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Preface

This book is about typed lambda terms using simple, recursive and intersection types.
In some sense it is a sequel to Barendregt [1984]. That book is about untyped lambda
calculus. Types give the untyped terms more structure: function applications are al-
lowed only in some cases. In this way one can single out untyped terms having special
properties. But there is more to it. The extra structure makes the theory of typed terms
quite different from the untyped ones.

The emphasis of the book is on syntax. Models are introduced only in so far they give
useful information about terms and types or if the theory can be applied to them.

The writing of the book has been different from that about the untyped lambda
calculus. First of all, since many researchers are working on typed lambda calculus,
we were aiming at a moving target. Also there was a wealth of material to work with.
For these reasons the book has been written by several authors. Several long-term open
problems had been solved in the period the book was written, notably the undecidability
of lambda definability in finite models, the undecidability of second order typability, the
decidability of the unique maximal theory extending Bmn-conversion and the fact that
the collection of closed terms of not every simple type is finitely generated, and the
decidability of matching at arbitrary types higher than order 4. The book is not written
as an encyclopedic monograph: many topics are only partially treated. For example
reducibility among types is analyzed only for simple types built up from only one atom.

One of the recurring distinctions made in the book is the difference between the implicit
typing due to Curry versus the explicit typing due to Church. In the latter case the terms
are an enhanced version of the untyped terms, whereas in the Curry theory to some of
the untyped terms a collection of types is being assigned. The book is mainly about
Curry typing, although some chapters treat the equivalent Church variant.

The applications of the theory are either within the theory itself, in the theory of
programming languages, in proof theory, including the technology of fully formalized
proofs used for mechanical verification, or in linguistics. Often the applications are
given in an exercise with hints.

We hope that the book will attract readers and inspire them to pursue the topic.
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The founders of the topic of this book are Alonzo Church (1903-1995), who invented the
lambda calculus (Church [1932], Church [1933]), and Haskell Curry (1900-1982), who
invented ‘notions of functionality’ (Curry [1934]) that later got transformed into types
for the hitherto untyped lambda terms. As a tribute to Church and Curry the next pages
show pictures of them at an early stage of their carreers. Church and Curry have been

honored jointly for their timeless invention by the Association for Computing Machinery
in 1982.



Alonzo Church (1903-1995)
Studying mathematics at Princeton University (1922 or 1924).
Courtesy of Alonzo Church and Mrs. Addison-Church.



Haskell B. Curry (1900-1982)
BA in mathematics at Harvard (1920).
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Introduction

The rise of lambda calculus

Lambda calculus started as a formalism introduced by Church in 1932 intended to
be used as a foundation for mathematics, including the computational aspects. Sup-
ported by his students Kleene and Rosser—who showed that the prototype system was
inconsistent—Church distilled a consistent computational part and ventured in 1936 the
Thesis that exactly the intuitively computable functions can be defined in it. He also
presented a function that could not be captured by the A-calculus. In that same year
Turing introduced another formalism, describing what are now called Turing Machines,
and formulated the related Thesis that exactly the mechanically computable functions
can be captured by these machines. Turing also showed in the same paper that the
question whether a given statement could be proved (from a given set of axioms) using
the rules of any reasonable system of logic is not computable in this mechanical way.
Finally Turing showed that the formalism of A-calculus and Turing machines define the
same class of functions.

Together Church’s Thesis, concerning computability by homo sapiens, and Turing’s
Thesis, concerning computability by mechanical devices, using formalisms that are equally
powerful but having their computational limitations, made a deep impact on the philos-
ophy in the 20th century concerning the power and limitations of the human mind. So
far, cognitive neuropsychology has not been able to refute the combined Church-Turing
Thesis. On the contrary, also this discipline shows the limitation of human capacities.
On the other hand, the analyses of Church and Turing indicate an element of reflection
(universality) in both Lambda Calculus and Turing Machines, that according to their
combined thesis is also present in humans.

Turing Machine computations are relatively easy to implement on electronic devices,
as started to happen soon in the 1940s. The mentioned universality was employed by von
Neumann'! enabling to construct not only ad hoc computers but even a universal one,
capable of performing different tasks depending on a program. This resulted in what is
called now imperative programming, with the language C presently as the most widely
used one for programming in this paradigm. Like with Turing Machines a computation
consists of repeated modifications of some data stored in memory. The essential differ-
ence between a modern computer and a Turing Machine is that the former has random
access memory?.

Functional programming

The computational model of Lambda Calculus, on the other hand, has given rise to func-
tional programming. The input M becomes part of an expression F'M to be evaluated,
where F' represents the intended function to be computed on M. This expression is

Tt was von Neumann who visited Cambridge UK in 1935 and invited Turing to Princeton during
1936-1937, so he probably knew Turing’s work.

2 Another difference is that the memory on a TM is infinite: Turing wanted to be technology indepen-
dent, but was restricting a computation with given input to one using finite memory and time.
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reduced (rewritten) according to some rules (indicating the possible computation steps)
and some strategy (indicating precisely which steps should be taken).

To show the elegance of functional programming, here is a short functional program
generating primes using Eratosthenes sieve (Miranda program by D. Turner):

primes = sieve [2..]
where
sieve (p:x) = p : sieve [n | n<-x ; n mod p > 0]

primes_upto n = [p | p<- primes ; p<n]
while a similar program expressed in an imperative language looks like (Java program
from <rosettacode.org>)

public class Sieve{
public static LinkedList<Integer> sieve(int n){
LinkedList<Integer> primes = new LinkedList<Integer>();
BitSet nonPrimes = new BitSet(n+1);

for (int p = 2; p <= n; p = nonPrimes.nextClearBit(p+1)){
for (int i = p * p; i <= n; i += p)
nonPrimes.set(i);
primes.add(p);
}

return primes;

¥

Of course the algorithm is extremely simple, one of the first ever invented. However, the
gain for more complex algorithms remains, as functional programs do scale up.
The power of functional programming languages derives from several facts.

1. All expressions of a functional programming language have a constant meaning (i.e.
independent of a hidden state). This is called ‘referential transparency’ and makes
it easier to reason about functional programs and to make versions for parallel
computing, important for quality and efficiency.

2. Functions may be arguments of other functions, usually called ‘functionals’ in math-
ematics and higher order functions in programming. There are functions acting on
functionals, etcetera; in this way one obtains functions of arbitrary order. Both in
mathematics and in programming higher order functions are natural and powerful
phenomena. In functional programming this enables the flexible composition of
algorithms.

3. Algorithms can be expressed in a clear goal-directed mathematical way, using var-
ious forms of recursion and flexible data structures. The bookkeeping needed for
the storage of these values is handled by the language compiler instead of the user
of the functional language?.

3In modern functional languages there is a palette of techniques (like overloading, type classes and
generic programming) to make algorithms less dependent of specific data types and hence more reusable.
If desired the user of the functional language can help the compiler to achieve a better allocation of values.
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Types

The formalism as defined by Church is untyped. Also the early functional languages,
of which Lisp (McCarthy, Abrahams, Edwards, Hart, and Levin [1962]) and Scheme
(Abelson, Dybvig, Haynes, Rozas, IV, Friedman, Kohlbecker, Jr., Bartley, Halstead,
[1991]) are best known, are untyped: arbitrary expressions may be applied to each
other. Types first appeared in Principia Mathematica, Whitehead and Russell [1910-
1913]. In Curry [1934] types are introduced and assigned to expressions in ‘combinatory
logic’, a formalism closely related to lambda calculus. In Curry and Feys [1958] this
type assignment mechanism was adapted to A-terms, while in Church [1940] A-terms
were ornamented by fixed types. This resulted in the closely related systems )\g“ and
ACh treated in Part I.

Types are being used in many, if not most programming languages. These are of the
form

bool, nat, real,

and occur in compounds like
nat — bool, array(real),

Using the formalism of types in programming, many errors can be prevented if terms
are required to be typable: arguments and functions should match. For example M of
type A can be an argument only of a function of type A — B. Types act in a way
similar to the use of dimensional analysis in physics. Physical constants and data obtain
a ‘dimension’. Pressure p, for example, is expressed as

g/m?
giving the constant R in the law of Boyle

pV
& =R

a dimension that prevents one from writing an equation like £ = TR?. By contrast
Einstein’s famous equation
E =mc?
is already meaningful from the viewpoint of its dimension.
In most programming languages the formation of function space types is usually not

allowed to be iterated like in
(real — real) — (real — real) for indefinite integrals [ f(z)dx;

(real — real) X real x real — real for definite integrals ff f(z)dz;
([0,1] — real) — (([0,1] — real) — real) — (([0, 1] — real) — real),

where the latter is the type of a map occuring in fuctional analysis, see Lax [2002].
Here we wrote “[0,1] — real” for what should be more accurately the set C[0,1] of
continuous functions on [0, 1].

Because there is the Hindley-Milner algorithm (see Theorem 2C.14 in Chapter 2) that
decides whether an untyped term does have a type and computes the most general type
types found their way to functional programming languages. The first such language
to incoporate the types of the simply typed A-calculus is ML (Milner, Tofte, Harper,
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and McQueen [1997]). An important aspect of typed expressions is that if a term M
is correctly typed by type A, then also during the computation of M the type remains
the same (see Theorem 1B.6, the ‘subject reduction theorem’). This is expressed as a
feature in functional programming: one only needs to check types during compile time.

In functional programming languages, however, types come of age and are allowed in
their full potential by giving a precise notation for the type of data, functions, functionals,
higher order functionals, ... up to arbitrary degree of complexity. Interestingly, the use
of higher order types given in the mathematical examples is modest compared to higher
order types occurring in a natural way in programming situations.

[(a = ([([6], )] = [([6], ©)]) = [([b], )] = [b] = [([b], ©)]) —
(81, o)) = [([b], )]) = [([b], )] = [b] = [([0], )]} =

[a = (d = ([({8], &)] = [([b],O)]) = [([b], )] — [b] = [([0],)]) =
(81, )] = [([b], ) = [([b], )] = [b] = [([0], )] =

[d — ([([], )] = [([8], &)]) = [([b], )] = [b] = [([b], )] =
([(B], )] = [([8], )]) = [([B], )] = [o] = [([0], ©)]

This type (it does not actually occur in this form in the program, but is notated using
memorable names for the concepts being used) is used in a functional program for efficient
parser generators, see Koopman and Plasmeijer [1999]. The type [a] denotes that of lists
of type a and (a,b) denotes the ‘product’ a x b. Product types can be simulated by
simple types, while for list types one can use the recursive types developed in Part II of
this book.

Although in the pure typed A-calculus only a rather restricted class of terms and
types is represented, relatively simple extensions of this formalism have universal com-
putational power. Since the 1970s the following programming languages appeared: ML
(not yet purely functional), Miranda (Thompson [1995], <www.cs.kent.ac.uk/people/
staff/dat/miranda/>) the first purely functional typed programming language, well-
designed, but slowly interpreted; Clean (van Eekelen and Plasmeijer [1993], Plasmeijer
and van Eekelen [2002], <wiki.clean.cs.ru.nl/Clean>) and Haskell (Hutton [2007],
Peyton Jones [2003], <www.haskell.org>); both Clean and Haskell are state of the art
pure functional languages with fast compiler generating fast code). They show that func-
tional programming based on A-calculus can be efficient and apt for industrial software.
Functional programming languages are also being used for the design (Sheeran [2005])
and testing (Koopman and Plasmeijer [2006]) of hardware. In both cases it is the com-
pact mathematical expressivety of the functional languages that makes them fit for the
description of complex functionality.

Semantics of natural languages

Typed A-calculus has also been employed in the semantics of natural languages (Mon-
tague [1973], van Benthem [1995]). An early indication of this possibility can already be
found in Curry and Feys [1958], Section 8S2.
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Certifying proofs

Next to its function for designing, the A-calculus has also been used for verification,
not only for the correctness of IT products, but also of mathematical proofs. The
underlying idea is the following. Ever since Aristotle’s formulation of the axiomatic
method and Frege’s formulation of predicate logic one could write down mathematical
proofs in full detail. Frege wanted to develop mathematics in a fully formalized way, but
unfortunately started from an axiom system that turned out to be inconsistent, as shown
by the Russell paradox. In Principia Mathematica Whitehead and Russell used types to
prevent the paradox. They had the same formalization goal in mind and developed some
elementary arithmetic. Based on this work, Gédel could state and prove his fundamental
incompleteness result. In spite of the intention behind Principia Mathematica, proofs
in the underlying formal system were not fully formalized. Substitution was left as an
informal operation and in fact the way Principia Mathematica treated free and bound
variables was implicit and incomplete. Here starts the role of the A-calculus. As a formal
system dealing with manipulating formulas, being careful with free and bound variables,
it was the missing link towards a full formalization. Now, if an axiomatic mathematical
theory is fully formalized, a computer can verify the correctness of the definitions and
proofs. The reliability of computer verified theories relies on the fact that logic has only
about a dozen rules and their implementation poses relatively little problems. This idea
was pioneered since the late 1960s by N. G. de Bruijn in the proof-checking language
and system Automath (Nederpelt, Geuvers, and de Vrijer [1994], <www.win.tue.nl/
automath>).

