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Preface 

This book is concerned with the rich and fruitful interplay between the fields 
of computational logic and machine learning. The intended audience is senior 
undergraduates, graduate students, and researchers in either of those fields. 
For those in computational logic, no previous knowledge of machine learning 
is assumed and, for those in machine learning, no previous knowledge of 
computational logic is assumed. 

The logic used throughout the book is a higher-order one. Higher-order 
logic is already heavily used in some parts of computer science, for example, 
theoretical computer science, functional programming, and hardware verifica
tion, mainly because of its great expressive power. Similar motivations apply 
here as well: higher-order functions can have other functions as arguments 
and this capability can be exploited to provide abstractions for knowledge 
representation, methods for constructing predicates, and a foundation for 
logic-based computation. 

The book should be of interest to researchers in machine learning, espe
cially those who study learning methods for structured data. Machine learn
ing applications are becoming increasingly concerned with applications for 
which the individuals that are the subject of learning have complex struc
ture. Typical applications include text learning for the World Wide Web and 
bioinformatics. Traditional methods for such applications usually involve the 
extraction of features to reduce the problem to one of attribute-value learning. 
The book investigates alternative approaches that involve learning directly 
from an accurate representation of the complex individuals and provides a 
suitable knowledge representation formalism and generalised learning algo
rithms for this purpose. Throughout, great emphasis is placed on learning 
comprehensible theories. There is no attempt at a comprehensive account 
of machine learning; instead the book concentrates largely on the problem 
of learning from structured data. For those readers primarily interested in 
the applications to machine learning, a 'shortest path' through the preceding 
chapters to get to this material is indicated in Chap. 1. 

The book serves as an introduction for computational logicians to ma
chine learning, a particularly interesting and important application area of 
logic, and also provides a foundation for functional logic programming lan
guages. However, it does not provide a comprehensive account of higher-order 
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logic, much less computational logic, concentrating instead on those aspects 
of higher-order logic that can be applied to learning. 

There is also something new here for researchers in knowledge representa
tion. The requirement of a suitable formalism for representing individuals in 
machine-learning applications has led to the development of a novel class of 
higher-order terms for representing such individuals. The theoretical founda
tions of this class of terms are developed in detail. While the main application 
here is to machine learning, this class has applications throughout computer 
science wherever logic is used as a knowledge representation formalism. 

There is a Web site for the book that can be found at 
http://discus.anu.edu.au/-jwl/LogicforLearning/. 
The ALKEMY learning system described in the book can be obtained from 
there. 

I am greatly indebted to my collaborators Antony Bowers, Peter Flach, 
Thomas Gartner, Christophe Giraud-Carrier, and Kee Siang Ng over the 
last six years. Without their contributions, this book would have not been 
possible. Kee Siang Ng implemented ALKEMY and contributed greatly to 
its design. I thank Hendrik Blockeel, Luc De Raedt, Michael Hanus, Ste
fan Kramer, Nada Lavrac, Stephen Muggleton, David Page, Ross Quinlan, 
Claude Sammut, Jorg Siekmann, and Ashwin Srinivasan for technical advice 
on various aspects of the material. Finally, this book builds upon a long tra
dition of logical methods in machine learning. In this respect, I would like to 
acknowledge the works of Gordon Plotkin, Ryszard Michalski, Ehud Shapiro, 
Ross Quinlan, Stephen Muggleton, and Luc De Raedt that have been partic
ularly influential. 

Canberra, May 2003 John Lloyd 
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1. Introduction 

After an outline of the book, this chapter gives a brief historical introduction 
to computational logic and machine learning, and their intersection. It also 
provides some motivation for the topics studied in the form of introductions 
to learning and to logic. 

1.1 Outline of the Book 

This book is concerned with the interplay between logic and learning. It 
consists of six chapters. 

This chapter provides an overview of higher-order logic and its application 
to learning. It is written in an informal manner. No previous knowledge of 
computational logic or machine learning is assumed. Thus the section that 
introduces learning does so assuming the reader has no previous knowledge of 
that field. Similarly, the section that introduces logic explains the main ideas 
of logic, and especially the ones that are emphasised in this book, from the 
beginning. Preceding these sections is one that provides an historical context 
for the material that follows. 

Chapter 2 is concerned with the detailed development of the logic itself. 
The logic employed is a higher-order one because this most naturally provides 
the concepts needed in applications. It is based on the classical higher-order 
logic of Church introduced in his simple theory of types, which is referred to 
as type theory in the following. In fact, the logic presented here extends type 
theory in that it is polymorphic and admits product types. The polymorphism 
introduced is a simple form of parametric polymorphism. A declaration for 
a polymorphic constant is understood as standing for a collection of declara
tions for the (monomorphic) constants that can be obtained by instantiating 
all parameters in the polymorphic declaration with closed types. Similarly, a 
polymorphic term can be regarded as standing for a collection of (monomor
phic) terms. The development of the logic is mainly focussed on those topics 
that are needed to support its application to machine learning. 

In Chap. 3, a set of terms that is suitable for representing individuals 
in diverse applications is identified. The most interesting aspect of this set 
of what are called basic terms is that it includes certain abstractions and 
therefore is larger than is normally considered for knowledge representation. 

J. W. Lloyd, Logic for Learning
© J. W. Lloyd 2003



2 1. Introduction 

These abstractions allow one to model sets, multisets, and data of similar 
types, in a direct way. This chapter also shows how to construct metrics and 
kernels on basic terms; these are needed for metric-based and kernel-based 
learning methods. 

In Chap. 4, a systematic method for constructing predicates on individuals 
is presented. For this purpose, particular kinds of functions, called transfor
mations, are defined and predicates are constructed incrementally by com
posing transformations. Each hypothesis language is specified by a predicate 
rewrite system that determines those predicates that are to be admitted. 
Predicate rewrite systems give users precise and explicit control over the 
hypothesis language. 

Chapter 5 provides a computational framework for a variety of applica
tions, including machine learning. The approach taken here is that a declar
ative program is an equational theory and that computation is simplification 
of terms by rewriting. Thus another difference compared with the original 
formulation of type theory is that the proof theory developed by Church 
(and others) is modified here to give a more direct form of equational rea
soning that is better suited to the application of the logic as a foundation 
for declarative programming languages. Of particular interest is that redexes 
can contain abstractions. This approach allows a uniform treatment of set 
and multiset processing, as well as processing of the quantifiers. 

In Chap. 6, the material developed in the book is applied to the problem of 
learning comprehensible theories from structured data. The general approach 
to learning involves recursive partitioning of the set of training examples by 
well-chosen predicates. The resulting theories are essentially decision trees 
that generally can be easily comprehended. Chapter 3 provides the knowl
edge representation formalism for the individuals, Chap. 4 the method of 
predicate construction for partitioning the training examples, and Chap. 5 
the computational model for evaluating predicates applied to individuals for 
the learning process. Chapter 6 also contains a description of the ALKEMY 
decision-tree learning system which is applied to a diverse set of learning 
applications that illustrate the ideas introduced in the book. 

An appendix provides some material on well-founded sets. 
Each chapter has a series of exercises of varying difficulty. Some open 

research problems are also given. Each chapter has bibliographical notes to 
provide pointers to the original sources of results and related material. 

The methods introduced here to address the problem of learning from 
structured data have wide applicability throughout machine learning, be
yond the particular focus on logical methods and comprehensibility of this 
book. The reason for their wide applicability is that increasingly one has to 
deal with learning problems for which the individuals that are the subject of 
learning have complex structure. Such applications abound, for example, in 
bioinformatics and text learning. The traditional approach usually involves 
representing the individuals using the attribute-value language (that is, by a 
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vector of numbers and/or constants). In contrast, the approach in this book 
involves directly representing the structure of the individuals by basic terms. 
Once this representation has been satisfactorily carried out, one then has 
the choice of either using learning methods suitably generalised to directly 
handle basic terms, as studied in this book, or else using the accurate repre
sentation as a basis for feature extraction after which conventional learning 
methods can be used. Whatever learning methods are ultimately applied, the 
first stage of accurately representing the individuals in a suitably rich knowl
edge representation language is important. For example, the detailed type 
information in the representation strongly suggests the conditions that could 
be used to split sets of labelled individuals and this provides the basis for 
decision-tree learning algorithms. Furthermore, even if one wants to extract 
features at an early stage, it is crucial to know whether the individuals under 
consideration are lists or sets, for example, as the likely features differ greatly 
for each of these two cases. 

The issue of comprehensibility in learning also pervades the book and 
contrasts with many other learning techniques, such as neural networks and 
support vector machines, that do not provide comprehensible theories. Thus 
the book is partly about scientific discovery - one wants to be able to show 
straightforwardly why a particular theory explains some observations. 

This book should be of interest to researchers in computational logic who 
do not know machine learning. As the many interesting and important appli
cations show, machine learning is an indispensable technology for achieving 
the aims of artificial intelligence. For complex machine-learning applications, 
logic provides a convenient and effective knowledge representation and com
putational formalism. This book is a suitable vehicle for introducing com
putational logicians to this exciting application area. Even for readers with 
no interest in machine learning, the book provides a foundation for higher
order computational logic that should be of interest to those who work in 
functional logic programming, knowledge representation, and other parts of 
computational logic. 

The range of learning problems considered in this book is essentially the 
same as that of inductive logic programming (ILP), a subfield of machine 
learning concerned with the application of first-order logic to learning prob
lems. However, while the starting point may have been ILP, the presentation 
provided here differs from that approach, since it has resulted from a fresh 
look at the foundations of ILP. In particular, the presentation here draws 
upon the experience gained from working on the problem of integrating func
tional and logic programming languages and is motivated by the attractive
ness of the typed, higher-order approach of a typical functional programming 
language, such as Haskell. With this background, it is natural to try to re
construct ILP in a typed, higher-order context. 

In this reconstruction, the first key idea is that individuals should be 
represented by terms. For this idea to work, it is essential that sets, multisets, 
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and similar terms be available. In higher-order logic, a set is identified with 
its characteristic function, that is, a set is a predicate. Similarly, a multiset 
is a mapping into the natural numbers. Certain abstractions are then used 
to represent sets, multisets, and data of similar types. Higher-order logic also 
provides all the machinery needed to process terms of these types. 

Having represented the individuals as terms, one is then faced with the 
actual learning problem: how should one learn some classification function, 
for example, defined over the individuals. The key idea here, especially if one 
wants to induce comprehensible theories, is to find conditions that separate 
the training examples into (sufficiently) pure subsets, where 'pure' means 
belonging to the same class. Thus one is led to the problem of finding predi
cates that can be used to partition the training examples. The higher-order 
nature of the logic can be exploited once again: predicates are constructed by 
composing transformations appropriate to the application. Precise control is 
exercised over the hypothesis space by specifying a system of rewrites that 
is used to generate predicates. Thus the higher-order nature of the logic has 
been used in two essential ways, by providing abstractions for representing 
individuals and by providing composition for the construction of predicates. 

Higher-order logic is undecidable in several respects: unification of terms 
and checking a formula for theoremhood are both undecidable. But unifi
cation (of higher-order terms) is not needed for the applications to either 
declarative programming languages or machine learning. Also successful pro
gramming languages such as Haskell and >.Prolog show that subsets of the 
logic can be used efficiently. Furthermore, the use of an expressive formal
ism like higher-order logic in machine learning does not somehow make the 
learning problem harder or more complex. In fact, if anything, the reverse 
is true, since the richer knowledge representation language provides a direct 
representation of individuals and a perspicuous approach to predicate con
struction. Furthermore, the complexity is in the learning problem itself, not 
the knowledge representation formalism used to solve it, especially if the for
malism provides direct representations of individuals and predicates, as is 
true of the approach here. 

Finally, I emphasise that a lack of knowledge of higher-order logic, even 
logic itself, should not be a deterrent from reading this book as all the logic 
that is needed for learning is provided here. 

Shortest Path to the Machine Learning Applications 

To help those readers who are primarily interested in the applications to ma
chine learning and who would prefer to learn just enough logic to understand 
those applications, I indicate a 'shortest path' through Chaps. 1 to 5 to get 
to the material on learning in Chap. 6. 

First, it is necessary to read all of the present chapter as it gives an 
informal account of the material that follows. Then the following sections 
from Chaps. 2 to 4 should be read: 2.1, 2.2, 2.3, 2.4 (first two pages), 2.5 
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(first two pages), 3.1, 3.2, 4.1, 4.2, 4.3, and 4.4. It would even be possible to 
omit all the proofs in these sections at a first reading. As a guide, the key 
concepts to look for are type, type substitution, term, subterm, type weaker, 
term substitution, normal term, transformation, standard predicate, regular 
predicate, and predicate rewrite system. The representation of individuals 
actually uses basic terms from Sect. 3.5, but substituting normal terms from 
Sect. 3.2 suffices at a first reading to understand the material in Chap. 6. 

Chapter 5 can be omitted at a first reading as the intuitive understanding 
of computation given in the present chapter suffices to understand Chap. 6. 

In addition, readers interested in metric-based learning should read 
Sect. 3.6 and those in kernel-based learning should read Sect. 3.7. 

The book contains a large number of rather technical results and, even 
for a reader who intends to go through the entire book in detail, it is helpful 
to establish in advance which of these results are the most important. 

In Chap. 2, Propositions 2.5.2 and 2.5.4, which are concerned with 
whether a substitution applied to a term produces a term again, are heavily 
used throughout. On a similar theme, Proposition 2.4.6, is concerned with 
a particular situation in which replacing a subterm of a term by another 
term gives a term again. Part 2 of Proposition 2.6.4 establishes an important 
property of ;3-reduction. Proposition 2.8.2 is a technical result that is used to 
establish important properties of proofs and computations. The soundness of 
the proof theory is given by Proposition 2.8.3. 

In Chap. 3, Proposition 3.6.1 establishes a metric and Proposition 3.7.1 
a kernel on sets of basic terms. 

In Chap. 4, Propositions 4.5.3 and 4.6.10 provide important properties of 
predicate rewrite systems. 

Chapter 5 contains two main results. Proposition 5.1.3 shows that run
time type checking is unnecessary and Proposition 5.1.6 establishes an im
portant correctness property of computations. 

Many proofs use structural induction because of the inductive definition 
of the concepts of interest. 

1.2 Setting the Scene 

This section contains brief historical sketches of the fields of computational 
logic and machine learning, and their intersection. 

Computational Logic 

Logic, of which computational logic is a subfield, is one of the oldest and 
richest scientific endeavours, going back to the ancient Greeks. The original 
motivation was to understand and formalise reasoning and this drove the 
philosophical investigations into logic, by Aristotle, Hobbes, Leibniz, and 
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Boole, for example. A landmark contribution was that of Frege in 1879 when 
his Begriffsschrift- meaning something like 'concept writing' -was published. 
While Frege's notation is unlike anything we use today, Begriffsschrift is 
essentially what is now known as first-order logic. Over the next few decades, 
set theory, axiomatised in first-order logic, was employed as the foundation 
of mathematics, although it had to survive various traumas such as the one 
initiated by Russell's paradox. Later, in 1931, Godel powerfully demonstrated 
the limitations of the axiomatic approach with his incompleteness theorem. 
A more recent relevant development was Church's simple theory of types, 
introduced in 1940, which was partly motivated by the desire to give a typed, 
higher-order foundation to mathematics. 

Around 1957, computers were sufficiently widespread and powerful to 
encourage researchers to attempt an age-old dream of philosophers - the au
tomation of reasoning. After some early attempts by Gilmore, Wang, Davis, 
Putnam, and others, to build automatic theorem provers, Robinson intro
duced the resolution principle in 1963. This work had an extraordinary im
pact and led to a flowering of research into theorem proving, so that today 
many artificial intelligence systems have a theorem prover at their heart. In 
the last four decades, computational logic, understood broadly as the use 
of logic in computer science, has developed into a rich and fruitful field of 
computer science with many interconnected subfields. 

I turn now more specifically to higher-order logic. The advantages of using 
a higher-order approach to computational logic have been advocated for at 
least the last 30 years. First, the functional programming community has used 
higher-order functions from the very beginning. The latest versions of func
tional languages, such as Haskell98, show the power and elegance of higher
order functions, as well as related features such as strong type systems. Of 
course, the traditional foundation for functional programming languages has 
been the >.-calculus, rather than a higher-order logic. However, it is possible 
to regard functional programs as equational theories in a logic such as the 
one introduced here and this also provides a useful semantics. 

In the 1980s, higher-order programming in the logic programming commu
nity was introduced through the language >.Prolog. The logical foundations 
of >.Prolog are provided by almost exactly the logic studied in this book. 
However, a different sublogic is used for >.Prolog programs than the equa
tional theories proposed here. In >.Prolog, program statements are higher
order hereditary Harrop formulas, a generalisation of the definite clauses used 
by Prolog. The language provides an elegant use of >.-terms as data struc
tures, meta-programming facilities, universal quantification and implications 
in goals, amongst other features. 

A long-term interest amongst researchers in declarative programming has 
been the goal of building integrated functional logic programming languages. 
Probably the best developed of these functional logic languages is the Curry 
language, which is the result of an international collaboration over the last 
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decade. To quote from the Curry report: "Curry is a universal programming 
language aiming to amalgamate the most important declarative program
ming paradigms, namely functional programming and logic programming. 
Moreover, it also covers the most important operational principles devel
oped in the area of integrated functional logic languages: 'residuation' and 
'narrowing'. Curry combines in a seamless way features from functional pro
gramming (nested expressions, higher-order functions, lazy evaluation), logic 
programming (logical variables, partial data structures, built-in search), and 
concurrent programming (concurrent evaluation of expressions with synchro
nisation on logical variables). Moreover, Curry provides additional features 
in comparison to the pure languages (compared to functional programming: 
search, computing with partial information; compared to logic programming: 
more efficient evaluation due to the deterministic and demand-driven evalu
ation of functions)." 

There are many other outstanding examples of systems that exploit the 
power of higher-order logic. For example, the HOL system is an environment 
for interactive theorem proving in higher-order logic. Its most outstanding 
feature is its high degree of programmability through the meta-language ML. 
The system has a wide variety of uses from formalising pure mathematics 
to verification of industrial hardware. In addition, there are at least a dozen 
other systems related to HOL. On the theoretical side, much of the research in 
theoretical computer science, especially semantics, is based on the >.-calculus 
and hence is intrinsically higher order in nature. 

Machine Learning 

Now I turn to machine learning, which has had a similarly rich, although 
very different, history. The motivating goal in machine learning is to build 
computer systems that can improve their performance according to their 
experience. There is good reason to want such systems: as we attempt to 
build more and more complex computer systems, it becomes increasingly 
difficult to plan for all the likely situations that the systems will meet in 
their lifetimes. Thus it makes sense to design and implement architectures 
that are flexible enough to allow computer systems to adapt their behaviour 
according to the circumstances. 

What is most striking about machine learning is that so many other dis
ciplines have contributed substantially to it, and continue to do so. Indeed, 
many problems of machine learning were studied in these disciplines before 
machine learning came to be recognised as an independent field in the 1960s. 
In no particular order, here are the main contributing disciplines. 

Statisticians have long been concerned with the general problem of ex
tracting patterns and trends from (possibly very large amounts of) data and 
thus explaining what the data 'means'. Typical problems include predicting 
whether a patient, having had one heart attack, is likely to have another and 
estimating the risk factors for various kinds of cancer. These problems are 
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also typical machine-learning problems, so it is not so surprising that some 
learning methods (decision-tree learners, for example) were developed inde
pendently and simultaneously in both fields. More recently, the interactions 
between machine-learning researchers and statisticians have been much more 
synergistic. 

Engineers have long been concerned with the problem of control. There 
is a very close connection between adaptive control theory and what is called 
reinforcement learning in machine learning. Reinforcement learning is con
cerned with the problem of how an agent receiving percepts from an environ
ment can learn to perform actions that will allow it to achieve its aim(s). A 
typical application is training a robot to successfully negotiate the corridors 
of a building. The training method involves from time to time giving the 
agent rewards that are positive (if the agent has performed well) and nega
tive (if the agent has performed badly). Over a series of training exercises, 
the agent has to learn from these (delayed) rewards a policy that tells it how 
to act as optimally as possible according to its perceived state of the envi
ronment. This approach relies heavily on research in dynamic programming 
and Markov decision processes developed by engineers in the 1960s. 

An important input to machine learning has come from physiologists and 
psychologists who have attempted to model the human brain. The work of 
McCulloch and Pitts in 1943, Hebb in 1949, and Rosenblatt in 1958 on var
ious kinds of neuron models led eventually, after a period of stagnation, to 
the resurgence around 1986 of what are now usually called artificial neural 
networks. These are networks of interconnected units, where the units are 
mathematical idealisations of a single neuron. Like neurons, the units fire 
if their input exceeds some threshold. The resurgence of these ideas in the 
1980s came about because of the discovery that neural networks could be 
effectively trained by a simple iterative algorithm, called backpropagation. 
Today, neural networks are one of the most commonly used learning meth
ods. 

Another biologically inspired input is that of genetic algorithms that are 
based loosely on evolution. In this approach, hypotheses are usually described 
by bit strings (which correspond to the DNA of some species). Then the 
learning process involves searching for a suitable hypothesis by starting with 
some initial population of hypotheses and applying the operations of muta
tion and crossover (which mimics sexual reproduction) to form subsequent 
populations. At each step, the current hypotheses are evaluated by a fitness 
function with the most fit hypotheses being selected for the next generation. 
Genetic algorithms have been successfully applied to a variety of learning and 
optimisation problems. 

Finally, there is the influence from artificial intelligence, which from its 
early days around 1956 provided researchers with a strong motivation to build 
programs that could learn. An outstanding early example was the checker
playing program of Samuels in 1959 that employed ideas similar to reinforce-
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ment learning. In the 1950s, CLS (Concept Learning System) was developed 
by Hunt. This was based on the idea of recursive partitioning of the train
ing examples and was highly influential in development of the decision-tree 
systems that followed. An early motivation for this kind of learning system 
was the desire to automate the knowledge acquisition task for building ex
pert systems, as explicitly expressed by Quinlan in 1979, who developed the 
ID3 system and later the C4.5 and C5.0 systems that are widely used to
day. Another important early development was the version space concept of 
Mitchell whereby the general-to-specific ordering of hypotheses was exploited 
to efficiently search the hypothesis space. 

Logic and Learning 

So far it is not apparent where the connections between computational logic 
and machine learning lie. For this, one has to go back once again to the early 
philosophers. As well as studying the problem of deduction in logic (that is, 
what follows from what), philosophers were also interested in the problem of 
induction (that is, generalising from instances). Induction is fundamental to 
an understanding of the philosophy of science, since much of science involves 
discovering general laws by generalising from experimental data. Important 
contributions to the study of induction were made by Bacon, Mill, Jevons, 
and Peirce, for example. 

With the availability of computers and the growth of artificial intelligence, 
the problem of induction and especially that of building inductive systems was 
studied by the pioneers of machine learning. An early use of first-order logic 
for knowledge representation in concept learning was published by Banerji 
in 1964. Then, in 1970, Plotkin formalised induction in (first-order) clausal 
logic. The motivation here was that, since unification (which finds the great
est common instance of a set of atoms) was the fundamental component of 
deduction, anti-unification (which finds the least common generalisation of 
a set of atoms) ought to be the key to induction. This work of Plotkin con
tains several seminal contributions including an anti-unification algorithm, 
the concept of relative subsumption (where 'relative' refers to a background 
theory), and a method of finding the relative least common generalisation of 
a set of clauses. Closely related work was done independently and contempo
raneously by Reynolds. 

From the early 1970s, Michalski studied inductive learning using various 
logical formalisms, and generalisation and specialisation rules. Other relevant 
work around this time includes that of Vere who in 1975 developed inductive 
algorithms in first-order logic, building on the earlier work of Plotkin. A little 
later, in 1981, Shapiro developed the influential model inference system that 
was the first learning system to explicitly make use of Horn clause logic, no 
doubt influenced by the arrival a few years earlier of the Prolog programming 
language. Amongst other contributions, he introduced the important idea of 
a refinement operator that is used to specialise a theory. The MARVIN system 
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of Sammut from 1981 was an interactive concept learner that employed both 
specialisation and generalisation. Buntine revived interest in subsumption as 
a method of generalisation for the context of Horn clause theories in 1986. 
Much of this earlier work was generalised in 1988 to the setting of inverse 
resolution by Buntine and Muggleton. Another influential system around this 
time was the FOIL system of Quinlan that induced Horn clause theories. 

The increasing interest in logical formalisms for learning in the late 1980s 
led to the naming of the subfield of inductive logic programming by Muggle
ton and its definition as the intersection of logic programming and machine 
learning. The establishment of ILP as an independent subfield of machine 
learning was led by Muggleton and De Raedt. Much of the important work 
on learning in first-order logic has since taken place in ILP and most of the 
standard techniques of machine learning have now been upgraded to this con
text. This work is partly documented in the series of workshops on inductive 
logic programming that started in 1991 and continues to the present day. 

1.3 Introduction to Learning 

This section provides a tutorial introduction to the learning issues that will 
be of interest in this book. 

An Illustration 

Consider the problem of determining whether a bunch of keys, or more pre
cisely some key on the bunch, can open a door. The data for this problem are 
a number of bunches of keys and the information about whether each bunch 
does or does not open the door. The problem is to find an hypothesis that 
agrees with the data that is given and, furthermore, will correctly predict 
whether new bunches of keys will open the door or not. 

For this illustration, the individuals that are the subject of learning are 
the bunches of keys. First, these individuals have to be represented (that is, 
modelled in a suitable knowledge representation formalism). Now a bunch is 
nothing other than a set, so the problem reduces to representing a key. There 
are quite a number of choices in how to do this. Let us choose to represent a 
key by its values for four specific characteristics: its make, how many prongs 
it has, its length, and its width. Following standard methods of knowledge 
representation, this leads to the introduction of the four types: 

Make, NumProngs, Length, and Width. 

Also required are some constants for each of these types. These are as follows. 

Abloy, Chubb, Rubo, Yale : Make 

Short, Medium, Long : Length 

Narrow, Normal, Broad: Width. 
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The meaning of the first of these declarations is that Make is a type and 
Abloy, Chubb, Rubo, and Yale are constants of type Make. The other declara
tions have a similar meaning. The constants of type NumProngs are intended 
to be integers, so NumProngs is declared to be a synonym for Int, the type 
of the integers, by the declaration 

NumProngs =Int. 

Now a key is represented by a 4-tuple of constants from each of the four 
types. This is specified by the declaration 

Key= Make x NumProngs x Length x Width, 

for which Key is the type of a key and x denotes (cartesian) product. Thus 
Key has been declared to be a synonym for the product type on the right
hand side, and 4-tuples, where the first component is a constant of type Make, 
the second is a constant of type NumProngs and so on, are used to represent 
keys. For example, the tuple 

(Abloy, 3, Short, Normal) 

represents the key whose make is Abloy, that has 3 prongs, is short, and has 
normal width. 

A bunch of keys can now be represented as a set via the declaration 

Bunch = {Key}. 

This states that the type Bunch is a synonym for the type {Key} which 
is the type of sets whose elements have type Key. A typical bunch is now 
represented by a set such as 

{(Abloy, 3, Short, Normal), (Abloy, 4, Medium, Broad), 

(Chubb, 3, Long, Narrow)}, 

which is a bunch containing three keys. This completes the representation of 
the bunches of keys. 

The next task is to make precise the type of the function that is to be 
learned. Recall that the illustration involved predicting whether or not a 
bunch of keys opened a particular door or not. This suggests that the function 
be a mapping from bunches of keys to the set of boolean values, true and 
false. Now the type of the booleans is denoted by fl, and T is the constant 
representing true, and .l is the constant representing false. If the desired 
function is called opens, then it has the declaration 

opens : Bunch ---+ fl. 

The meaning of this declaration is that opens is a function from elements of 
type Bunch to elements of type fl. The type Bunch ---+ fl is the so-called 
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signature of the function. If one had a definition for opens, then, given a 
bunch, one could evaluate the function opens on the set representing this 
bunch to discover whether the bunch opens the door or not: if the function 
evaluated toT, then the bunch would open the door; otherwise, it would not. 
The problem, of course, is to find a suitable definition for opens. 

Part of the data for doing this are some examples that give the value of 
the function opens for some specific bunches of keys. This data is the so-called 
training data. Suppose that the examples are as follows. 

opens { (Abloy, 3, Short, Normal), (Abloy, 4, Medium, Broad), 

(Chubb,3,Long,Narrow)} = T 

opens { (Abloy, 3, Medium, Broad), (Chubb, 2, Long, Normal), 

(Chubb, 4, Medium, Broad)} = T 

opens { (Abloy, 3, Short, Broad), (Abloy, 4, Medium, Broad), 

(Chubb,3,Long,Narrow)} = T 

opens { (Abloy, 3, Medium, Broad), (Abloy, 4, Medium, Narrow), 

(Chubb, 3, Long, Broad), (Yale, 4, Medium, Broad)} = T 

opens {(Abloy, 3, Medium, Narrow), (Chubb, 6, Medium, Normal), 

(Rubo, 5, Short, Narrow), (Yale, 4, Long, Broad)} = T 

opens { (Chubb, 3, Short, Broad), (Chubb, 4, Medium, Broad), 

(Yale, 3, Short, Narrow), (Yale, 4, Long, Normal)}= l_ 

opens {(Yale, 3, Long, Narrow), (Yale, 4, Long, Broad)}= l_ 

opens {(Abloy, 3, Short, Broad), (Chubb, 3, Short, Broad), 

(Rubo, 4, Long, Broad), (Yale, 4, Long, Broad)} = l_ 

opens { (Abloy, 4, Short, Broad), (Chubb, 3, Medium, Broad), 

(Rubo, 5, Long, Narrow)} = l_. 

The problem can now be stated more precisely. It is to find a definition for 
the function opens : Bunch ---. [l that is consistent with the above examples 
and correctly predicts whether or not new bunches of keys will open the door. 

Stated this way, the problem is one of induction: given values of the func
tion on some specific individuals, find the general definition of the function. 
In practical applications, there are usually a very large number of definitions 
that are consistent with the examples, so, to make any progress, it is neces
sary to make further assumptions. These assumptions constrain the possible 
definitions of the function, that is, the so-called hypotheses, that will be ad
mitted. The form of the possible hypotheses is specified by the hypothesis 
language. It is a general principle of learning that, in order to learn at all, 
one must make some assumptions about the hypothesis language. 

So let's consider what might be a suitable hypothesis language for the 
illustration under investigation. If the door is a standard one with a single 
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keyhole, it seems reasonable to assume that a bunch of keys opens the door 
if and only if (iff) there is some key on the bunch that opens the door. So 
the problem reduces to finding a key on the bunch with some property. Now 
what properties might an individual have? Given that a key is represented 
by four characteristics, the assumption is made that a suitable property is 
a conjunction of conditions on these characteristics. Finally, a condition on 
a characteristic is assumed to be of the form whether that characteristic is 
equal to some constant. To precisely specify the hypothesis language, it is 
necessary to formally state these kinds of restrictions. 

To get a condition on a key, one must have access to the components of 
the key. This suggests introducing the projections from the keys onto each of 
their components. 

projMake: Key---+ Make 

projNumProngs: Key---+ NumProngs 

projLength : Key ---+ Length 

projWidth: Key---+ Width. 

For example, projMake is the projection from keys onto their first component. 
With these projections available, it is easy to impose a condition on a 

key. For example, the condition that the make of a key k should be Abloy is 
expressed by 

(projMake k) = Abloy. 

Conjunctions of such conditions are also admitted into the hypothesis lan
guage by including the conjunction connective /\. Then, according to the 
assumptions made on the hypothesis language given above, conditions on 
bunches have the form 

3k.((k E b) 1\ C), 

where 3 is the existential quantifier, so that '3k.' means 'there is a k such 
that', 'k E b' means 'k is a member of the set b', '/\'means 'and', and Cis 
some condition of the form above on keys. 

Given the set of examples and the form that the hypothesis language can 
take, as stated above, a learning system can now try to induce a suitable 
definition for opens. The ALKEMY learning system studied later in this book 
finds the following hypothesis (although not in exactly this form; a more 
convenient syntax will be introduced later). 

opens b = 

if 3k.((k E b) 1\ ((projMake k) = Abloy) 1\ ((projLength k) =Medium)) 

then T 

else .l. 
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This definition can be translated straightforwardly into (structured) English 
that can be understood by someone who is not familiar with the knowledge 
representation language employed, as follows. 

"A bunch of keys opens the door if and only if it contains an Abloy 
key of medium length". 

One can see that this definition agrees with all the examples given earlier 
and thus it is potentially a suitable definition for opens. Whether or not it 
correctly predicts that new bunches will open the door can only be checked 
by trying the definition on these examples, the so-called test data. 

Learning Issues 

This simple illustration has highlighted most of the important issues to be 
studied in this book. 

First, the individuals that are the subject of learning have to be repre
sented. In the illustration above, the individuals were represented by sets 
of tuples of constants. In general, many other types are also needed such 
as lists, trees, multisets, and graphs. The formalism of Chap. 3 provides a 
suitable knowledge representation language for representing individuals and 
is particularly concerned with the case where the individuals have complex 
structure. 

Second, one has to specify a signature for the target function whose defi
nition is to be induced. This signature states that the function maps from the 
type of the individuals to the type of a (usually small) finite set that consists 
of the so-called classes to which the individuals can be mapped. Often there 
are only two classes and one uses j_ and T (or 0 and 1, or -1 and 1) to 
denote them. Such learning problems are called classification problems. In a 
regression problem, the codomain of the target function is the real numbers. 

Third, there is given some training data, which is a collection of examples 
each of which gives the value of the target function for a particular indi
vidual. For the illustration above, there are only nine examples; in practical 
applications, there may be hundreds or thousands of examples available for 
training. (In the case of data mining, there may be millions of training exam
ples.) In general, the more numerous the training data the better. Learning 
with such training data is called supervised learning. In some problems only 
the individuals are given without a value of some function. In this case, the 
problem is one of unsupervised learning and one usually wants to somehow 
cluster the individuals appropriately. 

Fourth, the so-called background theory must be given. This theory con
sists of the definitions of functions that act on the individuals (together with 
associated functions). For example, for the illustration above, the function 
projMake is in the background theory and its definition is simply 
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For some applications, the background theory may be very extensive. Gen
erally it can be divided into two parts. The generic background theory is 
the part of the background theory that is dependent only on the type of 
the individuals. For example, if the individuals are graphs, then the back
ground theory could contain the function that maps a graph to its set of 
vertices. If the individuals are lists, then the background theory could con
tain the function that maps a (non-empty) list to its head. In contrast, the 
domain-specific background theory is the part of the background theory that 
depends on knowledge associated with the particular application. For exam
ple, if the application involves the carcinogenicity of chemical molecules, then 
the domain-specific background theory could contain the function that maps 
a molecule to the number of benzene rings that it contains. An important 
point that will be developed in this book is that much of the background 
theory is largely determined by the type of the individuals. However, the key 
to learning is often in the domain-specific part for which expert knowledge 
may be required. 

Fifth, the hypothesis language that involves the functions in the back
ground theory must be specified. In Chap. 4, a mechanism will be introduced 
for precisely stating hypothesis languages and also for enumerating hypothe
ses in the language. Bias restricts the form of potential hypotheses and comes 
in one of two forms: language bias that determines the hypothesis language 
itself and search bias that determines the way the learning system searches 
the hypothesis space for a suitable hypothesis. In practical applications, this 
space can be huge and, therefore, it may be necessary to search it preferen
tially, prune subspaces of it based on certain criteria, and so on. 

Sixth, one has to evaluate the predictive power of the hypothesis con
structed. Here, one is concerned with how well an hypothesis generalises, 
that is, correctly predicts the class of new individuals. Typically, hypotheses 
are evaluated experimentally by systematically trying them on test data, by 
cross-validation techniques, for example. Also, it may be important to de
termine experimentally how the predictive power improves as the size of the 
training data increases. Finally, it may be possible to estimate analytically 
the predictive power of an hypothesis by studying some characteristics of the 
hypothesis language. 

Seventh, it is often desirable and sometimes essential that the hypoth
esis returned by the learning system be comprehensible, that is, be easily 
understandable by humans in such a way that it provides insight into, or an 
'explanation' of, the data. Whether comprehensibility is really required de
pends on the application: sometimes one is satisfied with a black-box that has 
good predictive power, even if the reasons for the good predictive power are 
unclear; sometimes, especially in applications to expert systems, scientific 
discovery, and intelligent agents, comprehensibility is essential. This book 
concentrates on the case when comprehensibility is required, but also consid
ers some learning methods that do not have this characteristic. 
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There are many different kinds of learning systems employed in applica
tions. These include neural networks, decision-tree systems, instance-based 
learners based on a distance measure between individuals, kernel-based learn
ers based on a generalised inner product defined on individuals, and learners 
based on Bayesian principles. Furthermore, learning systems can be classi
fication systems that learn a function that maps into some set of classes, 
regression systems that learn a function that maps into the real numbers, or 
systems that cluster individuals that are not labelled in any way. 

1.4 Introduction to Logic 

Examining the uses of knowledge representation in Sect. 1.3, several require
ments become apparent: the formalism must be able to represent complex in
dividuals, there should be a way of precisely stating the hypothesis language, 
and it must be possible to compute the value of a function in the back
ground theory on an individual. While there are other possible approaches, 
this book takes the view that higher-order logic conveniently meets all the 
above requirements. Consequently, in this section, I outline the basic features 
of higher-order logic that are needed for learning applications. 

Terms and Types 

Logics, in general, have two fundamental aspects: syntax and semantics. The 
syntax is concerned with what expressions are defined to be well-formed, 
what formulas (that is, terms having boolean type) are theorems, and proofs 
of those theorems. The semantics is concerned with the meanings of the 
symbols in the terms and the terms themselves, what are the interpretations 
that give those meaning, what are the models (that is, the interpretations 
that make all the axioms true), and what formulas are valid (that is, true in 
every possible model). In this introduction, I concentrate on syntax starting 
with the concept of a term. 

First, some symbols must be made available. Thus it is assumed that 
there is given an alphabet of symbols that include some variables and some 
constants (amongst some other symbols that will be introduced later). Then 
the terms can be (informally) defined as follows. A variable is a term; a 
constant is a term; an expression of the form >..x.t is a term, where x is a 
variable and t is a term; an expression of the form (s t) is a term, where s 
and tare terms; and an expression of the form (h, ... , tn) is a term, where 
t1, ... , tn are terms. 

Variables and constants play the part one would expect in the logic. 
(There are plenty of constants in Sect. 1.3 and use was made there of variables, 
as well.) Terms of the form >..x.t are called abstractions and come originally 
from the >..-calculus of Church. The meaning of >..x.t is that it is a function 
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that maps an element denoted by a term s to the element denoted by the 
term obtained by replacing each free occurrence of x in t by s. So, for exam
ple, the meaning of >.x.(x + 1) is the function that increments the value of 
its argument. (Note that an occurrence of a variable y is bound if it occurs 
with a subterm of the form >.y.s; otherwise, the occurrence is free. A variable 
is free if it has a free occurrence.) A term of the form (s t) is an application 
in which s is applied to t. Thus the meaning of s should be a function, the 
meaning of t should be an argument to the function, and the meaning of 
(s t) should the the result of applying s to t. For example, the meaning of 
(>.x.(x + 1) 42) is 43. Finally, a term of the form (h, ... , tn) is a tuple. 

What has been described so far is essentially the terms of the untyped 
>.-calculus. However, in knowledge representation applications in computer 
science, it is important to impose some further restrictions on the terms that 
are admitted. The reason is that, with the definition so far, some strange 
terms are allowed. For example, there is no restriction that the argument to 
a function necessarily belong to the domain of that function, whatever that 
might be. To give an example, what might (>.x.(x + 1) Abloy) mean? Thus, 
types are introduced to restrict term formation to terms that make intuitive 
sense from this point of view. As shall be seen, the discipline of types pervades 
the book and there will be a substantial payoff in accepting this discipline. I 
now introduce types. 

For this purpose, suppose the alphabet is enlarged with some extra sym
bols called type constructors, each of which has an arity that determines the 
number of arguments to which the type constructor can be applied. Typical 
type constructors of arity 0 include D, the type of the booleans, Int, the 
type of the integers, and Char, the type of the characters. A typical type 
constructor of non-zero arity is List of arity 1. 

One can then define types as follows: T a 1 ... an is a type, where T is a 
type constructor of arity n and a1, ... , an are types; a --> /3 is a type, where 
a and /3 are types; and a 1 x · · · x an is a type, where a 1 , ... , an are types. 

The first part of the definition implies that nullary type constructors are 
types. Thus n and Int are types. Since List is a unary type constructor, it 
follows that List n and List Int are types. The meaning of a type is a set. 
In particular, the meaning of Int is the set of integers and the meaning of 
List Int is the set of lists of integers. The meaning of a type of the form 
a --> f3 is a set of functions from the set giving the meaning of a to the set 
giving the meaning of {3. The meaning of a type of the form a 1 x · · · x an is 
the cartesian product of the sets that give the meanings of a 1 , ... , an. 

With types now in place, I revisit the definition of terms. To impose a 
type discipline, one starts by giving types to the variables and constants. For 
the variables, one assumes that for each type, there is associated a disjoint 
set of variables for that type. For the constants, one assumes that for each 
constant, there is specified some type, called its signature. For example, from 
Sect. 1.3, Abloy is a constant with signature Make and opens is a constant 
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with signature Bunch --> il. That a constant C has signature a is denoted 
byC:a. 

Now the definition of terms that respect the typing discipline can be given. 
A variable of type a is a term of type a; a constant with signature a is a 
term of type a; an expression of the form A.x.t, where xis a variable of type 
a and t is a term of type (3, is a term of type a --> (3; an expression of the 
form (s t), where s is a term of type a --> (3 and tis a term of type a, is a 
term of type (3; and an expression of the form (t1 , ... , tn), where ti is a term 
of type ai, for 1 = 1, ... , n, is a term of type a1 x · · · x an. 

Example 1.4.1. Suppose the alphabet contains the type constructors il, Int, 
and List, and the constants 

[] : List Int, 

rt : Int --> (List Int --> List Int), 

p : List Int --> [l, 

q : List Int --> [l, and 

1\ : [l--> (il--> il). 

The intended meaning of [] is the empty list and rt is the constant used for 
constructing lists. Thus ((rt 1) ((rt 2) ((rt 3) []))) is intended to represent the 
list [1, 2, 3]. (Since this notation is rather heavy, I usually drop the parentheses 
and write rt as an infix operator. Thus the expression above can be written 
more simply as 1 rt 2 rt 3rt[].) 

Some remarks about the ubiquitous use of --> in type declarations are in 
order. It may seem more natural to use the signature 

Int x List Int --> List Int 

for rt. With this signature, rt is intended to take an item and a list as input 
and return the list obtained by prepending the given item to the given list. 
However, the signature Int --> (List Int --> List Int) for rt, the so-called 
curried form of the signature, is actually more convenient. The reason is 
that, in the curried form, one only has to give rt one argument at a time. 
Thus (rt 3) is well-defined and, in fact, is a term of type List Int --> List Int. 
Thus one can then form ((ij 3) []) which is a term of type List Int. Similarly, 
(ij 2) is well-defined and ((rt 2) ((ij 3) []))is a term of type List Int, and so on. 
Throughout the book, wherever possible, curried signatures will be used. 

Assume now that xis a variable of type Int, andy and z are variables of 
type List Int. I show that the expression 

((/\ (p ((ij x) y))) (q z)) 

is a term of type il. (Exploiting the infix use of rt and /\, this expression can 
be written more simply as (p (x rt y)) 1\ (q z).) First, (rt x) is a term of type 
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List Int ____,List Int, ((~ x) y) is a term of type List Int, and so (p ((~ x) y)) 
is a term of type fl. Also, (q z) is a term of type fl. Now (A (p ((~ x) y))) is 
a term of type fl ____, fl, and thus ((A (p ((~ x) y))) (q z)) is a term of type fl. 

The logic is suitable for writing definitions in functional programming 
languages. 

Example 1.4.2. Consider the function 

co neat : List Int ____, (List Int ____, List Int), 

whose intended meaning is that the result of applying the function to two 
lists (of integers) is their concatenation. A suitable definition for this function 
is 

concat [] z = z 
concat ( x ~ y) z = x ~ ( concat y z). 

(Here I have exploited the convention that function application is left asso
ciative so that con cat [] z means ( (con cat []) z), and so on.) Each equation 
in the definition is true using the intended meaning of concat. 

So far it is not obvious how the quantifiers are introduced into the logic. 
Existential quantification is considered first. Let E be the function having 
signature 

(Int ____, fl) ____, fl 

and with the intended meaning that E maps a predicate of type Int ____, fl 
to true iff the predicate is true on at least one element in its domain. (A 
predicate is a function whose codomain is the boo leans.) Suppose now that 
r : Int ____, fl is a predicate and consider the term (E .>..x.(r x)). According 
to the meaning of E, this term will be true iff there is an x for which (r x) 
is true. In other words, the intended meaning of (E A.x.(r x)) is exactly the 
same as ::Jx.(r x), using the standard meaning of existential quantification. 

A term of the form (E Ax.t) is written as 3x.t. Thus the existential 
quantifier is introduced into higher-order logic by the function E applied to 
an abstraction whose body is a formula. The binding aspect of the quantifier 
is taken care of by the A-expression and the precise form of quantification by 
the E. 

Similarly, let II be the function having signature 

(Int ____, fl) ____, fl 

and with the intended meaning that II maps a predicate to true iff the 
predicate is true on all elements in its domain. According to the meaning of 
II, (II Ax.(r x)) will be true iff (r x) is true, for every x. In other words, the 
intended meaning of (II Ax.(r x)) is exactly the same as '1/x.(r x). 
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A term of the form (II >.x.t) is written as Vx.t. Thus the universal quan
tifier is introduced by the function II applied to an abstraction whose body 
is a formula. In an analogous way to existential quantification, the binding 
aspect of the quantifier is taken care of by the >.-expression and the precise 
form of quantification by the II. 

Polymorphism 

The logic introduced so far is expressive and powerful: all the usual con
nectives and quantifiers are available and (many-sorted) first-order logic is a 
subset. It would be possible to use this logic as the setting for the remain
der of this book and many of the following technical results (in Chap. 2, for 
example) would actually become much simpler. But the logic has one restric
tion that makes this approach unattractive. To make the point, consider the 
function concat defined above that concatenates lists of integers. A moment's 
thought reveals that the definition given for concat works perfectly well for 
lists whose items are of any type. Thus, with the current version of the logic, 
one would be forced to declare a concat function for each of the types one 
wanted to apply it to and yet the definitions of the various concats would all 
be exactly the same. One could make a similar comment about the functions 
E and II that work perfectly well when quantifying over variables of any 
type. 

For this reason, one final feature of the logic is now introduced: poly
morphism, or more precisely because there are other forms of polymorphism, 
parametric polymorphism. Thus the last ingredient of the alphabet are pa
rameters, which are type variables. Parameters are usually denoted by a, b, 
and so on. For example, one can make concat polymorphic by declaring it to 
have the signature 

List a----> (List a----> List a). 

The intended meaning of the signature is that it declares a concat function 
for each possible instantiation of the parameter a. Similarly, the signature of 
the polymorphic version of both E and II is 

(a----> D) ----> D. 

The introduction of polymorphism requires extensions of some previous 
definitions. For a start, the definition of types is extended as follows. A pa
rameter is a type; T o:1 ... O:n is a type, where T is a type constructor of arity 
n and o:1 , ... , O:n are types; o: ----> (3 is a type, where o: and (3 are types; and 
0:1 x · · · x O:n is a type, where 0:1, ... , O:n are types. 

But the biggest complication occurs in the definition of terms. To illustrate 
the point, with the functions r : Int ----> D and E : (a ----> D) ----> D available, 
consider whether the expression (E >.x.(r x)) should be a term or not. Now 
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>.x.(r x) is a term of type Int----. fl, so that one is led to compare this type 
with the argument type a ----. fl of E. The question is whether these two types 
are somehow 'compatible'. The intuitive notion of compatibility here is that 
there should be an instantiation of the parameters in the two types so that 
the argument type (that is, Int ----. fl) is the same as the domain type of E 
(that is, (a----. fl)). The substitution {allnt}, in which a is replaced by Int, 
shows that the types are indeed compatible. Thus (E >.x.(r x)) should be a 
term of type fl, for which the specific E function being used here is the one 
with signature (Int ----. fl) ----. fl. 

More generally, one could have terms s of type a ----. (3 and t of type "( 
(where s and t do not share free variables) and ask whether (s t) should be 
a term. The answer to the question will be yes iff the types a and "( have 
a common instance. In case there is a common instance, then a and 'Y have 
a most general unifier (), say. (A most general unifier is a substitution that 
when applied makes the two instances identical and is a substitution that 
instantiates as little as possible in order to achieve this.) Then (s t) is a term 
of type (3(). 

Example 1.4.3. Lets be a term of type (List a x Int)----. List a and t a term 
of type List n X b (that do not share free variables) 0 NOW {a In' b I Int} is a 
most general unifier of List a X Int and List n X b. Thus (s t) is a term of 
type (List a){alfl,bllnt} =List fl. 

There is one other form of compatibility that has to be dealt with when 
forming terms and that concerns free variables. 

Example 1.4.4. Let p : Int ----. fl and q : List Int ----. fl be predicates. Is 
it reasonable that the expression (p x) 1\ ( q x) be a term? Even without a 
precise definition of the notion of a term, one would expect this expression to 
be problematic. To see this, note the two free occurrences of the variable x. 
Now a principle of the formation of terms in logics is that all free occurrences 
of a variable should denote the same individual. But this does not hold in 
(p x) 1\ ( q x) because the first occurrence of x has type Int because it is the 
argument of p, while the second has type List Int because it is the argument 
of q. Thus the expression should not be a term. 

Now an informal definition of a term for the polymorphic version of the 
logic can be given. For this, there is a single family of variables and the 
constants may have polymorphic signatures. Free variables in a term have 
a relative type according to their position in the term. For example, if p : 
Int ----. n, then the free variable x in (p x) has relative type Int in (p x). 
Then the definition is as follows. A variable is a term of type a, where a is a 
parameter; a constant with signature a is a term of type a; an expression of 
the form >.x.t, where x is free with relative type type a in t and t is a term 
of type (3, is a term of type a ----. (3; an expression of the form (s t), where 
s is a term of type a ----. (3 and t is a term of type 'Y, is a term of type (3(), 



22 1. Introduction 

provided there is a most general unifier () of the set of equations that arise 
from unifying a and 1, and also unifying the relative types of occurrences of 
free variables in s and t ; and an expression of the form (t1, ... , tn), where 
ti is a term of type ai, for 1 = 1, ... , n, is a term of type (a1 x · · · x an)(), 
provided there is a most general unifier () of the set of equations that arise 
from unifying relative types of occurrences of free variables in the h, ... , tn. 

Example 1.4.5. Let p : List a ----> Jl and q : List Int ----> Jl be predicates. 
Then (p X) is a term of type n in which the free variable X has relative type 
List a, ( q X) is a term of type n in which the free variable X has relative type 
List Int, >.x.(p x) is a term of type List a----> Jl, 3x.(p x) is a term of type Jl, 
( (p X), ( q X)) is a term of type Jl X Jl in which the free variable X has relative 
type List Int, and (p x) 1\ ( q x) is a term of type Jl in which the free variable 
x has relative type List Int. 

Logic as a Computational Formalism 

The logic is also suitable as a formalism in which to write definitions of 
functions for declarative programming languages. 

Example 1.4.6. Consider again the function 

concat : List a ----> (List a ----> List a) 

defined by 

concat [] z = z 

concat (x ~ y) z = x ~ ( concat y z). 

This definition can be used by a declarative programming language to con
catenate lists. For example, one can concatenate the lists 1 U 2 U [] and 3 U [] 
by the computation 

concat (1 U 2 U []) (3 U []) 
1 U ( concat (2 U []) (3 U [])) 

1 U 2 U (con cat [] ( 3 U [])) 
JU2PU[J, 

whereby the initial term is successively 'simplified' by rewriting steps using 
the equations in the definition of concat. 

Example 1.4. 7. The function 

length : List a ----> Int 

length[]= 0 

length (xU y) = 1 +lengthy 

computes the length of a list. 
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The following example is a more complicated one that illustrates the use 
of existential quantification. 

Example 1.4.8. The function 

append : List a X List a X List a -+ n 
append (u,v,w) = (u = [] A v = w) V 

3r.3x.3y.(u = r U x A w = r U y A append (x, v, y)) 

returns true iff its third argument is the concatenation of the lists in its first 
and second arguments. As an example of a computation, the term 

append (1 P U [], 3 U [], x) 

can be simplified to 

X= 1 U 2 U 3 U [], 

using this definition. Similarly, the term 

append (x, y, 1 U 2 U []) 

can be simplified to 

(x = [] A y = 1 U 2 []) V (x = 1 U []A y = 2 U []) V (x = 1 U 2 U []A y = []). 

Representation of Individuals 

The next topic is that of the representation of individuals. Learning (and 
other) applications involve individuals of many different kinds. Thus the chal
lenge is to find a suitable class of (higher-order) terms to represent this wide 
range of individuals. 

The formal basis for the representation of individuals is provided by the 
concept of a basic term. Having defined the concept of a term, basic terms 
are defined via an inductive definition that has three parts: the first part 
gives those basic terms that have a data constructor (explained below) at the 
top level, the second part gives certain abstractions that include (finite) sets 
and multisets, and the third part gives tuples. Care is taken to order certain 
subterms of abstractions to ensure uniqueness of the representation. 

The simplest kinds of individuals can be represented by terms of 'atomic' 
types such as integers, natural numbers, floating-point numbers, characters, 
strings, and booleans. Closely related are lists and trees. The constants 

[] : List a, and 

U : a -+ List a -+ List a 
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are used to represent lists. Similarly, one could use the unary type constructor 
Tree and the constants 

Null : Tree a, and 

Node : Tree a --+ a --+ Tree a --+ Tree a 

to represent binary trees in the obvious way. 
The constants of the logic are divided into two kinds: functions and data 

constructors. Functions have definitions and are used to compute values. 
Some earlier examples of functions are concat and length. In contrast, data 
constructors are used, as their name implies, to construct data. Typical ex
amples come from the previous paragraph: numbers, characters, strings, [], 
~' Null, and Node. In general, data constructors have signatures of the form 

for some k-ary type constructor T, types a1, ... , an, and parameters a 1 , ... , ak. 

A data constructor with such a signature is said to have arity n. The first 
part of the definition of basic terms states roughly that, if C is a data con
structor of arity n and h, ... , tn are basic terms having suitable types, then 
C t1 ... tn is a basic term. 

Example 1.4.9. With the declarations of Null and Node above, 

Node (Node Null 21 Null) 42 (Node Null 73 Null) 

is the basic term representing the tree with 42 at the root, 21 at the left child 
of the root, and 73 at the right child. 

The second kind of basic term are sets, multisets, and similar types. To 
explain how these types are handled, I concentrate on sets. The first question 
is what exactly is a set? The answer to this question for a higher-order logic 
is that a set is a predicate, that is, a set is identified with its characteristic 
function. Thus particular forms of abstractions are used to represent sets. To 
explain this, consider the set {1, 2}. This is represented by the abstraction 

>.x.if x = 1 then T else if x = 2 then T else _l_. 

The meaning of this abstraction is the predicate that is true on 1 and 2, and 
is false for all other numbers. Similarly, 

>.x.if x =A then 42 else if x = B then 21 else 0 

is the multiset with 42 occurrences of A and 21 occurrences of B (and nothing 
else). Thus abstractions of the form 

>.x.if x = h then s1 else ... if x = tn then Sn else so 
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are adopted to represent (finite) sets, multisets, and so on. The term so is 
a default term, .l for sets and 0 for multisets. Other types have a different 
default term. 

This discussion leads to the second part of the definition of basic terms. 
Roughly speaking, if s 1 , ... , sn and h, ... , tn are basic terms having suitable 
types and s0 is a default term, then 

A.x.if x = t1 then s1 else ... if x = tn then Sn else so 

is a basic term. The precise definition takes care to put an order on h, ... , tn, 
amongst some other things. 

Finally, tuples of basic terms are basic terms. Thus, if t 1 , ... , tn are basic 
terms, then (t1 , ... , tn) is a basic term. 

Example 1.4.10. The expression 

{(Abloy, 3, Short, Normal), (Abloy, 4, Medium, Broad), 

(Chubb, 3, Long, Narrow)} 

is notational sugar for the basic term 

>..x.if x = (Abloy, 3, Short, Normal) then T else 

if x = (Abloy, 4, Medium, Broad) then T else 

if x = (Chubb,3,Long,Narrow) then T else .l. 

Other notational devices are noted here. Having identified a set with a 
predicate, the type of a set has the form a -+ fl, for some type a. However, 
it is still useful to think of sets as predicates in some circumstances and as 
'collections of elements' in other circumstances. In this second circumstance, 
it is convenient to introduce the notational sugar {a} to mean a -+ f2. Also, 
if a set t is being thought of as a predicate, then application is denoted 
in the usual way by ( t x), while if t is being thought of as a collection of 
elements, this same term is denoted by x E t. Advantage will be taken of 
these notational devices shortly. 

Predicate Construction 

The final topic of this section is a brief explanation of how the higher-order 
nature of the logic can be exploited to construct predicates. To make the 
ideas concrete, the keys illustration in Sect. 1.3 is revisited. The condition 
that appears there in the induced definition for opens is 

~k.((k E b) 1\ ((projMake k) = Abloy) 1\ ((projLength k) =Medium)). 

A more convenient reformulation of this condition is now explored. 



26 1. Introduction 

For each constant of type Make, there is a corresponding predicate that 
is true iff its argument is equal to the constant. For example, corresponding 
to the constant Abloy, there is a predicate 

(= Abloy): Make--+ D 

defined by 

((= Abloy) x) = x = Abloy. 

Thus ((= Abloy) x) = T iff x = Abloy. More generally, given a con
stant C : a, there corresponds a predicate ( = C) : a --+ D defined by 
( ( = C) x) = X = C. 

Conditions on the characteristics of a key can be obtained by composing 
a projection with one of the predicates just introduced. Composition is given 
by the (reverse) composition function 

o :(a--+ b)--+ (b--+ c)--+ (a--+ c) 

defined by 

( (j o g) X) = (g (j X)). 

Note the order here: for fog, f is applied first, then g. Thus one can form a 
predicate such as projM ake o ( = Abloy) that has type Key --+ D. If k is a key, 
then ((projMake o (= Abloy)) k) =Tiff the first component of k is Abloy. 

Next consider the connective A : D --+ (D --+ D) in the condition in 
the definition for opens. Connectives act on formulas; what is needed is to 
'lift' the connectives to functions that act on predicates. Thus consider the 
function 

A 2 : (a --+ D) --+ (a --+ D) --+ a --+ D 

defined by 

A2 p q X= (p x) A (q x). 

Using A2 , one can form the predicate 

A 2 (projM ake o ( = Abloy)) (projLength o ( = Medium)). 

This predicate is true on a key iff the first component of the key is Abloy and 
the third component is Medium. 

The final step in the reformulation of the condition in the definition of 
opens is to replace the -::Jk.(k E b) part of it. Consider the function 

setExists1 :(a--+ D)--+ {a}--+ D 

defined by 
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setExists1 p t = -=Jx.((p x) A (x E t)). 

(Note the use of the notation {a} here; the first argument to setExists1 is 
being thought of as a predicate and the second is being thought of as a 
collection of elements.) The predicate ( setExists 1 p) checks whether a set has 
an element that satisfies p. Thus we can form the predicate 

setExists1 (A2 (projMake o (= Abloy)) (projLength o (=Medium))). 

Note now that the condition 

( setExists 1 (A2 (projMake o ( = Abloy)) (projLength o ( = Medium))) b) 

is equivalent to 

-=Jk.((k E b) A ((projMake k) = Abloy) A ((projLength k) =Medium)). 

This completes the reformulation of the condition in the definition of opens. 
What has been achieved by reformulating the condition in this way? The 

major gain is that it provides the basis for a convenient way of constructing 
predicates. In this approach, predicates are constructed from other predicates 
by composition. Thus one starts with some 'atomic' predicates and forms 
more complex predicates by systematically composing them. A key definition 
to make all this work is the following. A transformation f is a function having 
a signature of the form 

J : (LJI ---+ D) ---+ · • · ---+ (Qk ---+ D) ---+ fJ, ---+ a, 

where k ;::: 0. Clearly, A 2 and setExists1 are transformations and many more 
are introduced later in the book. In general, if Pi : Qi ---+ D ( i = 1, ... , n), then 
f p 1 ... Pn : fL ---+ a, and several such functions, the last of which is a predicate, 
can be composed to form a predicate. A method is also introduced whereby 
the hypothesis language is specified by a system of rewrites and predicates in 
the hypothesis language are systematically constructed by a rewriting process 
that exploits composition. This approach allows precise and explicit control 
over the hypothesis language. 
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For an account of the history of computational logic, see [77]. A standard and 
comprehensive reference on artificial intelligence that gives a brief history 
of artificial intelligence, including machine learning and the various logical 
influences, is [79]. 

Excellent general accounts of machine learning are in [61] and [79]. To 
properly understand machine learning, it is essential to have a good under
standing of its theory, computational learning theory. With some reluctance, 
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I decided not to include a discussion of this theory, partly because it seemed 
better not to distract from the book's concentration on knowledge repre
sentation issues and partly because other authors have already written much 
better accounts than I ever could. For readers not familiar with this material, 
I suggest starting with the introductory account in Chap. 7 in [61]. A more 
sophisticated account with many references is in Chap. 5 in [84]. As a guide 
to what to read about, here is a list of key concepts in computational learn
ing theory: risk, empirical risk, overfitting, sample complexity, consistency, 
empirical risk minimisation, structural risk minimisation, PAC-learnable, ca
pacity, VC dimension, and model selection. 

Plotkin's work on induction is described in [71] and [72], while Reynold's 
is in [76]. Some of Michalski's early work on induction is summarised in [58]. 
The work of Vere on inducing concepts in first-order logic is in [88]. The 
MARVIN system is discussed in [80] and [82]. The model inference system of 
Shapiro is described in [85]. Buntine's work on generalised subsumption is 
in [10]. The contribution of inverse resolution by Muggleton and Buntine is 
described in [64]. The FOIL system of Quinlan appears in [74]. 

The field of inductive logic programming was christened in [63]. The first 
comprehensive account of its research agenda was given in [65]. The theo
retical foundations of logic programming are described in [52] and those of 
inductive logic programming are in [70]. An excellent recent account of the 
inductive logic programming perspective on data mining and much more be
sides is in [20]. The home page of the European Network of Excellence in 
Inductive Logic Programming is [38]. Details of the ILP workshop series are 
recorded at [37]. Histories of inductive logic programming can be found in 
[63], [70], and [81]. 

Type theory arose from attempts to provide a foundation for mathemat
ics at the beginning of the 20th Century. Russell's paradox and the more 
general crisis in set theory at the time led to the introduction of various type 
disciplines to circumvent the problems [78]. The original account of the sim
ple theory of types is in [11] and its model theory is given in [34]. Modern 
accounts of higher-order logic are in [1] and [90], while categorical treatments 
can be found in [2] and [46]. 

A survey of functional logic programming up to 1994 is in [31]. Haskell is 
described in [39], >.Prolog in [68], HOL in [30], and Curry in [32]. 

Exercises 

1.1 Read the brief history of artificial intelligence in [79, Chap. 1]. Comment 
on the changing role of logic in artificial intelligence and machine learning 
over the last 40 years. 

1.2 (For those who know machine learning.) Enumerate the techniques you 
know about for representing structured data in learning applications. Typical 



Exercises 29 

applications involve chemical molecules or DNA strings in bioinformatics and 
XML or HTML pages for the World Wide Web. When you have finished 
reading this book, discuss the pros and cons of the techniques you have listed 
compared with the ones introduced here. 

1.3 (For those who know computational logic.) Enumerate the advantages 
and disadvantages of first-order compared with higher-order logic for com
putational logic applications such as declarative programming languages or 
theorem proving systems. When you have finished reading this book, inves
tigate whether your earlier analysis needs modification. 

1.4 For the keys example of Sect. 1.3, give two other possible hypothesis 
languages. Can you give an hypothesis language for which one can express 
the definition that opens is T on a bunch iff it is one of the training examples 
that opens the door? If so, what implications might this have for learning a 
definition that generalises to so far unseen individuals? 

1.5 Consider the definition of the append function given in Sect. 1.4. In
vestigate how the term append (1 ~ 2 ~ [], 3 ~ [], x) might be simplified to 
x=1PP~[J. 
[Hint: You will need to invent some suitable equations for the definitions of 
::J and =. For example, what (general) equation for :3 would allow, say, 

::Jx.::Jy.(x = 1 ~ [] 1\ append ([], x, y)) 

to be reduced in one step to 

::ly.append ([], 1 ~ [], y)?] 



2. Logic 

This chapter contains an account of the aspects of the syntax and semantics 
of higher-order logic that are most relevant to its application to learning. 

2.1 Types 

Definition 2.1.1. An alphabet consists of four sets: 

1. A set 'I of type constructors. 
2. A set$ of parameters. 
3. A set <t of constants. 
4. A set Q:J of variables. 

Each type constructor in 'I has an arity. The set 'I always includes the 
type constructors 1 and D both of arity 0. A nullary type constructor is 
a type constructor of arity 0. 1 is the type of some distinguished singleton 
set and [2 is the type of the boo leans. The set $ is denumerable (that is, 
countably infinite). Parameters are type variables and are typically denoted 
by a, b, c, .... Each constant in It has a signature (see below). The set W 
is also denumerable. Variables are typically denoted by x, y, z, ... . For any 
particular application, the alphabet is assumed fixed and all definitions are 
relative to the alphabet. 

Types are built up from the set of type constructors and the set of pa
rameters, using the symbols ---+ and x. 

Definition 2.1.2. A type is defined inductively as follows. 

1. Each parameter in $ is a type. 
2. If T is a type constructor in 'I of arity k and a 1 , ... , ak are types, then 

T a1 ... ak is a type. (For k = 0, this reduces to a type constructor of 
arity 0 being a type.) 

3. If a and (3 are types, then a ---+ (3 is a type. 
4. If a 1 , ... , an are types, then a1 x · · · x an is a type. (For n = 0, this 

reduces to 1 being a type.) 

J. W. Lloyd, Logic for Learning
© J. W. Lloyd 2003
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6 denotes the set of all types obtained from an alphabet (6 for 'sort'). 
The symbol --+ is right associative, so that a --+ {3 --+ 1 means a --+ ({3 --+ 1). 

It is worthwhile being precise about the exact meaning of the phrase 
'defined inductively' in Definition 2.1.2. First, a universe of expressions is 
needed. In this case, the set of all finite sequences of symbols drawn from 
the set 'I of type constructors, the set 11} of parameters, and '--+' and 'x' will 
serve. Then the definition states that 6 is the intersection of all sets x of 
expressions such that the following conditions are satisfied. 

1. 11} s;;: x. 
2. If a 1 , ... , ak E x and T is a type constructor in 'I of arity k, then 

T a1 .. . ak Ex. 
3. If a, {3 E x, then a --+ {3 E x. 
4. If a1, ... , an E x, then a1 X · · · X an E x. 

There is always at least one such set satisfying these conditions, namely the 
set of all expressions. Thus the intersection is well defined and, furthermore, it 
satisfies Conditions 1 to 4, as can easily be checked. Hence 6 is the smallest 
set of expressions satisfying Conditions 1 to 4 (where one set is 'smaller' 
than another if the former is a subset of the latter). Corresponding to this 
definition, there is also the following principle of induction on the structure 
of types. 

Proposition 2.1.1. Let x be a subset of 6 satisfying the following condi
tions. 

1. 11} S: x. 
2. If a 1 , ... , ak E x and T is a type constructor in 'I of arity k, then 

T a1 .. . ak Ex. 
3. If a, {3 E x, then a --+ {3 E x. 
4- If a1, ... , an E x, then a1 X · · · X an E x. 

Then x = 6. 

Proof. Since x satisfies Conditions 1 to 4 of the definition of a type and 6 
is the intersection of all such sets, it follows immediately that 6 S: x. Thus 
x=6. o 

The assumptions a 1 , ... , ak E x in Condition 2 of Proposition 2.1.1 are 
collectively known as the induction hypothesis (for that step of the proof). 
Similarly for Conditions 3 and 4. The majority of the proofs in this book are 
induction arguments on the structure of various kinds of terms or types. The 
previous discussion, illustrated by the case of types, makes clear the precise 
basis of these arguments. 

