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Preface

Perhaps no area of mathematics has changed as dramatically as matrices over
the last 25 years. This is due to both the advent of the computer as well as the
introduction and acceptance of matrix methods into other applied disciplines.
Computers provide an efficient mechanism for doing iterative computations. This,
in turn, has revolutionized the methods used for locating eigenvalues and
eigenvectors and has altered the usefulness of many classical techniques, such as
those for obtaining inverses and solving simuitaneous equations. Relatively new
fields, such as operations research, lean heavily on matrix algebra, while estab-
lished fields, such as economics, probability, and differential equations, continue
to expand their reliance on matrices for clarifying and simplifying compliex
concepts.

This book is an algorithmic approach to matrix operations. The more
complicated procedures are given as a series of steps which may be coded in a
straightforward manner for computer implementation. The emphasis throughout
is on computationally efficient methods. These should be of value to anyone who
needs to apply matrix methods to his or her own work.

The material in this book is self-contained; all concepts and procedures are
stated directly in terms of matrix operations. There are no prerequisites for using
most of this book other than a working knowledge of high school algebra. Some
of the applications, however, do require additional expertise, but these are
self-evident and are limited to short portions of the book. For example, elemen-
tary calculus is needed for the material on differential equations.

Each chapter of this book is divided into three sections. The first introduces
concepts and methodology. The second section consists of completely worked-out
problems which clarify the material presented in the first section and which, on
occasion, also expand on that development. Finally, there is a section of problems
with answers with which the reader can test his or her mastery of the subject
matter.

I wish to thank the many individuals who helped make this book a reality. I
warmly acknowiedge the contributions of William Anderson, whose comments on
coverage and content were particularly valuable. I am also grateful to Howard
Karp and Martha Kingsley for their suggestions and assistance. Particular thanks
are due Edward Miliman for his splendid editing and support, David Beckwith of
the Schaum staff for overseeing the entire project, and Marthe Grice for technical
editing.

RICHARD BRONSON
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Chapter 1

Basic Operations

MATRICES

A muatrix is a rectangular array of elements arranged in horizontal rows and vertical columns, and
usually enclosed in brackets. In this book, the elements of a matrix will almost always be numbers or
functions of the variable t. A matrix is real-valued (or, simply, real) if all its elements are real
numbers or real-valued functions; it is complex-valued if at least one element is a complex number or
a complex-valued function. If all its elements are numbers, then a matrix is called a constant matrix.

Example 1.1

1 2] [0.5 sin 7 t+l] _ .
[3 4 6 0 cost and [-1.7, 246, —3i, 0]
are all matrices. The first two on the left are real-valued, whereas the third is complex-valued (with i = V —1);
the first and third are constant matrices, but the second is not constant.

Matrices are designated by boldface uppercase letters. A general matrix A having r rows and ¢
columns may be written

where the elements of the matrix are double subscripted to denote location. By convention, the row
index precedes the column index, thus, a,; represents the element of A appearing in the second row
and fifth column, while a,, represents the element appearing in the third row and first column. A
matrix A may also be denoted as [a,], where a; denotes the general element of A appearing in the
ith row and jth column.

A matrix having r rows and ¢ columns has order (or size) “r by c,” usually written r X c. The
matrices in Example 1.1 have order 2x 2, 2x 3, and 1 x4, respectively from left to right. Two
matrices are equal if they have the same order and their corresponding elements are equal.

The transpose of a matrix A, denoted as A" is obtained by converting the rows of A into the
columns of A" one at a time in sequence. If A has order m X n, then A has order n X m.

3

Example 1.2 If

1 2
A=[3 4] then AT=[; i g]
56

VECTORS AND DOT PRODUCTS

A vector is a matrix having either one row or one column. A matrix consisting of a single row is
called a row vector; a matrix having a single column is called a column vector. The dot product A+B
of two vectors of the same order is obtained by multiplying together corresponding elements of A
and B and then summing the results. The dot product is a scalar, by which we mean it is of the same
general type as the elements themselves. (See Problem 1.1.)

1
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MATRIX ADDITION AND MATRIX SUBTRACTION

The sum A+ B of two matrices A=[a;] and B=[b ] having the same order is the matrix
obtained by adding corresponding elements of A and B. That is,

A+B= [ai,'] + [bi,‘] = [aij + bi,']
Matrix addition is both associative and commutative. Thus,
A+(B+C)=(A+B)+C and A+B=B+A

(See Problem 1.2))

The matrix subtraction A — B is defined similarly: A and B must have the same order, and the
subtractions must be performed on corresponding elements to yield the matrix [a; — b ]. (See
Problem 1.3.)

SCALAR MULTIPLICATION AND MATRIX MULTIPLICATION

For any scalar k (in this book, usually a number or a function of ¢), the matrix kA (or,
equivalently, Ak) is obtained by multiplying every element of A by the scalar k. That is,
kA = k[a,] = [ka;]. (See Problem 1.3.)

Let A=[a;] and B =(b;] have orders » X p and p X ¢, respectively, so that the number of
columns of A equals the number of rows of B. Then the product AB is defined to be the matrix
C =[c,] of order r X ¢ whose elements are given by

P
Criz,z',afkbki (i=12,...,rj=12,...,0)

Each element c, of AB is a dot product; it is obtained by forming the transpose of the ith row of A
and then taking its dot product with the jth column of B. (See Problems 1.4 through 1.7.)

Matrix multiplication is associative and distributes over addition and subtraction; in general, it is
not commutative. Thus,

A(BC)=(AB)C A(B+C)=AB + AC (B-C)A=BA-CA
but, in general, AB > BA. Also,
(AB)" =B'A"

ROW-ECHELON FORM

A zero row in a matrix is a row whose elements are all zero, and a nonzero row is one that
contains at least one nonzero element. A matrix is a zero matrix, denoted 0, if it contains only zero
rows,

A matrix is in row-echelon form if it satisfies four conditions:

(R1): All nonzero rows precede (that is, appear above) zero rows when both types are contained in
the matrix.

(R2): The first (leftmost) nonzero element of each nonzero row is unity.

(R3): When the first nonzero element of a row appears in column ¢, then all elements in column ¢
in succeeding rows are zero.

(R4): The first nonzero element of any nonzero row appears in a later column (further to the right)
than the first nonzero element of any preceding row.
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Example 1.3 The matrix

103 23
00102
000 0O

satisfies all four conditions and so is in row-echelon form. (See Problems 1.11 to 1.15 and 1.18.)

ELEMENTARY ROW AND COLUMN OPERATIONS

There are three elementary row operations which may be used to transform a matrix into
row-echelon form. The origins of these operations are discussed in Chapter 2; the operations
themselves are:

(El): Interchange any two rows.

(E2): Multiply the elements of any row by a nonzero scalar.

(E3): Add to any row, element by element, a scalar times the corresponding elements of another

row,

Three elementary column operations are defined analogously.
An algorithm for using elementary row operations to transform a matrix into row-echelon form is

as follows;

STEP 1.1:

STEP 1.2:

STEP 1.3:

STEP 1.4:

STEP 1.5:

STEP 1.6:

STEP 1.7:
STEP 1.8:

Let R denote the work row, and initialize R =1 (so that the top row is the first work
row).

Find the first column containing a nonzero element in either row R or any succeeding
row. If no such column exists, stop; the transformation is compiete. Otherwise, let C
denote this column.

Beginning with row R and continuing through successive rows, locate the first row
having a nonzero element in column C. If this row is not row R, interchange it with row
R (elementary row operation E1). Row R will now have a nonzero element in column
C. This element is called the pivot; let P denote its value.

If Pis not 1, multiply the elements of row R by 1/P (elementary row operation E2);
otherwise continue.

Search all rows following row R for one having a nonzero element in column C. If no
such row exists, go to Step 1.8; otherwise designate that row as row N, and the value of
the nonzero element in row N and column C as V.

Add to the elements of row N the scalar —V times the corresponding elements of row R
(elementary row operation E3).

Return to Step 1.5.

Increase R by 1. If this new value of R is larger than the number of rows in the matrix,
stop; the transformation is complete. Otherwise, return to Step 1.2,

(See Problems 1.12 through 1.15.)

RANK

The rank (or row rank) of a matrix is the number of nonzero rows in the matrix after it has been
transformed to row-echelon form via elementary row operations. (See Problems 1.16 and 1.17.)
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Solved Problems

1.1 Find A-B and B-C’ for

AB=2(5)+3(6)+4(-7)=0,

S1[ 7
B-C'= { ﬁ:l : [ —8] =5(7) +6(—8) + (~=7)(-9) =50
-74 1-9

1.2 Show that A+ B=B + A for
o 1 [ 5]
A’[z 3] and B‘[s -7
[0 1].[4 5] _[0+4 1+5 7} [4 6
A+B‘[2 3]+[6 —7]'[2+6 3+(‘7)]_[8 —4]

_[4 5 0 1}]_[4+0 5+1]_[4 6
B+A_[6 —7]*[2 3]_[6+2 —7+3]‘[8 —4]

Since the resulting matrices have the same order and all corresponding elements are equal, A+ B=
B+A.

1.3 Find 3A — 0.5B for the matrices of Problem 1.2.

w-asn8 Yot 339 39]-[350 o3

-1623 20513 93]

1.4 Find AB and BA for the matrices of Problem 1.2.

0 1][4 5]=[0(4)+1(6) 0(5)+1(—7)]=[22 —7]

AB:[z 3ite -7 2(4)+3(6) 2(5)+3(-7) -11

sa-lg 35 §]=[6(%()03?—5%()2) 6(41()117{—57(%3)]%—12 2]

Note that, for these matrices, AB # BA.

Fu

1.5 Find AB and BA for .
|1 2 3 17 8]
a=ly 58] e m=[g
Since A has three columns while B has only two rows, the matrix product AB is not defined. But
BA—[7 8][1 2 3]_[ 7(1) + 8(4) 7(2) + 8(=5) 7(3) + 8(6) ]
Lo -9lla -5 61 [0()+(=9)(4) 0(2) +(=9)-5) 0(3)+(-9)(6)

=[ 39 -26 69]
-3 45 -54
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1.6

1.7

1.8

Verify that (BA)” = ATB” for the matrices of Problem 1.5.

L4, 1(7) + 4(8) 1(0) + 4(-9) 39 -36
A'BT = [2 —s}[ T =2 A E® 20+ (=5)=9) =[—26 45
3.6 3(7) +6(8) 3(0) +6(-9) 69 —54
which is the transpose of the product BA found in Problem 1.5.

Find AB and AC if

{ 4 20 2 3 1 31 -3
A= 2 1 0 B= 2 -2 =2 C= 0 2 6

|2 -1 1 -1 2 1 -1 2 1

4(2) +2(2) + 0(~1) 4(3) + 2(—2) +0(2) 4(1) + 2(=2) +0(1)

AB=| 2(2)+1(2) +0(-1) 2(3) + 1(=2) + 0(2) 2(1) + 1(=2) + 0(1)

| —2Q2)+ (-1)(2) + 1(-1) -23)+(-1)(-2)+1(2) —-2()+(-1)(-2)+1(1)

(12 8 0

=l 6 4 0]

| -7 21

[ 4(3) + 2(0) + 0(—1) 4(1) + 2(2) + 0(2) 4(=3) +2(6) + 0(1) 12 8 0
AC=] 2(3)+1(0)+0(=1) 2(1) + 1(2) + 0(2) 2(-3) + 1(6) + 0(1) { 6 4 o]

[ —23) + (-1)(0) + 1(—1) —2(1)+(-1)(2) +1(2) —2(=3)+ (=1)(6) + 1(1) -7 -2 1

Note that, for these matrices, AB = AC and yet B # C. This shows that the cancellation law is not valid
for matrix multiplication.

A matrix is partitioned if it is divided into smaller matrices by horizontal or vertical lines
drawn between entire rows and columns. Determine three partitionings of the matrix

1 2 3 4
A=10 0 5 6
7 8 -1 -2

There are 2° — 1 = 31 different ways in which A can be partitioned with at least one partitioning line.
By placing a line between each two rows and each two columns, we divide A into twelve 1 X 1 matrices,
obtaining

122 3% 4
A=10:0: 5:.6
7:81~-11+-2

By placing one line between the first and second rows and another line between the second and third
columns, we construct the partitioning

R I S I

A third partitioning can be constructed by placing a single line between the third and fourth columns
of A. Then A =[G, H], where
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1 2 3 4
G=|0 0 5 and H= 6
7 8 -1 -2

A partitioned matrix can be viewed as a matrix whose elements are themselves matrices.

1.9  The arithmetic operations defined above for matrices having scalar elements apply as well to
partitioned matrices. Determine AB and A — B if

[c D _[F G
A‘[E c] and  B={p E]

112 10 0 15 6 -1 0 -2 -3
where C‘[3 4] D‘[o 0] E‘[7 s] F‘[ 2 1] G'[ ] 1]

AB = [ CF + DF CG+DE]
“LEF+CF EG+CE

ER ] S R R R R A
Jlealeboobl e Shly o

C-F o o] 7L 11
B (N HREAH
7 8 2 113 4 7 8

2 2]5[ 2 3] 22 2 3

o 3hb-1 -1J3_J1 3 -1 -1

“ire '6']:['—4 —4] “l6 6 -4 -4

5 7ll-4 -4 5 7 -4 -4

1.10 Partitioning can be used to check matrix multiplication. Suppose the product AB is to be
found and checked. Then A and B are replaced by two larger partitioned matrices, such that

their product is
A _|AB AC
[RJmei=(gs Rl

where R is a new row consisting of the column sums of A, and C is a new column consisting of
the row sums of B. The resulting matrix has the original product AB in the upper left
partition. If no errors have been made, AC consists of the row sums of AB; RB consists of the
column sums of AB; and RC is the sum of the elements of AC as well as the sum of the
elements of RB. Use this procedure to obtain the product

2 23 722
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1.11

1.12

1.13

We form the partitioned matrices and find their product:

. S LR

9

'7
—
w
[\S]
—
| —
w W
|
N
[
|
—
W
N
—t
|
~3
—

The product AB is the upper left part of the resulting matrix. Since the row sums of this product, the
column sums, and their sums are correctly given in the matrix, the multiplication checks.

Determine which of the following matrices are in row-echelon form:

1 2 -1 0
sefoo 1al [0 1] ee[0 3]
[0 0 00
[0 1 0 4
D=0013J E=[i§3]
L0 0 0 1

Only A and D are in row-echelon form. B is not, because the first (leftmost) nonzero element in the
second row is further left than the first nonzero element in the top row, violating condition R4.
Condition R2 is violated in the first row of C. Matrix E violates condition R3, because the first nonzero
element in the lower row appears in the same column as the first nonzero element of the upper row.

Use elementary row operations to transform matrices B, C, and E of
Problem 1.11 into row-echelon form.

We follow Steps 1.1 through 1.8 in each case, but for simplicity list only those steps that result in a
matrix manipulation. For B, with R=1 (Step 1.1) and C=1 (Step 1.2), we apply Step 1.3 and
interchange rows 1 and 2, obtaining.

[l 2 3]
01 4

which is in row-echelon form. For matrix C, with R =1 (Step 1.1), C =2 (Step 1.2), and P =2 (Step
1.3), we apply Step 1.4 and multiply all elements in the first row by 1/2, obtaining

[() 1 2]
0 01
which is in row-echelon form. For matrix E, with R =1 (Step 1.1), C=1(Step 1.2),and N =2 and V=4

(Step 1.5), we apply Step 1.6 by adding, to each element in row 2, —4 times the corresponding element
in row 1; the result is

1 2 3 1 2 3
[4+(—4)(1) 9+ (-4)(2) 7+(—4)(3)]=[0 1 —5]

which is in row-echelon form.

Transform the following matrix into row-echelon form:
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2 -1

8 9 10

1 6
3
2 -1 2 -2

[CHAP. 1

Here (and in later problems) we shall use an arrow to indicate the row that results from each

elementary row operation.

1
-0

L2

2
2
-1

&

o

-1 6 Stepl.o6withR=1,C=1, N=2,
12 -8 and V=3: Add -3 times the first
2 -2 row to the second row.
-1 6 Step 1.6 with R=1, C=1, N=3,
12 -8 and V=2: Add —2 times the first
4 -—14 row to the third row.
-1 6 Step 1.4 with R=2, C=2, and
6 —4 P =2: Multiply the second row
4 -—14 by 1/2.
-1 6 Step 1.6 with R=2, C=2, N=3,
6 —4 and V= —5: Add 5 times the
34 -34 second row to the third row.
-1 6 Step 1.4 with R =3, C =3, and
6 —4 P =34: Multiply the third row by
1 -1 1/34.

1.14  Transform the following matrix into row-¢chelon form:

|

3611

2105:|
5 718

Step 1.4 with R=1, C=1, and

2: Muitiply the first row by

Stepl6withR=1,C=1, N=12,

Add -3 times the first
second row.

thR=1,C=1,N=3,
Add -5 times the first
third row.

with R=2,C=2, and
Multiply the second row

with R=2, C=2, N=23,
9/2: Add —9/2 times the

second row to the third row.

—-[1 1/2 0 5/2
3 6 1 1 P=
5 7 1 8 1/2.
{1 1/2 0 572
-0 9/2 1 -13/2 and V=3:
.S 7 1 8 row to the
't 1/2 0 572 Step 1.6 wi
0 9/2 1 -13/2 and V=35:
=10 9/2 1 —-9/2 row to the
1 1/2 5/2 1 step1.4
—-10 2/9 -=13/9 P=9/2:
L0 9/2 1 —-9/2 | by 2/9.
(1 1/2 5/2 | step 1.6
o 1 2/9 -—-13/9 and V=
- L0 0 2
1 /2 0 5/2 _} Step 1.4
0o t 2/9 -—-13/9 P=7
-0 0 0 1 1/2.

with R=3, C =4, and
Multiply the third row by
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1.15§ Transform the following matrix into row-echelon form:

1.16

1.17

1.18

3 21 -4 1
2 30 -1 -1

1 -6 3 -8 7

3 0 -1 -1| wbyis.

—-[1 2/3 1/3 -4/3 113} Step 1.4:  Multiply the first row
L1 -6 3 -8 7

—-|0 5/3 -2/3 5/3 —5/3 row to the second row.

1 2/3 1/3 -—-4/3 1/3} Step 1.6: Add -2 times the first
1 -6 3 -8 7

5/3 -=2/3 573 -5/3 row to the third row.

1 2/3 /3 -4/3  1/3 ] Step 1.6: Add —1 times the first
-20/3 8/3 -20/3 20/3

213 /73 -4/3  1/3 Step 1.4: Multiply the second row
-0 1 -2/5 1 -1 :| by 3/5.
L0 -20/3 8/3 -20/3 20/3
1 2/3 1/3 —4/3 1/3 Step 1.6: Add 20/3 times the
0 1 -2/5 1 —]} second row to the third row.
—L0 0 0 0 0

Determine the rank of the matrix of Problem 1.14,

Because the row-echelon form of this matrix has three nonzero rows, the rank of the original matrix
is 3.

Determine the rank of the matrix of Problem 1.15.

Because the row-echelon form of this matrix has two nonzero rows, the rank of the original matrix
is 2.

Show that row-echelon form is not unique if a matrix has rank 2 or greater.

Such a matrix has at least two nonzero rows after it is transformed into row-echelon form. By
adding the second row to the first row, a different row-echelon-form matrix is produced. As an example,
if we add the second row to the first row of the row-echelon-form matrix obtained in Problem 1.14, we
obtain

0 1 2/9 -13/9

[1 3/2 2/9 19/18:l
0 0 0 1

which is also in row-echelon form.
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Supplementary Problems

In Problems 1.19 through 1.32 let

O A I 3 T B ) B I B ] IR ST

1.19

1.20

1.21

1.22

123

1.4

1.25

1.26

1.27

1.28

1.29

1.30

1.31

1.32

1.33

.34

1.35

1 21 6 6 3 3

Find (a) A + B; (b) 3A; (c) 2A — 3B; (d) C - D; and (¢) A + F.

Designate the columns of A as A, and A,, and the columns of C as C,, C,, and C,, from left to right.
Then calculate (a) A, +A,; (b) C,-C;; and (¢) C, - C;.

Find (a) AB; (b) BA; (c) (AB)”; (d) B'A™; and (¢) A'B".

Find (a) CD and (b) DC.

Find A(A + B).

Find (2) CE and (b) EC.

Find (a) CF and (b) FC.

Find (z) EF and (b) FE.

Transform A to row-echelon form.

Transform B to row-echelon form.

Transform C to row-echelon form.

Transform D to row-echelon form.

Transform E to row-echelon form.

Find the rank of (a) A; (b) B; (¢) C; (d) D; and (e) E.

Find two matrices, neither of which is a zero matrix, whose product is a zero matrix.

The price schedule for a New York to Miami flight is given by the vector P = (240, 180, 89], where the
elements denote the costs of first class, business class, and tourist class tickets, respectively. The number
of tickets of each class purchased for a particular flight is given by the vector N =[8, 21, 115]). What is the

significance of P+ N?

The inventory of computers at each outlet of a three-store chain is given by the matrix

9 12
N=|15 4
7 0

where the rows pertain to the different stores and the columns denote the number of brand X and brand
Y computers, respectively, in each store. The wholesale costs of these computers are given by the vector
D = (700, 1200]". Calculate ND and state its significance.



Chapter 2

Simultaneous Linear Equations

CONSISTENCY
A system of simultaneous linear equations is a set of equations of the form

ayX, tapx, +ax,+--+a,.x,=b
Ay Xy + ApaXy + @paXy + -t a, x =b,
QX+ A X, +a, X3+ -+a, x, =b_ @n
The coefficients a,; (i=1,2,...,m; j=1,2,...,n) and the quantities b, (i=1,2,..., m) are
known constants. The x; (j=1,2,...,n) are the unknowns whose values are sought.
A solution for system (2.1) is a set of values, one for each unknown, that, when substituted in
the system, renders all its equations valid. (See Problem 2.1.) A system of simultaneous linear
equations may possess no solutions, exactly one solution, or more than one solution,

Example 2.1 The system

x, +x;=1
x, +x,=0

has no solutions, because there are no values for x, and x, that sum to 1 and 0 simultaneously. The system
x, +tx,=1

x, +2x,=2

has the single solution x, =0, x, = 1; and
x,—x;=0
2x, ~2x,=0

has a solution, x, = x, for every value of x,.

A set of simultaneous equations is consistent if it possesses at least one solution; otherwise it is
inconsistent,

MATRIX NOTATION

System (2.1) is algebraically equivalent to the matrix equation

AX=B (2.2)
ay dp Q3 a4y, Xy b,
a a Q,, ' a X, b
where A= 21 22 23 2n x = ol B - 2
Ant Gz Q3" "8, Xn b,
The matrix A is called the coefficient matrix, because it contains the coefficients of the unknowns.
The ith row of A (i=1,2, ..., m) corresponds to the ith equation in system (2.1), while the jth
column of A (j=1,2,...,n) contains all the coefficients of x;, one coefficient for each equation.

The augmented matrix corresponding to system (2.1) is the partitioned matrix [A|B). (See
Problems 2.2 through 2.4.)

11
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THEORY OF SOLUTIONS
Theorem 2.1: The system AX = B is consistent if and only if the rank of A equals the rank of [A | B].

Theorem 2.2: Denote the rank of A as k, and the number of unknowns as #. If the system AX =B is
consistent, then the solution contains n — k arbitrary scalars.

(See Problems 2.5 to 2.7.)

System (2.1) is said to be homogeneous if B=0; thatis, if b, =b,=+--=b, =0. If B#0 [i.e.,
if at least one b, (i=1,2,...,m) is not zero], the system is nonhomogeneous. Homogeneous
systems are consistent and admit the solution x, = x,- - - = x,, = 0, which is called the trivial solution;
a nontrivial solution is one that contains at least one nonzero value.

Theorem 2.3: Denote the rank of A as &, and the number of unknowns as n. The homogeneous
system AX = 0 has a nontrivial solution if and only if n # k. (See Problem 2.7.)

SIMPLIFYING OPERATIONS

Three operations that alter the form of a system of simultaneous linear equations but do not alter
its solution set are:

(01): Interchanging the sequence of two equations.
(02): Multiplying an equation by a nonzero scalar.
(03): Adding to one equation a scalar times another equation.

Applying operations O1, O2, and O3 to system (2.1) is equivalent to applying the elementary
row operations E1, E2, and E3 (see Chapter 1) to the augmented matrix associated with that system.
Gaussian elimination is an algorithm for applying these operations systematically, to obtain a set of
equations that is easy to analyze for consistency and easy to solve if it is consistent.

GAUSSIAN ELIMINATION ALGORITHM

STEP 2.1: Form the augmented matrix [A | B] associated with the given system of equations.

STEP 2.2: Use elementary row operations to transform [A | B] into row-echelon form (see Chapter
1). Denote the result as [C | D].

STEP 2.3: Determine the ranks of C and [C | D]. If these ranks are equal, comtinue; the system is
consistent (by Theorem 2.1). If not, stop; the original system has no solution.

STEP 2.4: Consider the system of equations corresponding to [C | D], discarding any identically
zero equations. (If the rank of C is k and the number of unknowns is n, there will be
n — k such equations.) Solve each equation for its first (lowest indexed) variable having
a nonzero coefficient.

STEP 2.5: Any variable not appearing on the left side of any equation is arbitrary. All other
variables can be determined uniquely in terms of the arbitrary variables by back
substitution.

(See Problems 2.5 through 2.8.) Other solution procedures are discussed in Chapters 3, 4, 5, and 21.

PIVOTING STRATEGIES

Errors due to rounding can become a problem in Gaussian elimination. To minimize the effect of
roundoff errors, a variety of pivoting strategies have been proposed, each modifying Step 1.3 of the
algorithm given in Chapter 1. Pivoting strategies are merely criteria for choosing the pivot element.
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Partial pivoting involves searching the work column of the augmented matrix for the largest
element in absolute value appearing in the current work row or a succeeding row. That element
becomes the new pivot. To use partial pivoting, replace Step 1.3 of the algorithm for transforming a
matrix to row-echelon form with the following:

STEP 1.3’: Beginning with row R and continuing through successive rows, locate the largest
element in absolute value appearing in work column C. Denote the first row in which
this element appears as row [. If [ is different from R, interchange rows [/ and R
(elementary row operation E1). Row R will now have, in column C, the largest
nonzero element in absolute value appearing in column C of row R or any row
succeeding it. This element in row R and column C is called the pivot; let P denote its
value.

(See Problems 2.9 and 2.10.)

Two other pivoting strategies are described in Problems 2.11 and 2.12; they are successively
more powerful but require additional computations. Since the goal is to avoid significant roundoff
error, it is not necessary to find the best pivot element at each stage, but rather to avoid bad ones.
Thus, partial pivoting is the strategy most often implemented.

Solved Problems

2.1 Determine whether x, =2, x, =1, and x, = —11 is a solution set for the system
2x, + x, =5
3x, +6x,+ x;,=1
Sx +7x; +x,=8
Substituting the proposed values for the unknowns into the left side of each equation gives

22y + 1(1) =3

3(2) +6(1) + 1(~=11) =1

S5y +7(1)y+ 1(—11)=6

The last equation does not yield 8 as required; hence the proposed values do not constitute a solution
set.

2.2 Write the system of equations given in Problem 2.1 as a matrix equation, and then determine
its associated augmented matrix.

210 Xy 5
A=]3 6 1 X=X B=|1
5 71 X 8

The original system can be written as AX = B; its augmented matrix is
21 0:'5
AIB]=]3 6 11
57 1.8
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Write the following system of equations in matrix form, and then determine its augmented
matnix:

3x, +2x,+ x,—4x,=
2x, + 3x, -x, =-—1
X, —6x,+3x,—8x,=

This system is equivalent to the matrix equation

X,

3 21 —4 1
X,

2 30 -1 =i -1
X,

1 -6 3 -8 x. 7

The associated augmented matrix is
3 21 -4 1
[AlB]=[2 3 0 -1:-

1 -6 3 -8

Observe that in both A and [A | B], the zero in the second row and third column corresponds to the
zero coefficient of x, in the second equation of the original system.

Write the set of simultaneous equations that corresponds to the augmented matrix

1 2/3 1/3 -4/3:1/3
jAIB]=]0 1 -2/5 1 -1
0 0 0 0 {0

The corresponding set of equations is

2 1 4. =1
x, +5x,+3x, - 3x,= 3

x;—dx,+ x,=-1

The third equation reduces to the tautology 0 =0 and is not written. Nor do we write any variable
having a zero coefficient.

Solve the set of equations given in Problem 2.1 by Gaussian elimination.

The augmented matrix for this system was determined in Problem 2.2 to be
21 0:5
[A|B]=|3 6 1:1
57 1:8

Using the results of Problem 1.14, we transform this matrix into the row-echelon form

1 1/2 0 i 572
[C[D]={0 1 2/9:-13/9
0 0 0 1

It follows from Problem 1.16 that the rank of [C|D] is 3. Submatrix C is also in row-echelon form
and has rank 2. Since the rank of C does not equal the rank of [C|D], the original set of equations is
inconsistent. The problem is the last equation associated with [C | D], which is

Ox, +0x, +0x, =1

and which clearly has no solution.



CHAP. 2] SIMULTANEOUS LINEAR EQUATIONS 15

2.6

2.7

Solve the set of equations given in Problem 2.3 by Gaussian elimination.

The augmented matrix for this system was determined in Problem 2.3 to be

3 021 -4 1
[AIB]={2 3 0 -1:-1
1 -6 3 -8: 7

Using the results of Problem 1.15, we transform this matrix into the row-echelon form

1 2/3 1/3 -4/3:1/3
[c|pl={0 1 ~2/5 1 -1
0 0 0 0 10
It follows from Problem 1.17 that the rank of [C | D] is 2. Submatrix C is also in row-echelon form, and it

also has rank 2. Thus, the original set of equations is consistent.
Now, using the results of Problem 2.4, we write

2 1 4 I |
Xt ix,+ 35X, 73X, =3

X ix,+ x,=-1

as the set of equations associated with [C | D]. Solving the first equation for x, and the second for x,, we
get

x,=3—5%x,—ix,+ 3x,

=1+ 45— x,

Since x, and x, do not appear on the left side of any equation, they are arbitrary. The unknown x, is
completely determined in terms of the arbitrary unknowns. Substituting it into the first equation, we
calculate

The complete solution to the original set of equations is
x,=1-1x, +2x,
x,==1+3%x,~—x,

with x, and x, arbitrary.

Solve the following set of homogeneous equations by Gaussian elimination:
Tx,+9%x;,=0
2x,+ x,— x3;=0
5x,+6x, +2x,=0
By converting this system to augmented-matrix form and then transforming the matrix into
row-echelon form (Steps 1.1 through 1.8), we get
07 9i0
[AlB]=]2 1 -1:0
56 20
1 172 -1/2:0
[CID]=|0 1 9/7.0
0 0 0:0
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The rank of the coefficient matrix A is thus 2, and because there are three unknowns in the original set
of equations, the system has nontrivial solutions. The set of equations associated with the augmented
matrix [C| D] is
X, +ix,~ §x,=0
0n+3ix=0
0=0
Solving for the first variable in each equation with a nonzero coefficient, we obtain
X, =—ix,+ ix,
X, = —3x,
Therefore, x, is arbitrary. Solving for x, and x, in terms of x, by back substitution. we find

- 9
x,——;x_‘

x, = —3(=9x,) + ix, = §x,

Solve the following set of equations:
X, +2x,— x;3= 6
3x, +8x, +9x;= 10
2x,— x,+2x,=-2
The augmented matrix associated with this system is
1 2 -1: 6

[A|B}=|3 8 9110
2 -1 2i-2

which, in Problem 1.13, was transformed into the row-echelon form

1 2 -1: 6
[CID]=]0 1 6:-4
00 1:-1

Both C and [C | D] have rank three, so the system is consistent. The set of equations associated with this
augmented matrix is

X, +2x,— x,= 6
X, +6x,=—4
x,=-1
Solving each equation for the first variable with a nonzero coefficient, we obtain the system
x, = 6—-2x,+x,
x,=—4-6x,
x,=-1

which can be solved easily by back substitution beginning with the last equation. The solution to this
system and to the original set of equations is x, =1,x, =2, and x, = - L.

Solve the following set of equations by (a) standard Gaussian elimination and (b) Gaussian
elimination with partial pivoting, rounding all computations to four significant figures:

0.00001x, + x, = 1.00001

x, tx,=2
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2.10

{a) We write the system in matrix form, rounding 1.00001 to 1.000. Then we transform the augmented
matrix into row-echelon form using the algorithm of Chapter 1, in the following steps:

[ 0.00001 11 1.000 ]

[ 1 1 i 2
[ 1 100000 1 100000

| 1 1 ! 2

[ 1 100000 1 100000
-1 0 —100000 } — 100000 |

[ ] 100000 i 100000 ]
d ) 1 R B

(Note that we round to —100000 twice in the next-to-last step.) The resulting augmented
matrix shows that the system is consistent. The equations associated with this matrix are

x, + 100000x, = 100000
x,=1
which have the solution x, =0 and x, = 1. However, substitution into the original equations

shows that this is not the solution to the original system.

(b) Transforming the augmented matrix into row-echelon form using partial pivoting yields

[ 0.00001 1 I10()0]
1 1. 2
[ 1 1y 2 Rows 1 and 2 are interchanged
—10.00001 1 1,()00] because row 2 has the largest
element in column 1, the current
work column.
1 17 2 Rounding to four significant
= o0 141 ] figures.

The system of equations associated with the last augmented matrix is consistent and is
X, +x,=2

x, =1

Its solution is x, = x, =1, which is also the solution to the original set of equations.
All computers round to a number of significant figures & that depends on the machine being used.
Then an equation of the form

107 Vx4 x, =14+ 10777

will generate results like that of part a unless some pivoting strategy is used. (We had & = 4 in part a.) as
a ruie, dividing by very small numbers can lead to significant roundoff error and should be avoided when
possible.

Solve the following set of equations using partial pivoting:

x, +2x,+ 3x,= 18
2x,+ x,— 4x;=-30
~5x,+8x, +17x;= 96

The augmented matrix for this system is

1 2 3 18
21 -4:1-30
-5 8 17! 96
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In transforming this matrix, we need to use Step 1.3’ immediately, with R =1 and C = 1. The largest
element in absolute value in column 1 is -5, appearing in row 3. We interchange the first and third rows,
and then continue the transformation to row-echelon form:

—~[-5 8 17} 9
21 -41-30
-L 12 3: 18
-1 -16 ~3.4:-192]
2 1 -4 .-30
(1 2 3% 18 |
(1 -16 -3.4.-19.2]
—~lo 42 28! 84
(1 2 3 18 |
1 -1.6 -34!-19.2]
0 42 28 84
—~10 36 64! 372

We next apply Step 1.3" with R =2 and C =2. Considering only rows 2 and 3, we find that largest
element in absolute value in column 2 is 4.2, so / =2 and no row interchange is required. Continuing
with the Gaussian elimination, we calculate

(1 -1.6 -34 ;-19.2]
—-{0 1  0.666667 : 2
L0 3.6 64 | 37.2.
(1 ~-1.6 —34 :-192]
0 1 0666667 2
— L0 0 4 30
[1 ~1.6 -34 :-19.2]
0 1 0666667 ; 2
-0 0 1 ¢ 7.5 ]

The system of equations associated with the last augmented matrix is consistent and is

x, —lébx,— 34x,=-19.2
x, +0.666667x, =2
x,=75

Using back substitution (beginning with x,), we obtain, as the solution to this set of equations as well as
the original system, x, = 1.5, x,= -3, and x, =7.5.

2.11 To use scaled pivoting, we first define, as the scale factor for each row of the coefficient matrix
A, the largest element in absolute value appearing in that row. The scale factors are computed
once and only once and, for easy reference, are added onto the augmented matrix [A | B] as
another partitioned column. Then Step 1.3 of Chapter 1 is replaced with the following:

Divide the absolute value of each nonzero element that is in the work column and on or
below the work row by the scale factor for its row. The ¢lement yielding the largest quotient is
the new pivot; denote its row as row /. If row [ is different from the current work row (row
R), then interchange rows / and R. Row interchanges are the only elementary row operations
that are performed on the scale factors; all other steps in the Gaussian elimination are limited
to A and B.

Solve Problem 2.10 using scaled pivoting.

The scale factors for the system of Problem 2.10 are
s, =max{1,2,3} =3
s,=max{2,1,{-4|} =4
s, = max{|-5),8,17) =17
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2.12

We add a column consisting of these scale factors to the augmented matrix for the system, and then
transforming it to row-echelon form as follows:

1 2 31 181 3 The scale-factor quotients for the
21 -4 I; -30 | 4 elements in column } are 1/3 =
-5 8 171} 9 |17 0.333,2/4=10.500, and 5/17 =
0.294.
— 21 —-4! =301 4 The largest quotient is 0.500, so
1 3, 181 3 the pivot is 2, which appears in
-5 8 17! 91|17 row 2. Since /=2 and R =1, the
first and second rows are
interchanged,
- 1 05 -2 i -15)] 4
1 2 3. 181 3
L-5 8 171 961 17
1 05 -2 i -15| 4
—-| 0 15 5! 331 3
L~S 8 171 96117
(1 05 -2i-15 ] 4 Now work row is 2, and the work
0 15 5! 33 |3 column is 2. The quotients are
- L0 105 71 21 (17 1.5/3=0.500 and 10.5/17=0.618.
[1 05 -21-15 | 4 The largest quotient is 0.618, so
0 105 71 21 |[17]| the pivot is 10.5, which appears in
-0 15 St 33| 3 row 3. The second and third rows
are interchanged.
1 0.5 -2 =15 4
—=|0 1 066667: 2|17
[0 15 5 i 3341 3
1 05 -2 ': -15] 4
01 066667 21|17
-0 0 4 i 30t 3
[1 0.5 -2 '| -15 4
01 066667 2 17
L0 0 1 I 3

Writing the set of equations associated with this augmented matrix (ignoring the column of scale factors)
and solving them by back substitution, we obtain the solution x, = 1.5, x, = =3, x, = 7.5.

To use complete pivoting, we teplace Step 1.3 of Chapter 1 with the following steps, which
involve both row and column interchanges: Let the current work row be R, and the current
work column C. Scan all the elements of submatrix A of the augmented matrix that are on or
below row R and on or to the right of column C, to determine which is largest in absolute
value. Denote the row and column in which this element appears as row / and column J. If
I# R, interchange rows / and R; if J# C, interchange rows J and C. Because column
interchanges change the order of the unknowns, a bookkeeping mechanism for associating
columns with unknowns must be implemented. To do so, add a new partitioned row, row 0,
above the usual agumented matrix. Its elements, which are initially in the order 1,2,. .., nto
denote the subscripts on the unknowns, will designate which unknown is associated with each
column,
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Solve the system of Problem 2.10 using complete pivoting. We add the bookkeeping row 0 to the
augmented matrix of Problem 2.10. Then, beginning with row 1, we transform the remaining rows into
row-echelon form.

12 3 — R=1and C = 1. The largest
-"1-"2""3";—"1-3 element in absolute value in the

2 1 —-4.-30 lower left submatrix is 17, in row
-5 8 17 ' 96 3 and column 3. We first

interchange rows 1 and 3, and
then columns 1 and 3.

F--?...Z.-.-!.;-.:.
17 8 -5: 9
=41 20-30
L 32 1 18
Sf-3 . 2 s Lo ]
1 0.470588 —0.294118 ! 5.64706
-4 1 2 bo~30
L 3 2 1 R
(3. 2 . ... b
1 0.470588 —0.294118 | 5.64706
— |0 2.88235  0.823528 : -7.41176
L3 2 1 ' 18
3 2 1 =]

__________________________ 5

1 0.470588 -0.294118 1 5.64706
0 2.88235  0.823528 | —7.41176

— [0 0588236  1.88235 ! 1.05882]
3

— The work row and work column

. 1 0.470588 -0.294118 5.64706 are now R=2 and C=2. The
0 1 0.285714 | —2.57143 largest element in absolute value
L0 0.588236 1.88235 ' 1.05882 | of the four under consideration is
2.88235, for which /=2 and J = 2.
Since /I=Rand J=C, no
interchange is required.
R 2 L. o=
1 0.470588 -0.294118 E 5.64706
0 1 0.285714 : —2.57143
— 10 0 1.71428 | 2.57143 ]
ER 2 il I .. o]
. 1 0.470588 —0.294118 ; 5.64706
0 1 0.285714 | —2.57143
L0 0 1 ¢ 1.50001 |

The first column of the resulting row-echelon matrix corresponds to x,, and the third column to x,, so
the associated set of equations is
x,+0.470588x, — 0.294118x, = 5.64706
x, +0.285714x, = —2.57143
x, = 1.50001

1

Solving each equation for the first variable with a nonzero coefficient, we obtain
x,= 5.64706 — 0.470588x, + 0.294118x,
x, = —2.57143 - 0.285714x
x, = 1.50001

which, when solved by back substitution. yields the solution x, = 1.50001, x,=—3.00000, and x, =
7.50001 .
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2.13

2.14

Gauss-Jordan elimination adds a step between Steps 2.3 and 2.4 of the algorithm for Gaussian
elimination. Once the augmented matrix has been reduced to row-echelon form, it is then
reduced still further. Beginning with the last pivot element and continuing sequentially
backward to the first, each pivot element is used to transform all other elements in its column
to zero.

Use Gauss-Jordan elimination to solve Problem 2.8.

The first two steps of the Gaussian elimination algorithm are used to reduce the augmented matrix
to row-echelon form as in Problems 1.13 and 2.8:

1 2 -1: 6
01 6:-4
00 1:-1

Then the matrix is reduced further, as follows:

(1 2 -1: 6 Add -6 times the third row to the
—|0 1 0! 2 second row.
[0 0 1.-1
—-[1 2 0: 5 Add the third row to the first row.
01 0, 2
L0 0 1.-1
=1 0 0 1 Add -2 times the second row to
010, 2 the first row.
L0 0 1.-1

The set of equations associated with this augmented matrix is x, = 1, x, =2, and x, = —1, which is the
solution set for the original system (no back substitution is required).

Use Gauss-Jordan elimination to solve the system of Problem 2.7.

The first two steps of the Gaussian elimination algorithm provide the augmented row-echelon-form
matrix

1 12 —1/210
[CID]={0 1 9/7 i 0
0 0 0 10
as in Problem 2.7. This matrix is reduced further by using the pivot in the (2,2) position to place a zero
in the (1,2) position:

01 9/7:0 the first row.
00 0 !0

The set of equations associated with this augmented matrix is

—»[1 0 -8/7! 0] Add —1/2 times the second row to

%, —8x,=0
x,+3x,=0
0=0
Solving for the first variable in each equation with a nonzero coefficient, we obtain x, = $x, and
x, = —3x,, which is the solution (no back substitution is required) with x, aribitrary.
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2.16

2.17

2.18

2.19

2.20

2.21

2.23

2.25
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Supplementary Problems

Which of

(@) x,=x,=x,=1 b) x,=8,x,=—-1,x,=0

() x,=12,x,=-3,x,=2 (d) x,=2,x,=—2,x,=9

are solutions to the system
x,+3x,+ x;= 5
2x,+ x,—3x,=15
x,+7x,+5x,= 1

Write the augmented matrix for the system given in Problem 2.15.

Write the augmented matrix for system
2x, —4x, t Txy +6x, — 4dx;=17
6x, ~3x,—4x,— S5x;= 2
2x, +8x,+ x,—2x,— 14x,=10

Solve the set of equations associated with each of the following augmented matrices:

1 -2 3:17 13213
(@ (o 1 2:-3 () {0 0 1 25
0 0 1:-4 000 1:0

Solve the system given in Problem 2.15.

Solve the system given in Problem 2.17.

In Problems 2.21 through 2.27, solve for the unknowns in the given system.

X, +2x,- x,=0 2.22 X, +2x,+3x,= 4
2x, ~2x,+3x,=0 4x, +5v, +6x,=16
3x,+ x,+2x,=0 Tx, +8x, +9x, =28

2x, - x,+4x,= 6 2.4 X, +2x, +3x,+4x,= 8
x, +3x,+3x,= -7 2x, - 2x,— x,+ x,=-3
—x, +2x, =-12 x,—3x,+4dx,~4x,= 8

2x, +2x, — 3x, + dx, = -2

b+ ix, 4 ix + 5x, =10
e, H it i+ dx, =11
fx, st g+ sx =12

=
-+
- YE
>
+
-
+
xr
>
&
il
—
w

[CHAP. 2
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2.26

2.27

2.28

2.29

2.3

23

2.32

1.0001x, + 2.0000x, + 3.0000x, + 4.0000x, =5
1.0000x, + 2.0001x, + 3.0000x, + 4.0000x, = 6
1.0000x, + 2.0000x, + 3.0001x, + 4.0000x, =7
1.0000x, +2.0000x, + 3.0000x, + 4.0001x, =8

What would be the result of solving this system by working with only four significant figures?

0.00001x, + x, + 0.00001x, = 0.00002
X, +2x, 4+ x,=1
0.00001x, + x, —0.00001x, = 0.00001

Use Gaussian elimination to determine values of & for which solutions exist to the following systems, and
then find the solutions:

(@) x,+2x,—- x,=4 b)) x,-3x,=-4
2x,— x,+3x,=3 2, + x,= 6
3x, + x,+2x,=k 3x, —2x, k

A manufacturer produces three types of desks: custom, deluxe, and regular. Each custom desk ¢
requires 12 worker hours to cut and assemble, and 5 worker hours to finish. Each deluxe desk d requires
10 hours to cut and assemble, and 3 hours to finish; each regular desk r requires 6 hours to cut and
assemble, and 1 hour to finish. On a daily basis, the manufacturer has available 440 worker hours for
cutting and assembling, and 120 worker hours for finishing. Show that the problem of determining how
many desks of each type to produce so that all workpower is used is equivalent to solving two equations
in the three unknowns ¢, d, and r. How many solutions are there?

The end-of-the-year employee bonus b is 3 percent of taxable income i after city and state taxes are
deducted. The city tax c is 1 percent of taxable income, while the state tax s is 4 percent of taxable
income with credit allowed for the city tax as a pretax deduction. Show that the problem of determining
the bonus is equivalent to solving three equations in the four unknowns b, i, ¢, and s.

Prove that if Y and Z are two solutions of the linear system AX =B, then Y —Z is a solution of the
homogeneous system AX =0,

Prove that if Y and Z are two solutions of the linear system AX =B, then Y=2Z + H, where H is a
solution of the homogeneous system AX = 0.



Chapter 3

Square Matrices

DIAGONALS

A matrix is square if it has the same number of rows and columns. Its general form is then

a,, 4, 4 " a4,

Qy Gy 4y Aan

A=}ay dy Oy, a,,

a, a, an3 a,,
The elements a,,, a,,, a;3, . - . , 4,, lie on and form the diagonal, also called the main diagonal or
principal diagonal. The elements a,,, 4,5, . .., 4, _, , immediately above the diagonal elements form
the superdiagonal, and the elements a,,,a,,,...,a,,_ , immediately below the diagonal elements

constitute the subdiagonal.

A diagonal matrix is a square matrix in which all elements not on the main diagonal are equal to
zero; the diagonal elements may have any values. An identity matrix I is a diagonal matrix in which
all of the diagonal elements are equal to unity. The 2 X 2 and 4 X 4 identity matrices are

1000
10 0100
[01] and g 9 1 o

000 1

[dentity matrices play the same role in matrix arithmetic as the number 1 plays in real-number
arithmetic. In particular, for any matrix A, Al = A and [A = A provided, in each case, that I is of the
appropriate order for the indicated multiplication.

ELEMENTARY MATRICES

An elementary matrix E is a square matrix that generates an elementary row operation on a given
matrix A under the multiplication EA. The order of E is dictated by the order of A, such that the
multiplication is defined. There are three general kinds of elementary matrices, corresponding to the
three different elementary row operations (see Chapter 1). A specific elementary matrix is obtained
by applying the desired elementary row operation to an identity matrix of the appropriate order.
(See Problems 3.1 and 3.2))

LU DECOMPOSITION

A square matrix 1s upper triangular if all elements below the main diagonal are zero; it is lower
triangular if all elements above the main diagonal are zero. The elements on or above the diagonal in
an upper triangular matrix (and on or below the diagonal in a lower triangular matrix) may have any
values, including zero.

In most cases, a square matrix A can be written as the product of a lower triangular matrix L and
an upper triangular matrix U, where L and U have the same order as A. This factorization, when it
exists. is unique if the elements on the main diagonal of U are all 1s. That is,

A=LU (3.1)
24
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Ih 00 0 Vouy, up, Uy,
by & 0 0 0 1 uy, u,,
where L=l L I 0 and U=10 0 1 Us,
lnl InZ [n3 lnn O 0 O 1
2 1 1 2 0 0 1 1/2 172
Exampie 3.1 2 -1 1|=l2 -2 o Jjlo 1 o
4 11 4 -1 ~1 ¢ 0 1

Crout’s reduction is an algorithm for calculating the elements of L and U. In this procedure, the
first column of L is determined first, then the first row of U, the second column of L, the second row
of U, the third column of L, the third row of U, and so on until all elements have been found. The
order of L and U is the same as that of A, which we here assume is n X n.

STEP 3.1: Initialization: If a,, =0, stop; factorization is not possible. Otherwise, the first column
of L is the first column of A; remaining elements of the first row of L are zero. The first
row of U is the first row of A divided by I, = a,,; remaining elements of the first column
of U are zero. Set a counter at N =2.

STEP 3.2: Fori=N,N+1,...,n, set L equal to that portion of the ith row of L that has
already been determined. That is, L] consists of the first N — 1 elements of the ith row
of L.

STEP 3.3: Forj=N,N+1,...,n, set U; equal to that portion of the jth column of U that has
already been determined. That is, U; consists of the first N — 1 elements of the jth
column of U.

STEP 3.4: Compute the Nth column of L. For each element of that column on or below the main
diagonal, compute

In=ay— (L) "0, (i=N,N+1,...,n)
If any [,,, =0 when N # n, stop; the factorization is not possible. Otherwise, set the
remaining elements of the Nth row of L equal to zero.

STEP 3.5: Set u,y=1. If N=n, stop; the factorization is complete. Otherwise, set the remaining
elements of the Nth column of U equal to zero and compute the Nth row of U. For each
element of that row to the right of the main diagonal, compute

ay, ~ (L) - U,

Uy, = (j=N+1,N+2,....n)

INN

STEP 3.6: Increase N by 1, and return to Step 3.2.

(See Problems 3.4 through 3.6.)

Partial pivoting (see Chapter 2) is recommended when exact arithmetic is not used and roundoff
error is possible. Prior to Steps 3.1 and 3.2 (for N=2,3, ..., n), scan the Nth column of A for the
largest element in absolute value appearing in that column and on or below the main diagonal. If this
element is in row p, with p # N, then interchange the pth and Nth rows of A, as well as the pth and
Nth rows L up to the Nth column (which represents the parts of those two rows in L that have
already been determined).

SIMULTANEOUS LINEAR EQUATIONS

LU decompositions are useful for solving systems of simultaneous linear equations when the
number of unknowns is equal to the number of equations. The matrix form of such a system is
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AX =B, which, in light of Eq. (3.1), may be rewritten as L(UX)=B. To obtain X, we first
decompose A and then solve the system associated with

LY=B 3.2)
for Y. Then, once Y is known, we solve the system associated with
UX=Y (3.3)

for X. Both (3.2) and (3.3) are easy to solve—the first by forward substitution, and the second by
backward substitution. (See Problem 3.7.)

When A is a square matrix, LU factorization and Gaussian elimination are equally efficient for
solving a single set of equations. LU factorization is superior when the system AX = B must be solved
repeatedly with different right sides, because the same LU factorization of A is used for all B. (See
Problem 3.8.) A drawback with LU factorization is that the factorization does not exist when a pivot
element is zero. However, this rarely occurs in practice, and the problem can usually be eliminated
by reordering the equations. Gaussian elimination is applicable to all systems, and for that reason is
often the preferred algorithm.

POWERS OF A MATRIX

If n is a positive integer and A is a square matrix, then
A" = éé PN 5
n times
In particular, A’ = AA and A’ = AAA. By definition A’ =1. (See Problems 3.10 and 3.11.)

Solved Problems

3.1 Find elementary matrices that when multiplied on the right by any 3 X 3 matrix A will (a)
interchange the first and third rows of A; () multiply the second row of A by 1/2; and (c) add
—4 times the second row of A to the third row of A.

Since an elementary matrix is constructed by performing the desired elementary row operation on
an identity matrix of the appropriate size, in this case the 3 X 3 identity, we have

0 0 1 1 0 0O 1 0 o
(@ E=|0 1 0| () E={0 1/2 0] () E=|0 1 0
1 0 0 ¢ 0 1 0 -4 1
3.2 Find elementary matrices that when multiplied on the right by any 4 x 4 matrix A will (a)

interchange the second and fourth rows of A; (b) multiply the third row of A by —6; and (c)
add 8 times the first row of A to the fourth row of A.

1000 10 00 1000
000 1 lo1 o0 o0 o100
@ E=1g 01 0 ® E={g¢ 60l ©@ E={g 01 0
010 0 00 01 800 1
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33 Find a matrix P such that PA is in row-echelon form when

1 2 -1
A=|3 8 9
2 -1 2

The matrix A consists of the first three columns of the matrix considered in Problem 1,13, so the
same sequence of elementary row operations utilized in that problem will convert this matrix to
row-echelon form. The elementary matrices corresponding to those operations are, sequentially,

100 100 1 0 0

E,=[—310} E2=[010} E3=[0 1/2 0}

001 -2 0 1 0 0 1
100 10 0
E‘=010] E,=[01 0
051 00 1/34

1 0 0
Then P=E[EEEE,=| -3/2 12 0
~19/68 5/68 2/68

1 0 0 1 2 -1 1 2 -1
and PA=( =3/2 1/2 0 3 8 9f=|101 6

~19/68 5/68 2/681L2 -1 2 00 1

3.4  Factor the following matrix into an upper triangular matrix and a lower triangular matrix:

1 2 =2 3
|1 1 0 2
A=l 3 3 4
2 1 1 -2
Using Crout’s reduction, we have
STEP 3.1:
1 000 1 2 -2 3
e e T L I _
L= 3 - o U= 0 - - _ N=2
2 - - - o - - -

STEP 3.2: L;=[-1),L;=[3], and L;={2).
STEP 3.3: U;=[2], U;=[-2], and U, =[3].

STEP 3.4;
L,=a, - (L;)T'U; =1-[-1]'[2}=1~-(-2)=3
L,=a;,-(L;)"+U;=-3-[3][2}=-3-6=-9
l,=a,— (L) Ui=1-2]*[2]=1-4=-3

STEP 3.5:

uy, =1
- a, — (L))" U4 _0—-[-1-[-2] 2
3 122 3 3

_ G~ (L)TUL_2-[-1)-[3)

Irs 3

24

3
3
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STEP 3.6: To this point we have

I 000 12 -2 3

-1 3 00 _{0 1 -2/3 5/3
L=| 3 _¢g _ _ and U= 00 - _
2 -3 - - 00 - -

Since N=2 and n =4, we increase N by 1 to N =3.
STEP 3.2: L,={3,-9] and L, =12, —-3].

STEP 3.3: 2 3
U= [—2/3} and U= [5/3]
STEP 3.4: 3 5
b=an = )7 U= e | G| ] =e-0-4
' , 2 -2
143=a43"(L4)T'U3= | [_3]'[_2/3] =1-(-2)=3
STEP 3.5:

uy; =1

uu=a“—(tj)r'w=‘i‘(1‘[_3]‘[ 3 D= 1 -(—6) =%

STEP 3.6: To this point we have

1 00 0 12 -2 3
-1 3900 1o 1 -2/3 513
L=\ 3 g 49 2 U=y 46 1 7
2 -3 3 - 00 0 -

Since N =13 and n =4, we increase N by 1 to N=4,

STEP 3.2: L,=[2,-3,3).
3
U, =|5/3
7/4

STEP 3.3:
2173
la=a,— (L) -U;=-2- [—3}-{5/3} -2- ? = —%

3 7/4

STEP 3.4:

STEP 3.5: u,, =1. Since N=4=n, the factorization is done. We have A = LU, with

1 00 o 12 -2 3
-1 30 o o1 ~23 a3
L=l 3 ¢4 o and  U={4 6 | 74
2 -3 3 —33/4 00 0 1

[CHAP. 3

Factor the following matrix into an upper triangular matrix and a lower triangular matrix:

1 2 -2 3
-1 -2 0 2
3 -3 0 1
2 1 1 -2

A=

The first three steps of Grout’s reduction here are identical to those in Problem 3.4. Then:

STEP 3.4:
L, =a, - (L;)T'U; =-2- [_1]'[2] =-2-(-2)=0

Since I,, =0 but N # n, the original matrix cannot be factored as an LU product.
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3.6 Factor the following matrix into an upper triangular matrix and a lower triangular matrix:

2 2 10
{30 -1 1
A=l o1 0 s
-1 1 00
Using Crout’s reduction, we have
STEP 3.1:
2000 11 1/2 0
3 - - - 1o - - - _
L= 4 _ _ _ U=y _ _ _ N=2
-1 - - - 0 - - =

STEP 3.2: L,=[3],L;=[0],and L, =[—1].

STEP 3.3: U,=[1],U,=[1/2], and U, =[0].

STEP 3.4: l,=a,,—(Ly)"-U,=0-[3)-{1]=0—-(3)= -3
Ly=a,~ (L) -Up=1-[0]-[1]=1-0=1
lp=a, = (L) - U=1-[-1}-{1]=1—(-1)=2

STEP 3.5:
Ky =1
a7l -1-[3[12) S
2 Iy, -3 6
T L 1 VA S (O B
H L, -3 3
STEP 3.6: To this point we have
2 000 11 172 0
| 3 -3 00 _|0 1 5/6 -1/3
L= 0 1 - - and U= 00 - N
-1 2 - 0 0 - -

Since N=2 and n =4, we increase Nby 1to N=3,
STEP 3.2: L;=[0,1]and L;=[-1,2].