The methodology has given rise to proof-assistants. These are computer programs
that help the human user to develop mathematical theories. The initiative comes from
the human who formulates notions, axioms, definitions, proofs and computational tasks.
The computer verifies the well-definedness of the notions, the correctness of the proofs,
and performs the computational tasks. In this way arbitrary mathematical notions can
represented and manipulated on a computer. Many of the mathematical assistants are
based on extensions of typed A-calculus. See Section 6B for more information.

What this book is and is not about

None of the mentioned fascinating applications of lambda calculus with types are treated
in this book. We will study the formalism for its mathematical beauty. In particular
this monograph focuses on mathematical properties of three classes of typing for lambda
terms.

Simple types, constructed freely from type atoms, cause strong normalization, subject
reduction, decidability of typability and inhabitation, undecidability of lambda definabil-
ity. There turn out to be five canonical term models based on closed terms. Powerful
extensions with respectively a discriminator, surjective pairing, operators for primitive
recursion, bar recursion, and a fixed point operator are being studied. Some of these
extensions remain constructive, other ones are utterly non-constructive, and some will
be at the edge between these two realms.

Recursive types allow functions to fit as input for themselves, losing strong normaliza-
tion (restored by allowing only positive recursive types). Typability remains decidable.
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Unexpectedly a-conversion, dealing with a hygienic treatment of free and bound vari-
ables among recursive types has interesting mathematical properties.

Intersection types allow functions to take arguments of different types simultaneously.
Under certain mild conditions this leads to subject conversion, turning the filters of
types of a given term into a lambda model. Classical lattice models can be described
as intersection type theories. Typability and inhabitation now become undecidable, the
latter being equivalent to undecidability of lambda definability for models of simple
types.

A flavour of some of the applications of typed lambda calculus is given: functional
programming (Section 6A), proof-checking (Section 6B), and formal semantics of natural
languages (Section 6C).

What this book could have been about

This book could have been also about dependent types, higher order types and inductive
types, all used in some of the mathematical assistants. Originally we had planned a
second volume to do so. But given the effort needed to write this book, we will probably
not do so. Higher order types are treated in Girard, Lafont, and Taylor [1989], and
Serensen and Urzyczyn [2006]. Research monographs on dependent and inductive types
are lacking. This is an invitation to the community of next generations of researchers.

Some notational conventions

A partial function from a set X to a set Y is a collection of ordered pairs f C X x Y
such that Vz € X, y, v/ €Y. [(z,y) e f & (z, /Y e f = y=1]

The set of partial functions from a set X to a set Y is denoted by X+Y. If f € (X+Y)
and x € X, then f(x) is defined, notation f(x)] or x € dom(f), if for some y one has
(z,y) € f. In that case one writes f(z) = y. On the other hand f(x) is undefined, nota-
tion f(x)?, means that for no y €Y one has (x,y) € f. An expression F in which partial
functions are involved, may be defined or not. If two such expressions are compared,
then, following Kleene [1952], we write E~FEj for

if 1], then E5| and E; = E», and vice versa.

The set of natural numbers is denoted by N. In proofs formula numbers like (1),
(2), etcetera, are used to indicate formulas locally: different proofs may use the same
numbers. The notation £ is used for “equality by definition”. Similarly ‘<2, is used for
the definition of a concept. By contrast ::= stands for the more specific introduction of a
syntactic category defined by the Backus-Naur form. The notation = stands for syntactic
equality (for example to remember the reader that the LHS was defined previously as
the RHS). In a definition we do not write ‘M is closed iff FV(M) = (" but ‘M is closed
if FV(M) = (. The end of a proof is indicated by ‘W’



Part 1

SIMPLE TYPES )%

The systems of simple types considered in Part I are built up from atomic types A using
as only operator the constructor — of forming function spaces. For example, from the
atoms A = {a, f} one can form types a—f, (a—f)—a, a—(a—fF) and so on. Two
choices of the set of atoms that will be made most often are A = {«ag, a1, 9, -}, an
infinite set of type variables giving A%, and A = {0}, consisting of only one atomic type
giving A%, . Particular atomic types that occur in applications are e.g. Bool, Nat, Real.
Even for these simple type systems, the ordering effect is quite powerful.

Requiring terms to have simple types implies that they are strongly normalizing. For
an untyped lambda term one can find the collection of its possible types. Similarly, given
a simple type, one can find the collection of its possible inhabitants (in normal form).
Equality of terms of a certain type can be reduced to equality of terms in a fixed type.
Insights coming from this reducibility provide five canonical term models of A°,. See
next two pages for types and terms involved in this analysis.

The problem of unification

IX:AMX =g, NX
is for complex enough A undecidable. That of pattern matching
X AMX =g, N

will be shown to be decidable for A up to ‘rank 3’. The recent proof by Stirling of gen-
eral decidability of matching is not included. The terms of finite type are extended by
d-functions, functionals for primitive recursion (Godel) and bar recursion (Spector). Ap-
plications of the theory in computing, proof-checking and semantics of natural languages
will be presented.

Other expositions of the simply typed lambda calculus are Church [1941], Lambek and
Scott [1981], Girard, Lafont, and Taylor [1989], Hindley [1997], and Nerode, Odifreddi,
and Platek [In preparation|. Part of the history of the topic, including the untyped
lambda calculus, can be found in Crossley [1975], Rosser [1984], Kamareddine, Laan,
and Nederpelt [2004] and Cardone and Hindley [2009].



Sneak preview of A_, (Chapters 1, 2, 3)

Terms
Term variables V & {c,c/,c",---}

€V = x€A
Terms A M,NeA = (MN)eA

MeAzeV = (MM)eA

Notations for terms
Y, 2, -, F,G, -+« & U ... range over V
M,N,L,--- range over A
Abbreviations
N,---N, £ (- (MNy)---Ny)
Ay M 2 Az (c- Az M) <))

Standard terms: combinators

| £ Xz

K £ Jazyx

S 2 Jayzaz(yz)
Types

Type atoms Ay, = {c,c’,c", -}

T T a€hA = acT
upes {A,Be'ﬂ’ = (A= B)eT

Notations for types

«, 3,7, -+ range over A
A, B,C,--- range over T
Abbreviation

Al = Ay > 5 Ap 2 (A= (Ay — - (Apet — Ay) )

Standard types: each n €N is interpreted as type ne€ T
A

0 = ¢
n+l1 £ n—=0
(n+l)y 2 n—n—0

Assignment of types to terms F M : A (MeA AeT)

Basis: aset I' = {x1: A1, ,z,: Ay}, with z; € V distinct
Type assignment (relative to a basis I') axiomatized by
(x:A)el’ = Thra:A
r-mM:(A-»B),TFN:A = THF(MN):B
LeAFM:B = Tk (Ax.M):(A—B)

Notations for assignment
‘e:AF M : B’ stands for ‘{z:A}+ M : B’
T,z:A’ for TU{x:A} and ‘+ M : A for ‘OF M : A’

Standard assignments: for all A, B,C €T one has

FI : A=A aswAFax: A
FK : A-B—A as v:A,y:BFax: A
FS : (A-B—C)—»(A—B)—»A—C similarly




Canonical term-models built up from constants

The following types A play an important role in Sections 3D, 3E. Their normal inhabitants (i.e.
terms M in normal form such that = M : A) can be enumerated by the following schemes.

Type Inhabitants (all possible 3n~!-normal forms are listed)

15 ATY. T, ATY. Y.

1—0—0 MNra Nfr.fe, \Nfo.f(fx), \fo.f3z, -+ ; general pattern: Afzx.f .

3 AF.F(Az.x), \F.F(Az.F(Ay.z)), - ; A\AF.F(Ax1.F(Aza. -+ - F(Axp.x;) - +)).

1-1-0—-0 Afgz.x,A\fgx.fx, A\fgx.gx,
Afgz.f(g2), \fgz.g(fx), \fgr. [z, Nfgz.g°,
Afga.f(g*x), \fga.f2(g2), M g2.g(f*x), AMfgz.g*(fx), Afgz.f(g(fx)), -
Afgx.wis iz,
where wyy 41 is a ‘word over ¥ = {f, g}’ which is ‘applied’ to z
by interpreting juxtaposition ‘fg’ as function composition ‘f o g = Ax.f(gz)’.
3—0—0 APx.x, ADx. D(Nf.z), \Dx. D(Nf. fa), \Px.D(Af.f(P(Ng.g(fx)))),- -
APz . D(Af1.wip12), NP2 @A frwg sy PN fowyy, £,37))s - 5
)\‘I’QZ.‘I’()\fl.W{fl}q)()\fz.w{fl’fz} s @(Afn.w{fl,...,fn}w) . ))

1—0—0 Abx.x, Abx.brx, \bx.bx(bxx), Abx.b(brx)x, Nox.b(bxx)(bxx), - - - ; Abx.t,
where t is an element of the context-free language generated by the grammar
tree ::= x | (b tree tree).

This follows by considering the inhabitation machine, see Section 1C, for each mentioned type.

1-0-0

[0] (o] (0 )
S\ | i

€T Yy X X

0
2

l A@SAzol lAle Az?
F

wv_—n (o=l ==
l A
X

[
A0 \L £t \L

xT xT

We have juxtaposed the machines for types 1—-0—0 and 1—-1—0—0, as they are similar, and
also those for 3 and 3—0—0. According to the type reducibility theory of Section 3D the types
1—-0—0 and 3 are equivalent and therefore they are presented together in the statement.

From the types 15, 1-+0—0, 1-1—-0—0, 3—0—0, and 1,—0—0 five canonical A-theories and
term-models will be constructed, that are strictly increasing (decreasing). The smallest theory
is the good old simply typed A\Bn-calculus, and the largest theory corresponds to the minimal
model, Definition 3E.46, of the simply typed A-calculus.






CHAPTER 1

THE SIMPLY TYPED LAMBDA CALCULUS

1A. The systems A%

Untyped lambda calculus

Remember the untyped lambda calculus denoted by A, see e.g. B[1984]*.

1A.1. DEFINITION. The set of untyped A-terms A is defined by the following so called
‘simplified syntazr’. This basically means that parentheses are left implicit.

V o= |V
A == V|AVA|AA

FiGURE 1. Untyped lambda terms

This makes V = {¢,c/,",--- }.

1A.2. NOTATION. (i) x,y,2, - ,Z0,Y0, 20, " »&1,Y1, 21, - denote arbitrary variables.
(il) M,N, L,--- denote arbitrary lambda terms.
(iii) MNy--- Ny 2 (.(MNy)--- Ny), association to the left.
(iv) Az1-- 20 M = (Az1(..(Azn(M))..)), association to the right.

1A.3. DEFINITION. Let M € A.

(i) The set of free variables of M, notation FV (M), is defined as follows.

M| FV(M) |
PQ |FV(P)UFV(Q)
Az.P | FV(P) —{z}

The variables in M that are not free are called bound variables.
(ii) If FV(M) = 0, then we say that M is closed or that it is a combinator.

N E{MeA| M is closed}.

Well known combinators are | 2 A\z.z, K £ Azy.y, S £ \ryz.22(yz), Q= Az.2zz)Az.2z),
and Y £ \f.(\z.f(zx))(Az.f(zx)). Officially S = (Ae(Ad (A" ((cc”)(¢¢"))))), according
to Definition 1A.1, so we see that the effort learning the notation 1A.2 pays.

“This is an abbreviation for the reference Barendregt [1984].

5
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1A.4. DEFINITION. On A the following equational theory ABn is defined by the usual
equality axiom and rules (reflexivity, symmetry, transitivity, congruence), including con-
gruence with respect to abstraction:

M=N = \e.M = )\z.N,

and the following special axiom(schemes)

(Az.M)N = M]lz:= N] (B-rule)
.Mz = M, if t¢FV(M) (n-rule)

FIGURE 2. The theory A(n

As is known this theory can be analyzed by a notion of reduction.
1A.5. DEFINITION. On A we define the following notions of 3-reduction and n-reduction

(Az.M)N — Mlz: = N] (B8)
\e. Mz — M, ifz¢FV(M) (n)

FIGURE 3. Bn-contraction rules

As usual, see B[1984], these notions of reduction generate the corresponding reduction
relations — g, -3, =5, =, —gn and —gy. Also there are the corresponding conversion
relations =g, =, and =g,. Terms in A will often be considered modulo =g or =g,,.
1A.6. NOTATION. If we write M = N, then we mean M =g,, N by default, the exten-
sional version of equality. This by contrast with B[1984], where the default was =g3.
1A.7. REMARK. Like in B[1984], Convention 2.1.12. we will not be concerned with
a-conversion, renaming bound variables in order to avoid confusion between free and
bound occurrences of variables. So we write Ax.x = Ay.y. We do this by officially
working on the a-equivalence classes; when dealing with a concrete term as representative
of such a class the bound variables will be chosen maximally fresh: different from the
free variables and from each other. See, however, Section 7D, in which we introduce
a-conversion on recursive types and show how it can be avoided in a way that is more
effective than for terms.

