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1 Introduction

Higher order logics, long considered by many to be an esoteric subject,
are increasingly recognized for their foundational importance and practical
usefulness, notably in Theoretical Computer Science. In this chapter we
try to present a survey of some issues and results, without any pretense of
completeness. Our choice of topics is driven by an attempt to cover the
foundational aspects of higher order logic, and also to briefly point to some
areas of current and potential applications.

The chapter falls into two parts. The first part, consisting of sections
1 through 4, is designed to bring forth the essential issues and facts of the
topic. Section 1 isintended to motivate our interest in higher order logic, by
presenting selected examples of the expressive power of second order logic,
and contrasting them with the limitations of first order logic. In section 2
we define more precisely the canonical (intended) semantics of second and
higher order logics. This leads us to section 3, where the proof theory of
second order logics is considered. Section 4 discusses issues touching on
the question of whether second and higher order logics are genuine logics.
Starting with a sample of major differences between first order and higher
order logic, we consider the foundational merits of second order logic, and
discuss the view of higher order logic as mathematical theories rather than
genuine logics.

The second part of this chapter surveys slightly more technical concepts
and issues. We mostly describe issues in very broad lines, with pointers to
the literature, only occasionally explaining a concept or providing a proof
outline for an important result. Section 5 presents some useful options for
restricting second order logic: restrictions of the language (monadic sec-
ond order logic and fixpoint logics), of the semantics (weak second order
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logic) and of the proof theory (predicative higher order logic, i.e. the ram-
ified theory of types). Section 6 discusses the role of higher order logic in
mathematical practice: we survey some relations between higher order logic
and two branches of mathematics, set theory and mathematical analysis.
We then discuss two general issues related to higher order formalization
of mathematics: second order axioms versus first order schemas, and the
effect of higher order reasoning on shortening proofs. The seventh and last
section briefly describe some relations between higher order logic and pro-
gramming and computing: the use of higher order data in programming,
the computational nature of natural deduction proofs, the role of higher or-
der logic in the meta-theory of formal systems, and the use of higher order
logic to provide machine-independent characterizations of computational
complexity classes.

Given the space and subject constraints of a handbook chapter, many
important aspects of higher order logic receive here a scant treatment, and
others are omitted altogether, notably most uses of higher order constructs
in mathematical practice, in recursion theory, and in computer science.
Such choices of topics can not be independent of an author’s interests and
background. My hope is, though, that the chapter touches on the central
issues of the field, and that it offers some useful organizing principles to
a broad and diffuse subject. The interested reader will find a large and
growing number of textbooks, monographs, and surveys about higher order
logic and related issues, of which several are pointed to in this text.

2 The expressive power of second order Logic

2.1 The language of second order logic

The language of (full) second order logic is simply the language of first order
logic augmented with second order variables, that is, variables ranging over
relations and functions (of all arities). Given a vocabulary! V, V-terms and
atomic V-formulas are defined as in first order logic (with equality), but
using also function-variables and relation-variables in complete analogy to
function-constants and relation-constants. Compound V-formulas are then
generated from atomic formulas using the usual propositional connectives
as well as quantifiers over all variables, including the function-variables and
relation-variables. A formula with no free variable is a closed formula, or a
sentence.

1 The notion of a vocabulary (= signature, symbol-set) is the same as in first order
logic, i.e. a vocabulary V consists of disjoint sets of identifiers for element-constants,
function-constants and relation-constants, and a function arity that assigns a non-
negative integer to each function-constant and relation-constant. We follow the tradi-
tional use of lower-case letters from the end of the Roman alphabet for element-variables,
fyg,h ... for function-variables, and upper-case Roman letters for relation-variables.
Whenever convenient we superscript identifiers with their arity.
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The standard semantics of second order V-formulas is defined with re-
spect to usual V-structures (of first order logic). The truth of V-formulas
in a V-structure is straightforward: function-variables of arity r range over
(total) functions of r arguments over the structure’s universe, and relation-
variables of arity » range over r-ary relations.? For example, the equivalence

(z =y) « VR R(z)< R(y)

is true in all structures, and may be used as a definition of the equality
predicate.

Quantification over relations (and/or functions) greatly enhances the
expressive power of first order formulas. In the next few subsections we
consider a few significant examples of that extended expressiveness. Let
us agree to use the phrase theory for a set of formulas, and V -theory for a
set of V-formulas. A first order theory is then simply a set of first order
formulas, and a second order theory a set of second order formulas.

A structure S is a model of a theory T if every formulain T is true in S.
A collection of structures is defined by a theory T' if it consists exactly of
the models of T'. If a collection of structures is defined by a first order (resp.
second order) theory, then it is first order (resp. second order) definable.

Many limitations of first order logic follow easily from one of its funda-
mental properties, the Compactness Theorem:

Theorem 2.1.1. [Compactness| Suppose T is a first order V-theory, such
that every finite subtheory of I' has a model. Then T' has ¢ model (which
is countable if V is countable).

2.2 Expressing size

Consider first a topic that comes up as one of the first exercises in logic
textbooks: stating the size of a structure and of subsets of its universe.

Theorem 2.2.1. The collection of finite structures is not first order de-
finable, but it is definable already by a single second order sentence.

Proof. 1. Assume T is a first order theory that defines the finite struc-
tures, and let I' be I' augmented with all sentences T>1, T2y «v
where o> states that there exist k pairwise distinct elements.® Then
every finite subtheory of I has a model, and so I’ has some model,
S, by the Compactness Theorem. Since S is a model of each o>, it
is infinite. Since T' C IV, S is an infinite model of T, contradi_cting
the assumption.

2 A more formal definition is given in Section 2.
3That is, 05y Zdr JT1...%n T1 F T3 AT F T3 A+ AZp_1 # Tn, with n(n—1)/2
conjuncts.
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2. A statement that holds exactly of the finite structures is ‘every injec-
tion is a surjection’, i.e.,

oex, =ar Vf (Inj(f) — Surj(f))
where Inj(f) =ar Ve,y (f(z) = fly) — 2 = y) and Surj(f) =ar
Yudv f(v) = u.
i
The formula o<y, can be modified to state that a set (i.e. the extension

of a unary relation) A is finite*:

oen,[4] =a¢ VR ((Vz,y,z R(z,y) A R(y, 2) — R(z, 2))
A (Ve € A)(y € A)R(z,y) — (Fz € A) R(z,z))

Second order formulas can be used to express a great deal about cardi-
nalities. Let

B<A =ar if (Vy S B) (Ekl} S A) f(:l:) =y.

Then B < A holds exactly when there is a map from A onto B, i.e. iff
|| B||<|| A||-5 Define, by recurrence on natural numbers n,

O[] Zar (VX CA) (on, [X]V(4<X)).
Then o<y, [A] is true exactly when || A||< R,, and so ¢y, ., [A]A70<x, [A]
is true exactly when || A||= R,,.® Similarly, we can state that the universe
in hand is of size < Ry 41:

Oy, =dat  (VX) (oex, [X]V (U < X)),

where U <X =4 3f Vy € X)(IFz) f(z) = y.

*If R is a binary relation, then we use (VzRy)yp as an abbreviation for Vz ( zRy— ¢ ),
and (JzRy)e for Jz ( xRy A ¢ ). Also, we write ¢ € A for A(z), and X C A for
Yu X (u) — A(u).

5|| S || denotes the cardinality of the set S.

8The progression of the s cardinals (by the power-set operation) is also readily
expressed. Let

(A<P(B)) =ar (FIRCAxB)(Vz,y€4)
(z # y— Ju (R(z,u) A “R(y,u)) V(R(y,u) A R(z,u)))
(P(B)<A) =4 (IRCAxB)(VCC A)(3z€ A)Vu(C(u) R(z,u))
(A < P(B)) states that the mapping fr : A— P(B), given by fr(z) = {u | R(z,u)} is
an injection, and (P(A) < B) states that fg is a surjection. From these formulas it is
easy to build formulas that capture the sequence jk for k < w.
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2.3 Defining data types

Let V; be the vocabulary consisting of a single element-constant 0 and a
single unary function-constant s. Let A be the V,-structure consisting of
the natural numbers with zero and successor as the interpretations of 0
and s. By Skolem-Lowenheim’s Theorem for first order logic, there is no
first order theory that characterizes A; up to isomorphism, since any such
theory would have non-countable models. What about characterizing A,
among the countable structuresI”

Theorem 2.3.1.

1. There is no first order V,-theory whose only countable model (up to
isomorphism) is N,.

2. There is a second order V;-sentence whose only model (of any cardi-
nality) is Ns.

Proof. 1. Suppose I' were a theory as above. Let I' be I' augmented
with all formulas of the form ¢ # 7 (n = 1,2,...), where 7 is the n’th
numeral® and where c is a fresh element-constant. Then every finite
subtheory of I has a model, and so I has a countable model S, by
the Compactness Theorem. The universe of S has an element, namely
the interpretation of ¢, which is not obtained by finite applications of
s on 0. Therefore & cannot be isomorphic to A;. But & is a model
of T, a contradiction.

2. Let

PN Zdf Psuc N Ve N(:I:)
where

Pene =ar Vzs(z)£0 AVe,y(s(z)=s(y) —z=y)
N[z] =4t VR(R(0) A Vu(R(u)— R(s(u)))— R(z)).

©Yeuc state that the denotations of numerals are all distinct, whereas
VzN(z) states that all elements are denotations of numerals.® | |

From the second order characterization of A there follows a second
order interpretation of the true formulas of Peano’s Arithmetic, PA. Let

"Theorem 2.3.1 shows that a particular countable structure, that of the natural num-
bers, is characterized up to isomorphism by its second order theory. A natural question
is whether every countable structure is so characterized. [Ajtai, 1979] (reported in
[Shapiro, 1991, Section 6.6.4], who attributes the result also to Magidor) shows that
this is so for structures defined within the Gddel-constructible universe (i.e. assuming
V = L), but that the general claim is independent of ZFC.

81.e., A =g4r S["](O) = s(s(---s(0)--)) (with n applications).

°This second order characterization of the natural numbers goes back to Dedekind.
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Dy x be the conjunction of the closures of the defining equations for ad-
dition and multiplication.!® Then a formula 4 in the language of PA is
true in the standard model iff the second order formula o5 A Dy x — PN
is valid.'* Moreover, the same holds for ¥ a second order formula in the
language of PA; that is,

Theorem 2.3.2. The truth, in the standaerd model, of second order for-
mulas in the language of PA, is effectively reducible to the validity of second
order formulas.

Just as the natural numbers are second order definable, so is any free
algebra (i.e. inductive data-type) A. The algebra A generated from a given
finite set V of constant-identifiers and function-identifiers is characterized
by the conjunction xy of

1. a statement that the denotations of distinct terms are distinct, i.e.
the universal closure of the inequalities

f(z1...2.) £glyr...yx); f(z1...2,) #¢; and c#d,

and of the equalities
£(7,2,9) = £(§,2,5) — v =4,

for all f,g distinct function-constants, and c,d distinct element-
constants of V; and

2. a second order sentence stating that all elements are interpretations
of terms:

A[:L‘.] =df VR ( ClA(R) — R(:L‘.) ),

where Cly(R) is the conjunction of all formulas R(c) for ¢ a constant-
identifier of V, and of all universal closures of formulas R(z1) A--- A
R(zy) — R(f(z1...zx)) where f is a function-identifier of V' (of arity
One free algebra particularly relevant to computing is the algebra W
generated from one element-constant, say €, and two successor functions
(i-e. unary function constants), say 0 and 1. The terms here can be identi-
fied with the words over {0,1}, e.g. 0(1(1(¢))) is identified with 011. The
set of terms is characterized by the formula'?

10Te., Dy ,x = Vz(z+0==z) AVz,y(z+sy=s(z+y)) AVz(zx0=0) AVz,y(zXxsy=
(zxy)+=)).

11 As customary, if R is a unary relation then o will denote the result of relativizing
all quantifiers in the formula ¢ to R. That is, (Vz¢)® =4r (Vz(R(z)— '¢R), and
(Fz)F =ar (Bz(R(z) A pF).

12We use the customary abbreviation that uses a chain of #’s.
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olz] =ar Ve e#£O0z# 1z #e€
AVzz' ((0z=0z'Vie=1z') »z=12")
— VR ( R(e) A Yz ( R(z) — R(0z) A R(12) ) — R(z)).

2.4 Describing processes

Let Vg = {a, b, p} be the vocabulary of digraphs with a source and a target,
i.e. a and b are element-constants and p is a binary relation-constant.

Theorem 2.4.1. The collection of digraphs with a path from the source to
the target is not first order definable, but it is definable by a single second
order Vg-sentence.

Proof. The non-existence of a first order theory defining these digraphs
is, again, a simple application of the Compactness Theorem.
On the other hand, the sentence

VR ( R(a) A Vz,y (R(z) A p(z,y)— R(y)) — R(b))

is true in a digraph G iff there is a p9-path from a“% to bY. [ |

The existence of paths for binary relations (i.e. the transitive closure
operation) is related to the operational semantics of many computation
processes, where a computation is defined as a transition-chain of config-
urations. The contrast between first order and second order formulas in
defining the transitive-closure of a relation is therefore symptomatic of a
broader contrast in the possibility of defining program semantics in first
order vs. second order logic. Let V' be a vocabulary that includes a unary
function-constant f. Over every V-structure we have the computable par-
tial function

fizg(z) =ar the first iterate f[k](m) such that f[k+1](1:) = f[k](m).

An argument similar to the proof of Theorem 2.4.1 shows:

Theorem 2.4.2. The graph of fizg is defined, uniformly for all V-struc-
tures, by a second order formula, but not by a first order theory.'3

For a slightly more general example, let L be the loop while g(z) =
0 do z := f(z) end. Then the input-output relation determined by L is
defined, uniformly for all structures, by the formula

Mg [ug,v0] = VR ( R(uo) A Prog;[R] — R(vo)),

where

131.e., there is no theory I' and variables u, v for which the following holds: for every
structure 8, if F is the interpretation of fizg in S (as arising from the interpretation in

8 of f), then, for all elements a,b of the universe of S, b = F(a) iff 8, [a/u,b/v] ET.
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Prog,[R] =ar Yw (R(w) A g(w)=0— R(f(w))).

Here L changes the value of a single variable, hence the formula My has
only one argument for input (ug) and one for output (vg). If @ is the loop
while g(z) =y do P, and the input-output semantics of P (for program
variables z and y) is already defined by a formula Mp|[uo, u1, vo, v1], then
the relation determined by @ is defined by

Mgluo, u1,v0,v1] = VR ( R(uo,u1) A Progy[R] — R(vo,v1) ),
where

Progy,[R] =ar Vwo, w1, 20, 21 (R{wo, w1)
A g(wo) = w1 A Mp[wo, w1, 20, 21] — R(z0,21)).

It is easy to exhibit similar definitions for most basic programming con-
structs, including recursive procedures and modules [Leivant, 1983].

2.5 Expressing convergence using second order
validity

The definability of free-algebras by second order formulas can be extended
to a characterization of the total computable functions. We summarize
the argument of [Leivant, 1983; Leivant, 1994]. Of the many computa-
tion calculi that generate the total recursive functions one that lends itself
naturally to this model theoretic setting are equational programs; a rudi-
mentary form of such programs would serve us best.!* Fix a free algebra
A. We posit an unlimited supply of r-ary program-functions (for each arity
r>0), which are identifiers distinct from the constructors of A. The terms
are generated from the constructors of A, free variables, and program-
functions. A statement over A is an equation between terms. A set of
statements is a program-body. A program (over A) is a pair, (P,f), where
P is a program-body, and f is a program-function, the program’s principal
identifier.

Given a program-body P, we write P - E if F is equationally derivable
from P, using reflexivity, substitution of terms for variables, and substitu-
tion of equals for equals.’® Each (r-ary) program-function g in P induces
on A the relation g¥ =q4; {(#1...2,,9) | P+ g(z1...2,)=y }. A (partial)
function f over the algebra A is computed by (P, f)if f = f¥. For example,

1 Herbrand-Gédel programs, a variant of equational programs for natural numbers,
are defined e.g. in [Kleene, 1952].

18 That is, (1) P + E for every E € P; (2) P + z=z; (3) if P I E then P + [t/u|E
for every Vp-term t and variable u (where [t/u] denotes is the operation of substituting
t for all (free) occurrences of u); and (4) if P + [t/z](s=q) and P + t=t’, then
P+ [t'/z](s=q). Note that taking = for q in (4) yields transitivity, and taking z=t for
s=q yields symmetry.
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the program ({ z + 0=z, z+s(y)=s(z+y)}, +) over N computes the
addition function, and { € ® w=w, (cv) ® w=c(v O w) }, @) over W
computes the concatenation function.

We say that a program-body P is coherent if P - a = a’ for no distinct
a,a’ € A.1® A coherent P over A, even if it computes a partial function,
has a model containing A (i.e. where all program-functions are interpreted
as total functions).

The convergence of equational programs can be expressed, without use
of coding, by a second order validity statement, as follows. Let A be a
free algebra, and let A be a second order definition of membership in A,
as in Section 2.3. Given a program-body P over A, let VP stand for the
conjunction of the universal closures of all statements in the program P.

Theorem 2.5.1. A coherent equational program (P,f) over an algebra A
computes a (unary) total function f ifft”

= VP A Alz] — Alf(2)]

Theorem 2.5.1 should be contrasted with the impossibility of capturing
program convergence in first order logic:

Theorem 2.5.2. Let A be an infinite free algebra. There is no effective
procedure that assigns to every program (P,f) over A a first order formula

op such that f is total iff = pp.

Proof. Suppose a procedure as above existed. The set of programs (P, f)
for which | ¢p is effectively enumerable, by the Completeness Theorem
for first order logic. It is easy to see'® that there is a recursive set C of
programs such that every partial recursive function over A is computed
by some program in C. Thus { f : N—N | fis computed by some P €
C, where = ¢p} is effectively enumerable and consists of all total com-
putable functions, contradicting an elementary result of Computation The-
ory. [ |

2.6 Truth definitions: the analytical hierarchy

The arithmetical and the analytical hierarchies are well known classifica-
tions of sets of natural numbers. Here we give a self-contained outline of
some relations of interest between these hierarchies, second order formulas,
and truth-definitions.®

16For example, {f(0) = 0, £(0) = s0} is not coherent, nor is {g(z) = £(0), £f(0) =
0, f(0) = s0}.

THere arity (%) = arity (f), and A(zy ...xz;) abbreviates A(z1) A--- A A(zy).

183ce e.g. [Kleene, 1952] for numeric programs, [Leivant, 1994] for programs over W.

19We follow tradition in referring to N, even though from a modern viewpoint richer
free algebras, such as W, are more appropriate.
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A set A C N is arithmetical if it is first order definable over the stan-
dard structure of the natural numbers with all total computable functions.?°
The set A is analytical if it is second order definable over that structure.
A fundamental result of Kleene is that there are analytical sets that are
not arithmetical. It will be useful for us to discuss this fact from the view-
point of truth definitions, since it brings out the interplay between increased
expressive power and the formalization of meta-reasoning.

Let V be a countable vocabulary. We can code V-terms and V-formulas
unambiguously by strings of AscCII characters,?! for example, by writing
x_121 for the 121°st variable, £~2_34 for the 34’th binary function-constant,
and (forall) for the universal quantifier. Substituting octal ASCII codes
for the AscIi characters, every syntactic expression « is unambiguously rep-
resented by a string str(a) = da,r(a) - - - da,1da,0 of digits € {0,..., 7}, which
in turn is unambiguously represented by the number #(a) = grie)+1 4
E:S)) 8¢ . d?, whose octal numeral is 1 followed by str(a).

Clearly, there are primitive-recursive functions neg, disj, univ, eg, and
sbst such that, for all formulas ¢ and v, variables v, terms ¢ and s, and
numbers n,??

neg(#¢) = #(-p) disj(#¢, #9) = #(eVY)
eq(#t, #s) = #(t=s) univ (#o, #v) = #MWvo)
sbst(#p,n) = #([A/z]e) where z is a fixed variable-identifier

Let A be an expansion of A; with finitely many functions, including
the primitive recursive functions above. Let L be a set of formulas in the
vocabulary of /. A truth-definition for L (over A) is a formula 7 = 7[v],
with a single free variable v, such that AN |= ¢ <> 7[#¢p] for all first order
formulas ¢ in the vocabulary of N.?3

Theorem 2.6.1. [Tarski] Let N be as above. Suppose L is a language
such that the functions neg and sbst (or their graphs) are definable by
L-formulas over N'. Then there is no truth-definition in L for L over N.

Proof. Suppose 7 were a truth-definition in L for L over N. Let d(z) ab-
breviate neg(sbst(z,z)), and let n =4r #(7[d(2)]) = #(7[neg(sbsi(z, 2)]).
Then, in A,

20By G&del’s proof of the First Incompleteness Theorem, it suffices to consider for-
mulas using only 0,1,4 and X.

21 pscri is the acronym for the common coding of characters and special symbols by 8
bits each.

22We write [t/v]p for the result of simultaneously substituting the term ¢ for all free
occurrences of v in ¢, renaming bound variables as needed.

23We write [t] for [t/v]e when v is unambiguous.
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Tld(R)] i.e. T[neg(sbst(n,n))]
—  T[neg(sbst(#(7[d(2)]), )] by definition of n
—  7[neg(#(r[d(R)])] by definition of sbst
=  T7[#(=7[d(R)])] by definition of neg
—  —r[d(R)] since 7 is a truth-definition
a contradiction. ||

Theorem 2.6.2. Let N be as above. There is a second order truth-
definition, but no first order truth-definition, for first order sentences over
N. That is, the codes of first order sentences true in N form a set which
is analytical but not arithmetical.

Proof. The non-existence of a first order truth definition is a special case
of Theorem 2.6.1.

To prove the existence of a second order truth definition let us start by
observing that the truth of formulas is defined by recurrence on syntax,
using (finite) valuations of free variables. A finite valuation in A can be
represented by a number, using one of the usual sequence-coding methods.
For any one of these methods there are primitive-recursive functions proj
and inst, such that proj(z, k) is the k’th entry of sequence coded by?*
and inst(z, #v,n) is the valuation that differs from z only in assigning n
to the variable v.