STEP 3.3:
A5 el
v {5/6 and  Ui=| )3
STEP 3.4:
AT ar 0] [1/2 5 5
l”=“”_(L3)T'U3=0_[1] [5/6] 0-%="%
e ~1].[12 71
’“=“‘3_(L‘)T'UJ=°'[ 2] [5/6] 0-¢="%
STEP 3.5:
u, =

“3»‘2—__—(;—;)— ( [][ 1/3] /( 5/6)" 1/3) 3_52
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STEP 3.6: To this point we have

2 0 0 0 1112 0
|3 -3 0 o o1 st -13
L=l 0o 1 -s;6 o 2™ U=|g5 0 "y -32/5
12 -6 - 00 0 -

Since N =3 and n =4, we increase N by 1 to N =4,
STEP 3.2: L;=[-1,2,-7/6].
STEP 3.3:

STEP 3.4:
—1.7[ 0
: 0-
l“=a..—(L4’.)T'UL=0—[ 2 ][ -1/3]=T34=_?
~716

STEP 3.5: u,,=1. Since N =4 = n, the factorization is done. We have A = LU, with

2 0 0 0 1112 0
13 -3 o 0 o 1 56 -1r3
L=t o 1 -s5/6 0 and U=l o 1 _32/5
12 =706 -=34/5 60 0 1

Solve the system of equations

2x, +2x, + x4 = 10
3x, -—x,+ x,=-11

X, +5x,= 5
-x, + x, = 14

The coefficient matrix for this system is matrix A of Problem 3.6. Using L as determined in that
problem, we write the system corresponding to LY =B as

2y, = 10
3y, — 3y, =—11
¥, —5/6y, = 5

—y, +2y,—T/6y,—34/5y,= 14

Solving this system sequentially from top to bottom, we obtain y, =5, y,=26/3, y,=22/5, and
Yo=-L
With these values and U as given in Problem 3.6, we can write the system corresponding to UX =Y:
X, +x,+ ix, =5
ntix— ix,= %
x,— ¥%x,= %
x,=-1

Solving this system sequentially from bottom to top, we obtain the solution to the original system:
x,=~-4,x,=10,x,=-2, and x, = — 1.
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3.8 Solve the system of equations given in Problem 3.7 if the right side of the second equation is
changed from —11 to 11.

The coefficient matrix A is unchanged, so both L and U are as they were. From (3.2),

2y, =10
3y, =3y, =11
Y2 = $¥, =3

“yt2y, iy, ¥y, =14

Solving this system sequentially from top to bottom, we obtain y, =S5, y, =4/3, y, = —22/5, and
¥4 = —28/17. With these values and U as given in Problem 3.6, (3.3) becomes

X, +x+ kx, = 5
xz+§x3— %x-t: 3
x3—¥x4= -#

x,=-§

Solving this system sequentially from bottom to top, we obtain the solution to the system of interest:
x,=—13/17, x, =225/17, x, = —254/17, and x, = —28/17.

3.9 Verify Crout’s algorithm for 3 X 3 matrices.

For an arbitrary 3 X 3 matrix A, we seek a factorization of the form

a,, a,, a; L, 0 0] Uy, Uy, l, Iu, lu,,
ay, a4y, ay|=|4;, L, 00 1 Wy [ =] 1y Ly, + iy, Lty + [y,
a5, 4,, 4a,, Ly &, L)lo o 1 Ly Lyup 4y, Ly, + Lyyuy + 1y,

By equating corresponding coefficients in the order of first column, remaining first row, remaining
second column, remaining second row, and remaining third column, and then solving successively for the
single unknown in each equation, we would obtain the formulas of the Crout reduction algorithm.

3.10 Find A’ and A" when
S
SO PO | A ] Pried

e arar [0 —5][ 0 —5]_[—100 —25]
A =AA [20 sil20 s)™L 100 =75

3.11 Show that A’ — 9A + 10I = 0 when

1 =2 2

A=10 2 0

1 -1 -3

We have
1 =2 2101 -2 2 3 -8 —4
A*=AA=|(0 2 ofl0 2 ol=[ 0 4 0
1 -1 -3jL1 -1 -3 -2 -1 11
and

3 -8 471 -2 2 -1 -18 18
A=AA=] 0 4 ofl0c 2 o= o 8 0
-2 -1 11il1 -1 -3 9 -9 -37
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Then

-1 -18 18 1 -2 2 1 00 000
A'-9Aa+101=}| 0 8 ol-9/0 2 o]+10l0 1 0]=]0 0 ©
9 -9 -37 1 -1 -3 0 0 1 000

3.12 A square matrix A is said to be nilpotent if A” = 0 for some positive integer p. If p is the least
positive integer for which A” =0, then A is said to be nilpotent of index p. Show that

1 5 -2
A=]1 2 -1
3 6 -3
That is indeed the case, because

1 5 =21 5 -2 03 -1
A*=11 2 -1][1 2 -1l=]0 3 -1
36 -3Jl3 6 -3 09 -3

03 ~-1)1 5 -2 00 0
A'=AA=|0 3 -1)11 2 -1]=]|0 0 O
09 -3Jl3 6 -3 0 0 0

is nilpotent of index 3.

and

Supplementary Problems

3.13 Find elementary matrices that, when multiplied on the right by any 3 X 3 matrix A (&) will interchange
the second and third rows of A; (b) will multiply the first row of A by 7; and (¢) will add —3 times the
first row of A to the second row of A.

3.14 Find elementary matrices that when multiplied on the right by any 4 X 4 matrix A (4) will interchange
the second and third rows of A; (b) will add —3 times the first row of A to the fourth row of A; and (c)
will add 5 times the third row of A to the first row of A.

3.15 Find (a) a matrix P such that PA is in row-echelon form and (b) a matrix Q such that QA =1 when
12
a=[; 4
3.16 Use elementary matrices to find a matrix P such that PA =1 when
1 0 2
A=10 1 2
325
3.17 Prove that the product of two lower triangular matrices of the same order is itself lower triangular.

In Problems 3.18 through 3.23, write each of the given matrices as the product of a lower triangular matrix
and an upper triangular matrix.

3.18 1 23 3.19 2 -1 4 3.20
4 5 6 1 33

7 8 9 -1 20

SO
W - O
oo O
—_— = D
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2 4 -1 1 2 -2 -1 1

1 -3 4 -4 1 -3 4 -4

2 2 -3 4 2 2 -3 4

In Problems 3.23 through 3.29, use LU factorization to solve for the unknowns.

323 2x,+2x,+ux, = 6 34 X +2x,-2x,+3x,= 2

3x, —x;+ x,=~-1 -x, + x, +2x,= -4

X, +5x,=-9 I, = 3x,+4x,+ x,= 16

Xt ox =0 2x, + x,+ x,-2x,= 9
(Hint: See Problems 3.7 and 3.8.) (Hint: See Problem 3.4.)

3.25 Repeat Problem 3.24, but with B=[-3,-1,0,4,]".

3.26 X, +2x,+3x,=4
4x, + 5x, +6x,=16
Tx, +8x, +9x,=128
(Hint: See Problem 3.18.)

3.27 Repeat Problem 3.26, but with B=[6, -7, —12]".

328 2x, - x,td4x,= 6 329 x +2x,+3x,+4x,= 8
x, +3x,+3x,= -7 22, = 2x;— x,+ x,=-3

-x, +2x, =-12 x,—3x;,+4x,-4x,= 8

(Hint: See Problem 3.19.) 2x, +2x, ~3x,+4x, = -2

(Hint: See Problem 3.21.)

3.30 Find A’ and A’ for the matrix given in Problem 3.15.

20 0
A=10 1 0
0 0 -1

3.32 What does A” look like when A is a diagonal matrix?

3.31  Find A’ for

3.33 A square matrix is said to be idempotent if A’ = A. Show that the following matrix is idempotent:

2 -2 -4
A=|-1 3 4
1 -2 -3

3.34 Prove that if A is idempotent, then so too is I - A,

3.35 Prove that (A”)" = (A")”.

33



Chapter 4

Matrix Inversion

THE INVERSE
Matrix B is the inverse of a square matrix A if
AB=BA =1 (4.1)

For both products to be defined simultaneously, A and B must be square matrices of the same order.

Example 4.1

-2 1 . . 1 2]
[3,2 —J/2] is the inverse of [3 4

be [1 2][—2 1 ]_[—2 1 ][1 2]_[1 o]
cause 3 4)13/2 -1/2)7 1372 —-12)13 4)7 10 1

A square matrix is said to be singular if it does not have an inverse; a matrix that has an inverse
is called nonsingular or invertible. The inverse of A, when it exists, is denoted as A™".

SIMPLE INVERSES

Elementary matrices corresponding to elementary row operations (see Chapter 3) are invertible.
An elementary matrix of the first kind, one that corresponds to an interchange of two rows, is its own
inverse. The inverse of an elementary matrix of the second kind, one that corresponds to multiplying
one row of a matrix by a nonzero scalar k, is obtained simply by replacing the value of & in the
elementary matrix with its reciprocal 1/k. The inverse of an elementary matrix of the third kind,
which corresponds to adding to one row a constant k times another row, is obtained by replacing the
value & in the elementary matrix with its additive inverse —k. (See Problem 4.2.)

The inverse of an upper triangular matrix is itself upper triangular, while that of a lower
triangular matrix is lower triangular (see Problem 4.13), provided none of the diagonal elements is
zero. If at least one diagonal element is zero, then no inverse exists. The inverses of triangular
matrices are constructed iteratively, one column at a time, using Eq. (4.1). (See Problems 4.3 and
4.4)

CALCULATING INVERSES

Inverses may be found through the use of elementary row operations (see Chapter 1). This
procedure not only yields the inverse when it exists, but also indicates when the inverse does not
exist. An algorithm for finding the inverse of a matrix A is as follows:

STEP 4.1: Form the partitioned matrix [A | I], where I is the identity matrix having the same order
as A.

STEP 4.2: Using elementary row operations, transform A into row-echelon form (see Chapter 1),
applying each row operation to the entire partitioned matrix formed in Step 1. Denote
the result as [C | D], where C is in row-echelon form.

STEP 4.3: 1f C has a zero row, stop; the original matrix A is singular and does not have an inverse.
Otherwise continue; the original matrix is invertible.

34
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STEP 4.4: Beginning with the last column of C and progressing backward iteratively through the
second column, use elementary row operation E3 to transform all elements above the
diagonal of C to zero. Apply each operation, however, to the entire matrix [C|D].
Denote the result as [I| B]. The matrix B is the inverse of the original matrix A.

(See Problems 4.5 through 4.7.) If exact arithmetic is not used in Step 4.2, then a pivoting strategy
(see Chapter 2) should be employed. No pivoting strategy is used in Step 4.4; the pivot is always one
of the unity elements on the diagonal of C. Interchanging any rows after Step 4.2 has been completed
will undo the work of that step and, therefore, is not allowed.

SIMULTANEOUS LINEAR EQUATIONS
A set of linear equations in the matrix form
AX=B (4.2)

can be solved easily if A is invertible and its inverse is known. Multiplying each side of this matrix
equation by A™' yields A"'AX = A™'B, which simplifies to

X=A"'B (4.3)

(See Problems 4.8 and 4.9.) Equation (4.3) is most useful as a theoretical representation of the
solution to (4.2). The methods given in Chapter 2 for solving simultaneous linear equations generally
require fewer computations than the method indicated in (4.3) when A™' is not known.

PROPERTIES OF THE INVERSE

Property 4.1: The inverse of a nonsingular matrix is unique.

Property 4.2: If A is nonsingular, then (A™') "' = A.

Property 4.3: If A and B are nonsingular, then (AB)"'=B7'A™".

Property 4.4: If A is nonsingular, then so too is A”. Further, (A”)™' = (A™H7".
(See Problems 4.10 to 4.12 and 4.30.)

Solved Problems

4.1 Determine wheth
etermine whether 0 0.5

G= [ -0.25 0.25]

is the inverse of any of the following matrices:

2 -4 0
_[4 -8 _[1 23 _[2 -4 -
S i IR B R R A

We consider each of the given matrices in turn. Since

4 -8 0 05 _[2 0]
AG'[4 0][—0.25 0.25]‘ 0 2

is not the identity matrix, G is not the inverse of A.
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B is not square, so it has no inverse, In particular, the product BG is not defined.
For C, matrix multiplication gives

f2 -4 0 057_f1 0
CG"[z 0][—0.25 0_25]‘[0 1]

[0 0572 —4] [1 o]
and GC‘[ ][2 ol=lo 1
so G is the inverse of C.

-0.25 0.25
G and D do not have the same order, so they cannot be inverses of one another.

4.2 Determine the inverses of the following elementary matrices:

[0 0 1 [1 0 0] 4 00
A=10 1 Oj| B={0 0 1 C=[0 1 0j|
(1 0 0 [0 1 0] 0 01
[1 0 0 [1 0 0] 1 00
D=}0 -2 ():l E={0 1 0O F=|:—3 1 O:|
[ 0 0 1 L0 2 1] 0 01

Both A and B are elementary matrices of the first kind; thus, A™' = A and B™' = B. Matrices C and
D are elementary matrices of the second kind. Their inverses are

1/4 0 0 1 0 o
c'=s{f0 10 and D'=|0 -1/2 0
0 01 0 0 1
Matrices E and F are elementary matrices of the third kind. Their inverses are

1 00 1 00
E'=|0 10 and F'=|3 10

0 -2 1 0 01

213
A=]0 1 2
0 0 3

Since A is upper triangular with no zero elements on its diagonal, it has an inverse and the inverse is
upper triangular. Furthermore, since A™'A = [, we may write

a b cll2 1 3 1 00
0 d ey0 1 2}=10 1 O
o0 fllo o 3] Lo o1

with the first matrix on the left representing A~'. We perform the indicated matrix multiplication and
equate corresponding elements on and above the diagonal. Beginning with the leftmost column and
sequentially moving through successive columns, we determine that

4.3 Determine the inverse of

a(2) + b(0) + c(0) =1 S0
HD)+b(1) +c(0)=0 50
O(1) + d(1) + e(0) = 1 SO
1B+ (-HR)+c(3)=0 50
03) +1(2)+e(3)=0 SO
0(3)+0(2)+f(3)=1 SO

[

(ST

[N

I
|

0 O Qo og
I
r—
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1/2 -1/2 ~1/6
Thus, A= 0 1 ~-2/3

0 0 1/3

4.4 Determine the inverses of

3 0 00 1 0 0 0
11 =2 0o |22 0o
A=ls 4 1 o ad B=| + 1 5

1 3 -1 0 1 -1 3 3

Both matrices are lower triangular. Since A has a zero element on its main diagonal, it does not
have an inverse. In contrast, all the elements on the main diagonal of B are nonzero so it has an inverse

which itself must be lower triangular. Since BB™' =1, we may write
-1 0 O O0]la 0 0 O 1 0 0 O
2 -2 0 offb ¢ 0 0)]_|O VOO
3 1 -2 0|ld e fF O] {0 O 1 0O
1 -1 3 3]lg h @ | 0 0 01

with the second matrix on the left representing B~'. We perform the indicated matrix multiplication and
equate corresponding elements on and below the diagonal. Beginning with the leftmost column and
sequentially moving through successive columns, we determine that

—1la+0b+0d+0g=1 50 a

2A-1)+(-2)b+0d +0g=0 50 b

3(-D)+1(-1)+(-2)d+0g=0 50 d

(=) +(-1)(-1)+3(=2)+3g=0 so g
20)+(—2)c+0e+0h=1 0 c =-1/2

3(0)+ 1(-1/2) + (-2)e + Oh =0 s0 e

1(0) + (—1)(=1/2) + 3(—-1/4)+3h =0 SO h

f

i

!

3(0) + 1(0) + (=2)f + 0i=1  so =—1/2
10) + (=1)(0) + 3(—1/2)+3i=0  so =1/2
1(0) + (-1)(0) +3(0) +3j=1  so =1/3
-1 0 0 0
ror R B SN

2 112 12 1/3

4.5 Determine the inverse of

53]

Az[z 1

We follow Steps 4.1 through 4.4, beginning with [A | I):

(5 3:1 0]

(2 110 1
-1 06 0.2 [)] Multiplying the first row by 1/5

12 1 0 1

[1  06: 0.2 0] Adding —2 times the first row to
=10 -02:-04 1 the second row

[1 0.6:0.2 0] Multiplying the second row by
=0 1: 2 -5 -1/0.2
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The left side of this partitioned matrix is in row-echelon form. Since it contains no zero rows, the original
matrix bhas an inverse. Applying Step 4.4 to the second column, we obtain

— [1 0.-1 3] Adding -0.6 times the second

o1 2 -5 row to the first row
Therefore, Al= [ _; _g]

4.6 Determine the inverse of

1 23:100
(All]=|4 5 6i0 1 0
(7 8 90 0 1
(1 2 3: 1 00 Adding —4 times the first row to
—-{0 -3 -6:-4 10 the second row
7 8 91 0 01
1 2 3: 100 Adding —-7 times the first row to
0 -3 -6:-410 the third row
-0 -6 -12i{-7 0 1
1 2 3:1 0 0 Multiplying the second row by
—=10 1 2 54/3 -1/3 0 -1/3
0 -6 -—-12 =7 0 1
(1 2 3: 1 0 0 Adding 6 times the second row to
0 1 2:4/3 —-1/3 0| the third row
—-{0 0 0! 1 -2 1

The left side of this partitioned matrix is in row-echelon form. Since its third row is zero, the original
matrix does not have an inverse.

4.7 Determine the inverse of

0 1 1
A=[5 1 -1
2 -3 -3

0 1 1'1 00
(AlD)=]5 1 -1:0 1 0
(2 -3 -3.0 0 1
-5 1 -1:0 10 Interchanging the first and second
—-|0 1 111 .0 0 TOWS
12 -3 -3i/0 0 1
—-[1 1/5 -1/5.0 1/5 0O Multiplying the first row by 1/5
0 1 1 11 0 0
2 -3 -3.0 0 1
[1 15 ~1/5:0 1/5 0 Adding -2 times the first row to
0 1 1 ‘1 0 o the third row
— L0

-17/5 -13/5:0 -=2/5 1
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0 1 1 1 0 0
0 0 4/5 1 17/5 -2/5 1

to the third row

1 /5 —-1/5: 0 1/5 0 Adding 17/5 times the second row
—

0 1 1 1 0 0
0 0 1 . 17/4 -2/4 5/4

[1 1/5 -1/5+ 0 1/5 0 } Multiplying the third row by 5/4
—e

39

The left side of this partitioned matrix is in row-echelon form and contains no zero rows; thus, the

original matrix has an inverse. Applying Step 4.4, we obtain

1 1/5 -1/5+« 0 17 0 Adding ~1 times the third row to
—|0 1 0 :-13/4 2/4 -5/4 the second row
L0 O 1 17/4 -2/4 5/4
—([1 1/5 0 17/20 1/10 1/4 Adding 1/5 times the third row to
0 1 0.-13/4 2/4 —5/4 the first row
|0 0 1. 17/4 -2/4 5/4
-1 0 0: 6/4 0 2/4 Adding —1/5 times the second row
01 0 .-13/4 2/4  —5/4 to the first row
[0 0 1. 17/4 -2/4  5/4
6/4 0 2/4] 6 0 2
Thus AT'=[-13/4  2/4 -5/4|=%|-13 2 -5

17/4 -2/4 5/4 17 -2

4.8 Solve the system

5x, +3x,=8
2, + x,=-1

This system can be written in the matrix form
2 =)=
2 1]Lx] [ -1
Using the result of Problem 4.5 with Eq. (4.3), we have
]2 SlA0-[ 7]
X, 2 -s5ll-1 21

The solution is x, = —11, x, =21.

4.9  Solve the system

X, + x;=2
Sx,+ x,~ x;=3
2x, = 3x, - 3x,=—-6

This system can he written in the matrix form

0 1 L% 2
S5 1 -1}fx =] 3
2 -3 =34 -6

Using the result of Problem 4.7 in Eq. (4.3), we have

5

|
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X, 1 6 0 2 2 0

X | = 2 -13 2 -5 3i=| 5/2

X3 17 -2 51L-6 -1/2
The solution is x, =0, x,=5/2, x;=-1/2.

Prove that the inverse is unique when it exists.

Assume that A has two inverses, B and C. Then AB =1 and CA=1. It follows that

C=CI=C(AB)=(CA)B=IB=B

Prove that (A™')”' = A when A is nonsingular.

(A™") ' is, by definition, the inverse of A™'. A also is the inverse of A~'. These inverses must be
equal as a consequence of Problem 4.10.

Prove that (AB)"' =B 'A"' if both A and B are invertible.

(AB)™' is, by definition, the inverse of AB. Furthermore,

(B'A"')AB)=B '(A"'A)B=B"'IB=B"'B=1
and (ABYB'A™)=A(BB HA ' =AIA"' = AA"' =1

—1y -1 . .
so B"'A™" is also an inverse of AB. These inverses must be equal as a consequence of Problem 4.10.

Prove that the inverse of a lower triangular matrix A with nonzero diagonal elements is itself
lower triangular.

The proof is inductive on the rows of A™'. Denote the inverse of A = [a,] as A™' = [a,]. Since the
product AA™' is the identity matrix, the element in the ith row and jth column of this product must be
zero when i # j, In particular, the element in the first row and jth column of AA” ' withj > 1, is zero. We
may write that element as

n h n
0= E a,o, =a,a + 2 a0, =4, a6 ¥ ;2 (0)(ak/)= a,,a,
k=1 k=2 z

We are given a,, # 0, which implies that a, =0 for j > 1.
Now assume that a,; = 0 for j >i and all i < p ~ 1; compute the pth row of AA™". Since AA™ " is the
identity matrix, the element in its pth row and jth column, for j > p, must satisfy

p-1

n n
0= 2 a,oa, = 2 a, o, +a, o, + 2 a, o,
k=1 k=1 k=p+1

= 2 (apk )(0) ta,a, + i (0)(0,‘,) =a,,a,

—p+1

Since a,, #0, it follows that a, =0 when j> p.

Prove that any square matrix that can be reduced to row-echelon form without rearranging
any rows can be factored into a lower triangular matrix L times an upper triangular matrix U.

The reduction of a matrix A to row-echelon form can be expressed as the product of a sequence of
elementary matrices, one for each elementary row operation in the reduction process, multiplied by A. If
U is the resulting row-echelon form of A, then U is upper triangular and

(ELE,_, - "E;E))A=U )
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Each E, is an elementary matrix of either the second or third kind, so each is lower triangular and
invertible. It follows from Problem 4.12 that if

P=EE, ,--E,E, 2)
then P'=(EE,, -EE) =EE;]" - EE

P! is thus the product of lower triangular matrices and is itself lower triangular (Problem 3.17). From
(1), PA = U whereupon

A=IA=(P 'P)A=P '(PA)=P 'U

Supplementary Problems

In Problems 4.15 through 4.26 find the inverse of the given matrix if it exists.
4.15 0 0 0 1 1 0 0O 10 00 1 00 0
0100 07 00 01 00 01 0 -3
@ foo10 ®loo1o0] @Josro] @Wloo1 o
1 0 0O 0 0 01 0 0 0 1 0 0O 1
416 |2 0] 4.17 [1 3] 418 |2 3]
L1 1 2 5 L4 6
419 [-3 4] 4.20 1 00 421 [1 -1 27
L 2 1 2 20 0 -1 3
1 0 3 | 0 0 5]
422 [ 3 0 0 4.23 2 1 3 424 [1 -2 3]
- 20 4 2 -1 3 5 1
L 1 0 2 -1 1 L6 4 2]
4.25 1 2 1 4.26 2 2 3 3
1 1 1 2 3 3 2
3 -1 1 5 37 9
32 4 7

In Problems 4.27 through 4.29, use matrix inversion to solve for the unknowns:

4.27 2x,+ x,+3x,=-3 428 x +2xr,+x,=0
4x, +2x,— x,= 5 X +x,+x, =0
2x, - x,+ x,= 2 Ix,—x,+x, =6
(Hint: See Problem 4.23)) (Hint: See Problem 4,25.)

429 2x, +2x,+3x,+3x,=1
2x, +3x, +3x, +2x, =1
Sx, +3x, +7x,+ 9%, =1
3x, +2x, +4x,+7x, =1
(Hint: See Problem 4.26.)

4.30  Prove that (A™") = (A")""

4.31 Prove that if the commutative property of multiplication holds for nonsingular matrices A and B, then it
also holds for the following pairs of matrices: (a) A" and B™'; (b) A™" and B; (¢) A and B™".



Chapter 5

Determinants

EXPANSION BY COFACTORS

The determinant of a square matrix A, denoted det A or |A|, is a scalar. If the matrix is written
out as an array of elements, then its determinant is indicated by replacing the brackets with vertical
lines. For 1 X 1 matrices,

detA=la, |=a,,
For 2 X 2 matrices,
_ 1% 82| _
det A. - aZI azz - allazz - alzazl

Determinants for n X n matrices with n>2 are calculated through a process of reduction and
expansion utilizing minors and cofactors, as follows.

A minor M;; of an n X n matrix A is the determinant of the (n —1) X (n — 1) submatrix that
remains after the entire ith row and jth column have been deleted from A.

Example 5.1 For

[0 1 2
A=|3 4 5
[ 6 7 8
4 5
Mn: 7 8 =4(8)—5(7)=_3
01
My =g 4| =0 -16)=-6
12
My =|, 2| =165)-2(4)=-3

A cofactor A, of an n X n matrix A is defined in terms of its associated minor as
i (_I)HIMU
Now foranyiorj(i,j=1,2,...,n),
detA= 2 a,A, = 2 ayd, (5.1)
k=1 k=1

For each i, the first sum in (5.1) represents an expansion along the ith row of A; for each j, the
second sum represents an expansion along the jth column of A. Choosing to expand along a row or
column having many zeros, if it exists, greatly reduces the number of calculations required to
compute det A. (See Problems 5.2 through 5.4.)

PROPERTIES OF DETERMINANTS

Property 5.1: If A and B are square matrices of the same order, then det AB = det A det B.

Property 5.2:  The determinant of an upper or lower triangular square matrix is the product of the
diagonal elements.

42



CHAP. 5] DETERMINANTS 43

Property 5.3: If B is formed from a square matrix A by interchanging two rows or two columns of
A, then det A= —detB.

Property 5.4: If B is formed from a square matrix A by multiplying every element of a row or
column of A by a scalar k, then det A= (1/k)detB.

Property 5.5: If B is formed from a square matrix A by adding a constant times one row (or
column) of A to another row (or column) of A, then det A = detB.

Property 5.6: If one row or one column of a square matrix is zero, its determinant is zero.
Property 5.7: det A" =det A, provided A is a square matrix.
Property 5.8: If two rows of a square matrix are equal, its determinant is zero.

Property 5.9: A matrix A (not necessarily square) has rank k if and only if it possesses at least one
k x k submatrix with a nonzero determinant while all square submatrices of larger
order have zero determinants.

Property 5.10: If A has an inverse, then det A™' = 1/det A.

DETERMINANTS OF PARTITIONED MATRICES

A block matrix is one whose elements are themselves matrices. Property 5.2 can be extended to
partitioned matrices in block upper (or lower) triangular form. If

A, A, - A,
A= :,’ Ao” . :j:
0 0 - A,
where each of the submatrices A, A,,, ..., A, is square, then
det A =detA, detA,,detA,; - detA, (5.2)

(See Problem 5.8.)

PIVOTAL CONDENSATION

Properties 5.3 through 5.5 describe the effects of elementary row and column operations on a
determinant. Combined with Property 5.2, they form the basis for the pivotal condensation algorithm
for calculating the determinant of a matrix A, as follows:

STEP 5.1: Initialize D =1. D is a scalar that will record changes in det A as a result of elementary
row operations.

STEP 5.2: Use elementary row operations to reduce A to row-echelon form. Each time two rows
are interchanged, multiply D by —1; each time a row is multiplied by k, multiply D by
1/k. Do not change D when an elementary row operation of the third kind is used.

STEP 5.3: Calculate det A as the product of D and all the diagonal elements of the row-echelon
matrix obtained in Step 5.2.

(See Problems 5.6 and 5.7.) This algorithm is easy to program for computer implementation; it
becomes increasingly more efficient than expansion by cofactors as the order of A becomes larger. If
rounding is to be used, then the pivoting strategies given in Chapter 2 are recommended.
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INVERSION BY DETERMINANTS

The cofactor matrix A° associated with a square matrix A is obtained by replacing each element of
A with its cofactor. If det A0, then
1

" Jal
If det A is zero, then A does not have an inverse. (See Problems 5.9 through 5.11 and Problems 5.18

through 5.20.) The method given in Chapter 4 for inversion is almost always quicker than using
(5.3), with 2 x 2 and 3 x 3 matrices being exceptions.

A Y (5.3)

Solved Problems

5.1 Calculate the determinants of

a=[3 @] e m-3 7

det A = 1(4) - 2(3) = —2
det B = 2(5) — (~3)(4) = 22

2 3 4
A=|-5 353 6
7 89

expanding along (a) the first row, (b) the first column, and (¢) the second column.

5.2  Calculate the determinant of

(a) Expanding along the first row, we have
detA=a,A,, ta,A,+a,A,,

-5 5
7 8

-5 6
79

5 6
8 9

=2(_1)1+1

+3(_1)]+2 +4(_1)l+3

=2(=1)*{5(9) — 6(8)} + 3(~1)*{(~5)(9) — 6(7)} +4(~1)*{(~5)(8) — 5(7)}
=2(1)(-3) + 3(=1)(~87) + 4(1)(~75) = —45

(b) Along the first column,

detA: allAll + aZIAZI + a31A31

5 6 3 4 al3 4
8 9 g o/ T7CD s ¢
=2(-1){5(9) — 6(8)} + (=5)(—1)*{3(9) — 4(8)} + (- 1)*{3(6) — 4(5)}
=2(1)(=3) + (=5)(—D(=5) + 7(1)(—2) = —-45

=215 o =S
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5.3

5.4

(c¢) Expanding along the second column gives us

detA=a,,A,,+ a,,A,, +ad,A,,

s 3 § 1
=3(=1){(=5)(9) — 6(7)} + 5(—1)*{2(9) — 4(7)} + 8(—1)*{2(6) — 4(-5)}
=3(-1)(—87) + 5(1)(—10) + 8(—1)(32) = —45

-3 40
B=|-2 7 6
5 -8 0

by expanding along (a) the second row and (&) the third column.

#5172 o] +8-1?

Calculate the determinant of

(a) Expanding along the second row gives

4 0 -3 0
-8 0 50

= =2(=1)*{4(0) = 0(=8)} + 7(=1)*{(~3)(0) — 0(5)} + 6(—1)’{(~3)(—8) - 4(5)}
= —2(=1)(0) + 7(1)(0) + 6(—1)(4) = —24

e TP L e A L R TR

(b) Along the third column,
detB=0B8,,+68,, +0B,,=6B8,,

-3 4
5 -8
Part b involves less computation because we expanded along a column that has mostly zeros.

=6(—1)*"* =6(—1)°{(—3)(-8) — 4(5)} = —24

Calculate the determinant of

1 -4 2 -2
|4 7 -3 5
A=l 3 o 8 0

5 -1 6 9

We expand along the third row, because it is the row or column containing the most zeros:
det A = 3A3l + OAJZ +8A4 3t 0A34 = 3(_1)3+ lMsl + 8(_1)3+3M33
Now we may write

2 =2

—4
.|=3 5 ) 75 J 7 -3
My=| 7 -3 5|=-4(-1) +2(-1)°] _ +(=2)(-1)*| _
53 S| ] ] 8 2
= —4(1)(=57) + 2(~1)(68) + (=2)(1)(39) = 14

1 -4 -2
) 75 S 45 J o4 7
and  M,=| 4 7 S5|=1(=1)_ +(=a)(~1)°| _ +(-2)-1)] o _
s -1 @ 1 9' 5 9' 5 1'

=1(1)(68) + (—4)(—1)(61) + (—=2)(1)(31) =250

Thus, det A = 3(1)(14) + 8(1)(250) = 2042
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5.5  Verify that det AB = det A det B (Property 5.1) for the matrices given in Problems 5.2 and 5.3.
From the results of those problems, we know that det A det B = (—45)(—24) = 1080. Now

2 3 47-3 4 0 8 -3 18
AB=|-5 5 6l|l-2 7 6]|=|35 -33 30

L 7 8 9 5 -8 0 8 12 48
To calculate det AB, we expand along the first row, finding that

-33 30 1+2

det AB=8(—1)'"' 12 48 +(=3)(-1 3530

8 48
= 8(1)(—1944) + (—3)(—1)(1440) + 18(1)(684) = 1080

+18(~1)'"?

,35 -33
8 12

5.6  Use pivotal condensation to evaluate the determinant of

0 2 2
A=|1 0 3
2 11

We initialize D =1 and use elementary row operations to reduce A to row-echelon form:

-1 0 3 Interchanging the first and second
—-|0 2 2 rows: DeD(—1)=1(-1)= -1
211
1 0 3] Adding —2 times the first row to
02 2 the third row: D remains —1
-0 1 -5]
i 0 3] Multiplying the second row by 1/2:
-0 1 1 D« D2)=~-12)=-2
01 -5]
1 0 3] Adding -1 times the second row
01 1 to the third row: D remains ~2
—=L0 0 -6
1 0 3 Multiplying the third row by —1/6:
0 1 1| DeD(=6)=(~2)(~6)=12
=10 0 1

The diagonal elements of this last matrix are all ones, so det A = D(1)(1)(1) = 12.

5.7  Use pivotal condensation to evaluate the determinant of

1 2 -3 4
2 -2 5 -6
A=l 1 3 -4 ¢
6 S -3 6

We initialize D =1 and reduce A to row-echelon form:

1 2 -3 4 Adding —2 times the first row to
- 0 -6 11 -14 the second row: D remains 1
-1 3 —4 6
6 5 -3 6
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5.8

(1 2 -3 47  Adding 1 times the first row to the
0 -6 11 -14 third row: D remains 1
-0 S5 -7 10
L6 5 -3 6
1 2 -3 47 Adding —6 times the first row to
0 -6 11 -14 the fourth row: D remains 1
0 5 -7 10
=10 -7 15 —ISJ
(1 2 -3 4 Multiplying the second row by
~l0 1 -—11/6 14/6 ~1/6: D < D(~6) = 1(—6)
0 5 =7 10 =-6
L0 -7 15 -18
(1 2 -3 4 Adding -5 times the second row
0 1 -11/6 14/6 to the third row: D remains —6
|0 0 13/6 —5/3
0 -7 15 -18
12 -3 4 Adding 7 times the second row to
[0 1 —-11/6 14/6 the fourth row: D remains —6
00 13/6 —5/3
-0 0 13/6 -5/3
[1 2 -3 4 Multiplying the third row by 6/13:
01 -11/6 14/6 D« D(13/6) = —6(13/6) = — 13
-0 0 1 ~-10/13
L0 0 13/6 —5/3
(1 2 -3 4 Adding —13/6 times the third row
0 1 -11/6 14/6 to the fourth row: D remains —13
00 1 -10/13
-0 0 0 0

The matrix is now in row-echelon form with diagonal elements 1, 1, 1, and 0. Thus, detA=

-13(1)(1)(1)(0) = 0.

Calculate the determinant of

5302 5
0211 -6
A=|0 1 2 1 1
0 003
0001 -1

This matrix can be partitioned into block upper triangular form with square matrices on its main
diagonal. We introduce the partitioning

S13 0]2 5
0(2 1|1 -6
A=(0]1 211 1
0j0 0|3 6
L0110 01 -1

and it follows from Eq. (5.2) that

dem=]5i|f ;H:‘l‘ _‘;’l = 5(3)(=9) = 135
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5.9

5.10

511

5.12
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Calculate the inverse of

a-[5 il

We shall use Eq. (5.3). Since the determinant of a 1 x 1 matrix is the element itself, we have

A, =(-1)""det[da]=(1)(4)=4
Ay, =(-1)'"det[5]=(-1)(5)=~5
A= (-1 et [-1]=(-1)(-1)=1
A, =(—1)*"2det 3] = (1)3) =3

The determinant of A is 3(4) —(—1)(5) =17, so

a=[t 5] and NERIERY

1 3
2 3 4
A=|-5 5 6
7 89

In Problem 5.2, we calculated a number of cofactors for this matrix, In particular,

A,==-3 A,= 8 A,=-75
A,= 5 An,=-10
Ay =-2  A,=-32

and det A = —45. In addition,

Calculate the inverse of

Sl2 3
A= (=177 gl=(-1)(=5)=5
and A, =(=1)" _g 2| = sy =25
-3 & -75 (-3 5 =
Thus A=l s -0 5| ad At=-of @ -10 -2
2 -3 25 HBlos 5 25

Find the inverse of the matrix given in Problem 5.7.

Since the determinant of that matrix was found to be zero, the matrix does not have an inverse.

Verify Property 5.9 for
3 21 —4 1
A=|2 30 -1 -1
1 -6 3 -8 7
The rank of A was determined in Problem 1.17 to be 2, so there should be at least one 2 x 2

submatrix of A having a nonzero determinant. There are many, including the one in the upper left
corner:

3 2
l23*5

All 3 x 3 submatrices, obtained by deleting any two columns of A, have zero determinants.
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5.13

5.14

5.15

5.16

5.17

Prove that the determinant of an elementary matrix of the first kind is —1.

An elementary matrix E of the first kind is an identity matrix with two rows interchanged. The proof
is inductive on the order of E. If E is 2 X 2, then

_[o 1]
E= [1 0
and det E = —1, Now assume the proposition is true for all elementary matrices of the first kind with

order (k — 1) x (k — 1), and consider an elementary matrix E of order k x k. Find the first row of E that
was not interchanged, and denote it as row m. Expanding by cofactors along row m vyields

detE=a_A_,+a,A, ,+-+a, A  +-+a,A =A

m mm

because a,,; =0 for all j# m, and a,,, =1. Now

But M, is the determinant of an elementary matrix of the first kind having order (k — 1) X (kK — 1), so
by induction it is equal to —1. Thus, detE=A =M =-1

Prove Property 5.3.

If B is obtained from A by interchanging two rows of A, then B = EA, where E is an elementary
matrix of the first kind. Using Property 5.1 and the result of Problem 5.13, we obtain

det B =det EA =det Edet A= (—1)detA

from which Property 5.3 immediately follows.

Prove Property 5.4.

Assume that B is obtained from an n x n matrix A by multiplying the ith row of A by the scalar k.
Evaluating the determinant of B by expansion of cofactors along the ith row, we obtain

detB=ka, A, + ka A, + -+ ka, A,
=k{a, A, +a,A,+ - +a,A, )=kdetA

from which Property 5.4 follows.

Prove that the determinant of an elementary matrix of the third kind is 1.

An elementary matrix E of the third kind is an identity matrix that has been altered by adding a
constant times one row of I to another row of I. The proof is inductive on the order of E. If Eis 2 x 2,

then
_[1 0 =1k]
E[k 1] or E[01

In either case, det E = 1. Now assume the proposition is true for all elementary matrices of the third kind
with order (k — 1) X (k — 1), and consider an elementary matrix E of order k x . Find the first row of E
that was not altered from the k x k identity matrix, and denote this row as row m. The proof now
follows that in Problem 5.13 except that here M,,,, =1 by induction.

Prove Property 5.5.

If B is obtained from square matrix A by adding to one row of A a constant times another row of A,
then B = EA, where E is an elementary matrix of the third kind. Using Property 5.1 and the results of
Problem 5.16, we obtain

det B=det EA =detEdet A=1det A=detA
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5.18 Prove that if the determinant of a matrix A is zero, then the matrix does not have an inverse.

5.19

Assume that A does have an inverse. Then
1 =detI=det (AT'A) =detA™' det A =det A" ' (D) =0

which is absurd. Thus, A cannot have an inverse.

Prove that if each element of the ith row of an n X n matrix is multiplied by the cofactor of the
corresponding element of the kth row (i, k=1,2,...,n; i #k), then the sum of these n
products is zero.

For any n x n matrix A, construct a new matrix B by replacing the kth row of A with its ith row
(i.k=1,2,...,n; i# k). The ith and kth rows of B are identical, for both are the ith row of A; it
follows from Property 5.8 that det B =0. Thus, evaluating det B via expansion by cofactors along its ith
row, we may write

0=detB=2 b,8,=2 a,B, (1)
=1 i

where B, is the cofactor of b,.

For each element b, (j=1,2, ..., n)in the ith row of B, compare the submatrix B, obtained from
B by deleting its ith row and jth column to the submatrix A,; obtained from A by deleting its kth row and
jth column. They are the same except for the ordering of their rows; each submatrix contains all the rows
of A except for the kth and all the columns of A except for the jth. Exactly |i — k| — 1 row reorderings
are required to make B, equal to A,,, so it follows from Property 5.3 that

detB, = (—1)""*"' det A,, (2)

These determinants are minors of B and of A, respectively, so (2) may be written in cofactor notation as
(-1)77B, = (1) - A,
B,=-A, (3)
Combining (1) and (3), we have

0= E auB;,' = 2 az,("Ak,‘) =- 2 a:,Alq
j=1 ' j=1

i=1

which, when multiplied by —1, gives the desired result.

5.20 Prove that A(A°) = |A|L

Consider the (i, k) element of the product A(A")7; it is
2 (@,){(j, k) element of (A)"} = 2 (a,){(k, j) element of A’} = 2, a,A,,
=1 =1 ;=1

It follows from Problem 5.19 that this sum is zero when i # k. When i = k, the sum is det A because it is
an expansion by cofactors along the kth row of A. Therefore, we may write

'A| 0 --- 0
aay=| 0 A O A
0 0 N

Note that if ]A] %0, then A(A")"/|A| =1, from which (5.3) follows.
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Supplementary Problems

In Problems 5.21 through 5.26, let
13 6 8 -3 1.
SIS e B

2 1 3 1 -2 3 3 1 1
D= 2 -1 E=|3 51 F=| 6 2 5
2 -1 1 6 4 2 -1 12 -5

§.21 Find (4) det A and (b) det B, and (c) show that det AB = det A det B.

5.22 Find (a) detC and (b) detD, and (c) show that det CD = det C det D.
5.23 Find (a) detE and (b) detF.

5.24 Use determinants to find (a) A™' and (b) B™".

5.25 Use determinants to find D",

8.26 Use determinants to find E™".

In Problems 5.27 and 5.28, find the determinant of the given matrix.

5.27 201 3 5.28 2233
-110 2 2332

1 1 2 1 5379

-4 2 0 -3 32 47

5.29 Use determinants to find the inverse of the matrix given in Problem 5.28.

5.30 Prove Property 5.8.

5.31 Prove that if A has order n X n, then det kKA = k" det A.

§.32 Prove that if A has order n x n, then |A%| = |A>

5,33 Prove that if A and B are square matrices of the same order, then det AB = det BA.
§.34  Prove that if A is invertible, then det A™' = 1/det A.

5.35 Let A =LU be an LU decomposition of A (see Chapter 3). Show that det A is equal to the product of the
diagonal elements of L.



Chapter 6

Vectors

DIMENSION

A vector is a matrix having either one row or one column. The number of elements in a row
vector or a column vector is its dimension, and the elements are called components. The transpose of
a row vector is a column vector, and vice versa.

LINEAR DEPENDENCE AND INDEPENDENCE

A set of m-dimensional vectors {V,,V,,...,V,} of the same type (row or column) is linearly
dependent if there exist constants ¢, ¢, ..., c, not all zero such that
cVite,V,+---+¢cV =0 (6.1)

Example 6.1 The set of five-dimensional vectors
{I1,0,-2,0,0)",{2,0,3,0,0}",[0,2,0,0,1)", and [5,0, 4,0, 0)")

is linearly dependent because

1 2 0 5 0
0 0 2 0 0
1| -2|+2/3]+0j0|+(-1)|4]=]0
0 0 0 0 0
0 0 1 0 0
A set of m-dimensional vectors {V,,V,, ...,V } of the same type is linearly independent if the
only constants for which Eq. (6.1) holds are ¢, =c,=---=¢,=0.

The following algorithm may be used to determine whether a set of row vectors is linearly
independent or dependent. The algorithm is applicable to column vectors too, if their transposes are
considered instead. (See Problems 6.2 and 6.3.)

STEP 6.1: Construct a matrix V whose rows are the row vectors under consideration. That is, the
first row of V is V|, the second row of V is V,, and so on.
STEP 6.2: Determine the rank of V.

STEP 6.3: If the rank of V is smaller than the number of vectors in the set under consideration
(i.e., the number of rows of V), then the vectors are linearly dependent; otherwise,
they are linearly independent.

LINEAR COMBINATIONS

A vector B is a linear combination of vectors V,,V,, ..., V, if there exist constants

d.d,, ..., d,, such that "
B=dV, +dV,+--+dNV, (6.2)

For the matrix addition and equality of (6.2) to be defined, the vectors must all be of the same type
(row or column) and have the same dimension.

52
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Example 6.2 The vector [-3,4, —1,0,2]” is a linear combination of the vectors of Example 6.1 because

-3 1 2 0 5
4 0 0 2 0
—-1|=0 =2|+1|3|+2{0|+(-D|4
0 0 0 0 0
2 0 0 1 0

Equation (6.2) represents a set of simultancous linear equations in the unknowns
d,,d,,...,d, The algorithms given in Chapter 2 may be used to determine whether or not the d,
(i=1,2,...,n) exist and what they are. (See Problems 6.4 and 6.5.)

PROPERTIES OF LINEARLY DEPENDENT VECTORS

Property 6.1: Every set of m + 1 or more m-dimensional vectors of the same type (either row or
column) is linearly dependent.

Property 6.2: An ordered set of nonzero vectors is linearly dependent if and only if one vector can
be written as a linear combination of the vectors that precede it.

Property 6.3: If a set of vectors is linearly independent, then any subset of those vectors is also
linearly independent.

Property 6.4: If a set of vectors is linearly dependent, then any larger set containing this set is also
linearly dependent.

Property 6.5: Any set of vectors of the same dimension that contains the zero vector is linearly
dependent.

Property 6.6: The set consisting of a single vector is linearly dependent if and only if that vector is
the zero vector.

ROW RANK AND COLUMN RANK

Consider each row of a matrix A to be a row vector, The row rank of A is the maximum number
of linearly independent vectors that can be formed from these row vectors; it is the rank of A (see
Problem 6.11). Similarly, the column rank of A is the maximum number of linearly independent
vectors that can be formed from the columns of A. It may be obtained by calculating the rank of A’
because the rows of A" are the columns of A, The row rank of a matrix equals its column rank (see
Problem 6.10); so the column rank of A is also the rank of A.
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6.2

6.3

6.4

6.5
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Solved Problems

Determine whether the set {(1,1,3], [2, —1,3], (0,1, 1], [4,4, 3]} is linearly independent.

Since the set contains more vectors (four) than the dimension of its member vectors (three), the
vectors are linearly dependent by Property 6.1. They are thus not linearly independent.

Determine whether the set {[1,2, —1, 6}, [3, 8,9, 10], (2, —1, 2, —2]} is linearly independent.
Using Steps 6.1 through 6.3, we first construct
1 2 -1 6
V=13 8 9 10
2 -1 2 -2

Matrix V was transformed in Problem 1.13 into the row-echelon form:

1 2 -1 6
01 6 —4
0o 1 -1

By inspection, the rank of V is 3, which equals the number of vectors in the given set; hence, the given
set of vectors is linearly independent.

Determine whether the set {[3,2,1,-4,1]",{2,3,0, -1, ~1}", (1, —6,3, =8, 7]"} is linearly
independent.

Using the algorithm of this chapter, we construct
3 21 -4 1
V=12 30 -1 -1
1 -6 3 -8 7
which we transformed into row-echelon form in Problem 1.15:

1 2/3 1/3 —4/3 1/3
0 1 -2/5 1 -1
0 0 0 0 0

Since the rank of V is 2, which is less than the number of vectors in the given set, that set is linearly
dependent.

Determine whether [6, 10, 2] is a linear combination of [1,3,2]", [2,8, —1]", and [-1, 9, 2]".

It is a linear combination if and only if there exist constants d,, d,, and d, such that

ERINERE

Solving this system is equivalent to solving the systems of Problem 2.8 with each x replaced by a d. In
that problem we found that this system is consistent; hence [6, 10, —2]7 is a linear combination of the
other three vectors—in particular, for d, =1, d, =2, and d, = —1.

Determine whether [5, 1, 8] is a linear combination of [2, 3, 5], [1,6, 7], and [0, 1, 1].

It is a linear combination if and only if there exist constants d,, d,, and d, such that
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6.6

6.7

6.8

[5,1,8]=4d,[2,3,5] + d,[1,6,7] + 4,[0, 1, 1]
=[2d,+d,,3d, +6d,+d,, 5d, +7d, + d,]
which is equivalent to the system
2d,+ d, =5
3d, +6d,+d; =1
5d, +7d,+d;=8

This system was shown in Problem 2.5 to be inconsistent, so [5, 1, 8] is not a linear combination of the
other three vectors.

Prove that every set of m + 1 or more m-dimensional vectors of the same type (either row or
column) is linearly dependent.

Consider a set of n-such vectors, with n > m. Equation (6.1) generates m-homogeneous equations
(one for each component of the vectors under consideration} in the n-unknowns ¢, c,,...,c,. If we
were to solve those equations by Gaussian elimination (see Chapter 2), we would find that the solution

set has at least 7 — m arbitrary unknowns. Since these arbitrary unknowns may be chosen to be nonzero,
there exists a solution set for (6.1) which is not all zero; thus the n vectors are linearly dependent.

Prove that an elementary row operation of the first kind does not alter the row rank of a
matrix.

Let B be obtained from matrix A by interchanging two rows. Clearly the rows of A form the same
set of row vectors as the rows of B; so A and B must have the same row rank.

Prove that if AX =0 and BX = 0 have the same solution set, then the n X n matrices A and B
have the same column rank.

The system AX =0 can be written as

XA +xA, +---+x A =0 (1)
where A, is the first column of A, A, is the second column of A, and so on, and X =[x, x,,..., x,,]T.
Similarly, the system BX =0 can be written as

x B, +x,B,+---+x,B,=0 (2)

Denote the column rank of A as a, and the column rank of B as b. Assume that the column rank of
A is greater than the column rank of B, so that a > b. Now there must exist a columns of A which are
linearly independent. Without loss of generality, we can assume that these are the first a columns of A.
(If not, rearrange A so that they are; this column rearrangement does not change the column rank of A,
by reasoning analogous to that used in Problem 6.8.) However, the first a columns of B are linearly
dependent, because b is assumed to be smaller than a. Thus, there exist constants d,, d,, ..., d_, notall
zero, such that '

dB, +d,B,+--++d,B,=0
From this, it follows that
dB, +d,B,+-*'+d,B,+0B,,,+--*+0B,=0
and that
x, =d, x,=d, x,=d, X1 =X,0="=x,=0

is a solution of system (2). Since these same values are given to be a solution of system (1), it follows
that
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6.9

6.10

6.11
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dA +dA,+ - +dA, =0

where, as noted, the constants d,, d,, . . ., d, are not all zero. But this implies that A, , A,,. .., A  are
linearly dependent, which is a contraction. Thus the column rank of A cannot be greater than the column
rank of B.

A similar argument, with the roles of A and B reversed, shows that the column rank of B cannot be
greater than the column rank of A, so the two column ranks must be equal.

Prove that an elementary row operation of any kind does not alter the column rank of a
matrix.

Denote the original matrix as A, and the matrix obtained by applying an elementary row operation
to A as B. The two homogeneous systems of equations AX = 0 and BX = 0 have the same set of solutions
(see Chapter 2). Thus, as a result of Problem 6.8, A and B have the same column rank.

Prove that the row rank and column rank of any matrix are identical.

Assume that the row rank of an m X n matrix A is r, and its column rank is c. We wish to show that
r = ¢. Rearrange the rows of A so that the first r rows are linearly independent and the remaining m — r
rows are the linear combinations of the first r rows. It follows from Problems 6.7 and 6.9 that the column

rank and row rank of A remain unaltered. Denote the rowsof Aas A, A,, ..., A_, in order, and define
:l Ar+l
A
B=| ? and C=]|_ "
AV Am

Then A is the partitioned matrix [C] Furthermore, since every row of C is a linear combination of rows
of B. there exists a matrix T such that C = TB. In particular, if

A, =dA +dA,+ --+dA,

then [d,. d,....,d,] is the first row of T. Now for any n-dimensional vector X,
_[BX]_f[ BX
Ax‘[cx]_ TBX]

Hence, AX =0 if and only if BX =0, and it follows from Problem 6.8 that A and B have the same
column rank ¢. But the columns of B are r-dimensional vectors, so the column rank of B cannot be
greater than r. That is,

csr (1)

By repeating this reasoning on A, we conclude that the column rank of A" cannot be greater than
the row rank of A”. But since the columns of A7 are the rows of A and vice versa, this means that the row
rank of A cannot be greater than the column rank of A; that is,

r<c 2)
We conclude from (1) and (2) that r=c.

Prove that both the row rank and the column rank of a matrix equals its rank.

Let U be a matrix in row-echelon form obtained from A by elementary row operations. Then it
follows from Problem 6.9, that A and U have the same column rank. Now denote the rank of A as r.
From the definition of rank, 7 is the number of nonzero rows in U. Since the first nonzero element in
each of the first r rows of U appears in a different column, it is simple to show that the first r rows of U
are linearly independent and, therefore, that the row rank of U is r. The result of Problem 6.10 tells us
that the column rank of U is also r. And, since U and A have the same column rank, the column and
row-ranks of A are equal to its rank r.
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6.12

6.13

6.14

Problem 6.8 suggests the following algorithm for choosing a maximal subset of linearly
independent vectors from any given set: Construct a matrix A whose columns are the given set
of vectors, and transform the matrix into row-echelon form U using elementary row
operations. Then AX = 0 has the same solution set as UX = 0, which implies that any subset of
the columns of A are linearly independent vectors if and only if the same subset of columns of
U are linearly independent. Now the columns of U containing the first nonzero element in
each of the nonzero rows of U are a maximal set of linearly independent column vectors for U,
so those same columns in A are a maximal set of linearly independent column vectors for A.

Use this algorithm to choose a maximal set of linearly independent vectors from [3, 2, 1],
[2,3,-6], [1,0,3],[-4, -1, 8], and [1, —1, 7).

We form the matrix
3 21 -4 1
A=|2 30 -1 -1
1 -6 3 -8 7
which, as shown in Problem 1.15, has the row-echelon form

1 2/3 1/73 -4/3  1;3
0 1 -=2/5 1 -1
0 0 0 0 0

U=

The first and second columns of U contain the first nonzero element in each nonzero row of U.
Therefore, the first and second columns of A constitute a maximal set of linearly independent vectors for
the columns of A. That is, [3, 2, 1] and [2, 3, —6) are linearly independent, and all the other vectors in
the original set are linear combinations of those two. In particular,

[1,0,3]= 2[3,2, 1] - [2,3, -6]
[~4, -1, -8] = (~2)[3,2,1] + (D[2, 3, 6]
[1,-1,7]= (1)[3,2, 1] + (- 1[2. 3, —6]

Choose a maximal subset of linearly independent vectors from the following set:

3G L BE) L

We form the matrix

which has the row-echelon form
1 21 4 1 1
U=|0 0 1 1 1/2 172
0000 O 1

The first, third, and sixth columns of U contain the first nonzero element in each of its nonzero rows.
Therefore, the first, third, and sixth columns of A constitute a maximal set of linearly independent
vectors for the original set of vectors.

Prove that an ordered set of nonzero vectors {V,,V,,...,V, } is linearly dependent if and
only if one of its vectors can be written as a linear combination of the vectors that precede it.
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6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22

6.23

6.24

6.25

In
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Suppose the set is linearly dependent, and let { be the first integer between 2 and n for which
{V,.V,....] V.} forms a linearly dependent set. Such an integer must exist, and at the very worst [ = n.
Then there exists a set of constants d,, d,, ..., d,, not all zero, such that

dV,+dNV,+---+d_\V,_,+dV,=0

Furthermore, d, #0, for otherwise the set {V,, V,,...,V,_,} would be linearly dependent, contradicting
the defining property of i. Hence,
dl d2 di—l
V=—gVi-g V- -V,
That is, V, can be written as a linear combination of V,,...,V,_,.
On the other hand, suppose that for some i (i=2,3,...,n)
V,=dV, +d,V,+ -+d_V_,
Then dvV,+dV,+ - +d,_V,_ +(-1)V,+0V,_  +---+0V,=0

Thisis (6.1) withc, = -1#0,¢,=d, (k=1,...,i—-1),and ¢, =0 (k=i+1,i+2
of vectors is linearly dependent.

..... n). So the set

Supplementary Problems

Problems 6.15 through 6.20, determine whether the given set of vectors is linearly independent.

(121" [2.4]"}

(11.1.2], 2.2.2]. [2,2,1}}

({1.0.1]. (1, 2,0, [0.1,2]}

{[1,0,2,0]", [2,2,0,1]", [1, -2,6, —1]"}
([2.0.1,1]. [0,1,2, 1], [1, -1, -1, 1], [0.0, 1, 2]}

{11,2,11, [1,1,0]", [0,1,-1]", [2, 1, 3]"}

Is [1,3]" a linear combination of the vectors given in Problem 6.15?

(a) Determine whether [0, 0, ] can be written as a linear combination of the vectors given in Problem
6.16. (b) Repeat part a for the vector {1,2,0].

(a) Determine whether [2, |, 2, 1] can be written as a linear combination of the vectors given in Problem
6.19. (b) Repeat part a for the vector [0,0,0,1].

