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Preface

The aim of this book is to show how logics can be cut and paste in order to be
applied to express and model problems in several distinct areas. The universal
applicability of logic in both pure and applied science is a fact that defies philoso-
phers. Contemporary logical research, however, has an undeniable tendency to-
wards pluralism and compartimentation, as shown by the division of philosophical
logic in areas and subfields. On the one hand, we have logics alternative to classic,
such as many-valued logic, intuitionistic logic, paraconsistent logic. On the other
hand, we also have logics complementary to classic, such as modal logics, and, in
particular, temporal logic, epistemic logic, doxastic logic, erotetic logic, deontic
logic, and so on.

Considering that reasoning is through process, this compartimentation, even if
driven by methodological and technical reasons, has been said to be harmful to
logic while a philosophical discipline. From this viewpoint, combinations of logics
goes in the opposite direction of restoring the entirety of logic as wide theory of
rationality, much in the same spirit to what happens in areas as algebraic geometry.
Thus, from a philosophical perspective, logical combinations of tense and modality,
for instance, may offer a better look to issues in the theory of causation and action.
Combining temporal logic with alethic modal logics adds a temporal dimension to
knowledge and belief.

Conceptually, the ideaof lookingto logicasanentirety insteadof isolatedfragments
is not new. Philosophers and logicians from Ramón Lull (1235–1316), in his Ars
Magna, to Gottfried W. Leibniz (1646–1716), with his calculus ratiocinator [179],
have dreamed of building schemes or even machines that can reason by combining
different logics or logic-like mechanisms that could cooperate instead of competing.

The activity of combining logics, as seen nowadays, offers an important tool for
modularity. Rather than building a logic from scratch, it may be better for some
applications to depend upon previous work on specialized topics. The underlying
idea is that logics can be reusable, leading to a perspective gain with the resulting
combined system. However, there are many technical difficulties if one is interested
in the practical activity of combining logics. Symbols may mean different things in
different logics. How is it possible to define the languages in order to compose them
into an organic entity? Also, proofs and derivations can have different meanings
in different logics. How to thread rules and derivation schemes of totally different
nature?

ix
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Combining logics have also a surprising impact on philosophical questioning,
an aspect that this book is not aimed to, but that should not be overlooked. An
illustrative example is the well-known David Hume’s objection from concluding a
normative statement of the form “ought to be” starting from a descriptive state-
ment of the form “what is” (a much discussed question in moral theory). So, for
instance, from statements of fact, such as “emission of carbon dioxide is harmful to
society”, a statement of obligation such as “all nations ought to follow mandatory
emission limitations” could not, according to an interpretation of Hume’s ideas,
be derived.

From the point of view of combining logics, this question is strictly connected
to accepting properties of combining deontic and alethic logics, such as p→ (Op),
where O is the deontic obligation operator and p is an assertion. Such formula
is what we call a “bridge principle”. The term, meaning specifically a statement
that binds factualities to norms, appears already in [3] and subsequently in [262].

In our treatment, by “bridge principles” we mean, in a wide sense, any new
derivations among distinct logic operators (new in the sense of not being instances
of valid derivations in the individual logics being combined).

Another much discussed thesis is the famous “ought-implies-can” thesis at-
tributed to I. Kant, according to which the fact that we ought to do something
implies that it has to be logically possible to do. This would be formalized through
the following bridge principle: (Op) → (�p), where the diamond � denotes the
alethic “possibility” operator. Thus the principle means that if an assertion is
obligatory then it must be possible. Other interpretations suggest that what Kant
believed is that we cannot be obliged to do something if we are not capable of
acting in that way. This would be formalized by the (non necessarily equivalent)
bridge principle (¬�p) → (¬Op).

Not only bridge principles have an underlying conceptual meaning, but they
also may emerge spontaneously, with surprising consequences as we show in many
places of this book. The influence of bridge principles is yet perceived in the way
the collapsing problem (a phenomenon of combining logics by which, for instance,
intuitionistic collapses to classical logic) is solved (see Chapter 8).

This book intends to address the questions presented above in detail, presenting
with the foremost rigor the issues of logical manipulation. The reader will learn
here how to set up the syntactical dimension in detail, and how to define the
semantics and the proof theory for recombinant logics. The impact of combination
of logics in practice can only be assessed by people involved in the application
domains. However, we believe that these techniques can be useful in fields such as
computational linguistics, automated theorem proving, complexity and artificial
intelligence. Other promising applications are in the areas of software specification,
knowledge representation, architectures for intelligent computing and quantum
computing, security protocols and authentication, secure computation and zero-
knowledge proof systems and in the formal ethics of cryptographic protocols.

Combinations of temporal reasoning, reasoning in description logic, reasoning
about space and distance are becoming a relevant toolbox in modeling multi-agent
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systems. The resulting hybrid systems have the main advantage of combining
logics which would be otherwise incompatible. Proof procedures with controlled
complexity, model checking and satisfiability checking procedures can be obtained
for a bigger logic from the respective procedures for the component logics.

But the reader should not think that combinations of logics is a topic re-
stricted to applications outside logic. On the contrary, although we do not deal
with this question in this book, the very idea of combining logics, as we see it,
touches on more abstract domains as applied to the logical theory itself: for in-
stance, as suggested in [233]. The idea of combining logics can be even use-
ful to understand apparently far away topics such as Popper’s structuralist the-
ory of logic, as in [223], where an elementary theory of combining negations
was developed.

In a rigorous way, the problem of combining logics can be seen as follows:
given two logics L1 and L2 we want to combine them and obtain a new logic
L satisfying certain requirements. In general, there are several mechanisms to
combine the original logics. Choosing mechanism �, the new logic is L = L1�L2.
That is, � is an operator on some class of logics including L1 and L2. Different
operators may lead to different resulting logics. Most of the operators provide an
algorithmic construction of logic L by stating its language, semantic structures
and/or deductive systems. Moreover, the construction of L usually is a minimal
(or maximal) construction. The combined logic should extend the components in
a controlled way, so that it does not include undesirable features.

All the mechanisms assume that the component logics are presented in the
same way. In technical terms we say they are homogeneous. For instance, both
of them are presented by Hilbert calculi. However, some assume that component
logics need some preparation before being combined. For instance, assume that
we say that component logics are endowed with an algebraic semantics. In this
case, we have to say how the semantic structures of the component logics induce an
algebraic semantics. In the book we deal with heterogeneous fibring in a moderated
way in Chapter 3 and with heterogeneous fibring of deductive systems in Chapter 4.

One of the most challenging problems is related to proving transference re-
sults. That is, to investigate sufficient conditions for the preservation of properties,
namely soundness, completeness, decidability, consistency, interpolation, from the
components into the resulting logic.

Combination mechanisms can be extended to a finite number of components
and sometimes even to an infinite number of components.

Among the different combination mechanisms we can refer to fibring which is
one of the objects of this book. Fusion, if not historically the first, is the simplest
method, and the best studied combination mechanism.

Combining logics in the perspective of this book does not mean only synthesizing
or composing logics (which is called splicing), but is also intended to work in the
opposite direction of decomposing logics, called splitting. Herein, we analyze the
possible-translations semantics mechanism.

The idea of writing this book originated during The Workshop on Combination
of Logics: Theory and Applications (CombLog04) [50, 52], held in the Center for
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Logic and Computation, at the Department of Mathematics of IST, Technical
University of Lisbon, Portugal, from July 28-30, 2004. Encouraged by the vigor
of the field and by the interest triggered by this and several other conferences
(such as [234, 112, 162, 9, 138, 10, 11]), we decided to accept the challenge to
produce a book containing some basic ideas, methods and techniques that could
help logicians, computer scientists and philosophers to have access to a general yet
elementary theory of combinations of logics. The book intended to bring together
a sample of results, problems and perspectives involving the idea of cutting and
pasting logics, explaining when possible the role of the underlying constructions
as universal arguments in the categorial sense.

We depart here from a basic universe of logic systems starting with propositional-
based systems endowed with Hilbert calculi and ordered algebraic semantics. This
basic setting is already rich enough to encompass interesting features of fibring
with several applications and to provide the basic techniques for the trade of
combining systems. Later on we extend the notion to the first-order and to the
higher-order domains.

Chapter 1 is an introductory overview to the essential ingredients of composing
and decomposing logics. In Section 1.1, we introduce the concept of consequence
system as the basic abstraction to describe a logic system. In Section 1.2, we
present the basic ideas about composing or splicing logics and decomposing or
splitting logics. We also introduce a technical summary of some combination
mechanisms like fusion, product and fibring by functions of modal logics. We
also refer to Gödel provability logic as an illustration of a splitting mechanism.
In Section 1.3, we provide a very brief introduction to algebraic fibring using
Hilbert calculi. In Section 1.4, we sketch the splitting mechanism called possible-
translations semantics.

Chapter 2 concentrates on fibring of propositional based logics presented as
Hilbert calculi. Moreover, some preservation results are introduced. In Section 2.1,
signatures and their fibring are presented. In Section 2.2, we dedicate our atten-
tion to the fibring of Hilbert calculi. We illustrate the concepts with several exam-
ples including classical logic, modal logics, intuitionistic logic, 3-valued Gödel and
�Lukasiewicz logics. In Section 2.3, we discuss several preservation results. Finally,
Section 2.4 presents some final remarks.

Chapter 3 is dedicated to the fibring of semantics for propositional based log-
ics. Ordered algebras are the basic semantic structures adopted. We also in-
clude the relationship to fusion and fibring by functions. Again some preser-
vation results are given. In Section 3.1, we introduce the semantic structures
and their fibring. We illustrate the concepts with several examples including
classical logic, modal logics, intuitionistic logic, 3-valued Gödel and �Lukasiewicz
logics. In Section 3.2, we present the notions of logic system, soundness and
completeness. In Section 3.3, we discuss the preservation of soundness and com-
pleteness properties. In Section 3.4, we establish the relationship between the
present approach and fibring by functions. In Section 3.5 we present some final
comments.
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Chapter 4 is dedicated to the analysis of fibring of logics that are not presented
in the same way. Two solutions are proposed. The first one is based on fibring of
consequence systems and the second one on abstract proof systems. Some preser-
vation results are established. Section 4.1 concentrates on fibring of consequence
systems using a fixed point operator. Several examples are given for logics pre-
sented either in a proof-theoretic or a model-theoretic way. Section 4.2 focuses
on the notion of abstract proof system and looks at the proof systems induced by
Hilbert, sequent and tableau calculi. Moreover, it includes the notion of fibring of
abstract proof systems. We also discuss some relationships between consequence
systems and proof systems. In Section 4.3 we present some final remarks.

Chapter 5 studies composition of non-truth functional logics via fibring, an im-
portant extension of the theory, considering that many of the interesting logics for
applications are not truth-functional. In Section 5.1, the notion of interpretation
system presentation is introduced. In Section 5.2 the notions of unconstrained
and constrained fibring of interpretation system presentations is defined. In Sec-
tion 5.3 we again use Hilbert calculus as the suitable proof-theoretic notion. In
Section 5.4 some preservation results are established, namely, the preservation of
soundness and completeness. Section 5.5 discusses self-fibring in the context of
non-truth-functional logics. In Section 5.6 we present some final comments.

Chapter 6 concentrates on fibring of first-order based logics. It can be seen as
an extension of the fibring of propositional based logics, choosing particular pow-
erset algebras as semantic structures. The running example is fibring of classical
first-order logic and modal logic. In Section 6.1, first-order based signatures and
the corresponding languages are introduced. Next, in Section 6.2, we present in-
terpretation structures and interpretation systems. First-order Hilbert calculi are
presented in Section 6.3. Section 6.4 introduces first-order logic systems. Then,
in Section 6.5, we define fibring of first-order based logics. The preservation of
completeness and other metatheorems by fibring is discussed in Section 6.6, where
we also briefly sketch a proof of completeness for a particular class of first-order
logic systems. In Section 6.7 we make some final remarks.

Chapter 7 deals with higher-order quantification logics. The semantic structures
are generalizations of the usual topos semantics for higher-order logics. In Sec-
tion 7.1 we introduce the relevant signatures. In Section 7.2 the Hilbert calculus
is presented. In Section 7.3 is dedicated to setting up the semantic notions. Sec-
tion 7.4 introduces the notion of logic system, and we briefly discuss some related
notions such as soundness and completeness. The novelty here is that the usual
notion of soundness must be modified in the present framework. In Section 7.5,
a general completeness theorem is established. In Section 7.6, the notions of con-
strained and unconstrained fibring of logic systems are given, and it is shown that
soundness is preserved by fibring and a completeness preservation result is ob-
tained. In Section 7.7 we briefly discuss the main results described in the chapter.

In Chapter 8, we turn our attention to modulated fibring. This variant was
developed to cope with collapsing problems: in some cases when two logics are
combined one of them collapses with the other. We illustrate the concepts with
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examples including propositional logic, intuitionistic logic, 3-valued Gödel and
�Lukasiewicz logics. In Section 8.1, we introduce the notions of modulated signa-
ture and modulated signature morphisms. In Section 8.2, we describe modulated
interpretation structures, modulated interpretation systems and the correspond-
ing morphisms. Next we present the notion of bridge between modulated inter-
pretation systems. In Section 8.3, we define modulated Hilbert calculus and their
morphisms. In Section 8.4 is dedicated to modulated logic systems and their cor-
responding morphisms. In Section 8.5, we establish soundness and completeness
preservation results. Finally, Section 8.6 presents some final comments.

Chapter 9 introduces the problem of splitting logics, emphasizing the role of
possible-translations semantics and contrasting with the previous chapters that
deal with forms of splicing. In Section 9.1, a category of propositional based
signatures suitable for splitting logics is introduced, as well as the corresponding
category of consequence systems. In Section 9.2 the technique known as possible-
translations characterization is analyzed, and some applications are given. In
Section 9.3 two methods for combining matrix logics, plain fibring and direct union
of matrices, are reviewed. Finally, Section 9.4 presents some final comments.

In Chapter 10 we discuss new tendencies on fibring. In Section 10.1, we mo-
tivate network fibring using modal logic. In Sections 10.2, 10.3, 10.4 and 10.5,
some case-studies are introduced. Section 10.2 discusses integration of informa-
tion flows by describing a system in which reasoning and proofs from different
sources of information can be accommodated. In Section 10.3, we refer to some
generalizations of logic input/output operations. We also discuss how to combine
input/output operations into networks. In Section 10.4, we discuss the fibring
of neural networks. In Section 10.5, we turn our attention to recursive Bayesian
networks. In Section 10.6, the notion of self-fibring of networks is introduced.
Section 10.7 presents some concluding remarks.

Finally, in Chapter 11 we first present a summing-up of the different techniques
for combining logics presented in this book together with their main features.
Then we move to a brief overview of applications where fibring can be directly
used, as well as to emergent fields of application. It also includes an outlook of
new research directions in both the existing combination mechanisms but also to
new forms of combination.

We observe that most chapters of the book deal with combination of logics rather
than with decomposition of logics. This happens because splitting mechanisms are
not so well developed.

We assume that the readers are familiar with basic logic notions of classical
propositional and first-order logics at the level of, for instance, [206] and [90]
and propositional modal logics at the level of, for instance, [153]. Although not
mandatory, a very basic knowledge of categories (see [186]) is useful for better
understanding the minimality of the constructions.

The book is intended to be a research monograph for those that want to know
the state-of-the art in composing and decomposing logics, that want to know about
issues worthwhile to be pursued, as well as potential contemporary applications of
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these techniques. If you are one of these we recommend that you have the patience
to read the whole book. If you want to focus on particular aspects of combination
of logics, we suggest several paths hoping that one of them is of your taste.

• If the reader is only interested in knowing what are the main issues in the
combination of logics, we recommend Chapters 1, 2 and 3 which provide a
basic account on consequence systems and the basic notions of propositional
fibring;

• If you are curious about decomposition and its importance to non-truth
functional logics you should read Chapters 1 and 9 and maybe it is useful
reading Chapter 5;

• The reader interested in a more general form of fibring (capturing more
propositional-based logics) and avoiding the well known collapsing problem
should concentrate on Chapter 8, besides Chapters 1, 2 and 3;

• Someone with research interest in proof systems and how to combine different
proof systems should read Chapters 1, 2 and 4;

• If your interests are in modal logic, we suggest you read Chapters 1, 2, 3, 4
and 6;

• If your interests are in hybrid logic and labeled deduction in general, we
suggest you read Chapters 1, 2, 3, 4 and 10;

• If you are a first-order logician and have curiosity on combination of logics,
we suggest you read Chapters 1, 2, 3 and, more importantly, Chapter 6;

• If you are a higher-order logician and want to grasp what is combination of
logics, we suggest you read Chapters 1, 2, 3 and, of course, Chapter 7;

• If you are an intuitionistic logician and would like to know about combination
of logics, we suggest you read Chapters 1, 2, 3 and Chapter 8;

• If you like to know the potential of combination in contexts that are not
logical in nature you should read Chapter 10.

For a summing-up of the techniques used in the book, as well as some applications
and topics for further research, we recommend Chapter 11.
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Chapter 1

Introductory overview

It is not an easy matter to trace down the origins of the idea of combining reason-
ing (in a schematic or semi-formal manner) and relations upon them (by means
of diagram, rules or other mechanisms). In a sense this has origins in the history
of European philosophy itself: Plato’s dialogue Sophist inquires about the meth-
ods of philosophy, and part of his conclusions involves the limitations of common
language, and the danger of using common language which may lead to fallacious
conclusions. For example, Plato shows that “not being” is a form of “being”, a
confusion that common language cannot help to cope with.

On the other hand, logic is the branch of knowledge where language receives
the highest systematized treatment. Concepts, such as time, belief, knowledge,
inheritance, relevance and dependence, their mutual relations and the methods to
draw conclusions from them can be expressed in the most convenient way. Con-
temporary logic has pushed this tendency to extremes, with not entirely positive
consequences, in the opinion of critiques (see [267]). So, in a sense, if the logical
analysis taken to an extreme has separated concepts and methods, we wonder why
not join them together.

Under the light of today’s logic, this can be achieved with greater accuracy.
This is precisely the object of this book: how to cut and paste logics and how
to use them. But the roots of the idea are much older. The Catalan mystic and
logician Ramón Llull, born in 1235, used logic and mechanical methods based
on symbolic notation and combinatorial diagrams to relate, he thought, all forms
of knowledge. His main work, the Ars Magna, makes him, at the same time,
a precursor of combinatorics and of the art of combining logics. The method
of Llull consisted of a series of concentric circles with attributes such as bonitas
(goodness), magnitudo (greatness), eternitas (eternity), and categories such as
flame, man, animal, which could be combined with, for example where?, why?
and how?. By combining them, one could (at least try) to solve riddles such as
“Where does the flame go when a candle is put out?”.

1
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Llull inaugurated the idea of a “philosophical machine” and had a great influ-
ence on Gottfried Leibniz. According to Couturat in [64], Leibniz was the first
to see explicitly the possibilities of applying Llull’s methods to formal logic in
his Dissertatio de Arte Combinatoria, where exhaustive techniques to combine
premises and conclusions in the language of Aristotelian syllogisms was consid-
ered. Later on, the British economist and logician William Steven Jevons, fa-
mous for the invention of a “logic machine” to draw syllogistic conclusions, used
similar ideas in his “logical alphabet”. From some point on, the attempts to
combine logical devices lead to the hardware side of constructing machines. The
reader is invited to see the excellent book by Martin Gardner [121] for the ac-
count of the “demonstrator” of Charles Stanhope and of the logic machines of
Allan Marquand.

If, in the question above, the terms are appropriately changed to knowledge,
belief, time, tense, and the question by “Where does the learning go when knowl-
edge is separated from time” we can foresee how combining logics would impact
philosophical logic, knowledge representation, artificial intelligence, cognitive sci-
ences and so many other areas of interest to philosophers, linguists and computer
scientists.

The use of formal logic for representing conceptual reasoning favored the emer-
gence of the so-called “non-classical” logics in the first quarter of the XX century, as
opposed to “classical” logic, usually understood as two-valued propositional logic
and predicate logic with equality. The label “non-classical” is far from appropri-
ate, since, for example, the logical properties of necessity, possibility, impossibility,
contingency and related concepts were extensively treated by Aristotle (see [135])
and other ancient authors. This tradition, including nowadays the logical proper-
ties of permission, prohibition, belief, knowledge, tense, and many other evolved
to what is called modal logic. Besides modal, there are today dozens of such “non-
classical” logics such as many-valued logics, paraconsistent logics, intuitionistic
logics, dependence logics and relevant logics.

If logic is objective, how can there be so many logics? This intriguing question
is posed in [88], and the proposed answer, in the same book, is that what one
pays attention to, in reasoning, is what determines which logic is appropriate. So
logic, as a discipline, is subject-matter dependent. Classical logic is appropriate to
reasoning with purely mathematical concepts, such as points, lines, sets, numbers,
groups, equations and topological spaces, where no direct influence of time, inten-
tion, intensity, purpose, cause or effect is taken into account. On the other hand,
the so-called non-classical logics, emerge when specialized domains are taken into
consideration, and one pays attention to specific constituents.

Thus, many-valued logics may be pertinent when one needs to pay attention
to degrees of truth. Paraconsistent logics may be appropriate when one needs
to reason under contradictions but avoiding trivial theories. Dependence logics
may be suited if one prefers to see propositions as possessing referential content.
Relevant or relevance logics may be apropos if one is interested in how assumptions
are related to conclusions in derivations. Modal logics may be the right choice if one
is engaged on reasoning with necessity, possibility, knowledge, belief, permission,
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prohibition and obligation. Intuitionistic logic may be the case if one is occupied
with some aspects of constructiveness in argumentation. And so on and so forth.

Now it seems immediately obvious that reality is many-faced. A concrete ques-
tion may involve several aspects that one wishes to pay attention to, and a com-
bination of pre-existing logics to reason with such a question would be the best
decision. Instead of building a new logic from scratch, it may be wiser to de-
part from the assumption that logics can be reusable and assembled in new and
convenient manners.

However, one must face the need to integrate distinct languages and inference
engines. Different families of symbols have to be merged, and sometimes the same
symbol in different logics has a different meaning. Moreover, derivations can have
a completely different nature in different logics.

This chapter provides an overview, aiming to anticipate, in a very simplified
form, some aspects that will be pursued in full detail in the next chapters. As an
appetizer served before the function, it will show the issues in lesser content.

The contents of this chapter are as follows. In Section 1.1, we present conse-
quence systems as an abstract way to present logics via a consequence operator.
We also introduce the concept of morphism to relate consequence systems. In
Section 1.2, we present the basic ideas about composing or splicing logics and
decomposing or splitting logics. We also introduce a technical summary of the
most relevant mechanisms for splicing and splitting, namely fusion, product and
fibring by functions of modal logics and Gödel provability logic. In Section 1.3,
we provide an introduction to algebraic fibring from a deductive perspective. We
also motivate that our aim is to define composing and decomposing mechanisms
as minimal or maximal constructions. The issues of this section are discussed in
detail in most of the chapters of this book. In Section 1.4, we give an introduc-
tion to the splitting mechanism called possible-translations semantics. A deeper
account of this technique is explored in Chapter 9.

1.1 Consequence systems

A fundamental question, previous to any attempt to combining logics, is how to
define the logics which are to be combined. There are many authors that tried
to answer this question. The interested reader can take a look at [103]. Herein,
a logic is a consequence system following the formulation given by Alfred Tarski
(see [258]). The quest for the abstract definition of logic, as a consequence operator,
seems to go back to Bernard Bolzano (see [266] and also [231] in [118]).

A consequence system is usually a pair composed by a set, the language or
the set of formulas, and a map indicating for each subset of formulas the respec-
tive consequences. Some requirements are imposed on the map depending on the
objectives and the properties of the logic at hand. Consequence systems can be
defined in a proof-theoretic way or in a model-theoretic way.

We start with some notation. Let S be a set. We denote by ℘S the set of all
subsets of S and by ℘finS the set of all finite subsets of S.
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Definition 1.1.1 A consequence system is a pair

〈L,C 〉

where L is a set and C : ℘L→ ℘L is a map satisfying:

• Γ ⊆ C(Γ) extensiveness

• if Γ1 ⊆ Γ2 then C(Γ1) ⊆ C(Γ2) monotonicity

• C(C(Γ)) ⊆ C(Γ) idempotence

∇

The set L is the language, that is, the set of formulas. The map C : ℘L → ℘L
is a closure operator [198] called consequence operator. For each Γ ⊆ L, C(Γ) is
the set of consequences of the set of hypotheses or assumptions Γ. Extensiveness
means that an hypothesis in a set is a consequence of this set. Monotonicity states
that a formula that is a consequence of a set of hypotheses is also a consequence
of any bigger set of hypotheses. Idempotence means that we can use lemmas to
obtain consequences of a set of formulas.

An alternative characterization of the consequence operator can be given.

Proposition 1.1.2 A map C : ℘L→ ℘L is a consequence operator if and only if
it satisfies the following properties:

• Γ ⊆ C(Γ) extensiveness

• (C(Γ1) ∪ C(Γ2)) ⊆ C(Γ1 ∪ Γ2) preservation of unions

• If Γ2 ⊆ C(Γ1) and Γ3 ⊆ C(Γ2) then Γ3 ⊆ C(Γ1) transitivity.

Proof. Let C be a consequence operator. We start by proving preservation by
unions. We have that Γ1 ⊆ Γ1 ∪ Γ2 and Γ2 ⊆ Γ1 ∪ Γ2. Then C(Γ1) ⊆ C(Γ1 ∪ Γ2)
and C(Γ2) ⊆ C(Γ1 ∪ Γ2) by monotonicity and so C(Γ1) ∪ C(Γ2) ⊆ C(Γ1 ∪ Γ2).
Now we prove transitivity. Assume that Γ2 ⊆ C(Γ1) and Γ3 ⊆ C(Γ2). Then,
C(Γ2) ⊆ C(C(Γ1)) by monotonicity. Hence, Γ3 ⊆ C(C(Γ1)) and so Γ3 ⊆ C(Γ1) by
idempotence.

Assume now that C satisfies extensiveness, preservation of unions and tran-
sitivity. We start by proving monotonicity. Assume that Γ1 ⊆ Γ2. Then,
Γ1 ∪ Γ2 = Γ2. Hence, C(Γ1 ∪ Γ2) = C(Γ2). Therefore, by preservation of unions,
C(Γ1) ∪ C(Γ2) ⊆ C(Γ2) and so C(Γ1) ⊆ C(Γ2). Finally, we prove idempotence.
Since C(Γ) ⊆ C(Γ) and C(C(Γ)) ⊆ C(C(Γ)) then C(C(Γ)) ⊆ C(Γ) by transitivity.

�

This presentation of the consequence operator, namely transitivity, is closer to
the initial notion given by Bolzano (see [266]).
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It is worthwhile to observe that we do not have in general that C(∅) = ∅ and that
C(Γ1 ∪ Γ2) ⊆ C(Γ1) ∪ C(Γ2). Hence, the consequence operator is not in general a
Kuratowski operator (see [160]). For more details about the relationship between
logic and closure spaces see [198]. See also [280].

A consequence system is said to be compact or finitary if

C(Γ) =
⋃

Φ∈℘finΓ

C(Φ).

Compact consequence systems are also known as algebraic systems (as in [77]).

Example 1.1.3 An example of a consequence system is 〈LP,C〉 where LP is the
set of propositional formulas over the set P and C(Γ) is the set of all formulas that
are derived from Γ using a Hilbert calculus for classical propositional logic.

Another example of a consequence system is 〈L′
P
,C′〉 where L′

P
is the set of

modal propositional formulas over the set P and C′(Γ) is the set of all formulas
that are derived from Γ using a Hilbert calculus for modal propositional logic. ∇

Another characterization of consequence operators can be given. But first we
prove the following auxiliary result.

Lemma 1.1.4 Let 〈L,C 〉 be a consequence system. Then

C(Γ) = C(C(Γ))

for every Γ ⊆ L.

Proof. Use the idempotence for one side and extensiveness and monotonicity
conditions for the other. �

We note that this property is in fact idempotence in the usual algebraic sense.

Proposition 1.1.5 The map C : ℘L→ ℘L is a consequence operator if and only
if the following condition holds: (a) Φ ⊆ C(Γ) if and only if (b) C(Φ) ⊆ C(Γ), for
every Γ,Φ ⊆ L.

Proof. Assume that C : ℘L → ℘L is a consequence operator. Assume also that
Φ ⊆ C(Γ). By monotonicity C(Φ) ⊆ C(C(Γ)) and so C(Φ) ⊆ C(Γ) follows by
idempotence. Suppose that C(Φ) ⊆ C(Γ), then using extensiveness Φ ⊆ C(Φ), we
get Φ ⊆ C(Γ).

Conversely, assume that the condition holds. We prove that C is a consequence
operator. Extensiveness: from C(Γ) ⊆ C(Γ) we get Γ ⊆ C(Γ) using the fact
that (b) implies (a). Monotonicity: using extensiveness Γ1 ⊆ Γ2 ⊆ C(Γ2) and so
C(Γ1) ⊆ C(Γ2) using the fact that (a) implies (b). Idempotence: from C(Γ) ⊆ C(Γ)
we get C(C(Γ)) ⊆ C(Γ), using the fact that (a) implies (b). �
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We observe that consequence systems do not cover every possible logic that one
can think. Namely, the concept leaves outside logics where sets of formulas are
not considered like for instance in linear logic [125]. It seems that for covering this
kind of logics one needs a more general notion.

Consequence systems can be related. We introduce a weakness relation between
consequence systems.

Definition 1.1.6 The consequence system 〈L,C 〉 is weaker than consequence sys-
tem 〈L′,C′ 〉, written

〈L,C〉 ≤ 〈L′,C′〉
if L ⊆ L′ and C(Γ) ⊆ C′(Γ) for every subset Γ of L. ∇

We also say that a consequence system 〈L,C 〉 is partially weaker than conse-
quence system 〈L′,C′ 〉, written

〈L,C〉 ≤p 〈L′,C′〉

if L ⊆ L′ and C(∅) ⊆ C′(∅). When C is a syntactic operator, this means that
all theorems of C are also theorems of C′ and when C is a semantic operator, this
means that all valid formulas of C are also valid formulas of C′. Of course, if C ≤ C′

then C ≤p C′ but not the other way around.

Example 1.1.7 Recall the consequence systems 〈LP,C〉 and 〈L′
P
,C′〉 presented in

Example 1.1.3. We have that 〈LP,C〉 ≤ 〈L′
P
,C′〉. ∇

We can also relate consequence systems that have completely different languages
using morphisms.

Definition 1.1.8 A consequence system morphism h : 〈L,C 〉 → 〈L′,C′ 〉 is a map
h : L→ L′ such that

h(C(Γ)) ⊆ C′(h(Γ))

for every Γ ⊆ L. ∇

That is, the image of every consequence of a set of formulas is a consequence of
the image of the set. We observe that the converse is not always true, namely when
h : L→ L′ is not injective. Consequence systems and their morphisms constitute
a category Csy.

Note that when 〈L,C〉 ≤ 〈L′,C′〉 then there is a consequence system morphism
from 〈L,C〉 to 〈L′,C′〉 where the map from L to L′ is just an inclusion.

An alternative characterization is as follows. We start by introducing some
notation. Given a map h : L → L′, we denote by h−1(Γ′) the set of formulas
{γ ∈ L : h(γ) ∈ Γ′} for each Γ′ ⊆ L′.
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Proposition 1.1.9 Let 〈L,C 〉 and 〈L′,C′ 〉 be consequence systems. A map
between formulas h : L → L′ is a consequence system morphism h : 〈L,C 〉 →
〈L′,C′ 〉 if and only if

C(h−1(Γ′)) ⊆ h−1(C′(Γ′))

for every Γ′ ⊆ L′.

Proof. Assume that h is a consequence system morphism. Let ϕ ∈ C(h−1(Γ′)).
Then h(ϕ) ∈ h(C(h−1(Γ′))) and since h is a morphism h(ϕ) ∈ C′(h(h−1(Γ′))). On
the other hand, h(h−1(Γ′)) ⊆ Γ′ hence, by monotonicity, C′(h(h−1(Γ′))) ⊆ C′(Γ′).
Therefore, h(ϕ) ∈ C′(Γ′) and so ϕ ∈ h−1(C′(Γ′)).
Assume now that C(h−1(Γ′)) ⊆ h−1(C′(Γ′)) for every Γ′. Let ϕ ∈ C(Γ). Then
ϕ ∈ C(h−1(h(Γ))). By the hypothesis, C(h−1(h(Γ))) ⊆ h−1(C′(h(Γ))), hence
ϕ ∈ h−1(C′(h(Γ))) (since Γ ⊆ h−1(h(Γ)) and so C(Γ) ⊆ C(h−1(h(Γ))) by mono-
tonicity), then h(ϕ) ∈ h(h−1(C′(h(Γ)))) and so h(ϕ) ∈ C′(h(Γ)). �

This characterization is of course related to the notion of continuous map in
topological spaces (see [160]).

It is worthwhile to say what is the union of consequence systems. We will see
below that most combination mechanisms (including for instance fibring) do not
correspond to the union of consequence systems.

Definition 1.1.10 Let {Ci}i∈I , where Ci = 〈Li,Ci〉, be a family of consequence
systems. Their union is the following consequence system:

C = 〈
⋃

i∈I
Li,C〉

where C(
⋃
i∈I Γi) is

⋃
i∈I Ci(Γi). ∇

Instead of presenting consequence via an operator we can look at consequence
as a binary relation between the set of all sets of formulas and the set of formulas.
Given a binary relation S ⊆ A×B, we may write aSb whenever 〈a, b〉 ∈ S.

Then, a consequence relation over L is a set

R ⊆ ℘L× L
satisfying the following postulates: (i) if ϕ ∈ Γ then ΓRϕ; (ii) if ΨRϕ e ΓRψ for
every ψ ∈ Ψ then ΓRϕ; (iii) if Γ1Rϕ and Γ1 ⊆ Γ2 then Γ2Rϕ. A consequence
operator C : ℘L → ℘L induces a consequence relation RC such that, for every
Γ ⊆ L and every ϕ ∈ L,

ΓRCϕ if and only if ϕ ∈ C(Γ).

A consequence relation R induces a consequence operator CR such that, for every
Γ ⊆ L,

CR(Γ) = {ϕ ∈ L : ΓRϕ}.
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It is worth noting that the map C → RC is the inverse of the map R → CR,
and vice-versa. Thus, a consequence system can be defined indistinctly as a pair
〈L,C 〉 such that C is a consequence operator over L, or as a pair 〈L,R 〉 such that
R is a consequence relation over L. Note that 〈L,R 〉 is weaker than 〈L′,R′ 〉 if and
only if L ⊆ L′ and R ⊆ R′.

Sometimes we may write ΓR instead of CR(Γ).
For the purpose of most combination mechanisms, the consequence systems are

such that their language is always generated from a family of connectives. Hence,
we do not include L in the definition of a consequence system, but instead we use
a signature C defining the family of connectives in each case. As an illustration
we define propositional based signatures and the induced languages.

Definition 1.1.11 A propositional based signature is any family of sets

C = {Ck}k∈N

such that Ci ∩ Cj = ∅ if i �= j. ∇

The elements of the set Ck are called k-ary connectives or connectives of arity
k. In particular, the elements of C0 are called constants.

We will consider unions of propositional signatures. Given propositional signa-
tures C′ and C′′, their union is the signature

C′ ∪ C′′

where (C′∪C′′)k = C′
k∪C′′

k for each k ∈ N. We use C′\C′′ to denote the signature
such that (C′ \ C′′)k = C′

k \ C′′
k for each k ∈ N.

Given two signatures C e C′, we say that C is contained in C′, denoted by

C ≤ C′

if Ck ⊆ C′
k, for every k ∈ N. In some situations, we would like to include a set P

of propositional constants. Then we would say that P ⊆ C0.
We assume that Ξ is a set of schema variables. Schema variables play an im-

portant role when combining logics, in particular for deduction, as we explain in
Chapter 2.

Definition 1.1.12 Let C = {Ck}k∈N be a signature. The propositional based
language generated by C is the set L(C) defined as the least set L(C) that satisfies
the following properties:

• Ξ ⊆ L(C);

• (c(ϕ1, . . . , ϕk)) ∈ L(C) whenever k ∈ N, c ∈ Ck and ϕ1, . . . , ϕk ∈ L(C). ∇
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The elements of L(C) are called formulas over C. In particular, C0 ⊆ L(C).
Typical deductive systems such as Hilbert, tableau, sequent and natural deduc-

tion calculi induce consequence systems. We can look at each kind of deductive
system as a presentation of a consequence system. Observe that it is quite common
to work with these presentations instead of working with the consequence systems
themselves. That is the case of most chapters in this book.

We illustrate how a Hilbert calculus induce a consequence system. We need to
define Hilbert calculus, substitution and derivation.

Definition 1.1.13 A Hilbert calculus is a pair

H = 〈C,R〉

such that:

• C is a signature;

• R is a set inference rules, that is, a set of pairs 〈Δ, ψ〉 where Δ ⊆ L(C) is a
finite set and ψ ∈ L(C). ∇

When Δ = ∅ we say that the inference rule is an axiom. Otherwise it is said
to be a rule. Sometimes when introducing axioms we may, for simplicity, indicate
only the formula. We now define the notion of derivation in a Hilbert calculus.
Before we have to introduce the notion of substitution.

The objective of a substitution is to replace schema variables by formulas. A
substitution is a map

σ : Ξ → L(C).

Substitutions can be extended to formulas in a natural way. We denote by σ(ϕ)
the formula that results from substituting each schema variable ξ in ϕ by σ(ξ).
Moreover, substitutions can be extended to sets of formulas. We denote by σ(Γ)
the set of formulas {σ(γ) : γ ∈ Γ}.

Definition 1.1.14 A derivation in H from a set Γ ⊆ L(C) is a sequence

ϕ1 . . . ϕn

such that for i = 1, . . . , n each ϕi is either an element of Γ or there is a substitution
σ and an inference rule 〈Δ, ψ〉 in H such that σ(ψ) is ϕi and σ(δ) is ϕj for some
j < i, for every δ ∈ Δ.

We also say that ϕn is derived from Γ and use the following notation

Γ H ϕn.

∇
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A Hilbert calculus H induces a consequence system

C(H) = 〈C,H〉
where, for each Γ ⊆ L(C), Γ�H is the set {ϕ ∈ L(C) : Γ H ϕ}. Observe that this
consequence system is compact. It is also structural in the following sense.

A consequence system is said to be structural if, for every substitution σ we
have that:

σ(C(Γ)) ⊆ C(σ(Γ)).

That is, if a consequence system C is structural, then σ is a consequence system
endomorphism (from C to C).

Consequence systems that are compact and structural are called standard in the
terminology of [280]. The notions of compact, structural and standard consequence
systems can be expressed in terms of consequence relations in the obvious way.

Similarly, semantic entailments are also consequence operators. For instance,
propositional entailment associated with valuations and modal entailment associ-
ated to Kripke structures are examples of consequence operators. Semantic struc-
tures can also be seen as presentations of the semantic entailment.

Consequence operators are relevant in all chapters of the book. In Chapter 2,
we introduce a Hilbert consequence operator generated by a Hilbert calculus. In
Chapter 3, we introduce a semantic consequence operator. We also introduce the
notion of soundness, as saying that the set of Hilbert consequences is included in
the set of semantic consequences, and the notion of completeness, as stating that
the set of semantic consequences is included in the set of Hilbert consequences.
In Chapter 5, consequence systems are used in another way. When considering
logics presented in a different way, say one with a Hilbert calculus and the other
via a sequent calculus, we can define their fibring by fibring the induced conse-
quence systems. We will also define other relations between consequence systems
in Chapter 9.

1.2 Splicing and splitting

To start with, it is convenient to keep in mind that, in order to combine logics,
we intend to depart from simple logics to obtain a more complex one. Following
the terminology of [47], this process, by which a bunch of logics is synthesized
forming a new logic, is called splicing logics. A prototypical case of splicing is
the method of fibring, introduced in [104] (see also [108]). On the other hand,
we may think about an analytic procedure that permits us to decompose a given
logic into simpler components. This kind of process was called splitting in [47]. A
prototypical case of splitting occurs when one succeeds in describing a given logic
in terms of simpler components by means of translating the original logic into
a collection of simpler, auxiliary logics, using what is called possible-translations
semantics. This mechanism is introduced in [45] and further developed in [196]
and [46].
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We may thus consider two complementary approaches in the field of combining
logic systems:

• Splicing, combining or composing logics: a bottom–up, synthetic approach
presented in Figure 1.1. There are several methods to combine logics. Each
method can be seen as an operation on some class of logics. In the figure,
we start with logics L1 and L2 in some class of logics, and using the binary
operation � we obtain a new logic L = L1 � L2.

L

L1

i1

��������������� L2

i2

���������������

Figure 1.1: L is synthesized from L1 and L2

The arrows i1 and i2 indicate that the component logics should be related
with their combination. In general, these arrows induce consequence system
morphisms from the component logics to their combination, meaning that
derivation and entailment are preserved.

• Splitting, decombining or decomposing logics: a top–down, analytic ap-
proach presented in Figure 1.2. In this case we start with logic L and try
to find an operation � and components L1 and L2 such that L = L1 � L2.
The arrows f1 and f2 indicate that the given logic should be related with the
components. In general, these arrows induce consequence system morphisms
from the given logic to the components.

L
f1

�����
���

���
���

�
f2

����
���

���
���

��

L1 L2

Figure 1.2: L is analyzed into L1 and L2

Splicing can be applied to more than two logics. It is worthwhile noting that
splitting can involve an infinite number of components as we discuss below.

The known splicing mechanisms, as we will see throughout the book, have an
important property. Once we choose a mechanism and the components L1 and L2,
the resulting logic L is, in most cases, immediately defined. On the other hand,
the known splitting mechanisms are different in this respect. Once we choose
a mechanism and a logic L, one can have several possibilities of choosing the
components.
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The splicing and the splitting mechanisms can be combined as we explain in
Chapter 11 where we briefly discuss some applications. There we will discuss how
one can use both of them if there is need to do so.

Among the most challenging problems in combination of logics we can refer to
preservation of properties. For example, it is interesting to investigate if a logic
resulting from a combination has a certain property, assuming that the original
logics have that property. In many cases, one has to impose sufficient conditions for
the preservation. The most relevant preservation results are related to soundness
and completeness, interpolation and decidability.

Several combination mechanisms have been investigated, namely fusion of modal
logics, product of modal logics, fibring by functions of modal logics, algebraic
fibring, temporalization and parameterization, synchronization, institutions and
parchments. They are targeted to different classes of logics and assume different
degrees of abstraction. They all have in common that, in the end, we are dealing
with consequence systems either with a syntactic or with a semantic nature. That
is, in all the cases there are consequence operators that are extensive, monotonic
and idempotent.

In this section, we only briefly describe three combination mechanisms: fusion,
product and fibring by functions of modal logics. They will be used as examples in
other chapters. For a complete description of fusion and product we refer to [113]
and for a in depth treatment of fibring by functions see [108]. Algebraic fibring
will be discussed in many guises throughout the book. The other combination
mechanisms were triggered by applications in software specification and will be
discussed in Chapter 11.

1.2.1 Fusion of modal logics

Fusion of normal modal logics (see [259]) is a binary operation on the class of
normal modal logics endowed with Kripke semantics (introduced by Samuel Kripke
in [174]) and Hilbert calculi, that we now explain with some detail. Recall that a
Kripke structure is a triple

〈W,R, V 〉
where W is a non-empty set (the set of worlds), R ⊆W 2 is a binary relation (the
accessibility relation) and V : P → ℘W is a map (the valuation).

Consider two normal modal logics L′ and L′′ with the following characteristics:

• both have the same set P of zero-ary connectives (propositional constants),
a unary connective ¬ and a binary connective ⇒;

• a unary connective �′ and �′′ for the logics L′ and L′′, respectively;

• M ′ and M ′′ are classes of Kripke structures for L′ and L′′, respectively;

• the Hilbert calculi H ′ and H ′′ include, besides the propositional part, the
following axioms and rules:
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– 〈∅, ((�′(ξ1 ⇒ ξ2))⇒ ((�′ξ1)⇒ (�′ξ2)))〉 K axiom for L′;

– 〈∅, ((�′′(ξ1 ⇒ ξ2))⇒ ((�′′ξ1)⇒ (�′′ξ2)))〉 K axiom for L′′;

– 〈{ξ}, (�′ξ)〉 necessitation rule for L′;

– 〈{ξ}, (�′′ξ)〉 necessitation rule for L′′.

The fusion of L′ and L′′ is a normal bimodal logic L with two boxes that behave
independently, except when otherwise imposed. That is, L is characterized as
follows:

• a set P of zero-ary connectives (propositional constants), a unary connective
¬, a binary connective ⇒ and two unary connectives �′ and �′′;

• M is the class of all Kripke structures of the form 〈W,R′, R′′, V 〉 where
〈W,R′, V 〉 and 〈W,R′′, V 〉 are Kripke structures of L′ and L′′, respectively;

• the Hilbert calculus H includes all the rules of the Hilbert calculi of the
original logics and hence the following ones:

– 〈∅, ((�′(ξ1 ⇒ ξ2))⇒ ((�′ξ1)⇒ (�′ξ2)))〉 K axiom for L′;

– 〈∅, ((�′′(ξ1 ⇒ ξ2))⇒ ((�′′ξ1)⇒ (�′′ξ2)))〉 K axiom for L′′;

– 〈{ξ}, (�′ξ)〉 necessitation rule for L′;

– 〈{ξ}, (�′′ξ)〉 necessitation rule for L′′.

Each model of the fusion corresponds to a model 〈W,R′, V ′〉 in L′ and to a
model 〈W,R′′, V ′′〉 in L′′. That is, in the fusion we do not include models where
the set W (of worlds) is different. In technical words, each model of the fusion
should have as a reduct a model of L′ and a model of L′′.

We briefly describe how a formula in the fusion is evaluated. Given the model
〈W,R′, R′′, V 〉 in the fusion and w ∈ W we have that the formula (�′(�′′p)) is
satisfied by 〈W,R′, R′′, V 〉 at w, denoted by

〈W,R′, R′′, V 〉, w � (�′(�′′p))

if there is z ∈W such that:

• 〈W,R′, R′′, V 〉, z � (�′′p) and wR′z;

• Nz ⊆ V (p) where Nz = {u ∈ W : zR′′u}.
We refer to Figure 1.3 for details, where ϕ′

p is (�′(�′′p)) and ϕ′′
p is (�′′p).

Observe that the formula

(�′′((�′(ξ1 ⇒ ξ2))⇒ ((�′ξ1)⇒ (�′ξ2))))

is a theorem of the fusion. That is, we can derive this formulas from the K axiom
for L′ and the necessitation rule for L′′.

We synthesize the properties of fusion in the following way:
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<W,R',R'',V>

Nz
R' R''w z

pϕ′p ϕ′′p

Figure 1.3: Evaluating the formula (�′(�′′p)) in a fusion structure

• homogeneous combination mechanism at the deductive level: both original
logics are presented by Hilbert calculi;

• homogeneous combination mechanism at the semantic level: both original
logics are presented by Kripke structures;

• algorithmic combination of logics at the deductive level: given the Hilbert
calculi for the original logics, we know how to define the Hilbert calculus for
the fusion;

• algorithmic combination of logics at the semantic level: given the classes of
Kripke structures for the original logics, we know how to define the class of
Kripke structures for the fusion.

The algorithmic nature of fusion also means that no interaction is stated between
�′ and �′′. We will see in Chapter 2 and in Chapter 3 that fusion is a canonical
construction in the sense that it is minimal in some class of logics.

It is easy to conclude that the definition of L′ above induces a consequence
system

C(H ′) = 〈L(C′),H′〉
where C′ is the signature of L′ and (Γ′)�H′ is the set of formulas that can be
derived from Γ′, using the Hilbert calculus for L′. In a similar way, we can define
C′′(H ′′) = 〈L(C′′),H′′ 〉 and C(H) = 〈L(C ′ ∪ C′′),H〉. Then we have:

C(H ′) ≤ C(H) and C(H ′′) ≤ C(H).

The semantic characterizations of L′, L′′ and L also induce consequence systems.
Again, the consequence systems for L′ and L′′ are weaker than the one for L.

At first sight, this may seem a very simple combination mechanism. However, it
is interesting enough for seeing that preservation of properties is not an easy issue.
An example of a preservation problem can be presented in the following way.
Assume that L′ and L′′ are weakly complete logics with respect to the class of
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frames (that is, every valid formula is a theorem). Is the logic L resulting from the
fusion also weakly complete with respect to the class of fusion frames? In fusion,
there are preservation results for weak completeness, uniform Craig interpolation
(for theoremhood) and decidability (see [281, 169]).

Fusion of non-normal modal logics was also investigated in [92], namely dis-
cussing preservation of weak completeness via a technique that extends the one
used in the normal case.

It is worthwhile noting that there is no notion of fusion of a normal modal logic
with a non-normal modal logic. Such a combination can, however, be defined in
the context of algebraic fibring.

It is also worthwhile mentioning that the interested reader should also consult
[99] where the notion of fusion was anticipated through some examples of combin-
ing alethic and deontic logics with philosophical interest.

1.2.2 Product of modal logics

We now concentrate on another mechanism of combination: the product of logics.
The product of modal logics is a binary operation that is very useful when one
wants, for example, to represent time-space information. Products were introduced
in [235, 236]. We consider the same setting as we did for fusion of modal logics.
The signature and the semantic counterparts of the product of L′ and L′′ is as
follows:

• a set P of zero-ary connectives (propositional constants), a unary connective
¬, a binary connective ⇒ and two unary connectives �′ and �′′;

• M is the class of product structures of the form

〈W ′ ×W ′′, R
′
, R

′′
, V ′ × V ′′〉

where 〈W,R′, V ′〉 and 〈W,R′′, V ′′〉 are Kripke structures of L′ and L′′, re-
spectively and where R

′
, R

′′ ⊆ (W ′ ×W ′′)2 are defined as follows:

– 〈w′
1, w

′′〉R′〈w′
2 , w

′′〉 if w′
1R

′w′
2;

– 〈w′, w′′
1 〉R

′′〈w′, w′′
2 〉 if w′′

1R
′′w′′

2 ;

– (V ′ × V ′′)(p) = V ′(p)× V ′′(p).

The striking aspect about products is that some modal formulas are valid in every
product frame. Namely the following will show that some interaction exists be-
tween �′ and �′′ and �′ and �′′ (recall that �′ϕ is an abbreviation of (¬(�′(¬ϕ)))
and similarly with respect to �′′):

• ((�′(�′′p))⇒ (�′′(�′p))) commutativity 1;

• ((�′′(�′p))⇒ (�′(�′′p))) commutativity 2;
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• ((�′(�′′p))⇒ (�′′(�′p))) Church-Rosser property 1

• ((�′′(�′p))⇒ (�′(�′′p))) Church-Rosser property 2

For some time it was conjectured that product of Hilbert calculi was fusion of
Hilbert calculi enriched with the four axioms above. For more details see [115, 116]
where some counterexamples are analyzed. Hence, because of the interactions, it
is not possible to obtain directly the Hilbert calculus for the product of two modal
logics. The interaction axioms have to be fine tuned on the original logics.

p

<u',w''><w',w''>

N<u',w''>

R' R'',<W'xW'', ,V'xV''>

ϕ′p ϕ′′p

Figure 1.4: Evaluating the formula (�′(�′′p)) in a product structure

We briefly describe how a formula in the product of modal logics is evaluated.
Given the model 〈W ′ ×W ′′, R

′
, R

′′
, V ′ × V ′′〉 in the product and 〈w′, w′′〉 ∈ W

we have that the formula (�′(�′′p)) is satisfied by 〈W ′ ×W ′′, R
′
, R

′′
, V ′ × V ′′〉 at

〈w′, w′′〉, denoted by

〈W ′ ×W ′′, R
′
, R

′′
, V ′ × V ′′〉, 〈w′, w′′〉 � (�′(�′′p))

if there is 〈u′, w′′〉 ∈W ′ ×W ′′ such that:

• 〈W ′ ×W ′′, R
′
, R

′′
, V ′ × V ′′〉, 〈u′, w′′〉 � (�′′p) and w′R′u′;

• N〈u′,w′′〉 ⊆ (V ′ × V ′′)(p) where N〈u′,w′′〉 = {〈u′, u′′〉 ∈ W ′ ×W ′′ : w′′R′′u′′}.

We refer to Figure 1.4 for details, where ϕ′
p is (�′(�′′p)) and ϕ′′

p is (�′′p).
We synthesize the properties of the product in the following way:

• homogeneous combination mechanism at the deductive level: both original
logics are presented by Hilbert calculi;

• homogeneous combination mechanism at the semantic level: both original
logics are presented by Kripke structures;
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• non algorithmic combination of logics at the deductive level: given the Hilbert
calculi for the original logics, we have to complete the definition of the Hilbert
calculus of the product;

• algorithmic combination of logics at the semantic level: given the classes of
Kripke structures for the original logics we know how to define the class of
Kripke structures of the product.

It is easy to conclude that the definition of L′ above induces a consequence
system

〈L(C′),�′〉
where C′ is the signature of L′ and (Γ′)�′

is the set of formulas that can be entailed
from Γ′, using the semantics for L′. In a similar way, we can define 〈L(C′′),�′′〉
and 〈L(C′ ∪ C′′),�〉. Then we have:

〈L(C′),�′〉 ≤ 〈L(C′ ∪C′′),�〉 and 〈L(C′′),�′′〉 ≤ 〈L(C′ ∪ C′′),�〉.
The above holds since:

• 〈W ′×W ′′, R
′
, R

′′
, V ′×V ′′〉, 〈w′, w′′〉 � ϕ′ if and only if 〈W ′, R′, V ′〉, w′ � ϕ′;

• 〈W ′ ×W ′′, R
′
, R

′′
, V ′ × V ′′〉, 〈w′, w′′〉 � ϕ′′

if and only if 〈W ′′, R′′, V ′′〉, w′′ � ϕ′′.

Products of modal logics are useful to understand the semantics that we adopt
in Chapter 6 for first-order based logics.

Several preservation and non preservation results were already obtained for
products. Namely, in [120] several results are presented concerning products of
transitive modal logics. Also in [199] some complexity results are presented.

1.2.3 Fibring by functions

In this section we briefly analyze the fibred semantics for modal logics, as originally
presented in [104] (see also [108]). Herein, we give the name fibring by functions
to this kind of combination. The reason will become clear below.

The setting is the same as the one for fusion of logics. Given a classM of Kripke
structures, we denote bySM the class of all pairs 〈〈W,R, V 〉, w〉where 〈W,R, V 〉 ∈M
andw ∈ W .

The fibring by functions of L′ and L′′ is a normal bimodal logic L with two
modal operators characterized as follows:

• the set P of zero-ary connectives (propositional constants), a unary connec-
tive ¬, a binary connective ⇒ and unary connectives �′ and �′′;

• M is a class of structures where each structure is either 〈m′, h′, h′′〉 or
〈m′′, h′, h′′〉 such that:
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– m′ = 〈W ′, R′, V ′〉 ∈M ′ and m′′ = 〈W ′′, R′′, V ′′〉 ∈ M ′′, where M ′ and
M ′′ are the classes of Kripke structures for L′ and L′′, respectively;

– h′ :
⊎
m′∈M ′ W ′ → SM ′′ and h′′ :

⊎
m′′∈M ′′ W ′′ → SM ′ are maps.

A structure 〈W ′, R′, V ′, h′, h′′〉 satisfies a formula ϕ, written

〈W ′, R′, V ′, h′〉, w′ � ψ

whenever the following conditions hold:

• 〈m′, h′, h′′〉, w′ � p if w′ ∈ V ′(p);

• 〈m′, h′, h′′〉, w′ � (¬ϕ) if 〈m′, h′, h′′〉, w′ �� ϕ;

• 〈m′, h′, h′′〉, w′ � (ϕ1 ⇒ ϕ2) if 〈m′, h′, h′′〉, w′ �� ϕ1 or 〈m′, h′, h′′〉, w′ � ϕ2;

• 〈m′, h′, h′′〉, w′ � (�′ϕ) if 〈m′, h′, h′′〉, v′ � ϕ for every v′ ∈ W ′ such that
w′R′v′;

• 〈m′, h′, h′′〉, w′ � (�′′ϕ) if 〈m′′, h′, h′′〉, w′′ � (�′′ϕ) where h′(w′) = 〈m′′, w′′〉.
The satisfaction when considering structures 〈W ′′, R′′, V ′′, h′′〉 is defined in a sim-
ilar way.

Let (�′(�′′p)) be a formula of the mixed language of L. Assume that we want
to evaluate this formula in the structure 〈W ′, R′, V ′, h′, h′′〉 at world w′. That is,
we want to evaluate

〈W ′, R′, V ′, h′, h′′〉, w′ � (�′(�′′p)).

Since (�′(�′′p) has �′ of the logic L′ as an external modality, we can use the
Kripke structure 〈W ′, R′, V ′〉. Thus, 〈W ′, R′, V ′, h′, h′′〉, w′ � (�′(�′′p)) if there
exists v′ ∈ W ′ such that w′R′v′ and 〈W ′, R′, V ′, h′, h′′〉, v′ � (�′′p). For the latter
satisfaction, the Kripke structure 〈W ′, R′, V ′〉 is not enough. We have to use the

R'
w' v'

<W',R',V',h',h''> <W'',R'',V'',h',h''>

Nw''
R''

p
w''

h'(v')
ϕ′p ϕ′′p

Figure 1.5: Evaluating the formula (�′(�′′p)) in fibring by functions structures
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map h′ that associates to v′ a structure 〈W ′′, R′′, V ′′〉 and a world w′′ ∈ W ′′. That
is, we have to evaluate

〈W ′′, R′′, V ′′, h′, h′′〉, w′′ � (�′′p).

Finally, we have to evaluate p in all the neighbors of w′′, that is, the elements of
the set {v′′ ∈W ′′ : w′′R′′v′′}.

The Figure 1.5, where ϕ′
p is (�′(�′′p)) and ϕ′′

p is (�′′p), illustrates this con-
struction.

We synthesize the properties of fibring by functions in the following way:

• homogeneous combination mechanism at the deductive level: both original
logics are presented by Hilbert calculi;

• homogeneous combination mechanism at the semantic level: both original
logics are presented by Kripke structures;

• algorithmic combination of logics at the deductive level: given the Hilbert
calculi for the original logics, we know how to define the resulting Hilbert
calculus;

• semi-algorithmic combination of logics at the semantic level: given the classes
of Kripke structures for the original logics we know how to define the class of
structures of the fibring by functions, provided that we are given the maps
relating the models and worlds.

It is easy to conclude that the definition of L′ above induces a consequence
system

〈L(C′),�′〉
where C′ is the signature of L′ and (Γ′)�′

is the set of formulas that can be entailed
from Γ′, using the semantics for L′. In a similar way, we can define 〈L(C′′),�′′〉
and 〈L(C′ ∪ C′′),�〉. Then we have:

〈L(C ′),�′〉 ≤p 〈L(C′ ∪C′′),�〉 and 〈L(C′′),�′′〉 ≤p 〈L(C′ ∪ C′′),�〉.
The consequence systems 〈L(C′),�′〉 and 〈L(C′′),�′′〉 are weaker than the con-

sequence system 〈L(C′ ∪ C′′),�〉 providing that we add some conditions on the
maps h′ and h′′. We will discuss this issue later on in Section 3.4 of Chapter 3.

1.2.4 Gödel-Löb modal logic and Peano arithmetic

Perhaps the oldest decomposition of logics done in a rigorous context is related to
the provability operator introduced by Kurt Gödel in 1933 (the original article is
translated in [128]). For an historical account of the subject see [135] in [117]. For
an overview of provability logic see also [156] in [33].

The idea is that we can translate provability logic GL into Peano arithmetic
PA. We start by giving a brief overview of Peano arithmetic.
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We follow [26] in the description of the Peano arithmetic below. The signature
is a first-order signature with equality ≈, with function symbols 0 of arity 0, s of
arity 1 and +,× of arity 2. We fix a set X of variables. Then the set of terms is
as follows:

• x is a term for every x ∈ X ;

• 0 is a term;

• st, (t1+t2), (t1×t2) are terms whenever t, t1, t2 are terms.

The set of formulas is defined as follows:

• ⊥, (t1 ≈ t2) are formulas whenever t1, t2 are terms;

• (ϕ1 ⇒ ϕ2), (∀xϕ) are formulas whenever ϕ, ϕ1, ϕ2 are formulas.

We denote by LPA the language of PA. Negation ¬ and inequality �≈ are introduced
as abbreviations of (ϕ⇒⊥) and (¬(t1 ≈ t2)), respectively. We say that a sentence
is a formula with no free variables. Besides the usual first-order axioms and rules
we also have the following axioms in the Peano arithmetic (PA).

• (0 �≈ sx);

• ((sx ≈ sy)⇒ (x ≈ y));

• ((x+0) ≈ x);

• ((x+sy) ≈ s(x+y));

• ((x×0) ≈ 0);

• ((x×sy) ≈ ((x×y)+x));

• (((∀x((x ≈ 0)⇒ϕ)) ∧ (∀y((∀x((x ≈ y)⇒ϕ))⇒ (∀x((x ≈ sy)⇒ϕ)))))⇒ϕ)
where y does not occur in ϕ and is different from x.

We use PA ϕ to denote that ϕ is a theorem in Peano arithmetic.
Clearly the set of formulas is denumerable. Hence, we can establish a bijection

between this set and the set of natural numbers. Choosing such a bijection g, the
Gödel number of ϕ is g(ϕ). Finite sequences of formulas can also be encoded in the
natural numbers using g. Hence, given a sequenceϕ1 . . . ϕn, g(ϕ1 . . . ϕn) denotes the
Gödel number of the sequence. We denote by �ϕ� the numeral in PA for the Gödel
number of the formula ϕ, that is, if n is the Gödel number of ϕ then �ϕ� is 0 preceded
by n occurrences of the s operation.

In the sequel we denote by
Pf(y, x)



1.2. SPLICING AND SPLITTING 21

the formula stating that there is a proof (a finite sequence of formulas) with Gödel
number y for the formula with Gödel number x. We also consider the formula

Bew(x)

as an abbreviation of (∃yPf(y, x)). Gödel established several properties ofBew(�ϕ�),
namely the following:

• PA (Bew(�(ϕ1 ⇒ ϕ2)�)⇒ (Bew(�ϕ1�)⇒Bew(�ϕ2�)));
• PA (Bew(�ϕ�)⇒Bew(�Bew(�ϕ�)�));
• if PA ϕ then PA Bew(�ϕ�).

Clearly, there are similarities between Bew and a modal operator �.
Furthermore, Martin Hugo Löb [181], answering a question by Leon Henkin,

proved the following property:

if PA (Bew(�ϕ�)⇒ ϕ) then PA ϕ.

A modal logic K4LR was introduced for studying modal properties of Bew seen
as a modality �. This logic is a normal modal logic with the transitivity axiom 4,
that is,

((�ϕ)⇒ (�(�ϕ)))

and the rule
〈{(�ϕ⇒ ϕ)}, ϕ〉.

The operator � in the logic K4LR has all the required properties of Bew.
However, it is more common to work with another modal logic for studying the
properties of provability, the Gödel-Löb modal logic GL. This logic is a normal
modal logic with a new axiom:

((�((�ϕ)⇒ ϕ)⇒ (�ϕ))).

These two modal logics are indeed the same. Let C(K4LR) and C(GL) be the
consequence systems induced by the Hilbert calculi for the logics K4LR and GL,
respectively. Then

C(K4LR) ≤p C(GL) and C(GL) ≤p C(K4LR)

that is the GL-theorems are the same as the K4LR-theorems.
The logic GL can be seen as splitting through PA. For this purpose we need to

introduce the notion of realization. We denote by LGL the language of the logic
GL which we assume to be generated by a set of propositional constants P.

A realization is a map λ̄ : P → LPA that assigns to each p ∈ P a sentence. Each
realization induces a map

λ : LGL → LPA
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such that:

• λ(p) = λ̄(p);

• λ(⊥) = ⊥;

• λ(ϕ⇒ ψ) = (λ(ϕ)⇒ λ(ψ));

• λ(�ϕ) = Bew(�λ(ϕ)�).
This map is called a translation of LGL into LPA. We denote by Λ the set of all
such translations.

The relationship between GL and PA is as follows (see [252]):

GL ϕ if and only if PA λ(ϕ) for every λ ∈ Λ

where, as expected, GL ϕ states that ϕ is a GL-theorem. Hence, if ϕ is a theorem
of GL then all its possible translations (via realizations) into PA are also theorems
of PA and vice-versa.

For some developments related to fusion of provability logics see also [156].
In Example 1.4.5 below we shall see that the representation of provability logic

by means of translations into Peano arithmetic is an instance of the splitting tech-
nique called possible-translations characterizations, to be analyzed in Chapter 9.

1.3 Algebraic fibring

Herein, we present fibring in a very simple context also with the intention of
motivating that it is a universal or canonical construction. We use the name
algebraic fibring because as referred in [1] we investigate the algebraic essence
of the constructions and use algebraic constructions following the tradition of
algebraic logic started by George Boole and later on by Augustus De Morgan [81].

The first observation is that we want to extend the constructions already de-
scribed in Section 1.2 to the situation in which we can have logics that are not
necessarily modal. Then, fusion will come as a particular case.

The second observation has to do with the specifics of the classes of logics that we
assume to have as original logics. In this section, we consider that the target logics
are propositional based (they do not involve any quantifier operators) and that we
are in a homogeneous scenario. That is, both logics are presented deductively in
the same way.

Hence, the construction has the following properties:

• homogeneous combination mechanism at the deductive level: both original
logics are presented by Hilbert calculi;

• algorithmic combination of logics at the deductive level: given the Hilbert
calculi for the original logics, we know how to define the Hilbert calculus for
the fibring.
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The starting point is to fix the signatures. We assume that the original logics
have a propositional signature as the one described in Definition 1.1.11. We also
assume a denumerable set Ξ = {ξi : i ∈ N} of schema variables that will be useful
when defining a general notion of Hilbert calculus.

In order to define fibring of signatures we need to be able to compare signatures.
Recall that C ≤ C′ means Ck ⊆ C′

k for every k ∈ N.
The fibring of two signatures C′ and C′′ is the union C′∪C′′. Hence C′ ≤ C′∪C′′

and C′′ ≤ C′∪C′′.
We can give this definition in a more general way by using morphisms:

Definition 1.3.1 Let C and C′ be propositional signatures. A signature mor-
phism h : C → C′ is a family of maps hk : Ck → C′

k, for every k ∈ N. ∇

The advantage of using morphisms is that we can use the names we want for
the different symbols in the signatures at hand, translating them between signa-
tures using the morphisms. We assume that a connective in one of the signatures
corresponds to a connective of the same arity in the other signature. Signatures
and their morphisms constitute the category Sig.

In this category, fibring of signatures is a universal construction. When there
is no sharing of connectives then fibring is a coproduct in Sig. This means that
(see Figure 1.6):

• C′∪C′′ is a disjoint union of C′ and C′′, that is, the disjoint union of C′
k and

C′′
k for each k ∈ N;

• there are morphisms i′ : C′ → C′∪C′′ and i′′ : C′′ → C′∪C′′;

• given signature morphisms h′ : C′ → C and h′′ : C′′ → C, there is a unique
signature morphism h : C′∪C′′ → C such that h ◦ i′ = h′ and h ◦ i′′ = h′′.

C′

i′

���������������

h′

���
��

��
��

��
��

��
��

��
��

��
��

� C′′

i′′

���������������

h′′

		��
��
��

��
��
��
��

��
��
��

��
��

C ′∪C′′

h




C

Figure 1.6: Coproduct of signatures

Therefore, unconstrained fibring (fibring with no sharing) is the minimal signa-
ture in the class of all signatures that include C′ and C′′ and do not identify any
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pair of connectives from C′ and C′′. The last condition of the coproduct ensures
the minimality.

Example 1.3.2 Assume that we want to define the unconstrained fibring of the
signatures:

• C◦ such that C◦
1 = {¬, ◦} and C◦

2 = {∧,∨,⇒};
• C� such that C�

1 = {¬,�} and C�
2 = {⇒}.

Their unconstrained fibring is depicted in Figure 1.7.

{∧,∨,⇒,¬, ◦}

i′

����
�����

���
���

���
�����

��
{¬,⇒,�}

i′′

�����
���

���
���

���
���

���
�

{∧1,∨1,⇒1,¬1, ◦1,¬2,⇒2,�2}

Figure 1.7: Example of unconstrained fibring of signatures

For simplicity, we sometimes join together in just one set all the connectives
independently of their arities. Observe that in the fibring the connectives have
a different name so that no mixture arises. Note that another choice for the
unconstrained fibring signature is as follows:

{∧,∨,⇒1,¬1, ◦,¬2,⇒2,�}

where we only change the names of the connectives that are present in both sig-
natures. ∇

When we want to share symbols in C′ and C′′ we must start by identifying
the common symbols, by defining a new signature C and the signature morphisms
from C to C′ and C′′ as in Figure 1.8.

C
f ′

��		
		

		
		 f ′′

��















C′ C′′

Figure 1.8: Shared signature
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Afterward, we define the fibring C′∪C′′ in the following way (see Figure 1.9):

• define the coproduct C′ ⊕ C′′ of C′ and C′′ with i′ : C′ → C′ ⊕ C′′ and
i′′ : C′′ → C′ ⊕ C′′;

• calculate the coequalizer 〈C′∪C′′, q〉 of i′ ◦ f ′ and i′′ ◦ f ′′ where:

– C′∪C′′ = i′(C′ \ f ′(C)) ∪ i′′(C′′ \ f ′′(C)) ∪ C;

– q : C′ ⊕ C′′ → C′∪C′′ is a signature morphism, such that:

q(i′(c′)) =
{
c if c′ is f ′(c) for some c ∈ C
i′(c′) otherwise;

;

q(i′′(c′′)) =
{
c if c′′ is f ′′(c) for some c ∈ C
i′′(c′′) otherwise;

.

C
f ′

���
��

��
��

�
f ′′

���
��

��
��

���

C′

i′ ��





 C′′

i′′���
��

��
��

C ′ ⊕ C′′

q




C′∪C′′

Figure 1.9: Pushout of signatures

Observe that in the resulting fibring signature C′∪C′′ we just have the common
symbols identified in C plus the non shared symbols from C′ and C′′, possibly with
a different name to avoid mixing them. Technically, we say that the constrained
fibring C′∪C′′ is a pushout of C′ and C′′ together with the morphisms f ′ : C̄ → C′

and f ′′ : C̄ → C′′.

Example 1.3.3 Assume we want to define the constrained fibring of signatures:

• C′ such that C′
1 = {¬, ◦} and C′

2 = {�,�,→};
• C′′ such that C′′

1 = {∼,�} and C′′
2 = {∩,∪,⊃};

sharing the connectives of arity 2. Then, we can consider the shared signature C
as follows (see Figure 1.10):
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• C2 = {∧,∨,⇒};
• f ′(∧) = �, f ′(∨) = �, f ′(⇒) =→;

• f ′′(∧) = ∩, f ′(∨) = ∪, f ′(⇒) =⊃.

{∧,∨,⇒}
f ′

�����
���

���
��� f ′′

����
���

���
���

�

{�,�,→,¬, ◦} {∩,∪,⊃,∼,�}

Figure 1.10: Example of sharing of a signature

We detail the construction of the constrained fibring in Figure 1.11.
In the first step, we define the coproduct C′ ⊕ C′′ obtaining:

{�1,�1,→1,¬1, ◦1,∩2,∪2,⊃2,∼2,�2}

and where the morphisms i′ and i′′ are such that:

{∧,∨,⇒}
f ′

����������������������
f ′′

����������������������

{�,�,→,¬, ◦}

i′ ���������������������
{∩,∪,⊃,∼,�}

i′′���������������������

{�1,�1,→1,¬1, ◦1,∩2,∪2,⊃2,∼2,�2}

q




{∧,∨,⇒,¬1, ◦1,∼2,�2}

Figure 1.11: Example of a constrained fibring signature

• i′(�) = �1, i′(�) = �1 i
′(→) = →1, i′(¬) = ¬1 and i′(◦) = ◦1;

• i′′(∩) = ∩2, i′′(∪) = ∪2, i′′(⊃) = ⊃2, i′′(∼) = ∼2 and i′(�) = �2.

Then we calculate the coequalizer of i′ ◦ f ′ and i′′ ◦ f ′′ and obtain the signature

{∧,∨,⇒,¬1, ◦1,∼2,�2}
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and the signature morphism q that identifies in the coproduct signature the sym-
bols to be shared. Consider for instance the connective ⇒ in the fibring. This
connective corresponds to the sharing of connectives → and ⊃.

It could also be possible to define the constrained fibring as {∧,∨,⇒,¬, ◦,∼,�}.
∇

It is worthwhile to refer that constrained fibring is again a minimal construction.
That is, C′∪C′′ is the minimal signature among those for which there are signature
morphisms g′ : C′ → C and g′′ : C′′ → C such that

g′ ◦ f ′ = g′′ ◦ f ′′.

Indeed there is a unique signature morphism h : C′∪C′′ → C such that

h ◦ q ◦ i′ = g′ and h ◦ q ◦ i′′ = g′′.

This means that C′ ∪ C′′ is the minimal signature among those that include the
shared signature plus the non shared symbols of both signatures C′ and C′′, pos-
sibly with different names.

Recall from Definition 1.1.12, that each signature induces a language L(C). A
signature morphism h induces a unique translation ĥ : L(C) → L(C′) between the
corresponding languages as follows:

• ĥ(ξ) = ξ;

• ĥ(c(ϕ1, . . . , ϕk)) = hk(c)(ĥ(ϕ1), . . . , ĥ(ϕk)).

In the sequel, we will often use h(ϕ) instead of ĥ(ϕ).
We assume that the original logics are presented as Hilbert calculi.
Fibring Hilbert calculi is just putting together their signatures and inference

rules. Hence the fibring of H ′ = 〈C′, R′〉 and H ′′ = 〈C′′, R′′〉, denoted by H ′∪H ′′

is the Hilbert calculus
〈C′∪C′′, R′ ∪R′′〉.

We say that H is weaker than H ′, denoted by

H ≤ H ′

when C ≤ C′ and R ⊆ R′. In particular, H ′ ≤ H ′∪H ′′ and H ′′ ≤ H ′∪H ′′. As
a consequence, every derivation in H ′ is also a derivation in H ′∪H ′′. The same
comment can be applied to derivations in H ′′.

Hilbert calculi can also be related by morphisms. There are two natural possi-
bilities. The following is the more usual one.

Definition 1.3.4 A Hilbert calculus morphism h : H → H ′ is a signature mor-
phism h : C → C′ such that h(Γ) H′ h(ϕ) when Γ H ϕ. ∇
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According to this definition there is a morphism between Hilbert calculi when
there is a morphism between the corresponding induced consequence systems. The
other possibility is to require that the translation of each rule of H is also a rule
in H ′. This approach is adopted in Chapters 2 and 5. Of course, any morphism
in this sense is also a morphism in the sense of Definition 1.3.4.

An alternative characterization of morphism in the sense of Definition 1.3.4 is
sometimes useful.

Proposition 1.3.5 A signature morphism h : C → C′ is a Hilbert calculus mor-
phism h : 〈C,R〉 → 〈C ′, R′〉 if and only if h(Δ) 〈C′,R′〉 h(ϕ) for every inference
rule 〈Δ, ϕ〉 ∈ R. ∇

Hilbert calculi and their morphisms constitute the category Hil. We now char-
acterize fibring as a universal construction in this category.

When there is no sharing of connectives then the fibring

H ′∪H ′′ = 〈C′∪C′′, R〉
of Hilbert calculi H ′ and H ′′ is a coproduct in Hil. This means that (see Fig-
ure 1.12):

• C′∪C′′ is the unconstrained fibring of signatures C′ and C′′ with signature
morphisms i′ : C′ → C′ ∪ C′′ and i′′ : C′′ → C′ ∪ C′′;

• R = {i′(r) : r ∈ R′} ∪ {i′′(r) : r ∈ R′′};
• the signature morphisms i′ and i′′ induce the following Hilbert calculus mor-

phisms i′ : H ′ → H ′∪H ′′ and i′′ : H ′′ → H ′∪H ′′;

• given Hilbert calculus morphisms h′ : H ′ → H and h′′ : H ′′ → H , there is a
unique Hilbert calculus morphism h : H ′∪H ′′ → H such that h ◦ i′ = h′ and
h ◦ i′′ = h′′.

Therefore, in the unconstrained fibring H ′∪H ′′ we have all the symbols in the
signatures of the original Hilbert calculi, as well as all the inference rules, possibly
with some changes in the names of the connectives.

Example 1.3.6 Consider again the signatures C◦ and C� as introduced in Ex-
ample 1.3.2. Assume that the Hilbert calculi H◦ = 〈C◦, R◦〉 and H� = 〈C�, R�〉
are such that:

• R◦ includes:

– 〈∅, ((¬(◦ξ1))⇒ (ξ1 ∧ (¬ ξ1)))〉;
– 〈{ξ1, (ξ1 ⇒ ξ2)}, ξ2〉.

• R� includes:
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Figure 1.12: Coproduct of Hilbert calculi

– 〈∅, ((�(ξ1 ⇒ ξ2))⇒ ((�ξ1)⇒ (�ξ2)))〉;
– 〈{ξ1}, (�ξ1)〉;
– 〈{ξ1, (ξ1 ⇒ ξ2)}, ξ2〉.

The unconstrained fibring of H◦ and H� is then

H◦∪H� = 〈C◦∪C�, R〉

where R = i′(R◦) ∪ i′′(R�) and i′ and i′′ are as in Example 1.3.2. That is, R
includes for instance:

• 〈∅, ((¬1(◦1ξ1))⇒1 (ξ1 ∧1 (¬1 ξ1)))〉;
• 〈{ξ1, (ξ1 ⇒1 ξ2)}, ξ2〉;
• 〈∅, ((�2(ξ1 ⇒2 ξ2))⇒2 ((�2ξ1)⇒2 (�2ξ2)))〉;
• 〈{ξ1}, (�2ξ1)〉;
• 〈{ξ1, (ξ1 ⇒2 ξ2)}, ξ2〉.

Observe that the two rules 〈{ξ1, (ξ1⇒ξ2)}, ξ2〉 are not to be confused in the fibring.
∇
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H ′ H ′′

Figure 1.13: Sharing Hilbert calculi
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We now turn our attention to the case of constrained fibring of Hilbert calculi.
When we want to share symbols in C′ and C′′ we must start by identifying the
common symbols, by defining a new Hilbert calculus H and the Hilbert calculus
morphisms from H to both H ′ and H ′′, as in Figure 1.13. The appropriate Hilbert
calculus for this purpose is H = 〈C, ∅〉 where C is the shared signature. Hence,
for sharing, we only have to worry about the signatures.

Next, we define the fibring H ′∪H ′′ as a pushout in the following way (see also
Figure 1.14):

H
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��

�
f ′′

����
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H ′

i′ ���
��

��
��

�� H ′′

i′′���
��

��
��

H ′ ⊕H ′′

q




H ′∪H ′′

Figure 1.14: Pushout of Hilbert calculi

• define the coproduct H ′ ⊕H ′′ of H ′ and H ′′ with i′ and i′′ as above;

• calculate the coequalizer 〈H ′∪H ′′, q〉 of i′ ◦ f ′ and i′′ ◦ f ′′:

H ′∪H ′′ = 〈C′∪C′′, q(i′(R′)) ∪ q(i′′(R′′))〉

where:

– C′∪C′′ is the constrained fibring of signatures C′ and C′′;

– q : H ′⊕H ′′ → H ′∪H ′′ is the Hilbert calculus morphism corresponding
to the coequalizer of the signature morphisms i′ ◦ f ′ and i′′ ◦ f ′′.

Example 1.3.7 Consider again Example 1.3.6. Assume that we want to share⇒.
The constrained fibring signature is as in Figure 1.15. As a result the constrained
fibring of Hilbert calculi H◦ and H� sharing ⇒ is as follows:

H◦∪H� = 〈C◦∪C�, R〉

where:
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{→}
f ′

��������������������
f ′′

�������������������

{∧,∨,⇒,¬, ◦}

i′ ������������������
{¬,⇒,�}

i′′�����������������

{∧,∨,⇒1,⇒2,¬1,¬2, ◦,�}

q




{∧,∨,→,¬1,¬2, ◦,�}

Figure 1.15: Example of a constrained fibring signature

• C◦∪C� is as in Figure 1.15;

• R includes the following inference rules:

– 〈∅, ((¬1(◦ξ1)) → (ξ1 ∧ (¬1 ξ1)))〉;
– 〈{ξ1, (ξ1 → ξ2)}, ξ2〉.
– 〈∅, ((�(ξ1 → ξ2)) → ((�ξ1) → (�ξ2)))〉;
– 〈{ξ1}, (�ξ1)〉.

Observe that the two modus ponens rules 〈{ξ1, (ξ1 ⇒ ξ2)}, ξ2〉 collapsed. All the
original rules admit new instances. For instance, we can substitute ξ1 by (◦ξ1) and
so derive (�(◦ξ1)) from (◦ξ1) by using the rule 〈{ξ1}, (�ξ1)〉. This is a new instance
of the rule, since originally the connective ◦ does not belong to the signature of H�.

∇

Sometimes it is more useful to obtain the unconstrained fibring as the codomain
of a cocartesian lifting (see [15] for a gentle introduction and [154] for more ad-
vanced aspects) taking advantage of forgetful functors into the category of signa-
tures. That is the case in Chapter 7.

It is worthwhile to see the relationship between the consequence system gen-
erated by the fibring and the consequence systems generated by the components.
We do so in the case of constrained fibring. The case of unconstrained fibring is
analogous. First observe that q ◦ i′ and q ◦ i′′ translate formulas in L(C′) and
formulas of L(C′′) into formulas in L(C′ ∪ C′′). Then we have

(q ◦ i′)(C(H ′)) ∪ (q ◦ i′′)(C(H ′′)) ≤ C(H ′ ∪H ′′)
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but not always

C(H ′ ∪H ′′) ≤ (q ◦ i′)(C(H ′)) ∪ (q ◦ i′′)(C(H ′′)).

Example 1.3.8 Consider Example 1.3.6. Let C(H ′∪H ′′) = 〈C′∪C′′,C〉, C(H ′) =
〈C′,C′〉 and C(H ′′) = 〈C′′,C′′〉. Then,

• (�(◦ξ)) ∈ C({(◦ξ)});
• but not (�(◦ξ)) ∈ (q ◦ i′)(C′({(◦ξ)})) ∪ (q ◦ i′′)(C′′({(◦ξ)})). ∇

The fibring construction briefly illustrated above describes the main ideas for
more complicated fibring constructions that we discuss throughout the book. In-
deed, most of the fibring constructions that we consider in other chapters are all
proved to be universal, either minimal or maximal. Moreover, we also show in
Chapter 3 that fusion is a minimal construction. The same applies to fibring of
functions providing that some conditions are added.

In Chapter 2 we discuss fibring of Hilbert calculi in more detail. Namely, we
discuss some preservation results for some metatheorems and interpolation. In
Chapter 3 we give a semantic account of algebraic fibring namely analyzing preser-
vation of soundness and completeness. In both chapters only propositional based
logics are considered. In Chapter 6, fibring is discussed for first-order based logics.
In Chapter 7, fibring is extended to the context of higher-order logics.

1.4 Possible-translations semantics

This section intends to give a brief overview of a splitting mechanism: the method
of possible-translations semantics (see [45]). This method was introduced to help
solving the problem of assigning semantic interpretations to non-classical logics,
for instance to non-truth functional logics.

The basic idea, if we want to decompose a given logic in terms of others by means
of translations, is to see it as a ciphered text that we want to decode completely.
If we translate the text into a single language, or into a bunch of other known
languages, such that we have some guarantee to have covered all the subtleties of
the ciphered text, then we know we have grasped the encrypted meaning.

We start by defining the central notion of translation between logics. We observe
that we may need more than a single translation.

Definition 1.4.1 Let Ci = 〈Ci,Ci〉, i = 1, 2, be two consequence systems, and let
f : L(C1) → L(C2) be a map.

• f is said to be a weak translation between C1 and C2 if f(C1(∅)) ⊆ C2(f(∅));
• f is said to be a translation between C1 and C2 if f(C1(Γ)) ⊆ C2(f(Γ)), for

every Γ ⊆ L(C1);
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• f is a conservative translation between C1 and C2 if f(C1(Γ)) = C2(f(Γ)),
for every Γ ⊆ L(C1). ∇

Observe that a translation f is a map between the languages not necessarily
induced by a map between the underlying signatures. If the map is induced by a
signature morphism then a translation is a consequence system morphism.

Example 1.4.2 Let C = 〈L,�〉 be the consequence system corresponding to clas-
sical propositional logic where L is generated by a set P of propositional constants
and � is the semantic entailment. Let also C′ = 〈L′,�′〉 be the consequence sys-
tem corresponding to a modal propositional logic and �′ is the semantic entailment
induced by Kripke structures.

Consider a map f̄ : P → L′ and its extension f : L→ L′ defined as follows:

• f(p) = f̄(p);

• f(¬ϕ) = (¬ f(ϕ));

• f(ϕ⇒ ψ) = (f(ϕ)⇒ f(ψ)).

We are going to prove that f is a weak translation between C and C′.
Each Kripke structure m = 〈W,R, V 〉 and w ∈W induce a valuation

vmw : P → {0, 1}
as follows: vmw(p) = 1 if m,w �′ f(p) for every p ∈ P.

It is easy to prove that

vmw � ϕ if and only if m,w � f(ϕ).

Using this fact we can easily prove that if ϕ ∈ ∅� then f(ϕ) ∈ ∅�′
. Hence we can

conclude that f is a weak translation.
As a consequence of this, we can say that every classical tautology is translated

by f into a tautological modal formula. ∇

Definition 1.4.3 Let C = 〈C,C〉 be a consequence system, and let {Ci}i∈I be a
family of consequence systems such that Ci = 〈Ci,Ci〉 for every i ∈ I. A possible-
translations frame for C is a pair

P = 〈{Ci}i∈I , {fi}i∈I〉
such that fi : L(C) → L(Ci) is a translation between C and Ci, for every i ∈ I.
We say that P = 〈{Ci}i∈I , {fi}i∈I〉 is a possible-translations characterization for
C if, for every Γ ∪ {ϕ} ⊆ L(C),

ϕ ∈ C(Γ) if and only if fi(ϕ) ∈ Ci(fi(Γ)) for every i ∈ I.
When C is of semantic nature we say that P is a possible-translations semantics
for C. ∇
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Note that in a possible-translations characterization P = 〈{Ci}i∈I , {fi}i∈I〉 for
C each map fi is a consequence system morphism.

When I = {1, . . . , n}, to test whether ϕ ∈ C(Γ) amounts to performing n tests:
fi(ϕ) ∈ Ci(fi(Γ)) for 1 ≤ i ≤ n.

A possible-translations characterization for a given consequence system C can be
regarded as a way to decompose C into the family {Ci}i∈I through the translations
{fi}i∈I .

A weaker notion of possible-translations characterization can be considered, by
using weak translations. Thus, a weak possible-translations frame is a possible-
translations frame in which the mappings are weak translations. And a weak
possible-translations characterization for C is a weak possible-translations frame
which only characterizes theoremhood of C, that is, for every Γ ∪ {ϕ} ⊆ L(C),

ϕ ∈ C(∅) if and only if fi(ϕ) ∈ Ci(fi(∅)) for every i ∈ I.

In the following we analyze some examples.

Example 1.4.4 Consider again Example 1.4.2. Assume that the consequence
system for modal logic is also generated by the set P. Take F as the set of maps
f : L(P) → L′ generated by all maps f̄ : P → L′ introduced in Example 1.4.2.
Then 〈{Cf}f∈F , F 〉, where Cf is C′ for every f ∈ F , is a weak possible-translations
semantics for C. ∇

Example 1.4.5 Recall that, in Subsection 1.2.4, we have shown that the logic
of provability GL can be seen as splitting through Peano Arithmetic PA. That
characterization can be recast in terms of possible–translations.

Let C(PA) be the consequence system induced by PA. Let Cλ = C(PA) for every
translation λ : LGL → LPA induced by a realization λ̄ : P → LPA. Then

〈{Cλ}λ∈Λ,Λ〉

is a weak possible-translations characterization for C(GL). ∇

Example 1.4.6 The logics of formal inconsistency (LFIs) were introduced in [51]
(see also [49]). The LFIs are paraconsistent logics in which the notions of con-
sistency and/or inconsistency are internalized at the object–language level. This
is done by means of (primitive or defined) unary connectives • for inconsistency
and/or ◦ for consistency, which satisfy suitable axioms.

For instance, the well-known paraconsistent logic C1 of da Costa (see Exam-
ple 2.2.9 of Chapter 2) is an LFI. Other interesting examples of LFIs are the
logics bC and Ci , and its weaker versions mCi and mbC (see [51, 49]). The
LFIs will be treated again in Chapters 5 and 9. In this example we will give a
possible-translations semantics for Ci.

A signature C◦ for Ci is such that
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• C◦
1 = {¬, ◦};

• C◦
2 = {∨,∧,⇒};

• C◦
k = ∅ in any other case.

The consequence system CCi = 〈C◦,�Ci〉 for the logic Ci (see [49]) can be
presented by the class of all maps (called bivaluations)

v : L(C◦) → {0, 1}

where 1 is the designated value, such that

(v1) v(ϕ ∧ ψ) = 1 if and only if v(ϕ) = 1 and v(ψ) = 1;

(v2) v(ϕ ∨ ψ) = 1 if and only if v(ϕ) = 1 or v(ψ) = 1;

(v3) v(ϕ⇒ ψ) = 1 if and only if v(ϕ) = 0 or v(ψ) = 1;

(v4) if v(¬ϕ) = 0 then v(ϕ) = 1;

(v5) if v(¬(¬ϕ)) = 1 then v(ϕ) = 1;

(v6) if v(◦ϕ) = 1 then v(ϕ) = 0 or v(¬ϕ) = 0;

(v7) if v(¬(◦ϕ)) = 1 then v(ϕ) = 1 and v(¬ϕ) = 1.

Observe that Γ �Ci ϕ if, for every bivaluation v, v(ϕ) = 1 whenever v(γ) = 1
for every γ ∈ Γ.

We now describe the consequence system into which CCi is to be translated. It
is defined over the signature C such that:

• C1 = {¬1,¬2, ◦1, ◦2};
• C2 = {∨,∧,⇒};
• Ck = ∅ in any other case.

Consider the matrix, that is, the algebra, M0 for the signature C where the set
of truth-values is {T, t, F} with D = {T, t} as the set of designated values and
with the truth-tables displayed below.

∧ T t F
T t t F
t t t F
F F F F

∨ T t F
T t t t
t t t t
F t t F

⇒ T t F
T t t F
t t t F
F t t t
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¬1 ¬2

T F F
t F t
F T T

◦1 ◦2
T T T
t F T
F T T

The consequence relation in M0 is defined as follows:

Γ �M0 ϕ

if, for every valuation w over M0, w(ϕ) ∈ D whenever w(γ) ∈ D for every γ ∈ Γ.
Observe that a valuation w over M0 is a mapping w : L(C) → {T, t, F} induced
recursively by the operations of the matrixM0 (technically, w is an homomorphism
of C-algebras, see Chapter 3). This kind of logics, called matrix logics (see [280]),
will be discussed with more detail in Chapter 9.

The consequence system into which CCi is to be translated is 〈C,�M0 〉. Next
we define the translations. Let Tr be the family of all maps

f : L(C◦) → L(C)

such that:

• f(ξ) = ξ, for ξ ∈ Ξ;

• f(ϕ#ψ) = (f(ϕ)#f(ψ)), for every # ∈ {∧,∨,⇒};
• f(¬ϕ) ∈ {(¬1f(ϕ)), (¬2f(ϕ))};
• f(◦ϕ) ∈ {(◦1f(ϕ)), (◦2f(ϕ))};
• if f(¬ϕ) = (¬1f(ϕ)) then f(◦ϕ) = (◦2f(ϕ));

• if f(¬ϕ) = (¬2f(ϕ)) then f(◦ϕ) = (◦1f(ϕ)).

It can be proved that
P = 〈{Cf}f∈Tr, T r〉

where Cf = 〈C,�M0 〉 for every f ∈ Tr, is a possible–translations semantics for CCi

(see Proposition 9.2.20 in Chapter 9).
Note that the semantics of the component consequence systems 〈C,�M0〉 of P is

truth-functional, in contrast with the non-truth-functional semantics of the initial
consequence system CCi. That is, a non-truth-functional logic can be characterized
by a family of translations into a truth-functional logic. ∇

A more detailed account of the possible-translations technique will be given in
Chapter 9. Non-truth-functional logics will be again studied in this book, but
under a different perspective, in Chapter 5.



Chapter 2

Splicing logics: Syntactic
fibring

As we have seen in Chapter 1, the pursuit for combining logics is dictated by
philosophical considerations as well as by practical ones; even if contemporary
computer science will gain much on seeing combinations of deducibility relations
as solutions to problems in software engineering, security protocols and so on, the
purely theoretical interest on combining logics is also very relevant.

As a toy example, let us take the case of someone willing to combine knowledge
and obligation in a unique reasoning system. Of course, there are two separated
traditions about such distant conceptions that should be harmonized into a bigger
system. We depart from the assumption that there is a logic for knowledge (an
epistemic logic) as well as a logic for obligation (a deontic logic). Philosophically,
they are traditionally attached to completely independent perspectives. In order
to combine them, some constraints are in order; for example, we want that the
combined new logic will at least guarantee the following requirements:

1. Embedding: the logic machinery of the component systems has to be avail-
able in the bigger system as well.

2. Minimality: besides embedding, we do not want any undesirable elements in
the combined system; so, for instance, we should be able to talk about the
conjoint properties of knowledge and obligation, but nothing more (obviously
whether or not the combined system permits to talk about all the properties
of the combination is another problem which will be dealt with in different
guises in this book).

So, for example, in what concerns the embedding requirement, in the combined
system we should still be talking about knowledge and obligation per se, besides
referring to the intricacies of each one.

37
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To what concerns the minimality requirement, to be a bit more concrete, sup-
pose that knowledge is rendered by the operator K in a system S1 and obligation is
represented by the operatorO in a system S2. In the combined system S = S1∪S2,
we would be interested in referring to:

• OKϕ to mean “it is obligatory to know ϕ”;

as well as

• KOϕ to mean “it is known that ϕ is obliged”;

but we do not know the relationship between them, that is, we do not know, for
example, if OKϕ implies KOϕ or the other way around.

The answer to these questions depends upon the minimal coherent relationship
that holds between the epistemic and the deontic settings.

The operation of fibring, in a sense, will provide a minimal epistemic deontic
logic, but further relations can be added to the resulting combined logic. However,
how much and which of such interactions should be introduced in a coherent or
meaningful way is a philosophical and not a logical problems. Fibring would
be useful as an environment for representing them, but never for deciding which
properties should be added.

Taking into account our example above, it is clear that a richer language for
talking about knowledge and obligation in an integrated way will be necessary.
When defining fibring of logics, it is thus essential to start with a rigorous notion of
signature. That is, we should provide the main symbols that allow the construction
of formulas. The crucial idea of fibring two logics is that a formula can involve
symbols from both logics. In our example, in the fibring we want to have formulas
involving both K and O. For more details on this example see Section 11.2 of
Chapter 11.

In this chapter we avoid dealing with quantification. This issue will be left
for Chapter 6 and Chapter 7. Instead, fibring is here defined in a simple context
concentrating our attention on propositional based logics only, but including modal
logics, intuitionistic logic and many-valued logics. As the reader will see this is
already a rich setting where many relevant concepts can be treated.

The combined system will consist of a more complex deductive system which
by its turn will require a more sophisticated semantic interpretation. We have to
consider fibring of deductive systems as well as fibring of semantic structures. In
this chapter we concentrate on the fibring of deductive systems, leaving the fibring
of semantic structures to Chapter 3.

From the deductive point of view, we assume that the logics are endowed with
Hilbert calculi. Hence, we adopt what is called an homogeneous setting (an het-
erogeneous setting, in contrast, would allow, for instance, the fibring of a Hilbert
calculus with a sequent calculus or tableau systems, as will be discussed in Chap-
ter 4). It is convenient to consider such an homogeneous setting because it is
easier to compose systems endowed with Hilbert-like presentations, taking profit
that most logics of interest are axiomatized by Hilbert calculi.
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In the introductory chapters, in particular in the present one, we mainly adopt a
set-theoretic perspective which is easier to begin with. We refer to the categorical
approach as side comments to prepare the reader for other chapters (about fibring
of higher order logics and modulated fibring) where it is almost compulsory to use
categories in order to make definitions clearer and shorter.

In Section 2.1, we introduce the notions of signature, language including schema
variables and fibring of signatures. In Section 2.2, we define Hilbert calculi and
their fibring. We also show that derivations are preserved by fibring. We illustrate
the concepts with several examples including classical logic, modal logics (K, S4
and B), intuitionistic logic, 3-valued Gödel and �Lukasiewicz logics. In Section 2.3,
we discuss several preservation results namely: metatheorem of modus ponens,
metatheorem of deduction, metatheorem of congruence, careful-reasoning-by-cases
and interpolation. In Section 2.4 we present some final remarks.

This chapter capitalizes on [237, 240] for Hilbert calculus, on [282] for the preser-
vation of metatheorems, and on [53] for the preservation of interpolation.

2.1 Language

Defining the language of a logic is to introduce the set of its formulas. Each formula
at a certain level of abstraction is just a well-formed finite sequence of symbols.
The allowed symbols are the ones that are included in the signature. Propositional
signatures are different from first-order and higher-order signatures. We start by
indicating the general form of a signature for the propositional based logics. We
adopt an algebraic approach to the definition of signature seeing the symbols as
operations.

Definition 2.1.1 A signature C is a countable family of sets Ck where k ∈ N. ∇

The elements of each Ck are called constructors or connectives of arity k. Con-
structors of arity 0 are often called constants and constructors of arity 1 and 2
are respectively unary and binary constructors. In general, there is only a finite
number of non-empty sets in a signature C and Ck is usually finite for k > 0.

In the following examples we present some well-known signatures.

Example 2.1.2 Taking a countable set P = {pn : n ∈ N} (of propositional sym-
bols), we can consider the following signatures:

• Classical signature with propositional symbols:

C0 = P, C1 = {¬}, C2 = {⇒}, Ck = ∅ for k > 2;

• Intuitionistic signature with propositional symbols:

C0 = P, C1 = {¬}, C2 = {⇒,∧,∨}, Ck = ∅ for k > 2;
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• Modal signature with propositional symbols:

C0 = P, C1 = {¬,�}, C2 = {⇒}, Ck = ∅ for k > 2. ∇

Observe that the usual description of propositional logics given in the textbooks
just includes P in the signature, whereas the connectives are considered as being
reserved symbols. We adopt here a different perspective, where symbols are better
described as operations. This approach is more convenient for combining logics,
where we must be able to manipulate carefully all the symbols. Note also that for
the same logic we can consider several signatures. For instance, for propositional
classical logic we obtain a different signature for each adequate set of connectives.

It should be clear that the present approach to signatures is equivalent to con-
sider just one set of connectives together with a map indicating the arity of each
symbol. However, the grouping of symbols by arity is more useful for fibring.

We also stress that at this point we are not giving any properties for the con-
nectives. They will be imposed later on both at the deductive and the semantic
levels. For the moment connectives are just symbols. Hence, we may have two
completely different logics with the same signatures.

In classical logic we only consider negation ¬ and implication ⇒ since the other
connectives can be seen as abbreviations. That is not the case for intuitionistic
logic (see [232]) and so we also have conjunction ∧ and disjunction ∨ as primitive
symbols. Observe that at the signature level we do not distinguish between the
classical and the intuitionistic implications. In modal logic we only consider the
modality �. The modality � can also be seen as an abbreviation.

Since our main purpose is to combine logics, we need to introduce some addi-
tional elements to the propositional languages to be considered herein. Thus, from
now on we will consider a fixed denumerable set

Ξ = {ξn : n ∈ N
+}

of symbols called schema variables, where N
+ denotes the set of positive integers.

The schema variables can be freely substituted by formulas of the given logics.
The inclusion of such variables allow the introduction of schematic rules in the
fibring setting.

For most purposes the set Ξ can be assumed to be fixed. The exception is when
dealing with interpolation, in Section 2.3 and modulated fibring, in Chapter 8.

Remark 2.1.3 The difference between propositional symbols and schema vari-
ables will be clear below when investigating the combination of logics. In this
context, it is more convenient to keep the propositional symbols of the logics as
constants, separated from the schema variables, as it was done in Example 2.1.2.

Anyway, the inclusion of the propositional symbols as constants can be useful
even in purely propositional contexts. In fact, some situations could require the
combination of two propositional logics without sharing the propositional symbols.
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Our approach is different from some approaches in logic where axioms and in-
ference rules are written without schema variables. Consider the classical propo-
sitional logic CPL defined in a Hilbert-style. For instance, the Hilbert calculus
usually includes the axioms

(ϕ1 ⇒ (ϕ2 ⇒ ϕ1))

for every formulas ϕ1 and ϕ2 belonging to the language of CPL. Assume that we
want to combine CPL with another logic. Then the axiom could not be used with
formulas of the other logic.

Our approach is also different from the ones using propositional variables. Con-
sidering again the classical propositional logic CPL, we can give the axiom

(p1 ⇒ (p2 ⇒ p1))

where p1 and p2 are propositional symbols in P. Moreover, a rule of uniform substi-
tution is also included saying that uniformly substituting propositional variables
by formulas in a theorem will also give a theorem. The main drawback of this
approach is when we consider derivation from hypotheses [24]. We will come back
to this topic later on. ∇

Example 2.1.4 It is possible to recast Example 2.1.2 by omitting in the signa-
tures the set P of propositional symbols. Thus, we can consider the following
signatures:

• Classical signature: C1 = {¬}, C2 = {⇒}, and Ck = ∅ in any other case;

• Intuitionistic signature: C1 = {¬}, C2 = {⇒,∧,∨}, and Ck = ∅ in any other
case;

• Modal signature: C1 = {¬,�}, C2 = {⇒}, and Ck = ∅ in any other case. ∇

We are now ready to define the language over a given signature.

Definition 2.1.5 Let C be a signature, and assume the fixed set Ξ of schema
variables. The language over C is the set L(C) inductively defined as follows:

• ξ ∈ L(C) for every ξ ∈ Ξ;

• c ∈ L(C) for every c ∈ C0;

• (c(ϕ1, . . . , ϕk)) ∈ L(C) whenever c ∈ Ck, k ≥ 1 and ϕ1, . . . , ϕk ∈ L(C). ∇

The symbols “(”, “)” and “, ” in expressions like (c(ϕ1, . . . , ϕk)) are auxiliary
symbols. The elements of L(C) are called formulas. A ground formula is a formula
that does not involve schema variables and gL(C) denotes the set of all ground
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formulas in L(C). Technically, L(C) is the free algebra over C generated by Ξ (to
be defined in Section 3.1 of Chapter 3).

Recall Example 2.1.2. An example of formula in the language over the classical
signature with propositional symbols is

(¬(⇒(ξ1, p)))

where p ∈ C0 and ξ1 ∈ Ξ. For convenience we adopt the more usual infix notation
for connectives. This formula then becomes

(¬(ξ1 ⇒ p)).

In classical logic we can consider the usual abbreviations

(ϕ1 ∧ ϕ2) =def (¬(ϕ1 ⇒ (¬ϕ2)))

(ϕ1 ∨ ϕ2) =def (((¬ϕ1)⇒ ϕ2))

(ϕ1 ⇔ ϕ2) =def ((ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1)).

In modal logic, we can consider the abbreviation

(�ϕ) =def (¬(�(¬ϕ))).

The formulas (�ϕ) and (�ϕ) can be read as necessarily ϕ and possibly ϕ, respec-
tively.

The signatures introduced in Example 2.1.4 are useful in a purely propositional
context for combining logics, and they are simpler than the corresponding sig-
natures described in Example 2.1.2. As mentioned above, the schema variables
play the role of the atomic formulas in the usual presentations of propositional
languages. The effects, at the semantical level, of the simpler case which avoids
the use of the set P of propositional symbols, will be analyzed in Chapter 3 for
some concrete examples.

From now on, and for the sake of simplicity, most of the concrete examples will
be written in signatures not including the set P of propositional symbols, using
the signatures described in Example 2.1.4. Of course, all the examples below can
be recasted by including the set P of propositional symbols as constants.

The inductive nature of L(C) is very useful because several properties over L(C)
can be proved by induction. Moreover, although no restrictions were imposed on
the cardinality of the set of connectives for each arity, in each formula there is
always a finite number of connectives. The same applies when we are dealing with
a finite set of formulas.

An essential ingredient is to be able to produce new formulas by replacing the
schema variables by formulas. For this purpose we need the concept of substitution.
Substitutions are used when dealing with structural calculi.

Definition 2.1.6 A substitution over a signature C is a map σ : Ξ → L(C). Every
substitution σ can be extended to a unique mapping σ̂ : L(C) → L(C) such that
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• σ̂(c) = c, if c ∈ C0;

• σ̂(c(ψ1, . . . , ψk)) = (c(σ̂(ψ1), . . . , σ̂(ψk))), if c ∈ Ck, ψ1, . . . , ψk ∈ L(C) and
k > 0. ∇

An example of a substitution is the following map: σ(ξn) = ξn+2 which is just
a renaming of the schema variables. The instance of a formula ϕ by a substitution
σ is denoted by σ̂(ϕ). Sometimes, and when there is no risk of confusion, we may
identify a substitution σ with its extension σ̂. If Γ is a set of formulas then σ(Γ)
denotes the set {σ(γ) : γ ∈ Γ}. We say that a substitution σ is ground when σ(ξn)
is a ground formula for every n ∈ N

+.
As a first step to defining fibring of logics, we must define the fibring of signa-

tures. The following notation will be useful from now on. We denote by C′∩C′′ the
signature such that (C′ ∩C′′)k = C′

k ∩C′′
k for every k ∈ N. We write C′ ∩C′′ = ∅

whenever (C′ ∩ C′′)k = ∅ for every k.

Definition 2.1.7 The fibring of signatures C′ and C′′ is the signature

C′∪C′′

such that (C′∪C′′)k = C′
k ∪ C′′

k for every k ∈ N. ∇

The fibring is said to be unconstrained when C′∩C′′ = ∅. Otherwise, the fibring
is said to be constrained. Note that, in general, L(C′ ∪ C′′) �= L(C′) ∪ L(C′′).

Signatures can be compared. We say that

C ≤ C′

when Ck ⊆ C′
k for every k ∈ N. Of course C′ ≤ C′∪C′′, C′′ ≤ C′∪C′′ and

C′ ∩ C′′ ≤ C′, C′ ∩ C′′ ≤ C′′.

Example 2.1.8 Let C′ and C′′ be two modal signatures as in Example 2.1.4, with
different modalities denoted respectively by �′ and �′′, and sharing the proposi-
tional symbols ¬ and ⇒. Then the fibring of C′ and C′′ is the signature C′∪C′′

where:

• (C′ ∪ C′′)1 = {¬,�′,�′′};
• (C′ ∪ C′′)2 = {⇒};
• (C′ ∪ C′′)k = ∅ in any other case. ∇

Example 2.1.9 Consider again the Example 2.1.8, but now assume that

C′
0 = P = C′′

0

(recall Example 2.1.2). Then the fibring of C′ and C′′ while sharing the proposi-
tional symbols P, ¬ and ⇒ is the signature C′∪C′′ where:



44 CHAPTER 2. SPLICING LOGICS: SYNTACTIC FIBRING

• (C′ ∪ C′′)0 = P;

• (C′ ∪ C′′)1 = {¬,�′,�′′};
• (C′ ∪ C′′)2 = {⇒};
• (C′ ∪ C′′)k = ∅ for k > 2.

Assuming p1, p2 ∈ P, an example of a ground formula in the language L(C′ ∪C′′)
is the following:

(�′((�′′(p1 ⇒ p2))⇒ ((�′′p1)⇒ (�′′p2)))).

Note that this formula is not an element of L(C′) ∪ L(C′′). ∇

Remark 2.1.10 Fibring can be presented in a categorial setting: the notion of
fibring corresponds to an universal construction in an appropriated category. Es-
tablishing the category of signatures is the first step in this approach.

A signature morphism
h : C → C′

is a family of maps hk : Ck → C′
k where k ∈ N. Signatures and their morphisms

constitute the category Sig, with identity and composition of maps defined on
each arity. Sig is (small) cocomplete, that is, it is closed under (small) coproducts
and pushouts.

The fibring C′ ∪ C′′ of C′ and C′′ is a pushout of the inclusion morphisms
h′ : C′ ∩C′′ → C′ and h′′ : C′ ∩ C′′ → C′′. Figure 2.1 describes this situation.

C′ ∩ C′′
� �

h′

�����
��

��
��

� �

h′′

��







C′

g′ ����
���

���
�� C ′′

g′′�����
���

���
�

C′ ∪ C′′

Figure 2.1: Fibring of signatures as a pushout in Sig

Recall from Chapter 1 that this pushout can be obtained in two steps. First we
consider the coprodut C′ ⊕ C′′ of signatures C′ and C′′ and then the coequalizer
q of i′ ◦ h′ and i′′ ◦ h′′ where g′ = q ◦ i′ and g′′ = q ◦ i′′ (see Figure 2.2).

The particular case of unconstrained fibring, when C′∩C′′ = ∅, just corresponds
to the coproduct of C′ and C′′. ∇
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Figure 2.2: Construction of a pushout in Sig

2.2 Hilbert calculi

A calculus uses only symbolic manipulation of formulas to establish which are the
consequences of a set of formulas. Preferably, an evidence that a formula is a
consequence of set of formulas should be provided in a finite number of steps. The
main concept in a calculus is the one of derivation. There are different ways to
present the notion of derivation. Herein, we concentrate our attention on Hilbert
calculi. The name of these calculi comes from the German mathematician David
Hilbert who defended the axiomatic approach in Mathematics [148]. Following the
axiomatic approach, every mathematical theory should be presented by axioms and
rules. Although derivations are in general difficult to obtain using Hilbert calculi,
they are very easy to describe at a theoretical level.

Definition 2.2.1 An inference rule over a signature C is a pair r = 〈Δ, ϕ〉 where
Δ ∪ {ϕ} ⊆ L(C). ∇

An inference rule is called axiom if Δ = ∅ and rule if Δ �= ∅. A rule where Δ
is a finite set is called finitary. We do not consider non-finitary rules so, in the
sequel, when we refer to a rule 〈Δ, ϕ〉 we always assume that Δ is a finite set. The
elements of Δ are called premises and ϕ is called conclusion.

The schema variables are essential for inference rules. Whenever a schema
variable ξ occurs in an inference rule, it is possible to uniformly substitute ξ by
any formula. Thus, a single rule encompasses infinite instances.

We are now ready to define in a very abstract way the notion of Hilbert calculus.
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Definition 2.2.2 A Hilbert calculus is a pair

H = 〈C,R〉

where C is a signature and R is a set of inference rules over C. ∇

Example 2.2.3 Recall the classical signature introduced in Example 2.1.4. A
Hilbert calculus for classical logic includes besides that signature, the following
inference rules:

• 〈∅, (ξ1 ⇒ (ξ2 ⇒ ξ1))〉;
• 〈∅, ((ξ1 ⇒ (ξ2 ⇒ ξ3))⇒ ((ξ1 ⇒ ξ2)⇒ (ξ1 ⇒ ξ3)))〉;
• 〈∅, (((¬ ξ1)⇒ (¬ ξ2))⇒ (ξ2 ⇒ ξ1))〉;
• 〈{ξ1, (ξ1 ⇒ ξ2)}, ξ2〉.

Observe that there are three axioms and a rule (usually called modus ponens).
Each axiom provides a pattern. The instances of the first axiom have two impli-
cations such that the antecedent formula (instance of ξ1) of the first implication
is the consequent formula of the second implication. We denote the i-th axiom,
i = 1, 2, 3, by Axi and the rule by MP . ∇

Another useful illustration can be given for modal logic. For details on modal
logics see, for instance, [24].

Example 2.2.4 Recall the modal signature introduced in Example 2.1.4. A
Hilbert calculus for propositional normal modal logic K includes, besides that
signature, all the rules for classical logic (see Example 2.2.3) plus the following
inference rules:

• 〈∅, ((�(ξ1 ⇒ ξ2))⇒ ((�ξ1)⇒ (�ξ2)))〉;
• 〈{ξ1}, (�ξ1)〉.

Since the Hilbert calculus for modal logic K is an extension of the Hilbert
calculus for classical logic, propositional reasoning is guaranteed. The new axiom,
called normalization or K characterizes normal modal logic. The new rule is called
necessitation or Nec . ∇

Several normal modal logics have been analyzed. The Hilbert calculi for such
logics include the inference rules for K plus one or more specific axioms.

Example 2.2.5 The Hilbert calculus for modal logic S4 (semantically corre-
sponding to reflexive and transitive frames) has the same inference rules as modal
logic K plus two axioms:
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• 〈∅, ((�ξ1)⇒ ξ1)〉;
• 〈∅, ((�ξ1)⇒ (�(�ξ1)))〉.

The first axiom is known as the T axiom (for reflexivity) and the second one is
called the 4 axiom (for transitivity). Another well known normal modal logic is
B. The Hilbert calculus for B (semantically corresponding to symmetric frames)
includes besides the inference rules for K also the axiom:

• 〈∅, (ξ1 ⇒ (�(¬(�(¬ ξ1)))))〉.
This axiom is called the B axiom. Using the abbreviation introduced after Defini-
tion 2.1.5, it can also be written as (ξ1 ⇒ (�(�ξ1))). ∇

Another interesting example is the case of intuitionistic logic which is the essence
of the so called constructivism. For details on intuitionistic logic see [232].

Example 2.2.6 Recall the intuitionistic signature introduced in Example 2.1.4.
A Hilbert calculus for intuitionistic logic includes the following inference rules:

• 〈∅, (ξ1 ⇒ (ξ2 ⇒ ξ1))〉;
• 〈∅, ((ξ1 ⇒ (ξ2 ⇒ ξ3))⇒ ((ξ1 ⇒ ξ2)⇒ (ξ1 ⇒ ξ3)))〉;
• 〈∅, ((ξ1 ∧ ξ2)⇒ ξ1)〉;
• 〈∅, ((ξ1 ∧ ξ2)⇒ ξ2)〉;
• 〈∅, ((ξ3 ⇒ ξ1)⇒ ((ξ3 ⇒ ξ2)⇒ (ξ3 ⇒ (ξ1 ∧ ξ2))))〉;
• 〈∅, (ξ1 ⇒ (ξ1 ∨ ξ2))〉;
• 〈∅, (ξ2 ⇒ (ξ1 ∨ ξ2))〉;
• 〈∅, ((ξ1 ⇒ ξ3)⇒ ((ξ2 ⇒ ξ3)⇒ ((ξ1 ∨ ξ2)⇒ ξ3)))〉;
• 〈∅, ((ξ1 ⇒ ξ2)⇒ ((ξ1 ⇒ (¬ξ2))⇒ (¬ξ1)))〉;
• 〈∅, (ξ1 ⇒ ((¬ξ1)⇒ ξ2))〉;
• 〈{ξ1, (ξ1 ⇒ ξ2)}, ξ2〉.

The Hilbert calculus for intuitionistic logic is not an extension of the one for
classical logic. The implication does not have all the properties of the classical
implication. The explicit axioms for conjunction and disjunction will be justified
later on. It is worthwhile to point out at this stage that we cannot obtain con-
junction and disjunction as abbreviations using implication and negation. Also to
be understood later on is the fact that the axioms for conjunction and disjunction
impose that they are respectively an infimum and a supremum in an adequate
type of structure. ∇
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Also of interest are the so called many-valued logics. They provide nice examples
for understanding fibring. For details on many-valued logics see, for instance, [140,
137].

Example 2.2.7 The Gödel signature is the same as the intuitionistic one, and so
we can consider either the intuitionistic signature of Example 2.1.2 or that of Ex-
ample 2.1.4. A Hilbert calculus for 3-valued Gödel logic includes the intuitionistic
inference rules plus the axiom:

• 〈∅, (((¬ ξ1)⇒ ξ2)⇒ (((ξ2 ⇒ ξ1)⇒ ξ2)⇒ ξ2))〉. ∇

Example 2.2.8 The �Lukasiewicz signature is the same as the classical one. Thus,
we can choose the classical signature defined in Example 2.1.2 or the one introduced
in Example 2.1.4. A Hilbert calculus for 3-valued �Lukasiewicz logic, �L3, includes,
besides the signature, the following inference rules:

• 〈∅, (ξ1 ⇒ (ξ2 ⇒ ξ1))〉;
• 〈∅, ((ξ1 ⇒ ξ2)⇒ ((ξ2 ⇒ ξ3)⇒ (ξ1 ⇒ ξ3)))〉;
• 〈∅, ((¬ ξ1)⇒ (¬ ξ2))⇒ (ξ2 ⇒ ξ1))〉;
• 〈∅, (((ξ1 ⇒ (¬ ξ1))⇒ ξ1)⇒ ξ1)〉;
• 〈{ξ1, (ξ1 ⇒ ξ2)}, ξ2〉.

Note that the second axiom is not the axiom Ax2 of the Hilbert calculus for
classical logic presented above.

It is well-known that there exists a hierarchy of n-valued �Lukasiewicz logics, �Ln,
for each n ≥ 3. ∇

For more details on Gödel logic and �Lukasiewicz logic see [232] (named after
Kurt Gödel and Jan �Lukasiewicz, respectively).

The next example presents a Hilbert calculus for paraconsistent logic C1, intro-
duced by da Costa in [73]. This logic has the peculiarity that it does not admit
a truth-functional semantics. In particular, the semantic structures to be given
in Chapter 3 are not adequate for it. In Chapter 5, we will introduce suitable
semantic structure for non-truth-functional logics.

Example 2.2.9 The signature for the paraconsistent logic C1 includes, besides
the signature of intuitionistic logic, the constants t and f . A Hilbert calculus for
C1 is as follows:

• 〈∅, (ξ1 ⇒ (ξ2 ⇒ ξ1))〉;
• 〈∅, ((ξ1 ⇒ (ξ2 ⇒ ξ3))⇒ ((ξ1 ⇒ ξ2)⇒ (ξ1 ⇒ ξ3)))〉;
• 〈∅, ((ξ1 ∧ ξ2)⇒ ξ1)〉;
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• 〈∅, ((ξ1 ∧ ξ2)⇒ ξ2)〉;

• 〈∅, (ξ1 ⇒ (ξ2 ⇒ (ξ1 ∧ ξ2)))〉;

• 〈∅, (ξ1 ⇒ (ξ1 ∨ ξ2))〉;

• 〈∅, (ξ2 ⇒ (ξ1 ∨ ξ2))〉;

• 〈∅, ((ξ1 ⇒ ξ3)⇒ ((ξ2 ⇒ ξ3)⇒ ((ξ1 ∨ ξ2)⇒ ξ3)))〉;

• 〈∅, ((¬(¬ ξ1))⇒ ξ1)〉;

• 〈∅, (ξ1 ∨ (¬ ξ1))〉;

• 〈∅, (ξ◦1 ⇒ (ξ1 ⇒ ((¬ ξ1)⇒ ξ2)))〉;

• 〈∅, ((ξ◦1 ∧ ξ◦2)⇒ (ξ1 ∧ ξ2)◦)〉;

• 〈∅, ((ξ◦1 ∧ ξ◦2)⇒ (ξ1 ∨ ξ2)◦)〉;

• 〈∅, ((ξ◦1 ∧ ξ◦2)⇒ (ξ1 ⇒ ξ2)◦)〉;

• 〈∅, (t⇔ (ξ1 ⇒ ξ1))〉;

• 〈∅, (f ⇔ (ξ◦1 ∧ (ξ1 ∧ (¬ ξ1))))〉;

• 〈{ξ1, (ξ1 ⇒ ξ2)}, ξ2〉;
In the rules above ϕ◦ is an abbreviation for (¬(ϕ ∧ (¬ϕ))). ∇

Given a Hilbert calculus, formulas can be deduced from sets of formulas (the
hypotheses). The way to do so is through derivation. Derivations should be
constructive in the sense that they explain step by step, in finite time, how a
formula can be deduced from a set of hypotheses.

Definition 2.2.10 A formula ϕ is derivable from a set of formulas Γ in a Hilbert
calculus H if there is a finite sequence

ϕ1 . . . ϕn

of formulas such that:

• ϕn is ϕ;

• for i = 1, . . . , n, each ϕi is either an element of Γ, or there exists a substi-
tution σ and an inference rule 〈Δ, ψ〉 in H such that σ(Δ) ⊆ {ϕ1, . . . , ϕi−1}
and ϕi is σ(ψ).
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The sequence ϕ1 . . . ϕn is a derivation of ϕ from Γ in H . We write

Γ H ϕ

to denote that ϕ is derivable from Γ in H . ∇

We denote by Γ�H the set of formulas derivable from (the set of hypotheses) Γ
in H . When presenting derivations we usually add a justification for each formula.
We use Hyp as the justification for an hypothesis and we use the name of the
inference rule when the formula is an instance of the conclusion of the inference
rule. If the inference rule is not an axiom we also add the positions of the formulas
in the sequence that are instances of the premises. Observe the finitary character
of the derivation in the sense that with a finite number of steps we are able to
show that ϕ is derivable from Γ.

Note that we do not allow substitutions on hypotheses (the elements of Γ).
Indeed, such substitutions do not make sense. For instance, from {ξ1, (ξ1 ⇒ ξ2)}
we want to be able to prove ξ2, but not every formula as it would be possible by
substitution on ξ1. When ∅ H ϕ we say that ϕ is a theorem and just write H ϕ.
As usual, Γ, ψ H ϕ and ψ H ϕ will stand, for Γ ∪ {ψ} H ϕ and {ψ} H ϕ
respectively.

A Hilbert calculus H = 〈C,R〉 induces the closure operator H and the conse-
quence system C(H) = 〈C,H〉. We write Γ�H instead of H (Γ).

Proposition 2.2.11 A Hilbert calculus H = 〈C,R〉 induces a compact and struc-
tural consequence system C(H) = 〈C,H〉.

Proof. Let Γ,Γ1,Γ2 ⊆ L(C).
Extensiveness: Γ H ϕ for every ϕ ∈ Γ thus Γ ⊆ Γ�H .
Monotonicity: Let Γ1 ⊆ Γ2. We prove by induction on the length of a derivation

of ϕ from Γ1 in H that Γ2 H ϕ.
Base: When ϕ has a derivation from Γ1 with length 1, then ϕ ∈ Γ1 (thus

ϕ ∈ Γ2) or ϕ = σ(ψ) for some axiom 〈∅, ψ〉 ∈ R and substitution σ. In both cases
Γ2 H ϕ.

Step: Assume ϕ has a derivation of length n + 1 from Γ1. The interesting
case corresponds to ϕ = σ(ψ) for some rule 〈Δ, ψ〉 ∈ R and substitution σ such
that every formula of σ(Δ) occurs previously in the derivation. By the induction
hypothesis, every formula in σ(Δ) has a derivation from Γ2. From them and rule
〈Δ, ψ〉 we get a derivation of ϕ from Γ2, thus Γ2 H ϕ.

Idempotence: Induction in the length of derivations to prove that if Γ�H H ϕ
then Γ H ϕ, for every ϕ ∈ L(C).

Base: When ϕ has a derivation from Γ�H with length 1, then ϕ ∈ Γ�H or
ϕ = σ(ψ) for some axiom 〈∅, ψ〉 ∈ R and substitution σ. In both cases Γ H ϕ.

Step: When ϕ has a derivation of length n + 1 from Γ�H , the proof is similar
to the one presented on the induction proof above.

Compactness follows from the fact that derivations are finite sequences.
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Structurality: Induction in the length of derivations to prove that for every
ϕ ∈ L(C) and substitution σ, if Γ H ϕ then σ(Γ) H σ(ϕ).

Base: When ϕ has a derivation from Γ with length 1, then ϕ ∈ Γ or ϕ = σ′(ψ)
for some axiom 〈∅, ψ〉 ∈ R and substitution σ′. In the first case, σ(ϕ) ∈ σ(Γ),
hence σ(Γ) H σ(ϕ). In the second case, consider the substitution σ′′ : Ξ → L(C)
such that σ′′(ξ) = σ(σ′(ξ)). It is easy to prove that σ′′(ψ) = σ(σ′(ψ)). Hence,
σ′′(ψ) = σ(ϕ) and therefore σ(Γ) H σ(ϕ).

Step: Assume that ϕ has a derivation of length n+1 from Γ. The interesting case
corresponds to ϕ = σ(ψ) for some rule 〈Δ, ψ〉 ∈ R and some substitution σ such
that the formulas in σ(Δ) previously occur in the derivation. Using the induction
hypothesis and the substitution σ′′ as above, we conclude that σ(Γ) H σ(ϕ). �

In general, H is not a topological (Kuratowski) closure operator. In fact,
∅�H �= ∅ whenever the calculus H includes axioms. Moreover, it is often the case
that (Γ1 ∪ Γ2)�H �= Γ�H

1 ∪ Γ�H
2 .

Observe that the converse of Proposition 2.2.11 is also true. Thus Hilbert calculi
and compact and structural consequence systems are essentially the same. Of
course, this is not the original idea of Hilbert calculi. This motivates the following
definition.

Definition 2.2.12 A Hilbert calculus H = 〈C,R〉 is said to be recursive if L(C)
is a recursive set and, for each recursive set Γ ⊆ L(C), the set Γ�H is recursively
enumerable. ∇

Note that all the examples presented above correspond to recursive Hilbert cal-
culi. The importance of such Hilbert calculi is well known since the main objective
is to work with logics that are at least semi-decidable. Proving that a Hilbert cal-
culus is recursive can be done using the projection lemma of computability once
we have shown that unary relations corresponding to axioms are recursive and
that (k+1)-ary relations corresponding to k-ary inference rules are also recursive.
Moreover, a preliminary step is to make the set of formulas a Gödel domain so
that we can encode formulas into natural numbers.

We are now ready to investigate the notion of fibring. Fibring of Hilbert calculi
is easy to introduce since our inference rules are schematic.

Definition 2.2.13 The fibring of Hilbert calculi H ′ = 〈C′, R′〉 and H ′′ = 〈C′′, R′′〉
is the Hilbert calculus

H ′∪H ′′ = 〈C,R〉
where C = C′∪C′′ and R = R′ ∪R′′. ∇

The fibring of H ′ and H ′′ is unconstrained when the fibring of their signatures
is unconstrained, that is, C′ ∩C′′ = ∅, and it is constrained otherwise. It is worth
noting that the fibring of recursive Hilbert calculi is also recursive.
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Example 2.2.14 Recall Example 2.2.5. Let HS4 and HB be two Hilbert calculi
for modal logics S4 and B respectively, sharing the same signature (just one box).
The following is a derivation in the fibring HS4∪HB of HS4 and HB.

1 ((�ξ1)⇒ ξ1) T
2 (((�ξ1)⇒ ξ1)⇒ (�(¬(�(¬((�ξ1)⇒ ξ1)))))) B
3 (�(¬(�(¬((�ξ1)⇒ ξ1))))) MP1, 2

Hence, the formula (�(¬(�(¬((�ξ1)⇒ξ1))))) is a theorem of HS4∪HB. Note that
the new calculus HS4∪HB is just the Hilbert calculus for a normal modal logic
with axioms T, 4 and B, usually known as S5. ∇

Example 2.2.15 Recall the previous example and assume that we only want to
share the propositional symbols ¬ and ⇒. Hence, we consider the Hilbert calculus
H ′

S4 defined over the signature C′ of Example 2.1.8 and the Hilbert calculus H ′′
B

defined over the signature C′′ of the same example. This means that the inference
rules explicitly involving modalities must be renamed accordingly. The following
is a derivation in the fibring H ′

S4∪H ′′
B of H ′

S4 and H ′′
B.

1 ((�′ξ1)⇒ ξ1) T′

2 (((�′ξ1)⇒ ξ1)⇒ (�′′(¬(�′′(¬((�′ξ1)⇒ ξ1)))))) B′′

3 (�′′(¬(�′′(¬((�′ξ1)⇒ ξ1))))) MP1, 2

Thus, (�′′(¬(�′′(¬((�′ξ1) ⇒ ξ1))))) is a theorem of H ′
S4∪H ′′

B. This formula in-
cludes connectives from both calculi. Note that (�′(¬(�′(¬((�′′ξ1)⇒ξ1))))) is not
a theorem of H ′

S4∪H ′′
B. The calculus H ′

S4∪H ′′
B is a bimodal Hilbert calculus. ∇

Example 2.2.16 Let H be the Hilbert calculus for classical logic presented in
Example 2.2.3. The fibring H∪H is just the Hilbert calculus H . ∇

Example 2.2.17 The unconstrained fibring of the propositional deductive system
H ′ and the Gödel G3 deductive system H ′′ is the deductive system H such that:

• C0 = {t′, f ′}, C1 = {¬′,¬′′}, C2 = {⇒′,⇒′′,∧′′,∨′′}, Ck = ∅ for k ≥ 3:

• the set R includes all rules for the connectives of both deductive systems.

For instance, two versions 〈{ξ1, (ξ1 ⇒′ ξ2)}, ξ2〉 and 〈{ξ1, (ξ1 ⇒′′ ξ2)}, ξ2〉 of the
modus ponens for the propositional and the Gödel implications are included in R.
In this case, if we share negation then the fibring collapses to the propositional
deductive system. The collapsing problems of fibring will be analyzed in Chapter 8.

∇

Note the importance of having a global set of schema variables. In this way
they can be replaced by any formula even one with connectives from both logics.
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Of course that would not be the case if the set of schema variables was local to
each calculus.

Observe that fibring of Hilbert calculi does introduce interactions between con-
nectives that are not shared. Intended interactions have to be explicitly added to
the fibring calculus. As an illustration consider again Example 2.2.15. Assume
that we want to impose that (�′ξ) always implies (�′′ξ). Then, the axiom

〈∅, ((�′ξ)⇒ (�′′ξ))〉
should be added to the Hilbert calculus H ′

S4∪H ′′
B. For another example see Chap-

ter 5
Fibring preserves derivations, that is, we are able to derive in the fibring ev-

erything that we could in the original Hilbert calculi. We start by introducing a
weakness relation between calculi. Recall Definition 1.1.6.

Definition 2.2.18 The Hilbert calculus H = 〈C,R〉 is weaker than Hilbert cal-
culus H ′ = 〈C′, R′〉, written H ≤ H ′, if C ≤ C′ and C(H) ≤ C(H ′). ∇

Note that the weakness relation is a partial order, that is, a reflexive, transitive
and anti-symmetric relation.

The following result states that the original Hilbert calculi are weaker than their
fibring. That is, everything that we derive with the original calculi also can be
derived in the fibring.

Proposition 2.2.19 For every Hilbert calculi H ′ and H ′′, the following relation-
ships hold: H ′ ≤ H ′∪H ′′ and H ′′ ≤ H ′∪H ′′.

Proof. Let H ′ = 〈C′, R′〉 and H ′′ = 〈C′′, R′′〉. Clearly, C′ ≤ C′∪C′′ and C′′ ≤
C′∪C′′. Moreover, using induction, we easily prove that every derivation of ϕ′ ∈
L(C′) from Γ′ ⊆ L(C′) in H ′ is also a derivation of ϕ′ from Γ′ in H ′∪H ′′. Therefore
Γ′�H′ ⊆ Γ′�H′∪H′′ . Similarly, Γ′′�H′′ ⊆ Γ′′�H′∪H′′ , for every Γ′′ ⊆ L(C′′). �

Now we will see that the fibring of Hilbert calculi H ′ and H ′′ is minimal in the
class of all Hilbert calculi that are stronger than H ′ and H ′′.

Proposition 2.2.20 For every Hilbert calculi H , H ′ and H ′′, if H ′ ≤ H and
H ′′ ≤ H then H ′∪H ′′ ≤ H .

Proof. Let H = 〈C,R〉, H ′ = 〈C′, R′〉 and H ′′ = 〈C′′, R′′〉. We have to prove
that C′∪C′′ ≤ C and Γ�H′∪H′′ ⊆ Γ�H for every Γ ⊆ L(C′∪C′′).
Given that C′ ≤ C and C′′ ≤ C it follows that C′∪C′′ ≤ C.
Since Γ�H′ ⊆ Γ�H for every Γ ⊆ L(C′) and Δ H′ ψ for each 〈Δ, ψ〉 ∈ R′, we
conclude that Δ H ψ for each 〈Δ, ψ〉 ∈ R′. Moreover, by Proposition 2.2.11,
〈C, �H 〉 is a structural consequence system. It follows then that σ(Δ) H σ(ψ) for
each 〈Δ, ψ〉 ∈ R′ and substitution σ on C. Similarly, we conclude σ(Δ) H σ(ψ)
for each 〈Δ, ψ〉 ∈ R′′ and substitution σ on C.
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We prove by induction on the length of a derivation of ϕ from Γ in H ′∪H ′′ that
Γ H ϕ, for every ϕ ∈ L(C ′∪C′′) and Γ ⊆ L(C′∪C′′).

Base: When ϕ has a derivation of length 1 from Γ in H ′∪H ′′ then ϕ ∈ Γ or
ϕ = σ(ψ) for some axiom 〈∅, ψ〉 ∈ R′ ∪R′′ and substitution σ on C′ ∪C′′ ⊆ C. In
the first case, clearly Γ H ϕ. In the second case, since ∅ H σ(ψ), we can present
a derivation of ϕ from Γ in H , that is, Γ H ϕ.

Step: Assume that ϕ has a derivation of length n + 1 from Γ in H ′∪H ′′. The
interesting case is ϕ = σ(ψ) for some rule 〈Δ, ψ〉 ∈ R′ ∪ R′′ and substitution σ
on C′ ∪ C′′ ⊆ C where the formulas in σ(Δ) occur previously in the derivation.
By the induction hypothesis, every formula in σ(Δ) has a derivation in H from
Γ. Hence, σ(Δ) ⊆ Γ�H and, by monotonicity, (σ(Δ))�H ⊆ (Γ�H )�H . Moreover,
σ(Δ) H σ(ψ), that is, σ(ψ) ∈ (σ(Δ))�H . Hence, σ(ψ) ∈ (Γ�H )�H and, by
idempotence, σ(ψ) ∈ Γ�H , that is, Γ H ϕ. �

Propositions 2.2.19 and 2.2.20 show that H ′∪H ′′ is the supremum of H ′ and
H ′′ with respect to the weakness ordering.

We synthesize the properties of fibring of Hilbert calculi as follows:

• homogeneous combination mechanism at the deductive level: both original
logics are presented by Hilbert calculi;

• algorithmic combination of logics at the deductive level: given the Hilbert
calculi for the original logics, we know how to define the Hilbert calculus for
the fibring;

• canonical combination of logics: minimal construction as we will see below.

Observe that fusion of logics is a particular case of fibring. Therefore, fusion of
modal logics is also a universal construction.

Remark 2.2.21 Fibring of Hilbert calculi can be characterized as an universal
construction.

In fact, recall the signature morphisms presented in Remark 2.1.10. Each sig-
nature morphism h : C → C′ can be extended as expected to h∗ : L(C)) → L(C′),
by defining h∗(ξ) = ξ for every ξ ∈ Ξ. For convenience we frequently write h for
denoting the extension h∗ of h.

A Hilbert calculus morphism

h : 〈C,R〉 → 〈C ′, R′〉

is a signature morphism h : C → C′ such that h(ϕ) is derivable from h(Δ) in
〈C ′, R′〉, for every inference rule 〈Δ, ϕ〉 in R. A weaker possibility for the notion
of Hilbert calculus morphism would be to say that 〈h(Δ), h(ϕ)〉 ∈ R′ for every
〈Δ, ϕ〉 ∈ R. This weaker version is the more adequate in Chapter 7.

Recursive Hilbert calculi and their morphisms, with composition and identities
as in Sig, constitute the category Hil. The category Hil is (finitely) cocomplete.



2.3. PRESERVATION RESULTS 55

The fibring H ′∪H ′′ of H ′ = 〈C′, R′〉 and H ′′ = 〈C′′, R′′〉 is a pushout of the
morphisms h′ : 〈C′ ∩ C′′, ∅〉 → 〈C′, R′〉 and h′′ : 〈C′ ∩C′′, ∅〉 → 〈C′′, R′′〉, where h′

and h′′ are the signature inclusion morphisms. Figure 2.3 describes this situation.

〈C′ ∩C′′, ∅〉
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H ′∪H ′′

Figure 2.3: Fibring of Hilbert calculi as a pushout in Hil

The particular case of unconstrained fibring just corresponds to the coproduct
of H ′ and H ′′. ∇

2.3 Preservation results

One of the important aspects of fibring is the possibility of obtaining trans-
ference results from the logics to be fibred to the logic resulting from the fib-
ring. Herein, we study the preservation by fibring of some metatheorems (for
instance the metatheorem of deduction) as well as the preservation of
interpolation.

2.3.1 Global and local derivation

We start by investigating the preservation of derivation by fibring. The results
that we obtain here will be used in the sequel.

In order to formulate the preservation results, we need to refine the notion of
derivation so that we can distinguish between global and local derivations. The
distinction is very clear when dealing, for instance, with modal logic. Although
this distinction is better motivated using semantic arguments, to be discussed in
the next chapter, it is still possible to motivate it using Hilbert calculi.

Consider, as motivating example, a Hilbert calculus H with a connective ⇒
having the properties of the usual implication. Assuming that Γ, ψ H ϕ holds,
it may be the case that Γ H (ψ ⇒ ϕ) holds in H or not. We usually say that
the calculus H has the metatheorem of deduction (MTD) whenever Γ H (ψ⇒ϕ)
always follows from Γ, ψ H ϕ. For example, it is well known that propositional
classical logic has MTD. On the other hand, in modal logic, ψ H (�ψ) holds but,
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in general, it not the case that H (ψ⇒ (�ψ)). Also, in first order classical logic,
ψ H (∀xψ) holds but, in general, it not the case that H (ψ⇒ (∀xψ)). However,
if ψ is a theorem of modal logic (that is, H ψ), H (ψ ⇒ (�ψ)) follows from
ψ H (�ψ). Also, if there exists a derivation of ϕ from Γ∪ {ψ} without using the
necessitation rule then Γ H (ψ⇒ ϕ) holds. Similar arguments can be applied to
first order classical logic.

These examples suggest that two kinds of derivations can be recognized. In
the first one, all the inference rules can be applied freely but, as a consequence,
MTD can be lost. This kind of derivations will be called global derivations. In the
second one, in order to guarantee MTD, some inference rules can be applied freely
but other can only be applied to theorems. This kind of derivations will be called
local derivations. For instance, in modal logic, the rule of modus ponens can be
applied freely, but the necessitation rule can only be applied to theorems in order
to guarantee MTD. The same holds in first order classical logic with respect to
the generalization rule.

When the distinction between global and local derivations is made, it is possible
to give a formulation of the local metatheorem of deduction without any provisos.
In modal logic people usually work in this way. In first-order logic, people use to
work with global reasoning and with a global metatheorem of deduction having
provisos. In Subsection 2.3.3 we will see that for global reasoning in modal logic
one can give a generalized version of the metatheorem of deduction.

We say that a logic supporting both local and global reasoning has careful rea-
soning. For more details on the interest of the distinction see also Subsection 2.3.3.

Although these motivating examples are based on implication and MTD, the
idea of global and local derivations can be generalized. This motivates the following
definition.

Definition 2.3.1 A Hilbert calculus with careful reasoning is a triple

H = 〈C,Rg , R�〉

where C is a signature, Rg∪R� is a set of inference rules over C such that R� ⊆ Rg
and Δ �= ∅ for each 〈Δ, ϕ〉 ∈ Rg\R�. ∇

The notion of recursive Hilbert calculus, presented in 2.2.12, is easily extended
to Hilbert calculus with careful reasoning.

The elements of Rg are the global inference rules and the elements of R� are
the local inference rules. Note that each local rule is also a global rule but we can
have global rules that are not local rules. From this point on we will work with
Hilbert calculus with careful reasoning and call it just Hilbert calculus.

In modal logic, it is usual to distinguish between local and global reasoning
(see [167]) namely because of the metatheorem of deduction that holds for local
reasoning but not for global reasoning. In first-order logic most people work with
global reasoning and give a constrained version of the metatheorem of deduction.
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We can now state when a formula is globally derivable and when it is locally
derivable.

Definition 2.3.2 Let H = 〈C,Rg , R�〉 be a Hilbert calculus.
A formula ϕ ∈ L(C) is globally derivable from Γ ⊆ L(C) in H if there is a finite

sequence ϕ1 . . . ϕn of formulas such that:

• ϕn is ϕ;

• for i = 1, . . . , n, each ϕi is either an element of Γ, or there exist a substitution
σ and a rule 〈Δ, ψ〉 ∈ Rg such that σ(Δ) ⊆ {ϕ1, . . . , ϕi−1} and ϕi is σ(ψ).

The sequence ϕ1 . . . ϕn is a global derivation of ϕ from Γ and we write

Γ gH ϕ

to denote that ϕ is globally derivable from Γ in H .
In a global derivation we can freely use all the rules. In a local derivation we

can only use the global rules providing that the premises are theorems (that is
were obtained without using the hypotheses).

A formula ϕ ∈ L(C) is locally derivable from Γ ⊆ L(C) in H if there is a finite
sequence ϕ1 . . . ϕn of formulas such that:

• ϕn is ϕ;

• for i = 1, . . . , n, each ϕi is either an element of Γ, or gH ϕ, or there ex-
ist a substitution σ and an inference rule 〈Δ, ψ〉 ∈ R� such that σ(Δ) ⊆
{ϕ1, . . . , ϕi−1} and ϕi is σ(ψ).

The sequence ϕ1 . . . ϕn is a local derivation of ϕ from Γ and we write

Γ �H ϕ

to denote that ϕ is locally derivable from Γ in H . ∇

Any inference rule can be used in a global derivation. Local derivations only
use local inference rules but they can also use global theorems, that is, formulas
globally derivable from the empty set. Note that every formula that is locally
derivable from a set Γ is also globally derivable from Γ. Moreover, every formula
that is globally derivable from the empty set is also locally derivable from the
empty set. That is, local theorems are also global theorems and vice versa.

We denote by Γ�g
H and Γ��

H respectively the set of formulas globally derivable
from Γ in H and the set of formulas locally derivable from Γ in H . The set Γ is
said to be globally closed if Γ�g

H = Γ.
As an illustration we consider again modal logic with these two levels of rea-

soning.
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Example 2.3.3 Recall the modal signature introduced in Example 2.1.4. A
Hilbert calculus with careful reasoning for propositional normal modal logic K
includes, besides that signature, the set R� with the following local inferences
rules

• 〈∅, (ξ1 ⇒ (ξ2 ⇒ ξ1))〉;
• 〈∅, ((ξ1 ⇒ (ξ2 ⇒ ξ3))⇒ ((ξ1 ⇒ ξ2)⇒ (ξ1 ⇒ ξ3)))〉;
• 〈∅, (((¬ ξ1)⇒ (¬ ξ2))⇒ (ξ2 ⇒ ξ1))〉
• 〈∅, ((�(ξ1 ⇒ ξ2))⇒ ((�ξ1)⇒ (�ξ2)))〉;
• 〈{ξ1, (ξ1 ⇒ ξ2)}, ξ2〉;

and the set Rg with the following global inferences rules

• all the inference rules in R�;

• 〈{ξ1}, (�ξ1)〉.
This Hilbert calculus has exactly the same inference rules as the Hilbert calculus
for propositional normal modal logic K presented in Example 2.2.4, but herein
rules can be global or local (or both). All the inference rules presented before are
now global inference rules. All the inference rules are also local inference rules
with the exception of the necessitation rule Nec. Hence, Nec is the only global
rule that is not a local rule. As a consequence, ξ1 gH (�ξ1) but ξ1 �H (�ξ1) does
not hold because we would be applying a global rule to an hypothesis.

A Hilbert calculus for modal logics S4 is similar to the above Hilbert calculus
but also includes the axioms T and 4 as local rules. Similarly with respect to
modal logic B where B is the new axiom. ∇

Example 2.3.4 A Hilbert calculus for classical logic is 〈C,Rg , R�〉 where C is
the usual classical signature, Rg is the set of inference rules in Example 2.2.3 and
R� = Rg.

Hilbert calculus for the intuitionistic logic, the 3-valued Gödel logic and the
3-valued �Lukasiewicz logic are obtained in a similar way considering the set of
inference rules in respectively Examples 2.2.6, 2.2.7 and 2.2.8. ∇

Remark 2.3.5 Note that a Hilbert calculus H = 〈C,Rg, R�〉 induces two compact
and structural consequence systems, the global consequence system 〈C,gH〉 and
the local consequence system 〈C,�H〉. The proof is similar to the one presented for
Proposition 2.2.11. Observe that 〈C,gH〉 is just the consequence system referred
to therein. It is easy to see that

〈C,�H〉 ≤ 〈C,gH〉.
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The weakness relation between Hilbert calculi extends as expected to calculi
involving global and local inference rules. We say that H is weaker than H ′ (or
H ′ is stronger than H), written H ≤ H ′, whenever C ≤ C′, Γ�g

H ⊆ Γ�g

H′ and
Γ��

H ⊆ Γ��
H′ , for every Γ ⊆ L(C).

Fibring also extends to these Hilbert calculi as expected: the Hilbert calculus

H ′∪H ′′ = 〈C′∪C′′, Rg′ ∪Rg′′, R�′ ∪R�′′〉

is the fibring of H ′ = 〈C′, Rg ′, R�′〉 and H ′′ = 〈C′′, Rg ′′, R�′′〉. It is straightforward
to conclude that

H ′ ≤ H ′ ∪H ′′ and H ′′ ≤ H ′ ∪H ′′.

Clearly recursiveness of Hilbert calculi is preserved by fibring. ∇

Proposition 2.3.6 Fibring preserves global derivations and local derivations.

In the sequel, we assume that Hilbert calculi include a set of global inference
rules and a set of local inference rules.

2.3.2 Metatheorems

Some metatheorems, such as the metatheorem of modus ponens and the metathe-
orem of deduction, are important features of several logics. It is relevant to know
if those metatheorems are preserved by fibring. In [282] some metatheorem preser-
vation results are presented.

Herein, we establish sufficient conditions for the preservation of several metathe-
orems by fibring. Since these results only involve syntactic arguments we present
them in the Hilbert calculus setting.

In the sequel, whenever we want to state a condition such as “if statements
stm1,..., stmn hold then statement stm also holds”, for simplicity, we may just use
the notation

stm1 . . . stmn

stm

We may also have more than one statement below the horizontal line meaning
that providing that the statements of the numerator are true then the statements
of the denominator are also true.

We first consider the preservation of the metatheorem of modus ponens. To
begin with, we have to define the notion of metatheorem of modus ponens in an
arbitrary Hilbert calculus.

Definition 2.3.7 A Hilbert calculus H has the metatheorem of modus ponens
(MTMP) if there is a binary connective ⇒ such that

Γ �H (ϕ1 ⇒ ϕ2)

Γ, ϕ1 �H ϕ2 (MTMP)
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for every set of formulas Γ and formulas ϕ1, ϕ2. ∇

We observe that ⇒ can be either a connective in the signature or it can be a
derived one. For example, in classical propositional logic we can take ⇒ as the
implication. But we can also define (ϕ1 ⇒ ϕ2) as ((¬ϕ1) ∨ ϕ2) assuming that ¬
and ∨ are the connectives in the signature.

It is possible to give a necessary and sufficient condition for a Hilbert calculus
to have MTMP which does not involve meta-reasoning.

Proposition 2.3.8 The MTMP holds in a Hilbert calculus H if and only if

• (ξ1 ⇒ ξ2), ξ1 �H ξ2.

Proof. Assume that MTMP holds and let Γ be {(ξ1 ⇒ ξ2)} and let ϕ1, ϕ2 be
respectively ξ1, ξ2. Since (ξ1 ⇒ ξ2) �H (ξ1 ⇒ ξ2), from MTMP it follows that
(ξ1 ⇒ ξ2), ξ1 �H ξ2.

Conversely, assume (ξ1⇒ξ2), ξ1 �H ξ2 and suppose that Γ �H (ϕ1⇒ϕ2). Then,
by monotonicity, also Γ, ϕ1 �H (ϕ1 ⇒ ϕ2). Consider the substitution σ such that
σ(ξi) = ϕi, i = 1, 2. Using structurality, it follows that (ϕ1 ⇒ ϕ2), ϕ1 �H ϕ2.
Hence, Γ, ϕ1 �H ϕ2 using idempotence. �

Example 2.3.9 Recall that all the Hilbert calculi presented in Section 2.2 have
the modus ponens rule. Since this rule is a local rule when we refine these Hilbert
calculi, see Examples 2.3.3 and 2.3.4, we conclude that all of them have MTMP. ∇

Fibring preserves MTMP even if only one of the components has MTMP.

Theorem 2.3.10 The fibring of two Hilbert calculi has MTMP provided that at
least one of the Hilbert calculi has MTMP.

Proof. Let H ′ and H ′′ be Hilbert calculi where H ′ has MTMP. From Propo-
sition 2.3.8, (ξ1 ⇒ ξ2), ξ1 �H1

ξ2. Using Remark 2.3.5, (ξ1 ⇒ ξ2), ξ1 �H′∪H′′ ξ2.
Hence, using again Proposition 2.3.8, H ′∪H ′′ has MTMP. �

We now consider the metatheorem of deduction.

Definition 2.3.11 A Hilbert calculusH has the metatheorem of deduction (MTD)
if there is a binary connective ⇒ such that:

Γ, ϕ1 �H ϕ2

Γ �H (ϕ1 ⇒ ϕ2) (MTD)

for every set of formulas Γ and formulas ϕ1, ϕ2. ∇
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The definition above corresponds to a local version of the metatheorem of deduc-
tion. In Subsection 2.3.3 we will consider a more relaxed version of the metathe-
orem of deduction that will also cover global derivation. It is possible to give a
sufficient condition for a Hilbert calculus to have MTD that is also a necessary
condition if H also has MTMP.

Proposition 2.3.12 A Hilbert calculus H has MTD if

1. �H (ξ1 ⇒ ξ1);

2. ξ1 �H (ξ2 ⇒ ξ1);

3. (ξ⇒ δ1), . . . , (ξ⇒ δk)�H (ξ⇒ ϕ) for each local rule 〈{δ1, . . . , δk}, ϕ〉 where
ξ ∈ Ξ does not occur in any of the formulas of the rule.

Conversely, if H has MTD then the conditions 1 and 2 above hold. If H also has
MTMP with respect to the same connective ⇒ then condition 3 also holds.

Proof. Assume that the three conditions hold and that Γ, ϕ1 �H ϕ2. We prove by
induction on the length of a derivation of ϕ2 from Γ∪ {ϕ1} that Γ �H (ϕ1 ⇒ϕ2).

Base: If ϕ2 has a derivation of length one from Γ∪{ϕ1} then either ϕ2 ∈ Γ∪{ϕ1},
or gH ϕ2, or ϕ2 = σ(ϕ) for some local axiom 〈∅, ϕ〉 and substitution σ. In the
first case, if ϕ2 is ϕ1, we consider a substitution σ such that σ(ξ1) = ϕ1 and use
1, structurality and monotonicity. If ϕ1 ∈ Γ, we consider σ such that σ(ξ1) = ϕ2,
σ(ξ2) = ϕ1 and use 2, structurality and monotonicity. In the second case, we have
�H ϕ2. Considering again a substitution σ such that σ(ξ1) = ϕ2, σ(ξ2) = ϕ1 and
using 2 and structurality we have ϕ2 �H (ϕ1 ⇒ ϕ2). Hence, using idempotence
and monotonicity, we get Γ �H (ϕ1 ⇒ ϕ2). In the third case, we also have �H ϕ2

and we reason as before.
Step: If ϕ2 has a derivation of length n + 1, we reason as above if ϕ2 is as

in the base case. Otherwise, ϕ2 = σ(ϕ) for some local rule 〈{δ1, . . . , δk}, ϕ〉 and
substitution σ such that σ(δ1), . . . , σ(δk) occur previously in the derivation. Using
the induction hypothesis, Γ �H (ϕ1 ⇒ σ(δi)), i = 1, . . . , k. Since ξ does not occur
in the rule, we may consider without loss of generality that σ(ξ) = ϕ1. Hence,
using 3 and structurality, {(ϕ1 ⇒ σ(δ1)), . . . , (ϕ1 ⇒ σ(δk))} �H (ϕ1 ⇒ ϕ2). Using
idempotence, Γ �H (ϕ1 ⇒ ϕ2).

Conversely, assume now that MTD holds. We get 1 letting Γ be ∅ and ϕ1, ϕ2

be ξ1. We get 2 letting Γ be {ξ1} and ϕ1, ϕ2 be respectively ξ2, ξ1. Finally, let Γ
be {(ξ⇒ δ1), . . . , (ξ⇒ δk)} and ϕ1, ϕ2 be respectively ξ, ϕ. Since Γ �H (ξ⇒ δ1),
from MTMP we conclude Γ, ξ �H δ1. Similarly, Γ, ξ �H δi, i = 2, . . . , k. Hence,
using the rule, Γ, ξ �H ϕ and, using MTD, we get 3. �

Example 2.3.13 The Hilbert calculus for classical logic referred to in Exam-
ple 2.3.4 has MTD. In fact, using the first two axioms, 〈∅, (ξ1 ⇒ (ξ2 ⇒ ξ1))〉 and
〈∅, ((ξ1⇒ (ξ2⇒ ξ3))⇒ ((ξ1⇒ ξ2)⇒ (ξ1⇒ ξ3)))〉, and the rule modus ponens, it is
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easy to prove that conditions 1 and 2 of Proposition 2.3.12 hold and that modus
ponens satisfies condition

{(ξ⇒ ξ1), (ξ⇒ (ξ1 ⇒ ξ2))} �H (ξ⇒ ξ2).

The Hilbert calculus for intuitionistic logic referred to in Example 2.3.4 also
has the MTD for a similar reason. Similarly, the Hilbert calculus for the 3-valued
Gödel logic also has MTD.

The Hilbert calculus for modal logic K in Example 2.3.3 also has MTD because
the necessitation rule is not a local rule. Note that condition 3 of Proposition 2.3.12
does not hold for this rule. ∇

The metatheorem MTD is preserved by fibring, in the presence of MTMP.

Theorem 2.3.14 The fibring of two Hilbert calculi has MTD provided that
they have MTMP and MTD, and the binary connective ⇒ in MTMP and MTD
is shared.