A preliminary semantic evaluation assigns values to terms: It is easy to
define a primitive-recursion function wel such that val(#t,z) is the value
of the term ¢ under the assignment coded by z, i.e. such that val(#v,z) =
proj (z, #v) for variables v, and val (#(f(t1,...t.)), z) = f(val(#t1,2),. ..,
val(#t,,z)) for every function f = fV of A2

We can now state that a set T contains a pair (#¢, h) iff ¢ is true
under the valuation coded by h. If we use —, V, and V as the only logical
constants, it suffices to put:

To[T] = Vu,v,h(T(eq(u,v),h) — val(u, h)=wvel(v,h))
AVu, b (T(neg(u),h) « —T(u,h))
AYu, v, h(T(disj(u,v),h) < T(u,h)VT(v,h))
AVu, v, h (T(univ(u,v), k) — VnT(u,inst(k,v,n))).

IS S

A formula ¢ is true in N iff VT (7o[T] — VAT (#p,k)) is true in N.
The definition of 7o uses some 8 primitive-recursive functions neg, sbst,
. Let g1...9m be a list of all these functions and of the functions used

24 with value 0 if k is not in the domain of «

25Recall that A has finitely many functions. The function wal is, of course, not a
function of A'. The treatment can be adapted to all primitive-recursive functions, as in
[Troelstra, 1973], but the function val is then not primitive-recursive.
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in their primitive recursive definitions. Let D be the conjunction of the
(universal closure of the) primitive recursive definitions of g1 ...gm. Then,
for every first order sentence ¢,

N B o)
where

7(z) Zat Yg1...9m (D = VT(7o[T] — T(z,0)))).

2.7 Inductive definitions

Inductive definitions have played a central role in the foundations of math-
ematics for over a century. They appear in a broad spectrum of topics,
such as algebra (the subalgebra generated by a given set of elements),
proof theory (the theorems of a theory, ordinal notations), descriptive set
theory (Borel sets), and computation theory (the collection of functions
generated by certain schemas, the ‘structural-style’ operational semantics
of programs). In particular, they were used in the 1970’s as the backbone
of major generalizations of Recursive Functions Theory [Barwise, 1975;
Moschovakis, 1974]. In recent years the ties between inductive definitions
(in particular over finite structures) and database theory, descriptive com-
putational complexity, and logics of programs, have been developed. We
return to inductive definitions in sections 6.2 and 8.4.26

Let F be an operator over the collection P"(U) of r-ary relations over
some set U. F has an inductive closure F*°, obtained as the union of the
increasing ordinal-chain F* —4¢ U£<a F(F%). Since F* C FP for a < 3,
we must have F'®° = F* for a sufficiently large a. The first such « is the
closure ordinal of the definition, and is < x7, where x is the cardinality??
of U. We then have F(F®) = F(F%) = Fot! = F® ie. F® is a fixpoint
of the operator F'.

Suppose now that U is the universe of a structure S, and that F is
defined by a second order formula ¢ over the vocabulary of S expanded
with an r-ary predicate letter R; that is, for some tuple & of distinct (free)
variables,?®

F(Q)={a|[Q/R]S, [a/2] = ¢}

We denote the operator F above by ARAZy. For example, the reflexive
and transitive closure of a binary relation pis F*°, where F —gf ARAz,y
(z=yV 3z R(z, 2) A p(z,y)). For another example, the truth of first order

26 A short informative survey is [Aczel, 1977]. A comprehensive monograph is
[Moschovakis, 1974].
2Tthe exponent r is needed because x may be finite.

28[Q/R]S is the structure S expanded with Q as the interpretation of the relation-
constant R.
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arithmetic formulas using V, V, equations and inequalities?® is F*[uv, 0],
where
F =4 AR)z,z Ju,v z=eq(u,v) Aval(u,z)=val(v, z)
V Ju,v z=neg(eq(u,v)) A val(u, ) £ val(v, z)
V Ju z=disj(u,v) A (R(u,z) V R(v, z))
V Ju z=univ(u,v) AVn R(u, inst(z,v,n)).

The fixpoint F* of a second order definable operator F = ARAZyp is
also second order definable: Let WF(Q) be a second order formula stating
that @ is a well ordering of the universe in hand (such a formula can be
defined easily, using ideas similar to Section 2.2). We have3°

JEF® =4 3Q,5 WF(Q)A VaVE ( S(a,9) « ¢, ) A Ja S(e, )

where ¢, is the result of replacing every subformula R(%) of ¢ by 3¢ ( Q(£, a)A
S(E, D).

The classical theory of inductive definability has traditionally focused on
monotone operators. An operator F is monotone if p C p’ implies F(p) C
F(p'). The inductive closure of a monotone operator F is its least fixpoint:
if F(p) =p then p D F* for all ordinals o (by ordinal-induction), so
p D F*. That is, F* is the intersection of all sets closed under F. This
permits a much simpler second order definition of the inductive closure of
a definable®! monotone operator F = ARAZ ¢:

FcF® =4 VR((p=R) — R(Z)).

It is easy to see that if all occurrences of R in ¢ are positive3? then ARAE ¢
is monotone, and one writes pR.AZ ¢ (or, when in no danger of ambiguity,
simply uR.¢), for the minimal fixpoint F* of F = ARAZ p.

For operators defined by first order formulas the converse also holds:
if ARAZ ¢ is monotone over all structures, where ¢ is first order, then
there is a formula logically equivalent to ¢ in which all occurrences of
R are positive (by Lyndon’s Theorem, see e.g. [Chang and Keisler, 1973;
Hodges, 1993]).32

29 These restrictions are motivated by expository terseness, and could be removed.

30 we use Greek letters as ordinary first order variables

31 The expression ¢ = R abbreviates V#(p « R(&)), where arity (&) = arity (R).

321f an occurrence of % in ¢ is in the scope of n negations and in the negative scope
of 7 implications, then v is positive in ¢ if n+1 is even.

33However, a first order operator may be monotone over all finite structures while
failing to be positive [Ajtai and Gurevich, 1987]. The restriction to positive operators

is therefore less natural in the context of Computer Science [Livchak, 1983; Gurevich,
1984].
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3 Canonical semantics of higher order logic
3.1 Tarskian semantics of second order logic

Let us consider the semantics of second order formulas more formally. Let
V be a vocabulary (as for first order logic), & a V-structure. Like for
first order formulas, the truth of second order formulas in § is defined
modulo a valuation 5 of variables as objects. Here, however, we have second
order variables, to which one assigns the appropriate kind of objects. That
is, a valuation n assigns structure elements to free object-variables, k-ary
relations to free k-ary relation-variables, and k-ary functions to free k-ary
function-variables (k > 0).
Terms’ values are defined by recurrence:

vals,(c) = cs for object-constants ¢
vals,(v) = n(v) for object-variables v
vals n(£(t)) = £5(vals,(t)) for f a unary function identifier of V'
and similarly for higher arities
vals 5 (9(t)) = mn(g)(vals,(t)) for g a unary function-variable,

and similarly for higher arities.
The truth of atomic formulas is then defined by

S,nEt=t/ iff vals 5 (t) = vals ,(t)
S,nEQ() iff vals 5 (t) € Q°

for Q a unary relation identifier of V,

and similarly for higher arities
S,mER(#) iff vals ,(t) € n(R)

for R a unary relation-variable,

and similarly for higher arities

Finally, the truth of compound formulas is defined by recurrence on for-
mulas, as for first order formulas.

3.2 Function and relation formulations

Under the usual (classical, extensional) reading of functions and relations,
these two concepts are of course reducible to each other: k-ary functions
can be viewed as a special kind of k + l-ary relations, and k-ary rela-
tions can be interpreted by their k-ary characteristic functions. For in-
stance, a formula 3f (--- X(f(¢))---) is interpreted by IF (Ve3lyF(z,y)
A (- Fy(F,y) A X(y)--+)) (F fresh). Conversely, a formula VX
(---X(t)---) can be interpreted by Vf (---(f(t) =c)---), where ¢ is a
fixed constant identifier of V' (and f is fresh).3* It therefore suffices to

34We assume that the structure in hand has at least 2 elements.
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formulate second order logic using only relation-variables, or only function
variables.

On closer examination, however, the relational formulation of second
order logic permits finer distinctions. An interesting case is the contrast
between formulas of the form Vf3£¢ (v quantifier-free) and of the form
VR 3Z 4, over the standard structure of the natural numbers (with addi-
tional and multiplication). Whereas every Hi set in the analytical hierarchy
is definable by some formula of the first form, the sets defined by formulas
of the second form are all recursively enumerable [Kreisel, 1968]! The lat-
ter formulas were dubbed strict-II} in [Barwise, 1969; Barwise, 1975], and
computational in [Leivant, 1987]. The term ‘computational’ is motivated
by the fact that each such formula defines, uniformly for all V-structures,
the operational semantics of a certain finite state machine. They are, in
many respects, more appropriate than ¥; formulas as a generalization, to
arbitrary structures, of semi-recursiveness: the descriptive power of E? for-
mulas over the natural numbers is derived from the possibility of numeric
coding of computations; computational formulas describe computational
processes without depending on such coding.®®

3.3 Normal forms

The well-known procedure, for transforming each first order formula ¢ into
a logically equivalent prenez formula (i.e. with no quantifier in the scope
of a propositional connective), also transforms each second order formula
into an equivalent prenex form. A second order prenex formula 1 can be
further transformed (without increasing the number of quantifiers of any
kind) into an equivalent formula 9%* in which no second order quantifier
falls in the scope of a first order quantifier. The transformation consists in
recursively replacing subformulas of the form

VavVf e by VfVZ e,
3Z23f ¢ by 3If3IZ o,
VE3f 2, f] by 3IgVE ¢[Z, gz] where gz(2) =ar (&, 2),
and JEVf o[ 2, f] by VgIZ o[z, gzl

w W w w
B W N =
S N N N

(
(
(
(

and similarly for quantifiers over relation-variables. The two formulas in
(3.3) are equivalent by (a weak form of) the Axiom of Choice, and (3.4)
follows from (3.3) by duality.

Furthermore, every first order formula can be converted into an equiva-

— —

lent formula of the form (Vf) (3Z) ¢ or (3f) (VZ) ¢, where ¢ is quantifier-

free, by replacing subformulas of the form

35 The significance of computational formulas is discussed further in [Leivant, 1991b)].
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and vy plZ,y] by  VfIF p[Z, f(Z)]
and similarly for relational quantifiers.®®

Combining these transformations, every second order formula ¢ can be
converted into an equivalent formula ¢* of one of the forms V&, da, V - - -
Q& QE Y or 3@, Vay3 - - Qa, QZ 1, where Q is the dual of Q, each
d; is a vector of second order variables, & a vector of element-variables, ¥
is quantifier-free, and ¢* has at most one more function quantifier than ¢.
Formulas of these forms are said to be normal. A formula ¢ is II%, if it is
of the first form, %% if it is of the second form.3”

A well-known result of Kleene®® is that for every m > 0 there is a
set Sy, of natural numbers defined by a II} formula but not by any -1
formula, and therefore also not by any I}, , formula. The set N — S, is
then defined by a 1 formula but not by any Il formula. In fact, it is
easy to see that we can take for S, the set of codes of II, sentences that
are true in A

3.4 Finite order logic

Finite order logic (also called Type Theory and w-order logic) is an exten-
sion of second order logic in which quantification is used over higher order
relations and functions. It is basically due to Church [Church, 1949].3° We
outline a relationeal variant of finite order logic (similar to the account in
[Schiitte, 1960b, Chapter IV]).

Types (or, more precisely, relational types) are syntactic expressions
inductively generated by: ¢ is a type; and if 71...7) are types (k > 0),
then 7 = (71...7%) is a type. The type () is denoted by o, and if 71 =

- = Tp = ¢ then (71,---,7%) is denoted by ¢*. The language of finite
order logic has, for each type 7, variables of type 7 and quantifiers over
them.

We intend ¢ to denote the type (set) of individuals, i.e. structure ele-
ments, and (71 ...7x) the set of k-ary relations between & objects of types
T1...Tk, respectively. That is, for a set A, the set A, of objects of type 7
over A is defined by

A, =gt A:

38Tf the vocabulary V has an element-constant, then first order quantifiers can be
replaced by function-quantifiers: Vzy[z] = Vf¢[f(c)]. Each first order formula has
then equivalent formulas of both forms, Vf J# x and EI]? VZ x', where x and x’ are
quantifier-free.

37If a structure has a definable pairing function for structure-elements, as is the case
for N4 x and its expansions, then each vector & and & can be replaced by a single
variable (with appropriate changes in the quantifier-free matrix).

38See e.g. [Kleene, 1952].

39 A detailed textbook exposition is in [Andrews, 1986].
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k
A('rl...'rk) —df p(H Az) = p(Al X -+ X Ak)

=1

For type o we have ngl A; = {0} (a singleton), so A, is the two element
set {0, {()} }, whose elements can be identified with the boolean truth val-
ues false and true.

Finite order logic has 7-terms for each type 7, as follows.

1. a variable of type T is a term of type T;

2. if fis a k-ary function constant (of a given vocabulary), and 1 ...%
are terms of type ¢, then f(¢;...4) is a term of type ¢;

3. if R is a k-ary relation-constant, then R is a term of type ¢*;

4. if ¢t is a term of type (71...7%), and #1,...,%; are terms of types
T1...Tk, respectively, then ¢(¢1,...,%%) is a term of type o.

Note that we do not use here defined, ‘abstraction’, terms. For example,
if ¢ is a formula with a single free variable z, of type ¢, then the set {z | ¢}
is not accepted as a term of type (¢). To state that the property denoted
by some variable @ of type ((¢)) hold of the set {z | ¢}, one may write
350) (Vz S(z) — ) AQ(S), or VS (Vz* S(z) — ¢) — Q(S).

The terms of type o are the atomic formulas,*® and compound formulas
are generated as in first order and second order logic. The semantics of
formulas of finite order logic is defined formally like for second order logic,
except that an assignment over a structure with universe A maps variables
of type T to objects in A, .

Types naturally fall into orders, defined inductively by: order(t) =as
1, and order((71,...,7%)) =ar 1+ max(order(r1),...,order(7)). The
fragment of finite order logic in which types of variables are of order < k is
dubbed k’th order logic. For & = 1 we recapture first order order logic,
and for k = 2 we get the relational variant of second order logic.

The construction of types can be extended to allow types whose orders
are transfinite ordinals. For example, let w consist of all objects of finite
type. Then (w,w) is the type of binary relations between objects of fi-
nite types. A formalism of transfinite types is developed and discussed in
[Andrews, 1965] (see also [Montague, 1965a]).

3.5 Functional types

An alternative to relational types of the kind discussed above are functional
types. Functional types are syntactic expressions inductively generated
by: ¢ and o are types; and if o and T are types then so is 0 — 7. The intent

40 Fquality between elements may be included among the relations of type ¢2.



Higher Order Logic 19

is that o — 7 is the type of functions from objects of type o to objects of
type 7.41

A function f of two arguments of type 7 and returning a value of type
o can be represented by a function f, of type 7 — (7 — o), defined by
fe(2)(y) = f(z,y). The mapping from f to f is called currying, in honour
of Haskell Curry who discovered it. More generally, a function f of &
arguments, of types 71...7k, and value of type o, is represented by a
function f, of type 71 — (72— --— (7 —0)---). The latter type is often
abbreviated by 71,...,7Tt — 0.

The well-known duality between functions and relations over basic ob-
jects extends to the entire type hierarchy. Every relation R of relational-
type (71...7%) can be thought of as a function which returns boolean
values, i.e. R is represented by the function xgr of type 71,...,7r — o,

defined by
xr(a1...ax) =if R(a1...ax) then irue else false.

Conversely, a function f of type 71,...,7r — 0 is represented by its graph,
which is of type (71,..., Tk, 0).

In every higher type calculus the interaction between expressions denot-
ing objects of different types is governed by the operations of application
and abstraction. If a and b denote objects of types 7 — ¢ and T, respec-
tively, then the applicative expression (a)(b) denotes an object of type o,
namely the result of applying the object denoted by a to that denote by b.
If a 1s an expression denoting an object of type o, possibly parametrized by
a variable z ranging over objects of type 7, then the abstraction-expression
Az.a denotes an object of type 7 — o, namely the function that to every
object ¢ of type 7 assigns the value of a when the variable z is evaluated
as c.

3.6 Formulas as higher order functions

Propositional logic can be construed as a boolean algebra, whose objects,
the truth values, are of type o. The algebra’s functions are the proposi-
tional connectives; negation is a function of type o — o, and the binary
connectives are of type 0,0 — o. Propositional formulas are simply alge-
braic expressions, which define functions over truth values; for instance,
the formula (p A =¢g) — 7 is the function that for boolean arguments b,, b,
and b, return the boolean value (b, A =b,) —b,.

Church [1949] showed how this simple functional interpretation of propo-
sitional logic can be extended to first order logic, using higher order func-
tions. Whereas propositional identifiers denote truth values, relational

41 An alternative notation to ¢ — 7, common in works about type theory, is (o)
[Church, 1949].
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identifier denote boolean-valued functions over the type ¢ of individual
objects. For example, the formula ¢ = P(z) A =Q(y) is represented by
a function F of type ¢, ¢, (0—¢),(0—t) — o, namely the function that for
arguments ag, ay, Fp, and Fg returns the value Fp(az) A ~Fp(a,). The
order of arguments is arbitrary here. Alternatively, we may think of ¢ as a
template from which functions can be defined by explicit abstraction. That
is, Az ¢ denotes a function of type ¢— o, parametrized by the identifiers y,
P and Q. For each appropriate choice of values for these identifiers, Az ¢
denotes a function from objects to truth values.

Under this reading, quantifiers are higher order functions. Let V be a
function of type (¢ — o) — o, such that Vf = if [f is identically true] then
true else false. Then V(Azyp) is true iff ¢ is true for every value of z. Thus,
the usual first order notation V. ¢ can be viewed as an abbreviation for
V(Azg), where V is the functional above. The existential quantifiers and
many other quantifiers used in special logics (such as ‘there are infinitely
many’) can similarly be interpreted as functions of type (¢—o0)—o.

Higher order quantifiers fall into the same mould. Consider universal
quantification over unary relations, as in the formula VP. ¢, where ¢ is as
above. This can be viewed as an abbreviation for the functional expression
V2(AP. p). The type of AP. ¢ is (t—0) — o, so the type of the operator V2
used here is ((¢ —0) —0) — 0. More generally, universal quantification over
objects of type 7 is an operator V" of type (7 —o0)—o. To define a generic
universal quantifier that can be used for all types one needs to enrich the
type structure beyond the one we have been discussing (cf. [Girard, 1972;
Coquand and Huet, 1985]). Namely, in Girard’s system F,,, the generic
universal quantifier is an operator forall of type At. (¢ —0) — o, so that
forall(7) is functionally equivalent*? to V7.

Church’s interpretation of formulas as higher type functions is used
extensively in Computer Science in formal calculi such as the Calculus
of Constructions [Coquand and Huet, 1985], as well as in programming
systems such as Edinburgh LEGO, L. Paulson’s ISABELLE [Paulson, 1989;
Paulson, 1990], Andrews’s TPS [Andrews et al, 1984], and Miller’s A-
Prolog [Nadathur and Miller, 1988; Nadathur and Miller, 1990; Miller,
1993].

3.7 Truth definitions revisited

It is rewarding to relate finite order logic to the issue of truth definitions
mentioned in Section 2.6 above. The proof of Theorem 2.6.2 can be easily
adapted to higher order formulas:

2Te., forall(7) reduces to V™ by a type B-reduction. Note, however, that the generic
forall is not a global quantifier that ranges simultaneously over objects of all types.
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Theorem 3.7.1.

1. Let N be an expansion of N; in which the functions neg and sbst,
as well as an injective pairing function p with its inverse projections,
are definable.

2. There is no second order truth-definition for second order sentences
over N, but there is a third order such truth-definition.

Proof. The absence of a second order truth definition is analogous to The-
orem 2.6.2(1).

To define a third order truth definition let us first assume that all second
order variables are set-variables (i.e. unary relation-variables). This is no
loss of generality, since the presence of a pairing function p and its inverse
projections permits the replacement of relations of higher arities by sets.

We would like to code by a set of natural numbers an assignment (into
N) of sets to a finite number of variables. If 5 is such an assignment, with
domain {v; ...v;}, then 5 can be coded by the set H = Ule({#(vi)} X
n(v;)), where ({n} x X) =4t {p(n,z) | € X}. Modify the primitive-
recursive functions used in the definition of 7 in the proof of Theorem 2.6.2,
to apply to formulas with second order quantification, and to valuations for
second order logic. Clearly, there are primitive-recursive functions ¢ype and
apply , such that for every variable v, type (#v) = if v is a number-variable
then 0 else 1; and for any term ¢ and set-variable V', apply (#V, #t) =
#(V(t)). Emulating the definition of 7¢ in the proof of Theorem 2.6.2(1),
we can write down a formula 72, as follows, which states that a set T
contains a triplet (#¢, h, H) iff ¢ is true under the valuation whose set-
valued part is coded by H, and whose number-valued part is coded by
h.

T2[T] =ar Vu,v,h, H(T(eq(u,v),h, H) < val(u,h)=wval(v,h))

AVu,v, h, H ( type(u)=1—

(T(apply(u,v), h, H) < H(p(u,val(v,k)))))
AVu, h, H(T(neg(u),h, H) «— —T(u,h, H))
AVu,v, h (T(disj(u,v),h, H) < T(u,h, H)VT(v,h, H))
AVu,v, h, H (type (v)=0 —

(T(univ(u,v),h, H) < VnT(u,inst(h,v,n), H)))
AVu,v, h, H (type (v)=1 —

(T(univ(u,v),h, H) <

VY ((Y = H mod (v))—T(u, h, Y))))

where Y = H mod (v) abbreviates
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Vu,Z(u#v— ((uxZ)CH « (ux Z)CY)).