Show that any 3-dimensional row vector can be expressed as a linear combination of the vectors given in
Problem 6.17.

Choose a maximal subset of linearly independent vectors from those given in Problem 6.15.
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6.26

6.27

6.28

6.29

6.30

6.31

6.32

6.33

6.4

Choose a maximal subset of linearly independent vectors from those given in Problem 6.16.

Choose a maximal set of linearly independent vectors from the following: [1,2,1, -1}, [1,0, -1,2],
[2v 21 0) l]7 [3) 21 —l) 3]) [0» 11 15 015 [35 3a 053]

An m-dimensional vector V is a convex combination of the m-dimensional vectors V,, V,, ..., V, of the
same type (row or column) if there exist nonnegative constants d,, d,, . . . , d, whose sum is 1, such that
v=d\V, +d,V, +-+++dV,. Show that [5/3,5/6] is a convex combination of the vectors [1, 1], [3,0],

and [1,2].
Determine whether [0,7]" can be written as a convex combination of the vectors
HE R A
6 9 1 1

Prove that if {V,, V,, ..., V,} is linearly independent and V cannot be written as a linear combination of
this set, then {V,,V,,...,V,, V} is also linearly independent.

Prove Property 6.5.

The rull space of a matrix A is the set of all vectors which are solutions of AX =0. Determine the null

space of

a=5 3
Determine the null space of the matrix

A

Determine the null space of the matrix

N O N =
W = DD
—_———O O
O o



Chapter 7

Eigenvalues and Eigenvectors

CHARACTERISTIC EQUATION

A nonzero column vector X is an eigenvector (or right eigenvector or right characteristic vector) of
a square matrix A if there exists a scalar A such that-

AX = AX (7.1)

Then A is an eigenvalue (or characteristic value) of A. Eigenvalues may be zero; an eigenvector may
not be the zero vector.

Example 7.1 [1, —1]" is an eigenvector corresponding to the eigenvalue A = ~2 for the matrix

3 s
a=[ 3 i)
30051 1]_[-21_ -1
because [—2 -4][—1]‘[ 2]‘ 2[ 1]
The characteristic equation of an n x n matrix A is the nth-degree polynomial equation
det(A— A1) =0 (7.2)

Solving the characteristic equation for A gives the eigenvalues of A, which may be real, complex, or
multiples of each other. Once an eigenvalue is determined, it may be substituted into (7.1), and then
that equation may be solved for the corresponding eigenvectors. (See Problems 7.1 through 7.3.) The
polynomial det (A — AI) is called the characteristic polynomial of A.

PROPERTIES OF EIGENVALUES AND EIGENVECTORS

Property 7.1: The sum of the eigenvalues of a matrix is equal to its trace, which is the sum of the
elements on its main diagonal.

Property 7.2: Eigenvectors corresponding to different eigenvalues are linearly independent.
Property 7.3: A matrix is singular if and only if it has a zero eigenvalue.

Property 7.4: If X is an eigenvector of A corresponding to the eigenvalue A and A is invertible, then
X is an eigenvector of A~' corresponding to its eigenvalue 1/A.

Property 7.5: If X is an eigenvector of a matrix, then so too is kX for any nonzero constant k, and
both X and kX correspond to the same eigenvalue.

Property 7.6: A matrix and its transpose have the same eigenvalues.

Property 7.7: The eigenvalues of an upper or lower triangular matrix are the elements on its main
diagonal.

Property 7.8: The product of the eigenvalues (counting multiplicities) of a matrix equals the
determinant of the matrix.

Property 7.9: If X is an eigenvector of A corresponding to eigenvalue A, then X Is an an eigenvector
of A — cI corresponding to the eigenvalue A — ¢ for any scalar c.

60
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LINEARLY INDEPENDENT EIGENVECTORS

The eigenvectors corresponding to a particular eigenvalue contain one or more arbitrary scalars.
(See Problems 7.1 through 7.3.) The number of arbitrary scalars is the number of linearly
independent eigenvectors associated with that eigenvalue. To obtain a maximal set of linearly
independent eigenvectors corresponding to an eigenvalue, sequentially set each of these arbitrary
scalars equal to a convenient nonzero number (usually chosen to avoid fractions) with all other
arbitrary scalars set equal to zero. It follows from Property 7.2 that when the sets corresponding to
all the eigenvalues are combined, the result is a maximal set of linearly independent eigenvectors for
the matrix. (See Problems 7.4 through 7.6.)

COMPUTATIONAL CONSIDERATIONS

There are no theoretical difficulties in determining eigenvalues, but there are practical ones.
First, evaluating the determinant in (7.2) for an n X n matrix requires approximately n! multiplica-
tions, which for large n is a prohibitive number. Second, obtaining the roots of a general
characteristic polynomial poses an intractable algebraic problem. Consequently, numerical algor-
ithms are employed for determining the eigenvalues of large matrices (see Chapters 19 and 20).

THE CAYLEY-HAMILTON THEOREM
Theorem 7.1: Every square matrix satisfies its own characteristic equation. That is, if

det(A—AD)=b A" +b, _A"""+- - +b,A*+b,A+b,
then bA"+b, A" '+ +b,A+ b A+bJI=0

(See Problems 7.15 through 7.17.)

Solved Problems

7.1  Determine the eigenvalues and eigenvectors of

[ 3 5]
A‘[—z 4
For this matrix,
[ 3 5]l 0] _f3-A4 5
A”“"[—z —4] A[o 1]‘[ ) —4—1«]
hence det(A—-AD)=(3-A)(—-4-A)—-5(-2)=a"+A-2

The characteristic equation of A is A? + A —2 = 0; when solved for A, it gives the two eigenvalues A = 1
and A = —2. As a check, we utilize Property 7.1: The trace of A is 3 + (—4) = —1, which is also the sum
of the eigenvalues,
The eigenvectors corresponding to A = 1 are obtained by solving Eq. (7.1) for X = [x,. x,]” with this
value of A. After substituting and rearranging, we have
H
0

(-3 =316 S
or [3 2l=]-=[0]

which is equivalent to the set of linear equations
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2x, +5x,=0
-2x,—5x,=0
The solution to this system is x, = — } x, with x, arbitrary, so the eigenvectors corresponding to A = 1 are

_ xl _ —%12 _ ["5/2]
x_[xz]_[ X, ]—x2 1
with x, arbitrary.

When A= -2, (7.1) may be written

3 2l-e20p TR0
[5 Sl]=10]

which is equivalent to the set of linear equations

or

5%, +5x,=0
-2x, —2x,=0
The solution to this system is x, = —x, with x, arbitrary, so the eigenvectors corresponding to A = —2 are

x=[n]=[-="1]

with x, arbitrary.

Determine the eigenvalues and eigenvectors of

S 2 2
A=|3 6 3
6 6 9
For this matrix,

5 2 2 1 00 5~ 2 2
A—-Al=|3 6 3[-A10 1 0j=] 3 6-A 3
6 6 9 001 6 6 9-4A
The determinant of this last matrix may be obtained by expansion by cofactors (see Chapter 5); it is
-A+200% - 93X +126=—(A—3)’(A—14)

The characteristic equation of A is —(A — 3)’(A — 14) =0, which has as its solution the eigenvalue A =3
of multiplicity two and the eigenvalue A = 14 of multiplicity one. As a check, we utilize Property 7.1: The
trace of A is 5+ 6+ 9 =20, which equals the sum of the three eigenvalues.

The eigenvectors corresponding to A = 3 are obtained by solving (7.1) for X = [x,, x,, x,]” with this
value of A. Thus, we may write

ERERION
: I

which is equivalent to the set of linear equations
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7.3

2x, +2x, +2x, =0
3x, +3x, +3x,=0
6x, +6x,+6x,=0

The solution to this system is x, = —x, — x, with x, and x, arbitrary; the eigenvectors corresponding to

A =23 are thus
X, —X; T X -1 -1
X=|x1= Xy =1x, 1 + X, 0
X, X3 0 1
with x, and x, arbitrary.
When A = 14, (7.1) becomes
5 2 2 1 0 0
( 3 6 3|—-14|0 0
6 6 9 0 1

1
0
2 * T 07
or —8 3 xz =10
-5 0]
which is equivalent to the set of linear equations
—9x, +2x, +2x,=0

3x, —8x,+3x,=0
6x, +6x, —Sx,=0

The solution to this system is x, = jx, and x, = jx, with x, arbitrary; the eigenvectors corresponding to
A =14 are thus
xl §x3 l /3
X=|Xx ix3 =X 1/2
x3 x3 1

Determine the eigenvalues and eigenvectors of

with x, arbitrary.

I 3 4]
N
For this matrix,
_y_] 3 4]_ [1 0]_[3—)\ 4 ]
] B B o RO
hence det(A-AD) =3~ A)(~5-A)—4(-5)=r"+2A+5
The characteristic equation of A is A%+ 2A+ 5=0; when solved for A, it gives the two complex
eigenvalues A= —1 + /2 and A = —1 — i2. As a check, we note that the trace of A is —2, which is the sum

of these eigenvalues.
The eigenvectors corresponding to A = 1 are obtained by solving Eq. (7.1) for X =[x,, x,]” with this
value of A, After substituting and rearranging, we have

(RS P M EH
or [4:;2 —44—;‘2][2]=[3]

which is equivalent to the set of linear equations
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(4-1i2)x, + 4x,=0
-S5x,+(-4-i2)x,=0
The solution to this system is x, = (—4/5 — i2/5)x, with x, arbitrary; the eigenvectors corresponding to
A=—1+i2 are thus

_[x ] _[(—4/5-i2/5)x,] _ [—4/5—1'2/5
x—[xz]_[ X, =% 1 ]

with x, arbitrary.
With A = -1 — 2, the corresponding eigenvectors are found in a similar manner to be

x_[x,]_ (—4/5+i2/5)x,] _ [—4/5-{-1‘2/5]
NENE X, =% 1

with x, arbitrary.

Choose a maximal set of linearly independent eigenvectors for the matrix given in Problem
7.2.

The eigenvectors associated with A =3 were found in Problem 7.2 to be

-1 -1
le: 1] + xJ[ 0] x,, x, arbitrary
0 1

There are two linearly independent eigenvectors associated with A = 3, one for each arbitrary scalar. One
of them may be obtained by setting x, = 1, x, = 0; the other, by setting x, =0, x,=1.
The eigenvectors associated with A = 14 are

1/3
x,| 172 x, arbitrary
1

Since there is only one arbitrary constant here, there is only one linearly independent eigenvector
associated with A = 14. It may be obtained by choosing x, to be any nonzero scalar. A convenient choice,
to avoid fractions, is x, = 6. Combining the linearly independent eigenvectors corresponding to the two

eigenvalues, we obtain
-1 -1 2
1 0 3
0 1 6

as a maximal set of linearly independent eigenvectors for the matrix.

Choose a maximal set of linearly independent eigenvectors for the matrix given in Problem
7.1.

The eigenvectors corresponding to A =1 were found in Problem 7.1 to be

-5/2 )
xz[ 1 ] x, arbitrary
Since there is only one arbitrary scalar, there is only one linearly independent eigenvector associated
with this eigenvalue. It may be obtained by choosing x, to be any nonzero scalar. A convenient choice,
to avoid fractions, is x, = 2.

The eigenvectors corresponding to A = —2 are

xz[ B :] x, arbitrary
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1.7

7.8

There is one linearly independent eigenvector associated with this eigenvalue, and it may be obtained by
choosing x, to be any nonzero scalar. A convenient choice here is x, =1. Collecting the linearly
independent eigenvectors for the two eigenvalues, we have

I

as a maximal set of linearly independent eigenvectors for the matrix.

Choose a maximal set of linearly independent eigenvectors for the matrix

21000
02000
A=l0 0 2 0 O
0 0021
0 000 2

Since this matrix is upper triangular its eigenvalues are the elements on its main diagonal. Thus,
A =2 is an eigenvalue of multiplicity five. The eigenvectors associated with this eigenvalue are

X, 1 0 0
0 0 0 0
X =, 0)+x;) 1) +x,40
X4 0 0 1
0 0 0 0

with x,, x,, and x, arbitrary. Because there are three arbitrary scalars, there are three linearly
independent eigenvectors associated with A. One may be obtained by setting x, = 1, x, = x, = 0; another
by setting x, =1, x, = x, =0; and the third by setting x, =1 and x, = x; = 0. Note that this matrix has
only three linearly independent eigenvectors, even though it has order 5 x 5.

Show if A is an eigenvalue of a matrix A, then it is a solution to (7.2).

If A is an eigenvalue of A, there must exist a nonzero vector X such that AX =AX. Thus,
AX — AX =0, and (A — AI)X = 0. This implies that A — Al is singular, for otherwise X = (A — AI)"'0 =0,
which is not the case. But if A — Al is singular, then det (A — AI) =0 (see Chapter 5).

Show that eigenvectors corresponding to different eigenvalues are linearly independent.

Let A, A,,..., A, be different eigenvalues of a matrix A, and let X,, X,, ..., X, be associated
eigenvectors. We must show that the only solution to
X, +eX, 40+, X, =0 (1)
isc,=c,=--=c,, =0. Multiplying (1) on the left by A, we obtain

¢, AX, + c,AX, + -+, AX, = A0=0
Since each vector here is an eigenvector, we use (7.1) to write
oA X, +AX, ++c, X, =0 (2)
Multiplying (2) on the left by A and again using (7.1), we obtain
A, + AX, e+, ALK, =0 3)

Equations (1) through (3) are the first three equations of the set
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c.X, +¢,X, +.+c, X, =0

A X, +AK, +--tc,A X, 0
X, tAX, +o+c,ANX, =0
GAX + 00K, +e+c,AlX, 0
AT X, oA X4+ Al X, =0

generated by sequentially multiplying each equation on the left by A. This system can be written in the
matrix form

1 1 1 1 Clxl 0
1 A, Ayt A, ., X, 0
Aoar x % X, [=| o 4)
ATTU o Amol et pmet e X, 0

The first matrix on the left is an m X m matrix which we shall denote as Q. Its determinant is called the
Vandermonde determinant and is

(Az - )‘1)()‘3 - A2)()‘3 - )‘1)()\‘ - Az)()‘a - )‘2)()\‘_ Al)' (A, — ’\1)

which is not zero in this situation because all the eigenvalues are different, As a result Q is nonsingular,
and the system (4) can be written as

X, 0 0
¢, X, 0 0
X, |=Q Mo [=]0o
c. X, 0 0
It follows that ¢, X, =0 (i= 1,2, ..., m). But since each X, is an eigenvector, it is not zero; so ¢, = 0 for

each i.

Prove that a matrix is singular if and only if it has a zero eigenvalue.

A matrix A has a zero eigenvalue if and only if det (A —O0I)=0, which is true if and only if
det A =0, which in turn is true if and only if A is singular (see Chapter 5).

Prove that if X is an eigenvector corresponding to the eigenvalue A of an invertible matrix A,
then X is an eigenvector of A™' corresponding to its eigenvalue 1/A.

It follows from Problem 7.9 that A#0. We are given AX = AX, so A '(AX)=A"'(AX) and
X = A(A"'X). Dividing by A, we obtain A™'X = (1/0)X, which implies the desired result.

Prove that a matrix and its transpose have the same eigenvalues.
If A is an eigenvalue of A, then
0 =det (A — Al) =det {(AT)" — AI"} = det(A” — AI)" = det (A" - AI)

by Property 5.7. Thus, A is also an eigenvalue of A".

Prove that if X,,X,,...,X, are all eigenvectors of a matrix A corresponding to the same
eigenvalue A, then any nonzero linear combination of these vectors is also an eigenvector of A
corresponding to A.

Set X=d,X, + d,X, +--- +d,X,. Then
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7.13

7.14

7.15

AX=AdX, +dX,+ - +dX))
=d,AX, + d,AX, +- -+ d AX,
=d,AX, +d,AX, + -+ d,AX,
=AMd X, +d,X,+ - +dX,)=AX
Thus, X is an eigenvector of A. Note that a nonzero constant times an eigenvector is also an eigenvector
corresponding to the same eigenvalue.

A left eigenvector of a matrix A is a nonzero row vector X having the property that XA = AX
or, equivalently, that

X(A — AI) =0 (1)

for some scalar A. Again A is an eigenvalue for A, and it is found as before. Once A is determined, it is
substituted into (1) and then that equation is solved for X. Find the eigenvalues and left eigenvectors for

A=

The eigenvalues were found in Problem 7.1tobe A=1and A= -2. Set X = [x,, x,}. With A =1, (1)

becomes
3 5 1 0
["""2]([-2 —4]—1[0 1])’“”0]
2 5

or [xhxz][_z _5]=[0s0]
or [2x, = 2x,, 5%, = 5x,] = [0, 0]
which is equivalent to the set of equations

2x, —2x,=0

S5x, —5x,=0

The solution to this system is x, = x,, with x, arbitrary. The left eigenvectors corresponding 1o A =1 are
thus {x,, x,] =[x,, x,] = x,[1, 1] with x, arbitrary.
For A= -2, (1) reduces to

5 5
[xl » xz][ -2 _2] = [0’ 0]
or [5x, = 2x,,5x, —2x,]=(0,0]
which is equivalent to the set of equations
Sx, —2x,=0
5x, —2x,=0

The solution to this system is x, = $x,, with x, arbitrary. The left eigenvectors corresponding to A = -2
are [x,, x,] = [3x,, x,] = x,[2/5, 1] with x, arbitrary.

Prove that the transpose of a right eigenvector of A is a left eigenvector of A” corresponding
to the same eigenvalue.

If X is a right eigenvector of A corresponding to the eigenvalue A, then AX = AX. Taking the
transpose of both sides of this equation, we obtain X'A” = AX".

Verify the Cayley-Hamilton theorem for

2 ]
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The characteristic equation for A was determined in Problem 7.1 to be A> + A — 2 = 0. Substituting
A for A, we obtain
2 P | —5] [ 3 5]_ [1 0]_[0 0]
vea-a=[73 2l G 3] 1]<[0 0

7.16 Verify the Cayley-Hamilton theorem for

5 2 2
A=13 6 3
6 6 9

The characteristic equation for A was found in Problem 7.2 to be —A” +20A% — 931 + 126 =0.
Therefore, we evaluate

521 494 494 43 34 34 5 2 2
—A’+20A° - 93A + 1261 = —| 741 768  741{+20] S1 60 S1|-933 6 3

1,482 1,482 1,509 102 102 111 6 6 9
1 01 0 00

+126)0 1 0|=({0 0 O
0 01 0 00

7.17 Prove the Cayley-Hamilton theorem.

We denote the characteristic polynomial of an n X n matrix A as

d(A)=b,A"+b,_ A""'+---+b,A+b A+ b, (1)
and set C=A-Al (2)
Then d(A) = det(A — Al) =detC (3)

Since C is an n X n matrix having first-degree polynomials in A for its diagonal elements and scalars
elsewhere, it follows that the cofactor matrix C” associated with C (see Chapter 5) will have elements
that are polynomials of degree n—1 or n—2 in A, Elements on the main diagonal of C* will be
polynomials of degree n — 1; all other elements will be polynomials of degree n — 2. The same will be
true of the transpose of this cofactor matrix; hence (C°)” may be written as the sum of products of
distinct powers of A and scalar matrices M, :

(CY =M, A" "4+M, A" 7+ + M A+ M, (4)
where My, M, ..., M, _, are all n X n scalar matrices.
It follows from Problem 5.20 and (3) that
C(C)" = (det C)I = d( AN (%)

Using (2), we obtain
C(C)" =(A - AI)(C) =A(C) - A(CY
With (5), this yields
d(A)1 = A(C*) — MC)T (6)
Substituting (1) and (4) into (6), we obtain
b AT+b, A" 'T4 -+ b AT+ b JI=AM,_ A"+ AM, _,A" 2 4+ AM, A + AM,,
~M,_ A"-M, A" = =M AT - M,A

Both sides of this matrix equation are polynomials in A. Since two matrix polynomials are equal if
and only if their corresponding coefficients are equal, it follows that
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7.18

7.21

7.24

bnl=—Mn—l
b, 1=AM,_ ,-M, _,
bn 2]=AMH-2-MH—3
b,I=AM, - M,
b,d = AM,

Multiplying the first or these equations by A", the second by A" ', the third by A" %, and so on (the last
equation will be multiplied by A’ =1) and then adding, we find that terms on the right side cancel,
leaving

b A +b, A '+b, , A"+ - +bA+bl=0

which is the Cayley-Hamilton theorem for A with characteristic polynomial given by (7).

Supplementary Problems

In Problems 7.18 through 7.26, find the eigenvalues and corresponding eigenvectors for the given matrix

13 5 -4 [5 8]
1 3] 719 [4 —3] 120 |y

sl e [ 5] e [ ]

[1 1 -1 0 1 -1 -2 23
02 1 7.25 0 -1 1 7.26 216
L0 0 3 0 0 o0 366

In Problems 7.27 through 7.34, find the eigenvalues and a maximal set of linearly independent eigenvectors

for the given matrix

7.27

7.30

7.33

s 1 0 510 500

05 1| 728 (05 ol 72 |os o

0 0 5 005 00 S

310 0 3100 4 3 0 0
0300 0310 2 -1 0 0
003 1| ™ Jogo 31| 73 0 0 4 3
0 0 0 3 000 3 0 0 -3 -2
311 6 2 -2

15 1| 7.3 2 6 -2

11 3 -2 -2 10

In Problems 7.35 through 7.40, find the eigenvalues and a maximal set of linearly independent left
cigenvectors for the given matrix

7.35

7.36

7.37

The matrix in Problem 7.18.

The matrix in Problem 7.19. h,

The matrix in Problem 7.20,
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3 2 - 1 1 -1 3 1 1
7.38 2 3 -1 7.39 1 1 -1 7.40 -1 31 -
-1 -1 4 -1 -1 1 1 -1 3

7.41  Verify the Cayley-Hamilton theorem for the matrix in (¢) Problem 7.18; (b) Problem 7.24; and (c)
Problem 7.30.

7.42 Show that if A is an eigenvalue of A with corresponding eigenvector X, then X is also an eigenvector of
A? corresponding to A’

7.43 Show that if A is an eigenvalue of A with corresponding eigenvector X, then for any scalar ¢, X is an
eigenvector of A — ¢l corresponding to the eigenvalue A —c.

7.44  Prove that if A has order n X n, then
det(A — Al) = (~1)"{A" = (trace A)A" "' + O(A""%)}

where O(A”"?) denotes a polynomial in A of degree n ~ 2 or less.
7.45  Prove that the trace of a square matrix is equal to the sum of the eigenvalues of that matrix.
7.46  Prove that trace (A + B) = trace A + trace B if A and B are square matrices of the same order.
7.47  Prove that trace AB = trace BA if A and B are square matrices of the same order.
7.48  Show that if S is an invertible matrix of the same order as A then trace(S™'AS) = trace A.
7.49 Prove that the determinant of a square matrix equals the product of all the eigenvalues of that matrix.

7.50 Show that the n X n matrix

0 1 o --- 0 0
0 0 1 0 0
0

c=1 " 0 0 o . °.
0 0 0 0 1
—4, —a, —4a, —8,., —a4,.,

has as its characteristic equation
-D"(A"+a, A" 4a, A"+t a A’ tadta)=0

The matrix C is called the companion matrix for this characteristic equation.



Chapter 8

Functions of Matrices

SEQUENCES AND SERIES OF MATRICES

A sequence {B,} of matrices B, = [bf;"], all of the same order, converges to a matrix B=[b,] if
the elements b(I ) converge to b, for every i and j. The infinite series L’ _o B, converges to B if the
sequence of partial sums {§, = Z,, _¢ B, } converges to B. (See Problem 8.1. )

WELL-DEFINED FUNCTIONS

1f a function f(z) of a complex variable z has a Maclaurin series expansion
fz)=2 a,2"
n=0

which converges for |z| < R, then the matrix series £,_, a,A” converges, provided A is square and
each of its eigenvalues has absolute value less than R. In such a case, f(A) is defined as

£

fA)= 2 a,A

n=0

and is called a well-defined function. By convention, A’ =1. (See Problems 8.2 and 8.3.)

Example 8.1

. 1 1 =1
e=1+ﬁz+ﬁ g—’

converges for all values of z (that is, R =) Since every eigenvalue A of any square matrix satisfies the
condition that |A] <=,

1 1 = 1
et =l+ A+ AT g—'

is well defined for all square matrices A.

COMPUTING FUNCTIONS OF MATRICES

An infinite series expansion for f(A) is not generally useful for computing the elements of f(A). It
follows (with some effort) from the Cayley-Hamilton theorem that every well-defined function of an
n X n matrix A can be expressed as a polynomial of degree n — 1 in A. Thus,

fA)Y=a, A" +a, , A"+ +a,A" +a,A+ayl (8.1)
where the scalars a,_,,a,_,,...,a,, a,, a, are determined as follows:
STEP 8.1: Let
r(N)=a, A" +a, A" 4+ a0 +a,A+a,
which is the right side of (8.1) with A’ replaced by A’ (j=0,1,...,n—1).
STEP 8.2: For each distinct eigenvalue A, of A, formulate the equation

f(A)=r(A,) (8.2)
71
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STEP 8.3: If A, is an eigenvalue of multiplicity k, for k> 1, then formulate also the following
equations, involving derivatives of f( A) and r(A) with respect to A:

f,(’\)|A=A, = r'()‘)lna,
F'iay, = P (Mlaey, (8.3)

f(k_l)(A)l;\:A[ = r(k_l)(A)IA=A,

STEP 8.4: Solve the set of all equations obtained in Steps 8.2 and 8.3 for the unknown scalars
Ay, a,...,4,_,.
Once the scalars determined in Step 8.4 are substituted into (8.1), f(A) may be
calculated. (See Problems 8.4 through 8.6.)

THE FUNCTION &*

For any constant square matrix A and real variable ¢, the matrix function e*’ is computed by
setting B=Ar and then calculating ¢® as described in the preceding section. (See Problems 8.7
through 8.10.)

The eigenvalues of B = At are the eigenvalues of A multiplied by ¢ (see Property 7.5). Note that
(8.3) involves derivatives with respect to A and not ¢; the correct sequence of steps is to first take the
necessary derivatives of f(A) and r(A) with respect to A and then substitute A = A,. The reverse
procedure—first substituting A = A; (a function of t) into (8.2) and then taking derivatives with
respect to r—can give erroneous results.

DIFFERENTIATION AND INTEGRATION OF MATRICES

The derivative of A =[a;] is the matrix obtained by differentiating each element of A; that is,
dA/dt = [da, /dt]. Similarly, the integral of A, either definite or indefinite, is obtained by integrating
each element of A. Thus,

[na|[ o] wma [aa-[[aa]

(See Problems 8.11 and 8.12.)

DIFFERENTIAL EQUATIONS
The initial-value matrix differential equation
X(1)=AX()) +F(t)  X(t,)=C
has the solution
X(1) = e*V 7 + oM j e MF(s) ds (8.4)
or, equivalently,
X(1) = e OC + f e TIF(s) ds (8.5)

If the differential equation is homogeneous [i.e., F(¢) =0], then (8.4) and (8.5) reduce to
X(t) = e C.
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In (8.4) and (8.5), the matrices e*‘ ™™ ¢ *°, and ¢*“"* are easily computed from e*' by
replacing the variable ¢ with t — ¢;, —s, and ¢ — s, respectively. Usually, X(¢) is obtained more easily
from (8.5) than from (8.4), because the former involves one fewer matrix multiplication. However,
the integrals arising in (8.5) are generally more difficult to evaluate that those in (8.4). (See
Problems 8.13 and 8.14.)

THE MATRIX EQUATION AX+XB=C

The equation AX + XB = C, where A, B, and C denote constant square matrices of the same
order, has a unique solution if and only if A and B have no eigenvalues in common. This unique
solution is given by

X=-| eMCe® dr (8.6)
0

provided the integral exists (see Problem 8.15).

Example 8.2 For A=1 and B =0 the matrix equation has the unique solution X = C, but the integral (8.6)
diverges.

Solved Problems

8.1 Determine lim B, when

1 2+ k
kK 3+2%
Bk— 2k
5 (1+—)
k
, .1 . 2+k 1 e , 2\,
Since  lim 05 =0 lim 3757 =5 Jim5=5 and !‘ﬂ(”z)”
. 0 1/2
we have 1E3k=[5 ez]

8.2 For which matrices A is the function cos A well defined?

The Maclaurin series for cos z is

cosz~1—z—2+z—.—z—6--- ( 1)z
2! 6! =, @n
which converges for all values of z (that is, R = «). Every eigenvalue of any square matrix satisfies the
condition that [A| <, so
AZ Ad Ab ( 1)”{4:"
A=I-— 42 _ 2 ... =
cos P TT "2(. Zn)!

is well defined for every square matrix A.
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8.3

8.4

8.5
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Determine whether arctan A is well defined for

]
Ihe lVfaClaullll SErics fol arctan z 1s

3 n 2n+1

i z

o0 2n+1

z

z
arctanz =z - — + —
3 5

_Z.

7

which converges for all values of z having absolute value less than 1. Therefore,
A A A E (1A

arctanA=A-?+?——7—--- —" . anF1

is well defined for any square matrix whose eigenvalues are all less than 1 in absolute value. The given
matrix A has eigenvalues A, =0 and A, =4. Since the second of these eigenvalues has absolute value
greater than 1, arctan A is not defined for this matrix.

Find cos A for the matrix given in Problem 8.3.

From Problem 8.2 we know that cos A is well defined for all matrices. For this particular 2 x 2
matrix A, (8.1) becomes

2a,+a, 4a, ]

cosA=a,A+aol=[ a, 2a, + a,

(1)

Now f(A) =cos A, r(A) = a,A + a,, and the distinct eigenvalues of A are A, =0 and A, = 4. Substituting
these quantities into (8.2) once for each distinct eigenvalue, we formulate the two equations

cos0=a,(0)+a,
cosd =a,(4) +a,

Solving these equations for a, and a,, we obtain ¢, =cos0=1 and a, =(cos4 —1)/4 = —0.413411.
Substituting these values into (1) and simplifying give us

_[ 0.173178 —1.653644]
Cos A=

-0.413411  0.173178

Find e* for the matrix given in Problem 8.3.

It follows from Example 8.1 that ¢* is defined for all matrices. For this particular 2 x 2 matrix A,
(8.1) becomes

2a, +a, 4a, ] (1)

e‘=alA+a(,I=[ a, 2a, + a,

Now f(A) =e€"*, r(A)=a,A + a,, and the distinct eigenvalues of A are A, =0 and A, = 4. Substituting
these quantities into (8.2) once for each eigenvalue, we formulate the two equations

e’ =a(0)+a,

e'= a,(4)+a,
Thus @, = ¢’ =1and a, = (¢* — 1)/4 = 13.3995. Substituting these values into (1) and simplifying give us

27.7991 53.5982]

cos A= [ 13.3995 27.7991
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-2 2 0
A= 0 -2 1
0 0 -2

The Maclaurin series for sin z converges for all finite values of z, so sin A is well defined for all
matrices. For the given matrix 3 X 3 (8.1) becomes

4 -8 2 -2 2 0 1 00
sinA=a,A’+aA+al=al0 4 —-4|+al 0 -2 1]+qf0 1 0

0O 0 4 0 0 -2 001

8.6 Find sin A for

1
4a, —2a,+a, —8a,+2a, 2a, ()
= 0 4a, — 2a, + a, —4a, + a,
0 0 da, — 2a, + q,
Matrix A has eigenvalue A = —2 with multiplicity three, so we will have to use Step 8.3. We determine
f(A)=sin A HA=a,A’+aA+a,
f'(A)=cos A r'(A)=2a,A + a,

f(A)y=—sin A r"(A) =2a,
and write (8.2) and (8.3) as, respectively,
sin (—2) = a,(—2)* + a,(-2) + q,
cos(~2) =2a,(—2) + a,
—sin(—2) = 2a,
We thus obtain a, = — 7 sin(—2) = 0.454649; a, = cos (—2) — 2 sin (~2) = 1.40245; and g, =2 cos (—2) —
sin (—2) = 0.0770038. Substituting these values into (1) and simplifying give us

—0.909297 -0.832294  0.909297
sin A= 0 —0.909297 -0.416147
0 0 -0.909297

8.7 Find e* for

a-[ 3 o]
We set
weare[

and compute e” Since B is of order 2 x 2, (8.1) becomes

e°=a,B+aol=[ a, alz] )

—a,t a,
Here f{A) = e* r(A) = a,A + a,, and the distinct eigenvalues of B are A, =it and A, = —ir. Substituting
these quantities into (8.2) separately for each eigenvalue, we obtain the two equations
e'=a,it+ a,
e "=a/(—it)+a,

Solving these equations for a, and a,, we obtain
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| - sin t 1 ., —
a1=2—it(e'—e ')=—T- and ao=§(e'+e "Y=rcost
Substituting these values into (1), we determine

cost sint
em=eB:[ ]

—sint cost
Find e*' for
_[o0 1]
A‘[s 2
We set
A, [0t
B—At—[& —2:]

and compute e®. Since B is of order 2 x 2, (8.1) becomes

B _ | @ at
€ _alB+a°l_[8all —2a,t+ ao] (1)
Here f(A) = e*, r(A) = a,A + a,, and the distinct eigenvalues of B are A, = 2 and A, = —4¢, Substituting
these quantities into (8.2) once for each eigenvalue, we obtain the two equations

e'=a,20)+a
e M =a,(-4r+a,
Solving these equations for a, and a,, we obtain a, = (¢*’ — ¢ *')/6¢ and a, = (2¢* + ¢~ *')/3. Substitut-
ing these values into (1), we get

Aol [482'+28_4r e —e ™ }
618" —8e " 20 +4e

0 00
A=]1 0 0
1 01

We set B = At and compute ¢ Since B is a 3 x 3 matrix, (8.1) becomes

Find e* for

a, 0 0
e*=a,B +aB+al= a,t 4 0 (1)
a’+art 0 a,’+ar+a,

Now f(A) = e, r(A) = a,A* + a,A + a,, and the distinct eigenvalues of B are A, = 0 with multiplicity two
and A, =t with multiplicity one. Substituting these quantities, along with f'(A)=e" and r'(A)=
2a,A + a,, into (8.2) and (8.3), we formulate the three equations

e’ = a,(0)* +a,(0) + a,

e’ =2a,(0) + a,

e=a,’+at+a,

Thus, a,=(¢'~t-1)/¢’,a, =1, and a,=1. Substituting these values into (1) and simplifying, we

obtain
1 0 0
eM=eP=| 1 1 0
e—-1 0 €
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8.10 Establish the equations that are needed to find e*' if

123456
012345
A_|0 0 2345
000234
000000
0 0 0 0 0 1]

We set B = At and compute ¢®. Since B is a 6 X 6 matrix (8.1) becomes
e®=a,B° + a,B* + a,B” + a,B’ + a,B + a,l ()
The distinct eigenvalues of B are A, = ¢ with multiplicity three, A, = 2¢ with multiplicity two, and A, =0
with multiplicity one. We determine
flay=e A =aA*+a A +a,A' +a,A’ + a4+ q

fi(A)=e*  r(x)=Sa,A*+4a’ +3a,A” +2a,A + a,

fA(A=e*  r(A)=20a,A>+12a,A> + 6a,A +2a,
and (8.2) and (8.3) become

e’ =afd’+a,p'+at’ +a,p’+at+a,

e'=Sag" +4a,’ +3a,0’ +2a,t + a,

e' =20a,t’ + 12a,¢’ + 6a, + 2a,
e = ay(2t)° + a,(26)" + a,(26)° + a,(20)* + a,(2t) + a,
e = 5a,(21) +4a,(21)* + 3a,(21)’ + 2a,(21) + a,

e’ = a,(0)’ + a,(0)* + a,(0)* + a,(0)° + a,(0) + q,

which should be simplified before they are solved.

8.11 Find dA/dt if

2 2t
|t +1 e]
A [sint 45

g 2 ﬂ 2
dA _ a @D g ) _[ 2t 2e2’]
d|d . d “leost 0
E(smt) 5(45)

8.12 Find [ A dr for A as given in Problem 8.11.

—costt+c, 45t+c,

J’sin tde 145 dt

8.13 Solve X(¢) = AX(r) + F(r) with initial value X(0) = C when

8 1] woe[o] e[ ]

The solution is given by either (8.4) or (8.5). We shall use (8.4) here, and (8.5) in Problem 8.14.
For A as given, e*' has already been calculated in Problem 8.8. Therefore, we can compute

f(tz+1)dt fe"dt s o
jAdr= [3t+t+c, le +c2:|
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~ 1 482'+2e‘4' eZI_e-dl ][ l] [ 8»4, ]
AU—1g) ™ = LA = — =
€ C=e"C 6[8821—887“ 2" +4e” 4L -4 —4e ¥

e 47 +2e% ¥ —e" ][0]_[
Fis) = [88“2’ 8e® 2e% +4ev|le

—As e
L€ F(s)ds = L 30l ~10e™ + 4™ + 6
(1 + 3e7)ds

N [ Cas 482'+2€ eZI_e—m ][ _Se—:_e5v+6 ]
e j F(‘)d“ 30[8e"—8e a0 2g2% 4 4o || — 1067 + 46 +6

[1]
(4e’ +2e“')( 5e"—e5'+6)+(ez'—e'“')(—lOe"+4eS'+6)
(8e™ —8e M')(—Se "~ " +6) + (267 +4e” V) (102" + 4" +6)

f(l —s_] ‘h
f’ ~ 1[ -5 "—e" +6 1

L

180
=_1_[ —6e'+56'+e_4']
30 | —6¢' + 10e™ — 4e™“

Thus

X(1) = " "'C + e"'f e “F(s)ds
‘o

_[ et ] 1] -6e' +5¢" +e ™ ]_ e M+ Lt — e
~4e V|7 30| —6¢' + 106> — 4 —-8e M+ 1 - g

8.14 Use (8.5) to solve Problem 8.13.
The vector e 'C was found in Problem 8.13. Furthermore,

e“"“F(s)zl 482(1—:)+2e—4(r—1] eZ(:—x)_ 874(,‘,] 0 B 1 8(217;]_ (’( A0+ Sy
6 882('—3)_8874(:4) 2eZ(r—s1+4e—4(,—q e’ _6 26(21—\)+4e(—4r+5n :

!
1 ﬁ (6(21—3)_e(¥41¢55))ds

f ACTF(s) ds =]
o 6 (2r-5 (=41 +5s)
. (2e +4e ) ds

22—y _4
1 ( e _%el+e2l+%e '
4 -4

:E[—Ze(z'_”+ tel "”")Pn]= 6{—%’ +2e% — e ]

1 ,(—#+S5)\s=1
€ ). 1

Thus,
X(1) = X C 4 f €A IF(s) ds
‘0

- e ™ l qe + € +_%e":' | Be M+ iet - e
—de ] T gl —te 4267 - e e ~ ze

-8, +lelr leo

as before.
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8.15 Solve the matrix equation AX + XB = C for X when

o[ ] e[ e[ 2

In preparation for the use of (8.6), we calculate

-61 2.5 1,-t 1.5 1,1
e 0 B ;e + 3¢ 3 — 3€

eM = [ —81] and e = [ 2.5 2_-1 1.5t -t
3 3 i€

0 e € € e’ + 3
4 -1 2,71 2,70 _ 2,8
3€ + %e e e
Then eAICeBl= 3 _ 3 _ 3 _ 3 _
"'%8 Jr__%e Ot _%e 31+%e 9r
x 4,1 2 _—Np= 2 -1 2 ~Tn=
—3e - Fe —fe '+ fe =10/7 -4/7
and X= '_J e"Ce"dl= -1 2 3—31 |2l -9 LD 1 5—31 121 -9 LD = [
0 se ~ + € ID 5€  — € '0 7/27 2/27

8.16 Prove that e*'e® = ¢**® if and only if the matrices A and B commute (that is, if and only if
the commutative property for multiplication holds for A and B).

If AB = BA, and only then, we have

(A+BY=(A+B)A+B)=A’+AB+BA+B’=A"+2AB + B’

-3 B

n

and, in general, (A+B)" =2 (Z)A"""B" (1)
k=0
n n!
where (k) = m_—k—)-'-

is the binomial coefficient (““n things taken & at a time”).
Now according to the defining equation, we have for any A and B:

£

x *® A n—k n—k k k
emem:(zﬁAn‘n)(z '—11—‘B"r")=2 S AT B
n=0 .

n=0 k=0 (n—k)! k!

n=0 ‘
= > [ A8 }n_ S [ LAY k] t"
‘EO[EO e =2 Zo(k)A B\ 1 (2)
+B)r _ S 1 nn - " fn
and e )_EOE(A+B)' —20(A+B) o (3)

The last series in (3) is equal to the last series in (2) if and only if (1) holds; that is, if and only if A and
B commute.

8.17 Prove that e*e™*° = AV79),

B A+B
= gA*B)

Setting t =1 in Problem 8.16, we conclude that ee if A and B commute. But the matrices

At and —As commute, since

(A)(—As) = (AA)(~—15) = (AA)(—s1) = (—As)(Ar)

Consequently, e*'e ™% = A 749 = pA0¢77),
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8.18 Prove that e’ = 1.

From the definition of matrix multiplication, 6" =0 for n =1. Hence,

x

1 S|
0 _ 0r _ non nen __ .
e =e —Z'rl—!‘)l—l+"2:lm0 =1+0=1

n=0

Supplementary Problems

8.19  Determine the limit of each of the following sequences of matrices as k goes to «:

o1 2kt
A = k 3k+1 B=_L[k2+1 k+1 1]
* 2 k-1 TR 2 Kk 2k
k+1 k+1
[ 5 k—kl]
C*"[S’k' k+1

8.20 The Besse! function of the first kind of order zero is defined as

mn=§%££%

For which matrices A is J; (A) well defined?

8.21 Determine the conditions on matrix A that will make the following function well defined:

x

T
mrgm“ﬂﬁ

8.22 Find (a) sin A and (b) e* for A = [z ﬂ

8.23  Find (a) cos A and (b) 3A" + 24" for A = [3 :g]

8.24 Find (a) sin A and (b) cos A for the 3 x 3 zero matrix
In Problems &.25 through 8.31, find e*'

8.25 [“2 0] 8.26 [_i _g] 8.27 [2 ‘]

0 -3 0 2

4 s 210 2 00

8.28 [_4 _4] 829 [0 2 1| 830 |0 2 1
00 2 0 0 2

[CHAP. 8
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8.32

8.33

8.34

8.35

8.36

8.37

Find sin At for

oo
cCoONvNo
SN = O
W o oo

Solve X(1) = AX(1) + F(1); X(0) =C when

3 4] wome e[

Solve X(1) = AX(1) + F(r) when

SEHIS

Solve X(r) = AX(¢) + F(#); X(0) = C when
SHEIRTRH RS
A [8 s F()=|, Cc=0
Solve Problem 8.35 with C = [;}

Solve AX + XB = C when

a=[2 9] s=[2 &) =[5 1]



Chapter 9

Canonical Bases

GENERALIZED EIGENVECTORS

A vector X, is a generalized (right) eigenvector of rank m for the square matrix A and associated
eigenvector A if

(A-AD"X, =0 but (A-AD"7'X, #0

(See Problem 9.1 through 9.4.) Right eigenvectors, as defined in Chapter 7, are generalized
eigenvectors of rank 1.

CHAINS
A chain generated by a generalized eigenvector X,, of rank m associated with the eigenvalue A is
a set of vectors {X,,X,,_,, X,.,_2,. .., X,} defined recursively as

X,=(A-ADX,,, (j=m-1,m-2,...,1) (9.1)

(See Problems 9.5 and 9.6.) A chain is a linearly independent set of generalized eigenvectors of
descending rank. The number of vectors in the set is called the length of the chain.

CANONICAL BASIS

A canonical basis for an n X n matrix A is a set of n lineary independent generalized
eigenvectors composed entirely of chains. That is, if a generalized eigenvector of rank m appears in
the basis, so too does the complete chain generated by that vector.

The simplest canonical bases, when they exist, are those consisting solely of chains of length one
(i.e., of linearly independent eigenvectors). Such bases always exist when the eigenvalues of a matrix
are distinct. (See Problem 9.9.) The chains associated with an eigenvalue of multiplicity greater than
one are determined with the following algorithm, which first establishes the number of generalized
eigenvectors of each rank that will appear in a canonical basis and then provides a means for
obtaining them:

STEP 9.1: Denote the multiplicity of A as m, and determine the smallest positive integer p for
which the rank of (A — AI)? equals n — m, where n denotes the number of rows (and
columns) in A.

STEP 9.2: For each integer & between | and p, inclusive, compute the eigenvalue rank number N,
as
N, = rank(A — AI)* "' — rank(A - AD)* (9.2)
Each N, is the number of generalized eigenvectors of rank k that will appear in the
canonical basis.

STEP 9.3: Determine a generalized eigenvector of rank p, and construct the chain generated by
this vector. Each of these vectors is part of the canonical basis.

STEP 9.4: Reduce each positive N, (k=1,2,..., p) by 1. If all N, are zero, stop; the procedure is
completed. If not, continue to Step. 9.5.

STEP 9.5: Find the highest value of k for which N, is not zero, and determine a generalized
eigenvector of that rank which is linearly independent of all previously determined

82
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generalized eigenvectors associated with A. Form the chain generated by this vector,
and include it in the basis. Return to Step 9.4.

(See Problems 9.10 through 9.13.)

THE MINIMUM POLYNOMIAL

The minimum polynomial m(A) for an n X n matrix A is the monic polynomial of least degree for

which m(A) = 0. Designate the distinct eigenvalues of Aas A, A,, ..

., A, (1 =5 < n), and for each A,

determine a p, as in Step 9.1 above. The minimum polynomial for A is then

m(A) = (A= A) (A= A)72 (A= AP (9.3)

(See Problems 9.14 and 9.15.)

Solved Problems

9.1  Show that X =[1,0,0}" is a generalized eigenvector of rank 2 corresponding to the eigenvalue
A =3 for the matrix
[~7 =25 1
A=l 4 13 1
L 0 0 2
-10 -25 1] 0 0 -36
A-3= 4 10 1 and (A-31°=({0 0 13
0 0 -1 00 1
For X=1{1,0,0]", we have (A —3I)X =[-10,4,0]" #0 and (A - 31)’X = 0, which implies that X is a
generalized eigenvector of rank 2.
9.2  Find a generalized eigenvector of rank 3 corresponding to the eigenvalue A = 7 for the matrix

71 2
A=10 7 1
0 0 7

We seek a three-dimensional vector X, =[x, x,, x,]” such that (A — 7I)’X, = 0 and (A — 71)°X, #

0. We have
0 0 0)fx 0
(A-71’X,=|0 0 Of[x|=]0
0 0 0lLx: 0
0 0 15 )=T7=*
and A-71X,=|0 0 Ofx.|=]{0
0 0 ojlxf=L0

The condition (A — 71)’X, = 0 is automatically satisfied; the condition (A — 7I)’X, # 0 is satisfied only if
x;#0. Thus, x, and x, are arbitrary, whereas x, is constrained to be nonzero. A simple choice is
x, =x,=0, x,=1, yielding X, =[0,0, 1]".
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9.3

9.4

9.5
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Find a generalized eigenvector of rank 2 corresponding to the eigenvalue A = 4 for the matrix

4 00 0
1 510
A=l_1 -1 30
0O 0 0 3

We seek a four-dimensional vector X, =[x, x,, X, x,]” such that (A — 41)°’X, = 0 and (A ~ 4I)X, #
0. We have

0 0 0 oYx 0
e |0 0 0 Offx [0
(A-4YX;=19 0 0 oflx |70
0 0 0 1JLx X,
0 0 0 0x 0
. ~ B 1 1 1 01} x, _ X, +x,+x,
and (A-4DX, = -1 -1 =1 0f}*%| | —-x —x,—x,
0 0 0 -1lLx —X,

To satisfy (A —4I)°X, =0, we must have x, =0. Then, to satisfy (A — 41)X, 0, we must guarantee
x, # —x, — x,. A simple choice is x, =1, x, = x, = x, =0. This gives us X, =[1,0,0,0]".

Show that there is no generalized eigenvector of rank 3 corresponding to the eigenvalue A =4
for the matrix given in Problem 9.3.

For such a vector X, = [x,, x,, x,, x,]7 to exist, the conditions (A — 41)°’X, = 0 and (A — 41)’X, # 0
must be satisfied. For the given matrix A,

A—4IYX,=(0,0,0,—x,]7  while A—41¥X,=[0,0.0,x,]
3 K

To satisfy both conditions, x, must be zero and nonzero simultaneously, which is impossible. Therefore.
A has no generalized eigenvector of rank 3 corresponding to A =4.

Determine the chain that is generated by the generalized eigenvector of rank 3 found in
Problem 9.2.

From Problem 9.2, we have X, =[0,0, 1]” corresponding to the eigenvalue A =7. Furthermore,

012
A-71=|0 0 1
000

It follows from (9.1) that

0 1 270 [2]

X,=(A-TD)X,={0 0 1{{o]|=|1

L0 0 olL1) LoJ

0 1 227 [17

and X,=(A-7DX,={0 0 1|/1{=|0
Lo 0 ollo! Lol

The chain is

SR I
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9.6

9.7

9.8

9.9

Determine the chain that is generated by the generalized eigenvector of rank 2 found in
Problem 9.3.

From Problem 9.3 we have X, =[1,0,0,0]”, corresponding to A =4. Using (9.1), we write

0o 0 0 071 0
1 1 1 oflo 1
X,=(A-4DX, =1 1 1 _1 oflofT|-1
0o 0 o -1Jlo 0

The chain is {X,, X,} = {[1,0,0,0]", [0,1, -1,0]7}.

Show that if X, is a generalized eigenvector of rank m for matrix A and eigenvalue A, then X;
as defined by (9.1) is a generalized eigenvector of rank j corresponding to the same matrix
and eigenvalue.

Since X, is a generalized eigenvector of rank m,
(A=AD"X,_ =0 and (A-AD"7'X, #0
It follows from Eq. (9.1) that
X, =(A-ADX,, =(A-AD" "X
Therefore A-ADX =(A-AIY(A-AD"'X,, = (A-AD)7X,, =0
and A-ALY7'X, = (A- ALY A - AN X, = (A- A" 'X,, #0

which together imply that X, is a generalized eigenvector of rank j for A and A.

Show that a chain is a linearly independent set of vectors.

The proof is inductive on the length of the chain. For chains of length one, the generating
generalized eigenvector X, must be an eigenvector, so X, # 0. Therefore, the only solution to the vector
equation ¢, X, =0 is ¢, =0, and the chain is independent.

Assume that all chains containing exactly kK — 1 vectors are linearly independent, and consider a

chain consisting of the k-vector set {X,,X,_,,...,X,} for matrix A and eigenvalue A. We must show
that the only solution to the vector equation

X, +e, X, + -+ X, =0 (1)
is ¢, =¢c,_, =+ +-=c,=0. Multiply (1) by (A— AI)*"", and observe that for each X (j=k~1,k~
2,...,1) in that equation,

A-AD* "¢ X, = (A=A} THA - AIYX =c(A-AD* 7 '0=0
because each X is a generalized eigenvector of rank j (see Problem 9.7). What remains, then, is
(A= AD'X, =0 (2)

Since X, is a generalized eigenvector of rank &, (A — AI)* " 'X, # 0, and it follows from (2) that ¢, =0.
Equation (1) thus reduces to

Ceor Xyttt X, =0 (3)
But X,_,,...,X, is a chain of length £ — 1, which we assumed to be linearly independent, so the
constants ¢, _,, . . ., ¢, in (3) must all be zero, Therefore, the only solution to (1)isc, =c¢,_, ==

¢, =0, from which it follows that the chain of length & is linearly independent.

Determine a canonical basis for

a-[ 5 -l
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The eigenvalues for this matrix were found in Problem 7.1 to be A = | and A = —2. Since they are
distinct, a canonical basis for A will consist of one eigenvector for each eigenvalue. Eigenvectors
corresponding to A = 1 were determined in Problem 7.1 as x,[—5/2, 1]7 with x, arbitrary. We set x, =2
to avoid fractions, and obtain the single eigenvector [—5,2])". The eigenvectors associated with A = —2
are x,[—1, 1]” with x, again arbitrary. Selecting x, =1 in this case, we obtain the single eigenvector
[=1.1]". A canonical basis for A is thus [-5,2])", [-1, 1]".

Determine the number of generalized eigenvectors of each rank corresponding to A =4 that
will appear in a canonical basis for

SO~ OO0
SO CO

~N o OO o0

1
1
4
0
0
0

S OO OO -
COOoOoO RN

For this 6 X 6 matrix, the eigenvalue 4 has multiplicity five (while A =7 has multiplicity one), so
n=6,m=35, and n — m=1 for Step 9.1. Now

02 1000
00 -1 000
00 0000
A-4=14g 6 00 2 0
00 0000
00 0003
has rank 4, while
'O 0 -2 0 0 17
00 000 -1
00 000 O
(A-4D’=j0 0 0 0 0 O
00 000 O
00 000 O
L0 0 000 9]
has rank 2, and
00000 -2
00000 o
i (00000 0
A-4Y=lg 0000 o
00000 0
00000 27

has rank 1= n — m. Therefore, p = 3. Using Step 9.2, we compute

N, =rank(A - 41)* - rank(A —4)’ =2-1=1
N, =rank(A - 4I)! —rank(A —4I)’ =4-2=2
N, = rank(A ~ 41)" - rank(A ~ 41)' = rank(I) — rank(A —41) = 6 — 4 =2
A canonical basis will contain one generalized eigenvector of rank 3, two generalized eigenvectors of

rank 2, and two generalized eigenvectors of rank 1, all corresponding to A = 4. (It will also contain one
generalized eigenvector corresponding to A =7.)
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9.11

9.12

Find a canonical basis for the matrix given in Problem 9.10.

We first find the vectors in the basis corresponding to A = 4, using the information obtained in the
solution to Problem 9.10. There is one generalized eigenvector of rank p =3, which we denote as
X, =[x,, x,, X;, X,, X5, X,]". We note that to have (A —4I)’X, =0, we must set x,=0; and to have
(A — 41)’X, # 0, we must have x,#0. A simple choice is X, =[0,0, 1, 0,0,0}", which generates as the
rest of its chain

02 100 o]fo |

00 -1 00 0lo] |-1

00 0000]|1 0
X,=(A-4DX:=145 9 00 2 ollo]7| o
00 00000 0

oo 00 o0 3o 0

02 1 00 0l 1] [-2

00 -1 00 0/-1 0

00 0 000 0 0

and X,=(A—4l)X2=00 0 020 ol= 0
00 0 000/ o0 0

00 0 00 3J o 0

We next reduce each nonzero N, by 1, obtaining N, =0, N, =1, and N, = 1, thus, one generalized
eigenvector of rank 2 and one generalized eigenvector of rank 1 associated with A =4 remain to be
found. We first seek another generalized eigenvector of rank 2, which we denote as Y, =
[¥1s Yar Ya» Vao Ys» ¥6) - If we are to have (A — 41)’Y, =0, then both y, and y, must be zero; and if
(A —4I)Y, #0, then either y, or y, must be nonzero. A convenient choice that is linearly independent of
X,,X,, and X, is Y, =(0,0,0,0, 1,0]7, which generates, as the remaining vector of its chain,

0 2 1 0 0 0|0 0
00 -1 00 0}0 0
A {00 0 0 0 Offol_J0O
Yi=(A-MY.=19 9 90 2 of0|7]2
00 00001 0
00 00 0 3JL0 0
Reducing each nonzero N, by 1 again, we obtain N; =0, N, =0, and N, =0; so all the necessary

basis vectors corresponding to A =4 have been found.

The eigenvector A = 7 has multiplicity one, so its contribution to a canonical basis is any eigenvector
associated with it. One such eigenvector is Z, =[0,0,0,0,0, 11°. A complete canonical basis for the
6 x 6 matrix A is the set of six vectors {X,,X,,X,,Y,.Y,,Z,} consisting of one chain of length three,
one chain of length two, and one chain of length one.

Find a canonical basis for

320 1
lo 3o o
A=lo 0 3 -1

000 3

Matrix A has order 4 x4 and eigenvalue A =3 with multiplicity four. Thus, n =4, m =4, and
n—m=0. Here

(=
|
—

has rank 2, while
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0 0 00
2 |0 0 00
(A=3D"=14 0 0 o
00 00

has rank 0, so p =2. Then
N, = rank(A ~ 3I)' — rank(A - 31’ =2-0=2
N, = rank(A - 31)" - rank(A — 3I)' = rank(1) —rank(A ~3l)=4-2=2
A canonical basis for A will contain two generalized eigenvectors of rank 2. We denote one of these

as X, = [x,, x,, x,, x,]". The condition (A — 31)°X, = 0 is satisfied by all four-dimensional vectors, so it
places no constraints on X,. The requirement (A — 31)X, # 0 is satisfied if either

x,#0 or 2x, + x,#0 (1)
A convenient choice, therefore, is X, =[0,0,0, l]T, which generates the remaining vector of its chain:
020 1][o 1
0 0O 01j0 0
X, =(A-30X%=15 9 0 —1lo|7| -1
000 04L1 0

We reduce N, and N, by 1, obtaining N, = N, = 1. Another generalized eigenvector of rank 2 for A =3,
linearly independent of X, and X, but satisfying (1), is Y, =[0,1,0,0]". This vector generates

Y, =(A-3DY, =

oS00 o
SO OoON
oo o
OO O N

Now N, and N, are reduced to zero; a canonical basis for A is thus {X,,X,,Y,, Y}, comprised of two
chains, both of length two.