1A.8. PROPOSITION. For all M, N € A one has
l_ABnM:N = M:ﬂnN-
PROOF. See B[1984], Proposition 3.3.2. m

One reason why the analysis in terms of the notion of reduction 87 is useful is that
the following holds.

1A.9. PROPOSITION (Church-Rosser theorem for A3 and ABn). For the notions of re-
duction —g and — gy one has the following.

(i) Let M,Ni,Na€A. Then
M —B(n) N & M —B(n) No = dZe€ AN, —B(n) Z & Ny —B(n) Z.

One also says that the reduction relations — g, for R€ {83, 8n} are confluent.
(ii) Let M,N € A. Then
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PROOF. See Theorems 3.2.8 and 3.3.9 in B[1984]. m
1A.10. DEFINITION. (i) Let T be a set of equations between A-terms. Write

TrFxgn M =N, or simply ' M = N

if M = N is provable in ABn plus the additional equations in T" added as axioms.

(ii) T is called inconsistent if T proves every equation, otherwise consistent.

(iii) The equation P = @, with P,Q € A, is called inconsistent, notation P#Q, if
{P = @} is inconsistent. Otherwise P = @ is consistent.

The set T = (), i.e. the ABn-calculus itself, is consistent, as follows from the Church-
Rosser theorem. Examples of inconsistent equations: K#Il and I#S. On the other hand
Q2 = | is consistent.

Simple types

Types in this part, also called simple types, are syntactic objects built from atomic types
using the operator —. In order to classify untyped lambda terms, such types will be
assigned to a subset of these terms. The main idea is that if M gets type A—B and N
gets type A, then the application M N is ‘legal’ (as M is considered as a function from
terms of type A to those of type B) and gets type B. In this way types help determining
which terms fit together.

1A.11. DEFINITION. (i) Let A be a non-empty set. An element of A is called a type
atom. The set of simple types over A, notation T = T, is inductively defined as
follows.

acA = acT type atoms;
A, BeT = (A=B)eT function space types.

We assume that no relations like a—f = + hold between type atoms: T* is freely
generated. Often one finds T = T* given by a simplified syntax.

T ou= A|T-T|
FIGURE 4. Simple types
(ii) Let Ag = {0}. Then we write T? £ T4o,
(iif) Let Ao = {c,c’,c”,---}. Then we write T £ T

We usually take 0 = c¢. Then T C T. If we write simply T, then this refers to T
for an unspecified A.

1A.12. NoTATION. (i) If Ay, -+, A, €T, then

That is, we use association to the right.
(i) «a, B,7, -+, a0, Bo,Y0, -, 3,7, - denote arbitrary elements of A.
(iii) A, B,C,--- denote arbitrary elements of .
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1A.13. DEFINITION (Type substitution). Let A, C € T* and o€ A. The result of substi-
tuting C for the occurrences of o in A, notation Aa: = C, is defined as follows.

alar =0 & C;
Blar=C] £ B, if o # 3
(A= B)la:=C] £ (Al =0C)) = (Bla: =C))

Assigning simple types
1A.14. DEFINITION (ASY). (i) A (type assignment) statement is of the form
M: A,

with M € A and A€ T. This statement is pronounced as ‘M in A’. The type A is the
predicate and the term M is the subject of the statement.

(ii) A declaration is a statement with as subject a term variable.

(iii) A basis is a set of declarations with distinct variables as subjects.

(iv) A statement M:A is derivable from a basis I', notation

IS M:A

(or T'kx, M : A, or even I' = M:A if there is little danger of confusion) if I' = M:A can
be produced by the following rules.

(r:A)el’ = Thkax:A
I-M:(A5B), TFN:A = TF (MN):B;
' :AF-M:B = T'F(A\.M):(A— B).

In the last rule I', x: A is required to be a basis.
These rules are usually written as follows.

(axiom) 'kFax: A, if (x:A) €Ty

'-M:(A—-B) TEFN:A

(—-elimination) ;
T+ (MN): B

I'z:A-M: B
(—-introduction) :
' (Az.M):(A— B)

FIGURE 5. The system AS" & la Curry

This is the modification to the lambda calculus of the system in Curry [1934], as devel-
oped in Curry et al. [1958].
1A.15. DEFINITION. Let I' = {z1:A41, -+ ,2p:Ap}. Then

(i) dom(T') = {z1,--- ,z,}, the domain of T.

(ii) z1: A1, -+ 2 Ap Fas M @ A denotes T' Fx—, M : A.
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(iii) In particular Fx_, M : A stands for O Fx_, M : A.
(iv) 1, ,xn:Abx M : B stands for x1:A, -,z A M : B.

1A.16. EXAMPLE. (i) kx| : A=A,
Fas K: A—-B—A;
Fas S 1 (A—B—C)—(A—B)—A—C.
(ii) Also one has A Fxaxy lz A
A y:B Fa, Kxy : A;
z:(A—=B—C),y:(A—=B),z:A Fx, Szyz : C.

(iii) The terms Y, do not have a type. This is obvious after some trying. A system-
atic reason is that all typable terms have a nf, as we will see later, but these two do not
have a nf.

(iv) The term w £ Az.zz is in nf but does not have a type either.

NOTATION. Another way of writing these rules is sometimes found in the literature.

Introduction rule A

M:B
Az.M : (A—B)

M:(A—-B) N:A
Elimination rule

MN : B

ASH alternative version

In this version the basis is considered as implicit and is not notated. The notation

r: A

M:B

denotes that M : B can be derived from x:A and the ‘axioms’ in the basis. Striking through z:A means
that for the conclusion Az.M : A— B the assumption z:A is no longer needed; it is discharged.

1A.17. EXAMPLE. (i) F (Azy.z) : (A— B — A) forall A,BeT.
We will use the notation of version 1 of A%, for a derivation of this statement.

v Ajy:BFx: A
z:AF (A\y.z) : B—A

F (Azdy.x) : A-B—A

Note that Axy.x = AzAy.x by definition.
(ii) A natural deduction derivation (for the alternative version of the system) of the same type assign-
ment is the following.

A2 B 1

T:A
1

(Ay.x) : (B— A)
2

(Azy.z) : (A— B — A)
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The indices 1 and 2 are bookkeeping devices that indicate at which application of a rule a particular
assumption is being discharged.

(iii) A more explicit way of dealing with cancellations of statements is the ‘flag-notation’ used by
Fitch (1952) and in the languages Automath of de Bruijn (1980). In this notation the above derivation
becomes as follows.

T:A

y:B

T:A

(Ay.z) : (B — A)

(Azy.z): (A— B — A)

As one sees, the bookkeeping of cancellations is very explicit; on the other hand it is less obvious how a
statement is derived from previous statements in case applications are used.
(iv) Similarly one can show for all AT

F(Az.z): (A— A).
(v) An example with a non-empty basis is y:A F (Az.x)y : A.
In the rest of this chapter and in fact in the rest of this book we usually will introduce systems of

typed lambda calculi in the style of the first variant of A,.
1A.18. DEFINITION. Let T’ be a basis and A€ T = T*. Then write

(i) AL(A) 2 {MeA|Tky M: A}
(ii) AL 2 Uper AL(A).
(i) A-(4) 2 UpAL(A).

) Ay & Uper A-(A)

)

(v) Emphasizing the dependency on A we write A% (A) or A%T(A), etcetera.
1A.19. DEFINITION. Let I' be a basis, A€ T and M € A. Then

(i) If M e A (A), then we say that
M has type A or A is inhabited by M.
(il) If M e A, then M is called typable.
(ii) If M € AL (A), then M has type A relative to T
(iv) If M € AL, then M is called typable relative to T

(v) If AL (A) # 0, then A is inhabited relative to T.
1A.20. EXAMPLE. We have

(iv

—

K e A% (A—»B—A);
Kz e Al (B A).
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1A.21. DEFINITION. Let AcT.
(i) The depth of A, notation dpt(A), is defined as follows.
dpt(a) 2 1;
dpt(A—B) £ max{dpt(A),dpt(B)} + 1.
(ii) The rank of A, notation rk(A), is defined as follows.
rk(a) £ 0;
rk(A—B) = max{rk(A) + 1,vk(B)}.
(iii) The order of A, notation ord(A), is defined as follows.
ord(a) = 1;
ord(A—B) £ max{ord(A) + 1,ord(B)}.
(iv) The depth of a basis I is
dpt(T') = max{dpt(4;) | (z;:4;) € T'}.

Similarly we define rk(I") and ord(I'). Note that ord(A) =rk(A) + 1.

The notion of ‘order’ comes from logic, where dealing with elements of type 0 is done in
‘first order’ predicate logic. The reason is that in first-order logic one deals with domains
and their elements. In second order logic one deals with functions between first-order
objects. In this terminology 0-th order logic can be identified with propositional logic.
The notion of ‘rank’ comes from computer science.

1A.22. DEFINITION. For A € T we define A*— B by recursion on k:
A'-B 2 B;
Al B2 A AFSB.

Note that rk(A¥— B) = rk(A—B), for all k > 0.

Several properties can be proved by induction on the depth of a type. This holds for
example for Lemma 1A.25(i).

The asymmetry in the definition of rank is intended because the meaning of a type
like (0—0)—0 is more complex than that of 0—0—0, as can be seen by looking to
the inhabitants of these types: functionals with functions as arguments versus binary
functions. Some authors use the name type level instead of ‘rank’.

The minimal and maximal systems A", and A%

The collection A of type variables serves as set of base types from which other types are
constructed. We have Ay = {0} with just one type atom and A, = {ag,a1,09, -}
with infinitely many of them. These two sets of atoms and their resulting type systems
play a major role in this Part I of the book.
1A.23. DEFINITION. We define the following systems of type assignment.

(i) A% £ Ao,

(i) A% £ AAe,
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Focusing on Ag or Ay, we write A% (A) £ A%0(A) or AX(A) 2 AP (A) respectively.
Many of the interesting features of the ‘larger’ A% are already present in the minimal
version AY, .

1A.24. DEFINITION. (i) The following types of T? C T* are often used.
0£c, 1200, 22 (0—0)—0, ---
In general
0Zcandk+12 k0.
Note that rk(n) = n. That overloading of n as element of N and as type will usually
disambiguated by stating ‘the type n’ for the latter case.
(ii) Define ny by cases on n.
0r = 0;
(n+ 1), £ nF—0.

For example

1o =0;

19 = 0—0—0;

23 =1—=1—-1-0;

12520 = (0—0)—(0—0)—((0—0)—0)—0.

Notice that rk(ny) = rk(n), for & > 0.

The notation ng is used only for n € N. In the following lemma the notation A; --- A,
with subscripts denotes as usual a sequence of types.

1A.25. LEMMA. (i) Every type A of A\ is of the form
A=A1—-Ay— - = A,—a.
(i) Bvery type A of A%, is of the form
A=A1—-Ay— - —A,—0.
(iii) rk(A1—As— - —As—a) = max{rk(4;) +1|1<i<a}.
PRrROOF. (i) By induction on the structure (depth) of A. If A = «, then this holds for
a=0. If A= B—(C, then by the induction hypothesis one has
C=C—---—C.—v. Hence A = B—>C1— -+ =C—.
(ii) Similar to (i).
(iii) By induction on a. m
1A.26. NOTATION. Let A€ T* and suppose A = A;—Ay— -+ —A,—a. Then the 4;
are called the components of A. We write

arity(4) = a,
Al = A, for 1 <i<a;
target(A) = a.

Iterated components are denoted as follows

A(i, j) = A1) (5)-



1A. THE SYSTEMS A4, 13

1A.27. REMARK. We usually work with )\‘i for an unspecified A, but will be more
specific in some cases.

Different versions of \*,

We will introduce several variants of A%, .

The Curry version of A%,

1A.28. DEFINITION. The system A% that was introduced in Definition 1A.14 assigns
types to untyped lambda terms. To be explicit it will be referred to as the Curry version
and be denoted by A% or )\gu, as the set A often does not need to be specified.

The Curry version of )\ﬁ is called #mplicitly typed because an expression like
Az.xK

has a type, but it requires work to find it. In §2.2 we will see that this work is feasible. In
systems more complex than A%, finding types in the implicit version is more complicated
and may even not be computable. This will be the case with second and higher order
types, like A2 (system F'), see Girard, Lafont, and Taylor [1989], Barendregt [1992] or
Serensen and Urzyczyn [2006] for a description of that system and Wells [1999] for the
undecidability.