Proof. Let H ′ and H ′′ be Hilbert calculi having MTMP and MTD. From Proposi-
tion 2.3.12, conditions 1 and 2 of this Proposition hold, in particular, in H ′. Using
Remark 2.3.5, they also hold in the fibring H ′∪H ′′. Thus, these conditions hold
in the fibring even if only one of the calculi has MTD. But condition 3 involves all
local rules of H ′∪H ′′ and so we have to guarantee this condition for the rules of
both calculi. Since H ′ and H ′′ have MTD and MTMP, condition 3 holds in both.
Hence, using Remark 2.3.5 and taking into account that ⇒ is shared and the local
inference rules of H ′∪H ′′ are the local inference rules of H ′ and the ones of H ′′,
condition 3 holds in the fibring. By Proposition 2.3.8, H ′∪H ′′ has MTD. �

As a particular case, observe that fusion preserves the MTMP and MTD taking
the binary connective as the implication. This is a consequence of the fact that
modal Hilbert calculi have the local version of the metatheorem of deduction.

The metatheorem MTMP and MTD characterize the behavior of the usual
classical implication. That is why we say that a Hilbert calculus having MTMP
and MTD has implication.

Definition 2.3.15 A Hilbert calculus H is said to have implication ⇒ if ⇒ is a
binary connective satisfying MTMP and MTD. ∇

As we will see later on, preservation of MTMP and MTD is important when
proving the preservation of completeness. Clearly, fibring of Hilbert calculi having
implication also has implication if the implication connectives is shared.

Proposition 2.3.16 The fibring of two Hilbert calculi having implication also
has implication provided the implication connective is shared.

Proof. Use Theorem 2.3.10 and Theorem 2.3.14. �



2.3. PRESERVATION RESULTS 63

We now consider three other metatheorems, these ones related with the prop-
erties of equivalence and its relation with implication. The preservation of these
metatheorems is also important for establishing the preservation of completeness.
The first two are the metatheorems of biconditionaly 1 and 2.

Definition 2.3.17 A Hilbert calculus H has the metatheorem of biconditional 1
(MTB1) if there are binary connectives ⇒ and ⇔ such that:

Γ �H (ϕ1 ⇒ ϕ2) Γ �H (ϕ2 ⇒ ϕ1)

Γ �H (ϕ1 ⇔ ϕ2) (MTB1)

for every set of formulas Γ and formulas ϕ1, ϕ2.
A Hilbert calculus H has the metatheorem of biconditional 2 (MTB2) if there

are binary connectives ⇒ and ⇔ such that :

Γ �H (ϕ1 ⇔ ϕ2)

Γ �H (ϕ1 ⇒ ϕ2) Γ �H (ϕ2 ⇒ ϕ1) (MTB2)

for every set of formulas Γ and formulas ϕ1, ϕ2. ∇

Note that if a Hilbert calculus has MTB1 and MTB2 then from Γ �H (ϕ1⇔ϕ2)
we can also conclude Γ �H (ϕ2 ⇔ ϕ1).

We now present necessary and sufficient conditions for a Hilbert calculus to
have MTB1 and MTB2 .

Proposition 2.3.18 The MTB1 holds in a Hilbert calculus H if and only if

• (ξ1 ⇒ ξ2), (ξ2 ⇒ ξ1) �H (ξ1 ⇔ ξ2).

Proof. Assume that MTB1 holds and let Γ be {(ξ1 ⇒ ξ2), (ξ2 ⇒ ξ1)} and ϕ1, ϕ2

be respectively ξ1, ξ2. Since

{(ξ1 ⇒ ξ2), (ξ2 ⇒ ξ1)} �H (ξ1 ⇒ ξ2)

and
{(ξ1 ⇒ ξ2), (ξ2 ⇒ ξ1)} �H (ξ2 ⇒ ξ1)

from MTB1 we get

{(ξ1 ⇒ ξ2), (ξ2 ⇒ ξ1)} �H (ξ1 ⇔ ξ2).

Conversely, assume that (ξ1 ⇒ ξ2), (ξ2 ⇒ ξ1) �H (ξ1 ⇔ ξ2) and suppose that

Γ �H (ϕ1 ⇒ ϕ2)

and
Γ �H (ϕ2 ⇒ ϕ1).
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Consider the substitution σ such that σ(ξi) = ϕi, i = 1, 2. Using structurality,

{(ϕ1 ⇒ ϕ2), (ϕ2 ⇒ ϕ1)} �H (ϕ1 ⇔ ϕ2).

Hence, Γ �H (ϕ1 ⇔ ϕ2) and so MTB1 holds in H . �

Proposition 2.3.19 The MTB2 holds in a Hilbert calculus H if and only if

1. (ξ1 ⇔ ξ2) �H (ξ1 ⇒ ξ2);

2. (ξ1 ⇔ ξ2) �H (ξ2 ⇒ ξ1).

Proof. The proof is similar to the one presented for Proposition 2.3.18, using the
obvious suitable instantiations for Γ, ϕ1 and ϕ2 and suitable substitutions σ. �

Example 2.3.20 The connective ⇔ is usually defined as an abbreviation:

(ϕ1 ⇔ ϕ2) =def ((ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1)).

Consider the Hilbert calculus for intuitionistic logic referred to in Example 2.3.4.
In order to cope with Definition 2.3.17, we need to add the symbol ⇔ to the
signature for intuitionistic logic considered in Definition 2.1.4. Moreover, we need
to add to the corresponding Hilbert calculus the following two axioms:

• 〈∅, ((ξ1 ⇔ ξ2)⇒ ((ξ1 ⇒ ξ2) ∧ (ξ2 ⇒ ξ1)))〉;
• 〈∅, (((ξ1 ⇒ ξ2) ∧ (ξ2 ⇒ ξ1))⇒ (ξ1 ⇔ ξ2))〉.

Using these axioms together with

• 〈∅, (ξ1 ⇒ (ξ2 ⇒ (ξ1 ∧ ξ2)))〉
• 〈∅, ((ξ1 ∧ ξ2)⇒ ξ1)〉
• 〈∅, ((ξ1 ∧ ξ2)⇒ ξ2)〉

and modus ponens, we easily get the conditions in Propositions 2.3.18 and 2.3.19.
Hence, this new Hilbert calculus has MTB1 and MTB2 . Similarly, the Hilbert
calculus for the 3-valued Gödel logic, extended with ⇔ as above, also has MTB1
and MTB2 .

In what concerns classical logic, a similar technique can be applied, but now
the axioms to be added to the corresponding Hilbert calculus are:

• 〈∅, ((ξ1 ⇔ ξ2)⇒ (¬((ξ1 ⇒ ξ2)⇒ (¬(ξ2 ⇒ ξ1)))))〉;
• 〈∅, ((¬((ξ1 ⇒ ξ2)⇒ (¬(ξ2 ⇒ ξ1))))⇒ (ξ1 ⇔ ξ2))〉.

Hence, this extended Hilbert calculus also has MTB1 and MTB2 . Clearly, similar
remarks hold for modal logic K and for 3-valued �Luckasiewicz logic. ∇
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Fibring also preserves MTB1 and MTB2.

Theorem 2.3.21 The fibring of two Hilbert calculi has MTB1 provided that at
least one of the Hilbert calculi has MTB1.

Proof. The proof is similar to the one presented for Theorem 2.3.10. �

Theorem 2.3.22 The fibring of two Hilbert calculi has MTB2 provided that at
least one of the Hilbert calculi has MTB2.

Proof. The proof is similar to the one presented for Theorem 2.3.10. �

Next we consider the metatheorem of substitution of equivalents.

Definition 2.3.23 A Hilbert calculus H with implication has the metatheorem of
substitution of equivalents (MTSE) if there is a binary connective ⇔ such that:

Γ �H (δ1 ⇔ δ2)

Γ �H (ϕ⇔ ϕ′) (MTSE)

for every globally closed set of formulas Γ and formulas δ1, δ2, ϕ, where ϕ′ is
obtained from ϕ by replacing one of more occurrences of δ1 by δ2. ∇

We now present necessary and sufficient conditions for ensuring MTSE in Hilbert
calculus verifying certain conditions.

Proposition 2.3.24 LetH be a Hilbert calculus with implication⇒ where MTB1
and MTB2 hold with respect to ⇒ and ⇔. The MTSE holds in H if and only if

• {(ξ2i⇔ ξ2i−1) : i = 1, . . . , k}�g
H �H ((c(ξ2, . . . , ξ2k))⇔ (c(ξ1, . . . , ξ2k−1)))

for every constructor c of arity k > 0 in the signature.

Proof. Assume that MTSE holds and let

Θ = {(ξ2i⇔ ξ2i−1) : i = 1, . . . , k}�g
H .

Clearly Θ �H (ξ2i⇔ ξ2i−1) for i = 1, . . . , k. Taking i = 1 and using MTSE, we get

Θ �H ((c(ξ2, ξ4, ξ6, . . . , ξ2k))⇔ (c(ξ1, ξ4, ξ6, . . . , ξ2k))).

Taking i = 2 and using MTSE, we get

Θ �H ((c(ξ1, ξ4, ξ6, . . . , ξ2k))⇔ (c(ξ1, ξ3, ξ6, . . . , ξ2k))).

Since H has MTMP, MTD, MTB1 and MTB2 , using these metatheorems we can
conclude that

Θ �H ((c(ξ2, ξ4, ξ6, . . . , ξ2k))⇔ (c(ξ1, ξ3, ξ6, . . . , ξ2k))).
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Keeping on reasoning in this way, at the end we get

Θ �H ((c(ξ2, . . . , ξ2k))⇔ (c(ξ1, . . . , ξ2k−1))).

Conversely, assume that Θ �H ((c(ξ2, . . . , ξ2k))⇔ (c(ξ1, . . . , ξ2k−1))), for every c
of arity k > 0, and suppose that Γ �H (δ1⇔δ2). We prove by structural induction
that

Γ �H (ϕ⇔ ϕ′)

where ϕ′ is obtained from ϕ by replacing one or more occurrences of δ1 by δ2.
Base: If ϕ is a constructor of arity 0, ϕ′ = ϕ. Since H has implication and

MTB1 , �H (ξ1 ⇒ ξ1) hence, from MTB1 , �H (ξ1 ⇔ ξ1). Using structurality with
σ such that

σ(ξ1) = ϕ and �H (ϕ⇔ ϕ)

hence, by monotonicity, Γ �H (ϕ⇔ ϕ′). If ϕ = ξ ∈ Ξ and ξ �= δ1, ϕ′ = ϕ and we
reason as before. If ϕ = ξ = δ1, ϕ′ = δ2, hence (ϕ⇔ ϕ′) is just (δ1 ⇔ δ2) and we
are done.

Step: Assume that ϕ is of the form (c(ψ1, . . . , ψk)). By the induction hypothesis,
Γ �H (ψi⇔ ψ′

i) for i = 1, . . . , k, where ψ′ is obtained from ψ by replacing one or
more occurrences of δ1 by δ2. Thus also Γ gH (ψi⇔ ψ′

i) for i = 1, . . . , k. Since Γ
is globally closed,

{(ψi⇔ ψ′
i) : i = 1, . . . , k}�g

H ⊆ Γ.

From the hypothesis,

Θ �H ((c(ξ2, . . . , ξ2k)⇔ c(ξ1, . . . , ξ2k−1))).

Using structurality and σ such that σ(ξ2i) = ψi and σ(ξ2i−1) = ψ′
i, for i = 1, . . . , k,

we get
σ(Θ) �H ((c(ψ1, . . . , ψk))⇔ (c(ψ′

1, . . . , ψ
′
k))).

Since σ(Θ) ⊆ {(ψi⇔ ψ′
i) : i = 1, . . . , k}�g

H ⊆ Γ, by monotonicity,

Γ �H ((c(ψ1, . . . , ψk))⇔ (c(ψ′
1, . . . , ψ

′
k))).

If we do not want to replace occurrences of δ1 in some ψi we just use Γ �H (ψi⇔ψi)
that can be obtained as above. �

It is worthwhile noticing that we could have defined MTSE without requiring
Γ to be globally closed, and Proposition 2.3.24 would also hold without this re-
quirement. However, as explained below, without this requirement, modal logics
would not have MTSE. But, as we will see later on, this metatheorem plays an
important role in our proof of completeness preservation and, naturally, we want
this preservation result to hold in modal logics.
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Example 2.3.25 Using the inference rules of the Hilbert calculus H for classical
logic referred to in Example 2.3.4, we can prove that

{(ξ1 ⇔ ξ2)}�g
H �H ((¬ ξ1)⇔ (¬ ξ2))

and
{(ξ1 ⇔ ξ2), (ξ3 ⇔ ξ4)}�g

H �H ((ξ1 ⇒ ξ3)⇔ (ξ2 ⇒ ξ4)).

Since H has implication, MTB1 and MTB2 , the calculus has MTSE.
The Hilbert calculus for intuitionistic logic referred to in Example 2.3.4 also has

MTSE. Note that herein we have to consider, besides ⇒, the constructors ∧ and
∨. Similarly, the Hilbert calculus for the 3-valued Gödel logic also has MTSE.

The Hilbert calculus for modal logic K in Example 2.3.3 also has MTSE. Thus,
besides ¬ and ⇒, we have to consider the constructor �. To prove

{(ξ1 ⇔ ξ2)}�g
H �H ((�ξ1)⇔ (�ξ2))

it is essential to consider the global closure of {(ξ1 ⇔ ξ2)}. ∇

Fibring preserves the metatheorem of substitution of equivalents when some
conditions hold.

Theorem 2.3.26 The fibring of two Hilbert calculi has MTSE provided that
both Hilbert calculi have implication ⇒, MTSE, MTB1, MTB2 and the binary
connectives ⇒ and ⇔ in these metatheorems are shared.

Proof. Let H ′, H ′′ be Hilbert calculi fulfilling the conditions above. By Proposi-
tion 2.3.24,

{(ξ2i⇔ ξ2i−1) : i = 1, . . . , k}�g

H′ �H′ ((c(ξ2, . . . , ξ2k))⇔ (c(ξ1, . . . , ξ2k−1)))

for every constructor c of arity k > 0 in the signature C′ of H ′. By Remark 2.3.5,

{(ξ2i⇔ ξ2i−1) : i = 1, . . . , k}�g

H′ �H′∪H′′ ((c(ξ2, . . . , ξ2k))⇔ (c(ξ1, . . . , ξ2k−1)))

and

{(ξ2i⇔ ξ2i−1) : i = 1, . . . , k}�g

H′ ⊆ {(ξ2i⇔ ξ2i−1) : i = 1, . . . , k}�g

H′∪H′′ .

By monotonicity,

{(ξ2i⇔ ξ2i−1) : i = 1, . . . , k}�g

H′∪H′′ �H′∪H′′ ((c(ξ2, . . . , ξ2k))⇔ (c(ξ1, . . . , ξ2k−1)))

for every constructor c of arity k > 0 in the signature C′ of H ′. Similarly, and
taking into account that ⇔ is shared,

{(ξ2i⇔ ξ2i−1) : i = 1, . . . , k}�g

H′∪H′′ �H′∪H′′ ((c(ξ2, . . . , ξ2k))⇔ (c(ξ1, . . . , ξ2k−1)))

for every constructor c of arity k > 0 in the signature C′′ of H ′′. Hence, this result
holds for every constructor c of arity k > 0 in the signature C′∪C′′ of H ′∪H ′′.
By Proposition 2.3.16 and Theorems 2.3.21 and 2.3.22, H ′∪H ′′ has implication,
MTB1 and MTB2 . By Proposition 2.3.24, H ′∪H ′′ has MTSE. �
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The metatheorems MTB1 , MTB2 and MTSE characterize the behavior of the
usual classical equivalence. Hence, we say that a Hilbert calculus having MTB1 ,
MTB2 and MTSE has equivalence.

Definition 2.3.27 A Hilbert calculus H with implication ⇒ has equivalence ⇔
if ⇒ and the binary connective ⇔ satisfy MTB1 , MTB2 and MTSE. ∇

The next result is an obvious consequence of the previous ones.

Theorem 2.3.28 The fibring of two Hilbert calculi having implication ⇒ and
equivalence ⇔ also has implication and equivalence provided that ⇒ and ⇔ are
shared.

Proof. Use Proposition 2.3.16 and Theorems 2.3.21, 2.3.22 and 2.3.26. �

Finally we consider the metatheorem of congruence.

Definition 2.3.29 A Hilbert calculusH has the metatheorem of congruence (MTC)
if

Γ, ϕi �H ψi
Γ, ψi �H ϕi

i = 1, . . . , k

Γ, (c(ϕ1, . . . , ϕk)) �H (c(ψ1, . . . , ψk))
(MTC)

for every globally closed set of formulas Γ, constructor c of arity k > 0 and formulas
ϕ1, . . . , ϕk, ψ1, . . . , ψk. ∇

We now present a sufficient condition for a Hilbert calculus to have MTC .

Proposition 2.3.30 Any Hilbert calculus H with implication and equivalence
has MTC.

Proof. Assume that Γ, ϕi �H ψi and Γ, ψi �H ϕi for i = 1, . . . , k, where Γ is
globally closed. Since H has MTD, Γ �H (ϕi ⇒ ψi) and Γ �H (ψi ⇒ ϕi) for
i = 1, . . . , k. Since H has MTB1 , Γ �H (ϕi ⇔ ψi) for i = 1, . . . , k. Since H has
MTSE, in particular,

Γ �H ((c(ϕ1, ϕ2, . . . , ϕk))⇔ (c(ψ1, ϕ2, . . . , ϕk)))

and
Γ �H ((c(ψ1, ϕ2, . . . , ϕk))⇔ (c(ψ1, ψ2, . . . , ϕk))).

Since H has MTMP, MTD, MTB1 and MTB2 , we can prove that

Γ �H ((c(ϕ1, ϕ2, . . . , ϕk))⇔ (c(ψ1, ψ2, . . . , ϕk))).

Keeping on using Γ �H (ψi⇒ ϕi) for i > 2, at the end we get

Γ �H ((c(ϕ1, ϕ2, . . . , ϕk))⇔ (c(ψ1, ψ2, . . . , ψk))).
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Since H has MTB2 ,

Γ �H ((c(ϕ1, ϕ2, . . . , ϕk))⇒ (c(ψ1, ψ2, . . . , ψk))).

Since H has MTMP, Γ, (c(ϕ1, ϕ2, . . . , ϕk)) �H (c(ψ1, ψ2, . . . , ψk)). �

The metatheorem MTC could also have been defined without requiring Γ to be
globally closed. The reason why this requirement is considered is similar to the
one explained above for MTSE.

Example 2.3.31 The Hilbert calculi for the classical, intuitionistic and Gödel
logics presented in Example 2.3.4 and the modal logics in Example 2.3.3 all have
MTC . ∇

The metatheorem of congruence is not always preserved by fibring. Consider
the fibring of two Hilbert calculi H ′, H ′′ with the following signatures and rules:

C′
0 = {p1, p2, p3} C′

1 = {c} C′
k = ∅ for k > 1

R�
′ = ∅ Rg

′ = {〈{ξ}, c(ξ)〉}
C′′

0 = {p1, p2, p3} C′′
k = ∅ for k > 0

R�
′′ = Rg

′′ = {〈{p1, p2}, p3〉, 〈{p1, p3}, p2〉}

Both H ′ and H ′′ are congruent, but their fibring H ′∪H ′′ is not congruent. In fact,
considering

Γ = {p1}�
g
H = {cn(p1) : n ≥ 0},

from Γ, the formulas p2 and p3 are locally interderivable in H ′∪H ′′ but c(p2) and
c(p3) are not. It seems that the problem comes from the fact that H ′′ does not
have schematic rules.

However, it is possible to establish a sufficient condition for the preservation
of congruence by fibring. Since equivalence is preserved by fibring, MTC is pre-
served by fibring of Hilbert calculi having equivalence and sharing implication and
equivalence.

Theorem 2.3.32 The fibring of Hilbert calculi with implication and equivalence
has MTC provided that the implication and the equivalence connectives are shared.

Proof. Use Proposition 2.3.30 and Theorem 2.3.28. �

Contrarily to fibring, observe that, in this context, fusion has always the metathe-
orem of congruence.
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2.3.3 Interpolation

What is now generally known as Craig interpolation is a heritage of the seminal
results proved by William Craig [65] in a proof-theoretic context for first-order
logic. Several abstractions have been considered either in a proof-theoretical vein
(e.g. [44, 43]) or in (non-constructive) model-theoretical style (e.g. for modal and
positive logics as in [191, 192], for intuitionistic logic as in [102] and for hybrid
logics as in [7, 8]).

The importance of Craig interpolation for some fundamental problems of com-
plexity theory is analyzed in [213] and further developed in [214]. Interpolation
has recently acquired practical relevance in engineering applications, namely, when
formality and modularity are invoked [20], in software model-checking as in [147],
and in SAT-based methods of unbounded symbolic model-checking as in [204].

The main objective of this section is to investigate preservation of both global
and local interpolation. Hence we are going to work with careful reasoning Hilbert
calculi. In this way, we will also relate global and local interpolation. The metathe-
orem of deduction will play an essential role providing that we work with a gener-
alization of the one presented in Subsection 2.3.2.

In the previous sections, we have considered a fixed set Ξ of schema variables
(recall Remark 2.1.3). Herein, however, we may need different sets of schema
variables. Hence, from now on, we use L(C,Ξ′) to denote the language over C, as
in Definition 2.1.5, but considering the set of schema variables Ξ′.

In the sequel, we use d when we want to refer to either local or global reasoning.
We will use the notation

Γ dH,Ξ′ ϕ

to denote that there exists a derivation of ϕ from Γ in H in which only formulas
in L(C,Ξ′) occur. Moreover,

(Γ)�
d
H,Ξ′

will denote the set {ϕ ∈ L(C,Ξ′) : Γ dH,Ξ′ ϕ} for Γ ⊆ L(C,Ξ′).
For our investigation we need a generalized version of the metatheorem of de-

duction.

Definition 2.3.33 Let H be a Hilbert calculus.

(i) H has the d-metatheorem of deduction (d-MTD) if there is a finite set of
formulas Δ ⊆ L(C, {ξ1, ξ2}) such that, for every Γ ∪ {ϕ1, ϕ2} ⊆ L(C,Ξ):

if Γ, ϕ1 dH,Ξ ϕ2 then Γ dH,Ξ Δ(ϕ1, ϕ2)

where Δ(ϕ1, ϕ2) is obtained from Δ by substituting ξi by ϕi for i = 1, 2.

(ii) H has the d-metatheorem of modus ponens (d-MTMP) if there is a finite set
of formulas Δ ⊆ L(C, {ξ1, ξ2}) such that, for every Γ ∪ {ϕ1, ϕ2} ⊆ L(C,Ξ):

if Γ dH,Ξ Δ(ϕ1, ϕ2) then Γ, ϕ1 dH,Ξ ϕ2

where Δ(ϕ1, ϕ2) is obtained from Δ by substituting ξi by ϕi for i = 1, 2.
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We may refer to Δ as the base set. ∇

Example 2.3.34 For instance:

• Classical propositional logic has g-MTD, g-MTMP, �-MTD and �-MTMP
taking Δ = {(ξ1 ⇒ ξ2)}.

• Modal logics have �-MTD and �-MTMP with base set Δ = {(ξ1 ⇒ ξ2)}.
• Modal logic in general does not have g-MTD. Modal logic K4 has g-MTD

and g-MTMP taking Δ = {(((�ξ1)∧ ξ1)⇒ ξ2)}. Modal logic S4 has g-MTD
and g-MTMP taking Δ = {((�ξ1)⇒ ξ2)}.

• Similarly �Lukasiewicz logic �Ln, for each n ≥ 3, also has g-MTD and g-MTMP
Δ = {(ξn−1

1 ⇒ ξ2)} where (ξn−1
1 ⇒ ξ2) is (ξ1 ⇒ (ξn−2

1 ⇒ ξ2)). ∇

Recall from Subsection 2.3.1 the definition of the fibring H = 〈C,Rg, R�〉 of two
Hilbert calculi H ′ and H ′′ (see Remark 2.3.5). Observe that the consequence sys-
tem induced byH is not the union (in the sense of [280]) of the consequence systems
induced by H ′ and H ′′ neither for local nor for global derivation. Moreover taking
Γ′ ⊆ L(C′,Ξ) and Γ′′ ⊆ L(C′′,Ξ) in general we obtain that (Γ′)�

′d
H′,Ξ� (Γ′)�

d
H,Ξ

and (Γ′′)�
′′d

H′′,Ξ� (Γ′′)�
d
H,Ξ . Usually in the fibred Hilbert calculus we have a much

richer notion of derivation.

Remark 2.3.35 Herein, we say that a Hilbert calculus morphism h : H → H ′ is
a signature morphism h : C → C′ such that h(Rg) ⊆ Rg

′ and h(R�) ⊆ R�
′.

A signature morphism h : C → C′ can be extended to

h : L(C,Ξ) → sL(C ′,Ξ)

as expected:

• h(c) = h(c), c ∈ C0;

• h(ξ) = ξ;

• h(c)(ϕ1, . . . , ϕk) = h(c)(h(ϕ1), . . . , h(ϕk)).

We will denote h(ϕ) by h(ϕ). ∇

Example 2.3.36 We consider the fibring S4 and K4 Hilbert calculi. Let H0 be
a propositional Hilbert calculus defined as follows:

• C0
0 = {t, f};

C0
1 = {¬};

C0
2 = {⇒};

C0
k = ∅ for every k ≥ 3;
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• R�
0 consists of the following rules:

〈∅, (ξ1 ⇒ (ξ2 ⇒ ξ1))〉;
〈∅, ((ξ1 ⇒ (ξ2 ⇒ ξ3))⇒ ((ξ1 ⇒ ξ2)⇒ (ξ2 ⇒ ξ3)))〉;
〈∅, (((¬ ξ1)⇒ (¬ ξ2))⇒ (ξ2 ⇒ ξ1))〉;
〈{ξ1, (ξ1 ⇒ ξ2)}, ξ2〉;

Let H ′ be a S4 modal Hilbert calculus and H ′′ a K4 modal Hilbert calculus such
that:

• C′
0 = C′′

0 = C0
0 ;

C′
1 = C0

1 ∪ {�′} and C′′
1 = C0

1 ∪ {�′′};
C′

2 = C′′
2 = C0

2 ;

C′
k = C′′

k = ∅ for k ≥ 3;

• R�
′ is R�0 plus

〈∅, ((�′(ξ1 ⇒ ξ2))⇒ ((�′ξ1)⇒ (�′ξ2)))〉;
〈∅, ((�′ξ1)⇒ ξ1)〉;
〈∅, ((�′ξ1)⇒ (�′(�′ξ1)))〉;

• R�
′′ is R�0 plus

〈∅, ((�′′(ξ1 ⇒ ξ2))⇒ ((�′′ξ1)⇒ (�′′ξ2)))〉;
〈∅, ((�′′ξ1)⇒ (�′′(�′′ξ1)))〉;

• Rg
′ = R�

′ ∪ {〈ξ1, (�′ξ1)〉};
• Rg

′′ = R�
′′ ∪ {〈ξ1, (�′′ξ1)〉}.

Then the constrained fibring of H ′ and H ′′ sharing H0 is the Hilbert calculus
〈C,Rg , R�, 〉 with

• C0 = {t, f};
C1 = {¬,�′,�′′};
C2 = {⇒};
Ck = ∅ for k ≥ 3;

• Rg = Rg
′ ∪Rg ′′;

• R� = R�
′ ∪R�′′.

Hence H is a bimodal logic with two unary modal operators: a necessitation
operator �′ as in S4 and a necessitation operator �′′ as in K4. Thus, H has
two necessitations and two K axioms. The morphisms involved are in this case
inclusions. ∇

In the sequel, given a formula ϕ ∈ L(C,Ξ), Var(ϕ) denotes the set of all schema
variables occurring in ϕ. Similarly with respect to a set of formulas Γ ⊆ L(C,Ξ).
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Definition 2.3.37 A Hilbert calculus has the d-Craig interpolation property
(d-CIP) with respect to Ξ if:

if Γ dH,Ξ ϕ and Var(Γ) ∩Var(ϕ) �= ∅
then there is Γ′ ⊆ L(C,Var(Γ) ∩Var(ϕ)) such that Γ dH,Ξ Γ′ and Γ′ dH,Ξ ϕ

for every Γ ⊆ L(C,Ξ) and ϕ ∈ L(C,Ξ). The set Γ′ is said to be a Craig interpolant
for Γ dH,Ξ ϕ. ∇

In the definition above Γ dH,Ξ Γ′ stands for Γ dH,Ξ ϕ for every ϕ ∈ Γ′.
Again Craig interpolation can be stated in terms of finite sets.

Proposition 2.3.38 A Hilbert calculus H has d-Craig interpolation if and only
if for every Ψ ∪ {η} ⊆ L(C,Ξ) with Ψ finite and Var(Ψ) ∩ Var(η) �= ∅, there is a
finite Craig interpolant whenever Ψ dH,Ξ η.

Proof. The proof from left to right is easy.
For the other implication, assume that for every Ψ∪{η} ⊆ L(C,Ξ) with Ψ finite

and Var(Ψ) ∩ Var(η) �= ∅, there is a finite Craig interpolant whenever Ψ dH,Ξ η.
Furthermore, assume that Γ dH,Ξ ϕ and Var(Γ) ∩ Var(ϕ) �= ∅. Then, since dH,Ξ
is finitary, there is a finite Γ′ ⊆ Γ such that Γ′ dH,Ξ ϕ. We consider two cases.

(i) Var(Γ′) ∩Var(ϕ) �= ∅.
Then, by hypothesis, there is a finite Craig interpolant Φ for Γ′ dH,Ξ ϕ. Moreover,
Φ is also a d-Craig interpolant for Γ dH,Ξ ϕ.

(ii) Var(Γ′) ∩Var(ϕ) = ∅.
Let γ ∈ Γ be such that there is ξ ∈ Var(γ) ∩ Var(ϕ). Then Γ′, γ dH,Ξ ϕ with
Γ′∪{γ} finite and Var(Γ′∪{γ})∩Var(ϕ) �= ∅ and so by hypothesis there is a finite
Craig interpolant Φ for Γ′, γ dH,Ξ ϕ. Moreover Φ is also a d-Craig interpolant for
Γ dH,Ξ ϕ. �

The relevance of careful reasoning is measured by the fact that in some cases it is
also possible to relate local and global CIP. That is the case of Hilbert calculi which
share with modal and first-order logics the important property that we call careful-
reasoning-by-cases. The property states that when there is a procedure which
permits that hypotheses in global reasoning can be modified so as to transform a
global derivation into a local derivation.

Thus, in this kind of calculi it is possible to split a global derivation in two
parts: a global derivation followed by a local derivation.

Example 2.3.39 Let H be a Hilbert calculus for normal modal logic K. As an
illustration, we observe that the following global derivation of ((�ξ1) ⇒ (�ξ2))
from (ξ1 ⇒ ξ2)
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1 (ξ1 ⇒ ξ2) Hyp
2 (�(ξ1 ⇒ ξ2)) Nec 1
3 ((�(ξ1 ⇒ ξ2))⇒ ((�ξ1)⇒ (�ξ2))) K
4 ((�ξ1)⇒ (�ξ2)) MP 2,3

in H can be transformed into a local derivation of ((�ξ1) ⇒ (�ξ2)) from the
hypothesis (�(ξ1 ⇒ ξ2)), where (�(ξ1 ⇒ ξ2)) ∈ {(ξ1 ⇒ ξ2)}�g

H,Ξ .
A similar procedure can be used in first-order logic by means of universal closure.

∇

This motivates the following definition.

Definition 2.3.40 A Hilbert calculus H is said to have careful-reasoning-by-cases
with respect to Ξ if for every Γ ∪ {ϕ} ⊆ L(C,Ξ):

if Γ gH,Ξ ϕ, then there is Ψ ⊆ Γ�g
H,Ξ

such that Var(Ψ) ⊆ Var(Γ) and Ψ �H,Ξ ϕ.

∇

The situation in a Hilbert calculus having careful-reasoning-by-cases can be
visualized in Figure 2.4.

Γ
#

g

$ g
ϕ

Ψ
% �

Figure 2.4: Example of careful-reasoning-by-cases

Proposition 2.3.41 A Hilbert calculus having careful-reasoning-by-cases has global
Craig interpolation whenever it has local Craig interpolation property.

Proof. Assume that Γ gH,Ξ ϕ and Var(Γ)∩Var(ϕ) �= ∅. Then, since H has careful-
reasoning-by-cases, there is Ψ ⊆ L(C,Ξ) such that Γ gH,Ξ Ψ, Var(Ψ) ⊆ Var(Γ)
and Ψ �H,Ξ ϕ. There are two cases.

(i) Var(Ψ) ∩ Var(ϕ) �= ∅. Since H has �-Craig interpolation there is a set
Γ′ ⊆ L(C,Var(Ψ) ∩Var(ϕ)) such that Ψ �H,Ξ Γ′ and Γ′ �H,Ξ ϕ. Therefore, there
is Γ′ ⊆ L(C,Var(Ψ) ∩Var(ϕ)) such that

Ψ gH,Ξ Γ′ and Γ′ gH,Ξ ϕ
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and so, by transitivity of gH,Ξ, there is Γ′ ⊆ L(C,Var(Ψ) ∩ Var(ϕ)) such that
Γ gH,Ξ Γ′ and Γ′ gH,Ξ ϕ. Since Var(Ψ) ∩ Var(ϕ)) ⊆ Var(Γ) ∩ Var(ϕ), then there
is a set Γ′ ⊆ L(C,Var(Γ) ∩Var(ϕ)) such that

Γ gH,Ξ Γ′ and Γ′ gH,Ξ ϕ.
(ii) Var(Ψ) ∩ Var(ϕ) = ∅. Take γ ∈ Γ such that Var(γ) ∩ Var(ϕ) �= ∅. Then

Γ gH,Ξ Ψ∪ {γ}, Var(Ψ)∪Var(γ) ⊆ Var(Γ) and Ψ∪ {γ} �H,Ξ ϕ. And we can now
proceed in a similar way to case (i). �

Careful-reasoning-by-cases can be expressed in terms of finite sets as indicated
in the following result.

Proposition 2.3.42 A Hilbert calculus H has careful-reasoning-by-cases if and
only if for every Ψ ∪ {η} ⊆ L(C,Ξ) with Ψ finite such that Ψ gH,Ξ η, there is a

finite Ψ′ such that Var(Ψ′) ⊆ Var(Ψ), Ψ′ ⊆ Ψ�g
H,Ξ and Ψ′ �H,Ξ η.

Example 2.3.43 Some illustrations of Craig interpolation can be given:

• We can conclude that the modal Hilbert calculi referred to above have local
Craig interpolation.

• Since modal Hilbert calculi have careful-reasoning-by-cases, then the modal
Hilbert calculi referred to above have global Craig interpolation. ∇

In order to investigate the preservation of interpolation, we must be able to
transform derivations in the fibring into derivations in the components (the other
way around we already know how to do). For this purpose, we start by translating
formulas from a Hilbert calculus to another in the presence of a Hilbert calculus
morphism. Assume that h : H → H ′ is a Hilbert calculus morphism. Take

Ξ• = Ξ ∪ {ξc′(ϕ1,...,ϕk) : c′(ϕ1, . . . , ϕk) ∈ L(C′,Ξ), c′ ∈ C′
k \ h(Ck)}

as a new set of variables. Take Ξ′ as Ξ• \ Ξ. Each ξc′(ϕ1,...,ϕk) is a ghost of
(c′(ϕ1, . . . , ϕk)) in H and will only have an auxiliary role. The introduction
of ghosts is similar to the introduction of surrogates used in [281] for proving
preservation of properties in the fusion of modal logics sharing the propositional
connectives.

Definition 2.3.44 Let h : C → C′ be a signature morphism and let Ξ• as above.
The translation

τ : L(C′,Ξ) → L(C,Ξ•)
is a map defined inductively as follows:

• τ(ξ) = ξ for ξ ∈ Ξ;

• τ(h(c)) = c for c ∈ C0;
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• τ(c′) = ξc′ for c′ ∈ C′
0 \ h(C0);

• τ(h(c)(γ′1, . . . , γ
′
k)) = (c(τ(γ′1), . . . , τ(γ′k))) for c ∈ Ck and γ′1, . . . , γ

′
k ∈ L(C′,Ξ);

• τ(c′(γ′1, . . . , γ′k)) = ξc′(γ′
1,...,γ

′
k) for c′ ∈ C′

k \ h(Ck) and γ′1, . . . , γ′k ∈ L(C′,Ξ).

The substitution τ−1 : Ξ• → L(C′,Ξ) is defined as follows:

• τ−1(ξ) = ξ for ξ ∈ Ξ;

• τ−1(ξc′(γ′
1,...,γ

′
k)) = (c′(γ′1, . . . , γ

′
k))

for (c′(γ′1, . . . , γ
′
k)) ∈ L(C′,Ξ) and c′ ∈ C′

k \ h(Ck). ∇

The following are technical lemmas that will be needed to relate derivations in
H ′ with derivations in H .

Lemma 2.3.45 Let h : C → C′ be a signature morphism, σ′ : Ξ → L(C′,Ξ) and
σ : Ξ• → L(C,Ξ•) substitutions such that

σ(ξ) = τ(σ′(ξ))

for every ξ ∈ Ξ. Then σ(γ) = τ(σ′(h(γ))) for every γ ∈ L(C,Ξ).

Lemma 2.3.46 If h : C → C ′ is a signature morphism, then τ−1 ◦ h ◦ τ = id.

We are now ready to relate global derivations in h(H) with global derivations
in H where:

h(H) = 〈C ′, h(Rg), h(R�)〉.
Of course in H ′ we can prove more things than in h(H) since in h(H) no rules in
Rg

′ \ h(Rg) can be used.

Lemma 2.3.47 Let h : H → H ′ be a Hilbert calculus morphism. Then, for every
Γ′ ∪ {ψ′} ⊆ L(C′,Ξ),

Γ′ gh(H),Ξ ψ
′ if and only if τ(Γ′) gH,Ξ• τ(ψ′).

Proof. First, assume that Γ′ gh(H),Ξ ψ′. We prove that τ(Γ′) gH,Ξ• τ(ψ′) by
induction on the length n of a proof of ψ′ from Γ′.

Base:
a) ψ′ is obtained from an instance of the axiom 〈∅, h(ϕ)〉 in h(H) with substi-

tution σ′ : Ξ → L(C′,Ξ). Then ∅ gh(H).Ξ σ′(h(ϕ)). Let σ : Ξ• → L(C,Ξ•) be a
substitution such that

σ(ξ) = τ(σ′(ξ))

for every ξ ∈ Ξ. Hence ∅ gH,Ξ• σ(ϕ), by monotonicity τ(Γ′) gH,Ξ• σ(ϕ) and since
σ′(h(ϕ)) = ψ′ we get τ(σ′(h(ϕ)) = τ(ψ′) and so using Lemma 2.3.45 σ(ϕ) = τ(ψ′).

b) Straightforward when ψ′ is an hypothesis.
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Step: Assume that ψ′ is an instance of h(ϕ) in the proof rule 〈{δ1, . . . , δk}, ϕ〉
in H with substitution σ′ : Ξ → L(C′,Ξ). Then

Γ′ gh(H),Ξ σ
′(h(δi))

for i = 1, . . . , k and so by the induction hypothesis τ(Γ′) gH,Ξ• τ(σ′(h(δi))) for
i = 1, . . . , k. Taking substitution σ such that σ(ξ) = τ(σ′(ξ)) for every ξ ∈ Ξ
then τ(Γ′) gH,Ξ• σ(δi) for i = 1, . . . , k, hence τ(Γ′) gH,Ξ• σ(ϕ) and so τ(Γ′) gH,Ξ•

τ(ψ′).
Suppose now that τ(Γ′) gH,Ξ• τ(ψ′). Then, since Hilbert calculus morphisms

preserve derivations, h(τ(Γ′)) gh(H),Ξ• h(τ(ψ′)), so

τ−1(h(τ(Γ′))) gh(H),Ξ τ
−1(h(τ(ψ′)))

since derivations are closed for substitutions. Thus, using Lemma 2.3.46, we get
Γ′ gh(H),Ξ ψ

′. �

A similar result can be stated for local derivations. Derivations in H with
different sets of variables can also be related.

Lemma 2.3.48 Let h : H → H ′ be a Hilbert calculus morphism. Assume that Γ
is finite,

δ1 . . . δn

is a derivation of Γ dH,Ξ• ϕ and Υ′ is the set of variables in Ξ′ occurring in
the derivation. Let Υ be a set of variables in Ξ not occurring in the derivation
such that |Υ′| = |Υ| and μ a bijection from Υ′ to Υ. Consider a substitution
σ : Ξ• → L(C,Ξ•) such that:

{
σ(ξ) = ξ for ξ ∈ Ξ;
σ(υ) = μ(υ) for υ ∈ Υ′.

Then σ(Γ) dH,Ξ σ(ϕ′).

Proof. The sequence σ(δ1) . . . σ(δn) is a derivation of σ(ϕ′) from σ(Γ′) using
variables in Ξ. �

Lemma 2.3.49 Let h : H → H ′ be a Hilbert calculus morphism. Assume that Γ
is finite,

δ1, . . . , δn

is a derivation of Γ dH,Ξ ϕ and take a subset Υ of the set of variables in Ξ occurring
in the derivation. Let Υ′ be a set of variables in Ξ′ such that |Υ′| = |Υ| and μ a
bijection from Υ to Υ′. Consider a substitution σ : Ξ → L(C,Ξ•) such that:

{
σ(ξ) = ξ for ξ ∈ Ξ;
σ(υ) = μ(υ) for υ ∈ Υ.

Then σ(Γ) dH′,Ξ• σ(ϕ).
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Proof. The sequence σ(δ1) . . . σ(δn) is a derivation of σ(ϕ) from σ(Γ) using vari-
ables in Ξ•. �

Lemma 2.3.47 states the relationship between derivations in H (over Ξ ∪ Ξ′)
with (parts of) derivations in H ′ (over Ξ) using only rules in H . Lemmas 2.3.48
and 2.3.49 are needed for getting preservation of derivations from H ′ using vari-
ables in Ξ to H using variables from Ξ ∪ Ξ′ and vice-versa.

We are ready to investigate preservation of different kinds of interpolation by
fibring. In the presence of fibring we have to deal with the ghost variables for each
component Hilbert calculus as well as two translations. We start by investigating
preservation of careful-reasoning-by-cases.

Now we prove a technical lemma about preservation of careful-reasoning-by-
cases when changing the set of variables. This is the situation which occurs when
a morphism h : H → H ′ is present and we want to transfer derivations from H ′

to H .

Lemma 2.3.50 Let H be a Hilbert calculus with careful-reasoning-by-cases with
respect to Ξ and h : H → H ′ a Hilbert calculus morphism. Then H also has
careful-reasoning-by-cases with respect to Ξ•.

Proof. Assume that Γ gH,Ξ• ϕ where Γ is finite. Pick up a derivation of ϕ from
Γ. Let Υ′ be the set of variables in Ξ′ appearing in the derivation, μ a bijection
to a set Υ of variables in Ξ not occurring in that derivation and σ an assignment
as required in Lemma 2.3.48. Then, by the same lemma,

σ(Γ) gH,Ξ σ(ϕ).

Since H has careful-reasoning-by-cases with respect to Ξ, using Proposition 2.3.42,
there is a finite set Φ ⊆ L(C,Ξ) such that:

(1) Var(Φ) ⊆ Var(σ(Γ));

(2) Φ ⊆ σ(Γ)�
g
H,Ξ ;

(3) Φ �H,Ξ σ(ϕ).

Consider substitution σ−1 defined from bijection μ−1 as in Lemma 2.3.48. Then,
there is a finite set σ−1(Φ) ⊆ L(C,Ξ•) such that:

(i) Var(σ−1(Φ)) ⊆ Var(Γ);

(ii) σ−1(Φ) ⊆ Γ�g

H,Ξ• ;

(iii) σ−1(Φ) �H,Ξ• ϕ.
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In fact, (i) and (iii) follow from (1) and (3) above, respectively. In order to prove
(ii), assume that ψ ∈ Φ. Then σ(Γ) gH,Ξ ψ by (2) above, and so, by Lemma 2.3.49,
σ−1(σ(Γ)) gH,Ξ• σ−1(ψ). Thus, Γ gH,Ξ• σ−1(ψ).

From (i), (ii) and (iii) follows that H has careful-reasoning-by-cases with respect
to Ξ•. �

Before analyzing the preservation of careful-reasoning-by-cases by a morphism
we need two more lemmas.

Lemma 2.3.51 Let h : H → H ′ be a Hilbert calculus morphism and Ψ dH,Ξ• ϕ
where Ψ is finite. Let Υ ⊆ Ξ′ be the set of variables used in a derivation of ϕ from
Ψ. Choose μ and σ as in Lemma 2.3.48 and take also μ−1 and σ−1 defined from
bijection μ−1 as in the same Lemma. Then for every γ ∈ L(C,Υ), we have

σ−1(h(σ(γ))) = h(γ).

Proof. The proof follows by induction on the structure of γ. We only consider as
an illustration the case of γ ∈ Υ:

σ−1(h(σ(γ))) = σ−1(h(μ(γ))) = σ−1(μ(γ)) = μ−1(μ(γ)) = γ = h(γ).

�

We can now relate derivation in H and h(H) over the set of variables Ξ•.

Lemma 2.3.52 Let h : H → H ′ be a Hilbert calculus morphism. Then

h(Γ) dh(H),Ξ• h(ϕ) whenever Γ dH,Ξ• ϕ.

Proof. Assume that Γ dH,Ξ• ϕ. Then by Lemma 2.3.48, choosing μ and σ as
indicated there,

σ(Γ) dH,Ξ σ(ϕ)

and, since morphisms preserve derivations over variables in Ξ,

h(σ(Γ)) dh(H),Ξ h(σ(ϕ)).

Using Lemma 2.3.49, choosing μ−1 and σ−1,

σ−1(h(σ(Γ))) dh(H),Ξ• σ−1(h(σ(ϕ)))

and so, by Lemma 2.3.51, h(Γ) dh(H),Ξ• h(ϕ). �

Proposition 2.3.53 If H is a Hilbert calculus having careful-reasoning-by-cases
with respect to Ξ and h : H → H ′ is a Hilbert calculus morphism, then h(H) also
has careful-reasoning-by-cases with respect to Ξ.
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Proof. Assume that H has careful-reasoning-by-cases with respect to Ξ and
Γ′ gh(H),Ξ ψ′. Then τ(Γ′) gH,Ξ• τ(ψ′) by Proposition 2.3.47. Since, by Lemma
2.3.50, H has careful-reasoning-by-cases with respect to Ξ•, there is set Φ ⊆
L(C,Ξ•) finite and such that:

• Var(Φ) ⊆ Var(τ(Γ′));

• Φ ⊆ τ(Γ′)�
g

H,Ξ• ;

• Φ �H,Ξ• τ(ψ′).

Hence there is a finite set h(Φ) ⊆ L(C′,Ξ•) such that:

• Var(h(Φ)) ⊆ Var(h(τ(Γ′)));

• h(Φ) ⊆ h(τ(Γ′))�
g

h(H),Ξ• using Lemma 2.3.52;

• h(Φ) �h(H),Ξ• h(τ(ψ′)) using Lemma 2.3.52.

Moreover, considering the substitution τ−1 introduced in Definition 2.3.44, there
is a finite set τ−1(h(Φ)) ⊆ L(C′,Ξ) such that:

• Var(τ−1(h(Φ))) ⊆ Var(τ−1(h(τ(Γ′))));

• τ−1(h(Φ)) ⊆ τ−1(h(τ(Γ′)))�
g
h(H),Ξ , using closure for substitution;

• τ−1(h(Φ)) �h(H),Ξ τ
−1(h(τ(ψ′))), using closure for substitution.

Hence, by Lemma 2.3.46, there is a finite set τ−1(h(Φ)) ⊆ L(C′,Ξ) such that:

• Var(τ−1(h(Φ))) ⊆ Var(Γ′);

• τ−1(h(Φ)) ⊆ Γ′�g
h(H),Ξ ;

• τ−1(h(Φ)) �h(H),Ξ ψ
′.

Therefore, h(H) has careful-reasoning-by-cases with respect to Ξ. �

We want to investigate the preservation of careful-reasoning-by-cases by the
fibring. We start by setting-up the ghost variables and the translations. Let H be
the fibring of H ′ and H ′′. Then we need to work with:

• Ξ′′ = {ξc′′(ϕ1,...,ϕk) : i′′(c′′)(ϕ1, . . . , ϕk) ∈ L(C,Ξ), c′′ ∈ C′′
k };

• Ξ′ = {ξc′(ϕ1,...,ϕk) : i′(c′)(ϕ1, . . . , ϕk) ∈ L(C,Ξ), c′ ∈ C′
k};

as the ghosts of H ′′ in H ′ and of H ′ in H ′′, respectively. Let

• τ ′ : L(C,Ξ) → L(C′,Ξ ∪ Ξ′′);

• τ ′′ : L(C,Ξ) → L(C′′,Ξ ∪ Ξ′);
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be the translations and τ ′−1 and τ ′′−1 substitutions as defined in Definition 2.3.44.
Recall that i′(H ′) = 〈C, i′(Rg ′), i′(R�′), 〉 and i′′(H ′′) = 〈C, i′′(Rg ′′), i′′(R�′′), 〉 are
Hilbert calculi with the same connectives as the fibring but where only the rules
from H ′ and H ′′ can be used, respectively.

Theorem 2.3.54 Careful-reasoning-by-cases is preserved by fibring Hilbert cal-
culi.

Proof. Let H be the fibring of two Hilbert calculi H ′ and H ′′ both having careful-
reasoning-by-cases with respect to Ξ. Assume that Γ is finite and that Γ gH,Ξ ϕ.
Suppose, additionally, that there exists a global derivation of ϕ from Γ in H of
the form

ϕ1 . . . ϕk︸ ︷︷ ︸
i′′(H ′′) rules

ϕk+1 . . . ϕn︸ ︷︷ ︸
i′(H ′) rules

such that ϕ1 . . . ϕk, ϕk+1 . . . ϕn were justified by rules in i′′(H ′′) and i′(H ′), re-
spectively and Γ1 ⊆ Γ is the part of Γ used in the derivation until step k and
Γ2 ⊆ Γ is the part of Γ used from k + 1 onwards. Then

Γ1 gi′′(H′′),Ξ ϕk.

Assume also that, as a simplification, only ϕk is used as premise of a rule applied
in ϕk+1 . . . ϕn. Since H ′′ has careful-reasoning-by-cases with respect to Ξ then, by
Proposition 2.3.53, i′′(H ′′) has careful-reasoning-by-cases with respect to Ξ and
so there is a finite set Φ ⊆ L(C,Ξ) such that:

• Var(Φ) ⊆ Var(Γ1);

• Φ ⊆ Γ1
�g

H,Ξ ;

• Φ �H,Ξ ϕk.

Hence
Γ2,Φ gH,Ξ ϕ.

SinceH ′ has careful-reasoning-by-cases with respect to Ξ then, by Proposition 2.3.53,
i′(H ′) has careful-reasoning-by-cases with respect to Ξ and so there is a finite set
Ψ ⊆ L(C,Ξ) such that:

• Var(Ψ) ⊆ Var(Γ2) ∪Var(Φ);

• Ψ ⊆ (Γ2 ∪ Φ)�
g
H,Ξ ;

• Ψ �H,Ξ ϕ.

Therefore, there is a finite set Ψ ⊆ L(C,Ξ) such that:

• Var(Ψ) ⊆ Var(Γ);
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• Ψ ⊆ Γ�g
H,Ξ ;

• Ψ �H,Ξ ϕ.

Hence H has careful-reasoning-by-cases with respect to Ξ. The case where in
ϕk+1 . . . ϕn more than one element of ϕ1 . . . ϕk is used is proved in a similar way.
The same applies to the case where more than two blocks of rules from H ′′ and
H ′ are applied. �

Example 2.3.55 We provide an illustration of careful-reasoning-by-cases in the
context of modal logics. Let H be the fibring of two modal Hilbert calculi H ′ and
H ′′ that share the propositional part, in particular⇒ and ¬ but have two different
modalities �′ and �′′ (recall Example 2.3.36).

Consider the following global derivation of

{(�′′(ϕ′ ⇒ ϕ′′)), (�′(�′′ϕ′))} gH,Ξ ((�′(�′′ϕ′′)) ∨ ψ′)

(note the use of the necessitation rule Nec′) using variables in Ξ:

1 (�′′(ϕ′⇒ ϕ′′)) Hyp
2 ((�′′(ϕ′ ⇒ ϕ′′))⇒ ((�′′ϕ′)⇒ (�′′ϕ′′))) K′′

3 ((�′′ϕ′)⇒ (�′′ϕ′′)) MP 1,2
4 (�′((�′′ϕ′)⇒ (�′′ϕ′′))) Nec′ 3
5 ((�′((�′′ϕ′)⇒ (�′′ϕ′′)))⇒ ((�′(�′′ϕ′))⇒ (�′(�′′ϕ′′)))) K′

6 ((�′(�′′ϕ′))⇒ (�′(�′′ϕ′′))) MP 4,5
7 (�′(�′′ϕ′)) Hyp
8 (�′(�′′ϕ′′)) MP 6,7
9 ((�′(�′′ϕ′′)) ∨ ψ′) ∨I 8

Observe that steps 1 and 2 are justified by rules in H ′′ and that all the other
steps are justified by rules in H ′ (since the implication is shared step 3 can be seen
as an hypothesis in H ′). In step 9, we assume the usual definition of disjunction
in terms of ⇒ and ¬.

Hence, from the derivation above, we extract a global derivation in H ′ of
((�′ξ(�′′ϕ′′)) ∨ ψ′) from the set of hypotheses {(ξ(�′′ϕ′) ⇒ ξ(�′′ϕ′′)), (�′ξ(�′′ϕ′))},
using variables in Ξ but also ghost variables in Ξ′′:

1 (ξ(�′′ϕ′) ⇒ ξ(�′′ϕ′′)) Hyp
2 (�′(ξ(�′′ϕ′) ⇒ ξ(�′′ϕ′′))) Nec′ 1
3 ((�′(ξ((�′′ϕ′) ⇒ ξ(�′′ϕ′′)))⇒ ((�′ξ(�′′ϕ′))⇒ (�′ξ(�′′ϕ′′)))) K′

4 ((�′ξ(�′′ϕ′))⇒ (�′ξ(�′′ϕ′′))) MP 2,3
5 (�′ξ(�′′ϕ′)) Hyp
6 (�′ξ(�′′ϕ′′)) MP 5,4
7 ((�′ξ(�′′ϕ′′)) ∨ ψ′) ∨I 6

Using the fact that H ′ has careful-reasoning-by-cases with respect to Ξ, by
Lemma 2.3.50, it also has careful-reasoning-by-cases with respect to Ξ•, and taking

Ψ′ = {(�′(ξ(�′′ϕ′) ⇒ ξ(�′′ϕ′′))), (�′ξ(�′′ϕ′))}
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we have

Ψ′ �H′ ((�′ξ(�′′ϕ′′)) ∨ ψ′) and Ψ′ ⊆ {(ξ(�′′ϕ′) ⇒ ξ(�′′ϕ′′)), (�′ξ(�′′ϕ′))}�
g

H′ .

Hence {(�′((�′′ϕ′)⇒ (�′′ϕ′′))), (�′(�′′ϕ′))} is such that:

• {(�′((�′′ϕ′)⇒ (�′′ϕ′′))), (�′(�′′ϕ′))} �H,Ξ ((�′(�′′ϕ′′)) ∨ ψ′);

• {(�′′(ϕ′⇒ ϕ′′)), (�′(�′′ϕ′))} gH,Ξ (�′((�′′ϕ′)⇒ (�′′ϕ′′))).

This example illustrates that careful-reasoning-by-cases still holds in the bimodal
logic with the modalities �′ and �′′. ∇

The objective now is to show that Craig interpolation is preserved by fibring
under mild conditions. By using the concept of bridge we are able to provide
preservation of Craig interpolation in general, that is, for both global and local
reasoning.

Definition 2.3.56 A d-bridge to the Hilbert calculus H ′ in the fibring H of
Hilbert calculi H ′ and H ′′ sharing H0 is a pair 〈h1, h2〉 of maps from L(C,Ξ)
to L(C′,Ξ) such that

• h1(Ψ) di′(H′),Ξ h2(ϕ) whenever Ψ dH,Ξ ϕ
• var(hi(ϕ)) = var(ϕ)

• γ dH,Ξ h1(γ) and h2(δ) dH,Ξ δ for any γ and δ in L(C,Ξ)

where i′ is the morphism from H ′ to H , Ψ ⊆ L(C,Ξ) and ϕ ∈ L(C,Ξ).

We now present an example of a bridge involving intuitionistic and classical propo-
sitional Hilbert calculi.

Example 2.3.57 Consider the fibring H of the Hilbert calculus Hc for classical
logic where

• Cc0 contains ⊥c and a denumerable set of propositional symbols

• Cc2 = {→c}
and the Hilbert calculus Hi for intuitionistic logic where

• Ci0 contains ⊥i and a denumerable set of variables containing the classical
propositional symbols

• Ci2 = {∧i,∨i,→i}
sharing a Hilbert calculus H0 where C0

0 is the set of classical propositional sym-
bols and the other components are empty. Consider the map h1 from L(C,Ξ) to
L(Ci,Ξ) inductively defined as follows
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• h1(ϕ) = ϕ whenever ϕ is in Ξ

• h1(⊥c) = ⊥i
• h1(ϕ1 →c ϕ2) = (¬i¬ih1(ϕ1)) →i (¬i¬ih1(ϕ2))

• h1(ci(ϕ1, . . . , ϕn)) = ci(¬i¬ih1(ϕ1), . . . ,¬i¬ih1(ϕn)) if ci is in Cin, n ≥ 0.

Then the pair
〈h1, h2〉

where h2 is λϕ.¬i¬ih1(ϕ) constitute a bridge to Hi in H since considering hc a
map from L(C,Ξ) to L(C,Ξ) inductively defined as follows

• hc(ϕ) = ϕ whenever ϕ is either ⊥i or ⊥c
• hc(ϕ) = ¬c¬cϕ whenever ϕ is in Ξ ∪ Ci0 and is neither ⊥i nor ⊥c
• hc(ϕ1 →c ϕ2) = (¬c¬chc(ϕ1)) →c (¬c¬chc(ϕ2))

• hc(ci(ϕ1, . . . , ϕn)) = ci(¬c¬chc(ϕ1), . . . ,¬c¬chc(ϕn)) if ci is in Cin and n >
0.

It happens that

1. h1(Ψ) dii(Hi),Ξ
h2(ϕ) whenever Ψ dH,Ξ ϕ

2. h2(ϕ) �dH,Ξ hc(ϕ)

3. h1(ϕ) �dH,Ξ hc(ϕ)

4. hc(ϕ) �dH,Ξ ϕ. ∇

We now show that Craig interpolation can be preserved by constrained or uncon-
strained fibring whenever there is a bridge in the fibring.

Theorem 2.3.58 d-Craig interpolation holds in the Hilbert calculus resulting
from constrained or unconstrained fibring provided that one of the component
Hilbert calculi has d-Craig interpolation and there is a d-bridge to that Hilbert
calculus in the fibring.

Proof. Let H be the fibring of Hilbert calculi H ′ and H ′′ sharing H0. Note
that H can be the unconstrained fibring of H ′ and H ′′. Assume without loss of
generality that H ′ has d-Craig interpolation and that there is a d-bridge 〈h1, h2〉
to H ′ in H . Let Γ ⊆ L(C,Ξ) be finite, ϕ ∈ L(C,Ξ) and assume that Γ dH,Ξ ϕ
and that Var(Γ) ∩Var(ϕ) �= ∅. Then

h1(Γ) di′(H′),Ξ h2(ϕ)
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and var(h1(Γ)) ∩ var(h2(ϕ)) �= ∅ since h1 and h2 constitute a d-bridge, see Defini-
tion 2.3.56. Taking into account Lemma 2.3.47 then

τ ′(h1(Γ)) dH′,Ξ∪Ξ′′ τ ′(h2(ϕ))

and sinceH ′ has d-Craig interpolation with respect to Ξ∪Ξ′′ by Proposition 2.3.38,
there is a finite set Ψ′ ⊆ L(C′,Ξ ∪ Ξ′′) such that

• Var(Ψ′) ⊆ Var(τ ′(Γ)) ∩Var(τ ′(ϕ))

• τ ′(h1(Γ)) dH′,Ξ∪Ξ′′ Ψ′;

• Ψ′ dH′,Ξ∪Ξ′′ τ ′(h2(ϕ));

therefore

• Var(i′(Ψ′)) ⊆ Var(i′(τ ′(Γ))) ∩Var(i′(τ ′(ϕ)));

• i′(τ ′(h1(Γ))) dH,Ξ∪Ξ′′ i′(Ψ′);

• i′(Ψ′) dH,Ξ∪Ξ′′ i′(τ ′(h2(ϕ)));

and so, by Lemma 2.3.46,

• Var(τ ′−1(i′(Ψ′))) ⊆ Var(Γ) ∩Var(ϕ);

• h1(Γ) dH,Ξ τ ′−1(i′(Ψ′))

• τ ′−1(i′(Ψ′)) dH,Ξ h2(ϕ).

Henceforth τ ′−1(i′(Ψ′)) is a d-Craig interpolant for Γ dH,Ξ ϕ since Γ dH,Ξ h1(Γ)
and h2(ϕ) dH,Ξ ϕ. �

Note that in the proof of Theorem 2.3.58 it is not required the preservation of the
metatheorems of modus ponens and deduction.

Example 2.3.59 The fibring of the propositional intuitionistic Hilbert calculus
and the propositional classical Hilbert calculus sharing only the classical propo-
sitional symbols has local Craig interpolation. Indeed Theorem 2.3.58 can be
applied, see Example 2.3.57. ∇

Interpolation in the presence of deductive implication is discussed in the next
theorem. We also need the concept of deductive conjunction.

Definition 2.3.60 A Hilbert calculus H has (binary) deductive conjunction with
respect to global derivation if there is ∧ ∈ C2 such that

• (ξ1 ∧ ξ2) gH,Ξ ξi for i = 1, 2;
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• {ξ1, ξ2} gH,Ξ (ξ1 ∧ ξ2). ∇

Theorem 2.3.61 d-Theoremhood-Craig interpolation holds in the Hilbert calcu-
lus resulting from constrained or unconstrained fibring of Hilbert calculi H ′ and
H ′′ provided that:

• H ′ has d-deductive implication;

• H ′ has d-Craig interpolation;

• H ′′ has d-deductive conjunction.

• there is a d-bridge to H ′ in the fibring.

Proof. Let H be the fibring of Hilbert calculi H ′ and H ′′ sharing H0 and that one
of the component Hilbert calculi has d-Craig interpolation and there is a d-bridge
to that Hilbert calculus in the fibring.

Note that H can be the unconstrained fibring of H ′ and H ′′. Assume without
loss of generality that H ′ has d-deductive implication and that H ′′ has d-deductive
conjunction. Suppose that dH,Ξ (ϕ1 ⇒′ ϕ2) and Var(ϕ1) ∩Var(ϕ2) �= ∅. Then by
d-MTMP, ϕ1 dH,Ξ ϕ2 and Var(ϕ1)∩Var(ϕ2) �= ∅ and so by Theorem 2.3.58 there
is a finite set Ψ ⊆ L(C,Ξ) such that

Var(Ψ) ⊆ Var(ϕ1) ∩Var(ϕ2)

and
ϕ1 dH,Ξ Ψ and Ψ dH,Ξ ϕ2

The result follows by taking

(
∧′′

ψ∈Ψ
ψ)

as an interpolant and using d-MTD. �

A similar result can be obtained when changing the roles of H ′ and H ′′.

Example 2.3.62 The fibring of the propositional intuitionistic Hilbert calculus
and the propositional classical Hilbert calculus sharing only classical propositional
symbols has local theoremhood-Craig interpolation. ∇

The technique that was used to proving the preservation of interpolation can
be summarized in Figure 2.5. Let:

• Hil be the class of Hilbert calculi with global Craig interpolation;

• Hil+ be the subclass of Hil composed by Hilbert calculi that have deductive
conjunction, deductive implication and a bridge.
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H'

H' U H''

H''

Hil+ Hil+

Hil

Figure 2.5: Preservation of interpolation

If H ′, H ′′ ∈ Hil+ then the unconstrained fibring H ′ ∪ H ′′ ∈ Hil using Theo-
rem 2.3.58.

Craig interpolation is constructive in the deductive system resulting from the
unconstrained or constrained fibring of deductive systems where there is a bridge to
one of the components having also that property whenever 1) Craig interpolation
is constructive in that deductive system, and 2) it is constructive the procedure of
obtaining a deduction in the deductive system with Craig interpolation for each
deduction in the fibring.

We analyze the time complexity of the algorithm I to obtain the interpolant of
derivations in the fibring, described in the proof of Theorem 2.3.58, assuming that
1) there is an algorithm I◦ to obtain the interpolant in the component deductive
system with Craig interpolation and 2) there is an algorithm I〈h1,h2〉 that given
a deduction in the fibring and the bridge 〈h1, h2〉 returns a similar deduction in
the deductive system enjoying Craig interpolation. In order to obtain a time
complexity result it is important to consider the size (in bits) of the derivation.
For derivation ϕ1 . . . ϕk, the size is

||ϕ1 . . . ϕk|| =
∑

i=1,...,k

||ϕi||

where ||ϕi|| is the number of bits required to represent (efficiently) the formula ϕi
for i = 1, . . . , n. We denote by T ime(I◦, D) the cost in time of applying algorithm
I◦ to deduction D, and similarly for the algorithms I and I〈h1,h2〉.

Proposition 2.3.63 Let D be the fibring of deductive systems such that there is
a bridge 〈h1, h2〉 to a component deductive system D◦ with Craig interpolation.
Assume that

• T ime(I◦, D◦) ∈ O(f◦(||D◦||)) for each derivation D◦ in D◦
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• T ime(I〈h1,h2〉, D) ∈ O(f〈h1,h2〉(||D||)) for each derivation D in D
then

T ime(I,D) ∈ O(f〈h1,h2〉(||D||) + f◦(||I〈h1,h2〉(D)||))
for each derivation D of Γ D,Ξ ϕ in D.

We omit the proof of the proposition since it follows straightforwardly. Observe
that if I◦ and I〈h1,h2〉 take polynomial time so does I. Of course if, for instance,
I◦ takes exponential time and I〈h1,h2〉 takes polynomial time then I also takes, in
the worst case, exponential time.

2.4 Final remarks

In this chapter we investigated the concept of fibring in a homogeneous setting
where both component logics are presented as Hilbert calculi. The need for defining
fibring starting by detailing signatures was discussed. In particular, we stressed
that the formulas of the fibring should involve symbols from both component
logics. It was also emphasized the importance of presenting the calculi with schema
variables as an essential ingredient for being able to use rules from both logics
applied to mixed formulas.

It should be stressed that fibring of Hilbert calculi can be seen as a universal
construction in the sense that the derivations obtained from the components should
be derivations in the fibring (preservation of derivations) and, moreover, that
fibring is the “minimal” Hilbert calculus with that property. In this introductory
chapter we avoided the use of categorial concepts as much as possible. We preferred
to present the basic notions in set-theoretic terms.

The chapter could be written choosing another kind of deductive system like
for example sequent calculi, natural deduction calculi and tableau systems. For
an investigation of fibring in the context of natural deduction systems see [226]
and of tableau systems see [76, 17]. In most cases labeled systems are considered,
using possible worlds as labels (see [16, 270]). We decided to use Hilbert calculi
because they are simpler, in the sense that they do not require provisos (like for
example fresh variables in natural deduction even for propositional based logics).
In Chapter 4 we will address the issue of fibring logics presented through sequent
calculus and tableau calculus, without using possible worlds as labels.

We believe that it is worthwhile to investigate fibring of, say, sequent calculus
labeled with truth-values, taking into account some results in [203]. Also of interest
would be to obtain preservation results for cut elimination following the ideas
presented in [200].

The chapter dedicated some effort to illustrate preservation properties. Among
them, we can mention the preservation of metatheorems like the metatheorem of
the modus ponens, the metatheorem of deduction and the metatheorem of con-
gruence. These metatheorems are relevant for proving the preservation of com-
pleteness in Chapter 3.
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Hilbert calculi having careful reasoning (meaning that they support local and
global reasoning) were also discussed. Even for stating metatheorems the distinc-
tion between local and global reasoning is of utmost importance.

The chapter also dealt with Hilbert calculi that have the property that global
reasoning can be converted into local reasoning, called careful reasoning by cases.
This issue is of relevance for the preservation of local interpolation. The chapter
ends with a tour on interpolation. Preservation of global and local interpolation
is discussed. Interpolation has not any follow up in the next chapters but the so
called “ghost” technique is also used in Chapter 4 when dealing with heterogeneous
fibring.

Preservation of decidability is worthwhile to be investigated in this context.



Chapter 3

Splicing logics: Semantic
fibring

In this chapter we will concentrate on the semantic aspects of logics and their
fibring. Things may not be so easy as in the syntactic case discussed in Chapter 2,
since logics may have (usual) semantics from quite distinct nature. For instance,
knowledge is characterized by a normal modal logic, while obligation is often char-
acterized by a non-normal modal logic (see [54], Chapter 11). To achieve our goal
we adopt the algebraic viewpoint as a semantic framework. This is justified taking
into account that general algebras augmented with suitable operators to represent
connectives and modalities constitute a wide abstraction, in the tradition initiated
in [159].

Herein, we have a first glimpse of heterogeneous combination. That is, we may
have original logics with different semantic structures. However, the semantic fib-
ring mechanism assumes that the logics to be combined are presented by ordered
algebras. Hence, as a first step we have to say how the original semantic struc-
tures induce ordered algebras. Therefore, throughout this chapter, when given a
particular logic we have to say how its usual semantic structures induce algebraic
structures in this sense.

An additional step consists on putting together Hilbert calculi and interpreta-
tion systems (defined as collections of algebraic structures) thus obtaining what
we call a logic system. In this context, we can therefore consider soundness and
completeness properties.

An essential issue in combination of logics in general, and fibring in particular,
is the investigation of preservation of properties. Some steps in that direction
were given in Chapter 2, where several results on preservation of metatheorems
and interpolation were established. Herein, we study preservation of soundness
and completeness properties by fibring. In many cases, we are only able to give
sufficient conditions for preservation.

In Section 3.1, we start by introducing algebraic interpretation structures and
interpretation systems. Then we define fibring of interpretation systems. We

91
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illustrate the concepts with several examples including classical logic, modal logics
(K, S4 and B), intuitionistic logic, 3-valued Gödel and �Lukasiewicz logics. In Sec-
tion 3.2, we introduce the notions of logic system, soundness and completeness. In
Section 3.3, we discuss the preservation of soundness and completeness properties.
In Section 3.4, we establish the relationship between the present approach and the
fibring by functions. We discuss how the algebraic semantic structures represent
the point-based semantic approach to fibring: to a model and a point in the fibring
corresponds a model in each component logics, which means that to a model of
the fibring we can associate several models for each component logic. We do so
by showing that we can establish a one to one relationship between a model of
the fibring and a model in each component by assuming that the interpretation
systems are closed for unions. In Section 3.5 we present some final remarks.

This chapter capitalizes on the work developed in [237, 240, 282]. The interested
reader can also have a look at [37] and [41] in [10].

3.1 Interpretation systems

As noted above, dealing with semantic aspects of logics is also an important is-
sue in fibring, in particular, when we are interested in preservation of properties
like soundness and completeness. Semantics of fibring is more difficult since the
homogeneous scenario is clearly not common. Indeed logics tend to be presented
by different semantic structures. Therefore, the first goal is to find the adequate
semantic for the components of the fibring retaining the properties of the original
semantics. This semantic unit is an algebra. So we have an additional task con-
sisting of showing that the algebraic semantics keeps the properties of the original
semantics.

An algebra is a tuple
B = 〈B, {fi}i∈I〉

where B is a non-empty set (the carrier set), I a non-empty set and each fi is a
map (operation) fi : Bki → B for some ki ∈ N. When ki = 0, fi is said to be a
constant. Giving a signature C, an algebra B over C consists of a carrier set B
and a denotation map νk(c) : Bk → B for each c ∈ Ck and k ∈ N. We represent
such algebras as a pair

〈B, ν〉
where ν = {νk}k∈N is the indexed family of maps νk : Ck → B(Bk) (as usual, XY

denotes the set of all maps from the set Y to the set X). Among the algebras over
the signature C, we have the so called free algebra. A free algebra B over C is
an algebra over C whose carrier B is L(C) and νk(c)(ϕ1, . . . , ϕk) = c(ϕ1, . . . , ϕk).
A free algebra over C generated by a set A is the free algebra over C′ where
C′

0 = C0 ∪A and C′
k = Ck for k > 0.

In order to ensure the preservation of some properties by fibring, it is convenient
to consider enriched algebras, called interpretation structures. The underlying idea
is that the elements of the carrier sets of those algebras are truth values. In such
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case, each algebra is endowed with a partial order (ordered algebra) which reflects
derivability. Moreover, these partial orders are required to have a top element.

Definition 3.1.1 An interpretation structure over the signature C is a tuple

B = 〈B,≤, ν, 〉
where 〈B,≤, 〉 is a partial order with top  and 〈B, ν〉 is an algebra over C. ∇

The set B is the set of truth values and  is the designated value whose intended
purpose is to state when a formula is true in a structure. The relation ≤ allows the
comparison between truth values. In this chapter, we are not considering logics
where the set of designated values is not a singleton (as in the case of some finitely
many-valued logics). In Chapter 9, the reader can find details about combining
logics where there are more than one designated value.

Example 3.1.2 Recall the classical signature C presented in Example 2.1.4. Let
〈B,�,�,−, ,⊥〉 be a Boolean algebra [232], that is, an algebra where the opera-
tions �,� : B2 → B, − : B → B and the constants  , ⊥ are such that, for every
b, b1, b2 ∈ B,

• � and � are commutative and associative

• (b1 � b2) � b2 = b2 and (b1 � b2) � b2 = b2;

• � is distributive with respect to � and � is distributive with respect to �;

• −(−b) = b;

• −(b1 � b2) = (−b1) � (−b2) and −(b1 � b2) = (−b1) � (−b2);

• b �  = b and ⊥ � b = ⊥;

• b � (−b) =  and b � (−b) = ⊥.

The interpretation structure over C induced by a Boolean algebra is 〈B,≤, ν, 〉
where, for every b, b1, b2 ∈ B,

• b1 ≤ b2 if and only if b1 � b2 = b1;

• ν1(¬)(b) = −b;
• ν2(⇒)(b1, b2) = (−b1) � b2.

An interesting particular case of Boolean algebra, to be used along this book,
is the two-elements Boolean algebra

2 = 〈2,�,�,−, 1, 0〉
where 2 is the set {0, 1}. The interpretation structure over C induced by 2 as

above will be denoted by B2. ∇
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Example 3.1.3 We recast the example above, but now considering the classical
signature C presented in Example 2.1.2. That is, the unique difference with the
example above is that now C0 = P, the set of propositional symbols. Thus, in
the context of Boolean algebras, the propositional symbols are to be interpreted,
as usual, as arbitrary elements in the Boolean algebra of the given structure by
means of a valuation map V : P → B. More specifically, let 〈B,�,�,−, ,⊥〉
be a Boolean algebra. The interpretation structure over C induced by the given
Boolean algebra and a valuation V : P → B is 〈B,≤, ν, 〉, where ≤ and ν are as
in Example 3.1.2, with the following additional clause for ν:

• ν0(p) = V (p) for p ∈ P.

In the particular case of the two–elements Boolean algebra 2, the interpretation
structure over C induced by 2 and a valuation mapping V : P → B will be denoted
by BV2 . ∇

This approach to the definition of interpretation structures induced by the orig-
inal semantics will be followed below. Other examples are the following.

Example 3.1.4 Recall the intuitionistic signatureC introduced in Example 2.1.4.
Let 〈B,�,�,→, ,⊥〉 be a Heyting algebra [232], that is, an algebra where the
operations �,� : B2 → B and →: B2 → B and the constants  , ⊥ are such that,
for every b, b1, b2 ∈ B,

• � and � are commutative and associative

• (b1 � b2) � b2 = b2 and (b1 � b2) � b2 = b2;

• b1 → (b2 � b3) = (b1 → b2) � (b1 → b3);

• b1 � (b1 → b2) = b1 � b2 and (b1 → b2) � b2 = b2;

• (b1 → b1) � b2 = b2;

• b �  = b and ⊥ � b = ⊥.

The interpretation structure over C induced by a Heyting algebra is 〈B,≤, ν, 〉
where:

• b1 ≤ b2 if and only if b1 � b2 = b1;

• ν1(¬)(b) = b→ ⊥;

• ν2(∧)(b1, b2) = b1 � b2;

• ν2(∨)(b1, b2) = b1 � b2;

• ν2(⇒)(b1, b2) = b1 → b2.
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In every interpretation structure induced by a Heyting algebra,

b1 ≤ (b2 → b3) if and only if (b1 � b2) ≤ b3.

Since every Boolean algebra is also an Heyting algebra, this result also holds in
interpretation structures induced by Boolean algebras. ∇

Example 3.1.5 As it was done with classical logic, the example above can be
extended to cope with the intuitionistic signature introduced in Example 2.1.2,
that is, by setting C0 = P. Thus, the interpretation structure over C induced
by a Heyting algebra 〈B,�,�,→, ,⊥〉 and a valuation mapping V : P → B is
〈B,≤, ν, 〉, where ≤ and ν are defined as in Example 3.1.4, with the following
addendum:

• ν0(p) = V (p) for p ∈ P. ∇

Example 3.1.6 Recall the modal signature C presented in Example 2.1.4. Let
〈W,R〉 be a Kripke frame, that is, W is a non-empty set (the set of worlds) and
R ⊆ W × W (the accessibility relation). The interpretation structure over C
induced by 〈W,R〉 is 〈B,≤, ν, 〉 where, for every b, b1, b2 ∈ B,

• B is ℘W ;

• b1 ≤ b2 if and only if b1 ∩ b2 = b1;

• ν1(¬)(b) = W \ b;
• ν1(�)(b) = {w ∈W : if wRw′ then w′ ∈ b};
• ν2(⇒)(b1, b2) = (W \ b1) ∪ b2;

•  is W . ∇

Example 3.1.7 Consider now the modal signature C presented in Example 2.1.2.
We proceed as in the example above, but now considering Kripke structure instead
of Kripke frames. More precisely, let 〈W,R, V 〉 be a Kripke structure, that is,
〈W,R〉 is a Kripke frame and V : P → ℘W is a valuation mapping. The interpre-
tation structure over C induced by 〈W,R, V 〉 is defined as in Example 3.1.6, but
now including the following clause:

• ν0(p) = V (p) for p ∈ P. ∇

Example 3.1.8 Consider again the modal signatureC presented in Example 2.1.4.
Let 〈B,�,�,−, ,⊥, N〉 be a modal algebra (introduced by McColl, see [228] and
[134]), that is, 〈B,�,�,−, ,⊥〉 is a Boolean algebra andN : B → B is an operation
such that, for every b1, b2 ∈ B,
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• N( ) =  ;

• N(b1 � b2) = N(b1) �N(b2).

The interpretation structure induced by a modal algebra is 〈B,≤, ν, 〉 where, for
every b, b1, b2 ∈ B,

• b1 ≤ b2 if and only if b1 � b2 = b1;

• ν1(¬)(b) = −b;
• ν1(�)(b) = N(b);

• ν2(⇒)(b1, b2) = (−b1) � b2.

If we consider the modal signature introduced in Example 2.1.2, we must add a
valuation map V : P → B and extend the mapping ν as expected: ν0(p) = V (p)
for every p ∈ P. ∇

Other interesting examples are related to many-valued logics. Many-valued
logics are a rich source of examples in non-classical logics; the first examples were
proposed by the Polish logician Jan �Lukasiewicz in 1920 (see [184] and [27] for an
English version), with the aim of using a third truth-value to represent “possibility”
in order to overcome some philosophical difficulties posed by Aristotle in his well-
known questions about the future contingent.

Example 3.1.9 Recall that the signature for �Lukasiewicz logics is the same as
the one for classical logic. A 3-valued �Lukasiewicz algebra [137] is an algebra
〈B,⊕,!,⊥〉 where B has three elements and ⊕ : B2 → B, ! : B → B are
operations such that, for every b, b1, b2 ∈ B,

• ⊕ is commutative and associative;

• !(!b) = b;

• b⊕⊥ = b and b⊕ (!⊥) = !⊥;

• (!((!b1)⊕ b2))⊕ b2 = (!((!b2)⊕ b1))⊕ b1.

 abbreviates !⊥ and the operations ⊗, �, � and � are also defined as abbrevi-
ations:

• b1 ⊗ b2 = !(!b1 ⊕!b2);

• b1 � b2 = (!b1)⊕ b2;

• b1 � b2 = (b1 ⊗ (!b2))⊕ b2;

• b1 � b2 = (b1 ⊕ (!b2))⊗ b2.
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The typical 3-valued �Lukasiewicz algebra is as follows:

• B = {⊥, 1/2, };
• !1/2 = 1/2, ! = ⊥ and !⊥ =  ;

• 1/2⊕ 1/2 =  , b⊕ =  and b⊕⊥ = b.

Any other 3-valued �Lukasiewicz algebra is isomorphic to this one.
Suppose that we choose the classical signature introduced in Example 2.1.4. The

interpretation structure induced by a 3-valued �Lukasiewicz algebra is 〈B,≤, ν, 〉
where, for every b, b1, b2 ∈ B,

• b1 ≤ b2 if and only if b1 � b2 = b1;

• ν1(¬)(b) = !b;
• ν2(⇒)(b1, b2) = b1 � b2.

The connectives ∧ and ∨ can be defined as abbreviations. Alternatively, its deno-
tations are ν2(∧)(b1, b2) = b1 � b2 and ν2(∨)(b1, b2) = b1 � b2.

On the other hand, if we choose the classical signature introduced in Exam-
ple 2.1.2, we define the interpretation structure induced by a 3-valued �Lukasiewicz
algebra and a valuation V : P → B as above, by stipulating that ν0(p) = V (p) for
every p ∈ P.

The reader should observe that 3-valued �Lukasiewicz logic is sound and complete
with respect to the above algebraic semantics. ∇

In an attempt to understand intuitionistic logic in terms of several truth-values,
Kurt Gödel in 1932 (see [101]) proposed what now are known as the Gödel logics.
Since it was also proved in [101] that intuitionistic logic cannot be characterized
by finitely many-valued logics, Gödel logics stay as a kind of approximation to
intuitionistic logic.

Example 3.1.10 Recall that the signature for Gödel logics is the same as the one
for intuitionistic logic. A 3-valued Gödel algebra is an algebra 〈B,�,�,�,!, ,⊥〉
where B has three elements, �, �, ⊥,  are as in a Heyting algebra and �: B2 → B,
! : B → B are operations such that, for every b, b1, b2 ∈ B,

• b1 � b2 =
{  if b1 � b2 = b1
b2 otherwise;

• !b =
{  if b = ⊥
⊥ otherwise.

The typical 3-valued Gödel algebra has B = {⊥, 1/2, } and b1 � b2 =  if
b1 = b2 = 1/2, b1 = ⊥ or b2 =  and b1 � b2 = b2 otherwise. Other 3-valued
Gödel algebras are isomorphic to this one.
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Starting from the intuitionistic signature introduced in Example 2.1.4, the
interpretation structure induced by a 3-valued Gödel algebra is 〈B,≤, ν, 〉 where,
for every b, b1, b2 ∈ B,

• b1 ≤ b2 if and only if b1 � b2 = b1;

• ν1(¬)(b) = !b;

• ν2(∧)(b1, b2) = b1 � b2;

• ν2(∨)(b1, b2) = b1 � b2;

• ν2(⇒)(b1, b2) = b1 � b2.

If we now consider the intuitionistic signature introduced in Example 2.1.2,
the interpretation structure induced by a 3-valued Gödel algebra and a valuation
map V : P → B is defined as above, extending the definition of ν as expected:
ν0(p) = V (p) for every p ∈ P.

As in the previous case, it is also to be observed that 3-valued Gödel logic is
indeed sound and complete with respect to the above algebraic semantics. ∇

Semantics give a meaning to formulas: the idea is that a formula will denote a
truth-value in a particular interpretation structure. Observing the Definition 3.1.1,
it is clear that the schema variables do not have a meaning within an interpretation
structure. For this purpose we need to introduce assignments.

Definition 3.1.11 An assignment over an interpretation structure B is a map
α : Ξ → B.

Assignments play the role of the valuation maps with respect to schema vari-
ables. In fact, propositional symbols in P are interpreted by means of valuations
(see the examples above), in the same manner as schema variables are interpreted
by assignments. This lead us to the following definition.

Definition 3.1.12 Let B = 〈B,≤, ν, 〉 be an interpretation structure and α an
assignment over B. The denotation map [[·]]αB : L(C) → B is inductively defined as
follows:

• [[ξ]]αB = α(ξ);

• [[c]]αB = ν0(c) for every c ∈ C0;

• [[c(ϕ1, . . . , ϕk)]]αB = νk(c)([[ϕ1]]αB, . . . , [[ϕk]]αB) whenever c ∈ Ck, k ≥ 1 and
ϕ1, . . . , ϕk ∈ L(C). ∇
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Remark 3.1.13 Note that, using an assignment together with an interpretation
structure, all the formulas can be interpreted, even the ones without propositional
symbols in P. In particular, consider all the interpretation structures in the ex-
amples above constructed over the signatures described in Example 2.1.4. Then,
these interpretation structures can now interpret every formula of the correspond-
ing signatures with the help of assignments. The assignments are therefore used
to interpret the atomic formulas.

The semantics of formulas given above is truth-functional, by the very definition.
In other words, the denotation of a k-ary connective c, in a given structure, is a
k-ary function. Moreover, the truth-value of a formula built up from k components
using connective c depends functionally on the truth-values of these components
(using that function). From a technical point of view, the denotation mapping
[[·]]αB : L(C) → B is an homomorphism of algebras over C. An homomorphism,
between two algebras over C, h : B → B′ is a map h : B → B′ such that:

• h(ν0(c)) = ν′0(c);

• h(νk(c)(b1, . . . , bk)) = ν′k(c)(h(b1), . . . , h(bk)).

However, there are several logics that do not admit a truth-functional treatment
as, for instance, the paraconsistent logic C1 (see Example 2.2.9). In Chapter 5 we
propose a suitable semantic approach for non-truth-functional logics and their
fibring. ∇

Now we give some examples of denotations of formulas.

Example 3.1.14 Recall Example 3.1.4. For every n ∈ N, let n≥ = {i ∈ N : n ≤ i}
and note that 0≥ = N. Consider the Heyting algebra 〈B,∩,∪,→,N, ∅〉 where
B = {∅} ∪ {n≥ : n ∈ N} and b1 → b2 = N if b1 ⊆ b2 and b1 → b2 = b2 otherwise.
Let B = 〈B, ν,≤,N〉 be the interpretation structure induced by the Heyting algebra
above, and consider the assignment α : Ξ → B such that α(ξ1) = 4≥. Then

• [[¬ξ1]]αB = ∅;
• [[(¬(¬ξ1))⇒ ξ1]]αB = 4≥.

On the other hand, for every assignment α over B,

• [[ξ1 ⇒ (ξ2 ⇒ ξ1)]]αB = N;

• [[ξ1 ⇒ (¬(¬ξ1))]]αB = N. ∇

Example 3.1.15 Recall Example 3.1.6. The Kripke frame 〈W,R〉, where

• W = {w1, w2};
• w1Rw2 and w2Rw2,
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induces the interpretation structure B = 〈B, ν,≤,W 〉 where

B = {∅, {w1}, {w2},W}.

Consider the assignment α : Ξ → B such that α(ξ1) = {w1}. Then

• [[�ξ1]]αB = ∅;

• [[ξ1 ⇒ (�ξ1)]]αB = {w2}.

On the other hand, for every interpretation structure B induced by a Kripke
frame 〈W,R〉 and every assignment α over B,

• [[(¬ξ1)⇒ (ξ1 ⇒ ξ2)]]αB = W ;

• [[(�(ξ1 ⇒ ξ2))⇒ ((�ξ1)⇒ (�ξ2))]]αB = W . ∇

Several interpretation structures can be defined for each signature C. Interpre-
tation systems include a signature plus a class of interpretation structures for that
signature. In most of the cases not all interpretation structures are relevant.

Definition 3.1.16 An interpretation system is a pair

I = 〈C,A〉

where C is a signature and A is a class of interpretation structures over C. ∇

We give examples of interpretation systems for several logics which will be useful
for providing illustrations for the fibring.

Example 3.1.17 An interpretation system for classical propositional logic CPL
can be defined as follows:

ICPL = 〈C,ACPL〉
where C is the classical signature presented in Example 2.1.4 and ACPL is the
class of all the interpretation structures B over C induced by a Boolean algebra
(recall Example 3.1.2).

By a well-known result (see, for instance, [227]), it is enough to consider the
Boolean algebra 2. Thus, another interpretation system for CPL is

I2 = 〈C, {B2}〉

where B2 is the structure induced by the Boolean algebra 2. The assignments
play the role of the valuation maps. ∇
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Example 3.1.18 It is possible to recast the example above but now including the
set P in the signature. Thus, define the interpretation system

ÎCPL = 〈C, ÂCPL〉
for classical propositional logic, where C is the classical signature presented in
Example 2.1.2, and ÂCPL is the class of all the interpretation structures B over
C induced by a Boolean algebra and a valuation (recall Example 3.1.3).

In particular, let BV2 be the structure induced by the Boolean algebra 2 and a
valuation V : P → 2. Then we obtain another interpretation system for CPL:

Î2 = 〈C, {BV2 : V ∈ 2P}〉.
∇

Example 3.1.19 An interpretation system I = 〈C,A〉 for intuitionistic logic can
be defined as follows: C is the intuitionistic signature presented in Example 2.1.4,
andA is the class of all the interpretation structures B over C induced by a Heyting
algebra (recall Example 3.1.4).

Another possibility is to consider Î = 〈Ĉ, Â〉, where Ĉ is the intuitionistic sig-
nature presented in Example 2.1.2, and Â is the class of all the interpretation
structures B over Ĉ induced by a Heyting algebra and a valuation (recall Exam-
ple 3.1.5). ∇

Example 3.1.20 An interpretation system IS4 for modal logic S4 includes the
modal signature presented in Example 2.1.4 and the class AS4 of all the interpre-
tation structures induced by Kripke frames whose accessibility relation is reflexive
and transitive (recall Example 3.1.6).

An interpretation system IB for modal logic B is obtained by considering the
modal signature as above and the class AB of the all interpretation structures
induced by Kripke frames whose accessibility relation is symmetric.

An interpretation system IK for modal logic K is obtained as above but consid-
ering now the class AK of all interpretation structures induced by Kripke frames.

If we consider now the modal signature presented in Example 2.1.2, the cor-
responding interpretation systems ÎS4, ÎB and ÎK are obtained, but now using
Kripke structures (recall Example 3.1.7).

We get another interpretation system for modal logic K when we consider the
class of all interpretation structures induced by a modal algebra, as described in
Example 3.1.8. ∇

Example 3.1.21 A (3-valued) Gödel interpretation system over the correspond-
ing signature introduced in Example 2.1.4 is obtained by taking the class of all
interpretation structures induced by 3-valued Gödel algebras, as described in Ex-
ample 3.1.10. A (3-valued) �Lukasiewicz interpretation system over the correspond-
ing signature introduced in Example 2.1.4 is obtained by considering the class of
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all interpretation structures induced by 3-valued �Lukasiewicz algebra, as described
in Example 3.1.9.

If we include the set P of propositional symbols, we must consider the interpre-
tation structures induced by the corresponding algebras plus a valuation mapping.

∇

Given an interpretation system, it is important to know when a formula is a
semantic consequence of a set of formulas.

Definition 3.1.22 Let I = 〈C,A〉 be an interpretation system. We say that a
formula ϕ ∈ L(C) is entailed by a set of formulas Γ ⊆ L(C) within I, written

Γ �I ϕ

if, for every interpretation structure B in A and assignment α over B, if [[γ]]αB =  
for each γ ∈ Γ then [[ϕ]]αB =  . ∇

When ∅ �I ϕ we say that ϕ is valid in I and just write �I ϕ. We denote by Γ�I

the set of formulas that are entailed by Γ in I.
An interpretation system I = 〈C,A〉 induces the closure operator �I and the

consequence system C(I) = 〈C,�I〉. Before presenting the proof of this result, we
present an auxiliary lemma.

Lemma 3.1.23 Let C be a signature and B an interpretation structure over C.
For every ϕ ∈ L(C), every assignment α over B and every substitution σ on C,
we have

[[σ(ϕ)]]αB = [[ϕ]]α
′

B
where α′ is the assignment over B such that α′(ξ) = [[σ(ξ)]]αB for each ξ ∈ Ξ.

Proof. The result is easily established using induction. �

Proposition 3.1.24 An interpretation system I = 〈C,A〉 induces a structural
consequence system C(I) = 〈C,�I〉.
Proof. Let Γ,Γ1,Γ2 ⊆ L(C).

Extensiveness: Clearly Γ �I γ for every γ ∈ Γ and therefore Γ ⊆ Γ�I .
Monotonicity: Assume Γ1 ⊆ Γ2 and Γ1 �I ϕ. Given an interpretation structure

B in A and an assignment α over B such that [[γ]]αB =  for each γ ∈ Γ2, then also
[[γ]]αB =  for each γ ∈ Γ1 and therefore [[ϕ]]αB =  . Hence, Γ2 �I ϕ.

Idempotence: Assume Γ�I �I ϕ. Given an interpretation structure B in A and
an assignment α over B such that [[γ]]αB =  for each γ ∈ Γ, then [[γ′]]αB =  for
each γ′ ∈ Γ�I and therefore [[ϕ]]αB =  . Hence, Γ �I ϕ.
Structurality: Assume Γ �I ϕ. Let B be an interpretation in A and α an assign-
ment over B such that [[σ(γ)]]αB =  for each γ ∈ Γ. Thus, using Lemma 3.1.23,
[[γ]]α

′
B =  for each γ ∈ Γ, where α′ is the assignment on B such that σ′(ξ) =
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[[σ(ξ)]]αB for each ξ ∈ Ξ. Since Γ �I ϕ, [[ϕ]]α
′

B =  and, using again Lemma 3.1.23,
[[σ(ϕ)]]αB . Hence, σ(Γ) �I σ(ϕ). �

Our purpose is to define fibring of interpretation systems. Before that, we need
to introduce the notion of reduct of an interpretation structure.

Definition 3.1.25 Let C, C′ be signatures such that C ≤ C′ and consider the
interpretation structure B′ = 〈B′,≤′, ν′, ′〉 over C′. The reduct of B′ to C is the
interpretation structure

B′|C = 〈B′,≤′, ν′|C , ′〉
over C such that ν′|Ck(c) = ν′k(c) for every c ∈ Ck. ∇

The reduct has the same truth-values as B′ and the denotations of constructors
of C in the reduct are the same as in B′. Hence, a reduct is the restriction of an
interpretation structure to a smaller signature. For every formula ϕ in L(C) and
each assignment α, the denotations of ϕ in the reduct and in B′ are equal.

Lemma 3.1.26 Let C, C′ be signatures such that C ≤ C′, B′ an interpretation
structure over C′ and α′ an assignment over B′. Then

[[ϕ]]α
′

B′|C = [[ϕ]]α
′

B′

for every ϕ ∈ L(C).

Proof. The result is easily established using induction. �

We now introduce the notion of fibring of interpretation systems.

Definition 3.1.27 The fibring of two interpretation systems I ′ = 〈C′,A′〉 and
I ′′ = 〈C′′,A′′〉 is the interpretation system

I ′∪I ′′ = 〈C′ ∪C′′,A〉
where A is the class of all interpretation structures B over C′ ∪ C′′ such that
B|C′ ∈ A′ and B|C′′ ∈ A′′. ∇

Remark 3.1.28 The last definition deserves some comments. Let

I ′∪I ′′ = 〈C′ ∪C′′,A〉
be the fibring of the interpretation systems I ′ = 〈C′,A′〉 and I ′′ = 〈C′′,A′′〉.

Firstly, note that an interpretation structure in A should have the same truth-
values and the same order relation as an interpretation structure in each of the
components.

Moreover, each structure B in A can be seen as encompassing two structures:
one belonging to A′ (the structure B|C′) and the other belonging to A′′ (the
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structure B|C′′). We say that B|C′ is the slice of B in A′, whereas B|C′′ is the slice
of B in A′′. Clearly, not every structure in A′ will necessarily appear as a slice
B|C′ of a structure B in A: just some structures in A′ will persist in A under the
form of a slice. The same arguments are valid for A′′. ∇

Observe that fibring extends fusion (see Section 1.2 of Chapter 1) at the semantic
level for logics that are not only modal logics presented by Kripke structures.

Again we can define unconstrained and constrained fibring as for Hilbert calculi.
Observe that if a constructor c of arity k is in both signatures C′ and C′′, then
νk(c)(b1, . . . , bk) = ν′k(c)(b1, . . . , bk) = ν′′k (c)(b1, . . . , bk). That is, both structures
should agree on the denotation of c.

We now show that fibring of interpretation systems preserves entailment, that is,
semantic consequences holding in the components also hold in the fibring. We start
by introducing a weakness relation between interpretation systems and proving
that if an interpretation system I is weaker than other interpretation system I ′

then every entailment in I is also an entailment in I ′.

Definition 3.1.29 The interpretation system I = 〈C,A〉 is weaker than interpre-
tation system I ′ = 〈C′,A′〉, written

I ≤ I ′

if C ≤ C′ and B′|C ∈ A for every B′ ∈ A′. ∇

Proposition 3.1.30 Let I = 〈C,A〉 and I ′ = 〈C′,A′〉 be interpretation systems
such that I ≤ I ′. For every Γ ⊆ L(C) and ϕ ∈ L(C), if Γ �I ϕ then Γ �I′ ϕ.

Proof. Consider B′ in A′ and an assignment α′ over B′ such that [[γ]]α
′

B′ =  
for each γ ∈ Γ. Then B′|C ∈ A and, by Lemma 3.1.26, [[γ]]α

′
B′|C =  for each

γ ∈ Γ. Since Γ �I ϕ, [[ϕ]]α
′

B′|C =  and, again by Lemma 3.1.26, [[ϕ]]α
′

B′ =  . Hence,
Γ �I′ ϕ. �

The following result states that the original interpretation systems are weaker
than the fibring. Therefore everything that is entailed by the components is also
entailed by the fibring.

Proposition 3.1.31 For every interpretation systems I ′ and I ′′, the following
relationships hold: I ′ ≤ I ′∪I ′′ and I ′′ ≤ I ′∪I ′′.
Proof. Immediate consequence of Definitions 3.1.27 and 3.1.29. �

Now we will see that the fibring of interpretation systems I ′ and I ′′ is minimal
in the class of all interpretation systems that are stronger than I ′ and I ′′.

Proposition 3.1.32 For every interpretation systems I, I ′ e I ′′, if I ′ ≤ I and
I ′′ ≤ I then I ′∪I ′′ ≤ I.
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Proof. Let I ′ = 〈C′,A′〉, I ′′ = 〈C′′,A′′〉, I ′∪I ′′ = 〈C′∪C′′,A〉 and I = 〈CI ,AI〉.
C′∪C′′ ≤ CI since C′ ≤ CI and C′′ ≤ CI . Given B ∈ AI , B|C′∪C′′ is an interpre-
tation structure over C′∪C′′. Moreover, (B|C′∪C′′)|C′ = B|C′ and (B|C′∪C′′)|C′′ =
B|C′′ . Since B|C′ ∈ A′ and B|C′′ ∈ A′′, B|C′∪C′′ ∈ A. �

From the two results above, the fibring I ′∪I ′′ is the supremum of I ′ and I ′′

with respect to the partial order of weakness.
We synthesize the properties of fibring of interpretation systems as follows:

• homogeneous combination mechanism at the semantic level: both original
logics are presented by ordered algebras;

• algorithmic combination of logics at the semantic level: given the classes of
ordered algebras for the original logics, we know how to define the class of
ordered algebras for the fibring, but in many cases the given logics have to
be pre-processed (that is, the ordered algebras have to be extracted from
their given semantics);

• We will see that fibring of interpretation systems is also canonical.

Observe that fusion of logics is a particular case of fibring where the ordered
algebras are powerset algebras induced by the Kripke structures. Hence the orig-
inal normal modal logics in fusion induce two interpretation systems. The fibring
of these interpretation systems corresponds to their fusion. Therefore, fusion of
modal logics is also a universal construction when seen as a particular case of
fibring.

Remark 3.1.33 Observe that fusion is also a universal construction even when
we consider the original semantics. A Kripke interpretation system 〈C,M〉 is a
pair such that C is a modal signature with ¬ and ⇒ (shared connectives) and a
finite number of � connectives and M is a class of Kripke structures of the form
〈W, �R, V 〉 (where �R is a vector of relations one for each connective � in C) .

A morphism h : 〈C,M〉 → 〈C′,M ′〉 between Kripke interpretation structures
is a pair 〈h, h〉 where h : C → C′ is a signature morphism and h : M ′ → M is a
map such that h(〈W ′, �R′, V ′〉) = 〈W ′, �R′|C , V ′〉 where �R′|C is a sub-vector of �R′
restricted to the � connectives in C.

Kripke interpretation structures and their morphisms constitute a category
(observe that the morphisms we consider here are somehow more restricted than
p-morphisms, see [24]). Fusion of modal logics is a pushout in this category. ∇

Example 3.1.34 Consider the modal signature C presented in Example 2.1.4
and the interpretation systems IS4 = 〈C,AS4〉 and IB = 〈C,AB〉, corresponding
respectively to modal logics S4 and B (recall Example 3.1.20). Their fibring,
sharing every constructor including the modality, is the interpretation system
IS4∪IB = 〈C,A〉 where A is the class of all interpretations structures B over
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C such that B|C′ is in AS4 and B|C′′ is in AB. In other words, A is the class of all
interpretation structures induced by Kripke frames whose accessibility relation is
reflexive, transitive and symmetric. Thus, the accessibility relations of the Kripke
frames of the fibring are equivalence relations, and so the resulting interpretation
system corresponds to modal logic S5. The same result is obtained if we consider
Kripke structures for S4 and B. ∇

Example 3.1.35 Consider the interpretation systems IS4 = 〈C′,AS4〉 and IB =
〈C′′,AB〉, where C′

1 = {¬′,�′}, C′
2 = {⇒′}, C′′

1 = {¬′′,�′′}, C′′
2 = {⇒′′}, corre-

sponding respectively to modal logics S4 and B (recall Example 3.1.20). Their
fibring, sharing the propositional constructors but not the modality, is the inter-
pretation system IS4∪IB = 〈C,A〉 such that:

• C1 = {¬,�′,�′′} and C2 = {⇒};
• A is the class of all interpretations structures B over C such that B|C′ is in
AS4 and B|C′′ is in AB.

In other words, A is the class of all interpretation structures induced by bi-modal
frames with a reflexive and transitive relation R′ and a symmetric relation R′′.
Thus, we get the fusion of the two modal logics [113]. ∇

Example 3.1.36 Consider interpretation systems similar to the ones presented
in Examples 3.1.17 and 3.1.19 for classical and intuitionistic logics, but where the
signatures, respectively C′ and C′′, include different connectives for negation and
implication, for instance ¬′ and⇒′ in C′ and ¬′′ and⇒′′ in C′′. Let I be the inter-
pretation system resulting from their fibring. So, for each interpretation structure
B in I, B|C′ is a Boolean algebra and B|C′′ is a Heyting algebra. As the carrier
set of both reducts coincide, B|C′′ will also be a Boolean algebra and so I is an
interpretation system for classical logic presented with a different signature. The
intuitionistic part of I is then lost through the fibring or, using the terminology of
Remark 3.1.28, the only Heyting algebras that persist in I are the Boolean alge-
bras. This phenomenon of fibring collapsing was firstly described in [82] and [106].
Chapter 8 introduces the modulated fibring as a solution to this collapsing phe-
nomenon. ∇

Remark 3.1.37 Fibring of interpretation systems can be characterized as an uni-
versal construction in the category of interpretation systems.

Recall again the signature morphisms presented in Remark 2.1.10. An interpre-
tation system morphism

h : 〈C,A〉 → 〈C ′,A′〉
is a signature morphism h : C → C′ such that, for every interpretation structure
B′ = 〈B′,≤′, ν′, ′〉 in A′, the reduct B′|h = 〈B′,≤′, ν′ ◦ h, ′〉 is an interpretation
structure in A.
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Interpretation systems and their morphisms, with composition and identities as
in Sig, constitute the category Int. The category Int is (small) cocomplete.

The fibring I ′ ∪ I ′′ of I ′ = 〈C′,A′〉 and I ′′ = 〈C′′,A′′〉 is a pushout of the
morphisms

h′ : 〈C′ ∩ C′′, IntS(C′ ∩ C′′)〉 → 〈C′,A′〉
and

h′′ : 〈C′ ∩ C′′, IntS(C′ ∩C′′)〉 → 〈C′′,A′′〉
where h′ and h′′ are the signature inclusion morphisms and IntS(C′ ∩ C′′) is the
class of all the interpretations structures over C′ ∩C′′ (see Figure 3.1).

〈C′ ∩C′′, IntS(C′ ∩ C′′)〉

 �

h′

�����
���

���
���

��
� 

h′′

��&&
&&&

&&&
&&&

&&&

I ′ � �

g′
��'''''''''''''''' I ′′� �

g′′
������������������

I ′ ∪ I ′′

Figure 3.1: Fibring of interpretation systems as a pushout in Int

The particular case of unconstrained fibring just corresponds to the coproduct
of I ′ and I ′′. ∇

Example 3.1.38 Recall the interpretation systems

ICPL = 〈CCPL,ACPL〉
and

IS4 = 〈CS4,AS4〉
for classical logic and modal logic S4 introduced in Examples 3.1.17 and 3.1.20.

The constrained fibring of ICPL and IS4 (see Figure 3.2) is the interpretation
system

ICPL∪IS4 = 〈CCPL∪CS4,A〉
where A is the class of interpretation structures B over CCPL∪CS4 such that
B|CCPL ∈ ACPL and B|CS4 ∈ AS4 for every B ∈ A.

Note that CCPL ≤ CS4, thus CCPL ∩ CS4 = CCPL and CCPL∪CS4 = CS4,
thus A is the class AS4 of all the interpretation structures induced by Kripke
frames whose accessibility relation is reflexive and transitive.

It is worth noting that only some structures in ACPL persist in A as a slice of
a structure (see Remark 3.1.28). The Boolean algebras that persist in A as slices
are just the Boolean algebras of the form ℘W for a non-empty set W . ∇
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〈{¬,⇒}, IntS({¬,⇒})〉
� �

��((((((((((((( � �

��)))
))))

))))
)))

〈{¬,⇒},ACPL〉
� �

����������������
〈{¬,⇒,�},AS4〉
� �

����������������

〈{¬,⇒,�},AS4〉

Figure 3.2: Fibring of ICPL and IS4

Example 3.1.39 Consider now the interpretation system

I2 = 〈CCPL, {B2}〉

for classical logic introduced in Examples 3.1.17 and let IS4 be again the interpre-
tation system 〈CS4,AS4〉 for modal logic S4.

Reasoning as in Example 3.1.38 in the constrained fibring I2∪IS4, the class of
structures is just a four-elements set

A = {B1
2,B2

2,B3
2,B4

2}.

Each structure Bi2 is obtained from B2 just by adding a reflexive and transitive
accessibility relation over 2 (observe that there are only four such relations over
2). Thus, the structures Bi2 (for i = 1, . . . , 4) are the only structures of AS4 that
persist in the fibring. The corresponding diagram in the category Int is displayed
in Figure 3.3. ∇

Example 3.1.40 Consider again the Examples 3.1.38 and 3.1.39, but now includ-
ing the propositional symbols P (as constants) in the signatures. There are two
possibilities: P can be shared or not. In order to keep the things simple, assume
that P is shared (the results will not change essentially). Thus, the constrained
fibring ÎCPL∪ÎS4 while sharing the propositional symbols of ÎCPL is displayed in
Figure 3.4 where ÂCPL and ÂS4 are as in Examples 3.1.18 and 3.1.20, respectively.

On the other hand, the constrained fibring Î2∪ÎS4 while sharing the propo-
sitional symbols of Î2 can be described by the diagram in Figure 3.5. Observe
that

Â2 = {BV2 : V ∈ 2P}
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〈{¬,⇒}, IntS({¬,⇒})〉
� �

��((((((((((((( � �

��)))
))))

)))))
))

〈{¬,⇒}, {B2}〉
� �

��)))
))))))

)))))
〈{¬,⇒,�},AS4〉
� �

����������������

〈{¬,⇒,�},A}〉

Figure 3.3: Fibring of I2 and IS4

〈P ∪ {¬,⇒}, IntS(P ∪ {¬,⇒})〉
� �

����������������� � �

�����������������

〈P ∪ {¬,⇒}, ÂCPL〉
� �

�����������������
〈P ∪ {¬,⇒,�}, ÂS4〉

� �

�����������������

〈P ∪ {¬,⇒,�}, ÂS4〉

Figure 3.4: Fibring of ÎCPL and ÎS4

where BV2 is the interpretation structure induced by the Boolean algebra 2 and a
valuation V : P → 2, and

A =
⋃

V ∈2P

{BV,12 ,BV,22 ,BV,32 ,BV,42 },

where BV,i2 is obtained from BV2 just by adding a reflexive and transitive accessi-
bility relation over 2.

Thus, the unique interpretation structures of ÂS4 that persist in the fibring are
those of the form BV,i2 . ∇
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〈P ∪ {¬,⇒}, IntS(P ∪ {¬,⇒})〉
� �

����������������� � �

�����������������

〈P ∪ {¬,⇒}, Â2〉
� �

�����������������
〈P ∪ {¬,⇒,�}, ÂS4〉

� �

�����������������

〈P ∪ {¬,⇒,�},A〉

Figure 3.5: Fibring of Î2 and ÎS4

3.2 Logic systems

Logic systems put together deductive and semantic aspects. They provide the
right setting to present the notions of soundness and completeness. We start with
the simple case where no distinction is made between local and global rules.

Definition 3.2.1 A logic system is a tuple

L = 〈C,A, R〉

where 〈C,A〉 is an interpretation system and 〈C,R〉 is a Hilbert calculus. ∇

Given the logic system L = 〈C,A, R〉, we denote by H(L) the Hilbert calculus
〈C,R〉 and we denote by I(L) the interpretation system 〈C,A〉. We write Γ L ϕ
whenever Γ H(L) ϕ and write Γ �L ϕ whenever Γ �I(L) ϕ.

Example 3.2.2 A logic system corresponding to classical logic is 〈C,A, R〉 where
〈C,R〉 is the Hilbert calculus presented in Example 2.2.3 and 〈C,A〉 is the inter-
pretation system for classical logic presented in Example 3.1.17.

Similarly, from the Hilbert calculus presented in Example 2.2.6 and the inter-
pretation system for intuitionistic logic presented in Example 3.1.19, we get a logic
system corresponding to intuitionistic logic. ∇

Example 3.2.3 A logic system 〈C,A, R〉, corresponding to normal modal logic
K, is such that 〈C,R〉 is the Hilbert calculus presented in Example 2.2.4 and 〈C,A〉
is the interpretation system for K induced by Kripke structures as presented in
Example 3.1.20. From the corresponding Hilbert calculi and interpretation systems
presented above, we get logic systems for modal logics S4 and B in a similar way. ∇
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The notion of soundness relates derivations to entailments: in a sound logic
system, if we derive ϕ from Γ then Γ entails ϕ. Conversely, the notion of com-
pleteness relates entailments to derivations: in a complete logic system, if Γ entails
ϕ then we can derive ϕ from Γ.

Definition 3.2.4 A logic system L = 〈C,A, R〉 is said to be

• sound if Γ �L ϕ whenever Γ L ϕ, for every Γ ⊆ L(C) and ϕ ∈ L(C);

• complete if Γ L ϕ whenever Γ �L ϕ, for every Γ ⊆ L(C) and ϕ ∈ L(C). ∇

As expected, the fibring of two logic systems corresponds to the simultaneous
fibring of their interpretation systems and their Hilbert calculi.

Definition 3.2.5 Let L′ = 〈C′,A′, R′〉 and L′′ = 〈C′′,A′′, R′′〉 be logic systems.
The fibring of L′ and L′′ is the logic system

L′∪L′′ = 〈C,A, R〉

where C = C′∪C′′, A is the class of all interpretation structures B over C′ ∪ C′′

such that B|C′ ∈ A′ and B|C′′ ∈ A′′, and R = R′ ∪R′′. ∇

Example 3.2.6 Recall the Hilbert calculi

HS4 = 〈C,RS4〉 and HB = 〈C,RB〉

for modal logics S4 and B, respectively, presented in Example 2.2.14. Recall also
the respective interpretation systems

IS4 = 〈C,AS4〉 and IB = 〈C,AB〉

introduced in Example 3.1.20. Let

LS4 = 〈C,AS4, RS4〉 and LB = 〈C,AB, RB〉

be the resulting logic systems.
The fibring LS4∪LB of LS4 and LB is the logic system

〈C,AS5, RS5〉

where AS5 is the class of structures for modal logic S5 as described in Exam-
ple 3.1.20, and RS5 the set of inference rules of the Hilbert calculus for S5 as
mentioned in Example 2.2.14. ∇
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Figure 3.6: Fibring of logic systems as a pushout in Log

Remark 3.2.7 As expected, fibring of logic systems can be characterized as an
universal construction in the category of logic systems.

A logic system morphism h : 〈C,A, R〉 → 〈C ′,A′, R′〉 is a signature morphism
h : C → C′ such that h : 〈C,A〉 → 〈C′,A′〉 is a morphism in the category Int
and h : 〈C,R〉 → 〈C ′, R′〉 is a morphism in the category Hil. Logic systems and
their morphisms, with composition and identities as in Sig, constitute the category
Log. The category Log is (small) cocomplete.

The fibring of the logic systems L′ = 〈C′,A′, R′〉 and L′′ = 〈C′′,A′′, R′′〉 is a
pushout of the morphisms

h′ : 〈C′ ∩ C′′, IntS(C′ ∩ C′′), ∅〉 → 〈C′,A′, R′〉
and

h′′ : 〈C′ ∩C′′, IntS(C′ ∩ C′′), ∅〉 → 〈C′′,A′′, R′′〉
where h′ and h′′ are the signature inclusion morphisms and IntS(C′ ∩ C′′) is the
class of all interpretations structures over C′ ∩ C′′ (see Figure 3.6).

The particular case of unconstrained fibring just corresponds to the coproduct
of L′ and L′′.

Soundness and completeness of logic systems correspond to the existence of
suitable consequence system morphisms. The logic system L = 〈C,A, R〉 is sound
if the identity signature morphism idC : C → C is a consequence system morphism
idC : 〈C, �H(L)〉 → 〈C, �I(L)〉. The logic system is complete if idC is a consequence
system morphism idC : 〈C, �I(L)〉 → 〈C, �H(L)〉. ∇

Example 3.2.8 The fibring defined in Example 3.2.6 can be described in Fig-
ure 3.7 where C = {¬,⇒,�}.

The logic system LS5 = 〈C,AS5, RS5〉 is a logic system for modal logic S5 and
then

LS5 = LS4∪LB.

This shows that modal logic S5 is obtained by splicing S4 and B (see Figure 3.8
and recall Chapter 1). ∇
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Figure 3.7: Fibring of LS4 and LB
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Figure 3.8: Splicing of S4 and B

3.3 Preservation results

Herein, we continue the study initiated in Section 2.3 of Chapter 2 of transference
results from the component logics to the logic resulting from their fibring. In this
section we study the preservation of soundness and completeness properties.

3.3.1 Global and local entailment

Recall the distinction between global and local derivations discussed in Subsec-
tion 2.3.1 of Chapter 2. We now discuss the semantic counterpart of these notions:
global and local entailments.

The distinction between these two kinds of entailment is easily motivated using
Kripke semantics. We say that the set of formulas Γ globally entails a formula
ϕ if, for every Kripke structure, whenever all the formulas in Γ are true in all
worlds so is ϕ. This contrasts with local entailment, where Γ locally entails ϕ if,
for each world of each Kripke structure, whenever all the formulas in Γ are true in
the given world so is ϕ. As in the syntactic case, local entailment always implies
global entailment, but the converse does not hold. For instance, ϕ globally entails
�ϕ, but ϕ does not necessarily locally entails �ϕ.

The difference between global and local entailments is closed related to the
semantic counterpart of the metatheorem of deduction. In fact, considering for
instance the modal logic K, we cannot conclude that Γ entails (ψ⇒ ϕ) whenever
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Γ ∪ {ψ} entails ϕ, if global entailment is considered. In fact, ψ globally entails
�ψ, but, from a Kripke structure with only two worlds w1 and w2, where w2 is
accessible from w1 and ψ only holds in w1, it is easy to conclude that (ψ⇒ (�ψ))
does not hold in w1. Thus, the semantic version of the metatheorem of deduction
does not hold as long as global entailment is considered. But there is no problem
when considering local entailment, since if Γ∪ {ψ} locally entails ϕ then Γ locally
entails (ψ⇒ ϕ).

We now make more precise the notions of global entailment and local entailment
in our setting.

Definition 3.3.1 Let I = 〈C,A〉 be an interpretation system.
A formula ϕ ∈ L(C) is globally entailed by Γ ⊆ L(C) in I if it is entailed by Γ

in the sense of Definition 3.1.22. We will write

Γ �gI ϕ

to denote that ϕ is globally entailed by Γ in I.
A formula ϕ ∈ L(C) is locally entailed by Γ ⊆ L(C) if, for every interpretation

structure B = 〈B,≤, ν, 〉 in I, assignment α over B and b ∈ B, if b ≤ [[γ]]αB for
each γ ∈ Γ then b ≤ [[ϕ]]αB. We will write

Γ ��I ϕ

to denote that ϕ is locally entailed by Γ in I. ∇

Observe that global entailment just corresponds to the notion of entailment we
had before. When in the interpretation structures of an interpretation system I it
is meaningful to refer to the meet operation �, as, for instance, in the structures
induced by Boolean or Heyting algebras, we can give an equivalent definition of
local entailment when Γ is a finite set: Γ ��I ϕ if, for every B in I and assignment
α over B, (�γ∈Γ[[γ]]αB) ≤ [[ϕ]]αB .

Local entailment implies global entailment, but global entailment does not nec-
essarily implies local entailment. We denote by Γ�g

I and Γ��
I respectively the set

of formulas that are globally entailed from Γ in I and the set of formulas that are
locally entailed from Γ in I. As noted above, Γ��

I ⊆ Γ�g
I for every Γ.

Example 3.3.2 Consider the interpretation system I for modal logic K that in-
cludes all the interpretation structures B induced by Kripke frames 〈W,R〉, and
let α be an assignment over B. Recall that  = W . If [[ξ1]]αB =  then

[[�ξ1]]αB = {w : if wRv then v ∈W} =  .
Hence ξ1 �gI �ξ1.

Consider now the interpretation structure B induced by the Kripke frame pre-
sented in Example 3.1.15 and the assignment α over B such that α(ξ1) = {w1}.
Then [[ξ1]]αB = {w1} and [[�ξ1]]αB = ∅. Hence

{w1} ≤ [[ξ1]]αB but {w1} �≤ [[�ξ1]]αB.
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We conclude that ξ1 does not locally entail �ξ1 in I. ∇

Remark 3.3.3 Note that in every interpretation system I = 〈C,A〉 local
entailment also induces a structural consequence system, the consequence system
〈C, ��

I 〉. The proof is similar to the one presented for Proposition 3.1.24.
Clearly, whenever I ≤ I ′, if Γ �gI ϕ then Γ �gI′ ϕ, since the notion of global

entailment is just the notion of entailment we had before. The result also holds
with local entailment: if Γ ��I ϕ then Γ ��I′ ϕ. The proof is similar to the one
presented for Proposition 3.1.30. ∇

Clearly, we can also extend logic systems to include both a set of global inference
rules and a set of local inference rules, that is,

L = 〈C,A, Rg, R�〉
where 〈C,Rg, R�〉 is a Hilbert calculus with careful reasoning (recall Definition 2.3.1).
Global soundness and global completeness as well as local soundness and local com-
pleteness are defined as expected.

Definition 3.3.4 A logic system L = 〈C,A, Rg , R�〉 is said to be

• globally sound if Γ �gL ϕ whenever Γ gL ϕ, for every Γ ⊆ L(C) and ϕ ∈ L(C);

• locally sound if Γ ��L ϕ whenever Γ �L ϕ, for every Γ ⊆ L(C) and ϕ ∈ L(C);

• globally complete if Γ gL ϕ whenever Γ �gL ϕ, for every Γ ⊆ L(C) and
ϕ ∈ L(C);

• locally complete if Γ �L ϕ whenever Γ ��L ϕ, for every Γ ⊆ L(C) and ϕ ∈
L(C).

A logic system is said to be sound (complete) if it is simultaneously globally and
locally sound (complete). ∇

As expected, the properties of Hilbert calculi referred to in Section 2.3.2 of
Chapter 2 can be also seen as properties of logic systems. For instance, a logic
system L is said to have implication if the Hilbert calculus H(L) has implication,
L has MTC if H(L) has MTC , and so on.

In the same vein, the fibring of these extended logic systems can be defined in
the natural way.

Definition 3.3.5 Let L′ = 〈C′,A′, Rg′, R�′〉 and L′′ = 〈C′′,A′′, Rg ′′, R�′′〉 be two
logic systems. The fibring of L′ and L′′ is the logic system

L′∪L′′ = 〈C,A, Rg, R�〉
where C = C′∪C′′, A is the class of all interpretation structures B over C′ ∪ C′′

such that B|C′ ∈ A′ and B|C′′ ∈ A′′, Rg = Rg
′ ∪Rg ′′ and R� = R�

′ ∪R�′′. ∇
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Again fibring of logic systems is a pushout in the relevant category. In the
sequel, when we refer to a logic system we assume that they include a set of global
inference rules and a set of local inference rules.

3.3.2 Soundness

In this section we study the preservation by fibring of soundness of logic systems.
We prove that the fibring of globally sound logic systems is also a globally sound
logic system. Similarly with respect to local soundness.

To begin with, we have to introduce the notion of globally sound inference rule
and locally sound inference rule.

Definition 3.3.6 Let L = 〈C,A, Rg, R�〉 be a logic system. An inference rule
〈Δ, ϕ〉 ∈ Rg ∪ R� is globally sound in L if Δ �gL ϕ and it is locally sound in L if
Δ ��L ϕ. ∇

As expected, a logic system is globally sound whenever all its inference rules
are globally sound. It is locally sound whenever global inference rules are globally
sound and local inference rules are locally sound.

Theorem 3.3.7 Let L = 〈C,A, Rg , R�〉 be a logic system.

1. If every inference rule in Rg is globally sound then L is globally sound.

2. If every inference rule in Rg is globally sound and every inference rule in R�
is locally sound then L is locally sound.

Proof. The proof follows the usual steps.
1. We prove by induction on the length of a global derivation of ϕ from Γ that

Γ �gL ϕ

whenever Γ gL ϕ, for every Γ ⊆ L(C) and ϕ ∈ L(C).
Base: If ϕ has a derivation of length one from Γ, then ϕ ∈ Γ or ϕ = σ(ψ) for

some axiom 〈∅, ψ〉 in Rg and substitution σ. The first case is trivial. In the second
case, consider B in A and an assignment α over B. By Lemma 3.1.23,

[[σ(ψ)]]αB = [[ψ]]α
′

B

where α′ is such that α′(ξ) = [[σ(ξ)]]αB . Since 〈∅, ψ〉 is globally sound, [[ψ]]αB =  for
every interpretation structure B in A and assignment α over B. Hence, [[σ(ψ)]]αB =
 and therefore Γ �gL ϕ.

Step: If ϕ has a derivation of length n+1 from Γ, the only relevant case is
ϕ = σ(ψ) for some rule 〈{δ1, . . . , δk}, ψ〉 in Rg and substitution σ such that each
σ(δi) occurs previously in the derivation. Consider B in A and α an assignment
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over B such that [[γ]]αB =  for every γ ∈ Γ. By the induction hypothesis, Γ �gL σ(δi)
and therefore [[σ(δi)]]αB =  , i = 1, . . . , k. By Lemma 3.1.23,

[[δi]]α
′

B = [[σ(δi)]]αB =  

i = 1, . . . , k, with α′ as above. Since the rule is globally sound, [[ψ]]α
′

B =  . Finally,
by Lemma 3.1.23,

[[σ(ψ)]]αB =  .
Therefore Γ �gL ϕ.

2. We prove by induction on the length of derivations that Γ ��L ϕ whenever
Γ �L ϕ, for every Γ ⊆ L(C) and ϕ ∈ L(C).

Base: If ϕ has a derivation of length one from Γ, then ϕ ∈ Γ, ϕ = σ(ψ) for some
axiom 〈∅, ψ〉 in R� and substitution σ or gL ϕ. The first case is trivial. In the
other two cases, consider B in A, with carrier set B, an assignment α over B, and
b ∈ B such that b ≤ [[γ]]αB for every γ ∈ Γ. In the second case, by Lemma 3.1.23,

[[σ(ψ)]]αB = [[ψ]]α
′

B

with α′ such that α′(ξ) = [[σ(ξ)]]αB . Since 〈∅, ψ〉 is locally sound, b ≤ [[ψ]]αB for every
interpretation structure B in A, assignment α over B and b in the carrier set of
B. Hence, b ≤ [[σ(ψ)]]αB and therefore Γ ��L ϕ. Finally, if gL ϕ, since all inference
rules in Rg are globally sound, from 1 we have �gL ϕ, that is,

[[ϕ]]αB =  

for every interpretation structure B in A and assignment α over B. Thus, b ≤ [[ϕ]]αB
and therefore Γ ��L ϕ.

Step: If ϕ has a derivation of length n+1 from Γ, the only relevant case is
ϕ = σ(ψ) for some rule

〈{δ1, . . . , δk}, ψ〉
in R� and substitution σ such that each σ(δi) occurs previously in the derivation.
Consider B in A, with carrier set B, an assignment α over B and b ∈ B such that
b ≤ [[γ]]αB for every γ ∈ Γ. By the induction hypothesis, Γ ��L σ(δi) and therefore

b ≤ [[σ(δi)]]αB

i = 1, . . . , k. Using Lemma 3.1.23,

b ≤ [[δi]]α
′

B = [[σ(δi)]]αB

i = 1, . . . , k, with α′ as above. Since the rule is locally sound, b ≤ [[ψ]]α
′

B . Finally,
by Lemma 3.1.23, b ≤ [[σ(ψ)]]αB . Therefore Γ ��L ϕ. �

We now prove that fibring preserves both global and local soundness.
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Theorem 3.3.8 The fibring of globally sound logic systems is also a globally
sound logic system and the fibring of locally sound logic systems is also a locally
sound logic system.

Proof. Let L′ = 〈C′,A′, Rg ′, R�′〉 and L′′ = 〈C′′,A′′, Rg′′, R�′′〉 be logic systems
and L′∪L′′ their fibring. Note that

I(L′) ≤ I(L′∪L′′) and I(L′′) ≤ I(L′∪L′′).

Assume that L′ and L′′ are globally sound. Let 〈Δ, ψ〉 ∈ Rg ′. Clearly, Δ gL′ ϕ.
Since L′ is globally sound, Δ �gL′ ϕ. Using Remark 3.3.3,

Δ �gL′∪L′′ ϕ.

Hence 〈Δ, ϕ〉 is globally sound in L′∪L′′. Similarly, each 〈Δ, ϕ〉 ∈ Rg ′′ is globally
sound in L′∪L′′. Thus, every global rule of L′∪L′′ is globally sound in L′∪L′′ and
therefore, by Proposition 3.3.7, L′∪L′′ is globally sound.

Assume now that L′ and L′′ are also locally sound. Let 〈Δ, ϕ〉 ∈ R�′. Clearly,
Δ �L′ ϕ. Since L′ is locally sound, Δ ��L′ ϕ. Using again Remark 3.3.3,

Δ ��L′∪L′′ ϕ.

Hence 〈Δ, ϕ〉 is locally sound in L′∪L′′. Similarly, each 〈Δ, ϕ〉 ∈ R�
′′ is locally

sound in L′∪L′′. Thus, every global rule of L′∪L′′ is globally sound in L′∪L′′

and every local rule of L′∪L′′ is locally sound in L′∪L′′. Therefore, by Proposi-
tion 3.3.7, L′∪L′′ is locally sound. �

Example 3.3.9 Recall the modal signatures C′ and C′′ presented in Example
2.1.8. Consider the logic system L′

S4, corresponding to modal logic S4, whose
signature is C′, H(L′

S4) is the Hilbert calculus with careful reasoning for S4 similar
to the one referred to in Example 2.3.3 and the class of interpretations structures
in I(L′

S4) includes all the interpretations structures induced by Kripke frames with
reflexive and transitive accessibility relation.

Consider also the logic system L′′
B, corresponding to modal logic B, whose

signature is C′′, H(L′′
B) is the Hilbert calculus with careful reasoning for B similar

to the one referred to in Example 2.3.3 and the class of interpretation structures
in I(L′′

B) includes all the interpretation structures induced by Kripke frames with
symmetric relation.

The logic systems L′
S4 and L′′

B are both globally and locally sound. Hence, the
fibring L′

S4∪L′′
B is also globally and locally sound and corresponds to the logic

system of modal logic S5. ∇

Note that in larger logical universes things can be more complicated. As it is
shown in Chapter 7, when fibring logic systems with quantifiers and using rules
with side provisos (such as “provided that term t is free for variable x in formula
ξ”), soundness is not always preserved.
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3.3.3 Completeness

We now turn our attention to the preservation by fibring of global completeness
of logic systems. To this end we establish sufficient properties for a logic system
to be global complete and then show that fibring preserves these properties.

We first introduce the notions of full logic system and logic system with verum.
Previous to this, we need to introduce a notion derived from Definition 3.3.1.

Definition 3.3.10 Let L = 〈C,A, Rg, R�〉 be a logic system, 〈Δ, ϕ〉 ∈ Rg ∪ R�,
and let B = 〈B,≤, ν, 〉 be an interpretation structure over C. Then:

• B globally satisfies 〈Δ, ϕ〉 if Δ �g〈C,{B}〉 ϕ.

• B locally satisfies 〈Δ, ϕ〉 if Δ ��〈C,{B}〉 ϕ. ∇

Definition 3.3.11 A logic system L = 〈C,A, Rg , R�〉 is said to be full when A
contains all interpretation structures over C that globally satisfy the inference
rules in Rg and that locally satisfy the inference rules in R�. ∇

Example 3.3.12 Consider the logic system LK such that H(LK) is the Hilbert
calculus for normal modal logic K presented in Example 2.3.3, and I(L) is the
interpretation system for K obtained from Kripke frames presented in Exam-
ple 3.1.20. I(LK) includes all the interpretation structures induced by Kripke
frames and it is easy to prove that each of these structures locally satisfies the
inference rules in R� and globally satisfies the ones in Rg. Observe that other
structures can satisfy the inferences rules in H(LK).

Consider the logic system LS4 presented in Example 3.3.9. I(LS4) includes
all the interpretation structures induced by Kripke frames with a reflexive and
transitive accessibility relation. Those are in fact all the interpretation structures
induced by Kripke frames that locally satisfies the inference rules in R� and globally
satisfies the inference rules in Rg. Observe that other structures can satisfy the
inferences rules in H(LS4). Similar remarks hold for the logic system LB presented
in Example 3.3.9. ∇

Definition 3.3.13 A logic system L = 〈C,A, Rg , R�〉 is said to have verum when
there is a formula ϕ ∈ L(C) such that gH(L) ϕ and [[ϕ]]αB =  for every B in A
and assignment α over B. ∇

The formulas whose denotation is always  , verum formulas, constitute the
syntactical counterpart of the top element of the interpretation structures. Note
that instead of requiring that gH(L) ϕ we could have required that �H(L) ϕ since
the two conditions are equivalent.
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Example 3.3.14 Let LK be the logic system corresponding to normal modal
logic K presented in Example 3.3.12. This logic system has verum. In fact, taking
any formula ϕ in the language, we have that (ϕ⇒ ϕ) satisfies the conditions in
Definition 3.3.13. The same applies to the other logic systems considered above. ∇

The technique for proving preservation of completeness is different from the
ones that we used for proving preservation of interpolation (see Chapter 2) and
preservation of soundness. In this case we start by proving sufficient conditions
for completeness of a stand-alone logic system. Then we prove the preservation of
those conditions, hence proving the completeness of the fibring.

We are now ready to state the completeness theorem for global reasoning. The
proof uses a common Lindenbaum-Tarski construction (sometimes called simply
Lindenbaum algebra; this construction is named for logicians Adolf Lindenbaum
and Alfred Tarski). Recall the notion of Hilbert calculus with MTC given in
Definition 2.3.29.

Theorem 3.3.15 Every full logic system with MTC and verum is globally com-
plete.

Proof. Let L = 〈C,A, Rg , R�〉 be a full logic system and let γv ∈ L(C) be a
formula satisfying the verum conditions.

(i) Let Γ be a globally closed subset of L(C). Our first goal is the construction
of an interpretation structure for C based on Γ. We start by defining the following
binary relation ∼=Γ on L(C):

ϕ ∼=Γ ψ if Γ, ϕ �L ψ and Γ, ψ �L ϕ.

It is easy to prove that ∼=Γ is an equivalence relation and, since L has MTC , ∼=Γ

is also a congruence relation. We can then consider the interpretation structure

BΓ = (BΓ,≤Γ, νΓ, Γ)

where

• BΓ is the quotient set L(C)/ ∼=Γ;

• [ϕ] ≤Γ [ψ] if Γ, ϕ �L ψ;

• νΓ(c) = [c] for c ∈ C0 and νΓ(c)([ϕ1], . . . , [ϕk]) = [c(ϕ1, . . . , ϕk)] for c ∈ Ck;

•  Γ = [γv].

(ii) We now prove some useful properties of the interpretation structure BΓ

defined in (i).
(ii.a) Let α be the assignment over BΓ such that α(ξ) = [ψξ] for each ξ ∈ Ξ. It

is easily proved by induction that, for every ϕ ∈ L(C),

[[ϕ]]αBΓ
= [σ(ϕ)]
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where σ is the substitution such that σ(ξ) = ψξ for every ξ ∈ Ξ (note that if
[ψξ] = [ψ′

ξ] then [σ(ϕ)] = [σ′(ϕ)] where σ′(ξ) = ψ′
ξ).

(ii.b) Consider an assignment α and a substitution σ as in (a). Let ι be the
assignment on BΓ such that ι(ξ) = [ξ] for every ξ ∈ Ξ. We prove that, for every
ϕ ∈ L(C),

[[σ(ϕ)]]ιBΓ
= [[ϕ]]αBΓ

.

In fact, using Lemma 3.1.23, [[σ(ϕ)]]ιBΓ
= [[ϕ]]α

′
BΓ

where α′ is the assignment such
that α′(ξ) = [[σ(ξ)]]ιBΓ

for every ξ ∈ Ξ. But [[σ(ξ)]]ιBΓ
= [[ψξ]]ιBΓ

. Using (a), with
α = ι, we get

[[ψξ]]ιBΓ
= [σι(ψξ)]

where σι(ξ) = ξ for every ξ ∈ Ξ. Since σι(ψξ) = ψξ, we have [[ψξ]]ιBΓ
= [ψξ].

Hence, α′(ξ) = [ψξ], for every ξ ∈ Ξ. Therefore, α′ is α. We then conclude that
[[σ(ϕ)]]ιBΓ

= [[ϕ]]αBΓ
.

(ii.c) Let ι be the assignment in (b). We now prove that, for every ϕ ∈ L(C),

[[ϕ]]ιBΓ
=  Γ if and only if ϕ ∈ Γ.

Assuming that ϕ ∈ Γ, clearly Γ, γv �L ϕ. Since gL γv, also Γ, ϕ �L γv. Hence,
ϕ ∼=Γ γv. Thus,

[ϕ] = [γv]

that is, using (a), [[ϕ]]ιBΓ
=  Γ. Conversely, assuming that [[ϕ]]ιBΓ

=  Γ, then
[ϕ] = [γv]. Thus, we have

Γ, γv �L ϕ.
Since Γ is globally closed, γv ∈ Γ. Hence, Γ �L ϕ. Then also Γ gL ϕ and therefore
ϕ ∈ Γ.

(ii.d) Finally, we prove that BΓ globally satisfies the inference rules in Rg and
locally satisfies the inference rules in R�. Let 〈Δ, ϕ〉 ∈ Rg and α an assignment
over BΓ such that [[δ]]αBΓ

=  Γ for every δ ∈ Δ. But, using (b),

[[δ]]αBΓ
= [[σ(δ)]]ιBΓ

for every δ ∈ Δ. Using (c), σ(δ) ∈ Γ for every δ ∈ Δ. Hence Γ gL σ(ϕ) and, since
Γ is globally closed, σ(ϕ) ∈ Γ. Using again (c) e (b),

[[σ(ϕ)]]ιBΓ
=  Γ = [[ϕ]]αBΓ

.

Hence BΓ globally satisfies 〈Δ, ϕ〉. Consider now 〈Δ, ϕ〉 ∈ R�, α an assignment
over BΓ and [ψ] ∈ BΓ such that [ψ] ≤Γ [[δ]]αBΓ

for every δ ∈ Δ. Using (a),

[ψ] ≤Γ [σ(δ)]

for every δ ∈ Δ. As a consequence, Γ, ψ �L σ(δ) for every δ ∈ Δ. Therefore,
Γ, ψ �L σ(ϕ), that is, [ψ] ≤Γ [σ(ϕ)]. Using (a) again, [ψ] ≤Γ [[ϕ]]αBΓ

. Hence BΓ

locally satisfies 〈Δ, ϕ〉.
(iii) Finally, we prove the global completeness of L. Let Θ ⊆ L(C) and consider

ϕ ∈ L(C). We prove that if
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Θ �gL ϕ then Θ ��gL ϕ.

Consider the interpretation structure BΓ, where Γ = Θ�g
L . Since L is full, by

(ii.d) above, BΓ is an interpretation structure in A. Using (ii.c) above, for each
γ ∈ Θ ⊆ Γ, [[γ]]ιBΓ

=  Γ. Since Θ �gL ϕ, ϕ /∈ Γ. Using again (ii.c), [[ϕ]]ιBΓ
�=  Γ.

Hence Θ ��gL ϕ. �

Observe that the requirements of congruence and verum are quite weak and
usually fulfilled by commonly used logic systems (including those mentioned above
as examples). Furthermore, any complete logic system can be made full without
changing its entailment. However, it should be observed that when adding all
the possible models of a given logic it can be the case that some unexpected or
exotic models can appear. On the other hand, if verum is not present, it can be
conservatively added in congruent logic systems. But if the system at hand is
not congruent, there is nothing we can do within the scope of the basic theory of
fibring outlined here.

Note also that through a mild strengthening of the requirements of the theorem
we can ensure finitary local completeness (see for instance [243]). A similar local
and global completeness theorem is obtained in [282] without extra requirements
for local reasoning but assuming a more complex semantics and using a Henkin
construction.

Preservation of global completeness follows by adapting the technique originally
proposed in [282], and capitalizing on the completeness result stated above. That
is, when fibring two given logic systems that are full, congruent and with verum
(and, therefore, globally complete) we shall try to obtain the global completeness
of the result by identifying the conditions under which fullness, congruence and
verum are preserved by fibring.

Theorem 3.3.16 Fullness is preserved by fibring.

Proof. Let

L′ = 〈C′,A′, Rg′, R�′〉 and L′′ = 〈C′′,A′′, Rg′′, R�′′〉
be full logic systems. Let B be an interpretation structure overC′∪C′′ that globally
satisfies all the inference rules in Rg

′ ∪ Rg ′′ and locally satisfies all the inference
rules in R�

′ ∪R�′′. We have to prove that B is in A, that is,

B|C′ is in A′ and B|C′′ is in A′′.

Thus, we have to prove that B|C′ globally satisfies all the rules in Rg
′ and locally

satisfies all the rules in R�
′ and similarly with respect to B|C′′ .

Let 〈Δ, ϕ〉 ∈ Rg ′. B|C′ is an interpretation structure over C′. B|C′ and B have
the same carrier set and partial order. Let α′ be an assignment over B|C′. Since
α′ is also an assignment over B and B globally satisfies 〈Δ, ϕ〉,

if [[δ]]α
′

B =  for every δ ∈ Δ then [[ϕ]]α
′

B =  .
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By Lemma 3.1.26, if [[δ]]α
′

B|C′ =  for every δ ∈ Δ then [[ϕ]]α
′

B|C′ =  . Hence, B|C′

globally satisfies 〈Δ, ϕ〉.
Consider now 〈Δ, ϕ〉 ∈ R�′. Let α′ be assignment over B|C′ and b in the carrier

set of B|C′ . Since B locally satisfies 〈Δ, ϕ〉,
if b ≤ [[δ]]α

′
B for every δ ∈ Δ then b ≤ [[ϕ]]α

′
B .

By Lemma 3.1.26, if b ≤ [[δ]]α
′

B|C′ for every δ ∈ Δ then b ≤ [[ϕ]]α
′

B|C′ . Hence, B|C′

locally satisfies 〈Δ, ϕ〉. Since L′ is full, B|C′ is in A′. Similarly, we conclude that
B|C′′ is in A′′. Thus B is in the class of interpretation structures of L′∪L′′ and
therefore L′∪L′′ is full. �

Lemma 3.3.17 The logic system resulting from fibring has verum provided that
at least one of the given logic systems has verum.

Proof. Let L′ and L′′ be logic systems. Assume L′ has verum and let ϕ ∈ L(C) be
such that gL′ ϕ and [[ϕ]]α

′
B′ =  for every B′ in the class of interpretation structures

of L′ and assignment α′ over B′. Using Remark 2.3.5,

gL′∪L′′ ϕ.

Consider B in the class of interpretation structures of L′∪L′′ and α assignment
over B. Then B|C′ is in the class of interpretation structures of L′ and, by
Lemma 3.1.26, [[ϕ]]αB|C′ = [[ϕ]]αB . Hence [[ϕ]]αB =  and, since B and B|C′ have
the same top, we conclude that L′∪L′′ has verum. �

We now use the results on preservation of implication and equivalence by fibring
presented in Subsection 2.3.2 of Chapter 2 to establish sufficient conditions for
fibring to preserve global completeness. Recall the notion of Hilbert calculus with
implication and equivalence given in Definitions 2.3.15 and 2.3.27.

Theorem 3.3.18 The fibring while sharing implication and equivalence of full
logic systems with implication, equivalence and verum is globally complete.

Proof. Let L′ and L′′ be full logic systems with implication, equivalence and
verum. By Proposition 2.3.28, L′∪L′′ has implication and equivalence hence, by
Proposition 2.3.30, L′∪L′′ has MTC . By Proposition 3.3.17, L′∪L′′ has verum.
By Theorem 3.3.16, L′∪L′′ is full. Finally, by Theorem 3.3.15, L′∪L′′ is globally
complete. �

Example 3.3.19 Consider the logic systems L′
S4 and L′′

B presented in Exam-
ple 3.3.9. Let L̄′

S4 and L̄′′
B be the corresponding extensions obtained by adding to

the respective signatures a binary connective ⇔ as well as the appropriate axioms
for equivalence, as was done for classical logic in Example 2.3.20; at the semantic
level, L̄′

S4 and L̄′′
B contain the obvious extensions of the corresponding interpre-

tation systems. Then, the new logic systems are full, have equivalence and verum
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and therefore they are both globally complete. Moreover, in the fibring L̄′
S4∪L̄′′

B

implication and equivalence are shared. Hence,

L̄′
S4∪L̄′′

B

is also globally complete, corresponding to modal logic S5 over a signature includ-
ing equivalence. ∇

Logc

L'

L'U L''

L''
Log LogT

LogT

Logc

Logc

Figure 3.9: Preservation of completeness

The technique that was used to proving the preservation of completeness can
be summarized in Figure 3.9. Let:

• Log be the class of full logic systems with the same implication and equiva-
lence;

• Log� be the subclass of Log composed by the logic systems that have verum;

• Logc be the class of logic systems that are complete.

Let L′ ∈ Log and L′′ ∈ Log�. Then their fibring L′∪L′′ is in Log�. We observe
that:

• Theorem 3.3.15 establishes that Log ∈ Logc;
• Theorem 3.3.16 shows that L′ ∪ L′′ ∈ Log;

• Lemma 3.3.17 shows that L′ ∪ L′′ ∈ Log�;

• Theorem 3.3.18 states that L′ ∪ L′′ ∈ Logc.
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Hence, we prove that fibring of complete logic systems that are full, with impli-
cation, equivalence and verum is full, with implication, equivalence and verum and
so is complete. That is, we do not prove in general that completeness is preserved.
We prove that fullness is preserved and since fullness together with implication,
equivalence and verum lead to completeness the fibring is complete.

3.4 Relationship with fibring by functions

The main objective of this section is to relate the fibring by functions with the
algebraic fibring. Since the main difference appears to be on the definition of the
models, we concentrate on semantic aspects. Moreover, it should be noted that
the original version of fibring was introduced exclusively at the semantic level.

The fibring by functions as introduced in [104, 108] can be illustrated with
a very simple example. Assume that you want to produce the fibring of two
modal logics L′ and L′′ sharing the propositional symbols, the negation and the
implication. Assume that L′ has a (unary) space modality �′ and L′′ with a
(unary) time modality �′′. Suppose also that both modal logics are endowed with
a Kripke semantics.

Intuitively speaking a model of the fibring is a cloud of (two-dimensional) points
in such a way that if we take a point we should be able to identify a Kripke structure
for time and a Kripke structure for space. Hence assuming that W is the cloud of
points, then we can consider two maps

f ′ : W → KPK ′ and f ′′ : W → KPK ′′

assigning to each w ∈ W a Kripke structure in KPK ′ (the class of Kripke struc-
tures for time) and a Kripke structure in KPK ′′ (the class of Kripke structures
for space), respectively. Moreover, two different points in the clouds may involve
different Kripke structures either in KPK ′ or KPK ′′. In Figure 3.10 we illustrate
this situation with a concrete example.

We assume that we have models from m′
1 to m′

4 for space and models from
m′′

1 to m′′
3 for time and have one model in the fibring (the one represented by the

cloud). To point u1 in the model of the fibring we associate model m′
1 for space

and model m′′
2 for time and to point u2 we associate model m′

2 for space and model
m′′

3 for time.
In [240] a categorical account of fibring by functions is proposed using a fixed

point construction that we will describe briefly. For an algebraic counterpart of
this issue see also [34]. Before we have to introduce a point-based semantics.

We observe that if we are dealing with logics where the class of models is closed
for unions (that is, the union of models is still a model) then we can replace the
point based semantics by a one-to-one correspondence between the models of the
fibring and the models of each component. In this case, the definition of morphism
between interpretation systems is the same as in Remark 3.1.37.

In Figure 3.11, we assume that the logics for time and space are closed for
unions. That is, the union m′ of m′

1,m
′
2,m

′
3,m

′
4 is still a model for space and the
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space

time

m'4

m'3

m'2
m'1

m''1
m''3

m''2

u1

u2

Figure 3.10: Model of fibring

union m′′ of m′′
1 ,m

′′
2 ,m

′′
3 is still a model for time. In this case, both u1 and u2

point to the same model of space m′ and to the same model of time m′′. We will
see that it is always possible to close for unions any given logic.

From this point on, and adopting a general semantic perspective (in the modal
sense), we see that getting rid of the set of points leads immediately to the algebraic
approach. It is worthwhile to point out that even if the class of models of a logic
is not closed for unions, we can close it without changing the semantic entailment.

We consider a signature C, the set of schema variables Ξ and language L(C)
as introduced in Section 2.1 of Chapter 2. We start by presenting the notions of
structure over a signature, pre-interpretation system and interpretation system as
introduced in [240]. Recall that we can also see ℘U as the set of maps from the
set U to {0, 1} (the characteristic maps of the subsets of U). We use the notation
Y X to denote the set of all maps from set X to set Y .

Definition 3.4.1 Given a signature C, a C-structure is a pair 〈U, ν〉 where U is
a non-empty set and ν = {νk}k∈N with νk : Ck → (℘U)((℘U)k) for each k ∈ N. ∇

The set U is called the set of points. We denote by Str(C) the class of all
structures over C. From the definition above, it is clear that 〈℘U, ν〉 is an algebra
over C (recall the beginning of Section 3.1). Thus, structures over C are just
powerset algebras over C with carrier set of the form ℘U for a non-empty set U .

Definition 3.4.2 A pre-interpretation system is a triple 〈C,M,A〉 where C is a
signature, M is a class and A : M → Str(C) is a map. ∇
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m''3

m''2

m'4

m'3

m'2
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u1

u2
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m'

Figure 3.11: Model of fibring where the components are closed for union

The elements of M are the models. The map A associates a structure over C
to each model. In the sequel, 〈Um, νm〉 denotes the structure A(m) over C.

Definition 3.4.3 A pre-interpretation system 〈C,M,A〉 is an interpretation sys-
tem provided that, for every m1 ∈M and every bijection f : Um1 → V there exists
m2 ∈M such that Um2 = V and

νm2k(c)(b1, . . . , bk)(f(u)) = νm1k(c)(b1 ◦ f, . . . , bk ◦ f)(u)

for every k ∈ N, c ∈ Ck, (b1, . . . , bk) ∈ (℘V )k and u ∈ Um1 . ∇

We use the notations m2 = f(m1) and 〈Um2 , νm2〉 = f(〈Um1 , νm1〉). Models m1

and m2 as above are called equivalent. Pre-interpretation systems can be easily
enriched to obtain interpretation systems.

Prop/Definition 3.4.4 The enrichment of a pre-interpretation system 〈C,M,A〉
is the interpretation system 〈C,M,A〉 where:

• M is the class of all pairs 〈m, f〉 wherem ∈M and f : Um → V is a bijection;

• A(〈m, f〉) = f(A(m)). ∇

Example 3.4.5 An interpretation system corresponding to classical logic is
〈C,M,A〉 defined as follows:
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• C is the classical signature in Example 2.1.2;

• M is the class of all pairs 〈U, V 〉 where:

– U is a singleton {u};
– V : P→ {0, 1}.

• A(〈U, V 〉) = 〈U, ν〉 where:

– ν0(p)(u) = V (p);
– ν1(¬)(b)(u) = 1− b(u);
– ν2(⇒)(b, b′)(u) = 1 if b(u) ≤ b′(u) and ν2(⇒)(b, b′)(u) = 0 otherwise.

Here we identify, as usual, any set Y X
0

with Y . Clearly, if we substitute in
the construction above the singleton {u} by any non-empty set U , we obtain an
interpretation system which is a particular case of the interpretation structures
for classical logic presented in Example 3.1.3.

Of course, an analogous interpretation system for classical logic defined over
the classical signature introduced in Example 2.1.4 can be defined, with minor
adaptations. ∇

Example 3.4.6 An interpretation system for modal logic K is the triple 〈C,M,A〉
defined as follows:

• C is the modal signature in Example 2.1.4;

• M is the class of Kripke frames 〈W,R〉 defined as in Example 3.1.6;

• A(〈W,R〉) = 〈W, ν〉 where:

– ν1(¬)(b)(w) = 1− b(w);
– ν1(�)(b)(w) =

∧
w′:〈w,w′〉∈R b(w′);

– ν2(⇒)(b, b′)(w) = 1 if b(w) ≤ b′(w) and ν2(⇒)(b, b′)(w) = 0 otherwise.

If we consider Kripke structures and extend the mapping ν appropriately, we
obtain an interpretation system corresponding to modal logic K defined over the
modal signature of Example 2.1.2. ∇

In the example above, the symbol
∧

denotes an infimum.
The definition of global and local entailments in (pre-)interpretation systems,

to be introduced below, relies on the corresponding notions already defined.
Observe that a (pre-)interpretation system I = 〈C,M,A〉 induces an interpre-

tation system Id = 〈C, {Bm : m ∈M}〉 in the sense of Definition 3.1.16, where Bm
is the interpretation structure

Bm = 〈℘Um,⊆, νm, Um〉
for every m ∈M . Using this, we define the following:
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Definition 3.4.7 Consider the (pre-)interpretation system I = 〈C,M,A〉.
(i) The formula ϕ ∈ L(C) is globally entailed by Γ ⊆ L(C) in I, written Γ �gI ϕ, if
Γ �gId

ϕ in the sense of Definition 3.1.22.
(ii) The formula ϕ ∈ L(C) is locally entailed by Γ ⊆ L(C) in I, written Γ �lI ϕ, if
Γ ��Id

ϕ in the sense of Definition 3.3.1. ∇

It is worth noting that

Γ �lI ϕ if and only if (
⋂

γ∈Γ

[[γ]]αBm
) ⊆ [[ϕ]]αBm

for every assignment α over the interpretation structure Bm and every m ∈M .
As before, Γ�g

I is the set of formulas globally entailed by Γ in I and Γ�l
I is

the set of formulas locally entailed by Γ in I. Obviously �g
I and �l

I are closure
operators, because they coincide, respectively, with �g

Id and ��
Id .

Note that these notions of global and local entailments are preserved by enrich-
ment. In fact, considering the pre-interpretation system I and its enrichment I,
for every Γ ⊆ L(C), the following conditions hold:

• Γ�g
I = Γ�g

I , and

• Γ�l
I = Γ�l

I .

Unconstrained fibring and constrained fibring of these interpretation systems
are now described. When considering unconstrained fibring of two logics, no con-
structors are shared. Recall that, given two signatures C′ and C′′, their dis-
joint union is a signature C′⊕C′′ = {(C′⊕C′′)k}k∈N where (C′⊕C′′)k is a disjoint
union of the sets C′

k and C′′
k . In the sequel, i′ : C′ → C′⊕C′′ denotes the family

{i′k}k∈N of the natural injections i′k : C′
k → (C′⊕C′′)k. Similarly with respect to

i′′ : C′′ → C′⊕C′′.

