtras.
2 Those who have committed themselves to the study of Nyāya-́sāstra.
3 Bhadrabāhu, a Jaina logicican of the 4th century BC – considered to be the eighth successor of
Mahaveer – recommends a ten-step argument to ensure that the inference made is a valid one.
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gave the logicians the necessary impetus for advancing their theory of inference to

much greater depths. Consequentially, an enormous amount of literature in the form

of textbooks, glosses and commentaries, came to be produced continuously in quick

succession. Particularly, this is true of the post-Gaṅgeśa (13th century AD) period

during which the growth was indeed exponential.

The works in Nyāya-śāstra not only discuss the aggregate causal conditions and

the process involved in getting an inferential cognition, but also thoroughly anal-

yse the factors that help to assess and decide whether a given inferential cognition

is valid or otherwise. It is precisely in this context, that the theory of hetvābhāsa
got germinated and later developed into a rich discipline of study in itself. In fact,

there are numerous source works in the Nyāya literature extant today, that are ex-

clusively devoted to discuss the theory of hetvābhāsa and its classifications, besides

the secondary ones – which are practically innumerable – in its multifarious forms.

The aim of the present paper is to explain the concept of hetvābhāsa – primarily

making use of the definition provided by Gaṅgeśa in his monumental work Tattva-
cintāman. i – with an emphasis to bring out the distinction it bears with what is

generally known as logical fallacy or fallacious reasoning in the western logic. We

also briefly describe the classification of hetvābhāsa, as presented in any of the

typical introductory texts on Indian logic, with a few illustrative examples.

19.2 Means and Types of Cognition in Nyāyaśāstra

The present section, and the one that follows – though may seem to be, of course

deceptively, not linked with primary theme of the article – are meant to provide

the necessary background to facilitate the reader develop a fuller and proper under-

standing of the concept of hetvābhāsa to be presented in the later sections.

In Nyāyaśāstra – based upon the temporal aspect of the event that is being cog-

nized – cognition is broadly classified into two types, namely (i) Smr. ti (Recollec-

tion) and (ii) Anubhava (Experience). From a completely different view point, both

the above mentioned types can be further divided into:

1. Valid cognition (yathārthānubhavah. ) – A cognition that cognizes an attribute

as belonging to a thing which really possesses it is valid.5 It is also referred to as

pramā in the literature; and

2. Invalid cognition (ayathārthānubhavah. ) – A cognition that cognizes an attribute

as belonging to a thing which does not really possess it is invalid.6 It is also

referred to as apramā/bhramah. in the literature.

As an illustration of the latter classification, let us consider the experience that

most of us would have had – as passengers seated in a train – at sometime or the

5 taA;dõ ;�a;ta ta;tpra;к+:a:=+к+:eaY;nua;Ba;vaH ya;Ta;a;TRaH – Tarkasaṅgraha of Annambhat.t.a.
6 ta;d;Ba;a;va;va;�a;ta ta;tpra;к+:a:=+к+:eaY;nua;Ba;vaH A;ya;Ta;a;TRaH – Tarkasaṅgraha of Annambhat.t.a.
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other. For a moment, let’s assume that the train in which we travel has come to

a halt in a railway platform, just next to another stationary train. The moment the

other train sets into motion, we would feel as if our train has set into motion. This

type of cognition – in which the attribute (motion) belonging to something else

(the other train) has been attributed to something else (our train) which does not

possess it – that is called “invalid”, as against the “valid” cognition of recognizing

the motion of the other train to be its own, which anyway occurs very soon as the

other train picks up speed and/or leaves the platform. Without getting into the details

of whether the above definition is complete and comprehensive to take into account

all the different possible illusions that can arise – such a disucssion being out of

the scope of the present paper – we quickly move on to briefly outline the different

means of knowledge accepted in the Nyāya school.

19.2.1 Means of Knowledge

As mentioned earlier, in Sanskrit literature, the sources or means through which a

cognition arises is called pramān. a. In the Nyāya school, the different means that

contribute to the generation of cognition has been broadly grouped into four cate-

gories as indicated in Table 19.1. This division of pramān. a-s – which must have

been there, in some form or other from time immemorial, nevertheless which is cer-

tainly found in the Vedas7 – into exactly four types is noted in the Nyāya tradition

atleast from the time of Gotama (3rd century BC), if not earlier. The third sūtra of

Gotama’s Nyāyadarśana presents the list of the four pramān. as as follows :

:pra;tya;[a;a;nua;ma;a;na;ea;pa;ma;a;na;Za;b.d;aH ‘:pra;ma;a;Na;a;�a;na’ Á 8
Perception, inference, assimilation and verbal testimony are the four means of knowledge.

