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Higher Order Logic 3logic) and of the proof theory (predicative higher order logic, i.e. the ram-i�ed theory of types). Section 6 discusses the role of higher order logic inmathematical practice: we survey some relations between higher order logicand two branches of mathematics, set theory and mathematical analysis.We then discuss two general issues related to higher order formalizationof mathematics: second order axioms versus �rst order schemas, and thee�ect of higher order reasoning on shortening proofs. The seventh and lastsection briey describe some relations between higher order logic and pro-gramming and computing: the use of higher order data in programming,the computational nature of natural deduction proofs, the role of higher or-der logic in the meta-theory of formal systems, and the use of higher orderlogic to provide machine-independent characterizations of computationalcomplexity classes.Given the space and subject constraints of a handbook chapter, manyimportant aspects of higher order logic receive here a scant treatment, andothers are omitted altogether, notably most uses of higher order constructsin mathematical practice, in recursion theory, and in computer science.Such choices of topics can not be independent of an author's interests andbackground. My hope is, though, that the chapter touches on the centralissues of the �eld, and that it o�ers some useful organizing principles toa broad and di�use subject. The interested reader will �nd a large andgrowing number of textbooks, monographs, and surveys about higher orderlogic and related issues, of which several are pointed to in this text.2 The expressive power of second order Logic2.1 The language of second order logicThe language of (full) second order logic is simply the language of �rst orderlogic augmented with second order variables, that is, variables ranging overrelations and functions (of all arities). Given a vocabulary1 V , V -terms andatomic V -formulas are de�ned as in �rst order logic (with equality), butusing also function-variables and relation-variables in complete analogy tofunction-constants and relation-constants. Compound V -formulas are thengenerated from atomic formulas using the usual propositional connectivesas well as quanti�ers over all variables, including the function-variables andrelation-variables. A formula with no free variable is a closed formula, or asentence.1The notion of a vocabulary (= signature, symbol-set) is the same as in �rst orderlogic, i.e. a vocabulary V consists of disjoint sets of identi�ers for element-constants,function-constants and relation-constants, and a function arity V that assigns a non-negative integer to each function-constant and relation-constant. We follow the tradi-tional use of lower-case letters from the end of the Roman alphabet for element-variables,f; g; h : : : for function-variables, and upper-case Roman letters for relation-variables.Whenever convenient we superscript identi�ers with their arity.



4 Daniel LeivantThe standard semantics of second order V -formulas is de�ned with re-spect to usual V -structures (of �rst order logic). The truth of V -formulasin a V -structure is straightforward: function-variables of arity r range over(total) functions of r arguments over the structure's universe, and relation-variables of arity r range over r-ary relations.2 For example, the equivalence(x = y) $ 8R R(x)$R(y)is true in all structures, and may be used as a de�nition of the equalitypredicate.Quanti�cation over relations (and/or functions) greatly enhances theexpressive power of �rst order formulas. In the next few subsections weconsider a few signi�cant examples of that extended expressiveness. Letus agree to use the phrase theory for a set of formulas, and V -theory for aset of V -formulas. A �rst order theory is then simply a set of �rst orderformulas, and a second order theory a set of second order formulas.A structure S is a model of a theory � if every formula in � is true in S.A collection of structures is de�ned by a theory � if it consists exactly ofthe models of �. If a collection of structures is de�ned by a �rst order (resp.second order) theory, then it is �rst order (resp. second order) de�nable.Many limitations of �rst order logic follow easily from one of its funda-mental properties, the Compactness Theorem:Theorem 2.1.1. [Compactness] Suppose � is a �rst order V -theory, suchthat every �nite subtheory of � has a model. Then � has a model (whichis countable if V is countable).2.2 Expressing sizeConsider �rst a topic that comes up as one of the �rst exercises in logictextbooks: stating the size of a structure and of subsets of its universe.Theorem 2.2.1. The collection of �nite structures is not �rst order de-�nable, but it is de�nable already by a single second order sentence.Proof. 1. Assume � is a �rst order theory that de�nes the �nite struc-tures, and let �0 be � augmented with all sentences ��1, ��2, : : :,where ��k states that there exist k pairwise distinct elements.3 Thenevery �nite subtheory of �0 has a model, and so �0 has some model,S, by the Compactness Theorem. Since S is a model of each ��k, itis in�nite. Since � � �0, S is an in�nite model of �, contradictingthe assumption.2A more formal de�nition is given in Section 2.3That is, ��n �df 9x1 : : : xn x1 6=x2 ^ x1 6=x3 ^ � � � ^ xn�1 6= xn, with n(n�1)=2conjuncts.



Higher Order Logic 52. A statement that holds exactly of the �nite structures is `every injec-tion is a surjection', i.e.,�<@o �df 8f (Inj(f) ! Surj(f))where Inj(f) �df 8x; y (f(x) = f(y) ! x = y) and Surj(f) �df8u9v f(v) = u.The formula �<@o can be modi�ed to state that a set (i.e. the extensionof a unary relation) A is �nite4:�<@o [A] �df 8R ( (8x; y; z R(x; y) ^R(y; z)! R(x; z))^ (8x 2 A)(9y 2 A)R(x; y) ! (9x 2 A)R(x; x) )Second order formulas can be used to express a great deal about cardi-nalities. Let B � A �df 9f (8y 2 B) (9x 2 A) f(x) = y:Then B � A holds exactly when there is a map from A onto B, i.e. i�kB k�kAk.5 De�ne, by recurrence on natural numbers n,�<@n+1 [A] �df (8X � A) ( �<@n [X] _ (A � X) ):Then �<@n [A] is true exactly when kAk< @n, and so �<@n+1 [A]^:�<@n [A]is true exactly when kAk= @n.6 Similarly, we can state that the universein hand is of size < @n+1:�<@n+1 �df (8X) ( �<@n[X] _ (U � X) );where U � X �df 9f (8y 2 X) (9x) f(x) = y.4IfR is a binary relation, then we use (8xRy)' as an abbreviation for 8x ( xRy!' ),and (9xRy)' for 9x ( xRy ^ ' ). Also, we write x 2 A for A(x), and X � A for8u X(u)!A(u).5kS k denotes the cardinality of the set S.6The progression of the i's cardinals (by the power-set operation) is also readilyexpressed. Let(A � P(B)) �df (9R � A�B) (8x;y 2 A)( x 6= y ! 9u (R(x;u) ^:R(y;u)) _ (R(y; u) ^:R(x;u)) )(P(B)� A) �df (9R � A�B)(8C � A) (9x 2 A)8u (C(u)$R(x; u) )(A � P(B)) states that the mapping fR : A!P(B), given by fR(x) = fu j R(x; u)g isan injection, and (P(A) � B) states that fR is a surjection. From these formulas it iseasy to build formulas that capture the sequence ik for k < !.



6 Daniel Leivant2.3 De�ning data typesLet Vs be the vocabulary consisting of a single element-constant 0 and asingle unary function-constant s. Let Ns be the Vs-structure consisting ofthe natural numbers with zero and successor as the interpretations of 0and s. By Skolem{L�owenheim's Theorem for �rst order logic, there is no�rst order theory that characterizes Ns up to isomorphism, since any suchtheory would have non-countable models. What about characterizing Nsamong the countable structures?7Theorem 2.3.1.1. There is no �rst order Vs-theory whose only countable model (up toisomorphism) is Ns.2. There is a second order Vs-sentence whose only model (of any cardi-nality) is Ns.Proof. 1. Suppose � were a theory as above. Let �0 be � augmentedwith all formulas of the form c 6= �n (n = 1; 2; : : :), where �n is the n'thnumeral8 and where c is a fresh element-constant. Then every �nitesubtheory of �0 has a model, and so �0 has a countable model S , bythe Compactness Theorem. The universe of S has an element, namelythe interpretation of c, which is not obtained by �nite applications ofs on 0. Therefore S cannot be isomorphic to Ns. But S is a modelof �, a contradiction.2. Let 'N �df 'suc ^ 8x N (x)where 'suc �df 8x s(x) 6= 0 ^ 8x; y ( s(x) = s(y)! x = y )N [x] �df 8R ( R(0) ^ 8u (R(u)!R(s(u)) )! R(x) ):'suc state that the denotations of numerals are all distinct, whereas8xN (x) states that all elements are denotations of numerals.9From the second order characterization of Ns there follows a secondorder interpretation of the true formulas of Peano's Arithmetic, PA. Let7Theorem 2.3.1 shows that a particular countable structure, that of the natural num-bers, is characterized up to isomorphism by its second order theory. A natural questionis whether every countable structure is so characterized. [Ajtai, 1979] (reported in[Shapiro, 1991, Section 6.6.4], who attributes the result also to Magidor) shows thatthis is so for structures de�ned within the G�odel-constructible universe (i.e. assumingV = L), but that the general claim is independent of ZFC.8I.e., �n =df s[n](0) = s(s(� � �s(0) � � �)) (with n applications).9This second order characterization of the natural numbers goes back to Dedekind.



Higher Order Logic 7D+;� be the conjunction of the closures of the de�ning equations for ad-dition and multiplication.10 Then a formula  in the language of PA istrue in the standard model i� the second order formula 'N ^D+;� !  Nis valid.11 Moreover, the same holds for  a second order formula in thelanguage of PA; that is,Theorem 2.3.2. The truth, in the standard model, of second order for-mulas in the language of PA, is e�ectively reducible to the validity of secondorder formulas.Just as the natural numbers are second order de�nable, so is any freealgebra (i.e. inductive data-type) A . The algebra A generated from a given�nite set V of constant-identi�ers and function-identi�ers is characterizedby the conjunction �V of1. a statement that the denotations of distinct terms are distinct, i.e.the universal closure of the inequalitiesf (x1 : : : xr) 6= g(y1 : : : yk); f (x1 : : :xr) 6= c; and c 6= d;and of the equalitiesf (~y; x; ~z) = f (~y; x0; ~z) ! x = x0;for all f ;g distinct function-constants, and c;d distinct element-constants of V ; and2. a second order sentence stating that all elements are interpretationsof terms: A[x] �df 8R ( ClA(R)! R(x) );where ClA(R) is the conjunction of all formulasR(c) for c a constant-identi�er of V , and of all universal closures of formulas R(x1)^ � � � ^R(xk)! R(f (x1 : : : xk)) where f is a function-identi�er of V (of arityk).One free algebra particularly relevant to computing is the algebra Wgenerated from one element-constant, say �, and two successor functions(i.e. unary function constants), say 0 and 1. The terms here can be identi-�ed with the words over f0; 1g, e.g. 0(1(1(�))) is identi�ed with 011. Theset of terms is characterized by the formula1210I.e., D+;� � 8x(x+0=x) ^8x;y (x+sy=s(x+y)) ^ 8x(x�0=0) ^ 8x;y (x�sy=(x�y)+x) ):11As customary, if R is a unary relation then 'R will denote the result of relativizingall quanti�ers in the formula ' to R. That is, (8x )R �df (8x(R(x)!  R), and(9x )R �df (9x(R(x)^  R).12We use the customary abbreviation that uses a chain of 6='s.



8 Daniel Leivant'[z] �df 8x � 6= 0x 6= 1x 6= �^ 8xx0 ((0x = 0x0 _ 1x = 1x0) ! x = x0 )! 8R ( R(�) ^ 8z ( R(z)! R(0z) ^R(1z) ) ! R(z) ):2.4 Describing processesLet VG = fa;b;�g be the vocabulary of digraphs with a source and a target,i.e. a and b are element-constants and � is a binary relation-constant.Theorem 2.4.1. The collection of digraphs with a path from the source tothe target is not �rst order de�nable, but it is de�nable by a single secondorder VG-sentence.Proof. The non-existence of a �rst order theory de�ning these digraphsis, again, a simple application of the Compactness Theorem.On the other hand, the sentence8R ( R(a) ^ 8x; y (R(x) ^ �(x; y)!R(y) ) ! R(b) )is true in a digraph G i� there is a �G-path from aG to bG.The existence of paths for binary relations (i.e. the transitive closureoperation) is related to the operational semantics of many computationprocesses, where a computation is de�ned as a transition-chain of con�g-urations. The contrast between �rst order and second order formulas inde�ning the transitive-closure of a relation is therefore symptomatic of abroader contrast in the possibility of de�ning program semantics in �rstorder vs. second order logic. Let V be a vocabulary that includes a unaryfunction-constant f. Over every V -structure we have the computable par-tial function�xf (x) =df the �rst iterate f [k](x) such that f [k+1](x) = f [k](x):An argument similar to the proof of Theorem 2.4.1 shows:Theorem 2.4.2. The graph of �xf is de�ned, uniformly for all V -struc-tures, by a second order formula, but not by a �rst order theory.13For a slightly more general example, let L be the loop while g(x) =0 do x := f (x) end. Then the input-output relation determined by L isde�ned, uniformly for all structures, by the formulaML[u0; v0] � 8R ( R(u0) ^ Prog1[R] ! R(v0) );where13I.e., there is no theory � and variables u; v for which the following holds: for everystructure S, if F is the interpretation of �xf in S (as arising from the interpretation inS of f), then, for all elements a; b of the universe of S, b = F (a) i� S; [a=u; b=v] j= �.



Higher Order Logic 9Prog1[R] �df 8w (R(w) ^ g(w)=0! R(f (w))):Here L changes the value of a single variable, hence the formula ML hasonly one argument for input (u0) and one for output (v0). If Q is the loopwhile g(x)=y do P , and the input-output semantics of P (for programvariables x and y) is already de�ned by a formulaMP [u0; u1; v0; v1], thenthe relation determined by Q is de�ned byMQ[u0; u1; v0; v1] � 8R ( R(u0; u1) ^ Prog2[R] ! R(v0; v1) );whereProg2[R] �df 8w0; w1; z0; z1 (R(w0; w1)^ g(w0) = w1 ^MP [w0; w1; z0; z1] ! R(z0; z1)):It is easy to exhibit similar de�nitions for most basic programming con-structs, including recursive procedures and modules [Leivant, 1983].2.5 Expressing convergence using second ordervalidityThe de�nability of free-algebras by second order formulas can be extendedto a characterization of the total computable functions. We summarizethe argument of [Leivant, 1983; Leivant, 1994]. Of the many computa-tion calculi that generate the total recursive functions one that lends itselfnaturally to this model theoretic setting are equational programs; a rudi-mentary form of such programs would serve us best.14 Fix a free algebraA . We posit an unlimited supply of r-ary program-functions (for each arityr>0), which are identi�ers distinct from the constructors of A . The termsare generated from the constructors of A , free variables, and program-functions. A statement over A is an equation between terms. A set ofstatements is a program-body. A program (over A ) is a pair, (P; f ), whereP is a program-body, and f is a program-function, the program's principalidenti�er.Given a program-body P , we write P ` E if E is equationally derivablefrom P , using reexivity, substitution of terms for variables, and substitu-tion of equals for equals.15 Each (r-ary) program-function g in P induceson A the relation gP =df f(x1 : : :xr; y) j P ` g(x1 : : : xr) y g. A (partial)function f over the algebra A is computed by (P; f ) if f = fP . For example,14Herbrand{G�odel programs, a variant of equational programs for natural numbers,are de�ned e.g. in [Kleene, 1952].15That is, (1) P ` E for every E 2 P ; (2) P ` x x; (3) if P ` E then P ` [t=u]Efor every VP -term t and variable u (where [t=u] denotes is the operation of substitutingt for all (free) occurrences of u); and (4) if P ` [t=x](s q) and P ` t t0, thenP ` [t0=x](s q). Note that taking x for q in (4) yields transitivity, and taking x t fors q yields symmetry.



10 Daniel Leivantthe program (f x + 0 x; x + s(y) s(x + y)g; +) over N computes theaddition function, and f � � w w; (cv) � w c(v � w) g; �) over Wcomputes the concatenation function.We say that a program-body P is coherent if P ` a = a0 for no distincta; a0 2 A .16 A coherent P over A , even if it computes a partial function,has a model containing A (i.e. where all program-functions are interpretedas total functions).The convergence of equational programs can be expressed, without useof coding, by a second order validity statement, as follows. Let A be afree algebra, and let A be a second order de�nition of membership in A ,as in Section 2.3. Given a program-body P over A , let ~8P stand for theconjunction of the universal closures of all statements in the program P .Theorem 2.5.1. A coherent equational program (P; f ) over an algebra Acomputes a (unary) total function f i�17j= ~8P ^A[x]! A[f (x)]Theorem 2.5.1 should be contrasted with the impossibility of capturingprogram convergence in �rst order logic:Theorem 2.5.2. Let A be an in�nite free algebra. There is no e�ectiveprocedure that assigns to every program (P; f ) over A a �rst order formula'P such that f is total i� j= 'P .Proof. Suppose a procedure as above existed. The set of programs (P; f )for which j= 'P is e�ectively enumerable, by the Completeness Theoremfor �rst order logic. It is easy to see18 that there is a recursive set C ofprograms such that every partial recursive function over A is computedby some program in C. Thus f f : N!N j f is computed by some P 2C; where j= 'P g is e�ectively enumerable and consists of all total com-putable functions, contradicting an elementary result of Computation The-ory.2.6 Truth de�nitions: the analytical hierarchyThe arithmetical and the analytical hierarchies are well known classi�ca-tions of sets of natural numbers. Here we give a self-contained outline ofsome relations of interest between these hierarchies, second order formulas,and truth-de�nitions.1916For example, ff(0) = 0; f(0) = s0g is not coherent, nor is fg(x) = f(0); f(0) =0; f(0) = s0g.17Here arity (~x) = arity (f), and A(x1 : : : xk) abbreviates A(x1) ^ � � � ^ A(xk).18See e.g. [Kleene, 1952] for numeric programs, [Leivant, 1994] for programs overW.19We follow tradition in referring toN, even though from a modern viewpoint richerfree algebras, such asW, are more appropriate.



Higher Order Logic 11A set A � N is arithmetical if it is �rst order de�nable over the stan-dard structure of the natural numbers with all total computable functions.20The set A is analytical if it is second order de�nable over that structure.A fundamental result of Kleene is that there are analytical sets that arenot arithmetical. It will be useful for us to discuss this fact from the view-point of truth de�nitions, since it brings out the interplay between increasedexpressive power and the formalization of meta-reasoning.Let V be a countable vocabulary. We can code V -terms and V -formulasunambiguously by strings of ascii characters,21 for example, by writingx_121 for the 121'st variable, f^2_34 for the 34'th binary function-constant,and (forall) for the universal quanti�er. Substituting octal ascii codesfor the ascii characters, every syntactic expression � is unambiguously rep-resented by a string str(�) = d�;r(�) : : :d�;1d�;0 of digits 2 f0;: : : ; 7g, whichin turn is unambiguously represented by the number #(�) = 8r(�)+1 +Pr(�)i=0 8i � d�i , whose octal numeral is 1 followed by str(�).Clearly, there are primitive-recursive functions neg , disj , univ , eq , andsbst such that, for all formulas ' and  , variables v, terms t and s, andnumbers n,22neg (#') = #(:') disj (#'; # ) = #(' _  )eq (#t; #s) = #(t s) univ (#'; #v) = #(8v ')sbst (#'; n) = #([�n=z]') where z is a �xed variable-identi�erLet N be an expansion of Ns with �nitely many functions, includingthe primitive recursive functions above. Let L be a set of formulas in thevocabulary ofN . A truth-de�nition for L (over N ) is a formula � � � [v],with a single free variable v, such that N j= '$ � [#'] for all �rst orderformulas ' in the vocabulary of N .23Theorem 2.6.1. [Tarski] Let N be as above. Suppose L is a languagesuch that the functions neg and sbst (or their graphs) are de�nable byL-formulas over N . Then there is no truth-de�nition in L for L over N .Proof. Suppose � were a truth-de�nition in L for L over N . Let d(x) ab-breviate neg (sbst (x; x)), and let n =df #(� [d(z)]) = #(� [neg (sbst (z; z)]).Then, in N ,20By G�odel's proof of the First Incompleteness Theorem, it su�ces to consider for-mulas using only 0,1,+ and �.21ascii is the acronym for the common coding of characters and special symbols by 8bits each.22We write [t=v]' for the result of simultaneously substituting the term t for all freeoccurrences of v in ', renaming bound variables as needed.23We write '[t] for [t=v]' when v is unambiguous.



12 Daniel Leivant� [d(�n)] i.e. � [neg (sbst (�n; �n))]$ � [neg (sbst (#(� [d(z)]); �n)] by de�nition of n$ � [neg (#(� [d(�n)])] by de�nition of sbst$ � [#(:� [d(�n)]) ] by de�nition of neg$ :� [d(�n)] since � is a truth-de�nitiona contradiction.Theorem 2.6.2. Let N be as above. There is a second order truth-de�nition, but no �rst order truth-de�nition, for �rst order sentences overN . That is, the codes of �rst order sentences true in N form a set whichis analytical but not arithmetical.Proof. The non-existence of a �rst order truth de�nition is a special caseof Theorem 2.6.1.To prove the existence of a second order truth de�nition let us start byobserving that the truth of formulas is de�ned by recurrence on syntax,using (�nite) valuations of free variables. A �nite valuation in N can berepresented by a number, using one of the usual sequence-coding methods.For any one of these methods there are primitive-recursive functions projand inst , such that proj (x; k) is the k'th entry of sequence coded by24 x,and inst (x;#v; n) is the valuation that di�ers from x only in assigning nto the variable v.A preliminary semantic evaluation assigns values to terms: It is easy tode�ne a primitive-recursion function val such that val (#t; x) is the valueof the term t under the assignment coded by x, i.e. such that val (#v; x) =proj (x;#v) for variables v, and val (#(f (t1; : : : tr)); x) = f(val (#t1; x); : : : ;val (#tr ; x)) for every function f = fN of N .25We can now state that a set T contains a pair (#'; h) i� ' is trueunder the valuation coded by h. If we use :, _, and 8 as the only logicalconstants, it su�ces to put:�0[T ] � 8u; v; h (T (eq (u; v); h) $ val (u; h)=val (v; h))^ 8u; h (T (neg (u); h) $ :T (u; h))^ 8u; v; h (T (disj (u; v); h) $ T (u; h) _ T (v; h))^ 8u; v; h (T (univ (u; v); h) $ 8nT (u; inst (h; v; n))):A formula ' is true in N i� 8T (�0[T ]! 8hT (#'; h)) is true in N .The de�nition of �0 uses some 8 primitive-recursive functions neg , sbst ,: : :. Let g1 : : : gm be a list of all these functions and of the functions used24with value 0 if k is not in the domain of x25Recall that N has �nitely many functions. The function val is, of course, not afunction of N . The treatment can be adapted to all primitive-recursive functions, as in[Troelstra, 1973], but the function val is then not primitive-recursive.