The Church version ASP of A%,

The first variant of AS" is the Church version of A%, denoted by A%CM or ACP. In
this theory the types are assigned to embellished terms in which the variables (free and
bound) come with types attached. For example the Curry style type assignments

e (Amr) s A—A (1cu)
y:A F{Y (Az.ay) : (A>B)—B (2cu)
now become
(AzA.z4) e AP (A—A) (1cn)
(ApA7B 1A= ByA)y e ACh((A—B)—B) (2cn)

1A.29. DEFINITION. Let A be a set of type atoms. The Church version of )\ﬁ, notation
AACH or AChif A is not emphasized, is defined as follows. The system has the same set
of types T4 as A4,C1,

(i) The set of term variables is different: each such variable is coupled with a unique
type. This in such a way that every type has infinitely many variables coupled to it. So
we take

VT2 (4@ | g eV},
where t : V—T* is a fixed map such that t~1(A) is infinite for all A€ T4, So we have
{4, y4,24,---} C VT is infinite for all A e T4,
24, 28eVT = A=B, forall A, Be T,
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(ii) The set of terms of type A, notation ACM(A), is defined as follows.

4 e ASh(4);
MeAM(A—B),Ne A*(A) = (MN)eAM(B);
MeAh(B) = (\A.M)eASh(A-B).
FIGURE 6. The system )\gh of typed terms d la Church

(iii) The set of terms of AS", notation AP, is defined as

A A ) A4,
AeT

For example
y? 742 e ASMA);
Azt yP=4 e ACh(A-B—A);
Atz € Ah (A= A).

1A.30. DEFINITION. On A% we define the following notions of reduction.

(A\zA.M)N — M[z4: = N] (B8)
A MzA — M, if 24 ¢ FV(M) (n)

: Ch
FIGURE 7. Bn-contraction rules for A%,

It will be shown in Proposition 1B.10 that AS}(A) is closed under Bn-reduction; i.e.
this reduction preserves the type of a typed term.

As usual, see B[1984], these notions of reduction generate the corresponding reduction
relations. Also there are the corresponding conversion relations =g, =, and =g,,. Terms

in A" will often be considered modulo =g or =g,. The notation M = N, means
M =g, N by default.

1A.31. DEFINITION (Type substitution). For M € AS?, a € A, and B € T we define the
result of substituting B for a in M, notation M|« := B|, inductively as follows.

M M][a := B] |

CCA xA[a::B]

PQ | (Pla:= B])(Q[a := B])
AzA. P | \zAl*=Bl Pl := B]

1A.32. NOTATION. A term like (Af'z%. f1(f'2%)) € AP (1—-0—0) will also be written as
Afral.f(fx)

just indicating the types of the bound variables. This notation is analogous to the one
in the de Bruijn version of A%, that follows. Sometimes we will even write A\fz.f(fz).
We will come back to this notational issue in section 1B.
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The de Bruijn version Xi]? of A&

There is the following disadvantage about the Church systems. Consider
|2 Az 2,

In the next volume we will consider dependent types coming from the Automath language
family, see Nederpelt, Geuvers, and de Vrijer [1994], designed for formalizing arguments
and proof-checking®. These are types that depend on a term variable (ranging over
another type). An intuitive example is A™, where n is a variable ranging over natural
numbers. A more formal example is Pz, where x : A and P : A—T. In this way types
may contain redexes and we may have the following reduction

| = \ata?) =54 Az .z,
in case A —g A’, by reducing only the first A to A’. The question now is whether AzA
binds the 2. If we write | as
| £ \z:A.x,
then this problem disappears
Ae:Ax — oAl .

As the second occurrence of z is implicitly typed with the same type as the first, the
intended meaning is correct. In the following system A48 this idea is formalized.

1A.33. DEFINITION. The second variant of AC" is the de Bruijn version of A%, denoted
by A48 or A4B. Now only bound variables get ornamented with types, but only at the
binding stage. The examples (1cy), (2cy) now become

y:A l—gl\]i (Az:(A—B).xy) : (A—B)—B (24B)

1A.34. DEFINITION. The system AP starts with a collection of pseudo-terms, notation
A9B | defined by the following simplified syntax.

[ A9 = V[AdB AdB |\ AR

For example Az:a.x and (A\x:a.z)(A\y:B.y) are pseudo-terms. As we will see, the first one
is a legal, i.e. actually typable, term in Xﬁ;dB, whereas the second one is not.

1A.35. DEFINITION. (i) A basis I' consists of a set of declarations x: A with distinct term
variables x and types A € T*. This is exactly the same as for A%,

(ii) The system of type assignment obtaining statements I' = M : A with T" a basis,
M a pseudoterm and A a type, is defined as follows.

®The proof-assistant Coq, see the URL <coq.inria.fr> and Bertot and Castéran [2004], is a modern
version of Automath in which one uses for formal proofs typed lambda terms in the de Bruijn style.
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(axiom) F-x: A, if (x:A) €T

'-M:(A—-B) THFN:A
L'+ (MN):B ’

(—-elimination)

INe:A-M:B
(—-introduction) .
' (Az:A.M): (A— B)

FiGURE 8. The system Xf’ a la de Bruijn

Provability in AP is denoted by |—§E. Thus the legal terms of A are defined by

making a selection from the context-free language A‘i]?. That Az:a.x is legal follows
from z:cv l—gl\li x : a using the —-introduction rule. That (Az:a.x)(Ay:B.y) is not legal
follows from Proposition 1B.12. These legal terms do not form a context-free language,
do exercise 1E.7. For closed terms the Church and the de Bruijn notation are isomorphic.

1B. First properties and comparisons

In this section we will present simple properties of the systems )\ﬁ. Deeper properties,
like normalization of typable terms, will be considered in Sections 2A, 2B.

Properties of A"

We start with properties of the system )\gu.

1B.1. PROPOSITION (Weakening lemma for AS").
Suppose '+ M : A and T” is a basis with T CT'. Then "+ M : A.

PrOOF. By induction on the derivation of ' M : A. m
1B.2. LEMMA (Free variable lemma for A"). For a set X' of variables write
X ={xAcl|zeX}.
(i) Suppose I' =M : A. Then FV (M) C dom(I").
(ii)) IfTFM: A, thenT [FV(M)F M : A.
PRrOOF. (i), (ii) By induction on the generation of ' - M : A. m

The following result is related to the fact that the system A_, is ‘syntax directed’, i.e.
statements I' - M : A have a unique proof.

1B.3. PROPOSITION (Inversion Lemma for AS).

(i) 'cz:A = (2:A)el.
(i) TFMN:A = 3BeT[+M:BsA&DFN:B.
(ii) TFAXM:A = 3IB,CeT[A=B—-C&T,z:B+M:C].

PRrROOF. (i) SupposeI' F z : Aholdsin A_,. The last rule in a derivation of this statement
cannot be an application or an abstraction, since x is not of the right form. Therefore
it must be an axiom, i.e. (z:A4) €.

(ii), (iii) The other two implications are proved similarly. m
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1B.4. COROLLARY. Let I’ I—gi xNy--- Ny : B. Then there exist unique Ay, -- A, €T
such that
DY Nt Ay, 1<i<k, and 2:(Ay — -+~ — Ay — B) €T,

PRrOOF. By applying k-times (ii) and then (i) of the proposition. m
1B.5. PROPOSITION (Substitution lemma for AS").

(i) Tye:AFM:B&T+FN:A = I't M[z: = N]: B.

(i) TFM:A = T'la:=B]FM: Ala:= BJ.
PrOOF. (i) By induction on the derivation of I', z: A+ M : B. Write
P* = Plz: = NJ.

Case 1. I',x:AF M : B is an axiom, hence M =y and (y:B)eT' U {z:A}.
Subcase 1.1. (y:B)€Tl'. Theny Zz and '+ M* = y[x:N] =y : B.

Subcase 1.2. y:B=x:A. Theny=xz and B= A, hence 'F M*=N:A=B.

Case 2. T'yxz:A + M : B follows from I''z:A - F : C—B, I''z:A + G : C and
FG = M. By the induction hypothesis one has I' - F* : C—B and I' - G* : C. Hence
'+ (FG)* = F*G* : B.

Case 3. I',xz:A+ M : B follows from I',z:A,y:D+ G : E, B= D—F and \y.G = M.
By the induction hypothesis ', y:D = G* : E, hence I' - (\y.G)* = M\y.G* : D—FE = B.

(ii) Similarly. m
1B.6. PROPOSITION (Subject reduction property for ASY).
'EM:A& M—gyN = I'-N: A

PRrROOF. It suffices to show this for a one-step Bn-reduction, denoted by —. Suppose
I'FM:Aand M —gy, N in order to show that I' = NV : A. We do this by induction on
the derivation of ' - M : A.

Case 1. I' - M : A is an axiom. Then M is a variable, contradicting M — N. Hence
this case cannot occur.

Case 2. ' M : AisT'F FP : A and is a direct consequence of I' - F' : B—A and
'k P: B. Since FP= M — N we can have three subcases.

Subcase 2.1. N = F'P with F — F’.

Subcase 2.2. N = FP’ with P — P'.
In these two subcases it follows that I' = N : A, by using twice the TH.

Subcase 2.3. F' = Az.G and N = G[z: = P]. Since

'kX.G:B—-A&T'FP:B,
it follows by the inversion Lemma 1B.3 for A_, that
Nz-G:A&T+P:B.

Therefore by the substitution Lemma 1B.5 for A_, it follows that
'FGz:=P]: Ajie. ' N: A

Case 3. 'F M : Ais '+ A\z.P: B—C and follows from I';x - P : C.

Subcase 3.1. N = A\z.P’ with P — P’. One has I',z:B + P’ : C by the induction
hypothesis, hence I' - (Az.P’) : (B—C),ie.T'F N : A.

Subcase 3.2. P = Nz and x ¢ FV(N). Now I';xz:B F Nz : C follows by Lemma
1B.3(ii) from I'yz:B + N : (B'=C) and I',x:B + = : B’, for some B’. Then B = B’, by
Lemma 1B.3(i), hence by Lemma 1B.2(ii) we have ' - N : (B—(C) = A. m
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The following result also holds for AS? and AE, see Proposition 1B.28 and Exercise
2E.4.

1B.7. COROLLARY (Church-Rosser theorem for ASY). On typable terms of AC" the Church-
Rosser theorem holds for the notions of reduction —g and —» gy,.

(i) Let M, Ny, No€ AL, (A). Then

r
M —B(n) N & M —B(n) Ny = E|Z€A_>(A)N1 —B(n) 7 & Ny —B(n) Z.
(ii) Let M,N € AL, (A). Then
r
M =8(n) N = HZEAH(A).M —B(n) Z &N —B(n) Z.

Proor. By the Church-Rosser theorems for —»3 and —» g, on untyped terms, Theorem
1A.9, and Proposition 1B.6. m

: h
Properties of A%}

Not all the properties of AS" are meaningful for AZ". Those that are have to be refor-
mulated slightly.

1B.8. PROPOSITION (Inversion Lemma for ACP).
(i) PeAh(4) = B=A
(ii) (MN)eAh(A) = 3IBeT[MecASM(B—A) & NeAh(B).
(i) (AzB.M)eACM(A) = 3ICeT.[A=(B=C)& McA° ).
PROOF. As before. m
Substitution of a term N € AC}(B) for a typed variable 27 is defined as usual. We show
that the resulting term keeps its type.
1B.9. PROPOSITION (Substitution lemma for AS"). Let A, B€T. Then
(1) M eACr(A), NeAN(B) = (M[zP := N])e A (A).
(ii) M € A°M(A) = M[a:= Bl € AP (A[a := B]).
PRrROOF. (i), (ii) By induction on the structure of M. m
1B.10. PROPOSITION (Closure under reduction for ASM). Let A€ T. Then
(i) MeACH(A) & M =5 N = NeASh(A).
(i) M eASh(A) & M —, N = NeACh(A).
(iii) M € ACM(A) and M —g, N. Then N € ACl(A).
ProoF. (i) Suppose M = (A\zP.P)Q € A°"(A). Then by Proposition 1B.8(ii) one has
AP Pe AP (B'—A) and Q € ASM(B’). Then B = B’, and P € A®"(A), by Proposition
1B.8(iii). Therefore N = P[z” := Q] € AS"(A), by Proposition 1B.9.
(ii) Suppose M = (AzB.NzB) e Ah(A4). Then A = B—C and NP c ASM(C), by
roposition .8(111). But then N € — y Proposition .8(1) and (11).
P ition 1B.8(iii). But then N € A*(B—C) by P ition 1B.8(i) and (ii
(iii) By induction on the relation — g, using (i), (ii). m
The Church-Rosser theorem holds for Bn-reduction on Agh. The proof is postponed
until Proposition 1B.28.

PROPOSITION [Church-Rosser theorem for A°"] On typable terms of A" the CR prop-
erty holds for the notions of reduction —g and —g,,.
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(i) Let M, Ny, Ny € A*(A). Then
M =g N1 & M =gy No = 3Z€ A (A).Ny » g Z & Na — () Z.
(ii) Let M, N € A*(A). Then
M =gy N = 3Z€ AT (A).M ~guy Z & N —ga) Z.