Definition 2.1.3. A type is closed if it contains no parameters. 

Notation 2.1.1. 6c denotes the set of all closed types obtained from an al
phabet. 
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Note that 6c is non-empty, since 1, [l E 6c. The next result provides a 
useful characterisation of 6c. 

Proposition 2.1.2. 6c is the intersection of all sets ~ of types such that 
the following hold. 

1. If a 1 , ... , ak E ~ and T is a type constructor in 'I of arity k, then 
T a1 .. . ak E ~-

2. !fa, j3E~, thena-->j3E~. 
3. If a1, ... ,an E ~'then a1 X··· x an E ~-

Proof. First, 6c is a set of types that satisfies Conditions 1, 2, and 3. Hence 
n~ ~ 6c. 

On the other hand, let ~ be a set of types that satisfies Conditions 1, 
2, and 3. I show that 6c ~ ~- Let X = {a E 6 I a is closed implies that 
a E ~}. It suffices to show that X = 6. The proof is by induction on the 
structure of types. 

If a is a parameter, then a E X (since a is not closed). 
Suppose that a 1 , ... , ak E X and T is a type constructor in 'I of arity k. 

If there exists j E {1, ... , k} such that aj is not closed, then T a 1 ... ak is 
not closed and hence T a 1 ... ak EX. Otherwise, ai is closed and so ai E ~' 
for i = 1, ... , k. Then, according to Condition 1, T a 1 ... ak E ~· Thus 
Ta1 . .. ak EX. 

Suppose that a, j3 E X. If one or both of a or j3 is not closed, then a --> j3 
is not closed and hence a --> j3 E X. Otherwise, a and j3 are closed and so 
a, j3 E ~- Then, according to Condition 2, a--> j3 E ~- Thus a--> j3 EX. 

Suppose that a 1 , ... , an EX. If there exists j E {1, ... , n} such that aj 
is not closed, then a 1 x · · · x an is not closed and hence a1 x · · · x an E X. 
Otherwise, ai is closed and so ai E ~' fori = 1, ... , n. Then, according to 
Condition 3, a1 x · · · x an E ~·Thus a1 x · · · x an EX. 

All four conditions in Proposition 2.1.1 have now been shown to hold, so 
that X = 6, by the principle of induction on the structure of types. Thus 
6c ~ ~- Since this is true for all such ~' it follows that 6c ~ n ~- Thus 
6c = n~. D 

Using Proposition 2.1.2, the following principle of induction on the struc
ture of closed types can be proved. 

Proposition 2.1.3. Let X be a subset of 6c satisfying the following condi
tions. 

1. If a 1, ... , ak E X and T is a type constructor in 'I of arity k, then 
T a1 .. . ak EX. 

2. If a, j3 E X, then a --> j3 E X. 
3. If a1, ... , an EX, then a1 X · · · X an EX. 

Then X= 6c. 
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Proof. Since X satisfies Conditions 1 to 3 of Proposition 2.1.2 and 6c is 
the intersection of all such sets, it follows immediately that 6c <;;;; X. Thus 
X= 6c. D 

Proposition 2.1.2 provides a 'top-down' characterisation of 6c. There is 
also a 'bottom-up' characterisation. Let N denote the set of natural numbers, 
that is, non-negative integers. 

Definition 2.1.4. Define { 6;,_}mEN inductively as follows. 

68 {T I T E 'I' has arity 0} 

{Tal. 0 .ak IT E 'I' has arity k,ai E 6;,_(1 :S i :S k),k EN} 

U {a---> ,BI a,,B E 6~} 

U {a1 x .. · x an I ai E 6~(1 :S i :S n),n EN}. 

Proposition 2.1.4. 

1. 6;,_ <;;;; 6;,_+1, formE N. 
2. 6c = UmEN6;,_. 

Proof. 1. This is an easy induction argument. 
2. First, I show that UmEN 6;,_ <;;;; 6c 0 To prove this, it suffices to show by 

induction that 6;,_ <;;;; 6c, form E N. Clearly, 68 <;;;; 6c. Suppose next that 
6;,_ <;;;; 6c. It then follows from the definition of 6;,_+1 and the fact that 6c 
satisfies Conditions 1, 2, and 3 in Proposition 2.1.2 that 6;,_+1 <;;;; 6c. 

Now I show that 6c <;;;; UmEN 6;,_. Put UmEN 6;,_ = ~· It suffices to 
show that ~ satisfies Conditions 1, 2, and 3 of Proposition 2.1.2. Suppose 
that a 1 , ... , ak E ~ and T is a type constructor in 'I' of arity k. Since the 
6;,_ are increasing, there exists p E N such that al, 0 0 0 'ak E 6~. Hence 
T a 1 ... ak E 6~+1 and soT a 1 ... ak E ~· Similar arguments show that ~ 
satisfies Conditions 2 and 3. D 

Proposition 2.1.5. If 'I' is countable, then 6c is countable. 

Proof. By Proposition 2.1.4, it suffices to show by induction that each 6;,_ is 
countable. Clearly, 68 is countable. Suppose now that 6;,_ is countable. By 
the definition of 6;,_+1 and the fact that 'I' is countable, it follows easily that 
6;,_+1 is also countable. D 

Example 2.1.1. In practical applications of the logic, a variety of types is 
needed. For example, declarative programming languages typically admit the 
following types (which are nullary type constructors): 1, n, Nat (the type of 
natural numbers), Int (the type of integers), Float (the type of floating-point 
numbers), Real (the type of real numbers), Char (the type of characters), 
and String (the type of strings). 

Other useful type constructors are those used to define lists, trees, and so 
on. In the logic, List denotes the (unary) list type constructor. Thus, if a is 
a type, then List a is the type of lists whose elements have type a. 
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2.2 Type Substitutions 

Fundamental to the later definition of a term, and elsewhere, is the concept 
of a type substitution unifying a set of equations about types. To explore 
this, note first that types are essentially first-order terms. A type constructor 
of arity n is essentially a (first-order) function symbol of arity n. Similarly, 
one can think of--. as a binary function symbol and x · · · x (where there are 
n occurrences of x) as an ( n + 1 )-ary function symbol. Thus the unification 
problem for types is the same as that encountered for terms in first-order 
logic. For this reason, the standard development of (first-order) unification 
is not repeated here, but some definitions and facts are merely recalled for 
later use, and the reader is left to consult standard references on the topic, 
if more detail is required. 

Definition 2.2.1. A type substitution is a finite set of the form 
{al/a1, ... , an/an}, where each ai is a parameter, each ai is a type distinct 
from ai, and a 1 , ... , an are distinct. Each element adai is called a binding. 

In particular, {} is a type substitution called the identity substitution. 

Notation 2.2.1. If J1 = {ai/al, ... ,an/an}, then domain(J.L) = {a1, ... ,an} 
and range (J.L) is the set of parameters appearing in { a 1 , ... , an}. 

Definition 2.2.2. A type substitution {al/a1, ... ,an/an} is closed if ai is 
closed, for i = 1, ... , n. 

Definition 2.2.3. Let 11 = {al/a1, ... , an/an} be a type substitution and 
a a type. Then aJ.L, the instance of a by J.L, is the type obtained from a by 
simultaneously replacing each occurrence of the parameter ai in a by the 
type a; (i = 1, ... , n). 

Definition 2.2.4. Let J1 = {al/a1, ... ,am/am} and v = {bl/;31, ... ,bn/J3n} 
be type substitutions. Then the composition J.LV of 11 and v is the type sub
stitution obtained from the set 

by deleting any binding ad aiv for which ai = aiv and deleting any binding 
bj / J)j for which bj E { a1, ... , am}· 

Composition is defined so that a(J.Lv) = (aJ.L)v, for any type a and type 
substitutions J1 and v. (See Exercise 2.3.) Also 11{} = {}11 = J.L, for any J.L, so 
{} really is an identity. Composition of type substitutions is associative. 

One type can be more general than another. 

Definition 2.2.5. Let a and ;3 be types. Then a is more general than ;3 if 
there exists a type substitution ~ such that ;3 = a~. 
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Note that 'more general than' includes 'equal to', since ~ can be the 
identity substitution. 

Example 2. 2.1. Let a = (List a) x [2 and f3 = (List Int) x [2. Then a is more 
general than {3, since f3 =a~, where~= {ajlnt}. 

Definition 2.2.6. Let E = { a1 = {31 , ... , an = f3n} be a set of equations 
about types. Then a type substitution fJ is a unifier for E if ai/J is identical 
to f3ifJ, for i = 1, ... , n. 

Example 2.2.2. Let E = {a -+ List b = c-+ List M, a x b = a x M}, where 
a, band care parameters and M is a unary type constructor. Then the type 
substitution {a/ M, b/ M, c/ M} is a unifier for E. 

One type substitution can be more general than another. 

Definition 2.2. 7. Let fJ and v be type substitutions. Then fJ is more general 
than v if there exists a type substitution '/ such that /J'/ = v. 

Definition 2.2.8. Let E be a set of equations about types and fJ be a unifier 
for E. Then fJ is a most general unifier for E if, for every unifier v for E, fJ 
is more general than v. 

Notat'ion 2.2.2. The phrase 'most general unifier' is often abbreviated to 
'mgu'. 

Example 2.2.3. Let E = {a -+ List b = c -+ List M, a x b = a x M} be 
a set of equations about types. Then the type substitution {ajc,b/M} is 
an mgu for E. Note that, for the unifier {a/M,b/M,c/M} of Example 2.2.2, 
{a/M, b/M, c/M} = {a/c, b/M}{c/M}. Thus {a/c, b/M} is indeed more gen
eral than this unifier. 

A general unifier of a set of equations is unique 'modulo renaming of 
parameters'. To make this statement precise, invertible type substitutions 
are defined. 

Definition 2.2.9. A type substitution fJ is invertible if there exists a type 
substitution IL-l such that /JIL-l = IL-l fJ = {}. A type substitution IL-l 
satisfying this condition is called an inverse of IL· 

If a type substitution has an inverse, then the inverse is unique, as can 
easily be established. 

Definition 2.2.10. A type substitution fJ = { al/b1, ... , an/bn} is a per
mutation of parameters if the bis are distinct parameters and domain(tJ) = 
range(tJ). 
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It can be shown that a type substitution is invertible iff it is a permutation 
of parameters. 

Now the precise statement about the essential uniqueness of mgus can be 
given. Let f.kl and f.k2 be mgus. Then f.kl and Jt2 are mgus of the same set of 
equations about types iff jt1 = Jt2a, for some invertible type substitution a. 

The next definition introduces some useful terminology. 

Definition 2.2.11. A type a is a variant of type T if a 
invertible type substitution a. 

ra, for some 

There are various algorithms for unifying a set of equations about first
order terms and, therefore, about types. The main fact is that unification 
is decidable, that is, given a set of equations about types, either the set is 
unifiable and the algorithm returns an mgu or the set is not unifiable and the 
algorithm reports this fact. These algorithms typically return an mgu that 
involves only the parameters appearing in the set of equations. (Of course, 
many mgus involve new parameters, since an mgu can be composed with 
an invertible type substitution containing new parameters to give another 
mgu.) Thus, if an equation set is unifiable, it can be supposed without loss 
of generality that there is an mgu involving only the parameters appearing 
in the equation set. 

For later use, two results about type substitutions are now established. 

Proposition 2.2.1. Let E and F be sets of equations about types. 

1. !fa is an mgufor E and Jt an mgufor Fa, then aJt is an mgufor EUF. 
2. Let E U F have mgu o. Then there exist type substitutions a and Jt such 

that a is an mgu for E, the parameters in a all appear in E, Jt is an mgu 
for Fa, and o = aJt. 

3. If E U F is unifiable and a is an mgu forE, then Fa is unifiable. 

Proof. 1. Since (E U F)aJt = EaJt U FaJt, aJt is a unifier forE U F. Suppose 
that ~ is a unifier for E U F. Thus ~ is a unifier for E and so ~ = aa, for 
some a. Also aa is a unifier for F and so a is a unifier for Fa. Since Jk is an 
mgu for Fa, it follows that a= JtfJ, for some {3. Hence~= aJtfJ and thus aJt 
is an mgu for E U F. 

2. Since o is a unifier for E, E has an mgu a, where o = a~, for some 
~- It can be assumed without loss of generality that all the parameters in a 
appear in E. Thus Fa is unifiable because Fa~= Fo. Let Jt1 be an mgu for 
Fa. By Part 1, aJt1 is an mgu forE U F. Since o is also an mgu forE U F, it 
follows that o = aJt' a, for some invertible type substitution a. Put f.l = Jk1 a. 
Then o = aJ.L, where a is an mgu forE and f.l is an mgu for Fa. 

3. Let 'Y be a unifier for E U F. Thus 'Y unifies E. Since a is an mgu for 
E, 'Y = ao, for some o. Thus o unifies Fa, since (Fa)o = FT D 

Proposition 2.2.2. Let E1, ... , En and F be sets of equations about types, 
where the parameters in each Ei are disjoint from one another. Suppose that 
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E1 U · · · U En U F has mgu 6. Then there exist type substitutions (}1, ... , (}n 
and JL such that (}i is an mgu for Ei, the parameters in (}i all appear in Ei 
(i = 1, ... , n), JL is an mgu for F((}1 U · · · U (}n), and 6 = ((}1 U · · · U (}n)JL. 

Proof. The proof is by induction on n. 
If n = 0, the result is obvious with JL = 6. 
For the induction step, consider the set of equations E 1 U · · · U En U F. 

By the induction hypothesis, there exist type substitutions (}1 , ... , (}n~ 1 and 
JL1 such that (}i is an mgu for Ei, the parameters in (}i all appear in Ei 
(i = 1, ... , n- 1), JL1 is an mgu for (En U F)((}1 U · · · U (}n~d, and 6 = 
((}1U· · ·U(}n~l)JL'. Note that (EnUF)((}1U· · ·U(}n~d = EnUF((}1U· · ·U(}n~d· 

By Part 2 of Proposition 2.2.1, there exist type substitutions (}n and JL 
such that (} n is an mgu for En, the parameters in (} n all appear in En, JL 
is an mgu for F((}l U · · · U (}n~d(}n and JL1 = (}nf.L· Since each of the (}i 

contain distinct sets of parameters, ((}1 U · · · U (}n~1)(}n = (}1 U · · · U (}n· Thus 
F((}1 U · · · U (}n~d(}n = F((}1 U · · · U (}n)· Also 6 = ((}1 U · · · U (}n~dM' 
((}1 U · · · U (}n~1knJL = ((}1 U · · · U (}n)JL. D 

2.3 Terms 

Definition 2.3.1. A signature is the declared type for a constant. 

Notation 2. 3.1. The fact that a constant C has signature a is often denoted 
by C: a. 

Two different kinds of constants, data constructors and functions, are 
distinguished. In a knowledge representation context, data constructors are 
used to represent individuals. In a programming language context, data con
structors are used to construct data values. In contrast, functions are used to 
compute on data values; functions have definitions while data constructors 
do not. In the semantics for the logic, the data constructors are used to con
struct models. As examples, the constants T (true) and ..l (false) are data 
constructors, as is each integer, floating-point number, and character. The 
constant ~ (cons) used to construct lists is a data constructor. The constants 
append and concat introduced in examples below are functions. 

A predicate is a function having signature of the form a --+ D, for some 
a. Predicates will play an important role in the application of the logic to 
learning. 

The set ([always includes the following constants (where a is a parameter). 

1. (), having signature 1. 
2. =, having signature a --+ a --+ D. 
3. T and ..l, having signature D. 
4. •, having signature D --+ D. 
5. I\, V, ---+, +------, and+----+, having signature D--+ D--+ D. 
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6. E and II, having signature (a--+ !?) --+ n. 
The intended meaning of= is identity (that is, = x y is T iff x andy are 

identical), the intended meaning ofT is true, the intended meaning of l_ is 
false, and the intended meanings of the connectives --., 1\, V, ----+, +----, and 
<--------t are as usual. The intended meanings of E and II are that E maps a 
predicate to T iff the predicate maps at least one element to T and II maps 
a predicate to T iff the predicate maps all elements to T. 

Note 2.3.1. In this book, the equality symbol '=' is overloaded. On the one 
hand, '=' is a constant in the alphabet of a higher-order logic. On the other 
hand, '=' is a symbol of the informal meta-language in which the book is 
written with the intended meaning of identity. The meaning of any occurrence 
of the symbol '=' will always be clear from the context. Equality is nearly 
always written infix. 

Data constructors always have a signature of the form 0'1 --+ · · · --+ O'n --+ 

(T a 1 ... ak), where T is a type constructor of arity k, a1, ... , ak are dis
tinct parameters, and all the parameters appearing in 0'1 , ... , 0' n occur among 
au ... , ak (n ;:::: 0, k ;:::: 0). The arity of the data constructor is n. A nullary 
data constructor is a data constructor of arity 0. The arity of a data con
structor C is denoted by arity (C). 

Example 2. 3.1. The data constructors for constructing lists are [] having sig
nature List a and U having signature a --+ List a --+ List a, where U is usually 
written infix. [] represents the empty list. The term s U t represents the list 
with head s and tail t. Thus 4 U 5 U 6 U [] represents the list [4, 5, 6]. In fact, 
[h, ... , tn] is often used as notational sugar for the term h U · · · U tn ~ []. 

It is assumed throughout that, for each type constructor T, there exists 
at least one data constructor having a signature of the form 0'1 --+ · · · --+ 

O'n --+ (T a 1 ... ak)· If Cis a data constructor having a signature of the form 
0'1 --+ · · · --+ O'n --+ (T a1 ... ak), then C is said to be associated with the type 
constructor T. 

The next task is to define the central concept of a term. In the non
polymorphic case, a simple inductive definition suffices. But the polymorphic 
case is more complicated since, when putting terms together to make larger 
terms, it is generally necessary to solve a system of equations and these equa
tions depend upon the relative types of free variables in the component terms. 
The effect of this is that to define a term one has to define simultaneously its 
type, and its set of free variables and their relative types. 

Definition 2.3.2. A term, together with its type, and its set of free variables 
and their relative types, is defined inductively as follows. 

1. Each variable X in m is a term of type a, where a is a parameter. 
The variable x is free with relative type a in x. 
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2. Each constant C in <t, where C has signature a, is a term of type a. 
3. (Abstraction) If t is a term of type (3 and X a variable in sn, then >.x.t 

is a term of type a ---+ (3, if x is free with relative type a in t, or type 
a---+ (3, where a is a new parameter, otherwise. 
A variable other than xis free with relative type u in >.x.t if the variable 
is free with relative type u in t. 

4. (Application) If s is a term of type a and t a term of type (3 such that 
the equation 

a = (3---+ b, 

where b is a new parameter, augmented with equations of the form 

[} = o, 
for each variable that is free with relative type [} in s and is also free with 
relative type oint, have a most general unifier~' then (s t) is a term of 
type b~. 
A variable is free with relative type u~ in (s t) if the variable is free with 
relative type u in s or t. 

5. (Tuple) If t1, ... , tn are terms of type a 1, ... , an, respectively, such that 
the set of equations of the form 

for each variable that is free with relative type [};j in the term t;J 

(j = 1, ... , k and k > 1), have a most general unifier.;, then (t1, ... , tn) 
is a term of type a1~ x · · · X an~· 
A variable is free with relative type u.; in (h, ... , tn) if the variable is 
free with relative type u in t1, for some j E {1, ... , n }. 

The type substitution ~ in Parts 4 and 5 of the definition is called the 
associated mgu. 

Notation 2.3.2. £denotes the set of all terms obtained from an alphabet and 
is called the language given by the alphabet. 

In Parts 4 and 5 of Definition 2.3.2, it is understood that parameters 
in types in the respective component terms are standardised apart (that 
is, renamed to avoid undesirable name clashes). More precisely, in Part 4, 
it is understood that the parameters in a and the relative types of the free 
variables in s are standardised apart from the parameters in (3 and the relative 
types of the free variables in t. The standardisation apart can be achieved by 
applying a suitable invertible type substitution to one of the sets of types. 
Similarly, in Part 5, it is understood that the respective sets of parameters 
in each a; and the relative types of free variables in t; are standardised apart 
from one another. 
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In Part 4 of Definition 2.3.2, the typical case is when s is a term whose 
type has the form 'Y --> c:. In this case, the first equation can be replaced by 

"(=(3 

and the type of (s t) will be c:~. However, it is also possible for the type of s 
to be a parameter, for example, if s is a variable, and this is the reason for 
the particular formulation of the equations in that part. 

In Part 5, if n = 1, (tl) is defined to be t 1 . If n = 0, the term obtained is 
the empty tuple, (),which is a term of type 1. 

The set of equations in Part 4 of Definition 2.3.2 that have to have a 
unifier in order to form an application are denoted by Constraints(s t)· Thus 
Constraints(s t) is 

{a={J->b}U 

{Q = 8 I there is a variable that is free with relative type Q in s 

and free with relative type 8 in t}. 

Similarly, the equations in Part 5 are denoted by Constraints(t 1 , ..• ,tn)· Thus 
Constraints(t 1 ,. .. ,tn) is 

{£Ji1 = · · · = Qik I there is a variable that is free with relative type 

Qij in the term tij (j = 1, ... , k and k > 1)}. 

The type of a term is not unique because there may be many mgus of 
the corresponding set of equations. However, all these mgus differ by just an 
invertible type substitution and thus the corresponding types differ by just a 
renaming of parameters. 

Definition 2.3.3. A term is closed if it contains no free variables. 

Definition 2.3.4. A term of type Jl is called a formula. 

Definition 2.3.5. A theory is a collection of formulas. 

Note 2.3.2. Since Definition 2.3.2 is rather complicated, some remarks to 
clarify its exact meaning are in order. First, rather more than just a term is 
being defined. In fact, what shall be referred to as an annotated term, which is 
a triple, is actually being defined. The first component is the term itself, the 
second is its type, and the third is its set of free variables and their relative 
types. The inductive definition specifies that the set of annotated terms is 
the intersection of all sets of triples satisfying (appropriately reformulated 
versions of) Parts 1 to 5 of the definition (which are then called Conditions 
1 to 5). 

For this definition to make sense, one needs a suitable universe of triples. 
For a place in a triple where a type or relative type should appear, one can 
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use a type as defined earlier. For the place where a term should appear, one 
can define a suitable set of expressions as follows. Given some alphabet, let 
an expression be a finite sequence of symbols drawn from the set of constants 
<1:, the set of variables \U, and'(',')',',\','.', and','. Then the universe is the 
set of triples for which the first component is an expression, the second is a 
type, and the third is a set of pairs consisting of a variable and a type. Thus 
the intersection of all sets of triples satisfying Conditions 1 to 5 is well defined 
and, furthermore, it satisfies Conditions 1 to 5. Hence the set of annotated 
terms is the smallest set of triples satisfying Conditions 1 to 5. 

Generally, when proving properties of terms, what are actually used are 
the corresponding annotated terms since there is usually some reference in 
the proof to the type of the term or to free variables and their relative types. 
When needed, this will be taken for granted in the following without any 
remark to this effect being made. In particular, where appropriate, £, will 
implicitly refer to the set of annotated terms. 

In Part 4 of Definition 2.3.2, a variable can be free in both s and t. To 
determine the relative type of the variable in (s t), one can use either the 
relative type (! in s or the relative type J in t. The reason, of course, is that 
~ is a unifier of the set of equations for this part and so (!~ = J~. A similar 
remark applies to Part 5. 

To prove properties of terms, one can employ the following principle of 
induction on the structure of terms. 

Proposition 2.3.1. Let X be a subset of£ satisfying the following condi
tions. 

1. QJ<;;; X. 
2. <1: <;;;X. 
3. Ift EX and x E \U, then >.x.t EX. 
4. If s, t EX and (s t) E £, then (s t) EX. 
5. Iftl, ... ,tn EX and (t1, ... ,tn) E £,then (t1, ... ,tn) EX. 

Then X=£. 

Proof. The first step is to show that X satisfies Conditions 1 to 5 of the 
definition of a term. For Conditions 1, 2, and 3, this is immediate from the 
first three conditions satisfied by X. 

For Condition 4 of the definition of a term, suppose that s, t E X and 
Constraints(s t) is unifiable. Since £ satisfies Condition 4, it follows that 
(s t) E £. Thus (s t) E X, by the fourth condition satisfied by X. Hence 
X satisfies Condition 4 of the definition of a term. 

For Condition 5 of the definition of a term, the proof is similar. 
Now, since X satisfies Conditions 1 to 5 of the definition of a term and £ 

is the intersection of all such sets, it follows immediately that £ <;;; X. Thus 
X=£. D 



2.3 Terms 43 

Since £ is a subset of the set of all strings over the alphabet consisting of 
the set of variables, the set of constants, '>.',and the punctuation symbols, 
and since the set of strings over any alphabet is well founded under the 
substring relation--< (Example A.l.l), it follows that£ is well founded under 
the same relation. As a well-founded set, there is a principle of induction 
(Proposition A.l.3) available for proving properties of terms and a principle 
of inductive construction (Proposition A.l.4) available for defining functions 
whose domain is a set of terms. Note that the minimal elements of£ under 
--< are the constants and variables. 

Here are three examples to illustrate Definition 2.3.2. 

Example 2. 3. 2. Let M be a nullary type, and A : M and concat : List a x 
List a ---> List a be constants. Recall that [] : List a and rt : a ---> List a ---> 

List a are the data constructors for lists. I will show that (concat ([],[A])) 
is a term. For this, ([],[A]) must be shown to be a term, which leads to 
the consideration of [] and [A]. Now [] is a term of type List a, by Part 
2 of the definition of a term. By Parts 2 and 4, (U A) is a term of type 
List M ---> List M, where along the way the equation a = M is solved with 
the mgu {a/M}. Then ((rt A) []), which is the list [A], is a term of type 
List M by Part 4, where the equation List M = List a is solved. By Part 5, 
it follows that ([],[A]) is a term of type List a x List M. Finally, by Part 4 
again, ( concat ([],[A])) is a term of type List M, where the equation to be 
solved is List ax List a= List ax List M whose mgu is {a/M}. 

Example 2.3.3. Consider the constants append : List a---> List a---. List a---> 
n and process : List a ---. List a. I will show that ( ( (append x) []) (process x)) 
is a term. First, the variable x is a term of type b, where the parameter 
is chosen to avoid a clash in the next step. Then (append x) is a term of 
type List a ---. List a ---. n, for which the equation solved is List a = b. 
Next ( (append x) []) is a term of type List a ---> n and x has relative type 
List a in ( (append x) []). Now consider (process x), for which the constituent 
parts are process of type List c ---> List c and the variable x of type d. 
Thus (process x) is a term of type List c and x has relative type List c in 
(process x). Finally, one has to apply ( (append x) []) to the term (process x). 
For this, by Part 4, there are two equations. These are List a = List c, 
coming from the top-level types, and List a = List c, coming from the free 
variable x in each of the components. These equations have the mgu { c/ a}. 
Thus ( ( (append X) []) (process X)) is a term of type n 0 

Example 2.3.4. If x is a variable (of type a) andy is a variable (of type b), 
then (x y) is a term of type c, where cis a new parameter, and x has relative 
type b---> c in (x y). 

Notation 2.3.3. Terms of the form (E >.x.t) are written as :Jx.t and terms of 
the form (II >.x.t) are written as Vx.t (in accord with the intended meaning 
of E and II). In a higher-order logic, one may identify sets and predicates 
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- the actual identification is between a set and its characteristic function 
which is a predicate. Thus, if t is of type !l, the abstraction >..x.t may be 
written as {x It} if it is intended to emphasise that its intended meaning is 
a set. The notation{} means {x l..l}. The notations E t means (t s), where 
t has type f.L --+ n' for some f.L· Furthermore, notwithstanding the fact that 
sets are mathematically identified with predicates, it is sometimes convenient 
to maintain an informal distinction between sets (as 'collections of objects') 
and predicates. For this reason, the notation {JL} is introduced as a synonym 
for the type f.L --+ fl. The term (s t) is often written as simply s t, using 
juxtaposition to denote application. Juxtaposition is left associative, so that 
r s t means ( ( r s) t). Thus ( ( (append x) []) (process x)) can be written more 
simply as append x [] (process x). 

Proposition 2.3.2. Lett E £. Then exactly one of the following conditions 
holds. 

1. tE~J. 
2. t E <t. 
3. t has the form >..x.s, where s E £. 
4. t has the form (u v), where u, v E £. 
5. t has the form (t1, ... , tn), where t1, ... , tn E £. 

Proof. It is clear that at most one of the conditions holds. Now suppose tis a 
term that is neither a variable, nor a constant, nor has the form >..x.s, (u v), 
or (t1 , ... , tn)· Then£\ {t} satisfies Conditions 1 to 5 in the definition of a 
term, which contradicts the definition of ,C as being the smallest set satisfying 
Conditions 1 to 5. Thus t is either a variable, a constant, or has the form 
>..x.s, (u v), or (t1, ... , tn)· 

Suppose that t has the form >..x.s, but that sis not a term. Then the set 
of terms £ \ { t} satisfies Conditions 1 to 5 in the definition of a term, which 
contradicts the definition of£ as being the smallest set satisfying Conditions 
1 to 5. Thus sis a term. The arguments for Parts 4 and 5 are similar. D 

Proposition 2.3.3. 

1. An expression of the form >..x. t is a term iff t is a term. 
2. An expression of the form (s t) is a term iff s and t are terms and 

Constraints(s t) is unifiable. 
3. An expression of the form (t1, ... , tn) is a term iff t1, ... , tn are terms 

and Constraints(t, , ... ,tn) is unifiable. 

Proof. 1. If >..x.t is a term, then t is a term by Part 3 of Proposition 2.3.2. 
Conversely, if tis a term, then >..x.t is a term, since£ satisfies Condition 3 of 
the definition of a term. 

2. Suppose that (s t) is a term. Then s and t are terms by Part 4 of 
Proposition 2.3.2. If Constraints(s t) is not unifiable, then £\ { ( s t)} satisfies 
Conditions 1 to 5 in the definition of a term, which contradicts the definition 
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of £ as being the smallest set satisfying Conditions 1 to 5. Conversely, if s 
and t are terms and Constraints(s t) is unifiable, then (s t) is a term, since£ 
satisfies Condition 4 of the definition of a term. 

3. Suppose that (h, ... , tn) is a term. Then h, ... , tn are terms by 
Part 5 of Proposition 2.3.2. If Constraints(t1 , ... ,tn) is not unifiable, then 
£\ { (t1 , ... , tn)} satisfies Conditions 1 to 5 in the definition of a term, which 
contradicts the definition of£ as being the smallest set satisfying Conditions 
1 to 5. Conversely, if h, ... , tn are terms and Constraints(h, ... ,tn) is unifiable, 
then (t1 , ... , tn) is a term, since£ satisfies Condition 5 of the definition of a 
term. D 

A common task, especially in the programming language applications of 
the logic, is to check that putative terms are correctly typed. A suitable class 
of putative terms is given by the set of well-formed expressions defined as 
follows. 

Definition 2.3.6. A well-formed expression is defined inductively as follows. 

1. Each variable in SU is a well-formed expression. 
2. Each constant in <tis a well-formed expression. 
3. If e is a well-formed expression and x is a variable, then A.x.e is a well

formed expression. 
4. If d and e are well-formed expression, then (de) is a well-formed expres

sion. 
5. If e1, ... , en are well-formed expressions, then ( e1, ... , en) is a well-formed 

expression. 

Thus the well-formed expressions are the terms of the untyped A.-calculus. 
Clearly the set of well-formed expressions (on some alphabet) is generally 
much larger than the set of terms (that is, £). The type checking problem is 
to determine whether or not some given well-formed expression tis in£ and, 
if so, to determine the type of t. 

Proposition 2.3.4. Type checking of terms is decidable and each well
formed expression can be well-typed in at most one way (up to variants). 

Proof. The proof proceeds by induction on the structure of well-formed ex
pressions. D 

2.4 Subterms 

The concept of a subterm of a term will play an important part in the ap
plications of the logic. As preparation for the definition of a subterm, the 
concept of an occurrence in a term is defined. Let Z denote the set of inte
gers, z+ the set of positive integers, and (Z+)* the set of all strings over the 
alphabet of positive integers, with c: denoting the empty string. 
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Definition 2.4.1. The occurrence set of a term t, denoted CJ(t), is the set of 
strings in (Z+)* defined inductively as follows. 

1. If tis a variable, then CJ(t) = {c}. 
2. If t is a constant, then CJ(t) = { E }. 

3. If t has the form .Xx.s, then CJ(t) = {c} U {1o I o E CJ(s)}. 
4. If t has the form (u v), then CJ(t) = {c} U {1o I o E CJ(u)} U {2o' I o' E 

CJ(v)}. 
5. If t has the form ( t 1 ' ... ' tn)' then C) ( t) = { E} u u~ 1 { ioi I Oi E C) ( ti)}. 

Each o E CJ(t) is called an occurrence in t. 

More precisely, CJ is a function C) : £-+ 2(z+)* from the set of terms into 
the powerset of the set of all strings of positive integers. The existence and 
uniqueness of CJ depends upon that fact that £ is well founded under the 
substring relation and hence Proposition A.l.4 applies: CJ is defined directly 
on the minimal elements (that is, constants and variables) and is uniquely 
determined by the rules in the definition for abstractions, applications, and 
tuples. 

Example 2.4.1. Consider the term append x [] (process x), illustrated in 
Fig. 2.1 below. Its occurrence set is { E, 1, 2, 11, 12, 21, 22, 111, 112}. 

( ( (append x) []) (process x)) 

~~ 
( (append x) []) (process x) 

/~ /~ 
(append x) O process x 

/\ 
append x 

Fig. 2.1. A term with occurrences 

Definition 2.4.2. If t is a term and o E CJ(t), then the subterm oft at 
occurrence o, denoted t1 0 , is defined inductively on the length of o as follows. 

1. If o = E, then tlo = t. 
2. If o = 1o', for some o', and t has the form .Xx.s, then tlo = sla'· 

If o = 1o', for some o', and t has the form (u v), then tlo = ula'· 
If o = 2o', for some o', and t has the form (u v), then tlo =via'· 
If o = io', for some o', and t has the form (t1, ... , tn), then tlo = tilo', for 
i = 1, ... ,n. 
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A subterm is a subterm of a term at some occurrence. A subterm is proper if 
it is not at occurrence c:. 

In connection with Definition 2.4.2, note that if t has the form .Ax.s, then 
sis a term, by Proposition 2.3.2. Thus slo' is well defined. Similar comments 
apply to (u v) and (h, ... , tn)· Furthermore, if tis a variable or a constant, 
then CJ(t) must be {c:}. Also if t has the form .Ax.s, then each o E eJ(t) must 
be either c: or have the form 1o', for some o'. Similar comments apply to ( u v) 
and (t1, ... , tn)· 

Example 2.4.2. Consider the term append x [] (process x). The subterm of 
append x [] (process x) at occurrence 

c: is append x [] (process x), 

1 is append x [], 

2 is process x, 

11 is append x, 

12 is [], 

21 is process, 

22 is x, 
111 is append, and 

112 is x. 

These subterms are illustrated in Fig. 2.1. 

Proposition 2.4.1. Each subterm is a term. 

Proof. Let t be a term and o E eJ(t). It is shown by induction on the length 
of o that tlo is a term. 

If the length of o is 0, then o = c:. Thus tlo = t, which is a term. 
For the inductive step, suppose the length of o is n + 1 ( n ~ 0). There are 

several cases to consider. 
If o = 1o', for some o', and t has the form .Ax.s, then tlo = slo' which is a 

term by the induction hypothesis. 
If o = 1o', for some o', and t has the form (u v), then tlo = ulo' which is 

a term by the induction hypothesis. 
If o = 2o', for some o', and t has the form (u v), then tlo = vlo' which is 

a term by the induction hypothesis. 
If o = io', for some o', and t has the form (t1, ... , tn), then tio = tilo' 

which is a term by the induction hypothesis, fori= 1, ... , n. 0 

If r is a subterm of s at occurrence o' and s is a subterm of t at occurrence 
o, then r is a subterm of t at occurrence oo', where oo' denotes the concate
nation of o and o'. Thus a subterm of a subterm of a term t is a subterm of 
t. 
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Suppose for some term, s is a subterm at occurrence o and s' is a subterm 
at occurrence o'. Then either o is a prefix of o', in which case s' is a subterm 
of s, oro' is a prefix of o, in which cases is a subterm of s', or neither o nor 
o' is a prefix of the other, in which case s and s' do not overlap. 

Definition 2.4.3. Two occurrences o and o' are disjoint if neither o nor o' 
is a prefix of the other. A set of occurrences { oi}~ 1 is disjoint if each pair of 
occurrences in the set is disjoint. 

Two subterms of a term are disjoint if their occurrences are disjoint. A 
set of subterms of a term is disjoint if their set of occurrences is disjoint. 

Proposition 2.4.2. 

1. Each constant appearing at a particular place in a term is a subterm of 
the term. 

2. Each variable appearing at a particular place in a term (except a variable 
appearing immediately after a >..) is a subterm of the term. 

Proof. 1. The proof is by induction on the structure of terms. Let t be a term 
and C a constant appearing in t. It has to be shown that there exists o E <9(t) 
such that tio =C. 

If t is a variable, then there can be no appearance of a constant and the 
result holds. 

If t is the constant C, then the only appearance of a constant is t itself 
and tic= C. 

Let t have the form >..x.s and C be a constant appearing in t. Thus C 
must appear in s. By the induction hypothesis, there exists a' E <9(s) such 
that sio' = C. Thus tilo' =C. 

The argument when t has the form (u v) or (h, ... , tn) is similar. 
2. The proof is by induction on the structure of terms. Let t be a term and 

x a variable appearing (not immediately after a >..) in t. It has to be shown 
that there exists o E <9(t) such that tio = x. 

If t is a variable x, then the only appearance of a variable is t itself and 
tic= X. 

If t is a constant, then there can be no appearance of a variable and the 
result holds. 

Let t have the form >..y.s and x be a variable appearing in t. Since x 
does not appear immediately after a>.., x must appear ins. By the induction 
hypothesis, there exists o' E <9(s) such that sio' = x. Thus tilo' = x. 

The argument when t has the form ( u v) or ( h, ... , tn) is similar. D 

Note that a variable appearing immediately after a >.. in a term is not 
a subterm since the variable appearing there is not at an occurrence of the 
term. 

Definition 2.4.4. An occurrence of a variable x m a term 1s bound if it 
occurs within a subterm of the form >..x.t. 
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A variable in a term is bound if it has a bound occurrence. 
An occurrence of a variable in a term is free if it is not a bound occurrence. 

For a particular occurrence of a subterm Ax.t in a term, the occurrence 

of t is called the scope of the AX. 

In the definition of a term, the concept of a free variable is also defined. 

The following result establishes that free variables are exactly those variables 

which have free occurrences. 

Proposition 2.4.3. A variable is free in a term iff it has a free occurrence 

in the term. 

Proof. The proof is by induction on the structure of terms. Let the term be 

t. 
If t is a variable or a constant, then the result is clear. 
Let t have the form Ax.s. I claim that x is not a free variable in t. Thus 

suppose that x is a free variable in t. Then £ \ { t} satisfies Conditions 1 to 

5 of the definition of a term, which contradicts the definition of £ as being 

the smallest set satisfying Conditions 1 to 5. (If x is a free variable for the 

(annotated) term t, then tis not needed for Condition 3 to be satisfied.) Thus 

x is not a free variable in t. Furthermore, any occurrence of x in t is bound, 

by definition. Thus the property holds for x. For another variable y occurring 

in s, by the induction hypothesis, y is free in s iffy has a free occurrence in 

s. Thus y is free in t iffy has a free occurrence in t. 
Let t have the form ( u v). Then a variable x is free in ( u v) iff x is free 

in either u or v iff x has free occurrence in either u or v (by the induction 

hypothesis) iff x has a free occurrence in ( u v). 
Lett have the form (t1, ... , tn)· Then a variable xis free in (h, ... , tn) 

iff x is free in t 1, for some j E { 1, ... , n} iff x has a free occurrence in t 1, for 
some j E { 1, ... , n} (by the induction hypothesis) iff x has a free occurrence 

in (t1, ... ,tn)· D 

A variable can be bound by more than one A in a term. 

Example 2.4.3. Let M and N be nullary types, and f: M--+ f2 and g: N--+ 
f2 be constants. Then ( L' Ax. (f x)) I\ ( L' Ax. (g x)) is a term of type f2, in 

which the variable x is bound by several As. 

A variable can be both bound and free in a term. 

Example 2.4.4. Let L, M, N, and P be nullary type constructors, and f 
(L --+ M) --+ N --+ P, g : L--+ M, and h : L--+ L --+ N be constants. Consider 

the term f Ax.(g x) (h x y). Then the first occurrence of x (that is, the x in 

(g x)) is bound and the second occurrence is free. Thus x is both bound and 

free in f Ax.(g x) (h x y). 

The last two examples motivate the introduction of the following concept. 
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Definition 2.4.5. A term is rectified if each bound variable is bound by just 
one ..\ and no variable is both bound and free. 

By a suitable change of bound variables any term can be converted to a 
rectified term. Since the names of the bound variables are of no consequence, 
the rectified term thus obtained is 'equivalent' to the original term. Later, 
terms that differ only in the names of the bound variables are identified. 

The concept of relative type of free variables is now extended to all sub
terms of a term. 

Definition 2.4.6. The relative type of the subterm tla of the term t at o E 

e>(t) is defined by induction on the length of o as follows. 
If the length of o is 0, then the relative type of tlo is the same as the type 

oft. 
For the inductive step, suppose the length of o is n + 1 (n ~ 0). There are 

several cases to consider. 
If o = 1o', for some o', and t has the form ..\x.s, then the relative type of 

tlo is the same as the relative type of slo' in s. 
If o = 1o', for some o', and t has the form ( u v), then the relative type of 

tlo is a~, where a is the relative type of ula' in u and~ is the associated mgu 
for (u v). 

If o = 2o', for some o', and t has the form ( u v), then the relative type of 
tlo is a~, where a is the relative type of via' in v and~ is the associated mgu 
for (u v). 

If o = io', for some i E { 1, ... , n} and o', and t has the form ( h, ... , tn), 
then the relative type of tlo is a~, where a is the relative type of tilo' inti 
and~ is the associated mgu for (t1, ... , tn)· 

Note 2.4.1. Having given the definition of relative type of a subterm, a rather 
subtle clarification of the definition is needed concerning the use of the asso
ciated mgus. In the definition of the concept of a term in which associated 
mgus were also defined, it was only required that the sets of parameters in the 
types of the constituent terms together with the types of the free variables in 
these terms be standardised apart. For Definition 2.4.6 and in what follows, 
a stronger form of standardisation apart is needed because it is possible for 
subterms of a term to contain parameters in their relative types that do not 
occur amongst the parameters in the type of the term or the types of free 
variables. This can happen if there is a function that has a signature of the 
form a--. {3, where a contains a parameter that does not appear in {3. (Such 
functions are common- see Chap. 5.) For example, iff : a--. M is a func
tion, then (! []) is a term of type M, whereas the relative type of [] in (! []) 
is List b. Thus it is understood in Definition 2.4.6 that before an associated 
mgu is formed the respective sets of parameters in the relative types of the 
subterms of the constituent terms are standardised apart. 

This stronger form of standardisation apart cannot be imposed in the 
definition of a term because there is no concept of a subterm at that stage, 
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nor is it needed. However, it is possible to extend the definition of term 

to simultaneously include the definitions of subterm and relative type of a 

subterm and, in this case, the stronger form of standardisation apart would 

be needed. 

Example 2.4.5. Let M be a nullary type, and append : List a -+ List a -+ 

List a -+ f?, process : List a -+ List a and A, B, C : M be constants. 

Consider the first occurrence of x in the term append x [] (process x). As a 

term in its own right, x has type a, for some parameter a. As a subterm of 

append x [] (process x), x has relative type List a. 
The occurrence of x in the term append x [] (process [A, B, C]) has rel

ative type List M. Also the subterm process of this term has relative type 

List M -+ List M. 

In the definition of a term, the concept of the relative type of a free 

variable is defined. The next proposition shows that this relative type is the 

same as the relative type of any of the free occurrences of the variable. 

Proposition 2.4.4. The relative type of each free variable x in a term t is 
the same as the relative type of each free occurrence of x in t. 

Proof. The proof is by induction on the structure of terms. 
Let t be the variable x of type a. The relative type of x as a free variable 

is a and the relative type of the free occurrence of x in x is also a. 
If t is a constant, there are no free variables and the result holds. 

Lett have the form Ay.s and x be a free variable in t. Then x cannot bey 
and x must be a free variable in s. By the induction hypothesis, the relative 

type of x in s is the same as the relative types of each of its free occurrences 

ins. Thus the relative type of x in t is the same as the relative types of each 

of its free occurrences in t. 
Let t have the form ( u v) and x be a free variable in t. Thus x is a free 

variable in either u or v or both. Choose any free occurrence of x in u, say. 

By the induction hypothesis, the relative type of x in u is the same as the 

relative type of this free occurrence of x in u. Thus the relative type of x in 

( u v) is the same as the relative type of this free occurrence of x in ( u v). 
Lett have the form (h, ... , tn) and x be a free variable in t. Thus xis a 

free variable in tj, for some j E { 1, ... , n}. Choose any free occurrence of x 
in tj. By the induction hypothesis, the relative type of x in tj is the same as 

the relative type of this free occurrence of x in tj. Thus the relative type of 

x in (h, ... , tn) is the same as the relative type of this free occurrence of x 
in (t1, ... ,tn). 0 

Distinct bound occurrences of a variable can have distinct relative types. 

Example 2.4.6. Let M and N be nullary types, and f: M-+ f? and g: N-+ 
n be constants, and t the term ( L' AX.(! x)) 1\ ( L' AX. (g x)). The bound 

occurrence of x in ( L' AX.(! x)) has relative type M in t, while the one in 

(L' Ax.(g x)) has relative type N in t. 
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The next topic is concerned with replacing a subterm of a term by a new 
subterm. 

Definition 2.4. 7. Let t be a term, s a subterm oft at occurrence o, and r a 
term. Then the expression obtained by replacing s in t by r, denoted t[s/r] 0 , 

is defined by induction on the length of o as follows. 
If the length of o is 0, then t[s/r] 0 = r. 
For the inductive step, suppose the length of o is n + 1 (n ;::=: 0). There are 

several cases to consider. 
If o = 1o', for some o', and t has the form .Ax.w, then (.Ax.w)[s/r]o 

.Ax.( w[s/r]o' ). 
If o = 1o', for some o', and t has the form (u v), then (u v)[s/r]o 

(u[s/r]o' v). 
If o = 2o', for some o', and t has the form (u v), then (u v)[s/r]o 

(u v[sjr]o' ). 
If o = io', for some i E {1, ... , n} and o', and t has the form (t1, ... , tn), 

then (t1, ... , tn)[s/r]o = (t1, ... , ti[s/r]o', ... , tn)· 

More generally, one can replace several subterms simultaneously. 

Definition 2.4.8. Lett be a term, si a subterm oft at occurrence Oi, and ri 
a term, fori = 1, ... , n, such that the set of subterms { si}~ 1 is disjoint. Then 
the expression obtained by replacing si in t by ri, fori = 1, ... , n, denoted 
t[sl/r1, ... , sn/rn]o1 , ... ,on, is defined by induction on the number n of sub
terms by t[sl/rl, ... , Sn/rn]o1 , ... ,on = (t[sl/r1]oJ[s2/r2, ... , sn/rn]o2 , ... ,on · 

Since the subterms are disjoint, it is clear that t[sl/r1, ... , sn/rn]o1 , ... ,on 
is well defined (because the occurrences continue to be well defined as the 
successive replacements are made) and that the result of the replacements 
does not depend on the order in which they are carried out. When there is no 
chance of confusion, the specific mention of the occurrences may be dropped 
and t[sl/r1, ... , snfrn]o1 , ... ,on denoted more simply by t[sl/r1, ... , snfrn]· 

Easy examples show that t[s/r]o does not have to be a term (because 
r may not have the correct type). However, under certain conditions that 
arise particularly in the application of the logic to declarative programming 
languages, it will be a term. 

Definition 2.4.9. Lets be a term of type a and t a term of type T. Then s 
is type-weaker than t, denoted s ~ t, if there exists a type substitution"( such 
that T =a"(, every free variable ins is a free variable in t, and, if the relative 
type of a free variable in s is o, then the relative type of this free variable in 
t is O"f. 

Notation 2.4.1. The type substitution "( in Definition 2.4.9 is denoted by 
Substs;::;,t· 
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Example 2.4. 7. Let s = y and t = f x y, where f : M ---+ N ---+ N. Let 
"/ = {b/N}, where b is the type of y. Then b"( =Nand sis type-weaker than 
t. 

Example 2.4.8. Lets= y and t = f y x, where f: M---+ N---+ N. Then sis 
not type-weaker than t since no suitable 1 exists. 

The next proposition collects some basic properties of j. 

Proposition 2.4.5. 

1. Lett be a term. Then t j t. 
2. Let r, s, and t be terms. If r j s and s j t, then r j t. 
3. Lets and t be terms. If s j t, then .\x.s j .\x.t. 
4. Let s1, s2, h, and t2 be terms and (t1 t2) a term. If s1 j h and s2 j t2, 

then (s1 s2) is a term and (s1 s2) j (h t2). 
5. Let Si and ti be terms, for i = 1, . .. , n, and ( h, ... , tn) a term. If 

si j ti, fori= l, ... ,n, then (s1, ... ,sn) is a term and (s1, ... ,sn) j 
( t1, ... , tn). 

Proof. 1. This part is obvious. 
2. This part is obvious. 
3. Suppose that s has type O", and Substs-<t = "(. There are three cases. 
(a) If xis free with relative type a in s, then the type of .\x.s is a---+ O". 

Thus the relative type of x intis a"(, so that the type of .\x.t is (a---+ O")r. 
If y is a free variable of relative type o in .\x.s, then y has relative type Or in 
.\x.t. Thus Subst>-x.s-<>-x.t = "(. 

(b) If x is not fr~e in s, but is free with relative type (3 in t, then the 
type of .\x.s is a ---+ O", where a is a new parameter, and the type of .\x.t 
is (3 ---+ O""f = (a ---+ O")r', where "(1 = {a/(3} U I· If y is a free variable of 
relative type 6 in >.x.s, then y has relative type O"f = 0"(1 in >.x.t. Thus 
Subst \x.s-<>-x.t = "(1 • 

(c) If;: is not free in both s and t, then the type of .\x .s is a ---+ O", where a 
is a new parameter, the type of .\x.t is b---+ O""f, where b is a new parameter, 
and b ---+ O""f = (a ---+ O" h", where "(11 = { ajb} U "(. If y is a free variable 
of relative type 0 in .\x.s, then y has relative type O"f = 0"(11 in .\x.t. Thus 
Subst Ax.s-<\x.t = "(11 • 

4. Suppose that s1 has type f-l1, h has type 771, s2 has type f-l 2 , t 2 has 
type 772, and Subst 8 -<t = /i, for i = 1, 2. It can be supposed without loss 
of generality that 11'-;:~plies only to parameters appearing in J-l1 and relative 
types of free variables in s1, 12 applies only to parameters appearing in f-l 2 

and relative types of free variables in s2 , and that the "/i have no parameters 
in common. Suppose that (3 is an mgu for Constraints(t, t 2 ) that includes the 
equation 771 = 7)2 ---+ b. Clearly b1 U /2)(3 is a unifier for Constraints(s, 82 ) 

that includes the equation f-l1 = J-l2 ---+ b (where without loss of generality the 
new parameter b is the same as the new parameter in Constraints(t, t 2 ))· Let 
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a be an mgu for Constraints(81 82 )· Thus b1 U 'Yz)fJ = a1r, for some 1r. Also 
(s1 s2 ) is a term of type ba and, if x is a free variable of relative type 8 in 
some si, then x has relative type 8a in (s1 s2 ). 

Now ba1r = b(/1 U "(2 )(3 = b(J, where b(J is the type of (t1 t2 ). Finally, let 
x be a free variable of type c in (s1 s2 ). Thus x has relative type 8 in some si 
and c = 8a. Now c7r = 8a1r = 8(/1 U "(2 )(3 = 8"fif3, where 8"fif3 is the relative 
type of x in (t1 t2). Thus (s1 sz) ~ (h t2) and Subst(s 1 82 );:;(h t 2 ) = 1r. 

5. Suppose that Si has type ai, ti has type 7i, and Substs-<t· = "fi, for 
i = 1, ... , n. It can be supposed without loss of generality th;;:t' 'Yi applies 
only to parameters appearing in ai and relative types of free variables in si, 
for i = 1, ... , n, and that the 'Yi have no parameters in common. Suppose 
that (3 is an mgu for Constraints(h, ... ,tn)· Clearly (/1 U · · · U"fn)f3 is a unifier 
for Constraints(81 , ... ,sn)· Let a be an mgu for Constraints(s 1 , ... ,sn)· Thus (/1 U 
· · ·U"fn)f3 = a1r, for some 1r. Also (s1, ... , sn) is a term of type (a1 x · · · Xan)a 
and, if x is a free variable of relative type 8 in some si, then x has relative 
type 8a in (s1, ... 'sn)· 

Now (a1 X··· X an)a1r = (a1 X··· X an)(/1 U · · · U"fn)f3 = (71 X··· X 7n)f3, 
where (71 x · · · X7n)f3 is the type of (h, ... , tn)· Finally, let x be a free variable 
of type c in (sb ... , sn)· Thus x has relative type 8 in some si and c = 8a. Now 
c7r = 8a1r = 8( "(1 U · · · U 'Yn)f3 = 8"fif3, where 8"fif3 is the relative type of x in 
(h, ... 'tn)· Thus (s1, ... 'Sn) ~ (t1, ... 'tn) and Subst(sl,···,sn);:;(tl,····tn) = 7r. 

D 

Proposition 2.4.6 below is concerned with a particular situation in which 
replacing a subterm of a term by another term gives a term again. This result 
will be needed later to establish some properties of computations. 

Proposition 2.4.6. Let t be a term, s a subterm oft at occurrence o, and 
r a term such that r ~ s. Then the following hold. 

1. t[sjr]o is a term and t[sjr] 0 ~ t. 
2. t = t[sjr]o is a term. 

Proof. 1. The proof is by induction on the length of o. 
If the length of o is 0, then s = t, t[sjr]o = r, and t[s/r]o is type-weaker 

than t. 
For the inductive step, suppose the length of o is n+ 1 (n ~ 0). There are 

several cases to consider. 
If o = 1o', for some o', and t has the form .>..x.w, then (.>..x.w)[sjr] 0 = 

.>..x.(w[sjr]o' ). By the induction hypothesis, w[sjr]o' is a term that is type
weaker than w. Thus .>..x.(w[sjr]o') is a term that is type-weaker than .>..x.w, 
by Part 3 of Proposition 2.4.5. That is, t[s/r] 0 is a term that is type-weaker 
than t. 

If o = 1o', for some o', and t has the form (u v), then (u v)[sjr]o = 
(u[sjr]o' v). By the induction hypothesis, u[sjr]o' is a term that is type
weaker than u. Hence (u[sjr]o' v) is a term that is type-weaker than (u v), 
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by Part 4 of Proposition 2.4.5. That is, t[s/r] 0 is a term that is type-weaker 
than t. 

If o = 2o', for some o', and t has the form ( u v), then the argument is 
similar to the previous part. 

If o = io', for some i E {1, ... , n} and o', and t has the form (t1, ... , tn), 
then (t1, ... , tn)[s/r]o = (t1, ... , ti[s/r]o', ... , tn)· By the induction hypothe-
sis, ti[s/r]o' is a term that is type-weaker thank Hence (t1, ... , ti[s/r]q, ... , tn) 
is a term that is type-weaker than (t1, ... , tn), by Part 5 of Proposition 2.4.5. 
That is, t[s/r]o is a term that is type-weaker than t. 

2. This part follows easily from the facts that = has signature a ---> a ---> Jl 
and that t[s/r] 0 is a term that is type-weaker than t. D 

Example 2.4.9. Lett= >.x.(f x y), where f: M---> N---> N. Thus t has type 
M ---> N. Let s = f x y (the subterm oft at occurrence 1), r = y, and'/ = 
{b/N}, where b is the type of y. Then h =Nand r ~ s. Now t[s/rh = >.x.y, 
which has type a---> b, for some new parameter a. Let~= {a/M, b/N}. Then 
(a---> b)~= M---> Nand t[s/rh ~ t. 

Definition 2.4.10. Two terms s and t are type-equivalent, denoted s R:; t, if 
they have the same types, the same set of free variables, and, for every free 
variable x in s and t, x has the same relative type in s as it has in t (up to 
variants). 

Proposition 2.4. 7. Let t be a term, s a subterm oft at occurrence o, and 
r a term such that r R:; s. Then t[s/r] 0 is a term and t[s/r]o R:; t. 

Proof. The proof follows immediately from Proposition 2.4.6 by considering 
t[s/r]o obtained from t by replacing s by r, and t obtained from t[s/r]o by 
replacing r by s. D 

2.5 Term Substitutions 

In this section, the concept of instantiating a term by a substitution is studied. 

Definition 2.5.1. A term substitution is a finite set of the form 
{ xdh, ... , Xn/tn}, where each X; is a variable, each t; is a term distinct 
from X;, and x1, ... , Xn are distinct. Each element x;jt; is called a binding. 

In particular, {} is a term substitution called the identity substitution. 

Notation 2.5.1. If(}= {xi/h, ... ,xn/tn}, then domain((}) = {x1, ... ,xn} 
and range((}) is the set of free variables appearing in {h, ... , tn}· 

Notation 2.5.2. Let (} be a term substitution and t a term. Then (}It is the 
term substitution obtained from (} by restricting (} to just the free variables 
appearing in t. 
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Definition 2.5.2. A term substitution B is idempotent if domain(B) n 
range(B) = 0. 

The usual definition of an idempotent substitution 8 is that ee = 8. How
ever, this relies on having a definition of composition of term substitutions, 
which is problematical because of the need to avoid free variable capture (see 
below). In fact, while composition of type substitutions is needed in many 
places in this book, composition of term substitutions is never needed, so the 
concept is eschewed altogether. It will be easy to arrange for all necessary 
term substitutions in later developments to be idempotent. 

Intuitively, the concept of instantiating a term t by a term substitution 
e = {xl/t1, ... ,xn/tn}, is simple- each free occurrence of a variable Xi in t 
is replaced by k But there is a technical complication in that there may be 
a free variable y, say, in some ti that is 'captured' in this process because, 
after instantiation, it occurs in the scope of a subterm of the form >..y.s and 
therefore becomes bound in tB. Free variable capture spoils the intended 
meaning of instantiation and hence it is necessary to avoid it. There are 
two approaches to this: one can disallow instantiation if free variable capture 
would occur or one can rename bound variables in the term t to avoid free 
variable capture altogether. The latter approach is adopted here. 

Definition 2.5.3. Let t be a term and e = { xl/tl' ... 'Xn/tn} a term sub
stitution. The instance te of t by e is the well-formed expression defined as 
follows. 

1. If t is a variable Xi, for some i E {1, ... , n }, then xie = k 
If t is a variable y distinct from all the xi, then yB = y. 

2. If t is a constant C, then CB = C. 
3. If t is an abstraction >..xi.s, for some i E {1, ... , n }, then 

If t is an abstraction >..y.s, where y is distinct from all the Xi, and, for all 
i E {1, ... , n }, either y is not free in ti or Xi is not free in s, then 

(>..y.s)B = >..y.(sB). 

If t is an abstraction >..y.s, where y is distinct from all the Xi, and, for 
some i E {1, ... , n }, y is free in ti and Xi is free in s, then 

(>..y.s)B = >..z.(s{yjz}B). 

(Here z is chosen to be the first variable that is not free in s or any of 
the k) 

4. If tis an application (u v), then (u v)B = (uB vB). 
5. If tis a tuple (t1, ... , tn), then (h, ... , tn)B = (hB, ... , tnB). 
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Note 2.5.1. In later proofs, it is assumed that the parameters in the type 
of ti and relative types of its free variables are standardised apart from the 
parameters in the type of tj and relative types of its free variables (i,j = 
1, ... , n and i of. j), and also that the parameters that appear in the types 
of the ti and the relative types of their free variables are standardised apart 
from those in the type of the term and the relative types of its free variables 
to which the term substitution is applied. 

Example 2. 5.1. Suppose that t is the term append ( u, v, w) and () is the term 
substitution {u/1 ~ x,v/[],w/[1,2]}. Then t() =append (1 ~ x, [], [1,2]). 

Example 2.5.2. Suppose that tis the term 3r.3x.3y.(u = r ~ x 1\ w = r ~ y 1\ 
append (x,v,y)) and() is the term substitution {u/1 ~ x,v/[],w/[1,2]}. Then 

t() = 3r.3z.3y.(1 ~ x = r ~ z 1\ [1,2] = r ~ y 1\ append (z, [],y)). 

Here the bound variable x in t is renamed to z to avoid capture of the x in 
the binding u/1 ~ x. 

Proposition 2.5.1. Lett be a term and()= { xdt1, ... , Xn/tn} a term sub
stitution, where xi is not free in t, fori = 1, ... , n. Then t() = t. 

Proof. The proof is by induction on the structure of t. 
If t is a variable y, then y of. Xi, for i = 1, ... , n, and so y() = y. 
If t is a constant C, then C() = C. 
Let t be an abstraction A.y.s. Suppose first that y =Xi, for some i. Then 

(A.y.s)() = A.y.(s{xl/t1, ... ,Xi-1/ti-l,xi+dti+l, ... ,xnftn}) = A.y.s, by the 
induction hypothesis. Suppose now y is distinct from all the Xi· Then no Xi 
is free ins and so (A.y.s)() = A.y.(s()) = A.y.s, by the induction hypothesis. 

If tis an application ( u v)' then ( u v )() = ( v.e ve) = ( u v)' by the induction 
hypothesis. 

Itt is a tuple (t1, ... , tn), then (t1, ... , tn)() = (h(), ... , tn()) = (t1, ... , tn), 
by the induction hypothesis. D 

Note that t() may not be a term. 

Example 2.5.3. Let M and N be nullary type constructors and F: M---+ f? 
and A: N be constants. Lett be (F x) and() be {xjA}. Then t() = (FA) 
which is not a term. 

The following result provides a condition fort() to be a term. First, some 
useful notation for this is given. 

Notation 2. 5. 3. Let t be a term having type a and x 1 , ... , Xn be free vari
ables in t, where the relative type of Xi in t is Qi (i = 1, ... , n). Let 
() = { xl/t1 , ... , xnftn} be an idempotent term substitution, where ti has 
type Ti (i = 1, ... , n). Then 
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Ut,o {l?i = Ti I i = 1, ... ,n}, and 

vt,o { 8i1 = · · · = 8ik [ = 8] I there is a variable that is free with 

relative type 8i1 in ti1 and, possibly, the 

variable is free with relative type 8 in t}. 

Proposition 2.5.2. Let t be a term having type u and x1 , ... , Xn variables 
that each occur freely exactly once in t. Let()= {xi/t1 , ... ,xn/tn} be an 
idempotent term substitution. If Ut,O U vt,o has mgu <p, then t() is a term of 
type u<p and, if y is a free variable in t() and y has relative type 8 in t or 
some ti, then y has relative type 8r.p in t(). 

Proof. The proof proceeds by induction on the structure of terms. 
In case t is a variable or constant, the result is obvious. 
Suppose t has the form >-.x.s with type a---> (3. Then 

U>.x.s,O u V>.x.s,O has mgu <p 
implies Us,O U Vs,O has mgu <p 

[since Us,O = U>.x.s,O and Vs,O = V>.x.s,O· It can be assumed without loss of 
generality that x ~range(())] 

implies s() is a term of type (3r.p and, if y is a free variable in s() and y has 
relative type 8 in s or some ti, then y has relative type 8r.p in s() 
[by the induction hypothesis] 

implies (>-.x.s)() is a term of type (a ---> (3)r.p and, if y is a free variable in 
(>-.x.s)() andy has relative type 8 ins or some ti, then y has relative type 
8r.p in (>-.x.s)(). 
[It suffices to show that (>..x.s )B is a term of type (a ---> (3)cp. If x is not free 
ins, then a is a parameter a and (>-.x.s)() has type a---> (3cp =(a---> (3)cp. 
If x is free in s, then x has relative type a in s so that (>..x.s)() has type 
(a---> (3)rp] 

Suppose t has the form (u1 u2) with type u, where u1 has type a, u2 
has type (3, and f..L is the associated mgu for ( u1 u2 ). Hence u = bf..L, where 
a= (3---> b. Then 

U(u 1 u2),0 U V(u 1 u2),0 has mgu <p 
implies Uu 1 ,0iu1 U Vu 1 ,0iu1 U Uu2,0iu2 U Vu2,0iu2 U XU Y U {a= (3---> b} has 

mgu f..L<p, where 
X = { 8 = c; I there is a variable that is free with relative type 8 in some 

tj, where Xj is free in one of u 1 or u2 and is either free with relative 
type c; in the other Ui or is free with relative type c: in some tp, where 
Xp is free in the other ui}, and 

Y = { 'i'l = ')'2 I there is a variable that is free with relative type 'i'i in Ui, 

fori= 1, 2} 
[by Part 1 of Proposition 2.2.1, since () is idempotent, f..L is an mgu for 
y u {a= (3---> b}, and (Uul,Oiul u Vul,Oiul u Uu2,0iu2 u VU2,0iu2 u X)f..L = 
Ucu1 u2),o U Vcu1 u2),oJ 
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implies there exist type substitutions ip1, ip2 and 7] such that Uu,,Biu, UVui,Biui 
has mgu ip;, fori= 1, 2, and (XU Y U {a= (3---+ b} )(ip1 U ip2) has mgu ry, 
where flip = ( ip1 U ip2 )ry 
[by Proposition 2.2.2] 

implies there exist type substitutions ip1, ip2 and 77 such that u1 () is a term 
of type aip1, u 2 B is a term of type {3ip2 and, if y is a free variable in u;B 
and y has relative type 6 in u; or some t1, then y has relative type 6ip; in 
u;B, for i = 1, 2, and (XU Y U {a = (3 ---+ b} )( ip1 U ip2) has mgu ry, where 
flip = ( ipl u ip2 )ry 
[by the induction hypothesis] 

implies there exist type substitutions ip1, ip2 and 77 such that ( u1 u2 )B is a 
term of type bry; if y is a free variable in ( u1 u2)B and y has relative type 
(.!in some u;B, then y has relative type (.!'TJ in (u1 u2)B; and, if y is a free 
variable in u;B and y has relative type 6 in u; or some t1, then y has 
relative type 6ip; in u;B, for i = 1, 2, and (XU Y U {a = (3---+ b} )( ip1 U ip2) 
has mgu ry; where flip= (ipi U ip2)77 
[by the definition of an application, since each x; occurs freely exactly 
once in ( u1 u2) and therefore Constraints(u, u2 )e = (XU Y U {a = (3 ---+ 

b})(ip1Uip2)] 
implies (u1 u2)B is a term of type aip and, if y is a free variable in (u1 u2)B 

and y has relative type 6 in ( u1 u2) or some t;, then y has relative type 
6ip in (u1 u2)B. 
[(u1 u2)B has type bry, where bry = b(ip1 U ip2)ry = bflip = aip. 
Let y be a free variable in ( u1 u2 )e. There are two cases. 
(i) Suppose that y has relative type 6 in (u1 u2). Hence y has relative type 
6' in some u1, where 6' fl = 6, and soy has relative type 61ipj in u1e. Thus y 
has relative type 01 ipj'TJ in ( U1 U2)B, where 6' ipj'TJ = 6' ( ip1 U ip2)7] = 6' flip = 
6ip. 
(ii) Suppose that y has relative type t5 in some t; and x; is free in u1. Hence 
y has relative type 6ipj in uje. Thus y has relative type 6ipj'TJ in (u1 u2)B, 
where 6ipj'TJ = b(ipi U ip2)77 = Oflip = 6ip] 

Suppose that t has the form (u1, ... , un) with type a, where u; has type 
a;, for i = 1, ... , n, and fl is the associated mgu for ( u1, ... , Un). Hence 
a= (a1 x · · · X an)fl. Then 

U(u 1 , ... ,un),8 U \lcu,, ... ,un),() has mgu ip 
implies Uu,,8lu, U Vu,,8lu, U · · · U Uun,8l,n U Vun,8l"n U XU Y has mgu flip, 

where 

X = { 6j, = · · · = 6j,J= c] I there is a variable that is free with relative 
type o1v in some t;, and x; occurs freely in Ujv (1 ::::; p ::::; m) and, 
possibly, is free with relative type E in some Uj }, and 

Y = { "/j, = · · · = "i)m I there is a variable that is free with relative type 
"i]v in uJv (1 ::::; p::::; m and m > 1)} 
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[by Part 1 of Proposition 2.2.1, since() is idempotent, J.L is an mgu for Y, 

and (Uul,lll"l U Vul,lll"l U ... U Uun,lll"n u Vun,lllun u X)J.L = U(ul, ... ,un),ll u 
V(ul,···,un),ll] 

implies there exist type substitutions <p1, ... , <t?n and TJ such that Uu;,lllu; U 
Vu;,lllu; has mgu <pi, fori = 1, ... , n, and (XU Y)( 4'1 U · · · U <t?n) has mgu 
TJ, where J.L<p = ( 4?1 U · · · U <t?n)TJ 
[by Proposition 2.2.2] 

implies there exist type substitutions <p1, ... , <t?n and TJ such that ui() is a 
term of type ai<t?i and, if y is a free variable in ui() andy has relative type 
8 in ui or some tj, then y has relative type 8<pi in ui(), for i = 1, ... , n, 
and (XU Y)(<t?1 U · · · U <t?n) has mgu TJ, where J.L<p = (4?1 U · · · U <t?n)TJ 
[by the induction hypothesis] 

implies there exist type substitutions <p1 , ... , <t?n and TJ such that ( u 1 , ... , un)() 
is a term of type (a1<p1 x · · · Xan<t?n)TJ; ify is a free variable in (u1, ... , un)() 
and y has relative type g in some ui(), then y has relative type {!TJ in 
( u1, ... , un)O; and, if y is a free variable in ui() and y has relative type 8 
in ui or some tj, then y has relative type 8<pi in ui(), fori= 1, ... , n, and 
(XU Y)(<p1 U · · · U <t?n) has mgu ry; where J.L<p = (<p1 U · · · U <t?n)TJ 
[by the definition of a tuple, since each Xi occurs freely exactly once in 
( u1, ... , un) and therefore Constraints(u 1 , ••• ,un)11 = (XU Y)(<p1 U · · · U <t?n)] 

implies ( u 1 , ... , un)() is a term of type a<p and, if y is a free variable in 
(u1, ... ,un)() andy has relative type 8 in (u1 , ... ,un) or some ti, then y 
has relative type 8<p in ( u1 , ... , un)() 
[(u1, ... , un)() has type (a1<p1 X··· X an<t?n)TJ, where (a1<p1 X··· X an<t?n)TJ = 
(al X··· X an)(<pl U · · · U <t?n)TJ = (a1 X··· X an)J.L<p = a<p. 
Let y be a free variable in ( u1, ... , un)(). There are two cases. 
(i) Suppose that y has relative type 8 in (u1 , ... ,un)· Hence y has relative 
type 8' in Some Uj, where 81J.L = 8, and SOy has relative type 81<pj in Uj()· 
Thus y has relative type 8'<piTJ in (u1, ... ,un)O, where 81<pjTJ = 8'(<p1 U 
· · · U <t?n)TJ = 8' J.L<p = 8<p. 
(ii) Suppose that y has relative type 8 in some ti and Xi is free in Uj. 
Hence y has relative type 8<pj in uj()· Thus y has relative type 8<pjTJ in 
( u1, ... , un)(), where 8<pjTJ = 8( 4?1 U · · · U <t?n)TJ = 8J.L<p = 8<p] D 

The next example shows that the condition in Proposition 2.5.2 that each 
Xi occurs freely exactly once in t cannot be dropped. 