Higher Order Logic 13in their primitive recursive de�nitions. Let D be the conjunction of the(universal closure of the) primitive recursive de�nitions of g1 : : : gm. Then,for every �rst order sentence ',N j= '$ �(#')where � (z) �df 8g1 : : : gm (D ! 8T (�0[T ]! T (z; 0)) ) ):2.7 Inductive de�nitionsInductive de�nitions have played a central role in the foundations of math-ematics for over a century. They appear in a broad spectrum of topics,such as algebra (the subalgebra generated by a given set of elements),proof theory (the theorems of a theory, ordinal notations), descriptive settheory (Borel sets), and computation theory (the collection of functionsgenerated by certain schemas, the `structural-style' operational semanticsof programs). In particular, they were used in the 1970's as the backboneof major generalizations of Recursive Functions Theory [Barwise, 1975;Moschovakis, 1974]. In recent years the ties between inductive de�nitions(in particular over �nite structures) and database theory, descriptive com-putational complexity, and logics of programs, have been developed. Wereturn to inductive de�nitions in sections 6.2 and 8.4.26Let F be an operator over the collection Pr(U ) of r-ary relations oversome set U . F has an inductive closure F1, obtained as the union of theincreasing ordinal-chain F� =df S�<� F (F �). Since F� � F � for � < �,we must have F1 = F� for a su�ciently large �. The �rst such � is theclosure ordinal of the de�nition, and is � �r , where � is the cardinality27of U . We then have F (F1) = F (F�) = F�+1 = F1, i.e. F1 is a �xpointof the operator F .Suppose now that U is the universe of a structure S, and that F isde�ned by a second order formula ' over the vocabulary of S expandedwith an r-ary predicate letter R; that is, for some tuple ~x of distinct (free)variables,28 F (Q) = f~a j [Q=R]S; [~a=~x] j= 'g:We denote the operator F above by �R�~x'. For example, the reexiveand transitive closure of a binary relation � is F1, where F =df �R�x; y(x=y _ 9z R(x; z) ^ �(z; y)). For another example, the truth of �rst order26A short informative survey is [Aczel, 1977]. A comprehensive monograph is[Moschovakis, 1974].27the exponent r is needed because � may be �nite.28[Q=R]S is the structure S expanded with Q as the interpretation of the relation-constant R.



14 Daniel Leivantarithmetic formulas using _, 8, equations and inequalities29 is F1[v; 0],whereF =df �R�z; x 9u; v z=eq (u; v) ^ val (u; x)=val (v; x)_ 9u; v z=neg (eq (u; v)) ^ val (u; x) 6=val (v; x)_ 9u z=disj (u; v) ^ (R(u; x) _R(v; x))_ 9u z=univ (u; v) ^ 8nR(u; inst (x; v; n)):The �xpoint F1 of a second order de�nable operator F = �R�~x' isalso second order de�nable: Let WF (Q) be a second order formula statingthat Q is a well ordering of the universe in hand (such a formula can bede�ned easily, using ideas similar to Section 2.2). We have30~y 2 F1 �df 9Q;S WF (Q) ^ 8� 8~x ( S(�; ~y)$ '� ) ^ 9� S(�; ~y)where '� is the result of replacing every subformulaR(~t) of ' by 9� (Q(�; �)^S(�;~t )).The classical theory of inductive de�nability has traditionally focused onmonotone operators. An operator F is monotone if � � �0 implies F (�) �F (�0). The inductive closure of a monotone operator F is its least �xpoint:if F (�) = � then � � F� for all ordinals � (by ordinal-induction), so� � F1. That is, F1 is the intersection of all sets closed under F . Thispermits a much simpler second order de�nition of the inductive closure ofa de�nable31 monotone operator F = �R�~x ':~x 2 F1 �df 8R ( (' � R) ! R(~x) ):It is easy to see that if all occurrences of R in ' are positive32 then �R�~x'is monotone, and one writes �R:�~x' (or, when in no danger of ambiguity,simply �R:'), for the minimal �xpoint F1 of F = �R�~x'.For operators de�ned by �rst order formulas the converse also holds:if �R�~x' is monotone over all structures, where ' is �rst order, thenthere is a formula logically equivalent to ' in which all occurrences ofR are positive (by Lyndon's Theorem, see e.g. [Chang and Keisler, 1973;Hodges, 1993]).3329These restrictions are motivated by expository terseness, and could be removed.30we use Greek letters as ordinary �rst order variables31The expression ' � R abbreviates 8~x('$ R(~x)), where arity (~x) = arity (R).32If an occurrence of  in ' is in the scope of n negations and in the negative scopeof i implications, then  is positive in ' if n+i is even.33However, a �rst order operator may be monotone over all �nite structures whilefailing to be positive [Ajtai and Gurevich, 1987]. The restriction to positive operatorsis therefore less natural in the context of Computer Science [Livchak, 1983; Gurevich,1984].



Higher Order Logic 153 Canonical semantics of higher order logic3.1 Tarskian semantics of second order logicLet us consider the semantics of second order formulas more formally. LetV be a vocabulary (as for �rst order logic), S a V -structure. Like for�rst order formulas, the truth of second order formulas in S is de�nedmodulo a valuation � of variables as objects. Here, however, we have secondorder variables, to which one assigns the appropriate kind of objects. Thatis, a valuation � assigns structure elements to free object-variables, k-aryrelations to free k-ary relation-variables, and k-ary functions to free k-aryfunction-variables (k � 0).Terms' values are de�ned by recurrence:valS;�(c) = cS for object-constants cvalS;�(v) = �(v) for object-variables vvalS;�(f (t)) = fS(valS;�(t)) for f a unary function identi�er of Vand similarly for higher aritiesvalS;�(g(t)) = �(g)(valS;�(t)) for g a unary function-variable,and similarly for higher arities.The truth of atomic formulas is then de�ned byS ; � j= t=t0 i� valS;�(t) = valS;�(t0)S; � j= Q(t) i� valS;�(t) 2 QSfor Q a unary relation identi�er of V ,and similarly for higher aritiesS; � j= R(t) i� valS;�(t) 2 �(R)for R a unary relation-variable,and similarly for higher aritiesFinally, the truth of compound formulas is de�ned by recurrence on for-mulas, as for �rst order formulas.3.2 Function and relation formulationsUnder the usual (classical, extensional) reading of functions and relations,these two concepts are of course reducible to each other: k-ary functionscan be viewed as a special kind of k+1-ary relations, and k-ary rela-tions can be interpreted by their k-ary characteristic functions. For in-stance, a formula 9f ( � � �X(f(t)) � � � ) is interpreted by 9F ( 8x9!yF (x; y)^ ( � � � (9y(F (t; y) ^ X(y)) � � � )) (F fresh). Conversely, a formula 8X( � � �X(t) � � � ) can be interpreted by 8f ( � � � (f(t) = c) � � � ), where c is a�xed constant identi�er of V (and f is fresh).34 It therefore su�ces to34We assume that the structure in hand has at least 2 elements.



16 Daniel Leivantformulate second order logic using only relation-variables, or only functionvariables.On closer examination, however, the relational formulation of secondorder logic permits �ner distinctions. An interesting case is the contrastbetween formulas of the form 8~f 9~x ( quanti�er-free) and of the form8~R 9~x , over the standard structure of the natural numbers (with addi-tional and multiplication). Whereas every �11 set in the analytical hierarchyis de�nable by some formula of the �rst form, the sets de�ned by formulasof the second form are all recursively enumerable [Kreisel, 1968]! The lat-ter formulas were dubbed strict-�11 in [Barwise, 1969; Barwise, 1975], andcomputational in [Leivant, 1987]. The term `computational' is motivatedby the fact that each such formula de�nes, uniformly for all V -structures,the operational semantics of a certain �nite state machine. They are, inmany respects, more appropriate than �1 formulas as a generalization, toarbitrary structures, of semi-recursiveness: the descriptive power of �01 for-mulas over the natural numbers is derived from the possibility of numericcoding of computations; computational formulas describe computationalprocesses without depending on such coding.353.3 Normal formsThe well-known procedure, for transforming each �rst order formula ' intoa logically equivalent prenex formula (i.e. with no quanti�er in the scopeof a propositional connective), also transforms each second order formulainto an equivalent prenex form. A second order prenex formula  can befurther transformed (without increasing the number of quanti�ers of anykind) into an equivalent formula  � in which no second order quanti�erfalls in the scope of a �rst order quanti�er. The transformation consists inrecursively replacing subformulas of the form8~x8f ' by 8f8~x '; (3.1)9~x9f ' by 9f9~x '; (3.2)8~x9f '[~x; f ] by 9g8~x '[~x; g~x] where g~x(~z) =df g(~x; ~z); (3.3)and 9~x8f '[~x; f ] by 8g9~x '[~x; g~x]; (3.4)and similarly for quanti�ers over relation-variables. The two formulas in(3.3) are equivalent by (a weak form of) the Axiom of Choice, and (3.4)follows from (3.3) by duality.Furthermore, every �rst order formula can be converted into an equiva-lent formula of the form (8~f ) (9~x) or (9~f ) (8~x) , where  is quanti�er-free, by replacing subformulas of the form8~x9y '[~x; y] by 9f8~x '[~x; f(~x)];35The signi�cance of computational formulas is discussed further in [Leivant, 1991b].



Higher Order Logic 17and 9~x8y '[~x; y] by 8f9~x '[~x; f(~x)]:and similarly for relational quanti�ers.36Combining these transformations, every second order formula ' can beconverted into an equivalent formula '� of one of the forms 8~�1 9~�2 8 � � �Q~�mQ~x  or 9~�1 8~�2 9 � � � Q~�mQ~x  , where Q is the dual of Q, each~�i is a vector of second order variables, ~x a vector of element-variables,  is quanti�er-free, and '� has at most one more function quanti�er than '.Formulas of these forms are said to be normal. A formula ' is �1m if it isof the �rst form, �1m if it is of the second form.37A well-known result of Kleene38 is that for every m > 0 there is aset Sm of natural numbers de�ned by a �1m formula but not by any �1mformula, and therefore also not by any �1m�1 formula. The set N� Sm isthen de�ned by a �1m formula but not by any �1m formula. In fact, it iseasy to see that we can take for Sm the set of codes of �1m sentences thatare true in N .3.4 Finite order logicFinite order logic (also called Type Theory and !-order logic) is an exten-sion of second order logic in which quanti�cation is used over higher orderrelations and functions. It is basically due to Church [Church, 1949].39 Weoutline a relational variant of �nite order logic (similar to the account in[Sch�utte, 1960b, Chapter IV]).Types (or, more precisely, relational types) are syntactic expressionsinductively generated by: � is a type; and if �1 : : : �k are types (k � 0),then � = (�1 : : : �k) is a type. The type () is denoted by o, and if �1 =� � � = �k = � then (�1; � � � ; �k) is denoted by �k. The language of �niteorder logic has, for each type � , variables of type � and quanti�ers overthem.We intend � to denote the type (set) of individuals, i.e. structure ele-ments, and (�1 : : : �k) the set of k-ary relations between k objects of types�1 : : : �k, respectively. That is, for a set A, the set A� of objects of type �over A is de�ned byA� =df A;36If the vocabulary V has an element-constant, then �rst order quanti�ers can bereplaced by function-quanti�ers: 8x [x] � 8f [f(c)]. Each �rst order formula hasthen equivalent formulas of both forms, 8~f 9~x � and 9~f 8~x �0, where � and �0 arequanti�er-free.37If a structure has a de�nable pairing function for structure-elements, as is the casefor N+;� and its expansions, then each vector ~� and ~x can be replaced by a singlevariable (with appropriate changes in the quanti�er-free matrix).38See e.g. [Kleene, 1952].39A detailed textbook exposition is in [Andrews, 1986].



18 Daniel LeivantA(�1 :::�k) =df P( kYi=1Ai) = P(A1 � � � � �Ak):For type o we have Q0i=1Ai = f()g (a singleton), so Ao is the two elementset f;; f()g g, whose elements can be identi�ed with the boolean truth val-ues false and true.Finite order logic has � -terms for each type � , as follows.1. a variable of type � is a term of type � ;2. if f is a k-ary function constant (of a given vocabulary), and t1 : : : tkare terms of type �, then f (t1 : : : tk) is a term of type �;3. if R is a k-ary relation-constant, then R is a term of type �k;4. if t is a term of type (�1 : : : �k), and t1; : : : ; tk are terms of types�1 : : : �k, respectively, then t(t1; : : : ; tk) is a term of type o.Note that we do not use here de�ned, `abstraction', terms. For example,if ' is a formula with a single free variable x, of type �, then the set fx j 'gis not accepted as a term of type (�). To state that the property denotedby some variable Q of type ((�)) hold of the set fx j 'g, one may write9S(�) ( 8x� S(x)$ ') ^Q(S), or 8S(�) ( 8x� S(x)$ ')! Q(S).The terms of type o are the atomic formulas,40 and compound formulasare generated as in �rst order and second order logic. The semantics offormulas of �nite order logic is de�ned formally like for second order logic,except that an assignment over a structure with universe A maps variablesof type � to objects in A� .Types naturally fall into orders, de�ned inductively by: order(�) =df1, and order((�1; : : : ; �k)) =df 1 + max(order(�1); : : : ; order(�k)). Thefragment of �nite order logic in which types of variables are of order � k isdubbed k'th order logic. For k = 1 we recapture �rst order order logic,and for k = 2 we get the relational variant of second order logic.The construction of types can be extended to allow types whose ordersare trans�nite ordinals. For example, let ! consist of all objects of �nitetype. Then (!; !) is the type of binary relations between objects of �-nite types. A formalism of trans�nite types is developed and discussed in[Andrews, 1965] (see also [Montague, 1965a]).3.5 Functional typesAn alternative to relational types of the kind discussed above are functionaltypes. Functional types are syntactic expressions inductively generatedby: � and o are types; and if � and � are types then so is �!� . The intent40Equality between elements may be included among the relations of type �2.



Higher Order Logic 19is that �! � is the type of functions from objects of type � to objects oftype � .41A function f of two arguments of type � and returning a value of type� can be represented by a function fc of type � ! (� ! �), de�ned byfc(x)(y) = f(x; y). The mapping from f to fc is called currying, in honourof Haskell Curry who discovered it. More generally, a function f of karguments, of types �1 : : : �k, and value of type �, is represented by afunction fc of type �1! (�2!� � �! (�k!�) � � �). The latter type is oftenabbreviated by �1; : : : ; �k!�.The well-known duality between functions and relations over basic ob-jects extends to the entire type hierarchy. Every relation R of relational-type (�1 : : : �k) can be thought of as a function which returns booleanvalues, i.e. R is represented by the function �R of type �1; : : : ; �k ! o,de�ned by �R(a1 : : :ak) = if R(a1 : : :ak) then true else false:Conversely, a function f of type �1; : : : ; �k!� is represented by its graph,which is of type (�1; : : : ; �k; �).In every higher type calculus the interaction between expressions denot-ing objects of di�erent types is governed by the operations of applicationand abstraction. If a and b denote objects of types �!� and � , respec-tively, then the applicative expression (a)(b) denotes an object of type �,namely the result of applying the object denoted by a to that denote by b.If a is an expression denoting an object of type �, possibly parametrized bya variable x ranging over objects of type � , then the abstraction-expression�x: a denotes an object of type �! �, namely the function that to everyobject c of type � assigns the value of a when the variable x is evaluatedas c.3.6 Formulas as higher order functionsPropositional logic can be construed as a boolean algebra, whose objects,the truth values, are of type o. The algebra's functions are the proposi-tional connectives; negation is a function of type o! o, and the binaryconnectives are of type o; o! o. Propositional formulas are simply alge-braic expressions, which de�ne functions over truth values; for instance,the formula (p ^ :q)! r is the function that for boolean arguments bp; bqand br return the boolean value (bp ^ :bq)!br.Church [1949] showed how this simple functional interpretation of propo-sitional logic can be extended to �rst order logic, using higher order func-tions. Whereas propositional identi�ers denote truth values, relational41An alternative notation to � ! �, common in works about type theory, is �(�)[Church, 1949].



20 Daniel Leivantidenti�er denote boolean-valued functions over the type � of individualobjects. For example, the formula ' � P (x) ^ :Q(y) is represented bya function F of type �; �; (o! �); (o! �) ! o, namely the function that forarguments ax, ay, FP , and FQ returns the value FP (ax) ^ :FP (ay). Theorder of arguments is arbitrary here. Alternatively, we may think of ' as atemplate from which functions can be de�ned by explicit abstraction. Thatis, �x' denotes a function of type �!o, parametrized by the identi�ers y,P and Q. For each appropriate choice of values for these identi�ers, �x'denotes a function from objects to truth values.Under this reading, quanti�ers are higher order functions. Let 8 be afunction of type (�!o)!o, such that 8f = if [f is identically true] thentrue else false. Then 8(�x') is true i� ' is true for every value of x. Thus,the usual �rst order notation 8x: ' can be viewed as an abbreviation for8(�x'), where 8 is the functional above. The existential quanti�ers andmany other quanti�ers used in special logics (such as `there are in�nitelymany') can similarly be interpreted as functions of type (�!o)!o.Higher order quanti�ers fall into the same mould. Consider universalquanti�cation over unary relations, as in the formula 8P: ', where ' is asabove. This can be viewed as an abbreviation for the functional expression82(�P: '). The type of �P: ' is (�!o)!o, so the type of the operator 82used here is ((�!o)!o)!o. More generally, universal quanti�cation overobjects of type � is an operator 8� of type (�!o)!o. To de�ne a genericuniversal quanti�er that can be used for all types one needs to enrich thetype structure beyond the one we have been discussing (cf. [Girard, 1972;Coquand and Huet, 1985]). Namely, in Girard's system F!, the genericuniversal quanti�er is an operator forall of type �t: (t! o) ! o, so thatforall(� ) is functionally equivalent42 to 8� .Church's interpretation of formulas as higher type functions is usedextensively in Computer Science in formal calculi such as the Calculusof Constructions [Coquand and Huet, 1985], as well as in programmingsystems such as Edinburgh lego, L. Paulson's isabelle [Paulson, 1989;Paulson, 1990], Andrews's TPS [Andrews et al., 1984], and Miller's �-Prolog [Nadathur and Miller, 1988; Nadathur and Miller, 1990; Miller,1993].3.7 Truth de�nitions revisitedIt is rewarding to relate �nite order logic to the issue of truth de�nitionsmentioned in Section 2.6 above. The proof of Theorem 2.6.2 can be easilyadapted to higher order formulas:42I.e., forall(�) reduces to 8� by a type �-reduction. Note, however, that the genericforall is not a global quanti�er that ranges simultaneously over objects of all types.