The following property called uniqueness of types does not hold for Ag“. It is instruc-
tive to find out where the proof breaks down for that system.

1B.11. ProposITION (Unicity of types for A°P). Let A, B€ . Then
McACh(A) & MeAM(B) = A=B.

PROOF. By induction on the structure of M, using the inversion lemma 1B.8. m

: dB
Properties of A%

We mention the first properties of A42, the proofs being similar to those for Agh.

1B.12. PROPOSITION (Inversion Lemma for A4P).

(i) 'kFz:A = (z:A)el.
(ii) 'MN:A = 3BeT[I'FM:B—-A&T'FN:B]
(ii) TFAX=B.M:A = 3JCeT[A=B->C&I',e:B+-M:C].

1B.13. PROPOSITION (Substitution lemma for A9B).
(i) Tye:AFM:B&THFN:A = I't M[z: = N]: B.
(i) TFM:A = I'la:=B]F M : Ala:= BJ.

1B.14. PROPOSITION (Subject reduction property for AB).

'EM:A& M—gyN = I' N : A

1B.15. PROPOSITION (Church-Rosser theorem for A4B). X4 satisfies CR.
(i) Let M, N1, No€ ABT(A). Then

M —B(n) N &M —B(n) Ny = HZEAiB’F(A).Nl —B(n) Z & No —B(n) Z.
(ii) Let M, N € A9BT(A). Then
M =gy N = 3Z€APT(A).M g4y Z & N g, Z.

Proor. Do Exercise 2E.4. m
It is instructive to see why the following result fails if the two contexts are different.
1B.16. PROPOSITION (Unicity of types for A48). Let A, B€T. Then

'-mM:A&«r'=-M:B = A=B.
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Equivalence of the systems

It may seem a bit exaggerated to have three versions of the simply typed lambda calculus:
AC1 XCh and A9B. But this is convenient.

The Curry version inspired some implicitly typed programming languages like ML,
Miranda, Haskell and Clean. Types are being derived. Since implicit typing makes
programming easier, we want to consider this system.

The use of explicit typing becomes essential for extensions of )\g‘l. For example in the
system A2, also called system F', with second order (polymorphic) types, type checking
is not decidable, see Wells [1999], and hence one needs the explicit versions. The two
explicitly typed systems )\gh and A8 are basically isomorphic as shown above. These
systems have a very canonical semantics if the version )\(_J,h is used.

We want two versions because the version A4 can be extended more naturally to more
powerful type systems in which there is a notion of reduction on the types (those with
‘dependent types’ and those with higher order types, see e.g. Barendregt [1992]) gener-
ated simultaneously. Also there are important extensions in which there is a reduction
relation on types, e.g. in the system Aw with higher order types. The classical version
of A_, gives problems. For example, if A — B, does one have that \z?.z4 — AzA.2B?
Moreover, is the 8 bound by the Az4? By denoting Az?.z* as \z:A.z, as is done in
ACh these problems do not arise. The possibility that types reduce is so important, that
for explicitly typed extensions of A_, one needs to use the dB-versions.

The situation is not so bad as it may seem, since the three systems and their differences
are easy to memorize. Just look at the following examples.

ooy e ACHEO((0-0)=0)  (Curry);
Az:(0—0).2y € AP ((0-0)=0)  (de Bruijn);
Az070 20700 e ACh((0—0)—0) (Church).

Hence for good reasons one finds all the three versions of A_, in the literature.

In this Part I of the book we are interested in untyped lambda terms that can be
typed using simple types. We will see that up to substitution this typing is unique. For
example

Afz.f(fz)

can have as type (0—0)—0—0, but also (A—A)—A— A for any type A. Also there is a
simple algorithm to find all possible types for an untyped lambda term, see Section 2C.

We are interested in typable terms M, among the untyped lambda terms A, using
Curry typing. Since we are at the same time also interested in the types of the subterms
of M, the Church typing is a convenient notation. Moreover, this information is almost
uniquely determined once the type A of M is known or required. By this we mean that
the Church typing is uniquely determined by A for M not containing a K-redex (of the
form (Ax.M)N with x ¢ FV(M)). If M does contain a K-redex, then the type of the
B-nf M™ of M is still uniquely determined by A. For example the Church typing of
M = Kly of type a—a is (Ax®7yB 2279)(Az*.2*)y?. The type B is not determined.
But for the @-nf of M, the term |, the Church typing can only be I, = Az*.z%. See
Exercise 2E.3.
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If a type is not explicitly given, then possible types for M can be obtained schematically
from groundtypes. By this we mean that e.g. the term | = Az.x has a Church version
Az®.x® and type a—«, where one can substitute any A € T2 for . We will study this
in greater detail in Section 2C.

Comparing )\gu and )\gh

There are canonical translations between AS! and AS".

1B.17. DEFINITION. There is a forgetful map |- | : A — A defined as follows:
2] £ ;
[MN| £ |MI[|NJ;

Az:A.M| 2 \z.| M.

The map | - | just erases all type ornamentations of a term in A", The following result
states that terms in the Church version ‘project’ to legal terms in the Curry version of
A2 . Conversely, legal terms in A" can be ‘lifted’ to terms in ACP.

1B.18. DEFINITION. Let M € ACP. Then we write
Ty 2 {z:A| 2 e FV(M)}.
1B.19. PROPOSITION. (i) Let M € ACP. Then
MeASP(A) = Ty Y (M| : A,
(ii) Let M € A. Then
I M A < 3IM e A%MA). M| = M.

ProOOF. (i) By induction on the generation of A“!. Since variables have a unique type
I'ar is well-defined and I'p UT'g = I'pg.

(ii) (=) By induction on the proof of I' - M : A with the induction loading that
Iy =T. (<) By (i). m
Notice that the converse of Proposition 1B.19(i) is not true: one has

U aeta?) = (\ra) - (A—B)—(A—B),
but (A\z4.24) ¢ A°"(A—=B)—(A—B)).
1B.20. COROLLARY. In particular, for a type A€ T one has
A is inhabited in AS* & A is inhabited in AP,

PrOOF. Immediate. m

For normal terms one can do better than Proposition 1B.19. First a structural result.
1B.21. PROPOSITION. Let M € A be in nf. Then M = Axi---xn.yMy--- My, with
n,m > 0 and the My,--- , My, again in nf.
PrOOF. By induction on the structure of M. See Barendregt [1984], Corollary 8.3.8 for
some details if necessary. m

In order to prove results about the set NF of B-nfs, it is useful to introduce the subset
vNF of 3-nfs not starting with a A, but with a free variable. These two sets can be
defined by a simultaneous recursion known from context-free languages.
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1B.22. DEFINITION. The sets vNF and NF of A are defined by the following grammar.

vNF := x| vNF NF
NF := vNF | &x.NF

1B.23. PROPOSITION. For M € A one has

M is in B-nf < M eNF.

ProOOF. By simultaneous induction it follows easily that

MevNF = M =azN & M is in B-nf;

MeNF = M isin B-nf.

Conversely, for M in B-nf by Proposition 1B.21 one has M = AZ.yNp - -+ N, with the
N all in B-nf. It follows by induction on the structure of such M that M € NF. m
1B.24. PROPOSITION. Assume that M € A is in B-nf. Then I’ l—gi M : A implies that
there is a unique M4 € AP (A) such that |MAT| = M and T'ypar CT.
PROOF. By induction on the generation of nfs given in Definition 1B.22.

Case M = zN, with N in B-nf. By Proposition 1B.4 one has (z:A;— -+ - — A, —A) €T
and I F§" N; : A AsTpyar C T, we must have z417 744 ¢ FV(MAT). By the TH

there are unique NZA“F for the N;. Then MAT = xAlH'“HAk”ANIAl’F . ~-N,f’“’r is the
unique way to type M
Case M = Ax.N, with N in 8-nf. Then by Proposition 1B.3 we have I', z: B I—gi N:C

and A = B—C. By the IH there is a unique N¢1%B for N. It is easy to verify that
MAT = \gB NOT#:B i5 the unique way to type M. m

NOTATION. If M is a closed B-nf, then we write M4 for MAP.

1B.25. COROLLARY. (i) Let M € AP be a closed B-nf. Then |M| is a closed B-nf and

MeASMA) = [F§" M| A& M| =M.
(ii) Let M € N be a closed B-nf and I—gi M : A. Then M# is the unique term
satisfying
MA e ACh(A) & |[MA) = M.
(iii) The following two sets are ‘isomorphic’

{M €A | M is closed, in B-nf, and l—gi M : A};
{M e ACM(A) | M is closed and in B-nf}.

PRrOOF. (i) By the unicity of M4,

(ii) By the Proposition.

(iii) By (i) and (ii). m
The applicability of this result will be enhanced once we know that every term typable
in A% (whatever version) has a Bn-nf.

The translation | | preserves reduction and conversion.

1B.26. PROPOSITION. Let R = 3,n or Bn. Then
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(i) Let M,N € A, Then M —r N = |M| —g |N|. In diagram

M—f=x
Il Il
M|~ N

ii) Let M, N € AC%T(A), M = |M’|, with M' € ASP(A). Then
— —
M —r N = 3N’ eAh(A).
IN'|=N & M' = N'.
In diagram

MI R> Nl
| | 1
MT) N
iii) Let M, N € ASWT(A), N = |N'|, with N' € ACh(A). Then
— —
M —p N = 3IM' e A°h(A).
IM'| =M & M' -, N'.
In diagram
M/ R> N/
| | Il
MT) N
(iv) The same results hold for —pr and R-conversion.

ProOOF. Easy. m
1B.27. COROLLARY. Define the following two statements.

SN(ASY) £ vIYM e ACHT SN(M).
SN(ACh) £ v e ACR.SN(M).
Then
SN(ACY) & SN(ASh).
In fact we will prove in Section 2B that both statements hold.

1B.28. PROPOSITION ( Church-Rosser theorem for ACP). On typable terms of AC! the Church-
Rosser theorem holds for the notions of reduction —g and —»gy).

(1) Let M, Ny, No € ACh(A). Then
M —Bn N1 & M —B(n) N2 = E]ZEAgh(A).Nl —B(n) Z & N2 —B(n) Z.
(ii) Let M,N € ACM(A). Then
M =gy N = 3Z €A (A).M —guy Z & N =g Z.
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PROOF. (i) We give two proofs, both borrowing a result from Chapter 2.

Proof 1. We use that every term of Agh has a B-nf, Theorem 2A.13. Suppose M — gy,
N;, i€ {1,2}. Consider the B-nfs N of N; . Then |M| —g, |[NM|, i€ {1,2}. By the
CR for untyped lambda terms one has |Nf| = |[N3f|, and is also in B-nf. By Proposition
1B.24 there exists unique Z; € AP such that M g, Z; and |Z;| = |[NM|. But then
Z1 = Z5 and we are done.

Proof 2. Now we use that every term of Agh is 3-SN, Theorem 2B.1. It is easy to see
that — g,, satisfies the weak diamond property; then we are done by Newman’s lemma.
See e.g. B[1984], Definition 3.1.24 and Proposition 3.1.25.

(ii) As usual from (i). See e.g. B[1984], Theorem 3.1.12. m

Comparing A°" and \4B

There is a close connection between A" and AB. First we need the following.
1B.29. LEMMA. Let I' C TV be bases of A4B. Then

THE M:A = T'FE M: A
— —
PRrOOF. By induction on the derivation of the first statement. m

1B.30. DEFINITION. (i) Let M € A and suppose FV(M) C dom(T).
Define M inductively as follows.

xF A xF(:c);

(MN)' & MUNT,
(Az:AM)E 2 g DA,
(ii) Let M € ACh(A) in ACP. Define M ~, a pseudo-term of B, as follows.
()" 2
(MN)" 2 M N—;
Az M)~ 2\ A M.
1B.31. EXAMPLE. To get the (easy) intuition, consider the following.

Ox:Az)? = (\ata?);

Azt = (Oxdae);
(Az:A—B.ay) At = \gA7B A7 ByA,
Liga-ngasnyay = {y:A4}, cf. Definition 1B.18.

1B.32. PROPOSITION. (i) Let M € AS* and T be a basis of X3B. Then
MeASM(A) & Ty F2 M~ A
(ii) I M:A o MY e (A).
PRroOF. (i), (ii)(=) By induction on the definition or the proof of the LHS.

(ii)(=), using (M )™ = M.
y (i)(=), using (M)~ = M,T'j;r C T and proposition 1B.29. m
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1B.33. COROLLARY. In particular, for a type A€ T one has
A is inhabited in A° < A is inhabited in XIB.
PrROOF. Immediate. ®

Again the translation preserves reduction and conversion

1B.34. PROPOSITION. (i) Let M, N € A4B. Then
M —p N < M" -z N,

where R = 3,n or Bn.

(ii) Let My, My ACM(A) and R as in (i). Then

My —r My <& M; —r M, .

(iii) The same results hold for conversion.