Example 2.5.4. Let t be (x, x) with type ax a, for some parameter a, and 
() = {x/[]}, where[] has type List b, for some parameter b. Then t() = ([], []), 
which has type List c x List d, for some parameters c and d. However, the 
type substitution <p from Proposition 2.5.2 for this example is {a/ List b} and 
(a x a){ a/ List b} = List b x List b, which is not (a variant of) List c x List d. 

The following result considers the situation when the condition that each 
Xi occurs freely exactly once in t is dropped. In this case, it is no longer true 
that t() has type a<p; instead its type may be more general than a<p. To see 



2.5 Term Substitutions 61 

why this is the case, consider a tuple t containing several occurrences of a 
free variable x in distinct components of the tuple. These occurrences of x 
constrain the type oft, by the definition of a tuple. However, a substitution 
() may contain a binding x j s for which s may contain no free variables. Thus 
the constraint given by the occurrences of x may be lost in tB, as in the last 
example. Thus t() may have a type strictly more general that acp. 

Proposition 2.5.3. Let t be a term having type a and XI, ... , Xn be free 
variables in t. Let()= { xi/ti, ... , Xn/tn} be an idempotent term substitution. 
If Ut,e U vt,e has mgu cp, then tB is a term of type x, where acp = X1T, and, if 
y is a free variable in t() andy has relative type 6 in t or some ti, then y has 
relative type w in tB, where bcp = w1r, for some type substitution 1r. 

Proof. The proof is left as an exercise. D 

Proposition 2.5.2 shows that if Ut,e U vt,e is unifiable, then tB is term. The 
next result shows that the converse of this is true. 

Proposition 2.5.4. Lett be a term and XI, ... , Xn variables that each occur 
freely exactly once in t. Let () = { xi/h, ... , xn/tn} be an idempotent term 
substitution. If t() is a term, then Ut,e U vt,e is unifiable. 

Proof. The proof proceeds by induction on the structure of terms. 
In case t is a variable or constant, the result is obvious. 
Suppose t has the form >.x.s. Then 

(>.x.s)B is a term 
implies sB is a term 

[It can be assumed without loss of generality that x rf. range( B)] 
implies Us,e U Vs,e is unifiable 

[by the induction hypothesis] 
implies U>-.x.s,e U V>-.x.s,e is unifiable 

[since Us,e = U>-.x.s,e and Vs,e = V>-.x.s,e] 

Suppose t has the form ( UI u 2 ), where UI has type a and u 2 has type (3. 
Then 

(ui u2)B is a term 
implies ui() and u2B are terms and Constraints(u 1 u2 )e is unifiable 

[by Proposition 2.3.3] 
implies Uui,elui U Vui,elui is unifiable (i = 1, 2) and Constraints(u 1 u2 )e is 

unifiable 
[by the induction hypothesis] 

implies Uui,elui U Vui,elui has mgu 'Pi, say (i = 1,2) and (XU Y U {a= 
(3 ---+ b}) ('PI U cp2) is unifiable, where X and Y are defined as for the 
corresponding part of Proposition 2.5.2 
[by Proposition 2.5.2, since Constraints(u 1 u2 )e = (X U Y U {a = (3 ---+ 

b} )(cpi U IP2)] 
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implies Uu,,11lu, U Vu,,11lu, U Uuz,11luz U Vuz,11luz U XU Y U {a 
unifiable 

implies U(u, uz),e U V(u, uz),e is unifiable. 

f3 --> b} is 

[by Part 3 of Proposition 2.2.1, since Constraints(u, uz) = YU{a = (3--> b} 

and, if p, is an mgu of YU {a = f3--> b }, then (Uu,,11lu, UVu, ,11lu, UUu2 ,11luz U 

Vu2,!1lu 2 U X)p, = U(u 1 uz),11 U V(u, u 2 ),e] 

Suppose t has the form ( u 1 , ... , Un). Then 

( U 1 , ... , Un) e is a term 
implies u 1B, ... , une are terms and Constraints(u,, ... ,unW is unifiable 

[by Proposition 2.3.3] 

implies Uu,,11lu, U Vu,,11lu, is unifiable (i = 1, ... , n) and Constraints(u,, ... ,un)B 
is unifiable 
[by the induction hypothesis] 

implies Uu,,Biu, UVu,,Biu, has mgu cp;, say (i = 1, ... ,n) and (XUY)(cpl U 
· · · U cpn) is unifiable, where X and Y are defined as for the corresponding 
part of Proposition 2.5.2 
[by Proposition 2.5.2, since Constraints(u,, ... ,u")e = (XUY)(cpl U· · ·Ucpn)] 

implies Uu,,Biu, u Vu,,Biu, u ... u Uun,Biun u Vun,Biun u Xu y is unifiable 
implies U(u,, ... ,un),e U V(u,, ... ,un),e is unifiable 

[by Part 3 of Proposition 2.2.1, since Constraints(u,, ... ,un) = Y and, if p, is 

an mgu of Y, then (Uu,,Biu, u Vu,,Biu, u ... u Uun,Biun u Vun,Biun u X)p, = 
U(u 1 , ... ,un),11 U V(u 1 , ... ,un),e] D 

The following result establishes a relationship between ;:::: and instantiation 
by a term substitution that will be used in Chap. 5 to show that the run-time 
system for a programming language based on the logic does not need to do 
type checking. 

Proposition 2.5.5. Lets and t be terms, where each free variable in t occurs 
freely exactly once in t, and e an idempotent term substitution. Ifte is a term 
and s::::: t, then se is a term and se::::: te. 

Proof. Let s have type a, t have type T, e = {xl/h, ... 'Xn/tn} and 
Substs::_t = ( Since te is a term and t has no repeated free variables, Ut,BI, U 

vt,e1, is unifiable, by Proposition 2.5.4. Let cp be an mgu for Ut,OI, U vt,&l,. By 
Proposition 2.5.2, te has type Tcp and, if y is a free variable in te and y has 
relative type 6 in t or some t;, then y has relative type 6cp in te. 

Since s;:::: t, ~cp is a unifier for Us,11ls UVs,11ls and thus Us,11ls UVs,11ls has mgu 
'1/J, where ~cp = '1/Ja, for some type substitution a. By Proposition 2.5.3, se is 
a term of type x, where a'ljJ = xf3, and, if y is a free variable in se and y has 
relative type 6 in s of some t;' then y has relative type w in se' where 6'1/J = w (3' 
for some type substitution (3. It remains to show that Substse-<te = (Ja. 

First, se has type x, te has type Tcp, and xf3a = a'ljJa = a~cp ~= Tcp. Finally, 
let y be a free variable in se. Then y is also a free variable in te. Suppose y has 
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relative type 5 in s or some ti· Thus y has relative w in sB, where 5'1/J = w(J, 
y has relative type 5~cp in t(), where ~cp = 'lj;a, and w(Ja = 5'1/Ja = 5~cp. D 

The following example shows that the condition in Proposition 2.5.5 that 
each free variable in t occur freely exactly once in t cannot be dropped. 

Example 2. 5. 5. Let f : a ---+ a x a and g : a x b ---+ a x b be constants. Let 
s = (! x), t = (g (x, x) ), and () = { xj[]}. Note that both s and t have type 
a x a. Then s ~ t, sB = (! []) is term of type List a x List a, t() = (g ([], [])) 
is a term of type List a x List b, but sB i:, tB. 

This section concludes with a result about term replacement that will 
be needed for predicate construction. For this, a preliminary result about 
replacement by a variable is needed. 

Proposition 2.5.6. Let t be a term, s a subterm oft at occurrence o, and 
x a variable not appearing in t. Then t[sjx]o is a term. Furthermore, ift has 
type T and t[sjx]o has type T 1, then there exists a type substitution"( such 
that T = T 1"(, and, if the relative type of a free variable other than x in t[sjx] 0 

is 5, then the relative type of this free variable in t is 5"(. 

Proof. Introduce a new constant C of type a, for some parameter a, into the 
alphabet. Then C ~ s. Thus, t[s/CJo is a term and t[s/C]o ~ t, by Part 1 of 
Proposition 2.4.6. It follows from this that t[sjx]o has the desired properties. 

D 

Definition 2.5.4. Let t be a term and s a subterm of t at occurrence o. 
Then the positional type of s in t at o is the relative type of x in t[sjx]o, 
where x is a variable not appearing in t. 

Definition 2.5.5. Let t be a term and s a subterm of t at occurrence o. 
Then the residual type oft with respect to sat o is the type of t[sjx] 0 , where 
x is a variable not appearing in t. 

Example 2. 5. 6. Let [] : List a, ~ : a ---+ List a ---+ List a, transform : List a ---+ 

Tree a, and A, B : M, where M is a nullary type constructor and Tree is 
a unary type constructor. Consider the term transform (A ~ B ~ []) of type 
Tree M and the subterm A~ B ~ [] at occurrence 2. Then the positional type 
of A~ B ~ [] in transform (A~ B ~ []) at 2 is List a. Also the residual type of 
transform (A~ B ~ []) with respect to A~ B ~ [] at 2 is Tree a. 

Proposition 2.5. 7. Lett be a term of type T, s a subterm oft at occurrence 
o, () the positional type of s in t at o, r a closed term of type Q, and 5 the 
residual type oft with respect to s at o. If() = Q has a most general unifier, 
say,~' then t[sjr]o is a term of type 5~. Conversely, ift[sjr]o is a term, then 
() = Q is unifiable. 
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Proof. The first part of the proposition follows immediately from Proposi
tion 2.5.2. The converse follows immediately from Proposition 2.5.4. D 

Proposition 2.5.8. Lett be a term, si a subterm oft at occurrence oi, and 
ri a closed term, for i = 1, ... , n, such that the set of subterms { si}f=1 is 
disjoint. Suppose that the type of si is more general than the type of ri, for 
i = 1, ... , n, and t[si/ri, ... , snlrn]o,, ... ,on is a term. Then the type oft is 
more general than the type oft[si/ri, ... ,sn/rn]a1 , ... ,on· 

Proof. The proof is by induction on n. First the result is proved for n = 1. 
Thus suppose s is a subterm at occurrence o, r a closed subterm, the type of 
s is cr, the positional type of s in t is o:, the residual type oft with respect to 
s is (3, the type of r is g, and t[slr]a is a term. It has to be shown that the 
type oft is more general than the type of t[slr]a. 

Lett' be the term t[slx] 0 , where xis a variable not appearing in t. Then t 
is t' [xI s]a and t[slr] 0 is t' [x lr]a. It suffices to show that the type of t'[x I s]a is 
more general than the type of t'[xlr]a. Since cr is more general than g, there 
exists a type substitution~ such that cr~ = g. According to Proposition 2.5.2, 
the type of t'[xls]a is (3'1/J, where 'ljJ is an mgu of o: =cr. Similarly, the type 
of t'[xls]a is (3tp, where tp is an mgu of o: =g. Now o:~tp = o:tp = QVJ = cr~tp, 
because ~ can be assumed to not act on o:. Since 'ljJ is an mgu of o: = cr, it 

follows that ~VJ = 'l/J7], for some 7]. Thus {3tp = f3~VJ = f3'l/J7J, since ~ can be 
assumed to not act on f3. Hence the type of t' [xIs] 0 is more general than the 
type of t'[xlr]a. 

Assume now that the result holds for n. Consider the term 

t[sdr1, ... , Sn+drn+l]o,, ... ,on+l, which is by definition equal to 
(t[si/ri]o1 ) [s2lr2, ... , Sn+drn+I]a2 , ... ,on+l. By the argument from the base 
case, the type of t is more general than the type of t[si/ri] 01 and, by the 
induction hypothesis, the type of t[sl/r1]o, is more general than the type of 

(t[si/rda,)[s2lr2, ... , Sn+IIrn+I]a2 , ... ,on+l" Hence the type oft is more gen
eral than the type of t[si/r1, ... , Sn+drn+I]a 1 , ... ,on+ 1 • D 

2.6 .A-Conversion 

The results of this section are concerned with rules of >.-conversion, which 

have to be handled carefully because of the polymorphic nature of the logic. 
The main result is that if (>.x.s t) is a term, then s{xlt} is a term and 

s{xlt} ~ (>.x.s t). This result provides the basis for (3-reduction. 

Proposition 2.6.1. If (>.x.(s 1 s2) t) is a term, then ((>.x.s 1 t) (>.x.s2 t)) is 
a term and ((>.x.s 1 t) (>.x.s2 t)) ~ (>.x.(s 1 s2) t). 

Proof. Suppose that (>.x.(s 1 s2) t) is a term, where the type of s1 is cr1, s 2 is 

cr2 , and tis T. Let tp be an mgu for Constraints(s, 82 ), where Constraintscs, 82 ) 

is 
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{ 0"1 = 0"2 -7 b} U 

{ <h = 52 I there is a variable that is free with relative type 5; in 8;, 

i = 1, 2}. 

(It can be assumed without loss of generality that cp acts only on the param

eters in Con8traint8(s, s 2 J.) Now Con8traint8p..x.(s 1 s 2 ) t) is 

{Q = T} U 

{ 5 = E I there is a variable other than x that is free with relative 

type 5 in ( 8 1 8 2) and free with relative type E in t}, 

where Q is the relative type of x in (81 8 2), if xis free in (81 s 2); otherwise, Q 

is a new parameter. Suppose that Con8traintsp..x.(s 1 82 ) t) has mgu ry. Hence, 
by Part 1 of Proposition 2.2.1, cpry is an mgu of 

{0"1 = 0"2 -7 b} U 

{51 = 52 I there is a variable that is free with relative type 5; in 8;, 

i = 1, 2} u 
{[QI =][Q2 =]T} U 

{[51 =][52 =]c I there is a variable other than x that is free with 

relative type 5; in 8;, where i = 1 or 2 or both, 

and is also free with relative type E in t}, 

where Q; is the relative type of x in s;, i = 1, 2. If x is not free in ( s 1 8 2), 
then the third equation becomes a= T, for some new parameter a. 

Suppose that the parameters in T and the relative types of variables in t 
are standardised apart in two distinct ways. To distinguish the two renamings, 
I denote by t(i) the term t, where its parameters are understood to be renamed 
in the ith way, by T(i) the corresponding renaming ofT, and by c;(i) the relative 
type of a free variable in t(i), where c; is the relative type of the variable in t. 
Let ~ be the type substitution that maps each set of the renamed parameters 
back onto the original set of parameters. Thus T(i)~ = T and c;(i)~ = E, for 
i = 1, 2. Now ~cpry is a unifier of the set X of equations, where X is 

{ 0"1 = 0"2 -7 b} U 

{ w1 = w2 I there is a variable other than x that is free with relative 

type w; in 8; or t(i),i = 1,2} U 

{g; = T(i) I i = 1, 2} u 

{ 5; = c(i) I there is a variable other than x that is free with relative 

type 5; in s; and free with relative type c(i) in t(i), i = 1, 2}, 
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where (}i is the relative type of x in si, if xis free in si; otherwise, (}i is a new 
parameter, i = 1, 2. Let 1r be an mgu for X. Thus ~'P'T/ = 1r{3, for some type 
substitution {3. 

Now Constraints(> .. x.s, t) is 

{(}i = T(i)} U 

{ 8i = c;Ci) I there is a variable other than x that is free with relative 

type 8i in Si and free with relative type c;Ci) in t(il}. 

By Proposition 2.2.2, there exists type substitutions ry1, ry2 and p, such that 
'T/i is an mgu for Constraints(>,x.s, t)> the parameters in 'T/i all appear in 
Constraints(>,x.s, t) (i = 1, 2), J1, is an mgu for Y(171 U172), and 1r = (ry1 Ury2)p,, 
where Y is 

{a1 = a2 __. b} U 

{ w1 = w2 I there is a variable other than x that is free with relative 

type Wi in si or tCi), i = 1, 2}. 

Thus (.>.x.si t) is a term, fori = 1, 2. Furthermore, Constraints((>..x.s, t) (>..x.s 2 t)) 

= Y(ryl U 'T/2), and thus ((.>.x.s1 t) (.>.x.s2 t)) is a term. 
The proof concludes by showing that Subst((>..x.s 1 t) (>..x.s 2 t));:)(>..x.(s 1 82 ) t) = 

{3. First, note that (.>.x.(s1 s2) t) has type bcpry, ((.>.x.s1 t) (.>.x.s2 t)) has type 
bp,, and bcpry = b~cpry = b1rf3 = b(ryl U 'T/2)p,f3 = bp,f3. 

Let y be a free variable in ((.>.x.s1 t) (.>.x.s2 t)). Hence y is also free in 
(.>.x.(s 1 s2) t). Suppose that the relative type of yin (.>.x.(s1 s2) t) is 8. There 
are two (not necessarily disjoint) cases. 

(a) y is a free variable in .>.x.(s1 s2). Thus y is free in some Si and 8 = 8i'P'T/, 
where 8i is the relative type of y in si. Also y has relative type 8i'T/iJ1, in 
((.>.x.s1 t) (.>.x.s2 t)). But 8 = 8i'P1'/ = 8i~'P'T/ = 8i1rf3 = 8i("'l Ury2)p,f3 = 8i1JiJ1,{3. 

(b) y is a free variable in t. Suppose that the relative type of y in t is 8'. 
Thus 8 = 8' ry. Let 8" be the relative type of y in tC1 l. Thus 8' = 8" ~ and the 
relative type of y in ((.>.x.s1 t) (.>.x.s2 t)) is 8"ry1p,. But 8 = 8'ry = 8'cpry = 
8" ~ 'P'T/ = 8" 1r f3 = 8" ( 1'/1 U 1'/2) p,f3 = 8" 1'/1 p,f3. D 

The type of ((.>.x.u t) (.>.x.v t)) may be strictly weaker than the type of 
(.>.x.(u v) t). 

Example 2. 6.1. Let f have signature List a __. List b __. List ax List b, where 
a and bare parameters. Then (.>.x.((f x) x) [])is a term of type List ax List a. 
Now ((.>.x.(f x) []) (.>.x.x []))is a term that has type List ax List b which is 
strictly weaker than List a x List a. 

Proposition 2.6.2. If (.>.x.(s1, ... , sn) t) is a term, then ((.>.x.s1 t), ... , 
(.>.x.sn t)) is a term and ((.>.x.s1 t), ... , (.>.x.sn t)) ~ (.>.x.(s1, ... , sn) t). 
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Proof. Suppose that (.Ax.(s1, ... , sn) t) is a term, where the type of Si is CJi, for 
i = 1, ... , n, and the type oft is T. Let r.p be an mgu for Constraints(s, , .... sn), 
where Constraints(s,, ... ,sn) is 

{ oi, = ... = oik 1 there is a variable that is free with relative type 

OiJ in SiJ, j = 1, ... , k and k > 1 }. 

(It can be assumed without loss of generality that r.p acts only on the param
eters in Constraints(> .. x.(s,, ... ,sn) t)·) Now Constraintsp..x.(s,, ... ,sn) t) is 

{e = 7} u 
{ 0 = E I there is a variable other than x that is free with relative 

type 0 in (s1 , ... , sn) and free with relative type E in t}, 

where Q is the relative type of X in (sl, ... , Sn), if X is free in (s1, ... , Sn); 
otherwise, e is a new parameter. Suppose that Constraints(> .. x.(s,, ... ,sn) t) has 
mgu 77· Hence, by Part 1 of Proposition 2.2.1, <p7] is an mgu of 

{ oi, = ... = oik 1 there is a variable that is free with relative type 

OiJ in SiJ, j = 1, ... , k and k > 1} U 

{ei, = · · · = L>ik = T} u 
{ oi, = ... = oik = E I there is a variable other than X that is free 

with relative type 0i1 in Si 1 , j = 1, ... , k and 

k 2': 1, and is also free with relative type E in t}, 

where QiJ is the relative type of x in si1 , j = 1, ... , k and k 2': 0. If k = 0, 
this equation is a= T, where a is a new parameter. 

Suppose that the parameters in T and the relative types of variables in 
t are standardised apart in n distinct ways. To distinguish the various re
namings, I denote by t(i) the term t, where its parameters are understood to 
be renamed in the ith way, by T(i) the corresponding renaming ofT, and by 
E(i) the relative type of a free variable in t(i), where E is the relative type of 
the variable in t. Let ~ be the type substitution that maps each set of the 
renamed parameters back onto the original set of parameters. Thus T(i)~ = T 

and E(i)~ = E, fori= 1, ... , n. Now ~<p7] is a unifier of the set X of equations, 
where X is 

{ wi, = · · · = Wik I there is a variable other than x that is free with 

relative type Wi1 in Si1 or t(iJl,j = 1, ... , k and k > 1} U 

{ . - (iJ I . - 1 } u l>t- T z- , ... ,n 

{ oi = E(i) I there is a variable other than X that is free with relative 

type Oi in Si and free with relative type E(i) in t(i), i = 1, ... , n }, 
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where Qi is the relative type of x in si, if x is free in si; otherwise, Qi is a new 
parameter, i = 1, ... , n. Let 1r be an mgu for X. Thus ~I.PTJ = n/3, for some 
type substitution (3. 

Now Constraints(>.x.s; t) is 

{Qi = T(i)} U 

{ 8i = c(i) I there is a variable other than x that is free with relative 

type 8i in si and free with relative type c(i) in t(i)}. 

By Proposition 2.2.2, there exists type substitutions "lh ... , 'f/n and J-l such 
that 'f/i is an mgu for Constraints(>.x.s; t)' the parameters in 'f/i all appear 
in Constraints(>.x.s; t) (i = 1, ... , n), J-l is an mgu for Y(TJ1 U · · · U 'fJn), and 
1r = (TJ1 U · · · U TJn)J-l, where Y is 

{ Wi 1 = · · · = Wik I there is a variable other than x that is free with 

relative type wi1 in si1 or t(ij), j = 1, ... , k and k > 1 }. 

Thus (.Xx.si t) is a term, fori = 1, ... , n. Also Constraints((>.x.s 1 t), ... ,(>.x.sn t)) 

= Y(TJ1 U · · · U rJn), and thus ((.Xx.s1 t), ... , (.Xx.sn t)) is a term. 
The last step is to show that Subst((>.x.s 1 t), ... ,(>.x.sn t));::(>.x.(s 1 , ... ,sn) t) = (3. 

First, note that (.Xx.(sh ... , sn) t) has type (a1 x · · · x an)I.PTJ, ((.Xx.s1 t), ... , 
(.Xx.sn t)) has type (a1'f/1 X··· X O'n'fJn)J-l, and 

(a1 x ... x an)I.PTJ = (a1 x ... x O'n)~I.P'f/ 

= (0'1 X ... X O'n)n/3 

= (a1 X 00
• X an)(rJ1 U 00

• U 'f/n)J-L/3 

= ( 0'1 'f/1 X · · · X O'n'fJn)J-L/3. 

Let y be a free variable in ((.Xx.s1 t), ... , (.Xx.sn t)). Hence y is also free in 
(.Xx.(s1, ... , sn) t). Suppose that the relative type of yin (.Xx.(s1, ... , sn) t) 
is 8. There are two (not necessarily disjoint) cases. 

(a) y is a free variable in .Xx.(s1, ... , sn)· Thus y is free in some Si and 
8 = 8ii.p'TJ, where 8i is the relative type of y in si. Also y has relative type 
8i'f/iJ-l in ((.Xx.s1 t), ... , (.Xx.sn t)). But 8 = 8ii.P'f/ = 8i~I.PTJ = 8inf3 = 8i('f/1 U 
· · · U 'f/n)J-L/3 = 8i'f/iJ-lf3. 

(b) y is a free variable in t. Suppose that the relative type of yin tis 8'. 
Thus 8 = 8'TJ. Let 8" be the relative type of yin t(1l. Thus 8' = 8"~ and the 
relative type of yin ((.Xx.s1 t), ... , (.Xx.sn t)) is 8"'f/1J-l· But 8 = 8'TJ = 8'tp'fJ = 
811 ~i.p'f} = 8"nf3 = 8"(TJ1 U · · · U 'f/n)J-L/3 = 8"TJ1J-lf3. D 

The type of ((.Xx.s1 t), ... , (.Xx.sn t)) may be strictly weaker than the 
type of (.Xx.(s1, ... , sn) t). 

Example 2.6.2. Consider the term (.Xx.(x, x) []) with type List a x List a. 
Then ((.Xx.x []), (.Xx.x [])) is a term that has type List ax List b. 
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Proposition 2.6.3. If (.Xx.(.Xy.r) t) is a term andy is not free in t, then 
.Xy.(.Xx.r t) is a term and .Xy.(.Xx.r t) >::::: (.Xx.(.Xy.r) t). 

Proof. First, note that Constraints(>.x.(>.y.r) t) = Constraints(>.x.r t), and also 
.Xy.(.Xx.r t) and (.Xx.(.Xy.r) t) have the same set of free variables, since t does 
not contain y as a free variable. Let ~ be an mgu of Constraints(>-.x.(>.y.r) t)· 

Suppose that r has type g, x has relative type 8 in r, and y has relative 
type c in r. Then .Xy.r has type c ----+ e, .Xx.(.Xy.r) has type 8 ----+ (c ----+ e), 
and (.Xx.(.Xy.r) t) has type (c ----+ eK Furthermore, if z is a free variable 
in (.Xx.(.Xy.r) t) of relative type TJ in r or t, then z has relative type TJ~ in 
(.Xx.(.Xy.r) t). 

Since Constraints(>.x.r t) has mgu ~' (.Xx.r t) is a term of type (!~. Thus 
.Xy.(.Xx.r t) is a term of type (c ----+ eK Furthermore, if z is a free variable 
in .Xy.(.Xx.r t) of relative type TJ in r or t, then z has relative type TJ~ in 
.Xy.(.Xx.r t). Thus .Xy.(.Xx.r t) >::::: (.Xx.(.Xy.r) t). D 

The condition that y is not free in t in Proposition 2.6.3 cannot be 
dropped. 

Example 2. 6. 3. Let M and N be unary type constructors, and f : M ----+ M 
and g : N ----+ N be functions. Put r = (f y) and t = (g y). Then 
(.Xx.(.Xy.r) t) = (.Xx.(.Xy.(f y)) (g y)) is a term of type M ----+ M. But 
(.Xx.r t) = (.Xx.(f y) (g y)) is not a term. Thus .Xy.(.Xx.r t) is not a term. 

Proposition 2.6.4. 

1. If y is a variable that is not free in a term t and .Xx.t is a term, then 
.Xy.(t{x/y}) is a term that is type-equivalent to .Xx.t. 

2. If (.Xx.s t) is a term, then s{ xjt} is a term that is type-weaker than 
(.Xx.s t). 

3. If x is a variable that is not free in a term t and >.x. ( t x) is a term, then 
tis type-equivalent to .Xx.(t x). 

Proof. 1. This part is obvious. 
2. Suppose that (.Xx.s t) is a term. It is now shown by induction on the 

structure of s that s{x/t} is a term that is type-weaker than (.Xx.s t). 
Suppose that sis a variable, say, y. If y = x, then s{x/t} = t. Thus s{ x/t} 

is a term and clearly t >::::: (.Xx.x t). If y =f. x, then s{x/t} = y. Thus s{x/t} is 
a term and clearly y;::) (.Xx.y t). 

Suppose that sis a constant, say, C. Hence s{x/t} =C. Thus s{x/t} is 
a term and clearly C;::) (.Xx.C t). 

Suppose that s is an abstraction, say, .Xy.r. There are four cases to con
sider. 

(a) If y = x, then s{x/t} = (.Xx.r){x/t} = .Xx.r, and so s{x/t} is a term. 
Furthermore, .Xx.r;::) (.Xx.(.Xx.r) t). That is, s{x/t};::) (.Xx.s t). 

(b) If y =f. x and y is not free in t, then s{x/t} = (.Xy.r){x/t} = 
.Xy.(r{x/t} ). By Proposition 2.6.3, .Xy.(.Xx.r t) is a term and hence so is 
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(.Xx.r t). Thus, by the induction hypothesis, r{x/t} is a term and r{x/t} ~ 
(.Xx.r t). Thus s{x/t} is a term and .Xy.(r{x/t}) ~ .Xy.(.Xx.r t), by Part 3 
of Proposition 2.4.5. Now .Xy.(.Xx.r t) ~ (.Xx.(.Xy.r) t), by Proposition 2.6.3. 
That is, s{ x/t} ~ (.Xx.s t). 

(c) If y-=/= x and xis not free in r, then s{x/t} = (.Xy.r){x/t} = .Xy.r, by 
Proposition 2.5.1. Thus s{x/t} is a term. Furthermore, .Xy.r ~ (.Xx.(.Xy.r) t), 
as x is not free in r and thus each variable free in .Xy.r is also free in 
(.Xx.(.Xy.r) t). That is, s{x/t} ~ (.Xx.s t). 

(d) If y-=/= x, y is free in t and xis free in r, then s{x/t} = (.Xy.r){xjt} = 
.Xz.(r{y/ z }{ x/t} ), where z is a new variable. Let r' = r{y/ z }. Then r' is a 
term of the same type as r, (.Xx.(.Xz.r') t) is a term that is type equivalent to 
(.Xx.(.Xy.r) t), z is not free in t, and z-=/= x. By Part (b) above, (.Xz.r'){xjt} 
is a term and (.Xz.r'){x/t} ~ (.Xx.(.Xz.r') t). Thus s{x/t} is a term. Also 
s{x/t} = .Xz.(r{y/z}{xjt}) = (.Xz.r'){xjt} ~ (.Xx.(.Xz.r') t) ~ (.Xx.(.Xy.r) t). 
That is, s{x/t} ~ (.Xx.s t). 

Suppose that sis an application, say, (u v). Hence s{x/t} = (u v){x/t} = 
(u{x/t} v{x/t} ). By Proposition 2.6.1, ((.Xx.u t) (.Xx.v t)) is a term such that 
((.Xx.u t) (.Xx.v t)) ~ (.Xx.(u v) t). Thus (.Xx.u t) and (.Xx.v t) are terms. 
By the induction hypothesis, u{x/t} and v{x/t} are terms, and u{x/t} ~ 
(.Xx.u t) and v{x/t} ~ (.Xx.v t). Thus (u v){xjt} ~ ((.Xx.u t) (.Xx.v t)) ~ 
(.Xx.(u v) t), by Part 4 of Proposition 2.4.5. That is, s{x/t} ~ (.Xx.s t). 

Suppose that s is a tuple, say, (s1, ... , sn)· Hence s{x/t} 
(s1, ... , sn){x/t} = (sl{x/t}, ... , sn{x/t} ). By Proposition 2.6.2, it follows 
that ((.Xx.s1 t), ... , (.Xx.sn t)) is a term such that ((.Xx.s1 t), ... , (.Xx.sn t)) ~ 
(.Xx.(s1, ... , sn) t). Thus (.Xx.si t) is a term, fori= 1, ... , n. By the induction 
hypothesis, si{x/t} is a term and si{x/t} ~ (>.x.si t), fori= 1, ... , n. Thus 
(s1, ... , sn){x/t} ~ ((.Xx.s1 t), ... , (.Xx.sn t)) ~ (.Xx.(s1, ... , sn) t), by Part 5 
of Proposition 2.4.5. That is, s{x/t} ~ (.Xx.s t). 

This completes the induction argument. 
3. Suppose that t has type a-+ {3. Then (t x) has type {3, since xis not 

free in t. Also x has relative type a in (t x). Hence .Xx.(t x) has type a-+ {3. 
Clearly t and .Xx.(t x) have the same set of free variables and each such free 
variable has the same relative type in t as it has in .Xx.(t x). 0 

It is not generally true that s{x/t} ~ (.Xx.s t). Here are two examples to 
illustrate what goes wrong. 

Example 2.6.4. Let M be a nullary type constructor and C: M a constant. 
Let s be C and let t be the variable y. Then s{x/t} is C, but (.Xx.s t) 
is (.Xx.C y) which contains the additional free variable y. Thus s{x/t} ~ 
(.Xx.s t), but s{x/t} >j3 (.Xx.s t). 

Example 2.6.5. Let s = (x, x) and t = []. Then (.Xx.s t) = (.Xx.(x, x) []) is 
a term of type List ax List a. However, s{x/t} = (x,x){x/[]} = ([],[])is a 
term of type List ax List b. Thus s{x/t} ~ (.Xx.s t), but s{x/t} >j3 (.Xx.s t). 
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Proposition 2.6.5. Let u be a term and v a subterm of u at occurrence o. 

1. If v is AX.t and y is a variable that is not free in t, then 
u[Ax.tjAy.(t{x/y})]o is a term that is type-equivalent to u. 

2. If v is (Ax.s t), then u[(Ax.s t)/s{x/t}]o is a term that is type-weaker 
than u. 

3. If v is Ax. ( t x), where x is a variable that is not free in t, then 
u[Ax.(t x)/t]o is a term that is type-equivalent to u. 

Proof. Parts 1 and 3 follow immediately from Propositions 2.4. 7 and 2.6.4, 
and Part 2 from Propositions 2.4.6 and 2.6.4. 0 

Note that it is not generally true that u[(Ax.s t)/s{x/t}]o ::::o u. 

Example 2. 6. 6. Let M and N be nullary type constructors, and C : M and 
F: M---+ N be constants. Let s be C, t be (F y), where y is a variable, and 
u be (y, (Ax.C (F y)), which has type M X M. But u[(Ax.s t)/s{x/t}]o is 
(y, C), which has type ax M, for some parameter a. 

I now define three relations >--a, ?-f3, and >--rp corresponding to a-conversion, 
/)-reduction, and 7]-reduction, respectively. 

Definition 2.6.1. The rules of A-conversion are as follows. 

1. (a-conversion) Ax.t >--a Ay.(t{xjy}), ify is not free in t. 
2. (/)-reduction) (Ax.s t) ?-f3 s{x/t}. 
3. (77-reduction) Ax.(t x) >--1J t, if xis not free in t. 

Definition 2.6.2. The relation --->a is defined by u --->a u[s/t]a if s is a 
subterm of u at occurrence o and s >--a t. Similarly, define ----->{3 and ----->1). 
Let --->f31J be ----->!3 U ----->1). 

Let ~ f31J be the reflexive, transitive closure of -----> f31J' Similarly, define 
~a, ~{3 and ~1J· 

Let ~{31J be the reflexive, symmetric, and transitive closure of --->f31J· 
Similarly, define ~a, ~{3 and ~1J' 

Definition 2.6.3. If s ~at (resp., s ~{3 t, s ~f31J t), then sand tare 
said to be a-equivalent (resp., /)-equivalent, /)7]-equivalent). 

Note that a-equivalent terms differ only in the names of their bound 
variables. 

Proposition 2.6.6. Lets and t be terms. 

1. Ifs~at, thens::::ot. 
2. If s ~ f3 t, then s ~ t. 
3. If s ~1) t, then s ::::o t. 

4. If s ~f31J t, then s ~ t. 

Proof. These results follow immediately from Proposition 2.6.5. 0 
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2.7 Model Theory 

Next I turn to the semantics of the logic, which is derived from the semantics 
for type theory originally given by Henkin. The main concept is that of an 
interpretation which provides a meaning for the symbols used to model an 
application. The development here is fairly standard, except for the compli
cations caused by polymorphism. The modest aim is to provide the definition 
of an appropriate class of interpretations and, in the next section, prove a 
soundeness theorem (Proposition 2.8.3). The much more difficult topic of 
completeness is ignored since it is not relevant for the applications to learn
ing considered here. 

Definition 2. 7.1. A frame for an alphabet is a collection {1\,}aESc of non
empty sets satisfying following conditions. 

1. If a has the form T a1 .. . ak, then 'Da = {C d1 .. . dn I Cis a data 
constructor having signature 0"1 ----> • · • ----> O"n ----> (T a 1 ... ak), a 1 '/ = 

a 1 , ... , ak'/ = ak, for some closed type substitution'/, and d; E 'Dan, for 
i=l, ... ,n}. 

2. If a has the form (3 ----> '/, then 'Da is a collection of mappings from 'D13 
to 'D'Y. 

3. If a has the form a 1 x · · · x an, for some n ~ 0, then 'Da is the cartesian 
product 'Da, x · · · x 'Dan. In particular, 'D 1 is the distinguished singleton 
set. 

For each a E 6c, 'Da is called a domain. 

Definition 2.7.1 includes the construction ofHerbrand universes that allow 
the free interpretation of the data constructors (see below). For some (closed) 
types, the conditions in this definition uniquely specify the corresponding 
domain. However, for recursive data types, such as lists, they do not. 

Example 2. 7.1. For f2, the only relevant data constructors are T and ..l. 
Consequently, 'Dn = {T, ..l}. 

Example 2. 7.2. For Int, the only relevant data constructors are the integers. 
Thus 'DInt = Z. 

Example 2. 7.3. For Float, the only relevant data constructors are the 
floating-point numbers. Let lF be the set of floating-point numbers. Then 
'D Float = lF · 

Example 2. 7.4. Consider an application involving geometrical shapes, say, 
circles and rectangles. To model this, one could introduce a type Shape and 
two data constructors 

Circle : Float ----> Shape 

Rectangle : Float ----> Float ----> Shape. 
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So, for example, a rectangle with length 23.5 and breadth 12.6 would be 
represented by the term (Rectangle 23.5 12.6). Then 1Jshape = {Circle fIfE 
lF} U {Rectangle f g I f, g E lF}. 

Example 2. 7.5. There are two possible domains corresponding to List Int. 
The smaller one is 

1J List Int = {PI ~ P2 ~ · · · ~ Pn ~ [] I Pi E Z, 1 ::::; i ::::; n, and n E N}, 

that is, the set of finite lists of integers. 
The other domain is the set of finite or infinite lists of integers 

1J~ist Int = 1J List Int u {PI ~ P2 ~ . . . I Pi E z and i ~ 1}. 

Example 2. 7. 6. Assume the alphabet contains just the nullary type construc
tors M and N (in addition to 1 and D) and the data constructors F : M --> N 
and G : N --> M. Then 1J M = { F G F ... } and 1J N = { G F G . .. } . 

The following definition of interpretation is standard except for the intro
duction of closed type substitutions. Since a constant can be polymorphic, 
closed type substitutions are needed to give a meaning for each possible 
(closed) instantiation of the parameters in the signature of the constant. 

Definition 2. 7.2. An interpretation for an alphabet consists of a pair 
({1Js}8Esc, V), where {1J,5}sE6c is a frame for the alphabet and V is a 
mapping that maps each pair consisting of a constant having signature a 
and a closed type substitution 17 whose domain is the set of parameters in a 
to an element of 1J "'1J (called the denotation of the constant with respect to 
17 and the interpretation), such that the following conditions are satisfied. 

1. If Cis a data constructor having signature O"I --> · · · --> O"n --> (T ai ... ak) 
and 17 is {ai/ai, ... ,ak/ak}, then V(C,TJ) is the element of 
1Ju,1J->···->Un1J->(T a 1 ... ak) defined by V(C, TJ) di ... dn = C di ... dn, 

where di E 1Ju;7J (i = 1, ... , n). 
2. For = with signature a--> a--> D, V( =, {a/ a}) is the mapping from 'Da 

into 1Ja_,.o defined by 

V(=,{a/a})xy= {: 
if X= y 
otherwise. 

3. V ( •, {}) is the mapping from 1J .o into 1J .o given by the following table. 

X V(-.,{})x 
T l_ 

l_ T 
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4. V(A, {} ), V(V, {} ), V( ----+, {} ), and V( +------+, {}) are the mappings from 
D n into D st-+st given by the following table. 

X y V(!\, {}) X y V(V,{})xy V( ----+, {}) X y V ( +------+ , {}) X y 
T T T T T T 
T ..l ..l T ..l ..l 
..l T ..l T T ..l 
..l ..l ..l ..l T T 

5. ForE with signature (a---> S?)---> S?, V(E,{a/a}) is the mapping from 
Da-+st to Dn which maps an element f of Da-+st toT iff maps at least 
one element of Da toT; otherwise, it maps f to ..l. 

6. For II with signature (a---> S?)---> S?, V(II,{a/a}) is the mapping from 
Da-+st to Dn which maps an element f of Da-+st to T iff maps every 
element of Da to T; otherwise, it maps f to ..l. 

Definition 2. 7.2 ensures that the connectives and quantifiers have their 
usual meaning and that data constructors have the free interpretation. 

Definition 2. 7.3. A variable assignment with respect to an interpretation 
( {Da}aE6", V) is a mapping that maps each pair consisting of a variable 
and a closed type a to an element of D a. 

The meaning of a term t with respect to an interpretation, a variable as
signment, and a closed type substitution can now be defined. This definition 
is rather standard except for the introduction of the closed type substitution. 
Because types can be polymorphic, it is necessary to specify the meaning of 
t with respect to each closed instantiation of the parameters in the relative 
types of the subterms oft (which includes the parameters in the type oft, 
of course). Normally it is only necessary to specify the instantiation of the 
parameters in the type of t to achieve this. However, as noted earlier, it is 
possible for a (proper) subterm of t to have a relative type containing a pa
rameter that does not appear in the type oft. Hence the following definition. 

Definition 2.7.4. Let t be a term. A grounding type substitution for t is 
closed type substitution whose domain includes the set of all parameters in 
the relative types of subterms oft. 

Definition 2. 7.5. Lett be a term of type a, TJ a grounding type substitution 
fort, I= ({Do}oES"' V) an interpretation, and cpa variable assignment with 
respect to I. Then the denotation V(t,T],I,cp) oft with respect to TJ, I, and 
cp is defined inductively as follows. 

1. V(x,T],I,cp) = cp(x,aTJ), where xis a variable of type a. 
2. V(C,T],l,cp) = V(C,TJ'), where Cis a constant and TJ1 is TJ restricted to 

the parameters in the signature of C. 
3. V(>.x.s, TJ, I, cp) =the function whose value for each dE Df3TJ is V(s, TJ, I, cp'), 

where >.x.s has type (3---> 1 and cp' is cp except cp'(x,f3TJ) =d. 
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4. V((u v), 7],1, cp) = V(u, ~7],1, cp)(V(v, ~7],1, cp)), where~ is the associated 
mgu for (u v). 

5. V((h, ... ,tn),7],J,cp) = (V(h,~7],I,cp), ... ,V(tn,~77,J,cp)), where~ is 
the associated mgu for (t1, ... , tn)· 

One can show that V(t, 7], I, cp) E '])"''7' where t has type a. (See Exercise 
2.16.) Furthermore, one can show that if 771 and 772 are grounding type sub
stitutions for t that agree on the set of all parameters in the relative types of 
subterms oft, then V( t, 771 ,I, cp) = V( t, 772 ,!, cp). (See Exercise 2.17.) 

Example 2. 7. 7. Let the alphabet contain the nullary type constructor Int, 
the unary type constructor List, and the constants 

concat : List a --+ List a --+ List a, 

[] : List a, 

~ : a --+ List a --+ List a, 

as well as the integers. Let 'D List Int be the set of finite lists of integers. 
Suppose the interpretation I includes assigning V( concat, {a/ Int}) to be 
the function that concatenates lists of integers. Finally, let t be the term 
concat [] x, 77 the grounding type substitution {a/ Int} fort, and cp a variable 
assignment with respect to I that includes cp(x, List Int) = 1 ~ 2 ~ []. Then 
V(t,T],I,cp) = 1 ~ 2 ~ []. 

If tis a closed term, then V(t, 7], I, cp) is independent of cp, as the following 
proposition shows. 

Proposition 2. 7.1. Let t be a term, 77 a grounding type substitution fort, 
I an interpretation, and cp1 and cp2 variable assignments with respect to I. 
Suppose that, for each free variable x of relative type {3 in t, cp1 (x, f377) = 
cp2(x, {37]). Then V(t, 7],1, cpi) = V(t, 7],1, cp2). 

Proof. The proof is by induction on the structure oft. If t is a variable or a 
constant, then the result is obvious. 

Let t have the form .>..x.s and suppose that, for each free variable y of 
relative type {3 in t, cp1(x,f377) = cp2(x,{37]). Now V(t,7],J,cpi) is the function 
from 'D !3'7 into 'D,'l whose value for each d E 'D !3'7 is V( s, 7], I, cpD, where 
.>..x.s has type {3--+ 1 and cp~ is Cfi except cp;(x,{37]) = d, fori= 1,2. By 
the induction hypothesis, V(s, 7], I, cp~) = V(s, 7], I, cp;). Hence V(t, 7], I, cpi) = 
V(t, 77,!, cp2). 

Let t have the form ( u v) with associated mgu ~ and suppose that, for 
each free variable x of relative type {3 in t, cp1(x,f377) = cp2 (x,{37]). Hence, 
for each free variable x of relative type 0 in u, cp 1 (x,0~7]) = cp2 (x,0~7]), since 
o~ is the relative type of x in t. Similarly, for v. Now V((u v), 7],1, cpi) = 
V(u,~7],I,cpi)(V(v,~7],J,cpi)), for i = 1,2. By the induction hypothesis, 
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V( u, ~TJ,J, VJd = V( u, ~TJ,J, (/)2) and V( v, ~TJ,I, VJd = V( v, ~TJ,J, VJ2)· Hence 
V((u v), TJ, I, VJd = V((u v), TJ,I, VJ2)· 

Let t have the form ( t 1 , ... , tn) with associated mgu ~ and suppose that, 
for each free variable x of relative type j3 in t, VJ 1 ( x, f3TJ) = (/)2 ( x, f3TJ). Hence, 
for each free variable x ofrelative type 15 in tj, VJ 1 (x,I5~TJ) = VJ2 (x,I5~TJ), since 
15~ is the relative type of x in t, for j = 1, ... , n. Now V((h, ... , tn), TJ, I, VJi) = 
(V(t1 , ~TJ, I, VJi), ... , V(tn, ~TJ, I, VJi)), fori= 1, 2. By the induction hypothesis, 
V(tj, ~TJ,J, VJd = V(tj, ~TJ, I, VJ2), for j = 1, ... , n. Hence V( (t1, ... , tn), TJ, I, VJd 
=V(tl, ... ,tn,TJ,I,VJ2)· D 

Definition 2. 7.6. Let t be a formula, I an interpretation, and VJ a variable 
assignment with respect to I. 

1. VJ satisfies t in I if V(t, TJ, I, VJ) = T, for each grounding type substitution 
TJ for t. 

2. t is satisfiable in I if there is a variable assignment which satisfies t in I. 
3. t is valid in I if every variable assignment satisfies t in I. 
4. t is valid if t is valid in every interpretation. 
5. A model for a theory T is an interpretation in which each formula in T 

is valid. 

Definition 2.7.7. A theory is consistent if it has a model. 

Definition 2. 7.8. Let T be a theory and t a formula. Then t is a logical 
consequence ofT if t is valid in every model for T. 

The last definition is a fundamental one. Typically for an application, 
there is a suitable theory describing the application and a distinguished 
model, called the intended interpretation, for the theory. Then, for a par
ticular formula, there arises the question as to whether or not it is valid in 
the intended interpretation. To settle this, one establishes whether or not 
the formula is a logical consequence of the theory. If the formula is a logical 
consequence of the theory, then it is valid in all models of the theory and, 
therefore, in the intended interpretation. The usual method of establishing 
logical consequence is to find a proof of the formula, as discussed in the next 
section. 

2.8 Proof Theory 

The proof-theoretic aspects of the logic are now explored. 

Definition 2.8.1. A proof system consists of a set of axioms and some rules 
of inference. 
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The axioms- which are formulas- are of two kinds: logical axioms that are 
valid in every interpretation and proper axioms that are valid in the intended 
interpretation for the application. The proper axioms together constitute a 
theory, in the sense of Definition 2.3.5. A rule of inference specifies whether 
a formula can be inferred from some set of formulas. 

Definition 2.8.2. A proof of a formula tis a finite sequence of formulas the 
last of which is t such that each formula is either an axiom or can be inferred 
from preceding formulas in the sequence by an application of some rule of 
inference. 

A theorem is a formula with a proof. 

For the model theory and the proof theory to fit together in a harmo
nious way, there are several desirable properties. The first is soundness: each 
theorem should be valid in every model of the theory (consisting of the set 
of proper axioms). The second is completeness: each formula that is valid in 
every model of the theory should be a theorem. 

There are various formulations of a suitable set of logical axioms for the 
non-polymorphic case; these could be adapted for the polymorphic case con
sidered here. These axioms are not discussed further for the reasons given 
below. 

A suitable inference rule is as follows: 

From formulas t and s = r, where s is a subterm oft at occurrence 
o and s ~ r, infer t[s/r] 0 • 

More generally, one could merely require that s be a-equivalent to a sub
term oft and everything would work well. By Proposition 2.4.7, it follows 
that t[s/r] 0 is a formula and t[s/r] 0 ~ t. 

Proposition 2.8.3 below shows that the inference rule is sound (under 
the assumption that, whatever are the logical axioms, they are valid in any 
interpretation). To prove this, two preliminary results are needed. 

Proposition 2.8.1. Lets = t be a term, ~ the associated mgu for ( ( = s) t), I 
an interpretation, rp a variable assignment with respect to I, and 'fJ a ground
ing type substitution for s = t. Then ~'TJ is a grounding type substitution for 
s and t, and V(s = t, ry, I, rp) = T iff V(s, ~'fl, I, rp) = V(t, ~'TJ, I, rp). 

Proof. It is clear that ~'TJ is a grounding type substitution for sand t. Suppose 
that s is a term of type a. Since = : a ---+ a ---+ il, the associated mgu ( for 
(= s) is {a/a}. Note that V(s,(~ry,I,rp) = V(s,~ry,I,rp), since a does not 
appear in the relative type of any subterm of s. Also V(=,(~ry,I,rp) is the 
identity relation on the domain 1>a(~'IJ· Thus 

V(s = t, 'fl, I, rp) = T 

iff V( ( = s ), ~1J,J, rp) (V(t, ~ry,I, rp)) = T 

iff (V( =, (~ry,I, rp) (V( s, (~ry,I, rp))) (V( t, ~ry,I, rp)) = T 

iff V( s, ~'TJ, I, rp) = V(t, ~'TJ, I, rp). 0 
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Proposition 2.8.2. Let t be a term, s a subterm of t at occurrence o, r 
a term such that r ~ s, I an interpretation, and cp a variable assignment 
with respect to I. Suppose that V(s = r, (,I, cp) = T, for each grounding type 
substitution (for s = r. Let~ be the associated mgu for ( ( = t [sIr] 0 ) t). Then, 
for each grounding type substitution ry fort, there exists a type substitution w 
such that~ryw is a grounding type substitutionfort[slr] 0 andV(t,ry,I,cp) = 
V(t[ slr] 0 , ~ryw, I, !.p). 

Proof. Note that, by Proposition 2.4.6, ((= t[slr] 0 ) t) is a term and t[slr]a ~ 
t. The proof is by induction on the length n of o. 

Suppose first that n = 0. Thus t is s and t[slr] 0 is r. Since r ~ s, 
it can be assumed without loss of generality that ~ does not act on the 
parameters in the relative types of subterms of s. Let T/ be a grounding 
type substitution for s and w any grounding type substitution for s = r. 
Then ryw is a grounding type substitution for s = r. (The type substitution 
w is used just to pick up any parameters in relative types of subterms of 
r that are not instantiated by ry.) By Proposition 2.8.1, V(s, ~ryw, I, cp) = 
V(r,~ryw,I,cp). However, V(s,~ryw,I,cp) = V(s,ryw,I,cp), since~ does not act 
on the parameters in the relative types of subterms of s, and V( s, ryw,I, cp) = 
V( s, ry, I, cp ), since ryw and ry agree on the set of all parameters in the relative 
types of subterms of s. Thus V(s, ry, I, cp) = V(r, ~r7w, I, cp), as required. 

Suppose next that the result holds for occurrences of length n and o 
has length n + 1. Then t has the form .>..x.s, ( u v ), or (t1, ... , tn)· Consider 
the case when t has the form ( u v) and o = lo', for some o'. Let a be 
the associated mgu for (u v), (3 the associated mgu for (u[slr]o' v), and 1r 
the associated mgu for((= u[slr]o') u). It can be assumed without loss 
of generality that 1r does not act on any parameters in the relative types 
of subterms of v. One can show that 1ra and (3~ agree on the set of all 
parameters that appear in relative types of subterms of u [r Is] a'; similarly, for 
v. Let T/ be a grounding type substitution for ( u v). Then ary is a grounding 
type substitution for u and, by the induction hypothesis, there exists a type 
substitution w such that V(u, ary, I, cp) = V(lt[slr]a', 1raryw, I, cp). Note that 
V(v,ary,I,cp) = V(v,aryw,I,cp), since ary and ar7w agree on the set of all 
parameters in the relative types of subterms of v. Thus 

V((u v), ry, I, cp) = V(u, ary, I, cp)(V(v, ary, I, cp)) 

= V(u[slr]a', 1raryw, I, cp)(V(v, ary, I, cp)) 
= V(u[slr]o', 1raryw, I, cp)(V(v, aryw, I, cp)) 

= V( u[slr]a', 1raryw, I, cp )(V( v, 1raryw, I, cp)) 

= V(u[slr]a', (3~ryw, I, cp)(V(v, (3~ryw, I, cp)) 

= V((u[slr]o' v), ~ryw, I, cp) 

= V((u v)[slr] 0 , ~ryw, I, cp). 
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The argument is similar when o = 2o'. 
The other two cases when t has the form >..x.s or (t1 , ... , tn) are similar. 

0 

Proposition 2.8.3. Every theorem is a logical consequence of the theory 
consisting of the set of proper axioms. 

Proof. Let t be a formula, s a subterm of t at occurrence o, r a term 
such that s ~ r, I an interpretation, and cp a variable assignment with re
spect to I. Suppose that, for each grounding type substitution ( for s = r, 
V(s = r,(,I,cp) = T and, for each grounding type substitution v fort, 
V(t,v,I,cp) = T. It suffices to prove that, for each grounding type substitu
tion 7] for t[s/r]o, V(t[s/r]o, 7], I, cp) = T. 

Note first that (t[s/r]o)[r/s]o is t. Let ~ be the associated mgu for 
((= (t[s/r]o)[r/s] 0 ) t[s/r] 0 ). According to Proposition 2.8.2, there exists a 
type substitution w such that V(t[s jr] 0 , ry,l, cp) = V( ( t[s/r]o) [r / s] 0 , ~T]W, I, cp ). 
But V((t[s/r]o)[r/s] 0 ,~7]w,l,cp) = V(t,~ryw,I,cp) and V(t,~ryw,I,cp) = T, by 
the assumptions. Hence the result. 0 

One could now proceed to give a complete account of a conventional proof 
theory for the logic. This essentially requires extending the non-polymorphic 
development to the polymorphic case. (See Exercise 2.21.) However, this proof 
theory has little importance for the applications to machine learning, so in
stead I concentrate in Chap. 5 on the problem of defining a suitable opera
tional behaviour for programs in declarative programming languages whose 
programs are certain kinds of equational theories. 
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type system, as it has become known, has been widely used in functional and 
logic programming languages. 
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A highly recommended reference on (first-order) unification is [48], which 
provides an introduction to the basic ideas on equation solving and unifica
tion, and presents a large number of useful results with their proofs. A brief 
account of unification is given in [52]. There are various algorithms for unify
ing a set of equations about first-order terms and, therefore, about types. See 
[48] and [52] for two of these. Higher-order unification is discussed in [90]. 

Exercises 

2.1 Let a E 6. Prove that exactly one of the following holds. 

1. a is a parameter. 
2. a has the form T a1 ... ak, where T E 'I and a 1, ... , ak E 6. 
3. a has the form f3-> 'f, where (3, '/ E 6. 
4. a has the form a 1 x · · · x an, where a 1 , ... , an E 6. 

2.2 Let a E 6c. Prove that exactly one of the following holds. 

1. a has the form T a1 ... ak, where T E 'I and a1, ... , ak E 6c. 
2. a has the form f3-> '/, where (3, '/ E 6c. 
3. a has the form a1 x · · · x an, where a1, ... , an E 6c. 

2.3 Prove that a(f.w) = (af.L)v, for any type a and type substitutions f.L and 
v. 

2.4 Prove that if O" is an mgu for a set E of equations and a is invertible, 
then O"a is also an mgu for E. 

2.5 Give an inductive definition of the instance of a type by a type substi
tution. Hence prove that if a is a type and f.L is a type substitution, then af.L 
is a type. 

2.6 Prove that a type substitution is invertible iff it is a permutation of 
parameters. 

2. 7 Let f.L 1 and f.L 2 be mgus. Prove that f.L 1 and f.L 2 are mgus of the same set 
of equations about types iff f.L 1 = f.L 2a, for some invertible type substitution 
a. 

2.8 Prove that a type O" is a variant of a type T iff there exist type substitu
tions () and cp such that O"() = T and Tcp = O". 

2.9 Give an example to show what undesirable consequences can follow if 
parameters are not standardised apart in Parts 4 and 5 of Definition 2.3.2. 
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2.10 This problem provides a 'bottom-up' definition of£. 

(i) Complete the following inductive definition of { £m}mEN so that Parts 
(ii) and (iii) below make sense by filling in the missing conditions and 
making any other necessary modifications. 
[Hint: annotated terms will be needed.] 

£o = { t I t is a variable or a constant} 

£m+l = £m 

U {Ax .t I t E £m} 

U {(s t) Is, t E £m and some condition} 

U {(t1, ... , tn) I t1, ... , tn E £m and some condition}. 

(ii) Prove that £m ~ £m+l, formE N. 
(iii) Prove that£= UmEN £m. 

2.11 Prove that if r is the subterm of term s at occurrence o' and s is the 
subterm of term t at occurrence o, then r is the subterm of t at occurrence 

oo'. 

2.12 Prove that if s and t are terms such that s ~ t and t ~ s, then s ~ t. 
2.13 Prove Proposition 2.5.3. 

2.14 Lett be a term having type a, Xl, ... 'Xn be free variables in t, and e = 
{ xl/t1, ... , Xn/tn} be an idempotent term substitution. Suppose that Ut,fi U 

vt,e has mgu i.p. Prove that (>-xn.(. .. (.Ax1.t tl) .. . ) tn) is a term of type O"({J 

and, ify is a free variable in (>-xn.(· .. (.Ax 1.t tl) .. . ) tn) andy has relative type 

0 in tor some t;, then y has relative type Oi.p in (>-xn.(· .. (.Ax1.t h) ... ) tn)· 
2.15 Let t be a term having type a, x 1, ... , Xn be free variables in t, and 

e = {xl/t1, ... ,xn/tn} be an idempotent term substitution. Suppose that 

(>-xn.(· .. (.Ax 1.t h) ... ) tn) is a term. Prove that Ut,fi U vt,e is unifiable. 

2.16 Let t be a term of type a, T) a grounding type substitution for t, I = 
( {'D,I}0E6 c, V) an interpretation, and i.p a variable assignment with respect 
to I. Prove that V(t,T),I,i.p) E 'Dary· 

2.17 Let t be a term of type a, I an interpretation, and i.p a variable assign
ment with respect to I. Suppose that T)l and T)2 are grounding type substi
tutions for t that agree on the set of all parameters in the relative types of 
subterms oft. Prove that V( t, fJl, I, i.p) = V( t, T)2 , I, i.p). 
2.18 Complete the details of the proof of Proposition 2.8.2. 

2.19 (Open problem) Prove or disprove the following conjecture. 

Lett be a term, x 1, ... , Xn variables that occur freely exactly once in t, where 

X; has relative type (!; in t, for i = 1, ... , n, and g = { xdh, ... , Xn/tn} an 
idempotent term substitution such that Ut,fi U vt,e has mgu a, say. Then, 
for every interpretation I, grounding type substitution TJ for te, and vari

able assignment i.p with respect to I, it follows that aT) is a grounding type 

substitution for t and V( te, T), I, i.p) = V( t, aT) ,I, ((J1), where i.p1 is i.p except 

i.p1(x;, (!;arJ) = V(t;, ar7, I, i.p), fori= 1, ... , n. 
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2.20 (Open problem) Prove or disprove the following conjecture. 
Let s = t be a term, x1, ... , Xn variables that occur freely exactly once in s, 
and 0 := { xl/h, . .. , Xn/tn} an idempotent term substitution such that t ~ S 
and sO = tB is a term. Let I be an interpretation and c.p a variable assignment 
with respect to I such that V(s = t, (,I, c.p) = T, for each grounding type 
substitution (for s = t. Then, for each grounding type substitution ry for sO, 
there exists a grounding type substitution v for tO such that V(sO, ry,l, c.p) = 
V(tO, v, I, c.p). 

2.21 (Open problem) Extend the presentation of the proof system in [1, 
Chap. 5] to the polymorphic case. The extended presentation should include 
a suitably generalised form of Henkin's completeness theorem. 
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In this chapter, the application of the logic to knowledge representation is 
studied. The main idea is the identification of a class of terms, called basic 
terms, suitable for representing individuals in diverse applications. For exam
ple, this class is suitable for machine-learning applications. From a (higher
order) programming language perspective, basic terms are data values. The 
most interesting aspect of the class of basic terms is that it includes certain 
abstractions and therefore is wider than is normally considered for knowl
edge representation. These abstractions allow one to model sets, multisets, 
and data of similar types, in a direct way. Of course, there are other ways of 
introducing (extensional) sets, multisets, and so on, without using abstrac
tions. For example, one can define abstract data types or one can introduce 
data constructors with special equality theories. The primary advantage of 
the approach adopted here is that one can define these abstractions inten
sionally, as shown in Chap. 5. Techniques for defining metrics and kernels on 
basic terms are also investigated in this chapter. 

The definition of basic terms is given in several stages: first normal terms 
are defined, then an equivalence relation on normal terms is defined, and, 
finally, basic terms as distinguished representatives of equivalence classes are 
defined. To define normal terms, the concept of a default term is needed, so 
the development starts there. 

3.1 Default Terms 

Before getting down to the first step of giving the definition of normal terms, 
some motivation will be helpful. How should a (finite) set or multiset be 
represented? First, advantage is taken of the higher-order nature of the logic 
to identify sets and their characteristic functions; that is, sets are viewed 
as predicates. With this approach, an obvious representation of sets uses the 
connectives, so that AX.(x = 1)V(x = 2) is the representation of the set {1, 2}. 
This kind of representation works well for sets. But the connectives are, of 
course, not available for multisets, so something more general is needed. An 
alternative representation for the set {1, 2} is the term 

Ax.if x = 1 then T else if x = 2 then T else j_, 

J. W. Lloyd, Logic for Learning
© J. W. Lloyd 2003
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and this idea generalises to multisets and similar abstractions. For example, 

:\x.if x =A then 42 else if x = B then 21 else 0 

is the multiset with 42 occurrences of A and 21 occurrences of B (and nothing 
else). Thus abstractions of the form 

:\x.if x = t1 then s1 else ... if x = tn then Sn else so 

are adopted to represent (extensional) sets, multisets, and so on. 
However, before giving the definition of a normal term, some attention has 

to be paid to the term s0 in the previous expression. The reason is that s0 in 
this abstraction is usually a very specific term. For example, for finite sets, so 
is J... and for finite multisets, so is 0. For this reason, the concept of a default 
term is now introduced. The intuitive idea is that, for each closed type, there 
is a (unique) default term such that each abstraction having that type as 
codomain takes the default term as its value for all but a finite number of 
points in the domain, that is, s0 is the default value. The choice of default 
term depends on the particular application but, since sets and multisets are 
so useful, one would expect the set of default terms to include J... and 0. 
However, there could also be other types for which a default term is needed. 

For each type constructor T, I assume there is chosen a unique default 
data constructor C such that C has signature of the form a 1 ---+ · · · ---+ O"n ---+ 
(T a 1 ... ak)· For example, for !?, the default data constructor could be J..., 
forInt, the default data constructor could be 0, and for List, the default data 
constructor could be []. 

Definition 3.1.1. The set of default terms, f), is defined inductively as fol
lows. 

1. If C is a default data constructor of arity n and t1, ... , tn E f) ( n 2:: 0) 
such that C t1 ... tn E £, then C t1 ... tn E f). 

2. If t E f) and X Em, then Ax.t E f). 

3. If t1, ... , tn E f) (n 2:: 0) and (t1, ... , tn) E £,then (t1, ... , tn) E f). 

Note 3.1.1. To be precise, the meaning of the previous inductive definition 
is that f) is the intersection of all sets of terms each satisfying ( appropri
ately reworded versions of) Conditions 1 to 3. A suitable universe for the 
construction is the set £ of all terms. In particular, f) c:;; £. 

To prove properties of default terms, one can employ the following prin
ciple of induction on the structure of default terms. 

Proposition 3.1.1. Let .t be a subset of f) satisfying the following condi
tions. 