Determine a canecnical basis for

SOoOON =
OO W
—_— N O W
N = O N

The eigenvalues for this matrix are A =3 with multiplicity four and A = 1 with multiplicity one. For
A=3. n-m=5-4=1. Also,

1 11 2 2
-1 -11 3 0

A-31={ 0 00 0 O
0 00 -1 1

0 00 1 -1

has rank 3, while

00 2 ) 2

00 -2 -8 1
(A-31=|0 0 0 0 O
00 0 2 =2

00 0 -2 2

has rank 2, and
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000 -3 3
000 9 -9
(A-3D)'=|0 0 0 0 0
000 -4 4
000 4 -4

has rank 1. Thus, p =3, and N, =2~-1=1,N,=3-2=1, and N, =5-3=2
A generalized eigenvector of rank p =3 for A =3 is X, ={0,0,1,0,0]", which generates

1 t 1 2 270 1
-1 -1 1 3 ofo 1
X,=(A-3DX,=] 0 0 0 0 Of1]|=]|0
0 00 -1 1]lo 0
0 00 1 -1]L0 0
1 11 2 27t 2
-1 -1 1 3 of1 -2
and X,=(A-3DX,={ 0 006 0 offo{={ 0
0 00 -1 1]o0 0
0o o0 1 -1]Lo 0

We now reduce the N, by 1 to obtain N, =N, =0and N, = 1. Thus, a canonical basis for A will contain
generalized eigenvector of rank 1 for A = 3. This is an eigenvector, and it must be linearly independent of
X,.X., and X;; to find it we solve (A —31)Y, = 0 to obtain, as one possibility, Y, =[0, -1, -7,2,2}".

Since A =1 is an eigenvalue of multiplicity one, its contribution to a canonical basis is any
eigenvector corresponding to it. One choice is Z, =[-3,9,0, —4, 4]", A canonical basis for the matrix A
is, then, {X,,X,.X,.Y,.Z,}, comprised of one chain of length three and two chains of length one.

9.14 Find the minimum polynomial for the matrix given in Problem 9.12.

in Problem 9.12 we found that the matrix has the single distinct eigenvalue A =3, with p =2. Its
minimum polynomial is then

m(A)=(A—3 =A*-6A+9

9.15 Find the mimimum polynomial for the matrix given in Problem 9.13.

From Problem 9.13 we know that the matrix has two distinct eigenvalues: A, = 3 with multiplicity
four and p, = 3. and A, =1 with multiplicity one and thus p, = 1. Then

m(A)=(A~3(A=1)= A"~ 101" + 36A° — 54A +27
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Supplementary Problems

9.16  Determine which of the following are generalized eigenvectors of rank 3 corresponding to A =1 for the
matrix

>

I
SO0 O M
SCoo—O

1 0
0 0
1 -1
0 1
0 0

—_— N D

(@) {1,1,0,0,0]7  (b) [0,0,0,0,2)7 (c) [0,0,0,1,0)7
(d) [1,1,0,2,0]"  (¢) [0,0,0,0,0]" () [1,1,1,1,1)7

9.17 Find the chain generated by X, =[0,0,0,0, 1]7, a generalized eigenvector of rank 4 corresponding to
A =1 for the matrix given in Problem 9.16.

9.18 Find a generalized eigenvector of rank 2 corresponding to A =35 for the matrix

510
A=]0 5 1
005

9.19 Find the chain generated by X, = {0, 0, 1], a generalized eigenvector of rank 3 corresponding to A =5
for the matrix given in Problem 9.18.

9.20 Determine the lengths of the chains associated with an eigenvalue A that are included in a canonical basis

if

(@) N,=N,=2 (b) N;=1,N,=3

(c) Ny=N,=1,N, =2 (d)y Ny=2,N,=3,N, =3

(&) Ny=1,N,=2,N, =5 (f) M,=3,N,=5

(g) N;=2,N.=2,N, =1

In Problems 9.21 through 9.31, (a) determine the number of generalized eigenvectors of each rank that will

form a canonical basis for the given matrix, and (b) find such a basis.

9.21 The matrix in Problem 9.16. 9.22 The matrix in Problem 9.18.

2 2 1]
9.23 [”g 'f] 9.24 “ g] 9.25 [020
00 2]
2 2 2 2 1 1 713
926 (0 4 0| 927 1 2 1] o928 2 4 2
3 -3 1 2 -2 -1 7 -3 -3
3210 3110 > 1200
0300 0300 05 -1040
9.29 9.30 931 (00 50 0
1110 1110
011 3 0113 00 032
00 01 4

9.32 Find the minimum polynomial for the matrix in
(a) Problem 9.25, (b) Problem 9.26. (¢) Problem 9.27,
(d) Problem 9.28. (e) Problem 9.29, (f) Problem 9.30.



Chapter 10

Similarity

SIMILAR MATRICES
A matrix A is similar to a matrix B if there exists an invertible matrix S such that
A=S"'BS (10.1)
If A is similar to B, then B is also similar to A and both matrices must be of the same order and
square.

Property 10.1: Similar matrices have the same characteristic equation and, therefore, the same
eigenvalues and the same trace.

Property 10.2: If X is an eigenvector of A associated with eigenvalue A and (10.1) holds, then
Y = 8X is an eigenvector of B associated with the same eigenvalue.

(See Problems 10.1 through 10.3 and 10.43.)

MODAL MATRIX

Associated with every square matrix A is a canonical basis (see Chapter 9). A modal matrix M
for A is a matrix of the same order as A having as its columns all the vectors of a canonical basis for
A. A canonical basis is a set of linearly independent vectors, so M has an inverse.

A modal matrix M is not unique. To standardize M somewhat, we shall always assume it has

been constructed as follows:
(M1): All chains of length one precede all longer chains (if any exist).

(M2): The vectors of each chain of length two or more are contiguous, with rank increasing from
left to right.

(See Problems 10.4 through 10.6.)

JORDAN CANONICAL FORM

A Jordan block is a square matrix whose diagonal elements are all equal, whose superdiagonal
elements (those immediately above the main diagonal) all equal 1, and whose other elements are all
zero. It has the form

(A 1 0 0 0]
0 A1 0 0
0 0 A 0 0
0 00 A1
(0 0 0 0 Al

A Jordan block is completely determined by its order and the value of its diagonal elements.
A matrix is in Jordan canonical form if it is a diagonal matrix or if it has one of the following two
partitioned forms:

91
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D T

Jz e .
0 .Jk O 3,

where D denotes a diagonal matrix (whose diagonal elements need not be equal) and J, (i =
1,2,..., k) represents a Jordan block. Although the diagonal elements in any one Jordan block
must be equal, different Jordan blocks within the Jordan canonical form may have different
diagonals. (See Problem 10.7.)

SIMILARITY AND JORDAN CANONICAL FORM

Every square matrix A is similar to a matrix J in Jordan canonical form. If M is a modal matrix
for A, then

A=MIM™' (10.2)

Equation (10.2) has the form of (10.1) with S=M"",

The matrix J in (10.2) is uniquely determined by M. Each chain of length r appearing in M and
corresponding to eigenvalue A generates an 7 X r Jordan block in J with A on the diagonal. The
chains of length one (if they exist) give rise collectively to the diagonal submatrix of J; the diagonal
elements of this submatrix are the eigenvalues associated with the chains of length one, in the same
order as their corresponding eigenvectors in M. If M consists solely of (generalized) eigenvectors (of
rank 1), then J is simply a diagonal matrix; if M contains no chains of length one, then J is a
partitioned matrix of Jordan blocks. (See Problems 10.8 through 10.11.)

The Jordan canonical form of a matrix is unique as regards the individual Jordan blocks it
contains, as well as the diagonal elements associated with chains of length one, if they exist.
However, the positions of Jordan blocks and diagonal elements are not unique. Each chain must
appear as contiguous columns in a modal matrix, but there is no criterion for ordering the chains.
Different orderings of entire chains will produce different permutations of the associated Jordan
blocks in J, or of the diagonal elements of D.

Jordan blocks are defined on occasion to have Os on the superdiagonal and 1s on the
subdiagonal. Such forms are obtained easily by changing rule M2 so that rank decreases from left to
right in M.

FUNCTIONS OF MATRICES

Functions of matrices are easily computed for matrices in Jordan canonical form. If J is the
diagonal matrix

A, © 0
0 A 0
I=t
[0 o0 A,
f(a)y 0 0
then fH= Of(AZ) ........ 0 (10.3)
| 0 0 - f(A)

(See Problem 10.14.) If J is the r x r Jordan block
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A 1 0 07
0 1 0 0
T 09
0 0 0 Al
0 0 0 0 Al
fO) ') ) 720 70w
o0 1 2 (r=2)! (r—1)
. W £ R0
then = ... o (r=3) =2t (10.4)
) ‘(A
0 0 L o fl!)
f(A)
e o o0 o

where all derivatives are taken with respect to A. (See Problem 10.15.) If J is a partitioned matrix of
Jordan blocks and (perhaps) a diagonal matrix such that

[ D
J, O
J=
0
L 3
[ f(D)
then Q)= v I.). ;
L0 A

where f(D) and f(J;) (i=1,..., k) are defined by (10.3) and (10.4), respectively. (See Problem
10.16.) If A is similar to the matrix J in Jordan canonical form, then

f(A) =Mf)M " (10.5)

(See Problems 10.17 through 10.19.) This formula is computationally efficient only when M is known
or easily found; otherwise the procedure given in Chapter 8 is preferred. Since f(J) is upper
triangular, (10.5) and Property 10.1 imply:

Property 10.3: If A is an eigenvalue of A, the f(A) is an eigenvalue of f(A).
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Solved Problems

10.1 Determine whether
A=[§ (2)] is similar to B=[g g]

The matrices are similar if and only if there exists a matrix S such that A = S™'BS or, equivalently,

such that
SA =BS D)
_[a &

Set S—[c d]

Then (1) becomes

[¢ all5 2)-16 22 d]
[2a+3b Zb]_[Za Zb]

or

2c+3d 2d] l2¢ 2d

The solution to this matrix equality is b = d = 0, with g and ¢ arbitrary. For (1) to be valid, S must thus
have the form
_|a O
§= [c 0]

which is nonsingular for any choice of 2 and ¢. Thus, there is no invertible matrix which satisfies (1), and
the matrices A and B are not similar. Observe that A and B have the same eigenvalues, so matrices may
have the same eigenvalues and not be similar.

10.2 Determine whether

31 1 2 1 1
A=|2 2 4 is similar to B={3 0 1

111 4 2 1

The trace of A is 3+ 2 + 1 =6, while that of B is 2+ 0 + 1 = 3. Since the traces are not equal, A and
B must have different sets of eigenvalues and, therefore, cannot be similar.

10.3 Prove that similar matrices have the same characteristic polynomial.
If A and B are similar, there exists a matrix S such that A =S~ 'BS. Therefore,
A - all=|S"'BS — AS7'S] =|$"'(B — AD)S|

- 1
=[S7'IIB - ALlIS| = 57 B~ ATS] =B~ Al

10.4 Construct a modal matrix for

SO O N
[~ e
- O Wi
B = OO
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A canonical basis for A was found in Problem 9.13. It consists of one chain of length three,
X,={0,0,1,0,01" X,=(1,1,0,0,0]" X,=[2,-2,0,0,0]"
and two chains of length one,

Yl=[0,—1,—7,2,217 and Z,=(-3,9,0, _4’4]r

0 -3 2160

-1 9 -210

Thus, M=[Y,.Z,X,.,X,,X,]=[-7 0 0 0 1
2 -4 000

2 4 000

A second modal matrix may be obtained by interchanging the first two columns of M.

10.5 Construct a modal matrix for

(4210007
04 -1 000
A=|00 4000
00 0420
00 0040
00 0 0 0 7.

A canonical basis for this matrix was determined in Problem 9.11 to consist of one chain of length
three,

X,=[0,0,1,0,0,0" X,=[1,-1,0,0,0,0" X,=(-2,0,0,0,0,0]"
one chain of length two,
Y,=(0,0,0,0,1,0" Y,=(0,0,0,2,0,0]"
and one chain of length one,
z,=(0,0,0,0,0,01]"

A modal matrix for A is either M=(Z,,Y,,Y,,X,, X,, X,] or

M=[Z,,x|,x2,x3,Y,,Y2]=

- o000 oo
COoOQOoOOoO N
OO O = =
OO OO
ODCOoOMNO OO
o= QO 0 0Q

10.6 Construct a modal matrix for

5 2 2
A=|3 6 3
6 6 9

A set of three linearly independent eigenvectors for A was determined in Problem 7.4 to consist of
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[-1.1,0]", [-1,0,1)', and [2,3,6]". Since these three vectors form a full complement of generalized
eigenvectors of rank 1, they are a canonical basis for A. A modal matrix for A is then

-1 -1 2
M= | 0 3
¢ 1 6
Any permutation of the columns of M will produce another equally acceptable modal matrix.

10.7 Determine which of the following matrices are in Jordan canonical form:

000000
3000 8;‘1’88 01000 0
03 00 _ loo 1100

A=lo 0 1 0 8‘8832? C=1o001 00
00 0 2 PN 000011

00000 1]

All three matrices are in Jordan canonical form: A, because it is a diagonal matrix; B, because it is

in the form
310
0
B:[':,' J] with J,=[0 3 1} and J3=[3 ;]
2 0 0 3

and C. because 1t is in the form

0

c=| 1, win p=[0 Y] and 5 -3=[] o
0 i,

10.8 Find a matrix in Jordan canonical form that is similar to the matrix A of Problem 10.6.

Using the results of Problem 10.6, we note that the columns of M are all eigenvectors (chains of
length one) corresponding, respectively, to the eigenvalues 3, 3, and 14 (as found in Problem 7.2). Thus,

A 15 similar to the diagonal matrix
30 0
J=]0 3 0
0 0 14
To see that it is. note that

-1 =1 23 0 0} -3/11 8/11 ~3/11
MIM ' = 1 0 310 3 0j —6/11 -—o6/1l1 511

0 1 6ll0 O 14 1/ 1/ 1/11
522
=3 6 3|=A
6 6 9

10.9 Find a matrix J in Jordan canonical form that is similar to the matrix A of Problem 10.4.

In Problem 10.4 we found that M =Y, Z,, X, X,. X,]. The two generalized eigenvectors of rank
1. Y, and Z,. correspond to the eigenvalues 3 and 1. respectively. and generate the diagonal submatrix

of J:
o=[5 V]
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10.10

10.11

The chain of length three, {X,, X,, X,}, corresponds to the eigenvalue A = 3, so it generates the Jordan
block _

310

J,=]0 3 Iil

0 0 3

A is thus similar to

'3 0 0 00
01 0 00O
J=[:)) J0]= 00 3 10
! 0 00 31
L0 0 0 0 3

Find a matrix J in Jordan canonical form that is similar to the matrix A of Problem 10.5.

In Problem 10.5, we found that M=[Z,, X,, X,, X,, Y. Y,]. The single generalized eigenvector of
rank 1, Z,. corresponds to the eigenvalue 7 and generates the 1 X 1 diagonal submatrix of J comprised of
this eigenvalue. The chain of length three, {X,, X,. X,}, corresponds to the eigenvalue 4 and generates

the Jordan block
4 1 0
J, = [0 4 l:|
0 0 4

The chain of length two, {Y,, Y,}, also corresponds to the eigenvalue 4 and generates the Jordan block

F4 l
=1y 4]
Thus A is similar to 700 0 0 0
[7] 0 041 0 00
= . _ 004 1 00
0 00 4 00
0 4, {0000 41
LO 0 0 0 0 4

Find a matrix J in Jordan canonica] form that is similar to a matrix A whose characteristic
equation is (A —2)'(A —3)° =0, and that has eigenvalue rank numbers N, =N, =1 and
N, = 3 associated with eigenvalue A =2, and ¥, =2 and N, =3 associated with A = 3.

A must be 10 % 10 matrix, and so too is J. A canonical basis for A will contain one chain of length
three and two chains of length one corresponding to A = 2. Denote these vectors, respectively, as X,(2).
X,(2). X,(2). Y,(2). Z,(2). where the integer in parenthesis denotes the associated eigenvalue. This
same canonical basis must also contain two chains of length two and ome chain of length one
corresponding to A = 3. Denote these vectors, respectively, as U,(3), U,(3). V,(3). V,(3). W (3). We use
this canonical basis to construct the modal matrix

M =1{Y,(2).Z,(2). W,(3). U,(3), U,(3), X,(2). X5(2). X,(2). V,(3). Va(3)]

which determines the mairix in Jordan canonical form
2 0 0
0 20
0 0 3
0 0 0

00 0
000000
00000 0
100000
loooo 300000
=10 000021 000
D0 00002100
0000000200
0000000031

[0 0 000000 0 3

coowo oo
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10.12 Verify (10.2) for a modal matrix consisting solely of generalized eigenvectors of rank 1.

Denote the columns of M asE,,E,,.. ., E,, whereeachE, (i=1,2,...,n) is an eigenvector of A,
Thus, AE, = A E,. The eigenvalues A, A,,..., A, of A need not be distinct. Now define
)‘l 0 e 0
3= 0 & - O
60 o A

and note that
AM=A[E E,,... E ]=[AE, AE,, ... AE,]
=[(AE,, AE,, . o AME]=(ELE,...,EJ=M]

from which (10.2) immediately follows.

10.13 Verify (10.2) for a modal matrix consisting of a single chain of length r.

Denote the columns of M as X,,X,,...,X,, where each X; (i=1,2,...,r) is a generalized
eigenvector of rank i for A and all X, correspond to the same eigenvalue A. Now

x’-l = (A_ Al)xr = Axr - Axr
X,_,=(A-ADX,_, =AX,_, - AX,_,
X, = (A - ADX, = AX, - AX,
X, =(A- ADX, = AX, - AX,

which may be rewritten in reverse order as

AX, = AX, + X,
AX,= X, + X,
AX, = AX, + X

In addition, since X, is an eigenvector, AX, = AX,.
Define J to be the r X r Jordan block with A on the diagonal. Then

AM=A[X,,X,,X,,...,X ]=[AX,, AX,, AX,, ..., AX ]
=[AX,, AX,+ X, AX,+X,,. .. ,AX, + X _|]
=X,.X,.X,,....X,J=MJ

and (10.2) follows immediately.

10.14 Calculate sin J for the diagonal matrix

Here f(A) =sin A, so it follows from (10.3) that

sin3 0 0 7 [0.141120 0 0
fH=| 0 sin3 0 |= 0 0.141120 0
0 0 sinl4] 0 0 0.990607
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10.15 Calculate sin J for the Jordan block

OO M -
O WN= O
N -0 O

2
o
IJ=1o
0

Here f(A) =sin A, f'(A) =cos A, f(A) = —sin A, and f”(A) = —cos A, so f(2) =sin2, f'(2) =cos 2,
f'(2)=—sin2, and f"(2) = —cos 2. It follows from (10.4) that

[sin2 cos2 —sin2 —cos?]
1 1 2 6
g Sin2 cos2 -—sin2| [0909297 -0.416147 —0.454649  0.0693578
Q)= 1 1 2 || o 0.909297 —0.416147 —0.454649
0 0 sin2  cos2 0 0 0.909297  —-0.416147
1 1 0 0 0 0.909297
o o o 92
L 1
10.16 Calculate cos J for _ -
00 0O0O0OOO
00 0O0OOO
0001000
J={0 0 0 0 0 0 O
00 00010
00 00©O0O0T1
0 0 0 0 0 0 0]
This matrix is in Jordan canonical form, with all eigenvalues equal to zero and with the blocks
010
o-[8 8] a3 3] a-fo o 1]
0 0@

Since f(A) =cos A, we have f(0) =cos 0, f'(0) = —sin 0, and f(0) = ~cos 0. Therefore,

CosD___[cosO 0 ]=[1 0]

0 cos0 0 1
[ cos0 —sin0
| e 1 | 10
cosJ, = o Sos0 ‘[0 1]
L o
[cos0 —sin0 —cos0
! | !
0 1'0 _2.1')0 1 06 -1/2
cos),=! © c‘(’; “’1‘, =lo1 o
‘ cos;O 0 !
i 0 0 o
1 00 0 00 O 7
010000 0
[ cosD 0 001000 O
and cos] = cos J, =l0 001 00 O
L 0 cosJ,| |6 6 0 01 0 —12
000001 0
6 00000 1 J
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10.17 Calculate sin A for the matrix given in Problem 10.6.
Using the results of Problems 10.6, 10.8, and 10.14 along with (10.2), we have

(-1 -1 27[0.141120 0 0 -3/11  8/11 ~3/11
sinA=M@Gin )M '={ 1 3 0 0.141120 0 -6/11 —~6/11  5/11

L 0 6 0 0 0.990607 1/11 1/11 I

bt O

=10.231678 0.372798 0.231678
L 0.463357 0.463357 0.604477

210
A=10 2 1
0 0 2

2t t+ O
We set B=At=|{0 2t ¢
0 0 2

[ 0.295572  0.154452 0.154452:'

10.18 Calculate e* for

(see Chapter 8) and calculate ¢® Even though A is a Jordan block, B is not because it no longer has 1s
on the superdiagonal. We find that modal matrix for B is

£ 00
M=[0 ¢ 0
0 0 1

so B is similar to the matrix in Jordan canonical form
2t 1 0
J=M"'BM=|0 2 1
60 0 2
We have f(A) = f'(A) = f(A) = e, so
ez: ez: 82'/2]

f(-,) - e.l =|: 0 eZl ell
0 0 e

1 ¢ %2
and M= =f(B)=MfOM '=e*l0 1 ¢
0 0 1

10.19 Find e* for

A= o]
We set B=At=[9’ (t)]

and compute e The eigenvalues for B are the complex conjugates it and ~ iz, so B is similar to

1= [g —Oit]

A modal matrix for B, consisting of two generalized eigenvectors of rank 1, is
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[
M‘[i 1]
At __ B __ J -1 _ 1 i][e” 0 ][ 1/2 —1/2]
Thus, en=e =MeM ’[f 1o e Ji-irz 112
e"+e " _ieil+ie—il
- 2 2 =[ cos ¢ sint]
et —iet e te ~sint cost
2 2

(Compare with Problem 8.7.)

Supplementary Problems

10.20 Determine which of the following pairs of matrices are similar matrices: -

(@)
(b)

(c)

[2 3] and [3 7]
s 7)™ 7 s
[2 17 nd [2 0]
6 2] a Lo 2
1 2 3] (2 2 1
4 5 6 and 1 1 2
7 8 9] L1 2 2
In Problems 10.21 through 10.25, find a modal matrix associated with the given matrix.
1 37
10.22 [1 3]

[ -5 -3]
10.21 3 1]
(Hint: See Problem 9.23.)
(2 2 1]
10.23 |0 2 0
L0 0 2]
(Hint: See Problem 9.25))
3210
0300
10.25 1110
L 0113

(Hint: See Problem 9.29.)

(Hint: See Problem 9.24.)

2 2 2
1024 (0 4 O
3 =31

(Hint: See Problem 9.26.)
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10.26 Each of the following is a complete set of eigenvalue rank numbers for a matrix whose only eigenvalue is

A =2, Find, in each case, a matrix in Jordan canonical form which is similar to that matrix.

(@ N,=N, =2
(¢) Ny=N,=1,N, =2
(&) Ny=1,N,=2,N, =5

(b) N,=1,N,=3
(d) Ny=2,N,=3,N, =3
(f) N;=3,N,=5

In Problems 10.27 through 10.33, find a matrix in Jordan canonical form that is similar to the given matrix.

10.27 The matrix in Problem 10.21,

10.28 The matrix in Problem 10.22.
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10.29 The matrix in Problem 10.23. 10,30 The matrix in Problem 10.24.

10.31 The matrix in Problem 10.25.

3110 51 200

0 3 00 05 -100

1032 | .1 110 1033 (00 50 0
011 3 006 03 2

00 01 4

(Hint: See Problem 9.30.)
(Hint: See Problem 9.31.)

10.34 Find cos A for the following matrices:

2 0 0 210

@ a=l0 2 o] () a=[o 2 1

0 0 2 6 0 2
200000
21 0 0 020000
0200 oo 2100
© A=<lg 02 1| @ A=|[g 00 21 0
00 0 2 0000 21
00000 2

10.35 Find e” for the matrix A given in Problem 10.21.
10.36 Find e for the matrix A given in Problem 10.23.
10.37 Find A*' for the matrix A given in Problem 10.23.

In Problems 10.38 through 10.41, determine e*'.

10.38 A=[2 1] 10.39 A=[_5 6]

0 2 4 -5

2 00 -1 10
10.40 A=[0 2 1] 10.41 A=[ 0 2 1]

0 0 2 0 0 2

10.42 Prove that if A is similar to B, then B is similar to A.

10.43 Prove that if (10.1) is valid for A and B and X is an eigenvector for A corresponding to eigenvajue A,
then Y =SX is an eigenvector for B also corresponding to A.
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Inner Products

COMPLEX CONJUGATES

The complex conjugate of a scalar z = a + ib (where a and b are real) is z = a — ib; the complex
conjugate of a matrix A is the matrix A whose elements are the complex conjugates of the elements of
A. The following properties are valid for scalars x and y and matrices A and B:

(Cl): i=x;and A=A

(C2): «x is real if and only if ¥ =x; and A is a real matrix if and only if A = A.
(C3): x+ xis a real scalar; and A + A is a real matrix.

(C4): Xy=(x)(y); and AB = (A)(B) if the latter product is defined.

(C5): (x+y)=x+y; and (A+B)=A+B if the latter sum is defined.

(C6): xx =|x)’ is always real and positive, except that x =0 when x = 0.

THE INNER PRODUCT

Let W denote a nonsingular # X n matrix. The inner product of n-dimensional column vectors X
and Y with respect to W, denoted by (X, Y),, is the dot product (see Chapter 1)

(X, Y),, = (WX) - (WY) (1.1)
If W=1, then the subscript in (11.1) is dropped, and the inner product
(X,Y)=X-Y (11.2)

is called the Euclidean inner product. If X and Y are also real, then the Euclidean inner product
reduces to the dot product of the two vectors. (See Problems 11.1 through 11.5.)

PROPERTIES OF INNER PRODUCTS

Property 11.1: (X, X),, is real and positive if X 0.

Property 11.2: (X,X), =0 if and only if X=0.

Property 11.3: (X,Y)y = (Y, X)w.

Property 11.4: (cX,Y)y = c(X,Y)y and (X, cY),, = ¢(X, Y), for any scalar c, real or complex.
Property 11.5: (X+Y,Z) 3y =(X,Z)y + (Y, Z)y and (X, Y+ Z),, =(X,Y)y + (X, Z),,.
Property 11.6 (Schwarz inequality): [(X, Y),|> < (X,X), (Y, Y),.

(See Problems 11.9, 11.10, 11.12, 11.28, and 11.29.)

ORTHOGONALITY

Two vectors are orthogonal if their inner product is zero. Since different matrices W in (11.1)
generate different inner products, two vectors may be orthogonal under one inner product and not
orthogonal under another inner product. (See Probiem 11.5.) Orthogonality reduces to the geometric

103
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concept of perpendicularity under the Euclidean inner product when the vectors are real and
restricted to two or three dimensions.

A set of vectors is orthogonal if each vector in the set is orthogonal to every other vector in that
set. Such a set is linearly independent when the vectors are all nonzero. (See Problem 11.27.)

GRAM-SCHMIDT ORTHOGONALIZATION

Every finite set of linearly independent vectors {X ,X,,...,X,} has associtated with it an
orthogonal set of nonzero vectors {Q,,Q,....,Q,} with respect to a specified inner product, such
that each vector Q, (j=1,2,...,n) is a linear combination of X, through X _,. The following
algorithm for producing the vectors Q, is called the Gram-Schmidt orthogonalization process.

STEP 11.1:  Set
1
Q=7 X and j=1
VXL XD
STEP 11.2: If j= n, stop; the algorithm is complete. Otherwise, increase j by 1 and continue.
STEP 11.3; Calculate

Y,-=X,—§<X,,Q,>WQ,-

STEP 11.4: Set
1

S S
RV A A

STEP 11.5: Return to Step 11.2.

(See Problems 11.6 through 11.8) A modification of this algorithm, which is less susceptible to
roundoff error, is presented in Chapter 20.

Besides producing orthogonal vectors, the Gram-Schmidt process generates vectors having the
property that the inner product of each vector with itself is unity. This property is discussed further in
the next chapter.

Solved Problems

1 4 110
X=|2 Y=(5 wW=|0 1 1
3 6 1 01

All elements are real, so the conjugate notation in (//.1) can be suppressed. Thus,

11.1 Calculate (X,Y),, if

3119
(X.Y), =(WX)-(WY)=[5}-[H}:3(9)+5(ll)+4(l()): 122
4 Lo

11.2 Calculate the Euclidean inner product for the vectors given in Problem 11.1.

Since both vectors are real. the Euclidean inner product is the dot productr ol those vectors:
(X.Y) = I(d) +2(5) + 3(6) = 32.
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11.3

11.4

11.5

11.6

Calculate (X, X),, if

x=[1?i] and w=[1 i]

] 2+i5 0
—i S— i
Here WX=[7+I.3 SO WX=[7_’.3]
— ~i i oy . )
and (X.X), =(WX)-(WX)=[7+ '.3]-[7_ ’.3]:(—r)(:)+(7+13)(7—':3):59

Calculate (X, Y),, if

=2 i2 1 2 3
X=13-1i2 Y=|2+1i W=I[4 5 6
i 7 7 8 9

105

W is a singular matrix, so the inner product (X,Y}, is not defined. even though the matrix
operations on the right side of Eq. (11.1) can be performed. When the matrix W is singular. it is always
possible to find a nonzero vector Z (in this case, Z = [1, -2, 1]" will do) for which {Z,Z), = 0, thereby

violating Property 11.2.

Calculate the inner product (X, Y}, for the vectors given in Problem 11.4 when (a) W =1 and

(b) W is as given in Problem 11.1.

(a) The Euclidean inner product is

-2 -2
(X.Y) =X-i’=[3—i2:|-[2—i]=(—12)(—i2)+(3—iZ)(2—i)+(i)(7)=0
i 7
(b) With W as given in Problem 11.1, we have
WX=[3-i4, 3—i, —i]'" and WY=[2+i3, 9+i 7+i2]
so (X.Y)w =(WX)-(WY)=3-i9)(2-i3)+ 3-DO—- )+ (—i)(7-i2)=18-i36

Thus, X and Y are orthogonal under the Euclidean inner product but not orthogonal under the

inner product in part b.

Use the Gram-Schmidt orthogonalization process with the Euchidean inner product to

construct an orthogonal set of vectors associated with {X,, X,} when

g PN IR
X‘_[1+i2 and X2 {144
These two vectors are linearly independent, so Steps 11.1 through 11.5 may be used to find

(xl‘x|)=x|')—‘1 =9

1 2. 23
and Q"W[Hiz]‘[(uizm]

‘ ) i i 23 1 [(-6+iT)/9
Also, Yr‘x2‘<xf'0'>0"[| +,-]”(1+ 5)[(|+i2)/3J‘[ (R+i2)/9 ]

S0 (Y..Y.,) =Y, Y,=153/81
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_[(-6+i7)/VT53

1 [(*6+i7)/9]_[ AL ]

and Q.= 753787 | (8+i2)/9

The orthogonal set is {Q,,Q,}.

Use the Gram-Schmidt orthogonalization process with the Euclidean inner product to
construct an orthogonal set of vectors associated with {X,, X,, X;, X,} when

X, =

0
1
1 X, =
1

Pt D

1 1
1 1
X, = 0 X, = 1
1 0

These vectors can be shown to be linearly independent (see Chapter 6). Using Steps 11.1 through
11.5, we find

(X,,X,)=X,-X,=3
and Q,= -\—}—SY1=[0, 1V3, 1/V3, 11V3]7
2
Then Y2=xz_(x2’ 0,)01=X2—\—/—~§Q,
=1, -2/3, 1/3, 1/3]7
$0 {(Y,,Y,)=Y,-Y,=15/9
and  Q,=VO715Y, =[3/V15, -2/V15, 1/VT15, 1/V15)7
Also, Y, =X, - (x3, Q,)Q, - (X,, Q.)Q,
x. 202462 _ T
$0 (Y5, Y,) =Y, Y, =35/25
and Q,=V25/35Y, =[3/V35, 3/V35, —4/V35, 1/V35]
Las“)’- Y, = xa - (qul)Qx - (xn Qz)Qz - (xu QJ>Q3
2 2 2
=X-ABUO- 35 ;ES
=[3/7, 3/7, 317, -6/7]"
so (Y, Y)=Y,-Y,=63/49

and Q,=V49/63Y, =[3/V63, 3163, 3/V63, —-6/V63]"
=[1V7, AT, a3, =2V
The orthogonal set is {Q,,Q,,Q;, Q,}.

Use the Gram-Schmidt orthogonalization process to construct an orthogonal set of vectors
associated with the set {X,,X,, X,} from Problem 11.7 and with
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1 -1 20
o 1 23
W=l 1 12
2 -1 -2 0

Using Steps 11.1 through 11.5, we calculate
WX, =[1,6,4,-3]"

50 (X,, X, )y = (WX,) - (WX,) =62

and Q,= \/—lg.zx, =0, 1/V62, 1/V62, 1/V62]"

Then wQ, =[1/V62, 6/V62, 4/V62, -3/V62]"
and WX, =3, 5, 5, 0]"

50 (X,,Q,)w=(WX,) (WQ,)=53/V62
and Y= X, - (X;.0,)4Q, =X, - 75—25Q,

=1, -53/62, 9/62, 9/62]"

Now WY, =[133/62, —8/62, 98/62, 159/62]"
) (Y,, Y,)w = (WY,) (WY,) = 52,638/(62)

62 1 r
and Q.= s Yo = Varem 02 5% 9% 9

_ 1 _ T

Lastly, wQ, = 52’638[133, 8, 98, 159]
and WX, =1{0, 4, 5, 1]"
50 (x3.Q|)w=(WX3)'(WQ,)=41\/§
and (X;,Q,)w=(WX,)- (WQ,)=617/\/52,638
giVing Y3=x3_ <x3vQI>wQ| - <x3’Qz>sz

N 41 617
=X-7m e /52,638 Q.
1

(7,192, 25,265, —20,181, 6,138]"7

~ 26,319
1
Now WY, = 2oos (58,435, 3,317, 31,744, 29.481)7
5,302,462,611
SO <Y31Y3)w=(WY3)'(WY3)=—

(26.319)°

and Q,= 5302 463 611 {7,192, 25, 265, -20,181, 6,138]
The orthogonal set is {Q,,Q,.Q,)}.

11.9 Prove Property 11.3: (X, YY), = (Y, X) -
(X, Y) w = (WX) - (WY) = (WY) - (WX) = (WY) - (WX) = (Y, X),,
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11.10 Prove Property 11.4.
(X, Y)w = (WeX) (WY) = {c(WX)} - (WY) = c{(WX)* (WY)} = c(X, ),

and (X, Y) = (WX) - (We¥) = (WX) - (c(WY)) = (WX) - {{(WY)}
= E{(WX) - (W)} = E(X. Y),,

11.11 Prove that (0,Y),, =0 for any Y of appropriate dimension.
(0,Y)y=(00,Y)y =0(0, Y)w=0

because the inner product is a scalar, and zero times any scalar is zero.

11.12 Prove the Schwarz inequality.

When X =40, both sides of the inequality are zero (see Problem 11.11}, and the inequality is
satisfied. If X 0, then (X, X),, # 0 (Property 11.2), and for any vectors X and Y and any scalar ¢, we
have

0=(cX-Y,cX-Y), (Property 11.1)
={cX,cX)w — (X, Y)w— (Y, cX),, +(Y,Y),, (Property 11.5)
=ci{X, X}y —c(X,Y)y - (Y, X),, +(Y,Y), (Property 11.4)

Setting ¢ = (X, Y) / (X, X) and noting that (X, X),, = (X, X),, by Property 11.1, we cancel the first
two terms on the right side of the last equality and obtain

_<X-Y)W<va)w _(X|Y)W<X‘Y)w

0= (X, X)w +{Y, Y}y = X, X)w +(Y,Y)y,  (Property 11.3)
(X, V) [
- |(<X. X))w | (V. Y)w (Property C6)
<X, V)ul® _
Thus, W =(Y,Y)

from which the Schwarz inequality immediately follows.

Supplementary Problems

11.13 Calculate (a) (X, Y), (b} (X,Z), (¢) (Y, Z), (dY (X, Y) ., (e) (X, Z),. () (X, Y)g.and (g) (X, Z),

when
1 2 1 1 23 1 00
X=|2 Y=| -1 Z=| -1 A=j-1 -1 1 B=|0 2 0
1 0 1 1 2 1 0 0 3

11.14 Calculate (a) (X, Y), (&) (Y,X), (¢) (X, Z), (d) {Y,Z), (e) {X,Y),. and (f) (X,Z),, when

o] ve[ e[22) welt ]

In Problems 11.15 through 11.24, use the Gram-Schmidt orthogonalization algorithm with the Euclidean
inner product to produce an orthogonal set of vectors from the given set.
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115 X, = || x2=L§_ 11.16 x‘=[;] x2=[_‘;]
11.17 x,=L;‘ x2=Li_ 11.18 x,=[;] x2=[”
17 [07 1
1 X, =/1| x,=|1| X,=]0
0] 1] 1

11.20

11.21

11.22

11.23

11.25

11.27

11.28

11.29

(17 [ 1] -17
X, =1 X,= X, ={ 1
L1 L — 1] 1]
(1] [1+i 0
X, = X,=| 1 X,=[1-i
L i ] L 1 —i
[1] [0 1 1
1 1 0 0
Xi=lo X.=| X =1 -1 X.=l o
L0 L O 0 -1
M ri 0 0
i 0 1 0
X, = 0 ;=12 X.=1{0 X,=1o0
_OJ _0 1 ]
Use the Gram-Schmidt orthogonalization algorithm to construct an orthogonal set of vectors associated

with

X, = [ 1] and for

0 %-[1] w=[s 4l

Use the Gram-Schmidt orthogonalization algorithm to construct an orthogonal set of vectors associated
with {X,, X,, X,}. where

1 0 1 11 1
X,=|1| x,=[1| x,=|0] and W=| 1 1 -1
0 1 I -1 11

Prove that an orthogonal set of nonzero vectors is linearly independent.
Prove Property 11.1.

Prove Property 11.2.
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Norms

VECTOR NORMS

A norm for an arbitrary finite-dimensional vector X, denoted [|X]||, is a real-valued function
satisfying the following four conditions for all vectors X and Y of the same dimension:

(N1: |IX]| =o0.

(N2): |IX|| =0 if and only if X=0.

(N3):  |lcX]|| = |c|l|X|| for any scalar c.

(N4) (Triangle inequality): ||X + Y| <||X|| + [|Y]].

A vector norm is a measure of the length or magnitude of a vector. Just as there are various bases for
measuring scalar length—such as feet and meters—there are alternative norms for measuring the
magnitude of a vector. Some of the more common vector norms for X = [x,, x,,. .., x,]" are:

e The inner-product-generated norm: ||X|lw =V (X, X},

o The Euclidean (or 1,) norm: ||X||, = V{(X. X}

o Thel, norm: ||X||, =|x | +|x, |+ -+ |x,]|

o Thel, norm: ||X||.=max (x|, |x,].....|x,])

o Thel, norm (p=1): [|X[|, = (x| +|x,]" + - +]x, ")

The Euclidean norm is the most popular, and it is a special case of the inner-product norm when
W =1, the Euclidean norm and the /, norm are special cases of the / norm for p=2 and p =1,

respectively. (See Problems 12.1 through 12.3.) Finally, in the limit as p— =, the [, norm yields the
I, norm.

NORMALIZED VECTORS AND DISTANCE

A unit vector is a vector having norm equal to unity. A nonzero vector is normalized when it is
multiplied by the reciprocal of its norm; consequently, normalized vectors are unit vectors. A set of
vectors is orthonormal if the set is orthogonal and if each vector in the set is a unit vector,

The distance between two vectors X and Y is |[X — Y||. Its value, as well as the designation of a
vector as a unit vector, depends on the particular norm selected. (See Problems 12.4 and 12.5.)

MATRIX NORMS

A norm for a square matrix A, denoted |[A||, is a real-valued function satisfying the following
conditions for all n X n matrices A and B:

M1):  [|A| =0.

(M2): ||A|| =0if and only if A=0.

(M3):  ||cA]l =|c]||A]l for any scalar c.

(M4) (Triangle inequality): |A + Bj| < ||A]| + ||B||

(MS5) (Consistency condition): ||AB}| =< ||Al|||B]|
110
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Because of the added consistency condition (MS5), not all vector norms can be extended to become
matrix norms. (See Problem 12.6.) Two that can be extended are the [, norm (see Problem 12.7) and
the Euclidean norm. For the n X n matrix A =[a,], the Euclidean norm becomes

n n 1/2
e The Frobenius (or Euclidean) norm: ||A|| = (2 > Ia,,.lz)

i=1j=1

INDUCED NORMS
Each vector norm induces (or generates) the matrix norm
l|All = max (lAX]}) (12.1)

fixi=1
on an arbitrary n X n matrix A where the maximum is taken over all n-dimensional vectors X having
vector norm equal to unity. Some induced norms for A = [a,] are:

e The L, norm (induced by the I, norm):
fAll, = ,.Jl“‘f’“n" (2:‘1 laijl)

which is the largest column sum of absolute value.

e The L norm (induced by the I, norm):

which is the largest row sum of absolute values.
e The spectral norm (induced by the Euclidean norm):

lA[ls = max(V'A: A is an eigenvalue of A'A)
(See Problems 12.8 through 12.12 and Problem 15.12.)

COMPATIBILITY
A vector norm is compatible with a matrix norm if
AV =< [IAfllIYY] (12.2)

for every n X n matrix A and every n-dimensional vector Y. Induced norms are always compatible
with the vector norms that generated them, and in those cases there always exists at least one vector
Y for which (12.2) is an equality. (See Problem 12.13.) Compatibility is not restricted to induced
norms; the Frobenius norm, for example, is compatible with the Euclidean vector norm even though
the former is not induced by the latter. (See Problems 12.15 and 12.16.)

SPECTRAL RADIUS

The spectral radius of a square matrix A, denoted by o(A), is the largest absolute value of any
eigenvalue of A. That is, 0(A) = max (| Al: A is an eigenvalue of A). If A is any eigenvalue of a matrix
A, then {A] = o(A), and there is at least one eigenvalue for which this inequality is an equality. For
any matrix norm,

o(A) < |A] (12.3)
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Inequality (12.3) provides bounds on the eigenvalues of a matrix. (See Problems 12.17 and 12.18.)
An equivalent expression for the spectral radius is

12.1

12.2

12‘3

12.4

o(A) = lim J|A™||'"" (12.4)

Solved Problems

Determine ||X||,, and ||Y||, for

1 4 1 10
X=1|2 Y={5 wW=|0 1 1
3 6 1 01
For the given vectors, we have

IXllw = V(X. X}y = VIWX) - (WX) = V3(3) + 5(5) +4(4) = 50

and 1Y]lw = V(Y. Y}, = VIWY) 1 (WY) = \/9(9) + T1(11) + 10(10) = V302

Find (a) ||X|l,. (&) [IX]l,, (¢) IX]l... and (d) ||X]|; for the vector X of Problem 12.1.

(@) X}, = VXX =VI(1) +2(2) + 3(3) = V14,
(by IIX]l, = 1] + 12} + 3| =6.

(c) |IX}f, = max([1],]2],3]) = 3.

(d) Xl = 1"+ 21" + 131" " =(276)" " =3.077.

Find (a) [|Xllw, (6) IIXll2. (o) IXH,. (d) [IX]].. and (e) [IX[}, when

=i 1 i
x=[ i ] and w:[2+i5 0]
(a) From Problem 11.3. we have [|X}|w = V(X. X}y = V39.
(6) IX]l, =VX-X=V({I -+ +i(-i)=V3.
() IXll, =11 =él+ || =V2+1=2414
(d) X}, = max (|t - i }i}) = max (V2.1)= V2.
(&) IIXH, =1 —d* +1il*) *=(5)" *=1.495.

Find the distance between X and Y with respect to (a) the Euclidean norm, (b) the
inner-product norm with respect to W, and (c) the {; norm when X, Y. and W are as given in
Problem 12.1.

For these veetors, X - Y =[-3, -3, -3]", so0

(@) IX - Y], =V(=3) +(=3) + (-3)" = V27.
(hy WX Y)y=|-6.-6.-6]" and

IX - ¥iiw = VWX = Y) - WIX - Y) = V(=06)(=6) + (—6)(~6) 1 (-6)(=06) = 10392
R 1D S 4 P O TR R 0 R €. 1D M W
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12.5

12.6

12.7

12.8

Normalize the vector X given in Problem 12,1 with respect to (@) the [, norm, (b)), the (|
norm, and (¢) the £, norm.

Using the results of Problem 12.2, we obtain the normalized vectors (a) |} N4, 2V, 3V ]
(b)Y [176, 276, 3/6]"; and (¢) [1/3, 273, 1])'. Each of these vectors is a unit vector with rupecl to its

ussociated norm.

Show that the /, norm for vectors does not extend to a matrix norm,

The !, norm is simply the largest component of a vector in absolute value. and its extension to
matrices would be the largest element of a matrix in absolute value. That is,
lAl= max_(la,}
5=l .n

Consider the matrices

R . 2 q
A—B——[l 1] for which AB—[2 3
We have ||A|| = ||B)] = 1. but ||AB|| =2. Since condition M5 is violated, the proposed norm is not a

norm.

Extend the /, vector norm to a matrix norm, and use it to compute the norm of

(443 -7]
A“[ 3 i4

The /, norm is the sum of the absolute values of all the components of the vector; its extension to
the matrix A ={[qa, ] is the sum of the absolute values of all the elements of the matrix. That is,
lA}}, = £., £7., la,|. This norm automatically satisfies conditions M1 through M4 because they are
identical to conditions N1 through N4. In addition, for two n X n matrices A and B, the extended norm
gives us

IABf, + 3 S

RN

=33 3 S talitnl - (2 S laul)(Z 2 ih,,1) = Il sl

Py T k=1 m=1

z ackbk[ 2 2 2 nkllbk,l

e -

Thus, condition M5 is satisfied and this extension is a matrix norm. Applying it to the given matrix, we
calculate

Calculate the (a) Frobenius norm, (b) L, norm, (c) L, norm, and (d) spectral norm for the
matrix A of Problem 12.7.
(@) [[All, =4+ B3 +|=77+ 13> + [i4]*y'"? =v25+ 39 + 9 + 16 = 9.950.
) {|All, = max(]4 + i3] + |3].|=7] + |id]) = max(5+ 3,7+ 4) = 1I.
() [IAll, = max([4+ i3]+ [-7].[3] + |i4]) = max(5 + 7.3 + 4) = 12.
{d) We compute
Am=[4‘5 3][4+B —7}=[ 34 —m+i%]
-7 -—i4 3 i4 -28-1i33 65

which has the characteristic equation A —99A + 337 =0 and the eigenvalues A, =95.470 und
A, =3.530. Thus, ||A]], = max(V95.470, V3.530) =9.771.
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12.10

NORMS [CHAP. 12

Calculate the (a) Frobenius norm, (b) L, norm, (¢) L, norm, and (d) spectral norm for

7 -2 0
A=]|-4 -6 0
0 0 -9
@ lAll:={(7)* + (=4 + (0) + (=2)* + (~6)" + (0)" + (0)* + (0)* + (=9)"}''* = 13.638.
() J|A]l, = max(|7] +|-2| + 0|, |—4] + |-6] + |0}, |0] + [0} + |—9|) = max(9, 10, 9) = 10,

(c) J|All. = max(|7} + |-4] + [0}, |=2| + |-6] + |0], |0] + |O] + |-9]) = max(11,8,9) =11.
(d) Here we have

) 65 10 0
A'TA=ATA={10 40 0
0 0 81

which has eigenvalues 68.5078, 36.4922, and 81. Thus, ||All; = max(V68.5078, V36.4922, VB1) = 9.

Prove that an induced norm generated by (12.1) is a matrix norm.

Let A and B denote arbitrary n X n matrices, and X and Y arbitrary n-dimensional vectors. We are
given a vector norm that satisfies conditions N1 through N4, and we wish to show that a proposed matrix
norm defined by (12.1) satisfies conditions M1 through M5, For clarity we subscript the vector norm
with V and the matrix norm with M.

(M1): ||A||,, is the maximum of nonnegative quantities |JAX||,, and must be nonnegative.

(M2): If A=0, then AX = 0 for all vectors X, and ||A||,, = max(J|AX||,) = max(0)=0. If A #0, then A
must contain at least one nonzero column, Designate the first such column as column i, and
construct Y by setting its ith component equal to 1 and all other components equal to 0. Now
|AY|, and {|Y|], are positive, and since Y/{|Y]], is a unit vector,

_llayy,
il
(M3):  ||cAl],, = max(||cAX|), ) = max(|c||AX]|, ) = |c| max(||AX|}, ) = [c[|A]|,-
(M4): [|A + BJl,, = max{|(A + B)X|l, } = max(|AX + BX]|,)
= max(|laX]|, + |IBX]|,)
= max(||AX||,) + max(||BXI|, ) = [|All,, + IBl},,

(MS): If B=0, then AB=0, ||AB||,, = |IBl|,, = 1|9, =0, and the desired inequality is trivially true. If
B # 0, we can restrict our attention to those unit vectors X for which BX # 0, since all others
have no influence on the norm. Then

>0

=

Al = max (IAX],) =

A®BX)| }
AB = = = { v
IABl, = max {[(AB)X]l,} = max (AGBX),)= max | Zpgee™ IIBX||,
IIA(BX)IIV} “ )
= TS BX
nf“ﬁ?’fn{ X[, J %= n(” )= it IIBXIIV Hxllv'l(”BXHV)
S e (“AY”V) Mmax N{[L 239
=

max (|AYll,) max (IIBX|l,) = ||All.[iB]l,,

¥l
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Show that the /, vector norm induces the L, matrix norm under Eq. (12.1).

Set |All, = max (||AX|| ). Then ||A[|, is a matrix norm as a result of Problem 12.10. Denote the

columns of A as vectors A A, ..., A  respectively, and set
- max (S la,l) = max (14,0

We wish to show that [[A]|, =

For any unit vector X = [xl, X x,]0
“Ax”l = “IlAl t XA, o+ r Al
= ”-'-‘11\1”1 + ”sz2“| +o0+ ”an,.": = |xl”'AI”l + IIZHIAz“; tre 4 ]1,.”]'\,.”1

<|x|H + x| H + o+ |x |H = H(lxy [+ x| + -+ |x,) = HIX|, =

A, = AX|l,)=< max (HY=H
Thus,  lIAll = max (JAX]l,)= max (H) (N
But for unit vectors Y, (k=1,2,...,n) having a 1 as the kth component and Os as all other
components,

Al = max (IAXIL) = IAY. ], = 1A,
:

s0 lAll, = max ([[Ad)=H (2)

Together, (1) and (2) imply the desired equality.

Show that the /. vector norm induces the L, matrix norm under (12.1).

Set [|All. = max ({lAX]l.). Then ||A||.. is a matrix norm as a result of Problem 12.10.
==1

Now
H= max (2 Ia,.,l)
i=l...n j=1

We wish to show that |[A]|. = H. This equality obviously holds if A =0, so we consider only nonzero
matrices in what follows. For any unit vector X = [x,, x,, ..., x,]7, we have

2 ax|)= max(z la, 1,1
< max (3 la,JIXL.) = max (3 lo,l) - #

Iax]l. = max

Thus, All. = AX|l.) = H)=H 1
us Al = max (fAX|l.)= max (H) (1)

tky tk)

Corresponding to the kth row of A (k=1,2,...,n), define a vector Y, =[y\*), y*' .., y*1" by
setting

1 when a,, =0

when a, #0

Then [|Y,]|. =1, and the kth component of AY, is L”_, |a,,|. Also for each k.
IALL = max (IAXIL)= Y, ].

The last term on the right is the maximum component in absolute value of AY,, which is at least as large
as the absolute value of the kth component of AY,. Hence, ||A|. zE]_, |a,] for all k, and
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Al = max (3 1a, ) = # 2)

Together, (1) and (2) imply the desired equality.

12.13 Show that an induced matrix norm with its associated vector norm satisfy the compatibility
condition [|AY{| = ||Al}]lY]}-
The inequality is immediate when Y = 0. For any nonzero vector Y, Y/[Y|| is a unit vector, and

_ layj
i

Al = AX -_”
“ ” Ilmlax I “) “Y”

12.14 Show that J|A]| = ”xg‘ll;d}](||AX||) = 1}1';13((||AX|]/||X||).
Set H = Taz((HAXH/llXH). We must show that ||A|| = H. First, we have

IA] = max(HAXN may ,(IIAx(|)<Tﬂ(IIAxH) u

X Il
where the inequality follows from taking the maximum over a larger set of vectors. Thus,
Al = H (1)

It follows from Problem 12.13 that

- IIAXII) ( IIAIHIXH) _ -

H = max( /= ma\ Ty /= maxdial = fiai

50 Al = B (2)
Together, (1) and (2) imply the desired inequality.

12.15 Show that the Frobenius matrix norm is compatible with the Euclidean vector norm.

For any n X n matrix A and »n-dimensional vector X,

l|AX])2 = 2 |ith component of AX|* = 2,

=1 i=1

2
2 ayx,

f=1

Using the subscript / to designate the ith row of a matrix and employing the Schwarz inequality (see
Chapter 11), we have

=|A] X" =[(A]. X)]?

< (AT, AT}(X, i)=AT-AT)(i-X)=(é|a,,|’)(§ ) ( ,,Iz)llxlli

Therefore. jaxi=($ S 1o, )itz =nai e

We obtain the required inequality by taking square roots.

12.16 Show that any matrix norm has a vector norm with which it is compatible.

Let ||A)],, designate an arbitrary matrix norm on n X n matrices. If Y is an arbitrary but fixed
n-dimensional, nonzero column vector, then the function f(X) = || XY"}| , satisfies all the properties of a
vector norm on the set of all n-dimensional column vectors X. Furthermore,

FAX) = [[AX)YT{| o, =AY )| oo = (Al XY 1l = 1Al fX

so ||A|l,, is compatible with the vector norm f(X).
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12.17

12.18

12.19

12.20

12.21

12.22

12.23

12.24

12.25
12.26

12.27

Determine bounds on the eigenvalues of

07 8 7
75 6 5
A=l g 6 10 9
75 9 10

The row sums and column sums are both 32, 23, 33, and 31, so ||A||, = ||A]|. = 33. The Frobenius
norm is ||A] = 30.5450. It follows from (12.3) that o(A) =33 and o(A) < 30.5450, from which we
conclude that every eigenvalue must be no greater than 30.5450 in absolute value. (See also Problem
20.8.) Of course, other norms not considered here might place a still lower bound on the eigenvalues of
A

Prove that ¢(A) = ||A]] for any matrix norm.

Let A be an eigenvalue of A for which JA| = a(A), and let X denote a corresponding eigenvector.
Construct a matrix B having each of its columns equal to X. Then AB = AB, and for any matrix norm

[Al1BI = 1 ABI| = |AB]| < [jAl|IB]]
Since B is not a zero matrix, it follows that |A| < ||]A}|. But |A| = o(A), so o(A) < ||A|l.

Supplementary Problems

Determine the /, norm of each of the following vectors:

1 1 2 1 4
(a)X=[0] (b)y{ 2] (c)Z={ 1] (d)U=[8} (e)V=[4}
0 -3 -4 0 4

Determine the /, norms of the vectors in Problem 12.19.
Determine the /. norms of the vectors in Problem 12.19.

For each of the vectors in Problem 12.19, determine the inner-product-generated norm with respect to

0 11
wW=(1 -2 1
3 02

For the vectors given in Problem 12.9, determine (a) |Z-Y|l; (&) 1Z-Y|,; (o) I|1Z-Yl,;
@ 0=Vl @lu-vll;;  and  (f) lU-V|.

Determine the Euclidean norm of

i -5 _|o [1+2
wx=] wv=[;] ©z-[3] @v=[317]
Determine the /, norms of the vectors in Problem 12.24.

Determine the /. norms of the vectors in Problem 12.24,

Determine the /, norms of the vectors in Problem 12.24.
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12.28

12.29

12.30

12.31

12.32

12.33

12.34

12.35

12.36

12.37

12.38

12.39

12.40

12.41

NORMS [CHAP. 12

Determine the Frobenius norms for the following matrices:

@33 o3 elii] ek i el

Determine the 1;, norms of the matrices in Problem 12.28.
Determine the L_ norms of the matrices in Problem 12.28.
Determine the spectral norms of the matrices in Problem 12.28.
Prove that for any induced matrix norm, [|Ij| =1.

Show that the Frobenius matrix norm satisfies condition MS5.

Prove the Pythagorean theorem for an inner-product-generated vector norm; that is, prove that if
(X,Y)w =0, then X + Y| = IX]l% + ¥l

Using the L,, L_, and Frobenius norms, determine an upper bound on the spectral radius for each of the
matrices in Problem 12.28.

Determine the spectral radii of matrices (a), (b), and (¢) of Problem 12.28.

Determine the spectral radius of

Prove that o(A") = o(A).

The condition number of a square matrix A with respect to a matrix norm is

_JNIANIAT"  if A is nonsingular
c(A) = {w if A is singular

Determine the condition numbers of the matrices in Problem 12.28 with respect to the Frobenius norm.
Show that the condition number of an identity matrix is unity for all induced matrix norms,

Show that the condition number as defined in Problem 12.39 cannot be less than 1.



Chapter 13

Hermitian Matrices

NORMAL MATRICES

The Hermitian transpose of a matrix A, denoted A" is the complex conjugate transpose of A;
that is, A” =A”. A matrix A is normal if

AA" = A"A (13.1)
(See Problem 13.1.) Normal matrices have the following properties:
Property 13.1: Every normal matrix is similar to a diagonal matrix.

