
C H A P T E R

1
Limits and Continuity

When you enter a darkened room, your eyes adjust to the reduced level

of light by increasing the size of your pupils. Enlarging the pupils allows

more light to enter the eyes, which makes objects around you easier to

see. By contrast, when you enter a brightly lit room, your pupils contract,

reducing the amount of light entering the eyes. This is necessary since

too much light will overload your visual system.

This visual adjustment mech-

anism is present in many animals.

Researchers study this mechanism

by performing experiments and try-

ing to find a mathematical descrip-

tion of the results. In this case, you

might want to represent the size

of the pupils as a function of the

amount of light present. Two basic

characteristics of such a mathematical model

would be

Small pupils

Large pupils

1. As the amount of light (x) increases, the

pupil size (y) decreases down to some

minimum value p; and

2. As the amount of light (x) decreases, the

pupil size (y) increases up to some maxi-

mum value P.

Finding a function with these two prop-

erties can be a challenge. (Try it!) One pos-

sible graph of such a function is shown in

Figure 1.1. (See example 5.9 for more.) In

this chapter, we develop the concept of limit,

which can be used to describe functions with

specific properties such as those listed above.

The limit is the fundamental notion of cal-

culus. This underlying concept is the thread

that binds together virtually all of the calculus you are about to study. An investment

in carefully studying limits now will have very significant payoffs throughout the

remainder of your calculus experience and beyond.
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Size of pupils
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54 CHAPTER 1 .. Limits and Continuity 1-2

1.1 A BRIEF PREVIEW OF CALCULUS: TANGENT LINES
AND THE LENGTH OF A CURVE

In this section, we approach the boundary between precalculus mathematics and the calculus

by investigating several important problems requiring the use of calculus. Recall that the

slope of a straight line is the change in y divided by the change in x . This fraction is the

same regardless of which two points you use to compute the slope. For example, the points

(0, 1), (1, 4) and (3, 10) all lie on the line y = 3x + 1. The slope of 3 can be obtained from

any two of the points. For instance,

m =
4 − 1

1 − 0
= 3 or m =

10 − 1

3 − 0
= 3.
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FIGURE 1.3
y = x2 + 1

In the calculus, we generalize this problem to find the slope of a curve at a point. For

instance, suppose we wanted to find the slope of the curve y = x2 + 1 at the point (1, 2). You

might think of picking a second point on the parabola, say (2, 5). The slope of the line through

these two points (called a secant line; see Figure 1.2a) is easy enough to compute. We have

msec =
5 − 2

2 − 1
= 3.

However, using the points (0, 1) and (1, 2), we get a different slope (see Figure 1.2b):

msec =
2 − 1

1 − 0
= 1.
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FIGURE 1.2a
Secant line, slope = 3

FIGURE 1.2b
Secant line, slope = 1

For curves other than straight lines, the slopes of secant lines joining different points are

generally not the same, as seen in Figures 1.2a and 1.2b.

If you get different slopes using different pairs of points, then what exactly does it mean

for a curve to have a slope at a point? The answer can be visualized by graphically zooming

in on the specified point. Take the graph of y = x2 + 1 and zoom in tight on the point

(1, 2). You should get a graph something like the one in Figure 1.3. The graph looks very

much like a straight line. In fact, the more you zoom in, the straighter the curve appears

to be and the less it matters which two points are used to compute a slope. So, here’s the

strategy: pick several points on the parabola, each closer to the point (1, 2) than the previous

one. Compute the slopes of the lines through (1, 2) and each of the points. The closer the

second point gets to (1, 2), the closer the computed slope is to the answer you seek.
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For example, the point (1.5, 3.25) is on the parabola fairly close to (1, 2). The slope of

the line joining these points is

msec =
3.25 − 2

1.5 − 1
= 2.5.

The point (1.1, 2.21) is even closer to (1, 2). The slope of the secant line joining these two

points is

msec =
2.21 − 2

1.1 − 1
= 2.1.

Continuing in this way, observe that the point (1.01, 2.0201) is closer yet to the point

(1, 2). The slope of the secant line through these points is

msec =
2.0201 − 2

1.01 − 1
= 2.01.

The slopes of the secant lines that we computed (2.5, 2.1 and 2.01) are getting closer and

closer to the slope of the parabola at the point (1, 2). Based on these calculations, it seems

reasonable to say that the slope of the curve is approximately 2.

Example 1.1 takes our introductory example just a bit further.

EXAMPLE 1.1 Estimating the Slope of a Curve

Estimate the slope of y = x2 + 1 at x = 1.

Solution We focus on the point whose coordinates are x = 1 and y = 12 + 1 = 2. To

estimate the slope, choose a sequence of points near (1, 2) and compute the slopes of

the secant lines joining those points with (1, 2). (We showed sample secant lines in

Figures 1.2a and 1.2b.) Choosing points with x > 1 (x-values of 2, 1.1 and 1.01) and

points with x < 1 (x-values of 0, 0.9 and 0.99), we compute the corresponding y-values

using y = x2 + 1 and get the slopes shown in the following table.

Second Point msec

(2, 5)
5 − 2

2 − 1
= 3

(1.1, 2.21)
2.21 − 2

1.1 − 1
= 2.1

(1.01, 2.0201)
2.0201 − 2

1.01 − 1
= 2.01

Second Point msec

(0, 1)
1 − 2

0 − 1
= 1

(0.9, 1.81)
1.81 − 2

0.9 − 1
= 1.9

(0.99, 1.9801)
1.9801 − 2

0.99 − 1
= 1.99

Observe that in both columns, as the second point gets closer to (1, 2), the slope of

the secant line gets closer to 2. A reasonable estimate of the slope of the curve at the

point (1, 2) is then 2. �

In Chapter 2, we develop a powerful technique for computing such slopes exactly

(and easily). Note what distinguishes the calculus problem from the corresponding algebra

problem. The calculus problem involves a process we call a limit. While we presently can
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only estimate the slope of a curve using a sequence of approximations, the limit allows us

to compute the slope exactly.

EXAMPLE 1.2 Estimating the Slope of a Curve

Estimate the slope of y = sin x at x = 0.
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FIGURE 1.4
y = sin x

Solution This turns out to be a very important problem, one that we will return to

later. For now, choose a sequence of points on the graph of y = sin x near (0, 0) and

compute the slopes of the secant lines joining those points with (0, 0). The following

table shows one set of choices.

Second Point msec

(1, sin 1) 0.84147

(0.1, sin 0.1) 0.99833

(0.01, sin 0.01) 0.99998

Second Point msec

(−1, sin (−1)) 0.84147

(−0.1, sin (−0.1)) 0.99833

(−0.01, sin (−0.01)) 0.99998

Note that as the second point gets closer and closer to (0, 0), the slope of the secant line

(msec) appears to get closer and closer to 1. A good estimate of the slope of the curve at

the point (0, 0) would then appear to be 1. Although we presently have no way of

computing the slope exactly, this is consistent with the graph of y = sin x in Figure 1.4.

Note that near (0, 0), the graph resembles that of y = x , a straight line of slope 1. �

A second problem requiring the power of calculus is that of computing distance along

a curved path. While this problem is of less significance than our first example (both

historically and in the development of the calculus), it provides a good indication of the need

for mathematics beyond simple algebra. You should pay special attention to the similarities

between the development of this problem and our earlier work with slope.

Recall that the (straight-line) distance between two points (x1, y1) and (x2, y2) is

d{(x1, y1), (x2, y2)} =
√

(x2 − x1)2 + (y2 − y1)2.

For instance, the distance between the points (0, 1) and (3, 4) is

d{(0, 1), (3, 4)} =
√

(3 − 0)2 + (4 − 1)2 = 3
√

2 ≈ 4.24264.

However, this is not the only way we might want to compute the distance between these

two points. For example, suppose that you needed to drive a car from (0, 1) to (3, 4) along

a road that follows the curve y = (x − 1)2. (See Figure 1.5a.) In this case, you don’t care

about the straight-line distance connecting the two points, but only about how far you must

drive along the curve (the length of the curve or arc length).
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(3, 4)

(0, 1)

FIGURE 1.5a
y = (x − 1)2

Notice that the distance along the curve must be greater than 3
√

2 (the straight-line

distance). Taking a cue from the slope problem, we can formulate a strategy for obtaining

a sequence of increasingly accurate approximations. Instead of using just one line segment

to get the approximation of 3
√

2, we could use two line segments, as in Figure 1.5b. Notice

that the sum of the lengths of the two line segments appears to be a much better ap-

proximation to the actual length of the curve than the straight-line distance used previously.
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FIGURE 1.5b
Two line segments

FIGURE 1.5c
Three line segments

This distance is

d2 = d{(0, 1), (1.5, 0.25)} + d{(1.5, 0.25), (3, 4)}

=
√

(1.5 − 0)2 + (0.25 − 1)2 +
√

(3 − 1.5)2 + (4 − 0.25)2 ≈ 5.71592.

You’re probably way ahead of us by now. If approximating the length of the curve

with two line segments gives an improved approximation, why not use three or four or

more? Using the three line segments indicated in Figure 1.5c, we get the further improved

approximation

d3 = d{(0, 1), (1, 0)} + d{(1, 0), (2, 1)} + d{(2, 1), (3, 4)}

=
√

(1 − 0)2 + (0 − 1)2 +
√

(2 − 1)2 + (1 − 0)2 +
√

(3 − 2)2 + (4 − 1)2

= 2
√

2 +
√

10 ≈ 5.99070.

No. of Segments Distance

1 4.24264

2 5.71592

3 5.99070

4 6.03562

5 6.06906

6 6.08713

7 6.09711

Note that the more line segments we use, the better the approximation appears to be.

This process will become much less tedious with the development of the definite integral in

Chapter 4. For now we list a number of these successively better approximations (produced

using points on the curve with evenly spaced x-coordinates) in the table found in the mar-

gin. The table suggests that the length of the curve is approximately 6.1 (quite far from the

straight-line distance of 4.2). If we continued this process using more and more line seg-

ments, the sum of their lengths would approach the actual length of the curve (about 6.126).

As in the problem of computing the slope of a curve, the exact arc length is obtained as a limit.

EXAMPLE 1.3 Estimating the Arc Length of a Curve

Estimate the arc length of the curve y = sin x for 0 ≤ x ≤ π . (See Figure 1.6a.)

y
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FIGURE 1.6a
Approximating the curve with two

line segments

Solution The endpoints of the curve on this interval are (0, 0) and (π , 0). The distance

between these points is d1 = π . The point on the graph of y = sin x corresponding to

the midpoint of the interval [0, π ] is (π /2, 1). The distance from (0, 0) to (π/2, 1) plus

the distance from (π/2, 1) to (π , 0) (illustrated in Figure 1.6a) is

d2 =
√

(π

2

)2

+ 1 +
√

(π

2

)2

+ 1 ≈ 3.7242.
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Using the five points (0, 0), (π/4, 1/
√

2), (π/2, 1), (3π/4, 1/
√

2) and (π , 0) (i.e., four line

segments, as indicated in Figure 1.6b), the sum of the lengths of these line segments is

d4 = 2

√
(π

4

)2

+
1

2
+ 2

√

(π

4

)2

+
(

1 −
1

√
2

)2

≈ 3.7901.

Using nine points (i.e., eight line segments), you need a good calculator and some

patience to compute the distance of 3.8125. A table showing further approximations is

given in the margin. At this stage, it would be reasonable to estimate the length of the

sine curve on the interval [0, π ] as slightly more than 3.8. �

y
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FIGURE 1.6b
Approximating the curve with

four line segments

Number of Sum of

Line Segments Lengths

8 3.8125

16 3.8183

32 3.8197

64 3.8201

BEYOND FORMULAS

In the process of estimating both the slope of a curve and the length of a curve, we

make some reasonably obvious (straight-line) approximations and then systematically

improve on those approximations. In each case, the shorter the line segments are, the

closer the approximations are to the desired value. The essence of this is the concept of

limit, which separates precalculus mathematics from the calculus. At first glance, this

limit idea might seem of little practical importance, since in our examples we never

compute the exact solution. In the chapters to come, we will find remarkably simple

shortcuts to exact answers. Can you think of ways to find the exact slope in example 1.1?

EXERCISES 1.1

WRITING EXERCISES

1. Explain why each approximation of arc length in example 1.3

is less than the actual arc length.

2. To estimate the slope of f (x) = x2 + 1 at x = 1, you

would compute the slopes of various secant lines. Note that

y = x2 + 1 curves up. Explain why the secant line connecting

(1, 2) and (1.1, 2.21) will have slope greater than the slope of

the curve at (1, 2). Discuss how the slope of the secant line

between (1, 2) and (0.9, 1.81) compares to the slope of the

curve at (1, 2).

In exercises 1–12, estimate the slope (as in example 1.1) of
y � f (x) at x � a.

1. f (x) = x2 + 1, a = 1.5 2. f (x) = x2 + 1, a = 2

3. f (x) = cos x, a = 0 4. f (x) = cos x, a = π/2

5. f (x) = x3 + 2, a = 1 6. f (x) = x3 + 2, a = 2

7. f (x) =
√

x + 1, a = 0 8. f (x) =
√

x + 1, a = 3

9. f (x) = tan x, a = 0 10. f (x) = tan x, a = 1

11. Estimate the length of the curve y =
√

1 − x2 for 0 ≤ x ≤ 1

with (a) n = 4 and (b) n = 8 line segments. Explain why the

exact length is π/2. How accurate are your estimates?

12. Estimate the length of the curve y =
√

9 − x2 for 0 ≤ x ≤ 3

with (a) n = 4 and (b) n = 8 line segments. Explain why the

exact length is 3π/2. How would an estimate of π obtained

from part (b) of this exercise compare to an estimate of π

obtained from part (b) of exercise 11?

In exercises 13–20, estimate the length of the curve y � f (x) on
the given interval using (a) n � 4 and (b) n � 8 line segments.
(c) If you can program a calculator or computer, use larger n’s
and conjecture the actual length of the curve.

13. f (x) = x2 + 1, 0 ≤ x ≤ 2

14. f (x) = x3 + 2, 0 ≤ x ≤ 1

15. f (x) = cos x, 0 ≤ x ≤ π/2

16. f (x) = sin x, 0 ≤ x ≤ π/2

17. f (x) =
√

x + 1, 0 ≤ x ≤ 3

18. f (x) = 1/x, 1 ≤ x ≤ 2
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19. f (x) = x2 + 1, −2 ≤ x ≤ 2

20. f (x) = x3 + 2, −1 ≤ x ≤ 1

21. An important problem in calculus is finding the area of a re-

gion. Sketch the parabola y = 1 − x2 and shade in the region

above the x-axis between x = −1 and x = 1. Then sketch in

the following rectangles: (1) height f (− 3
4
) and width 1

2
extend-

ing from x = −1 to x = − 1
2
, (2) height f (− 1

4
) and width 1

2

extending from x = − 1
2

to x = 0, (3) height f ( 1
4
) and width 1

2

extending from x = 0 to x = 1
2

and (4) height f ( 3
4
) and width

1
2

extending from x = 1
2

to x = 1. Compute the sum of the

areas of the rectangles. Based on your sketch, does this give

you a good approximation of the area under the parabola?

22. To improve the approximation of exercise 21, divide the inter-

val [−1, 1] into 8 pieces and construct a rectangle of the appro-

priate height on each subinterval. Compared to the approxima-

tion in exercise 21, explain why you would expect this to be a

better approximation of the actual area under the parabola.

23. Use a computer or calculator to compute an approximation of

the area in exercise 21 using (a) 16 rectangles, (b) 32 rectangles

and (c) 64 rectangles. Use these calculations to conjecture the

exact value of the area under the parabola.

24. Use the technique of exercises 21–23 to estimate the area below

y = sin x and above the x-axis between x = 0 and x = π .

25. Use the technique of exercises 21–23 to estimate the area

below y = x3 and above the x-axis between x = 0 and x = 1.

26. Use the technique of exercises 21–23 to estimate the area

below y = x3 and above the x-axis between x = 0 and x = 2.

EXPLORATORY EXERCISE

1. Several central concepts of calculus have been introduced in

this section. An important aspect of our future development of

calculus is to derive simple techniques for computing quantities

such as slope and arc length. In this exercise, you will learn how

to directly compute the slope of a curve at a point. Suppose you

want the slope of y = x2 at x = 1. You could start by comput-

ing slopes of secant lines connecting the point (1, 1) with nearby

points on the graph. Suppose the nearby point has x-coordinate

1 + h, where h is a small (positive or negative) number. Ex-

plain why the corresponding y-coordinate is (1 + h)2. Show

that the slope of the secant line is
(1 + h)2 − 1

1 + h − 1
= 2 + h. As h

gets closer and closer to 0, this slope better approximates the

slope of the tangent line. Letting h approach 0, show that the

slope of the tangent line equals 2. In a similar way, show that

the slope of y = x2 at x = 2 is 4 and find the slope of y = x2

at x = 3. Based on your answers, conjecture a formula for the

slope of y = x2 at x = a, for any unspecified value of a.

1.2 THE CONCEPT OF LIMIT

In this section, we develop the notion of limit using some common language and illustrate

the idea with some simple examples. The notion turns out to be a rather subtle one, easy

to think of intuitively, but a bit harder to pin down in precise terms. We present the precise

definition of limit in section 1.6. There, we carefully define limits in considerable detail.

The more informal notion of limit that we introduce and work with here and in sections 1.3,

1.4 and 1.5 is adequate for most purposes.
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FIGURE 1.7a

y =
x2 − 4

x − 2

As a start, consider the functions

f (x) =
x2 − 4

x − 2
and g(x) =

x2 − 5

x − 2
.

Notice that both functions are undefined at x = 2. So, what does this mean, beyond

saying that you cannot substitute 2 for x? We often find important clues about the behavior

of a function from a graph. (See Figures 1.7a and 1.7b.)

Notice that the graphs of these two functions look quite different in the vicinity of

x = 2. Although we can’t say anything about the value of these functions at x = 2 (since

this is outside the domain of both functions), we can examine their behavior in the vicinity of
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this point. We consider these functions one at a time. First, for f (x) =
x2 − 4

x − 2
, we compute

some values of the function for x close to 2, as in the following tables.

x f (x) �
x2 − 4

x − 2

1.9 3.9

1.99 3.99

1.999 3.999

1.9999 3.9999

x f (x) �
x2 − 4

x − 2

2.1 4.1

2.01 4.01

2.001 4.001

2.0001 4.0001

y
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105�10

�10
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FIGURE 1.7b

y =
x2 − 5

x − 2

Notice that as you move down the first column of the table, the x-values get closer to 2,

but are all less than 2. We use the notation x → 2− to indicate that x approaches 2 from the

left side. Notice that the table and the graph both suggest that as x gets closer and closer to

2 (with x < 2), f (x) is getting closer and closer to 4. In view of this, we say that the limit
of f(x) as x approaches 2 from the left is 4, written

lim
x→2−

f (x) = 4.

Likewise, we need to consider what happens to the function values for x close to 2 but

larger than 2. Here, we use the notation x → 2+ to indicate that x approaches 2 from the

right side. We compute some of these values in the second table.

Again, the table and graph both suggest that as x gets closer and closer to 2 (with

x > 2), f (x) is getting closer and closer to 4. In view of this, we say that the limit of f(x)

as x approaches 2 from the right is 4, written

lim
x→2+

f (x) = 4.

We call lim
x→2−

f (x) and lim
x→2+

f (x) one-sided limits. Since the two one-sided limits of

f (x) are the same, we summarize our results by saying that the limit of f(x) as x approaches
2 is 4, written

lim
x→2

f (x) = 4.

The notion of limit as we have described it here is intended to communicate the behavior

of a function near some point of interest, but not actually at that point. We finally observe that

we can also determine this limit algebraically, as follows. Notice that since the expression

in the numerator of f (x) =
x2 − 4

x − 2
factors, we can write

lim
x→2

f (x) = lim
x→2

x2 − 4

x − 2

= lim
x→2

(x − 2)(x + 2)

x − 2
Cancel the factors of (x − 2).

= lim
x→2

(x + 2) = 4, As x approaches 2, (x + 2) approaches 4.

where we can cancel the factors of (x − 2) since in the limit as x → 2, x is close to 2, but

x �= 2, so that x − 2 �= 0.
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x g(x) �
x2 − 5

x − 2

1.9 13.9

1.99 103.99

1.999 1003.999

1.9999 10,003.9999

x g(x) �
x2 − 5

x − 2

2.1 −5.9

2.01 −95.99

2.001 −995.999

2.0001 −9995.9999

Similarly, we consider one-sided limits for g(x) =
x2 − 5

x − 2
, as x → 2. Based on the

graph in Figure 1.7b and the table of approximate function values shown in the margin,

observe that as x gets closer and closer to 2 (with x < 2), g(x) increases without bound. Since

there is no number that g(x) is approaching, we say that the limit of g(x) as x approaches 2

from the left does not exist, written

lim
x→2−

g(x) does not exist.

Similarly, the graph and the table of function values for x > 2 (shown in the margin)

suggest that g(x) decreases without bound as x approaches 2 from the right. Since there is

no number that g(x) is approaching, we say that

lim
x→2+

g(x) does not exist.

Finally, since there is no common value for the one-sided limits of g(x) (in fact, neither

limit exists), we say that the limit of g(x) as x approaches 2 does not exist, written

lim
x→2

g(x) does not exist.

Before moving on, we should summarize what we have said about limits.

A limit exists if and only if both corresponding one-sided limits exist and are equal.

That is,

lim
x→a

f (x) = L , for some number L , if and only if lim
x→a−

f (x) = lim
x→a+

f (x) = L .

In other words, we say that lim
x→a

f (x) = L if we can make f (x) as close as we might like to

L , by making x sufficiently close to a (on either side of a), but not equal to a.

Note that we can think about limits from a purely graphical viewpoint, as in

example 2.1.

y

x
1 2

�2

�1

1

2

�2 �1

FIGURE 1.8
y = f (x)

EXAMPLE 2.1 Determining Limits Graphically

Use the graph in Figure 1.8 to determine lim
x→1−

f (x), lim
x→1+

f (x), lim
x→1

f (x) and lim
x→−1

f (x).

Solution For lim
x→1−

f (x), we consider the y-values as x gets closer to 1, with x < 1.

That is, we follow the graph toward x = 1 from the left (x < 1). Observe that the graph

dead-ends into the open circle at the point (1, 2). Therefore, we say that lim
x→1−

f (x) = 2.

For lim
x→1+

f (x), we follow the graph toward x = 1 from the right (x > 1). In this case,

the graph dead-ends into the solid circle located at the point (1, −1). For this reason, we

say that lim
x→1+

f (x) = −1. Because lim
x→1−

f (x) �= lim
x→1+

f (x), we say that lim
x→1

f (x) does

not exist. Finally, we have that lim
x→−1

f (x) = 1, since the graph approaches a y-value of

1 as x approaches −1 both from the left and from the right. �
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y

x
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�3 xx

�3

3

f (x)

f (x)

�

FIGURE 1.9

lim
x→−3

3x + 9

x2 − 9
= −

1

2

x
3x � 9

x2 − 9

−3.1 −0.491803

−3.01 −0.499168

−3.001 −0.499917

−3.0001 −0.499992

x
3x � 9

x2 − 9

−2.9 −0.508475

−2.99 −0.500835

−2.999 −0.500083

−2.9999 −0.500008

EXAMPLE 2.2 A Limit Where Two Factors Cancel

Evaluate lim
x→−3

3x + 9

x2 − 9
.

Solution We examine a graph (see Figure 1.9) and compute some function values for

x near −3. Based on this numerical and graphical evidence, it’s reasonable to conjecture

that

lim
x→−3+

3x + 9

x2 − 9
= lim

x→−3−

3x + 9

x2 − 9
= −

1

2
.

Further, note that

lim
x→−3−

3x + 9

x2 − 9
= lim

x→−3−

3(x + 3)

(x + 3)(x − 3)
Cancel factors of (x + 3).

= lim
x→−3−

3

x − 3
= −

1

2
,

since (x − 3) → −6 as x → −3. Again, the cancellation of the factors of (x + 3) is

valid since in the limit as x → −3, x is close to −3, but x �= −3, so that x + 3 �= 0.

Likewise,

lim
x→−3+

3x + 9

x2 − 9
= −

1

2
.

Finally, since the function approaches the same value as x → −3 both from the

right and from the left (i.e., the one-sided limits are equal), we write

lim
x→−3

3x + 9

x2 − 9
= −

1

2
.
�

In example 2.2, the limit exists because both one-sided limits exist and are equal. In

example 2.3, neither one-sided limit exists.

y

x
x

x

3

�30

30 f(x)

f(x)

FIGURE 1.10

y =
3x + 9

x2 − 9

x
3x � 9

x2 − 9

3.1 30

3.01 300

3.001 3000

3.0001 30,000

EXAMPLE 2.3 A Limit That Does Not Exist

Determine whether lim
x→3

3x + 9

x2 − 9
exists.