1. If C is a default data constructor of arity n and t 1 , ... , tn E .t (n 2:: 0) 
such that C t1 ... tn E £, then C h ... tn E .t. 
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2. Ift EX and x Em, then >.x.t EX. 
3. Ift1, ... , tn EX (n ~ 0) and (h, ... , tn) E .C, then (t1, ... , tn) EX. 

Then X= 1). 

Proof. Since X satisfies Conditions 1 to 3 of the definition of a default term, 
it follows that 1) ~X. Thus X= 1). D 

Proposition 3.1.2. Each default term is closed. 

Proof. The proof is by induction on the structure of default terms. Let X be 
the set of all default terms that are closed. 

Suppose that C is a data constructor of arity n and t 1 , ... , tn E X such 
that C h ... tn E .C. Then C t1 ... tn E 1) and C t1 ... tn is closed. Thus 
C t1 ... tn EX. 

Suppose next that t E X and X E m. Then >.x.t E 1) and >.x.t is closed. 
Thus >.x.t E X. 

Finally, suppose that h, ... , tn EX and (t1, ... , tn) E .C. Then (tt, ... , tn) E 
1) and (tt, ... , tn) is closed. Thus (h, ... , tn) EX. 

Hence X= 1), by Proposition 3.1.1. D 

Since each default term is closed, it follows that a default term >.x.t has 
a type of the form a--+ {3, for some parameter a, since t is closed and sox is 
not free in t. 

It will be convenient to gather together all default terms that have a type 
more general than some specific closed type. 

Definition 3.1.2. For each(}; E ec, define i)Q = {t E 1) It has type more 
general than a}. 

Note that 1) = UaESc i)a· However, the i)a may not be disjoint. For 
example, if the alphabet includes the type constructor List and [] is the 
default data constructor for List, then [] E 1) List a, for each closed type a. 
Furthermore, i)a may be empty, for some a. 

Example 3.1.1. Assume the alphabet contains just the nullary type construc
tors M and N (in addition to 1 and Jl) and the data constructors F: M--+ N 
and G : N --+ M. (Recall that each type constructor must have an associated 
data constructor.) Let G be the default data constructor forM. Then there 
are no closed terms of type M and hence 1) M is empty. 

Note 3.1.2. It is tempting to try to prove results about default terms in the 
various i)a by using induction on the structure of closed types. This will 
work for closed types of the form a --+ fJ or n:1 x · · · x an because the 
types of the (top-level) subterms of the corresponding term are subtypes 
of a --+ fJ or n:1 x · · · x an. But it does not generally work for types of 
the form T a 1 ... ak because the types of the (top-level) subterms of the 
corresponding term are not likely to be related to n:1 , ... , ak, and thus the 
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obvious induction hypothesis is not useful. (One exception is the proof of 
Proposition 3.1.4 for which the assumption of the proposition means that 
the induction hypothesis is not needed for types of the form T a 1 ... ak.) 
This is because, if a term has a (top-level) data constructor with signature 
a 1 --* · · · --* an --* (T a 1 ... ak), the types of the (top-level) subterms are 
related to a 1 , ... , an. (See Proposition 3.1.3.) This explains why some of the 
proofs may appear, at first sight, to be more complicated than necessary. The 
same comment applies to normal and basic terms introduced below. (See, for 
example, Proposition 3.2.5.) 

The next result gives some detail about the structure of default terms. 

Proposition 3.1.3. 

1. Let T be a type constructor and C the default data constructor for T, 
where C has signature a1 --*···--*an--* (T a1 ... ak)· Lett E :Dr "''···"'n 
and~= {al/al, ... , an/an}· Then t = C t1 ... tn, where tiE :Dai~' for 
i = 1, ... ,n. 

2. Lett E :D,a_,,. Then t = >.x.u, where u E :D". 
3. Lett E :Da,x···Xan· Then t = (t1, ... ,tn), where t; E :D"'i' fori 

1, ... ,n. 

Proof. 1. By the uniqueness of C, t has the form C t1 ... tn, where t1, ... , tn E 

:D. Suppose that ti has type Ti, for i = 1, ... , n. Let () be an mgu of { a 1 = 
T1, ... , an = Tn}· Thus C t1 ... tn has type (T a1 ... an)(). Now C t1 ... tn E 

:Dr "''···"'n. Hence there exists "'( such that (T a1 ... an)()"'( = (T a1 ... an)· 
Then T;B"( = aie'Y = ail:,, for i = 1, ... , n. That is, t; E :Dail;' for i = 1, ... , n. 

2. By the definition of default terms, t = >.x.u, for some X Em and u E :D. 
Since >.x.u E :D,a_,", >.x.u has type of the form a--* a, where a is the type of 
u and a is more general than "Y· Hence u E :DT 

3. By the definition of default terms, t = (t1 , ... , tn), where t; E :D, for 
i = 1, ... , n. Since (h, ... , tn) E :Da, x ···X<>n, each ti has a type more general 
than ai and hence ti E :Dai, for i = 1, ... , n. D 

The next definition will provide a necessary and sufficient condition for 
each :Da to be non-empty. 

Definition 3.1.3. A data constructor C having signature a1 --* · · · --* an --* 

(T a1 ... ak) is full if, for all a1, ... , ak E e;c, it is true that :Dai~ -/=- 0, for 
i = 1, ... ,n, where~= {al/a1, ... ,ak/ak}. 

In particular, if n = 0, then C is full. 

Proposition 3.1.4. :D a -/=- 0, for each a E e;c, iff each default data con
structor is full. 
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Proof. Suppose first that each default data constructor is full. The proof that 
:Da -j. 0, for each a E sc, proceeds by induction on the structure of closed 
types. 

Let a E sc have the form T a1 ... ak and suppose C is the default 
data constructor associated with T having signature a 1 ---+ • • • ---+ an ---+ 

(T a1 ... ak)· Let~= {al/a1, ... ,ak/ak}. Since Cis full, there exist tiE 
:Da;e, for i = 1, ... , n. Then C t1 ... tn E :Dr a 1 ... <>k. (Note that this part 
does not need the induction hypothesis.) 

Let a = (3 ---+ 'Y· By the induction hypothesis, there exists t E :D-y. Thus 
>.x.t E :Da. 

Let a = a 1 x · · · x an· By the induction hypothesis, there exists ti E :Da;, 
fori= 1, ... , n. Thus (t1, ... , tn) E :Da. 

Conversely, suppose that there exists a default data constructor C having 
signature a 1 ---+ • • • ---+ an ---+ (T a1 ... ak) that is not full. Hence there exist 
a1, ... ,ak Esc such that :Daioe = 0, for some io E {1, ... ,n}, where~= 
{al/ab ... , ak/ak}. Consequently, :Dr a1 ••• <>k = 0. 0 

However, if it exists, one can show that the default term for each closed 
type is unique. 

Proposition 3.1.5. For each a E sc, there exists at most one default term 
in :Da. 

Proof. Put X= {t E :D I if s E :D and s, t E :Da, for some a E sc, then 
s = t}. It suffices to show that X = :D. For this, the three conditions of 
Proposition 3.1.1 are established. 

Let C be a default data constructor having signature a 1 ---+ • • • ---+an ---+ 

(T a1 ... ak) and t1, ... , tn EX (n 2: 0) such that C t1 ... tn E £. It must be 
shown that C h ... tn E X. For this, suppose that s E :D and s, C t 1 ... tn E 
:Da, for some a E sc. Suppose that a= T a1 ... ak, for some T, a1, ... , ak. 

Put ~ = { ada1, ... , ak/ak}· To show that C t1 ... tn E X, it suffices to show 
that s = C t1 ... tn. Now, by Proposition 3.1.3, s = C s1 ... Sn, where Si E 
:Da;e, for i = 1, ... , n. Also, by Proposition 3.1.3, ti E :Daie' for i = 1, ... , n. 
Since ti E X, it follows that si = ti, for i = 1, ... , n, and so s = C h ... tn. 
Thus C h ... tn E X, as required. 

Suppose that t E X and X E m. It must be shown that >.x.t E X. Thus 
suppose that s E :D and s, >.x.t E :Da, for some a E sc. Suppose that 
a = (3 ---+ "(, for some (3 and 'Y· It suffices to show that s = >.x.t. Now, by 
Proposition 3.1.3, s = >.x.u, for some u E :D-y- Also, by Proposition 3.1.3, 
t E :D-y- Since t E X, it follows that u = t and so s = >.x.t. Thus >.x.t E X, as 
required. 

Suppose that t1, ... , tn EX and (h, ... , tn) E £.It must be shown that 
(h, ... , tn) EX. Thus, suppose that s E :D and s, (h, ... , tn) E :Da, for some 
a E sc. Suppose that a = 0:1 x · · · x an, for some 0:1, ... , an. It suffices 
to show that s = (t1 , ... , tn)· Now, by Proposition 3.1.3, s = (sb ... , sn), 
where Si E :Dai, for i = 1, ... , n. Also, by Proposition 3.1.3, ti E :Da;, for 
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i = 1, ... , n. Since ti E X, it follows that Si = ti, for i = 1, ... , n, and so 
s = (h, ... , tn)· Thus (t1, ... , tn) EX, as required. 

Since all three conditions of Proposition 3.1.1 have now been established, 
it follows that X = 1> and the result is proved. D 

In the second part of the previous proof it may happen that s and t have 
different bound variables. This is an unimportant difference, that is, I regard 
identity of terms as being 'identity up to a-conversion'. See Note 3.4.1 below. 

It follows from Propositions 3.1.4 and 3.1.5 that, if each default data 
constructor is full, then 1>a is a singleton set, for each o: E 6c. 

Proposition 3.1.5 shows that choosing U as the default constructor for 
List is a bad idea. The reason is that, with this choice, 1> List a = 0, for each 
o: E 6c. For suppose t E 1>List a, for some fixed o:. Then t has the form~ h b, 
for some h E 1> a and b E 1> List a. The latter fact contradicts the uniqueness 
oft. 

A bottom-up characterisation of default terms will be needed. 

Definition 3.1.4. Define {l>m}mEl\1 inductively as follows. 

l>o = { C I C is a nullary default data constructor} 

1>m+l = { C h ... tn E £ I C is a default data constructor of arity n, 
ti E 1>m (1 :::::: i:::::: n), n EN} 

U {>.x.t E £ I t E 1>m} 

U {(h, ... , tn) E £I tiE 1>m (1:::::: i:::::: n), n EN}. 

Proposition 3.1.6. 

1. 1>m ~ 1>m+l, formE N. 
2. 1) = UmEl\Jl)m· 

Proof. 1. This part is an easy induction argument. 
2. First, I show that UmEl\1 1>m ~ 1>. To prove this, it suffices to show 

by induction that 1>m ~ 1>, formE N. Clearly 1>0 ~ 1>. Suppose next that 
1) m ~ 1). It then follows from the definitions of 1) m+l and 1) that 1) m+l ~ 1). 

Now I show that 1> ~ UmEN 1>m· For this, it suffices to show that 
UmEN 1>m satisfies Conditions 1, 2 and 3 in the definition of 1> (since 1> 
is the smallest such set). Suppose that C is a default data constructor, 
ii, ... , tn E UmEl\1 1>m, and C ii ... tn E £. Since the 1>m are increasing, 
there exists p E N such that h, ... , tn E l>v· Hence C h ... tn E 1>p+l and 
so C t1 ... tn E UmEl\1 1>m· Similar arguments show that UmEl\1 1>m satisfies 
Conditions 2 and 3. D 

Proposition 3.1. 7. If the set 'I of type constructors is countable, then 1> is 
countable. 
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Proof. Since 'I is countable and, for every type constructor, there is associated 
a unique default data constructor, the set of default data constructors is also 
countable. Since :D = UmEN :Dm, it suffices to show by induction that :Dm 
is countable, for m E N. However, this follows easily from the definition of 
{:Dm}mEN· D 

3.2 Normal Terms 

Now normal terms can be defined. In the following, Ax.s0 is regarded as the 
special case of 

AX. if x = t1 then s1 else . . . if x = tn then Sn else so 

when n = 0. 

Definition 3.2.1. The set of normal terms, 91, is defined inductively as fol
lows. 

1. If Cis a data constructor of arity nand t 1 , ... , tn E 91 (n EN) such that 
C h ... tn E £, then C h ... tn E 91. 

2. If h, ... , tn E 91, s1, ... , Sn E 91 ( n E N), So E :D and 

Ax. if x = t1 then s1 else ... if x = tn then Sn else so E £, 

then 

AX. if x = t1 then s1 else . . . if x = tn then Sn else so E 91. 

3. If t1, ... , tn E 91 (n EN) and (h, ... , tn) E £,then (t1, ... , tn) E 91. 

Note 3. 2.1. As usual, the meaning of the previous inductive definition is that 
91 is the intersection of all sets of terms each satisfying (appropriately re
worded versions of) Conditions 1 to 3. A suitable universe for the construction 
is the set £ of all terms. In particular, 91 <;;; £. 

Part 1 of the definition of the set of normal terms states, in particular, 
that individual natural numbers, integers, and so on, are normal terms. Also 
a term formed by applying a data constructor to (all of) its arguments, each 
of which is a normal term, is a normal term. As an example of this, consider 
the following declarations of the data constructors Circle and Rectangle. 

Circle : Float ---+ Shape 

Rectangle : Float ---+ Float ---+ Shape. 

Then (Circle 7.5) and (Rectangle 42.0 21.3) are normal terms of type Shape. 
However, (Rectangle 42.0) is not a normal term as not all arguments to 
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Rectangle are given. Normal terms coming from Part 1 of the definition are 
called normal structures and always have a type of the form T a 1 ... ak. 

The abstractions formed in Part 2 of the definition are 'almost constant' 
abstractions since they take the default term s0 as value for all except a finite 
number of points in the domain. (The term s0 is called the default value for 
the abstraction.) They are called normal abstractions and always have a type 
of the form {3--> 'I· This class of abstractions includes useful data types such 
as (finite) sets and multisets. More generally, normal abstractions can be 
regarded as lookup tables, with s0 as the value for items not in the table. 

Part 3 of the definition of normal terms just states that one can form a 
tuple from normal terms and obtain a normal term. These terms are called 
normal tuples and always have a type of the form a 1 x · · · x an. 

The next result is the principle of induction on the structure of normal 
terms. 

Proposition 3.2.1. Let X be a subset of 1)1 satisfying the following condi
tions. 

1. If C is a data constructor of arity n and h, ... , tn E X ( n E N) such that 
C t1 ... tn E £, then C t1 ... tn E X. 

2. If t1, ... , tn E X, s1, ... , Sn E X ( n E N), so E :D and 

.Ax. if x = t1 then s1 else ... if x = tn then Sn else so E £, 

then 

A.x.if x = h then s1 else ... if x = tn then sn else so EX. 

3. Ift1, ... , tn EX (n EN) and (t1, ... , tn) E £, then (t1, ... , tn) EX. 

Then X= !Jt. 

Proof. Since X satisfies Conditions 1 to 3 of the definition of a normal term, 
it follows that 1)1 <:;:; X. Thus X = !Jt. D 

Proposition 3.2.2. :D <:;:; !Jt. 

Proof. This is a straightforward induction argument on the structure of de
fault terms. D 

Proposition 3.2.3. Each normal term is closed. 

Proof. The proof is by induction on the structure of normal terms. Let X be 
the set of all normal terms that are closed. 

Suppose that C is a data constructor of arity n and t 1 , ... , tn E X such 
that C h ... tn E £. Then C h ... tn E 1)1 and C h ... tn is closed. Thus 
C ii ... tn EX. 
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Suppose next that t1, ... , tn E X, s1, ... , Sn E X, and so E fl such that 
t = >.x.if x = t1 then s1 else ... if x = tn then Sn else so E ..C. Thus t E 01 
and tis closed, since s0 is closed by Proposition 3.1.2. Thus t EX. 

Finally, suppose that t1, ... , tn EX and (t1, ... , tn) E ..C. Then (t1, ... , tn) E 
01 and ( t1, ... , tn) is closed. Thus ( t1, ... , tn) E X. 

Hence X= 01, by Proposition 3.2.1. 0 

One can gather together all normal terms that have a type more general 
than some specific closed type. 

Definition 3.2.2. For each a E ec' define 01a = { t E !)1 I t has type more 
general than a}. 

The intuitive meaning of 01a is that it is the set of terms representing 
individuals of type a. Note that 01 = UaESc 01a. However, the 01a may not 
be disjoint. For example, if the alphabet includes List, then [] E !JtList "'' for 
each closed type a. Furthermore, 01a may be empty, for some a. 

Example 3. 2.1. Assume the alphabet contains just the nullary type construc
tors M and N (in addition to 1 and S?) and the data constructors F : M --+ N 
and G: N--+ M. Then there are no closed terms of type M and hence !)1M 

is empty. 

Since f) ~ 01, it follows that fla ~ 01a, for each a E 6c. 

Proposition 3.2.4. If each default data constructor is full, then 01a of. 0, 
for each a E 6c. 

Proof. By Proposition 3.1.4, since each default data constructor is full, 
fla of. 0, for each a E 6c. But fla ~ 01a, for each a E 6c. Hence the 
result. 0 

Proposition 3.2.5. 

1. If C ii ... tn E 01r a 1 ... ak, where C has signature a1 --+ · · · --+ an --+ 

(T a1 .. . ak) and~ = {ai/a1, ... ,ak/ak}, then ti E 01ai.;, fori 
1, ... , n. 

2. If >.x. if x = h then s1 else ... if x = tn then Sn else so E 01!3__,1 , then 
tiE 01!3 and Si E 011 , fori= 1, ... , n, and so E fl 1 . 

3. If (tl, ... 'tn) E 01a, X···X<>n! then tiE 01a,, fori= 1, ... 'n. 

Proof. Suppose first that C t1 ... tn E 01r a 1 ... ak. Then C ii ... tn E 01 and so 
t 1, ... , tn E 01 (since 01 is the smallest set of terms satisfying the conditions in 
the definition of a normal term). Furthermore, ti has type f2i, where ai~ = (}i'f, 

for some/, fori= 1, ... , n. Thus ti E 01ai.;, fori= 1, ... , n. 
Next suppose that >.x.if x = t1 then s1 else ... if x = tn then Sn else s0 E 

01{3__,,. Hence >.x.if x = t1 then s1 else ... if x = tn then sn else s0 E 01 
and so ti E 01 and Si E 01, for i = 1, ... , n, and s0 E fl. Now each ti has 
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type more general than f3 and each si has type more general than 'Y. Hence 
ti E 91,a and si E 911 , for i = 1, ... , n, and s0 E f>,. 

Finally, suppose that (it, ... , tn) E 91a1 x ... x <>n. Then ( t1, ... , tn) E 91 and 
so ti E 91, fori= 1, ... , n. Furthermore, each ti has type more general than 
ai. Thus tiE 91<>;> fori= 1, ... , n. D 

Proposition 3.2.6. If s, t E 91,a_,1 , for some /3, "f E ec, then s and t have 
the same default value. 

Proof. Let so be the default value for s and t0 the default value for t. By 
Proposition 3.2.5, so, to E 91,. Hence, by Proposition 3.1.5, s0 = t0 . D 

Next, a bottom-up characterisation of 91 is provided. 

Definition 3.2.3. Define {91m}mEN inductively as follows. 

91o = { C I C is a nullary data constructor} 

91m+l = { C t1 ... tn E .£ I C is a data constructor of arity n, 
tiE 91m (1::::; i::::; n),n EN} 

U {Ax. if x = t1 then s1 else ... if x = tn then Sn else so E.£ I 
tiE 91m,Si E 91m, (1::::; i::::; n),so E f>,n EN} 

U { (it, ... , tn) E .£ I ti E 91m ( 1 ::::; i ::::; n), n E N}. 

Proposition 3.2.7. 

1. 91m ~ 91m+l, formE N. 
2. 91 = UmEN 91m. 

Proof. 1. This part is an easy induction argument. 
2. First, I show that UmEN 91m ~ 91. To prove this, it suffices to show 

by induction that 91m ~ 91, formE N. Clearly 910 ~ 91. Suppose next that 
91m ~ 91. It then follows from the definitions of 91m+l and 91 that 91m+l ~ 91. 

Now I show that 91 ~ UmEN 91m. For this, it suffices to show that 
UmEN 91m satisfies Conditions 1, 2 and 3 in the definition of 91 (since 91 is 
the smallest such set). Suppose that C is a data constructor, it, ... , tn E 
UmEN 91m, and C t1 ... tn E .£. Since the 91m are increasing, there ex
ists p E N such that t1o ... , tn E 91p· Hence C t 1 ... tn E 91p+l and so 
C it ... tn E UmEN 91m. Similar arguments show that UmEN 91m satisfies 
Conditions 2 and 3. 0 

Proposition 3.2.8. If the set of data constructors is countable, then 91 is 
countable. 

Proof. Since the set of data constructors is countable, the set 'I of type con
structors is also countable. Thus f) is countable, by Proposition 3.1.7. Now, 
since 91 = UmEN 91m, it suffices to show by induction that 91m is countable, 
formE N. However, this follows easily from the definition of {91m}mEN· 0 
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3.3 An Equivalence Relation on Normal Terms 

Several syntactically distinct terms in 91 can represent the same individual. 
For example, 

and 

A.x.if x = 1 then T else if x = 2 then T else ..l, 

A.x.if x = 2 then T else if x = 1 then T else ..l, 

A.x.if x = 3 then ..l else if x = 2 then T else if x = 1 then T else ..l 

all represent the set {1, 2}. To reflect this, a relation = is defined on 91. 

Definition 3.3.1. The binary relation = on 91 is defined inductively as fol
lows. Let s, t E 91. Then s = t if there exists a E 6c such that s, t E 91a and 
one of the following conditions holds. 

1. a= T a1 ... ak, for some T, a1, ... , ak, and sis C s1 ... sn, tis C t1 ... tn 
and si = ti, for i = 1, ... , n. 

2. a= (3---> "(, for some (3, "(, and 
sis A.x.if x = t1 then s1 else if x = tn then Sn else so, 
tis A.y.if y = u1 then V1 else ... if y =Urn then Vm else so 
and, Vr E 91,e, 
(3i,j. r=ti A r=:j:.tk(Vk<i) A r=uj A r=:J:-um(Vm<j) A si=v1) 
V(3i. r=ti A r=:j:.tk(Vk<i) A r=:j:.uj(Vj) A si=s0 ) 

V(3j. r=:j:.ti(Vi) A r=uj A r=:J:-um(Vm<j) A s0 =vj) 
V (r =:J:- ti(Vi) A r =:J:- u1(Vj)). 

3. a= a1 X·· ·X an, for some a1, ... , an, and sis (s1, ... , sn), tis (t1, ... , tn) 
and Si = ti, for i = 1, ... , n. 

One might conjecture that = is an equivalence relation on 91, but this 
fails. 

Example 3.3.1. Let A1 : T1 and A2 : T2 be nullary data constructors, r be 
A.x.if x = A1 then ..l else ..l, s be A.x . ..l, and t be A.x.if x = A2 then ..l else ..l. 
Then r, s E 91r1 __,n and r = s. Furthermore, s, t E 91r2 __,n and s = t. But 
r =:j:. t, since there does not exist a E 6c such that r, t E 91a. Thus = is not 
transitive on 91. 

However, all that is really needed is that = be an equivalence relation on 
each 91"', and this is indeed true. 

Proposition 3.3.1. For each a E 6c, =I'Jl"' is an equivalence relation on 
91a. 
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Proof. It is clear that = is reflexive and symmetric on each '.na. For tran

sitivity, the proof is by induction on the structure of terms in '.n. Suppose 

r, s, t E '.na, r =sands= t. Then there are three cases to consider. 

Suppose that a= T a1 ... ak. Then r is C r1 ... rn, sis C s1 ... sn, and t 
is Cit ... tn. Also r; = S; and s; = t;, fori= 1, ... , n. By Proposition 3.2.5 

and the induction hypothesis, r; = t;, for i = 1, ... , n. Hence r = t. 
Next suppose that a = f3---+ 1- Then 

r is >-.z. if z = h1 then k1 else ... if z = h1 then k1 else so, 
sis >-.x.if x =it then s1 else ... if x = tn then Sn else so, 
and t is >-.y. if y = u1 then VI else . . . if y = Urn then Vm else so. 
Furthermore, \fb E '.n,a, 
(3i,j. b=:=h; 1\ b"¢.hk('Vk<i) 1\ b=:=tj 1\ b"¢.tm('Vm<j) 1\ k;=:=sj) 
V (3i. b = h; 1\ b ¢. hk('Vk < i) 1\ b ¢. tj('Vj) 1\ k; = s0 ) 

V (3j. b "¢. h;('Vi) 1\ b = tj 1\ b "¢. tm('Vm < j) 1\ so= Sj) 
v (b ¢. h;('Vi) 1\ b ¢. tj('Vj)) 
and 
(3i,j. b=:=t; 1\ b¢.tk('Vk<i) 1\ b=:=uj 1\ b¢.um('Vm<j) 1\ s;=:=vj) 
V (3i. b = t; 1\ b ¢. tk('Vk < i) 1\ b ¢. uj('Vj) 1\ s; = s0 ) 

V(3j. boj.t;('Vi) 1\ b=uj 1\ b¢.um('Vm<j) 1\ s0 =:=vj) 
v (b ¢. t;(Vi) 1\ b ¢. Uj('Vj)). 
Thus, \fb E '.n,a, 
(3i,j. b=:=h; 1\ boj.hk('Vk<i) 1\ b=:=uj 1\ b"¢.um('Vm<j) 1\ k;=:=vj) 
V (3i. b = h; 1\ b "¢. hk('Vk < i) 1\ b "¢. Uj('Vj) 1\ k; =so) 
V (3j. b oj_ h;(\fi) 1\ b ::= Uj 1\ b oj_ Um(\fm < j) 1\ So::= Vj) 
V (b oj_ h;(\fi) 1\ b oj_ Uj(\fj)), 
by Proposition 3.2.5 and the induction hypothesis. Hence r = t. 

Finally, suppose that a= a1 x ··· x an· Then r is (r1, ... ,rn), sis 

(s1, ... ,sn) and tis (ft, ... ,tn)· Also r; = s; and s; = t;, fori= 1, ... ,n. 
By Proposition 3.2.5 and the induction hypothesis, r; = t;, for i = 1, ... , n. 

Hencer::=t. D 

Next a neater formulation of the definition of = is provided. This uses the 

following concept. 

Definition 3.3.2. Let t be AX. if x = t1 then s1 else ... if x = tn then Sn 
else s0 E '.n,a-vy and r E '.n,a. Then V ( t r) is defined by 

( ) {
s; if r = t; and r ¢. tk('Vk < i) 

V tr = 
s0 if r ¢. t; (Vi). 

Intuitively, V(t r) is the 'value' returned when tis applied tor. 

Proposition 3.3.2. Let t E 'TI,a ...... 7 and r E '.n,a. Then V ( t r) E 'J17 . 

Proof. Lett be >-.x.if x = t1 then s1 else ... if x = tn then Sn else so. Then 

V(t r) is some s;, where i = 0, ... , n. By Proposition 3.2.5, each s; E '.n,a. 

Hence V(t r) E '.n,a. D 
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Proposition 3.3.3. For each s, t E !J1, s = t iff there exists a E 6c such 
that s, t E !)1"' and one of the following conditions holds. 

1. a = T a1 .. . ak, for some T, a1, ... , ak, and s is c S1 ... Sn, t is 
C t1 ... tn and Si = ti, fori = 1, ... , n. 

2. a= f3--> '"'(,for some /3,'"'(, and, for all r E !J1,e, V(s r) = V(t r). 
3. a = a1 X ... X an, for some a1, ... , an, and s is (s1, ... ,sn), t is 

(it, ... , tn) and si = ti, fori= 1, ... , n. 

Proof. The result follows immediately from the definitions of= and V(t r). 
D 

3.4 A Total Order on Normal Terms 

The equivalence relation = was introduced because several syntactically dis
tinct terms in !J1 can represent the same individual. Rather than deal with 
all the normal terms in an equivalence class in some !)1"', it is preferable to 
deal with a single representative from the equivalence class. For this purpose, 
a strict total order on normal terms is introduced. (See the appendix for the 
definition of a strict total order.) 

In the definition of the binary relation < below, it is assumed that, for 
each T E 'I, there is defined a strict total order -<r on the set of all data 
constructors associated with the type constructor T. For standard types, 
such as Int and Float, the usual order provides an appropriate total order. 
To simplify the statement of the definition, the concept of the trace of an 
abstraction will be useful. 

Definition 3.4.1. Suppose that s is a normal abstraction >.x.if x = t 1 
then s1 else ... if x = tn then Sn else so. The trace of s, trace(s), is 
the sequence t1 s1 t2 s2 ... tn Sn. (For the normal abstraction >.x.so, the trace 
is the empty sequence E.) 

Definition 3.4.2. The binary relation < on !J1 is defined inductively as fol
lows. Let s, t E !J1. Then s < t if there exists a E 6c such that s, t E !)1"' and 
one of the following conditions holds. 

1. a = T a1 ... ak, for some T,a1, ... ,ak, and sis C s1 ... sn, tis 
D t1 ... tm and either C -<r D or C = D and there exists j such that 
1 :S j :S n, s1 = t1, ... ,sj-1 = tj-1 and Sj < tj. 

2. a= f3--> '"'(,for some /3, '"'(,and trace(s) < trace(t), where< is the induced 
lexicographic ordering. 

3. a= a1 x ···X an, for some a1, ... , an, and sis (st, ... , sn), tis (it, ... , tn) 
and there exists j such that 1 :S j :S n, s1 = it, ... , Sj-1 = tj-1 and 
Sj < tj. 
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Note 3.4.1. Before continuing, a closer examination of what it means for two 
normal terms to be identical is needed. Consider the two terms 

>..x. if x = t1 then s1 else . . . if x = tn then Sn else so and 

>..y.if y = t1 then s1 else ... if y = tn then Sn else so. 

The only difference between these two terms is that the bound variables in 
each of them have distinct names. In fact, this difference is quite inessential 
(and could be removed altogether with a suitable notation) and hence I prefer 
to regard the terms as being identical. Generally, identity of normal terms 
is regarded as meaning a-equivalent, that is, the names of bound variables 
are not important. This convention is used implicitly in the remainder of the 
book. 

Proposition 3.4.1. For each a E e;c, <I'Yt" is a strict total order on 91a. 

Proof. The proof is by induction on the structure of terms in 91. 
First, I show that < is irreflexive. Let t E 91a. 

1. Let a = T a1 ... ak. Then t is C h ... tn. Thus t f- t, since t; f- t;, for 
1 ::; i ::; n, by the induction hypothesis. 

2. Let a = (3 --+ 1- Then t is >..x.if x = t1 then s1 else . . . if x = 
tn then Sn else so. Thus t f- t, since t; f- t; and s; f- s;, for 1 ::; i ::; n, by 
the induction hypothesis. 

3. Let a= a1 x · · · x an· Then tis (t1, ... , tn)· Thus t f- t, since t; f- t;, for 
1 ::; i ::; n, by the induction hypothesis. 

Next, I show that < is asymmetric. Let s, t E 91a and suppose that s < t. 

1. Let a= T a1 ... ak. Then sis C s1 ... Sn and tis D t1 ... tm. If C -<r D, 
then D -/<r C and D -=f. C and sot f- s. Otherwise, C = D, in which case 
there exists j such that s 1 = t1, ... , s1_ 1 = t1_1, s1 < t1 and 1::; j::; n. 
Hence h f- s1, ... , tj-1 f- Sj-1, and tj "I- Sj, since< is irreflexive. By the 
induction hypothesis, t1 f- s1. Thus t f- s. 

2. Let a = (3 --+ 1- Then trace ( s) < trace ( t). By examining each of the two 
cases in the definition of the induced lexicographic ordering and using the 
induction hypothesis, one can see that trace(t) f- trace(s). Thus t f- s. 

3. Let a= a 1 X··· x an· Then sis (s1, ... , sn), tis (t1, ... , tn) and there 
exists j such that s 1 = t1, ... , s1_ 1 = t1_ 1, s1 < t1 and 1 ::; j ::; n. 
Hence t 1 f- s 1, ... , t1_ 1 f- s1_ 1 , and t1 "I- s1 since< is irreflexive. By the 
induction hypothesis, t1 f- s1. Thus t f- s. 

Next, I show that < is transitive. Let r, s, t E 91a and suppose that r < s 
and s < t. 

1. Let a= T a1 ... ak. Then r is B r1 ... rp, sis C s1 ... sn, tis D h ... tm, 
either B -<r C or B = C and there exists j such that r 1 = s 1, ... , r 1 _ 1 = 
s1_ 1 , r1 < s1 and 1 ::; j ::; n, and either C -<r D or C = D and there 
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exists k such that s1 = t1, ... , sk-1 = tk-1, sk < tk and 1 :::; k :::; n. 
If B = C = D, by the induction hypothesis, there exists l such that 
r1 = t1, ... ,rz-1 = tz-1, rz < tz and 1:::; l:::; n. Hence r < t. If either 
B --<r C or C --<r D, then B --<r D. Thus r < t. 

2. Let a = (3 ---t I· Then trace(r) < trace(s) and trace(s) < trace(t). By 
examining each of the two cases in the definition of the induced lexico
graphic ordering and using the induction hypothesis, one can see that 
trace(r) < trace(t). Thus r < t. 

3. Let a= a1 X··· X an. Then r is (r1, ... ,rn), sis (s1, ... ,sn) tis 
(t1, ... ,tn), there exists j such that r1 = s1, ... ,rj-1 = Sj-1, Tj < Sj 
and 1 :::; j :::; n, and there exists k such that s1 = t1, ... , Sk-1 = tk-1, 
sk < tk and 1 :::; k :::; n. Then, by the induction hypothesis, there exists 
p such that r 1 = h, ... ,rp-1 = tp_1, rp < tp and 1:::; p:::; n. Thus r < t. 

Finally, I show that < is total. Let s, t E !Jla and suppose s =f. t. 

1. Let a= T a1 ... ak. Then sis C 81 ... sn and tis D t1 ... tm. If C =f. D, 
then either C --<r D or D --<r C, since --<r is total. Thus either s < t 
or t < s. Otherwise, C = D, in which case there exists j such that 
s1 = h, ... , Sj_ 1 = tj- 1, Sj =f. tj and 1 :::; j :::; n. By the induction 
hypothesis, either Sj < tj or tj < Sj. Thus either s <tort< s. 

2. Let a = (3 ---t I· Then trace ( s) =f. trace ( t). If trace ( s) is a (proper) prefix of 
trace ( t), then s < t. If trace ( t) is a (proper) prefix of trace ( s), then t < s. 
Otherwise, there exists an index at which trace ( s) and trace ( t) differ. 
Using the induction hypothesis, one can see that either trace(s) < trace(t) 
or trace(t) < trace(s). Thus either s <tort< s. 

3. Let a= a1 x · · · x an· Then sis (s1, ... , sn), tis (t1, ... , tn) and there 
exists j such that s1 = t1, ... , Sj-1 = tj_ 1, Sj =f. tj and 1 :::; j :::; n. By 
the induction hypothesis, either Sj < tj or tj < Sj. Thus either s < tor 
t<s. D 

3.5 Basic Terms 

The definition of the key concept of a basic term can now be given. 

Definition 3.5.1. The set of basic terms, 'B, is defined inductively as follows. 

1. If C is a data constructor of arity n and t1, ... , tn E 'B ( n E N) such that 
C t1 ... tn E £, then C t1 ... tn E 'B. 

2. Ift1, ... ,tn E 'B, s1, ... ,sn E 'B, t1 < ··· < tn, Si t/.1:>, for 1 :=; i :=; n 
( n E N), so E 1) and 

AX. if x = t1 then s1 else ... if x = tn then Sn else so E £, 

then 

Ax. if x = t1 then s1 else ... if x = tn then Sn else so E 'B. 
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3. If h, ... ,tn E ll3 (n EN) and (t1, ... , tn) E £,then (h, ... , tn) E lB. 

The basic terms from Part 1 of the definition are called basic structures, 
those from Part 2 are called basic abstractions, and those from Part 3 are 
called basic tuples. 

Note 3.5.1. A suitable universe for the construction of Definition 3.5.1 is the 
set 91 of all normal terms. Thus the restriction h < · · · < tn assumed on 
t 1 , ... , tn in Condition 2 is well-defined. 

The next result is the principle of induction on the structure of basic 
terms. 

Proposition 3.5.1. Let X be a subset of 1)3 satisfying the following condi
tions. 

1. If C is a data constructor of arity n and t 1 , ... , tn E X ( n E N) such that 
C t1 ... tn E £, then C h ... tn EX. 

2. If t1, ... , tn E X, s1, ... , Sn E X, t1 < · · · < tn, Si f/_ f>, for 1 ::; i ::; n 
( n E N), so E f> and 

>.x.if x = t1 then s1 else ... if x = tn then Sn else so E £, 

then 

>.x.if x = h then s1 else ... if x = tn then Sn else so EX. 

3. Ift1, ... , tn EX (n EN) and (t1, ... , tn) E £, then (t1, ... , tn) EX. 

Then X= lB. 

Proof. Since X satisfies Conditions 1 to 3 of the definition of a basic term, it 
follows that 1)3 <:;;; X. Thus X= lB. D 

Proposition 3.5.2. f> <:;;; 1)3 <:;;; 91. 

Proof. The first of these inclusions is an easy induction argument on the 
structure of default terms, while the second is a similar induction argument 
on the structure of basic terms. D 

Since 1)3 <:;;; 91, it follows from Proposition 3.2.3 that each basic term is 
closed. 

Proposition 3.5.3. If the set of data constructors is countable, then 1)3 is 
countable. 

Proof. By Proposition 3.2.8, 91 is countable. By Proposition 3.5.2, 1)3 <:;;; 91. 
0 

As for normal terms, the basic terms of a particular type can be gathered 
together. 
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Definition 3.5.2. For each 0: E ec, define 113a = { t E 113 I t has type more 
general than a}. 

The sets {113a}aE6c play an important role in knowledge representation. 
For example, for a particular machine learning application, the representation 
space of the individuals would be 113a, for some choice of a E ec. 

Example 3. 5.1. If the numerical data constructors are identified with the 
corresponding numbers, then 113Float is lF, 113Nat is N, and 113Int is .Z. Also 
113Nat--+n is (isomorphic to) the set of all finite subsets of N (assuming that 
.l is the default data constructor for D). Finally, 113 Nat x ... x Nat is Nn, where 
there are n components in the product type. 

Proposition 3.5.4. For each a E ec, 1'a ~ 113a ~ 91a. 

Proof. The result follows directly from the fact that 1) ~ 113 ~ 91. D 

Proposition 3.5.5. 

1. If C h ... tn E 113r a 1 ... <>k, where C has signature a1 --+ · · · --+ an --+ 

(T a1 ... ak) and ~ = {ado:1, ... , ak/ak}, then ti E l13a;e, for i = 
1, ... ,n. 

2. If >.x.if x = t1 then s1 else ... if x = tn then Sn else so E 113,a--+1 , then 
ti E 113,a and si E 1131 , fori = 1, ... , n, and so E i)T 

3. If (h, ... , tn) E 113<>tX···X<>nl then tiE 113a;, fori= 1, ... , n. 

Proof. Suppose first that C t1 ... tn E 113r a 1 ... ak. Then C t1 ... tn E 113 and so 
t1, ... , tn E 113 (since 113 is the smallest set of terms satisfying the conditions in 
the definition of a basic term). Furthermore, ti has type l!i, where ai~ = en, 
for some'"'(, for i = 1, ... , n. Thus ti E 113a;e, for i = 1, ... , n. 

Next suppose that >.x.if x = t1 then s1 else ... if x = tn then Sn else so E 

113,a--+T Hence >.x.if x = t1 then s1 else ... if x = tn then sn else so E 113 
and so ti E 113 and Si E 113, for i = 1, ... , n, and so E 1'. Now each ti has 
type more general than {3 and each si has type more general than 'Y· Hence 
ti E 113,a and si E 1131 , fori= 1, ... , n, and so E 1)1" 

Finally, suppose that (t1, ... , tn) E l13a 1 x···X<>n· Then (h, ... , tn) E 113 and 
so ti E 113, for i = 1, ... , n. Furthermore, each ti has type more general than 
O:i· Thus ti E l13a;, for i = 1, ... , n. D 

Proposition 3.5.6. Lett E 113,a--+1 andrE 113,a. Then V(t r) E 1131" 

Proof. Lett be >.x.if x = h then s1 else ... if x = tn then Sn else so. Then 
V(t r) is some si, where i = 0, ... , n. By Proposition 3.5.5, each si E 113,a. 
Hence V(t r) E 113,a. D 

Proposition 3.5. 7. If each default data constructor is full, then 113a # 0, 
for all a E 6c. 
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Proof. By Proposition 3.1.4, since each default data constructor is full, i:la -:f. 
0, for each a E 6c. But i:la ~ IBa, for each a E 6c. Hence the result. 0 

Next, a bottom-up characterisation of IB is provided. 

Definition 3.5.3. Define {IBm}mEN inductively as follows. 

IBo = { C I C is a nullary data constructor} 

~Bm+l = { C t1 ... tn E ,C I C is a data constructor of arity n, 
ti E IBm (1 :::; i :::; n), n E N} 

U {Ax. if x = tr then s1 else ... if x = tn then Sn else so E ,C I 

ti E IBm, Si E IBm, Si f{. i) (1 :::; i:::; n), 

t1 < · · · < tn, so E i:l, n EN} 

U {(tr, ... ,tn) E £I tiE IBm (1 :=:; i :=:; n),n EN}. 

Proposition 3.5.8. 

1. IBm ~ ~Bm+l, formE N. 
2. IB = UmEN IBm· 

Proof. 1. This part is an easy induction argument. 
2. First, I show that UmEN IBm ~ lB. To prove this, it suffices to show 

by induction that IBm ~ IB, for m E N. Clearly IBo ~ lB. Suppose next 
that IBm ~ lB. It then follows from the definitions of ~Bm+l and IB that 
~Bm+l s;; lB. 

Now I show that IB ~ UmEN IBm· For this, it suffices to show that 
UmEN IBm satisfies Conditions 1, 2 and 3 in the definition of IB (since IB is 
the smallest such set). Suppose that C is a data constructor, t1, ... , tn E 
UmEN IBm, and C t1 ... tn E ,C. Since the IBm are increasing, there ex
ists p E N such that t1, ... , tn E ~Bp· Hence C t1 ... tn E 1Bp+l and so 
C t1 ... tn E UmEN IBm. Similar arguments show that UmEN IBm satisfies 
Conditions 2 and 3. 0 

The next result shows that, for basic terms, the equivalence relation = 
reduces to the identity relation (up to a-equivalence, of course). 

Proposition 3.5.9. Lets, t E lB. Then s = t iff s = t. 

Proof. If s = t, then it is clear that s = t. Suppose now that s = t. By 
Proposition 3.3.3, there exists a E 6c such that s, t E IBa with three cases 
to consider. 

1. a= T a 1 ... ak, for some T, ar, ... , ak, and sis C s1 ... sn, tis C tr ... tn 
and si = ti, for i = 1, ... , n. By the induction hypothesis, si = ti, for 
i = 1, ... , n. Thus s = t. 
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2. o: = (3---+ '"'(,for some (3,"(, and, for all r E 23 13 , V(s r) = V(t r). Suppose 
that 
s is >..x. if x = t1 then s1 else ... if x = tn then sn else so, and 
tis :Ay.if y = u1 then V1 else ... if y = Um then Vm else so. 
Then V(s ti) = V(t ti), for i = 1, ... , n, and V(s Uj) = V(t Uj), for 
j = 1, ... , m. By the induction hypothesis, V(s ti) = V(t ti), for i = 
1, ... , n, and V(s uj) = V(t uj), for j = 1, ... , m. That is, V(t ti) = si, 
fori= 1, ... ,n, and V(s Uj) = Vj, for j = 1, ... ,m. It follows that 
{t1, ... ,tn} = {u1, ... ,um}- Since each of sand tis basic, one can see 
that s = t. 

3. o: = 0:1 X··· XO:n, for some 0:1, ... , O:n, and sis (s1, ... , sn), tis (t1, ... , tn) 
and si = ti, for i = 1, ... , n. By the induction hypothesis, si = ti, for 
i = 1, ... , n. Thus s = t. D 

Proposition 3.5.10. Lets, t E 23!3--+'Y' for some (3, "/ E 6c. Then s = t iff 
V(s u) = V(t u), for all u E 23!3. 

Proof. The result follows immediately from Propositions 3.3.3 and 3.5.9. D 

Definition 3.5.4. Let u E 23!3--+'Y' for some (3, "/ E 6c. The support of u, 
denoted supp(u), is the set {v E IB13 I V(u v) f:. :D}. 

Proposition 3.5.11. Let u E 23!3--+'Y' for some /3,"/ E 6c. Then supp(u) is 
a finite set. 

Proof. Let u be :Ax. if x = t1 then s1 else ... if x = tn then Sn else so. Now 
Proposition 3.5.9 shows that if s, t E 23, then s =tiffs= t. Thus V(u v) f:. :D 
iff v E { t1, ... , tn}- Hence supp( u) is finite. D 

The proof of Proposition 3.5.11 shows that if u is the term :Ax. if x = t 1 
then s1 else ... if x = tn then Sn else so, then supp(u) = {t1, ... , tn}· 

The next proposition justifies restricting attention to basic terms for 
knowledge representation purposes. 

Proposition 3.5.12. If s E 91c, for some o: E 6c, then there is a unique 
t E lEa such that s = t. 
Proof. Uniqueness follows immediately from Proposition 3.5.9, thus only exis
tence has to be shown. The proof of existence is by induction on the structure 
of s. There are three cases to consider. 

1. o: = T 0:1 ... O:k, for some T, 0:1, ... , O:k. Suppose that s is C s1 ... sn, 
where C has signature a1 ---+ · · • ---+ an ---+ (T a1 ... ak). Let ~ = 
{al/o:1, ... , ak/o:k}. By Proposition 3.2.5, si E IJt,.i~' fori= 1, ... , n. By 
the induction hypothesis, there exist t1, ... , tn E IB,.i~ such that si = ti, 
for i = 1, ... , n. Then C t1 ... tn E IBr "''···"'k and, by Proposition 3.3.1, 
S = C t1 ... tn· 
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2. a = (3----+ /, for some (3, r. Suppose that s is 

Ax. if x = h then s1 else ... if x = tn then Sn else sa. 

By Proposition 3.2.5, ti E 91,a and si E 91-y, for i = 1, ... , n. By the 
induction hypothesis, there exist t; E ~,a and s; E ~"Y such that ti = t; 
and si = s;, for i = 1, ... , n. Now let s' be 

AX. if x = t~ then s~ else . . . if x = t~ then s~ else s0 . 

By Proposition 3.3.3, s = s'. For any {i1 , ... , ip} (p ~ 2) such that 
i 1 < · · · < ip and t;, = · · · = t;p, drop from s' the components of the 
if-then-else containing x = t; 2 , ••• , x = t;p to obtain s" of the form 

Ax. if x = t~ then s~ else . . . if x = t'/n then s'/n else s0 . 

By Proposition 3.3.3, s = s". Also drop any components of the if-then
else in s" for which the value s;' is in ::D to obtain s"' of the form 

Ax. if x = t~' then s~' else ... if x = t%' then s%' else s0 . 

By Proposition 3.3.3, s = s"'. At this stage, all the t;" are pairwise 
distinct and all the s;" are not in ::D. Finally, let t~" ... t%" be the result 
of ordering the sequence t~' ... t%' according to the total order on 9113 
induced by the --<r. Let t be 

Ax. if x = t~" then s~" else . . . if x = t%" then s%" else s0 , 

the result of the corresponding reordering of the components of the if
then-else in s"'. Then t E ~/3--->-y and, by Proposition 3.3.3, s = t. 

3. a = a 1 x .. · x an, for some a 1 , ... , an. Suppose s is (s 1 , ... , sn)· By 
Proposition 3.2.5, si E 91a,, fori = 1, ... , n. By the induction hypothesis, 
there exist ti E ~ai such that si = ti, fori = 1, ... , n. Then (t1, ... , tn) E 
~a1 x .. ·xan and, by Proposition 3.3.3, s = (t1, ... , tn)· 0 

Proposition 3.5.12 justifies the next definition. 

Definition 3.5.5. Let s E 91o:, for some a E sc. The unique t E ~o: such 
that s = t is called the basic form of s. 

The next result provides an alternative characterisation of the equivalence 
relation =· 

Proposition 3.5.13. Lets, t E 91o:, for some a Esc. Then s = t iff s and 
t have the same basic form. 

Proof. Suppose that s = t. Let s' be the basic form of s and t' the basic form 
oft. Then, by definition, s = s' and t = t'. Since = is an equivalence relation, 
s' = t'. By Proposition 3.5.9, s' = t'. 

Conversely, suppose that s and t have the same basic form, say, r. Then 
s =rand t = r, and so s = t. 0 
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Based on the proof of Proposition 3.5.12, one can give an algorithm that 

computes the basic form of a normal term. This algorithm, for the function 

Reduce, is given in Fig. 3.1 below. 

function Reduce(s, { -<r }rer) returns the basic form of s; 

input: s, a normal term; 
{ -<r }rer, a set of total orders, one for each type constructor T; 

cases of 
C s1 . .. sn: 

for i = 1, ... , n do 
t; := Reduce(s;, { -<r her); 

return C t1 ... tn; 

Ax. if x = t1 then S1 else ... if x = tn then Sn else so: 

fori= 1, ... , n do 
t; := Reduce(t;, { -<r her); 
s; := Reduce(s;, { -<r her); 

s' := >.x. if x = t~ then s~ else ... if x = t~ then s~ else so; 
s" := s' modified by dropping occurrences of components in s' 

containing duplicate occurrences of some t;; 
s"' := s" modified by dropping occurrences of components in s" 

whose value is a default term; 
t := s"' modified by reordering components in s"' according to 

the total ordering induced by { -<r }rET; 
return t; 

(s1, ... ,sn): 

for i = 1, ... , n do 
t; := Reduce(s;,{-<r}TET); 

return (t1, ... , tn); 

Fig. 3.1. Algorithm for computing the basic form of a normal term 

Here is an example to show how this algorithm works. 

Example 3.5.2. Let s be the normal term 

>.x.if x = 3 then ..l else if x = 2 then T else if x = 1 then T 

else if x = 3 then T else ..l. 

Assume that the total order on the integers is the usual order. In the first 

step, each of 1, 2, 3, and T and ..l are replaced by their basic form. Since 

each of these is already a basic term, this step has no effect. Second, the 

component of the if-then-else containing the duplicated occurrence of x = 3 

is dropped to obtain 

>.x.if x = 3 then ..l else if x = 2 then T else if x = 1 then T else ..l. 
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Third, the component containing the occurrence x = 3 is dropped since the 
corresponding value is ..l to obtain 

>..x.if x = 2 then T else if x = 1 then T else ..l. 

Finally, the sequence 2 1 is ordered according to the total order and the 
components of the if-then-else are reordered accordingly to obtain 

>..x.if x = 1 then T else if x = 2 then T else ..l, 

which is the basic form of s. 

Example 3. 5. 3. As an example of the representation of individuals using basic 
terms, consider the problem of modelling a chemical molecule. The first issue 
is to choose a suitable type to represent a molecule. I use an undirected graph 
to model a molecule - an atom is a vertex in the graph and a bond is an 
edge. Having made this choice, suitable types are then set up for the atoms 
and bonds. For this, I first introduce the type Element, which is the type of 
the (relevant) chemical elements. 

Br,C, Cl,F,H,I,N,O,S: Element. 

This declaration declares the constants Br (bromine), C (carbon), and so on, 
to be constants of type Element. I also make the following type synonyms. 

AtomType = Nat 

Charge = Float 

Atom= Element x AtomType x Charge 

Bond= Nat. 

The expression 'AtomType =Nat', for example, simply states that the type 
AtomType is nothing other than Nat. The use of type synonyms greatly 
improves the readability of declarations. 

The type of an (undirected) graph is Graph v e:, where v is the type of 
information associated with the vertices and c is the type of information 
associated with the edges. Graph is defined as follows. 

Label= Nat 

Graph v e: = {Label x v} x { (Label --> Nat) x e:}. 

Here the multisets of type Label --> Nat are intended to all have cardinality 
2, that is, they are intended to be regarded as unordered pairs. (A multiset 
is a function mapping into the natural numbers for which the value of the 
function on some element is its multiplicity, that is, the number of times 
it occurs in the multiset.) Note that this definition corresponds closely to 
the mathematical definition of a graph: each vertex is labelled by a unique 



3.6 Metrics on Basic Terms 105 

natural number and each edge is uniquely labelled by the unordered pair of 
labels of the vertices that it connects. 

I now declare the type of a molecule to be an (undirected) graph whose 
vertices have type Atom and whose edges have type Bond. This leads to the 
following type synonym. 

Molecule = Graph Atom Bond. 

Here is an example molecule, called d1 , from the well-known Mutagenesis 
dataset. The notation (s, t) is used as a shorthand for the multiset that takes 
the value 1 on each of s and t, and is 0 elsewhere. Thus (s, t) is essentially 
an unordered pair. 

( { (1, (C, 22, -0.117)), (2, (C, 22, -0.117)), (3, (C, 22, -0.117)), 

(4, (C, 195, -0.087)), (5, (C, 195, 0.013)), (6, (C, 22, -0.117)), 

(7, (H, 3, 0.142)), (8, (H, 3, 0.143)), (9, (H, 3, 0.142)), 

(10, (H, 3, 0.142)), (11, (C, 27, -0.087)), (12, (C, 27, 0.013)), 

(13, ( C, 22, -0.117)), (14, (C, 22, -0.117)), (15, (H, 3, 0.143)), 

(16, (H, 3, 0.143)), (17, (C, 22, -0.117)), (18, (C, 22, -0.117)), 

(19, ( C, 22, -0.117)), (20, ( C, 22, -0.117)), (21, (H, 3, 0.142)), 

(22, (H, 3, 0.143)), (23, (H, 3, 0.142)), (24, (N, 38, 0.812)), 

(25, ( 0, 40, -0.388)), (26, (0, 40, -0.388))}, 

{((1,2),7), ((1,6),7), ((1,7),1),((2,3),7),((2,8),1), 

((3,4), 7),((3,9), 1),((4,5), 7), ((4,11), 7), ((5,6), 7), 

( (5, 14), 7), ( (6, 10), 1), ( (11, 12), 7), ( (11, 17), 7), 

( (12, 13), 7), ( (12, 20), 7), ( (13, 14), 7), ( (13, 15), 1), 

( (14, 16), 1), ( (17, 18), 7), ( (17, 21), 1), ( (18, 19), 7), 

((18,22),1),((19,20), 7),((19,24),1),((20,23),1), 

((24,25),2),((24,26),2)}). 

3.6 Metrics on Basic Terms 

For a number of reasons, it is important to have a metric defined on basic 
terms. For example, in instance-based learning, such a metric is needed to 
determine those terms that are 'nearby' some given term. Thus I give now 
the definition of a suitable function d from 23 x 23 into JR., where JR. denotes 
the set of real numbers. 

First, the definition of a metric space is recalled. 

Definition 3.6.1. A pseudometric space (X, d) is a (non-empty) set X and 
function d : X x X ----> JR. satisfying the following conditions. 
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1. d(x, y) :::: 0, for all x, y E :X. 
2. d(x,y) = d(y,x), for all x,y E :X. 
3. x = y implies d(x, y) = 0, for all x, y E :X. 
4. d(x, z) ::::; d(x, y) + d(y, z), for all x, y, z E :X. 

The function d is called a pseudometric 

Definition 3.6.2. A metric space is a pseudometric space (:X, d) such that d 
satisfies the property that d(x, y) = 0 implies x = y, for all x, y E :X. In this 
case, d is called a metric. 

The definition of the metric on IJ3 depends upon some given functions (}y, 

for T E '1', and 'P· The (}T are assumed to satisfy the following conditions. 

1. For each T E '1', (}T is a metric on the set of data constructors associated 
with T. 

2. If there is at least one data constructor of arity > 0 associated with T, 
then (}T is the discrete metric. 

For example, the type constructor List has two data constructors ~ (of arity 
> 0) and[], and so (}List([],~)= 1. In contrast, Nat has only nullary data con
structors and hence the second condition does not apply. The next example 
gives typical choices for (}T, for various T. 

Example 3. 6.1. For the type 1 , (} 1 could be the discrete metric. Similarly, 
for (}n. For the type Nat, one could use (}Nat(n, m) =In- mi. Similarly, for 
Int and Float. For a type constructor like Shape in Sect. 3.2, it is natural to 
employ the discrete metric on the set of data constructors {Circle, Rectangle}. 

The second function ip must be a non-decreasing function from the non
negative reals into the closed interval [0, 1] such that ip(O) = 0, 'P(x) > 0 if 
x > 0, and 'P(x + y) ::::; 'P(x) + ip(y), for each x andy. 

Example 3.6.2. Typical choices for ip could be ip(x) = I~x or 'P(x) = 
min{l, x}. 

Definition 3.6.3. The function d : IJ3 x IJ3 -> lR is defined inductively as 
follows. Let s, t E IJ3. 

1. If s, t E IJ3a, where a= T a1 ... ak, for some T, a1, ... , ak, then 

if C =/= D 

otherwise 

where s is C s1 ... Sn and t is D h ... tm. 
2. If s, t E IJ3a, where a= f3-> /,for some /3, /,then 

d(s, t) = d(V(s r), V(t r)). 
rEsupp(s)Usupp(t) 
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3. If s, t E 'Ba, where a= a1 X··· X an, for some a1, ... , an, then 

n 

d(s, t) = L d(s;, t;), 
i=l 

where sis (s1, ... , sn) and tis (h, ... , tn)· 
4. If there does not exist a E 6c such that s, t E 'Ba, then d(s, t) = 1. 

Definition 3.6.3 is an inductive definition that depends on the fact that 
113 x 113 is well-founded under the order -<2 given by the product of the sub
string order-< (Example A.1.1) on 113 with itself. Thus the principle of induc
tive construction for well-founded sets (Proposition A.1.4) can be applied. 
Note that the minimal elements of 113 under -< are the basic terms that do 
not have proper subterms, that is, the nullary data constructors. Thus the 
minimal elements of 113 x 113 under -<2 are tuples of the form (C, D), where 
C and D are nullary data constructors. The well-definedness of the function 
d depends upon Proposition A.1.4: d is defined directly on the minimal el
ements (that is, pairs of the form ( C, D), where C and D are nullary data 
constructors) and, for other pairs, is uniquely determined by the rules for 
each of the three kinds of basic terms and Part 4 when the types do not 
match. 

In Part 1 of the definition, if n = 0, then maxi=l, ... ,n ~.p(d(s;, t;)) = 0. The 
purpose of the function i.p is to scale the values of the d(s;, t;) so that they 
lie in the interval [0, 1]. Thus maxi=l, ... ,n ~.p(d(s;, t;)) ::::; 1. The factor of 1/2 
means that the greater the 'depth' to which s and t agree, the smaller will be 
their distance apart. So for lists, for example, the longer the prefix on which 
two lists agree, the smaller will be their distance apart. 

In Part 2 of the definition, for the particular case of sets, 
LrEsupp(s)usupp(t) d(V(s r), V(t r)) is the cardinality of the symmetric differ
ence of the sets sand t (assuming that Qn is the discrete metric.). 

It should be clear that the definition of d does not depend on the choice 
of a such that s, t E 'Ea. (There may be more than one such a.) What is 
important is only whether a has the form T a 1 ... ak, (3---+ /,or a 1 x · · · x an, 
and this is invariant. 

The definition given above for d is, of course, only one of a number of 
possibilities. For example, one could use instead the Euclidean form of the 
metric (with the square root of the sum of the squares) in Part 3 or a more 
specialised metric for lists in Part 1. For a particular instance-based learning 
application, such fine tuning would be almost certainly needed. These variant 
definitions for d are likely to share the following properties of d; in any case, 
the proofs of these properties for d show the way for proving similar properties 
for the variants. 

Example 3.6.3. Suppose that r!Int is the metric given by r!Int(n, m) = ln-ml, 
with a similar definition for {!Float. Then dint ( 42, 42) = 0, dint (21, 42) = 21 
and dFloat(42.1, 42.2) = 0.1. 
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Example 3.6.4. Suppose that {!List is the discrete metric. Let M be a nullary 
type constructor, A, B, C, D : M, and eM the discrete metric. Suppose that 
'P(x) = l~x· Lets be the list [A,B,C] and t the list [A,D]. (See Fig. 3.2.) 
Then 

d(s, t) = d([A, B, C], [A, D]) 
1 

= 2 max{ 'P(d(A, A)), 'P(d([B, C], [D]))} 

= ~'P(d([B, C], [D])) 

1 1 
= 2'P( 2 max{ 'P(d(B, D)), 'P(d([C], []))}) 

1 1 
= 2'P(2 max{'P(eM(B, D)), 'P({!List(U, []))}) 

1 1 
= 2'P( 2 max{ 'P(1), 'P(1)}) 

= ~'P( ~. ~) 
2 2 2 

1 
1 4 
2. 1 + l 

4 

1 

10 

~ u 

/\ /\ 
A ~ A U 

/\ /\ 
B U D [) 

/\ 
c 0 

[A,B,C] [A,D] 

Fig. 3.2. Two lists 

Example 3.6.5. Let BTree be a unary type constructor, and Null : BTree a 
and BNode: BTree a----> a----> BTree a----> BTree a be data constructors. Here 
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BTree a is the type of binary trees, Null represents the empty binary tree, 
and BNode is used to represent non-empty binary trees. Let {!BTree be the 
discrete metric. Suppose that M is a nullary type constructor, A, B, C, D: M, 
and {!M is the discrete metric. Suppose that <p(x) = l~x· Lets be 

BNode (BNode Null A Null) B (BNode Null C (BNode Null D Null)), 

a binary tree of type BTree M, and t be 

BNode (BNode Null A Null) B (BNode Null D Null). 

(See Fig. 3.3.) Then 

d(s, t) 
1 = 2 max{ <p(d(BNode Null A Null, BNode Null A Null)), <p(d(B, B)), 

<p(d(BNode Null C (BNode Null D Null), BNode Null D Null))} 
1 = 2<p(d(BNode Null C (BNode Null D Null), BNode Null D Null)) 

1 1 
= 2<p( 2 max{ <p(d(Null, Null)), <p(d(C, D)), 

<p(d(BNode Null D Null, Null))}) 
1 1 

= 2<p( 2 max{ <p({!BTree(Null, Null)), <p(QM(C, D)), 

1 1 = 2 <p( 2 max{ <p(1), <p(1)}) 

1 1 
= 2. <p(-4) 

1 
1 4 
2'1+.! 

4 

1 

10 

<p(f!BTree(BNode, Null))}) 

Notation 3.6.1. The basic abstraction >.x.if x = t 1 then T else ... if x = tn 
then T else l_ E ~,8-->!2 is a set whose elements have type more general than 
f3 and is denoted by {t1, ... , tn}· 

Example 3. 6. 6. Suppose that {!n is the discrete metric, M is a nullary type 
constructor, and A,B,C,D: M. If sis the set {A,B,C} E ~M-->n and tis 
the set {A, D} E ~M__,n, then d(s, t) = LrEsupp(s)usupp(t) d(V(s r), V(t r)) = 
1 + 1 + 1 = 3. 

Notation 3.6.2. The basic abstraction >.x.if x = h then m 1 else ... if x = 
tn then mn else 0 E ~,8-->Nat is a multiset whose elements have type more 
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EN ode 

~~~ 
BNode B BNode 

/1\ /1\ 
Null A Null Null C BNode 

II\ 
Null D Null 

BNode (BNode Null A Null) B (BNode Null C (BNode Null D Null)) 

EN ode 

~~~ 
BNode B BNode 

/1\ /1\ 
Null A Null Null D Null 

BNode (BNode Null A Null) B (BNode Null D Null) 

Fig. 3.3. Two binary trees 

general than (3 and is denoted by (h, ... , t 1 , ... , tn, ... , tn), where there are 
m; occurrences oft;, for i = 1, ... , n. (That is, the number of times an element 
appears in the expression is its multiplicity in the multiset.) Obviously, this 
notation is only useful for 'small' multisets. 

Example 3. 6. 7. Suppose that (!Nat is the metric given by (!Nat ( n, m) = In -
ml, M is a nullary type constructor, and A,B,C,D: M. Suppose that sis 
(A,A,B,C,C,C) E 'EM_,Nat and tis (B,C,C,D) E 'EM_,Nat· Thend(s,t) = 
LrEsupp(s)Usupp(t) d(V(s r), V(t r)) = 2 + 1 + 1 = 4. 

Proposition 3.6.1. Let d : '13 x '13 --+ lR be the function defined in Defini
tion 3.6.3. For each a E 6c, ('Ea,d) is a metric space. 

Proof. It has to be shown that d satisfies the conditions of Definition 3.6.2. 
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For each mEN, let P1 (m) be the property: 

For each a E 6c and s, t E !Ban !13m, it follows that d(s, t) :;::: 0. 

It is shown by induction that P1 (m) holds, for all mEN. The non-negativity 
of d on each !Ba follows immediately from this since, given s, t E !Ba, there 

exists an m such that s, t E !13m (because !13 = UmEN !13m and !13m~ !Bm+l, 
for all m E N, by Proposition 3.5.8). 

First it is shown that P1 (0) holds. In this case, s and t are nullary data 

constructors associated with the same type constructor T, say. By definition, 

d(s, t) = Qr(s, t) and the result follows because QT is non-negative. 
Now assume that P1 ( m) holds. It is proved that P1 ( m + 1) also holds. 

Thus suppose that a E 6c and s, t E !Ban !Bm+l· It has to be shown that 
d(s, t) :;::: 0. There are three cases to consider corresponding to a having the 

form T a 1 ... ak, f3 --+ "'(, or a1 x · · · x am. In each case, it is easy to see 
from the definition of d and the induction hypothesis that d(s, t) :;::: 0. This 

completes the proof that dis non-negative on each !Ba. 
For each mEN, let P2 (m) be the property: 

For each a E 6c and s, t E !Ban !13m, it follows that d(s, t) = d(t, s). 

It is shown by induction that P2 (m) holds, for all mEN. The symmetry of d 
on each !Ba follows immediately from this since, givens, t E !Ba, there exists 

an m such that s, t E !13m. 
First it is shown that P2 (0) holds. In this case, s and t are nullary data 

constructors associated with the same type constructor T, say. By definition, 

d(s, t) = Qr(s, t) and the result follows because Qr is symmetric. 
Now assume that P2 (m) holds. It is proved that P2 (m + 1) also holds. 

Thus suppose that a E 6c and s, t E !Ban !Bm+l· It has to be shown that 

d(s,t) = d(t,s). There are three cases to consider corresponding to a having 
the form T a1 ... ak, (3---+ "'(, or a1 x · · · x am. In each case, it is easy to see 
from the definition of d and the induction hypothesis that d(s, t) = d(t, s). 
This completes the proof that dis symmetric on each !Ba. 

For each mEN, let P3 (m) be the property: 

For each a E 6c and s, t E !Ban !13m, it follows that d(s, t) = 0 iff 

s = t. 

It is shown by induction that P3 (m) holds, for all mEN. The desired property 

of don each !Ba follows immediately from this since, given s, t E !Ba, there 

exists an m such that s, t E !13m-
First it is shown that P3 (0) holds. In this case, s and t are nullary data 

constructors associated with the same type constructor T, say. By definition, 

d(s, t) = Qr(s, t) and the result follows because Qr(s, t) = 0 iff s = t. 
Now assume that P3 (m) holds. It is proved that P3 (m + 1) also holds. 

Thus suppose that a E 6c and s, t E !Ban !Bm+l· It has to be shown that 

d(s, t) = 0 iff s = t. First, I show that s = t implies that d(s, t) = 0. In each 
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of the three cases, it is easy to see from the definition of d and the induction 
hypothesis that, if s = t, then d(s, t) = 0. 

Conversely, suppose that d(s, t) = 0. It has to be shown that s = t. As 
usual, there are three cases to consider. 

1. Let o: = T 0:1 ... o:k. Then sis C s1 ... Sn and tis C t1 ... tn, for some C. 
Ifn = 0, then s = t. Ifn > 0, then <p(d(si, ti)) = 0, fori= 1, ... ,n. Thus, 
by the properties of <p, d(si, ti) = 0, for i = 1, ... , n. By the induction 
hypothesis, Si = ti, for i = 1, ... , n. Thus s = t. 