Property 13.2: Every normal matrix possesses a canonical basis of eigenvectors which can be
arranged to form an orthonormal set.

(See Problems 13.7 through 13.9.)

HERMITIAN MATRICES

A matrix is Hermitian if it equals its own Hermitian transpose (or complex conjugate transpose);
that is, A is Hermitian if

A=A" (13.2)

The sum of Hermitian matrices is Hermitian, as is the product of a Hermitian matrix with a real
scalar. A Hermitian matrix is also normal, because AA” = AA = AYA. Therefore, Hermitian matrices
possess Properties 13.1 and 13.2. In addition,

Property 13.3: The eigenvalues of a Hermitian matrix are real.

Property 13.4: If a Hermitian matrix A can be reduced to upper triangular form U using only
elementary row operations of the third kind (E3), then the diagonal of U contains
the same number of zeros, the same number of positive values, and the same
number of negative values as the eigenvalues of A.

Property 13.5: An 2 X n matrix A is Hermitian if and only if (AX, X) is real for all (real and
complex) n-dimensional vectors X.

(See Problems 13.4, 13.11, and 13.19.)

REAL SYMMETRIC MATRICES

A matrix is symmetric if it equals its own transpose. A symmetric matrix that contains only real
elements is Hermitian and, therefore, normal. Consequently, real symmetric matrices possess
Properties 13.1 through 13.5 as well as the following:

Property 13.6: The eigenvectors of a real symmetric matrix can be chosen to be real.

(See Problem 13.15)

THE ADJOINT
The adjoint of an n X m matrix A is an m X n matrix A* having the property that
119
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(X,AY)y, = (A*X. Y),, (13.3)

for all m-dimensional vectors Y and n-dimensional vectors X, where the inner product is as defined
in Chapter 11, The adjoint always exists and it is

A* = (W'w) A" (w'w) (13.4)

For the special case W =1 (the Euclidean inner product), (13.4) reduces to
A* =AY (13.5)

(Sec Problems 13.16 through 13.18.) Adjoints satisfy the following identities:
(A1): (A*)* = A.
(A2): (A +B)* = A*+B*.
(A3): (AB)* = B*A*.
(Ad): (cA)* = cA* for any scalar c.

SELF-ADJOINT MATRICES

A matrix A is self-adjoint if it equals its own adjoint. Such a matrix is necessarily square, and it
satisfies the identity

(X,AY),, = (AX, Y), (13.6)

for all vectors X and Y of appropriate dimension. A matrix is self-adjoint with respect to the
Euclidean inner product if and only if it is Hermitian.

Solved Problems

13.1 Determine which of the following matrices are normal:
1 2 3 . 2 6 -3
Az[i g Z] B=[2 : _5} C={3~254 Bislﬂ Dz[ 32 6]
3 -5 0 -6 3 2

A is not square, so it cannot be normal. B is real and symmetric and, therefore. normal. C is
Hermitian and, therefore. normal. D is normal because

2 6 -3 2 3 -6 49 0 0 2 3 -6 2 6 -3
pD’'={ 3 2 6 6 2 31=|0 49 0l=| 6 2 3 3 2 6l=D"D
-6 3 244-3 6 2 0 0 -3 6 2i-6 3 2

13.2  Show that A"A and AA" are normal for any matrix A.

(AHA)H _____(E)/ _ (A'A)' - (;\)'(A')' =A'A = A"A
and (AA"Y =(AA"Y =(AA") = (A")(A)' = AA’ = AA”

Both A”A and AA” equal their own Hermitian transposes, so they are Hermitian and. therefore, normal.
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13.3

13.4

13.5

13.6

13.7

Prove that the eigenvalues of A”A are nonnegative.

If A is an eigenvalue of A”A, then there must exist a nonzero eigenvector X associated with A
satisfying the equality A”AX = AX. For the Euclidean inner product, it follows from Property 11.1 and
Eqgs. (13.3) and (13.5) that

0=< (AX, AX) = (A*AX, X) = (A"AX, X) = (AX, X) = A(X.X) (1)

Since X is an eigenvector, it is nonzero and we may infer from Property 11.2 that (X, X) is positive.
Dividing (1) by (X, X} yields A=0.

Prove that the eigenvalues of a Hermitian matrix are real.

Let A denote an eigenvalue of a Hermitian matrix A, and let X denote a corresponding eigenvector.
Then, under the Euclidean inner product,

A(X,X) = (AX, X) = (AX, X) = (X, A*X) = (X, A"X) = (X, AX) = (X, AX) = A(X,X) (1)

Since X is an eigenvector, it is nonzero and so too is (X, X). Dividing (1) by (X, X) gives us A = A,
which implies that A is real.

Show that if X is an eigenvector of a normal matrix A corresponding to eigenvalue A, then X is
an eigenvector of A” corresponding to A,

Using the Euclidean inner product and (13.1), we obtain
(AX, AX) = (A*AX, X) = (A"AX, X) = (AA"X, X) = (A"X, A*X) = (A"X, A¥X)
It then follows that
0={0,0) = (AX — AX, AX - AX)

= (AX, AX) — A {AX, X) - A(X, AX) + (X, AX)
= (A"X, A"X) — X (X, A*X) — A(A*X, X) + AA (X, X)
= (A"X, A"X) - A (X, A"X) — A (A"X. X) + (AX, AX)
= (A"X - XX, A"X - AX)

Thus, A”X — AX = 0, which implies that X is an eigenvector of A” corresponding to A.

Show that eigenvectors corresponding to distinct eigenvalues of a normal matrix are orthogon-
al with respect to the Euclidean inner product.

Let A, and A, be two distinct eigenvalues of a normal matrix A with corresponding eigenvectors X,
and X,. Then AX, = A, X, and AX, = A,X,, and A”X, = A,X, as a result of Problem 13.5. Furthermore,

(A, - AZ)(xl’ X;) = A (X, X,) — (X, X,) = (A, X, X,) - (X, szz)
= (Ax1>x2> - (x]’ Asz) = (Axlaxz> - (xl’ A*xz>
= (Axl’x2> - (Axnxz) =0

Since A, # A,, it follows that (X, X,)=0.

Show that a set of linearly independent eigenvectors of a normal matrix can be arranged to
form an orthonormal set of eigenvectors.

Eigenvectors corresponding to distinct eigenvalues of a normal matrix are orthogonal by Problem
13.6, and they remain orthogonal eigenvectors if each is normalized. Therefore, we need only show that
linearly independent eigenvectors corresponding to the same eigenvalue can be so arranged. But this is
easily accomplished by the Gram-Schmidt orthogonalization process. Because this process forms linear
combinations from a given set (in such a way as to produce orthonormal vectors), it follows from
Problem 7.12 that the resulting vectors will remain eigenvectors.
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Determine a canonical basis of orthonormal eigenvectors with respect to the Euclidean inner

product for
2 2 =2
A=| 2 2 -2

2 -2 6

The matrix is real and symmetric and, therefore, normal. The eigenvalues for A are 0, 2, and 8, and
a corresponding set of cigenvectors is

) ol =

Since each eigenvector corresponds to a different eigenvalue, the vectors are guaranteed to be
orthogonal with respect to the Euclidean inner product. Dividing each vector by its Euclidean norm, we
obtain the orthonormal set of eigenvectors

-1\2 N3 -1/V6
Q = 1NV2 Q, =13 Q,=| -1/6
0 1V3 2V6

Determine a canonical basis of orthonormal vectors with respect to the Euclidean inner
product for

3 -2 0 2
i2 1 -2 0

0 -2 3 =2
-2 0 -2 1

A=

A is Hermitian and, therefore, normal. Its eigenvalues are 5, 5, —1, and —1, with corresponding
eigenvectors

i i2 i -

-1 -1 2 -1

X, " = o X=|] X,=|
0 1 0 1

Since X, and X, correspond to one eigenvalue, and X, and X, to another, each of the first two vectors is
guaranteed to be orthogonal to the latter two. Applying the Gram-Schmidt orthogonalization process to
the first two vectors, we obtain

i3 i3
_|-1V3 _| o
Q=) w3 = v
0 13
Applying the Gram-Schmidt orthogonalization process to the latter two vectors, we calculate
ineé —-ilvé
_l2mv/e6 _ 0
= ve =l e
0 21V6

The set {Q,.Q,,Q,.Q.} is a canonical basis of orthonormal eigenvectors for A.
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13.10 Verify Property 13.4 for the matrix in Problem 13.8.

The eigenvalues for the matrix are 0, 2, and 8, so it has one zero eigenvalue and two positive
eigenvalues. Reducing the matrix to upper triangular form using only elementary row operations of the
third kind, we obtain

2 2 =27
2 2 =2
-2 -2 6]
[ 2 2 =2] Adding —1 times the
=| 0 0 0 first row to the
| -2 -2 6] second row

[2 2 -2 Adding the first row
00 0 to the third row
-0 0 4

This last matrix is in upper triangular form, and the diagonal elements consist of one zero and two
positive numbers,

13.11 Verify Property 13.4 for the matrix in Problem 13.9.

The eigenvalues for that matrix are 5, 5, —1, and —1, which consist of two positive and two negative
numbers. Reduced to upper triangular form via elementary row operations of the third kind, the matrix
becomes

3 -2 0 i2
0 —-1/3 -2 4/3

6 o 15 -—10
0 0 0 -5/3

The diagonal elements of this matrix also consist of two positive and two negative numbers.

13.12 Show that if A is Hermitian, then A — ¢l is also Hermitian for any real scalar c.

A=) =A-)Y=A-cD)"=A"-(I)" =A-cl

13.13 Prove that a Hermitian matrix is similar to a diagonal matrix.

We need only show that a Hermitian matrix A does not possess any generalized eigenvectors of rank
2. This, in turn, implies that it possesses no generalized eigenvectors of rank greater than 2, because
otherwise we could form a chain and obtain, as part of the chain, a generalized eigenvector of rank 2.
Thus, all generalized eigenvectors have rank 1, and it follows from Chapter 10 that the Jordan canonical
form of A is a diagonal matrix.

Assume that X is a generalized eigenvector of rank 2 corresponding to the eigenvalue A. Then

(A-ADP’X=0
and (A-ADX#0 (1)
We may infer from Problem 13.4 that A is real and from Problem 13.12 that A — Al is also Hermitian.
Thus,
0=(X,0) = (X, (A - AD’X) = ((A- AD*X, (A - AD)X)
= ((A = ADPX, (A— ADX) = ((A - ADX, (A — ADX) 2)
We conclude from (2) and Property 11.2 that (A — AI)X = 0. But this contradicts (1), so X cannot be a

generalized eigenvector of rank 2. (See Problem 15.11 for the generalization of this result to all normal
matrices.)
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13.14 Show if a matrix is upper triangular and normal, then it must be a diagonal matrix.

Let A =[a,;] be an n X n upper triangular matrix that is also normal. Then e, =0fori>j. We show
sequentially, for i=1,2,...,n~1, that @, =0 when i <). Since

A"A = AAY (1)

it follows from equating the (1,1) elements of the two products in (I} that

L]
apa, =aya,t+ Z a,a,
j=2

so that 0= la,,|?
Jj=2
Thus,
a,=0 (j=23,....n) 2)

Next, equating the (2,2) elements of the two products in () and using (2), we obtain
n
R0y = @ypdp; + 23 a,,a,,
)=
so that 0=, la,, 2
i=3

for which we infer that
a, =0 (j=3,4,....n)

Continuing in this manner—working with each successive diagonal element in turn—we find that all
elements above the diagonal of A must be zero. Thus, all nondiagonal elements of A are zero, and A is a
diagonal matrix.

13.15 Show that the eigenvectors of a real symmetric matrix can always be chosen to be real.

Let X be an eigenvector of a real symmetric matrix A corresponding to the eigenvalue A (which
must be real as a result of Problem 13.4). If the components of X are all pure imaginary, then Y = iX is
real. and

AY = A(iX) = i(AX) = i(AX) = A(iX) = AY

so Y is also an eigenvector of A corresponding to A. If the components of X are not all pure imaginary,
then Y =X + X is not zero but is real, and

AY=AX+X)=AX + AX = AX + AX = AX + AX = AX + AX = A(X + X) =AY

and Y is a real eigenvector of A corresponding to A.

13.16 Determine the adjoints of the following matrices with respect to the Euclidean inner product:

3 4+i5]
4~ i5 6

2 - B
D=[4 3J E=| 2 4 -5
3 -5 6

1 2
A-——{S 4] B =[i5, ~5, 2+ i3] C=[
5 6

In each case, the adjoint is the Hermitian transpose of the given matrix, as provided by (13.5);
hence,
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—i5
«_|1 35 | ,_[ 3 4+i5]
a=y3E] B 5 “la=is 6
o _[-i2 4] |
I
C and E are self-adjoint because both are Hermitian.
13.17 Determine the adjoint of A under an inner product with respect to W, where

i4 5]
-1 1

(2 0 ] By
A‘[—i3 3+444] 4 W=

Using (13.4), we calculate
WHW = [ —i4 —IJ[ i4 5] _[17 —i21]

| 5 -ijl-1 i3 L 26
_ (26 2112 3 117 -i2l
* _ H 14 HowarH _
and AT=(WW) ATWIW) =] o1 17 [0 3—i4][i21 26 ]

[~2,077+i1,764 2,184 + i2,574
=| 1,428+ 1,680 2,082 (1,768

L

13.18 Derive (13.4).
For an arbitrary inner product defined with respect to a nonsingular matrix W, we have
(X, AY),, = (WX) - (WAY) = (WX)"(WAY) = X "W WAY

and (A*X, YY)y = (WA*X) < (WY) = (WA*X)(WY) = X7(A*) "W WY

The two inner products are equal by (13.3), which implies that
X"WWAY = X"(A*) "W WY

or XT{(WWA ~(A*) ' WW}Y=0

This last equation is valid for all vectors X and Y if and only if W WA — (A*)"W"W =0, from which we

infer that (W W)A(W'W)™' = (A*)", and

A* = {((WW)A(W'W) ™'} = (WW) '} TAT(WTW)T = ((W'W)T} "AT(W'W)
= (W'W) 'AT(WTW) = (W'W)'A"(WH'Ww)

13.19 Prove that if an n X n matrix A is self-adjoint, then (AX, X),, is real for all n-dimensional
vectors X.

Using Property 11.3, we have
(X, AX)w = (AX, X) (1)

But if A is self-adjoint, then also
(X, AX),, = (AX, X)), (2)

It follows from (1) and (2) that (AX, X}, = (AX, X}, which implies that the inner product is real.
For the special case of the Euclidean inner product, this result reduces to Property 13.5 for Hermitian
matrices.
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Supplementary Problems

13.20 Determine which of the following matrices are Hermitian:

a-3 e el 3, c-[3 3

,_.,_.,_. _l

-1 1-i2 -1 1
D=[§ '3] E=[1+i2 2= ] [ -1 —1]
-i3 z+.s 0 -1 -1
C o [
G=|2 -2| H=
PR -1 01 1
0 11 -1

13.21 Determine which of the matrices in Problem 13.20 are normal.
13.22 Find a canonical basis of orthonormal vectors for matrix F in Problem 13.20.

13.23 Find a canonical basis of orthonormal vectors for

3 00 00O
0 21 -10
J=10 12 10
0O -11 20
0 00 00O

13.24 Find a cancnical basis of orthonormal vectors for
0 {
1 0
2 1
1 3
13.25 Verify Property 13.4 for (a) matrix F of Problem 13.20; (b) matrix J of Problem 13.23; and (c) matrix K

of Problem 13.24.

13.26 Determine the adjoint of matrix D of Problem 13.20 for (a) the Euclidean inner product and (&) the
inner product with respect to
_[1 1
w= [0 1]

13.27 Determine the adjoint of matrix E of Problem 13.20 for (a) the Euclidean inner product and (b) the

inner product with respect to
1 00
=10 2 1
00 2

13.28 Determine the adjoints with respect to the Euclidean inner product for matrices A, B, and G of Problem
13.20.

13.29 Prove that the sum of Hermitian matrices is Hermitian.

13.30 Prove that if A and B are Hermitian and AB = BA, then AB is Hermitian. What does this imply about
powers of Hermitian matrices?
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13.31

13.32

13.33

13.34

13.35

13.36

13.37

13.38
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Prove that the diagonal elements of a Hermitian matrix must be real.
A matrix A is skew-Hermitian if A= —A". Show that such a matrix is normal.
Show that if A is skew-Hermitian, then iA is Hermitian.

Show that if A is an n X n skew-Hermitian matrix, then (AX, X) is pure imaginary for every
n-dimensional vector X.

Show that if A is skew-Hermitian, then every eigenvalue of A is pure imaginary.
A matrix A is skew-symmetric if A = —A’”. Show that a real skew-symmetric matrix is skew-Hermitian.

Show that any real matrix can be written as the sum of a symmetric matrix and a skew-symmetric matrix,
and show that any complex-valued matrix can be written as the sum of a Hermitian matrix and a
skew-Hermitian matrix.

Prove that any well-defined function of a Hermitian matrix is Hermitian,



Chapter 14

Positive Definite Matrices

DEFINITE MATRICES

An n x n Hermitian matrix A is positive definite if

(AX,X) >0 (14.1)
for all nonzero n-dimensional vectors X; and A is positive semidefinite if
(AX,X) =0 (14.2)

If the inequalities in (14.1) and (I4.2) are reversed, then A is negative definite and negative
semidefinite, respectively.

The sum of two definite matrices of the same type is again a definite matrix of that type, as is the
Hermitian transpose of such a matrix. Positive (or negative) definite matrices are invertible, and their
inverses are also positive (or negative) definite.

TESTS FOR POSITIVE DEFINITENESS

Each of the following three tests stipulates necessary and sufficient conditions for an n X n
Hermitian matrix A to be positive definite. That is, a Hermitian matrix A is positive definite if it
passes any one of these tests.

Test 14.1: A is positive definite if and only if it can be reduced to upper triangular form using only
elementary row operations E3 and the diagonal elements of the resulting matrix (the
pivots) are all positive.

Test 14.2: A principal minor of A is the determinant of any submatrix obtained from A by deleting
its last k rows and k columns (k=0,1,...,n —1). A is positive definite if and only if all
its principal minors are positive.

Test 14.3: A is positive definite if and only if all its eigenvalues are positive.

The following tests stipulate necessary conditions for an n X n matrix A =[a,] to be positive
definite. A Hermitian matrix that fails any one of these tests is not positive definite, but no
conclusions can be drawn about a Hermitian matrix that passes them.

Test 14.4: The diagonal elements of A must be positive.
Test 14.5: The element of A having the greatest absolute value must be on the diagonal of A.

Test 14.6: a,a, > |a,[* (i # ).

(1))
(See Problems 14.1 through 14.11.) All these tests may be changed to tests for positive semidefinite-
ness by replacing the word positive with nonnegative and replacing > with =. They can also be used
to test a matrix A for negative definiteness or semidefiniteness if they are applied directly to ~A. This
is equivalent to replacing the word positive (or nonnegative) with negative (or nonpositive) in tests
14.1 through 14.4; Tests 14.5 and 14.6 are applied as stated.

SQUARE ROOTS OF MATRICES

The square root of a matrix A is a matrix A'? having the property that A= A'’A"” If A and A'"®
are both required to be positive definite or positive semidefinite, then A"?is unique, and the square

128
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root is a well-defined function. In such cases it may be calculated by the methods given in Chapters 8
and 10. (See Problems 14.13 and 14.14.)

CHOLESKY DECOMPOSITION
Any positive definite matrix A may be factored into
A=LL" (14.3)

where L is a lower triangular matrix having positive values on its diagonal. Equation (14.3) defines
the Cholesky decomposition for A, which is unique.

The following algorithm generates the Cholesky decomposition for an n X n matrix A =[a,] by
sequentially identifying the columns of L on and below the main diagonal. It is a simplification of the
LU decomposition given in Chapter 3.

STEP 14.1:  Initialization: Set all elements of L above the main diagonal equal to zero, and let
{,, = va,;. The remainder of the first column of L is the first column of A divided by
{,,- Set a counter j=2.

STEP 14.2: If j = n + 1, stop; the algorithm is complete. Otherwise, define L) (i=j, j+1,...,n)
to be a column vector of dimension j — 1 whose components are, respectively, the first
J — 1 elements in the ith row of L. These elements have already been computed.

STEP 14.3: Compute
lj=Va;—(L,L}}.

STEP 14.4: If j=n, skip to Step 14.5; otherwise compute the jth column of L below the main

diagonal: Foreach i=j+1,j+2,..., n, compute
l — ai/—<L;‘ L;)
i 1

ji
STEP 14.5: Increase j by 1, and return to Step 14.2. (See Problems 14.15 and 14.16.)

Solved Problems

14.1 Use Tests 14.1 through 14.3 to verify the positive definiteness of

6 2 -2
A=| 2 &6 -2

2 -2 10
[ 6 2 =2 Adding —1/3 times the first row to
Test 14.1: —| 0 16/3 —4/3 the second row
L-2 =2 10
e 2 -2 Adding 1/3 times the first row to
0 16/3 -4/3 the third row
— L0 —4/3 28/3
6 2 -2 Adding 1/4 times the second row
0 16/3 -4/3 to the third row
- L0 0 27/3

Since the pivots, 6, 16/3, and 27/3, are all positive, the matrix is positive definite.
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14.2

14.3
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Test 14.2: The principal minors of A are

. 5 6 2 -2
detfs]=6 |5 Z|=36-4=32 and 2 6 -2 |=288
2 -2 10

Since all three principal minors are positive, the matrix is positive definite.

Test 14.3: The eigenvalues of A are 4, 6, and 12. Since all three are positive, the matrix is positive
definite.

Use all the tests to determine whether the following matrix is positive definite:

2 10 -2
A=|10 § 8
-2 8 1

[ 2 10 -2 ] Adding —5 times the first row to

0 -45 18 the second row
2 8 11

Test 14.1;

Since the second pivot, —45, is negative, A is neither positive definite nor positive
semidefinite. We can also rule out A being either negative definite or negative semidefinite,
because the first pivot, 2, is positive.

Test 14.2: det[2] =2, but

2 10l _
o 2=
sO A is not positive definite.

Test 14.3: The eigenvalues of A are —9, 9, and 18. Since they are not all positive, the matrix is not
positive definite.

Test 14.4: The diagonal elements, 2, 5, and 11, are all positive, s0 no conclusion can be drawn from
this test.

Test 14.5: The element of greatest absolute value is 11, which does appear on the main diagonal. No
conclusion can be drawn from this test.

Test 14.6: With i =1 and j =2, we have
a,,a,, =2(5)=10< 100 = (10)* = |a,,|*

S0 A is not positive definite.

Determine whether the following matrix is positive definite:

1T -3 5 -8
-3 11 -5 -8

5 -5 19 0
-8 -8 0 16

A=

To use Test 14.1, we reduce A to the following form, using only elementary row operations E3:

11 -3 5 -8
0 I112/11 —-40/11 -112/11
0 0 108/7 0
0 0 0 0

Since the pivots, 11, 112/11, 108/7, and 0, are not all positive, the matrix is not positive definite.
However, these pivots are nonnegative, so A is positive semidefinite.
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14.4

14.5

14.6

14.7

14.8

14.9

Determine whether the following matrix is positive definite:

2 =17 7
A=|-17 -4 1
7 1 -14

A is not positive definite because it fails tests 14.4, 14.5, and 14.6: Its diagonal elements are not all
positive; the largest element in absolute value, —17, is not on the main diagonal; and a,,a,, = -8 is not
greater than |a,,|’ = 289.

Prove that the diagonal elements of a positive definite matrix must be positive.

If A has order n X n, define X to be an n-dimensional vector baving one of its components, say the
kth, equal to unity and all other components equal to zero. For this vector, (14.1) becomes

0<(AX,X)=(AX)-X=gq,,

Prove that if A=[a,] is an n X n positive definite matrix, then for any distinct i and j

(is j= 1) 2) ey n)! aiiajj > Iaiflz'

Define X to be an n-dimensional vector having all components equal to zero except for the ith and
jth components. Denote these as x; and x,, respectively. For this vector, (14.1) becomes

0<{AX,X)=(AX)'X=a,xx +a,xx +taxx +axi

{3 2 ] L § Ty fiand i )

Setting x, = —a,/a, and x, = 1, we find that the first two terms on the right cancel, and we are left with
—-a.a, 1
i)} _ _
0< ————a“ ta;= . (—2,a, taa))

The desired inequality follows, since a,, is positive (see Problem 14.5) and. because A is Hermitian,
a.=a

Je ir
Show that the largest element in absolute value of a positive definite matrix must lie on the
main diagonal.

Assume that the largest element in absolute value does not lie on the main diagonal but rather in
another location, say the (i, j) position, with i #j. Then |a,|>a, and |a,| > a,. 1t follows that
2 _
[a.',l = [ai’j“aijl>ailaii

which contradicts the result of Problem 14,6, Thus, the assumption is incorrect.

Prove that the eigenvalues of a positive definite matrix are positive.

Let A be positive definite with eigenvalue A and corresponding eigenvector X. Then for this X, Eq.
(14.1) becomes

0< (AX, X) = (AX, X) = A(X.X) (1)

Since X is an eigenvector, it is not zero and (X, X) is positive (Property 11.1). Dividing (1) by (X, X),
we obtain A > 0.

Prove that if all the eigenvalues of a Hermitian matrix are positive, then the matrix is positive
definite.

An n x n Hermitian matrix has a canonical basis of orthonormal eigenvectors (Property 13.2).
Denote these basis vectors as X,,X,,...,X,, with corresponding eigenvalues A,. A,, ..., A,. Then

AX,=AX, (i=1,2,...,n).
If X is any nonzero n-dimensional vector, then the set {X,,X,,...,X,, X} is linecarly dependent
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14.10

14.11

14.12

14.13

14.14
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(Property 6.1). But the orthonormal eigenvectors are linearly independent (Problem 11.27), so it follows

from Property 6.2 that there exist constants d,, d,, . . ., d, such that

X=dX +d,)X,+ - +dX,
Then AX=d AX + d,AX,+ -+ d AX, =d,AX, +d,\,X,+---+d A X,
and (AX,X)=(d A X, +d,A,X,+ - +d AX dX +dX,+ -+dX,)

= |dl|zA1 + |d2|2Az +-rt |dn|2'\n

because the eigenvectors are orthonormal. Since the eigenvalues are given to be positive, this last
quantity is positive for any nonzero vector X; thus the matrix A satisfies (14.1) and is positive definite.

Show that the determinant of a positive definite matrix is positive.

The determinant of a matrix is the product of its eigenvalues (Property 7.8), and each eigenvalue of
a positive definite matrix is positive (Problem 14.8).

Show that all principal minors of a positive definite matrix must be positive.

Let A be an n x n positive definite matrix, and let B be a submatrix of A obtained by deleting from
A its last k rows and k columns (k =0, 1,..., n—1). Then B has order (n — k) X (n — k). Let Y denote
an arbitrary nonzero (n — k)-dimensional vector, and define X to be an n-dimensional vector having its
first n — k components identical to those of Y and its last ¥ components equal to zero. It follows from
Eq. (14.1) that

0< (AX, X) = (BY, Y)

Since this is true for any nonzero vector Y, it follows that B is positive definite and, from Problem 14.10,
that det B is positive.

Show that a positive definite matrix is invertible.

The determinant of a positive definite matrix is positive and so nonzero (Problem 14.10), and
therefore that matrix must have an inverse as given by (5.3).

Find the square root of matrix A in Problem 14.1.

The eigenvalues of A are 4, 6, and 12, with corresponding eigenvectors [1, —1,0]7, [1, 1, 1]”, and
(1,1, =2]". Thus, by (10.2), A=MJM~', where

1 1 1 4 0 O
M=| -1 1 1 and J=10 6 0
01 -2 0 0 12

11 12 0 0 3/6 -3/6 0
Also, AP =MJ"M'=| -1 1 1]l0 V6 0 |l276 216 2/6
0 0 0

ViZJL1ie 1/6 -2/6

0.39385  2.3938 ~0.33820

|: 2.3938 0.39385 —0.33820}
—0.33820 -0.33820 3.1259

Show by example that if the square root of a matrix is not required to be positive definite or
positive semidefinite, then it is not unique.

. J1 0
For A—I-—[O 1]

each of the matrices
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14.15

14.16

s-[p 1] e=[To -]

has the property that its square is A. Only D is positive definite.

Determine the Cholesky decomposition for

i 1 9

4 i2 -1
A={-i2 10 1

]

Since A is a 3 X 3 matrix, so too is L in (14.3).

POSITIVE DEFINITE MATRICES

D

[

133

STEP 14.1: Set I, =V&=17; then I,, = —i2/2= —i and I,, = i/2. Set j=2. To this point, then, we

have

2 00
L=|-i

ir2
STEP 14.2: Define L, =[—i] and L;=[i/2].
STEP 14.3: Compute

0

|

b =\/azz - (L3, L) =V(10-1)=3

STEP 14.4: Compute

l32 lzz 3

To this point, we have
2 0 0
L=|-i 3 0
iz 1/2 -

STEP 14.2: Ly=| i~

STEP 14.5: Set j=3.

STEP 14.3: Compute

Therefore, the complete decomposition is

4 2 —i 2 0 0
-2 10 1 |=|-¢ 3 0
i 1 9 il2 1/2 V85

Determine the Cholesky decomposition for
16 -3 5 -8
|1-3 16 -5 -8
A=l s -5 24 0
-8 -8 0 21

Since A is a 4 X 4 matrix, so too is L in (14.3).

STEP 14.1: Set i, =V16=4. Then I,, = —3/4=-0.75; [, =5/4=1.25; I,

To this point we have

4
~0.75
1.25
-2

L=

2
0 3

0 0 V85

0

a,, — (L;,L}) _ 1-(-1/2) _

I oo O

1
2

Ly=Va, — (L, L)) =V9-1/2=V83

|

—8/4=—2. Set j=2.
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STEP 14.2: Define L, ={-0.75]; L} =[1.25]; and L, =[-2].
STEP 14.3: Compute

1, =Va,, — (L., L)) = V16 - 0.3625 = 3.92906
STEP 14.4: Compute

a,, - {Li, L)) —-5+0.9375 a, - {L;,L;)  -8-15

{,= I = —So5006 = L0396 [,= i = Jo5006 — 241788
To this point, we have
4 0 0 0
L=| 075 39296 0 0
1.25 -1.0339% - 0
-2 -241788 - -
STEP 14.5: Increase j by I to j=3.
,_ [ 1.25 . -2
STEP 14.2 L3_[—1.03396] L‘_[—2.41788]
STEP 14.3: s =Va,, — (L}, L)) = V24— 2 631573 = 4.62260

STEP 14.4: Compute
l _043—([4;,[4;) _ 0-0

s=T 1 T aene  °

To this point, we have

4 0 0 o0
Lo| 075 39206 0 0
1 125 -1.03396 4.62260 0

-2 —2.41788 0
STEP 14.5: Increase jby 1 to j=4.

STEP 14.2: L,=[-2,-2.41788,0]"
STEP 14.3: lL.=Va, - (L, L) = V21 ~ 9.84614 = 3.33974
Finally, we have A = LL", where
4 0 0

0

-0.75  3.92906 0 0

1.25 -1.03396 4.62260 0
-2 -2.41788 0 3.33974

L=
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Supplementary Problems

14.17 Determine which of the following matrices are positive definite and which are positive semidefinite:

3
A=| 1
-1

14.18

14.19

14.20

14.21

14.22

Find the square root of

1

0
-3

-1 1 1 -1 511
-1 B=| 1 1 -1 C=(0 5 2
5 -1 -1 3 0 05

4 i2 2] 25 1+§2 3-12
E=[—i2 10 1-¢ F=[1+i2 7 2+
2 1+i 9 3-i2 2+ 9
-3 0 -3 [ 1 -1 2 -1
6 3 0 H= -1 3 4 2
3 9 =3 2 4 3 1
0 -3 6 | -1 21 1

Find the square root of matrix A in Problem 14.17, given that its eigenvalues are 2, 3, and 6.

Find the square root of matrix B in Problem 14.17, given that its eigenvalues are 0, 1, and 4.

25 i24]
K‘[—m 25

Find the Cholesky decomposition for matrix A in Problem 14.17.

Find the Cholesky decomposition for matrix E in Problem 14.17.

14.23 Find the Cholesky decomposition for matrix G in Problem 14.17.

14.24

14.25

14.26

14.27

14.28

14.29

14.30

Prove that the sum of two positive definite matrices is positive definite.

Prove that if A is positive definite, then so too is A",

Prove that if A is positive definite, then so too is A~ '

Prove that if A is positive definite and C is nonsingular, then B = C”AC is also positive definite.
Show that if A is Hermitian, then e* is positive definite.

Show that the requirement (AX,X) >0 for all complex-valued vectors X of suitable dimension is
sufficient to guarantee that A be Hermitian (as well as positive definite).

Show that there exist nonsymmetric real matrices that satisfy (14.1) for all real-valued vectors of suitable



Chapter 15

Unitary Transformations

UNITARY MATRICES

A matrix is unitary if its inverse equals its Hermitian transpose; that is, U is unitary if
v'=u’=0" (15.1)

Unitary matrices are normal because v =uu' =1=U0"'U=U"U. In addition, they have the
following properties:

Property 15.1: A matrix is unitary if and only if its columns (or rows) form an orthonormal set of
vectors.

Property 15.2: The product of unitary matrices of the same order is a unitary matrix.

Property 15.3: If U is unitary, then (UX,UY) = (X,Y) for all vectors X and Y of appropriate
dimension.

Property 15.4: All eigenvalues of a unitary mawix have absolute value equal to 1.
Property 15.5: The determinant of a unitary matrix has absolute value equal to 1.

(See Problems 15.2, 15.5 to 15.7, and 15.24.) Unitary matrices are invaluable for constructing
similarity transformations (see Chapter 10), because their inverses are so easy to obtain.
An orthogonal matrix is a unitary matrix whose elements are all real. If P is orthogonal, then

p'=p’ (15.2)

SCHUR DECOMPOSITION

Every square matrix is similar to a matrix in upper triangular form, and a unitary matrix may be
chosen to produce the transformation. That is, for any square matrix A, there exists a unitary matrix
U such that

U'AU=U'AU=T (15.3)

where T is a matrix in upper triangular form. Equation (15.3) is called a Schur decomposition for A.
Such a decomposition is not unique, even though the diagonal elements of T must be the eigenvalues
of A.

The following algorithm for producing a Schur decomposition for an #n X n matrix A is iterative;
it sequentially generates, at each stage, matrices U, and T, (k=1,2,...,n—1). Each matrix U, is
unitary, and each T, has only zeros below its main diagonal in its first k columns. T _, is in upper
triangular form, and U=U,U,---U,_, is the unitary matrix that transforms A into T, ,. For
notational convenience we set T, = A. The kth iteration of the algorithm is:

STEP 15.1: Denote as A, the (n —k + 1) X (n — k + 1) submatrix in the lower right portion of
T,_..
STEP 15.2: Determine an eigenvalue and a corresponding unit eigenvector for A, .

STEP 15.3: Construct a unitary matrix N, which has as its first column the eigenvector found in
Step 15.2.

STEP 15.4: For k=1, set U, =N,; for k>1, set
136
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where I, _, is the (kK — 1) X (k — 1) identity matrix.
STEP 15.5: Calculate T, =U/T,_,U,.

(See Problems 15.8 and 15.9.)
If A is normal, then the Schur decomposition implies:

Theorem 15.1: Every normal matrix is similar to a diagonal matrix, and the similarity transforma-
tion can be effected with a unitary matrix.
(See Problem 15.11.)

ELEMENTARY REFLECTORS

An elementary reflector (or Householder transformation) associated with a real n-dimensional
column vector V is the n X n matrix

vv’

R=1-2-—5
Ivll;

(15.4)

An elementary reflector is both real symmetric and orthogonal, and its square is the identity matrix.
(See Problems 15.13, 15.14, and 15.22.)

SUMMARY OF SIMILARITY TRANSFORMATIONS

As indicated by (10.1), a similarity transformation requires the computation of an inverse; and
inversion is a tedious process for all but unitary matrices, whose inverses are their Hermitian
transposes. If the matrix S in (10.1) is unitary, then A and B are said to be unitarily similar.

Similarity transformations are important because they preserve many basic attributes of a square
matrix—in particular, eigenvalues (Problem 10.3)—while yielding matrices that are simpler in form.
The simplest form is that of a diagonal matrix, and any matrix possessing a canonical basis of
eigenvectors (Chapter 9) is similar to a diagonal matrix. Normal matrices (Chapter 13) have this
feature, and they include Hermitian and unitary matrices. The most that can be said of an arbitrary
square matrix is it is similar to a block diagonal matrix in Jordan canonical form.

If the matrix S in (10.1) is restricted to be unitary, then the simplest general form that results is
no longer Jordan canonical form but upper triangular (via Schur decomposition), Normal matrices
are special in that their Schur decompositions are diagonal matrices. Thus, normal matrices are
unitarily similar to diagonal matrices.

In practice, to perform a similarity transformation requires knowledge of eigenvalues and
eigenvectors, and that information is generally difficult to obtain. Numerical techniques for approx-
imating these quantities are given in Chapters 19 and 20.
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15.1

15.2

15.3

15.4
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Solved Problems

Determine which of the following matrices are unitary:

1 1 1 o0

. . 6/7 207 3/7 :
A=[;;§i'ﬁ :;;:g] B=[3/7 -6/7 —2/7] cC=1~3 i _(1) (1) -t
' 217 317 —6/7 0 -1 i 1

All three are unitary, because the product of each with its Hermitian transpose yields an identity
matrix. Since the elements of B are real, that matrix is also orthogonal.

Prove that a matrix is unitary if and only if its rows (or columns) form an orthonormal set of
vectors.

Designate the rows of U as U,,U,,...,U,. Then the (i, j) element (i=1,2,...,n; j=
1,2,...,n)of UU" is

(uuty,, =u,-0,=(U,U)

If U is unitary, then UU” =1, and this (i, j) element (U, U,;) must be 1 when i = and 0 otherwise.
This, in turn, implies that the set {U,,U,, ..., U, } is an orthonormal set of vectors. (The columns of U
may be shown to be orthonormal by considering the product U”U instead.)

Conversely, if the rows (or columns) of a matrix form an orthonormal set, then the argument given
above may be reversed to show that U is unitary.

Show that if A is an eigenvalue of an n X n matrix A, then there exists an n X n unitary matrix
U having as its first column an eigenvector of A corresponding to A.

If A is an eigenvalue of A, then there must exist an eigenvector X corresponding to A. Setting
Y = X/||X]| gives us a unit eigenvector of A corresponding to A.

Consider the set of vectors {Y,E,,E,,... ,E,}, where E, (k=1,2,...,n) has a 1 as its kth
component and all other components equal to zero. Using the algorithm given in Problem 6.12, we can
reduce this set to a maximal set of linearly independent vectors. Such a set must contain n vectors,
because the subset {E,,E,,...,E } is linearly independent; and it will contain Y, because Y is the first
nonzero vector in the original set. [The first nonzero component is brought into the (1,1) position of the
matrix generated by the algorithm, and it remains nonzero throughout the algorithm. Thus, the first
vector, Y, remains part of the maximal linearly independent set.]

Now apply the Gram-Schmidt orthogonalization process to this maximal set of linearly independent
vectors, with Y taken as the first vector; Y remains unchanged. Finally, choose the columns of U to be
the vectors resulting from the Gram-Schmidt process. U is unitary as a result of Problem 15.2, and the
first column of U is the eigenvector Y.

Apply the procedure of Problem 15.3 to construct a unitary matrix having as its first column
an eigenvector corresponding to A =2 for the matrix

3 00
A=]1 31
2 -1 1

An eigenvector of A corresponding to A=2 is X=1{0, -1, 1]1, which when normalized yields
Y ={0, -1/v2, 1/\/2}". Applying the algorithm given in Problem 6.12 to the set consisting of Y and

E,=[1,0,0 E,=[0,1,07 E,=[0,0,1]"}

we construct the matrix
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B

1 0 -v2 0
01 0 o
00 1 1

o
NN
o Q-
[ =)

_—0 O
|

/
/

This has the row-echelon form

which indicates that the first, second, and third vectors of the set form a maximal linearly independent
set. Applying the Gram-Schmidt process to the set {Y,E ,E.}, we obtain the orthonormal set

{Q,=Y,Q,=E,,.Q,=[0, 1V2,1/V2]"}. Then
0 { 0
U=|-1~"V2 0 1/V2
12 0 1V2
15.5 Prove that the product of unitary matrices of the same order is also a unitary matrix.
If A and B are unitary, then
(AB) ' =B 'A"' =B"A" =B"A” = (AB)” = (AB)” = (AB)"

15.6 Show that if U is unitary, then (UX, UY) = (X, Y) for all vectors X and Y of appropriate
dimension.

Under the Euclidean inner product, the adjoint of U is its Hermitian transpose by (13.5); hence,

(UX, UY) = (X, U*UY) = (X, U"UY) = (X, UT'UY) = (X, IY) = (X, Y)

15.7 Show that if A is an eigenvalue of a unitary matrix U, then |A] = L.

Let X be an eigenvector of U corresponding to A. Then using Problem 15.6, we have
[AIP(X,X) = AR{X, X) = (AX, AX} = (UX, UX) = (X, X) (1)

Since X is an eigenvector, it is nonzero; hence (X, X) #0. Dividing (1) by (X, X), we obtain |A|* =1,
which implies that |A| = 1.

15.8 Find a Schur decomposition for

4 0 1
A=} 1 3 -1
-1 0 2

We follow Steps 15.1 through 15.5, beginning with k=1 and T,=A. For k=1, A,=T,=A. An
eigenvalue for A is A = 3, with unit eigenvector Y = [0, 1, 0]”. Using the procedure given in Problem 15.3

with n =3, we get
010 301 -1
N,=|1 0 0=U, and T,=U/T,U,=|0 4 1

001 0 -1 2

Now we apply Steps 15.1 through 15.5 with & =2, We begin by setting

41
Azz[—l 2]
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This matrix possesses the eigenvalue A =3 with corresponding unit eigenvector Y = [1/VZ, —1/V2]".
Using the procedure given in Problem 15.3 with n =2, we generate the unitary matrix

N =[ V2 V2
-2 IWV2

which is expanded into

1:..0 ....0_ 3 22 0
U,=|011V3 T1V2|  sothat T,=U{TU,=|0 3 2
0:-1A2 12 0 0 3

Setting U = U,U,, we have UYAU =T,, a matrix in upper triangular form. In this case, all the elements
of U are real, so it is orthogonal.

15.9 Find a Schur decomposition for

coMnoO
QOO
(8% I S B

We follow Steps 15.1 through 15.5, beginning with k =1 and A, = T, = A. An eigenvalue for A, is
A =4, with corresponding unit eigenvector Y = [0, 0, 1, 0]". Using the procedure of Problem 15.3 with
n=4, we get

0
0
N,=l
0

co o -

co—o

oo A

—_— N

oNoO O
|

Next we apply Steps 15.1 through 15.5 with k =2. We first determine

30 -1
A,=| 1 2 1
-1 0 3

This matrix possesses the eigenvalue A = 2 with corresponding unit eigenvector Y = [0, 1, 0]". Using the
procedure of Problem 15.3, now with n =3, we generate the unitary matrix

010
N,=|1 0 0
0 0 1

This is expanded into

rioe? 42 0 2
u,=[o'0o 1 0| sotha T,-u'ru,=22 1 1
: 00 3 -1
0;1°0 00 -1
00 0 1

We now apply Steps 15.1 through 15.5 with £ = 3. We start by setting

3 -1
As = [—1 3]
This matrix possesses the eigenvalue A =2, with corresponding unit eigenvector Y = [1/V2, 1/\V2]".
Using the procedure of Problem 15.3 with n =2, we generate the unitary matrix
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S Ve

which we expand into

(1) (1)5 8 8 4 2 2VI 2V3
Uy =| -=--dmmmmmmmme - so that T,=UjT,U,= g S 2/;/2 8
0 0:i1/V2 -1/V2 00 o 4

0 0!1/VZ 1/V3

Setting U = U,U,U,, we have UYAU = T,, a matrix in upper triangular form.

15.10 Show that if U is unitary and A = U"BU, then B is normal if and only if A is normal.
If B is normal, then BB = BB*, and
A”A = (U"BUYY(UYBU) = (U”BYU)(U"BU) = (U*B")(UU")(BU)
= (UB")(UU " )(BU) = (UB")(BU) = UY(B"B)U = U"(BB")U
= (U”B)(B”U) = (U"B)UL ') (B"U)= (U"B)(LU")(B"U)
= (U"BUYUYB"U) = (U/BU)U"BU)" = AA"

The reverse proposition is proved analogously, using the identity B = UAU".

15.11 Prove that every normal matrix is unitarily similar to a diagonal matrix.

Let A be normal. Using a Schur decomposition, we can write T=U"AU, where T is upper
triangular and U is unitary. It follows from Problem 15.10 that T is normal, and then from Problem 13.14
that T must be diagonal.

15.12 Prove that ||A||5, the matrix norm induced by the Euclidean vector norm, is the square root of
the largest eigenvalue of A”A.

For any matrix A (not necessarily square), the product A”A is normal (Problem 13.2) and has
nonnegative eigenvalues (Problem 13.3), which we denote as A, A,,. .., A,. It follows from Problem
15.11 that there exists a unitary matrix U such that U”(A"A)U=D or, equivalently, such that
A"A = UDU", where D is a diagonal matrix whose diagonal elements are the eigenvalues of A”A. Then if
we set A=max(A,, A,,...,A,)and Y =U"X, we have, for any nonzero vector X,

[[AX]2 = (AX, AX) = (A*AX, X) = (A"AX, X) = (UPU"X, X) = (DU"X, U"X) = (DY, Y)
=Alyl}7| +/\2y2}72+ ..‘+Anyn}7n=/\l|yllz +A2ly2|2+ e +Anl)’nl2
<Ay, P+ Ay, + -+ Ay P =AY, Y) = AUPX, UPX) = A(X, UU"X)
= A(X, X) = A|IXIl;

Therefore, using the result of Problem 12,14, we have

e (1AXI2 ) _ o (VAL
Il = g () = max (g 2) = V2 M

Denoting as Z an eigenvector of A”A corresponding to A, we find that

IAZ||; = (AZ, AZ) = (A"AZ, Z) = (AZ,Z) = A(Z,Z) = A|1Z|}

IAX,\ _ llAZl, vz,
nxnz)‘ iz, - jzl, -V (2)

Inequalities (1) and (2) imply ||A||, = VA,

s0 Al = max (
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15.14

15.15
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Find elementary reflectors associated with (a) V,=[1,2]” and (b) V, =9, 3, —6]".
(@) We compute ||V,]l, = V3, so

ro=[o -3 LJwa=[o 31-a0a =135 S

(b) Similarly, ||V, ||, = V126, so

1 00 2 9 1 00 1 81 27 —54
R =[([01 0 ~ 126 3]09,3,-6]=(0 1 0 s 27 9 -18
L0 0 1 -6 0 01 -54 -18 36

=|=-3/7 6/7 2/7
6/7 217 317

[ -2/7 -3/7 6/7]

Prove that an elementary reflector R is both symmetric and orthogonal.
For any constant c,
(EVVT) = ¢(VVT) = ¢(VT) VT = cVV™

Setting ¢ = —2/||V||2, we conclude that (—2/|{V||3)VV7 is symmetric. Since I is symmetric and the sum of
real symmetric matrices is also real and symmetric, it follows that any elementary reflector is symmetric.
In addition,

R'R=RR= (l— 2 vv’)(l— 2 3 vv’)

I¥I13 VIl
2 T 2 T 4 T T
=1- 3 VV — VvV’ + \A M A
IIVlli IIVH2 Iviiz
=1- YV’ + s V(VTY)V7
IIVII2 IIVH

But if V is a real column vector, then V'V=(V,V) =||V||;. Thus, the last two terms in the above
equality cancel, R"R =1, and R is orthogonal.

Let R be the elementary reflector associated with the vector V=X + ||X]||,E, where X is an
arbitrary real n-dimensional column vector, and E is an n-dimensional column vector whose
first component is 1 and whose other components are all 0s. Show that RX = —||X||,E.

Denote the first component of X as x,. Then

VX = (X + IX|LE)" X = X7X + IX|LE™X = |)X]|7 + | X]|x,

and VTV= (X + [[X]LEY(X + [IX[|,E) = XX + [|X,E"X + X[l ,X"E + [|X]|’E"E
= (XI5 + 11X, + IX[lox, + X[ = 20/IX[1; + [1X1]x,) =2V'X
va vv’ 2V(V'X
Then RX=1X 200 X=X 2 37y x=x—(—l=x—v=x—(x+ IXI1,E) = —||X||,E

IIVI WX
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15.16

15.17

15.18

15.19

15.20

15.21

15.22

15.23

15.24

15.25

15.26

15.27

Supplementary Problems

Determine which of the following matrices are unitary:

11 -1 [1Vv3 V2 V2 } _: ? (l,
A=l 11 1 B=|1~N3 -1VZ 0 C=aVIH|y | | -

p=|ivZ i/\/i] E=[1/\/§ mfi]
vz V2 iNZ 1V32

Apply the prgcedure of Problem 15.3 to construct a unitary matrix having, as its first column, an
eigenvector corresponding to A =3 for:

2 00 31 1
=[7 -9 - -
acli 2] ol So oefrs

Find a Schur decomposition for each of the matrices in Problem 15.17.

Find elementary reflectors associated with

@[] ® [ﬂ @ [¥]

Show that if U is unitary, then ||UX||, = ||X||, for any vector X of suitable dimension. Thus, a unitary
transformation preserves Euclidean length.
The angle between two real vectors X and Y is defined as

(X, Y)
XU 1Yl

Show that if U is unitary, then the angle between UX and UY is the same as that between X and Y. Thus,
a unitary transformation preserves angles.

¢ = arccos

Prove that R?* =1 for any elementary reflector R.

Determine the eigenvalues of every elementary reflector.

Prove that the absolute value of the determinant of a unitary matrix is 1.
A square matrix R, (8) is a rotation matrix if

(1) The (p, p) and (4, q) elements of R, are equal to cos @ for p # ¢, and all other diagonal elements

are unity, and
(2) The (p, ¢) element is equal to sin 8; the (g, p) element is equal to —sin @, and all other off-diagonal
elements are zero. Find 5 X 5 matrices R,;(8) and R,,(8).

Show that a rotation matrix is orthogonal.

Show that ¢ may be chosen so that RZ,,(O)ARM (0) bas a zero in the (k, p) position, provided that A is
square and k is different from p and ¢. (See Problem 15.25.)



Chapter 16

Quadratic Forms and Congruence

QUADRATIC FORM

A quadratic form in the real variables x, x,,. .., x, is a polynomial of the type
i 5: a,xx (16.1)
i=1=1
with real-valued coefficients a,;. This expression has the matrix representation
X"AX (16.2)
with A=[a,] and X=[x,,x,,..., x,]". The quadratic form X'AX is algebraically equivalent to

X"{(A + AT)/2}X. Since (A + AT)/2 is symmetric, it is standard to use it rather than a nonsymmetric
matrix in expression (16.2). Thus, in what follows, we shall assume that A is symmetric. (See
Praoblems 16.1 and 16.2.)

A complex quadratic form is one that has the matrix representation

x"ax (16.3)

with A being Hermitian. Expression (16.3) reduces to (16.2) when X and A are real-valued; and
both expressions are equivalent to the Euclidean inner product {AX, X).

The Euclidean inner product (AX,X) is real whenever A is Hermitian (Property 13.5). If the
inner product is also positive (or nonnegative, negative, or nonpositive) for all nonzero vectors X,
then the quadratic form is classified as positive definite (or positive semidefinite, negative definite, or
negative semidefinite, respectively). All the tests listed in Chapter 14 may be applied to the matrix
representation of a quadratic form to determine definiteness. (See Problems 16.3 and 16.4.)

DIAGONAL FORM

A quadratic form has diagonal form if it contains no cross-product terms; that is, if a;; = 0 for all
i # j. It follows from Theorem 15.1 that any quadratic form can be transformed into diagonat form
with a unitary matrix U (recall that a quadratic form is Hermitian and therefore normal). If
U”AU =D, then the substitution X = UY converts the quadratic form (AX, X) into the diagonal
quadratic form (DY, Y). This substitution preserves length (Problem 15.20) and angles (Problem
15.21); the diagonal elements of D are the eigenvalues of A. (See Problems 16.5 and 16.6.)

CONGRUENCE

A square matrix A is congruent to a square matrix B of the same order if there exists a
nonsingular real matrix P such that

A=PBP’ (16.4)

When P is factored into a product of elementary matrices corresponding to elementary row
operations, then P’ is the product in reverse order of elementary matrices corresponding to identical
elementary column operations. Thus, two matrices are congruent if and only if one can be
transformed to the other by a sequence of pairs of elementary row and column operations, where
each pair consists of one elementary row operation and one elementary column operation of identical
type. It follows that congruent matrices have the same rank.

144
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A matrix A is Hermitian congruent (or conjunctive) to a matrix B if there exists a nonsingular
matrix P such that

A = PBP” (16.5)

Hermitian congruence reduces to congruence when P is real. Both Hermitian congruence and

congruence are reflexive, symmetric, and transitive.
Two quadratic forms (AX, X) and (BY,Y) are congruent if and only if A and B are congruent.

INERTIA
Every n X n Hermitian matrix of rank  is congruent to a unique matrix in the partitioned form
|
____Ih _____ re-
0 :-1,10 (16.6)
____.__-___Al.__
0.0 0

]

1
where I, and I, are identity matrices of order k X k and m X m, respectively. An inertia matrix is a
matrix having form (16.6).

Property 16.1: (Sylvester's law of inertia) Two Hermitian matrices are congruent if and only if
they are congruent to the same inertia matrix, and then they both have k& positive
eigenvalues, m negative eigenvalues, and n — & — m zero eigenvalues.

The integer k& defined by form (16.6) is called the index of A, and s = k — m is called its signature.
An algorithm for obtaining the inertia matrix of a given matrix A is the following:

STEP 16.1: Construct the partitioned matrix [A |}, where I is an identity matrix having the same
order as A.

STEP 16.2: Use elementary row operations E1 and E3 to reduce A to upper triangular form,
applying each operation to the full partitioned matrix of Step 16.1. In addition,
whenever two rows are interchanged, also interchange the corresponding columns in
the left partition, but make no similar column interchange in the right partition.
Denote the result as [R|S], where R is upper triangular.

STEP 16.3: Set all the nondiagonal elements of R equal to zero. The result is a partitioned matrix
of the form [D|S], where D is diagonal.

STEP 16.4: If a zero diagonal element of D appears in an earlier (higher) row than a nonzero
diagonal element of D, then interchange the positions of the two diagonal elements;
also interchange the order of the corresponding rows of S. Continue to perform these
interchanges until all nonzero diagonal elements of D appear in earlier rows than zero
diagonal elements.

STEP 16.5: If a negative diagonal element of D appears in an earlier row than a positive diagonal
term of D, interchange the positions of the two diagonal elements; also interchange the
order of the corresponding rows of S. Continue to perform these interchanges until all
positive diagonal elements of D appear in earlier rows than all negative diagonal
elements.

STEP 16.6: If any diagonal element of the left partition is not 0, 1, or —1, denote its value by d.
Divide that element by |d|, and divide the entire corresponding row of the right
partition by \/m

At the completion of the algorithm, the matrix in the left partition is the inertia matrix for A; the
matrix in the right partition is the matrix P that will transform A into its inertia matrix. (See
Problems 16.7 through 16.9.)
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RAYLEIGH QUOTIENT

The Rayleigh quotient for a Hermitian matrix A is the ratio

Property 16.2:

{AX, X)

R(X) = X.X)

(16.7)

(Rayleigh’s principle) If the eigenvalues of A a Hermitian matrix are ordered so
that A, = A, <---=A,, then

A =R(X)=\A, (16.8)

R(X) achieves its maximum when X is an eigenvector corresponding to A, ; R(X)
achieves its minimum when X is an eigenvector corresponding to A,.

(See Problem 16.10.)

16.1

16.2

Solved Problems

Determine the symmetric-matrix representation for the real quadratic form 2x} + 5x2 +
11x5 + 20x,x, — 4x,x, + 16x,x;.
We can rewrite this polynomial as
2x,x, +5x,x, + 1lx,xy + 10x x, + 10x,x, = 2x,x, = 2x,x, + 8x,x, + 8x,x,

which has the symmetric-matrix representation

[, xx][ 2 10 -2]rx,
10 5 81| x,
-2 8 11| x

Determine the symmetric-matrix representation for the real quadratic form 11x? +11x% +
19x3 + 16x2 — 6x,x, + 10x,x, — 16x,x, — 10x,x; — 16x,x,.
We can rewrite this polynomial as
x,x, + 11x,x, + 1920, + 16x,x, — 3x,x, = 3x,x, + Sx,x5 + Sxyx, — 8x,x, — 8x,x, — Sx,x5 — Sx5x,
= 8x,x, ~ 8x,x, + Ox,x, + Ox x,

which has the symmetric-matrix representation

[, x>, 2]l 11 =3 5 -87*
-3 11 -5 -8 ||X:

S -5 19 0%

-8 -8 0 16JL*
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16.3

16.4

16.5

16.6

16.7

Determine whether the quadratic form given in Problem 16.1 is positive definite.

The results of Problems 16.1 and 14.2 indicate that the matrix representation of the quadratic form
is not positive definite. Therefore the quadratic form itself is not positive definite.

Determine whether the quadratic form given in Problem 16.2 is positive definite.

From the results of Problems 16.2 and 14.3, we determine that the quadratic form is not positive
definite because its matrix representation is not. The quadratic form is, however, positive semidefinite.

Transform the quadratic form given in Problem 16.1 into a diagonal quadratic form.