1. Pratyaks.am Perception
2. Anumānam Inference
3. Upamānam Analogy

4. Śabdah. Verbal testimony

Table 19.1 The different means of knowledge accepted in the Nyāya tradition.

Cognition of certain things can happen by employing all the four pramān. as listed

in Table 19.1. For instance, consider an “iron ball” that has been just heated and kept

aside for annealing, and whose temperature is slightly below the red hot tempera-

ture. The heat present in the iron ball can be cognized by all the four pramān. as:

7 In Kr. s.n. a-yajurveda-Āran. yaka, Chapter 1, we have the following lines – .smxa;�a;taH :pra;tya;[Ma
Oe;;�a;ta;hùÅ:a;m,a Á A;nua;ma;a;na;(ãÉa;tua;�;ya;m,a – which speaks of four means of knowledge.
8 Gotama’s Nyāya-sūtras, I.1.3.
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• The father (a blacksmith) advises his little son – “Don’t go near it. It will be

very hot”. If the son understands, then the cognition of heat that arose is through

Śabda.

• If the son does not know how hot the iron ball would be and the father explains

– The ball will be as hot as burning fire – then the assimilation of heat is through

simile called Upamāna.

• Because of enthusiasm, the little son goes near the ball, feels the radiation, infers

that it should be quite hot and returns back without physically touching the ball

– Here the cognition is through Anumāna.

• If the boy is over enthusiastic/mischievous, he may even touch the ball to burn

his fingers – It is Pratyaks.a, direct experience.

While the above example illustrates that certain things can be cognized by em-

ploying all the four pramān. as, there are instances wherein the cognition can take

place only by means of a single pramān. a. This has been explained succinctly by

Vātsyāyana, with aptly chosen examples, while commenting upon the third sūtra
of Nyāya-darśana.

‘A;�a;çÉîå+;a;h;ea:�Ma .jua;hu ;ya;a;t,a .~va;gRa;к+:a;maH’ I+.�a;ta l+.Ea;
a;к+:к+:~ya .~va;geRa – na ;�a;l+.ñÍç ÅÅ*:+.d;ZRa;nMa na :pra;tya;[Ma,
.~ta;na;�a;ya;�ua;Za;b.de (rUa;ya;ma;a;Nea Za;b.d;he ;ta;ea:=+nua;ma;a;nMa – na :pra;tya;[Ma na;a;ga;maH , :pa;a;Na;Ea :pra;tya;[a;taH
o+.pa;l+.Bya;ma;a;nea – na;a;nua;ma;a;nMa na;a;ga;ma I+.�a;ta, . . . 9

“One who is desirous of heaven may perform agnihotra”.10 From this [injunction found
in the Vedas], an ordinary human being comes to know of “heaven” [by verbal testimony
and] – the means is not the sight of a “liṅga”11 or perception. On hearing the sound of a
thunder, he infers of thunder and – the means here is neither perception nor verbal testimony.
Looking at an entity in one’s own palm, [the object is cognized by perception and] – the
means here is neither inference nor verbal testimony.

Another feature that merits mentioning here is that the pramān. a theory as pre-

sented by the Indian logicians is “not” a near-kin of the Western epistemology in

the sense that in the latter, the epistemological issue which primarily determined

the course of western philosophy is the fundamental question – Does knowledge

arise from reason or experience? However, in Indian philosophy there has been no

such debate, regarding pratyaks.am or anumānam. In fact, all schools of philoso-

phy have unequivocally accepted pratyaks.am as the primary means of knowledge.

However, in Indian philosophical systems, pratyaks.am is not restricted to sensory

perception alone. It includes, cognition of the Self (ātmāparoks.atvam. ), the Univer-

sals like cowness jātipratyaks.atvam. , and so on.

9 Ibid .
10 Agnihotra is a ritual and this sentence is an injunction found in the Vedas.
11 Liṅga is a technical term used to refer to something (say A), the knowledge of which makes us
immediately infer something else (say B), because of the knowledge of the invariable concomitance
(vyāpti) between A and B, that we already possess.
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19.2.2 Irreducibility of Knowledge

It was explained in the previous section with an illustration that the same object may

be cognized using different pramān. as. When different pramān. ās cognize a given

prameya12 the cognition that arises – which is termed as phalam in Table 19.2 –

would naturally be of the same prameya. However, notwithstanding the fact that

different pramān. as give rise to pramā (a valid knowledge) of the same prameya, it

doesn’t mean that the pramās themselves reduce/collapse to one another. It would

still be possible to distinguish one pramā from the other, because the first two of the

three factors listed in Table 19.2 differ from pramān. a to pramān. a.

1. KARAN. AM – Special or efficient cause.
2. VYĀPĀRA – Intermediate cause.
3. PHALAM – Final result (cognition)

Table 19.2 Factors that distinguish the different pramān. as.