2. Let o: = (3---> 'I· Then d(V(s r), V(t r)) = 0, for all r E supp(s) U supp(t). 
By the induction hypothesis, V(s r) = V(t r), for all r E supp(s) U 
supp(t). Hence V(s r) = V(t r), for all r E SE11. Thus s = t, by Proposi
tions 3.3.3 and 3.5.9. 

3. Let o: = 0:1 X··· XO:n. Then sis (s1, ... , sn), tis (t1, ... , tn) and d(si, ti) = 
0, for i = 1, ... , n. By the induction hypothesis, Si = ti, for i = 1, ... , n. 
Thus s = t. 

This completes the proof that d(s, t) = 0 iff s =ton each SEa. 
It only remains to prove the triangle inequality. For each mEN, let P4 (m) 

be the property: 

For each o: E 6c and r, s, t E SEa n SEm, it follows that d(r, t) ::::; 
d(r, s) + d(s, t). 

It is shown by induction that P4 (m) holds, for all m E N. The triangle 
inequality ford on each SEa follows immediately from this since, given r, s, t E 
SE,, there exists an m such that r, s, t E SErn. 

First it is shown that P4 (0) holds. In this case, r, sand tare nullary data 
constructors associated with the same type constructor T, say. By definition, 
d(r, t) = Qr(r, t), and so on, and the result follows because {}T satisfies the 
triangle inequality. 

Now assume that P4 (m) holds. It is proved that P4 (m + 1) also holds. 
Thus suppose that o: E 6c and r, s, t E SEan SEm+1· It has to be shown that 
d(r, t)::::; d(r, s) + d(s, t). There are three cases to consider. 

1. Let o: = T o:1 .. . o:k· Then r is B r 1 .. . rp, sis C s1 .. . sn, and tis 
D t1 ... tm· If there is no data constructor associated with T of ar
ity > 0, then p = n = m = 0 and the inequality holds because {}T 

is a metric. Otherwise, there is a data constructor of arity > 0 and 
{}T is the discrete metric. Suppose first that B, C, and D are not all 
the same. Thus at least one of d(r,s) or d(s,t) is 1, and the inequal
ity holds since d(r, t) ::::; 1. Now suppose that B = C = D. Then 
p = n = m. By the induction hypothesis, dh, ti) ::::; dh, si) + d(si, ti), 
fori= 1, ... , n. Hence maxi=1, ... ,n <p(d(ri, ti))::::; maxi=1, ... ,n <p(dh, si))+ 
maxi=1, ... ,n <p(d(si, ti)), by the properties of <p, and so d(r, t) ::::; d(r, s) + 
d(s, t). 
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2. Let a = f3 ---+ r· By the induction hypothesis, d(V(r b), V(t b)) <:; 
d(V(r b), V(s b))+ d(V(s b), V(t b)), for all bE ~/3· Also b tf. supp(s) U 

supp(t) implies d(V(s b), V(t b)) = d(s 0 , so) = 0, where so E 1)1· Put 

R = supp(r), S = supp(t) and T = supp(t). Then 

d(r, t) 

= L d(V(r b), V(t b)) 
bE RUT 

L d(V(r b), V(t b)) 
bERUSUT 

< L d(V(r b), V(s b))+ L d(V(s b), V(t b)) 
bERUSUT bERUSUT 

= L d(V(r b), V(s b))+ L d(V(s b), V(t b)) 
bERUS bESUT 

= d(r, s) + d(s, t). 

3. Let a= a1 x · · · x an. Then r is (r1, ... , rn), sis (s1, ... , sn), and tis 

(t1, ... , tn)· By the induction hypothesis, d(ri, ti) <:; d(ri, si) + d(si, ti), 

for i = 1, ... , n. Hence d(r, t) = 2:::~= 1 d(ri, ti) <::: 2:::~= 1 d(ri, si) + 
2:::~= 1 d(si, ti) = d(r, s) + d(s, t). D 

The function dis not generally a metric on the whole of~. 

Example 3.6.8. Suppose that {!Float is the metric given by {!Float(n, m) 

In - ml and that 0.0 is the default data constructor for Float. Let T1 and 

T2 be nullary type constructors, A1 : T1 and A2 : T2 be data constructors, 

r be >..x.if x = A1 then 0.1 else 0.0, s be >..x. 0.0, and t be >..x.if x = 
A2 then 0.1 else 0.0. Then r,s E ~T,~Float and d(r,s) = 0.1. Furthermore, 

s, t E ~r2 ~Float and d(s, t) = 0.1. But d(r, t) = 1, since there does not 

exist a E e;c such that r, t E ~a· Thus don ~ does not satisfy the triangle 

inequality, since d(r, t) 1:. d(r, s) + d(s, t). 
Of course, the definition that d(r, t) = 1 for r and t having incompatible 

types is arbitrary. But, whatever the choice of d(r, t) for such r and t, it must 

be > 0 and the argument of the example shows that the triangle equality still 

does not hold. (It may be necessary to replace the value 0.1 in r and t by a 

smaller quantity.) 

The metric d of Definition 3.6.3 may be unbounded. A standard technique 

provides a bounded metric, in fact, one whose values lie in [0, 1]. 

Proposition 3.6.2. Let 'P be a non-decreasing function from the non-negative 

reals into the closed interval [0, 1] such that cp(O) = 0, cp(x) > 0 if x > 0, and 

cp(x + y)::; cp(x) + cp(y), for each x andy. Let (X, d) be a metric space. Then 

the function d' defined by d'(x, y) = cp(d(x, y)), for all x, y EX, is a bounded 
metric on X. 
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Proof. Straightforward. D 

Part 2 of Definition 3.6.3 can be written more neatly. 

Proposition 3.6.3. If s, t E lEa, where a = (3 ~ "(, for some (3, "(, then 
d(s, t) = ErE'B13 d(V(s r), V(t r)). 

Proof. Let so E 1:>,. Then d(V(s r), V(t r)) = d(s0 , s0 ) = 0, for all 
r rf_ supp(s) U supp(t), by Proposition 3.6.1. It follows that d(s, t) 
ErEsupp(s)Usupp(t) d(V(s r), V(t r)) = ErE'Bi3 d(V(s r), V(t r)). D 

The generalised definition of cardinality for basic abstractions 1s now 
given. 

Definition 3.6.4. Let t be >.x.if x = t1 then s1 else ... if x = tn then Sn 
else s0 E IE ,a_,,. Then the cardinality oft, card(t), is defined by 

card(t) = L d(V(t r), s0 ). 

rEsupp(t) 

The function card measures how much a basic abstraction deviates from 
being constant. 

Example 3.6.9. Suppose that Qn is the discrete metric. 1ft is the set {A, B, C}, 
then card(t) = 3. That is, card(t) is the cardinality of the set t. 

Example 3.6.10. Suppose that {!Nat is the metric given by {!Nat(n, m) = 
In -mi. If tis the multiset (A, B, A, B, C), then card(t) = 2+2+ 1 = 5. That 
is, card(t) is the sum of the multiplicities of the elements of the multiset t. 

Proposition 3.6.4. Lett be >.x.if x = t1 then s1 else ... if x = tn then Sn 
else so E IE ,a_,,. Then card(t) = ErE'B 13 d(V(t r), so)= d(t, >.x.so). 

Proof. For the first equality, note that d(V(t r), s0 ) = d(s0 , s0 ) = 0, for all 
r rf_ supp(t). For the second, note that V(>.x.s0 r) = s0 , for all r E IB,a, and 
supp(>.x.so) = {}. D 

Typically, metric-based learning methods are generic in the sense that 
they only require that it be possible to define the distance between pairs of 
individuals and are independent of the nature of the individuals. Thus the 
results of this section can be applied directly to a variety of metric-based 
learning methods for structured data by simply using the metrics developed 
here in these algorithms. 
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3.7 Kernels on Basic Terms 

Learning methods that rely on kernels are becoming increasingly widely used. 
This section provides kernels for basic terms that opens up the way for kernel
based learning methods to be applied to individuals that can be represented 
by basic terms. 

The starting point is the definition of a kernel. 

Definition 3.7.1. Let X be a set. A function k : X x X --> ~ is positive 
definite on X if, for all n E z+' Xl' ... 'Xn E X, and Cl' ... 'Cn E ~. it follows 
that Li,jE{l, ... ,n} Ci Cj k(xi, Xj) ?: 0. 

Note that the Xi are not necessarily distinct. If the condition that the Xi 

must be distinct is added to the definition above, it is easy to see that the 
two definitions are equivalent. Note also that if k is positive definite, then 
k(x,x)?: 0, for all x EX. 

Definition 3.7.2. Let X be a set. A function k: X x X-->~ is a kernel if it 
is symmetric and positive definite. 

Of course, symmetric means k(x, y) = k(y, x), for all x, y EX. 
One can think of a kernel as being a generalised inner product, and there

fore a 'similarity' measure, between individuals. Many learning algorithms, 
for example, support vector machines, depend only on being able to compute 
the inner product (also called dot product or scalar product) between in
dividuals. Originally, individuals were actually represented by vectors in ~m 
and the usual inner product in ~m was used in these algorithms. However, 
recent versions of these algorithms substitute a kernel for the inner product. 

The justification for this replacement is as follows. Let X be a set and 
k a kernel on X. Then there exists a Hilbert space J{ and a mapping iP : 
X--> J{ such that k(x, y) = (<P(x), <P(y)), for all x, y E X, where (-, ·) is the 
inner product in J-C. (See Proposition 3.7.2 below.) The mapping <I> may be 
non-linear - in fact, unless X is a linear space, one cannot even ask if <I> is 
linear. This means that any set, whether a linear space or not, that admits a 
kernel can be embedded into a linear space. Consequently, one can then 'add' 
elements of the set or 'multiply' them by a scalar. (Of course, the addition 
and scalar multiplication is taking place on the images of the elements under 
<I>.) 

From a learning point of view, the space 9-C is a feature space for the 
individuals and <I> maps each individual into its vector of features. One of 
the attractive aspects of the kernel approach is that it is not necessary to 
calculate <I> or 9-C - they are entirely implicit. The learning algorithms only 
ever need to be able to calculate k(x, x'), for any x and x' in X. 

In preparation for the definition of the kernel on s:B, here are kernels on 
some basic data types. 
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Example 3. 7.1. For numerical types, such as Nat, Int, and Float, the product 
function is a kernel, called the product kernel. 

For sets of data constructors without any other structure, the following 
kernel is generally used. 

Definition 3. 7.3. Let X be a set. The discrete kernel 6 X x X ---+ ~ is 
defined by 

6(x,y) = { ~ if X= y 

otherwise. 

Clearly 6 is a kernel, as 

i,jE{l, ... ,n} iE{l, ... ,n} 

Example 3. 7.2. For the data constructors ~ and [] associated with the type 
constructor List, the discrete kernel 6 is given by 6(~, ~) = 1, 6(~, []) = 0, 
6([], ~) = 0, and 6([], []) = 1. 

Example 3. 7.3. Let X be a set and f: X---+~ any real-valued function. Then 
k: X x X---+~ defined by k(x,y) = f(x)f(y) is a kernel. 

Example 3.7.4. Let k: ~n---+ ~be defined by k(x,y) = exp(-llx- Yll 2 /u2 ), 

where 11·11 is the Euclidean norm on ~n and O" > 0. Then k is a kernel, called 
the Gaussian kernel. 

Next the kernel on \)3 is defined. The following definition of a kernel on 
basic terms assumes the existence of kernels on the various sets of data con
structors. More precisely, it is assumed that there are functions Koy, forTE 'I, 
satisfying the following conditions. 

1. For each type constructor T E 'I, Koy is assumed to be a kernel on the set 
of data constructors associated with T. 

2. If there is at least one data constructor of arity > 0 associated with T, 
then Koy is the discrete kernel. 

Definition 3. 7.4. The function k \)3 x \)3 ---+ ~ is defined inductively as 
follows. Let s, t E \l3. 

1. If s, t E \l3c, where a= T a1 ... ak, for some T, a1, ... , ak, then 

{
Kor(C, D) 

k(s,t) = n 
Kor(C, C)+~ k(si, ti) 

if C ;;t D 

otherwise, 

where sis C s1 ... Sn and tis D h ... tm. 
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2. If s, t E 113a, where a = j3---+ '/, for some (3, '/, then 

k(s,t) = k(V(s u), V(t u)). 
uEsupp(s)nsupp(t) 

3. If s, t E 113c, where a= a1 x · · · x an, for some a1, ... , an, then 

n 

k(s,t) = Lk(s;,t;), 
i=l 

where sis (s1, ... , sn) and tis (t1, ... , tn)· 
4. If there does not exist a E e;c such that s, t E 113a, then k(s, t) = 0. 

The well-definedness of the function k depends upon Proposition A.1.4: k 
is defined directly on the minimal elements (that is, pairs of the form (C,D), 
where C and D are nullary data constructors) and, for other pairs, is uniquely 
determined by the rules for each of the three kinds of basic terms and Part 
4 when the types do not match. 

The definition for k in Definition 3.7.4 is, of course, only one of many 
possibilities, but it at least establishes the general form of kernels on 113. See 
the exercises at the end of the chapter for some of the other possibilities. 
Furthermore, the proof that k is a kernel in Proposition 3. 7.1 below provides 
the general approach to proving these alternative functions are also kernels. 

It should be clear that the definition of k does not depend on the choice 
of a such that s, t E 113a. (There may be more than one such a.) What is 
important is only whether a has the form T a 1 ... ak, j3---+ '/,or a1 x · · · x an, 
and this is invariant. 

Nate 3. 1.1. There are several special cases of the preceding definition that 
are of interest. First, if a is j3 ---+ !? and ..l is the default data constructor for 
fl, then the abstractions of Part 2 of the definition are, of course, finite sets. 
Let "'n be the discrete kernel. Then 

k(s, t) = lsupp(s) n supp(t)l, 

since k(V(s u), (V(t u)) = "'n(T, T) = 1, for u E supp(s)nsupp(t). (IAI is the 
cardinality of the set A.) If sort is >..x . ..l, then k(s, t) = 0. More generally, if 
supp(s) n supp(t) = 0, then k(s, t) = 0. 

Let a be Float x · · · x Float, where there are n components in the product. 
Denote this type by Floatn. Let "'Float be the product kernel. Then the kernel 
in Part 3 for 113 Floatn is simply the usual inner product on lFn. 

Several examples illustrating how to compute the kernel on individuals of 
certain types are now given. 

Example 3. 1.5. Suppose that liList is the discrete kernel. Let M be a nullary 
type constructor and A, B, C, D: M. Suppose that "'M is the discrete kernel. 
Let s be the list [A, B, C] and t the list [A, D]. (See Fig. 3.2.) Then 
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k(s, t) = h:£ist(~, ~) + k(A, A)+ k([B, C], [D]) 

= 1 + h:M(A, A)+ h:List(~, ~) + k(B, D)+ k([C], []) 

= 1 + 1 + 1 + h:M(B, D)+ h:List(~, []) 

=3+0+0 

=3. 

Example 3. 7.6. Let BTree be a unary type constructor, and Null: BTree a 
and BNode : BTree a ---> a ---. BTree a ---> BTree a be data constructors. Sup
pose that fi:BTree is the discrete kernel. Let M be a nullary type constructor 
and A, B, C, D: M. Suppose that fi:M is the discrete kernel. Let s be 

BNode (BNode Null A Null) B (BNode Null C (BNode Null D Null)), 

a binary tree of type BTree M, and t be 

BNode (BNode Null A Null) B (BNode Null D Null). 

(See Fig. 3.3.) Then 

k(s, t) = fi:BTree(BNode, BNode) 

+ k(BNode Null A Null, BNode Null A Null)+ k(B, B) 
+ k(BNode Null C (BNode Null D Null), BNode Null D Null) 

= 1 + fi:BTree(BNode, BNode) + k(Null, Null)+ k(A, A) 

+ k(Null, Null)+ h:M(B, B)+ fi:BTree(BNode, BNode) 

+ k(Null, Null)+ k(C, D)+ k(BNode Null D Null, Null) 

= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 0 + fi:BTree(BNode, Null) 

= 8. 

Example 3. 7. 7. Let M be a nullary type constructor and A, B, C, D : M. 
Suppose that h:f2 is the discrete kernel. If s is the set {A, B, C} E Sl3 M _,f2 

and tis the set {A, C, D} E S!)M_,f2, then 

k(s, t) = k(V(s A), V(t A))+ k(V(s C), V(t C)) 

= ti:n(T, T) + ti:n(T, T) 

=1+1 

= 2. 

Example 3. 7.8. Let M be a nullary type constructor and A, B, C, D : M. 
Suppose that h:Nat is the product kernel. If s is (A, A, B, C, C, C) E Sl3 M -+Nat 
and tis (B,B,C,C,D) E SBM---+Nat, then 

k(s, t) = k(V(s B), V(t B))+ k(V(s C), V(t C)) 

= h:Nat(l, 2) + h:Nat(3, 2) 
=lx2+3x2 

=8. 
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Proposition 3. 7 .1. Let k : ~ x ~ ---t JR. be the function defined in Defini
tion 3. 7.4. Then k is a kernel on~,, for each a: E ec. 
Proof. First the symmetry of k on each~"' is established. For each mEN, 
let P 1 ( m) be the property: 

For each a: E ec and s, t E ~"' n ~m, it follows that k(s, t) = k(t, s). 

It is shown by induction that P1 (m) holds, for all mEN. The symmetry of k 
on each~"' follows immediately from this since, givens, t E ~"'' there exists 
an m such that s, t E ~m (because~= UmEN ~m and ~m ~ ~m+l, for all 
mEN, by Proposition 3.5.8). 

First it is shown that P1 (0) holds. In this case, s and t are nullary data 
constructors associated with the same type constructor T, say. By definition, 
k(s, t) = "'r(s, t) and the result follows because "'T is symmetric. 

Now assume that P 1 (m) holds. It is proved that P 1 (m + 1) also holds. 
Thus suppose that a: E ec and s, t E ~"' n ~m+l· It has to be shown that 
k(s, t) = k(t, s). There are three cases to consider corresponding to a: having 
the form T a:1 ... a:k, f3 ---t 1, or a:1 x · · · x O:m. In each case, it is easy to see 
from the definition of k and the induction hypothesis that k(s, t) = k(t, s). 
This completes the proof that k is symmetric on each~<>-

For the remaining part of the proof, for each m E N, let P2 ( m) be the 
property: 

For each n E z+,a: E 6c, h, ... ,tn E ~"' n ~m, and c1, ... ,en E JR., 
it follows that Li,jE{1, ... ,n} Ci Cj k(ti, tj) 2:: 0. 

It is shown by induction that P2 (m) holds, for all m E N. The remaining 
condition for positive definiteness follows immediately from this since, given 
t1, ... , tn E ~"''there exists an m such that h, ... , tn E ~m-

First it is shown that P2 (0) holds. In this case, each ti is a nullary data 
constructor associated with the same type constructor T, say. By definition, 
k(ti, tj) = "'r(ti, tj), for each i and j, and the result follows since "'T is 
assumed to be positive definite. 

Now assume that P2 ( m) holds. It is proved that P2 ( m+ 1) also holds. Thus 
suppose that n E z+, a: E 6c, t1, ... , tn E ~"' n ~m+1, and c1, ... , Cn E JR.. It 
has to be shown that Li,jE{1, ... ,n} ci Cj k(ti, tj) 2:: 0. There are three cases to 
consider. 

1. Let a: = T a:1 ... a:k. Suppose that ti = Ci t~ 1 ) ... t~mi), where mi 2:: 0, 
for i = 1' ... ' n. Let e = { ci I i = 1' ... ' n}. Then 
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L C; Cj k(t;, tj) 
i,jE{l, ... ,n} 

L c; Cj t£r(C;, Cj) 
i,jE{l, ... ,n} 

+ 
i,jE{l, ... ,n} 

G,=G1 
lE{l, .. , arity( Gi)} 

Now Li,jE{l, ... ,n} c; Cj t£r(C;,Cj) ~ 0, using the fact that "'Tis a kernel 
on the set of data constructors associated with T. Also 

i,jE{l, ... ,n} 
G,=G1 

lE { 1, ... ,arity( G,)} 

=:2.:.: L L C;Cjk(tfl,tY)) 
GEe i,jE{l, ... ,n} lE{l, ... ,arity(G)} 

Gi=G1=G 

=:2.:.: 
GEe lE{l, ... ,arity(G)} i,jE{l, ... ,n} 

G,=G1=G 

~ 0, 

by the induction hypothesis. 
2. Let a = (3 __, ry. Then 

L c; Cj k(ti, tj) 
i,jE{l, ... ,n} 

L ci Cj L k(V(ti u), V(tj u)) 
i,jE{l, ... ,n} uEsupp(t,)nsupp(tj) 

L L c; Cj k(V(t; u), V(tj u)) 
i,jE{l, ... ,n} uEsupp(t,)nsupp(tj) 

L L c~,u c),u k(V(t; u), V(tj u)) 
i,jE{l, ... ,n} uE'B13 

= L L c~,u c),u k(V(t; u), V(tj u)) 
uE'B13 i,jE{l, ... ,n} 

by the induction hypothesis, where 

u E supp(t;) 

u tf_ supp(t;). 
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S h ( (1) (m)) c · l 3. Let a= a 1 x · · · x am· uppose t at ti = ti , ... , ti , 10r z = , ... , n. 
Then 

L Ci Cj k(ti, tj) 
i,jE{1, ... ,n} 

m 

L Ci Cj(Lk(til),tY))) 
i,jE{1, ... ,n} 1=1 

m 

=2: 
1=1 i,jE{1, ... ,n} 

:::::0, 

by the induction hypothesis. 0 

Attention is now focussed on the general properties of kernels. Earlier I 
mentioned that sets that admit a kernel can be embedded in a Hilbert space. 
Here is the relevant result. 

Proposition 3. 7.2. Let k : X x X---> lR be a kernel on X. Then there exists a 
Hilbert space J( and a function <J> : X ---> J( such that k( x, y) = ( <J>( x), <J>(y)), 
for all x, y E X, where ( ·, ·) is the inner product in JC. 

Proof. In outline, the proof proceeds as follows. Define <J> : X ---> JRX by 
<J>(x) = k(-,x), for each x E X. Let X c JRX be the space of all linear 
combinations of functions of the form k(·, x), for some x. An inner product 
(-,·)on X is defined as follows: iff= 2::7= 1 aik(·, xi) and g = 2::';= 1 {Jjk(-, xj), 
then 

n m 

(!,g)= LLaif3jk(xi,xj). 
i=1 j=1 

Note that, since k is positive definite, (!,f) = L~j=1 aiajk(xi, Xj) ::::: 0. One 
can show that k(x, y) = (<J>(x), <J>(y)), for all x, y EX. The Hilbert space J( is 
the completion of X. 0 

The function <J> in Proposition 3.7.2 is called the associated embedding for 
k. Also the Hilbert space J( is called the associated Hilbert space for k. 

Conversely, if <J> is a mapping from X into some Hilbert space J( (over the 
reals), then it is easy to define a kernel on X using <J>. 

Proposition 3. 7.3. Let <J> : X ---> J( be a function from a set X into 
a Hilbert space J( (over the reals). Then k : X x X ---> lR defined by 
k(x, y) = (<J>(x), <J>(y)), for all x, y EX, is a kernel on X. 
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Proof. Let x, y EX. Then k(x, y) = (<P(x), <P(y)) = (<P(y), <P(x)) = k(y, x), by 
the symmetry of(·,·). Thus k is symmetric. 

Let n E z+,xl,···,Xn EX, and cl,···,Cn E JR. Then 

L Ci Cj k(xi, Xj) 
i,jE{l, ... ,n} 

= / L ci<P(xi), L CjP(xJ)) 
\E{l, ... ,n} jE{l, ... ,n} 

2 

L ci<P(xi) 
iE{l, ... ,n} 

2: 0. 

Thus k is positive definite. 0 

It follows from Propositions 3.7.2 and 3.7.3 that a function k: X x X---+ lR 
is a kernel iff there exists a function <P : X ---+ JC, where JC is a Hilbert space, 
such that k(x,y) = (<P(x),<P(y)), for all x,y EX. 

It is of considerable interest to know when <P is injective. For kernel
based learning methods this is important since, if <P were not injective, there 
would be no way of assigning different classes, for example, to two distinct 
individuals sand t for which <P(s) = <P(t). 

Definition 3. 7.5. A kernel k : X x X ---+ lR is separating if x =f. y implies 
k(·, x) =f. k(-, y), for all x, y EX. 

In other words, k is separating if x =f. y implies there exists z E X such 
that k(z,x) =f. k(z,y), for all x,y EX. 

Example 3. 7. 9. The discrete kernel J is separating: if x =f. y, then J ( z, x) =f. 
J(z, y), for z = x, say. 

The product kernel is also separating: just take z = 1. 

Proposition 3. 7.4. Let k : X x X ---+ lR be a kernel and <P the associated 
embedding. Then the following are equivalent. 

1. k is separating. 
2. <P is injective. 
3. x =f. y implies k(x,x)- 2k(x,y) + k(y,y) =f. 0, for all x,y EX. 

Proof. By the proof of Proposition 3.7.2, <Pis defined by <P(x) = k(-,x), for 
x E X. Thus it is clear that k is separating iff <P is injective. 

By Proposition 3.7.2, k(x, y) = (<P(x), <P(y)), for all x, y E X. Hence 

k(x, x)- 2k(x, y) + k(y, y) 

(<P(x), <P(x)) - 2(<P(x), <P(y)) + (<P(y), <P(y)) 

(<P(x)- <P(y), <P(x)- <P(y)). 
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Thus <Pis injective iff x-=/= y implies k(x,x)- 2k(x,y) + k(y,y)-=/= 0, for all 
x,y EX. D 

The next task is to show that, under some natural conditions, the kernel 
k on the ~Ba given in Definition 3.7.4 is separating. 

Definition 3. 7.6. The kernel Kr on the set of data constructors associated 
with a type constructor T is default-consistent if Kr( C, C) > 0, for each 
non-default data constructor C associated with T. 

Example 3. 7.1 0. Suppose that 0 is the default data constructor for the 
floating-point numbers. Then the product kernel and the Gaussian kernel 
on the floating-point numbers are both default-consistent. The discrete ker
nel on the set of data constructors associated with some type constructor is 
default-consistent, whatever the choice of default data constructor. 

Proposition 3. 7.5. Suppose, for each type constructor T, the kernel KT on 
the set of data constructors associated with T is default-consistent. Let k be 
the kernel of Definition 3. 1.4. Then, for each o: E e;c and s E ~Ba, s tj. ~ 
implies k(s, s) > 0. 

Proof. For each mEN, let P(m) be the property: 

For each o: E e;c and s E ~Ban IBm, s tj. ~implies k(s, s) > 0. 

It is shown by induction that P(m) holds, for all mEN. The fact that k has 
the required property follows immediately since, given s E ~Ba, there exists 
an m such that s E IBm. 

First I show that P(O) holds. Let o: E e;c and s E ~Ban IB 0 , where s tj. ~
Thus s is a non-default, nullary data constructor associated with some type 
constructor T, where o: has the form T o:1 ... o:k, for some o:1, ... , o:k and 
k E N. Since KT is default-consistent, k(s, s) = Kr(s, s) > 0. Thus P(O) is 
proved. 

Now assume that P(m) holds. I prove that P(m + 1) also holds. There 
are three cases to consider. 

1. o: = T o:1 ... o:k. Suppose that s E ~Ban ~Bm+l, where s tj. ~- Let s be 
C s1 ... sn, where C has the signature a 1 _, · · · -> an _, (T a 1 ... ak) and 
~ = {a I/ o:1, ... , an/ o:n}· Then k(s, s) = Kr( C, C)+ 2:~= 1 k(si, si)· Since 
s tj. ~'either Cis a non-default data constructor or some s1 tj. ~-Suppose 
first that Cis not a default data constructor. Then Kr( C, C) > 0, since "'T 

is default-consistent, and each k(si, si) ;::: 0. Thus k(s, s) > 0. Suppose 
next that Sj tj. ~- Now Sj E IB,.j~ n IBm, by Proposition 3.5.5. Thus 
k(s1, sj) > 0, by the induction hypothesis. Hence k(s, s) > 0. 

2. o: = (3 _, r. Suppose that s E 1Ban1Bm+1 , where s tj. ~-Then there exists 
u E 1Bf3 such that V(s u) E IB, n~Bm, by Proposition 3.5.6, and V(s u) tj. 
~' since s tj. ~- By the induction hypothesis, k(V(s u), V(s u)) > 0. It 
follows that k(s, s) > 0. 
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3. 0: = 0:1 X ... X O:n. Suppose that s E 23a n 23m+1, where sis (s1, ... 'sn) 
and s tf. :D. Since s tf. :D, there exists some j such that Sj tf. :D and, by 
Proposition 3.5.5, Sj E 23aj n 23m. Thus, by the induction hypothesis, 
k(sj, sj) > 0. It follows that k(s, s) > 0. D 

Definition 3. 7. 7. The kernel Koy on the set of data constructors associated 
with a type constructor T is constructor-separating if, for all nullary data con
structors C and D associated with T such that C =/= D, there exists a nullary 

data constructor E associated with T such that Kor(E, C) =/= Kor(E, D). 

Example 3. 7.11. The product kernel and the Gaussian kernel on the floating
point numbers are both constructor-separating. The discrete kernel on the 
set of data constructors associated with some type constructor is constructor

separating. 

Proposition 3. 7.6. Suppose, for each type constructor T, the kernel ""T 

on the set of data constructors associated with T is default-consistent and 
constructor-separating. Let k : 23 x 23 --+ lR be the function defined in Defini
tion 3. 7.4. Then k is separating on 23 0 , for each o: E sc. 

Proof. For each mEN, let P(m) be the property: 

For each o: E sc and s, t E 23a n 23m such that s =/= t, there exists 
r E 23a n 23m such that k(r, s) =/= k(r, t). 

It is shown by induction that P(m) holds, for all m E N. The fact that k 
is separating on each 23a follows immediately since, given s, t E 23 0 , there 
exists an m such that s, t E 23m. 

First I show that P(O) holds. Let o: E sc and s, t E 23a n 23 0 such that 
s =/= t. Thus s and t are nullary data constructors associated with some 
type constructor T and o: has the form T o:1 ... O:k, for some 0:1, ... , O:k and 
k E N. Since Koy is constructor-separating, there is a nullary data constructor 
r associated with T such that Kor(r, s) =/= Kor(r, t). Thus r E 23a n 230 and 
k(r, s) =/= k(r, t). Thus P(O) is proved. 

Now assume that P(m) holds. I prove that P(m + 1) also holds. There 

are three cases to consider. 

1. o: = T o:1 ... o:k. Suppose that s, t E 23a n 23m+1, where s =/= t. Let s be 
C s1 ... Sn and t beD h ... tm· There are two cases to consider. 
Suppose first that C =/= D. If all the data constructors associated with T 
are nullary, then there is a nullary data constructor E associated with T 
such that Kor(E, C) =/= Kor(E, D), since Koy is constructor-separating. Thus 

sis C, tis D, k(E, s) =/= k(E, t), and E E 23a n 23m+1. Otherwise, there is 
a data constructor of arity > 0 and thus Kor is the discrete kernel. Then 

k(s, s) = Kor(C, C)+ 2::::7=1 k(si, si) 2 1, while k(s, t) = Kor(C, D) = 0. 

Thus k(s, s) =/= k(s, t). 
Suppose now that C = D. Thus s is C s1 ... Sn and t is C h ... tn. 
Let C have signature a 1 --+ · · · --+ an --+ (T a1 ... ak) and ~ = 
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{ai/a1, ... ,an/an}· If k(s,t) -j. k(t,t), then P(m + 1) is established. 
Thus it can be assumed that k(s, t) = k(t, t). Since s -j. t, there 
exists j E {1, ... , n} such that Sj -j. tj. Furthermore, by Proposi
tion 3.5.5, Sj, tj E ~Bajl;· Now k is a kernel on ~Bajl; n IBm, by Propo
sition 3.7.1, and is separating on this set, by the induction hypothesis. 
Thus k(sj, sj)- 2k(s1, tj) + k(tj, tj) -j. 0, by Proposition 3.7.4, and so 
k(sj, Sj)- k(sj, tj) -1- k(sj, tj)- k(tj, tj)· Now define T E ~Ban 1Bm+1 by 
r = C t 1 ... tj_ 1 Sj tj+1 ... tn. Then k(s, r) = k(s, t)- k(sj, tj) + k(sj, Sj) 
and k(t, r) = k(t, t)- k(tj, t1) + k(tj, s1). Hence k(s, r) -j. k(t, r). 

2. a= (3--+ r· Suppose that s, t E ~Ban 1Bm+1, where s -j. t. Since s -j. t, 
there exists u E IB,a such that V(s u) -j. V(t u), by Proposition 3.5.10. 
There are three cases to consider. 
Suppose that u E supp(s) n supp(t). If k(s, t) -j. k(t, t), then P(m + 1) is 
established. Thus it can be assumed that k(s, t) = k(t, t). Denote V(s u) 
by Su and V(t u) by tu. By Proposition 3.5.6, Su, tu E IB-yn~Bm. Now k is 
a kernel on IB-y n IBm, by Proposition 3.7.1, and is separating on this set, 
by the induction hypothesis. Thus k(su, su)-2k(su, tu)+k(tu, tu) -j. 0, by 
Proposition 3.7.4, and so k(su, Su)- k(su, tu) -j. k(su, tu)- k(tu, tu). De
finer E ~Ban~Bm+l to be identical tot except that V(r u) = V(s u). Then 
k(s, r) = k(s, t) - k(su, tu) + k(su, su) and k(t, r) = k(t, t) - k(tu, tu) + 
k(tu, su)· Hence k(s, r) -j. k(t, r). 
Suppose that u E supp(s), but u ~ supp(t). If k(s, t) -j. k(t, t), then 
P(m + 1) is established. Thus it can be assumed that k(s, t) = k(t, t). 
Now V(s u) ~ fl and so, by Proposition 3.7.5, k(V(s u), V(s u)) > 0. 
Definer E ~Ban 1Bm+1 to be identical tot except that V(r u) = V(s u). 
Then k(t, r) = k(t, t), since supp(t) C supp(r), and k(s, r) -j. k(s, t), since 
k(V(s u), V(s u)) > 0. Hence k(s, r) -j. k(t, r). 
Suppose that u E supp(t), but u ~ supp(s). If k(s, s) -j. k(s, t), then 
P(m + 1) is established. Thus it can be assumed that k(s, s) = k(s, t). 
This case now proceeds analogously to the preceding one with s and t 
switched. 

3. a= a1 X ... X an. Suppose that s,t E ~Ban 1Bm+1, where s -1- t. Let 
s be (s1, ... , sn) and t be (t1, ... , tn)· If k(s, t) -j. k(t, t), then P(m + 
1) is established. Thus it can be assumed that k(s, t) = k(t, t). Now, 
since s -j. t, there exists j E { 1, ... , n} such that s j -j. t j. Furthermore, 
by Proposition 3.5.5, Sj, tj E ~Baj n IBm· Now k is a kernel on ~Baj n 

· IBm, by Proposition 3.7.1, and is separating on this set, by the induction 
hypothesis. Thus k(sj, sj) -2k(sj, tj)+k(tj, tj) -j. 0, by Proposition 3.7.4, 
and so k(sj, Sj)- k(sj, tj) -1- k(sj, tj)- k(tj, tj)· Define T E ~Ban 1Bm+1 
by r = (t1, ... , tj-1, Sj, tJ+1, ... , tn)· Then k(s, r) = k(s, t)- k(sj, tj) + 
k(s1, s1) and k(t, r) = k(t, t)- k(tj, tj) +k(tj, s1). Hence k(s, r) -j. k(t, r). 

0 

The condition in Proposition 3.7.6 that each ""T be constructor-separating 
cannot be dropped. 
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Example 3. 7.12. Let "-Int be defined by "-Int(n, m) = 1, for all n, m E Z. 
Then "-Int is default-consistent, but not constructor-separating. Furthermore, 
the kernel k defined in Definition 3.7.4 using "-Int is not separating (for the 
integers). 

The condition in Proposition 3.7.6 that each "-T be default-consistent 
cannot be dropped. 

Example 3. 7.13. Let "-Int be the product kernel and 1 the default data 
constructor for the integers. Then "-Int is constructor-separating, but not 
default-consistent since "-Int(O, 0) = 0. Let M be a nullary type construc
tor and A, B : M. Then the abstractions >..x.if x = A then 0 else 1 and 
>..x. if x = B then 0 else 1 cannot be separated by another abstraction. 
Thus the kernel k defined in Definition 3.7.4 using "-Int and the default data 
constructor 1 for the integers is not separating. 

Finally, in this chapter, I return to the issue of defining metrics. Given a 
kernel, it is easy to define an associated pseudometric. 

Proposition 3. 7. 7. Let k : X x X---> lR be a kernel on X. Then the following 
hold. 

1. The function d : X x X ---> lR defined by 

d(x,y) = Jk(x,x)- 2k(x,y) + k(y,y), 

for all x, y EX, is a pseudometric on X. 
2. If k is separating, then d is a metric. 

Proof. 1. By Proposition 3.7.2, k(x,y) = (<P(x),<P(y)), for all x,y E :X. Thus 

d(x, y) = Jk(x, x)- 2k(x, y) + k(y, y) 

= y'(<P(x),<P(x))- 2(<P(x),<P(y)) + (<P(y),<P(y)) 

= J(<P(x)- <P(y),<P(x)- <P(y)) 

= JII<P(x)- <P(y)ll 2 

= II<P(x)- <P(y)ll, 

where II· II is the (canonical) norm on the associated Hilbert space fork. 
From this, it is easy to show that d(x,y) ~ 0 and d(x,y) = d(y,x), for all 

x, y EX. Furthermore, if x = y, then d(x, y) = 0. For the triangle inequality, 
note that 

d(x, z) = II<P(x)- <P(z)ll 

::; II<P(x)- <P(y)ll + II<P(y)- <P(z)ll 
= d(x, y) + d(y, z). 

Thus d is a pseudometric. 
2. Since k is separating, x -=1- y implies k(x, x)- 2k(x, y) + k(y, y) -=1- 0, by 

Proposition 3. 7.4. Thus x -=1- y implies d(x, y) -=1- 0. D 
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Proposition 3. 7. 7 provides alternative (pseudo-)metrics on the set of basic 
terms to those given in Sect. 3.6. 

Example 3. 7.14. For several choices of k, here is the corresponding metric d 
given by Proposition 3.7.7. 

Let k be the product kernel on a set of numbers, say, Z. Then d(x, y) = 

Jk(x, x)- 2k(x, y) + k(y, y) = Jx 2 - 2xy + y2 = lx- Yl· 
More generally, if k is the inner product (-, ·) on a Hilbert space, then 

d(x, y) = J(x, x)- 2(x, y) + (y, y) = J(x- y, x- y) = Jllx- Yll 2 

llx - Yll, the usual metric on the Hilbert space. 
Now let 15 be the discrete kernel on a set X. Then d(x, y) 

Jo(x,x)-215(x,y)+l5(y,y) = J2-215(x,y). Thus d(x,y) = 0, ifx = y; 
otherwise, d(x, y) = J2. Hence dis the discrete metric. 

If A and Bare (finite) sets and "'n is the discrete kernel, then d(A, B) = 

Jk(A, A)- 2k(A, B)+ k(B, B)= JIAI- 2IA n Bl + IBI = JIA !'; Bl, where 
/'; is symmetric difference. 

Typically, kernel-based learning methods are generic in the sense that 
they only require that it be possible to define the generalised inner product 
between pairs of individuals and are independent of the nature of the indi
viduals. Thus the results of this section can be applied directly to a variety 
of kernel-based learning methods for structured data by simply using the 
kernels developed here in these algorithms. 
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Exercises 

3.1 Prove or disprove each of the following conjectures. 

(i) A subterm of a normal term is normal iff it is closed. 
(ii) A subterm of a basic term is basic iff it is closed. 

3.2 Prove that ~ <;;; \J1. 

3.3 For each a E 6c, the set embed(a) of embedded types in a is defined by 

embed (a) = {,6 I there exists t E \J10 and a sub term s oft such that s E \J113 }. 

(i) Let T1 and T2 be nullary type constructors. Suppose there is a data 

constructor having signature T1 x T1 --+ T1 x T1 --+ T2 , and there are data 
constructors having signature T1. Consider the type a = T2 x { Int} x 
List Float. Determine embed (a). 

(ii) Prove or disprove: embed( a) is the set of subtypes of a. 

3.4 The binary relation <Jon \)1 is defined inductively as follows. Lets, t E \J1. 
Then s <l t if there exists a E 6c such that s, t E \]1"' and one of the following 
conditions holds. 

1. a = T a1 ... ak, for some T, a1, ... , ak, and s is C s1 ... sn, t is 
D t1 ... tm and either C -<r D or C = D and there exists j such that 

s1 = t1, ... , Bj-1 = tj-1, Sj <l tj and 1 :S j :S n. 
2. a= ,6--+ '/,for some ,6,'/, and either V(s r) = V(t r) or V(s r) <J V(t r), 

for all r E \J1f3, and V(s b) <l V(t b), for some bE \J113. 
3. a = a1 X· · ·X an, for some a1, ... , an, and sis (s1, ... , sn), tis ( h, ... , tn) 

and there exists j such that s1 = h, ... , Sj_1 = tj_1, Sj <l tj and 1 :S j :S 
n. 

Prove the following. 

(i) For each a E 6c, if s, t E \]1"' and s = t, then s jl t. 
(ii) For each a E 6c, if r, s, t E \J10 , r =sand s <l t, then r <l t. 

(iii) For each a E 6c, if r, s, t E \J10 , r <l sands= t, then r <l t. 
(iv) For each a E ec' <] ISJto is a strict partial order on \)1"'. 

(v) Assuming that ..l -<n T, the partial order <Jon sets corresponds to strict 
set inclusion, that is, s <l t iff s C t. 

(vi) Assuming that -<rnt is the usual< on the integers, the partial order <Jon 
multisets corresponds to strict multiset inclusion, that is, s <J t iff s C:::: t. 

3.5 The binary relation :'S) on \)1 is defined by s :'S) t if s <J t or s = t. 
Prove the following. 

(i) For each a E ec, :'Sl ISJto is a preorder on \}tQ· 

(ii) :'S) is not a partial order on \J10 , since it is not antisymmetric. 
(iii) For each a E 6c, if s, t E \J10 , then s =tiffs :'S) t and t :'S) s. 
(iv) For each a E ec, :'SJI'Bo is a partial order on !J3Q. 
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(v) The preorder :'S] on sets corresponds to set inclusion, that is, s:'S]t iff s <;;; t. 
(vi) The preorder :'S] on multisets corresponds to multiset inclusion, that is, 

s ::::l t iff s [;;; t. 

3.6 Let <p be a non-decreasing function from the non-negative reals into the 
closed interval [0, 1] such that cp(O) = 0, cp(x) > 0 if x > 0, and cp(x + y) ::::: 
cp(x) + cp(y), for each x and y. Let (X, d) be a metric space. Prove that the 
function d' defined by d'(x, y) = cp(d(x, y)), for all x, y E X, is a bounded 
metric on X. 

3.7 

(i) Suppose that the set of data constructors is countable. Prove that, for 
each a E e;c, the metric space (23a, d) of Definition 3.6.3 is separable. 

(ii) Suppose that 23 0 is uncountable, for some a 0 E e;c. Prove that the metric 
space (2300 __..a, d) of Definition 3.6.3 is not separable. 

3.8 Let X be a set and k : X x X -+ lR a function. Prove that k positive 
definite on X iff, for all n E z+' Xl' ... 'Xn E X, where Xi =/:- Xj' for i =/:- j' and 
c1, ... , Cn E lR, it follows that Li,jE{l, ... ,n} Ci Cj k(xi, Xj) 2': 0. 

3.9 Let X be a set and f : X -+ lR a function. Prove that k : X x X -+ lR 
defined by k(x, y) = f(x)f(y) is positive definite. 

3.10 Let k: JRn-+ lR be defined by k(x, y) = exp( -llx- Yll 2 la2 ), where 11·11 
is the Euclidean norm on JRn and a > 0. Prove that k is positive definite. 
[Hint: exp( -llx- Yll 2 I a 2 ) = exp( -llxll 2 I a 2 ) exp( -IIYII 2 I a 2 ) exp(2(x, y) I a 2 ).] 

3.11 The function k : 23 x 23 -+ lR is defined inductively on the structure 
of terms in 23 as follows. Let s, t E 23. Parts 1, 3, and 4 are the same as for 
Definition 3.7.4. Part 2 is as follows. 

If s, t E 230 , where a= f3-+ "(, for some {3, "(,then 

k(s, t) = L k(V(s u), V(t v)) · k(u, v). 
uEsupp(s) 
vEsupp(t) 

(i) Prove that k is a kernel on 230 , for each a E e;c. 
(ii) Suppose that k is the discrete kernel on 23,13. Prove that 

k(s, t) = k(V(s u), V(t u)), 
uEsupp(s)nsupp(t) 

for s, t E 23,13___.7 . 

(iii) Suppose that "! is D and k is the discrete kernel on 237 . Prove that 

k(s, t) = L k(u, v), 
uEsupp(s) 
vEsupp(t) 

for s, t E 23,13__..,. 
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3.12 Show that the kernel k on sets of integers defined by 

k(A,B) = L uv 
uEA,vEB 

is not separating (and thus the kernel of Exercise 3.11 is not separating, in 
general). 

3.13 The function k : 23 x 23 -> JR. is defined inductively on the structure 
of terms in 23 as follows. Let s, t E 23. Parts 1, 3, and 4 are the same as for 
Definition 3. 7 .4. Part 2 is as follows. 

If s, t E 23a, where o: = f3-> [, for some /3, [, then 

k(s, t) = L k(V(s u), V(s u)) · k(V(t v), V(t v)) · k(u, v). 
uEsupp(s) 
vEsupp(t) 

Prove that k is a kernel on 23a, for each o: E 6c. 

3.14 Let X be a set. A function k : X x X-> JR. is strictly positive definite on 
X if, for all n E z+' XI' ... 'Xn E :X, and cl' ... 'Cn E JR., it follows that 

1. l::i,jE{l, ... ,n} Ci Cj k(xi, Xj);::: 0, and 
2. I:i,jE{l, ... ,n} Ci Cj k(xi,xj) = 0 implies ci = 0, fori= 1, ... ,n. 

A function k : X x X -> JR. is a strict kernel if it is symmetric and strictly 
positive definite. 

(i) Give an example to show that the product kernel on IR is not a strict 
kernel. 

(ii) Prove that if k is a strict kernel, then k is separating. 
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Having established the use of the logic for representing individuals, attention 
now turns to the problem of constructing predicates that individuals may or 
may not satisfy. Essentially, all that is required is the definition of a suitable 
collection of predicates on the type of an individual. However, these predicates 
are usually built up incrementally by composition and it is this incremental 
construction that is studied here. 

4.1 Transformations 

Composition is handled by the (reverse) composition function 

o :(a---+ b)---+ (b---+ c)---+ (a---+ c) 

defined by 

( (f o g) X) = (g (f X)) . 

Composition is right associative. Thus the expression fi o • • • o fn means 
fi o (h o • • • o Un-l o fn) ···).More precisely, using the usual notation for ap
plication, this expression is (( o !I) (( o h)··· (( o fn-l) fn) · · · ). 

Predicates are built up by composing transformations, which are defined 
as follows. 

Definition 4.1.1. A transformation f is a function having a signature of 
the form 

where any parameters in e1 , ... , Qk and a appear in J-1, and k 2 0. The type 
J-L is distinguished and is called the source of the transformation, while the 
type a is called the target of the transformation. The number k is called the 
rank of the transformation. 

Since juxtaposition is left associative, the expression f p 1 ... Pk means 
( · · · ( ( (f pi) P2) P3) ... Pk). The intuitive idea behind the definition of trans
formation is that, given predicates Pi : Qi ---+ D, fori = 1, ... , k, f Pl .. ·Pk 

J. W. Lloyd, Logic for Learning
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is a function that takes individuals of type JL to individuals of type O". By 
composing (generally) several such functions, the last of which is a predicate, 
a predicate on individuals of the desired type is obtained. 

Note that every function having signature JL --> O" is potentially a transfor
mation. (Just put k = 0.) It is understood that some collection of functions 
having appropriate signatures are declared to be transformations for each 
particular application. 

The remainder of this section provides useful transformations for the var
ious types. 

Example 4 .1.1. The transformation 

1\n : (a --> !?) --> · · · --> (a --> !?) --> a --> f? 

defined by 

1\n P1 · · · Pn X = (Pl X) 1\ · · · 1\ (Pn X), 

where n 2: 2, provides a 'conjunction' with n conjuncts. Transformations 
analogous to the other connectives can be defined similarly. 

Example 4.1.2. Following the style of Example 4.1.1, the transformation 

rv: (a-->!?)--> a--> f? 

defined by 

rv px=•(px), 

provides negation. But negation can also be introduced directly by the trans
formation 

which is the usual negation connective. Then the transformation ("' p) can 
be written equivalently as p o --.. (In practice, just one of these methods of 
introducing negation would be used.) 

Example 4.1.3. Each projection 

defined by 

for i = 1, ... , n, is a transformation of rank 0. 
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Example 4.1.4. There are two fundamental transformations top : a---+ D and 
bottom : a ---+ D defined by top x = T and bottom x = ..l, for each x. Each of 
top and bottom is a constant predicate, with top being the weakest predicate 
on the type a and bottom being the strongest. 

Example 4.1.5. Let JL be a type and suppose that A: J.L, B: J.L, and C: JL are 
constants. Then, corresponding to A, one can define a transformation 

(=A):J.L---+D 

by 

((=A)x)=x=A, 

with analogous definitions for ( = B) and ( = C). Similarly, one can define the 
transformation 

(#A):JL---+D 

by 

((#A)x)=x#A. 

Example 4.1.6. Consider a type such as Int which has various order relations 
defined on it. Then, for any integer N, one can define the transformation 

( < N) : Int ---+ D 

by 

((< N) m) = m < N. 

In a similar way, one can define the transformations (> N), (~ N), and 
(:; N). 

Example 4 .1. 7. The if-then-else transformation 

ite : (a ---+ D) ---+ (a ---+ D) ---+ (a ---+ D) ---+ a ---+ D 

is defined by 

ite p q r x =if (p x) then (q x) else (r x). 

As an illustration, one could define the predicate 

ite ("' null) (head o ( = 42)) bottom, 

where null checks whether a list is empty or not and head extracts the head 
of a non-empty list. This predicate returns T iff its argument is a non-empty 
list with 42 as its first item. 
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Example 4.1.8. Consider again the type Shape and the data constructors 

Circle : Float --+ Shape 

Rectangle : Float --+ Float --+ Shape. 

The function is Circle : (Float --+ D) --+ Shape --+ D defined by 

isCircle p t = ::Jx.((t = Circle x) A (p x)) 

is a transformation. Similarly, the function isRectangle (Float --+ D) --+ 

(Float --+ D) --+ Shape --+ D defined by 

isRectangle p q t = ::Jx.::Jy.((t =Rectangle x y) A (p x) A (q y)) 

is a transformation. For predicates p and q, ( isRectangle p q) is a predicate on 
geometrical shapes which returns T iff the shape is a rectangle whose length 
satisfies p and whose breadth satisfies q. 

Before giving further examples, a reminder on notation. Sets and predi
cates have been identified, so that a set has type 11 --+ D, for some type /1· 

However, in practice, even though sets and predicates have been identified, 
for a term of type 11 --+ D, it is sometimes convenient to make an informal 
distinction depending upon whether one is thinking of the term as a 'set of 
elements' or as a 'condition'. In the former case, the synonym {11} for 11 --+ D 
is used to indicate this. To emphasise, there is no mathematical distinction 
between {11} and f1 --+ D, but there is a change in the intuitive role the cor
responding term is understood to be playing. Similarly, the notation 's E t' 
is used if one is thinking of t as a 'set of elements' and the notation ' ( t s)' 
is used if one is thinking oft as a 'condition'. This distinction will be very 
convenient in the following discussion. 

Example 4.1. 9. Consider the transformation 

domCard : (a --+ D) --+ {a} --+ Nat 

defined by 

domCard p t =card {xI (p x) AxE t}, 

where card computes the cardinality of a (finite) set. Given a predicate p on 
some type 11 and a unary predicate on Nat such as (> 42), which returns 
T iff its argument is strictly greater than 42, one can construct a predicate 
( domCard p) o (> 42) on sets of type {/1} which selects the subset of elements 
that satisfy the predicate p and then checks that the cardinality of this subset 
is greater than 42. 
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Example 4.1.1 0. Consider the transformation 

setExists1 :(a---+ .0)---+ {a}---+ .0 

defined by 

setExists1 p t = :Jx.((p x) 1\ (x E t)). 

The predicate (setExists1 p) checks whether a set has an element that satisfies 

p. More generally, for n ;:::: 1, one can define 

setExistsn : (a ---+ .0) ---+ · · · ---+ (a ---+ .0) ---+ {a} ---+ .0 

by 

setExistsn Pl .. ·Pn t = :lx1. · · · :lxn. ((pl xl) 1\ ···I\ (Pn Xn) 1\ 

(xl E t) 1\ · · · 1\ (xn E t) 1\ (xl c/: x2) 1\ · · · 1\ (Xn-l c/: Xn)). 

Note the overlap between (domCard p) o (> 0) and (setExists1 p). Typically, 
setExistsn is used for small values of n, say, 1, 2 or 3, while domCard is used 
in conjunction with (> N) for larger values of N. 

Example 4.1.11. Multisets (also known as bags) are a useful generalisation 
of sets. A straightforward approach to multisets is to regard a multiset as a 

function of type JL ---+ Nat, where JL is the type of elements in the multiset 
and the value of the multiset on some item is its multiplicity, that is, the 
number of times it occurs in the multiset. (In fact, a set can be identified 
with a multiset taking only the values 0 and 1, and so sets are redundant. 
However, sets occur more commonly than multisets and are more familiar, 

thus I prefer to keep both.) Consider the transformation 

domMcard: (a---+ .0) ---+ (a---+ Nat) ---+Nat 

domMcard p t = mcard (>.x.if (p x) then (t x) else 0), 

where mcard computes the cardinality of a multiset. Thus, for each p: JL---+ .0, 

( domMcard p) : (JL---+ Nat) ---+Nat 

is a function on multisets whose elements have type JL that computes the 
cardinality of the submultiset of elements of the argument that satisfy the 

predicate p. 
One can then obtain a predicate by composing ( domM card p) with, say, 

a predicate ( > N), for some N ;:::: 0. This gives the predicate ( domM card p) o 

(> N), which is true of a multiset iff the cardinality of the submultiset of 

elements satisfying the predicate p is strictly greater than N. 
Multisets also support the analogue of the transformations setExistsn for 

sets. The transformation msetExistsn, for n 2: 1, is defined as follows. 
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msetExistsn: (a--+ D)--+···--+ (a--+ D)--+ (a--+ Nat)--+ D 
msetExistsn Pl .. ·Pn t = ::lx1. · · · 3xn.((Pl xi) 1\ · · · 1\ (Pn Xn) 1\ 

((t xi)> 0) 1\ · · · 1\ ((t Xn) > 0) 1\ (x1 '.f x2) 1\ · · · 1\ (xn-1 '.f Xn)). 

Example 4 .1.12. Lists are represented using the following data constructors. 

[] :List a 

U : a --+ List a --+ List a. 

A list has a type List JL, where JL is the type of the items in the list. Lists are 
constructed as usual from the empty list [] and the cons function U. 

The most basic transformations on lists that are useful for inductive learn
ing are null, which tests whether a list is empty or not; head which returns 
the first item in a list; tail which returns the tail of a list; and last which 
returns the last item in a list. Given a non-negative integer N as an index 
and a list, the transformation (!!N) returns the item at that index in the 
list. (The index of the first item is 0.) If the order of items in a list is not 
important, the list can be converted to a multiset with the transformation 
listToMultiset and then predicates can be applied to the multiset. The trans
formation listToSet returns the set of items in a list. One can also pull out 
sublists from the list: given an integer N ~ 2, (sublists N) is a transforma
tion that returns the set of sublists of contiguous items of length N. Finally, 
filterLength takes a predicate and a list as arguments and returns the length 
of the list obtained from the original one by including only those items that 
satisfy the predicate. Here are the signatures of these transformations. 

null : List a --+ D 
head : List a --+ a 

tail : List a --+ List a 

last : List a --+ a 

(!!N) : List a --+ a 

listToMultiset: List a--+ (a--+ Nat) 

listToSet : List a --+ {a} 
(sub lists N) : List a --+ {List a} 
filterLength: (a--+ D)--+ List a--+ Nat. 

Example 4.1.13. Next I consider binary trees, the standard representation of 
which uses the following data constructors. 

Null : BTree a 

BNode : BTree a--+ a--+ BTree a--+ BTree a. 

BTree J.1. is the type of a binary tree whose nodes have type JL, Null represents 
the empty binary tree and BNode is a data constructor whose first argument 
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is the left subtree, the second is the root node, and the third is the right 
subtree of the tree. 

Some useful transformations on binary trees for making predicates are 
emptyBTree, which tests whether a tree is empty or not; root, which returns 
the root node; lejtTree, which returns the left subtree; rightTree, which re
turns the right subtree; nodeSet, which returns the set of nodes in the tree; 
nodeMultiset, which returns the multiset of nodes in the tree; and branches, 
which returns the list of branches (ordered from left to right), where each 
branch is regarded as a list of nodes beginning with the root and ending with 
a leaf node. The signatures for these transformations are as follows. 

emptyTree : BTree a---> fl 

root : BTree a ---> a 

lejtTree : BTree a ---> BTree a 

rightTree : BTree a---> BTree a 

nodeSet : BTree a---> {a} 
nodeMultiset : BTree a---> (a---> Nat) 

branches : B Tree a ---> List (List a). 

Example 4.1.14. The standard representation of a tree (where the subtrees 
have an order) uses the data constructor Node, where 

Node : a ---> List (Tree a) ---> Tree a. 

Tree f.L is the type of a tree and Node is a data constructor whose first 
argument is the root node and second argument is the list of subtrees. 

Some useful transformations on trees for making predicates are root, which 
returns the root node; numberOJSubtrees, which returns the number of sub
trees; (subtree N), which returns the Nth subtree; nodeSet, which returns 
the set of all nodes in the tree; nodeMultiset, which returns the multiset of 
all nodes in the tree; and branches, which returns the list of branches (in the 
order induced by the order of the subtrees). 

root : Tree a ---> a 

numberOJSubtrees : Tree a ---> Nat 

(subtree N) : Tree a ---> Tree a 

nodeSet : Tree a ---> {a} 

nodeMultiset : Tree a ---> (a ---> Nat) 

branches : Tree a ---> List (List a). 

Example 4.1.15. Suppose that Graph v c is the type of (undirected) graphs 
whose vertices have type Vertex v c and edges have type Edge v E, where v 
is the type of the information at a vertex and c is the type of information 
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(for example, the weight) on an edge. Consider the following transformations 
on graphs. 

vertices : Graph v c --+ { Vertex v c} 
edges : Graph v c --+ {Edge v c} 
vertex : Vertex v s --+ v 

edge : Edge v s --+ s 

connects : Edge v c --+ ( Vertex v s --+ Nat) 

edgesAt Vertex : Vertex v s --+ {Edge v c} 
( subgraphs N) : Graph v s --+ {Graph v s}. 

Here vertices returns the set of vertices of a graph, edges returns the set of 
edges of a graph, vertex returns the information at a vertex, edge returns 
the information on an edge, connects returns the unordered pair of vertices 
joined by an edge, edgesAt Vertex returns the set of edges ending at a vertex, 
and ( subgraphs N) returns the set of (connected) subgraphs containing N 
vertices of a graph. 

With these transformations, the predicate 

vertices o ( domCard (vertex o ( /\ 2 p q))) o ( > 7) 

on individuals of type Graph v s can be constructed, where p and q are 
predicates on individuals of type v. This predicate is true for a graph iff the 
cardinality of the subset of vertices in the graph whose information satisfies 
the predicates p and q is greater than 7. 

One can also construct the predicate 

( subgraphs 3) o ( domCard (edges o ( setExists2 (edge o p) (edge o q)))) o (> 3), 

where p and q are predicates on the types. This predicate is true for a graph 
iff the cardinality of the subset of (connected) subgraphs in the graph that 
have three vertices and two (distinct) edges, one of which has information 
satisfying p and one satisfying q, is greater than 3. 

Example 4.1.16. The type of a directed graph is Digraph v s, where vis the 
type of information in the vertices and s is the type of information in the 
edges, and 

Digraph v s = {Label x v} x { (Label x Label) x c}. 

There is a type constructor Di Vertex such that the type of a vertex is 
Di Vertex v s and a type constructor DiEdge such that the type of an edge 
is DiEdge v s. There are also the following transformations. 



vertices : Digraph v s -> { Di Vertex v s} 

edges : Digraph v s -. { DiEdge v s} 

vertex : Di Vertex v s -. v 

edge : DiEdge v s -. s 
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connects : DiEdge v s -. ( Di Vertex v s) x ( Di Vertex v s) 

edges To Vertex : Di Vertex v s -. { DiEdge v s} 

edgesFrom Vertex : Di Vertex v s -. { DiEdge v s} 

( subgraphs N) : Digraph v s -. {Digraph v s}. 

The transformation vertices returns the set of vertices of a digraph, edges 
returns the set of edges of a digraph, vertex returns the information at a ver
tex, edge returns the information on an edge, connects returns the (ordered) 
pair of vertices joined by an edge, edges To Vertex returns the set of edges 
that are directed into some vertex, edgesFrom Vertex returns the set of edges 
that are directed away from some vertex, and ( subgraphs N) returns the set 
of (connected) subdigraphs of the digraph that contain N vertices. 

I have concentrated above on generic transformations; that is, given some 
type, I have provided a set of transformations that is likely to be generally 
useful in applications involving that type. I do not claim to have given all 
generic transformations for each type, just useful collections so that any par
ticular application will probably only need a subset of the ones I provide. 
However, it is common in applications to also have need of domain-specific 
transformations that capture some specialised concepts that will be useful 
in the application. For example, in predictive toxicology applications a num
ber of domain-specific predicates have been studied, including such things as 
the possible existence of 2-dimensional substructures like benzene rings and 
methyl groups. Such predicates are not relevant in general graphs, but they 
can be important if the graphs are a representation of molecules. Technically, 
such domain-specific transformations are handled in exactly the same way as 
generic transformations are handled in this book. Domain-specific transfor
mations are added to the hypothesis language. Their definitions become part 
of the background theory and can be used in the construction of predicates 
in the same way as generic transformations. 

4.2 Standard Predicates 

Next the definition of the class of predicates formed by composing transforma
tions is presented. First, a larger class of predicates, the standard predicates, 
is defined and then the desired subclass, the regular predicates, which has 
much less redundancy, is defined. In the following definition, it is assumed 
that some (possibly infinite) class of transformations is given and all transfor
mations considered are taken from this class. A standard predicate is defined 



140 4. Predicates 

by induction on the number of (occurrences of) transformations it contains 
as follows. 

Definition 4.2.1. A standard predicate is a term of the form 

(h Pl,l · · ·Pl,k,) 0 • • • 0 Un Pn,l · · ·Pn,kn), 

where fi is a transformation of rank ki ( i = 1, ... , n), the target of f n 
is fl, Pi,j, is a standard predicate (i = 1, ... , n, ji = 1, ... , ki), ki 2 0 
( i = 1, ... , n) and n 2 1. 

The set of all standard predicates is denoted by S. Standard predicates 
have type of the form J.L---+ fl, for some type J.L. Note that the set of standard 
predicates is defined relative to a previously declared set of transformations. 

Definition 4.2.2. For each a E ec, define Sa= {pEs I p has type J.L---+ [l 
and J.L is more general than a}. 

The intuitive meaning of Sa is that it is the set of all predicates of a 
particular form given by the transformations on individuals of type a. 

Careful attention needs to be paid to the subterms of a standard predicate, 
especially the subterms that are themselves standard predicates. 

Definition 4.2.3. Let (h Pl,l ... Pl,k,) o • · • o Un Pn,l ... Pn,kJ be a stan
dard predicate. A suffix of the standard predicate is a term of the form 

(fi Pi,l · · ·Pi,kJ 0 • • • 0 Un Pn,l · · ·Pn,kJ, 

for some i E {1, ... , n }. The suffix is proper if i > 1. 
A prefix of the standard predicate is a term of the form 

(h P1,1 .. ·Pl,k,) o • • • o (fi Pi,l .. ·Pi,kJ, 

for some i E {1, ... , n }. The prefix is proper if i < n. 

A suffix of a standard predicate is a standard predicate, but a prefix of a 
standard predicate may not be a predicate. 

Proposition 4.2.1. Let p be a standard predicate (h p 1,1 .. ·Pl,k,) o • • • 

o Un Pn,l ... Pn,kJ and q a term. Then q is a subterm of p iff (at least) 
one of the following conditions holds. 

1. q is a suffix of p. 
2. q is a subterm of (o (fi Pi,l .. ·Pi,kJ), for some i E {1, ... ,n -1}. 
3. q is a subterm of Un Pn,l .. ·Pn,kJ, 
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Proof. The proof is by induction on n. If n = 1, the result is obvious. Consider 
now a standard predicate 

(h Pl,l · · ·Pl,k1) 0 • • • 0 Un+l Pn+l,l · · ·Pn+l,kn+,)' 

which can be written in the form 

((o (h Pl,l · · ·Pl,k,)) (h P2,1 · · ·P2,k2) 0 • • • 0 Un+l Pn+l,l · · ·Pn+l,kn+l)). 

A subterm of this is either the term itself or a subterm of ( o (h p 1,1 ... p1,k1)) 

or a subterm of (h P2,1 ... P2,k2) o • · • o Un+l Pn+l,l ... Pn+l,kn+l ). The result 
follows by applying the induction hypothesis to this last term. 0 

Proposition 4.2.2. Let p be a standard predicate (h Pl,l .. ·Pl,k,) o • • • 

o Un Pn,l ... Pn,kJ and q a subterm of p. Then q is a standard predicate 
iff (at least) one of the following conditions holds. 

1. q is a suffix of p. 
2. q has the form (f; p;, 1 ... Pi,ki), for some i E { 1, ... , n}, and f; has target 

D. 
3. q is a sub term of Pi,j,, for some i and j;, and q is a standard predicate. 

Proof. According to Proposition 4.2.1, the subterms of p are the suffixes 
of p, the subterms of (o(f; P;, 1 ... p;,kJ), fori E {1, ... ,n -1}, and the 
subterms of (f n Pn, 1 ... Pn,kJ, Thus it is only necessary to establish which 
of these subterms are standard predicates. First, all the suffixes are standard 
predicates. Since o is not a standard predicate, it remains to investigate the 
subterms of (f; p;, 1 ... p;,kJ, for i = 1, ... , n. Now, provided the target off; 
is D, (f; p;, 1 ... Pi,kJ is a standard predicate. Also the only proper subterms 
of (f; Pi,l ... Pi,k,) that could possibly be standard predicates are subterms of 
Pi,l, ... , Pi,ki. (The reason is that for f; to be the first symbol in a standard 
predicate, it must be followed by all k of its predicate arguments.) The result 
follows. 0 

Example 4.2.1. Consider the standard predicate 

(h p) o (h q r) o (h s), 

where the transformations h, h, h, p, q, r, and shave suitable signatures. 
Thus p, q, r, and s are predicates. Suppose also that neither h nor h have 
target D. Taking the associativity into account, this standard predicate can 
be written more precisely as 

((o (h p)) ((o ((h q) r)) (h s))). 

The subterms of (h p) o (h q r) o (h s) are illustrated in Fig. 4.1. The proper 
sub terms that are standard predicates are (h q r) o (h s), (h s), p, q, r, and 
s. 
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((o (h p)) ((o ((h q) r)) (/3 s))) 

~ ~ 
(o (h p)) ((o ((h q) r)) (/3 s)) 

/ ~ / ~ 
(h p) (o ((h q) r)) (h s) 

/~ /~ /~ 
h P ((hq)r) h s 

/ ~ 
(h q) r 

/ ~ 
h q 

Fig. 4.1. Subterms of a standard predicate 

Next an important class of subterms for later use in predicate rewrite 
systems is introduced. 