Higher Order Logic 21Theorem 3.7.1.1. Let N be an expansion of Ns in which the functions neg and sbst ,as well as an injective pairing function p with its inverse projections,are de�nable.2. There is no second order truth-de�nition for second order sentencesover N , but there is a third order such truth-de�nition.Proof. The absence of a second order truth de�nition is analogous to The-orem 2.6.2(1).To de�ne a third order truth de�nition let us �rst assume that all secondorder variables are set-variables (i.e. unary relation-variables). This is noloss of generality, since the presence of a pairing function p and its inverseprojections permits the replacement of relations of higher arities by sets.We would like to code by a set of natural numbers an assignment (intoN) of sets to a �nite number of variables. If � is such an assignment, withdomain fv1 : : : vkg, then � can be coded by the set H = Ski=1(f#(vi)g ��(vi)), where (fng � X) =df fp(n; x) j x 2 Xg. Modify the primitive-recursive functions used in the de�nition of �0 in the proof of Theorem 2.6.2,to apply to formulas with second order quanti�cation, and to valuations forsecond order logic. Clearly, there are primitive-recursive functions type andapply , such that for every variable v, type (#v) = if v is a number-variablethen 0 else 1; and for any term t and set-variable V , apply (#V;#t) =#(V (t)). Emulating the de�nition of �0 in the proof of Theorem 2.6.2(1),we can write down a formula �20, as follows, which states that a set Tcontains a triplet (#'; h;H) i� ' is true under the valuation whose set-valued part is coded by H, and whose number-valued part is coded byh.�20[T ] �df 8u; v; h;H (T (eq (u; v); h;H) $ val (u; h)=val (v; h) )^ 8u; v; h;H ( type (u)=1!(T (apply (u; v); h;H) $ H(p(u; val (v; h)))))^ 8u; h;H (T (neg (u); h;H) $ :T (u; h;H))^ 8u; v; h (T (disj (u; v); h;H) $ T (u; h;H)_ T (v; h;H))^ 8u; v; h;H (type (v)=0!(T (univ (u; v); h;H) $ 8nT (u; inst (h; v; n);H)))^ 8u; v; h;H (type (v)=1!(T (univ (u; v); h;H) $8Y ( (Y =Hmod(v))!T (u; h; Y ))))where Y = Hmod(v) abbreviates



22 Daniel Leivant8u; Z (u 6= v ! ( (u� Z) � H $ (u� Z) � Y )):A second order sentence ' is then true i� the third order sentence 8T (�0[T ]! T (#'; 0; ;)) is true. (Note that T is a third order variable.)To keep the de�nition above within the relational variant of �nite orderlogic, we need to reformulate �20, but this is fairly straightforward. Theproof is concluded as for Theorem 2.6.2.More generally, we have:Theorem 3.7.2. Let N be as above, k � 1.1a. There is no k order truth-de�nition for k order sentences over N .1b. There is no �nite order truth-de�nition for all �nite order sentencesover N .2. There is a (k+1) order truth-de�nition for k order sentences over N .A similar method can be used to show that there is a (k+1) orderformula � such that for every k order sentence ', � [#'] is valid i� ' isvalid.43The construction of truth de�nitions by using ever higher types can becontinued to transi�nite types: [Andrews, 1965] shows how to give a truthde�nition over N for all �nite order formulas, using quanti�cation overobjects of transi�nite type.4 Proof theory4.1 Basic formalismsBy G�odel's Completeness Theorem, provability in �rst order logic capturesprecisely validity. This success contrasts with second (and higher) orderlogic:44Theorem 4.1.1. The set of valid second order formulas is not de�nable(under canonical numeric coding) by a second order formula in the languageof arithmetic. It is therefore not recursively enumerable; in particular, thereis no e�ective formalism whose theorems are precisely the valid second orderformulas.Proof. Let � be the conjunction 'N^D+� (see Section 2.3). The models of� have the natural numbers as domain and the standard interpretation for+ and �. Therefore, a formula  in the language of Peano's Arithmetic4543Note that for k = 1 such a formula falls out from the Completenss Theorem for �rstorder logic, as follows. let Pr be an existential formula of arithmetic that formalizesprovability: for every �rst order formula ', Pr(#') i� ' is provable. Then ' is validi� it is provable, i� Pr(#') is true in the standard model, i� 'N ^D+� ! Pr(#') isvalid.44A stronger result is Theorem 5.6.3 below.45i.e. over the vocabulary f0; s;+;�g



Higher Order Logic 23is true (in the standard model) i� the formula � !  is valid. By Theorem2.6.1 the set of true second order formulas of arithmetic is not second orderde�nable. Thus the set of valid formulas of the form � !  is not secondorder de�nable by a second order arithmetic formula. Since the formulasof the form �! are e�ectively recognizable, it follows that the set of allvalid second order formulas is also not de�nable by an arithmetic secondorder formula.Though second order logic does not have a complete deductive calculus,it does have sound deductive calculi that are logically natural, powerful,of metamathematical interest, and suitable for the formalization of muchof mathematics, of computer science, and of cognitive science. Moreover,these formalisms satisfy important syntactic properties46 which permit anatural adaptation to these formalisms of methods of automated theoremproving [Andrews et al., 1984].The expressive power of second order logic stems from the standardinterpretation of the second order quanti�ers as ranging over all relationsand functions over the structure in hand. It is not surprising that this rangecannot be enforced by a deductive formalism, since each such formalism,being countable, can distinguish (implicitly or explicitly) only between acountable number of functions and relations (recall the Downward Skolem-L�owenheim Theorem).47A natural formalism L2 for the relational variant of second order logicuses the usual axioms for �rst order logic, with quanti�er rules applyingto relational variables as well as individual variables (we give a preciseformulation momentarily), with the stipulation that the range of relation-variables includes at least all the relations de�nable by the formulas of thelanguage. This stipulation is a form of the Comprehension Principle of SetTheory, and is formally rendered by the schema:9R 8x1 : : : xk ( R(x1 : : : xk)$ ' )where k � 0, R is a k-ary relation-variable, and ' is a second order formulain which R does not occur free.48The formalismL2 can be spelled out within any one of the familiar proofstyles used for �rst order logic. A Hilbert-style calculus for L2 is obtained byaugmenting the inference rules and axiom schemas of �rst order logic with46such as normalization for natural deductions, cut-elimination for sequential proofs,and certain forms of the subformula property; see Section 4.4)47This plausibility argument is not a proof, of course. A related phenomenon isTrakhtenbrot's Theorem, that the collection of �rst order formulas true in all �nitestructures is not RE [Trakhtenbrot, 1950; Ebbinghaus et al., 1984].48Note that ' may have free variables other than x1 : : : xk , and need not have all ofx1 : : : xk free. Allowing R free in ' is a strong form of circular de�nition, and leads tocontradictions: take, e.g., k = 0 and ' � :R.



24 Daniel Leivantthe Comprehension Schema above, and quanti�cation rules for the relation-variables:49 the axiom schema of universal instantiation: (8R')! [Q=R]'(arity (R)=arity (Q)), and the inference rule of universal generalization: ! [Q=R]' ! 8R' Q not free in  A natural-deduction calculus for L2 is obtained by supplementing theinference rules of �rst order logic with quanti�cation rules for relation-variables. Writing � ) ' for `' is derived from assumptions �', we havethe following rules for second order 8-introduction and 8-elimination:8I �) [Q=R]'�) 8R' Q not free in �and 8E �) 8R'�) [�~x: =R]'where arity (~x) = arity (R) = arity (Q),  is free for R in ',50 and[�~x: =R]' is the result of replacing every subformula R(~t) of ' by [~t=~x] .Note that 8E conveys the Comprehension Principle.A sequential-style calculus for L2 is de�ned similarly.51Moving on from second order to �nite order logic, it is obvious how tolift the Comprehension Principle to types of higher order. If x1 : : :xk arevariables of types �1 : : : �k respectively, � = (�1 : : : �k), and R is a variableof type � , then comprehension at type � is the schema9R 8x1 : : :xk ( R(x1 : : : xk)$ ' ) R not free in ':We denote by Ln the formalism of n order logic with comprehension for alltypes of order � n, and by L! �nite order logic with comprehension at alltypes.4.2 Additional set existence principlesComprehension is a purely logical, syntax driven, set existence principle.It encompasses all elementary set existence axioms of set theory to theextent that they pertain to second order logic: the Empty-Set, Union,and Separation axioms are instances of Comprehension, whereas a form49Such a formalism is detailed, for example, in [Church, 1956, Section 50]. Note thatthe axiom schema and rules, including the ones of �rst order logic, now apply to allformulas in the language. Analogous axiom-schema and inference-rule should be addedfor 9, unless 9 is viewed as an abbreviation for :8:.50for both element- and relation-variables, in the usual sense51See for example [Takeuti, 1975; Miller et al., 1991]. A resolution-style calculus forhigher order Horn clauses can be found in [Miller, 1993].



Higher Order Logic 25of Pairing is present in the syntax of L2, which has relation-variables forany �nite arity. The Power-Set axiom is outside the scope of second orderlogic, since it collapses the entire type hierarchy into a �rst order theory.However, in �nite order logic we do have a weak form of the Power-SetPrinciple: ifX is a set of order k, then the power-set ofX is a legitimate setof order k+1, since by Comprehension we have 9P 8Y (P (Y )$ Y � X ):The Axiom of In�nity is orthogonal to �nite order logic, since the latter isa formalism for all structures, including �nite ones.A set-existence principle of interest is Choice, which in L2 can be for-mulated as the single axiom:528D ( 8x9y D(x; y)! 9R2 8x9!y (R(x; y) ^D(x; y) )Choice can be lifted to arbitrary types: Choice for types �; � reads:538D(�;�) ( 8x�9y� D(x; y)! 9R(�;�) 8x�9!y� R(x; y) ^D(x; y) ):For types (�; �), with � = (�1 : : :�r), we can reformulate this axiom as aprinciple of Collection [Hilbert and Ackermann, 1928, Section IV.1]:8D(�;�) ( 8x�9y� D(x; y)! 9z(�;�) 8x�D(x; zx) );whereD(x; zx) �df 9y� ( 8u�11 : : :u�rr ( y(~u)$z(x; ~u) ) ^ D(x; y) ):This axiom gives rise to a Collection Schema at lower orders. In particular,for � = (�) we get a schema of choice from objects to sets, in second order(not third order) logic:8x9Y '[x; Y ]! 9Z 8x'[x; Zx];where '[x; Zx] is '[x; Y ], with every subformula Y (t) replaced by Z(x; t).Of some interest are variants of the Choice principles above, such as theschema of Dependent Choice and Generalized Dependent Choice (see e.g.[Kreisel, 1968; Feferman, 1977]).529! abbreviates `there is a unique': 9!y  �df 9y ( ^ 8z( [z=y] ! z= y )). Thereare alternative formulations, all equivalent by the use of weak forms of Comprehension.[Hilbert and Ackermann, 1928] gives the following schema, which states that for everybinary relation D there is a function R that acts as a choice (partial) function on thedomain of D: 8D9R (8x;y; z (R(x; y)^R(x; z)!y z)^8x (9yD(x; y)! 9y (R(x; y)^D(x; y) ) ): The following form states that every appropriate binary D contains achoice function: 8D (8x9yD(x; y) ! 9R2 (8x9!y (R(x; y) ^D(x; y)) ^ 8x;y (R(x; y)!D(x; y)) ).53Here equality for type �, which is used in spelling out 9y� , can be de�ned byrecurrence on � from equality at type �.



26 Daniel LeivantAnother set-existence principle is Fraenkel's schema of Replacement,which states that the image of a set under a class-function is a set. Inthe context of second and �nite order logic, class-functions are admitted asrelations (by Comprehension), and Replacement is therefore deducible.Other set-existence principles in set theory, such as high-cardinal ax-ioms, GCH, the existence of measurable cardinals, the diamond principle,or the axiom of determinacy, can be formulated in second order logic asstatements about su�ciently large structures, but these principles are in-creasingly alien to the spirit of �nite order logic.4.3 Constructive �nite order logicsAt �rst blush, constructive (intuitionistic) �nite order logic might looklike a dubious hybrid: on the one hand one weakens even propositionalrules to meet the demands of a restrictively constructive ontology, while onthe other hand one brings in higher order quanti�cation, whose ontologyis problematic even classically. However, the combination of constructivelogic and higher order quanti�cation is conceptually natural, because higherorder quanti�cation does not depend on the legitimacy of the full power-setconstruction (compare Section 5.4). Constructive �nite order logic is in facta highly fecund formalism, with strong and useful ties to computing andto programming. Perhaps the most powerful ingredient of that connectionis the close resemblance, discovered by Howard [Howard, 1980], betweentyped lambda calculi and natural deduction calculi (see Section 8.2).It is well-known that constructive �rst order logic is a formalismat leastas rich as classical �rst order logic, since the latter is interpretable in theformer.54 For instance, if ' is a �rst order formula, and '0 arises from 'by double-negating every atomic, disjunctive, and existential subformula of',55 then '$'0 is provable in classical logic, and ' is provable in classicallogic i� '0 is provable in constructive logic.Constructive (intuitionistic) variants, ILn, of the formalisms Ln (2 �n � !) are obtained from the corresponding classical proof calculi as for�rst order logic. For instance, a sequential style calculus for IL2 is thesame as a calculus for L2, but with all succedents restricted to have atmost one formula. We then obtain an interpretation of L2 in IL2: for aformula ' let '0 be de�ned as above (with relational existential-quanti�ersalso double-negated). Then '$'0 is provable in L2, and ' is provable inL2 i� '0 is provable in IL2.The richness of constructive formalisms compared to their classicalcounterparts has numerous manifestation. One striking example, for higher54[Kolmogorov, 1925; G�odel, 1932]; see also [Friedman, 1978; Dragalin, 1979; Leivant,1985]; textbook expositions can be found in [Kleene, 1952, Section 81] and [Troelstra,1973].55I.e, '0 � ::' for atomic ' ( ^ �)0 �  0 ^ �0, ( ! �)0 �  0 ! �0, ( _ �)0 �::( 0 _ �0), (8x )0 � 8x 0, and (9x )0 � ::9x 0.



Higher Order Logic 27order logic, was discovered by M. H. L�ob [1976]. Let L02 be classical secondorder propositional logic,56 that is, the fragment of L2 in which all rela-tions are 0-ary. It is well-known that the truth of an L02 formula ' (whichholds i� ' is provable in L2) is decidable by ana lgorithm that uses fairlymanageable computational resources 57 Let now IL02 be the 0-ary fragmentof IL2. Then provability in IL02 is undecidable altogether: indeed, there is areduction of provability in classical �rst order logic to provability in IL02.58An interesting property of �rst order constructive logic is the indepen-dence therein of the usual logical constants (:;^;_;!;8; 9). That is, noone of these constants can be de�ned in terms of the remaining ones, incontrast to classical �rst order logic. This is no longer the case with secondorder logic: Prawitz [1965] observed that all logical constants are de�nablein constructive second order logic in terms of ! and 8 we have:false � ? � 8XX:' � '!?' ^  � 8X ( ('! ( !X))! X )' _  � 8X ( ('!X)! (( !X))! X) )9x' � 8X 8x (('!X)! X)9R' � 8X 8R (('!X)! X):Furthermore, the de�nability of ? implies that constructive second or-der logic is interpretable in minimal second order logic,59 in which theconstructive rule for negation, i.e. the schema ?! ', is absent.4.4 Normalization and the subformula propertyA central topic of Proof Theory is normalization of natural-deductions, orcut-elimination for sequential proofs. Normalization is the transformationof a natural-deduction derivation into an equivalent derivation60 which isnormal, that is without any detour, where a detour is a formula which isderived by an introduction rule, and is also the principal premise of anelimination rule.61 For example, in a deduction of the form56i.e. the proof formalism for boolean quanti�ed formulas.57[Stockmeyer, 1974]; see e.g. [Hopcroft and Ullman, 1979]; the decidability of quan-ti�ed boolean formulas is a canonical example of a poly-space complete problem.58This complexity of IL02 is related to the facts that there is no truth-table semanticsfor which intuitionistic propositional logic is sound and complete, but there is such asemantics with a countable set of truth values. Thus, boolean quanti�cation in IL02 maybe seen as ranging over an in�nite countable set.59also called positive second order logic60Derivations are equivalent if they prove the same formula from the same (open)assumptions.61This de�nition of normal derivation su�ces in the absence of _ and 9.



28 Daniel Leivant[ ]�' ! ' � 'the displayed formula  ! ' is a detour. It can be eliminated by trans-forming the proof above into a more direct proof of ':�[ ]�'Some of the indicated occurrences of the formula  may be new detourformulas, but these are shorter than the detour formula  !' which hasbeen eliminated.Analogously, a detour may involve a second order generalization (8I)followed by an instantiation (8E): �[Q=R]'8R'[�~x:� =R]'This can be eliminated by a relational substitution in the derivation �:[�~x:�=Q] �[�~x:�=R]'However, this transformation might replace one detour by larger ones:if a formula � is a detour within �, then the potentially larger formula[�~x:�=Q]� might be a detour within [�~x:�=Q]�.62 Using a powerful combi-natorial method due to Girard [1972], Prawitz [1972] proved that, in spiteof this di�culty, every natural-deduction derivation of L2 can be trans-formed e�ectively into a normal derivation, and Martin-L�of [1973a] showedthat this hold for full �nite order logic.6362True, if � is normal, then no such danger exists, but this potential for blow-ups inthe complexity of detours ruins the use of syntactic size of detour formulas as a yardstickfor progress on eliminating all detours: in eliminating the implicational detour above, might be a detour of the form 8R 0, whose elimination would result in detours ofsyntactic complexity greater than that of the original detour  !'.63See [Gallier, 1990] for a survey. Earlier proofs were given for the somewhat weaker



Higher Order Logic 29The fact that every derivation of �rst order logic can be normalizedhas far reaching applications, many of which are related to the subformulaproperty: in a normal proof � of a formula ', every formula is a subfor-mula of '. The notion of subformula here is modulo term-substitution; forinstance, the subformulas of 8x' include all formulas [t=x]', where t is aterm free for x in '. Consequently, formulas in a normal proof have logicalcomplexity bounded by the complexity of the derived formula, a useful factin structural analyses of proofs for metamathematical applications.Normal derivations of L2 also have a subformula property, but the no-tion of a subformula is again modulo substitutions, which this time appliesto second order quanti�ers as well: the subformulas of 8R' include allformulas of the form [�~x =R]', where  is free for R in '. Thus, the logi-cal complexity of formulas in a normal proof is no longer bounded by thecomplexity of the derived formula, and the subformula property for secondorder logic has limited metamathematical applications.645 Ontology5.1 The gulf between �rst order and second order logicFirst order logic has important properties lacking of second order logic. Weenumerate in this section a few of them, before considering some founda-tional consequences of these di�erences.1. The set of valid �rst order sentences is recursively enumerable, whereasthe set of valid second order sentences is not de�nable in second or-der arithmetic (Theorem 4.1.1), nor even in �nite order arithmetic(Theorem 5.6.3).2. A logic L is compact if a set � of formulas has a model whenever each�nite subset of � has a model. First order logic is compact, whereassecond order logic is not: Let � consist of 8xN [x] and of all formulasc 6=�n for n � 0. Then every �nite �0 � � is true in the structure Ns,expanded with an interpretation of c as a su�ciently large naturalnumber. But � has no model.3. A logic L has the Downward Skolem{L�owenheim Property if everycountable set of formulas that has an in�nite model has a countablemodel. First order logic has this property, but second order logicNormal Form Theorem, which states that every provable formula has a normal proof.Tait proved this property for second order logic [Tait, 1966], and Takahashi [1967] andPrawitz [1968] independently proved it for full �nite order logic. These proofs use amodel theoretic method of `partial valuation' due to Sch�utte [1960a].64This is less true for certain fragments of second order logic, in which the complexityof substituted formulas can be e�ectively controlled [Nadathur and Miller, 1990; Milleret al., 1991].



30 Daniel Leivantdoes not: the sentence :(�<@1) (see Section 2.2) has a model, but nocountable model.4. A logic L has the Upward Skolem{L�owenheim Property if every count-able set of formulas that has an in�nite countable model has arbitrar-ily large models. First order logic has this property, but second orderlogic does not: the sentence �<@1 has an in�nite countable model,but no uncountable model.5. A generalized form of the downward Skolem{L�owenheim, which ap-plies to any logic L, is as follows: there is a function F on the cardinalssuch that, if L has a model of size > �, then it has a model of size�0 � F (�). The proof of the Downward Skolem{L�owenheim prop-erty for �rst order logic gives F (�) = �+ @0. For second order logiceven the function F (�) =df the �'th inaccessible cardinal (or even the�'th measurable cardinal, assuming these cardinals exist) will not do[Barwise, 1972, Theorem 2.1].6. First order logic satis�es Beth's de�nability property,65 but second(and higher) order logic does not. A logic L has the de�nabilityproperty if each implicitly de�nable relation is explicitly de�nable, inthe following sense. Suppose V is a vocabulary, and V 0 = V [ fRg,where R is a fresh relational identi�er. Suppose � is a V 0-theory,so that every V -structure can be expanded into a model of � in atmost one way66; then there is a V -formula  that is coextensionalwith R in every V 0-structure. The failure of the de�nability propertyfor second order logic is, again, a consequence of the second ordercharacterization of the natural numbers by the formula 'N (Section2.3):67 let V = f0; sg, and choose A � N which is not second orderde�nable (there must be one, since there are only coutably manyexplicit de�nitions); let � consist of 'N , all formulasR(�n) for n 2 A,and all formulas :R(�n) for n 62 A. If a V -structure S is expanded toa model of � then S j= 'N , and is therefore standard, and we musthave RS = A.7. The uni�cation problem is decidable for �rst order logic [Robinson,1965], but not for second order logic [Amiot, 1990].688. An important theorem of Model Theory (for �rst order logic), whichis directly related to �rst order expressiveness, is Fra��ss�e's Theorem.65See e.g. [Chang and Keisler, 1973; Hodges, 1993; Ebbinghaus et al., 1984]).66Put di�erently, every two models of � that have the same universe and same inter-pretation for the constants in V , must have the same interpretation for R.67The argument seems to have been part of the folklore; it can also be found in[Shapiro, 1991, Section 6.6.3]. [Shapiro, 1991] also observes that the de�nabilitypropertydoes hold for second order logic for � �nite: let ' be the conjunction of the formulas in�, with R replaced by a variable R of the same arity, and let [~x] �df 9R('^R(~x)).68The latter result is based on the undecidability of the second order term unicationproblem, proved in [Goldfarb, 1981].



Higher Order Logic 31It states, roughly, that a property of models is de�nable by a �rstorder formula i� it is also recognized by a computation with a �nitenumber of alternations between existential (nondeterministic) anduniversal (co-nondeterministic) guesses. A related theorem of Keislerstates that a property of models is de�nable by a �rst order formulai� both it and its negation are preserved under isomorphisms andthe formation of ultraproducts. Thus, any second order formula thatexceeds the expressive power of �rst order logic, such as 'N , de�nesa property of models that cannot be recognized by computations asabove, and is not preserved under ultrapowers.699. First order logic satis�es a 0-1 law: if V is a vocabulary withoutindividual constants, let nV be the number of non-isomorphic V -structures, and, for a �rst order V -forumla ', let nV (') be thenumber of non-isomorphic V -structures in which ' is true. Then�(') =df limn!1 nV (')nV exists, and is equal to 0 or to 1.70 Clearly,second order logic does not have this property, since there is a secondorder formula which is true of a �nite structure i� it has an evennumber of elements.715.2 Lindstr�om's and Quine's testsIs second order logic truly a logic? On a technical level the answer istrivially positive. From a philosophical-ontological angle the answer is lessclear.From a model-theoretic viewpoint second order logic is merely one ofmany possible logics. The syntax of a logic has logical and non-logical con-stants. The semantics of a logic has a collection of possible interpretations(models, structures), which includes an interpretation-dependent assign-ment of meaning to the non-logical constants, and an invariant assignmentof meaning to the logical constants. For example, in �rst order logic thelogical constants are interpreted uniformly in all structures, whereas thevocabulary identi�ers get speci�c interpretations in each structure. Sim-ilarly, logic with a quanti�er U = `there exist uncountably many' has Uinterpreted as intended in all structures. Second order logic is, then, one69See e.g. [Chang and Keisler, 1973; Hodges, 1993] for detailed proofs of the Fra��ss�eand Keisler Theorems; Van Benthem and Doets [Benthem and Doets, 1983] have apleasant and simpli�ed presentation. In their original forms, common in expositions ofModel Theory, these theorems are stated as characterizations of elementary equivalence.70This theorem was discovered independently by Glebskii et al. [Glebskii et al., 1969]and Fagin [Fagin, 1976]. It fails in the presence of constants: if ' is R(c;c) (R abinary relation constant) then �(') = 12 . A survey of 0-1 laws for various logics is[Compton, 1988]; some more recent results can be found in [Spencer and Shelah, 1987;Kolaitis and Vardi, 1987; Kolaitis and Vardi, 1990; Kolaitis and Vardi, 1992; Spencer,1993].71However, see [Kolaitis and Vardi, 1992] for cases of second order formulas for whichthe 0-1 law does hold.