In fact, a salient feature of pramān. a theory is that a pramā that is generated

by one pramān. a “cannot” be reduced to the one generated by the other, even if it

is of the “same” entity, as each of them is caused by a unique aggregate of causal

conditions.

It is precisely these unique set of causal conditions that give rise to different

pramān. as. Having identified the aggregate causal conditions, Indian logicians have

grouped them with three names/factors as indicated in Table 19.2. As an illustra-

tion, in Table 19.3 we indicate the three factors that distinguish the two praman. ā-s

pratyaks.am and anumānam.

PRAMĀN. AM

Factors Pratyaks.am (Perception) Anumānam (Inference)

KARAN. AM Sensory organs Universal correlation called the
Vyāpti

VYĀPĀRA Link between the sensory organ and the
object

Subsumptive correlation called
the Parāmarśa

PHALAM Perceptive knowledge called
Pratyaks.am

Inferential knowledge called An-
umiti

Table 19.3 Aggregate causal conditions that generate perceptual and inferential cognition.

It may be mentioned here that the concept of karan. am – that happens to be vyāpti
in the case of anumānam – introduced here, plays a key role in the discussion of

hetvābhāsa to be taken up in the following sections.

12 An entity or event that comes to the light of knowledge through a certain pramān. a.
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19.3 Anumāna and Nyāya-prayoga

The etymological derivation of the word anumāna is –

ANUMĀNA = ANU + MĀNA

(that which follows or (means of

becomes operative after) knowledge)

From the above derivation it is clear that anumāna-pramān. a come into play only

when it is preceded by a cognition generated through certain other pramān. a. The

pramān. a that should precede anumāna – or after which anumāna becomes op-

erative, if it can – could either be (i) pratyaks.a or (ii) śabda. Vātsyāyana in his

commentary to Nyāya-sūtra observes:

:pra;tya;[a;a;ga;ma;a;a;(ra;ta;ma;nua;ma;a;na;m,a Á .sa;a A;nv�a;a;[a;a Á
ta;ya;a :pra;va;tRa;ta I+.tya;a;nv�a;a;�a;[a;к
 +:a, nya;a;ya;
a;va;dùÅ;a;a, nya;a;ya;Za;a;~:�a;m,a Á
Anumāna is dependent on (takes place only after) pratyaksa or āgama. [Thus] it is the
process of looking over again. Since this (discipline of logic) springs out from that (anv̄ıks. ā)
it is called ānv̄ıks. ik̄ı, also known as nyāyavidyā or nyāyaśāstram.

A generic anumāna-prayoga13 will be of the form – “S is p because of m.”

:pa;vRa;ta;ea va;
a;�îå+:ma;a;n,a ;DUa;ma;a;t,a
(The mountain) (has fire) (because of smoke)

:pa;[aH .sa;a;DyMa :he ;tuaH
(Minor term) (major term) (middle term)

Note: Here it needs to be mentioned that the English translations such as minor

term, major term and the middle term, do not convey the meanings of their Sanskrit

terminologies. However, in order to facilitate the understanding of those who are

completely alien to the Indian terminologies, they have been provided here.

A renowned scholar of modern times, J. N. Mohanty, commenting upon the the-

ory of anumāna observes:

The word logic is of western origin and has gathered a connotation of its own. The
anumāna theory is a system by its own right. It is not the same as either Aristotelian
syllogistic or modern predicate calculus, it is not for that reason illogical.14

A complete syllogistic expression called Nyāya-prayoga consists of five parts –

13 The term prayoga, employed here as well as in other contexts later, means – usage.
14 J.N.Mohanty Reason & Tradition in Indian Thought, Claredon Press, Oxford 1992, p.106.
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1. The thesis (pratijñā)
2. The reason (hetuh. )
3. The exemplification (udāharan. am)
4. The subsumptive correlation (upanayah. )
5. The conclusion (nigamanam)

As an illustration of the above we may consider the standard example of the

smoke and the fire:

1. :pa;vRa;ta;ea va;
a;�îå+:ma;a;n,a Á
The mountain possesses fire.

2. ;DUa;ma;a;t,a Á
Because it possesses smoke.

3. ya;ea ya;ea ;DUa;ma;va;a;n,a, .sa .sa va;
a;�îå+:ma;a;n,a; ya;Ta;a ma;h;a;na;saH Á
Whatever possesses smoke possesses fire as does the kitchen stove.

4. ta;Ta;a ..ca A;ya;m,a Á
The mountain is like that.15

5. ta;sma;a;t,a ta;Ta;a Á
Therefore, the mountain is like that (i.e. possesses fire).