Prop/Definition 3.4.8 Let I ′ = 〈C′,M ′, A′〉 and I ′′ = 〈C′′,M ′′, A′′〉 be inter-
pretation systems. Then, their unconstrained fibring (by functions) is the inter-
pretation system

I ′⊕I ′′ = 〈C,M,A〉
defined, using i′ : C′ → C′ ⊕ C′′ and i′′ : C′′ → C′ ⊕ C′′, as follows:

• C is C′⊕C′′

• M is the class of all pairs m = 〈U, τ〉 such that:

– U is a non-empty set;

– τ = {τu}u∈U where each τu = 〈τ ′u, τ ′′u 〉 such that τ ′u ∈M ′, τ ′′u ∈M ′′;

– Uτ ′
u

= {v ∈ U : τ ′v = τ ′u}, Uτ ′′
u

= {v ∈ U : τ ′′v = τ ′′u } for each u ∈ U ;
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– letting O : ℘U → ℘U be such that

O(V ) =
⋃

v∈V
(Uτ ′

v
∪ Uτ ′′

v
)

then
⋃
n∈N

On({u}) = U for every u ∈ U .

• A(〈U, τ〉) = 〈U, ν〉 where, for k ∈ N, �b = (b1, . . . , bk) ∈ ℘Uk and u ∈ U :

νk(i′k(c′))(�b)(u) =

⎧
⎨

⎩

ντ ′
uk(c′)(b1 ◦ inc′u, . . . , bk ◦ inc′u)(u) if u ∈ Uτ ′

u

0 otherwise

and

νk(i′′k(c′′))(�b)(u) =

⎧
⎨

⎩

ντ ′′
u k(c′′)(b1 ◦ inc′′u, . . . , bk ◦ inc′′u)(u) if u ∈ Uτ ′′

u

0 otherwise

being inc′u : Uτ ′
u
→ U and inc′′u : Uτ ′′

u
→ U the corresponding inclusions. ∇

Figure 3.12 illustrates the relationship between the carrier set of a model in the
fibring with the carrier sets of the models in the components that are involved in
that model. Let

U = 〈{u1, u2, u3, u4, u5, u6}, τ〉
be the component of a model in the fibring I ′⊕I ′′ where:

• τ ′u1
= τ ′u4

= τ ′u5
and τ ′u2

= τ ′u3
= τ ′u6

;

• τ ′′u1
= τ ′′u2

and τ ′′u3
= τ ′′u4

= τ ′′u5
= τ ′′u6

.

Hence, for example, u1, u4, u5 belong to the carrier set of the same model in I ′

whereas u1, u2 belong to the carrier set of the same model in I ′′. Moreover, all the
points in the carrier sets of the component models are represented in the model
of the fibring. The denotation of a connective of C′ at say point u1 in the fibring
will be calculated in the same way as it is evaluated in point u′1 in model τ ′u1

and
the denotation of a connective of C′′ at the same point u1 in the fibring will be
calculated in the same way as it is evaluated in point u′′1 in model τ ′′u1

.
The following example illustrates the unconstrained fibring of interpretation

systems in this setting.

Example 3.4.9 Consider the interpretation systems I ′S4 = 〈C,M ′, A′〉 and I ′′B =
〈C,M ′′, A′′〉, corresponding respectively to modal logics S4 and B, where C is
the modal signature in Example 2.1.2, M ′ is the class of Kripke structures with a
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Figure 3.12: Carrier set in a model of the fibring by functions

reflexive and transitive accessibility relation, M ′′ is the class of Kripke structures
with a symmetric accessibility relation and A′, A′′ are as in Example 3.4.6. Their
unconstrained fibring by functions is

I ′S4⊕I ′′B = 〈C′⊕C′′,M,A〉

where, using i′ : C′ → C′ ⊕ C′′ and i′′ : C′′ → C′ ⊕ C′′,

• M is the class of all fibred models 〈U, τ〉 such that τ ′ = {τ ′u}u∈U (respec-
tively τ ′′ = {τ ′′u }u∈U ) induce reflexive and transitive (respectively symmet-
ric) Kripke structures over U .

• A(〈U, τ〉) = (U, ν) with

– ν1(i′1(�))(b)(u) =
∧
u′:〈u,u′〉∈R′

u
b ◦ inc′(u′) where τ ′u = 〈Uτ ′

u
, R′

u, V
′
u〉;

– ν1(i′′1(�))(b)(u) =
∧
u′′:〈u,u′′〉∈R′′

u
b◦ inc′′(u′′) where τ ′′u = 〈Uτ ′′

u
, R′′

u, V
′′
u 〉.

In fact, τ ′ induces 〈W ′, R′, V ′〉 where

• W ′ = U ;

• R′ =
⋃
u∈U R

′
u;

• V ′(i′(p)) =
⋃
u∈U V

′
u(p) for each p ∈ C′

0.

The family τ ′′ induces 〈W ′′, R′′, V ′′〉 in a similar way. ∇
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When we want to share some constructors in the signatures C′ and C′′, we must
consider constrained fibring. In Section 3.1, for simplicity, shared constructors
were always the constructors in C′ ∩ C′′. Herein, following [240], we are going to
consider also the case where we share different symbols.

To this end, we need a signature Csh and two families

f ′ = {f ′
k}k∈N and f ′′ = {f ′′

k }k∈N

of injective maps f ′
k : Cshk → C′

k and f ′′
k : Cshk → C′′

k . The maps establish the
constructors to be shared: for each c ∈ Cshk , f ′

k(c) and f ′′
k (c) are shared. In

categorical terms, two families f ′ and f ′′ as above are monomorphisms

f ′ : Csh → C′ and f ′′ : Csh → C′′ in Sig.

Thus, we say that a diagram in Sig such that f ′ and f ′′ are monomorphisms in
Sig is a sharing diagram between C′ and C′′ (see Figure 3.13).

Csh

f ′

""**
**

**
** f ′′

##+
++

++
++

+

C′ C′′

Figure 3.13: Sharing diagram

The constrained fibring (by functions) of two interpretation systems is built on
top of their unconstrained fibring identifying shared symbols and their denotations
and is a pushout in the relevant category.

Prop/Definition 3.4.10 Let I ′ = 〈C′,M ′, A′〉 and I ′′ = 〈C′′,M ′′, A′′〉 be inter-
pretation systems and let Csh, f ′ : Csh → C′ and f ′′ : Csh → C′′ inducing a
sharing between C′ and C′′. Then, the constrained fibring by functions of I ′ and
I ′′ is the interpretation system

I ′
f ′f ′′

⊕ I ′′ = 〈C,M,A〉
where, considering the unconstrained fibring I ′⊕I ′′ = 〈C′⊕C′′,M ′⊕M ′′, A′⊕A′′〉,
using i′ : C′ → C′⊕C′′ and i′′ : C′′ → C′⊕C′′ such that Csh ∩ C′⊕C′′ = ∅ and
letting A′⊕A′′(m) = 〈Um, νm〉,
• C = {Ck}k∈N is such that Ck = Cshk ∪ i′k(C′

k\f ′
k(Cshk )) ∪ i′′k(C′′

k \f ′′
k (Cshk ));

• M is the subclass of all elements m of M ′⊕M ′′ such that:

– νmk(c1) = νmk(c2) for each k ∈ N and c1, c2 ∈ Ck such that i′k ◦ f ′
k(c) =

c1 and i′′k ◦ f ′′
k (c) = c2 for some c ∈ Cshk ;

• A(m) = 〈Um, ν′〉 where
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– ν′k(c) = νmk(c) for each k ∈ N and c ∈ i′k(C′
k\f ′

k(Cshk ))∪i′′k(C′′
k \f ′′

k (Cshk ));
– ν′k(c) = νmk(i′k ◦ f ′

k(c)) for each k ∈ N and c ∈ Cshk . ∇

Example 3.4.11 Recall the unconstrained fibring of I ′S4 and I ′′B presented in
Example 3.4.9. If we share the propositional constructors P, ¬ and⇒ and consider
i′(�) = �′ and i′′(�) = �′′, the constrained fibring of I ′S4 and I ′′B corresponds to
a bimodal logic.

The Kripke structure associated to each fibred models 〈U, τ〉 is now

〈W,R′, R′′, V 〉
where W = W ′ = W ′′ = U , R′ is a reflexive and transitive relation, R′′ is a
symmetric relation and V (p) = V ′(i′(p)) = V ′′(i′′(p)) for each p ∈ P. Observe
that, since the two modalities are inequivalent, this interpretation system does
not correspond to modal logic S5. ∇

When we endow Hilbert systems with this kind of interpretation systems we get
a new class of logic systems, and then notions of soundness and completeness can
be considered. In [240], a result of soundness preservation is presented.

In order to understand the relationship between the point based approach and
the algebraic approach to semantics, it is better to introduce a general point based
semantics (the terminology is borrowed from general frames in modal logic [265,
24]). The general point based semantics was essential to achieve completeness
preservation as in [282]. We now present the corresponding structures and inter-
pretation systems, called general structures and general interpretation systems.

Definition 3.4.12 A general structure over C is a triple 〈U,B, ν〉 where U is a
non-empty set, B is a non-empty subset of ℘U , and ν = {νk}k∈N is a family of
functions such that νk : Ck → B(Bk) ∇

The class of all general structures over C is denoted by gStr(C). As above, U
is the set of points. The set B is the set of admissible valuations. The particular
case where B is ℘U corresponds to the structures over C presented above.

In the sequel, given a map g with domain S and X = 〈X1, . . . , Xk〉 ∈ (℘S)k,
for simplicity, we use g(X) for 〈g(X1), . . . , g(Xk)〉. Similarly,

X ∩ Y k

abbreviates 〈X1 ∩ Y, . . . , Xk ∩ Y 〉.
Two structures over C 〈U,B, ν〉 and 〈U ′,B′, ν′〉 are said to be isomorphic when-

ever there is a bijection f : U → U ′ such that, for every k ∈ N, c ∈ Ck and b ∈ Bk,
νk(c)(b) = ν′k(c)(f(b)) and B′ = {f(b) : b ∈ B}.

Definition 3.4.13 A general pre-interpretation system is a triple 〈C,M,A〉 in
which M is a class and A is a map from M into gStr(C). ∇
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As before, the elements of M are models and 〈Um,Bm, νm〉 denotes A(m).
General interpretation systems are general pre-interpretation systems closed under
isomorphism and disjoint union of structures over C .

Prop/Definition 3.4.14 A general pre-interpretation system 〈C,M,A〉 is a gen-
eral interpretation system if it is closed under isomorphic images and disjoint
unions, that is,

• if 〈U,B, ν〉 and 〈U ′,B′, ν′〉 are isomorphic and 〈U,B, ν〉 = A(m) for some
m ∈M , then there exists m′ ∈M such that A(m′) = 〈U ′,B′, ν′〉;

• if Un∩Un′ = ∅ for all n �= n′ in some N ⊆M , then there exists m ∈M such
that:

– Um =
⋃
n∈N Un;

– Bm = {b ∈ ℘Um : b ∩ Un ∈ Bn for all n ∈ N}
– for every k ∈ N and b ∈ Bkm, νmk(c)(b) =

⋃
n∈N νnk(c)(b ∩ Ukn). ∇

Given any general pre-interpretation system 〈C,M,A〉, we can always obtain
the smallest interpretation system 〈C,M,A〉c containing it, by making it closed
under isomorphic images and disjoint unions in the obvious way.

It is also important to consider the closure under subalgebras of an interpreta-
tion systems. Given a structure 〈U,B, ν〉 over C, we say that B′ is a ν-subalgebra
of B whenever B′ ⊆ B and B′ is closed under the operations νk(c) for all k ∈ N

and c ∈ Ck. An interpretation system 〈C,M,A〉 is said to be closed under subal-
gebras whenever, for every m ∈ M and every νm-subalgebra B′ of Bm, there is a
model m′ ∈ M such that Um′ = Um, Bm′ = B′, and, for all k ∈ N and c ∈ Ck,
νm′(c) = νm(c)|B′k .

Denotations of formulas and global and local entailments are defined as expect.
An assignment into a model m ∈ M of a general (pre-)interpretation system
〈C,M,A〉 is map α : Ξ → Bm, and the denotation map

[[.]]αm : L(C) → Bm
is inductively defined as expected using α and the map νm. Note that assign-
ments to schema variables and denotation of formulas belong to Bm, that is, they
are admissible valuations. Global entailment and local entailment are as in Def-
inition 3.4.7. Again, the global entailment operator induced by a general pre-
interpretation system 〈C,M,A〉 and the one induced by its closure 〈C,M,A〉c are
the same. Similarly with respect to local entailment. Similar remarks also hold
when considering closure under subalgebras. In the sequel, all interpretation are
assumed to be closed under subalgebras.

Finally, we describe the fibring mechanism for general interpretation structures.
We start with unconstrained fibring.
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Prop/Definition 3.4.15 Let gI ′ = 〈C′,M ′, A′〉 and gI ′′ = 〈C′′,M ′′, A′′〉 be
general interpretation systems. Then, their unconstrained fibring by functions
is the general interpretation system

gI ′⊕ gI ′′ = 〈C,M,A〉
defined, using i′ : C′ → C′ ⊕ C′′ and i′′ : C′′ → C′ ⊕ C′′, as follows:

• C is C′⊕ C′′

• M is the subclass of M ′ ×M ′′ composed of the pairs 〈m′,m′′〉 such that:

– Um′ = Um′′ and Bm′ = Bm′′ ;

• A(〈m′,m′′〉) = 〈U,B, ν〉 where:

– U = Um′(= Um′′); B = Bm′(= Bm′′);

– νk(i′(c′)) = νm′k(c′) for each c′ ∈ C′
k;

– νk(i′′(c′′)) = νm′′k(c′′) for each c′′ ∈ C′′
k . ∇

The fibred models are just pairs of models, one from each original general inter-
pretation system, with equal set of points and set of admissible valuations. The
structure over C associated to each fibred model includes their common set of
points and set of admissible valuations, and each constructor is interpreted as in
the interpretation system it comes from.

Herein, we take profit of the fact that interpretation systems are closed under
disjoint unions. Indeed, to each model m of the fibring we assign just one model
of each component, say m′ and m′′. The model m′ is the disjoint union of the
models that were assigned to m. The model m′′ is obtained in a similar way.

Next, we consider constrained fibring. As above, the constrained fibring of
two general interpretation systems is built on top of their unconstrained fibring
identifying shared symbols and their denotations.

Prop/Definition 3.4.16 Let gI ′ = 〈C′,M ′, A′〉 and gI ′′ = 〈C′′,M ′′, A′′〉 be gen-
eral interpretation systems and let

{f ′ : Csh → C′, f ′′ : Csh → C′′}
be a sharing diagram between C′ and C′′. Then, the constrained fibring by func-
tions of gI ′ and gI ′′ is the interpretation system

gI ′
f ′f ′′

⊕ gI ′′ = 〈C,M,A〉
where, considering the unconstrained fibring gI ′⊕gI ′′ = 〈C′⊕C′′,M ′⊕M ′′, A′⊕A′′〉,
using i′ : C′ → C′⊕C′′ and i′′ : C′′ → C′⊕C′′ such that Csh ∩ C′⊕C′′ = ∅, and
letting A′⊕A′′(m) = 〈Um,Bm, νm〉,
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• C is defined as in Prop/Definition 3.4.10;

• M is the subclass of all elements m of M ′⊕M ′′ satisfying the same require-
ments as in Prop/Definition 3.4.10;

• A(m) = 〈Um,Bm, ν′〉 where ν′ is defined as in Prop/Definition 3.4.10. ∇

Unconstrained fibring by functions of interpretation systems is a coproduct,
and constrained fibring by functions is a pushout. Logic systems including gen-
eral interpretation systems are defined as expected, as well as the usual notions
of soundness and completeness. In [282], results of soundness preservation and
completeness preservation in this setting are presented.

Observe that a general structure 〈U,B, ν〉 over C is a power-set algebraic struc-
ture. That is, the set of truth values is a subset of the power set of U . The role
of U is also important for stating the truthfulness of a formula. Hence, we can
abstract from this structure in an easy way by having a set of truth values with a
top element as we do when defining algebraic structures in Section 3.1.

3.5 Final remarks

In this chapter, algebraic fibring was introduced. The basic semantic structure
is an ordered algebra whose carrier set represents the set of truth values and the
operations correspond to the denotations of the connectives. Moreover, the order
relation allows to compare truth values in each structure. The top element of each
algebra corresponds to theorems.

Algebraic fibring is a step towards being able to define fibring, at the semantic
level, of logics that do not have the same kind of semantics. We assume that we are
able to generate the ordered algebras from the semantic structures of the logic with
no loss. That is, the semantic entailment of the logic is captured by the ordered
algebras. For example, if we consider modal logic endowed with Kripke semantics
we can extract from each Kripke structure an ordered algebra by considering the
set of all subsets of the set of worlds as truth values, the set of worlds as the top
and by comparing truth values by means of inclusion of sets. Observe that this is
the process used to generate a modal algebra from a Kripke structure.

Since fibring by functions seems to be very different, we discussed how algebraic
fibring captures fibring by functions. In a nutshell we can say that algebraic
fibring is related to fibring by functions as modal algebras are related with Kripke
structures. A bit of history is in order at this point. The first step when one
is introduced to modal logic is to go through Kripke structures. Then we learn
that not every modal logic is complete with respect to Kripke semantics and so
we learn about general Kripke structures. When we have the set of valuations, in
our terminology the set of truth values, modal algebras are easily understood as
an abstraction of the point-based semantics.

The fibring by functions is very intuitive even in a geometric way. In the end,
fibring of point-based models corresponds to a fixed point construction. The main
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drawback of the definition is that to a model of the fibring we can assign a set of
models of each original logic. This can be simplified if we assume that our logic is
closed for unions. In this situation, to each model m of the fibring we assign just
one model of each component, say m′ and m′′. The model m′ is the union of the
models that were previously assigned to m. Similarly with respect to the model
m′′. As it is well known, many logics are not closed for unions. For instance, modal
logic, in general, is closed for unions but linear temporal logic is not. However,
it is possible to close for unions any logic preserving the semantic entailment (for
more details on this issue see [282]). When we are concerned with completeness
in the presence of the point-based semantics, immediately general structures are
in order. And from there to algebraic semantics is just a small abstraction step.

Concerning preservation properties, in this chapter it is worthwhile to make
some a posteriori comments. The first one is that in many cases we can only prove
sufficient conditions for preservation, as in completeness. The other is a strategy
that can be important to prove other metalogical properties. When we want to
prove preservation of a property, we should look for sufficient conditions for a logic
to have that property and then prove the preservation of the sufficient conditions.
For instance, among others, fullness is a requirement for a logic to be complete.
Then we show that fullness is preserved by fibring.

Another important aspect to report is that congruence is not always preserved
by fibring. Basically, congruence is a metaproperty that cannot be expressed in
the object logic. Please see the difference, for instance, with the metatheorem of
deduction in Chapter 2. An open problem is to show that congruence is preserved
by logics whose rules are schematic. That is, all the counterexamples found related
to non-preservation of congruence were given for logics (strange ones) where rules
are not schematic. Of course, for solving this problem one should find a good
definition of schematic rule.

Another open problem is to see whether the relaxation of the metatheorem
of deduction in the lines of Chapter 2 can provide sufficient conditions for the
preservation of completeness of more logics.

We believe that the people interested in category theory could provide an alter-
native version of the adopted algebraic structure in categorical terms. This would
provide a more abstract structure covering also logics that have a categorical se-
mantics from the very beginning. Some steps in this direction will be presented in
Chapter 7.

Finally, we believe that preservation of more properties should be further ex-
plored. Among them the preservation of interpolation using semantic techniques
like the amalgamation property is also worth investigating. The results obtained
in [190, 191, 192, 193] should be taken as an inspiration both for local and global
entailments. Preservation of weak completeness should also be considered taking
into account the work in [98] for temporal logics and in [92] for non-normal modal
logics, with the aim of relaxing the assumptions and covering more logics.



Chapter 4

Heterogeneous fibring

In Chapter 2, we have studied the fibring of logics in a homogeneous scenario:
both logics were presented in the same way, through Hilbert calculi. However, this
is not usually the case. Often, we have an heterogeneous setting, that is, we are
given two logics presented in different ways. We may have, for instance, two modal
logics such that one is presented by a Hilbert calculus and the other is presented
by a sequent calculus or even semantically presented by Kripke structures.

In this chapter we study the fibring of logics in this heterogeneous setting, in
particular, the fibring of logics when:

(i) one is presented in a semantic way and the other is presented by a calculus;

(ii) both are presented by calculi but these are of different nature;

(iii) both are presented by different semantic structures.

This latter case was tackled in Chapter 3 where we provide an algebraic struc-
ture where a large number of semantic structures can be accommodated. In this
chapter we concentrate on examples of fibring of Hilbert, sequent and tableau cal-
culi. From the semantic point of view we investigate fibring of logics presented by
satisfaction systems.

The solution to (i), which is also a solution to (ii), is to define fibring of conse-
quence systems. The motivation is very easy: a logic presented either in a syntactic
or in a semantic way always induce at least a consequence operator. For instance
in Chapter 2, an Hilbert calculus with global and local rules induces two conse-
quence operators: a global and a local one. Since the rules are related so are the
consequence operators.

The idea is to get in a first step a consequence system for each of the given logics
and then consider their fibring. However, using this approach, the constructive
nature of derivations is lost. Hence, this solution is not a satisfactory one when
dealing with logics presented by calculus because no trace is kept of the derivations
that may exist in the original calculi. For this reason, we provide another solution

139
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to (ii) introducing abstract proof systems and their fibring. An abstract proof sys-
tems intends to abstract the essential properties of logics presented syntactically
via some notion of derivation. The fibring of proof systems keeps the constructive
nature of derivations. Hilbert, sequent and tableau calculi all induce proofs sys-
tems. Hence, in this approach, we first get from each calculus the corresponding
proof system and then we consider their fibring.

In both solutions for heterogeneous fibring we also use the ghost technique that
was introduced in Chapter 2 for investigating preservation of interpolation. In a
nutshell we must be able to translate formulas from the fibring to the components.

Section 4.1 concentrates on consequence systems. To begin with we introduce
sequent calculi and tableau calculi and show how they induce consequence systems.
We also introduce satisfaction systems, generalizing the interpretation systems
presented in Chapter 3, and show how they also induce consequence systems.
Finally, we define fibring of consequence systems using a fixed point operator.
Section 4.2 focuses on the notion of abstract proof system. We introduce the
proof systems induced by Hilbert, sequent and tableau calculi and then we define
fibring of proof systems. In both settings some preservation results are proved. We
also discuss some relationships between consequence systems and proof systems.
In Section 4.3, we present some final remarks.

The relevant material for this Chapter is the work presented in [68]. We refrain
here of considering some preservation results that are there namely related to
strong and weak semi-decidability. The reason is that in order to present those
results we need some computability results on Gödelization of universes.

4.1 Fibring consequence systems

In this section we concentrate on consequence systems as a possible solution to
heterogeneous fibring. We begin by presenting sequent calculi, tableau calculi and
their corresponding consequence systems. From the semantic point of view, we
consider satisfaction systems which, as expected, also induce consequence systems.
Next, we define fibring of consequence systems and study some of its properties.
Heterogeneous fibring of logics is then achieved in two steps: we first get the
consequence system induced by each logic and then we consider their fibring.

4.1.1 Induced consequence systems

Herein we show how sequent calculi and tableau calculi induce consequence sys-
tems. We also introduce satisfaction systems and their corresponding consequence
systems.

Recall from Chapter 1 that a consequence system is a pair 〈C,C〉 where C is a
signature and C : ℘L(C) → ℘L(C) is a map with the following properties:

(i) Γ ⊆ C(Γ) extensivity

(ii) if Γ1 ⊆ Γ2 then C(Γ1) ⊆ C(Γ2) monotonicity
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(iii) C(C(Γ)) ⊆ C(Γ) idempotence.

Recall also that a consequence system is said to be compact if

C(Γ) =
⋃

Φ∈℘finΓ

C(Φ)

for each Γ ⊆ L(C).
Herein, we also consider the notion of quasi-consequence system, that is, a pair

〈C,C〉 verifying conditions (i) and (ii) above. Quasi-consequence systems can be
used to express properties of one-step consequence.

A consequence system is said to be closed for renaming substitutions if

σ(C(Γ)) ⊆ C′(σ(Γ))

for every Γ ⊆ L(C) and every renaming substitution σ (that is, σ(ξ) ∈ Ξ for each
ξ ∈ Ξ) and it is said to be structural if that inclusion holds for every substitution.

Throughout this chapter we work with propositional based signatures where
each set of connectives Ck is denumerable.

Sequent calculi

Sequent calculi are also often called Gentzen calculi (the mathematician Gerhard
Gentzen was the one that introduced this kind of calculi see [124]). A sequent
calculi includes a signature and a set of sequent inference rules.

Definition 4.1.1 A sequent over a signature C is a pair 〈Δ1,Δ2〉 where Δ1

and Δ2 are multi-sets of formulas in L(C). A sequent inference rule is a pair
〈{Θ1, . . . ,Θn},Θ〉 where Θ1, . . . ,Θn and Θ are sequents. ∇

Some variants of sequents are possible namely when Δ1 and Δ2 are either sets
or sequences. In our case we work with multi-sets that is we have no order and
can have more than one occurrence of the same element.

Sequents are often denoted by Δ1 → Δ2. The multi-set Δ1 is said to be the
antecedent of the sequent and the multi-set Δ2 its consequent. If Δ1 ∩Δ2 �= ∅, the
sequent is said to be an axiom.

A sequent inference rule may also be represented by

Θ1 . . . Θn

Θ

Each sequent Θi is said to be a premise of the sequent inference rule and Θ its
conclusion. Some sequent inference rules are particularly relevant and are given
special names. The following inference rules are often considered.
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• Structural rules:

ξ1,Δ1 → Δ2 Δ1 → Δ2, ξ1
Δ1 → Δ2

Cut

Δ1 → Δ2

Δ1 → Δ2, ξ1
RW

Δ1 → Δ2

ξ1,Δ1 → Δ2
LW

Δ1 → ξ1, ξ1,Δ2

Δ1 → ξ1,Δ2
RC

Δ1, ξ1, ξ1 → Δ2

Δ1, ξ1 → Δ2
LC

where Δ1 and Δ2 are multi-sets of formulas in L(C). The labels RW,
LW, RC and LC respectively stand for right weakening, left weakening, right
contraction and left contraction.

• Left rule for connective c: sequent inference rule whose conclusion is

(c(ϕ1, . . . , ϕn)),Δ1 → Δ2

• Right rule for connective c: sequent inference rule whose conclusion is

Δ1 → Δ2, (c(ϕ1, . . . , ϕn))

As a simplification we are not assuming that the connective rules have provisos
like for example this element should be fresh in some set. The reason can be easily
explained. We are not presenting a general theory of sequents but only using them
as examples for heterogeneous fibring.

We now introduce the notion of sequent calculus.

Definition 4.1.2 A sequent calculus is a pair G = 〈C,R〉, where C is a signature
and R is a set of sequent inference rules. ∇

In a sequent calculus, the set of sequent inference rules usually includes specific
left and right rules for the connectives and in many cases also structural rules.
We are also excluding from our examples labeled sequent calculi like for example
those that are used for modal logic and for finite-valued logics.

Given a sequent calculus G, sequents can be derivable from a set of sequents,
using the sequent inference rules.

Definition 4.1.3 A sequent s is derivable from a set H of sequents in G, denoted
by

H G s

if there is a finite sequence Δ1,1 → Δ2,1 . . .Δ1,n → Δ2,n of sequents such that:

• Δ1,1 → Δ2,1 is s;

• for each i = 1, . . . , n, one of the following holds:
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– Δ1,i → Δ2,i is an axiom sequent;

– Δ1,i → Δ2,i ∈ H;

– there exist a sequent inference rule 〈{Θ1, . . . ,Θk},Ω〉 in G and a sub-
stitution σ such that σ(Θj) ∈ {Δ1,i+1 → Δ2,i+1, . . .Δ1,n → Δ2,n}, for
j = 1, . . . , k, and Δ1,i → Δ2,i = σ(Ω).

The sequence Δ1,1 → Δ2,1 . . .Δ1,n → Δ2,n is a derivation of s from H em G. ∇

We say that a formula ϕ is derivable from the set of formulas Γ in G, indicated
by

Γ G ϕ

if G Δ → ϕ where Δ is a finite multi-set of formulas in Γ. As usual, G ϕ is used
whenever Γ is an empty set. We denote by Γ�G the set of formulas derivable from
Γ in G. When presenting a derivation, we add a justification for each sequent in
the sequence: Ax when it is an axiom sequent, Hyp when it is a sequent in H,
and the name of the inference rule together with the corresponding positions of
the instances of the premises in the other cases.

Example 4.1.4 A sequent calculus GS4 for modal logic S4 includes the expected
signature, the Cut rule and the following sequent inference rules [263], where (�Δ)
and (�Δ) respectively stand for {(�δ) : δ ∈ Δ} and {(�δ) : δ ∈ Δ}:

Δ1, ξ1 → ξ2,Δ2

Δ1 → (ξ1 ⇒ ξ2),Δ2
R⇒ Δ1 → ξ1,Δ2 Δ1, ξ2 → Δ2

Δ1, (ξ1 ⇒ ξ2) → Δ2
L⇒

Δ1, ξ1 → Δ2

Δ1 → (¬ ξ1),Δ2
R¬ Δ1 → ξ1,Δ2

Δ1, (¬ ξ1) → Δ2
L¬

(�Δ1) → ξ1, (�Δ2)
Δ′

1, (�Δ1) → (�ξ1), (�Δ2),Δ′
2

R�
Δ1, ξ1, (�ξ1) → Δ2

Δ1, (�ξ1) → Δ2
L�

In the rules above, Δ1, Δ2, Δ′
1 and Δ′

2 are multi-sets of formulas in L(C).
Note that we can extract a sequent calculus for propositional logic by eliminating

R� and L�. Observe also that weakening and contraction can be derived from
these inference rules. The right and left rules for � are easily obtained using the
corresponding abbreviation.

As an example, we present below a derivation of → ((�ξ1)⇒ (¬(�(¬ξ1)))) from
the empty set of hypothesis. To better understand the derivation, it is preferable
to read it from the bottom to the top.

1 → ((�ξ1)⇒ (¬(�(¬ξ1)))) R⇒,2
2 (�ξ1) → (¬(�(¬ξ1))) R¬,3
3 (�ξ1), (�(¬ξ1)) → L�, 4
4 (�ξ1), ξ1, (�(¬ξ1)) → L�,5
5 (�ξ1), ξ1, (�(¬ξ1)), (¬ξ1) → L¬,6
6 (�ξ1), ξ1, (�(¬ξ1)) → ξ1 Ax
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Hence, GS4 → ((�ξ1)⇒ (¬(�(¬ξ1)))) and therefore we can also conclude that
GS4 ((�ξ1)⇒ (¬(�(¬ξ1)))), or, using the usual abbreviation,

GS4 ((�ξ1)⇒ (�ξ1))

meaning that S4 includes the seriality axiom as a theorem. Observe that, in
general, derivations in sequent calculi can be represented by trees. However, in
order to study fibring of such systems it is more convenient to present derivations
as sequences. For instance, the derivation above corresponds to the following tree.

(�ξ1), ξ1, (�(¬ξ1)) → ξ1

(�ξ1), ξ1, (�(¬ξ1)), (¬ξ1) → L¬
(�ξ1), ξ1, (�(¬ξ1)) → L�

(�ξ1), (�(¬ξ1)) → L�

(�ξ1) → (¬(�(¬ξ1))) R¬
→ ((�ξ1)⇒ (¬(�(¬ξ1))))

R⇒

∇

As we saw in Proposition 2.2.11, each Hilbert calculus induces a consequence
system. The same holds for sequent calculi.

Proposition 4.1.5 A sequent calculus G = 〈C,R〉 induces a compact and struc-
tural consequence system C(G) = 〈C,G〉.

Tableau calculi

We now introduce tableau calculi. Tableau calculi are also called Smullyan calculi
(as introduced by the logician Raymond Smullyan see [251, 250]). Most of the
tableau calculi rely on the existence of a negation in the logic at hand. To be able
to deal with as many logics as possible we avoid this assumption by considering
tableau calculi over labeled formulas. Herein we only consider a very simple case
for the labels. A labeled formula is a pair 〈ϕ, i〉, denoted by i :ϕ, where i is either
0 or 1. Intuitively speaking, 1 :ϕ states that we want ϕ to be true and 0:ϕ means
that we want ϕ to be false. We denote by Lλ(C) the set of pairs i :ϕ such that
i = 0, 1 and ϕ ∈ L(C).

Definition 4.1.6 A tableau inference rule is a pair 〈Υ, μ〉where Υ ∈ ℘fin℘finL
λ(C)

and μ ∈ Lλ(C). ∇

Given a tableau inference rule 〈Υ, μ〉, μ is the conclusion and each set in Υ
is said to be an alternative. We can look at Υ as alternatives to μ. Given the
alternatives Ψ1, . . . ,Ψn, the tableau inference rule can also be represented by

Ψ1 . . . Ψn

μ



4.1. FIBRING CONSEQUENCE SYSTEMS 145

We now present the notion of tableau calculus.

Definition 4.1.7 A tableau calculus is a pair S = 〈C,R〉 where C is a signature
and R is a set of tableau inference rules. ∇

Tableau calculi usual include the excluded middle rule and positive and negative
rules for the connectives, where,

• Excluded middle:
{i :ξ1,1 :ξ2} {i :ξ1, 0:ξ2}

i :ξ1
EM

• Positive rule for connective c: tableau inference rule whose conclusion is

1 :(c(ϕ1, . . . , ϕn))

• Negative rule for connective c: tableau inference rule whose conclusion is

0 :(c(ϕ1, . . . , ϕn))

Given a tableau calculus S, sets of labeled formulas can be derivable from a set
of sets of labeled formulas, using the tableau inference rules.

Definition 4.1.8 A set of labeled formulas Θ is derivable from a set H of sets of
labeled formulas in S, denoted by

H S Θ

if there is a finite sequence Ψ1 . . .Ψn of finite sets of labeled formulas such that:

• Ψ1 is Θ;

• for each i = 1, . . . , n, one of the following holds:

– there is a ψ ∈ L(C) such that 1 :ψ, 0:ψ ∈ Ψi;

– Ψi ∈ H;

– there exists a substitution σ and a tableau inference rule 〈Υ, μ〉 in S
such that σ(μ) ∈ Ψi and σ(υ) ∪ (Ψi \ {σ(μ)}) ∈ {Ψi+1, . . . ,Ψn}, for
each υ ∈ Υ.

The sequence Ψ1 . . .Ψn is a derivation of Θ from H em S. ∇
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We say that a formula ϕ is derivable from the set of formulas Γ in S, indicated
by

Γ S ϕ
if S {(1 : δ) : δ ∈ Δ} ∪ {0 : ϕ}, where Δ is a finite subset of Γ. Again, S ϕ is
used whenever Γ is an empty set. We denote by Γ�S the set of formulas derivable
from Γ in S. When presenting a derivation, we add a justification for each set of
formulas Ψi in the sequence: Abs (absurd) when 1:ψ, 0:ψ ∈ Ψi, Hyp when it is a
set in H and the name of the inference rule in the other cases.

Example 4.1.9 A tableau calculus SP∧,⇒ = 〈C,R〉 for the propositional connec-
tives ∧ and ⇒ is such that

• C0 = P, C2 = {∧,⇒}
• R, besides the excluded middle rule, includes

{1:ξ1, 1:ξ2}
1:(ξ1 ∧ ξ2)

1 ∧ {0:ξ1} {0:ξ2}
0:(ξ1 ∧ ξ2)

0∧

{0:ξ1} {1:ξ2}
1:(ξ1 ⇒ ξ2)

1⇒ {1:ξ1, 0:ξ2}
0:(ξ1 ⇒ ξ2)

0⇒

Observe that 0∧ states that there are two alternatives for a conjunction to be false.

As an example, we present a derivation of {0:(((ξ1⇒ξ2)∧ξ1)⇒ (ξ1∧ξ2))} from
the empty set of hypothesis. Again, it is more convenient to read the derivation
from the bottom to the top.

1 {0:(((ξ1 ⇒ ξ2) ∧ ξ1)⇒ (ξ1 ∧ ξ2))} 0⇒ 2
2 {1:((ξ1 ⇒ ξ2) ∧ ξ1), 0:(ξ1 ∧ ξ2)} 1∧ 3
3 {1:(ξ1 ⇒ ξ2), 1:ξ1, 0:(ξ1 ∧ ξ2)} 0∧ 4,5
4 {1:(ξ1 ⇒ ξ2), 1:ξ1, 0:ξ1} Abs
5 {1:(ξ1 ⇒ ξ2), 1:ξ1, 0:ξ2} 1⇒ 6,7
6 {0:ξ1, 1:ξ1, 0:ξ2} Abs
7 {1:ξ2, 1:ξ1, 0:ξ2} Abs

Hence, we conclude that SP∧,⇒ {0 : (((ξ1 ⇒ ξ2) ∧ ξ1)⇒ (ξ1 ∧ ξ2))} and therefore
we also conclude that SP∧,⇒ (((ξ1 ⇒ ξ2) ∧ ξ1)⇒ (ξ1 ∧ ξ2)).

Derivations in tableau calculi can be represented by trees. Again we choose
to consider sequences for representing derivations since they are more convenient
when dealing with fibring. The tree in Figure 4.1 corresponds to the derivation
above. ∇

As in the case of Hilbert calculi and sequent calculi, each tableau calculus
induces a consequence system.

Proposition 4.1.10 A tableau calculus S = 〈C,R〉 induces a compact and struc-
tural consequence system C(S) = 〈C,S〉.
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0:(((ξ1 ⇒ ξ2) ∧ ξ1)⇒ (ξ1 ∧ ξ2))

0⇒

1:((ξ1 ⇒ ξ2) ∧ ξ1)
0 :(ξ1 ∧ ξ2)

1∧

1:(ξ1 ⇒ ξ2)
1 :ξ1

0:(ξ1 ∧ ξ2)

���
���

���
�

0∧
���

���
���

�

1:(ξ1 ⇒ ξ2)
1 :ξ1
0:ξ1

1:(ξ1 ⇒ ξ2)
1 :ξ1
0:ξ2

��
��

��
��

��
��

��
1⇒

,,
,,

,,
,,

,,
,

0:ξ1
1:ξ1
0:ξ2

1:ξ2
1:ξ1
0:ξ2

Figure 4.1: Tree for a derivation in SP∧,⇒
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Satisfaction systems

The semantic structures to be considered are satisfaction systems. These struc-
tures constitute a generalization of the interpretation systems defined in Section 3.1
of Chapter 3. Indeed they are more abstract and do not include details on the
denotation of the connectives.

Definition 4.1.11 A satisfaction system is a triple 〈C,M,�〉 where C is a signa-
ture, M is a class and � ⊆M × L(C). ∇

The elements of the class M are called models and � is the satisfaction relation.
In the sequel, we write Mod(ϕ) to denote the set {m ∈ M : m � ϕ} and Mod(Γ)
to denote the set

⋂
γ∈Γ Mod(γ), for Γ ∪ {ϕ} ⊆ L(C).

Example 4.1.12 A (Kripke) satisfaction system SatB = 〈C,M,�〉 for modal
logic B is as follows:

• C is the modal signature presented in Example 2.1.4;

• each model is a tuple (Kripke structure) 〈W,R, V 〉 where W is a non-empty
set, R ⊆ W ×W is a symmetric and transitive relation and V : Ξ → ℘W is
a map;

• m � ϕ if m,w � ϕ for every w ∈W , where:

– m,w � ξ if w ∈ V (ξ);

– m,w � (¬ϕ) if not m,w � ϕ;

– m,w � (ϕ1 ⇒ ϕ2) if not m,w � ϕ1 or m,w � ϕ2;

– m,w � (�ϕ) if m,u � ϕ for every u ∈W such that wRu. ∇

Observe that an interpretation system generates a satisfaction system. Moreover
if we consider local and global reasoning then we can say that an interpretation
system generates two satisfaction systems: a local and a global related to each
other.

Example 4.1.13 Recall from Definition 3.1.16 that an interpretation system is a
pair 〈C,A〉 where C is a signature and A is a class of (algebraic) interpretation
structures over C, that is, a class of tuples B = 〈B,≤, ν, 〉 where 〈B,≤, 〉 is a
partial order with top  and 〈B, ν〉 is an algebra over C.

Each interpretation system I = 〈C,A〉 induces the satisfaction system

SatI = 〈C,M,�〉
as follows:

• each model in M is a pair 〈B, α〉 where B is an interpretation structure in A
and α is an assignment of B;
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• 〈B, α〉 � ϕ if [[ϕ]]αB =  . ∇

Each satisfaction system induces a consequence system.

Proposition 4.1.14 The satisfaction system Sat = 〈C,M,�〉 induces a conse-
quence system C(Sat) = 〈C,�〉 where Γ� = {ϕ ∈ L(C) : Mod(Γ) ⊆ Mod(ϕ)} for
each Γ ⊆ L(C).

Proof. Let Γ,Γ1,Γ2 ⊆ L(C).
Extensiveness: If ϕ ∈ Γ, then Mod(Γ) ⊆ Mod(ϕ) and therefore ϕ ∈ Γ�.
Monotonicity: If Γ1⊆Γ2 and ϕ∈Γ�

1 then Mod(Γ2) ⊆ Mod(Γ1) and Mod(Γ1) ⊆
Mod(ϕ), therefore Mod(Γ2) ⊆ Mod(ϕ), hence ϕ ∈ Γ�

2 .
Idempotence:
(i) We have Mod(Γ) ⊆ Mod((Γ�)�). In fact, if m ∈ Mod(Γ) then m ∈ Mod(γ)

for each γ ∈ Γ�, that is, m ∈ Mod(Γ�). In particular, Mod(Γ�) ⊆ Mod((Γ�)�).
From this, the result follows easily.

(ii) Given ϕ ∈ (Γ�)�, we have that Mod(Γ) ⊆ Mod((Γ�)�) ⊆ Mod(ϕ), that is
ϕ ∈ Γ�. �

In order to guarantee that a satisfaction system induces a structural consequence
system, an additional requirement is in order.

We say that a satisfaction system is sensible-to-substitution if for each substitu-
tion σ there is a map βσ : M →M such that m � σ(ϕ) if βσ(m) � ϕ.

Example 4.1.15 Consider again the satisfaction system for modal logic as in-
troduced in Example 4.1.12. We show that it is sensible-to-substitution. Let
〈W,R, V 〉 be a model and σ : Ξ → L(C) a substitution. Then mσ is the model
〈W,R, Vσ〉 where Vσ(ξ) = {w ∈ W : m,w � σ(ξ)}. Then, we can show by induc-
tion on ϕ that m � σ(ϕ) if and only if mσ � ϕ. ∇

Proposition 4.1.16 Let Sat = 〈C,M,�〉 be a sensible-to-substitution satisfac-
tion system. Then C(Sat) is a structural consequence system.

Proof. Given a substitution σ and a set of formulas Γ, we want to prove that
σ(Γ�) ⊆ (σ(Γ))�. This is equivalent to prove that Mod(σ(Γ)) ⊆ Mod(ϕ), for
every ϕ ∈ σ(Γ�). Thus, let ϕ ∈ σ(Γ�). Given m ∈ Mod(σ(Γ)), we have that
βσ(m) ∈ Mod(Γ) since, for each γ ∈ Γ, m � σ(γ) and therefore βσ(m) � γ.
Recalling that ϕ ∈ σ(Γ�), let ψ ∈ Γ� such that ϕ = σ(ψ). Then, βσ(m) � ψ and
therefore m � σ(ψ), that is, m ∈ Mod(ϕ). Hence, Mod(σ(Γ)) ⊆ Mod(ϕ) and, as
a consequence, ϕ ∈ (σ(Γ))�. We then conclude that σ(Γ�) ⊆ (σ(Γ))�. �

Usually it is not possible to prove that a consequence operator induced by
a satisfaction system is compact. When dealing with logics that are complete,
the compactness of the semantic entailment comes from the compactness of the
syntactic consequence operator.
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4.1.2 Fibring of consequence systems

We now define fibring of consequence systems. The signature of the fibring of
two consequence systems is the fibring C′∪C′′ of the signatures C′ and C′′ of the
two systems. Recall from Definition 2.1.7 that this corresponds to the union of
the connectives in C′ and C′′. The language of the fibring of these consequence
systems is the language over such signature. However, an essential ingredient for
the definition of the consequence relation will be the ability to translate formulas of
the fibring to either component. We achieve this by renaming the schema variables
and coding formulas by fresh schema variables.

Definition 4.1.17 Let C and C′ be two signatures such that C ≤ C′ and consider
a bijection g : L(C′) → N. The translation

τg : L(C′) → L(C)

is the map defined inductively as follows:

• τg(ξi) = ξ2i+1 for ξi ∈ Ξ;

• τg(c) = c for c ∈ C0;

• τg(c′) = ξ2g(c′) for c′ ∈ C′
0 \ C0;

• τg(c(γ′1, . . . , γ′k)) = (c(τg(γ′1), . . . , τg(γ′k))) for c ∈ Ck, k > 0 and γ′1, . . . , γ′k ∈
L(C′);

• τg(c′(γ′1, . . . , γ′k)) = ξ2g(c′(γ′
1,...,γ

′
k)) for c′ ∈ C′

k \ Ck, k > 0 and formulas
γ′1, . . . , γ

′
k ∈ L(C′).

The substitution
τ−1
g : Ξ → L(C′)

is defined as

• τ−1
g (ξ2i+1) = ξi for ξi ∈ Ξ;

• τ−1
g (ξ2i) = g−1(i). ∇

Observe that looking at the index of a variable in τg(L(C′)) we can decide
whether it comes from a variable or a formula starting with a connective in C′ \C.

As usual, we also denote by τ−1
g the extension of τ−1

g to L(C).

Lemma 4.1.18 Let C and C′ be two signatures such that C ≤ C′ and consider
a bijection g : L(C′) → N. The maps τ−1

g ◦ τg and τg ◦ τ−1
g are identity maps.

Proof. Straightforward using induction. �
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Herein we choose to use  as a generic consequence operator instead of C for
readability reasons.

In order to define the fibring of consequence systems 〈C′,′〉 and 〈C′′,′′〉,
the relevant translations are defined from L(C′∪C′′), the language of the fib-
ring, to L(C′) and to L(C′′), the languages of each component. Given a bijection
g : L(C′∪C′′) → N, the corresponding translation maps, defined using Defini-
tion 4.1.17, are

τ ′g : L(C′∪C′′) → L(C′) and τ ′′g : L(C′∪C′′) → L(C′′).

On the other hand, the corresponding substitutions are

τ ′−1
g : Ξ → L(C′∪C′′) and τ ′′−1

g : Ξ → L(C′∪C′′).

As usual the extension of τ ′−1
g to L(C′) is denoted by τ ′−1

g and the extension
of τ ′′−1

g to L(C′′) is denoted by τ ′′−1
g .

In the sequel, for each pair of signatures C′ and C′′ we always assume fixed a
bijection g : L(C′∪C′′) → N and use τ ′, τ ′′, τ ′−1 and τ ′′−1 instead of τ ′g, τ ′′g , τ ′−1

g

and τ ′′−1
g .

The translations τ ′ and τ ′′, together with τ ′−1 and τ ′′−1, are used to define the
closure of each Γ ⊆ L(C′∪C′′) with respect to ′ and to ′′.

Definition 4.1.19 Let C′ = 〈C′,′〉 and C′′ = 〈C′′,′′〉 be two consequence sys-
tems and let Γ ⊆ L(C′∪C′′). The ′-closure of Γ is the set

Γ�′
= τ ′−1((τ ′(Γ))�

′
).

Similarly, the ′′-closure of Γ is the set Γ�′′
= τ ′′−1((τ ′′(Γ))�

′′
). ∇

Next, we present the fibring of consequence systems.

Definition 4.1.20 Let C′ = 〈C′,′〉 and C′′ = 〈C′′,′′〉 be two consequence sys-
tems. The fibring of consequence systems C′ and C′′ is a pair

C′∪ C′′ = 〈C,〉

where

• C = C′∪C′′;

• : ℘L(C) → ℘L(C) where, for each Γ ⊆ L(C), Γ� is the least set satisfying
the following:

1. Γ ⊆ Γ�;

2. If Δ ⊆ Γ� then Δ�′ ∪Δ�′′ ⊆ Γ�. ∇
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It is easy see that the set Γ� can be constructed for every Γ ⊆ L(C). In fact,
given a set Γ of formulas, let

X = {Θ ∈ ℘L(C) : Γ ⊆ Θ, and Δ ⊆ Θ implies Δ�′ ∪Δ�′′ ⊆ Θ}.
Since X �= ∅, because L(C) ∈ X , there exists the set

⋂
X . This set is Γ�.

As before, the fibring is said to be unconstrained when C′ ∩ C′′ = ∅; otherwise
is constrained.

Fibring of consequence systems can be seen as a “limit” construction over the
class of quasi consequence systems. That is, consequences in general can be ob-
tained by successive applications of one step consequences as we show in the next
result using a Tarski’s result on fixed points [257].

Proposition 4.1.21 Let C′ = 〈C′,′〉 and C′′ = 〈C′′,′′〉 be consequence systems.
Consider the following transfinite sequence of quasi consequence systems:

• C0 = 〈C′∪C′′,0〉 where Γ�0 = Γ for every Γ ⊆ L(C);

• Cβ+1 = 〈C′∪C′′,β+1〉 where Γ�β+1 = τ ′−1((τ ′(Γ�β ))�
′
)∪τ ′′−1((τ ′′(Γ�β ))�

′′
)

for every Γ ⊆ L(C);

• Cα = 〈C′∪C′′,α〉 where Γ�α =
⋃
β<α Γ�β if α is a limit ordinal.

Then C′∪C′′ = Cα for some ordinal α.

Proof. The operator Υ : ℘L(C) → ℘L(C) such that Υ(Δ) = Δ�′ ∪ Δ�′′
is

monotonic and extensive (recall Definition 1.1.1) over the powerset complete lattice
〈℘L(C),⊆〉. Hence Υ satisfies Tarski’s fixed point theorem and so, for each Γ, there
is a least fixed point Γ�α . It is easy to see that Γ�α = Γ�. �

Figure 4.2 illustrates a step of the fibring construction (just for the first com-
ponent) where for simplicity:

• Ψ is Γ�β ;

• Ψ′ is τ ′(Ψ)�
′
;

• Ψ+1 is Γ�β+1 .

Observe that the construction above can be transfinite. We can give a sufficient
condition to ensure that the limit of the transfinite sequence defined above is
obtained in a denumerable number of steps.

Proposition 4.1.22 Let C′ = 〈C′,′〉 and C′′ = 〈C′′,′′〉 be compact conse-
quence systems and consider the transfinite sequence of quasi consequence system
as defined in Proposition 4.1.21. Then

C′∪ C′′ =
⋃

n∈N

Cn.
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τ'−1τ'

τ'−1(Ψ')

Ψ'
τ'(Ψ)

Ψ

Ψ+1

Figure 4.2: Construction of consequence system Cβ+1

Proof. It is enough to show that the operator Υ : ℘L(C) → ℘L(C) defined in
Proposition 4.1.21 is continuous with respect to the same order as before, and
so Kleene’s fixed point theorem can be applied. Recall that the operator Υ is
continuous if it preserves directed unions. Let {Δa}a∈A be a directed family of
sets in L(C). Monotonicity implies that

⋃
a∈A Υ(Δa) ⊆ Υ(

⋃
a∈A Δa).

It remains to show the other inclusion. Let ϕ ∈ Υ(
⋃
a∈A Δa). Assume, without

loss of generality, that ϕ ∈ (
⋃
a∈A Δa)�

′
. Then

ϕ ∈ τ ′−1((τ ′(
⋃

a∈A
Δa))�

′
)

and so there is ϕ′ ∈ (τ ′(
⋃
a∈A Δa))�

′
such that τ ′−1(ϕ′) is ϕ. Since C′ is compact

there is a finite Φ ⊆ (τ ′(
⋃
a∈A Δa))�

′
such that ϕ′ ∈ (τ ′(Φ))�

′
, hence, using

monotonicity, there is B ⊆ A finite such that

ϕ′ ∈ (τ ′(
⋃

b∈B
Δb))�

′
.

Since {Δa}a∈A is directed there is d ∈ A such that
⋃
b∈B Δb = Δd. Therefore

ϕ ∈ τ ′−1(τ ′(Δd)). Applying Kleene’s fixed point theorem, Γ� =
⋃
n∈N

Υn(Γ). �

In general, we can still place an upper bound on the cardinality of α.

Proposition 4.1.23 Consider Γ�0 ,Γ�1 , . . . ,Γ�α as defined in Proposition 4.1.21.
Then α is countable.
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Proof. The sequence Γ�0 ,Γ�1 , . . . ,Γ�α is strictly increasing, hence |Γ�β | ≥ |β| for
each β = 0, . . . , α. Since Γ� ⊆ L(C) and L(C) is countable, it follows that α must
also be countable. �

In the sequel, we assume consequence systems C′ = 〈C′,′〉 and C′′ = 〈C′′,′′〉
and their fibring C = 〈C,〉. We now show that the fibring of two consequence
systems is indeed a consequence system.

Proposition 4.1.24 The fibring C′ ∪C′′ of consequence systems C′ and C′′ is a
consequence system.

Proof. Using Proposition 4.1.21, C′ ∪C′′ is a quasi-consequence system. Thus it
is enough to prove idempotence.

Let Γ ⊆ L(C). By definition of  there is α such that (Γ�)� = (Γ�)�α . We
show by induction that

(Γ�)�α ⊆ Γ� for every α.

(i) α = 0. Straightforward.
(ii) α = β + 1. By induction hypothesis (Γ�)�β ⊆ Γ� and so, by definition

of Γ�, we have ((Γ�)�β )�
′ ∪ ((Γ�)�β )�

′′ ⊆ Γ� which leads, by definition of , to
(Γ�)�α ⊆ Γ�.

(iii) α is a limit ordinal. Straightforward. �

The following result shows that the closure in C′∪C′′ of a set of formulas Γ′ in
L(C′) is the same as the closure in C′ of Γ′, and the same applies to C′′, when we
consider structural non-trivial consequence systems. As pointed out in [108], this
is a key requirement for a good definition of fibring.

In the sequel, the following notion will be helpful.

Definition 4.1.25 A consequence system C = 〈C,〉 is said to be trivial (with
respect to derivations) if Γ  ϕ for every ϕ ∈ L(C) and every non-empty Γ ⊆ L(C).

∇

It is worth noting that, if C is structural, then C is trivial (with respect to
derivations) if and only if there exist variables ξ �= ξ′ such that ξ′  ξ, if and only
if there exist Ξ′ ∪ {ξ} ⊆ Ξ such that Ξ′  ξ but ξ /∈ Ξ′. Therefore, a structural
consequence system C is non-trivial (with respect to derivations) if and only if, for
every Ξ′ ∪ {ξ} ⊆ Ξ,

Ξ′  ξ implies that ξ ∈ Ξ′.

Proposition 4.1.26 Unconstrained fibring C′∪C′′ of structural non-trivial (with
respect to derivations) consequence systems is conservative, that is

Γ′� ∩ L(C′,Ξ) = Γ′�′
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for every Γ′ ⊆ L(C′) and

Γ′′� ∩ L(C′′,Ξ) = Γ′′�′′

for every Γ′′ ⊆ L(C′′).

Proof. There is α such that Γ′� = Γ′�α . We show by induction that, for every α,
Γ′�α ∩ L(C′,Ξ) ⊆ Γ′�′

.
(i) α = 0. Then Γ′ ⊆ Γ′�′

by extensivity of ′.
(ii) α = β + 1. Let ϕ′ ∈ Γ′�α . We have two cases.
(ii.a) ϕ′ ∈ τ ′−1((τ ′(Γ′�β ))�

′
) ∩ L(C′,Ξ). Since C′ is structural, it follows that

τ ′−1((τ ′(Γ′�β ))�
′
) ⊆ (τ ′−1(τ ′(Γ′�β )))�

′

hence ϕ′ ∈ (τ ′−1((τ ′(Γ′�β ))))�
′

and by Lemma 4.1.18, ϕ′ ∈ (Γ′�β )�
′
. On the

other hand, by the induction hypothesis, Γ′�β ⊆ Γ′�′
and so, by monotonicity and

idempotence of ′, ϕ ∈ Γ′�′
.

(ii.b) ϕ′ ∈ τ ′′−1((τ ′′(Γ′�β ))�
′′

)∩L(C′,Ξ). Then there is ϕ′′ ∈ (τ ′′(Γ′�β ))�
′′

such
that τ ′′−1(ϕ′′) is ϕ′. By the induction hypothesis,

(Γ′�β ) ⊆ Γ′�′ ⊆ L(C′).

Recall the definition of τ ′′ from Definition 4.1.17. Since C′ ∩C′′ = ∅ and (Γ′�β ) ⊆
L(C′), it is clear that τ ′′(Γ′�β ) ⊆ Ξ. Using again the fact that C′ ∩ C′′ = ∅, and
recalling the definition of the substitution τ ′′−1 from Definition 4.1.17, we obtain
that ϕ′′ must be a variable, because

τ ′′−1(ϕ′′) = ϕ′ ∈ L(C′).

Since C′′ is structural, non-trivial and τ ′′(Γ′�β ) ∪ {ϕ′′} ⊆ Ξ is such that

τ ′′(Γ′�β ) ′′ ϕ′′

it follows that ϕ′′ ∈ τ ′′(Γ′�β ), by the remark above. Hence ϕ′ ∈ (Γ′�β ) and so
ϕ′ ∈ Γ′�′

, because (Γ′�β ) ⊆ Γ′�′
.

(iii) α is a limit ordinal. Straightforward.
The proof that Γ′′� = Γ′′�′′

for every Γ′′ ⊆ L(C′′) is entirely analogous. �

If the consequence systems C′ and C′′ are closed for renaming substitutions then
they are both weaker than their fibring C′∪C′′. Recall that 〈C′,′〉 is weaker than
〈C,〉 if C′ ≤ C and Γ′�′ ⊆ Γ′� for every subset Γ′ of L(C′).

Proposition 4.1.27 For every consequence systems C′ and C′′ closed for renaming
substitutions the following relationships hold: C′ ≤ C′∪C′′ and C′′ ≤ C′∪C′′
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Proof. Since C′ ≤ C′∪C′′, it remains to show that Γ′�′ ⊆ Γ′� for Γ′ ⊆ L(C′),
and similarly for C′′. Assume that ϕ′ ∈ Γ′�′

. Let ρ : Ξ → L(C′) be a renaming
substitution such that

ρ(ξi) = ξ2i+1

for every ξi ∈ Ξ. Since C′ is closed for renaming substitutions, ρ(ϕ′) ∈ (ρ(Γ′))�
′
.

Observing that ρ coincides with τ ′ for formulas in L(C′), we have

τ ′(ϕ′) ∈ (τ ′(Γ′))�
′

hence ϕ′ ∈ τ ′−1((τ ′(Γ′))�
′
) and so ϕ′ ∈ Γ′�. �

Theorem 4.1.28 The fibring C′∪ C′′ of structural consequence systems C′ and
C′′ is also structural.

Proof. Let σ : Ξ → L(C) be a substitution. Since there is α such that Γ� = Γ�α ,
it is enough to show by induction that

σ(Γ�α) ⊆ (σ(Γ))� for every ordinal α.

(i) α = 0. Then σ(Γ�0 ) = σ(Γ) ⊆ (σ(Γ))� by extensivity of .
(ii) α = β + 1. We have to prove that σ(Γ�β+1) ⊆ (σ(Γ))�, that is,

σ((Γ�β )�
′ ∪ (Γ�β )�

′′
) ⊆ (σ(Γ))�.

Now we prove that
σ((Γ�β )�

′
) ⊆ (σ(Γ))�.

The proof of σ((Γ�β )�
′′

) ⊆ (σ(Γ))� is similar. The induction hypothesis states
that σ(Γ�β ) ⊆ (σ(Γ))�. Hence, following the definition of ,

(σ(Γ�β ))�
′ ∪ (σ(Γ�β ))�

′′ ⊆ (σ(Γ))�

where (σ(Γ�β ))�
′

= τ ′−1(τ ′(σ(Γ�β ))�
′
). Since τ ′ ◦ σ : Ξ → L(C′) is a substitution

and C′ is structural,

τ ′−1(τ ′(σ((Γ�β )�
′
))) ⊆ τ ′−1((τ ′(σ(Γ�β )))�

′
).

Therefore, using Lemma 4.1.18,

σ((Γ�β )�
′
) ⊆ τ ′−1((τ ′(σ(Γ�β )))�

′
).

We then conclude that σ((Γ�β )�
′
) ⊆ (σ(Γ�β ))�

′ ⊆ (σ(Γ))�.
(iii) α is a limit ordinal. Straightforward. �

Fibring plays a special role in the class of structural consequence systems: fib-
ring of consequence systems C′ and C′′ is minimal in the class of consequence
systems that are stronger than C′ and C′′.
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Proposition 4.1.29 For every structural consequence systems C′, C′′ and C′′′, if
C′ ≤ C′′′ and C′′ ≤ C′′′ then C′∪ C′′ ≤ C′′′.
Proof. Let C′′′ = 〈C′′′,′′′〉. Clearly, C′ ∪ C′′ ≤ C′′′. Hence, we have to prove
that Γ� ⊆ Γ�′′′

. Since there is α such that Γ� = Γ�α , it is sufficient to show by
induction that Γ�α ⊆ Γ�′′′

for every α.
(i) α = 0. Then Γ ⊆ Γ�′′′

, by extensivity of ′′′.
(ii) α = β + 1. We have to show that

τ ′−1((τ ′(Γ�β ))�
′
) ⊆ Γ�′′′

and similarly τ ′′−1((τ ′′(Γ�β ))�
′′

) ⊆ Γ�′′′
. By the induction hypothesis Γ�β ⊆ Γ�′′′

,
hence τ ′(Γ�β ) ⊆ τ ′(Γ�′′′

) and so, by monotonicity of ′,

(τ ′(Γ�β ))�
′ ⊆ (τ ′(Γ�′′′

))�
′
.

But C′ ≤ C′′′ by hypothesis, hence

(τ ′(Γ�′′′
))�

′ ⊆ (τ ′(Γ�′′′
))�

′′′

and therefore (τ ′(Γ�β ))�
′ ⊆ (τ ′(Γ�′′′

))�
′′′

. Moreover,

τ ′−1((τ ′(Γ�β ))�
′
) ⊆ τ ′−1((τ ′(Γ�′′′

))�
′′′

)

then, since C′′′ is structural,

τ ′−1((τ ′(Γ�β ))�
′
) ⊆ (τ ′−1(τ ′(Γ�′′′

)))�
′′′
.

Therefore τ ′−1((τ ′(Γ�β ))�
′
) ⊆ (Γ�′′′

)�
′′′

and so

τ ′−1((τ ′(Γ�β ))�
′
) ⊆ Γ�′′′

by idempotence of ′′′.
(iii) α is a limit ordinal. Straightforward. �

From the results above, it follows that C′∪C′′ is the supremum of C′ and C′′.
With respect to preservation of properties of consequence systems by fibring,

we can prove the following.

Theorem 4.1.30 The fibring of compact consequence systems is also a compact
consequence system.

Proof. We have to show that Γ� =
⋃

Φ∈℘finΓ Φ�.
The inclusion from right to left follows directly by extensivity and monotonicity.
In order to prove the converse inclusion, let ϕ ∈ Γ�. We prove by induction on

α that if ϕ ∈ Γ�α then there is Φ ⊆ Γ finite such that ϕ ∈ Φ�.
(i) α = 0. Then ϕ ∈ Γ�0 , hence ϕ ∈ Γ and so we can take Φ = {ϕ}.
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(ii) α = β + 1. We have two cases. Without loss of generality, let ϕ ∈ (Γ�β )�
′
.

Since ′ is compact there is Ψ ⊆ Γ�β finite such that ϕ ∈ Ψ�′
and, moreover, by

definition of  also ϕ ∈ Ψ�. But, by the induction hypothesis, for each ψ ∈ Ψ
there is Φψ ⊆ Γ finite such that ψ ∈ Φ�

ψ. Take

Φ =
⋃

ψ∈Ψ

Φψ.

Then Φ is a finite set such that Φ ⊆ Γ and ϕ ∈ Φ�.
(iii) The case where α is a limit ordinal is straightforward. �

Now we can give a first attempt to solve the problem of heterogeneous fibring
at the deductive level. The basic idea is that once we are given two calculi, of the
same kind or not, we extract the induced consequence systems thus getting a ho-
mogeneous scenario. Afterwards we obtain the consequence system that represents
the fibring of the induced consequence systems.

Example 4.1.31 Let GS4 be the sequent calculus for modal logic S4 as presented
in Example 4.1.4, but considering C′

1 = {¬,�′}, C′
2 = {⇒}.

Let C(GS4) = C′ = 〈C′,′〉 be the induced consequence system. Let HB be the
Hilbert calculus for modal logic B as presented in Example 2.2.5 of Chapter 2, but
considering C′′

1 = {¬,�′′}, C′′
2 = {⇒}, and let C(HB) = 〈C′′,′′〉 be the induced

consequence system.
The fibring of these consequence systems is the consequence system

C(GS4)∪C(HB) = (C′∪C′′,).

Note that the notion of derivation (finite sequence of either formulas or sequents)
does not play a role in the construction.

We can conclude that �′′((�′ξ1)⇒ (¬(�′(¬ξ1))))) ∈ ∅� since

− ((�′ξ3)⇒ (¬(�′(¬ξ3)))) ∈ ∅�′

− τ ′−1(((�′ξ3)⇒ (¬(�′(¬ξ3))))) = ((�′ξ1)⇒ (¬(�′(¬ξ1)))) ∈ τ ′−1(∅�′
)

− ((�′ξ1)⇒ (¬(�′(¬ξ1)))) ∈ ∅�1 since τ ′−1(∅�′
) ⊆ ∅�1

− τ ′′(((�′ξ1)⇒ (¬(�′(¬ξ1))))) = (ξ2g(�′ξ1) ⇒ (¬ ξ2g(�′(¬ ξ1)))) ∈ τ ′′(∅�1)

− �′′((ξ2g(�′ξ1) ⇒ (¬ ξ2g(�′(¬ ξ1))))) ∈ (τ ′′(∅�1))�
′′

− τ ′′−1(�′′((ξ2g(�′ξ1) ⇒ (¬ ξ2g(�′(¬ ξ1)))))) = (�′′((�′ξ1)⇒ (¬(�′(¬ξ1)))))

− (�′′((�′ξ1)⇒ (¬(�′(¬ξ1))))) ∈ τ ′′−1((τ ′′(∅�1))�
′′

)

− (�′′((�′ξ1)⇒ (¬(�′(¬ξ1))))) ∈ ∅� since τ ′′−1((τ ′′(∅�1))�
′′
) ⊆ ∅�2 ⊆ ∅�. ∇
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From a deductive point of view this solution to heterogeneous fibring is not
entirely acceptable because the central notion of derivation as a finite sequence is
lost. We do not have the notion of derivation in the fibring. Therefore we prefer to
introduce, in the next section, the new notion of proof system to solve the problem
of fibring heterogeneous proof system.

However, fibring of consequence systems is a good abstraction if we want to
combine a semantic system with a deductive calculus as in the following example.

Example 4.1.32 Consider again the sequent calculus GS4 and the corresponding
induced consequence system as presented in Example 4.1.31. Let SatB be the
satisfaction system similar to the one introduced in Example 4.1.12 but with C′′

1 =
{¬,�′′} and C′′

2 = {⇒}. Let C(SatB) = 〈C′′,�〉 be the induced consequence
system. The fibring of GS4 and SatB is the consequence system

C(GS4)∪C(SatB) = 〈C′∪C′′,〉.

Using the usual abbreviation �′ for simplicity, we are able to show that
(�′(�′′(�′′(�′′(�′(ξ1 ⇒ (�′ξ1))))))) ∈ ∅�:

− (�′(ξ3 ⇒ (�′ξ3))) ∈ ∅�′

− τ ′−1((�′(ξ3 ⇒ (�′ξ3)))) = (�′(ξ1 ⇒ (�′ξ1))) ∈ τ ′−1(∅�′
)

− (�′(ξ1 ⇒ (�′ξ1))) ∈ ∅�1 since τ ′−1(∅�′
) ⊆ ∅�1 ;

− τ ′′((�′(ξ1 ⇒ (�′ξ1)))) = ξ2i ∈ τ ′′(∅�1)

− (�′′(�′′(�′′(ξ2i)))) ∈ {ξ2i}� hence (�′′(�′′(�′′(ξ2i)))) ∈ (τ ′′(∅�1))�

− τ ′′−1((�′′(�′′(�′′(ξ2i))))) = (�′′(�′′(�′′((�′(ξ1 ⇒ (�′ξ1)))))))

− (�′′(�′′(�′′((�′(ξ1 ⇒ (�′ξ1))))))) ∈ τ ′′−1((τ ′′(∅�1))�)

− (�′′(�′′(�′′((�′(ξ1 ⇒ (�′ξ1))))))) ∈ ∅�2 since τ ′′−1((τ ′′(∅�1))�) ⊆ ∅�2

− τ ′((�′′(�′′(�′′((�′(ξ1 ⇒ (�′ξ1)))))))) = ξ2j ∈ τ ′(∅�2)

− (�′ξ2j) ∈ {ξ2j}�′
hence (�′ξ2j) ∈ (τ ′(∅�2))�

′

− τ ′−1((�′ξ2j)) = (�′(�′′(�′′(�′′(�′(ξ1 ⇒ (�′ξ1))))))) ∈ τ ′−1((τ ′(∅�2))�
′
)

− (�′(�′′(�′′(�′′(�′(ξ1 ⇒ (�′ξ1))))))) ∈ ∅� since τ ′−1((τ ′(∅�2))�
′
) ⊆ ∅�3 ⊆ ∅�

where i = g((�′(ξ1 ⇒ (�′ξ1)))) and j = g((�′′(�′′(�′′((�′(ξ1 ⇒ (�′ξ1)))))))). ∇

It is worthwhile to observe that given two Hilbert calculi H ′ and H ′′ then

C(H ′ ∪H ′′) = C(H ′) ∪ C(H ′′).
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That is, the consequence system C(H ′ ∪H ′′) generated by the fibring H ′ ∪H ′′ of
the two Hilbert calculi is the same as the fibring C(H ′)∪C(H ′′) of the consequence
systems C(H ′) and C(H ′′) generated by H ′ and H ′′, respectively. In other words,
if we consider C to be a map from Hilbert calculi to consequence systems then
we can say that C preserves fibring. The same preservation holds for sequent and
tableau calculi.

Of course one may ask if fibring the consequence systems induced by two inter-
pretation structures is the best solution for solving the problem of heterogeneous
fibring at the semantic level. The answer is that there are better ways, namely
following an algebraic semantic approach as presented before in Chapter 3.

We synthesize the properties of fibring of consequence systems as follows:

• homogeneous combination mechanism: both original logics are presented by
consequence systems;

• algorithmic combination of logics: given the consequence systems for the orig-
inal logics, we know how to define the consequence system that corresponds
to their fibring, but in many cases the given logics have to be pre-processed
(that is, the consequence systems have to be extracted);

• canonical combination of logics: the fibring is the minimal consequence sys-
tem among those that are stronger then the original consequence systems.

4.2 Fibring abstract proof systems

This section is dedicated to abstract proof systems and their fibring. Abstract
proof systems put in a general setting the usual syntactic presentations of logics
keeping the notion of derivation or certificate. When the given logics correspond to
calculi of different nature, proof systems provide a better setting for heterogeneous
fibring than consequence systems.

We start by presenting the notion of abstract proof system. Then we show how
Hilbert calculi, sequent calculi and tableau calculi induce proof systems. Next we
define fibring of proof systems. Heterogeneous fibring of logics present by different
kinds of calculi are then achieved in two steps: we first get the proof system
induced by each calculi and then we consider their fibring.

Given a binary relation R ⊆ A × B, we use the notation R(a, b) to indicate
that (a, b) ∈ R, or to say that R(a, b) = 1 when viewing the relation as a map
1R : A×B → {0, 1}.

4.2.1 Abstract proof systems

Herein we introduce the notion of proof system and refer some of its properties.
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Definition 4.2.1 An abstract proof system is a tuple

P = 〈C,D, ◦, P 〉

where C is a signature, D is a set, ◦ : ℘(D)×D→ D is a map and P = {PΓ}Γ⊆L(C)

is a family of relations PΓ ⊆ D × L(C) satisfying the following properties (where
PΓ(E,Ψ) holds if for every ψ ∈ Ψ there is e ∈ E such that PΓ(e, ψ) holds):

• right reflexivity: PΓ(D,Γ) for every Γ ⊆ L(C);

• monotonicity: PΓ1 ⊆ PΓ2 for every Γ1 ⊆ Γ2 ⊆ L(C);

• compositionality: let Γ ∪ {ϕ} ⊆ L(C):

– ∅ ◦ d = d for every d ∈ D;

– If E ⊆ D is a non-empty set and there is Ψ ∈ ℘L(C) such that PΓ(E,Ψ)
and PΨ(d, ϕ) hold then PΓ(E ◦ d, ϕ) also holds;

• variable exchange: PΓ(D,ϕ) = Pρ(Γ)(D, ρ(ϕ)) for any renaming substitution
ρ, that is, a substitution such that ρ(ξ) ∈ Ξ for every ξ ∈ Ξ. ∇

In an abstract proof system, the set D can be seen as the set of possible deriva-
tions, ◦ is a constructor that returns a derivation given a set of derivations and a
derivation and, PΓ(d, ψ) holds when d is a derivation of ψ from the set of formulas
Γ. The clause right reflexivity imposes that there is a derivation from a set for
each of its elements. The clause compositionality states that we can show that a
formula is derived from a set of formulas by using lemmas, that is, the usual cut
rule for sets can be used. The meaning of the other clauses is straightforward.
Note that the last clause is weaker than requiring structurality.

In the sequel, we may write “proof system” instead of “abstract proof system”.
A tuple P = 〈C,D, ◦, P 〉 is a quasi-proof system if all the properties of a proof

system hold with the possible exception of compositionality.
A particular (though not so interesting) proof system is the one whereD = L(C)

and P∅(ϕ, ϕ) for every ϕ ∈ L(C). Another example is when we considerD = L(C)∗

(that is, D is the set of all finite sequences of formulas), PΓ(w, γ) if γ ∈ Γ and is
the last element of w. We stress that D does not need to be related to C and to
the formulas in L(C); for instance, D can be the set of natural numbers. Other
examples will be discussed below.

Proposition 4.2.2 The following properties hold in a proof system:

• falsehood:
for every Γ ∪ {ϕ} ⊆ L(C),

PΓ(∅, ϕ) = 0;
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• monotonicity on the first argument:
for every E1 ⊆ E2 ⊆ D and Γ,Ψ ⊆ L(C),

PΓ(E1,Ψ) ≤ PΓ(E2,Ψ),

• anti-monotonicity on the second argument:
for every E ⊆ D, Γ ⊆ L(C) and Ψ1 ⊆ Ψ2 ⊆ L(C),

PΓ(E,Ψ2) ≤ PΓ(E,Ψ1);

• union:
for every Γ,Ψ1,Ψ2 ⊆ L(C),

PΓ(E,Ψ1 ∪Ψ2)=PΓ(E,Ψ1)× PΓ(E,Ψ2).

Proof. All the properties follow directly from the definitions. �

Proof systems sometimes have more properties. A proof system is said to be
non-trivial if PΞ′(D, ξ) = 0 for any Ξ′ ⊆ Ξ and ξ ∈ Ξ \ Ξ′. A proof system is
structural if PΓ(D,ϕ) ≤ Pσ(Γ)(D,σ(ϕ)) for each substitution σ. A proof system is
said to be compact or finitary if for every Γ and ψ there is Φ ⊆ Γ finite such that

PΓ(D,ψ) ≤ PΦ(D,ψ)

for every Γ ⊆ L(C).
Proof systems can be pre-ordered. We say that P = 〈C,D, ◦, P 〉 is weaker than

P ′ = 〈C′, D′, ◦′, P ′〉, indicated by

P ≤ P ′

if C ≤ C′ and PΓ(D,ϕ) ≤ P ′
Γ(D′, ϕ) for every Γ ∪ {ϕ} ⊆ L(C). Weaker proof

systems prove less formulas. Contrary to the former cases, the weakness relation
between proof systems is just a pre-order, that is, anti-symmetry may not hold.

4.2.2 Induced proof systems

We now show how Hilbert calculi, sequent calculi and tableau induce proof systems.
Observe that the semantic presentations of logics cannot in general be presented
as proof systems because they lack the notion of derivation.

Hilbert calculi

Recall from Definition 2.2.2 that a Hilbert calculus, in its simpler version, is a pair
〈C,R〉 such that C is a signature and R is a set of Hilbert inference rules (pairs
whose first component is a finite set of formulas and whose second component is
a formula).
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We need some auxiliary notation. Let π(e) denote the last element of sequence
e ∈ L(C)∗, let π(E) be the set {π(e) : e ∈ E} where E ⊆ L(C)∗ and let dπ(E)

E be
the sequence obtained by replacing in d ∈ L(C)∗ the last element π(e) of sequence
e (whenever it occurs in d) by the sequence e for every e ∈ E. Strictly speaking,
this is not well-defined, since there may be several e with the same last element,
but this is not a problem as long as one assumes that e is chosen uniformly, that
is choosing the first derivation in a lexicographical ordering of L(C)∗. As an
illustration, assume that

d = ϕ1 . . . ϕiψkϕi+1 . . . ϕn

and let
E = {ψ1 . . . ψk, ψ

′
1 . . . ψ

′
rψk}.

Assume that
ψ1 . . . ψk ≤ ψ′

1 . . . ψ
′
rψk

in the lexicographical ordering mentioned above. Then d
π(E)
E is the sequence

ϕ1 . . . ϕiψ1 . . . ψkϕi+1 . . . ϕn.

Let us consider a more general example: suppose that

d = ϕ1 . . . ϕi1−1ψ1ϕi1+1 . . . ϕi2−1ψ2ϕi2+1 . . . ϕik−1ψkϕik+1 . . . ϕn
and

E = {e11, . . . , e1j1 , e21, . . . , e2j2 , . . . , ek1 , . . . , ekjk , ek+1
1 , . . . , ek+1

jk+1
, . . . , er1, . . . , e

r
jr
}

such that π(eim) = ψi for 1 ≤ m ≤ ji and 1 ≤ i ≤ r, and ψi does not occur in d
for k < i ≤ r. Thus

π(E) = {ψ1, ψ2, . . . , ψk, ψk+1, . . . , ψr}.

Suppose also that ei1 ≤ eim for every 1 ≤ m ≤ ji and 1 ≤ i ≤ k in the given
lexicographical order, and let ei1 = γi1 . . . γ

i
si
ψi for 1 ≤ i ≤ k. Then

d
π(E)
E = ϕ1 . . . ϕi1−1γ

1
1 . . . γ

1
s1ψ1ϕi1+1 . . . ϕi2−1γ

2
1 . . . γ

2
s2ψ2ϕi2+1 . . .

. . . ϕik−1γ
k
1 . . . γ

k
sk
ψkϕik+1 . . . ϕn.

Proposition 4.2.3 A Hilbert calculus H = 〈C,R〉 induces a compact proof sys-
tem P(H) = 〈C,D, ◦, P 〉 as follows:

• D = L(C)∗;

• E ◦ d = d
π(E)
E ;

• PΓ(d, ψ) holds if and only if d is a Hilbert-derivation for ψ from Γ.
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Proof. We have to check right reflexivity, monotonicity, compositionality and
variable exchange.

Right reflexivity: It follows from the fact that the sequence γ is a derivation of
γ from set Γ whenever γ ∈ Γ.

Monotonicity: Assume that d is a derivation of ϕ from Γ1 and that Γ1 ⊆ Γ2.
Then d is also a derivation of ϕ from Γ2.

Compositionality: Assume that PΓ(E,Ψ) and PΨ(d, ϕ) hold for some set Ψ.
Then dΨ

EΨ
, where EΨ ⊆ E is the set of derivations in E of each ψ ∈ Ψ from Γ, is

a derivation of ϕ from Γ. Observe that only a finite number of elements of Ψ are
used, so dΨ

EΨ
is still a finite sequence.

Variable exchange: Assume that d is a derivation of ϕ from Γ and that ρ is a
renaming substitution. Then ρ(d) is a derivation of ρ(ϕ) from ρ(Γ). �

It is easy to see that P(H) is also structural translating each derivation with
the given substitution.

This is not the only proof system that can be generated from a Hilbert calcu-
lus. By construction any initial segment of a Hilbert derivation is itself a valid
derivation, which motivates the following definition.

Example 4.2.4 Let H = 〈C,R〉 be a Hilbert calculus. Then P ′(H) is defined as
above, except that P ′

Γ(d, ϕ) now holds if and only if d is a valid derivation from Γ
and ϕ occurs in d. ∇

The same example can be used to induce a proof system where the set of
derivations bears no (apparent) relationship to the language.

Example 4.2.5 Let H = 〈C,R〉 be a Hilbert calculus. Let g : L(C) → N be a
Gödelization of L(C) (that is, g is a bijection, there is an algorithm to evaluate
g and an algorithm to evaluate g−1) and g∗ : L(C)∗ → N such that, for each
ϕ1 . . . ϕk ∈ L(C)∗,

g∗(ϕ1 . . . ϕk) = p
g(a1)
1 . . . p

g(ak)
k

where pi is the ith prime number. Define P ′′(H) as follows:

• D is {g∗(e) : e ∈ L(C)∗};
• PΓ(n, ϕ) if n = g∗(e) of a sequence e ∈ L(C)∗ and e is a Hilbert-derivation

of ϕ from Γ;

• E ◦D = g∗(dπ(E)
E ). ∇

Sequent calculi

Recall that a sequent calculus is a pair 〈C,R〉 where C is a signature and R is
a set of sequent inference rules (pairs whose first component is a finite set of
sequents and whose second component is a sequent). In the sequel we assume that
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R includes the Cut rule, the structural rules and, for each connective, a right and
a left rule.

We need some auxiliary notation. Assume that d is a sequence of sequents
with initial sequent Δ1 → Δ2. When the initial sequent is important we can use
dΔ1→Δ2 to refer to d. Recall that in sequent calculi it is more convenient to read
derivation from the bottom to the top.

Proposition 4.2.6 A sequent calculusG = 〈C,R〉 induces a proof systemP(G) =
〈C,D, ◦, P 〉 defined as follows:

• D = Seq(C)∗ where Seq(C) is the set of all sequents defined with formulas
in L(C);

• Let E ∪ {dΘ→ϕ} ⊆ D where E �= ∅. Let {θ1, . . . , θn} ⊆ Θ be the set of
all formulas such that dΓi→θi ∈ E for every i = 1, . . . , n. Consider the set
Θ̄ = Θ \ {θ1, . . . , θn}. Then E ◦ dΘ→ϕ is the following sequence:

Θ̄,Γ1, . . . ,Γn → ϕ Cut 1a,1b
1a Θ̄,Γ1, . . . ,Γn → ϕ, θ1 LW∗,RW

dΓ1→θ1

1b θ1, Θ̄,Γ1, . . . ,Γn → ϕ Cut 2a,2b
...
θ1, . . . , θn−1, Θ̄,Γ1, . . . ,Γn → ϕ Cut na,nb

na θ1, . . . , θn−1, Θ̄,Γ1, . . . ,Γn → ϕ, θn LW∗,RW
dΓn→θn

nb Θ,Γ1, . . . ,Γn → ϕ LW∗

dΘ→ϕ

where LW∗,RW indicate several applications of left weakening followed by
right weakening;

• E ◦ dΔ1→Δ2 is defined in a similar way;

• ∅ ◦ d = d;

• PΓ(d, ϕ) holds if d is a sequent-derivation of ϕ from Γ.

Proof. We have to check right reflexivity, monotonicity, compositionality and
variable exchange.

Right reflexivity: Just consider the derivation Γ → γ justified as an axiom
whenever γ ∈ Γ.

Monotonicity: Consider a derivation dΓ1→ϕ and Γ1 ⊆ Γ2. Then the following
is a derivation for Γ2 → ϕ:

1 Γ2 → ϕ LW∗ 2
2 dΓ1→ϕ
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Compositionality: Direct from the definition of ◦.
Variable exchange: If d is a derivation for Γ → ϕ and ρ is a renaming substitu-

tion then ρ(d) is a derivation for ρ(Γ) → ρ(ϕ). �

Note that, strictly speaking, the sequence E ◦ dΘ→ϕ is not well-defined above,
since there may be several derivations in E whose first sequent is the same. As
remarked before in a similar situation, this is not a problem as long as one assumes
an uniform choice of derivations.

Remark 4.2.7 Observe that in the case of sequents we can define binary relations
PH ⊆ D × Seq(C) where H is a set of sequents over L(C) (hence in Seq(C)) but
stating that PH(d, s) = 1 whenever H G s with sequent-derivation d. Of course
PΓ(d, ϕ) is P ∅(d,Γ → ϕ). ∇

Tableau calculi

Recall that a tableau calculus is a pair 〈C,R〉 where C is a signature and R is a
set of tableau inference rules (pairs whose first component is a set of finite sets of
labeled formulas and whose second element is a labeled formula). In the sequel
we assume that R includes the excluded middle and for each connective a positive
and a negative rule.

We need some notation: if d1 . . . dn is a finite sequence of sets and Ψ is a set of
labeled formulas, then

Ψd1 . . . dn

is the finite sequence d1 ∪ Ψ . . . dn ∪ Ψ. Observe that if d1 . . . dn is a tableau
derivation for Γ S ϕ then Ψd1 . . . dn is a tableau-derivation for Γ ∪ Ψ S ϕ. We
use 1 :A to refer to the set {(1 :a) : a ∈ A}.

Proposition 4.2.8 A tableau calculus G = 〈C,R〉 induces a proof system

P(G) = 〈C,D, ◦, P 〉

defined as follows:

• D = (℘Lλ(C))∗ is the set of all finite sequences of sets of labeled formulas;

• Let E ∪ {d} ⊆ D be such that the first set in d is 1 : Θ ∪ {0 : ϕ} and, for
θi ∈ Θ, with i = 1, . . . , n, there are ei ∈ E whose first set is 1 : Γi ∪ {0 : θi}.
Let Θ̄ = Θ \ {θ1, . . . , θn} and Γ =

⋃n
i=1 Γi. Define

E ◦ d

as follows, where Ψ1 is 1:Θ̄∪ (1 :Γ \ 1:Γ1)∪{0:ϕ} and Ψn is 1:Θ̄∪ (1 :Γ \ 1:
Γn) ∪ {1:θ1, . . . , 1:θn−1, 0:ϕ}:
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1:Θ̄, 1:Γ, 0:ϕ EM 1a,1b
1a 0:θ1, 1:Θ̄, 1:Γ, 0:ϕ

Ψ1e1
1b 1:θ1, 1:Γ, 0:ϕ EM 2a,2b

...
1:θ1, . . . , 1:θn−1, 1:Γ, 0:ϕ EM na,nb

na 1:θ1, . . . , 0:θn, 1:Γ, 0:ϕ
Ψn

nb 1:Θ, 0:ϕ
1:Γd

• PΓ(d, ϕ) holds if and only if d is a tableau derivation for ϕ from Γ.

Proof. We have to check right reflexivity, monotonicity, compositionality and
variable exchange.

Right reflexivity: The set 1 :Γ ∪ {0:γ} is an absurd when γ ∈ Γ.
Monotonicity: Let Γ1 ⊆ Γ2 and d be a tableau-derivation of ϕ from Γ1. Then

(Γ2 \ Γ1)d is a tableau-derivation of ϕ from Γ2.
Compositionality: Follows from the fact that E ◦ d is a tableau-derivation of

ϕ from Θ̄ ∩ Γ whenever d is a tableau-derivation from Θ and there is a tableau-
derivation in E of θi from Γi for every i = 1, . . . , n.

Variable exchange: If d is a tableau-derivation of ϕ from Γ then ρ(d) is a
tableau-derivation of ρ(ϕ) from ρ(Γ) for every renaming substitution ρ. �

Remark 4.2.9 Observe that in the case of tableau calculi we can define binary
relations PH ⊆ D × ℘Lλ(C) where H is a set of sets of labeled formulas over
L(C) (hence in ℘Lλ(C)) but stating that PH(d, s) = 1 whenever H S s with
tableau-derivation d. Of course PΓ(d, ϕ) is P ∅(d, 1:Γ ∪ {0:ϕ}). ∇

4.2.3 Fibring

We now define fibring of proof systems. As expect, the signature of the fibring is
the fibring of the signatures of the components.

Definition 4.2.10 The fibring of two proof systems P ′ = 〈C′, D′, ◦′, P ′〉 and
P ′′ = 〈C′′, D′′, ◦′′, P ′′〉 is the tuple

P ′∪P ′′ = 〈C,D, ◦, P 〉
defined as follows:

• C = C′ ∪ C′′;

• D =
⋃
n∈N

Dn where the sequence Dn is defined as follows:

– D0 = D′ ∪D′′;
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– Dn+1 = {〈E, d〉 : E ⊆ Dn, d ∈ D′ ∪D′′};
• E ◦ d = 〈E, d〉 if E �= ∅ and d otherwise;

• PΓ(d′, ϕ) holds if P ′
τ ′(Γ)(d

′, τ ′(ϕ)) holds for d′ ∈ D′ ;

• PΓ(d′′, ϕ) holds if P ′′
τ ′′(Γ)(d

′′, τ ′′(ϕ)) holds for d′′ ∈ D′′;

• PΓ(〈E, d〉, ϕ) holds if there is a set Ψ ∈ L(C) for which both PΨ(d, ϕ) and
PΓ(E,Ψ) hold. ∇

Notice that the second- and third-to-last cases are not mutually exclusive since
D′ and D′′ need not be disjoint.

Before showing that the fibring of proof systems is a proof system we give the
intuition behind the construction of the set of derivations and some examples.
Take as an example 〈{d′}, d′′〉; this is a derivation provided that d′ is a derivation
in D′ and d′′ is a derivation in D′′. Such a derivation is only relevant when we use
the relation P . Saying that

P∅(〈{d′}, d′′〉, c′′(c′(ξ1)))

holds means that:

• d′′ is a derivation in D′′ of c′′(ξk) where ξk = τ ′′(c′(ξ1)), assuming that we
take the singleton {ξk} as the set of hypotheses, in other words provided
that P ′′

{ξk}(d′′, c′′(ξk)) holds;

• d′ is a derivation in D′ of c′(ξ3) taking the empty set as the set of hypotheses,
in other words provided that P ′

∅(d′, c′(ξ3)) holds.

We now give some examples of fibring involving logics presented with different
calculi.

Example 4.2.11 Consider the proof system P(GS4) induced by the sequent cal-
culus for modal logic S4 as presented in Example 4.1.31 and the proof system
P(HB) induced by the Hilbert calculus for modal logic with axiom B as in the
same Example. Recall that they share the propositional connectives, but in the
fibring we have two necessitations: �′ as in S4 (and consequently a corresponding
diamond �′) and �′′ as in B (and consequently a corresponding diamond �′′).
We can prove in P(GS4)∪P(HB) that

P∅(〈{〈{d′1}, d′′〉}, d′2〉, (�′(�′′(�′′(�′′(�′(ξ1 ⇒ (�′ξ1))))))))

holds. Indeed

• P ′
{ξi}(d′2, (�′ξi)) holds in P(GS4) with derivation d′2 as follows:

1 → (�′ξi) R�′ 2
2 → ξi Hyp
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where ξi is τ ′(�′′(�′′(�′′(�′(ξ1 ⇒ (�′ξ1))))));

• and we have to show that P∅(〈{d′1}, d′′〉,�′′(�′′(�′′(�′(ξ1⇒(�′ξ1)))))) holds;

But
P∅(〈{d′1}, d′′〉, (�′′(�′′(�′′(�′(ξ1 ⇒ (�′ξ1)))))))

holds since

• P ′′
{ξj}(d′′, (�′′(�′′(�′′(ξj))))) holds in P(HB) with derivation d′′ as follows:

1 ξj Hyp
2 (�′′ξj) Nec1
3 ((�′′ξj)⇒ (�′′(�′′(�′′ξj)))) B
4 (�′′(�′′(�′′ξj))) MP2,3

where ξj is τ ′′(�′(ξ1 ⇒ (�′ξ1)));

• and P∅(d′1,�
′(ξ3 ⇒ (�′ξ3))) holds in P(GS4) with derivation d′1 as follows:

1 → (�′(ξ3 ⇒ (�′ξ3))) R�′ 2
2 → (ξ3 ⇒ (�′ξ3)), (�′(ξ3 ⇒ (�′ξ3))) R⇒ 3
3 ξ3 → (�′ξ3), (�′(ξ3 ⇒ (�′ξ3))) R�′ 4
4 → ξ3, (�′(ξ3 ⇒ (�′ξ3))) R�′ 5
5 → ξ3, (ξ3 ⇒ (�′ξ3)), (�′(ξ3 ⇒ (�′ξ3))) R⇒ 6
6 ξ3 → ξ3, (�′ξ3), (�′(ξ3 ⇒ (�′ξ3))) Ax

Hence d′2, d′′, d′1 provide a derivation for (�′(�′′(�′′(�′′(�′(ξ1⇒ (�′ξ1))))))) with-
out any hypotheses. Observe that the number of pairings in the derivation indi-
cates the way we have to use the component proof systems. In the example above
we have three pairings and we had to use the component proof systems three times.

We can present the derivation in the fibring of the formula

(�′(�′′(�′′(�′′(�′(ξ1 ⇒ (�′ξ1))))))))

from the empty set as follows:

d′1
�S4 (�′(ξ3 ⇒ (�′ξ3))

�S5 (�′(ξ1 ⇒ (�′ξ1))
τ ′−1

d′′

{ξj} �B (�′′(�′′(�′′ξj)))

{(�′(ξ1 ⇒ (�′ξ1)))} �S5 ψ
τ ′′−1

d′2
{ξi} �S4 (�′ξi)

{ψ} �S5ϕ
τ ′−1

�S5 (�′(�′′(�′′(�′′(�′(ξ1 ⇒ (�′ξ1))))))))
Cut

where

• ψ is (�′′(�′′(�′′(�′(ξ1 ⇒ (�′ξ1)))))));
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• ϕ is (�′(�′′(�′′(�′′(�′(ξ1 ⇒ (�′ξ1))))))));

• ξj is τ ′′(�′(ξ1 ⇒ (�′ξ1)));

• ξi is τ ′(�′′(�′′(�′′(�′(ξ1 ⇒ (�′ξ1))))));

• S4 is the consequence system generated by the abstract deductive system
P(S4) (see details in Subsection 4.2.4);

• B is the consequence system generated by the abstract deductive system
P(B);

• S5 is the fibring of S4 and B.

We can describe the above presentation of the derivation in the following way:
in order to show that ϕ is a theorem in the fibring S5, it is enough (cut rule) to
derive in S5:

(i) ϕ from ψ;

(ii) ψ from (�′(ξ1 ⇒ (�′ξ1));

(iii) (�′(ξ1 ⇒ (�′ξ1)) from the empty set.

We obtain (i) by deriving, in S4, (�′ξi) from ξi (derivation d′2). We get (ii) by
deriving, in B, (�′′(�′′(�′′ξj))) from ξj (derivation d′′). Finally, we obtain (iii)
by deriving, in S4, (�′(ξ1 ⇒ (�′ξ1)) from the empty set (derivation d′1). We use
the fact that every derivation in a component is translated into a corresponding
derivation in the fibring. ∇

Example 4.2.12 Consider the propositional part of the proof system P(GS4) in
Example 4.1.4 (with negation and implication as connectives) and the proof system
P(SP∧,⇒) induced by the tableau calculus SP∧,⇒ in Example 4.1.9. We prove in
P(GS4)∪P(SP∧,⇒) that

P∅(〈{d′1, d′2}, d′′〉, ((¬(ξ1 ⇒ ξ2))⇒ (ξ1 ∧ (¬ ξ2))))

holds. Indeed, taking ξi = τ ′′(¬(ξ1 ⇒ ξ2)) and ξj = τ ′′(¬ ξ2), we have:

• P ′′
{(ξi⇒ξ1),(ξi⇒ξj)}(d′′, (ξi ⇒ (ξ1 ∧ ξj))) holds in SP∧,⇒ with derivation d′′ as

follows:

1. 1 :(ξi⇒ ξ1), 1:(ξi⇒ ξj), 0:(ξi⇒ (ξ1 ∧ ξj)) 0⇒ 2
2. 1 :(ξi⇒ ξ1), 1:(ξi⇒ ξj), 1:ξi, 0:(ξ1 ∧ ξj) 1⇒ 3,4
3. 0 :ξi, 1:(ξi⇒ ξj), 1:ξi, 0:(ξ1 ∧ ξj) Ax
4. 1 :ξ1, 1:(ξi⇒ ξj), 1:ξi, 0:(ξ1 ∧ ξj) 1⇒ 5,6
5. 1 :ξ1, 0:ξi, 1:ξi, 0:(ξ1 ∧ ξj) Ax
6. 1 :ξ1, 1:ξj , 1:ξi, 0:(ξ1 ∧ ξj) 0∧ 7,8
7. 1 :ξ1, 1:ξj , 1:ξi, 0:ξ1 Ax
8. 1 :ξ1, 1:ξj , 1:ξi, 0:ξj Ax
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• P∅(d′1, ((¬(ξ1 ⇒ ξ2))⇒ ξ1)) holds in GS4 with derivation d′1 as follows:

1. → ((¬(ξ1 ⇒ ξ2))⇒ ξ1) R⇒ 2
2. (¬(ξ1 ⇒ ξ2)) → ξ1 L¬ 3
3. → (ξ1 ⇒ ξ2), ξ1 R⇒ 4
4. ξ1 → ξ2, ξ1 Ax

• P∅(d′2, (¬(ξ1 ⇒ ξ2))⇒ (¬ ξ2)) holds in GS4 with derivation d′2 as follows:

1. → (((¬(ξ1 ⇒ ξ2))⇒ (¬ ξ2)) R⇒ 2
2. (¬(ξ1 ⇒ ξ2)) → (¬ ξ2) L¬ 3
3. → (ξ1 ⇒ ξ2), (¬ ξ2) R⇒ 4
4. ξ1 → ξ2, (¬ ξ2) R¬ 5
5. ξ1, ξ2 → ξ2 Ax

Hence d′′d′1d
′
2 constitutes a derivation of (¬(ξ1 ⇒ ξ2)) ⇒ (ξ1 ∧ (¬ ξ2))) with no

hypotheses. We have two pairings but in one of them we have to produce two
derivations because the corresponding set has two elements. ∇

Observe that proofs in the fibring correspond to several application of a cut-like
rule.

Example 4.2.13 Consider Example 4.2.12. The derivation of

((¬(ξ1 ⇒ ξ2))⇒ (ξ1 ∧ (¬ ξ2))))

from ∅ can be seen as the following cut-like rule:

• Premises:

– ∅  ((¬(ξ1 ⇒ ξ2))⇒ ξ1));

– ∅  (¬(ξ1 ⇒ ξ2))⇒ (¬ ξ2));

– {(ξi⇒ ξ1), (ξi⇒ ξj)}  (ξi⇒ (ξ1 ∧ ξj)));
• Conclusion:

– ∅  ((¬(ξ1 ⇒ ξ2))⇒ (ξ1 ∧ (¬ ξ2))))

where ξi = τ ′′(¬(ξ1 ⇒ ξ2)) and ξj = τ ′′(¬ ξ2). ∇

We now prove that the fibring of proof systems is indeed a proof system.

Proposition 4.2.14 The fibring P ′∪P ′′ of proof systems P ′ and P ′′ is a proof
system.
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Proof. We have to check right reflexivity, monotonicity, compositionality and
variable exchange.

Right reflexivity: If ϕ ∈ Γ, then τ ′(ϕ) ∈ τ ′(Γ), hence P ′
τ ′(Γ)(d

′, τ ′(ϕ)) holds for
some d′ ∈ D′. Therefore PΓ(d′, ϕ) also holds, so PΓ(D,ϕ) holds.

Monotonicity: Suppose Γ1 ⊆ Γ2 and suppose that PΓ1(D,ϕ) holds. Then there
is α such that PΓ1(Dα, ϕ) holds. We show by induction on α that PΓ2(Dα, ϕ)
holds.

(i) α = 0. Without loss of generality, assume that there is d′ ∈ D′ such that
P ′
τ ′(Γ1)(d

′, τ ′(ϕ)) holds. By monotonicity of P ′, also P ′
τ ′(Γ2)(d

′, τ ′(ϕ)) holds, thus
PΓ2(d′, ϕ) holds and so PΓ2(D0, ϕ).

(ii) α = β + 1. Assume PΓ1(Dβ+1, ϕ) holds. Hence there is Ψ such that
PΓ1(Dβ ,Ψ) and PΨ(D,ϕ). Using the induction hypothesis we have PΓ2(Dβ ,Ψ)
and by definition of D we get PΓ2(Dα, ϕ).

(iii) α is a limit ordinal. This case is simple.
Compositionality: Immediate from the definition of ◦.

Variable exchange. Let ρ be a renaming substitution and suppose that PΓ(D,ϕ)
holds. Then there is n ∈ N such that PΓ(Dn, ϕ) holds. We prove by induction on
n that Pρ(Γ)(Dn, ρ(ϕ)) holds.

Base: n=0. Suppose that d is d′ ∈ D′; then

P ′
τ ′(Γ)(d

′, τ ′(ϕ))

holds. We have to show that there is e′ ∈ D′ such that

P ′
τ ′(ρ(Γ))(e

′, τ ′(ρ(ϕ)))

holds. Consider the renaming substitution ρ′ : Ξ → L(C′) such that, for each
ξ, ρ′(ξ) = τ ′(ρ(τ ′−1(ξ))). The variable exchange property for P ′ leads to the
existence of e′ ∈ D such that

P ′
ρ′(τ ′(Γ))(e

′, ρ′(τ ′(ϕ)))

holds. Since ρ′(τ ′(ψ)) = τ ′(ρ(ψ)) for every ψ ∈ L(C) we conclude that

P ′
τ ′(ρ(Γ))(e

′, τ ′(ρ(ϕ)))

holds. If d is d′′ ∈ D′′ the proof is similar.
Step: n = k + 1. Since PΓ(Dk+1, ϕ) then there is Ψ such that

PΓ(Dk,Ψ) and PΨ(D,ϕ).

For each ψ ∈ Ψ there exists e ∈ Dβ for which PΓ(e, ψ) holds, and by induction
hypothesis, there is some e′(ψ) ∈ Dk (we use the notation e′(ψ) to emphasize the
existence of one for each ψ) for which Pρ(Γ)(e′(ψ), ρ(ψ)) holds. Thus

Pρ(Γ)(Dβ, ρ(Ψ))

for E′ = {e′(ψ) : ψ ∈ Ψ}. Using a reasoning similar to the one for the basis we
conclude that Pρ(Ψ)(D, ρ(ϕ)), and so Pρ(Γ)(Dα, ρ(ϕ)) holds. Straightforward. �
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Next we study the relationship between the fibring and the original proof sys-
tems showing that the latter are weaker than the former. Also of interest is to
analyze how the fibring relates with proof systems that are stronger than the
components.

Proposition 4.2.15 For every proof systems P ′ and P ′′ the following relation-
ships hold: P ′ ≤ P ′∪P ′′ and P ′′ ≤ P ′∪P ′′.

Proof. Since both situations are similar, we show the first one, which amounts
to showing that P ′

Γ′(D′, ϕ′) ≤ PΓ′(D,ϕ′) for Γ′ ∪ {ϕ′} ⊆ L(C′). Suppose that
P ′

Γ′(d′, ϕ′) holds. Then, since τ ′ is a renaming substitution on L(C′), there is a
derivation d ∈ D′ such that P ′

τ ′(Γ)(d, τ
′(ϕ)) holds, and therefore PΓ(d, ϕ) holds. �

We need an auxiliary result before characterizing fibring in the class of proof
systems that are stronger than the components.

Theorem 4.2.16 The fibring of structural proof systems is also structural.

The proof of this result is similar to the one showing that the fibring satisfies
variable exchange, and for this reason we omit it.

Proposition 4.2.17 Let P ′, P ′′ and P ′′′ be structural proof systems. If P ′ ≤ P ′′′

and P ′′ ≤ P ′′′ then P ′∪P ′′ ≤ P ′′′.

Proof. We have to show that PΓ(D,ϕ) ≤ P ′′′
Γ (D′′′, ϕ). Assume that PΓ(D,ϕ)

holds. Then there is d ∈ D such that PΓ(d, ϕ). We prove by induction on d that
there is d′′′ such that P ′′′

Γ (d′′′, ϕ).
(i) Assume that d is d′ ∈ D′. Then P ′

τ ′(Γ)(d
′, τ ′(ϕ)) holds and so by the hy-

pothesis on P ′′′ there is e′′′ ∈ D′′′ such that P ′′′
τ ′(Γ)(e

′′′, τ ′(ϕ)) also holds. Since P ′′′

is closed for substitution there is d′′′ ∈ D′′′ such that P ′′′
τ ′−1(τ ′(Γ))(d

′′′, τ−1(τ ′(ϕ)))
holds and so there is d′′′ ∈ D′′′ such that P ′′′

Γ (d′′′, ϕ) holds. If d is d′′ ∈ D′′, the
situation is analogous.

(ii) Assume that d is 〈E, f〉. Then there is Ψ ⊆ L(C) such that PΨ(f, ϕ) and
PΓ(E,Ψ) hold. By induction hypothesis there is E′′′ such that P ′′′

Γ (E′′′,Ψ) holds.
Using a reasoning similar to the one above, there is d′′′ ∈ D′′′ such that P ′′′

Ψ (d′′′, ϕ)
holds. Hence P ′′′

Γ (E′′′ ◦ d′′′, ϕ) holds. �

Now we turn our attention towards preservation of compactness.

Theorem 4.2.18 The fibring of compact proof systems is compact.

Proof. We prove, by induction on d, that there is Φ ⊆ Γ finite such that PΦ(d, ϕ)
whenever PΓ(d, ϕ).

(i) Let d ∈ D′. Then P ′
τ ′(Γ)(d, τ

′(ϕ)), so there are Φ′ ⊆ τ ′(Γ) finite and d′ ∈ D′

such that P ′
Φ′ (d′, τ ′(ϕ)) and so Pτ ′−1(Φ′)(d′, ϕ) where τ ′−1(Φ′) ⊆ Γ is finite. The

case d ∈ D′′ is analogous.
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(ii) Let d = 〈E, d′〉. Then there is Ψ such that PΓ(E,Ψ) and PΨ(d′, ϕ) hold.
Using a reasoning similar to the one in the basis, we can conclude that there are
Φ ⊆ Ψ finite and f ∈ D such that PΦ(f, ϕ) holds. On the other hand, since
PΓ(E,Φ) holds, then by induction hypothesis there are Γ′ ⊆ Γ finite and F ⊆ D
such that PΓ′(F,Φ), and so PΓ′〈F, f〉, ϕ). �

As a consequence, the finite-derivation fibring of compact proof systems has the
same deductive power as their fibring, that is, the value of PΓ(D,ϕ) is independent
on whether D is obtained by fibring or by finite-derivation fibring.

We synthesize the properties of fibring of proof systems as follows:

• homogeneous combination mechanism: both original logics are presented by
proof systems;

• algorithmic combination of logics: given the proof systems for the original
logics, we know how to define the proof system that corresponds to their
fibring, but in many cases the given logics have to be pre-processed (that is,
the proof systems have to be extracted from the original logics);

• canonical combination of logics: the fibring is the minimal proof system
among those that are stronger than the original proof systems.

4.2.4 Proof systems vs consequence systems

This subsection concentrates on the study of some relationship between proof
systems and consequence systems. We start by discussing the generation of a
consequence system out of a proof system.

Proposition 4.2.19 A proof system P = 〈C,D, ◦, P 〉 induces a consequence sys-
tem C(P) = 〈C,〉 where Γ� = {ϕ ∈ L(C) : PΓ(D,ϕ)}.

Proof. We have to check extensiveness, monotonicity and idempotence.
Extensiveness: Follows directly from the right reflexivity of PΓ.
Monotonicity: Suppose that Γ1 ⊆ Γ2 and that ϕ ∈ Γ�

1 . Then PΓ1(D,ϕ) holds.
By the monotonicity of P we have PΓ1(D,ϕ) ≤ PΓ2(D,ϕ) hence PΓ2(D,ϕ) holds
and so ϕ ∈ Γ�

2 .
Idempotence: Suppose that ϕ ∈ (Γ�)�. Then there is d ∈ D such that PΓ�(d, ϕ).

On the other hand, there is E ⊆ D such that PΓ(E,Γ�). Hence by compositionality
in P we have PΓ(E ◦ d, ϕ) and so ϕ ∈ Γ�. �

We will now investigate how properties of the proof system are propagated to
the induced consequence system.

Proposition 4.2.20 If P is structural then C(P) is structural.
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The proof of the above result presents no major difficulties and is left to the
reader.

In what concerns compactness we can obtain the following result.

Proposition 4.2.21 If P is compact then C(P) is compact.

Proof. Suppose that P is compact and ϕ ∈ Γ�. Then PΓ(D,ϕ) holds and so
by, compactness of P , there is Φ ⊆ Γ finite such that PΦ(D,ϕ) also holds and so
ϕ ∈ Φ�. �

Also of interest is the relationship between a calculus and the proof system it
induces. We do a parametric proof of the following result.

Proposition 4.2.22 Let Calc be a (Hilbert, sequent, tableau) calculus. Then
C(P(Calc)) = C(Calc).

Proof. Since both C(P(Calc)) and C(Calc) share the same signature C, all one
needs to show is that the closure of a set Γ ⊆ L(C) is the same in both cases.
Let C(P(Calc)) = 〈C,1〉 and C(Calc) = 〈C,2〉. Then ϕ ∈ Γ�1 if and only if
PΓ(D,ϕ) holds in P(Calc) if and only if there is a Calc-derivation of ϕ from Γ in
D if and only if ϕ ∈ Γ�2 . �

The following result indicates that relationships between proof systems are pre-
served by the induced consequence systems.

Proposition 4.2.23 Let P and P ′ be proof systems such that P ≤ P ′. Then
C(P ) ≤ C(P ′). The converse is also true.

Proof. Let P ≤ P ′. Then C ≤ C′. Let Γ ⊆ L(C) and suppose that ϕ ∈ Γ�.
Then PΓ(D,ϕ) holds, whence P ′

Γ(D′, ϕ) also holds since P ≤ P ′ and so ϕ ∈ Γ�′
.

The proof of the converse is analogous. �

As a special case we conclude C(P ′) ≤ C(P ′∪P ′′) and C(P ′′) ≤ C(P ′∪P ′′).
Now we show how to generate a proof system out of a consequence system closed

for renaming substitutions.

Proposition 4.2.24 A consequence system C closed for renaming substitutions
induces a proof system P(C) with the same signature as follows:

• D = {∗};
• E ◦ ∗ = ∗ for E ⊆ D;

• PΓ(∗, ϕ) holds if and only if ϕ ∈ Γ�.
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Proof. We have to check right reflexivity, monotonicity, compositionality and
variable exchange.

Right reflexivity: Since  is extensive, Γ ⊆ Γ� for every Γ ⊆ L(C), so PΓ(D,Γ)
holds.

Monotonicity: Assume that Γ1 ⊆ Γ2 and PΓ1(D,ϕ) holds. Then ϕ ∈ Γ�
1 ; by

monotonicity of C, Γ�
1 ⊆ Γ�

2 , hence ϕ ∈ Γ�
2 , and so PΓ2(D,ϕ).

Compositionality: Suppose that PΨ(d, ϕ) and, for non-empty E ⊆ D, PΓ(E,Ψ)
hold. Then Ψ ⊆ Γ� and ϕ ∈ Ψ�, hence, by monotonicity of C, ϕ ∈ (Γ�)� and so,
by idempotence of , ϕ ∈ Γ�. Therefore PΓ(E ◦ d, ϕ) holds.

Variable exchange: Assume that ρ is a renaming substitution and that PΓ(D,ϕ)
holds. Then ϕ ∈ Γ�, hence ρ(ϕ) ∈ ρ(Γ)� and so Pρ(Γ)(D, ρ(ϕ)). �

We can show easily that the induced proof system is structural and compact
whenever the consequence system has the same properties. A proof system P can
be compared with the proof system generated by the consequence system induced
by P as the following result states.

Proposition 4.2.25 For any proof system P , P ≤ P(C(P)) and P(C(P)) ≤ P .

Proof. Straightforward. Since in both constructions the signature does not
change, all that is left to show is that, PΓ(D,ϕ) holds in P if and only if PΓ(∗, ϕ)
holds in P(C(P)). Thus, PΓ(D,ϕ) holds in P if and only if ϕ ∈ Γ� if and only if
PΓ({∗}, ϕ) holds in P(C(P)). �

On the other hand, the opposite relation also holds.

Proposition 4.2.26 For every consequence system P , C = C(P(C)).

Proof. Let C(P(C)) = 〈C,′〉 and let Γ ∪ {ϕ} ⊆ L(C). Then ϕ ∈ Γ�′
if and only

if PΓ(D,ϕ) holds in P(C) if and only if ϕ ∈ Γ�. �

Finally, we relate the consequence system induced by the fibring of proof systems
with the fibring of the consequence systems induced by the proof systems.

Proposition 4.2.27 The fibring of proof systems has the following property:

C(P ′∪P ′′) = C(P ′)∪C(P ′′).

Proof. The signature of both C(P ′∪P ′′) and C(P ′)∪C(P ′′) is C = C′ ∪ C′′.
Denoting C(P ′∪P ′′) by 〈C,a〉 and C(P ′)∪C(P ′′) by 〈C,b〉, all that is left to
show is that

Γ�a = Γ�b for all Γ ⊆ L(C).



4.3. FINAL REMARKS 177

(i) We start by showing that Γ�a ⊆ Γ�b . Suppose ϕ ∈ Γ�a . Then PΓ(D,ϕ) holds,
hence PΓ(d, ϕ) holds for some d ∈ D. We prove that ϕ ∈ Γ�b by induction on d.

(i.a) If d is d′ ∈ D′, then
P ′
τ ′(Γ)(d

′, τ ′(ϕ))

hence τ ′(ϕ) ∈ τ ′(Γ)�
′

and therefore ϕ ∈ Γ�b by definition of fibring of consequence
systems. The case where d is d′′ ∈ D′′ is analogous.

(i.b) If d is 〈E, d′′′〉 with E ∪ {d′′′} ⊆ D, then there is a set Ψ such that

PΓ(E,Ψ) and PΨ(d′′′, ϕ)

both hold, that is, Ψ ⊆ Γ�a and ϕ ∈ Ψ�a . By induction hypothesis, Ψ ⊆ Γ�b and
ϕ ∈ Ψ�b and, by idempotence of b, it follows that ϕ ∈ (Γ�b)�b ⊆ Γ�b .

(ii) Now we show that Γ�b ⊆ Γ�a . Suppose now that ϕ ∈ Γ�b . Then ϕ ∈ Γ�β

for some ordinal β in the fixed point construction of Proposition 4.1.21. We prove
that ϕ ∈ Γ�a by induction on β.

(ii.a) β = 0. Straightforward, since Γ ⊆ Γ�a .
(ii.b) If ϕ ∈ Γ�β+1 , then

either ϕ ∈ τ ′−1((τ ′(Γ�β ))�
′
) or ϕ ∈ τ ′′−1((τ ′′(Γ�β ))�

′′
).

Both cases are similar, so assume the first one holds. By induction hypothesis
Γ�β ⊆ Γ�a , so PΓ(D,Γ�β ) holds. Also, from ϕ ∈ τ ′−1((τ ′(Γ�β ))�

′
) we conclude

that τ ′(ϕ) ∈ (τ ′(Γ�β ))�
′
, so

P ′
τ ′(Γ�β )

(d′, τ ′(ϕ))

holds for some d′ ∈ D′. Therefore, PΓ�β (d′, ϕ) also holds and hence PΓ(D ◦ d′, ϕ)
holds, which means that ϕ ∈ Γ�a .

(ii.c) β is a limit ordinal: straightforward. �

4.3 Final remarks

In this chapter heterogeneous fibring was discussed and two solutions to the prob-
lem were presented. The first solution was based on consequence systems, ob-
serving that both deductive systems and semantics in a logic induce consequence
systems. With consequence systems we can produce the fibring of logics presented,
for instance, by a Hilbert calculus and by a sequent calculus. Moreover, we can
define the fibring of logics where one of them is presented by a Hilbert calculus
and the other by semantic structures.

The drawback of such an approach has to do with the fibring of logics presented
by calculi. In this case we loose the notion of derivation. And we would like to
be able to relate a derivation in the fibring with derivations in the component
logics. The intuitive idea is that somehow a derivation in the fibring is composed
by blocks where each block is a derivation in a component.



178 CHAPTER 4. HETEROGENEOUS FIBRING

We introduced the notion of abstract proof system as the adequate setting for
speaking about derivations. That is, in abstract proof systems, derivations are
first-class citizens. This notion has for calculi the same role as ordered algebras
had in Chapter 3 for logics presented by different semantics. In an abstract proof
system we have a set of derivations with no structure. Hence, derivations can be,
for instance, sequences of formulas or natural numbers. The nice thing is how
we obtain derivations in the fibring, namely, by having an operator for combining
derivations of the component logics.

We believe that the notion of fibring abstract proof systems can also be used to
define homogeneous fibring of deductive systems if the objective is to emphasize
the derivation structure. Some preliminary results appear in [69], where the fibring
of sequent calculi is introduced not at the level of the rules but instead at the level
of derivations. It is also worthwhile to note that some preservation results are
easier to prove in this context, such as cut elimination.

A natural generalization of abstract proof systems would be what we can call
abstract labeled proof systems. It is well known that many calculi are labeled.
They are more flexible in the sense that they encode more logics than no labeled
calculi, where one should provide a specific one for each logic. For instance, in
modal logic there are several labeled calculi depending on the nature of the labels:
worlds or truth-values. In the case of labeled calculi, we have to deal with hetero-
geneous calculi and also heterogeneous labels. The right setting for labels is still
to be dealt with. Observe that the “universality” of labels is also recognized in
network fibring as presented in Chapter 10.

We believe that heterogeneous fibring can also be investigated within the set-
ting of multicategories and even polycategories following the ideas of Lambek and
Szabo [176, 254] for proof systems. At first sight, it seems that the adequate no-
tion of composition for polycategories has to be identified. Also some categorical
constructions have to be studied as, for instance, fibrations. In this context, it will
be possible to talk about logics that are substructural [229] such as for example
linear logic. This opens the research topic of fibring substructural logics.



Chapter 5

Fibring non-truth functional
logics

In this chapter we extend to non-truth functional logics the fibring techniques
presented in Chapters 2 and 3. Some paraconsistent logics (in particular, some
LFIs) constitute examples of non-truth functional logics. Paraconsistent logics
were introduced in [73] and since then have been the object of continued atten-
tion, because of their theoretical and practical significance. In particular, the
paraconsistent systems Cn of [73] (see Example 2.2.9) are subsystems of propo-
sitional classical logic in which the principle of Pseudo Scotus γ, (¬ γ)  ϕ does
not hold. It is well known that, in all the Cn systems, negation cannot be given a
truth functional semantics (see [209]).

From the proof-theoretical point of view, dealing with non-truth functional logic
offers no particular difficulties. As before, in the fibring of two Hilbert calculi, the
signature corresponds to the fibring of the signatures of the components and the
inference rules are just the inference rules of both calculi.

From the semantic point of view, things are not so easy since we have to deal
with (possibly) non-truth functional valuations. To establish the appropriate se-
mantic setting, the main feature of the present approach is the use of a suitable
auxiliary logic, called the metalogic, where the (possibly) non-truth functional val-
uations are defined. We consider conditional equational logic CEQ (see [132, 208])
as the metalogic, but we could have adopted, instead, any other classical metalogic
where non-truth functional valuation semantics could be defined. Then, we extend
the notion of fibring to this context and then we prove that this extended fibring
preserves completeness under reasonable conditions.

The system CD1 of paraconsistent modal logic, introduced in [75], is then taken
as an application example. It should be reasonable to expect that the mixed logic
CD1 could be recovered by fibring the underlying modal and paraconsistent logics.
However, the fibring of the two fragments (the modal with the paraconsistent),
using the method we propose, produces a logic which is a little weaker than the

179
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original CD1 . There is a simple explanation for this problem: CD1 contains an
essential interaction axiom that cannot even be expressed in either of the logics
being fibred. Taking this point into consideration, the paraconsistent modal logic
CD1 can be easily recovered simply by adding the missing axiom to the obtained
fibred logic, as well as a corresponding semantic restriction. This process is in line
with the original idea of fibring as proposed in [108] (see Chapter 1).

The layout of this chapter is as follows: in Section 5.1, the notion of inter-
pretation system presentation is introduced. The interpretation structures are
also defined as being the models of the specifications. In Section 5.2 the notions
of unconstrained and constrained fibring of interpretation system presentations is
defined. In Section 5.3 we again use Hilbert calculus as the suitable proof-theoretic
notion. In Section 5.4 some preservation results are established, namely, the preser-
vation of soundness and the preservation of completeness. Section 5.5 discusses
self-fibring in the context of non-truth functional logics. Finally, in Section 5.6 we
present some final remarks.

The relevant material for this chapter is the work presented in [36].

5.1 Specifying valuation semantics

As we saw in Chapter 3, the definition of an algebraic semantics for a truth func-
tional logic requires to endow it with models that are algebras (of truth values)
over the signature of the logic and evaluate formulas by means of homomorphisms.
However, some logics, called non-truth functional, do not accept this kind of se-
mantical treatment. The approach taken in this chapter, first sketched in [61],
is slightly different: we chose to work with two-sorted algebras of formulas and
truth values, including the valuation map as an operation symbol between the
two sorts. Thus, every model consist of a single (possibly non-truth functional)
valuation map. As a particular case, truth functional logics appear by imposing
the homomorphism conditions on the valuation maps. Technically, each model is
a two-sorted algebra (of formulas and truth values) including a valuation opera-
tion satisfying some requirements, which are written in an appropriate conditional
equational metalogic. As mentioned above, the metalogic adopted herein is CEQ
(see [132, 208]).

As done in the previous chapters, we consider propositional based signatures
of the form C = {Ck}k∈N (see Chapter 2). In order to avoid confusion, such
signatures are called object signatures along this chapter. This option is justified
because we are also going to deal with the signatures for the metalogic, which are
of a different nature. As previously done, we also consider as before the set of
countable propositional symbols P ⊆ C0 and the set of schema variables Ξ. The
language L(C) is defined as before.

The next step is to define an equational signature induced by a given object
signature C (see Definition 5.1.1 below). This equational signature can be seen as a
kind of metalinguistic device which allows us to formally talk about the semantics
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of propositional logics based on signature C. It is thus convenient to consider two
sorts: a sort φ (for formulas) and a sort τ (for truth values). As usual, if S is a
set of sorts then S∗ denotes the set of all strings (finite sequences) over S; sk will
denote the string formed by k occurrences of sort s, and ε will denote the empty
string. In the definition below, Ow s will denote the set of operations with domain
w and codomain s, for w ∈ S∗ and s ∈ S. For details about many-sorted algebras
see, for instance, [133, 195]. Since this is enough for our purposes, we will only
define the particular case of many-sorted first-order language to be used in this
chapter. In Chapter 7, many-sorted higher-order languages will be treated in more
detail.

Definition 5.1.1 Let C be a propositional signature, and let S = {φ, τ} be a
set of sorts. The 2-sorted equational signature Σ(C,Ξ) = 〈S, O〉 is the 2-sorted,
first-order equational signature generated by the following sets of symbols:

• Oε φ = C0 ∪ Ξ;

• Oφk φ = Ck, for k > 0;

• Oφ τ = {v};
• Oε τ = { ,⊥};
• Oτ τ = {−};
• Oτ2 τ = {�,�,�};
• Oω s = ∅ in the other cases.

The signature Σ(C,Ξ) is called the induced metasignature, and C is called the
object signature. The sort φ is the sort for formulas, and the sort τ is the sort for
truth values. We shall use Σ(C) to denote the subsignature Σ(C, ∅), that is, where
Oε φ = C0. ∇

Recall that Ow s is the set of function symbols from sort w to sort s. Thus,
Oφk φ = Ck means that each k-ary connective c of C is now considered as a
function symbol c : φk → φ. On the other hand, if c ∈ C0 ∪Ξ then c is considered
as a function symbol c : ε → φ, that is, a constant of sort φ. The truth values
form an ordered algebra, and so there exist function symbols representing the
basic operations. Thus, for instance, � : τ2 → τ represents the (binary) infimum
operator between truth values. As a consequence of this approach, the formulas
of L(C) are now terms of sort φ of the first-order language generated by Σ(C,Ξ).
Since Σ(C,Ξ) is an equational signature, the symbols ≈φ and ≈τ for equality of
sort φ and τ are taken for granted. From now on, we will omit the reference to
the sort when using the equality predicates.

As mentioned above, the symbols  , ⊥, −, �, � and � are used as generators of
truth values. Additionally, the function symbol v : φ → τ represents a valuation
map, taking formulas into truth values.
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In order to construct the equational first-order language generated from Σ(C,Ξ)
we consider the set of variables Xφ = {y1, y2, . . . } and Xτ = {x1, x2, . . . } of sort φ
and τ , respectively. For ease of notation we simply use X to denote the two-sorted
family {Xφ, Xτ}.

Definition 5.1.2 Let Σ(C,Ξ) be a 2-sorted equational signature.
The set of non-truth functional terms of sort φ is the set T (C,Ξ)φ inductively
defined as follows:

• C0 ∪ Ξ ∪Xφ ⊆ T (C,Ξ)φ;

• (c(t1, . . . , tk)) ∈ T (C,Ξ)φ whenever k ≥ 1, c ∈ Ck and t1, . . . , tk ∈ T (C,Ξ)φ.

The set of non-truth functional terms of sort τ is the set T (C,Ξ)τ inductively
defined as follows:

• { ,⊥} ∪Xφ ⊆ T (C,Ξ)τ ;

• v(t) ∈ T (C,Ξ)τ whenever t ∈ T (C,Ξ)φ;

• −(t) ∈ T (C,Ξ)τ whenever t ∈ T (C,Ξ)τ ;

• c(t1, t2) ∈ T (C,Ξ)τ whenever c ∈ {�,�,�} and t1, t2 ∈ T (C,Ξ)τ . ∇

It is worth noting an important distinction: given the metasignature Σ(C,Ξ),
schema variables (that is, ξ1, ξ2, etc.) represent arbitrary formulas but only in
the context of (propositional) Hilbert calculi defined over C. On the other hand,
variables of sort φ (that is, y1, y2, etc.) represent arbitrary formulas in the meta-
language of CEQ. In this metalanguage, propositional schema variables appear as
constants. For simplicity, we will use just “term” instead of “non-truth functional
term”.

Recall that a term t is called a closed term if it does not contain variables in
X . We denote by cT (C,Ξ)φ and cT (C,Ξ)τ the sets of closed terms of sort φ
and τ , respectively. Observe that cT (C,Ξ)φ is the set of formulas L(C). A closed
substitution is a pair

ρ = 〈ρφ, ρτ 〉
such that ρφ : Xφ → cT (C,Ξ)φ and ρτ : Xτ → cT (C,Ξ)τ are maps. From now on,
for simplicity, we will write ρ to denote either ρφ or ρτ when no confusion arises.

The next step is to define valuation specifications (within the metalogic CEQ)
over Σ(C) and X . Recall that a CEQ-specification is a set of conditional equations
of the general form:

(equation1 & . . . & equationn −→ equation)

with n ≥ 0. Each equation in the expression above is of the form (t ≈ t′) such
that t and t′ are terms of the same sort built over Σ(C) and X . It is important
to notice that no schema variables occur in a conditional equation, by the very
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definition of Σ(C). Of course, the sort of each equation is defined to be the sort
of its terms. A conditional equation that only involves equations of a given sort
is said to be a conditional equation of that sort. As usual in equational logic,
conditional equations are universally quantified. For the sake of simplicity, we
omit the quantifier, contrarily to the notation used in [208]. For instance,

( −→ (v(y1 ∧ y2) ≈ �(v(y1), v(y2))))

is a conditional equation of sort τ , provided that ∧ ∈ C2. From this example and
the forthcoming ones, it should be clear that we only need to consider specifications
containing exclusively conditional equations (or meta-axioms) of sort τ . This kind
of specifications will be called τ -specifications from now on. The Hilbert calculus of
CEQ (adapted from [208]) is a deductive system designed for deriving equations
from a given set of conditional equations. That calculus consists of the usual
rules for reflexivity, symmetry, transitivity and congruence of equality, plus an
appropriate form of modus ponens. For the reader’s convenience we briefly describe
here the calculus CEQ which will allow us to prove equations from specifications.
The inference rules of CEQ will be written as

P1 . . . Pn
eq

where each premise Pi is either an equation eqi or a conditional equation

(eqi1 & . . . & eqini
−→ eqi).

Definition 5.1.3 The Hilbert calculus of CEQ is composed by the following de-
duction rules:

(t ≈ t) reflexivity

(t1 ≈ t2)
(t2 ≈ t1) symmetry

(t1 ≈ t2) (t2 ≈ t3)
(t1 ≈ t3) transitivity

(t11 ≈ t21), . . . , (t1k ≈ t2k)
(f(t11, . . . , t1k) ≈ f(t21 . . . t2k)) congruence

((t11 ≈ t21) & . . . & (t1k ≈ t2k) −→ (t1 ≈ t2)),
(ρ(t11) ≈ ρ(t21)), . . . , (ρ(t1k) ≈ ρ(t2k))

(ρ(t1) ≈ ρ(t2)) modus ponens

In the congruence rule, f is a function symbol and in the modus ponens rule, ρ
is a substitution. ∇
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In the sequel we use CEQ
Σ(C,Ξ) to denote the corresponding consequence relation.

Thus,
S CEQ

Σ(C,Ξ) (t1 ≈ t2)

means that there exists a derivation in CEQ of the equation (t1 ≈ t2) from the
specification S.

Definition 5.1.4 An interpretation system presentation is a pair

S = 〈C, S〉

where C is an object signature and S is a τ -specification over Σ(C) (that is, a set
of conditional equations of sort τ). ∇

Let S = 〈C, S〉 be a given interpretation system presentation. As expected, a
(semantical) interpretation structure for S is a first-order structure for the equa-
tional first-order language generated from Σ(C,Ξ) satisfying the τ -specification S.
More precisely (recall Definition 5.1.1):

Definition 5.1.5 Let Σ(C,Ξ) be a signature. An interpretation structure over
the signature Σ(C,Ξ) is a triple

A = 〈Aφ,Aτ , ·A〉

such that Aφ and Aτ are non-empty sets (the carrier of sorts φ and τ in A,
respectively) and ·A is an interpretation map of the symbols in Σ(C,Ξ) such that:

• cA ∈ Aφ whenever c ∈ C0 ∪ Ξ;

• cA : Akφ → Aφ whenever c ∈ Ck, for k > 0;

• vA : Aφ → Aτ ;

•  A,⊥A ∈ Aτ ;

• −A : Aτ → Aτ ;

• cA : A2
τ → Aτ whenever c ∈ {�,�,�}. ∇

From the definition above, it is clear that an interpretation structure A over
Σ(C,Ξ) is formed by two-algebras and a map between them as follows:

• an algebra Aφ over C (of formulas);

• an algebra Aτ over the signature of Heyting algebras (of truth values);

• a valuation map vA : Aφ → Aτ relating both algebras.
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Of course, the interesting (or standard) cases are when Aφ = L(C) and Aτ is
indeed a Heyting algebra with respect to their operations. In such cases, vA is
a valuation map into a Heyting algebra of truth values. As it will be shown in
Proposition 5.1.20, as long as semantical entailment is concerned it is not necessary
to restrict the interpretations to those such that Aφ = L(C). With respect to the
second requirement for an interpretation be ‘standard’, we consider the following
definition. But before we present some notation. Let S be a τ -specification. We de-
note by S• the τ -specification composed of the meta-axioms in S plus τ -equations
over Σ(C) specifying the class of all Heyting algebras (recall Example 3.1.4 in
Chapter 3).

Definition 5.1.6 The class of interpretation structures presented by S, denoted
by

Int(S)

is the class of interpretations A over Σ(C,Ξ) satisfying the specification S•. ∇

If A ∈ Int(S) then Aτ is a Heyting algebra with respect to their operations.
In particular,  A and ⊥A are the top and bottom elements of Aτ with respect to
the induced order. Observe that Int(S) is always non-empty. Indeed, the trivial
interpretation A with singleton carrier sets for both sorts φ and τ satisfies any set
of conditional equations; in particular, A satisfies S•. Thus A ∈ Int(S).

Of course, Definition 5.1.6 lies on the rigorous notion of satisfaction of condi-
tional equations. This notion coincides with the usual concept of satisfaction of
formulas in first-order structures, which we briefly recall now.

Let A be an interpretation over Σ(C,Ξ). An assignment over A is a pair

α = 〈αφ, ατ 〉

of mappings αφ : Xφ → Aφ and ατ : Xτ → Aτ . Analogously to what was done in
Definition 3.1.12 of Chapter 3, the denotation of a metaterm t given an assignment
α can be defined:

Definition 5.1.7 Given an interpretation A over Σ(C,Ξ) and an assignment α
over A, the denotation map

[[·]]αA : T (C,Ξ)φ ∪ T (C,Ξ)τ → Aφ ∪ Aτ
is defined as usual:

• [[t]]αA = tA if t ∈ C0 ∪ Ξ ∪ { ,⊥};
• [[t]]αA = αs(t) if t ∈ Xs for some s ∈ {φ, τ};
• [[(c(t1, . . . , tk))]]αA = cA([[t1]]αA, . . . , [[tk]]αA) whenever k ≥ 1, t1, . . . , tk ∈ T (C,Ξ)φ

and c ∈ Ck;
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• [[v(t)]]αA = vA([[t]]αA) whenever t ∈ T (C,Ξ)φ;

• [[−(t)]]αA = −A([[t]]αA) whenever t ∈ T (C,Ξ)τ ;

• [[c(t1, t2)]]αA = cA([[t1]]αA, [[t2]]αA) whenever c ∈ {�,�,�} and t1, t2 ∈ T (C,Ξ)τ .
∇

In the case of a closed term t we just write [[t]]A for its denotation in A.
It is worth noting that, if t is a term of sort s, then [[t]]αA ∈ As, for s ∈ {φ, τ}.
Given an interpretation A over Σ(C,Ξ), we say that A satisfies a conditional

equation
((t11 ≈ t21) & . . . & (t1k ≈ t2k) −→ (t1 ≈ t2))

if, for every assignment α over A, if [[t1i]]αA = [[t2i]]αA for every i = 1, . . . , k then
[[t1]]αA = [[t2]]αA. In particular, A satisfies an equation

(−→ (t1 ≈ t2))

whenever [[t1]]αA = [[t2]]αA for every assignment α over A.
Now it should be clear that, as mentioned above, any interpretation structure

A presented by S is such that Aτ is a Heyting algebra.
For simplicity, we introduce the following abbreviations on the set T (C,Ξ)τ :

• ≡ (t1, t2) =def �(� (t1, t2),� (t2, t1));

• (t1 ≤ t2) =def (�(t1, t2) ≈ t1).

Clearly, the relation symbol ≤ denotes a partial order on truth values. Further-
more, the partial order is a bounded lattice with meet �, join �, top  and bottom
⊥ (see [21]).

Accordingly to the notation above introduced, given an interpretation structure
A and a1, a2 ∈ Aτ ,

a1 ≤A a2 and ≡A (a1, a2)

are abbreviations of �A(a1, a2) = a1 and �A(�A (a1, a2),�A (a2, a1)), respec-
tively.

It is also well known that the Heyting algebra axioms further entail the following
result:

Proposition 5.1.8 Let S be an interpretation system presentation, t1 and t2
terms of sort τ and A ∈ Int(S). Then, for every assignment α over A:

[[t1]]αA ≤A [[t2]]αA if and only if �A ([[t1]]αA, [[t2]]αA) =  A

and

[[t1]]αA = [[t2]]αA if and only if ≡A ([[t1]]αA, [[t2]]αA) =  A.



5.1. SPECIFYING VALUATION SEMANTICS 187

The notion of interpretation system presentation can be illustrated with some
examples that will be used throughout the rest of the chapter.

Example 5.1.9 Paraconsistent Hilbert calculus C1 (recall Example 2.2.9):

• Object signature C:

– C0 = P ∪ {t, f};
– C1 = {¬};
– C2 = {∧,∨,⇒}.

• Meta-axioms S:

– Truth-values axioms: further axioms in order to obtain a specification of
the class of all Boolean algebras through S• (recalling that S• always
contains the axioms of Heyting algebras). As it is well-known, it is
enough to add the following equation:

( −→ (−(−(x1)) ≈ x1)).

– Valuation axioms:

( −→ (v(t) ≈  ))
( −→ (v(f) ≈ ⊥))
( −→ (v(y1 ∧ y2) ≈ �(v(y1), v(y2))))
( −→ (v(y1 ∨ y2) ≈ �(v(y1), v(y2))))
( −→ (v(y1 ⇒ y2) ≈ �(v(y1), v(y2))))
( −→ (v(¬(¬ y1)) ≤ v(y1)))
( −→ (v((¬ y1) ∧ y◦1) ≈ −(v(y1))))
( −→ �(v(y◦1), v(y◦2)) ≤ v((y1 ∧ y2)◦))
( −→ �(v(y◦1), v(y◦2)) ≤ v((y1 ∨ y2)◦))
( −→ �(v(y◦1), v(y◦2)) ≤ v((y1 ⇒ y2)◦)).

As usual in the Cn systems, γ◦ is an abbreviation of (¬(γ∧ (¬ γ))). The seman-
tics above was originally introduced in [74], but defined over the Boolean algebra
2, that is, as a bivaluation semantics.

It is worth noting that herein we are using Boolean algebras as a metamathe-
matical environment sufficient to carry out the computations of truth values for
the formulas in C1. In particular, we are not introducing any unary operator in
the Boolean algebras corresponding to paraconsistent negation, but we are com-
puting the values of formulas of the form (¬ γ) by means of conditional equations
in the algebras. In other words, ¬ does not correspond to the Boolean algebra
complement −. Therefore we are not attempting to algebraize C1 in any usual
way. The question of algebraizing paraconsistent logic is a separate issue and we
refer the interested reader to [209, 180, 30, 29].
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Observe that every bivaluation introduced in [74] has a counterpart in Int(S).
Furthermore, the additional interpretation structures (that is, those defined over
other Boolean algebras than 2) do not change the semantic entailment to be defined
in Definition 5.1.15 below. It is easy to extend this example to the whole hierarchy
Cn by specifying appropriately the paraconsistent n-valuations introduced in [182].

∇

Example 5.1.10 The logics of formal inconsistency (LFIs) were mentioned in
Example 1.4.6 of Chapter 1. These logics, introduced in [51] (see also [49]) offer
a new perspective for paraconsistent logics. The basic idea consists of considering
a (primitive or defined) consistency connective ◦ in order to control explosiveness
of contradictions. Thus, in general

ϕ, (¬ϕ) � ψ
for some ϕ and ψ. However,

(◦ϕ), ϕ, (¬ϕ)  ψ
for every ϕ and ψ. That is, a contradiction plus the consistency of the contradictory
formula defines a trivial theory. The logic C1 described above is an example of an
LFI, in which (◦ϕ) is given by the formula (¬(ϕ ∧ (¬ϕ))). It is possible to use
an inconsistency connective • instead of a consistency connective, or use both of
them.

Some LFIs such as P 1 (introduced in [244]) and J3 (introduced as a modal para-
consistent logic in [85] and re-introduced in [89] as an LFI) are truth functional,
because they have a matrix semantics. However, most LFIs (and paraconsistent
logics, in general) have a non-truth functional semantics: the consistency (or in-
consistency) operator, as well as the negation, are not, in general, truth functional
connectives (see Definition 5.1.12 below). As a consequence of this, these logics are
not congruential : if ϕi is inter-derivable with ψi then, in general, γ(ϕ1, . . . , ϕn) is
not inter-derivable with γ(ψ1, . . . , ψn) for some formulas γ(p1, . . . , pn), ϕi and ψi
(for i = 1, . . . , n).

Frequently, an adequate (non-truth functional) bivaluation semantics can be
given for such logics. As it was done for C1 in Example 5.1.9, this bivaluation
semantics can be revamped in our setting, by changing the Boolean algebra 2 for
an arbitrary Boolean algebra. For instance, the logic mbC, a basic LFI (see [51]),
admits the following presentation:

• Object signature C:

– C0 = P ∪ {t, f};
– C1 = {¬, ◦};
– C2 = {∧,∨,⇒}.

• Meta-axioms S:
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– Truth-values axioms: idem to Example 5.1.9;

– Valuation axioms:

( −→ (v(t) ≈  ))
( −→ (v(f) ≈ ⊥))
( −→ (v(y1 ∧ y2) ≈ �(v(y1), v(y2))))
( −→ (v(y1 ∨ y2) ≈ �(v(y1), v(y2))))
( −→ (v(y1 ⇒ y2) ≈ �(v(y1), v(y2))))
( −→ (v((¬ y1) ∧ (◦y1)) ≈ −(v(y1)))).

As in Example 5.1.9, every paraconsistent bivaluation introduced in [49] occurs
in Int(S), and the interpretation structures defined over Boolean algebras other
than 2 do not change the semantic entailment. The logic Ci, an LFI obtained
from mbC by adding the axiom schemata ((¬(¬ξ))⇒ξ) and ((¬(◦ξ))⇒(ξ∧(¬ξ)))
(recall Example 1.4.6), can be characterized semantically by adding the following
clauses to S (adapting the bivaluation semantics given in [49]):

( −→ (v(¬(¬ y1)) ≤ v(y1)))

( −→ (v(¬(◦y1)) ≤ v(y1 ∧ (¬ y1)))). ∇

Remark 5.1.11 At this point its is interesting to observe how does the interpre-
tation work. For instance, the equation

( −→ (v(y1 ∧ y2) ≈ �(v(y1), v(y2))))

states the following: for every interpretation structure A and every assignment α,
vA : Aφ → Aτ must be a map such that

vA([[(y1 ∧ y2)]]αA) = �A(vA([[y2]]αA), vA([[y2]]αA))).

Therefore,
vA([[ϕ]]A ∧A [[ψ]]A) = �A(vA([[ϕ]]A), vA([[ψ]]A)))

for every ϕ, ψ ∈ L(C). As observed above, this condition is slightly more general
than consider valuation maps vA : L(C) → Aτ such that

vA(ϕ ∧ ψ) = �A(vA(ϕ), vA(ψ)))

for every ϕ, ψ ∈ L(C), because the use of the “intermediate” algebra of formulas
Aφ. As we shall see in Proposition 5.1.20 below, this apparent generalization has
no effects in the notion of entailment. ∇

Now we are able to give a rigorous definition of what we mean by a non-truth
functional connective. From this, it is possible to formulate the meaning of non-
truth functional semantics in our context. In order to be as general as possible, we
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will consider, besides the primitive connectives given in the signature, the derived
ones. In rigorous terms, a derived connective of arity k is a λ-term λy1 . . . yk . ϕ
such that the variables occurring in the schema formula ϕ are included in the set
{y1, . . . , yk}. Clearly, any connective c ∈ Ck is also a derived connective: it is
enough to consider the λ-term λy1 . . . yk . (c(y1, . . . , yk)).

Definition 5.1.12 A derived connective λy1 . . . yk . ϕ is said to be truth functional
in a given interpretation system presentation S if

S• CEQ
Σ(C,Ξ) (v(ϕ) ≈ ρv(y)x (t))

for some τ -term t written only on the variables x1, . . . , xk, where ρ
v(y)
x is the

substitution such that ρv(y)x (xn) = v(yn) for every n ≥ 1.
If it is not possible to fulfill the above requirement, the connective is said to be

non-truth functional in S. ∇

It should be clear that showing that a certain connective is non-truth functional
can be a very hard task.

Example 5.1.13 Consider paraconsistent logic C1. Then a new negation can be
defined as the derived connective ∼ =: λy1 . ((¬ y1) ∧ y◦1). Of course ∼ is truth
functional: it is enough to take t as −(x1). From this it follows that ∼ is in fact
a classical negation.

The classical equivalence is also definable in C1 as

⇔ := λy1y2 . ((y1 ⇒ y2) ∧ (y2 ⇒ y1)).

As expected, ⇔ is truth functional: take t as ≡ (x1, x2).
The primitive conjunction λy1y2 . (y1 ∧ y2), disjunction λy1y2 . (y1 ∨ y2), and

implication λy1y2 . (y1 ⇒ y2) are also truth functional, as the reader can easily
check.

On the other hand, as proven in [209], the paraconsistent negation λy1 . (¬ y1)
is non-truth functional. ∇

Now we describe in our setting a logic system which will be used throughout
the rest of this chapter as a case-study.

Example 5.1.14 Modal calculus KD:

• Object signature C:

– C0 = P ∪ {t, f};
– C1 = {¬,�};
– C2 = {∧,∨,⇒}.



5.1. SPECIFYING VALUATION SEMANTICS 191

• Meta-axioms S:

– Truth values axioms:

Further axioms in order to obtain a specification of the class of all
Boolean algebras, as it was done in the previous example.

– Valuation axioms:

( −→ (v(t) ≈  ))
( −→ (v(f) ≈ ⊥))
( −→ (v(¬ y1) ≈ −(v(y1))))
( −→ (v(y1 ∧ y2) ≈ �(v(y1), v(y2))))
( −→ (v(y1 ∨ y2) ≈ �(v(y1), v(y2))))
( −→ (v(y1 ⇒ y2) ≈ �(v(y1), v(y2))))
( −→ (v(� t) ≈  ))
( −→ (v(�(y1 ∧ y2)) ≈ �(v(� y1), v(� y2))))
( −→ (�(v(� y1), v(¬(�(¬ y1)))) ≈ v(� y1))
((v(y1) ≈ v(y2)) −→ (v(� y1) ≈ v(� y2))).

It is worth noting that every interpretation structure over C induced by a Kripke
structure (recall Example 3.1.7 in Chapter 3) has a counterpart in Int(S): it is
enough to consider the Boolean algebra of truth values given by the power set ℘W
of the set of worlds W . As in Example 5.1.9, the extra interpretation structures
(that is, those defined over Boolean algebras different from ℘W ) do not change
the semantic entailment to be introduced in Definition 5.1.15. ∇

In the interpretation system presentation above, all the derived connectives
(with exception of �) are truth functional. In order to consider the modality
λy1 .� y1 as truth functional, we would need an extra generator L in Oτ τ such
that:

( −→ (L( ) ≈  ))

( −→ (L(�(x1, x2)) ≈ �(L(x1), L(x2))))

( −→ (�(L(x1),−(L(−(x1))) ≈ L(x1))))

( −→ (v(� y1) ≈ L(v(y1)))).

Note that these axioms on L are very closely related to the last four valuation
axioms used in Example 5.1.14. Of course such an operation L could be defined
over the set of truth values according to the axioms above, in order to specify
the modal algebras described in Example 3.1.8 of Chapter 3. However, this move
would violate our definition of interpretation structures, because of the inclusion
of an extra operator. This explains the last four axioms given in Example 5.1.14,
which allowed us to specify the intended class of modal algebras without using the
extra operation L.
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The notion of (global and local) semantic entailments in the present setting can
be now defined.

Definition 5.1.15 Given an interpretation system presentation S, a set Γ ⊆ L(C)
and a formula ϕ ∈ L(C), we say that:

• Γ �gS ϕ (Γ globally entails ϕ) if, for every A ∈ Int(S), vA([[γ]]A) =  A for
each γ ∈ Γ implies vA([[ϕ]]A) =  A;

• Γ ��S ϕ (Γ locally entails ϕ) if, for every A ∈ Int(S) and every b ∈ Aφ,
vA(b) ≤A vA([[γ]]A) for each γ ∈ Γ implies vA(b) ≤A vA([[ϕ]]A). ∇

Observe that Γ ��S ϕ implies Γ �gS ϕ provided that for every A ∈ Int(S) there
exists b ∈ Aφ such that vA(b) =  A. On the other hand, Γ �gS ϕ implies Γ ��S ϕ,
provided that Γ = ∅.

The reader should note the analogy between the semantic definitions introduced
above and the corresponding notions in Definition 3.3.1.

As it was observed above, we would expect to consider interpretation struc-
tures A such that Aφ = L(C), and then the valuation map vA should be a “real”
valuation vA : L(C) → Aτ . We will prove in Proposition 5.1.20 below that noth-
ing changes with the use of generalized valuation maps as long as entailment is
concerned.

Definition 5.1.16 Let A ∈ Int(S). We say that A is a standard interpretation
structure presented by S if Aφ = L(C) and ·A is the identity map over the symbols
of C. ∇

We denote by Intst(S) the class of all standard interpretation structures.
From the definition above, a standard interpretation A determines a real valu-

ation map vA : L(C) → Aτ . Observe that if A is standard then

[[ϕ]]A = σA(ϕ)

where σA : Ξ → L(C) is the substitution such that σA(ξ) = [[ξ]]A for every ξ ∈ Ξ.
In particular, [[ϕ]]A = ϕ if ϕ is a ground formula, that is, a formula without schema
variables. These formulas are the interesting ones in what concerns to valuations,
since ground formulas are the genuine formulas.

Now we introduce some useful technical definitions and results. Recall that
Ξ = {ξn : n ∈ N}.

Definition 5.1.17 The substitutions σ+ and σ− are as follows:

• σ+ : Ξ → L(C) is given by σ+(ξi) = ξi+1 for every i ≥ 1;

• σ− : Ξ → L(C) is given by σ−(ξ1) = ξ1 and σ−(ξi) = ξi−1 for every i ≥ 2. ∇
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Note that σ+(ϕ) is a variant of ϕ where ξ1 does not occur. Furthermore, it is
easy to prove that σ−(σ+(ϕ)) = ϕ.

Given an interpretation system presentation S, we say that ϕ is entailed by Γ,
denoted by

Γ �̂�S ϕ

if, for every A ∈ Int(S), vA([[ξ1]]A) ≤A vA([[σ+(γ)]]A) for each γ ∈ Γ implies
vA([[ξ1]]A) ≤A vA([[σ+(ϕ)]]A).

Proposition 5.1.18 Let S be an interpretation system presentation, and consider
Γ ∪ {ϕ} ⊆ L(C). Then:

Γ ��S ϕ if and only if Γ �̂�S ϕ.

Proof. Suppose that Γ ��S ϕ and let A ∈ Int(S) such that

vA([[ξ1]]A) ≤A vA([[σ+(γ)]]A)

for each γ ∈ Γ. Consider the interpretation structure A+ such that A+
φ = Aφ,

A+
τ = Aτ , ξA+ = σ+(ξ)A for every ξ ∈ Ξ and ·A+ coincides with ·A on the other

symbols. Since no schema variables occur in S• then A+ ∈ Int(S). It is easy to
prove that

[[ψ]]A+ = [[σ+(ψ)]]A
for every ψ ∈ L(C). Let b = [[ξ1]]A. Since vA+(b) ≤A+ vA+([[γ]]A+) for each γ ∈ Γ
then vA+(b) ≤A+ vA+([[ϕ]]A+ ) and so vA([[ξ1]]A) ≤A vA([[σ+(ϕ)]]A). This proves
that Γ �̂�S ϕ.

Conversely, suppose that Γ �̂�S ϕ and let A ∈ Int(S) and b ∈ Aφ such that
vA(b) ≤A vA([[γ]]A) for each γ ∈ Γ. Consider the interpretation structure A− such
that A−

φ = Aφ, A−
τ = Aτ , ξ1A− = b, ξnA− = σ−(ξn)A for every n ≥ 2, and the

mapping ·A− coincides with ·A on the other symbols. Then

[[σ+(ψ)]]A− = [[ψ]]A

for every ψ ∈ L(C). No schema variables occur in S•, then A− ∈ Int(S). From
this the result follows easily. �

For o ∈ {g, �}, consider the relation �o
S obtained from the corresponding re-

lation �o
S of Definition 5.1.15 by taking Intst(S) instead of Int(S). Then the

following result holds:

Corollary 5.1.19 Let S be an interpretation system presentation, and consider
Γ ∪ {ϕ} ⊆ L(C). Then, Γ �o

S ϕ if and only if, for every A ∈ Intst(S),

vA([[ξ1]]A) ≤A vA([[σ+(γ)]]A)

for each γ ∈ Γ implies

vA([[ξ1]]A) ≤A vA([[σ+(ϕ)]]A).
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Proof. The proof is identical to that of Proposition 5.1.18, using the definitions
above: it is enough to notice that, if A ∈ Intst(S) then both A+ and A− are in
Intst(S). �

Proposition 5.1.20 For every interpretation system presentation S, every set
Γ ∪ {ϕ} ⊆ L(C) and o ∈ {g, �},

Γ �o
S ϕ if and only if Γ �o

S ϕ.

Proof.
Part 1: Global entailment.

Let S be an interpretation system presentation and let Γ∪{ϕ} ⊆ L(C). Assume
that Γ �gS ϕ, and suppose that A ∈ Int(S) is such that vA([[γ]]A) =  A for each
γ ∈ Γ. Consider the interpretation structure Ā such that:

• Āφ = L(C) and Āτ = Aτ ;

• ·Ā is the identity map on the symbols of C and Ξ;

• vĀ = vA ◦ ([[·]]A|L(C));

• ·Ā coincides with ·A on the other symbols.

It is clear that Ā ∈ Intst(S) such that [[ψ]]Ā = ψ and vĀ([[ψ]]Ā) = vA([[ψ]]A) for
every ψ ∈ L(C). Moreover,  Ā =  A. Thus,

vĀ([[γ]]Ā) =  Ā

for each γ ∈ Γ and so vĀ([[ϕ]]Ā) =  Ā. Therefore vA([[ϕ]]A) =  A. This shows
that Γ �gS ϕ.

The converse is obvious, because Intst(S) ⊆ Int(S).

Part 2: Local entailment.
Let S be an interpretation system presentation and let Γ∪{ϕ} ⊆ L(C). Assume

that Γ ��S ϕ, and suppose that A ∈ Int(S) is such that

vA([[ξ1]]A) ≤A vA([[σ+(γ)]]A)

for each γ ∈ Γ. Consider Ā ∈ Intst(S) defined as in Part 1. Then

vĀ([[ξ1]]Ā) ≤Ā vĀ([[σ+(γ)]]Ā)

for each γ ∈ Γ and so vĀ([[ξ1]]Ā) ≤Ā vĀ([[σ+(ϕ)]]Ā), by Corollary 5.1.19. Thus

vA([[ξ1]]A) ≤A vA([[σ+(ϕ)]]A).