A second order sentence ¢ is then true iff the third order sentence VT'(7o[T]
— T(#¢,0,0)) is true. (Note that 7" is a third order variable.)

To keep the definition above within the relational variant of finite order
logic, we need to reformulate 72, but this is fairly straightforward. The
proof is concluded as for Theorem 2.6.2. [ |

More generally, we have:
Theorem 3.7.2. Let N be as above, k > 1.

1a. There is no k order truth-definition for k order sentences over A.
1b. There is no finite order truth-definition for all finite order sentences
over N
2. There is a (k+1) order truth-definition for k order sentences over N.

A similar method can be used to show that there is a (k+1) order

formula 7 such that for every k order sentence ¢, 7[#¢] is valid iff ¢ is
valid.*3

The construction of truth definitions by using ever higher types can be
continued to transifinite types: [Andrews, 1965] shows how to give a truth
definition over A for all finite order formulas, using quantification over
objects of transifinite type.

4 Proof theory

4.1 Basic formalisms

By Godel’s Completeness Theorem, provability in first order logic captures
precisely validity. This success contrasts with second (and higher) order

logic:**

Theorem 4.1.1. The set of valid second order formulas is not definable
(under canonical numeric coding) by a second order formula in the language
of arithmetic. It is therefore not recursively enumerable; in particular, there
is no effective formalism whose theorems are precisely the valid second order
formulas.

Proof. Let v be the conjunction ¢y AD, « (see Section 2.3). The models of
v have the natural numbers as domain and the standard interpretation for
+ and x. Therefore, a formula 9 in the language of Peano’s Arithmetic*?

43Note that for k = 1 such a formula falls out from the Completenss Theorem for first
order logic, as follows. let Pr be an existential formula of arithmetic that formalizes
provability: for every first order formula ¢, Pr(ﬁ) iff ¢ is provable. Then ¢ is valid
iff it is provable, iff Pr(ﬁ) is true in the standard model, iff ¢y A Dix — Pr(ﬁ) is
valid.

44 A stronger result is Theorem 5.6.3 below.

45i e. over the vocabulary {0,s, +, x }
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is true (in the standard model) iff the formula v — 4 is valid. By Theorem
2.6.1 the set of true second order formulas of arithmetic is not second order
definable. Thus the set of valid formulas of the form v — 1) is not second
order definable by a second order arithmetic formula. Since the formulas
of the form v — 1 are effectively recognizable, it follows that the set of all
valid second order formulas is also not definable by an arithmetic second
order formula. [ |

Though second order logic does not have a complete deductive calculus,
it does have sound deductive calculi that are logically natural, powerful,
of metamathematical interest, and suitable for the formalization of much
of mathematics, of computer science, and of cognitive science. Moreover,
these formalisms satisfy important syntactic properties*® which permit a
natural adaptation to these formalisms of methods of automated theorem
proving [Andrews et al., 1984].

The expressive power of second order logic stems from the standard
interpretation of the second order quantifiers as ranging over all relations
and functions over the structure in hand. It is not surprising that this range
cannot be enforced by a deductive formalism, since each such formalism,
being countable, can distinguish (implicitly or explicitly) only between a
countable number of functions and relations (recall the Downward Skolem-
Léwenheim Theorem).*7

A natural formalism Ly for the relational variant of second order logic
uses the usual axioms for first order logic, with quantifier rules applying
to relational variables as well as individual variables (we give a precise
formulation momentarily), with the stipulation that the range of relation-
variables includes at least all the relations definable by the formulas of the
language. This stipulation is a form of the Comprehension Principle of Set
Theory, and is formally rendered by the schema:

dRVzy...zx ( R(z1...28) © @)

where k > 0, R is a k-ary relation-variable, and ¢ is a second order formula
in which R does not occur free.*®

The formalism L5 can be spelled out within any one of the familiar proof
styles used for first order logic. A Hilbert-style calculus for Ly is obtained by
augmenting the inference rules and axiom schemas of first order logic with

%6such as normalization for natural deductions, cut-elimination for sequential proofs,

and certain forms of the subformula property; see Section 4.4)

47This plausibility argument is not a proof, of course. A related phenomenon is
Trakhtenbrot’s Theorem, that the collection of first order formulas true in all finite
structures is not RE [Trakhtenbrot, 1950; Ebbinghaus et al., 1984].

“8Note that ¢ may have free variables other than z; ...z, and need not have all of
z1 ...z free. Allowing R free in ¢ is a strong form of circular definition, and leads to
contradictions: take, e.g., k = 0 and ¢ = —R.
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the Comprehension Schema above, and quantification rules for the relation-
variables:*® the axiom schema of universal instantiation: (VR ¢) — [Q/R]ep
(arity (R) = arity(Q)), and the inference rule of universal generalization:

¥ — [Q/Rlp
Y - VR Q@ not free in ¢

A natural-deduction calculus for Ly is obtained by supplementing the
inference rules of first order logic with quantification rules for relation-
variables. Writing I' = ¢ for ‘p is derived from assumptions I'’, we have
the following rules for second order V-introduction and V-elimination:

I'= [Q/R]p

T = VRo Q not free in T

and

I'=VRyp
T'= [M.¢/Rlp
where arity(Z) = arity(R) = arity(Q), ¢ is free for R in ¢,°° and
[MZ.¢/R]p is the result of replacing every subformula R(f) of ¢ by [t/Z]4.
Note that VE conveys the Comprehension Principle.

A sequential-style calculus for Lj is defined similarly.?!

Moving on from second order to finite order logic, it is obvious how to
lift the Comprehension Principle to types of higher order. If z; ...z are
variables of types 71 ...7 respectively, 7 = (71...7%), and R is a variable
of type 7, then comprehension at type 7 is the schema

VE

dRVzy...zp (R(z1...28) © @) R not free in ¢.

We denote by L, the formalism of n order logic with comprehension for all
types of order < n, and by L, finite order logic with comprehension at all

types.

4.2 Additional set existence principles

Comprehension is a purely logical, syntax driven, set existence principle.
It encompasses all elementary set existence axioms of set theory to the
extent that they pertain to second order logic: the Empty-Set, Union,
and Separation axioms are instances of Comprehension, whereas a form

49Such a formalism is detailed, for example, in [Church, 1956, Section 50]. Note that
the axiom schema and rules, including the ones of first order logic, now apply to all
formulas in the language. Analogous axiom-schema and inference-rule should be added
for 3, unless 3 is viewed as an abbreviation for =V-.

50for both element- and relation-variables, in the usual sense

51See for example [Takeuti, 1975; Miller et al., 1991]. A resolution-style calculus for
higher order Horn clauses can be found in [Miller, 1993].
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of Pairing is present in the syntax of Lj, which has relation-variables for
any finite arity. The Power-Set axiom is outside the scope of second order
logic, since it collapses the entire type hierarchy into a first order theory.
However, in finite order logic we do have a weak form of the Power-Set
Principle: if X is a set of order &, then the power-set of X is a legitimate set
of order k+1, since by Comprehension we have 3PVY (P(Y) <Y C X).
The Axiom of Infinity is orthogonal to finite order logic, since the latter is
a formalism for all structures, including finite ones.

A set-existence principle of interest is Choice, which in L, can be for-

mulated as the single axiom:5?

VD (Vz3y D(z,y) — IR?*Vz3ly ( R(z,y) A D(z,v))
Choice can be lifted to arbitrary types: Choice for types o, 7 reads:>3
vD(o7) (Ve’3y" D(z,y) — JR(57) Yo 3tyT R(z,y) A D(z,y)).

For types (¢,0), with ¢ = (o1 ...0,), we can reformulate this axiom as a
principle of Collection [Hilbert and Ackermann, 1928, Section IV.1]:

vD(49) (Ve'Iy® D(z,y) — Jz(9) Ve’ D(z, 2z) ),
where
D(e,2) Zar 37 (Vug* .. ue" (y(i@) o2(2, @) A Diz,5)).

This axiom gives rise to a Collection Schema at lower orders. In particular,
for o = (¢) we get a schema of choice from objects to sets, in second order
(not third order) logic:

VedY ¢[z,Y] — 3Z Veo(z, Z;],

where plz, Z;] is ¢[z,Y], with every subformula Y () replaced by Z(z,1).
Of some interest are variants of the Choice principles above, such as the
schema of Dependent Choice and Generalized Dependent Choice (see e.g.
[Kreisel, 1968; Feferman, 1977]).

523! abbreviates ‘there is a unique’: Iy =gr Ty (¥ AVz([z/ylY = z=y)). There
are alternative formulations, all equivalent by the use of weak forms of Comprehension.
[Hilbert and Ackermann, 1928] gives the following schema, which states that for every
binary relation D there is a function R that acts as a choice (partial) function on the
domain of D: VD3R (Vz,y, z (R(z,y) A R(z,2z) > y=z) AVz (Jy D(z,y) — Jy( R(z,y) A
D(z,y))). The following form states that every appropriate binary D contains a
choice function: VD (Vz3y D(z,y) — IR? (VzIly( R(z,y) A D(z,y)) A Vz,y (R(z,y) —
D(z,1)))-

53Here equality for type 7, which is used in spelling out Jy”, can be defined by
recurrence on T from equality at type ¢.
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Another set-existence principle is Fraenkel’s schema of Replacement,
which states that the image of a set under a class-function is a set. In
the context of second and finite order logic, class-functions are admitted as
relations (by Comprehension), and Replacement is therefore deducible.

Other set-existence principles in set theory, such as high-cardinal ax-
ioms, GCH, the existence of measurable cardinals, the diamond principle,
or the axiom of determinacy, can be formulated in second order logic as
statements about sufficiently large structures, but these principles are in-
creasingly alien to the spirit of finite order logic.

4.3 Constructive finite order logics

At first blush, constructive (intuitionistic) finite order logic might look
like a dubious hybrid: on the one hand one weakens even propositional
rules to meet the demands of a restrictively constructive ontology, while on
the other hand one brings in higher order quantification, whose ontology
is problematic even classically. However, the combination of constructive
logic and higher order quantification is conceptually natural, because higher
order quantification does not depend on the legitimacy of the full power-set
construction (compare Section 5.4). Constructive finite order logic is in fact
a highly fecund formalism, with strong and useful ties to computing and
to programming. Perhaps the most powerful ingredient of that connection
is the close resemblance, discovered by Howard [Howard, 1980], between
typed lambda calculi and natural deduction calculi (see Section 8.2).

It is well-known that constructive first order logic is a formalism at least
as rich as classical first order logic, since the latter is interpretable in the
former.5* For instance, if ¢ is a first order formula, and ¢’ arises from ¢
by double-negating every atomic, disjunctive, and existential subformula of
©,55 then s ¢’ is provable in classical logic, and ¢ is provable in classical
logic iff ¢’ is provable in constructive logic.

Constructive (intuitionistic) variants, IL,, of the formalisms L, (2 <
n < w) are obtained from the corresponding classical proof calculi as for
first order logic. For instance, a sequential style calculus for IL; is the
same as a calculus for Lj, but with all succedents restricted to have at
most one formula. We then obtain an interpretation of Ls in ILy: for a
formula ¢ let ¢’ be defined as above (with relational existential-quantifiers
also double-negated). Then ¢« ¢ is provable in L3, and ¢ is provable in
L, iff ¢’ is provable in IL;.

The richness of constructive formalisms compared to their classical
counterparts has numerous manifestation. One striking example, for higher

54 [Kolmogorov, 1925; Gddel, 1932]; see also [Friedman, 1978; Dragalin, 1979; Leivant,
1985]; textbook expositions can be found in [Kleene, 1952, Section 81] and [Troelstra,
1973].

5516, ' = —yp for atomic ¢ (W AX) =Y AX, W—ox) =¥ =X, WVvx) =
(¢’ vx'), (Vzy) = Vzop', and (Fz¢) = —Izy’.
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order logic, was discovered by M. H. Lob [1976]. Let L3 be classical second
order propositional logic,®¢ that is, the fragment of L, in which all rela-
tions are 0-ary. It is well-known that the truth of an L formula ¢ (which
holds iff ¢ is provable in L3) is decidable by ana lgorithm that uses fairly
manageable computational resources 37 Let now IL be the 0-ary fragment
of IL;. Then provability in ILJ is undecidable altogether: indeed, there is a
reduction of provability in classical first order logic to provability in IL9.58

An interesting property of first order constructive logic is the indepen-
dence therein of the usual logical constants (—, A, V,—,V,3). That is, no
one of these constants can be defined in terms of the remaining ones, in
contrast to classical first order logic. This is no longer the case with second
order logic: Prawitz [1965] observed that all logical constants are definable
in constructive second order logic in terms of — and V we have:

false=— = VXX
e = po—
pAY = VX ((p—(—X)) - X)

PV VX ((p—=X)—=((y— X)) — X))
dze = VXVe((p—X)— X)
JdRe VXVR((¢p—X) — X).

Furthermore, the definability of — implies that constructive second or-
der logic is interpretable in minimal second order logic,®® in which the
constructive rule for negation, i.e. the schema — — ¢, is absent.

4.4 Normalization and the subformula property

A central topic of Proof Theory is normalization of natural-deductions, or
cut-elimination for sequential proofs. Normalization is the transformation
of a natural-deduction derivation into an equivalent derivation®® which is
normal, that is without any detour, where a detour is a formula which is
derived by an introduction rule, and is also the principal premise of an
elimination rule.®! For example, in a deduction of the form

56; e. the proof formalism for boolean quantified formulas.

57[Stockmeyer, 1974]; see e.g. [Hopcroft and Ullman, 1979]; the decidability of quan-
tified boolean formulas is a canonical example of a poly-space complete problem.

58 This complexity of ILg is related to the facts that there is no truth-table semantics
for which intuitionistic propositional logic is sound and complete, but there is such a
semantics with a countable set of truth values. Thus, boolean quantification in ILg may
be seen as ranging over an infinite countable set.

59 also called positive second order logic

80Derivations are equivalent if they prove the same formula from the same (open)
assumptions.

61 This definition of normal derivation suffices in the absence of V and 3.
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the displayed formula ¥ — ¢ is a detour. It can be eliminated by trans-
forming the proof above into a more direct proof of ¢:

b))

[4]
I

®

Some of the indicated occurrences of the formula ¥ may be new detour
formulas, but these are shorter than the detour formula ¥ — ¢ which has
been eliminated.

Analogously, a detour may involve a second order generalization (VI)
followed by an instantiation (VE):

I
[Q/R]e
VR
[AZ.x / Rle

This can be eliminated by a relational substitution in the derivation II:

[AZ.x/QI L
[AZ.x/R]p

However, this transformation might replace one detour by larger ones:
if a formula £ is a detour within II, then the potentially larger formula
[A\Z.x/Q]€ might be a detour within [AZ.x/Q]I.? Using a powerful combi-
natorial method due to Girard [1972], Prawitz [1972] proved that, in spite
of this difficulty, every natural-deduction derivation of Ly can be trans-
formed effectively into a normal derivation, and Martin-Lof [1973a] showed
that this hold for full finite order logic.®®

62 True, if II is normal, then no such danger exists, but this potential for blow-ups in
the complexity of detours ruins the use of syntactic size of detour formulas as a yardstick
for progress on eliminating all detours: in eliminating the implicational detour above,
1 might be a detour of the form VR1),, whose elimination would result in detours of
syntactic complexity greater than that of the original detour ¥ — ¢.

63See [Gallier, 1990] for a survey. Earlier proofs were given for the somewhat weaker
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The fact that every derivation of first order logic can be normalized
has far reaching applications, many of which are related to the subformula
property: in a normal proof II of a formula ¢, every formula is a subfor-
mule of . The notion of subformula here is modulo term-substitution; for
instance, the subformulas of Vz¢ include all formulas [t/z]p, where ¢ is a
term free for z in ¢. Consequently, formulas in a normal proof have logical
complexity bounded by the complexity of the derived formula, a useful fact
in structural analyses of proofs for metamathematical applications.

Normal derivations of Ly also have a subformula property, but the no-
tion of a subformula is again modulo substitutions, which this time applies
to second order quantifiers as well: the subformulas of VR ¢ include all
formulas of the form [AZY/R]y, where ¢ is free for R in ¢. Thus, the logi-
cal complexity of formulas in a normal proof is no longer bounded by the
complexity of the derived formula, and the subformula property for second
order logic has limited metamathematical applications.5*

5 Ontology
5.1 The gulf between first order and second order logic

First order logic has important properties lacking of second order logic. We
enumerate in this section a few of them, before considering some founda-
tional consequences of these differences.

1. The set of valid first order sentences is recursively enumerable, whereas
the set of valid second order sentences is not definable in second or-
der arithmetic (Theorem 4.1.1), nor even in finite order arithmetic
(Theorem 5.6.3).

2. Alogic L is compact if a set T’ of formulas has a model whenever each
finite subset of I' has a model. First order logic is compact, whereas
second order logic is not: Let T' consist of VzN[z] and of all formulas
c## for n > 0. Then every finite I'g C T is true in the structure A%,
expanded with an interpretation of ¢ as a sufficiently large natural
number. But I' has no model.

3. A logic L has the Downward Skolem-Lowenheim Property if every
countable set of formulas that has an infinite model has a countable
model. First order logic has this property, but second order logic

Normal Form Theorem, which states that every provable formula has a normal proof.
Tait proved this property for second order logic [Tait, 1966], and Takahashi [1967] and
Prawitz [1968] independently proved it for full finite order logic. These proofs use a
model theoretic method of ‘partial valuation’ due to Schiitte [1960a).

64 This is less true for certain fragments of second order logic, in which the complexity
of substituiied formulas can be effectively controlled [Nadathur and Miller, 1990; Miller
et al., 1991].
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does not: the sentence —(o¢y,) (see Section 2.2) has a model, but no
countable model.

4. Alogic L has the Upward Skolem-Léwenheim Property if every count-
able set of formulas that has an infinite countable model has arbitrar-
ily large models. First order logic has this property, but second order
logic does not: the sentence o<y, has an infinite countable model,
but no uncountable model.

5. A generalized form of the downward Skolem-Lowenheim, which ap-
plies to any logic L, is as follows: there is a function F on the cardinals
such that, if L has a model of size > x, then it has a model of size
k' < F(k). The proof of the Downward Skolem-Léwenheim prop-
erty for first order logic gives F(x) = k + Ng. For second order logic
even the function F(k) =g4r the x’th inaccessible cardinal (or even the
k’th measurable cardinal, assuming these cardinals exist) will not do
[Barwise, 1972, Theorem 2.1].

6. First order logic satisfies Beth’s definability property,5® but second
(and higher) order logic does not. A logic L has the definability
property if each implicitly definable relation is explicitly definable, in
the following sense. Suppose V is a vocabulary, and V' = V U{R},
where R is a fresh relational identifier. Suppose I' is a V’'-theory,
so that every V-structure can be expanded into a model of T' in at
most one way®®; then there is a V-formula v that is coextensional
with R in every V'-structure. The failure of the definability property
for second order logic is, again, a consequence of the second order
characterization of the natural numbers by the formula ¢, (Section
2.3):57 let V = {0, s}, and choose A C N which is not second order
definable (there must be one, since there are only coutably many
explicit definitions); let T' consist of ¢y, all formulas R(7) for n € A4,
and all formulas —R(#) for n ¢ A. If a V-structure S is expanded to
a model of ' then S |E ¢y, and is therefore standard, and we must
have RS = A.

7. The unification problem is decidable for first order logic [Robinson,
1965)], but not for second order logic [Amiot, 1990].58

8. An important theorem of Model Theory (for first order logic), which
is directly related to first order expressiveness, is Fraissé’s Theorem.

65See e.g. [Chang and Keisler, 1973; Hodges, 1993; Ebbinghaus et al., 1984]).

66 Put differently, every two models of I that have the same universe and same inter-
pretation for the constants in V', must have the same interpretation for R.

67The argument seems to have been part of the folklore; it can also be found in
[Shapiro, 1991, Section 6.6.3]. [Shapiro, 1991] also observes that the definability property
does hold for second order logic for I" finite: let ¢ be the conjunction of the formulas in
T, with R replaced by a variable R of the same arity, and let v[€] =ar IR(¢ A R(Z)).

68 The latter result is based on the undecidability of the second order term unication
problem, proved in [Goldfarb, 1981].
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It states, roughly, that a property of models is definable by a first
order formula iff it is also recognized by a computation with a finite
number of alternations between existential (nondeterministic) and
universal (co-nondeterministic) guesses. A related theorem of Keisler
states that a property of models is definable by a first order formula
iff both it and its negation are preserved under isomorphisms and
the formation of ultraproducts. Thus, any second order formula that
exceeds the expressive power of first order logic, such as ¥, defines
a property of models that cannot be recognized by computations as
above, and is not preserved under ultrapowers.%°

9. First order logic satisfies a 0-1 law: if V is a vocabulary without
individual constants, let ny be the number of non-isomorphic V-
structures, and, for a first order V-forumla ¢, let ny(p) be the
number of non-isomorphic V-structures in which ¢ is true. Then
w(p) =ar limy 0 m;_(V(p) exists, and is equal to 0 or to 1.7° Clearly,
second order logic does not have this property, since there is a second
order formula which is true of a finite structure iff it has an even
number of elements.”

5.2 Lindstrom’s and Quine’s tests

Is second order logic truly a logicI' On a technical level the answer is
trivially positive. From a philosophical-ontological angle the answer is less
clear.

From a model-theoretic viewpoint second order logic is merely one of
many possible logics. The syntax of a logic has logical and non-logical con-
stants. The semantics of a logic has a collection of possible interpretations
(models, structures), which includes an interpretation-dependent assign-
ment of meaning to the non-logical constants, and an invariant assignment
of meaning to the logical constants. For example, in first order logic the
logical constants are interpreted uniformly in all structures, whereas the
vocabulary identifiers get specific interpretations in each structure. Sim-
ilarly, logic with a quantifier U = ‘there exist uncountably many’ has U
interpreted as intended in all structures. Second order logic is, then, one

69See e.g. [Chang and Keisler, 1973; Hodges, 1993] for detailed proofs of the Fraissé
and Keisler Theorems; Van Benthem and Doets [Benthem and Doets, 1983] have a
pleasant and simplified presentation. In their original forms, common in expositions of
Model Theory, these theorems are stated as characterizations of elementary equivalence.