This scheme of presenting an argument or proving the existense of something

based on the knowledge of something else is at least as old as Gotama. The concept

of invariable concomitance (vyāpti) plays a crucial role in nyāya-prayoga.

19.3.1 Justification for Using Five-Membered Structure

In the scheme of five-membered structure described above, it may seem as though

(1) and (5) are same; But strictly speaking they are not so. This could be rec-

ognized once we consider the fact that it is in the context of parārthānumāna
(dialogical-disputational discourse) that this five-membered structure is recom-

mended. It must be noted that:

(1) – is just a thesis (to be proved) and
(5) – is conclusion (asserted statement).

Further, (1) may be true for the I cognizer (utterer), but not for the hearer in whom

the inferential cognition is desired. Similarly (2) and (4) are not the same. The smoke

in (4) is no more the smoke per se, but smoke qua with which the fire is known to

be invariably concommitant. Once this step is taken, i.e. the cognition content of

the upanaya-vākya is aroused in the hearer – true to the nomenclature which means

15 That is, possesses smoke with which fire is invariably concommitant.
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“taking close” – the final cognition is almost unavoidable. This is indicated by the

use of the word tasmāt. Thus we see that in the inferential process described above,

if the first four cognitions (1) – (4) occur, then the set of all the necessary and

sufficient conditions for the final inferential cognition to arise being satisfied, it is

bound to occur and the inferential process is said to be complete.

In the section that follows we will explain the key role played by hetvābhāsa
either in allowing the inferential process to go thorough and thereby ensure that the

inferential cognition that finally arises is both valid and sound, or in stalling the

inferential process somewhere inbetween – which can happen anywhere between

stages (1)– (4) listed above – and thereby terminate the process before it gets suc-

cessfully completed.

19.4 Hetvābhāsa

The word hetvābhāsa is actually a compound word. By compound word we mean a

word – which is to be considered as “one” unit as per the rules of grammar – formed

by grouping a few nouns together. The process of grouping is technically called

samasanam. or more commonly as samāsa16 in the Sanskrit literature. The word

hetvābhāsa serves as an example of a compound word formed out of two nouns put

together as indicated below.

HETVĀBHĀSA = HETU + ĀBHĀSA

Mark/Reason Defect/Impostor

It does not require much expertise in Sanskrit to get a hunch of the word

hetvābhāsa to be a compound word. But beyond that, to know as to what type

of compound (samāsa) it belongs to, is not quite a trivial thing to be guessed and

requires a much deeper analysis. However, for our present discussions – without

getting much into the details of the various possible derivations of this compound17

and the etymological derivation of its consitutents – it would suffice to simply take

it as hetu-dos.a. That is,

HETVĀBHĀSA = Defect in the hetu/Impostor of the hetu.

It would be best to proceed with further discussions on hetvābhāsa with a word of

caution here. It is not uncommon to find secondary literature translating hetvābhāsa

16 In making samāsās (forming compound words), while there is a lower bound – which conceiv-
ably is two – there is no upper bound on the number of nouns that can be grouped together.
17 Whether it has to be considered as a s.as.t.h̄ı-tatpurus.a compound or as a upamāna-pūrvapada-
karmadhāraya compound is a matter of detail and depends on how one would like to view it. In
the former case, we have to derive the compound as – hetoh. ābhāsah. (dos. āh. ) = hetudos. āh. ,
which means a “faults in hetu”, while in the latter the compound has to be derived as – hetuvat
ābhāsante = hetvābhāsāh. , which means “semblance of hetus”.
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as “fallacious reasoning” or “fallacy in reasoning”. Such a translation is simply

wrong – and is quite likely to be misleading from having a proper understanding

of the significant role played by hetvābhāsa in the anumāna theory – because in

the western tradition the term fallacy is used to connote either a defective process

of thinking or a violation of some formal structure of argument or rule that has been

agreed upon. The term hetvābhāsa refers to neither of them and in fact, the word

literally means – what appears to be a hetu while it is not so. Strictly speaking, the

concept of hetvābhāsa does not have a parallel in the western logic at all.

As far as the studies in Indian logic – or for that matter any other discipline of

śāstra – is concerned, a proper understanding of the concept of hetvābhāsa and its

classification is very essential. On may go to the extent of saying that it is a must

without which it may not even be possible to have a purposeful and/or meanigful

discussion. This is because, in dialogical debates, more often than not, anumāna
or nyāya-prayoga would be made use of, to establish one’s own thesis. When an

anumāna is employed, and if the opponent is able to point out a hetvābhāsa, the

anumāna becomes invalid and one may have to retract back embracing defeat,

unless one could strongly defend his thesis against the hetvābhāsa that has been

spelled out. It is precisely in the context of dialogical debates, that a sound knowl-

edge of hetvābhāsa and its classification comes quite handy. Further, it must be

noted that when there is an ābhāsa in hetu, there is bound to be an ābhāsa in the

inferential cognition that would be arising shortly. Thus the notion of invalid/valid

inference (sadanumāna/anumānā-bhāsa) depends crucially upon the recognition

of the presence/absence of hetvābhāsa.

