LIMITS AND CONTINUITY

1. The concept of limit

Example 1.1. Let $f(x) = \frac{x^2 - 4}{x - 2}$. Examine the behavior of f(x) as x approaches 2.

Solution. Let us compute some values of f(x) for x close to 2, as in the tables below.

x	$f(x) = \frac{x^2 - 4}{x - 2}$	x	$f(x) = \frac{x^2 - 4}{x - 2}$
1.9	3.9	2.1	4.1
1.99	3.99	2.01	4.01
1.999	3.999	2.001	4.001
1.9999	3.9999	2.0001	4.0001

We see from the first table that f(x) is getting closer and closer to 4 as x approaches 2 from the left side. We express this by saying that "the limit of f(x) as x approaches 2 from left is 4", and write

$$\lim_{x \to 2^-} f(x) = 4.$$

Similarly, by looking at the second table, we say that "the limit of f(x) as x approaches 2 from right is 4", and write

$$\lim_{r \to 2^+} f(x) = 4.$$

We call $\lim_{x\to 2^-} f(x)$ and $\lim_{x\to 2^+} f(x)$ one-sided limits. Since the two one-sided limits of f(x) are the same, we can say that "the limit of f(x) as x approaches 2 is 4", and write

$$\lim_{x \to 2} f(x) = 4.$$

Note that since $x^2 - 4 = (x - 2)(x + 2)$, we can write

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$
$$= \lim_{x \to 2} \frac{(x - 2)(x + 2)}{x - 2}$$
$$= \lim_{x \to 2} (x + 2) = 4,$$

where we can cancel the factors of (x - 2) since in the limit as $x \to 2$, x is close to 2, but $x \neq 2$, so that $x - 2 \neq 0$. Below, find the graph of f(x), from which it is also clear that $\lim_{x\to 2} f(x) = 4$.

Example 1.2. Let $g(x) = \frac{x^2 - 5}{x - 2}$. Examine the behavior of g(x) as x approaches 2.

Solution. Based on the graph and tables of approximate function values shown below,

observe that as x gets closer and closer to 2 from the left, g(x) increases without bound and as x gets closer and closer to 2 from the left, g(x) decreases without bound. We express this situation by saying that the limit of g(x) as x approaches 2 from the left is ∞ , and g(x) as x approaches 2 from the right is $-\infty$ and write

$$\lim_{x \to 2^{-}} g(x) = \infty, \quad \lim_{x \to 2^{+}} g(x) = -\infty.$$

Since there is no common value for the one-sided limits of g(x), we say that the limit of g(x) as x approaches 2 does not exists and write

 $\lim_{x \to 2} g(x) \text{ does not exits.}$

Example 1.3. Use the graph below to determine $\lim_{x \to 1^-} f(x)$, $\lim_{x \to 1^+} f(x)$, $\lim_{x \to 1} f(x)$ and $\lim_{x \to -1} f(x)$.

Solution. It is clear from the graph that

$$\lim_{x \to 1^{-}} f(x) = 2 \quad \text{and} \quad \lim_{x \to 1^{+}} f(x) = -1.$$

Since $\lim_{x \to 1^-} f(x) \neq \lim_{x \to 1^+} f(x)$, $\lim_{x \to 1} f(x)$ does not exist. It is also clear from the graph that

$$\lim_{x \to -1^{-}} f(x) = 1 \quad \text{and} \quad \lim_{x \to -1^{+}} f(x) = 1.$$

Since $\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{+}} f(x)$, $\lim_{x \to -1} f(x) = 1$.

Example 1.4. (1) Graph $\frac{3x+9}{x^2-9}$. (2) Evaluate $\lim_{x \to -3} \frac{3x+9}{x^2-9}.$ (3) Evaluate $\lim_{x \to 3} \frac{3x+9}{x^2-9}.$

(1) Note that $f(x) = \frac{3x+9}{x^2-9} = \frac{3}{x-3}$ for $x \neq -3$. Then, by shifting and scaling Solution. the graph of $y = \frac{1}{x}$, we obtain

Example 1.5. Evaluate $\lim_{x \to 0} \frac{\sin x}{x}$.