70This theorem was discovered independently by Glebskii et al. [Glebskii et al., 1969]

and Fagin [Fagin, 1976]. It fails in the presence of constants: if ¢ is R(c,c) (R a

binary relation constant) then u(yp) = % A survey of 0-1 laws for various logics is

[Compton, 1988]; some more recent results can be found in [Spencer and Shelah, 1987;
Kolaitis and Vardi, 1987; Kolaitis and Vardi, 1990; Kolaitis and Vardi, 1992; Spencer,
1993].

"L However, see [Kolaitis and Vardi, 1992] for cases of second order formulas for which
the 0-1 law does hold.
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in a plethora of logics, in which the logical constants of first order logic are
augmented by quantification over relations.

However, from a philosophical viewpoint, we might wish to reserve the
term ‘logic’ to @& prior: concepts and truths, ones that do not depend on
experience and observation. Quine [1970] suggested that the demarcation
between logic and mathematicsis determined by ontological neutrality, that
is, on not assuming the existence of certain objects and structures. In
particular, if the notion of infinity is delineated by a formalism, then that
formalism is mathematical rather than logical. Quine concludes that second
order logic is a mathematical theory rather than a logic.”

A landmark theorem of Lindstrém7 states, roughly, that out of all
logics, first order logic is characterized as the maximal logic that is both
compact and satisfies the downward Skolem—Lowenheim property. From
Quine’s viewpoint, these two characteristics of first order logic are indeed
litmus tests for being a logic: compactness is the failure to distinguish
between the finite and the infinite, and downwards Skolem-Loéwenheim is
the failure to distinguish between different infinities.

Quine’s argument is corroborated by the success of second order logic
to capture directly most all mathematical practice. However, this critical
view is really an afterthought. At first sight, the mere quantification over
relations does not seem to be much of an ontological commitment. Meta-
mathematically, the notion of arbitrary sets and relations underlies already
the model theory of first order logic. Perhaps one might advocate quantifi-
cation only over sets (unary relations) as being ontologically more prudent
than quantification over relations of arbitrary arities, but this restricted
variant of second order logic already begets, as we have seen, the charac-
terization of N. David Lewis (quoted by Hazen [1989]) has argued that
even monadic third order logic is ontologically neutral, but Hazen showed
that that formalism suffices to interpret all of second order logic.

Girard has suggested”® a technical proof-theoretic criterion for a logic:
a true logic must be amenable to a cut-free sequential calculus without
axioms, which satisfies the subformula property (in the strict sense, see
Section 4.4). The underlying intuition is that neither axioms nor rules
should allow ‘communication’ between formulas other than by rules that
explicate the logical constants in isolation. This criterion is clearly related
to Quine’s ontological neutrality. Indeed, even relatively weak fragments
of second order logic fail Girard’s criterion.”

72[Tharp, 1975] concurs with Quine, [Boolos, 1975] disagrees.
73 [Lindstrdm, 1969), see [Ebbinghaus et al., 1984] for a textbook exposition.
7% Personal communication.

"5 Nonetheless, it is possibly to recover the textual subformula property for fragments
which, though logically weak, are nonetheless computationally interesting; see e.g. [Na-
dathur and Miller, 1990; Miller et al., 1991].
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5.3 Slipping from first to second order logic

In fact, the notion of ‘arbitrary relation’ is implicit already in first or-
der logic (though not in first order languages used to describe and prove
properties of particular first order structures). To say that a formula ¢ is
valid is to say that it is true in all interpretations, a statement involving
a universal quantification over universes as well as over the relations in-
terpreting the predicate letters in ¢. This point was made by Hilbert and
Ackermann already in [1928]: ‘the formalism of this [first order] calculus is
clearly not a closed system. In other words, the most basic notions of the
metamathematics of first order logic are second order.’

Moreover, there is a logical construct that seems even more ontologi-
cally benign than relational quantification, and which yields nonetheless the
full expressive power of second order logic, namely partially order quanti-
fiers. Henkin [1961] noted that the use of quantifiers in first order formulas
prevents one from expressing forms of dependence which occur naturally
in both mathematics and natural language discourse [Barwise, 1979]. For
instance, in the formula VzdyVudv ¢ there is no way to state that v de-
pends only on u. Henkin proposed an extension of first order language with
partially order quantifier-combinations, so that, for example,

Vedy
Yudv

states that for all z and u, ¢ can be made true by suitably choosing y de-
pending on the value of z, and choosing v depending on u. More generally,
we may define a partially ordered quantifier to be a triple @ = (Z, ¥, 8),
where &, i/ are tuples of variables, all distinct, and 8 is a function assigning
to each variable in ¥ a sublist of Z. If ¢ is a formula whose semantics is
defined, then the semantics of Q¢ is: for all £ one can find values for each
variable y among ¥, depending only on the values of the variables in 5(y)
(i.e. invariant with respect to changes in values of the remaining z’s), which
make @ true.

At first sight it is not at all obvious that partially ordered quantifiers
are ontologically less neutral than the usual nesting of first order quanti-
fiers. However, simple partially-ordered quantifiers suffice to characterize
the infinite structures (in contrast to Theorem 2.2.1). Namely, let

Ve Ju
n =ar Jw vy o ((z=y—u=v)Au#w)).

This formula is semantically equivalent to

Jw 3f, g Vz, y ((z=y — f(z)=9(y)) A f(z) £ w)

that is to
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3f (g Vz, y (z=y < f(z)=9(y)) AJw Vz f(z) #z ).

Since the first conjunct is equivalent to Inj[f] and the second conjunct
is equivalent to —Surj[f], it follows that # is true exactly in the infinite
structures.”®

5.4 Higher order logic as mathematics: Henkin’s
semantics

Quine’s position, that second order logic is a mathematical rather than
a logical formalism, justifies a model theory in which quantification over
relations (and functions) is a mathematical, rather than logical operation.
That is, the interpretation of higher order quantification is put on an equal
footing with the vocabulary constants, and is part of the specification of a
model rather than an invariant through all models. This semantics, which
we now describe in more detail, is due to Henkin.””

Let V be a vocabulary. A Henkin-V-prestructure H (of finite order
logic) consists of

e a non-empty universe A4;

e an interpretation in A of the V-constants; and

e for each type 7, a collection D7, where D* = A, and D("17%) C

P(D™ x ---x D).

Assignments 7 into H are defined as in the tarskian semantics (Section
3.1 above), except that if R is a variable of type 7, then we require that
n(R) € D". Semantic satisfaction of formulas, X, n |= ¢, is then defined
inductively, as usual. Thus, tarskian models of finite order logic may be
regarded as special Henkin interpretations, the ‘canonical’ interpretations,
where D™ = A, for all types 7.

A Henkin-structure of finite order logic is a Henkin-prestructure X
that is closed under definability: for each formula ¢, assignment 7 into H,
and type 7 = (T1...7%), '

76 The formula 7 is due to Ehrenfeucht (reported in [Henkin, 1961]). [Enderton, 1970]
and [Walkoe, 1970] independently showed that every Ei formula is semantically equiva-
lent to a formulain the language L{'I of first order logic augmented with partially-ordered
quantifiers. Enderton also showed that every formula of L{'I is semantically equivalent
to a Aé formula. Harel [1979] showed that for a natural modification of the semantics
of partially-order quantifiers L{'I is expressively equivalent to full second order logic,
and M. Motowski showed that expressive equivalence with full second order logic can be
obtained, alternatively, by closing the collection of partially-ordered quantifiers under
a duality operation. For detailed surveys on partially-ordered quantifiers see [Mundici,
1985] and [Krynicki and Mostowski, 1994].

77See [Henkin, 1950]. A correction to Henkin’s treatment is in [Andrews, 1972a).

"8la; ...an/x1 ... zx]n is the assignment that differs from 5 only in assigning a; ...as
to z1 ...xy, respectively.
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{de A | H, [a1...ax/z1...2k|n =} € D7,

A Henkin-V -prestructure for type o is a Henkin-V-prestructure with D"
given for the subtypes 7 of o (including o itself). Henkin-V-structures for
type o are defined analogously.

An even more squarely mathematical interpretation of higher order
quantification arises from viewing finite order logic as a syntactic vari-
ant of a first order theory of types, TT. We present this theory first
for monadic second order formulas, i.e. formulas with only unary relations.
Given a vocabulary V, let V5 be an extension of V with the relation-
constants T,, T{,), and E, of arities 1,1 and 2, respectively. 7,(z) is in-
tended to state ‘z is an individual’, T(,)(z) — ‘z is a set’, and E(z,y) —
‘z is an element of y.’

A Henkin-V-prestructure H for () determines a unique V3-structure

§ = S(H), as follows.

e The universe of S is 4 U D(*) where 4 and D{*) are the universes of
‘H for types ¢ and (¢);

e the interpretations in S of the V-constants is the same as their inter-
pretation in A, with functions (which in M are defined only over A4)
extended to arguments in D) arbitrarily;

o T, is interpreted as A4, T{,) as DU and F as €.

Each monadic V-formula ¢ can be rephrased as a first order V5-formula
©5, where ¢® is obtained from ¢ by (1) replacing each atom R(t) (R a
variable) by E(t, R); and (2) relativizing quantifiers over individuals to T,
and quantifiers over sets to T(L).79 In ¢° all variables are understood as
object-variables.

It is then easy to prove:

Lemma 5.4.1. A formula ¢ is true in H iff ¢° is true in S(H).

Thus, if ©5 is valid, then ¢ is true in all Henkin-prestructures. The
converse is not generally true: for example, 3z z=z is true in all Henkin-
prestructures (because the universe of a structure is non-empty), but Iz
(T.(z) A (z=z)) is not valid. More generally, not every VT-structure S is
S(H) for some H. Indeed, the structures S(H) have the following properties
(compare [Benthem and Doets, 1983]):

7 That is, ¢° is defined by recurrence on formulas as follows. (R(t))S = E(¢,R) (Ra
set-variable), o® = « for other atomic formulas, (—¢)5 = —(9%), (p*x9)° = (¢° *¢S) for
binary connectives %, (Yz)® = Va (T.(z) — ¢°), (Fze)® = Jz (T.(z) A ©°), (YRe)S =
VR(T(,)(R)—¢%), (3R¢)® = IR(T(,)(R) A ¢5).
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1. V-correctness: T,(c) for object-constants ¢ of V, R(zy...zx) —
/\f:1 T,(z;) for (k-ary) relation-constants R of V, and /\f:1 T.(z;)—
T.(f(£)) for (k-ary) function-constants f of V;
non-emptiness: 3z T,(z);
disjointness: T,(z) — —=T{,)(z);
inclusion: T,(z) V T(,)();
elementhood: E(z,y) — T.(z) A T(,)(y)

6. extensionality: T(,)(z) A T(,)(y) AVz (E(2,2) < E(2,y)) — 2 = y.
Lemma 5.4.2. If S has properties 1-6 above, then § = S(H) for some
Henkin-V -prestructure for H type ().

O W W N

Proof. Given S, with universe |S|, let H have D* =4¢ (T,)° as universe
of individuals, let the interpretation of the V-constants be the same as in
S (with the functions restricted to D*), and let the universe D) of sets
consist of the sets {a € D* | E°(a, s)} for s € (T(,))°. By the V-correctness
and non-emptiness properties of S, H is a Henkin-V-prestructure.

We claim that S() is isomorphic to S. Let a function j : | S| — |S(H)|
be defined by

(s if 2 € (T.)°
)= { {a€l|B%(a2)} ifa e (Ty)°

Then j is well-defined by the disjointness and inclusion conditions, it is
surjective by definition of S(H), and injective by the extensionality condi-
tion. j preserves the V-constants, T,, and T{,) by definition, and E by the
elementhood condition. [ |

Let ©; be the set of formulas listed under conditions 1-6 above. We
then have:

Lemma 5.4.3. A monadic formula ¢ is true in all Henkin-prestructures
iff ©2F¢°.
Proof. Suppose that ¢ is true in all Henkin-prestructures. Towards show-
ing Oy & ¢° assume S | ©,. Then, by Lemma 5.4.2, § = S(H) for some
Henkin-prestructure 4. By assumption we have H = ¢, and so S(H) E ¢°
(by Lemma 5.4.1), whence § | ¢5.

Conversely, suppose that ©, = %, and let H be a Henkin-prestructure.
Then S(H) |= O3, and so S(H) = ¢°, whence, by Lemma 5.4.1, H |= ¢. 1

A similar duality exists for provability:

Lemma 5.4.4. A monadic V-formula ¢ is provable in Ly iff ©° is provable
in first order logic from formulas of the form

dRVz (E(z,R) < ¢) (*)

(where R is not free in ).
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The proof is straightforward by induction on (the length of) derivations.
Combining Lemmas 5.4.3 and 5.4.4 with the Completeness Theorem for
first order logic we obtain:

Theorem 5.4.5. [Henkin]

1. A monadic second order formula ¢ is true in all Henkin-prestructures
iff ©° is provable in first order logic from ©,.

2. @ is true in all Henkin-structures iff ©° is provable in first order logic
from O3 and all formulas of the form (*).

The generalization of Theorem 5.4.5 from monadic to full second order
logic is straightforward.

5.5 Henkin completeness for full finite order logic

We now outline a more general duality, between full finite order logic and
a first order theory. Given a vocabulary V, let VT be the vocabulary
with: (1) the constants of V; (2) for each type 7 a unary relation T;; and
(3) for each type 7 = (71 ...7) a k+1-ary relation E,. To each finite
order V-formula ¢ we correspond a first order VT-formula ¢7T, as follows.
(1) replace each atomic formula R(¢; ...tx) in ¢, where R is a variable of
type 7 = (71...7%), by E;(t1...tx, R); and (2) for each type 7, relativize
quantifiers over 7 to T,.8°

Like for monadic second order formulas, a (full) Henkin-structure X
for V determines a unique V™-structure S(H). Each such structure sat-
isfies the following set ©, of formulas, analogous to ©; (except for the
inclusion condition, which cannot be stated because there are infinitely
many types): V-correctness; non-emptiness; disjointness: T, (z) — —Ty(z)
for distinct 7 and o; elementhood: for 7 = (71...7%), E-(21...28,y) —
T (y) A Tr (21) A -+ ATy (2); and extensionality: for 7 = (71...7%),
T, () AT (y) AVZ(E (Z,2) = E;(Z,y)) — 2z = y.

For a Henkin-prestructure H let S(H) be a VT-structure defined anal-
ogously to the definition above for the case where H is a prestructure for
(¢) only. Analogously to Lemma 5.4.4 we have for L,:

Lemma 5.5.1. A V-formula ¢ is provable in L, iff ¢T is provable in first
order logic from formulas of the form

AR VZ ( E(Tl___,,k)(z_f, R) — ) (R not free in ¢) (**)

80That is, (R("'l"'Tk)(tl et )T = E(ﬁ---m)(tl ...t§, R) (R a variable of type
(1 -..7)); @T = a for other atomic formulas; (—)T = —~(T); (¢ *¥)T = (pT *¢T)
for binary connectives x; (Vzp)T = Vz(T.(z) — ¢7T), (Fzp)T = Fz(T.(z) A 7),
(YR )T =VR(T+(R)— ™), (3R )T = AR(T+(R) A pT).
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Theorem 5.5.2. [Henkin]

1. A finite order formula ¢ is true in all Henkin-prestructures iff T is
provable in first order logic from ©,,.

2. Consequently, a finite order formula ¢ is true in all Henkin-structures
iff T is provable in first order logic from ©, and formulas of the form

Proof. We prove (1). Suppose ©, F T, and let H be a Henkin—pre-
structure. Then S(H) &= ©,, and therefore S(H) E ¢*. As in Lemma
5.4.1, this implies that H | ¢.

Conversely, suppose that ¢ is true in all Henkin-prestructures. Towards
showing that ©, = ¢T, let S be a model of @, and let S’ be its substruc-
ture generated by the elements of |J, (7 )°. Then, analogously to Lemma
5.4.2, §' is isomorphic to S(H) for some Henkin-prestructure . Since ¢ is
assumed true in H, it follows, as in Lemma 5.4.1, that ¢T is true in S(H),
and therefore in S’. But each quantifier in ¢7 is relativized to some T,
so ¢T is true also in §. We have shown that ©, = ¢, and so, by the
Completeness Theorem, O, F ¢T. [ |

The soundness of Ly for Henkin’s semantics can be used to establish
independence results. For instance,

Theorem 5.5.3. The principle of choice is not provable in Lo.

Proof. If Choice were a theorem of L, then every Henkin-structure would
satisfy choice. Consider the Henkin-structure S for the empty vocabulary,
with a three element universe {a, b, c}, and where the relations are exactly
the definable ones.®! Call valuations 7 and 75’ isomorphic if: (1) for all
individual variables z,y, n(z) = n(y) iff #'(z) = #'(y); and (2) for all r-ary
relation variable R and individual variables z1...z,, (n(z1)...n(z,)) €
n(R) iff (n'(z1)...7'(z,)) € #'(R). It is easy to see, by induction on ¢,
that if n and %’ are isomorphic then S, nE¢ iff S, 7 E .
In § we have Vz3dyy# z, which by Choice implies

S = 3RVz3ly R(z,y) AyFe.

If Choice were provable then, by the definition of &, this implies that for
some formula @[z, y] we have S |= Ve3ly (p[z, y|Ay# ). In particular, there
is a valuation 7 that assigns a to all individual variables in ¢ other than
y, and 0 to all relation variables, and such that S, n |= ¢. Say n(y) = b.
By the observation above we also have &, [¢/y]n E ¢, contradicting
S, n = Vedly o[z, y].52 L

81 That is, definable by second order formulas with equality.

82 A more interesting counter-example: consider the Henkin prestructure that consists
of the standard model of Peano’s Arithmetic with the first order definable relations.
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5.6 Finite order logic as a second order theory

The construction above reduces finite order logic to a first order theory,
by allowing non-canonical semantic interpretations. We can also reduce
finite order logic to a second-order theory, without allowing non-canonical
interpretations. For each type 7 = (71...7), consider the following for-
mula, expressing the representability of every relation over T, ...T,, by
an object in T:

Rep, =ar VR3s(T;(s) A

Yyi...Yk- /\Tn(yi) — (R() < E:(4,5)))

=1

To each canonical Henkin-V-prestructure  corresponds a V™-structure
R(H) which satisfies Rep, for every type 7, as well as ©,. Conversely, if
S is a VT-structure that satisfies ©, and Rep, for every type 7, then the
substructure &’ (as defined above) of & is isomorphic to R(H) for some
canonical 7. We therefore obtain:33

Theorem 5.6.1. A formula ¢ of finite order logic is valid (in the stendard
sense) iff the second order formula T is true in every model of ©, U
{Rep'r }'r a type-

For each formula ¢, the proof of Theorem 5.6.1 uses only formulas in
©,, that involve types in ¢. Let x, be the conjunction of all these formulas.
Note that x, is a II] formula. We have thus obtained:

Theorem 5.6.2. A formula ¢ of finite order logic is valid iff the X1 for-
maula x, — " is valid.

Van Benthem and Doets [1983, Section 4.3] further refine this result:
they show how x, can be replaced by a monadic II{ formula. Montague
[1965b] pointed out that Theorem 5.6.2 can be further extended to trans-
finite order logic with orders that are ordinals describable in finite order
logic.

Note that Theorem 5.6.2 refers to validity in all structures. When a
particular structure is considered, for example A/, then 3.7.1 shows that

Choice over arithmetic relations sometimes defines (hyperarithmetical) non-arithmetical
relations (see e.g. [Rogers, 1967]), so choice fails in this Henkin-structure. [Andrews,
1972b] shows that choice for any given type is not a theorem of full finite order logic,
even if the latter is augmented by the Axiom Schema of Description. The Axiom of
Description for type « states that there is a functional that for every singleton set X of
a’s as input returns the sole element of X.

83 A preliminary form of this theorem seems to be due to Hintikka [1955], which
Montague generalized in [1965b). Shapiro [1991] cites [Montague, 1965b] as an inde-
pendent source, stating that Montague attributes the result to David Kaplan. Ex-
positions are also given in [Kreisel and Krivine, 1964; Benthem and Doets, 1983;
Shapiro, 1991].
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even validity in A of II} formulas is not reduced to validity in A of i
formulas. Theorem 5.6.2 states that the truth in A/ of a finite type formula
1, i.e. the validity of the formula ¢y A Dy« — 9 (see Section 2.3), is
reducible to the validity (in all structures) of a £} formula of a totally
different nature, namely one that refers explicitly to the coding of a type
structure.

A striking consequence of Theorem 5.6.2 is:

Theorem 5.6.3. The set of (numeric codes of ) valid second order formu-
las is not definable over N in finite order logic.®*

Proof. Suppose o[z] is a finite-order formula in the vocabulary of arith-
metic, such that o[f] is true (in the standard model) iff » codes a valid
second order formula. Let x be a primitive recursive function that maps
the numeric code of a formula ¢ of finite order logic to the code of x, — ¢T.
Then, for each formula ¢ of finite order logic, ¢ is valid iff x, — o7 is valid,
i.e. iff o[ k#p] is true in the standard model. In particular, if ¢ is a finite
order formula in the vocabulary of arithmetic, then ¢ is true in the stan-
dard model iff v — ¢ is valid, i.e. iff p[k#(v — ¢)] is true in the standard
model. Thus, the finite order formula

Tlz] =ar D — o[k(impl(#v, z))],

where D is the primitive recursive definition of impl and of «, is a truth
definition over N for all finite order formulas, contradicting Tarski’s Theo-
rem 2.6.1. [ |

Thus, while the set of valid second order formulas ¢s definable by the
validity of a suitable third order formula (Section 3.7), it is not definable if
relation variables are restricted to numeric relations. This contrast is not
surprising, since second order formulas go a long way in defining higher
cardinals (2.2).