Given the result of Problem 16.1, we set

2 10 -2
A=l 10 S5 8

-2 8 1

A has eigenvalues —9, 9, and 18 and corresponding orthonormal eigenvectors Q, =[2/3, -2/3,1/3]",
Q,=1[2/3,1/3, -2/3]", and Q, =[1/3,2/3, 2/3]7, respectively. We take

23 2/3 1/3 - 0

U=|-2/3 1/3 2/3 whereupon U'AU=D= 0

18

9
0
1/3 -2/3 2/3 0

S v o

Set X = UY. Then
XTAX = (UY)A(UY) = Y'UTAUY = Y'DY = —9y? + 9yZ 4 18y?

Transform into diagonal form the complex quadratic form corresponding to the Hermitian
matrix
[ 3 1+ i3]
A= [1 -i3 6
The eigenvalues of A are 1 and 8, with corresponding orthonormal eigenvectors U, = [(1 + i3)/V 14,

—2/V/14) and U, = [(1 + i3)/V35, S/V35]7, respectively. We set

_[a+i3)yvia (1+i3)/\/_35] Harl = =[1 0]
U [ ONTE SV whereupon U"AU=D 0 8
Set X = UY. Then the original quadratic form

XPAX = (AX, X) = 3x, %, + 61,85, + (1 + i3)%,x, + (1 - i3)x, %,

is transformed into the diagonal quadratic form (DY,Y) = y,y, + 8y,7,.

Determine the inertia matrix for

012
A=|1 1 3
2 3 4

We augment the 3 X 3 identity matrix onto A and then reduce A to upper triangular form. To do so,
we must first interchange the first and second rows, and we do this to the entire partitioned matrix. In
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addition, we interchange the first and second columns of A but make no corresponding change to the
columns in the right partition. Steps 16.1 through 16.6 are as follows:

—
W =
o
[

1 3510 1 0O Interchanging the first and second
rows

1!
=
=
o

1 1 310 1 0] Interchanging the first and second

1 0 2/1 00 columns of the left partition only

3 2 410 0 IJ

1 1 30 1 07 Adding —1 times the first row to
-0 -1 -1|1 -1 0 the second row

3 2 4lo o0 1]

1 1 30 1 0] Adding -3 times the first row to0

0O -1 -1]1 -1 0 the third row
-0 -1 -510 -3 IJ

[1 1 3] 0 1 0 Adding -1 times the second row
0 -1 -1/ 1 -1 0 to the third row

1 0f 0 1 0] Setting all the elements above the
0 -1 0] 1 -1 0 diagonal equal to zero in the left
L0 0 -4l-1 -2 1] partition

L

There are no zero diagonal elements in the left partition, so Step 16.4 is satisfied. Also, the positive
diagonal element in the left partition appears in an earlier row than the negative elements, so Step 16.5
is satisfied. However, the third row has a diagonal element in its left partition that is not equal to 0, 1, or
—1; following Step 16.6, we divide that diagonal element by |d| = 4, and the remainder of the third row
by V4 =2. This gives us

1 0 0 0 1 0

{0 -1 o] 1 -1 0}

0 0 —-11-1/2 -1 1/2
0 1 0 1 0 0
50 P=[ 1 -1 0:| and PAPT=[0 -1 0}
-1/2 -1 172 0 0 -1

The index of A is 1, and its signature is 1 — 2= —1. We may conclude from Property 16.1 that A has one
positive eigenvalue, two negative eigenvalues, and no zero eigenvalues.

Determine the inertia matrix for

LAV R =S S I ]
-] H W
o= BN =
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Augmenting onto A the 4 x 4 identity matrix, and then reducing A to upper triangular form, one
column at a time and without using elementary row operation E2, we finally obtain

1 2 3 -1 1 000
0 -2 -2 4| -2 1 00
o 0o o0 O0f-1 -110
0O 0 0 161-3 201

The left partition is in upper triangular form. Setting all elements above the main diagonal in that
partition equal to zero yields

1 00 0 1 000
0 -2 0 0] -2 1 00
O 00 O -1 -1 10
0 00 164 -3 01

Following Step 16.4, we interchange the diagonal elements in the third and fourth rows of the left
partition while simultaneously interchanging the entire third and fourth rows of the right partition. The
result is

1 0 00 1 0 0 0
0 -2 0 0] -2 1 00
0O 016 0|-3 201
o 0 OO0} -1 -110

Following Step 16.5, we next interchange the (2,2) diagonal element with the (3,3) diagonal element in
the left partition and simultaneously interchange the order of the second and third rows in the right
partition. That gives us the partitioned matrix

1 0 00 1 000
016 0O0f|-3 201
0 0 -2 0] -2 1 00
0O 0 00l -1 -110

Following Step 16.6, we divide the (2,2) element of the left partition by 16, and the entire second row of
the right partition by 4, We also divide the (3,3) element of the left partition by 2, and the entire third
row of the right partition by V2. We get, finally,

10 00 1 0 0 0
01 00| -3/4 12 0 1/
00 -1 0] -2V2 I/V2 0 0
00 ol -1 -1 1 o
1 0 0 0 10 00
| =34 12 0 14 o1 o0
so that P=l o2 1vVZ 0 0 and  PAPT=1, o )
1 -1 1 0 00 00

The index of A is 2, and its signature is 2—1=1. The rank of A is 3, and we may conclude from
Property 16.1 that A has two positive eigenvalues, one negative eigenvalue, and one zero eigenvalue.

Discuss the rationale of the algorithm given by Steps 16.1 through 16.6 as it pertains to real
matrices.

Since A is symmetric, any set of elementary row operations of the first and third kind that reduce A
to upper triangular form yields an analogous set of column operations that will reduce A to lower
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triangular form. Under a congruence transformation, both sets of operations are applied to A, resulting
in a diagonal matrix. This is the rationale for Steps 16.1 through 16.3,

Interchanging the position of two diagonal elements of a diagonal matrix is equivalent to
interchanging both the rows and the columns in which the two diagonal elements appear. We
interchange only the designated rows in P, since a postmultiplication by P” will effect the same type of
column interchange automatically. This is the rationale for Steps 16.4 and 16.5.

Finally, a nonzero diagonal element d is made equal to 1 in absolute value by dividing its row and its
column by \/IFI Since the divisions will be done in tandem, we have Step 16.6.

16.10 Prove Rayleigh’s principle.

Let U be a unitary matrix that diagonalizes A. Then

A . 0
UAU=D= z

and we may assume that the columns of U have been ordered so that A, = A, =---= 2 . Setting X=UY
and using Property 15.3, we have

(AX,X) _ (AUY,UY) _ (U"AULY,Y) (DY,Y)

RX) =" xy = (uv,oy) v.Y)y = (X.Y)
:’\1IY1|2+’\2|)’2|2+"‘+’\n|yn|2 > Al'yllz:AlIyZ‘Jz +”'+A'I.|}yn|2 =2
l)’1]2+')’2‘2+"'+|yn‘2 ])’1| +|)’z‘ +"‘+|yn| !

The other inequality follows from
MY+ dlya e+ Ay P = A P+ Ayl + o+ Ayl
If X, is an eigenvector corresponding to A,, then
(AXy,X,) _ (AX0 X)) | AX X))
- - - M
X, X)) (X,X) (X, X,)

so the minimum of R(X) is achieved when X =X,. A similar argument shows that the maximum is
achieved when X is an eigenvector corresponding to A .

R(X,)=

Supplementary Problems

16.11 Determine symmetric matrix representations for the following real quadratic forms:
(@) 3x%+ 32+ 523 + 20 x, — 2x,x, — 20,0,
(b) 262 + 223+ 522 + dx x, — 2x,%, — 2x,%,
(¢) 9x%+6x2+9x2 +6x2 ~6x,x, ~6x,x, + bx,x, ~ 6x,%,
(d) 2 +3x2+3x2 +x2 - 2x,x, + dx,x, — 2x,x, + 8x,x, + dxyx, + 2x,x,

16.12 Determine which of the quadratic forms in Problem 16.11 are positivc definite.

16.13 Determine the inertia matrix associated with each of the quadratic forms in Problem 16.11.
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16.14

16.15

16.16

16.17

16.18

16.19

16.20

16.21

16,22

Using the results of Problem 16.13, determine whether quadratic forms (a) and (b) of Problem 16.11 are
congruent.

Using the results of Problem 16.13, determine how many positive and negative eigenvalues are
associated with the symmetric matrix corresponding to each quadratic form in Problem 16.11.

Characterize the inertia matrix of a positive definite quadratic form

Find a nonsingular matrix P such that PAP” is an inertia matrix for

0o 2 4 123 1 -1 1
(a) [2 1 -2] (b) [2 4 6:] (©) [—1 1 8:|
4 =2 S 3 6 5 1 8 0

Determine the inertia matrix associated with
1 1-i2 i
A=[1+2 6 3+i2
—i 3-i2 2
and find P such that PAP” is that inertia matrix.
Show that if A is congruent to B and B is congruent to C then A is congruent to C.
Show that if A is congruent to B, then B is congruent to A.

Prove that two Hermitian matrices A and B are congruent to each other if and only if they are congruent
to the same inertia matrix.

Show that a nonsingular Hermitian matrix A is congruent to its own inverse,



Chapter 17

Nonnegative Matrices

EIGENVALUES AND EIGENVECTORS

A matsix A is nonnegative, written A =0, if all its elements are real and nonnegative; A is
positive, written A > 0, if all its elements are real and positive. A matrix A is greater than a matrix B
of identical order, denoted A > B, if A — B is positive. Similarly, A=B if A — B is nonnegative.

The spectral radii (see Chapter 12) of nonnegative square matrices have the following properties:

Property 17.1: If 0 <A =B, then o(A) = o(B).
Property 17.2: If A =0 and if the row (or column) sums of A are a constant &, then o(A) = k.

Property 17.3: If m is the minimum of the row (or column) sums of A, M is the maximum of the
row (or column) sums of A, and A =0, then m = o(A) < M.

Property 17.4: A nonnegative square matrix has an eigenvalue equal to its spectral radius, and
there exist a right eigenvector and a left eigenvector corresponding to this eigenvalue
that have only nonnegative components.

Property 17.5: (Perron’s theorem) A positive square matrix has an eigenvalue of multiplicity one
equal to its spectral radius, and no other eigenvalue is as large in absolute value.
Moreover, there exist a right eigenvector and a left eigenvector corresponding to
o(A) that have only positive components.

(See Problems 17.1 to 17.6.)

IRREDUCIBLE MATRICES

A permutation matrix is a matrix obtained from an identity matrix by any rearrangement of its
rows. Such a matrix is the product of elementary matrices of the first kind and is orthogonal. A
nonnegative matrix is reducible if there exists a permutation matrix P such that

AH. :: AIZ
PAP' = | ----- boonees (17.1)

where both A, and A,, are square matrices having order less than that of A. If no such permutation
matrix exists, then A is said to be irreducible. (See Problems 17.7 and 17.8.)

Property 17.6: Positive matrices are irreducible.
Property 17.7: An n X n matrix A is irreducible if and only if (I1+A)" "' =0.

Property 17.8: (Perron-Frobenius theorem) A nonnegative, irreducible matrix A has an eigenvalue
of multiplicity one equal to its spectral radius, and corresponding to this eigenvalue
is a right (left) eigenvector which has only positive components. If such a matrix has
exactly k eigenvalues with absolute value equal to its spectral radius, then they are
of the form w,o(A), where w,, w,, ..., w, are the k distinct roots of unity.

(See Problems 17.9 to 17.11.)
152
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PRIMITIVE MATRICES

A nonnegative matrix is primitive if it is irreducible and has only one eigenvalue with absolute
value equal to its spectral radius. A nonnegative matrix is regular if one of its powers is a positive
matrix. A nonnegative matrix is primitive if and only if it is regular,

Property 17.9: If A is a nonnegative primitive matrix, then the limit L =lim,_,. ({1/0(A)}A)"
exists and is positive. Furthermore, if X and Y are, respectively, left and right
positive eigenvectors of A corresponding to the eigenvalue equal to o(A) and scaled
so that YX =1, then L =XY.

Positive matrices are primitive and have the limit described in Property 17.9. (See Problem 17.12.)
Reducible matrices may or may not have such a limit. (See Problem 17.13.)

STOCHASTIC MATRICES

A nonnegative matrix is stochastic if all its row sums or all its column sums equal 1. It is doubly
stochastic if all its row sums and all its column sums equal 1. It follows from Property 17.2 that the
spectral radius of such a matrix is unity. If the row (column) sums are all 1, then a right (left)
eigenvector corresponding to A =1 has all its components equal.

A stochastic matrix is ergodic if the only eigenvalue of absolute value 1 is 1 itself, and if the
eigenvalue A =1 has multiplicity &, then there exist k linearly independent eigenvectors correspond-
ing to 1t.

Property 17.10: If P is ergodic, then lim_,_ . P” = L exists.

A primitive stochastic matrix A is ergodic with k=1 and has a simple form for the limiting
matrix L. If the row (column) sums of A are all 1, then the same is true for the row (column) sums of
L, and all the rows (columns) of L are identical. Each of these rows (columns) is the unique left
(right) eigenvector corresponding to A = 1 and having the sum of its components equal to unity. (See
Problems 17.14 and 17.19.)

The form of the limiting matrix is not as simple for an ergodic matrix that is not primitive. A
canonical basis for such a matrix consists solely of eigenvectors. If the multiplicity of A =1 is denoted
by k, and if the & linearly independent right eigenvectors corresponding to this eigenvalue are placed
into the first k columns of the modal matrix M, then L=MDM™ ', where D is a diagonal matrix
having its first k diagonal elements equal to unity and all others equal to zero. (See Problem 17.15.)

FINITE MARKOV CHAINS

An N-state Markov chain consists of a set of objects and a finite set of N different states (where
N is a fixed positive integer), such that (1) at any given time each object is in one of the N states,
which may be different for different objects, and (2) the probability that an object will move from
one state to another state (or remain in the same state) in one time period depends only on the
beginning and ending states. The N X N matrix P=[p,], where p,; denotes the probability of an
object moving from state i to state j in one time period, is stochastic. The (i, j) element of the mth
power of P represents the probability that an object will move from state i to state j in m time
periods.

Denote the proportion of objects in state i at the end of the mth time period as x™, and define

XM =[x XM x™M]
to be the distribution vector for the end of the mth time period. Then

0) _¢,(0) _(0) (o)
X =[x, x Xy
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represents the proportion of objects in each state at the beginning of the process. Necessarily,
X =9, and the sum of the components of X is 1 for each m =0,1,2, .. .. Furthermore,

X =x®p~ (17.2)
If P is primitive, then
X = lim X = XL (17.3)

which is the positive left eigenvector of P corresponding t0 A=1 and having the sum of its
components equal to unity. The ith component of X represents the approximate proportion of
objects in state i after a large number of time periods, and this limiting value is independent of the
initial distribution defined by X If P is ergodic but not primitive, (17.3) still may be used to obtain
the limiting state distribution, but it will depend on the value of X\ (See Problems 17.16 and
17.17.)

Solved Problems

17.1 Estimate the location of the largest eigenvalue of

01 6
A=|2 8 6
1 2 2

A is nonnegative, and its row sums are 7, 16, and 5. It follows, then, from Property 17.3, that
5 < o(A) = 16. However, the column sums of A are 3, 11, and 14, so 3 = o(A) = 14. Together, the two
inequalities imply that the largest eigenvalue is between 5 and 14 in absolute value.

1 00
A=12 0 1
310

The eigenvalues of A are A, = A, =1 and A; = —1; and, since o(A)=1 by definition, there is an
eigenvalue equal to the spectral radius. A right eigenvector corresponding to A= 1is [0, 1, 1]7, which is
nonnegative. A left eigenvector corresponding to the same eigenvalue is [1,0,0], which is also
nonnegative.

17.2  Verify Property 17.4 for

17.3  Verify Perron’s theorem for

0.1 05 04
A= [0.7 0.2 0.1:|
06 02 02
The row sums of A are all equal to 1, so it follows from Property 17.2 that o(A)=1. The
characteristic equation of A is d(A)=—A>+0.5A% + 0.532 — 0.03, which has the roots A, =1, A, =
—~0.554138, and A, =0.054138. Thus, the spectral radius is an eigenvalue of multiplicity one, and it is the

greatest eigenvalue in absolute value. A right eigenvector corresponding to this eigenvalue is [1, 1, 177,
while a left eigenvector is [62, 48, 37]. Each of these has only positive components.

17.4 Prove that if 0=A <B, where A and B are square matrices of the same order, then
a(A) = a(B).
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17.5

17.6

17.7

17.8

If 0= A=B, then A™ <B" for any positive integer m and, therefore, ||A” |, =<|B™||. It follows
from (12.4) that

o(A)= lim [|A™||F™ =< lim ||B™||,™ = #(B)

Prove that if the row (or column) sums of a nonnegative square matrix A are a constant %,
then o(A) = k.

Using (12.3), we may write

o(A) < ||All. = & (1)

If we set X=[1,1,...,1]’, it follows from the row sums being k that AX =kX, so that £ is an
eigenvalue of A. Since o(A) must be the largest eigenvalue in absolute value,

a(A) =k (2)

Together, (1) and (2) imply o(A) = k. The proof for column sums follows if we consider A in place of
A.

Prove that if 7 is the minimum row (or column) sum and M is the maximum row (or column)
sum of an n X n nonnegative matrix A = [2,], then m= o(A) = M.

Construct a matrix B = [b,] having the same order as A and such that
0 ifm=0

ma,;

= n
E ai,'

j=1

b,

ifm#=#0

The A =B =0, and the row sums of B are all equal to m. It follows from Problem 17.4 that a(B) =< a(A)
and from Problem 17.5 that a(B) = m; thus, m =< o(A). That M is the upper bound on o(A) follows from
(12.3); that is, o(A) < ||A]|.. = M. The analogous result for column sums is obtained through an identical

argument applied to A”,

Determine whether the matrix in Problem 17.1 is irreducible.

The matrix possesses a single zero element, and it is on the main diagonal. An elementary row
operation of the first kind (E1) followed by an elementary column operation of the same kind will
change the positions of diagonal elements, but not their values. Since a permutation matrix P is a
product of elementary matrices of the first kind, it follows that PAP” also leaves the values of diagonal
elements unchanged. Such a transformation cannot move the zero into the (3,1) position and cannot
result in additional zero elements. Since there are no other zeros available to move into that position,
the matrix is irreducible.

Determine whether the matrix in Problem 17.2 is irreducible.

An interchange of the first and third rows followed by an interchange of the first and third columns
gives us the transformation

0 0 11 0 O[O 0 1 013
PAP"=/0 1 0f{2 0 1f/0 1 0|={1 0 2
1 0 0JL3 1 04L1 0 0 001

which has the partitioned form given in (17.1) with
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01
An:[l 0] and Azz=[1]

Therefore, A is reducible.

17.9 Determine whether the following matrix is irreducible:

02 00

{00 40

A=lo 0 0 2

1 000

To use Property 17.7, we calculate

1 6 24 16
s |8 1 12 24
A+D'=l6 4 1 6
36 8 1

Since this matrix is positive, A is irreducible.

17.10 Verify the Perron-Frobenius theorem for the matrix in Problem 17.1.

The matrix is irreducible (see Problem 17.7), and its eigenvalues may be found, to four decimal
places, to be 10.1806, —1.5631, and 1.3825. Its spectral radius is thus 10.1806, which falls within the
bounds identified in Problem 17.1. A right eigenvector corresponding to this spectral radius, and with all
components rounded to four decimal places, is [0.2611,1,0.2764]". A left eigenvector, rounded
similarly, is [0.2893, 1, 0.9456]. Both eigenvectors have only positive components.

17.11 Verify the Perron-Frobenius Theorem for the matrix in Problem 17.9.

The characteristic equation of A is d(A) = A* — 16, so its eigenvalues are 2, —2, i2, and —i2, all of
which have absolute value equal to the spectral radius of 2. Each eigenvalue is the product of the
spectral radius and one of the four fourth roots of wnity, 1, ~1, i, and —i. A right eigenvector
corresponding to A =2 is [2, 2, 1, 1)7, while a left eigenvector is [1, 1, 2, 2]; both are positive.

17.12 Determine whether the matrices given in Problems 17.1, 17.2, 17.3, and 17.9 are primitive.

The matrix A in Problem 17.1 is irreducible (Problem 17.7) and has only one eigenvalue with
absolute value equal to its spectral radius (Problem 17.10), so it is primitive. Alternatively, A’ is
positive, so A is regular and, therefore, primitive.

The matrix in Problem 17.2 is reducible (Problem 17.8) and, therefore, cannot be primitive.

The matrix in Problem 17.3 is positive and, therefore, primitive.

The matrix in Problem 17.9 is irreducible, but it has four eigenvalues having absolute value equal to
its spectral radius (Problem 17.11), so it is not primitive. Alternatively, one can show that the (1,1)
element of every power of A is zero, so A is not regular and, therefore, not primitive.

17.13 Show that a square matrix A need not be primitive to possess the limit L=
lim,_ . ({1/0(A)}A)™

The matrix
(2 o]
A’[o 2

has spectral radius ¢(A) = 2. For this matrix, ({1/¢(A)}A)” =1 for every positive integer m, so L =1.
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17.14

17.15

17.16

Find L =lim, _,, A™ for the matrix in Problem 17.3.

The matrix is stochastic and primitive (Problem 17.12), and it has a left eigenvector given by
[62, 48, 37]. If we divide each component of that eigenvector by the sum of the components, 62 + 48 +
37 =147, we obtain a positive left eigenvector whose components sum to unity. Then

62/147 48/147 37/147

[62/14‘7 48/147 37/147
L=
62/147 48/147 37/147

Determine whether the stochastic matrix

1 0 0 0
p_|04 0 06 0
102 0 0.1 0.7
0 0 0 1
is ergodic, and, if so, calculate L =lim, _, . P™.

The eigenvalues of P are A, = A, =1, A; =0.1, and A, =0, so the matrix is not primitive. P does,
however, possess two linearly independent right eigenvectors corresponding to A =1,

[45,24,10,0]” and  [-35,-14,0,10]7
so it is ergodic and L exists. As an easy calculation shows, the right eigenvectors
[0,6,1,0}" and [0,1,0,0]"

correspond, respectively, to A, and A,. Thus,

45 -35 0 0 1/45 0 0 7/90

|24 -14 6 1 4.l o o o 110

M=lo o010 ™M M =l 560 1 -9

0 10 00 4/5 1 -6 21/5
45 -35 0 01 0 0 0 1/45 0 0 7/9 1 00 O
q p_|2¢ -14 6 1flo10o0off 0 o o w0 _|815 00 715
an 1o o1 0olloo o0 olfl-29 0 1 -79|7|2/9 0 0 7/9
o 10 0 0llo o 0 oJL 4/5 1 -6 215 0 00 1

Formulate the following problem as a Markov chain and solve it: New owners of rental
apartments in Atlanta are considering as the operating agent a real estate management firm
with a reputation for improving the condition of antiquated housing under its control. Based
on initial ratings of poor, average, and excellent for the condition of rental units, it has been
documented that 10 percent of all apartments that begin a year in poor condition remain in
poor condition at the end of the year, 50 percent are upgraded to average, and the remaining
40 percent are renovated into excellent condition. Of all apartments that begin a year in
average condition, 70 percent deteriorate into poor condition by year’s end, 20 percent remain
in average condition, while 10 percent are upgraded to excellent. Of all apartments that begin
a year in excellent condition, 60 percent deteriorate into poor condition by the end of the
year, 20 percent are downgraded to average, and 20 percent retain their excellent rating.
Assuming that these findings will apply if the firm is hired, determine the condition that the
new owners can expect for their apartments over the long run.

We take state 1 to be a rating of poor, state 2 to be a rating of average, and state 3 to be a rating of
excellent. With percentages converted into their decimal equivalents, the probabilities of moving from
state ¢ to state j (i, j = 1,2, 3) over a one-year period are given by the elements of the stochastic matrix
in Problem 17.3. Using the results of Problem 17.14 and Eq. (17.3), we have
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17.17

17.18

17.19
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X" = (62/147, 48/147, 37/147} =[0.422, 0.327, 0.252]

Over the long run, approximately 42 percent of the apartments controlled by this real estate manage-
ment firm will be in poor condition, 33 percent will be in average condition, and 25 percent will be in
excellent condition.

Formulate the following problem as a Markov chain and solve it: The training program for
production supervisors at a particular company consists of two phases. Phase 1, which involves
three weeks of classroom work, is followed by phase 2, which is a three-week apprenticeship
program under the direction of working supervisors. From past experience, the company
expects only 60 percent of those beginning classroom training to be graduated into the
apprenticeship phase, with the remaining 40 percent dropped completely from the training
program. Of those who make it to the apprenticeship phase, 70 percent are graduated as
supervisors, 10 percent are asked to repeat the second phase, and 20 percent are dropped
completely from the program. How many supervisors can the company expect from its current
training program if it has 45 people in the classroom phase and 21 people in the apprenticeship
phase?

We consider one time period to be three weeks, and define states 1 through 4 as the classification of
being dropped, a classroom trainee, an apprentice, and & supervisor, respectively. If we assume that
discharged individuals never reenter the training program and that supervisors remain supervisors, then
the probabilities of moving from one state to the next are given by the stochastic matrix in Problem
17.15. There are 45 + 21 = 66 people currently in the training program, so the initial probability vector
for current trainees is X'’ = [0, 45/66, 21/66, 0]. It follows from Eq. (17.3) and the results of Problem
17.15 that

1 00 0
8/15 0 0 7/15
=) _ w®y _ _
X = XVL=(0,45/66,21/66,0]| 5. " o o 7,9 |=[0-4343,0,0,0.5657]
0 00 1

Eventually, 43.43 percent of those currently in training (or about 29 people) will be dropped from the
program, and the rest (about 37 people) will move into supervisory positions.

Prove that the product of two stochastic matrices, both of which have their row (or column)
sums equal to unity, is itself a stochastic matrix of the same type.

Let A and B denote stochastic matrices with row sums equal to unity, and set C = AB. Then the ith
row sum of C is

;=
! f

: : (ﬁ:, a,,,b,".) = En: (ﬁ: b,{,)a,»,, = ,,E::l a,=1

1 Vk= k=1 ‘j=1

’

Prove that if P is a primitive stochastic matrix with row sums equal to unity, then all the rows
of L =lim P™ are identical.

m—roc

It follows directly from Problem 17.18 that if P is an n X n stochastic matrix, then so too is any
positive integral power of P. Therefore, L is necessarily stochastic too. Now

L= lim P" = lim (P""'P)=(lim P""")P=LP

which implies that every row of L is a left eigenvector of P corresponding to A = 1. Since P is primitive,
A=1 is an eigenvalue of multiplicity one, and all eigenvectors corresponding to it must be scalar
multiples of each other. With L being stochastic, the row sums of L must all be unity, so it follows that
the rows are identical.
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Supplementary Problems

In Problems 17.20 through 17.29, determine whether the given matrix is irreducible, primitive, or
stochastic, and estimate its spectral radius. For those matrices P that are stochastic, determine lim,, . P™ if it

exists.

17.20

17.23

17.26

17.29

17.30

17.31

17.32

12 0] 12 1 [0 2 0
220{ 1721 (101 1722 [0 0 1

(11 2. (2 2 1 (1 00

12 1) ; (1) f ’:’ 0.1 0.8 0.1
112 1A || ., 12 (09 0 o1
(2 1 1] 22 41 02 02 06
(10 0 0.5 0 0.5 100
021 079 0 1727 [0 1 0 1728 [0 0 1
[0.17 035 0.48 03 0 07 010
[0.1 0.6 0.3

0.6 02 0.2

(03 02 05

The manufacturer of Hi-Glo toothpaste currently controls 60 percent of the market in a particular city.
Data from the previous year show that 88 percent of Hi-Glo’s customers remained loyal to Hi-Glo, while
12 percent switched to rival brands. In addition, 85 percent of the competition’s customers did not switch
to Hi-Glo during the year, while the other 15 percent did. Assuming that these trends continue,
determine Hi-Glo’s share of the market (4) in 5 years and (b) over the long run.

Grape harvests in the Sonoma Valley are classified as either superior, average, or poor. Following a
superior harvest, the probabilities of having superior, average, and poor harvests the next year are 0,
0.8, and 0.2, respectively. Following an average harvest, these probabilities are 0.2, 0.6, and 0.2,
respectively; following a poor harvest, they are 0.1, 0.8, and 0.1, respectively. Determine the probability
of a superior harvest for each of the next 5 years, if the most recent harvest was average.

The geriatric ward of a hospital lists its patients as bedridden or ambulatory. Historical data indicate that
over a one-week period, 30 percent of all ambulatory patients are discharged, 40 percent remain
ambulatory, and 30 percent are remanded to complete bed rest. During the same period, 50 percent of
all bedridden patients become ambulatory, 20 percent remain bedridden, and 30 percent die. Currently
the hospital has 100 patients in its geriatric ward, with 30 bedridden and 70 ambulatory. Determine the
expected status of these patients (a) after 2 weeks, and (b) over the long run. (The status of a discharged
patient does not change if that patient later dies away from the hospital.)



Chapter 18

Patterned Matrices

CIRCULANT MATRICES

A circulant matrix is a squarc matrix in which every row beginning with the second can be
obtained from the preceding row by moving each of its clements one column to the right, with the
last element circling to become the first. Circulant matriccs have the general form

a, a, a, a,
n al (12 an—'l
A=|d, , a, d Ay_2
a, 43 4,4 a,

Note that cach diagonal consists of identical clements. (Sec Problem 18.1.)

Property 18.1: If a circulant matrix A has order n x n, then its eigenvalues are

A=a tay,+ar +-oar! (i=1,2,...,n)
where [a,.4a,,...,a,]is the first row of A and r, is onc of the n distinct solutions of
r" = 1. The corresponding eigenvectors are X, =[1, r,, r2, ..., ' ']". (See Prob-

lcms 18.2 and 18.3.)

Property 18.2: If A and B arc circulant matrices of thc same order and a and b are any two scalars,
then aA + 6B 1» also a circulant matrix.

Property 18.3: The product of two circulant matrices of the same order is itself a circulant matrix,
and the product 1S commutative.

Property 18.4: [If a circulant matrix is nonsingular, then its inverse is a circulant matrix.

BAND MATRICES

A square matrix A = [a,] having order n X n is a band matrix of width 2K +1if a, =0 when
|i = j| > K for some nonncgative integer K between 0 and 7 —1. In a band matrix, all nonzero
clements are positioned on the main diagonal and the first K diagonals directly above and below the
main diagonal, The gencral form of such a matrix is

A diagonal matrix 1s a band matrix with X =0.

Property 18.5: The sums, products, and transposes of n X n band matrices of width 2K +1 are
band matriccs of the same width.

A Toeplitz matrix is a band matrix in which each diagonal consists of identical elements, although
different diagonals may contain different elements. Every nonzero circulant matrix is a Toeplitz
matnx of full width,

160
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TRIDIAGONAL MATRICES

A tridiagonal matrix is a band matrix of width three. Nonzero elements appear only on the main
diagonal, the superdiagonal, and the subdiagonal; all other diagonals contain only zero elements.

Property 18.6: The eigenvalues of an n X n tridiagonal Toeplitz matrix with elements a on the main
diagonal, b on the superdiagonal, and ¢ on the subdiagonal are

Ak=a+2\/bccosn"f (k=1,2,...,n)

(See Problem 18.4.)

Crout’s reduction (see Chapter 3) is an algorithm for obtaining an LU factoriza-
tion of a square matrix such that L = [/,] is lower triangular, and U = [u,] is upper
triangular with unity elements on the main diagonal. For a tridiagonal matrix
A =[a;] of order n X n, the algorithm simplifies to the following:

STEP 18.1: Initialization: If a,, = 0, stop; factorization is not possible. Otherwise, set /|, = a,,; set
the subdiagonal of L equal to the subdiagonal of A; set each diagonal element of U
equal to unity; set all other elements of L and U equal to zero; and set a counter at
i=2.

STEP 18.2: Calculate u,_,,=a,_,/l;_\, ;.

STEP 18.3: Calculate I, =a, —[,;_u,_, ;. If i = n, stop; the algorithm is complete.

STEP 18.4: 1fl,is zero, stop; factorization is not possible. Otherwise, increase i by 1 and return to
Step 18.2.

This factorization will produce an L matrix having nonzero elements only on its diagonal and
subdiagonal, and a U matrix having nonzero elements only on its diagonal and superdiagonal. (See
Problems 18.5 and 18.6.)

HESSENBERG FORM

A square matrix is in Hessenberg form if all elements below the subdiagonal are zero. Every real
square matrix A is congruent (see Chapter 16) to a matrix in Hessenberg form. An iterative
algorithm for effecting this transformation successively generates, at each stage, matrices A, and P,
(k=1,2,...,n—2), where P,_is orthogonal and A, has its first & columns in Hessenberg format

Then P= PP -P,_, and P'’AP=H, where H is in Hessenberg form. Since P is orthogonal
A =PHP’. For notatlonal convenience, we set A, = A. The kth iteration of the algorithm is:

STEP 18.5: Set X, equal to the kth column of A, _, restricted to those elements that are below the
main diagonal. Thus, X, contains n — k components,

STEP 18.6: Construct V, =X, + [|X,]||,E,, where E, is an (n — k)-dimensional column vector
having its first component equal to 1 and all other components equal to zero.

STEP 18.7: Determine the elementary reflector R, associated with V,, using (15.4).

STEP 18.8: Set
-[ofe]

where 1, denotes the k X k identity matrix, and calculate A, = P,‘TA,‘_,P,(.

If A is real symmetric, then the resulting matrix in Hessenberg form is also real symmetric and,
therefore, tridiagonal. (See Problems 18.7 and 18.8.)
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Solved Problems

18.1 Determine whether the following matrices are circulant, Toeplitz, band matrices, tridiagonal,
and/or in Hessenberg form:

2 -1 0 0 0 0
1 -2 3 -4 1 2 -1 0 0 0
-4 1 -2 3 o 1 2 -1 0 o0
A=l 3 4 1 -2 B=lo 0 1 2 -1 o
2 3 -4 1 0 0 0 1 2 -1
o 0 0 0 1 2
12 -1 0 0 0 123000
213300
01 2 -1 0 0
~ 022020
c=l 00 1 2 -1 o] pbp=
002332
00 0 1 2 -1
10 0 o 1 2 000210
- 0000 2 2]
(12 0 00 (123 45
12 -2 00 s 123 4
E=| 02 1 10 F=|0 5 1 2 3
00 3 -1 1 0051 2
L 00 o0 -3 2 000 5 1

A is a circulant matrix and a Toeplitz matrix; it is a band matrix of full width which, in this case, is 7.
B is a band matrix of width 3, tridiagonal, and in Hessenberg form; it is also a Toeplitz matrix.
C is a circulant matrix.

D is a band matrix of width 5; it is in Hessenberg form.

E is a band matrix of width 3, tridiagonal, and in Hessenberg form.

F is a Toeplitz matrix in Hessenberg form.

18.2 Determine the eigenvalues of, and a canonical basis for, matrix A in Probiem 18.1.

A is a circulant matrix having order 4 x4, The rootsof r* =larer,=1,r,=—1,r,=i,r,= ~I, 50

A =1+ (=D 4301 +(-4)(1)Y’ = -2 with X, =[1,1,1,1]7
AL=1+E2-1D)+3(-1)Y +(-4)(-1)’=10 with  X,=[1,-1,1,~1]"
A= 14 (=2)(0) +3() + ()Y =-2+1i2 with X, =[1,i -1, -i]"

A, =1+ (=2) (=) +3(=iY + (-4)(—i)’=-2-i2 with X,=[l,~i,—-1,i]"

18.3 Derive Property 18.1.

Denote the elements in the first row of a circulant matrix A as a,, a,, . .. , a,, from left to right, and

let r be any root of
ret (1)
Set y=a,+tay+ap’+octa, " a (2)

n

Multiplying (2) successively by r,r% ..., r" "' gives the system of equations

= 2 . n—1
yrz—a,,+a,r+ a,r +2-- +a,_r
yr'=a,_,tartar-+--a _,r

n—1

yr" ' =a,+ar+art+-tar
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18.4

18.5

18.6

This system, with (2), has the matrix form yX = AX, for X=[1,r,7% ..., r""']". Thus, y, as given by
(2), is an eigenvalue, and X is a corresponding eigenvector for every root 7.
Given (2) and the fact that r =1 is always a root of (1), it follows that the sum of any row of a

circulant matrix is an eigenvalue of that matrix.

Determine the eigenvalue of matrix B in Problem 18.1.

Using Property 18.6 with a=2, b= -1, and ¢ = 1, we have A, =2 + 2V/(-1)(1) cos (kr/7), which,
fork=1,2,..,6, yields
A, =2+i1.801938 A, =2+i1.246980 A, =2+ i0.445042

A, =2—i0.445042 A, =2-i1.246980 A =2-—i1.801938

Determine an LU decomposition for matrix B in Problem 18.1.

We apply Steps 18.1 through 18.4 to B ={b, ], initializing to

200000 1 00 0 00
1 009000 010000
L=010000 U=001000
001000 000100
000100 000010
000010 0 00001
and then calculating as follows:
. _ . u,=b,/, =~1/2
For i=2: Ly =by = Ly, =2-1(=1/2)=5/2
. Uyy = byl = —1/(5/2) = —2/5
For i=3: Ly=by—lau,, =2 - 1(-2/5)=12/5
. Uy, = byully, = —1/(12/5) = —5/12
For i =4: Loo = by — liyits, =2 — 1(~5/12) = 26/12

e Ues = bagll,, = ~1/(29/12) = ~12/29
For i=5: lyg = by — Loatys = 2 — 1(~12/29) = 70/29

For i = 6 Usg = byg/lyg = —1(70/29) = —29/70
Ly = beg — dystise =2 — 1/(—29/70) = 169/70

The factorization is, then,

0
0

[ s R con I o B}

70/29

COO0OO =1
COoOoO~ D

0
29/12 0
/
1 169/70

Determine an LU decomposition for matrix E in Problem 18.1.

We apply Steps 18.1 through 18.4 to E = [e, ], initializing to

1 60 00O 1 0000

-1 060 00 01000

L=| 020 00 u=|{0 0 1 0 O
003 00 00010
000 -30 00001

and then calculating:
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u,=e,ll,=2/1=2

For i=2: ly=e,—lLu,=2~(-1)2)=4
A Uyy = €53/l = —2/4=-1/2

Fori=3: Ly = €3 — Lty =1 —2(—1/2) =2
. Uy, = €y, /0, =1/2

For i =4: L=y =iy, =—-1-3(1/2)=~5/2

. Uyg = €Ml =1/(=5/2)=-2/5
For i=S5: lss = €55 — L ues =2~ (—3)(=2/5)=4/5

The factorization is, then,

1 00 0 o1 2 0 0 0

-1 4 0 0 o401 -1/72 0 0

E=| 0 2 2 0 0 (|0 O 1 /2 0
0 03 -52 01|60 0 1 -2/5

0 00 -3 4/5J(0 0 o0 0 1

18.7 Transform to Hessenberg form the matrix

21 -2
A,=|-3 1 0
43 1

The first iteration (k = 1) of Steps 18.5 through 18.8 yields

[

-3 1 2
v,=x,+]|x,||2E,=[ 4]+5[0]=[4]
.2 ,_[1 0]_3[2] _[ 3/5 —4/5]
Rl ||v,||§v'vl’ o 1l 2lalBI=[_4ss —3s5
1i.0 .0
P,={0! 3/5 -4/5
0:~4/5 -3/5
2 1S 2s
and A =PTAP, =| -5 —11/25 48/25
0 -27/25 61/25

A, is in Hessenberg form, so P =P, and the transformation is completed.

18.8 Transform to Hessenberg form the matrix

12 3 -6
1 203 34
A=l 33 2

—6 4 1 -1

The first iteration (k = 1) of Steps 18.5 through 18.8 yields

2
||
-6
2 1 9
and V,=X,+||X,||2E,=|: 3]+7|:0]=|: 3}
-6 0 -6

for which we have, from Problem 15.13,
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-2/7 =311 6/7
R,=|-3/7 6/7 2/7
617 217 317
i 0 .0 0O
| 07277317 er7
so Pi=lol—3i7 617 217
0! 67 217 317
1 =7 0 0
ot o | -7 —114/49 —115149  27/49
and A=PAR =l 0 _11s/49  —64r49 142749
0 27/49 142149 227749
The second iteration (k = 2) yields
—115/49 .
X2=[ 2_”49] for which  ||X,||, = V5.811745 = 2.410756
~115/49 17 _ [0.0638173
and Va =X, [[X]lE, = [ 27/49] * 2'410756[0] = [0.5510204]
for which ||V, ||, = V0.307696. Then,
Roep o2 vvr=[ 0.973528 —0.228567]
2= 5270307696 22 [ —0.228567 —0.973528
1 0 0 0
p |01l 0 0
271007 0973528 —0.228567
0 0:-0228567 -0.973528
1 -7 0 0
Core o | -7 —2.326531 —2.410756 0
and A:=PRARS 0 2410756 -2.285550 -1.273688
0 0 ~1.273688  5.612079

18.9

Setting P=P,P,, we have P'A,P=A,, which is in

symmetric, A, is tridiagonal.

The (right) Kronecker product (or direct produc
matrix B=[b,] is the mp X nq partitioned matri

Hessenberg form. Furthermore, since A, is

t) of an m X n matrix A=[e,] and a px q
X

a,B a,B a,,B
agp=|’nB @b #2.B
a,,B a,B a,,B
Determine A@B when
1 2 _[5 —4]
A"[4 3 e By s
s —4 10 -8
(1B 2B]_| 4 -5 8 -10
A®B_[4B 35]‘ 20 -16 15 -12
16 =20 12 -15
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18.10 Any n x m matrix X can be converted into an nm X1 column vector x (denoted with a
lowercase boldface letter) by taking the transpose of all the rows of X and placing them
successively below one another into x. The matrix equation

AXB=C (18.1)
is then equivalent to the matrix-vector equation
(A®B )x=c (18.2)

where x and c are the vector representations of the matrices X and C, respectively. Equation
(18.1) may be solved for the unknown matrix X in terms of A, B, and C by solving (18.2) for
the vector x using the methods developed in Chapter 2. Equation (18.1) may possess exactly
one solution, no solutions, or infinitely many solutions.
Solve the matrix equation AXB = C for X when
7 1 20
21 1 68
35 -6 75
21
_ X X2 T_| _
X= [le xu] and B [ 1 0}

1 2
_ 2 -1 1
SR S HE S
1 3

I

Then (18.2) becomes

2 1 4 27 © 77
-1 0 -2 0 1
1 3 2 6, 26
11
6 3 8 4j, 21
-3 0 -4 0f,0=] 1
39 4 12,7 68
22
10 5 -2 -1 35
-5 0 1 0 -6
L 5 15 -1 -3 _7SJ
Solving by Gaussian elimination, we find that x,, =1, x,, =5, x,, = -1, and x,, =2; hence,
[ 1 5]
X= [ -1 2

18.11 Solve the matrix equation AXB = C for X when

1 -1 1

0 1
x=[’;“ ’;'2] and B’=[1 —1}
21 22 2 1

Then (18.2) (Problem 18.10) becomes

xll
0 10 2], 1
1 -1 2 2R =12
2 14 201 L7

Solving by Gaussian elimination, we find that this system has infinitely many solutions given by
x,, =3-2x,, and x,, =1 —2x,,, with x,, and x,, arbitrary. Therefore,

_[3-2x, 1—2x22]
x—l: le ‘x22

A=11,2] B=[O 12 e=nzy
Let



CHAP. 18] PATTERNED MATRICES 167

Supplementary Problems

18.12 Determine whether the following matrices are circulant, Toeplitz, band matrices, tridiagonal, and/or in
Hessenberg form:

3 1

6 00 "1 01 0 1010
‘13;08 yy |01 01 1010
@ | 0 -1 ! ® fi o010 ©@lo1o01
¢ 0 -1 31 010 1 001 1
L0 0 o0 -1 3 :
102 3 120 1203
@ 131 2 @ |3 1 2 H 13 21
2 31 0 3 1 21 3
-1 2 0
21 1 0
& | 02 -2 1
L oo 1 -1

18.13 Find the eigenvalues of, and a canonical basis for, the matrix in Problem 18.12(b).
18.14 Find the eigenvalues of, and a canonical basis for, the matrix in Problem 18.12(d).
18.15 Dectermine the eigenvalues of the matrix in Problem 18.12(e).

18.16 Construct an LU factorization for the matrix in Problem 18.12(e).

18.17 Construct an LU factorization for the matrix in Problem 18.12( g).

In Problems 18.18 to 18.20, transform A, into Hessenberg form.

1 -1 2 113

o et et
i

2 00 311 }
1818 A,=[1 S5 2 18.19 A,=|1 5 1 18.20 A, = 0
1

18.21 An alternative procedure for transforming a matrix into Hessenberg form is Given's method, which
utilizes rotation matrices (see Problems 15.25 through 15.27). The method is iterative, transforming to
zero one element below the subdiagonal at a time. Zeros are introduced from left to right and from the
last row up to the third row. For an n X n matrix A, with n =3, Given’s method is as follows:

STEP 1: Initialize counters k and i to k=n and i= 1.

STEP 2: Setj=i+1.

STEP 3: Determine 8 so that tan 8 = a,,/a,,.

STEP 4: Construct the rotation matrix R, (6).

STEP 5: Calculate R;(O)AR,.,.(O) and designate the product as the new matrix A. It will have a zero in
the (k, i) position.

STEP 6: U i<k —2, then increase i by 1 and return to Step 2; if i = k — 2, go to Step 7.

STEP 7: If k = 3, stop; the algorithm is completed. If k£ >3, then decrease k by 1, seti =1, and return
to Step 2.

Use this algorithm to reduce the matrix in Problem 18.7 to Hessenberg form.

18.22 Use the algorithm given in Problem 18.21 to reduce the matrix in Problem 18.8 to Hessenberg form.
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18.23

18.24

18.25

18.26

PATTERNED MATRICES

Construct C®D when
103 (5 -4
C_[l 3] and D'[4 -3]
Rework Problem 18.11 with C =1, 2, 3].

Solve the matrix equation AXB = C for X when
12 2 0] _[11]
A‘h J B‘L -1 =111

Solve the matrix equation AXB = C for X when

10 1
A=[2 1 1 B=[1,1,1 C=
1 3 -3 ~

[CHAP. 18



Chapter 19

Power Methods for Locating Real Eigenvalues

NUMERICAL METHODS

Algebraic procedures for determining eigenvalues and eigenvectors, as described in Chapter 7,
are impractical for most matrices of large order. Instead, numerical methods that are efficient and
stable when programmed on high-speed computers have been developed for this purpose. Such
methods are iterative, and, in the ideal case, converge to the eigenvalues and eigenvectors of
interest. Included with each method are termination criteria, generally a test to determine when a
specified precision has been achieved (if the results are converging) and an upper bound on the
number of iterations to be performed (in case convergence does not occur).

This chapter describes algorithms for locating a single real eigenvalue and its associated
eigenvector. The first method presented is the simplest; the last is the most powerful. Chapter 20
describes a procedure for obtaining all eigenvalues of a matrix; it is usually packaged with the shifted
inverse power method as an excellent general-purpose algorithm.

THE POWER METHOD

Applied to a matrix A, the power method consists in choosing a vector X and forming the
sequence

c.X, c,AX, ,A’X, c,A'X, . ..

where c,, ¢;, c,, . . . are scaling constants selected to avoid computer overflow due to extremely large
vector components. The sequence will generally converge to an eigenvector of A, and if the scaling
constants are wisely chosen, the eigenvalue will be obvious too. This eigenvalue is usually the
dominant eigenvalue of A, the one having greatest absolute value, provided such an eigenvalue is
real. The usual implementation of the power method is as follows:

STEP 19.1: Initialize X, so that its largest component in absolute value is 1, and initialize A, =0 as
the first approximation to the eigenvalue. Specify a desired precision PRE for the
eigenvalue, and the maximum number of iterations to be performed; set an iteration
counter k = 1.

STEP 19.2: Calculate Y, = AX, _,.

STEP 19.3: Determine the component of Y, that is largest in absolute value. Denote it as A,.

STEP 19.4: Set X, = (1/A,)Y,.

STEP 19.5: If |A, — A,_,| <PRE, stop; the eigenvalue and associated eigenvector are A, and X,.
Otherwise, continue.

STEP 19.6: Increase k by 1. If k is greater than the maximum number of iterations to be
performed, stop. Otherwise, return to Step 19.2.

(See Problems 19.1 through 19.4.)

The power method will not converge if the dominant eigenvalue is complex. (See Problem 19.5.)
Once convergence occurs, however, the procedure may be attempted again on A — Al to determine a
second eigenvalue-eigenvector pair. (See Problem 19.3.)

Convergence toward an eigenvalue may occur without an accompanying convergence of the
assoctated eigenvector. A component that oscillates in sign with decreasing magnitude is converging
to zero.

169
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THE INVERSE POWER METHOD

The inverse power method is the power method applied to A™', provided the matrix is
nonsingular. The procedure wiil converge to the dominant eigenvatue of A™ ', the reciprocal of which
is the eigenvalue of A having the smallest absolute value. The associated eigenvector is the same for
both (Property 7.4). The steps are identical to those of the power method with the exception of the
following:

STEP 19.2": Calculate Y, = A™'X, _, by solving the system AY, = X, _, using LU decomposition. If
this system does not have a unique solution, stop; zero is an eigenvalue of A.

(See Problems 19.8 and 19.9.)

THE SHIFTED INVERSE POWER METHOD

The inverse power method may be used to find all real eigenvalues of a matrix if estimates of
their locations are available. If « is an estimate of A, then A — uI will have an eigenvalue near zero,
and its reciprocal will be the dominant eigenvalue of (A — «I)”'. Therefore, if A and X are the
eigenvalue and eigenvector obtained by applying the inverse power method to A — ul, then « + 1/A
and X are approximations to an eigenvalue and eigenvector of A, (See Problem 19.11.)

GERSCHGORIN’S THEOREM

Each row of a square matrix generates a Gerschgorin disk, which is bounded by a circle, whose
center is the diagonal element in the row and whose radius is the sum of the absolute values of all
other elements in that row.

Example 19.1 The Gerschgorin disks for

15 3+i4 0
A=| =3 32 1-4§3

0.01 -025 2-1i3

are |z—=15|=]3+i4 +10]=5
|z —i32| =< |-3] +]1 - i3] = 6.162
and |z - (2 - i3)| =10.01] + |-0.25| = 0.26

Property 19.1: (Gerschgorin's theorem) Every eigenvalue of a matrix (real or complex) must lie in
one of its Gerschgorin disks. Furthermore, if the union of N of these disks is disjoint
from all the rest, then there are exactly N eigenvalues in the union of those N disks.

Gerschgorin’s theorem is used to estimate the locations of the eigenvalues of a matrix. (See
Problem 19.10.) Moreover, since the eigenvalues of a matrix are preserved under transposition, a
second set of estimates may be developed by applying Gerschgorin’s theorem to the matrix
transpose. Still other estimates are provided by (12.3).
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Solved Problems

19.1 Use the power method to locate an eigenvalue and eigenvector for

5 -1 7
A=|-1 -1 1
7 1 5

We choose X, =[1, 1, 1]". Then we have:
First iteration:
Y, =AX,=[11, -1,13]7
A, =13

X, = Al Y, = [0.846154, -0.076923, 1.000000]"
1

Second iteration:

Y, = AX, = [11.307692, 0.230767, 10.846157]"
A, = 11.307692

1
X, = — Y, =[1.000000, 0.020408, 0.959184)"
A, 2

Third iteration:
Y, = AX, = [11.693874, —0.061220, 11.816237]"
A, =11.816327

X, =4 Y, = [0.989637, —0.005181, 1.000000]"
3 A} 3

171

Continuing in this manner, we generate Table 19.1, where all entries are rounded to four decimal
places. The algorithm is converging to the eigenvector [1, 0, 1]” with corresponding eigenvalue A = 12.

Note how the second component of the eigenvector oscillates in sign as it converges to zero.

Table 19.1
Iteration Eigenvector components Eigenvalue

0 1.0000 1.0000 1.0000

1 0.8462 —-0.0769  1.0000 13.0000
2 1.0000 0.0204 0.9592 11.3077
3 0.9896 -0.0052 1.0000 11.8163
4 1.0000 0.0013  0.9974 11,9534
5 0.9993 —0.0003  1.0000 11.9883
6 1.0000 0.0001  0.9998 11.9971
7 1.0000 —-0.0000 1.0000 11.9993
8 1.0000 0.0000  1.0000 11.9948

19.2 Use the power method to determine an eigenvalue and eigenvector for

5 22
A=|3 6 3
6 6 9

We initialize by choosing X, =[1,1,1)". Then we have:
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First iteration:
Y, =AX,=[9, 12, 21]r
A=21

1
X, = 5 Y, = [0.428571, 0.571429, 1.000000]
1

Second iteration:
Y, = AX, =[5.285714, 7.714286, 15.000000]7
A, =15
1
X,= = Y, = [0.352381, 0.514286, 1.000000]"
2
Third iteration:
Y, = AX, = [4.790476, 7.142857, 14.200000] "
A, =142
X,= ~:— Y, = [0.337357, 0.503018, 1.000000]”

3
Continuing in this manner, we generate Table 19.2, where all entries are rounded to four decimal places,

The algorithm is converging to the eigenvector [1/3,1/2, 1)" with corresponding eigenvalue A = 14.

Table 19.2
Iteration Eigenvector components Eigenvalue

0 1.0000 1.0000 1.0000

1 0.4286 0.5714 1.0000 21.0000
2 0.3524 0.5143 1.0000 15.0000
3 0.3374 0.5030 1.0000 14.2000
4 0.3342 0.5006 1.0000 14.0423
5 0.3335 0.5001 1.0000 14.0090
6 0.3334 0.5000 1.0000 14.0019
7 0.3333 0.5000 1.0000 14.0004
8 0.3333 0.5000 1.0000 14.0001

Use the power method to determine a second eigenvalue for the matrix given in Problem 19.1.

Instead of the matrix A given in that problem, we consider the matrix A — 121, which has the same
eigenvectors as A but whose eigenvalues are those of A reduced by 12. One eigenvalue of A — 121 is,
therefore, zero, corresponding to the eigenvalue found in Problem 19.1. Since zero most likely is not the
dominant eigenvalue of A — 121, we can use the power method on this new matrix to locate another
eigenvalue and eigenvector. We set

-7 -1 7
B=A-121=) -1 -13 1

7 1 -7

and apply the power method to B. The results are summarized in Table 19.3. The algorithm is
converging to the eigenvector {1,1, -1]” with associated eigenvalue A = —15. The corresponding
eigenvalue for the matrix A is A= —15+ 12 = -3 with the same associated eigenvector.

Having two cigenvalues of a 3 X 3 matrix, we can produce the third easily. The trace of A equals the
sum of the eigenvalues, so 5 +(—1)+5=12+(—-3)+ A. The last eigenvalue of A is thus A =0.
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Table 19.3
Iteration Eigenvector components Eigenvalue
0 1.0000 1.0000 1.0000
1 0.0769 1.0000 —0.0769 —13.0000
2 0.1579 1.0000 -0.1579 —-13.1538
3 0.2411 1.0000 —0.2411 —13.3158
4 0.3245 1.0000  —~0.3245 —13.4822
S 0.4061 1.0001 ~0.4061 —13.6491
10 0.7348 1.0000 —0.7348 —14.3651
20 0.9662 1.0000  —0.9662 —-14.9160
30 0.9963 1.0000 -0.9963 -14.9907
40 0.9996 1.0000  —0.999 —14.9990
45 0.9999 1.0000  —0.9999 —14.9997

19.4 Derive the power method.

19.5

Assume that the matrix A has order n X n and possesses n real eigenvalues A,, A,, . . ., A, such that
A > [A] == (A

Furthermore, assume that the eigenvectors V,, V,,...,V, corresponding to each of these eigenvalues
form a linearly independent set. Then for any n-dimensional vector X there exist constants
d,,d,,...,d,, not all zero, such that

X=dV, +dV,+---+dV,
Multiplying on the left by A repeatedly, we get
AX=d AV, + d AV, + -+ d A%V
kx A 4 A e
or A—=d,v,+dz()\—2) v2+“'+d"()\_") v
1

Ay o

Since A, is the dominant eigenvalue, the sequence converges to d,V,. Therefore, the power method will
converge to the eigenvector associated with the dominant eigenvalue provided (1) the dominant
eigenvalue is real and of multiplicity one, and (2) the initial guess X is not a linear combination of the
remaining n — 1 eigenvectors (d, #0). The rate of convergence is a function of the ratio |A,/A,|.

Apply the power method to

4 -8 0
A=|9 -8 0
4 51

and explain the result.

Applying the power method to this matrix, we generate Table 19.4, from which we conclude that
the algorithm is not converging. The reason is that the eigenvalues of A are 1, —2+ {6, and —2 — i6,
with the dominant ones being complex.
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Table 19.4
Iteration Eigenvector components Eigenvalue
0 1.0000 1.0000 1.0000
1 —-0.4000 0.1000 1.0000 10.0000
2 0.5455 1.0000 0.0227 —4.4000
3 -0.8076 —0.4290 1.0000 7.2045
50 0.7229 1.0000 —0.2567 —6.0533
51 -0.6691 -0.1957 1.0000 7.6347
52 0.2492 1.0000 0.5958 —4.4563
53 1.0000 0.8220 —0.9414 —-7.0030

19.6 A modification of the power method particularly suited to real symmetric matrices is

initialized with a unit vector (in the Euclidean norm) having ail its components equal.