Definition 4.2.4. A subterm of a standard predicate (h P1,1 ... p1,k,) o • • • 

o Un Pn,l .. ·Pn,kn) is eligible if it is a suffix of the standard predicate or it is 
an eligible sub term of Pi,j,, for some i E { 1, ... , n} and Ji E { 1, ... , k;}. 

Example 4.2.2. The eligible subterms of 

vertices o (setExists2 (A2 (proj1 o (=A)) (proj2 o (= 3))) (proj1 o (=B))) 

are 

vertices o (setExists2 (A2 (proj1 o (=A)) (proj2 o (= 3))) (proj1 o (=B))), 
setExists2 (A2 (proj1 o (=A)) (proj2 o (= 3))) (proj1 o (=B)), 

/\2 (proj1 o (=A)) (proj2 o (= 3)), 

proj1 o ( = A), 

proj2o(=3), 

(=A), 

(= 3), 

proj1o(=B), and 

(=B). 

Proposition 4.2.3. An eligible subterm of a standard predicate is a standard 
predicate. 

Proof. This is a straightforward induction argument. D 

Proposition 4.2.4. Let p, q, and r be standard predicates, and q an eligible 
subterm of p such that p[q/r] is a term. Then p[qjr] is a standard predicate. 
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Proof. The proof is by induction on the number of transformations in p. 
Suppose the result holds for standard predicates that have < m transforma
tions and p has m transformations. Let p have the form (h PI,I ... PI,k,) o • • • 

o Un Pn,I ... Pn,kn ). If q is a suffix of p, then the result follows since p[qjr] is a 
term. If q is an eligible subterm of some Pi,j,, then the induction hypothesis 
gives that Pi,j, [qjr] is a standard predicate. Since p[qjr] is a term, it follows 
that p[qjr] is a standard predicate. D 

The class of standard predicates just defined contains some redundancy 
in that there are syntactically distinct predicates that are equivalent, in a 
certain sense. 

Definition 4.2.5. The theory consisting of the definitions of the transfor
mations (and associated functions) is called the background theory. 

Definition 4.2.6. Let 1) be the background theory, and s and t be terms. 
Then s and t are equivalent with respect to 1) if the types of s and t are the 
same (up to variants) and s =tis a logical consequence of 1). 

Equivalence with respect to a background theory is an equivalence relation 
on the set of terms. When discussing equivalence in the following, explicit 
mention of the background theory is usually suppressed. 

Example 4.2.3. Without spelling out the background theory, one would ex
pect that the standard predicates (/\2 p q) and (/\2 q p) are equivalent, 
where p and q are standard predicates. Similarly, ( setExists2 p q) and 
(setExists 2 q p) are equivalent. Less obviously, (domCard p) o (> 0) and 
( setExists I p) are equivalent. 

It is important to remove as much of this redundancy in standard pred
icates as possible. Ideally, one would like to be able to determine just one 
representative from each class of equivalent predicates. However, determining 
the equivalent predicates is undecidable, so one usually settles for some easily 
checked syntactic conditions that reveal equivalence of predicates. Thus these 
syntactic conditions are sufficient, but not necessary, for equivalence. These 
considerations motivate the next definition. 

Definition 4.2. 7. A transformation f is symmetric if it has a signature of 
the form 

J : ( f2 ---+ n) ---+ . . . ---+ ( f2 ---+ n) ---+ J.L ---+ (T, 

and, whenever f PI ... Pk is a standard predicate, it follows that f PI ... Pk 
and f Pi, ... Pik are equivalent, for all permutations i of { 1, ... , k}, where k 
is the rank of f. 
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Note that iff P1 ... Pk is a standard predicate, then so is f Pi, ... Pik. It is 
common for a symmetric transformation to have D as its target; however, this 
does not have to be the case. Clearly, every transformation of rank k, where 
k ::; 1, is (trivially) symmetric. Furthermore, the transformations setExistsn 
and 1\n are symmetric. However, isRectangle is not symmetric since it distin
guishes the length argument from the breadth argument. 

Since any permutation of the predicate arguments of a symmetric trans
formation produces an equivalent function, it is advisable to choose one par
ticular order of arguments and ignore the others. For this purpose, a total 
order on standard predicates is defined and then arguments for symmetric 
transformations are chosen in increasing order according to this total order. 
To define the total order on standard predicates, one must start with a total 
order on transformations. Therefore, it is supposed that the transformations 
are ordered according to some (arbitrary) strict total order <. 

In preparation for the definition of -<, a structural result about standard 
predicates is needed. 

Proposition 4.2.5. Let p, q E S, where p is (h P1,1 ... P1,k,) o · · · o Un Pn,1 
... Pn,kn) and q is (g1 q1.1 ... q1,s 1 ) o · · · o (gr qr,1 ... qr,sJ. Suppose that p and 
q are (syntactically) distinct. Then exactly one of the following alternatives 
holds. 

1. One of p or q is a proper prefix of the other. 
2. There exists i such that the transformation fi in p and the transformation 

gi in q are distinct, and p and q agree to the left of fi and gi. 
3. There exist i and j; such that Pi,Ji in p and q;,Ji in q are distinct, and p 

and q agree to the left of Pi,Ji and qi,Ji. 

Proof. The proof is by induction on the maximum of the number of (occur
rences of) transformations in p and the number in q. 

Suppose first that h is distinct from g1 . Then the second alternative 
holds. Otherwise, h and g1 are identical, which gives rise to two cases: either 
the arguments to h in p and g1 in q are pairwise identical or they are not. 
In the first case, consider the suffixes of p and q obtained by removing the 
common prefix (h p1,1 ... p 1,k, ). If one of the suffixes is empty, then the first 
alternative holds; otherwise, one can apply the inductive hypothesis to the 
suffixes to obtain the result. In the second case, the leftmost pair of p 1,j, and 
q1,j, that are distinct gives the third alternative. 0 

Example 4.2.4. As an illustration of the first alternative in the preceding 
proposition, consider p and p o •, for some standard predicate p. For the third 
alternative, consider ( 1\2 p q) and ( 1\2 (p o •) q), for some standard predicates 
p and q. 

The following definition of the relation p -< q uses induction on the maxi
mum of the number of (occurrences of) transformations in p and the number 
in q. To emphasise: the definition of-< depends upon <. 
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Definition 4.2.8. The binary relation --< on S is defined inductively as fol
lows. Let p, q E S, where p is (!I P1,1 ... Pl,kJ o • • • o Un Pn,l ... Pn,kn) and q 
is (gl Ql,l ... Ql,s 1 ) o · · · o (gr Qr,l ... Qr,sJ· Then p --< q if one of the following 
holds. 

1. p is a proper prefix of q. 
2. There exists i such that fi < gi, and p and q agree to the left of fi and 

9i· 
3. There exist i and ji such that Pi,ji --< Qi,Ji, and p and q agree to the left 

of Pi,ji and Qi,ji. 

Proposition 4.2.6. The relation --< is a strict total order on S. 

Proof. Let p, q, r E S, where p is (JI Pl,l ... Pl,kJ o · · · o Un Pn,l ... Pn,kn ), 
q is (91 Ql,l 00 • Ql,s 1 ) o 00 

• o (gu Qu,l oo. Qu,sJ and r is (h1 r1,1 00. r1,tJ o 00 
• 

o (hv rv,l ... rv,tJ· First, I show by induction on the number of (occurrences 
of) transformations in p that p -f< p. For this, note that p cannot be a proper 
prefix of itself and there cannot exist i such that fi < fi, since < is a strict 
total order. Also there cannot exist i and ji such that Pi,ji --< Pi,jn by the 
induction hypothesis. 

Next I show by induction on the maximum of the number of transforma
tions in p and the number in q that p --< q implies q -f< p. Thus suppose that 
p --< q. If p is a proper prefix of q, then it is clear that q -f< p. If there exists i 
such that /i < gi, and p and q agree to the left of fi and gi, then it is clear 
that q -/< p, since < is a strict total order. Finally, if there exist i and ji such 
that Pi,]i --< Qi,]i, and p and q agree to the left of Pi,ji and Qi,ji, then q -/< p 
since, by the induction hypothesis, it follows that Qi,]i -/< Pi,ji. 

Now I show by induction on the maximum of the number of transforma
tions in p, the number in q, and the number in r that p--< q and q --< r imply 
that p --< r. There are three cases to consider, corresponding to the three 
cases in the definition of p --< q. 

Suppose that p is a proper prefix of q. If q is a proper prefix of r, then p 
is a proper prefix of r and so p --< r. If there exists i such that 9i < hi, and 
q and r agree to the left of 9i and hi, then either p is a proper prefix of r or 
fi < hi and p and r agree to the left of fi and hi, and so p --< r. If there exist 
i and ji such that Qi,ji --< ri,ji, and q and r agree to the left of Qi,ji and ri,ji, 
then either p is a proper prefix of r or Pi,ji --< ri,ji and p and r agree to the 
left of Pi,]i and ri,]i' and sop--< r. 

For the second case, suppose there exists i such that fi < gi, and p and q 
agree to the left of fi and 9i, If q is a proper prefix of r, then fi <hi, and p 
and r agree to the left of fi and hi, and sop--< r. If there exists i' such that 
9i' < hi', and q and r agree to the left of 9i' and hi', then, for i" = min( i, i'), 
fi" < hi" and p and r agree to the left of fi" and hi", and so p --< r. Finally, 
suppose that there exist i' and ji' such that Qi',ji' --< ri',ji', and q and r agree 
to the left of Qi' ,ji' and ri' ,ji'. If i :::; i', then fi < hi and p and r agree to the 
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left of fi and hi· If i' < i, then Pi',);' --< ri',j,, and p and r agree to the left of 
Pi' ,j,, and ri' ,j,,. In either case, p --< r. 

For the third case, suppose there exist i and ji such that Pi,j, --< qi,j,, and 
p and q agree to the left of Pi,j; and qi,j,. If q is a proper prefix of r, then 
Pi,j, --< ri,j,, and p and r agree to the left of Pi,j; and r;,j, and so p --< r. 
Suppose that there exists i' such that 9i' < h;', and q and r agree to the 
left of 9i' and hi'. If i' ::; i, then fi' < hi' and p and r agree to the left of 
fi' and hi'. If i < i', then Pi,j, --< r;,j, and p and r agree to the left of Pi,j, 
and ri,j,. In either case, p --< r. Finally, suppose there exist i' and ji' such 
that qi' ,J;' --< ri' ,j,,, and q and r agree to the left of q;' ,);' and ri' ,j,,. Put 
i" = min(i, i') and let ji" be j; if i < i', or ji' if i' < i, or min(ji',ji" ), 
otherwise. Then Pi",);" --< ri" ,);" and p and r agree to the left of Pi",};" and 
ri" ,j,,, and so p --< r. (Here the induction hypothesis is used if i = i' and 
ji = ji'-) 

Thus --< is a strict partial order. 
Finally, I show that --< is total, that is, for any standard predicates p and 

q, either p = q or p --< q or q --< p. The proof proceeds by induction on the 
maximum of the number of predicates in p and the number in q. Suppose that 
p and q are distinct. By Proposition 4.2.5, one of p or q is a proper prefix 
of the other; or there exists i such that the transformation fi in p and the 
transformation 9i in q are distinct, and p and q agree to the left of fi and g;; 
or there exist i and ji such that Pi,j, in p and q;,j, in q are distinct, and p and 
q agree to the left of Pi,j, and q;,j,. In the first case, either p --< q or q --< p. In 
the second case, since < is a total order, either j; < g; or g; < fi, and hence 
either p --< q or q --< p. In the third case, by the induction hypothesis, either 
Pi,j, --< qi,j; or q;,j, --< Pi,j;, and so once again either p --< q or q --< p. D 

The relation j is defined by p j q if either p = q or p --< q. Clearly, j is 
a total order on S. 

4.3 Regular Predicates 

Now the class of regular predicates can be defined by induction on the number 
of transformations in a predicate. 

Definition 4.3.1. A standard predicate (h Pl,l .. ·Pl,kJ o • • • o Un Pn,l ... 
Pn,kn) is regular if Pi,j, is a regular predicate, for i = 1, ... , n and ]i = 
1, ... , k;, and fi is symmetric implies that Pi, I j · · · j Pi,k;, for i = 1, ... , n. 

The set of all regular predicates is denoted by R. 

Example 4.3.1. Going back to Example 4.1.15, 

vertices o ( domCard (vertex o ( 112 p q))) o ( > 7) 

is a regular predicate iff p j q, and p and q are regular predicates. 
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The next result shows that each standard predicate is equivalent to a 
regular predicate and hence attention can be confined to the generally much 
smaller class of regular predicates. 

Proposition 4.3.1. For every p E S, there exists q E R such that p and q 
are equivalent. 

Proof. The existence of the regular predicate q is shown by induction on the 
number of transformations in p. Let p be (h Pl,l ... PI,k1 ) o • • • o Un Pn,l ... 
Pn,kn). By the induction hypothesis, for each i = 1, ... , n and ji = 1, ... , ki, 
there is a regular predicate P~,Ji such that P~,j, and Pi,ji are equivalent. Let 
r be (h P~,l .. -P~,kJ o • • • o Un P~,l .. ·P~,kJ. Then p and rare equivalent. 
Now, since ::Sis a total order on standard predicates of the same type, for each 
symmetric transformation fi ( i E { 1, ... , n}) in r, one can sort the arguments 
p; 1 , ... , p; k according to ::S to obtain the desired regular predicate q such 
that p and q are equivalent. D 

One cannot expect the regular predicate q in Proposition 4.3.1 to be 
(syntactically) unique. To see this, simply note that (domCard top) o (> 0) 
and ( setExists 1 top) are regular predicates, and are equivalent. 

On the other hand, using the proof of Proposition 4.3.1 as a basis, one 
can give an algorithm for constructing a regular predicate equivalent to some 
given standard predicate. This algorithm is given in Fig. 4.2 below. 

function Regularise(p) returns a regular predicate q such that p and q are 
equivalent; 

input: p, a standard predicate (h Pl,l ... Pl,k1 ) o • · · o (fn Pn,l ... Pn,kn ); 

for i = 1, ... , n do 

for ji = 1, ... , ki do 
Pi,Ji := Regularise(pi,JJ; 

if fi is symmetric 
then 

else 

[qi,l, ... , qi,kJ := Sort([Pi,l, ... , Pi,k,]); 
Pi := (fi qi,l ... qi,kJ; 

Pi := (fi Pi,l · · ·Pi,kJ; 

return Pl o · · · o Pn; 

Fig. 4.2. Algorithm for regularising a standard predicate 

Definition 4.3.2. The standard predicate q given by the algorithm in 
Fig. 4.2 is called the regularisation of the standard predicate p. The regu
larisation of p is denoted by p. 
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Proposition 4.3.2. 

1. The regularisation of a standard predicate is unique. 
2. The regularisation of a standard predicate has the same type as the stan-

dard predicate. 
3. The regularisation of a standard predicate is a regular predicate. 
4. A standard predicate and its regularisation are equivalent. 
5. The regularisation of a regular predicate is itself. 
6. If two standard predicates have the same regularisation, then they contain 

the same number of transformations. 

Proof. Each of these parts is a straightforward induction argument on the 
number of transformations in the standard predicate. D 

A more detailed look at the properties of regularisation is now undertaken. 
The first step is to give another algorithm for finding the regularisation of a 
standard predicate. This algorithm is given in Fig. 4.3 below. The basic idea 
of the algorithm is simple: whenever two adjacent regular predicates are 'not 
in order', transpose them, until no such transpositions are possible. 

function Regularise2 (p) returns a regular predicate q such that p and q 
are equivalent; 

input: p, a standard predicate; 

q :=p; 

while there exist a standard predicate that is a subterm in q of the form 
(g q1 ... qm) and i E {1, ... , m - 1} such that g is symmetric, 
q; and qi+l are regular, and q;+l -< q; do 

q := q[(g q1 · · · qm)/(g q1 · · · q;-1 qi+l q; qi+2 · · · qm)J; 
return q; 

Fig. 4.3. Another algorithm for regularising a standard predicate 

Proposition 4.3.3. The algorithm of Fig. 4.3 terminates and returns the 
regularisation of the input standard predicate. 

Proof. First, termination is demonstrated. The proof is by induction on the 
number of transformations in the input standard predicate p. Thus suppose 
the algorithm terminates for standard predicates that have < m transforma
tions and p has m transformations. Let p have the form (h p1,1 ... p1,k,) o • • • 

o (! n Pn, 1 ... Pn,kJ. By the induction hypothesis, the algorithm terminates on 
Pi,ji, for each i and ji. Thus it is only necessary to show that the algorithm 
terminates when putting the regularisations of Pi, 1 , ... , Pi,k; in order accord
ing to -<, for i = 1, ... , n. But this follows since each transposition puts two 
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such regular predicates in the correct order with respect to one another and 
later transpositions do not change this. 

The proof that the algorithm returns the regularisation of the input stan
dard predicate p is also by induction on the number of transformations in 
p. Thus suppose the result holds for standard predicates that have < m 
transformations and p has m transformations. By the induction hypothesis, 
the algorithm returns the regularisation of Pi,j,, for all i and ji. Then, for 
symmetric fi, it is clear that by doing the transpositions the algorithm puts 
Pi, 1, ... Pi,k, in the correct order according to :::<, for i = 1, ... , n. D 

Example 4.3.2. Let J, g, h, i, j, and k be transformations such that j, h, and 
k are symmetric and (f (h j i) g) o (k i g) is a standard predicate. Suppose the 
order on the transformations is f < g < h < i < j < k. Then the algorithm 
of Fig. 4.3 could obtain the regularisation of this standard predicate by a 
sequence of transpositions that produces the following sequence of standard 
predicates. 

(f (hji)g)o(kig) 
(f(hij)g)o(kig) 
(fg(hij))o(kig) 
(f g (hij))o(kgi). 

Thus (f g (hi j)) o (kg i) is the regularisation of (f (h j i) g) o (k i g). Of 
course, a number of other sequences of transpositions also give the regulari
sation. 

The next issue is to track the 'movement' of a subterm during regulari
sation of the input standard predicate. Consider a single step of the regular
isation algorithm of Fig. 4.3. Suppose q is a subterm of the current standard 
predicate being considered by the algorithm that is itself a standard predi
cate and has occurrence o. When one step of the algorithm is applied, several 
things can happen to q and o. If the step concerns transposing two subterms 
that are disjoint from q, then q is unchanged in the next standard predicate 
and has the same occurrence. If the step concerns transposing two subterms 
that are subterms of q, then q is modified but its occurrence is unchanged. 
Finally, if the step concerns transposing two subterms one of which has q 
as a subterm, then q is unchanged but its occurrence changes. There are no 
other cases. Consequently, there is a sequence of pairs of subterms and their 
occurrences of the form (s1, ol), ... , (sm, om), where s1 is the initial subterm 
q and sm is a subterm in the regularisation, and each (si, oi) is obtained from 
(si-1, Di-d by a single step of the algorithm. 

Definition 4.3.3. The subterm sm is called the transpose of s 1 and the 
occurrence Om is called the transpose of o1 . 

If q is a subterm at occurrence o, then its transpose is denoted by qt and 
the occurrence of the transpose is denoted by d. 
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Proposition 4.3.4. Let p and q be standard predicates such that q is a sub
term of p at occurrence o. Then the following hold. 

1. The transpose of q is the regularisation of q. 
2. The transpose of o is unique. 
3. The positional type of qt in p is the same as the positional type of q in p. 

Proof. 1. Since the regularisation of p is regular, it follows that qt being a 
subterm that is a standard predicate in this regular predicate is itself regular. 
Thus qt is the output of the algorithm of Fig. 4.3 applied to q and hence is 
the regularisation of q. 

2. The proof is by induction on the number of transformations in p. Sup
pose the result holds for standard predicates that contain < m transfor
mations and p contains m transformations. Let p be (h P1,1 ... P1,kJ o • • • 

o Un Pn,1 .. ·Pn,kJ· If q is a suffix of p, then it is clear that ot = o. Similarly, 
if q is (fi Pi,1 ... Pi,kJ, for some i, then it is clear that at = o. Otherwise, q 
is a subterm of some Pi,j;. By the induction hypothesis, the transpose of the 
occurrence of q in Pi,j; is unique. Since the transpose of the occurrence of 
Pi,j; in pis uniquely determined by --<, the result follows. 

3. This is a straightforward induction argument. D 

Proposition 4.3.5. Let p and p' be standard predicates such that p = p'. 
Suppose that q is a standard predicate which is a subterm of p at occurrence 
o and q' is a standard predicate which is a subterm of p' at occurrence o' such 
that ot =oft. Let r and r' be standard predicates such that r = r' and p[qjr] 
and p'[q' jr'] are standard predicates. Then p[qjr] = p'[q' jr']. 

Proof. Proposition 4.3.2 shows that p and p' have the same number of trans
formations. The proof is by induction on the number of transformations in 
p and p'. Suppose that the result holds for pairs of standard predicates that 
contain < m transformations and that p and p' contain m transformations. 
Let p be 

(JI P1,1 · · ·P1,kJ 0 • • • 0 Un Pn,1 · · ·Pn,kJ· 

Then, since p = p', p' must have the form 

If q is a suffix (fi Pi,1 ... Pi,kJ o • • • o Un Pn,1 ... Pn,kJ, then q' must be the 
suffix (fi p~ 1 ... p~ k ) o • • • o Un p~ 1 ... p~ k ), since ot = oft, and the result 
follows. Si~ilarly, 'if q is (fi Pi,1· .'.pi,kJ,'t'hen q' must be (fi P~, 1 . ··P~,k), 
since ot = o't, and the result follows. Finally, suppose that q is a subterm 
of some Pi,j;. Then, since at = o't, q' must be a subterm of some P~,l;. 

Since Pi,j; = P[Z, by the induction hypothesis, Pi,j;[qjr] = P~,l; [q' /r']. Thus 

p[qjr] = p'[q' jr']. D 
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Before moving on to other issues, note that there is scope for employing 
syntactic conditions other than symmetry to determine equivalence of pred
icates. Furthermore, notwithstanding the undecidability of the problem, one 
could even employ a theorem prover to attempt to establish equivalence. If 
the cost of proving a theorem to show that two predicates are equivalent is 
less than the cost of redundantly using both predicates in some application, 
then the theorem-proving approach is worthwhile. 

The final issue is that of the finiteness of the class of standard predicates. If 
there are infinitely many transformations, then clearly there can be infinitely 
many standard predicates. For example, if all predicates on integers of the 
form (> n), for n = 1, 2, 3, ... , are included in the class of transformations, 
then (trivially) there are infinitely many standard (and also regular) predi
cates. Even in the case when there are only finitely many transformations, 
there may still be infinitely many standard predicates. To see this, consider 
the transformation leftTree: BTree f-L-+ BTree f-L· Here (BTree t-L) is the type 
of binary trees whose nodes have type f-L and the meaning of left Tree is that it 
returns the left subtree of its argument. Then compositions of leftTree with 
itself of unbounded length can be formed, and so there are infinitely many 
standard predicates. The next proposition gives obvious conditions under 
which the class of standard predicates is finite. 

Proposition 4.3.6. Suppose that the class of transformations is finite and 
the number of times each transformation may appear in a standard predicate 
is bounded. Then the number of standard, and hence regular, predicates is 
finite. 

Proof. The product of the number of transformations and the maximum 
number of times any transformation can appear gives an upper bound on the 
number of transformations that can appear in any standard predicate. Hence 
the number of standard predicates is finite. D 

4.4 Predicate Rewrite Systems 

This section addresses the central issue of the construction of standard pred
icates using predicate rewrite systems. 

Definition 4.4.1. A predicate rewrite system is a finite relation >----> on S 
satisfying the following two properties. 

1. For each p >----> q, the type of p is more general than the type of q. 
2. For each p >----> q, there does not exist s >----> t such that q is a proper 

subterm of s. 

If p >----> q, then p >----> q is called a predicate rewrite, p the head, and q the body 
of the predicate rewrite. 
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The second condition of Definition 4.4.1 states that no body of a rewrite is 
a proper subterm of the head of any rewrite. In practice, the heads of rewrites 
are usually standard predicates consisting of just one transformation, such 
as top. In this case, the second condition is automatically satisfied, since the 
heads have no proper subterms at all. 

Proposition 4.4.1. Let p, q, and r be standard predicates, and q an eligible 
subterm of p. Then p[qjr] is a standard predicate iff the type of r and the 
positional type of q in p are unifiable. 

Proof. By Proposition 4.2.4, p[qjr] is a standard predicate iff p[qjr] is a term. 
Then, by Proposition 2.5.7, p[qjr] is a term iff the type of rand the positional 
type of q in p are unifiable. D 

Definition 4.4.2. Let >----> be a predicate rewrite system and p a standard 
predicate. An eligible subterm r of p is a redex with respect to >----> if there 
exists a predicate rewrite r >----> b such that the type of b and the positional 
type of r in p are unifiable. In this case, r is said to be a redex via r >----> b. 

It follows from Proposition 4.4.1 that r is a red ex iff p[r j b] is a standard 
predicate. The phrase 'redex with respect to >---->' is usually abbreviated to 
simply 'redex' with the predicate rewrite system understood. 

Definition 4.4.3. Let >----> be a predicate rewrite system, and p and q stan
dard predicates. Then q is obtained by a predicate derivation step from p 
using>----> if there is a redex r via r >---->bin p and q = p[r/b]. The redex r is 
called the selected redex. 

Proposition 4.4.2. Let >----> be a predicate rewrite system, and p and q be 
standard predicates such that q is obtained by a predicate derivation step 
from p. Then the type of p is more general than the type of q. 

Proof. Suppose that q is obtained by a predicate derivation step from p via 
r >----> b. Thus q is p[r jb] and the type of r is more general than the type of 
b. Consequently, by Proposition 2.5.8, the type of p is more general than the 
type of p[r jb]. D 

Proposition 4.4.3. Let >----> be a predicate rewrite system, and p and q be 
standard predicates such that q is obtained by a predicate derivation step from 
p via r >----> b, where r is a subterm of p at occurrence o. Then the following 
hold. 

1. No occurrence of a redex in q is a proper prefix of o. 
2. For each red ex s in q at occurrence o', say, either s is a red ex in p 

at occurrence o' such that o and o' are disjoint or s is a redex in b at 
occurrence o", where o' = oo". 

Intuitively, all redexes (more precisely, the underlying standard predi
cates) in q either are already present in p or are introduced through b. 
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Proof. 1. If there was an occurrence of a redex in q that was a proper prefix 
of the occurrence of the redex r in p, then the body b of the rewrite r >--> b 
would be a proper subterm of the head of some rewrite, contradicting the 
second condition in Definition 4.4.1. 

2. According to Part 1, if s is a redex at occurrence o' in q, then o' cannot 
be a proper prefix of o. Thus either there exists o" such that o' = oo" or 
neither o nor o' is a prefix of the other. 

In the first case, s is a subterm of b at occurrence o". It follows from 
Proposition 2.5.2 that the positional type of s in b is weaker than the posi
tional type of s in q. Thus s is a redex in b. 

In the second case, since the type of r is more general than the type of 
b by the first condition in Definition 4.4.1, using Proposition 2.5.2, one can 
show that the positional type of s in p is weaker than the positional type of 
s in q. Thus s is a redex in p. D 

If the second condition of Definition 4.4.1 is dropped, then Proposi
tion 4.4.3 no longer holds. 

Example 4.4.1. Consider a transformation f: (a---+ f?) ---+a---+ f?, where a is 
a parameter. Let >--> be the relation 

top >--> bottom 

f bottom >--> bottom. 

Then f bottom is obtained from f top by a predicate rewrite step using the 
rewrite top >--> bottom. However, f bottom is a redex in f bottom and thus 
Part 1 of Proposition 4.4.3 does not hold. For >-->, the body of both rewrites 
is a proper subterm of the head of the second rewrite. Thus >--> satisfies the 
first, but not the second, condition of Definition 4.4.1. 

Definition 4.4.4. A predicate derivation with respect to a predicate rewrite 
system >--> is a finite sequence (Po, p 1 , ... , Pn) of standard predicates such that 
Pi is obtained by a derivation step from Pi-l using >-->, for i = 1, ... , n. The 
length of the predicate derivation is n. The standard predicate p0 is called the 
initial predicate and the standard predicate Pn is called the final predicate. 

Usually the initial predicate is top, the weakest predicate. 

Example 4.4.2. Consider the keys example of Sect. 1.3 again. Let the trans
formations be as follows. (The transformation top : a ---+ f? is always taken 
for granted.) 
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( = Abloy) : Make ---+ fl 

(=Chubb): Make---+ fl 

(= Rubo): Make---+ fl 

(= Yale): Make---+ fl 

(= 2): NumProngs---+ fl 

( = 3) : NumProngs ---+ fl 

(= 4): NumProngs---+ fl 

( = 5) : NumProngs ---+ fl 

( = 6) : NumProngs ---+ fl 

( = Short) : Length ---+ fl 

(=Medium): Length---+ fl 

( = Long) : Length ---+ fl 

( = Narrow) : Width ---+ fl 

( = Normal) : Width ---+ fl 

( = Broad) : Width ---+ fl 

projMake : Key ---+ Make 

projNumProngs: Key---+ NumProngs 

projLength : Key---+ Length 

projWidth: Key---+ Width 

setExists1 : (Key---+ fl) ---+ Bunch---+ fl 

/\ 4 : (Key---+ fl)---+ (Key---+ fl)---+ (Key---+ fl)---+ (Key---+ fl)-+Key-+fl. 

Let the predicate rewrite system be as follows. 

top >----> setExists1 (/\4 (projMake o top) (projNumProngs o top) 

(projLength o top) (proj Width o top)) 

top >-> ( = Abloy) 

top>---->(= Chubb) 

top>---->(= Rubo) 

top>---->(= Yale) 

top>->(=2) 

top>----> (= 3) 

top>-> ( = 4) 

top>->(=5) 

top >----> (= 6) 

top >-> ( = Short) 

top >-> ( = Medium) 



top >----> ( = Long) 

top>---->(= Narrow) 

top >----> ( = Normal) 

top >----> ( = Broad). 
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It is clear that the above set of rewrites satisfies the two conditions in Defi
nition 4.4.1. Then the following is a predicate derivation with respect to this 
predicate rewrite system. 

top 

setExists1 (/\4 (projMake o top) (projNumProngs o top) 

(projLength o top) (proj Width o top)) 

setExists 1 (/\4 (projMake o ( = Abloy)) (projNumProngs o top) 

(projLength o top) (proj Width o top)) 

setExists 1 (1\4 (projMake o ( = Abloy)) (projNumProngs atop) 

(projLength o ( = Medium)) (proj Width o top)) 

setExists1 ( /\4 (projMake o ( = Abloy)) (projNumProngs o top) 

(projLength o ( = Medium)) (proj Width o ( = Broad))) 

setExists 1 (1\4 (projMake o ( = Abloy)) (projNumProngs o ( = 6)) 

(projLength o ( = Medium)) (proj Width o ( = Broad))). 

The first predicate rewrite is used in the first step. (It is intended that the 
derivation provide a predicate of type Bunch----+ D.) For the second step, the 
redex top has positional type Make ----+ D which is the same as the type of the 
body of the predicate rewrite top>---->(= Abloy). Thus this occurrence of top 
is indeed a redex via this predicate rewrite. The remaining steps are similar. 

Proposition 4.4.4. Let >----> be a predicate rewrite system and (Po, p 1 , ... , Pn) 
a predicate derivation using >---->. Then the type of p0 is more general than the 
type of Pn· 

Proof. The proof is an easy induction argument on the length of the predicate 
derivation using Proposition 4.4.2. 0 

In some later results, the concept of a predicate subderivation will be 
needed. 

Definition 4.4.5. Let>----> be a predicate rewrite system and (p0 ,p1 , ... ,Pn) 
a predicate derivation with respect to >---->. Then the predicate subderivation 
(q0 , q1 , ... , qm) with initial predicate q0 , where qj is a standard predicate that 
is a sub term of PiJ, for j = 0, ... , m, and i0 < i 1 < · · · < im, is defined by 
induction on n as follows. 

If n = 0, then q0 must be a subterm of p0 and the predicate subderivation 
with initial predicate qo is (q0 ). 
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Suppose now that predicate subderivations for predicate derivations up to 
length n have been defined. Let (Po, P1, ... , Pn, Pn+ 1) be a predicate derivation 
of length n + 1 and qo be a standard predicate that is a subterm of Pio, for 
some i 0 E { 0, ... , n + 1}. There are two cases to consider. 

1. If io ~ n, then the predicate subderivation (q0 , q1 , ... , qm) with initial 
predicate qo for the predicate derivation (p0 , p 1 , ... , Pn) is defined. If the 
redex r selected in Pn is a subterm of qm, then the predicate subderivation 
with initial predicate qo for the predicate derivation (po,P1, ... ,Pn,Pn+l) 
is ( qo, q1, ... , qm, qm [r / b]), where r >---> b is the rewrite used. Otherwise, 
the predicate subderivation with initial predicate qo for the predicate 

derivation (po,P1, ... ,pn,Pn+1) is (qo, q1, ... , qm)· 
2. If io = n + 1, then predicate subderivation with initial predicate q0 for 

the predicate derivation (po,P1, ... ,pn,Pn+1) is (qo). 

Example 4.4.3. For the predicate derivation in Example 4.4.2, the following 
is a predicate subderivation. 

1\4 (projMake o (= Abloy)) (projNumProngs o top) 

(projLength o top) (proj Width o top) 

1\4 (projM ake o ( = Abloy)) (projNumProngs o top) 

(projLength o ( = Medium)) (proj Width o top) 

1\4 (projMake o ( = Abloy )) (projNumProngs o top) 

(projLength o ( = Medium)) (proj Width o ( = Broad)) 

1\4 (projMake o (= Abloy)) (projNumProngs o (= 6)) 

(projLength o (=Medium)) (projWidth o (=Broad)). 

Proposition 4.4.5. Let>---> be a predicate rewrite system and (p0 ,p1 , ... ,pn) 
a predicate derivation with respect to >--->. Suppose ( q0 , q1 , ... , qm) is a predi

cate subderivation with initial predicate q0 for (p0 ,p1 , ... ,pn)· Then 
( q0 , q1 , ... , qm) is a predicate derivation with respect to >--->. 

Proof. The proof is by induction on the length n of the predicate derivation. 
If n = 0, the result is obvious. Suppose now that the result holds for predicate 
derivations of length up to n. Let (Po, p1 , ... , Pn+ 1) be a predicate derivation 
of length n + 1. Let q0 be a standard predicate that is a subterm of Pio. 

If i 0 = n + 1, the result is obvious. Otherwise, i 0 ~ n. By the induction 
hypothesis, the predicate subderivation (q0 , q1 , ... , qm) with initial predicate 
q0 is a predicate derivation. If the redex selected in Pn is not a subterm of 
qm, the result follows. Suppose finally that the selected redex r in Pn is a 
subterm of qm. Then r is a redex in qm, since, by Proposition 2.5.2, the 
positional type of r in qm is more general than the positional type of r in 
Pn· Thus, if the rewrite used is r >---> b, then qm[r/b] is a standard predicate. 
Putting qm+l = qm[rjb], it follows that (qo,q1, ... ,qm,qm+l) is a predicate 
derivation, as required. D 
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In machine learning applications, a predicate rewrite system is used to 
generate a search space of standard predicates. Starting from some predi
cate p0 , one generates all the standard predicates that can be obtained by a 
predicate derivation step from p0 , then all the standard predicates that can 
be obtained from those by a predicate derivation step, and so on. A path in 
the search space is a sequence of standard predicates each of which (except 
for the first) can be obtained from its predecessor by a predicate derivation 
step. Thus each path in the search space is a predicate derivation. As shall be 
shown later, the search space may not be a tree since there may be more than 
one path to a particular predicate. An algorithm for generating the search 
space is given in Fig. 4.4. 

function Enumerate(>---+, po) returns the set of standard predicates in the 
search space rooted at po using >---+; 

input: >---+, a predicate rewrite system; 
po, a standard predicate; 

predicates := {}; 

openList := (po); 
while openList f= 0 do 

p : = head ( openList); 

openList : = tail ( openList); 

predicates : = predicates U {p}; 
for each redex r via r >---+ b, for some b, in p do 

q := p[r/b]; 

openList := openList ++ [q]; 

return predicates; 

Fig. 4.4. Algorithm for enumerating standard predicates 

Typically, p0 is top. Since the intention is usually to generate only predi
cates that are applicable to a particular closed type (the type of the individ
uals in the application), there can be some ambiguity, especially at the top 
level, about which rewrites should be used. Thus there may be an implied 
restriction on the choice of rewrites that are used in derivation steps to en
force this property. For example, in Example 4.4.2, if one is only interested 
in predicates on bunches of keys, then only the first rewrite would be used at 
the root top. After that, the types of the redexes are sufficiently constrained 
by their position in the standard predicates that are generated and there is 
no more ambiguity. 
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4.5 The Implication Preorder 

The next major issue is that of determining whether one predicate logically 
implies (that is, is stronger than) another. This relationship between pred
icates plays a crucial role in structuring the search space of predicates in 
applications. The first definition needed for this is that of the implication 
preorder for standard predicates. The binary relation <= on S is defined as 
follows. 

Definition 4.5.1. Let 13 be the background theory, and p, q E S. Then p <= q 
if the type of pis more general than the type of q and Vx.((p x) ~ (q x)) is 
a logical consequence of 13. 

Of course, this definition could be given for any predicates, not just stan
dard ones, but that generality is not needed here. Note that, since the type 
of pis more general than the type of q, it follows that Vx.((p x) ~ (q x)) is 
indeed a term. 

Proposition 4.5.1. The relation<= is a preorder on S. 

Proof. Let p, q, r E S. Clearly, p <= p. Also if p <= q and q <= r, then p <= r, 
since ~ is transitive. Thus <= is a preorder. D 

The relation <= is called the implication preorder. 
In the top-down construction of predicates, it is crucial to ensure that 

if a standard predicate q is obtained by a predicate derivation step from a 
standard predicate p, then p <= q holds. Sufficient conditions for this are now 
given. 

Definition 4.5.2. A standard predicate p is monotone with respect to a 
predicate rewrite system >--> if, for every disjoint set {ri}f=1 of redexes in 
p with respect to ,__. and for every sets { si}f=l and { sa~l of standard 
predicates such that ri <= si <= s~ (i = 1, ... ,n) and p[rds1, ... ,rn/sn] and 
p[rds~, ... , rn/s~] are standard predicates, it follows that Ph/s1, ... , rn/sn] 
<= p[r1/ s~, ... , rn/ s~]. 

If a standard predicate contains no redexes with respect to a predicate 
rewrite system >-->, then it is monotone with respect to >-->. If p is a standard 
predicate whose only redex with respect to a predicate rewrite system >--> is 
a suffix of p, then p is monotone with respect to >-->. 

Example 4. 5.1. If p1 , ... , Pn are standard predicates that are monotone with 
respect to a predicate rewrite system, then so are 1\n p1 ... Pn and 
setExistsn Pl ... Pn. 

Example 4.5.2. If pis a standard predicate that is monotone with respect to 
a predicate rewrite system, then so is ( domCard p) o ( > N). 
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One could conjecture that for a standard predicate to be monotone it 
suffices to consider one redex at a time. It turns out that this is not the case. 

Example 4.5.3. Consider the transformation 

f: (a-+ D) -+ (a-+ D) -+a-+ D 

defined by 

f {
bottom 

pq= 
top 

if either p <¢= q or q <¢= p 

otherwise. 

Let M be a unary type constructor and r and s predicates on M such that 
r f= s and s f= r. (One can obtain this by letting M be the type of a two 
element domain.) Let >---> be the predicate rewrite system 

top >---> bottom 

top>---> r 

top>---> s. 

Then f top top is separately monotone in each of its redexes. However, 
f top top f= f r s, and thus f top top is not monotone. 

Definition 4.5.3. A predicate rewrite system>---> is monotone if the following 
conditions are satisfied. 

1. p >---> q implies p <¢= q. 
2. p >---> q implies q is monotone with respect to >--->. 

Example 4.5.4. The predicate rewrite system of Example 4.4.2 is monotone. 
It is clear that each rewrite p >---> q satisfies p <¢= q. Furthermore, the body 
of each rewrite is monotone. For all but the first rewrite, the body contains 
no redex and is therefore monotone. For the first rewrite, it suffices to note 
that projMake o top, projNumProngs o top, and so on, are all monotone with 
respect to the predicate rewrite system since they have just one redex that 
is a suffix and therefore the body is monotone by the earlier remarks about 
1\n and setExistsn. 

The monotone property of standard predicates is preserved under predi
cate derivation steps for monotone predicate rewrite systems. 

Proposition 4.5.2. Let >---> be a monotone predicate rewrite system and p 
a monotone predicate with respect to >--->. Suppose that q is obtained by a 
predicate derivation step from p using >--->. Then the following hold. 

1. p<¢=q. 

2. q is monotone with respect to >--->. 
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Proof. 1. Let r be the redex selected in p and r >----> b the rewrite employed 
in the predicate derivation step. Then r {=b. Since pis monotone, it follows 
that p[rlr] {= p[rlb]. That is, p {= q. 

2. Let {r1}j=1 (m;::: 1) be a disjoint set of redexes in q and {s1 }~ 1 and 
{ sj} J= 1 be sets of standard predicates such that r 1 {= s 1 {= sj (j = 1, ... , m) 
and q[rl/s1 , ... ,rmlsm] and q[rl/s~, ... ,rmls~] are standard predicates. By 
Proposition 4.4.3, each r1 is either a redex in p or a redex in b. Let B denote 
the subset of {1, ... , m} such that r1 is a redex in b iff j E B. Suppose B = 
{j1, ... , jk}, for some k ;::: 0, and {1, ... , m} \B = {l1, ... , lv }, for some v ;::: 0. 
Since b is monotone and both b[rj, I Sj1 , .•. , 'Jkl SJk] and b[rj) sj,, ... , Tjk I sjk] 
are standard predicates, it follows that 

blrJ, I Sj1 , .•. , 'Jkl SJkl {= b[r]l I sj,, ... , Tjk I sjJ 

Note also that r {= blrJ) sj, ... , Tjk I Sjk], using the facts that r {= b and 
b {= blrJ,Isj,, ... ,rjkls]k], since b is monotone. Consider the disjoint set 
{r, rt,, ... , rlv} of redexes in p. Since 

and 

each of the left hand sides is a standard predicate. It follows that 

p[r lblrJ, I Sj1 , ••• , Tjk I Sjk], rt; I st, ... , rt,) sivJ {= 

p[rlb[r1,lsj,, ... ,rjklsjJ,r~,ls;,, ... ,rtvfsU, 

since p is monotone. Consequently 

Thus q is monotone. 0 

The last result extends easily to predicate derivations. 

Proposition 4.5.3. Let >----> be a monotone predicate rewrite system and 
(Po, p1 , ... , Pn) a predicate derivation using >----> such that the initial predicate 
is monotone with respect to >---->. Then the following hold. 

1. Po {= P1 {= · · · {= Pn · 
2. Pi is monotone with respect to >---->,fori= 1, ... , n. 

Proof. Each part can be proved by a straightforward induction argument on 
the length of the derivation, using Proposition 4.5.2. 0 
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Example 4.5.5. Consider the predicate derivation given in Example 4.4.2 
again. The initial predicate top is monotone with respect to the predicate 
rewrite system that is also monotone. Consequently, 

top 

-¢= setExists 1 (/\4 (projMake o top) (projNumProngs o top) 

(projLength o top) (proj Width o top)) 

-¢= setExists 1 (/\4 (projMake o ( = Abloy)) (projNumProngs atop) 

(projLength o top) (proj Width o top)) 

-¢= setExists 1 (/\4 (projMake o (= Abloy)) (projNumProngs o top) 

(projLength o ( = Medium)) (proj Width o top)) 

-¢= setExists1 (/\4 (projMake o (= Abloy)) (projNumProngs o top) 

(projLength o ( = Medium)) (proj Width o ( = Broad))) 

-¢= setExists1 (/\4 (projMake o (= Abloy)) (projNumProngs o (= 6)) 

(projLength o (=Medium)) (projWidth o (=Broad))). 

Proposition 4.5.3 does not hold if the second condition of Definition 4.4.1 
is dropped. 

Example 4.5.6. Consider the transformations 

f: (a----> n)----> a----> n 

defined by 

f p =top, 

and 

rv: (a----> n) ---->a----> n 

defined by 

rv p = .>..x.-.(p x), 

where a is a parameter. Let >--+ be the relation 

top >--+ bottom 

f bottom >--+ bottom. 

Note that >--+ is monotone and rv f top is monotone with respect to >--+. Then 

rv J top 

rv f bottom 

rv bottom 
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is a predicate derivation. However, while,....., f top <= ,....., f bottom, it is not true 
that ,....., f bottom <= ,....., bottom and, furthermore, ,....., f top </= ,....., bottom. Also 
,....., f bottom is not monotone. The problem is that >-+ is not a predicate rewrite 
system because it does not satisfy the second condition of Definition 4.4.1. 

In the next section, it will become clear that it is useful to 'regularise' 
predicate rewrite systems. This concept is introduced now and related to the 
monotone property. 

Definition 4.5.4. A predicate rewrite system >-+ 1s regular if, for each 
p >-+ q, p E R and q E R. 

Definition 4.5.5. Let >-+ be a predicate rewrite system. Then the regulari
sation of >-+ is the finite relation >-+ on R defined by p >-+ q iff there exist p' 
and q' such that p = p', q = q', and p' >-+ q'. 

The regularisation of a predicate rewrite system naturally depends upon 
the choice of total order < on the transformations. In practice, the regu
larisation of a predicate rewrite system is again a predicate rewrite system 
(for example, in the case when the heads of the rewrites are standard pred
icates containing a single transformation). However, in sufficiently bizarre 
circumstances, this may not be the case, since Condition 2 of the definition 
of predicate rewrite system may not be satisfied. 

Example 4.5. 7. Consider the predicate rewrite system >-+ given by 

(!(gab)) >-+ (g b a), 

where J, g, a and b have suitable signatures and g is symmetric. Consider any 
regularisation based on an order on transformations for which a < b. Then 
the regularisation >-+ is 

(!(gab)) >-+ (gab), 

which is not a predicate rewrite system. 

If the regularisation of a predicate rewrite system is a predicate rewrite 
system, then it is clearly regular. 

Example 4.5.8. Consider again the predicate rewrite system of Example 4.4.2. 
Suppose that the total order< is the lexicographic order, so that projLength < 
projMake < projNumProngs < projWidth. Then the regularisation of the 
predicate rewrite system includes the rewrite 

top >-+ setExists 1 (/\4 (projLength o top) (projMake o top) 

(projNumProngs o top) (projWidth o top)). 

The remaining rewrites are unchanged by the regularisation. 
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Proposition 4.5.4. Suppose that >----> is a predicate rewrite system such that 
the head of each rewrite is a single transformation. Then the following hold. 

1. The regularisation >----> of>----> is a predicate rewrite system. 
2. If a standard predicate p is monotone with respect to >---->, then p is mono

tone with respect to >---->. 

3. If >----> is monotone, then >----> is monotone. 

Proof. The proof is straightforward. D 

Example 4. 5. 9. The predicate rewrite systems of Examples 4.4.2 and 4.6.2 
are monotone and hence any regularisation of them is monotone. 

Checking that a predicate rewrite system is monotone is undecidable and 
therefore is left to the user. However, with a little practice, it is easy to 
check that a particular rewrite system satisfies this condition. Not only that, 
the condition is a weak one; it is natural for predicate rewrite systems in 
practical applications to be monotone. Furthermore, Proposition 4.5.4 shows 
that in the usual case when the head of each rewrite is a standard predicate 
consisting of a single transformation, the regularisation of a monotone pred
icate rewrite system is a predicate rewrite system that is monotone. Thus 
an implementation has the freedom to work with the regularisation, if this is 
convenient. This fact will be exploited in the next section. 

4.6 Efficient Construction of Predicates 

To efficiently construct predicates in many practical applications, some care 
is necessary. Consider the following illustrative examples. 

Example 4.6.1. Consider the predicate rewrite system of Example 4.4.2. Cor
responding to the different choices of redexes, there are 4! distinct predicate 
derivations with initial predicate top that have 

setExists1 (!\4 (projMake o (= Abloy)) (projNumProngs o (= 6)) 

(projLength o ( = Medium)) (proj Width o ( = Broad))) 

as the final predicate. Clearly it would be preferable to construct only one of 
these derivations. 

Example 4.6.2. Consider the following predicate rewrite system. 
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top >---> setExists1 ( A4 top top top top) 

top>---> projMake o (= Abloy) 

top >---> projMake o ( = Chubb) 

top >---> projMake o ( = Rubo) 

top >---> projMake o ( = Yale) 

top >---> projNumProngs o ( = 2) 
top >---> projNumProngs o ( = 3) 

top >---> projNumProngs o ( = 4) 
top >---> projNumProngs o ( = 5) 
top >---> projNumProngs o ( = 6) 

top >---> projLength o ( = Short) 

top >---> projLength o ( = Medium) 

top >---> projLength o ( = Long) 

top >---> projWidth o ( = Narrow) 

top >---> projWidth o ( = Normal) 

top>---> projWidtho(= Broad). 

Then the standard predicates 

and 

setExists 1 (A4 (projNumProngs o (= 6)) (projMake o (= Abloy)) 

(projLength o ( = Medium)) (projWidth o ( = Broad))) 

setExists 1 (A4 (projMake o (= Abloy)) (projNumProngs o (= 6)) 
(projWidth o (=Broad)) (projLength o (=Medium))) 

can both be obtained as the final predicates of derivations starting from the 
initial predicate top. But these two standard predicates are logically equiva
lent. There are 4! such logically equivalent predicates altogether correspond
ing to the various orderings of the arguments to A4 . Clearly, it would be 
preferable to only construct one of these predicates. 

Thus a modified form of predicate derivation is introduced in which the 
selection of redexes is restricted and also non-regular standard predicates 
are discarded yet, under mild conditions, all the (non-equivalent) predicates 
previously obtained can still be obtained with the modified derivation. 

I first address the restricted form of redex selection. Note that occurrences 
(of subterms) can be totally ordered by the lexicographic ordering, denoted 
by :::;. The strict lexicographic ordering is denoted by <. 

Definition 4.6.1. Let (p0,p1, ... ,pn) be a predicate derivation, where oi is 
the occurrence of the redex selected in Pi, for i = 0, ... , n - 1. Then the 
predicate derivation is said to be LR if oi-l :::; oi, for i = 1, ... , n- 1. 
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LR stands for 'left-to-right'. The intuitive idea behind the definition is 
that a redex in the predicate derivation is always 'at or to the right of' the 
immediately preceding selected redex. Hence the selection of redexes proceeds 
left-to-right. 

The first task is to show that any final predicate in a derivation is the 
final predicate in an LR derivation. To prove that result, a preliminary result 
concerning the switching of redexes is needed. 

Proposition 4.6.1. Let >----+ be a predicate rewrite system. Suppose that p1, 
P2, and P3 are standard predicates such that P2 is obtained by a derivation 
step from P1 using r1 >----+ b1 and P3 is obtained by a derivation step from P2 
using r 2 >----+ b2. Suppose that the red exes r 1 and r 2 both occur in p1 and are 
disjoint. Then there is a standard predicate p~ such that p~ is obtained by a 
derivation step from p 1 using r2 >----+ b2 and p3 is obtained by a derivation step 
from p~ using r1 >----+ b1 . 

Intuitively, the order of selection of r 1 and r 2 can be reversed. 

Proof. Since r 1 and r 2 are disjoint in p1, it is possible to consider reversing 
the order of selection of redexes. First, I show that the positional type of r 2 in 
P1 is more general than the positional type of r 2 in p2. Let {h be the type of r 1 
and (31 be the type of b1. Since r1 >----+ b1, there exists a type substitution~ such 
that {!1~ = fJ1- Now let q be P1[rl/x1, r2/x2], where X1 and X2 are distinct 
variables, and 8i be the relative type of Xi in q, fori= 1, 2. Since q{xl/r1 } 

is a term, 81 = {21 has an mgu (), say, by Proposition 2.5.4. Similarly, since 
q{ xdbd is a term, 81 = fJ1 has an mgu cp, say. Furthermore, the positional 
type of r2 in P1 is 82B, while the positional type of r2 in P2 is 82'P· Now 
81 ~cp = 81cp = (31 cp = (}1 ~cp. Thus ~'Pis a unifier of 81 = (21. It follows that 
~'P = Bn, for some type substitution 1r. Thus 82cp = 82~cp = 82Bn and so the 
positional type of r 2 in p 1 is more general than the positional type of r 2 in 
P2· 

It follows from this that r 2 can be selected in p 1 to give p~. Furthermore, 
since P3 is a term, r1 can be now selected in p~ to give p3. D 

Now the result about the existence of LR derivations can be proved. 

Proposition 4.6.2. Let (p0 , p1 , .. . , Pn) be a predicate derivation with respect 
to a predicate rewrite system >----+. Then there exists an LR predicate derivation 
with respect to>----+ having initial predicate Po and final predicate Pn, and using 
the same set of rewrites. 

Proof. The proof is by induction on the length n of the derivation. If n = 0, 
the result is obvious. 

Let (Po, P1, ... , Pn+1) be a derivation of length n+ 1 and suppose the result 
holds for derivations of length n. Thus there is an LR predicate derivation 
(p~,p~, ... ,p~) with respect to>----+ such that p~ =Po and p~ = Pn, and using 
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the same set of rewrites as the first n steps of the given derivation. Suppose 
that the redex selected in p~ is ri at occurrence oi, for i = 0, ... , n- 1. 

Let the redex selected in the original derivation in Pn be r n at occurrence 
On. If On- 1 ~ On, then with this same choice of redex the LR derivation 
of length n extended by this extra step remains LR and the result follows. 
Otherwise, On< On-1· By Proposition 4.4.3, rn is a redex in p~_ 1 , and rn-1 
and rn are disjoint in p~_ 1 . Using Proposition 4.6.1, the selection of rn-1 
and rn can be switched, so that rn is selected first in p~_ 1 , followed by rn- 1 
in the resulting predicate. If the derivation so modified is now LR, the proof 
is complete. Otherwise, the switching step is repeated until an LR derivation 
that has the desired properties is obtained. D 

Example 4.6.3. Consider the predicate derivation of Example 4.4.2. This 
derivation is not LR. However, using Proposition 4.6.2, the following LR 
one with the same initial and final predicates can be obtained. 

top 

setExists1 (/\4 (projMake o top) (projNumProngs o top) 

(projLength o top) (proj Width o top)) 

setExists1 (/\4 (projMake o (= Abloy)) (projNumProngs o top) 

(projLength o top) (proj Width o top)) 

setExists1 (/\4 (projMake o (= Abloy)) (projNumProngs o (= 6)) 

(projLength o top) (proj Width o top)) 

setExists1 (/\4 (projMake o (= Abloy)) (projNumProngs o (= 6)) 

(projLength o ( = Medium)) (proj Width o top) 

setExists1 (/\4 (projMake o ( = Abloy)) (projNumProngs o ( = 6)) 

(projLength o (=Medium)) (projWidth o (=Broad))). 

This example addresses the problem raised in Example 4.6.1. Instead of hav
ing to deal with the 4! possible derivations, it is only necessary to construct 
the unique LR one. 

Now attention turns to the problems caused by symmetric transforma
tions that are illustrated by Example 4.6.2. The first main result is Proposi
tion 4.6.5 below that is a version of Proposition 4.6.2 for predicate derivations 
in which each predicate is regular. To prove Proposition 4.6.5, a version of 
Proposition 4.6.1 for regular predicates is needed and, for that, a condition 
on predicate rewrite systems is imposed. 

Definition 4.6.2. A predicate rewrite system >--> is descending if there is a 
strict total order < on transformations such that, for each r >--> b, it follows 
that b-< r. 
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Example 4. 6.4. The predicate rewrite systems of Examples 4.4.2 and 4.6.2 
are both descending. It is only necessary to choose a total order < on trans
formations so that top is the largest transformation. 

Proposition 4.6.3. Let >---> be a descending predicate rewrite system, and p 
and q standard predicates. Suppose that q is obtained by a predicate derivation 
step from p using >--->. Then q -< p. 

Proof. The proof is by induction on the number of transformations in p. 

Thus suppose p has m transformations and the result holds for predicates 
containing strictly less than m transformations. Suppose that q is p[r jb], 
where the rewrite used in the derivation step is r >---> b. Since >---> is descending, 
it follows that b -< r. 

Suppose that pis (h PI,I .. ·PI,k,) o · · • o Un Pn,I .. ·Pn,kJ· The redex r 
is either a suffix of p or an eligible subterm of Pi,j" for some i and )i. 

If r is a suffix of p, since b-< r, it follows easily that p[r/b]-< p. 
Suppose now that r is an eligible subterm of Pi,ji, for some i and Ji. Note 

first that, by Proposition 2.5.2, r is a redex in Pi,j, because the positional 
type of r in Pi,ji is more general than the positional type of r in p. Thus the 
standard predicate Pi,j, [r /b] can be obtained by a predicate derivation step 
from Pi,j, using the rewrite r >---> b. By the induction hypothesis, Pi,ji [r /b] -< 
Pi,j,. Consequently, p[r /b] -< p. D 

Proposition 4.6.4. Let >---> be a descending predicate rewrite system. Sup

pose that PI, P2, and P3 are regular predicates such that p2 is obtained by a 
derivation step from PI using ri >---> bi and p3 is obtained by a derivation step 

from P2 using r2 >---> b2. Suppose that the redexes ri and r 2 both occur in PI 

at occurrences oi and o2, respectively, and o2 < OI. Then there is a regu
lar predicate p; such that p; is obtained by a derivation step from PI using 
r2 >---> b2 and P3 is obtained by a derivation step from p~ using ri >---> bi. 

Proof. By Proposition 4.4.3, the redexes ri and r 2 are disjoint in PI· Now 
Proposition 4.6.1 shows that p; (that is, Pih/b2]) exists and is a standard 
predicate. Thus it is only necessary to show that p; is regular. 

Suppose that PI has the form (h PI,I .. ·PI,k1 ) o • • • o Un Pn,I .. ·Pn,kJ· 
The redex r2 is either a suffix of PI or an eligible subterm of Pi,ji, for some i 
and Ji. Since ri and r2 are disjoint and o2 < oi, it follows that r 2 cannot be 
a suffix. 

The proof is by induction on the number of transformations in PI· Assume 
that the result (that is, p~ is regular) holds for predicates containing fewer 
than m transformations and suppose that PI contains m transformations. 

Suppose that r2 is an eligible subterm of Pi,ji, for some i and Ji· There 
are three subcases to consider. 

Suppose first that ri is a subterm of Ui+I Pi+I,I ... Pi+I,k,) o • • • 

o Un Pn,I .. ·Pn,kJ· Then, since PI and P3 are regular, it follows easily that 
p~ is regular. 
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Suppose next that r1 and r2 are both redexes in f; Pi,1 ... Pi,ki, for some 
i, but are not in the same Pi,j,. Thus, say, r1 is a redex in Pi,]l and r 2 is a 
redex in Pi,)2, where ]2 < J1· Since P1 and P3 are regular, it follows that each 
of Pi,1, ... ,Pi,)2-1,Pi,)2[r2/b2],P;,jd1, ... ,p;,ki is a regular predicate. If J; is 
not symmetric, p~ is thus a regular predicate. Otherwise, f; is symmetric and 
the proof proceeds as follows. Since b2 --< r 2, it follows from Proposition 4.6.3 
that Pi,]2 h/b2] --< Pi,]2. Thus Pi,h h/b2] --< Pi,J2+1· Also Pi,J2-1 ::< Pi,J2 h/b2], 
since P3 is regular. Thus p· 1 --< · · · --< p· · -1 --< p· · [r2/b2] --< p· · +1 --< · · · --< t, - - 'l 1)2 - Z1)2 Z1J2 - -

Pi,ki. Hence p~ is a regular predicate. 
Suppose finally that both r 1 and r 2 are redexes in Pi,j,, say. Consider 

the predicate subderivation with initial predicate Pi,j, in which redex r 1 is 
selected first, followed by redex r 2 in the subsequent predicate. For the first 
redex, r1 >----> b1 is used and, for the second redex, r 2 >----> b2 is used. By the 
induction hypothesis, Pi,ji [r2/b2] is a regular predicate. Iff; is not symmetric, 
p~ is thus a regular predicate. Otherwise, Pi,1 ::< · · · ::< Pi,j,-1 --< Pi,j,[r2/b2] --< 
Pi,J,+1 ::< · · · ::< Pi,k,, by the symmetry of j;, the regularity of p1 and p3, and 
the facts that b1--< r1, b2--< r2 and Pi,Ji-1 ::< Pi,Jih/b2,rdb1]--< Pi,Jih/b2], 
using Proposition 4.6.3. Hence p~ is a regular predicate. D 

The condition in Proposition 4.6.4 that the predicate rewrite system be 
descending cannot be dropped. 

Example 4.6.5. Consider the predicate rewrite system 

p>---->q 

q >----> p, 

where p : M -+ D and q : M -+ D, and M is a nullary type constructor. 
Clearly there does not exist a total order on p and q such that >----> is descend
ing. Now suppose that p < q. Let f: (M-+ D)-+ (M-+ D)-+ M-+ D be a 
symmetric transformation. Then each predicate in the predicate derivation 

fpp 

fpq 

fqq 

is regular. However, for the predicate derivation 

fpp 

fqp 

f q q, 

in which the order of selection of redexes is reversed, f q p is not regular. If 
instead one chooses q < p, then a similar counterexample can be constructed 
using f q q as the initial predicate. 
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Definition 4.6.3. A predicate derivation (Po, p1, ... , Pn) is regular if Pi E R, 
for i = 0, ... , n. 

Proposition 4.6.5. Let >-> be a descending predicate rewrite system and 
(po, p 1 , ... , Pn) a regular predicate derivation with respect to >->. Then there 
exists a regular, LR predicate derivation with respect to >-> having initial 
predicate Po and final predicate Pn, and using the same set of rewrites. 

Proof. The proof is by induction on the length n of the derivation. If n = 0, 
the result is obvious. 

Let (po,P1, ... ,Pn+l) be a derivation of length n + 1 and suppose the 
result holds for derivations of length n. Thus there is a regular, LR predicate 
derivation (p~, p~, ... , p~) with respect to >-> such that p~ = p0 and p~ = Pn, 
and using the same set of rewrites as the first n steps of the given derivation. 
Suppose that the redex selected in p~ is ri at occurrence oi, fori = 0, ... , n-1. 

Let the redex selected in the original derivation in Pn bern at occurrence 
On· If On-1 ::; On, then with this same choice of redex the LR derivation 
of length n extended by this extra step remains LR and the result follows. 
Otherwise, On< On-1· By Proposition 4.4.3, rn is a redex inp~_ 1 , and rn_ 1 
and rn are disjoint in p~_ 1 . Using Proposition 4.6.4, the selection of rn_ 1 
and r n can be switched, so that r n is selected first in p~_ 1 , followed by r n-1 
in the resulting predicate. If the derivation so modified is now LR, the proof 
is complete. Otherwise, the switching step is repeated until an LR derivation 
that has the desired properties is obtained. D 

The next task is to establish that under certain conditions a predicate 
derivation can be transformed into one in which each predicate in the deriva
tion is regular. 

Definition 4.6.4. A regular predicate p is switchable with respect to a pred
icate rewrite system >-> if, for every disjoint set {ri}~1 of redexes in p with 
respect to >->, where Oi is the occurrence of ri, for i = 1, ... , n, and for ev-
ery set {si}f=1 of regular predicates such that Ph/s1, ... , rn/sn]o1 , ... ,on is 
a standard predicate, there exists a disjoint set of occurrences { oar=1 in p 
such that ri also occurs at o~, fori = 1, ... , n, and p[rl/ s1, ... , rn/ sn]o~, ... ,o;. 
is the regularisation of p[rl/ s1, ... , rn/ sn]o1 , ... ,on. 

If a regular predicate contains no reoexes with respect to a predicate 
rewrite system >->, then it is switchable with respect to >->. 

Example 4-6. 6. Let p be the standard predicate 

setExists1 (/\4 (projMake o top) (projNumProngs o top) 

(projLength o top) (proj Width o top)). 

Suppose < is defined so that projMake < projNumProngs < projLength < 
projWidth. Then p is regular. Furthermore, p is switchable with respect to 
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the predicate rewrite system of Example 4.4.2. In fact, for this example, the 
o~ in the definition of switchable are the same as the oi· The reason is that 
the ordering on projMake, projNumProngs, and so on, forces regularity no 
matter what the tops are replaced by. 

Example 4.6. 7. The standard predicate setExists 1 (1\4 top top top top) is 
obviously switchable with respect to the predicate rewrite system of Exam
ple 4.6.2. 

The main cases of interest for switchable predicates are illustrated by the 
last two examples: either the required regularity property in the definition is 
forced or there is complete freedom to reorder in order to achieve it. 

Example 4.6.8. Let f : (Q ---+ D) ---+ (Q ---> D) ---+ JL ---> a be a symmetric 
transformation, and p : {! ---+ D and q : {! ---+ D. Suppose that p < q < top. 
Then f q top is regular. Now let >---> be the predicate rewrite system 

top>---> p. 

Then f q top is not switchable with respect to >--->, since (f q top) [top j p] is 
not regular and there is only one occurrence of top. 

Definition 4.6.5. A regular predicate rewrite system >---> is switchable if, for 
each p >---> q, q is switchable with respect to >--->. 

Example 4.6.9. The predicate rewrite system of Example 4.4.2 is switchable 
(for any order < such that projMake < projNumProngs < projLength < 
projWidth). The predicate rewrite system of Example 4.6.2 is switchable (for 
any choice of <). 

Proposition 4.6.6. Let>---> be a descending, switchable predicate rewrite sys
tem and Po a switchable predicate. If (Po, p 1 , ... , Pn) is a predicate derivation 
with respect to >--->, then there exists a regular predicate derivation with respect 
to >---> having initial predicate Po and final predicate Pn. 

Proof. The proof is by induction on the length of the derivation. If the length 
is 0, then the result is obvious. 

Now suppose that the result holds for derivations of length < m. Let 
(p0 , p 1 , ... , Pm) be a derivation of length m. In this derivation, some selected 
redexes originate in p0 and some in the bodies of rewrites that are used. Let 
{r1 , ... , rn} be the set of selected redexes that originate in po, where ri is at 
occurrence oi in p0 , for i = 1, ... , n. According to Proposition 4.4.3, this set 
of redexes is disjoint. Suppose the rewrite used at redex ri is ri >---> bi, fori = 
1, ... , n. Consider the predicate subderivation with initial predicate bi, fori = 
1, ... , n. Each of these is a predicate derivation, by Proposition 4.4.5. Also the 
initial predicate of each is a switchable predicate and each has length < m. By 
the induction hypothesis, there is a regular derivation with initial predicate bi 
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and where the final predicate si is the regularisation of the final predicate of 
the original derivation, fori= 1, ... , n. Since p0 is switchable, there exists a 
disjoint set {oai=1 of occurrences in Po such that Po[rl/s1, ... , rn/sn]a~, ... ,a;. 
is the regularisation of Po[rl/s1, ... ,rn/sn]a1 , ... ,on· 

A new derivation with initial predicate p0 is now constructed as follows. 
Choose i1 such that o~ 1 is the smallest of o~, ... , o~. In the new derivation, 
let the first selected redex be ri1 at o~ 1 and continue with the selection of re
dexes in the regular derivation that has initial predicate bi1 • Next choose 
the second smallest o~2 of o~, ... , o~ and continue with the redex ri2 at 
o~ and the redexes in the regular derivation that has initial predicate bi2 , 

and so on. One can show that this is indeed a predicate derivation because 
Po[rl/s1, ... , rn/sn]a~, ... ,a;. is a term. Furthermore, the predicate derivation 
so constructed is regular, since each subderivation is regular, the final predi
cate Poh/ s1, ... , rn/ sn]o~, ... ,o;, is regular, and >---> is descending. D 

Proposition 4.6. 7. Let >---> be a predicate rewrite system whose regularisa
tion >---> is a descending, switchable predicate rewrite system, and p0 a standard 
predicate whose regularisation is switchable. If (p0 , p1, ... , Pn) is a predicate 
derivation with respect to >--->, then there exists a regular predicate derivation 
with respect to >---> having initial predicate Po and final predicate Pn. 