6 Restricted higher order logic

Higher order logics have a useful expressive power, but at the price of
technical difficulties and a problematic ontology. This has motivated re-
strictions of higher order logic, where each restriction attempts to preserve

84By Montague’s observation mentioned above, that set is not definable even in trans-
finite order number theory, as long as the order-ordinals are all definable in finite order
logic. It is easy to see that second order truth is definable in set theory by a IIs formula
that renders (V structures §) (S = ) (see e.g. [Boolos, 1975]). This is not a definition
over N, since the set quantifiers range here over arbitrary sets in the intended hierarchy
of sets; however, using the Levy—Montague Reflection Principle [Levy, 1960), there is an
ordinal o such that all statements above for the (countably many) second order formulas
@ are true exactly when they are true in V,. Then second order truth is definable over
N in a-order logic.
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certain forms of expressiveness, while eliminating or reducing technical or
ontological problems. These restrictions might be classified into restrictions
on the ezpressiveness, the semantics, and the proof theory, though these
three aspects are often intertwined.

6.1 Restricted expressiveness 1: Monadic second or-
der logic

Two natural language restrictions are monadic second order logic and fix-
point logic. The former is driven by syntactic form, the latter by semantics.
In monadic second order logic the only higher order variables are ones
ranging over monadic relations, i.e. sets.

Monadic first order logic is decidable [Léwenheim, 1915], and, in the ab-
sence of functions, so is monadic second order logic [Skolem, 1919; Behmann,
1922]. However, with functions present monadic second order logic is quite
complex: the definition ¢ above of N is monadic (Section 2.3). Primitive-
recursive pairing and projection functions are axiomatized by their recur-
sion equations, so it follows that the truth of a second order formula over the
standard structure of the natural numbers can be expressed by a monadic
second order formula.®® Thus, monadic second order logic is not compact,
possesses neither the Upward Skolem-Lowenheim Property nor the Beth
Definability Property, and the set of monadic second order formulas valid
in all structure is not analytical, let alone effectively enumerable.®®

Monadic second order logic also fails to satisfy the Downward Skolem-—
Lowenheim property. Our proof above that downward Skolem—Léwenheim
is not satisfied by full second order logic relies on using quantified binary-
relations to define uncountable structures. However, it is easy to define
in monadic second order logic particular classes of uncountable structures,
such as dense linear orderings with endpoints that contain their Dedekind
cuts.®” From this the failure of the Downward Skolem-Léwenheim property

85 For example, a formula ¢ = VR, where R is binary and 1 is first order, is expressed
by VX x, where x arises from 4 by replacing each subformula R(¢,t') by X(p(t,t')),
where p is the identifier for a primitive-recursive pairing function. That is, the truth of
@ over the natural numbers is expressed by the monadic second order formula

D — (VX CN)(x™),

where D is the primitive recursive definition of the functions used in i as well as for p,
and where %V is x relativized to N.

86 Moreover, monadic second order logic does not have the Craig interpolation property
[Mostowski, 1968], which both first order and full second order logic have. A logic L has
the interpolation property if for every valid L-sentence ¢ — 4 there is a sentence x, which
uses only non-logical constants that occur in both ¢ and 1, and such that ¢ — x and
x — 1 are valid. A proof of the interpolation property for first order logic can be found
in most logic textbooks, see e.g. [Ebbinghaus et al., 1984]. For second order logic the
property is trivial (see e.g. [Shapiro, 1991]): let Ry --- Ry be the vocabulary relation
identifiers that occur in ¢ but not in 1, and let x be AR; --- IRy .

87Let ¢ be ¥y Ax, where 9 is the first order formula axiomatizing dense linear orderings,
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follows as before.

In view of the similarities above between monadic and full second or-
der logics, one might wonder about the point in restricting predicates to
monadic ones. It turns out, however, that for many theories, this restric-
tion is crucial, and leads to interesting results. Notably, the full second
order theory of zero and a successor function (without additional func-
tion symbols) is essentially second order arithmetic (since the graphs of all
primitive-recursive functions are definable), but the monadic second order
theory of even two successors (i.e. the monadic second order theory of bi-
nary trees) is decidable [Rabin, 1969]. A discussion and compendium of
monadic second order theories can be found in [Gurevich, 1985].

6.2 Restricted expressiveness 2: Fixpoint logics

Because inductive definitions play particularly important roles in various
applications of higher order logic, it is natural to isolate them, and to
consider extensions of first order logic with fixpoint constructs.®

The study of proof calculi for first order logic extended with fixpoints
is implicit in the development of the theory of inductive definitions over
arbitrary structures [Moschovakis, 1974]. However, syntactic logical for-
malisms that incorporate explicitly a fixpoint operator seem to have origi-
nated independently in two areas of Theoretical Computer Science: logics
of programs and database theory. Syntactic logical formalisms that ex-
plicitly incorporate a fixpoint operator were first introduced in relation to
programming language semantics [Scott and de Bakker, 1969; Park, 1970;
Hitchcock and Park, 1973]. Consequently, the fruitful investigations of
propositional modal formalisms for reasoning about programs led to the

and x =qr VXVY (X <Y — 3z2(X <z A z2<Y)), where X <Y =4¢ V€
XVyeYae<y X<z =4 Ve€X z<z,andz<Y =4 VW€Y z<y. Thenep
has (infinite) models, e.g. [0,1] with the standard order. But ¢ has no countable model,
because a countable model of ¥ must be isomorphic to the rationals, with or without
one or both endpoints (Cantor’s Countable Order Theorem, see e.g. [Ebbinghaus et al.,
1984]), and y is false for these structures.

88 Adding fixpoint constructs to logic is somewhat different from formal theories for
inductive definitions and iterated inductive definitions, which are usually formulated
over arithmetic or analysis. These theories were initiated in [Kreisel, 1963)], and studied
extensively in the 1960’s and 1970’s; see e.g. [Buchholz et al., 1981]. If n is a natural
number, and A CN, then the collection IDy, of sets definable by n-fold iterated inductive
definitions from A, is defined by: IDy =41 ®; ID,41 =ar the collection of fixpoints of
operators AP.¢, where ¢ is a first-order formula with sets in ID, as parameters, and
P is positive in . More generally, if < is a fixed well-founded ordering, with 0 as
least element, then the collections ID,, for o represented within <, are defined using
a uniform form of the definition above, so that it can be iterated into the transfinite
without recourse to infinitely many operators on the way. Namely, each first order
formula ¢[P, Q] (of the language of arithmetic extended with the two unary predicates
P,Q), with P positive and two free variables z, a, generates a transfinite sequence ¢,
(a in the field of <) of sets, as follows. @y =ar 0; @, =ar uP. Az. [P, ¢ _,,x,a], where
® 4o =df Pp if a is the successor of b in <, and ¢, =df Un<a{n} X ¢, if a is a limit
point of <.
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study of the propositional p-calculus, that is, propositional logic enriched
with a fixpoint construct [Kozen, 1983].8°

In database theory the interest in extending first order logic with a
fixpoint operator [Chandra and Harel, 1982] evolved from the expressive
limitations of first order logic, e.g. the impossibility to define (uniformly
over all structures) the transitive closure of a binary relation, even over
finite structures [Aho and Ullman, 1979)].

Several fixpoint operators are possible of which the most important
is fixpoint for monotone first order operators; that is, one considers an
extension FOu of the language of first order logic (over a vocabulary V)
with the clause: if ¢ is a formula in which all occurrences of the k-ary
relational identifier R are positive, and ¢ = (t1...tg) is a tuple of terms,
then (uR.Az1...zx@)(t) is a formula, intended to denote the least fixpoint
of the monotone operator R — AZ.@[R] (see Section 2.7). Note that ¢
may be a formula of FOu, not necessarily a first order formula. As noted in
Section 2.7, the positive formulas yield a natural, syntactically recognized,
collection of monotone operators, which are guaranteed to have a least fixed
point.%°

One should be careful, however, in specifying the formulas to which p
is applied here. Under a weak reading, R is said to be positive in ¢ if it is
not in the negative scope of any implication or negation. Under a stronger
reading, R is, positive if it is in the negative scope of negation or implication
an even number of times. If ¢ is first order, then the two readings are
equivalent, because the two readings are identical for formulas in prenex-
disjunctive form. However, if ¢ uses p as in pR.Az. ~uS. Ay. ¢[R, 5],
(where R is negative®! in ¢ and S is positive in ¢), then the interaction
between the two fixpoints may get to be too complex to be rendered with
the weaker reading.%?

It is easy to see that the truth of number theoretic formulas is reducible

89 A finite model theorem and a decision procedure for the propositional u-calculus are
proved in [Kozen, 1988; Kozen and Parikh, 1983)], and a 0-1 law in [Blass et al., 1985].
A recent study on the scope of expressiveness of the p-calculus is [Lubarsky, 1993].

20 Other fixpoint operators include inflationary fixpoint [Gurevich and Shelah, 1986;
Leivant, 1990c] and existential fixpoints [Blass and Gurevich, 1987]. Additional variants
are mentioned in Section 8.4 below, in relation to computational complexity. Dual
notions, of co-induction and largest fixpoints, have emerged recently in programming
language theory as important in dealing with infinite objects, such as streams [Aczel
and Mendler, 1989; Milner and Tofte, 1991; Pitts, 1993].

°lthat is, in the negative scope of an odd number of implications and negations

°2However, the two readings are equivalent over finite structures, as proved by Immer-
man [1986], leading to a normal form theorem: every formula is equivalent to one with
a single occurrence of p. The first version is the one studied in [Moschovakis, 1974].
An attractive related language, Lower Predicate Calculus with Reflection (LPCR), is
presented in [Moschovakis, 1993]. A completeness theorem for an interesting fragment
of the language is in [Barwise and Moschovakis, 1978], a result improved recently by
Katherine St. John (1993, in preparation).
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to validity of FOu formulas. Let ¢, be defined like ¢, in Section 2.3,
except that N is replaced by

Z =gt pRAz.z=0V Jy.(z=sy A R(y)).

Then a formula 9 in the language of Peano’s Arithmetic is true iff the
formula ¢z A Dy« — ¥Z is valid.

From this it immediately follows that the set of valid FOu formulas is
not arithmetical (under canonical coding). °® Consequently, there is no
formal system that generates exactly the valid FOu formulas. Also, since
the standard model of arithmetic is definable in FOu, it follows that FOu
fails to be compact or to have the upward Skolem-Lowenheim property.
However, it does have the Downwards Skolem-Loéwenheim property.*

While a complete deductive system for fixpoint logic is impossible, nat-
ural formalisms do exist for it. Two salient properties of pR.¢ that are
incorporated in every such formal calculus are:

1. Closure under ARAZ.¢p, i.e.

VEZ.[uR.¢/Rlp — (WR.AE 0)(Z).

Or, as an inference rule,

[uR.p/Rle(?)

(uRAZ@)(T)

2. Minimality property: for every relation @ of the proper arity, if
[Q/Rle C @, then pRAZp C Q. This can be rendered in first or-
der logic as a schema, allowing the substitution of any first order

definable relation Az for @ above:
V& ([AZp/Blp — [3/21%) — VZ((4RAG. ¢)(Z) - )

6.3 Restricted semantics: Weak second order logic

An important semantically restricted higher order logic is weak second or-
der logic, with relation-variables ranging over finite relations, and with no
function variables. That is, a formula ¢ in the relational variant of second
order logic is f-true in a structure S (notation: S =/ @) if it is true in S
with the relation-variables ranging over finite relations.

The second order definition of the natural numbers can be amended to
weak second order logic as follows. Let e =4 {Ve s[”](m) #Z}ln>1, and
define

931n fact, the set of valid FOu formulas seems to be complete Hé, as shown in privately
communicated draft proofs by Y. Moschovakis and by K. Doets.

94 Privately communicated draft proofs by Y. Moschovakis and K. Doets.
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N'[z] =4 IR ( R(z) A Vu (R(u) — u=0V Iv R(v) Au=s(v)))

In models of I'? the property N’, with R ranging over finite sets, is true of
an element a iff a is the denotation of a numeral. Therefore the formula

903\7 Zdf Psuc N Ve Nl[m]

defines the natural numbers up to isomorphism in every model of I'¢.95

Primitive recursive functions can be referred to and defined via second
order definitions of their graphs.®® It follows that to each number theoretic
formula ¢ there corresponds a second order interpretation ¢’ of ¢, so that
¢ is true in N iff T'¢ E ¢ in weak second order logic. Therefore, the
decision problem for f-validity is not in the arithmetical hierarchy, let alone
recursively enumerable.

Also, since weak second order logic defines the natural numbers up
to isomorphism, it does not have the upwards Skolem-Loéwenheim Prop-
erty. However, weak second order logic does have the downwards Skolem-
Léwenheim Property, contrary to monadic and full second order logic.®”
Thus, a second order formula is f-valid iff it is true in all countable struc-
tures. One consequence of this is that full second order logic cannot be
interpreted in weak second order logic.9®

The downwards Skolem-Léwenheim Property of weak second order logic
also implies that the f-validity of each second order formula ¢ is reducible
to the truth in N of a second order formula ¢’ of the form VX ¢o[X] (X
ranging over all sets), where ¢, is a first order number theoretic formula.
The idea is that ¢, arrises from ¢ by interpreting each relational variable
as ranging over numeric codes of finite relations over X. Thus, the set of
f-valid second order formulas is Hi, in contrast to the set of valid second
order formulas, which is not definable even in type theory (Theorem 5.6.3).

Although weak second order theories are natural and are related to
applications of logic in the theory of computing and in artificial intelligence,
not very much has been proved about them. Two examples: the weak
second order theory of linear ordering is decidable [Laiichli, 1968], and the
weak second order theory of one function is decidable [Rabin, 1969].

®5Recall that wguc =ar Vrs(z)#0 A Vz,y (s(z) =s(y) mz=y).

®6For example, Plus(z,y,z) < 3IR.( R(z,y,2z) A Yu(R(z,0,u) & u=z) A
Yu,v ( R(z,su,sv) = R(z,u,v)) ); Times(x,y,z) « IR.( R(=,y,z) AVu(R(z,0,u) —
u=0 ) AVu,v( R(z,su,v)— Jw ( R(z,u, w) A Plus(z,w,v)) ).

°T A proof is sketched in [Monk, 1976] (pp. 489-490), where the result is attributed to
Tarski, or see [Ebbinghaus et al., 1984] exercise IX.2.7.

°8Weak second order logic is trivially interpretable in standard second orer logic,
because the notion of finiteness is second order definable (Section 2.2).
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6.4 Predicative logic: Restricted comprehension

One of the main forces that have shaped the development of twentieth
century mathematical logic was the crisis of foundations caused by the
antinomies discovered around the turn of the century.®® Several of the lead-
ing mathematicians of the time (such as Hilbert, Brouwer, and Poincaré)
called for a careful reconstruction of Mathematics on safer grounds. One
reconstructionist approach attempted to design formal calculi that would
be powerful enough to capture as much mathematical practice as possible,
while at the same time clearly avoiding the antinomies; this led to for-
malisms such as the ramified type theory of Whitehead and Russell and
the formal set theory of Zermelo and Fraenkel.1%°

A more radical reaction to the crisis of foundations argued for a recon-
struction of mathematics on foundations that are accepted, on the basis of
a critical examination, as conceptually infallible, and not merely as avoid-
ing the antinomies. One strain of the radical reconstructionist program
was Brouwer’s Intuitionism, rooted in a general critique of the notion of
‘existence’ of mathematical objects, and of the classical rules of logic that
govern reasoning about existence.!®’ However, as soon as intuitionistic
logic was formalized by Heyting, it appeared that classical logic can be
interpreted in it (see Section 4.3 above), implying that intuitionism does
not play a central role in the foundational aspect of the reconstructionist
program, notwithstanding its importance in other respects.

One is, therefore, led to focus on the other major strain of the recon-
structionist program, the predicativist program, which proposes to examine
critically not the logical rules governing reasoning about existence in gen-
eral, but rather the existence of pariiculer mathematical constructions,
notably basic existence axioms: instances of the Comprehension Schema
(Section 4.1), and instances of the axiom of choice, say in the numeric form
of choice from numbers to sets:!°? Vz3Q ¢z, Q] — IZVz ¢z, Z,]. When
referring to choice over formulas that mention set quantifiers, these set-
existence principles are circular, since the existence of the set Z is based

°9See e.g. the introduction of [Mendelson, 1964], or [Fraenkel et al., 1973, Ch. 1], for
concise and informative surveys of that crisis. [Fraenkel and Bar-Hillel, 1958, Section
1.6] contains a detailed bibliography through 1956.

100 [Whitehead and Russell, 1929; Zermelo, 1908; Zermelo, 1930; Fraenkel, 1922].

101 The notion of ‘existence’ is understood here to encompasses disjunction, since, for
example, p V q is equivalent to Iz (z = 0—p) A (z # 0—q).

102 This form easily implies the schema of choice from numbers to numbers. Both
these forms of choice follow from the general axiom stated in Section 4.2 by com-
prehension, but it is useful to consider particular instances of Choice when only
weak forms of comprehension are present. Another numeric statement that fol-
lows from the set-theoretic axiom of choice is the schema of dependent choice:
YeVRIAQ [z, R, Q] — 3Z Zy = O AVz @[z, Zz, Zpy1]. Here, as in the schema of choice
from numbers to sets, R and @ are unary, Z is binary, and Z; is defined as in Section
4.2,
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on the truth of ¢, which presumes a meaningful quantification over the
collection of all sets, including Z.

A definition of a collection C is said to be impredicative if it uses quan-
tification whose range includes C' as an element, i.e. if C' is assumed to
exist before it is defined.!®® Unrestricted impredicative definitions lead to
contradictions, as in Russell’s Paradox.1%* It is generally accepted that no
contradiction occurs when a definition is used to carve out a subset of a
given set, as formalized by the schema of Separation of Zermelo—Fraenkel
Set Theory: JzVy(y€z — ¢ A y € a), where z,a are not free in ¢;
that is, the set {y € a | ¢} is legitimate. This restrictive use of Compre-
hension is justified by the conviction that every subset of @ exists before it
is ever defined. In particular, all definitions of real numbers are legitimate,
even if they use quantification over all real numbers. An example of such
a definition is the least upper bound of a set of reals.1®

This ontology 1is, of course, anathema to the constructivist. The most
basic form of circumventing impredicative definitions is to restrict Com-
prehension to first order formulas. This restriction is of interested, for one,
due to the following:

Theorem 6.4.1. Let T be a first order theory, and let T? be the theory
in second order logic with comprehension over first order formulas, whose
azioms are those of T. Then T? is conservative over T for first order
formulas, i.e. every first order theorem of T? is a theorem of T'.

A simple proof of the theorem runs along the following lines. If ¢ is a
theorem of T2, then it has a cut-free sequential proof (see Section 3.3). It
is easy to see that if II is a cut-free proof in T? of a first-order formula,
and TI’ results from II by deleting all second order formulas, then II’ is
essentially'®® a proof of ¢ in T.'°7 An extension of this will be discussed

103 The term impredicative is due to Poincaré [1910].

104 suppose that C is the collection of all sets which fail to be elements of themselves; if
C were a legitimate set, then it is defined in terms of quantification whose range include
C, leading to the contradictory equivalence C € C & C ¢ C.

105Fach real can be identified with the Dedekind cut that defines it. Then, the Lu.b.
b of a bounded set A of reals is defined as {r € Q | (Ja € 4)(r € a) }, i.e. one uses
Comprehension: b Vr € Q(r €b > (Ja € A)(r € a) ).

108 Depending on the exact formulation of the sequential calculus, I1’ may need to be
slightly repaired to yield a correct proof

107 [Fraenkel et al., 1973] (p. 132 fn. 2) attributes this use of cut-free proofs to Paul
Cohen. A proof theoretic proof that does not depend on cut elimination runs as follows.
(See [Troelstra, 1973] for details, for the case of first order arithmetic and the schema
of induction.) Suppose A is a proof in T? of a first order formula . Then A can
use only finitely many instances of comprehension, for formulas x; ...X,, say. A can
then be converted into a correct first order proof A’, by interpreting each second order
quantifier as ranging over the sets defined by substitution instances of x; ...x,,. Each
formula in A is thus converted into a first order formula, the interpretation of the
comprehension schema is provable in T', and the derived formula % is unchanged under
the interpretation, concluding the proof. Yet another, model theoretic proof, which is
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in Section 7.1 below (Theorem 7.1.1).

Theorem 6.4.2. Let T? be as above. Then every theorem of T? can be
proved using comprehension for universal first order formulas only.*%8

Proof. We show, by induction on the formula ¢, that each instance of
comprehension for first order formulas, IRVZ (R(Z) < ¢), is provable using
comprehension for universal formulas only. It suffices to treat formulas in
which the only logical constants are A, = and V. If ¢ is quantifier free
then it is a special case of a universal formula, and the theorem holds
trivially. If ¢ is of the form ¢y A ¢, then, by induction assumption, there
are relations R, Ry that are co-extensional with ¢, and ¢4, respectively.
Applying the schema above to the formula Ro(Z) A R1(Z) for ¢, we obtain
the desired R. If ¢ is of the form —¢, the proof is similar. Finally, suppose
@ is of the form Vyg,. Then, by induction assumption, there is a relation
Ro(Z,y) coextensional with ¢,. Using comprehension for the universal
formula VyRo (&, y), we obtain the desired relation R. [ |

The use of comprehension can be further reduced to special cases, such
as the following (which will be further refined in Section 7.2).10°

Theorem 6.4.3. Let V be a finite vocabulary, and let F,,[V] consist of the
first order V-formulas all of whose teztual subformulas have at most n free
variables. Then there is a finite number of instances of comprehension from
which all instances of comprehension for formulas in F,[V| are derivable.
Moreover, if pairing and projection functions are available in a theory
T, then comprehension is reducible in T? to a finite number of instances.