32 Daniel Leivantin a plethora of logics, in which the logical constants of �rst order logic areaugmented by quanti�cation over relations.However, from a philosophical viewpoint, we might wish to reserve theterm `logic' to a priori concepts and truths, ones that do not depend onexperience and observation. Quine [1970] suggested that the demarcationbetween logic and mathematics is determined by ontological neutrality, thatis, on not assuming the existence of certain objects and structures. Inparticular, if the notion of in�nity is delineated by a formalism, then thatformalism is mathematical rather than logical. Quine concludes that secondorder logic is a mathematical theory rather than a logic.72A landmark theorem of Lindstr�om73 states, roughly, that out of alllogics, �rst order logic is characterized as the maximal logic that is bothcompact and satis�es the downward Skolem{L�owenheim property. FromQuine's viewpoint, these two characteristics of �rst order logic are indeedlitmus tests for being a logic: compactness is the failure to distinguishbetween the �nite and the in�nite, and downwards Skolem-L�owenheim isthe failure to distinguish between di�erent in�nities.Quine's argument is corroborated by the success of second order logicto capture directly most all mathematical practice. However, this criticalview is really an afterthought. At �rst sight, the mere quanti�cation overrelations does not seem to be much of an ontological commitment. Meta-mathematically, the notion of arbitrary sets and relations underlies alreadythe model theory of �rst order logic. Perhaps one might advocate quanti�-cation only over sets (unary relations) as being ontologically more prudentthan quanti�cation over relations of arbitrary arities, but this restrictedvariant of second order logic already begets, as we have seen, the charac-terization of N. David Lewis (quoted by Hazen [1989]) has argued thateven monadic third order logic is ontologically neutral, but Hazen showedthat that formalism su�ces to interpret all of second order logic.Girard has suggested74 a technical proof-theoretic criterion for a logic:a true logic must be amenable to a cut-free sequential calculus withoutaxioms, which satis�es the subformula property (in the strict sense, seeSection 4.4). The underlying intuition is that neither axioms nor rulesshould allow `communication' between formulas other than by rules thatexplicate the logical constants in isolation. This criterion is clearly relatedto Quine's ontological neutrality. Indeed, even relatively weak fragmentsof second order logic fail Girard's criterion.7572[Tharp, 1975] concurs with Quine, [Boolos, 1975] disagrees.73[Lindstr�om, 1969], see [Ebbinghaus et al., 1984] for a textbook exposition.74Personal communication.75Nonetheless, it is possibly to recover the textual subformula property for fragmentswhich, though logically weak, are nonetheless computationally interesting; see e.g. [Na-dathur and Miller, 1990; Miller et al., 1991].



Higher Order Logic 335.3 Slipping from �rst to second order logicIn fact, the notion of `arbitrary relation' is implicit already in �rst or-der logic (though not in �rst order languages used to describe and proveproperties of particular �rst order structures). To say that a formula ' isvalid is to say that it is true in all interpretations, a statement involvinga universal quanti�cation over universes as well as over the relations in-terpreting the predicate letters in '. This point was made by Hilbert andAckermann already in [1928]: `the formalism of this [�rst order] calculus isclearly not a closed system. In other words, the most basic notions of themetamathematics of �rst order logic are second order.'Moreover, there is a logical construct that seems even more ontologi-cally benign than relational quanti�cation, and which yields nonetheless thefull expressive power of second order logic, namely partially order quanti-�ers. Henkin [1961] noted that the use of quanti�ers in �rst order formulasprevents one from expressing forms of dependence which occur naturallyin both mathematics and natural language discourse [Barwise, 1979]. Forinstance, in the formula 8x9y8u9v ' there is no way to state that v de-pends only on u. Henkin proposed an extension of �rst order language withpartially order quanti�er-combinations, so that, for example,8x9y8u9v � 'states that for all x and u, ' can be made true by suitably choosing y de-pending on the value of x, and choosing v depending on u. More generally,we may de�ne a partially ordered quanti�er to be a triple Q = (~x; ~y; �),where ~x; ~y are tuples of variables, all distinct, and � is a function assigningto each variable in ~y a sublist of ~x. If ' is a formula whose semantics isde�ned, then the semantics of Q' is: for all ~x one can �nd values for eachvariable y among ~y, depending only on the values of the variables in �(y)(i.e. invariant with respect to changes in values of the remaining x's), whichmake ' true.At �rst sight it is not at all obvious that partially ordered quanti�ersare ontologically less neutral than the usual nesting of �rst order quanti-�ers. However, simple partially-ordered quanti�ers su�ce to characterizethe in�nite structures (in contrast to Theorem 2.2.1). Namely, let� �df 9w 8x 9u8y 9v ( ( x=y $ u=v ) ^ u 6= w )):This formula is semantically equivalent to9w 9f; g 8x; y ( (x=y $ f(x)=g(y)) ^ f(x) 6= w )that is to



34 Daniel Leivant9f ( 9g 8x; y (x=y $ f(x)=g(y)) ^ 9w 8x f(x) 6= x ):Since the �rst conjunct is equivalent to Inj [f ] and the second conjunctis equivalent to :Surj [f ], it follows that � is true exactly in the in�nitestructures.765.4 Higher order logic as mathematics: Henkin'ssemanticsQuine's position, that second order logic is a mathematical rather thana logical formalism, justi�es a model theory in which quanti�cation overrelations (and functions) is a mathematical, rather than logical operation.That is, the interpretation of higher order quanti�cation is put on an equalfooting with the vocabulary constants, and is part of the speci�cation of amodel rather than an invariant through all models. This semantics, whichwe now describe in more detail, is due to Henkin.77Let V be a vocabulary. A Henkin-V -prestructure H (of �nite orderlogic) consists of� a non-empty universe A;� an interpretation in A of the V -constants; and� for each type � , a collection D� , where D� = A, and D(�1 :::�k) �P(D�1 � � � � �D�k ).Assignments � into H are de�ned as in the tarskian semantics (Section3.1 above), except that if R is a variable of type � , then we require that�(R) 2 D� . Semantic satisfaction of formulas, H; � j= ', is then de�nedinductively, as usual. Thus, tarskian models of �nite order logic may beregarded as special Henkin interpretations, the `canonical' interpretations,where D� = A� for all types � .A Henkin-structure of �nite order logic is a Henkin-prestructure Hthat is closed under de�nability: for each formula ', assignment � into H,and type � = (�1 : : : �k), 7876The formula � is due to Ehrenfeucht (reported in [Henkin, 1961]). [Enderton, 1970]and [Walkoe, 1970] independently showed that every �11 formula is semantically equiva-lent to a formula in the languageLH1 of �rst order logic augmentedwith partially-orderedquanti�ers. Enderton also showed that every formula of LH1 is semantically equivalentto a �12 formula. Harel [1979] showed that for a natural modi�cation of the semanticsof partially-order quanti�ers LH1 is expressively equivalent to full second order logic,and M. Motowski showed that expressive equivalence with full second order logic can beobtained, alternatively, by closing the collection of partially-ordered quanti�ers undera duality operation. For detailed surveys on partially-ordered quanti�ers see [Mundici,1985] and [Krynicki and Mostowski, 1994].77See [Henkin, 1950]. A correction to Henkin's treatment is in [Andrews, 1972a].78[a1 : : : ak=x1 : : : xk ]� is the assignment that di�ers from � only in assigning a1 : : : akto x1 : : : xk, respectively.



Higher Order Logic 35f~a 2 A� j H; [a1 : : :ak=x1 : : : xk]� j= 'g 2 D� :A Henkin-V -prestructure for type � is a Henkin-V -prestructure with D�given for the subtypes � of � (including � itself). Henkin-V -structures fortype � are de�ned analogously.An even more squarely mathematical interpretation of higher orderquanti�cation arises from viewing �nite order logic as a syntactic vari-ant of a �rst order theory of types, TT. We present this theory �rstfor monadic second order formulas, i.e. formulas with only unary relations.Given a vocabulary V , let V S be an extension of V with the relation-constants T�, T(�), and E, of arities 1,1 and 2, respectively. T�(x) is in-tended to state `x is an individual', T(�)(x) | `x is a set', and E(x; y) |`x is an element of y.'A Henkin-V -prestructure H for (�) determines a unique V S-structureS = S(H), as follows.� The universe of S is A [D(�) where A and D(�) are the universes ofH for types � and (�);� the interpretations in S of the V -constants is the same as their inter-pretation in H, with functions (which in H are de�ned only over A)extended to arguments in D(�) arbitrarily;� T� is interpreted as A, T(�) as D(�), and E as 2.Each monadic V -formula' can be rephrased as a �rst order V S-formula'S, where 'S is obtained from ' by (1) replacing each atom R(t) (R avariable) by E(t; R); and (2) relativizing quanti�ers over individuals to T�,and quanti�ers over sets to T(�).79 In 'S all variables are understood asobject-variables.It is then easy to prove:Lemma 5.4.1. A formula ' is true in H i� 'S is true in S(H).Thus, if 'S is valid, then ' is true in all Henkin-prestructures. Theconverse is not generally true: for example, 9xx x is true in all Henkin-prestructures (because the universe of a structure is non-empty), but 9x(T�(x) ^ (x x)) is not valid. More generally, not every V T-structure S isS(H) for someH. Indeed, the structures S(H) have the following properties(compare [Benthem and Doets, 1983]):79That is, 'S is de�ned by recurrence on formulas as follows. (R(t))S = E(t;R) (R aset-variable),�S = � for other atomic formulas, (:')S = :('S), ('? )S = ('S? S) forbinary connectives ?, (8x')S = 8x(T�(x)!'S), (9x')S = 9x (T�(x) ^ 'S), (8R')S =8R (T(�)(R)!'S), (9R')S = 9R (T(�)(R)^ 'S).



36 Daniel Leivant1. V -correctness: T�(c) for object-constants c of V , R(x1 : : :xk) !Vki=1 T�(xi) for (k-ary) relation-constants R of V , and Vki=1 T�(xi)!T�(f (~x)) for (k-ary) function-constants f of V ;2. non-emptiness: 9x T�(x);3. disjointness: T�(x)!:T(�)(x);4. inclusion: T�(x) _ T(�)(x);5. elementhood: E(x; y)! T�(x) ^ T(�)(y)6. extensionality: T(�)(x) ^ T(�)(y) ^ 8z (E(z; x)$E(z; y))! x = y:Lemma 5.4.2. If S has properties 1{6 above, then S = S(H) for someHenkin-V -prestructure for H type (�).Proof. Given S, with universe jSj, let H have D� =df (T�)S as universeof individuals, let the interpretation of the V -constants be the same as inS (with the functions restricted to D�), and let the universe D(�) of setsconsist of the sets fa 2 D� j ES (a; s)g for s 2 (T(�))S . By the V -correctnessand non-emptiness properties of S, H is a Henkin-V -prestructure.We claim that S(H) is isomorphic to S. Let a function j : jSj!jS(H)jbe de�ned by j(x) = � x if x 2 (T�)Sfa 2 I j ES (a; x)g if x 2 (T(�))SThen j is well-de�ned by the disjointness and inclusion conditions, it issurjective by de�nition of S(H), and injective by the extensionality condi-tion. j preserves the V -constants, T�, and T(�) by de�nition, and E by theelementhood condition.Let �2 be the set of formulas listed under conditions 1{6 above. Wethen have:Lemma 5.4.3. A monadic formula ' is true in all Henkin-prestructuresi� �2 j= 'S.Proof. Suppose that ' is true in all Henkin-prestructures. Towards show-ing �2 j= 'S assume S j= �2. Then, by Lemma 5.4.2, S = S(H) for someHenkin-prestructure H. By assumption we have H j= ', and so S(H) j= 'S(by Lemma 5.4.1), whence S j= 'S.Conversely, suppose that �2 j= 'S, and letH be a Henkin-prestructure.Then S(H) j= �2, and so S(H) j= 'S, whence, by Lemma 5.4.1, H j= '.A similar duality exists for provability:Lemma 5.4.4. A monadic V -formula ' is provable in L2 i� 'S is provablein �rst order logic from formulas of the form9R 8x (E(x;R)$  ) (*)(where R is not free in  ).



Higher Order Logic 37The proof is straightforward by induction on (the length of) derivations.Combining Lemmas 5.4.3 and 5.4.4 with the Completeness Theorem for�rst order logic we obtain:Theorem 5.4.5. [Henkin]1. A monadic second order formula ' is true in all Henkin-prestructuresi� 'S is provable in �rst order logic from �2.2. ' is true in all Henkin-structures i� 'S is provable in �rst order logicfrom �2 and all formulas of the form (*).The generalization of Theorem 5.4.5 from monadic to full second orderlogic is straightforward.5.5 Henkin completeness for full �nite order logicWe now outline a more general duality, between full �nite order logic anda �rst order theory. Given a vocabulary V , let V T be the vocabularywith: (1) the constants of V ; (2) for each type � a unary relation T� ; and(3) for each type � = (�1 : : : �k) a k+1-ary relation E� . To each �niteorder V -formula ' we correspond a �rst order V T-formula 'T, as follows.(1) replace each atomic formula R(t1 : : : tk) in ', where R is a variable oftype � = (�1 : : : �k), by E� (t1 : : : tk; R); and (2) for each type � , relativizequanti�ers over � to T� .80Like for monadic second order formulas, a (full) Henkin-structure Hfor V determines a unique V T-structure S(H). Each such structure sat-is�es the following set �! of formulas, analogous to �2 (except for theinclusion condition, which cannot be stated because there are in�nitelymany types): V -correctness; non-emptiness; disjointness: T� (x)!:T�(x)for distinct � and �; elementhood: for � = (�1 : : : �k), E� (x1 : : :xk; y) !T� (y) ^ T�1 (x1) ^ � � � ^ T�k (xk); and extensionality: for � = (�1 : : : �k),T� (x) ^ T� (y) ^ 8~z (E� (~z; x)$E�(~z; y))! x = y:For a Henkin-prestructure H let S(H) be a V T-structure de�ned anal-ogously to the de�nition above for the case where H is a prestructure for(�) only. Analogously to Lemma 5.4.4 we have for L!:Lemma 5.5.1. A V -formula ' is provable in L! i� 'T is provable in �rstorder logic from formulas of the form9R 8~x (E(�1:::�k)(~x;R)$  ) (R not free in  ) (**)80That is, (R(�1:::�k)(t1 : : : tk))T = E(�1 :::�k)(t1 : : : tk; R) (R a variable of type(�1 : : : �k)); �T = � for other atomic formulas; (:')T = :('T); (' ?  )T = ('T ?  T)for binary connectives ?; (8x')T = 8x (T�(x) ! 'T), (9x')T = 9x (T�(x) ^ 'T),(8R� ')T = 8R (T�(R)!'T), (9R�')T = 9R (T� (R)^ 'T).



38 Daniel LeivantTheorem 5.5.2. [Henkin]1. A �nite order formula ' is true in all Henkin-prestructures i� 'T isprovable in �rst order logic from �!.2. Consequently, a �nite order formula ' is true in all Henkin-structuresi� 'T is provable in �rst order logic from �! and formulas of the form(**).Proof. We prove (1). Suppose �! ` 'T, and let H be a Henkin{pre-structure. Then S(H) j= �!, and therefore S(H) j= 'T. As in Lemma5.4.1, this implies that H j= '.Conversely, suppose that ' is true in all Henkin-prestructures. Towardsshowing that �! j= 'T, let S be a model of �!, and let S 0 be its substruc-ture generated by the elements of S� (T� )S . Then, analogously to Lemma5.4.2, S 0 is isomorphic to S(H) for some Henkin-prestructure H. Since ' isassumed true in H, it follows, as in Lemma 5.4.1, that 'T is true in S(H),and therefore in S 0. But each quanti�er in 'T is relativized to some T� ,so 'T is true also in S. We have shown that �! j= 'T, and so, by theCompleteness Theorem, �! ` 'T.The soundness of L2 for Henkin's semantics can be used to establishindependence results. For instance,Theorem 5.5.3. The principle of choice is not provable in L2.Proof. If Choice were a theorem of L2, then every Henkin-structure wouldsatisfy choice. Consider the Henkin-structure S for the empty vocabulary,with a three element universe fa; b; cg, and where the relations are exactlythe de�nable ones.81 Call valuations � and �0 isomorphic if: (1) for allindividual variables x; y, �(x) = �(y) i� �0(x) = �0(y); and (2) for all r-aryrelation variable R and individual variables x1 : : :xr, h�(x1) : : : �(xr)i 2�(R) i� h�0(x1) : : : �0(xr)i 2 �0(R). It is easy to see, by induction on ',that if � and �0 are isomorphic then S ; � j= ' i� S ; �0 j= '.In S we have 8x9y y 6 x, which by Choice impliesS j= 9R8x9!y R(x; y) ^ y 6 x:If Choice were provable then, by the de�nition of S, this implies that forsome formula'[x; y] we have S j= 8x9!y ('[x; y]^y 6 x). In particular, thereis a valuation � that assigns a to all individual variables in ' other thany, and ; to all relation variables, and such that S; � j= '. Say �(y) = b.By the observation above we also have S; [c=y]� j= ', contradictingS ; � j= 8x9!y '[x; y].8281That is, de�nable by second order formulas with equality.82A more interesting counter-example: consider the Henkin prestructure that consistsof the standard model of Peano's Arithmetic with the �rst order de�nable relations.



Higher Order Logic 395.6 Finite order logic as a second order theoryThe construction above reduces �nite order logic to a �rst order theory,by allowing non-canonical semantic interpretations. We can also reduce�nite order logic to a second-order theory, without allowing non-canonicalinterpretations. For each type � = (�1 : : : �k), consider the following for-mula, expressing the representability of every relation over T�1 : : : T�k byan object in T� :Rep� �df 8R 9s (T� (s) ^8y1 : : : yk: k̂i=1T�i (yi) ! (R(~y)$E�(~y; s) ))To each canonical Henkin-V -prestructure H corresponds a V T-structureR(H) which satis�es Rep� for every type � , as well as �!. Conversely, ifS is a V T-structure that satis�es �! and Rep� for every type � , then thesubstructure S 0 (as de�ned above) of S is isomorphic to R(H) for somecanonical H. We therefore obtain:83Theorem 5.6.1. A formula ' of �nite order logic is valid (in the standardsense) i� the second order formula 'T is true in every model of �! [fRep�g� a type.For each formula ', the proof of Theorem 5.6.1 uses only formulas in�! that involve types in '. Let �' be the conjunction of all these formulas.Note that �' is a �11 formula. We have thus obtained:Theorem 5.6.2. A formula ' of �nite order logic is valid i� the �11 for-mula �'!'T is valid.Van Benthem and Doets [1983, Section 4.3] further re�ne this result:they show how �' can be replaced by a monadic �11 formula. Montague[1965b] pointed out that Theorem 5.6.2 can be further extended to trans-�nite order logic with orders that are ordinals describable in �nite orderlogic.Note that Theorem 5.6.2 refers to validity in all structures. When aparticular structure is considered, for example N , then 3.7.1 shows thatChoice over arithmetic relations sometimes de�nes (hyperarithmetical) non-arithmeticalrelations (see e.g. [Rogers, 1967]), so choice fails in this Henkin-structure. [Andrews,1972b] shows that choice for any given type is not a theorem of full �nite order logic,even if the latter is augmented by the Axiom Schema of Description. The Axiom ofDescription for type � states that there is a functional that for every singleton set X of�'s as input returns the sole element of X.83A preliminary form of this theorem seems to be due to Hintikka [1955], whichMontague generalized in [1965b]. Shapiro [1991] cites [Montague, 1965b] as an inde-pendent source, stating that Montague attributes the result to David Kaplan. Ex-positions are also given in [Kreisel and Krivine, 1964; Benthem and Doets, 1983;Shapiro, 1991].



40 Daniel Leivanteven validity in N of �11 formulas is not reduced to validity in N of �11formulas. Theorem 5.6.2 states that the truth in N of a �nite type formula , i.e. the validity of the formula 'N ^ D+;� !  (see Section 2.3), isreducible to the validity (in all structures) of a �11 formula of a totallydi�erent nature, namely one that refers explicitly to the coding of a typestructure.A striking consequence of Theorem 5.6.2 is:Theorem 5.6.3. The set of (numeric codes of) valid second order formu-las is not de�nable over N in �nite order logic.84Proof. Suppose �[x] is a �nite-order formula in the vocabulary of arith-metic, such that �[�n] is true (in the standard model) i� n codes a validsecond order formula. Let � be a primitive recursive function that mapsthe numeric code of a formula ' of �nite order logic to the code of �'!'T.Then, for each formula ' of �nite order logic, ' is valid i� �'!'T is valid,i.e. i� �[�#' ] is true in the standard model. In particular, if ' is a �niteorder formula in the vocabulary of arithmetic, then ' is true in the stan-dard model i� �!' is valid, i.e. i� '[�#(�!')] is true in the standardmodel. Thus, the �nite order formula� [x] �df D ! �[�(impl(#�; x))];where D is the primitive recursive de�nition of impl and of �, is a truthde�nition over N for all �nite order formulas, contradicting Tarski's Theo-rem 2.6.1.Thus, while the set of valid second order formulas is de�nable by thevalidity of a suitable third order formula (Section 3.7), it is not de�nable ifrelation variables are restricted to numeric relations. This contrast is notsurprising, since second order formulas go a long way in de�ning highercardinals (2.2).6 Restricted higher order logicHigher order logics have a useful expressive power, but at the price oftechnical di�culties and a problematic ontology. This has motivated re-strictions of higher order logic, where each restriction attempts to preserve84By Montague's observationmentioned above, that set is not de�nable even in trans-�nite order number theory, as long as the order-ordinals are all de�nable in �nite orderlogic. It is easy to see that second order truth is de�nable in set theory by a �2 formulathat renders (8 structures S) (S j= ') (see e.g. [Boolos, 1975]). This is not a de�nitionoverN, since the set quanti�ers range here over arbitrary sets in the intended hierarchyof sets; however, using the Levy{Montague Reection Principle [Levy, 1960], there is anordinal � such that all statements above for the (countablymany) second order formulas' are true exactly when they are true in V�. Then second order truth is de�nable overNin �-order logic.