Solution. From the following tables and the graph

one can conjecture that $\lim_{x \to 0} \frac{\sin x}{x} = 1.$

From now on, we will use the following fact without giving its proof.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Example 1.6. Evaluate $\lim_{x \to 0} \frac{x}{|x|}$.

Solution. Note that

$$\frac{x}{|x|} = \begin{cases} 1 & \text{if } x > 0\\ -1 & \text{if } x > 0 \end{cases}$$

So, $\lim_{x\to 0^+} \frac{x}{|x|} = 1$ while $\lim_{x\to 0^-} \frac{x}{|x|} = -1$. Since the left limit is not equal to the right limit,

Example 1.7. Sketch the graph of $f(x) = \begin{cases} 2x & \text{if } x < 2 \\ x^2 & \text{if } x \ge 2 \end{cases}$ and identify each limit.

- (a) $\lim_{\substack{x \to 2^- \\ x \to 2^+}} f(x)$ (b) $\lim_{\substack{x \to 2^+ \\ x \to 2}} f(x)$ (c) $\lim_{\substack{x \to 2}} f(x)$ (d) $\lim_{x \to 1} f(x)$

(b) $\lim_{x \to 0^+} f(x)$

(c) $\lim_{x \to 0} f(x)$ (d) $\lim_{x \to -1} f(x)$

Solution.

The graph is shown below.

And,

(a)
$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} 2x = 4$$

(b) $\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} x^{2} = 4$
(c) $\lim_{x \to 2} f(x) = 4$
(d) $\lim_{x \to 1} f(x) = \lim_{x \to 1} 2x = 2$

Example 1.8. Sketch the graph of $f(x) = \begin{cases} x^3 - 1 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ \sqrt{x+1} - 2 & \text{if } x > 0 \end{cases}$ and identify each limit. (a) $\lim_{x \to 0^-} f(x)$

(e) $\lim_{x \to 3} f(x)$

Solution.

The graph is shown below.

2. Computation of Limits

It is easy to see that for any constant c and any real number a,

$$\lim_{x \to a} c = c,$$

and

$$\lim_{x \to a} x = a$$

The following theorem lists some basic rules for dealing with common limit problems

Theorem 2.1 Suppose that $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both exist and let c be any constant. Then,

(i)
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x),$$

(ii)
$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x),$$

(iii)
$$\lim_{x \to a} [f(x)g(x)] = \left[\lim_{x \to a} f(x)\right] \left[\lim_{x \to a} g(x)\right], and$$

(iv)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} provided \lim_{x \to a} g(x) \neq 0.$$

By using (iii) of Theorem 2.1, whenever $\lim_{x \to a} f(x)$ exits,

$$\lim_{x \to a} [f(x)]^2 = \lim_{x \to a} [f(x)f(x)]$$
$$= \left[\lim_{x \to a} f(x)\right] \left[\lim_{x \to a} f(x)\right] = \left[\lim_{x \to a} f(x)\right]^2.$$

Repeating this argument, we get that

$$\lim_{x \to a} [f(x)]^2 = \left[\lim_{x \to a} f(x)\right]^n$$

for any positive integer n. In particular, for any positive integer n and any real number a,

$$\lim_{x \to a} x^n = a^n.$$

Example 2.1. Evaluate (1) $\lim_{x \to 2} (3x^2 - 5x + 4).$

(2)
$$\lim_{x \to 3} \frac{x^3 - 5x + 4}{x^2 - 2}$$

(3)
$$\lim_{x \to 1} \frac{x^2 - 1}{1 - x}.$$

Theorem 2.2 For any polynomial p(x) and any real number a,

$$\lim_{x \to a} p(x) = p(a)$$

Theorem 2.3 Suppose that $\lim_{x \to a} f(x) = L$ and n is any positive integer. Then,

$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)} = \sqrt[n]{L}$$

where for n even, we assume that L > 0.