Solution We first draw a graph (see Figure 1.10) and compute some function values

for x close to 3.

Based on this numerical and graphical evidence, it appears that, as x → 3+,
3x + 9

x2 − 9
is increasing without bound. Thus,

lim
x→3+

3x + 9

x2 − 9
does not exist.

Similarly, from the graph and the table of values for x < 3, we can say that

lim
x→3−

3x + 9

x2 − 9
does not exist.

Since neither one-sided limit exists, we say

lim
x→3

3x + 9

x2 − 9
does not exist.

Here, we considered both one-sided limits for the sake of completeness. Of course, you

should keep in mind that if either one-sided limit fails to exist, then the limit does not

exist. �
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Many limits cannot be resolved using algebraic methods. In these cases, we can ap-

proximate the limit using graphical and numerical evidence, as we see in example 2.4.x
3x � 9

x2 − 9

2.9 −30

2.99 −300

2.999 −3000

2.9999 −30,000

EXAMPLE 2.4 Approximating the Value of a Limit

Evaluate lim
x→0

sin x

x
.

Solution Unlike some of the limits considered previously, there is no algebra that will

simplify this expression. However, we can still draw a graph (see Figure 1.11) and

compute some function values.

y

x
xx

42�4 �2

1

f (x)

FIGURE 1.11

lim
x→0

sin x

x
= 1

x
sin x

x

0.1 0.998334

0.01 0.999983

0.001 0.99999983

0.0001 0.9999999983

0.00001 0.999999999983

x
sin x

x

−0.1 0.998334

−0.01 0.999983

−0.001 0.99999983

−0.0001 0.9999999983

−0.00001 0.999999999983

The graph and the tables of values lead us to the conjectures:

lim
x→0+

sin x

x
= 1 and lim

x→0−

sin x

x
= 1,

from which we conjecture that

lim
x→0

sin x

x
= 1.

In Chapter 2, we examine these limits with greater care (and prove that these

conjectures are correct). �

REMARK 2.1

Computer or calculator computation of limits is unreliable. We use graphs and tables

of values only as (strong) evidence pointing to what a plausible answer might be. To

be certain, we need to obtain careful verification of our conjectures. We see how to do

this in sections 1.3–1.7.

y

x
4�4

�1

1

FIGURE 1.12a

y =
x

|x |

EXAMPLE 2.5 A Case Where One-Sided Limits Disagree

Evaluate lim
x→0

x

|x |
.

Solution The computer-generated graph shown in Figure 1.12a is incomplete. Since
x

|x |
is undefined at x = 0, there is no point at x = 0. The graph in Figure 1.12b

correctly shows open circles at the intersections of the two halves of the graph with the

y-axis. We also have

lim
x→0+

x

|x |
= lim

x→0+

x

x
Since |x | = x , when x > 0.

= lim
x→0+

1

= 1
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y

x
2�2

�1

1

x

x

f (x)

f (x)

FIGURE 1.12b

lim
x→0

x

|x |
does not exist.

and lim
x→0−

x

|x |
= lim

x→0−

x

−x
Since |x | = −x , when x < 0.

= lim
x→0−

−1

= −1.

It now follows that lim
x→0

x

|x |
does not exist,

since the one-sided limits are not the same. You should also keep in mind that this

observation is entirely consistent with what we see in the graph. �

EXAMPLE 2.6 A Limit Describing the Movement of a Baseball Pitch

The knuckleball is one of the most exotic pitches in baseball. Batters describe the ball as

unpredictably moving left, right, up and down. For a typical knuckleball speed of

60 mph, the left/right position of the ball (in feet) as it crosses the plate is given by

f (ω) =
1.7

ω
−

5

8ω2
sin(2.72ω)

(derived from experimental data in Watts and Bahill’s book Keeping Your Eye on the

Ball), where ω is the rotational speed of the ball in radians per second and where

f (ω) = 0 corresponds to the middle of home plate. Folk wisdom among baseball

pitchers has it that the less spin on the ball, the better the pitch. To investigate this

theory, we consider the limit of f (ω) as ω → 0+. As always, we look at a graph (see

Figure 1.13) and generate a table of function values. The graphical and numerical

evidence suggests that lim
ω→0+

f (ω) = 0.

y

v

0.5

1.0

1.5

2 10864

FIGURE 1.13

y =
1.7

ω
−

5

8ω2
sin(2.72ω)

ω f (ω)

10 0.1645

1 1.4442

0.1 0.2088

0.01 0.021

0.001 0.0021

0.0001 0.0002

The limit indicates that a knuckleball with absolutely no spin doesn’t move at

all (and therefore would be easy to hit). According to Watts and Bahill, a very slow

rotation rate of about 1 to 3 radians per second produces the best pitch (i.e., the most

movement). Take another look at Figure 1.13 to convince yourself that this makes

sense. �
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EXERCISES 1.2

WRITING EXERCISES

1. Suppose your professor says, “You can think of the limit of

f (x) as x approaches a as what f (a) should be.” Critique

this statement. What does it mean? Does it provide important

insight? Is there anything misleading about it? Replace the

phrase in italics with your own best description of what the

limit is.

2. Your friend’s professor says, “The limit is a prediction of

what f (a) will be.” Compare and contrast this statement to

the one in exercise 1. Does the inclusion of the word pre-

diction make the limit idea seem more useful and impor-

tant?

3. We have observed that lim
x→a

f (x) does not depend on the actual

value of f (a), or even on whether f (a) exists. In principle,

functions such as f (x) =
{

x2 if x �= 2

13 if x = 2
are as “normal” as

functions such as g(x) = x2. With this in mind, explain why

it is important that the limit concept is independent of how (or

whether) f (a) is defined.

4. The most common limit encountered in everyday life is the

speed limit. Describe how this type of limit is very different

from the limits discussed in this section.

1. For the function graphed below, identify each limit or state that

it does not exist.

(a) lim
x→0−

f (x) (b) lim
x→0+

f (x)

(c) lim
x→0

f (x) (d) lim
x→1−

f (x)

(e) lim
x→−1

f (x) (f) lim
x→2−

f (x)

(g) lim
x→2+

f (x) (h) lim
x→2

f (x)

(i) lim
x→−2

f (x) (j) lim
x→3

f (x)

y

4

2

�2

�2 4 6�6

�4

x

2. For the function graphed below, identify each limit or state that

it does not exist.

(a) lim
x→0−

f (x) (b) lim
x→0+

f (x)

(c) lim
x→0

f (x) (d) lim
x→2−

f (x)

(e) lim
x→−2

f (x) (f) lim
x→1−

f (x)

(g) lim
x→1+

f (x) (h) lim
x→1

f (x)

(i) lim
x→−1

f (x) (j) lim
x→3

f (x)

y

x
2 4 6�2

�2

2

4

�4

�6

3. Sketch the graph of f (x) =
{

2x if x < 2

x2 if x ≥ 2
and identify

each limit.

(a) lim
x→2−

f (x) (b) lim
x→2+

f (x)

(c) lim
x→2

f (x) (d) lim
x→1

f (x)

4. Sketch the graph of f (x) =

⎧

⎪
⎨

⎪
⎩

x3 − 1 if x < 0

0 if x = 0
√

x + 1 − 2 if x > 0
and identify each limit.

(a) lim
x→0−

f (x) (b) lim
x→0+

f (x) (c) lim
x→0

f (x)

(d) lim
x→−1

f (x) (e) lim
x→3

f (x)

5. Sketch the graph of f (x) =
{

x2 + 1 if x < −1

3x + 1 if x ≥ −1
and iden-

tify each limit.

(a) lim
x→−1−

f (x) (b) lim
x→−1+

f (x)

(c) lim
x→−1

f (x) (d) lim
x→1

f (x)
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6. Sketch the graph of f (x) =

⎧

⎨

⎩

2x + 1 if x < −1

3 if −1 ≤ x < 1

2x + 1 if x > 1

and

identify each limit.

(a) lim
x→−1−

f (x) (b) lim
x→−1+

f (x) (c) lim
x→−1

f (x)

(d) lim
x→1

f (x) (e) lim
x→0

f (x)

7. Evaluate f (1.5), f (1.1), f (1.01) and f (1.001), and conjec-

ture a value for lim
x→1+

f (x) for f (x) =
x − 1

√
x − 1

. Evaluate

f (0.5), f (0.9), f (0.99) and f (0.999), and conjecture a value

for lim
x→1−

f (x) for f (x) =
x − 1

√
x − 1

. Does lim
x→1

f (x) exist?

8. Evaluate f (−1.5), f (−1.1), f (−1.01) and f (−1.001), and

conjecture a value for lim
x→−1−

f (x) for f (x) =
x + 1

x2 − 1
. Evaluate

f (−0.5), f (−0.9), f (−0.99) and f (−0.999), and conjecture

a value for lim
x→−1+

f (x) for f (x) =
x + 1

x2 − 1
. Does lim

x→−1
f (x)

exist?

In exercises 9–14, use numerical and graphical evidence to
conjecture values for each limit.

9. lim
x→1

x2 − 1

x − 1
10. lim

x→−1

x2 + x

x2 − x − 2

11. lim
x→0

x2 + x

sin x
12. lim

x→π

sin x

x − π

13. lim
x→0

tan x

sin x
14. lim

x→0
x csc 2x

In exercises 15–22, use numerical and graphical evidence to
conjecture whether lim

x→ a
f (x) exists. If not, describe what is

happening at x � a graphically.

15. lim
x→1

x2 − 1

x2 − 2x + 1
16. lim

x→−1

x2 − 1

x + 1

17. lim
x→1

√
5 − x − 2

√
10 − x − 3

18. lim
x→0

x2 + 4x
√

x3 + x2

19. lim
x→0

sin

(
1

x

)

20. lim
x→0

x sin

(
1

x

)

21. lim
x→2

x − 2

|x − 2|
22. lim

x→−1

|x + 1|
x2 − 1

23. Compute lim
x→1

x2 + 1

x − 1
, lim

x→2

x + 1

x2 − 4
and similar limits to investi-

gate the following. Suppose that f (x) and g(x) are polynomials

with g(a) = 0 and f (a) �= 0. What can you conjecture about

lim
x→a

f (x)

g(x)
?

24. Compute lim
x→−1

x + 1

x2 + 1
, lim

x→π

sin x

x
and similar limits to inves-

tigate the following. Suppose that f (x) and g(x) are functions

with f (a) = 0 and g(a) �= 0. What can you conjecture about

lim
x→a

f (x)

g(x)
?

In exercises 25–28, sketch a graph of a function with the given
properties.

25. f (−1) = 2, f (0) = −1, f (1) = 3 and lim
x→1

f (x) does not exist.

26. f (x) = 1 for −2 ≤ x ≤ 1, lim
x→1+

f (x) = 3 and lim
x→−2

f (x) = 1.

27. f (0) = 1, lim
x→0−

f (x) = 2 and lim
x→0+

f (x) = 3.

28. lim
x→0

f (x) = −2, f (0) = 1, f (2) = 3 and lim
x→2

f (x) does not

exist.

29. As we see in Chapter 2, the slope of the tangent line to the

curve y =
√

x at x = 1 is given by m = lim
h→0

√
1 + h − 1

h
.

Estimate the slope m. Graph y =
√

x and the line with slope

m through the point (1, 1).

30. As we see in Chapter 2, the velocity of an object that has

traveled
√

x miles in x hours at the x = 1 hour mark is given

by v = lim
x→1

√
x − 1

x − 1
. Estimate this limit.

31. Consider the following arguments concerning lim
x→0+

sin
π

x
.

First, as x > 0 approaches 0,
π

x
increases without bound;

since sin t oscillates for increasing t , the limit does not ex-

ist. Second: taking x = 1, 0.1, 0.01 and so on, we compute

sin π = sin 10π = sin 100π = · · · = 0; therefore the limit

equals 0. Which argument sounds better to you? Explain.

Explore the limit and determine which answer is correct.

32. Consider the following arguments concerning lim
x→0+

x−0.1 + 2

x−0.1 − 1
.

First, as x approaches 0, x−0.1 approaches 0 and the function

values approach −2. Second, as x approaches 0, x−0.1 increases

and becomes much larger than 2 or −1. The function values

approach
x−0.1

x−0.1
= 1. Explore the limit and determine which

argument is correct.

33. Give an example of a function f such that lim
x→0

f (x) exists but

f (0) does not exist. Give an example of a function g such that

g(0) exists but lim
x→0

g(x) does not exist.

34. Give an example of a function f such that lim
x→0

f (x) exists and

f (0) exists, but lim
x→0

f (x) �= f (0).

35. In the text, we described lim
x→a

f (x) = L as meaning “as x gets

closer and closer to a, f (x) is getting closer and closer to

L .” As x gets closer and closer to 0, it is true that x2 gets

closer and closer to −0.01, but it is certainly not true that

lim
x→0

x2 = −0.01. Try to modify the description of limit to
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make it clear that lim
x→0

x2 �= −0.01. We explore a very precise

definition of limit in section 1.6.

36. In Figure 1.13, the final position of the knuckleball at time

t = 0.68 is shown as a function of the rotation rate ω. The

batter must decide at time t = 0.4 whether to swing at the

pitch. At t = 0.4, the left/right position of the ball is given

by h(ω) =
1

ω
−

5

8ω2
sin (1.6ω). Graph h(ω) and compare to

Figure 1.13. Conjecture the limit of h(ω) as ω → 0. For ω = 0,

is there any difference in ball position between what the batter

sees at t = 0.4 and what he tries to hit at t = 0.68?

37. A parking lot charges $2 for each hour or portion of an hour,

with a maximum charge of $12 for all day. If f (t) equals the

total parking bill for t hours, sketch a graph of y = f (t) for

0 ≤ t ≤ 24. Determine the limits lim
t→3.5

f (t) and lim
t→4

f (t), if

they exist.

38. For the parking lot in exercise 37, determine all values of

a with 0 ≤ a ≤ 24 such that lim
t→a

f (t) does not exist. Briefly

discuss the effect this has on your parking strategy (e.g., are

there times where you would be in a hurry to move your car or

times where it doesn’t matter whether you move your car?).

EXPLORATORY EXERCISES

1. In a situation similar to that of example 2.6, the left/right

position of a knuckleball pitch in baseball can be modeled by

P =
5

8ω2
(1 − cos 4ωt), where t is time measured in seconds

(0 ≤ t ≤ 0.68) and ω is the rotation rate of the ball measured

in radians per second. In example 2.6, we chose a specific

t-value and evaluated the limit as ω → 0. While this gives us

some information about which rotation rates produce hard-

to-hit pitches, a clearer picture emerges if we look at P over

its entire domain. Set ω = 10 and graph the resulting func-

tion
1

160
(1 − cos 40t) for 0 ≤ t ≤ 0.68. Imagine looking at a

pitcher from above and try to visualize a baseball starting at

the pitcher’s hand at t = 0 and finally reaching the batter, at

t = 0.68. Repeat this with ω = 5, ω = 1, ω = 0.1 and what-

ever values of ω you think would be interesting. Which values

of ω produce hard-to-hit pitches?

2. In this exercise, the results you get will depend on the accu-

racy of your computer or calculator. Work this exercise and

compare your results with your classmates’ results. We will in-

vestigate lim
x→0

cos x − 1

x2
. Start with the calculations presented

in the table (your results may vary):

x f(x)

0.1 −0.499583. . .

0.01 −0.49999583. . .

0.001 −0.4999999583. . .

Describe as precisely as possible the pattern shown here. What

would you predict for f (0.0001)? f (0.00001)? Does your

computer or calculator give you this answer? If you continue

trying powers of 0.1 (0.000001, 0.0000001 etc.) you should

eventually be given a displayed result of −0.5. Do you think

this is exactly correct or has the answer just been rounded

off? Why is rounding off inescapable? It turns out that −0.5

is the exact value for the limit, so the round-off here is some-

what helpful. However, if you keep evaluating the function at

smaller and smaller values of x , you will eventually see a re-

ported function value of 0. This round-off error is not so benign;

we discuss this error in section 1.7. For now, evaluate cos x at

the current value of x and try to explain where the 0 came from.

1.3 COMPUTATION OF LIMITS

Now that you have an idea of what a limit is, we need to develop some means of calculating

limits of simple functions. In this section, we present some basic rules for dealing with

common limit problems. We begin with two simple limits.

For any constant c and any real number a,

lim
x→a

c = c. (3.1)

y

x

c

a

xx

y � c

FIGURE 1.14
lim
x→a

c = c

In other words, the limit of a constant is that constant. This certainly comes as no

surprise, since the function f (x) = c does not depend on x and so, stays the same as

x → a. (See Figure 1.14.) Another simple limit is the following.
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For any real number a,

lim
x→a

x = a. (3.2)

Again, this is not a surprise, since as x → a, x will approach a. (See Figure 1.15.) Be

sure that you are comfortable enough with the limit notation to recognize how obvious the

limits in (3.1) and (3.2) are. As simple as they are, we use them repeatedly in finding more

complex limits. We also need the basic rules contained in Theorem 3.1.

y

x

a

f (x)

xx

f (x)

a

y � x

FIGURE 1.15
lim
x→a

x = a
THEOREM 3.1

Suppose that lim
x→a

f (x) and lim
x→a

g(x) both exist and let c be any constant. The

following then apply:

(i) lim
x→a

[c · f (x)] = c · lim
x→a

f (x),

(ii) lim
x→a

[ f (x) ± g(x)] = lim
x→a

f (x) ± lim
x→a

g(x),

(iii) lim
x→a

[ f (x) · g(x)] =
[

lim
x→a

f (x)
] [

lim
x→a

g(x)
]

and

(iv) lim
x→a

f (x)

g(x)
=

lim
x→a

f (x)

lim
x→a

g(x)

(

if lim
x→a

g(x) �= 0
)

.

The proof of Theorem 3.1 is found in Appendix A and requires the formal definition

of limit discussed in section 1.6. You should think of these rules as sensible results that

you would certainly expect to be true, given your intuitive understanding of what a limit

is. Read them in plain English. For instance, part (ii) says that the limit of a sum (or a

difference) equals the sum (or difference) of the limits, provided the limits exist. Think of

this as follows. If as x approaches a, f (x) approaches L and g(x) approaches M , then

f (x) + g(x) should approach L + M.

Observe that by applying part (iii) of Theorem 3.1 with g(x) = f (x), we get that,

whenever lim
x→a

f (x) exists,

lim
x→a

[ f (x)]2 = lim
x→a

[ f (x) · f (x)]

=
[

lim
x→a

f (x)
] [

lim
x→a

f (x)
]

=
[

lim
x→a

f (x)
]2

.

Likewise, for any positive integer n, we can apply part (iii) of Theorem 3.1 repeatedly,

to yield

lim
x→a

[ f (x)]n =
[

lim
x→a

f (x)
]n

(3.3)

(see exercises 60 and 61).

Notice that taking f (x) = x in (3.3) gives us that for any integer n > 0 and any real

number a,

lim
x→a

xn = an. (3.4)

That is, to compute the limit of any positive power of x , you simply substitute in the value

of x being approached.
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EXAMPLE 3.1 Finding the Limit of a Polynomial

Apply the rules of limits to evaluate lim
x→2

(3x2 − 5x + 4).

Solution We have

lim
x→2

(3x2 − 5x + 4) = lim
x→2

(3x2) − lim
x→2

(5x) + lim
x→2

4 By Theorem 3.1 (ii).

= 3 lim
x→2

x2 − 5 lim
x→2

x + 4 By Theorem 3.1 (i).

= 3 · (2)2 − 5 · 2 + 4 = 6. By (3.4). �

EXAMPLE 3.2 Finding the Limit of a Rational Function

Apply the rules of limits to evaluate lim
x→3

x3 − 5x + 4

x2 − 2
.

Solution We get

lim
x→3

x3 − 5x + 4

x2 − 2
=

lim
x→3

(x3 − 5x + 4)

lim
x→3

(x2 − 2)
By Theorem 3.1 (iv).

=
lim
x→3

x3 − 5 lim
x→3

x + lim
x→3

4

lim
x→3

x2 − lim
x→3

2
By Theorem 3.1 (i) and (ii).

=
33 − 5 · 3 + 4

32 − 2
=

16

7
. By (3.4).

�

You may have noticed that in examples 3.1 and 3.2, we simply ended up substituting

the value for x , after taking many intermediate steps. In example 3.3, it’s not quite so

simple.

EXAMPLE 3.3 Finding a Limit by Factoring

Evaluate lim
x→1

x2 − 1

1 − x
.

Solution Notice right away that

lim
x→1

x2 − 1

1 − x
�=

lim
x→1

(x2 − 1)

lim
x→1

(1 − x)
,

since the limit in the denominator is zero. (Recall that the limit of a quotient is the

quotient of the limits only when both limits exist and the limit in the denominator is not

zero.) We can resolve this problem by observing that

lim
x→1

x2 − 1

1 − x
= lim

x→1

(x − 1)(x + 1)

−(x − 1)

Factoring the numerator and

factoring −1 from the denominator.

= lim
x→1

(x + 1)

−1
= −2,

Simplifying and

substituting x = 1.

where the cancellation of the factors of (x − 1) is valid because in the limit as x → 1,

x is close to 1, but x �= 1, so that x − 1 �= 0. �



70 CHAPTER 1 .. Limits and Continuity 1-18

In Theorem 3.2, we show that the limit of a polynomial at a point is simply the value of

the polynomial at that point; that is, to find the limit of a polynomial, we simply substitute

in the value that x is approaching.

THEOREM 3.2

For any polynomial p(x) and any real number a,

lim
x→a

p(x) = p(a).

PROOF

Suppose that p(x) is a polynomial of degree n ≥ 0,

p(x) = cn xn + cn−1xn−1 + · · · + c1x + c0.

Then, from Theorem 3.1 and (3.4),

lim
x→a

p(x) = lim
x→a

(cn xn + cn−1xn−1 + · · · + c1x + c0)

= cn lim
x→a

xn + cn−1 lim
x→a

xn−1 + · · · + c1 lim
x→a

x + lim
x→a

c0

= cnan + cn−1an−1 + · · · + c1a + c0 = p(a).

Evaluating the limit of a polynomial is now easy. Many other limits are evaluated just

as easily.

THEOREM 3.3

Suppose that lim
x→a

f (x) = L and n is any positive integer. Then,

lim
x→a

n
√

f (x) = n

√

lim
x→a

f (x) = n
√

L ,

where for n even, we assume that L > 0.

The proof of Theorem 3.3 is given in Appendix A. Notice that this result says that we

may (under the conditions outlined in the hypotheses) bring limits “inside” nth roots. We

can then use our existing rules for computing the limit inside.

EXAMPLE 3.4 Evaluating the Limit of an nth Root of a Polynomial

Evaluate lim
x→2

5
√

3x2 − 2x .

Solution By Theorems 3.2 and 3.3, we have

lim
x→2

5
√

3x2 − 2x = 5

√

lim
x→2

(3x2 − 2x) = 5
√

8.
�
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REMARK 3.1

In general, in any case where

the limits of both the numerator

and the denominator are 0, you

should try to algebraically

simplify the expression, to get a

cancellation, as we do in

examples 3.3 and 3.5.

EXAMPLE 3.5 Finding a Limit by Rationalizing

Evaluate lim
x→0

√
x + 2 −

√
2

x
.

Solution First, notice that both the numerator (
√

x + 2 −
√

2) and the denominator

(x) approach 0 as x approaches 0. Unlike example 3.3, we can’t factor the numerator.

However, we can rationalize the numerator, as follows:

√
x + 2 −

√
2

x
=

(
√

x + 2 −
√

2)(
√

x + 2 +
√

2)

x(
√

x + 2 +
√

2)
=

x + 2 − 2

x(
√

x + 2 +
√

2)

=
x

x(
√

x + 2 +
√

2)
=

1
√

x + 2 +
√

2
,

where the last equality holds if x �= 0 (which is the case in the limit as x → 0). So, we

have

lim
x→0

√
x + 2 −

√
2

x
= lim

x→0

1
√

x + 2 +
√

2
=

1
√

2 +
√

2
=

1

2
√

2
.
�

So that we are not restricted to discussing only the algebraic functions (i.e., those that

can be constructed by using addition, subtraction, multiplication, division, exponentiation

and by taking nth roots), we state the following result now, without proof.