Higher Order Logic 41certain forms of expressiveness, while eliminating or reducing technical orontological problems. These restrictions might be classi�ed into restrictionson the expressiveness, the semantics, and the proof theory, though thesethree aspects are often intertwined.6.1 Restricted expressiveness 1: Monadic second or-der logicTwo natural language restrictions are monadic second order logic and �x-point logic. The former is driven by syntactic form, the latter by semantics.In monadic second order logic the only higher order variables are onesranging over monadic relations, i.e. sets.Monadic �rst order logic is decidable [L�owenheim, 1915], and, in the ab-sence of functions, so is monadic second order logic [Skolem, 1919; Behmann,1922]. However, with functions present monadic second order logic is quitecomplex: the de�nition 'N above of N is monadic (Section 2.3). Primitive-recursive pairing and projection functions are axiomatized by their recur-sion equations, so it follows that the truth of a second order formula over thestandard structure of the natural numbers can be expressed by a monadicsecond order formula.85 Thus, monadic second order logic is not compact,possesses neither the Upward Skolem-L�owenheim Property nor the BethDe�nability Property, and the set of monadic second order formulas validin all structure is not analytical, let alone e�ectively enumerable.86Monadic second order logic also fails to satisfy the Downward Skolem{L�owenheim property. Our proof above that downward Skolem{L�owenheimis not satis�ed by full second order logic relies on using quanti�ed binary-relations to de�ne uncountable structures. However, it is easy to de�nein monadic second order logic particular classes of uncountable structures,such as dense linear orderings with endpoints that contain their Dedekindcuts.87 From this the failure of the Downward Skolem{L�owenheimproperty85For example, a formula' � 8R , whereR is binary and  is �rst order, is expressedby 8X�, where � arises from  by replacing each subformula R(t; t0) by X(p(t; t0)),where p is the identi�er for a primitive-recursive pairing function. That is, the truth of' over the natural numbers is expressed by the monadic second order formulaD ! (8X � N) (�N );where D is the primitive recursive de�nition of the functions used in  as well as for p,and where �N is � relativized to N .86Moreover, monadic second order logic does not have the Craig interpolationproperty[Mostowski, 1968], which both �rst order and full second order logic have. A logic L hasthe interpolation property if for every valid L-sentence'! there is a sentence �, whichuses only non-logical constants that occur in both ' and  , and such that '! � and�! are valid. A proof of the interpolation property for �rst order logic can be foundin most logic textbooks, see e.g. [Ebbinghaus et al., 1984]. For second order logic theproperty is trivial (see e.g. [Shapiro, 1991]): let R1 � � � Rk be the vocabulary relationidenti�ers that occur in ' but not in  , and let � be 9R1 � � � 9Rk '.87Let ' be  ^�, where  is the �rst order formula axiomatizingdense linear orderings,



42 Daniel Leivantfollows as before.In view of the similarities above between monadic and full second or-der logics, one might wonder about the point in restricting predicates tomonadic ones. It turns out, however, that for many theories, this restric-tion is crucial, and leads to interesting results. Notably, the full secondorder theory of zero and a successor function (without additional func-tion symbols) is essentially second order arithmetic (since the graphs of allprimitive-recursive functions are de�nable), but the monadic second ordertheory of even two successors (i.e. the monadic second order theory of bi-nary trees) is decidable [Rabin, 1969]. A discussion and compendium ofmonadic second order theories can be found in [Gurevich, 1985].6.2 Restricted expressiveness 2: Fixpoint logicsBecause inductive de�nitions play particularly important roles in variousapplications of higher order logic, it is natural to isolate them, and toconsider extensions of �rst order logic with �xpoint constructs.88The study of proof calculi for �rst order logic extended with �xpointsis implicit in the development of the theory of inductive de�nitions overarbitrary structures [Moschovakis, 1974]. However, syntactic logical for-malisms that incorporate explicitly a �xpoint operator seem to have origi-nated independently in two areas of Theoretical Computer Science: logicsof programs and database theory. Syntactic logical formalisms that ex-plicitly incorporate a �xpoint operator were �rst introduced in relation toprogramming language semantics [Scott and de Bakker, 1969; Park, 1970;Hitchcock and Park, 1973]. Consequently, the fruitful investigations ofpropositional modal formalisms for reasoning about programs led to theand � �df 8X8Y (X < Y ! 9z (X � z ^ z � Y ) ); where X < Y �df 8x 2X 8y 2 Y x < y, X � z �df 8x 2 X x � z, and z � Y �df 8y 2 Y z � y. Then 'has (in�nite) models, e.g. [0;1] with the standard order. But ' has no countable model,because a countable model of  must be isomorphic to the rationals, with or withoutone or both endpoints (Cantor's Countable Order Theorem, see e.g. [Ebbinghaus et al.,1984]), and � is false for these structures.88Adding �xpoint constructs to logic is somewhat di�erent from formal theories forinductive de�nitions and iterated inductive de�nitions, which are usually formulatedover arithmetic or analysis. These theories were initiated in [Kreisel, 1963], and studiedextensively in the 1960's and 1970's; see e.g. [Buchholz et al., 1981]. If n is a naturalnumber, and A �N, then the collection IDn of sets de�nable by n-fold iterated inductivede�nitions from A, is de�ned by: ID0 =df ;; IDn+1 =df the collection of �xpoints ofoperators �P:', where ' is a �rst-order formula with sets in IDn as parameters, andP is positive in '. More generally, if � is a �xed well-founded ordering, with 0 asleast element, then the collections ID�, for � represented within �, are de�ned usinga uniform form of the de�nition above, so that it can be iterated into the trans�nitewithout recourse to in�nitely many operators on the way. Namely, each �rst orderformula '[P;Q] (of the language of arithmetic extended with the two unary predicatesP;Q), with P positive and two free variables x;a, generates a trans�nite sequence 'a(a in the �eld of �) of sets, as follows. '0 =df ;; 'a =df �P: �x: '[P; '�a; x; a], where'�a =df 'b if a is the successor of b in �, and '�a =df [n�afng�'n if a is a limitpoint of �.



Higher Order Logic 43study of the propositional �-calculus, that is, propositional logic enrichedwith a �xpoint construct [Kozen, 1983].89In database theory the interest in extending �rst order logic with a�xpoint operator [Chandra and Harel, 1982] evolved from the expressivelimitations of �rst order logic, e.g. the impossibility to de�ne (uniformlyover all structures) the transitive closure of a binary relation, even over�nite structures [Aho and Ullman, 1979].Several �xpoint operators are possible of which the most importantis �xpoint for monotone �rst order operators; that is, one considers anextension FO� of the language of �rst order logic (over a vocabulary V )with the clause: if ' is a formula in which all occurrences of the k-aryrelational identi�er R are positive, and ~t = (t1 : : : tk) is a tuple of terms,then (�R:�x1 : : : xk')(~t) is a formula, intended to denote the least �xpointof the monotone operator R 7! �~x: '[R] (see Section 2.7). Note that 'may be a formula of FO�, not necessarily a �rst order formula. As noted inSection 2.7, the positive formulas yield a natural, syntactically recognized,collection of monotone operators, which are guaranteed to have a least �xedpoint.90One should be careful, however, in specifying the formulas to which �is applied here. Under a weak reading, R is said to be positive in ' if it isnot in the negative scope of any implication or negation. Under a strongerreading, R is, positive if it is in the negative scope of negation or implicationan even number of times. If ' is �rst order, then the two readings areequivalent, because the two readings are identical for formulas in prenex-disjunctive form. However, if ' uses � as in �R: �x: :�S: �y: '[R;S],(where R is negative91 in ' and S is positive in '), then the interactionbetween the two �xpoints may get to be too complex to be rendered withthe weaker reading.92It is easy to see that the truth of number theoretic formulas is reducible89A �nite model theorem and a decision procedure for the propositional �-calculus areproved in [Kozen, 1988; Kozen and Parikh, 1983], and a 0-1 law in [Blass et al., 1985].A recent study on the scope of expressiveness of the �-calculus is [Lubarsky, 1993].90Other �xpoint operators include inationary �xpoint [Gurevich and Shelah, 1986;Leivant, 1990c] and existential �xpoints [Blass and Gurevich, 1987]. Additional variantsare mentioned in Section 8.4 below, in relation to computational complexity. Dualnotions, of co-induction and largest �xpoints, have emerged recently in programminglanguage theory as important in dealing with in�nite objects, such as streams [Aczeland Mendler, 1989; Milner and Tofte, 1991; Pitts, 1993].91that is, in the negative scope of an odd number of implications and negations92However, the two readings are equivalent over �nite structures, as proved by Immer-man [1986], leading to a normal form theorem: every formula is equivalent to one witha single occurrence of �. The �rst version is the one studied in [Moschovakis, 1974].An attractive related language, Lower Predicate Calculus with Reection (LPCR), ispresented in [Moschovakis, 1993]. A completeness theorem for an interesting fragmentof the language is in [Barwise and Moschovakis, 1978], a result improved recently byKatherine St. John (1993, in preparation).



44 Daniel Leivantto validity of FO� formulas. Let 'Z be de�ned like 'N in Section 2.3,except that N is replaced byZ �df �R�x: x 0 _ 9y: (x sy ^R(y)):Then a formula  in the language of Peano's Arithmetic is true i� theformula 'Z ^D+;� !  Z is valid.From this it immediately follows that the set of valid FO� formulas isnot arithmetical (under canonical coding). 93 Consequently, there is noformal system that generates exactly the valid FO� formulas. Also, sincethe standard model of arithmetic is de�nable in FO�, it follows that FO�fails to be compact or to have the upward Skolem-L�owenheim property.However, it does have the Downwards Skolem-L�owenheim property.94While a complete deductive system for �xpoint logic is impossible, nat-ural formalisms do exist for it. Two salient properties of �R:' that areincorporated in every such formal calculus are:1. Closure under �R�~x:', i.e.8~x:[�R:'=R]'! (�R:�~x')(~x):Or, as an inference rule, [�R:'=R]'(~t)(�R:�~x')(~t) :2. Minimality property: for every relation Q of the proper arity, if[Q=R]' � Q, then �R�~x' � Q. This can be rendered in �rst or-der logic as a schema, allowing the substitution of any �rst orderde�nable relation �~z for Q above:8~x ( [�~z =R]'! [~x=~z] ) ! 8~z ( (�R�~x: ')(~z)!  )6.3 Restricted semantics: Weak second order logicAn important semantically restricted higher order logic is weak second or-der logic, with relation-variables ranging over �nite relations, and with nofunction variables. That is, a formula ' in the relational variant of secondorder logic is f-true in a structure S (notation: S j=f ') if it is true in Swith the relation-variables ranging over �nite relations.The second order de�nition of the natural numbers can be amended toweak second order logic as follows. Let �d =df f8x s[n](x) 6 xgn�1, andde�ne93In fact, the set of valid FO� formulas seems to be complete�12 , as shown in privatelycommunicated draft proofs by Y. Moschovakis and by K. Doets.94Privately communicated draft proofs by Y. Moschovakis and K. Doets.



Higher Order Logic 45N 0[x] �df 9R ( R(x) ^ 8u (R(u)! u=0 _ 9v R(v) ^ u=s(v) ) )In models of �d the property N 0, with R ranging over �nite sets, is true ofan element a i� a is the denotation of a numeral. Therefore the formula'0N �df 'suc ^ 8x N 0[x]de�nes the natural numbers up to isomorphism in every model of �d.95Primitive recursive functions can be referred to and de�ned via secondorder de�nitions of their graphs.96 It follows that to each number theoreticformula ' there corresponds a second order interpretation '0 of ', so that' is true in N i� �d j= '0 in weak second order logic. Therefore, thedecision problem for f-validity is not in the arithmetical hierarchy, let alonerecursively enumerable.Also, since weak second order logic de�nes the natural numbers upto isomorphism, it does not have the upwards Skolem-L�owenheim Prop-erty. However, weak second order logic does have the downwards Skolem-L�owenheim Property, contrary to monadic and full second order logic.97Thus, a second order formula is f-valid i� it is true in all countable struc-tures. One consequence of this is that full second order logic cannot beinterpreted in weak second order logic.98The downwards Skolem-L�owenheimProperty of weak second order logicalso implies that the f-validity of each second order formula ' is reducibleto the truth in N of a second order formula '0 of the form 8X '0[X] (Xranging over all sets), where '0 is a �rst order number theoretic formula.The idea is that '0 arrises from ' by interpreting each relational variableas ranging over numeric codes of �nite relations over X. Thus, the set off-valid second order formulas is �11, in contrast to the set of valid secondorder formulas, which is not de�nable even in type theory (Theorem 5.6.3).Although weak second order theories are natural and are related toapplications of logic in the theory of computing and in arti�cial intelligence,not very much has been proved about them. Two examples: the weaksecond order theory of linear ordering is decidable [La�uchli, 1968], and theweak second order theory of one function is decidable [Rabin, 1969].95Recall that 'suc �df 8x s(x) 6= 0 ^ 8x;y ( s(x) = s(y)! x = y ).96For example, Plus(x; y; z) $ 9R: ( R(x; y; z) ^ 8u (R(x;0; u) $ u x ) ^8u; v (R(x; su; sv)!R(x;u; v) ) ); Times(x; y; z) $ 9R: ( R(x; y; z) ^ 8u (R(x;0; u)$u 0 )^ 8u; v (R(x; su; v)!9w (R(x;u; w) ^Plus(x;w; v) ) ).97A proof is sketched in [Monk, 1976] (pp. 489{490), where the result is attributed toTarski, or see [Ebbinghaus et al., 1984] exercise IX.2.7.98Weak second order logic is trivially interpretable in standard second orer logic,because the notion of �niteness is second order de�nable (Section 2.2).



46 Daniel Leivant6.4 Predicative logic: Restricted comprehensionOne of the main forces that have shaped the development of twentiethcentury mathematical logic was the crisis of foundations caused by theantinomies discovered around the turn of the century.99 Several of the lead-ing mathematicians of the time (such as Hilbert, Brouwer, and Poincar�e)called for a careful reconstruction of Mathematics on safer grounds. Onereconstructionist approach attempted to design formal calculi that wouldbe powerful enough to capture as much mathematical practice as possible,while at the same time clearly avoiding the antinomies; this led to for-malisms such as the rami�ed type theory of Whitehead and Russell andthe formal set theory of Zermelo and Fraenkel.100A more radical reaction to the crisis of foundations argued for a recon-struction of mathematics on foundations that are accepted, on the basis ofa critical examination, as conceptually infallible, and not merely as avoid-ing the antinomies. One strain of the radical reconstructionist programwas Brouwer's Intuitionism, rooted in a general critique of the notion of`existence' of mathematical objects, and of the classical rules of logic thatgovern reasoning about existence.101 However, as soon as intuitionisticlogic was formalized by Heyting, it appeared that classical logic can beinterpreted in it (see Section 4.3 above), implying that intuitionism doesnot play a central role in the foundational aspect of the reconstructionistprogram, notwithstanding its importance in other respects.One is, therefore, led to focus on the other major strain of the recon-structionist program, the predicativist program, which proposes to examinecritically not the logical rules governing reasoning about existence in gen-eral, but rather the existence of particular mathematical constructions,notably basic existence axioms: instances of the Comprehension Schema(Section 4.1), and instances of the axiom of choice, say in the numeric formof choice from numbers to sets:102 8x9Q'[x;Q]! 9Z8x'[x; Zx]. Whenreferring to choice over formulas that mention set quanti�ers, these set-existence principles are circular, since the existence of the set Z is based99See e.g. the introduction of [Mendelson, 1964], or [Fraenkel et al., 1973, Ch. 1], forconcise and informative surveys of that crisis. [Fraenkel and Bar-Hillel, 1958, SectionI.6] contains a detailed bibliography through 1956.100[Whitehead and Russell, 1929; Zermelo, 1908; Zermelo, 1930; Fraenkel, 1922].101The notion of `existence' is understood here to encompasses disjunction, since, forexample, p _ q is equivalent to 9x (x = 0!p)^ (x 6= 0!q).102This form easily implies the schema of choice from numbers to numbers. Boththese forms of choice follow from the general axiom stated in Section 4.2 by com-prehension, but it is useful to consider particular instances of Choice when onlyweak forms of comprehension are present. Another numeric statement that fol-lows from the set-theoretic axiom of choice is the schema of dependent choice:8x8R9Q'[x;R;Q] ! 9Z Z0 = ; ^ 8x'[x;Zx;Zx+1 ]. Here, as in the schema of choicefrom numbers to sets, R and Q are unary, Z is binary, and Zi is de�ned as in Section4.2.



Higher Order Logic 47on the truth of ', which presumes a meaningful quanti�cation over thecollection of all sets, including Z.A de�nition of a collection C is said to be impredicative if it uses quan-ti�cation whose range includes C as an element, i.e. if C is assumed toexist before it is de�ned.103 Unrestricted impredicative de�nitions lead tocontradictions, as in Russell's Paradox.104 It is generally accepted that nocontradiction occurs when a de�nition is used to carve out a subset of agiven set, as formalized by the schema of Separation of Zermelo{FraenkelSet Theory: 9x8y(y 2 x $ ' ^ y 2 a), where x; a are not free in ';that is, the set fy 2 a j 'g is legitimate. This restrictive use of Compre-hension is justi�ed by the conviction that every subset of a exists before itis ever de�ned. In particular, all de�nitions of real numbers are legitimate,even if they use quanti�cation over all real numbers. An example of sucha de�nition is the least upper bound of a set of reals.105This ontology is, of course, anathema to the constructivist. The mostbasic form of circumventing impredicative de�nitions is to restrict Com-prehension to �rst order formulas. This restriction is of interested, for one,due to the following:Theorem 6.4.1. Let T be a �rst order theory, and let T 2 be the theoryin second order logic with comprehension over �rst order formulas, whoseaxioms are those of T . Then T 2 is conservative over T for �rst orderformulas, i.e. every �rst order theorem of T 2 is a theorem of T .A simple proof of the theorem runs along the following lines. If ' is atheorem of T 2, then it has a cut-free sequential proof (see Section 3.3). Itis easy to see that if � is a cut-free proof in T 2 of a �rst-order formula,and �0 results from � by deleting all second order formulas, then �0 isessentially106 a proof of ' in T .107 An extension of this will be discussed103The term impredicative is due to Poincar�e [1910].104Suppose that C is the collection of all sets which fail to be elements of themselves; ifC were a legitimate set, then it is de�ned in terms of quanti�cation whose range includeC, leading to the contradictory equivalence C 2 C , C 62 C.105Each real can be identi�ed with the Dedekind cut that de�nes it. Then, the l.u.b.b of a bounded set A of reals is de�ned as fr 2 Q j (9a 2 A) (r 2 a) g, i.e. one usesComprehension: 9b 8r 2Q(r 2 b$ (9a 2 A) (r 2 a) ).106Depending on the exact formulation of the sequential calculus, �0 may need to beslightly repaired to yield a correct proof107[Fraenkel et al., 1973] (p. 132 fn. 2) attributes this use of cut-free proofs to PaulCohen. A proof theoretic proof that does not depend on cut elimination runs as follows.(See [Troelstra, 1973] for details, for the case of �rst order arithmetic and the schemaof induction.) Suppose � is a proof in T 2 of a �rst order formula  . Then � canuse only �nitely many instances of comprehension, for formulas �1 : : : �m say. � canthen be converted into a correct �rst order proof �0, by interpreting each second orderquanti�er as ranging over the sets de�ned by substitution instances of �1 : : : �m. Eachformula in � is thus converted into a �rst order formula, the interpretation of thecomprehension schema is provable in T , and the derived formula  is unchanged underthe interpretation, concluding the proof. Yet another, model theoretic proof, which is



48 Daniel Leivantin Section 7.1 below (Theorem 7.1.1).Theorem 6.4.2. Let T 2 be as above. Then every theorem of T 2 can beproved using comprehension for universal �rst order formulas only.108Proof. We show, by induction on the formula ', that each instance ofcomprehension for �rst order formulas, 9R8~x (R(~x)$ '), is provable usingcomprehension for universal formulas only. It su�ces to treat formulas inwhich the only logical constants are ^, : and 8. If ' is quanti�er freethen it is a special case of a universal formula, and the theorem holdstrivially. If ' is of the form '0 ^ '1 then, by induction assumption, thereare relations R0; R1 that are co-extensional with '0 and '1, respectively.Applying the schema above to the formula R0(~x)^R1(~x) for ', we obtainthe desired R. If ' is of the form :'0, the proof is similar. Finally, suppose' is of the form 8y'0. Then, by induction assumption, there is a relationR0(~x; y) coextensional with '0. Using comprehension for the universalformula 8yR0(~x; y), we obtain the desired relation R.The use of comprehension can be further reduced to special cases, suchas the following (which will be further re�ned in Section 7.2).109Theorem 6.4.3. Let V be a �nite vocabulary, and let Fn[V ] consist of the�rst order V -formulas all of whose textual subformulas have at most n freevariables. Then there is a �nite number of instances of comprehension fromwhich all instances of comprehension for formulas in Fn[V ] are derivable.Moreover, if pairing and projection functions are available in a theoryT , then comprehension is reducible in T 2 to a �nite number of instances.Proof. Consider the following instances of comprehension which, as inthe proof of Theorem 6.4.2, permit the derivation of comprehension for acompound formula from comprehension for its components:1. For every k � n, 8S9R8x1 : : :xk ( R(~x)$ :S(~x) )2. For every k � n, 8S0; S19R8x1 : : :xk ( R(~x)$ S0(~x) ^ S1(~x) )3. For every k � n, 8S9R8x1 : : :xk ( R(~x)$ 8yS(y; ~x) )It remains to list �nitely many instances of comprehension that imply (pos-sibly using comprehension for compound formulas) every atomic instanceof comprehension, namely:due in the case of set theory to [Novak, 1951; Rosse and Wang, 1950; Mostowski, 1951],runs as follows. If ' is not a theorem of T , then (by the Completeness Theorem for�rst order logic) there is a model of T [f:'g. This model can be extended to a Henkinmodel of T 2, and so ' cannot be a theorem of T 2. The model theoretic proof has thedisadvantage of not providing an e�ective method for converting a proof in T 2 into aproof in T .108This theorem, as well as its proof presented here, seem to belong to the folklore ofthe subject, at least for second order arithmetic.109The idea of the proof seems to be due to von Neumann [1925]. See Section 7.2 foran application.