Proor. Easy. m

Comparing A" and A48

1B.35. PROPOSITION. (i) TH{E M : A = TS |M]: A,
here |M| is defined by leaving out all = A’ immediately following binding lambdas.
(ii) Let M € A. Then

I M:A & 3IM M| =M&TDHE M A
PRrROOF. As for Proposition 1B.19. m

Again the implication in (i) cannot be reversed.

The three systems compared

Now we can harvest a comparison between the three systems AS?, A4B and AC.
1B.36. THEOREM. Let M € AC! be in B-nf. Then the following are equivalent.
(i) M eACh(A).
(ii) Ty FGB M~ A
(iii) Tar FS™ |M]: A,
(iv) |[M|ATm € ACh(A) & |M|AT™M = M.

Proor. By Propositions 1B.32(i), 1B.35, and 1B.24 and the fact that
|M~| = |M]| we have

MeAMA) & TysE M A
= Ty FS" |M]: A
= | M| e ACR(A) & | M|ATM = M

= McA®(A). m
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1C. Normal inhabitants

In this section we will give an algorithm that enumerates the set of closed inhabitants
in B-nf of a given type A€ T. Since we will prove in the next chapter that all typable
terms do have a nf and that reduction preserves typing, we thus have an enumeration of
essentially all closed terms of that given type. The algorithm will be used by concluding
that a certain type A is uninhabited or more generally that a certain class of terms
exhausts all inhabitants of A.

Because the various versions of A% are equivalent as to inhabitation of closed B-nfs,
we flexibly jump between the set

{M e ASM(A) | M closed and in B-nf}

and
{M €A | M closed, in B-nf, and F§* M : A},

thereby we often write a Curry context {z1:A41, -+ ,z,:4,} as {xfl, <o,z and a
Church term Az%.2° as Az".z, an intermediate form between the Church and the de
Bruijn versions.
We do need to distinguish various kinds of nfs.
1C.1. DEFINITION. Let A = A;— - -+ A,—« and suppose M € ACP(A).
(i) Then M is in long-nf, notation Inf, if M = Axfl coegfnxMy - - M, and each M;
is in Inf. By induction on the depth of the type of the closure of M one sees that this

definition is well-founded.
(ii) M has a Infif M =g, N and N is a Inf.

In Exercise 1E.14 it is proved that if M has a B-nf, which according to Theorem 2B.4 is
always the case, then it also has a unique Inf and this will be its unique 81! nf. Here
1~ ! is the notion of reduction that is the converse of .
1C.2. ExampPLES. (i) Az%.z is both in Bn-nf and Inf.
(i) Afl.f is a Bn-nf but not a Inf.
(iii) Af'20. fz is a Inf but not a @n-nf; its Bn-nf is Af1.f.
(iv) The B-nf AFZAfL.F f(Az°.fz) is neither in @n-nf nor Inf.
(v) A variable of atomic type « is a Inf, but of type A— B not.
(vi) A variable f'7! has as Inf Ag*z®.f(A\y%.gy)x =, f17L
1C.3. PROPOSITION. Every B-nf M has a Inf M* such that M* —y M.

PROOF. Define M* by induction on the depth of the type of the closure of M as follows.
M= (A\ZyMy - M,)" 2 \eZyM{ - M'Z*

where 7 is the longest vector that preserves the type. Then M does the job. m

We will define a 2-level grammar, see van Wijngaarden [1981], for obtaining all closed
inhabitants in Inf of a given type A. We do this via the system A"

1C.4. DEFINITION. Let £ = {L(A;T) | Ae T4 T a context of A°"}. Let ¥ be the al-
phabet of the untyped lambda terms. Define the following two-level grammar as a notion
of reduction over words over £ U X. The elements of £ are the non-terminals (unlike in
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a context-free language there are now infinitely many of them) of the form L(A;T).

—

L(a;T) = zL(By;T)--- L(B,;T), if (x:B—a) €T
L(A—=B;T) = M .L(B;T,z™).

Typical productions of this grammar are the following.

L(3;0) = AF2.L(0; F?)
— AF2.FL(1; F?)
— AF2. F(\2.L(0; F?,2°))
= AF2.F(\2".x).

But one has also
L(0; F?,2") = FL(1; F? 27

— F(\2Y.L(0; F2, 2% 29))
— F(\al.zy).

Hence (= denotes the transitive reflexive closure of =)

L(3;0) = AF2LFO\x". F(\xl.21)).

In fact, L(3;0) reduces to all possible closed Infs of type 3. Like in simplified syntax we
do not produce parentheses from the L(A;T), but write them when needed.

1C.5. PROPOSITION. Let I', M, A be given. Then
LAT) =M < TI'FM:A&M isin nf

Now we will modify the 2-level grammar and the inhabitation machines in order to
produce all 3-nfs.

1C.6. DEFINITION. The 2-level grammar N is defined as follows.

N(A;T) = aN(B;;T)---N(B,;I), if (z:B—A)el;
N(A—=B;T) = M.N(B;T,z4).

Now the B-nfs are being produced. As an example we make the following production.
Remember that 1 = 0—0.

N(1=0—0;0) = AfL.N(0—0; f1)
— AfLf.

1C.7. PROPOSITION. Let I'y M, A be given. Then

NAT) =M < TFM:A&M isin B-nf.
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Inhabitation machines

Inspired by this proposition one can introduce for each type A a machine M4 producing
the set of closed Infs of that type. If one is interested in terms containing free variables
x’fl, e ,xﬁ", then one can also find these terms by considering the machine for the
type A1—--- —A,—A and looking at the sub-production at node A. This means that
a normal inhabitant M4 of type A can be found as a closed inhabitant AZ.M4 of type
Aj—---—A,—A.

1C.8. EXAMPLES. (i) A =0—0—0. Then M4 is

Az0Ay°
0-0-0] ———=[0] —=

|

Y

This shows that the type 12 has two closed inhabitants: Azy.z and Azy.y. We see that

the two arrows leaving @ represent a choice.
(ii)) A= a—((0—=p)—a)—p—a. Then My is

’ a—((0—=8)—a)—f—a ‘

ixaa,\f@%)ﬂ,\bﬁ

[o] a
|

(B

Again there are only two inhabitants, but now the production of them is rather different:
Aafb.a and Aafb.f(Az.b).
(iii) A= ((a—p)—a)—a. Then My is

| ((a—=B)—a)—a

lAF(aﬁB)—)a

(@] ————[a=p] (4]

This type, corresponding to Peirce’s law, does not have any inhabitants.
(iv) A =1-0—0. Then My is

1—0—0

This is the type Nat having the Church’s numerals A f'z°. f"z as inhabitants.
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(v) A=1-1—-0—0. Then My is

1-1—0—0

f C?D g

T
Inhabitants of this type represent words over the alphabet ¥ = {f, g}, for example
Alg'a®.faffafgge,

where we have to insert parentheses associating to the right.
(vi) A= (a—p—v)—=L—a—7y. Then My, is

’ (a—=B—7y)—=B—a—y ‘

lewﬂﬂxbﬁxaa

2
a<—a] f B]—=1b
giving as term Af577\bP\a®. fab. Note the way an interpretation should be given
to paths going through f: the outgoing arcs (to [«] and ) should be completed both

separately in order to give f its two arguments.
(vil) A=3. Then M, is

AF2

-
l Az0
xr

This type 3 has inhabitants having more and more binders:
AF2 F(xd. F\2) F(--- (Ma2.z)))).

The novel phenomenon that the binder Az° may go round and round forces us to give new
incarnations )\3:8, Az?, .- each time we do this (we need a counter to ensure freshness of
the bound variables). The ‘terminal’ variable x can take the shape of any of the produced
incarnations zy. As almost all binders are dummy, we will see that this potential infinity
of binding is rather innocent and the counter is not yet really needed here.
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(viii) A =3—0—0. Then My is
3—0—0
A3\
)
—T T
NG —
|
C

This type, called the monster M, does have a potential infinite amount of binding, having
as terms e.g.

AP O AI®Afy-faf1@( - (Mfg-fu -+ f2fr0)-)),
again with inserted parentheses associating to the right. Now a proper bookkeeping of
incarnations (of f! in this case) becomes necessary, as the f going from @ to itself needs

to be one that has already been incarnated.
(ix) A =19—0—0. Then My is

PR [o] e

il

b

This is the type of binary trees, having as elements, e.g. A\p'2c’.c and Ap'2c°.pe(pee).
Again, as in example (vi) the outgoing arcs from p (to @) should be completed both
separately in order to give p its two arguments.

(x) A=13—2—0. Then M4 is

(]

G

AF2\G?
1o—2—0

PN
~———
>

8
(=}

=]

P
B S
T

B!

The inhabitants of this type, which we call L, can be thought of as codes for untyped
lambda terms. For example the untyped terms w = Az.zx and Q = (Azr.xzx)(Az.zz) can
be translated to (w)! = AF2G2.G(\2". Fxz) and

Q) = AFRGELF(GO2’.Far))(G(A2. Faz))
=3 AFG.F(w)'FG)(w)'FG)
=g (W)L (W),
where for M, N € L one defines M -1 N = A\FG.F(M FG)(NFGQG). All features of produc-

ing terms inhabiting types (bookkeeping bound variables, multiple paths) are present in
this example.
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Following the 2-level grammar N one can make inhabitation machines for 3-nfs M g .

1C.9. ExaMPLE. We show how the production machine for @-nfs differs from the one
for Infs. Let A = 1—0—0. Then Af!.f is the (unique) B-nf of type A that is not a Inf.

It will come out from the following machine M f .

[0=0]——

|
1 ()——=

So in order to obtain the B-nfs, one has to allow output at types that are not atomic.

1D. Representing data types

In this section it will be shown that first order algebraic data types can be represented
in A%,. This means that an algebra A can be embedded into the set of closed terms in
B-nf in AS"(A). That we work with the Curry version is as usual not essential.

We start with several examples: Booleans, the natural numbers, the free monoid over
n generators (words over a finite alphabet with n elements) and trees with at the leafs
labels from a type A. The following definitions depend on a given type A. So in fact
Bool = Bool4 etcetera. Often one takes A = 0.

Booleans
1D.1. DEFINITION. Define Bool = Bool4

Bool £ A A—A;

true £ \zy.x;

false £ \xy.y.
Then true € A?, (Bool) and false € A%, (Bool).

1D.2. PROPOSITION. There are terms not, and, or, imp, iff with the expected behavior on
Booleans. For example not € A?, (Bool—Bool) and

not true =g false,

not false =g true.

PROOF. Take not £ Aaxy.ayx and or = \abxy.ax(bzry). From these two operations the
other Boolean functions can be defined. For example, implication can be represented by

imp £ \ab.or(not a)b.

A shorter representation is Aabxy.a(bzy)z, the normal form of imp. m
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Natural numbers

1D.3. DEFINITION. The set of natural numbers can be represented as a type
Nat £ (A—A)—A—A.
For each natural number n € N we define its representation
Cn 2 Nfa. fra,
where
oz 2
e 2 f(fr).

Then ¢, € A?,(Nat) for every n € N. The representation c,, of n €N is called Church’s
numeral. In B[1984] another representation of numerals was used.

1D.4. PROPOSITION. (i) There exists a term ST € A?, (Nat—Nat) such that
Ste, =8 Cpt1, for allneN.
(ii) There exists a term zero; € A2, (Nat—Bool) such that
zeroocy =g true,
zero(Sta) =g false.
PrOOF. (i) Take S £ AnAfz.f(nfxz). Then

Ste, =g Afz.f(cnfx)
=g M. f(f"z)
M. ffHy
= Cpi1-
(ii) Take zero; = AnAab.n(Kb)a. Then
zerorco =g Aab.co(Kb)a
=g Aab.a
= true;
zero?(StTz) =5 Aab.STz(Kb)a
=g Aab.(Afy.f(2fy))(Kb)a
=g Aab.Kb(z(Kb)a)
=g Aab.b
= false. m
1D.5. DEFINITION. (i) A function f : NN is called A-definable with respect to Nat if
there exists a term F'€ A_, such that Fcy, ---c,, = Cf(ny,—np) for all 7i € N*.
(ii) For different data types represented in A_, one defines A-definability similarly.
Addition and multiplication are A-definable in A_,.
1D.6. PROPOSITION. (i) There is a term plus € A2, (Nat—Nat—Nat) satisfying

plus ¢, ¢, =8 Cpgm.-
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(ii) There is a term times € A2, (Nat—Nat—Nat) such that
times ¢, €y, =3 Cpom-
PROOF. (i) Take plus = AnmAfz.nf(mfx). Then
plus ¢, ¢, =g Afz.cp f(cm fa)
— M. f"(f")
= Mo f"y
Cnim-
(ii) Take times = Anm\fr.m(Ay.nfy)r. Then
times ¢, ¢, =g Afz.Con(Ay.cr fy)z
=g Mfz.cn(Ay.f"y)z
o M (U (1))
m times
= Ao f"x

= Cpp. B

1D.7. COROLLARY. For every polynomial p € N[z, - - x| there is a closed term M, €
Aﬂ(Natk—>Nat) such that Vny, - ,ng € N.MpCp, -+~ Cnyy =8 Cp(ny,ony)- B

From the results obtained so far it follows that the polynomials extended by case
distinctions (being equal or not to zero) are definable in A%. In Schwichtenberg [1976]

or Statman [1982] it is proved that exactly these so-called extended polynomials are

definable in A%,. Hence primitive recursion cannot be defined in A% ; in fact not even

the predecessor function, see Proposition 2D.21.