THEOREM 3.4

For any real number a, we have

(i) lim
x→a

sin x = sin a, (iii) if p is a polynomial and lim
x→p(a)

f (x) = L ,

(ii) lim
x→a

cos x = cos a and then lim
x→a

f (p(x)) = L .

Notice that Theorem 3.4 says that limits of the sine and cosine functions are found

simply by substitution. A more thorough discussion of functions with this property (called

continuity) is found in section 1.4.

EXAMPLE 3.6 Evaluating a Limit of a Trigonometric Function

Evaluate lim
x→0

sin

(
x3 + π

2

)

.

Solution By Theorem 3.4, we have

lim
x→0

sin

(
x3 + π

2

)

= sin
(π

2

)

= 1.
�

So much for limits that we can compute using elementary rules. Many limits can be

found only by using more careful analysis, often by an indirect approach. For instance,

consider the problem in example 3.7.
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EXAMPLE 3.7 A Limit of a Product That Is Not the Product of the Limits

Evaluate lim
x→0

(x cot x).

Solution Your first reaction might be to say that this is a limit of a product and so,

must be the product of the limits:

lim
x→0

(x cot x) =
(

lim
x→0

x

) (

lim
x→0

cot x

)

This is incorrect!

= 0 · ? = 0, (3.5)

y

x

q�q�p p

FIGURE 1.16
y = cot x

x

0.97

0.98

0.99

1

0.3�0.3

y

FIGURE 1.17
y = x cot x

x x cot x

±0.1 0.9967

±0.01 0.999967

±0.001 0.99999967

±0.0001 0.9999999967

±0.00001 0.999999999967

where we’ve written a “?” since you probably don’t know what to do with lim
x→0

cot x .

Since the first limit is 0, do we really need to worry about the second limit? The

problem here is that we are attempting to apply the result of Theorem 3.1 in a case

where the hypotheses are not satisfied. Specifically, Theorem 3.1 says that the limit of a

product is the product of the respective limits when all of the limits exist. The graph in

Figure 1.16 suggests that lim
x→0

cot x does not exist. You should compute some function

values, as well, to convince yourself that this is in fact the case. So, equation (3.5) does

not hold and we’re back to square one. Since none of our rules seem to apply here, the

most reasonable step is to draw a graph (see Figure 1.17) and compute some function

values. Based on these, we conjecture that

lim
x→0

(x cot x) = 1,

which is definitely not 0, as you might have initially suspected. You can also think about

this limit as follows:

lim
x→0

(x cot x) = lim
x→0

(

x
cos x

sin x

)

= lim
x→0

( x

sin x
cos x

)

=
(

lim
x→0

x

sin x

) (

lim
x→0

cos x

)

=
lim
x→0

cos x

lim
x→0

sin x

x

=
1

1
= 1,

since lim
x→0

cos x = 1 and where we have used the conjecture we made in example 2.4

that lim
x→0

sin x

x
= 1. (We verify this last conjecture in section 2.6, using the Squeeze

Theorem, which follows.) �

At this point, we introduce a tool that will help us determine a number of important limits.

THEOREM 3.5 (Squeeze Theorem)

Suppose that

f (x) ≤ g(x) ≤ h(x)

for all x in some interval (c, d), except possibly at the point a ∈ (c, d) and that

lim
x→a

f (x) = lim
x→a

h(x) = L ,

for some number L . Then, it follows that

lim
x→a

g(x) = L , also.
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The proof of Theorem 3.5 is given in Appendix A, since it depends on the precise

definition of limit found in section 1.6. However, if you refer to Figure 1.18, you should

clearly see that if g(x) lies between f (x) and h(x), except possibly at a itself and both f (x)

and h(x) have the same limit as x → a, then g(x) gets squeezed between f (x) and h(x)

and therefore should also have a limit of L . The challenge in using the Squeeze Theorem

is in finding appropriate functions f and h that bound a given function g from below and

above, respectively, and that have the same limit as x → a.

x
a

y

y � f (x)
y � g(x)
y � h(x)

FIGURE 1.18
The Squeeze Theorem

REMARK 3.2

The Squeeze Theorem also

applies to one-sided limits.

EXAMPLE 3.8 Using the Squeeze Theorem to Verify the Value of a Limit

Determine the value of lim
x→0

[

x2 cos

(
1

x

)]

.

Solution Your first reaction might be to observe that this is a limit of a product and

so, might be the product of the limits:

lim
x→0

[

x2 cos

(
1

x

)]

=?
(

lim
x→0

x2

) [

lim
x→0

cos

(
1

x

)]

. This is incorrect! (3.6)

However, the graph of y = cos
(

1
x

)

found in Figure 1.19 suggests that cos
(

1
x

)

oscillates back and forth between −1 and 1. Further, the closer x gets to 0, the more

rapid the oscillations become. You should compute some function values, as well, to

convince yourself that lim
x→0

cos
(

1
x

)

does not exist. Equation (3.6) then does not hold and

we’re back to square one. Since none of our rules seem to apply here, the most

reasonable step is to draw a graph and compute some function values in an effort to see

what is going on. The graph of y = x2 cos
(

1
x

)

appears in Figure 1.20 and a table of

function values is shown in the margin.

y

x
0.2�0.2

�1

1

y

x

�0.03

0.03

0.3�0.3

FIGURE 1.19

y = cos

(
1

x

)
FIGURE 1.20

y = x2 cos

(
1

x

)

x x2 cos (1/x)

±0.1 −0.008

±0.01 8.6 × 10−5

±0.001 5.6 × 10−7

±0.0001 −9.5 × 10−9

±0.00001 −9.99 × 10−11

The graph and the table of function values suggest the conjecture

lim
x→0

[

x2 cos

(
1

x

)]

= 0,

which we prove using the Squeeze Theorem. First, we need to find functions f and h such that

f (x) ≤ x2 cos

(
1

x

)

≤ h(x),
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for all x �= 0 and where lim
x→0

f (x) = lim
x→0

h(x) = 0. Recall that

−1 ≤ cos

(
1

x

)

≤ 1, (3.7)

for all x �= 0. If we multiply (3.7) through by x2 (notice that since x2 ≥ 0, this

multiplication preserves the inequalities), we get

−x2 ≤ x2 cos

(
1

x

)

≤ x2,

for all x �= 0. We illustrate this inequality in Figure 1.21. Further,

lim
x→0

(−x2) = 0 = lim
x→0

x2.

So, from the Squeeze Theorem, it now follows that

lim
x→0

x2 cos

(
1

x

)

= 0,

also, as we had conjectured. �

BEYOND FORMULAS

To resolve the limit in example 3.8, we could not apply the rules for limits contained

in Theorem 3.1. So, we resorted to an indirect method of finding the limit. This tour

de force of graphics plus calculation followed by analysis is sometimes referred to

as the Rule of Three. (The Rule of Three presents a general strategy for attacking

new problems. The basic idea is to look at problems graphically, numerically and

analytically.) In the case of example 3.8, the first two elements of this “rule” (the

graphics in Figure 1.20 and the accompanying table of function values) suggest a

plausible conjecture, while the third element provides us with a careful mathematical

verification of the conjecture. In what ways does this sound like the scientific method?

�0.3 0.3

0.03

�0.03
y � �x2

y

x

y � x2

FIGURE 1.21

y = x2 cos
(

1
x

)

, y = x2 and

y = −x2

Functions are often defined by different expressions on different intervals. Such

piecewise-defined functions are important and we illustrate such a function in example 3.9.

TODAY IN
MATHEMATICS

Michael Freedman (1951– )

An American mathematician who

first solved one of the most

famous problems in mathematics,

the four-dimensional Poincaré

conjecture. A winner of the Fields

Medal, the mathematical

equivalent of the Nobel Prize,

Freedman says, “Much of the

power of mathematics comes

from combining insights from

seemingly different branches of

the discipline. Mathematics is not

so much a collection of different

subjects as a way of thinking. As

such, it may be applied to any

branch of knowledge.” Freedman

finds mathematics to be an open

field for research, saying that, “It

isn’t necessary to be an old hand in

an area to make a contribution.”

EXAMPLE 3.9 A Limit for a Piecewise-Defined Function

Evaluate lim
x→0

f (x), where f is defined by

f (x) =
{

x2 + 2 cos x + 1, for x < 0

sec x − 4, for x ≥ 0
.

Solution Since f is defined by different expressions for x < 0 and for x ≥ 0, we must

consider one-sided limits. We have

lim
x→0−

f (x) = lim
x→0−

(x2 + 2 cos x + 1) = 2 cos 0 + 1 = 3,

by Theorem 3.4. Also, we have

lim
x→0+

f (x) = lim
x→0+

(sec x − 4) = sec 0 − 4 = 1 − 4 = −3.

Since the one-sided limits are different, we have that lim
x→0

f (x) does not exist. �
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We end this section with an example of the use of limits in computing velocity. In

section 2.1, we see that for an object moving in a straight line, whose position at time t is

given by the function f (t), the instantaneous velocity of that object at time t = 1 (i.e., the

velocity at the instant t = 1, as opposed to the average velocity over some period of time)

is given by the limit

lim
h→0

f (1 + h) − f (1)

h
.

EXAMPLE 3.10 Evaluating a Limit Describing Velocity

Suppose that the position function for an object at time t (seconds) is given by

f (t) = t2 + 2 (feet).

Find the instantaneous velocity of the object at time t = 1.

Solution Given what we have just learned about limits, this is now an easy problem to

solve. We have

lim
h→0

f (1 + h) − f (1)

h
= lim

h→0

[(1 + h)2 + 2] − 3

h
.

While we can’t simply substitute h = 0 (why not?), we can write

lim
h→0

[(1 + h)2 + 2] − 3

h
= lim

h→0

(1 + 2h + h2) − 1

h
Expanding the squared term.

= lim
h→0

2h + h2

h
= lim

h→0

h(2 + h)

h

= lim
h→0

2 + h

1
= 2. Canceling factors of h.

So, the instantaneous velocity of this object at time t = 1 is 2 feet per second. �

EXERCISES 1.3

WRITING EXERCISES

1. Given your knowledge of the graphs of polynomials, explain

why equations (3.1) and (3.2) and Theorem 3.2 are obvious.

Name five non-polynomial functions for which limits can be

evaluated by substitution.

2. Suppose that you can draw the graph of y = f (x) with-

out lifting your pencil from your paper. Explain why

lim
x→a

f (x) = f (a), for every value of a.

3. In one or two sentences, explain the Squeeze Theorem. Use

a real-world analogy (e.g., having the functions represent the

locations of three people as they walk) to indicate why it is true.

4. Given the graph in Figure 1.20 and the calculations in the

accompanying table, it may be unclear why we insist on using

the Squeeze Theorem before concluding that lim
x→0

[x2 cos (1/x)]

is indeed 0. Review section 1.2 to explain why we are being

so fussy.

In exercises 1–34, evaluate the indicated limit, if it exists. Assume

that lim
x→0

sin x

x
� 1.

1. lim
x→0

(x2 − 3x + 1) 2. lim
x→2

3
√

2x + 1

3. lim
x→0

tan (x2) 4. lim
x→2

x − 5

x2 + 4

5. lim
x→3

x2 − x − 6

x − 3
6. lim

x→1

x2 + x − 2

x2 − 3x + 2

7. lim
x→2

x2 − x − 2

x2 − 4
8. lim

x→1

x3 − 1

x2 + 2x − 3

9. lim
x→0

sin x

tan x
10. lim

x→0

tan x

x

11. lim
x→0

x cos(−2x + 1)

x2 + x
12. lim

x→0+
x2 csc2x
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13. lim
x→0

√
x + 4 − 2

x
14. lim

x→0

2x

3 −
√

x + 9

15. lim
x→1

x − 1
√

x − 1
16. lim

x→4

√
x − 2

x − 4

17. lim
x→1

(
1

x − 1
−

2

x2 − 1

)

18. lim
x→0

(
2

x
−

2

|x |

)

19. lim
x→0

1 − cos2 x

1 − cos x
20. lim

x→0
sin

(
1

x2

)

21. lim
x→0

sin |x |
x

22. lim
x→0

sin2(x2)

x4

23. lim
x→2

f (x), where f (x) =
{

2x if x < 2

x2 if x ≥ 2

24. lim
x→−1

f (x), where f (x) =
{

x2 + 1 if x < −1

3x + 1 if x ≥ −1

25. lim
x→0

f (x), where f (x) =
{

x2 + 2 if x < −1

3x + 1 if x ≥ −1

26. lim
x→1

f (x), where f (x) =
{

2x if x < 2

x2 if x ≥ 2

27. lim
x→−1

f (x), where f (x) =

⎧

⎨

⎩

2x + 1 if x < −1

3 if −1 < x < 1

2x + 1 if x > 1

28. lim
x→1

f (x), where f (x) =

⎧

⎨

⎩

2x + 1 if x < −1

3 if −1 < x < 1

2x + 1 if x > 1

29. lim
h→0

(2 + h)2 − 4

h
30. lim

h→0

(1 + h)3 − 1

h

31. lim
h→0

h2

√
h2 + h + 3 −

√
h + 3

32. lim
x→0

√
x2 + x + 4 − 2

x2 + x

33. lim
t→−2

1
2

+ 1
t

2 + t
34. lim

x→0

tan 2x

5x

35. Use numerical and graphical evidence to conjecture the

value of lim
x→0

x2 sin (1/x). Use the Squeeze Theorem to

prove that you are correct: identify the functions f and h,

show graphically that f (x) ≤ x2 sin (1/x) ≤ h(x) and justify

lim
x→0

f (x) = lim
x→0

h(x).

36. Why can’t you use the Squeeze Theorem as in exercise 35 to

prove that lim
x→0

x2 sec (1/x) = 0? Explore this limit graphically.

37. Use the Squeeze Theorem to prove that lim
x→0+

[
√

x cos2(1/x)] = 0.

Identify the functions f and h, show graphically that

f (x) ≤
√

x cos2(1/x) ≤ h(x) for all x > 0 and justify

lim
x→0+

f (x) = 0 and lim
x→0+

h(x) = 0.

38. Suppose that f (x) is bounded: that is, there exists a constant

M such that | f (x)| ≤ M for all x . Use the Squeeze Theorem

to prove that lim
x→0

x2 f (x) = 0.

In exercises 39–42, either find the limit or explain why it does
not exist.

39. lim
x→4+

√

16 − x2 40. lim
x→4−

√

16 − x2

41. lim
x→−2−

√

x2 + 3x + 2 42. lim
x→−2+

√

x2 + 3x + 2

43. Given that lim
x→0+

1 − cos x

x2
=

1

2
, quickly evaluate

lim
x→0+

√
1 − cos x

x
.

44. Given that lim
x→0

sin x

x
= 1, quickly evaluate lim

x→0

1 − cos2 x

x2
.

45. Suppose f (x) =
{

g(x) if x < a

h(x) if x > a
for polynomials g(x) and

h(x). Explain why lim
x→a−

f (x) = g(a) and determine lim
x→a+

f (x).

46. Explain how to determine lim
x→a

f (x) if g and h are polynomials

and f (x) =

⎧

⎨

⎩

g(x) if x < a

c if x = a

h(x) if x > a

.

47. Evaluate each limit and justify each step by citing the appro-

priate theorem or equation.

(a) lim
x→2

(x2 − 3x + 1) (b) lim
x→0

x − 2

x2 + 1

48. Evaluate each limit and justify each step by citing the appro-

priate theorem or equation.

(a) lim
x→−1

[(x + 1) sin x] (b) lim
x→1

x cos x

tan x

In exercises 49–52, use the given position function f (t) to find
the velocity at time t � a.

49. f (t) = t2 + 2, a = 2 50. f (t) = t2 + 2, a = 0

51. f (t) = t3, a = 0 52. f (t) = t3, a = 1

53. In Chapter 2, the slope of the tangent line to the curve y =
√

x

at x = 1 is defined by m = lim
h→0

√
1 + h − 1

h
. Compute the

slope m. Graph y =
√

x and the line with slope m through the
point (1, 1).

54. In Chapter 2, an alternative form for the limit in exercise 53 is

given by lim
x→1

√
x − 1

x − 1
. Compute this limit.

55. Use numerical evidence to conjecture the value of lim
x→0+

cot x

if it exists. Check your answer with your Computer Algebra

System (CAS). If you disagree, which one of you is correct?

In exercises 56–59, use lim
x→a

f (x) � 2, lim
x→a

g(x) � −3 and

lim
x→a

h(x) � 0 to determine the limit, if possible.

56. lim
x→a

[2 f (x) − 3g(x)] 57. lim
x→a

[3 f (x)g(x)]

58. lim
x→a

[
f (x) + g(x)

h(x)

]

59. lim
x→a

[
3 f (x) + 2g(x)

h(x)

]

60. Assume that lim
x→a

f (x) = L . Use Theorem 3.1 to prove that

lim
x→a

[ f (x)]3 = L3. Also, show that lim
x→a

[ f (x)]4 = L4.

61. How did you work exercise 60? You probably used Theo-

rem 3.1 to work from lim
x→a

[ f (x)]2 = L2 to lim
x→a

[ f (x)]3 = L3
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and then used lim
x→a

[ f (x)]3 = L3 to get lim
x→a

[ f (x)]4 = L4. Going

one step at a time, we should be able to reach lim
x→a

[ f (x)]n = Ln ,

for any positive integer n. This is the idea of mathematical
induction. Formally, we need to show the result is true for a

specific value of n = n0 [we show n0 = 2 in the text], then

assume the result is true for a general n = k ≥ n0. If we show

that we can get from the result being true for n = k to the

result being true for n = k + 1, we have proved that the result

is true for any positive integer n. In one sentence, explain why

this is true. Use this technique to prove that lim
x→a

[ f (x)]n = Ln ,

for any positive integer n.

62. Find all the errors in the following incorrect string of equalities:

lim
x→0

1

x
= lim

x→0

x

x2
= lim

x→0
x lim

x→0

1

x2
= 0 · ? = 0.

63. Find all the errors in the following incorrect string of equalities:

lim
x→0

sin 2x

x
=

0

0
= 1.

64. Give an example of functions f and g such that

lim
x→0

[ f (x)+g(x)] exists, but lim
x→0

f (x) and lim
x→0

g(x) do not exist.

65. Give an example of functions f and g such that

lim
x→0

[ f (x) · g(x)] exists, but at least one of lim
x→0

f (x) and

lim
x→0

g(x) does not exist.

66. If lim
x→a

f (x) exists and lim
x→a

g(x) does not exist, is it always true

that lim
x→a

[ f (x) + g(x)] does not exist? Explain.

67. Is the following true or false? If lim
x→0

f (x) does not exist, then

lim
x→0

1

f (x)
does not exist. Explain.

68. Suppose a state’s income tax code states the tax liability on x

dollars of taxable income is given by

T (x) =
{

0.14x if 0 ≤ x < 10,000

1500 + 0.21x if 10,000 ≤ x
.

Compute lim
x→0+

T (x); why is this good? Compute lim
x→10,000

T (x);

why is this bad?

69. Suppose a state’s income tax code states that tax liability is

12% on the first $20,000 of taxable earnings and 16% on

the remainder. Find constants a and b for the tax function

T (x) =
{

a + 0.12x if x ≤ 20,000

b + 0.16(x − 20,000) if x > 20,000
such that lim

x→0+
T (x) = 0 and lim

x→20,000
T (x) exists. Why is it

important for these limits to exist?

70. The greatest integer function is denoted by f (x) = [x] and

equals the greatest integer that is less than or equal to x . Thus,

[2.3] = 2, [−1.2] = −2 and [3] = 3. In spite of this last fact,

show that lim
x→3

[x] does not exist.

71. Investigate the existence of (a) lim
x→1

[x], (b) lim
x→1.5

[x],

(c) lim
x→1.5

[2x] and (d) lim
x→1

(x − [x]).

EXPLORATORY EXERCISES

1. The value x = 0 is called a zero of multiplicity n (n ≥ 1)

for the function f if lim
x→0

f (x)

xn
exists and is nonzero but

lim
x→0

f (x)

xn−1
= 0. Show that x = 0 is a zero of multiplicity 2

for x2, x = 0 is a zero of multiplicity 3 for x3 and x = 0 is

a zero of multiplicity 4 for x4. For polynomials, what does

multiplicity describe? The reason the definition is not as

straightforward as we might like is so that it can apply to non-

polynomial functions, as well. Find the multiplicity of x = 0

for f (x) = sin x ; f (x) = x sin x ; f (x) = sin x2. If you know

that x = 0 is a zero of multiplicity m for f (x) and multiplicity

n for g(x), what can you say about the multiplicity of x = 0

for f (x) + g(x)? f (x) · g(x)? f (g(x))?

2. We have conjectured that lim
x→0

sin x

x
= 1. Using graphical

and numerical evidence, conjecture the value of lim
x→0

sin 2x

x
,

lim
x→0

sin 3x

x
, lim

x→0

sin πx

x
and lim

x→0

sin x/2

x
. In general, conjec-

ture the value of lim
x→0

sin cx

x
for any constant c. Given that

lim
x→0

sin cx

cx
= 1, for any constant c �= 0, prove that your con-

jecture is correct.

1.4 CONTINUITY AND ITS CONSEQUENCES

When you describe something as continuous, just what do you have in mind? For example,

if told that a machine has been in continuous operation for the past 60 hours, most of us

would interpret this to mean that the machine has been in operation all of that time, without

any interruption at all, even for a moment. Mathematicians mean much the same thing when
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we say that a function is continuous. A function is said to be continuous on an interval if its

graph on that interval can be drawn without interruption, that is, without lifting your pencil

from the paper.

It is helpful for us to first try to see what it is about the functions whose graphs are

shown in Figures 1.22a–1.22d that makes them discontinuous (i.e., not continuous) at the

point x = a.

REMARK 4.1

The definition of continuity all

boils down to the one condition

in (iii), since conditions (i) and

(ii) must hold whenever (iii) is

met. Further, this says that a

function is continuous at a point

exactly when you can compute

its limit at that point by simply

substituting in.

y

x
a

y

x
a

FIGURE 1.22a
f (a) is not defined (the graph

has a hole at x = a).

FIGURE 1.22b
f (a) is defined, but lim

x→a
f (x) does

not exist (the graph has a jump at

x = a).

y

x
a

f (a)

y

x
a

FIGURE 1.22c
lim
x→a

f (x) exists and f (a) is defined,

but lim
x→a

f (x) �= f (a) (the graph has

a hole at x = a).

FIGURE 1.22d
lim
x→a

f (x) does not exist (the

function “blows up” at x = a).

This suggests the following definition of continuity at a point.

DEFINITION 4.1

A function f is continuous at x = a when
(i) f (a) is defined, (ii) lim

x→a
f (x) exists and (iii) lim

x→a
f (x) = f (a).

Otherwise, f is said to be discontinuous at x = a.

For most purposes, it is best for you to think of the intuitive notion of continuity

that we’ve outlined above. Definition 4.1 should then simply follow from your intuitive

understanding of the concept.
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EXAMPLE 4.1 Finding Where a Rational Function Is Continuous

Determine where f (x) =
x2 + 2x − 3

x − 1
is continuous.

y

x

x2 � 2x � 3

x � 1
y �

4

1

FIGURE 1.23

y =
x2 + 2x − 3

x − 1

Solution Note that

f (x) =
x2 + 2x − 3

x − 1
=

(x − 1)(x + 3)

x − 1
Factoring the numerator.

= x + 3, for x �= 1. Canceling common factors.

This says that the graph of f is a straight line, but with a hole in it at x = 1, as indicated

in Figure 1.23. So, f is discontinuous at x = 1, but continuous elsewhere. �

EXAMPLE 4.2 Removing a Discontinuity

Make the function from example 4.1 continuous everywhere by redefining it at a single

point.
REMARK 4.2

You should be careful not to

confuse the continuity of a

function at a point with its

simply being defined there. A

function can be defined at a

point without being continuous

there. (Look back at

Figures 1.22b and 1.22c.)

Solution In example 4.1, we saw that the function is discontinuous at x = 1, since it

is undefined there. So, suppose we just go ahead and define it, as follows. Let

g(x) =

⎧

⎨

⎩

x2 + 2x − 3

x − 1
, if x �= 1

a, if x = 1,

for some real number a.

Notice that g(x) is defined for all x and equals f (x) for all x �= 1. Here, we have

lim
x→1

g(x) = lim
x→1

x2 + 2x − 3

x − 1

= lim
x→1

(x + 3) = 4.