This means that Γ �̂�S ϕ and so, by Proposition 5.1.18, Γ ��S ϕ. The converse
follows easily, since Intst(S) ⊆ Int(S). �
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From the last result it is clear that, in terms of entailment, nothing changes
when we consider “non-standard” interpretation structures. The use of Int(S)
instead of Intst(S) is justified by the following reason: by using Int(S) we can
take profit of the completeness theorem of CEQ, as will be done in Section 5.4
below.

5.2 Fibring non-truth functional logics

In this section we introduce fibring of interpretation systems presentations. Recall,
from Chapter 3, the general idea when fibring two interpretation systems: their
signatures are putting together, and the models are defined as being the structures
over the new signature whose reducts to the given signatures are models of the
respective systems.

Within the present framework, the models are two-sorted algebras (of formulas
and truth values). It should be expected, therefore, that, in the fibring (as it was
done in the truth functional case) the models would still be two-sorted algebras
over the new signature whose reducts are models of the logics being fibred. When
fibring two interpretation system presentations, thus, we expect to put together
the signatures and the requirements on the valuation map.

Unconstrained fibring corresponds to the case where the signatures of the given
systems are disjoint. Otherwise the fibring is constrained. Of course, a rigorous
definition (in terms of category theory) of both form of fibring is possible, as we
shall see.

The basic forms of fibring considered here lead to new logics that sometimes
need small adjustments in order to cope with the application at hand. These
adjustments consist of the adding of further interaction rules, written in the new
signature.

Recall the category Sig presented in Remark 2.1.10. The category of interpre-
tation systems is defined as follows:

Definition 5.2.1 An interpretation system presentation morphism

h : 〈C, S〉 → 〈C ′, S′〉

is a morphism h : C → C′ in Sig such that, for each s ∈ S, h(s) is in S′•.
Interpretation system presentations and its morphisms (with composition and

identity maps inherited from Sig) constitute the category Isp. ∇

Remark 5.2.2 If A′ = 〈A′
φ,A′

τ , ·A′〉 is in Int(S′) then its reduct to Σ(C,Ξ) via
h is the interpretation structure

A′|hΣ(C,Ξ) = 〈(A′
φ)|hΣ(C,Ξ),A′

τ , ·A′|hΣ(C,Ξ)
〉
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over Σ(C,Ξ) such that, for every term t over Σ(C,Ξ) and every assignment α over
A′|hΣ(C,Ξ) (that is, every assignment α over A′),

[[t]]αA′|hΣ(C,Ξ)
= [[ĥ(t)]]αA′ .

In particular, [[t]]A′|hΣ(C)
= [[ĥ(t)]]A′ for every closed term t over Σ(C).

Clearly, a morphism h : 〈C, S〉 → 〈C′, S′〉 satisfies the following property: for
every A′ ∈ Int(S′), its reduct to Σ(C) via h is in Int(S). ∇

Definition 5.2.3 The fibring of interpretation systems presentations S′ = 〈C′, S′〉
and S ′′ = 〈C′′, S′′〉 is the interpretation system presentation

S′ ∪S′′ = 〈C, S〉
such that C = C′ ∪C′′ and S = S′ ∪ S′′. ∇

As before, when C′ ∩ C′′ = ∅ the fibring is said to be unconstrained , and it is
said to be constrained otherwise.

The models of the fibred interpretation system presentations can be character-
ized as follows (details of the proof are left to the reader):

Proposition 5.2.4 Given interpretation system presentations S′ = 〈C′, S′〉 and
S′′ = 〈C′′, S′′〉, an interpretation structure A over the signature Σ(C′ ∪C′′,Ξ)
belongs to Int(S′ ∪S′′) if and only if:

• A|Σ(C′,Ξ) ∈ Int(S′);

• A|Σ(C′′,Ξ) ∈ Int(S ′′);

where A|Σ(C′,Ξ) and A|Σ(C′′,Ξ) are the reducts of A to the signature Σ(C′,Ξ) and
the signature Σ(C′′,Ξ) via the inclusions

i′ : 〈C′, S′〉 → 〈C′ ∪C′′,S′ ∪S′′〉 and i′′ : 〈C′′, S′′〉 → 〈C′ ∪C′′,S′ ∪S′′〉
respectively. ∇

From a categorial point of view, the unconstrained fibring is, as usual, a co-
product:

Proposition 5.2.5 Let S′ and S′′ be two interpretation system presentations.
Then S′ ∪S′′ is the coproduct of S and S′′ in the category Isp.

Remark 5.2.6 With respect to the constrained fibring, the construction can be
characterized as a cocartesian lifting by the forgetful functor N : Isp→ Sig along
the signature coequalizer for the pushout of the given signatures. We left the
details of the construction to the interested reader. In Chapter 7 we will describe
this construction. ∇
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P ∪ {∧,∨,⇒, t, f}
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P ∪ {¬′′,�,∧,∨,⇒, t, f}
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P ∪ {¬′,¬′′,�,∧,∨,⇒, t, f}

Figure 5.1: Fibring of signatures of C1 and KD

The method for combining interpretation systems presentations just introduced
is exemplified below.

Example 5.2.7 The paraconsistent deontic logic CD1 was introduced in [75]. This
logic is an extension of the paraconsistent system C1 by including a modal operator
� with the properties of the deontic (“obligatory”) operator of the modal logic
KD. It is natural to ask whether the logic CD1 is the fibring of C1 and KD.

The obvious idea is to take the fibring of C1 and KD constrained to the sharing
of the propositional symbols in P ∪ {∧,∨,⇒, t, f}.

Let S′ = 〈C′, S′〉 be the interpretation system presentation for C1 described in
Example 5.1.9 but now defined in a signature containing the negation symbol ¬′

instead of ¬. On the other hand, let S′′ = 〈C′′, S′′〉 be the interpretation system
presentation for KD described in Example 5.1.14, but now including the negation
symbol ¬′′ instead of ¬. The resulting fibring by sharing P ∪ {∧,∨,⇒, t, f}, as
depicted in Figure 5.1, is

S′∪S′′ = 〈C′ ∪ C′′, S′ ∪ S′′〉
where

• (C′ ∪ C′′)0 = P ∪ {t, f};
• (C′ ∪ C′′)1 = {¬′,¬′′,�};
• (C′ ∪ C′′)2 = {∧,∨,⇒};
• (C′ ∪ C′′)k = ∅ for k > 2.

It is worth noting that there are two negations in C′ ∪ C′′: ¬′ coming from
C′ and ¬′′ coming from C′′. The former is the paraconsistent negation inherited
from C1 and the latter is the classical negation inherited from KD. Of course, in
C′ ∪ C′′ the expression γ◦ is an abbreviation of (¬′(γ ∧ (¬′ γ))).
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It is easy to see that the fibring defined above is weaker than (the bivaluations
presentation of) CD1 . However, it is enough to add one additional meta-axiom on
valuations to the fibred interpretation system presentation:

( −→ (v(y◦1) ≤ v((� y1)◦))).

Using the terminology introduced in Chapter 1, this procedure can be seen as
a splitting of CD1 in the components KD and C1. The idea of adding an extra
interaction axiom is in the spirit of the original proposal of fibring, as introduced
in [108]. ∇

There are some other interesting examples of combination of modal and para-
consistent reasoning in the literature, for instance [83, 84, 224]. In these references,
using paraconsistent techniques, some problems of deontic logic having to do with
deontic paradoxes and moral dilemmas are studied. All these systems could be,
of course, analyzed from the point of view of fibring non-truth functional logics
presented in this chapter.

We synthesize the properties of fibring of non-truth functional interpretation
system presentations as follows:

• homogeneous combination mechanism: both original logics are presented by
interpretation system presentations;

• algorithmic combination of logics: given the interpretation system presenta-
tions for the original logics, we know how to define the interpretation system
presentation that corresponds to their fibring, but in many cases the given
logics have to be pre-processed (that is, the interpretation system presenta-
tions have to be extracted);

• canonical combination of logics: the fibring is the minimal proof system
among those that are stronger then the original proof systems.

5.3 Non-truth functional logic systems

In this section, as it was done in the previous chapters, an appropriate notion
of logic system will be introduced. As done before, we first concentrate on the
proof-theoretical counterpart of interpretation system presentations. Again, the
proof-theory will be presented in terms of Hilbert calculi. We then consider logic
systems which encompass both semantic and proof-theoretical aspects.

Recall, from Definition 2.3.1, the notion of Hilbert calculi which include global
and local rules.

Continuing with the example of the deontic paraconsistent logic CD1 , we consider
the Hilbert calculus corresponding to the paraconsistent system C1 and the Hilbert
calculus corresponding to modal system KD.
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Example 5.3.1 The Hilbert calculus for C1 presented in Example 2.2.9 can be
reformulated in terms of local and global rules, by considering all the rules as being
simultaneously local and global: Rg = R�. ∇

Example 5.3.2 Adapting from [153, 178], the modal Hilbert calculus for KD
consists of the following set R� of rules:

• 〈∅, (ξ1 ⇒ (ξ2 ⇒ ξ1))〉;

• 〈∅, ((ξ1 ⇒ (ξ2 ⇒ ξ3))⇒ ((ξ1 ⇒ ξ2)⇒ (ξ1 ⇒ ξ3)))〉;
• 〈∅, (((¬ ξ1)⇒ (¬ ξ2))⇒ (ξ2 ⇒ ξ1))〉;

• 〈∅, ((�(ξ1 ⇒ ξ2))⇒ ((� ξ1)⇒ (� ξ2)))〉;
• 〈∅, ((� ξ1)⇒ (¬(�(¬ ξ1))))〉;

• 〈∅, ((ξ1 ∨ ξ2)⇔ ((¬ ξ1)⇒ ξ2))〉;

• 〈∅, ((ξ1 ∧ ξ2)⇔ (¬((¬ ξ1) ∨ (¬ ξ2))))〉;
• 〈∅, (t⇔ (ξ1 ⇒ ξ1))〉;

• 〈∅, (f ⇔ (ξ1 ∧ (¬ ξ1)))〉;

• 〈{ξ1, (ξ1 ⇒ ξ2)}, ξ2〉.
On the other hand, Rg = R� ∪ {〈{ξ1} , (� ξ1)〉}. ∇

Example 5.3.3 We now revisit modal paraconsistent logic. We can perform the
fibring (as Hilbert calculi) of C1 and KD, while sharing the propositional symbols
in P ∪ {∧,∨,⇒, t, f}. The resulting Hilbert calculus has all the global and local
rules for both C1 and KD, but defined in the mixed language. Clearly, the resulting
calculus is weaker than the deontic paraconsistent system CD1 of [75] (at the proof-
theoretic level). The calculus CD1 can be easily recovered, simply by adding to the
fibred Hilbert calculus the following proof rule:

• 〈∅, (ξ◦1 ⇒ (� ξ1)◦)〉.

This interaction axiom, which is already present in CD1 , could never be obtained
using the basic fibring operation since it makes full use of the mixed language.
This kind of interaction rules can never be obtained by using the current notion
of (propositional) fibring. It is worth noting that the semantic counterpart of
the interaction axiom added to the fibred Hilbert calculus was also added to the
corresponding fibred interpretation system presentation in Example 5.2.7. ∇
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As before, logic systems can be considered. Logic systems are structures which
put together both semantic and proof-theoretic aspects. In the present framework,
a logic system includes an interpretation system presentation and a Hilbert calcu-
lus. As mentioned in Chapter 3, logic systems provide the right setting to define
metaproperties such as soundness and completeness.

Definition 5.3.4 A logic system presentation is a tuple

L = 〈C, S,Rg, R�〉
such that the pair 〈C, S〉 is an interpretation system presentation and the triple
〈C,Rg , R�〉 is a Hilbert calculus. ∇

Again we can use Γ gL ϕ whenever Γ gH ϕ, where H is the underlying Hilbert
calculus, and Γ �gL ϕ whenever Γ �gS ϕ, where S is the underlying interpretation
system presentation. The same notation applies to local reasoning.

As expected, the (unconstrained and constrained) fibring of logic systems is
obtained by the corresponding fibring of the underlying interpretation system pre-
sentations and Hilbert calculi. The reader interested in category theory can easily
check that, one more time, unconstrained fibrings of logic system presentations
correspond to coproducts, and constrained fibrings of logic system presentations
correspond to cocartesian liftings by the forgetful functor from the category of
logic system presentations to Sig. These operations are performed in the category
of logic system presentations, which is defined in the obvious way.

Example 5.3.5 The logic system presentations for C1 and KD will be denoted
by LC1 and LKD, respectively, and their fibring while sharing P ∪ {∧,∨,⇒, t, f}
will be denoted by LC1⊕KD (recall Examples 5.2.7 and 5.3.3). ∇

Soundness and completeness of logic system presentations are defined as ex-
pected.

Definition 5.3.6 Let L = 〈C, S,Rg, R�〉 be a logic system presentation. We say
that L is sound if, for every Γ ⊆ L(C) and ϕ ∈ L(C):

• Γ gH ϕ implies Γ �gS ϕ;

• Γ �H ϕ implies Γ ��S ϕ.

On the other hand, L is complete if, for every Γ ⊆ L(C) and ϕ ∈ L(C):

• Γ �gS ϕ implies Γ gH ϕ;

• Γ ��S ϕ implies Γ �H ϕ. ∇

Example 5.3.7 From the adequacy of the respective bivaluation semantics it is
easy to prove that the logic system presentations LC1 and LKD are sound and
complete. ∇
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5.4 Preservation results

In this section it is investigated the problem of preservation of soundness and
completeness by fibring in the present framework. As it was done before, some
sufficient conditions guaranteeing the preservation of soundness and completeness
by fibring are established. At this point the use of the metalogic CEQ, as well as its
soundness and completeness property (which can be easily obtained by adapting
the proofs in [132, 208]) is crucial.

As we shall see in the proof of Proposition 5.4.11, the key idea is that the relevant
part of the calculus of CEQ can be encoded in the object Hilbert calculus, provided
that certain conditions are satisfied (recall Definitions 5.4.3 and 5.4.7).

5.4.1 Encoding CEQ in the object Hilbert calculus

A fundamental step towards the intended encoding is to investigate the infer-
ential power of CEQ with respect to interpretation systems. This is done in
Lemma 5.4.10. To begin with, recall the substitutions σ+ and σ− introduced
in Definition 5.1.17.

Definition 5.4.1 Let S = 〈C, S〉 be an interpretation system presentation. We
define the following relations, where Γ ∪ {ϕ} ⊆ L(C):

• Γ gS ϕ if S• ∪ {( −→ (v(γ) ≈  )) : γ ∈ Γ} CEQ
Σ(C,Ξ) (v(ϕ) ≈  );

• Γ �S ϕ if

S• ∪ {(−→ (v(ξ1) ≤ v(σ+(γ)))) : γ ∈ Γ} CEQ
Σ(C,Ξ) (v(ξ1) ≤ v(σ+(ϕ))). ∇

Observe that the use of substitution σ+ in the definition of �S above guarantees
that the variable ξ1 does not occur in the term v(σ+(ϕ)).

The next result shows that the relations introduced above correspond, respec-
tively, to global and local derivations in the sense of Definition 5.1.15

Proposition 5.4.2 Given an interpretation system presentation S = 〈C, S〉 and
Γ ∪ {ϕ} ⊆ L(C), we have:

• Γ �gS ϕ if and only if Γ gS ϕ;

• Γ ��S ϕ if and only if Γ �S ϕ.

Proof. This is an immediate consequence of the completeness of CEQ. In the
local case it is used, additionally, Proposition 5.1.18. �

By considering the result above, it should be clear that soundness and com-
pleteness can now be expressed in terms of a relevant part of CEQ. This justifies
the intended encoding of CEQ within the object Hilbert calculus.
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The encoding of (a relevant part of) CEQ to be defined below requires the
assumption of some additional properties of the logic system presentations. The
technique is analogous to what was done in Chapters 2 and 3, by requiring the
existence of some connectives with intuitionistic behavior.

Definition 5.4.3 A logic system presentation L = 〈C, S,Rg, R�〉 is said to be rich
if:

• t, f ∈ C0 and ∧,∨,⇒ ∈ C2;

• S• CEQ
Σ(C,Ξ) (v(t) ≈  );

• S• CEQ
Σ(C,Ξ) (v(f) ≈ ⊥);

• S• CEQ
Σ(C,Ξ) (v(y1 ∧ y2) ≈ �(v(y1), v(y2)));

• S• CEQ
Σ(C,Ξ) (v(y1 ∨ y2) ≈ �(v(y1), v(y2)));

• S• CEQ
Σ(C,Ξ) (v(y1 ⇒ y2) ≈ �(v(y1), v(y2)));

• 〈{ξ1, (ξ1 ⇒ ξ2)}, ξ2〉 ∈ R�. ∇

Example 5.4.4 The logic system presentations LC1 and LKD (see Example 5.3.5),
as well as many other logics occurring commonly in the literature, are rich. ∇

A rich logic system presentation allows to translate faithfully from the metalogic
level to the object logic level in a natural way. In fact, a closed term of sort τ
over Σ(C,Ξ) is mapped to a formula in L(C) by means of a mapping ∗ obeying
the following rules:

v(γ)∗ is γ;

 ∗ is t;

⊥∗ is f ;

−(t)∗ is (t∗⇒ f);

�(t1, t2)∗ is (t∗1 ∧ t∗2);

�(t1, t2)∗ is (t∗1 ∨ t∗2);

� (t1, t2)∗ is (t∗1 ⇒ t∗2).
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Using the mapping ∗ defined above, a closed τ -equation (t1 ≈ t2) is naturally
translated to the formula (t1 ≈ t2)∗ given by (t∗1 ⇔ t∗2). Finally, if E is a set of
closed τ -equations, then E∗ will denote the set of formulas {eq∗ : eq ∈ E}.

The main property of the translation ∗ is the following: if t is a truth value
closed term then t∗ is a formula having the truth value t through the valuation v
(see Lemma 5.4.5). The proof of this fact is immediate from the definition of the
mapping ∗ and the completeness of CEQ, assuming richness of the logic system
presentation.

Lemma 5.4.5 Let L be a rich logic system presentation and t a closed τ -term
over Σ(C,Ξ). Then:

S• CEQ
Σ(C,Ξ) (v(t∗) ≈ t).

As a consequence of this, it is obtained an useful technical result.

Lemma 5.4.6 Let L be a rich logic system presentation, t1 and t2 closed τ -terms
over Σ(C,Ξ) and A ∈ Int(S). Then:

[[t1]]A ≤A [[t2]]A if and only if vA([[(t∗1 ⇒ t∗2)]]A) =  A

and
[[t1]]A = [[t2]]A if and only if vA([[(t∗1 ⇔ t∗2)]]A) =  A.

Proof. This is a direct consequence of Proposition 5.1.8, the previous lemma and
the completeness of CEQ. �

In order to obtain the intended encoding of the relevant part of the metarea-
soning into the object calculus, an additional requirement (besides richness) is
necessary:

Definition 5.4.7 A rich logic system presentation L is said to be equationally
appropriate if

{(ρ(eq1))∗, . . . , (ρ(eqn))∗} gL (ρ(eq))∗

for every conditional equation (eq1 & . . . & eqn −→ eq) in S• and every closed
substitution ρ. ∇

We are now ready to state the main results of this section, namely the re-
lationship between completeness and equational appropriateness (recall Proposi-
tions 5.4.8 and 5.4.11). Since it is much easier to analyze the preservation by
fibring of equational appropriateness than the preservation by fibring of complete-
ness, the characterization of completeness in terms of equational appropriateness
is very useful.

Proposition 5.4.8 Every rich and complete logic system presentation is equa-
tionally appropriate.
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Proof. Let L be a rich and complete logic system presentation. Consider the
structure A ∈ Int(S), and let ((t1 ≈ s1) & . . . & (tn ≈ sn) −→ (t ≈ s) be a
conditional equation in S• and ρ a closed substitution.

Suppose that vA([[(ρ(ti))∗ ⇔ (ρ(si))∗]]A) =  A for i = 1, . . . , n. Then, using
Lemma 5.4.6,

[[ρ(ti)]]A = [[ρ(si)]]A

for i = 1, . . . , n. Consider the assignment given by α = [[ ]]A ◦ρ. It is easy to prove
that [[ρ(r)]]A = [[r]]αA, for every τ -term r over Σ(C,Ξ). In particular, [[ti]]αA = [[si]]αA
for i = 1, . . . , n. By definition of Int(S), the interpretation structure A is a model
of the given conditional equation of S•. Thus, it follows that [[t]]αA = [[s]]αA, that is,

[[ρ(t)]]A = [[ρ(s)]]A.

Using again Lemma 5.4.6, vA([[(ρ(t))∗ ⇔ (ρ(s))∗]]A) =  A. This means that

{((ρ(t1))∗⇔ (ρ(s1))∗), . . . , ((ρ(tn))∗ ⇔ (ρ(sn))∗)} �gS ((ρ(t))∗ ⇔ (ρ(s))∗).

Using completeness, we get

{((ρ(t1))∗⇔ (ρ(s1))∗), . . . , ((ρ(tn))∗⇔ (ρ(sn))∗)} gL ((ρ(t))∗ ⇔ ((ρ(s))∗).

In other words, the given logic system presentation is equationally appropriate. �

The converse of this theorem is proved in Proposition 5.4.11 below. Previous
to this, it is necessary to establish some technical lemmas.

Lemma 5.4.9 Let L be an equationally appropriate logic system presentation
and Γ ∪ {ϕ} be a set of schema formulas where ξ1 does not occur. If

{(ξ1 ⇒ γ) : γ ∈ Γ} gL (ξ1 ⇒ ϕ)

then Γ �L ϕ.

Proof. The crucial point of the proof is that, since S• must contain a specification
of the class of the Heyting algebras, then every intuitionistic theorem written in
the signature t, f ,∧,∨,⇒ must be provable in the Hilbert calculus of L, because
the equational appropriateness of L. This fact will be used along the proof.

Thus, suppose that {(ξ1 ⇒ γ) : γ ∈ Γ} gL (ξ1 ⇒ ϕ). It follows that

{(ξ1 ⇒ γ1), . . . , (ξ1 ⇒ γn)} gL (ξ1 ⇒ ϕ)

for some finite set {γ1, . . . , γn} ⊆ Γ, given the finite character of derivations. Let γ
be the schema formula γ1 ∧ . . .∧ γn and consider the schema variable substitution
σ such that σ(ξ1) = γ and σ(ξi) = ξi for every i ≥ 2. By the structurality of
proofs, and the fact that the schema variable ξ1 does not occur in Γ ∪ {ϕ}, we
easily obtain that

{(γ⇒ γ1), . . . , (γ⇒ γn)} gL (γ⇒ ϕ).
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By using straightforward intuitionistic reasoning it follows that gL (γ ⇒ γi) for
i = 1, . . . , n. Thus gL (γ ⇒ ϕ) and then, using again intuitionistic reasoning, we
obtain gL (γ1 ⇒ (. . .⇒ (γn ⇒ γ) . . . )). Finally, by modus ponens it follows that
Γ �L ϕ. �

Finally, it is necessary to analyze what can be proved in CEQ about interpre-
tation systems:

Lemma 5.4.10 Let L be an equationally appropriate logic system presentation,
E a set of closed τ -equations over Σ(C,Ξ) and ρ a closed substitution. If

S• ∪ {( −→ eq ) : eq ∈ E} CEQ
Σ(C,Ξ) (t1 ≈ t2)

then either t1, t2 are the same term of sort φ, or t1, t2 are of sort τ and

E∗ gL ((ρ(t1))∗⇔ (ρ(t2))∗).

Proof. Recall the rules of CEQ in Definition 5.1.3.
Let ρ be a closed substitution. By induction on the length n of a proof in CEQ

of (t1 ≈ t2) from S• ∪ {( −→ eq) : eq ∈ E} we will prove the intended result.
Base: n = 1.
(i) t1 is ρ′(s1), t2 is ρ′(s2) and (t1 ≈ t2) is obtained by modus ponens from the

conditional equation ( −→ (s1 ≈ s2)) ∈ S•.
Then t1 and t2 are τ -terms. Moreover, it follows that

gL ((ρ(ρ′(s1)))∗⇔ (ρ(ρ′(s2)))∗)

by equational appropriateness. Then E∗ gL ((ρ(t1))∗ ⇔ (ρ(t2))∗), by the mono-
tonicity of provability.

(ii) t1 is ρ′(s1), t2 is ρ′(s2) and (t1 ≈ t2) is obtained by modus ponens from the
conditional equation ( −→ (s1 ≈ s2)) with (s1 ≈ s2) ∈ E.
Since both s1 and s2 are closed terms of sort τ then ρ′(s1) is s1 and ρ′(s2) is s2,
and so t1 and t2 are closed terms of sort τ . Therefore, (ρ(t1))∗ ⇔ (ρ(t2))∗ ∈ E∗,
that is, (t∗1 ⇔ t∗2) ∈ E∗ and then

E∗ gL (t∗1 ⇔ t∗2)

by the extensiveness of provability.
(iii) t1 and t2 are the same term, of either sort φ or τ , and (t1 ≈ t2) is obtained

by reflexivity.
If the sort of the equation is φ, we are done. Otherwise, (ρ(t1))∗ and (ρ(t2))∗ are
the same formula. By straightforward intuitionistic reasoning we conclude that
gL (ξ1 ⇔ ξ1). Therefore,

E∗ gL ((ρ(t1))∗⇔ (ρ(t2))∗)

by the structurality and monotonicity of provability.
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Step: n > 1.
(i) (t1 ≈ t2) is obtained from

S• ∪ {( −→ eq ) : eq ∈ E} CEQ
Σ(C,Ξ) (t2 ≈ t1)

by symmetry.
If the terms t1 and t2 have sort φ then, by induction hypothesis, they coincide. Oth-
erwise, using again the induction hypothesis, we get E∗ gL ((ρ(t2))∗ ⇔ (ρ(t1))∗).
By intuitionistic reasoning we know that gL ((ξ1 ⇔ ξ2) ⇒ (ξ2 ⇔ ξ1)) and then
E∗ gL ((ρ(t1))∗⇔ (ρ(t2))∗).

(ii) (t1 ≈ t2) is obtained from

S• ∪ {( −→ eq ) : eq ∈ E} CEQ
Σ(C,Ξ) {(t1 ≈ t3), (t3 ≈ t2)}

by transitivity.
If the terms t1, t2 and t3 have sort φ then, by induction hypothesis, the three
terms coincide. Otherwise, using again the induction hypothesis,

E∗ gL {((ρ(t1))∗⇔ (ρ(t3))∗), ((ρ(t3))∗⇔ (ρ(t2))∗)}.
On the other hand, straightforward intuitionistic reasoning give us

{(ξ1 ⇔ ξ3), (ξ3 ⇔ ξ2)} gL (ξ1 ⇔ ξ2).

Therefore, E∗ gL ((ρ(t1))∗⇔ (ρ(t2))∗).
(iii) t1 is f(t11, . . . , t1k), t2 is f(t21, . . . , t2k) and (t1 ≈ t2) is obtained from

S• ∪ {( −→ eq ) : eq ∈ E} CEQ
Σ(C,Ξ) {(t11 ≈ t21), . . . , (t1k ≈ t2k)}

by the rule of congruence.
If t1 and t2 have sort φ then f ∈ Ck and so all the terms tij are of sort φ, by
definition of Σ(C,Ξ). Using the induction hypothesis, t1j and t2j must coincide
(for j = 1, . . . , k) and then t1 coincide with t2. Otherwise, f can either be v or a
generator among −,�,�,�, by definition of Σ(C,Ξ). In the first case k = 1 and
both t11 and t21 have sort φ. Then, by induction hypothesis, t11 coincides with
t21 and so t1 coincides with t2. We can repeat step (iii) of the base to obtain

E∗ gL ((ρ(t1))∗⇔ (ρ(t2))∗).

Finally, if f is a truth value generator then all the terms tij are also of sort τ .
Using the induction hypothesis,

E∗ gL {((ρ(t11))∗ ⇔ (ρ(t21))∗), . . . , ((ρ(t1k))∗⇔ (ρ(t2k))∗)}.
On the other hand, by intuitionistic reasoning we have that

{(ξ1 ⇔ ξ2), (ξ3 ⇔ ξ4)} gL ((ξ1#ξ3)⇔ (ξ2#ξ4))
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for # ∈ {∧,∨,⇒}. Then E∗ gL ((ρ(t1))∗ ⇔ (ρ(t2))∗), since the generator − is
translated using f and ⇒.

(iv) t1 is ρ′(s1), t2 is ρ′(s2) and (t1 ≈ t2) is obtained using the conditional
equation ((s11 ≈ s21) & . . . & (s1k ≈ s2k) −→ (s1 ≈ s2)) ∈ S• from

S• ∪ {( −→ eq ) : eq ∈ E} CEQ
Σ(C,Ξ) {(ρ′(s11) ≈ ρ′(s21)), . . . , (ρ′(s1k) ≈ ρ′(s2k))}

by modus ponens. In this case, all the terms sij have sort τ . Then, by induction
hypothesis it follows that

E∗ gL {((ρ(ρ′(s11)))∗ ⇔ (ρ(ρ′(s21)))∗), . . . , ((ρ(ρ′(s1k)))∗ ⇔ (ρ(ρ′(s2k)))∗)}.
On the other hand, by equational appropriateness we get

Γ gL ((ρ(ρ′(s1)))∗ ⇔ (ρ(ρ′(s2)))∗)

where Γ = {((ρ(ρ′(s11)))∗ ⇔ (ρ(ρ′(s21)))∗), . . . , ((ρ(ρ′(s1k)))∗ ⇔ (ρ(ρ′(s2k)))∗)}.
Therefore, E∗ gL ((ρ(t1))∗⇔ (ρ(t2))∗). �

Now we are ready to prove the converse of Proposition 5.4.8.

Proposition 5.4.11 Every equationally appropriate logic system presentation is
complete.

Proof. Let L be an equationally appropriate logic system presentation and let
Γ ∪ {ϕ} ⊆ L(C).

If Γ �gS ϕ then, by Proposition 5.4.2, Γ gS ϕ. That is,

S• ∪ {( −→ (v(γ) ≈  )) : γ ∈ Γ} CEQ
Σ(C,Ξ) (v(ϕ) ≈  ).

Therefore, using Lemma 5.4.10, we have that

{(γ⇔ t) : γ ∈ Γ} gL (ϕ⇔ t).

By intuitionistic reasoning we have that gL (ξ1 ⇔ (ξ1 ⇔ t)). Thus, it follows that
Γ gL ϕ.

On the other hand, if Γ ��S ϕ then, using again Proposition 5.4.2, Γ �S ϕ. That
is,

S• ∪ {( −→ (v(ξ1) ≤ v(σ+(γ)))) : γ ∈ Γ} CEQ
Σ(C,Ξ) (v(ξ1) ≤ v(σ+(ϕ))).

By Lemma 5.4.10,

{((ξ1 ∧ σ+(γ))⇔ ξ1) : γ ∈ Γ} gL ((ξ1 ∧ σ+(ϕ))⇔ ξ1).

Using intuitionistic reasoning it can be proved that

gL (((ξ1 ∧ ξ2)⇔ ξ1)⇔ (ξ1 ⇒ ξ2))
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and then it follows that

{(ξ1 ⇒ σ+(γ)) : γ ∈ Γ} gL (ξ1 ⇒ σ+(ϕ)).

By Lemma 5.4.9 we infer that σ+(Γ) �L σ+(ϕ). Finally, using σ− and structural-
ity, it follows that Γ �L ϕ. �

From Propositions 5.4.8 and 5.4.11, the equivalence between completeness and
equational appropriateness for rich systems is obtained. This result will be used
below for showing the preservation of completeness by fibring rich systems. It is
worth noting that this equivalence may also be useful for establishing the complete-
ness of logics endowed with a semantics presented by conditional equations. In
fact, as mentioned above, it is a simpler task to verify equational appropriateness
than to establish completeness.

5.4.2 Preservation of completeness by fibring

In this section we concentrate our attention on the preservation of soundness and
of completeness by fibring.

As usual, the preservation of soundness is easier to state than the preservation
of completeness:

Theorem 5.4.12 Soundness is preserved by fibring.

Proof. Let L be the fibring of two sound logic system presentations L′ and L′′.
Using Proposition 5.4.2, it is enough to prove the following: Γ gL ϕ implies that
Γ gS ϕ, and Γ �L ϕ implies that Γ �S ϕ, for every Γ ∪ {ϕ} ⊆ L(C). Clearly, it is
enough to prove the following that:

Prem(r) gS Conc(r)

for every r ∈ Rg, and
Prem(r) �S Conc(r)

for every r ∈ R�. Thus, let r ∈ Rg. Assume, without loss of generality, that r
is a global rule of L′. Then Prem(r) gL′ Conc(r), by definition of proof. Thus
Prem(r) gS′ Conc(r), by the soundness of L′. That is,

S′• ∪ {( −→ (v(γ′) ≈  )) : γ′ ∈ Prem(r)} CEQΣ(C′,Ξ) (v(Conc(r)) ≈  ).

From this it follows that

S• ∪ {( −→ (v(γ′) ≈  )) : γ′ ∈ Prem(r)} CEQΣ(C,Ξ) (v(Conc(r)) ≈  ),

that is, Prem(r) gS Conc(r). The proof for local derivations is similar. �
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Finally, we address the problem of preservation of completeness by fibring. At
this point the technical results concerning the encoding of the metalogic in the
object Hilbert calculus will be used.

In order to obtain sufficient conditions for the preservation of completeness by
fibring we concentrate the attention on rich systems. The first step is to prove the
preservation of richness by fibring.

Lemma 5.4.13 Richness is preserved by fibring provided that conjunction, dis-
junction, implication, true and false are shared.

Proof. Since we are sharing conjunction, disjunction, implication, true and false,
the conditions for richness concerning the signature and the valuation symbol are
preserved. On the other hand, modus ponens is clearly a derivation rule in the
fibring. �

The second requirement in order to guarantee the preservation of completeness
by fibring is equational appropriateness. This property is also preserved by fibring,
as we prove below:

Lemma 5.4.14 Equational appropriateness is preserved by fibring provided that
conjunction, disjunction, implication, true and false are shared.

Proof. Let L′ and L′′ be equationally appropriate logic system presentations,
and let L be their fibring while sharing conjunction, disjunction, implication, true
and false. By Definition 5.4.7 we know that L′ and L′′ are rich and then, by
Lemma 5.4.14, it follows that L is also rich.

Let
((t1 ≈ s1) & . . . & (tn ≈ sn) −→ (t ≈ s))

be a conditional equation in S•, and let ρ be a closed substitution. Clearly, by
definition of fibring, this conditional equation belongs to some of the components,
S′• or S′′•. Let us assume, without loss of generality, that the given conditional
equation comes from L′. Since, by hypothesis, L′ is equationally appropriate, it
follows that

{((ρ′(t1))∗⇔ (ρ′(s1))∗), . . . , ((ρ′(tn))∗⇔ (ρ′(sn))∗)} gL′ ((ρ′(t))∗⇔ (ρ′(s))∗),

where ρ′ is the following closed substitution:

• for every i ≥ 1, ρ′(xi) = v(ξ2i−1) and ρ′(yi) = ξ2i.

By definition of fibring of Hilbert calculi, it follows that

{((ρ′(t1))∗⇔ (ρ′(s1))∗), . . . , ((ρ′(tn))∗⇔ (ρ′(sn))∗)} gL ((ρ′(t))∗⇔ (ρ′(s))∗).

Consider now the substitution σ on schema variables defined by:

• σ(ξ2i−1) = (ρ(xi))∗;
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• σ(ξ2i) = ρ(yi).

Using σ and the structurality of the Hilbert calculus of L, it follows that

σ({((ρ′(t1))∗⇔ (ρ′(s1))∗), . . . , ((ρ′(tn))∗⇔ (ρ′(sn))∗)}) gL σ((ρ′(t))∗⇔ (ρ′(s))∗).

Now, by induction on complexity it is easy to prove that

σ((ρ′(u′))∗) = (ρ(u′))∗

for every term u′ of sort τ over Σ(C′,Ξ). Thus

{((ρ(t1))∗⇔ (ρ(s1))∗), . . . , ((ρ(tn))∗⇔ (ρ(sn))∗)} gL ((ρ(t))∗ ⇔ (ρ(s))∗).

From this, it follows that L is equationally appropriate. �

Theorem 5.4.15 Let L′ and L′′ be rich, sound and complete logic system presen-
tations. Then, their fibring L while sharing conjunction, disjunction, implication,
true and false is also a sound and complete logic system presentation.

Proof. The preservation of soundness follows from Proposition 5.4.12. On the
other hand, the preservation of completeness is an immediate consequence of
Lemma 5.4.14 and the equivalence between equational appropriateness and com-
pleteness for rich systems stated above. In more detail, suppose that L′ and
L′′ are two rich and complete logic system presentations, and let L be their fib-
ring while sharing conjunction, disjunction, implication, true and false. Using
Proposition 5.4.8, the systems L′ and L′′ are also equationally appropriate. By
Lemma 5.4.14, the logic system presentation L is equationally appropriate. Fi-
nally, by Proposition 5.4.11, the system L is complete. �

Example 5.4.16 Consider again the logic system presentations LC1 and LKD

(see Example 5.3.5). Since both are rich, sound and complete (see Examples 5.4.4
and 5.3.7) then their fibring LC1⊕KD while sharing P ∪ {∧,∨,⇒, t, f} (see Exam-
ple 5.3.5) is also sound and complete, by Theorem 5.4.15. This system is a new
modal paraconsistent logic system presentation, weaker than the paraconsistent
deontic logic CD1 of [75], as observed above. It is worth noting that if we add to
LC1⊕KD:

• (v(y◦1) ≤ v((� y1)◦)) as a valuation axiom; and

• 〈∅, (ξ◦1 ⇒ (� ξ1)◦)〉 as an axiom in the Hilbert calculus

(recalling that γ◦ is now an abbreviation for (¬′(γ∧(¬′ γ)))) it is obtained a sound
and complete logic system presentation that is equivalent to the system CD1 , both
at the proof-theoretic and the semantic levels. ∇
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5.5 Self-fibring and non-truth functionality

This section analyzes self-fibring (that is, fibring two copies of the same logic) in
the context of non-truth functionality.

The problem of obtaining the self-fibring of a given logic could appear, at first
sight, as a trivial and uninteresting one: the first thing that comes to mind is that
the self-fibring of a given logic produces the same logic, written in a signature
with duplicate symbols, which collapse. Thus, for instance, the self-fibring of
modal logic KD produces again KD, but with two symbols ¬ and ¬′ for negation,
two symbols ∧ and ∧′ for conjunction, two symbols � and �′ for necessitation,
and so on (for simplicity, let us suppose that the symbols in C0 are shared).
The connectives should be equivalent in the resulting logic. Moreover, by the
replacement property, any formula ϕ written with connectives ∧, ∨, ⇒, ¬ and
� should be equivalent to the formula ϕ′ obtained from ϕ by replacing (some)
occurrences of # by #′, for # ∈ {∧,∨,⇒,¬,�}.

This result is indeed true, as we shall see, as long as truth functional connectives
are involved. However, if a logic contains a non-truth functional connective, say c,
then the two versions of that connective in the self-fibring, c and c′, are no longer
necessarily equivalent. Moreover, if the logic does not satisfy the replacement
property (as happens, for instance, with most of the LFIs, recall Example 5.1.10)
then a formula ϕ could not be equivalent to the formula ϕ′ obtained by replacing
(some) occurrences of a connective c by its duplicate c′, despite c being truth
functional or not. In particular, this phenomenon occurs with the paraconsistent
logic C1.

Let us begin by analyzing the self-fibring of interpretation system presentations.
Thus, let S be a truth functional interpretation system presentation, that is, one
in which all the connectives are truth functional (possibly derived) connectives. In
this special case, the self-fibring of S without sharing of connectives (just sharing
the propositional symbols in P) can be seen as the fibring S ∪S′ of S with a disjoint
copy S′ of S. That is, S ′ is obtained from S by replacing each symbol c /∈ P of C
by c′. As mentioned above, S ∪S′ is a new version of S in which each connective
appears duplicate. More precisely, if c ∈ Ck (for k > 0) and c′ is its duplicate then

vA([[(c(t1, . . . , tk))]]αA) = vA([[(c′(t1, . . . , tk))]]αA)

for every interpretation structure A, every assignment α over A and every terms
t1, . . . , tk of sort φ. Additionally, if c ∈ C0 is a constant symbol then

vA([[c]]A) = vA([[c′]]A).

If we consider now a truth functional, rich and complete logic system presenta-
tion L then the self-fibring L∪L′ of L with itself, while sharing C0, conjunction,
disjunction and implication, the situation is the same. That is, the formulas
(c(t1, . . . , tk)) and (c′(t1, . . . , tk)) will be equivalent in L∪L′, even if c and c′ are
not explicitly shared. Moreover, c can be replaced by c′ in any formula, obtaining
a formula equivalent to the original.
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Consider now an interpretation system presentation S having a non-truth func-
tional connective c. In this case, vA([[(c(t1, . . . , tk))]]αA) and vA([[(c′(t1, . . . , tk))]]αA)
do not necessarily coincide for every interpretation structure A for S ∪S′. This
means that, in general, (c(t1, . . . , tk)) and (c′(t1, . . . , tk)) are not equivalent in
L∪L.

Let us consider a concrete example. Let S be the interpretation system presenta-
tion given in Example 5.1.9, associated to (the semantic version of) the paraconsis-
tent logic C1. Consider the self-fibring S ∪S′ of S while sharing the symbols in C0.
Then, two families of connectives are obtained: {∧,∨,⇒,¬} and {∧′,∨′,⇒′,¬′}.
Any model for S∪S′ produces a valuation map vA such that

vA([[(t1�t2)]]αA) = vA([[(t1�′t2)]]αA)

for � ∈ {∧,∨,⇒}, since all the connectives above are truth functional.
In contrast, vA([[¬t]]αA) does not coincide necessarily with vA([[¬′t]]αA). For in-

stance, consider two C1-bivaluations v1 and v2 such that

• v1(p) = v2(p) for every propositional symbol p ∈ C0;

• v1(p1) = v1(¬ p1) = 1 and v2(p1) = 1, v2(¬ p1) = 0.

From this, it is possible to obtain a standard interpretation A presented by S∪S
(recall Definition 5.1.16) such that

• Aτ = {0, 1};
• 〈Aτ , A,⊥A,−A,�A,�A,�A〉 coincides with 2;

• [[ξ]]A = ξ for every ξ ∈ Ξ;

• vA : L(C ∪C′) → {0, 1} is defined recursively as follows:

– vA(p) = v1(p) = v2(p) for every propositional symbol p ∈ C0;

– vA(ξk) = v1(pk) = v2(pk) for every k ≥ 1;

– vA(ϕ#ψ) = vA(ϕ)#AvA(ψ) for every # ∈ {∧,∧′,∨,∨′,⇒,⇒′}, where
∧A = ∧′

A = �A, ∨A = ∨′
A = �A and ⇒A = ⇒′

A = �A;

– vA(¬ϕ) = v1(¬[[ϕ]]A), for ϕ ∈ L(C);

– vA(¬ϕ) = 1 if vA(ϕ) = 0, for ϕ ∈ L(C ∪C′) \ L(C);

– vA(¬′ϕ) = v2(¬[[ϕ]]A), for ϕ ∈ L(C′);

– vA(¬′ϕ) = 1 if vA(ϕ) = 0, for ϕ ∈ L(C ∪C ′) \ L(C′).

It is easy to check that A is in fact a standard interpretation structure such that
vA : L(C ∪C′) → {0, 1} is a mapping satisfying the following:

• vA restricted to L(C, ∅), the fragment generated by P ∪ {t, f ,∧,∨,⇒,¬},
coincides with v1;
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• vA restricted to L(C′, ∅), the fragment generated by P∪{t, f ,∧′,∨′,⇒′,¬′},
coincides with v2.

On the other hand, vA(¬p1) �= vA(¬′p1), and then ¬ and ¬′ do not collapse in
the resulting logic. By Theorem 5.4.15, ¬ϕ and ¬′ϕ are not equivalent formulas
(unless they are both theorems).

The example above shows that the self-fibring LC1⊕C1 of C1 while sharing P ∪
{t, f} produces two disjoint copies of C1.

Despite the truth functional connectives ∧, ∨ and ⇒ collapse respectively with
∧′, ∨′ and ⇒′, they are not the same in the resulting logic LC1⊕C1 as we now
explain. If we replace some occurrences of # by #′ in a formula, then the resulting
formula could be not equivalent to the original one. More precisely: for every
# ∈ {∧,∨,⇒} there exists a schema formula ϕ such that σ(ϕ) and σ′(ϕ) are not
equivalent in LC1⊕C1 . Herein, σ and σ′ are substitutions from Ξ to L(C ∪C′) such
that

σ(ξ1) = (ξ1#ξ2) and σ′(ξ1) = (ξ1#′ξ2).

Take, for instance, ϕ = (¬ξ1), and consider a standard interpretation A as above,
assuming that v1(p1 ⇒ p2) = v1(¬(p1 ⇒ p2)) = 1. Note that vA(¬(ξ1 ⇒ ξ2)) = 1
whereas vA(¬(ξ1 ⇒′ ξ2)) = 0 since vA(ξ1 ⇒′ ξ2) = v2(p1 ⇒ p2) = 1. Then,

σ(ϕ) = (¬(ξ1 ⇒ ξ2)) and σ′(ϕ) = (¬(ξ1 ⇒′ ξ2))

are not equivalent.
The same result applies to the other truth functional connectives. In other

words, the equivalence of (ξ1#ξ2) and (ξ1#′ξ2) does not guarantee the equiva-
lence of (¬(ξ1#ξ2)) and (¬(ξ1#′ξ2)). This kind of phenomenon occurs in most
of the LFIs studied in the literature, since commonly they do not satisfy the re-
placement property (see [49]). This shows that the self-fibring of logics without
the replacement property may produce unexpected results.

5.6 Final remarks

This chapter addressed the problem of fibring non-truth functional logics. Such
logics have the property that the denotation of formulas is not structural or, in
more technical terms, that the denotation of formulas is not an homomorphism
between algebras. In a truth functional logic we have that the denotation of
formula (c(ϕ1, . . . , ϕk)) over model m is

[[(c(ϕ1, . . . , ϕk))]]m = νk(c)([[ϕ1]]m, . . . , [[ϕk]]m).

Non-truth functional logics do not enjoy some nice properties like congruence
and substitution of equivalents. This raises problems, as for instance in what
concerns the use of standard proofs for completeness like the Lindenbaum-Tarski
technique in the algebraic setting. Herein, we use a metaframework (conditional
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equational logic) for encoding such logics and take advantage of the completeness
of this logic to prove completeness of non-truth functional logics.

The better known examples of non-truth functional logics are logics of formal
inconsistency (LFIs) that also have the property that from a contradiction we do
not necessarily infer everything (recall Example 5.1.10).

Another interesting application of the present setting, which deserves future
research, is the possibility of applying the fibring of interpretation system presen-
tations to a larger class of logics, by using Wójcicki’s Reduction (see [278]) and
Suszko’s Reduction (see [194]). These techniques applied together imply that every
standard logic admits a bivaluation semantics. Moreover, in [35] was presented a
technique to obtain a bivaluation semantics for a large class of finite valued matrix
logics. The obtained valuation semantics is defined by a set of clauses that can be
easily transformed into interpretation system presentations. Thus, the techniques
introduced in this chapter could be applied to combine (finite valued) matrix log-
ics. An interesting question to be studied is the relationship between this method
and the plain fibring of matrix logics described in Chapter 9.



Chapter 6

Fibring first-order logics

So far we have considered propositional based logics. However, sometimes, propo-
sitional based logics are not expressive enough for our purposes. We have then to
work with more expressive logics, such as first-order or even higher order logics.
Clearly, fibring mechanisms are still useful in these settings. We postpone the
study of fibring higher-order logics to Chapter 7 and concentrate herein in the
study of fibring first-order based logics.

In the first-order setting signatures may include connectives, as in propositional
signatures, but they may also include function symbols, predicate symbols and
quantifiers (variable binding operators). Two kinds of variables are now involved
in the language: schema variables, as before, and quantification variables, that is,
the variables that can be bind by the quantifiers.

From the deductive point of view, Hilbert calculi are adopted. The presence
of quantifiers in first-order languages introduces some new problems. In partic-
ular, the substitution of schema variables within the scope of quantifiers may
have unexpected and undesirable consequences. Hence, substitutions have to
be carefully handled when using inference rules in a derivation. To deal with
this problem we introduce the notion of proviso. Each inference rule includes a
proviso whose purpose is to ensure a safe use of substitutions when the rule is
applied.

With respect to semantics, things also become more elaborate in this first-order
setting. Besides the denotation of connectives, we have to deal with the denota-
tion of functions and predicate symbols, as well as the denotation of quantifiers.
Therefore, we need semantic structures that, for instance, have to encompass both
the semantics of quantifiers and the semantics of modal operators. We have in
mind a powerset algebraic semantics recognizing that quantifiers can be seen as
modalities. In this perspective, we adopt semantic structures endowed with a set
of “points”, a set of assignments to quantification variables and a set of “worlds”,
together with maps that associate to each “point” an assignment and a “world”.
As a result, quantifiers become special kind of modalities for which assignments

215
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play the role of worlds. Herein we take a different approach from the one proposed
in [168] for studying fusion of first-order modal logics.

In Section 6.1 we introduce first-order based signatures and the correspond-
ing languages. Next, in Section 6.2, we introduce interpretation structures and
interpretation systems. First-order Hilbert calculi are presented in Section 6.3.
Section 6.4 introduces first-order logic systems. In Section 6.5, we define fibring of
first-order based logics. We illustrate the constructions with the case of classical
first-order logic and modal classical first-order logic. The preservation by fibring
of several methateorems as well as the preservation of completeness is discussed in
Section 6.6. Finally, in Section 6.7, we make some final remarks.

This chapter capitalizes in [242] for the most part. It is also worthwhile to take
a look at [241] in [112] as a preliminary investigation on this topic and also to
understand better the problems raised by rules with provisos.

6.1 First-order signatures

This section introduces first-order based signatures and the corresponding first-
order based languages.

The notion of signature considered in the previous chapters is not rich enough
to cope with first-order features. Hence, we have to consider a more sophisticated
notion of signature. Besides connectives, first-order based signatures include func-
tion and predicate symbols and variable binding operators, usually referred as
quantifiers. For technical reasons to be detailed later on, we also include indi-
vidual symbols as distinct from 0-ary function symbols (constants). Moreover,
modalities are herein distinguished from the other connectives.

In what concerns the variables, we have to consider in this setting two kinds
of variables. To begin with, we have to consider quantification variables, that is,
the variables that quantifiers bind. Then, as before, we consider schema variables.
Since first-order based languages include both terms and formulas, we distinguish
between term schema variables and formula schema variables. Hence, we assume
fixed throughout this chapter the following three denumerable pairwise disjoint
sets of variables:

• X = {x1, x2, . . .};

• Θ = {θ1, θ2, . . .};

• Ξ = {ξ1, ξ2, . . .}.
The set X is the set of quantification variables, the set Θ is the set of term schema
variables and the set Ξ is the set of formula schema variables.

We also assume as fixed the equality symbol ≈ and the inequality symbol �≈.
Next, we introduce the notion of first-order based signature where N

+ is the set
of all natural numbers greater than 0.
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Definition 6.1.1 A first-order signature is a tuple

Σ = 〈Ind, F, P, C,Q,O〉
where

• Ind is a set;

and

• F = {Fk}k∈N;

• P = {Pk}k∈N;

• C = {Ck}k∈N;

• Q = {Qk}k∈N+ ;

• O = {Ok}k∈N+ ;

are families of sets. ∇

The elements of Ind are the individual symbols. For each k ∈ N, the elements of
each Fk, Pk and Ck are respectively the function symbols of arity k, the predicate
symbols of arity k and the connectives of arity k. For each k ∈ N

+, the elements
of each Qk and Ok are respectively the quantifiers of arity k and the modalities
of arity k. Observe that we do not include modalities in the family of connectives
C, as we have done in the previous chapters, but, instead, we consider a distinct
family O of modalities.

We assume that all the sets are pairwise disjoint and also disjoint from X , Θ
and Ξ.

First-order signatures can be compared as expected: we say that Σ is weaker
than Σ′, written

Σ ≤ Σ′

whenever

• Ind ⊆ Ind′;

• Fk ⊆ F ′
k, Pk ⊆ P ′

k and Ck ⊆ C′
k, for every k ∈ N;

• Qk ⊆ Q′
k and Ok ⊆ O′

k, for every k ∈ N
+.

Example 6.1.2 An example of first-order signature, corresponding to a classical
first-order signature, is Σ = 〈Ind, F, P, C,Q,O〉 where Ind = ∅, F and P are
families of sets with P0 = ∅, Ok = ∅ for k ∈ N

+ and

• C1 = {¬}, C2 = {⇒} and Ck = ∅ for k = 0 or k > 2;

• Q1 = {(∀x) : x ∈ X} and Qk = ∅ for k > 1.
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The abbreviations for ∧, ∨ and ⇔ are the usual ones. We consider also the usual
abbreviation for the existential quantifier ((∃x)ϕ) =def (¬((∀x)(¬ϕ))). ∇

Example 6.1.3 Another example of first-order based signature, corresponding to
a modal classical first-order signature, is Σ = 〈Ind, F, P, C,Q,O〉 where Ind is a
set, F and P are families of sets and

• C1 = {¬}, C2 = {⇒} and Ck = ∅ for k = 0 or k > 2;

• Q1 = {(∀x) : x ∈ X} and Qk = ∅ for k > 1;

• O1 = {�} and Ok = ∅ for k > 1.

The abbreviation for � is the usual one. ∇

Since in this chapter we only deal with first-order signatures, for simplicity, we
will often use from now on“signature” instead of “first-order signature”. In the
remain of this section we consider the signature Σ = 〈Ind, F, P, C,Q,O〉.

We now define the language over a given signature. First-order languages in-
clude both terms and formulas. We start by defining the terms.

Definition 6.1.4 The set T (Σ) is inductively defined as follows:

• Ind ∪ F0 ∪X ∪Θ ∪ {θ x′
1,...,x

′
k

θ′1,...,θ
′
k

: θ, θ′1, . . . , θ
′
k ∈ Θ, x′1, . . . , x

′
k ∈ X} ⊆ T (Σ);

• f(t1, . . . , tk) ∈ T (Σ) if t1, . . . , tk ∈ T (Σ) and f ∈ Fk, k ∈ N. ∇

Each element of T (Σ) is a term. A ground term is a term that does not involve
schema variables. The set of all ground terms in T (Σ) is denoted by gT (Σ).
Ground terms without quantification variables are said to be closed terms. The
set of all closed terms in T (Σ) is denoted by cT(Σ).

Example 6.1.5 Recall the first-order signature Σ presented in Example 6.1.3.
Assuming that f1 and f2 are functions symbols of arity 1 and 2 respectively,

x1 f1(x1) θ1
x1
θ2

f2(x1, θ1)

are examples of terms in T (Σ). The first two terms are ground terms. ∇

We now define the language of formulas.

Definition 6.1.6 The set L(Σ) is inductively defined as follows:

• P0 ∪ C0 ∪ Ξ ∪ {ξx′
1,...,x

′
k

θ′1,...,θ
′
k

: ξ ∈ Ξ, θ′1, . . . , θ′k ∈ Θ, x′1, . . . , x′k ∈ X} ⊆ L(Σ);

• p(t1, . . . , tk) ∈ L(Σ) if t1, . . . , tk ∈ T (Σ) and p ∈ Pk, k ∈ N
+;
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• (t1 ≈ t2) ∈ L(Σ) and (t1 �≈ t2) ∈ L(Σ) if t1, t2 ∈ T (Σ);

• (c(ϕ1, . . . , ϕk)) ∈ L(Σ) if ϕ1, . . . , ϕk ∈ L(Σ) and c ∈ Ck, k ∈ N
+;

• (o(ϕ1, . . . , ϕk)) ∈ L(Σ) if ϕ1, . . . , ϕk ∈ L(Σ) and o ∈ Ok, k ∈ N
+;

• ((qx)(ϕ1, . . . , ϕk)) ∈ L(Σ) if q ∈ Qk and x ∈ X , k ∈ N
+. ∇

Each element of L(Σ) is a formula. As usual, a ground formula is a formula
that does not involve schema variables. The set of all ground formulas in L(Σ) is
denoted by gL(Σ). A formula is said to be atomic if does not involve connectives,
quantifiers or modalities.

An occurrence of a quantification variable x in a formula is said to be a free
occurrence of x in the formula if it is neither within the scope of a quantifier (qx)
nor in the list x′1, . . . , x

′
k of the formula ξx

′
1,...,x

′
k

θ′1,...,θ
′
k

.
In this first-order setting it is also relevant to consider closed formulas. A

closed formula is a ground formula where there are no free occurrences of any
quantification variable, that is, each occurrence of each x ∈ X occurs within the
scope of a quantifier (qx). The set of all closed formulas in L(Σ) is denoted by
cL(Σ).

As before, we will often use infix notation when writing formulas involving
connectives of arity 2. We can also write just qx instead of (qx) if no confusion
arises.

Example 6.1.7 Recall the first-order signature Σ presented in Example 6.1.3.
Assuming that p1 is a predicate symbol of arity 1,

p1(x1) and ((θ1 �≈ θ2)⇒ (¬(θ1 ≈ θ2)))

are examples of formulas in L(Σ). The first one is a ground atomic formula. The
following

(�(∀x1 p1(x1))) and ((∀x1 ξ1)⇒ ξ1
x1
θ1

)

are also examples of formulas in L(Σ). The first one a closed formula. ∇

Next, we refer to substitutions over Σ. A substitution over Σ maps terms and
schema variables to terms and formulas, respectively.

Definition 6.1.8 A substitution over Σ is a map

σ : Θ ∪ Ξ → T (Σ) ∪ L(Σ)

such that σ(θ) ∈ T (Σ) for each θ ∈ Θ and σ(ξ) ∈ L(Σ) for each ξ ∈ Ξ. Similarly,
a ground substitution over Σ is a map

ρ : Θ ∪ Ξ → gT (Σ) ∪ gL(Σ)

such that σ(θ) ∈ gT (Σ) for each θ ∈ Θ and σ(ξ) ∈ gL(Σ) for each ξ ∈ Ξ. ∇
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We denote the set of all substitutions over Σ by Sbs(Σ) and the set of all ground
substitutions over Σ by gSbs(Σ).

As expected, a substitution σ over Σ can be extended to the set of terms and
formulas. It is worth noting the particular case of terms θx

′
1,...,x

′
k

θ′1,...,θ
′
k

and formulas

ξ
x′
1,...,x

′
k

θ′1,...,θ
′
k

.

Definition 6.1.9 Let σ be a substitution over Σ. The extension of σ to T (Σ) ∪
L(Σ) is the map

σ̂ : T (Σ) ∪ L(Σ) → T (Σ) ∪ L(Σ)

inductively defined as follows

• σ̂(t) = t, for t ∈ Ind ∪X ∪ F0, and σ̂(θ) = σ(θ), for θ ∈ Θ;

• σ̂(f(t1, . . . , tk)) = f(σ̂(t1), . . . , σ̂(tk)), for f ∈ Fk, t1, . . . , tk ∈ T (Σ), k ∈ N
+;

• σ̂(θx
′
1,...,x

′
k

θ′1,...,θ
′
k

) is obtained by uniformly substituting each x′i by σ̂(θ′i) in the
term σ̂(θ) for each i = 1, . . . , k;

• σ̂(ϕ) = ϕ, for ϕ ∈ C0 ∪ P0, and σ̂(ξ) = σ(ξ), for ξ ∈ Ξ;

• σ̂(p(t1, . . . , tk)) = p(σ̂(t1), . . . , σ̂(tk)), for p ∈ Pk, t1, . . . , tk ∈ T (Σ), k ∈ N
+;

• σ̂(t1 ≈ t2) = (σ̂(t1) ≈ σ̂(t2)) and σ̂(t1 �≈ t2) = (σ̂(t1) �≈ σ(t2)),

for t1, t2 ∈ T (Σ);

• σ̂(c(ϕ1, . . . , ϕk)) = (c(σ̂(ϕ1), . . . , σ̂(ϕk))),

for c ∈ Ck, ϕ1, . . . , ϕk ∈ L(Σ), k ∈ N
+;

• σ̂((qx)(ϕ1, . . . , ϕk)) = ((qx)(σ̂(ϕ1), . . . , σ̂(ϕk))),

for q ∈ Qk, x ∈ X , ϕ1, . . . , ϕk ∈ L(Σ), k ∈ N
+;

• σ̂(o(ϕ1, . . . , ϕk)) = (o(σ̂(ϕ1), . . . , σ̂(ϕk))),

for o ∈ Ok, ϕ1, . . . , ϕk ∈ L(Σ), k ∈ N
+;

• σ̂(ξx
′
1,...,x

′
k

θ′1,...,θ
′
k

) is obtained by uniformly substituting each x′i by σ̂(θ′i) in the
formula σ̂(ξ), for each i = 1, . . . , k. ∇

Example 6.1.10 Consider the signature Σ presented in Example 6.1.3 and as-
sume again that f1 and f2 are function symbols of respectively arity 1 and 2. Let
σ be the substitution over Σ such that σ(θ1) = f2(x2, x3), σ(θ2) = f1(x3) and
σ(θ3) = f1(x4). Then

σ̂(θ1x2
θ2

) = f2(f1(x3), x3)

and
σ̂(θ1

x2,x3
θ2,θ3

) = f2(f1(x3), f1(x4)).
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Observe that we would get

σ̂(θ1
x2,x3
θ2,θ3

) = f2(f1(f1(x4)), f1(x4))

if the substitution was not uniform. ∇

In the sequel, for simplicity, we will write σ instead of σ̂.

6.2 Interpretation systems

In this section we introduce the semantic aspects of first-order based logics. Since
first-order languages are richer than propositional ones, the corresponding seman-
tic structures are also more complex than the ones presented in the previous chap-
ters for propositional based logics. Herein, we concentrate on the semantics of
ground formulas. The reason for that has to do with provisos that will be dis-
cussed in Section 6.3. Also on this subject see [241].

In this setting, besides the interpretation for the connectives, we have to provide
interpretations for function and predicate symbols as well as assignments to quan-
tification variables and interpretations for quantifiers. Therefore, the semantic
structures have to encompass both the semantics of modalities and the semantics
of quantifiers. The main idea is to think of quantifiers as modalities.

We start by observing that, as it was done in Example 3.1.6 of Chapter 3, a
Kripke frame 〈W,R〉 for a modal propositional logic induces a powerset algebra

〈℘W, [[·]]〉
where for each connective of arity k > 0, [[·]] is a map from (℘W )k to ℘W such
that:

• [[¬]](b) = W \ b;
• [[⇒]](b1, b2) = (W \ b1) ∪ b2;

• [[�]](b) = {w ∈W : if wRw′ then w′ ∈ b}.
In this way, we can look at each subset of W as a truth-value. In some cases we
do not want to consider as truth-values all the subsets of W . This means that we
are led to the so called general semantics [265]. A general Kripke frame is a tuple

〈W,R,B〉
where

• 〈W,R〉 is a Kripke frame;

• B ⊆ ℘W is such that:

– B is closed for complements;
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– B is closed for finite unions;

– {w ∈W : wRv, for some v ∈ b} ∈ B whenever b ∈ B;

– W ∈ B.

Again a general Kripke frame 〈W,R,B〉 induces a powerset algebra

〈B, [[·]]〉
where for each connective of arity k > 0, [[·]] is a map from Bk to B such that:

• [[¬]](b) = W \ b;
• [[⇒]](b1, b2) = (W \ b1) ∪ b2;

• [[�]](b) = {w ∈W : if wRw′ then w′ ∈ b}.
Another essential ingredient for understanding the semantic structures to be

considered is to realize that first-order structures induce Kripke structures by
looking at each ∀x as a unary modal operator. Given a usual first-order structure
(see, for instance, [206])

〈D, [[·]]F , [[·]]P 〉
we get, for each variable x ∈ X , a Kripke frame 〈W,Rx〉 defined as follows:

• W is DX (the set of all assignments, that is, maps from X to D);

• Rx ⊆W ×W is such that
ϑ1Rxϑ2

if ϑ1 is x-equivalent to ϑ2, that is, ϑ1(y) = ϑ2(y) for every y ∈ X \ {x}.
Hence, we consider as basic semantic units modal-like structures composed of

“points” where to each point we associate an assignment and a world. We evaluate
the denotation of terms and formulas at each point. The interpretation of some
symbols will depend only on the assignments, while the interpretation of others
will depend only on the worlds. The semantics of the quantifiers is established by
looking at different points sharing the same world (by varying the assignment).
On the other hand, the semantics of modalities is obtained by looking at different
points sharing the same assignment (by varying the world). Hence, quantifiers can
be seen as modalities with assignments playing the role of worlds.

Observe that there are some common aspects between products of modal logics
in Section 1.2 of Chapter 1 and the way we define the structures above. That is,
the class of structures includes the products of the structures for the modalities
and the quantifiers. Observe however that we have more structures than the ones
corresponding to the Cartesian product of the points.

The semantics of quantification variables is rigid, in the sense that the denota-
tion of such variables depends only on the choice of the assignment. Hence, there
is a fixed universe of individuals across the different worlds. Note, however, that
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we may still vary the scope of quantification from one world to another, since we
do not assume that the set of assignments at a given world is composed of all
functions from quantification variables to individuals.

The semantics of the connectives could have been defined regardless of assign-
ments and worlds, but, for technical reasons related with completeness, we adopt
a more general approach where their interpretation may depend on both.

Function and predicate symbols are flexible, in the sense that its interpretation
can depend on the world at hand, but they are constant, in the sense that there is
no dependency on the assignment at hand. The individual symbols are both rigid
and constant.

We now introduce structures over Σ. For convenience, predicates will be inter-
preted by their characteristic maps instead of relations.

Definition 6.2.1 Let Σ = 〈Ind, F, P, C,Q,O〉 be a signature. An interpretation
structure over Σ is a tuple

〈U,V,W, α, ω,D, E ,B, [ · ]〉
where

• U , V, W and D are non-empty sets;

• α : U → V and ω : U →W are maps;

• E ⊆ DU and B ⊆ 2U are sets such that U ∈ B;

• Assume that

Uϑ = {u ∈ U : α(u) = ϑ}, Bϑ = {b ∩ Uϑ : b ∈ B},
Uw = {u ∈ U : ω(u) = w}, Bw = {b ∩ Uw : b ∈ B},
Uwϑ = Uw ∩ Uϑ, Bwϑ = {b ∩ Uwϑ : b ∈ B}.

Then [ · ] is a map defined as follows:

– [x] = {[x]ϑ}ϑ∈V where [x]ϑ ∈ D for x ∈ X ;

– [i] = {[i]ϑ}ϑ∈V where [i]ϑ ∈ D for i ∈ Ind,
and [i]α(u) = [i]α(u′) whenever u, u′ ∈ Uw for some w ∈ W ;

– [f ] = {[f ]w}w∈W where [f ]w : Dk → D for f ∈ Fk;

– [≈] : D2 → 2 is the diagonal relation;

– [�≈] : D2 → 2 is the complement of the diagonal relation;
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– [p] = {[p]w}w∈W where [p]w : Dk → 2 for p ∈ Pk;

– [c] = {[c]wϑ}w∈W,ϑ∈V where [c]wϑ : (Bwϑ)k → Bwϑ for c ∈ Ck;

– [qx] = {[qx]w}w∈W where [qx]w : (Bw)k → Bw for q ∈ Qk and x ∈ X ;

– [o] = {[o]ϑ}ϑ∈V where [o]ϑ : (Bϑ)k → Bϑ for o ∈ Ok.

Moreover, the sets E and B above are assumed to be such that the following derived
functions are well defined:

• x̂ : U → E by x̂(u) = [x]α(u);

• î : U → E by î(u) = [i]α(u);

• f̂ : Ek → E by f̂(e1, . . . , ek)(u) = [f ]ω(u)(e1(u), . . . , ek(u));

• ≈̂ : E2 → B by ≈̂(e1, e2)(u) = [≈](e1(u), e2(u));

• ̂�≈ : E2 → B by ̂�≈(e1, e2)(u) = [�≈](e1(u), e2(u));

• p̂ : Ek → B by p̂(e1, . . . , ek)(u) = [p]ω(u)(e1(u), . . . , ek(u));

• ĉ : Bk → B by
ĉ(b1, . . . , bk)(u) = [c]ω(u)α(u)(b1 ∩ Uω(u)α(u), . . . , bk ∩ Uω(u)α(u))(u);

• q̂x : Bk → B by
q̂x(b1, . . . , bk)(u) = [qx]ω(u)(b1 ∩ Uω(u), . . . , bk ∩ Uω(u))(u);

• ô : Bk → B by
ô(b1, . . . , bk)(u) = [o]α(u)(b1 ∩ Uα(u), . . . , bk ∩ Uα(u))(u). ∇

The set U is the set of points, the set V is the set of assignments, the set W is
the set of worlds, and the set D is the set of individuals.

Each element of E (a map from U to D) is an individual concept. Note that the
denotation of the term “the president of country x” may vary with the point at
hand, that is, with the assignment and the time (world) at hand.

Each element of B (a map from U to 2) is a truth value. Observe that the
denotation of the formula “(the president of country x)≈ y” may also vary with
the point at hand. From the point of view of the quantifiers and the modalities,
the above structure is a powerset algebra where each set is a truth value.

Finally, the map [ · ] is the interpretation map. Observe that the interpretation
[x] depends only on the assignment ϑ at hand. The interpretation [i] also depends
only on the assignment ϑ, but it must also be constant within a given world
w. Moreover, [f ] and [p] depend only on the world w at hand. Note that the
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interpretation of function symbols in F0 and individuals i are different. Equality
and inequality are given their usual interpretations. As already remarked above,
for technical reasons, [c] depends on both worlds w and assignments ϑ. With
respect to the interpretation of quantifiers, [qx] depends only on the world w at
hand. The interpretation [o] of a modality o is easily understood as the dual. It
depends only on the assignment ϑ at hand.

Some comments are also in order with respect to the algebraic operations ·̂
induced by the interpretation of the symbols. A consequence of the definition of
the functions f̂ and p̂ is that the denotation of formulas depends on the world at
hand already at the atomic level, and not only as a result of the semantics for the
modal operators.

Functions and predicates are herein dealt with as flexible designators since their
denotations may vary across worlds. On the other hand, x̂(u) does not depend
on ω(u), but only on the assignment α(u). Hence, quantification variables are
assumed to be rigid designators since they preserve their values across worlds.
Similar comments apply to î(u).

The constraint î(u) = î(u′) whenever u, u′ ∈ Uw for some w ∈ W imposes that
individual symbols also do not change their values within a given world. For this
reason we say that they are constant designators, besides being rigid. But note
that individual symbols may still have different values in different points u and u′,
as long as these points are in coordinatewise disjoint subsets U1, U2 of the set of
points, in the sense that there is no u1 ∈ U1 and u2 ∈ U2 such that α(u1) = α(u2)
or ω(u1) = ω(u2).

Example 6.2.2 Recall the signature Σ = 〈Ind, F, P, C,Q,O〉 presented in Ex-
ample 6.1.2. An example of an interpretation structure over Σ corresponding to
classical first-order logic is the tuple

〈U,V,W, α, ω,D, E ,B, [ · ]〉

where

• D is an non-empty set and W = {w};
• U = {w} × V and V = DX ;

• α(〈w, ϑ〉) = ϑ and ω(〈w, ϑ〉) = w;

• E = DU and B = 2U ;

• [x]ϑ = ϑ(x) for x ∈ X ;

• [f ] : Dk → D for f ∈ Fk with k ≥ 0;

• [p] : Dk → 2 for p ∈ Pk with k > 0;

• [¬]ϑ(b) = Uϑ \ b for b ∈ B;
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• [⇒]ϑ(b1, b2) = (Uϑ \ b1) ∪ b2 for b1, b2 ∈ B;

• [∀x]({w} × V
′)(〈w, ϑ〉) = 1 if ϑ′ ∈ V

′ for every ϑ′ ∈ DX such that ϑ′ is
x-equivalent to ϑ.

Since we only have one world, the family of functions corresponding to the inter-
pretation of each function symbol consists of only one function. For simplicity,
we identify the interpretation with that function. Similarly with respect to the
interpretation of predicate symbols and quantifiers. Observe that in this example
Uw = U and Uwϑ = Uϑ and the elements of Bw are sets {w} ×V

′ with V
′ ⊆ V. ∇

Example 6.2.3 Recall the signature Σ = 〈Ind, F, P, C,Q,O〉 presented in Ex-
ample 6.1.3. An example of an interpretation structure over Σ corresponding to
modal K classical first-order logic is the tuple

〈U,V,W, α, ω,D, E ,B, [ · ]〉

where

• D and W are non-empty sets;

• U = W × V and V = DX ;

• α(〈w, ϑ〉) = ϑ and ω(〈w, ϑ〉) = w;

• E = DU and B = 2U ;

• [x]ϑ = ϑ(x) for x ∈ X ;

• [i]ϑ ∈ D for i ∈ Ind;

• [f ] = {[f ]w}w∈W where [f ]w : Dk → D for f ∈ Fk with k ≥ 0;

• [p] = {[p]w}w∈W where [p]w : W → 2 for p ∈ P0;

• [p] = {[p]w}w∈W where [p]w : Dk → 2 for p ∈ Pk with k > 0;

• [¬]wϑ(b) = Uwϑ \ b for b ∈ B;

• [⇒]wϑ(b1, b2) = (Uwϑ \ b1) ∪ b2 for b1, b2 ∈ B;

• [∀x]w({w} × V
′)(〈w, ϑ〉) = 1 if ϑ′ ∈ V

′ for every ϑ′ ∈ DX such that ϑ′ is
x-equivalent to ϑ;

• [�]ϑ(W ′ × {ϑ})(〈w, ϑ〉) = 1 if w′ ∈ W ′ for every w′ ∈ W such that wRϑ w′

where Rϑ ⊆W ×W .

Note that the elements of Bw and Bϑ are sets

({w} × V
′) and (W ′ × {ϑ})
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with V
′ ⊆ V and W ′ ⊆ W . For each world w, the function I(f)w gives the

corresponding interpretation of function symbol f . Similarly, the function I(p)w
gives the corresponding interpretation of predicate symbol p, when the arity of p
is not 0. The relation Rϑ is an accessibility relation on W . ∇

The usual choices for the sets E and B are DU and ℘U , respectively, as in
Examples 6.2.2 and 6.2.3. However, the above definition of interpretation structure
over Σ encompasses other choices, making this structure “general” in the sense
of [282]. The possibility of having other choices becomes relevant when dealing
with completeness issues, as we will discuss later on.

Note that an interpretation structure over Σ has a fixed global universe D of
individuals, but different domains of individuals at different worlds are allowed.
Local domains are derived concepts in our case. At each world w, we should
consider the following two local domains:

• DE
w = {d ∈ D : there are e ∈ E , u ∈ U such that ω(u) = w and e(u) = d};

• DV

w = {d ∈ D : there are x ∈ X, u ∈ U such that ω(u) = w and [x]α(u) = d}.
The set DE

w contains all possible denotations of terms at the world w and the set
DV

w contains all possible denotations of variables at w. Therefore, DV

w contains
all individuals which are relevant when interpreting a quantification at w. Since
variables are terms, we have that DV

w ⊆ DE
w. In the simplest cases, we have

• DV

w = DE
w = D;

• V is isomorphic to DX ;

• E = DU .

This is the case in Example 6.2.3, for instance. Observe that in a logic with
universal quantification, if DV

w �= DE
w then the formula

((∀xψ)⇒ ψxt )

can be falsified even if ψ does not contain any modality. But the formula

((∀xψ)⇒ (E(t)⇒ ψxt ))

will be valid when the existence predicate E is interpreted at each world w as DV

w

(provided that no modalities are involved).
The following notion of reduct of an interpretation structure will be useful later

on when defining fibring.

Definition 6.2.4 Let Σ and Σ′ be signatures such that Σ ≤ Σ′ and let s′ be
an interpretation structure over Σ′. The reduct of s′ to Σ is the interpretation
structure over Σ

s′|Σ = 〈U ′,V′,W ′, α′, ω′, D′, E ′,B′, [·]′|Σ〉.
∇
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We now define the denotation of (ground) terms and formulas in the context of
a given interpretation structure over Σ.

Definition 6.2.5 Given an interpretation structure s = 〈U,V,W, α, ω,D, E ,B, [ · ]〉
over Σ, the denotation map

[[·]]s : gT (Σ) ∪ gL(Σ)→ E ∪ B

is inductively defined as follows:

• [[t]]s = t̂, for t ∈ X ∪ Ind

• [[f(t1, . . . , tk)]]s = f̂([[t1]]s, . . . , [[tk]]s),

for f ∈ Fk and t1, . . . , tk ∈ gT (Σ), k ≥ 0;

• [[p(t1, . . . , tk)]]s = p̂([[t1]]s, . . . , [[tk]]s)

for p ∈ Fk and t1, . . . , tk ∈ gT (Σ), k ≥ 0;

• [[t1 ≈ t2]] = ≈̂([[t1]]s, [[t2]]s) for t1, t2 ∈ gT (Σ);

• [[t1 �≈ t2]] = ̂�≈([[t1]]s, [[t2]]s) for t1, t2 ∈ gT (Σ);

• [[c(ϕ1, . . . , ϕk)]]s = ĉ([[ϕ1]]s, . . . , [[ϕk]]s)

for c ∈ Ck and ϕ1, . . . , ϕk ∈ gL(Σ), k ≥ 0;

• [[(qx)(ϕ1, . . . , ϕk)]]s = (̂qx)([[ϕ1]]s, . . . , [[ϕk]]s)

for q ∈ Qk, x ∈ X , and ϕ1, . . . , ϕk ∈ gL(Σ), k ≥ 0;

• [[o(ϕ1, . . . , ϕk)]]s = ô([[ϕ1]]s, . . . , [[ϕk]]s)

for o ∈ Ok and ϕ1, . . . , ϕk ∈ gL(Σ), k ≥ 0. ∇

Next, we introduce interpretation systems and the notions of local and global
entailment. An interpretation system includes a signature Σ, a class of models
and a map that associates a structure over Σ to each model.

Definition 6.2.6 An interpretation system is a tuple

I = 〈Σ,M,A〉

where Σ is a signature, M is a class (of models) and A maps each m ∈ M to an
interpretation structure over Σ. ∇
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Observe that the notion of interpretation system is not the same as in Chapter 3
where the semantic structures are ordered algebras. In this case, contrarily to
what we did in previous chapters, we include explicitly the class M of models of
the original logic and use the map A to indicate how to extract from each model
an interpretation structure over Σ for simplicity reasons. For instance in the case
of first-order logic we include in the definition of an interpretation structure over
Σ the set of individuals in the original first-order model.

For simplicity, within the context of an interpretation system, we often replace
A(m) by m, writing for instance [[·]]m instead of [[·]]A(m).

Example 6.2.7 An example of interpretation system corresponding to the clas-
sical first-order logic is

I = 〈Σ,M,A〉
where

• Σ = 〈Ind, F, P, C,Q,O〉 is as defined in Example 6.1.2.

• M is the class of all tuples of the form

m = 〈D, {w}, V, I〉

where

– D is a non-empty set;

– I(f) : Dk → D for f ∈ Fk, k ≥ 0;

– I(p) : Dk → 2 for p ∈ Pk, k > 0.

• for each model m ∈M , the interpretation structure over Σ

A(m) = 〈U,V, {w}, α, ω,D, E ,B, [ · ]〉

is defined as in Example 6.2.2, considering herein

– [f ] = I(f), for f ∈ Fk and k ≥ 0;

– [p] = I(p), for p ∈ Pk and k > 0. ∇

Example 6.2.8 An example of interpretation system corresponding to the modal
K classical first-order logic is

I = 〈Σ,M,A〉

where

• Σ = 〈Ind, F, P, C,Q,O〉 is as defined in Example 6.1.3.
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• M is the class of all tuples of the form

m = 〈D,W,R, V, I〉

where

– D and W are non-empty sets;

– R = {Rϑ}ϑ∈DX with each Rϑ ⊆W ×W ;

– V (p) : W → 2 for p ∈ P0;

– I(i) ∈ D for i ∈ Ind;

– I(f) = {I(f)w}w∈W where I(f)w : Dk → D for f ∈ Fk, k ≤ 0;

– I(p) = {I(p)w}w∈W where I(p)w : Dk → 2 for p ∈ Pk, k > 0.

• for each model m ∈M , the interpretation structure over Σ

A(m) = 〈U,V,W, α, ω,D, E ,B, [ · ]〉

is defined as in Example 6.2.3, considering herein

– [f ] = I(f), for f ∈ Fk and k ≥ 0;

– [p]w = V (p)(w), for w ∈W and p ∈ P0;

– [p] = I(p), for p ∈ Pk and k > 0.

Observe that for each w ∈ W , the pair 〈D, Iw〉 is a usual first-order interpretation
structure and, for each ϑ ∈ DX , the triple 〈W,Rϑ, V 〉 is a Kripke model. ∇

Global and local entailment can be defined in this framework as expected.

Definition 6.2.9 Let I = 〈Σ,M,A〉 be an interpretation system and, for every
m ∈M , let Um be the set of points of A(m).

A formula ϕ ∈ gL(Σ) is globally entailed by Γ ⊆ gL(Σ) in I if, for every m ∈M ,
[[ϕ]]m = Um whenever [[γ]]m = Um for every γ ∈ Γ. We will write

Γ �gI ϕ

to denote that ϕ is globally entailed by Γ in I.
A formula ϕ ∈ gL(Σ) is locally entailed by Γ ⊆ gL(Σ) in I if, for every m ∈M

and u ∈ Um, u ∈ [[ϕ]]m whenever u ∈ [[γ]]m for every γ ∈ Γ. We will write

Γ ��I ϕ

to denote that ϕ is locally entailed by Γ in I. ∇
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We end this section with some remarks concerning the interpretation system
corresponding to modal K classical first-order logic presented in Example 6.2.8.
Note that the accessibility relation may depend on the assignments (but, as a
particular case, we can impose Rϑ = Rϑ′ for all ϑ, ϑ′ in V). In the setting adopted
herein, a modal logic with quantifiers is just a bidimensional modal logic with one
dimension dedicated to the proper modality and the other dimension dedicated
to the quantifiers seen as modalities over assignments. The assignment-dependent
accessibility relation is essential to a achieve a semantic setting where Barcan
formulas

((∀x(�ϕ))⇒ (�(∀xϕ))) and ((�(∀xϕ))⇒ (∀x(�ϕ)))

are not valid. In this aspect, our semantic construction differs from products of
modal logics since no interaction is created between the quantifiers and the modal
operator.

6.3 Hilbert calculi

In this section we concentrate on the deductive component of first-order based
logics. We are going to consider Hilbert calculi similar to the ones introduced for
propositional based logics, but where some new features have to be added.

The new features are related to the undesired interactions between binding
operators and variables that often occur when substituting schema variables. For
instance,

(ξ1 ⇒ (∀x1 ξ1))

is a theorem of classical first-order logic, but if we substitute ξ for some formula
where the variable x1 occurs free, say p1(x1), we get

(p1(x1)⇒ (∀x1 p1(x1)))

which is no longer a theorem. Hence, substitutions of schema variables have to be
carefully handled when applying inference rules in a derivation. In some cases, cer-
tain substitutions should be forbidden. To ensure that only allowed substitutions
are used, we add provisos to the inference rules.

Definition 6.3.1 A proviso over Σ is a map from gSbs(Σ) to 2. A proviso is a
family

π = {πΣ}Σ∈foSig

where foSig is the class of all first-order signatures and each πΣ is a proviso over
Σ, such that πΣ′(ρ) = πΣ(ρ) for every ground substitution ρ over Σ whenever
Σ ≤ Σ′. ∇
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Intuitively, we have πΣ(ρ) = 1 if and only if the ground substitution ρ over Σ
is allowed. The need for the definition of proviso as a family of functions indexed
by signatures comes from the fact that different signatures are involved when we
consider the fibring of Hilbert calculi.

We denote the sets of all provisos over Σ and all provisos by Prov(Σ) and Prov,
respectively. Given a proviso π we say that πΣ is the instance over Σ of π. When
no confusion arises we may write π(ρ) for πΣ(ρ).

A formal treatment of provisos was first proposed in [241].
We now refer some provisos that will be often used throughout the chapter:

• the unit proviso 1 maps at each signature Σ every substitution over Σ to 1;

• the zero proviso 0 maps at each signature Σ every substitution over Σ to 0;

• for each ξ ∈ Ξ, θ ∈ Ξ and x ∈ X
– atm(ξ) = {atm(ξ)Σ}Σ∈foSig

where atmΣ(ξ)(ρ) = 1 if ρ(ξ) is atomic;

– cfo(ξ) = {cfo(ξ)Σ}Σ∈foSig

where cfoΣ(ξ)(ρ) = 1 if ρ(ξ) is a closed first-order formula;

– rig(ξ) = {rig(ξ)Σ}Σ∈foSig

where rig(ξ)Σ(ρ) = 1 if ρ(ξ) is an equality or inequality of rigid terms
(that is, terms in X ∪ Ind);

– x/∈ξ = {x/∈ξΣ}Σ∈foSig

where x/∈ξΣ(ρ) = 1 if x does not occur free in ρ(ξ) and ρ(ξ) does not
contain modalities;

– θ �x:ξ = {θ �x:ξΣ}Σ∈foSig

where θ �x:ξΣ(ρ) = 1 if when replacing the free occurrences of x in
ρ(ξ) no variable in ρ(θ) is captured by a quantifier and no non-rigid
replacement is made within the scope of a modality;

• for each ξ ∈ Ξ, x ∈ X and Ψ ⊆ L(Σ), and letting [ξ/ψ] denote a substitution
over Σ that replaces ξ by ψ

– cfo(Ψ) = {cfo(Ψ)Σ}Σ∈foSig

where cfoΣ(Ψ) = 1 if cfoΣ(ξ)[ξ/ψ](ρ) = 1 for each ψ ∈ Ψ;

– rig(Ψ) = {rig(Ψ)Σ}Σ∈foSig

where rig(Ψ)Σ(ρ) = 1 if rigΣ(ξ)[ξ/ψ](ρ) = 1 for each ψ ∈ Ψ.

Example 6.3.2 Let Σ be the first-order signature presented in Example 6.1.3.
Assume that p1 and p2 are predicate symbols of respectively arity 1 and 2, and let
ρ be a ground substitution over Σ such that
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• ρ(ξ1) = (∀x1 p1(x1));

• ρ(ξ2) = p1(x1);

• ρ(ξ3) = (∀x1 p2(x1, x2)).

Then,

• cfoΣ(ξ1)(ρ) = 1 and cfoΣ(ξ2)(ρ) = 0;

• x1 /∈ξ3Σ(ρ) = 1 and x2 /∈ξ3Σ(ρ) = 0. ∇

We define the product of two provisos π = {πΣ}Σ∈foSig and π′ = {π′
Σ}Σ∈foSig

as the proviso
π � π′ = {(π � π′)Σ}Σ∈foSig

where (π � π′)Σ(ρ) = 1 if πΣ(ρ) = 1 and π′
Σ(ρ) = 1.

Given a proviso π and a substitution σ over Σ, we denote by πΣσ the map such
that (πΣσ)(ρ) = πΣ(ρ̂◦σ). Clearly, 1Σσ = 1Σ and 0Σσ = 0Σ. Moreover, for every
ground substitution ρ over Σ, πΣρ = 1Σ if πΣ(ρ) = 1, and πΣρ = 0Σ if πΣ(ρ) = 0.

We now introduce (first-order based) inference rules.

Definition 6.3.3 An inference rule over a signature Σ is a triple

〈Ψ, ϕ, π〉
where Ψ ∪ ϕ ⊆ L(Σ) and π ∈ Prov. ∇

Again, Ψ is the set of premises and ϕ is the conclusion. An inference rule is
also called axiom if Ψ = ∅, and rule if Ψ �= ∅. If Ψ is finite the inference rule
is finitary. In the sequel, we will consider only finitary inference rules hence, for
simplicity,“inference rule” will stand for “finitary inference rule”.

Observe that in an inference rule 〈Ψ, ϕ, π〉, π is an element of Prov and not just
Prov(Σ). There are technical reasons that justify this fact. In particular, we will
need to consider an inference rule over Σ as an inference rule over a signature Σ′

such that Σ ≤ Σ′ and, in this situation, we need to know the value of the proviso
for substitutions over Σ′.

We now introduce Hilbert calculi. We consider global rules as well as local rules.
Global rules constitute the deductive counterpart of global entailment and local
rules the deductive counterpart of local entailment.

Definition 6.3.4 A first-order Hilbert calculus is a tuple

〈Σ, R�, RQg, ROg, Rg〉
where Σ is a signature R�, RQg, ROg and Rg are sets of inference rules over Σ and

• R� ⊆ RQg;
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• R� ⊆ ROg;

• RQg ∪ROg ⊆ Rg. ∇

Each element of R� is a local rule while each element of RQg is a quantifier global
rule, each element of ROg is a modal global rule and each element of RQg is a
global rule. Since in this chapter we only deal with first-order Hilbert calculi, in
the sequel we will write only “Hilbert calculus” or “Hilbert calculi”.

Herein, for convenience, we are not imposing that global inference rules have
a non-empty set of premises. But this approach is indeed equivalent in terms of
both local and global derivations.

The distinction between quantifier and modal global rules will be useful later
on when defining vertically and a horizontally persistent logics. These properties
are relevant when studying the preservation of completeness by fibring.

In the example below we need the notion of tautological formula. We say that
a formula ϕ ∈ L(Σ) is tautological when, being P the set of propositional symbols
and C the classical (propositional) signature in Example 2.1.2 of Chapter 2, there
is a map μ : P → L(Σ) and a formula ψ ∈ gL(C) such that ψ is valid in ICPL (see
Example 3.1.17 of Chapter 3) and μ̂(ψ) = ϕ, where μ̂ the extension of μ to gL(C)
defined as expected.

Example 6.3.5 A Hilbert calculus corresponding to classical first-order logic is

〈Σ, R�, RQg, ROg, Rg〉
where

• the signature Σ is as in Example 6.1.2;

• the inference rules in R� are the following

– 〈∅, ϕ,1〉 for every tautological formula ϕ;

– 〈∅, (θ1 ≈ θ1),1〉;
– 〈∅, ((θ1 ≈ θ2)⇒ (θ2 ≈ θ1)),1〉;
– 〈∅, ((θ1 ≈ θ2)⇒ ((θ2 ≈ θ3)⇒ (θ1 ≈ θ3))),1〉;
– 〈∅, ((θ1 ≈ θ2)⇒(. . .⇒((θ2k−1 ≈ θ2k)⇒(θx

′
1,...,x

′
k

θ1,...,θ2k−1
≈ θ

x′′
1 ,...,x

′′
k

θ2,...,θ2k
)) . . . )),1〉,

for {x′1, . . . , x′k, x′′1 , . . . , x′′k} ∈ X , k ≥ 1;

– 〈∅, ((θ1 ≈ θ2)⇒ (. . .⇒ ((θ2k−1 ≈ θ2k)⇒ (ξ x
′
1,...,x

′
k

θ1,...,θ2k−1
≈ ξ

x′′
1 ,...,x

′′
k

θ2,...,θ2k
)) . . . )),

atm(ξ)〉,
for {x′1, . . . , x′k, x′′1 , . . . , x′′k} ∈ X , k ≥ 1;

– 〈∅, ((θ1 �≈ θ2)⇔ (¬(θ1 ≈ θ2))),1〉;
– 〈{ξ1, (ξ1 ⇒ ξ2)}, ξ2,1〉.

• the inference rules in RQg are the following
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– all the inference rules in R�

– 〈∅, ((∀x1 (ξ1 ⇒ ξ2))⇒ ((∀x1 ξ1)⇒ (∀x1 ξ2))),1〉;
– 〈∅, (ξ1 ⇒ (∀x1 ξ1)), x1 /∈ξ1〉;
– 〈∅, ((∀x1 ξ1)⇒ ξ1

x1
θ1

), θ1 �x1:ξ1〉;
– 〈{ξ1}, (∀x1 ξ1),1〉.

• ROg = R�;

• Rg = RQg.

With respect to provisos, note that, for instance, the proviso θ1 �x1:ξ1 in axiom

((∀x1 ξ1)⇒ ξ1
x1
θ1

)

is essential. Without this proviso we could infer

(∃x2 p2(x2, x2))

from (∀x1(∃x2 p2(x1, x2)))). ∇

Example 6.3.6 A Hilbert calculus corresponding to modal K classical first-order
logic is

〈Σ, R�, RQg, ROg, Rg〉
where

• the signature Σ is as in Example 6.1.3;

• the inference rules in R� are as in Example 6.3.5;

• the inference rules in RQg are as in Example 6.3.5;

• the inference rules in ROg are the following

– all the inference rules in R�;
– 〈∅, ((� (ξ1 ⇒ ξ2))⇒ ((� ξ1)⇒ (� ξ2))),1〉;
– 〈∅, (ξ1 ⇒ (� ξ1)), rig(ξ1)〉;
– 〈{ξ1}, (� ξ1),1〉.

• Rg = RQg ∪ROg.

Observe that the requirement about non-rigid replacements within the scope of
a modality in the proviso θ1 �x1:ξ1 is essential in axiom ((∀x1 ξ1)⇒ ξ1

x1
θ1

), when
we consider modalities. Without this requirement, given a flexible symbol s, we
would be able to infer

((s ≈ s)⇒ (�(s > s)))

from
(∀x1((s ≈ x1)⇒ (�(s > x)))).

Obviously, the latter is a satisfiable formula while the former is not. ∇
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We now define the notions of global and local derivations in a Hilbert calculus.

Definition 6.3.7 Let H = 〈Σ, R�, RQg, ROg, Rg〉 be a Hilbert calculus. A formula
ϕ ∈ L(Σ) is globally derivable from the set Γ ⊆ L(Σ) in H with proviso π ∈ Prov(Σ)
if there is a finite sequence

〈ϕ1, π1〉 . . . 〈ϕn, πn〉
of pairs in L(Σ)× Prov(Σ) such that

• π �= 0Σ;

• ϕ is ϕn and π is πn;

• for each i = 1, . . . , n, either ϕi ∈ Γ and πi = 1Σ, or there are a substitution
σ over Σ and a rule 〈Ψ, ψ, π′〉 ∈ Rg such that

– ϕi is σ(ψ);

– σ(Ψ) = {ψj1 , . . . , ψjk} ⊆ {ϕ1, . . . , ϕi−1};
– πi = πj1 � . . . � πjk � π′

Σσ.

The sequence 〈ϕ1, π1〉 . . . 〈ϕn, πn〉 is a global derivation of ϕ from Γ in H with
proviso π. We write

Γ gH ϕ � π

to denote that ϕ is globally derivable from Γ in H with proviso π. ∇

If π = 1Σ we may omit the proviso π. Whenever ∅ gH ϕ � π we say that ϕ is a
theorem with proviso π, or just theorem if π = 1Σ.

Definition 6.3.8 Let H = 〈Σ, R�, RQg, ROg, Rg〉 be a Hilbert calculus. A formula
ϕ ∈ L(Σ) is locally derivable from the set Γ ⊆ L(Σ) in H with proviso π ∈ Prov(Σ)
if there is a finite sequence

〈ϕ1, π1〉 . . . 〈ϕn, πn〉
of pairs in L(Σ)× Prov(Σ) such that

• π �= 0Σ;

• ϕ is ϕn and π is πn;

• for each i = 1, . . . , n, either ϕi ∈ Γ and πi = 1Σ, or ϕi is a theorem with
proviso π′ and πi = π′, or there are a substitution σ over Σ and a rule
〈Ψ, ψ, π′〉 ∈ R� and such that

– ϕi is σ(ψ);

– σ(Ψ) = {ψj1 , . . . , ψjk} ⊆ {ϕ1, . . . , ϕi−1};
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– πi = πj1 � . . . � πjk � π′
Σσ.

The sequence 〈ϕ1, π1〉 . . . 〈ϕn, πn〉 is a local derivation of ϕ from Γ in H with proviso
π. We write

Γ �H ϕ � π

to denote that ϕ is locally derivable from Γ in H with proviso π. ∇

Besides global and local derivations, in this first-order setting we also consider
two other kinds of derivations: global Q-derivations and global O-derivations. A
Q-derivation is similar to a local derivation, but we allow the use of some global
rules, the global quantifier rules. The case of O-derivations is analogous.

Definition 6.3.9 Let H = 〈Σ, R�, RQg, ROg, Rg〉 be a Hilbert calculus. A formula
ϕ ∈ L(Σ) is Q-globally derivable from Γ ⊆ L(Σ) in H with proviso π ∈ Prov(Σ) if
there is a finite sequence

〈ϕ1, π1〉 . . . 〈ϕn, πn〉
of pairs in L(Σ)×Prov(Σ) verifying all the conditions described in Definition 6.3.8,
but where the inference rules allowed are the inference rules in RQg.

The sequence 〈ϕ1, π1〉 . . . 〈ϕn, πn〉 is a Q-global derivation of ϕ from Γ in H with
proviso π. We write

Γ gQH ϕ � π

to denote that ϕ is Q-globally derivable from Γ in H with proviso π. ∇

Definition 6.3.10 Let H = 〈Σ, R�, RQg, ROg, Rg〉 be a Hilbert calculus. A for-
mula ϕ ∈ L(Σ) is O-globally derivable from Γ ⊆ L(Σ) in H with proviso π ∈
Prov(Σ) if there is a finite sequence

〈ϕ1, π1〉 . . . 〈ϕn, πn〉

of pairs in L(Σ)×Prov(Σ) verifying all the conditions described in Definition 6.3.8,
but where the inference rules allowed are the inference rules in ROg.

The sequence 〈ϕ1, π1〉 . . . 〈ϕn, πn〉 is a O-global derivation of ϕ from Γ in H with
proviso π. We write

Γ gOH ϕ � π

to denote that ϕ is O-globally derivable from Γ in H with proviso π. ∇

As in the case of global and local derivations, the proviso can be omitted when-
ever it is the unit proviso.

Example 6.3.11 Let H be the Hilbert calculus presented in Example 6.3.6. As-
sume that p1 is a predicate symbol of arity 1. The following is a global derivation
of (�p1(x2)) from (∀x1 p1(x1)) in H :
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1. 〈(∀x1 p1(x1)),1Σ〉
2. 〈((∀x1 p1(x1))⇒ p1(x2)),1Σ〉
3. 〈p1(x2),1Σ〉
4. 〈(�p1(x2)),1Σ〉

From the above derivation we conclude that

(∀x1 p1(x1)) gH (�p1(x2)).

Step 1 in the above derivation corresponds to the hypothesis (∀x1 p1(x1)).
To obtain 2, we use the axiom

〈∅, ((∀x1 ξ1)⇒ ξ1
x1
θ1

), θ1 �x1:ξ1〉
and the ground substitution ρ over Σ such that ρ(ξ1) = p1(x1) and ρ(θ1) = x2.
Note that the corresponding proviso, π2, is 1Σ since π2 = θ1 �x1:ξ1Σρ, by the
definition of derivation, and θ1 �x1:ξ1Σρ = 1Σ because θ1 �x1:ξ1Σ(ρ) = 1.

To obtain 3 we use 1, 2 and the modus ponens rule

〈{ξ1, (ξ1 ⇒ ξ2)}, ξ2,1〉
together with the ground substitution ρ′ such that ρ′(ξ1) = (∀x1 p1(x1)) and
ρ′(ξ2) = p1(x2). The proviso π3 is 1Σ � 1Σ � 1Σρ

′, hence, π3 = 1Σ.
Finally, step 4 is obtained from 3 using the necessitation rule

〈{ξ1}, (� ξ1),1〉
and the ground substitution ρ′′ such that ρ′′(ξ1) = p1(x2). The proviso π4 is
1Σ � 1Σρ

′′, hence, π4 = 1Σ. ∇

We denote by Γ�g
H the set of all formulas globally derivable from Γ in H with

the unit proviso, and say that Γ is globally closed in H if Γ�g
H = Γ. In a similar

way, we can define the notions of locally closed, Q-globally closed and O-globally
closed sets and use a similar notation.

As a result of the inclusion relationships between the sets of rules in a Hilbert
calculus H , we can established some relationships between the different kinds of
derivations presented above:

• if Γ �H ϕ � π then Γ gQH ϕ � π and Γ gOH ϕ;

• if Γ gQH ϕ � π or Γ gOH ϕ � π then Γ gH ϕ � π.

Furthermore, every theorem ϕ is Q-globally derivable and O-globally derivable
from any set Γ.

A global derivation of ϕ from Γ in H with proviso π is said to be sober whenever
no proper subsequence of this derivation is also a global derivation of ϕ from Γ
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in H with proviso π. Sober local derivations, Q-global derivations and O-global
derivations are defined in the same way. Clearly, from any such derivations we can
always extract a sober one by removing superfluous elements.

If a deduction is done without using schema variables, the resulting π is neces-
sarily the unit proviso 1Σ. Another way of obtaining such non schematic results is
by producing an instance of a schematic result by applying a ground substitution
ρ ∈ gSbs(Σ) such that π(ρ) = 1.

With respect to non schematic deductions, we have the following result.

Proposition 6.3.12 Let H = 〈Σ, R�, RQg, ROg, Rg〉 be a Hilbert calculus and
assume that

〈ϕ1, π1〉 . . . 〈ϕn, πn〉
is a sober global derivation of ϕ from Γ in H with proviso π. If ρ ∈ gSbs(Σ) and
πΣ(ρ) = 1 then

〈ρ(ϕ1),1Σ〉 . . . 〈ρ(ϕn),1Σ〉
is a global derivation of ρ(ϕ) from ρ(Γ) in H .

Similarly with respect to local derivations, Q-global derivations and O-global
derivations.

Proof. The result is easily established using induction. �

Proposition 6.3.14 states sufficient conditions for replacing individual symbols
by variables in a local derivation. This property will be used later on, when
studying the preservation by fibring of some properties of Hilbert calculi. We
use ϕix to denote the formula we obtain by substituting the occurrences of the
individual symbol i for x in the formula ϕ. Similarly, given a set Γ of formulas,
Γix = {ϕix : ϕ ∈ Γ}.

Definition 6.3.13 A Hilbert calculus H = 〈Σ, R�, RQg, ROg, Rg〉 is said to be
uniform if, for every rule 〈Ψ, ϕ, π〉 ∈ Rg,

πΣ(ρ) = πΣ(ρ′)

where, for each θ ∈ Θ and ξ ∈ Ξ, ρ′(θ) and ρ′(ξ) are respectively obtained from ρ(θ)
and ρ(ξ) by replacing some occurrences of an individual symbol i by x, provided
that x does not occur in ρ(Γ) ∪ {ρ(ϕ)}. ∇

Proposition 6.3.14 Let H = 〈Σ, R�, RQg, ROg, Rg〉 be a uniform Hilbert calcu-
lus. If

Γ �H ϕ � π

and x is variable not occurring in a corresponding local derivation of ϕ from Γ,
then

Γi
x �H ϕi

x � π

for every individual symbol i not occurring in the rules of H .
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Proof. Let r = 〈Ψ, ϕ, π〉 be a rule in H , i an individual symbol not occurring in
Ψ, x a variable not occurring in Ψ ∪ {ϕ}, and σ a substitution over Σ. Then, if
{ϕ1, . . . , ϕk} ⊆ σ(Ψ) then

{(ϕ1)ix, . . . , (ϕk)ix} ⊆ σ(Ψ)ix.

Therefore, if ψ is a theorem, then a global derivation of ψ in H can be turned
to global derivation of ψi

x in H by replacing every substitution σ involved in the
derivation by σi

x. Moreover, it is trivial that ψ ∈ Γ implies ψi
x ∈ Γi

x. Then,
forgetting the provisos for the moment, the replacement of substitutions σ by σi

x

transform a local derivation of ϕ from Γ into a local derivation of ϕi
x from Γi

x.
As far as the provisos are concerned,

πΣσ
i
x(ρ) = πΣ(ρ̂ ◦ σi

x) = πΣ(ρ̂ ◦ σ) = πΣσ(ρ)

for every ρ. Hence, πΣσ
i
x = πΣσ. This shows that the replacement of substitutions

σ by σi
x do not change the constraints in the derivation. �

6.4 First-order logic systems

In this section we present first-order logic systems. As before, a logic system
include both deductive and semantic aspects of a logic and constitute the right
setting to state soundness and completeness properties.

Definition 6.4.1 A first-order logic system is a tuple

L = 〈Σ,M,A,R�, RQg, ROg, Rg〉
such that 〈Σ,M,A〉 is an interpretation system and 〈Σ, R�, RQg, ROg, Rg〉 is a
Hilbert calculus. ∇

Given a first-order logic system L we denote by I(L) and H(L) the underlying
interpretation system and Hilbert system respectively. We say that ϕ is globally
derivable from Γ in L, and write

Γ gL ϕ
whenever Γ gH(L) ϕ. Similarly with respect to Q-globally derivable, O-globally

derivable and locally derivable formulas. Moreover, we say that ϕ is globally
entailed from Γ in L, and write

Γ �gL ϕ
whenever Γ �gI(L) ϕ. Similarly, with respect to locally entailed formulas.

In the sequel, for simplicity, we will often use “logic system” instead of “first-
order logic system”.

Example 6.4.2 A first-order logic system corresponding to classical first-order
logic is L = 〈Σ,M,A,R�, RQg, ROg, Rg〉 where
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• 〈Σ,M,A〉 is the interpretation system presented in Example 6.2.7;

• 〈Σ, R�, RQg, ROg, Rg〉 is the Hilbert calculus presented in Example 6.3.5. ∇

Example 6.4.3 A first-order logic system corresponding to modal K classical
first-order logic is L = 〈Σ,M,A,R�, RQg, ROg, Rg〉 where

• 〈Σ,M,A〉 is the interpretation system presented in Example 6.2.8;

• 〈Σ, R�, RQg, ROg, Rg〉 is the Hilbert calculus presented in Example 6.3.6. ∇

We now concentrate on the properties of soundness and completeness.

Definition 6.4.4 Let L = 〈Σ,M,A,R�, RQg, ROg, Rg〉 be a first-order logic sys-
tem. Then, L is

• globally sound if Γ �gL ϕ whenever Γ gL ϕ for every Γ ∪ {ϕ} ⊆ gL(Σ);

• locally sound if Γ ��L ϕ whenever Γ L ϕ for every Γ ∪ {ϕ} ⊆ gL(Σ);

• globally complete if Γ gL ϕ whenever Γ �gL ϕ for every Γ ∪ {ϕ} ⊆ gL(Σ);

• locally complete if Γ �L ϕ whenever Γ ��L ϕ for every Γ ∪ {ϕ} ⊆ gL(Σ).

The logic system L is said to be sound if it is globally sound and locally sound and
complete if it is globally complete and locally complete. ∇

Observe that soundness and completeness are stated only for ground formulas.
Indeed, it would be impossible to consider those notions for formulas with schema
variables since there is no semantic counterpart to provisos.

Definition 6.4.5 Let s be a interpretation structure over Σ with set of points U .
This interpretation structure over Σ is said to be appropriate for a Hilbert calculus
H = 〈Σ, R�, RQg, ROg, Rg〉 if

• for every 〈Ψ, ϕ, π〉 ∈ Rg and ground substitution ρ over Σ,
[[ρ(ϕ)]]s = U whenever [[ρ(ψ)]]s = U for every ψ ∈ Ψ and π(ρ) = 1;

• for every 〈Ψ, η, π〉 ∈ R�, ground substitution ρ over Σ and u ∈ U ,
u ∈ [[ρ(ϕ)]]s whenever u ∈ [[ρ(ψ)]]s for every ψ ∈ Ψ and π(ρ) = 1. ∇

Proposition 6.4.6 The logic system L = 〈Σ,M,A,R�, RQg, ROg, Rg〉 is sound if
and only if A(m) is appropriate for H(L) for every m ∈M .

The last result is the equivalent of Proposition 3.3.7 in Chapter 3 observing that
appropriateness corresponds to soundness of inference rules.
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Example 6.4.7 It is easy to check that the logic systems introduced in Exam-
ples 6.4.2 and 6.4.3 are sound. ∇

In general, the completeness property is not easy to establish. In Subsec-
tion 6.6.2 we present a completeness theorem for first-order logic systems. This
result will play an important role when establishing preservation of completeness
by fibring.

As in the propositional case (see Subsection 3.3.3 in Chapter 3), the notion of
full logic system will also play an important role when studying the preservation
of some properties of logic systems by fibring.

Definition 6.4.8 A logic system L = 〈Σ,M,A,R�, RQg, ROg, Rg〉 is said to be full
if for every interpretation structure s over Σ appropriate for the Hilbert system
H(L) there is a model m ∈M such that A(m) = s. ∇

Example 6.4.9 The logic system presented in Example 6.4.3 is not full. But, we
can enrich it with all interpretation structures over Σ appropriate for the underly-
ing Hilbert calculus obtaining a full logic system for modal K classical first-order
logic. ∇

6.5 Fibring

In this section we define fibring of first-order based logics. The basic ideas about
fibring in Chapter 3 still hold in this case. The result of fibring two logic systems
L′ and L′′ is a new logic system L whose signature is the union Σ′∪Σ′′ of the
signatures of the two given logic systems.

The interpretation structures for Σ′∪Σ′′ should provide denotations for the sym-
bols in this signature. The reducts of those interpretation structures to Σ′ should
correspond to interpretation structures in L′ for Σ′. Similarly with respect to
their reducts to Σ′′. There is only a small detail about this. We only consider ap-
propriate structures in the fibring because in this case soundness is more delicate
because of the provisos in the rules.

The sets of rules of H(L) are the unions of the corresponding sets of rules of
the underlying Hilbert calculi of L′ and L′′.

To simplify the treatment of fibring we are going to consider herein only sound
logic systems. This is a reasonable assumption, given that the interesting logic
systems are usually sound.

Definition 6.5.1 Given two sound first-order logic systems

L′ = 〈Σ′,M ′, A′, R�′, R′
Qg, R

′
Og, Rg

′〉
and
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L′′ = 〈Σ′′,M ′′, A′′, R�′′, R′′
Qg, R

′′
Og, Rg

′′〉
their fibring is the logic system

L′ ∪L′′ = 〈Σ,M,A,R�, RQg, ROg, Rg〉
where:

• Σ = Σ′∪Σ′′;

• M is the class of all interpretation structures s over Σ such that

– s|Σ′ ∈ A′(M ′) and s|Σ′′ ∈ A′′(M ′′);
– s is appropriate for H(L′∪L′′);

• A(s) = s for each s ∈M ;

• R� = R�
′ ∪R�′′ and Rg = Rg

′ ∪Rg ′′;
• RQg = R′

Qg ∪R′′
Qg, ROg = R′

Og ∪R′′
Og. ∇

As before, the symbols in Σ′∩Σ′′ are said to be shared. If no symbols are shared
we say that the fibring is unconstrained. Otherwise, we say that it is constrained.

Observe that, in the above definition of the class M , each interpretation struc-
ture s is required to be appropriate for the underlying Hilbert calculus H(L′ ∪ L′′).
This requirement is essential to ensure that appropriateness, and therefore sound-
ness, are properties preserved by fibring. It may happen, in fact, that s|Σ′ is
appropriate for a rule r′ in H(L′), but s is not appropriate for r′ in H(L′∪L′′): in
the richer language there can be new instances of r′. An example of this situation
is the usual first-order axiom

(ξ⇒ (∀x ξ))
where x is not free in ξ, which can be falsified if the language contains modalities.

Note that each rule 〈Ψ, ϕ, π〉 in H(L′) is also a rule over the signature Σ′∪Σ′′.
On one hand Σ′ ≤ Σ′∪Σ′′ and therefore Ψ ∪ {ϕ} ⊆ L(Σ′ ∪Σ′′). On the other
hand, recall that in an inference rule over a signature provisos are elements of
Prov, no matter the signature at hand. Hence, the proviso π in the rule is still a
suitable proviso for an inference rule over Σ′ ∪Σ′′. Inference rules provisos have
a component for each possible first-order signature. Hence, besides providing the
requirements on ground substitutions for derivations in H(L′), π also provides the
corresponding requirements on ground substitution over Σ′ ∪Σ′′ for derivations in
H(L′ ∪L′′). The relevant component of π in these derivations is

πΣ′ ∪Σ′′ .

Similar comments also apply to rules in H(L′).
We say that a logic system is uniform if the underlying Hilbert calculus is

uniform.
We now illustrate the fibring construction considering first the simple example

of generating a bimodal first-order logic by fibring two unimodal first-order logics.
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Example 6.5.2 Let KFOL′ and KFOL′′ be two copies of the full logic system for
modal K classic first-order logic referred in Example 6.4.9 such that Σ′ is identical
to Σ′′ with the exception that O′

1 = {�′} and O′′
1 = {�′′}. Then,

• in the signature of the fibring KFOL′ ∪KFOL′′ the connectives ¬ and ⇒ are
shared, as well as the quantifier ∀, but there are two modalities: �′ and �′′;

• each model in KFOL′ ∪KFOL′′ is an interpretation structure whose reducts
are interpretation structures corresponding to models in the corresponding
logic systems;

• the sets of rules in KFOL′ ∪KFOL′′ are obtained by the union of the corre-
sponding sets of rules in the given logic systems. ∇

We now consider a more complex example where we obtain modal K classical
first-order logic as the fibring of pure first-order logic and modal logic enriched
with variables, individual symbols, equality and inequality.

Example 6.5.3 The goal is to obtain modal K classical first-order logic by fibring
classical first-order logic and the K modal propositional logic described below.

The logic system FOL, corresponding to classical first-order logic is such that

• the signature Σ′ is defined as in Example 6.1.2;

• the interpretation system I(FOL) = 〈Σ′,M ′, A′〉 is such that M ′ is the class
of all interpretation structures over Σ′ appropriate for H(FOL) and A′ is the
identity map;

• the Hilbert calculus H(FOL) is defined as in Example 6.3.5.

Observe that FOL is therefore a full logic system.

When defining a modal propositional logic as a first-order based logic we are
required to include in the language variables, as well as equalities and inequali-
ties between them. So, we obtain a richer modal logic that nevertheless is quite
appropriate to the intended goal. In the richer modal logic, the entailments are
the same for the original formulas. Moreover, it is easy to establish a complete
axiomatic system for the richer modal logic, given a complete axiomatic system
for the original modal logic.

The first-order based modal logic system KML+ is defined as follows

• the signature Σ′′ = 〈Ind′′, F ′′, P ′′, C′′, Q′′, O′′〉 is such that

– F ′ = ∅ for every k ∈ N;

– P ′′
0 is a countable set and P ′′

k = ∅ for every k ∈ N
+;

– C′′
1 = {¬}, C′′

2 = {⇒} and C′′
k = ∅ for k ∈ N\{1, 2};
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– Q′′
k = ∅ for every k ∈ N

+;

– O′′
1 = {�} and O′′

k = ∅ for every k ∈ N\{1};

• the interpretation system I(KML+) = 〈Σ′′,M ′′, A′′〉 is such that M ′′ is the
class of all interpretation structures over Σ′′ appropriate for the Hilbert cal-
culus H(KML+) and A′′ is the identity map;

• the Hilbert calculus H(KML+) = 〈Σ′′, R�′′, R′′
Qg, R

′′
Og, Rg

′′〉 is such that R�′′

and R′′
Og are defined as in Example 6.3.6, R′′

Qg = R�
′′ and Rg

′′ = R′′
Og.

Observe that KML+ is also a full logic system.
Finally, we obtain the logic system KFOL by fibring FOL and KML+, that is

KFOL = FOL∪KML+.

The signature of the fibring KFOL = FOL∪KML+ is Σ′ ∪Σ′′ where the connec-
tives ¬ and ⇒ are shared. Note how important it was to endow the logic systems
with a full semantics in order to obtain the envisaged models in the fibring. Oth-
erwise, in the fibring, the modal part might collapse into classical logic. ∇

Example 6.5.4 Consider the logic system L = KFOL′∪KFOL′′ referred in Ex-
ample 6.5.2. The following is a global derivation for

(∀x1 p1(x1)) gH(L) (�′′(�′p1(x2)))

where Σ is the signature of L:

1. 〈(∀x1 p1(x1)),1Σ〉

2. 〈((∀x1 p1(x1))⇒ p1(x2)),1Σ〉

3. 〈p1(x2),1Σ〉

4. 〈(�′p1(x2)),1Σ〉

5. 〈(�′′(�′p1(x2))),1Σ〉
Steps 1 to 4 are similar to the corresponding steps in the derivation presented

in Example 6.3.11. Step 5 uses the necessitation rule 〈{ξ1}, (�′′ ξ1),1〉. ∇

We conclude this section with a result comparing derivations in the given
logics with derivations in the fibring. Given a derivation 〈ϕ1, π1〉 . . . 〈ϕn, πn〉,
for instance in L′, of ϕ from Γ constrained by π, precisely the same sequence
〈ϕ1, π1〉 . . . 〈ϕn, πn〉 constitutes a derivation in L of ϕ from Γ constrained by π.
Thus we have the following proposition.
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Proposition 6.5.5 In the fibring logic system L = L′∪L′′, if either Γ �H(L′) ϕ�π

or Γ �H(L′′) ϕ � π, then

Γ �H(L) ϕ � π.

∇

Hence, the resulting Hilbert calculus H(L′∪L′′) is an extension of the two given
Hilbert calculus H(L′) and H(L′′), that is

H(L′) ≤ H(L) and H(L′′) ≤ H(L)

meaning that the fibring is stronger than the original logic systems.
We synthesize the properties of the fibring of first-order based logics in the

following way:

• homogeneous combination mechanism at the deductive level: both original
logics are presented by Hilbert calculi;

• homogeneous combination mechanism at the semantic level: both original
logics are presented by interpretation structures;

• algorithmic combination of logics at the deductive level: given the Hilbert
calculi for the original logics, we know how to define the Hilbert calculus for
the fibring;

• algorithmic combination of logics at the semantic level: given the classes of
interpretation structures for the original logics, we know how to define the
class of interpretation structures for the fibring, but in many cases the given
logics have to be pre-processed (that is, the interpretation structures for the
original logics have to be extracted).

6.6 Preservation results

In this section we present some properties of logic systems and their underlying
Hilbert calculi, and discuss their preservation by fibring. Some of these properties
were already given in Subsection 2.3.2 of Chapter 2. Herein, we recast them in
terms of first-order based signatures.

6.6.1 Metatheorems

Herein we introduce several interesting properties of Hilbert calculi and present
sufficient conditions for their preservation by fibring. These properties, and their
preservation by fibring, are relevant to the study of preservation of completeness
in Subsection 6.6.2.

We first refer to Q-globally persistent and O-globally persistent Hilbert calculus.
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Definition 6.6.1 We say that a Hilbert calculus is Q-globally persistent if, for
every rule r = 〈Ψ, ϕ, π〉 ∈ RQg \R�, either Ψ = ∅, or

• Ψ = {ψ};
• ϕ is of the form (op(ψ));

• ψ �H (op(ψ)) � cfo({ψ});
• {(op(ψ1)), . . . , (op(ψk))} �H (op(ϕ′)) � π′ for every inference rule

〈{ψ1, . . . , ψk}, ϕ′〉

in R� with k > 0;

where op is a connective, a quantifier or a modality.
A O-globally persistent Hilbert calculus is defined in the same way, by replacing

RQg by ROg, and cfo({ψ}) by rig({ψ}).
A logic system L is said to be Q-globally persistent or O-globally persistent

whenever so is the underlying Hilbert calculus. ∇

The properties of Q-global persistence and of O-global persistence are general-
izations of usual properties of first-order and of modal logics. For instance, the
first-order rule of generalization has the properties referred in Definition 6.6.1,
where (op(ψ)) is of course (∀xψ). In particular:

{(∀xϕ1), (∀x(ϕ1 ⇒ ϕ2))} �H (∀xϕ2).

We now establish a preservation result for Q-global persistence and O-global
persistence.

Theorem 6.6.2 The fibring of Q-global persistent and O-global persistent Hilbert
calculi is also a Q-global persistent and O-global persistent Hilbert calculus.

Proof. The first two properties for Q-global persistence and of O-global persis-
tence hold in the fibring by Definition 6.5.1. The preservation of the two last
properties is a consequence of Proposition 6.5.5. �

Next we refer to vertically and horizontally persistent Hilbert calculi. These
notions shows the need for the distinction between quantifier and modal inference
rules.

Definition 6.6.3 The Hilbert calculus H is said to be vertically persistent when-
ever

Γ�g
H ,Γ′ gQH ϕ � π � cfoΣ(Γ′)

Γ�g
H ,Γ′ �H ϕ � π � cfoΣ(Γ′) (VP)
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for every Γ,Γ′ ⊆ L(Σ) and ϕ ∈ L(Σ), and it is said to be horizontally persistent
whenever

Γ�g
H ,Γ′ gOH ϕ � π � rigΣ(Γ′)

Γ�g
H ,Γ′ �H ϕ � π � rigΣ(Γ′) (HP)

for every Γ,Γ′ ⊆ L(Σ) and ϕ ∈ L(Σ).
The Hilbert calculus H is said to be persistent if it is both vertically and hor-

izontally persistent. A logic system is said to be persistent whenever so is the
underlying Hilbert calculus. ∇

Intuitively, in a persistent Hilbert calculus, if a formula is Q-globally derivable
from a set of closed formulas, then it is also locally derivable from the same set.
Similarly, if a formula is O-globally derivable from a set of rigid formulas, then it
is also locally derivable from the same set. That is, quantifier global rules do not
bring anything new from a set of closed formulas and modal global rules do not
bring anything new from a set of rigid formulas.

Lemma 6.6.4 If a Hilbert calculus is Q-globally persistent, then it is vertically
persistent. If a Hilbert calculus is O-locally persistent, then it is horizontally
persistent.

Proof. We prove only the first claim since the proof of the second is quite similar.
Let H be a Hilbert calculus. Assume that

Γ�g
H ,Ψ gQH ϕ � π � cfo(Ψ)

and assume there is a corresponding derivation which contains N applications of
rules in RQg \R�; we show that the derivation can be transformed into a derivation
of ϕ from Γ�g

H ∪Ψ with proviso cfo(Ψ) with N − 1 applications of those rules.
Consider the first part

〈γ1, π1〉 . . . 〈γk, πk〉
of the derivation of ϕ from Γ�g

H ∪ Ψ. Assume that γk is obtained by a rule r in
RQg \R� and that no rules in RQg \R� were used before. Then, γk is (op(γj)) for
some j < k. Consider the sequence

〈γ1, π1〉〈(op(γ1)), π1〉 . . . 〈γk−1, πk−1〉〈(op(γk−1)), πk−1〉〈γk, πk〉
where each πi contains cfo(Ψ). We show that each pair in it can be derived from
Γ�g

H ∪Ψ. This will conclude the proof because γk is (op(γj)).
If γi ∈ Γ�g

H , then (op(γi)) is also in Γ�g
H . If γi ∈ Ψ, then Γ�g

H ,Ψ � (op(γi)),
using the third condition in Definition 6.6.1. Assume that γi is derived by means
of an instance 〈{ψ′

1, . . . , ψ
′
n}, γi, π′′〉 of a rule in R�. Then, using fourth condition

in Definition 6.6.1, we can conclude that

{(op(ψ′
1)), . . . , (op(ψ′

n))} �H (op(γi)) � π′′

and so we have the result by induction. �
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Example 6.6.5 Consider the Hilbert calculus presented in Example 6.3.6. The
Q-global rule

〈∅, (ξ⇒ (∀x ξ)), {x/∈ξ}〉
ensures vertical persistency, and the O-global rule

〈∅, (ξ⇒ (�ξ)), rig(ξ)〉
guarantees horizontal persistency. ∇

A preservation result for persistence is now established. We show that persis-
tence is preserved by fibring Q-globally persistent and O-globally persistent Hilbert
calculi.

Theorem 6.6.6 Let H ′ and H ′′ be persistent Hilbert calculi. If H ′ and H ′′ are
Q-globally persistent and O-globally persistent then their fibring H ′∪H ′′ is also a
persistent Hilbert calculus.

Proof. By Theorem 6.6.2 and Lemma 6.6.4. �

We now consider Hilbert calculi with implication and Hilbert calculi with equiv-
alence. This is just an adaptation of Definitions 2.3.7, 2.3.11 and 2.3.15.

Definition 6.6.7 A Hilbert calculus H is said to be a Hilbert calculus with im-
plication if

• the signature contains a connective ⇒ of arity 2;

• the metatheorem of modus ponens (MTMP) holds, that is, for every globally
deductively closed Γ and {ϕ1, ϕ2} ⊆ L(Σ)

Γ �H (ϕ1 ⇒ ϕ2) � π
Γ, ϕ1 �H ϕ2 � π

(MTMP)

• the metatheorem of deduction (MTD) holds, that is, for every globally de-
ductively closed Γ and {ϕ1, ϕ2} ⊆ L(Σ)

Γ, ϕ1 �H ϕ2 � π

Γ �H (ϕ1 ⇒ ϕ2) � π
(MTD)

A logic system L is said to be a logic system with implication whenever the under-
lying Hilbert calculus is with implication. ∇

The first-order version of Definition 2.3.17 is the following:

Definition 6.6.8 A Hilbert calculus H with implication ⇒ is said to be a Hilbert
calculus with equivalence if
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• its signature contains a connective ⇔ of arity 2;

• the two metatheorems of biconditional, (MTB1) and (MTB2), hold, that is,
for every Γ ∪ {ϕ1, ϕ2} ⊆ L(Σ),

Γ �H (ϕ1 ⇒ ϕ2) � π Γ �H (ϕ2 ⇒ ϕ1) � π
Γ �H (ϕ1 ⇔ ϕ2) � π

(MTB1)

Γ �H (ϕ1 ⇔ ϕ2) � π
Γ �H (ϕ1 ⇒ ϕ2) � π Γ �H (ϕ2 ⇒ ϕ1) � π

(MTB2)

• the three metatheorems of substitution of equivalents, (MTSE1), (MTSE2)
and (MTSE3) hold, that is, for every connective c, quantifier qx, and modal-
ity o of arity k and Γ ∪ {ϕ1, ϕ2, . . . , ϕk, ϕ

′
1, ϕ

′
2, . . . , ϕ

′
k} ⊆ L(Σ),

Γ �H (ϕi⇔ ϕ′
i) � π , for i = 1, . . . , k

Γ �H ((c(ϕ1, . . . , ϕk))⇔ (c(ϕ′
1, . . . , ϕ

′
k))) � π

(MTSE1)

Γ�g
QH �H (ϕi⇔ ϕ′

i) � π , for i = 1, . . . , k

Γ�g
QH �H (((qx)(ϕ1, . . . , ϕk))⇔ ((qx)(ϕ′

1, . . . , ϕ
′
k))) � π

(MTSE2)

Γ�g
OH �H (ϕi⇔ ϕ′

i) � π , for i = 1, . . . , k
Γ�g

OH �H ((o(ϕ1, . . . , ϕk))⇔ (o(ϕ′
1, . . . , ϕ

′
k))) � π

(MTSE3)

A logic system L with implication is said to be a logic system with equivalence
whenever the underlying Hilbert calculus is with equivalence. ∇

It is worth noting that the last item of the definition above is a generalization
of Proposition 2.3.24.

Example 6.6.9 The Hilbert calculus presented in Example 6.3.6 is with implica-
tion and equivalence. ∇

The next theorem states that preservation of implication and equivalence by fib-
ring holds, providing that the corresponding connectives are shared. This situation
is analogous to the propositional based case.

Theorem 6.6.10 The fibring of Hilbert calculi with implication is a Hilbert cal-
culus with implication, provided that implication is shared by their signatures.

The fibring of Hilbert calculi with equivalence is a Hilbert calculus with equiv-
alence, provided that both implication and equivalence are shared by their signa-
tures.

The distinction between quantifier and modal rules is also relevant in the notion
of congruent Hilbert calculus introduced below.
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Definition 6.6.11 A Hilbert calculus H is said to be congruent whenever the
following conditions hold:

• for every Q-globally closed set Γ′ ⊆ L(Σ), O-globally closed set Γ′′ ⊆ L(Σ),
formulas ϕ1, ϕ

′
1, . . . , ϕk, ϕ

′
k in L(Σ), and c ∈ Ck,

Γ′,Γ′′, ϕi �H ϕ′
i � π Γ′,Γ′′, ϕ′

i �H ϕi � π for i = 1, . . . , k

Γ′,Γ′′, (c(ϕ1, . . . , ϕk)) �H (c(ϕ′
1, . . . , ϕ

′
k)) � π

• for every Q-globally closed set Γ ⊆ L(Σ), formulas ϕ1, ϕ
′
1, . . . , ϕk, ϕ

′
k in L(Σ),

qx ∈ Qk, x ∈ X ,

Γ, ϕi �H ϕ′
i � π Γ, ϕ′

i �H ϕi � π for i = 1, . . . , k

Γ, ((qx)(ϕ1, . . . , ϕk)) �H ((qx)(ϕ′
1 , . . . , ϕ

′
k)) � π

• for every O-globally closed set Γ ⊆ L(Σ), formulas ϕ1, ϕ
′
1, . . . , ϕk, ϕ

′
k in L(Σ),

and o ∈ Ok,

Γ, ϕi �H ϕ′
i � π Γ, ϕ′

i �H ϕi � π for i = 1, . . . , k

Γ, (o(ϕ1, . . . , ϕk)) �H (o(ϕ′
1, . . . , ϕ

′
k)) � π

∇

A logic system L is said to be congruent whenever the underlying Hilbert calculus
is congruent. ∇

It is not difficult to understand why the set is required to be Q-globally closed
or O-globally closed. Note that in first-order logic, if Γ = {ϕ, ψ} we have

Γ, ϕ � ψ and Γ, ψ � ϕ
but in general we do not have

Γ, (∀xϕ) � (∀xψ).

And, in modal logic, if Γ = {ϕ, ψ} we have

Γ, ϕ � ψ and Γ, ψ � ϕ
but in general we do not have

Γ, (�ϕ) � (�ψ).

The following two results generalize Proposition 2.3.30 and Theorem 2.3.32.

Proposition 6.6.12 Congruence holds in Hilbert calculi with equivalence.
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A preservation result for congruence is now established. We show that con-
gruence is preserved by fibring Hilbert calculi with equivalence, whenever both
implication and equivalence are shared.

Theorem 6.6.13 Let H ′ and H ′′ be congruent Hilbert calculi. If H ′ and H ′′

are with equivalence and they share implication and equivalence then their fibring
H ′∪H ′′ is also a congruent Hilbert calculus.

Proof. By Proposition 6.6.12 and Proposition 6.6.10. �

We now present the classes of Hilbert calculi for equality and inequality. Recall
that the symbols ≈ and �≈ are assumed to be always available in every first-order
based logic and that their semantics do not change from interpretation structure
to interpretation structure (see Definition 6.2.1). However, up to now, we have
not assumed anything about them from the deductive point of view.

Definition 6.6.14 A Hilbert calculus H is said to be for equality if, for every
Γ ∪ {ϕ} ⊆ L(Σ), t, t1, t′1, . . . , tk, t

′
k ∈ T (Σ), f ∈ Fk and p ∈ Pk:

• �H (t ≈ t);

• (t1 ≈ t2) �H (t2 ≈ t1);

• (t1 ≈ t2), (t2 ≈ t3) �H (t1 ≈ t3);

• Γ �H (tj ≈ t′j) � π for j = 1, . . . , k

Γ �H (f(t1, . . . , tk) ≈ f(t′1, . . . , t′k)) � π

• Γ �H (tj ≈ t′j) � π for j = 1, . . . , k

Γ, p(t1, . . . , tk) �H p(t′1, . . . , t
′
k) � π

• Γ, (t ≈ i) �H ϕ � π

Γ �H ϕ � π

where the individual symbol i ∈ Ind does not occur in the rules of H and
π(ρ) = 0 whenever i occurs in ρ(Γ) or in ρ(ϕ).

The first three requirements impose that equality is an equivalence relation.
The fourth and fifth requirements impose that equality is a congruence relation
both for function and predicate symbols, respectively.

A logic system L is said to be for equality whenever the underlying Hilbert
calculus is. ∇

Observe that, as a consequence of the first four conditions in Definition 6.6.14,
equality is a congruence relation. The last condition expresses a well known derived
rule in ordinary first-order logic with equality that is reasonable to assume of any
first-order based logic for equality.
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Definition 6.6.15 A Hilbert calculus H for equality is said to be for inequality
if, for every Γ ∪ {ϕ} ⊆ L(Σ) and t1, t2 ∈ T (Σ):

• Γ �H (t1 ≈ t2) � π Γ �H (t1 �≈ t2) � π

Γ �H ϕ � π

• Γ, (t1 ≈ t2) �H ϕ � π Γ, (t1 �≈ t2) �H ϕ � π

Γ �H ϕ � π

A logic system L for equality is said to be for inequality whenever the underlying
Hilbert calculus is. ∇

The two conditions relate inequality with equality as expected when nothing
is assumed about the available connectives. In classical first-order logic, the two
requirements for inequality are equivalent to saying that

(t1 �≈ t2) and (¬(t1 ≈ t2))

are (locally) interderivable for every terms t1 and t2.

Example 6.6.16 The Hilbert calculus presented in Example 6.3.6 is for equality
and inequality. ∇

To establish sufficient conditions for the preservation of equality and inequality
by fibring we have to consider some other properties of Hilbert calculi. We first
consider Hilbert calculi with strong equality. The only difference between the
requirements for equality and those for strong equality is that the last condition
in Definition 6.6.14 is replaced with a new one. In the new requirement only rules
(and not inferences) are involved.

Definition 6.6.17 A Hilbert calculus with implication is said to be with strong
equality if the first four conditions in Definition 6.6.14 are fulfilled and, in addition,

〈{(θ ≈ x)⇒ ξ}, ξ, π〉 ∈ Rg

where, for each signature Σ, πΣ(ρ) = 1 if x does not occur in ρ(ξ).
A logic system L with implication is said to with strong equality whenever the

underlying Hilbert calculus is. ∇

Lemma 6.6.18 In any Hilbert calculus, congruence for function symbols holds if
and only if

(t1 ≈ t′1), . . . , (tk ≈ t′k) �H (f(t1, . . . , tk) ≈ f(t′1, . . . , t
′
k))

for every f ∈ Fk, k > 0.
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In any Hilbert calculus with equivalence, congruence for predicate symbols holds
if and only if

(t1 ≈ t′1), . . . , (tk ≈ t′k) �H (p(t1, . . . , tk)⇔ p(t′1, . . . , t
′
k))

for every p ∈ Pk, k > 0.

Proof. Congruence for function symbols implies

(t1 ≈ t′1), . . . , (tk ≈ t′k) �H (f(t1, . . . , tk) ≈ f(t′1, . . . , t
′
k))

for Γ = {(t1 ≈ t′i) : i = 1, . . . , k} and π = 1.
Assume now (t1 ≈ t′1), . . . , (tk ≈ t′k) �H (f(t1, . . . , tk) ≈ f(t′1, . . . , t

′
k)) and

Γ �H (ti ≈ t′i) � π, for i = 1, . . . , k. Then, we can clearly construct a proof of

(f(t1, . . . , tk) ≈ f(t′1, . . . , t
′
k))

from Γ by suitably “putting together” the proofs of (ti ≈ t′i) from Γ and the proof
of (f(t1, . . . , tk) ≈ f(t′1, . . . , t

′
k)) from the equalities (ti ≈ t′i). Since each of the

former proofs is constrained by π and the latter is constrained by 1, we eventually
obtain Γ �H (f(t1, . . . , tk) ≈ f(t′1, . . . , t

′
k)) � π.

By the properties of implication and of equivalence, congruence for predicate
symbols is equivalent to

Γ �H (ti ≈ t′i) � π for i = 1, . . . , k

Γ �H p(t1, . . . , tk)⇔ p(t′1, . . . , t
′
k) � π

and hence the proof that congruence for predicate symbols is equivalent to

(t1 ≈ t′1), . . . , (tk ≈ t′k) �H (p(t1, . . . , tk)⇔ p(t′1, . . . , t
′
k))

is quite similar to that above. �

A preservation result for strong equality follows. We show that strong equal-
ity is preserved by fibring Hilbert calculi with equivalence, provided that both
implication and equivalence are shared.

Theorem 6.6.19 Let H ′ and H ′′ be Hilbert calculi with strong equality. If H ′

and H ′′ are with equivalence and they share implication and equivalence then their
fibring H ′∪H ′′ is also a Hilbert calculus with strong equality.

Proof. Use Proposition 6.5.5 in order to have that the first three conditions hold
in the fibring. The same proposition and Lemma 6.6.18 can be used in order to
have that the last condition is preserved. The fibring includes 〈{(θ ≈ x)⇒ ξ}, ξ, π〉
as a global rule simply because of Definition 6.5.1. �

Next, we relate the properties of strong equality and uniformity with equality.
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Proposition 6.6.20 Every uniform Hilbert calculus with strong equality is a
Hilbert calculus with equality.

Proof. Let H be uniform Hilbert calculus with strong equality. From the defini-
tion of strong equality, H is with implication.

Assume
Γ, (t ≈ i) �H ϕ � π

where the invariant i does not occur in the rules of H and π(ρ) = 0 whenever i
occurs in ρ(Γ) or in ρ(ϕ). By compactness we also have

{γ1, . . . , γk}, (t ≈ i) �H ϕ � π

for some {γ1, . . . , γk} ⊆ Γ. Moreover, since we are assuming that H is with
implication, we also have

�H ((t ≈ i)⇒ ϕ∗) � π, for ϕ∗ = (γ1 ⇒ (γ2 ⇒ . . .⇒ (γk⇒ ϕ) . . . ))

Since we are considering a uniform Hilbert calculus, Proposition 6.3.14 implies

�H ((t ≈ x)⇒ ϕ∗) � π

which implies in turn
gH ((t ≈ x)⇒ ϕ∗) � π (∗).

Consider now the rule for strong equality in Definition 6.6.17, and write π0 for
the proviso in it. Given any substitution σ such that σ(θ) = t and σ(ξ) = ϕ∗, (∗)
implies

gH ϕ∗ � π � π0σ and �H ϕ∗ � π � π0σ.

Given any ground substitution ρ over Σ, we have π0σ(ρ) = π0(ρ̂ ◦ σ) = 1 if and
only if i does not occur in ρ(σ(ξ)), that is, if and only if i does not occur in ρ(ϕ∗).
Thus, since π(ρ) = 0 whenever i occurs in ρ(ϕ∗), we have that π = π � π0σ and
hence �h ϕ∗ � π.

Using the properties of implication again, we have {γ1, . . . , γk} �H ϕ � π and
Γ �H ϕ � π. �

We now establish the preservation of uniformity by fibring. The preservation of
this property is used to prove the preservation of equality.

Theorem 6.6.21 The fibring of two uniform Hilbert calculi is also a uniform
Hilbert calculus.

Proof. Straightforward from Definition 6.3.13. �

We can now establish a sufficient condition for the preservation of equality by
fibring, as well as a sufficient condition for the preservation of inequality.
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Theorem 6.6.22 Let H ′ and H ′′ be Hilbert calculi with equality. If they are
uniform, with strong equality and equivalence then their fibring H ′ ∪H ′′ is also
with equality.

Proof. By Theorems 6.6.19, 6.6.20 and 6.6.21. �

Theorem 6.6.23 Let H ′ and H ′′ be Hilbert calculi with inequality. If they are
with equality, implication and share implication then their fibring H ′ ∪H ′′ is also
with inequality.

Proof. It is straightforward to verify that the clauses in Definition 6.6.15, respec-
tively, hold if and only if:

• (t ≈ t′), (t �≈ t′) �H ϕ;

• �H (((t ≈ t′)⇒ ϕ)⇒ (((t �≈ t′)⇒ ϕ)⇒ ϕ)).

Again, using Proposition 6.5.5, we obtain the intended preservation. �

Observe that the preservation results stated in the above propositions only refer
Hilbert calculi. Clearly, using these propositions, it is straightforward to establish
similar preservation results for logic systems.

We end this section with the proof of the preservation of fullness by fibring.
Recall this is a property of logic systems (see Definition 6.4.8). This result is the
first-order counterpart of Theorem 3.3.16.

Theorem 6.6.24 The fibring of two full logic systems is also a full logic system.

Proof. Let L′ and L′′ be two full logic systems. We have to show that every
interpretation structure s over Σ′ ∪ Σ′′ appropriate for H(Σ′ ∪ Σ′′) is in A(M).
That is, we have to show that

s|Σ′ ∈ A′(M ′) and s|Σ′′ ∈ A′′(M ′′).

Indeed, s is appropriate for both H ′(Σ′) and H ′′(Σ′′), and, hence, s|Σ′ is appro-
priate for H ′(Σ′) and s|Σ′′ is appropriate for H ′′(Σ′′). Given the fullness of L′ and
L′′, s|Σ′ ∈ A′(M ′) and s|Σ′′ ∈ A′′(M ′′). �

6.6.2 Completeness

In this section, we concentrate on the problem of preservation of completeness by
fibring. Recall that we are considering sound logic systems and that soundness
is preserved by fibring by the very definition of fibring. We prove that com-
pleteness is indeed preserved by fibring, under some natural assumptions that are
fulfilled in a wide class of logics encompassing the most common first-order based
logics.
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To prove the preservation of completeness by fibring, as we did for the propo-
sitional based case, we first state a completeness theorem, Theorem 6.6.25, which
establishes sufficient conditions for a logic system to be complete. However, in
general, the properties of logics systems considered in this theorem are not always
preserved by fibring. Hence, we then characterize a class of logic systems which is
closed under fibring and such that every element of it enjoys the sufficient condi-
tions for completeness referred in Theorem 6.6.25. The preservation completeness
theorem, Theorem 6.6.27, then states that completeness is preserved by fibring
logics from that class.

Recall that completeness is stated only for ground formulas since there is no
semantic counterpart to provisos. Hence, provisos will not appear. Observe that
for any set Γ of ground formulas and ground formula ϕ, if, for instance, Γ �H ϕ�π,
then

Γ �H ϕ � 1Σ.

We now state the completeness theorem referred above.

Theorem 6.6.25 Every full, congruent, persistent, and uniform logic system with
equality and inequality is complete.

It is worthwhile to compare this result with Theorem 3.3.15 for propositional
based logics to see what are the additional requirements for the first-order case.

Herein, we only sketch the proof of Theorem 6.6.25. For more details see [242].
The proof uses the Henkin construction (Leon Henkin introduced the technique,
see [144, 145]) briefly described in the sequence.

We assume as given once and for all the sound logic system

L = 〈Σ,M,A,R�, RQg, ROg, Rg〉

with underlying Hilbert calculus H , which is assumed to be congruent, persistent,
uniform and for equality and inequality, and where Σ = 〈Ind, F, P, C,Q,O〉.

Before describing the Henkin construction we need to introduce the following
notions. We say that Γ ⊆ L(Σ) is ϕ-consistent, ϕ ∈ gL(Σ), whenever Γ ��H ϕ and
we say that it is ϕ-maximal consistent (ϕ-m.c.s.) if it is ϕ-consistent and no proper
extension of it is ϕ-consistent. Moreover, Γ is said to be consistent or maximal
consistent if, respectively, there is a ϕ such that Γ is ϕ-consistent, or there is a
ϕ such that Γ is ϕ-maximal consistent. Any ϕ-m.c.s. including Γ is said to be a
ϕ-maximal consistent extension (ϕ-m.c.e.) of Γ. Every ϕ-m.c.e. of Γ is said to be
an m.c.e. of Γ.

Given any set E such that F0 ∩E = Ind ∩E = ∅, we denote by

ΣE and HE

the signature obtained from Σ by replacing Ind by Ind∪E and the Hilbert calculus
obtained from H where each rule is seen as a rule over ΣE , respectively. A set
Γ ⊆ gL(ΣE) is said to be an E-Henkin set whenever:
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• Γ is an m.c.s. in L(ΣE);

• for every term t ∈ gT (Σ), there is a d ∈ E such that (t ≈ d) ∈ Γ;

• for every d ∈ E, there is a term t ∈ gT (Σ) such that (t ≈ d) ∈ Γ;

• {(d �≈ d′) : d, d′ ∈ E} ⊆ Γ.

Γ is said to be an E-pre-Henkin set if the two last conditions above are fulfilled.

Given Γ ⊆ gL(ΣE), the Q-kernel and of Γ, written KQ(Γ), is defined by

KQ(Γ) = {ϕ ∈ Γ : ϕ is a first-order formula and ϕ ∈ cL(Σ)}∪
{(t ≈ d) ∈ Γ : t ∈ cT(Σ) and d ∈ E}∪
{(d �≈ d′) : distinct d, d′ ∈ E and
there exists t, t′ ∈ cT(Σ) such that (t ≈ d) ∈ Γ and (t′ ≈ d′) ∈ Γ} .

We now begin to describe the Henkin construction. Let Γ0 ⊆ gL(Σ) be a
consistent and globally closed set and let D be a set with cardinality greater that
of gT (Σ) and such that

• F0 ∩D = ∅
• Ind ∩D = ∅.

We define an appropriate interpretation structure

s = 〈U,V,W, α, ω,D, E ,B, [·]〉

for the Hilbert calculus H as follows:

• U = {u ⊆ gL(ΣD) : u is a E-Henkin set for some E ⊆ D and Γ0 ⊆ u};
• V = {ϑu : u ∈ U}

where ϑu ∈ EX∪Ind such that ϑu(t) = t ∈ u for every t ∈ X ∪ Ind;

• W = {KQ(u) : u ∈ U};
• ω(u) = KQ(u);

• α(u) = ϑu;

• E = {|t| : t ∈ gT (Σ)}
where |t| : U → D is a map such that |t|(u) = d whenever (t ≈ d) ∈ u;

• B = {|ϕ| : ϕ ∈ gL(Σ)}
where |ϕ| : U → {0, 1} is a map such that |ϕ|(u) = 1 if ϕ ∈ u;
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• the interpretation map [ · ] is such that

– for x ∈ X , i ∈ I, and ϑ ∈ V,

[x]ϑ = ϑ(x) , [i]ϑ = ϑ(i) ;

– for f ∈ Fk, k ≥ 0, and u ∈ Uw,

[f ]w(|t1|(u), . . . , |tk|(u)) = |f(t1, . . . , tk)|(u);

– for every u ∈ U ,

[≈](|t1|(u), |t2|(u)) = 1 if |t1|(u) = |t2|(u) ;

[�≈](|t1|(u), |t2|(u)) = 1 if |t1|(u) �= |t2|(u) ;

– for p ∈ Pk, k ≥ 0, and u ∈ Uw,

[p]w(|t1|(u), . . . , |tk|(u)) = |p(t1, . . . , tk)|(u) ;

– for every c ∈ Ck, k ≥ 0, w ∈W , and any assignment ϑ,

[c]wϑ(|γ1|wϑ, . . . , |γk|wϑ) = |c(γ1, . . . , γk)|wϑ;

– for every q ∈ Qk, x ∈ X , and w ∈W ,

[qx]w(|γ1|w, . . . , |γk|w) = |(qx)(γ1, . . . , γk)|w;

– for every o ∈ Ok and any assignment ϑ,

[o]ϑ(|γ1|ϑ, . . . , |γk|ϑ) = |o(γ1, . . . , γk)|ϑ;

where |ϕ|w = |ϕ| ∩ Uw, |ϕ|ϑ = |ϕ| ∩ Uϑ and |ϕ|wϑ = |ϕ|w ∩ |ϕ|ϑ, for every
ϕ ∈ gL(Σ), w ∈W and ϑ ∈ V.

In the interpretation structure s defined above we have that |t| = [[t]]s for each
t ∈ gT (Σ), and |ϕ| = [[ϕ]]s for every ϕ ∈ gL(Σ). Furthermore,

|ϕ| = U if and only if ϕ ∈ Γ0.

The proof of the fact that s is indeed appropriate for the Hilbert calculus H
follows from the assertions above using also the following result:

Lemma 6.6.26 Let E ⊆ D. Then any E-pre-Henkin set Γ ϕ-consistent in HE

can be extended to a E∗-Henkin set

Γ∗ ⊆ gL(ΣE∗)

where E ⊆ E∗ ⊆ D and Γ∗ is ϕ-m.c.e. of Γ in HE∗ .
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Using the above results Theorem 6.6.25 is established proving that:

• if Γ ��H ϕ then there is an appropriated structure s for H and u ∈ U such
that u ∈ [[γ]]s for all γ ∈ Γ and u �∈ [[ϕ]]s;

• if Γ �gH ϕ then there is an appropriated structure s for H such that [[γ]]s = U
for all γ ∈ Γ, but [[ϕ]]s ⊆ U \ {u}.

We now state the completeness preservation theorem.

Theorem 6.6.27 Let L′ and L′′ be two complete logic systems. If L′ and L′′ are
full, uniform, Q-globally and O-globally persistent, with implication, equivalence,
strong equality and inequality, and such that the implication and equivalence are
shared, then their fibring L′ ∪ L′′ is a complete logic system.

Proof. From Theorem 6.6.24, L′ ∪ L′′ is full. From Theorem 6.6.21, L′ ∪ L′′

is uniform. From Theorem 6.6.2 and Lemma 6.6.4, L′ ∪ L′′ is persistent. From
Theorem 6.6.22, L′ ∪ L′′ is with equality. From Theorem 6.6.23, L′ ∪ L′′ is with
inequality. From Theorem 6.6.10, L′ ∪ L′′ is with equivalence. Therefore, from
Theorem 6.6.12, L′ ∪ L′′ is congruent.

Hence, L′ ∪ L′′ is full, congruent, persistent, uniform and with equality and
inequality. Using Theorem 6.6.25, we conclude that L′ ∪ L′′ is complete. �

6.7 Final remarks

In this chapter we addressed the problem of fibring first-order based logics. Once
again we adopted an homogeneous scenario. Both original logics are endowed with
Hilbert calculi and the same kind of semantics.

Several problems have to be dealt with when extending fibring to the first-order
setting. The interaction between schema variables substitution and quantifiers, for
instance, can have undesirable consequences at the deductive level. To cope with
this problem we introduced the notion of inference rule with proviso. The proviso
ensures that substitutions are safely handled when the rule is used in a derivation.

The semantic structures are powerset algebras both for the modal operators and
the quantifiers. We took advantage of the fact that (general) Kripke structures
induce powerset algebras and that quantifiers can be seen as modalities. This
option means that the semantic structures in this chapter are not as abstract as
the ones in Chapter 3.

An essential step toward a more abstract semantics will be to understand fully
what is the fibring of cylindrical algebras for first-order logics (see [146]). In order
to deal with the general case we need a general notion of cylindrical algebra for
coping with more general quantifiers.

In this chapter, we do not use categories. The reason is to present the specific
issues of first-order based logics in a known context. Moreover, we believe that
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the categorial effort is only worthwhile when the semantic structures are more
algebraic in nature (not only powerset algebras).

We were able to establish sufficient conditions for preservation of completeness
by starting to prove a general theorem of completeness. Along the way we also
proved the preservation of some metatheorems such as the metatheorem of deduc-
tion and the metatheorem of substitution of equivalents. Once more we did not
consider logics that are not truth-functional.

Instead of using Hilbert calculi we could have used other kinds of deductive
systems. For example, in [225], fibring of first-order based logics is investigated
adopting natural deductive systems.

We believe that more preservation properties can be investigated. The results
on preservation of interpolation seems to be easily extended to this context.



Chapter 7

Fibring higher-order logics

The applications that motivate our approach to combination of logics require some-
times the use of arbitrary higher-order quantifiers, as well as arbitrary modal-like
operators. In this chapter, the concept of fibring is extended to higher-order log-
ics endowed with arbitrary modalities and binding operators. The approach used
herein is more general than the one introduced in Chapter 6. The generality comes
from the categorical semantics where the collection of truth-values is a topos. The
transference results are also simpler than in the first-order case. However, one has
to pay the price in the sense that this chapter is not easily read without some
knowledge of category theory.

This chapter defines a wide class of logic systems equipped with topos semantics
and with Hilbert calculi. Since the use of topos theory is fundamental herein, the
reader should be acquainted with topos theory and local set theory. Moreover, it
is more convenient to present the corresponding notions of fibring as categorical
constructions. We refer the reader to [134] for topos theory with a logic flavor
and [187] for category theory and topos theory. We also use [18] for local set
theory and relationship with higher-order logics. Finally, we refer to [15] for the
notion of cocartesian lifting.

It is worth noting that the class of logics to be studied here encompasses many
commonly used logics, such as propositional logics, modal logics, quantification
logics, typed lambda calculi and higher-order logics. Arbitrary modalities and
binding operators are allowed, as well as any choice of rigid (world-independent)
as well as flexible (world-dependent) function symbols.

The deduction mechanism considered herein, as in other chapters, is the Hilbert
calculus style, but allowing in this case rules with provisos.

In what concerns semantics, the structures considered in this chapter gener-
alize the usual topos semantics of higher-order logic. This generalization, while
preserving the simplicity and elegance of the traditional topos semantics, is able
to deal with arbitrary modalities, quantifiers and other binding operators. As
done in other chapters, two entailment relations are defined: the local entailment

263
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as usually considered in categorical logic, and the global entailment necessary to
deal with necessitation and generalization. Examples are given of familiar logics
for which it is possible to lift the original semantics to the topos semantics level,
while preserving the denotation of terms (and formulas). Thus, there is no loss of
generality by assuming that the logics under consideration are endowed with the
kind of topos semantics proposed here.

With respect to soundness, the novelty here is that the usual notion of soundness
must be modified in the present framework. This is a consequence of the possibil-
ity of having empty domains interpreting the types (a basic feature of categorical
semantics). It is proved that the basic example of HOL (a Hilbert-style axiom-
atization of intuitionistic higher-order logic) is sound with respect to a slightly
generalized notion of topos semantics.

We establish a general completeness theorem about full logic systems: every
full logic system with Hilbert calculus, including HOL, and enjoying the metathe-
orem of deduction, is complete. To prove this result we show that every consistent
Hilbert calculus that includes HOL and enjoys the metatheorem of deduction has
a canonical model. The construction of the canonical model is done as usual in
categorical logic (see for instance [18]), but with the adaptations made necessary
in view of the richer language we work with (arbitrary modalities and binding
operators), and also in view of the two notions of entailment. This theorem plays
an important role in the proof of the preservation of completeness by fibring. We
first prove that the fibring of full logic systems endowed with Hilbert calculi that
include HOL and with the metatheorem of deduction is also complete. Addition-
ally, we show that, under some natural conditions, a full logic system is complete if
and only if it can be conservatively enriched with HOL. Finally, as a consequence
of this result, a second completeness preservation result is obtained: the fibring of
two full, complete logic systems is also complete provided that conservativeness of
HOL-enrichment is preserved. It is an open problem to find sufficient conditions
for the preservation of HOL-enrichment.