Example 2.2. Evaluate

(1)
$$\lim_{x \to 2} \sqrt[5]{3x^2 - 2x}$$
.
(2) $\lim_{x \to 0} \frac{\sqrt{x + 2} - \sqrt{2}}{x}$

Theorem 2.4 For any real number a, we have

- (i) $\lim \sin x = \sin a$,
- (ii) $\lim \cos x = \cos a$,
- (iii) $\lim_{x \to a} e^x = e^a$,
- (iv) $\lim_{x \to a} \ln x = \ln a$, for a > 0,
- (v) $\lim_{x \to a} \sin^{-1} x = \sin^{-1} a$, for -1 < a < 1, (vi) $\lim_{x \to a} \cos^{-1} x = \cos^{-1} a$, for -1 < a < 1,
- (vii) $\lim_{x \to a}^{x \to a} \tan^{-1} x = \tan^{-1} a$, for $-\infty < a < \infty$,

(viii) if p is a polynomial and $\lim_{x\to p(a)} f(x) = L$, then $\lim_{x\to a} f(p(x)) = L$.

Example 2.3. Evaluate $\lim_{x\to 0} \sin^{-1}\left(\frac{x+1}{2}\right)$.

Example 2.4. Evaluate $\lim_{x\to 0} (x \cot x)$.

Theorem 2.5 (Sandwich Theorem) Suppose that

$$f(x) \le g(x) \le h(x)$$

for all x in some interval (c, d), except possibly at the point $a \in (c, d)$ and that

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L,$$

for some number L. Then, it follows that

$$\lim_{x \to a} g(x) = L, \ too.$$

Example 2.5. Evaluate $\lim_{x \to 0} \left[x^2 \cos\left(\frac{1}{x}\right) \right]$.

Example 2.6. Evaluate $\lim_{x\to 0} f(x)$, where f is defined by

$$f(x) = \begin{cases} x^2 + 2\cos x + 1 & \text{if } x < 0\\ e^x - 4 & \text{if } x \ge 0 \end{cases}$$

Example 2.7. Evaluate.

$$(1) \lim_{x \to 0} \frac{1 - e^{2x}}{1 - e^{x}}.$$

$$(2) \lim_{x \to 1} \frac{x^{3} - 1}{x^{2} + 2x - 3}.$$

$$(3) \lim_{x \to 0} \frac{\sin x}{\tan x}.$$

$$(4) \lim_{x \to 0} \frac{\tan 2x}{5x}.$$

$$(5) \lim_{x \to 0^{+}} \frac{xe^{-2x+1}}{x^{2} + x}.$$

$$(6) \lim_{x \to 0^{+}} x^{2} \csc^{2} x.$$

$$(7) \lim_{x \to 1} \left(\frac{1}{x - 1} - \frac{2}{x^{2} - 1}\right).$$

$$(8) \lim_{x \to 0} \frac{(1 + x)^{3} - 1}{x}.$$

$$(9) \lim_{x \to 0} \frac{\sin |x|}{x}.$$

$$(10) \lim_{x \to 1} [x].$$

$$(11) \lim_{x \to 1.5} [x].$$

$$(12) \lim_{x \to 1} (x - [x]).$$

3. Continuity and Its Consequences

A function f is continuous at x = a when

(i) f(a) is defined, (ii) $\lim_{x \to a} f(x)$ exists, and (iii) $\lim_{x \to a} f(x) = f(a)$.

Otherwise f is said to be *discontinuous* at x = a.

Example 3.1. Let us see some examples of functions that are discontinuous at x = a.

(1) The function is not defined at x = a. The graph has a hole at x = a.

(2) The function is defined at x = a, but $\lim_{x \to a} f(x)$ does not exist. The graph has a jump at x = a.

(3) $\lim_{x \to a} f(x)$ exists and f(a) is defined but $\lim_{x \to a} f(x) \neq f(a)$. The graph has a hole at x = a.

(4) $\lim_{x \to a} f(x) = \infty$ and so $\lim_{x \to a} f(x) = f(a)$ never holds. The function blows up at x = a.

Example 3.2. Determine where $f(x) = \frac{x^2 + 2x - 3}{x - 1}$ is continuous.