Higher Order Logic 494. 9R8x; y ( R(x; y)$ x y );5. 9R8~x ( R(~x)$ Q(~x) ); for every relation constant Q of V ;6. 9F8~x; y ( F (~x; y)$ f (~x) y ); for every function constant f of V ;7. For every i; k, where i < k � n,8Qk9Rk8~x ( R(x1 : : : xixi+1 : : :xk)$ Q(x1 : : :xi�1; xi+1; xi; xi+2; : : :xk) ).8. For every k � n, 8Qk9Rk8x1 : : :xk ( R(x2 : : :xk)$ Q(x1 : : :xk) ).If an injective pairing function h�; �i is present, then coding of tuples ofall arities becomes available, and it su�ces to have the instances above fork = 3, provided we add an instance of comprehension that permits goingback and forth between pairs and coded pairs:8Q9R8x; y(R(hx; yi)$ Q(x; y) )and 8R9Q8x; y(R(hx; yi)$ Q(x; y) )Since Comprehension restricted to �rst order formulas is conservative over�rst order logic (Theorem 6.4.1), this restriction is a rather extreme mea-sure for avoiding impredicativity. However, the underlying idea of thisrestriction can be further iterated. We stipulate that relations fall intolevels, with the base level consisting of those relations whose de�nition in-volves no relational quanti�cation, i.e. �rst order de�nable relations. Thenext level consists of sets whose de�nition may use quanti�cation over setsof the base level, and so on. This eliminates circularity, since in a setS = fn j 8X 'g, if the set-variable X ranges over sets of level k, then thatrange excludes S, since level(S) > k.The idea of stratifying abstraction into levels goes back to the Rami�edType Theory of [Russell, 1908; Whitehead and Russell, 1929], whose pur-pose was precisely to circumvent the antinomies of Naive Set Theory.110 Itis present in many mathematical, logical and philosophical development,notably in the predicative development of Analysis (see below) and of SetTheory111. Let us outline the resulting formalisms.The simplest manifestation of the idea of stratifying properties can befound in a predicative variant of second order logic, (�nitely) rami�ed sec-ond order logic [Church, 1956]. One posits variables R̀k for k-ary relationsof level `. The intended semantics is de�ned inductively, and is intertwinedwith the syntax of the language. Given a V -structure S with universe U ,let `+1Uk consist of the relations X � Uk de�nable by a formula in whichall variables are of level � `, where mRj (m � `) are interpreted as rangingover mU j. We say that a formula ' of predicative second order logic is110See [Hazen, 1983] for a survey of rami�ed type theories.111See e.g. [Quine, 1937; Quine, 1951; Wang, 1954; Wang, 1962]



50 Daniel Leivanttrue in a structure S if it is true in S when variables R̀k are interpreted asranging over Ùk.De�ning a rami�ed form of �nite order logic is slightly more delicate,and requires that we intertwine levels with the types themselves. The typesare de�ned as follows: (�; 0) is a type of level 0 (the type of individuals);if �1 : : : �n are types, of levels `1 : : : `n respectively (n � 0), and if ` >`1; : : : ; `n, then ((�1 : : : �n); `) is a type, of level `.112 The idea is that thecollective reference to all objects of a certain level ` is of level > `, just asis the case for quanti�cation over such a collection. For each leveled type� we posit an unbounded supply of variables R� , intended to range overobjects of type � . The level of a formula' is now de�ned to be the smallestnumber larger than all levels of bound variables in ', and � the levels ofthe free variables therein.The construction of levels can be further extended into trans�nite ordi-nals, by taking at limit ordinals � the union over lower levels: the leveledtype (� ; �) is the union of (� ; `) with ` < �. However, the predicative natureof the ordinals used becomes an issue, and the purely logical nature of thelanguage and its intended interpretation are increasingly in question. Onthe other hand, on conceptual grounds it is hard to defend stopping therami�ed type hierarchy at any particular level. We comment further aboutthis uneasy balance in Section 7.2 below.An interesting issue is the ontological status and practical interest oframi�ed higher order logics. While some philosophers have argued forthe importance of these formalisms, others have noted that, for all itstechnical machinery, rami�ed higher order logic is no stronger that plain�rst order logic in di�erentiating between structures:113 if S and Q aretwo V -structures that satisfy the same �rst order sentences (where V isa given vocabulary), then they satisfy the same V -sentences of rami�ed�nite order logic. Notwithstanding this similarity, the expressive power ofeven low levels of rami�ed second order logic is far greater than that of�rst order logic; consequently, the rami�ed second order theories of certainstructures are more complex than the corresponding �rst order theories.An important case in hand are systems for Predicative Analysis (Section7.3), based on the rami�ed second order theory of the natural numbers. Inparticular, a truth de�nition for �rst order arithmetic can be obtained byusing quanti�cation over �rst order de�nable relations (i.e. the lowest level112In particular, we have the propositional types ((); `) for all ` � 0.113Among the promoters of rami�edhigher order logic are Hacking and Hazen [Hacking,1979; Hazen, 1983; Hazen, 1985]. The following observation is due to Sundholm [1981]:it follows from the fact that rami�ed higher order logic satis�es the conditions of Lind-str�om's Theorem (Section 5.2), namely compactness and Downward Skolem-L�owenheim,by work of Leblanc [1976], and is therefore equivalent in the sense considered to �rstorder logic.



Higher Order Logic 51in the rami�ed hierarchy of relations).114 Another interesting example ofthe expressive power of rami�ed higher order logic over particular structuresis the interpretability of Robinson's Arithmetic (an undecidable theory) inlevel 2 rami�ed second order theory of dense linear orders [Hazen, 1992].This ought to be contrasted with the �rst order theory of dense linearorders, which is decidable.7 Mathematical practiceMathematics is replete with second order notions and images. These canoften be contorted into �rst order molds, but at considerable costs, con-ceptual as well as technical. Jon Barwise referred to the gulf between �rstorder logic and mathematical practice in these words: `As logicians, we doour subject a disservice by convincing others that logic is �rst order, andthen convincing them that almost none of the concepts of modern mathe-matics can really be captured in �rst order logic' [Barwise, 1985]. A de-tailed compendium of even the more important higher order constructionsin mathematical practice is well beyond the scope of this survey. Instead,we propose to consider the general issue of second order axioms versus �rstorder schemas for principles such as Induction and Replacement. We thenbriey comment on second order aspects of set theory and analysis, and�nally we describe the speed up of proofs by use of higher order means. Weshall not consider the many important uses of higher order constructs invarious other �elds, such as Geometry, Algebra, Topology, and RecursiveFunction Theory.7.1 Second order axioms vs. �rst order schemasSeveral central mathematical principles which are inherently second orderare commonly approximated in �rst order logic by axiom schemas, i.e. bytemplates for an in�nite collection of formulas. Two important examples114This is analogous to the construction of truth de�nitions in Section 2.6. We canstate that a set T contains a pair (#'; x), where ' is in prenex-disjunctive normal form,only if ' is true under the valuation coded by x:� 00[T ] � 8u; v; x (T (eq (u; v); x) ! val (u; x)=val (v; x))^ 8u;v; x (T (:eq (u; v); x) ! val (u; x) 6=val (v; x))^ 8u;v; x (T (disj (u; v); x) ! T (u; x)_ T (v; x))^ 8u;v; x (T (conj (u; v); x) ! T (u; x)^ T (v;x))^ 8u;v; x (T (univ (u; v); x) ! 8nT (u; inst (x; v; n)))^ 8u;v; x (T (exst (u; v); x) ! 9nT (u; inst (x; v; n)))where conj and exst are additional primitive recursive functions that code the con-junction and existential quanti�cation operations. Now, a prenex-disjunctive normalformula ' is true i� 9T (�00[T ] ^ 8xT (#'; x)), where the existential quanti�er rangesover arithmetic predicates.



52 Daniel Leivantare the Induction Schema in �rst order arithmetic, and the ReplacementSchema in set theory.The schema of induction, '[0]^ ( 8u '[u]!'[s(u)] )! 8x', is implied,using comprehension (for '), by the second order formula 8x8R R(0) ^( 8u R(u) ! R(s(u)) ) ! R(x), i.e. from 8xN [x].115 In �rst order ax-iomatizations of arithmetic, such as Peano's Arithmetic (PA), the singlesecond order axiom 8xN [x] is replaced by all (or some) of its �rst orderspecializations. Clearly, this is not an ideal rendition of 8xN [x], which isthe intended statement. One believes in the correctness of all instances ofinduction because one believes in the second order axiom, not on the ba-sis of an examination of its individual instances. Moreover, the renditionof induction by a schema is sensitive to variation in the language: as thelanguage expands, so does the collection of instances of induction.116Related observations apply to the principle of trans�nite induction overwell-founded relations. The well-foundedness of a binary relation R is ex-pressed byWF[R] �df 8X ( (9z X(z)) ! (9z ( X(z) ^ 8y (R(y; z)!:X(y) )) )Taking the contrapositive of the scope of 8X, and using comprehension forX � :Q, we obtain trans�nite induction over R:TI[R] �df 8Q ( 8z ( 8y ((R(y; z)!Q(y))! Q(z) ) )! 8z Q(z):In �rst order arithmetic neither WF[R] nor TI[R] can be even expresseddirectly. Indeed, when one says that PA proves trans�nite induction fora numeric relation R, one means that every specialization of TI[R] with a�rst order formula,TI[R;'] �df ( 8z ( 8y ((R(y; z)!'[y])! '[z] ) )! 8z '[z]:is provable.Our second example of a schema is Replacement. The commonZermelo{Fraenkel axiomatization of Set Theory has a �nite number of axioms, plusthe Replacement Schema (due to Fraenkel): for each (�rst order) formula' in the language,117(8x 2 y 9!z '[x; z])! 9w(8x 2 y) (9z 2 w)'[x; z];that is, if ' de�nes the graph of a class F , whose restriction to a set y is aunivalent mapping, then F maps y to a set w.115'[t] abbreviates here [t=x]', the result of simultaneously substituting t for all freeoccurrences of x in '.116These and related issues are discussed in [Kreisel, 1967].117We write '[t; s] for [t; s=x; y]', where x; y are some distinct variables



Higher Order Logic 53The practical interest in theories such as Peano's arithmetic and ZFCis their axiomatizability by a �nite number of axioms and schemas. Thus,they are �nitely axiomatizable as soon as second order quanti�cation isallowed, namely:Theorem 7.1.1. Let T be a �rst order theory axiomatized by axioms�1 : : :�k, and by the �rst order instances of an axiom schema �['].118 LetT 2 be the theory, in second order logic with comprehension for �rst orderformulas, with the �nitely many axioms �1 : : :�k, and 8R�[R]. Then T 2is conservative over T .119The proof is straightforward, using Theorem 6.4.1. Special cases of thistheorem are: second order arithmetic with the second order induction ax-iom and �rst order (respectively, recursive) comprehension is conservativeover �rst order arithmetic (respectively, primitive recursive arithmetic).Similarly, ZF based on second order logic, with Replacement formulated asa second order axiom and with comprehension for �rst order formulas, isconservative over ZF.This should be contrasted with the non-�nite axiomatizability of thecorresponding �rst order theories:Lemma 7.1.2. [Kreisel, 1968; Kreisel and Levy, 1968] Let T be a �rstorder theory that proves cut-elimination for �rst order logic (via a suit-able coding of the syntax), has for each k a provable truth de�nition for allformulas of complexity � k, and proves induction for all formulas in thelanguage (in an interpreted form, at least). Then T is not �nitely axioma-tizable.Proof Sketch. Let �1 : : :�k be formulas in the vocabulary in hand. Givena formula ', let n(') be the complexity of of (�1 ^ � � � ^ �k) ! '. Sincecut-elimination is provable (via coding) in T , T also proves that if (�1 ^� � � ^ �k) ! ' is provable, then it has a proof � in which all formulas areof complexity � n('). For such formulas T has a truth de�nition. Usinginduction with respect to the length of �, for that truth de�nition, T thenproves that all formulas ' deduced from �1 : : :�k are true. Thus, if Twere axiomatized by �1 : : :�k, then T would have proved reection for T ,contradicting G�odel's Incompleteness Theorem.It can be shown that both PA and ZF satisfy the conditions of theLemma, and are therefore not �nitely axiomatizable as �rst order the-118Here ' is the syntactic parameter for the substituted formula.119The theorem generalizes trivially to any number of schemas, and also to the casewhere schemas are restricted to a particular class F of �rst order formulas (the samefor all schemas), such as the existential formulas, and with comprehension in T 2 alsorestricted to F.



54 Daniel Leivantories.120 The proof above also shows that if one takes second order arith-metic with �rst order comprehension but with induction as a schema, forall formulas in the language, then the resulting theory is not conservativeover �rst order arithmetic. Similarly, second order ZF with the inductionschema (i.e. trans�nite induction up to !) for all second order formulas isnot conservative over ZF.7.2 Higher order aspects of set theory: from higherorder to �rst order and backThe primacy of �rst order logic in foundational studies is well justi�ed bycentral properties of �rst order logic such as completeness and the �rst orderaxiomatizability of most all classes of algebraic structures. However, thesequalities are of limited relevance to the mathematics of canonical struc-tures such as the natural numbers. On the one hand, there is no completeaxiomatization even for the quanti�er-free number-theoretic formulas truein the standard model. On the other hand, even the mathematics of nat-ural numbers makes extensive uses of higher order objects, as in AnalyticNumber Theory.121 One wonders, then, whether the widespread insistenceon avoiding direct reference to higher order constructs is justi�ed.One source of that insistence is, paradoxically, the very acceptanceof higher order constructs as a generic process that can be iterated. White-head and Russell, in their renowned Principia Mathematicae [Whiteheadand Russell, 1929], developed much of the Mathematics of their time on thebasis of a variant of �nite order logic, Rami�ed Type Theory, in an attemptto reduce Mathematics to Logic.122 One problem in formalizing Mathe-matics in Rami�ed Type Theory is that the underlying concepts may beviewed as begging further extension. By iterating the power-set construc-tion to trans�nite levels, one gets the cumulative universe of sets: Takinga basic universe V0 of basic, `uninterpreted', objects, let V�+1 =df P(V�)for any ordinal �, and V� =df [���, for limit ordinals �. But this itera-120The non-�nite axiomatizability of �rst order arithmetic was proved in [Ryll-Nardzewski, 1953; Rabin, 1961]. An argument somewhat analogous to the above wasused in [Levy, 1960] to show that the schema of Replacement cannot be axiomatized bya �nite number of its instances. Indeed, if ' is a given formula in the language of ZF,then ZF proves, using a suitable instance of Replacement, that there is a large enoughset X such that ' is true i� 'X (i.e. ' relativized to X) is true, see [Levy, 1960]. Itfollows that ZF proves the consistency of any �nitely axiomatizable subtheory of ZF.See e.g. [Cohen, 1966, Section II.8] for an exposition.121From the discussion in Section 7.3 below, it follows that many of the methods ofAnalytic Number Theories can be re-coded within Peano's Arithmetic; however, not allmethods are amenable to such coding, and, moreover, the coding is done at a consider-able cost to expository naturalness.122In the introduction to Principia they claim to have reduced mathematical axiomsto logical principles, saying: `What were formerly taken, tacitly or explicitly, as axioms,are either unnecessary or demonstrable' ([Whitehead and Russell, 1929, p. v], quotedin [Andrews, 1986]).



Higher Order Logic 55tion is tantamount to viewing the power-set operation as a mathematical,rather than a logical operation; in particular, it cannot be captured in thesyntax.123 It is then natural and technically attractive to amalgamate alllevels, leading to various �rst order theories for the universe [� an ordinalV�with the membership relation, of which ZF is the best known. Thus, theprimacy of �rst order logic as a logical calculus and the adoption of set the-ory as a universal formalization of mathematics are, conceptually as wellas historically, intertwined.It is telling, therefore, that second order versions of ZF have re-emergedas being of interest both as frameworks for formalizing set theory and otherparts of mathematics, and as relevant to the meta-theory of set theoryitself.124 One motivation for these extensions is the fundamental conictbetween the importance of comprehension in our intuitive understandingof the concept of set 125 and the exclusion of comprehension from ZF, soas to avoid the set-theoretic paradoxes. The compromise achieved in ZFis to weaken comprehension to the principle of Separation,126 according towhich if a is a given set, and '[x] is a formula of the language of ZF, thenthere is a set b = fx 2 a j 'g.The main rationale of second order set theories is to permit at leastreference to arbitrary collections, even when these are of `unmanageablesize'. That is, the intended �rst order objects of these theories are sets,and the second order sets (unary relations) then range over a broader col-lection of `classes'. Every set a is also a class,127 because by Comprehension9A 8x (A(x)$ x 2 a). But some classes, such as fx j x = xg, are not sets,and are dubbed proper classes. Because both �rst order and second orderobjects are `classes of sets,' it is customary to refer to second order exten-sions of ZF and to related theories as theories of classes, and to use thex 2 a notation ambiguously for both the �rst order membership relationbetween sets, and for the relational application a(x) (when a is viewed as123However, as observed by Kreisel and Feferman (see e.g. [Feferman, 1977]), the trans-�nite iteration of the type hierarchy has barely any connection with the actual develop-ment of mathematical analysis, which is in practice restricted to small, let alone �nite,types. Among the few exceptions is the use of trans�nite types to prove the determinacyof Borel games; see e.g. [Martin, 1975].124A detailed survey of these issues can be found in Section II.7 of [Fraenkel et al.,1973].125A famous quote is the informal de�nition of a set by Cantor's the creator of abstractset theory: A set is a collection into a whole of de�nite distinct objects of our intuitionor of our thought [Cantor, 1895].126The Principle of Separation is often called the Subset Axiom. Zermelo's originalphrase was Axiom der Aussonderung, literally: the axiom of singling-out. This weaken-ing of Comprehension is a facet of the doctrine of size, according to which the paradoxesare due to the presence of sets of `unmanageable size'. A more radical critique of Com-prehension underlies the theory of semi-sets [Vop�enka and H�ajek, 1972].127More precisely, a is co-extensional with some class.



56 Daniel Leivanta class).128Among the theories of classes there are variants of second order ZFwith comprehension restricted to �rst order formulas, and variants withfull comprehension. To the �rst group belong the formalisms of von Neu-mann [1925], Bernays [1937; 1958], G�odel [1940] and Mostowski [1939]. Inone style (e.g. [G�odel, 1940]) the second order character of the theory ismasked: the theory is rephrased as a �rst order theory of classes, in whichthe notion of a set is de�nable (x is a set i� x 2 a for some class a), andcomprehension is restricted to formulas where all quanti�ers are boundedto sets. Let us denote by GBN the theories in this group. By Theorem6.4.1 the theories GBN are conservative over ZF. By Theorems 7.1.1 and6.4.3 GBN are �nitely axiomatizable, not only as second order theories(capturing the schemas of subset and replacement by single axioms), butalso as �rst order theories (capturing comprehension by a �nite number ofinstances thereof).Similar statements apply to analogous second order extensions of other�rst order set theories, such as Z (= ZF without replacement), and ZFC (=ZF plus the axiom of choice). Note that in GBN we may state the principleof global choice, asserting the existence of a class acting as a global choicefunction for all sets in the universe: 9C8x (x 6= ; ! 9!yhx; yi 2 C ^ y 2x).129The other main group of theories of classes, consisting of variants ofsecond order ZF with full comprehension, includes the theories of Wang[1949], Quine [1951], Tarski [1981], Kelley [1955], and Morse [1965]. Let usdenote by KM the theories in this group. The KM theories are particularlyattractive for actual formalization of branches of mathematics with a strongset theoretic component, notably of point set topology [Kelley, 1955] andcategory theory. The relation of KM to ZF is analogous to the relation offull analysis to �rst-order arithmetic: KM proves reection for ZF, and istherefore not a conservative extension thereof. An argument similar to theproof of Lemma 7.1.2 shows that KM is not �nitely axiomatizable.130Higher order logic has also impacted the development of set theoryitself, notably concerning the status of strong in�nity axioms. The mostimportant results here were inspired by the Montague{L�evy reection prin-ciple [Levy, 1960], which posits that if a formula ' is true in the universeof sets, then ' must be true when relativized to some universe in the cu-128An exception is [Bernays, 1958], where the latter relation is denoted x�a.129This axiom is conservative over [GBN + Choice] for �rst order formulas [Felgner,1971], but is not provable in it [Easton, 1964].130If KM0 is a theory axiomatized by a �nite number of theorems of KM, then KMproves reection for KM0, and so KM is not �nitely axiomatizable. Reection for KM isprovable assuming the existence of a Mahlo cardinal [Levy, 1960], but the consistency ofKM is reducible already to the consistency of ZF + there exists an inaccessible cardinal[Fraenkel et al., 1973, p. 139].



Higher Order Logic 57mulative hierarchy, that is 'V� is true, for some cardinal �. The principleis interiorized as an axiom schema in a very powerful extension of KM, dueto Bernays [1976].131 Various forms of this principle imply the existenceof ever larger cardinals, including measurable cardinals, which do not seemto have a clear justi�cation on the basis of �rst order closure conditions.1327.3 Analysis and reductive proof theoryThe ubiquitous presence of in�nite constructions in Analysis, and someearly confusion about the inference rules governing them, were the mainmotivations for e�orts in the late 19th century to formalize Analysis, lead-ing to the adoption of second order arithmetic as a canonical formalism, e.g.in the inuential monograph of Hilbert and Bernays [1939].133 Althoughthe formalization of mathematics and the discussion of formalizability werebased mostly on set theory during the middle third of the century, some lo-gicians, notably Kreisel and Feferman, have consistently argued for a moredirect formalization, within second order arithmetic.134Within logic the interest in second and higher order arithmetic has beenstimulated, for one, by the emergence of recursion theory in higher types,which is closely related to higher order arithmetic in language, methods,and results.135The study of higher order arithmetic was also stimulated by the contin-ued interest in predicative mathematics, whose formulation is fundamen-tally related to second order arithmetic. The predicativist program aimsat examining the development of Analysis with predicative forms of theprinciples above, or with forms that can be predicatively justi�ed on thebasis of a metamathematical analysis. The main issues addressed are: (1)Delineate formalisms whose predicative nature is brought out clearly, and131See [Chuaqui, 1981] for a textbook development of set theory based on Bernays'saxioms.132Applications of this form are in [Gloede, 1976]. The existence of measurable car-dinals is not provable in Bernays's theory [Solovay et al., 1978], but it is provable in afurther natural extension of the theory, allowing hyper-classes [Marshall, 1989]. Anotherexample linking second order logic to higher cardinals is the Hanf number of second orderlogic. If L is a logic, and  a sentence of L, let h( ) be the largest cardinality of a modelof  , if such cardinality exist, and let h(L), the Hanf number of L, be the supremum ofall well-de�ned cardinals h( ). Thus, every sentence  with a model of size h(L) musthave models of arbitrarily large size. Barwise [Barwise, 1972] showed that the Hanfnumber of second order logic cannot be proved to exist without using Replacement fora formula ' that uses universal quanti�cation for all sets in the universe.133Poincar�e summarized this achievement at the 1900 Congress of Mathematicians:`Today there remain in analysis only integers and �nite or in�nite systems [=sets] ofintegers : : : Mathematics has been arithmetized : : : We may say today that absoluterigor has been achieved' ([Poincar�e, 1902], quoted in [Fraenkel et al., 1973, p. 14]).134See e.g. [Feferman, 1977] for a broad and informative survey of the development ofmathematical analysis in �nite order logic.135See e.g. [Kechris and Moschovakis, 1977] for a survey and further references.