This chapter is structured as follows. In Section 7.1 we introduce the relevant
signatures. Section 7.2 presents the Hilbert calculus. Section 7.3 is dedicated
to setting up the semantic notions. Section 7.4 introduces the notion of logic
system, and we briefly discuss the related notions of soundness and completeness.
In Section 7.5, a general completeness theorem is established. In Section 7.6, the
notions of constrained and unconstrained fibring of logic systems are given, and it
is shown that soundness is preserved by fibring and a completeness preservation
result is obtained. Finally, in Section 7.7, we briefly discuss the main results
described in the chapter, as well as some open problems related to the completeness
preservation by fibring.

The contents of this chapter is based on [62].
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7.1 Higher-order signatures

In order to cope with higher-order features, the notion of signature considered in
this chapter has to be a bit more sophisticated than the ones considered in most
of the previous chapters.

The notion of logic system associated to these higher-order signatures is carefully
chosen having two main objectives in sight: (i) It should be sufficiently general
as to include commonly used logics such as logics with arbitrary modalities and
logics with first-order or even higher-order binding operators, of which quantifiers
are but a special case; (ii) starting from any given logic as in (i), it should be
possible to rephrase it in our settings while preserving the interpretation of terms
and formulas at each model.

Goal (i) is motivated by the homogeneous scenario that we want to set up for
fibring. Indeed, as it was done before, when combining logics one assumes that all
of them are presented in the same style (with signatures of the same form, with
models of the same kind and with deduction systems of the same nature). That
is, in the homogeneous scenario, when combining two logics we assume that they
are objects in the chosen category of logics. Therefore, the first sections of this
chapter are dedicated to setting up the category HLog of logic systems where in
Section 7.6 fibring is to be defined as a universal construction.

On the other hand, goal (ii) above addresses a preparation step: before com-
bining two logics we have to present them as logic systems in the same category
HLog so as to guarantee that this conversion step preserves all entailments of the
given logic. Moreover, we would like to encode each model of the original logic
in the obtained logic system. The same requirement applies to the language, in
the following sense: each symbol of the original logic should be recognized in the
obtained logic system, while preserving the language. At the deduction level, we
assume that the logics are presented as Hilbert axiomatic systems, so the conver-
sion of the deduction systems is automatic.

From now on, and until the end of this section, we concentrate on describing
the formal languages we deal with.

Assume given once and for all the set S with distinguished elements 1 and Ω.
The set Θ(S) is recursively defined as the minimum set satisfying the following:

1. S ⊆ Θ(S);

2. if n ≥ 2 and θ1, . . . , θn ∈ Θ(S) then (θ1 × · · · × θn) ∈ Θ(S);

3. if θ, θ′ ∈ Θ(S) then (θ → θ′) ∈ Θ(S).

Technically, Θ(S) is a free algebra which is freely generated by S, with a n-ary
operation × (one operation for each n ≥ 2) and with a binary operator → (recall
Section 3.1 of Chapter 3). The expression θn will denote the n-th power of θ
(the product of θ with itself n times) and by convention θ0 is 1 and θ1 is θ. The
elements of S are called base sorts or base types. The elements of Θ(S) are called
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sorts or types over S. Base types 1 and Ω are called the unit sort and the truth
value sort, respectively. Assume also as given once and for all the families:

• Ξ = {Ξθ}θ∈Θ(S) where each Ξθ is a denumerable set;

• X = {Xθ}θ∈Θ(S) where each Xθ is a denumerable set.

The elements of each Ξθ and Xθ are called, respectively, schema variables and
variables of type θ. Assume that the sets Ξθ ∩Ξθ′ and Xθ ∩Xθ′ are empty, for all
θ, θ′ ∈ Θ(S) such that θ �= θ′. Moreover, Ξθ ∩Xθ′ is empty for all θ, θ′ ∈ Θ(S).

Definition 7.1.1 A higher-order signature is a triple Σ = 〈R,F,Q〉 such that:

• R = {Rθθ′}θ,θ′∈Θ(S) where each Rθθ′ is a set;

• F = {Fθθ′}θ,θ′∈Θ(S) where each Fθθ′ is a set;

• Q = {Qθθ′θ′′}θ,θ′,θ′′∈Θ(S) where each Qθθ′θ′′ is a set. ∇

The elements of each Rθθ′ are called rigid function symbols of type θθ′. The ele-
ments of each Fθθ′ are called flexible function symbols of type θθ′. The elements of
each Qθθ′θ′′ are called (binding) operator symbols of type θθ′θ′′. Typical examples
of binding operations are quantification, lambda-abstraction and set comprehen-
sion. We assume that the members of the families constituting a signature are
pairwise disjoint.

Since in this chapter we only deal with higher-order signatures, for simplicity,
from now on “signature” will stand for “higher-order signature”.

Definition 7.1.2 The family T (Σ) = {T (Σ)θ}θ∈Θ(S) is inductively defined as
follows:

• Ξθ ∪Xθ ⊆ T (Σ)θ;

• if ξ ∈ Ξθ, x ∈ Xθ′ and ξ′ ∈ Ξθ′ then ξxξ′ ∈ T (Σ)θ;

• if r ∈ Rθθ′ and t ∈ T (Σ)θ then (r t) ∈ T (Σ)θ′ ;

• if f ∈ Fθθ′ and t ∈ T (Σ)θ then (f t) ∈ T (Σ)θ′;

• if q ∈ Qθθ′θ′′ , x ∈ Xθ and t ∈ T (Σ)θ′ then (qx t) ∈ T (Σ)θ′′ ;

• if n �= 1 and ti ∈ T (Σ)θi for i = 1, . . . , n then 〈t1, . . . , tn〉 ∈ T (Σ)θ1×···×θn ; in
particular, 〈〉 ∈ T (Σ)1;

• if n ≥ 2 and t ∈ T (Σ)θ1×···×θn then (t)i ∈ T (Σ)θi for 1 ≤ i ≤ n. ∇
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The elements of each T (Σ)θ are called terms of type θ. Terms of type Ω are
also known as formulas. Terms without schema variables are called ground terms:
gT (Σ)θ denotes the set of ground terms of type θ. Formulas without schema
variables are called ground formulas. We write L(Σ) and gL(Σ) for T (Σ)Ω and
gT (Σ)Ω, respectively.

We assume here the usual notions associated to binding operators. For instance,
an occurrence of a variable x in a term t is said to be bound if and only if either it
appears within the scope of some (binding) operator q applied to x, or it appears
in a term of the form ξxξ′ . Any other occurrence of x in t is free. Terms without
free occurrences of variables are said to be closed. In particular, a formula without
free occurrences of variables is said to be a closed formula.

The following examples show that the proposed notion of signature is rich
enough to encompass a wide variety of logics. Moreover, the signatures (and,
consequently, the generated languages) are not changed in any significant way.

Example 7.1.3 We consider modal propositional logic again. Fix a set P of
propositional variables. Then:

• The members of the families R and F are empty, except:

– R1Ω = {f , t};
– RΩΩ = {¬};
– RΩ2Ω = {∧,∨,⇒};
– F1Ω = P;

– FΩΩ = {�,�}.
• All members of the family Q are empty. ∇

Example 7.1.4 We now consider propositional logic. As in Example 7.1.3, except
FΩΩ = ∅. Notice that we define the propositional symbols as flexible; this is
justified for the purpose of fibring as will be explained in Section 7.6. ∇

Example 7.1.5 Given a first-order signature 〈G,P〉 where G = {Gn}n∈N and
P = {Pn}n∈N+ (the families of sets of first-order function symbols and predicate
symbols, respectively, of different arities) and a base sort i different from 1 and Ω:

• All members of the families R and F are empty, except:

– Rini = Gn for n ∈ N;

– RΩΩ = {¬};
– RΩ2Ω = {∧,∨,⇒};
– FinΩ = Pn for n ∈ N

+.

• All members of the family Q are empty, except:
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– QiΩΩ = {∃, ∀}.
Again, since we intend to combine logics including modalities, functions are defined
to be rigid and predicates to be flexible. ∇

Example 7.1.6 We now consider pure typed lambda-calculus.

• The members of the families R and F are empty, except:

– R((θ→θ′)×θ)θ′ = {appθθ′};
– Rθ2Ω = {≈θ}.

• All members of the family Q are empty, except:

– Qθθ′(θ→θ′) = {λθθ′}.
Note that here we chose not to include flexible elements in the signature. ∇

Example 7.1.7 Finally, consider higher-order intuitionistic logic.

• The members of the families R and F are empty, except:

– R((θ→θ′)×θ)θ′ = {appθθ′};
– Rθ2Ω = {≈θ}.

• All members of the family Q are empty, except:

– QθΩ(θ→Ω) = {setθ}.
Note that we chose not to include flexible elements in this signature (that will be
denoted by ΣHOL in the sequel).

In this example, and in subsequent examples, we may omit the typing of the
variables and other symbols when no confusion arises, writing ≈ for ≈θ and so
on. We may also use traditional infix notation, writing (γ1 ∧ γ2) for (∧〈γ1, γ2〉),
{x : γ} for (setxγ), t(t′) for (app〈t, t′〉) and so on. Finally, we may write simply
f instead of (f〈〉) whenever f ∈ F1θ.

Using this signature for higher-order intuitionistic logic and the notational con-
ventions mentioned above, other logical operations (True, False, the propositional
connectives and the traditional higher-order quantifiers) can be introduced through
abbreviations as usual (see for instance [18]):

• Equivalence: (δ1 ⇔ δ2) for (δ1 ≈Ω δ2).

• True: t for (〈〉 ≈1 〈〉).
• Conjunction: (δ1 ∧ δ2) for (〈δ1, δ2〉 ≈(Ω×Ω) 〈t, t〉).
• Implication: (δ1 ⇒ δ2) for ((δ1 ∧ δ2)⇔ δ1).
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• Universal quantification: (∀θxθk δ) for ({xθk : δ} ≈P (θ) {xθk : t}).
• False: f for (∀ΩxΩ

1 x
Ω
1 ).

• Negation: (¬ δ) for (δ⇒ f).

• Disjunction: (δ1 ∨ δ2) for

(∀ΩxΩ
i (((δ1 ⇒ xΩ

i ) ∧ (δ2 ⇒ xΩ
i ))⇒ xΩ

i )),

where xΩ
i is a variable of type Ω not occurring free in 〈δ1, δ2〉.

• Existential quantification: (∃θxθk δ) for

(∀ΩxΩ
i (∀θxθk((δ⇒ xΩ

i )⇒ xΩ
i ))),

where xΩ
i is a variable of type Ω not occurring free in δ.

∇

7.2 Higher-order Hilbert calculi

We now concentrate on making precise the notion of deduction system we want
to work with. Such systems include in general inference rules with provisos. As
already pointed out in Chapter 6, these provisos are in order because, when sub-
stituting schema variables, undesired interactions between binding operators and
variables can occur. The following example recalls one of those undesirable inter-
actions. Let ϕ be the formula

(ξ1 ⇒ (∀x ξ1)).

This formula is a theorem of, say, intuitionistic first-order logic. Consider a sub-
stitution ρ such that x occurs free in ρ(ξ1). Then, ρ(ϕ) is the formula

(ρ(ξ1)⇒ (∀xρ(ξ1)))

which, in general, is not an intuitionistic theorem. Thus, a substitution applied to
a theorem resulted in a formula that may no longer be a theorem. In order to avoid
this undesired situation, we should state that (ρ(ξ1)⇒(∀xρ(ξ1))) is obtained from
(ξ1⇒(∀x ξ1)), provided that “x is not free in ρ(ξ1)”. In other words, inference rules
impose that just some substitutions are allowed when used in derivations. We thus
start by defining what, in this context, we mean by a proviso as a “predicate” on
substitutions.

Definition 7.2.1 By a substitution σ over Σ we mean a family

σ = {σθ}θ∈Θ(S)
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such that σθ : Ξθ → T (Σ)θ is a map, for every θ ∈ Θ(S). Analogously, a ground
substitution ρ over Σ is a family ρ = {ρθ}θ∈Θ(S) such that ρθ : Ξθ → gT (Σ)θ is a
map, for every θ ∈ Θ(S). ∇

Evidently every ground substitution is a substitution, but the converse is not
necessarily true. As usual we write ρ(t) and σ(t) instead of ρ̂(t) and σ̂(t) for any
t ∈ T (Σ), where ρ̂ : T (Σ) → gT (Σ) and σ̂ : T (Σ) → T (Σ) are defined inductively
from ρ and σ as expected (recall Definition 7.1.2). It is worthwhile to recall
that ρ̂(ξxξ′) = (ρ(ξ))xρ(ξ′), where the right-side expression is the ground Σ-term
obtained from ρ(ξ) by replacing every free occurrence of x by ρ(ξ′). Analogously,
σ̂(ξxξ′) = (σ(ξ))xσ(ξ′). We denote by Sbs(Σ) and gSbs(Σ) the set of all substitutions
and ground substitutions over Σ, respectively.

Definition 7.2.2 Let Σ be a signature in the sense of Definition 7.1.1. By a local
proviso over Σ we mean a map π : gSbs(Σ) → 2. ∇

Intuitively, π(ρ) = 1 if and only if the ground substitution ρ over Σ is allowed,
and so π defines the set of ground substitutions allowed by the proviso. Recall the
example above: (ρ(ξ1)⇒ (∀xρ(ξ1))) can be inferred from (ξ1 ⇒ (∀x ξ1)) provided
that “x is not free in ρ(ξ1)”. In this case the intended proviso is defined by:
π(ρ) = 1 if and only if x is not free in ρ(ξ1). Thus, this proviso defines the set
of ground substitutions ρ such that x is not free in ρ(ξ1) (note that this proviso
depends on x and ξ1).

This local notion of proviso is not sufficient for the purposes of fibring because we
must be capable to translate rules from one signature to another. So, a universal
notion of proviso that may be evaluated at any signature is needed. At this point,
it is convenient to introduce the category HSig of signatures.

Definition 7.2.3 The category HSig of signatures is defined as follows: Its ob-
jects are signatures and given signatures Σ = 〈R,F,Q〉 and Σ′ = 〈R′,F′,Q′〉, a
signature morphism h : Σ → Σ′ is a triple

h = 〈{h1
θθ′}θ,θ′∈Θ(S), {h2

θθ′}θ,θ′∈Θ(S), {h3
θθ′θ′′}θ,θ′,θ′′∈Θ(S)〉

such that h1
θθ′ : Rθθ′ → R′

θθ′, h2
θθ′ : Fθθ′ → F′

θθ′ and h3
θθ′θ′′ : Qθθ′θ′′ → Q′

θθ′θ′′ are
maps. Composition of signature morphisms and identity signature morphisms in
HSig are defined pointwise, in the usual set-theoretic way. ∇

For simplicity, we will write h(s) instead of hiθθ′(s) or h3
θθ′θ′′(s) (i = 1, 2) for a

given symbol s ∈ (
⋃

R) ∪ (
⋃

F) ∪ (
⋃

Q) of Σ.
For any signature morphism h : Σ → Σ′ in HSig there is a unique extension

ĥ : T (Σ) → T (Σ′) of h preserving the operations, such that ĥ(t) = t for t ∈ Ξθ∪Xθ.
Analogously, there is a unique extension ĥ : gT (Σ) → gT (Σ′) of h (namely, the
restriction of ĥ to gT (Σ)). It is clear that, in HSig, the signature

Σ1 = 〈{{rθθ′}}θ,θ′∈Θ(S), {{fθθ′}}θ,θ′∈Θ(S), {{qθθ′θ′′}}θ,θ′,θ′′∈Θ(S)〉
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with three families of singletons is terminal. We denote by !Σ the unique signature
morphism from Σ to Σ1.

Observe that any given local proviso π over Σ1 can be easily extended to another
signature Σ as follows: πΣ : gSbs(Σ) → 2 is given by

πΣ(ρ) = π(̂!Σ ◦ ρ).

Here, !̂Σ ◦ρ denotes the ground substitution {̂!Σ ◦ρθ}θ∈Θ(S) over Σ1 obtained from
the ground substitution ρ over Σ (see Figure 7.1).

Ξθ
ρθ $$

!̂Σ◦ρθ

%%

gT (Σ)θ

!̂Σ




gT (Σ1)θ

Figure 7.1: Extending a local proviso over Σ1 to a signature Σ

From this, the following definition naturally arises:

Definition 7.2.4 A universal proviso (or, simply, a proviso) is a map

Π : gSbs(Σ1) → 2.

We denote by Prov the set of all universal provisos which includes the unit proviso
U such that U(ρ) = 1 for every ground substitution over Σ1. ∇

Observe that provisos about binding are universal in the above sense, that is,
they can be defined in the terminal signature and extended to other signatures.
This is the case, for instance, for the proviso “x is not free in ρ(δ)” (where δ is a
formula), which generalizes the proviso given above as a motivating example.

We now introduce inference rules and the notion of Hilbert calculus.

Definition 7.2.5 A inference rule over Σ is a triple 〈Γ, δ,Π〉 where Γ∪{δ} ⊆ L(Σ)
and Π is a (universal) proviso. ∇

For simplicity we may say “rule” instead of “inference rule”. As before, if Γ = ∅
the conclusion δ of the rule is also known as an axiom. When the set Γ of premises
is finite the rule is said to be finitary.

Definition 7.2.6 A higher-order Hilbert calculus is a triple

H = 〈Σ, Rg, R�〉
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where Σ is a signature and both Rg and R� are sets of finitary rules over Σ and
R� ⊆ Rg. ∇

To keep things simple, from now on “Hilbert calculus” will stand for “higher-
order Hilbert calculus”.

The elements of Rg are called global rules and those of R� are known as local
rules. As we shall see, the former are the syntactical counterparts of global en-
tailments, and the latter of local entailments. Naturally, deductions also appear
in two forms: global and local derivations. This is exactly the same situation
described in the previous chapters, but adapted to the present setting.

Before defining global and local derivations we need some further notation about
provisos. If Π,Π′ ∈ Prov then the proviso Π � Π′ ∈ Prov is defined as follows:
(Π�Π′)(ρ) = 1 if and only if Π(ρ) = Π′(ρ) = 1. Furthermore, we say that Π ≤ Π′

if and only if Π = Π � Π′. Finally, given Π ∈ Prov and a substitution σ over Σ,
we denote by (Πσ) the (universal) proviso defined as follows:

(Πσ)(ρ) = Π(ρ̂ ◦ !̂Σ ◦ σ).

Here, ρ̂◦ !̂Σ ◦σ denotes the ground substitution {ρ̂◦ !̂Σ ◦σθ}θ∈Θ(S) over Σ1 obtained
from the ground substitution ρ over Σ (see Figure 7.2).

Ξθ
σθ $$

ρ̂ ◦ !̂Σ ◦σθ





T (Σ)θ

!̂Σ




gT (Σ1)θ T (Σ1)θ

ρ̂&&

Figure 7.2: Defining proviso (Πσ)

The notion of context will be in order:

Definition 7.2.7 By a context we mean a finite sequence �x = x1 . . . xn of distinct
variables. ∇

We denote by [] the empty context. Given a context �x = x1 . . . xn where the
variables x1, . . . , xn are of type θ1, . . . , θn, respectively, we write θ�x for θ1×· · ·×θn
and say that θ�x is the type of the context �x. This convention is obviously extended
to the empty context: θ[] is 1.

Given a set of terms using a finite number of free variables, we may refer to its
canonical context formed exclusively by those free variables (this canonical context
is unique once we fix a total ordering of the variables).
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From now on we will use the families of sets T (Σ, �x), gT (Σ, �x) and the sets
L(Σ, �x), gL(Σ, �x) with the obvious meanings: In each case we use only variables
in the indicated context �x.

Definition 7.2.8 A global �x-derivation within a Hilbert calculus H of δ ∈ L(Σ, �x)
from Γ ⊆ L(Σ, �x) with proviso Π is a sequence of pairs 〈δ1,Π1〉 . . . 〈δn,Πn〉 in
L(Σ, �x)× Prov such that δn is δ, Πn is Π and for each i = 1, . . . , n:

• either δi ∈ Γ and Πi is arbitrary;

• or there are a rule 〈{γ′1, . . . , γ′k}, δ′,Π′〉 ∈ Rg and a substitution σ over Σ
such that:

– for each j = 1, . . . , k, there is a ij ∈ {1, . . . , i−1} such that δij = σ(γ′j);

– δi = σ(δ′);

– Πi ≤ Πi1 � · · · �Πik � (Π′σ).

We write Γ g�xH δ � Π when there is such a global �x-derivation in H of δ from Γ
with proviso Π. And we use the notation Γ gH δ �Π to indicate that Γ g�xH δ � Π
for some context �x. ∇

Definition 7.2.9 A local �x-derivation within a Hilbert calculus H of δ ∈ L(Σ, �x)
from Γ ⊆ L(Σ, �x) with proviso Π is a sequence of pairs 〈δ1,Π1〉 . . . 〈δn,Πn〉 in
L(Σ, �x)× Prov such that δn is δ, Πn is Π and for each i = 1, . . . , n:

• either δi ∈ Γ and Πi is arbitrary;

• or ∅ g�xH δi �Πi;

• or there are a rule 〈{γ′1, . . . , γ′k}, δ′,Π′〉 ∈ R� and a substitution σ over Σ
such that:

– for each j = 1, . . . , k, there is a ij ∈ {1, . . . , i−1} such that δij = σ(γ′j);

– δi = σ(δ′);

– Πi ≤ Πi1 � · · · �Πik � (Π′σ).

When there is such a local �x-derivation in H of δ from Γ with proviso Π, we
write Γ ��xH δ � Π. And when there is a context �x such that Γ ��xH δ � Π we write
Γ �H δ �Π. ∇

As usual with respect to both global and local derivations, we may omit the
reference to the assumptions when Γ = ∅. The reference to the Hilbert calculus
may also be omitted when obvious, and furthermore, when Π = U, we may also
omit the reference to the proviso.

We conclude this section with two interesting examples.
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Example 7.2.10 We consider again modal propositional logic. Let Σ be a signa-
ture as described in Example 7.1.3. We establish the deductive component of the
modal logic K by endowing it with the set R� composed of the following rules:

(taut1) 〈∅, (ξ1 ⇒ (ξ2 ⇒ ξ1)),U〉;
(taut2) 〈∅, ((ξ1 ⇒ (ξ2 ⇒ ξ3))⇒ ((ξ1 ⇒ ξ2)⇒ (ξ1 ⇒ ξ3))),U〉;
(taut3) 〈∅, (((¬ ξ1)⇒ (¬ ξ2))⇒ (((¬ ξ1)⇒ ξ2)⇒ ξ1))),U〉;
(norm) 〈∅, ((�(ξ1 ⇒ ξ2))⇒ ((�ξ1)⇒ (�ξ2))),U〉;

(MP) 〈{ξ1, (ξ1 ⇒ ξ2)}, ξ2,U〉;
and the set Rg containing the rules in R� plus necessitation:

(Nec) 〈{ξ1}, (�ξ1),U〉. ∇

Example 7.2.11 We consider again higher-order intuitionistic logic. Let ΣHOL

be the signature defined in Example 7.1.7. We need to introduce some additional
notation for provisos:

• x ≺ δ denotes the (universal) proviso that, for each ρ ∈ gSbs(Σ1), returns
the value of the assertion “x occurs free in ρ(δ)” (note that x and δ are
fixed);

• x �≺ δ denotes the (universal) proviso that, for each ρ ∈ gSbs(Σ1), returns
the value of the assertion “x does not occur free in ρ(δ)” (note that x and δ
are fixed);

• δ1�x : δ2 denotes the (universal) proviso that, for each ρ ∈ gSbs(Σ1), returns
the value of the assertion “ρ(δ1) is free for x in ρ(δ2)” (note that x, δ1 and
δ2 are fixed).

From now on we will use the set-theoretic abbreviations in the context of higher-
order logic used in [18]. Thus, Uθ stands for the set {xθ : t} and tt12 stands for
the set

{h ⊆ t1 × t2 : (∀x((x ∈ t1)⇒ (∃!y((y ∈ t2) ∧ (〈x, y〉 ∈ h)))))}.
The deductive component of the envisaged higher-order logic is as follows (omit-

ting the types of schema variables, variables and other symbols and assuming that
i ∈ N, k ≥ 2 and θ, θ1, . . . , θk are types):

• R� is the set composed by:

(taut1) 〈∅, (ξ1 ⇒ (ξ2 ⇒ ξ1)),U〉;
(taut2) 〈∅, ((ξ1 ⇒ (ξ2 ⇒ ξ3))⇒ ((ξ1 ⇒ ξ2)⇒ (ξ1 ⇒ ξ3))),U〉;
(taut3) 〈∅, ((ξ1 ⇒ ξ2)⇒ ((ξ1 ⇒ ξ3)⇒ (ξ1 ⇒ (ξ2 ∧ ξ3)))),U〉;
(taut4) 〈∅, (ξ1 ⇒ (ξ2 ⇒ (ξ1 ∧ ξ2))),U〉;
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(uni) 〈∅, (∀x1(x1 ≈ 〈〉)),U〉;
(equai,θ) 〈∅, ((ξ1 ≈ ξ2)⇒ (ξ3xi

ξ1
⇒ ξ3

xi

ξ2
)), (ξ1 � xi : ξ3) � (ξ2 � xi : ξ3)〉;

(refθ) 〈∅, (∀x1(x1 ≈ x1)),U〉;
(projk,θ1,...,θk,i) 〈∅, (∀x1 · · · ∀xk((〈x1, . . . , xk〉)i ≈ xi)),U〉 for 1 ≤ i ≤ k;
(prodk,θ1,...,θk

) 〈∅, (∀x1(x1 ≈ 〈(x1)1, . . . , (x1)k〉)),U〉;
(comphθ) 〈∅, (∀x1(x1 ∈ {x1 : ξ1}⇔ ξ1)),U〉;
(subsi,θ) 〈∅, ((∀xiξ2)⇒ ξ2

xi

ξ1
), ((ξ1 � xi : ξ2) � (xi ≺ ξ2))〉;

(funθ,θ′) 〈∅, ∀x1(x1 ∈ UUθ

θ′ ⇒∃!x2∀x3∀x4(〈x3, x4〉 ∈ x1⇔x2(x3) ≈ x4)),U〉;
(equiv) 〈∅, ((ξ1 ⇒ ξ2)⇒ ((ξ2 ⇒ ξ1)⇒ (ξ1 ⇔ ξ2))),U〉;

(MP) 〈{ξ1, (ξ1 ⇒ ξ2)}, ξ2,U〉;
• Rg is obtained by adding to R� the following rules:

(Geni,θ) 〈{(ξ1 ⇒ ξ2)}, (ξ1 ⇒ (∀xiξ2)), xi �≺ ξ1〉. ∇

Remark 7.2.12 The Hilbert calculus above is an adaptation of the sequent cal-
culus S for higher-order logic presented in [18] under the name of local set theory.
In fact, the present Hilbert calculus generalizes local set theory because of the use
of types of the form (θ → θ′). More specifically, axiom funθ,θ′ generalizes the
extensionality axiom of local set theory. In [63] it is shown that

(x1 ≈ x1), . . . , (xn ≈ xn),Ψ S ϕ
is provable in S if and only if Ψ ��x ϕ in the Hilbert calculus above, provided that
every formula in Ψ ∪ {ϕ} is written in the language of [18]; that is, provided that
θ′ = Ω in any type of the form (θ → θ′). ∇

We will prove below (see Proposition 7.5.4) a general completeness theorem
for the Hilbert calculus of Example 7.2.11 with respect to an appropriate topos-
theoretic semantics.

7.3 Higher-order interpretation systems

When working with higher-order based logics, it is natural to adopt a topos theo-
retic semantics in the style of categorical logic (see for instance [221]).

However, a slight generalization is needed in order to fulfill the second goal
discussed at the beginning of Section 7.1. Indeed, given a Kripke semantics for an
arbitrary modality we would like to be able to generate the corresponding topos
semantics while preserving the original models in a precise sense: Each of the
original models should be converted into a topos model with the same denotation
of terms and formulas.

Since we wanted to be able to cope with arbitrary modal-like operators, we
were led to a more general topos semantics achieved by endowing each model
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with an extra parameter (an object W of the topos) playing the role of the world
space. As shown in some examples at this section, this generalization is effective
with respect to the issue at hand: denotation of terms/formulas is preserved when
obtaining a topos model from a model in a given logic. Hence, entailment is also
preserved. Furthermore, the extra parameter also allows an explicit distinction
between modal and other operators, which helps the intuitions of a reader more
familiarized with traditional semantics.

A×B

f





A

trn(f,B)





&& $$

C CB

Figure 7.3: Exponential transpose of f

It should be stressed that the extra parameter is not necessary for achieving
completeness (as proved in Section 7.5). It is only necessary for being able to
generate a topos model from each given Kripke model preserving the denotation
of terms and formulas. As explained before, this is essential in order to make the
homogeneous scenario of fibring more useful for applications.

A

g





A×D

ctr(g,D)





&& $$

CB×D CB

Figure 7.4: Exponential cotranspose of g

From now on, we use the following notation in the context of topos theory. If
f : A × B → C is a morphism in a given topos then trn(f,B) : A → CB is the
exponential transpose of f obtained from the definition of CB (see Figure 7.3).

If g : A → CB×D is a morphism in a topos then ctr(g,D) : A × D → CB is
the exponential cotranspose of g obtained from the definition of (CB)D and the
canonical isomorphism between (CB)D and CB×D (see Figure 7.4).

Finally, we refer the extent (or support) of an object A in a topos. The extent
of A, denoted by E(A), is the (domain of the) subobject of 1 given by the direct
image ∃!A(idA) of A along !A, where !A is the unique morphism from the object A
to the terminal object 1 (see Figure 7.5).
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A





!A

##+
++

++
++

++
++

++
++

++
+

∃!A(idA) �
� $$ 1

Figure 7.5: Extent of an object A

Definition 7.3.1 An interpretation structure over Σ is a triple M = 〈E ,W, ·M 〉
where E is a topos, W is an object of E such that E(W ) = 1, and ·M is an
interpretation map satisfying the following properties:

• for θ ∈ Θ(S), θM is an object of E such that:

– 1M is terminal;

– ΩM is a subobject classifier Ω;

– (θ1 × · · · × θn)M = θ1M × · · · × θnM ;

– (θ → θ′)M = (θ′M )θM ;

• for r ∈ Rθθ′,

– rM = {rMτ}τ∈Θ(S) where rMτ ∈ E((θM )τM , (θ′M )τM ) (the set of mor-
phisms in E from (θM )τM to (θ′M )τM )). The family rM must be natural
in the following sense: Given τ, τ ′ ∈ Θ(S) andm ∈ E(W×τM ,W×τ ′M ),
n ∈ E(W × τ ′M , θM ), then

ctr(rMτ ′ ◦ trn(n, τ ′M ), τ ′M ) ◦m

=

ctr(rMτ ◦ trn(n ◦m, τM ), τM );

• for f ∈ Fθθ′ ,

– fM = {fMτ}τ∈Θ(S) where fMτ ∈ E((θM )W×τM , (θ′M )W×τM ). The fam-
ily fM must be natural in the following sense: Given τ, τ ′ ∈ Θ(S) and
m ∈ E(W × τM ,W × τ ′M ), n ∈ E(W × τ ′M , θM ), then
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ctr(fMτ ′ ◦ trn(n,W × τ ′M ),W × τ ′M ) ◦m

=

ctr(fMτ ◦ trn(n ◦m,W × τM ),W × τM );

• for q ∈ Qθθ′θ′′ ,

– qM = {qMτ}τ∈Θ(S) where qMτ ∈ E((θ′M )τM×θM , (θ′′M )τM ). The family
qM must be natural in the following sense: Given τ, τ ′ ∈ Θ(S) and
m ∈ E(W × τM ,W × τ ′M ), n ∈ E(W × τ ′M × θM , θ′M ), then

ctr(qMτ ′ ◦ trn(n, τ ′M × θM ), τ ′M ) ◦m

=

ctr(qMτ ◦ trn(n ◦ (m× idθM ), τM × θM ), τM ).

We denote by Str(Σ) the class of all interpretation structures over Σ. ∇

The naturality requirements for the rigid, flexible and binding operators are
related to the Substitution Lemma, as we shall see below in Remark 7.3.3 and
Proposition 7.3.4.

Once we have the notion of interpretation structure over Σ, the following step is
to define the denotation of terms in a given interpretation structure over Σ. Since
we add modalities to the languages, it will be necessary to slightly generalize the
usual notion of categorical semantics. This generalization will be shown to be
appropriate in Proposition 7.5.4 below.

Definition 7.3.2 Let �x = x1 . . . xn be a context with type θ�x = θ1×· · ·×θn, and
θ�xM = θ1M × · · · × θnM . Then, the denotation map

[[·]]M�x : gT (Σ, �x)θ′ → E(W × θ�xM , θ′M )

of ground terms of type θ′ with free variables in �x is inductively defined as follows:

• [[xi]]M�x = pi where pi is the projection from W × θ�xM to θiM ;

• [[r t]]M�x = ctr(rMθ�x
◦ trn([[t]]M�x , θ�xM ), θ�xM );

• [[f t]]M�x = ctr(fMθ�x
◦ trn([[t]]M�x ,W × θ�xM ),W × θ�xM );
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• [[qx t]]M�x = ctr(qMθ�x
◦ trn([[txy ]]M�xy, θ�xM ×θM ), θ�xM ) where y is of the same type

θ as x and does not occur in �x;

• [[〈〉]]M�x = !W×θ�xM
;

• [[〈t1, . . . , tk〉]]M�x = ([[t1]]M�x , . . . , [[tk]]M�x ) for k ≥ 2;

• [[(t)i]]M�x = pi ◦ [[t]]M�x where pi is the projection from θ1M ×· · ·×θkM to θiM . ∇

Remark 7.3.3 In order to better understand the naturality requirement for the
family rM (for r ∈ Rθθ′ , a rigid function symbol according to Definition 7.3.1),
we must think about rM as representing a morphism mr : θM → θ′M in every
possible context (with type) τ .

W
trn(n,τ ′

M ) $$

rMτ′◦trn(n,τ ′
M )

��--
--

--
---

---
--

---
--

---
(θM )τ

′
M

rMτ′




(θ′M )τ

′
M

Figure 7.6: Interpretation of terms

The idea is that mr realizes the ground term r(x) in the interpretation structure
M , and the component rMτ of rM constitutes the morphism mr in context τ . Now,
given a tuple of ground terms 〈t1, . . . , tk〉 (interpreted in a given context τ as a
morphism m)1 as well as a ground term t(x1, . . . , xk) (interpreted in a context τ ′

as a morphism n) such that m and n are composable (that is, such that there
exists the morphism n ◦m interpreting the ground term tx1···xk

t1···tk in context τ) then
the interpretation of the ground terms r(t)x1···xk

t1···tk and r(tx1···xk
t1···tk ) in context τ must

coincide.
That is, the substitution lemma must hold good in the proposed semantic frame-

work. Let us see this using diagrams: Given n : W × τ ′M → θM consider the
diagram in Figure 7.6 and define

l = ctr(rMτ ′ ◦ trn(n, τ ′M ), τ ′M ) : W × τ ′M → θ′M .

The morphism l is the interpretation in M of r(t) (that is, rxt ) in context τ ′.
On the other hand, starting from n ◦ m in Figure 7.7 (the interpretation in

M of tx1···xk
t1···tk in context τ) consider the composition described in the diagram in

Figure 7.8 and let

q = ctr(rMτ ◦ trn(n ◦m, τM ), τM ) : W × τM → θ′M
1A slight simplification was made here in order to explain the basic idea; see the right formu-

lation in Proposition 7.3.4 below.
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W × τM m $$

n◦m
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��
��

��
��

��
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W × τ ′M
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θM

Figure 7.7: Morphism n ◦m

be the interpretation in M of r(tx1···xk
t1···tk ) in context τ .

W
trn(n◦m,τM) $$

rMτ◦trn(n◦m,τM)
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-- (θM )τM

rMτ




(θ′M )τM

Figure 7.8: Morphism rMτ ◦ trn(n ◦m, τM )

Then, the naturality condition requires that the diagram in Figure 7.9 com-
mutes, where l ◦m is the interpretation in M of r(t)x1···xk

t1···tk in context τ .

W × τM m $$

q

���
��

��
��

��
��

��
��

��
��

W × τ ′M

l




θ′M

Figure 7.9: Naturality condition

The naturality requirements for the interpretation of flexible and (binding)
operator symbols can be analyzed analogously, taking into account the appro-
priate modifications required in each case. ∇

As already referred above, the naturality of the families rM (for r ∈ Rθθ′), fM
(for f ∈ Fθθ′) and qM (for q ∈ Qθθ′θ′′) allows us to prove (by a straightforward
induction) the substitution lemma for interpretation structures over Σ.
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Proposition 7.3.4 Let t′ be a ground term free for a variable x in a ground
term t. Then, for any interpretation structure M over Σ and appropriate contexts
�y and �z, it holds:

[[txt′ ]]
M
�y�z = [[t]]M�yx ◦ (π, [[t′]]M�y�z)

where π : W ×Θ�yM ×Θ�zM →W ×Θ�yM is the canonical projection.

Using the concepts already defined, we can now introduce the notion of en-
tailment (actually, of two entailments) for a given class of interpretation struc-
tures over Σ. Previous to this, we shall need more notation from topos theory.
Given a morphism χ : A → Ω we denote by mon(χ) : dom(mon(χ)) → A (see
Figure 7.10) the monomorphism obtained in the pullback of the diagram deter-
mined by {χ, true}.

dom(mon(χ)) �
� mon(χ) $$

!





A

χ




1

true
$$ Ω

Figure 7.10: Monomorphism mon(χ)

Given an object A of a topos E , we denote by Sub(A) the lattice of (equivalence
classes of) subobjects of A.2 The order in Sub(A) is given as follows: [f ] ≤ [g] if
and only if there exists a (necessarily unique) arrow h : dom(f) → dom(g) in E
such that f = g ◦ h, that is, such that the diagram in Figure 7.11 commutes.

dom(f) �
� f $$

h





A

dom(g)
 !

g

''******************

Figure 7.11: Order in Sub(A)

The order in Sub(A) is well-defined. If χ1, χ2 : A→ Ω then we define χ1 ≤ χ2

if and only if [mon(χ1)] ≤ [mon(χ2)]. This relation is also well-defined. For each
2Recall (see [187]) that two monomorphisms f : dom(f) ↪→ A and g : dom(g) ↪→ A are

equivalent if and only if there exists a (necessarily unique) isomorphism h : dom(f) → dom(g) in
E such that f = g ◦ h (and then g = f ◦ h−1).
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object A, trueA denotes the arrow true ◦!A : A→ Ω and
∧

denotes the infimum in
the lattice Sub(A). Observe that the subobject ofA associated to trueA is [idA], the
top element of Sub(A). Finally, given a monomorphism f : dom(f) → A, we will
denote by char(f) : A→ Ω the unique morphism such that [mon(char(f))] = [f ].
Note that char(mon(χ)) = χ for every χ : A→ Ω.

By Definition 7.3.2, if ϕ is a ground formula, �x is a context for ϕ and M is an
interpretation structure over Σ then

[[ϕ]]M�x : W × θ�xM → Ω

represents a subobject of W × θ�xM , that is, an element of Sub(W × θ�xM ). This
suggests the following definitions.

Definition 7.3.5 A higher-order interpretation system is a pair I = 〈Σ,M〉
where Σ is a signature and M is a class of interpretation structures over Σ. ∇

As was done before, from now on “interpretation system” will stand for “higher-
order interpretation system”.

Definition 7.3.6 Let I be an interpretation system and let Ψ ∪ {ϕ} ⊆ gL(Σ, �x)
be a finite set.

• Ψ globally �x-entails ϕ within I, written Ψ �g�xI ϕ, if, for every M ∈ M,∧

ψ∈Ψ

[[ψ]]M�x = trueW×θ�xM
implies [[ϕ]]M�x = trueW×θ�xM

;

• Ψ globally entails ϕ within I, written Ψ �gI ϕ, if Ψ �g�xI ϕ choosing for �x the
canonical context of Ψ ∪ {ϕ};

• Ψ locally �x-entails ϕ within I, written Ψ ���xI ϕ, if, for every M ∈ M,∧

ψ∈Ψ

[[ψ]]M�x ≤ [[ϕ]]M�x ;

• Ψ locally entails ϕ within I, written Ψ ��I ϕ, if Ψ ���xI ϕ choosing for �x the
canonical context of Ψ ∪ {ϕ}. ∇

Since the set Ψ in Definition 7.3.6 is finite, the notions of global and local
entailment are well-defined: It is only required to compute the infimum

∧

ψ∈Ψ

[[ψ]]M�x

in the Heyting algebra Sub(W × θ�xM ), and compare it with [[ϕ]]M�x . The finiteness
of Γ guarantees that this infimum always exists. It is not possible to define this
notion of entailment for arbitrary sets Ψ, because the lattices of the form Sub(A)
are not complete in general.
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It should be noticed that the semantic notions introduced in Definition 7.3.6
correspond to the notions of global and local entailment defined in the previous
chapters, adapted to the present setting. Moreover, the local entailment defined
above coincides with the traditional notion of entailment in categorical logic. On
the other hand, the global entailment proposed above brings to the topos setting
the notion of global entailment usual in modal logic.

It is straightforward to prove that for any finite set Ψ∪{ϕ} ⊆ gL(Σ, �x): Ψ �gI ϕ
implies Ψ �g�xI ϕ; and Ψ ��I ϕ implies Ψ ���xI ϕ. The converses are not necessarily
true, because empty (that is, initial) domains are allowed in the interpretation of
types.

To what concerns these entailments, we may drop the reference to the assump-
tions when Ψ = ∅, and may also omit the reference to the interpretation system.

As already mentioned, the following examples (modal propositional logic and
first-order logic) show that for many well-known logics it is possible to lift the
original semantics given to those logics to the topos semantics level, while pre-
serving the two entailments. For such logics, working with the original semantics
or with the proposed topos semantics are equivalent tasks. For this reason, not
much generality is lost by assuming from now on that the logics we are handling
are endowed with the topos semantics.

Previous to analyze the examples of modal and first-order logics, observe that
we have substituted in Definition 7.3.1 the usual (set-theoretic) condition W �= ∅
for E(W ) = 1. The new requirement, which is stronger than the condition “W
is not initial” (an apparently natural generalization to topos semantics of the set-
theoretic requirement W �= ∅),3 is justified by the following:

Proposition 7.3.7 Let A andB be objects in a given topos E such that E(B) = 1.
Let [f ], [g] ∈ Sub(A). Then:

[f ] ≤ [g] if and only if [f × idB] ≤ [g × idB].

Proof. It is a direct consequence of Proposition 2.9 in [58]. �

Example 7.3.8 We consider modal propositional logic. Let Σ be a signature as
described in Example 7.1.3. Assume we are given a class K of general Kripke
structures for Σ of the form K = 〈W,R,B, V 〉. This class defines the global and
local entailments as usual. Very briefly, recall that [[ϕ]]K ∈ B is the admissible set
of worlds where ϕ holds and:

• Γ �gK ϕ if, for every K ∈ K,
⋂

γ∈Γ

[[γ]]K = W implies [[ϕ]]K = W ;

• Γ ��K ϕ if, for every K ∈ K,
⋂

γ∈Γ

[[γ]]K ⊆ [[ϕ]]K .

3Notice that, in the topos of sets, it holds: W is not initial if and only if W �= ∅ if and only if
E(W ) = 1. In an arbitrary (non-degenerate) topos, E(W ) = 1 implies that W is not initial, but
the converse is not true in general.
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The idea is to generate from K a class of interpretation structures MK over Σ
and check whether we recover the original entailments with the topos semantics.

For each K ∈ K, let MK be the interpretation structure 〈Set,W, .MK 〉 over Σ
such that:

• fMKτ = λh. (λ�a. 0);

• ¬MKτ = λh. (λ�a. − h(�a));

• ∧MKτ = λh. (λ�a. (p1(h(�a)) � p2(h(�a))));

• ∨MKτ = λh. (λ�a. (p1(h(�a)) � p2(h(�a))));

• ⇒MKτ = λh. (λ�a. (p1(h(�a)) � p2(h(�a))));

• pMKτ = λh. (λu�a. Vp(u)) for any p ∈ P;

• �MKτ = λh. (λu�a.
∨

v∈W : uRv

h(v,�a));

• �MKτ = λh. (λu�a.
∧

v∈W : uRv

h(v,�a)).

Here −, �, � and � denote the operations of complement, meet, join and relative
complement in the Boolean algebra 2, respectively (recall Example 3.1.2); p1, p2 :
2 × 2 → 2 are the canonical projections, and

∨
,
∧

denote the joins and meets of
subsets of 2. It is easy to verify that each of these families is natural in the sense
of Definition 7.3.1. ∇

It is not hard to prove by induction on the complexity of the formula ϕ (iden-
tifying W with W × 1) that char([[ϕ]]K ) = [[ϕ]]MK . Then, if we define

MK = {MK : K ∈ K}

and
IK = 〈Σ,MK〉

it is straightforward to prove the following:

Proposition 7.3.9 Let K be a class of Kripke structures for Σ. Then:

• Γ �gK ϕ if and only if Γ �gIK ϕ;

• Γ ��K ϕ if and only if Γ ��IK ϕ.
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Example 7.3.10 We now consider modal intuitionistic propositional logic. Be-
cause of the intuitionistic character of the internal logic of topoi, it seems natural
to consider the intuitionistic version of modal logic in the present framework. Con-
sider the signature Σint obtained from the signature Σ described in Example 7.1.3
by making the following changes: The symbols ¬ and⇒ are now flexible. Consider
a class Kint of general Kripke structures for Σint of the form

K = 〈W,≤, R,B, V 〉

as well as the usual notions of global and local entailments. Note that u ≤ v and
Vp(u) = 1 implies Vp(v) = 1 for any p ∈ P.

As in Example 7.3.8, we can generate a class of interpretation structures MKint

over Σint from Kint which preserves the original entailments. Thus, for each
K ∈ Kint consider the interpretation structure

MK = 〈Set,W, .MK 〉

over Σint defined as in Example 7.3.8, but with the following modifications:

• ¬MKτ = λh. (λu�a.
∧

v∈W : u≤v
h(v,�a)c);

• ⇒MKτ = λh. (λu�a.
∧

v∈W : u≤v
(p1(h(v,�a)) � p2(h(v,�a)))).

It is easy to prove an analogous of Proposition 7.3.9 for modal intuitionistic propo-
sitional logic. Details are left as exercises to the reader. ∇

Example 7.3.11 We now consider first-order logic. Let Σ be a signature for first-
order predicate logic as described in Example 7.1.5. Assume we are given a class I

of first-order structures for Σ of the form I = 〈D, ·I〉. This class defines the global
and local entailments as usual. Very briefly, recall that [[ϕ]]I ⊆ DX is the set of
assignments that make ϕ true and:

• Γ �g
I
ϕ if, for every I ∈ I,

⋂

γ∈Γ

[[γ]]I = DX implies [[ϕ]]I = DX ;

• Γ ��
I
ϕ if, for every I ∈ I,

⋂

γ∈Γ

[[γ]]I ⊆ [[ϕ]]I .

As was done in the two examples above, we will generate from I a class of
interpretation structures MI over Σ such that the original entailments can be
recovered.

For each I ∈ I, let MI be the interpretation structure 〈Set, 1, .MI 〉 over Σ where,
using the same notation as in Example 7.3.8:

• iMI = D;
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• gMIτ = λh. (λ�a. gI(h(�a))) for any g ∈ Gn;

• ¬MIτ = λh. (λ�a. (h(�a))c);

• ∧MIτ = λh. (λ�a. (p1(h(�a)) � p2(h(�a))));

• ∨MIτ = λh. (λ�a. (p1(h(�a)) � p2(h(�a))));

• ⇒MIτ = λh. (λ�a. (p1(h(�a)) � p2(h(�a))));

• πMIτ = λh. (λu�a. πI(h(u,�a))) for any π ∈ Pn;

• ∃MIτ = λh. (λ�a.
∨

d∈D
h(�a, d));

• ∀MIτ = λh. (λ�a.
∧

d∈D
h(�a, d)).

Again, it is easy to check that each of these families is natural in the sense of
Definition 7.3.1. ∇

ConsiderMI = {MI : I ∈ I} and II = 〈Σ,MI〉. Then it is again straightforward
to prove the following:

Proposition 7.3.12 Let I be a class of first-order structures for Σ. Then:

• Γ �g
I
ϕ if and only if Γ �gII

ϕ;

• Γ ��
I
ϕ if and only if Γ ��II

ϕ.

Remark 7.3.13 Of course it is possible to define a signature for first-order intu-
itionistic logic in our framework, just by modifying the signature of Example 7.1.5
by taking ¬ and ⇒ as flexible symbols. Thus, every usual Kripke first-order struc-
ture I generates a categorical structure identical to the interpretation structure
MI over Σ of Example 7.3.11, but with the obvious modifications for the interpre-
tation of ¬ and ⇒, as was done in Example 7.3.10. Clearly some additional details
concerning Kripke first-order structures must be taken into account, namely:

D =
⋃

u∈W
Du

such that ∅ �= Du ⊆ Dv whenever u ≤ v; πuI ⊆ Dn
u and πuI ⊆ πvI whenever u ≤ v,

for π ∈ Pn.
After this, a result analogous to Proposition 7.3.12 can be obtained. Again,

the reader is invited to fill the details of this construction, as well as analyze the
impact of defining function symbols (including constants) as rigid or flexible. ∇
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Example 7.3.14 We now consider higher-order intuitionistic logic. We will show
in this example how the usual topos semantics for higher-order logic can be adapted
to our more general setting. Let ΣHOL be the signature described in Example 7.1.7.
We establish the semantics of this logic by endowing it with the class M0

HOL of all
structures of the form

M = 〈E ,W, ·M 〉
over Σ such that:

• appθθ′Mτ = trn(eval(θM , θ′M )◦eval(τM , (θ′M)θM×θM ), τM ) (where the arrow
eval(B,A) : AB ×B → A is the evaluation map obtained from the definition
of exponential AB);

• ≈θMτ = trn(char(diag(θM )) ◦ eval(τM , θM × θM ), τM ) (where the diagonal
map diag(A) : A→ A×A is the monomorphism (idA, idA));

• setθMτ = trn(trn(eval(τM × θM ,Ω) ◦ can, θM ), τM ) (where can is the canon-
ical isomorphism from (ΩτM×θM × τM )× θM to ΩτM×θM × (τM × θM )).

The following diagrams will help to visualize these definitions.

((θ′M )θM × θM )τM × τM evalτ $$

evalθ◦evalτ

��)))))))))))))))))))))))))))))))
(θ′M )θM × θM

evalθ




θ′M

Figure 7.12: Evaluation map

Given the commutative diagram in Figure 7.12, for simplicity we write evalτ
and evalθ instead of the full names of the respective morphisms, then we define

appθθ′Mτ = trn(evalθ ◦ evalτ , τM ) : ((θ′M )θM × θM )τM → (θ′M )τM .

Now, given the monomorphism diag(θM ) : θM → θM × θM defined by

diag(θM ) = (idθM , idθM )

consider its characteristic map char(diag(θM )) : θM × θM → Ω and the commuta-
tive diagram in Figure 7.13.

Then, we define

≈θMτ = trn(char(diag(θM )) ◦ evalτ , τM ) : (θM × θM )τM → ΩτM .
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(θM × θM )τM × τM evalτ $$

char(diag(θM))◦evalτ

��'''''''''''''''''''''''''''' θM × θM

char(diag(θM))




Ω

Figure 7.13: Characteristic map

(ΩτM×θM × τM )× θM can $$

evalτ×θ◦can

������������������������������������
ΩτM×θM × (τM × θM )

evalτ×θ




Ω

Figure 7.14: Definition of setθMτ

Finally, from the commutative diagram in Figure 7.14 we define, by transposing
twice,

setθMτ = trn(trn(evalτ×θ ◦ can, θM ), τM ) : ΩτM×θM → (ΩθM )τM .

Clearly, the adaptation of the usual categorical semantics we propose here leaves
the entailments unchanged since the extra W has extent 1 (see Proposition 7.3.7)
and we have no flexible symbols. Observe that these morphisms are natural by
construction. ∇

7.4 Higher-order logic systems

As it was done in the previous chapters, we can put together an interpretation
system (recall Definition 7.3.5) and a Hilbert calculus (recall Definition 7.2.6) over
the same signature, obtaining a logic system over that signature.

Definition 7.4.1 A higher-order logic system is a tuple L = 〈Σ,M, Rg, R�〉 pro-
vided that IL = 〈Σ,M〉 is an interpretation system and HL = 〈Σ, Rg, R�〉 is a
Hilbert calculus. ∇

In the sequel, and for simplicity, “logic system” will stand for “higher-order
logic system”.
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Given a logic system L and o ∈ {g, �}, we write Ψ �o�x
L ϕ for Ψ �o�x

IL ϕ and
Γ o�x

L δ �Π for Γ o�x
HL δ �Π.

Definition 7.4.2 A logic system L is said to be:

• sound if, for each o ∈ {g, �}, any context �x, and finite Ψ ∪ {ϕ} ⊆ gL(Σ, �x),
if Ψ o�x

L ϕ then Ψ �o�x
L ϕ;

• complete if, for each o ∈ {g, �} and Ψ∪{ϕ} ⊆ gL(Σ), if Ψ �o
L ϕ then Ψ o

L ϕ.
∇

Remark 7.4.3 The definition of soundness just introduced deserves some com-
ments. It seems clear that the intended definition of soundness of a logic system
L should be

Ψ o
L ϕ implies Ψ �o

L ϕ,

for o ∈ {g, �}. Unfortunately, this definition does not work because of the (possi-
bly) empty domains interpreting the types, which is allowed in categorical seman-
tics. More specifically, from Ψ, ψ �o

L ϕ and Ψ �o
L ψ we cannot infer, in general,

Ψ �o
L ϕ, for o ∈ {g, �}, in case there exists some free variable in ψ not occurring

free in Ψ ∪ {ϕ} (see, for instance, [18]). On the other hand, from Ψ, ψ o
L ϕ and

Ψ o
L ψ we always infer Ψ o

L ϕ (for o ∈ {g, �}) in any logic system L, by the
very definition of global and local derivation. This forces us to modify the usual
definition of soundness, arriving to the notion introduced in Definition 7.4.2. Note
that it is possible to have

Ψ o
L ϕ but Ψ ��o

L ϕ

even in a sound logic system L. ∇

We now specify when a semantic structure is adequate for a Hilbert calculus, a
central concept that will be used in the sequel.

Definition 7.4.4 An interpretation structure M over Σ is said to be appropriate
for a Hilbert calculus H if, for o ∈ {g, �},

Ψ o�x
H ϕ implies Ψ �o�x

〈Σ,{M}〉 ϕ.

For each o ∈ {g, �}, an interpretation structure M over Σ is said to be o-
appropriate for a rule 〈Γ, δ,Π〉 over Σ if for every ground substitution ρ over Σ
such that Π(̂!Σ ◦ ρ) = 1,

ρ(Γ) �o
〈Σ,{M}〉 ρ(δ).

∇
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The reader should note that an interpretation structure over Σ is appropriate
for a Hilbert calculus H = 〈Σ, Rg, R�〉 if and only if it is �-appropriate for every
local rule in R� and g-appropriate for every global rule in Rg.

For each o ∈ {g, �}, given a set R of rules over Σ, we denote by Apo(R) the
class of all interpretation structures over Σ that are o-appropriate for the rules in
R. Moreover, given a Hilbert calculus H , we define Ap(H) = Apg(Rg)∩Ap�(R�).

Clearly, a logic system L = 〈Σ,M, Rg, R�〉 is sound if and only ifM⊆ Ap(HL).
Next definition is the higher-order version of Definition 3.3.11 (propositional

based case) and Definition 6.4.8 (first-order based case).

Definition 7.4.5 A logic system L = 〈Σ,M, Rg, R�〉 is said to be full if M =
Ap(HL). ∇

Example 7.4.6 We consider again modal propositional logic. By endowing the
Hilbert calculus of Example 7.2.10 with the class of all interpretation structures
appropriate for it we obtain a full logic system that we call MPLK. ∇

Example 7.4.7 We consider higher-order intuitionistic logic. By endowing the
Hilbert calculus of Example 7.2.11 with the class M of all appropriate interpreta-
tion structures we obtain a full logic system that we call HOL. ∇

It is worth noting that the logic system HOL contains all the traditional models
M0

HOL described in Example 7.3.14. Indeed:

Proposition 7.4.8 M0
HOL ⊆ Ap(HHOL).

Proof. Let M ∈ M0
HOL. We need to prove that M is o-appropriate for every rule

in Ro of HOL for o ∈ {g, �}.
As mentioned in Remark 7.2.12, in [63] it was proven the equivalence between

HHOL restricted to the language of local set theory, and the sequent calculus of
Bell [18]. Therefore M is �-appropriate for every axiom of R� of HOL other than
funθθ′ .

On the other hand, M is also �-appropriate for axiom funθθ′. In fact, it is well-
known that, in any topos, using the universal properties of the subobject classifier
Ω, finite limits and exponentials of the form ΩA, it is possible to construct arbitrary
exponentials (see, for instance, [187]). Since exponentials appear as pullbacks of
certain diagrams, the �-appropriateness of M for funθθ′ follows easily.

Finally, it is straightforward to prove the �-appropriateness of M for MP and
the g-appropriateness of M for MP and Gen, because the interpretation of the
universal quantifier is the usual in categorical semantics. �

Observe that, as an immediate consequence of Proposition 7.4.8, the Hilbert
calculus HHOL is sound with respect to the (slightly generalized) usual topos se-
mantics M0

HOL described in Example 7.3.14.
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7.5 A general completeness theorem

This section is devoted to obtain sufficient conditions to guarantee that a higher-
order logic system is complete. This task is part of the general strategy of proving
preservation of completeness by fibring introduced in previous chapters. This
strategy consists in the following two steps: (i) to obtain sufficient conditions for
completeness; (ii) to prove that these conditions are preserved by fibring. The
conditions in step (i) are, as usual, related to the existence some connectives with
intuitionistic behaviour, together with the requirement of fullness. Herein, we will
establish a general completeness theorem about full logic systems containing HOL
and with the metatheorem of deduction.

Definition 7.5.1 Let H be a Hilbert calculus. We say that:

• H includes HOL if the Hilbert calculus HHOL defined in Example 7.2.11 is
embedded in H ;

• H has the metatheorem of deduction (MTD) if it includes HOL and the
following condition holds: Ψ, ψ �H ϕ if and only if Ψ �H (ψ⇒ ϕ). ∇

As a consequence of Proposition 2.3.12 we prove the following interesting prop-
erty of logic systems containing HOL:

Proposition 7.5.2 Let L = 〈Σ,M, Rg, R�〉 be a logic system including HOL.
Then L has MTD if and only if

{(ξ⇒ γ1), . . . , (ξ⇒ γk)} �L (ξ⇒ δ) �Π

for every local rule 〈{γ1, . . . , γk}, δ,Π〉 ∈ R� and every schema variable ξ ∈ ΞΩ not
occurring in the rule.

In the sequel, we use the following notation. Let Γ be a finite subset of L(Σ).
Then (

∧
Γ) denotes a formula obtained from Γ by taking the conjunction of all

the formulas in Γ in an arbitrary order and parenthesis association (if Γ = ∅ then
we take (

∧
Γ) to be t). It is easy to prove that, if Ψ ∪ {ψ} is a finite subset of

gL(Σ) and (
∧

Ψ)1, (
∧

Ψ)2 are two conjunctions defined as above then

(
∧

Ψ)1 �H (
∧

Ψ)2

therefore
((
∧

Ψ)1 ⇒ ψ) �H ((
∧

Ψ)2 ⇒ ψ)

in any Hilbert calculus H with MTD. Let �x = x1 . . . xn be a context. Then
(�x ≈ �x) denotes a formula of the form (

∧{(x1 ≈ x1), . . . , (xn ≈ xn)}).
In the proof of the next lemma, and in the rest of this chapter, we adopt the set-

theoretic abbreviations in the context of higher-order logic used in [18]. Some of
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these abbreviations were already used in Example 7.2.11. For instance, Uθ stands
for {xθ : t} and tt12 for the term

{h ⊆ t1 × t2 : (∀x((x ∈ t1)⇒ (∃!y((y ∈ t2) ∧ (〈x, y〉 ∈ h))))}.

Lemma 7.5.3 Every Hilbert calculus H including HOL and with MTD has a
canonical model MH = 〈EH ,WH , ·H〉.

Proof. Due to its length, this proof (which originally appeared in [62]) is divided
into six parts.

Part I: Construction of the linguistic topos EH .
This first part of the proof parallels (with small adaptations) the standard con-
struction in categorical logic (see for instance [18]). Let cT (Σ)θ be the set of closed
ground Σ-terms of type θ ∈ Θ(S), and consider the collection

AΣ =
⋃

θ∈Θ(S)

cT (Σ)(θ→Ω)

of all the closed ground Σ-terms. Next, we define in AΣ the following relation:

t1 ∼=H t2 if �H (t1 ≈ t2).

Clearly, if t1 ∼=H t2 then t1, t2 ∈ cT (Σ)(θ→Ω) for some type θ. It is immediate to
see that ∼=H is an equivalence relation. The equivalence class of t ∈ AΣ will be
denoted by [t]H or simply [t].

We define the category EH as follows: The objects of EH are equivalence classes
[t]. We use the letters A, B, C, etc. to denote the objects of EH . Given A = [t1]
and B = [t2], a morphism in EH from A to B is defined to be an equivalence class
[t] such that �H (t ∈ tt12 ). It is easy to prove that the notion of morphism is well-
defined. If g is a morphism from A to B then we will write, as usual, g : A→ B.
Given [t] : [t1] → [t2] and [t′] : [t2] → [t3] then the composition map [t′] ◦ [t] in EH
is defined as

[{〈x, z〉 : (x ∈ t1) ∧ (z ∈ t3) ∧ (∃y((y ∈ t2) ∧ (〈x, y〉 ∈ t) ∧ (〈y, z〉 ∈ t′)))}].

It is immediate to see that [t′] ◦ [t] is well-defined and [t′] ◦ [t] : [t1] → [t3] is a
morphism. Clearly the composition ◦ is associative. Given t ∈ AΣ consider the
equivalence class

id[t] = [{〈x, x〉 : x ∈ t}].
Then, id[t] : [t] → [t] is a morphism and id[t] ◦ g = g and h◦ id[t] = h for g : A→ [t]
and h : [t] → B. This shows that, by defining id[t] as the identity map over the
object [t], EH is indeed a category.

If xi ∈ Xθi (i = 1, . . . , n) such that xi �= xj for i �= j then x̄ will denote the
term 〈x1, . . . , xn〉. Let t, t′ ∈ AΣ such that t and t′ have type ((θ1×· · ·×θn) → Ω)
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and (θ → Ω), respectively, and let δ ∈ gT (Σ, �x)θ. If x̄ ∈ t �H δ ∈ t′ then it is
immediate to show that the equivalence class

[{〈x̄, δ〉 : x̄ ∈ t}]
is a morphism from [t] to [t′]. This morphism which will be denoted by

(x̄ &→ δ).

Observe that this notation (taken from [18]) is somewhat inaccurate. A better
notation would be (x̄ ∈ t &→ δ ∈ t′). However, for the sake of simplicity, we prefer
to maintain the original notation.

If δi is free for yi in δ (for 1 ≤ i ≤ m) then it is not hard to prove that

(ȳ &→ δ) ◦ (x̄ &→ 〈δ1, . . . , δm〉) = (x̄ &→ δy1...ym

δ1...δm
).

To finish this part of the proof, we will give now the sketch of the proof that EH
is a topos.

Consider 1H as being the object [U1]. For any object A there exists an unique
morphism from A to 1H given by (x &→ 〈〉), therefore 1H is terminal in EH .

It is easy to prove that, given morphisms [h1] : [t1] → [t3] and [h2] : [t2] → [t3],
their pullback is given by

[{〈x, y〉 : (x ∈ t1) ∧ (y ∈ t2) ∧ (∃z((〈x, z〉 ∈ h1) ∧ (〈y, z〉 ∈ h2))}]
with the obvious canonical projections.

Consider ΩH as being the object [UΩ] and let true : 1H → ΩH be the morphism
given by (z1 &→ t). Then it can be proved that

〈ΩH , true〉
is the subobject classifier in EH . Given a monomorphism [t] : A→ B in EH then
its characteristic map char([t]) : B → ΩH is given by

(y &→ ∃x(〈x, y〉 ∈ t)).
Finally, let [t1] and [t2] be two objects in EH . Then it is not hard to prove

that the exponential [t2][t1] in EH is given by [tt12 ]. The morphism eval([t1], [t2]) :
[tt12 ]× [t1] → [t2] is then given by

[{〈〈h, x〉, y〉 : (h ∈ tt12 ) ∧ (x ∈ t1) ∧ (〈x, y〉 ∈ h)}].
Moreover, if [t] : A× [t1] → [t2] then trn([t], [t1]) : A→ [tt12 ] is given by

(x &→ {〈y, z〉 : 〈〈x, y〉, z〉 ∈ t}).
And if [t] : A→ [tt12 ] then ctr([t], [t1]) : A× [t1] → [t2] is given by

[{〈〈x, y〉, z〉 : (x ∈ A) ∧ (y ∈ t1) ∧ (∀u((〈x, u〉 ∈ t) ⇒ (〈y, z〉 ∈ u)))}].
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It is easy to show that [Uθ′ ][Uθ ] is isomorphic to [U(θ→θ′)] and eval([Uθ], [Uθ′]) is
(〈h, x〉 &→ app〈h, x〉) in this case. On the other hand, [Uθ]× [Uθ′ ] = [U(θ×θ′)].

Part II: The interpretation structure MH = 〈EH ,WH , ·H〉 over Σ.
Now we define an interpretation structure MH = 〈EH ,WH , ·H〉 over the linguistic
topos EH as follows: WH is 1H and

• θMH is [Uθ] for every θ ∈ Θ(S);

• rMHτ is (h &→ {〈x̄, (ry)〉 : 〈x̄, y〉 ∈ h}) whenever r ∈ Rθθ′ , r �= appθ′′θ′ ,
r �= ≈θ′′′ ;

• fMHτ is (h &→ {〈〈z1, x̄〉, (fy)〉 : 〈〈z1, x̄〉, y〉 ∈ h}) whenever f ∈ Fθθ′ ;

• qMHτ is (h &→ {〈x̄, (qxu)〉 : 〈〈x̄, x〉, u〉 ∈ h}) whenever q ∈ Qθθ′θ′′ , q �= setθ.

The interpretation in MH of appθθ′, ≈θ and setθ is as in Example 7.3.14. In
order to better understand its definition, we proceed now to briefly analyze them.
Considering [Uθ′ ][Uθ] as [U(θ→θ′)] (they are isomorphic, as pointed above) consider
the morphism

g = eval([Uθ], [Uθ′ ]) ◦ eval([Uτ ], [U(θ→θ′)]× [Uθ]).

From the results proved in Part I we obtain that

g = (〈h′, x〉 &→ app〈h′, x〉) ◦ [{〈〈h, x̄〉, u〉 : 〈x̄, u〉 ∈ h}].
Thus, it is immediate that

g = [{〈〈h, x̄〉, appu〉 : 〈x̄, u〉 ∈ h}]
and so

appθθ′MHτ = trn(g, [Uτ ]) = (h &→ {〈x̄,appu〉 : 〈x̄, u〉 ∈ h}).
With respect to the equality symbols, consider the diagonal map

diag([Uθ]) = (x &→ 〈x, x〉) : [Uθ] → [Uθ]× [Uθ].

Using again Part I and the deduction rules of HOL we obtain

char(diag([Uθ])) = (y &→ ∃x(〈x, y〉 ∈ diag([Uθ]))) = (y &→ ((y)1 ≈ (y)2)).

Consider the morphism

g = char(diag([Uθ])) ◦ eval([Uτ ], [Uθ]× [Uθ]).

Then g = [{〈〈h, x̄〉, ((y)1 ≈ (y)2)〉 : 〈x̄, y〉 ∈ h}], therefore

≈θMHτ = trn(g, [Uτ ]) = (h &→ {〈x̄, ((y)1 ≈ (y)2)〉 : 〈x̄, y〉 ∈ h}).
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Finally, consider [UΩ][Uθ ] as [U(θ→Ω)] (they are isomorphic) and define

g = eval([Uτ ]× [Uθ], [UΩ]) ◦ can

where

can : ([UΩ][Uτ ]×[Uθ] × [Uτ ])× [Uθ] → [UΩ][Uτ ]×[Uθ ] × ([Uτ ]× [Uθ])

is the canonical isomorphism. Using the results in Part I and the rules of HOL it
is easy to prove that

g = [{〈〈h′, 〈x̄, x〉〉, v〉 : 〈〈x̄, x〉, v〉 ∈ h′}] ◦ [{〈〈〈h, x̄〉, x〉, 〈h, 〈x̄, x〉〉〉 : t}]

= [{〈〈〈h, x̄〉, x〉, v〉 : 〈〈x̄, x〉, v〉 ∈ h}].

If we define g1 = trn(g, [Uθ]) then it is immediate that

g1 = [{〈〈h, x̄〉, u〉 : (∀x(∀v(((x ∈ u) ≈ v) ⇔ 〈〈x̄, x〉, v〉 ∈ h)))}].

Thus, the morphism setθMHτ = trn(g1, [Uτ ]) is given by

setθMHτ = (h &→ {〈x̄, u〉 : (∀x(∀v(((x ∈ u) ≈ v) ⇔ 〈〈x̄, x〉, v〉 ∈ h)))}).

In order to prove that MH is indeed an interpretation structure over Σ it remains
to prove the naturality of the morphisms rMHτ (where r �= appθ′′θ′ and r �= ≈θ′′′),
fMHτ and qMHτ (where q �= setθ). In fact, the families of morphisms appθ′′θ′ ,
≈θ′′′ and setθ are natural by construction, as pointed in Example 7.3.14. We will
only prove the naturality of the family of morphisms rMHτ , because the proof for
the other cases is similar. Since WH = 1H then

rMHτ = (h &→ {〈x̄, (ry)〉 : 〈x̄, y〉 ∈ h})

for every τ . Now, consider morphisms m = [t] : Uτ → Uτ ′ and n = [t′] : Uτ ′ → Uθ.
Then

rMτ ′ ◦ trn(n, τ ′M ) = (z1 &→ {〈x̄, (ry)〉 : 〈x̄, y〉 ∈ t′}).
From the results stated in Part I and the rules of HOL we easily obtain that

ctr(rMτ ′ ◦ trn(n, τ ′M ), τ ′M ) ◦m = [{〈ȳ, (ry)〉 : (∃x̄(〈ȳ, (̄x〉 ∈ t) ∧ (〈x̄, y〉 ∈ t′)))}].

On the other hand, it is immediate to prove that

rMτ ◦ trn(n ◦m, τM ) = (z1 &→ {〈ȳ, (ry)〉 : (∃x̄((〈ȳ, x̄〉 ∈ t) ∧ (〈x̄, y〉 ∈ t′)))}).

Hence we obtain the desired naturality of the family of morphisms rMHτ :

ctr(rMτ ′ ◦ trn(n, τ ′M ), τ ′M ) ◦m = ctr(rMτ ◦ trn(n ◦m, τM ), τM ).
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Part III: [[t]]MH

�x = (〈z1, x̄〉 &→ t).
Let t ∈ gT (Σ, �x)θ. Since WH is 1H (therefore [Uθ] 'WH × [Uθ] for all θ) we prove
now by induction on the complexity of t that

[[t]]MH

�x = (〈z1, x̄〉 &→ t) : 1H × [Uτ ] → [Uθ]

where z1 ∈ X1 does not occur in �x. If t is a variable or t is 〈〉 the result is
immediate. If t is 〈t1, . . . , tn〉 or t is (t′)i the conclusion follows easily by in-
duction hypothesis. If t is appθθ′〈t1, t2〉 then, using the induction hypothesis,
[[〈t1, t2〉]]MH

�x = (〈z1, x̄〉 &→ 〈t1, t2〉). Consider the morphism

g = appθθ′MHτ ◦ trn([[〈t1, t2〉]]MH

�x , [Uτ ]).

Using the results in Parts I and II we obtain that

g = (h &→ {〈x̄,appu〉 : 〈x̄, u〉 ∈ h}) ◦ (z1 &→ {〈x̄, 〈t1, t2〉〉 : t})

= (z1 &→ {〈x̄,app〈t1, t2〉〉 : t}).

From this it is clear that

[[app〈t1, t2〉]]MH

�x = ctr(g, [Uτ ]) = (〈z1, x̄〉 &→ app〈t1, t2〉).

Now, if t is (t1 ≈θ t2) let g be the morphism ≈θMHτ ◦ trn([[〈t1, t2〉]]MH

�x , [Uτ ]). Then
g is given by

(h &→ {〈x̄, ((y)1 ≈θ (y)2)〉 : 〈x̄, y〉 ∈ h}) ◦ (z1 &→ {〈x̄, 〈t1, t2〉〉 : t})

and so g = (z1 &→ {〈x̄, (t1 ≈θ t2)〉 : t}). From this follows easily that

[[(t1 ≈θ t2)]]MH

�x = ctr(g, [Uτ ]) = (〈z1, x̄〉 &→ (t1 ≈θ t2)).

Now, if t is the ground term setθxϕ let y be a variable free for x in ϕ not occurring
in �x. By induction hypothesis,

[[ϕxy ]]MH

�xy = (〈z1, 〈x̄, y〉〉 &→ ϕxy).

Let g = setθMHτ ◦ trn([[ϕxy ]]MH

�xy , [Uτ ]× [Uθ]). By Part II it follows that setθMHτ is

(h &→ {〈x̄, u〉 : (∀x(∀v(((x ∈ u) ≈ v) ⇔ (〈〈x̄, x〉, v〉 ∈ h))))}).

On the other hand, by Part I we obtain that trn([[ϕxy ]]MH

�xy , [Uτ ]× [Uθ]) is

(z1 &→ {〈〈x̄, y〉, ϕxy〉 : t}).

Thus, using the deduction rules of HOL, it follows that



7.5. A GENERAL COMPLETENESS THEOREM 297

g = (z1 &→ {〈x̄, u〉 : (∀x(∀v(((x ∈ u) ≈ v) ⇔ (v ≈ ϕ))))})

= (z1 &→ {〈x̄, u〉 : (∀x((x ∈ u) ⇔ ϕ))})

= (z1 &→ {〈x̄, {x : ϕ}〉 : t}).

From this follows easily that

[[setθxϕ]]MH

�x = [[{x : ϕ}]]MH

�x = ctr(g, [Uτ ]) = (〈z1, x̄〉 &→ {x : ϕ}).

If t is (ft′), with f ∈ Fθθ′ and t ∈ gT (Σ)θ then, by induction hypothesis,

[[t′]]MH

�x = (〈z1, x̄〉 &→ t′).

Let g = fMHτ ◦ trn([[t′]]MH

�x ,WH × [Uτ ]) and let x1 ∈ X1 not occurring in 〈z1, x̄〉.
Since fMHτ is, by definition,

(h &→ {〈〈z1, x̄〉, (fy)〉 : 〈〈z1, x̄〉, y〉 ∈ h})

and trn([[t′]]MH

�x ,WH × [Uτ ]) is the morphism

(x1 &→ {〈〈z1, x̄〉, t′〉 : t})

then, using the rules of HOL, it is straightforward to prove that

g = (x1 &→ {〈〈z1, x̄〉, (ft′)〉 : t}).

Therefore
[[(ft′)]]MH

�x = ctr(g,WH × [Uτ ]) = (〈z1, x̄〉 &→ (ft′))

as required. The proof for the case t = (rt′) with r ∈ Rθθ′ is analogous. Finally,
suppose that t is qxt′, where q ∈ Qθθ′θ′′ , x ∈ Xθ and t′ ∈ gT (Σ)θ′. Consider a
variable y of type θ free for x in t′ not occurring in �x. By induction hypothesis,

[[t′xy ]]MH

�xy = (〈z1, 〈x̄, y〉〉 &→ t′xy).

Let g = qMHτ ◦ trn([[t′xy ]]MH

�xy , [Uτ ]× [Uθ]). Since qMHτ is the morphism

(h &→ {〈x̄, (qxu)〉 : 〈〈x̄, x〉, u〉 ∈ h}),

by definition, and trn([[t′xy ]]MH

�xy , [Uτ ]× [Uθ]) is

(z1 &→ {〈〈x̄, y〉, t′xy〉 : t})

then, using again the deduction rules of HOL, we obtain that

g = (z1 &→ {〈x̄, (qxt′)〉 : t}).
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Then
[[(qxt′)]]MH

�x = ctr(g, [Uτ ]) = (〈z1, x̄〉 &→ (qxt′)).

Part IV: Ψ �H ϕ implies Ψ ��〈Σ,{MH}〉 ϕ.
Consider ϕ ∈ gL(Σ) with canonical context �x. Then �H ϕ implies �H (ϕ ≈ t)
implies (〈z1, x̄〉 &→ ϕ) = (〈z1, x̄〉 &→ t) implies [[ϕ]]MH

�x = [[t]]MH

�x (by Part III) implies
��〈Σ,{MH}〉 ϕ.
Consider now a finite set Ψ∪{ϕ} of ground Σ-formulas and let (

∧
Ψ) be a formula

defined using the notation introduced after Definition 7.5.1. Then Ψ �H ϕ implies
�H ((

∧
Ψ)⇒ϕ), because H has MTD. Therefore, ��〈Σ,{MH}〉 ((

∧
Ψ)⇒ϕ) and so

Ψ ��〈Σ,{MH}〉 ϕ as desired.

Part V: Ψ ��〈Σ,{MH}〉 ϕ implies Ψ �H ϕ.
In this step we verify that MH is a canonical model for H (with respect to local
derivations). Let ϕ ∈ gL(Σ) with canonical context �x. Then ��〈Σ,{MH}〉 ϕ implies

[[ϕ]]MH

�x = [[t]]MH

�x implies (〈z1, x̄〉 &→ ϕ) = (〈z1, x̄〉 &→ t) (by Part III) implies
�H (ϕ ≈ t) implies �H ϕ.
Consider now a finite subset Ψ ∪ {ϕ} of gL(Σ). Then we obtain: Ψ ��〈Σ,{MH}〉 ϕ

implies ��〈Σ,{MH}〉 ((
∧

Ψ)⇒ ϕ) implies �H ((
∧

Ψ)⇒ ϕ) implies Ψ �H ϕ, because
H has MTD.

Part VI: MH is appropriate for H .
By Part IV, it remains to prove appropriateness of MH with respect to global
derivations. Let Ψ ∪ {ϕ} be a finite subset of gL(Σ) such that Ψ g�xH ϕ and

∧

ψ∈Ψ

[[ψ]]MH

�x = trueW×θ�xMH
.

Thus, ���x〈Σ,{MH}〉 ψ for every ψ ∈ Ψ, and so ���x〈Σ,{MH}〉 (ψ ∧ (�x ≈ �x)). In other
words,

��〈Σ,{MH}〉 (ψ ∧ (�x ≈ �x)).

By Part V we obtain �H (ψ ∧ (�x ≈ �x)) and so ��xH ψ for every ψ ∈ Ψ. Thus ��xH ϕ
and then �H (ϕ ∧ (�x ≈ �x)). By Part IV we get

��〈Σ,{MH}〉 (ϕ ∧ (�x ≈ �x)).

Therefore, [[ϕ]]MH

�x = trueW×θ�xMH
. That is, Ψ �g�x〈Σ,{MH}〉 ϕ as desired. �

It is worth noting that the reduct to ΣHOL of MH belongs to M0
HOL. This

means that MH is standard with respect to the language of pure HOL.

Proposition 7.5.4 Every full logic system with Hilbert calculus including HOL
and with MTD is complete.
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Proof. Let I = 〈Σ,M〉, where M is the class of interpretation structures over Σ
appropriate for H , and let Ψ ∪ {ϕ} be a finite set of ground formulas. Suppose
that Ψ ��I ϕ. Since MH is appropriate for H then Ψ ��〈Σ,{MH}〉 ϕ. Thus Ψ �H ϕ,
by Part V of the proof of Lemma 7.5.3.

Now, suppose that Ψ �gI ϕ. Let �x be the canonical context of Ψ ∪ {ϕ} and let
HΨ be the Hilbert calculus obtained from H by adding the axiom

〈∅, ((
∧

Ψ) ∧ (�x ≈ �x)),U〉

where (
∧

Ψ) and (�x ≈ �x) are defined using the notation stated after Defini-
tion 7.5.1. If MΨ is the class of interpretation structures over Σ appropriate
for HΨ then

MΨ = {M ∈ M : [[(
∧

Ψ) ∧ (�x ≈ �x)]]M�x = trueW×θ�xM
}.

Let IΨ = 〈Σ,MΨ〉. Since Ψ �gI ϕ then �gIΨ (ϕ ∧ (�x ≈ �x)) and so, by Defini-
tion 7.2.9, ��IΨ (ϕ ∧ (�x ≈ �x)). By Part VI of the proof of Lemma 7.5.3 we have
that

��〈Σ,{MDΨ}〉 (ϕ ∧ (�x ≈ �x)).

Therefore �HΨ (ϕ ∧ (�x ≈ �x)), by Part V of the proof of the same lemma. Hence
Ψ gH ϕ. �

7.6 Fibring higher-order logic systems

This section finally introduces the category of higher-order logic systems by defin-
ing a suitable notion of morphism between them. In this category both constrained
and unconstrained forms of fibring will be defined as universal constructions. Then
it will be shown that soundness is always preserved by fibring. After this, we will
address the problem of preservation of completeness by fibring. Firstly, we will
obtain a result in the case of rich logics (that is, logics including HOL and with the
MTD). Finally, we will extend this result to weaker logics under the assumption
of the preservation of the conservativeness of HOL-enrichment.

The following concepts are necessary in order to define logic system morphisms.
Let h : Σ → Σ′ be a signature morphism. Given a set R of rules over Σ, the

image of R by h, denoted by h(R), is the set

{〈h(Γ), h(δ),Π〉 : 〈Γ, δ,Π〉 ∈ R}

of rules over Σ′. Given a Hilbert calculus H = 〈Σ, Rg, R�〉, let h(H) be the
Hilbert calculus 〈Σ′, h(Rg), h(R�)〉. And given an interpretation structure M ′ =
〈E ′,W ′, ·M ′〉 over Σ′, the reduct of M ′ along h, denoted by M ′|h, is the interpre-
tation structure 〈E ′,W ′, ·M ′ ◦ h〉 over Σ.
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Definition 7.6.1 Let L = 〈Σ,M, Rg, R�〉 and L′ = 〈Σ′,M′, R′
g, R

′
�〉 be logic

systems. A logic system morphism h : L → L′ is a signature morphism h : Σ → Σ′

such that:

1. M ′ ∈M′ implies M ′|h ∈M;

2. for every M ′ ∈ M′, M ′|h ∈ Ap(HL) implies M ′ ∈ Ap(h(HL));

3. h(Rg) ⊆ R′
g;

4. h(R�) ⊆ R′
�. ∇

From previous work on the subject of fibring (see for instance [282, 240]), con-
ditions (1), (3) and (4) are to be expected. However, (3) and (4) are a bit stronger
than the corresponding conditions for propositional Hilbert calculi defined in Chap-
ter 2. It is not hard to prove that, concerning the fibring results to be stated
below, nothing changes if we consider this more restricted notion of morphism.
With respect to condition (2), it is a reasonable requirement that will allow the
preservation of soundness by fibring. This condition should be seen more as a
requirement on the rules of HL than on the models. Consider, for instance, the
usual rule of quantified logic

〈∅, ((∀x ξ1)⇒ ξ1
x
ξ2), ξ2 � x : ξ1〉

with the standard proviso: No free variable in ξ2 must be captured by a quantifier
when x is replaced by ξ2 in ξ1. Surprisingly, this rule becomes unsound when put
in an environment (signature) where modalities and flexible symbols are available.
More precisely, condition (2) will be violated when this rule is present in L and L′

contains modalities and other flexible symbols.
Suppose, for example, that L′ is a temporal quantified logic. If we substitute ξ1

by be the formula ((s ≈ x)⇒(F(s > x))), where s is flexible and F is the “sometime
in the future” modality, and if we substitute ξ2 by the term s, then, ξ1 xξ2 becomes
((s ≈ s)⇒ (F(s > s))). Hence we started with the formula ((s ≈ x)⇒ (F(s > x)))
that can be true in some interpretation structure and get, after the substitution,
the formula ((s ≈ s)⇒ (F(s > s))) that can never be true. We want to avoid this
unpleasant situation.

However, it is possible to transform the rules in order to obtain a more robust
version of them, avoiding the kind of problems with condition (2) pointed out
before. In the last example, it is enough to reinforce the proviso with the additional
requirement that no flexible symbol in ξ2 falls into the scope of a modality when
x is replaced by ξ2 in ξ1. Of course this (stronger) proviso changes nothing in the
original quantified logic, but it makes all the difference when embedding it into a
richer logic, such as the ones generally obtained by fibring.

The last remark suggests the following definition:
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Definition 7.6.2 A Hilbert calculus H is said to be robust if, for every signature
monomorphism h : Σ → Σ′ and interpretation structure M ′ over Σ′,

M ′|h ∈ Ap(H) implies M ′ ∈ Ap(h(H)).

A logic system L is said to be robust if HL is robust. ∇

Remark 7.6.3 It is worth noting that it is quite easy to make robust any given
logic system: The brute force method (including in all rules the additional require-
ment forbidding foreign categories of symbols) always works. For instance, if a
logic system has no flexible symbols then we include in the proviso of every rule
the additional requirement that it may not be applied when substitution ρ uses
flexible symbols. This changes nothing in the original logic system but makes it
much weaker when combined with other logic systems. ∇

Example 7.6.4 We consider higher-order intuitionistic logic. From now on, we
assume that the Hilbert calculus of HOL (recall Example 7.2.11) is made robust,
namely by interpreting the proviso ξ2 � x : ξ1 as forbidding both (i) capture of
free variables in ξ2 by binding operators in ξ1, and (ii) capture of flexible symbols
in ξ2 by flexible symbols in ξ1. ∇

We can now introduce the category of logic systems.

Definition 7.6.5 The category HLog of logic systems is defined as follows: Its
objects are logic systems (cf. Definition 7.4.1), and its morphisms are logic systems
morphisms (cf. Definition 7.6.1). Identity maps and composition are inherited
from the category HSig of signatures. ∇

In the category HLog, fibrings are defined through universal constructions, as
we shall see below.

Definition 7.6.6 Given two logic systems L′ and L′′, their unconstrained fibring
is the logic system L = L′ ⊕ L′′ such that:

• Σ = Σ′ ⊕ Σ′′ with injections i′ and i′′ (coproduct in HSig of Σ′ and Σ′′);

• M = {M ∈ Str(Σ′ ⊕ Σ′′) : M |i′ ∈ M′, M |i′′ ∈M′′,
M |i′ ∈ Ap(H ′) implies M ∈ Ap(i′(H ′)), and
M |i′′ ∈ Ap(H ′′) implies M ∈ Ap(i′′(H ′′))};

• Rg = i′(R′
g) ∪ i′′(R′′

g );

• R� = i′(R′
�) ∪ i′′(R′′

� ). ∇

We shall prove that the unconstrained fibring is a coproduct in the category
HLog. Previous to this, we need to state a useful result.
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Lemma 7.6.7 Let h : Σ → Σ′ be a signature morphism.

1. Let σ be a substitution over Σ and consider the substitution σ′ = ĥ ◦ σ over
Σ′. Then σ̂′ ◦ ĥ = ĥ ◦ σ̂.

2. LetM ′ be an interpretation structure over Σ′, ρ ∈ gSbs(Σ) and ρ′ ∈ gSbs(Σ′)
such that ρ′ = ĥ ◦ ρ. Then [[ρ(t)]]M

′|h
�x = [[ρ′(ĥ(t))]]M

′
�x for every t ∈ T (Σ, �x).

3. Let H be a Σ-Hilbert calculus and M ′ ∈ Str(Σ′). Then M ′ ∈ Ap(h(H))
implies M ′|h ∈ Ap(H).

Proof. 1. Given h and σ we must prove that, by defining σ′ such that the diagram
in Figure 7.15 commutes for every type θ. Then the diagram in Figure 7.16 is
commutative for every type θ.

Ξθ

σθ





σ′
θ

%%
T (Σ)θ

ĥ

$$ T (Σ′)θ

Figure 7.15: Substitution σ′ over Σ′

It is easy to prove by induction on the complexity of a term t ∈ T (Σ, �x) (where,
by convention, ξxξ′ has complexity 1) that a variable x occurs free in t if and only
if it occurs free in ĥ(t). Then, it is immediate to prove that a term t is free for a
variable x in a term t′ if and only if ĥ(t) is free for x in ĥ(t′). From these facts the
result follows by induction on the complexity of the term.

2. Immediate from item (1) and our definitions.
3. Immediate from item (2) and our definitions. �

Proposition 7.6.8 The unconstrained fibring L′ ⊕L′′ is the coproduct in HLog
of L′ and L′′.

Proof. Let L be the logic system L′ ⊕ L′′ = 〈Σ,M, Rg, R�〉 constructed as in
Definition 7.6.6. It is immediate to conclude that the injections i′ : Σ′ → Σ and
i′′ : Σ′′ → Σ are morphisms in HLog. Consider a logic system

Ľ = 〈Σ̌,M̌, Řg, Ř�〉

and morphisms j′ : L′ → Ľ, j′′ : L′′ → Ľ in HLog. Then, there is a unique
signature morphism h : Σ → Σ̌ such that h ◦ i′ = j′ and h ◦ i′′ = j′′ in HSig.
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T (Σ)θ
ĥ $$

σ̂





T (Σ′)θ

σ̂′




T (Σ)θ

ĥ

$$ T (Σ′)θ

Figure 7.16: σ̂′ ◦ ĥ = ĥ ◦ σ̂

L′

i′

����
���

���
���

��

j′

((.
..

..
..

..
..

..
..

..
..

..
. L′′

i′′

�����
���

���
���

�

j′′

))//
//
//
//
//
//
//
//
//
//
//

L

h




Ľ

Figure 7.17: Unconstrained fibring

It suffices to show that h is morphism in HLog, that is, there is a commutative
diagram in HLog as showed in Figure 7.17.

Let M̌ ∈ M̌. Firstly, we need to show that

M̌ |h ∈M

that is, M̌ |h satisfies the conditions defining the elements of the class M (see
Definition 7.6.6). Observe that

(M̌ |h)|i′ = M̌ |j′

and then it belongs to M′, because j′ is a HLog-morphism. Analogously we show
that (M̌ |h)|i′′ ∈M′′. Assume that (M̌ |h)|i′ belongs to Ap(H ′). Then

M̌ ∈ Ap(h(i′(H ′)))

because j′ = h ◦ i′ is a morphism in HLog. Using Lemma 7.6.7(3) we infer
that M̌ |h ∈ Ap(i′(H ′)). Analogously we prove that (M̌ |h)|i′′ ∈ Ap(H ′′) implies
M̌ |h ∈ Ap(i′′(H ′′)). From these properties follows that M̌ |h ∈M and so h satisfies
condition (1) of Definition 7.6.1.
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Suppose now that M̌ ∈ M̌ is such that M̌ |h ∈ Ap(H). In particular, by
definition of H , M̌ |h ∈ Ap(i′(H ′)) and so, since (M̌ |h)|i′ = M̌ |j′ , we obtain that

M̌ |j′ ∈ Ap(H ′)

by Lemma 7.6.7(3). Thus M̌ ∈ Ap(h(i′(H ′))) since j′ = h ◦ i′ is a morphism
in HLog. Using the fact that M̌ |h ∈ Ap(i′′(H ′′)) we prove, by an analogous
argument, that

M̌ ∈ Ap(h(i′′(H ′′))).

Thus, M̌ ∈ Ap(h(H)), by definition of H , and so h satisfies condition (2) of
Definition 7.6.1.

Finally, by definition of H and the fact that j′ = h ◦ i′ and j′′ = h ◦ i′′ are
morphisms in HLog we have that h(Ro) ⊆ Řo for o ∈ {g, �}. Thus, h also satisfies
conditions (3) and (4) of Definition 7.6.1 and then h is a morphism in HLog which
commutes the diagram above. The uniqueness of h in HLog is inherited from the
uniqueness of h in HSig. This shows that L together with the injections i′ and i′′

is the coproduct in HLog of L′ and L′′. �

A

f∗





g

��





























A′
h∗

$$ A′′

F $$ FA

f





Fg

##0
00

00
00

00
00

00
00

00

B
h

$$ FA′′

C D

Figure 7.18: Cocartesian lifting of f through F

As an immediate consequence of Proposition 7.6.8 we have that the category
HLog has finite coproducts. In order to define the constrained fibring in HLog
we need to consider the (obvious) forgetful functor Sg : HLog → HSig and then
prove that Sg has cocartesian liftings. For convenience of the reader, we start by
briefly describing this notion, portrayed in Figure 7.18.

Definition 7.6.9 Let F : C → D be a functor, and let f : F (A) → B be a
D-morphism. A cocartesian lifting (or opcartesian lifting) of f through F is a
C-morphism f∗ : A→ A′ such that:

• F (f∗) = f (therefore F (A′) = B);
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• f∗ satisfies the following universal property: if g : A→ A′′ is a C-morphism
and h : B → F (A′′) is a D-morphism such that h ◦ f = F (g), there exists a
unique C-morphism h∗ : A′ → A′′ with F (h∗) = h and h∗ ◦ f∗ = g.

The functor F is said to be a cofibration (or an opfibration) if every morphism
f : F (A) → B admits a cocartesian lifting.

A

f∗





f�

��






























A′
k

$$ A′′′

Figure 7.19: Unicity of the cocartesian lifting

Observe that, if f∗ : A → A′ and f� : A → A′′′ are cocartesian lifings for
f : F (A) → B then there exists an isomorphism k : A′ → A′′′ such that the
diagram in Figure 7.19 commutes. This shows that the cocartesian lifting is unique
up-to isomorphism.

We now return to constrained fibring. It is enough to prove the following result.

Proposition 7.6.10 The forgetful functor Sg is a cofibration, that is, admits
cocartesian liftings.

Proof. Let h : Σ → Σ′ be a signature morphism and let L = 〈Σ,M, Rg, R�〉 be a
logic system. Then, the logic system

hSg(L) = 〈Σ′,M′, h(Rg), h(R�)〉

such that

M′ = {M ′ ∈ Str(Σ′) : M ′|h ∈ M, and M ′|h ∈ Ap(H) implies M ′ ∈ Ap(h(H))}

has the required universal property. That is,

〈hSg(L), h〉

is a cocartesian lifting of h by Sg at L. In order to show this (and given that
Sg(f) = f for every morphism f in HLog), we must prove that h is indeed a
morphism

h : L → hSg(L)
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in HLog. Moreover, given a logic system Ľ = 〈Σ̌,M̌, Řg, Ř�〉, a logic morphism
g : L → Ľ and a signature morphism f : Σ′ → Σ̌ such that f ◦ h = g, we must
prove that f is indeed a morphism

f : hSg(L) → Ľ
in HLog such that f ◦ h = g. More than this, f must be the unique morphism
in HLog from hSg(L) to Ľ with such property. These facts can be easily proved
in the same lines as the proof of Proposition 7.6.8, and the details are left to the
reader. �

Given a signature morphism h : Σ → Σ′ and a logic system L defined over
the signature Σ, we denote by hSg(L) the codomain of the cocartesian lifting of
h by Sg at L (as we did in the proof of Proposition 7.6.10). This construction is
fundamental in order to define constrained fibrings, that is, fibring where we allow
sharing of symbols. This construction is analogous to the constrained fibrings
presented in the previous chapters, but adapted to the present category of logic
systems.

Definition 7.6.11 Let Σ′ and Σ′′ two signatures. A sharing constraint over Σ′

and Σ′′ is a source diagram G in HSig of the form

Σ′ h′←− Σ̌ h′′−→ Σ′′

for some signature Σ̌ and signature monomorphisms h′ and h′′. The pushout of

the diagram G it will denoted by Σ′ G⊕ Σ′′. ∇

As said in Chapter 1, a pushout can be obtained as a coproduct followed by a
coequalizer, whenever these constructions exist in the given category.

So, given a sharing constraint G in HSig as above, consider the diagram in
Figure 7.20 where i′ and i′′ are the canonical injections associated to the coproduct
Σ′ ⊕ Σ′′, and

Σ′ G⊕ Σ′′

is the codomain of the coequalizer q of i′ ◦ h′ and i′′ ◦ h′′. Then, the square in
Figure 7.21 is the pushout of G.

From these considerations, we define the constrained fibring in HLog as follows.

Definition 7.6.12 With notation as above, let L′ and L′′ be two logic systems
and let G be a sharing constraint over Σ′ and Σ′′. Then, their G-constrained fibring
by sharing symbols is the logic system

L′ G⊕ L′′

given by qSg(L′ ⊕ L′′), where q is the coequalizer of i′ ◦ h′ and i′′ ◦ h′′. ∇
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Σ̌	�
h′

����
��

��
��

��
��

h′′

��








Σ′ � �

i′ ��





 Σ′′
� 	

i′′���
��

��
��

Σ′ ⊕ Σ′′

q





Σ′ G⊕ Σ′′

Figure 7.20: Obtaining a pushout of G using a coproduct and a coequalizer

Σ′ q◦i′ $$
Σ′ G⊕ Σ′′

Σ̌

h′

**

h′′
$$ Σ′′

q◦i′′

**

Figure 7.21: Pushout of G

Since Sg(L′ ⊕ L′′) = Sg(L′) ⊕ Sg(L′′) = Σ′ ⊕ Σ′′, then L′ G⊕ L′′ is well-defined
(see Figure 7.22).

Observe that, as usual, we can recover the unconstrained fibring as a special
case of the constrained fibring by taking an appropriate sharing constraint: It is
enough to take Σ̌ as the initial signature

Σ0 = 〈R0, F 0, Q0〉

such that
R0
θθ′ = F 0

θθ′ = Q0
θθ′θ′′ = ∅

for every θ, θ′, θ′′ ∈ Θ(S); h′ : Σ0 → Σ′ and h′′ : Σ0 → Σ′′ are the obvious (unique)
morphisms.

When considering the forgetful functor

Sg : HLog→ HSig,
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Sg(L′ ⊕ L′′)

q





L′ ⊕ L′′

q





Σ′ G⊕ Σ′′ qSg(L′ ⊕ L′′)

HSig
Sg&& HLog

Figure 7.22: Cocartesian lifting of q

then Sg(f) = f for every HLog-morphism f . The fibring

L = qSg(L′ ⊕ L′′)

of L′ and L′′ is the “least” higher-order logic system defined by the signature
C = Sg(L) and the morphism q, in the following sense: given L1, a morphism
L′ ⊕L′′ q1→L1 in HLog and a morphism C

h→C1 in HSig such that q1 = h ◦ q, then
h is, indeed, a HLog-morphism such that q1 = h ◦ q in HLog, as Figure 7.23
shows.

L′ ⊕ L′′ q $$

q1
��







L
h




L1

Sg $$ C′ ⊕ C′′ q $$

q1
��







C

h




C1

HLog HSig

Figure 7.23: Universal property of constrained fibring

In particular, if L1 is defined over C such that q induces a morphism L′⊕L′′ q→L1

in HLog then the identity CidC→C induces a morphism LidC→L1 in HLog.

Remark 7.6.13 It is worth noting that the constrained fibring of two higher-
order logic systems L′ and L′′ is defined throughout the following steps: Starting
from L′ and L′′ in HLog and a source diagram G in HSig of the form

Sg(L′) h′←− Σ̌ h′′−→ Sg(L′′)

(specifying the symbols to be shared in the process of fibring), where h′ and h′′

are monic, we compute the unconstrained fibring (coproduct) L′ ⊕ L′′ in HLog
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(according to Definition 7.6.6) and then we obtain the morphism (coequalizer)

q : Sg(L′ ⊕ L′′) → Sg(L′)
G⊕ Sg(L′′)

in HSig as described after Definition 7.6.11. Finally, we compute the (codomain
of the) cocartesian lifting

qSg(L′ ⊕ L′′)

of q by Sg at L′ ⊕ L′′ as described in the proof of Proposition 7.6.10. This logic
system, denoted by

L′ G⊕ L′′

is the desired fibring of L′ and L′′ by sharing G. In Proposition 7.6.19 we will
provide another characterization of the fibring. ∇

The universal construction of both forms of fibring as defined above is common
to all the (syntactic and semantic) systems presented in the previous chapters:
unconstrained fibring is always the coproduct of the given systems, and constrained
fibring is always a cocartesian lifting with respect to the corresponding forgetful
functor.

The next example serves as an illustration of the use of constrained fibring in
HLog by sharing symbols. This example is also interesting because it is clarified
the impact of choosing symbols as flexible or as rigid even in a logic (like HOL)
where no modalities are available.

Example 7.6.14 We consider modal higher-order logic. Consider the fibring of
MPLK (introduced in Example 7.2.10) and HOL (introduced in Example 7.2.11)
while sharing the propositional signature (as defined in Example 7.1.4) for obtain-
ing a modal higher-order logic. Note that choosing a symbol as flexible or rigid
in HOL changes nothing in that logic system. On the other hand, when HOL
is combined with another logic system with modalities, rigid and flexible symbols
will have quite different properties. For instance, in the resulting logic

((r ≈ x)⇒ (� (r ≈ x)))

will be a theorem for any rigid symbol r, but not for a flexible symbol. ∇

Sometimes, besides sharing symbols, we may also want to share deduction rules.
This form of combination appears as the colimit of a diagram in HLog. Moreover,
the fibring by sharing symbols as introduced in Definition 7.6.12 can be character-
ized as an special case of fibring by sharing rules (see Proposition 7.6.19 below).
In order to show this, we need to prove that HLog is small cocomplete. Using a
well-known result from category theory, it is enough to show that HLog has small
coproducts (the proof is similar to the proof of Proposition 7.6.8) and coequalizers.
Observe that, given h1, h2 : Σ → Σ′ in HSig, their coequalizer is h : Σ′ → Σ′′

where Σ′′ = 〈R′′,F′′,Q′′〉 is the signature such that:



310 CHAPTER 7. FIBRING HIGHER-ORDER LOGICS

• R′′
θθ′ = R′

θθ′/∼=θθ′
R′

;

• F′′
θθ′ = F′

θθ′/∼=θθ′
F′

;

• Q′′
θθ′θ′′ = Q′

θθ′θ′′/∼=θθ′θ′′
Q′

;

for every θ, θ′, θ′′ ∈ Θ(S). Here, ∼=θθ′
R′ ⊆ (R′

θθ′)2 is the least equivalence relation
generated from

{〈h1(r), h2(r)〉 : r ∈ Rθθ′}.
The equivalence relations ∼=θθ′

F′ and ∼=θθ′θ′′
Q′ are defined in a similar way. The canon-

ical morphism h is defined as h(r′) = [r′] for each r′ ∈ ⋃R′, h(f ′) = [f ′] for each
f ′ ∈ ⋃F′, and h(q′) = [q′] for each q′ ∈ ⋃Q′.

Proposition 7.6.15 The category HLog has coequalizers.

Proof. Let h1, h2 : L → L′ be logic system morphisms. Let h : Sg(L′) → Σ′′ be
the coequalizer in HSig of the morphisms Sg(h1), Sg(h2) : Sg(L) → Sg(L′). For
every M ′ = 〈E ′,W ′, ·M ′〉 ∈ Str(Σ′) let

[M ′] = 〈E ′,W ′, ·[M ′]〉
such that h(r′)[M ′ ] = r′M ′ for every r′ ∈ ⋃R′, h(f ′)[M ′] = f ′

M ′ for every f ′ ∈ ⋃F′,
and h(q′)[M ′] = q′M ′ for every q′ ∈ ⋃Q′. Now, let M′

0 be the class of all models
M ′ ∈ M′ such that:

• r′1 ∼=θθ′
R′ r′2 implies r′1M ′ = r′2M ′ for every r′1, r

′
2 ∈ R′

θθ′;

• f ′
1
∼=θθ′

F′ f ′
2 implies f ′

1M ′ = f ′
2M ′ for every f ′

1, f
′
2 ∈ F′

θθ′ ;

• q′1 ∼=θθ′θ′′
Q′ q′2 implies q′1M ′ = q′2M ′ for every q′1, q′2 ∈ Q′

θθ′θ′′ .

Note that, if M ′ ∈M′
0 then [M ′] ∈ Str(Σ′′). Finally, let

M′′ = {[M ′] : M ′ ∈ M′
0}

and define R′′
g = h(R′

g) and R′′
� = h(R′

�). Then, the coequalizer in HLog of h1, h2

is given by h : L′ → 〈Σ′′,M′′, R′′
g , R

′′
� 〉. We leave to the reader the details of the

proof. �

As mentioned above, from the existence in HLog of small coproducts and from
Proposition 7.6.15 we obtain the desired result:

Corollary 7.6.16 The category HLog is small cocomplete.

In particular, the category HLog has pushouts. As already pointed out, pushouts
are specially useful for combining two logics while sharing a common sublogic. In
order to show an example of this claim, we need to prove a previous result (see
Proposition 7.6.18 below).
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Remark 7.6.17 Using the forgetful functor, it is possible to provide an alterna-
tive characterization of constrained fibring by sharing symbols, without referring
to the cocartesian lifting. This is justified by the following fact:

Recall that, given a functor F : C → D, the left adjoint of F (if it exists) is a
functor F̄ : D→ C such that there is a natural transformation

η : idD → FF̄

satisfying the following property: for every D-morphism f : B → FA there is a
unique C-morphism g : F̄B → A such that f = Fg ◦ ηB in D (see Figure 7.24).

F̄B

g




A

F $$

F̄

&& B

f





ηB $$ FF̄B

Fg

""11
11

11
11

11
11

11
11

1

FA

C D

Figure 7.24: Adjointness property

Now, suppose that F : C→ D is a functor which admits a left adjoint

F̄ : D→ C.

Assume also that both C and D have coproducts, which are preserved by F ,
that is:

F (A⊕B) = F (A)⊕ F (B)

for every pair of objects A,B in C. Suppose, additionally, that both C and D
have coequalizers. Consider objects A and A′ in C, as well as D-monomorphisms
i1 : B̄ → A and i2 : B̄ → A′, forming a source diagram (see Figure 7.25).

B̄
i1

��22
22

22
22 i2

##0
00

00
00

0

FA FA′

Figure 7.25: A source diagram in D

Using the adjointness property and the hypothesis over C, D and F , it can
be obtained diagrams in C and D as depicted in Figure 7.26, where h1, h2 and
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F̄ B̄
k1

��

k2

��
A

h1 ��3
33

33
33

33 A′

h2�����
��

��
��

A⊕A′

F $$ B̄
i1

�����
���

���
��

i2

��--
---

---
---

FA

Fh1 ��--
---

---
-- FA′

Fh2�����
���

���
�

FA⊕ FA′

C D

Figure 7.26: Coproducts obtained from a source diagram in D

Fh1, Fh2 are the canonical injections of the coproducts A ⊕ A′ and FA ⊕ FA′,
respectively.

Let q∗ : A ⊕ A′ → A′′ be the coequalizer of h1 ◦ k1 and h2 ◦ k2 in C, and let
q : FA⊕FA′ → B be the coequalizer of Fh1◦i1 and Fh2◦i2 in D (see Figure 7.27).

F̄ B̄
k1

��

k2

��
A

h1 ��3
33

33
33

33 A′

h2�����
��

��
��

A⊕A′

q∗




A′′

F $$ B̄
i1

�����
���

���
��

i2

��--
---

---
---

FA

Fh1 ��--
---

---
-- FA′

Fh2�����
���

���
�

FA⊕ FA′

q




B

C D

Figure 7.27: Coequalizers obtained from a source diagram in D

Then q∗ is the cocartesian lifting of q, and so B = FA′′. On the other hand,
by construction q∗ is the pushout in C of the source diagram in C displayed in
Figure 7.28.

From this we see that the cocartesian lifting q∗ obtained from the original source
diagram in D can be replaced by an appropriate pushout in C. ∇
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F̄ B̄
k1

��

k2

##
A A′

Figure 7.28: Derived source diagram in C

Proposition 7.6.18 The forgetful functor Sg : HLog→ HSig has a left adjoint
G : HSig→ HLog.

Proof. Consider G : HSig → HLog such that G(Σ) = 〈Σ, Str(Σ), ∅, ∅〉 and
G(h) = h. The reader can verify that G is indeed a left adjoint to Sg. �

Taking into account the above remark and the previous results about the functor
Sg and the categories HLog and HSig, we obtain the following characterization
of constrained fibring.

Proposition 7.6.19 Given two logic systems L′ and L′′ and a sharing constraint

G = Sg(L′) h′←− Σ̌ h′′−→ Sg(L′′)

in HSig, their G-constrained fibring by sharing symbols is the pushout in HLog of

L′ h′←− G(Σ̌) h′′−→ L′′.

Observe that Proposition 7.6.19 makes sense thanks to Corollary 7.6.16 and
Proposition 7.6.18.

From the last result we can see that all forms of fibring appear as colimits in
HLog. In view of this, from now on we shall establish results about colimits that
will also apply to fibrings. To this end observe that, for every signature Σ, the
logic system G(Σ) is full and, thus, sound.

The results above can also be obtained for the other categories of logic systems
studied in this book.

Notice that the category HLog might have been obtained as the flattening of
the indexed category HSig → Cat (which can be easily defined). We refrained
to analyze here the properties of this indexed category because we were interested
only in the flat category of logic systems. However, it is worth noting that many
properties of HLog would be derivable from interesting properties of the indexed
category. The interested reader can consult [256] for relevant results about indexed
categories.

We synthesize the properties of the fibring of higher-order based logics in the
following way:

• homogeneous combination mechanism at the deductive level: both original
logics are presented by Hilbert calculi;
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• homogeneous combination mechanism at the semantic level: both original
logics are presented by interpretation structures;

• algorithmic combination of logics at the deductive level: given the Hilbert
calculi for the original logics, we know how to define the Hilbert calculus for
the fibring;

• algorithmic combination of logics at the semantic level: given the classes of
interpretation structures for the original logics, we know how to define the
class of interpretation structures for the fibring, but in many cases the given
logics have to be pre-processed (that is, the interpretation structures for the
original logics have to be extracted).

7.6.1 Preservation of soundness

Observe that all forms of combination of logic systems considered above automat-
ically preserve soundness thanks to condition (2) in the definition of logic system
morphism (recall Definition 7.6.1). In technical terms:

Theorem 7.6.20 Sound logic systems are closed under colimits in HLog.

Proof. The first step is to prove that soundness is preserved by coproducts. For
the sake of simplicity we just prove that the coproduct of two sound logic systems
is sound. The general case is proven analogously and is left as an exercise to the
reader.

Thus, let L = 〈Σ,M, Rg, R�〉 be the coproduct of L′ and L′′, and let M ∈ M.
By Proposition 7.6.8, M satisfies the properties listed in Definition 7.6.6 and then
M |i′ ∈ M′. Given that M′ ⊆ Ap(H ′), because L′ is sound by hypothesis, then
M |i′ ∈ Ap(H ′) and so

M ∈ Ap(i′(H ′))

by definition of M. Analogously we can prove that M ∈ Ap(i′′(H ′′)) and so
M ∈ Ap(H), by definition of H . This shows that M ⊆ Ap(H) and then L is
sound.

Finally, consider two parallel morphisms h1, h2 : L → L′ such that L and L′

are sound and let h : L′ → L′′ be their coequalizer in HLog (recall the proof of
Proposition 7.6.15). We have to show that L′′ is sound, that is, M′′ ⊆ Ap(H ′′).
Take [M ′] ∈ M′′ and observe that [M ′]|h = M ′ and M ′ ∈ Ap(H ′). Given that h
is a morphism in HLog we obtain that

[M ′] ∈ Ap(h(H ′)).

That is, [M ′] ∈ Ap(H ′′) (by definition of H ′′) and so M′′ ⊆ Ap(H ′′). �

Corollary 7.6.21 Both forms of fibring preserve soundness.
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7.6.2 Preservation of completeness

In this final subsection we address the problem of finding conditions to ensure the
preservation of completeness by fibring.

It is not hard to find examples of complete logic systems such that their fibring
is no longer complete.

Example 7.6.22 Completeness is not always preserved.
Consider the full logic systems L′ and L′′ defined as follows.

• L′ = 〈Σ′,M′, R′
g, R

′
�〉 where Σ′ = 〈R′,F′,Q′〉 is such that all members of the

families R′, F′ and Q′ are empty, except R′
iΩ = {p′}. On the other hand,

R′
� = R′

g = {〈∅, p′(x),U〉 : x ∈ Xi}.
• L′′ = 〈Σ′′,M′′, R′′

g , R
′′
� 〉 where Σ′′ = 〈R′′,F′′,Q′′〉 is such that all members of

the families R′′, F′′ and Q′′ are empty, except R′′
1i = {c′′} and R′′

1Ω = {t′′}.
On the other hand, R′

� = R′
g = {〈∅, t′′,U〉}.

Obviously the two logic systems are complete. However, their unconstrained
fibring L is not complete. In fact, the resulting logic system is defined as follows:
L = 〈Σ,M, Rg, R�〉 such that

• Σ = 〈R,F,Q〉, where all members of the families R, F and Q are empty,
except R1i = {c′′}, R1Ω = {t′′} and RiΩ = {p′};

• R� = Rg = {〈∅, p′(x),U〉 : x ∈ Xi} ∪ {〈∅, t′′,U〉}.
The logic system L is still full: Preservation of fullness is a general property of
fibring (see Corollary 7.6.25 below).

From this information it is easy to see that, in every interpretation structure
M ∈ M over Σ, we have [[p′(c′′)]]M[] = trueW , therefore �o

L p′(c′′). On the other
hand, it is clear that �o

L p′(c′′). This shows that the (unconstrained) fibring L is
not complete. ∇

The example above shows that, contrary to the case of soundness, completeness
is not, in general, preserved by fibring.

However, following the idea of [282], it is possible to take advantage of a general
completeness theorem in order to obtain a sufficient condition for the preservation
of completeness by fibring. In the present case, the very general completeness
theorem obtained at Section 7.5 is a canonical candidate. To start with, we need
to state the following lemmas.

Lemma 7.6.23 Let h : L → L′ be a logic system morphism. Then for every
Γ ∪ {δ} ⊆ L(Σ, �x), proviso Π and o ∈ {g, �}:

Γ o�x
L δ �Π implies h(Γ) o�x

L′ h(δ) �Π.
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Proof. We first prove the following technical result: given a proviso Π and a
substitution σ over Σ, and defining the substitution σ′ over Σ′ by σ′ = ĥ ◦ σ, then
(Πσ′) = (Πσ). To this end, let ρ ∈ gSbs(Σ1). Since !̂Σ′ ◦ ĥ = !̂Σ then

!̂Σ′ ◦ σ′ = !̂Σ′ ◦ (ĥ ◦ σ) = (̂!Σ′ ◦ ĥ) ◦ σ = !̂Σ ◦ σ
and so

(Πσ′)(ρ) = Π(ρ̂ ◦ !̂Σ′ ◦ σ′) = Π(ρ̂ ◦ !̂Σ ◦ σ) = (Πσ)(ρ).

This proves the intended result.
Now we can prove the main result. Suppose that Γ g�xL δ � Π. Then we will

show that h(Γ) g�xL′ h(δ) �Π by induction on the length n of a global �x-derivation
of δ from Γ with proviso Π.

Base n = 1. If δ ∈ Γ then the conclusion is obvious. On the other hand, if δ
is obtained from an axiom 〈∅, γ,Π′〉 in Rg using a substitution σ over Σ then δ
is σ(γ), Π ≤ (Π′σ) and 〈∅, h(γ),Π′〉 is an axiom in R′

g. Consider the substitution
σ′ = ĥ ◦ σ over Σ′. Then

σ′(h(γ)) = h(σ(γ))

by Lemma 7.6.7(1), and
(Π′σ′) = (Π′σ)

by the result proved above. This shows the result for this case.
Step: Suppose that there are a rule

〈{γ′1, . . . , γ′k}, δ′,Π′〉
in Rg and a Σ substitution σ such that δ = σ(δ′) and δij = σ(γ′j) for j = 1, . . . , k
and some {i1, . . . , ik} ⊆ {1, . . . , n− 1} and, moreover,

Π ≤ Πi1 � · · · �Πik � (Π′σ).

By definition of global �x-derivation we immediately infer that Γ g�xL δij � Πij for
j = 1, . . . , k. Therefore, by the induction hypothesis,

h(Γ) g�xL′ h(δij ) �Πij for j = 1, . . . , k.

But 〈{h(γ′1), . . . , h(γ′k)}, h(δ′),Π′〉 is in R′
g, by item (4) of the definition of logic

system morphism. Hence, by considering the substitution σ′ = ĥ ◦ σ over Σ′ we
obtain

{σ′(h(γ′1)), . . . , σ′(h(γ′k))} g�xL′ σ
′(h(δ′)) � (Π′σ′).

From this, using Lemma 7.6.7(1) (which says that σ′(h(γ)) = h(σ(γ)) for every
γ ∈ L(Σ)) and by the result proved above we get

{h(δi1), . . . , h(δik )} g�xL′ h(δ) � (Π′σ).

Therefore h(Γ) g�xL′ h(δ) � Π, by definition of global �x-derivation. The correspon-
dent result for local derivations can be proved similarly. �
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Lemma 7.6.24 Full logic systems are closed under colimits in HLog.

Proof. The first step is to show that fullness is preserved by coproducts. To
simplify matters, we just prove that the coproduct of two full logic systems is full.
The general case can be handled analogously.

Consider the coproduct L = 〈Σ,M, Rg, R�〉 of L′ and L′′. Then, by Proposi-
tion 7.6.8 and Definition 7.6.6,

M = {M ∈ Str(Σ) : M |i′ ∈ M′, M |i′′ ∈ M′′,
M |i′ ∈ Ap(H ′) implies M ∈ Ap(i′(H ′)), and
M |i′′ ∈ Ap(H ′′) implies M ∈ Ap(i′′(H ′′))}.

Since M′ = Ap(H ′) and M′′ = Ap(H ′′), by hypothesis, then

M = {M ∈ Str(Σ) : M |i′ ∈ Ap(H ′), M |i′′ ∈ Ap(H ′′),
M |i′ ∈ Ap(H ′) implies M ∈ Ap(i′(H ′)), and
M |i′′ ∈ Ap(H ′′) implies M ∈ Ap(i′′(H ′′))}.

Therefore

M = {M ∈ Str(Σ) : M |i′ ∈ Ap(H ′), M |i′′ ∈ Ap(H ′′),
M ∈ Ap(i′(H ′)), and M ∈ Ap(i′′(H ′′))},

that is, M = Ap(H), because of Lemma 7.6.7(3).
Finally, we will show that the codomain of the coequalizer is full whenever the

logic systems in the given diagram are full.
Given parallel morphisms h1, h2 : L → L′ such that L and L′ are full, con-

sider their coequalizer h : L′ → L′′ in HLog, defined according to the proof of
Proposition 7.6.15. We must show that

M′′ = Ap(H ′′).

By Proposition 7.6.20 we have that L′′ is sound and so M′′ ⊆ Ap(H ′′). In order
to show that Ap(H ′′) ⊆ M′′ consider M ′′ ∈ Ap(H ′′) and let M ′ = M ′′|h. By
item (2) of Lemma 7.6.7 and the definition of H ′′ we get that M ′ ∈ Ap(H ′)
and so M ′ ∈ M′, by fullness of L′. On the other hand, by definition of reduct,
and recalling the definition of M′′ given in the proof of Proposition 7.6.15, it is
immediate to see that M ′ ∈M′

0. This shows that M ′′ ∈M′′ as desired. �

As a direct consequence of the last result we obtain the following:

Corollary 7.6.25 Both forms of fibring preserve fullness.

In view of this, we can put together the results obtained above and state a
theorem of preservation of completeness by fibring, provided that the logic systems
involved are strong enough.
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Theorem 7.6.26 Let L′ and L′′ be full logic systems with Hilbert calculi includ-
ing HOL and with MTD. Then, for every sharing constraint G over Σ′ and Σ′′

such that all the symbols in ΣHOL are shared, their fibring L′ G⊕ L′′ is full, includes
HOL, has MTD and is, therefore, complete.

Proof. Let L = L′ G⊕ L′′. Since both L′ and L′′ are full and include HOL then L
is full, by Lemma 7.6.24, and obviously it includes HOL. In order to prove that L
is complete it is enough to show that it has MTD, by Proposition 7.5.4. And, by
Proposition 7.5.2, it suffices to prove that

{(ξ⇒ γ1), . . . , (ξ⇒ γk)} �L (ξ⇒ δ) �Π

for every 〈{γ1, . . . , γk}, δ,Π〉 ∈ R�, provided that the schema variable ξ ∈ ΞΩ does
not occur in the rule.

By definition of (constrained) fibring, every rule in L comes from L′ or from
L′′. Now assume that L′ and L′′ have MTD. Given a local rule of L, suppose that
it comes from L′ and it is of the form:

〈{i′(γ′1), . . . , i′(γ′k)}, i′(δ′),Π′〉.

Since H ′ has MTD then

{(ξ⇒ γ′1), . . . , (ξ⇒ γ′k)} �L′ (ξ⇒ δ′) �Π′

where ξ does not occur in the rule 〈{γ′1, . . . , γ′k}, δ′,Π′〉 of L′ , by Proposition 7.5.2.
By Lemma 7.6.23 we get

{(ξ⇒ i′(γ′1)), . . . , (ξ⇒ i′(γ′k))} �L (ξ⇒ i′(δ′)) �Π′

where ξ ∈ ΞΩ does not occur in the given local rule of L. A similar argument can
be done if the given local rule of L comes from L′′. Then the result follows. �

Proposition 7.6.26 is useful and interesting by its own. However, it requires
that each of the given Hilbert calculi includes HOL. In order to cope with weaker
logic systems we need to strength the last proposition. Thus, given two complete
logic systems L1 and L2 (each of which does not include HOL) we could consider
their respective enrichments with HOL (to be formally defined below) L∗

1 and L∗
2,

and then try to compare the fibring of the original systems with the fibring of the
enriched systems, observing that the latter is complete thanks to the proposition
above.

To this end, we begin by introducing an appropriate notion of enrichment which
will permit to add HOL to a given logic system. After this step, we establish a
crucial property of the enrichment with HOL: The enrichment L∗ of L is a conser-
vative extension of L if and only if L is complete (under some weak conditions).
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Definition 7.6.27 Given a logic system L = 〈Σ,M, Rg, R�〉, consider the uncon-
strained fibring

L⊕HOL = 〈Σ̌,M̌, Řg, Ř�〉
of L and HOL with canonical injections e : Σ → Σ̌ and i : ΣHOL → Σ̌. Denote
by RHOL

� the set of local rules of HOL (recall Example 7.2.11). Then, the HOL-
enrichment L∗ = 〈Σ∗,M∗, R∗

g, R
∗
� 〉 of L is defined as follows:

• Σ∗ = Σ̌;

• M∗ = M̌;

• R∗
g = Řg;

• R∗
� = {〈∅, (∧Γ)⇒ δ,Π〉 : 〈Γ, δ,Π〉 ∈ e(R�)} ∪ i(RHOL

� ). ∇

It is worth noting that L∗ has MTD, because of Proposition 7.5.2. Moreover,
Ψ o�x

L⊕HOL ϕ implies Ψ o�x
L∗ ϕ, and the converse is true if and only if L⊕HOL has

MTD.
In the sequel it is convenient to use

e : Σ → Σ∗

the embedding morphism of Σ into Σ∗. As expected, we say that L∗ is a conser-
vative extension of L if , for finite Ψ ∪ {ϕ} ⊆ gL(Σ) and o ∈ {g, �},

e(Ψ) o
L∗ e(ϕ) implies Ψ o

L ϕ.

Observe that, for o ∈ {g, �},
Ψ o

L ϕ implies e(Ψ) o
L∗ e(ϕ)

because of the definition of L∗.
It should be clear that, if every rule in L is robust (recall Definition 7.6.2), then

every structure of ML appears in M∗ with its interpretation map extended to the
symbols of ΣHOL as in M0

HOL (recall Example 7.3.14). This means that no model
of L is lost. Hence:

Lemma 7.6.28 Let Ψ ∪ {ϕ} ⊆ gL(Σ, �x) be a finite set and o ∈ {g, �}. Assume
that L is robust. Then Ψ �o�x

L ϕ if and only if e(Ψ) �o�x
L∗ e(ϕ).

Proof. We start by observing that [[ψ]]M
∗|e

�x = [[ê(ψ)]]M
∗

�x for every M∗ ∈ Str(Σ∗)
and ψ ∈ gL(Σ). Consider M∗|e = {M∗|e : M∗ ∈M∗}. Therefore,

e(Ψ) �o�x
〈Σ∗,M∗〉 e(ϕ) if and only if Ψ �o�x

〈Σ,M∗|e〉 ϕ. (†)

Since e : L → L⊕HOL is a logic system morphism andM∗ = M̌ thenM∗|e ⊆M,
by item (1) of Definition 7.6.1, and so: Ψ �o�x

〈Σ,M〉 ϕ implies Ψ �o�x
〈Σ,M∗|e〉 ϕ. But

the latter implies that e(Ψ) �o�x
〈Σ∗,M∗〉 e(ϕ), by (†).
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Conversely, since L and HOL are assumed to be robust, we can easily prove
that:

M∗ = {M∗ ∈ Str(Σ∗) : M∗|e ∈M and M∗|i ∈ Ap(HHOL)}.
On the other hand, note that every interpretation structure M ∈ M over Σ can
be extended to a interpretation structure M∗ over Σ∗ such that M∗|e = M and
M∗|i ∈M0

HOL. From this we get M = M∗|e and the result follows from (†). �

Lemma 7.6.29 Let L be a full logic system. Then L∗ is full and complete.

Proof. As observed above, L∗ has MTD. Since L⊕HOL is full by Lemma 7.6.24,
and Ap�(R∗

� ) = Ap�(Ř�) (therefore Ap(HL∗) = Ap(HL⊕HOL)) we infer that L∗ is
also full. The result follows from Proposition 7.5.4. �

From the last two lemmas, and after introducing the next definition, we are
finally ready to establish the result announced before about preservation of com-
pleteness by the result of fibring complete logic systems which do not contain
HOL.

Definition 7.6.30 A logic system L is said to be expressive if for every context
�x = x1 . . . xn there is a finite set Δ�x ⊆ gL(Σ) such that the set of variables
occurring free in Δ�x is {x1, . . . , xn}, and ��xL ϕ for every ϕ ∈ Δ�x. ∇

This technical condition will be used in the proof of item (2) of Proposi-
tion 7.6.31 below in order to obtain canonical contexts in local derivations. A
sufficient condition for a logic system be expressive is to have a symbol ≈θ for the
(rigid) equality relation for every type θ, as well as an axiom (x ≈θ x) establishing
the reflexivity of the equality relation for every type θ.

Proposition 7.6.31 Let L be a full logic system.

1. If L∗ is a conservative extension of L then the logic system L is complete.

2. Assume that L is expressive and robust. If L is complete then L∗ is a
conservative extension of L.

Proof. 1. Suppose that L∗ is a conservative extension of L and Ψ �o
L ϕ. Then,

e(Ψ) �o
L∗ e(ϕ)

by the proof of the first part of Lemma 7.6.28 (which does not use the robustness
of L). Since L∗ is complete, by Lemma 7.6.29, we obtain that e(Ψ) o

L∗ e(ϕ) and
so Ψ o

L ϕ because L∗ conservatively extends L. Therefore L is complete.
2. As a consequence of Lemma 7.6.29, since L is full then so is L∗; in particular,

L∗ is sound. Consider a finite set Ψ∪{ϕ} ⊆ gL(Σ) such that e(Ψ) o
L∗ e(ϕ). Then
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e(Ψ) o�x
L∗ e(ϕ) for some context �x and so e(Ψ) �o�x

L∗ e(ϕ), because L∗ is sound. By
definition of semantic entailment we obtain

e(Ψ ∪Δ) �o�x
L∗ e(ϕ)

for every finite set Δ ⊆ gL(Σ, �x). In particular

e(Ψ ∪Δ�x) �o�x
L∗ e(ϕ)

where Δ�x is a finite set of theorems of L associated with �x. This set exists because
L is expressive. Thus, since L is robust, Ψ ∪ Δ�x �o�x

L ϕ, by Lemma 7.6.28. By
construction of Δ�x we get Ψ ∪Δ�x �o

L ϕ. But L is complete, then Ψ ∪Δ�x o
L ϕ.

Since every formula in Δ�x is a theorem of L we obtain Ψ o
L ϕ. Therefore L∗ is a

conservative extension of L. �

Using the last result we obtain an improvement of Proposition 7.6.26, which
ensures the preservation of completeness by fibring without requiring the inclu-
sion of HOL. However, this new result lies on the hypothesis of preservation of
conservativeness of HOL-enrichment. More specifically:

Theorem 7.6.32 Let L′ and L′′ be full, expressive, robust and complete logic
systems. Assume also that the conservativeness of

(L′ G⊕ L′′)∗

follows from the conservativeness of L′∗ and L′′∗. Then, their fibring

L′ G⊕ L′′

is also full, expressive, robust and complete.

It is an open problem to find conditions under which the conservativeness of

(L′ G⊕ L′′)∗

can be inferred from the conservativeness of L′∗ and L′′∗. Some plausible require-
ments on each of the given logic systems L′ and L′′ seem to be connected to the
question of conservativeness of extensions by constants. For example, let L′

c be
the system obtained from L′ by adding a new constant to its signature. Then
L′
c should be a conservative extension of L′. Moreover, if L′∗ is a conservative

extension of L′, then (L′
c)∗ should also be a conservative extension of L′

c. The
same of course should be required for L′′ .

An evidence in favor of such conditions is the fact that the logic system L′ of
Example 7.6.22 does not satisfy the latter requirement. Indeed, if we add to Σ′

the rigid constant c′′ ∈ R′′
1i of Σ′′ obtaining a logic system L′

c′′ , then it is easy to
see that gL′∗

c′′
p′(c′′), despite p′(c′′) not being a theorem of L′

c′′ .
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7.7 Final remarks

In this chapter we have extended the fibring techniques to the context of higher-
order logics with modalities. Following the trend in higher-order contexts, we
adopted a categorial formulation namely using topos theory for setting up the
semantic structures. We depart from this same context because we decided to use
Hilbert calculus for deduction instead of the more common sequent calculus. This
option was motivated by two reasons. The first one was homogeneity with the
rest of the chapters. The second one was to avoid dealing with provisos like fresh
variables and the like. We proved that for higher-order logics alone the adopted
Hilbert calculus is complete.

Again, for proving preservation of completeness, we start by proving a general
completeness theory for a given logic. This theorem involves a collection of suffi-
cient conditions for completeness. The preservation consists in showing that those
sufficient conditions are preserved by fibring. Hence, the fibring is complete using
the general completeness theorem.

An immediate objective is to develop the same techniques using sequent calculus
for deduction. We expect more work in what concerns provisos and maybe even
in setting up the general completeness theorem.

At a certain stage we had to enrich HOL. We were not able to find sufficient
conditions for the preservation of HOL-enrichment.



Chapter 8

Modulated fibring

Some combinations of logics, even when no symbols are shared, simply collapse
to one of them. When one of them extends the other, often their combination
just restores the differences between them. For instance, the unconstrained fibring
of classical logic and intuitionistic logic collapses into classical logic, as it has
been already pointed out in [82, 106]. This phenomenon, known as the collapsing
problem, indicates that the notion of fibring considered so far imposes unwanted
interconnections between the given logics. In fact, as we have seen before, when
fibring interpretation systems an interpretation structure in the fibring should have
the same truth-values and the same order relation as an interpretation structure
in each of the components.

In this chapter we extend the notion of fibring presented in the previous chapters
to the more powerful notion of modulated fibring. Modulated fibring allows a finer
control of the combination, solving the collapsing problem both at the semantic and
deductive levels. At the semantic level, the requirement that imposes the sharing of
the truth value algebras of the two given logics is relaxed by giving as input to the
fibring a translation between these algebras. This translation modulates the result.
At the deductive level, this notion of modulated fibring leads to the existence of
some provisos when applying the inference rules. Signatures are endowed with safe-
relevant morphisms in order to restrict assignments and substitutions. Modulated
fibring still preserves properties like soundness and completeness.

The collapsing problem is better understood with a semantic example in the
setting of Chapter 3. Consider the semantic fibring of classical and intuitionistic
logics with the following assumptions: (1) no symbols are shared; (2) classical
logic is endowed with Boolean algebras and (3) intuitionistic logic is endowed with
Heyting algebras. Consider the corresponding interpretation structures I ′ and
I ′′ for classical and intuitionistic logic, respectively. The fibring I ′ ∪ I ′′ contains
all the ordered algebras such that the reduct to the propositional signature is an
algebra in I ′ and the reduct to the intuitionistic signature is an algebra in I ′′. As
a consequence both the intuitionistic implication and the intuitionistic negation

323
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become classic (observe that all Boolean algebras are Heyting algebras but not the
other way around). Therefore we can say that the fibring is the disjoint union of
two copies of classical logic even with no sharing of symbols.

This example is well known in the literature. By looking at it from a semantic
point of view the problem is clear. The notion of fibring should be relaxed so
that the algebras in the fibring should have carriers that although related to the
carriers of the components cannot be the same.

tt

mB mH

<mB,mH>

fmH
fmB

g'<mB,mH> g''<mB,mH>

Figure 8.1: Relationship between models

In Figure 8.1, we represent a model of the fibring of classical and intuitionistic
logics and the relationship with the original models. Let mB be a model induced
by a Boolean algebra and mH be a model induced by a Heyting algebra. Assume
that tt is a model whose carrier is a singleton. Then the corresponding model of
the modulated fibring is m = 〈mB,mH〉. Moreover we must be able to relate it
with the models of the components. The role of the model tt is to impose that the
two models share a top value.

In Figure 8.2, we sketch the set of truth values Bm of m and its relationship
with the sets of truth values BmB and BmH of mB and mH , respectively. The
basic idea is that Bm is the disjoint union of BmB and BmH . Moreover, we are
able to map each value of Bm to a point in BmB and a point in BmH . Take
b ∈ Bm. Then if b is from BmB then it should be mapped to the corresponding
point in BmB and to tH (the top value of BmH ). Similarly with respect to the case
where b is from BmH . Moreover, the elements of both BmB and BmH are injected
into Bm.

The chapter is structured as follows. In Section 8.1, we introduce the notions of
modulated signature and modulated signature morphisms. In Section 8.2, we start
by introducing modulated interpretation structures. Then we define modulated
interpretation systems and the corresponding morphisms. Next we present the
notion of bridge between modulated interpretation systems. Finally we describe
the modulated fibring mechanism for these interpretation systems. We illustrate
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BmB
BmH

tB

t

BmB

tH

BmH

Bm

Figure 8.2: Relationship between truth-values

the concepts with examples including classical logic, intuitionistic logic, 3-valued
Gödel and �Lukasiewicz logics. In Section 8.3, we define modulated Hilbert calculus
and their morphisms. Then we present the notion of bridge between two modulated
Hilbert calculi and modulated fibring of these Hilbert calculi. In Section 8.4, we
introduce the notion of modulated logic system and corresponding morphisms and
then the usual notions of soundness and completeness. In Section 8.5, we discuss
soundness and completeness preservation results. Finally, in Section 8.6 we give
some final comments.

The present chapter capitalizes on the work developed in [243].

8.1 Language

Herein, we first introduce the notions of modulated pre-signature, modulated sig-
nature and the corresponding morphisms. The language over a modulated (pre-)
signature then follows as usual.

Definition 8.1.1 A modulated pre-signature is a triple

Σ = 〈C,&,Ξ〉

where C is a signature in the sense of Definition 2.1.1, & is a symbol and Ξ is a
denumerable set of schema variables. ∇

The role of the symbol & will become clear later on when presenting the se-
mantic structures. Moreover, this symbol is also essential for technical reasons in
Subsection 8.5.2.
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Definition 8.1.2 A modulated pre-signature morphism

h : 〈C,&,Ξ〉 → 〈C′,&′,Ξ′〉
is a pair 〈h1, h2〉 such that

• h1 = {h1k
}k∈N is a family of maps h1k

: Ck → C′
k for every k ∈ N;

• h2 : Ξ → Ξ′ is a map. ∇

Prop/Definition 8.1.3 Modulated pre-signatures and their morphisms consti-
tute a category. This category has finite colimits. ∇

Since the category of modulated pre-signatures and their morphisms has finite
colimits thus, in particular, it has pushouts. A modulated pre-signature morphism
〈h1, h2〉 is said to be injective (surjective) whenever h1 and every map of the family
h2 are injective (surjective).

Definition 8.1.4 A modulated signature Σ+ is a co-cone in the category of mod-
ulated pre-signatures and their morphisms, that is,

Σ+ = 〈C,&,Ξ, S〉
where S is a set of modulated pre-signature morphisms whose destination is the

pre-signature Σ = 〈C,&,Ξ〉. ∇

In a modulated signature Σ+ = 〈C,&,Ξ, S〉, the morphisms s̆ : Σ̆ → Σ in the
set S are called safe-relevant morphisms. Figure 8.3 provides an illustration of
these morphisms.

Σ

. . .

++#########
Σ̆

s̆

**

. . .

,,%%%%%%%%%

Figure 8.3: Safe-relevant morphisms diagram

From now on, for simplicity, we identify Σ+ with Σ.
Safety will play an important role in the definition of the entailments by con-

straining the admissible assignments to schema variables in the range of safe-
relevant morphisms. This is also the reason why the schema variables are, herein,
local to signatures (that was not the case in the previous chapters, with the ex-
ception of Subsection 2.3.3 in Chapter 2). Safe-relevant morphisms will also be
important in the definition of derivability in Hilbert calculi, where constraints are
imposed to substitutions.
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Definition 8.1.5 A modulated signature morphism

h : 〈C,&,Ξ, S〉 → 〈C′,&′,Ξ′, S′′〉

is a co-cone morphism, that is, h is a modulated pre-signature morphism such that
h ◦ s ∈ S′ whenever s ∈ S. ∇

Prop/Definition 8.1.6 Modulated signatures and their morphisms constitute
the category mSig. This category has finite colimits. ∇

Since mSig has finite colimits, it has, in particular, pushouts.

Definition 8.1.7 The language over a modulated signature Σ is the set L(Σ) of
Σ-formulas defined as usual using the constructors in C, the schema variables in
Ξ and the symbol & which is assumed to have arity 2. ∇

Each modulated signature morphism h : Σ → Σ′ can be extended, as expected,
to a map h : L(Σ) → L(Σ′) between formulas noting that & translates to &′.

8.2 Modulated interpretation systems

We first present the modulated fibring mechanism from the semantic point of view.
This notion of fibring was developed in an attempt to overcome collapsing problems
that arise at the semantic level, and therefore the motivations and intuitions behind
this mechanism were driven by the semantic aspects of the logics.

We start with the basic semantic unit: the modulated structure for a signa-
ture. Next we present the notions of modulated interpretation systems and their
morphisms, denotation of formulas, and global and local entailments. Then, we
introduce the notion of bridge between two modulated interpretation systems and
we describe modulated fibring mechanism for modulated interpretation systems.

Recall that a pre-order over a set B is a binary relation on B that is reflexive
and transitive. As usual we define the equivalence relation ∼= as follows:

b1 ∼= b2 if and only if b1 ≤ b2 and b2 ≤ b1.

A pre-order over a set B is said to have finite meets whenever every finite subset
B′ of B has an infimum (a meet of B′). Note that finite meets exist if and only if
the empty set and every set of cardinality 2 have meets. In a pre-order, meets are
unique up to equivalence, and we use b1 � . . . � bk or �{b1, . . . , bk} for a choice of
one of the meets of {b1, . . . , bk}. Moreover,  denotes �∅. Note that:

b ≤  for every b ∈ B.
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Recall also that given two pre-orders over respectively B1 and B2, a map h :
B1 → B2 is said to preserve finite meets whenever h(b1 � . . . � bk) is a meet of
h({b1, . . . , bk}), for every finite subset {b1, . . . , bk} of B1. Note that h : B1 → B2

preserves finite meets if and only if preserves meets of the empty set and meets of
sets of cardinality 2.

In the sequel we consider modulated signatures Σ = 〈C,&,Ξ, S〉, possibly with
superscripts.

Definition 8.2.1 Consider the modulated signature Σ. A modulated interpreta-
tion structure over Σ is a triple

B = 〈B,≤, ν〉
where 〈B,≤〉 is a pre-order with finite meets and 〈B, ν〉 is an algebra over C and
& such that

• ν2(&)(b1, b2) = b1 � b2;

• νk(c)(b1, . . . , bk) ∼= νk(c)(d1, . . . , dk) whenever bi ∼= di for i = 1, . . . , k. ∇

In the same spirit of Chapter 3, the elements in B are considered as truth val-
ues (or degrees). The first condition indicates that & behaves like a conjunction
(whether or not such symbol is a constructor in the signature). The second con-
dition is a congruence requirement. Clearly, modulated interpretation structures
over Σ generalize the interpretation structures introduced in Definition 3.1.1 of
Chapter 3.

In the sequel we omit the reference to the arity of the constructors and the sub-
scripts in signature morphisms in order to make the notation lighter. Sometimes
we also use �b as a short hand for b1, . . . , bk.

We now introduce modulated interpretation systems and their morphisms.

Definition 8.2.2 A modulated interpretation system is a tuple

I = 〈Σ,M,A〉
where Σ is a modulated signature, M is a class (of models), A is a map associating
to each m ∈M a modulated interpretation structure Bm over Σ. ∇

Similar to what was done in Section 3.4 of Chapter 3, we include the class M
because one can take the models of the logic at hand and use A to extract the
underlying algebras. From this point of view, A(M) is the class of modulated
interpretation systems.

In the sequel, in the context of a modulated interpretation system 〈Σ,M,A〉,
we always use Bm to denote the interpretation structure over Σ that A associates
to a model m in M . This structure over Σ is assumed to be of the form

〈Bm,≤m, νm〉
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and we will omit subscripts when no confusion arises. Similar remarks apply to
 m (meet of ∅) and ∼=m.

Some examples of modulated interpretation systems follow. They correspond
to classic and intuitionistic propositional logics and some many-valued logics. In
all examples the signature Σ is as follows: Σ = 〈C,&,Ξ, S〉 where C0 includes the
symbol t, C1 = {¬}, C2 = {∧,∨,⇒}, Ck = ∅ for all k ≥ 3, & is ∧, Ξ = {ξi : i ∈ N}
and S = ∅. To better illustrate the modulated fibring mechanism, we consider
herein classical conjunction and disjunction as primitive constructors.

Example 8.2.3 Recall Boolean algebras from Example 3.1.2. An interpretation
system corresponding to classical logic is 〈Σ,M,A〉 where

• M is the class of all pairs m = 〈B, V 〉 where B = 〈B,�,�,−, ,⊥〉 is a
Boolean algebra and V : C0 → B is a map such that V (t) =  ;

• A(m) = 〈B,≤, ν〉 where ≤ is defined as in Example 3.1.2 and ν extends the
definition presented therein, that is, for every b, b1, b2 ∈ B,

– b1 ≤ b2 if and only if b1 � b2 = b1;

– ν0(c) = V (c) for every c ∈ C0;

– ν1(¬)(b) = −b;
– ν2(∧)(b1, b2) = b1 � b2;

– ν2(∨)(b1, b2) = b1 � b2;

– ν2(⇒)(b1b2) = (−b1) � b2. ∇

Example 8.2.4 Recall Heyting algebras from Example 3.1.4. An interpretation
system corresponding to intuitionistic logic is 〈Σ,M,A〉 where

• M is the class of all pairs m = 〈B, V 〉 where B = 〈B,�,�,→, ,⊥〉 is a
Heyting algebra and V : C0 → B such that V (t) =  ;

• A(m) = 〈B,≤, ν〉 where ≤ and ν are defined as in Example 3.1.4, that is,
for every b, b1, b2 ∈ B

– b1 ≤ b2 if and only if b1 � b2 = b1;

– ν0(c) = V (c) for every c ∈ C0;

– ν1(¬)(b) = b→ ⊥;

– ν2(∧)(b1, b2) = b1 � b2;

– ν2(∨)(b1, b2) = b1 � b2;

– ν2(⇒)(b1, b2) = b1 → b2. ∇

Example 8.2.5 Recall 3-valued Gödel algebras from Example 3.1.10. An inter-
pretation system corresponding to 3-valued Gödel logic is 〈Σ,M,A〉 where
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• M is the class of all pairs m = 〈B, V 〉 where B = 〈B,�,�,�,!, ,⊥〉 is a
3-valued Gödel algebra (recall that, up to isomorphisms, there is just one
3-valued Gödel algebra) and V : C0 → B such that V (t) =  ;

• A(m) = 〈B,≤, ν〉 where ≤ and ν are defined as in Example 3.1.10, that is,
for every b, b1, b2 ∈ B

– b1 ≤ b2 if and only if b1 � b2 = b1;

– ν0(c) = V (c) for every c ∈ C0;

– ν1(¬)(b) = !(b);

– ν2(∧)(b1, b2) = b1 � b2;

– ν2(∨)(b1, b2) = b1 � b2;

– ν2(⇒)(b1, b2) = b1 � b2. ∇

Example 8.2.6 Recall 3-valued �Lukasiewicz algebras from Example 3.1.9. An
interpretation system corresponding to 3-valued �Lukasiewicz logic is 〈Σ,M,A〉
where

• M is the class of all pairs m = 〈B, V 〉 where B = 〈B,⊕,!,⊥〉 is a 3-valued
�Lukasiewicz algebra (recall that, up to isomorphisms, there is just one 3-
valued �Lukasiewicz algebra) and V : C0 → B is a map;

• A(m) = 〈B,≤, ν〉 where ≤ is defined as in Example 3.1.9 and ν extends the
definition presented therein, that is, for every b, b1, b2 ∈ B,

– b1 ≤ b2 if and only if b1 � b2 = b1;

– ν0(c) = V (c) for every c ∈ C0;

– ν1(¬)(b) = !b;
– ν2(∧)(b1, b2) = b1 � b2;

– ν2(∨)(b1, b2) = b1 � b2;

– ν2(⇒)(b1, b2) = b1 � b2. ∇

We now define modulated interpretation system morphisms. In the sequel, we
consider modulated interpretation systems I = 〈Σ,M,A〉 with modulated signa-
ture Σ = 〈C,Ξ,&, S〉, possibly with superscripts.

The next definition uses the notion of adjointness. We refer the reader to [66]
for an account of adjointness in order structures.

Definition 8.2.7 A modulated interpretation system morphism h : I → I ′ is a
tuple 〈ĥ, h, ḣ, ḧ〉 where:

• ĥ : Σ → Σ′ is a morphism in mSig;
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• h : M ′ →M is a map;

• ḣ = {ḣm′}m′∈M ′ where ḣm′ : 〈Bh(m′),≤h(m′)〉 → 〈B′
m′ ,≤′

m′〉 is a monotonic
map;

• ḧ = {ḧm′}m′∈M ′ where ḧm′ : 〈B′
m′ ,≤′

m′〉 → 〈Bh(m′),≤h(m′)〉 is a monotonic
map preserving finite meets;

such that

• ḧm′ is left adjoint of ḣm′ for every m′ ∈M ′, that is,

b′ ≤′
m′ ḣm′(ḧm′(b′)) and ḧm′(ḣm′(b)) ≤h(m′) b

hold for every b′ ∈ B′
m′ and b ∈ Bh(m′);

• ν′m′(ĥ(c))(�b′) ∼=m′ ḣm′(νh(m′)(c)(ḧm′ (�b′))) for every model m′ ∈ M ′, c ∈ Ck,
�b′ ∈ (B′

m′)k and k ∈ N. ∇

In the last item of the definition above, ḧm′(�b′) stands for (ḧm′(b′1), . . . , ḧm′(b′k))
for �b′ = (b′1, . . . , b

′
k).

Note that the definition of left adjointness used above is equivalent to the usual
one: b′ ≤′

m′ ḣm′(b) if and only if ḧm′(b′) ≤h(m′) b for every m′ ∈M ′, b′ ∈ B′
m′ and

b ∈ Bh(m′).
A modulated interpretation system morphism h : I → I ′ has four components.

The first component is a modulated signature morphism ĥ relating the signatures
involved. The second component is a (contravariant) map h relating the classes of
models. For a diagrammatic perspective see Figure 8.4.

I
h $$ I ′

Σ
ĥ $$ Σ′ M M ′h&&

Figure 8.4: Components of interpretation system morphism

The two last components are the families ḣ and ḧ of maps, indexed by the class
of models in I ′, that relate truth values of interpretation structures over Σ to truth
values of interpretation structures over Σ′ and vice-versa: for each model m′, ḣm′

associates a truth value of the interpretation structure Bh(m′) over Σ to a truth
value of the structure B′

m′ over Σ′, while ḧm′ associates a truth value of B′
m′ to a

truth value of Bh(m′). Figure 8.5 illustrates these components.
Since ḧm′ is left adjoint of ḣm′ , we can conclude that ḣm′ also preserves finite

meets for every m′ ∈ M ′ (see Lemma 8.2.9). The last condition indicates that
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Bh(m′)
ḣm′ $$ B′

m′ Bh(m′) B′
m′

ḧm′&&

Figure 8.5: Relationship between truth-value sets

denotations of constructors from C in a model m′ can be given for any truth
values in B′

m′ by using the two maps.
Note that the notion of morphism between interpretation systems presented

in [282], and described in Section 3.4 of Chapter 3, is the particular case of the
one presented above with ḣm′ = idB′

m′ , ḧm′ = idBh(m′) and hence, Bh(m′) = B′
m′ ,

etc.

Prop/Definition 8.2.8 Modulated interpretation systems and their morphisms
constitute the category mInt.

The following facts about modulated interpretation system morphisms will be
useful later on.

Lemma 8.2.9 Let h : I → I ′ be a modulated interpretation system morphism.

1. ḣm′ preserves finite meets, for every m′ ∈M ′.

2. ν′m′(&′)(ḣm′(b1), ḣm′(b2)) ∼=m′ ḣm′(νh(m′)(&)(b1, b2)), for every m′ ∈ M ′

and b1, b2 ∈ Bh(m′).

3. ḧm′(ḣm′(b)) ∼=h(m′) b, for every m′ ∈ M ′ and b ∈ Bh(m′), whenever ḧm′ is
surjective.

Proof.
1. From the left adjoint condition, ḣ has left adjoint. Hence ḣ preserves all

meets.
2. Use the definitions of νh(m′)(&) and ν′m′(&′) and 1.
3. The left adjoint condition ensures that ḧm′(ḣm′(b)) ≤h(m′) b. Since ḧm′ is

surjective, there is b′ ∈ B′
m′ such that b = ḧm′(b′). The left adjoint condition

ensures that b′ ≤′
m′ ḣm′(ḧm′(b′)), that is, b′ ≤′

m′ ḣm′(b). By monotonicity,

ḧm′(b′) ≤h(m′ ḧm′(ḣm′(b))

that is, b ≤h(m′ ḧm′(ḣm′(b)). �

Before defining the denotation of formulas, we first have to introduce the notion
of assignment. Herein, we have a special kind of assignments, the safe assign-
ments. They give special values to schema variables in the codomain of safe-
relevant signature morphisms. To define safe assignments we need to consider a
particular (sub)algebra for each modulated signature morphism: if s : Σ̆ → Σ
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is a modulated signature morphism and B is an interpretation structure over Σ,
B(s) = 〈B(s),≤B(s), νB(s)〉 is the smallest subalgebra of B for the signature s(Σ̆)
such that b1 ∈ B(s) whenever b1 ∼= b2 with b1 ∈ B and b2 ∈ B(s). In the sequel,
whenever we refer to a modulated signature morphism s : Σ̆ → Σ, we always
assume that Σ̆ = 〈C̆, &̆, Ξ̆, S̆〉. The following lemma will be useful later on.

Lemma 8.2.10 Let h : I → I ′ be a modulated interpretation system morphism.

1. For each b′ ∈ B′
m′(ĥ) there exists b ∈ Bh(m′) such that b′ ∼=m′ ḣm′(b).

2. If ḧ is surjective and s : Σ̆ → Σ is a modulated signature morphism then for
each b′ ∈ B′

m′(ĥ ◦ s) there exists b ∈ Bh(m′)(s) such that b′ ∼=m′ ḣm′(b).

Proof. Note that if f : (C1, A1,Ξ1, S1) → (C2, A2,Ξ2, S2) is a modulated
signature morphism and b ∈ B2

m(f) then b ∼=m ν2
m(f(c0)) where c0 ∈ C1

0 , or
b ∼=m ν2

m(f(c))(�b) where c ∈ C2
k , k > 0 and �b ∈ (B2

m(f))k, or b ∼=m ν2
m(&2)(b1, b2)

(that is, b ∼=m b1 � b2) where b1, b2 ∈ B2
m(f).

1. The result follows by induction.
Base: Let b′ ∼=m′ ν′m′(ĥ(c0)). Using Definition 8.2.7,

ν′m′(ĥ(c0)) ∼=m′ ḣm′(νh(m′)(c0))

and the result follows by transitivity.
Step: The case b′ ∼=m′ ν′m′(ĥ(c))(�b′) where c ∈ Ck, k > 0 and �b′ ∈ (B′

m′(ĥ))k, is
similar to the base. Let b′ ∼=m′ b′1 � b′2. By the induction hypothesis,

b′1 ∼=m′ ḣm′(b1) and b′2 ∼=m′ ḣm′(b2)

for some b1, b2 ∈ Bh(m′). Hence, b′1�b′2 ∼=m′ ḣm′(b1)�ḣm′(b2). By 1 of Lemma 8.2.9,
ḣm′(b1) � ḣm′(b2) ∼=m′ ḣm′(b1 � b2), and the result follows using transitivity.

2. The result follows by induction. Note that ĥ ◦ s is a modulated signature
morphism.

Base: Let b′ ∼=m′ ν′m′(ĥ(s(c̆0))). Using Definition 8.2.7,

ν′m′(ĥ(s(c̆0))) ∼=m′ ḣm′(νh(m′)(s(c̆0))).