The point x = a is called a *removable* discontinuity of a function f if one can remove the discontinuity by redefining the function at that point. Otherwise, it is called a *nonremovable* or an *essential* discontinuity of f. Clearly, a function has a removable discontinuity at x = a if and only if $\lim_{x \to a} f(x)$ exists and is finite.

Example 3.3. Classify all the discontinuities of

(1)
$$f(x) = \frac{x^2 + 2x - 3}{x - 1}$$

(2) $f(x) = \frac{1}{x^2}$.
(3) $f(x) = \cos \frac{1}{x}$.

Theorem 3.1 All polynomials are continuous everywhere. Additionally, $\sin x$, $\cos x$, $\tan^{-1} x$ and e^x are continuous everywhere, $\sqrt[n]{x}$ is continuous for all x, when n is odd and for x > 0, when n is even. We also have $\ln x$ is continuous for x > 0 and $\sin^{-1} x$ and $\cos^{-1} x$ are continuous for -1 < x < 1.

Theorem 3.2 Suppose that f and g are continuous at x = a. Then all of the following are true:

- (1) $(f \pm g)$ is continuous at x = a,
- (2) $(f \cdot g)$ is continuous at x = a, and
- (3) (f/g) is continuous at x = a if $g(a) \neq 0$.

Example 3.4. Find and classify all the discontinuities of $\frac{x^4 - 3x^2 + 2}{x^2 - 3x - 4}$.

Theorem 3.3 Suppose that $\lim_{x\to a} g(x) = L$ and f is continuous at L. Then,

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right) = f(L).$$

Corollary 3.4 Suppose that g is continuous at a and f is continuous at g(a). Then the composition $f \circ g$ is continuous at a.

Example 3.5. Determine where $h(x) = \cos(x^2 - 5x + 2)$ is continuous.

If f is continuous at every point on an open interval (a, b), we say that f is continuous on (a, b). We say that f is continuous on the closed interval [a, b], if f is continuous on the open interval (a, b) and

$$\lim_{x \to a^+} f(x) = f(a) \quad \text{and} \quad \lim_{x \to b^-} f(x) = f(b)$$

Finally, if f is continuous on all of $(-\infty, \infty)$, we simply say that f is *continuous*.

Example 3.6. Determine the interval(s) where f is continuous, for

(1)
$$f(x) = \sqrt{4 - x^2}$$
,
(2) $f(x) = \ln(x - 3)$

Example 3.7. For what value of *a* is

$$f(x) = \begin{cases} x^2 - 1, & x < 3\\ 2ax, & x \ge 3 \end{cases}$$

continuous at every x?

Example 3.8. Let

$$f(x) = \begin{cases} 2 \operatorname{sgn}(x-1), & x > 1, \\ a, & x = 1, \\ x+b, & x < 1. \end{cases}$$

If f is continuous at x = 1, find a and b.

Theorem 3.5 (Intermediate Value Theorem) Suppose that f is continuous on the closed interval [a, b] and W is any number between f(a) and f(b). Then, there is a number $c \in [a, b]$ for which f(c) = W.

Example 3.9. Two illustrations of the intermediate value theorem:

Corollary 3.6 Suppose that f is continuous on [a, b] and f(a) and f(b) have opposite signs. Then, there is at least one number $c \in (a, b)$ for which f(c) = 0.

4. Limits involving infinity; asymptotes

If the values of f grow without bound, as x approaches a, we say that $\lim_{x\to a} f(x) = \infty$. Similarly, if the values of f become arbitrarily large and negative as x approaches a, we say that $\lim f(x) = -\infty$.

A line x = a is a vertical asymptote of the graph of a function y = f(x) if either

3

$$\lim_{x \to a^+} f(x) = \pm \infty \quad \text{or} \quad \lim_{x \to a^-} f(x) = \pm \infty.$$

Example 4.1. Evaluate

(1)
$$\lim_{x \to 0} \frac{1}{x}$$
.
(2) $\lim_{x \to -3} \frac{1}{(x+3)^2}$.
(3) $\lim_{x \to 2} \frac{(x-2)^2}{x^2 - 4}$.
(4) $\lim_{x \to 2} \frac{x-2}{x^2 - 4}$.
(5) $\lim_{x \to 2^+} \frac{x-3}{x^2 - 4}$.