Proof. Consider the following instances of comprehension which, as in
the proof of Theorem 6.4.2, permit the derivation of comprehension for a
compound formula from comprehension for its components:

1. For every k < n, VSIRVz; ...zt ( R(Z) — -5(&))

2. For every k < n, VSo, S13RVz1 ...zt ( R(E) <« So(Z) A S1(&) )

3. For every k < n, VS3IRVz;...zi ( R(Z) & VyS(y, &) )
It remains to list finitely many instances of comprehension that imply (pos-
sibly using comprehension for compound formulas) every atomic instance
of comprehension, namely:

due in the case of set theory to [Novak, 1951; Rosse and Wang, 1950; Mostowski, 1951],
runs as follows. If ¢ is not a theorem of T, then (by the Completeness Theorem for
first order logic) there is a model of T U {—¢}. This model can be extended to a Henkin
model of T2, and so ¢ cannot be a theorem of T2?. The model theoretic proof has the
disadvantage of not providing an effective method for converting a proof in T2 into a
proofin T.

108 This theorem, as well as its proof presented here, seem to belong to the folklore of
the subject, at least for second order arithmetic.

109The idea of the proof seems to be due to von Neumann [1925]. See Section 7.2 for
an application.



Higher Order Logic 49

(2,9) < z=y ),
JRVEZ( R(Z) < Q(& ) ) for every relation constant Q of V;
IFVE, y ( F(Z,y) <
For every ¢, k, where ¢ < k < n,
VQ*IRE ( R(z1...%izip1 ... Tk)
o Q(@1... i1, Biq1, iy Biga, ... Bk) ).

8. For every k < n, VQ*3AR*Vz, ...z ( R(z3...2%) « Q(z1...2k) ).

If an injective pairing function (-,-) is present, then coding of tuples of
all arities becomes available, and it suffices to have the instances above for
k = 3, provided we add an instance of comprehension that permits going
back and forth between pairs and coded pairs:

dRVz,y( R
R(z

f(#)=y ), for every function constant f of V;

N o

VQ3IRVz, y(R((z,y)) < Q(=z,y) )
and VR3IQVz,y(R((z,y)) < Q(z,y))

Since Comprehension restricted to first order formulas is conservative over
first order logic (Theorem 6.4.1), this restriction is a rather extreme mea-
sure for avoiding impredicativity. However, the underlying idea of this
restriction can be further iterated. We stipulate that relations fall into
levels, with the base level consisting of those relations whose definition in-
volves no relational quantification, i.e. first order definable relations. The
next level consists of sets whose definition may use quantification over sets
of the base level, and so on. This eliminates circularity, since in a set
S = {n | VX @}, if the set-variable X ranges over sets of level k, then that
range excludes S, since level(S) > k.

The idea of stratifying abstraction into levels goes back to the Ramified
Type Theory of [Russell, 1908; Whitehead and Russell, 1929], whose pur-
pose was precisely to circumvent the antinomies of Naive Set Theory.}1° Tt
is present in many mathematical, logical and philosophical development,
notably in the predicative development of Analysis (see below) and of Set
Theory'!!. Let us outline the resulting formalisms.

The simplest manifestation of the idea of stratifying properties can be
found in a predicative variant of second order logic, (finitely) ramified sec-
ond order logic [Church, 1956]. One posits variables ‘{R* for k-ary relations
of level £. The intended semantics is defined inductively, and is intertwined
with the syntax of the language. Given a V-structure & with universe U,
let £tU* consist of the relations X C U* definable by a formula in which
all variables are of level < £, where ™R’ (m < £) are interpreted as ranging
over ™U’. We say that a formula ¢ of predicative second order logic is

1105ee [Hazen, 1983] for a survey of ramified type theories.
1115¢e e.g. [Quine, 1937; Quine, 1951; Wang, 1954; Wang, 1962]
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true in a structure S if it is true in S when variables ‘R*

ranging over {U*.

Defining a ramified form of finite order logic is slightly more delicate,
and requires that we intertwine levels with the types themselves. The types
are defined as follows: (¢, 0) is a type of level 0 (the type of individuals);
if 71...7, are types, of levels ¢;...4, respectively (n > 0), and if £ >
£i,... 4y, then ((11...72),£) is a type, of level £.112 The idea is that the
collective reference to all objects of a certain level £ is of level > £, just as
is the case for quantification over such a collection. For each leveled type
7 we posit an unbounded supply of variables R”, intended to range over
objects of type 7. The level of a formula ¢ is now defined to be the smallest
number larger than all levels of bound variables in ¢, and > the levels of
the free variables therein.

are interpreted as

The construction of levels can be further extended into transfinite ordi-
nals, by taking at limit ordinals £ the union over lower levels: the leveled
type (7, €) is the union of (7, £) with £ < £&. However, the predicative nature
of the ordinals used becomes an issue, and the purely logical nature of the
language and its intended interpretation are increasingly in question. On
the other hand, on conceptual grounds it is hard to defend stopping the
ramified type hierarchy at any particular level. We comment further about
this uneasy balance in Section 7.2 below.

An interesting issue is the ontological status and practical interest of
ramified higher order logics. While some philosophers have argued for
the importance of these formalisms, others have noted that, for all its
technical machinery, ramified higher order logic is no stronger that plain
first order logic in differentiating between structures:''® if S and Q are
two V-structures that satisfy the same first order sentences (where V is
a given vocabulary), then they satisfy the same V-sentences of ramified
finite order logic. Notwithstanding this similarity, the expressive power of
even low levels of ramified second order logic is far greater than that of
first order logic; consequently, the ramified second order theories of certain
structures are more complex than the corresponding first order theories.

An important case in hand are systems for Predicative Analysis (Section
7.3), based on the ramified second order theory of the natural numbers. In
particular, a truth definition for first order arithmetic can be obtained by
using quantification over first order definable relations (i.e. the lowest level

1127y particular, we have the propositional types ((),£) for all £ > 0.

113 Among the promoters of ramified higher order logic are Hacking and Hazen [Hacking,
1979; Hazen, 1983; Hazen, 1985]. The following observation is due to Sundholm [1981]:
it follows from the fact that ramified higher order logic satisfies the conditions of Lind-
strom’s Theorem (Section 5.2), namely compactness and Downward Skolem-Léwenheim,
by work of Leblanc [1976)], and is therefore equivalent in the sense considered to first
order logic.
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in the ramified hierarchy of relations).’’* Another interesting example of
the expressive power of ramified higher order logic over particular structures
is the interpretability of Robinson’s Arithmetic (an undecidable theory) in
level 2 ramified second order theory of dense linear orders [Hazen, 1992].
This ought to be contrasted with the first order theory of dense linear
orders, which is decidable.

7 Mathematical practice

Mathematics is replete with second order notions and images. These can
often be contorted into first order molds, but at considerable costs, con-
ceptual as well as technical. Jon Barwise referred to the gulf between first
order logic and mathematical practice in these words: ‘ds logicians, we do
our subject a disservice by convincing others that logic is first order, and
then convincing them that almost none of the concepts of modern mathe-
matics can really be captured in first order logic’ [Barwise, 1985]. A de-
tailed compendium of even the more important higher order constructions
in mathematical practice is well beyond the scope of this survey. Instead,
we propose to consider the general issue of second order axioms versus first
order schemas for principles such as Induction and Replacement. We then
briefly comment on second order aspects of set theory and analysis, and
finally we describe the speed up of proofs by use of higher order means. We
shall not consider the many important uses of higher order constructs in
various other fields, such as Geometry, Algebra, Topology, and Recursive
Function Theory.

7.1 Second order axioms vs. first order schemas

Several central mathematical principles which are inherently second order
are commonly approximated in first order logic by axiom schemas, i.e. by
templates for an infinite collection of formulas. Two important examples

114 This is analogous to the construction of truth definitions in Section 2.6. We can
state that a set T’ contains a pair (#, =), where ¢ is in prenex-disjunctive normal form,
only if ¢ is true under the valuation coded by z:

70[T] = VYu,v,2(T(eg(u,v),z) — val(u,z)=val(v,z))
AVu,v,z(T(—eq(u,v),z) — wval(u,z)Fval(v,x))
AVYu,v,z (T (disj(u,v),z) — T(u,z)VvT(v,z))
AYu,v,z (T(conj(u,v),z) — T(u,z)AT(v,x))
AVu,v,z (T(univ(u,v),z) — VnT(u,inst(z,v,n)))
AVYu,v,z (T (exst(u,v),z) — InT(u,inst(x,v,n)))
where conj and exst are additional primitive recursive functions that code the con-
junction and existential quantification operations. Now, a prenex-disjunctive normal

formula ¢ is true iff 3T (7{[T] A V=T (#p,x)), where the existential quantifier ranges
over arithmetic predicates.
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are the Induction Schema in first order arithmetic, and the Replacement
Schema in set theory.

The schema of induction, ¢[0] A (Vu ¢[u] — ¢[s(u)] ) — Ve, is implied,
using comprehension (for ¢), by the second order formula VzVR R(0) A
(Vu R(u) — R(s(u))) — R(z), i.e. from Vz N[z].}'® In first order ax-
iomatizations of arithmetic, such as Peano’s Arithmetic (PA), the single
second order axiom Vz N[z] is replaced by all (or some) of its first order
specializations. Clearly, this is not an ideal rendition of V& N[z], which is
the intended statement. One believes in the correctness of all instances of
induction because one believes in the second order axiom, not on the ba-
sis of an examination of its individual instances. Moreover, the rendition
of induction by a schema is sensitive to variation in the language: as the
language expands, so does the collection of instances of induction.®

Related observations apply to the principle of transfinite induction over
well-founded relations. The well-foundedness of a binary relation R is ex-
pressed by

WFR] =ar VX ((32X(2)) — (F2(X(2) AVy(R(y,2) > ~X(y))))

Taking the contrapositive of the scope of VX, and using comprehension for
X = —Q, we obtain transfinite induction over R:

TIR] =& YQ (V2 (Vy ((RE(y,2) = Q(y)) — Q(2))) — V2 Q(2).

In first order arithmetic neither WF[R] nor TI[R] can be even expressed
directly. Indeed, when one says that PA proves transfinite induction for
a numeric relation R, one means that every specialization of TJ[R] with a
first order formula,

TIR,¢] =ar (Vz(Vy((B(y,2)—¢ly]) — ¢lz])) — Yz p2].

is provable.

Our second example of a schema is Replacement. The common Zermelo—
Fraenkel axiomatization of Set Theory has a finite number of axioms, plus
the Replacement Schema (due to Fraenkel): for each (first order) formula
¢ in the language,''”

(Ve € yA'z ¢z, 2]) — Fw(Ve € y) (32 € w) p[z, 2],

that is, if ¢ defines the graph of a class F, whose restriction to a set y is a
univalent mapping, then F maps y to a set w.

115 ,[t] abbreviates here [t/z]w, the result of simultaneously substituting ¢ for all free
occurrences of z in .

116 These and related issues are discussed in [Kreisel, 1967].

17We write p[t, s] for [t, s/z, y]w, where x,y are some distinct variables



Higher Order Logic 53

The practical interest in theories such as Peano’s arithmetic and ZFC
is their axiomatizability by a finite number of axioms and schemas. Thus,
they are finitely axiomatizable as soon as second order quantification is
allowed, namely:

Theorem 7.1.1. Let T be a first order theory aziomatized by azioms
aj...ax, and by the first order instances of an aziom schema o[p].11® Let
T? be the theory, in second order logic with comprehension for first order
formulas, with the finitely many azioms a; ..., and YRo[R]. Then T2
is conservative over T.11°

The proof is straightforward, using Theorem 6.4.1. Special cases of this
theorem are: second order arithmetic with the second order induction ax-
iom and first order (respectively, recursive) comprehension is conservative
over first order arithmetic (respectively, primitive recursive arithmetic).
Similarly, ZF based on second order logic, with Replacement formulated as
a second order axiom and with comprehension for first order formulas, is
conservative over ZF.

This should be contrasted with the non-finite axiomatizability of the
corresponding first order theories:

Lemma 7.1.2. [Kreisel, 1968; Kreisel and Levy, 1968] Let T be a first
order theory that proves cut-elimination for first order logic (vie a sust-
able coding of the syntaz), has for each k a provable truth definition for all
formulas of complexity < k, and proves induction for all formulas in the
language (in an interpreted form, at least). Then T is not finitely azioma-
tizable.

Proof Sketch. Let ¢y .. .o be formulas in the vocabulary in hand. Given
a formula ¢, let n(yp) be the complexity of of (a1 A--- Aar) — . Since
cut-elimination is provable (via coding) in T, T also proves that if (a1 A
-+- Aag) — ¢ is provable, then it has a proof II in which all formulas are
of complexity < n(¢). For such formulas T has a truth definition. Using
induction with respect to the length of II, for that truth definition, T" then
proves that all formulas ¢ deduced from a;...a; are true. Thus, if T
were axiomatized by «aj ...ag, then T would have proved reflection for T,
contradicting Godel’s Incompleteness Theorem. [ |

It can be shown that both PA and ZF satisfy the conditions of the
Lemma, and are therefore not finitely axiomatizable as first order the-

118 Here ¢ is the syntactic parameter for the substituted formula.

119The theorem generalizes trivially to any number of schemas, and also to the case
where schemas are restricted to a particular class F of first order formulas (the same
for all schemas), such as the existential formulas, and with comprehension in T2 also
restricted to F.
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ories.'?® The proof above also shows that if one takes second order arith-
metic with first order comprehension but with induction as a schema, for
all formulas in the language, then the resulting theory is not conservative
over first order arithmetic. Similarly, second order ZF with the induction
schema (i.e. transfinite induction up to w) for all second order formulas is
not conservative over ZF.

7.2 Higher order aspects of set theory: from higher
order to first order and back

The primacy of first order logic in foundational studies is well justified by
central properties of first order logic such as completeness and the first order
axiomatizability of most all classes of algebraic structures. However, these
qualities are of limited relevance to the mathematics of canonical struc-
tures such as the natural numbers. On the one hand, there is no complete
axiomatization even for the quantifier-free number-theoretic formulas true
in the standard model. On the other hand, even the mathematics of nat-
ural numbers makes extensive uses of higher order objects, as in Analytic
Number Theory.'?! One wonders, then, whether the widespread insistence
on avoiding direct reference to higher order constructs is justified.

One source of that insistence is, paradoxically, the very acceptance
of higher order constructs as a generic process that can be iterated. White-
head and Russell, in their renowned Principia Mathematicae [Whitehead
and Russell, 1929], developed much of the Mathematics of their time on the
basis of a variant of finite order logic, Ramified Type Theory, in an attempt
to reduce Mathematics to Logic.'??> One problem in formalizing Mathe-
matics in Ramified Type Theory is that the underlying concepts may be
viewed as begging further extension. By iterating the power-set construc-
tion to transfinite levels, one gets the cumulative universe of sets: Taking
a basic universe Vy of basic, ‘uninterpreted’, objects, let Va1 =ar P(Va)
for any ordinal ¢, and Vi =g¢ Ug<a, for limit ordinals A. But this itera-

120The non-finite axiomatizability of first order arithmetic was proved in [Ryll-
Nardzewski, 1953; Rabin, 1961]. An argument somewhat analogous to the above was
used in [Levy, 1960] to show that the schema of Replacement cannot be axiomatized by
a finite number of its instances. Indeed, if ¢ is a given formula in the language of ZF,
then ZF proves, using a suitable instance of Replacement, that there is a large enough
set X such that ¢ is true iff X (i.e. o relativized to X) is true, see [Levy, 1960]. It
follows that ZF proves the consistency of any finitely axiomatizable subtheory of ZF.
See e.g. [Cohen, 1966, Section I1.8] for an exposition.

121 Prom the discussion in Section 7.3 below, it follows that many of the methods of
Analytic Number Theories can be re-coded within Peano’s Arithmetic; however, not all
methods are amenable to such coding, and, moreover, the coding is done at a consider-
able cost to expository naturalness.

12215 the introduction to Principia they claim to have reduced mathematical axioms
to logical principles, saying: ‘What were formerly taken, tacitly or explicitly, as axioms,
are either unnecessary or demonstrable’ ([Whitehead and Russell, 1929, p. v], quoted
in [Andrews, 1986]).
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tion is tantamount to viewing the power-set operation as a mathematical,
rather than a logical operation; in particular, it cannot be captured in the
syntax.'?® It is then natural and technically attractive to amalgamate all
levels, leading to various first order theories for the universe U, .1 ordinalVe
with the membership relation, of which ZF is the best known. Thus, the
primacy of first order logic as a logical calculus and the adoption of set the-
ory as a universal formalization of mathematics are, conceptually as well
as historically, intertwined.

It is telling, therefore, that second order versions of ZF have re-emerged
as being of interest both as frameworks for formalizing set theory and other
parts of mathematics, and as relevant to the meta-theory of set theory
itself.'2* One motivation for these extensions is the fundamental conflict
between the importance of comprehension in our intuitive understanding
of the concept of set 2% and the exclusion of comprehension from ZF, so
as to avoid the set-theoretic paradoxes. The compromise achieved in ZF
is to weaken comprehension to the principle of Separation,'?® according to
which if a is a given set, and ¢[z] is a formula of the language of ZF, then
there isaset b={z € a | p}.

The main rationale of second order set theories is to permit at least
reference to arbitrary collections, even when these are of ‘unmanageable
size’. That is, the intended first order objects of these theories are sets,
and the second order sets (unary relations) then range over a broader col-
lection of ‘classes’. Every set a is also a class,'?” because by Comprehension
JA Vz (A(z) «— = € a). But some classes, such as {z | z = z}, are not sets,
and are dubbed proper classes. Because both first order and second order
objects are ‘classes of sets,’ it is customary to refer to second order exten-
sions of ZF and to related theories as theories of classes, and to use the
z € a notation ambiguously for both the first order membership relation
between sets, and for the relational application a(z) (when a is viewed as

123 However, as observed by Kreisel and Feferman (seee.g. [Feferman, 1977]), the trans-
finite iteration of the type hierarchy has barely any connection with the actual develop-
ment of mathematical analysis, which is in practice restricted to small, let alone finite,
types. Among the few exceptions is the use of transfinite types to prove the determinacy
of Borel games; see e.g. [Martin, 1975].

124 A detailed survey of these issues can be found in Section II.7 of [Fraenkel et al.,
1973].

125 A famous quote is the informal definition of a set by Cantor’s the creator of abstract
set theory: A set is a collection into a whole of definite distinct objects of our intuition
or of our thought [Cantor, 1895].

126 The Principle of Separation is often called the Subset Axiom. Zermelo’s original
phrase was Aziom der Aussonderung, literally: the axiom of singling-out. This weaken-
ing of Comprehension is a facet of the doctrine of size, according to which the paradoxes
are due to the presence of sets of ‘unmanageable size’. A more radical critique of Com-
prehension underlies the theory of semi-sets [Vopénka and Héjek, 1972].

127\More precisely, a is co-extensional with some class.
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a class).128

Among the theories of classes there are variants of second order ZF
with comprehension restricted to first order formulas, and variants with
full comprehension. To the first group belong the formalisms of von Neu-
mann [1925], Bernays [1937; 1958], Gédel [1940] and Mostowski [1939]. In
one style (e.g. [Godel, 1940]) the second order character of the theory is
masked: the theory is rephrased as a first order theory of classes, in which
the notion of a set is definable (z is a set iff z € a for some class @), and
comprehension is restricted to formulas where all quantifiers are bounded
to sets. Let us denote by GBN the theories in this group. By Theorem
6.4.1 the theories GBN are conservative over ZF. By Theorems 7.1.1 and
6.4.3 GBN are finitely axiomatizable, not only as second order theories
(capturing the schemas of subset and replacement by single axioms), but
also as first order theories (capturing comprehension by a finite number of
instances thereof).

Similar statements apply to analogous second order extensions of other
first order set theories, such as Z (= ZF without replacement), and ZFC (=
ZF plus the axiom of choice). Note that in GBN we may state the principle
of global choice, asserting the existence of a class acting as a global choice
function for all sets in the universe: ICVz (z # 0 — Ily(z,y) € C Ay €
z).129

The other main group of theories of classes, consisting of variants of
second order ZF with full comprehension, includes the theories of Wang
[1949], Quine [1951], Tarski [1981], Kelley [1955], and Morse [1965]. Let us
denote by KM the theories in this group. The KM theories are particularly
attractive for actual formalization of branches of mathematics with a strong
set theoretic component, notably of point set topology [Kelley, 1955] and
category theory. The relation of KM to ZF is analogous to the relation of
full analysis to first-order arithmetic: KM proves reflection for ZF, and is
therefore not a conservative extension thereof. An argument similar to the
proof of Lemma 7.1.2 shows that KM is not finitely axiomatizable.!3°

Higher order logic has also impacted the development of set theory
itself, notably concerning the status of strong infinity axioms. The most
important results here were inspired by the Montague-Lévy reflection prin-
ciple [Levy, 1960], which posits that if a formula ¢ is true in the universe
of sets, then ¢ must be true when relativized to some universe in the cu-

128 A1 exceptionis [Bernays, 1958], where the latter relation is denoted zna.

129 This axiom is conservative over [GBN + Choice] for first order formulas [Felgner,
1971], but is not provable in it [Easton, 1964).

130Tf KM’ is a theory axiomatized by a finite number of theorems of KM, then KM
proves reflection for KM’, and so KM is not finitely axiomatizable. Reflection for KM is
provable assuming the existence of a Mahlo cardinal [Levy, 1960], but the consistency of

KM is reducible already to the consistency of ZF + there exists an inaccessible cardinal
[Fraenkel et al., 1973, p. 139].
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mulative hierarchy, that is ¢"= is true, for some cardinal a. The principle
is interiorized as an axiom schema in a very powerful extension of KM, due
to Bernays [1976].'3! Various forms of this principle imply the existence
of ever larger cardinals, including measurable cardinals, which do not seem
to have a clear justification on the basis of first order closure conditions.'32

7.3 Analysis and reductive proof theory

The ubiquitous presence of infinite constructions in Analysis, and some
early confusion about the inference rules governing them, were the main
motivations for efforts in the late 19th century to formalize Analysis, lead-
ing to the adoption of second order arithmetic as a canonical formalism, e.g.
in the influential monograph of Hilbert and Bernays [1939].13% Although
the formalization of mathematics and the discussion of formalizability were
based mostly on set theory during the middle third of the century, some lo-
gicians, notably Kreisel and Feferman, have consistently argued for a more
direct formalization, within second order arithmetic.13*

Within logic the interest in second and higher order arithmetic has been
stimulated, for one, by the emergence of recursion theory in higher types,
which is closely related to higher order arithmetic in language, methods,
and results.!3%

The study of higher order arithmetic was also stimulated by the contin-
ued interest in predicetive mathematics, whose formulation is fundamen-
tally related to second order arithmetic. The predicativist program aims
at examining the development of Analysis with predicative forms of the
principles above, or with forms that can be predicatively justified on the
basis of a metamathematical analysis. The main issues addressed are: (1)
Delineate formalisms whose predicative nature is brought out clearly, and

1315ee [Chuaqui, 1981] for a textbook development of set theory based on Bernays’s
axioms.