The result follows by transitivity, since νh(m′)(s(c̆0)) ∈ Bh(m′)(s).
Step: Let b′ ∼=m′ ν′m′(ĥ(s(c̆)))(�b′) where c ∈ Ck, k > 0 and �b′ ∈ (B′

m′(ĥ ◦ s))k.
By the induction hypothesis, b′i ∼=m′ ḣm′(bi), where bi ∈ Bh(m′)(s), for each b′i in
�b′. Using Definition 8.2.1,

ν′m′(ĥ(s(c̆)))(�b′) ∼=m′ ν′m′(ĥ(s(c̆)))(ḣm′ (�b))

and, using Definition 8.2.7,

ν′m′(ĥ(s(c̆)))(ḣm′(�b)) ∼=m′ ḣm′(νh(m′)(s(c̆))(ḧm′ (ḣm′(�b)))).
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By 3 of Lemma 8.2.9, ḧm′(ḣm′(�b)) ∼=h(m′)
�b. The result follows using again Defini-

tions 8.2.1, 8.2.7 and transitivity. The proof of the case b′ ∼=m′ ν′m′(ĥ(s(&̆)))(b′1, b′2),
that is, b′ ∼=m′ b′1 � b′2, is similar to the one presented in 1. �

We recall the notion of assignment given in Chapter 3 and introduce the concept
of safe assignment. In the sequel, given a formula ϕ ∈ L(Σ), we use Var(ϕ) to
denote the set of schema variables occurring in ϕ. Similarly with respect to a set
of formulas Γ ⊆ L(Σ).

Definition 8.2.11 Let Σ = 〈C,&,Ξ, S〉 be a modulated signature. An assign-
ment over a modulated interpretation structure B over Σ is a map α : Ξ → B.
The assignment α is said to be safe for a set of formulas Γ ⊆ L(Σ) whenever
α(s(ξ̆)) ∈ B(s) for every s : Σ̆ → Σ in S and ξ̆ ∈ Ξ̆ such that s(ξ̆) ∈ Var(Γ). ∇

Whenever no confusion arises, when dealing with assignments we simply omit
the reference to the modulated interpretation structure over Σ. Safe assignments
α : Ξ → B for a set Γ ⊆ L(Σ) ensure that only special truth values are associated to
particular schema variables occurring in formulas in Γ. These particular schema
variables are images, through safe-relevant morphisms s : Σ̆ → Σ, of schema
variables in Σ̆ and the truth values that α assigns to them are always truth values
in the subset B(s) of B. As we will see below, only safe assignments are relevant
when defining global and local entailments.

Given a modulated interpretation structure B = 〈B,≤, ν〉 over Σ, and an as-
signment α over B, the denotation map [[·]]αB : L(Σ) → B is defined as usual using
α and ν.

Definition 8.2.12 Let B = 〈B,≤, ν〉 be a modulated interpretation structure
over Σ.

A formula ϕ ∈ L(Σ) is globally satisfied by B and a safe assignment α for ϕ,
written Bα � ϕ, whenever [[ϕ]]αB ∼=  .

A formula ϕ ∈ L(Σ) is locally satisfied by B, a safe assignment α for ϕ and
b ∈ B, written Bαb � ϕ, whenever b ≤ [[ϕ]]αB. ∇

In the context of a modulated interpretation system 〈Σ,M,A〉 and given a
model m in M , for simplicity, we refer to an assignment over m, instead of an
assignment over Bm, and we will use [[·]]αm instead of [[·]]αBm

. We also write mα � ϕ
and mαb � ϕ whenever Bmα � ϕ and Bmαb � ϕ, respectively.

Next, we introduce the notions of global entailment and local entailment in a
modulated interpretation system.

Definition 8.2.13 Let I be a modulated interpretation system.
A formula ϕ ∈ L(Σ) is globally entailed by a finite set Ψ ⊆ L(Σ) in I if, for

every model m ∈M and assignment α over Bm safe for Ψ∪{ϕ}, mα � ϕ whenever



8.2. MODULATED INTERPRETATION SYSTEMS 335

mα � ψ for every ψ ∈ Ψ. A formula ϕ ∈ L(Σ) is globally entailed by Γ ⊆ L(Σ) in
I, written

Γ �gI ϕ

if there is a finite set Ψ ⊆ Γ that globally entails ϕ.
A formula ϕ ∈ L(Σ) is locally entailed by a finite set Ψ ⊆ L(Σ) in I if, for every

model m ∈ M , b ∈ Bm and assignment α over Bm safe for Ψ ∪ {ϕ}, mαb � ϕ
whenever mαb � ψ for every ψ ∈ Ψ. A formula ϕ ∈ L(Σ) is locally entailed by
Γ ⊆ L(Σ) in I, written

Γ ��I ϕ

if there is a finite set Ψ ⊆ Γ that locally entails ϕ. ∇

We provide a necessary and sufficient condition for local entailment from a
finite set of formulas. Note that local entailment has already been characterized
in similar terms in the previous chapters.

Proposition 8.2.14 Let I be a modulated interpretation system, Γ be a finite
subset of L(Σ) and ϕ in L(Σ). Then

Γ ��I ϕ if and only if �{[[γ]]αm : γ ∈ Γ} ≤ [[ϕ]]αm

for every model m ∈M and safe assignment α over m for Γ ∪ {ϕ}.

Proof. Assume that Γ ��I ϕ. Let

b = �{[[γ]]αm : γ ∈ Γ}.

Then b ≤ [[γ]]αm for each γ ∈ Γ. Since Γ ��I ϕ, it follows that b ≤ [[ϕ]]αm.
Conversely, assume that �{[[γ]]αm : γ ∈ Γ} ≤ [[ϕ]]αm for every m ∈ M and α over
m. Given m ∈ M , b ∈ Bm and α over m, if b ≤ [[γ]]αm for each γ ∈ Γ, then
b ≤ �{[[γ]]αm : γ ∈ Γ}. Since �{[[γ]]αm : γ ∈ Γ} ≤ [[ϕ]]αm, by transitivity, b ≤ [[ϕ]]αm.
Hence, Γ ��I ϕ. �

Global entailment and local entailment are both preserved by particular modu-
lated interpretation system morphisms. Before presenting the corresponding proof,
we need the following lemma that relates denotations of formulas with the deno-
tations of their translations.

Lemma 8.2.15 Let h : I → I ′ be a modulated interpretation system morphism
such that ḧm′ is surjective for every m′ ∈ M ′. Consider the assignment α′ over
m′ and the assignment h(α′) : Ξ → Bh(m′) such that h(α′)(ξ) = ḧm′(α′(ĥ(ξ))).

1. [[ĥ(ξ)]]α
′
m′ ∼=m′ ḣm′([[ξ]]h(α′)

h(m′)) if α′ is safe for ĥ(ξ), ξ ∈ Ξ, and ĥ ∈ S′.

2. [[ĥ(ϕ)]]α
′
m′ ∼=m′ ḣm′([[ϕ]]h(α′)

h(m′)), for every ground formula ϕ ∈ L(Σ).
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3. [[ĥ(ϕ)]]α
′
m′ ∼=m′ ḣm′([[ϕ]]h(α′)

h(m′)) if ϕ ∈ L(Σ), α′ is safe for ĥ(ϕ) and ĥ ∈ S′.

Proof.
1. Since α′ is safe for ĥ(ξ) and ĥ ∈ S′, [[ĥ(ξ)]]α

′
m′ = α′(ĥ(ξ)) ∈ B′(ĥ). Hence,

we have that (i) α′(ĥ(ξ)) ∼=m′ ν′m′(ĥ(c))(�b′) for some c ∈ Ck and �b′ ∈ (B′(ĥ))k

with k ∈ N or (ii) α′(ĥ(ξ)) ∼=m′ ν′m′(&′)(b′1, b′2) for some b′1, b′2 ∈ B′(ĥ), that is,
α′(ĥ(ξ)) ∼=m′ b′1 � b′2. Note that

ḣm′([[ξ]]h(α′)
h(m′)) = ḣm′(h(α′)(ξ))

= ḣm′(ḧm′(α′(ĥ(ξ)))).

In case (i), by Definition 8.2.7 and transitivity,

α′(ĥ(ξ)) ∼=m′ ḣm′(νh(m′)(c)(ḧm′ (�b′))).

Hence, using monotonicity,

ḧm′(α′(ĥ(ξ))) ∼=m′ ḧm′(ḣm′(νh(m′)(c)(ḧm′(�b′)))).

Using 3 of Lemma 8.2.9 and transitivity,

ḧm′(α′(ĥ(ξ))) ∼=m′ νh(m′)(c)(ḧm′(�b′)).

Therefore, using monotonicity,

ḣm′(ḧm′(α′(ĥ(ξ)))) ∼=m′ ḣm′(νh(m′)(c)(ḧm′ (�b′))).

By transitivity, ḣm′(ḧm′(α′(ĥ(ξ)))) ∼=m′ α′(ĥ(ξ)) and we are done.
In case (ii), by Lemma 8.2.10, it follows that b′1 ∼=m′ ḣm′(b1) and b′2 ∼=m′ ḣm′(b2)
for b1, b2∈Bh(m′). Hence,

b′1 � b′2 ∼=m′ ḣm′(b1) � ḣm′(b2).

Using 1 of Lemma 8.2.9, ḣm′(b1) � ḣm′(b2) ∼=m′ ḣm′(b1 � b2). Using transitivity,
α′(ĥ(ξ)) ∼=m′ ḣm′(b1 � b2). Therefore, using monotonicity,

ḧm′(α′(ĥ(ξ))) ∼=m′ ḧm′(ḣm′(b1 � b2)).

Using 3 of Lemma 8.2.9 and again transitivity, ḧm′(α′(ĥ(ξ))) ∼=m′ b1 � b2. Using
again monotonicity, ḣm′(ḧm′(α′(ĥ(ξ)))) ∼=m′ ḣm′(b1 � b2). Finally, by transitivity,

ḣm′(ḧm′(α′(ĥ(ξ)))) ∼=m′ α′(ĥ(ξ)).

2. Proof by induction using Lemma 8.2.9 and Definitions 8.2.1 and 8.2.7.
3. Proof by induction using 1., Lemma 8.2.9, Definitions 8.2.1 and 8.2.7, and

noting that if α′ is safe for ĥ(ϕ) then it is also safe for the subformulas of ĥ(ϕ). �
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We now prove that modulated interpretation system morphisms preserve global
and local entailments.

Proposition 8.2.16 Let h : I → I ′ be a modulated interpretation system mor-
phism such that ḧm′ is surjective for every m′ ∈M ′. Let Γ∪ {ϕ} ⊆ L(Σ). In case

that Γ ∪ {ϕ} ∩ Ξ �= ∅ assume, additionally, that ĥ ∈ S′. Then

1. If Γ �gI ϕ then ĥ(Γ) �gI′ ĥ(ϕ).

2. If Γ ��I ϕ then ĥ(Γ) ��I′ ĥ(ϕ).

Proof. First, observe that if α′ is a safe assignment over m′ for ĥ(Φ), where
Φ ⊆ L(Σ), then the assignment h(α′) over h(m′) as defined in Lemma 8.2.15 is
safe for Φ. In fact, let s : Σ̆ → Σ in S and ξ̆ ∈ Ξ̆ such that s(ξ̆) ∈ Var(Φ). Thus,
ĥ(s(ξ̆)) ∈ Var(ĥ(Φ)). Since ĥ is a modulated signature morphism and s ∈ S,
ĥ ◦ s ∈ S′. Then

α′(ĥ(s(ξ̆))) ∈ B′
m′(ĥ ◦ s)

because α′ is a safe assignment for ĥ(Φ). By Lemma 8.2.10, exists b ∈ Bh(m′)(s)
such that α′(ĥ(s(ξ̆))) ∼=m′ ḣm′(b). Hence,

ḧm′(α′(ĥ(s(ξ̆)))) ∼=h(m′) ḧm′(ḣm′(b))

and we conclude ḧm′(α′(ĥ(s(ξ̆)))) ∼=h(m′) b, that is, h(α′)(s(ξ̆)) ∼=h(m′) b, using the
properties of ḧm′ , transitivity and Lemma 8.2.9. Thus,

h(α′)(s(ξ̆)) ∈ Bh(m′)(s).

Therefore h(α′) over h(m′) is safe for Φ. Note also that, if h(m′) is safe for Φ then
h(m′) is safe for each ϕ ∈ Φ.

1. Let m′ be in M ′ and α′ be an assignment over m′ safe for ĥ(Γ∪{ϕ}). Assume
that Γ �gI ϕ. Then there exists a finite subset Ψ of Γ such that, for each assignment
α over m in M safe for Ψ ∪ {ϕ},

[[ϕ]]αm ∼=m  
whenever [[ψ]]αm ∼=m  for every ψ ∈ Ψ. Since α′ is also safe for ĥ(Ψ ∪ {ϕ}), h(α′)
is safe for the set Ψ ∪ {ϕ}. Thus,

[[ϕ]]h(α′)
h(m′)

∼=h(m′)  

whenever [[ψ]]h(α′)
h(m′)

∼=h(m′)  for every ψ ∈ Ψ. Consider the finite set ĥ(Ψ) ⊆ ĥ(Γ)

and assume that [[ĥ(ψ)]]α
′
m′ ∼=m′  for every ψ ∈ Ψ. Using Lemma 8.2.15 and

transitivity, ḣm′([[ψ]]h(α′)
h(m′)) ∼=m′  for every ψ ∈ Ψ. Therefore,

ḧm′(ḣm′([[ψ]]h(α′)
h(m′)))

∼=m′ ḧh(m′)( )
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for every ψ ∈ Ψ. Using transitivity, Lemma 8.2.9 and recalling that ḧ preserves
meets, [[ψ]]h(α′)

h(m′)
∼=m′  for every ψ ∈ Ψ. Therefore,

[[ϕ]]h(α′)
h(m′)

∼=h(m′)  

and, by monotonicity,
ḣm′([[ϕ]]h(α′)

h(m′)) ∼=m′ ḣm′( ).

Finally, using transitivity and Lemmas 8.2.9 and 8.2.15, [[ĥ(ϕ)]]α
′
m′ ∼=m′  . Hence,

ĥ(Γ) �gI′ ĥ(ϕ).
2. Let m′ be in M ′ and let α′ be an assignment over m′ safe for ĥ(Γ ∪ {ϕ}).

Assuming that Γ ��I ϕ then, using Proposition 8.2.14, there exists a finite subset
Ψ of Γ such that

�{[[ψ]]αm : ψ ∈ Ψ} ≤m [[ϕ]]αm
for every model m in M and assignment α over m safe for Ψ ∪ {ϕ}. As above,
h(α′) is safe for Ψ ∪ {ϕ}. Using Lemma 8.2.15,

�{[[ĥ(ψ)]]α
′
m′ : ψ ∈ Ψ} ∼=m′ �{ḣm′([[ψ]]h(α′)

h(m′)) : ψ ∈ Ψ}

and, using Lemma 8.2.9,

ḣm′(�{[[ψ]]h(α′)
h(m′) : ψ ∈ Ψ}) ∼=m′ �{ḣm′([[ψ]]h(α′)

h(m′)) : ψ ∈ Ψ}.
Since

�{[[ψ]]h(α′)
h(m′) : ψ ∈ Ψ} ≤h(m′) [[ϕ]]h(α′)

h(m′)

by monotonicity,

ḣm′(�{[[ψ]]h(α′)
h(m′) : ψ ∈ Ψ}) ≤m′ ḣm′([[ϕ]]h(α′)

h(m′)).

Finally, using transitivity and Lemma 8.2.15,

�{[[ĥ(ψ)]]α
′
m′ : ψ ∈ Ψ} ≤m′ [[ĥ(ϕ)]]α

′
m′ .

Using Proposition 8.2.14, we conclude that ĥ(Γ) ��I′ ĥ(ϕ). �

The modulated fibring mechanism can be now described. The idea is that each
model in the modulated fibring of I ′ and I ′′ will be a pair of models 〈m′,m′′〉 where
m′ is a model of I ′ and m′′ is a model of I ′′. The truth values in the algebra of
〈m′,m′′〉 should be the (disjoint) union of the truth values in the algebras of m′ and
m′′. However, for denotations of formulas, we need some relationship between the
truth values of m′ and m′′ for every m′ and m′′. Such a relationship is established
by a bridge. As we will see below, bridges modulate the fibring mechanism.

A bridge between two interpretation systems is defined as an appropriated di-
agram in the category mInt.
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Definition 8.2.17 A bridge between interpretation systems I ′ and I ′′ is a diagram

β = 〈f ′ : Ĭ → I ′, f ′′ : Ĭ → I ′′〉
in mInt such that f̂ ′ and f̂ ′′ are injective, ḟ ′

m′ , ḟ ′′
m′′ are also injective and f̈ ′

m′ and
f̈ ′′
m′′ are surjective for every m′ ∈M ′ and m′′ ∈M ′′. ∇

A bridge between interpretation systems I ′ and I ′′ (see Figure 8.6) consists of
two interpretation system morphisms f ′ and f ′′ from an interpretation system Ĭ
respectively to I ′ and I ′′.

Ĭ
f ′

--44
44

44
44 f ′′

..5
55

55
55

5

I ′ I ′′

Figure 8.6: Bridge of interpretation systems

The covariant components of f ′ and f ′′ are injective. The contravariant com-
ponents f̈ ′

m′ and f̈ ′′
m′′ are surjective.

As seen in the previous chapters, the modulated fibring of two modulated in-
terpretation systems corresponds to a pushout in the category mInt of a bridge
between these modulated interpretation systems.

To make the presentation simpler, before defining modulated fibring we intro-
duce the auxiliary category poFam (of families of suitable pre-orders) and two
auxiliary functors.

Prop/Definition 8.2.18 The category poFam is such that

• objects are families P = {〈Pj ,≤j〉}j∈J of pre-orders with finite meets;

• morphisms h : {〈Pj ,≤j〉}j∈J → {〈P ′
j′ ,≤′

j′〉}j′∈J′ are such that h = 〈h, ḣ〉
where h : J ′ → J is a map and ḣ = {ḣj′ : Ph(j′) → P ′

j′}j′∈J′ is a family of
monotonic maps.

The category poFam has pushouts.

Proof. Let β = 〈〈f ′, ḟ ′〉 : P̆ → P ′, 〈f ′′, ḟ ′′〉 : P̆ → P ′′〉.
(i) Consider

J = {〈j′, j′′〉 : f ′(j′) = f ′′(j′′), j′ ∈ J ′, j′′ ∈ J ′′}
and g′ : J → J ′, g′′ : J → J ′′ the corresponding projections.

(ii) For each j ∈ J , let
〈〈Pj ,≤j〉, ġ′j , ġ′′j 〉

be a pushout of ḟ ′
g′(j) and ḟ ′′

g′′(j) in the category of pre-orders with finite meets.
(iii) Finally, consider P = {〈Pj ,≤j〉}j∈J and g′ : P ′ → P , g′′ : P ′′ → P where
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g′ = 〈g′, ġ′〉, g′′ = 〈g′′, ġ′′〉 with ġ′ = {ġ′j}j∈J and ġ′′ = {ġ′′j }j∈J .

Then 〈P, g′, g′′〉 is a pushout of β in poFam. �

The auxiliary functors are the following. The functor Sg : mInt → mSig (see
Fig 8.7) is such that Sg(I) = Σ and Sg(h) = ĥ. Given a diagram τ in mInt, Sg(τ)
is the diagram in mSig we obtain by replacing each object and morphism in τ by
the corresponding image given by Sg.

I
h′

��66
66

66
6

h′′

..%
%%

%%
%%

%

I ′ I ′′

Sg $$

Σ
ĥ′

��		
		

		
	

ĥ′′

��















Σ′ Σ′′

Figure 8.7: Forgetful functor between interpretation systems and signatures

The functor poF : mInt → poFam (see Figure 8.8) is such that poF(I) =
{〈Bm,≤m〉}m∈M and poF(h) = 〈h, ḣ〉. Given a diagram τ in poF, poF(τ) is the
diagram in poFam we obtain by replacing each object and morphism in τ by the
corresponding image given by poF.
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I ′ I ′′

poF $$

{〈Bm,≤m〉}m∈M

〈h′,ḣ′′〉

���
��

��
��

��
��

��
〈h′′,ḣ′′〉

���
��

��
��

��
��

��
��

{〈B′
m,≤′

m〉}m∈M ′ {〈B′′
m,≤′′

m〉}m∈M ′′

Figure 8.8: Functor between interpretation systems and truth-value algebras

We now define modulated fibring of modulated interpretation systems as a
pushout of a bridge between them.

Prop/Definition 8.2.19 The modulated fibring of the modulated interpretation
systems I ′ and I ′′ by a bridge β = 〈f ′ : Ĭ → I ′, f ′′ : Ĭ → I ′′〉 is a pushout of β in
mInt, if the pushout of β exists.

Proof. Consider the bridge β = 〈f ′ : Ĭ → I ′, f ′′ : Ĭ → I ′′〉. Recall that

f ′ = 〈f̂ ′, f ′, ḟ ′, f̈ ′〉 and f ′′ = 〈f̂ ′′, f ′′, ḟ ′′, f̈ ′′〉
where ḟ ′ = {ḟ ′

m′ : B̆f ′(m′) → B′
m′}m′∈M ′ and ḟ ′′ = {ḟ ′′

m′′ : B̆f ′′(m′′) → B′′
m′′}m′′∈M ′′ .

The pushout
〈g′ : I ′ → I, g′′ : I ′′ → I〉

of β is defined as follows (see Figure 8.9):



8.2. MODULATED INTERPRETATION SYSTEMS 341

Ĭ
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g′′��##
##
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Figure 8.9: Pushout of a bridge of interpretation systems

• 〈ĝ′ : Sg(I ′) → Σ, ĝ′′ : Sg(I ′′) → Σ〉 is a pushout in mSig of Sg(β);

• the pair

〈〈g′, ġ′〉 : poF(I ′) → {〈Bm,≤m〉}m∈M

〈g′′, ġ′′〉 : poF(I ′′) → {〈Bm,≤m〉}m∈M 〉

is a pushout in poFam of poF(β) where M = {〈m′,m′′〉 : f ′(m′) = f ′′(m′′)}
(note that, for each m = 〈m′,m′′〉 ∈M ,

〈ġ′m : B′
m′ → Bm, ġ

′′
m : B′′

m′′ → Bm〉

is a pushout of 〈ḟ ′
m′ : Bf ′(m′) → B′

m′ , ḟ ′′
m′′ : Bf ′′(m′′) → B′′

m′′〉);

• g̈′ = {g̈′〈m′,m′′〉 : B〈m′,m′′〉 → B′
m′}〈m′,m′′〉∈M where, for each 〈m′,m′′〉 ∈M ,

g̈′〈m′,m′′〉(b) =

{
b′ if b = ġ′〈m′,m′′〉(b

′)
ḟ ′
m′(f̈ ′′

m′′(b′′)) if b = ġ′′〈m′,m′′〉(b
′′)

and

g̈′〈m′,m′′〉(ġ
′
〈m′,m′′〉(b

′) �〈m′,m′′〉 ġ′′〈m′,m′′〉(b
′′)) =

g̈′〈m′,m′′〉(ġ
′
〈m′,m′′〉(b

′)) �′
m′ g̈′〈m′,m′′〉(ġ

′′
〈m′,m′′〉(b

′′));

• g̈′′ = {g̈′〈m′,m′′〉 : B〈m′,m′′〉 → B′′
m′′}〈m′,m′′〉∈M is defined in a similar way;

• I = 〈Σ,M,A〉 where A(〈m′,m′′〉) = 〈B〈m′,m′′〉,≤〈m′,m′′〉, ν〈m′,m′′〉〉, for each
〈m′,m′′〉 ∈M , with

– ν〈m′,m′′〉(ĝ′(c′))(�b) = ġ′〈m′,m′′〉(ν
′
m′(c′)(g̈′〈m′,m′′〉(�b)));

– ν〈m′,m′′〉(ĝ′′(c′′))(�b) = ġ′′〈m′,m′′〉(ν
′′
m′′(c′′)(g̈′′〈m′,m′′〉(�b))).
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We have to check that
〈I, g′, g′′〉

is a pushout in mInt of f ′ and f ′′. For this purpose we consider m′ ∈ M ′ and
m′′ ∈M ′′ and for the sake of simplification will omit the subscripts involving both
m′ and m′′. Moreover we will consider that

f ′(m′) = f ′′(m′′) = m̆.

We just check the properties for g̈′, since the case of g̈′′ is similar. Note that ġ′

and ġ′ are injective and g̈′ and g̈′ are surjective.

1. We now prove that g̈′ is a monotonic map.
It is important at this point to recognize that ≤ ⊆ B2 can be defined as a least

fixed point. Let D0 be the subset of B2 that includes:

− ġ′(≤′) and ġ′′(≤′′);

− the pairs ġ′(b′) � ġ′′(b′′) ≤ ġ′(b′) for every b′ and b′′;

− the pairs ġ′(b′) � ġ′′(b′′) ≤ ġ′′(b′′) for every b′ and b′′;

− b ≤ ġ′(b′) � ġ′′(b′′) whenever b ≤ ġ′(b′), b ≤ ġ′′(b′′) and b is ġ′(ḟ ′(b̆));

− ġ′(b′1)�ġ′′(b′′1) ≤ ġ′(b′2)�ġ′′(b′′2) whenever ġ′(b′1) ≤ ġ′(b′2) and ġ′′(b′′1) ≤ ġ′′(b′′2 ).

Consider the map Δ : ℘B2 → ℘B2 such that Δ(D) is the one-step transitive
closure. Therefore, Δ is extensive and monotonic. Then by the Tarski fixed point
theorem there is a least fixed point containing D0. Call it lfp(Δ, D0). We can
consider the characterization of the least fixed point in terms of ordinal powers of
Δ (useful for proving properties). Consider the following sequence:

− Δ0(D0) = D0;

− Δμ+1(D0) = Δ(Δμ(D0));

− Δμ(D0) =
⋃
μ′<μ(Δμ′

(D0)) if a is limit ordinal.

Then for every ordinal μ containing D0 we have

Δμ(D0) ≤ lfp(Δ, D0).

We prove that
g̈′(b1) ≤′ g̈′(b2)

whenever b1 ≤ b2 ∈ Δμ(D0) by induction.
Base: μ = 0.
(i) Assume that b1 and b2 are either ġ′(b′1) and ġ′(b′2) for some b′1, b

′
2 ∈ B′ or

ġ′′(b′′1 ) and ġ′′(b′′2) for some b′′1 , b′′2 ∈ B′′. Then

g̈′(b1) ≤′ g̈′(b2)
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by definition of ≤, the fact that g̈′ and g̈′′ are surjective and the monotonicity of
ḟ ′′, f̈ ′′.

(ii) Assume that b1 is ġ′(b′)� ġ′′(b′′) and b2 is ġ′(b′). Then g̈′(b2) = b′ and g̈′(b1)
is b′ �′ ḟ ′(f̈ ′′(b′′)) and so

b′ �′ ḟ ′(f̈ ′′(b′′)) ≤′ b′.

(iii) Assume that b1 is ġ′(ḟ ′(b̆)) = ġ′′(ḟ ′′(b̆)) and b2 is ġ′(b′) � ġ′′(b′′) with
ḟ ′(b̆) ≤′ b′ and ḟ ′′(b̆) ≤′′ b′′ (therefore b̆≤f̈ ′′(b′′)). Then

g̈′(ġ′(ḟ ′(b̆))) ∼=′ ḟ ′(b̆)

and
g̈′(ġ′′(b′′)) ∼=′ ḟ ′(f̈ ′′(b′′)).

Hence, ḟ ′(b̆) ≤′ b′ and ḟ ′(b̆) ≤′ ḟ ′(f̈ ′′(b′′)).
(iv) Assume that

b1 is ġ′(b′1) � ġ′′(b′′1 ) and b2 is ġ′(b′2) � ġ′′(b′′2)

with ġ′(b′1) ≤ ġ′(b′2) and ġ′′(b′′1) ≤ ġ′′(b′′2). So b′1 ≤′ b′2, b′′1 ≤′′ b′′2 and ḟ ′(f̈ ′′(b′′1)) ≤′

ḟ ′(f̈ ′′(b′′2 )). Then

g̈′(ġ′(b′1)) ≤′ g̈′(ġ′(b′2)) and g̈′(ġ′′(b′′1 )) ≤′ g̈′(ġ′′(b′′2)).

Hence
g̈′(ġ′(b′1)) �′ g̈′(ġ′′(b′′1 )) ≤′ g̈′(ġ′(b′2)) �′ g̈′(ġ′′(b′′2)).

Step:
(i) Case μ = ε+ 1. Let b be such that b1 ≤ b and b ≤ b2 ∈ Dε. By the induction

hypothesis, it follows that

g̈′(b1) ≤′ g̈′(b) and g̈′(b) ≤′ g̈′(b2)

and so, by transitivity of ≤′, we have g̈′(b1) ≤′ g̈′(b2).
(ii) Case μ is a limit ordinal. Straightforward.

2. Preservation of meets by g̈′ and g̈′′: Straightforward.

3. We now prove that f̈ ′(g̈′(b)) ∼= f̈ ′′(g̈′′(b)).
Let b be ġ′(b′). Therefore,

f̈ ′(g̈′(ġ′(b′))) ∼= f̈ ′(b′) and f̈ ′′(g̈′′(ġ′(b′))) ∼= f̈ ′′(ḟ ′′(f̈ ′(b′)))

and so f̈ ′′(ḟ ′′(f̈ ′(b′))) ∼= f̈ ′(b′), since f̈ ′′ is surjective. The other cases follow
straightforwardly.

4. We have that
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ν(ĝ′(f̂ ′(c̆)))(�b) ∼= ġ′(ν′(f̂ ′(c̆))(g̈′(�b)))
∼= ġ′(ḟ ′(ν̆(c̆)(f̈ ′(g̈′(�b)))))
∼= ġ′′(ḟ ′′(ν̆(c̆)(f̈ ′′(g̈′′(�b)))))
∼= ġ′′(ν′′(f̂ ′′(c̆))(g̈′′(�b)))
∼= ν(ĝ′′(f̂ ′′(c̆)))(�b).

5. We now show that g̈′ is left adjoint of ġ′ (g̈′′ is left adjoint of ġ′′).
(i) b ≤ ġ′(g̈′(b)). Consider the case of b being ġ′′(b′′). We have

b′′ ≤′′ ḟ ′′(f̈ ′′(b′′))

and therefore ġ′′(b′′) ≤ ġ′′(ḟ ′′(f̈ ′′(b′′))). Hence,

ġ′′(b′′) ≤ ġ′(ḟ ′(f̈ ′′(b′′))) and ġ′′(b′′) ≤ ġ′(g̈′(ġ′′(b′′))).

(ii) g̈′(ġ′(b′)) ≤ b′. Straightforward.

6. Universal property.
Let

h′ : I ′ → I ′′′ and h′′ : I ′′ → I ′′′

be interpretation system morphisms such that h′ ◦ f ′ = h′′ ◦ f ′′.
Existence: Consider

h = 〈ĥ, h, ḣ, ḧm′′′〉
such that

− ĥ is the unique morphism in mSig such that ĥ ◦ ĝ′ = ĥ′ and ĥ ◦ ĝ′′ = ĥ′′;

− h = 〈h′, h′′〉;
− ḣ is the unique morphism in poFam such that ḣ ◦ ġ′ = ḣ′ and ḣ ◦ ġ′′ = ḣ′′;

− ḧm′′′(b′′′) = ġ′h(m′′′)(ḧ
′
m′′′(b′′′)) � ġ′′h(m′′′)(ḧ

′′
m′′′(b′′′)).

Then,

g̈′(ḧ(b′′′)) ∼= g̈′(ġ′(ḧ′(b′′′))) � g̈′(ġ′′(ḧ′′(b′′′)))
∼= ḧ′(b′′′) � ḟ ′(f̈ ′′(ḧ′′(b′′′)))
∼= ḧ′(b′′′) � ḟ ′(f̈ ′(ḧ′(b′′′)))
∼= ḧ′(b′′′).

We can also conclude that ḧ is monotonic and preserves finite meets and that ḧ is
left adjoint to ḣ. Finally,

ν′′′(ĥ(ĝ′(c′)))(�b′′′) ∼= ν′′′(ĥ′(c′))(�b′′′)
∼= ḣ′(ν′(c′)(ḧ′(�b′′′)))
∼= ḣ(ġ′(ν′(c′)(g̈′(ḧ(�b′′′)))))
∼= ḣ(ν(ĝ′(c′))(ḧ(�b′′′))).
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Uniqueness: Assume that k : I → I ′′′ is a morphism such that k ◦ g′ = h′ and
k ◦ g′′ = h′′. We want to show that k = h that is k̈ = ḧ. We start by showing that

k̈(b′′′) ∼= ġ′(g̈′(k̈(b′′′))) � ġ′′(g̈′′(k̈(b′′′))).

Note that k̈(b′′′) ≤ ġ′′(g̈′′(k̈(b′′′))), by the left adjoint condition. Assume that
k̈(b′′′) = ġ′(b′). Using the definition of g̈′′, b′ = g̈′(ġ′(b′)). Thus,

k̈(b′′′) = ġ′(b′)
= ġ′(g̈′(ġ′(b′)))
= ġ′(g̈′(k̈(b′′′))).

Therefore, k̈(b′′′) ≤ ġ′(g̈′(k̈(b′′′))) � ġ′′(g̈′′(k̈(b′′′))). Moreover,

ġ′(g̈′(k̈(b′′′))) � ġ′′(g̈′′(k̈(b′′′))) ≤ k̈(b′′′)

since k̈(b′′′) = ġ′(g̈′(k̈(b′′′))). Thus,

k̈(b′′′) ∼= ġ′(g̈′(k̈(b′′′))) � ġ′′(g̈′′(k̈(b′′′))).

Since g̈′(k̈(b′′′)) = ḧ′(b′′′) and g̈′′(k̈(b′′′)) = ḧ′′(b′′′), we conclude that k = h. �

Observe that it may be the case that there is no pushout of a given bridge β.
We illustrate this situation in Example 8.2.20.

Example 8.2.20 Consider the bridge β = 〈f ′ : Ĭ → I ′, f ′′ : Ĭ → I ′′〉 presented in
Figure 8.10: where, in particular, there is m̆ ∈ M̆ such that f ′(m′) = f ′′(m′′) = m̆,
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--44
44

44
44 f ′′

..5
55

55
55

5

I ′ I ′′

Figure 8.10: Example of a bridge of interpretation systems

for some m′ ∈M ′, m′′ ∈M ′′ such that

• B̆m̆ = {b̆1, b̆2};
• B′

m′ = {b′1, b′2} and

– ḟ ′
m′(b̆1) = b′1, ḟ ′

m′(b̆2) = b′2;

– f̈ ′
m′(b′1) = b̆1, f̈ ′′

m′(b′2) = b̆2;

• B′′
m′′ = {b′′1 , b′′2} and
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ḟ ′
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Figure 8.11: Example of a pushout of interpretation systems

– ḟ ′′
m′′(b̆1) = b′′1 , ḟ ′′

m′′(b̆2) = b′2;

– f̈ ′′
m′′(b′′1) = b̆2, f̈ ′′

m′′(b′′2 ) = b̆1;

and the pre-orders involved are isomorphisms.
Let us follow Prop/Definition 8.2.19 to get a pushout 〈g′ : I ′ → I, g′′ : I ′′ → I〉

of β (see Figure 8.11). In particular,

〈ġ′m : B′
m′ → Bm, ġ

′′
m : B′

m′ → Bm〉

is a pushout of 〈ḟ ′
m′ : B̆m̆ → B′

m′ , f ′′
m′′ : B̆m̆ → B′′

m′′〉, where m = 〈m′,m′′〉.
Hence, we can consider Bm = {b′1|b′′1 , b′2|b′′2} and ġ′m(b′1) = ġ′′m(b′′1) = b′1|b′′1 and
ġ′m(b′2) = ġ′′m(b′′2) = b′2|b′′2 .

We now consider the maps

g̈′m : Bm → B′
m′ and g̈′′m : Bm → B′

m′ .

Following Prop/Definition 8.2.19,

g̈′m(b′1|b′′1) = g̈′m(ġ′m(b′1)) = b′1, g̈′m(b′2|b′′2) = g̈′m(ġ′m(b′2)) = b′2,
g̈′′m(b′1|b′′1) = g̈′′m(ġ′′m(b′′1)) = b′′1

and g̈′′m(b′2|b′′2) = g̈′′m(ġ′′m(b′2)) = b′′2 . But, in particular, since b′1|b′′1 = ġ′′m(b′′1 ), the
equality g̈′m(b′1|b′′1) = ḟm′(f̈m′′(b′′1)) should also hold. However,

ḟm′(f̈m′′(b′′1)) = b′2 �= b′1.

As a consequence, the pushout of β does not exist. ∇
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Next, we present some examples of modulated fibring illustrating how the col-
lapse can be avoided. We start by a description of the most common collapse and
then give a result stating how the bridge can be chosen to avoid the collapse when
no constructors are shared.

Definition 8.2.21 In the modulated fibring 〈g′ : I ′ → I, g′′ : I ′′ → I〉 of I ′ and
I ′′ by a bridge β, I ′′ collapses to I ′ whenever there is a bijection jk : C′′

k → C′
k for

all k ∈ N such that, for all Γ′ ∪ {ϕ′} ⊆ L(Σ′),

• ĝ′(Γ′) �gI ĝ′(ϕ′) if and only if ĝ′′(j−1(Γ′)) �gI ĝ′′(j−1(ϕ′)) if and only if
Γ′ �gI′ ϕ′;

• ĝ′(Γ′) ��I ĝ′(ϕ′) if and only if ĝ′′(j−1(Γ′)) ��I ĝ′′(j−1(ϕ′)) if and only if
Γ′ ��I′ ϕ′;

• there is a set Γ′′ ⊆ L(Σ′′) and a formula ϕ′′ ∈ L(Σ′′) such that Γ′′ ��gI′′ ϕ′′ and
ĝ′′(Γ′′) �gI ĝ′′(ϕ′′) or there is a set Γ′′ ⊆ L(Σ′′) and a formula ϕ′′ ∈ L(Σ′′)
such that Γ′′ ���I′′ ϕ′′ and ĝ′′(Γ′′) ��I ĝ′′(ϕ′′). ∇

The basic idea about a collapse is that for each connective of one of the original
logics there is a connective in the other original logics that behaves in the same
way and vice versa. Hence we require that there is a bijection indicating which
connectives correspond to the others. We assume that if c′ collapses to c′′ then
c′′ also collapses into c′. For instance when we say that classical logic collapse to
intuitionistic logic we are thinking about the bijection where the implications, the
negations, the conjunctions and the disjunctions are the same.

The same behaviour means that the semantic consequence in one of the original
logic is the same as the semantic consequence in the other original logic providing
that we use the bijection for changing the names of the connectives (that is pre-
cisely what is required in the first part of the definition). Moreover, we assume
that there was a formula that was not entailed in one of the original logic but is
entailed in the fibring (that is the content of clause two of the definition). For
instance, it is not the case in intuitionistic logic that �′ (ϕ′ ∨′ (¬′ ϕ′)) but it is
the case when the consider the fibring (not the modulated fibring) of intuitionistic
and classical propositional logics.

We now define a specific bridge that leads to a non-collapsing situation whenever
there is no sharing of constructors.

In the sequel, we assume that t (possibly with superscripts) is a constructor
of arity 0, designated verum, and we assume that its denotation is always  
(again possibly with superscripts). Similarly, we sometimes also assume that f
is a constructor of arity 0, designated falsum.

Proposition 8.2.22 Consider the modulated interpretation systems I ′, I ′′ such
that

• t′ ∈ C′
0 and t′′ ∈ C′′

0 ;
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• C′ and C′′ are isomorphic in Sig (recall Remark 2.1.10);

• idΣ′ ∈ S′ and idΣ′′ ∈ S′′;

and a bridge β = 〈f ′ : Ĭ → I ′, f ′′ : Ĭ → I ′′〉 such that

• C̆0 = {t̆} and C̆k = ∅ for all k �= 0;

• Ξ̆ = ∅ and S̆ = ∅;
• M̆ = {m̆};
• B̆m̆ = { ̆};
• ḟ ′

m′( ̆) =  ′
m′ , ḟ ′′

m′′( ̆) =  ′′
m′′ for every m′ ∈M ′, m′′ ∈M ′′.

Then the modulated fibring 〈g′ : I ′ → I, g′′ : I ′′ → I〉 of I ′ and I ′′ by β does not
collapse.

Proof. Begin by observing that the mappings f ′, f ′′, f̈ ′
m′ and f̈ ′′

m′′ are constant.
For every model m′′ ∈ M ′′ all the pairs 〈m′,m′′〉 with m′ ∈ M ′ are in the

modulated fibring. Therefore

if Γ′′ ��gI′′ ϕ′′ then ĝ′′(Γ′′) ��gI ĝ′′(ϕ′′)

for every Γ′′ and ϕ′′ and if Γ′′ ���I′′ ϕ′′ then ĝ′′(Γ′′) ���I ĝ′′(ϕ′′) for every Γ′′ and ϕ′′.
�

Whenever the conditions of Proposition 8.2.22 hold, we say that the modulated
interpretation system obtained is the unconstrained modulated fibring of I ′ and
I ′′. Thus, we can use this “universal” bridge for defining the modulated fibring
whenever we do not want to share any symbols besides verum, which is the case in
most situations. Note that in C′

0 and C′′
0 we can have propositional symbols. These

notion of unconstrained modulated fibring generalizes the notion of unconstrained
fibring in a natural way.

Proposition 8.2.22 establishes that the collapsing problem is avoided for all cases
of unconstrained modulated fibring, that is when only the verum is shared. Since
idΣ′ ∈ S′, idΣ′′ ∈ S′′ using Proposition 8.2.16 we guarantee that the entailments of
the component logics will be entailments in the modulated fibring. We now sketch
this modulated fibring, describing first the relationships between the signatures,
then the relationships between the models (see Figure 8.12) and, afterwards, the
relationships between the truth values in B̆m̆, B′

m′ , B′′
m′′ and Bm (see Figure 8.13),

for each m′ ∈M ′, m′′ ∈M ′′ and m = 〈m′,m′′〉 ∈M ′ ×M ′′.
Note that the requirement idΣ′ ∈ S′, idΣ′′ ∈ S′′ does not change the entailments

of I ′ and I ′′. This requirement just prepares the modulated interpretation systems
for the combination.

We now instantiate Proposition 8.2.22 for several cases. The first example
concerns the fibring of classical and intuitionistic logic.
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Figure 8.12: Relationship between signatures and models

Example 8.2.23 Let I ′ and I ′′ be the modulated interpretation systems for clas-
sical logic in Example 8.2.3 and intuitionistic logic in Example 8.2.4. A bridge as
the one in Proposition 8.2.22 avoids the collapsing between I ′ and I ′′. Intuitionistic
logic collapses into classical logic when the formula

((¬(¬ϕ))⇔ ϕ)

becomes valid which is not the case when considering this modulated fibring.
Observe that in the modulated fibring, ġ′(B′

m′) is a Boolean algebra “equivalent”
to B′

m′ and ġ′′(B′′
m′′) is a Heyting algebra “equivalent” to B′′

m′′ . ∇

Similarly to Fariñas del Cerro and Herzig’s C+J logic as presented in [82], in the
modulated fibring of classical logic I ′ and intuitionistic I ′′ logic considered above,
we have also no problems with the validity of the formula

ĝ′(ϕ′⇒′ (ψ′⇒′ ϕ′))

since, according to our semantics, the formula is only valid for “intuitionistic val-
ues”. Classical values are converted to intuitionistic value “t”.

The next example is again an application of Proposition 8.2.22, dealing now with
the fibring of classical and �Lukasiewicz logics. Moreover it is also very interesting
in showing the need for safe assignments.

Example 8.2.24 Let I ′ and I ′′ be the interpretation systems for classical logic in
Example 8.2.3 and the 3-valued �Lukasiewicz logic in Example 8.2.6. As a corollary
of Proposition 8.2.22, the modulated fibring with no sharing does not collapse.

In order to understand safe assignments consider the following case. We have

{ξ′1, (ξ′1 ⇒′ ξ′2)} ��I′ ξ′2
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Figure 8.13: Relationship between truth values

for classical logic. In the unconstrained modulated fibring, we do not have

{ĝ′(ξ′1), (ĝ′(ξ′1)ĝ′(⇒′)ĝ′(ξ′2))} ��I′ ĝ′(ξ′2)

if all assignments are possible. Let m′ and m′′ be such that B′
m′ = {0′, 1′} and

B′′
m′′ = {0′′, 1/2′′, 1′′}. Then

B〈m′,m′′〉 = {0′, 0′′, 1/2′′, 1}.
Consider an assignment α over 〈m′,m′′〉 such that α(ĝ′(ξ′1)) = 1 and α(ĝ′(ξ′2)) =
1/2′′. Then

• 1 ≤ [[ĝ′(ξ′1)]]α〈m′,m′′〉 since [[ĝ′(ξ′1)]]α〈m′,m′′〉 = 1;

• 1 ≤ [[(ĝ′(ξ′1)ĝ′(⇒′)ĝ′(ξ′2))]]α〈m′,m′′〉 since [[(ĝ′(ξ′1)ĝ′(⇒′)ĝ′(ξ′2))]]α〈m′,m′′〉 = 1;

• but not 1 ≤ [[ĝ′(ξ′2)]]α〈m′,m′′〉 since [[ĝ′(ξ′2)]]α〈m′,m′′〉 = 1/2′′. ∇

The following example illustrates several possible combinations of classical logic
and Gödel logic through different bridges. In particular we introduce a specific
bridge for sharing negation. The motivation for the sharing comes from the fact
that the values of (¬ϕ) in 3-valued Gödel logic is always either ⊥ or  . That is,
1/2 behaves as  , and so negation has a classical flavor.

Example 8.2.25 Let I ′ and I ′′ be the interpretation systems for the 3-valued
Gödel logic in Example 8.2.5 and classical logic in Example 8.2.3. For classical
logic only 2-valued algebras are included. Consider the fibring of classical and
Gödel logics modulated by three different bridges

β = 〈f ′ : Ĭ → I ′, f ′′ : Ĭ → I ′′〉
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as follows:

Bridge 1:

• Ĭ is such that

– M̆ = {m̆};
– Ă(m̆) = 〈{ ̆}, {〈 ̆,  ̆〉}, ν̆〉;

• f ′ and f ′′ are such that

– ḟ ′
m′( ̆) =  ′

m′ and ḟ ′′
m′′( ̆) =  ′′

m′′ .

Observe that the mappings f ′, f ′′, f̈ ′
m′ and f̈ ′′

m′′ are constant.

Bridge 2:

• Ĭ is such that

– M̆ = {m̆};
– Ă(m̆) = 〈{⊥̆,  ̆}, {〈⊥̆, ⊥̆〉, 〈⊥̆,  ̆〉, 〈 ̆,  ̆〉}, ν̆〉;

• f ′ and f ′′ are such that

– ḟ ′
m′(⊥̆) = ⊥′

m′ , ḟ ′
m′( ̆) =  ′

m′ ;

– ḟ ′′
m′′(⊥̆) = ⊥′′

m′′ and ḟ ′′
m′′( ̆) =  ′′

m′′ ;

– f̈ ′
m′(⊥′) = ⊥̆ and f̈ ′

m′(b′) =  ̆ for every b′ �= ⊥′
m′ ;

– f̈ ′′
m′′(⊥′′

m′′) = ⊥̆ and f̈ ′′
m′′(b′′) =  ̆ for every b′′ �= ⊥′′

m′′ ;

Observe that f ′ and f ′′ are constant mappings.

Bridge 3:

• Ĭ is such that

– M̆ = A′(M ′)|C̆ ∪A′′(M ′′)|C̆ ;

– Ă is the identity map;

• f ′ and f ′′ are such that

– f ′(m′) = A′(m′)|C̆ and f ′′(m′′) = A′′(m′′)|C̆ ;

– ḟ ′
m′ = idB′

m′ and ḟ ′′
m′′ = idB′′

m′′ ;

– f̈ ′
m′ = idB̆f ′(m′)

and f̈ ′′
m′′ = idB̆f′′(m′′)

.
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Note that bridge 1 is similar to the bridge considered in Proposition 8.2.22.
Bridges 1, 2 and 3 can be used to modulate the fibring when C̆0 = {t̆} and

C̆k = ∅, Ξ̆ = ∅ and S̆ = ∅. Then ν̆ is a family of empty maps except for ν̆0 and f̂ ′

and f̂ ′′ are also empty maps except for k = 0.
Bridges 2 and 3 can be used to modulate the fibring when C̆0 = {f̆ , t̆}, C̆1 = {¬̆},

C̆k = ∅ for every k ≥ 2, Ξ̆ = ∅, S̆ = ∅, ν̆(¬̆)(⊥̆) =  ̆, ν̆(¬̆)( ̆) = ⊥̆ and f̂ ′ and f̂ ′′

are such that f̂ ′(¬̆) = ¬′ and f̂ ′′(¬̆) = ¬′′.
Bridge 3 can be used to modulate the fibring when C̆ = C′ = C′′, Ξ̆ = ∅, S̆ = ∅

and f̂ ′ and f̂ ′′ are such that f̂ ′(¬̆) = ¬′, f̂ ′(∧̆) = ∧′, f̂ ′′(¬̆) = ¬′′ and f̂ ′′(∧̆) = ∧′′

(corresponding to the collapse of Gödel logics into classical logics since in the
fibring we will only have Boolean algebras). ∇

At the end of this section, we turn our attention to the comparison at the
semantic level between modulated fibring and the fibring as presented in [282],
and referred in Section 3.4, showing that the latter is a particular case of the
former.

Remark 8.2.26 Consider the subcategory fInt of mInt whose objects are tuples
〈Σ,M,A〉 such that S = ∅ and the morphisms

h : 〈Σ,M,A〉 → 〈Σ′,M ′, A′〉

are such that Ξ′ = Ξ, ḣm′ = idm′ and ḧm′ = idh(m′) for every m′ ∈ M ′. The ob-
jects and the morphisms of the subcategory fInt are the interpretation systems and
the morphisms in the fibring as presented in [282], and referred in Chapter 3. The
category fInt has pushouts that correspond to (unconstrained and constrained)
fibring as presented in therein by choosing the following bridge:

• C̆ with the shared constructors if any;

• M̆ = A′(M ′)|C̆ ∪A′′(M ′′)|C̆ ;

• Ă is the identity map;

• f ′(m′) = A′(m′)|C̆ and f ′′(m′′) = A′′(m′′)|C̆ ;

• ḟ ′
m′ = idB′

m′ , ḟ
′′
m′′ = idB′′

m′′ , f̈
′
m′ = idB̆f′(m′)

and f̈ ′′
m′′ = idB̆f′′(m′′)

.

Thus, the class of models M is composed by the pairs 〈m′,m′′〉 that have the
same underlying algebra. For instance when considering the fibring of classical
and intuitionistic logics the models to be considered in the fibring are those whose
underlying algebra is Boolean. Therefore intuitionistic logic collapses into classical
logic even if no constructors are shared. ∇
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8.3 Modulated Hilbert calculi

We now analyze the deductive counterpart of modulated fibring. As before, the
basic deductive notion is the Hilbert calculus. The Hilbert calculi that are relevant
herein are Hilbert calculi similar to the ones presented in Section 2.3 of Chapter 2,
but where some particular formulas involving the operator & can be derived and
including, as expected, modulated signatures. Global rules and local inference
rules are also considered. These calculi are called modulated Hilbert calculi. We
introduce the notion of morphism between these Hilbert calculi and then, again,
modulated fibring appears as a pushout in the category of modulated Hilbert
calculi.

The notion of substitution is a delicate one. We will work often with safe
substitutions which are a deductive counterpart of safe assignments. This means
that instantiation of inference rules is sometimes restricted.

In the sequel, we assume modulated signatures Σ = 〈C,&,Ξ, S〉, possibly with
superscripts. Recall that gL(Σ) denotes the set of ground formulas in L(Σ). Given
s : Σ̆ → Σ, we also use the following notation:

• L(Σ, s) is the set of formulas in L(Σ) whose main constructor is & or it is in
s(C̆), that is, formulas (ϕ1&ϕ2) or c(ϕ1, . . . , ϕn) where c is a constructor of
s(C̆);

• gL(Σ, s) is the set of all ground formulas in L(Σ, s);

• L(Σ, C) is the set of formulas in L(Σ) whose main constructor is in C;

• gL(Σ, C) is the set of all ground formulas in L(Σ, C).

Definition 8.3.1 A substitution over Σ is a map σ : Ξ → L(Σ). A substitution σ
is safe for a set of formulas Γ ⊆ L(Σ) whenever

σ(s(ξ̆)) ∈ L(Σ, s)

for every s : Σ̆ → Σ in S and s(ξ̆) ∈ Var(Γ). ∇

A safe substitution σ for a set of formulas Γ always associates a particular kind of
formulas to the schema variables in the range of safe-relevant signature morphisms
that occur in formulas of Γ. To such schema variables, images of schema variables
of some signature Σ̆, the safe substitution σ only associates formulas whose main
constructor belongs to the signature Σ̆.

In the sequel, when we refer to a Hilbert calculus H = 〈C,Rg, R�〉, we assume
the Definition 2.3.1.

Definition 8.3.2 A modulated pre-Hilbert calculus is a tuple

H = 〈Σ, Rg, R�〉
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where H = 〈C,Rg, R�〉 is a Hilbert calculus. The definition of global and local
derivations in H follow Definition 2.3.2 but, whenever a rule 〈Δ, δ〉 is used in a
derivation, only safe assignments for Δ ∪ {δ} can be considered. ∇

Notations corresponding to global and local derivations are as before. We denote
by ϕ1

∼=H,Γ ϕ2 the fact that Γ, ϕ1 �H ϕ2 and Γ, ϕ2 �H ϕ1. When Γ = ∅, we will
omit the reference to the set. We will omit the reference to the calculus whenever
it is clear which one we are considering.

Definition 8.3.3 A modulated Hilbert calculus is a modulated pre-Hilbert calcu-
lus H = 〈Σ, Rg, R�〉 where, for every formulas ϕ1, ϕ2 ∈ L(Σ),

• {(ϕ1&ϕ2)} �H ϕ1 and {(ϕ1&ϕ2)} �H ϕ2;

• {ϕ1, ϕ2} �H (ϕ1&ϕ2). ∇

The first two conditions are called & elimination and the last one is called &
introduction. These conditions show that in modulated Hilbert calculi the symbol
& is a conjunction like operator in what concerns deduction. This operator has
a technical role later on, when studying preservation properties. Clearly, & elim-
ination and introduction can be extended to any finite number of formulas (for
simplicity we omit the inner parenthesis).

We now present two examples of modulated Hilbert calculi. They correspond
to the many-values logics introduced before. In both examples the signature Σ is
as follows: Σ = 〈C,&,Ξ, S〉 where t, f ∈ C0, C1 = {¬}, C2 = {∧,∨,⇒}, Ck = ∅
for all k ≥ 3, & is ∧ and Ξ = {ξi : i ∈ N}.

Example 8.3.4 Recall Example 2.2.8. A modulated Hilbert calculus

H = 〈Σ, Rg, R�〉

for 3-valued �Lukasiewicz logic is such that Rg consists, besides the rules of Defini-
tion 8.3.3, of the following inference rules

• 〈∅, (ξ1 ⇒ (ξ2 ⇒ ξ1))〉;
• 〈∅, ((ξ1 ⇒ ξ2)⇒ ((ξ2 ⇒ ξ3)⇒ (ξ1 ⇒ ξ3)))〉;
• 〈∅, ((¬ ξ1)⇒ (¬ ξ2))⇒ (ξ2 ⇒ ξ1))〉;
• 〈∅, (((ξ1 ⇒ (¬ ξ1))⇒ ξ1)⇒ ξ1)〉;
• 〈{ξ1, (ξ1 ⇒ ξ2)}, ξ2〉;

and R� = Rg. ∇
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Example 8.3.5 Recall Example 2.2.7. A modulated Hilbert calculus

H = 〈Σ, Rg, R�〉
for 3-valued Gödel logic is such that Rg consists, besides the rules of Defini-
tion 8.3.3, of the following inference rules

• 〈∅, (ξ1 ⇒ (ξ2 ⇒ ξ1))〉;
• 〈∅, ((ξ1 ⇒ ξ2)⇒ ((ξ1 ⇒ (ξ2 ⇒ ξ3))⇒ (ξ1 ⇒ ξ3)))〉;
• 〈∅, (ξ1 ⇒ (ξ2 ⇒ (ξ1 ∧ ξ2)))〉;
• 〈∅, ((ξ1 ∧ ξ2)⇒ ξ1)〉;
• 〈∅, ((ξ1 ∧ ξ2)⇒ ξ2)〉;
• 〈∅, (ξ1 ⇒ (ξ1 ∨ ξ2))〉;
• 〈∅, (ξ2 ⇒ (ξ1 ∨ ξ2))〉;
• 〈∅, ((ξ1 ⇒ ξ3)⇒ ((ξ2 ⇒ ξ3)⇒ ((ξ1 ∨ ξ2)⇒ ξ3)))〉;
• 〈∅, ((ξ1 ⇒ ξ2)⇒ ((ξ1 ⇒ (¬ξ2))⇒ (¬ξ1)))〉;
• 〈∅, (ξ1 ⇒ ((¬ξ1)⇒ ξ2))〉;
• 〈∅, (((¬ ξ1)⇒ ξ2)⇒ (((ξ2 ⇒ ξ1)⇒ ξ2)⇒ ξ2))〉;
• 〈{ξ1, (ξ1 ⇒ ξ2)}, ξ2〉;

and R� = Rg. ∇

Next we present the notion of modulated Hilbert calculus morphism. In the
sequel we consider modulated Hilbert calculi H = 〈Σ, Rg, R�〉, possibly with su-
perscripts.

Definition 8.3.6 A modulated Hilbert calculus morphism h : H → H ′ is a pair
h = 〈ĥ, ȟ〉 where

• ĥ : Σ → Σ′ is a modulated signature morphism such that

– ĥ(r) ∈ Rg ′ for every r ∈ Rg;
– ĥ(r) ∈ R�′ for every r ∈ R�;

• ȟ : gL(Σ′) → gL(Σ) is a map such that

– gH ȟ(ψ′) whenever gH′ ψ′ and ȟ(ϕ′) gH ȟ(ψ′) whenever ϕ′ gH′ ψ′;

– ȟ(ϕ′) �H ȟ(ψ′) whenever ϕ′ �H′ ψ′;

– ȟ is left adjoint of ĥ;
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– (ȟ(ϕ′
1)&ȟ(ϕ′

2)) = ȟ(ϕ′
1&′ϕ′

2);

– ĥ(c(ȟ(ϕ′
1), . . . , ȟ(ϕ′

k))) �H′ ĥ(c)(ϕ′
1, . . . , ϕ

′
k),

where c is any constructor in C. ∇

A modulated Hilbert calculus morphism h : H → H ′ is a pair. The first com-
ponent, ĥ, is a modulated signature morphism. The second component, ȟ, is a
(contravariant) map that relates ground formulas of both calculi. For a diagram-
matic perspective see Figure 8.14.

H
h $$ H ′

Σ
ĥ $$ Σ′ gL(Σ) gL(Σ′)ȟ&&

Figure 8.14: Components of Hilbert calculus morphism

These two components impose several conditions on both calculi. The trans-
lation of every global inference rule in H is also a global inference rule in H ′.
Similarly with respect to local inference rules in H . As in the case of higher-order
Hilbert calculi introduced in Chapter 7, we could require a weaker condition,
namely, that the translation of the conclusion of each rule is derivable from the
translation of the corresponding set of premises. As mentioned therein, noting
changes with respect to fibring when we adopt this stronger notion of morphism.
The maps ĥ′ and ĥ′′ preserve theorems and global and local derivations from
singletons. The left adjoint condition on ȟ means that

ϕ′ �H′ ĥ(ȟ(ϕ′)) and ȟ(ĥ(ϕ)) �H ϕ

for every ϕ′ ∈ gL(Σ′) and ϕ ∈ gL(Σ). This map can be seen as a map relating
truth values (formulas) in the Lindendaum-Tarski algebras that will be discussed
when studying preservation properties.

The more complex notion of Hilbert calculus morphism turns out to be the
adequate one for fulfilling the requirements that are necessary for preserving con-
gruence by fibring later on. Recall that preservation of congruence was important
for establishing completeness preservation, in Chapter 3. Therein, preservation of
congruence was obtained by sharing implication and equivalence. This may not be
now the best solution, since sharing of implication and equivalence leads in most
cases to collapse.

The following facts will be useful later on.

Lemma 8.3.7 Let h : H → H ′ be a modulated Hilbert calculus morphism.

1. If ȟ is surjective then ȟ(ĥ(ϕ)) ∼=H ϕ, for every ϕ ∈ gL(Σ).

2. ȟ(Γ′) gH ȟ(ϕ′) whenever Γ′ gH′ ϕ′, for every Γ′ ∪ {ϕ′} ⊆ gL(Σ′).
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3. ȟ(Γ′) �H ȟ(ϕ′) whenever Γ′ �H′ ϕ′, for every Γ′ ∪ {ϕ′} ⊆ gL(Σ′).

Proof.
1. The left adjoint condition ensures that ȟ(ĥ(ϕ)) �H ϕ. Since ȟ is surjective,

there is ϕ′ ∈ gL(Σ′) such that ȟ(ϕ′) = ϕ. Using the left adjoint condition,

ϕ′ �H′ ĥ(ȟ(ϕ′)).

By the property of ȟ (see Definition 8.3.6), it follows that ȟ(ϕ′) �H (̌ĥ(ȟ(ϕ′))),
that is, ϕ �H ȟ(ĥ(ϕ)).

2. Using compactness, if Γ′ gH′ ϕ′, then there is a finite set Ψ′ ⊆ Γ′ such that
Ψ′ gH′ ϕ′. If the result holds for finite sets, then ȟ(Ψ′) gH ȟ(ϕ′) and, using,
monotonicity,

ȟ(Γ′) gH ȟ(ϕ′).

We now prove that the result holds for finite sets. When Γ′ is empty or singular,
the result follows from Definition 8.3.6. Assume now that Γ′ = {ϕ′

1, . . . , ϕ
′
k}, with

k ≥ 2.
In the following recall that each local derivation is also a global derivation and

observe that, in every modulated Hilbert calculus H , {(ψ1& . . .&ψk)} �H ψj and
{ψ1, . . . , ψk} �H (ψ1& . . .&ψk), k ≥ 2. Hence, (ϕ′

1&′ . . .&′ϕ′
k) �H′ ϕ′

j , for each
1 ≤ j ≤ k. Since, {ϕ′

1, . . . , ϕ
′
k} �H′ ϕ′, we then conclude

(ϕ′
1&′ . . .&′ϕ′

k) �H′ ϕ′.

By Definition 8.3.6, ȟ(ϕ′
1&′ . . .&′ϕ′

k) �H ȟ(ϕ′). Moreover,

{ȟ(ϕ′
1), . . . , ȟ(ϕ′

k)} �H (ȟ(ϕ′
1)& . . .&ȟ(ϕ′

k)).

Since (ȟ(ϕ′
1)& . . .&ȟ(ϕ′

k)) = ȟ(ϕ′
1&′ . . .&′ϕ′

k), we conclude that

{ȟ(ϕ′
1), . . . , ȟ(ϕ′

k)} �H ȟ(ϕ′).

3. The proof is similar to the one presented above. �

We now prove that derivations are preserved by modulated Hilbert calculus
morphisms, when they are injective for schema variables and verify a condition
involving safe-relevant morphisms.

Proposition 8.3.8 Let h : H → H ′ be a modulated Hilbert calculus morphism
such that ĥ is injective for Ξ and ĥ(C) ⊆ s′(C̆′) whenever ĥ(Ξ) ∩ s′(Ξ̆′) �= ∅ for
every s′ : Σ̆′ → Σ′ in S′. Let Γ ∪ {ϕ} ⊆ L(Σ) and further assume that idΣ ∈ S if
some formula in Γ ∪ {ϕ} involves schema variables.

1. If Γ gH ϕ then ĥ(Γ) gH′ ĥ(ϕ).

2. If Γ �H ϕ then ĥ(Γ) �H′ ĥ(ϕ).
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Proof. It is easily established by induction that if σ is a substitution over Σ then
the substitution ĥ(σ) over Σ′, defined as ĥ(σ)(ĥ(ξ)) = ĥ(σ(ξ)) and ĥ(σ)(ξ′) = ξ′

whenever ξ′ ∈ Ξ′ \ ĥ(Ξ), is such that

ĥ(σ(ψ)) = ĥ(σ)(ĥ(ψ))

for every ψ ∈ L(Σ). Note that ĥ(σ) is well defined because ĥ is injective for Ξ.
We now prove that if idΣ ∈ S and σ is a substitution over Σ safe for Φ then the

substitution ĥ(σ) over Σ′, defined as above, is safe for ĥ(Φ). Consider s′ : Σ̆′ → Σ′

in S′ and ξ̆′ ∈ Ξ̆′ such that

s′(ξ̆′) ∈ Var(ĥ(Φ)) = ĥ(Var(Φ)) ⊆ ĥ(Ξ).

Let us consider
ĥ(σ)(s′(ξ̆′)) = ĥ(σ)(ĥ(ξ)) = ĥ(σ(ξ))

where ξ ∈ Ξ is such that s′(ξ̆′) = ĥ(ξ). Since ĥ(ξ) = s′(ξ̆′) ∈ ĥ(Var(Φ)) and ĥ is
injective, ξ ∈ Var(Φ). Moreover, since σ is safe for Φ, idΣ ∈ S and idσ(ξ) = ξ ∈
Var(Φ) then

σ(idΣ(ξ)) = σ(ξ) ∈ L(Σ, idΣ)

that is,
σ(ξ) = c(ϕ1, . . . , ϕk)

for some constructor in Σ (including &). From s′(ξ̆′) ∈ ĥ(Ξ) it follows that ĥ(C) ⊆
s′(C̆′). Thus, ĥ(σ(ξ)) = ĥ(c)(ĥ(ϕ1), . . . , ĥ(ϕk)) ∈ L(Σ′, s′). Therefore ĥ(σ) is safe
for ĥ(Φ).

Observe that if σ1, σ2 are substitutions over Σ and σ1 is safe for Γ, then the
substitution σ2 ◦ σ1 such that

σ2 ◦ σ1(ξ) = σ2(σ1(ξ))

for each ξ ∈ Ξ is also safe for Γ. Using this result it is easy to prove that, for
every substitution σ over Σ, if ϕ1 . . . ϕn is a global (local) derivation from Γ in
H then σ(ϕ1) . . . σ(ϕn) is also a global (local) derivation from Γ in H . Hence, if
Γ gH ϕ and Γ ∪ {ϕ} ⊆ gL(Σ), there is a global derivation of ϕ from Γ where all
the formulas are in gL(Σ). Similarly with respect to local derivations.

In the following we prove 1. and 2. by induction on the length of a derivation
of ϕ from Γ.

1. Base: Let Γ∪{ϕ} ⊆ L(Σ) and assume there is a derivation of ϕ from Γ with
length 1. If ϕ ∈ Γ, ĥ(ϕ) ∈ ĥ(Γ) and we are done. Otherwise, there is 〈∅, δ〉 ∈
Rg and a safe substitution σ for δ such that, σ(δ) = ϕ. From Definition 8.3.6,
〈∅, ĥ(δ)〉 ∈ Rg ′. Consider the substitution ĥ(σ) as defined above. We have that

ĥ(σ)(ĥ(δ)) = ĥ(σ(δ)) = ĥ(ϕ).
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If ϕ involves a schema variable, idΣ ∈ S thus, as proved above, ĥ(σ) is safe for
ĥ(δ).

We now prove that ĥ(σ) is safe for ĥ(δ) when ϕ ∈ gL(Σ).
(i) Given s′ ∈ S′ and s′(ξ̆) ∈ Var(ĥ(δ)) = ĥ(Var(δ)) ⊆ ĥ(Ξ), we have that

ĥ(σ)(s′(ξ̆)) = ĥ(σ)(ĥ(ξ)) = ĥ(σ(ξ))

for some ξ ∈ Var(δ) and ĥ(C) ⊆ s′(C̆′).
(ii) We can assume that σ(ξ) /∈ Ξ, hence σ(ξ) = c(ϕ1, . . . , ϕk) for some con-

structor in Σ and therefore

ĥ(σ(ξ)) = ĥ(c)(ĥ(ϕ1), . . . , ĥ(ϕk)) ∈ L(Σ′, s′).

Hence, ĥ(Γ) gH′ ĥ(ϕ).
Step: Let Γ ∪ {ϕ} ⊆ L(Σ) and assume there is a derivation ϕ1 . . . ϕn of ϕ from

Γ with n > 1 (recall that ϕn is ϕ). In the interesting case, there is 〈Δ, δ〉 ∈ Rg and
a safe substitution σ for Δ∪ {δ} such that, σ(δ) = ϕ and σ(Δ) ⊆ {ϕ1, . . . , ϕn−1}.
Consider ĥ(σ) as above.

If some formula in Γ∪{ϕ} involves a schema variable, idΣ ∈ S thus, again, ĥ(σ)
is safe for ĥ(Δ ∪ {δ}).

Assume now that Γ ∪ {ϕ} ⊆ gL(Σ). Given s′ ∈ S′, and

s′(ξ̆) ∈ Var(ĥ(Δ ∪ {δ})) = ĥ(Var(Δ ∪ {δ})) ⊆ ĥ(Ξ)

we have
ĥ(σ)(s′(ξ̆)) = ĥ(σ)(ĥ(ξ)) = ĥ(σ(ξ))

for some ξ ∈ Var(Δ∪{δ}) and ĥ(C) ⊆ s′(C̆′). As remarked above, we can assume
that ϕ1, . . . , ϕn ∈ gL(Σ) and it is again possible to choose σ such that σ(ξ) /∈ Ξ.
Thus,

ĥ(σ(ξ)) = ĥ(c)(ĥ(ϕ1), . . . , ĥ(ϕk)).

Hence, ĥ(σ(ξ)) ∈ L(Σ′, s′) and therefore ĥ(σ) is safe for ĥ(Δ ∪ {δ}).
From Definition 8.3.6, 〈ĥ(Δ), ĥ(δ)〉 ∈ Rg′. We have that ĥ(σ)(ĥ(Δ)) = ĥ(σ(Δ)),

ĥ(σ(Δ)) ⊆ {ĥ(ϕ1), . . . , ĥ(ϕn−1)} and ĥ(σ)(ĥ(δ)) = ĥ(σ(δ)) = ĥ(ϕ). By the induc-
tion hypothesis

ĥ(Γ) gH′ ĥ(ϕi)

for 1 ≤ i ≤ n− 1. Therefore, ĥ(Γ) gH′ ĥ(ϕ).
2. The proof uses 1. and is similar to the proof above. �

As expected, modulated Hilbert calculi and their morphisms constitute a cate-
gory.

Prop/Definition 8.3.9 Modulated Hilbert calculi and their morphisms consti-
tute the category mHil.
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Proof. Straightforward, using Definitions 8.3.3 and 8.3.6 and Proposition 8.3.8. �

We can now describe the modulated fibring mechanism for (modulated) Hilbert
calculi. As previously done for interpretation systems, we must start by defin-
ing a bridge. The bridge allows a mild relationship between the formulas in the
modulated Hilbert calculi that we want to combine as well as between their con-
sequence relations. Again modulated fibring appears as a pushout in the category
of modulated Hilbert calculi and their morphisms.

Definition 8.3.10 A bridge between modulated Hilbert calculi H ′ and H ′′ is a
diagram

β = 〈f ′ : H̆ → H ′, f ′′ : H̆ → H ′′〉
in mHil such that

• Ξ̆ = ∅;
• S′ = S′′ = ∅ or idΣ′ ∈ S′ and idΣ′′ ∈ S′′;

• f̂ ′ and f̂ ′′ are injective and f̌ ′ and f̌ ′′ are surjective. ∇

A bridge between modulated Hilbert calculi H ′ and H ′′ (see Figure 8.15) con-
sists of two modulated Hilbert calculus morphisms f ′ and f ′′ from a calculus H̆
respectively to H ′ and H ′′.

H̆
f ′

����
��

��
�� f ′′

��















H ′ H ′′

Figure 8.15: Bridge of Hilbert calculi

The covariant components of f ′ and f ′′ are injective and the contravariant
components of f ′ and f ′′ are surjective. The conditions on H̆, H ′ and H ′′ ensure
that the modulated fibring can be obtained as a pushout of the bridge.

Prop/Definition 8.3.11 The modulated fibring of modulated Hilbert calculi H ′

and H ′′ by a bridge β is a pushout of β in mHil, if the pushout of β exists.

Proof. Consider the bridge β = 〈f ′ : H̆ → H ′, f ′′ : H̆ → H ′′〉. The pushout

〈g′ : H ′ → H, g′′ : H ′′ → H〉

of β is defined as follows (see Figure 8.16):

• 〈ĝ′ : Σ′ → Σ, ĝ′′ : Σ′′ → Σ〉 is a pushout in Sig of Sg(β);
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H̆
f ′

����
��

��
�� f ′′

��















H ′

g′ ���
��

��
��

� H ′′

g′′""22
22

22
22

H

Figure 8.16: Pushout of a bridge of Hilbert calculi

• ǧ′ and ǧ′′ are inductively defined as follows where, for simplicity, we only
include the inductive steps related to ǧ′ (the ones for ǧ′′ are similar):

– ǧ′(ĝ′(c′)) = c′ and ǧ′(ĝ′′(c′′)) = f̂ ′(f̌ ′′(c′′));

– ǧ′(ĝ′(c′)(�ϕ)) = c′(ǧ′(�ϕ)) and ǧ′(ĝ′′(c′′)(�ϕ)) = f̂ ′(f̌ ′′(c′′(ǧ′′(�ϕ))));

– ǧ′(ϕ1&ϕ2) = ǧ′(ϕ1)&′ǧ′(ϕ2);

• R� includes ĝ′(R�) ∪ ĝ′′(R�′′), & elimination and introduction plus the fol-
lowing rules, for any δ ∈ gL(Σ) and �δ a sequence over gL(Σ):

– 〈{δ}, ĝ′(ǧ′(δ))〉;
– 〈{ĝ′(c′)(ĝ′(ǧ′(�δ)))}, ĝ′(c′)(�δ)〉;
– similar rules for ĝ′′ and ǧ′′;

• Rg = ĝ′(Rg ′) ∪ ĝ′′(Rg ′′) ∪R�.

To prove that 〈g′ : H ′ → H, g′′ : H ′′ → H〉 is indeed a pushout in mHil of f ′ and
f ′′, it is important to take into account the following facts. Since Ξ̆ = ∅, we can
prove that f̂ ′, f̂ ′′, ĝ′ and ĝ′′ are monotonic. Observe also that

ǧ′(ĝ′(ϕ′)) = ϕ′

for each ϕ′ ∈ gL(Σ′). The same applies to ǧ′′. Moreover,

ǧ′′(ĝ′(ϕ′)) = f̂ ′′(f̌ ′(ϕ′))

for each ϕ′ ∈ gL(Σ′) is easily established by induction. Similarly,

ǧ′(ĝ′′(ϕ′′)) = f̂ ′(f̌ ′′(ϕ′′))

for each ϕ′′ ∈ gL(Σ′′).
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1. We first prove that g′ ◦ f ′ = g′′ ◦ f ′′. From the pushout in mSig we get
ĝ′ ◦ f̂ ′ = ĝ′′ ◦ f̂ ′′. We prove

f̌ ′′(ǧ′′(ϕ)) ∼=H̆ f̌ ′(ǧ′(ϕ))

for each ϕ ∈ gL(Σ), by structural induction. Recall that f̌ ′ and f̌ ′′ are surjective.
Base: If ϕ = ĝ′(c′) = ĝ′′(c′′), there is c̆ ∈ C̆0 such that

f̂ ′(c̆) = c′ and f̂ ′′(c̆) = c′′.

Hence, f̌ ′(c′) = f̌ ′(f̂ ′(c̆)) and f̌ ′′(c′′) = f̌ ′′(f̂ ′′(c̆)). Using Lemma 8.3.7, f̌ ′(c′) ∼=H̆

c̆ and f̌ ′′(c′′) ∼=H̆ c̆. Since f̌ ′′(ǧ′′(ϕ)) = f̌ ′′(c′′) and f̌ ′(ǧ′(ϕ)) = f̌ ′(c′), it follows
that

f̌ ′′(ǧ′′(ϕ)) ∼=H̆ f̌ ′(ǧ′(ϕ)).

If ϕ = ĝ′(c′) and ϕ /∈ ĝ′′(C′′
0 ), then we have f̌ ′′(ǧ′′(ϕ)) = f̌ ′′(f̂ ′′(f̌ ′(c′))) and

f̌ ′(c′) = f̌ ′(ǧ′(ϕ)). Using again Lemma 8.3.7,

f̌ ′′(ǧ′′(ϕ)) ∼=H̆ f̌ ′(ǧ′(ϕ)).

The case ϕ = ĝ′′(c′′) /∈ ĝ′(C′
0) is similar.

Step: If ϕ = ĝ′(c′)(�ϕ) where ĝ′(c′) = ĝ′′(c′′), then

f̌ ′(ǧ′(ĝ′(c′)(�ϕ))) = f̌ ′(c′(ǧ′(�ϕ))) and f̌ ′′(f̂ ′′(f̌ ′(c′(ǧ′(�ϕ))))) = f̌ ′′(ǧ′′(ĝ′(c′)(�ϕ))).

Hence, again by Lemma 8.3.7,

f̌ ′(ǧ′(ĝ′(c′)(�ϕ))) ∼=H̆ f̌ ′′(ǧ′′(ĝ′(c′)(�ϕ))).

If ϕ = ĝ′(c′)(�ϕ) where ĝ′(c′) /∈ ĝ′′(C′′
k ), following a similar reasoning we can

conclude that

f̌ ′′(ǧ′′(ĝ′(c′)(�ϕ)) ∼=H̆ f̌ ′(ǧ′(ĝ′(c′)(�ϕ))).

The case ϕ = ĝ′′(c′′) /∈ ĝ′(C′
k) is again similar.

Finally, the case ϕ = (ϕ1&ϕ2) easily follows from the induction hypothesis, and
the definitions of modulated Hilbert calculi morphism, ǧ′ and ǧ′′.

2. We now refer to the proof that g′ and g′′ and indeed morphisms in mHil.
Most conditions follow straightforwardly from the definition of ǧ′ and ǧ′′.

The preservation of derivations by ǧ′ and ǧ′′ follows by induction in the length
of derivations and uses the fact that given a substitution σ : Ξ → L(Σ) safe for
ĝ′(Γ′) then the substitution σ′ : Ξ′ → L(Σ′) such that

σ′(ξ′) = ǧ′(σ(ĝ′(ξ′)))

is safe for Γ′ and
σ′(ϕ′) = ǧ′(σ(ĝ′(ϕ′))).

A similar substitution σ′′ : Ξ′′ → L(Σ′′) is also considered.
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The proof also uses the requirements on S′ and S′′, the properties of the mor-
phisms f ′ and f ′′ and, at some point of the step, it also uses 1.

3. Universal property. Let h′ : H ′ → H ′′′ and h′′ : H ′′ → H ′′′ be Hilbert
calculus morphisms such that h′ ◦ f ′ = h′′ ◦ f ′′.
Existence. Let h : H → H ′′′ be as follows:

− ĥ is the unique morphism in Sig such that ĥ ◦ ĝ′ = ĥ′;

− ĥ ◦ ĝ′′ = ĥ′′;

− ȟ is such that ȟ(ϕ′′′) = ĝ′(ȟ′(ϕ′′′))&ĝ′′(ȟ′′(ϕ′′′)).

It is straightforward to show that h is a Hilbert calculus morphism. The proof
uses, in particular, monotonicity of ĝ′ and ĝ′′.

Next we prove that ǧ′(ȟ(ϕ′′′)) ∼=�
H′ ȟ′(ϕ′′′).

(i) We have that

ǧ′(ȟ(ϕ′′′)) = ǧ′(ĝ′(ȟ′(ϕ′′′))&ĝ′′(ȟ′′(ϕ′′′)))
= ǧ′(ĝ′(ȟ′(ϕ′′′)))&′ǧ′(ĝ′′(ȟ′′(ϕ′′′))))

thus, using &′ elimination, it follows that

ǧ′(ȟ(ϕ′′′)) �H′ ǧ′(ĝ′(ȟ′(ϕ′′′)))

that is, ǧ′(ȟ(ϕ′′′)) �H′ ȟ′(ϕ′′′).
(ii) We have that ȟ′(ϕ′′′) �H′ f̂ ′(f̌ ′(ȟ′(ϕ′′′))). Since

f̌ ′(ȟ′(ϕ′′′)) ∼=�
H̆
f̌ ′′(ȟ′′(ϕ′′′))

using Lemma 8.3.8, we get

f̂ ′(f̌ ′(ȟ′(ϕ′′′))) ∼=�
H′ f̂ ′(f̌ ′′(ȟ′′(ϕ′′′)))

that is,
f̂ ′(f̌ ′(ȟ′(ϕ′′′))) ∼=�

H′ ǧ′(ĝ′′(ȟ′′(ϕ′′′))).

Therefore, ȟ′(ϕ′′′) �H′ ǧ′(ĝ′′(ȟ′′(ϕ′′′))). Since, ȟ′(ϕ′′′) = ǧ′(ĝ′(ȟ′(ϕ′′′)), using &′

introduction,
ȟ′(ϕ′′′) �H′ ǧ′(ĝ′(ȟ′(ϕ′′′))&′ǧ′(ĝ′′(ȟ′′(ϕ′′′)))

that is, ȟ′(ϕ′′′) �H′ ǧ′(ȟ(ϕ′′′)).
Uniqueness. Let k : H → H ′′′ be such that k ◦ g′ = h′ and k ◦ g′′ = h′′. The
equality ĥ(ϕ) = k̂(ϕ), for each ϕ ∈ L(Σ), easily follows by induction.

We now prove that
ǩ(ϕ′′′) ∼=�

H ȟ(ϕ′′′)

for each ϕ ∈ gL(Σ).
We first prove that

ǩ(ϕ′′′) ∼=�
H ĝ′(ǧ′(k(ϕ′′′)))&ĝ′′(ǧ′′(k(ϕ′′′))).
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(i) We have that ǩ(ϕ′′′) �H ĝ′(ǧ′(k(ϕ′′′))) and ǩ(ϕ′′′) �H ĝ′′(ǧ′′(k(ϕ′′′))). Thus,

ǩ(ϕ′′′) �H ĝ′(ǧ′(k(ϕ′′′)))&ĝ′′(ǧ′′(k(ϕ′′′))).

(ii) Assuming that k(ϕ′′′) = ĝ′(c′)(�ϕ), we have

ĝ′(ǧ′(ĝ′(c′)(�ϕ)))&ĝ′′(ǧ′′(ĝ′(c′)(�ϕ))) �H ĝ′(ǧ′(ĝ′(c′)(�ϕ))).

Since ĝ′(ǧ′(ĝ′(c′)(�ϕ))) = ĝ′(c′(ǧ′(�ϕ))) and ĝ′(c′(ǧ′(�ϕ))) �H ĝ′(c′)(�ϕ) we conclude

ĝ′(ǧ′(k(ϕ′′′)))&ĝ′′(ǧ′′(k(ϕ′′′))) �H ǩ(ϕ′′′)

in this case. A similar conclusion also holds when we consider k(ϕ′′′) = ĝ′′(c′′)(�ϕ).
Hence

ĝ′(ǧ′(k(ϕ′′′)))&ĝ′′(ǧ′′(k(ϕ′′′))) �H ǩ(ϕ′′′).

Using & elimination,

ȟ(ϕ′′′) �H ĝ′(ȟ′(ϕ′′′)) and ȟ(ϕ′′′) �H ĝ′′(ȟ′′(ϕ′′′)).

Moreover, k ◦ g′ = h′ and k ◦ g′′ = h′′, thus

ĝ′(ǧ′(k(ϕ′′′))) ∼=�
H ĝ′(ȟ′(ϕ′′′))

and
ĝ′′(ǧ′′(k(ϕ′′′))) ∼=�

H ĝ′′(ȟ′′(ϕ′′′)).

Therefore, using & introduction, it follows that

ȟ(ϕ′′′) �H ĝ′(ǧ′(k(ϕ′′′)))&ĝ′′(ǧ′′(k(ϕ′′′)))

and we conclude that
ȟ(ϕ′′′) �H ǩ(ϕ′′′).

Reasoning in a similar way, using the fact that ǩ(ϕ′′′) �H ĝ′(ǧ′(k(ϕ′′′))) and
ǩ(ϕ′′′) �H ĝ′′(ǧ′′(k(ϕ′′′))) we conclude ǩ(ϕ′′′) �H ȟ(ϕ′′′). Hence, ǩ(ϕ′′′) ∼=�

H

ȟ(ϕ′′′). �

Observe that it may be the case that there is no pushout of a given bridge β.
We illustrate this situation in Example 8.3.12.

Example 8.3.12 Consider the bridge β = 〈f ′ : H̆ → H ′, f ′′ : H̆ → H ′′〉, pre-
sented in Figure 8.17, where

• C′
0 = {d′, e′}, C′

1 = {c′} and C′
k = ∅ for k ≥ 2;

• C′′
0 = {d′′, e′′}, C′′

1 = {c′′} and C′′
k = ∅ for k ≥ 2, C̆k = ∅ for k ≥ 2, and

Ξ̆ = ∅;
• f̂ ′(d) = d′, f̂ ′(c) = c′ and f̂ ′′(d) = d′′, f̂ ′′(c) = c′′;
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H̆
f ′

��		
		

		
		 f ′′

��















H ′ H ′′

Figure 8.17: Example of a bridge of Hilbert calculi

• f̌ ′(d′) = f̌ ′′(d′′) = f ′(e′) = f̌ ′′(e′′) = d,
f̌ ′(c′(ϕ′)) = (c(f̌ ′(ϕ′)) and f̌ ′′(c′′(ϕ′′)) = (c(f̌ ′′(ϕ′′)).

Let us follow Prop/Definition 8.3.11 to get a pushout

〈g′ : H ′ → H, g′′ : H ′′ → H〉
of β (see Figures 8.18 and 8.19. First,

〈ĝ′ : Σ′ → Σ, ĝ′′ : Σ′′ → Σ〉

is a pushout of 〈f̂ ′ : Σ̆ → Σ′, f̂ ′′ : Σ̆ → Σ′′〉 in mSig. Hence, we can consider

• C0 = {d′|d′′, e′, e′′}, C1 = {c′|c′′};
• ĝ′(c′) = ĝ′′(c′′) = c′|c′′, ĝ′(d′) = ĝ′′(d′′) = d′|d′′, ĝ′(e′) = e′ and ĝ′′(e′′) = e′′.

c
d

f̂ ′

c &→ c′
d &→ d′

""11
11

11
11

11
11

f̂ ′′

c &→ c′′
d &→ d′′

%%<
<<

<<
<<

<<
<<

<

c′
d′, e′

ĝ′

c′ &→ c′|c′′
d′ &→ d′|d′′
e′ &→ e′

##�
��

��
��

��
�

c′′
d′′, e′′

ĝ′′

c′′ &→ c′|c′′
d′′ &→ d′|d′′
e′′ &→ e′′

""**
**

**
**

**

c′|c′′
e′, d′|d′′, e′′

Figure 8.18: Example of a pushout of Hilbert calculi

We now turn our attention to the maps

ǧ′ : gL(Σ)→ gL(Σ′) and ǧ′′ : gL(Σ)→ gL(Σ′′).
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d
c(d)
. . .

d′, e′
c′(d′), c′(e′)

. . .

f̌ ′

c′(d′) &→ c(d)
c′(e′) &→ c(d)
d′, e′ &→ d

. . .

++666666666666666
d′′, e′′

c′′(d′′), c′′(e′′)
. . .

f̌ ′′

c′′(d′′) &→ c(d)
c′′(e′′) &→ c(d)
d′′, e′′ &→ d

. . .

,,CCCCCCCCCCCCCCC

e′, d′|d′′, e′′
c′|c′′(e′)
. . .

ǧ′

c′|c′′(e′) &→ c′(e′)
e′ &→ e′
. . .

;;5555555555555

ǧ′′

c′|c′′(e′) &→ c′(d′)
e′ &→ d′′
. . .

++													

Figure 8.19: Example of a pushout of Hilbert calculi (continued)

In particular, ǧ′(e′) = ǧ′(ĝ′(e′)) = e′ and ǧ′′(e′) = ǧ′′(ĝ′(e′)) = f̂ ′′(f̌ ′(e′)) =
f̂ ′′(d) = d′′.

Lets consider now ǧ′(c′|c′′(e′)). From Prop/Definition 8.3.11, two conditions on
ǧ′(c′|c′′(e′)) should hold. On one hand,

ǧ′(c′|c′′(e′)) = ǧ′(ĝ′(c′)(e′))

= f̂ ′(f̌ ′′(c′′(ĝ′′(e′)
= ĉ′(ĝ′(e′))
= c′(e′)

On the other hand,

ǧ′(c′|c′′(e′)) = ǧ′(ĝ′′(c′′)(e′))

= f̂ ′(f̌ ′′(c′′(ĝ′′(e′)

= f̂ ′(f̌ ′′(c′′(d′′))))

= f̂ ′(c(d)) = c′(d′)

However, in this case, the two values are different, and, as a consequence, the
pushout of β does not exist. ∇

Next we give some examples of modulated fibring of many-valued logics illus-
trating non-collapsing situations. We start by a general result which states how to
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choose a bridge without collapsing, when there is no sharing of constructors. As
we referred above, this is the case in most situations because otherwise collapsing
is inevitable.

Proposition 8.3.13 Let H ′, H ′′ be Hilbert calculi such that

• t′ ∈ C′
0 and t′′ ∈ C′′

0 ;

• C′ and C′′ are isomorphic in Sig;

• idΣ′ ∈ S′ and idΣ′′ ∈ S′′;

and let β = 〈f ′ : H̆ → H ′, f ′′ : H̆ → H ′′〉 be a bridge such that

• C̆0 = {t̆} and C̆k = ∅ for all k �= 0;

• Ξ̆ = ∅ and S̆ = ∅;
• R̆g = R̆� include {〈∅, t̆〉} and the rules for &̆ elimination and introduction;

• f̂ ′(t̆) = t′ and f̂ ′′(t̆) = t′′.

Then the modulated fibring of H ′ and H ′′ by β does not collapse.

Observe that f̌ ′ and f̌ ′′ are constant mappings in the proposition above. This
proposition shows that for all cases of unconstrained modulated fibring (that is,
only verum is shared) it is possible to avoid the collapsing problem. Note that in
C′

0 and C′′
0 we can have propositional symbols. We now sketch the relationships

between the signatures and the sets of formulas of the modulated Hilbert systems
involved in this modulated fibring in Figure 8.20.

Since idΣ′ ∈ S′, idΣ′′ ∈ S′′ we guarantee that all proofs and derivations of the
component logics will be proofs and derivations in the modulated fibring. Observe

t̆

f̂ ′
t̆ &→ t′

--99
99

99
99

99

f̂ ′′
t̆ &→ t′′

33,
,,

,,
,,

,,
,

t′
. . .

ĝ′

t′ &→ t′|t′′
. . . 44:

::
::

::
::

t′′
. . .

ĝ′′

t′′ &→ t′|t′′
. . .55;;

;;
;;
;;
;

t′|t′′
. . .

t̆
. . .

t′
ϕ′

f̌ ′
c′(�ϕ), t′ &→ t̆

99����������
t′′
ϕ′′

f̌ ′′
c′′(�ψ), t′′ &→ t̆

::AAAAAAAAA

t′|t′′
ϕ

ǧ′

t′|t′′ &→ t′
. . .

::AAAAAAAAA

ǧ′′

t′|t′′ &→ t′′
. . .

99���������

Figure 8.20: Non-collapsing unconstrained fibring
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also that the requirement idΣ′ ∈ S′, idΣ′′ ∈ S′′ does not change the consequence
relations of H ′ and H ′′. This requirement only prepares the Hilbert calculi for the
combination. We now instantiate Proposition 8.3.13 for several cases.

Example 8.3.14 Assume modulated Hilbert calculi for classical logic, 3-valued
�Lukasiewicz logic, 3-valued Gödel logic and intuitionistic logic similar to the ones
already presented but also including verum, the constructors ∧ and ∨ of arity 2 and
appropriate local derivation rules to cope with verum and such that signature iden-
tities are safe-relevant morphisms. By choosing the bridge as in Proposition 8.3.13:

(i) we do not get the collapse between classical and 3-valued �Lukasiewicz logics;

(ii) we do not get the collapse between classical and 3-valued Gödel logics;

(iii) we avoid the collapsing between classical and intuitionistic logics. ∇

We now show that the example of collapse of classical and intuitionistic logics
given in [106] can be avoided in the present context. The example also allows a
better understanding of safe substitutions.

Example 8.3.15 Consider the modulated fibring of the modulated Hilbert calculi
H ′ andH ′′ for intuitionistic logic and classical logic as described in Example 8.3.14,
respectively, with the bridge as in Proposition 8.3.13. Then

(ĝ′(ξ′1)ĝ′(⇒′)ĝ′(ξ′2)) gH (ĝ′(ξ′1)ĝ′′(⇒′′)ĝ′(ξ′2))

does not hold. In particular, the step

((ĝ′(ξ′1)ĝ′(⇒′)ĝ′(ξ′2))ĝ′′(∧′′)ĝ′(ξ′1)) gH ĝ′(ξ′2)

is not possible because the underlying substitution for conjunction ĝ′′(∧′′) elimi-
nation is not safe since ĝ′(ξ′2) does not start with a constructor from H ′′. ∇

We now analyze an example of modulated fibring of Hilbert calculi sharing the
negation constructor.

Example 8.3.16 Let H ′ be the modulated Hilbert calculus for 3-valued Gödel
logic and H ′′ be the Hilbert calculus for classical logic similar to the presented
above but also including constructors t′, t′′ and f ′, f ′′ of arity 0 and the appropriate
derivation rules to cope with this constructors.

Consider a bridge β such that:

• C̆0 = {f̆ , t̆}, C̆1 = {¬̆}, C̆k = ∅ for k ≥ 2, Ξ̆ = ∅, S̆ = ∅;
• S′ = {idΣ′} and S′′ = {idΣ′′};
• f̂ ′(f̆) = f ′, f̂ ′(t̆) = t′ and f̂ ′(¬̆) = ¬′;
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• f̌ ′(ϕ′) =

⎧
⎨

⎩

ϕ̆ if ϕ′ is f̂ ′(ϕ̆)
f̆ if ϕ′ �H′ f ′

t̆ otherwise

• f̂ ′′ and f̌ ′′ defined in a similar way;

• R̆g and R̆� are the translations of the ground instances of Rg ′, Rg′′, R�′, R�′′

by f̌ ′ and f̌ ′′ plus the rules &̆ elimination and introduction.

We prove that f ′ = 〈f̂ ′, f̌ ′〉 is indeed a morphism in mHil. The case of f ′′ is
similar.

1. We first prove that f̌ ′ is preserves the intended derivations. Let ϕ′ �H′ ψ′.
It can be proved that there are derivations for ϕ′ �H′ ψ′ involving only ground
formulas. The proof follows by induction on the length of a ground derivation
ϕ′

1 · · ·ϕ′
n of ψ′ from ϕ′.

Base. Straightforward.
Step. There is a rule

〈{δ′1, . . . , δ′k}, δ′〉
and a ground substitution σ safe for {δ′1, . . . , δ′k, δ′} such that

{σ(δ′1), . . . , σ(δ′k)} ⊆ {ϕ′
1, . . . , ϕ

′
n−1}

and σ(δ′) = ϕ′
n = ψ′. By induction hypothesis, f̌ ′(ϕ′) �

H̆
f̌ ′σ(δ′i)) for i = 1, . . . , k.

Since
〈{f̌ ′(σ(δ′1)), . . . , f̌ ′(σ(δ′k))}, f̌ ′(σ(δ′))〉

is a rule in R̆�, then
f̌ ′(ϕ′) �

H̆
f̌ ′(ψ′)

as intended. The proof is similar in the case of derivations �H′ ψ′ and in the case
of global derivations.

2. We now prove that ϕ′ �H′ f̂ ′(f̌ ′(ϕ′)).
Assume that ϕ′ is f̂ ′(ϕ̆). Then,

f̂ ′(f̌ ′(ϕ′)) = f̂ ′(f̌ ′(f̂ ′(ϕ̆)))
= f̂ ′(ϕ̆)
= ϕ′

and we are done.
Assume now that ϕ′ �H′ f ′. Since f̂ ′(f̌ ′(ϕ′)) = f̂ ′(f̆ ) = f ′, we are done.
Otherwise f̂ ′(f̌ ′(ϕ′)) = f̂ ′(t̆)) = t′. Since �H′ t′, we have ϕ′ �H′ f̂ ′(f̌ ′(ϕ′)).

3. Since f̌ ′(f̂ ′(ϕ̆)) = ϕ̆, we conclude that f̌ ′(f̂ ′(ϕ̆))̆�H ϕ̆.
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4. Finally, we prove that f̂ ′(¬̆(f̌ ′(ϕ′))) �H′ (¬′ ϕ′).
Assume first that ϕ′ is f̂ ′(ϕ̆). Then we have

f̂ ′(¬̆(f̌ ′(ϕ′))) = (
′¬ϕ′).

Therefore, f̂ ′(¬̆(f̌ ′(ϕ′))) �H′ (¬′ ϕ′).
Consider now ϕ′ �H′ f ′. In this case,

(¬′f ′) �H′ (¬′ϕ′) and f̂ ′(¬̆(f̌ ′(ϕ′))) = f̂ ′(¬̆(f̆ ) = (¬′f ′).

Otherwise, f̌ ′(ϕ′) = t̆. Hence f̂ ′(¬̆(t̆)) = (¬′ f̂ ′(t̆)) = (¬′t′). Since, (¬′t′) �H′ f ′

and f ′ �H′ (¬′ϕ′), we are done.

In the modulated fibring we have Ck = ĝ′(C′
k)∪ĝ′′(C′′

k ) and Ξ = ĝ′(Ξ′)∪ĝ′′(Ξ′′),
Rg = ĝ′(Rg ′) ∪ ĝ′′(Rg ′′) ∪ R� and R� includes ĝ′(R�′) ∪ ĝ′′(R�′′), the rules for &
elimination and introduction and the rules for the modulated fibring.

Note that we have two forms of detachment:

〈{ĝ′(ξ′1), (ĝ′(ξ′1)ĝ′(⇒′)ĝ′(ξ′2))}, ĝ′(ξ′2)〉

and
〈{ĝ′′(ξ′′1 ), (ĝ′′(ξ′′1 )ĝ′′(⇒′′)ĝ′′(ξ′′2 ))}, ĝ′′(ξ′′2 )〉

and that we do not have the inference

{ĝ′(ϕ′), (ĝ′(ϕ′)ĝ′′(⇒′′)ĝ′′(ϕ′′))} p ĝ′′(ϕ′′)

for instance, because the substitution of ĝ′′(ξ′′1 ) by ĝ′(ϕ′) is not safe. ∇

We now describe how unconstrained fibring as presented before can be recovered
using modulated fibring.

Remark 8.3.17 Let H ′ and H ′′ be modulated Hilbert calculi with S′ = S′′ = ∅.
Consider the following bridge β:

• C̆0 = {t̆}, C̆k = ∅ for all k �= 0, Ξ̆ = ∅, S̆ = ∅;

• R̆g = R̆� include {〈∅, t̆〉} plus & elimination and introduction;

• f̂ ′(t̆) = t′ and f̂ ′′(t̆) = t′′.

Observe that the mappings f̌ ′ and f̌ ′′ are constant. Then the modulated fibring of
H ′ and H ′′ by a bridge β is a conservative extension of the unconstrained fibring
as presented in Chapter 2 (with no sharing of constructors except verum). ∇
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8.4 Modulated logic systems

As done in previous chapters, we can put together the semantic and the deductive
components presented above, obtaining modulated logic systems and morphisms
between modulated logic systems. As usual, modulated fibring of these logic sys-
tems is a pushout in the corresponding category. As before, modulated logic sys-
tems constitute the right setting to study the preservation by modulated fibring
of properties such as soundness and completeness.

Definition 8.4.1 A modulated logic system is a tuple

L = 〈Σ,M,A,Rg, R�〉

such that 〈Σ,M,A〉 is a modulated interpretation system and 〈Σ, Rg, R�〉 is a
modulated Hilbert calculus. ∇

In the sequel we assume logic systems L = 〈Σ,M,A,Rg, R�〉, possibly with
superscripts. I(L) denotes the modulated interpretation system 〈Σ,M,A〉 and
H(L) denotes the modulated Hilbert calculus 〈Σ, Rg, R�〉. As usual, we write
Γ L ϕ whenever Γ H(L) ϕ and write Γ �L ϕ whenever Γ �I(L) ϕ.

Definition 8.4.2 Let L be a modulated logic system.

• L is globally sound if Γ �gL ϕ whenever Γ gL ϕ for every Γ and ϕ in gL(Σ)
and it is locally sound if Γ ��L ϕ whenever Γ �L ϕ for every Γ and ϕ in gL(Σ).

• L is globally complete if Γ gL ϕ whenever Γ �gL ϕ for every Γ and ϕ in gL(Σ)
and it is locally complete if Γ �L ϕ whenever Γ ��L ϕ for every Γ and ϕ in
gL(Σ). ∇

Next we introduce the notion of modulated logic system morphism. As ex-
pected, such morphism is a modulated interpretation system morphism and a
modulated Hilbert calculus morphism. However it is also necessary that a partic-
ular condition relating both holds. This additional requirement will be referred to
as soundness condition.

Definition 8.4.3 A modulated logic system morphism h : L→ L′ is a tuple

h = 〈ĥ, h, ḣ, ḧ, ȟ〉

where

• 〈ĥ, h, ḣ, ḧ〉 is a modulated interpretation system morphism from I(L) to
I(L′);
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• 〈ĥ, ȟ〉 is a modulated Hilbert calculus morphism from H(L) to H(L′) such
that

ḧm′([[ϕ′]]m′) ∼=h(m′) [[ȟ(ϕ′)]]h(m′)

for every ϕ′ ∈ gL(Σ′) and m′ ∈M ′. ∇

Prop/Definition 8.4.4 Modulated logic systems and their morphisms, with com-
position and identity maps are defined as expected, constitute the category mLog.

∇

Let Int : mLog → mInt and Hil : mLog → mHil be the functors that
associate to each logic system L the underlying interpretation system I(L) and
the underlying Hilbert calculus, H(L). A bridge between two logic systems is now
defined as expected using bridges between the interpretation and Hilbert systems
involved.

Definition 8.4.5 A bridge between logic systems L′ and L′′ is a diagram

β = 〈f ′ : L̆→ L′, f ′′ : L̆→ L′′〉
in mLog such that

• Int(β) = 〈Int(f ′) : I(L̆) → I(L′), Int(f ′′) : I(L̆) → I(L′′)〉
is a bridge in mInt;

• Hil(β) = 〈Hil(f ′) : H(L̆) → H(L′), Hil(f ′′) : H(L̆) → H(L′′)〉
is a bridge in mHil. ∇

As expected, a bridge β = 〈f ′ : L̆→ L′, f ′′ : L̆→ L′′〉 between two logic systems
L′ and L′′ constitutes a bridge between the underlying interpretation systems and
a bridge between the underlying Hilbert calculi (see Figure 8.21).

Again modulated fibring between logic systems appears as a pushout in the
category of logic systems.

L̆
f ′

��##
##

##
## f ′′

..C
CC

CC
CC

C

L′ L′′

Int $$

I(L)
Int(f ′)

<<DD
DD

DD
DD Int(f ′′)

���
��

��
��

�

I(L′) I(L′′)

L̆
f ′

��##
##

##
## f ′′

..C
CC

CC
CC

C

L′ L′′

Hil $$

H(L)
Hil(f ′)

�����
��

��
�� Hil(f ′′)

��







H(L′) H(L′′)

Figure 8.21: Forgetful functors
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Prop/Definition 8.4.6 The modulated fibring of logic systems L′ and L′′ by a
bridge β = 〈f ′ : L̆→ L′, f ′′ : L̆→ L′′〉 is a pushout of β in mLog, if the pushout
exists.

Proof. The pushout 〈g′ : L′ → L, g′′ : L′′ → L〉 (see Figure 8.22) is such that:

L̆
f ′

��##
##

##
## f ′′

..C
CC

CC
CC

C

L′

g′ ..C
CC

CC
CC

L′′

g′′����
��

��
��

L

Figure 8.22: Pushout of logic systems

• 〈Int(g′) : I(L′) → I(L), Int(g′′) : I(L′′) → I(L)〉 is a modulated fibring in
Int of Int(β);

• 〈Hil(g′) : H(L′) → H(L), Hil(g′′) : H(L′′) → H(L)〉 is a modulated fibring
in mHil of H(β).

We show g̈′′m([[γ]]m) ∼=g′′(m) [[ǧ′′(γ)]]g′(m) by induction on the structure of γ. We
prove the base when γ is ĝ′(c′) with c′ ∈ C′

0:

g̈′′m([[ĝ′(c′)]]m) ∼= g̈′′m(ġ′m([[c′]]g′(m)))
∼= ḟ ′′

f ′(g′(m))(f̈
′
g′(m)([[c

′]]g′(m)))
∼= ḟ ′′

f ′′(g′′(m))([[f̌
′(c′)]]f ′′(g′′(m)))

∼= [[f̂ ′′(f̌ ′(c′))]]g′′(m)

∼= [[ǧ′′(γ)]]g′′(m).

�

We now present several illustrating examples.

Example 8.4.7 The diagram 〈f ′ : L̆→ L′, f ′′ : L̆→ L′′〉 such that

• 〈〈f̂ ′, f ′, ḟ ′, f̈ ′〉 : Ĭ(L) → I(L′), 〈f̂ ′′, f ′′, ḟ ′′, f̈ ′′〉 : Ĭ(L) → I(L′′)〉
is the bridge in Proposition 8.2.22;

• 〈〈f̂ ′, f̌ ′〉 : H̆(L) → H(L′), 〈f̂ ′′, f̌ ′′〉 : H̆(L) → H(L′′)〉
is the bridge in Proposition 8.3.13;
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constitutes a bridge that defines the unconstrained modulated fibring of L′ and
L′′. This happens because the soundness condition is verified: let m′ be in M ′

and ϕ′ ∈ gL(Σ′), then f̈ ′
m′([[ϕ′]]m′) =  ̆ = [[f̌ ′(ϕ′)]]f ′(m′). Similarly for f ′′. ∇

In the Example 8.4.7 we proved that the soundness condition holds when consid-
ering the general bridge that can be used to avoid the collapsing when no sharing
of symbols is wanted. We give below another example showing that the soundness
condition holds. The next example refers to modulated fibring of classical and
3-valued Gödel logics sharing negation.

Example 8.4.8 Consider bridge 2 presented in Example 8.3.10 and the bridge
in Example 8.3.16 assuming that C′

0 = {f ′, t′} and C′′
0 = {f ′′, t′′}. We verify

that f ′ (and similarly for f ′′) is a logic system morphism. Let m′ be in M ′ and
ϕ′ ∈ gL(Σ′), then,

(i) if ϕ′ = f̂ ′(ϕ̆) then

f̈ ′
m′([[ϕ′]]m′) = f̈ ′

m′([[f̂ ′(ϕ̆)]]m′ )
∼̆=f̈ ′

m′(ḟ ′
m′([[ϕ̆]]f ′(m′)))

∼̆=[[ϕ̆]]f ′(m′)

= [[f̌ ′(f̂ ′(ϕ̆))]]f ′(m′)

= [[f̌ ′(ϕ′)]]f ′(m′);

(ii) if ϕ′ �H′ f ′ then f̈ ′
m′([[ϕ′]]m′) = f̈ ′

m′(⊥′) = ⊥̆ = [[f̆ ]]f ′(m′) = [[f̌ ′(ϕ′)]]f ′(m′)

using the fact that L′ is sound;

(iii) otherwise ϕ′ ��H′ f ′ and so ϕ′ ���I′ f ′ since L′ is complete. So there exists m′

such that [[ϕ′]]m′ �= ⊥′. Since all constructors in C′ have the same denotation
in all models then [[ϕ′]]m′ �= ⊥′ for all models m′. Therefore

f̈ ′([[ϕ′]]m′) =  ̆
for every m′. Thus, f̈ ′

m′([[ϕ′]]m′) =  ̆ = [[t̆]]f ′(m′) = [[f̌ ′(ϕ′)]]f ′(m′). ∇

Now we establish a new way of considering modulated fibring of logic systems
that satisfy certain requirements. Later we apply the general result to the modu-
lated fibring of 3-valued Gödel and �Lukasiewicz logics. In the following proposition
we consider a logic system with equivalence with the usual meaning (see Defini-
tion 2.3.27).

Prop/Definition 8.4.9 Let L = 〈Σ,M,A,Rd, Rp〉 be a sound and complete logic
system with equivalence and such that M is countable. Then, the logic system

L̃ = 〈Σ̃,M, Ã, R̃d, R̃p〉
defined as follows
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• Σ̃ is equal to Σ except C̃0 = C0∪G whereG is composed by 0-ary constructors
c�b for all possible �b where �b is a sequence 〈b1, b2, . . .〉 such that bi ∈ Bmi ,
assuming that M = {m1,m2, . . .};

• Ã(mi) is equal to A(mi) except that νmi(c�b) = bi;

• R̃� includes R� and

– {〈{c�b}, ϕ〉, 〈{ϕ}, c�b〉 | for all ϕ, c�b with c�b ��
I(L̃)

ϕ, ϕ ��
I(L̃)

c�b}
– {〈{c1�b}, c2�b〉 | for all c1�b, c2�b such that c1�b ��

I(L̃)
c2�b}

– {〈{(�ϕ⇔ �δ)}, (c(�ϕ) ⇔ c(�δ))〉 | for all sequences of formulas �ϕ and �δ};

• R̃g = R̃� ∪Rg ∪ {〈{c1�b}, c2�b〉 | for all c1�b, c2�b such that c1�b �g
I(L̃)

c2�b}

is sound, complete, with congruence and it is a conservative extension of L.

The result in 8.4.9 can be applied to define the modulated fibring of an extension
of Gödel logic and �Lukasiewicz logic sharing conjunction and disjunction.

Example 8.4.10 Let L′ be the logic system for the 3-valued Gödel logic we obtain
from the modulated interpretation system and Hilbert calculus in Examples 8.2.5
and 8.3.5 and let L′′ be the logic system for the 3-valued �Lukasiewicz logic we
obtain from the modulated interpretation system and Hilbert calculus in Exam-
ples 8.2.6 and 8.3.4. Both logic systems are sound, complete, with equivalence
and with a finite set of models (with the same truth values). We also assume that
they have the same set of arity 0 constructors besides t and f . Let G be defined
as in Prop/Definition 8.4.9. Consider L̃′ and L̃′′, the extensions of L′ and L′′,
respectively. Consider the following bridge:

• C̆0 = G ∪ {t, f}, C̆2 = {∧̆, ∨̆}, C̆k = ∅ when k ≥ 3 and k = 1, &̆ is ∧̆, Ξ̆ = ∅
and S̆ = ∅;

• M̆ = A′(M ′)|C̆ ∪A′′(M ′′)|C̆ ;

• R̆� and R̆g are translations of all ground instances of R̃g
′
, R̃�

′
, R̃g

′′
, R̃�

′′
by

f̌ ′ and f̌ ′′;

• f̂ ′ and f̂ ′′ are injections;

• f̌ ′(ϕ′) =
{
ϕ̆ if ϕ′ is f̂ ′(ϕ̆)
cϕ′ otherwise

, similarly for f̌ ′′;

• f ′, ḟ ′
m′ and f̈ ′

m′ are identities, similarly for f ′′, ḟ ′′
m′′ and f̈ ′′

m′′ .
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We show that f ′ is indeed a morphism.
1. We first prove that ϕ′ ∼=�

H(L′) f̂
′(f̌ ′(ϕ′)). If ϕ′ = f̂ ′(ϕ̆) then f̂ ′(f̌ ′(ϕ′)) = ϕ′.

Otherwise f̂ ′(f̌ ′(ϕ′)) = cϕ′ and so ϕ′ ∼=′
d cϕ′ .

2. The condition f̌ ′(f̂ ′(ϕ̆)) �
H(L̆)

ϕ̆ is straightforward.

3. f̂ ′(c̆)(f̂ ′(f̌ ′(ϕ′
1)), f̂ ′(f̌ ′(ϕ′

2))) �H(L′) f̂
′(c̆)(ϕ′

1, ϕ
′
2) because

ϕ′ �H(L′) f̂
′(f̌ ′(ϕ′))

and L′ has congruence. ∇

We synthesize the properties of the modulated fibring of logics in the following
way:

• homogeneous combination mechanism at the deductive level: both original
logics are presented by Hilbert calculi;

• homogeneous combination mechanism at the semantic level: both original
logics are presented by interpretation structures;

• algorithmic combination of logics at the deductive level: given the Hilbert
calculi for the original logics, we know how to define the Hilbert calculus for
the fibring;

• semi-algorithmic combination of logics at the semantic level: given the classes
of interpretation structures for the original logics and a (pre-defined) bridge,
we know how to define the class of interpretation structures for the mod-
ulated fibring, but in many cases the given logics have to be pre-processed
(that is, the interpretation structures for the original logics have to be ex-
tracted).

8.5 Preservation results

In this section we discuss preservation results. In Subsection 8.5.1 we address the
preservation of soundness by modulated fibring. In Subsection 8.5.2 we address
the preservation of completeness by modulated fibring.

8.5.1 Soundness

Herein, we address the problem of soundness preservation. The goal is to establish
a result stating that if we start with sound modulated logic systems then the
modulated logic system obtained by modulated fibring is again sound. To this
end, we first provide a sufficient condition for a logic system to be sound and then
we establish the conditions for soundness preservation in this setting.

In the sequel, we need the following technical lemma stating that safe substitu-
tions preserve entailment.
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Lemma 8.5.1 Let I = 〈Σ,M,A〉 be a modulated interpretation system, ϕ a
formula, Γ a set of formulas and σ a safe substitution for Γ ∪ {ϕ}. Then,

σ(Γ) ��I σ(ϕ) and σ(Γ) �gI σ(ϕ)

whenever Γ ��I ϕ and Γ �gI ϕ, respectively.

Proof. Observe that
[[δ]]ασ

m = [[σ(δ)]]αm

where ασ is an assignment such that ασ(ξ) = [[σ(ξ)]]αm which can be proved by a
straightforward induction. Note also that ασ is safe for Γ∪{δ} whenever α is safe
for σ(Γ ∪ {δ}).

(i) Assume that Γ ��I δ. As a consequence, there is a finite set Φ ⊆ Γ such that
�ϕ∈Φ[[ϕ]]αm ≤ [[δ]]αm for every model m in M and assignment α safe for Φ∪{δ}. Let
m be a model in M and α an assignment over m safe for σ(Φ ∪ {δ}). Hence

�ϕ∈Φ[[ϕ]]ασ
m ≤ [[δ]]ασ

m .

Then �ϕ∈Φ[[σ(ϕ)]]αm ≤ [[σ(δ)]]αm. Therefore σ(Φ) ��I σ(δ) and so σ(Γ) ��I σ(δ).
(ii) The proof for �gI is analogous. �

We now establish the usual sufficient condition for soundness of logic systems:
a modulated logic system L is sound whenever its inference rules are sound. We
express this condition in terms of models for the modulated Hilbert calculus H(L).
We say that a model m is a model for Hilbert calculus H if for every rule 〈Δ, δ〉 ∈
Rg, mα �g δ whenever mα �g γ for every γ ∈ Γ and safe assignment α for Δ∪{δ}
and for every rule 〈Δ, δ〉 ∈ R�, mαb � δ whenever mαb � ϕ for every ϕ ∈ Δ, safe
assignment α for Δ ∪ {δ} and b ∈ Bm.

Proposition 8.5.2 Let L be a modulated logic system such that each m ∈M is a
model for H(L). Then L is sound with respect to global and local and derivations.

Recall that in the logic system L obtained by modulated fibring there are addi-
tional rules that are not inherited from the component logic systems. Therefore,
to ensure the soundness of L, we have to prove that, besides being a model for
each inherited rule, every model in L is also model for these additional rules.

Before establishing the soundness preservation result, we need the next auxiliary
lemma.

Lemma 8.5.3 Let h : L → L′ be a modulated logic system morphism such that
idΣ ∈ S.

1. [[ϕ′]]m′ ∼= [[ĥ(ȟ(ϕ′))]]m′ , whenever ϕ′ ∈ gL(Σ′, ĥ) and ḧm′ is surjective, for
any m′ ∈M ′.

2. [[ϕ′]]m′ ≤′ [[ĥ(ȟ(ϕ′))]]m′ , whenever ϕ′ ∈ gL(Σ′), for any m′ ∈M ′.
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Proof.
1. Noting that ḧm′ is surjective,

[[ĥ(c)(γ′1, . . . , γ
′
k)]]m′

∼= νm′(ĥ(c))([[γ′1]]m′ , . . . , [[γ′k]]m′)
∼= ḣm′(νh(m′)(c)(ḧm′ ([[γ′1]]m′), . . . , ḧm′([[γ′k]]m′)))
∼= ḣm′(νh(m′)(c)([[ȟ(γ′1)]]h(m′), . . . , [[ȟ(γ′k)]]h(m′)))
∼= ḣm′(νh(m′)(c)(ḧm′ (ḣm′([[ȟ(γ′1)]]h(m′))), . . . , ḧm′(ḣm′([[ȟ(γ′k)]]h(m′)))))
∼= ḣm′(νh(m′)(c)(ḧm′ ([[ĥ(ȟ(γ′1))]]m′), . . . , ḧm′([[ĥ(ȟ(γ′k))]]m′)))
∼= νm′(ĥ(c))([[ĥ(ȟ(γ′1))]]m′ , . . . , [[ĥ(ȟ(γ′k))]]m′ )
∼= [[ĥ(c)(ĥ(ȟ(γ′1)), . . . , ĥ(ȟ(γ′k)))]]m′ .

2. [[ϕ′]]m′ ≤′ ḣm′(ḧm′([[ϕ′]]m
′
)) ∼= ḣm′([[ȟ(ϕ′)]]h(m′)) ∼= [[ĥ(ȟ(ϕ′))]]m′ . �

We are now ready to present the main result on preservation of soundness. The
logic system obtained by modulated fibring is sound whenever each component
logic system is sound and, in each component logic system, the identity signature
morphism is one of its safe-relevant morphisms.

Theorem 8.5.4 The modulated logic system L in the modulated fibring

〈g′ : L′ → L, g′′ : L′′ → L〉

of L′ and L′′ by a bridge β is sound, provided that L′ and L′′ are sound, idΣ′ ∈ S′

and idΣ′′ ∈ S′′.

Proof. Taking into account Proposition 8.5.2 we just need to check that each
model in M is a model for H . Let r = 〈Δ, δ〉 ∈ R�.

(i) Assume r is ĝ′(〈Δ′, δ′〉) with 〈Δ′, δ′〉 in R�
′. Then Δ ��L δ by Proposi-

tion 8.2.16 since ḧm is surjective for each m ∈M , ĝ′(Δ′) ��L′ ĝ′(δ′) and idΣ′ ∈ S′.
(ii) Assume r = 〈{γ}, ĝ′(ǧ′(γ))〉 with γ in gL(Σ). Then, using Lemma 8.5.3, we

have
[[γ]]m ≤ [[ĝ′(ǧ′(γ))]]m

for m ∈M . Hence γ ��L ĝ′(ǧ′(γ)).
(iii) Assume r is 〈{ĝ′(c′)(ĝ′(ǧ′(�γ)))}, ĝ′(c′)(�γ)〉 with �γ a sequence over gL(Σ).

Then, by Lemma 8.5.3,

[[ĝ′(c′)(ĝ′(ǧ′(�γ)))]]m ∼= [[ĝ′(c′)(�γ)]]m

for each m ∈M . Hence, ĝ′(c′)(ĝ′(ǧ′(�γ))) ��L ĝ′(c′)(�γ).
For 〈Δ, δ〉 in Rg we can conclude that Δ �gL δ in a similar way. �
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8.5.2 Completeness

In this section we study the completeness property. Our goal is to establish preser-
vation results for this property. The first main result gives a sufficient condi-
tion for completeness of a modulated logic system. This result is presented in
Proposition 8.5.10. The second main result provides sufficient conditions for the
preservation of completeness by modulated fibring. This result is presented in
Proposition 8.5.16.

To deal with completeness issues we adopt the Lindenbaum-Tarski approach.
Therefore we have to guarantee that the Hilbert calculi we work with are Hilbert
calculi with congruence.

Definition 8.5.5 A modulated Hilbert calculus H is said to be a modulated
Hilbert calculus with congruence if, for every globally closed set Γ, c(�ϕ) ∼=Γ c(�δ)
whenever �ϕ ∼=Γ

�δ for every constructor c. A modulated logic system L is a modu-
lated logic system with congruence if H(L) is a Hilbert calculus with congruence. ∇

It is easy to conclude that & is also congruent: assuming that Γ, ϕi �H δi for
i = 1, 2, since Γ, (ϕ1&ϕ2) �H ϕi with i = 1, 2, we get Γ, (ϕ1&ϕ2) �H δi with
i = 1, 2 and therefore

Γ, (ϕ1&ϕ2) �H (δ1&δ2).

For our purposes, it is convenient to assume that the modulated logic systems
we deal with include the special constructor t of arity 0.

Definition 8.5.6 A modulated Hilbert calculus is with true if t ∈ C0 and �H(L) t.
A modulated logic system L is said to be a logic system with true whenever H(L)
is a modulated Hilbert calculus with true and νm(t) =  m for every m in M . ∇

We are now ready to introduce the Lindenbaum-Tarski algebra for each set of
formulas closed under proofs.

Prop/Definition 8.5.7 A Hilbert calculus H with congruence and true induces,
for every globally closed subset Γ of gL(Σ), an interpretation structure λτΓ over
Σ, called the Lindenbaum-Tarski algebra1 for Γ, defined as follows:

• BλτΓ = gL(Σ);

• ϕ ≤Γ δ if and only if Γ, ϕ �H δ;

• ϕ �Γ δ = (ϕ&δ) and �Γ∅ = t;

• νλτΓ (c)(ϕ1, . . . , ϕk) = c(ϕ1, . . . , ϕk).

1Usually, the Lindenbaum-Tarski algebra is presented using equivalent classes of formulas
because the underlying interpretation structures are partial orders.



380 CHAPTER 8. MODULATED FIBRING

When there is no ambiguity with respect to the set of formulas we are consid-
ering, we refer to a Lindenbaum-Tarski algebra for a set Γ as λτ.

Lemma 8.5.8 Let L be a modulated logic system with congruence and true and
Γ a globally closed subset of gL(Σ).

1. ϕ ∼=Γ t if and only if ϕ is in Γ.

2. [[ϕ]]αλτ = σ(ϕ) where σ is such that σ(ξ) = α(ξ).

Given a modulated logic system L with congruence and true, a globally closed
set Γ contained in gL(Σ) and a signature morphism s : Σ̆ → Σ in S then BλτΓ (s)
is the set gL(Σ, s). Note that the Lindenbaum-Tarski algebra validates the rules
in the Hilbert system at hand.

Now we have to guarantee that in a modulated logic system, for each glob-
ally closed set of formulas Γ, we have a model whose underlying structure is the
Lindenbaum-Tarski algebra for Γ.

Definition 8.5.9 A modulated logic system L with congruence and true is full if,
for every set of formulas Γ globally closed, there is a model mΓ such that A(mΓ)
is isomorphic to the Lindenbaum-Tarski algebra for Γ.

Note that we can enrich the class of models of a modulated interpretation sys-
tem with one extra model for each globally closed set Γ corresponding to the
Lindenbaum-Tarski algebra for Γ.

We are now ready to state the first main result of this section, that is, the result
providing a sufficient condition for a modulated logic system to be complete.

Theorem 8.5.10 Every full modulated logic system L with congruence and true
is complete.

Proof. Let Γ0 and δ be in L(C,&).
(i) Assume that Γ0 �gL δ. Then δ �∈ Γ where Γ is the set Γ�g

L
0 . So [[δ]]λτΓ = δ � t

using Lemma 8.5.8. On the other hand

[[γ]]λτΓ = γ ∼= t

for every γ in Γ. Therefore Γ ��gλτΓ δ. Let mΓ be the model in M such that A(mΓ)
is isomorphic to λτΓ . Then Γ ��gA(mΓ) δ and so Γ ��gL δ.

(ii) Assume Γ0 ��L δ and let mΓ be the model in M whose structure is isomorphic
to λτΓ where Γ is the set ∅��

L . Then there is a finite set {γ1, . . . , γk} ⊆ Γ0 such
that {γ1, . . . , γk} ��A(mΓ) δ. Hence

{γ1, . . . , γk} ��λτΓ δ and �i=1,...,k[[γi]]λτΓ ≤Γ [[δ]]λτΓ .

So, using Lemma 8.5.8, �i=1,...,kγi ≤Γ δ. Therefore {γ1, . . . , γk} �L δ and so
Γ0 �L δ. �
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Next, the main goal is to establish preservation of completeness by modulated
fibring under reasonable conditions. According to Theorem 8.5.10 we can conclude
that a modulated logic system is complete provided that it is full and with con-
gruence and true. Therefore we prove that congruence and true are preserved by
modulated fibring. Moreover we also prove that fullness is preserved by modulated
fibring provided that the bridge has additional properties.

Lemma 8.5.11 Let h : H → H ′ be a modulated Hilbert calculus morphism such
that ĥ is injective and ȟ is surjective. Then, ȟ(Γ′) is a globally closed set of
formulas whenever Γ′ is a globally closed set of ground formulas.

Proof. Let ϕ in L(Σ) be such that ȟ(Γ′) gH ϕ. Then ĥ(ȟ(Γ′)) gH′ ĥ(ϕ), so
Γ′�g

H′ ĥ(ϕ), hence ĥ(ϕ) ∈ Γ′ and therefore ϕ ∈ ȟ(Γ′) since ϕ ∼= ȟ(ĥ(ϕ)). �

In the sequel, we need to work with the category St of structures as well as the
category St(Σ) of structures over the same signature Σ.

Prop/Definition 8.5.12 The category St is such that

• objects are tuples 〈Σ, B,≤, ν〉 where Σ is a modulated signature and 〈B,≤, ν〉
is a modulated interpretation structure over Σ;

• morphisms are tuples 〈ĥ, ḣ, ḧ〉 where ĥ is a modulated signature morphism,
ḣ :〈B,≤〉→〈B′,≤′〉 is a monotonic map, ḧ :〈B′,≤′〉→〈B,≤〉 is a monotonic
map preserving finite meets, ḧ is left adjoint to ḣ and

ν′(ĥ(c))(�b′) = ḣ(ν(c)(ḧ(�b′))).

The category St(Σ) is the fiber of St over Σ, that is, objects are interpretation
structures over Σ and morphisms are pairs 〈ḣ, ḧ〉. ∇

We show that each modulated Hilbert calculus morphism h induces a morphism
between the Lindenbaum-Tarski algebra for each globally closed set Γ and the
Lindenbaum-Tarski algebra for ȟ(Γ). The conditions in the definition of modulated
Hilbert calculus morphism are essential to establish this result and, in fact, they
were introduced with this purpose in mind.

Proposition 8.5.13 Let H and H ′ be modulated Hilbert calculi with congruence
and true and h : H → H ′ a morphism such that ĥ is injective and ȟ is surjective.
Then

〈ĥ, ḣΓ′ , ḧΓ′〉 : 〈Σ, λτȟ(Γ ′)〉 → 〈Σ′, λτΓ ′ 〉
is a morphism in St where

ḣΓ′(ϕ) = ĥ(ϕ) and ḧΓ′(ϕ′) = ȟ(ϕ′)

for every globally closed set Γ′ over gL(Σ′).
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Theorem 8.5.14 The modulated fibring 〈g′ : L′ → L, g′′ : L′′ → L〉 of logic
systems L′ and L′′ with congruence and true by a bridge β is a logic systems with
congruence and true.

Proof. Let c be a constructor in Ck, Γ, �δ �H �ϕ and Γ, �ϕ �H �δ. Then c is in ĝ′(C′
k)

or in ĝ′′(C′′
k ). Suppose that there exists c′ in C′

k with c = ĝ′k(c′). Then

ǧ′(Γ), ǧ′(�δ) �H′ ǧ′(�ϕ) and ǧ′(Γ), ǧ′(�ϕ) �H′ ǧ′(�δ).

Since L′ has congruence then ǧ′(Γ), c′(ǧ′(�δ)) �H′ c′(ǧ′(�ϕ)). Thus

ĝ′(ǧ′(Γ)), ĝ′(c′(ǧ′(�δ))) �H ĝ′(c′(ǧ′(�ϕ))).

Moreover,
Γ, ĝ′k(c′)(ĝ′(ǧ′(�δ))) �H ĝ′k(c′)(ĝ′(ǧ′(�ϕ)))

and finally Γ, ĝ′k(c′)(�δ) �H ĝ′k(c′)(�ϕ). The proof of preservation of true is straight-
forward. �

Observe that the more complex notion of modulated Hilbert system morphism
is used to achieve the preservation of congruence without the requirement, used in
Chapter 2, of sharing implication and equivalence. Recall that sharing implication
and equivalence lead to the unwanted collapse. For the preservation of fullness by
modulated fibring we need further constraints on the bridge.

Definition 8.5.15 A bridge 〈f ′ : L̆→ L′, f ′′ : L̆→ L′′〉 is adequate whenever the
logic systems L′, L′′, L̆ are full, with congruence and true and

f ′(m′
Γ′) = mf̌(Γ′) and f ′′(m′′

Γ′′) = mf̌(Γ′′)

for every globally closed sets of ground formulas Γ′ and Γ′′.

We would like to use Theorem 8.5.10 to conclude that the modulated fibring of
full modulated logic systems with congruence and true by an adequate bridge is
complete. For this purpose we have to show that the modulated fibring is full. If
Γ is a globally closed set, then there is a model

〈ǧ′(Γ), ǧ′′(Γ)〉 ∈M

such that A′(ǧ′(Γ)) is isomorphic to λτǧ′(Γ) and A′′(ǧ′′(Γ)) is isomorphic to λτǧ′′(Γ).
We show in Proposition 8.5.19 that A(〈ǧ′(Γ), ǧ′′(Γ)〉) is isomorphic to λτΓ.

Theorem 8.5.16 The modulated fibring 〈g′ : L′ → L, g′′ : L′′ → L〉 of modulated
logic systems L′ and L′′ by an adequate bridge β is complete.
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Proof. We know, using Theorem 8.5.14, that L is with congruence and true. We
also know that, for each set of formulas Γ closed for proof, the model 〈ǧ′(Γ), ǧ′′(Γ)〉
is in M . Using Proposition 8.5.19 we can also conclude that the interpretation
structure

A(〈ǧ′(Γ), ǧ′′(Γ)〉)
is isomorphic to λτΓ. Therefore, L is full and using Theorem 8.5.10, L is complete.

�

Example 8.5.17 The following modulated fibrings are complete.

• Unconstrained modulated fibring of full modulated logic systems with con-
gruence and true by an adequate bridge. In particular, the unconstrained
modulated fibring of full classical and intuitionistic logics is complete. The
same holds for the unconstrained modulated fibring of full classical and
�Lukasiewicz logics.

• The modulated fibring of full classical logic and Gödel logic sharing negation
is complete.

• The modulated fibring of full Gödel logic and �Lukasiewicz logic sharing con-
junction and disjunction is complete. ∇

An “algebraic” version of the completeness result and the preservation of com-
pleteness as in [282] can be also be obtained. Of course in this case congruence
is not always preserved by modulated fibring. As proved therein, when the logics
have implication and equivalence congruence is preserved.

To conclude the section it remains to prove that the algebra obtained by a
pushout of the Lindenbaum-Tarski algebras is isomorphic to the Lindenbaum-
Tarski algebra for a globally closed set of formulas in the pushout of the modulated
signatures. Before presenting the proof, we need a technical lemma. In order to
make the notation lighter, we omit the subscripts of ġ′〈ǧ′(Γ),ǧ′′(Γ)〉, ġ

′′
〈ǧ′(Γ),ǧ′′(Γ)〉,

ḟ ′
ǧ′(Γ) and ḟ ′′

ǧ′′(Γ).

Lemma 8.5.18 Let 〈g′ : L′ → L, g′′ : L′′ → L〉 be the modulated fibring of
modulated logic systems L′ and L′′ by an adequate bridge β.

1. g̈′(ġ′′(ϕ′′)) = ǧ′(ĝ′′(ϕ′′)).

2. [[ϕ]]A(〈ǧ′(Γ),ǧ′′(Γ)〉)
α = ġ′(ǧ′(ϕσα)) where ϕ ∈ L(Σ, ĝ′), α is safe for ϕ and σα

is such that
σα(ξ) = ĝ′(ϕ′)

if α(ξ) = ġ′(ϕ′); analogously if α(ξ) = ġ′′(ϕ′′); moreover

σα(ξ) = ĝ′(ϕ′)&ĝ′′(ϕ′′)

whenever α(ξ) is not in the co-domain of either ġ′ or ġ′′ and is equal to
ġ′(ϕ′) � ġ′′(ϕ′′).
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3. ġ′(ǧ′(ϕ)) ≤ ġ′′(ǧ′′(ϕ)) for any ϕ ∈ gL(Σ, ĝ′).

Proof.
1. We have that

g̈′(ġ′′(ϕ′′)) = ḟ ′(f̈ ′′(ϕ′′))
= ḟ ′(f̌ ′′(ϕ′′))
= f̂ ′(f̌ ′′(ϕ′′))
= ǧ′(ĝ′′(ϕ′′)).

2. We consider two cases.
(i) We prove that [[ξ]]A(〈ǧ′(Γ),ǧ′′(Γ)〉)

α = ġ′(ǧ′(σα(ξ)):

[[ξ]]A(〈ǧ′(Γ),ǧ′′(Γ)〉)
α = α(ξ)

= ġ′(ϕ′)
= ġ′(ǧ′(ĝ′(ϕ′)))
= ġ′(ǧ′(σα(ξ)).

(ii) We prove that [[ϕ]]A(〈ǧ′(Γ),ǧ′′(Γ)〉)
α = ġ′(ǧ′(ϕσα)) (ϕ /∈ Ξ). The proof follows

induction.
Base: if ϕ is ĝ′(c′) then

[[ϕ]]A(〈ǧ′(Γ),ǧ′′(Γ)〉)
α = ġ′(νǧ′(Γ)(c′))

= ġ′(c′)
= ġ′(ǧ′(ĝ′(c′)))
= ġ′(ǧ′(σα(ϕ))).

The rest of the proof follows straightforwardly.
3. Observe that

ġ′(ǧ′(ϕ)) = [[ϕ]]αA(〈ǧ′(Γ),ǧ′′(Γ)〉)
≤ [[ĝ′′(ǧ′′(ϕ))]]αA(〈ǧ′(Γ),ǧ′′(Γ)〉)

and that

[[ĝ′′(ǧ′′(ϕ))]]αA(〈ǧ′(Γ),ǧ′′(Γ)〉) = ġ′′(ǧ′′(ĝ′′(ǧ′′(ϕ))))
= ġ′′(ǧ′′(ϕ)).

�

Proposition 8.5.19 Let 〈g′ : L′ → L, g′′ : L′′ → L〉 be the modulated fibring of
modulated logic systems L′ and L′′ by an adequate bridge β. Then λτ is isomorphic
to A(〈ǧ′(Γ), ǧ′′(Γ)〉).
Proof. Consider the maps

k̇ : Bλτ → BA(〈ǧ′(Γ),ǧ′′(Γ)〉) such that

– k̇(ϕ) = ġ′(ǧ′(ϕ)) whenever ϕ is in gL(C, ĝ′) (similarly for ϕ in L(C, ĝ′′));
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– k̇(ϕ1&ϕ2) = k̇(ϕ1) � k̇(ϕ2).

k̈ : BA(〈ǧ′(Γ),ǧ′′(Γ)〉) → Bλτ such that

– k̈(ġ′(ϕ′)) = ĝ′(ϕ′) (similarly for k̈(ġ′′(ϕ′′)));

– k̈(b1 � b2) = k̈(b1)&k̈(b2) whenever b1 � b2 is not in the co-domain of
either ġ′ or ġ′′.

1. We first prove that k̇ is monotonic, that is, k̇(ϕ1) ≤ k̇(ϕ2) whenever ϕ1 ≤ ϕ2.
(i) The case ϕ1 ∈ L(C, ĝ′) and ϕ2 ∈ L(C, ĝ′) is straightforward.
(ii) Suppose that ϕ1 ∈ L(C, ĝ′) and ϕ2 ∈ L(C, ĝ′′). Then, by Lemma 8.5.18,

k̇(ϕ1) = ġ′(ǧ′(ϕ1))
≤ ġ′′(ǧ′′(ϕ1))
≤ ġ′′(ǧ′′(ϕ2))
= k̇(ϕ2).

(iii) Suppose that ϕ1 is in L(C, ĝ′) and ϕ2 is ϕ21&ϕ22, with ϕ2i in L(C, ĝsi) for
i = 1, 2 and si ∈ {′ , ′′}. Then ϕ1 ≤ ϕ21 and ϕ1 ≤ ϕ22. From the previous cases
we know that

k̇(ϕ1) ≤ k̇(ϕ21) and k̇(ϕ1) ≤ k̇(ϕ22).

Hence,

k̇(ϕ1) ≤ k̇(ϕ21) � k̇(ϕ22)
= k̇(ϕ21&ϕ22).

2. We now prove that k̈ is monotonic, that is k̈(b1) ≤ k̈(b2) whenever b1 ≤ b2.
(i) Assume that b1 = ġ′(ϕ1) and b2 = ġ′(ϕ2). In this case, ϕ1 ≤′ ϕ2. Hence

ĝ′(ϕ1) ≤ ĝ′(ϕ2) and therefore k̈(b1) ≤ k̈(b2).
(ii) Assume that b1 = ġ′(ϕ1) and b2 = ġ′′(ϕ2). Then there exists a ϕ̆ in L(C̆, &̆)

such that

ġ′(ϕ1) ≤ ġ′(ḟ ′(ϕ̆))
= ġ′′(ḟ ′′(ϕ̆))
≤ ġ′′(ϕ2).

So, using the previous case, we have

k̈(b1) ≤ k̈(ġ′(ḟ ′(ϕ̆)))
= k̈(ġ′′(ḟ ′′(ϕ̆)))
≤ k̈(b2).

(iii) The case where b1 and b2 are not in the co-domain of ġ′ and ġ′′ is straight-
forward.

3. We now prove that k̈ preserves meets. Let b1, b2 ∈ BA(〈ǧ′(Γ),ǧ′′(Γ)〉) where
b1 � b2 is ġ′(ϕ).
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(i) Suppose that b1 is ġ′(ϕ1) and b2 is ġ′′(ϕ2). Note that g̈′(ġ′(ϕ)) = g̈′(ġ′(ϕ1))�
g̈′(ġ′′(ϕ2)). Thus,

ϕ ∼= ϕ1&′ǧ′(ĝ′′(ϕ2))

and
ǧ′′(ĝ′(ϕ)) ∼= ǧ′′(ĝ′(ϕ1))&′′ϕ2.

Then
ĝ′(ϕ) ∼=Γ ĝ

′(ϕ)&ĝ′′(ǧ′′(ĝ′(ϕ)))
∼=Γ ĝ

′(ϕ1)&ĝ′′(ϕ2)

and therefore we have k̈(b1 � b2) = k̈(b1)&k̈(b2).
(ii) Suppose thata b1 is in the co-domain of ġ′ (or ġ′′) and b2 is not in the

co-domain of ġ′ or ġ′′. Then,

k̈(b1 � b2) = k̈(b1 � b′2 � b′′2)
= k̈(b1 � b′2)&k̈(b′′2)
= k̈(b1)&k̈(b′2)&k̈(b′′2)
= k̈(b1)&k̈(b′2 � b′′2)
= k̈(b1)&k̈(b2).

(iii) The case where b1 and b2 are not in the co-domain of ġ′ or in the co-domain
of ġ′′ is straightforward.

4. Now we prove that k̈ is a bijection with inverse k̇.
(i) Assume that k̈ ◦ k̇ ∼= idBλτ

. Let ϕ be in Bλτ . If ϕ is in L(C, ĝ′), then
k̈(k̇(ϕ)) = k̈(ġ′(ǧ′(ϕ))) = ĝ′(ǧ′(ϕ)) ∼= ϕ. If ϕ1&ϕ2 with ϕi in L(C, ĝji) for i = 1, 2
and ji ∈ {′,′′ }, then

k̈(k̇(ϕ1&ϕ2))) = k̈(k̇(ϕ1) � k̇(ϕ2))
= k̈(k̇(ϕ1)) � k̈(k̇(ϕ2))
∼= ϕ1 � ϕ2

= ϕ1&ϕ2.

(ii) Suppose that k̇ ◦ k̈ ∼= idBA(〈ǧ′(Γ),ǧ′′(Γ)〉) . Let b be in BA(〈ǧ′(Γ),ǧ′′(Γ)〉). If b is
ġ′(ϕ′), then

k̇(k̈(b)) = k̇(ĝ′(ϕ′))
= ġ′(ǧ′(ĝ′(ϕ′)))
∼= ġ′(ϕ′)
= b.

If b is not in the co-domain of ġ′ or ġ′′, then b is b1 � b2. So, using the previous
cases,

k̇(k̈(b)) = k̇(k̈(b1 � b2))
= k̇(k̈(b1) � k̈(b2))
= k̇(k̈(b1)) � k̇(k̈(b2))
= b1 � b2
= b.
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5. k̇(νλτ(c)(k̈(b1), . . . , k̈(bk))) = νA(〈ǧ′(Γ),ǧ′′(Γ)〉)(c)(b1, . . . , bk) is straightfor-
ward.

So λτ and A(〈ǧ′(Γ), ǧ′′(Γ)〉) are isomorphic since

k ◦ h ∼= idA(〈ǧ′(Γ),ǧ′′(Γ)〉)

and
h ◦ k ∼= idλτ

where h : A(〈ǧ′(Γ), ǧ′′(Γ)〉) → λτ is a morphism in St(Σ) such that ḣ = k̈ and
ḧ = k̇. �

8.6 Final remarks

The chapter describes a solution to the collapsing problem in the context of propo-
sitional based logics, both for global and local reasoning. At the semantic level,
each algebra in the fibring is related to an algebra in each component logic via a
bridge. In a sense, at a first sight, modulated fibring is more related to fibring
by functions than algebraic fibring, as described in Chapter 3. Indeed, there are
maps relating the sets of truth values of each algebra in the fibring with the truth
values of the corresponding algebras in the components and vice-versa. Each pair
of such maps constitutes an adjunction between orders. Observe that algebraic
fibring is a particular case of modulated fibring. Modulated fibring is very close to
the notion of fibring by functions namely precisely because of the adjunction that
we referred above. The adjunction imposes that we can circulate between sets of
truth-values but puts some restrictions when we come back to the starting set.

The Hilbert calculus is also composed by global and local inference rules but
substitution is more constrained in order to cope with the changes made at the
semantic level. Preservation of completeness is analyzed following a Lindenbaum-
Tarski technique. This means that the completeness proof for modulating fibring
cannot be extended to non-truth functional logics where congruence and substitu-
tion of equivalents are no longer true.

A restriction of modulating fibring is the assumption that the set of designated
values is a singleton. Hence, we do not consider some multi-valued logics where the
set of designated values has more than one element. Then the modulated fibring
construction can be extended to all classes of finitely-many valued logics where
more then one distinguished value is needed [137].

The extension of modulated fibring to the contexts of first-order and higher-
order based logics is also worthwhile to study. We believe that the extension to
first-order based logics will not be too difficult (if we consider powerset algebras
with inclusions instead of general ordered algebras), although some care has to be
taken with respect to the provisos and the Hilbert calculus in general. However,
the extension to higher-order based logics can be more tricky, namely in what
concerns the preservation of soundness.
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The extension to first-order based logics keeping the algebraic nature of mod-
ulated fibring can only be carried out providing that we investigate the fibring of
cylindrical algebras (a nice and updated overview can be found at [1]) and abstract
away from this concept so that we can have quantifiers of any arity. It seems like
an interesting problem to be pursued by itself.

The impact of modulated fibring when we consider other deductive systems is
also of interest. Again in this case the impact of provisos (such as, the variable x
should be a fresh variable) seems to be the main problem to be tackled. And, of
course, a main challenge appears when considering labeled deductive systems. Of
course the problem of fibring the algebras of the labels is a challenging one.

Also of interest is to capture the logic of [82] from the modulated fibring of
classical propositional logic and intuitionistic logic not sharing any connectives.
The modulated fibring, as referred before, does not capture possible interactions
between formulas. Hence some enrichment should be done.



Chapter 9

Splitting logics

One of the basic tenets of this book is that it is interesting, useful and relevant to
combine different logical systems into new, coherent systems, with the purpose of
using them in many types of applications and in refined forms of reasoning. Several
examples in previous chapters were devoted to make clear how this can be done,
where the complications are lurking, and how to take profit of this compositionality
capacity of logics to expand the expressive power of reasoning as a whole. But, if
we can compose logics, why not to decompose them?

Fibring, as we had the opportunity to see in previous chapters, is an apt tool
able to combine logics creating new and expressive systems. This combination
mechanism goes in the direction of synthesis of logics, what we called splicing
logics.

The other direction, on the analytical verge, is called splitting logics As much
as composing (multiplying) and decomposing (factoring) numbers are two sides
of the same coin, there is no essential distinction between splicing and splitting,
though there are important differences with respect to the aims and applications
one may have in mind. Splitting, as a process or an operation to produce logics,
has been studied independently from splicing; they can be seen as complementary
operations, in the sense the former works top-down, while the later works bottom-
up. The expressions “splicing logics” and “splitting logics” were introduced in [47].
The noun “splitting” is also used in the literature in a different sense, designating
a “logic that splits a class”, as, for instance, in [25].

Possible-translations semantics (proposed in [45]) were briefly mentioned in Sec-
tion 1.4 of Chapter 1. The main goal of this technique is to offer a better inter-
pretation for a given logic by translating its formulas, in several ways, into a class
of simpler logics, with known or acceptable semantics. In case the target logics
are not presented semantically, the decomposition is called a possible-translations
characterization. Several logics exist which are not characterizable by finite ma-
trices, while can be characterized by suitable combinations of many-valued logics
through possible-translations.

389
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It is relevant here to recall the notion of matrix semantics, introduced by
Jan �Lukasiewicz and Emile Post. Matrix semantics generalize algebraic seman-
tics, as used in algebraic logic, and constitute a method for assigning semantic
meaning for logics, as well as a method for defining logical systems. Since in many
cases matrix semantics will work as basic factors in decomposing logics, we give a
brief review of this type of semantics.

What is interesting, as shown in details in Section 9.2, is that matrix seman-
tics are particular cases of possible-translations semantics. This has as a conse-
quence the fact that possible-translations semantics will be adequate for any struc-
tural deductive system, since the notion of matrix semantics already enjoys this
property.

This chapter also analyzes another techniques for splitting logics which are pre-
sented by matrix semantics: direct union of matrices and plain fibring, introduced
in [60] (see also [94]).

Even if, as we have discussed above, splicing and splitting as procedures for
composing and decomposing logics are but two sides of the same coin, there is dif-
ference between them in attitudes and expectancy, as much as there is a difference
between multiplying prime factors so as to compose a number, and to decompose
a number into prime factors: the basic distinction concerns our inputs and the
intended output.

If we represent the result of a process of factoring logics as L = L1 � L2, there
are mainly two directions to read this equation:

• Splicing direction
Starting from logics L1 and L2 and L as inputs, then L is our output and
we have a typical case of splicing L1 and L2 obtaining L.

Example 9.3.11, where the underlying operation is plain fibring, is a clear
instance of this procedure.

• Splitting direction
If L is the input, the equation represents a typical case of splitting L into
factors L1 and L2. The factors may be new logics (or new fragments of “old”
logics), in which case the process is innovative, or they may be known logics,
in which case the process will be establishing, instead of new logics, new
relations among L, L1 and L2.

In this last case there will be no essential difference in considering this as
splitting or splicing. Example 9.3.10 and Example 9.2.16 are instances of
the case where the factors are new logics, whereas Example 9.3.4 is a case of
factoring 3-valued Gödel logic into its own fragments.

The idea of splitting and splicing logics was incipient (even if in rudimentary
forms) in some procedures for composing or decomposing logics: some constituents
of the possible-translations semantics will already be recognized in some variants of
the original notion of fibring (the so-called fibring by functions). Some components
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of the method of plain fibring of matrices can be distinguished in the fibring by
functions as well as in the product of matrices introduced by Jan �Lukasiewicz
in [185] in the investigation of his four-valued modalities.

This chapter is organized as follows: in Section 9.1 a category of propositional
based signatures suitable for splitting logics is introduced, as well as the corre-
sponding category of consequence systems. In Section 9.2 the technique known as
possible-translations characterization (and its particular case, possible-translations
semantics) is analyzed, and some applications are given. In Section 9.3 two meth-
ods for combining matrix logics, plain fibring and direct union of matrices, are
reviewed. Such methods, defined in the same lines as fibring by functions, are use-
ful for both splitting and splicing matrix logics. Finally, in Section 9.4, we briefly
recall the main ideas discussed in this chapter and present some final comments.

The material of this chapter is based on [48] of [10] and [60]. Some results about
products of consequence systems are also taken from [31].

9.1 Basic notions

This section briefly describes the basic definitions, notation and facts concerning
propositional based signatures and logics that will be used herein. There are two
relevant issues to be noted here.

One one hand, the propositional based signatures C do not include proposi-
tional symbols in P. This simplified approach is justified because most of the
techniques herein presented are oriented to propositional based languages, and
then the schema variables are enough.

On the other hand, a more general notion of signature morphism has to be
considered. These morphisms are more appropriate for splitting logics (a process
characterized by limits) than for splicing logics (a process characterized by colimits,
as seen in the previous chapters).

Throughout this chapter, we assume the denumerable set Ξ = {ξn : n ∈ N
+} of

schema variables.
Given a propositional based signature C (see Definition 2.1.1), the domain of

C is the set |C| =
⋃
k∈N

Ck. Recall that, given two signatures C′ and C′′, their
disjoint union is a signature

C′⊕C′′ = {(C′⊕C′′)k}k∈N

where (C′⊕C′′)k is a disjoint union of the sets C′
k and C′′

k .

Definition 9.1.1 Given k ∈ N, L(C)[k] is the set of formulas ϕ such that the set
of schema variables occurring in ϕ is exactly {ξ1, . . . , ξk}. ∇

Note that ξ1, . . . , ξk are the first k symbols in Ξ. Observe also that L(C)[0]
is the set of formulas without schema variables; moreover, L(C)[k] = ∅ for every
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k ≥ 2 whenever Ck = ∅ for every k ≥ 2. We write ϕ(ξ1, . . . , ξn) to indicate that
the schema variables occurring in ϕ are among ξ1, . . . , ξn.

The notion of complexity l(ϕ) of a formula ϕ is defined as usual, stipulating
that l(ϕ) = 1 whenever ϕ ∈ Ξ ∪ C0, and

l(c(ψ1, . . . , ψk)) = 1 + l(ψ1) + . . .+ l(ψk)

if c ∈ Ck.
Recall form Definition 2.1.6 that every substitution σ:Ξ → L(C) over C can be

extended to a unique homomorphism σ̂ : L(C) → L(C).
Given ϕ(ξ1, . . . , ξn) and σ such that σ(ξi) = ψi (i = 1, . . . , n) then σ̂(ϕ) will be

denoted by ϕ(ψ1, . . . , ψn).
We now describe the category sSig of signatures, whose morphisms generalize

those from Sig.

Definition 9.1.2 Let C and C′ be signatures. A splitting signature morphism f
from C to C′, denoted f : C → C′, is a mapping f : |C| → L(C′) such that, if
c ∈ Ck then f(c) ∈ L(C′)[k]. ∇

From now on we will say “signature morphism” instead of “splitting signature
morphism”.

Given a signature morphism f : C → C′, a mapping f̂ : L(C) → L(C′) can be
defined as expected:

• f̂(ξ) = ξ if ξ ∈ Ξ;

• f̂(c) = f(c) if c ∈ C0;

• f̂(c(ϕ1, . . . , ϕk)) = f(c)(f̂(ϕ1), . . . , f̂(ϕk)) if c ∈ Ck, ϕ1, . . . , ϕk ∈ L(C) and
k > 0.

Observe that f(c)(f̂(ϕ1), . . . , f̂(ϕk)) is a notation for σ̂(f(c)), where σ is the sub-
stitution such that σ(ξi) = f̂(ϕi) for i = 1, . . . , k.

Clearly the extension f̂ of f is unique. Moreover, if f, f ′ are signature mor-
phisms such that f̂ = f̂ ′ then f = f ′. Additionally, the schema variables occurring
in ϕ and in f̂(ϕ) are the same.

Example 9.1.3 Consider the signatures C and C ′ defined as follows:

• C = {¬,⇒};
• C′ = {¬,∨}.

Let f : C → C′ be a signature morphism such that

• f(¬) = (¬ ξ1);

• f(⇒) = ((¬ ξ1) ∨ ξ2).
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Then, for every ϕ, ψ ∈ L(C),

• f̂(¬ϕ) = (¬ f̂(ϕ));

• f̂(ϕ⇒ ψ) = ((¬ f̂(ϕ)) ∨ f̂(ψ)).

In particular,
f̂(¬(ξ1 ⇒ (¬ ξ2))) = (¬((¬ ξ1) ∨ (¬ ξ2))).

∇

Definition 9.1.4 Let f : C → C′ and g : C′ → C′′ be signature morphisms. The
composition g �f of f and g is defined to be the signature morphism g �f : C → C ′′

given by the mapping ĝ ◦ f : |C| → L(C′′). ∇

The following technical lemmas are useful in the sequel. The reader can find
the proofs in [31].

Lemma 9.1.5 Let f : C → C′ and g : C′ → C′′ be signature morphisms. Then

ĝ � f = ĝ ◦ f̂ .

Lemma 9.1.6 Let f : C → C′ and let σ : Ξ → L(C) be a substitution over C.

Then there is a substitution σ′ : Ξ → L(C′) over C′ such that f̂ ◦ σ̂ = σ̂′ ◦ f̂ .

We now introduce a new category of signatures suitable for splitting logics.

Prop/Definition 9.1.7 Propositional based signatures with morphisms as in
Definition 9.1.2 constitute the category sSig of splitting signatures, where compo-
sition is as in Definition 9.1.4 and, for every signature C, the identity morphism
idC : C → C is defined by idC(c) = c, for c ∈ C0, and idC(c) = c(ξ1, . . . , ξk), for
c ∈ Ck, k > 0. ∇

The next result, taken from [31], is useful for splitting logics.

Proposition 9.1.8 The category sSig has products of arbitrary small, non-empty
families of objects.