Observe that if we choose a = 4, we now have that

lim
x→1

g(x) = 4 = g(1)

and so, g is continuous at x = 1.

y

x

y � g(x)
4

1

FIGURE 1.24
y = g(x)

Note that the graph of g is the same as the graph of f seen in Figure 1.23, except that

we now include the point (1, 4). (See Figure 1.24.) Also, note that there’s a very simple

way to write g(x). (Think about this.) �

When we can remove a discontinuity by redefining the function at that point, we

call the discontinuity removable. Not all discontinuities are removable, however. Carefully

examine Figures 1.22a–1.22d and convince yourself that the discontinuities in Figures 1.22a

and 1.22c are removable, while those in Figures 1.22b and 1.22d are nonremovable. Briefly,

a function f has a removable discontinuity at x = a if lim
x→a

f (x) exists and either f (a) is

undefined or lim
x→a

f (x) �= f (a).

EXAMPLE 4.3 Nonremovable Discontinuities

Find all discontinuities of f (x) =
1

x2
and g(x) = cos

(
1

x

)

.
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Solution You should observe from Figure 1.25a (also, construct a table of function

values) that

lim
x→0

1

x2
does not exist.

Hence, f is discontinuous at x = 0.

y

x
3�3

2

4

FIGURE 1.25a

y =
1

x2

y

x
0.2�0.2

�1

1

FIGURE 1.25b
y = cos (1/x)

Similarly, observe that lim
x→0

cos(1/x) does not exist, due to the endless oscillation of

cos(1/x) as x approaches 0 (see Figure 1.25b).

In both cases, notice that since the limits do not exist, there is no way to redefine

either function at x = 0 to make it continuous there. �

From your experience with the graphs of some common functions, the following result

should come as no surprise.

THEOREM 4.1

All polynomials are continuous everywhere. Additionally, sin x and cos x are

continuous everywhere, n
√

x is continuous for all x , when n is odd and for x > 0,

when n is even.

PROOF

We have already established (in Theorem 3.2) that for any polynomial p(x) and any real

number a,

lim
x→a

p(x) = p(a),

from which it follows that p is continuous at x = a. The rest of the theorem follows from

Theorem 3.3 and 3.4 in a similar way.

From these very basic continuous functions, we can build a large collection of contin-

uous functions, using Theorem 4.2.

THEOREM 4.2

Suppose that f and g are continuous at x = a. Then all of the following are true:

(i) ( f ± g) is continuous at x = a,

(ii) ( f · g) is continuous at x = a and

(iii) ( f/g) is continuous at x = a if g(a) �= 0.

Simply put, Theorem 4.2 says that a sum, difference or product of continuous functions

is continuous, while the quotient of two continuous functions is continuous at any point at

which the denominator is nonzero.
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PROOF

(i) If f and g are continuous at x = a, then

lim
x→a

[ f (x) ± g(x)] = lim
x→a

f (x) ± lim
x→a

g(x) From Theorem 3.1.

= f (a) ± g(a) Since f and g are continuous at a.

= ( f ± g)(a),

by the usual rules of limits. Thus, ( f ± g) is also continuous at x = a.

Parts (ii) and (iii) are proved in a similar way and are left as exercises.

EXAMPLE 4.4 Continuity for a Rational Function

Determine where f is continuous, for f (x) =
x4 − 3x2 + 2

x2 − 3x − 4
.

y

x
105�10 �5

�150

�100

�50

50

100

150

FIGURE 1.26

y =
x4 − 3x2 + 2

x2 − 3x − 4

Solution Here, f is a quotient of two polynomial (hence continuous) functions. The

graph of the function indicated in Figure 1.26 suggests a vertical asymptote at around

x = 4, but doesn’t indicate any other discontinuity. From Theorem 4.2, f will be

continuous at all x where the denominator is not zero, that is, where

x2 − 3x − 4 = (x + 1)(x − 4) �= 0.

Thus, f is continuous for x �= −1, 4. (Think about why you didn’t see anything peculiar

about the graph at x = −1.) �

With the addition of the result in Theorem 4.3, we will have all the basic tools needed

to establish the continuity of most elementary functions.

THEOREM 4.3

Suppose that lim
x→a

g(x) = L and f is continuous at L . Then,

lim
x→a

f (g(x)) = f
(

lim
x→a

g(x)
)

= f (L).

A proof of Theorem 4.3 is given in Appendix A.

Notice that this says that if f is continuous, then we can bring the limit “inside.”

This should make sense, since as x → a, g(x) → L and so, f (g(x)) → f (L), since f is

continuous at L .

COROLLARY 4.1

Suppose that g is continuous at a and f is continuous at g(a). Then, the composition

f ◦ g is continuous at a.
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PROOF

From Theorem 4.3, we have

lim
x→a

( f ◦ g)(x) = lim
x→a

f (g(x)) = f
(

lim
x→a

g(x)
)

= f (g(a)) = ( f ◦ g)(a). Since g is continuous at a.

EXAMPLE 4.5 Continuity for a Composite Function

Determine where h(x) = cos(x2 − 5x + 2) is continuous.

Solution Note that

h(x) = f (g(x)),

where g(x) = x2 − 5x + 2 and f (x) = cos x . Since both f and g are continuous for all

x , h is continuous for all x , by Corollary 4.1. �y

x
ba

FIGURE 1.27
f continuous on [a, b]

y

x
�2 2

2

FIGURE 1.28

y =
√

4 − x2

DEFINITION 4.2

If f is continuous at every point on an open interval (a, b), we say that f is

continuous on (a, b). Following Figure 1.27, we say that f is continuous on the
closed interval [a, b], if f is continuous on the open interval (a, b) and

lim
x→a+

f (x) = f (a) and lim
x→b−

f (x) = f (b).

Finally, if f is continuous on all of (−∞, ∞), we simply say that f is continuous.
(That is, when we don’t specify an interval, we mean continuous everywhere.)

For many functions, it’s a simple matter to determine the intervals on which the function

is continuous. We illustrate this in example 4.6.

EXAMPLE 4.6 Continuity on a Closed Interval

Determine the interval(s) where f is continuous, for f (x) =
√

4 − x2.

Solution First, observe that f is defined only for −2 ≤ x ≤ 2. Next, note that f is the

composition of two continuous functions and hence, is continuous for all x for which

4 − x2 > 0. We show a graph of the function in Figure 1.28. Since

4 − x2 > 0

for −2 < x < 2, we have that f is continuous for all x in the interval (−2, 2),

by Theorem 4.1 and Corollary 4.1. Finally, we test the endpoints to see that

lim
x→2−

√
4 − x2 = 0 = f (2) and lim

x→−2+

√
4 − x2 = 0 = f (−2), so that f is continuous

on the closed interval [−2, 2]. �

The Internal Revenue Service presides over some of the most despised functions in

existence. Look up the current Tax Rate Schedules. In 2002, the first few lines (for single

taxpayers) looked like:



1-31 SECTION 1.4 .. Continuity and Its Consequences 83

For taxable amount over but not over your tax liability is minus

$0 $6000 10% $0

$6000 $27,950 15% $300

$27,950 $67,700 27% $3654

Where do the numbers $300 and $3654 come from? If we write the tax liability T (x) as

a function of the taxable amount x (assuming that x can be any real value and not just a

whole dollar amount), we have

T (x) =

⎧

⎨

⎩

0.10x if 0 < x ≤ 6000

0.15x − 300 if 6000 < x ≤ 27,950

0.27x − 3654 if 27,950 < x ≤ 67,700.

Be sure you understand our translation so far. Note that it is important that this be a contin-

uous function: think of the fairness issues that would arise if it were not!

EXAMPLE 4.7 Continuity of Federal Tax Tables

Verify that the federal tax rate function T (x) is continuous at the “joint” x = 27,950.

Then, find a to complete the table. (You will find b and c as exercises.)

For taxable amount over but not over your tax liability is minus

$67,700 $141,250 30% a

$141,250 $307,050 35% b

$307,050 — 38.6% c

Solution For T (x) to be continuous at x = 27,950, we must have

lim
x→27,950−

T (x) = lim
x→27,950+

T (x).

Since both functions 0.15x − 300 and 0.27x − 3654 are continuous, we can compute

the one-sided limits by substituting x = 27,950. Thus,

lim
x→27,950−

T (x) = 0.15(27,950) − 300 = 3892.50

and lim
x→27,950+

T (x) = 0.27(27,950) − 3654 = 3892.50.

Since the one-sided limits agree and equal the value of the function at that point, T (x)

is continuous at x = 27,950. We leave it as an exercise to establish that T (x) is also

continuous at x = 6000. (It’s worth noting that the function could be written with

equal signs on all of the inequalities; this would be incorrect if the function were

discontinuous.) To complete the table, we choose a to get the one-sided limits at

x = 67,700 to match. We have

lim
x→67,700−

T (x) = 0.27(67,700) − 3654 = 14,625,

while lim
x→67,700+

T (x) = 0.30(67,700) − a = 20,310 − a.
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So, we set the one-sided limits equal, to obtain

14,625 = 20,310 − a

or a = 20,310 − 14,625 = 5685. �

Theorem 4.4 should seem an obvious consequence of our intuitive definition of

continuity.

HISTORICAL NOTES

Karl Weierstrass (1815–1897)

A German mathematician who

proved the Intermediate Value

Theorem and several other

fundamental results of the

calculus, Weierstrass was known

as an excellent teacher whose

students circulated his lecture

notes throughout Europe,

because of their clarity and

originality. Also known as a

superb fencer, Weierstrass was

one of the founders of modern

mathematical analysis.

THEOREM 4.4 (Intermediate Value Theorem)

Suppose that f is continuous on the closed interval [a, b] and W is any number

between f (a) and f (b). Then, there is a number c ∈ [a, b] for which f (c) = W .

Theorem 4.4 says that if f is continuous on [a, b], then f must take on every value between

f (a) and f (b) at least once. That is, a continuous function cannot skip over any numbers

between its values at the two endpoints. To do so, the graph would need to leap across the

horizontal line y = W , something that continuous functions cannot do. (See Figure 1.29a.)

Of course, a function may take on a given value W more than once. (See Figure 1.29b.) We

must point out that, although these graphs make this result seem reasonable, like any other

result, Theorem 4.4 requires proof. The proof is more complicated than you might imagine

and we must refer you to an advanced calculus text.

y

x
a

c b

f (a)

f (b)

W � f (c) y � W

a

c3c1 c2 b

f (b)

x

f (a)

y � W

y

FIGURE 1.29a
An illustration of the Intermediate

Value Theorem

FIGURE 1.29b
More than one value of c

In Corollary 4.2, we see an immediate and useful application of the Intermediate

Value Theorem.

COROLLARY 4.2

Suppose that f is continuous on [a, b] and f (a) and f (b) have opposite signs [i.e.,

f (a) · f (b) < 0]. Then, there is at least one number c ∈ (a, b) for which f (c) = 0.

(Recall that c is then a zero of f .)
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Notice that Corollary 4.2 is simply the special case of the Intermediate Value Theorem

where W = 0. (See Figure 1.30.) The Intermediate Value Theorem and Corollary 4.2 are

examples of existence theorems; they tell you that there exists a number c satisfying some

condition, but they do not tell you what c is.

b

y

f (b)

a

f (a)

y � f (x) 

x
c

FIGURE 1.30
Intermediate Value Theorem where

c is a zero of f

The Method of Bisections

In example 4.8, we see how Corollary 4.2 can help us locate the zeros of a function.

y

x

�20

�10

10

20

21�1�2

FIGURE 1.31
y = x5 + 4x2 − 9x + 3

EXAMPLE 4.8 Finding Zeros by the Method of Bisections

Find the zeros of f (x) = x5 + 4x2 − 9x + 3.

Solution If f were a quadratic polynomial, you could certainly find its zeros.

However, you don’t have any formulas for finding zeros of polynomials of degree 5.

The only alternative is to approximate the zeros. A good starting place would be to draw

a graph of y = f (x) like the one in Figure 1.31. There are three zeros visible on the

graph. Since f is a polynomial, it is continuous everywhere and so, Corollary 4.2 says

that there must be a zero on any interval on which the function changes sign. From the

graph, you can see that there must be zeros between −3 and −2, between 0 and 1 and

between 1 and 2. We could also conclude this by computing say, f (0) = 3 and

f (1) = −1. Although we’ve now found intervals that contain zeros, the question

remains as to how we can find the zeros themselves.

While a rootfinding program can provide an accurate approximation, the issue here

is not so much to get an answer as it is to understand how to find one. We suggest a

simple yet effective method, called the method of bisections.
For the zero between 0 and 1, a reasonable guess might be the midpoint, 0.5. Since

f (0.5) ≈ −0.469 < 0 and f (0) = 3 > 0, there must be a zero between 0 and 0.5. Next,

the midpoint of [0, 0.5] is 0.25 and f (0.25) ≈ 1.001 > 0, so that the zero is on the

interval (0.25, 0.5). We continue in this way to narrow the interval on which there’s a

zero until the interval is sufficiently small so that any point in the interval can serve as

an adequate approximation to the actual zero. We do this in the following table.

a b f(a) f(b) Midpoint f (midpoint)

0 1 3 −1 0.5 −0.469

0 0.5 3 −0.469 0.25 1.001

0.25 0.5 1.001 −0.469 0.375 0.195

0.375 0.5 0.195 −0.469 0.4375 −0.156

0.375 0.4375 0.195 −0.156 0.40625 0.015

0.40625 0.4375 0.015 −0.156 0.421875 −0.072

0.40625 0.421875 0.015 −0.072 0.4140625 −0.029

0.40625 0.4140625 0.015 −0.029 0.41015625 −0.007

0.40625 0.41015625 0.015 −0.007 0.408203125 0.004

If you continue this process through 20 more steps, you ultimately arrive at the

approximate zero x = 0.40892288, which is accurate to at least eight decimal places. �
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This method of bisections is a tedious process, if you’re working it with pencil and

paper. It is interesting because it’s reliable and it’s a simple, yet general method for finding

approximate zeros. Computer and calculator rootfinding utilities are very useful, but our

purpose here is to provide you with an understanding of how basic rootfinding works. We

discuss a more powerful method for finding roots in Chapter 3.

EXERCISES 1.4

WRITING EXERCISES

1. Think about the following “real-life” functions, each of which

is a function of the independent variable time: the height

of a falling object, the velocity of an object, the amount of

money in a bank account, the cholesterol level of a person,

the heart rate of a person, the amount of a certain chemical

present in a test tube and a machine’s most recent measure-

ment of the cholesterol level of a person. Which of these are

continuous functions? For each function you identify as dis-

continuous, what is the real-life meaning of the discontinu-

ities?

2. Whether a process is continuous or not is not always clear-cut.

When you watch television or a movie, the action seems to

be continuous. This is an optical illusion, since both movies

and television consist of individual “snapshots” that are played

back at many frames per second. Where does the illusion

of continuous motion come from? Given that the average

person blinks several times per minute, is our perception of

the world actually continuous? (In what cognitive psychol-

ogists call temporal binding, the human brain first decides

whether a stimulus is important enough to merit conscious

consideration. If so, the brain “predates” the stimulus so that

the person correctly identifies when the stimulus actually

occurred.)

3. When you sketch the graph of the parabola y = x2 with pen-

cil or pen, is your sketch (at the molecular level) actually the

graph of a continuous function? Is your calculator or com-

puter’s graph actually the graph of a continuous function? On

many calculators, you have the option of a connected or discon-

nected graph. At the pixel level, does a connected graph show

the graph of a function? Does a disconnected graph show the

graph of a continuous function? Do we ever have problems

correctly interpreting a graph due to these limitations? In ex-

ploratory exercise 2 in section 1.7, we examine one case where

our perception of a computer graph depends on which choice

is made.

4. For each of the graphs in Figures 1.22a–1.22d, describe (with

an example) what the formula for f (x) might look like to pro-

duce the given discontinuity.

In exercises 1–6, use the given graph to identify all discontinu-
ities of the functions.

1. y

x
5

5

2. y

x
5

5

3. y

x
6

5
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4. y

x
5

5

5. y

x
5

5

6. y

x
5

5

In exercises 7–12, explain why each function is discontinuous at
the given point by indicating which of the three conditions in
Definition 4.1 are not met.

7. f (x) =
x

x − 1
at x = 1 8. f (x) =

x2 − 1

x − 1
at x = 1

9. f (x) = sin
1

x
at x = 0 10. f (x) =

2x
√

x3 + x2
at x = 0

11. f (x) =

⎧

⎨

⎩

x2 if x < 2

3 if x = 2

3x − 2 if x > 2

at x = 2

12. f (x) =
{

x2 if x < 2

3x − 2 if x > 2
at x = 2

In exercises 13–24, find all discontinuities of f (x). For each dis-
continuity that is removable, define a new function that removes
the discontinuity.

13. f (x) =
x − 1

x2 − 1
14. f (x) =

4x

x2 + x − 2

15. f (x) =
4x

x2 + 4
16. f (x) =

3x

x2 − 2x − 4

17. f (x) = x2 tan x 18. f (x) = x cot x

19. f (x) =
3x2

√
x3 − x2

20. f (x) =
3

√

1 + 4/x2

21. f (x) =
{

2x if x < 1

x2 if x ≥ 1
22. f (x) =

⎧

⎨

⎩

sin x

x
if x �= 0

1 if x = 0

23. f (x) =

⎧

⎨

⎩

3x − 1 if x ≤ −1

x2 + 5x if −1 < x < 1

3x3 if x ≥ 1

24. f (x) =

⎧

⎨

⎩

2x if x < 0

sin x if 0 < x ≤ π

x − π if x > π

In exercises 25–30, determine the intervals on which f (x) is
continuous.

25. f (x) =
√

x + 3 26. f (x) =
√

x2 − 4

27. f (x) =
6

√
x + 1

28. f (x) = (x − 1)3/2

29. f (x) = sin(x2 + 2) 30. f (x) = cos

(
1

x

)

In exercises 31–33, determine values of a and b that make the
given function continuous.

31. f (x) =

⎧

⎪
⎨

⎪
⎩

2 sin x

x
if x < 0

a if x = 0

b cos x if x > 0

32. f (x) =

⎧

⎪
⎨

⎪
⎩

a cos x + 1 if x < 0

sin
(π

2
x
)

if 0 ≤ x ≤ 2

x2 − x + b if x > 2

33. f (x) =

⎧

⎨

⎩

a
√

9 − x if x < 0

sin bx + 1 if 0 ≤ x ≤ 3√
x − 2 if x > 3

34. Prove Corollary 4.1.

35. Suppose that a state’s income tax code states that the tax lia-

bility on x dollars of taxable income is given by

T (x) =

⎧

⎨

⎩

0 if x ≤ 0

0.14x if 0 < x < 10,000

c + 0.21x if 10,000 ≤ x .

Determine the constant c that makes this function continu-

ous for all x . Give a rationale why such a function should be

continuous.
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36. Suppose a state’s income tax code states that tax liability is

12% on the first $20,000 of taxable earnings and 16% on the

remainder. Find constants a and b for the tax function

T (x) =

⎧

⎪
⎨

⎪
⎩

0 if x ≤ 0

a + 0.12x if 0 < x ≤ 20,000

b + 0.16(x − 20,000) if x > 20,000

such that T (x) is continuous for all x .

37. In example 4.7, find b and c to complete the table.

38. In example 4.7, show that T (x) is continuous for x = 6000.

In exercises 39–44, use the Intermediate Value Theorem to ver-
ify that f (x) has a zero in the given interval. Then use the method
of bisections to find an interval of length 1/32 that contains the
zero.

39. f (x) = x2 − 7, [2, 3]

40. f (x) = x3 − 4x − 2, [2, 3]

41. f (x) = x3 − 4x − 2, [−1, 0]

42. f (x) = x3 − 4x − 2, [−2, −1]

43. f (x) = cos x − x, [0, 1]

44. f (x) = cos x + x, [−1, 0]

A function is continuous from the right at x � a if
lim

x→a�

f (x) � f (a). In exercises 45–48, determine whether f (x)

is continuous from the right at x � 2.

45. f (x) =

{

x2 if x < 2

3x − 1 if x ≥ 2

46. f (x) =

⎧

⎪
⎨

⎪
⎩

x2 if x < 2

3 if x = 2

3x − 3 if x > 2

47. f (x) =

{

x2 if x ≤ 2

3x − 3 if x > 2

48. f (x) =

{

x2 if x < 2

3x − 2 if x > 2

49. Define what it means for a function to be continuous from
the left at x = a and determine which of the functions in ex-

ercises 45–48 are continuous from the left at x = 2.

50. Suppose that f (x) =
g(x)

h(x)
and h(a) = 0. Determine whether

each of the following statements is always true, always false or

maybe true/maybe false. Explain. (a) lim
x→a

f (x) does not exist.

(b) f (x) is discontinuous at x = a.

51. The sex of newborn Mississippi alligators is determined by the

temperature of the eggs in the nest. The eggs fail to develop

unless the temperature is between 26◦C and 36◦C. All eggs be-

tween 26◦C and 30◦C develop into females, and eggs between

34◦C and 36◦C develop into males. The percentage of females

decreases from 100% at 30◦C to 0% at 34◦C. If f (T ) is the

percentage of females developing from an egg at T ◦C, then

f (T ) =

⎧

⎪
⎨

⎪
⎩

100 if 26 ≤ T ≤ 30

g(T ) if 30 < T < 34

0 if 34 ≤ T ≤ 36,

for some function g(T ). Explain why it is reasonable that

f (T ) be continuous. Determine a function g(T ) such that

0 ≤ g(T ) ≤ 100 for 30 ≤ T ≤ 34 and the resulting function

f (T ) is continuous. [Hint: It may help to draw a graph first

and make g(T ) linear.]

52. If f (x) =

{

x2, if x �= 0

4, if x = 0
and g(x) = 2x , show that

lim
x→0

f (g(x)) �= f
(

lim
x→0

g(x)
)

.

53. If you push on a large box resting on the ground, at first noth-

ing will happen because of the static friction force that opposes

motion. If you push hard enough, the box will start sliding, al-

though there is again a friction force that opposes the motion.

Suppose you are given the following description of the fric-

tion force. Up to 100 pounds, friction matches the force you

apply to the box. Over 100 pounds, the box will move and

the friction force will equal 80 pounds. Sketch a graph of fric-

tion as a function of your applied force based on this descrip-

tion. Where is this graph discontinuous? What is significant

physically about this point? Do you think the friction force

actually ought to be continuous? Modify the graph to make

it continuous while still retaining most of the characteristics

described.

54. For f (x) = 2x −
400

x
, we have f (−1) > 0 and f (2) < 0.

Does the Intermediate Value Theorem guarantee a zero of

f (x) between x = −1 and x = 2? What happens if you try

the method of bisections?

55. On Monday morning, a saleswoman leaves on a business trip

at 7:13 A.M. and arrives at her destination at 2:03 P.M. The fol-

lowing morning, she leaves for home at 7:17 A.M. and arrives

at 1:59 P.M. The woman notices that at a particular stoplight

along the way, a nearby bank clock changes from 10:32 A.M. to

10:33 A.M. on both days. Therefore, she must have been at the

same location at the same time on both days. Her boss doesn’t

believe that such an unlikely coincidence could occur. Use the

Intermediate Value Theorem to argue that it must be true that

at some point on the trip, the saleswoman was at exactly the

same place at the same time on both Monday and Tuesday.

56. Suppose you ease your car up to a stop sign at the top of a hill.

Your car rolls back a couple of feet and then you drive through
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the intersection. A police officer pulls you over for not com-

ing to a complete stop. Use the Intermediate Value Theorem

to argue that there was an instant in time when your car was

stopped. (In fact, there were at least two.) What is the differ-

ence between this stopping and the stopping that the police

officer wanted to see?

57. Suppose a worker’s salary starts at $40,000 with $2000 raises

every 3 months. Graph the salary function s(t); why is it discon-

tinuous? How does the function f (t) = 40,000 +
2000

3
t (t in

months) compare? Why might it be easier to do calculations

with f (t) than s(t)?

58. Prove the final two parts of Theorem 4.2.

59. Suppose that f (x) is a continuous function with consecutive

zeros at x = a and x = b; that is, f (a) = f (b) = 0 and

f (x) �= 0 for a < x < b. Further, suppose that f (c) > 0 for

some number c between a and b. Use the Intermediate Value

Theorem to argue that f (x) > 0 for all a < x < b.

60. Use the method of bisections to estimate the other two zeros

in example 4.8.

61. Suppose that f (x) is continuous at x = 0. Prove that

lim
x→0

x f (x) = 0.

62. The converse of exercise 61 is not true. That is, the fact

lim
x→0

x f (x) = 0 does not guarantee that f (x) is continuous at

x = 0. Find a counterexample; that is, find a function f such

that lim
x→0

x f (x) = 0 and f (x) is not continuous at x = 0.