Words over a finite alphabet

Let ¥ = {aj,--- ,ar} be a finite alphabet. Then ¥* the collection of words over ¥ can
be represented in A_,.

1D.8. DEFINITION. (i) The type for words in X* is
Sigma* £ (0—0)F—0—0.
(ii) Let w = a;, - --a;, be a word. Define
wEXay - apzag, (- (ai,T)..)
= Aay---apx. (@, 0---0a;,)T.
Note that w € A?, (Sigma*). If € is the empty word (), then naturally
€2 \ay - apr.x
= K"l
Now we show that the operation concatenation is A-definable with respect to Sigma®.

1D.9. PROPOSITION. There exists a term concat € A?, (Sigma*—Sigma*—Sigma™) such
that for all w,v e X*
concat w v = ww.
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PRrROOF. Define
concat = \wv.dz.wa(vazx).

Then the type is correct and the definition equation holds. m
1D.10. PROPOSITION. (i) There exists a term empty, € A?, (Sigma™) such that

empty, € = true;
empty, w = false, if w # €.

(ii) Given a (represented) word wy € A2, (Sigma™®) and a term G € A?, (Sigma*—Sigma™)
there exists a term F € A?, (Sigma*—Sigma™) such that

Fe = wo;
Fw = Gu, if w# e.

ProOF. (i) Take empty, = Mwpg.w(Kq) *p.
(ii) Take F' = AwAzd.empty, w(wodz)(Gwdz). m
One cannot define terms ‘car’ or ‘cdr’ such that car aw = a and cdr aw = w.

Trees

1D.11. DEFINITION. The set of binary trees, notation 72, is defined by the following
simplified syntax

t=c¢€|p(t,t)
Here € is the ‘empty tree’ and p is the constructor that puts two trees together. For
example p(e, p(e, €)) € T? can be depicted as

6/.\0
6/ \6

Now we will represent 72 as a type in TV.
1D.12. DEFINITION. (i) The set T? will be represented by the type

T2 2 (02-0)—0—0.
(ii) Define for t € T? its representation ¢ inductively as follows.
Ape.e;
Ape.(tpe)(spe).

> 1>

p(t, 85

(iii) Write

E £ \pe.e;

P = Xtspe.p(tpe)(spe).
Note that for t € T? one has t € A%, (T?)
The following follows immediately from this definition.
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1D.13. PROPOSITION. The map _: T?>—T? can be defined inductively as follows
E;
Pts.

(> >

~ |™

p(t, s

Interesting functions, like the one that selects one of the two branches of a tree cannot
be defined in A% . The type T2 will play an important role in Section 3D.

Representing Free algebras with a handicap

Now we will see that all the examples are special cases of a general construction. It turns
out that first order algebraic data types A can be represented in A’,. The representations
are said to have a handicap because not all primitive recursive functions on A are
representable. Mostly the destructors cannot be represented. In special cases one can
do better. Every finite algebra can be represented with all possible functions on them.
Pairing with projections can be represented.

1D.14. DEFINITION. (i) An algebra is a set A with a specific finite set of operators of
different arity:

c1,c9, - € A (constants, we may call these 0-ary operators);
fisfa,-+ € A=A (unary operators);

g1, g2, € A’SA (binary operators);

hi,ho,--+ € A"—A (n-ary operators).

(ii) An n-ary function F' : A"—A is called algebraic if F' can be defined explicitly
from the given constructors by composition. For example

F = Xajaz.g1(a1, (92(f1(az2),c2)))

is a binary algebraic function, usually specified as

F(a1,a2) = gi(a1, (92(fi(a2), c2))).

(iii) An element a of A is called algebraic if a is an algebraic O-ary function. Algebraic
elements of A can be denoted by first-order terms over the algebra.

(iv) The algebra A is called free(ly generated) if every element of A is algebraic and
moreover if for two first-order terms ¢, s one has

t=s = t=s.

In a free algebra the given operators are called constructors.

For example N with constructors 0, s (s is the successor) is a free algebra. But Z with
0, s,p (p is the predecessor) is not free. Indeed, 0 = p(s(0)), but 0 # p(s(0)) as syntactic
expressions.
1D.15. THEOREM. For a free algebra A there is a A€ TV and Aa.q : A—A? (A) satis-
fying the following.

(i) a is a Inf, for every a € A.

(ii) Q:,@nb S oa=0b.

(i) A% (A) ={a|a€c A}, up to Bn-conversion.
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iv) For k-ary algebraic functions f on A there is an f € A% (A*—A) such that
J —
i@lgk = f(ah...,ak).

(v) There is a representable discriminator distinguishing between elements of the form
¢, fi(a), fa(a,b), -+, fn(ai, -+ ,an). More precisely, there is a term test € A? (A—N)
such that for all a,be A

testc = cop;

test fi(a) = ci;

test fo(a,b) = c2;

test fn (a1, - ,an) = cp.

Proor. We show this by a representative example. Let A be freely generated by, say,
the O-ary constructor ¢, the 1-ary constructor f and the 2-ary constructor g. Then an
element like

a=g(c, f(c))
is represented by
a = Acfg.ge(fe) € A(0—1—15—0).
Taking A = 0—1—12—0 we will verify the claims. First realize that a is constructed
from a via a™ = gc(fe) and then taking the closure a = Acfg.a™.

(i) Clearly the g are in Inf.

(ii) If a and b are different, then their representations a,b are different Infs, hence
a #pn
(iif)

b.
The inhabitation machine M4 = My_1-1,—0 looks like

0—1—15—0

)\c)\f)\gl
P (==

|

Cc

It follows that for every M € A?,(A) one has M =g, Acfg.a™ = a for some a € A. This
shows that A? (A) C {a | a€ A}. The converse inclusion is trivial. In the general case
(for other data types A) one has that rk(A) = 2. Hence the Inf inhabitants of A have
for example the form Acfi fagi1go.P, where P is a typable combination of the variables
e, ft, fa, g%z , 92 This means that the corresponding inhabitation machine is similar and
the argument generalizes.

(iv) An algebraic function is explicitly defined from the constructors. We first define
representations for the constructors.

c 2 Acfg.c A
f £ Xacfg.f(acfg) : A—A;
g £ abefg.glacfg)(befg) @ A=A
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Acfg.flacfg)
Acfg.f(a™)
Aefg.(f(a))™, (tongue in cheek),

f(a).
Similarly one has gab = g(a,b).
Now if e.g. h(a,b) = g(a, f(b)), then we can take

h= Aab.ga(fb) : A’ A.

Then fa

Then clearly hab = h(a,b).

(v) Take test = \afc.a(cofc)(Ax.cy fe)(Ary.cofc). m
1D.16. DEFINITION. The notion of free algebra can be generalized to a free multi-sorted
algebra. We do this by giving an example. The collection of lists of natural numbers,
notation Ly can be defined by the ’sorts’ N and Ly and the constructors
0 €eN;
s € N—N;
nil € Ly;
cons € N—Ly—Ly.
In this setting the list [0,1] € Ly is
cons(0,cons(s(0),nil)).
More interesting multisorted algebras can be defined that are ‘mutually recursive’, see
Exercise 1E.13.

1D.17. COROLLARY. FEwery freely generated multi-sorted first-order algebra can be repre-
sented in a way similar to that in Theorem 1D.15.

PROOF. Similar to that of the Theorem. m

Finite Algebras

For finite algebras one can do much better.

1D.18. THEOREM. For every finite set X = {ay,---,a,} there exists a type X € T* and
elements aq, - - ,a, € A%, (X) such that the following holds.

(i) AZ(X) ={a|ac X}

(ii) For all k and f : X*—X there exists an f € A’ (X*—X) such that

S by b= o, by).

ProOOF. Take X =1, =0"—0 and a; = Aby - - b,.b; € A2, (1,).

(i) By a simple argument using the inhabitation machine M.

(ii) By induction on k. If k = 0, then f is an element of X, say f = a;. Take f = q,.
Now suppose we can represent all k-ary functions. Given f : X¥*1— X define for be X

fb(bla e 7bk‘) é f(bv bla et abk‘)
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Each fp is a k-ary function and has a representative f;. Define

J 2 Ab.D(far0) -+ (fay D),

where b= by, -+, bgy1. Then
Fobe = b (fa ) (fan D)
= fo by by
fo, (b2, -+ biy1), by the induction hypothesis,
= f(by, - ,bgs1), by definition of f,,. m

One even can faithfully represent the full type structure over X as closed terms of A%, ,
see Exercise 2E.22.

Examples as free or finite algebras

The examples in the beginning of this section all can be viewed as free or finite algebras.
The Booleans form a finite set and its representation is type lo. For this reason all
Boolean functions can be represented. The natural numbers N and the trees T' are ex-
amples of free algebras with a handicapped representation. Words over a finite alphabet
¥ = {ay,---,an} can be seen as an algebra with constant ¢ and further constructors
fa; = Aw.a;w. The representations given are particular cases of the theorems about free
and finite algebras.

Pairing
In the untyped lambda calculus there exists a way to store two terms in such a way that
they can be retrieved.
pair £ \abz.zab;
left 2 Az.z(\zy.z);
right 2 A\z.z(A\zy.y).
These terms satisfy
left(pair MN) =g (pair M N)(Azy.x)
=8 (Az.2MN)(Azy.x)
—5 M;
right(pair MN) =g N.
The triple of terms (pair,left,right) is called a (notion of) ‘B-pairing’.
We will translate these notions to A%,. We work with the Curry version.
1D.19. DEFINITION. Let A, B€ T and let R be a notion of reduction on A.
(i) A product with R-pairing is a type A x B €T together with terms

paire A,(A — B — (A x B));
lefte AL ((A X B) = A);
right e A,((A x B) — B),
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satisfying for variables x,y
left(pairzy) =p x;
right(pairzy) =g y.
(ii) The type Ax B is called the product and the triple (pair,left,right) is called
the R-pairing.
(iii) An R-Cartesian product is a product with R-pairing satisfying moreover for vari-
ables z
pair(left z)(right z) =g z.
In that case the pairing is called a surjective R-pairing.

This pairing cannot be translated to a B-pairing in A, with a product A x B for
arbitrary types, see Barendregt [1974]. But for two equal types one can form the product
A x A. This makes it possible to represent also heterogeneous products using Gn-
conversion.

1D.20. LEMMA. For every type A€ T there is a product A x Ae TV with B-pairing
pairg‘,leftOA and rightf)q.
Proor. Take
Ax AZ(AsA—A)—A;
pairy £ Amnz.zmn;
left{)4 2 \p.pK;
righté4 2 \ppK,. m
1D.21. PROPOSITION (Grzegorezyk [1964]). Let A, B € T be arbitrary types. Then there
is a product A X B € T with Bn-pairing (pairé’B, lefté’B, righté’B> such that
pairgl’B € Ay,
left) ? rignt"? e AFY,
and
rk(A x B) = max{rk(A),rk(B),2}.
PROOF. Write n = arity(A),m = arity(B). Define
Ax B& A(1)— - —A(n)—=B(1)—---—B(m)—0 x 0,
where 0 x 0 £ (0—0—0)—0. Then
rk(A x B) = rr%ax{rk(Ai) +1,1k(B;) + 1,1k(0*—0) + 1}

= max{rk(A4),rk(B), 2}.
Define z4 inductively: z022; 24, = a.zp. Then 24 € AZO(A). Write T =z, ,@p, 7 =
Yl s Ymy ZA = ZA(1)s " s ZA®m) and ZB = zp(1), - 5 2B(m)- Now define

pairgl’B 2 A\mn.\Zyj.pair)(mi)(ng);

1eft64’B 2 \p.\E.1left)(pZZB);

—

rightgl’B = )\p.)\f.rightg(pZAy)
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Then e.g.
lefté’B(pairg’BMN) =g \T.left{)(pairgM NZ#Zp)

=g \T. left[pair)(MZ)(Nzg)]

=g A\Z.(MZ)

=y M. m
In Barendregt [1974] it is proved that n-conversion is essential: with B-conversion one
can pair only certain combinations of types. Also it is shown that there is no surjective
pairing in the theory with Bn-conversion. In Section 5B we will discuss systems extended
with surjective pairing. With similar techniques as in mentioned paper it can be shown

that in A% there is no Bn-pairing function pairg’ﬁ for base types. In section 2.3 we will
encounter other differences between A% and A’, .