Proof. Let F = {Ci}i∈I be a family of signatures such that I is a non-empty set.
Consider the signature CF such that, for every k ∈ N,

CF
k = {(ϕi)i∈I : ϕi ∈ L(Ci)[k] for every i ∈ I}.

For each i ∈ I, consider the mapping πi : |CF | → L(Ci) such that

πi((ϕi)i∈I) = ϕi

if (ϕi)i∈I ∈ CF
k , for k ∈ N. Then πi determines a sSig-morphism πi : CF → Ci.
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CF

πi

""**
**

**
** πj

##0
00

00
00

0

· · · Ci · · · Cj · · ·
Consider a signature C′ together with sSig-morphisms fi : C′ → Ci, for i ∈ I.

C′

fi

����
��

��
�� fj

���
��

��
��

�

· · · Ci · · · Cj · · ·

Let f : |C′| → L(CF ) be the function defined as follows:

f(c) = (fi(c))i∈I(ξ1, . . . , ξk)

if c ∈ C′
k, for k ∈ N. Then f induces a sSig-morphism f : C′ → CF such that

fi = πi � f for every i ∈ I, that is, the diagram below commutes.

C′

fi

==

f



 fj

>>

CF

πi

""**
**

**
** πj

##0
00

00
00

0

· · · Ci · · · Cj · · ·

If g : C′ → CF is a morphism in sSig such that fi = πi � g for every i ∈ I then
clearly g = f .

This proves that 〈CF , {πi}i∈I〉 is the product of the family F in sSig. �

Remark 9.1.9 Let F be a family in sSig as above such that there exist some
i ∈ I with Cik = ∅ for every k ≥ 2. Then L(Ci)[k] = ∅ for every k ≥ 2, and so
CF
k = ∅ for every k ≥ 2. On the other hand, if Ci0 = ∅ for some i ∈ I then CF

0 = ∅.
Note also that CF

1 �= ∅, because (ξ1)i∈I ∈ CF
1 for every family F in sSig indexed

by a non-empty set I. The signature CF is an example of a signature containing
sets of connectives which (possibly) are not denumerable. ∇

Example 9.1.10 Let C1, C2 and C3 be signatures such that:

• ¬1 ∈ C1
1 and ⇒1 ∈ C1

2 ;

• ∨2,∧2 ∈ C2
2 ;
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• �3 ∈ C3
1 and ∧3 ∈ C3

2 .

Let C be the product C1 × C2 × C3 in sSig of C1, C2 and C3. Then

• c1 = 〈(¬1(ξ1 ⇒1 ξ1)), ξ1, (�3(�3ξ1))〉 is a connective in C1;

• c2 = 〈(¬1(ξ1⇒1 ξ2)), (ξ2 ∨2 (ξ1 ∧2 ξ2)), (ξ2 ∧3 (�3ξ1))〉 is a connective in C2.

Therefore, c2(ξ1, c1(ξ2)) is a formula in L(C)[2]. ∇

Recall consequence systems from Chapter 1. Next we introduce some useful
notions about consequence relations.

Definition 9.1.11 Let C = 〈C,〉 be a consequence system and let C′ ≤ C. The
C′-fragment of C is the consequence system

C|C′ = 〈C′,′〉

where ′ =  ∩ (℘(L(C′))× L(C′)). ∇

It is worth noting that, C′ = C|C′ if and only if, for every Γ ∪ {ϕ} ⊆ L(C′),

Γ ′ ϕ if and only if Γ  ϕ.

Definition 9.1.12 Let C = 〈C,〉 and C′ = 〈C′,′〉 be consequence systems.

• C is a strong extension of C′ if C′ ≤ C and ′ ⊆ .

• C is a weak extension of C′ if C′ ≤ C and

′ ϕ implies that  ϕ

for every ϕ ∈ L(C ′). ∇

Note that a consequence system C is a strong extension of C′ if and only if C′ is
weaker than C (recall Definition 1.1.6 in Chapter 1.

Definition 9.1.13 Let C = 〈C,〉 and C′ = 〈C′,′〉 be consequence systems.

• C is a conservative extension of C′ if C′ ≤ C and C′ = C|C′ .

• C is a conservative weak extension of C′ if C′ ≤ C and

′ ϕ if  ϕ

for every ϕ ∈ L(C′). ∇
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From the definitions above the following useful result is straightforward; details
of the proof are left to the reader.

Recall the notions of structural and standard consequence systems given in
Chapter 1.

Proposition 9.1.14

1. Each fragment over C of any (structural, finitary, standard) consequence
system is also a (structural, finitary, standard) consequence system.

2. Every consequence system is a conservative extension of any of its fragments
over C.

A new category of consequence systems can now be defined: the category sCon
which differs from the one introduced in Chapter 1 at the level of morphisms.

Prop/Definition 9.1.15 The category sCon of splitting consequence systems is
defined as follows:

• the objects are consequence systems;

• a morphism f : C → C′ in sCon is a morphism f : C → C′ in sSig such
that, for every Γ ∪ {ϕ} ⊆ L(C),

Γ  ϕ implies f̂(Γ) ′ f̂(ϕ);

• composition and identity morphisms are as in sSig. ∇

A fundamental property of sCon is the following.

Proposition 9.1.16 The category sCon has products of arbitrary small, non-
empty families of objects. Moreover, if every object of the family is structural, so
is the product.

Proof. Let F = {Ci}i∈I be a family of consequence systems, where I is a non-
empty set and Ci = 〈Ci,i〉 for i ∈ I. Let 〈CF , {πi}i∈I〉 be the product of {Ci}i∈I
in the category sSig (see Proposition 9.1.8), and let

F ⊆ ℘(L(CF ))× L(CF)

be the relation defined as follows:

Γ F ϕ if and only if π̂i(Γ) i π̂i(ϕ) for every i ∈ I.

Let CF = 〈CF ,F〉. We claim that the pair 〈CF , {πi}i∈I〉 is the product in the
category sCon of the family F . We first prove that CF is indeed a consequence
system (recall Chapter 1).
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(i) F is extensional
Let Γ ⊆ L(CF ), and suppose that ϕ ∈ Γ. Then π̂i(ϕ) ∈ π̂i(Γ) and so, since Ci
satisfies extensivity, it follows that

π̂i(Γ) i π̂i(ϕ)

for every i ∈ I. Therefore Γ F ϕ.
(ii) F is transitive

Suppose that Γ F ϕ and Θ F ψ for every ψ ∈ Γ. Fix i ∈ I. Then

π̂i(Γ) i π̂i(ϕ) and π̂i(Θ) i π̂i(ψ) for every ψ ∈ Γ.

Thus π̂i(Θ) i π̂i(ϕ), because i satisfies transitivity, for every i ∈ I. Therefore
Θ F ϕ.

This shows that CF is a consequence system. Clearly, each πi is a sCon-
morphism πi : CF → Ci, by the very definition of CF .

CF
πi

����
��

��
�� πj

��















· · · Ci · · · Cj · · ·
Suppose now that C′ = 〈C′,′〉 is a consequence system and fi : C′ → Ci is a

sCon-morphism, for every i ∈ I.

C′
fi

��##
##

##
## fj

..C
CC

CC
CC

· · · Ci · · · Cj · · ·
Then there exists a unique sSig-morphism f : C′ → CF such that, in sSig,

πi � f = fi, for every i ∈ I, because 〈CF , {πi}i∈I〉 is the product of {Ci}i∈I in the
category sSig. That is, the diagram below commutes in sSig.

C′

fi

==

f



 fj

>>

CF

πi

""**
**

**
** πj

##0
00

00
00

0

· · · Ci · · · Cj · · ·
Suppose that Γ ∪ {ϕ} ⊆ L(C′) is such that Γ ′ ϕ. Since each fi is a sCon-

morphism then f̂i(Γ) i f̂i(ϕ), for every i ∈ I, hence

π̂i � f(Γ) i π̂i � f(ϕ).
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Using the Lemma 9.1.5, we have that

π̂i ◦ f̂(Γ) i π̂i ◦ f̂(ϕ)

that is,
π̂i(f̂(Γ)) i π̂i(f̂(ϕ))

for every i ∈ I. Therefore, by definition of F we have that f̂(Γ) F f̂(ϕ) and
then f is a sCon-morphism f : C′ → CF such that, in sCon, πi � f = fi, for every
i ∈ I. That is, the following diagram is commutative in sCon.

C′

fi

==

f




fj

>>

CF
πi

����
��

��
�� πj

��















· · · Ci · · · Cj · · ·
The uniqueness of f is a consequence of the universal property in the category

sSig of the product 〈CF , {πi}i∈I〉. This show that 〈CF , {πi}i∈I〉 is the product in
the category sCon of the family F .

Finally, suppose that every consequence system in F is structural. We now
prove that CF is structural. Thus, consider a set Γ ∪ {ϕ} ⊆ L(CF ) such that
Γ F ϕ. Then, π̂i(Γ) i π̂i(ϕ) for every i ∈ I. Let σ : Ξ → L(CF ) be a
substitution over CF . Since every πi is a sSig-morphism then, for every i ∈ I,
there exists a substitution σi : Ξ → L(Ci) over Ci such that π̂i ◦ σ̂ = σ̂i ◦ π̂i, by
Lemma 9.1.6. Since each Ci satisfies structurality then

σ̂i(π̂i(Γ)) i σ̂i(π̂i(ϕ))

that is,
π̂i(σ̂(Γ)) i π̂i(σ̂(ϕ))

for every i ∈ I. Therefore σ̂(Γ) F σ̂(ϕ) and so F satisfies structurality. �

A similar result can be proved for compact consequence systems. Note that
the product of a (small and non-empty) family F of compact objects in sCon,
as defined in the proof of Proposition 9.1.17, may not be a compact consequence
system. Thus, a finer tuning is necessary in the definition of CF in order to obtain
a compact object in sCon. However, the only possible choice for the appropriate
CF does not satisfy the universal property of the product in sCon, when we test
the property with consequence systems that are not compact. Thus, it necessary
to restrict the category sCon. Let csCon be the subcategory of sCon formed
by the compact splitting consequence systems, and with the same morphisms as
in sCon. That is, csCon is a full subcategory of sCon. Then, the appropriate
restriction of Proposition 9.1.16 to compact consequence systems is as follows.
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Proposition 9.1.17 The category csCon has products of arbitrary small, non-
empty families of objects. Moreover, if every object of the family is structural, so
is the product.

Proof. The proof follows the same lines as that of Proposition 9.1.16. Thus, let
F = {Ci}i∈I be a family of compact consequence systems, where I is a non-empty
set and each Ci is of form 〈Ci,i〉. Consider the product 〈CF , {πi}i∈I〉 of {Ci}i∈I
in the category sSig (see Proposition 9.1.8). Let F ⊆ ℘(L(CF ))×L(CF) be the
relation defined as follows:

Γ F ϕ if and only if
there exists a finite set Δ ⊆ Γ such that π̂i(Δ) i π̂i(ϕ) for every i ∈ I.

Let CF = 〈CF ,F〉. We will show that the pair 〈CF , {πi}i∈I〉 is the product in
the category csCon of the family F . We begin by proving that CF is a compact
consequence system.

(i) F is extensional:
Consider Γ ⊆ L(CF ). Let ϕ ∈ Γ and Δ = {ϕ}. Then ϕ ∈ Δ and Δ is a
finite subset of Γ. Since π̂i(ϕ) ∈ π̂i(Δ) and Ci satisfies extensivity, it follows that
π̂i(Δ) i π̂i(ϕ), for every i ∈ I. But this means that Γ F ϕ.

(ii) F is transitive:
Suppose that Γ F ϕ and Θ F ψ for every ψ ∈ Γ. Then there exists a finite
subset Δ = {γ1, . . . , γn} of Γ such that, for every i ∈ I, π̂i(Δ) i π̂i(ϕ). Let
1 ≤ j ≤ n. Then Θ F γj and so there exists a finite subset Δj of Θ such that,
for every i ∈ I, π̂i(Δj) i π̂i(γj). Let Δ′ =

⋃n
j=1 Δj . Then Δ′ is a finite subset of

Θ such that
π̂i(Δ′) i ψ

for every ψ ∈ π̂i(Δj), every j = 1, . . . , n and every i ∈ I, because every i satisfies
extensivity. Since every i satisfies transitivity then π̂i(Δ′) i π̂i(γj), for every
j = 1, . . . , n and every i ∈ I. Using again the transitivity of i we infer that

π̂i(Δ′) i π̂i(ϕ)

for every i ∈ I. Therefore Θ F ϕ.
This shows that CF is a consequence system. Moreover, CF is compact by the

very definition of F . Clearly, each πi is a csCon-morphism πi : CF → Ci.
Suppose that C′ = 〈C′,′〉 is a compact consequence system and fi : C′ → Ci is

a csCon-morphism, for every i ∈ I. Then there exists a unique sSig-morphism

f : C′ → CF

such that, in sSig, πi �f = fi, for every i ∈ I, because 〈CF , {πi}i∈I〉 is the product
of {Ci}i∈I in the category sSig. Suppose that Γ∪{ϕ} ⊆ L(C′) is such that Γ ′ ϕ.
Since C′ is compact, there exists a finite set Δ ⊆ Γ such that Δ ′ ϕ. Since each
fi is a csCon-morphism then f̂i(Δ) i f̂i(ϕ), for every i ∈ I, hence

π̂i � f(Δ) i π̂i � f(ϕ).
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Using the Lemma 9.1.5, we have that

π̂i ◦ f̂(Δ) i π̂i ◦ f̂(ϕ)

that is,
π̂i(f̂(Δ)) i π̂i(f̂(ϕ))

for every i ∈ I, where f̂(Δ) is a finite subset of f̂(Γ). Therefore, by definition of
F we have that f̂(Γ) F f̂(ϕ) and then f is a csCon-morphism f : C′ → CF such
that, in csCon, πi � f = fi, for every i ∈ I. The uniqueness of f is a consequence
of the universal property in the category sSig of the product 〈CF , {πi}i∈I〉. This
show that

〈CF , {πi}i∈I〉
is the product in the category csCon of the family F .

Finally, suppose that every consequence system in F is structural. We will show
that CF is structural. Thus, consider a set Γ ∪ {ϕ} ⊆ L(CF ) such that Γ F ϕ.
Then, there is a finite set Δ ⊆ Γ such that

π̂i(Δ) i π̂i(ϕ)

for every i ∈ I. Let σ : Ξ → L(CF ) be a substitution over CF . Since every πi is a
sSig-morphism then, for every i ∈ I, there exists a substitution

σi : Ξ → L(Ci)

over Ci such that π̂i ◦ σ̂ = σ̂i ◦ π̂i, by Lemma 9.1.6. Since each Ci satisfies struc-
turality then

σ̂i(π̂i(Δ)) i σ̂i(π̂i(ϕ))

that is,
π̂i(σ̂(Δ)) i π̂i(σ̂(ϕ))

for every i ∈ I, where σ̂(Δ) is a finite subset of σ̂(Γ). Therefore σ̂(Γ) F σ̂(ϕ) and
so F satisfies structurality.

�

9.2 Possible-translations semantics

Recall the notions of possible-translations briefly summarized in Section 1.4 of
Chapter 1. The present section describes them in more detail and outlines a
categorical rendering originally propounded in [30].

The concept of possible-translations characterization (PTC), and in particular
of possible-translations semantics (PTS), is based on the idea of defining a new
global consequence relation by combining other, presumably simpler, consequence
relations by means of translations. In this way, as commented in Chapter 1, PTCs
can be seen as a splitting procedure.
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The intuition behind possible–translations characterization is to encompass sev-
eral basic logic systems (perhaps presented semantically, in which case we refer to
them as a possible-translations semantics), in such a way as to define a new logic
which depends upon the basic ones by means of a collection of translations. The
basic logics can be copies of a same logic, or a bunch of logics of distinct nature,
as for example distinct many–valued logics, or even modal logics interpreted by
Kripke models.

In [47] a somewhat more abstract account of possible-translations semantics was
investigated, considering the basic models as organized through sheaf structures.
As is well known, sheaves are used in mathematics as a tool for investigating the
relationship between local and global phenomena, and seems to be an adequate
framework to frame the idea of possible translations.

As mentioned above, instead of thinking of synthesizing some given logics
through a combination process in order to obtain a new logic (as is done with
fibring, for instance), a logic can be split into a family of other logics; this ques-
tion can be examined in terms of categories, resulting in a universal construction.
Recall from Definition 1.4.1 of Chapter 1 the notions of translation, weak trans-
lation and conservative translation between consequence systems. It is convenient
to introduce the following concept of conservative morphism.

Definition 9.2.1 Let Ci = 〈Ci,i〉 for i = 1, 2 be consequence systems. A mor-
phism f : C1 → C2 in sCon is said to be conservative if

f̂ : L(C1) → L(C2)

is a conservative translation. ∇

Observe that each morphism f in sCon induces a translation f̂ between con-
sequence systems in the sense of the Definition 1.4.1; we call it a grammatical
translation, in the sense that each k-ary connective c is mapped by f into a for-
mula ϕc(ξ1, . . . , ξk) which uses exactly the schema variables ξ1, . . . , ξk. This for-
mula should be seen as kind of generalized k-ary connective. In Examples 9.2.16
and 9.2.21 some non-grammatical translations will be presented.

We begin by adapting the original definitions of [46] in order to make them suit-
able for categorical formalization. Some of these definitions were already presented
in Chapter 1.

Definition 9.2.2 Let C = 〈C,〉 be a consequence system, and let {Ci}i∈I be a
family of consequence systems indexed by a class I such that Ci = 〈Ci,i〉 for
every i ∈ I. A possible-translations frame for C is a pair

P = 〈{Ci}i∈I , {fi}i∈I〉

such that fi : L(C) → L(Ci) is a translation between C and Ci, for every i ∈ I.
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C
fi

��##
##

##
## fj

..C
CC

CC
CC

C

· · · Ci · · · Cj · · ·
A frame P = 〈{Ci}i∈I , {fi}i∈I〉 is said to be:

• small if the class I is a set:

• grammatical if fi is a morphism fi : C → Ci in sCon, for every i ∈ I;

• structural if Ci is structural for every i ∈ I;

• compact if Ci is compact for every i ∈ I. ∇

Definition 9.2.3 Let P = 〈{Ci}i∈I , {fi}i∈I〉 be a possible-translations frame for
a consequence system C = 〈C,〉. We say that P is a possible-translations charac-
terization for C (in short, a PTC) if, for every Γ ∪ {ϕ} ⊆ L(C),

Γ  ϕ if and only if fi(Γ) i fi(ϕ) for every i ∈ I.
In case every system Ci is presented by semantic means we say that P is a

possible-translations semantics for C (in short, a PTS). A possible-translations
characterization P is said to be small (respectively, grammatical, structural, com-
pact) if it is small (respectively, grammatical, structural, compact) regarded as a
frame. Of course the same qualifications apply to possible-translations semantics.

∇

In order to obtain a categorical representation of PTCs (see Propositions 9.2.5
and 9.2.6 below), possible-translations frames must here be restricted to small
grammatical ones.

As mentioned above, a PTC for a consequence system C can be seen as a way of
splitting the consequence system C into the family {Ci}i∈I of consequence systems
through the translations {fi}i∈I .

It is also interesting to consider a notion of PTC weaker than the one in Defi-
nition 9.2.3.

Definition 9.2.4 Let C = 〈C,〉 be a consequence system, and let {Ci}i∈I be a
family of consequence systems indexed by a class I such that Ci = 〈Ci,i〉 for
every i ∈ I. A weak possible-translations characterization for C is a pair

P = 〈{Ci}i∈I , {fi}i∈I〉
such that, for every ϕ ∈ L(C),

 ϕ if and only if i fi(ϕ) for every i ∈ I.
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In case the consequence systems possess a semantical nature we say that P is a
weak possible-translations semantics. ∇

Actually, the notion of (weak) possible-translations characterization and its par-
ticularization, the (weak) possible-translations semantics, constitute a common ab-
straction of several inter-relations between distinct logics found in the literature. Be-
sides the example of rendering provability logic in terms of multiple translations into
Peano arithmetic (see Example 1.4.5 of Chapter 1), Example 9.2.15 below obtains a
(weak) possible-translations semantics for propositional intuitionistic logic in terms
of the variety of Heyting algebras, where all translations are the identity mapping.
Other examples are Gödel and Gentzen’s so-called negative translation between clas-
sical and intuitionistic logic (see [127, 122, 123]), as well as Gödel’s (weak and conser-
vative) translation between intuitionistic and modal logic (see [126]).

The negative translation of a formula ϕ of first-order classical logic proposed
in [127, 122, 123] is the formula f(ϕ) of first-order intuitionistic logic inductively
defined according to the following clauses:

• f(p) is (¬(¬ p)), if p is atomic;

• f(¬ϕ) is (¬ f(ϕ));

• f(ϕ ∧ ψ) is (f(ϕ) ∧ f(ψ));

• f(ϕ ∨ ψ) is (¬((¬ f(ϕ)) ∧ (¬ f(ψ))));

• f(ϕ⇒ ψ) is (f(ϕ)⇒ f(ψ));

• f(∀x(ϕ)) is (∀x(f(ϕ)));

• f(∃x(ϕ)) is (¬(∀x(¬ f(ϕ)))).

This translation, independently discovered by Gerhard Gentzen and Kurt Gödel,
and anticipated by Andrey Kolmogorov in [164], provides a weak and conservative
translation from first-order classical logic into first-order intuitionistic logic. Its
immediate corollary is a simple, constructive proof of the consistency of classical
arithmetic from the assumption of the consistency of intuitionistic arithmetic.

The interpretation g of intuitionistic propositional logic into modal logic S4
introduced in [126], where necessity � could be interpreted as constructive prov-
ability, is defined as follows:

• g(p) is (�p), if p is atomic;

• g(¬ϕ) is (�(¬ g(ϕ)));

• g(ϕ ∧ ψ) is (g(ϕ) ∧ g(ψ));

• g(ϕ ∨ ψ) is (�(g(ϕ) ∨ g(ψ)));

• g(ϕ⇒ ψ) is (�(g(ϕ)⇒ g(ψ))).
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Another remarkable case is the well-known “correspondence theory” introduced
in [264], which shows that propositional modal logic can be almost straightfor-
wardly encoded in first-order classical logic. Indeed, using the so-called standard
translation, a propositional modal logic can be viewed as a fragment of first-order
classical logic. Moreover, any modal logic whose class of models has accessibility
relations characterized by a first-order formula (for instance, S4) admits a weak
and conservative translation into first-order classical logic.

In all the previous cases the collection of translations reduces to a singleton. All
such examples are but instances of (weak) possible-translations characterizations.

Using Proposition 9.1.17, a representation of PTCs can be given in terms of
products and conservative translations. The next result was originally stated
in [30] for the category of compact and structural consequence systems.

Proposition 9.2.5 Small grammatical possible-translations characterizations for
a consequence system C are the same as conservative morphisms f : C → C′, where
C′ is a product in sCon of some small family of consequence systems. Moreover,
if C admits a small grammatical structural PTC then C is structural.

Proof. Let C = 〈C,〉 be a consequence system and let P be a small grammatical
PTC for C. The idea is to define a conservative morphism

t(P ) : C → C(P )

in sCon, where C(P ) is a product in sCon of some family of consequence systems,
such that t(P ) encodes P . Conversely, given a conservative morphism f : C → C′
in sCon, where C′ is a product in sCon of a small family of consequence systems,
a small grammatical PTC for C encoding f , denoted PTC(f), can be defined, in
such a manner that the mapping t is the inverse of PTC, and vice-versa.

Thus, assuming that P = 〈{Ci}i∈I , {fi}i∈I〉 is a small grammatical PTC for
C, consider the product 〈CF , {πi}i∈I〉 in sCon of the small and non-empty family
F = {Ci}i∈I (recall Proposition 9.1.16). Since each fi is a morphism in sCon
then, by the universal property of the product, there is a unique morphism

t(P ) : C → CF

in sCon such that fi = πi � t(P ) for every i ∈ I. By Lemma 9.1.5 it follows that

f̂i = π̂i ◦ t̂(P ) .

Using this, it can be proved that t(P ) is a conservative morphism. Clearly, t(P )
together with its codomain C(P ) = CF encodes all the information about P : every
consequence system Ci is obtained as the codomain of πi, and every morphism fi
is obtained as fi = πi � t(P ).

Conversely, let f : C → C′ be a conservative morphism in sCon, such that C′
is a product in sCon of a small and non-empty family {Ci}i∈I of consequence
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systems, with canonical projections πi for every i ∈ I. For every i ∈ I consider
the morphism fi = πi � f in sCon, and define the small grammatical possible-
translations frame

PTC(f) = 〈{Ci}i∈I , {fi}i∈I〉.
Using Lemma 9.1.5 again, it can be proved that PTC(f) is a (small and grammat-
ical) PTC for C. Moreover, all the information about f and C′ can be recovered
from PTC(f): in fact

f = t(PTC(f))

and C′ is the product of the family of consequence systems of PTC(f). It is also
clear that, if P is a small grammatical PTC for C, then PTC(t(P )) = P .

Finally, suppose that P is a small grammatical structural PTC for C = 〈C,〉.
Then, C(P ) = 〈C ′,′〉 is a structural consequence system, by Proposition 9.1.16.
Suppose that Γ  ϕ and let σ be a substitution over C. Using Lemma 9.1.6, there
exists a substitution σ′ over C′ such that

t̂(P ) ◦ σ̂ = σ̂′ ◦ t̂(P ).

Since t̂(P )(Γ) ′ t̂(P )(ϕ) then σ̂′(t̂(P )(Γ)) ′ σ̂′(t̂(P )(ϕ)), that is,

t̂(P )(σ̂(Γ)) ′ t̂(P )(σ̂(ϕ)).

It follows that σ̂(Γ)  σ̂(ϕ), because t(P ) is conservative. This shows that C is
structural. �

With respect to compact consequence systems, the analogous to the proposition
above is as follows.

Proposition 9.2.6 Small grammatical and compact possible-translations char-
acterizations for a consequence system C are the same as conservative morphisms
f : C → C′, where C′ is a product in csCon of some small and non-empty family
of compact consequence systems. As a consequence, if C admits a small grammat-
ical and compact possible-translations characterization P then C is compact. If,
additionally, P is structural then C is structural.

Proof. The proof is analogous to that of Proposition 9.2.5, but now using Propo-
sition 9.1.17. Details are left to the reader. �

We now show that matrix semantics for propositional logics (referred to at the
beginning of this chapter) can be portrayed as a particular case of PTSs (see
Proposition 9.2.14 below). In order to do this, we briefly recall some basic facts
about matrix semantics. Recall the definition of algebra over a signature given in
Section 3.1 of Chapter 3.
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Definition 9.2.7 Given a signature C, a matrix over C is a pair

M = 〈B, D〉

where B = 〈B, ν〉 is an algebra over C and D ⊆ B. The set D is usually referred
to as the set of designated values of M .

The homomorphisms v : L(C) → B over C are calledM -valuations or valuations
over M . ∇

Observe that every M -valuation v : L(C) → B is generated by a unique assign-
ment α : Ξ → B. This fact will be frequently used from now on.

For simplicity, sometimes we will write M = 〈B,D〉 instead of M = 〈B, D〉 in
concrete examples. Additionally, the interpretation of a connective c in M will
be frequently written as cM . However, sometimes we will use the same symbol to
refer both to a connective as well as its interpretation in a given matrix, following
a common practice.

Definition 9.2.8 Let C be a signature and let K be a class of matrices over C.
The matrix semantics for L(C) induced by K, denoted by |=K, is defined by:

Γ |=K ϕ if and only if v(Γ) ⊆ D implies that v(ϕ) ∈ D
for every matrix M = 〈B, D〉 over C in K
and every M -valuation v for L(C).

∇

Observe that the notion of (global) entailment introduced in Definition 3.1.22
is a particular case of the notion of entailment presented above. In the former,
the set of designated values is always of the form { }. The assignment α in
Definition 3.1.22 corresponds to the restriction of a valuation v to the set Ξ in
Definition 9.2.8.

A structural consequence system C = 〈C,〉 is said to be a matrix logic if there
exists a class K of matrices over C such that  = K. In this case, we say that
K is adequate for C, or that K is a complete matrix semantics for C, or that C
is characterized by K. As shown in [278], every structural consequence system is
indeed a matrix logic (see Proposition 9.2.13 below). When K = {M} is a singleton
then |=M will stand for |={M}. A matrix logic of this form was already considered
in Example 1.4.6 of Chapter 1.

Example 9.2.9 The 3-valued weakly intuitionistic I1 was introduced in [245],
and studied in several contexts afterward.

The logic I1 can be presented either axiomatically, or as a matrix logic over the
signature CI

1
such that:

• |CI1 | = {¬,⇒}
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Its matrix is

• MI1 = 〈BI1 , {T }〉, where BI1 = {T, F1, F}.
The corresponding operations are displayed in the tables below.

¬
T F
F1 F
F T

⇒ T F1 F
T T F F
F1 T T T
F T T T

Observe that ⇒ cannot distinguish the two non-designated values. Classical
conjunction and disjunction can be defined in I1 as follows:

(ϕ ∧ ψ) = (¬(((ϕ⇒ ϕ)⇒ ϕ)⇒ (¬((ψ⇒ ψ)⇒ ψ)))),
(ϕ ∨ ψ) = (((¬(ψ⇒ ψ))⇒ ψ)⇒ ((ϕ⇒ ϕ)⇒ ϕ)).

The tables for these connectives are showed below.

∧ T F1 F
T T F F
F1 F F F
F F F F

∨ T F1 F
T T T T
F1 T F F
F T F F

The intuitionistic character of I1 is evidenced by that fact that (ξ ∨ (¬ ξ)) is not
a theorem of I1 for any schema variable ξ. On the other hand, (ϕ ∨ (¬ϕ)) is a
theorem of I1 for every complex (non-atomic) formula ϕ. The reader can easily
check that, for instance,

|=MI1 (ϕ⇒ (¬(¬ϕ)))

for every ϕ, and
|=MI1 ((¬(¬ϕ))⇒ ϕ)

for every non-atomic ϕ.
The logic I1 is maximal with respect to classical logic in the following sense:

adding to I1 any classical tautology (which is not a theorem of I1) as an axiom
schema, produces a system which collapses with classical logic.

The maximality of I1 with respect to classical logic can be characterized in
lattice-theoretic terms. Let CONScs(C) be the set of compact and structural
consequence system defined over signature C. As observed above,

C ≤ C′ in CONScs(C)

(where ≤ denotes the weakness relation introduced in Definition 1.1.6) if and only
if the consequence relation of C is contained in the consequence relation of C′. The
set CONScs(C), ordered by the weakness relation, is a complete lattice (see [280]).
Let CI1 and C be the consequence systems of I1 and of classical logic defined over
the signature CI

1
, respectively. Then CI1 < C (that is, CI1 is properly contained

in C) and, if C′ ∈ CONScs(C) is such that CI1 < C′ ≤ C then C′ = C. ∇
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Definition 9.2.10 Let C = 〈C,〉 be a structural consequence system, and let M
be a matrix over C. We say that  is sound for |=M , or that M is a matrix model
for C, if  ⊆ |=M . ∇

We define the class MatMod(C) as being the class of all the matrix models
for C.

It is easy to prove that the pair 〈C, |=K〉 is a consequence system, for every class
K of matrices over C, and 〈C, |=M 〉 is a structural consequence system, for every
matrix M over C. Let CONSs(C) be the set of structural consequence systems
defined over signature C, ordered with respect to the weakness relation, that is,
with respect to inclusion of the respective consequence relations. Then CONSs(C)
is a complete lattice (see [280]). The following fundamental result (stated in [183])
shows that a matrix logic is, in fact, structural:

Proposition 9.2.11 Let K be a class of matrices over C. Then

〈C, |=K〉 =
∧
{ 〈C, |=M 〉 : M ∈ K}

where the infimum
∧

is taken in the complete lattice CONSs(C), and so 〈C, |=K〉
is a structural consequence system.

Note that 〈C, |=K〉 is not necessarily compact. However, in [279], a sufficient
condition is obtained for a matrix logic to be standard.

Proposition 9.2.12 Every structural consequence relation induced by a finite
class of finite matrices is compact, and so defines a standard consequence system.

The next result, due to Adolf Lindenbaum (see [278, 280]), establishes that
every structural consequence system is indeed a matrix logic.

Proposition 9.2.13 Let C be a structural consequence system. Then the class
MatMod(C) is a complete matrix semantics for C.

It is straightforward to check that the notion of matrix logics is a special case
of grammatical structural possible-translations semantics:1

Proposition 9.2.14 Let C = 〈C,〉 be a matrix logic and let K be a class of
matrices over C adequate for C. For every M ∈ K, let CM = 〈C, |=M 〉 and let
fM : C → CM be the morphism in sCon induced by the identity morphism for C.
Then the grammatical structural possible-translations frame

PTS(K) = 〈{CM}M∈K, {fM}M∈K〉
is a grammatical structural possible-translations semantics for C.

1See [197] for other results about characterizations of general logics by means of possible-
translations semantics.
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Proof. Observe that fM is, in fact, a morphism in sCon, since  ⊆ |=M . The
proof of the proposition is immediate from Definition 9.2.3 and from the notion of
adequate class of matrices. �

From the last proposition, it follows that any structural consequence system C
characterized by a class of matrices K splits over the matrices in K. In other words,
every matrix in K can be seen as a factor of C. Therefore, an adequate matrix
semantics is a particular instance of the splitting method defined by possible-
translations semantics. Clearly, if K is a proper class (instead of a set), then
PTS(K) is not small.

The next example shows that a well-known characterization of propositional
intuitionistic logic can be recast in terms of weak possible-translations semantics.

Example 9.2.15 Let CInt = 〈CInt,Int〉 be the consequence system of the propo-
sitional intuitionistic logic. A classical result states that theoremhood in CInt is
characterized by the class of matrices

K = {〈H, { }〉 : H is a Heyting algebra with top element  }.

That is, ϕ is a theorem of CInt if and only if, for every Heyting algebra H and every
valuation v over H, v(ϕ) =  . A proof of this result can be found, for instance,
in [227].

Now, for every matrix H = 〈H, { }〉 in K consider the consequence system
CH = 〈CInt, |=H〉, and let fH be the morphism fH : CInt → CH in sCon induced by
the identity morphism for the signature CInt of CInt. Then

PTS(K) = 〈{CH}H∈K, {fH}H∈K〉

is a grammatical weak possible-translations semantics for propositional intuition-
istic logic CInt. That is, Int ϕ if and only if |=H ϕ for every Heyting algebra H. ∇

It is worth noting that matrix semantics are a particular case of global semantics
(see Subsection 3.3.1 of Chapter 3), since they are based on non-ordered algebras.
For instance, the matrix semantics for CInt considering above just represents global
reasoning. That is, for every Heyting algebra H and every set Γ∪{ϕ} of formulas,
Γ |=H ϕ if and only if, for every homomorphism

v : L(CInt) → H

v(Γ) ⊆ { } implies v(ϕ) =  . However, by using algebraic ordered structures
it is frequently useful to consider the local notion of entailment, that is: ϕ is a
consequence of Γ if and only if

(
∧

γ∈Γ

v(γ)) ≤ v(ϕ)
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for every homomorphism v (here,
∧

denotes the infimum of a set). In the case
of CInt analyzed in Example 9.2.15 nothing is lost: CInt is compact and satisfies
the metatheorem of deduction, and so characterizing theoremhood is equivalent
to characterizing local entailment.

Now we give an application of possible-translations semantics to paraconsistent
logics. The next examples show that, in some cases, obtaining a PTC for a logic
is more a necessity than a curiosity: certain logics are usually characterized by
semantical methods which are not easy to manage. This is the case with most of
paraconsistent logics defined in the literature. The PTSs we present below (as well
as the PTS for Ci given in Chapter 1) produce relatively easy decision procedures
for several LFIs which cannot be characterized by finite matrices (see [49]). This
procedures can be used, as usual with semantic matters, to give counter-examples
of entailment in the given logics.

Example 9.2.16 Consider again the logics of formal inconsistency, LFIs, briefly
described in Example 5.1.10 of Chapter 5.

Some interesting LFIs are the logics bC and Ci, as well as its weaker ver-
sions mCi and mbC. The logic C1 (recall Example 2.2.9 in Chapter 2) is also
a well-known example of an LFI. In Chapter 1 we showed a PTS for Ci (recall
Example 1.4.6). In this example we analyze the weaker logic bC. Like Ci, the
logic bC is defined over a signature C such that

• C1 = {¬, ◦};
• C2 = {∧,∨,⇒};
• Ck = ∅ in any other case.

The Hilbert calculus for bC is presented below (see [51]).

• 〈∅, (ξ1 ⇒ (ξ2 ⇒ ξ1))〉;
• 〈∅, ((ξ1 ⇒ (ξ2 ⇒ ξ3))⇒ ((ξ1 ⇒ ξ2)⇒ (ξ1 ⇒ ξ3)))〉;
• 〈∅, ((ξ1 ∧ ξ2)⇒ ξ1)〉;
• 〈∅, ((ξ1 ∧ ξ2)⇒ ξ2)〉;
• 〈∅, (ξ1 ⇒ (ξ2 ⇒ (ξ1 ∧ ξ2)))〉;
• 〈∅, (ξ1 ⇒ (ξ1 ∨ ξ2))〉;
• 〈∅, (ξ2 ⇒ (ξ1 ∨ ξ2))〉;
• 〈∅, ((ξ1 ⇒ ξ3)⇒ ((ξ2 ⇒ ξ3)⇒ ((ξ1 ∨ ξ2)⇒ ξ3)))〉;
• 〈∅, ((¬(¬ ξ1))⇒ ξ1)〉;
• 〈∅, (ξ1 ∨ (¬ ξ1))〉;
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• 〈∅, ((◦ξ1)⇒ (ξ1 ⇒ ((¬ ξ1)⇒ ξ2)))〉;
• 〈{ξ1, (ξ1 ⇒ ξ2)}, ξ2〉.

Notice that the axiomatization of bC is closely related to that of C1. However,
the reader should observe that, in the case of bC, the consistency of the formula
ϕ is described by the formula (◦ϕ) instead of the formula ϕ◦ = (¬(ϕ ∧ (¬ϕ))) as
in the case of C1. Thus, bC is not a subsystem of C1 as it could seem at first sight.
As a matter of fact, the logic Ci is obtained from bC by adding the axiom schema

((¬(◦ξ1))⇒ (ξ1 ∧ (¬ ξ1)))

(this fact will be used in the proof of Proposition 9.2.20).
At the semantical level, bC is characterized by the family of all the bivaluations

v : L(C) → 2 satisfying the properties (v1)-(v6) of Ci-bivaluations mentioned in
Example 1.4.6 of Chapter 1 (as in [49]). Thus, a bC-valuation does not necessarily
satisfy property (v7) of Ci-valuations.

Let CbC = 〈C, |=bC〉 be the consequence system obtained by using the bival-
uation semantics for bC. Now we will present an original small structural and
compact PTS for CbC.

Consider the signature C1 such that

• C1
1 = {¬1,¬2, ◦1, ◦2, ◦3};

• C1
2 = {∧,∨,⇒};

• C1
k = ∅ in any other case.

Let M be the matrix over C1 with domain {T, t, F} defined through the truth-
tables below, where {T, t} is the set of designated values.

∧ T t F
T t t F
t t t F
F F F F

∨ T t F
T t t t
t t t t
F t t F

⇒ T t F
T t t F
t t t F
F t t t

¬1 ¬2

T F F
t F t
F T T

◦1 ◦2 ◦3
T T t F
t F t F
F T t F

Let {fi}i∈I be the family of all the mappings f : L(C) → L(C1) satisfying
clauses (tr0), (tr1), (tr2), (tr3) and (tr4) below.

(tr0) f(ξ) = ξ for ξ ∈ Ξ;

(tr1) f(¬ϕ) ∈ {(¬1 f(ϕ)), (¬2 f(ϕ))};
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(tr2) f(ϕ#ψ) = (f(ϕ)#f(ψ)), for # ∈ {∧,∨,⇒};
(tr3) f(◦ϕ) ∈ {(◦1f(ϕ)), (◦2f(ϕ)), (◦3f(ϕ))};
(tr4) if f(¬ϕ) = (¬2 f(ϕ)) then f(◦ϕ) = (◦1f(ϕ)).

It will be proved below (see Proposition 9.2.19) that the family of mappings
{fi}i∈I defines a PTS for the logic bC. ∇

Proposition 9.2.17 If a mapping f : L(C) → L(C1) satisfies the clauses (tr0)−
(tr4) above then f is a translation between CbC and the matrix logic 〈C1, |=M 〉.
Thus, the pair

PTS = 〈{Ci}i∈I , {fi}i∈I〉
is a small structural and compact possible-translations frame for the consequence
system CbC, where Ci = 〈C1, |=M 〉 for every i ∈ I.

Proof. It is sufficient to verify that the (finite) collection of all possible translations
of each axiom produces tautologies in the matrix logic 〈C1, |=M 〉, and that all
possible translations of the rule of modus ponens preserve validity in 〈C1, |=M 〉.
Details of the proof are left to the reader. �

In order to prove that PTS is, in fact, a possible-translations semantics for CbC,
we state the following lemma.

Lemma 9.2.18 Given a bC-valuation v there is a translation f in PTS and a
M -valuation w such that, for every ϕ ∈ L(C),

v(ϕ) = 1 if and only if w(f(ϕ)) ∈ {T, t}.

Proof. Consider the M -valuation w : L(C1) → {T, t, F} such that

w(ξ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T if v(¬ ξ) = 0

t if v(ξ) = v(¬ ξ)

F if v(ξ) = 0

for every ξ ∈ Ξ. Observe that, if v(ϕ) = v(¬ϕ) then v(ϕ) = v(¬ϕ) = 1. Now,
define recursively a mapping f : L(C) → L(C1) as follows.

• f(ξ) = ξ for ξ ∈ Ξ

• f(¬ϕ) =

⎧
⎨

⎩

(¬2 f(ϕ)) if v(ϕ) = v(¬ϕ)

(¬1 f(ϕ)) otherwise
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• f(◦ϕ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(◦1f(ϕ)) if v(ϕ) = v(¬ϕ)

(◦2f(ϕ)) if v(ϕ) �= v(¬ϕ) and v(◦ϕ) = 1

(◦3f(ϕ)) if v(ϕ) �= v(¬ϕ) and v(◦ϕ) = 0

• f(ϕ#ψ) = (f(ϕ)#f(ψ)) for # ∈ {∧,∨,⇒}.
Clearly, the mapping f satisfies the clauses (tr0) − (tr4) above. In fact, the

unique clause that deserves a close analysis is clause (tr4). Thus, suppose that
f(¬ϕ) = (¬2 f(ϕ)). Then v(ϕ) = v(¬ϕ), by construction of f , and therefore
f(◦ϕ) = (◦1f(ϕ)), using again the definition of f . This shows that t satisfies
(tr4).

In order to prove that

v(ϕ) = 1 if and only if w(f(ϕ)) ∈ {T, t}
for every ϕ ∈ L(C), we need to define the notion of complexity l(ϕ) of a formula
ϕ in L(C). This mapping is defined as follows:

• l(ξ) = 1 if ξ ∈ Ξ;

• l(¬ϕ) = l(ϕ) + 1;

• l(◦ϕ) = l(ϕ) + 2;

• l(ϕ#ψ) = l(ϕ) + l(ψ) + 1 for # ∈ {∧,∨,⇒}.
Now we prove by induction on l(ϕ) the following: for every ϕ ∈ L(C),

(1) v(ϕ) = 1 if and only if w(f(ϕ)) ∈ {T, t};
(2) if v(ϕ) = v(¬ϕ) then w(f(ϕ)) = w(f(¬ϕ)) = t.

The case ϕ ∈ Ξ is straightforward. Assume that (1) and (2) hold, for every ϕ
with l(ϕ) ≤ n (for n ≥ 1) and let ϕ ∈ L(C) with l(ϕ) > n. There are three cases
to analyze.

Case 1: ϕ is (¬ψ). We first prove that (1) holds in this case.
Suppose that v(ϕ) = 1, that is, v(¬ψ) = 1. If v(ψ) = 1 then, by induction

hypothesis (2), w(f(ψ)) = w(f(¬ψ)) = t and so w(f(ϕ)) ∈ {T, t}. If v(ψ) = 0
then, by induction hypothesis (1),

w(f(ψ)) = F

and so
w(f(¬ψ)) = T

by construction of f and by the truth-tables of M . That is, w(f(ϕ)) ∈ {T, t}.
Conversely, suppose that w(f(ϕ)) ∈ {T, t}. If f(¬ψ) = (¬2 f(ψ)) then

v(ψ) = v(¬ψ) = 1
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by construction of f , and so v(ϕ) = 1. On the other hand, if f(¬ψ) = (¬1 f(ψ))
then

w(f(ψ)) = F

by the truth-table for ¬1, and so v(ψ) = 0, by induction hypothesis (1). Then
v(¬ψ) = 1, by the property (v4) of bC-bivaluations (see Example 1.4.6); that is,
v(ϕ) = 1 and so (1) holds.

In order to prove (2), assume that v(¬ψ) = v(¬(¬ψ)) = 1. Then

f(¬(¬ψ)) = (¬2f(¬ψ))

by construction of f . On the other hand, v(¬(¬ψ)) = 1 implies v(ψ) = 1, by the
property (v5) of v (recall Example 1.4.6), and so v(ψ) = v(¬ψ). Then

w(f(ψ)) = w(f(¬ψ)) = t

by induction hypothesis (2), therefore

w(f(¬(¬ψ))) = w(¬2f(¬ψ)) = ¬2w(f(¬ψ)) = (¬2t) = t.

Thus w(f(ϕ)) = w(f(¬ϕ)) = t.
Case 2: ϕ is (◦ψ). We first prove the property (1).
Thus, suppose that v(ϕ) = 1, that is, v(◦ψ) = 1. By the property (v6) of v

(recall Example 1.4.6) it follows that v(ψ) = 0 or v(¬ψ) = 0. That is,

v(ψ) �= v(¬ψ) and v(◦ψ) = 1

thus f(◦ψ) = (◦2f(ψ)), by construction of f . Then

w(f(ϕ)) = w(f(◦ψ)) = (◦2w(f(ψ))) = t

by the truth-table for ◦2, and so w(f(ϕ)) ∈ {T, t}. Conversely, assume that
w(f(ϕ)) ∈ {T, t}. If v(ψ) = v(¬ψ) then w(f(ψ)) = w(f(¬ψ)) = t, by induction
hypothesis (2). Using the definition of f we infer that f(◦ψ) = (◦1f(ψ)) and so,
from the truth-tables for ◦1 it follows that

w(f(◦ψ)) = (◦1w(f(ψ))) = (◦1t) = F

a contradiction. Therefore v(ψ) �= v(¬ψ). Now, if v(◦ψ) = 0 then, by construc-
tion of f , f(◦ψ) = (◦3f(ψ)) and so, from the truth-tables for ◦3 it follows that
w(f(◦ψ)) = (◦3w(f(ψ))) = F , a contradiction. Thus v(◦ψ) = 1, that is, v(ϕ) = 1.
Therefore (1) holds in this case.

In order to prove (2), suppose that v(◦ψ) = v(¬(◦ψ)). Then v(◦ψ) = 1 and so
we infer that w(f(ϕ)) = t, as it was proved at the beginning of Case 2. On the
other hand, from v(◦ψ) = v(¬(◦ψ)) it follows that

f(¬(◦ψ)) = (¬2f(◦ψ))



9.2. POSSIBLE-TRANSLATIONS SEMANTICS 415

by definition of f . Then

w(f(¬ϕ)) = w(f(¬(◦ψ))) = (¬2w(f(◦ψ))) = (¬2t) = t.

This proves (2) for this case.
Case 3: ϕ is (ψ#δ) for # ∈ {∧,∨,⇒}. Observe that the truth-tables for these

operators enjoy the following property:

• w(f(ψ ∧ δ)) ∈ {T, t} if and only if w(f(ψ)) ∈ {T, t} and w(f(δ)) ∈ {T, t};
• w(f(ψ ∨ δ)) ∈ {T, t} if and only if w(f(ψ)) ∈ {T, t} or w(f(δ)) ∈ {T, t};
• w(f(ψ⇒ δ)) ∈ {T, t} if and only if w(f(ψ)) = F or w(f(δ)) ∈ {T, t}.

From this and from the properties (v1)-(v3) of v (recall Example 1.4.6) and by
induction hypothesis (1), the property (1) hold in this case. In order to prove (2),
assume that v(ψ#δ) = v(¬(ψ#δ)). Then v(ψ#δ) = 1 and so

w(f(ψ#δ)) ∈ {T, t}
since we already prove (1) in this case. But then w(f(ψ#δ)) = t, by the definition
of f and by the truth-tables of M . On the other hand, by definition of f it follows
that f(¬(ψ#δ)) = ¬2 f(ψ#δ) and then

w(f(¬(ψ#δ))) = (¬2w(f(ψ#δ))) = (¬2t) = t.

Therefore (2) holds in this case.
This completes the proof of the lemma. �

Proposition 9.2.19 The small structural and compact possible-translations frame

PTS = 〈{Ci}i∈I , {fi}i∈I〉
of Proposition 9.2.17 is a small structural and compact possible-translations se-
mantics for the consequence system CbC.

Proof. Let Γ∪{ϕ} ⊆ L(C). If Γ |=bC ϕ then fi(Γ) |=M fi(ϕ) for every i ∈ I, since
every mapping fi is a translation. Conversely, suppose that fi(Γ) |=M fi(ϕ) for
every i ∈ I. Let v be a bC-valuation such that v(γ) = 1 for every γ ∈ Γ. Consider
a translation f in PTS and a M -valuation w such that, for every ψ ∈ L(C),

v(ψ) = 1 if and only if w(f(ψ)) ∈ {T, t}.
The existence of such w and f is guaranteed by Lemma 9.2.18. Then w(f(γ)) ∈

{T, t} for every γ ∈ Γ and so w(f(ϕ)) ∈ {T, t}, because f(Γ) |=M f(ϕ). Therefore
v(ϕ) = 1 and so Γ |=bC ϕ. �

Now we are ready to prove that the PTS proposed for Ci in Example 1.4.6
works fine.
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Proposition 9.2.20 The pair

P = 〈{Cf}f∈Tr, T r〉
defined in Example 1.4.6 of Chapter 1 is a small structural and compact possible-
translations semantics for the consequence system CCi of the logic Ci.

Proof. The proof is similar to that for bC. Recall that Cf is the matrix logic C
characterized by the matrix M0 given in Example 1.4.6, for every f ∈ Tr. The fact
that every mapping f in Tr is a translation between CCi and Cf is easily proved
by checking that every translation of every axiom of Ci is validated by the matrix
M0, and by observing that validity in M0 is preserved by modus ponens. Then P
is a possible-translations frame for CCi.

In order to prove that the frame P is a PTS for CCi, a result analogous to
Lemma 9.2.18 can be obtained for P . The proof of the lemma is similar to the
given above for Lemma 9.2.18, with the following changes: the mappings w and f
are defined as above, but in this case

f(◦ϕ) =

⎧
⎨

⎩

(◦1f(ϕ)) if v(ϕ) = v(¬ϕ)

(◦2f(ϕ)) otherwise

(recall that now the truth-table for ◦2 is the one given in Example 1.4.6). By
induction on the complexity of ϕ (defined as in the proof of Lemma 9.2.18) it can
be proved that

(1) v(ϕ) = 1 if and only if w(f(ϕ)) ∈ {T, t};
(2) if v(ϕ) = v(¬ϕ) then w(f(ϕ)) = w(f(¬ϕ)) = t.

The proof is identical to that of Lemma 9.2.18, with the exception of the case
when ϕ is ◦ψ.

Thus, suppose that v(◦ψ) = 1. Then either v(ψ) = 0 or v(¬ψ) = 0 and so
v(ψ) �= v(¬ψ). Thus f(◦ψ) = (◦2f(ψ)), therefore

w(f(◦ψ)) = (◦2w(f(ψ))) = T.

Conversely, suppose that w(f(◦ψ)) ∈ {T, t}. If v(ψ) = v(¬ψ) then

w(f(ψ)) = w(f(¬ψ)) = t

by induction hypothesis (2), and f(◦ψ) = (◦1f(ψ)), by the definition of f . There-
fore

w(f(◦ψ)) = (◦1w(f(ψ))) = (◦1t) = F

a contradiction. Thus (v(ψ) �= v(¬ψ)) and so, by properties (v7) and (v4) of v
(see Example 1.4.6), v(◦ψ) = 1. This proves (1) for this case.

Now, suppose that v(◦ψ) = v(¬(◦ψ)). Then v(◦ψ) = 1 and so either v(ϕ) = 0
or v(¬ϕ) = 0, by property (v6) of v. Since v(¬(◦ϕ)) = 1 then, by property (v7) of
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v, v(ϕ) = 1 and v(¬ϕ) = 1, a contradiction. Therefore it is not possible to have
v(◦ψ) = v(¬(◦ψ)) and then property (2) holds trivially in this case.

Since the analogous of Lemma 9.2.18 holds for P , the rest of the proof is identical
to the proof of Proposition 9.2.19. �

Next example introduces a PTS for the paraconsistent logic C¬¬
1 .

Example 9.2.21 In 1963 (see [73], see also [72]) da Costa proposed a whole hi-
erarchy of paraconsistent propositional calculi, the logics Cn, for 0 < n < ω,
already discussed in this book. One of his guidelines for proposing such cal-
culi were that the new logics “should contain the most part of the schemata and
rules of the classical propositional calculus which do not interfere with the first
conditions”.

The systems Cn as proposed, however, did not fully accomplish this require-
ment: C1, for instance, can be augmented with the classically valid principles
(ξ⇒ (¬(¬ ξ))) and ((¬((¬ ξ)∧ ξ))⇒ (¬(ξ∧ (¬ ξ)))) without colliding with classical
logic.

An extension of the logics Cn with such principles, already suggested in the
folklore of paraconsistency, was studied for the first time in [46], and possible-
translations semantics for these logics, called C¬¬

n , were provided.
It should be noted that there exists an asymmetry in the logics Cn with re-

spect to the consistency operator. For instance, in C1 the consistency of a for-
mula ϕ is represented by the formula ϕ◦ = (¬(ϕ ∧ (¬ϕ))). However, it could
also be represented by ϕ� = (¬((¬ϕ) ∧ ϕ)). It happens that ϕ� follows from
ϕ◦ in C1, but the converse is not true. This motivates the inclusion of the ax-
iom schema (ξ� ⇒ ξ◦) to C1 (together with the axiom schema (ξ ⇒ (¬(¬ ξ)))
guaranteeing the equivalence between ϕ and (¬(¬ϕ)) for every ϕ) in order to
obtain C¬¬

1 .
We exhibit here a possible-translations semantics for C¬¬

1 , the first member of
the hierarchy, taken from [46].

Let C2 be the following signature:

• C2
1 = {¬1,¬2};

• C2
2 = {∧1,∧2,∧3,∨1,∨2,∨3,⇒1,⇒2,⇒3};

• C2
k = ∅ in any other case.

Let M ′ be the matrix over C2 with domain {T, t, F} defined by the following
truth-tables, where {T, t} is the set of designated values.

∧1 T t F
T T T F
t t t F
F F F F

∧2 T t F
T T t F
t T t F
F F F F

∧3 T t F
T T t F
t t t F
F F F F
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∨1 T t F
T T T T
t t t t
F T T F

∨2 T t F
T T t T
t T t T
F T t F

∨3 T t F
T T t T
t t t t
F T t F

⇒1 T t F
T T T F
t t t F
F T T T

⇒2 T t F
T T t F
t T t F
F T t T

⇒3 T t F
T T t F
t t t F
F T t T

¬1

T F
t F
F T

¬2

T F
t t
F T

Let {fi}i∈I be the family of all the mappings fi : L(C) → L(C1) satisfying
clauses (tr0)− (tr8) below.

(tr0) f(ξ) = ξ and f(¬ξ) = (¬2ξ), for ξ ∈ Ξ;
(tr1) f(ϕ#ψ) = (f(ϕ)#1f(ψ)) if f(¬ϕ) = (¬2f(ϕ)) and f(¬ψ) = (¬1f(ψ)),

for # ∈ {∧,∨,⇒};
(tr2) f(ϕ#ψ) = (f(ϕ)#2f(ψ)) if f(¬ϕ) = (¬1f(ϕ)) and f(¬ψ) = (¬2f(ψ)),

for # ∈ {∧,∨,⇒};
(tr3) f(ϕ#ψ) = (f(ϕ)#3f(ψ)) otherwise, for # ∈ {∧,∨,⇒};
(tr4) f(¬(ϕ ∧ (¬ϕ))) = (¬1 f(ϕ ∧ (¬ϕ)));
(tr5) f(¬((¬ϕ) ∧ ϕ)) = (¬1 f((¬ϕ) ∧ ϕ));
(tr6) f(¬(ϕ#ψ)) = (¬1f(ϕ#ψ)) if f(¬ϕ) = (¬1f(ϕ)) and f(¬ψ) = (¬1f(ψ)),

for # ∈ {∧,∨,⇒} and (ϕ#ψ) �∈ {(γ ∧ (¬γ)), ((¬γ) ∧ γ)} for every γ;
(tr7) f(¬(ϕ#ψ)) ∈ {(¬1f(ϕ#ψ)), (¬2f(ϕ#ψ))} otherwise, for # ∈ {∧,∨,⇒}

and (ϕ#ψ) �∈ {(γ ∧ (¬γ)), ((¬γ) ∧ γ)} for every γ;
(tr8) f(¬(¬ϕ)) = (¬2f(¬ϕ)).

Let P = 〈{Ci}i∈I , {fi}i∈I〉, where Ci = 〈C2, |=M ′〉 is the consequence system
associated to the matrix M ′, for every i ∈ I. Then P is a PTS for C¬¬

1 (see [46]).
∇

The examples above show that grammatical PTSs do not cover many cases, and
several logics as the LFIs above mentioned could require a PTS which is not gram-
matical. Of course, the fact that no grammatical PTSs are known for the logics
in the examples above does not imply the non-existence of such characterizations.
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9.3 Plain fibring of matrices

In this section the method of plain fibring for combining matrix logics, proposed
in [60] and [94], is discussed. This technique, together with the simpler case,
direct union of matrices, can be seen as an instance of fibring by functions (recall
Chapter 1).

Briefly, the plain fibring takes two matrix logics C1 and C2, where Ci is charac-
terized by a single matrix Mi with domain Bi, and extends the original operators
of the algebra Mi to the disjoint union B1⊕B2 by means of mappings fi : Bj → Bi
(for i �= j).

The functions fi ‘transport’ the truth-values of the matrix Mj into the truth-
values of Mi, playing a role similar to the mappings from worlds into Kripke
structures of the so-called fibring by functions, described in Subsection 1.2.3 of
Chapter 1.

Plain fibring was designed as a method for splicing matrix logics into a new one,
in a way that resembles the original proposal of fibring. However, this method can
be see as a splitting method: in fact, as it was shown in Section 9.2, matrix logics
are particular cases of possible-translation semantics, in which each matrix is a fac-
tor of the logic being represented. Moreover, a logic characterized by a single ma-
trix can be considered as splitting through the logics defined by its sub-signatures.

A few words about notation: since the operations between matrices logics to
be defined below are defined in terms of the matrices instead of the consequence
relations, in the rest of this section we will write 〈C,M〉 instead of 〈C, |=M 〉 (note
that two different matrices over C can define the same consequence relation).

It is convenient to begin with the simpler case, direct union of matrices. Given
two matrix logics in which the respective algebras have the same domain and
the same sets of designated values, then their direct union is a new matrix logic
obtained simply by putting together both matrices. In formal terms:

Definition 9.3.1 Let Ci = 〈Ci,Mi〉 (with i = 1, 2) be two matrix logics, where
each Mi = 〈Bi, Di〉 is a matrix over Ci such that B1 = B2 and D1 = D2. Let
B = B1 and D = D1. The direct union of C1 and C2 is the consequence system

C1 + C2 = 〈C1⊕C2, |=M1+M2〉
such that:

• C1⊕C2 is the disjoint union of C1 and C2;

• |=M1+M2 is the consequence relation induced by the matrix over C1⊕C2,

M1 +M2 = 〈B, D〉;
• the matrix M1 + M2, with domain B, is defined as follows: if c ∈ Cik and
b1, . . . , bk ∈ B, k ≥ 0, then

cM1+M2(b1, . . . , bk) = cMi(b1, . . . , bk)

for i = 1, 2. ∇
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In the definition above, it is worth noting that the condition B1 = B2 and
D1 = D2 does not mean that the operations defined in M1 and M2 coincide,
that is: the interpretation mappings ν1 and ν2 of M1 and M2 do not necessarily
coincide.

The fact that the direct union of matrices is a splitting operation is explained
by the following result.

Proposition 9.3.2 Let C = 〈C,〉 be a consequence system characterized by
a matrix M over C. Let C1 and C2 be two fragments of C over C1 and C2,
respectively, such that C1⊕C2 = C. Then C = C1 + C2.

Proof. Immediate from the definitions. �

The proposition above clarifies at what extent the direct union of consequence
systems splits a consequence systems into simpler ones: any partition of the sig-
nature of a matrix logic into sub-signatures produces simpler matrix logics into
which the original logic splits. In particular, a given consequence system C can
be split into two simpler factors C1 and C2 whenever C = C1 + C2 such that C is a
conservative extension of both factors, by Proposition 9.1.14.

C1 + C2

����
��

��
��

�

���
��

��
��

��

C1 C2

Of course this is a extremely simple way to decompose a logic into simpler com-
ponents but, as we shall see in some examples below, this decomposition, together
with the technique of plain fibring, can throw some light for understanding how
logic systems are constructed.

On the other hand, direct union is also a splicing method, by the very defini-
tion, synthesizing the logics C1 and C2 into the complex logic C1 + C2. The new
consequence system is a conservative extension of the given systems, showing that
the conservativeness of C1 +C2 with respect of C1 and C2 is created (when splicing)
and derived (when splitting).

Proposition 9.3.3 Suppose that C = C1+C2. Then the system C is a conservative
extension of both C1 and C2.

Proof. Straightforward from the definitions. �

Example 9.3.4 Recall the 3-valued Gödel logic from Examples 2.2.7 (Chapter 2)
and 3.1.10 (Chapter 3). It is immediate to see from these examples that this
logic can be presented by a consequence system C = 〈C, |=M 〉 such that C is the
intuitionistic signature of Example 2.1.4, that is: C1 = {¬}, C2 = {⇒,∧,∨}, and
Ck = ∅ in any other case. By its turn, M is the matrix over C with domain
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{⊥, 1/2, }, where  is the unique designated value, and the operations in M are
defined by the truth-tables below.

¬
 ⊥

1/2 ⊥
⊥  

⇒  1/2 ⊥
  1/2 ⊥

1/2   ⊥
⊥    

∧  1/2 ⊥
  1/2 ⊥

1/2 1/2 1/2 ⊥
⊥ ⊥ ⊥ ⊥

∨  1/2 ⊥
    

1/2  1/2 1/2
⊥  1/2 ⊥

Consider the sub-signatures C1 and C2 of C such that C1
1 = {¬}, C1

2 = {⇒},
C2

2 = {∧,∨} and Cik = ∅ in any other case. Let Ci = 〈Ci,Mi〉 such that Mi is the
matrix over Ci corresponding to the truth-tables above (where  is again the only
designated value), for i = 1, 2. That is, C1 is the fragment of 3-valued Gödel logic
corresponding to negation and implication, while C2 is the fragment corresponding
to conjunction and disjunction. Then

C = C1 + C2

and so the consequence systems C1 and C2 are two (simpler) factors of C. On the
other hand, C1 can split into two elementary consequence systems C′1 (the fragment
of negation) and C′′1 (the fragment of implication), that is,

C1 = C′1 + C′′1 .
By its turn, C2 splits into C′2 (the fragment of conjunction) and C′′2 (the fragment
of disjunction), that is, C2 = C′2 + C′′2 . Therefore the 3-valued Gödel logic can be
factored as shown in the picture below. ∇

In [59] it was analyzed the question of recovering, by means of fibring, a logic
from its fragments (recall Definition 9.1.11), showing that this question is closely

C = C1 + C2

������������������

������������������

C1 = C′
1 + C′′

1

���
���

���
�

����
���

���
��

C2 = C′
2 + C′′

2

���
���

���
�

����
���

���
��

C′
1 C′′

1 C′
2 C′′

2
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related to the definition of translation between logics to be considered. Thus, it
was shown that, by using algebraic fibring (as defined in the previous chapters),
a logic system cannot be obtained from its fragments, unless a stronger notion of
translation preserving metaproperties be considered.

Direct union of matrices is just a part of a more elaborate process to be described
now, in which two matrix logics defined over different domains are to be combined.
The idea of the method, related to fibring by functions, is to extended each given
matrix to the disjoint union of the domains by means of a pair of mappings, and
then take the direct union of the extended matrices. The set of matrices obtained
by taking all the possible pair of mappings (satisfying certain natural restrictions)
defines a matrix semantics called plain fibring, to be introduced in Definition 9.3.7
below.

Definition 9.3.5 For i = 1, 2 consider a matrix logic Ci = 〈Ci,Mi〉 defined by a
single matrix Mi = 〈Bi, Di〉 with domain Bi over Ci.

• A pair of mappings (f1, f2) in BB2
1 ×BB1

2 is admissible if it satisfies:

fi(x) ∈ Di if and only if x ∈ Dj

for every x ∈ Bj (with i �= j).

• Let a = (f1, f2) in BB2
1 × BB1

2 and i ∈ {1, 2}. The extension of Mi by a is
the matrix over Ci,

M a
i = 〈B, D1⊕D2〉

such that B = B1⊕B2 and, for every c ∈ Cin and every x1, . . . , xn ∈ B,

cM
a
i (x1, . . . , xn) = cMi(x̃1, . . . , x̃n)

where, for every k = 1, . . . , n:

x̃k =

⎧
⎨

⎩

xk if xk ∈ Bi

fi(xk) if xk ∈ Bj (for j �= i)

∇

It is worth noting that, whenever a is admissible, the matrix logic Ca
i = 〈Ci,M a

i 〉
obtained by extending M1 to B1⊕B2 as above coincides with Ci.

Proposition 9.3.6 Let Ci = 〈Ci,Mi〉 (with i = 1, 2) be two matrix logics, and
let a be an admissible pair. Then Γ |=Mi ϕ if and only if Γ |=Ma

i
ϕ, for every

Γ ∪ {ϕ} ⊆ L(Ci) and i = 1, 2.
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Proof. We only prove the case for i = 1, because the other case is analogous.
Thus, let Γ ∪ {ϕ} ⊆ L(C1). Suppose that Γ |=Ma

1
ϕ, and let v be a valuation

over M1 such that v(Γ) ⊆ D1. Then v can be considered as a valuation over M a
1

such that v(Γ) ⊆ D1⊕D2 and so v(ϕ) ∈ D1⊕D2. Thus v(ϕ) ∈ D1 (because the
image of v is contained in B1) and so Γ |=M1 ϕ.

Conversely, suppose that Γ |=M1 ϕ and let v′ be a valuation over M a
1 such that

v′(Γ) ⊆ D1⊕D2. Consider the valuation v over M1 such that, for every ξ ∈ Ξ,

v(ξ) =

⎧
⎨

⎩

f1(v′(ξ)) if v′(ξ) ∈ B2

v′(ξ) otherwise
.

Then, for every ψ ∈ L(C1),

v′(ψ) ∈ D1⊕D2 if and only if v(ψ) ∈ D1.

Therefore v(Γ) ⊆ D1 and then v(ϕ) ∈ D1. From this we get v′(ϕ) ∈ D1⊕D2. This
shows that Γ |=Ma

1
ϕ. �

Definition 9.3.7 Let Ci = 〈Ci,Mi〉 (with i = 1, 2) be two matrix logics as in
Definition 9.3.5. The plain fibring of C1 and C2 is the pair

C1 � C2 = 〈C1⊕C2, |=M1�M2〉

such that M1 �M2 is the set of matrices over C1⊕C2,

M1 �M2 = {M a
1 +M a

2 : a is admissible}.

∇

The following picture portrays a typical plain fibring configuration.

M1 	M2

������������������

������������������

. . . M a
1 +M a

2

�����
���

��
��

��






. . . . . . . . . M a′

1 +M a′
2

��
��

��
��

�

���
��

��
��

��
. . .

M a
1 M a

2
. . . M a′

1 M a′
2

Now we prove that, in every normal situation, the plain fibring is a conservative
extension of its factors. The following is a formal definition of “normal situation”.
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Definition 9.3.8 The consequence systems C1 and C2 are said to be compatible if
there exist admissible pairs in BB2

1 ×BB1
2 . ∇

It is immediate that C1 and C2 are compatible if and only if:

(i) D1 �= ∅ if and only if D2 �= ∅, and

(ii) B1\D1 �= ∅ if and only if B2\D2 �= ∅.
A fundamental property of plain fibring is that the obtained consequence system

is a conservative extension of the given consequence systems, provided they are
compatible.

Proposition 9.3.9 Let Ci = 〈Ci,Mi〉 (with i = 1, 2) be two matrix logics as in
Definition 9.3.5 such that C1 and C2 are compatible. Then C1�C2 is a conservative
extension of both C1 and C2.

Proof. We just prove that C1 � C2 is a conservative extension of C1, because the
proof for C2 is analogous.

Thus, let Γ ∪ {ϕ} ⊆ L(C1). Then Γ |=M1 ϕ if and only if Γ |=Ma
1
ϕ for every

admissible pair a, by Proposition 9.3.6 (observe that the compatibility assumption
is used in order to prove the ‘if’ part), if and only if Γ |=Ma

1+M
a
2
ϕ for every

admissible pair a (by Proposition 9.3.3), if and only if Γ |=M1�M1 ϕ. �

Example 9.3.10 Recall the 3-valued matrix logic I1 described in Example 9.2.9.
Let C1 be the 3-valued consequence system for the negation ¬ of I1 defined by
the matrix M1 and let C2 be the 2-valued consequence system for the classical
implication ⇒ defined over 2 defined by the matrix M2. The corresponding truth-
tables are displayed below.

¬
T F
F1 F
F T

⇒ 1 0
1 1 0
0 1 1

Note that D1 = {T } and D2 = {1} are the sets of designated values in M1

and M2, respectively, where B1 = {T, F1, F} and B2 = {1, 0} are the respective
domains.

Let B = {T, T1, F, 1, 0} and D = {T, T1, 1} be the disjoint union of B1 and B2

and of D1 and D2, respectively. Consider the pair a = (f1, f2) in BB2
1 ×BB1

2 such
that

• f1(1) = T and f1(0) = F ;

• f2(T ) = 1 and f2(F1) = f2(F ) = 0.
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Clearly the pair a is admissible and the matrices M a
1 and M a

2 are given by the
following truth-tables.

¬
T F
1 F
F1 F
F T
0 T

⇒ T 1 F1 F 0
T 1 1 0 0 0
1 1 1 0 0 0
F1 1 1 1 1 1
F 1 1 1 1 1
0 1 1 1 1 1

Let C be the consequence system defined over the signature {¬,⇒} and charac-
terized by the matrix M a

1 +M a
2 given by the two tables above, where {T, 1} is the

set of designated values. The truth-values T and 1 are congruent, and F and 0 are
also congruent. Therefore the reduced matrix for C coincides with the 3-valued
logic I1 presented in Example 9.2.9. ∇

The last example shows that the direct union of matrices, together with the
extension of matrices, can help to better understand some matrix logics (in [48]
the 3-valued paraconsistent logic P 1 is recovered from a 3-valued negation and
classical 2-valued implication in a similar way). The next example shows what
happens with the plain fibring in the situation described in the example above.

Example 9.3.11 With the same notation as above consider, given M1 and M2,
another admissible pair a′ = (g1, g2) such that g2 = f2 but g1(1) = T and g1(0) =
F1. It is easy to see that a and a′ are the unique admissible pairs. Note that
M a′

2 = M a
2 . On the other hand, M a′

1 is defined as follows:

¬
T F
1 F
F1 F
F T
0 F

From this it follows that the consequence system C1�C2, the plain fibring of C1

and C2, is characterized by the set of matrices

M1 �M2 = {M a
1 +M a

2 , M
a′
1 +M a′

2 }.

In Example 9.3.10 it was observed that M a
1 + M a

2 defines the logic I1 and then,
for instance,

|=Ma
1+M

a
2

((¬(¬(ξ1 ⇒ ξ2))) ⇒ (ξ1 ⇒ ξ2)).
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By its turn, in M a′
1 +M a′

2 it can proved that

�|=Ma′
1 +Ma′

2
((¬(¬(ξ1 ⇒ ξ2))) ⇒ (ξ1 ⇒ ξ2)).

In order to prove this, it is enough to consider any valuation v over the matrix
M a′

1 + M a′
2 such that v(ξ1) ∈ {T, 1} and v(ξ2) ∈ {F1, F, 0}. Then v(ξ1 ⇒ ξ2) = 0

and so
v(¬(¬(ξ1 ⇒ ξ2))) = (¬(¬0)) = (¬F ) = T.

From this it follows that

v((¬(¬(ξ1 ⇒ ξ2))) ⇒ (ξ1 ⇒ ξ2)) = (T ⇒ 0) = 0.

Therefore ((¬(¬(ξ1 ⇒ ξ2))) ⇒ (ξ1 ⇒ ξ2)) is not a theorem of the consequence
system characterized by M a′

1 +M a′
2 , and so

�|=M1�M2 ((¬(¬(ξ1 ⇒ ξ2))) ⇒ (ξ1 ⇒ ξ2)).

∇

Example 9.3.12 In [93], the hierarchy {In}n∈N of weakly-intuitionistic logics
generalizing I1 was introduced. For every n, the logic In is defined over the
signature CI

n

with symbols {¬In ,⇒In}, and its semantics is given by the matrix

MIn = 〈BIn , {t}〉

such that BIn = {t, F0, F1, . . . , Fn}. The operations of the matrix MIn are given
by the tables below, where 1 ≤ l ≤ n.

¬In

t F0

F0 t
Fl Fl−1

⇒In t F0 Fl
t t F0 F0

F0 t t t
Fl t t t

The 3-valued paraconsistent logic P 1 was introduced in [244] and it is, in a
certain sense, dual to I1 (recall that the logic P 1 is also an LFI, as it was mentioned
in Chapter 5). Also in [93] it was introduced a hierarchy of paraconsistent logics,
{Pn}n∈N, which generalizes the logic P 1. Each Pn is defined over the signature
CP

n

with symbols {¬Pn ,⇒In} and whose semantics is given by the matrix

MPn = 〈BPn , {T0, T1, . . . , Tn}〉

such that BPn = {T0, T1, . . . , Tn, f}. The corresponding operations are displayed
in the tables below, where 1 ≤ h ≤ n.



9.3. PLAIN FIBRING OF MATRICES 427

¬Pn

T0 f
Th Th−1

f T0

⇒Pn T0 Th f
T0 T0 T0 f
Th T0 T0 f
f T0 T0 T0

It is worth noting that both P 0 and I0 coincide with classical propositional logic
over the connectives {¬,⇒} with 2-valued matrix semantics.

In this example the plain fibring of In with P k will be analyzed. We begin by
observing that, given In and P k, every admissible pair has the form aij = (gi, fj),
for 0 ≤ j ≤ k and 0 ≤ i ≤ n, such that

• gi(f) = Fi and gi(Th) = t, for 0 ≤ h ≤ k;

• fj(t) = Tj and fj(Fl) = f , for 0 ≤ l ≤ n.

Let Mij = M
aij

In +M
aij

Pk . Then the matrix Mij is defined over the signature Cnk

with set of connectives
{¬In,⇒In,¬Pk,⇒Pk}.

The domain of Mij is

{t, T0, T1, . . . , Tk, F0, F1, . . . , Fn, f}

and the set of designated values is {t, T0, T1, . . . , Tk}. The operations are given
below, observing that the truth-table of the negation ¬iIn must consider, separately,
the cases i = 0 and i > 0; analogously, the truth-table of the negation ¬jPk must
consider the cases j = 0 and j > 0. In the tables below, 1 ≤ h ≤ k and 1 ≤ l ≤ n.

⇒i
In t T0 Th F0 Fl f
t t t t F0 F0 F0

T0 t t t F0 F0 F0

Th t t t F0 F0 F0

F0 t t t t t t
Fl t t t t t t
f t t t t t t

⇒j
Pk t T0 Th F0 Fl f
t T0 T0 T0 f f f
T0 T0 T0 T0 f f f
Th T0 T0 T0 f f f
F0 T0 T0 T0 T0 T0 T0

Fl T0 T0 T0 T0 T0 T0

f T0 T0 T0 T0 T0 T0

t T0 Th F0 Fl f
¬0
In F0 F0 F0 t Fl−1 t
¬iIn F0 F0 F0 t Fl−1 Fi−1

¬0
Pk f f Th−1 T0 T0 T0

¬jPk Tj−1 f Th−1 T0 T0 T0
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The matrix logic characterized by Mij is simultaneously paraconsistent (with
respect to the negation ¬Pk) and weakly-intuitionistic (with respect to the nega-
tion ¬In). On the other hand, the plain fibring In�P k of In and P k is the matrix
logic characterized by the set of matrices

MIn �MPk = {Mij : 0 ≤ i ≤ n and 0 ≤ j ≤ k}.
∇

As mentioned above, plain fibring can be seen as a kind of fibring by func-
tions. This relationship is suggested by a characterization of plain fibring through
valuations, which resembles fibring by functions as defined in Subsection 1.2.3 of
Chapter 1.

Definition 9.3.13 Let Ci = 〈Ci,Mi〉 (for i = 1, 2) be two matrix logics, where
each Mi is a matrix over Ci with domain Bi and set of designated values Di. A
fibred valuation is a triple

(f1, f2, v)

such that (f1, f2) ∈ BB2
1 × BB1

2 is an admissible pair and v : Ξ → B1⊕B2 is a
mapping. Given ϕ ∈ L(C1⊕C2) and a fibred valuation w = (f1, f2, v), we define
w(ϕ) ∈ B1⊕B2 by recursion on the complexity of ϕ as follows:

• w(ξ) = v(ξ) for ξ ∈ Ξ;

• w(c(ϕ1, . . . , ϕk)) = c(w̃(ϕ1), . . . , w̃(ϕk)) for c ∈ (C1⊕C2)k and ϕ1, . . . , ϕk ∈
L(C1⊕C2) where, for every formula ϕ:

w̃(ϕ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

w(ϕ) if c ∈ Cik and w(ϕ) ∈ Bi, for i = 1, 2

f1(w(ϕ)) if c ∈ C1
k and w(ϕ) ∈ B2

f2(w(ϕ)) if c ∈ C2
k and w(ϕ) ∈ B1

∇

We say that a fibred valuation w satisfies ϕ if w(ϕ) ∈ D1⊕D2. The plain fibred
consequence relation |=M1⊗M2 over L(C1⊕C2) is defined as follows:

Γ |=M1⊗M2 ϕ

if every fibred valuation w satisfying simultaneously all the formulas of Γ also
satisfies ϕ.

In [60] it was proved the following:

Proposition 9.3.14 The pair 〈C1⊕C2, |=M1⊗M2〉 is a consequence system which
coincides with the plain fibring C1 � C2 of C1 and C2.
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From the last result, the analogy between plain fibring and fibring by functions
should be clear.

It is worth noting that plain fibring is an operation with the following charac-
teristic: starting from matrix logics C1 and C2 such that Ci is characterized by a
single matrix Mi (for i = 1, 2), the resulting consequence system is a matrix logic
characterized by a set of matrices (which, in general, is not a singleton). This
asymmetry can be easily avoided by generalizing the operation of plain fibring to
matrix logics in general.

Definition 9.3.15 Let Ci = 〈Ci,Ki〉 (with i = 1, 2) be two matrix logics where
each Ki is a class of matrices. The plain fibring of C1 and C2 is the matrix logic

C1 � C2 = 〈C1⊕C2,K1 �K2〉

such that K1 �K2 is the class of matrices over C1⊕C2,

{M a
1 +M a

2 : M1 ∈ K1, M2 ∈ K2 and a ∈ BB2
1 ×BB1

2 is admissible}.

∇

It should be clear that, in case Ki = {Mi} (for i = 1, 2) then C1 � C2 coincides
with the plain fibring of C1 and C2 introduced in Definition 9.3.7.

Proposition 9.3.16 With notation as above, suppose that the logics 〈C1,M1〉
and 〈C2,M2〉 are compatible, for every M1 ∈ K1 and every M2 ∈ K2. Then
C1 � C2 is a conservative extension of both C1 and C2.

Proof. Let Γ ∪ {ϕ} ⊆ L(C1). Then Γ |=K1 ϕ if and only if, for every M1 ∈ K1

and every M2 ∈ K2, Γ |=M1�M2 ϕ, by adapting the proof of Proposition 9.3.9, if
and only if Γ |=K1�K2 ϕ. The proof for C2 is analogous. The details are left to the
reader. �

A matrix M = 〈B, D〉 is said to be trivial if D = ∅ or D = B. The following
result is a direct consequence of the proposition above.

Corollary 9.3.17 Let Ci = 〈Ci,Ki〉 (with i = 1, 2) be two matrix logics. Suppose
that K1 and K2 do not contain trivial matrices. Then C1 � C2 is a conservative
extension of both C1 and C2.

We end this chapter by presenting a slight generalization of plain fibring. Recall
from Definition 9.3.7 that the plain fibring of M1 and M2 is characterized by the
set of matrices

M1 �M2 = {M a
1 +M a

2 : a is admissible}.
It is natural to investigate the case where there are no restrictions to the pairs a.
This lead us to the following definition.
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Definition 9.3.18 Let Ci = 〈Ci,Mi〉 (with i = 1, 2) be two matrix logics as in
Definition 9.3.5. The unrestricted plain fibring of C1 and C2 is the pair

C1 � C2 = 〈C1⊕C2, |=M1�M2〉
such that M1 �M2 is the set

M1 �M2 = {M a
1 +M a

2 : a ∈ BB2
1 ×BB1

2 }
of matrices over C1⊕C2. ∇

Surprisingly enough, the unrestricted plain fibring of C1 and C2 is a weak con-
servative extension of both C1 and C2 (see Proposition 9.3.20 below). In order to
prove this, we need the following lemma.

Lemma 9.3.19 Let a = (f1, f2) in BB2
1 ×BB1

2 and let v′ be a (M a
1+M a

2 )-valuation.
Consider the M1-valuation v : L(C1) → B1 such that

v(ξ) =

⎧
⎨

⎩

f1(v′(ξ)) if v′(ξ) ∈ B2

v′(ξ) otherwise

for every ξ ∈ Ξ. Then v(ϕ) = v′(ϕ) for every ϕ ∈ L(C1) \ Ξ. An analogous result
holds for M2 (using f2 instead of f1).

Proof. Straightforward, by induction on the complexity of ϕ and Definition 9.3.5.
�

Proposition 9.3.20 Let Ci be a non-trivial consequence system induced by a
matrix Mi, i = 1, 2. Then C1 � C2 is a weak conservative extension of both C1 and
C2, that is, for i = 1, 2:

|=Mi ϕ if and only if |=M1�M2 ϕ, for every ϕ ∈ L(Ci).

Proof. Recall, from Definition 4.1.25 of Chapter 4 that a consequence system is
said to be trivial if Γ  ϕ for every set of formulas Γ ∪ {ϕ}.

By hypothesis, no schema variable is a tautology of Ci (i = 1, 2). In fact, if
|=Mi ξ for some schema variable ξ then, by structurality, |=Mi ϕ for every formula
ϕ and so, by monotonicity, Γ |=Mi ϕ for every Γ ∪ {ϕ}, which contradicts the
non-triviality of Ci.

Thus, suppose that ϕ ∈ L(C1) is such that |=M1 ϕ. Let a = (f1, f2) inBB2
1 ×BB1

2

and let v′ be a (M a
1 + M a

2)-valuation. Since ϕ �∈ Ξ, there exists a M1-valuation v
such that

v′(ϕ) = v(ϕ)



9.3. PLAIN FIBRING OF MATRICES 431

by Lemma 9.3.19. But ϕ is a M1-tautology and so v(ϕ) ∈ D1. That is, v′(ϕ) ∈
D1⊕D2 and then |=M1�M2 ϕ.

Conversely, let ϕ ∈ L(C1) such that |=M1�M2 ϕ, and let v be a M1-valuation.
Observe that, by hypothesis, both B1 and B2 are non-empty, so BB2

1 × BB1
2 �= ∅.

Thus, let a = (f1, f2) in BB2
1 ×BB1

2 and let v′ be a valuation over M a
1 +M a

2 such
that

v′(ξ) = v(ξ)
for every ξ ∈ Ξ. By the definition of M a

1 +M a
2 it is easy to prove that

v′(ψ) = v(ψ) for every ψ ∈ L(C1).

Thus v′(ϕ) = v(ϕ) and, since |=M1�M2 ϕ, then v(ϕ) ∈ D1. Therefore, |=M1 ϕ.
The proof for C2 is analogous. �

Note that, if exactly one of the consequence systems (say, C1) is trivial, then
the last result is no longer true. In fact: assuming that B1 = D1 �= ∅ and C2 is not
trivial then the schema variable ξ1 is a C1-tautology but not a C2-tautology. Since
BB2

1 ×BB1
2 �= ∅, take a ∈ BB2

1 × BB1
2 . It is easy to define a (M a

1 +M a
2 )-valuation

v′ such that v′(ξ1) ∈ B2 \D2. Thus,

v′(ξ1) �∈ D1⊕D2

and so �|=M1�M2 ξ1, despite |=M1 ξ1.
The Proposition 9.3.20 cannot be improved. In fact, C1�C2 is not, in general, a

strong extension of the given logics, as the following example shows.

Example 9.3.21 Consider the disjunctive fragment of the classical propositional
logic

C1 = 〈C1, |=1〉
such that C1

2 = {∨} and C1
k = ∅ in any other case, induced by the matrix

M1 = 〈{0, 1}, {1}〉 with its usual truth-table. On the other hand, consider any
consequence system

C2 = 〈C2, |=2〉
such that |=2 is defined by a matrix

M2 = 〈{T, T1, F}, {T, T1}〉.
The signature C2 and the operations of M2 are irrelevant here.

Obviously, ξ1 |=1 ξ1 ∨ ξ2. Now, let f1 : {T, T1, F} → {0, 1} such that f1(T ) = 0,
and let f2 be any mapping f2 : {0, 1} → {T, T1, F}. Consider now a = (f1, f2) and
define the (M a

1 +M a
2 )-valuation v such that

v(ξ1) = T and v(ξ2) = 0.



432 CHAPTER 9. SPLITTING LOGICS

Then v(ξ1) ∈ D1⊕D2. On the other hand,

v(ξ1 ∨ ξ2) = (v(ξ1) ∨ v(ξ2)) = (f1(T ) ∨ 0) = 0 ∨ 0 = 0 /∈ D1⊕D2.

Hence, ξ1 �|=M1�M2 ξ1 ∨ ξ2. ∇

Of course an analogous generalization of Definition 9.3.15, Proposition 9.3.16
and Corollary 9.3.17 can be obtained for unrestricted plain fibring. In this case, the
unrestricted plain fibring of two matrix logics Ci = 〈Ci,Ki〉 (with i = 1, 2), such
that K1 and K2 do not contain trivial matrices, is a weak conservative extension
of the given logics. The details of these constructions are left to the reader.

9.4 Final remarks

This chapter addresses the question of combining logics from the point of view
of decomposition (splitting), which is dual to the point of view of composition
(splicing), studied in the previous chapters.

Up to now, we have exclusively analyzed combination of logics from the bottom-
up perspective of splicing logics; in particular, we have restricted ourselves to the
study of the technique of fibring. The top-down perspective of splitting logics
deserves equal attention, as the potentialities for its applications are really signif-
icant: the examples and results obtained in this chapter are an evidence of this
claim.

One interesting consequence of the adopted point of view of splitting logics can
be appreciated from the categorical perspective: the notion of signature morphism
can be enlarged, obtaining a new signature category called sSig. In sSig, a k-
ary connective c can be mapped by a morphism f into a formula ϕ(ξ1, . . . , ξk)
containing exactly the schema variables ξ1, . . . , ξk. Thus, the extended function
f̂ associated to f assigns, to any formula with k schema variables, a formula
containing exactly the same schema variables.

The new morphisms of sSig, when considered in the associated category sCon
of consequence systems, allow us to define translations which are closer to the
translations between logic systems occurring in real examples. For instance, two
presentations of propositional classical logic over different signatures can be inter-
translated as expected. Moreover, this new category of signatures has products,
which are necessary in order to split a logic system into factors.

In this chapter, two particular semantical methods for splitting logics were ana-
lyzed: possible-translations semantics in Section 9.2, and direct union of matrices
and the related plain fibring in Section 9.3.

Possible-translations semantics have been shown to be a very general method,
embodying matrix semantics. Clearly, the generality of PTS’s amply justifies the
existence of more restrained methods as direct union of matrices and plain fibring.

Finally, the decomposition of a logic into simpler components could offer addi-
tional tools for attacking problems of complexity of algorithms (via the satisfiability
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problem), questions in proof-theory and in algebraization of logics. Additionally,
it makes sense to define and to characterize which are the prime logics of a given
logic: the ones that cannot be further split (up to a given method). For instance,
matrix logics defined over a signature containing just one connective could be con-
sidered as prime logics with respect to direct union of matrices. The study of a
logic from its prime factors may constitute a new and interesting standpoint to
the theory of general consequence systems.



Chapter 10

New trends: Network fibring

In the previous chapters we investigated different aspects of fibring, always in a
clear logical context. That is, we always assumed that the original components
were logics with certain characteristics. Now we are faced with a new problem.
There are application domains where we seem to have a fibring situation but
the problem is initially presented with networks instead of logic systems. One
of the messages is that if we look at the problem with networks seen as labeled
deductive systems then we immediately are in a logical context. In this way, we
broaden substantially the applications of fibring to many unusual domains like
neural networks in bioinformatics and argumentation theory. The chapter starts
with four case studies illustrating several areas to which we want to extend fibring.
In many cases recursive networks are used. The notion of self-fibring of networks is
a general abstraction where we can accommodate these different fibring situations.

In Section 10.1, we motivate network fibring using a labelled formulation of
modal logic. Next, in Sections 10.2, 10.3, 10.4 and 10.5, we introduce some case-
studies. Section 10.2 discusses integration of information flows and describes a
system in which reasoning and proofs from different sources of information can
be accommodated. In Section 10.3, we refer to some generalizations of logic in-
put/output operations. We also discuss how to combine input/output operations
into networks. In Section 10.4, we discuss the fibring of neural networks. In Sec-
tion 10.5, we turn our attention to recursive Bayesian networks. In Section 10.6,
we give the notion of self-fibring of networks. Finally, Section 10.7 presents some
concluding remarks.

This chapter capitalizes on the following works: [111] for network modalities, [110]
for integrating flows of information using LDS, [79] for neural networks and [275]
for Bayesian networks.

435
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10.1 Introduction

The applications of fibring seem to go beyond the case where we want to com-
bine two logics. Examples can be found in such contexts as bioinformatics and
argumentation theory. It seems that the most general concept that can be used
as the framework for fibring are networks seen as labeled deductive systems [105].
The theory of labeled deductive systems (LDS) was developed from the bottom
up point of view, especially to model aspects of human behavior, reasoning and
action, and is very comprehensive, adaptable and incremental. It contains a large
variety of existing logical systems as special cases. LDS is not a single system but
a methodology for building families of systems, ready to be adapted to the needs
of various application areas.

In this section, we motivate network fibring by looking essentially at a labeled
formulation of modal logic with language L. Herein, we assume that the semantics
is presented by a Kripke structure of the form

m = 〈W,R,w,�〉

where, besides the non-empty set of possible worldsW and the accessibility relation
R ⊆W 2, we consider an actual world w ∈W and a satisfaction relation �⊆W×L.
We consider a satisfaction relation instead of a valuation because we want to stress
that the exact recursive definition of satisfaction is not relevant to the discussion.
We have that

m � ϕ whenever w � ϕ.

Given a class M of models we can define a semantic consequence relation as
follows. We say that a formula γ entails a formula ϕ and write

γ � ϕ

if m � ϕ for every model m ∈M such that m � γ.
For the purposes that we have in mind, we need to extend the signature with

labels. Labels represent the worlds at the syntactic level. We also need a way to
represent R, the accessibility relation, at the syntactic level.

As a consequence, besides the usual modal formulas we also have formulas
relating the labels like aRt or 〈a, t〉, where a and t are labels and labeled formulas
like a : ϕ meaning that we want to state that ϕ is true at a.

A network specification is a triple

〈S, F, f〉

where:

• S is a set of labels (representing worlds at the syntactic level);

• F is a set of formulas of the kind 〈t1, t2〉 (representing the accessibility rela-
tion at the syntactic level);
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• f is a map that assigns to each label a set of modal formulas.

Note that a network specification can be seen as a (oriented) graphG plus a map
f . The labels in S correspond to the nodes of G and the formulas in F correspond
to the arrows of G. In the sequel, as usual, G0 and G1 denote respectively the set
of nodes and the set of arrows of G.

Given a network specification Δ = 〈G, f〉, we use x : ϕ to state that ϕ ∈ f(x).
We also write Δ(x : ϕ) to mean that x : ϕ appears in Δ, that is, x ∈ G0 and
ϕ ∈ f(x).

Example 10.1.1 An example of a network specification is

Δ = 〈G, f〉
where

• G is a graph with G0 = {t1, t2} and G1 = {〈t1, t2〉};
• f is such that f(t1) = {ϕ} and f(t2) = {ψ}.

This specification can be represented in a diagram as in Figure 10.1.

t2 : ψ

t1 : ϕ

t1 �=t2

Figure 10.1: Example of a network specification

For simplicity, we can also write the network above as follows:

{t1, t2, 〈t1, t2〉, t1 : ϕ, t2 : ψ}.
∇

We now turn to the semantics of a network specification.
A Kripke structure 〈W,R,w,�〉 satisfies a network specification Δ = 〈G, f〉,

denoted by
〈W,R,w,�〉 � Δ

if there is a mapping g : G0 → W such that g(t1)Rg(t2) whenever 〈t1, t2〉 ∈ G1,
and g(t) � ϕ whenever ϕ ∈ f(t). Sometimes we use 〈W,R,w,�〉 �g Δ to indicate
that g : G0 → W satisfies the above conditions.

We can now define consequence between such network specifications. Network
specification Δ1 entails network specification Δ2, denoted by

Δ1 � Δ2

if for every 〈W,R,w,�〉 and g : G1
0 → W such that 〈W,R,w,�〉 �g Δ1 there is

g′ : G2
0 →W such that g′(x) = g(x) for all x ∈ G1

0 ∩G2
0 and 〈W,R,w,�〉 �g′ Δ2.
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Example 10.1.2 Consider the network specification Δ as described in Figure 10.1.
Then, {t1 : (ϕ ∧ (�((¬ϕ) ∧ ψ)))} � Δ. ∇

We need to define fibring of network specifications. Having this purpose in
mind, we turn now our attention to the cut rule for � as a way to motivate the
intended network fibring.

Let Δ and Ω be network specifications. Suppose that we have

• Δ(t1 : ϕ) � {t2 : ψ};
• Ω � {t1 : ϕ}.

We would like to substitute Ω = 〈G′, f ′〉 for t1 : ϕ and get something like
Δ(Ω) � t2 : ψ. For this we need to define substitution of networks, that is, the
substitution of G′ for x ∈ G, denoted by G(x/G′). This is best explained through
an example.

t3 : γ

•
t1 : ((¬ψ) ∧ ϕ ∧ (�ψ))

Figure 10.2: Network specification Ω

Example 10.1.3 Let network specification Δ be the one in Example 10.1 and
consider the network specification Ω as follows:

{t1, t3, 〈t1, t3〉, t1 : ((¬ψ) ∧ ϕ ∧ (�ψ)), t3 : γ}

(see Figure 10.2). Then we have:

t3 : γ t2 : ψ

•
t1 : (ϕ ∧ (¬ψ))

Figure 10.3: Network resulting from substituting Δ into Ω at t1

• Δ � {t1 : (ϕ ∧ (�ψ))}
• Ω � {〈t1, t〉} where t �= t1.

We would like to perform cut and get possibly

• {t1 : ϕ, t3 : γ, 〈t1, t3〉, t2 : ψ, 〈t1, t2〉, t1 : (¬ψ)} � {〈t1, t〉} where t �= t1.
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Let us look at the network substitutions this requires. We want to substitute
Figure 10.1 into Figure 10.2 at point t1 and get the network specification depicted
in Figure 10.3. ∇

Substitution is easy in a modal logic with an arbitrary accessibility relation.
However, how about a modal logic where the relation R is required to satisfy
additional conditions? For example in the case of a confluent relation R (that is,
if t1Rt2 and t1Rt3 then there is t such that t2Rt and t3Rt, for every t1, t2, t3 ) the
substitution, as the reader can try, is not straightforward. In these cases, we have
to do a case analysis and we may have several possible results for the substitution.

10.2 Integrating flows of information

This case study has the following four objectives.

1. To present a modal logical system, slightly more complex than the usual
familiar ones, which can serve as an example for new ideas in labeled proof
theory, and fibring of networks.

2. To present a system which can model reasoning and proofs from different
sources of information, executed at different proof-theoretic levels.

3. To present an example of a system which can seamlessly combine a variety
of existing logics at the object level.

4. To present new ideas and examples about translations of one logic into an-
other.

All of the above points will be realized and exemplified below in a logic which we
call Kpast. The logic Kpast is a version of past temporal logic with branching tree
structure flow of time.

Kpast modal logic

This section concentrates on the modal logic Kpast. Before presenting the logic
Kpast itself we first introduce some preliminary notions.

In the sequel, we consider propositional Kripke models

〈T,R,w, V 〉
where V is the assignment to the atoms and w ∈ T is the actual world. We say
that x is a predecessor of y whenever xRy. We can assume that the reflexive and
transitive closure of R, denoted by ≤, is a tree like partial order.

Let → be strict implication. It is well known that → satisfies the following
satisfaction condition at a world x:

x � ϕ→ ψ
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if y � ψ for all y such that xRy and y � ϕ.
Let (ϕ1, . . . ,ϕn) be a sequence of formulas and let ψ be a formula. We de-

fine another related kind of satisfaction in a world t. We say that the sequence
(ϕ1, . . . ,ϕn) satisfies ψ in t and write

(ϕ1, . . . ,ϕn) �t ψ

whenever the following condition holds: if there exist t1, . . . ,tn such that tn � ϕn
and, for 1 ≤ i ≤ n− 1, ti � ϕi and tiR ti+1, then tn � ψ.

Observe that (ϕ1, . . . ,ϕn) �t ψ is satisfaction looking backwards. However, we
do have

K  ϕ1 → (ϕ1 → . . .→ (ϕn → ψ) . . .)

if (ϕ1, . . . ,ϕn) �t ψ in every model and every t. If ψ is (ψ1 → . . .→ (ψk → δ) . . .)
then, using the above definition of satisfaction, we say that

(ϕ1, . . . , ϕn) �t (ψ1 → . . .→ (ψk → δ) . . .)

whenever the following condition holds: if x1, . . . , xn and y1, . . . , yk are such that
xi � ϕi for 1 ≤ i ≤ n, yi � ψi for 1 ≤ i ≤ k, and xn = t, then yk � δ. From this,
we get, in particular, the metatheorem of deduction for the logic.

Let Ai denote a set of formulas. We can write data-structures of the form
(A1, . . . ,An) and similarly define (A1, . . . ,An) �t δ. The set of formulas of impli-
cational K is inductively defined as follows:

(i) an atom δ is a formula of level 0;

(ii) if A1, . . . ,An are sets of formulas of level less or equal than n and δ is atomic,
then (A1, . . . ,An) → δ is a formula of level less or equal than n+ 1.

Next, we introduce more complex data structures into our logic. We can regard
(A1, . . . ,An) as a linear tree data-structure τ of the form depicted in Figure 10.4,
and write (A1, . . . ,An) → ϕ as τ → ϕ.

x1 : A1· · · · ·xn : An

Figure 10.4: Linear tree data-structure

We rewrite the definition of (ϕ1, . . . ,ϕn) �t ϕ above as follows. We say that τ
satisfies ϕ in t and write

τ �t ϕ
whenever the following condition holds: for every order preserving map g : τ &→ T
such that g(xn) = t, if g(xi) � Ai for all 1 ≤ i ≤ n, then g(xn) � ϕ.

We can write τ ′ → ϕ. However, what would τ ′ �t ϕ mean? We can use the
same definition as above, except that now the order preserving g will embed the
nodes of τ ′ into the subtree below t. This now gives meaning to τ ′ �t ϕ.



10.2. INTEGRATING FLOWS OF INFORMATION 441

Can we now continue and give meaning to t � τ ′ → δ? When the tree was a
sequence (x1 : A1, . . . ,xn : An) → δ we understood it as:

t � (A1, . . . ,An) → δ

whenever g(xn) � δ for all order preserving embeddings g of (x1, . . . ,xn) into the
future of t such that g(xi) � Ai for 1 ≤ i ≤ n. The embedding of (x1, . . . ,xn) into
the future of t means that tR g(x1) and g(xi)Rg(xi+1), for 1 ≤ i ≤ n− 1.

What would the embedding of τ ′ into the future of t mean? Do we want to have
tR g(x1)? Do we want to have tR g(x2)? Clearly, we need to indicate in τ ′ where
the input point is supposed to be. We also need to indicate a top point where δ is
supposed to hold. The way we do this is as follows. We write (x1, . . . ,xn) as

(e, x1, . . . ,xn = a)

with e as the input point, and a as the top point. So, embedding this sequence in
the future of t means making g(e) = t. Thus,

(x1 : A1, . . . ,xn : An) → δ

has to be written as

(e :  , x1 : A1, . . . ,xn−1 : An−1, xn = a : An) → δ.

Similarly, τ ′ → δ is not properly written. We need to say where the input point
is. We have several options. Let us choose, for example, the option described in
Figure 10.5. Now all is clear. We define the satisfaction of τ → δ at t as follows.

e :  x1 : A1 x3 = a : A3

x2 : A2

Figure 10.5: Choosing the input point

We say that
t � τ → δ

whenever the following holds: g(a) � δ for all order preserving embeddings g of
the tree such that g(x) � Ax for all x ∈ τ ′.

Having gone this far, we can also define recursively trees within trees etc, and
define � for them.

The logic described above is ideal for combining logical systems. It was shown
in [105] and [114] that many implicational logics such as substructural, strict and
intermediate implications, all use modus ponens but differ on the structure of the
database and on the procedures governing the use of the rule.
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Δ1 Δ2

• •
• • •
ϕ1 ϕ2 ψ

Figure 10.6: Combination of logics

Our data-structures allow us to represent seamlessly combinations of such logics.
To illustrate this point, suppose Δ1 1 ϕ1 in logic 1 and Δ2 2 ϕ2 in logic 2 and
ϕ1, ϕ2 3 ψ in logic 3. We can represent this situation as in Figure 10.6.

Below we show how concatenation logic can be interpreted in Kpast. Since
strict implication is part of Kpast already, it shows how the two implications can
live together as one! Other logics such as linear implication and even the non-
monotonic conditional can also be embedded in our logic Kpast.

We now concentrate on the logic Kpast. In the sequel, all trees and all sets of
trees are always assumed to be finite.

Definition 10.2.1 The set of trees is inductively defined as follows:

• a one-point tree is a tree;

• if 〈T1, R1, a1〉, . . . ,〈Tn, Rn, an〉 are trees with top points ai ∈ Ti, predecessor
relations Ri ⊆ Ti × Ti and such that the sets Ti are pairwise disjoint, then

T = ({a} ∪
⋃
Ti, R, a)

where a is a new point and R = {(ai, a)} ∪⋃Ri, is a tree.

A tree with several input points has the form 〈T,R, a, ei〉 where ei ∈ T are the
input points for 1 ≤ i ≤ n. We identify e1 as the main input point. ∇

Clearly, we say that x is the predecessor of y whenever xRi y.
Note that in the definition of tree with several input points we may have n = 1

or n = 2, etc.
Figure 10.7 illustrates a tree with top point a, obtained from trees T1, T2,..., Tn

with top points a1, a2,..., an, respectively.

Definition 10.2.2 The joining of trees with input points is defined as follows.
Let τ = 〈T,R, a, e〉 be a tree with input point e. Let τi = (Ti, Ri, e), for some

i, be other trees with the same top point e. Assume that they are all pairwise
disjoint except for the common point e. Then the joining is the tree:

{τi}+ τ = 〈
⋃
Ti,
⋃
Ri, a〉.



10.2. INTEGRATING FLOWS OF INFORMATION 443

a
•

a1 . . . an

T1 Tn

Figure 10.7: Example of a tree

We can have several input points and input trees into them. Consider the tree
τ = 〈T,R, a, ei〉, ei ∈ T , and for each i, let τi,j = 〈Ti,j , Ri,j , ei〉 be other pairwise
disjoint trees such that Ti,j ∩ T = ei. Then the joining is the tree:

{τi,j}+ τ = 〈
⋃
Ti,j ,

⋃
Ri,j , a〉.

Considering the family {τk = 〈T k, Rk, ak, eki 〉} of such trees with corresponding
τki,j trees for input, as above, we let

{τki,j}+ {τk} = {({τki,j}+ τk)}.

∇

Next, we turn our attention to the splitting of trees.

Definition 10.2.3 Let τ = 〈T,R, a〉 and τi = 〈Ti, Ri, ti〉 be trees and let ≤T be
the transitive and reflexive closure of R (hence, x ≤T a for every x ∈ T ).

Let t1, t2, . . . , tn be pairwise incomparable points in T with respect to ≤T , that
is, if ti ≤T tj then ti = tj and consider

• Tti = {x ∈ T : x ≤ ti} and Rti = R � Tti ;

• T ′ = (T \⋃i Tti) ∪ {t1, . . . ,tn} and R′ = R � T ′.

We define
〈T,R, a〉 = {〈Tti , Ri, ti〉}+ 〈T ′, R′, a〉

and say that the tree τ was split at the points {t1, t2, . . . , tn}.
We say τi are ready for input into τ whenever

• Ti ∩ T = {ti};

• ti are pairwise incomparable with respect to ≤T .
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The result of the input is the tree

〈
⋃

i

Ti ∪ T,
⋃

i

Ri ∪R, a〉 = {〈Ti, Ri, ti〉+ 〈T,R, a〉}.

Let T1 and T2 be sets of pairwise disjoint trees and assume that for any tree
τ from T2 and τ ′ from T1 either they are disjoint or τ ′ is ready for input into τ .
Let T

τ
1 = {τ ′ ∈ T1 : τ ′ is ready for input into τ} and assume that T1 =

⋃
τ∈T2

T
τ
1 .

Then, we say that T1 is ready to input into T2 and we define

T1 + T2 = {Tτ1 + τ}.
∇

If a tree τ is split at several points then it can be joined back by input.

Remark 10.2.4

1. So far in order to perform the joining 〈T1, R1, a〉 + 〈T2, R2, b〉 we need that
T1 ∩ T2 = {a}. We can allow the input of any tree into any other tree
provided there is an input point.

Thus, the joining 〈T1, R1, a〉+ 〈T2, R2, b, e〉 can be performed, where e ∈ T2

is the input point. This can be done by renaming the points of T1 so that
we get a disjoint tree and renaming a to e.

2. Let T1, . . . ,Tn be sets of pairwise disjoint trees such that Ti is ready for
input into Ti+1, for each 1 ≤ i ≤ n− 1. Then T1+Tn is well defined and is
associative. Define Si by induction as follows:

• Sn = Tn

• Since Tn−1 is ready for input into Tn we have Tn−1 =
⋃
τ∈Tn

T
τ
n−1 and

Tn−1 + Tn = {Tτn−1 + τ : τ ∈ Tn}. Let Sn−1 = Tn−1 + Tn. Since
Tn−2 is ready for input into Tn−1, it is also ready for input into Sn−1.
Similarly (Tn−2 + Tn−1) is ready for input into Tn. We have

(Tn−2 + Tn−1) + Tn = Tn−2 + (Tn−1 + Tn).

Let Si = Ti+Tn. Clearly, S =
∑

Ti is one big set of trees. If Tn

contains only one tree then S1 is one tree. ∇

We now define embedding of trees.

Definition 10.2.5 Let τi = 〈Ti, Ri, ai, ei〉 be trees, i = 1, 2. A function

g : T1 → T2

is said to be a head embedding (resp. tail embedding) of τ1 into τ2 if the following
conditions hold:
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• g(a1) = e2 (resp. g(e1) = e2);

• if xR1 y then g(x)R2 g(y). ∇

We now define the notion of database of level k hand in hand with the concept
of formula of level k.

Definition 10.2.6 Formulas of level n and databases of level n+ 1 are defined as
follows.

• A formula of level 0 is an ordinary formula of the language with →, that is,

– an atom δ is a level 0 formula;

– if A1, . . . ,An are sets of level 0 formulas, so is (A1+An) → δ, where δ is
atomic.

• A database of level 1 is a pair
〈τ, f〉

where τ = 〈T,R, a, e0〉 is a tree and f is a map such that for every t ∈ T, f(t)
is a set of formulas of level 0. We indicate the main input point e0 but allow
for more.

• A formula of level ≤ n+ 1 is of the form (A1+An) → δ where:

– Ai is a set of database trees of level ≤ n+ 1;

– Ai is ready to be input into Ai+1;

(that is, the trees of the databases of Ai are ready to be input into the
trees of the databases of Ai+1). We assume An contains a single database.
Whenever 〈τ1, f1〉 is input into 〈τ2, f2〉, we get a database

〈τ1 + τ2, f1 ∪ f2〉
where

(f1 ∪ f2)(x) =

⎧
⎨

⎩

f1(x), for x ∈ τ1\τ2
f2(x), for x ∈ τ2\τ1
f1(x) ∪ f2(x), for x ∈ τ1 ∩ τ2

We identify (A1+An) → δ with any (A1+Aj) → ((Aj+1+An) → δ).

We also say that A is ready for input into (B1+Bn) → δ in case A is ready
for input into B1+Bn. Recall that, according to Remark 10.2.4, B = A1+An

is one big set of databases.

• A database of level ≤ n + 1 is a pair 〈τ, f〉, where τ is a tree with input
points and, for t ∈ τ , f(t) is a set of formulas of level ≤ n. ∇

Given a database 〈τ, f〉 we often use t : A to state that f(t) = A .
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Lemma 10.2.7 Let B = (A1+An) → δ be a formula. Then there exists a single
database tree τ such that (τ → δ) = B.

Proof. By induction on n. We assumed in Definition 10.2.6 that An must contain
a single tree. Since all trees in An−1 are ready for input into An, we get that
Sn−1 = An−1 + An is also a single tree, and so on by induction. �

Definition 10.2.8 Let 〈T,R, t, V 〉 be a Kripke model, with t ∈ T . We define the
notion of satisfaction of a formula at t as follows:

• t � δ if t ∈ V (δ), for δ atomic;

• t � ((A1+An) → δ) if the following condition holds:

if τ ′ and g are such that

− τ ′ = 〈T ′, R′, a′, e′, f〉 is the database A1+An;
− g is any tail embedding of 〈T ′, R′, e′〉 into 〈T,R, t〉, considering
t ∈ T as the main input point;

− g(y) � f(y) for every y ∈ T ;

then g(a′) � f(a′).

Let τ ′ = 〈T ′, R′, a′, e′, f〉 be a database and ϕ a formula. We say that

τ ′ �t ϕ

whenever the following condition holds: if there exists a head embedding g of τ ′

into 〈T,R, t〉 such that g(y) � f(y) for all y ∈ T then t � ϕ. ∇

Example 10.2.9 The trees associated with a formula (A1+An) → δ of ordinary
implicational K constitute the list

((e, t1, . . . ,tn), f) → δ

where f(e) =  , f(ti) = Ai and e is the input point.
We have A → (B → δ) = (A + B) → δ. This shows why we need e. ∇

Concatenation logic

Herein, we consider concatenation logic with → only. We start by defining goal
directed computation.

Definition 10.2.10 The relation n (for n ≥ 0) is defined as follows:

• Δ 0 δ if Δ = δ;

• (ϕ1, . . . , ϕn) → δ, ψ1, . . . , ψk m+1 γ if
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– δ is γ;

– (ψ1, . . . , ψk) = Δ1 + . . .+ Δn;

– Δi �= ∅ and Δi m ϕi, 1 ≤ i ≤ n. ∇

Lemma 10.2.11 Let ϕ = (ϕ1, . . . , ϕn) → δ. If

(i) ϕ+ Δ1 + Θ + Δ2 m δ

(ii) ϕ+ Δ1 + Δ2 m′ δ

then Θ is empty.

Proof. Induction on max(m,m′).
Base: For m = 1 we must have ϕ = δ,Δ1 = Θ = Δ2 = ∅.
Step: Assuming the lemma holds for m,m′ we show the lemma for m+1,m′+1.

From (i) we get for some non-empty sets Γ1, . . . ,Γn,

• Γi m Ai;

• Γ1 + . . .+ Γn = Δ1 + Θ + Δ2.

Similarly, Γ′
1 + . . .+ Γ′

n = Δ1 + Δ2 and Γ′
i m′ Ai.

If Θ �= ∅ then there exists a first i = k such that:

• Γi = Γ′
i for i < k;

• Γ∗
k = Γ∗

k + Θ∗;

• Γ‘∗k m∗ Ai and Γ∗
k + Θ∗ m′∗ Ai;

• {m∗,m′
∗} are {m′,m}.

Then Γ∗
k is either Γk or Γ′

k whichever is shorter. But this is impossible by the
induction hypothesis. �

Lemma 10.2.12 We have that ϕ  ψ and ψ  ϕ imply ϕ = ψ.

The proof of the previous lemma is similar to the proof of Lemma 10.2.11.

Corollary 10.2.13 If (ϕ1, . . . , ϕn → δ), ψ1, . . . , ψk  (δ1, . . . , δr) → δ then there
is a unique division

Δ1, . . . ,Δm,Δm+1 . . . ,Δn

such that Δ1 + . . .+ Δm + Δm+1 + . . .+ Δn = ψ1, . . . ψk, δ1, . . . , δr, and Δi  ϕi.
We can assume Δm+1 = Θ1 + Θ2 with

• Δ1 + . . .+ Δm + Θ1 = ϕ1, . . . , ϕn;

• Θ1 + Δm+1+Δn = δ1, , . . . ,δr.



448 CHAPTER 10. NEW TRENDS: NETWORK FIBRING

Thus, the division Δ1, . . . ,Δm,Θ1 for Δ  (δ1, . . . ,δr → δ) is unique.

We now provide an illustration.

Example 10.2.14 In Figure 10.8 we check that

(y → c) → α, a→ (b→ c), x→ a  (x, y → b) → α.

proves a

proves b→ c

proves y → c

proves α

(y → c) → α, a→ (b→ c), x→ a, x, y → b,  α

Figure 10.8: Checking (y → c) → α, a→ (b→ c), x→ a  (x, y → b) → α

∇

Example 10.2.15 In order to show that

(β, x, y → b) → α, β  (x, y → b) → α

we check whether
(β, x, y → b) → α, β, x, y → b  α.

∇

Translation of concatenation logic into Kpast

We can now translate from concatenation logic into Kpast. To explain the idea of
the translation, we first present some examples.
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Consider Example 10.2.14. This is a concatenation logic illustration and we
have that when

x→ a, x  a
the two points (x → a) and x are replaced by one point. Thus, in concatenation
logic we have

a→ y, x→ a, a  y.
This cannot be done in modal K because the points x → a and x are two

possible worlds. We need to shift a→ y, that is

 → (a→ y), x→ a, x  y
because x→ a and x can be effectively reduced to  and a, still two worlds!

However, using our trees, we can simulate the concatenation logic behavior by
the tree in Figure 10.9

x→ a
•

• • x
a→ y

Figure 10.9: Simulating the concatenation logic behavior

We can start with the simple database of Figure 10.10 and input it into the tree
of Figure 10.11.

(t : x→ a, e : x)

Figure 10.10: Simple database

The following is a translation of Example 10.2.14. Let τ2 = {e : y} and τ1 be
the tree in Figure 10.12. We have that e � τ2 → c because τ1 + τ2 � c. The tree
τ1 + τ2 is the tree of Figure 10.12 modified by adding e : y at node e. We have
e � b from t5 and t4 � a from t2. Therefore, we have t4 � b→ c from t1 and hence
e � c, as required. Now, since we have e � τ2 → c, we can use t3 and get e � α.

(s : a→ y, e :  )

Figure 10.11: Tree

We now explain how we got the translation. Our method must be systematic.
There are two important remarks. First, note that our translation will be de-
fined only for formulas (ϕ1, . . . , ϕn) → ψ such that (ϕ1, . . . , ϕn)  ψ (that is, we
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translate theorems only). Second, note that names of nodes in our translation
are important because of the definition of τ1 + τ2. The trees of τ1, τ2 must share

t2 : x→ a t5 : y → b
• •

t1 : a→ (b→ c)
• • •

t4 : x e

•
t3 : (τ2 → c) → α

Figure 10.12: Tree τ1

exactly one node. The translation will make sure that such nodes are well chosen.

Definition 10.2.16 Let Δ = (ϕ1, . . . ,ϕn) m ψ where ψ is (ψ1, . . . ,ψs) → δ. We
translate Δ of concatenation logic into a Kpast database Δ∗ and formula ψ∗ such
that Δ∗ � ψ∗. The translation is by induction on m.

• Case m = 0
We distinguish two subcases.

1. ψs exists and δ = ψs.
In this case, Δ∗ = (e :  ) and ψ∗ = (e : δ) → δ. Note that ϕ1, . . . ,ϕn
do not exist and s = 1.

2. ψ1, . . . ,ψs do not exist and n = 1 and ϕn = δ.
In this case Δ∗ = {e : δ} and ψ∗ = δ.

• Case m = 1
In this case we have

(δ1, . . . ,δr) → δ,Δ1, . . . ,Δr−k,Δr−k+1 = (Θ1 + Θ2),Δr−k+1, . . . ,Δr 1 δ

where

– ((δ1, . . . ,δr) → q,Δ1, . . . ,Δr−k,Θ1) = (ϕ1, . . . ,ϕn);
– (Θ2,Δr−k+2, . . . ,Δr) = (ψ1, . . . ,ψs).

We have
Δ1 0 δ1 . . .
...
Δr−k 0 δr−k
Δr−k+1 = Θ1 + Θ2 0 δr−k+1

...
Δr 0 δr
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The proof theory of concatenation logic does not allow for the Δj , and
Δr−k+1 = Θ1 + Θ2 to be empty, so we must have that δj are all atomic
and are equal to the Δj . We can also assume Δr−k+1 = Θ2 = Cr−k+1.

The following is the Kpast database Δ for proving δ

Δ = ((δ1, . . . ,δr) → δ, δ1, . . . ,δr−k, δr−k+1, . . . ,δr)  δ.
and it is displayed in Figure 10.13.

t0 t1 tr−k tr−k+1 tr
• • → . . .→ • • → . . .→ •

(δ1, . . . ,δr) → δ) δ1 . . . δr−k δr−k+1 . . . δr

Figure 10.13: Database Δ

The database Δ∗ is such that Δ∗ � δ. The way we want to look at this
database is as follows. We construct the level 1 databases τj = (tj : δj), for
j = 1, . . . , r. We also construct the database τ of Figure 10.14, where δ∗j is
the translation of δ∗j and is equal to δj .

t0 t1 tr
• • → . . .→ •

(δ∗1 , . . . ,δ∗r ) → δ   

Figure 10.14: Database τ

We now construct the input database

Δ∗ = {τj : j = 1, . . . ,r} + τ

and get back the original Δ∗.

The above is not enough for our purpose. We need to show a translation of

(ϕ1, . . . ,ϕn)∗ � ((ψ1, . . . ,ψs) → δ)∗

However, we can extract that from Δ∗ � δ.
Let

– τ ′ = (t0 : (δ∗1 , . . . ,δ
∗
r → δ), t1 :  , . . . ,tr−k : δr−k, tr−k+1 :  );

– (ϕ1, . . . ,ϕn)∗ = τ ′;

– τ ′′ = (tr−k+1 :  , . . . ,tr :  );

– (ϕ1, . . . ,ϕn)∗ = {Δ∗
j : j = 1, . . . ,r − k}+ τ ′;

– ((ψ1, . . . ,ψs) → δ)∗ = {Δ∗
j : j = r − k + 1, . . . ,r}+ τ ′′ → δ.
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We have (ϕ1, . . . ,ϕn)∗ � ((ψ1, . . . ,ψs) → δ)∗ because Δ∗ � δ.

• Case m
In order to proceed to case m, we need to formulate the inductive hypoth-
esis carefully. In order to be able to formulate an inductive hypothesis for
the translation, we must rigorously describe the situation assumed and the
properties of the translation.

We assume we have

– Δ = (δ1, . . . ,δr) → δ,Δ1, . . . ,Δr  δ;
– δj = (δj1, . . . ,δ

j
tj ) → qj , with Δj  δj , j = 1 . . . r.

A translation is said to be in standard form of level m if the following con-
ditions hold:

There exists a level m database with tree τ as in Figure 10.14 and a set of
level 1 trees {τα} = Δ∗

j and level m formulas δ∗j = (δj1, . . . ,δ
j
tj )∗ → qj such

that Δ∗
j is ready for input into c∗j and Δ∗

j � δ∗j , we have Δ∗ = {Δ∗
j}+ τ , and

all trees involved are disjoint.

We also assume that every formula α in Δj , such that Δj = Θ1
j +Θ2

j , with α
first formula in Θ2

j sits on a clear identifiable node x in a tree in Δ∗
j , we have

Δ∗
j = Θ1∗

j + Θ2∗
j and can therefore split Δ∗

j into τ1
j + τ2

j , where τ1
j = Θ1∗

j

and τ2
j = Θ2∗

j , using x, with α in τ2
j and since Δ∗

j � δ∗j we assume we can
arrange things so that τ1

j � τ2
j + (δj1, . . . ,δ

j
tj )∗ → δ.

We now define the case m. Assume (ϕ1, . . . ,ϕn) m ((ψ1, . . . ,ψs) → δ). We
have in this case

(δ1, . . . ,δr) → δ,Δ1, . . . ,Δr−k,Δr−k+1(= Θ1 + Θ2),Δr−k+1, . . . ,Δr m δ

with (Δ1, . . . ,Δr−k,Θ1) = (ϕ1, . . . ,ϕn) and (Θ2,Δr−k+2, . . . ,Δr) = (ψ1, . . . ,ψs)
and we have Δi m−1 δi, for i �= k+1, and Δr−k+1 = (Θ1+Θ2) m−1 δr−k+1.

We assume by induction that the following holds:

δj = (δj1, . . . ,δ
j
tj ) → qj , j = 1, . . . ,r.

Then, since Δj m−1 δj , we have Γj = Δj + δj1+δjtj m−1 qj .

Δ∗
r−k Θ∗

1 + Θ∗
2 Δ∗

r−k+2 Δ∗
r

↓ ↓ ↓ ↓
• → . . .→ • • | → . . .→ •
t1 tr−k tr−k+1 tr−k+2 tr

Figure 10.15: Standard translation



10.2. INTEGRATING FLOWS OF INFORMATION 453

We assume that the database Γ∗
j is in standard form, of level m− 1 and in

particular for the case of Δr−k+1 = Θ1 + Θ2 we have Δ∗
r−k+1 = Θ∗

1 + Θ∗
2

and that we have Θ∗
1 � Θ∗

2 → δ∗r−k+1 and Θ∗
1 is ready for input into Θ∗

2 to
form Θ∗

1 + Θ∗
2.

We now form the following level m database for

ϕ1, . . . ,ϕn + ψ1, . . . ,ψs m δ.

We start with the tree of Figure 10.14, where the δ∗i in it are understood to
be the c∗i of our context here of case m. We consider the trees Δ∗

j and we

Δ∗
1 Δ∗

r−k  
↓ ↓
• → . . .→ • •
t1 tr−k tr−k+1

Figure 10.16: Tree τ ′ of the split

let the standard translation for case m be {Δ∗
j} = τ . We now need to show

Θ∗
1 + Θ∗

2 Δ∗
r

↓ ↓
• → . . .→ •

tr−k+1 tr

Figure 10.17: Tree τ ′′ of the split

the translations of (ϕ1, . . . ,ϕm)∗ and ψ∗. Consider the node tr−k+1 in the
standard translation. We have the situation in Figure 10.15. Our problem is
that we want to split this tree in the middle of the subtree (Θ1 + Θ2)∗, with
Θ∗

1 going into (ϕ1, . . . ,ϕn)∗ and Θ∗
2 going into ψ∗ along with Δ∗

r−k+2 etc.
Remember that Figure 10.15 is one big tree Δ∗ which proves δ, (Δ∗ � δ).
This tree can be split along two points. The first point is tr−k+1. The two
trees τ ′ and τ ′′ are in Figures 10.16 and 10.17.

We now split the tree in Figure 10.17 by taking out Θ∗
1. We get the two trees

τ3 and τ ′′2 in Figures 10.18 and 10.19.

Θ∗
1

•  
e

Figure 10.18: Tree τ ′′1 of the split of τ ′′
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We now define (ϕ1, . . . ,ϕn)∗ and ψ∗ as follows:

– (ϕ∗
1, . . . ,ϕn)∗ = {τ ′, τ ′′1 };

– ψ∗ = τ ′′2 → δ.

It is clear that (ϕ1, . . . ,ϕn)∗ � ψ∗ because if we input the trees of Fig-
ures 10.16 and 10.18 into the tree of Figure 10.19, we get the tree of Fig-
ure 10.15 which proves δ. ∇

Input points:
e in Θ∗

2

and tr−k+1

Θ∗
2

Δ∗
r

• • → . . .→ •
tr−k+1 tr

Figure 10.19: Tree τ ′′2 of the split of τ2

To illustrate the translation we provide in the sequel some examples.

s1
• (z, x) → a

s2
• z

• • •
t0 t1 t2

(α, a) → δ α x

Figure 10.20: Tree τ1

Example 10.2.17 Consider the formula

((z, x) → a, z, x) → a.

Observe that this formula is a theorem of concatenation logic. Consider now the
following formula

(α, a) → q, α, (z, x) → a  (z, x) → δ.

The translation of this formula is done as explained below.
First of all we translate the formula

(α, a) → δ, α, (z, x) → a, z, x  δ

into the tree τ1 in Figure 10.20.
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Θ∗
1

•  
e

Figure 10.21: Tree τ2

Input points:
are s2 and t2

s2
z

• x
t2

Figure 10.22: Tree τ3

Then we split the tree at points t2 and s2 and get the trees τ2, τ3 and τ4 in
Figures 10.21, 10.22 and 10.23.

We have that the formula

((α, a) → q, α, (z, x) → a)

is translated into {τ4, τ4}. Moreover, the formula

(a, x) → δ

is translated to τ2 → δ.
We have {τ4, τ4} � τ3 → δ because {τ4, τ5} + τ3 = τ1 � δ, where τ5 is the tree

in Figure 10.24. ∇

Example 10.2.18 Consider now

((α, a) → q, α, (z, x) → a) → b, (α, a) → q, α, (z, x) → a  b.
In this case the translation is straightforward. It is the sequence of formulas as is.
Thus, the part ((α, a) → q, α, (z, x) → a) is translated differently in this example
as compared with Example 10.2.17. This is because we translate proofs, and not
databases. In fact, we cannot translate this sequence on its own. ∇

Remark 10.2.19 Note that there are several types of translations.

1. Uniform translation
Concatenation logic is complete for semigroup semantics with left identity
(models of the form (S, ◦, 1).)

A uniform translation into classical logic would be as follows:
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s1
(z, x) → a

•  
s2

Figure 10.23: Tree τ4

t0 • t1 t2
(α, a) → δ α  

Figure 10.24: Tree τ5

(i) [qi](x) = Qi(x), for qi atomic and Qi(x) a unary predicate of classical
logic with a free variable x.

(ii) [ϕ→ ψ](x) = ∀y([ϕ](y)⇒ [ψ](x ◦ y)).

In the concatenation logic we have  ϕ if and only if in the theory of semi-
group with left identity  [ϕ](1).

2. Local translation
This translation can translate any ϕ into an ϕ∗ but such translation can-
not be done uniformly. An example of that is translating from Basic into
Prolog. Being both Turing machines, any Basic program can be translated
(or associated with) a Prolog program doing the same job but probably not
uniformly line by line.

x
•

• • x→ a
a→ y

Figure 10.25: Database not proving y

3. Proof translation
This is the translation we offer in this section. If ϕ is a theorem of concatena-
tion logic, it has a unique proof. We use this proof to translate. We cannot
translate non-theorems. To see what is going on, let us try and translate
from linear logic. Consider again a → y, x, x→ a  y. This is a valid state-
ment of linear logic because of commutativity ϕ→ (ψ → δ) is equivalent to
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ψ → (ϕ→ δ). We cannot translate Kpast in that order because the database
in Figure 10.25 does not prove y. ∇

We need to prove the statement that for any ϕ there exists an equivalent ϕ′ in
linear logic such that in linear logic  ϕ′ if and only if in concatenation logic  ϕ′

and then we translate ϕ′ or we change the data-structure of Kpast a little.

10.3 Input output networks

Logical input/output operations are generated, in the propositional case, by a set
Δ of pairs of Boolean formulas (α,β). When an input formula is presented it is
imaged by Δ, with the help of the classical consequence operation C.

The simplest way in which this is done is by putting outΔ(α) = C(Δ(C(α)),
where Δ(S) is just the image under Δ (considered as a relation) of the set S of
formulas. This is known as the simple-minded input/output operation. Stronger
operations that allow a more sophisticated treatment of disjunctive input, recycling
of output as input, and/or automatic acceptance of inputs as outputs, are defined
by adding to this simple definition. See [188, 189] for details.

We start with two observations. First, we can generalize the notion of an
individual logical input/output operation in certain ways. In particular:

• we may wish to accept as inputs and outputs items that are more complex
than bare propositions, carrying additional structure or other information;

• instead of using classical consequence to prepare input and package output
as in the above definition, we might use other operations or relations of logic
or information processing.

The input/output operations that we will consider will each be generalized in
such ways. Nevertheless, they will have as a common core the composition of three
operations. Given as input some propositional object α (perhaps a proposition,
perhaps a more complex propositional structure, with or without labels), we apply
a familiar logical operation (perhaps classical consequence, perhaps something
else) to it, then take the image of that under a given set Δ of generators (pairs of
propositional objects), and finally apply to that another familiar logical operation
(not necessarily the same as the first).

The second observation is that it is also possible to combine input/output oper-
ations into networks, with the output of one operation serving as input to others.
Here a great many possibilities suggest themselves. For example, the nodes in the
net need not all correspond to the same kind of input/output operation. For in-
stance, some may be simple-minded, others reusable, others disjunctive. Indeed, a
single node may be labeled with several input/output operations, with the decision
which to apply depending in part on the information coming in to it.
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The way in which a node processes its inputs may depend on whether they
are fresh or repeated, as well as on their propositional content. The paths leav-
ing a node to others may be fixed, or may be activated/deactivated or even cre-
ated/destroyed according to the information in the node. Moreover, nodes them-
selves may be created according to the information currently in a given node.
Recursion is allowed, in that nodes may be labeled not only with individual in-
put/output operations, but also with entire nets.

We will not attempt to define formally the family of all possible input/output
logic nets, but leave the concept open-ended for expansion as needed to deal with
examples. Nevertheless, each such net will have as its core a set of nodes, each
with a label that contains an input/output operation and possibly more items.
Information will come into the net through a fixed entry node, and after processing
will leave through a fixed exit node.

The nets we consider are always finite, with deterministic behavior. We assume
that the distribution of information may be analyzed by stages. That is, if we
wish to determine the output of a specific net with a given input, we assume that
there is a succession of net-states:

• state 0 represents the situation when the entry node d receives the input;

• state n is followed by a net-state n+1, uniquely determined by state n.

Of course, the state of a node in the net is not in general determined by its own
immediately prior state, but on that of the entire net.

In each example it will turn out that after a given input, the state of the net
and, in particular, the state of its exit node eventually stabilizes. This, however,
needs to be proved in each case. This is the general conceptual framework. We
now proceed to present some case studies: resolution in Prolog and one form of
non-monotonic inference.

Example 10.3.1 As a case study we analyze Prolog as a network of input output
logics. A Prolog clause has the form

Ci :
∧
Aij → Qi

where Qi is the head and Aij are members of the body. We write the clause as

(Qi, (A1
1, . . . ,A

1
ki

)).

If Aij does not exist we write (Qi, ∅).
To turn a clause into an input output node we consider Qi as the trigger and

(Ai1, . . . ,A
i
ki

) as the output. An input to such a node is a sequence (Q1, . . . ,Qm).
Put the clauses as a network as in Figure 10.26. This is a circular network, with
d = e = C1 and C1RC2, . . . ,Cn−1RCn, CnRC1.

When (Q1, . . . ,Qm) is input into Ci we compare Q1 and Qi as follows:
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Cn

...

C2

C1

Figure 10.26: Circular network

• if they are different atoms then we output (Q1, . . . ,Qn) to Ci+1 (or C1 if
i = n);

• if the input is ∅ we pass it on as output as if Qi �= Q1;

• if Q1 = Qi we output (Ai1, . . . ,Aiki
Q2, . . . ,Qn) into Ci+1.

Note that if the clause is Ci = Qi then the output is (Q2, . . . ,Qm). Suppose we
give some single input into C1 and let it run. The network evolves onto a steady
state of either ∅ as repeated input or some non-empty input (Q1, . . . ,Qm′). The
first is success, the second is failure.

Example 10.3.2 We now discuss the case of non-monotonic logic. The non-
monotonic consequence ∼ is defined as the smallest consequence containing Γ,
closed under  and the rules:

1. Δ, ∼ A

2.
Δ, A∼ B; Δ∼

Δ∼ B

3.
Δ∼ A; Δ∼ B

Δ, A∼ B

A more constructive way of generating the consequences of a theory Δ is to proceed
as follows. A set of assumptions Δ is said to be reducible to Δ′ ⊆ Δ if for some
A1, . . . ,Ak we have

Δ = Δ′ ∪ {A1, . . . ,Ak} and Δ′∼ Ai, i = 1, . . . ,k.

We use the word “reducible” because by a property of ∼ we should look at all Y
such that Δ′∼ Y and that would imply Δ∼ Y . So, to generate the set of all Y
such that Δ∼ Y , we should look at all irreducible subsets Δ′ ⊆ Δ to which Δ is
reducible (all these subsets Δ-pools) and generate all their consequences.



460 CHAPTER 10. NEW TRENDS: NETWORK FIBRING

It is therefore sufficient for the purpose of showing how input output networks
can generate non-monotonic consequence to assume that we are dealing with irre-
ducible theories. For such cases, the proof theory for non-monotonic logic goes as
follows (see [107]):

• we start with a set of pairs {(Γi, βi)} and a monotonic logic base ;

• we consider a theory Δ;

• we look at all pairs (Γ, β) such that Δ = Γ;

• finally, we non-monotonically conclude β and write Δ∼ β.

t

Figure 10.27: Net

We get a set Θ0 of outputs β0
1 , β

0
2 , . . .. We now continue to accumulate conse-

quences by feeding in as inputs any set

Δ′ = Δ ∪ {β1, . . . ,βk, βi ∈ Θ0}

(if k = 0 then Δ′ = Δ). This triggers a new set Θ1 = {β1
1 , β

1
2 , . . .}.

We have Θ0 ⊆ Θ1 because one option is to feed Δ itself. We now carry on
inductively and feed

Δ′ = Δ ∪ {β1, . . . ,βk : βi ∈ Θm}

and get the set Θm+1. Notice that Δ always appears in the conjunction, because
we are dealing with non-monotonic logic. This process corresponds to the net of
Figure 10.27. ∇

The basic idea of input output logic is that given an initial data Δ and an
input formula A an output formula B is affected. This schema is immediately
reminiscent of substructural implication where

Δ � A⇒B if and only if Δ ◦A � B.

This suggests semigroup modeling of input output logic. We shall see, however,
that more general models (LDS models) are required, if we want to have networks
of such logics. The basic nodes of these networks are labels. If a node t is connected
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s1 · · · sn

t

Figure 10.28: Nodes in a network

to nodes s1, . . . ,sn, see Figure 10.28, and t receives an input X , the output from
t goes on to become input for s1, . . . ,sn.

Thus, we imagine an input–output node t as comprising two metaformulas:
ϕt(X) and γt(X). The input X is given to t and the output is ϕt(X). However,
the node t may not be able to process X completely. It therefore creates (or
activates) a new node s = g(t) and gives it γt(X) as input. Furthermore, for
certain X , the node may not process at all and X remains in the node.

s
•

• w

•
t

Figure 10.29: From t input X can go to w or to s

The node s = g(t) that t creates with input γt(X) is assumed, for simplicity,
to be a copy of t itself, that is, we have ϕs = ϕt and γt = γs. We assume further
that γt(X) satisfies the following well foundedness condition: for every X there is
a natural number n such that:

γnt (X) =  .

We also assume

ϕt( ) =  and γt( ) = ∅

for all t. The new node s = g(t) that t creates is connected in the network to some
of the nodes to which t is connected (for instance, all or none are possible simple
options).

It is also possible to have hypernetworks where the nodes connected depend
on the processing history of the input. In Figure 10.29, from t,X can go to w
and then to s or directly to s. From s, where the output goes depends on its
history.
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r

s •
s′

•
t

tRs′

tRs
sRr

Figure 10.30: Example of a network

Example 10.3.3 We now consider modal logic as input output logic:
Consider a network as in Figure 10.30. All nodes have the same metaformulas

ϕ and γ:

• ϕ(�X) is X ;

• γ(�X) is to create a new node s, connected to t only, and input X to it.

Let the input be (�((�X) ∧ (♦Y ))). Then:

(X ∧ Y )
r′ ◦ r X ◦ w (X ∧ Y )

created created

s • • s′

•
t

Figure 10.31: Inputing (�((�X) ∧ (♦Y ))) to t

• t outputs ((�X) ∧ (♦Y )) to s and to s′;

• s outputs X to node r and also creates a new node r′ and outputs to it
(X ∧ Y );

• sRr′ holds.

Similarly, s′ creates w with s′Rw and outputs to it (X∧Y ). Figure 10.31 shows
what we get now after input. Note that in modal logic all processors do the same
input output. ∇

The simplest variation is to change the meaning of ♦ into ♦−.
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s s′

•
t : (♦−A)

Figure 10.32: Input of (♦−A)

Whereas (♦A) creates a node unconnected to any other, (♦−A) creates a world
connected to the current worlds or to all the accessible worlds.

s s′

• t

•
w : A

Figure 10.33: Creation of a new w as a result of inputing (♦−A)

Option 1
The input of ♦−A in Figure 10.32 creates a node w as in Figure 10.33. This makes
♦− mean “yesterday”. Otherwise, we can open a parallel unit as in Figure 10.34.
The major difference between input output nets and modal logic is that the output
is different at different nodes. Let us go to the original network of Figure 10.30.
Let us input X at t. We get, in general, the situation of Figure 10.35. Let A be

s s′

w

•
t

Figure 10.34: Parallel unit with tRw ∧ wRs ∧wRs′

a set of labels and let R be a binary relation on labels. Let t &→ (ϕt, γt) be input
output functions associated with labels. Let x, y, z be variable labels and let τ be
a theory on labels constituted by Horn clauses, as, for instance,

τ = ∀xyz(xRz ∧ xR5y → zRy).
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W3 ϕrϕsϕt(X) ∧ γrϕsϕt(X)
•

ϕsϕt(X) ϕsϕt(X)
r1 • • r

ϕs(ϕt(X) ∧ γsϕt(X))
• w2

ϕt(X) ϕt(X)
ϕt(X) ∧ ϕt(X)

s • • s′ • w1

•
t

Figure 10.35: Inputing X at t

Then, τ is a closure condition to be used when we create points. For example,
suppose we have the situation of Figure 10.36. Then τ forces us to join z to x5.

x5

...

x3 • this connection is because of τ

x2 • • z
x1 • create

Figure 10.36: Joining node z

Definition 10.3.4 A network is a tuple

N = 〈T,R,d, e〉

where T is a set (the set of nodes, or points), R ⊂ T ×T , d is the input point and
e is the output point. We also consider the functions λt.ϕt, λt.γt and τ .

We say that X Δ Y if with input X into d we get Y at e. To do this we
need proof theory. It is better to assume that input comes to every node. So the
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database Δ is a network with input Ai already at every node ti. Output is any B
such that Δ  e : B.

The proof rules are as follows:

export
t : A tRs
s : ϕt(A)

creation
t : A

create w,
∧
i wRti w : ϕt(A) ∧ γt(A)

closure
τ =

∧
xiRyi → tRs, xiRyi

tRs

∇

We now present an example that illustrates the application of the rules above.

e :

•
t : A

Figure 10.37: Database Δ

Example 10.3.5 Consider the following situation:

• τ = (xRy ∧ xRz)→ yRz;

• ϕE(A) ◦ E, where “◦” denotes AGM revision (see [4]);

• γE(A) = create a possible node with A.

e A ◦ E
E ∧ (A ◦ E)

w
created

Figure 10.38: Database after applying the rules to Δ

Let Δ be as in Figure 10.37. We use the rules and get Figure 10.38.
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e

w

•
t

Figure 10.39: Database after applying the closure rule

Then, we have
E ∧ (A ◦ E) = A ◦ E.

Using now the closure rule we get the situation depicted in Figure 10.39.
Finally, we use rule on w and get Figure 10.40.

e : (A ◦ E) ∧ (A ◦ E) ◦ E

A ◦ E
•

t : A

Figure 10.40: Database after applying rule to w

∇

10.4 Fibring neural networks

The goal of neural-symbolic integration is to benefit from the symbolic and the
connectionist paradigms of artificial intelligence [56, 78]. Towards this end, ef-
ficient, parallel and distributed learning capability should be at the core of any
neural-symbolic system and, one may argue, of any artificial intelligence system.

A neural network consists of interconnected neurons (or processing units) that
compute a simple function according to the weights (real numbers) associated to
the connections. Learning in this setting is the incremental adaptation of the
weights [143]. The interesting characteristics of neural networks do not arise from
the functionality of each neuron, but from their collective behaviour. For more
details about neural networks see, for instance, [143].

Neural-symbolic systems that use simple neural networks, such as single hid-
den layer feedforward or recurrent networks, typically only manage to represent
and reason about propositional symbolic knowledge or if then else rules [28, 78,
100, 220, 261]. On the other hand, neural-symbolic systems that are capable of
representing and of reasoning about more expressive symbolic knowledge, such as
modal logic and first-order logic, normally are less capable of learning new concepts
efficiently [150, 253, 247, 161].
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It is important to strike a balance between the reasoning and learning capabili-
ties of neural-symbolic systems. Either the simple networks to which, for example,
the efficient Backpropagation learning algorithm, or its variations, can be applied
to [230, 271, 272] must be shown to represent languages more expressive than
propositional logic, or the complex connectionist systems that are capable of rep-
resenting first order logic, such as for example CHCL [151] must have efficient
learning algorithms developed for them. This is so because real-world applications
(such as failure diagnosis, engineering and bioinformatics applications) do require
the use of languages more expressive than propositional logic. Bioinformatics,
in particular, very much depends on the ability to represent and reason about
relations as used in first order logic [6].

In this case study we extend simple networks that use Backpropagation in order
to allow for higher expressive power. We do so by following the fibring by functions
mechanism [108], already referred to in Subsection 1.2.3 of Chapter 1 (see also
Section 3.4 of Chapter 3). To this end, we know that a fundamental aspect of
symbolic computation lies on the ability to do recursion. As a result, to make
neural networks behave like logic, we need to add recursion to it by allowing
networks to be composed not only of interconnected neurons but also of other
networks.

Figure 10.41 exemplifies how a network can be embedded into another. Of
course, the idea of fibring is not only to organize networks as a number of sub-
networks. In Figure 10.41, for example, the hidden neuron of networkA is expected
to be a neural network (network B ) in its own right, and the input, weights and
output of network B may depend on the activation values of neurons in network
A, according to the fibring function used. For example, a fibring function may be
to multiply the weights of network B by the input potential of network’s A output
neuron.

Most of the work on how to do recursion in neural networks has concentrated on
the use of recurrent auto-associative networks and symmetric networks to represent
formal grammars [87, 260, 248, 249, 222]. In general, the network learns how to
simulate a number of recursive rules by similarity, and the question of how such
rules are represented in the network is treated as secondary. In this case study, we
present a different treatment to the subject, looking at it from a neural-symbolic
integration perspective [78]. The idea is to be able to represent and learn symbolic
rules of the form

a→ (b→ c)
where (b → c) would be encoded into network B and then a → (b→ c) would be
encoded into the fibred network containing networks A and B .

We introduce and define below the fibred neural network (fNN) architecture,
and show that, in addition to being universal approximators, fNNs can approxi-
mate any polynomial function, thus being more expressive than standard feedfor-
ward networks. Briefly, this can be shown by noting that fibred neural networks
compute, for instance, the function f(x) = x2 exactly for any given input x in
R, as opposed to feedforward networks which are restricted to compact (that is,
closed and bounded) domains [70, 152].
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Figure 10.41: Fibring neural networks
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Figure 10.42: Fibring two simple networks

Intuitively, fibring neural networks can be seen as running and training neural
networks at the same time. In Figure 10.41, for example, at the same time that we run
networkA, we perform a kind of learning in networkB because we allow the weights
ofB to change according to the fibring function. In other words, object-level network
running and meta-level network training are occurring simultaneously in the same
system, and this is responsible for the added expressiveness of the system.

The main idea behind fibring neural networks is to allow single neurons to
behave like entire embedded networks according to a fibring function ϕ. This
function qualifies the function computed by the embedded network so that the
embedded network’s output depends on ϕ. For example, consider network A and
its embedded network (network B ) in Figure 10.41.

Let WA and WB be the set of weights of network A and network B respectively.
Let

• fWA(iA) be the function computed by network A;

• gWB (iB) be the function computed by network B;

where iA and iB are the input vectors of networks A and B respectively. If network
B is embedded into network A with fibring function ϕ, the function computed by
network B becomes gϕ(WB)(iB), and then the function computed by network A
becomes fWA,gϕ(WB )(iB)(iA), as the following example illustrates.

Consider the two simple networks (A and B) of Figure 10.42. Let us assume,
without loss of generality, that input and output neurons have the identity as
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activation function, while hidden neurons have h(x) = tanh(x) as activation func-
tion [152]. We use bipolar inputs ij ∈ {−1, 1}, Wjk ∈ R, and outputs ok ∈ {−1, 1}.

The output of network A is

oA1 = WA
3 .h(WA

1 i
A
1 +WA

2 i
A
2 )

and the output of network B is

oB1 = WB
3 .h(WB

1 i
B
1 +WB

2 i
B
2 ).

Now, let network B be embedded into network A as shown in Figure 10.42. This
indicates that the input potential of A’s output neuron will influence B according
to fibring function ϕ. Let us refer to the input potential of A’s output neuron as
I(oA1 ). In addition, this indicates that the output of B (oB1 ) will influence A (in this
example, only the output of A). Note that, in this particular example, I(oA1 ) = oA1
due to the use of the identity as activation function in the output layer.

Suppose ϕ(WB) = I(oA1 ) ·WB, where WB = [WB
1 ,W

B
2 ,W

B
3 ]. Let us use oA1

and oB1 to denote the outputs of networks A and B respectively, after they are
fibred. Then oB1 is obtained by applying ϕ to WB and calculating the output of
such a network, as follows:

oB1 = (I(oA1 ).WB
3 ) · h((I(oA1 ).WB

1 )iB1 + (I(oA1 ).WB
2 )iB2 ).

Moreover, oA1 is obtained by taking oB1 as the output of the neuron in which
network B is embedded. In this example,

oA1 = oB1 .

Notice how network B is being trained (when ϕ changes its weights) at the same
time that network A is running.

Clearly, fibred networks can be trained from examples in the same way that
standard feedforward networks are (for example, with the use of Backpropaga-
tion [230]). Networks A and B of Figure 10.42, for example, could have been
trained separately before being fibred. Network A could have been trained, for
instance, with a robot’s visual system, while network B would have been trained
with its planning system. For simplicity, we assume for now on that, once defined,
the fibring function itself should remain unchanged.

In addition to using different fibring functions, networks can be fibred in a
number of different ways as far as their architectures are concerned. The networks
of Figure 10.42, for example, could have been fibred by embedding network B into
an input neuron of network A(say, the one with input i1).

In this case, outputs oB1 and oA1 would have been

oB1 = ϕ(WB
3 ) · h(ϕ(WB

1 )iB1 + ϕ(WB
2 )iB2 )

where ϕ is a function of WB (say, for instance, ϕ(WB) = i1 ·WB), and

oA1 = WA
3 .h(WA

1 o
B
1 +WA

2 i
A
2 ).
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Let us now consider an even simpler example that, nevertheless, illustrates the
power of fibring neural networks. Consider two networks A and B , both with a
single input neuron (iA and iB, respectively), a single hidden neuron and a single
output neuron (oA and oB, respectively). Let all the weights in both networks
have value 1, and let the identity f be the activation function of all the neurons
(including the hidden neurons). As a result, we simply have

• oA = f(WA
2 · f(WA

1 · f(iA))) = iA;

• oB = f(WB
2 · f(WB

1 · f(iB))) = iB;

where WA
1 and WA

2 are the weights of network A, and WB
1 and WB

2 are the weights
of network B . Now, if we embed network B into the input neuron of network A,
we obtain

• oB = f(ϕ(WB
2 ) · f(ϕ(WB

1 ) · f(iB)));

• oA = f(WA
2 · f(WA

1 · oB)).

Since f is the identity, we have

• oB = ϕ(WB
2 ) · ϕ(WB

1 ) · iB;

• oA = WA
2 ·WA

1 · oB.

Now, let the fibring function be

ϕ(WA, iA,WB) = iA ·WB

where WB = [WB
1 ,W

B
2 ]. Since WA

1 ,W
A
2 ,W

B
1 ,W

B
2 are all equal to 1, we obtain

oB = iA · iA · iB and oA = oB. This means that if we fix iB = 1, the output of
network A (fibred with network B) will be iA · iA.

Finally, assume that the following sequence is given as input to A fibred with
B :

n, 1/n, n+ 1, 1/(n+ 1), n+ 2, 1/(n+ 2), . . .

for n ∈ R. The corresponding output sequence of A will be:

n2, 1, (n+ 1)2, 1, (n+ 2)2, 1, . . .

Note that, input n changes the weights of B from 1 to n, input 1/n changes the
weights of B back to 1, input n + 1 changes the weights of B from 1 to n + 1,
input 1/(n + 1) changes the weights of B back to 1, and so on. Note that, since
the fibring function changes the weights of the embedded network, we use 1/n,
1/n+ 1, 1/n+ 2 . . . to reset the weights back to 1 in the sequence computation.

The interest in this sequence lies in the fact that, for alternating inputs, the
square of the input is computed exactly by the network for any input in R. This
illustrates an important feature of fibred neural networks, namely, their ability
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to approximate functions in an unbounded domain. This results from the recur-
sive characteristic of fibred networks as indicated by the function fW1,gW2 (i2)(i1)
computed by the network, and will be discussed in more detail below.

Now we define fibred neural networks (fNNs) precisely, we define the dynamics
of fNNs, and we show that fNNs can approximate unbounded functions.

For the sake of simplicity, we restrict the definition of fibred networks to feedfor-
ward, single output neuron networks. We also concentrate on networks with linear
input and output activation functions, and either linear or sigmoid hidden layer
activation function. We believe, however, that the principles of fibring could be
applied to any artificial neural network model. In what follows, we allow not only
two networks, but any number of embedded networks to be nested into a fibred
network. We also allow for an unlimited number of hidden layers per network.

Definition 10.4.1 Let A and B be two neural networks. A function ϕn : I→W
is called a fibring function from A to B if I is the input potential of a neuron n in
A and W is the set of weights of B. ∇

Definition 10.4.2 Let A and B be two neural networks. We say that B is em-
bedded into A if ϕn is a fibring function from A to B and the output of neuron
n in A is given by the output of network B. The resulting network composed of
networks A and B is called a fibred neural network. ∇

Note that many networks can be embedded into a single network, and that
networks can be nested so that network B is embedded into network A, network
C is embedded into network B, and so on. The resulting fibred network can be
constructed by applying Definition 10.4.2 recursively, that is, first to embed C into
B and then to embed the resulting network into A.

Example 10.4.3 Consider three identical network architectures (A, B and C),
each containing a single linear input neuron, a single linear hidden neuron, and
a single linear output neuron. Let us denote the weight from the input neuron
to the hidden neuron of network x ∈ {A,B,C} by Wh

x , and the weight from the
hidden neuron to the output neuron of x by W o

x .
Assume we embed network C into the output neuron of network B, and embed

the resulting network into the output neuron of network A (according to Defini-
tion 10.4.2), as depicted in Figure 10.43. Let

• ϕB denote the fibring function from A to B and define ϕB = ioA ·WB;

• ϕC denote the fibring function from B to C and define ϕC = ioB ·WC ;

where

• ioA is the input potential of A’s output neuron given input x;

• ioB is the input potential of B’s output neuron given inputs x and y;
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Figure 10.43: Nesting fibred networks

• WB denotes the weight vector [Wh
B,W

o
B ] of B;

• WC denotes the weight vector [W h
C ,W

o
C ] of C.

Initially, let Wh
A =

√
a, where a ∈ R

+, and W o
A = Wh

B = W o
B = Wh

C = W o
C = 1.

As a result, given input x to A, the input potential of A’s output neuron will be
x
√
a. Then, ϕB will be used to update the weights of network B to Wh

B = x
√
a

and W o
B = x

√
a. If we had only networks A and B fibred, input y = 1, for example,

would then produce an output o = ax2 for network B and then A.
Since networkC is also embedded into the system, given input y, fibring function

ϕC will be used to update the weights of network C, according to the input
potential of B’s output neuron.

Thus, given y = 1, the input potential of B’s output neuron will be ax2, and the
weights of network C will change to Wh

C = ax2 and W o
C = ax2. Finally, assume

z = 1. The output o of networks C, B and A will be a2x4. This illustrates the
computation of polynomials in fNNs. The computation of odd degree polynomials
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and of negative coefficients could be achieved with the addition of more hidden
layers to the networks, as we will see in the sequel. ∇

Example 10.4.3 also illustrates the dynamics of fibred networks. Let us now
define such a dynamics precisely.