63. If f (x) is continuous at x = a, prove that g(x) = | f (x)| is

continuous at x = a.

64. Determine whether the converse of exercise 63 is true. That is,

if | f (x)| is continuous at x = a, is it necessarily true that f (x)

must be continuous at x = a?

65. Let f (x) be a continuous function for x ≥ a and define

h(x) = max
a≤t≤x

f (t). Prove that h(x) is continuous for x ≥ a.

Would this still be true without the assumption that f (x) is

continuous?

66. Graph f (x) =
sin |x3 − 3x2 + 2x |

x3 − 3x2 + 2x
and determine all

discontinuities.

EXPLORATORY EXERCISES

1. In the text, we discussed the use of the method of bisec-

tions to find an approximate solution of equations such as

f(x) = x3 +5x −1 = 0. We can start by noticing that f (0) = −1

and f (1) = 5. Since f (x) is continuous, the Intermediate Value

Theorem tells us that there is a solution between x = 0 and

x = 1. For the method of bisections, we guess the midpoint,

x = 0.5. Is there any reason to suspect that the solution is ac-

tually closer to x = 0 than to x = 1? Using the function values

f (0) = −1 and f (1) = 5, devise your own method of guessing

the location of the solution. Generalize your method to using

f (a) and f (b), where one function value is positive and one

is negative. Compare your method to the method of bisections

on the problem x3 + 5x − 1 = 0; for both methods, stop when

you are within 0.001 of the solution, x ≈ 0.198437. Which

method performed better? Before you get overconfident in your

method, compare the two methods again on x3 + 5x2 − 1 = 0.

Does your method get close on the first try? See if you can de-

termine graphically why your method works better on the first

problem.

2. You have probably seen the turntables on which luggage ro-

tates at the airport. Suppose that such a turntable has two long

straight parts with a semicircle on each end. (See the figure.)

We will model the left/right movement of the luggage. Sup-

pose the straight part is 40 ft long, extending from x = −20 to

x = 20. Assume that our luggage starts at time t = 0 at loca-

tion x = −20, and that it takes 60 s for the luggage to reach

x = 20. Suppose the radius of the circular portion is 5 ft and

it takes the luggage 30 s to complete the half-circle. We model

the straight-line motion with a linear function x(t) = at + b.

Find constants a and b so that x(0) = −20 and x(60) = 20.

For the circular motion, we use a cosine (Why is this a good

choice?) x(t) = 20 + d · cos (et + f ) for constants d, e and f .

The requirements are x(60) = 20 (since the motion is continu-

ous), x(75) = 25 and x(90) = 20. Find values of d , e and f to

make this work. Find equations for the position of the luggage

along the backstretch and the other semicircle. What would the

motion be from then on?

Luggage carousel

3. Determine all x’s for which each function is continuous.

f (x) =
{

0 if x is irrational
,

x if x is rational

g(x) =
{

x2 + 3 if x is irrational

4x if x is rational and

h(x) =
{

cos 4x if x is irrational
.

sin 4x if x is rational
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1.5 LIMITS INVOLVING INFINITY; ASYMPTOTES

In this section, we revisit some old limit problems to give more informative answers and

examine some related questions.

EXAMPLE 5.1 A Simple Limit Revisited

Examine lim
x→0

1

x
.

Solution Of course, we can draw a graph (see Figure 1.32) and compute a table of

function values easily, by hand. (See the tables in the margin.)

y

x

f (x)

x

x

f (x)

3�3

�10

10

FIGURE 1.32

lim
x→0+

1

x
= ∞ and lim

x→0−

1

x
= −∞

x
1

x

0.1 10

0.01 100

0.001 1000

0.0001 10,000

0.00001 100,000

x
1

x

−0.1 −10

−0.01 −100

−0.001 −1000

−0.0001 −10,000

−0.00001 −100,000

REMARK 5.1

It may at first seem

contradictory to say that lim
x→0+

1

x
does not exist and then to write

lim
x→0+

1

x
= ∞. Note that since

∞ is not a real number, there is

no contradiction here. (When

we say that a limit “does not

exist,” we are saying that

there is no real number L that

the function values are

approaching.) We say that

lim
x→0+

1

x
= ∞ to indicate that as

x → 0+, the function values are

increasing without bound.

While we say that the limits lim
x→0+

1

x
and lim

x→0−

1

x
do not exist, the behavior of the

function is clearly quite different for x > 0 than for x < 0. Specifically, as x → 0+,
1

x

increases without bound, while as x → 0−,
1

x
decreases without bound. To

communicate more about the behavior of the function near x = 0, we write

lim
x→0+

1

x
= ∞ (5.1)

and lim
x→0−

1

x
= −∞. (5.2)

Graphically, this says that the graph of y =
1

x
approaches the vertical line x = 0, as

x → 0, as seen in Figure 1.32. When this occurs, we say that the line x = 0 is a vertical
asymptote. It is important to note that while the limits (5.1) and (5.2) do not exist, we

say that they “equal” ∞ and −∞, respectively, only to be specific as to why they do not

exist. Finally, in view of the one-sided limits (5.1) and (5.2), we say that

lim
x→0

1

x
does not exist.

�

EXAMPLE 5.2 A Function Whose One-Sided Limits Are Both Infinite

Evaluate lim
x→0

1

x2
.

Solution The graph in Figure 1.33 (on the following page) seems to indicate a vertical

asymptote at x = 0. A table of values is easily constructed by hand. (See the accompanying

tables.)

x
1

x2

0.1 100

0.01 10,000

0.001 1 × 106

0.0001 1 × 108

0.00001 1 × 1010

x
1

x2

−0.1 100

−0.01 10,000

−0.001 1 × 106

−0.0001 1 × 108

−0.00001 1 × 1010
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From this, we can see that

lim
x→0+

1

x2
= ∞

and lim
x→0−

1

x2
= ∞.

Since both one-sided limits agree (i.e., both tend to ∞), we say that

lim
x→0

1

x2
= ∞.

This one concise statement says that the limit does not exist, but also that f (x) has a

vertical asymptote at x = 0, where f (x) → ∞ as x → 0 from either side. �

y

x
xx

2

4

3�3

f (x)f (x)

FIGURE 1.33

lim
x→0

1

x2
= ∞ REMARK 5.2

Mathematicians try to convey as much information as possible with as few symbols as

possible. For instance, we prefer to say lim
x→0

1

x2
= ∞ rather than lim

x→0

1

x2
does not

exist, since the first statement not only says that the limit does not exist, but also says

that
1

x2
increases without bound as x approaches 0, with x > 0 or x < 0.

EXAMPLE 5.3 A Case Where Infinite One-Sided Limits Disagree

Evaluate lim
x→5

1

(x − 5)3
.

Solution In Figure 1.34, we show a graph of the function. From the graph, you should

get a pretty clear idea that there’s a vertical asymptote at x = 5 and just how the

function is blowing up there (to ∞ from the right side and to −∞ from the left). You

can verify this behavior algebraically, by noticing that as x → 5, the denominator

approaches 0, while the numerator approaches 1. This says that the fraction grows large

in absolute value, without bound as x → 5. Specifically,

as x → 5+, (x − 5)3 → 0 and (x − 5)3 > 0.

y

x

x

�10

�5

10

5

105

f (x)

f (x)

x

FIGURE 1.34

lim
x→5+

1

(x − 5)3
= ∞ and

lim
x→5−

1

(x − 5)3
= −∞

We indicate the sign of each factor by printing a small “+” or “−” sign above or below

each one. This enables you to see the signs of the various terms at a glance. In this case,

we have

lim
x→5+

+
1

(x − 5)3

+

= ∞. Since (x − 5)3 > 0, for x > 5.

Likewise, as x → 5−, (x − 5)3 → 0 and (x − 5)3 < 0.

In this case, we have

lim
x→5−

+
1

(x − 5)3

−

= −∞. Since (x − 5)3 < 0, for x < 5.

Finally, we say that lim
x→5

1

(x − 5)3
does not exist,

since the one-sided limits are different. �
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Learning from the lessons of examples 5.1, 5.2 and 5.3, you should recognize that if

the denominator tends to 0 and the numerator does not, then the limit in question does not

exist. In this event, we can determine whether the limit tends to ∞ or −∞ by carefully

examining the signs of the various factors.

EXAMPLE 5.4 Another Case Where Infinite One-Sided Limits Disagree

Evaluate lim
x→−2

x + 1

(x − 3)(x + 2)
.y

x

f (x)

x

x

f (x)

4�4

�10

�5

10

5

FIGURE 1.35

lim
x→−2

x + 1

(x − 3)(x + 2)
does not exist.

Solution First, notice from the graph of the function shown in Figure 1.35 that there

appears to be a vertical asymptote at x = −2.

Further, the function appears to tend to ∞ as x → −2+ and to −∞ as x → −2−.

You can verify this behavior, by observing that

lim
x→−2+

−
x + 1

(x − 3)
−

(x + 2)
+

= ∞ Since (x + 1) < 0, (x − 3) < 0 and

(x + 2) > 0, for −2 < x < −1.

and lim
x→−2−

−
x + 1

(x − 3)
−

(x + 2)
−

= −∞.
Since (x + 1) < 0, (x − 3) < 0

and (x + 2) < 0, for x < −2.

So, we can see that x = −2 is indeed a vertical asymptote and that

lim
x→−2

x + 1

(x − 3)(x + 2)
does not exist.

�

EXAMPLE 5.5 A Limit Involving a Trigonometric Function

Evaluate lim
x→ π

2

tan x .

wq pq�

y

x

FIGURE 1.36
y = tan x

Solution Notice from the graph of the function shown in Figure 1.36 that there appears

to be a vertical asymptote at x =
π

2
.

You can verify this behavior by observing that

lim
x→ π

2
−

tan x = lim
x→ π

2
−

+
sin x

cos x
+

= ∞ Since sin x > 0 and cos x > 0

for 0 < x <
π

2
.

and lim
x→ π

2
+

tan x = lim
x→ π

2
+

+
sin x

cos x
−

= −∞.
Since sin x > 0 and cos x < 0

for
π

2
< x < π .

So, we can see that x =
π

2
is indeed a vertical asymptote and that

lim
x→ π

2

tan x does not exist.
�

Limits at Infinity

We are also interested in examining the limiting behavior of functions as x increases

without bound (written x → ∞) or as x decreases without bound (written x → −∞).
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Returning to f (x) =
1

x
, we can see that as x → ∞,

1

x
→ 0. In view of this, we write

lim
x→∞

1

x
= 0.

Similarly, lim
x→−∞

1

x
= 0.

Notice that in Figure 1.37, the graph appears to approach the horizontal line y = 0, as

x → ∞ and as x → −∞. In this case, we call y = 0 a horizontal asymptote.

y

x

f (x)

f (x)

x

x

3�3

�10

10

FIGURE 1.37

lim
x→∞

1

x
= 0 and lim

x→−∞

1

x
= 0

EXAMPLE 5.6 Finding Horizontal Asymptotes

Look for any horizontal asymptotes of f (x) = 2 −
1

x
.

y

x

f (x)
x

x

f (x)

�2

4

6

8

2�2

FIGURE 1.38

lim
x→∞

(

2 −
1

x

)

= 2 and

lim
x→−∞

(

2 −
1

x

)

= 2

Solution We show a graph of y = f (x) in Figure 1.38. Since as x → ±∞,
1

x
→ 0,

we get that

lim
x→∞

(

2 −
1

x

)

= 2

and lim
x→−∞

(

2 −
1

x

)

= 2.

Thus, the line y = 2 is a horizontal asymptote. �

As you can see in Theorem 5.1, the behavior of
1

x t
, for any positive rational power t ,

as x → ±∞, is largely the same as we observed for f (x) =
1

x
.

THEOREM 5.1

For any rational number t > 0,

lim
x→±∞

1

x t
= 0,

where for the case where x → −∞, we assume that t =
p

q
where q is odd.

REMARK 5.3

All of the usual rules for limits

stated in Theorem 3.1 also hold

for limits as x → ±∞.

A proof of Theorem 5.1 is given in Appendix A. Be sure that the following argument

makes sense to you: for t > 0, as x → ∞, we also have x t → ∞, so that
1

x t
→ 0.

In Theorem 5.2, we see that the behavior of a polynomial at infinity is easy to determine.

THEOREM 5.2

For a polynomial of degree n > 0, pn(x) = an xn + an−1xn−1 + · · · + a0, we have

lim
x→∞

pn(x) =
{

∞, if an > 0

−∞, if an < 0
.
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PROOF

We have lim
x→∞

pn(x) = lim
x→∞

(an xn + an−1xn−1 + · · · + a0)

= lim
x→∞

[

xn

(

an +
an−1

x
+ · · · +

a0

xn

)]

= ∞,

if an > 0, since lim
x→∞

(

an +
an−1

x
+ · · · +

a0

xn

)

= an

and lim
x→∞

xn = ∞. The result is proved similarly for an < 0.

Observe that you can make similar statements regarding the value of lim
x→−∞

pn(x), but

be careful: the answer will change depending on whether n is even or odd. (We leave this

as an exercise.)

In example 5.7, we again see the need for caution when applying our basic rules for

limits (Theorem 3.1), which also apply to limits as x → ∞ or as x → −∞.
y

x
10�10

�4

4

f (x)

x

FIGURE 1.39

lim
x→∞

5x − 7

4x + 3
=

5

4

x
5x − 7

4x � 3

10 1

100 1.223325

1000 1.247315

10,000 1.249731

100,000 1.249973

EXAMPLE 5.7 A Limit of a Quotient That Is Not the Quotient
of the Limits

Evaluate lim
x→∞

5x − 7

4x + 3
.

Solution You might be tempted to write

lim
x→∞

5x − 7

4x + 3
=

lim
x→∞

(5x − 7)

lim
x→∞

(4x + 3)

This is an incorrect use of Theorem 3.1 (iv),

since the limits in the numerator and the

denominator do not exist.

=
∞
∞

= 1. This is incorrect! (5.3)

The graph in Figure 1.39 and some function values (see the accompanying table)

suggest that the conjectured value of 1 is incorrect. Recall that the limit of a quotient is

the quotient of the limits only when both limits exist (and the limit in the denominator is

nonzero). Since both the limit in the denominator and that in the numerator tend to ∞,

the limits do not exist.

Further, when a limit looks like ∞
∞ , the actual value of the limit can be anything at

all. For this reason, we call ∞
∞ an indeterminate form, meaning that the value of the

expression cannot be determined solely by noticing that both numerator and

denominator tend to ∞.

Rule of Thumb: When faced with the indeterminate form ∞
∞ in calculating the

limit of a rational function, divide numerator and denominator by the highest power of x

appearing in the denominator.

Here, we have

lim
x→∞

5x − 7

4x + 3
= lim

x→∞

[
5x − 7

4x + 3
·

(1/x)

(1/x)

]
Multiply numerator and

denominator by
1

x
.

= lim
x→∞

5 − 7/x

4 + 3/x
Multiply through by

1

x
.

=
lim

x→∞
(5 − 7/x)

lim
x→∞

(4 + 3/x)
By Theorem 3.1 (iv).

=
5

4
= 1.25,

which is consistent with what we observed both graphically and numerically earlier. �
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In example 5.8, we apply our rule of thumb to a common limit problem.

EXAMPLE 5.8 Finding Slant Asymptotes

Evaluate lim
x→∞

4x3 + 5

−6x2 − 7x
and find any slant asymptotes.

Solution As usual, we first examine a graph. (See Figure 1.40a.) Note that here, the

graph appears to tend to −∞ as x → ∞. Further, observe that outside of the interval

[−2, 2], the graph looks very much like a straight line. If we look at the graph in a

somewhat larger window, this linearity is even more apparent. (See Figure 1.40b.)

y

x
6�6

�6

6

y

x
20�20

�20

20

FIGURE 1.40a

y =
4x3 + 5

−6x2 − 7x

FIGURE 1.40b

y =
4x3 + 5

−6x2 − 7x

Using our rule of thumb, we have

lim
x→∞

4x3 + 5

−6x2 − 7x
= lim

x→∞

[
4x3 + 5

−6x2 − 7x
·

(1/x2)

(1/x2)

]
Multiply numerator and

denominator by
1

x2
.

= lim
x→∞

4x + 5/x2

−6 − 7/x
Multiply through by

1

x2
.

= −∞,

since as x → ∞, the numerator tends to ∞ and the denominator tends to −6.

To further explain the behavior seen in Figure 1.40b, we perform a long division.

We have

4x3 + 5

−6x2 − 7x
= −

2

3
x +

7

9
+

5 + 49/9x

−6x2 − 7x
.

Since the third term in this expansion tends to 0 as x → ∞, the function values

approach those of the linear function

−
2

3
x +

7

9
,

as x → ∞. For this reason, we say that the function has a slant (or oblique)
asymptote. That is, instead of approaching a vertical or horizontal line, as happens with

vertical or horizontal asymptotes, the graph is approaching the slanted straight line

y = −
2

3
x +

7

9
. (This is the behavior we’re seeing in Figure 1.40b.)

�
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In example 5.9, we consider a model of the size of an animal’s pupils. Recall that in

bright light, pupils shrink to reduce the amount of light entering the eye, while in dim light,

pupils dilate to allow in more light. (See the chapter introduction.)

EXAMPLE 5.9 Finding the Size of an Animal’s Pupils

Suppose that the diameter of an animal’s pupils is given by f (x) mm, where x is the

intensity of light on the pupils. If f (x) =
160x−0.4 + 90

4x−0.4 + 15
, find the diameter of the pupils

with (a) minimum light and (b) maximum light.

Solution For part (a), notice that f (0) is undefined, since 0−0.4 indicates a division by

0. We therefore consider the limit of f (x) as x approaches 0, but we compute a

one-sided limit, since x cannot be negative. A computer-generated graph of y = f (x)

with 0 ≤ x ≤ 10 is shown in Figure 1.41a. It appears that the y-values approach 20 as x

approaches 0. To compute the limit, we multiply numerator and denominator by x0.4 (to

eliminate the negative exponents). We then have

lim
x→0+

160x−0.4 + 90

4x−0.4 + 15
= lim

x→0+

160x−0.4 + 90

4x−0.4 + 15
·

x0.4

x0.4

= lim
x→0+

160 + 90x0.4

4 + 15x0.4
=

160

4
= 40 mm.

This limit does not seem to match our graph, but notice that Figure 1.41a shows a gap

near x = 0. In Figure 1.41b, we have zoomed in so that 0 ≤ x ≤ 0.1. Here, a limit of 40

looks more reasonable.

y

x

5

10

15

20

102 4 6 8

FIGURE 1.41a
y = f (x)

y

x

10

20

30

40

0.02 0.10.080.060.04

FIGURE 1.41b
y = f (x)

For part (b), we consider the limit as x tends to ∞. From Figure 1.41a, it

appears that the graph has a horizontal asymptote at a value close to y = 10. We

compute the limit

lim
x→∞

160x−0.4 + 90

4x−0.4 + 15
=

90

15
= 6 mm.

So, the pupils have a limiting size of 6 mm, as the intensity of light tends to ∞. �

EXERCISES 1.5

WRITING EXERCISES

1. It may seem odd that we use ∞ in describing limits but do not

count ∞ as a real number. Discuss the existence of ∞: is it a

number or a concept?

2. In example 5.7, we dealt with the “indeterminate form”
∞
∞ . Thinking of a limit of ∞ as meaning “getting very

large” and a limit of 0 as meaning “getting very close to

0,” explain why the following are indeterminate forms: ∞
∞ ,

0
0
, ∞ − ∞, and ∞ · 0. Determine what the following non-

indeterminate forms represent: ∞ + ∞, −∞ − ∞, ∞ + 0

and 0/∞.

3. On your computer or calculator, graph y = 1/(x − 2) and look

for the horizontal asymptote y = 0 and the vertical asymptote

x = 2. Most computers will draw a vertical line at x = 2 and

will show the graph completely flattening out at y = 0 for large

x’s. Is this accurate? misleading? Most computers will compute

the locations of points for adjacent x’s and try to connect the

points with a line segment. Why might this result in a vertical

line at the location of a vertical asymptote?

4. Many students learn that asymptotes are lines that the graph

gets closer and closer to without ever reaching. This is true for

many asymptotes, but not all. Explain why vertical asymptotes

are never reached or crossed. Explain why horizontal or slant

asymptotes may, in fact, be crossed any number of times; draw

one example.
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In exercises 1–4, determine each limit (answer as appropriate,
with a number, ∞ ,−∞ or does not exist).

1. (a) lim
x→1−

1 − 2x

x2 − 1
(b) lim

x→1+

1 − 2x

x2 − 1

(c) lim
x→1

1 − 2x

x2 − 1

2. (a) lim
x→−1−

1 − 2x

x2 − 1
(b) lim

x→−1+

1 − 2x

x2 − 1

(c) lim
x→−1

1 − 2x

x2 − 1

3. (a) lim
x→2−

x − 4

x2 − 4x + 4
(b) lim

x→2+

x − 4

x2 − 4x + 4

(c) lim
x→2

x − 4

x2 − 4x + 4

4. (a) lim
x→−1−

1 − x

(x + 1)2
(b) lim

x→−1+

1 − x

(x + 1)2

(c) lim
x→−1

1 − x

(x + 1)2

In exercises 5–20, determine each limit (answer as appropriate,
with a number, ∞ ,−∞ or does not exist).

5. lim
x→2−

−x
√

4 − x2
6. lim

x→−1−
(x2 − 2x − 3)

−2/3

7. lim
x→−∞

−x
√

4 + x2
8. lim

x→∞

−x
√

4 + x2

9. lim
x→∞

x3 − 2

3x2 + 4x − 1
10. lim

x→∞

2x2 − 1

4x3 − 5x − 1

11. lim
x→∞

2x2 − x + 1

4x2 − 3x − 1
12. lim

x→∞

2x − 1

x2 + 4x + 1

13. lim
x→∞

sin 2x 14. lim
x→0+

cot 2x

15. lim
x→0+

3 − 2/x

2 + 1/x
16. lim

x→∞

3 − 2/x

2 + 1/x

17. lim
x→∞

3x + sin x

4x − cos 2x
18. lim

x→∞

2x2 sin x

x2 + 4

19. lim
x→π/2+

tan x − x

tan2 x + 3
20. lim

x→∞

sin x − x

sin2 x + 3x

In exercises 21–30, determine all horizontal and vertical
asymptotes. For each vertical asymptote, determine whether
f (x) → ∞ or f (x) → −∞ on either side of the asymptote.

21. f (x) =
x

√
4 + x2

22. f (x) =
x

√
4 − x2

23. f (x) =
x

4 − x2
24. f (x) =

x2

4 − x2

25. f (x) =
3x2 + 1

x2 − 2x − 3
26. f (x) =

1 − x

x2 + x − 2

27. f (x) = cot(1 − cos x) 28. f (x) =
tan x

1 − sin 2x

29. f (x) =
4 sin x

x
30. f (x) = sin

(
x2 + 4

x2 − 4

)

In exercises 31–34, determine all vertical and slant asymptotes.

31. y =
x3

4 − x2
32. y =

x2 + 1

x − 2

33. y =
x3

x2 + x − 4
34. y =

x4

x3 + 2

In exercises 35–38, use graphical and numerical evidence to con-
jecture a value for the indicated limit.

35. lim
x→∞

x cos(1/x)

x − 2
36. lim

x→∞

x sin(1/x)

x + 3

37. lim
x→−1

x − cos (πx)

x + 1
38. lim

x→0+

x

cos x − 1

In exercises 39–42, use graphical and numerical evidence to con-
jecture the value of the limit. Then, verify your conjecture by
finding the limit exactly.

39. lim
x→∞

(
√

4x2 − 2x + 1 − 2x) (Hint: Multiply and divide by the

conjugate expression:
√

4x2 − 2x + 1 + 2x and simplify.)

40. lim
x→∞

(
√

x2 + 3 − x) (See the hint for exercise 39.)

41. lim
x→∞

(
√

5x2 + 4x + 7 −
√

5x2 + x + 3) (See the hint for

exercise 39.)

42. lim
x→−∞

√

x2 + 3x + 1 + x

43. Explain why it is reasonable that lim
x→∞

f (x) = lim
x→0+

f (1/x) and

lim
x→−∞

f (x) = lim
x→0−

f (1/x).

44. One of the reasons for saying that infinite limits do not exist is

that we would otherwise invalidate Theorem 3.1 in section 1.3.

Find examples of functions with infinite limits such that parts

(ii) and (iv) of Theorem 3.1 do not hold.

45. Suppose that the size of the pupil of a certain animal is given

by f (x) (mm), where x is the intensity of the light on the pupil.