58 Daniel Leivantclassify their proof theoretic strength; (2) Reduce seemingly impredica-tive methods to predicative ones, or otherwise justify them by predicativemeans; (3) Identify those parts of Analysis which can be formalized invarious predicative calculi.Formalisms for predicative analysis can be de�ned along several orga-nizing principles, notably: (1) Rami�ed analysis of levels going up to some�xed, predicatively justi�ed ordinal; (2) Rami�ed analysis for levels upto any well-ordering justi�ed predicatively within the theory itself;136 (3)Analysis with weak comprehension, but extended with trans�nite induc-tion over predicatively justi�ed well orderings;137 (4) Weak set existenceprinciples;138 (5) Theories of iterated comprehension;139 and (6) Theoriesof iterated inductive de�nitions.140There are simple-to-prove, yet instructive classi�cation results for theproof theoretic strength of these theories; examples are the observationsthat second order arithmetic with comprehension and induction for �rstorder (arithmetical) formulas only is conservative over Peano's Arithmetic,and that Zermelo's set theory without the power set axiom is mutuallyinterpretable with Peano's Arithmetic.141136Here the `predicative acceptability' of a well-ordering is intertwined with the de�-nition of the predicative formalism itself. This is achieved in Feferman's system IR byalternating the justi�cation of new well-orderingswith their use for trans�nite induction,leading to a closure ordinal �0, identi�ed independentlyby Sch�utte. See [Feferman, 1964;Feferman, 1968; Sch�utte, 1965b; Sch�utte, 1965a].137If � is a binary relation on natural numbers, without an in�nite descending chain(i.e. if � is order-isomorphic to a countable ordinal), then trans�nite induction on � isthe schema (8x 2 �eld of �)((8y � x'[y])! '[x])! (8x 2 �eld of '[x]). See [Sch�utte,1951; Sch�utte, 1952; Schwichtenberg, 1977] for these theories.138The predicative status of set existence principles is not clear-cut, but particularweak principles are usually viewed as predicatively obvious, notably comprehension forarithmetic �rst order formulas (that is, the �rst level of the rami�ed hierarchy), andWeak K�onig's Lemma, which states that a binary tree with arbitrarily long brancheshas an in�nite branch. It is easily seen that Arithmetic comprehension is equivalent tothe axiom of trans�nite induction, often dubbedBar Induction: WF[X]!8Y TI[X;Y ],where WF[X] states thatX is a well founded binary relation, and TI[X;Y ] is trans�niteinduction over X for the unary predicate Y . (See, e.g., [Feferman, 1977, Section 6.1.5]for a proof.)139For example, the theory ATR0 of arithmetical trans�nite recursion permits thede�nition of functions and sets by recursion of an arithmetic predicate, over a well-ordering. See e.g. [Friedman et al., 1982; Simpson, 1982a; Simpson, 1982b] for detailedexpositions. Note: (1) the principle is a schema, with arithmetic instances; (2) theprinciple is an implication, of the form If the binary relation R is a well-ordering, thentrans�nite recurrence over R with respect to the arithmetic formula f is allowed.140See [Buchholz et al., 1981]. Such de�nitions are a paradigm of predicative, bottom-up, construction of subsets ofN. Intuitionistic theories of trans�nitely iterated inductivede�nitions were introduced in [Kreisel, 1963]. A detailed account of such theories is in[Buchholz et al., 1981].141Two predicative formalisms may have the same proof-theoretic power, as measuredby provable well-orderings, yet di�er substantially in their ability to capture mathemat-ical practice.



Higher Order Logic 59The second among the three predicativist projects listed above is thepredicative justi�cation of seemingly impredicative methods. An early andfamous example of a failed attempt of this kind is Hilbert's Program, whichcalled for securing mathematics by showing, using `�nitistic methods' only,that the `�nitistic' theorems of Analysis are true.142 G�odel's Incomplete-ness Theorems imply that this goal is far too ambitious, because �nitisticmathematics cannot prove reection even for provability of 0 = 1 in �ni-tistic mathematics itself. Nonetheless, extensive proof theoretic work hasresulted in reductions of seemingly impredicative methods of Analysis tomore constructive ones.143The third predicativist project is the explicit development of analysiswithin predicative theories, and the calibration of the predicativity/con-structivity level of particular mathematical results. An early example isthe development of much of analysis using only arithmetic comprehension,by Weyl [1918].144 Sieg notes that virtually all of the turn-of-the-centuryanalysis, as presented in [Hilbert and Bernays, 1939], can be formalizedalready in second order arithmetic with �11 comprehension and inductionfor �11 formulas [Sieg, 1990]. However, as one would expect from the re-ductionist program outlined above, much of analysis can be carried out informalisms weak enough to be conservative over Peano's Arithmetic (seee.g. [Friedman, 1977; Friedman, 1980]). To calibrate the `degree of pred-icativity' of particular theorems one shows that a theorem is not only aconsequence of a principle of predicative analysis, but is in fact equivalentto such a principle. This project, initiated by H. Friedman and pursued by142In more technical terms: (1) formalize `�nitistic mathematics', i.e. the part ofmathematics which deals with concrete objects only, in particular the natural numbers.(A related adage is the famous saying of Kronecker's, that God has created the integers,everything else is man's imagination.) This is usually taken to be primitive recursivearithmetic. (2) Prove within �nitistic mathematics reection for provability of �nitistic(i.e. quanti�er free) formulas within second order arithmetic.143Important examples of which are: (1) A consistency proof of full classical analysisusing higher order recursive functionals de�ned by Bar Induction [Spector, 1962]. (2)With respect to �13 formulas, choice for �12 formulas is conservative over comprehensionfor �12, and the latter is conservative over the theory of iterated inductive �11-de�nitionsof length up to �0 [Friedman, 1970; Buchholz et al., 1981]. (3) With respect to �12formulas, choice for �11 formulas is conservative over comprehension for �11, and thelatter is conservativeover rami�ed analysis of levels up to �0 [Friedman, 1967]. Moreover,�11 sets are de�nable by a natural trans�nite extension of the arithmetical hierarchy[Kleene, 1955], providing further constructive justi�cation for them. (4) Weak K�onig'sLemma is conservative, with respect to �11 formulas, over second order arithmetic withrecursive comprehension and �01-induction [Sieg, 1987]. Weaker or alternativeversions ofthe latter result have been proved since [Friedman, 1969]. In particular, a proof theoreticreduction of Weak K�onig's Lemma to primitive recursive arithmetic, of a general nature,can be found in [Sieg, 1985]. Some surveys related to these are contained in [Kreisel,1965; Kreisel, 1968; Kreisel, 1971; Feferman, 1977; Buchholz et al., 1981; Simpson, 1985b;Sieg, 1990].144An exposition of more modern parts of analysis along the same lines is [Zahn, 1978].



60 Daniel LeivantS. Simpson and his students, has been known as reverse mathematics.145 Itturns out that great many theorems of analysis are equivalent146 to one offour principles, which in increasing proof theoretic strength are: (1) WeakK�onig's Lemma, (2) comprehension for arithmetic formulas, (3) arithmetictrans�nite recursion (ATR, see above), and (4) comprehension for �11 for-mulas.A project dual to delineating the predicative nature of theorems ofanalysis consists in identifying theorems about the natural numbers (andtherefore of a concrete, `�nitistic', nature) which are essentially impredica-tive, i.e. which have no predicative proof.1477.4 Speed-up7.4.1 Speed-up of formalismsOur discussions above suggest that the use of higher order logic for numberand set theories is epistemologically more honest, and methodologicallycleaner, than the more restrictive use of �rst order schemas. A naturalquestion is whether such extensions of the logic result in gain in length ofproofs. This notion of proof speed-up is quite general, but it depends onthe yardstick used to measure proofs.First, the de�nition refers to proof calculi, and not to theories (set oftheorems): if F 00 is a formalism that has the theorems of F0 as axioms,then every theorem of F0 has a one line proof in F 00, and meaningful speed-up over F 00 is impossible. It is therefore important to restrict attention tonatural formalisms, with a suitably simple set of axiom.148 Also, we can145The equivalence of `theorems' to `axioms' is, as noted in [Sieg, 1990], an old theme,however. Already Dedekind showed that major theorems of analysis are equivalent to thetopological completeness of the reals [Dedekind, 1872]; also, a well-known compendiumof theorems of mathematics that are equivalent to the Axiom of Choice is [Rubin andRubin, 1966]. See [Simpson, 1986] for a survey of the Reverse Mathematics project.The seminal papers of the project are [Friedman, 1975; Friedman, 1976; Steel, 1976],and other key papers are [Friedman et al., 1982; Friedman et al., 1983; Simpson, 1984;Simpson, 1986; Brown and Simpson, 1986].146The equivalences are proved within a weak base theory, in which comprehension andinduction are allowed over recursive predicates only.147By G�odel's Incompleteness Theorem, the consistency of second order arithmeticis a �01 sentence which cannot be proved in second order arithmetic, let alone usingpredicative methods only. However, such consistency sentences are arithmetically codedmetamathematical statements, and their combinatorial (concrete) nature is not evident.Better examples are the unprovability in ATR0 of Kruskal's Theorem about tree em-beddings, and the unprovability of an extended form of Kruskal's Theorem in analysiswith comprehension and induction for �11-formulas. A detailed survey of these resultsis [Simpson, 1985a]. The seminal work on combinatorial statements independent ofPeano's arithmetic is [Paris and Harrington, 1977]. Kruskal's Theorem asserts that inevery in�nite sequence of �nite trees there must occur a tree within which some previoustree in the list can be embedded. Friedman [1981] showed that neither this theorem, nora �02 `�nite form' thereof, are provable in ATR0. The results about an extended formof Kruskal's Theorem are in [Friedman, 1982].148One usually requires that the set of axioms be �nite, or generated by a �nite number



Higher Order Logic 61measure a proof (for the de�nition of speed-up) either by counting thenumber of steps (lines) in it,149 or the number of symbols. We refer tothese as the proof's length and its size, respectively. An essential di�erencebetween proofs' length and size is that there can be only �nitely manyproofs with a given size, but in�nitely many of a given length. If ' isderivable in F then we denote by pthF(') (respectively, pfszF (')) thesmallest n such that ' has a proof in F of length n (respectively, sizen). If all the theorems of a formalism F0 are among the theorems of aformalismF1, and h is a unary numeric function, then we say that F1 hasa proof-length speed-up over F0 by a factor of h if there is an in�nite set �of theorems of F0, such that for every ' 2 �, pthF0(') > h(pthF1(')).The de�nition of proof-size speed up is analogous. If there is an in�niteset � of theorems of F0 such that, for some �xed n, pthF1(') < n for all' 2 �, but the values pthF0(') with ' 2 � exceed any bound, then wesay that F1 has an unbounded proof-length speed-up over F0.150The speed-up resulting from using increasingly higher order constructscan be observed in two related yet somewhat di�erent realms: theories forarithmetic (more generally, theories for a particular structure, in whichthe syntactic machinery can be coded), and pure logics. We review belowresults for both.7.4.2 Proof-size speed-up of higher order arithmeticOur �rst and simplest setting is proof-size speed-up of k+1 order arithmeticover k order arithmetic, with respect to �rst order theorems. Let PAk bek order Peano Arithmetic (PA), that is the k order theory axiomatized byPeano's axioms for 0, s, + and �, and with induction and comprehensionfor all formulas in the language. Our choice of logical rules matters little:any one of the customary Hilbert-style, natural deduction, or sequentialcalculi will do.Theorem 7.4.1. Let Z;Z 0 be sound extensions of PA, where Z 0 provesreection for Z. Then, for every computable (total) function h, Z 0 hasa proof-size speedup over Z by a factor of h. In particular, PAk+1 has aproof-size speedup over PAk by a factor of h.Proof. Let H(n) =df Pi�n h(2 � i). Then H is a total recursive function,and for every c, H(n) > h(c+n) for all n � c. By G�odel diagonalizationmethod151 there is a �01 formula '[x], with one free variable x, such thatof schemas.149That is, the number of formulas, or annotated formulas, or sequents, depending onthe formalism in hand.150An analogous de�nition for proof size is of no interest: since there are only �nitelymany formulas with proofs of size � n, there is no in�nite � such that pfszF1(') < nfor all ' 2 �.151See e.g. [Smorynski, 1977, Section 2.2.1].



62 Daniel Leivantthe following equivalence (suitably coded) is provable in PA.'[n] $ 8y ( if H(n) computes to y then �[y; n] )where �[y; n] �df '[�n] has no proof in Z of size < y.The formula '[�n] is true for each n, for if '[�n] is false, then H(n) has someoutput y, and there is a Z-proof of '[�n] of size < y. But all theorems of Zare true, so '[�n] is true, a contradiction.Since reection for Z is provable in Z 0, the argument above is formal-izable in Z 0, i.e. Z 0 ` 8x'. Let  n =df '[�n]. This is derivable in a singlestep from 8x', so  n has a proof in Z 0 of size c0+n, where c0 is a constantuniform for all n, namely the size of the proof of 8x '[x].Each  n is also a theorem of Z, in fact of PA: since H is total, thereis a calculation of H(n) = m for some m, which can be veri�ed in PA.Also, in PA it can be proved that H(n) can have at most one output. So,reasoning in Z, if H(n) = z, then z = m. The fact that '[�n] has no proofof size < m is also a calculation veri�able in PA, so PA proves the r.h.s.of the equivalence de�ning '. Since that equivalence is proved in PA, weconclude that '[�n] follows within PA. This proves  n.Finally, since  n is true, so is the formula �[H(n); �n], i.e.  n has noproof in Z of size < H(n).We have proved that  n has a proof of size c0+n in Z 0, and is provablein Z but not by any proof of size < H(n), whence by no proof of size< h(c0 + n), for all n > c0. This proves the theorem.Proofs of Theorem 7.4.1 can be found in [Mostowski, 1952] and [Ehren-feucht and Mycielski, 1971]. In [Buss, 1992] a proof is given in which �consists of the independently interesting formulasConk(�n), where Conk(�n)is (a coded form of) the statement `PAk has no proof of 0=�1 of size � n.'In contrast to Theorem 7.4.1, the size speed-up of second order arithmeticwith arithmetic comprehension over �rst order arithmetic is polynomial.152Note that the speed-up above is for universal formulas. For existen-tial theorems, speedup of k+1 order arithmetic over k order arithmetic issomewhat more tame:Theorem 7.4.2. Let Z;Z 0 be sound extensions of PA, where Z 0 provesreection for Z. For every provably recursive function h of Z 0, Z 0 has aproof-size speed-up over Z of a factor of h, for �01 theorems.153152This follows from the proof of [Troelstra, 1973] for the arithmetic case of Theorem6.4.1, mentioned in footnote there.153Proof sketch: Let g be a strictly increasing provably recursive function of Z0 suchthat, for every s, if � is a proof in Z of an existential sentence 9y [y], of size � s, thenthere is somem < g(s) such that  [ �m] is true. Such g exists, becauseZ0 proves reection



Higher Order Logic 63However, Theorem 7.4.2 does not extend to speed-up by arbitrary re-cursive functions:Theorem 7.4.3. Let Z be a sound extension of PA, and let Z 0 provereection for Z. If Z has a proof-size speed-up over PA of factor h, for �01sentences, then h is majorized by a provably recursive function of Z 0.Proof. Let g be the function that, on input s, returns the longest quanti�erfree proof of any �01 sentence with a proof in Z of size � s. Then g isprovably total in Z 0, and g majorizes h.7.4.3 Proof-length speed-up of higher order arithmeticThe earliest statement about proof speed-up seems to have been announced(without proof) by G�odel [1932]: for every recursive function h, PAk+1has a proof-length speed-up over PAk by a factor of h. This has beensubstantially improved recently by Buss [1992]:154Theorem 7.4.4. For each k, PAk+1 has an unbounded speed-up over PAk.Moreover, the speed-up is for �01 formulas.The formulas for which speed-up is obtained are generated as follows.Let '[x] be a formula such that'[x]$ `'[�x] has no proof in PAk of length � x'is provable in PA. Then one considers the formulas '[�n], for n � 0.7.4.4 Speed-up of higher order logicThe speed-up results above for number theories do not translate to anal-ogous results for logical formalisms, because those speed-ups refer to for-mulas whose combinatorial complexity (in PA) exceeds the expressive ca-pability of pure �rst order logic. Indeed, higher order logics have a morefor Z, witnesses for true �01 sentences can be extracted e�ectively, and the number ofproofs proofs of size n as a function of n is provable in PA. If h is provably recursive inZ0 , then Z0 ` 8x9y; z T (�eh;2x; z) ^ T (�eg;U(z); y). (Here T is Kleene's computationpredicate, U is Kleene's primitive recursive result-extracting function, and eg and ehare codes for algorithms for g and h, respectively.) Say the proof for the above has sizes0. Then the formula 'n �df 9v T (�eh;2 � �n; (v)0) ^ T (�eg; U((v)0); (v)1) has a proofin Z0 of size s00 = n+s0+c, for some constant c. (If T is represented by a formula ofPA, then the coe�cient of n in s0 is > 1.) Note that if v is the (unique) value for whichthe matrix above is true, then (v)1 = g(h(2n)). But if � is a derivation in Z of 'n , ofsize s1 , then, by de�nition of g, v < g(s1), and so (v)1 = g(h(2n)) < g(s1). Since g isstrictly increasing, this implies, for all su�ciently large n, and assuming without loss ofgenerality that h is non-decreasing, that s1 > h(2n) > h(n+s0+c) � h(s00).154Buss's theorem applies to formalizations of higher order arithmetic that are `weaklyschematic,' i.e. where each axiom is either a tautology, a universal closures of a tautology,or an instance of one of �nitely many schemas. Parikh [Parikh, 1973; Parikh, 1986] gavea proof of Theorem 7.4.4 for speed-up of PA2 over PA1, which was extended to speed-up of PAk+1 over PAk by Kraj���cek [Kraj���cek, 1989]. However, both proofs refer toformalizations where addition and multiplication are ternary relations.



64 Daniel Leivanttame speed-up over �rst order logic than do higher order number theoriesover �rst order arithmetic. Let Li be the natural deduction formalism fori order logic, as described in Section 4.1.155 First, observe that there is noproof-size speed-up by factors that are too fast-growing:Theorem 7.4.5. There is a provably recursive function h of third orderarithmetic such that pfszL1 (') � h( pfszL2 (') ).Proof Sketch. Third order arithmetic proves that every theorem of secondorder logic is valid in all structures. Since the Completeness Theorem for�rst order logic is provable in second order arithmetic, it follows that thirdorder arithmetic proves that every �rst order theorem of second order logicis provable in L1. Thus, the following algorithm for h is provable in thirdorder arithmetic: for input s, enumerate all L2 proofs of size � s, searchfor a �rst order proof of each theorem encountered, and take the maximumover the size of these proofs.Consequently, for h as above it is not the case that L2 has a proof-sizespeed-up over L1 by a factor of h.An analogous result for proof-length is due to Statman:156Theorem 7.4.6. There is a provably recursive function h of third orderarithmetic such that, for all �rst order formulas ', pthL1(') �h( pthL2(') ). Consequently, L2 does not have a proof-length speed upover L1 of factor h.In contrast to the situation with higher order number theories, usinghigher order logic rather than second order logic has negligible e�ect onproof-length speed-up for �rst order theorems. The proof is an easy appli-cation of Theorem 5.6.1 and its proof:Theorem 7.4.7. For each k � 3 there are linear functions hs; h` suchthat, for every �rst order ',pfszL2 (') � hs( pfszL! (')) and pthL2(') � h`( pthL! ('))For second order theorems the converse is true: since �rst order arith-metic formulas are expressible as second order formulas, it follows fromTheorems 7.4.1 and 7.4.4 that, for second order formulas, Lk+1 has proof-size speed-up over Lk of any recursive factor, as well as unbounded proof-length speedup.155Let L=i be the extension of Li with the equality rules for atomic formulas. All thespeed-up results stated below for the logics Li hold equally for the logics L=i .156Theorem 7.4.6 is proved in [Statman, 1978, Sections 6.2 and 6.4]. The proof thereyields a provably recursive function of third order arithmetic, because the proof itself isformalizable in third order arithmetic.



Higher Order Logic 65While Theorems 7.4.5 and 7.4.6 indicate the limits of possible speed-up by higher-order logic, second order logic still has a rather formidablespeed-up over �rst order logic:Theorem 7.4.8. For every provably recursive function h of second orderarithmetic, L2 has a proof-size speed-up over L1 by a factor of h.The proof is similar to the proof of Theorem 7.4.2.1578 Higher order logic in relation to computing andprogrammingWe propose to briey comment on a few of higher order logic's fundamen-tal relations to computing and programming: the very use of higher orderdata, the computational nature of natural deduction for higher order logic,the use of higher order logic in the meta-theory of formal systems, and therelations between second and higher order logic and computational com-plexity. This selection is intended to give an idea of the kinds of interactionsbetween higher order logic and computer science, and not to suggest thatother topics are of lesser importance or interest. Most notable is our omis-sion of a legion of uses of higher order consructs in computer science, whoserelation to logic is less direct.8.1 Higher order data and typesHigher order functions, in the form of procedures, are at the core of higherlevel programming language, whether imprerative or applicative. Whereasin assembly languages the computation data (input and output) is re-stricted to �nite stored information, modern high level languages have as-signed from their inception an increasing role to programming constructsthat manipulate conceptual entities, such as modules, procedures, andtypes. A landmark advance was the procedure de�nition facility of Algol60 and its descendents, such as ada, which use the entire type structure of�nite order logic [Reynolds, 1972; Reynolds, 1981], as captured for exam-ple by the simply typed lambda calculus.158 An explicit use of in�nitelymany types within the syntax of the language seems to have appeared157The absence of induction in L2 is inconsequential, because second order arithmeticis interpretable in L2. One still considers 'n �  [ �n ] where  [x] � 9v T ( �eh; 2x; (v)0) ^T ( �eg ; U((v)0)). However, the proof of 'n in L2 proceeds via proving the second orderformula 8x (N [x]!  [x]).158In functional languages, such as Lisp, Scheme, and ML, the lambda notation isintegrated into the syntax of the programming language, and the type hierarchy is eitherimplicit in a good programming style (Lisp and Scheme), or explicit in the language(ML). More recently, extensions of logic programmingwith higher order abstraction havealso been developed and implemented. See e.g. [Mycroft and O'Keef, 1984; Nadathur,1987; Miller and Nadathur, 1986; Miller, 1988; Miller, 1989; Lakshman and Reddy, 1991;Yardeni et al., 1991], and in particular [Nadathur and Miller, 1990]. These topics arecovered in [Miller, 1993] in this Handbook.