Definition 10.4.4 Let N1, N2, . . . , Nn be neural networks. N1, N2, . . . , Nn form
a nested fibred network if Ni is embedded into a neuron of Ni−1 with a fibring
function ϕi for any 2 ≤ i ≤ n. We say that j−1, 1 ≤ j ≤ n, is the level of network
Nj . ∇

Definition 10.4.5 Let N1,N2, . . . , Nn be a nested fibred network. Let ϕi be the
fibring function from Ni−1 to Ni for 2 ≤ i ≤ n. Let ij denote an input vector to
network Nj , Wj the current weight vector of Nj , In(ij) the input potential of Nj ’s
neuron nj into which Nj+1 is embedded given input vector ij, Onj the output of
neuron nj , and fWj (ij) the function computed by network Nj given Wj and ij
as in the standard way for feedforward networks. The output oj of network Nj ,
1 ≤ j ≤ n− 1, is defined recursively in terms of the output oj+1 of network Nj+1,
as follows:

Wj+1 := ϕj+1(I(ij),Wj+1), 1 ≤ j ≤ n− 1

on = fWn(in)

oj = fWj (ij ,Onj := oj+1)

where fWj (ij ,Onj := oj+1) denotes the function computed by Nj substituting the
output of its neuron nj by the output of network Nj+1. ∇

Now that fNNs have been defined, we proceed to show that, in addition to
being universal approximators, fNNs can approximate any polynomial function,
and thus are more expressive than standard feedforward neural networks.

Proposition 10.4.6 Fibred neural networks can approximate any (Borel) mea-
surable function in a compact domain to any desired degree of accuracy.

Proof. This follows directly from the proof that single hidden layer feedforward
neural networks are universal approximators [152], together with the observation
that level zero networks are a generalization of single hidden layer feedforward
networks. �

The proposition above states that fNNs are universal approximators. For the
next result, recall that, differently from functions in a compact domain, polynomial
functions are not bounded.

Proposition 10.4.7 Fibred neural networks can approximate any polynomial
function to any desired degree of accuracy.
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Figure 10.44: Computing polynomials in fibred networks

Proof. Consider the level zero network N of Figure 10.44, and its three embedded
networks A, B and C at level 1, all containing linear neurons. Let n+ 1 (n ∈ N)
be the number of input neurons of N , 0 ≤ i ≤ n, ai ∈ R.

We embed n−1 networks into the input neurons ofN , each network representing
x2, x3, . . . , xn, as indicated in Figure 10.44 for networks A, B and C, representing
x2, x3 and xn, respectively. A network Nj that represents xj , 2 ≤ j ≤ n, contains
two input neurons (to allow the representation of aj ∈ R), j−1 hidden layers, each
layer containing a single hidden neuron (let us number these h1, h2, . . . , hj−1), and
a single output neuron. In addition, let aj/2 be the weight from each input neuron
to h1, and let 1 be the weight of any other connection in Nj. We need to show
that such a network computes ajxj .

From Definition 10.4.5, given input x to N and ϕj = xWj , the weights of Nj
are multiplied by x. Then, given input (1, 1) to Nj , neuron h1 will produce output



476 CHAPTER 10. NEW TRENDS: NETWORK FIBRING

ajx, neuron h2 will produce output ajx2, and so on. Neuron hj−1 will produce
output ajxj−1, and the output neuron will produce ajxj .

Finally, by Definition 10.4.2, the neuron in N into which Nj is embedded will
present activation ajx

j , and the output of N will be
∑
j ajx

j . The addition of
a1x and a0 is straightforward (see Figure 10.44), completing the proof that fNNs
compute

∑
i aix

i. �

10.5 Fibring Bayesian networks

Causal relations can themselves take part in causal relations. The fact that smok-
ing causes cancer (SC), for instance, causes government to restrict tobacco adver-
tising (A), which helps prevent smoking (S), which in turn helps prevent cancer
(C). This causal chain is depicted in Figure 10.45.

Hence, causal models need to be able to treat causal relationships as causes and
effects. This observation motivates an extension of the Bayesian network causal
calculus to allow nodes that themselves take Bayesian networks as values. Such
networks will be called recursive Bayesian networks.

SC � A � S � C

Figure 10.45: Causal relation

Because recursive Bayesian networks make causal and probabilistic claims at
different levels of their recursive structure, there is a danger that the network might
contradict itself. Hence, we need to ensure that the network is consistent. Having
done this, we present a Markov condition which applies to recursive Bayesian
networks, and which allows joint distributions over the domain to be determined
by such networks. We also refer to other generalizations of Bayesian networks,
and we show by analogy with recursive Bayesian networks how recursive causality
can be modeled in structural equation models.

A recursive Bayesian network is an instance of a very general structure called a
self-fibring network, whose properties are discussed in Section 10.6.

Bayesian networks

It is almost universally accepted that causality is an asymmetric binary relation
(not quite universally, [205] disagrees for example). But the question of what the
causal relation relates is much more controversial: the relata of causality have
variously taken to be single-case events, properties, propositions, facts, sentences
and more.

In this section we deal with cases in which causal relations themselves are in-
cluded as relata of causality. Our aim is to shed light on the processes of causal
reasoning, especially formalizations of causal reasoning.
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More generally, we shall consider sets of causal relations, represented by directed
causal graphs such as that of Figure 10.45, as relata of causality. A single causal
relationship is then represented by a causal graph consisting of two nodes referring
to the relata and an arrow from cause to effect. If, as in Figure 10.45, a causal
graph G contains a causal relation or causal graph as a value of a node, we shall
call G a recursive causal graph and say that it represents recursive causality.

R � B � I � E

Figure 10.46: Causal chain

Policy decisions are often influenced by causal relations. As we have already
seen, smoking causing cancer itself causes restrictions on advertising. Similarly,
monetary policy makers reduce interest rates (R) because interest rate reductions
boost the economy (E) by causing borrowing increases (B) which in turn allow
investment (I). Here we have a causal chain as in Figure 10.46 forming the node
RE in Figure 10.47.

RE � R

Figure 10.47: Node RE

Policy need not be made for us: we often decide how we behave on the basis
of perceived causal relationships. It is plausible that drinking red wine causes
an increase in anti-oxidants which in turn reduces cholesterol deposits, and this
apparent causal relationship causes some people to increase their red wine con-
sumption.

This example highlights two important points. Firstly, it is a belief in the causal
relationship which directly causes the policy change, not the causal relationship
itself. The belief in the causal relationship may itself be caused by the relationship,
but it may not be: it may be a false belief or it may be true by accident. Likewise,
if a causal relationship exists but no one believes that it exists, there will be no
policy change. Secondly, the policy decision need not be rational on the basis of
the actual causal relationship that causes the decision: drinking red wine may do
more harm than good.

A contract can be thought of as a causal relationship, and the existence of a
contract can be an important factor in making a decision. A contract in which
production of commodity C is purchased at price P may be thought of as a causal
relationshipC −→ P , and the existence of this causal relationship can in turn cause
the producer to invest in further means of production, or even other commodities.

For example, a Fair Trade chocolate company has a long-term contract with a
co-operative of Ghanaian cocoa producers to purchase (P ) cocoa (C) at a price
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C � P

Figure 10.48: Causal relationship C → P

advantageous to the producer as in Figure 10.48. The existence of this contract
(CP ) allows the cooperative to invest in community projects such as schools (S),
as in Figure 10.49.

CP � S

Figure 10.49: Causal relationship CP → S

An insurance contract is an important instance of this example of recursive
causality. Insuring a building against fire may be thought of as a causal relationship
of the form “insurance contract causes [fire F causes remunerationR]” or, for short,

[C −→ P ] −→ [F −→ R]

where, as before, C is the commodity (that is, the contract) and P is payment of
the premium. The existence of such an insurance policy can cause the policy holder
to commit arson (A) and set fire to her building and thereby get remunerated:

[[C −→ P ] −→ [F −→ R]] −→ A −→ F −→ R.

Causality in this relationship is nested at three levels. Insurance companies will
clearly want to limit the probability of remuneration given that arson has occurred.

Thus, we see that recursive causality is particularly pervasive in decision-making
scenarios. However, recursive causality may occur in other situations too — situ-
ations in which it is the causal relationship itself, rather than someone’s belief in
the relationship, that does the causing.

Pre-emption is an important case of recursive causality, where the pre-empting
causal relationship prevents the pre-empted relationship: [poisoning causing death]
prevents [heart failure causing death]. Context-specific causality may also be
thought of recursively: a causal relationship that only occurs in a particular con-
text (such as susceptibility to disease amongst immune-deficient people) can often
be thought of in terms of the context causing the causal relationship.

Arguably prevention is often best interpreted in terms of recursive causality.
When taking mineral supplements prevents goitre, what is really happening is that
taking mineral supplements prevents [poor diet causing goitre]. This is because
there are other causes of goitre, such as various defects of the thyroid gland.
Taking mineral supplements does not inhibit these causal chains and therefore
does not prevent goitre simpliciter. In many such cases, however, the recursive
nature can be eliminated by identifying a particular component of the causal chain
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which is prevented. Since poor diet (D) causes goitre (G) via iodine deficiency
(I) and mineral supplements (S) prevent iodine deficiency, this example might be
adequately represented by Figure 10.50, which is not recursive. Of course the

D

�
I � G

S

�

Figure 10.50: Non-recursive chain

recursive aspect can not be eliminated if no suitable intermediate variable I is
known to the modeler.

We now turn our attention to Bayesian networks.
A Bayesian network is defined over a finite domain V = {V1, . . . , Vn} of vari-

ables. In principle, there are no size restrictions on the set of possible values that
each variable may take, but often in practice each variable will have only a fi-
nite number of possible values. For simplicity, we shall restrict our attention to
two-valued variables, and denote the assignment of Vi to its values by vi and ¬vi
respectively, for i = 1, . . . , n.

Herein, we say that an assignment u to a subset U ⊆ V of variables is a con-
junction of assignments to each of the variables in U . For example, v1 ∧¬v2 ∧¬v5
is an assignment to {V1, V2, V5}.

Definition 10.5.1 A (causally interpreted) Bayesian network b on V consists of
two components:

• a directed acyclic graph G with nodes from V , representing the causal rela-
tions amongst the variables;

• a probability specification S, specifying, for each Vi ∈ V , the probability
distribution of Vi conditional on its parents (direct causes in G), where S
consists of statements of the form

(p(vi|par i) = xi,par i
)

for each i = 1, . . . , n, such that par i is an assignment of values to the parents
of Vi and xi,pari

∈ [0, 1]. ∇

Given a Bayesian network with probability specification S, if the value of a
variable Vi is known then Vi is said to be instantiated to that value and the
corresponding probability specifiers p(vi|par i) are 1 or 0 according to whether vi
or ¬vi is the instantiated value.
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The graph and probability specification of a Bayesian network are linked by a
fundamental assumption known as the causal Markov condition. This says that
conditional on its parents, any node is probabilistically independent of all other
nodes apart from its descendants, written

Vi ⊥⊥ ND i | Par i

where ND i and Par i are respectively the sets of non-descendants and parents of
Vi.

A Bayesian network suffices to determine a joint probability distribution over
its nodes, since, for each assignment v on V ,

p(v) =
n∏

i=1

p(vi|par i)

where vi is the assignment v gives to Vi, and par i is the assignment v gives to the
parents Par i of Vi.

Bayesian networks are used because they offer the opportunity of an efficient
representation of a joint probability distribution over V . While 2n different prob-
abilities p(v) specify the joint distribution, these values may (depending on the
structure of the causal graph G) be determined from relatively few values in the
probability specification S. Furthermore, a number of algorithms have been devel-
oped for determining marginal probabilities from a Bayesian network, often very
quickly. But this again depends on the structure of G (see [215] for a detailed
discussion of the properties of Bayesian networks and key inference algorithms).

Causal graphs are often sparse, and thus lead to efficient Bayesian network
representations. Moreover, the causal interpretation of the graph ensures that
the causal Markov condition is a good default assumption, even if the conditional
independence relationships it posits do not always hold in practice (see [273] on
this point).

Extension to recursive causality

As noted before, causal relationships often act as causes or effects themselves. In
a Bayesian network, however, the nodes tend to be thought of as simple variables,
not complex causal relationships. The concept of Bayesian network can be gener-
alized so that nodes in its causal graph G can signify complex causal relationships,
while retaining the essential features of ordinary networks, namely the ability to
represent joint distributions efficiently, and the ability to perform probabilistic
inference efficiently.

To this end, variables can be allowed to take also Bayesian networks as values.
A variable that takes Bayesian networks as values is called a network variable to
distinguish it from a simple variable whose values do not contain such structure.
Thus, S, which signifies “payment of subsidy to farmer” and takes value true s or
false ¬ s, is a simple variable.
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F � S

Figure 10.51: Graph of a: farming causes subsidy

But an example of a network variable is A, which stands for “agricultural policy”
and takes:

• value a signifying the Bayesian network containing the graph of Figure 10.51
and the specification

{pa(f) = 0.1, pa(s|f) = 0.9, pa(s|¬f) = 0.2}

where F is a simple variable signifying “farming”;

or

• value ¬a signifying Bayesian net with graph of Figure 10.52 and specification

{p¬a(f) = 0.1, p¬a(s) = 0.2}.

Here, a is a policy in which farming causes subsidy and ¬a is a policy in which
there is no such causal relationship. For simplicity, we shall consider network
variables with at most two values, but all the definitions and results referred to in
the sequel also apply to network variables which take any finite number of values.

F S

Figure 10.52: Graph of ¬a

Definition 10.5.2 A recursive Bayesian network is a Bayesian network contain-
ing at least one network variable. ∇

For example, the network with graph in Figure 10.53 and specification

{p(l) = 0.7, p(a|l) = 0.95, p(a|¬l) = 0.4}

representing the causal relationship between lobbying and agricultural policy, is
a recursive Bayesian network, where the simple variable L stands for “lobbying”
and takes value true or false, and A is the network variable signifying “agricultural
policy” discussed above.

Network variables are allowed to take recursive Bayesian networks as values. In
this way a recursive Bayesian network represents a hierarchical structure.
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L � A

Figure 10.53: Lobbying causes agricultural policy

If a variable C is a network variable then the variables that occur as nodes in
the Bayesian networks that are the values of C are called the direct inferiors of
C, and each such variable has C as a direct superior. Inferior and superior are
the transitive closures of these relations: thus, E is inferior to C if and only if it
is directly inferior to C or directly inferior to a variable D that is inferior to C.
The variables that occur in the same local network as C are called its peers.

A recursive Bayesian network

b = (G,S)

conveys information on a number of levels in the following way:

• the variables that are nodes in G are level 1 ;

• any variables directly inferior to level 1 variables are level 2, and so on;

• the network b itself can be associated with a network variable B that is
instantiated to value b, and we can speak of B as the level 0 variable;

• the depth of the network is the maximum level attained by a variable.

Definition 10.5.3 A Bayesian network is said to be

• non-recursive if its depth is 1;

• well-founded if its depth is finite;

• finite if it is well-founded and its levels are all of finite size. ∇

We have not specified the other possible values of B: for concreteness we can
suppose that B is a single-valued network variable which only takes value b. We
shall restrict our discussion to finite networks.

For i≥ 0 let Vi be the set of level i variables, and let Gi and Si be the set of
graphs and specifications respectively that occur in networks that are values of
level i variables. Thus,

• V0 = {B};
• G0 = {G};
• S0 = {S}.
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The domain of b is the set V =
⋃
i Vi of variables at all levels. Note that V

contains the level 0 variable B itself and thus contains all the structure of b.
In our example,

V = {B,L,A, F, S}
where the level 0 network variable B takes value b whose graph is in Figure 10.53
and whose probability specification is

{p(l) = 0.7, p(a|l) = 0.95, p(a|¬l) = 0.4}.

The only other network variable is A whose value a has the graph in Figure 10.51
and specification

{pa(f) = 0.1, pa(s|f) = 0.9, pa(s|¬f) = 0.2}

and whose value ¬a has the graph in Figure 10.52 and specification

{p¬a(f) = 0.1, p¬a(s) = 0.2}.

Then V itself determines all the structure of the recursive Bayesian network in
question.

A network variable Vi can be thought of as a simple variable V ′
i if one drops

the Bayesian network interpretation of each of its values: V ′
i is the simplification

of Vi. A recursive network b can then be interpreted as a non-recursive network b′

on domain
V ′

1 = {V ′
i : Vi ∈ V1}.

Then, b′ is called the simplification of b.
A variable may well occur more than once in a recursive Bayesian network, in

which case it might have more than one level. Note that in a well-founded network
no variable can be its own superior or inferior. A recursive Bayesian network makes
causal and probabilistic claims at all its various levels, and if variables occur more
than once in the network, these claims might contradict each other. We now
discuss this possibility.

Network variables that occur in the domain of a recursive Bayesian network

b = (G,S)

can be interpreted as making causal and probabilistic claims about the world.
Any network variable that is instantiated to a particular value asserts the validity
of the network to which it is instantiated. In particular, the level 0 network
variable B asserts its instantiated value b, that is, it asserts the causal relations
in G, the probabilistic independence relationships one can derive from G via the
causal Markov condition, and the probabilistic claims made by the probability
specification S. A network variable that is not instantiated asserts the weaker
claim that precisely one of its possible values is correct. A recursive Bayesian
network is consistent if these claims do not contradict each other.
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C

�
A

�

� B

Figure 10.54: Chain A � B

In order to give a more precise formulation of the consistency requirement, the
notion of consistency of non-recursive Bayesian networks has to be defined. There
are three desiderata:

• consistency with respect to causal claims (causal consistency);

• consistency with respect to implied probabilistic independencies (Markov
consistency);

• consistency with respect to probabilistic specifiers (probabilistic consistency).

A chain A � B from node A to node B in a directed acyclic graph is a sequence
of nodes in the graph, beginning with A and ending with B, such that there is
an arrow from each node to its successor. A subchain of a chain c from A to
B is a chain from A to B involving nodes in c in the same order, though not
necessarily all the nodes in c. Thus, the chain in Figure 10.54 contains both the
chain (A,C,B) and its subchain (A,B). The interior of a chain A � B is defined
as the subchain involving all nodes between A and B in the chain, not including
A and B themselves.

The restriction G�W of causal graph G defined on variables V to the set of
variables W ⊆ V is defined as follows: for variables A,B ∈ W , there is an arrow
A −→ B in G�W if and only if A −→ B is in G or, A � B is in G and the variables
in the interior of this chain are in V \W . Thus, G and G�W agree as to the causal
relationships amongst variables in W . It is not hard to see that G�W �X = G�X ,
for X ⊆W ⊆ V .

Two causal graphs G on V and H on W are causally consistent if there is a
third (directed and acyclic) causal graph F on U = V ∪W such that F�V = G
and F�W = H . Thus, G and H are causally consistent if there is a model F of the
causal relationships in both G and H . Such an F is called a causal supergraph of
G and H .

A � C � D � B

Figure 10.55: Graph G′

The graphs G′ and G′′, depicted respectively in Figure 10.55 and Figure 10.56,
are causally consistent because the latter graph is the restriction of the former to
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{A,B,C}. However, the graph depicted in Figure 10.54 is not causally consistent
with G′: they do not agree as to the causal chains between A, B and C. Similarly,
the graph depicted in Figure 10.54 and the graph G′′ are not causally consistent.

A � C � B

Figure 10.56: Graph G′′

Note that if G and H are causally consistent and nodes A and B occur in both
G and H , then there is a chain A � B in G if and only if there is a chain A � B
in H .

Another important consistency requirement is Markov consistency. Two causal
graphs G and H are Markov consistent if they posit (via the causal Markov con-
dition) the same set of conditional independence relationships on the nodes they
share. The graphs G′ and G′′ are Markov consistent because on their shared nodes
A,C,B they each imply just that A and B are probabilistically independent con-
ditional on C. The graph depicted in Figure 10.54 is not Markov consistent with
either of these graphs because it does not imply this independency.

Definition 10.5.4 Two non-recursive Bayesian networks are Markov consistent
if their causal graphs are Markov consistent. ∇

Note that Markov consistency does not imply causal consistency: for instance,
two different complete graphs on the same set of nodes (a complete graph is a
graph in which each pair of nodes is connected by some arrow) are Markov consis-
tent, since neither graph implies any independence relationships, but they are not
causally consistent because where they differ, they differ as to the causal claims
they make. Neither does causal consistency of a pair of causal graphs imply Markov

A

C

�

�
B

Figure 10.57: Graph H ′

consistency: the graphs H ′ and H ′′, depicted respectively in Figure 10.57 and Fig-
ure 10.58, are causally consistent but H ′′ implies that A and B are probabilistically
independent, while H ′ does not.

In fact, we have the following. Given a causal graph G, let ComG(X) be the set
of closest common causes of X according to G, that is, the set of causes C of X
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A

B

Figure 10.58: Graph H ′′

that are causes of at least two nodes A and B in X for which some pair of chains
from C to A and C to B only have node C in common. Given causal graphs G
and H on V and W respectively we say that their shared nodes are closed under
closest common causes (cccc, for short) if

ComG(V ∩W ) ∪ ComH(V ∩W ) ⊆ V ∩W.

Then we have the following result.

Proposition 10.5.5 Suppose G and H are causal graphs on V and W respec-
tively. The graphs G and H are Markov consistent if they are causally consistent
and their shared nodes are closed under closest common causes.

Proof. Suppose X ⊥⊥G Y | Z for some X,Y, Z ⊆ V ∩W .
Recall that d-separation is a necessary and sufficient condition for deciding the

conditional independences implied by a causal graph under the causal Markov
condition (see [217]). For each A ∈ X and B ∈ Y , Z d-separates A from B in
G if (i) every chain between A and B contains a member of Z; (ii) every closest
common cause of A and B is in Z, and (iii) no common effect of A and B is in Z.

Graphs G and H are causally consistent so there is a causal supergraph F on
V ∪W . By definition, G = F�V and H = F�W .

We now prove that the three d-separation conditions hold with respect to F .
With respect to (i), observe that chains between A and B in G are subchains of
corresponding chains in F . In what concerns (ii), A and B have the same closest
common causes in G and H and, hence, in F , since F contains no nodes that are
not in G and H . Finally, (iii) holds because if a common effect were in Z in F then
it would also be in Z in G. Thus, X ⊥⊥F Y | Z. But now taking the restriction
F�W = H , we see that the three d-separation conditions also hold in H , for the
same reasons as with the move from G to F . Thus, X ⊥⊥H Y | Z, as required. �

Observe that, under the assumption of causal consistency, while closure under
closest common causes is a sufficient condition for Markov consistency, it is not
a necessary condition: the graph in H ′ in Figure 10.57 and the graph H ′′′ in
Figure 10.59 are Markov consistent because neither imply any independences just
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A

D
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Figure 10.59: Graph H ′′′

amongst their shared nodes A and B, but the set of shared nodes is not closed
under closest common causes.

Markov consistency is quite a strong condition. It is not sufficient merely to
require that the pair of causal graphs imply sets of conditional independence re-
lations that are consistent with each other — in fact, any two graphs satisfy this
property. The motivation behind Markov consistency is based on the fact that a
cause and its effect are usually probabilistically dependent conditional on the ef-
fect’s other causes (this property is known as the causal dependence condition), in
which case probabilistic independences that are not implied by the causal Markov
condition are unlikely to occur.

For example, while the fact that C causes A and B (see Figure 10.57) is consis-
tent with A and B being unconditionally independent (see Figure 10.58), it makes
their independence extremely unlikely: if A and B have a common cause then
the occurrence of assignment a of A may be attributable to the common cause
which then renders b more likely (less likely, if the common cause is a preventa-
tive), in which case A and B are unconditionally dependent. Thus, the graphs
in Figure 10.57 and Figure 10.58 are not compatible, and we need the stronger
condition that independence constraints implied by each graph should agree on
the set of nodes that occur in both graphs.

Finally, we turn our attention to probabilistic consistency.

Definition 10.5.6 Two causally consistent non-recursive Bayesian networks

(G,S) and (H,T )

defined over V and W respectively, are probabilistically consistent if there is some
non-recursive Bayesian network (F,R), defined over V ∪ W and where F is a
causal supergraph of G and H , whose induced probability function satisfies all
the equalities in S ∪ T . Such a network is called a causal supernet of (G,S) and
(H,T ). ∇

We now state a result concerning non-recursive Bayesian networks that are
causally consistent, probabilistically consistent and closed under closest common
causes.
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Figure 10.60: B is the closest common cause of C and D

Proposition 10.5.7 Let (G,S) and (H,T ) be two non-recursive Bayesian net-
works that are causally consistent, probabilistically consistent and cccc. Then
there is a causal supernet (F,R) of (G,S) and (H,T ) that is cccc with (G,S) and
(H,T ).

Proof. Since (G,S) and (H,T ) are causally and probabilistically consistent, there
is a supernet (E,Q), of (G,S) and (H,T ).

If E is cccc with G and H then we set (F,R) = (E,Q) and we are done.
Otherwise, if E is not cccc with G, for instance, then there is some Y -structure

of the form of Figure 10.60 in E, where Figure 10.61 is the corresponding struc-

C

A

�

�
D

Figure 10.61: Constructing F

ture in G, where in these diagrams we take the arrows to signify the existence
of causal chains rather than direct causal relations. Note that B must be in
G or H , since the domain of a causal supergraph of G and H is the union of
the domains of G and H , and B cannot be in G since otherwise, by causal
consistency, the chain from A to C in G would go via B. Hence, B is in H .
Note also that not both of C and D can be in H , for otherwise G and H
are not cccc. Suppose then that D is not in H . Then, the chain from B to
D is not in G or H . Construct F by taking E, removing the chain from B
to D and including a chain from A to D, as in Figure 10.62. Do this for all
such Y -structures not replicated in G. F remains a causal supergraph of G
and H , since the chain from B to H was redundant. Moreover, F is now cccc
with G.
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Figure 10.62: A is the closest common cause of C and D

Next, construct the associated probability specification R by determining speci-
fiers from (E,Q). Thus, if the causal chain fromA toD is direct we can set

p(d|a) =
∑

b

p(E,Q)(d|b)p(E,Q)(b|a)

in R. It is not hard to see that p(F,R) = p(E,Q) so the new network is also a causal
supernet of (G,S). IfE is not cccc withH then repeat this algorithm, to yield a causal
supernet of (G,S) and (H,T ) that is cccc with (G,S) and (H,T ). �

Note that the requirement that G and H are cccc in the above result is essential.
If G is as in Figure 10.60 and H is as in Figure 10.61, then there is no causal
supergraph of G and H that is cccc with G and H .

Proposition 10.5.8 Consider two non-recursive Bayesian networks causally con-
sistent, probabilistically consistent and cccc. Then they determine the same prob-
ability function over the variables they share.

Proof. Suppose (G,S) and (H,T ) are causally and probabilistically consistent and
cccc. Then, by Proposition 10.5.7, there is a causal supernet (F,R) that is cccc with
both nets. By Proposition 10.5.5,F is Markov consistent withG andH .

Next, note that (G,S) and (F,R) determine the same probability function over
variables V of (G,S), that is p(G,S)(v) = p(F,R)(v). Indeed, using the fact that
(F,R) is a causal supernet of (G,S),

p(G,S)(v) =
∏
vi∈V p(G,S)(vi|parGi )

=
∏
vi∈V p(F,R)(vi|parGi )

=
∏
vi∈V p(F,R)(vi|v1, . . . , vi−1)

= p(F,R)(v)

where parGi is the state of the parents of Vi according to G that is consistent with
assignment v to V , and where it is supposed that the variables V1, . . . , Vn in V are
ordered G-ancestrally, that is, no descendants of Vi in G occur before Vi in the
order. Observe also that Vi ⊥⊥G V1, . . . , Vi−1 | ParGi implies Vi ⊥⊥F V1, . . . , Vi−1 |
ParGi by Markov consistency.
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Similarly, (H,T ) and (F,R) determine the same probability function over the
variables of (H,T ). Hence, (G,S) and (H,T ) determine the same probability
function over variables they share. �

Because Proposition 10.5.8 is a desirable property in itself, closure under closest
common causes is adopted as a consistency condition.

Definition 10.5.9 Two non-recursive networks are consistent if they are causally
and probabilistically consistent and cccc. ∇

By Proposition 10.5.5 consistency implies Markov consistency. Hence, we can
state what it means for a recursive network to be consistent.

An assignment v of values to variables in V , the domain of a recursive Bayesian
network b, assigns values to all the simple variables and network variables that
occur in b. Take, for instance, the recursive Bayesian network b of Figure 10.53:
therein,

V = {B,L,A, F, S}
and

b ∧ l ∧ (¬a) ∧ f ∧ (¬s)
is an example of an assignment to V . Note that the level 0 variable B only takes
one value b and so must always be assigned this value. Consider the assignment
of values given to network variables in V . In our example, the network variables
are B and A and these are assigned values b and ¬a respectively. Each such
value is itself a recursive Bayesian network, and when simplified induces a non-
recursive Bayesian network. Let bv denote the set of recursive Bayesian networks
induced by v and let b′v denote the set of non-recursive Bayesian networks formed
by simplifying the networks in bv.

Assignment v is consistent if each pair of networks in b′v is consistent (that
is, if each pair of values of network variables is consistent, when these values are
interpreted non-recursively).

Definition 10.5.10 A recursive Bayesian network is consistent if it has some
consistent assignment v of values to V . ∇

Thus, if a recursive Bayesian network is not to be self-contradictory there must
be some assignment under which all pairs of network variables satisfy three reg-
ularity conditions: causal consistency, probabilistic consistency and closure under
closest common causes.

Note that it is easy to turn a recursive network into one that is causally con-
sistent, by ensuring that causal chains correspond for some assignment, and then
cccc (and so Markov consistent), by ensuring that shared nodes of pairs of graphs
also share closest common causes, for some assignment.

In order to make G2 in Figure 10.64 causally consistent with graph G1 of Fig-
ure 10.63, for example, we need to introduce a chain that corresponds to the chain
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Figure 10.63: Graph G1
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Figure 10.64: Graph G2

(D,F,E) in G2, by adding an arrow from D to E in G1. In order to make G2

and G1 cccc (and so Markov consistent) we need to add B to G2 as a closest
common cause of C and D. The modified graphs are depicted in Figure 10.65 and
Figure 10.66.

Similarly, in practice, one would not expect each probability specification to
be provided independently and then to have the problem of checking consistency
— one would expect to use conditional distributions in one specification to de-
termine distributions in others. For example, a probability specification on H2

A �

�

C

�
E

B

�

� D

�

Figure 10.65: Graph H1

in Figure 10.66 would completely determine a probability specification on H1 in
Figure 10.65.

We turn our attention to joint distributions. Any non-recursive Bayesian net-
work is subject to the causal Markov condition which determines a joint probability
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Figure 10.66: Graph H2

distribution over the variables of the network from its graph and probability speci-
fication. We shall suppose that recursive Bayesian networks also satisfy the causal
Markov condition.

A recursive Bayesian network contains network variables whose values are in-
terpreted as (recursive or non-recursive) Bayesian networks. Thus, a recursive
Bayesian network suffices to determine a hierarchy of joint probability distribu-
tions pa on the (level 1) variables for each a that occurs as the value of a network
variable.

Standard Bayesian network algorithms can be used to perform inference in a re-
cursive Bayesian network, and the range of causal-probabilistic questions that can
be addressed is substantially increased. For example, one can answer questions like
“what is the probability of a subsidy given farming?” (see Figure 10.51) and “what
is the probability of lobbying given agricultural policy (¬a)?” (see Figure 10.53).

But certain questions remain unanswered. We can not as yet determine the
probability of one node conditional on another if the nodes only occur at different
levels of the network. For example we can not answer the question “what is
the probability of subsidy given lobbying?” While we have a hierarchy of joint
distributions, we have not yet specified a single joint distribution over the set of
nodes in the union of the graph, that is, over the recursive network as a whole.

In fact, a recursive network does determine such an over-arching joint distribu-
tion considering an extra independence assumption, called the recursive Markov
condition: each variable is probabilistically independent of those other variables
that are neither its inferiors nor its peers, conditional on its direct superiors.

A precise explanation of the causal Markov condition and recursive Markov
condition is given in the sequel.

Given a recursive Bayesian network domain V and a consistent assignment v of
values to V , we construct a non-recursive Bayesian network, v↓, called flattening
of v, as follows:

• the domain of v↓ is V ;

• the graph G↓ of v↓ has variables in V as nodes, each variable occurring only
once in the graph;

• add an arrow from Vi to Vj in G↓ if
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– Vi is a parent of Vj in v (that is, there is an arrow from Vi to Vj in the
graph of some value of v)
or

– Vi is a direct superior of Vj in v (that is, Vj occurs in the graph of the
value that v assigns to Vi).

We will describe the probability specification S↓ of v↓ in due course. First, we
refer to some properties of the graph G↓.

Note that G↓ may or may not be acyclic. If we take our farming example

V = {B,L,A, F, S}
presented above then the graph of the flattening

(b ∧ ¬l ∧ a ∧ f ∧ s)↓

is depicted in Figure 10.67 and is acyclic.

B

�

� A

�

� S

L

�

F

�

Figure 10.67: Example of flattening

But the graph of the flattening of assignment b∧c∧d∧e to {B,C,D,E}, where
B is the level 0 network variable whose value b has graph C −→ D, C and E are
simple variables and D is a network variable whose assigned value d has the graph
E −→ C, is cyclic.

The graph in a non-recursive Bayesian network must be acyclic in order to apply
standard Bayesian network algorithms, and this requirement extends to recursive
Bayesian networks: we will focus on consistent acyclic assignments to a recursive
Bayesian network domain, those consistent assignments v that lead to an acyclic
graph in the flattening v↓.

By focusing on consistent acyclic assignments v, the following explanations of
the two independence conditions become plausible. Given a consistent acyclic
assignment v, let:

• PNDv
i be the set of variables that are peers but not descendants of Vi in v;

• NIPv
i be the non-inferiors or peers of Vi;

• DSupvi be the direct superiors of Vi.

As before, Parvi are the parents of Vi and NDv
i are the non-descendants of Vi.

None of these sets are taken to include Vi itself.
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Causal Markov Condition (CMC)
For each i = 1, . . . , n and DSupvi ⊆ X ⊆ NIPv

i ,

Vi ⊥⊥ PNDv
i | Parvi , X.

Recursive Markov Condition (RMC)
For each i = 1, . . . , n and Par vi ⊆ X ⊆ PNDv

i ,

Vi ⊥⊥ NIPv
i | DSupvi , X.

The graph of the flattening has the following property.

Proposition 10.5.11 Let v be a consistent acyclic assignment to a recursive
Bayesian network domain V . Then the probabilistic independences implied by
v via the causal Markov condition and the recursive Markov condition are just
those implied by the graph G↓ of the flattening v↓ via the causal Markov condi-
tion.

Proof. Order the variables in V ancestrally with respect to G↓, that is, no de-
scendants of Vi in G↓ occur before Vi in the ordering. Note that this is always
possible because G↓ is acyclic.

First we shall show that CMC and RMC for v imply CMC for G↓. By Corollary
3 of [217] it suffices to show that Vi ⊥⊥ V1, . . . , Vi−1 | ParG

↓
i for any Vi ∈ V . By

CMC,
Vi ⊥⊥ PNDv

i | Par vi ,DSupvi
and by RMC,

Vi ⊥⊥ NIPv
i | DSupvi ,PNDv

i .

The following property of probabilistic independence holds ([217]): if R ⊥⊥ S|T
and R ⊥⊥ U |S, T then R ⊥⊥ S,U |T . Using this property,

Vi ⊥⊥ PNDv
i ∪NIP vi | Par vi ,DSupvi .

Now {V1, . . . , Vn} ⊆ PNDv
i ∪NIP vi since the variables are ordered ancestrally and

v is acyclic, and the parents of Vi in G↓ are just the parents and direct superiors
of Vi in v,

ParG
↓

i = Par vi ∪DSupvi
so

Vi ⊥⊥ V1, . . . , Vi−1 | ParG
↓

i

as required.
Next we shall see that CMC for G↓ implies CMC and RMC for v. In fact, this

follows straightforwardly by d-separation (see the proof of Proposition 10.5.5).
Par vi ∪ X d-separates Vi and PNDv

i in G↓ for any DSupvi ⊆ X ⊆ NIPv
i , since

Par vi ∪ X includes the parents of Vi in G↓ and, by acyclicity of v, PNDv
i are

non-descendants of Vi in G↓, so CMC holds.
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DSupvi ∪X d-separates Vi and NIPv
i in G↓

for any Parvi ⊆ X ⊆ PNDv
i , since DSupvi ∪X includes the parents of Vi in G↓ and,

by acyclicity of v, NIPv
i are non-descendants of Vi in G↓, so RMC holds. �

We now define the probability specification S↓ of the flattening v↓. In the
specification S↓ we need to provide a value for p(vi|parG

↓
i ) for each value vi of Vi

and assignment parG
↓

i of the parents ParG
↓

i of Vi in G↓. If Vi only occurs once in
the recursive Bayesian network determined by v then we can define

p(vi|parG
↓

i ) = p(vi|dsupvi ∧ par vi ) = pdsupv
i
(vi|par vi ),

which is provided in the specification of the value of Vi’s direct superior in v. If
Vi occurs more than once in the recursive Bayesian network determined by v then
the specifications of v contain pdsupG

i
(vi|parGi ) for each graph G in v in which Vi

occurs. Then
DSupvi =

⋃

G

DSupGi

and
Par vi =

⋃

G

ParGi

with the unions taken over all such G. Now the specifiers pdsupG
i

(vi|parGi ) constrain
the value of pdsupv

i
(vi|par vi ) but may not determine it completely. These are linear

constraints, though, and thus there is a unique value for pdsupv
i
(vi|par vi ) which

maximizes entropy subject to the constraints holding. This can be taken as its
optimal value (see [157]) and p(vi|parG

↓
i ) can be set to this value (see [274] for

more on maximizing entropy).
Having fully defined the flattening v↓ = (G↓, S↓) and shown that the causal

Markov condition holds, we have a (non-recursive) Bayesian network, which can
be used to determine a probability function over assignments to v. As usual, vi is
the value v assigns to Vi and parG

↓
i is the assignment v gives to the parents of Vi

according to G↓.

Proposition 10.5.12 A recursive Bayesian network determines a unique joint
distribution over consistent acyclic assignments v of values to its domain, defined
by

p(v) =
n∏

i=1

p(vi|parG
↓

i )

where G↓ is the graph in the flattening v↓ of v and p(vi|parG
↓

i ) is the value in the
specification S↓ of v↓.

Observe that the domain of p is the set of assignments to V , and p is unique over
consistent acyclic assignments. If one wants to take just the set of consistent acyclic
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assignments as domain of p (equivalently, to award probability 0 to inconsistent
or cyclic assignments) then one must renormalize, that is, divide p(v) by

∑
p(v)

where the sum is taken over all consistent acyclic assignments.
While a flattening is a useful concept to explain how a joint distribution is

defined, there is no need to actually construct flattenings when performing cal-
culations with recursive networks. Indeed that would be most undesirable, given
that there are exponentially many assignments and thus exponentially many flat-
tenings which would need to be constructed and stored. By Proposition 10.5.12,
only the probabilities

p(vi|parvi ∧ dsupvi )

need to be determined, and in many cases (when Vi occurs only once in v) these
are already stored in the recursive network.

The concept of flattening, in which a mapping is created between a recursive
network and a corresponding non-recursive network, also helps us understand how
standard inference algorithms for non-recursive Bayesian networks can be directly
applied to recursive networks.

For example, message-passing propagation algorithms (see [217] [215]) can be
directly applied to recursive networks, as long as messages are passed between
direct superior and direct inferior as well as between parent and child. Moreover,
recursive Bayesian networks can be used to reason about interventions just as can
non-recursive networks: when one intervenes to fix the value of a variable one
must treat that variable as a root node in the network, ignoring any connections
between the node and its parents or direct superiors (see [218]). In effect, tools
for handling non-recursive Bayesian networks can be easily mapped to recursive
networks.

A word on the plausibility of the recursive Markov condition. It was shown
in [273] that the causal Markov condition can be justified as follows: suppose an
agent’s background knowledge consists of the components of a causally interpreted
Bayesian network – knowledge of causal relationships embodied by the causal
graph and knowledge of probabilities encapsulated in the corresponding probability
specification – then the agent’s degrees of belief ought to satisfy the causal Markov
condition (see also [274]).

This justification rests on the acceptance of the maximum entropy principle
(which says that an agent’s belief function should be the probability function, out
of all those that satisfy the constraints imposed by background knowledge, that
has maximum entropy) and the causal irrelevance principle (which says that if
an agent learns of the existence of new variables which are not causes of any of
the old variables, then her degrees of belief concerning the old variables should
not change). An analogous justification can be provided for the recursive Markov
condition.

Clearly, learning of new variables that are not superiors (or causes) of old vari-
ables should not lead to any change in degrees of belief over the old domain. Now
if an agent’s background knowledge takes the form of the components of a recur-
sive Bayesian network then the maximum entropy function, and thus the agent’s
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degrees of belief, will satisfy the recursive Markov condition as well as the causal
Markov condition. Thus, a justification can be given for both the causal Markov
condition and the recursive Markov condition.

10.6 Self-fibring networks

In this section we concentrate on the subject of self-fibring of networks. We show
that the recursive network approach considered fits within a more general concept
of substituting one network inside another (referred to as self-fibring of networks).
We focus our attention on information networks , which are directed graphs whose
roots are inputs, whose leaves are outputs and whose arrows indicate the flow of
information from input to output.

B

�
A

�

�

D

C

�

Figure 10.68: The graph of a Bayesian network

An application of a Bayesian network, for example, can be construed as an
information network as follows. When a Bayesian network is applied, the values
of a set of variables are observed. These variables are the inputs. They are
instantiated to their observed values in the Bayesian network, and this change
is propagated around the network, typically using message-passing algorithms,
(see [217]), until the probabilities of further variables of interest (the outputs) can
be ascertained. Thus, in message-passing algorithms, information flows from the
inputs to the outputs via the arrows of the Bayesian network, though not normally
in accordance with the direction of the arrows in the original Bayesian network.

Suppose, for instance, that Figure 10.68 is the graph of a Bayesian network,
that the value of B is observed and that the probability of C is required. Then,
in determining the probability of C, information flows from B to C along the
pathways between B and C of the original Bayesian network graph, as depicted
in Figure 10.69.

Note that, in general, the information network is only a schematic representa-
tion of the flow of information: in fact, in message-passing propagation algorithms,
messages are passed in both directions along arrows, two passes are made of the
network, and in multiply connected graphs, such as the one in Figure 10.68, propa-
gation takes place in an associated undirected tree-shaped Markov network formed
from the Bayesian network (see [177]). In singly-connected Bayesian networks,
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Figure 10.69: The graph of a corresponding information network

though, there is a fairly close correspondence between information network and
flow of messages.

The question now arises as to how information networks can be self-fibred , that
is, substituted one inside the other. There are several options for self-fibring. We
now explain them briefly and present the full definitions later on.

Let B(X) be a network with node X in it. Let A be another network. We want
to define C = B(X/A), a new network which is the result of substituting A for
X . Already at this stage there are several views to take.

• View 1: Syntactical Substitution
Regard the operation at the syntactical level. Define C syntactically and
give it meaning / semantics / probabilities derived from the meanings of B
and A.

• View 2: Semantic Insertion
Look at the meaning of B and then define what B(X/A) is supposed to
be. Here the substitution is not purely syntactic. For example, if B is a
Bayesian network where the node X can take two values 0, 1 then if X is
0 we substitute (in a certain way) A0 for X and if X is 1 we substitute
A1. The “substitution” need not be actual substitution but some operation
Ins(X,B ,A) inserting Ai at the point X inside B .

So, for example, in logic we can have

Ins(X,X → B,C) def= (X → C) → B.

Thus, in this case,
Ins(X,B(X), C) = B(X/X → C).

More complex insertions are possible for Bayesian nets. We could convert in the
above case the semantic inversion into a syntactic one by splitting each variable
Y in the net into two variables Y0 (for Y = 0) and Y1 (for Y = 1).

Recall that by a network we mean a finite directed acyclic graph G = (V,R)
with nodes from V and where R is the (immediate) parent relation.

Recall Figure 10.50. A network can be used for input output as follows:
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• the variables of the network can range over a domain D of possible inputs;

• the arrows can be interpreted as indicating propagation or processing of the
inputs from the parent nodes into the child.

t1

�
t

tk

�

...

Figure 10.70: Network propagating t1 and tk to t

Thus, if we have the network in Figure 10.70 then we propagate the input from
ti into t. If V (x) is the value at node x, then we need a propagation function f
yielding

V (t) = f(V (t1), . . . ,V (tn)).

Note that there may be a constraint φ(t1, . . . , tn) on the inputs: only if a set of
value of inputs satisfies φ will those values be admissible.

In Bayesian networks, the arrows correspond to causal direction rather than
to the flow of information. But in an information network constructed from a
Bayesian network, the arrows correspond to flow of information. Thus, we focus
on information networks constructed from Bayesian networks henceforth. Here,
the function f of interest is the probability distribution of the outputs conditioned
on the observed assignment to the inputs,

p(t|t1, . . . , tn).

Our aim is to look at the arrows as implications with a view of giving meaning to
substituting networks within networks (self-fibring of networks). To illustrate the
ideas of self-fibring we begin with the simple two point network N1 depicted in
Figure 10.71. The input gives value to A and this is propagated to B, using the

A � B
f

Figure 10.71: Network N1

function f . We now give several interpretations for this as implication.

• Interpretation 1
The above represents a substructural implication A → B. The semantical
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interpretation for the substructural → is via evaluation into an algebraic
semigroup (S, ◦, e), where ◦ is a binary associative operation and e is the
identity. If the formula A→ B gets value t and the input A get a value a
then B gets value b = t ◦ a. Here the network function f can be taken as the
function

λxft(x) = λx(t ◦ x).

• Interpretation 2
This interpretation is the modus ponens in a Labeled Deductive System.
The rule has the form

α : A, β : A→ B, ϕ(β, α)
f (β, α) : B

.

Its meaning is that if we prove A with label α and A→ B with label β and
(β, α) satisfy the enabling condition ϕ, then we can deduce B with label

A � B
f β , ϕ

Figure 10.72: Network with labeled implication

f (β, α) and we have:
λxf β(x) = λxf (β, x).

The side condition ϕ is ϕ([a, b], [c, d]) is that k �= 1. Thus, to interpret
the labeled implication in our network we need to add ϕ to the link as in
Figure 10.72.

• Interpretation 3
In this case we see intuitionistic formulas as types. The formulasA,B,A→ B
are understood as λ calculus types having λ terms inhabiting them. We read
N1 of Figure 10.71 as a network which, for any term t of type A given as
input, the network outputs the f(t) term of type B. Thus, f is of type
A→ B.

• Interpretation 4
We can regard N1 as a causal Bayesian network. The variable A can take
states a1, . . . , ak and the variable B can take states b1, . . . , bm. Then, the
table f must give the conditional probability P (B|A), giving the probability
pi,j of B being in the state bj , given that A is in the state ai. We must have
Σ
j
pij = 1. The matrix is

P =

⎛

⎜⎝
P11 Pn1

...
...

Pk1 Pmk

⎞

⎟⎠
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If qi is the probability of A being in the state ai, (Σqi = 1) then the proba-
bility of B being in the state bj is bj = Σ

i
pijqi. Thus,

(b1, . . . , bn) = (a1, . . . , ak) · P.

We can take f as the matrix P = (pij) and the input as →a = (a1, . . . , ak)
and then the output is

→
b = →

a P.

The logical interpretations (1)–(3) allow us to give meaning to self-fibred net-
works where we substitute a network within a network. Here we have the options
of syntactical substitution (view 1) or semantical insertion (view 2). We choose se-
mantical insertion, where we have one insertion for X = 1 and another for X = 0.
The insertion makes X a parent to all nodes in the substituted network.

The Dempster-Shafer rule is a special case of interpretation (2). The Dempster-
Shafer set up allows for certainty values for A,B,A → B, to be closed intervals
of real numbers. Thus, if A has value in the real closed interval [a, b] and the
implication A→ B has value in the interval [c, d], then B has value in the interval

[a, b] ◦ [c, d] =
[
ad+ bc− ac

1− k ,
bd

1− k
]

with k = a(1− d) + c(1− b).
The network in Figure 10.73 for X = 0 and the network in Figure 10.74 for

X = 1 show how this works for B(X) = X → C and A0 = A → B. We use

X � C

	�
A

� B

Figure 10.73: Network for X = 0

X 
 A to denote that X connects directly to all elements in A.

X � C

�
�

A

Figure 10.74: Network for X = 1
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We can adopt a view closer to that of logic and have no insertion if X = 0 and
yes insertion in case X = 1 of a single network. The simplest cases are depicted
in Figure 10.75.

A � B C�
f g

( )
.

C � A B�
g f

( )

Figure 10.75: Simple cases of fibred networks

In the first case, we took the networkN2 depicted in Figure 10.76 and substitute
for X the network N1 (recall Figure 10.71). The second case is similar.

X � C
g

Figure 10.76: Network N2

The question is what meaning do we give to these fibred networks?
Let us consider the first case (see Figure 10.77). The machinery underlying the

(
X = A � B C�

f g

( ))

Figure 10.77: Example of substitution

network N2 is to accept inputs x of a certain kind at the node X and output g(x)
at node C. By letting X = A→ B we must ask: what is the input we are getting
for X? We give the obvious answer, saying that the input is f . We now have to
check whether f is of the kind that can be accepted in our network.

There is no problem when we consider the interpretations (1) to (3) above.
In fact, in (1) f can be identified with an element t, and in (2) f can be identified

with a label. In (3), f is a λ-term of type A→ B and we can say that X (accepts
elements) of type A→ B and g is of type (A→ B) → C.

However, in interpretation (4), A is a probability distribution for the states of
A and f is a matrix of conditional probabilities. First let us simplify and say both
A and B are two state variables A = 0, A = 1, B = 0, B = 1. Even with this
simplification, still f is a 2 × 2 matrix P . It allows for many states not only just
two. As a consequence, we have a problem in this case.
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To solve this problem, we can allow for new kinds of inputs for our variables.
This option is complicated because of repeated iteration of fibring and it will not
be pursued in the sequel.

Another possibility is to extract from the new input (the matrix) a recognizable
input for X in X → C (that is, a two state input). This method is what we usually
do in the area of fibring logics.

We need a fibring function F that will extract two states, “yes” or “no”, out of
the matrix P : “yes” if B depends on A in any way and “no” otherwise. In other
words, we read X as a variable getting 1 if the network substituted for it is “on”
or “active” and 0 if it is not “on”.

Hence, for example, if the matrix is
(
p 1− p
p 1− p

)

we get

(q, 1− q)
⎛

⎝
p 1− p

p 1− p

⎞

⎠ = (p, 1− p)

and thus the probability of B is independent of that of A.
Say we have, for 0 ≤ ε ≤ 1− p,

(q, 1 − q)
⎛

⎝
p 1− p

p+ ε 1− p− ε

⎞

⎠ =

(pq + (1− q)p+ (1− q)ε, (1− p)q + (1− q)(1 − p)− (1 − q)ε) =

(p+ (1− q)ε, (1− p)− (1− q)ε).
The variation is 2ε(1− q) ≤ 2ε. So we can give a probability for ε = 0 or ε �= 0.
We leave this aspect for a moment and discuss the other possibility of fibring,

namely, the second case in Figure 10.76. Here, we substitute the network N1 for
the variable Y in the network N3 depicted Figure 10.78.

C � Y
g

Figure 10.78: Network N3

The first three interpretations will cope with this very well, because the output
of g can modify the f , since they are of the same kind. Can we do something
similar in the probabilities case? We again have several options.

A first option consists in reading Y as a variable getting values in {0, 1} indi-
cating whether the network N1 is “on”’ or not. The value of Y is obtained in the
network N3.
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A second option consists in using the network up to Y to modify the network
which we substitute for Y . Observe that in case of neural networks this is the
more reasonable option.

We note that g is a matrix and so is f . Should we modify f by multiplying it
by g and set something like we see in Figure 10.79?

C

A

B

�




fg

Figure 10.79: Multiplying f by g

How would this relate to the network N4 depicted in Figure 10.80?

C � A B�
g f

Figure 10.80: Network N4

Let us check that the network N1 has the matrix
⎛

⎝
p1, 1− p1

p2, 1− p2

⎞

⎠

and that the network N3 has the matrix
⎛

⎝
γ1, 1− γ1

γ2, 1− γ2

⎞

⎠

The product gf is
⎛

⎝
γ1 1− γ1

γ2 1− γ2

⎞

⎠ ·
⎛

⎝
P1 1− P1

P2 1− P2

⎞

⎠ =

⎛

⎝
γ1p1 + (1− γ1)p2, γ1(1− p1) + (1− γ1)(1− p2)

γ21p1 + (1− γ2)p2, γ2(1− p1) + (1− γ2)(1− p2)

⎞

⎠
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This would interpret the second case of fibred network in Figure 10.75 as the
network N4. We prefer the first option.

Let us now see what to do with networks of the form of the networkN5 depicted
in Figure 10.81.

A
�

C

B
	

Figure 10.81: Network N5

Can we read the symbol → as implication? The answer is “yes” for the first
three logical interpretations. We read it as

〈A,B〉 → C

or
A⊗B → C

where ⊗ is a commutative binary operation. It is the multiplicative conjunction
in linear logic and is the ordinary conjunction in intuitionistic logic. We have in
the case of logic that:

(A⊗B → C) ≡ (A→ (B → C)) ≡ (B → (A→ C)).

For the Dempster-Shafer rule we calculate [a, b]⊗ [c, d] as [a, b] ◦ [c, d].
This does not hold in the Bayesian network case. We need a function giving a

probability value for C, for each pair of possible values (x, y) for (A,B).
We still need to give meaning to the two fibred networks depicted in Fig-

ure 10.82.
The first one is obtained by substituting the network N5 for X in the network

N6 in Figure 10.83. The second one is obtained substituting the network N5 for
X in the network N7 depicted Figure 10.84.

The principles we discovered still hold. In the first case the fibring function
gives X values 0 or 1 depending whether we believe in the connection between
A,B,C, that is, the network is “on” or not.

The second case would require modifying the network of A,B,C by using the
network N7.

The simplest is to take the first option mentioned above. The value X = 1
means the network with A,B,C is “on” and otherwise it is not.

In any case, the kind of choices we have to make are clear! There is a lot of scope
for fine tuning. For example, we can look at the network depicted in Figure 10.85
as a family of networks of the form depicted in Figure 10.86 using the probabilities
in the substituted network (fix Aj , j �= i as 0,1) to decide on priorities.
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( A
� C

B

	

)
D�

D �
( A

� C

B
	

)

Figure 10.82: Two more cases of fibred networks

X � D

Figure 10.83: Network N6

We now present a general theory of networks and fibring of networks. We begin
with the definition of network.

Definition 10.6.1 A network is a tuple

N = (S,R,D,E, τ, V, L,F,Ω)

where

• S is the set of nodes;

• R ⊆ S × S;

• D ⊆ S, D �= ∅, is the set of input nodes;

• E ⊆ S, E �= ∅, is the set of output nodes;

• τ : R &→ L is the labeling function;

• L is the set of labels;

• V : S &→ L is the coloring function;

• F is a function giving some value in the space Ω to any finite list of the form
(t, (V1, l1), . . . ,(Vn, ln)) in such way that

V (t) = F(t, (V (x1), τ(x1, t)), . . . ,(V (xn), τ(xn, t)))

for any t ∈ S and xi such that xiR t, where xi are all the parents of t;
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D � X

Figure 10.84: Network N7

(
A1

�
A2 �

A3

�
B

)
C�

Figure 10.85: Family of networks

• Ω is a set. ∇

If the network has only one input node d, for simplicity, we can write just
N = (S,R, d,E, τ, V, L,F,Ω). Similarly, with respect to output nodes.

The elements of R represent connections between nodes. We perceive the color-
ing to propagate along the network using the arrows, the labels and the function
F. If the network has cycles, we expect V to be implicitly defined by F.

Example 10.6.2 The network N = (S,R, d, e, τ, V, L,F,Ω) where, in particular,

• S = {d, s, t, r, e};
• R = {(d, r), (s, r), (t, r), (t, e), (r, e), (r, r)};
• L = {l1, l2, l3, l4, l5, l6, l7};
• τ(d, r) = l1, τ(d, s) = l2, τ(r, r) = l3
τ(r, l) = l4, τ(s, r) = l5, τ(r, t) = l6, τ(t, l) = l7;

is depicted in Figure 10.87. The node d is the input point and the node e is the
output point. The elements of R are represented by arrows. This network can be
interpreted in several ways.

Ai � B C�
( )

.

Figure 10.86: Network i
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d

s r

t

l

l1

l2

l3

l4

l5

l6

l7

Figure 10.87: Example of network

(i) It can be interpreted as a map where the nodes are towns, the labels are
distances and the colors are some heuristic numbers to aid some search func-
tion(for instance, the labels can give the aerial distance from a central point).
We may require the graph to be acyclic. The function F can give the average
distance of the parent nodes from the current node.

(ii) The network can be Bayesian, in which case we require it to be acyclic. We
also require any point t �= d to either have a parent distinct from d (that is,
for some x, xR t, x �= d) or to have d alone as a parent. We forbid d itself to
have parents.

Thus d is a dummy point (d =  ) showing the nodes without parents in the
rest of the network. The function F would be the conditional probabilities
of a node on its parents.

(iii) The network can be a neural net with τ and V different weights on the nodes
and connections, and F some meaningful averaging function.

(iv) The network can be describing a flow problem with τ giving capacities, V
giving retention and F is the obvious function summing up the flow. ∇
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We now define the notion of fibring function.

Definition 10.6.3 Let F be a propagation family for states S and labels L with
values in the space Ω. A function F giving a new propagation function for any
triple (V, li,F), i = 1, . . . ,n, is a fibring function. We write F as

F : (V, li,F) &→ FV,li

so F is defined for any set of labels. ∇

Note that in the above definition n is variable.
We now need to make some distinctions about fibring of network within net-

works. We give some additional examples.

Example 10.6.4 This is an example of refinement. Consider a network as de-
picted in Figure 10.88. Assuming that it is a map, d may be Durham and e may

d e

l

Figure 10.88: Map

be Edinburgh. Suppose that the label l is the number of heavy trucks per day one
can push through from d to e. We can try and define this map by putting in for e
another network, say, E which is the map on Edinburgh. This is substituting the
actual sorting networks in the UK.

1, . . . , 24 1, . . . , 24

Figure 10.89: Refining days into hours

Another simpler example is when d and e are days and we can refine them into
hours, as in Figure 10.89. ∇

Example 10.6.5 We get fibring/substitution of networks when we consider ver-
sions of the cut rule in labeled deductive systems. We describe a simple case.

Assume that our data is a list of formulas and the language contains → only.
Thus, for example, we may have the list in Figure 10.90. We can perform modus
ponens between any X → Y and X , provided X is immediately to its right and
the result Y replaces (X → Y,X) in the list.
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A→ (B → C), A, B

B → C

C

Figure 10.90: List of formulas

X → A, X

A

Figure 10.91: Proof of A

This way of doing modus ponens characterizes the one arrow Lambek Calculus.
How would cut work? Suppose we have a proof of A in Figure 10.91.

We can simply substitute the sequence or net forA to get the list in Figure 10.92.

A→ (B → C), X → A, X, B

A

B → C

C

Figure 10.92: List after substitution

Suppose now that X → Y means a version of strict implication: if X holds next
day then Y holds next day. The sequence

A→ (B → C), A,B

can still be reduced to C but we must keep count of the days. Consider

C → E, A→ (B → C), A, B.

We can prove E in the Lambek Calculus (see Figure 10.93).
This will not work in the modal strict implication meaning of → because we

must follow Figure 10.94. C → E is 3 days away from C. We need something like

 → ( → (C → E)).

Thus, the network substitution of (X → A,X) into (A→ (B → C), A,B) should
be different in the strict implication case. It should give the result in Figure 10.95.
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C → E A→ (B → C), A, B

B → C

C

E

Figure 10.93: Proof of E

• • • •
C → E, A→ (B → C), A, B

...
...

• • •
...

... B → C

...
...

...
• • • •

C

Figure 10.94: Modal strict implication

To summarize: (X → Y,X) is replaced by (Y ) in the Lambek Calculus and is
replaced by (·, Y ) in the strict implication logic. Thus, the network substitutions
corresponding to these logics are as described bellow.

If
N1 = (x1, . . . ,xn, y, z1, . . . ,zm)
N2 = (u1, . . . ,uk)

then the Lambek substitution is

N1(y/N2) = (x1, . . . ,xn, u1, . . . ,uk, z1, . . . ,zm).

and the Strict substitution is

N1(y/N2) = (x1 ∧ u1, . . . ,xn ∧ un, un+1, z1, . . . ,zm)

when k = n + 1. If k �= n, add  ’s to the beginning of the shorter one to make
them equal and then substitute.

From this example we conclude that if the networks represent some logic, then
options for fibring networks represent options for the cut rule in the logic. ∇

We need to prepare the ground for the general definition of fibring which will
follow. So, consider the networks N1 and N2 in Figures 10.96 and 10.97, respec-
tively.
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• • •
A→ (B → C) X B

X → A

Figure 10.95: Network after substitution

There are have several options in substituting the network N2 for t1, using a
fibring function F.

d1 a

t1

e1

l13

l11

l12

Figure 10.96: Network N1

The most straightforward one is to replace t1 by N2 and redirect all arrows
coming into t1 and connect them to all input points d2

j of N2. Similarly, all arrows

d2
2

b

d2
1 e2

l23

l21

l22

Figure 10.97: Network N2

coming out of t1 will now come out of the output point of N2. The resulting
network is depicted in Figure 10.98.

The function F
1,2 is the same as F

1 on nodes from N1 and is the fibred function
F

2
V 1
(t1)

,l11,l
1
2

obtained by applying F to F
2.

Variations can be obtained by changing F and/or by changing the input output
points of N2 before fibring. So this is quite a general definition. The basic idea is
that the “environment” of t1 (namely , V 1/t1 and all labels of connections leading
into and out of t1) change the fibring function F

2 of the substituted network N2

into F(F2).
Problems may arise if eitherN1 andN2 have nodes in common or t1 is connected

to itself. This can cause more than one arrow to occur between two points. For
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d1

a

d2
2 b

d2
1

e2

e1

l13

l11

l11 l23

l22

l21 l12

Figure 10.98: Network obtained after replacing t1 by N2

this reason these situations are excluded. To see why this can happen, imagine we
substitute the networkN3 depicted in Figure 10.99 into the networkN4 depicted in

t
l1

Figure 10.99: Network N3

Figure 10.100, where t is both the input and output points. We get, by definition,

t
l2

Figure 10.100: Network N4

the network depicted in Figure 10.101.
We use the following notation: (i) if N1 and N2 are described using → and t1

is in N1, we can indicate fibring by substituting N2 for t1 and using 
 to connect
into and out of N2 and (ii) the fibring function F is suppressed.

Example 10.6.6 We use the representation depicted in Figure 10.102 to indicate
a connection between X and Y , where X is a parent of Y .

An example of network using → is depicted in Figure 10.103.
We use 
 as a special connection between a node X and a network N . If N

is the network in Figure 10.103 and 
 means that we connect with every node
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t
l2l1

Figure 10.101: Network after substitution

X � Y

Figure 10.102: Example of connection

in the network using →, then X 
 N is the network depicted in Figure 10.104.
Arrows coming out of N into Y are not drawn. ∇

We now conclude with a general definition:

Definition 10.6.7 Let Ni = (Si, Ri, Di, Ei, τ i, V i, Li,Fi,Ωi) for i = 1, 2, be net-
works such that Si ⊆ S, Li ⊆ L and Ωi ⊆ Ω. Assume also that S1 ∩ S2 = ∅. Let
F be a fibring function, let t1 ∈ S1 be a node such that not t1R1 t2, and let l1j be
all the labels of nodes in N1 leading into or coming out of t1.

The one step fibred system N1(t1/N2) is the network

N1,2 = 〈S1,2, R1,2, D1,2, E1,2, τ1,2, V 1,2, L1,2,F1,2,Ω1,2〉

where

• S1,2 = (S1 ∪ S2)\{t1};

• R1,2 = (R1 ∪R2 ∪ {(x, d2
i ) : xR1t1} ∪ {(e2j , y) : t1R1 y})

\{(x, y) ∈ R1 : x = t1 or y = t1};

• D1,2 = {d1
i : t1 �= d1

i } ∪ {d2
k : t1 is an input point};

• E1,2 = {e1j : t1 �= e1j} ∪ {e2k : t1 is an output point};

• τ1,2((x, y)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ1(x, y) if x, y ∈ S1 and xR1,2y

τ2(x, y) if xR1,2y and x, y ∈ S2

τ1(x, t1) if x ∈ S1, y ∈ S2 and xR1,2y

τ1(t1, y) if x ∈ S2, y ∈ S1 and xR1,2y

• Ω1,2 = Ω1 ∪ Ω2;

• L1,2 = L1 ∪ L2;



10.7. FINAL REMARKS 515

X2
� Y1

Y2

X1

�

	

Figure 10.103: Example of network using →

X

X2 �Y1

Y2X1

�

�

� �

	
�

Figure 10.104: X 
 N

• F
1,2 is defined as F(V 1(t1), l1i ,F

2) where li are all the labels from other nodes
in S1 leading to t1 and labels of nodes in S1 into which t1 leads. We assume
F is such that F

1,2 = F
1 on points in S1 (this is possible since we assumed

S1 ∩ S2 = ∅). ∇

10.7 Final remarks

In this chapter, we wanted to illustrate that the concept of fibring is useful in
contexts that do not explicitly involve logics. The examples range from classical
computation to neural nets and Bayesian networks. The basic idea is to model
components by networks seen as labeled deductive systems. The fibring techniques
are useful when we want to be able to replace nodes in a network by another
network. The advantage of using labeled deductive systems is that we bring to
these fields logical tools. A general notion that accommodates all the case studies
is self-fibring. It is still to be understood the kind of properties that we may want
to preserve when we deal with self-fibring of networks.

We go on identifying some aspects to be further pursued for the case studies.
Moreover, we will compare several issues discussed in this chapter with related
work.

We start with neural networks. The question of which logics could be repre-
sented in fibred neural networks (fNNs) is an interesting open question. The
natural next step is to use the recursive, more expressive architecture of fNNs to
perform symbolic computation, giving fNNs a neural-symbolic characterization.
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It is expected that fNNs can be used to represent variables, as well as to learn
and reason about relational knowledge. Another interesting work to pursue is to
define fibring of recurrent neural networks. Finally, the questions of how differ-
ent networks should be fibred and which fibring functions should be used are very
important ones when it comes to practical applications of fNNs. This is clearly do-
main dependent, and an empirical evaluation of fNNs in comparison with standard
neural networks would be required.

Then we turn our attention to Bayesian networks. We started by summariz-
ing recursive Bayesian multinets along the lines of [219]. These nets generalize
Bayesian networks. They represent context-specific independence relationships by
a set of Bayesian networks, each of which represents the conditional independen-
cies which operate in a fixed context. By creating a variable C whose assignments
yield different contexts, a Bayesian multinet may be represented by a decision tree
whose root is C and whose leaves are the Bayesian networks. The idea behind
recursive Bayesian multinets is to extend the depth of such decision trees. Root
nodes are still Bayesian networks, but there may be several decision nodes. Re-
cursive Bayesian multinets are rather different from recursive Bayesian networks
we have considered: they are applicable to context-specific causality where the
contexts need to be described by multiple variables, not to general instances of re-
cursive causality, and consequently they are structurally different, being decision
trees whose leaves are Bayesian networks rather than Bayesian networks whose
nodes take Bayesian networks as values.

Recursive relational Bayesian networks generalize the expressive power of the
domain over which Bayesian networks are defined [155]. Bayesian networks are
essentially propositional in the sense that they are defined on variables, and the as-
signment of a value to a variable can be thought of as a proposition which is true if
the assignment holds and false otherwise. We have made this explicit by represent-
ing the two possible assignments to variable A by a and ¬a respectively. Relational
Bayesian networks generalize Bayesian networks by enabling them to represent
probability distributions over more fine-grained linguistic structures. Recursive
relational Bayesian networks generalize further by allowing more complex proba-
bilistic constraints to operate, and by allowing the probability of an atom that in-
stantiates a node to depend recursively on other instantiations as well as the node’s
parents (see [155] for the details). Thus, in the transition from relational Bayesian
networks to recursive relational Bayesian networks the Markovian property of a
node being dependent just on its parents (not further non-descendants) is lost.
Therefore, recursive relational Bayesian networks and recursive Bayesian networks
differ fundamentally with respect to both motivating applications and properties.

Object-oriented Bayesian networks were developed as a technique for repre-
senting large-scale Bayesian networks efficiently [163]. Object-oriented Bayesian
networks are defined over objects (of which a variable is an example). Such net-
works are very general in principle.

Recursive Bayesian networks are instances of object-oriented Bayesian net-
works in as much as recursive Bayesian networks can be formulated as objects



10.7. FINAL REMARKS 517

in the object-oriented programming sense. Moreover, in practice, object-oriented
Bayesian networks often look much like recursive Bayesian networks, in that such
a network may contain several Bayesian networks as nodes, each of which contains
further Bayesian networks as nodes and so on (see [216] for example). However,
there is an important difference between the semantics of such object-oriented
Bayesian networks and that of recursive Bayesian networks, and this difference is
dictated by their motivating applications.

Object-oriented Bayesian networks tend to be used to organize information con-
tained in several Bayesian networks: each such Bayesian network is viewed as a
single object node in order to hide much of its information that is not relevant to
computations being carried out in the containing network. So by expanding each
Bayesian network node, an object-oriented Bayesian network can be expanded into
one single non-recursive, non-object-oriented Bayesian network. In contrast, in a
recursive Bayesian network, recursive Bayesian networks occur as values of nodes
not as nodes themselves, and when one recursive Bayesian network b1 causes an-
other b2 in a containing recursive Bayesian network b, it is not output variables of
b1 that cause input variables of b2, it is b1 as a whole that causes b2 as a whole.
Correspondingly, there is no straightforward mapping of a recursive Bayesian net-
work on V to a Bayesian network on V . Thus, while object-oriented Bayesian
networks are in principle very general, in practice they are often used to represent
very large Bayesian networks more compactly by reducing sub-networks into sin-
gle nodes. In such cases the arrows between nodes in an object-oriented Bayesian
network are interpreted very differently to arrows between nodes in a recursive
Bayesian network, and issues such as causal, Markov and probabilistic consistency
do not arise in the former formalism.

Finally, hierarchical Bayesian networks (HBNs) were developed as a way to allow
nodes in a Bayesian network to contain arbitrary lower-level structure [139]. Thus,
recursive Bayesian networks can be viewed as one kind of HBN, in which lower-level
structures are of the same type as higher-level structures, namely Bayesian network
structures. However, there are a number of important differences. HBNs seem to
have been developed in order to achieve extra generality, while recursive Bayesian
networks were created in order to model an important class of causal claims. HBNs
have been developed in most detail, namely in the case where lower-level structure
corresponds to causal connections. However, the lower-level structures are not
exactly Bayesian networks in HBNs. Indeed, one must specify the probability of
each variable conditional on its parents in its local graph and all variables higher
up the hierarchy. Thus, HBNs have much larger size complexity than recursive
Bayesian networks. HBNs do not adopt the recursive Markov condition mentioned
in Section 10.5. They only assume that a variable is probabilistically independent
of all nodes that are not its descendants conditional on its parents and all higher-
level variables. This has its advantages and its disadvantages. On the one hand, it
is a weaker assumption and thus less open to question. On the other hand, it leads
to the larger size of HBNs and in any case the recursive Markov condition is rather
plausible. Finally, variables can only appear once in a HBN, but they can appear
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more than once in a recursive Bayesian network. Thus, HBNs are more restrictive
than recursive Bayesian networks in one respect, and more general in another, and
have quite different probabilistic structure. However, they share common ground
too, and where one approach is inappropriate, the other might well be applicable.



Chapter 11

Summing-up and outlook

In this chapter we start by presenting a brief synthesis of the main features and
properties of the combination mechanisms discussed in this book. Then, we point
out some applications where we believe that the techniques proposed so far can be
useful. We emphasize fibring techniques and results that can be useful there. We
also review other combination mechanisms that appeared motivated by software
engineering applications. Afterward, we discuss emergent applications that need,
besides the existing techniques, other forms of combination and even new logic
connectives. Finally, we indicate new directions of research not only in fibring but
also related to new combination mechanisms.

The structure of this chapter is as follows. In Section 11.1, we review the main
features of the combination mechanisms discussed in this book. We also refer to
preservation results. In Section 11.2, we present an example of the application of
fibring to knowledge representation endowed with a deontic component. We also
point out the interest of combination techniques in the field of distributed systems.
In Section 11.3, we show how network fibring can be applied to the area of argumen-
tation theory. In Section 11.4, we refer to the application of the fibring concepts to
specification and verification of reactive systems. We briefly describe specific com-
bination mechanisms for software engineering such as parameterization, temporal-
ization and synchronization. We also refer to the use of fibring techniques in the
context of institutions and parchments. In Section 11.5, we point out some emergent
and potential applications, like security, quantum computation and space-time sys-
tems. Finally, in Section 11.6, we give some hints on research directions in fibring
and point out new forms of combination like probabilization and quantization.

11.1 Synthesis

We start with a synthesis of the main features of the combination mechanisms
that we discussed in this book, as well as the preservation results that we have for
each of them.
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In Figure 11.1, we present the main features of the combination mechanisms.
We use the prefixes d and s for denoting the deductive and the semantic compo-
nents of a given combination mechanism, respectively. We observe that the fibring
lines include all the settings where we studied fibring. The line h-fibring1 refers
to heterogeneous fibring via consequence systems and line h-fibring2 refers to
heterogeneous fibring via abstract deductive systems.

heterogeneous pre-process algorithmic minimal

d-fusion N N Y Y
s-fusion N N Y Y

d-product N N N Y
s-product N N Y N
d-fibring N N Y Y
s-fibring Y Yb Y Y

h-fibring1 Y Ya Y Y
h-fibring2 Y Yb Y Y

Figure 11.1: Features of combination mechanisms

The heterogeneous column states that the mechanism can be applied to logics
described in a different way.

The pre-process column indicates whether some processing has to be done
on the original logics before the combination itself. For instance, the fibring, in
many chapters of the book, assumes that both logics are presented by Hilbert
calculi and no pre-processing is needed before combining them. We indicate that
no processing is needed by N. Otherwise, we distinguish two situations: either
the mechanism states how to do the pre-processing, indicated by Ya, or it does
not, indicated by Yb, and one has to figure out how to do it. In Chapter 3, given
a logic with no algebraic semantics, one has to say how the semantic structures
induce ordered algebras. On the other hand, in Chapter 4, two cases have to be
considered. In the case of fibring consequence systems, the pre-processing step is
immediate, since we only consider logics that induce consequence systems. In the
case of fibring abstract deductive systems, one has to say how a given logic induces
an abstract deductive system. We have already described how to do so for many
kinds of calculi (such as Hilbert calculus, tableau calculus, most sequent calculus
and natural deduction calculus).

The algorithmic column indicates that the resulting logic is completely defined
by the combination mechanism. Finally, the minimal column states that the
constructions yields a minimal logic (in some class of logics). We use Y and N to
indicate whether or not a combination mechanism has this feature.

Finally, we observe that all the mechanisms discussed so far are symmetric in
the sense that the order in which we take the original logics is not relevant.
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We turn now our attention to preservation results. In Figure 11.2, we refer to the
properties of preservation of the metatheorem of deduction (MTD), interpolation
and congruence that were mentioned in this book.

MTD interpolation congruence

d-fusion Y Y
s-fusion Y
d-fibring Y Y Ysc

Figure 11.2: Preservation of properties

The empty boxes mean that the property was not discussed for that mechanism.
As pointed out in Chapter 2, congruence is not always preserved by fibring. But
we proved a sufficient condition for the preservation of congruence. We indicate
this fact by Ysc.

We can go further and investigate the properties of the operator � underlying
each combination mechanism. When � is either fusion or fibring we have:

• L′ � L′′ = L′′ � L′ commutativity

• (L′ � L′′)� L′′′ = L′ � (L′′ � L′′′) associativity

• L � L = L idempotence

The reader should note that there is just one exception to idempotence in fibring
(recall Section 5.5 of Chapter 5).

With respect to the deductive component of fibring, these properties are straight-
forward. With respect to the semantic component of fibring it is also easy to see
that this properties hold, namely because the carrier sets of the algebras in the
fibring are such that:

{B′ : 〈B′,≤′, ν′〉 ∈ A′} ∩ {B′′ : 〈B′′,≤′′, ν′′〉 ∈ A′′}
where A′ and A′′ are the classes of ordered algebras in L′ and L′′, respectively.
The case of fusion is similar.

In Figure 11.3, we refer to the properties of preservation of soundness, complete-
ness and weak completeness (w-completeness). In the case of fibring, as discussed
in Chapter 3, we do not prove directly that completeness is preserved. Instead, we
prove a general completeness theorem for a class of logics, including some sufficient
conditions. Then we prove that the sufficient conditions are preserved by fibring.
In the case of fusion, preservation of weak completeness can be directly proved.

There are two typical general scenarios where the existing combination mecha-
nisms can be used. The first one is when one wants to join logics that are already
known. That is, assume that the logics are endowed with a Hilbert calculus and
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soundness completeness w-completeness

fusion Y Y
fibring Y Ysc

Figure 11.3: Preservation of properties

semantics. For instance, someone wants to have a logic expressing knowledge and
normative assertions. Moreover, assume that we know which modal logic we want
for knowledge and which deontic logic we want for obligation. In this case, we
know how to do the combination using the mechanism of fibring.

In general, we have an algorithmic solution for defining the fibring L of the
logics L′ and L′′ with signatures C′ and C′′, Hilbert calculi H ′ and H ′′ and classes
M ′ and M ′′ of semantic structures, respectively:

• obtain the signature C as the fibring of C′ and C′′ as in Section 2.1 of
Chapter 2;

• obtain the Hilbert calculus H as the fibring of the given Hilbert calculi H ′

and H ′′ as described in Section 2.2 of Chapter 2;

• get the induced algebraic semantics, as explained in Chapter 3, from the
given semantics of L′ and L′′ and check that semantic consequence is pre-
served;

• obtain the algebraic fibring of the induced algebraic structures as defined in
Section 3.1 of Chapter 3;

• the resulting logic L is sound providing that the original logics L′ and L′′

are sound as proved in Section 3.3 of Chapter 3;

• check that the sufficient conditions for completeness are verified for L′ and
L′′ and use the preservation result to conclude that the resulting logic is
complete, as in Section 3.3 of Chapter 3;

• if some interaction axioms are needed, join them to the resulting Hilbert
calculus and restrict the semantic algebraic structures to the ones that satisfy
the new axioms (soundness and completeness still hold).

In the above, we are assuming propositional based logics L′ and L′′, for simpli-
fication. Clearly, algorithmic constructions similar to the above can be set up
for first-order, higher-order and some non-truth functional logics according to the
corresponding chapters.

Let us turn now our attention to the second general scenario where combination
mechanisms can be used. In this second situation, we start with a logic with
several connectives, for example, space and time connectives, and we want to
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study some of its properties such as, for instance, completeness. Then, we may
start by isolating, on one hand, the space component and, on the other hand,
the time component, in such a way that the fibring of these two components is
the original logic. Afterward, we check that the properties hold for the space and
the time components and use the fibring preservation results to conclude that the
original logic has the desired properties.

11.2 Knowledge representation
and agent modeling

It seems that fibring can be directly applicable to many situations in artificial
intelligence in general and knowledge representation in particular. Also in the
field of distributed systems (and agent modeling) fibring seems to have a role.

Normative knowledge representation

Assume that we want to put together in the same logic a modal operator �′ for
dealing with obligation and another modal operator �′′ for expressing knowledge.
In other words, we want to combine a deontic logic with an epistemic logic.

We may assume that the deontic logic and the epistemic logic are respectively
the non-normal modal logic L′ (see [54]) and the normal modal L′′ ([149], [91])
described below. Propositional connectives are shared. In the sequel, ⊥ is an
abbreviation of (¬(ξ1 ⇒ ξ1)).

• Hilbert calculi H ′ and H ′′ include besides the propositional axioms and
modus ponens the following axioms and rules:

– 〈∅, (¬(�′⊥))〉;
– 〈{(ξ1 ⇒ ξ2)}, ((�′ξ1)⇒ (�′ξ2))〉 (global rule);

– 〈∅, ((�′′(ξ1 ⇒ ξ2))⇒ ((�′′ξ1)⇒ (�′′ξ2)))〉;
– 〈∅, ((�′′ξ1)⇒ ξ1)〉;
– 〈∅, ((�′′ξ1)⇒ (�′′(�′′ξ1)))〉;
– 〈∅, ((¬(�′′ξ1))⇒ ((�′′(¬(�′′ξ1)))))〉;
– 〈{ξ1}, (�′′ξ1)〉 (global rule).

• Semantics consists of classes of Kripke structures M ′ and M ′′:

– M ′ consists of all structures of the form

〈W ′, N ′, V ′〉

such that W ′ is a non-empty set, N ′ : W → ℘(℘W ) is a map and
V ′ : Π → ℘W such that ∅ /∈ N(w) for every w ∈W ;
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– M ′′ consists of all the usual Kripke structures

〈W ′′, R′′, V ′′〉
where R′′ is an equivalence relation;

• Among the interaction axioms we may want to have:

〈∅, ((�′(�′′ξ1))⇒ (�′′ξ1))〉
stating that if it is obligatory to know p then one should know p.

The satisfaction for �′, in the logic L′, is as follows:

〈W ′, N ′, V ′〉, w′ �′ (�′ϕ′) if {u′ ∈ W ′ : 〈W ′, N ′, V ′〉, u′ �′ ϕ′} ∈ N(w′).

The satisfaction for the other connectives is the usual one.
Given a structure 〈W ′, N ′, V ′〉 for the deontic logic, the induced ordered algebra

〈B′,≤′, ν′〉 is defined as follows:

• B′ is ℘W ′;

• b′1 ≤ b′2 if b′1 ⊆ b′2;

• ν′(�′)(b′) = {w′ ∈W ′ : b′ ∈ N ′(w′)};
• ν′(¬)(b′) = W ′ \ b′;
• ν′(⇒)(b′1, b′2) = (W ′ \ b′1) ∪ b′2.

The ordered algebra 〈B′′,≤′′, ν′′〉 induced by the Kripke structure 〈W ′′, R′′, V ′′〉
for the epistemic logic is as defined in Chapter 3. Note that in the algebra
〈B′,≤′, ν′〉, the only difference to what was discussed in that chapter is the defi-
nition of ν′(�′).

Then the fibring
L = L′ ∪ L′′

is as follows.

• Hilbert calculus H includes all the axioms and rules of H ′ and H ′′, that is,
it include besides the propositional axioms and modus ponens the following
axioms and rules:

– 〈∅, (¬(�′⊥))〉;
– 〈{(ξ1 ⇒ ξ2)}, ((�′ξ1)⇒ (�′ξ2))〉;
– 〈∅, ((�′′(ξ1 ⇒ ξ2))⇒ ((�′′ξ1)⇒ (�′′ξ2)))〉;
– 〈∅, ((�′′ξ1)⇒ ξ1)〉;
– 〈∅, ((�′′ξ1)⇒ (�′′(�′′ξ1)))〉;
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– 〈∅, ((¬(�′′ξ1))⇒ ((�′′(¬(�′′ξ1)))))〉;
– 〈{ξ1}, (�′′ξ1)〉.

• Semantics consists of the class of all ordered algebras

〈B,≤, ν〉

such that:

– 〈B,≤, ν|¬,⇒,�′〉 is the ordered algebra induced by some m′ ∈M ′, where
ν|¬,⇒,�′(c) = ν(c) for every c ∈ {¬,⇒,�′};

– 〈B,≤, ν|¬,⇒,�′′〉 is the ordered algebra induced by some m′′ ∈ M ′′,
where ν|¬,⇒,�′′(c) = ν(c) for every c ∈ {¬,⇒,�′′}.

The logic L+ corresponding to adding the interaction axiom referred to above
is endowed with the Hilbert calculus H+ which is H plus the interaction axiom.
The semantic is provided by all the ordered algebras for L that satisfy the in-
teraction axiom. In the logic L+, we can make reasoning about knowledge and
obligation (freely mixing the obligation operator �′ and the knowledge operator
�′′). Moreover, we can import some properties of this logic for free.

We start by observing that the logic L+ is sound. This conclusion is simply
achieved in two steps. First, using the preservation for soundness, we obtain the
soundness of L since L′ and L′′ are sound. Secondly, choosing the models that
satisfy the interaction axiom we ensure the soundness of L+.

With respect to completeness of L we have to enlarge the class of ordered
algebras for L′ and L′′ with all the ordered algebras that satisfy the axioms and
rules of L′ and L′′ (not just the induced ones). Note that this enrichment does
not affect soundness. Then, applying the result of preservation of completeness we
conclude that L is complete (with respect to this enlarged semantics). By choosing
all the ordered algebras in the enlarged class that also satisfy the interaction axiom,
we get the completeness of L+ by using the general completeness result.

Distributed systems

We now briefly point out that fibring can also be useful in the field of distributed
systems and agent modeling.

The typical situation is to have n systems or agents that have individual knowl-
edge and can interact with each other. Moreover, in some cases, it is also important
to investigate properties of a collection of those systems.

We are interested in the cases where the problem is studied in a logical setting.
That is, each system i is defined in a particular (local) logic Li, that is usually the
same, interaction is expressed in a global logic and properties about collections of
systems can be stated using new logical operators.

Among the approaches we can refer to the one presented in [91]. Therein, each
system i is described by a modal logic with a unary modal operator �i, for instance
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as a S5 modal operator. In distributed systems and agent modeling, it is expected
that we want some interaction axioms. For instance saying that if system i knows
α then we want system j also to know α. In order to be able to state this kind
of assertions we can define the fibring L of L1, . . . ,Ln. As a result we obtain
a language where we can mix connectives that belong to the signatures of the
different systems. Then, we can add interactions through axioms in the language
of L. For the example above we may add the following axiom:

((�iα)⇒ (�jα)).

Moreover, we may also add axioms like

((�i(�jβ))⇒ (�iβ))

meaning that if system i knows that system j knows β then system i also knows β.
In this way, all the fibring techniques that we summarized in the beginning of

this chapter can be applied. In particular, preservation of metaproperties can be
immediately applied.

Another advantage of using fibring techniques in this context is that we can
explore situations where the systems or agents are not necessarily described by
the same logic.

Another dimension, showing that fibring is relevant is this context, is related
to the so called common knowledge applications. In this kind of applications, we
can have new operators EG and CG where G is a collection of distributed systems.
The formula

((EGϕ)⇔ (
∧

i∈G
(�iϕ)))

meaning that everyone in collection G knows ϕ, and the formula

((CGϕ)⇔ (EG(ϕ ∧ (CGϕ)))

meaning that ϕ is common knowledge among the systems in G, are taken as
axioms. Both formulas can only be written in the language of fibring.

Another approach to distributed systems is based on event structures [277].
Herein we follow [86]. In this case, all the systems are described using the same
temporal logic. The interactions are described by labeled formulas of the type
i : ϕ where the label i represents system i. The formula ϕ may involve labeled
formulas as well. For instance the formula

i.(ϕ⇒ j.(Xψ))

means that the following holds for system i: if ϕ holds then, for system j, formula
ψ holds in the next state. At the semantic level, event structures are used.

We believe that fibring techniques can be applied successfully at the deduc-
tive level. In order to take advantage of the fibring techniques for preservation
of metaproperties involving also semantic aspects some research has to be done.
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There are two possibilities. Either we can study how event structures can in-
duce ordered algebras or we can investigate what is the fibring of event structures
themselves.

This is a topic worthwhile to be pursued since event structures with a probability
dimension are currently under study (see [269]).

11.3 Argumentation theory

Argumentation theory is the science of effective civil debate or dialogue, using
rules of inference and logic. Argumentation is concerned primarily with reaching
conclusions through logical reasoning based on certain premises. Although includ-
ing debate and negotiation which are concerned with reaching mutually acceptable
conclusions, argumentation theory also encompasses the branch of social debate.

Typically, an argument has an internal structure, comprising

• a set of assumptions or premises;

• a method of reasoning or deduction;

• a conclusion or point.

Classical logic is often used as the method of reasoning so that the conclusion
follows logically from the assumptions. However, if the set of assumptions is
inconsistent then anything can logically follow from inconsistency. Therefore, it
is common to insist that the set of assumptions is consistent. It is also good
practice to require the set of assumptions to be the minimal set, with respect to set
inclusion, necessary to infer the consequent. Such argumentation has been applied
to the fields of law and medicine. A second school of argumentation investigates
abstract arguments that by definition have no internal structure.

Abstract argumentation systems were put forward as a response to the realiza-
tion that no argument or proof is conclusive in real life, and that arguments have
counterarguments. An argument framework is a pair

AF = (AR,Attacks)

where

• AR is a set of objects called arguments;

• Attacks is a binary relation (usually irreflexive), saying which arguments x
attacks which argument y.

An example of argument framework is depicted in Figure 11.4. In this framework,
a attacks c, c attacks b and b attacks a. There are no winning arguments here.

This framework is too abstract to be of specific use. It equally applies to circuits
and impending circuits, credits and debits, or any system involving x and anti-x,
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a

b c

Figure 11.4: Example of argumentation framework

whatever x is. To apply such a system successfully we need to go into the structure
of the arguments and analyze the mechanics of one argument attacking another.

An improvement was proposed in [19] by introducing value-based argumentation
frameworks. In such a framework we are given a set of colors (values) and a coloring
of the arguments. The values are partially ordered and an argument of strictly
lesser value cannot now attack an argument of stronger value. If, for example, we
make b red and a and c blue in the previous figure then

• if blue is stronger than red, then b cannot attack and defeat a, a can attack
c and the winning arguments are {a, b}, because c is out;

• if red is stronger than blue then the winning arguments are {b, c}.
Although an interesting improvement, this model is still too abstract. Real life

has arguments within arguments in different levels and interconnections between
the levels. The mechanism of self-fibring of networks referred to in Chapter 10 can
be used to extend this approach.

Labeled deductive systems can also be used. For example, in the context of
LDS, the above situation will arise if we have a labeled database which includes
items such as

t : a, s : b, r : c

and some additional data, say ui : Xi, such that the following can be proved,
among others

• γ(t) : (¬c);
• β(r) : (¬b);
• α(s) : (¬a);

where α, β, γ are the labels of (¬a), (¬b) and (¬c), respectively. In these labels
t, r and s are mentioned to indicate that, for instance, t : a is used in the proof
of γ(t) : (¬c). Hence, a with label t attacks c, by proving (¬c) with label γ(t).
The label γ(t) shows exactly what role a plays in this attack. We are assuming
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that to defeat x we must put forward an argument for (¬x). This is only a simpli-
fying assumption. In LDS, x comes with a label t and so to weaken t : x we can
attack t.

The flattening process acts here as value judgment of what can win, r : c or
γ(t) : (¬c), by comparing r and γ(t). Obviously, the value based argumentation
machinery can be used as part of the flattening process.

The following LDS model reflects the colored diagram mentioned above:

red: b
blue: a
blue: c

red to blue: b→ (¬a)
blue to blue: a→ (¬c)
blue to red: c→ (¬b)

Using modus ponens in the form

α : X,β : X → Y, ϕ(β, α)
α ∪ β : Y

we can prove

red: (¬a) if red to blue is allowed
blue: (¬c) if blue to red is allowed
blue: (¬b) if blue to blue is allowed.

The flattening function has to flatten

{red: b, blue: (¬b)}
{blue: a, red: (¬a)}

{blue: c, (blue: (¬c) is not allowed!)}

We first consider the case where red is stronger than blue that is, blue to red
not allowed: we get b and (¬a) and c. Now we consider the case where blue is
stronger than red, that is, red to blue not allowed. We get

{blue: a, (red: (¬a) not allowed)}
{blue: c, blue: (¬c)}

{red: b, blue: (¬b) if c is available}.
We cannot decide between c and (¬c) since both are blue. If we leave them both
out or take (¬c) then (¬b) will not be obtainable and hence we will have {a, b}.

Observe that in this labeled formulation we have more options than when con-
sidering the valued-based argumentation frameworks mentioned above. On one
hand, we can have X,¬X or neither as choices. On the other hand the label color
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(value) can itself be a whole database and so arguments about the values and their
strengths can also be part of the system. Valued-based argumentation frameworks
are only one level.

Moral debate example

We now consider an example referred to in [19] and attributed to Coleman [57]
and Christie [55].

“Hal, a diabetic, loses his insulin in an accident through no fault of his
own. Before collapsing into a coma, he rushes to the house of Carla,
another diabetic. She is not at home but Hal enters her house and uses
some of her insulin. Was Hal justified, and does Carla have a right to
compensation?”

The following are the arguments involved in the situation described above:

A. Hal is justified, since a person has a privilege to use the property of others
to save their life - the case of necessity.

B. It is wrong to infringe the property rights of another.

C. Hal compensates Carla.

D. 1. If Hal is too poor to compensate Carla, he should nonetheless be allowed
to take the insulin, as no one should die because they are poor.
2. Moreover, since Hal would not pay compensation if too poor, neither
should he be obliged to do so even if he can.

E. Poverty is no defense for theft.

F. Hal is endangering Carla’s life.

G. Carla has abundant insulin.

H. Carla does not have ample insulin.

Argument D was originally stated as just one argument, but it has been splitted
herein for later discussion. This example is depicted in Figure 11.5. Note that
H = ¬G.

The following value properties are given to the arguments:

Life: A, D, F
Property: B, C, E
Fact: G, H
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D C B A

FG

H E

Figure 11.5: Moral debate example

It is arguable whether life is stronger than property or not but facts are always
the strongest. Since H = ¬G, and since the facts cannot both hold simultaneously,
that part of Figure 11.5 is regarded as a case of uncertainty.

The model needed for a proper analysis of this kind of problem in general
(though maybe not necessarily the Hal problem) is a time/action model. There
is a difference of values depending at what stage of the action sequence we are
at. Has Hal entered Carla’s house? Has he checked for insulin? Is it all over
and Carla is dead? Each of these cases may have a different argument diagram,
possibly with values depending on the previous one. The need for time/action
models has already been strongly emphasized in [109] in connection with puzzles
involved in the logical analysis of conditionals. This is factors of connected to
contrary-to-duty models (see [158]), and also needed to incorporate uncertainty.

We require a better metalevel hierarchy of values and rules, as are available in
labeled deductive systems. Such options can possibly also be made available to
the abstract argumentation model via self-fibring.

The links (X → Y ) should be given strength labels to help the modeling of
more realistic cases where an argument X is attacked by arguments Y1, . . . ,Yk
with strength measuring m1, . . . ,mk. The link X → Y can be read as preventive
action of X to stop Y . Thus, by giving probability of success, any acyclic network
turns into a Bayesian one. This will introduce uncertainty into the framework.
Actually, the probability of success is inversely proportional to the conditional
probability of Y on X .

Bayesian aspects of the moral debate example

Recall Figure 11.5. We require a time/action model and contrary-to-duty consid-
erations, as follows. We imagine an agent, such as Hal, who has available a stock
of optional actions. These actions have the form

a = (A, (B+, B−))

where A is the precondition of the action and B+, B− are the post-conditions.
A must hold in order for Hal to be allowed to perform the action, in which case
the resulting state is guaranteed to satisfy B+. However, the agent may take the
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action anyway, without permission (that is, A does not hold), in which case the
post-condition is B−. Note that in most cases B− = B+.

Assume a state (or time) T0, described by a logical theory Δ, where the actions
that can be performed are

a1, a2, . . .ai = (Ai, (B+
i , B

−
i )), . . . .

If Δ  Ai, then action ai is allowable at time (state) T0, otherwise not. If we
perform the action a, with post-condition B (B is either B+ or B−) then we move
to time T1, with state Δa = Δ ◦ B where Δ ◦ B is the revision of Δ by B. We
have Δ ◦B  B.

Thus, to have time action model we need the following: a language for the
theories Δ to describe states, a language for pre-condition and a language for
post-conditions for actions, a logic or algorithm for determining when Δ  A
holds, where A is a pre-condition, and a revision algorithm giving for each Δ and
post-condition B a new theory Δ′ = Δ ◦ B. Note that the languages for Δ, the
pre-conditions and the post-conditions need not be the same.

The flow of time is future branching and it is generated by the actions. So, if,
for example, an agent can perform actions a1, . . . ,ak as options, then after two
steps in which he performs, say, a1 first and then a3, we may get a situation as
the one depicted in Figure 11.6.

Time T2

Time T1

Time T0

• •

•

•

•

Δa1,a2 Δa1,a3

Δ

•

Δa1 Δa2

Δa2,a1

Figure 11.6: Flow of time generated by actions

The real history at time T2 is

(Δ,Δa1 ,Δa1,a3).

The states Δa1,a2 and (Δa2 ,Δa2,a1) are hypotheticals.
At time T0, the agent chose to take action a1 moving onto state Δa1 , but he

could have chosen to take action a2 and done action a1 afterward, ending up at
state Δa2,a1 at time T2. In reality, however, he chose to perform a1 and then a3.

The pre-conditions of actions can talk about states and hypotheticals. They
need not be in the same language as Δ or the same language as the post-conditions.
What is important are the algorithms for “” and “◦”.
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We now analyze the moral debate example. We propose some probabilities as
an example and we conclude by translating the statements A–H presented above
into our time/action set up.

We first recast the situation in a more realistic way. Hal needs insulin. So does
Carla. Both are poor and get their insulin from the Health Service. They get it
in batches, though not at the same time. So the question whether Carla has spare
insulin (G) depends on the time, and is a matter of probability. Hall loses all his
insulin and would need to break into Carla’s property to get hers. He has the
option of calling the Health Service and asking for replacement, which he can use
either for himself if it arrives immediately or to replace Carla’s if necessary. He
might get some money from friends. One thing is clear to him. If he steals Carla’s
insulin, it will complicate matters; it might be more difficult to find a replacement.
So the question of compensation C is also a matter of probability.

The following are the possible scenarios. If property is valued more than life,
then if Hal steals Carla’s insulin, the probability of getting a replacement is lower
in the case where Carla’s life is not threatened. If life is valued more than property,
his chances of obtaining replacement is higher in case Carla’s life is threatened.

We must clarify what “getting a replacement” means. Hal will probably start
a process for getting insulin for himself immediately at start time T0. Since it
might not arrive in time, he will break into Carla’s home and use hers, and hope
to use the insulin he “ordered” to replace Carla’s. If Carla has ample insulin,
there is a higher chance or that the replacement will arrive in time before Carla’s
life is threatened. If Carla does not have ample insulin, Hal can use this as a
further reason to rush the process of replacement. This further reason might be
counterproductive if property is valued above life.

Thus, the statement C, that is,

Hal gets a replacement

should be taken as

Hal gets a replacement before Carla is in need of it.

We may then have the following scenarios where P stands for probability P (x)
and it should be indexed by case and time, that is, P1,a, P1,b, P2,a and P2,b:

Case 1. Property stronger than life

(a) Time = Before Hal breaks into Carla’s house.

P (G) = 2
3 P (¬G) = 1

3 P (C/G) = 0.9 P (¬C/G) = 0.1
P (C/¬G) = 0.5 P (¬C/¬G) = 0.5

Since Carla has ample insulin, Hal has more time to replace what he might
take. Admittedly, Carla’s life is in danger but there may not be enough time
to get a replacement. On the other hand, this fact might help get the insulin
more quickly. Event C means “getting replacement in time”.
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(b) Time = After Hal breaks into Carla’s house.

At this stage the value of G is known: either G = 1 or G = 0. We get

P (C/G = 1) = 0.7 P (¬C/G = 1) = 0.3
P (C/G = 0) = 0, 4 P (¬C/ G = 0) = 0.6

Less than before breaking into the house, because Hal committed a serious
crime. He may not be favorable with the authority.

Case 2. Property not stronger than life

(a) Time = Before Hal breaks into Carla’s house
Similar to Case 1, but P (C/¬G) = 0.9 and P (¬C/¬G) = 0.1.

(b) Time = After Hal breaks into Carla’s house
Similar to (a), but P (C/G = 0) = 0.7 and P (¬C/G = 0) = 0.3.

We now translate the arguments involved in the original moral debate example.
When is Hal justified in breaking into Carla’s home? The answer is “yes” only

in the case that life is stronger than property and he can reasonably say he is not
risking her life. That depends on finding a replacement. We therefore have to
calculate the probability of C given all the data we have. Thus, our time/action
axis has the form depicted in Figure 11.7:

Time after breaking

into Carla’s house

Time before breaking

into Carla’s house

◦

•

b =
Hal action of breaking

into Carla’s house

Figure 11.7: Time/action axis

The actions available to Hal are the following:

• b = breaking into Carla’s house.

The post-condition is breaking in and taking the insulin. The pre-condition
of b is high probability of replacing Carla’s insulin (in time before she needs
it) in case life is stronger than property and ⊥ (falsity, that is, no permission
to do the action) in case life is not stronger than property.
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• r = actions having to do with getting a replacement of insulin.

We assume he can perform these actions at any time but the post-conditions
are not clear.

Observe that we may need a temporal language for the post-conditions so that
we can say something like “insulin will be delivered in two days”. We need also
agree the value of the threshold probability, for instance, only if there is at least
0.9 chance of replacement can Hal break into Carla’s home to take the insulin.

Consider now the argument B referred to above: “It is wrong to infringe the
property of others”. It is an argument reflected in the pre-condition of the action
b. The action can be done when B satisfied otherwise not. We would write it as

b = (Justification, Break in and taking insulin).

We now model the chain of events as a Bayesian network. Depending on the
probability P (G), Hal decides whether he wants to break into Carla’s house b (no
use breaking into her house if she does not have enough insulin). He is justified
J in breaking b into Carla’s house if there is high probability of compensation
C. Thus, C depends both on b and G, and b also depends on G. The network
depicted in Figure 11.8 describes the situation.

J

G

b

C

Figure 11.8: Modeling the chain of events as a Bayesian network

There are two problems with this representation.

• The dependency of b on G is not on G = 1 or G = 0 but on P (G). Say if
P (G) < 0.1 then maybe b = 0. This is OK because the probabilities can be
made to take account of that. This is allowed in the theory of Bayesian nets.

• The probabilities in Figure 11.8 depend on whether property is stronger than
life or not. The best way to represent this is to have a Bayesian network
with one variable only: Case.

Case = 1 means property is stronger than life and Case = 0 means property
is not stronger than life. For each case we get a different copy of Figure 11.8
with different probabilities. So, we get a substitution of the network of
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Figure 11.8 into a one point network: Case. This operation is in accordance
with the ideas in [276].

We can also allow for several justification variables to make it more realistic.

It is not difficult to work out the details of the other arguments C, . . . ,H.

Neural representation of argumentation frameworks

We now outline how to represent in neural nets any value-based argumentation
framework involving x and anti-x (that is, arguments and counter-arguments). It
capitalizes in the work presented in [71].

One possibility of representing the intended value-based argumentation frame-
work in neural networks is to use neural-symbolic learning systems [78]. Neural
networks are able to efficiently represent (and learn) multi-part, cumulative argu-
mentation, as exemplified below.

Cumulative behavior can be encoded in neural-symbolic learning systems with
the use of a hidden layer of neurons in addition to an input and an output layer
in a feedforward network. Rules of the form

(A ∧B) → C

can be represented by connecting input neurons that represent concepts A and
B to a hidden neuron, say h1, and then connecting h1 to an output neuron that
represents C in such a way that output neuron C is activated (true) if input
neurons A and B are both activated (true). If, in addition, a rule

B → C

is also to be represented, another hidden neuron h2 can be added to the network to
connect input neuron B to output neuron C in such a way that C is now activated
also if B alone is activated. This is illustrated in Figure 11.9. The network can
be used to perform the computation of the rules in parallel such that C is true
whenever B is true.

In a neural network, positive weights can represent the support for an argument,
while negative weights can be seen as an attack on an argument.

Hence, a negative weight from a neuron A to a neuron B can be used to imple-
ment the fact that A attacks B. Similarly, a positive weight from B to itself can
be used to indicate that B supports itself. Since we concentrate on feedforward
networks, neuron B will appear on both the input and the output layers of this
network as shown in Figure 11.10, in which dotted lines are used to indicate neg-
ative weights. In this neural network A attacks B via h1, while B supports itself
via h2.

Suppose now that, in addition, B attacks C. We need to connect input neuron
B to output neuron C via a new hidden neuron h3. Since B appears on both
the network’s input and output, we also need to add a feedback connection from
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C

h1

A B

h2

Figure 11.9: Using hidden neurons

A B

h1 h2

B

Figure 11.10: Using negative weights for counter-argumentation

output neuron B to input neuron B such that the activation of B can be computed
by the network according to the chain “A attacks B”, “B attacks C”, etc.

As a result, in Figure 11.11 if the attack from A on B is stronger (according to
the network’s weights) than B’s support to itself, then A will block the activation
of (output) B, and (input) B will not be able to block the activation of C. Note
that, for simplicity, we do not represent B’s feedback connection. The network’s
final computation will include C and not B in a stable state. If, on the other hand,
A is not strong enough to block B, then B will be activated and block C.

Let us take the example in which an argument A attacks an argument B, and B
attacks an argument C, which in turn attacks A in a cycle. In order to implement
this in a neural network, we need positive weights to explicitly represent the fact
that A supports itself, B supports itself and so does C. In addition, we need
negative weights from A to B, from B to C and from C to A (see Figure 11.12)
to implement attacks.

If all the weights are the same in absolute terms, no argument wins, as one
would expect, and the network stabilizes with neither A, nor B, nor C activated.
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A B

h1 h2

B

h3

C

Figure 11.11: Computation of arguments and counter-arguments

If, however, the value of A (that is, the weight from h1 to A) is stronger than the
value of C (the weight from h3 to C, which is expected to be the same in absolute
terms as the weight from h3 to A), C cannot attack and defeat A. As a result, A
is activated. Since A and B have the same value (as, for instance, in the previous
case of an unspecified priority), B is not activated, since the weights from h1 and
h2 to B will both have the same absolute value. Finally, if B is not activated then
C will be activated, and a stable state {A,C} will be reached in the network. Note
that the order in which we reason does not affect the final result (the stable state
reached). For example, if we started from B successfully attacking C, C would not
be able to attack A, but then A would successfully attack B, which would this time
round not be able to successfully attack C, which in turn would be activated in the
final stable state {A,C}. This indicates that a neural (parallel) implementation
of this reasoning process could be advantageous, also from a purely computational
point of view.

A B

h1 h2

B

h3

CA

C

Figure 11.12: The moral-debate example as a neural network
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Note that, as in the general case of argumentation networks, also in the case of
neural networks we can extend Bench-Capon’s model with the use of self-fibring
neural networks, which allow for the recursive substitution of neural networks
inside nodes of other networks [79].

The implementation of the network’s behavior (weights and biases) must be
such that, when we start from a number of positive arguments (input vector
{1, 1, . . . , 1}), weights with the same absolute values cancel each other produc-
ing zero as the output neuron’s input potential. A neuron with zero or less in-
put potential is then deactivated, while a neuron with positive input potential is
activated. This allows for the implementation of the argumentation framework
in neural-symbolic learning systems, in the style of the translation algorithms
developed at [80].

Self-fibring of argumentation networks

We now concentrate in self-fibring of argumentation networks. We begin with the
network in Figure 11.4. We pick a node in it, say node a, and substitute another
network for that node. Assume we choose the network depicted in Figure 11.5.
We thus get the “network” in Figure 11.13.

D C B A

FG

H E

b c

Figure 11.13: Self-fibring argumentation networks

The need of self-fibring may arise if additional arguments, supporting the contents
of the node, are available. The self-fibring problem has three important aspects that
we discuss in the sequel: intuitive meaning, formal aspect and coherence.

What is the intended interpretation/meaning of this substitution? This can
be decided by the needs of the application area. There are several options. One
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option is to consider that node a is an argument, so Figure 11.5 can be viewed as
delivering some winning argument (A of Figure 11.5) which can combine/support
a. Another option is to consider that Figure 11.5 represents a network so b of
Figure 11.4 can plug into it. We can connect b to all (or some) members in
Figure 11.4 and similarly connect all (or some) members in Figure 11.5 into c of
Figure 11.4. For other possibilities see [276, 79, 108].

We can consider syntactical and semantic substitutions. With respect to syn-
tactical substitution, formally, the node a is supposed to be an argument. So we
need a fibring function

F(node, network) = e

yielding a node e and so we end up with Figure 11.14. F might do, for example,

e

b c

Figure 11.14: Syntactical substitution

the following: F can use the colour of node a to modify the colours of the nodes in
Figure 11.5 (the substituted network), and maybe also modify some connections
in Figure 11.5, and then somehow emerge with some winning argument e and a
colour to be substituted/combined with a and its colour. With respect to semantic
substitution, if the original network has an interpretation, then the node a can get
several possible semantic values. We can make the definition of the substitution
context sensitive to those values. We may even go to the extent of substituting
different networks for different options of values.

Finally, we refer to coherence. To enable successful repeated recursive substitu-
tion of networks within networks, we have to modify our definition of the original
network. One possibility consists in extending the notion of network and allow
arrows to either support or defeat arguments. Another possibility is to restrict
the substitution of networks for nodes by compatibility/consistency conditions.
Assume we have a set of nodes and links of the form (a, b) meaning that a attacks
b. Assume we also have valuation colors. A weaker color cannot attack a stronger
color. Let a be a node. Define the notion of x is a supportive (resp. attacking)
node for a as follows:

• a is supportive of a;

• if x is supportive (resp. attacking) node of a and y attacks x then y is an
attacking (resp. supportive) node of a.
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Now let a be a node in a network A and suppose we have another network N which
we want to substitute for a. We must assume a appears in N with the same color
value as it is in A. We substitute N for a and make new connection as follows:

• any node x of A which attacks a in A is now connected to any node y in N
which supports a in N ;

• any node y in N which supports a in N is now made connected to any node
x of A which a of A is attacking.

This definition is reasonable. Node a is an argument in network A and N is
another network which is supposed to support a (a in N). Thus, anything which
attacks a in A will attack of all a supporters in N and these in turn will attack
whatever nodes a attacks in A. Note that he may be attacking facts in N by this
wholesale connection of arrows.

11.4 Software specification

In this section, we point out that the fibring techniques can also be used in the
context of software specification. As a first example we can refer to the simple
case of dynamic logic (see [142]). Dynamic logic has been used for reasoning about
programs, namely showing that a particular specification is met by a particular
program.

In the sequel, we briefly describe some combination mechanisms that have been
proposed in the context of software specification. Both temporalization and pa-
rameterization are particular cases of fibring that nevertheless are worthwhile to
explore for themselves. Synchronization is a different mechanism endowed with a
deductive and a semantic component. Results were obtained for proving sound-
ness and completeness. Institutions were introduced in [129] as a mean to describe
in an abstract way the semantic component of a logic with the aim of defining
operations on specifications. Later on π-institutions were introduced in the same
spirit but for the deductive component (see [95]). Combinations of institutions
were studied namely by introducing the category of institutions. The problem
with combination of institutions is that mixing of connectives from different log-
ics is not allowed. Parchments [130, 212] were then considered, again only with
a semantic component. Fibring is worthwhile to be imported to the context of
parchments namely for adding a deductive component and studying preservation
of metaproperties.

11.4.1 Temporalization and parameterization

Temporalization (see [96, 97]) and parameterization (see [42]) are less richer com-
bination mechanisms than fusion and fibring. Namely, the underlying operator is
neither commutative nor associative or even idempotent. The general basic idea
is that, given logics L′ and L′′ we define a new logic L where each signature C
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of L is such that C0 = L(C′) ∪ C′′
0 and Ck = C′′

k for every k ≥ 1. In the case of
temporalization, L′′ is temporal logic and L′ is the logic we want to temporalize.
In the case of parameterization, L′′ can be any logic.

Soundness and completeness preservation were analyzed for temporalization.
Below we briefly describe parameterization.

Parameterization generalizes the temporalization construction. Roughly speak-
ing, it consists of replacing an atomic part of one logic L by another logic L′. Logic
L is the parameterized logic, the atomic part is the formal parameter and logic L′

is the actual parameter logic. Parameterization is a particular case of constrained
fibring.

As an example of application, we can refer to the case were we intend to de-
scribe a state based system as, for instance, a data base. Data base dynamics is
easily described using a propositional based modal logic Lpml but data base states
are better described using first-order logic Lfol. The goal is to use a suitable
combination of Lpml and Lfol to describe the data base. When combining both
logics using parameterization, we get a new logic whose formulas are obtained by
replacing propositional constants in formulas of Lpml by first-order formulas. In
this logic we can freely apply modalities but we cannot apply quantifiers to modal
formulas. Hence, we do not get the full first-order modal logic, as it would be
the case if we considered fibring as in Chapter 6. This asymmetry is the essential
distinction between parameterization and fibring. The semantic structures of the
new logic are Kripke structures where the usual valuation for propositional con-
stants is replaced by a “zooming in” map [23] associating a first-order semantic
structure with a fixed assignment to each state. From the deductive point of view,
instantiation of axioms and rules of Lpml with pure first-order formulas is allowed
but first-order reasoning cannot be applied to formulas with modalities.

We now give a more detailed account of parameterization from the deductive
point of view. The following capitalizes in [42]. In the sequel, we assume signa-
tures, Hilbert calculi and related notions as introduced in Chapter 2.

To begin with, we introduce some preliminary notions. Let f : C′ → C′′ be a
signature morphism. We define the set of f -monoliths as the set of ground formulas

gL(C′′)f = {(c(ϕ1, . . . , ϕk)) ∈ gL(C ′′) : c /∈ f(C′
k), k ∈ N}.

Given a set R of inference rules over C′′, we denote by R ↑f the set of all rules
〈Δ, ϕ〉 in R such that ϕ and every δ ∈ Δ only involve connectives in f(C ′).

We are now ready to define the notion of parameterization. Consider Hilbert
calculi

• H ′ = 〈C′, R′〉;
• H ′′ = 〈C′′, R′′〉;

and

• a signature C such that C ≤ C′;
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• a set P such that P ⊆ C′
0 and P ∩ C0 = ∅;

• a pair h = 〈h1, h2〉 where

– h1 : C → C′′ is a signature morphism;

– h2 : P → gL(C′′)h1 is a surjective map.

We say that H ′ is the parameterized calculus, C is the shared signature and P
is the formal parameter. The Hilbert calculus H ′′ is the actual parameter. The
morphism h1 is the shared connectives matching and the map h2 is the parameter
passing map.

The parameterized signature, C′, and the actual parameter signature, C′′, may
share connectives. The signature C identifies the connectives in C′ we want to
share, and h1 sets the matching with the corresponding connectives in C′′. Observe
that h1-monoliths are precisely the ground formulas of the actual parameter whose
main connective is not a shared one. For simplicity, we assume in the sequel that
h1(C0) ∩ gL(C ′′)h1 = ∅. On the other hand, the constant symbols in P identify
the atomic part of L(C′) that we allow to be replaced by formulas of the actual
parameter. These formulas are the h1-monoliths. The parameter passing map
says which h1-monolith replaces each constant in P .

The parameterization of H ′ with H ′′ according to h is the Hilbert calculus

H = 〈C,R〉
where

• C0 = (C′
0\(C0 ∪ P )) ∪ h1(C0) ∪ gL(C ′′)h1 ,

Ck = (C′
k\Ck) ∪ h1(Ck) for k > 0;

• R = {〈Δh, ϕh〉 : 〈Δ, ϕ〉 ∈ R′} ∪R′′ ↑h1

∪{〈ρ(Δ), ρ(ϕ)〉 : 〈Δ, ϕ〉 ∈ R′′\R′′↑h1 and ρ : Ξ → gL(C′′)};
where, for each ϕ ∈ L(C′), ϕh is the formula we obtain from ϕ by replacing all
the occurrences of symbols c in C or P by h1(c) or h2(c), respectively.

Observe that in the resulting calculus H = (C,R) the formal parameter symbols
in P are dropped and h1-monoliths become constant symbols of signature C. The
other non shared connectives of the parameterized signature C′ are kept in C.
The shared connectives are replaced by the corresponding matching ones. Hence,
to obtain the formulas in the mixed language L(C), the only C′′ connectives that
can be freely used are the ones that are shared with C′ connectives. The other C′′

connectives can only occur in h1-monoliths which are formulas in L(C′′) and, in
L(C), are just constant symbols. This is quite different from the fibring situations
where any connective of both components (possibly with a different name) can be
freely used to obtain the formulas of the fibring.

With respect to the inference rules, the calculus H keeps all the rules of the
parameterized calculus H ′, but, as expected, with shared C′ connectives replaced
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by the corresponding matching ones, and the formal parameter constants in P
replaced by the corresponding h1-monoliths. The calculus H also includes all
the rules in the actual parameter H ′′ that only involve shared connectives. With
respect to the H ′′ rules that involve some non shared connective, only its ground
instances (with respect to L(C′′)) are included in the resulting calculus. Only these
instances are included because, otherwise, derivations in H could involve unwanted
instantiations as, for example, instantiations involving formulas (c(ϕ1, . . . , ϕn))
where c is one of those non shared connectives in C′′ and some ϕi is a ground
formula in L(C′). As already referred to above, these kind of formulas are not
allowed in the mixed language L(C).

We now illustrate the parameterization construction with the example presented
at the beginning: we parameterize a Hilbert calculus HK, corresponding to propo-
sitional modal logic K, with a Hilbert calculus HFOL, corresponding to classic
first-order logic. As expected, only the connectives ⇒ and ¬ are shared. Thus,
quantifiers can not be freely used in the resulting language. They can only occur in
monoliths. Moreover, in the resulting calculus, we will only have ground instances
of rules involving quantifiers. Hence, for our purposes herein, we do not need the
all setting for first-order based logics presented in Chapter 6, namely, rules with
provisos. We can just use signatures and Hilbert calculi as defined in Chapter 2.

In the sequel we consider fixed a set X of variables such that X ∩ Ξ = ∅.

Example 11.4.1 Let HK = 〈CK, RK〉 be the following Hilbert calculus, corre-
sponding to propositional modal logic K:

• CK
0 = P, CK

1 = {¬,�}, CK
2 = {⇒} and CK

k = ∅ for k > 2;

• RK consists of the following rules

– 〈∅, (ξ1 ⇒ (ξ2 ⇒ ξ1))〉 Ax1

– 〈∅, ((ξ1 ⇒ (ξ2 ⇒ ξ3))⇒ ((ξ1 ⇒ ξ2)⇒ (ξ1 ⇒ ξ3)))〉 Ax2

– 〈∅, (((¬ ξ1)⇒ (¬ ξ2))⇒ (ξ2 ⇒ ξ1))〉 Ax3

– 〈∅, ((�(ξ1 ⇒ ξ2))⇒ ((�ξ1)⇒ (�ξ2)))〉 K

– 〈{ξ1, (ξ1 ⇒ ξ2)}, ξ2〉 MP

– 〈{ξ1}, (�ξ1)〉 Nec

Let HFOL = 〈CFOL, RFOL〉 be the following Hilbert calculus, corresponding to
classical first-order logic, where F = {Fk}k∈N and Q = {Qk}k∈N are respectively
the family of sets of function symbols and the family of set of predicate symbols:

• CFOL
0 = {q(t1, . . . , tk) : q ∈ Qk and t1, . . . , tk ∈ T },

CFOL
1 = {¬} ∪ {∀x : x ∈ X}, CFOL

2 = {⇒} and CFOL
k = ∅ for k > 2;

where T is inductively defined as follows:

(i) X ∪ F0 ⊆ T ; (ii) {f(t1, . . . , tk) : f ∈ Fk and t1, . . . , tk ∈ T } ⊆ T ;
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• RFOL consists of the following rules

– Ax1, Ax2, Ax3, MP

– 〈∅, ((∀xϕ)⇒ ϕxt )〉 Ax4
for all t ∈ T free for x ∈ X and ϕ ∈ gL(CFOL)

– 〈∅, ((∀x(ϕ⇒ ξ1))⇒ (ϕ⇒ (∀xξ1)))〉 Ax5
for all x ∈ X not free in ϕ ∈ gL(CFOL)

– 〈{ξ1}, (∀xξ1)〉, for all x ∈ X Gen

Let

• C be the shared signature

where

C0 = ∅, C1 = {¬}, C2 = {⇒} and Ck = ∅ for k > 2;

• P be formal parameter;

• h = 〈h1, h2〉 such that

– h1 : C → CFOL is an inclusion;

– h2 : P→ gL(CFOL)h1 is a surjective map.

Note that the set of h1-monoliths is

gL(CFOL)h1 = {q(t1, . . . , tk) : q ∈ Qk and t1, . . . , tk ∈ T }
∪{(∀xϕ) : (∀xϕ) ∈ gL(CFOL)}.

The parameterization of HK with HFOL according to h is the Hilbert calculus
H = 〈C,R〉 where

• C0 = gL(CFOL)h1 , C1 = {¬,�}, C2 = {⇒} and Ck = ∅ for k > 2;

• R consists of the following rules

– Ax1, Ax2, Ax3, K, MP, Nec

– 〈∅, ((∀xϕ)⇒ ϕxt )〉
for all t ∈ T free for x ∈ X and ϕ ∈ gL(CFOL)

– 〈∅, ((∀x(ϕ⇒ ψ))⇒ (ϕ⇒ (∀xψ)))〉
for all ϕ, ψ ∈ gL(CFOL) and x ∈ X not free in ϕ

– 〈{ϕ}, (∀xϕ)〉
for all ϕ ∈ gL(CFOL) and x ∈ X . ∇

In [42], a categorial characterization of parameterization is presented, as well as
some transfer results for soundness, completeness and decidability.
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11.4.2 Synchronization

Herein, we give a brief description of synchronization on models (see [238]). In or-
der to understand the mechanism, we start by recalling the concept of satisfaction
system.

A satisfaction system is a triple 〈L,M,�〉 where L is a set (of formulas), M is
a class (of models) and � ⊆M × L is a relation (the satisfaction relation). Given
two satisfaction systems S′ and S′′, the basic idea of synchronization on models
is to obtain a new satisfaction system S where each model is a pair composed
by a model of S′ and a model of S′′, but, may be not all of them. In a sense,
synchronization is a general form of product extended to logics not necessarily
modal and where not all models in the Cartesian product M ′ ×M ′′ are present.

In the sequel, we give a more detailed account of synchronization on models.
Consider the satisfaction systems S′ = 〈L′,M ′,�′〉 and S′′ = 〈L′′,M ′′,�′′〉, and
let R ⊆M ′×M ′′ be a relation (the synchronization relation). The synchronization
on models of S′ and S′′ by R is the satisfaction system

S = 〈L′ ∪ L′′, R,�〉

where � ⊆ R× (L′ ∪ L′′) is such that

〈m′,m′′〉 � ϕ′ if m′ �′ ϕ′ and 〈m′,m′′〉 � ϕ′′ if m′′ �′′ ϕ′′

for m′ ∈M ′, m′′ ∈M ′′, ϕ′ ∈ L′ and ϕ′′ ∈ L′′.
As an example, assume that S′ is a satisfaction system for propositional linear

temporal logic and S′′ is a satisfaction system for unsorted equational logic.
A model m′ for S′ is a map m′ : N → P. The notion of satisfaction of a formula

ϕ′ at natural number n by a model m′, denoted by

m′, n �′ ϕ′

is defined as follows:

• m′, n �′ p if p ∈ m′(n) whenever p ∈ P;

• m′, n �′ (¬ψ′) if m′, n ��′ ψ′;

• m′, n �′ (ψ′
1 ⇒ ψ′

2) if either m′, n ��′ ψ′
1 or m′, n �′ ψ′

2;

• m′, n �′ (Xψ′) if m′, n+ 1 �′ ψ′;

• m′, n �′ (Gψ′) if m′, k �′ ψ′ for every k ≥ n.

Then we can define �′ as follows:

m′ �′ ϕ if m′, n �′ ϕ for every n ∈ N.



11.4. SOFTWARE SPECIFICATION 547

With respect to S′′, let us consider a signature Σ = {Σn}n∈N where each Σn is a
set (of operators of arity n). Then, as usual, the set of terms TΣ(X) is the least
set generated by Σ and a fixed set X (of variables). The set L is composed by all
equations (t1 ≈ t2) where t1, t2 are terms. A model m′′ for S′′ is an algebra over
Σ, that is, a pair A = 〈U, μ〉 where U is a set and ν = {νn}n∈N such that each
νn : Σn → UU

n

is a map. Given an assignment ρ : X → U , the denotation of a
term t, [[t]]ρA, is an element of U and it is defined as usual. Finally, the satisfaction
relation �′′ is as follows:

m′′ �′′ (t1 ≈ t2) if [[t1]]ρA = [[t2]]ρA for every assignment ρ.

For the purpose of defining the synchronization relation, we are going to assume
that {au : u ∈ TΣ(∅)} ⊆ P where TΣ(∅) is the set of all terms that do not involve
variables in X . The relation R is defined as follows

〈m′,m′′〉 ∈ R if and only if m′ �′ (au1 ⇔ au2) whenever m′′ �′′ (u1 ≈ u2).

It is worthwhile to see how the semantic entailment reflects the intended syn-
chronization. We verify that

{ag(c), (g(x) ≈ h(x))} � ah(c).

Assume that 〈m′,m′′〉 is such that 〈m′,m′′〉 � ag(c) and 〈m′,m′′〉 � (g(x) ≈ h(x)).
Then,

• m′′ �′′ (g(x) ≈ h(x)) by hypothesis;

• m′′ �′′ (g(c) ≈ h(c)) by soundness of substitution in S′′;

• m′ �′ (ag(c) ⇔ ah(c)) by definition of R;

• m′ �′ ag(c) by hypothesis;

• m′ �′ ah(c) by reasoning in S′;

• 〈m′,m′′〉 � ah(c) by definition of �.

In [238], a form of deductive synchronization based on formulas is also investi-
gated. In [239], sufficient conditions for the preservation of soundness and com-
pleteness are proved.

11.4.3 Specifications on institutions

Several ways of relating and combining logical systems in the framework of in-
stitutions [129, 131] have been proposed, having in mind heterogeneous specifica-
tions, that is, specifications written in different institutions. Among them we can
refer to institution morphisms [131], maps [207], representations [255] and simula-
tions [13]. Institution morphisms, for example, describe how an institution can be
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built over a simpler one, whereas representations show how an institution can be
encoded in a more elaborate one. The combination mechanism provided by insti-
tution morphisms provides combination of sets of formulas but does not allow the
combination of individual formulas, that is, formulas involving connectives from
different logics are not allowed. To overcome this problem, parchments [130] and
parchment morphisms [210] were considered. Roughly speaking, parchments are
algebraic presentations of institutions where the formulas are presented as terms
over an algebraic signature, models are sets of algebraic signatures morphisms and
satisfaction relies on the initiality of the term algebra. Some variants have also
been proposed, namely λ-parchments [211], model-theoretic parchments [212], and
c-parchments [39, 38]. The notion of c-parchment was put forward as a way to
bring the fibring mechanism, as well as results for preservation of relevant proper-
ties, to the framework of institutions. This kind of parchments is an extension of
model-theoretic parchments where the algebras of truth values are endowed with
a closure operator.

Herein, we refer to fibring of c-parchments by describing the fibring of c-rooms.
In fact, a c-parchment can be seen as a particular family of c-rooms indexed by
(abstract) signatures. Technically, this means that a c-parchment can be also
defined as a functor from the category of such signatures to the category of c-
rooms.

In the sequel, we consider algebraic many-sorted signatures Σφ = 〈Sφ, O〉 where
Sφ is the set of sorts with a distinguished sort φ, and O = {Ou}u∈S+

φ
is a family

of sets of operators indexed by their type. The carrier set of φ in the free algebra
T (Σφ) over Σφ (the term algebra) corresponds to the set of formulas. Given an
algebra A over Σφ, the denotation of a term t in A, [[t]]A, is defined as expected.

We denote by cAlg(Σφ) the class of all pairs 〈A, c〉 with A an algebra over Σφ
and c a closure operation on Aφ, the carrier set of sort φ. Recall from Section 1.1
of Chapter 1 that c : ℘(Aφ) → ℘(Aφ) is extensive, monotonic and idempotent.
The set Aφ constitutes the set of truth values.

Given a morphism h : Σ′
φ → Σ′′

φ and an algebra A over Σ′′
φ, A|h is the reduct

of A with respect to h, that is, the algebra over Σ′
φ where the carrier set for each

sort s is Ah(s), and the interpretations of the operators are as their images by h
in A.

We now introduce the notion of c-room. A c-room is a pair

R = 〈Σφ,M〉

where M ⊆ cAlg(Σφ). A c-room induces the following local entailment relation:

Φ �� ψ if [[ψ]]A ∈ {[[ϕ]]A : ϕ ∈ Φ}c for every 〈A, c〉 ∈M
where Φ∪{ψ} ⊆ T (Σφ)φ. With respect to global entailment relation the definition
is as follows:

Φ �g ψ if [[ψ]]A ∈ ∅c whenever {[[ϕ]]A : ϕ ∈ Φ} ⊆ ∅c for every 〈A, c〉 ∈M .
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We now turn to the fibring of c-rooms. Consider c-rooms R1 = 〈〈Sφ 1, O1〉,M1〉
and R2 = 〈〈Sφ 2, O2〉,M2〉. We assume that the shared signature is

〈Sφ 0, O0〉
with Sφ 0 = Sφ 1 ∩ Sφ 2, and O0,u = O1,u ∩O2,u for u ∈ S+

φ 0 is shared according to
the corresponding signature inclusion morphisms. Let

R0 = 〈〈Sφ 0, O0〉,M0〉
whereM0 = cAlg(〈Sφ 0, O0〉). The (constrained) fibring of R1 and R2 is the c-room

R1 �R2 = 〈〈Sφ, O〉,M〉
such that:

• Sφ = Sφ 1 ∪ Sφ 2;

• Ou =

⎧
⎪⎪⎨

⎪⎪⎩

O1,u ∪O2,u if u ∈ S+
φ 0

Oi,u if u ∈ S+
φ i \ S+

φ 0 for i ∈ {1, 2}
∅ otherwise;

• M ⊆ cAlg(〈Sφ, O〉) is the class of all pairs 〈A, c〉 such that, for i ∈ {1, 2},
〈A|hi , c〉 ∈Mi, where hi = 〈fi, gi〉 is the signature morphism whose compo-
nents are the inclusions fi : Sφ i → Sφ and gi : Oi → O.

In the fibring R1 � R2, the set M consists of all those pairs 〈A, c〉 that can be
obtained by joining together any two pairs 〈A1, c1〉 ∈M1 and 〈A2, c2〉 ∈M2 such
that A1 s = A2 s = As for every s ∈ Sφ 0, oA1 = oA2 = oA for every o ∈ O0,u with
u ∈ S+

φ 0, and c1 = c2 = c. The fibring of c-rooms R1 and R2 corresponds to a
pushout in the category of c-rooms.

For propositional based logics, we can also define deduction rooms

〈〈{φ}, O〉, Rg, R�〉
where Rg and R� are sets of respectively global and local inference rules, similar
to the Hilbert calculi introduced in Chapter 2. Then, given two deduction rooms
〈〈{φ}, O1〉, Rg1, R�1〉 and 〈〈{φ}, O2〉, Rg2, R�2〉 their fibring is

〈〈{φ}, O1〉, Rg1, R�1〉� 〈〈{φ}, O2〉, Rg2, R�2〉 = 〈〈{φ}, O〉, Rg, R�〉
where O is defined as above, Rg = Rg1 ∪ Rg2 and R� = R�1 ∪ R�2. Derivations
and all the related notions are defined as expected.

The notions of soundness and completeness of a deductive room for a c-room
are also defined as expected. In [39], preservation results for soundness and com-
pleteness by fibring, in this propositional setting, are presented. Those results are
extended beyond the propositional case in [38].
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When dealing with heterogeneous specifications, the notion of heteromorphism
between algebras is very useful. Given a signature morphism σ : Σ → Σ′, and
algebras A and A′ over Σ and Σ′, respectively, we say that h : A → A′ is an
heteromorphism if h : A→ A′ is a map between the carriers of the algebras that is
a homomorphism between A and the reduct A′|σ. Based on this notion, a solution
to the collapsing problem for global reasoning was introduced in [40].

11.5 Emergent applications

In this section, we briefly point out new applications where we can investigate
the advantages of fibring techniques. Among them we refer to security, quantum
computation and information and space-time. In all these applications there is
a mixture of operators that have a different flavor. Moreover, it seems that new
operators have to be introduced and studied.

Security

Among the first logical accounts of security, we can refer to the authentication
logic (now known as BAN logic) introduced in [32]. In this logic, we have formulas
like the following:

• P |≡ X for “Principal P believes statement X”;

• P � X for “Principal P sees X”;

• P |∼ X for “Principal P once said statement X”;

• K&→ P for “Principal P has K as public key”;

• P K↔ Q for “Principals P and Q may use the shared key K”;

• {X}K for “Statement X encrypted under the key K”.

An example of a rule is the following:

P |≡ P
K↔ Q P � {X}K
P |≡ Q|∼ X

meaning that if P believes that key K is shared with Q and sees a message X
encrypted under K, then P believes that Q once said statement X. Hence, we
can detect different aspects that can be modeled by belief and temporal operators
among others. Hence, a possible methodology would be to start by isolating the
different components and choosing a particular logic for each component. Then,
study the metaproperties. Afterward define the fibring of the component logics
and analyze the preservation of the metaproperties. Finally, include the interaction
axioms and testing if the original logic is recovered.
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More recently, a logic was proposed in [141] for reasoning about information
hiding in general and anonymity in particular, in the context of multiagent systems.

Assume that we have n agents i = 1, . . . , n and e is the environment agent.
Consider the signature C of our logic to be defined as follows:

• C0 = P;

• C1 = {¬} ∪ {�i : i = 1, . . . , n};

• C2 = {⇒}.

Let L(C) to be defined as follows: C0 ⊆ L(C), (¬ϕ), (�ϕ) ∈ L(C) whenever
ϕ ∈ L(C), (ϕ1⇒ϕ2) ∈ L(C) whenever ϕ1, ϕ2 ∈ L(C). In P we have propositional
symbols of the form θai where i = 1, . . . , n. The elements of the set

{a : θai ∈ P}

are called actions.
The propositional symbol θai stands for “agent i has performed action a or will

perform a in the future”.
We provide a brief account of the semantics. We assume that an interpretation

structure is a pair 〈S, r〉 where S is a set (of states) and r : N → Sn+1 is a map
(a run). A run r associates a global state 〈se, s1, . . . , sn〉 to each n ∈ N and we
denote by ri(n) the state si corresponding to the (local) state of agent i at the
point n of run r. An interpretation system is a pair

I = 〈R, π〉

where R is a set of interpretation structures and π : R× N → ℘P is a map. The
satisfaction of ϕ ∈ L(C) by I at 〈S, r〉 ∈ R and n, denoted by

I, 〈S, r〉, n � ϕ

is then inductively defined as follows:

• I, 〈S, r〉, n � ϕ if ϕ ∈ π(〈S, r〉, n) for ϕ ∈ P;

• I, 〈S, r〉, n � (¬ψ) if I, 〈S, r〉, n �� ψ;

• I, 〈S, r〉, n � (ψ1 ⇒ ψ2) if either I, 〈S, r〉, n �� ψ1 or I, 〈S, r〉, n � ψ2;

• I, 〈S, r〉, n � (�iϕ) if
I, 〈S′, r′〉, n′ � ϕ for all 〈S′, r′〉 ∈ R, n′ ∈ N such that r(n) = r′(n′).

An interpretation structure I satisfies ϕ if I, 〈S, r〉, n � ϕ for all 〈S, r〉 ∈ R and
n ∈ N.



552 CHAPTER 11. SUMMING-UP AND OUTLOOK

With semantics we are able to express several kinds of anonymity. For instance,
an action a performed by agent i is minimally anonymous with respect to agent j
in an interpretation system I if

I � (¬(�jθ
a
i )).

That is, agent j does not know if agent i performed or will perform action a.
Hence, given a protocol described by a set of formulas, we can prove (semantically)
whether or not it satisfies the anonymity assertions.

It seems worthwhile to study the properties of the underlying logic and we be-
lieve that fibring can help in this. But before it also seems interesting to investigate
the properties of each �i as well as promoting θai to operators.

Also in [141], probabilities are used to express anonymity namely for quantifying
the uncertainty of observers about the system. It is clear now that probabilities
should be present in most security contexts. Another example is zero-knowledge
protocols as we will know illustrate following the example in [202].

A zero-knowledge protocol is a protocol that allows a prover to show to a veri-
fier that he has a secret without revealing it (for more details on zero-knowledge
protocols see [136]). The protocol consists of three steps:

• First, the prover sends a value (commitment) to the verifier such that, if he
has the secret, for any challenge put to him by the verifier, he is able to send
a response convincing the verifier that he has the secret. If he is cheating,
then, he cannot produce a response at least with probability 1

2 ;

• Second, the verifier sends a random bit (challenge) to the prover;

• Finally, the prover sends a response according to the bit received.

In principle there are three objectives:

1. The verifier has probability 1 of verifying the secret, if indeed the prover has
it (soundness);

2. The verifier has probability less than 1 of verifying the secret, if the prover
is cheating (completeness);

3. The verifier can not learn the secret (security).

For describing the protocol above we can use classical propositional logic endowed
with probability operator

∫
and global connective � for relating assertions involv-

ing probability reasoning as well as propositional formulas. For instance, (
∫
ϕ)

where ϕ is a propositional formula means the probability of ϕ. From a semantic
point of view we have to work with probability structures that are pairs 〈V, μ〉
where V is a set of valuations and μ is a probability measure over ℘V . A probabil-
ity structure 〈V, μ〉 satisfies (

∫
ϕ) if μ({v ∈ V : v � ϕ}) = 1. On the other hand, a

probability structure 〈V, μ〉 satisfies (ψ1 � ψ2) if either 〈V, μ〉 �� ψ1 or 〈V, μ〉 � ψ2.
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Finally, 〈V, μ〉 �� ϕ, where ϕ is a classical propositional formula if v �� ϕ for every
v ∈ V . For more details, including a Hilbert calculus, see [202].

Returning to the zero-knowledge protocol, let Π be {s, a, c} where s is the
propositional symbol for stating that the prover has a secret, a is the propositional
symbol for stating that the verifier accepts the secret of the prover and finally, c is
the propositional symbol for stating that the commitment is compatible with the
challenge. The specification S of the zero-knowledge protocol is as follows:

S1 ((s ∧ c)⇒ a)
S2 ((s ∧ (¬ c))⇒ a)
S3 (((¬ s) ∧ c)⇒ (¬ a))
S4 (((¬ s) ∧ (¬ c))⇒ a)
S5 ((

∫
(¬ c)) = 1

2 )

From S, we prove
O1 (s � ((

∫
a) = 1))

O2 ((¬ s) � ((
∫
a) < 1))

corresponding to objectives 1 and 2 respectively.
We conclude by noting that it seems that an essential mechanism should be

provided for combining logics with probability.
Also for security applications, some new operators are also relevant. Namely,

we illustrate the almost everywhere quantifier as introduced and analyzed in [67].
Assume that we have a first-order signature 〈F, P 〉. To the usual set of formulas
we add the formula (AExϕ) to be read as “almost everywhere ϕ”. Semantically
speaking we have to enrich first-order structures with a measurable component.

An interpretation structure is a tuple

M = 〈D, [[·]],B, μ〉

where:

• D is a non-empty set;

• 〈D, [[·]]〉 is a first-order interpretation structure, that is:

– for each f ∈ Fn, [[f ]] : Dn → D;

– for each p ∈ Pn, [[p]] : Dn → {0, 1}.

• 〈D,B, μ〉 is a measure space, that is:

– B is a σ-algebra over D;

– μ is a measure on B.

• μ(D) �= 0.
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Satisfaction in a structure 〈D, [[·]],B, μ〉 given a variable assignment ρ is defined
in the usual way as for FOL, with the following extra clause:

M, ρ � AExϕ if there is B ∈ B such that (D \ |ϕ|xMρ) ⊆ B and μ(B) = 0

where |ϕ|xMρ (the extent of ϕ relative to x in model M with assignment ρ) is
defined by

|ϕ|xMρ = {d ∈ D : M, ρxd � ϕ}
where ρxd is the assignment such that ρxd(y) = ρ(y) for y �= x and ρxd(x) = d.

It seems worthwhile to fiber such an operator with, for instance, knowledge
operators.

Quantum computation

A quantum logic was first proposed in [22]. Recently, there is a growing interest
in quantum logic motivated by quantum information and computation. Among
relevant contributions, we can refer to [14] and [201]. Herein we give the flavor
of quantum logic as presented in [201]. For this purpose, we introduce possible
axioms for the Schrödinger cat problem.

The relevant attributes of the cat are: being inside or outside the box, alive
or dead, and moving or still. We use the quantum bits cat-in-box, cat-alive and
cat-moving for representing these three attributes. The formulas constrain the
state of the cat at different levels of detail:

1. [cat-in-box, cat-alive, cat-moving];

2. (cat-moving⇒ cat-alive);

3. ((� cat-alive) � (� (¬ cat-alive)));

4. (�[cat-alive]);

5. (
∫
cat-alive = 1

3 );

6. ([cat-alive, cat-moving]� (cat-alive ∧ cat-moving) : 1√
6
,

(cat-alive ∧ (¬ cat-moving)) : 1√
6
,

((¬ cat-alive) ∧ (¬ cat-moving)) : ei
π
3

√
2
3 ).

We provide an intuitive interpretation of the formulas above. Assertion 1 states
that the quantum bits cat-in-box, cat-alive and cat-moving are not entangled with
the other quantum bits of the cat system. Assertion 2 is a classical constraint on
the set of admissible valuations: if the cat is moving then it is alive. Assertion 3
states the famous paradox: the cat can be in a state where it is possible that the cat
is alive and it is possible that the cat is dead. Assertion 4 states that the quantum
bit cat-alive is entangled with other quantum bits. Assertion 5 states that the
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cat is in a state where the probability of observing it alive (after collapsing the
wave function) is 1

3 . Finally, assertion 6 states that the quantum bits cat-alive and
cat-moving are not entangled with other quantum bits and that in the quantum
state there is a classical valuation with amplitude 1√

6
where the cat is alive and

moving, there is another classical valuation also with amplitude 1√
6

where the cat

is alive and not moving, and there is a classical valuation with amplitude ei
π
3

√
2
3

where the cat is dead (and, thus, thanks to 2, also not moving).
For better understanding of the formulas above, recall that the states of an

isolated quantum bit are vectors of the form z0|0〉+ z1|1〉 in a Hilbert space where
z0, z1 ∈ C and |z0|2 + |z1|2 = 1. In other words, they are unit vectors in the
(unique up to isomorphism) Hilbert space of dimension two. In the logic presented
in [201], each quantum bit is represented by a propositional symbol (called a qubit
symbol). Furthermore, each qubit state (called quantum valuation) should be a
superposition of the two possible classical valuations.

Given a quantum valuation |ψ〉 and a classical valuation v, the inner product
〈v|ψ〉 is said to be the logical amplitude of |ψ〉 for v. Logical amplitudes are
important to evaluate probabilities. For example, if the system is in the particular
state

α00ω1 |00ω1〉+ α01ω2 |01ω2〉+ α01ω3 |01ω3〉+ α10ω4 |10ω4〉
then the probability of observing the first two qubits qb0, qb1 in the classical
valuation 01 is given by |α01ω2 |2 + |α01ω3 |2.

The logic in [201] is a classical propositional logic endowed with probability, with
global operators like � and terms for denoting logical amplitudes. It is shown there
to be weakly complete.

We observe that a challenge would be to combine logics with probability (once
more) and quantum mechanics features.

Space-time

Logics that put together space and time are nowadays of increasing interest. There
are two main streams. One of them is dedicated to adding topological operators to
temporal logic (see [172, 2]). These logics are generally called dynamic topological
logics and were introduced in [171, 170, 173] and in [12].

In order to illustrate a logic endowed with such operators we refer to [119, 165,
166]. In these papers, temporal logic is endowed with some metric operators. For
instance, we have the following formulas (∃≤aϕ) and (∀≤aϕ) where a is a positive
rational number. Semantically speaking, the appropriate structure is a metric
model, that is, a pair 〈〈W,d〉, V 〉 where 〈W,d〉 is metric space, and V : P → ℘W
is a map. We say that 〈〈W,d〉, V 〉 satisfies formula ψ at point w, denoted by
〈〈W,d〉, V 〉, w � ψ, if:

• 〈〈W,d〉, V 〉, w � (∃≤aϕ) if there exists w′ ∈ W such that d(w,w′) ≤ a and
〈〈W,d〉, V 〉, w′ � ϕ;
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• 〈〈W,d〉, V 〉, w � (∀≤aϕ) if 〈〈W,d〉, V 〉, w′ � ϕ for every w′ ∈ W such that
d(w,w′) ≤ a.

From a semantic point of view, we can interpret the operators above as well as the
linear temporal operators ©,�,� in a structure

〈〈〈W,d〉, V 〉, f, μ〉
where:

• 〈〈W,d〉, V 〉 is a metric model;

• f : W →W is an isometric map;

• μ ≤ ω is an ordinal.

We say that a structure 〈〈〈W,d〉, V 〉, f, μ〉 satisfies δ in w ∈ W after m ≤ μ
iterations where m is a finite ordinal, denoted by

〈〈〈W,d〉, V 〉, f, μ〉, w,m � δ

whenever

• 〈〈W,d〉, V 〉, f, μ〉, w,m � p if w ∈ V (p);

• 〈〈〈W,d〉, V 〉, f, μ〉, w,m � (¬ϕ) if 〈〈〈W,d〉, V 〉, f, μ〉, w,m �� ϕ;

• 〈〈〈W,d〉, V 〉, f, μ〉, w,m � (ϕ1 ⇒ ϕ2)

if 〈〈〈W,d〉, V 〉, f, μ〉, w,m � ϕ2 or 〈〈〈W,d〉, V 〉, f, μ〉, w,m � (¬ϕ1);

• 〈〈〈W,d〉, V 〉, f, μ〉, w,m � (∃≤aϕ) if 〈〈W,d〉, V 〉, w � (∃≤aϕ);

• 〈〈〈W,d〉, V 〉, f, μ〉, w,m � (∀≤aϕ) if 〈〈W,d〉, V 〉, w � (∀≤aϕ);

• 〈〈〈W,d〉, V 〉, f, μ〉, w,m � (©ϕ) if 〈〈W,d〉, V 〉, f(w),m + 1 � ϕ and m < μ;

• 〈〈〈W,d〉, V 〉, f, μ〉, w,m � (�ϕ)

if 〈〈W,d〉, V 〉, fn(w),m+ n � ϕ for every n ≥ 0 such that m+ n ≤ μ;

• 〈〈〈W,d〉, V 〉, f, μ〉, w,m � (�ϕ)

if 〈〈W,d〉, V 〉, fn(w),m+ n � ϕ for some n ≥ 0 such that m+ n ≤ μ.

It seems worthwhile to investigate the properties of the metric operators per se
and use the fibring techniques in order to be able to prove metaproperties about
the whole logic. That is, one can study on one hand the logic for time and, on
the other hand, the logic for space and then use combining tools to obtain the
space-time logic.

The interested reader can also have a look at [246, 5] for applications of space-
time to physics.
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11.6 Outlook

We start by referring to topics in fibring that need further investigation. Then, we
will point out new forms of combination that should be developed in order to cope
with emergent applications. In most cases, the combination is not fully logical in
the sense that it is not just pure combinations of logics.

Perhaps the most challenging one is related to capture logics whose deductive
components do not induce a consequence operator, in the sense of Section 1.1 of
Chapter 1. Once this problem is solved we will be able to combine logics like
linear logics and we shall also know how to combine different kinds of sequent
calculi (where the antecedent and the consequent of a sequent can be a list, a
multiset, a set, etc) endowed with different kinds of rules. As we referred to in
Chapter 4, we believe that using polycategories, as introduced in [254], can be
a possible solution (generalizing the approach in [175]). It may be the case that
some fundamental research in polycategories has still to be done.

Once the problem above is better understood, it seems worthwhile to develop the
semantic counterpart and to analyze metaproperties in this more general setting.

In what concerns state-of-the-art fibring, we believe that there are some issues
worthwhile to be pursued, namely, preservation of metaproperties such as weak
completeness, finite model, decidability and complexity. In what concerns weak
completeness we believe that the techniques used in the Chapter 4 will be of use
to this problem. In what concerns the finite model property and decidability
it seems worthwhile to try to generalize the known and useful techniques that
are available for modal logics. Another issue is related with the relaxation of
the metatheorem of deduction aiming at providing sufficient conditions for the
preservation of completeness of more logics.

Moreover, it seems worthwhile to investigate fibring of sequent calculus labeled
with truth-values and obtain preservation results for cut elimination.

As referred to in Chapter 6, we believe that the semantic counterpart for ana-
lyzing first-order based logics considered therein is not general enough, contrarily
to the degree of abstraction that we use for both propositional based logics and
higher-order logics. Generalizing cylindrical algebras to the more general setting
and discussing therein the generalized Barcan formulas seem to be an investigation
direction worthwhile to pursue.

As we pointed out before, the techniques of fibring seem to be ready to cope with
many applications. However, fibring has to be complemented in order to be useful
to some emergent applications. In all of them the problem can be described as
follows: we start with a logic L (that can already be the fibring of other logics) and
we want to enrich the language with a new (non-logical) operator. This operator
can be a probability operator, a quantum operator or a space operator. In the case
of probability and quantum operators there is no mixture between the connectives
of the logic and either probabilities or quantum aspects. That is, for instance,
we can apply probabilities to the formulas in the logic L but we cannot apply
connectives in L to formulas involving the probability operator. We call pL the
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logic resulting from the enrichment of L with a probability operator. In the case
of space operators, in general we can fully mix them with the connectives of L.

We now detail some issues related to the introduction of probability operators,
that we call probabilization of a logic. Assume that we have a logic L with a
language L, a Hilbert calculus H and a class of models M . The probabilization of
a logic involves the following steps:

• We have three steps to enrich the language:

– considering terms of the kind (
∫
ϕ), referring to the probability of ϕ

where ϕ ∈ L;

– choosing the adequate subset of the set of real numbers or, alternatively,
choosing a real-closed field so that we can have additional terms to be
compared with probability terms;

– adopting some classical logic to reason over comparisons of terms.

• The semantic structures for the probability logic pL are triples 〈M ′,B, μ〉
where M ′ ⊆M , B is a σ-algebra over ℘M ′ and μ : B → [0, 1] is a probability
measure.

• In what concerns denotation of terms, we say that

[[(
∫
ϕ)]] = μ({m ∈M ′ : m′ �L ϕ}).

• With respect to the Hilbert calculus of pL, we have to introduce some axioms
related to probabilities, namely: μ(ψ) = 1 for every formula ψ ∈ L such that
M ′ � ψ.

We observe that the axioms for representing probability aspects depend on the
logic L. In particular, probabilities are well suited for propositional logic in the
sense that it is possible to relate the probability of a formula with the probabilities
of its subformulas. For instance the following equivalence holds:

((
∫

(¬ϕ))⇔ (1− (
∫
ϕ))).

However, things are not so easy when we consider modal logic and, in particular,
the formula (

∫
(�ϕ)).

An interesting problem is related to the transference of metaproperties. For
instance, which additional conditions should be imposed in order to get a complete
pL when L is complete. In [202] a proof of preservation of completeness is presented
when L is classical propositional logic. The logic for relating comparisons of terms
considered therein is also a generalized classical propositional logic. The proof
of preservation of completeness capitalizes in properties of classical logic such as
having normal forms.
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theory and practice. Journal of Logic and Computation, 7(6):685–717, 1997.

[17] B. Beckert and D. Gabbay. Fibring semantic tableaux. In Automated Rea-
soning with Analytic Tableaux and Related Methods, volume 1397 of Lecture
Notes in Computer Science, pages 77–92. Springer, 1998.

[18] J. Bell. Toposes and Local Set Theories. Oxford University Press, 1988.

[19] T. Bench-Capon. Persuasion in practical argument using value-based ar-
gumentation frameworks. Journal of Logic and Computation, 13:429–448,
2003.

[20] J. Bicarregui, T. Dimitrakos, D. Gabbay, and T. Maibaum. Interpolation
in practical formal development. Logic Journal of the IGPL, 9(2):231–243,
2001.

[21] G. Birkhoff. Lattice Theory. AMS Colloquium Publications, 1967.

[22] G. Birkhoff and J. von Neumann. The logic of quantum mechanics. Annals
of Mathematics, 37(4):823–843, 1936.

[23] P. Blackburn and M. de Rijke. Zooming in, zooming out. Journal of Logic,
Language and Information, 6(1):5–31, 1997.

[24] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic, volume 53 of Tracts
in Theoretical Computer Science. Cambridge University Press, 2001.

[25] W. Blok. On the degree of incompleteness of modal logics. Bulletin of the
Section of Logic of the Polish Academy of Sciences, 7(4):167–175, 1978.



BIBLIOGRAPHY 561

[26] G. Boolos. The Logic of Provability. Cambridge University Press, 1993.

[27] L. Borkowski, editor. J. �Lukasiewicz Selected Works. Studies in Logic and
the Foundations of Mathematics. Elsevier, North Holland, 1970.

[28] B. Boutsinas and M. Vrahatis. Artificial nonmonotonic neural networks.
Artificial Intelligence, 132:1–38, 2001.

[29] J. Bueno-Soler and W. Carnielli. Possible-translations algebraization for
paraconsistent logics. Bulletin of the Section of Logic, University of Lodz,
34(2):77–92, 2005.

[30] J. Bueno-Soler, M. Coniglio, and W. Carnielli. Finite algebraizability via
possible-translations semantics. In Carnielli et al. [50], pages 79–86.

[31] J. Bueno-Soler, M. Coniglio, and W. Carnielli. Possible-translations alge-
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Lisboa, 2000.

[35] C. Caleiro, W. Carnielli, M. Coniglio, and J. Marcos. Two’s company: “The
humbug of many-logical values”. In J.-Y. Béziau, editor, Logica Universalis,
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[280] R. Wójcicki. Theory of Logical Calculi: Basic Theory of Consequence Oper-
ations, volume 199 of Synthese Library. Kluwer, 1988.

[281] F. Wolter. Fusions of modal logics revisited. In Advances in Modal Logic,
volume 1, pages 361–379. CSLI Publications, 1998.

[282] A. Zanardo, A. Sernadas, and C. Sernadas. Fibring: Completeness preser-
vation. The Journal of Symbolic Logic, 66(1):414–439, 2001.



Subject index

accessibility relation, 95
algebra, 92

�Lukasiewicz, 96
Boolean, 93
free, 92
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