Proof. The first step is to show that there exists a predicate derivation with 
respect to >---> having initial predicate p0 and final predicate p~, where Pn and 
p~ have the same regularisation and such that if s is a standard predicate 
which is a subterm at occurrence o of Pn that was introduced either as a 
subterm of p0 or one of the bodies of the rewrites used in the derivation and 
s' is the standard predicate that is the subterm at occurrence o' of p~ such 
that at = olt, then s' is regular. The proof is by induction on the length of 
the derivation (Po,P1, ... ,pn)· If the length is 0, then the result is obvious. 

Next suppose the result holds for derivations oflength < n. Let (p0 ,p1 , ... , 

Pn) be a derivation of length n. By the induction hypothesis, there is a deriva
tion (po,p~, ... ,p~_ 1 ) with respect to>---> such that Pn-1 and p~_ 1 have the 
same regularisation and the property about subterms of Pn- 1 is satisfied. Let 
r be the redex selected in Pn-1, where the occurrence of r in Pn-1 is o, and 
r >---> b be the rewrite used. Then there is a subterm r' at occurrence o' in 
p~_ 1 such that at = olt, and the positional type of r' in p~_ 1 is the same 
as the positional type of r in Pn- 1 , by Proposition 4.3.4. Since r was either 
introduced as a subterm of p0 or one of the bodies of the rewrites used in the 
derivation, r' is a regular predicate, by the property about subterms of Pn- 1 . 

Hence r' = r and r' is a redex. The rewrite used for this redex is r >---> b. By 
Proposition 4.3.5, the regularisations of Pn-1 [r /b]a and P~-dr /b]a' are the 
same. It only remains to show that Pn satisfies the property about subterms. 
But this follows since standard predicates that are subterms of Pn introduced 
by b have the property that the corresponding subterms in p~ are subterms 
of band therefore are regular. This completes the induction argument. 
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Since >---+ is a descending, switchable predicate rewrite system and Po is 
a switchable predicate, by Proposition 4.6.6, there exists a regular predicate 
derivation with respect to >---+ having initial predicate p0 and final predicate 
p~. Since Pn and p~, have the same regularisation, the result follows. D 

Now an important completeness result can be proved which shows that, 
under weak conditions, an implementation can employ the LR selection of re
dexes and discard non-regular predicates in predicate derivations and yet still 
generate all the (regularisations of) standard predicates that can be gener
ated by unrestricted predicate derivations. Since employing the LR selection 
of redexes and discarding non-regular predicates avoids considerable redun
dancy in many common situations, the efficiency of predicate generation is 
thereby greatly improved. 

Proposition 4.6.8. Let >---+ be a predicate rewrite system whose regularisa
tion >---+ is a descending, switchable predicate rewrite system, and p0 a standard 
predicate whose regularisation is switchable. If (Po, Pl, ... , Pn) is a predicate 
derivation with respect to >---+, then there exists a regular, LR predicate deriva
tion with respect to >---+ having initial predicate Po and final predicate Pn. 

Proof. By Proposition 4.6.7, there is a regular predicate derivation with re
spect to>---+ having initial predicate p0 and final predicate Pn· Then, by Propo
sition 4.6.5, there is a regular, LR predicate derivation with respect to >---+ 
having initial predicate Po and final predicate Pn· D 

The final task is to give a sufficient condition to ensure the uniqueness of 
predicate derivations with the same initial and final predicates. 

Definition 4.6.6. A predicate rewrite system >---+ is separable if, for each 
p >---+ q1 and p >---+ q2 , whenever there exist predicate derivations with initial 
predicates q1 and q2 having the same final predicate, it follows that Q1 = Q2· 

Proposition 4.6.9. If two LR predicate derivations with respect to a sep
arable, descending predicate rewrite system have the same initial and final 
predicates, then the predicate derivations are identical. 

Proof. Let there be given two LR predicate derivations with respect to a 
separable, descending predicate rewrite system >---+ that have the same initial 
and final predicates. The proof is by induction on the maximum k of the 
lengths of the two predicate derivations. If k = 0, then the result is obvious. 

Suppose now that the result is true for predicate derivations of length 
< k and D = (p0 ,p1 , ... ,pn) and D' = (p~,p~, ... ,p~) be two LR predicate 
derivations such that Po = p~, Pn = p~, and max(n, m) = k. Since k > 0, at 
least one of D or D' has non-zero length. If the other has zero length, then 
the non-zero length derivation has identical initial and final predicates which 
contradicts Proposition 4.6.3. Thus each predicate derivation has non-zero 
length. Consider the selected redex in the initial predicates of D and D'. 
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Since each predicate derivation is LR and the final predicate of each is the 
same, the redex selected (including its occurrence, of course) in each of the 
initial predicates must be identical. Let this redex be r and the respective 
rewrites used at the first step be r >-+ q in D and r >-+ q' in D'. Consider now 
the predicate subderivation of D with initial predicate q that is a subterm 
of p1 and the predicate subderivation of D' with initial predicate q' that is a 
subterm of p~. The final predicates of these subderivations, being subterms at 
the same occurrence of the common final predicate of D and D', are identical. 
Since >-+ is separable, it follows that q = q'. Hence the second predicates, p1 

in D and p~ in D', are identical. The induction hypothesis can now be applied 
to the remainder of D and D' to obtain the result. D 

The condition in Proposition 4.6.9 that the predicate rewrite system be 
separable cannot be dropped. 

Example 4-6.10. Consider the descending predicate rewrite system 

top>-+ p 

top>-+ q 

q >-+ p. 

Then (top, p), and (top, q, p) are two distinct LR predicate derivations with 
the same initial and final predicates. 

The condition in Proposition 4.6.9 that the predicate rewrite system be 
descending cannot be dropped. 

Example 4. 6.11. Consider the separable predicate rewrite system 

p>-+q 

q >-+ p. 

Then (p) and (p, q,p) are two distinct LR predicate derivations with the same 
initial and final predicates. 

Proposition 4.6.10. Let,__. be a predicate rewrite system whose regularisa
tion >-+ is a separable, descending, switchable predicate rewrite system, and 
Po a standard predicate whose regularisation is switchable. If (p0,p1, ... ,pn) 
is a predicate derivation with respect to >-+, then there exists a unique regu
lar, LR predicate derivation with respect to >-+ having initial predicate p0 and 
final predicate Pn. 

Proof. According to Proposition 4.6.8, there exists a regular, LR predicate 
derivation with respect to >-+ having initial predicate p0 and final predicate 
Pn· By Proposition 4.6.9, this predicate derivation is unique. D 
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Example 4.6.12. The predicate rewrite systems of Examples 4.4.2 and 4.6.2 
are separable and switchable for any choice of regularisation. Also, for or
derings < on transformations for which top is declared to be the greatest 
transformation, the corresponding regularisations are descending. Lastly, in 
the usual case that the initial predicate is top, it follows that all regularisa
tions of the initial predicate are switchable. Thus the conditions of Proposi
tion 4.6.10 are satisfied by these predicate rewrite systems (where top is the 
initial predicate) and there is a guarantee about the existence and uniqueness 
of regular, LR predicate derivations. 

The important results of this section are now summarised. First, from 
the user perspective, the view is that the hypothesis language is given by 
all predicates (the so-called expected predicates) that are the final predicates 
of predicate derivations (usually with top as the initial predicate), with no 
restrictions on the selection of redexes. This provides a simple and direct 
understanding of the search space of expected predicates. 

Now it was noted above that a direct implementation of this view leads 
to redundancy in many applications because there may be several derivation 
paths to the same predicate and also several equivalent forms of the same 
predicate may be generated because of the presence of symmetric transfor
mations, especially 1\n. To combat this, two ideas were introduced: the LR 
selection rule for the first problem and regular predicates for the second. Thus 
an efficient implementation of these ideas actually works with a regularisation 
of the predicate rewrite system, discards non-regular predicates, and employs 
the LR selection rule. An algorithm for generating a search space of regular 
predicates according to this implementation is given in Fig. 4.5. In this fig
ure, the phrase 'LR redex' means the redex is selected according to the LR 
selection rule, that is, a redex selected in a predicate must be at or to the 
right of the redex selected in the parent of the predicate. 

Two important questions then arise. 

1. Is such an implementation complete, that is, are (the regularisations of) 
all the expected predicates actually generated by regular, LR derivations? 

2. Is each (regularisation of an) expected predicate generated exactly once? 

Proposition 4.6.10 answers these questions. The condition in this propo
sition is that there be a regularisation of the predicate rewrite system that 
is separable, descending, and switchable. While this is a reasonably technical 
condition, it is actually quite weak and likely to be satisfied by predicate 
rewrite systems in practical applications. 

Whether there is a regularisation of the predicate rewrite system that is 
descending is a decidable condition (assuming there are only finitely many 
transformations) that can be checked by the implementation. So this much 
is easy. The other requirements, separable and switchable, are not decidable 
and so checking that they are satisfied is left to the user. However, with a 
little experience, it is straightforward to check whether any regularisation of a 
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function Enumemte2(>---+,p0 ) returns the set of regular predicates in a 
search space rooted at Po using >---+; 

input: >---+, a predicate rewrite system; 
po, a predicate; 

predicates := {}; 

openList := [Po]; 
while openList i= [] do 

p := head(openList); 

openList : = tail ( openList); 

predicates :=predicates U {p }; 

for each LR redex r via r;::::;b, for some b, in p do 

q := p[r/b]; 
if q is regular then openList := openList ++ [q]; 

return predicates; 

Fig. 4.5. Algorithm for enumerating regular predicates 

particular predicate rewrite system is separable and switchable. (See Exercise 
4.13.) Furthermore, one has to have a rather strange predicate rewrite system 
for its regularisations not to be both separable and switchable. Assuming 
that the condition of Proposition 4.6.10 is satisfied, there is a guarantee that 
(the regularisation of) each expected predicate is generated by a regular, 
LR predicate derivation and, indeed, only generated once. Even in the case 
when the condition is not satisfied, the implementation is sound; that is, only 
(regularisations of) expected predicates are generated. 
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The higher-order approach to predicate construction first appeared in [7], and 
was developed in [8], [55], and [57]. The traditional approach in first-order 
logic (usually limited to clauses or Horn clauses) is described comprehensively 
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Restrictions on the form of the hypothesis language are called language 
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to declarative bias which includes such restrictions as types and modes is 
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In the context of predictive toxicology, domain-specific predicates have 
been studied, including such things as the possible existence of 2-dimensional 
substructures like benzene rings and methyl groups, in [43] and [86]. 

Exercises 

4.1 Prove that each prefix and each suffix of a standard predicate is a term. 

4.2 Prove that an eligible subterm of a standard predicate is a standard 
predicate. 

4.3 Prove that, iff : (e ---> S!) ---> • • • ---> (e ---> S!) ---> f.1 ---> a and f P1 ... Pk is 
a term, then f Pi1 ••• Pik is a term, for all permutations i of {1, ... , k }. 
4.4 Prove each of the following. 

(i) The regularisation of a standard predicate is unique. 
(ii) The regularisation of a standard predicate has the same type as the 

standard predicate. 
(iii) The regularisation of a standard predicate is a regular predicate. 
(iv) A standard predicate and its regularisation are equivalent. 
( v) The regularisation of a regular predicate is itself. 

(vi) If two standard predicates have the same regularisation, then they contain 
the same number of transformations. 

4.5 Prove or disprove: a subterm of a regular predicate that is a standard 
predicate is regular. 
4.6 Find a predicate rewrite system >--+ and a standard predicate p that is 
monotone with respect to >--+ such that ( domCard p) o ( < N) is not monotone 
with respect to >--+. 
4. 7 A standard predicate p is weakly monotone with respect to a predicate 
rewrite system>--+ if, for every disjoint set {ri}f=1 of redexes in p with respect 
to >--+ and for every set {si}~ 1 of standard predicates such that ri <:== si 

(i = 1, ... , n) and Ph/s1, ... , rnfsn] is a standard predicate, it follows that 
P <:== Ph/s1, · · · ,rn/sn]· 

A predicate rewrite system >--+ is weakly monotone if p >--+ q implies p <:== q 
and p >--+ q implies q is weakly monotone with respect to >--+. 

(i) Prove that a standard predicate that is monotone with respect to a pred
icate rewrite system >--+ is weakly monotone with respect to >--+. 

(ii) Prove that a monotone predicate rewrite system is weakly monotone. 
(iii) Let>--+ be a weakly monotone predicate rewrite system and Po,Pl, ... ,Pn 

a predicate derivation using >--+ such that the initial predicate is weakly 
monotone with respect to >--+. Prove that Po <:== Pn. 

(iv) Under the conditions of (iii), prove or disprove: Po<:== P1 <:== • • • <:== Pn· 
( v) Prove or disprove: if p is a standard predicate that is weakly monotone 

with respect to a weakly monotone predicate rewrite system >--+ and r is 
a redex in p via r >--+ s, then p[r / s] is weakly monotone. 
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4.8 A skeleton is a term of the form 

(h X1,1 · · · Xl,k 1 ) 0 • • • 0 (Jn Xn,l · · · Xn,kn ), 

where fi is a transformation of rank ki, for i = 1, ... , n, the target of fn is 
D, and the xi,]i are distinct variables, for i = 1, ... , n and ji = 1, ... , ki. 

A variable Xr,s, for some r E {1, ... ,n} and somes E {1, ... ,kr}, is a 
monotone argument of a skeleton 

(h xl,l ... Xl,k,) 0 ••• 0 Un Xn,l ... Xn,kn) 

if, for any standard predicate p of the form 

(h Pl,l · · ·Pl,k1 ) 0 • • • 0 (in Pn,l · · ·Pn,kJ 

which is an instance of the skeleton and for any standard predicate c such 

that Pr,s {= c, it follows that p {= P[Pr,s / c]. 

(i) Determine the monotone arguments for the skeletons (setExistsn x1 ... Xn) 

and (An X1 ... Xn)· 

(ii) Let (h x1,1 ... Xl,k,) o • • • o Un Xn,l ... Xn,kJ be a skeleton, fr a sym-
metric transformation, and Xr,s a monotone argument of the skeleton, 

for some r E {1, ... , n} and some s E {1, ... , kr }. Prove that Xr,]r is a 
monotone argument of the skeleton, for Jr = 1, ... , kr. 

4.9 Let S be a set of skeletons together with their monotone arguments, p a 

standard predicate (h Pl,l ... Pl,k,) o • • • o Un Pn,l ... Pn,kJ and q a standard 
predicate that has an occurrence as a subterm of p. Then q is in a monotone 
position with respect to S in p if either 

1. q is a suffix Ut Pt,l .. ·Pt,k,) o • • • o Un Pn,l .. ·Pn,kJ of p, for some t .2': 1, 
or 

2. there is a skeleton (ft Xt,l ... Xt,k,) o • • • o (f n Xn,l ... Xn,kn ), for some 
t .2': 1, having a monotone argument Xr,Sl where r E { t, ... , n} and 
s E {1, ... , kr }, such that q is in a monotone position with respect to 

Sinpr,s· 

Assume that there is given a set of skeletons together with their monotone 
arguments. Let p, q, r E S. Prove the following. 

(i) pis in a monotone position in p. 
(ii) If q is in a monotone position in p, then q is in a monotone position in 

sop, for any prefix s such that sop E S. 
(iii) If r is in a monotone position in q and q is in a monotone position in p, 

then r is in a monotone position in p. 

4.10 Assume that there is given a set of skeletons together with their mono

tone arguments. Let p, q E S, where q has an occurrence as a subterm of p. 

Prove that if q is in a monotone position in p then, whenever q' is a standard 

predicate such that p[qj q'] is a term and q {= q', it follows that p {= p[qj q']. 
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4.11 Let p be the predicate defined by 

vertices o (setExists2 (/\2 (proj1 o (=A)) (proj2 o (= 3))) (proiJ o (=B))). 

Suppose the skeletons are (setExists2 x y) with x and y being monotone 
arguments, and (/\2 x y) with x andy being monotone arguments. Determine 
the set of monotone positions in p. 

4.12 Give an algorithm that takes a standard predicate and a set of skeletons 
together with their monotone arguments as input and returns the set of 
monotone positions of the predicate. 

4.13 Let Element be the type of elements. 

Br,C, Cl,F,H,I,N,O,S: Element. 

Make the following type synonyms. 

h=D 
Ia = [l 
f.LUMO =Float 
AtomType = Nat 

Charge = Float 

Atom= Element x AtomType x Charge 

Bond= Nat 
Structure= Graph Atom Bond 

Molecule = h x Ia x f.£UMO x Structure. 

Consider also the following transformations. 

(= T): h ~ D 
(= _L): h ~ Q 

(= T): Ia ~ D 
( = _L) : I a ~ [l 

(~ -3. 718) : f.LUMO ~ [l 

(~ -3.368) : f.LUMO ~ [l 

(~ -3.168) : f.LUMO ---4 [l 

(~ -3.018) : f.LUMO ---4 [l 

(~ -2.668) : f.LUMO ~ [l 

(~ -2.418) : f.£UMO ~ [l 

(~ -0.718): f.LUMO ~ [l 

(2 -3.418) : f.LUMO ~ [l 



(~ -3.218) : ELUMO ---+ f2 

(~ -3.068) : E£UMO ---+ f2 

k -2.918) : ELUMO ---+ f2 

(~ -2.618) : ELUMO ---+ f2 

k -2.368) : ELUMO ---+ f2 

(~ -0.668) : ELUMO ---+ f2 

( = Br) : Element ---+ !2 

( = S) : Element ---+ n 
( = 1) : A tom Type ---+ !2 

( = 3) : Atom Type ---+ !2 

( = 232) : Atom Type ---+ !2 

(~ -0.781): Charge---+ !2 

(~ -0.424) : Charge ---+ !2 

k -0.067) : Charge ---+ !2 

k 0.290) : Charge ---+ n 
(~ 0.647): Charge---+ !2 

(~ -0.424) : Charge ---+ n 
(~ -0.067) : Charge ---+ n 
k 0.290) : Charge ---+ !2 

k 0.647) : Charge---+ !2 

(~ 1.004) : Charge ---+ !2 

(= 1): Bond---+ !2 

( = 2) : Bond ---+ !2 

(= 3): Bond---+ !2 

( = 4) : Bond ---+ !2 

(= 5): Bond---+ !2 

(= 7): Bond---+ !2 

(> 0) : Nat ---+ !2 

(> 1): Nat---+ !2 

(> 2) : Nat ---+ !2 

(> 3) : Nat ---+ !2 

(> 4) : Nat ---+ !2 

projl 1 : Molecule ---+ I 1 

Exercises 1 79 
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projl a : Molecule --+ I a 

projELUMO : Molecule--+ ELUMO 

projStructure : Molecule --+ Structure 

projElement : Atom --+ Element 

projAtomType : Atom--+ AtomType 

projCharge : Atom--+ Charge 

vertices : Structure --+ {Vertex Atom Bond} 

edges : Structure --+ {Edge Atom Bond} 

vertex : Vertex Atom Bond--+ Atom 

edge : Edge Atom Bond --+ Bond 

connects :Edge Atom Bond--+ (Vertex Atom Bond--+ Nat) 

domCard: (Vertex Atom Bond--+ D) --+ {Vertex Atom Bond}--+ Nat 

domCard: (Edge Atom Bond--+ D) --+ {Edge Atom Bond}--+ Nat 

msetExists2 : (Vertex Atom Bond --+ D) --+ (Vertex Atom Bond --+ D) 

--+ (Vertex Atom Bond --+ Nat) --+ D 
1\2 : (Charge --+ D) --+ (Charge --+ D) --+ Charge --+ D 

/\3 : (Atom--+ D) --+ (Atom--+ D) --+ (Atom--+ D) --+Atom--+ D 

1\4 : (Molecule--+ D) --+ (Molecule--+ D) --+ (Molecule--+ D) 

--+ (Molecule --+ D) --+ Molecule --+ D. 

Let >---> be defined as follows. 

top >---> 1\4 (projf 1 o top) (projl a o top) (proj E L U MO o top) 

top >---> ( = T) 

top>---> (= ..l) 
top >---> (:::; -0. 718) 

(:::; -0.718) >---> (:::; -2.418) 

(:::; -3.368) >---> (:::; -3.718) 

top >---> (2' -3.418) 

(::;. -3.418) >---> (::;. -3.218) 

(2' -2.368) >---> (2' -0.668) 

(proj Structure o top) 

top >---> vertices o ( domCard (vertex o top)) o ( > 0) 
top >---> edges o ( domCard top) o (> 0) 
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top ,__... /\ 3 (projElement o top) (projA tom Type o top) 

(/\2 (projCharge o top) (projCharge o top)) 

top ,__... /\ 2 (edge o top) 

(connects o ( msetExists2 (vertex o top) (vertex o top))) 

top ,__... ( = Br) 

top,__...(= S) 

top ,__... ( = 1) 

top ,__... ( = 3) 

top,__...(= 232) 

top,__...(::::- -0.781) 

(::::- -0.781) ,__... (2 -0.424) 

(::::- 0.647) ,__... (::::- 1.004) 

top,__... ( = 1) 

top,__... (= 7) 

(>0)>----*(>1) 

(>1)>----*(>2) 

(> 2) ,__... (> 3) 
(> 3) ,__... (> 4). 

Provide answers, giving detailed reasons, to each of the following questions. 

(i) Is ,__... a predicate rewrite system? 
(ii) Is every regularisation of,__... a predicate rewrite system? 

(iii) Is ,__... monotone? 
(iv) Is every regularisation of,__... monotone? 
(v) Is there a regularisation of,__... that is separable, or descending, or switch

able, or all three? 
(vi) Is every regularisation of ,__... separable, or descending, or switchable, or 

all three? 
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In this chapter, the paradigm of programming with equational theories is 
presented. This paradigm provides a suitable computational formalism for 
the applications to learning, as well as many other applications of the logic. 

5.1 Programs as Equational Theories 

The first task is to define the formulas that can appear in a program. 

Definition 5.1.1. A statement is a term of the form h = b, where h has the 
form f t 1 ... tn, n 2: 0, for some function f, each free variable in h occurs 
exactly once in h, and b ~ h. 

The term h is called the head and the term b is called the body of the 
statement. The statement is said to be about f. 

Proposition 5.1.1. Suppose that h is a term of the form f h ... tn, n 2: 0, 
for some function f, each free variable in h occurs exactly once in h, and b 
is a term such that b ~ h. Then h = b is a statement. 

Proof. It is only necessary to show that h = b is a term. Suppose that h has 
type a. Then (= h) is a term of type a----+ fl. Thus ((= h) b) is a term of 
type fl, since b ~ h. D 

Example 5.1.1. Consider the function append : List a x List a x List a ----+ fl. 
Then the following term is a statement about append. 

append (u,v,w) = (u = [] !\ v = w) V 

3r.3x.3y.(u = r ~ x !\ w = r ~ y !\ append (x,v,y)). 

The head has type fl and the free variables u, v, and w have relative type 
List a in the head. The body also has type fl and its free variables u, v, and 
w have relative type List a in the body. Thus the body is type-weaker than 
(in fact, type-equivalent to) the head. 

Usually, the head and the body of a statement are type-equivalent, but 
this is not always the case. 

J. W. Lloyd, Logic for Learning
© J. W. Lloyd 2003
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Example 5.1.2. Consider the statement 

concat [] x = x 

about the function concat : List a ---> List a ......, List a. Here h is concat [] x 
and b is x. Then h has type List a and b has type a', for some parameters a 
and a'. Thus b is type-weaker than h with 1 = {a'/ List a}. 

Definition 5.1.2. The definition of a function f is the collection of all state
ments about f, together with the signature for f. 

Definition 5.1.3. A program is a collection of definitions. 

A program is a theory in which each formula is a particular kind of equa
tion, in fact, a statement. Most of the theories of interest in this book are 
programs. 

Now I turn to the computational model for programs. The objective of 
this computational model is to 'evaluate' terms, where 'evaluate' has the 

intuitive meaning of 'find the simplest form of'. Thus one would expect the 

evaluation of co neat 1 ~ 2 ~ [] 3 ~ [] to result in 1 ~ 2 ~ 3 [], where con cat is the 
function that concatenates two lists. The evaluation proceeds by a sequence 
of steps until no more simplification is possible. The primary computational 
problem for the applications to learning is to evaluate an expression of the 

form (p t), where pis a standard predicate and t is a basic term representing 
an individual. 

Definition 5.1.4. A redex of a term tis an occurrence of a subterm oft that 
is a-equivalent to an instance of the head of a statement. 

A redex is outermost if it is not a (proper) subterm of another redex. 

Definition 5.1.5. Let £be the set of terms constructed from the alphabet 
of a program and ::D6 .e the set of sub terms of terms in £ (distinguished by 
their occurrences). A selection rule S is a function from £ to the power set 
of ::D6.e satisfying the following condition: if tis a term in£, then S(t) is a 
subset of the set of outermost redexes in t. 

Clearly S ( t) is a disjoint set of sub terms of t, since the red exes are out
ermost ones. Typical selection rules are the parallel-outermost selection rule 

for which all outermost redexes are selected and the leftmost selection rule in 

which the leftmost outermost redex is selected. The choice of using outermost 

redexes is motivated by the desire for the evaluation strategy to be lazy. 

Definition 5.1.6. A terms is obtained from a term t by a computation step 
using the selection rule S if the following conditions are satisfied. 

1. S(t) is a non-empty set, {ri}, say. 
2. For each i, the redex ri is a-equivalent to an instance hiei of the head of 

a statement hi = bi' for some term substitution ei. 
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3. s is the term obtained from t by replacing, for each i, the redex ri by 
biei· 

Each computation step is decidable in the sense that there is an algorithm 
that can decide for a given subterm whether or not there is an instance of the 
head of a statement that is a-equivalent to the subterm. This algorithm is 
similar to the (first-order) unification algorithm. In particular, the undecid
ability of higher-order unification is not relevant here because a-equivalence 
is demanded rather than ;Jry-equivalence (or f)-equivalence) for higher-order 
unification. 

Definition 5.1.7. A computation from a term t is a sequence {ti}f=1 of 
terms such that the following conditions are satisfied. 

1. t=tl. 
2. ti+ 1 is obtained from ti by a computation step, for i = 1, ... , n- 1. 

The term t 1 is called the goal of the computation and tn is called the answer. 

One interesting aspect of the definition of a computation step is that there 
are no checks to make sure that the new term obtained from a computation 
step really is a term, that is, really is type correct. Proposition 5.1.3 below 
shows that a computation step respects the type requirements. This kind of 
result is known by the phrase 'run-time type checking is unnecessary'. 

Proposition 5.1.2. Let h = b be a statement and e an idempotent term 
substitution such that he is a term. Then be and he = be are terms and 
be~he. 

Proof. This result follows immediately from Proposition 2.5.5 and the facts 
that b ~ h and h does not contain repeated free variables. D 

Proposition 5.1.3. Let t be a term and h = b a statement. Suppose there 
is a subterm r oft at occurrence o and an idempotent term substitution e 
such that r is a-equivalent to he. Then t[rjbe]o is a term and t[r/be]o ~ t. 
Furthermore, t = t[r /be] a is a term. 

Proof. Since h = b is a statement, b ~ h and h contains no repeated free 
variables. Thus, by Proposition 5.1.2, be is a term and be ~ he. Since r is 
a-equivalent to he, t[r /be] a is a term such that t[r /be] a ~ t, and t = t[r jbe]a 
is a term, by Proposition 2.4.6. 0 

The proof of Proposition 5.1.3 crucially depends on the properties of a 
statement, in particular, on the requirement that the body of the statement 
be type-weaker than the head. Here are two examples to show that this 
requirement cannot be dropped. 
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Example 5.1.3. Consider the alphabet given by the nullary type constructors 
M and N, and the constants p : a ~ n, q : M ~ [}, and r : N ~ D. 

Then the expression ( q y) 1\ ( r y) can be obtained by a computation step 
from the term (p y) 1\ (r y) and the putative statement (p x) = (q x) (using 
the redex (p y)). However, the expression (q y) 1\ (r y) is not a term. The 
problem here is caused by the fact that (p x) = ( q x) is not a statement 
because (q x) is not type-weaker than (p x): the x in (p x) has relative type 
a in (p x), but the x in (q x) has relative type Min (q x). 

Example 5.1.4. Consider the alphabet given by the nullary type constructors 
K, M, and N, and the constants f : a ~ K, g : K x K ~ [}, A : M, and 
B:N. 

Then the expression A = B can be obtained by a computation step from 
the term (g ((!A),(! B))) and the putative statement (g ((! x), (! y))) = 
( x = y). However, the expression A = B is not a term. The problem here 
is caused by the fact that (g ((! x), (! y))) = (x = y) is not a statement 
because x = y is not type-weaker than (g ((! x), (! y))): the x and y have 
the same relative type a in x = y, but they have relative types a and b in 
(g ((! x), (! y))). 

The other condition in a statement that the head does not contain re
peated occurrences of free variables is also needed in Proposition 5.1.3. 

Example 5.1.5. Let h = (g (x,x)) and b = (! x), where g: ax c ~ax c 
and f : a ~ ax a are constants. Since (! x) ;:5 (g (x,x)), h = b would 
be a statement except for the repeated free variable x in the head. Let t = 
(g ([], [])), r = t and()= {x/[]}. Then h8 = (g ([], [])) and b() = (! []). Thus 
t[r /b8]"' = (! []) is a term, but t[r /b8]"' -;i t, since (! []) has type List ax List a 
and (g ( [], [])) has type List a x List c. 

There are two cases of interest in which h = b is not a statement and yet 
run-time type checking can be avoided. 

Proposition 5.1.4. Lett be a term and (>.x.s r) a subterm oft at occur
rence o. Then t[(>.x.s r)/s{x/r}]o is a term and t[(>.x.s r)/s{x/r}]o ;:5 t. 
Furthermore, t = t[(>.x.s r)/s{x/r}]o is a term. 

Proof. The result follows from Part 2 of Proposition 2.6.4 and Proposi
tion 2.4.6. D 

In effect, Proposition 5.1.4 shows that the equation (>.x.s r) = s{x/r} 
which comes from the (3-reduction rule can be used as a statement, even 
though the head is not in the right form. 

Proposition 5.1.5. Lett be a term and (s = s) a subterm oft at occurrence 
o. Then t[(s = s)/T]o is a term and t[(s = s)/T]o ;:5 t. Furthermore, t = 
t[(s = s)/T]o is a term. 
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Proof. Since T;::) (s = s), the result follows from Proposition 2.4.6. D 

In effect, Proposition 5.1.5 shows that the equation (x = x) = T can be 
used as a statement, in spite of the repeated variables in the head. 

The next proposition establishes a crucial property of computations. 

Proposition 5.1.6. Let P be a program, and s a goal and t an answer of 
a computation using P. Suppose that I is an interpretation such that, for 
each statement h = b in P and for each idempotent substitution () such that 
h() = b() is a term, h() = b() is valid in I. Let 'P be a variable assignment with 
respect to I. Then, for every grounding type substitution rJ for s, there is a 
grounding type substitution v fort such that V(s, ry, I, 'P) = V(t, v, I, 'P)· 

Proof. Let h = b be a statement in P and () an idempotent substitution such 
that h() = b() is a term. By Proposition 2.5.5, b();::) M. The result now follows 
from Proposition 2.8.2 by induction on the length of the computation. D 

Note 5.1.1. The importance of Proposition 5.1.6 can be explained as follows. 
The purpose of carrying out a computation is to discover the meaning (with 
respect to the intended interpretation, and some variable assignment and 
grounding type substitution) of some term, say, s. To discover this meaning, 
the term s is 'simplified' in a computation to a term t, say. According to 
Proposition 5.1.6, all the meanings of s are contained in the meanings oft. 
Typically, t is so simple that all its meanings are immediately apparent and 
thus the meanings of s are as well. 

The assumption on the interpretation I in Proposition 5.1.6 is strictly 
stronger than the assumption that I simply be a model for P. (See Exercise 
5.8.) Nevertheless, this assumption on I in Proposition 5.1.6 is one that the 
intended interpretation of P would surely be expected to satisfy (since it is 
intended that instances of statements be used in computations). 

For later use, it will be convenient to introduce a more flexible notation 
that extends the syntax of statements. Here is an example to motivate the 
ideas. 

Example 5.1. 6. Consider the programming problem of writing some code to 
implement the subset relation between sets. Here is a possible definition of 
the function ~: (a--+ n)--+ (a--+ n)--+ n, which is written infix. 

{}~s=T 

{xlx=u} ~ s 

{xluVv}~s 

uEs 

({xI u} ~ s) 1\ ({xI v} ~ s). 

At first sight, all these equations look like terms. However, closer inspection 
of the third equation reveals that u and v in that equation are not ordinary 
variables. Intuitively, these are intended to stand for terms (possibly contain
ing x as a free variable). Technically, they are syntactical variables in the 
meta-language that range over object-level terms. Syntactical variables are 
distinguished from (ordinary) variables by writing them in bold font. 
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This use of syntactical variables is common in the presentation of axioms 
for logics. The third equation in the above example is thus a schema rather 
than a term in which the syntactical variables u and v range over terms. By 
replacing the syntactical variables in a schema with suitable terms, a term 
is obtained from the schema. Syntactical variables are needed at positions in 
a statement where the usual term substitution mechanism does not give the 
desired effect because it does not allow free variable capture. For example, 
if u and v above were (ordinary) variables, it would not be possible to ap
ply a term substitution to the third statement that replaced them by terms 
containing x as a free variable (and that also retained the bound variable x 
after the A). 

It is convenient to also adopt a convention that does restrict in some cases 
the free variables that can appear in the terms replacing syntactical variables. 
As motivation for this, consider the schema 

This schema is intended to allow the extension of the scope of the existentially 
quantified variables x 1 , ... , Xn provided u does not contain a free occurrence 
of any of the Xi, for i = 1, ... , n. This intention is covered by the following 
convention. 

If a syntactical variable u occurs both inside the scope of some AX 
and also outside the scope of all AX s, then u cannot be replaced by 
an (object-level) term containing x as a free variable. 

In general, a statement schema is intended to stand for the collection of 
statements that can be obtained from the schema by replacing its syntactical 
variables with terms, applying the preceding convention if necessary. In a 
few places below, further ad hoc restrictions on the syntactical variables will 
be employed (such as requiring a syntactical variable to range over data 
constructors or object-level variables only). When using a statement schema 
in a computation, a choice of terms to replace its syntactical variables is first 
made. This results in a statement that is then handled as described earlier 
in this section. Thus a statement schema is a compact way of specifying a 
(possibly infinite) collection of statements. 

5.2 Definitions of Some Basic Functions 

This section contains the definitions of =, the connectives and quantifiers, 
and some other basic functions. The emphasis is placed on establishing that 
these definitions provide the intended meanings of these functions. The next 
section shows how computation can be performed with the definitions. 

The first definition is that of the equality predicate =. (Note that a % 
indicates that the remainder of the line is a comment.) 
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= : a ---+ a ---+ [l 

( C X1 ... Xn = C Yl ... Yn) = (xl = yl) 1\ · · · 1\ (xn = Yn) 
% where C is a data constructor of arity n. 

(C X1 · · · Xn = D Yl · · · Ym) = ..l 

% where C is a data constructor of arity n, 

% D is a data constructor of arity m, and C # D. 

((xl, · · ·, Xn) = (yl, · · ·, Yn)) = (xl = yl) 1\ · · · 1\ (xn = Yn) 
% where n = 2, 3, .... 

(.Ax.u = >.y.v) =(less >.x.u >.y.v) 1\ (less >.y.v >.x.u) 

The first two statement schemas in the above definition simply capture the 
intended meaning of data constructors, while the third captures an important 
property of tuples. (Note that for the first statement schema, if n = 0, then 
the body is T.) 

However, the fourth statement schema is more subtle. In formulations of 
higher-order logics, it is common for the axioms for equality to include the 
axiom of extensionality: 

(j =g)= 1:/x.((j x) = (g x)). 

However, this axiom is not used here for the reason that it is not computa
tionally useful: showing that 1:/x.((j x) = (g x)) is not generally possible as 
there can be infinitely many values of x to consider. Instead, a special case 
of the axiom of extensionality is used. Its purpose is to provide a method of 
checking whether certain abstractions representing finite sets, finite multisets 
and similar data types are equal. In such cases, one can check for equality 
in a finite amount of time. The fourth statement schema relies on the two 
following definitions. 

less : (a ---+ b) ---+ (a ---+ b) ---+ fl 

less >.x.d z = T 

% where d is a default term. 

less (>.x. if u then v else w) z = 

(1:/x.(u--+ v = (z x))) 1\ (less (remove {xI u} >.x.w) z) 

remove : (a ---+ fl) ---+ (a ---+ b) ---+ (a ---+ b) 

removes >.x.d = >.x.d 

% where dis a default term. 

remove s >.x. if u then v else w = 
>.x.if u 1\ (x rf. s) then v else ((removes >.x.w) x) 
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The intended meaning of less is best given by an illustration. Consider the 
multisets m and n. Then less m n is true iff each item in the support of m is 
also in the support of n and has the same multiplicity there. For sets, less is 
simply the subset relation. If s is a set and m a multiset, then remove s m 
returns the multiset obtained from m by removing all the items from its 
support that are in s. A noteworthy aspect of the definitions of less and 
remove is that each consists of two statements, one for the empty abstrac
tion >.x.d and one for 'non-empty' abstractions. (Non-empty is quoted since 
{ x I if u then v else w} can represent an empty set if both v and w are 
..L, for example.) There is an analogy here with the definitions of many list
processing functions that have one statement for the empty list and one for 
non-empty lists. 

Using the fourth statement schema for=, one can show that the abstrac
tions 

>.x.if x = 1 then T else if x = 2 then T else ..L 

and 

>.x.if x = 2 then T else if x = 1 then T else ..L 

are equal, for example. 
The next definition is the obvious one for disequality. 

x =f. y =...., (x = y) 

The following definitions are for the connectives A, V, and'· 

TAx=x 

xAT=x 

..l.Ax=..L 

xA..L=..L 

(x V y) A z = (x A z) V (y A z) 

x A (y V z) = (x A y) V (x A z) 

(if u then v else w) A t = if u A t then v else w A t 

t A (if u then v else w) = if t A u then v else t A w 

u A (:lx1. · · · :lxn.v) = :lx1. · · · :lxn.(u A v) 

(:lx1. · · · :lxn-u) A v = :lx1. · · · :lxn.(u A v) 

u A (x = t) A v = u{xjt} A (x = t) A v{xjt} 

% where x is a variable free in u or v or both, but not free in t. 



TVx=T 

xVT=T 

..lVx=x 

xV..l=x 
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(if u then T else w) V t = if u then T else w V t 
(if u then ..l else w) V t = (--, u 1\ w) V t 

t V (if u then T else w) = if u then T else t V w 

t V (if u then ..l else w) = t V (--, u 1\ w) 

-...l=T 

-.T=..l 

-.(-.x)=x 

-.(xl\y)=(-.x)v(-.y) 

-.(xVy)=(-.x)l\(-.y) 

--, (if u then v else w) = if u then --, v else --, w 

These definitions are straightforward, except perhaps for the last three 
statement schemas in the definition of/\. The second and third last statement 
schemas allow the scope of existential quantifiers to be extended provided it 
does not result in free variable capture. (Recall the convention restricting the 
possible term replacements for syntactical variables.) 

The last statement schema allows the elimination of some occurrences of 
a free variable (x, in this case), thus simplifying an expression. A similar 
statement allowing this kind of simplification also occurs in the definition of 
E below. However, a few words about the expression u 1\ (x = t) 1\ v are 
necessary. The intended meaning of this expression is that it is a term such 
that (x = t) is 'embedded conjunctively' inside it. More formally, a term tis 
embedded conjunctively in t and, if tis embedded conjunctively in r (or s), 
then t is embedded conjunctively in r 1\ s. So, for example, x = s is embedded 
conjunctively in the term ((p 1\ q) 1\ r) 1\ ((x = s) 1\ (t 1\ u)). 

Next come the definitions of E and II. 

E : (a ---+ D) ---+ Q 

::lx1. · · · 3xn.T = T 

::lx1. · · · 3xn . ..l = ..l 
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::lx1. · · · ::lxn.(x 1\ (xi = u) 1\ y) = 
::lx1. · · · :3xi-1·:3xi+l· · · · ::lxn.(x{xdu} 1\ y{xdu}) 

% where x; is not free in u. 

::lx1. · · · ::lxn.(u V v) = (::lx1. · · · ::lxn.u) V (::lx1. · · · ::lxn.v) 
::lx1. · · · ::lxn.(if u then T else v) = 

if ::lx1. · · · ::lxn.U then T else ::lx1. · · · ::lxn.V 
::lx1. · · · ::lxn.(if u then _L else v) = ::lx1. · · · ::lxn.(--. u 1\ v) 

II : (a----> D)----> D 

't:/x1. · · · 't:lxn.(_i_--+ u) = T 

't:/x1. · · · 't:lxn.(x 1\ (xi= u) 1\ y--+ v) = 

't:/x1. · · · 't:/xi-l·'t:/xi+l· · · · 't:lxn.(x{xdu} 1\ y{xdu}--+ v{xdu}) 
% where X; is not free in u. 

't:/x1. · · · 't:lxn.(u V v--+ t) = 
('t:/x1. · · · 't:lxn.(u--+ t)) 1\ ('t:/x1. · · · 't:lxn.(v--+ t)) 

't:/x1. ·· ·'t:lxn.((if u then T else v)--+ t) = 

('t:/x1. · · · 't:lxn.(u--+ t)) 1\ ('t:/x1. · · · 't:lxn.(v--+ t)) 
't:/x1.· ··'t:lxn.((if u then _L else v)--+ t) = 

't:/xl····'t:lxn-(--. ul\v--+ t) 

For the definition of E, recall that :3x.t stands for (E >..x.t). Thus, for exam
ple, :3x.T stands for (E >..x.T). The definition of E is unremarkable except 
perhaps for the third statement schema that is crucial for supporting the 
relational style of programming, as will be discussed in the next section. 
Inspection of the definition for II indicates that the universal quantifier is 
always linked with implication, that is, ------>. An example in the next section 
will illustrate how the definition is used. 

Next comes the usual definition for the if _then_else function. 

if _then_else : D x a x a ----> a 

if T then u else v = u 

if _L then u else v = v 

Finally, there is the 'definition' corresponding to ,8-reduction. 

AX.U: u----> T 

>-.x.u t = u{xjt} 
%where u----> Tis the type of >..x.u. 
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5.3 Programming with Abstractions 

This section contains a variety of examples to illustrate how computation is 
performed. Compared with functional programming, the main novelty here 
is that of programming with abstractions, so the presentation concentrates 
on this aspect. Programming with abstractions provides a logic programming 
style of programming in a functional setting. 

Relations 

Consider the following definitions of the functions append, permute, delete, 
and sorted which have been written in the relational style of logic program
ming. 

append : List a x List a x List a --> D 

append (u,v,w) = (u = [] 1\ v = w) V 

3r.3x.3y.(u = r ~ x 1\ w = r ~ y 1\ append (x,v,y)) 

permute : List a x List a --> D 

permute ([],x) = x = [] 
permute (x ~ y, w) = 

3u.3v.3z.(w = u ~ v 1\ delete (u,x ~ y,z) /\permute (z,v)) 

delete : a x List a x List a --> D 

delete (x, [], y) = ..l 

delete (x,y ~ z,w) = 

(x=y/\w=z) V 3v.(w=y~v 1\ delete(x,z,v)) 

sorted : List Int --> D 

sorted[] = T 

sorted x ~ y = 

if y = [] then T else 3u.3v.(y = u ~ v 1\ x -s: u 1\ sorted y) 

The intended meaning of append is that it is true iff its third argument is the 
concatenation of its first two arguments. The intended meaning of permute is 
that it is true iff its second argument is a permutation of its first argument. 
The intended meaning of delete is that it is true iff its third argument is the 
result of deleting its first argument from its second argument. The intended 
meaning of sorted is that it is true iff its argument is an increasingly ordered 
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list of integers. As can be seen, the definition of each function has a declarative 
reading that respects the intended meaning. 

The notable feature of the above definitions is the presence of existen
tial quantifiers in the bodies of the statements, so not surprisingly the key 
statement that makes all this work is concerned with the existential quan
tifier. To motivate this, consider the computation that results from the goal 
append (1 U [], 2 U [], x). At one point in the computation, the following term 
is reached: 

3r'.3x'.3y'.(r' = 1 Ax'=[] Ax= r' U y' A append (x',2 U [],y'). 

An obviously desirable simplification that can be made to this term is to 
eliminate the local variable r' since there is a 'value' (that is, 1) for it. This 
leads to the term 

3x'.3y'.(x' = [] A x = 1 U y' A append (x',2 U [],y'). 

Similarly, one can eliminate x' to obtain 

3y'.(x = 1 ~ y' A append([], 2 ~ [], y'). 

After some more computation, the answer x = 1 ~ 2 ~ [] results. Now the 
statement that makes all this possible is 

::lx1. · · · 3xn.(x A (xi = u) A y) = 
::lx1. · · · 3xi-1·3xi+l· · · · 3xn.(x{xdu} A y{xdu}), 

which comes from the definition of E : (a -> !?) -> !? in Sect. 5.2 and has 
.\-abstractions in its head. 

This example illustrates how the definitions in Sect. 5.2 allow the tradi
tional functional programming style to be extended to encompass the rela
tional style of logic programming. The definitions of predicates look a little 
different to the way one would write them in, say, Prolog. A mechanical trans
lation of a Prolog definition into one that runs in this style of programming 
simply involves using the completion of the Prolog definition. The definition 
here of append is essentially the completion of the Prolog version of append. 
Alternatively, one can specialise the completion to the [] and U cases, as has 
been done here for the definitions of permute, delete, and sorted. One proce
dural difference of note is that Prolog's method of returning answers one at 
a time via backtracking is replaced here by returning all answers together as 
a disjunction (or a set). Thus the goal 

append (x, y, 1 ~ 2 ~ []) 

reduces to the answer 

(x = []A y = 1 ~ 2 ~ []) V (x = 1 ~ []A y = 2 ~ []) V (x = 1 U 2 U [] A y = []). 
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Sets 

The idea of programming with abstractions can be pushed further to enable 
programming directly with sets, multisets and other abstractions. First, I 
deal with sets. Here are the definitions of the functions U, n, \, and ~. 

U : (a---> f?)---> (a---> f?)---> (a---> f?) 

s U t ={xI (xEs) V (x E t)} 

n : (a ---> f?) ---> (a ---> f?) ---> (a ---> f?) 

s n t ={xI (xEs);\ (x E t)} 

\ : (a ---> f?) ---> (a ---> f?) ---> (a ---> f?) 

s \ t ={xI (xEs) A (x (j. t)} 

~ : (a ---> f?) ---> (a ---> f?) ---> f? 

s ~ t = 1::/x.(x E s ---+ X E t) 

To illustrate the use of these functions, consider the following definition of 
the function likes. 

Mary, Bill, Joe, Fred : Person 

Cricket, Football, Tennis : Sport 

likes : Person x Sport ---> f? 

likes { (Mary, Cricket), (Mary, Tennis), (Bill, Cricket), 

(Bill, Tennis), (Joe, Tennis), (Joe, Football)} 

This definition is essentially a database of facts about certain people and the 
sports they like. Consider first the goal 

{Mary, Bill} n {Joe, Bill}. 

Using the statement 

s n t ={xI (xEs) A (x E t)} 

in the definition of n, one obtains 

{ x I (x E {Mary, Bill}) A (x E {Joe, Bill})} 

and then 
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{xI (if x =Mary then T else if x =Bill then T else ..L) 

1\ (if x = Joe then T else if x = Bill then T else ..L)} 

by ,8-reduction. After several uses of the statements 

(if u then v else w) 1\ t = if u 1\ t then v else w 1\ t 

t 1\ (if u then v else w) = if t 1\ u then v else t 1\ w 

u 1\ (x = t) 1\ v = u{xjt} 1\ (x = t) 1\ v{xjt} 

from the definition of 1\, the answer {Bill} is obtained. In this example, a 
novel aspect compared to traditional functional programming is the simplifi
cation that has taken place inside the body of a >.-abstraction. 

For a second example, consider the goal 

{xI 't:/y.(y E {Cricket: Tennis}---> likes (x,y))} 

which reduces via the steps 

{xI 't:/y.((if y =Cricket then T else if y = Tennis then T else ..L) 

---> likes (x, y))} 

{xI 't:/y.((y =Cricket)---> likes (x,y)) 

1\ 't:/y.((if y =Tennis then T else ..L)---> likes (x,y))} 

{ x I likes ( x, Cricket) 1\ 't:/y. ( (if y = Tennis then T else ..L) ---> likes ( x, y))} 

through to 

{xI (if x =Mary then T else if x =Bill then T else ..L) 1\ 

't:/y.((if y =Tennis then T else ..L)---> likes (x,y))}, 

and so on, to the answer 

{Mary, Bill}. 

During this computation, use is made of the statements 

't:/x1. · · · 't:lxn.(x 1\ (xi = u) 1\ y---> v) = 
't:/x1. · · · 't:/xi-l·'t:/xi+l· · · · 't:lxn.(x{xdu} 1\ y{xdu} ---> v{xdu}) 

't:/x1. · · · 't:lxn.((if u then T else v)---> t) = 
('t:/x1. · · · 't:lxn.(u---> t)) 1\ ('t:/x1. · · · 't:lxn.(v---> t)) 

from the definition of II : (a---+ D) ---+ n. 
The example in the previous paragraph is reminiscent of list comprehen

sion in functional programming languages, such as Haskell. In fact, one could 
set the database up as a list of facts and then give Haskell a goal which 
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would be a list comprehension analogous to the set goal above and obtain 
a list, say [Mary, Bill], as the answer. Substituting lists for sets in knowl
edge representation is a standard device to get around the fact that few 
programming languages support set processing in a sophisticated way. How
ever, sets and lists are actually significantly different types and this shows 
up, for example, in the different sets of transformations that each type natu
rally supports. Consequently, I advocate a careful analysis for any particular 
knowledge representation task to see what types are most appropriate and 
also that programming languages support a full range of types, including sets 
and multisets. 

Another point to make about the previous example is that it is an illus
tration of intensional set processing. Extensional set processing in which the 
descriptions of the sets manipulated are explicit representations of the collec
tion of elements in the sets is commonly provided in programming languages. 
For example, it is straightforward in Haskell to set up an abstract data type 
for (extensional) sets using lists as the underlying representation. A language 
such as Java also provides various ways of implementing extensional sets. But 
the example above is different in that the goal is an intensional representation 
of a set (in fact, the set {Mary, Bill}) and the computation is able to reveal 
this. The ability to process intensional sets and the smooth transition be
tween intensional and extensional set processing are major advantages of the 
approach to sets advocated here. Similar comments apply to programming 
with other kinds of abstractions such as multisets. 

Consider next the problem of giving a definition for the powerset function 
that computes the set of all subsets of a given set. Here is the definition. 

powerset : (a --+ f?) --+ (a ......, f?) ......, Q 

powerset {} = { {}} 
powerset { x I if u then T else v} = 

{s I :Jl.:Jr.((l E (powerset {xI u}))A(r E (powerset {xI v}))A(s = lur))} 

powerset { x I if u then l. else v} = power set { x I -. u /\ v} 

powerset {xI x = t} = { {}, {t}} 

powerset { x I u V v} = 

{s I :Jl.:Jr.((l E (powerset {xI u}))A(r E (powerset {xI v}))A(s = lUr))} 

The first three statements cover the case where the set is represented by a 
normal abstraction. The fourth and fifth statements are needed if the rep
resentation of the set is not a normal abstraction, but has an equality or 
disjunction at the top level in the body. Of course, if the representation of 
the set does not match any of the statements, then it will have to be re
duced (by using the definitions of other functions) until it does. One can see 
immediately that each statement in the definition is declaratively correct. 
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Note the analogy between set processing as illustrated by powerset and 
list processing in which the definition of a list-processing function is broken 
up into two statements - one for the empty list and one for a non-empty 
list. In the case of sets, it is convenient to have five cases corresponding to 
where the body of the set abstraction has the form ..l, if u then T else v, 
if u then ..l else v, x = t, or u V v. The fourth and fifth cases arise because 
of th~ richness of the set of functions on the booleans. For other kinds of 
abstractions typically only two cases arise, as is illustrated below for multisets. 

As an illustration of the use of powerset, the goal 

powerset {Mary, Bill} 

reduces to the answer 

{ {}, {Mary}, {Bill}, {Mary, Bill}}. 

The final illustration of set processing is concerned with converting a 
representation of a set into one that uses a normal abstraction. Consider the 
function linearise with the following definition. 

linearise : (a--+ D)--+ (a--+ D) 

linearise {} = {} 
linearise { x I if u then T else v} = ( linearise { x I u}) U ( linearise { x I v}) 
linearise { x I if u then ..l else v} = linearise { x I • u 1\ v} 
linearise { x I x = t} = { x I if x = t then T else ..l} 
linearise { x I u V v} = (linearise { x I u}) U ( linearise { x I v}) 

Because of the rich set of functions on the booleans, there are many different 
ways of representing a finite set. For example, the set {1, 2} can be represented 
by the term 

{xI (x = 1) V (x = 2)}, 

as well as by the normal abstraction 

>-.x.if x = 1 then T else if x = 2 then T else ..l. 

The function linea'rise provides a way to turn the former into the latter, by 
means of the following computation. 

linearise {xI (x = 1) V (x = 2)} 

linea'rise {xI x = 1} U linearise{x I x = 2} 

{ x I if x = 1 then T else ..l} U { x I if x = 2 then T else ..l} 
{y I (y E { x I if x = 1 then T else ..l}) V (y E { x I if x = 2 then T else ..l})} 
{y I (if y = 1 then T else ..l) V (if y = 2 then T else ..l)} 
{y I if y = 1 then T else (..l V (if y = 2 then T else ..l))} 
{y I if y = 1 then T else if y = 2 then T else ..l}. 
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Multisets 

The next group of definitions provide basic multiset processing. 

l±J : (a-+ Nat) -+ (a-+ Nat) -+ (a-+ Nat) 

A.x.O l±J m=m 

(>..x.if x = t then v else w) l±J m = 
A.x.if x = t then v + (m t) else (>..x.w l±J (remove {t} m)) x 

1::t : (a-+ Nat) -+(a-+ Nat)-+ (a-+ Nat) 

A.x.O l::t m = A.x.O 

(A.x.if x = t then v else w) 1::t m = 
A.x.if x = t then v - (m t) else (A.x.w l::t m) x 

U: (a-+ Nat) -+(a-+ Nat)-+ (a-+ Nat) 

>..x.O U m = m 

(A.x.if x = t then v else w) U m = 
A.x.if x = t then max v (m t) else (>..x.w U (remove {t} m)) x 

n: (a-+ Nat)-+ (a-+ Nat) -+(a-+ Nat) 

>..x.O n m = A.x.O 

(A.x.if x = t then v else w) n m = 
A.x.if x = t then min v (m t) else (A.x.w n m) x 

~ : (a-+ Nat) -+ (a-+ Nat) -+ fl 

>..x.O ~m= T 

(A.x.if u then v else w) ~ m = 
('v'x.(u-----> v:::; (m x))) 1\ ((remove {xI u} A.x.w) ~ m) 

E :a-+ (a-+ Nat)-+ fl 

x Em= (mx) > 0 

The function l±J computes the multiset union, the function l::t computes the 
multiset difference, the function U computes the pairwise maximum, and the 
function n computes the pairwise minimum of two multisets. (Note that _:__ is 
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the monus function, which is similar to subtraction except a negative result 
is rounded up to 0.) The function I;;; is multiset inclusion and the function E 
is multiset membership. As an illustration of the use of n, the goal 

(>..x.if x =A then 42 else if x = B then 21 else 0) 

n (>..x.if x =A then 16 else if x = C then 4 else 0) 

reduces to the answer 

>..x.if x =A then 16 else 0. 

A Computation for a Learning Problem 

To tie the above ideas together in the learning context of this book, consider 
the evaluation of the term 

setExists 1 ( /\2 (projM ake o ( = Abloy)) (proj Length o ( = Medium))) 

{(Abloy, 3, Short, Normal), (Abloy, 4, Medium, Broad)}. 

The computation, which uses the leftmost selection rule and has the redexes 
underlined, is as follows. 

setExists1 (/\2 (projMake o ( = Abloy)) (projLength o ( = Medium))) 

{(Abloy, 3, Short, Normal), (Abloy, 4, Medium, Broad)} 

3x.(((/\2 (projMakeo(= Abloy)) (projLengtho(= Medium))) x) 1\ 

(x E {(Abloy, 3, Short, Normal), (Abloy, 4, Medium, Broad)})) 

3x.((((projMake o (= Abloy)) x) 1\ ((projLengtho (=Medium)) x)) 1\ 

(x E {(Abloy, 3, Short, Normal), (Abloy, 4, Medium, Broad)})) 

3x.((((= Abloy) (projMake x)) 1\ ((projLength o (=Medium)) x)) 1\ 

(x E {(Abloy, 3, Short, Normal), (Abloy, 4, Medium, Broad)})) 

3x.((((= Abloy) (projMake x)) 1\ ((=Medium) (projLength x))) 1\ 

(x E {(Abloy, 3, Short, Normal), (Abloy, 4, Medium, Broad)})) 

3x.((((= Abloy) (projMake x)) 1\ ((=Medium) (projLength x))) 1\ 

(if x = (Abloy, 3, Short, Normal) then T else 

if x = (Abloy,4,Medium,Broad) then T else ..l)) 
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3x.if ((((= Abloy) (projMake x)) 1\ ((=Medium) (projLength x))) 1\ 

(x = (Abloy, 3, Short, Normal))) then T else 

((((= Abloy) (projMake x)) 1\ ((=Medium) (projLength x))) 1\ 

(if x = (Abloy, 4, Medium, Broad) then T else 1_)) 

if 3x.((((= Abloy) (projMake x)) 1\ ((=Medium) (projLength x))) 1\ 

(x = (Abloy, 3, Short, Normal))) then T else 

3x.((((= Abloy) (projMake x)) 1\ ((=Medium) (projLength x))) 1\ 

(if x = (Abloy,4,Medium,Broad) then T else 1_)) 

if(((= Abloy) (projMake (Abloy,3,Short,Normal))) 1\ 

((=Medium) (projLength (Abloy, 3, Short, Normal)))) then T else 

3x.((((= Abloy) (projMake x)) 1\ ((=Medium) (projLength x))) 1\ 

(if x = (Abloy,4,Medium,Broad) then T else 1_)) 

if(((= Abloy) Abloy) 1\ 

((=Medium) (projLength (Abloy, 3, Short, Normal)))) then T else 

3x.((((= Abloy) (projMake x)) 1\ ((=Medium) (projLength x))) 1\ 

(if x = (Abloy,4,Medium,Broad) then T else 1_)) 

if (T 1\ 

((=Medium) (projLength (Abloy, 3, Short, Normal)))) then T else 

3x.((((= Abloy) (projMake x)) 1\ ((=Medium) (projLength x))) 1\ 

(if x = (Abloy, 4, Medium, Broad) then T else 1_)) 

if((= Medium) (projLength (Abloy,3,Short,Normal))) then T else 

3x.((((= Abloy) (projMake x)) 1\ ((=Medium) (projLength x))) 1\ 

(if x = ( Abloy, 4, Medium, Broad) then T else l_)) 

if ( ( = Medium) Short) then T else 

3x.((((= Abloy) (projMake x)) 1\ ((=Medium) (projLength x))) 1\ 

(if x = (Abloy,4,Medium,Broad) then T else 1_)) 
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if ..l then T else 

:Jx.((((= Abloy) (projMake x)) 1\ ((=Medium) (projLength x))) 1\ 

(if x = (Abloy,4,Medium,Broad) then T else ..l)) 

:Jx.((((= Abloy) (projMake x)) 1\ ((=Medium) (projLength x))) 1\ 

(if x = (Abloy,4,Medium,Broad) then T else ..l)) 

:Jx.if ((((= Abloy) (projMake x)) 1\ ((=Medium) (projLength x))) 1\ 

(x = (Abloy, 4, Medium, Broad))) then T else 

((((= Abloy) (projMake x)) 1\ ((=Medium) (projLength x))) 1\ ..l) 

if :Jx.((((= Abloy) (projMake x)) 1\ ((=Medium) (projLength x))) 1\ 

(x = (Abloy, 4, Medium, Broad))) then T else 

:Jx.((((= Abloy) (projMake x))A((= Medium) (projLength x)))A..l) 

if(((= Abloy) (projMake (Abloy, 4, Medium, Broad))) 1\ 

(( = Medium) (projLength (Abloy, 4, Medium, Broad)))) then T else 

:Jx.((((= Abloy) (projMake x))A((= Medium) (projLength x)))A..l) 

if(((= Abloy) Abloy) 1\ 

((=Medium) (projLength (Abloy,4,Medium,Broad)))) then T else 

:Jx.((((= Abloy) (projMake x))l\((= Medium) (projLength x)))A..l) 

if (T 1\ 

((=Medium) (projLength (Abloy, 4, Medium, Broad)))) then T else 

:Jx.((((= Abloy) (projMake x))l\((= Medium) (projLength x)))A..l) 

if((= Medium) (projLength (Abloy, 4, Medium, Broad))) then T else 

:Jx.((((= Abloy) (projMake x))A((= Medium) (projLength x)))A..l) 

if((= Medium) Medium) then T else 

:Jx.((((= Abloy) (projMake x))A((= Medium) (projLength x)))l\..l) 
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if T then T else 

:lx.((((= Abloy) (projMake x)) 1\ ((=Medium) (projLength x))) 1\ _i) 

T. 

Bibliographical Notes 

The particular approach to computation in this chapter starts from a tradi
tional functional programming computational model and extends it so that 
logic programming idioms can also be supported. Thus the resulting pro
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programming language [31]. There have been many previous efforts to design 
functional logic programming languages some of which are reported in [31]. 
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computational model of this chapter in the context of the Escher language 
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needed before it becomes truly competitive. 

The particular formulation of the definitions of the connectives and quan
tifiers in Sect. 5.2 and the programming with abstractions paradigm in 
Sect. 5.3 first appeared in [54, 55, 56]. Another approach to providing sets 
and multisets in declarative programming languages is given in [19]. 

A 'run-time type checking is unnecessary' result in a functional program
ming context appeared in [60]. A first-order result of this kind for Prolog was 
first given in [67] and later in [35]. 

The definition of the completion of a logic program is due to Clark [12]. 
See also [52]. 

Exercises 

5.1 Consider the following definition of the function member. 

member : a --+ List a --+ f? 

member x [] = _l 

member x y ~ z = ( x = y) V member x z. 
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(i) Evaluate member 2 [1, 2, 3]. 
(ii) Evaluate member 4 [1, 2, 3]. 

(iii) Evaluate member x [1, 2, 3]. 

5.2 For the function append of Sect. 5.3, show that the goal 

append (x, y, 1 U []) 

reduces to the answer 

(x = []A y = 1 U []) V (x = 1 U []A y = []). 
5.3 For the function powerset of Sect. 5.3, show that the goal 

powerset {Mary, Bill} 

reduces to the answer 

{ {}, {Mary}, {Bill}, {Mary, Bill}}. 

5.4 Write a program using the programming with abstractions paradigm 
that solves the following problem: find the smallest 6 digit number consisting 
of two 1s separated by 1 digit, two 2s separated by two digits, and two 3s 
separated by three digits. 
[Hint: Represent numbers by the list of their digits. Write a predicate generate 
on lists of integers that generates all candidate numbers that satisfy the 
conditions. Then write a function smallest that picks the smallest list of 
integers out of the set of such lists (where 'smallest' is according to the order 
on the numbers represented by the lists of integers). The required number is 
then given by smallest { x I generate x} .] 
5.5 Give the definition of a function card : (a ____, fl) ____, Nat that computes 
the cardinality of a finite set. 
5.6 Let 

ifsome ::lx1. · · · 3xn .b then c else d 

be syntactic sugar for 

and consider the following statements 

ifsome 3x1. · · · 3xn.T then x else y = ::lx1. · · · 3xn.X 
ifsome 3x1 . · · · 3xn . .l then x else y = y 

ifsome 3x1 . · · · 3xn.(x A (xi= u) A y) then z else v = 
ifsome 3x1. · · · 3xi_1.3xi+l· · · · 3xn.(x{xdu} A y{xdu}) 

then z{xdu} else v 

%where Xi is not free in u. 

ifsome 3x1 . · · · 3xn.(x V (xi = u) V y) then z else v = 
3x1. · · · 3xn.((x V (xi= u) V y) A z). 
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(i) What is the meaning of the function lookup having the following defini
tion? 

lookup : Int x Person x List (Int x Person) x List (Int x Person)--> [2 

lookup (key, value, assoc_list, new_assoc_list) = 
ifsome ::lv. member (key, v) assoc_list 

then value = v 1\ new_assoc_list = assoc_list 

else new _assoc_list = (key, value) ~ assoc_list. 

(ii) By constructing the appropriate computation, show that the term 

lookup (5, value, [(4, Fred), (5, Mary)], list) 

reduces to 

(value= Mary) 1\ (list= [(4, Fred), (5, Mary)]). 

(iii) By constructing the appropriate computation, show that the term 

lookup (5, value, [(4, Fred), (5, Mary), (5, Bill)], list) 

reduces to 

((value= Mary) 1\ (list= [(4, Fred), (5, Mary), (5, Bill)])) V 

((value= Bill) 1\ (list= [(4, Fred), (5, Mary), (5, Bill)])). 

(iv) By constructing the appropriate computation, show that the term 

lookup (6, Joe, [(4, Fred), (5, Mary), (5, Bill)], list) 

reduces to 

list= [(6, Joe), (4, Fred), (5, Mary), (5, Bill)]. 

5. 7 Redo the evaluation of 

setExists1 (/\2 (projMake o ( = Abloy)) (projLength o ( = Medium))) 

{(Abloy, 3, Short, Normal), (Abloy, 4, Medium, Broad)} 

using instead the representation 

{xI (x = (Abloy, 3, Short, Normal)) V (x = (Abloy, 4, Medium, Broad))} 

for the set {(Abloy, 3, Short, Normal), (Abloy, 4, Medium, Broad)}. Can you 
draw any conclusions about the relative merits of this kind of representation 
for sets compared with normal abstractions? 
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5.8 Give an example of an interpretation I, a statement h = b, and an 
idempotent substitution () such that h() = b() is a term and h = b is valid in 
I, but he =be is not valid in I. 

5.9 Prove or disprove the following conjecture. 
Let P be a program. Then, for every computation with goal s and answer t, 
s = t is a logical consequence of P. 

5.10 (Open problem) Prove or disprove the following conjecture. 
Let P be a program, and s a goal and t an answer of a computation. Let I be 
a model for P and cpa variable assignment with respect to I. Then, for every 
grounding type substitution 77 for s, there is a grounding type substitution v 
fort such that V(s,7],l,cp) = V(t,v,I,cp). 

5.11 (Open problem) Give a definition of the concept of a schema by extend
ing the definition of a term in Chap. 2 to include syntactical variables. Also 
extend the concept of type weaker for terms in Chap. 2 to type weaker for 
schemas. Hence give a suitable definition of the concept of statement schema 
(that covers its usage in this chapter) and establish a 'run-time type checking 
is unnecessary' result for statement schemas. 

5.12 (Open problem) Find an implementation strategy for the programming 
with abstractions paradigm which has the properties that (i) functional pro
grams that do not use this paradigm (for example, Haskell programs) run 
with the same efficiency on the implementation as they do on a standard func
tional implementation, and (ii) programs that correspond directly to Prolog 
programs run with the same efficiency on the implementation as the corre
sponding Prolog programs do on a Prolog system. 
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This chapter discusses a widely applicable learning paradigm that leads to 
comprehensible theories, provides an overview of the ALKEMY learning sys
tem, and also gives some illustrations of this approach to learning. 

6.1 Decision-Tree Learning 

Decision-tree learning systems have a long history of development and suc
cessful application. These systems are based on the following intuitively ap
pealing idea. To build a classifier from a set of examples, find a criterion that 
partitions the examples into two sets which are purer in the distribution of 
classes that they contain than the original set; apply this process recursively 
on the child nodes until the leaf nodes of the tree are sufficiently pure; and 
then use the resulting decision tree as the induced classifier. (The formulation 
here focuses on binary decision trees. More generally, one can partition into 
more than two sets.) Decision-tree learning is one of few learning methods 
that provides comprehensible hypotheses and this explains the concentration 
on that approach here. 