66 Daniel Leivant�rst in Algol 68.159 More complex programming concepts related to thetype hierarchy (yet not to abstraction for types) include inheritance (andthe related constructs of coercion and subtyping) and type intersection;these have been developed recently, notably in relation to object orientedprogramming languages.160Once types are explicitly integrated into the syntax of programminglanguages, it becomes clear that applying various forms of abstraction tothe types themselves is both natural and useful. Types are then used bothas notations for functional behaviour of data objects, enforcing a compile-time type checking, and as data. The interplay between these two rolescan become rather involved, both computationally and semantically. Inone guise of abstraction, types can depend on objects, as in `the type ofnumeric arrays of length k'. This kind of abstraction underlies the typediscpline of Martin-L�of [1973b], and of the automath family of languages[Bruijn, 1980].Another form of abstraction over types is polymorphism, which under-lies (in a weak form) the programming language ML. Just as the functionaltype hierarchy is captured mathematically by the simply typed lambdacalculus, polymorphism is captured by the second order lambda calculus,invented independently by Girard and Reynolds [Girard, 1972; Reynolds,1974].161 In the interest of our discussion in 8.2 below, let us outlinethe essentials of the second order lambda calculus. In the simply typed�-calculus, one cannot have a single term representing constructions as ba-sic as the identity function: for each type � we have a distinct identityfunction162 I� = �x� : x. If we parametrize terms with respect to typesthen, using a variable t ranging over types, the term �xt: x is a templatefor all the identity functions. However, t is not abstracted here within thesyntax itself, so �xt: x is not a term with a de�nite meaning, which canbe passed as an argument to other terms. To achieve that, one introducesa type abstraction construct �, so that the polymorphic identity functioncan �nally be de�ned as I = �t:�xt: x. The collection of types is enrichedaccordingly with a construct 8, and �t:�xt: x is declared to be of type8t: t! t. A term whose type is of the form 8t:� can be applied to a type159John Reynolds, in personal communication, writes: Whatever its faults, Algol 68represents the �rst realization by a computer scientist that a typed higher-order pro-gramming language must have an in�nite number of types, that this type structure ispart of the syntax of the language, and that it must be described schematically.160For instance, the type intersectiondisciplineof [Coppo and Dezani-Ciancaglini, 1980]has been incorporated into Reynold's programming language Forsythe [Reynolds, 1988],and inheritance into Cardelli's languageQuest [Cardelli, 1991; Cardelli and Longo, 1991].161See e.g. [Scedrov, 1990] for a survey. The model theory of second order lambdacalculus is a fascinating albeit complex story. See e.g. [Scedrov, 1990] and [Gunter,1992] chapter 11 for general expositions, and references there for pointers to the technicalliterature.162We use an optional type supserscript to indicate the type associated with a variable.



Higher Order Logic 67� , to yield a term of type [�=t]�.163 For example, the term (�t:�xt: x) �is of type � ! � . One also uses a form of �-reduction for types: an ex-presison (�t: E)� reduces to [�=t]E; for example (�t:�xt: x) � reduces toI� = �x� : x. Thus, I is a polymorphic identity function, from which thespeci�c identities I� can be recovered by type application and �-reductionfor types.The two forms of abstraction for types, with respect to objects and withrespect to types, are merged in the Calculus of Construction [Coquand,1985; Coquand and Huet, 1985; Coquand and Huet, 1988]. A further con-struct involving type abstraction is the recursion operator on types, whichpermits the introduction of user-de�ned types. This is a de�nable constructin the Theory of Construction, just as the �xpoint operator is de�nable insecond order logic. The interested reader will �nd a thorough survey oftypes in programming languages in [Mitchell, 1990], and of typed lambdacalculi in [Barendregt, 1992].The development of higher order data has not been con�ned to program-ming languages. In database theory there has been a growing realizationthat many database applications have to do not only with functions and re-lations over simple objects, which can be describe in �rst order languages ormild extensions thereof, but also with complex hierarchical objects, whoseformalization is natural in �nite order logic. A familiar example is the hier-archical structure of �les and directories under the unix operating system.Such objects are referred to as complex, and the resulting databases arecomplex object databases.164 These database calculi refer to de�nition ofqueries for such objects using algebraic or logical operations.165 An alge-braic development of complex object databases uses basic operations onsets. One assumes a collection Q of primitive sets, and de�nes new setsusing operations such as intersection, power set, union of elements, andprojection. An alternative development uses simply sets de�ned explicitlyby formulas of (a suitable variant of) �nite order logic over the vocabu-lary R (extended by additional primitives if desired). The two approaches,suitably developed, turn out to be equivalent.166163Here � must be free for t in �, in the usual sense.164The idea of programming with higher order relations is not new. The rich theoryof recursion in higher types aside, the use of higher order objects in database theory isprobably due to Makinouchi [1977], and is related to the uses of higher order relationsin the general purpose programming language setl [Schwarts et al., 1986].165The types (also dubbed sorts) of a complex object database are taken to be thesimple higher order relational types, built up using cartesian products with attributesas labels. That is, one assumes given a collection D of basic types, and a collection Aof attributes. Then each D 2 D is a type; if � is a type then so is (�); and if �1 : : : �kare types, and A1 : : : Ak are distinct attributes, then [�1 : A1; : : : �k : Ak] is a type. Foreach type �, the collection U� of objects of type � is de�ned by induction on �: UD , forD 2 D, is assumed given; U(�) consists of the �nite subsets of U� ; and U[�1:A1;:::�k :Ak]consits of the k-tuples of pairs, [u1 : A1 : : : uk : Ak ], where ui 2 U�i .166[Abiteboul and Beeri, 1988; Kuper and Vardi, 1984]. This result is essentially an



68 Daniel Leivant8.2 The computational nature of higher order naturaldeductionIn launching combinatory logic, Sch�on�nkel discovered that the basic infer-ences of logic are in fact of a simple functional nature [Sch�on�nkel, 1924].This analogy was elaborated by Curry [Curry and Feys, 1958], and re-discovered by Howard in a yet more prestine form, for natural deductionproofs [Howard, 1980]. This duality reveals the fundamental unity be-tween the operational aspects of logic and functional programming, and itis particularly fecund when extended to higher order forms of abstractions,namely dependent types (Martin-L�of's Type Theory [Martin-L�of, 1973b;Martin-L�of, 1980]) and �nite order quanti�cation (Girard's system F! [Gi-rard, 1972]). Notably, its implementation underlies sofware systems forconstructing typed functional programs for given speci�cations from higherorder logic proofs that such speci�cations has solutions. These systems in-clude the PRL Project [Constable and others, 1986], which is based on[Martin-L�of, 1973b], and the Calculus of Constructions mentioned above[Paulin-Mohring, 1989b; Paulin-Mohring, 1989a].Given its importance, let us describe the simplest non-trivial case ofthis duality, namely between minimal second order propositional logic andthe Girard{Reynolds second order lambda calculus described above.167 Weconsider minimal second order propositional logic ML02 (compare Section4.3), with implication and universal quanti�cation over propositions as theonly logical constants. A natural-deduction calculus for ML02 has the fol-lowing inference rules:!I: [�i ]� � �'�! ' (occurrences �i of � are closed) !E: �! ' �'82I: '8R:' (R not free in assumptions) 82E: 8R '[�=R]'We de�ne a mapping � from derivations in this calculus to terms of thesecond order lambda calculus, as follows. Let us use the same identi�ersextension to �nite order logic of the algebraic development of �rst order logic, due toTarski [Henkin et al., 1971]. A survey of these and related advances can be found in[Abiteboul and Kanellakis, 1990]. A seminal paper on computability for higher orderobjects is [Dahlhaus and Makowsky, 1987].167For more details and applications of this mapping see, for example, [Girard et al.,1989] and [Leivant, 1990b].



Higher Order Logic 69for relational variables of second order propositional logic and for typevariables of the second order lambda calculus. This convention results in acomplete syntactic identity between formulas of the logic and types of thelambda calculus. The following � maps a derivation � of a formula ' fromopen assumption  1 : : : k, to a �-expression ��, of type ', and with freevariables of types  1 : : : k.� � 'i �� =df x'i(open assumption ' labelled by i) (variable of type ')� � [�i ]�'�! ' �� =df �x�i :��� � � ! ' � ' �� =df (��)(��)� � �'8R:' �� =df �R:��� � �8R:'[�=R]' �� =df (��)�Clearly, if � derives ' from  i11 : : : ikk , then �� is of type ', with freevariables x 1i1 : : : x kik (of types  1 : : :  k, respectively).The mapping � not only reveals a reading of derivations as �-terms, butshows that the computational behavior of derivations, under the canonicaldetour-elimination transformations (Section 4.4 above), is identical to thecomputational behavior of the corresponding �-terms under �-reductions(for objects and for types):



70 Daniel Leivantthe reduction of [ i]�' ! ' � ' to �[ i]�'is mapped to the �-reduction of (�x i : ��)(��) to [(��)=x i ](��), andthe reduction of �'8R:'[�=R]' to [�=R]�is mapped to the �-reduction for types of (�R: ��)� to [�=R](��).8.3 Higher order logic in the meta-theory of formalsystemsProponents of the �rst order formalization of mathematics have had to ad-dress the plain fact that many mathematical constructions and deductionsare higher order. One common response has been that full formalizationof mathematics is in any event a mere idealization, never carried out inpractice in full detail. This argument has been shattered by the very pres-ence of computers. First, it has become possible to store, organize, verify,and retrieve fully formalized mathematical texts.168 Moreover, it becamepossible not only to store and manipulate completely formalized proofs,but also to automatically generate many proofs.Initially, research in automated theorem proving enforced the primacyof �rst order logic, for which methods such as resolution and paramod-ulation are complete. However, the work of Andrews and his studentshas shown that automated theorem proving can be naturally extended tohigher order logic [Andrews et al., 1984; Miller, 1983].169 This extensionis linked to generalization, from �rst order to higher order, of the majorsyntactic theorems of �rst order logic: Cut elimination and normalization[Takahashi, 1967; Girard, 1972; Prawitz, 1972], resolution [Andrews, 1971],Skolemization [Miller, 1987], uni�cation [Huet, 1975], and Herbrand's The-orem [Miller, 1987].170 Given the natural description of mathematics withinhigher order logic, higher order theorem proving has led, quite recently, to168The ground-breaking work was the automath family of languages [Bruijn, 1980],designed as a medium for a computerized compendium of mathematics within a higherorder logic.169See also e.g. [Gould, 1976; Jensen and Pietrzykowski, 1976; Petersson, 1982].170An early presage of higher order theorem proving is [Robinson, 1969].



Higher Order Logic 71rapid advances in the development of user-friendly and interactive softwareenvironments, based in higher order logic, for the fully formalized develop-ment of mathematics [Constable and others, 1986; Felty and Miller, 1988;Felty, 1993; Dowek, 1991; Dowek et al., 1991].A challenging extension of user-friendly automated manipulation of themathematical vernacular is the manipulation of programming itself, a �eldoften dubbed meta-programming. Here even the (denotational) semanticsof basic constructs, such as iteration and recursion, is based on higher orderconstructs.171 Recent formalisms, referred to as logical frameworks, wereproposed to represent formally both the syntax and the semantics of pro-grams, as well as of formal rules for manipulating and verifying programs.These use higher order constructs extensively.1728.4 Higher order logic and computational complexityMachine-independent characterizations of computational complexity classeslend credence to their importance, provide insight into their nature, relatethem to issues relevant to programming methodology and to program ver-i�cation, suggest new tools for separating complexity classes, and o�erconcepts and methods for generalizing computational complexity to com-puting over arbitrary structures and to higher type functionals. Two typesof such characterizations relate computational complexity to abstractionlevel in higher order: higher order database queries (i.e. global methods of�nite model theory), and function provability in higher order logics.A query is a `global relation' over a collection of structures; that is, ifV is a vocabulary, a (k-ary) V -query is a map that, to each V -structureS assigns a (k-ary) relation over the universe jSj of S.173 For example,if VG consists of binary relation-constant �, then the transitive-closure isthe query that assigns to each VG-structure G the transitive closure of �G .Every V -formula ' (together with a list ~v = v1 : : : vk of variables that171Denotational semantics has grown, of course, into a broad and central �eld intheoretical computer science. The seminal work was [Scott and Strachey, 1971]. Re-cent expositions include the survey [Mosses, 1990] and the textbooks [Tennent, 1991;Gunter, 1992].172Some recent key papers are [Felty and Miller, 1988; Harper et al., 1987; Huet andLang, 1978; Hannan and Miller, 1988b; Hannan and Miller, 1988a; Howe, 1988; Harperet al., 1989; Huet, 1986; Knoblock and Constable, 1986; Lee and Pleban, 1987; Paulson,1987; Pfenning, 1989; Pfenning and Rohwedder, 1991; Weber, 1991].173The notion that a formula determines a process that uniformly delineates subsetsof structures is implicit already in early formalizations of Set Theory, for instance inFrege's Comprehension Principle and, in particular, in Fraenkel and Skolem's Axiom ofReplacement. In relation to collections of �rst order structures the notion was used byTarski's [Tarski, 1952] (De�nition1) and in [Barwise andMoschovakis, 1978]. The phrasedata base queries is from [Chandra and Harel, 1980]. Other terms for it include globalrelation [Gurevich, 1987]. generalized relations, [Rougemont, 1987] (referring to [Barwiseand Moschovakis, 1978]), global predicates, [Blass and Gurevich, 1986], uniformly de�nedrelations, [Rougemont, 1987], predicate, [Leivant, 1987], and predicate over oracles [Caiand Furst, 1987].



72 Daniel Leivantinclude all the variables free in ') de�nes the query �~v:', that assigns toa V -structure S the extension of ' in S, i.e. the collection of ~a 2 jSjksuch that S; [~a=~v] j= '. Similarly, a computation device over V -structures,such as an uninterpreted program scheme over V , de�nes a query whenit is used as an acceptor. We can thus compare the expressive power ofdescriptive and computational means: a class � of formulas characterizesa computational complexity class C if the queries computable over �nitestructures by algorithms in C are exactly the ones de�nable by formulas in�. In this framework one is drawn immediately to higher order formulas,because even simple queries, such as the transitive closure, are not �rstorder de�nable [Aho and Ullman, 1979].174 Using higher order constructsindeed yields a surprising array of descriptive characterizations of com-putational complexity, in particular for structures that are given with anorder.175 Most of the results here fall into two organizing principles: syn-tactic classes of higher order formulas, and variants of �xpoint constructs.In a seminal result, Fagin [1974] and Jones and Selman [1974] provedthat a query over ordered �nite structures is de�ned by a program runningin nondeterministic polynomial time (NP) i� it is de�ned by a purely ex-istential second order formula.176 From this it immediately follows that aproblem is de�nable by a second order formula i� it is in the polynomialtime hierarchy. Characterizations of complexity classes below NP, namelydeterministic polynomial time (P) and non-deterministic log-space (NL),can be obtained in terms of universal second order formulas with naturalrestrictions on the matrix. Dually, classes broader than NP are charac-terized in terms of higher order formulas, which yield characterizations ofpoly-space and exponential time in third order logic. At the limit, thequeries de�nable in full �nite order logic are precisely the ones computablewithin Kalmar-elementary resources, i.e. using time and space which isk-fold exponential in the size of the input, for some k [Leivant, 1987].The seminal result on characterization of complexity classes in terms of�xpoint queries states that a query over ordered �nite structures is in P i� itis de�nable in the logic FO� (�rst order logic with a monotone �xpoint op-eration, see Section 6.2) [Immerman, 1986; Vardi, 1982]. A natural �xpointconstruct over �nite structure is the non-inationary �xpoint of [Abiteboul174We showed in Section 2.4 the somewhat easier theorem that transitive closure is not�rst order de�nable when considering all structures, not only the �nite ones.175So that their preparatory coding as Turing machine input does not by itself enablethe machine to recognize properties of the structure, such as the parity of its size, whichcould not be recognized descriptively. The role played by order on �nite structures hasbeen greatly clari�ed recently, see e.g. [Abiteboul et al., 1992].176The theorem stated here is Fagin's. Jones and Selman proved a similar and closelyrelated result, that �rst order spectra are precisely the sets computable in NTime(2cn),where the input is given in binary. The proof methods of [Fagin, 1974] and [Jones andSelman, 1974] are similar.



Higher Order Logic 73and Vianu, 1989]: if � is an operator on k-ary relations, then ��R:�(R) is�m(;), where m is the smallest number such that �m(;) = �m+1(;). Thequeries de�nable in �rst order logic extended with �� are exactly the onescomputable in polynomial space [Abiteboul and Vianu, 1989]. Other, non-deterministic, variants of �xpoints yield a characterization of the queriescomputable in exponential time, as well as additional characterization ofpoly-space and of NP [Abiteboul et al., 1992].177Another method of logical characterization for computational complex-ity classes uses proof theory, that is, the deductive machinery of logic ratherthan the descriptive machinery outlined above. Proof theoretic charac-terization are of particular conceptual interest, because proof principlescodify directly conceptual abstraction, and are therefore the most naturalmedium for exploring and articulating a foundational justi�cation for link-ing complexity classes with speci�c forms of conceptual abstraction. Prooftheoretic characterizations of classes of computable functions follow thefollowing pattern. Given a formalism F whose language provides a naturalrendition of statements of the form `program P converges for all input,' oneassociates with F the class C(F ) of computable functions for which thereexists a program that F proves to converge for all input. Second order logicis of special interest here, because comprehension is a natural yardstick forcalibrating degrees of abstraction;178 and because, by Theorem 2.5.1, func-tion convergence can be stated in second order logics without presupposingany functions or predicates as given.If L is a formalism for second order logic, we say, using the notationsand basic facts in Sections 2.3,2.5, that a function f over a free algebra Ais provable in L i� it is computed by some coherent equational program(P; f ) such that ~8P `L A(~x)! A(f (~x)):For a class � of formulas, let L2(�) be second order logic with comprehen-sion for formulas in �.Using this de�nition, one obtains a spectrum of characterization resultsfor complexity classes, which calibrate computational complexity classesin terms of abstraction levels, as measured by comprehension. The inter-pretation of second order arithmetic in second order logic (Section 2.3)implies that the provable functions of L2(all second order formulas) areprecisely the provably-recursive functions of second order arithmetic.179177Characterizations that fall into neither of the spectra above include characterizationsof nondeterministic log-space [Immerman, 1987; Blass and Gurevich, 1986], of poly-time[Immerman, 1987], and of exponential time [Christen, 1974; Immerman, 1987].178Recall the Reverse Mathematics program, described in Section 7.3.179A simple method for dealing with Peano's third and fourth axioms is given in[Leivant, 1990b].



74 Daniel LeivantUsing comprehension for computational (i.e. strict-�11, see Section 3.2) for-mulas, one obtains exactly the functions de�ned by recurrence in all �nitetype [Leivant, 1990a; Leivant, 1991b].180 Comprehension for �rst orderformulas yields exactly the Kalmar-elementary functions.181The characterization by comprehension of complexity classes of prac-tical interest is also possible. Indeed, the functions over W computablein deterministic polynomial time are exactly the functions provable us-ing comprehension for positive existential formulas.182 The signi�cance ofthese characterizations is discussed in [Leivant, 1991a; Leivant, 1994].AcknowledgmentsI amgreatly indebted for detailed and conscientious feedback on early draftsof the chapter from Sam Buss, Kees Doets, Jean-Yves Marion, Dale Miller,Yiannis Moschovakis, Alan Mycroft, Frank Pfenning, John Reynolds, andStewart Shapiro. My sincere gratitude also goes to Jon Barwise, Andr�eChuaqui, David Harel, Marcin Mostowski, Larry Moss, Steve Simpson,Wilfried Sieg, Gaisi Takeuti, and Je� Zucker, for useful comments andadvice. The shortcomings in the chapter, surely a legion, are of courseentirely my responsibility.References[Abiteboul and Beeri, 1988] S. Abiteboul and C. Beeri. On the power oflanguages for manipulating complex objects. Research Report 846, IN-RIA, 1988.[Abiteboul and Kanellakis, 1990] S. Abiteboul and P. Kanellakis. Data-base theory column: Query languages for complex object databases.SIGACT News, 21/2:9{18, 1990.[Abiteboul and Vianu, 1989] S. Abiteboul and V. Vianu. Fixpoint exten-sions of �rst-order logic and datalog-like languages. In Proceedings of theFourth Annual Symposium on Logic in Computer Science, pages 71{79,Washington, D.C., 1989. IEEE Computer Society Press.180I.e., the provably recursive functions of Peano Arithmetic.181More precisely, given any free algebra A, the function over A computable in Kalmar-elementary resources are exactly the ones provable in second order logic with �rst ordercomprehension. This should be contrasted with the �rst order de�nable queries, a classstrictly contained in NL [Immerman, 1987].182Comprehension for positive quanti�er free formulas yields the same class. A formulais positive if it contains no negation or implication. The notion of provability used hereis a slight variant of the one de�ned above: when comprehension is so drastically limited,di�erent second order renditions ofWmake a di�erence, because their equivalence canno longer be proved.
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