(6)
$$\lim_{x \to 2^{-}} \frac{x-3}{x^2-4}.$$

(7)
$$\lim_{x \to 2} \frac{x-3}{x^2-4}.$$

(8)
$$\lim_{x \to 2} \frac{2-x}{(x-2)^3}.$$

(9)
$$\lim_{x \to 5} \frac{1}{(x-5)^3}.$$

(10)
$$\lim_{x \to -2} \frac{x+1}{(x-3)(x+2)}.$$

(11)
$$\lim_{x \to \frac{\pi}{2}} \tan x.$$

Intuitively, $\lim_{x\to\infty} f(x) = L$ (or, $\lim_{x\to-\infty} f(x) = L$ if x moves increasingly far from the origin in the positive direction (or, in the negative direction), f(x) gets arbitrarily close to L.

Example 4.2. Clearly,
$$\lim_{x \to \infty} \frac{1}{x} = 0$$
 and $\lim_{x \to -\infty} \frac{1}{x} = 0$.

A line y = b is a *horizontal asymptote* of the graph of a function y = f(x) if either

$$\lim_{x \to \infty} f(x) = b \quad \text{or} \quad \lim_{x \to -\infty} f(x) = b$$

Example 4.3. Evaluate $\lim_{x\to\infty} 5 + \frac{1}{x}$.

Theorem 4.1 For any rational number t > 0,

$$\lim_{x \to \pm \infty} \frac{1}{x^t} = 0,$$

where for the case where $x \to -\infty$, we assume that t = p/q where q is odd.

Theorem 4.2 For any polynomial of degree n > 0, $p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$, we have

$$\lim_{x \to \infty} p_n(x) = \begin{cases} \infty & \text{if } a_n > 0\\ -\infty & \text{if } a_n < 0 \end{cases}$$

Example 4.4. Evaluate

(1)
$$\lim_{x \to \infty} \frac{2x^3 + 7}{x^3 - x^2 + x + 7}.$$

(2)
$$\lim_{x \to \infty} \frac{3x + 7}{x^2 - 2}.$$

(3)
$$\lim_{x \to \infty} \frac{\sin \frac{1}{x}}{x}.$$

(4)
$$\lim_{x \to \infty} \frac{\sin x}{x}.$$

(5)
$$\lim_{x \to \infty} \frac{\sin x}{x}.$$

(6)
$$\lim_{x \to \infty} \sin x.$$

Example 4.5. Find the horizontal asymptote(s) of $f(x) = \frac{2 - x + \sin x}{x + \cos x}$

Let $f(x) = \frac{P(x)}{Q(x)}$. If (the degree of P) = (the degree of Q)+1, then the graph of f has a oblique (slant) asymptote. We find an equation for the asymptote by dividing numerator by denominator to express f as a linear function plus a remainder that goes to 0 as $x \to \pm \infty$.

Example 4.6. Find the asymptotes of the graph of f, if

(1)
$$f(x) = \frac{x^2 - 3}{2x - 4}$$
.
(2) $f(x) = \frac{2x}{x + 1}$.

Example 4.7. Evaluate

(1)
$$\lim_{x \to 0^{-}} e^{\frac{1}{x}}.$$

(2)
$$\lim_{x \to 0^{+}} e^{\frac{1}{x}}.$$

(3)
$$\lim_{x \to \infty} \tan^{-1} x.$$

(4)
$$\lim_{x \to -\infty} \tan^{-1} x.$$

(5)
$$\lim_{x \to 0^{+}} \ln x.$$

(6)
$$\lim_{x \to \infty} \ln x.$$

(7)
$$\lim_{x \to 0} \sin \left(e^{-\frac{1}{x^{2}}} \right).$$

(8)
$$\lim_{x \to \infty} \frac{x}{\sqrt{x^{2} + 1}}.$$

(9)
$$\lim_{x \to -\infty} \frac{x}{\sqrt{x^{2} + 1}}.$$