At each iteration Y, is determined as before, but the eigenvalue is approximated as
A, =X,_,*Y,, an approximation to the Rayleigh quotient. Then X, =Y,/||Y,.|l,, unless
lY,ll, =0, in which case zero is an eigenvalue and the algorithm is terminated. Use this
modified power method to determine an eigenvalue and eigenvector for

10 7 8 7
|75 6 5
A=l g 6 10 9
75 9 10

We initialize with X, =[0.5,0.5,0.5,0.5])7, which is the vector (1, 1, 1, 1]” normalized. Then, with
all calculations rounded to four decimal places, we have:
First iteration:
Y, = AX, = [16,11.5, 16.5, 15.5]"
A =X, Y, =29.75
I¥,]l, = 30.0125

Y
X,= ﬁ—'ﬁ‘ =[0.5331, 0.3832, 0.5498, 0.5165)"
12

Second iteration:

Y, = AX, = [16.0267, 11.5285, 16.7097, 15.7601]
A, =X, Y, =30.2873

[1Y,]l, = 30.2879
Y, T
X, = 7o =[0.5291, 0.3806, 0.5517, 0.5203]
y.1l,

Third iteration:
Y, = AX, =[16.0118, 11.5191, 16.7170, 15.7759]T
A, =X, Y, =30.2887
(Y, Il, = 30.2887

Y
X, = == =[0.5287, 0.3803, 0.5519, 0.5209]
¥l

At this point, the eigenvector is already accurate to four decimal places. The standard power
method would take six iterations to achieve similar accuracy.
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19,7 Use the modified power method described in Problem 19.6 to determine a second eigenvalue

and associated eigenvector for the matrix in Problem 19.6.

Having determined that 30.2887 is an eigenvalue of A, we can apply the modified power method to

~20.2887 7 8 7

7 —25.2887 6 5

B=A-30.2887I= 8 6 —20.2887 9
Z 5 9 —20.2887

We initialize with X, = [0.5,0.5,0.5, O.S]T. Then with all calculations rounded to four decimal places, we
have:
First iteration:
Y, = BX, = [0.8557, —3.6444, 1.3557,0.3557]"
A, =X,Y, =-0.5387
Y[, =3.9972

Y
X, = 7 =[0.2141, —-0.9117, 0.3391, 0.0890]"
L AP

Second iteration:

Y, =BX, =[-7.3891, 27.0345, —9.8380, —1.8130]"
A =X,-Y,=-29.7275

Y, I, =29.7579
Y
X, = 75— =[~0.2483,0.9085, —0.3306, —0.0609]"
Y.,

Continuing in this manner, we generate Table 19.5. Four-place precision is attained by iteration
number 65, although it takes quite a few additional iterations before confidence in the result is
established. The algorithm is converging to —30.2785, so a second eigenvalue of the original matrix is
—30.2785 + 30.2887 = 0.0102.

At this point, however, there is no convergence to an eigenvector, because the sign of each
component is changing at each iteration and none of the components has stabilized. This suggests a third
eigenvalue very close to the second one. An alternative approach to finding the desired eigenvector is
given in Problem 19.9.

Table 19.5
Iteration Eigenvector components Eigenvalue
0 0.5000 0.5000 0.5000 0.5000
1 0.2141  -0.9117 0.3391 0.08%0 —0.5387
2 —0.2483 0.9085 -0.3306 -—0.0609 —29.7275
3 0.2788 -0.9040 0.3222 0.0357 ~20.8433
63 0.4981 -0.8294 0.2170 -0.1299 —30.2784
64 —0.4982 0.8294 —0.2168 0.1298 —30.2784
65 0.4983 -0.8294 0.2165 -0.1296 —30.2785
66 —0.4984 0.8295 -0.2163 0.1294 -30.2785

19.8 Use the inverse power method to determine a second eigenvalue and second eigenvector for

the matrix in Problem 19.2.

For this matrix, LU decompaosition yields
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5 0 0 1
L=|3 48 0 and Uu=10

6 3.6 525

With X, =[1, 1, 1}7, the algorithm yields the following:

First iteration: Solve LZ, = X, to obtain
Z, = {0.200000, 0.083333, —0.095238}"

Solve UY, = Z, to obtain

Y, = [0.190476, 0.119048, —0.095238]"

A, = 0.190476

X, =

Second iteration: Solve LZ, =X,

1
Al

to obtain

0 0

0.4
0.375
1

Y, = [1.000000, 0.652500, —0.500000]"

Z, = [0.200000, 0.005208, —0.327381]"

Solve UY, = Z, to obtain

Y, =[0.279762, 0.127976, —0.327381]"
—~0.327381

2

1
X, = = Y, = [-0.854545, —0.390909, 1.000000]"
2

Third iteration: Solve LZ, =X, to obtain
Z, =[-0.170909, 0.025379, 0.368398]"

Solve UY, = Z; to obtain

Y, =[-0.273160, —0.112771, 0.368398]"

A, = 0.368398

X;=

A,

1

Y, =[-0.741481, —0.306110, 1.000000}"

[CHAP. 19

Continuing in this manner, we generate Table 19.6, where all entries are rounded to four decimal
places. The algorithm is converging to an eigenvalue of 1/3 for A™', or its reciprocal 3 for A. The
associated eigenvector is the same for both A™' and A; it is converging toward [—0.7143, -0.2857, 1]".

Having produced two eigenvalues for a 3 X 3 matrix, we can obtain the third one easily. Using
Property 7.1 and the results of Problem 19.2, we have 5+ 6+ 9=14+ 3+ A, so the last ecigenvalue is

also 3.

Table 19.6

Iteration

Eigenvector components

Eigenvalue

=]

00 J L os LN

1.0000 1.0000 1.0000

1.0000 0.6250 —0.5000
-0.8545 ~-0.3909 1.0000
—0.7415 —0.3061 1.0000
-0.7200 -0.2900 1.0000
-0.7155 ~-0.2866 1.0000
-0.7145 ~0.2859 1.0000
-0.7143  -0.2858 1.0000
-0.7143  -0.2857 1.0000

0.1905
—0.3274
0.3684
0.3401
0.3348
0.3336
0.3334
0.3333
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19.9 Use the inverse power method to obtain an eigenvalue and eigenvector for the matrix in
Problem 19.6.

For this matrix LU decomposition yields

0 0 0 0 1 07 08 0.7
7010 0 lo 1 1
8 04 2 0 and  U=ly o 1 15
7 01 3 05 0o 0 0 I

With X, =[1, 1,1, 1], the algorithm yields the following:
First iteration: Solve LZ, =X, to obtain
Z, =[0.100000, 3.000000, —0.500000, 3.000000]”
Solve UY, =Z, to obtain
Y, = [=12.000000, 20.000000, - 5.000000, 3.000000]"
A, = 20.000000
X = ;\l-lY, = [~0.600000, 1.000000, —0.250000, 0.150000]"

Second iteration: Solve LZ, = X, to obtain
Z, = [—0.060000, 14.200000, —2.725000, 14.650000] "
Solve UY, = Z, to obtain

Y, = [—59.400000, 98350000, —24.700000, 14.650000]
A, = 98.350000

X,= ,\i Y, = [~0.603965, 1.000000, —0.251144, 0.148958]"
2
Two more iterations yield

X, =[—0.603972, 1.000000, —0.251135, 0.148954]”
and X, = [-0.603972, 1.000000, —0.251135, 0.148953]”

with A, = 98.521606 and A, = 98.521698. The fifth iteration is identical to the fourth, so X, approximates
an eigenvector of A corresponding to the eigenvalue 1/98.521698 = 0.010150.

19.10 Use Gerschgorin’s theorem to estimate the eigenvalues of

29 -1 4
A=|—-1 -18 2
4 2 1

The Gerschgorin disks are
|z -29)=<|-1]+ |4 =5
|z+ 18| =<|-1]+]2| =3
lz=1=|4+2|=6
Since A is a real symmetric matrix, its eigenvalues must be real (Property 13.3), and the Gerschgorin

disks reduce to the intervals 24 <z <34, —21 =<z < -15, and —5=< z < 7. Furthermore, these intervals
(disks) are disjoint, so there must be one eigenvalue in each.
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Find the eigenvalues and a corresponding set of eigenvectors for the matrix in Problem 19.10.

From Problem 19.10, we know that one real eigenvalue is located in the interval 24 < z < 34, We
take u = 28 as an estimate of this eigenvalue and apply the inverse power method to A — 281. A better
estimate for the eigenvalue might be the center of the interval, ¥ =29, but an LU decomposition for
A~ 291 is not possible because that matrix has a zero in the (1,1) position. For A — 281, we have

1 0 0 1 -1 4
L=|-1 -47 0 and U=(0 1 -0.127660

4 6 —42.234043 0 0 1

Applying the inverse power method with these matrices, we obtain, after five iterations, X, =
{1.0, —0.015180,0.138939]” with A, =0.636563. The corresponding eigenvalue for A is A=28+
1/0.636563 = 29.5709.

From Problem 19.10 we know that a second real eigenvalue lies between —15 and —21. We estimate
this eigenvalue as u = —19. The LU decomposition for A + 191 has

48 0 0 1 -0.020833 0.083333
L=]-1 0.979167 0 and U=]0 1 2.127660

4 2.083333 15.234043 0 0 1

With these matrices the inverse power method vyields, after five iterations, X,=
[0.030495, |, —0.110227)" with A;=1.335023. The corresponding eigenvalue for A is —19+
1/1.335023 = —18.2509.

The last real eigenvalue is between —5 and 7. We estimate it as u = 0, and apply the inverse power
method directly to A. After five iterations we find X, =[~0.137203, 0.114411, 1]” with A, = 1.470566.
The corresponding eigenvalue for A is 1/1.470566 = 0.6800. As a check we note that the sum of the three
cigenvalues is 29.5709 + (—18.2509) + 0.6800 = 12, which is the trace of A,

Prove that each eigenvalue of a square matrix A lies in at least one Gerschgorin disk
generated by A.

Let A be an eigenvalue of A =|[a,] corresponding to the eigenvector X =[x, x,, ..., x,]”. Denote

the largest component of X in absolute value as x,,. Then we have
AX = AX (1)
and %l = max(lx, |, [x,l, .. [, ]) (2)

Equating the Mth components of both sides of (1) gives

n
21 @y X, = Axy,
=

SO (A= aym)xy = 2 ap,X;
i\

it follows from this last equation and (2) that

|A - aMMl = lz ApiXj
M

Sl = 2 iz e = S lay,)
M ™

Thus A is in the Mth Gerschgorin disk, so it is certainly in one of them.
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Supplementary Problems

Apply five iterations of the power method to

4 0 5
A=]|1 4 2
304
Use the power method to locate a second eigenvector and eigenvalue for the matrix in Problem 19.2.

Observe that convergence occurs even though that eigenvalue has multiplicity two.

Apply the power method to the matrix in Problem 19.11 and stop after four iterations.

-3 0 1
A=} 01 0
1 0 -3

and show that convergence to the eigenvalue is rapid even though there is no convergence to the second
component of the eigenvector. Deduce the value to which this second component is converging.

Apply the power method to

Determine why the power method did not converge to the dominant eigenvalue in Problem 19.16.

Apply the power method to

Apply the power method to the matrix in Problem 19.6.

5 -1 7
A=}-1 -1 1
7 1 5

Apply three iterations of the modified power method to find a second eigenvector and eigenvalue for the

matrix in Problem 19.20.
4 0 5
A=|1 4 2
30 4

Apply the inverse power method to the matrix in Problem 19.1.

Apply the modified power method to

Apply the inverse power method to

Apply three iterations of the inverse power method to

-1 00 8
{2 -303
A=l1 053

3 00 7
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19.25 The matrix in Problem 19.24 is known to have an eigenvalue near 9. Use the shifted inverse power
method to find it.

19.26 The matrix in Problem 19.18 is known to have an eigenvalue near 2.5. Use the shifted inverse power
method to find it.

19.27 A modification of the shifted inverse power method uses the Rayleigh quotient as an estimate for the
eigenvalue and then shifts by that amount. At the kth iteration, the shift is A, = X]AX,/X]X,. Thus, the
shift is different for each iteration. Termination of the algorithm occurs when two successive A iterates
are within the prescribed tolerance of each other. Use this variable shift method on the matrix in
Problem 19.20.



Chapter 20

The QR Algorithm

THE MODIFIED GRAM-SCHMIDT PROCESS

The Gram-Schmidt orthogonalization process (as presented in Chapter 11) may yield grossly
inaccurate results due to roundoff error under finite-digit arithmetic (see Problems 20.10 and 20.11).
A modification of that algorithm exists which is more stable and which generates the same vectors in
the absence of rounding (see Problem 20.12). This modification also transforms a set of linearly
independent vectors {X,, X,,...,X,} into a set of orthonormal vectors {Q,,Q,, ..., Q,} such that
each vector Q, (k=1,2,. .., n)is a linear combination of X, through X, _,. The modified algorithm
is iterative, with the kth iteration given by the following steps:

STEP20.1: Setr,, =|X,]|l, and Q, = (1/r,,)X,.
STEP20.2: Forj=k+1,k+2,...,n,setr,=(X,Q,)
STEP20.3: Forj=k+1,k+2,...,n, replace X, by X, —r, Q,.

(See Problems 20.1 and 20.3.)

QR DECOMPOSITION

Every m X n matrix A (m=n) can be factored into the product of a matrix Q, having
orthonormal vectors for its columns, and an upper (right) triangular matrix R. The product

A=QR (20.1)

is the QR decomposition of A. If A is square, then Q is unitary.

The QR decomposition follows immediately from the modified Gram-Schmidt process applied to
the columns of A, provided those columns are linearly independent. If they are, then the columns of
Q and the elements r; (i=j) of R are the quantities generated by the modified Gram-Schmidt
process. (See Problems 20.2 and 20.4.)

If the columns of A are not linearly independent, then one or more of the r,, values determined
in Step 20.1 will be zero. That step must be modified to:

STEP20.1": Calculate r,, = || X, ||,. If r,, #0, then Q, =X, /r,,. If r,, =0, then choose Q, to be
any normalized vector which is orthogonal to Q,,Q,,...,Q,_,.

In practice, r,, is rarely zero. Even if the columns of A are linearly dependent, roundoff will
produce an r,, value close to but not equal to zero, permitting Q, to be calculated in the usual
manner. The result is however, an incorrect vector. (See Problem 20.13.) Thus, whenever an r,,
value is sufficiently small, Q, must be checked to guarantee it is orthogonal to the previously
calculated Q vectors; if it is not, the modification given as Step 20.1' must be implemented.

THE QR ALGORITHM

The QR algorithm is a procedure for determining all eigenvalues of a real matrix A,. The
algorithm sequentially constructs matrices A, (k=1,2,3,...) by forming QR decompositions

Ay =Q R, (20.2)
for A,_,, and then reversing the order of the products to define
A, =R, ,Q_, (20.3)

181
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Each A, is similar to its predecessor and has the same eigenvalues (see Problem 20.9). In general,
the sequence {A,} converges to a partitioned matrix having either of two forms:

E '
[’6'677"6":'&'] (20.4)
G _iH
and 00---0:bc (20.5)
00---0ide

If form (20.4) occurs, then the element a is an eigenvalue, and the remaining eigenvalues are
obtained by applying the QR algorithm anew to the matrix E. If form (20.5) arises, then two
eigenvalues can be determined from the characteristic equation of the 2 x 2 submatrix in the lower
right partition, and the remaining eigenvalues are obtained by applying the QR algorithm to the
matrix G. If E or G is already a 2 X 2 matrix, its eigenvalues are determined from its characteristic
equation.

ACCELERATING CONVERGENCE

Convergence of the QR algorithm is markedly accelerated by a shift at each iteration: If the
matrices have order n X n, then the element in the (n, n) position of A, _, is denoted as s, _,, and a
QR decomposition is constructed for the shifted matrix A, _, — s, _,1. Equation (20.2) is modified to

Aror =8 I=Q, R (20.6)
and (20.3) is replaced with
A=RQ ts 0 (20.7)

Equations (20.6) and (20.7) constitute the shifted QR algorithm. (See Problems 20.5 through 20.8.)

For matrices of large order, significant computation time is also saved by first reducing the given
matrix to Hessenberg form and then applying the shifted QR algorithm to it.

At each stage the QR (or shifted QR) algorithm is halted once the zeros in form (20.4) or (20.5)
are obtained to whatever degree of precision is specified by the user. If the eigenvalues are real, only
estimates are needed for them. These estimates are then incorporated into the shifted inverse power
method (Chapter 19) to quickly obtain better values for the eigenvalue and corresponding eigen-
vector.
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Solved Problems

20.1 Use the modified Gram-Schmidt process to construct an orthogonal set of vectors from the
linearly independent set {X,, X,, X,} when

—4 2 2
X, =| 3 X,=| -3 X,=|3
6 6 0
First iteration:

r, = |1X,ll, = V61 = 7.810250

1 [ 4 3 6 ]T T
=—X,=| -~ =, =, —=| =[-0.512148, 0.384111, 0.768221
Q=X Ve Ve verd oS !

19
r,={X,,Q,)= Vel =2.432701

1
r;=(X;,Q,)= NG =0.128037

X, <X, —r,Q, =[198/61, —240/61, 252/61]"
X, <X, —r,;Q, =[126/61, 180/61, —6/61]"

Second iteration  (using vectors from the first iteration):

160,308
2= 1,0, = V(198/61)* + (—240/61)7 + (252/61)° = — = 6:563686
Q= x,=[ AR B 2] ,
2=, X T 308 160308 /160308 = [0.494524, —0.599423, 0.629395]
324
T2 = (X5,Q;) = -~ s 55 = ~0-809222
126/61 0.494524 2.465753
X; X, - r,,Q,=1180/61 | — (—0.809222){ —0.599423 | = | 2.465753
~6/61 0.629395 0.410959

Third iteration (using the vector from the second iteration):
7 = V(2.465753) + (2.465753)% + (0.410959) = 3.511234

Q, =ri X, =[0.702247, 0.702247, 0.117041]"

33

An orthonormal set is {Q,, Q,, Q,}.

20.2 Construct a QR decomposition for the matrix

-4 2 2
A=l 3 -3 3
6 6 0

From Problem 20.1, we have
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0.384111 -—0.599423 0.702247 0 6.563686 —0.809222
0.768221  0.629395 0.117041 0 0 3.511234

~0.512148  0.494524 0.702247 7.810250 2.432701  0.128037
Q and R=

A direct calculation shows that A = QR.

20.3 Use the modified Gram-Schmidt process to construct an orthogonal set of vectors from the
linearly independent set {X,, X,, X,, X,} when

0 1 1 1
1 0 1 1
X, =[1] X=|1] %=|o| %=
1 1 1 0
First iteration:
r“=”x|||2=\/§
Ly ook L L)
R RV BEVA ARV
2
’12=(x2:01)=ﬁ
2
"13=(x3’Q|)=ﬁ
2
’|4=(x4’01>=ﬁ
X, <X, -r,Q,=[1,-2/3,1/3,1/3]"
X, <X, -r,Q,=[1,1/3,-2/3,1/3]7
X, <X,-r.Q, =[1,1/3,1/3,-2/3]"
Second iteration (using vectors from the first iteration):

Vis
r22=||x2||2=\/(1)2+(—2/3)2+(1/3)2+(1/3)2=%
0.-Lx [ 3 -2 1 1 ]T
2y, V15© V15° VIS V15

2
ras <x3’02)__1§
2
"24=(x4sz)=ﬁ
[ 1] [ 3VIS] [ 3/5]
X. X, - r.Q, = 3] 2 | -2VI5|_| 3/5
RT3 T VIS | WIS -4/5
| 1/3] | V15§ L 15
[ 1 ] [ 3151 [ 3/5]
X, <X, - r..Q, = 1312 | -2nVI5|_| 3/5
a0 e T /3] VI3| V15 1/5
| —2/3] L 1/VI5) L-4/5]
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Third iteration (using vectors from the second iteration):

V35
ra = X3, = V(3/5) + (B375)° + (=475)" + (1/5)' = —=
0.-L1x =[L 3 -4 __1_]7

T, V35’ V33’ V35 V35
r=(X,,Q,) = —=—
34 47 3 \/‘33
3/5 3/V35 377
X, X, - 1.0, = 35(__2 | 3wW35(_| 377
‘ 4 T 15| V35| -4nV35 317
-4/5 1/V35 —6/7
Fourth iteration (using the vector from the third iteration):
V63

Fae = (XMl = VG/7) + B17) + (3770 + (-6/7)" = —=

An orthonormal set is {Q,, Q,, Q,, Q,}. (Compare with Problem 11.7.)

20.4 Construct a QR decomposition for the matrix

0111

(1 0 11

A=l1 10 1

1110

Using the results of Problem 20.3, we have

0 3VIS W3 VT V3 2V3 V3 2V3
Q- V3 —2VI5 3V VI e | 0 VIS3 2VI5 VTS
VAV VAVS T IR VAVA SIS VoV 0 0 V35/5 2/V3S
W3 W15 135 -2VT 0 0 0 V637

A direct calculation shows that A = QR.

20.5 Apply the shifted QR algorithm to

S
Using (20.6) and (20.7), we calculate the following:
First iteration:
A, -5I= [ -2 1] - O.R, = [ —0.894427 0.447214 [2.236068 —0.894427]
10 oo 0.447214 0.894427 0 0.447124

2.236068 —0.894427 [ —0.894427 0.447214 1 01_[26 0.2
+3 02 5.4

A'=R°Q°=5'=[ 0 0447214 Il 0.447214 0894427 0o 117
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Second iteration:

~2.8 0'2]=QR 2[—0.997459 0.071247][2.807134 —0.199492]
02 0 L 0.071247 0.997459 0 0.014249

2.807134 —0.199492][—0.997459 0.071247]+54[1 0]
0 0.014249 0.071247  0.997459 Lo 1

A, -5.41=[

A,=R,Q, +5.4I= [

=[2.585787 0.001015]
0.001015 5.414213

Third iteration:
_ [ -2.828426 0.001015] _ _[-1.000000 0.000359][2.323427 —0.001015]
A 5"“4213'“[ 0.001015 0 ]‘QZRZ‘ 0.000359 1.000000ll 0 0.000000

. -0.00 -1. :
2.828427 1015][ 1.000000 0000359]”414213[1 0]

8,0, + st
A; =R,Q, + 54142141 0 0.000000 /1 0.000359 1.000000 01

[2.585786 —0.000000]
0.000000  5.414213

At this point we have generated form (20.4). It follows that one eigenvalue is 5.414213 and the
second is 2.585786. (Observe the roundoff error in Q,, which results in columns that are only

approximately unit vectors.)
5 2 2
A, =3 6 3
6 6 9

Using (20.6) and (20.7), we obtain the following:

20.6 Apply the shifted QR algorithm to

First iteration:

6 6 0
[—0.512148 0.494524 0.702247:|[7.810250 2.432701 0.128037:‘

-4 22
A,-91=| 3 -3 3|=Q,R,

0.384111 —0.599423 0.702247 0 6.563686 —0.809222
0.768221  0.629395 0.117041 0 0 3.511234

as already shown in Problem 20.2. Then we have

6.032787  2.484726 7.208066
A, =R,Q, +91=|1.899520 4.556254 4.514615
2.697405  2.209952 9.410959

Second iteration:

—3.378172  2.484726 7.208066
A, —9.4109591=| 1.899520 -4.854705 4.514615|=Q R,
2.697405  2.209952 0

[-0.715428 0.134590 0.68560():“:4.721887 —2.468146 —3.340716]

0.402280 -—0.722952 0.561704 0 5.341738 -2.293716
0.571256  0.677662 0.463077 0 0 7.477730

3.131498 0.155992 0.303949}

A,=R,Q, +9.4109591 = [0.838575 3.994775  1.983808
4271696 5.067376 12.873727

Continuing in this manner, we generate
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A,=10.127357 3.143844  3.353551
L0.405644 0.458158 13.681376

2.995229 —0.005512 —4.152641]
A, =] —0003362 2.996115 -2.926538
L 0.012647  0.014613 14.008656 |

[ 2.999996 —0.000004 —4.166180 ]
A, =] —0.000003  2.999997 -2.939863
L 0.000010  0.000011 14.000007 ]

[ 3.000000 —0.000000 -4.166189]
A, =] -0.000000 3.000000 -2.939868
0.000000  0.000000 14.000000 |

[3.174780 0.197407  4.602285 ]

Convergence is established to the number of decimal places shown. One eigenvalue, 14, appears in the
(3,3) position; it is obvious that the other two eigenvalues are 3 and 3. (Compare with Problem 19.2.)

20.7 Apply the shifted QR algorithm to

1 32 -1
112 -3
A=13 11 -1
2 21 2

After fifteen iterations of the algorithm, we obtain

—1.942221  0.528619 1.156169  0.023944
—1.278276 —1.310739 0.878963  1.339487
0.000000  0.000000 4.639537 -2.951749
0.000000 —0.000000 0.630294  3.613422

A=

which has form (20.5). The characteristic equation of the lower right 2 X 2 matrix

[ 4.639537 -2.95 1749]
0.630294  3.613422

is A2 — 8.252959A + 18.625075 =0, which has as its roots the cigenvalue estimates 4.126480 = i1.263820.
The upper left 2 X 2 submatrix has the characteristic equation A* + 3.252960A + 3.221466 = 0, which has
as its roots the eigenvalue estimates —1.626480 + {0,758965.

20.8 Apply the shifted QR algorithm to

A, =

~Noeuao
Tt v
o O N0
S e

After four iterations of the algorithm, we obtain

30.288604  0.049230 0.006981 —0.000000
0.049230  0.021553 0.096466  0.000000
0.006981  0.096466 0.831786 —0.000000
0.000000 —0.000000 0.000000  3.858057

A=
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This matrix has form (20.4), so one eigenvalue estimate is 3.858057. To determine the others, we apply
the shifted QR algorithm anew to

30.288604 0.049230 0.006981
E,=| 0.049230 0.021553 0.096466
0.006981 0.096466 0.831786

After two iterations, we obtain

0.000038 0.010150 0.000000

|:30.288686 0.000038 0.000000:|
E,=
0.000000 0.000000 0.843107

so a second eigenvalue estimate is 0.843107. The characteristic equation of the upper left 2 X 2 submatrix
in E, is A> — 30.298836A + 0.307430 = 0, which can be solved explicitly to obtain 30.288686 and 0.010150
as the two remaining eigenvalues. (Compare these values with those obtained in Problems 19.6 and
19.7.)

Show that the shifted QR algorithm is a series of similarity transformations that leave the
eigenvalues invariant.

Since the Q matrix in any QR decomposition is unitary, it has an inverse. Therefore, (20.6 ) may be
rewritten as

Rk—-l =Q;:1(Ak—l —sk—ll)
Substituting this equation into (20.7), we obtain
A, = Q;—ll(Ak—l =5, DQy_ +5,_I= Q;—llAk—le—l - sk—le_—ll[Qk—l +5,41
=Qk_—l‘lAk~10k—l

Therefore, A, is similar to A, _,, and the invariance of their eigenvalues follows from Property 10.1.

Working to four significant figures, show that the unmodified Gram-Schmidt orthogonalization
process does not generate an orthogonal set of vectors when applied to

1 1 1
_| 1o |1 |1
= =lroa| %=1
1 1 1.01

Using the algorithm given in Chapter 11 and rounding all stored numerical values to four significant
digits, we obtain

V({X,,X,)=2005
S S T
) Q= 5005 X, =[0.4988, 0.5037, 0.4988, 0.4988)

Then Y, =X, - (X,,Q,)Q, =X, —2.005Q,
=[-0.9400 x 107%, —0.9919 x 1072 0.9906 x 1072 —0.9400 x 10*]"
and V{(Y,,Y,)=0.1402 x 107"
1
50 Q.= gtaz <10
Lasuy’ Y3 = x3 - (xgy Q])Q] - (x3s Qz)Qz = x] - 200501 - (’—01438 X lo_l)Qz

=[-0.1904 x 107> —0.2009 x 10™',0.1007 X 10 "', 0.9810 x107*]"

Y, = [~0.6705 x 1072 —0.7075, 0.7066, —0.6705 x 10"
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20.11

20.12

and V{Y,,Y,)=02452x 107"

1

= 525525107 Yo = [-0.7765 % 1072 —0.8193, 0.4107, 0.4001]”

S0 Q,
For these vectors, (Q,, Q,) = 0.8672, which is not near zero as it should be. Similar results are obtained
wherever the components 1.01 are of the form 1+ 107" and all numerical values are rounded to 2k
significant digits.

Redo Problem 20.10 using the modified Gram-Schmidt process and show that the results are
better.
First iteration:
n= “xl”2 =2.005
— 1 - T
Q =555 X1 = (0.4988, 0.5037, 0.4988, 0.4988]
Fp= (xz’ Ql) =2.005
ris=(X,,Q,)=2.005
X, <X, —2.005Q, =[-0.9400 x 107, —0.9919 x 1072 0.9906 x 107, —0.9400 x 10™*)”
X, <X, — 2.005Q, =[—0.9400 X 107*, —0.9919 x 1077 —0.9400 x 10™*, 0.9906 x 107*]"
Second iteration:
ry = |X,ll, =0.1402 x 107"
=————7 X, =[-0.6705 X 1072 —0.7075, 0. -0. 2"
Q=g x1o [ 7075, 0.7066, —0.6705 x 10°]
rs = (X,,Q,) =0.6885x 107?
X, <X, — 0.6885 x 107°Q, = [0.4784 x 10™*, —0.5048 x 1072, —0.4959 x 107% 0.9952x 107%]"
Third iteration:

ry =X, =0.1221 x 107"

1
T x10T X

=[0.3918 x 102, —0.4134, —0.4061, 0.8151]

Q,

For these vectors, (Q,, Q,) = 0.00003872, which is much better than the result obtained in Problem
20.10. All other inner products formed from the vectors obtained here are at least accurate as those
formed from vectors found in Problem 20.10.

Show that the modified Gram-Schmidt process yields the same vectors as the unmodified
process in the absence of rounding

The proof is by induction. Q, is the same for both methods because it is computed in exactly the
same way in both algorithms. Assume that "the two methods provide identical results for
Q,.Q,, ..., Q.. We need only show that they do so for Q, ., as well.

It follows from the induction hypothesis that Q,, Q,, . . ., Q, are mutually orthogonal because they
are the vectors obtained from the unmodified Gram-Schmidt process. Let X{*’ (i > j) denote the value of
X, after it has been altered by j iterations of the modified process. Then, for the modified process, we
have
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Xil¢)|=xk+l_(xk+l’Ql>Ql (1)
X2 =X - (x(,Q,)Q, (2)
xi?l = x:(2+)l - (xizf)l7QJ)Q] (3)

xikv-)l —xi"fll) (xi—kul)’ Qk)Qk
Substituting (1) into (2) and noting that Q, and Q, are orthogonal, we obtain

x:xz:l = xk+l - (xk+l’Ql)Ql - ((xk-H - (xk-H’ Ql)Ql)i Qz)Qz
=xl¢+l ( k+l’Ql)Ql (xk+l‘QZ)QI+(xk+l’Ql)<Ql’QI)Q2
X1 (ka’Ql)Ql"(xhvaz)Qz

Substituting this result into (3) and noting that Q, is orthogonal to both Q, and Q,, we obtain
x(k]‘gl_xk**l (xk+]’Ql)Ql (xk"']’QZ)Q:-— ((xk"’l_<xk+|7Q[)Ql—(xk+l’Qz>Qz)’QJ)Q]
k+l (xk+lYQ|>Q[ (xk+l7QZ)Qz-‘<xk+|’QJ)QJ+(xk+|’Ql>(Q|’QJ)QJ

+ (xku’ Qz)(st Qz)Qs
k+1 (xkfl'Ql>Ql (xk+l’02>02—(xk+l’QS>Q3

Continuing in this manner, we find that X{*), is identical to Y, ,, in the unmodified Gram-Schmidt
process, and, since Q, ., is obtained in one method by normalizing X{*!, and in the other by normalizing
Y, ... it follows that Q,,, is the same in both methods.

1 01
=10 11
112

working to six significant digits, and show how roundoff error can generate an incorrect Q
matrix when the columns of A are linearly dependent.

20.13 Construct a QR decomposition for

Designate the columns of A as X, X,, and X, from left to right. Then:
First iteration:
= "xlllz =2 =(0.141421 x 10'

Q = X, =[0.707109, 0, 0.707109)"
11

. = (X;, Q,) =0.707109

r.,={X,,Q,) =0.212133 x 10'

X, <X, - r,Q, =[-0.500003, 1, 0.499997]"
X, X, - r,,Q, =[-0.500012, 1, 0.499988]"

Second iteration:
ra= ||X2||, =0.122474 x 10'

Q, = - X, = [0.408252, 0.816500, 0.408247)"

oy,
2 = (X,, Q) = 0.122475 x 10"
X3 X, = ry,Q, = [0.536300 x 107°, ~0.837500 X 107%, —0.125133 x 107*)”
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Third iteration:

THE QR ALGORITHM

T = “xsllz =0.159839 x 10™*

Q.- ’i X, = [-0.335525, —0.523965, ~0.782869] "
k)

191

Observe that 74, is very close to zero, and the last X, vector is very close to the zero vector; if we were
not rounding intermediate results, they would not exist. However, because of the rounding neither is
zero, and Q, can be calculated with what are, in effect, error terms. The result is a vector which is not
orthogonal to either Q, or Q,.

20.14

25
11

Supplementary Problems

(&)

131 -86 (e)
—41 —18]
28 0

[ 4
3
L-2

"0
-1
0

. 0

Construct QR decompositions for the following matrices:

(@ [-4 4 2
[4—41]
2 10

(d) {
-4

3 2 (c)
1 -1

-1 0

-1 0 ¢ (f)
0 -1 0

-1 0 -1
0 -1 0

L

(

0 -1 0
-1 0 ~1 ]
o -1 0
880 0 990 0
990 660 330 330
0 -25 440 -25
0 -880 -—8558 0

In Problems 20.15 through 20.24, use the shifted QR algorithm to determine estimates for all eigenvalues of

the given matrix.

(4 4 2 8 3
2015 [4 4 1] 2016 3 5
2 1 8 -2 -1
[42 131 86
2018 | 11 -24 —18] 2019
4 28 17
( 9 -2 2 1
2 8 -1 0
wa | T, Tg | 202
-1 1 01
100 42 54 66
£ 100 32 44
208 | 5 3 100 2
L 66 44 22 100

-2
-1
4

2 -1
20.17 -1 2

0 -1
0 0
-1 0
5 1| 2020
-1 2
1 0 o0
0 1 0
o o 1| 22
2 -5 -2

¢
-1

|

990 0 990 0
9% 770 330 330
¢ -25 550 -25
0 —-880 -8,558 110
1 0 -1 O
0o 2 0 4
5 0 3 0
0 -7 0 -4



Chapter 21

Generalized Inverses

PROPERTIES

The (Moore-Penrose) generalized inverse (or pseudoinverse) of a matrix A, not necessarily
square, is a matrix A" that satisfies the conditions:

(I1): AA" and A"A are Hermitian.
(12): AA*A=A.
(I3): A*AAT =A"

A generalized inverse exists for every matrix. If A has order n X m, then A* has order m x n and has
the following properties:

Property 21.1: A" is unique.

Property 21.2: A" = A"' for nonsingular A.

Property 21.3: (A*)* =A.

Property 21.4: (kA)" = (1/k)A" for k #0.

Property 21.5: (A”)* =(A")".

Property 21.6: 0" =0.

Property 21.7:  The rank of A* equals the rank of A.

Property 21.8: If P and Q are unitary matrices of appropriate orders so that the product PAQ is
defined, then (PAQ)* = Q"A* P

Property 21.9: If A has order m X k, B has order k X n, and both matrices have rank &, then
(AB)* =B*A".

Property 21.10: For square matrix A, AA" = A"A if and only if A® can be expressed as a
polynomial in A.

(See Problems 21.13, 21.14, 21.17, and 21.36 to 21.39.)

A FORMULA FOR GENERALIZED INVERSES
The following procedure will provide the generalized inverse for any matrix A:
STEP 21.1: Determine the rank of A, and denote it as K.

STEP 21.2: Locate a K X K submatrix of A having rank K.

STEP 21.3: Through a sequence of elementary row and column operations of the first kind (E1),
move the submatrix identified in Step 21.2 into the upper left portion of A. That is,
determine

where P and Q are each the product of elementary matrices of the first kind, and A, is
a submatrix of A that is nonsingular and of rank K. If no elementary operations were
necessary, then P and Q are identity matrices. A|,, A, , or A,, may be empty.

A _
STEP 21.4: Set B= [-A-“-], F=A'A,,, and C ={I|F], where I, is the K x K identity matrix.
21

192
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STEP 21.5: A* =Qc”(cc”y (B"B) 'B"P (21.1)
(See Problems 21.1, 21.2, and 21.16.) When the columns of A form a linearly independent set of
vectors, (21.1) reduces to

A" = (A"A) A" (21.2)
(See Problem 21.3.)

SINGULAR-VALUE DECOMPOSITION

Equations (21.1) and (21.2) are useful formulas for calculating generalized inverses. However,
they are not stable when roundoff error is involved, because small errors in the elements of a matrix
A can result in large errors in the computed elements of A*. (See Problem 21.12.) In such situtations
a better algorithm exists.

For any matrix A, not necessarily square, the product A”A is normal and has nonnegative
eigenvalues (see Problems 13.2 and 13.3). The positive square roots of these eigenvalues are the
singular values of A. Moreover, there exist unitary matrices U and V such that

Ao U[—---'Er-!}-]v“ (21.3)

where D is a diagonal matrix having as its main diagonal all the positive singular values of A. The
block diagonal matrix
D:0
3 =---te--

0:0
has the same order as A and, therefore, is square only when A is square.
Equation (21.3) is a singular-value decomposition for A. An algorithm for constructing such a
decomposition is the following:

STEP 21.6: Deter}gnine the eigenvalues of A”A and a canonical basis of orthonormal eigenvectors
for A"A.

STEP 21.7: Construct D as a square diagonal matrix whose diagonal elements are the positive
singular values of A.

STEP 21.8: Set V=[V,|V,], where the columns of V, are the eigenvectors identified in Step 21.6
that correspond to positive eigenvalues, and the columns of V, are the remaining
eigenvectors.

STEP 21.9: Calculate U, = AV,D ",
STEP 21.10: Augment onto U, the identity matrix having the same number of rows as U,.

STEP 21.11: Identify those columns of the augmented matrix that form a maximal set of linearly
independent column vectors, and delete the others. Orthonormalize the columns that
remain, and denote the resulting matrix as U,

If A is real, then both U and V may be chosen to be orthogonal. (See Problems 21.4 and 21.5.)

A STABLE FORMULA FOR THE GENERALIZED INVERSE
Decomposition (21.3) generates the numerically stable formula
-1 !
A+ =V|}'D""'E"Q}UH
0 0
which can be simplified to
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A" =v,D'UY (21.4)

where V, and U, are defined by Steps 21.8 and 21.9, respectively. For the purpose of calculating a
generalized inverse, Steps 21.10 and 21.11 can be ignored. (See Problems 21.6 and 21.7.)

LEAST-SQUARES SOLUTIONS

A least-squares solution to a set of simultaneous linear equations AX = B is the vector of smallest
Euclidean norm that minimizes ||AX — B||,. That vector is

X=A'B (21.5)

When A has an inverse, (21.5) reduces to X = A™'B, which is the unique solution. For consistent
systems (see Chapter 2) that admit infinitely many solutions, (21.5) identifies the solution having
minimum Euclidean norm. Equation (21.5) also identifies a solution for inconsistent systems, the
one that is best in the least-squares sense. (See Problems 21.8 through 21.11.)

Solved Problems

2 2 =2
A=| 2 2 -2
-2 -2 6

Using Steps 21.1 through 21.5, we first determine that A has rank 2. A 2 X 2 submatrix of A having
rank 2 is obtained by deleting the second row and second column of A. This submatrix can be moved
into the upper left position by interchanging the order of the second and third rows and then the second
and third columns. Then, setting

1 0 0 2 -2 2
P=Q=|0 0 1 gives us PAQ=| -2 _6__1'_:_2_

21.1 Find the generalized inverse of

010 2 -2 2
2 -2 2
where A“=[_2 6] A,2=[_2] and A, =][2,-2]
and A,, has rank 2. Then
[ 2 -2
-2 6 o _[6/8 2/8][ 2]_[1] _[1 0:1]
B=|_ . ... F_AnAu" 2/8 2/8 ~2 - 0 and Cc= 0 1.0
| 2 -2
-1 _[2 0]"_[1/2 0] . _._[ 12 —20]"_[11/32 5/32]
o (CCT)"={g ] Slo 1] m BB =] o sl {53 3n

QCH(CC”)—. I(BHB)- IBHP

)
10 0y Ol s o3z sim2jf 2 -2 271 0O
=10 0 10 I % ) s;32 wymll-2 6 ~2]|0 01
0 1 ofit o 01 0
"3/16 3716 118]

0
=
[=%
»
+
1

=|3/16 3/16 1/8
L1/8 1/8 1/4
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21.2

21.3

21.4

Find the generalized inverse of

[00 12
A‘[1223]

The matrix has rank 2. A 2 X 2 submatrix of A having rank 2 (but not the only one) is obtained by
deleting the second and fourth columns of A. This submatrix can be moved into the upper left position
by interchanging the order of the second and third columns. Then, setting

1 000
_[1r o {0010
p=[y §] ;s Q=lg g g
0001
we get PAQ=[(1) ;Eg g] with A“=[? ;]

and with both A,, and A,, empty. Then
A [0 1] — A- _[—2 1}[0 2]_[2 —1] _[1 0|2 —1]
BA“[IZ F=auAa=] 1 oll2 31510 2) ©=lo 1lo 2

a1 |1 2]“_[ 5 —2] Hﬁ._[ 6 —2]“_[5/26 2/26
o (B"B) [2 sl “l-2 1] ad (€€ = 5 5| =l226 626
and A+ — QCH(CCH)—l(BHB)—IBHP
(1.0 0 10
001 0 1[5/26 2/26][ 5 —2}[0 1][1 0
010 202/266/26—211201]
[0 0 0 12
[ —-8/26  5/26
—16/26  10/26

2126 2/26
L 12/26 -1/26

Find the generalized inverse of

-3 1
-2 1
-1 1
A= 01
1 1
2 1
L 3 1.
Since the columns of A are linearly independent, we use (21.2). Then
wa=[% 3] wma aw=['70 0]
e aman-tan [ —3/28 —2/28 —1/28 0  1/28 2/28 3/28
and ASWAAT=L g T T T T 1 1/7]

Construct a singular-value decomposition for the matrix in Problem 21.1.
We use Steps 21.6 through 21.11,
12 12 =20
STEP 21.6: A"A=[ 12 12 -20
=20 -20 44
which has eigenvalues 64, 4, and 0 with corresponding orthonormal eigenvectors

-1V6 13 -1V2
X, =| -t"V6 X,=[1/V3 X,=| 1V2
2V6 1/V3 0
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_[vea o]_[s 0]
STEP 21.7: D—[ o vil=lo 2
-1V6 1/V3 [ —1/V2
STEP 21.8: V,|-1/V6 1V3 and V,=| 1/V2 with  V=[V,|V,]
2V6 1V L 0
2 2 2-1ve 1WV3 18 0 ~-1/V6 1V3
STEP 21.9: U,=AvD '=| 2 2 -2|[-1+6 1N§[0 “2]= -1Vé6 11V3
-2 =2 6]l 2/vVé 13 26 1V3

STEP 21.10: Augmenting the 3 X 3 identity matrix onto U,, we generate

-1/4v6 1/V3 1 0 0
-1/V6 IVW3 01 0
2/V6 1IV3 0 0 1

STEP 21.11: The first three columns of this matrix form a maximal set of linearly independent column
vectors. Discarding the last two columns and applying the modified Gram-Schmidt
process to the first three columns, we obtain

[—1/\/3 1V3 —1/\/7]

-1/V6 1V3I W32
2V6 13 0

which, in this case, is identical to V. A direct calculation shows that

8 0 0
A=v|0 2 ofu”

000

Construct a singular-value decomposition for the matrix in Problem 21.3.
Using Steps 21.6 through 21.11, we first form
28 0]
0 7

which has eigenvalues 28 and 7, with corresponding orthonormal eigenvectors X, =(1,0)" and X, =

[0,1]". Then
p=['F 5] we weli ]

A"A=[

V, is empty, so V=V, and

[-3 1) [ —3vV28 1/V7
-2IV28 IWNT
-1/V28 1NT

0 1N
1V28 1/V7
2V28 WG
J | 2/V28 1T

We augment U, on the right by the 7 x 7 identity matrix and then determine that the first seven columns
of the augmented matrix form a maximal set of linearly independent column vectors. We discard the last
two columns of the augmented identity matrix and apply the modified Gram-Schmidt process to what
remains, generating

U =avD'=| 0 [1 0}[1/\/% 0 ]=

01 0 1V7

[ e
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(328 1T 15/VA20 0 0 0 0
—2VB 1VT —-10/VEW  10VII0 0 0 0
-1/V28 1T -TWA0 -8V210 2V10 0 0

0 InNT  —4NEW0 -5A/210 —-2VTI0 3V30 0
1/V28 1/VT  —1WVAX0 -2V/210 —1/VT0 -4/V30  1/V6
2/VI8 1VT 2/V420 1/V210 0 -1/V30 -2/1vé
L 3/V28 1/VT 5(Va20 4210 1V10 2/V30  1/VEJ

A direct calculation shows that

vH

OOOOOO&
> ]
OOOOO;{"O

21.6 Use (21.4) to calculate the generalized inverse of the matrix in Problem 21.1.
Using what we have already found in Problem 21.4, we compute

. TIVE IV3I e 6 (=176 ~1VE 2/VE]_|2/16 /16 18

AT=VDTUT=-IVE AVEI T ol 1vE ivd 13T | 316 316 18

2/V6 1/V3 1/8 1/8 1/4

21.7 Use (21.4) to calculate the generalized inverse of the matrix in Problem 21.3.
Using what we have already found in Problem 21.5, we compute
A" =v,Dp'Uf

_[1 0][1/m 0 ][—3/\@ -2/V28 -1V/28 0 1/vV28 2/V28 3/V2R
“lo 1 0 IVTIL VT 1/Vv7 1WAV VAV I VAV BN WAVE B WAV |

_[—3/28 -2/28 —1/28 0 1/28 2/28 3/28]
Lo 1/7 1/7 17 147 147 117

21.8 Solve the following system of equations in the least-squares sense:
2x, +2x, —2x, =1
2x, +2x, - 2x,=3
=2x; —2x, +6x;=2

This system is inconsistent. Writing it in matrix form and then using (21.5) and the results of either
Problem 21.1 or Problem 21.6, we obtain

3/16 3716 1/8][1 1
X=13/16 3/16 1/8(|3!=]1
1/8 1/8 1/4]L2 1

Therefore, x, = x, =2x, =1 is the solution in the least-squares sense.

21.9 Solve the following system of equations in the least-squares sense:
x,+2x, =1
x, +2x,+2x,+3x,=2

Writing this system in matrix form and then using (21.5) and the results of Problem 21.2, we obtain
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21.10

21.11
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-8/26  5/26 1/13

X = -16/26 10/26 [1]= 2/13
2126 2/26|L2 3/13

12/26 —1/26 S/13

Thus, x, =1/13, x,=2/13, x,=3/13, and x, = 5/13.

Verify that the solution obtained in Problem 21.9 is the solution of minimum Euclidean norm
for the set of equations given in that problem.

Interchanging the order of the two equations, we obtain the system
x, +2x,+2x,+3x,=2
xy+2x,=1
whose coefficient matrix is in row-echelon form. Using the techniques of Chapter 2, we determine the
solution to be
-2x, + x,

= X2
X=1 _2x,+1 (1)

Xy
with x, and x, arbitrary. For this vector,
(IX[13=(=2x,+ x,)* + x2 4+ (=2x, + 1)* + x} = 5x5 + 6x3 — dx,x, —4x, + 1
The minimum of this function occurs at its critical points. Setting the first partial derivatives equal to
zero, we get
10x, — 4x,=0
-4x, +12x,=4

which has the unique solution x, = 2/13 and x, = 5/13. Substituting these values in (1) gives us the same
solution as we obtained in Problem 21.9.

Sales data were taken over a seven-year period of time and coded so that the midpoint of the
period coincides with time ¢ = 0. The results are given in the following table (in hundreds of
thousands of dollars):

Tich—3 -2 -1 0 1 2 3

Sales | 10 15 19 27 28 34 42

A graph of these data reveals a near linear type of growth. Find the equation of the straight
line that best fits the data in the least-squares sense.

A straight line here would satisfy the equation
S=ar+b (1)

where S denotes sales, t denotes time, and a and b are constants to be determined. Substituting each
data pair into Eq. (1) yields the system:

—-3a+b=10
—2a+ b=15
—a+b=19
b=27
at+b=128
2a+b=XM

3a+b=42
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21.12

21.13

21.14

Writing this system in matrix form, and then using (21.5) and the results of either Problem 21.3 or
Problem 21.7, we obtain

107
15

19
x_[a]_[—3/28 ~2/28 -1/28 © 1/28 2/28 3/28] 27 _[143/28]
=|p]=

1/7 1/7 1/7 /7 17 17T 117 L 25

28
34
L42

The equation of the line that best fits the data in the least-squares sense is § = 4r + 25.

Working to four significant digits, show that (21.2) is numerically unstable when applied to

1 1
A=]1 1
1 1.004

Rounding all stored (intermediate) numerical quantities to four significant digits, we calculate:

A"A=[g'$ ;’38‘;] so  detAPA = —1.600 x 1073
arot 1 [ 3.008 —3.004]=[-1.380><1o5 1.878X105]
Then (A"A) "= o= 105 L-3.004  3.000 1.878 x 10° —1.875 x 10°
+ H —1,H _ ~200 —200 551.2
and A== T T i

This compares unfavorably with the actual generalized inverse

A*=[ 125.5 125.5 —250]
—125 -125 250

calculated without rounding off. Similarly poor results are obtained when results are rounded to k digits
and the component 1.004 is replaced with the more general 1+ 4 x 107**",

Show that the generalized inverse is unique.

We assume that D and E are two generalized inverses for the same matrix A and then show that
D =E. Since both D and E are assumed to satisfy conditions I1, 12, and I3 we know that DA, AD, EA,
and AE are all Hermitian and that

ADA=A DAD=D AEA=A EAE=E

Multiplying the first of these equations on the right by E, we obtain ADAE = AE, from which we infer
that

AE = (AE)" = {(AD)(AE)}" = (AE)"(AD)" = (AE)(AD) = (AEA)D = AD

Multiplying that same equation on the left by E, we obtain EADA = EA, from which we deduce that
EA = (EA)” = {(EA)(DA)} " = (DA)”(EA)” = (DA)(EA) = I{AEA) = DA

Then E = EAE = (EA)E = (DA)E = D{AE) = DAD = D

Show that if P and Q are unitary matrices of appropriate order so that the product PAQ is
defined, then (PAQ)" = Q”A" P

Let G = PAQ. We need to show that G* = QA" P" satisfies conditions 11, 12, and I3, given that A
and A” do.
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21.15

21.16

21.17
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I1: GG’ =(PAQ)Q”A"P") = PA(QQ")A"P” = PAIA’ P" = P(AA")P"
G’ G = (Q"A"P")(PAQ) = QA" (P"P)AQ = Q"A’IAQ=Q"(A"A)Q
Both are Hermitian since AA* and A*A are.
12: GG'G = (PAQ)(Q”A'P")(PAQ) =PA(QQ")A*(P"P)AQ = PAIA'IAQ =P(AA'A)Q =PAQ =G
I3: G'GG' =(Q"A"P")PAQ)Q"A'P") = Q"A"(P"P)A(QQ™)A*P” = Q" A*1AIA P”
—Q"(A'AATIPY = Q"A'P" =G*

Show that if A can be factored into the product BC, where both B”B and CC” are invertible,
then A* = C#(cC”)"'(BYB)"'B”.

We need to show that A" satisfies the three conditions required of a generalized inverse.
I1: AA' =(BC)C"(cc™) '(B”B) 'B¥ =B(CC")(cC”) '(B”B) 'B" =B(B"B) 'B”

A'A =cfcc”y '(B"B) 'BY(BC) = c”(cc”)y (B¥B) (B”B)C = cH(cc”)'C

Both are obviousty Hermitian.

12: AA'A = (BC)CY(CCH) (B¥B) 'BY(BC)=B[(CC”)(CC”) '|[(B¥B) (B¥B)]JC =BIIC=BC=A

13: A’AA' =c"(cc™)"Y(B"B) 'B7(BC)C"(CC”) '(B"B) 'B”
=c"(cc™)'[(B"B)” '(B"B)J[(CC”)(CC™) '|(B”B) "B
=c*cc?)y"'i(B"B)'B” =c”(cc”)'(B"B) 'B" = A"

Validate the algorithm given by Steps 21.1 through 21.5.

Steps 21.1 through 21.4 provide a procedure for factoring the matrix PAQ into the product BC,
where both B”B and CC” are nonsingular. Observe that the last # — K columns of PAQ are linear
combinations of the first K columns, so there must exist a matrix F such that both A, =A, F and
A,,=AF.Sincc A | is invertible, F= A['A , and A,, = A, A;'A,,. Now it follows from Problem 21.15
that (PAQ)* = C"(CC”) '(B¥B) 'B”, and then from Problem 21.14 that

QHA+PH =CH(CCH)—l(BHB)'1BH

The desired formula comes from multiplying both sides of this last equation by Q on the left and P on
the night.

Although the factors B and C and the matrices P and Q are not unique, the product is, as a result of
Problem 21.13.

Prove that (A")* =(A*)".
Set G = A”. We need to show that G* = (A")" satisfies conditions 11, 12, and I3.
1: (GG’ )" ={A"A"Y}'=A'A=(A"A)"=A"(A")" =GG~
(GG = {(A")"A"}" =AA" = (AA")*=(A")"A" =G G
Both are Hermitian by the definition (13.2).
I2: G'GG" =(A")"A"(A" )" =(A*AA" )" =(A")" =G’
13: GG'G=A"(A")"A"=(AA’A)"=A"=G

Thus, G = (A")" satisfies all the conditions for a generalized inverse for A”, and since the generalized
inverse is unique, it follows that (A")* =G* = (A")".
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Supplementary Problems

In Problems 21.18 through 21.24, find the generalized inverse of the given matrix.

1 11
1
a8 [} 29 [ 1 ma 111 aam [1 ]
1 113
111
11 112
an |20 nn [ 122 S ;] 21.24 [1 1 1]
01 1 23
In Problems 21,25 through 21,38, find the least-squares solution to the given system of equations.

21.25 x, +x,+3x;=1 21.26 x, +x,+x;=1
X, +x,+3x;=2 X, +tx,+x,=2
X, +x,+x,=3

21.27  x, +x,=1 21.28 x, +2x, + 3x, + x5=1
2x, =2 -x, +2 x,—2x,+3x,=1
x,=3

21.29 Show that the least-squares solution of AX = B must necessarily satisfy the system A"AX = A"B (the
normal equations for the original system).

21.30 Show that if A=QR is a QR decomposition of A, then the normal equations can be written as
R7RX = RYQ"B, which reduces to
RX =Q"B (1)
when the columns of A are linearly independent.
21.31 A numerically stable procedure for determining the least-squares solution to the matrix system AX =B

when the columns of A are linearly independent is to first determine the QR decomposition for A"A and
then solve (7) of Problem 21.30 for X. Use this procedure to solve Problem 21.11.

21.32 Use the procedure described in Problem 21.31 to solve Problem 21.27.

21.33 The following data appear to be quadratic when graphed:
x l 0 1 2 3 4

yllo 14 18 32 49

Determine the normal equations for the quadratic equation, y = ax’ + bx + c, that best fits these data in
the least-squares sense (see Problem 21.29). Solve for a, b, and ¢ using the procedure described in
Problem 21,31,

21.34 Construct a singular-value decomposition for

_fr 13
A_[l 1 3]
21.35 Construct a singular-value decomposition for
17 —9]
S

21.36 Prove that A® = A" when A is nonsingular.
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21.37

21.38

21.39

21.40

21.41

21.42

21.43

21.4

21.45

21.46

21.47

21.48

21.49

21.50

GENERALIZED INVERSES [CHAP. 21

Prove that 0" =0,

Prove that (A*)" = A.

Prove that (kA)" = (1/k)A", provided k #0.

Prove that if A is Hermitian, then so too is A™.

Prove that if A is Hermitian and idempotent, then A™ = A,
Prove that AA" and A"A are Hermitian and idempotent.

Show that if A has order m X n with m = n, then A can be factored into A = U3SV", where X isann X n
diagonal matrix, V is an n X n unitary matrix, and U is an m X n matrix with orthonormal columns.

Using the matrices identified in Problem 21.43, show that P=VIV" is positive semidefinite, and
M = UV" is a matrix with orthonormal columns.

Using the results of Problems 21.43 and 21.44, show that any m X n matrix A with m = n can be factored
into A = MP, where M has orthonormal columns and P is positive semidefinite. Such a factorization is
called a polar decomposition of A.

Find a polar decomposition for the matrix in Problem 21.1.

Find a polar decomposition for the matrix in Problem 21.3.

Show that the positive semidefinite matrix P defined in Problem 21.44 as part of the polar decomposition
of A can be given by P=VA"A.

Show that if A is invertible, then the matrix M defined in Problem 21.44 as part of the polar
decomposition of A reduces to M= (PA™")" = (A")"'P.