19.4.1 Definition of Hetvābhāsa

Though Gotama himself has used the word hetvābhāsa,18 and has classified it into

five categories, the first and most comprehensive general definition of hetvābhāsa
is given by Gaṅgeśa (14th century) in his Tattva-cintāman. i –

A;nua;�a;ma;�a;ta-к+:a:=+N�a;a;BUa;ta;a;Ba;a;va;pra;�a;ta;ya;ea;�a;ga;ya;Ta;a;TRa::]a;a;na;
a;va;Sa;ya;tva;m,a - :he ;tva;a;Ba;a;sa;tva;m,a Á

For the purposes of convenience, this definition of Gaṅgeśa has been rephrased

by the later authors such as Annambhat.t.a in their introductory texts – to avoid

certain technical jargon, while retaining the purport in tact – as follows:

A;nua;�a;ma;�a;ta;pra;�a;ta;ba;nDa;к+:ya;Ta;a;TRa::]a;a;na;
a;va;Sa;ya;tvMa - :he ;tva;a;Ba;a;sa;tva;m,a Á
The defect of hetu is its being the object of contradictory valid knowledge, which inhibits
the inferential cognition.

18 Of the sixteen padārthas listed by Gotama in the very first sūtra of the Nyāya-́sāstra,
hetvābhāsa happens to the 13th in the listing.
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While explaining the above definition, it is further mentioned by the commen-

tators that the word anumiti occuring in the above definition should be taken as

upalaks.an. a. That is, the word anumiti should be understood to be referring to not

only anumiti per se, but also to the factors that contribute to anumiti. Among the

various factors19 two most important ones are – vyāpti and parāmarśa (refer Ta-

ble 19.3). Referring to these factors are karan. as a more refined definitions can also

be found in various texts.20.

The central idea behind the above definition is – An inferential cognition of the

form “S is p because of m” would be prevented from occuring if the hearer had a

valid knowledge of a situation, which has in fact “a defect of m as a mark of p in S”.

As illustration of this, let us consider the following examples –

• Example 1: Directly anumiti is prevented.

:hò ;d;ea va;
a;�îå+:ma;a;n,a ;DUa;ma;a;t,a
The lake possesses fire because it possesses smoke.

• Example 2: Here anumiti-karan. a, namely vyāpti is prevented.

:pa;vRa;ta;ea va;
a;�îå+:ma;a;n,a ga;dR ;Ba;a;t,a
The mountain possesses fire because it possesses donkey.

In Example 1, the intended inferential cognition (lake possessing fire) namely

anumiti does not take place, because the hearer already possesses a contradictory

valid knowledge (that the lake does not possess fire), that is born out of his visual

perception. In Example 2, the anumiti does not take place because the required

vyāpti of the form, wherever there is donkey there is fire is prevented by a contra-

dictory valid knowledge.

19.4.2 Import of the Word yathārtha in the Definition

In order to ensure that a valid inference does not stand inhibited – by a false contra-

diction that is entertained because of the non-apprehension of its falsity – the term

yathārtha has been employed as an adjective to the word jñāna in the definition of

hetvābhāsa. We illustrate this idea directly by citing an example –

• Suppose someone entertains the thought –

– o+.dùÅ;a;a;nMa na va;
a;�îå+:ma;t,a h;�a:=+ta;a;t,a Á
19 Some of them quite peripheral such as the environment, one’s own status of mind and so on.
20 One of the commonly used ones, that is obtained by replacing the word anumiti by anumiti-

tatkaran. a-anyatara. Thus the full form would be – A;nua;�a;ma;�a;ta;ta;tк+.=+Na;a;nya;ta:=+pra;�a;ta;ba;nDa;к+:ya;Ta;a;TRa-
:]a;a;na;
a;va;Sya;tva;m,a – :he ;tva;a;Ba;a;sa;tva;m,a Á
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– The garden has no fire because it is green.

• Such a thought would contradict the right conclusion one may draw based on the

anumāna –

– o+.dùÅ;a;a;nMa va;
a;�îå+:ma;t,a ;DUa;ma;a;t,a Á
– The garden has fire because of smoke.