If f (x) =
80x−0.3 + 60

2x−0.3 + 5
, find the size of the pupil with no light

and the size of the pupil with an infinite amount of light.

46. Repeat exercise 45 with f (x) =
80x−0.3 + 60

8x−0.3 + 15
.

47. Modify the functions in exercises 45 and 46 to find a function

f such that lim
x→0+

f (x) = 8 and lim
x→∞

f (x) = 2.

48. After an injection, the concentration of a drug in a muscle

varies according to a function of time f (t). Suppose that t is

measured in hours and f (t) = t√
t2+1

. Find the limit of f (t),

both as t → 0 and t → ∞, and interpret both limits in terms

of the concentration of the drug.

49. Suppose an object with initial velocity v0 = 0 ft/s and (con-

stant) mass m slugs is accelerated by a constant force F

pounds for t seconds. According to Newton’s laws of mo-

tion, the object’s speed will be vN = Ft/m. According to

Einstein’s theory of relativity, the object’s speed will be
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vE = Fct/
√

m2c2 + F2t2, where c is the speed of light. Com-

pute lim
t→∞

vN and lim
t→∞

vE .

50. According to Einstein’s theory of relativity, the mass of an

object traveling at speed v is given by m = m0/
√

1 − v2/c2,

where c is the speed of light (about 9.8 × 108 ft/s). Compute

lim
v→0

m and explain why m0 is called the “rest mass.” Compute

lim
v→c−

m and discuss the implications. (What would happen if

you were traveling in a spaceship approaching the speed of

light?) How much does the mass of a 192-pound man (m0 = 6)

increase at the speed of 9000 ft/s (about 4 times the speed of

sound)?

51. Ignoring air resistance, the maximum height reached by a

rocket launched with initial velocity v0 is h =
v2

0 R

19.6R − v2
0

m/s,

where R is the radius of the earth. In this exercise, we interpret

this as a function of v0. Explain why the domain of this function

must be restricted to v0 ≥ 0. There is an additional restriction.

Find the (positive) value ve such that h is undefined. Sketch a

possible graph of h with 0 ≤ v0 < ve and discuss the signif-

icance of the vertical asymptote at ve. (Explain what would

happen to the rocket if it is launched with initial velocity ve.)

Explain why ve is called the escape velocity.

52. Suppose that f (x) is a rational function f (x) =
p(x)

q(x)
with the

degree (largest exponent) of p(x) less than the degree of q(x).

Determine the horizontal asymptote of y = f (x).

53. Suppose that f (x) is a rational function f (x) =
p(x)

q(x)
with

the degree of p(x) greater than the degree of q(x). Determine

whether y = f (x) has a horizontal asymptote.

54. Suppose that f (x) is a rational function f (x) =
p(x)

q(x)
. If

y = f (x) has a horizontal asymptote y = 2, how does the de-

gree of p(x) compare to the degree of q(x)?

55. Suppose that f (x) is a rational function f (x) =
p(x)

q(x)
. If

y = f (x) has a slant asymptote y = x + 2, how does the de-

gree of p(x) compare to the degree of q(x)?

56. Find a quadratic function q(x) such that f (x) =
x2 − 4

q(x)
has

one horizontal asymptote y = 2 and two vertical asymptotes

x = ±3.

57. Find a quadratic function q(x) such that f (x) =
x2 − 4

q(x)
has

one horizontal asymptote y = − 1
2

and exactly one vertical

asymptote x = 3.

58. Find a function g(x) such that f (x) =
x − 4

g(x)
has two horizon-

tal asymptotes y = ±1 and no vertical asymptotes.

In exercises 59–64, label the statement as true or false (not al-
ways true) for real numbers a and b.

59. If lim
x→∞

f (x) = a and lim
x→∞

g(x) = b, then

lim
x→∞

[ f (x) + g(x)] = a + b.

60. If lim
x→∞

f (x) = a and lim
x→∞

g(x) = b, then lim
x→∞

[
f (x)

g(x)

]

=
a

b
.

61. If lim
x→∞

f (x) = ∞ and lim
x→∞

g(x) = ∞, then

lim
x→∞

[ f (x) − g(x)] = 0.

62. If lim
x→∞

f (x) = ∞ and lim
x→∞

g(x) = ∞, then

lim
x→∞

[ f (x) + g(x)] = ∞.

63. If lim
x→∞

f (x) = a and lim
x→∞

g(x) = ∞, then lim
x→∞

[
f (x)

g(x)

]

= 0.

64. If lim
x→∞

f (x) = ∞ and lim
x→∞

g(x) = ∞, then lim
x→∞

[
f (x)

g(x)

]

= 1.

In exercises 65 and 66, determine all vertical and horizontal
asymptotes.

65. f (x) =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

4x

x − 4
if x < 0

x2

x − 2
if 0 ≤ x < 4

cos x

x + 1
if x ≥ 4

66. f (x) =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

x + 3

x2 − 4x
if x < 0

cos x + 1 if 0 ≤ x < 2

x2 − 1

x2 − 7x + 10
if x ≥ 2

67. Explain why lim
t→∞

1

t2 + 1
sin(at) = 0 for any positive constant

a. Although this is theoretically true, it is not necessarily useful

in practice. The function
1

t2 + 1
sin(at) is a simple model for a

spring-mass system, such as the suspension system on a car.

Suppose t is measured in seconds and the car passengers cannot

feel any vibrations less than 0.1 (inches). If suspension system

A has the vibration function
t

t2 + 1
sin t and suspension system

B has the vibration function
t

t4 + 1
sin t , determine graphically

how long it will take before the vibrations damp out, that is,

| f (t)| < 0.1. Is the result lim
t→∞

t

t2 + 1
sin t = 0 much consola-

tion to the owner of car A?

68. (a) State and prove a result analogous to Theorem 5.2 for

lim
x→−∞

pn(x), for n odd.

(b) State and prove a result analogous to Theorem 5.2 for

lim
x→−∞

pn(x), for n even.

69. It is very difficult to find simple statements in calculus that are

always true; this is one reason that a careful development of

the theory is so important. You may have heard the simple rule:

to find the vertical asymptotes of f (x) =
g(x)

h(x)
, simply set the

denominator equal to 0 [i.e., solve h(x) = 0]. Give an example

where h(a) = 0 but there is not a vertical asymptote at x = a.

70. In exercise 69, you needed to find an example indicating that

the following statement is not (necessarily) true: if h(a) = 0,
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then f (x) =
g(x)

h(x)
has a vertical asymptote at x = a. This is

not true, but perhaps its converse is true: if f (x) =
g(x)

h(x)
has

a vertical asymptote at x = a, then h(a) = 0. Is this statement

true? What if g and h are polynomials?

EXPLORATORY EXERCISES

1. Suppose you are shooting a basketball from a (horizontal) dis-

tance of L feet, releasing the ball from a location h feet below

the basket. To get a perfect swish, it is necessary that the ini-

tial velocity v0 and initial release angle θ0 satisfy the equation

 u0
h

L

10

v0 =
√

gL/
√

2 cos2 θ0(tan θ0 − h/L). For a free throw, take

L = 15, h = 2 and g = 32 and graph v0 as a function of θ0.

What is the significance of the two vertical asymptotes? Ex-

plain in physical terms what type of shot corresponds to each

vertical asymptote. Estimate the minimum value of v0 (call it

vmin). Explain why it is easier to shoot a ball with a small initial

velocity. There is another advantage to this initial velocity. As-

sume that the basket is 2 ft in diameter and the ball is 1 ft in

diameter. For a free throw, L = 15 ft is perfect. What is the

maximum horizontal distance the ball could travel and still go

in the basket (without bouncing off the backboard)? What is

the minimum horizontal distance? Call these numbers Lmax

and Lmin. Find the angle θ1 corresponding to vmin and Lmin and

the angle θ2 corresponding to vmin and Lmax. The difference

|θ2 − θ1| is the angular margin of error. Peter Brancazio has

shown that the angular margin of error for vmin is larger than

for any other initial velocity.

2. A different type of limit at infinity that will be very im-

portant to us is the limit of a sequence. Investigating the

area under a parabola in Chapter 4, we will compute the

following approximations:
2(3)

6(1)
= 1,

3(5)

6(4)
= 0.625,

4(7)

6(9)
≈

0.519,
5(9)

6(16)
≈ 0.469 and so on. Do you see a pattern? If

we name our approximations a1, a2, a3 and a4, verify that

an =
(n + 1)(2n + 1)

6n2
. The area under the parabola is the limit

of these approximations as n gets larger and larger. Find the

area. In Chapter 8, we will need to find limits of the following

sequences. Estimate the limit of

(a) an =
2(n + 1)2 − 3(n + 1) + 4

n2 + 3n + 4
,

(b) an = (1 + 1/n)n and

(c) an =
n3 + 2

n!
.

1.6 FORMAL DEFINITION OF THE LIMIT

We have now spent many pages discussing various aspects of the computation of limits.

This may seem a bit odd, when you realize that we have never actually defined what a limit

is. Oh, sure, we have given you an idea of what a limit is, but that’s about all. Once again,

we have said that

lim
x→a

f (x) = L ,

if f (x) gets closer and closer to L as x gets closer and closer to a.

So far, we have been quite happy with this somewhat vague, although intuitive, de-

scription. In this section, however, we will make this more precise and you will begin to

see how mathematical analysis (that branch of mathematics of which the calculus is the

most elementary study) works.

Studying more advanced mathematics without an understanding of the precise defi-

nition of limit is somewhat akin to studying brain surgery without bothering with all that

background work in chemistry and biology. In medicine, it has only been through a careful

examination of the microscopic world that a deeper understanding of our own macroscopic

world has developed, and good surgeons need to understand what they are doing and why

they are doing it. Likewise, in mathematical analysis, it is through an understanding of the
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microscopic behavior of functions (such as the precise definition of limit) that a deeper

understanding of the mathematics will come about.

HISTORICAL NOTES

Augustin Louis Cauchy

(1789–1857) A French

mathematician who developed

the ε-δ definitions of limit and

continuity, Cauchy was one of the

most prolific mathematicians in

history, making important

contributions to number theory,

linear algebra, differential

equations, astronomy, optics and

complex variables. A difficult man

to get along with, a colleague

wrote, “Cauchy is mad and there

is nothing that can be done about

him, although right now, he is the

only one who knows how

mathematics should be done.”

We begin with the careful examination of an elementary example. You should certainly

believe that

lim
x→2

(3x + 4) = 10.

Suppose that you were asked to explain the meaning of this particular limit to a fellow

student. You would probably repeat the intuitive explanation we have used so far: that as

x gets closer and closer to 2, (3x + 4) gets arbitrarily close to 10. But, exactly what do

we mean by close? One answer is that if lim
x→2

(3x + 4) = 10, we should be able to make

(3x + 4) as close as we like to 10, just by making x sufficiently close to 2. But can we

actually do this? For instance, can we force (3x + 4) to be within distance 1 of 10? To see

what values of x will guarantee this, we write an inequality that says that (3x + 4) is within

1 unit of 10:

|(3x + 4) − 10| < 1.

Eliminating the absolute values, we see that this is equivalent to

−1 < (3x + 4) − 10 < 1

or − 1 < 3x − 6 < 1.

Since we need to determine how close x must be to 2, we want to isolate x − 2, instead of

x . So, dividing by 3, we get

−
1

3
< x − 2 <

1

3

or |x − 2| <
1

3
. (6.1)

Reversing the steps that lead to inequality (6.1), we see that if x is within distance 1
3

of 2, then

(3x + 4) will be within the specified distance (1) of 10. (See Figure 1.42 for a graphical inter-

pretation of this.) So, does this convince you that you can make (3x + 4) as close as you want

to 10? Probably not, but if you used a smaller distance, perhaps you’d be more convinced.

y

x

2 � W 2 � W2

9
10
11

y � 3x � 4

FIGURE 1.42

2 −
1

3
< x < 2 +

1

3
guarantees

that |(3x + 4) − 10| < 1.

EXAMPLE 6.1 Exploring a Simple Limit

Find the values of x for which (3x + 4) is within distance
1

100
of 10.

Solution We want

|(3x + 4) − 10| <
1

100
.

Eliminating the absolute values, we get

−
1

100
< (3x + 4) − 10 <

1

100

or −
1

100
< 3x − 6 <

1

100
.

Dividing by 3 yields −
1

300
< x − 2 <

1

300
,

which is equivalent to |x − 2| <
1

300
.
�
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So, based on example 6.1, are you now convinced that we can make (3x + 4) as close

as desired to 10? All we’ve been able to show is that we can make (3x + 4) pretty close to

10. So, how close do we need to be able to make it? The answer is arbitrarily close, as close

as anyone would ever demand. We can show that this is possible by repeating the arguments

in example 6.1, this time for an unspecified distance, call it ε (epsilon, where ε > 0).

EXAMPLE 6.2 Verifying a Limit

Show that we can make (3x + 4) within any specified distance ε of 10 (no matter how

small ε is), just by making x sufficiently close to 2.

y

x
2

10 � ́

10

10 � ́
y � 3x � 4

´

3
2 �

´

3
2 �

FIGURE 1.43
The range of x-values that keep

|(3x + 4) − 10| < ε

Solution The objective is to determine the range of x-values that will guarantee that

(3x + 4) stays within ε of 10. (See Figure 1.43 for a sketch of this range.) We have

|(3x + 4) − 10| < ε.

This is equivalent to − ε < (3x + 4) − 10 < ε

or − ε < 3x − 6 < ε.

Dividing by 3, we get −
ε

3
< x − 2 <

ε

3

or |x − 2| <
ε

3
.

Notice that each of the preceding steps is reversible, so that |x − 2| <
ε

3
also implies

that |(3x + 4) − 10| < ε. This says that as long as x is within distance
ε

3
of 2, (3x + 4)

will be within the required distance ε of 10. That is,

|(3x + 4) − 10| < ε whenever |x − 2| <
ε

3
.
�

Take a moment or two to recognize what we’ve done in example 6.2. By using an

unspecified distance, ε, we have verified that we can indeed make (3x + 4) as close to 10

as might be demanded (i.e., arbitrarily close; just name whatever ε > 0 you would like),

simply by making x sufficiently close to 2. Further, we have explicitly spelled out what

“sufficiently close to 2” means in the context of the present problem. Thus, no matter how

close we are asked to make (3x + 4) to 10, we can accomplish this simply by taking x to

be in the specified interval.

Next, we examine this more precise notion of limit in the case of a function that is not

defined at the point in question.

EXAMPLE 6.3 Proving That a Limit Is Correct

Prove that lim
x→1

2x2 + 2x − 4

x − 1
= 6.

Solution It is easy to use the usual rules of limits to establish this result. It is yet

another matter to verify that this is correct using our new and more precise notion of

limit. In this case, we want to know how close x must be to 1 to ensure that

f (x) =
2x2 + 2x − 4

x − 1

is within an unspecified distance ε > 0 of 6.
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First, notice that f is undefined at x = 1. So, we seek a distance δ (delta, δ > 0),

such that if x is within distance δ of 1, but x �= 1 (i.e., 0 < |x − 1| < δ), then this

guarantees that | f (x) − 6| < ε.

Notice that we have specified that 0 < |x − 1| to ensure that x �= 1. Further,

| f (x) − 6| < ε is equivalent to

−ε <
2x2 + 2x − 4

x − 1
− 6 < ε.

Finding a common denominator and subtracting in the middle term, we get

−ε <
2x2 + 2x − 4 − 6(x − 1)

x − 1
< ε or − ε <

2x2 − 4x + 2

x − 1
< ε.

Since the numerator factors, this is equivalent to

−ε <
2(x − 1)2

x − 1
< ε.

Since x �= 1, we can cancel two of the factors of (x − 1) to yield

−ε < 2(x − 1) < ε

or −
ε

2
< x−1 <

ε

2
, Dividing by 2.

which is equivalent to |x − 1| < ε/2. So, taking δ = ε/2 and working backward, we see

that requiring x to satisfy

0 < |x − 1| < δ =
ε

2

will guarantee that

∣
∣
∣
∣

2x2 + 2x − 4

x − 1
− 6

∣
∣
∣
∣
< ε.

We illustrate this graphically in Figure 1.44. �

y

x

y � f (x)

6

1
´

2
1 �

´

2
1 �

6 � ́

6 � ́

FIGURE 1.44

0 < |x − 1| <
ε

2
guarantees that

6 − ε <
2x2 + 2x − 4

x − 1
< 6 + ε.

y

y � f (x)

x

L

L � ́

L � ́

a

a � d a � d

FIGURE 1.45
a − δ < x < a + δ guarantees that

L − ε < f (x) < L + ε.

What we have seen so far motivates us to make the following general definition, illus-

trated in Figure 1.45.

DEFINITION 6.1 (Precise Definition of Limit)

For a function f defined in some open interval containing a (but not necessarily at a

itself), we say

lim
x→a

f (x) = L ,

if given any number ε > 0, there is another number δ > 0, such that 0 < |x − a| < δ

guarantees that | f (x) − L| < ε.

Notice that example 6.2 amounts to an illustration of Definition 6.1 for lim
x→2

(3x + 4).

There, we found that δ = ε/3 satisfies the definition.
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REMARK 6.1

We want to emphasize that this formal definition of limit is not a new idea. Rather, it

is a more precise mathematical statement of the same intuitive notion of limit that we

have been using since the beginning of the chapter. Also, we must in all honesty point

out that it is rather difficult to explicitly find δ as a function of ε, for all but a few

simple examples. Despite this, learning how to work through the definition, even for a

small number of problems, will shed considerable light on a deep concept.

Example 6.4, although only slightly more complex than the last several problems,

provides an unexpected challenge.

TODAY IN
MATHEMATICS

Paul Halmos (1916– ) A

Hungarian-born mathematician

who earned a reputation as one

of the best mathematical writers

ever. For Halmos, calculus did not

come easily, with understanding

coming in a flash of inspiration

only after a long period of hard

work. “I remember standing at

the blackboard in Room 213 of

the mathematics building with

Warren Ambrose and suddenly I

understood epsilons. I understood

what limits were, and all of that

stuff that people had been drilling

into me became clear. . . . I could

prove the theorems. That

afternoon I became a

mathematician.’’

y

y � x2 � 1

x

5 � ́

5

5 � ́

2
2 � d 2 � d

FIGURE 1.46
0 < |x − 2| < δ guarantees that

|(x2 + 1) − 5| < ε.

EXAMPLE 6.4 Using the Precise Definition of Limit

Use Definiton 6.1 to prove that lim
x→2

(x2 + 1) = 5.

Solution If this limit is correct, then given any ε > 0, there must be a δ > 0 for which

0 < |x − 2| < δ guarantees that

|(x2 + 1) − 5| < ε.

Notice that

|(x2 + 1) − 5| = |x2 − 4| Factoring the difference

= |x + 2||x − 2|. of two squares. (6.2)

Our strategy is to isolate |x − 2| and so, we’ll need to do something with the term

|x + 2|. Since we’re interested only in what happens near x = 2, anyway, we will only

consider x’s within a distance of 1 from 2, that is, x’s that lie in the interval [1, 3]

(so that |x − 2| < 1). Notice that this will be true if we require δ ≤ 1 and |x − 2| < δ.

In this case, we have

|x + 2| ≤ 5, Since x ∈ [1, 3].

and so, from (6.2),

|(x2 + 1) − 5| = |x + 2||x − 2|
≤ 5|x − 2|. (6.3)

Finally, if we require that

5|x − 2| < ε, (6.4)

then we will also have from (6.3) that

|(x2 + 1) − 5| ≤ 5|x − 2| < ε.

Of course, (6.4) is equivalent to

|x − 2| <
ε

5
.

So, in view of this, we now have two restrictions: that |x − 2| < 1 and that |x − 2| <
ε

5
.

To ensure that both restrictions are met, we choose δ = min
{

1,
ε

5

} (

i.e., the minimum

of 1 and
ε

5

)

. Working backward, we get that for this choice of δ,

0 < |x − 2| < δ

will guarantee that

|(x2 + 1) − 5| < ε,

as desired. We illustrate this in Figure 1.46. �
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Exploring the Definition of Limit Graphically

As you can see from example 6.4, this business of finding δ’s for a given ε is not easily

accomplished. There, we found that even for the comparatively simple case of a quadratic

polynomial, the job can be quite a challenge. Unfortunately, there is no procedure that will

work for all problems. However, we can explore the definition graphically in the case of

more complex functions. First, we reexamine example 6.4 graphically.

EXAMPLE 6.5 Exploring the Precise Definition of Limit Graphically

Explore the precise definition of limit graphically, for lim
x→2

(x2 + 1) = 5.

Solution In example 6.4, we discovered that for δ = min
{

1,
ε

5

}

,

0 < |x − 2| < δ implies that |(x2 + 1) − 5| < ε.

This says that (for ε ≤ 5 ) if we draw a graph of y = x2 + 1 and restrict the x-values to

lie in the interval
(

2 −
ε

5
, 2 +

ε

5

)

, then the y-values will lie in the interval (5 − ε, 5 + ε).

Take ε =
1

2
, for instance. If we draw the graph in the window defined by

2 −
1

10
≤ x ≤ 2 +

1

10
and 4.5 ≤ y ≤ 5.5, then the graph will not run off the top or

bottom of the screen. (See Figure 1.47.) Of course, we can draw virtually the same

picture for any given value of ε, since we have an explicit formula for finding δ given ε.

For most limit problems, we are not so fortunate. �

2.1

x

y

1.951.9 2 2.05

4.7

4.5

4.9

5.1

5.3

5.5

FIGURE 1.47

y = x2 + 1

y

x

�0.5

0.5

1 1.5 2 2.5 3

FIGURE 1.48a

y = sin
πx

2

EXAMPLE 6.6 Exploring the Definition of Limit for a
Trigonometric Function

Graphically find a δ > 0 corresponding to (a) ε =
1

2
and (b) ε = 0.1 for

lim
x→2

sin
πx

2
= 0.

Solution This limit seems plausible enough. After all, sin
2π

2
= 0 and f (x) = sin x

is a continuous function. However, the point is to verify this carefully. Given any ε > 0,

we want to find a δ > 0, for which

0 < |x − 2| < δ guarantees that
∣
∣
∣sin

πx

2
− 0

∣
∣
∣ < ε.

Note that since we have no algebra for simplifying sin
πx

2
, we cannot accomplish this

symbolically. Instead, we’ll try to graphically find δ’s corresponding to the specific ε’s

given. First, for ε =
1

2
, we would like to find a δ > 0 for which if 0 < |x − 2| < δ, then

−
1

2
< sin

πx

2
− 0 <

1

2
.

Drawing the graph of y = sin
πx

2
with 1 ≤ x ≤ 3 and −

1

2
≤ y ≤

1

2
, we get

Figure 1.48a.

If you trace along a calculator or computer graph, you will notice that the graph

stays on the screen (i.e., the y-values stay in the interval [−0.5, 0.5]) for
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x ∈ [1.666667, 2.333333]. Thus, we have determined experimentally that for ε =
1

2
,

δ = 2.333333 − 2 = 2 − 1.666667 = 0.333333

will work. (Of course, any value of δ smaller than 0.333333 will also work.) To

illustrate this, we redraw the last graph, but restrict x to lie in the interval [1.67, 2.33].

(See Figure 1.48b.) In this case, the graph stays in the window over the entire range of

displayed x-values. Taking ε = 0.1, we look for an interval of x-values that will

guarantee that sin
πx

2
stays between −0.1 and 0.1. We redraw the graph from

Figure 1.48a, with the y-range restricted to the interval [−0.1, 0.1]. (See Figure 1.49a.)

Again, tracing along the graph tells us that the y-values will stay in the desired range for

x ∈ [1.936508, 2.063492]. Thus, we have experimentally determined that

δ = 2.063492 − 2 = 2 − 1.936508 = 0.063492

will work here. We redraw the graph using the new range of x-values (see Figure 1.49b),

since the graph remains in the window for all values of x in the indicated interval.

y

x
2 – δ 2 + δ2

�0.5

0.5

FIGURE 1.48b

y = sin
πx

2

y

x
1.7 2 2.3

�0.1

0.1

y

x
2 – δ 2 + δ2

�0.1

0.1

FIGURE 1.49a

y = sin
πx

2

FIGURE 1.49b

y = sin
πx

2

It is important to recognize that we are not proving that the above limit is correct.

To prove this requires us to symbolically find a δ for every ε > 0. The idea here is to use

these graphical illustrations to become more familiar with the definition and with what δ

and ε represent. �

x
x2

� 2x
√

x3 � 4x2

0.1 1.03711608

0.01 1.0037461

0.001 1.00037496

0.0001 1.0000375

EXAMPLE 6.7 Exploring the Definition of Limit
Where the Limit Does Not Exist

Determine whether or not lim
x→0

x2 + 2x
√

x3 + 4x2
= 1.