132 Applications of this form are in [Gloede, 1976]. The existence of measurable car-
dinals is not provable in Bernays’s theory [Solovay et al., 1978], but it is provable in a
further natural extension of the theory, allowing hyper-classes [Marshall, 1989]. Another
example linking second order logic to higher cardinals is the Hanf number of second order
logic. If L is a logic, and ¢ a sentence of L, let h(4) be the largest cardinality of a model
of 9, if such cardinality exist, and let h(L), the Hanf number of L, be the supremum of
all well-defined cardinals h(+). Thus, every sentence ¥ with a model of size h(L) must
have models of arbitrarily large size. Barwise [Barwise, 1972] showed that the Hanf
number of second order logic cannot be proved to exist without using Replacement for
a formula ¢ that uses universal quantification for all sets in the universe.

133Poincaré summarized this achievement at the 1900 Congress of Mathematicians:
‘Today there remain in analysis only integers and finite or infinite systems [=sets] of
integers ... Mathematics has been arithmetized ... We may say today that absolute
rigor has been achieved’ ([Poincaré, 1902], quoted in [Fraenkel et al., 1973, p. 14]).

1345¢e e.g. [Feferman, 1977] for a broad and informative survey of the development of
mathematical analysis in finite order logic.

1355¢e e.g. [Kechris and Moschovakis, 1977] for a survey and further references.
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classify their proof theoretic strength; (2) Reduce seemingly impredica-
tive methods to predicative ones, or otherwise justify them by predicative
means; (3) Identify those parts of Analysis which can be formalized in
various predicative calculi.

Formalisms for predicative analysis can be defined along several orga-
nizing principles, notably: (1) Ramified analysis of levels going up to some
fixed, predicatively justified ordinal; (2) Ramified analysis for levels up
to any well-ordering justified predicatively within the theory itself;!3¢ (3)
Analysis with weak comprehension, but extended with transfinite induc-
tion over predicatively justified well orderings;!3” (4) Weak set existence
principles;*3® (5) Theories of iterated comprehension;'3° and (6) Theories
of iterated inductive definitions.'%?

There are simple-to-prove, yet instructive classification results for the
proof theoretic strength of these theories; examples are the observations
that second order arithmetic with comprehension and induction for first
order (arithmetical) formulas only is conservative over Peano’s Arithmetic,
and that Zermelo’s set theory without the power set axiom is mutually
interpretable with Peano’s Arithmetic.1%!

136 Here the ‘predicative acceptability’ of a well-ordering is intertwined with the defi-
nition of the predicative formalism itself. This is achieved in Feferman’s system IR by
alternating the justification of new well-orderings with their use for transfinite induction,
leading to a closure ordinal I'y, identified independently by Schiitte. See [Feferman, 1964;
Feferman, 1968; Schiitte, 1965b; Schiitte, 1965a).

187If < is a binary relation on natural numbers, without an infinite descending chain
(i.e. if < is order-isomorphic to a countable ordinal), then transfinite induction on < is
the schema (Vz € field of <)((Vy < z¢ly]) — ¢[z]) — (Vz € field of p[z]). See [Schiitte,
1951; Schiitte, 1952; Schwichtenberg, 1977] for these theories.

138 The predicative status of set existence principles is not clear-cut, but particular
weak principles are usually viewed as predicatively obvious, notably comprehension for
arithmetic first order formulas (that is, the first level of the ramified hierarchy), and
Weak Konig’s Lemma, which states that a binary tree with arbitrarily long branches
has an infinite branch. It is easily seen that Arithmetic comprehension is equivalent to
the axiom of transfinite induction, often dubbed Bar Induction: WF[X]—-VY TI[X,Y],
where WF[X] states that X is a well founded binary relation, and TI[X,Y] is transfinite
induction over X for the unary predicate Y. (See, e.g., [Feferman, 1977, Section 6.1.5]
for a proof.)

139 or example, the theory ATRy of arithmetical transfinite recursion permits the
definition of functions and sets by recursion of an arithmetic predicate, over a well-
ordering. See e.g. [Friedman et al., 1982; Simpson, 1982a; Simpson, 1982b] for detailed
expositions. Note: (1) the principle is a schema, with arithmetic instances; (2) the
principle is an implication, of the form If the binary relation R is a well-ordering, then
transfinite recurrence over R with respect to the arithmetic formula f is allowed.

1405¢e [Buchholz et al., 1981]. Such definitions are a paradigm of predicative, bottom-
up, construction of subsets of N. Intuitionistic theories of transfinitely iterated inductive
definitions were introduced in [Kreisel, 1963]. A detailed account of such theories is in
[Buchholz et al., 1981].

141 Two predicative formalisms may have the same proof-theoretic power, as measured
by provable well-orderings, yet differ substantially in their ability to capture mathemat-
ical practice.
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The second among the three predicativist projects listed above is the
predicative justification of seemingly impredicative methods. An early and
famous example of a failed attempt of this kind is Hilbert’s Program, which
called for securing mathematics by showing, using ‘finitistic methods’ only,
that the ‘finitistic’ theorems of Analysis are true.'*? Gédel’s Incomplete-
ness Theorems imply that this goal is far too ambitious, because finitistic
mathematics cannot prove reflection even for provability of 0 =1 in fini-
tistic mathematics itself. Nonetheless, extensive proof theoretic work has
resulted in reductions of seemingly impredicative methods of Analysis to
more constructive ones.!*3

The third predicativist project is the explicit development of analysis
within predicative theories, and the calibration of the predicativity/con-
structivity level of particular mathematical results. An early example is
the development of much of analysis using only arithmetic comprehension,
by Weyl [1918].1%* Sieg notes that virtually all of the turn-of-the-century
analysis, as presented in [Hilbert and Bernays, 1939], can be formalized
already in second order arithmetic with Hi comprehension and induction
for Hi formulas [Sieg, 1990]. However, as one would expect from the re-
ductionist program outlined above, much of analysis can be carried out in
formalisms weak enough to be conservative over Peano’s Arithmetic (see
e.g. [Friedman, 1977; Friedman, 1980]). To calibrate the ‘degree of pred-
icativity’ of particular theorems one shows that a theorem is not only a
consequence of a principle of predicative analysis, but is in fact equivalent
to such a principle. This project, initiated by H. Friedman and pursued by

142Tn more technical terms: (1) formalize ‘finitistic mathematics’, i.e. the part of
mathematics which deals with concrete objects only, in particular the natural numbers.
(A related adage is the famous saying of Kronecker’s, that God has created the integers,
everything else is man’s imagination.) This is usually taken to be primitive recursive
arithmetic. (2) Prove within finitistic mathematics reflection for provability of finitistic
(i.e. quantifier free) formulas within second order arithmetic.

13 Important examples of which are: (1) A consistency proof of full classical analysis
using higher order recursive functionals defined by Bar Induction [Spector, 1962]. (2)
With respect to Hé formulas, choice for E% formulas is conservative over comprehension
for A%, and the latter is conservative over the theory of iterated inductive H%-deﬁnitions
of length up to € [Friedman, 1970; Buchholz et al., 1981]. (3) With respect to H%
formulas, choice for Ei formulas is conservative over comprehension for Ai, and the
latter is conservative over ramified analysis of levels up to g [Friedman, 1967]. Moreover,
Ai sets are definable by a natural transfinite extension of the arithmetical hierarchy
[Kleene, 1955], providing further constructive justification for them. (4) Weak Konig’s
Lemma is conservative, with respect to Hi formulas, over second order arithmetic with
recursive comprehension and E?-induction [Sieg, 1987]. Weaker or alternative versions of
the latter result have been proved since [Friedman, 1969)]. In particular, a proof theoretic
reduction of Weak Konig’s Lemma to primitive recursive arithmetic, of a general nature,
can be found in [Sieg, 1985]. Some surveys related to these are contained in [Kreisel,
1965; Krei]sel, 1968; Kreisel, 1971; Feferman, 1977; Buchholz et al., 1981; Simpson, 1985b;
Sieg, 1990].

144 An exposition of more modern parts of analysis along the same lines is [Zahn, 1978].
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S. Simpson and his students, has been known as reverse mathematics.'*® It

turns out that great many theorems of analysis are equivalent'*® to one of
four principles, which in increasing proof theoretic strength are: (1) Weak
Konig’s Lemma, (2) comprehension for arithmetic formulas, (3) arithmetic
transfinite recursion (ATR, see above), and (4) comprehension for II} for-
mulas.

A project dual to delineating the predicative nature of theorems of
analysis consists in identifying theorems about the natural numbers (and
therefore of a concrete, ‘finitistic’, nature) which are essentially impredica-
tive, i.e. which have no predicative proof.'*”

7.4 Speed-up
7.4.1 Speed-up of formalisms

Our discussions above suggest that the use of higher order logic for number
and set theories is epistemologically more honest, and methodologically
cleaner, than the more restrictive use of first order schemas. A natural
question is whether such extensions of the logic result in gain in length of
proofs. This notion of proof speed-up is quite general, but it depends on
the yardstick used to measure proofs.

First, the definition refers to proof calculi, and not to theories (set of
theorems): if 7 is a formalism that has the theorems of Fo as axioms,
then every theorem of F has a one line proof in Fg, and meaningful speed-
up over Fy is impossible. It is therefore important to restrict attention to
natural formalisms, with a suitably simple set of axiom.'*® Also, we can

145 The equivalence of ‘theorems’ to ‘axioms’ is, as noted in [Sieg, 1990), an old theme,
however. Already Dedekind showed that major theorems of analysis are equivalent to the
topological completeness of the reals [Dedekind, 1872]; also, a well-known compendium
of theorems of mathematics that are equivalent to the Axiom of Choice is [Rubin and
Rubin, 1966]. See [Simpson, 1986] for a survey of the Reverse Mathematics project.
The seminal papers of the project are [Friedman, 1975; Friedman, 1976; Steel, 1976],
and other key papers are [Friedman et al., 1982; Friedman et al., 1983; Simpson, 1984;
Simpson, 1986; Brown and Simpson, 1986).

146 The equivalences are proved within a weak base theory, in which comprehension and
induction are allowed over recursive predicates only.

147By Gédel’s Incompleteness Theorem, the consistency of second order arithmetic
is a H? sentence which cannot be proved in second order arithmetic, let alone using
predicative methods only. However, such consistency sentences are arithmetically coded
metamathematical statements, and their combinatorial (concrete) nature is not evident.
Better examples are the unprovability in ATRy of Kruskal’s Theorem about tree em-
beddings, and the unprovability of an extended form of Kruskal’s Theorem in analysis
with comprehension and induction for Hi-formulas. A detailed survey of these results
is [Simpson, 1985a). The seminal work on combinatorial statements independent of
Peano’s arithmetic is [Paris and Harrington, 1977]. Kruskal’s Theorem asserts that in
every infinite sequence of finite trees there must occur a tree within which some previous
tree in the list can be embedded. Friedman [1981] showed that neither this theorem, nor
a Hg ‘finite form’ thereof, are provable in AT Ry. The results about an extended form
of Kruskal’s Theorem are in [Friedman, 1982].

148 One usually requires that the set of axioms be finite, or generated by a finite number
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measure a proof (for the definition of speed-up) either by counting the
number of steps (lines) in it,'*® or the number of symbols. We refer to
these as the proof’s length and its size, respectively. An essential difference
between proofs’ length and size is that there can be only finitely many
proofs with a given size, but infinitely many of a given length. If ¢ is
derivable in F then we denote by pfith-(¢) (respectively, pfsz-(p)) the
smallest n such that ¢ has a proof in F of length n (respectively, size
n). If all the theorems of a formalism Fo are among the theorems of a
formalism F1, and h is a unary numeric function, then we say that F; has
a proof-length speed-up over Fo by a factor of h if there is an infinite set ®
of theorems of Fo, such that for every ¢ € ®, pfithr (@) > h(pfithz (¢)).
The definition of proof-size speed up is analogous. If there is an infinite
set ® of theorems of F such that, for some fixed n, pfithx () < n for all
@ € ®, but the values pflthy_ (¢) with ¢ € ® exceed any bound, then we
say that 71 has an unbounded proof-length speed-up over Fo.15°

The speed-up resulting from using increasingly higher order constructs
can be observed in two related yet somewhat different realms: theories for
arithmetic (more generally, theories for a particular structure, in which
the syntactic machinery can be coded), and pure logics. We review below
results for both.

7.4.2 Proof-size speed-up of higher order arithmetic

Our first and simplest setting is proof-size speed-up of k+1 order arithmetic
over k order arithmetic, with respect to first order theorems. Let PAj be
k order Peano Arithmetic (PA), that is the k order theory axiomatized by
Peano’s axioms for 0, s, + and X, and with induction and comprehension
for all formulas in the language. Our choice of logical rules matters little:
any one of the customary Hilbert-style, natural deduction, or sequential
calculi will do.

Theorem 7.4.1. Let Z,Z' be sound eztensions of PA, where Z' proves
reflection for Z. Then, for every computable (total) function h, Z' has
a proof-size speedup over Z by a factor of h. In particular, PAgr 1 has a
proof-size speedup over PAy by a factor of h.

Proof. Let H(n) =gt Y,,, M(2-1). Then H is a total recursive function,
and for every ¢, H(n) > h(c+mn) for all n > ¢. By Godel diagonalization
method!®! there is a IIS formula @[z], with one free variable x, such that

of schemas.

148 That is, the number of formulas, or annotated formulas, or sequents, depending on
the formalism in hand.

180 An analogous definition for proof size is of no interest: since there are only finitely
many formulas with proofs of size < n, there is no infinite ¢ such that pfsz]_-l(zp) <n
for all p € ®.

1615¢e e.g. [Smorynski, 1977, Section 2.2.1].
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the following equivalence (suitably coded) is provable in PA.

pln] < Vy (if H(n) computes to y then x[y,n] )
where

x[y,n] =ar @[R] has no proof in Z of size < y.

The formula ¢[n] is true for each n, for if p[#] is false, then H(n) has some
output y, and there is a Z-proof of ¢[7] of size < y. But all theorems of Z
are true, so p[fi] is true, a contradiction.

Since reflection for Z is provable in Z’, the argument above is formal-
izable in Z', i.e. Z'  Vazp. Let v, —ar ¢[n]. This is derivable in a single
step from Yz, so ¥, has a proof in Z’ of size co +n, where ¢ is a constant
uniform for all n, namely the size of the proof of Vz p[z].

Each %, is also a theorem of Z, in fact of PA: since H is total, there
is a calculation of H(n) = m for some m, which can be verified in PA.
Also, in PA it can be proved that H(n) can have at most one output. So,
reasoning in Z, if H(n) = z, then z = m. The fact that ¢[f] has no proof
of size < m is also a calculation verifiable in PA, so PA proves the r.h.s.
of the equivalence defining ¢. Since that equivalence is proved in PA, we
conclude that o[f] follows within PA. This proves ¢,,.

Finally, since 1y, is true, so is the formula x[H(n), @], i.e. ¥, has no
proof in Z of size < H(n).

We have proved that v, has a proof of size co +n in Z’, and is provable
in Z but not by any proof of size < H(n), whence by no proof of size
< h{cg + n), for all n > ¢o. This proves the theorem. [ |

Proofs of Theorem 7.4.1 can be found in [Mostowski, 1952] and [Ehren-
feucht and Mycielski, 1971]. In [Buss, 1992] a proof is given in which &
consists of the independently interesting formulas Cong (), where Cong(7)
is (a coded form of) the statement ‘PA; has no proof of 0=1 of size < n.’
In contrast to Theorem 7.4.1, the size speed-up of second order arithmetic
with arithmetic comprehension over first order arithmetic is polynomial.t5?

Note that the speed-up above is for universal formulas. For existen-
tial theorems, speedup of k+1 order arithmetic over k order arithmetic is
somewhat more tame:

Theorem 7.4.2. Let Z,Z' be sound eztensions of PA, where Z' proves
reflection for Z. For every provably recursive function h of Z', Z' has a
proof-size speed-up over Z of a factor of h, for E? theorems. 153

162 This follows from the proof of [Troelstra, 1973] for the arithmetic case of Theorem
6.4.1, mentioned in footnote there.

153 Proof sketch: Let g be a strictly increasing provably recursive function of Z’ such
that, for every s, if A is a proof in Z of an existential sentence Jyy)[y], of size < s, then
there is some m < g(s) such that ¥[m] is true. Such g exists, because Z’ proves reflection
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However, Theorem 7.4.2 does not extend to speed-up by arbitrary re-
cursive functions:

Theorem 7.4.3. Let Z be a sound extension of PA, and let Z’ prove
reflection for Z. If Z has a proof-size speed-up over PA of factor h, for E?
sentences, then h is majorized by a provably recursive function of Z'.

Proof. Let g be the function that, on input s, returns the longest quantifier
free proof of any E? sentence with a proof in Z of size < s. Then g¢ is
provably total in Z’, and g majorizes h. [ |

7.4.3 Proof-length speed-up of higher order arithmetic

The earliest statement about proof speed-up seems to have been announced
(without proof) by Gédel [1932]: for every recursive function h, PAjyq
has a proof-length speed-up over PAj by a factor of h. This has been

substantially improved recently by Buss [1992]:15*

Theorem 7.4.4. For each k, PAy,1 has an unbounded speed-up over PAy.
Moreover, the speed-up is for II9 formulas.

The formulas for which speed-up is obtained are generated as follows.
Let ¢[z] be a formula such that

o[z] < ‘p[Z] has no proof in PAj of length < &z’

is provable in PA. Then one considers the formulas ¢[7], for n > 0.

7.4.4 Speed-up of higher order logic

The speed-up results above for number theories do not translate to anal-
ogous results for logical formalisms, because those speed-ups refer to for-
mulas whose combinatorial complexity (in PA) exceeds the expressive ca-
pability of pure first order logic. Indeed, higher order logics have a more

for Z, witnesses for true E? sentences can be extracted effectively, and the number of
proofs proofs of size n as a function of n is provable in PA. If h is provably recursive in
Z', then Z'F Vz3y,z T(en,2x,z) A T(eg,U(z),y). (Here T is Kleene’s computation
predicate, U is Kleene’s primitive recursive result-extracting function, and ey and e,
are codes for algorithms for g and h, respectively.) Say the proof for the above has size
s0. Then the formula ¢,, =4 Jv T(€x,2 -7, (v)o) A T(&g, U((v)0), (v)1) has a proof
in Z' of size 36 = n+sg +c, for some constant c. (If T is represented by a formula of
PA, then the coefficient of n in sg is > 1.) Note that if v is the (unique) value for which
the matrix above is true, then (v); = g(h(2n)). But if A is a derivationin Z of ¢,,, of
size s1, then, by definition of g, v < g(s1), and so (v); = g(h(2n)) < g(s1). Since g is
strictly increasing, this implies, for all sufficiently large n, and assuming without loss of
generality that h is non-decreasing, that s; > h(2n) > h(n+so+c) > h(sé).

154 Buss’s theorem applies to formalizations of higher order arithmetic that are ‘weakly
schematic,’i.e. where each axiom is either a tautology, a universal closures of a tautology,
or an instance of one of finitely many schemas. Parikh [Parikh, 1973; Parikh, 1986] gave
a proof of Theorem 7.4.4 for speed-up of PAy over PA;, which was extended to speed-
up of PAp4, over PA; by Krajicek [Krajicek, 1989]. However, both proofs refer to
formalizations where addition and multiplication are ternary relations.
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tame speed-up over first order logic than do higher order number theories
over first order arithmetic. Let £; be the natural deduction formalism for
i order logic, as described in Section 4.1.1%% First, observe that there is no
proof-size speed-up by factors that are too fast-growing:

Theorem 7.4.5. There is a provably recursive function h of third order
arithmetic such that pfsz; (¢) < h( pfsz;,(¢)).

Proof Sketch. Third order arithmetic proves that every theorem of second
order logic is valid in all structures. Since the Completeness Theorem for
first order logic is provable in second order arithmetic, it follows that third
order arithmetic proves that every first order theorem of second order logic
is provable in £;. Thus, the following algorithm for h is provable in third
order arithmetic: for input s, enumerate all L5 proofs of size < s, search
for a first order proof of each theorem encountered, and take the maximum
over the size of these proofs. [ |

Consequently, for h as above it is not the case that L5 has a proof-size
speed-up over L1 by a factor of h.

An analogous result for proof-length is due to Statman:'%¢

Theorem 7.4.6. There is a provably recursive function h of third order
arithmetic such that, for all first order formulas ¢, pfith, (p) <
h(pfith.,(¢)). Consequently, Ly does not have a proof-length speed up
over L1 of factor h.

In contrast to the situation with higher order number theories, using
higher order logic rather than second order logic has negligible effect on
proof-length speed-up for first order theorems. The proof is an easy appli-
cation of Theorem 5.6.1 and its proof:

Theorem 7.4.7. For each k > 3 there are linear functions hg, hy such
that, for every first order o,

pfszc, (p) < hs( pfszc, (9)) and pfith;,(p) < he( pfithe, (¥))

For second order theorems the converse is true: since first order arith-
metic formulas are expressible as second order formulas, it follows from
Theorems 7.4.1 and 7.4.4 that, for second order formulas, L1 has proof-
size speed-up over L of any recursive factor, as well as unbounded proof-
length speedup.