Use the results of Problems 21.48 and 21.49 to determine a polar decomposition for

a=[3



Answers to Supplementary Problems

CHAPTER 1

1.19 (a) [1 4] (b) [3 6] () [2 —2] (d) [ 1 3 —1] (¢) undefined
4 =2 9 -12 3 —14 -6 -7 -1
-5 —4 =2
120 (a) -10; (b) 23; (c) -1

RN O N R TR

1.21 (a)

1.22 (a)

26 20 13 (b) 3 6 3 1.23 [ 9 0]
-16 -10 -5 6 12 6 -13 20

16 16 8 9 18 9

1.26 (a)

1.4 (a) [13} (b) undefined 1.25 (a) undefined; (b) [2, 5, 5)
5
8
[ 0 1

2] (k) [14] 127 [1 z]
9

o 1 3
0 0 0

1.30 1 1/2 1.31 [1
0 0
LO 0 0

132 @ 2 () 2 (o) 2 (d 1 (¢ 1

1.28 |1 2] 1.29 [1 5/3 0]
1

<
oo -

1.33 There are many examples; one is
[1 2][ 6 —2]
2 411-3 1
1.34 Total sales revenue for the flight

1.35 ND={[20700, 15300, 4900]", a vector representing the money invested by each store in unsold computers
of both brands

CHAPTER 2

2.15 (b) and (c) are solutions.

216 [1 3 1+ 5 217 [2 -4 7 6 -4.17
21 =315 0 6 -3 —4 -5i2
17 5.1 2 8 1 -2 -14!10

218 (a) x,=3%x,=5,x,=—4; (b) x,=-7-3x,,x, arbitrary, x, =5, x, =0

203
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2.19 x, =8+2x,, x,=—-1-x,, x, arbitrary

2.20 The system is not consistent.

2.21 Only the trivial solution x, = x, = x, = 0 exists.
222 x,=4+x,;, x,=—2x,, x, arbitrary

223 x, =8, x,=-2,x,=-3

224 x,=x,=x,=2,x,=-1

2.28 x, = -560, x, =4860, x;, = —10920, x, = 7000

226 x, = —-19999.302022, x, = ~9999.298601, x, = 0.690113, x, = 10000.707204, The system is inconsistent
when results are continually rounded to four significant figures.

2.27 x, =0.49998, x, = 0.00001, x, = 0.5

2.28 (a) Consistent only if k=7, and then x, =2 — x,, x, =1 + x,, x, arbitrary; (b) consistent only if k =2,
and then x, = x, =2.

2.29 There are infinitely many solutions to the system

12¢ + 104 + 6r = 440
Sc+ 3d+ r=120

230 b-003;/+003¢+0.03s=0
0.01; - ¢ =0
0.04;i — 0.04c — s=0

231 A(Y-Z)=AY-AZ=B-B=0

2,32 Y - Zis a solution of the homogeneous system; simply call that difference H.

CHAPTER 3
313 @ [t 0 0 (b) [7 0 0 (c) 100
0 01 010 -3 10
t0 1 0 0 01 001
314 (@) [t 0 0 O (b) 1 000 (o0 J1 050
0010 01 00 0100
0100 0010 0010
L0 0 0 1 -3 0 0 1 0001
315 (@ 11 o0 ] (b) [—2 1 ] 316 ,[-1 ~4 2
372 —~172 12 ~172 3 -6 1 2
3 2 -1
3.17 Let A and B be n X n lower triangular matrices. Then a,, =0if k>, and b, =0if j> k. Set C= AB.

For j > i,

-3 by, = S a.b, + 2 aub, = E 0O+ 3 (0)b,, =

k=1 k=1 k=i+1 = k=r+1
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38 [1 0 01 2 3 3.19 2 0 0 1 -1/2 2
4 -3 00 1 2 1 772 0 [0 1 277
L7 -6 04LO0 0 1 -1 372 1177410 0O 1
320 [1 0 ¢ OJfr 0 0 2
210 oy)jo1 0 -3
022 0001 3
L0 3 ¢ 10JL0 0 0 1
3.21 The factorization cannot be done
322 1 0 0 0 1 2 3 4
2 -6 0 0 0 1 7/6 7/6
1 -5 41/6 0 60 1 -13/41
2 -2 -20/3 -155/41]L0 0 © 1
323 x,=x,=1,x,=2,x,=-2 324 x,=4,x,=0,x,=1,x,=0
325 x,=0,x,=x,=1,x,=-1 3.26 x,=4+y,, x,=-2y,, xy=y; =Y,; y,arbitrary
3.27 Cannot be solved; LY =B is inconsistent. 3.28 x,=8,x,=-2,x,=-3
329 x,=x,=x;=2,x,=-1
2 | 7 10] 3 [37 54] 3n (32 0 0
3.30 A_[IS 2 A=ls1 1 01 0
00 -1
3.32 Each diagonal element is raised to the pth power.
33 (I-AY=(I-A)(I-A)=F-TA-AI+A’=I-A-A+A=1-A
3.35 By induction: The proposition is obviously true for p =1. If it is true for p = k — 1, then
(AE)TZ (Ak—lA)T=AT(Ak—])T= (AT)I(AT)k—I = (AT)E
CHAPTER 4

205

4.15 These are elementary matrices: (@) the matrix is its own inverse; (b) change 7 to 1/7; (c) change 4 to —4;

4.16

4.18

4.20

4.22

4.23

(d) change —3 to 3.

[ 1/2 0] [ -5 3]
-1/2 1 2
No inverse 419 1 [ 4]
11 3

1 O 0 4.21 1 -1 1/5
-1 1/2 0 0 -1 3/5
1/3 0 1/3 0 0 1/5
No inverse

, [—1 4 7}
|l 6 4 -14
2Bl 8 4 0
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44 -6 -16 17 4.25 1 -3/2 1/2
] 0 16 -8 1 -1 0
18 16 -11 -2 2 ~-112
4.26 -26 11 7 -1
1 o 1 -1 1
2] 16 -7 -3 -1
2 -1 -1 1
4.27 x,=37/28, x,=—26/28, x, = ~44/28
428 x,=3,x,=0,x,=-3 429 x,=-9/2,x,=1/2,x,=5/2,x,=1/2
4.30 (A7) is the inverse of AT. Now AT(A™") " =(A"'A)"=1"=1, so (A™") is also the inverse of A"
Equality follows from the uniqueness of the inverse.
4.31 Each part follows from the uniqueness of the inverse: (a) A~'B™" and B"'A™' are both inverses of AB;
(b) A™'B and BA™' are both inverses of AB™'; (¢) AB™' and B 'A are both inverses of BA™".
CHAPTER 5
521 (@) -3, (b) —33 (¢) -2916+3015=-3(-33)=99
522 (a) 0; (b) -28; (¢) 0=0
8.23 (a) -48; (b) detF is undefined because F is not square.
524 (o) _1[ 7 —6] (b) __i[—() 3]
3l-4 3 33L-5 8
5.25 1 { 1 -4 —7] 5.26 1 [ 6 16 —17]
-=|-6 -4 14 - 0 -16 8
Blg 4 0 Bl 18 -16 1
527 0 528 2
5.29 -2 11 7 -1
1 o 1 -1 1
2y 16 =7 -3 -1
2 -1 -1 1
5.30 Denote the equal rows as rows / and j. Add —1 times row i to row j, and then use Properties 5.5 and 5.6.
5.31 Use Property 5.4 n times, once on each row of A.
5.32 detA’=detAA =det AdetA
5.33 det AB =det A det B=det Bdet A =det BA
534 1=detl=detAA™" =detAdetA™";s0detA™' = 1/det A.
5.35 Note that det A =det LU =det L det U, and then use Property 5.2. In particular, det U = 1 since it has

only unity elements on its main diagonal.
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CHAPTER 6

6.15

6.17

6.19

6.21

6.22

6.23

6.24

6.25

6.27

6.28

6.29

6.30

6.31

6.32

6.34

Linearly dependent 6.16 Linearly dependent

Linearly independent  6.18 Linearly dependent

Linearly independent 6.20 Linearly dependent

No

(a) Yes, {0,0,1]=0[1,1,2]+1]2,2, 2]+ (-1)[2,2,1}; (b) no

(@) Yes, [2,1,2,1]=2{2,0,1,1]+ (-1){0,1,2, -1] + (-2)[1, -1, -1,1] + 00,0, 1, 2];

(6) Yes, [0,0,0,1]=(1/3)[2,0, 1, 1] + (-2/3)[0, 1,2, —1] + (=2/3)[1, -1, -1, 1] + (1/3)[0, 0, 1, 2]

4a—2b + +2b— —2a+
[a,b,c]=a__ll_’:[1’0’1]+9__252[1,2’0]+th

5 fo,1,2]

{1, 2]"} 6.26 {[1,1,2],[2,2,2]}
{i1,2,1,-1],[t1,0,-1,2},[0,1,1,0}}

[5/3,5/6] = (1/2)[1, 1] + (1/3)[3, 0] + (1/6)[1, 2]

21=5 el 3 sl oli] o[ 7]

[31=3 3] +3 [ 8] +ol3]+o[ 7]
No vector in the set {V,,V,,...,V,,V} can be written as a linear combination of vectors preceding it,
not the first » vectors (as a result of Property 6.2), because they are linearly independent, and not the

last vector in the set, because of the hypothesis. It then follows from Property 6.2 that the entire set is
linearly independent.

Consider {V,,V,,...,V,,0}. Thenc,=¢,=---=c¢,=0,c,,, =1is a set of constants not all zero such
that ¢,V, + c,V, +-:-+ ¢V, + (1)}(0)=0.

0 —3x -3].. )
Only [0] 6.33 [ XZ] = xz[ 1]wnh x, arbitrary
X, —2x, 1 -2
-— _1 . 3
2 =X gt x g with x, and x, arbitrary

1

X4 0

CHAPTER 7

All x, in the solutions for this chapter denote arbitrary constants.

7.18

7.19

7.20

] for A=0 and xz[:] fora=4

—

3
x| 3
for A =1, an eigenvalue of multiplicity two

1

[
o]
[

% "4] for A=3 and x2[ﬂ for A=9
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7.21

7.22

7.23

7.24

7.25

7.26

7.27

7.28

7.29

7.30

7.31

7.32

7.33

7.35

ANSWERS TO SUPPLEMENTARY PROBLEMS

X, 1{2] for A=6 and 12[7{2] for A= -6
X, (—3_1\/3)/2] for A=VS5 and xz[(d3+l\/§)/2] forA=-V5
fy L
b 11 '2] for A=2+{2 and xz[ 1;"2] forA=2-i2
17 1 0
x| 0 for A=1, x| 1 for A=2, and x| 1 for A=3
L0 0 1
[17] 0 -1
x,|0[+x,1 for A = 0 (of multiplicity two) and xi 1 for A= -1
L O] 1 0
) -3 1/3
x,] Lli+x, O for A = —3 (of multiplicity two) and X,] 273 for A=11
L 0 1 1
F1
0 for A=5 (of multiplicity three)
L0
[17] 0
0 and 0 for A =5 (of multiplicity three)
L 0] 1
17 0 0
0 1 and 0 for A =5 (of multiplicity three)
L0 0 1
1] 0
0 0 e
0 and 1 for A =3 (of multiplicity four)
Lo 0
17
8 for A =3 (of multiplicity four)
L 0]
r_ l - 0 _3
1 0 N 2
0 and -1 for A =1 (of multiplicity three) and 0 fora=2
L 0. 1 0
[ 1] [ 1 1]
0 -1 and 2 for eigenvalues 2, 3, and 6, respectively
[ 1] L 1 1]
1] i1 17
1 1 and -1 for eigenvalues 12, 6, and 4, respectively
L _2.4 L 1 O_

(—1,1] and (1, 3], corresponding to eigenvalues 0 and 4, respectively
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7.37

7.38

7.39

7.40

7.42

7.43

7.4

7.45

7.46

7.47

7.49

7.50

ANSWERS TO SUPPLEMENTARY PROBLEMS 209

[-1,1], corresponding to the eigenvalue 1 (of multiplicity two)

[1,—2] and [1, 4], corresponding to eigenvalues 3 and 9, respectively

[1,-1,0}, [1,1,2], and (1, 1, —1], corresponding to cigenvalues 1, 3, and 6, respectively
[—1,1,0], [1,0,1], and [1, 1, —1], corresponding to eigenvalues 0,0, and 3, respectively
[1,1,0], [-1,0,1], and [1, —1, 1], corresponding to eigenvalues 2, 2, and 5, respectively
A’X = A(AX) = A(AX) = A(AX) = A(AX) = A’X

(A-c)X =AX — cIX=AX - cX = (A— o)X

The proof is by induction on the order of the matrices. The proposition is certainly true for 1 x 1
matrices. Assume it is true for k X k matrices, and let A be an arbitrary (k +1) X (k + 1) matrix.
Designate as A’ the matrix obtained from A by deleting its first row and column. Then A’ has order
k x k, and the induction hypothesis can be used on it. Evaluating det (A — AI) by expansion of the first
row, we pet

y — A1 (A% - (trace A)A* 7' + O(A* )} + O(A*77) (by induction)
D* 1A% = (a,, +trace A)A* + O(A* 7N}
D A — (trace A)A* + O(A*7"))

a,

Denote the eigenvalues of A as A\, A,,..., A,. Then
det A—AD=(-D"(A=A)NA-A) (A=A )=(-1)"{A" = (A, + A, + -+ A A"+ O(A"7%))
But from Problem 7.44,
det (A — AL} = (—1)"{A" — (trace A)A" " + O(A" %)}

a-1

The result follows from equating the coefficients of A" in the two expressions for the characteristic

polynomial.

trace (A +B)=(a,, + b, )+ (a,, + b))+ +(a,, +b,,)
=(a,+a,+-+a, )+, +by+ - +a,)
= trace A + trace B

trace AB = D, (Z a,.,‘b,“) = (E b“a,.,‘) = trace BA
1

=1 k= k=1 ‘i=1

Using the results of Problem 7.47, we have
trace $'AS = trace {S "' (AS)} = trace{(AS)S '} = trace{A(SS™')} = trace Al = trace A

Denote the eigenvalues of A as A, A,,..., A,. Thendet(A — AL} =(—1)"(A =AM A—A,): - (A—A,).
Set A=0, and detA=AA,---A_.

The proof is by induction on the order of the matrix. When C has order (k + 1) x (k + 1), expand
det(C — Al) along the first column, obtaining the sum of two determinants. Use the induction hypothesis
on the cofactor matrix of the element —A in the (1,1) position. The second determinant is easy to
evaluate because the cofactor matrix of —gq, is lower triangular.
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CHAPTER 8
. _[1 _%] . _ [l 0 0]
8.19 l‘l‘l“*'[o 1] ImB=l 1o
lim C, does not exist because lim {(k — Y (k+ 1)} = —.
8.20 Every square matrix A
8.21 All eigenvalues must be less than 4 in absolute value.
] 1 4sin5+2sin(—1) 2sin5—2sin(-1) -0919773 -0.039151
8.22 (a) sinA=¢ [4sin5—4sin(—1) 2sin 5 + 4sin (=1) =[—0_0783()2 _0,330(,22]
() o= L[del+2e” 2e —2e“]= [99.0647 49.3484]
€ T8 lae’ —ge 2¢° +de! 98.6969 49.7163
_1{4cos1-2cos(~1) —2cosl+2cos(—1)] _[0.540302 0
8.23 (a) COSA_§[4cosl—4cos(—l) —2cosl+4cos(—1) *[ 0 0,540302]
47 w_|11 '-6]
(b) 3A +2a —[]2 -
8.24 (0) sinA=0; (b) cosA=1l
8.25 [e‘“ 0 ] 8.26 [ 3¢ —2e” 3e'—3e"}
0 e —2¢'+2e7" -2 +3e”’
8.27 [ez’ tez'] 8.28 [cos 2+ 2sin2t 3 sin 2t ]
0 e -2 sin 2t cos 21 — 2sin 2t
8.29 1t 1y2 8.30 1 00
e’{0 1 e¥10 1 ¢t
0 0 1 0 01
831 | [9" -3e'+3e e'-e¥+31e™| 832 [sin2t O 0 0
9] © 9¢* 9re*’ 0 sin2r rcos2t 0
0 0 9e™ 0 0 sin2t 0
0 0 0 sin 3¢
1 2r+ e—dl
833 X(1)= l:ggszr _ ;e—u]
8.34 C=[c,,c,]” is arbitrary. The solution vector, in terms of C, is
X(1) = {(-3c,+c, + 8+ (c,— H)ed+ i+ %
(1= {(=9¢c, +3c, + Pt +(c; = $)}e” + 4
1 -4 1 .21 1 P, -4t 4 _2¢ 1 — —
_|ge ¥+ e~} _|ee+3e 3 N 1]
8.35 X([)—'[ _%e—4|+ ieZI ] 8.36 X(I) [ _.ase—4r+ geZ: ] 837 X Ii_i _%
CHAPTER 9
9.16 (c¢) and (d)
9.17 X, X,=(-1,0,2,1,0]", X,=[2,0,-1,0,0]", X, =[-1,0,0,0,0]"
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9.18 10,1,0)7
9.19 X, X,=[0,1,0]", X, =[1,0,0]"
9.20 (a2) Two chains of length 2; (b) one chain of length 2 and two chains of length 1; (c) one chain of length 3
and one chain of length 1; (d) two chains of length 3 and one chain of length 2; (e} one chain of length
3, one chain of length 2, and three chains of length 1; (f) three chains of length 2 and two chains of
length 1; (g) the eigenvalue rank numbers as given are impossible.
9.21 () N,=N,=N,=1 and N, =2 for A=1; (b) the vectors found in Problem 9.17, along with
Y,=[0,1,0,0,0]7
9.22 (a) N,=N,=N,=1for A=35; (b) the vectors found in Problem 9.19
9.23 (a) N,=N,=1fora=-2; (b) X,=[0,1]", X, =[-3,3]"
924 (a) N,=1forboth A=0and A=4; (b) X,=[-3,1]"Y,=[1,1]7
9.25 (a) N,=1,N,=2fora=2; (b) X,=[0,0,1)", X,=[1,0,0)7, Y, =[0,-1,2]"
926 (@) N,=2forA=4and N,=1for A=—1; (b) X,=[1,0,1)7,¥,=[1,1,01", 2, =[-2,0,3]"
9.27 (@) N,=1land N,=2forA=1; (b) X,=[0,0,1]", X, =[1,1,-2)", Y, =[-2,1,1]"
928 (a) N,=N,=1for A=2and N, =1 for A=4; (b) X,=[0,1,1]", X, =[4,4,-8]", Y, =[-1,0,1)7
9.29 (a) N,=N,=1forbothA=2and A=3; (b) X,=[0,0,1,0]", X, =[1,0, -1,1],
Y,=[-5,-1,2,0]", ¥,=[0,0,0,1]"
930 (¢) N,=N,=1forA=2and N,=2forA=3; (b) X,=1[0,0,1,0]", X,=[1,0,-1,1]",
Y,=[0,0,01}", Z,=[-3,-1,1,0]"
931 (@) Ny=N,=1land N,=2forA=5N,=1forA=2; (b) X,=[0,0,1,0,0]",X,=[2,-1,0,0,0]",
X, =[-1,0,0,0,0)", ¥, =10,0,0,1,1]7, Z, =[0,0,0, -2, 1]7
9.32 (@) (A—2)% (b) (A=4)(A+1); (c) (A—1)%; (d) (A—2)(A=4); (&) (A—2)*(A-3)%;
(f) (A-2)"(a-3)
CHAPTER 10
10.20 None are similar. 10.21 [—3 0]
31
10.22 [-3 1] 10.23 010
L 11 -1 00
2 01
1024 [1 1 -2 10.25 100 -5
01 0 000 -t
(1 0 3 -t 10 2
101 0
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2y

10.37 2 62 31 10.38 [e“ te ]
2°(0 2 0 0 e
0 0 2
10.39 [ 3¢ —2e"  3e' - 3e"] 10.40 1 00
—2¢'+2e”" —2¢'+3e” e¥lo 1
001
1041, [9e7 -3+ 3 e '—e” +3e*
= 0 9 9e*
0 0 9¢*
10.42 Premultiply (10.1) on the left by S; then postmultiply on the right by $™' and set T = s
10.43 Premultiply (10.1) on the left by S to obtain SA = BS. Then
BY = B(SX) = (BS)X = (SA)X = S(AX) = S(AX) = A(SX) = AY
CHAPTER 11
1113 (a) 0; (B) 0; (¢) 3; (d) 2; () 14; (f) —6;(g) 2
1114 (@) 1+ (B) 1—1; (c) 4—i2; (d) —1-; (e) i5; (f) 50— i25
1.15 Q,=(1V2)[1, 1), Q,=(Vv2)[-1,1)7
11.16 Q,=(1/VT13)[3,2]",Q, = 1/V6877)[46, —69]"
11.17 The given vectors are not linearly independent. The Gram-Schmidt process produces Y, =0, on which
Step 11.4 cannot be performed.
11.18 Q, =V, 11,Q,= (/)1 -i,1+1)"
119 Q,=(1/V2)[1,1,0]", Q,=(1/VE)[-1,1,2]", Q, = 131, -1, 1]"
120 Q,=(1/V8)[2,1,-1]", Q, = (INVDI)[-1,13,11)7, Q, = (1V199)[8, -7,9]"
121 Q, =13, 1,1]% Q, = (1VE)[1,1,-2)7, Q= (1/V2)[-1,1,0]"
11.22 Q,=(/V2)[1,0,i]", Q,=(1V14)[1+i2,2,2 - i1", Q,= (IVFB)[-2-i,4-i3, -1 +i2)"
11.23 Q,=(1/V2)[1,1,0,0)", Q,= AVE)[-1,1,-2,0]". Q,= A1/V3)[1,-1,-1,0]", Q,=[0,0,0, -1]"
11.24 Q, =(1/V2)1,4,0,0]", Q, =(1VI8)[i 1,4,0], Q, = (1/VIT7)ie, 4, -2,9]",
Q, = (1132, -i2,i,i2]"
11.25 Q, =(1/V10)[1,0])%,Q, = (1/V10)[-7,5]"
11.26 Q,=(1/V3)[1,1,0]", Q,=(1VZH[-1,1,2)", Q,=(1/VI[1,~1,1]"
11.27 Consider the equation ¢,Q, +¢,Q, + - + ¢, Q, = 0, where the Q, vectors form an orthogonal set. For

eachi (i=1,2,...,n),
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0=(0,Q,)w =<§-:1 C,'Qp Qi>w = ;1 C,’(Qp Qi)w = C,-(Q,, Q.)w
Since Q, is nonzero, so too is (Q,, Q,)w; thus, ¢, =0.

1128 Set WX=Y=[y, y, ...,y Then (X,X),=(WX)-(WX)=Y-Y=I]_ |y|> Therefore,
(X, X),, =0. Furthermore, if X#0, then Y=W 'X#0, and I_, |y,|* is positive.

11.29 If we continue on Problem 11.28, it follows that (X, X},, = 0 if and only if Y = 0 and that is the case if
and only if X=W™'Y=0.

CHAPTER 12

12.19 (a) 1; (b) V13, (c) V21, (d) VE5; (e) VA

12.20 (a) 1; (b) 6; (c) 7; (d) 9; (e) 12

1221 (a) 1; (b) 3; (c) 4; (d) 8; (e) 4

12.22 (a) VIO; (b) VE6; (c) V29; (d) V298; (e) V464

1223 (a) 3'*; (b) V3; () 3; (d) (155)'%; (e) 11; (f) 4

1224 (a) 1; (b) V29; (0) 8; (d) V30

12.25 (a) 1;(b) 7; (c) 8; (d) 5+V5

12.26 (a) 1; (b) 5; (¢) 8; (d) §

12.27 (a) 1; (b) 133'"; (c) 8; (d) 5.1448

12.28 (a) V30; (b) VT9; (c) V66; (d) V2ZI; (e) VT5

12.29 (a) 6; (b) 12; (c) 9; (d) S; (e) 8.9443

12.30 () 7; (b) 8; (¢) 9; (d) 5; (e) 9.4721

12.31 (a) 5.4650; (b) 8.6099; (c) 8.1231; (d) 4.2992; (e) 7.1517
12.32 For any induced norm, ||1} = max, -, (11X} = max,,, ., (IIX})) =1.

12.33 Denote the ith row of A as A,, and the jth column of B as B,. Then

n

n n 2 n n
"AB“i—= z 2 2 2, byl = 2 2 KA;T, B;)lz

fm] juml =] fm] yea)
and, by the Schwarz inequality,
laBjz =3 X (A7,A7)(B,,B,)

i=1)=1
=3 3 (3t D 1601)=(E 2 10ul)(E S 1o, ) = NalzBIE
=1g=1 ‘k=1 m=1 i=1 k=1 j=1m=1
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12.40

12.41
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IX+ Y| =(X+Y.X+Y)y, = (X, X} + (X, V) + (¥, X} + (Y, Y}
= (X, X)w + (Y, Y}, = IX[[5 + (YIS

(a) V30; (b) 8; (¢) V66; (d) V2Z; (e) VTS5
(a) 5.3723: (b) 6.7958; (c) 8.1231

4.8990

The eigenvalues of A and A” are identical.
(a) 15; (b) 4.158; (¢) 66; (d) 2.729; (e) 2.147
I"'=1and |I]| =1 from Problem 12.31.

For nonsingular A, 1=||I]| = ||JAA™"|| = [|A[|[|A™"] = c(A).

CHAPTER 13

13.20

13.21

13.22

13.23

13.24

13.25

13.26

13.27

13.28

13.29

13.30

13.31

C,E,and F
B,C,E, F, and H.

Q, =12, 1VZ,0]", Q,=[-1/V8, 1/V8, 2/VE]', and Q, = [1 V3, —1/V3, 1/V3]", corresponding

to eigenvalues —2, —2, and 1, respectively.

Q,=[1,0,0,0,0]", Q, =[0, V3, 1VZ, 0, 0], Q, = [0, —1/V&. 1/VE, 2/VE, 0]", Q, = [0.0,0,0, 1],
and Q, = [0, 1/V3, ~1/V/3, 1/V/3, 0], corresponding to eigenvalues 3, 3, 3, 0 and 0, respectively.

Q,=[iV3, —1/V3, 1V3, 0], Q,=[i/V3,0,-1~V3,11V3], Q,=[i/V6, 2/V6, 1/V6, 0]", and
Q. =[-i/V6,0,1/V6,2/V6]", corresponding to eigenvalues 1, 1, 4, and 4, respectively.

(a) F cannot be reduced using only E3; (b) three positive values and two zeros; (c) four positive values

JES IR

5+i16 64-i9 7T2-il145
-2-1il6 {100 —16 + 90

(a) Eitself (b) 1[ -1 4-i2 2+ill]
16

[ 3 —i] =[—i —2] .=[1 2 o]
A[—iZ B =], G'={, 20

A+B)"=(A+B) =(A+B) =A"+B"=A"+B"=A+B

(AB)” = (AB)” = (BA)" = (BA)" = A"B” = A”B" = AB, implying that powers of Hermitian matrices are
Hermitian, because A commutes with itself. |

Construct the vector E, so that it has a 1 as its kth component and all other components are zero. Then
(AE,,E,) = a,,, which is real by Property 13.5.
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13.32 AA" = A(-A)=(-A)A =A"A
13.33 (IA)" =(A) =(iA) =(-iA) = -iAT=-iA" = j(-A")=iA
13.34  (AX, X) = (X, A*X) = (X, A”X) = (X, —~AX) = — (X, AX) = — {AX, X)

13.35 Let A be an eigenvalue of A corresponding to the eigenvector X. Then
MX, X) = (AX, X) = (AX, X) = (X, A*X) = (X, A"X) = (X, ~AX) = (X, —AX)} = —A (X, X)
Thus, A = —A, and A is pure imaginary.

13.36 —A"=-AT=-A"T=A

13.37 (A +A") is Hermitian and §(A — A”) is skew-Hermitian for any matrix A. For real A, these matrices
are symmetric and skew-symmetric, respectively.

13.38 According to (8.1), f(A) can be written as an (n — 1)-degree polynomial in A. Since the eigenvalues of A
are real, so are the coefficients of such a polynomial. The result then follows from Problems 13.29 and
13.30.

CHAPTER 14
14.17 A, E and G are positive definite; B and D are positive semidefinite.

1.6927 0.27849 —0.23915 g2 2 -t
14.18 A'*=| 027849 1.6927 —-0.23915 14.19 1;“2=5 2 2 -1

~0.23915 -0.23915  2.2103 1 -1 5
P V3 0 0

14.20 x”2=[_.3 ’4] 1421 L=| Vi3 V83 0
! -Vi73 -V1/6 V972

3 0 0 0
-1 2.2361 0 0
0 1.3416 26833 0
-1 2

2 0 0
1422 L=y-i 3 0 1423 L=
—0.44721 —0.89443

1 1/3 V713

14.24 ((A+B)X,X)=(AX,X) + (BX,X)>0
14.25 (A"X, X) = (X, AX) = (AX,X) = (AX, X} >0

14.26 The eigenvalues of A™' are the reciprocals of the eigenvalues of A (Property 7.4) and are, therefore,
positive. Furthermore, (A™")" = (A”)"' =A™', so A™' is Hermitian. A Hermitian matrix with positive
eigenvalues is positive definite.

14.27 For any X#0, set Y=CX. Then Y#0 because X=C'Y, and (BX,X)=(CHACX,X)=
(ACX,CX) = (AY,Y) >0.

14.28 B = At is Hermitian, so f(B) is Hermitian for any function (Problem 13.38); in particular, f(B) = ¢® If A
is an eigenvalue of A, then Af is an eigenvalue of B, and e > 0 is an eigenvalue of ¢® (Property 10.3). A
Hermitian matrix with positive eigenvalues is positive definite.

14.29 If (AX,X) is positive for all complex-valued vectors X, then it is also real for such vectors. It follows
from Property 13.5 that A is Hermitian.



ANSWERS TO SUPPLEMENTARY PROBLEMS 217

14.30 If

1 2
A=[0 l] and X=[x,x]"

with X real and nonzero, then (AX,X) =x] + 2x,x, + x; = (x, + x,)° >0.
2 2

CHAPTER 15

15.16 C and E

1517 (@) [9NTT 4nTT (&) 0 1 0 (¢) 1V3 2WV6 0
[4/\/57 —9/\/%'7] “IV2 0 1V2 “LV3 1VE 11V2

1V2 0 1V2 1V3 -1~/6 11V2

o x| 9IVOT 4/\/97] " _[3 13]
15.18 (a) w“hU'[4/v§7 YN we have U"AU = 0 -2

0 1 0 7Nt 0 0 3 -V3 -Ve
(B With U=| -1/V2 0 1/V2|[0 -V2/3 V173 we have  U"BU=|0 2 V2
V2 0 V2o VIT3 V273 0 0 4

V3 2ve o [t o 0 . 300
(€) With U=| -1/V3  1/V6 12| 0 -V3i2 172 we have  U"CU=[0 2 0

V3 -1ve 1VZ4Lo 12 V32 006

—4/5  3/§ 010 3l-2vZ 1
100

15.19 (a)[—3/5 —4/5] (b) [0 017 (@ 1] -1 —2\/2]

15.20 ||UX||2 = (UX, UX) = (X, X} = ||x||2
15.21 (UX, UY)/||UX|| Y]], = (X, V) /|IX]L ]I Y]l
15.22 Since R is both real symmetric and orthogonal, R =RR=R'R=R7'R=1

15.23 The eigenvalues are nonnegative (the matrix is Hermitian) and have absolute value 1 (the matrix is
unitary), so all eigenvalues must be 1.

15.24 Simply combine Properties 7.8 and 15.4.

1 0 0 00 1 0 0 0 0
0 cosd sing 0 O 0 cos8 0 -sin®d O
1525 R,,=|0 -sinf cosd 0 0O R,=|0 0 1 0 0
0 0 0 1 0 0 sind 0 cosf O
0 0 0 01 0O 0 0 0 1

15.26 Direct multiplication yields R]_(8)R_ () =L

15.27 The (k, p) element of the product is a,, cos 8 — 4, sin 8. Choose 6 to make this quantity equal to zero.

CHAPTER 16

16.11 (a) [ 301 —1] ) [ 2 2 —1]
1 3 -1 2 2 -1
-1 -1 s -1 -1 5
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(c) 9 -3 0 -3 (d) 1 -1 2 -1
-3 6 3 0 -1 3 4 2
0 3 9 -3 2 43 1
-3 0 -3 6 -1 21 1
16.12 (a) and (c¢) are positive definite; (b) is positive semidefinite.
1613 (a) [1 O O b) [1 0 0 (c) 1t 00O ) 1 0 0 0
010 010 0100 01 0 0
0 01 000 001t O o0 -1 0
0 001 00 0 -1
16.14 They arc not congruent because they do not have the same inertia matrix.
16.15 (a) Three positive eigenvalues; (b) two positive eigenvalues and one zero eigenvalue; (c) four positive
eigenvalues; (d) two positive and two negative eigenvalues
16.16 An identity matrix
16.17 (a) 0 1 0 (b) 1 0 0 (c) 1 0 o0
217 =2V 17 1V -3/2 0 1/2 ~8/9 1/9 1
1/2 -1 0 -2 1 0 -1 0 !
1 0 0 | 0 0
16.18 Inertia matrix = lO 1 0 Pp=| —(1+i2) 1 0
00 -1 (7+i10)/5 —(5-4)/5 1/5
16.19 Given A=PBP and B=P,CP;. Set P, =P P, Then A =P BP =P (P,CP;)P  =(PP,)C(PP,) =
P,.CP,.
16.20 If A = PBP” then B = QAQ’, where Q=P .
16.21 Denote as N an inertia matrix congruent to A. Then A is also congruent to N (Problem 16.20). (a) If B is
congruent to A and A is congruent to N, then B is congruent to N (Problem 16.19). (b) If both A and B
are congruent to N, then A is congruent to N and N is congruent to B so A is congruent to B.
16.22 The eigenvalues of A™' are the reciprocals of the eigenvalues of A, and therefore have the same signs. It
follows from Property 16.1 that A and A™' are congruent to the same inertia matrix and to themselves.
CHAPTER 17
17.20 Reducible, not primitive, not stochastic, 3=o =4
17.21 Irreducible, primitive, not stochastic, 3< o <4
17.22 Irreducible, not primitive, not stochastic, I <o <2
17.23 Imreducible, primitive, not stochastic, o = 4
17.24 Irreducible, primitive, not stochastic, o =7
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17.25 Irreducible, primitive, stochastic, ergodic, o =1,
19/45 17/45 9/45
L=119/45 17/45 9/45
19/45 17/45 9/45
17.26 Reducible, not primitive, stochastic, ergodic, o =1,
1 00
L=|{1 0 0
1 00
17.27 Reducible, not primitive, stochastic, ergodic, o =1,
3/8 0 S/8
L=l 0 1 0
3/8 0 5/8
17.28 Reducibie, not primitive, stochastic, not ergodic, o =1, no limit exists.
17.29 Irreducible, primitive, doubly stochastic, ergodic, o =1,
1/3 1/3 1/3
L=]1/3 1/3 1/3
1/3 1/3 1/3
17.30 (a) 56.48 percent; (b) 55.56 percent
17.31 Probabilities are 0.2, 0.14, 0.154, 0.151, and 0.15162.
17.32 (a) Approximately 34 discharged, 31 ambulatory, 18 bedridden, and 17 dead; (&) approximately 65
discharged and 35 dead
CHAPTER 18
18.12 (@) Band matrix of width three, tridiagonal, Toeplitz, and Hessenberg; (b) circulant and Toeplitz; (c)
Hessenberg; (d) circulant and Toeplitz; (e) tridiagonal, Toeplitz, and Hessenberg; (f) none; (g)
tridiagonal and Hessenberg
1813 A, =A,=2, A,=A,=0, with eigenvectors [1,1,1,1}", {1,-1,1,-1)", {1, -1,-i]", and
[1, =i, =1, {]7, respectively
18.14 A, =6, A,=(-3-iV3)/2, and A,=(-3+iV3)/2, with eigenvectors [1,1,1]", [1,(—1+iV3)/2,
(-1-iv3)72])7, and [1, (—1-iV3)/2, (-1 + iV3)/2]", respectively
18.15 4.46410, 1, —2.46410
1816 f1 0 O 12 0 18.17 [-1 0 0 0 1 -2 0 0
3 -5 0 |0 1 =2/5 25 0 0 (o 115 o
0 3 11/5]L0 0 1 0 2 -12/5 0 0 0 1 -5/12
00 1 =7/12]L0 0 O 1
1 0 0 2 00
18.18 WithU=|0 -1/V2 -1/V2 we have U'BU=|-V2 4 0
0 -1V2 1V2 033
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18.19 With U as in Problem 18.18, we have

u'cu=

] 0 0 0
0 -1/V2 0 11V2
0 0 1 0
0 1/V2 0 11V2

18.20 With U=

SO0 =
SO =0

18.21 -08 06 0

06 08 0
With R,,(0.927295) =
0 o0 1

18.22 First iteration (k =4, i=1, j=2):

0.554700 —0.832050
0.832050  0.554700
0 0
0 0

R,,(—0.982794) =

Second iteration (k =4, i=2, j=3):

0 0
0.137361 0.990521
—0.990521 0.137361
0 0

R,,(1.433000) =

[ R R B

Third iteration (k =3, i=1, j=2):

0.497612 —0.867400
0.867400  0.497612
0 0
0 0

R,,(—1.049953) =

15
12
15
12

18.23 C®D=

= Un b oun
|
&~

|

—_0 00O

O =00

O = OO

O = OO

—_0 0 O

o Nw

_0 O O

_0 0 O
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-vZ 0
51
1 3
1 -2 0 0
-7 172 —-1/2 0
TATT —
we have U'AU= 0 —1/2 12 V3
0 0 Vi -1
2.32 2.76 1.20
we have  RLAR,, =| -1.24 0.68 ~1.60
0 5.00 1.00
and A becomes
2.153846 —1.230769 4.160251 0
-1.230769 —1.153846 —0.832050 7.211103
4.160251 —0.832050 2 1
0 7.211103 1 -1
and A becomes
2.153846 -4.289876 —0.647648 0
—4.289876 2.166909 0.371544 0
—0.647648  0.371544 —1.320755 7.280110
0 0 7.280110 -1
and A becomes
—1.539591 2.171016 0 0
2.171016 5.860346 0.746655 0
0 0.746655 —1.320755 7.280110
0 0 7.280110 ~1
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18.24 No solution  18.25 x=[‘1 1] 18.26 X=[1,-1,0)

1 -1

CHAPTER 19
19.13 )
Iteration Eigenvector components Eigenvalue
0 1.0000 1.0000 1.0000
1 1.0000 0.7778 0.7778 9.0000
2 1.0000 0.7183 0.7746 7.8889
3 1.0000 0.6887 0.7746 7.8732
4 1.0000 0.6737 0.7746 7.8730
5 1.0000 0.6661 0.7746 7.8730
19.14
Iteration Eigenvector components Eigenvalue
0 1.0000 1.0000 1.0000
1 -0.7143 —-0.2857 1.0000 7.0000
2 -0.7143 -0.2857 1.0000 —11.0000
3 -0.7143 -0.2857 1.0000 —11.0000
The eigenvalue is 14 + (—11) = 3.
19.15
Iteration Eigenvector components Eigenvalues
0 1.0000 1.0000 1.0000
1 1.0000 -0.5313 0.2188 32.0000
2 1.0000 0.2960  0.1038 30.4063
3 1.0000 -0.2102 0.1613 29.1192
4 1.0000 0.1040  0.1253 29.8552
19.16 . .
Iteration Eigenvector components Eigenvalue
0 1.0000 1.0000 1.0000
1 1.0000 —0.5000 1.0000 —2.0000
2 1.0000 0.2500 1.0000 —2.0000
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19.17 The eigenvalues are —4, -2, and 1, with corresponding eigenvectors V, =[1,0, —1]", V, =[1,0, 1]", and
V,={0,1,0]", respectively. With X, =[1,1,1]", we have X, =0V, + 1V, + 1V,; thus, X, is a linear
combination of V, and V;, with no component that is influenced by V,, the eigenvector corresponding to

the dominant eigenvalue,
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19.18 There is no convergence, implying that the dominant eigenvalue is complex.

19.19

19.20

19.21

19.22

Iteration Eigenvector components Eigenvalue
0 1.0000  1.0000 1.0000 1.0000
1 0.9697  0.6970 1.0000 0.9394 33.0000
2 0.9591  0.6899 1.0000 0.9432 30.3939
3 09578  0.6891 1.0000 0.9437 30.3011
4 0.9577  0.6890 1.0000 0.9438 30.2902
5 0.9576  0.6889 1.0000 0.9438 30.2889
6 09576  0.6889 1.0000 0.9438 30.2887
Tteration Eigenvector components Eigenvalue
0 0.5774 0.5774  0.5774
1 0.6448 —-0.0586  0.7621 7.6667
2 0.7216 0.0147  0.6922 11.8454
3 0.7034 -0.0037 0.7108 11.9902
4 0.7080 0.0009  0.7062 11.9994
5 0.7069 —0.0002 0.7073 12.0000
6 0.7072 0.0001  0.7070 12.0000
iteration Eigenvector components Eigenvalue
0 0.5774 0.5774 0.5774
1 —0.0765 —0.9941  0.0765 —4,3333
2 0.1541 0.9760 -0.1541 —13.3158
3 -0.2282 -0.9465 0.2282 —13.6491
There is no convergence yet,
Iteration Eigenvector components Eigenvalue
0 1.0000 1.0000 1.0000
1 1.0000 0.0000 —1.0000 ~1.0000
2 1.0000 0.1389 -0.7778 9.0000
3 1.0000  0.1417 -0.7746 7.8889
4 1.0000 0.1418 -0.7746 7.8732

The eigenvalue is 1/7.8732 =0.1270.

19.23 There is no unique solution to LZ = X: hence A =0 is an eigenvalue.
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Iteration Eigenvector components Eigenvalue
0 1.0000  1.0000 1.0000 1.0000
1 -0.1765 1.0000 -0.6353 -0.7059 —-0.1828
2 0.3041 1.0000 0.1596 0.0851 —0.4681
3 0.1405 1.0000 -0.0661 —0.0968 -0.3323
19.25 A=9+1/3.08114 =9.3246
19.26 A =2.5+1/39.5709 =2.5253
19.27 First iteration: shift = 7.66667; eigenvector = [1, —0.486452, 0.89935)7
Second iteration: shift = 10.5092; eigenvector = [0.976710, 0.067597, 1]7
Third iteration: shift = 11.969339; eigenvector = [1, —0.000168, 0.999924]"
Fourth iteration: shift = 12.0000; eigenvector = [1,0, 1)”
CHAPTER 20
-0.6667 0.2357 0.7071 -5  —0.6667
20,14 (a) Q= 0.6667 -—0.2357 0.7071 R= 2.8284 0.2357
0.3333  0.9428 0 0 2.1213

20.15

0 1.0171 —0.5425

6

0

0

[5.3852 3.1568 —~2.0426]
0 0 0.7303

0.7428  0.6442 -0.1826
(6) Q=| 0.5571 -0.7459 -0.3651 R

-0.3714  0.1695 -0.9129

(c) The third column is a linear combination of the previous two, so Step 20.1' must be employed for Q:

0 —1WV2 132 1 0 1
Q=] -1 0 0 R={0 VZ 0
0 —-1V2 -1V2 0 0 0

0.9057 —02059 —0.3037 27,6043 —139.0361 —85.0591
@) Q=| 03985 0887 03712] R=| 0 17.1747 103479
—0.1449  0.4572 —0.8775 0 0 19.4391
0 -VZ2 0 Vi 1 \9_ 1 \/9
-1 o o o0 fo vz o vin
€ Q=1 o _vin o -virz| R lo o 1 o
0 0 -1 0 0 0 0 V22

0.6644 —03332  0.6606 —0.1055
107474 02962 -0.5872  0.0938

(f) Q=) "9 _00254 0.1452 0.9891
0  —08948 -0.4446  0.0423

1,324.5754 493.2902  904.3653  246.6451

_ 0 983.5089 7,413.9901 98.3798
R= 0 0 4,328.6070 —197.4178
0 0 0 6.2313

10.1461, 5.92049, —0.0665892 20.16 10.6056, 3.39445, 3
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20.17 3.41421, 2, 0.585786 20.18 1, —17+i24, -17-i24
20.19 3.61803, 2.61803, 1.38197, 0.381966 20.20 990, 660, 440, 330
20.21 9,9,9,9 2022 -1=iV3, =i
20.23 The QR algorithm does not converge. 20.24 232.275, 79.6707, 63.8284, 24,2261
CHAPTER 21
2118 [1/2,1/2] 2119 11 21.20 1 1 1 21.21 [—2 3]
1 1
) 11 9 1 11 1 -1
33 1 11
21.22 1[1 4 -—1] 21.23 26 —-23 21.24 1 I -1
94 -2 5 1 36 -16 -2 1 1
—| 38 6 1 -1 0
206) 16 30
-6 37
21.25 x,=3/22,x,=3/22,x;=9/22 21.26 x,=1x,=x,=2/3
2127 x,=2/3,x,=5/3 2128 x,=3/206, x, =20/206, x, = 44/206, x, = —14/206, x, = 31/206
21.29 Form ||AX - BJ|3. and then set the first partial derivatives with respect to each component of X equal
to zero.
21.30 A”AX = (QR)”(QR)X = R”(Q”Q)RX = R”IRX = R”RX

and A"B = (QR)"B=R"Q"B

When the columns of A are linearly independent, the diagonal elements of R are all nonzero, and
(R¥)™! exists.

21.31 Solve RX = Q"B with

21.32 Solve RX = Q"B with

21.33 The normal equations are

Q

[ —0.566947
~0.377964
—0.188982
0
0.188982
0.377964

L 0.566947

0.377964 ]
0.377964
0.377964
0.377964
0.377964
0.377964
0.377964

R [5.291503 0

0 2.645751

0.894427 -0.298142

0.447214  0.596285
Q= R=
0 0.745356

354a + 100b + 30c = 1158
100a + 30b + 10c = 342
0a+ 10b+ S5c= 122

and the solution is a =2.57, b= —0.69, ¢ =10.54.

[2.236068 0.447214]
0 1.341641
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21.35

21.36

21.37

21.38

21.39

2140

21.41

21.42

21.43

21.4

21.45

21.46

21.47
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o

—0.845435 0.534078] D = [13.4834 0 ]
—0.534078 —0.845435 0 0.444992

V1l =12 322
3V 11 0 -2 V2 -1V2

o

1VAYA S U VAV B YAV )
| IR RN Y

—0.597354 0.801978]

0.801978 0.597354 U=0,= [

v=v1=[

A" satisfies Properties I1 through I3 because

AA Y =1"=[=AA""
AATTA=A(AT'A) =AL=A
and AAAT'=(ATTA) AT =IAT = AT

The result then follows from Property 21.1.
A" = 0 satisfies conditions 11 through I3 when A = 0.

Conditions I1 through I3 are symmetric with respect to A and A*. Thus, if A" is the generalized inverse
of A, then A is also the generalized inverse of A*. That is, A={(A")".

Show that conditions I1 through I3 are satisfied.
It follows from Property 21.5 that (A*)" = (A")" = A",

Conditions I1 through I3 are satisfied because

(A*A) =(AA)" =A"=A=AA=A"A
A'AA=AAA=A(AA)=AA=A
and A"AA" =AAA=A(AA)=AA=A=A"

AA" and A"A are Hermitian from condition I1. Also,

(AA")(AA")=(AATA)A" =AA" and (A"A)(A"A)=(ATAAT)A=A"A
Take X to be the n x n diagonal matrix containing all the singular values of A, including zeros if they
arise. Construct D, V, and U, exactly as described in Steps 21.8 and 21.9, and then construct U by first
following Step 21.10 but then keeping only the first n linearly independent columns and orthonormaliz-
ing them.

P is Hermitian and similar to X, which has nonnegative eigenvalues. Since the columns of U are
orthonormal, U” U =1, and, with V being unitary,

M*M = (UV*Y*(UVH) = VUPUVY =VIV? =vV¥ =]
MP = (UV)(VIV) =U(VV)IV =UZV =A

With V and U as given in Problem 21.4 and

we have P=VZV" =A and M=UV" =L

With D, V, and U, as given in Problem 21.5, we have £ =D and U=U,. Then P=VXV” =3 = D and
M=UV?=U=U,.



Addition of matrices, 2

Adjoint, 119

Angle between vectors, 143

Augmented matnx, 11

AX+XB=C, 73

AX =B (see Simultaneous linear equations)
AXB =C, 166

Band matrix, 160
Bessel function, 80
Block matrix, 43

Canonical basis, 82

for a normal matrix, 119
Cayley-Hamilton theorem, 61
Chain, 82
Characteristic equation, 60

of similar matrices, 91
Characteristic polynomial, 60
Characteristic value (see Eigenvalue)
Characteristic vector (see Eigenvector)
Cholesky decomposition, 129
Circulant matnix, 160
Coefficient matrix, 11
Cofactor, 42, 50
Cofactor matrix, 44
Column rank, 53
Column vector, 1
Companion matrix, 70
Compatible norms, 111, 116
Complete pivoting, 19
Complex conjugate, 103
Complex conjugate transpose matrix, 119
Complex matrix, 1, 103
Complex quadratic form, 144

(See also Quadratic form)
Component, 52
Condition number, 118
Congruent matrices, 144, 151
Conjunctive matrices, 145
Consistency condition for norms, 110
Consistent simultaneous equations, 11
Constant matrix, 1
Convex combination, 59
Crout’s reduction, 25

for a tridiagonal matrix, 161

Denvative of a matrix, 72
Determinant, 42
and eigenvalues, 60
of an LU decomposition, 51
of a positive definite matrix, 132
for a unitary matrix, 136

Index
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Diagonal, 24, 127

Diagonal matrix, 24, 127, 137
Diagonal quadratic form, 144
Differential equations, 72
Dimension, 52

Direct product, 165

Distance between vectors, 110
Distribution vector, 153
Dominant eigenvalue, 111, 152, 169
Dot product, 1

Doubly stochastic matrix, 153

e (matrix exponential), 72, 100

for a positive definite matrix, 135
Eigenvalue, 60

bounds on, 112

of a circulant matrix, 160

dominant, 111, 152, 169

of an elementary reflector, 143

of f(A), 93

of a Hermitian matrix, 119

of an inverse, 60

of a nonnegative matrix, 152

by numerical methods, 169-170, 181

of a positive definite matrix, 128

of a positive matrix, 152

by QR algorithm, 181

of similar matrices, 91

of a singular matrix, 60

of a transpose, 60

of a triangular matrix, 60

for a unitary matrix, 136
Eigenvalue rank number, 82
Eigenvector, 60

of a circulant matrix, 160

generalized, 82

of a Hermitian matrix, 119

maximal linearly independent set of, 61

of a nonnegative matrix, 152, 153

of a normal matrix, 119

by numerical methods, 169, 170

of a real symmetric matrix, 119
Elementary column operations, 3
Elementary matrix, 24

determinant of, 43

inverse of, 34
Elementary reflector, 137
Elementary row operations, 3
Equality of matrices, 1
Ergodic matrix, 153
Euclidean inner product, 103, 120
Euclidean matrix norm, 111
Euclidean vector norm, 110, 116, 194
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Expansion by cofactors, 42
Exponential of a matrix, 71

Finite Markov chain, 153

Frobenius norm, 111, 116

Function of a matrix, 71, 92
eigenvalues of, 93
Hermitian, 127

Gaussian elimination, 12
Gauss-Jordan elimination, 21
Generalized eigenvector, 82
Generalized inverse, 192
Gerschgorin’s theorem, 170
Given's method, 167

Gram-Schmidt orthogonalization process, 104, 121

modified, 181

Hermitian congruent matrices, 145
Hermitian matrix, 119
eigenvalues of, 119
functions of, 127
generalized inverse of, 192
positive definite, 128
for a quadratic form, 144
Rayleigh’s quotient, 146
Hermitian transpose matrix, 119
for a unitary matrix, 136
Hessenberg form, 161, 182

Homogeneous linear equations, 12, 23, 55, 59

Householder transformation, 137

Idempotent matrix, 33, 202
Identity matrix, 24, 118
Inconsistent simultaneous equations, 11
Index, 145
of a nilpotent matrix, 32
Induced norm, 111
Inertia matrix, 145
Infinite series of matrices, 71
Inner product, 103, 136, 144
Integral of a matrix, 72
Inverse. 34, 44
of a circulant matrix, 160
and congruence, 151
determinant of, 43
eigenvalue of, 60
of an elementary matrix, 34
of an orthogonal matrix, 136
by row reduction, 34
of a unitary matrix, 136
Inverse power method, 170
modified, 180
Invertible, 34
Irreducible matrix, 152

INDEX

Jordan block, 91
Jordan canonical form, 91

Kronecker product, 165

I, norm, 110

l, norm, 110

lp norm, 110

{. norm, 110

L, norm, 111

L. norm, 110

Least squares, 194, 201

Left eigenvector, 67, 154

Length, of a chain, 82
of a vector, 110, 143

Linear combination, 52
of eigenvectors, 66

Linear dependence, 52, 53

Linear equations (see Simultaneous linear

equations)

Linear independence, 52, 53
of a chain, 85
of eigenvectors, 61

Lower triangular matrix, 24
determinant of, 42
eigenvalues of, 60
inverse of, 32

LU decomposition 24, 40, 51
Cholesky decomposition, 129
Crout’s reduction, 25, 161

Magnitude of a vector, 110

Main diagonal, 24

Markov chain, 153

Matrix, 1

Matrix equation AX +XB=C, 73

AX = B (see Simultaneous linear equations)

AXB =C, 166
Matrix norm, 11¢

Maximal set of linearly independent vectors, 57

eigenvectors, 61
Minimum polynomial, 83
Minor, 42

principal, 128
Modal matrix, 91
Modified Gram-Schmidt process, 174
Moore-Penrose inverse, 192
Multiplication of matrices, 2, 6

Negative definite matrix, 128
Negative semidefinite matrix, 128
Nilpotent, 32
Nonhomogeneous linear equations, 12
{See also Simultaneous linear
equations)
Nonnegative matrix, 152



Nonsingular matrix, 34
Nontrivial solutions, 12
Norm, 110
Normal equations, 201
Normal matrix, 119, 136
similar to a diagonal matrix, 137
Normalized vector, 110
Null space, 59
Numerical methods for eigenvalues, 169, 170, 181

Order, 1

Orthogonal matrix, 136, 137
Orthogonal vectors, 103
Orthonormal vectors, 110, 119, 136

Partial pivoting, 13

(See also Pivoting strategies)
Partitioned matrix, 5

determinant of, 43
Permutation matrix, 152
Perpendicular (see Orthogonal vectors)
Perron’s theorem, 152
Perron-Frobenius theorem, 152
Pivot, 3
Pivotal condensation, 43
Pivoting strategies, 12, 18, 19, 25, 35
Polar decomposition, 202
Positive definite matrix, 128
Positive matrix, 152
Positive semidefinite matrix, 128
Power method, 169

modified, 174
Powers of a matrix, 26
Primitive matrix, 153
Principal diagonal, 24
Principal minor, 128
Pseudoinverse, 192

QR algorithm, 181
QR decomposition, 181, 201
Quadratic form, 144

Rank, of a generalized eigenvector, 82
of a matrix, 3, 12, 43, 53, 144, 192
Rank number of an cigenvalue, 82
Rayleigh’s principle, 146
Rayleigh’s quotient, 146, 174, 180
Real matrix, 1
Real symmetric matrix, 119, 161, 174
for a quadratic form, 144
Reducible matrix, 152
Regular matrix, 153
Right eigenvector, 60
(See also Eigenvector)
Rotation matrix, 143, 167
Row rank, 3, 53

229

Row vector, 1
Row-echelon form, 2
reduction to, 3

Scalar, 1
Scalar multiplication, 2
Scaled pivoting, 18
Schur decomposition, 136
Schwarz inequality, 103
Self-adjoint matrix, 120
Sequences of matrices, 71
Series of matrices, 71
Shifted inverse power method, 170
modified, 180
Shifted QR algorithm, 182
Signature, 145
Similar matrices, 91, 123
Similarity transformation, 137
QR algorithm, 188
Simultaneous linear equations, 11, 25, 35
homogeneous, 12, 55, 59
matrix form, 11
(See also Solutions of simultaneous linear equa-
tions)
Singular matrix, 34
eigenvalues of, 60
Singular value, 193
Singular value decomposition, 193
Skew-Hermitian matnx, 127
Skew-symmetric matrix, 127
Solutions of simultaneous linear equations, 11
by Gaussian elimination, 12
by Gauss-Jordan elimination, 21
by inversion, 35
least squares, 194
by LU decomposition, 25
theory of, 12, 23, 55
trivial, 12
Spectral norm, 111, 141
Spectral radius, 111, 118
for nonnegative matrices, 152
Square matrix, 24
Square root of a matrix, 128
Stochastic matrix, 153, 158
Subdiagonal, 24
Subtraction of matrices, 2
Superdiagonal, 24
Sylvester's law of inertia, 145
Symmetric matrix (see Real symmetric matrix)

Toeplitz matrix, 160, 161
Trace, 60, 70, 91, 172
Transpose, 1
of a band matrix, 160
determinant of, 43
eigenvalues of, 60
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Transpose (continued)
inverse of, 35
of an orthogonal matrix, 136
rank of, 53
of a right eigenvector, 67
(See also Hermitian matrix)
Triangle inequality, 110
Tridiagonal matrix, 161
Tnvial solution, 12

Unit vector, 110

Unitarily similar, 137

Unitary matrix, 136

Unitary transformation, 136
preservation of angles, 143
preservation of length, 143

INDEX

Upper triangular matrix, 24, 136
determinant of, 42
eigenvalues of, 60
inverse of, 34
when normal, 124

Vandermonde determinant, 66
Vector, 1, 52

angle between, 143
Vector norm, 110

Well-defined function, 71
(See also Function of a matrix)
Work column, 3

Zero matrix, 2, 53, 192