If we were to omit the word yathārtha in the definition of hetvābhāsa, then there is

a possibility that the valid conclusion (that the garden has fire) may be pronounced

invalid, because there is a contradictory proposition (that the garden is green), which

stifles the conclusion. It is precisely to circumvent this problem, the word yathārtha
has been rightly introduced. Since there is no invariable concomitance (vyāpti) be-

tween greenery and absence of fire, a mere contradictory proposition does not be-

come an object of a valid knowledge yathārtha-jñāna, and hence does not inhibit

the right conclusion. In other words, inclusion of the term yathārtha guarantees

that what is sought after is the “factual inhibition” and not inhibition based on the

thoughts entertained.

For factual inhibition, the contradiction must be valid; needless to say that the

logical validity of the contradictory proposition is to be determined by its correspon-

dence to fact. In the language employed by the Nyāya school, this correspondence

to the fact is called artha-sārūpya or vis.aya-sārūpya.

19.4.3 Falsifier is Valid Knowledge and Not Fact

A proposition can be declared false or a knowledge invalid only if there exists

a contradictory valid knowledge corresponding to a contradictory true proposi-

tion. A proposition is true provided it corresponds to a fact. This correspondence

called artha-sārūpya may be stated as – Structural semblance between proposi-

tional knowledge and its factual object. Now it obviously follows that, it is the valid

knowledge of the true proposition which possesses this artha-sārūpya and not the

invalid knowledge of the false proposition. Thus it is the presence or absence of

artha-sārūpya that makes a true proposition true and its contradictory proposition

false.

Here, it must be noted that the false proposition does not directly correspond to

the fact. It has only indirect reference to the fact through the valid knowledge of the

true proposition which corresponds to the fact and contradicts the false proposition.

Thus the fact falsifies a false proposition only through the valid knowledge and

not directly. The direct and immediate falsifier of a false proposition is the valid

knowledge of an acceptedly true contradictory proposition which corresponds to the

fact. A careful study of the definition of the hetvābhāsa, reveals that, it is only after

considering all this into account that Gaṅgeśa comes up with his brilliant definition.
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19.5 Classification of Hetvābhāsa

For the purposes of convenience, hetvābhāsa-s are primarily classified into the fol-

lowing categories :

1. .sa;v.ya;�a;Ba;.ca;a:= (Savyabhicāra) Straying reason

2. ;
a;va:�+.;dÄâ (Viruddha) Contradicting reason

3. .sa;tpra;�a;ta;pa;[a (Satpratipaks.a) Opposable reason

4. A;�a;sa:;dÄâ (Asiddha) Unestablished reason

5. ba;a;�a;Da;ta (Bādhita) Stultified reason,

The list above is the set of defective reason. The defects are :

1. v.ya;�a;Ba;.ca;a:= (Vyabhicāra) 2. ;
a;va:=+ea;Da (Virodha)

3. .sa;tpra;�a;ta;pa;[a (Satpratipaks.a) 4. A;�a;sa;�a:;dÄâ (Asiddhi)
5. ba;a;Da (Bādha)

These defects when identified in the hetu prevent it OR make it impotent to give

rise to the inferential cognition. In the following, we provide an overview of these

defects – along with their subdivisions – with a few illustrative examples of the

same without getting deep into the technical details of the basis and soundness of

their classification.

19.5.1 Savyabhicāra (The Straying Reason)

The first of the five hetvābhāsa-s listed above is further divided into three types –

1. Sādhāran. a (Common strayer)
2. Asādhāran. a (Uncommon strayer)
3. Anupasamhārin (Non-conclusive strayer)

The Nyāyasūtra (1.2.5) reads – anaikāntah. savyabhicārah. . The derivation of

the word anaikāntah. is as follows:

Ekānta One extreme
Ikāntika Confined to one extreme
Anaikāntika Not confined to one extreme

The concepts of Ekānta and Anekānta as defined by the commentators

Vātsyāyana and Uddyotakara are similar to the exclusive and non-exclusive dis-

junction which are quite familiar in modern logic. A valid generalisation (vyāpti)
of the form that which has smoke has fire is a member of exclusive disjunction.

There are two extreme cases possible – (i) Any object having smoke has fire. (ii)

Any object having smoke does not have fire.
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Here the truth of the first excludes the truth of the other. Thus the two members

are two ekānta-s (exclusive extremes). The hetu cannot go with both. On the other

hand, the term Anaikāntika gives the idea of non-exclusive disjunction. Of the three

varieties of savyabhicāra we consider only the first one for a detailed explanation

below.

Sādhāran. a (Common Strayer)

We explain this by considering the example provided by Vātsyāyana in his com-

mentary on Nyāya-sūtra:

Za;b.d;ea ;�a;na;tyaH A;~å.pa;ZRa;tva;a;t,a Á
Sound is eternal because it is non-tactile object.