An important issue for decision-tree algorithms is to decide under what 
situations a node should be split and, if so, what predicate should be used 
to split it. Given that the overall aim of the algorithm is to produce a tree 
with high predictive accuracy, it is natural to propose to use accuracy as the 
criterion for node splitting. (The accuracy of a set of examples is the fraction 
of the examples in the majority class of the set; the precise definition is given 
below.) A variety of other heuristics mostly based on entropy could also be 
used. Accuracy has the advantage of providing a basis for a safe pruning 
method as shall be indicated below. I now give the theoretical background 
for the accuracy heuristic. 

First, some definitions are presented. Suppose there are c classes in all. 
Let E be a (non-empty) set of examples, N the number of examples in C., ni 

the number of examples in E in the ith class, and Pi = n;j N, for i = 1, ... , c. 

Definition 6.1.1. The majority class of E is defined to be the class to which 
the greatest number of examples in E belong. (If there are two or more classes 
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with the same maximal number of examples, one is chosen arbitrarily as the 
majority class.) 

Definition 6.1.2. The accuracy, At:, of the set C. of examples is defined by 

where M is the index of the majority class of C.. 

The accuracy is the fraction of examples which are correctly classified on 
the basis that the majority class gives the classification. At: lies in the range 
[1/c, 1], where larger values correspond intuitively to purer sets of examples. 
If all the examples come from the same class, then At: = 1. If the examples 
are evenly distributed amongst the classes, then At: = 1/c. I also define the 
accuracy of a partition of a set of examples. 

Definition 6.1.3. Let P = { £1, ... , C.m} be a partition of a set of N exam
ples, where there are N 1 examples in £1, for j = 1, ... , m. Then the accuracy, 
A~, of the partition P is defined by 

m N· 
A~ = "' _J At: . L... N J 

j=l 

Thus A~ is the weighted average of the accuracies of the individual sets 
of examples in the partition. A~ lies in the range [1 / c, 1], where larger values 
correspond to partitions that are more accurate. 

The decision-tree learning algorithm used by ALKEMY makes binary splits 
at each node in the tree, so I now develop some material about binary par
titions that will be needed. For this, it will be convenient to define a binary 
partition of a set of examples to be an ordered pair. 

Definition 6.1.4. A binary partition of a set of examples C. is an ordered 
pair (£1, £2) such that C.= £1 U £2 and £1 n £2 = 0. 

If C. is a set of examples, a predicate p induces a binary partition (£ 1 , £2 ) 

of C., where £1 is the set of examples such that the predicate evaluates to 
true on the individual in the example and £2 is the set of examples such that 
the predicate evaluates to false on the individual in the example. Now, given 
a predicate p and a rewrite, predicate construction creates a new predicate 
p' such that p ¢= p', assuming the predicate rewrite system is monotone 
(see Proposition 4.5.3). Thus the binary partition (C.~, C.~) of C. induced by 
p' has the property that C.~ t;;;; £ 1 . These considerations lead to the following 
definition. 

Definition 6.1.5. Let C. be a set of examples and (£ 1 , £2 ) a binary partition 
of C.. Then a binary partition (C.~, C.~) of C. is said to be a refinement of ( £1, £2) 
if c.~ t;;;; C.l. 
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Next a measure for binary partitions is introduced that allows safe pruning 
of the search space of predicates. 

Definition 6.1.6. Let P = (c 1 , c 2) be a binary partition of a set c of N 
examples, where ni is the number of examples in c in the ith class and nj,i 
is the number of examples in Cj in the ith class, for j = 1, 2 and i = 1, ... , c. 
Then the refinement bound, Bp, of the binary partition P is defined by 

Bp = (m~x{ni+rr:f n1,k})jN. 

I will show below that Bp is an upper bound for the accuracy of any 
binary partition that is a refinement of P and there exists a refinement of P 
that has accuracy Bp. The intuitive idea behind the definition of Bp is that 
the refinement of P having the greatest accuracy can be obtained by moving 
all examples in one class, say io, from cl across to c2 making io the majority 
class in (the new) c2 and leaving argmaxk#io nl,k as the majority class in (the 
new) c 1 . Here is an example to illustrate the concept of refinement bound. 
In the following, I denote by (n1 , ... , nc) a set of examples with ni examples 
from the ith class, for i = 1, ... , c. 

Example 6.1.1. Let c = (6,9,3,2) and suppose P = ((2,1,0,2),(4,8,3,0)). 
Then Ap = 10/20 and Bp = 11/20. If Q = ((0, 9, 0, 0), (6, 0, 3, 2)), then 
Ao = Bo = 15/20. 

The following proposition collects the basic properties of refinement 
bounds. 

Proposition 6.1.1. Let c be a set of examples and P a binary partition of 
c. 

1. If p' is a refinement of P, then Ap' ~ Bp. In particular, Ap ~ Bp. 
2. If p' is a refinement of P, then Bp' S Bp. 
3. There is a refinement :R of P such that A::R = Bp. 
4- Ap = Bp iff, for all refinements p' of P, Ap' ~ Ap. 

Proof. 1. Let P be (£1, c2) and p' be (c~, c~), where c~ ~ c 1. Let n1,i 
be the number of examples in c 1 in the ith class and M~ the index of the 
majority class of c~. Consider the binary partition Q obtained from p' by 
moving across any remaining examples from class M~ in c~ to c~. Clearly 
Ap' ~ AQ, since the examples so moved will be correctly classified after 
the move. But AQ ~ Bp, since AQ ~ ({nM' + maxk-'-M' nl,k})/N and 

2 T 2 

Bp =(maxi {ni +maxk,ei nl,k})/N. Hence the result. 
2. Let n~ i be the number of examples inc~ in the ith class, fori = 1, ... , c. 

Clearly max'k#i n~ k ~ maxk#i n1,k, fori= 1, ... , c. Hence Bp' ~ Bp. 
3. Let i0 be a~ index for which the maximum in the definition of Bp 

is achieved. Construct the binary partition :R = (c~, c~) from P by mov
ing all examples in class i0 from c 1 across to c 2. I claim that the ma
jority class of c~ is io. Suppose not. Then there is another class i1, say, 
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such that c~ contains strictly more examples of class i 1 than class i 0 . 

There are two cases to consider. Suppose that argmaxk#io n1,k -=f. i1. Thus 
ni 1 + maxk;Fi 1 n1,k > nio + maxk#io n1,k and there is a contradiction to 
the definition of io. Otherwise, suppose that argmaxk#io n1,k = i1. Thus 
ni, > nio + maxk#io n1,k and there is a contradiction again. Thus io is the 
majority class in c~ and it follows that AR = B'J'. 

4. Suppose that A'J' = B'J'. If 'J'' is a refinement of 'J', then A'J'' :::; B'J', by 
Part 1. Hence A'J'' :::; A'J'. Conversely, suppose A'J'' :::; A'J', for all refinements 
'J'' of 'J'. By Part 3, there is a refinement :R of 'J' such that AR = B'J'. Hence 
A'J' :::; B'J' = AR :::; A'J' and the result follows. D 

Part 1 of Proposition 6.1.1 is used by the ALKEMY learning system to 
prune the search space when searching for a predicate to split a node. During 
this search, the system records the best partition 'J' found so far and its 
associated accuracy A'J'. When investigating a new partition Q, the quantity 
BQ is calculated. According to the proposition, if BQ :::; A'J', then the partition 
Q and all its refinements can be safely pruned. The effect of this pruning is 
often to greatly reduce the part of the search space that has to be searched. 
Note carefully that the pruning is in the search space of predicates for splitting 
a particular node not in the decision tree itself. Here is an example to illustrate 
how this works. 

Example 6.1.2. Let the set of examples be (6,9,3,2). Suppose the best par
tition found so far is 'J' = ((5,3,0,2), (1,6,3,0)), which has accuracy 11/20. 
Suppose that later on in the search the partition Q = ( (2, 4, 0, 1), ( 4, 5, 3, 1)) 
is being investigated. Note that BQ = 11/20. Since Ba :::; A'J', the proposition 
shows that Q and its refinements can be pruned. 

On the other hand, consider the partition :R = ((6,5,3,2),(0,4,0,0)), 
for which BR = 15/20. Thus :R has refinements, which could be found by 
the system, whose accuracies exceed that of 'J'. (The refinements actually 
investigated depend upon the hypothesis language, of course.) Thus :R should 
not be pruned. 

I now turn to a detailed description of the decision-tree algorithm used by 
ALKEMY. Figure 6.1 gives an overview of this algorithm. The input is a set of 
examples, a predicate rewrite system, and a parameter to be explained below. 
Each example has the form ( t, C), where t is a basic term representing an 
individual and Cis its class. The algorithm builds a decision tree, labels each 
leaf node of the tree by its majority class, and then performs post-pruning 
on this tree to produce the final decision tree. The post-pruning algorithm 
used is called error-complexity post-pruning; other techniques could also be 
employed. 

Figure 6.2 contains a description of the algorithm that builds a decision
tree. It calls upon another algorithm in Fig. 6.3 to provide suitable predicates 
to perform the splitting. A node is only split if a predicate can be found such 
that the accuracy of the partition induced by the predicate is strictly greater 
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function Learn(£,,....., P) returns a decision tree; 

inputs: c, a set of examples; 
,....., a predicate rewrite system; 
P, prune parameter; 

tree := BuildTree(c, ,....., P) 

label each leaf node of tree by its majority class; 

tree:= Postprune(tree); 

return tree; 

Fig. 6.1. Decision-tree learning algorithm 

than the accuracy of the set of examples at the node. In Fig. 6.2, tree. right 
is the right subtree of tree; similarly, for tree.lejt. It is understood that the 
branch from the node to the left subtree is labelled by p and the branch to 
the right subtree is labelled by •p; this information is used to extract the 
definition of the induced function from the decision tree. 

function BuildTree(c, ,....., P) returns a decision tree; 

inputs: c, a set of examples; 
,..... , a predicate rewrite system; 
P, prune parameter; 

tree :=single node (with examples c); 

p := Predicate(£,,....., P); 

P := binary partition induced by p; 

if A1> :::; Ac: then return tree; 

Ct := {(t, C) I (t, C) E c and (p t) evaluates toT}; 

c2 := {(t,C) I (t,C) E c and (pt) evaluates to _l_}; 

tree.left := BuildTree(ct, ,....., P); 

tree. right:= BuildTree(£2, ,....., P); 

return tree; 

Fig. 6.2. Tree building algorithm 

The most interesting aspect of the decision-tree algorithm is the way it 
searches the space of predicates to find a good predicate to split a node, as 
shown in Fig. 6.3. The algorithm there is based on the predicate enumera
tion process described in Sects. 4.4 and 4.6. The function Predicate given in 
Fig. 6.3 is a variation of the algorithm in Fig. 4.5 that instead returns a single 
predicate. For this algorithm, it is assumed that the predicate rewrite system 
>----> is monotone (as required by Proposition 4.5.3 and Proposition 4.5.4) and 
the regularisation >----> of >----> is a predicate rewrite system that is separable, 
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descending, and switchable (as required by Proposition 4.6.10). Even if these 
conditions are not satisfied, the algorithm is sound; that is, only (regularisa
tions of) expected predicates are generated. 

function Predicate ( [, >-->, P) returns a predicate; 
input: E, a set of examples; 

>-->, a predicate rewrite system; 
P, prune parameter; 

openList :=[top]; 
predicate := top; 

accuracy := Ac:; 

while openList i= [] do 

p : = head ( openList); 

openList : = tail ( openList); 

for each LR redex r via r:;::.;:b, for some b, in p do 
q := p[r/b]; 
if q is regular then 

T := binary partition of [ induced by q; 

if Ay > accuracy then 
predicate := q; 

accuracy:= Ay; 
if Ay > P then P := Ay; 

if By ~ P !\ Ay < By then 
openList := Insert(q, openList); 

return predicate; 

Fig. 6.3. Algorithm for finding a predicate to split a node 

The meaning of the parameter prune is as follows. 

prune: This parameter is a percentage. Only predicates that induce 
a partition with a refinement bound greater than or equal to prune 
are put on the open list. The default value is 0%. 

The algorithm prunes predicates whose induced partitions have a refinement 
bound smaller than prune and thus removes predicates that do not have 
the potential for achieving splits of high accuracy. In the default mode, the 
parameter is initially set at 0%; as better accuracies are obtained during the 
search, the value of the parameter is updated. By Proposition 6.1.1, this kind 
of pruning is safe. However, for large search spaces, it is common to set a 
high initial value for prune and this may result in pruning that is not safe. 

The open list is decreasingly ordered by the refinement bounds of the 
partitions induced by the predicates. (Predicates that have the same refine-
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ment bound are decreasingly ordered by accuracy.) Thus the predicate with 
the highest such value is at the head of the list. The refinement bound plays 
an important part in directing the search towards promising predicates, that 
is, those which have the potential for being strengthened to produce splits 
with high accuracy. In this regard, in Fig. 6.3, the function Insert takes a 
predicate and the open list as arguments and returns a new open list with the 
predicate inserted in the appropriate place according to the ordering imposed 
by refinement bound. 

ALKEMY has some other parameters that will be used in Sect. 6.2. 

stump: This parameter is a boolean. If stump is true, then the induced 
decision tree is a stump, that is, has a single split. If stump is false, 
then the induced decision tree can have any number of splits. The 
default value is false. 

cutout: This parameter is a non-negative integer. If the algorithm 
investigates successively cutout predicates without finding one which 
strictly improves the current best accuracy, then the algorithm ter
minates, returning the best predicate found so far. If cutout is 0, then 
no such limit is set. The default value is 0. 

This completes the description of the decision-tree algorithm. 
The final topic in this section before moving on to the illustrations in the 

next section is that of a methodology for using the tools introduced in this 
book. What follows is an outline of such a methodology. 

The first step towards solving a learning problem is to determine a suitable 
type to model the individuals. As has been stressed already, establishing the 
type of the individuals is important because many of the transformations 
(the generic ones) depend only on this type. Having established this type, 
the individuals can be represented and the examples collected. 

The second step is to write down the transformations that are appropri
ate for the learning problem. Useful collections of generic transformations 
determined by the type of the individuals are given in Chap. 4. A possibly 
much more difficult task is to choose a collection of domain-specific transfor
mations. This may require expert knowledge of the problem domain. 

The third step is an iterative one of finding a suitable hypothesis language. 
Using the approach of this book, this is equivalent to finding a suitable predi
cate rewrite system. Typically finding a suitable hypothesis language requires 
considerable experimentation and there is not much that one can say in gen
eral about it. However, here are two remarks. The first is that what ALKEMY 
is good at is the combinatorial task of combining the basic ingredients of a 
good hypothesis into the hypothesis itself. However, ALKEMY must have ac
cess to these basic ingredients in the form of appropriate transformations in 
the predicate rewrite system - if the basic ingredients are not present, it is 
unreasonable to expect the system to be able to invent them itself. Assuming 
the basic ingredients are present, ALKEMY is an excellent tool for combining 
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them in unexpected ways to produce an insightful hypothesis. The second re
mark is that what varies in each experiment is the predicate rewrite system 
- the representation of the individuals remains fixed (unless, of course, it is 
realised that there is a flaw in the representation and it should be revisited). 
The effects of the traditional methods of feature construction, extraction and 
selection are accomplished here solely by adjusting the predicate rewrite sys
tem in an appropriate way. A helpful way to understand this is to regard 
the conventional approach of working with feature vectors as a 'compiled' 
version of the approach here - instead of having the features (that is, predi
cates) given by the predicate rewrite system, they are pushed back into the 
representation of the individuals themselves. Working directly with feature 
vectors can be much more efficient, but conceptually it is clearer to work 
with predicate rewrite systems. If efficiency becomes a major issue, ALKEMY 

of course allows one to work with feature vectors in the traditional way. 
The final step is that of evaluating the induced hypothesis. This may in

volve estimating the error rate or cost-sensitive loss function on a previously 
unseen test set. In the case of knowledge discovery, it may involve evaluat
ing the impact of (some part of) the induced hypothesis in the application 
domain. 

6.2 Illustrations 

This section contains a series of illustrations that serve to elucidate the ideas 
of this book. The illustrations are deliberately simple ones and are varied, 
so that the approach to the representation of individuals and predicate con
struction can be more easily comprehended. For each illustration, the induced 
hypothesis given in the text was obtained by simply using the entire set of 
examples as training examples (and, for all but the Musk and Mutagenesis 
illustrations, the default settings for ALKEMY). No accuracies of the induced 
hypotheses are indicated, although the methods have been shown elsewhere 
to be competitive in this regard. Instead I concentrate on the representation 
of the structured individuals, the flexibility of predicate rewrite systems, and 
the comprehensibility of the induced hypotheses. It is also worth noting that 
for each illustration there are generally many predicate rewrite systems that 
could be chosen. I have made just one choice for each illustration; readers 
are encouraged to obtain the ALKEMY system and experiment with other 
possibilities. 

Tennis 

This illustration is a typical attribute-value problem which involves learning 
the concept of playing, or not playing, tennis, according to the weather. 
First the types Outlook, Temperature, Humidity, and Wind are introduced 
as follows. 



Sunny, Overcast, Rain: Outlook 
Hot, Mild, Cool : Temperature 
High, Normal, Low: Humidity 

Strong, Medium, Weak : Wind. 
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It will be convenient to introduce the following type synonym. 

Weather= Outlook x Temperature x Humidity x Wind. 

The function playTennis to be learned has signature 

playTennis : Weather--+ fl. 

Here are the examples. 

playTennis (Overcast, Hot, High, Weak)= T 

playTennis (Rain, Mild, High, Weak) = T 

playTennis (Rain, Cool, Normal, Weak)= T 

playTennis (Overcast, Cool, Normal, Strong)= T 

playTennis (Sunny, Cool, Normal, Weak)= T 

playTennis (Rain, Mild, Normal, Weak)= T 

playTennis (Sunny, Mild, Normal, Strong) = T 

playTennis (Overcast, Mild, High, Strong)= T 

playTennis (Overcast, Hot, Normal, Weak) = T 

playTennis (Sunny, Hot, High, Weak) = .l 

playTennis (Sunny, Hot, High, Strong)= .l 
playTennis (Rain, Cool, Normal, Strong)= .l 
playTennis (Sunny, Mild, High, Weak) = .l 
playTennis (Rain, Mild, High, Strong) = .l. 

The background theory contains the following transformations. (In this 
and later illustrations, the inclusion of the predicate top : a --+ fl in the 
background theory is taken for granted.) 

( = Sunny) : Outlook --+ fl 

( = Overcast) : Outlook --+ fl 

( = Rain) : Outlook --+ fl 

( = Hot) : Temperature --+ fl 

( = Mild) : Temperature --+ fl 

( = Cool) : Temperature --+ fl 

( = High) : Humidity --+ fl 
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( = Normal) : Humidity -+ D 

( = Low) : Humidity -+ D 

( = Strong) : Wind -+ D 

( = Medium) : Wind -+ D 

(= Weak): Wind-+ D 

projOutlook : Weather -+ Outlook 

projTemperature : Weather-+ Temperature 

projHumidity : Weather -+ Humidity 

proj Wind : Weather -+ Wind 

/\ 2 : (Weather-+ D) -+ (Weather -+ D) -+ Weather-+ D. 

Here projOutlook is the projection from Weather onto the component Outlook. 
Similarly, for projTemperature, projHumidity, and projWind. 

The last transformation above is noteworthy. To explain why, consider 
the transformation and2 defined as follows. 

and2 : (Weather -+ D) -+ (Weather -+ D) -+ Weather -+ D 

In this definition, the transformation /\2 : (a -+ D) -+ (a -+ D) -+ a -+ D is 
the one that was defined in Chap. 4. Thus and2 is a new transformation that 
is, in effect, a specialised version of /\2 that only applies to predicates of type 
Weather -+ D. Rather than explicitly introduce specialised transformations 
like this, since the intention should be clear I simply use the name of the 
general transformation in the background theory, but give it an appropriately 
specialised signature. 

A suitable predicate rewrite system for this illustration is as follows. 

top ,........ /\2 top top 

top ,........ projOutlook o top 

top ,........ projTemperature o top 

top >---+ projHumidity o top 

top ,........ proj Wind o top 

top>---+(= Sunny) 

top ,........ ( = Overcast) 

top>---+(= Rain) 

top,........(= Hot) 

top >---+ ( = Mild) 

top ,........ ( = Cool) 

top,........(= High) 



top ,........ ( = Normal) 

top,........(= Low) 

top ,........ ( = Strong) 

top,........(= Medium) 

top,........(= Weak). 
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For this setting, ALKEMY found the following definition for the function 
play Tennis. 

playTennis w = 
if 1\2 (projOutlook o ( = Sunny)) (projHumidity o ( = High)) w 

then ..l 

else if 1\2 (projOutlook o (=Rain)) (projWind o (=Strong)) w 

then ..l 

else T. 

"The weather is suitable for playing tennis unless the outlook is sunny and 
the humidity is high or the outlook is rain and the wind is strong". 

Other predicate rewrite systems can also be used to give an equivalent 
hypothesis. For example, one can look for three or four conditions on an 
individual. For four conditions, the top-level rewrite becomes 

top ,........ /\4 top top top top. 

Alternatively, one can use the more precise top-level rewrite 

top ,........ /\4 (projOutlook o top) (projTemperature o top) 

(projHumidity o top) (proj Wind o top). 

Keys 

I return to the problem that was employed in Sect. 1.3 to motivate the learn
ing aspects of this book. This problem is interesting because it illustrates 
what is known as a 'multiple-instance' problem. From a knowledge represen
tation point of view, a multiple-instance problem is indicated by having a 
term which is a set at the top level representing an individual. 

Here is the statement of the problem again. Consider the problem of 
determining whether a key in a bunch of keys can open a door. More precisely, 
suppose there are a number of bunches of keys and a particular door which 
can be opened by a key. For each bunch of keys either no key opens the door 
or there is at least one key which opens the door. For each bunch of keys it is 
known whether there is some key which opens the door, but it is not known 
precisely which key does the job, or it is known that no key opens the door. 
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The problem is to find a classification function for the bunches of keys, where 
the classification is into those which contain a key that opens the door and 
those that do not. 

This problem is prototypical of a number of important practical problems 
such as that of pharmacophore discovery. A characteristic property of the 
multiple-instance problem is that the individuals are actually a collection of 
similar entities and the problem is to try to find a suitable entity in each 
collection satisfying some predicate. Thus the kind of predicate one wants to 
find has the form 

( setExists1 p) 

for a suitable predicate p on the entities in the collection. Expressed this 
way, it is clear that the multiple-instance problem is just a special case of 
the general framework that is developed in this book in which the type of 
the individuals is a set. Since the individuals to be classified have a set type, 
following the principles proposed here, one should go inside the set to apply 
predicates to its elements. 

Here are some types and constants to model the individuals. 

Abloy, Chubb, Rubo, Yale : Make 

Short, Medium, Long: Length 

Narrow, Normal, Broad : Width. 

The following type synonyms are introduced. 

NumProngs =Nat 

Key= Make x NumProngs x Length x Width 

Bunch= {Key}. 

The function opens to be learned has signature 

opens : Bunch --+ fl. 

The examples are as follows. 

opens { (Abloy, 3, Short, Normal), (Abloy, 4, Medium, Broad), 

(Chubb, 3, Long, Narrow)}= T 

opens { (Abloy, 3, Medium, Broad), (Chubb, 2, Long, Normal), 

(Chubb, 4, Medium, Broad)} = T 

opens { (Abloy, 3, Short, Broad), (Abloy, 4, Medium, Broad), 

(Chubb,3,Long,Narrow)} = T 

opens {(Abloy, 3, Medium, Broad), (Abloy, 4, Medium, Narrow), 

(Chubb, 3, Long, Broad), (Yale, 4, Medium, Broad)} = T 
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opens {(Abloy, 3, Medium, Narrow), (Chubb, 6, Medium, Normal), 
(Rubo, 5, Short, Narrow), (Yale, 4, Long, Broad)} = T 

opens { (Chubb, 3, Short, Broad), (Chubb, 4, Medium, Broad), 
(Yale, 3, Short, Narrow), (Yale, 4, Long, Normal)} = ..l 

opens {(Yale, 3, Long, Narrow), (Yale, 4, Long, Broad)}= ..l 

opens { (Abloy, 3, Short, Broad), (Chubb, 3, Short, Broad), 

( Rubo, 4, Long, Broad), ( Yale, 4, Long, Broad)} = ..l 

opens { (Abloy, 4, Short, Broad), (Chubb, 3, Medium, Broad), 

(Rubo, 5, Long, Narrow)}= ..l. 

The background theory contains the following transformations. 

(= Abloy): Make-. n 
(= Chubb): Make-. n 
(= Rubo): Make-. n 
(= Yale): Make-. n 
(= 2): NumProngs-. n 
(= 3): NumProngs-. n 
(= 4): NumProngs-. n 
(= 5): NumProngs-. n 
( = 6) : NumProngs -. n 
( = Short) : Length -. n 
(=Medium): Length-. n 
( = Long) : Length -. n 
(=Narrow): Width-. n 
(=Normal): Width-. n 
( = Broad) : Width -. n 
projMake : Key--> Make 

projNumProngs: Key--> NumProngs 

projLength : Key --> Length 

proj Width : Key --> Width 

setExists1 : (Key -. D) -. Bunch -. n 
A2 : (Key -. D) -. (Key -. D) -. Key -. [l 

A3 : (Key-. D) --> (Key-. D)-. (Key-. D) -.Key-. n 
A4 : (Key--> D)--> (Key-. D)-. (Key-. D)-. (Key-. 0)-.Key-->il. 

Here is the predicate rewrite system. 
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top >----> setExists1 (1\4 (projMake o top) (projNumProngs o top) 

(projLength o top) (proj Width o top)) 

top>---->(= Abloy) 

top>---->(= Chubb) 

top>---->(= Rubo) 

top>---->(= Yale) 

top>----> ( = 2) 
top>----> (= 3) 

top>---->(= 4) 

top>---->(= 5) 
top>----> (= 6) 

top>---->(= Short) 

top>---->(= Medium) 

top >----> ( = Long) 

top>---->(= Narrow) 

top >----> ( = Normal) 

top >----> ( = Broad). 

For this setting, ALKEMY found the following definition for the function 
opens. 

opens b = 

if setExists 1 (1\4 (projMake o (= Abloy)) (projNumProngs o top) 

(projLength o ( = Medium)) (proj Width o top)) b 

then T 

else ..l. 

"A bunch of keys opens the door if and only if it contains an Abloy key of 
medium length". 

The definition for opens can be simplified to 

opens b = setExists1 (1\2 (projMake o ( = Abloy)) 

(projLength o ( = Medium))) b. 

Climate 

I now consider an illustration concerning the use of multisets for knowledge 
representation. 

Consider the problem of trying to decide whether a climate in some coun
try is pleasant or not. The climate is modelled by a multiset. Each item in 
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a multiset is a 4-tuple characterising the main features of the weather dur
ing a day and the multiplicity of the item is the number of times during a 
year a day with those particular weather features occurs. Thus, using the 
type Weather from the tennis illustration, a climate can be modelled by the 
following multiset type. 

Climate= Weather-+ Nat. 

The function pleasant to be learned has signature 

pleasant: Climate -+ D. 

Suppose the examples are as follows. 

pleasant (>..w.if w =(Sunny, Mild, Normal, Strong) then 220 else 

if w = (Overcast, Cool, Normal, Strong) then 15 else 

if w =(Sunny, Hot, High, Strong) then 100 else 

if w =(Rain, Cool, Normal, Strong) then 30 else 0) = T 

pleasant (>..w.if w =(Sunny, Mild, High, Strong) then 180 else 

if w =(Sunny, Mild, High, Weak) then 25 else 

if w =(Rain, Cool, Normal, Weak) then 160 else 0) = T 

pleasant (>..w.if w =(Sunny, Mild, High, Strong) then 135 else 

if w =(Rain, Cool, Normal, Strong) then 130 else 

if w =(Sunny, Mild, Normal, Weak) then 100 else 0) = T 

pleasant (>..w.if w =(Rain, Mild, Normal, Weak) then 150 else 

if w =(Sunny, Mild, High, Weak) then 215 else 0) = T 

pleasant (>..w.if w = (Overcast, Hot, High, Weak) then 99 else 

if w = (Overcast, Cool, Normal, Strong) then 266 else 0) = _ 

pleasant (>.w.if w = (Overcast, Hot, High, Weak) then 35 else 

if w = (Overcast, Cool, Normal, Strong) then 124 else 

if w =(Rain, Cool, Normal, Strong) then 206 else 0) = ..l 

pleasant (>.w.if w =(Rain, Mild, High, Weak) then 160 else 

if w = (Overcast, Cool, Normal, Strong) then 50 else 

if w = (Rain, Cool, Normal, Weak) then 155 else 0) = ..l 
pleasant (>..w.if w = (Sunny, Mild, High, Weak) then 135 else 

if w =(Rain, Cool, Normal, Strong) then 34 else 

if w =(Sunny, Hot, High, Strong) then 196 else 0) = ..l 
pleasant (>..w.if w =(Rain, Mild, High, Strong) then 100 else 

if w = (Overcast, Hot, Normal, Weak) then 80 else 

if w =(Rain, Cool, Normal, Weak) then 185 else 0) = ..l. 
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The background theory contains the following transformations. 

( = Sunny) : Outlook ----> Jl 

(= Weak): Wind----> Jl 

projOutlook: Weather----> Outlook 
projTemperature : Weather----> Temperature 

projHumidity: Weather----> Humidity 

projWind: Weather----> Wind 

(> 0): Nat----> Jl 

(> 50) : Nat ----> Jl 

(> 100) : Nat----> Jl 

(> 350) : Nat ----> Jl 

domMcard: (Weather----> Jl) ----> Climate----> Nat 

/\4 : (Weather----> Jl)----> (Weather----> Jl) ----> (Weather----> Jl) 

----> (Weather----> Jl) ----> Weather----> Jl. 

Here is the predicate rewrite system. 

top >--+ ( domM card top) o ( > 0) 
top >--+ /\4 (projOutlook o top) (projTemperature o top) 

(projHumidity o top) (projWind o top) 
top >--+ ( = Sunny) 

top >--+ ( = Overcast) 
top >--+ ( = Rain) 
top >--+ ( = Hot) 

top >--+ ( = Mild) 

top >--+ ( = Cool) 

top >--+ ( = High) 

top >--+ ( = Normal) 

top >--+ ( = Low) 

top >--+ ( = Strong) 

top >--+ ( = Medium) 

top >--+ ( = Weak) 

(> 0) >--+ (> 50) 

(> 50) >--+ (> 100) 



(> 100),....... (> 150) 

(> 150) ,....... (> 200) 

(> 200) ,....... (> 250) 

(> 250) ,....... (> 300) 

(> 300),....... (> 350). 
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For this setting, ALKEMY found the following definition for the function 
pleasant. 

pleasant c = 
if ( domM card (A4 (projOutlook o (=Sunny)) (projTemperature o (=Mild)) 

(projHumidity o top) (projWind o = top))) o (> 150) c 

then T 

else ..l. 

"A country has a pleasant climate if and only if it has at least 150 days in a 
year that have a sunny outlook and a mild temperature". 

Trains 

The next illustration is the well-known East-West Challenge, which consists 
of determining whether a train is headed west or east based on a number of 
its characteristics. The trains are illustrated in Fig. 6.4. 

1. TRAINS GOING EAST 2. TRAINS GOING WEST 

I. l.-9-~~~-[]~ -[JJ=:! I. ~~ 
2. A--~-40;!=-) 2. c:==:J-~n;~ 

~J 3. ~~ 
4. l.o.f----<.o.>----JW~ 4. ~=:J~ -.---·-.-

5. w-{~ .. ~ 5. ~ 

Fig. 6.4. Trains going east and west 

The most natural type to model a train is a list. I first introduce the types 
Direction, Shape, Length, Kind, Roof, and Object. 
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East, West : Direction 

Rectangular, DoubleRectangular, UShaped, BucketShaped, 

Hexagonal, Ellipsoidal : Shape 

Long, Short : Length 

Closed, Open: Kind 

Flat, Jagged, Peaked, Curved, None : Roof 

Circle, Hexagon, Square, Rectangle, LongRectangle, Triangle, 

InvertedTriangle, Diamond, Null : Object. 

It will be convenient to introduce the following type synonyms. 

NumWheels =Nat 

NumObjects = Nat 

Load = Object x NumObjects 

Car = Shape x Length x Num Wheels x Kind x Roof x Load 

Train = List Car. 

The function direction to be learned has signature 

direction : Train-> Direction. 

Here are the examples. (See Fig. 6.4.) 

direction [(Rectangular, Long, 2, Open, None, (Square, 3)), 
(Rectangular, Short, 2, Closed, Peaked, (Triangle, 1)), 

(Rectangular, Long, 3, Open, None, (Hexagon, 1)), 

(Rectangular, Short, 2, Open, None, (Circle, 1))] =East 

direction [( UShaped, Short, 2, Open, None, (Triangle, 1)), 

(BucketShaped, Short, 2, Open, None, (Rectangle, 1)), 

(Rectangular, Short, 2, Closed, Flat, (Circle, 2))] =East 

direction [(Rectangular, Short, 2, Open, None, (Circle, 1)), 

(Hexagonal, Short, 2, Closed, Flat, (Triangle, 1)), 

(Rectangular, Long, 3, Closed, Flat, (InvertedTriangle, 1))] =East 

direction [(BucketShaped, Short, 2, Open, None, (Triangle, 1)), 

( DoubleRectangular, Short, 2, Open, None, (Triangle, 1)), 

(Ellipsoidal, Short, 2, Closed, Curved, (Diamond, 1)), 

(Rectangular, Short, 2, Open, None, (Rectangle, 1))] =East 

direction [ ( DoubleRectangular, Short, 2, Open, None, (Triangle, 1)), 

(Rectangular, Long, 3, Closed, Flat, (LongRectangle, 1)), 

(Rectangular, Short, 2, Closed, Flat, (Circle, 1))] =East 
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direction [(Rectangular, Long, 2, Closed, Flat, (Circle, 3) ), 

(Rectangular, Short, 2, Open, None, (Triangle, 1) )] = West 

direction [(DoubleRectangular, Short, 2, Open, None, (Circle, 1)), 

( UShaped, Short, 2, Open, None, (Triangle, 1) ), 

(Rectangular, Long, 2, Closed, Jagged, (Null, 0))] = West 

direction [(Rectangular, Long, 3, Closed, Flat, (LongRectangle, 1)), 

( UShaped, Short, 2, Open, None, (Circle, 1))] = West 

direction [(BucketShaped, Short, 2, Open, None, (Circle, 1)), 

(Rectangular, Long, 3, Closed, Jagged, (LongRectangle, 1) ), 

(Rectangular, Short, 2, Open, None, (Rectangle, 1)), 

(BucketShaped, Short, 2, Open, None, (Circle, 1))] = West 

direction [( UShaped, Short, 2, Open, None, (Rectangle, 1)), 

(Rectangular, Long, 2, Open, None, (Rectangle, 2))] = West. 

The background theory contains the following transformations. 

( = Rectangular) : Shape --> D 

( = Null) : Object --> D 

projShape : Car --> Shape 

projLength : Car --> Length 

projNum Wheels : Car --> Num Wheels 

projKind : Car --> Kind 

projRoof : Car --> Roof 

projLoad : Car--> Load 

projObject : Load --> Object 

projNumObjects : Load --> NumObjects 

null : Train --> D 

head : Train --> Car 

last : Train --> Car 

listToSet : Train --> {Car} 

( sublists 2) : Train --> {Train} 

setExists 1 : (Car --> D) --> {Car} --> D 

setExists1 : (Train --> D) --> {Train} --> D 

(!!0) : Train --> Car 

(!!1): Train--> Car 

1\2 : (Car --> D) --> (Car --> D) --> Car --> D 
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/\2 : (Train --+ f.?) --+ (Train --+ f.?) --+ Train --+ f.? 

Here is the predicate rewrite system. 

top >--> listToSet o ( setExists 1 (/\2 top top)) 

top>--> (sublists 2) o (setExists 1 (/\2 ((!!0) o top) ((!!1) o top))) 

top >--> projShape o top 

top >--> projLength o top 

top >--> projNum Wheels o top 

top >--> projKind o top 

top >--> projRoof o top 

top >--> projLoad o top 

top >--> projObject o top 

top >--> projNumObjects o top 

top >--> ( = Circle) 

top >--> ( = Hexagon) 

top >--> ( = Square) 

top >--> ( = Rectangle) 

top >--> ( = Long Rectangle) 

top >--> ( = Triangle) 

top >--> ( = UTriangle) 

top >--> ( = Diamond) 

top >--> ( = Null) 

top >--> ( = Flat) 

top >--> ( = Jagged) 

top >--> ( = Peaked) 

top >--> ( = Curved) 

top >--> ( = None) 

top >--> ( = Rectangular) 

top >--> ( = DoubleRectangular) 

top >--> ( = UShaped) 

top >--> ( = BucketShaped) 

top >--> ( = Hexagonal) 

top >--> ( = Ellipsoidal) 

top >--> ( = Long) 

top >--> ( = Short) 

top >--> ( = Closed) 



top >---> ( = Open) 

top>--->(= 2) 

top>--->(= 3). 
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The first rewrite above generates a condition on the set of cars in the train. 
The second rewrite generates conditions on two contiguous cars. 

For this setting, ALKEMY found the following definition for the function 
direction. 

direction t = 

if listToSet o ( setExists 1 ( /\2 (projLength o ( = Short)) 

then East 

else West. 

(projKind o ( = Closed)))) t 

"A train is eastbound if and only if it has a short closed car". 

Bongard 

The next illustration is problem 47 in the book by Bongard on pattern recog
nition. This problem is illustrated in Fig. 6.5. 

~~ ~ ~ 0 

lv (~)II~(\/): I ~llJ 
~ "' ~ ~ 0 (~~ L:::o.. 

0 

Fig. 6.5. Bongard problem 47: Examples in Class1 are on the left; those in Class2 
on the right 

As usual, one must first decide on a suitable type to represent a Bongard 
diagram. For this, I have chosen to use a digraph. The geometric figures in 
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the diagram, which can be circles, triangles, or squares, are the nodes of the 
graph and there is a directed edge from shape s 1 to shape s2 iff s2 is located 
inside s1. 

The types Shape and Class are introduced as follows. 

Circle, Triangle, Square : Shape 

Class1, Class2 : Class. 

In this illustration, there is no information on the edges of the graph, so 
the type 1 is used as a default for the type of this information and the empty 
tuple () is used for all these values. The type Diagram is defined as follows. 

Diagram = Digraph Shape 1 . 

Vertices contain information of type Shape, while edges contain information 
of type 1 (which is equivalent to having no information at all). Thus the term 

( {(1, Circle), (2, Triangle)}, {((1, 2), ())}) 

represents the diagram with a circle and a triangle, and where the triangle is 
inside the circle. 

The function bongard to be learned has signature 

bongard : Diagram --+ Class. 

Here are the examples. 

bongard ( {(1, Circle), (2, Triangle)}, {((1, 2), ())}) = Class1 

bongard ({(1, Circle), (2, Triangle), (3, Triangle), (4, Circle)}, 

{((1, 2), ())}) = Class1 

bongard ( { (1, Triangle), (2, Circle), (3, Triangle)}, { ( (2, 3), ())}) = Class1 

bongard ({(1, Circle), (2, Triangle), (3, Cir-cle), (4, Triangle) 

(5, Circle), (6, Circle)}, {((3, 4), ())}) = Class1 

bongard ( { ( 1, Triangle), ( 2, Triangle), ( 3, Triangle), ( 4, Circle), 

(5, Triangle)},{((4,5),())}) = Class1 

bongard ( { (1, Triangle), (2, Circle), (3, Triangle)}, { ( (2, 3), ())}) = Class1 

bongard ( { (1, Triangle), (2, Circle)}, { ( (1, 2), ())}) = Class2 

bongard ( { ( 1, Triangle), ( 2, Triangle), ( 3, Circle), ( 4, Circle)}, 

{((2,3),())}) = Class2 

bongard ( {(1, Circle), (2, Triangle), (3, Circle)}, {((2, 3), ())}) = Class2 

bongard ({(1, Triangle), (2, Circle), (3, Triangle), (4, Triangle)}, 

{ ( (1, 2), ())}) = Class2 
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bongard ( { ( 1, Circle), ( 2, Triangle), ( 3, Circle), ( 4, Circle), ( 5, Circle)}, 
{ ( (2, 3), ())}) = Class2 

bongard ({(1, Circle), (2, Triangle), (3, Triangle), (4, Circle), 
(5, Circle), (6, Triangle), (7, Circle)}, { ( (3, 4), ())}) = Class2. 

The background theory contains the following transformations. 

( = Circle) : Shape -t fl 

( = Triangle) : Shape --* fl 

( = Square) : Shape --* fl 

vertices : Diagram -t { Di Vertex Shape 1 } 

edges : Diagram -t { DiEdge Shape 1 } 

vertex : Di Vertex Shape 1 --* Shape 

edge : DiEdge Shape 1 --* 1 

connects : DiEdge Shape 1 --* Di Vertex Shape 1 x Di Vertex Shape 1 
projDiVertex1 : DiVertex Shape 1 x DiVertex Shape 1 

-t Di Vertex Shape 1 
projDi Vertex2 : Di Vertex Shape 1 x Di Vertex Shape 1 

--* Di Vertex Shape 1 
setExists 1 : ( Di Vertex Shape 1 --* fl) --* { Di Vertex Shape 1} --* fl 
setExists1 : ( DiEdge Shape 1 --* fl) --* { DiEdge Shape 1} --* fl 
/\ 2 : ( Di Vertex Shape 1 --* fl) -t ( Di Vertex Shape 1 --* fl) 

--* Di Vertex Shape 1 -t fl. 

Here projDiVertex1 projects onto the first component and projDiVertex2 
projects onto the second. 

Here is the predicate rewrite system. 

top >----> edges o ( setExists 1 top) 

top >----> connects o top 

top >----> projDi Vertex1 o vertex o top 

top >----> projDi Vertex2 o vertex o top 

top >----> vertices o ( setExists1 (vertex o top)) 
top>---->(= Circle) 

top >----> ( = Triangle) 

top >----> ( = Square). 

For this setting, ALKEMY found the following definition for the function 
bongard. 
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bongard d = 
if edges o ( setExists1 (connects o projDi Vertex1 o vertex o ( = Circle))) d 

then Class1 

else Class2. 

"A diagram is in class 1 if it contains something inside a circle; otherwise, it 
is in class 2" . 

Chemicals 

The next illustration involves learning a theory to predict whether a chemical 
molecule has a certain property. 

As explained in Example 3.5.3, an undirected graph is used to model a 
molecule - an atom is a vertex in the graph and a bond is an edge. The type 
Element is the type of the (relevant) chemical elements. 

Br,C, Cl,F,H,I,N,O,S: Element. 

I also make the following type synonyms. 

AtomType = Nat 

Charge = Float 

Atom= Element x AtomType x Charge 

Bond= Nat. 

I now obtain the type of a molecule which is an (undirected) graph whose 
vertices have type Atom and whose edges have type Bond, which leads to 
the following definition. 

Molecule= Graph Atom Bond. 

The function active to be learned has signature 

active : Molecule ---. D. 

The examples are as follows. 
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active ( { (1, (C, 22, -0.117)), (2, (0, 45, -0.388)), (3, (C, 22, -0.117)), 

(4, (C, 195, -0.087)), (5, (C, 195, 0.013)), (6, (N, 38, 0.812)), 

(7, (0, 40, -0.388)), (8, (0, 40, -0.388)), (9, (H, 3, 0.142)), 

(10, (H, 3, 0.142)), (11, (C, 27, -0.087)), (12, (C, 27, 0.013))}, 

{((1,2),7),((1,6),7),((2,3),7), ((2,8),1),((3,4),7), 

( (3, 9), 1), ( (4, 5), 7), ( (4, 11), 7), ( (5, 6), 7), ( (6, 7), 2), 

( (6, 8), 2), ( (11, 12), 7)}) = T 

active ( {(1, (C, 22, -0.117)), (2, (C, 22, -0.117)), (3, (C, 22, -0.117)), 

(4, (C, 195, -0.087)), (5, (C, 195, 0.013)), (6, (N, 38, 0.812)), 

(7, (0, 40, -0.388)), (8, (0, 40, -0.388)), (9, (H, 3, 0.142)), 

(10, (H, 3, 0.142)), (11, (C, 27, -0.087)), (12, (C, 27, 0.013)), 

(13, (C, 22, -0.117))}, 

{ ( (1, 2)' 7), ( (1, 6)' 7)' ( (1' 7)' 1), ( (2, 3), 7)' ( (2, 8)' 1)' 
((3,9),1),((4,5),7),((4,11),7),((5,6),7), ((6,7),2), 

((6,8),2), ((11, 12), 7), ((12, 13), 7)}) = T 

active ( {(1, (H, 3, 0.142)), (2, (C, 22, -0.117)), (3, (C, 22, -0.117)), 

(4, (C, 195, -0.087)), (5, (C, 195, 0.013)), (6, (N, 38, 0.812)), 

(7, (0, 40, -0.388)), (8, (0, 40, -0.388)), (9, (H, 3, 0.142))}, 

{((1,2),7),((1,6),7),((1,7),1), ((2,3),7),((2,8),1), 

((3,4),7),((3,9), 1),((4,5),7), ((5,6),7),((6,7),2), 

((6,8),2)}) = T 

active ( {(1, (C, 22, -0.117)), (2, (C, 22, -0.117)), (3, (C, 22, -0.117)), 

(4, (C, 195, -0.087)), (5, (H, 3, 0.143)), (6, (N, 38, 0.812)), 
(7, (0, 40, -0.388)), (8, (0, 40, -0.388)), (9, (H, 3, 0.142)), 

(10, (H, 3, 0.142)), (11, (C, 27, -0.087)), (12, (C, 27, 0.013)), 

(13, (C, 22, -0.117))}, 

{((1,2),7),((1,6),7),((1,7),1),((2,3),7), ((2,8),1), 

((3,4), 7), ((3,9),1), ((4,5), 7),((4, 11), 7),((5,6), 7), 

((6, 7),2), ((6,8),2), ((11, 12), 7), ((12, 13), 7)}) = T 

active ( {(1, (H, 3, 0.142)), (2, (C, 22, -0.117)), (3, (0, 45, -0.338)), 

(4, (C, 195, -0.087)), (5, (C, 195, 0.013)), (6, (N, 38, 0.812)), 

(7, (0, 40, -0.388)), (8, ( 0, 40, -0.388))}, 

{((1,2),7), ((1,6),7),((1,7),1),((2,3),7),((2,8),1), 

( (3, 4), 7), ( (4, 5), 7), ( (5, 6), 7), ( (6, 7), 2), ( (6, 8), 2)}) = T 

active ( { (1, (C, 22, -0.117)), (2, (0, 45, -0.388)), (3, (C, 22, -0.117)), 

(4, (C, 195, -0.087)), (5, (C, 195, 0.013)), (6, (N, 38, 0.812)), 
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(7, (0, 45, -0.388)), (8, (0, 40, -0.388)), (9, (H, 3, 0.142)), 

(10, (H, 3, 0.142)), (11, (C, 27, -0.087)), (12, (C, 27, 0.013))}, 

{((1,2),7), ((1,6),7),((1,7),1), ((2,3),7), ((2,8), 1), 

( (3, 4), 7), ( (3, 9), 1), ( (4, 5), 7), ( (4, 11), 7), ( (5, 6), 7), 

( (6, 7), 2), ( (6, 8), 2), ( (11, 12), 7)}) = _l 

active ( { (1, (H, 3, 0.142)), (2, (C, 22, -0.117)), (3, (0, 45, -0.338)), 

(4, (C, 195, -0.087)), (5, (C, 195, 0.013)), (6, (N, 38, 0.812)), 

(7, (0,40, -0.388)), (8, (0,40, -0.388))}, 

{( (1, 2), 7), ( (1, 6), 7), ( (1, 7), 1), ( (2, 3), 7), ( (2, 8), 1), 

((3,4), 7), ((5,6), 7), ((6, 7),2)}) = _l 

active ( {(1, (H, 3, 0.142)), (2, (C, 22, -0.117)), (3, (C, 22, -0.117)), 

(4, (C, 195, -0.087)), (5, (C, 195, 0.013)), (6, (N, 38, 0.812)), 

(7, (0, 45, -0.388)), (8, (0, 40, -0.388)), (9, (H, 3, 0.142))}, 

{((1,2),7), ((1,6),7),((1,7),1), ((2,8),1), ((3,9),1), 

( (4, 5), 7), ( (5, 6), 7), ( (6, 7), 2), ( (6, 8), 3)}) = _l 

active ( { (1, (C, 22, -0.117)), (2, (C, 22, -0.117)), (3, (C, 22, -0.117)), 

( 4, (C, 195, -0.087)), (5, (C, 195, 0.013)), (6, (N, 35, 0.812)), 

(7, (0, 40, -0.388)), (8, (0, 40, -0.388)), (9, (H, 3, 0.142)), 

(10, (H, 3, 0.142)), (11, (C, 27, -0.087)), (12, (C, 27, 0.013)), 

(13, (C, 22, -0.117))}, 
{((1,2), 7),((1,6), 7), ((1, 7),1),((2,3), 7), ((3,4), 7), 

((3,9),1), ((4,5), 7),((4, 11), 7),((5,6), 7),((6, 7),2), 

((6,8),2), ((11, 12), 7), ((12, 13), 7)}) = _l 

active ( {(1, (H, 3, 0.142)), (2, (C, 22, -0.117)), (3, (C, 22, -0.117)), 

(4, (C, 195, -0.087)), (5, (C, 195, 0.013)), (6, (N, 38, 0.812)), 

(7, (0, 40, -0.388)), (8, (0, 40, -0.388)), (9, (H, 3, 0.142))}, 

{((1,2),7), ((1,6),7),((1,7),1), ((2,3),7),((2,8), 1), 

((3,4), 7),((3,9), 1), ((4,5), 7), ((5,6), 7), ((6, 7),3), 

((6,8),2)}) = _l. 

The background theory contains the following transformations. 

(= Br): Element----+ [l 

( = S) : Element ----+ [l 

( = 3) : Atom Type ----+ [l 



(= 195): AtomType---> [2 

(::=:; -0.117) : Charge ---> [2 

(::=:; -0.087) : Charge ---> [2 

(::=:; 0.013) : Charge ---> [2 

(::=:; 0.142) : Charge ---> [2 

(;::: -0.117) : Charge ---> [2 

(;::: -0.087) : Charge ---> [2 

(;::: 0.013) : Charge ---> [2 

(;::: 0.142) : Charge ---> [2 

(= 1): Bond---> [2 

(= 2): Bond---> [2 

(= 3): Bond---> [2 

(= 7): Bond---> [2 

(> 0) : Nat---> [2 

(> 1) :Nat---> [2 

(> 2) : Nat ---> [2 

projElement :Atom---> Element 

projAtomType: Atom---> AtomType 

projCharge : Atom ---> Charge 

vertices : Molecule ---> {Vertex Atom Bond} 

edges : Molecule ---> {Edge Atom Bond} 

vertex: Vertex Atom Bond---> Atom 

6.2 Illustrations 233 

connects: Edge Atom Bond---> (Vertex Atom Bond---> Nat) 

edge: Edge Atom Bond---> Bond 

domCard: (Vertex Atom Bond---> f2)---> {Vertex Atom Bond}---> Nat 

domCard: (Edge Atom Bond ---> f2)---> {Edge Atom Bond}---> Nat 

setExists 1 : (Molecule ---> f2) ---> {Molecule} ---> [2 

(subgraphs 3): Molecule---> {Molecule} 
' msetExists2 : (Vertex Atom Bond---> f2)---> (Vertex Atom Bond---> f2) 

---> (Vertex Atom Bond---> Nat) ---> [2 

/\2 : (Charge ---> f2) ---> (Charge ---> f2) ---> Charge ---> [2 

/\2 : (Atom---> f2)---> (Atom---> f2) --->Atom---> [2 

1\3 : (Atom ---> f2) ---> (Atom ---> f2) ---> (Atom---> f2) ---> Atom ---> [2 

/\2 : (Molecule ---> f2) ---> (Molecule ---> f2) ---> Molecule ---> [2 
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A 2 : (Edge Atom Bond--> D) --> (Edge Atom Bond--> D) 

--> Edge Atom Bond --> D. 

Here is the predicate rewrite system. 

top >--> ( subgmphs 3) o ( setExists 1 ( A 2 (vertices o top) (edges o top))) 

top >--> ( domCard top) o ( > 0) 

top >--> A2 (connects o ( msetExists2 top top)) (edge o top) 

top >--> vertex o projAtomType o top 

top>-->(= Br) 

top>-->(= C) 

top ,...... ( = Cl) 

top>--> (=F) 

top>-->(= H) 

top>-->(= I) 

top>-->(= N) 

top>-->(=0) 

top>--> ( = S) 

top>-->(= 3) 

top >--> ( = 22) 

top >--> ( = 38) 

top >--> ( = 40) 

top >--> ( = 45) 

top>-->(= 195) 

top >--> ( = 27) 

top>--> (= 1) 

top >--> ( = 2) 

top >--> ( = 3) 

top>--> (= 7) 

(> 0),...... (> 1). 

For this setting, ALKEMY found the following definition for the function 
active. 
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active m = 
if (subgraphs 3) o (setExists 1 (/\2 

(vertices o ( domCard (vertex o projAtomType o ( = 38) )) o (> 0)) 

(edges o ( domCard (/\2 

then T 

else L 

(connects o ( msetExists2 (vertex o projAtomType o ( = 40)) top)) 
(edgeo(= 2))))o(> 1)))) m 

"If a molecule contains 3 atoms connected by bonds such that at least one 
atom has atom type 38, and at least two edges connect an atom having atom 
type 40 and also have bond type 2, then it is active; else it is not active". 

Musk 

The next illustration is the well-known Musk problem. The main interest in 
this problem is that it is a multiple-instance problem with which conventional 
learners have difficulty. Indeed, some authors have developed several special
purpose algorithms for solving the problem and showed that conventional 
learners performed badly. This problem is of interest because it fits naturally 
into the knowledge representation framework that has been developed in this 
book. 

Briefly, the problem is to determine whether or not a molecule has a 
musk odour. The difficulty is that the molecules generally have many dif
ferent conformations and, presumably, only one conformation is responsible 
for the activity. This problem is similar to the keys problem considered ear
lier with the conformations corresponding to the keys, but the conformations 
themselves are rather more complicated than keys. Each conformation is a 
tuple of 166 floating-point numbers, where 162 of these numbers represent 
the distance in angstroms from some origin in the conformation out along 
a radial line to the surface of the conformation and the other four numbers 
represent the position of a specific oxygen atom. 

The experiment was carried out on the musk2 data set that contains 102 
examples, of which 39 are musk and 63 are not. The 102 molecules have a 
total of 6598 conformations. 

In the original Musk dataset, all166 attributes are continuous values. This 
data was discretised as follows. For each attribute, the mean JL was calculated 
and the standard deviation J of the values occurring in the data. Intervals 
are then built up centered on the mean, taking the width of each interval 
to be one standard deviation, and assigned integral labels to the intervals, 
so that interval 0 centred on the mean is [JL - J /2, JL + J /2], interval 1 is 
[JL + J /2, JL + 3J /2], interval -1 is [JL - 3J /2, JL - J /2], and so on. In total, 
13 intervals were chosen, labeled -6 through 6, as this covers most of the 
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distribution and gives adequate resolution. The outermost intervals, -6 and 
6, were extended below and above respectively to cover any outlying points. 

The projections are named proj 1 , ... , proj 166 . Thus a predicate such as 
proj 98 o ( = 1) should be interpreted as meaning that along the radial line cor
responding to the 98th component, the distance from the origin to the surface 
of the conformation lies between two particular values given in angstroms. 

These considerations lead to the following declarations. 

-6, -5, ... , 5, 6 : Distance 

Conformation = Distance x · · · x Distance 

Molecule= {Conformation}. 

Here the product type Distance x · · · x Distance contains 166 components. 
The function musk to be learned has signature 

musk : Molecule ---> Jl. 

The background theory contains the following transformations. 

( = -6) : Distance ---> Jl 

( = 6) : Distance ---> Jl 

(=I- -6) : Distance ---> Jl 

(=I- 6) : Distance ---> Jl 

proj 1 : Conformation ---> Distance 

proj 166 : Conformation ---> Distance 

setExists1 : (Conformation ---> Jl) ---> Molecule ---> Jl 

A3 : (Conformation ---> Jl) ---> (Conformation ---> Jl) 

---> (Conformation ---> Jl) ---> Conformation ---> Jl. 

Here is the predicate rewrite system. 

top >---> setExists 1 (A3 top top top) 

top>---> proj 1 o (= -6) 
top >---> proj 1 o ( = -5) 

top >---> proj 1 o ( = 5) 



top>----> proj 1 o (= 6) 

top >----> proh66 o ( = -6) 
top>----> proj 166 o (= -5) 

top >----> proh66 o ( = 5) 
top>----> proh66 o (= 6). 
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For this illustration, the default ALKEMY parameters were modified as fol
lows. First, the stump parameter was set to true so that a decision-tree with 
a single split was requested in order to provide a suitable multiple-instance 
hypothesis. Second, because the predicate search space is so large, the cutout 
parameter was set to 30 000 so that the search terminated after 30 000 suc
cessive predicates were generated none of which improved the accuracy of 
the previous best predicate. With this setting, ALKEMY found the following 
definition for the function musk. 

musk m = 

if setExists1 (/\3 (proj 85 o (= 1)) (proj 93 o (= 0)) (proj 131 o (= -2))) m 

then T 

else ..l. 

Mutagenesis 

The last illustration involves learning a theory to predict whether a chemical 
molecule is mutagenic or not. References are given in the Bibliographical 
Notes for background material on this important and interesting problem. 

As before, an (undirected) graph was used to model a molecule. The type 
Element is the type of the (relevant) chemical elements. 

Br, C, Cl, F, H, I, N, 0, S : Element. 

The following type synonyms are also made. 

AtomType = Nat 

Charge = Float 

Atom= Element x AtomType x Charge 

Bond= Nat 

Molecule= Graph Atom Bond 

The examples are the set of 188 regression-friendly molecules. For in
stance, the molecule d1 from Example 3.5.3 in this set is mutagenic. The 
function mutagenic to be learned has signature 
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mutagenic : Molecule ----+ fl. 

The background theory contains the following transformations. 

( = Br) : Element ----+ [! 

( = S) : Element ----+ [! 

(= 1): AtomType----+ [! 

( = 3) : Atom Type----+[! 

( = 230) : Atom Type----+ [! 

( = 232) : Atom Type----+ [! 

(2: -0.781): Charge----+[! 

(2: -0.424) : Charge ----+ [! 

(2: -0.067) : Charge ----+ [! 

(2: 0.290) : Charge ----+ [! 

(2: 0.647) : Charge ----+ [! 

(2: 1.004) : Charge ----+ [! 

( = 1) : Bond ----+ [! 

( = 2) : Bond ----+ [! 

(=3):Bond----+[! 

( = 4) : Bond ----+ [! 

( = 5) : Bond ----+ [! 

( = 7) : Bond ----+ [! 

(> 0): Nat----+[! 

(> 1): Nat----+[! 

(> 2) : Nat ----+ [! 

(> 3) : Nat ----+ [! 

(> 4) : Nat ----+ [! 

projElement : Atom ----+ Element 

projAtomType : Atom----+ AtomType 

projCharge : Atom ----+ Charge 

vertices : Molecule ----+ {Vertex Atom Bond} 

edges: Molecule----+ {Edge Atom Bond} 

vertex : Vertex Atom Bond ----+ Atom 

edge : Edge Atom Bond----+ Bond 
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connects : Edge Atom Bond ----> (Vertex Atom Bond ----> Nat) 
domCard: (Vertex Atom Bond----> D)----> {Vertex Atom Bond}----> Nat 
domCard: (Edge Atom Bond----> D)----> {Edge Atom Bond}----> Nat 
msetExists2 : (Vertex Atom Bond----> D)----> (Vertex Atom Bond----> D) 

----> (Vertex Atom Bond ----> Nat) ----> D 

112 : (Charge ----> D) ----> (Charge ----> D) ----> Charge ----> D 

112 : (Atom----> D) ----> (Atom----> D) ----> Atom ----> D 

113 : (Atom ----> D) ----> (Atom----> D) ----> (Atom----> D) ----> Atom ----> D 

112 : (Molecule ----> D) ----> (Molecule ----> D) ----> Molecule ----> D 
113 : (Molecule----> D) ----> (Molecule----> D)----> (Molecule----> D) 

----> Molecule ----> D. 

There are many possible predicate rewrite systems for this illustration. 
Here is one that generates conditions on sets of atoms. 

top >----> vertices o ( domCard (vertex o top)) o ( > 0) 
top>----> 112 (projAtomType o top) (projCharge o top) 

top>----> (= 1) 
top>----> (= 3) 

top>---->(= 230) 

top>---->(= 232) 

top>---->(?: -0.781) 

(~ -0.781) ,___, (~ -0.424) 

(~ -0.424) ,___, (~ -0.067) 

(2:: -0.067) ,___, (2:: 0.29) 

(2:: 0.29) ,___, (2:: 0.647) 

(2:: 0.647) ,___, (?: 1.004) 

(> 0) ,___, (> 1). 

For this illustration, the default ALKEMY parameters were modified by 
turning post-pruning on and setting aside 15% of the examples as a validation 
set for post-pruning. For this setting, ALKEMY found the following definition. 
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mutagenic m = 

if vertices o ( domCard (vertex o (/',2 

(projAtomType o (= 1)) (projCharge o (2:: 0.290))))) o (> 0) m 

then ..l 

else if vertices o ( domCard (vertex o ( 1\2 

then ..l 

else T. 

(projAtomType o (=50)) (projCharge o top)))) o (> 0) m 

"A molecule is mutagenic iff it does not have an atom of type 1 and charge 
2:: 0.290, nor an atom of type 50." 
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introduced in [18]. Discussion of the more general problem of pharmacophore 
discovery can be found in [18] and [27]. The Mutagenesis problem is discussed 
in [43] and [87]. 

While accuracies of the induced hypotheses in Sect. 6.2 are not indicated, 
the methods used there have been shown elsewhere [7, 8] to be competitive 
in this regard. 

Proposition 6.1.1 appeared in [8]. Also the illustrations of Sect. 6.2 ap
peared in [8] in a similar form to their presentation here. 

Exercises 

6.1 Obtain the ALKEMY learning system and run the illustrations of Sect. 6.2. 

6.2 For each of the predicate rewrite systems in Sect. 6.2, investigate whether 
it has a regularisation that is monotone or separable or descending or switch
able or all four of these. 

6.3 Choose a suitable application domain that you have already studied 
and apply ALKEMY to it. Enumerate the advantages and disadvantages of 
ALKEMY compared with the learning system that you used previously. 

6.4 (Open problem) Find suitable new application domains and apply 
ALKEMY to them. 

6.5 Let T1 , ... , Tn be nullary type constructors such that there are finitely 
many constants of type Ti, for i = 1, ... , n. Let proji : T1 x · · · x Tn --+ Ti 
be the usual projection, for i = 1, ... , n. Consider the hypothesis language 
H for individuals of type T1 x · · · x Tn given by the predicate rewrite system 
that contains the rewrite 

top >----> An (proj 1 o top) · · · (proj n o top) 

together with all rewrites of the form 

top>---->(= C), 

where C is a constant of type Ti, for some i E {1, ... , n }. Prove that the VC 
dimension of H is n. 

6.6 (Open problem) Develop methods for calculating the VC dimension of 
hypothesis languages generated by predicate rewrite systems. Hence, or other
wise, determine bounds on the sample complexity for each of the illustrations 
in Sect. 6.2. 



A. Appendix 

A.l Well-Founded Sets 

This section contains some standard material on well-founded sets. 
Recall that a strict partial order on a set A is a binary relation < on A 

such that, for each a, b, c E A, a f:_ a (irreflexivity), a < b implies b f:_ a 
(asymmetry), and a < band b < c implies a < c (transitivity). In addition, a 
strict partial order is a strict total order if, for each a, b E A, exactly one of 
a = b or a < b or b < a holds. 

If < is a strict total order on a set A, then < can be lifted to strict 
total order, also denoted by <, on the set of sequences of elements in A by 
a1 ... an < b1 ... bm if either 
(i) a1 = b1, ... , an= bn and n < m, or 
(ii) there exists j such that 1 :S j :S n, a1 = b1, ... , aj- 1 = bj- 1 and aj < bj· 
The order < on the sequences is called the induced lexicographic ordering. 

Definition A.l.l. Suppose that < is a strict partial order on a set A. Then 
< is a well-founded order if there is no infinite sequence a1, a2, ... such that 
ai+1 < ai, fori E z+. 

Thus a strict partial order is well-founded iff it does not admit an infinite 
strictly decreasing sequence. A set with a well-founded order is called a well
founded set. A characterisation of well-founded sets will be useful. For this, 
the concept of a minimal element will be needed. 

Definition A.1.2. Let A be a set with a strict partial order < and X~ A. 
An element a EX is minimal for X if x-I a, for all x EX. 

Proposition A.l.l. Let A be a set with a strict partial order. Then A is a 
well-founded set iff every nonempty subset X of A has a minimal element (in 
X). 

Proof. Straightforward. D 

Example A.1.1. If .E any alphabet, then the set .E* of all strings over .E with 
the substring relation -< (that is, s1 -< s2 iff s1 is a proper substring of s 2 ) is 
a well-founded set. 
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One can define a well-founded order on a product of well-founded sets. 

Proposition A.1.2. Let Ai be a set with a well-founded order <i, for 
i E {l, ... ,n}. Define the relation< on A1 x ··· x An by (a 1 , ... ,an) < 
(b1, ... , bn) if there exists i E {1, ... , n} such that a1 = b1, ... , ai-l = bi-l 
and ai <i bi. Then < is a well-founded order on A 1 x · · · x An-

Proof. Straightforward. D 

There is an induction principle for well-founded sets. 

Proposition A.1.3. Let A be a set with a well-founded order<. Let X be 
a subset of A satisfying the condition: for all a E A, whenever b E X, for all 
b < a, it follows that a E X. Then X = A. 

Proof. Suppose that X -1- A. Thus A \ X -1- 0 and so A \ X has a minimal 
element a, say. Consider an element b E A such that b < a. By the minimality 
of a, it follows that b !f. A\ X and thus b E X. Since this is true for all b < a, it 
follows that a E X, by the condition satisfied by X. This gives a contradiction 
and so X= A. D 

The condition in Proposition A.l.3 satisfied by X implies that X must 
contain the minimal elements of A (since these have no predecessors). 

There is also a principle of inductive construction on well-founded sets. 

Proposition A.1.4. Let A be a well-founded set and S a set. Then there 
exists a unique function f : A --> S having arbitrary given values on the 
minimal elements of A and satisfying the condition that there is a rule that, 
for all a E A, uniquely determines the value of f(a) from the values f(b), for 
b <a. 

Proof. Uniqueness is shown first. Suppose that there exist two distinct func
tions f and g having the same values on the minimal elements of A and 
satisfying the condition in the statement of the proposition. Let X be the 
set of elements of A on which f and g differ. Let a be a minimal element of 
X. Now a cannot be minimal in A because f and g agree on the minimal 
elements of A. Thus there exist elements b E A such that b < a. For such an 
element b, f(b) = g(b), since b !f. X. By the condition satisfied by f and g, it 
follows that f(a) = g(a), which gives a contradiction. 

Next existence is demonstrated. Denote the set { b E A I b ::::; a} by Wa. 
Let X = {a E A I there exists a function fa defined on Wa having the given 
values on the minimal elements of A in Wa and satisfying the uniqueness 
condition on Wa}- I show by the induction principle of Proposition A.l.3 
that X= A. Note that, if a, bE X and b <a, by the uniqueness part of the 
proof applied to wb, it follows that !b(x) = !a(x), for all X E wb. Suppose 
now that a E A and b E X, for all b < a. By the previous remark, a E X - it 
suffices to define fa by fa(b) = fb(b), for all b <a, and let fa(a) be the value 
uniquely determined by the rule. By Proposition A.l.3, X =A. Now define 
f by f(a) = fa(a), for all a EA. Clearly, f has the required properties. D 
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