Solution We first construct a table of function values. From the table alone, we might

be tempted to conjecture that the limit is 1. However, we would be making a huge error,

as we have not considered negative values of x or drawn a graph. This kind of

carelessness is dangerous. Figure 1.50a (on the following page) shows the default graph

drawn by our computer algebra system. In this graph, the function values do not quite

look like they are approaching 1 as x → 0 (at least as x → 0−). We now investigate

the limit graphically for ε = 1
2
. We need to find a δ > 0 for which 0 < |x | < δ

guarantees that

1 −
1

2
<

x2 + 2x
√

x3 + 4x2
< 1 +

1

2
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y

x
42�4 �2
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x
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y

FIGURE 1.50a

y =
x2 + 2x

√
x3 + 4x2

FIGURE 1.50b

y =
x2 + 2x

√
x3 + 4x2

or
1

2
<

x2 + 2x
√

x3 + 4x2
<

3

2
.

We try δ = 0.1 to see if this is sufficiently small. So, we set the x-range to the interval

[−0.1, 0.1] and the y-range to the interval [0.5, 1.5] and redraw the graph in this

window. (See Figure 1.50b.) Notice that no points are plotted in the window for any

x < 0. According to the definition, the y-values must lie in the interval (0.5, 1.5) for all

x in the interval (−δ, δ), except possibly for x = 0. Further, you can see that δ = 0.1

clearly does not work since x = −0.05 lies in the interval (−δ, δ), but

f (−0.05) ≈ −0.981 is not in the interval (0.5, 1.5). You should convince yourself that

no matter how small you make δ, there is an x in the interval (−δ, δ) such that

f (x) /∈ (0.5, 1.5). (In fact, notice that for all x’s in the interval (−1, 0), f (x) < 0.) That

is, there is no choice of δ that makes the defining inequality true for ε = 1
2
. Thus, the

conjectured limit of 1 is incorrect.

You should note here that, while we’ve only shown that the limit is not 1, it’s

somewhat more complicated to show that the limit does not exist. �

Limits Involving Infinity

Recall that we had observed that lim
x→0

1

x2
does not exist, but to be more descriptive, we had

written

lim
x→0

1

x2
= ∞.

By this statement, we mean that the function increases without bound as x → 0. Just as with

our initial intuitive notion of lim
x→a

f (x) = L , this description is imprecise and needs to be

more carefully defined. When we say that
1

x2
increases without bound as x → 0, we mean

that we can make
1

x2
as large as we like, simply by making x sufficiently close to 0. So,

given any large positive number, M , we must be able to make
1

x2
> M , for x sufficiently

close to 0. We measure closeness here the same way as we did before and arrive at the

following definition.
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DEFINITION 6.2

For a function f defined in some open interval containing a (but not necessarily at a

itself), we say

lim
x→a

f (x) = ∞,

if given any number M > 0, there is another number δ > 0, such that 0 < |x − a| < δ

guarantees that f (x) > M . (See Figure 1.51 for a graphical interpretation of this.)

y

x
a

a � da � d

M

FIGURE 1.51
lim
x→a

f (x) = ∞

y

x
a

a � da � d

N

FIGURE 1.52
lim
x→a

f (x) = −∞

Similarly, we had said that if f decreases without bound as x → a, then

lim
x→a

f (x) = −∞. Think of how you would make this more precise and then consider the

following definition.

DEFINITION 6.3

For a function f defined in some open interval containing a (but not necessarily at a

itself), we say

lim
x→a

f (x) = −∞,

if given any number N < 0, there is another number δ > 0, such that 0 < |x − a| < δ

guarantees that f (x) < N . (See Figure 1.52 for a graphical interpretation of this.)

It’s easy to keep these definitions straight if you think of their meaning. Don’t simply

memorize them.

EXAMPLE 6.8 Using the Definition of Limit Where the Limit Is Infinite

Prove that lim
x→0

1

x2
= ∞.

Solution Given any (large) number M > 0, we need to find a distance δ > 0 such that

if x is within δ of 0 (but not equal to 0) then

1

x2
> M. (6.5)

Since both M and x2 are positive, (6.5) is equivalent to

x2 <
1

M
.

Taking the square root of both sides and recalling that
√

x2 = |x |, we get

|x | <

√

1

M
.

So, for any M > 0, if we take δ =
√

1

M
and work backward, we have that 0 < |x − 0| < δ

guarantees that

1

x2
> M,

as desired. Note that this says, for instance, that for M = 100,
1

x2
> 100, whenever

0 < |x | <

√

1

100
=

1

10
. (Verify that this works, as an exercise.)

�
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There are two remaining limits that we have yet to place on a careful footing. Before

reading on, try to figure out for yourself what appropriate definitions would look like.

If we write lim
x→∞

f (x) = L , we mean that as x increases without bound, f (x) gets

closer and closer to L . That is, we can make f (x) as close to L as we like, by choosing x

sufficiently large. More precisely, we have the following definition.

M

L � ´

y

x

L

L � ́

FIGURE 1.53
lim

x→∞
f (x) = L

DEFINITION 6.4

For a function f defined on an interval (a, ∞), for some a > 0, we say

lim
x→∞

f (x) = L ,

if given any ε > 0, there is a number M > 0 such that x > M guarantees that

| f (x) − L| < ε.

(See Figure 1.53 for a graphical interpretation of this.)

Similarly, we have said that lim
x→−∞

f (x) = L means that as x decreases without bound,

f (x) gets closer and closer to L . So, we should be able to make f (x) as close to L as desired,

just by making x sufficiently large in absolute value and negative. We have the following

definition.

N

y

x

L � ´
L

L � ́

FIGURE 1.54
lim

x→−∞
f (x) = L

DEFINITION 6.5

For a function f defined on an interval (−∞, a), for some a < 0, we say

lim
x→−∞

f (x) = L ,

if given any ε > 0, there is a number N < 0 such that x < N guarantees that

| f (x) − L| < ε.

(See Figure 1.54 for a graphical interpretation of this.)

We use Definitions 6.4 and 6.5 essentially the same as we do Definitions 6.1–6.3, as

we see in example 6.9.

EXAMPLE 6.9 Using the Definition of Limit
Where x Tends to −∞

Prove that lim
x→−∞

1

x
= 0.

Solution Here, we must show that given any ε > 0, we can make
1

x
within ε of 0,

simply by making x sufficiently large in absolute value and negative. So, we need to

determine those x’s for which
∣
∣
∣
∣

1

x
− 0

∣
∣
∣
∣
< ε

or

∣
∣
∣
∣

1

x

∣
∣
∣
∣
< ε. (6.6)
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Since x < 0, |x | = −x and so (6.6) becomes

1

−x
< ε.

Dividing both sides by ε and multiplying by x (remember that x < 0 and ε > 0, so

that this will change the direction of the inequality), we get

−
1

ε
> x .

So, if we take N = −
1

ε
and work backward, we have satisfied the definition and thereby

proved that the limit is correct. �

REMARK 6.2

You should take care to note

the commonality among the

definitions of the five limits we

have given. All five deal with a

precise description of what it

means to be “close.” It is of

considerable benefit to work

through these definitions until

you can provide your own

words for each. Don’t just

memorize the formal definitions

as stated here. Rather, work

toward understanding what they

mean and come to appreciate

the exacting language

mathematicians use.

We don’t use the limit definitions to prove each and every limit that comes along.

Actually, we use them to prove only a few basic limits and to prove the limit theorems that

we’ve been using for some time without proof. Further use of these theorems then provides

solid justification of new limits. As an illustration, we now prove the rule for a limit of a sum.

THEOREM 6.1

Suppose that for a real number a, lim
x→a

f (x) = L1 and lim
x→a

g(x) = L2. Then,

lim
x→a

[ f (x) + g(x)] = lim
x→a

f (x) + lim
x→a

g(x) = L1 + L2.

PROOF

Since lim
x→a

f (x) = L1, we know that given any number ε1 > 0, there is a number δ1 > 0 for

which

0 < |x − a| < δ1 guarantees that | f (x) − L1| < ε1. (6.7)

Likewise, since lim
x→a

g(x) = L2, we know that given any number ε2 > 0, there is a number

δ2 > 0 for which

0 < |x − a| < δ2 guarantees that |g(x) − L2| < ε2. (6.8)

Now, in order to get

lim
x→a

[ f (x) + g(x)] = (L1 + L2),

we must show that, given any number ε > 0, there is a number δ > 0 such that

0 < |x − a| < δ guarantees that |[ f (x) + g(x)] − (L1 + L2)| < ε.

Notice that

|[ f (x) + g(x)] − (L1 + L2)| = |[ f (x) − L1] + [g(x) − L2]|
≤ | f (x) − L1| + |g(x) − L2|, (6.9)

by the triangle inequality. Of course, both terms on the right-hand side of (6.9) can be made

arbitrarily small, from (6.7) and (6.8). In particular, if we take ε1 = ε2 =
ε

2
, then as long as

0 < |x − a| < δ1 and 0 < |x − a| < δ2,
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we get from (6.7), (6.8) and (6.9) that

|[ f (x) + g(x)] − (L1 + L2)| ≤ | f (x) − L1| + |g(x) − L2|

<
ε

2
+

ε

2
= ε,

as desired. Of course, this will happen if we take

0 < |x − a| < δ = min{δ1, δ2}.

The other rules for limits are proven similarly, using the definition of limit. We show

these in Appendix A.

EXERCISES 1.6

WRITING EXERCISES

1. In his 1687 masterpiece Mathematical Principles of Natu-

ral Philosophy, which introduces many of the fundamentals

of calculus, Sir Isaac Newton described the important limit

lim
h→0

f (a + h) − f (a)

h
(which we study at length in Chapter 2)

as “the limit to which the ratios of quantities decreasing without

limit do always converge, and to which they approach nearer

than by any given difference, but never go beyond, nor ever

reach until the quantities vanish.” If you ever get weary of all

the notation that we use in calculus, think of what it would look

like in words! Critique Newton’s definition of limit, addressing

the following questions in the process. What restrictions do the

phrases “never go beyond” and “never reach” put on the limit

process? Give an example of a simple limit, not necessarily

of the form lim
h→0

f (a + h) − f (a)

h
, that violates these restric-

tions. Give your own (English language) description of the

limit, avoiding restrictions such as Newton’s. Why do mathe-

maticians consider the ε−δ definition simple and elegant?

2. You have computed numerous limits before seeing the def-

inition of limit. Explain how this definition changes and/or

improves your understanding of the limit process.

3. Each word in the ε−δ definition is carefully chosen and pre-

cisely placed. Describe what is wrong with each of the follow-

ing slightly incorrect “definitions” (use examples!):

(a) There exists ε > 0 such that there exists a δ > 0 such that

if 0 < |x − a| < δ, then | f (x) − L| < ε.

(b) For all ε > 0 and for all δ > 0, if 0 < |x − a| < δ, then

| f (x) − L| < ε.

(c) For all δ > 0 there exists ε > 0 such that 0 < |x − a| < δ

and | f (x) − L| < ε.

4. In order for the limit to exist, given every ε > 0, we must

be able to find a δ > 0 such that the if/then inequalities are

true. To prove that the limit does not exist, we must find a

particular ε > 0 such that the if/then inequalities are not true

for any choice of δ > 0. To understand the logic behind the

swapping of the “for every” and “there exists” roles, draw an

analogy with the following situation. Suppose the statement,

“Everybody loves somebody” is true. If you wanted to verify

the statement, why would you have to talk to every person on

earth? But, suppose that the statement is not true. What would

you have to do to disprove it?

In exercises 1–8, numerically and graphically determine a δ cor-
responding to (a) ε � 0.1 and (b) ε � 0.05. Graph the function
in the ε − δ window [x-range is (a − δ, a � δ) and y-range is
(L − ε, L � ε)] to verify that your choice works.

1. lim
x→0

(x2 + 1) = 1 2. lim
x→1

(x2 + 1) = 2

3. lim
x→0

cos x = 1 4. lim
x→π/2

cos x = 0

5. lim
x→1

√
x + 3 = 2 6. lim

x→−2

√
x + 3 = 1

7. lim
x→1

x + 2

x2
= 3 8. lim

x→2

x + 2

x2
= 1

In exercises 9–20, symbolically find δ in terms of ε.

9. lim
x→0

3x = 0 10. lim
x→1

3x = 3

11. lim
x→2

(3x + 2) = 8 12. lim
x→1

(3x + 2) = 5

13. lim
x→1

(3 − 4x) = −1 14. lim
x→−1

(3 − 4x) = 7

15. lim
x→1

x2 + x − 2

x − 1
= 3 16. lim

x→−1

x2 − 1

x + 1
= −2

17. lim
x→1

(x2 − 1) = 0 18. lim
x→1

(x2 − x + 1) = 1

19. lim
x→2

(x2 − 1) = 3 20. lim
x→0

(x3 + 1) = 1

21. Determine a formula for δ in terms of ε for lim
x→a

(mx + b). (Hint:

Use exercises 9–14.) Does the formula depend on the value of

a? Try to explain this answer graphically.

22. Based on exercises 17 and 19, does the value of δ depend on

the value of a for lim
x→a

(x2 + b)? Try to explain this graphically.
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23. Modify the ε-δ definition to define the one-sided limits

lim
x→a−

f (x) and lim
x→a+

f (x).

24. Symbolically find the largest δ corresponding to ε = 0.1 in

the definition of lim
x→1−

1/x = 1. Symbolically find the largest

δ corresponding to ε = 0.1 in the definition of lim
x→1+

1/x = 1.

Which δ could be used in the definition of lim
x→1

1/x = 1? Briefly

explain. Then prove that lim
x→1

1/x = 1.

In exercises 25–30, find a δ corresponding to M � 100 or
N � −100 (as appropriate) for each limit.

25. lim
x→1+

2

x − 1
= ∞ 26. lim

x→1−

2

x − 1
= −∞

27. lim
x→0+

cot x = ∞ 28. lim
x→π−

cot x = −∞

29. lim
x→2−

2
√

4 − x2
= ∞ 30. lim

x→1−

x

x2 − 1
= −∞

In exercises 31–36, find an M or N corresponding to ε � 0.1 for
each limit at infinity.

31. lim
x→∞

x2 − 2

x2 + x + 1
= 1 32. lim

x→∞

x − 2

x2 + x + 1
= 0

33. lim
x→−∞

x2 + 3

4x2 − 4
= 0.25 34. lim

x→−∞

3x2 − 2

x2 + 1
= 3

35. lim
x→∞

x
√

x2 + 10
= 1 36. lim

x→∞

x2 + x

x2 + 2x + 1
= 1

In exercises 37–46, prove that the limit is correct using the ap-
propriate definition (assume that k is an integer).

37. lim
x→∞

2

x3
= 0 38. lim

x→−∞

3

x3
= 0

39. lim
x→∞

1

x k
= 0, for k > 0 40. lim

x→−∞

1

x2k
= 0, for k > 0

41. lim
x→∞

(
1

x2 + 2
− 3

)

= −3 42. lim
x→∞

1

(x − 7)2
= 0

43. lim
x→−3

−2

(x + 3)4
= −∞ 44. lim

x→7

3

(x − 7)2
= ∞

45. lim
x→5

4

(x − 5)2
= ∞ 46. lim

x→−4

−6

(x + 4)6
= −∞

In exercises 47–50, identify a specific ε > 0 for which no δ > 0
exists to satisfy the definition of limit.

47. f (x) =

{

2x if x < 1, lim
x→1

f (x) �= 2
x2 + 3 if x > 1

48. f (x) =

{

x2 − 1 if x < 0, lim
x→0

f (x) �= −2
−x − 2 if x > 0

49. f (x) =

{

2x if x < 1, lim
x→1

f (x) �= 2
5 − x2 if x > 1

50. f (x) =

{

x − 1 if x < 2, lim
x→2

f (x) �= 1
x2 if x > 2

51. A metal washer of (outer) radius r inches weighs 2r 2 ounces.

A company manufactures 2-inch washers for different cus-

tomers who have different error tolerances. If the customer

demands a washer of weight 8 ± ε ounces, what is the error

tolerance for the radius? That is, find δ such that a radius of

r within the interval (2 − δ, 2 + δ) guarantees a weight within

(8 − ε, 8 + ε).

52. A fiberglass company ships its glass as spherical marbles. If

the volume of each marble must be within ε of π/6, how close

does the radius need to be to 1/2?

53. Prove Theorem 3.1 (i).

54. Prove Theorem 3.1 (ii).

55. Prove the Squeeze Theorem, as stated in Theorem 3.5.

56. Given that lim
x→a−

f (x) = L and lim
x→a+

f (x) = L , prove that

lim
x→a

f (x) = L .

57. Prove: if lim
x→a

f (x) = L , then lim
x→a

[ f (x) − L] = 0.

58. Prove: if lim
x→a

[ f (x) − L] = 0, then lim
x→a

f (x) = L .

59. In this exercise, we explore the definition of lim
x→2

x2 = 4 with

ε = 0.1. Show that x2 − 4 < 0.1 if 2 < x <
√

4.1. This

indicates that δ1 = 0.02484 works for x > 2. Show that

x2 − 4 > −0.1 if
√

3.9 < x < 2. This indicates that

δ2 = 0.02515 works for x < 2. For the limit definition, is

δ = δ1 or δ = δ2 the correct choice? Briefly explain.

60. Generalize exercise 59 to find a δ of the form
√

4 + ε or√
4 − ε corresponding to any ε > 0.

EXPLORATORY EXERCISES

1. We hope that working through this section has provided you

with extra insight into the limit process. However, we have not

yet solved any problems we could not already solve in pre-

vious sections. We do so now, while investigating an unusual

function. Recall that rational numbers can be written as frac-

tions p/q , where p and q are integers. We will assume that

p/q has been simplified by dividing out common factors (e.g.,

1/2 and not 2/4). Define f (x) =
{

0 if x is irrational

1/q if x = p

q
is rational

.

We will try to show that lim
x→2/3

f (x) exists. Without graphics,
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we need a good definition to answer this question. We know

that f (2/3) = 1/3, but recall that the limit is independent of

the actual function value. We need to think about x’s close

to 2/3. If such an x is irrational, f (x) = 0. A simple hy-

pothesis would then be lim
x→2/3

f (x) = 0. We’ll try this out for

ε = 1/6. We would like to guarantee that | f (x)| < 1/6 when-

ever 0 < |x − 2/3| < δ. Well, how many x’s have a function

value greater than 1/6? The only possible function values are

1/5, 1/4, 1/3, 1/2 and 1. The x’s with function value 1/5 are

1/5, 2/5, 3/5, 4/5 and so on. The closest of these x’s to 2/3

is 3/5. Find the closest x (not counting x = 2/3) to 2/3 with

function value 1/4. Repeat for f (x) = 1/3, f (x) = 1/2 and

f (x) = 1. Out of all these closest x’s, how close is the ab-

solute closest? Choose δ to be this number, and argue that if

0 < |x − 2/3| < δ, we are guaranteed that | f (x)| < 1/6. Ar-

gue that a similar process can find a δ for any ε.

2. State a definition for “ f (x) is continuous at x = a” using Def-

inition 6.1. Use it to prove that the function in exploratory

exercise 1 is continuous at every irrational number and discon-

tinuous at every rational number.

1.7 LIMITS AND LOSS-OF-SIGNIFICANCE ERRORS

“Pay no attention to that man behind the curtain . . . .” (from The Wizard of Oz)

Things are not always what they appear to be. We spend much time learning to distinguish

reality from mere appearances. Along the way, we develop a healthy level of skepticism.

You may have already come to realize that mathematicians are a skeptical lot. This is of

necessity, for you simply can’t accept things at face value.

People tend to accept a computer’s answer as a fact not subject to debate. However,

when we use a computer (or calculator), we must always keep in mind that these devices

perform most computations only approximately. Most of the time, this will cause us no

difficulty whatsoever. Modern computational devices generally carry out calculations to a

very high degree of accuracy. Occasionally, however, the results of round-off errors in a

string of calculations are disastrous. In this section, we briefly investigate these errors and

learn how to recognize and avoid some of them.

We first consider a relatively tame-looking example.

EXAMPLE 7.1 A Limit with Unusual Graphical and
Numerical Behavior

Evaluate lim
x→∞

(x3 + 4)
2 − x6

x3
.

x
100,00060,00020,000

y

7

8

9

FIGURE 1.55a

y =
(x3 + 4)

2 − x6

x3

Solution At first glance, the numerator looks like ∞ − ∞, which is indeterminate,

while the denominator tends to ∞. Algebraically, the only reasonable step to take is to

multiply out the first term in the numerator. Before we do that, let’s draw a graph and

compute some function values. (Different computers and different software will

produce somewhat different results, but for large values of x , you should see results

similar to those shown here.) In Figure 1.55a, the function appears nearly constant, until

it begins oscillating around x = 40,000. Notice that the accompanying table of function

values is inconsistent with Figure 1.55a.

The last two values in the table may have surprised you. Up until that point, the

function values seemed to be settling down to 8.0 very nicely. So, what happened here

and what is the correct value of the limit? Obviously, something unusual has occurred
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between x = 1 × 104 and x = 1 × 105. We should look carefully at function values in

that interval. A more detailed table is shown below to the right.

Incorrect calculated values

x
(x3

� 4)2 − x6

x3

10 8.016

100 8.000016

1 × 103 8.0

1 × 104 8.0

1 × 105 0.0

1 × 106 0.0

x
(x3

� 4)2 − x6

x3

2 × 104 8.0

3 × 104 8.14815

4 × 104 7.8125

5 × 104 0

In Figure 1.55b, we have blown up the graph to enhance the oscillation observed

between x = 1 × 104 and x = 1 × 105. The picture that is emerging is even more

confusing. The deeper we look into this limit, the more erratically the function appears

to behave. We use the word appears because all of the oscillatory behavior we are

seeing is an illusion, created by the finite precision of the computer used to perform the

calculations or draw the graph. �

x
100,00060,00020,000

y

7.8

8

8.2

FIGURE 1.55b

y =
(x3 + 4)

2 − x6

x3

Computer Representation of Real Numbers

The reason for the unusual behavior seen in example 7.1 boils down to the way in which com-

puters represent real numbers. Without getting into all of the intricacies of computer arith-

metic, it suffices to think of computers and calculators as storing real numbers internally in

scientific notation. For example, the number 1,234,567 would be stored as 1.234567 × 106.

The number preceding the power of 10 is called the mantissa and the power is called the

exponent. Thus, the mantissa here is 1.234567 and the exponent is 6.

All computing devices have finite memory and consequently have limitations on the

size mantissa and exponent that they can store. (This is called finite precision.) Many

calculators carry a 14-digit mantissa and a 3-digit exponent. On a 14-digit computer, this

would suggest that the computer would retain only the first 14 digits in the decimal expansion

of any given number.

EXAMPLE 7.2 Computer Representation of a Rational Number

Determine how
1

3
is stored internally on a 10-digit computer and how

2

3
is stored internally

on a 14-digit computer.

Solution On a 10-digit computer,
1

3
is stored internally as 3.333333333

︸ ︷︷ ︸

10 digits

×10−1. On a

14-digit computer,
2

3
is stored internally as 6.6666666666667

︸ ︷︷ ︸

14 digits

× 10−1.

�

For most purposes, such finite precision presents no problem. However, we do oc-

casionally come across a disastrous error caused by finite precision. In example 7.3, we

subtract two relatively close numbers and examine the resulting catastrophic error.
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EXAMPLE 7.3 A Computer Subtraction of Two “Close” Numbers

Compare the exact value of

1. 0000000000000
︸ ︷︷ ︸

13 zeros

4 × 1018 − 1. 0000000000000
︸ ︷︷ ︸

13 zeros

1 × 1018

with the result obtained from a calculator or computer with a 14-digit mantissa.

Solution Notice that

1. 0000000000000
︸ ︷︷ ︸

13 zeros

4×1018 − 1. 0000000000000
︸ ︷︷ ︸

13 zeros

1×1018 = 0. 0000000000000
︸ ︷︷ ︸

13 zeros

3×1018

= 30,000. (7.1)

However, if this calculation is carried out on a computer or calculator with a 14-digit

(or smaller) mantissa, both numbers on the left-hand side of (7.1) are stored by the

computer as 1 × 1018 and hence, the difference is calculated as 0. Try this calculation

for yourself now. �

EXAMPLE 7.4 Another Subtraction of Two “Close” Numbers

Compare the exact value of

1. 0000000000000
︸ ︷︷ ︸

13 zeros

6 × 1020 − 1. 0000000000000
︸ ︷︷ ︸

13 zeros

4 × 1020

with the result obtained from a calculator or computer with a 14-digit mantissa.