For the inferential cognition to arise we need to have vyāpti of the form – That

which is a non-tactile object is eternal. Now we can think of two extreme possibili-

ties:

1. A non-tactile object is eternal. (Ex: Ātmā, Self)

2. A non-tactile object is not eternal.(Ex: Buddhi, Mind)

Here the truth of the first DOES NOT EXCLUDE the truth of the other. That is

the two members are not two ekānta-s (non-exclusive extremes). The hetu can

go with eternality as well as non eternality. Thus we have a situation where the

hetu Anaikāntika (i.e. not exclusively attached to one member of the disjunction).

Hence, NO vyāpti and NO anumiti. This is succinctly described in a captive style

by Vātsyāyana –

;�a;na;tya;tva;ma;
a;pa O;;кH A;ntaH; A;�a;na;tya;tva;ma;
a;pa O;;кH A;ntaH; O;;к+:�/////////�a;sma;�a;ntea ;
a;va;dùÅ;a;tea I+.�a;ta
Oe;;к+:a;�////�a;nta;кH , ;
a;va;pa;yRa;ya;a;t,a A;nEa;к+:a;�////�a;nta;кH , o+.Ba;ya;a;nta;v.ya;a;pa;к+:tva;a;t,a Á

This defect is called sādhāran. a because the hetu is common to both the presence

and absence of sādhya.

19.5.2 Viruddha (Contradicting Reason)

This refers to defect in proposing the hetu which is in direct contradiction to vyāpti.
Consider the example

Za;b.d;ea ;�a;na;tyaH к+:a;yRa;tva;a;t,a Á
Sound is eternal because it is produced.
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In this instance, for the inferential cognition to arise we need to have vyāpti :

That which is produced is eternal (V1).

It is well known that anything that is produced is non-eternal. If it were eter-

nal it cannot be produced (a self-contradiction). In fact, there is vyāpti between

producibility and non-eternality (V2). This contradicting valid knowledge of the V2

will inhibit V1, that is required for the inferential cognition to take place. Such an

instance is called viruddha and the definition given by Gaṅgeśa is:

.sa;a;Dya;v.ya;a;pa;к+:a;Ba;a;va-:pra;�a;ta;ya;ea;�a;ga;tvMa ;
a;va:�+.;dÄâ ;tva;m,a Á

19.5.3 Satpratipaks.a (Opposable Reason)

Consider the following inferences:

1. Za;b.dH A;�a;na;tyaH к+:a;yRa;tva;a;t,a, ;Ga;f;va;t,a Á – (A1)

Sound is not eternal because it is produced like a pot.

2. Za;b.d;ea ;�a;na;tyaH (ra;a;va;Na;tva;a;t,a, Za;b.d;tva;va;t,a Á – (A2)

Sound is eternal because it is audible like the soundness.21

For the inferential cognition to arise – in the case of (A1) we need to have vyāpti
: That which is produced is not eternal, example “pot” and – in the case of (A2) we

need to have vyāpti : That which is audible is eternal – example “soundness”. Now

there is a crying contradiction:

From A1 – A is B; and From A2 – A is not-B,
where A is śabda and B is non-eternality.

If we represent the hetu-s in A1 & A2 by C and D, then the vyāpti-s are:

In A1 : C is B
In A2 : D is not-B

It may be noted that the two hetu-s C and D try to counter each other, by trying

to prove the presence and absence of B in A. Logically, either of them may be right

or both could be wrong. But the situation is dicey. Y makes a counter proposition;

X gets confused. He is unable to fix the falsity in either of the propositions. This

situation which is referred as – agr. h̄ıtāprāmān. yaka that leads to mutual inhibition.

21 A maxim in Indian logic – that goes as, ya;ea gua;Na;ea ya;
a;d;�///�a;ndÒ +ya;g{a;a;hùÅ:aH , ta;a;�a;�+a .ja;a;�a;taH ta;d;Ba;a;va;(ãÉa
ta;
a;d;�///�a;ndÒ +ya;g{a;a;hùÅ:a;Ea – states that, a sense organ that perceives a property also perceives the “property-
ness” as well as the absence of that property.
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19.5.4 Asiddha (Unestablished Reason)

This refers to defect in proposing the hetu whose existence has not yet been estab-

lished with reference to the paks.a (minor term). This is primarily of three types:

1. Āśrayāsiddha (in respect of locus)
2. Svarūpāsiddha (in respect of itself)
3. Vyāpyatvāsiddha (in respect of concommitance)

Now let us consider the example of 2:

Za;b.d;ea gua;NaH ..ca;a;[ua;Sa;tva;a;t,a Á
Sound is quality because it is visible.

For the inferential cognition to arise we need to have vyāpti : That which is

visible is a quality – example “color”.