155 et L7 be the extension of £; with the equality rules for atomic formulas. All the
speed-up results stated below for the logics £; hold equally for the logics £ .

156 Theorem 7.4.6 is proved in [Statman, 1978, Sections 6.2 and 6.4]. The proof there
yields a provably recursive function of third order arithmetic, because the proof itself is
formalizable in third order arithmetic.
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While Theorems 7.4.5 and 7.4.6 indicate the limits of possible speed-
up by higher-order logic, second order logic still has a rather formidable
speed-up over first order logic:

Theorem 7.4.8. For every provably recursive function h of second order
arithmetic, Lo has a proof-size speed-up over L1 by e factor of h.

The proof is similar to the proof of Theorem 7.4.2.157

8 Higher order logic in relation to computing and
programming

We propose to briefly comment on a few of higher order logic’s fundamen-
tal relations to computing and programming: the very use of higher order
data, the computational nature of natural deduction for higher order logic,
the use of higher order logic in the meta-theory of formal systems, and the
relations between second and higher order logic and computational com-
plexity. This selection is intended to give an idea of the kinds of interactions
between higher order logic and computer science, and not to suggest that
other topics are of lesser importance or interest. Most notable is our omis-
sion of a legion of uses of higher order consructs in computer science, whose
relation to logic is less direct.

8.1 Higher order data and types

Higher order functions, in the form of procedures, are at the core of higher
level programming language, whether imprerative or applicative. Whereas
in assembly languages the computation data (input and output) is re-
stricted to finite stored information, modern high level languages have as-
signed from their inception an increasing role to programming constructs
that manipulate conceptual entities, such as modules, procedures, and
types. A landmark advance was the procedure definition facility of Algol
60 and its descendents, such as ADA, which use the entire type structure of
finite order logic [Reynolds, 1972; Reynolds, 1981], as captured for exam-
ple by the simply typed lambda calculus.’®® An explicit use of infinitely
many types within the syntax of the language seems to have appeared

157 The absence of induction in £3 is inconsequential, because second order arithmetic
is interpretable in £5. One still considers ¢, = ¥[n] where ¥[x] = v T( &y, 2z, (v)o) A
T(&g,U((v)o)). However, the proof of ¢,, in L3 proceeds via proving the second order
formula Vz (N[z] — v¥[z]).

1581 functional languages, such as Lisp, Scheme, and ML, the lambda notation is
integrated into the syntax of the programming language, and the type hierarchy is either
implicit in a good programming style (Lisp and Scheme), or explicit in the language
(ML). More recently, extensions of logic programming with higher order abstraction have
also been developed and implemented. See e.g. [Mycroft and O’Keef, 1984; Nadathur,
1987; Miller and Nadathur, 1986; Miller, 1988; Miller, 1989; Lakshman and Reddy, 1991;
Yardeni et al., 1991], and in particular [Nadathur and Miller, 1990]. These topics are
covered in [Miller, 1993] in this Handbook.
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first in Algol 68.1%% More complex programming concepts related to the
type hierarchy (yet not to abstraction for types) include inheritance (and
the related constructs of coercion and subtyping) and type intersection;
these have been developed recently, notably in relation to object oriented
programming languages.6°

Once types are explicitly integrated into the syntax of programming
languages, it becomes clear that applying various forms of abstraction to
the types themselves is both natural and useful. Types are then used both
as notations for functional behaviour of data objects, enforcing a compile-
time type checking, and as data. The interplay between these two roles
can become rather involved, both computationally and semantically. In
one guise of abstraction, types can depend on objects, as in ‘the type of
numeric arrays of length &£’. This kind of abstraction underlies the type
discpline of Martin-L&f [1973b], and of the AUTOMATH family of languages
[Bruijn, 1980].

Another form of abstraction over types is polymorphism, which under-
lies (in a weak form) the programming language ML. Just as the functional
type hierarchy is captured mathematically by the simply typed lambda
calculus, polymorphism is captured by the second order lambda calculus,
invented independently by Girard and Reynolds [Girard, 1972; Reynolds,
1974].7" In the interest of our discussion in 8.2 below, let us outline
the essentials of the second order lambda calculus. In the simply typed
A-calculus, one cannot have a single term representing constructions as ba-
sic as the identity function: for each type T we have a distinct identity
function'®® I, = Az7.=z. If we parametrize terms with respect to types
then, using a variable ¢ ranging over types, the term Az!. z is a template
for all the identity functions. However, ¢ is not abstracted here within the
syntax itself, so Az’.z is not a term with a definite meaning, which can
be passed as an argument to other terms. To achieve that, one introduces
a type abstraction construct A, so that the polymorphic identity function
can finally be defined as I = At.Az*. 2. The collection of types is enriched
accordingly with a construct V, and At.Az!.z is declared to be of type
Vi.t—t. A term whose type is of the form Vi.o can be applied to a type

159 John Reynolds, in personal communication, writes: Whatever its faults, Algol 68
represents the first realization by a computer scientist that a typed higher-order pro-
gramming language must have an infinite number of types, that this type structure is
part of the syntaz of the language, and that 1t must be described schematically.

180 For instance, the type intersection discipline of [Coppo and Dezani-Ciancaglini, 1980]
has been incorporated into Reynold’s programming language Forsythe [Reynolds, 1988],
and inheritance into Cardelli’s language Quest [Cardelli, 1991; Cardelli and Longo, 1991].

1615¢e e.g. [Scedrov, 1990] for a survey. The model theory of second order lambda
calculus is a fascinating albeit complex story. See e.g. [Scedrov, 1990] and [Gunter,
1992] chapter 11 for general expositions, and references there for pointers to the technical
literature.

162We use an optional type supserscript to indicate the type associated with a variable.
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7, to yield a term of type [r/t]c.1%® For example, the term (At.Az'. z)T
is of type 7 — 7. One also uses a form of G-reduction for types: an ex-
presison (At. E)7 reduces to [7/t]E; for example (At.Az'.z) T reduces to
I, = Xz .z. Thus, I is a polymorphic identity function, from which the
specific identities I, can be recovered by type application and B-reduction
for types.

The two forms of abstraction for types, with respect to objects and with
respect to types, are merged in the Calculus of Construction [Coquand,
1985; Coquand and Huet, 1985; Coquand and Huet, 1988]. A further con-
struct involving type abstraction is the recursion operator on types, which
permits the introduction of user-defined types. This is a definable construct
in the Theory of Construction, just as the fixpoint operator is definable in
second order logic. The interested reader will find a thorough survey of
types in programming languages in [Mitchell, 1990], and of typed lambda
calculi in [Barendregt, 1992].

The development of higher order data has not been confined to program-
ming languages. In database theory there has been a growing realization
that many database applications have to do not only with functions and re-
lations over simple objects, which can be describe in first order languages or
mild extensions thereof, but also with complex hierarchical objects, whose
formalization is natural in finite order logic. A familiar example is the hier-
archical structure of files and directories under the UNIX operating system.
Such objects are referred to as complez, and the resulting databases are
complex object databases.'®* These database calculi refer to definition of
queries for such objects using algebraic or logical operations.'®® An alge-
braic development of complex object databases uses basic operations on
sets. One assumes a collection Q of primitive sets, and defines new sets
using operations such as intersection, power set, union of elements, and
projection. An alternative development uses simply sets defined explicitly
by formulas of (a suitable variant of) finite order logic over the vocabu-
lary R (extended by additional primitives if desired). The two approaches,
suitably developed, turn out to be equivalent.®®

163 Here 7 must be free for £ in o, in the usual sense.

164The idea of programming with higher order relations is not new. The rich theory
of recursion in higher types aside, the use of higher order objects in database theory is
probably due to Makinouchi [1977], and is related to the uses of higher order relations
in the general purpose programming language SETL [Schwarts et al., 1986].

165The types (also dubbed sorts) of a complex object database are taken to be the
simple higher order relational types, built up using cartesian products with attributes
as labels. That is, one assumes given a collection D of basic types, and a collection A
of attributes. Then each D € D is a type; if 7 is a type then so is (7); and if 71 ... 7}
are types, and A; ... Ay are distinct attributes, then [71 : A1, ... 7 : Ag] is a type. For
each type 7, the collection U, of objects of type 7 is defined by induction on 7: Up, for
D € D, is assumed given; U, consists of the finite subsets of Ur; and U7 . 4, .7,:4,]
consits of the k-tuples of pairs, [u1 : A1 ...ug : A], where u; € Us,.

166 [ Abiteboul and Beeri, 1988; Kuper and Vardi, 1984]. This result is essentially an



68 Daniel Leivant

8.2 The computational nature of higher order natural
deduction

In launching combinatory logic, Schonfinkel discovered that the basic infer-
ences of logic are in fact of a simple functional nature [Schénfinkel, 1924].
This analogy was elaborated by Curry [Curry and Feys, 1958], and re-
discovered by Howard in a yet more prestine form, for natural deduction
proofs [Howard, 1980]. This duality reveals the fundamental unity be-
tween the operational aspects of logic and functional programming, and it
is particularly fecund when extended to higher order forms of abstractions,
namely dependent types (Martin-Lof’s Type Theory [Martin-Lof, 1973b;
Martin-Lf, 1980]) and finite order quantification (Girard’s system F,, [Gi-
rard, 1972]). Notably, its implementation underlies sofware systems for
constructing typed functional programs for given specifications from higher
order logic proofs that such specifications has solutions. These systems in-
clude the PRL Project [Constable and others, 1986], which is based on
[Martin-Lof, 1973b), and the Calculus of Constructions mentioned above
[Paulin-Mohring, 1989b; Paulin-Mohring, 1989a).

Given its importance, let us describe the simplest non-trivial case of
this duality, namely between minimal second order propositional logic and
the Girard—Reynolds second order lambda calculus described above.'®7 We
consider minimal second order propositional logic MLg (compare Section
4.3), with implication and universal quantification over propositions as the
only logical constants. A natural-deduction calculus for MLg has the fol-
lowing inference rules:

'] ; X— 9 X
—I: . (occurrences x* of x are closed) —E: - =
7
7
X—=9
VR
V2I1: v (R not free in assumptions) V2E: L
VR.p [x/R]e

We define a mapping « from derivations in this calculus to terms of the
second order lambda calculus, as follows. Let us use the same identifiers

extension to finite order logic of the algebraic development of first order logic, due to
Tarski [Henkin et al., 1971]. A survey of these and related advances can be found in
[Abiteboul and Kanellakis, 1990]. A seminal paper on computability for higher order
objects is [Dahlhaus and Makowsky, 1987].

187For more details and applications of this mapping see, for example, [Girard et al.,
1989] and [Leivant, 1990b).
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for relational variables of second order propositional logic and for type
variables of the second order lambda calculus. This convention results in a
complete syntactic identity between formulas of the logic and types of the
lambda calculus. The following x maps a derivation II of a formula ¢ from
open assumption ¥ ..., to a A-expression klI, of type ¢, and with free
variables of types v, ... 9.

II= <pi cIl =4¢ mf
(open assumption ¢ labelled by ) (variable of type ¢)

o = A kIl =qr Az¥.kA

<
l

S

<

n = -— kIl =g (kA)(kO)

Al —df AR.kA

kIl =g (KA)x

Clearly, if II derives ¢ from Wll ...1,b?c’°, then kII is of type @, with free
variables 1:;/’11 . m;/’: (of types 91 ... 9%, respectively).

The mapping « not only reveals a reading of derivations as A-terms, but
shows that the computational behavior of derivations, under the canonical
detour-elimination transformations (Section 4.4 above), is identical to the
computational behavior of the corresponding A-terms under §-reductions

(for objects and for types):
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[4°]
A €]
2 [4*]
the reduction of m to A
@ @

is mapped to the B-reduction of (Amzp kA)(kO) to [(n@)/m;/’](K,A), and

A
the reduction of © to [x/R]A

VR. ¢
[x/R]e
is mapped to the B-reduction for types of (AR. kA)x to [x/R](kA).

8.3 Higher order logic in the meta-theory of formal
systems

Proponents of the first order formalization of mathematics have had to ad-
dress the plain fact that many mathematical constructions and deductions
are higher order. One common response has been that full formalization
of mathematics is in any event a mere idealization, never carried out in
practice in full detail. This argument has been shattered by the very pres-
ence of computers. First, it has become possible to store, organize, verify,
and retrieve fully formalized mathematical texts.'®® Moreover, it became
possible not only to store and manipulate completely formalized proofs,
but also to automatically generate many proofs.

Initially, research in automated theorem proving enforced the primacy
of first order logic, for which methods such as resolution and paramod-
ulation are complete. However, the work of Andrews and his students
has shown that automated theorem proving can be naturally extended to
higher order logic [Andrews et al., 1984; Miller, 1983].1%° This extension
is linked to generalization, from first order to higher order, of the major
syntactic theorems of first order logic: Cut elimination and normalization
[Takahashi, 1967; Girard, 1972; Prawitz, 1972), resolution [Andrews, 1971],
Skolemization [Miller, 1987], unification [Huet, 1975], and Herbrand’s The-
orem [Miller, 1987].17° Given the natural description of mathematics within
higher order logic, higher order theorem proving has led, quite recently, to

168 The ground-breaking work was the AUTOMATH family of languages [Bruijn, 1980,
designed as a medium for a computerized compendium of mathematics within a higher
order logic.

169G¢e also e.g. [Gould, 1976; Jensen and Pietrzykowski, 1976; Petersson, 1982].

170 An early presage of higher order theorem proving is [Robinson, 1969)].
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rapid advances in the development of user-friendly and interactive software
environments, based in higher order logic, for the fully formalized develop-
ment of mathematics [Constable and others, 1986; Felty and Miller, 1988;
Felty, 1993; Dowek, 1991; Dowek et al., 1991].

A challenging extension of user-friendly automated manipulation of the
mathematical vernacular is the manipulation of programming itself, a field
often dubbed meta-programming. Here even the (denotational) semantics
of basic constructs, such as iteration and recursion, is based on higher order
constructs.'” Recent formalisms, referred to as logical frameworks, were
proposed to represent formally both the syntax and the semantics of pro-
grams, as well as of formal rules for manipulating and verifying programs.
These use higher order constructs extensively.'”?

8.4 Higher order logic and computational complexity

Machine-independent characterizations of computational complexity classes
lend credence to their importance, provide insight into their nature, relate
them to issues relevant to programming methodology and to program ver-
ification, suggest new tools for separating complexity classes, and offer
concepts and methods for generalizing computational complexity to com-
puting over arbitrary structures and to higher type functionals. Two types
of such characterizations relate computational complexity to abstraction
level in higher order: higher order database queries (i.e. global methods of
finite model theory), and function provability in higher order logics.

A guery is a ‘global relation’ over a collection of structures; that is, if
V is a vocabulary, a (k-ary) V-query is a map that, to each V-structure
S assigns a (k-ary) relation over the universe |S| of S.17 For example,
if Vo consists of binary relation-constant p, then the transitive-closure is
the query that assigns to each Vg-structure G the transitive closure of p9.
Every V-formula ¢ (together with a list ¥ = v;...v; of variables that

17l Denotational semantics has grown, of course, into a broad and central field in
theoretical computer science. The seminal work was [Scott and Strachey, 1971]. Re-
cent expositions include the survey [Mosses, 1990] and the textbooks [Tennent, 1991;
Gunter, 1992].

1725ome recent key papers are [Felty and Miller, 1988; Harper et al., 1987; Huet and
Lang, 1978; Hannan and Miller, 1988b; Hannan and Miller, 1988a; Howe, 1988; Harper
et al., 1989; Huet, 1986; Knoblock and Constable, 1986; Lee and Pleban, 1987; Paulson,
1987; Pfenning, 1989; Pfenning and Rohwedder, 1991; Weber, 1991].

173 The notion that a formula determines a process that uniformly delineates subsets
of structures is implicit already in early formalizations of Set Theory, for instance in
Frege’s Comprehension Principle and, in particular, in Fraenkel and Skolem’s Axiom of
Replacement. In relation to collections of first order structures the notion was used by
Tarski’s [Tarski, 1952] (Definition1) and in [Barwise and Moschovakis, 1978]. The phrase
data base gueries is from [Chandra and Harel, 1980]. Other terms for it include global
relation [Gurevich, 1987|. generalized relations, [Rougemont, 1987] (referring to [Barwise
and Moschovakis, 1978]), global predicates, [Blass and Gurevich, 1986], uniformly defined
relations, [Rougemont, 1987], predicate, [Leivant, 1987], and predicate over oracles [Cai
and Furst, 1987].
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include all the variables free in ¢) defines the query Av.¢, that assigns to
a V-structure S the extension of ¢ in S, i.e. the collection of @ € |S|*
such that S, [@/7] = ¢. Similarly, a computation device over V-structures,
such as an uninterpreted program scheme over V, defines a query when
it is used as an acceptor. We can thus compare the expressive power of
descriptive and computational means: a class ® of formulas characterizes
a computational complexity class C if the queries computable over finite
structures by algorithms in C are exactly the ones definable by formulas in
.

In this framework one is drawn immediately to higher order formulas,
because even simple queries, such as the transitive closure, are not first
order definable [Aho and Ullman, 1979].17* Using higher order constructs
indeed yields a surprising array of descriptive characterizations of com-
putational complexity, in particular for structures that are given with an
order.!™ Most of the results here fall into two organizing principles: syn-
tactic classes of higher order formulas, and variants of fixpoint constructs.

In a seminal result, Fagin [1974] and Jones and Selman [1974] proved
that a query over ordered finite structures is defined by a program running
in nondeterministic polynomial time (NP) iff it is defined by a purely ex-
istential second order formula.'™ From this it immediately follows that a
problem is definable by a second order formula iff it is in the polynomial
time hierarchy. Characterizations of complexity classes below NP, namely
deterministic polynomial time (P) and non-deterministic log-space (NL),
can be obtained in terms of universal second order formulas with natural
restrictions on the matrix. Dually, classes broader than NP are charac-
terized in terms of higher order formulas, which yield characterizations of
poly-space and exponential time in third order logic. At the limit, the
queries definable in full finite order logic are precisely the ones computable
within Kalmar-elementary resources, i.e. using time and space which is
k-fold exponential in the size of the input, for some k [Leivant, 1987].

The seminal result on characterization of complexity classes in terms of
fixpoint queries states that a query over ordered finite structures is in P iff it
is definable in the logic FOu (first order logic with a monotone fixpoint op-
eration, see Section 6.2) [Immerman, 1986; Vardi, 1982]. A natural fixpoint
construct over finite structure is the non-inflationary fizpoint of [Abiteboul

174 We showed in Section 2.4 the somewhat easier theorem that transitive closure is not
first order definable when considering all structures, not only the finite ones.

17536 that their preparatory coding as Turing machine input does not by itself enable
the machine to recognize properties of the structure, such as the parity of its size, which
could not be recognized descriptively. The role played by order on finite structures has
been greatly clarified recently, see e.g. [Abiteboul et al., 1992].

176 The theorem stated here is Fagin’s. Jones and Selman proved a similar and closely
related result, that first order spectra are precisely the sets computable in NTime(2"),
where the input is given in binary. The proof methods of [Fagin, 1974] and [Jones and
Selman, 1974] are similar.
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and Vianu, 1989]: if ® is an operator on k-ary relations, then zR.®(R) is
@™ (0), where m is the smallest number such that ®™(0) = ®™!(0). The
queries definable in first order logic extended with i are exactly the ones
computable in polynomial space [Abiteboul and Vianu, 1989]. Other, non-
deterministic, variants of fixpoints yield a characterization of the queries
computable in exponential time, as well as additional characterization of
poly-space and of NP [Abiteboul et al., 1992].177

Another method of logical characterization for computational complex-
ity classes uses proof theory, that is, the deductive machinery of logic rather
than the descriptive machinery outlined above. Proof theoretic charac-
terization are of particular conceptual interest, because proof principles
codify directly conceptual abstraction, and are therefore the most natural
medium for exploring and articulating a foundational justification for link-
ing complexity classes with specific forms of conceptual abstraction. Proof
theoretic characterizations of classes of computable functions follow the
following pattern. Given a formalism F' whose language provides a natural
rendition of statements of the form ‘program P converges for all input,’ one
associates with F the class C(F) of computable functions for which there
exists a program that F' proves to converge for all input. Second order logic
is of special interest here, because comprehension is a natural yardstick for
178 and because, by Theorem 2.5.1, func-
tion convergence can be stated in second order logics without presupposing
any functions or predicates as given.

calibrating degrees of abstraction;

If L is a formalism for second order logic, we say, using the notations
and basic facts in Sections 2.3,2.5, that a function f over a free algebra A
is provable in L iff it is computed by some coherent equational program

(P, f) such that
VP by A(Z) — A(E(Z)).

For a class ® of formulas, let Ly(®) be second order logic with comprehen-
sion for formulas in ®.

Using this definition, one obtains a spectrum of characterization results
for complexity classes, which calibrate computational complexity classes
in terms of abstraction levels, as measured by comprehension. The inter-
pretation of second order arithmetic in second order logic (Section 2.3)
implies that the provable functions of Lz(all second order formulas) are

precisely the provably-recursive functions of second order arithmetic.'™

177 Characterizations that fall into neither of the spectra above include characterizations
of nondeterministic log-space [Immerman, 1987; Blass and Gurevich, 1986], of poly-time
[Immerman, 1987], and of exponential time [Christen, 1974; Immerman, 1987].

178 Recall the Reverse Mathematics program, described in Section 7.3.

179 A simple method for dealing with Peano’s third and fourth axioms is given in
[Leivant, 1990b].
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Using comprehension for computational (i.e. strict-II}, see Section 3.2) for-
mulas, one obtains exactly the functions defined by recurrence in all finite
type [Leivant, 1990a; Leivant, 1991b).'8 Comprehension for first order
formulas yields exactly the Kalmar-elementary functions.'®!

The characterization by comprehension of complexity classes of prac-
tical interest is also possible. Indeed, the functions over W computable
in deterministic polynomial time are exactly the functions provable us-
ing comprehension for positive existential formulas.'®? The significance of
these characterizations is discussed in [Leivant, 1991a; Leivant, 1994].
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