Solution Notice that

1.0000000000000
︸ ︷︷ ︸

13 zeros

6×1020 − 1.0000000000000
︸ ︷︷ ︸

13 zeros

4×1020 = 0.0000000000000
︸ ︷︷ ︸

13 zeros

2×1020

= 2,000,000.

However, if this calculation is carried out on a calculator with a 14-digit mantissa, the

first number is represented as 1.0000000000001 × 1020, while the second number is

represented by 1.0 × 1020, due to the finite precision and rounding. The difference

between the two values is then computed as 0.0000000000001 × 1020 or 10,000,000,

which is, again, a very serious error. �

In examples 7.3 and 7.4, we witnessed a gross error caused by the subtraction of two

numbers whose significant digits are very close to one another. This type of error is called

a loss-of-significant-digits error or simply a loss-of-significance error. These are subtle,

often disastrous computational errors. Returning now to example 7.1, we will see that it

was this type of error that caused the unusual behavior noted.

EXAMPLE 7.5 A Loss-of-Significance Error

In example 7.1, we considered the function f (x) =
(x3 + 4)

2 − x6

x3
.

Follow the calculation of f (5 × 104) one step at a time, as a 14-digit computer would do it.
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Solution We have

f (5 × 104) =
[(5 × 104)3 + 4]2 − (5 × 104)6

(5 × 104)3

=
(1.25 × 1014 + 4)2 − 1.5625 × 1028

1.25 × 1014

=
(125,000,000,000,000 + 4)2 − 1.5625 × 1028

1.25 × 1014

=
(1.25 × 1014)2 − 1.5625 × 1028

1.25 × 1014
= 0,

since 125,000,000,000,004 is rounded off to 125,000,000,000,000.

Note that the real culprit here was not the rounding of 125,000,000,000,004, but the

fact that this was followed by a subtraction of a nearly equal value. Further, note that

this is not a problem unique to the numerical computation of limits, but one that occurs

in numerical computation, in general. �

REMARK 7.1

If at all possible, avoid

subtractions of nearly equal

values. Sometimes, this can be

accomplished by some algebraic

manipulation of the function.

In the case of the function from example 7.5, we can avoid the subtraction and hence,

the loss-of-significance error by rewriting the function as follows:

f (x) =
(x3 + 4)

2 − x6

x3

=
(x6 + 8x3 + 16) − x6

x3

=
8x3 + 16

x3
,

where we have eliminated the subtraction. Using this new (and equivalent) expression for

the function, we can compute a table of function values reliably. Notice, too, that if we

redraw the graph in Figure 1.55a using the new expression (see Figure 1.56), we no longer

see the oscillation present in Figures 1.55a and 1.55b.

From the rewritten expression, we easily obtain

lim
x→∞

(x3 + 4)
2 − x6

x3
= 8,

x
100,00060,00020,000

y

7

8

9

FIGURE 1.56

y =
8x3 + 16

x3

x
8x3

� 16

x3

10 8.016

100 8.000016

1 × 103 8.000000016

1 × 104 8.00000000002

1 × 105 8.0

1 × 106 8.0

1 × 107 8.0

which is consistent with Figure 1.56 and the corrected table of function values.

In example 7.6, we examine a loss-of-significance error that occurs for x close

to 0.

EXAMPLE 7.6 Loss-of-Significance Involving
a Trigonometric Function

Evaluate lim
x→0

1 − cos x2

x4
.
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Solution As usual, we look at a graph (see Figure 1.57) and some function values.y

x

0.5

2 4�2�4

FIGURE 1.57

y =
1 − cos x2

x4

x
1 − cos x2

x4

0.1 0.499996

0.01 0.5

0.001 0.5

0.0001 0.0

0.00001 0.0

x
1 − cos x2

x4

−0.1 0.499996

−0.01 0.5

−0.001 0.5

−0.0001 0.0

−0.00001 0.0

As in example 7.1, note that the function values seem to be approaching 0.5, but then

suddenly take a jump down to 0.0. Once again, we are seeing a loss-of-significance

error. In this particular case, this occurs because we are subtracting nearly equal values

(cos x2 and 1). We can again avoid the error by eliminating the subtraction. Note that

1 − cos x2

x4
=

1 − cos x2

x4
·

1 + cos x2

1 + cos x2

Multiply numerator and

denominator by (1 + cos x2).

=
1 − cos2

(

x2
)

x4
(

1 + cos x2
) 1 − cos2(x2) = sin2(x2).

=
sin2

(

x2
)

x4
(

1 + cos x2
) .

Since this last (equivalent) expression has no subtraction indicated, we should be able to

use it to reliably generate values without the worry of loss-of-significance error. Using

this to compute function values, we get the accompanying table.

Using the graph and the new table, we conjecture that

lim
x→0

1 − cos x2

x4
=

1

2
.
�

x
sin2(x2)

x4(1 � cos x2)

±0.1 0.499996

±0.01 0.4999999996

±0.001 0.5

±0.0001 0.5

±0.00001 0.5

We offer one final example where a loss-of-significance error occurs, even though no

subtraction is explicitly indicated.

EXAMPLE 7.7 A Loss-of-Significance Error Involving a Sum

Evaluate lim
x→−∞

x[(x2 + 4)
1/2 + x].

Solution Initially, you might think that since there is no subtraction (explicitly)

indicated, there will be no loss-of-significance error. We first draw a graph (see

Figure 1.58) and compute a table of values.

y

x

�3

�2

�1

�2 � 107
�6 � 107

�1 � 108

FIGURE 1.58

y = x[(x2 + 4)
1/2 + x]

x x
[

(x2
� 4)

1/2
� x

]

−100 −1.9998

−1 × 103 −1.999998

−1 × 104 −2.0

−1 × 105 −2.0

−1 × 106 −2.0

−1 × 107 0.0

−1 × 108 0.0
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You should quickly notice the sudden jump in values in the table and the wild

oscillation visible in the graph. Although a subtraction is not explicitly indicated, there

is indeed a subtraction here, since we have x < 0 and (x2 + 4)
1/2

> 0. We can again

remedy this with some algebraic manipulation, as follows.

x
[

(x2 + 4)
1/2 + x

]

= x
[

(x2 + 4)
1/2 + x

]

[

(x2 + 4)
1/2 − x

]

[

(x2 + 4)
1/2 − x

]
Multiply numerator and

denominator by the conjugate.

= x

[

(x2 + 4) − x2
]

[

(x2 + 4)
1/2 − x

] Simplify the numerator.

=
4x

[

(x2 + 4)
1/2 − x

] .

We use this last expression to generate a graph in the same window as that used for

Figure 1.58 and to generate the accompanying table of values. In Figure 1.59, we can

see none of the wild oscillation observed in Figure 1.58 and the graph appears to be a

horizontal line.

y

x

�3

�2

�1

�2 � 107
�6 � 107

�1 � 108

FIGURE 1.59

y =
4x

[(x2 + 4)
1/2 − x]

x
4x

[

(x2 � 4)1/2
− x

]

−100 −1.9998

−1 × 103 −1.999998

−1 × 104 −1.99999998

−1 × 105 −1.9999999998

−1 × 106 −2.0

−1 × 107 −2.0

−1 × 108 −2.0

Further, the values displayed in the table no longer show the sudden jump indicative of a

loss-of-significance error. We can now confidently conjecture that

lim
x→−∞

x[(x2 + 4)
1/2 + x] = −2.

�

BEYOND FORMULAS

In examples 7.5–7.7, we demonstrated calculations that suffered from catastrophic loss-

of-significance errors. In each case, we showed how we could rewrite the expression

to avoid this error. We have by no means exhibited a general procedure for recognizing

and repairing such errors. Rather, we hope that by seeing a few of these subtle errors,

and by seeing how to fix even a limited number of them, you will become a more

skeptical and intelligent user of technology.
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EXERCISES 1.7

WRITING EXERCISES

1. It is probably clear that caution is important in using tech-

nology. Equally important is redundancy. This property is

sometimes thought to be a negative (wasteful, unnecessary),

but its positive role is one of the lessons of this section. By

redundancy, we mean investigating a problem using graphical,

numerical and symbolic tools. Why is it important to use mul-

tiple methods? Answer this from a practical perspective (think

of the problems in this section) and a theoretical perspective

(if you have learned multiple techniques, do you understand

the mathematics better?).

2. The drawback of caution and redundancy is that they take extra

time. In computing limits, when should you stop and take extra

time to make sure an answer is correct and when is it safe to

go on to the next problem? Should you always look at a graph?

compute function values? do symbolic work? an ε−δ proof?

Prioritize the techniques in this chapter.

3. The limit lim
h→0

f (a + h) − f (a)

h
will be very important in

Chapter 2. For a specific function and specific a, we could com-

pute a table of values of the fraction for smaller and smaller

values of h. Why should we be wary of loss-of-significance

errors?

4. Notice that we rationalized the numerator in example 7.7. The

old rule of rationalizing the denominator is another example

of rewriting an expression to try to minimize computational

errors. Before computers, square roots were very difficult to

compute. To see one reason why you might want the square

root in the numerator, suppose that you can get only one dec-

imal place of accuracy, so that
√

3 ≈ 1.7. Compare 6
1.7

to 6√
3

and then compare 2(1.7) to 6√
3
. Which of the approximations

could you do in your head?

In exercises 1–12, (a) use graphics and numerics to conjecture
a value of the limit. (b) Find a computer or calculator graph
showing a loss-of-significance error. (c) Rewrite the function to
avoid the loss-of-significance error.

1. lim
x→∞

x
(√

4x2 + 1 − 2x
)

2. lim
x→−∞

x
(√

4x2 + 1 + 2x
)

3. lim
x→∞

√
x
(√

x + 4 −
√

x + 2
)

4. lim
x→∞

x2
(√

x4 + 8 − x2
)

5. lim
x→∞

x
(√

x2 + 4 −
√

x2 + 2
)

6. lim
x→∞

x
(√

x3 + 8 − x3/2
)

7. lim
x→0

1 − cos 2x

12x2
8. lim

x→0

1 − cos x

x2

9. lim
x→0

1 − cos x3

x6
10. lim

x→0

1 − cos x4

x8

11. lim
x→∞

x4/3 (
3
√

x2 + 1 − 3
√

x2 − 1)

12. lim
x→∞

x2/3 (
3
√

x + 4 − 3
√

x − 3)

In exercises 13 and 14, compare the limits to show that small
errors can have disastrous effects.

13. lim
x→1

x2 + x − 2

x − 1
and lim

x→1

x2 + x − 2.01

x − 1

14. lim
x→2

x − 2

x2 − 4
and lim

x→2

x − 2

x2 − 4.01

15. Compare f (x) = sin πx and g(x) = sin 3.14x for x = 1

(radian), x = 10, x = 100 and x = 1000.

16. For exercise 1, follow the calculation of the function for

x = 105 as it would proceed for a machine computing with

a 10-digit mantissa. Identify where the round-off error occurs.

In exercises 17 and 18, compare the exact answer to one obtained
by a computer with a six-digit mantissa.

17. (1.000003 − 1.000001) × 107

18. (1.000006 − 1.000001) × 107

19. If you have access to a CAS, test it on the limits of exam-

ples 7.1, 7.6 and 7.7. Based on these results, do you think that

your CAS does precise calculations or numerical estimates?

EXPLORATORY EXERCISES

1. In this exercise, we look at one aspect of the mathematical study

of chaos. First, iterate the function f (x) = x2 − 2 starting at

x0 = 0.5. That is, compute x1 = f (0.5), then x2 = f (x1), then

x3 = f (x2) and so on. Although the sequence of numbers stays

bounded, the numbers never repeat (except by the accident of

round-off errors). An impressive property of chaotic functions

is the butterfly effect (more properly referred to as sensitive

dependence on initial conditions). The butterfly effect applies

to the chaotic nature of weather and states that the amount of

air stirred by a butterfly flapping its wings in Brazil can create

or disperse a tornado in Texas a few days later. Therefore, long-

range weather prediction is impossible. To illustrate the butter-

fly effect, iterate f (x) starting at x0 = 0.5 and x0 = 0.51. How

many iterations does it take before the iterations are more than

0.1 apart? Try this again with x0 = 0.5 and x0 = 0.501. Repeat

this exercise for the function g(x) = x2 − 1. Even though the

functions are almost identical, g(x) is not chaotic and behaves

very differently. This represents an important idea in modern

medical research called dynamical diseases: a small change in
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one of the constants in a function (e.g., the rate of an electrical

signal within the human heart) can produce a dramatic change

in the behavior of the system (e.g., the pumping of blood from

the ventricles).

2. Just as we are subject to round-off error in using calculations

from a computer, so are we subject to errors in a computer-

generated graph. After all, the computer has to compute func-

tion values before it can decide where to plot points. On

your computer or calculator, graph y = sin x2 (a disconnected

graph—or point plot—is preferable). You should see the os-

cillations you expect from the sine function, but with the os-

cillations getting faster as x gets larger. Shift your graphing

window to the right several times. At some point, the plot will

become very messy and almost unreadable. Depending on your

technology, you may see patterns in the plot. Are these patterns

real or an illusion? To explain what is going on, recall that a

computer graph is a finite set of pixels, with each pixel rep-

resenting one x and one y. Suppose the computer is plotting

points at x = 0, x = 0.1, x = 0.2 and so on. The y-values

would then be sin 02, sin 0.12, sin 0.22 and so on. Investigate

what will happen between x = 15 and x = 16. Compute all the

points (15, sin 152), (15.1, sin 15.12) and so on. If you were to

graph these points, what pattern would emerge? To explain this

pattern, argue that there is approximately half a period of the

sine curve missing between each point plotted. Also, investi-

gate what happens between x = 31 and x = 32.

Review Exercises

WRITING EXERCISES

The following list includes terms that are defined and theorems that

are stated in this chapter. For each term or theorem, (1) give a precise

definition or statement, (2) state in general terms what it means and

(3) describe the types of problems with which it is associated.

Secant line Limit Infinite limit

One-sided limit Continuous Loss-of-significance

Removable Horizontal asymptote error

discontinuity Squeeze Theorem Slant asymptote

Vertical asymptote Length of line Intermediate Value

Method of bisections segment Theorem

Slope of curve

TRUE OR FALSE

State whether each statement is true or false and briefly explain

why. If the statement is false, try to “fix it” by modifying the given

statement to make a new statement that is true.

1. In calculus, problems are often solved by first approximating

the solution and then improving the approximation.

2. If f (1.1) = 2.1, f (1.01) = 2.01 and so on, then lim
x→1

f (x) = 2.

3. lim
x→a

[ f (x) · g(x)] = [lim
x→a

f (x)][lim
x→a

g(x)]

4. lim
x→a

f (x)

g(x)
=

lim
x→a

f (x)

lim
x→a

g(x)

5. If f (2) = 1 and f (4) = 2, then there exists an x between 2 and

4 such that f (x) = 0.

6. For any polynomial p(x), lim
x→∞

p(x) = ∞.

7. If f (x) =
p(x)

q(x)
for polynomials p and q with q(a) = 0, then

f has a vertical asymptote at x = a.

8. Small round-off errors typically have only small effects on a

calculation.

9. lim
x→a

f (x) = L if and only if lim
x→a

√

f (x) =
√

L.

In exercises 1 and 2, numerically estimate the slope of y � f (x)
at x � a.

1. f (x) = x2 − 2x, a = 2

2. f (x) = sin 2x, a = 0

In exercises 3 and 4, numerically estimate the length of the curve
using (a) n � 4 and (b) n � 8 line segments and evenly spaced
x-coordinates.

3. f (x) = sin x, 0 ≤ x ≤ π

4

4. f (x) = x2 − x, 0 ≤ x ≤ 2

In exercises 5–10, use numerical and graphical evidence to con-
jecture the value of the limit.

5. lim
x→0

tan (x3)

x2
6. lim

x→1

x2 − 1

cos πx + 1

7. lim
x→−2

x + 2

|x + 2|
8. lim

x→0
tan

1

x

9. lim
x→−∞

√
x2 + 4

3x + 1
10. lim

x→∞

4x2 + x − 1
√

x4 + 6
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Review Exercises

In exercises 11 and 12, identify the limits from the graph of f .

11. (a) lim
x→−1−

f (x) (b) lim
x→−1+

f (x)

(c) lim
x→−1

f (x) (d) lim
x→0

f (x)

12. (a) lim
x→1−

f (x) (b) lim
x→1+

f (x)

(c) lim
x→1

f (x) (d) lim
x→2

f (x)

y

x

�3

3

3�3

13. Identify the discontinuities in the function graphed above.

14. Sketch a graph of a function f with f (−1) = 0,

f (0) = 0, lim
x→1−

f (x) = 1 and lim
x→1+

f (x) = −1.

In exercises 15–34, evaluate the limit. Answer with a number,
∞ , −∞ or does not exist.

15. lim
x→2

x2 − x − 2

x2 − 4
16. lim

x→1

x2 − 1

x2 + x − 2

17. lim
x→0

x2 + x
√

x4 + 2x2
18. lim

x→0

x3 + 2x2

√
x8 + 4x4

19. lim
x→0

(2 + x) sin(1/x) 20. lim
x→0

sin x2

x2

21. lim
x→2

f (x), where f (x) =
{

3x − 1 if x < 2

x2 + 1 if x ≥ 2

22. lim
x→1

f (x), where f (x) =
{

2x + 1 if x < 1

x2 + 1 if x ≥ 1

23. lim
x→0

3
√

1 + 2x − 1

x
24. lim

x→1

x − 1
√

10 − x − 3

25. lim
x→0

cot (x2) 26. lim
x→1

tan

(
x

x2 − 2x + 1

)

27. lim
x→∞

x2 − 4

3x2 + x + 1
28. lim

x→∞

2x
√

x2 + 4

29. lim
x→π/2

− tan2 x 30. lim
x→3

x2 − 2x − 3

x2 + 6x + 9

31. lim
x→−∞

2x

x2 + 3x − 5
32. lim

x→−2

2x

x2 + 3x + 2

33. lim
x→0

sin x

| sin x |
34. lim

x→0

2x − |x |
|3x | − 2x

35. Use the Squeeze Theorem to prove that lim
x→0

2x3

x2 + 1
= 0.

36. Use the Intermediate Value Theorem to verify that

f (x) = x3 − x − 1 has a zero in the interval [1, 2]. Use the

method of bisections to find an interval of length 1/32 that

contains a zero.

In exercises 37–40, find all discontinuities and determine which
are removable.

37. f (x) =
x − 1

x2 + 2x − 3
38. f (x) =

x + 1

x2 − 4

39. f (x) =

⎧

⎨

⎩

sin x if x < 0

x2 if 0 ≤ x ≤ 2

4x − 3 if x > 2

40. f (x) = x cot x

In exercises 41–44, find all intervals of continuity.

41. f (x) =
x + 2

x2 − x − 6
42. f (x) =

2x
√

3x − 4

43. f (x) = sin (1 + cos x) 44. f (x) =
√

x2 − 4

In exercises 45–52, determine all vertical, horizontal and slant
asymptotes.

45. f (x) =
x + 1

x2 − 3x + 2
46. f (x) =

x + 2

x2 − 2x − 8

47. f (x) =
x2

x2 − 1
48. f (x) =

x3

x2 − x − 2

49. f (x) =
x3

x2 + x + 1
50. f (x) =

2x2

x2 + 4

51. f (x) =
3

cos x − 1
52. f (x) =

cos x − 1

x + 3

In exercises 53 and 54, (a) use graphical and numerical evidence
to conjecture a value for the indicated limit. (b) Find a com-
puter or calculator graph showing a loss-of-significance error.
(c) Rewrite the function to avoid the loss-of-significance error.

53. lim
x→0

1 − cos x

2x2
54. lim

x→∞
x

(√

x2 + 1 − x
)
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Review Exercises

55. You’ve heard the sports cliche “keep your eye on the ball.” In the

diagram, x is the distance from the ball to home plate and θ is an

angle indicating the direction of the player’s gaze. We denote

the speed of the ball by x ′ and the rate of change of the player’s

gaze by θ ′. For a 90-mph baseball pitch, x ′ = −132 ft/s. It

can be shown that θ ′ =
264

4 + x2
radians/second. From this

formula, explain why θ ′ increases as x decreases. Explain the

same result from physical principles. Finally, compute lim
x→0

θ ′,

the maximum rate of change of the player’s gaze. This is not an

infinite limit. However, given that human beings cannot main-

tain focus at a rate of more than about 3 radians/second, how

big is the maximum θ ′? Is it possible for a baseball player to

keep his or her eyes on the ball?

x

Player

Plate
Ball

2
u

EXPLORATORY EXERCISES

1. For f (x) =
2x2 − 2x − 4

x2 − 5x + 6
, do the following. (a) Find all val-

ues of x at which f is not continuous. (b) Determine which

value in (a) is a removable discontinuity. For this value, find

the limit of f as x approaches this value. Sketch a portion of

the graph of f near this x-value showing the behavior of the

function. (c) For the value in part (a) that is not removable,

find the two one-sided infinite limits and sketch the graph of f

near this x-value. (d) Find lim
x→∞

f (x) and lim
x→−∞

f (x) and sketch

the portion of the graph of f corresponding to these values.

(e) Connect the pieces of your graph as simply as possible. If

available, compare your graph to a computer-generated graph.

2. Let f (t) represent the price of an autograph of a famous per-

son at time t (years after 2000). Interpret each of the following

(independently) in financial terms: (a) horizontal asymptote

y = 1000, (b) vertical asymptote at t = 10, (c) lim
t→4−

f (t) = 500

and lim
t→4+

f (t) = 800 and (d) lim
t→8

f (t) = 950.

3. As discussed in this chapter, the limit of a function is the

single number, if one exists, that the function approaches

as x approaches its limiting value. The limit concept can

be generalized to limiting behavior more complicated than

a single number. The study of chaos (more properly called

nonlinear dynamics) makes use of this extended concept.

We will explore chaos theory at various times during our

calculus journey. For now, we look at some examples of

different limiting behaviors. We first iterate the function

f2(x) = x(2 − x). That means we start at some initial x-

value, say x0 = 0.5 and compute x1 = f2(x0), then com-

pute x2 = f2(x1), then x3 = f2(x2) and so on. Use a calcu-

lator or computer to verify that x1 = 0.5(2 − 0.5) = 0.75,

x2 = 0.9375, x3 = 0.99609375, x4 = 0.9999847412 and so

on. You should conclude that the limit of this sequence

of calculations is 1. Now, try iterating f3.2(x) = x(3.2 − x)

starting at x0 = 0.5. Verify that x1 = 1.35, x2 = 2.4975,

x3 = 1.75449375, x4 = 2.536131681 and so on. If you con-

tinue this process, you will see a different type of limiting

behavior: alternation between the values of (approximately)

1.641742431 and 2.558257569. In what way might you com-

pare this limiting behavior to a periodic function? To find

other periodic limits, try the functions f3.48(x) = x(3.48 − x),

f3.555(x), f3.565(x) and f3.569(x). What is the pattern of the size

of the periods? Note that the parameter (subscript) of this fam-

ily of functions is being changed less and less to produce the

higher periods. The limit of these subscripts is also of interest.

We explore this in exercise 5.

4. In exercise 3, we looked at some examples from the family of

functions fc(x) = x(c − x) for various values of the parame-

ter c. In particular, as we gradually increased c from c = 2 to

c = 3.57, we saw the limiting behavior (called the attractor)

change from convergence to a single number (called a one-
cycle) to alternation between two numbers (a two-cycle) to

alternation among four numbers (a four-cycle) to, eventually,

chaos (bounded but aperiodic). The transitions from one type

of limiting behavior to another occur at special values of c

called bifurcation points. By trial and error, find the first bi-

furcation point; that is, find the number b such that fc(x) has

an attracting one-cycle if c < b and an attracting two-cycle if

c > b.

5. In this exercise, we look at another aspect of the mathemat-

ical study of chaos. In the language of exercises 3 and 4,

we start by iterating the function f (x) = x(4 − x) starting at

x0 = 0.5. That is, compute x1 = f (0.5), then x2 = f (x1), then

x3 = f (x2) and so on. Although the sequence of numbers stays

bounded, the numbers never repeat (except by the accident of

round-off errors). This is called mathematical chaos: bounded

but not periodic. The weather is one example of a natural pro-

cess that is thought to be chaotic. In what sense is the weather

(take, for example, the local temperature) bounded but not peri-

odic? Explain why it is inherently impossible to have accurate

long-range weather forecasts.