But the problem here is – the existence of visibility in sound is not yet estab-

lished. Only when its presence is settled, can we think of proceeding further to

prove whether sound is quality or otherwise. This idea is succinctly putforth by

Uddyotakara in his commentary to Nyāyasūtra :

:pra::]a;a;pa;n�a;a;ya;Da;mRa;sa;ma;a;naH Á
This has the same status of the thing to be established.

Here the term prajñāpan̄ıya means the thing to be shown/proved (sādhya). The

problem of Āśrayāsiddha may be stated as follows:

Let’s assume “A is B” is the minor premise & there exists no known entity in the world
corresponding to A. In such a case, obviously B cannot be predicated of A.

We do not venture to explain the third variety of asiddha as it is more subtler and

needs an elaborate explanation, which is out of scope of the present paper.

19.5.5 Bādhita (Stultified Reason)

This defect is called kālāt̄ıta in earlier texts. For instance, the definition in the

Nyāyasūtra (1.2.9):

к+:a;l+.a;tya;ya;a;pa;
a;d;�H к+:a;l+.a;t�a;a;taH Á
That which has been proposed beyond the time limit.
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To understand why such a nomenclature is given, consider the example

va;
a;�îå H A;nua;SNaH :pa;d;a;TRa;tva;a;t,a Á
Fire is not hot because it is a substance.

It is generally accepted that hetu is posed to establish the sādhya in the anumāna

at that point of time when there is a doubt about its existence. If there is no doubt

then, posing hetu is useless. The uselessness can arise in two contexts.

1. Siddha-sādhana – the existence of probandum already known.

2. Bādha – the existence is stultified by other means.

Now, consider the example given above. Here, even before the hetu is uttered,

the proposition is contradicted and dismissed by the valid knowledge that the FIRE

IS HOT, which is obtained through perception. The proposition is dismissed beyond

doubt. Therefore, posing hetu is fruitless because its employment has crossed the

time-limit which is determined by doubt, which in turn determines the fruitfulness

of its posing. This idea is clearly brought out by Vācaspati:

:he ;ta;ea:=+pa;de ;Za;~ya ;
a;h .sa;a;Dya;sa;nde ;h;
a;va;a;Za;�H к+:a;lH Á ya;Ta;a;hu H – na;a;nua;pa;l+.b.Dea, na ;�a;na;N�a;Ra;tea
nya;a;yaH :pra;va;tRa;tea; A;
a;pa tua .sa;�///�a;nd;gDea Á

The right time for supplying hetu is when there is a doubt in the presence of sādhya (and not
otherwise). As is stated – An argument does not proceed on those issues that are completely
unknown, or those that are well established, but only where there is a doubt.

19.6 Summary and Conclusion

The scholars belonging to Nyāya tradition – apart from discussing various philo-

sophical, epistemological and ontological issues – took great pains to analyze, clas-

sify, define and systematize the different pramān. a-s. They also constructed the nec-

essary theory to identify a valid cognition called pramā, in contrast to the invalid

ones called apramā or bhrama. Particularly, great attention was paid to develop the

theory of inferences in order to distinguish valid inferences against the invalid ones

and it is precisely in this context that the concept of hetvābhāsa got germinated.

In the case of formal logic developed in the west, for an argument to be consid-

ered valid, neither the premises have to be true nor the conclusion has to be true.

Validity is purely a conditional notion: For instance,

Whereever there is smoke there is donkey. – (A)
The mountain possesses smoke. – (B)
Therefore, the mountain possesses donkey. – (C)
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is a perfectly valid argument because there is no logical fallacy. All that needs

to be looked for validity is – if the premises happen to be true, then the conclusion

has to be true. But for students trained in Indian logic, the above argument will

not be accepted a valid argument. The anumāna is wrong because of presence of

hetvābhāsa. Bādha will be pointed out even in Step (A) – as it is disproved by

perceptual experience – and hence the argument cannot be carried any further. The

point we try to drive home is, (i) there is no parallel to the concept of hetvābhāsa
in the western logic and (ii) notion of hetvābhāsa should not be confused with the

notion of “logical fallacy” or fallacious reasoning.

Moreover, till recent times while the logicians in the west were generally con-

cerned with the formal validity or consistency in a string of the so called proposi-

tions, in the Indian context, the logicians were trying to develop anumāna theory –

which includes the theory of hetvābhāsa as an integral part of it – whose purpose

was not merely to help in deciding whether the argument is valid, but to ensure that

it is also “sound”. In other words, the aim of the Naiyāyikas in formulating the

anumāna theory is to obtain pramā (“right” knowledge), and not merely verifying

formal validity. This being the objective, their theory of hetvābhāsa explains how

this is accomplished, by giving the epistemic conditions that prevent the inferential

cognitions from arising, in those instances wherein pramā cannot arise from the

nyāya-prayoga that is being made.
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