1D.22. PROPOSITION. Let Ay,---,A, € T°. There are closed terms
tuple” : Aj— - = A, — (A1 X -+ xAy),
projy : A1 x -+ xAp—Ag,
such that for My, -- -, M, of the right type one has
projy(tuple" My --- M,) =gn M.
PRrROOF. By iterating pairing. m

1D.23. NOTATION. If there is little danger of confusion and the M, N are of the right
type we write

(My, -+ ,M,) = tuple" My - - - My;
N -k £ proj}N.
Then (M, -+, M,) -k = M, for 1 <k <n.

1E. Exercises

1E.1. Find types for

B 2 Ilzyza(yz);
C £ Jlzyzazy;
C. & Ilzyyx;

Kie £ zyy;

W 2 ay.ayy.

1E.2. Find types for SKK, \zy.y(Az.zzx)x and Afz.f(f(fz)).

1E.3. Show that rk(A—B—C) = max{rk(A) + 1,rk(B) + 1,rk(C)}.

1E.4. Show that if M = Pz := Q] and N = (\z.P)Q, then M may have a type in A"
but N not. A similar observation can be made for pseudo-terms of AB.

1E.5. Show the following.
() Azy.(zy)z ¢ AS.
(ii) Azy.x(yz) € A2

1E.6. Find inhabitants of (A—B—C)—B—A—C and (A-A—B)—A—B.
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1E.7. [van Benthem] Show that A?(A) and AS"?(A) are for some A € T* not a context-
free language.
1E.8. Define in A%, the pseudo-negation ~A=A—0. Construct an inhabitant of ~~~A—~A.
1E.9. Prove the following, see definition 1B.30.
(i) Let M € AP with FV(M) C dom(T), then (M")~ = M and I'y;r CT.
(i) Let M € ACh, then (M~)'™ = M.
1E.10. Construct a term F' with |—>‘o_> F': To— Ty such that for trees ¢ one has F't =g ﬂ,
where ™ is the mirror image of ¢, defined by

Emir €
(p(t, )™ £ p(s

1E.11. A term M is called proper if all X’s appear in the prefix of M, i.e. M = AZ.N
and there is no A occurring in V. Let A be a type such that A?, (A) is not empty.
Show that

ey
A mir ymir
= )

Every nf of type A is proper < rk(A) < 2.

1E.12. Determine the class of closed inhabitants of the types 4 and 5.
1E.13. The collection of multi-ary trees can be seen as part of a multi-sorted algebra
with sorts MTree and Lyimvee as follows.

nil € LMtree;
cons € Mtree— Lyitree—> IMtree;
p € Lytree—Mtree.

Represent this multi-sorted free algebra in A’,. Construct the lambda term rep-

resenting the tree
p p
[ [ ]

1E.14. In this exercise it will be proved that each term (having a 3-nf) has a unique
Inf. A term M (typed or untyped) is always of the form Azy---xz,.yM;--- M,
or \xy - xp.(Ax.Mo)My -+ My,. Then yMj---M,, (or (Az.Mo)M;i---M,,) is
the matriz of M and the (Mo, )My, -+, My, are its components. A typed term
M € AV(A) is said to be fully eta (f.e.) expanded if its matrix is of type 0 and its
components are f.e. expanded. Show the following for typed terms. (For untyped
terms there is no finite f.e. expanded form, but the Nakajima tree, see B[1984]
Exercise 19.4.4, is the corresponding notion for the untyped terms.)
(i) M isin Infiff M is a B-nf and f.e. expanded.
(11) It M =pBn N1 =pBn N2 and Nl,NQ are B—nfs, then N1 =n NQ. [Hint. Use

n-postponement, see B[1984] Proposition 15.1.5.]
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(iii) N1 =, N2 and Np, Ny are B-nfs, then there exist N| and N7 such that
N; =y, N| and Nt —, N;, for i = 1,2. [Hint. Show that both —, and , <
satisfy the diamond lemma.]

(iv) If M has a B-nf, then it has a unique Inf.

(v) If N is f.e. expanded and N —g N’, then N’ is f.e. expanded.

(vi) For all M there is a f.e. expanded M* such that M* —, M.

(vii) If M has a B-nf, then the Inf of M is the B-nf of M*, its f.e. expansion.

For which types A€ T and M € A_,(A) does one have

M in B-nf = M in Inf?

(i) Let M = Azq---xp.x;My--- My, be a B-nf. Define by induction on the
length of M its ®-normal form, notation ®(M), as follows.

OAT.x; My - - My,) 2 M. (PAT. M) E) - - - (D(NL. M) T).

(ii) Compute the ®-nf of S = Azyz.xz(yz).
(iii) Write @™ & \yy -y Az - - - Tp. i (1 Z) - - - (Ym@). Then

SN My - - - My,) = @™ DNLM7)) - - - (B(NE.M,,)).

Show that the ™™ are typable.
(iv) Show that every closed nf of type A is up to =g, a product of the @™,
(v) Write S in such a manner.
Like in B[1984], the terms in this book are abstract terms, considered modulo
a-conversion. Sometimes it is useful to be explicit about a-conversion and even
to violate the variable convention that in a subterm of a term the names of free
and bound variables should be distinct. For this it is useful to modify the system
of type assignment.
(i) Show that I—Si is not closed under a-conversion. I.e.

'FMAM=,M # T'+M:A.

[Hint. Consider M’ = \z.x(Az.z).]
(ii) Consider the following system of type assignment to untyped terms.

{z:A} b x: A;

FlkM(A—)B) F2|_NA

,  provided I'y UT'y is a basis;
MUl (MN): B

I'-M:B
I —{z:A}F (A\e.M): (A— B)

Provability in this system will be denoted by I' M M : A.
(iii) Show that + is closed under a-conversion.
(iv) Show that

'M:A & IM=,MTFM:A.



1E. EXERCISES 43

1E.18. Elements in A are considered in this book modulo a-conversion, by working with

a-equivalence classes. If instead one works with a-conversion, as in Church [1941],

then one can consider the following problems on elements M of A?.

1. Given M, find an a-convert of M with a smallest number of distinct variables.

2. Given M =, N, find a shortest a-conversion from M to N.

3. Given M =, N, find an a-conversion from M to N, which uses the smallest
number of variables possible along the way.

Study Statman [2007] for the proofs of the following results.

(i) There is a polynomial time algorithm for solving problem (1). It is reducible
to vertex coloring of chordal graphs.

(ii) Problem (2) is co-NP complete (in recognition form). The general feedback
vertex set problem for digraphs is reducible to problem (2).

(iii) At most one variable besides those occurring in both M and N is necessary.
This appears to be the folklore but the proof is not familiar. A polynomial
time algorithm for the a-conversion of M to N using at most one extra
variable is given.






CHAPTER 2

PROPERTIES

2A. Normalization

For several applications, for example for the problem of finding all possible inhabitants of
a given type, we will need the weak normalization theorem, stating that all typable terms
do have a Bn-nf (normal form). The result is valid for all versions of A%, and a fortiori
for the subsystems A°,. The proof is due to Turing and is published posthumously in
Gandy [1980b]. In fact all typable terms in these systems are 3n strongly normalizing,
which means that all 8n-reductions are terminating. This fact requires more work and
will be proved in Section 2B.

The notion of ‘abstract reduction system’, see Klop [1992], is useful for the under-
standing of the proof of the normalization theorem.
2A.1. DEFINITION. An abstract reduction system (ARS) is a pair (X, —pg), where X is
a set and — R is a binary relation on X.
We usually will consider A, A%, with reduction relations —g(n) as examples of an ARS.

In the following definition WN, weak normalization, stands for having a nf, while SN,
strong normalization, stands for not having infinite reduction paths. A typical example
in (A, —g) is the term KIQ that is WN but not SN.
2A.2. DEFINITION. Let (X, R) be an ARS.

(i) An element z € X is in R-normal form (R-nf) if for no y € X one has x —g .

(ii) An element x € X is R-weakly normalizing (R-WN), notation z = R-WN (or sim-
ply z = WN), if for some y € X one has x - y and y is in R-nf.

(iii) (X, R) is called WN, notation (X, R) = WN, if

Va € X.o = R-WN.

(iv) Anelement z € X issaid to be R-strongly normalizing (R-SN), notation x = R-SN
(or simply x = SN), if every R-reduction path starting with =
T —>RI] 7RI —R ‘"
is finite.
(v) (X, R) is said to be strongly normalizing, notation (X, R) = R-SN or simply
(X,R) E SN, if
Vo e X.z = SN.

One reason why the notion of ARS is interesting is that some properties of reduction
can be dealt with in ample generality.

2A.3. DEFINITION. Let (X, R) be an ARS.

45
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(i) We say that (X, R) is confluent or satisfies the Church-Rosser property, notation
(X,R) = CR, if

Ve,yi,ip € Xx »pry1 & »pyp = Fz€ Xy »r2z& y2 —r 2]

(ii) We say that (X, R) is weakly confluent or satisfies the weak Church-Rosser prop-
erty, notation (X, R) = WCR, if

Ve, y1,2 € Xz 2p 1 & v =gy = Fz€ Xy »r 2z & ys —r 2]

It is not the case that WCR = CR, do Exercise 2E.18. However, one has the following
result.

2A.4. PROPOSITION (Newman’s Lemma). Let (X, R) be an ARS. Then for (X, R)
WCR & SN = CR.

PROOF. See B[1984], Proposition 3.1.25 or Lemma 5C.8 below, for a slightly stronger
localized version. m

In this section we will show (A%, —g,) = WN.

2A.5. DEFINITION. (i) A multiset over N can be thought of as a generalized set S in
which each element may occur more than once. For example

S ={3,3,1,0}

is a multiset. We say that 3 occurs in S with multiplicity 2; that 1 has multiplicity 1;
etcetera. We also may write this multiset as

S ={32,1%,0'} = {32,201, 0'}.

More formally, the above multiset S can be identified with a function f& NN that is
almost everywhere 0:

f0)=1,f(1) =1,f(2)=0,f(3) =2, f(k) =0,
for k > 3. Such an S is finite if f has finite support, where

support(f) £ {z €N | f(x) # 0}.

(ii) Let S(N) be the collection of all finite multisets over N. S(N) can be identified
with {f € NN | support(f) is finite}. To each f in this set we let correspond the multiset
intuitively denoted by

S = {n™ | n e support(f)}.
2A.6. DEFINITION. Let S1,S2 € S(N). Write
51552

if Sy results from S; by replacing some element (just one occurrence) by finitely many
lower elements (in the usual order of N). For example

{3,3,1,0} -5 {3,2,2,2,1,1,0}.
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The transitive closure of —g, not required to be reflexive, is called the multiset order®
and is denoted by >. (Another notation for this relation is —%.) So for example

{3,3,1,0} > {3,2,2,1,1,0,1,1,0}.
In the following result it is shown that (S(N), —s) is WN, using an induction up to w?.
2A.7. LEMMA. We define a particular (non-deterministic) reduction strategy F' on S(N).
A multi-set S is contracted to F(S) by taking a maximal element n€ S and replacing
it by finitely many numbers < n. Then F' is a normalizing reduction strategy, i.e. for
every S € S(N) the S-reduction sequence
S —s F(S) —S FQ(S) —S

18 terminating.

PRrROOF. By induction on the highest number n occuring in S. If n = 0, then we are
done. If n = k+1, then we can successively replace in S all occurrences of n by numbers

< k obtaining S7 with maximal number < k. Then we are done by the induction
hypothesis. m

In fact (S(N), —s) is SN. Although we do not strictly need this fact in this Part, we
will give even two proofs of it. It will be used in Part II of this book. In the first place
it is something one ought to know; in the second place it is instructive to see that the
result does not imply that )\ﬁ satisfies SN.

2A.8. LEMMA. The reduction system (S(N), —s) is SN.
We will give two proofs of this lemma. The first one uses ordinals; the second one is
from first principles.

PROOF;. Assign to every S € S(N) an ordinal #S < w* as suggested by the following
examples.

#{3,3,1,0,0,0} = 2> + w + 3;

#{3,2,2,2,1,1,0} = w® + 3w? + 2w + 1.
More formally, if S is represented by f € NN with finite support, then
#S = Bienf(i) W',
Notice that
S| —s Sy = #S51 > #5o

(in the example because w® > 3w? + w). Hence by the well-foundedness of the ordinals
the result follows. m;

SWe consider both irreflexive, usually denoted by < or its converse >, and reflexive order relations,
usually denoted by < or its converse >. From < we can define the reflexive version < by

a<b & a=bora<hb.
Conversely, from < we can define the irreflexive version < by
a<b e a<b&a#b.
Also we consider partial and total (or linear) order relations for which we have for all a, b
a<borb<a.

If nothing is said the order relation is total, while partial order relations are explicitly said to be partial.



48 2. PROPERTIES

PRrROOF;,. Viewing multisets as functions with finite support, define
Fi 2 {f eNV|Vn2k. f(n) = 0};
F£ Uk e NFE-

The set F is the set of functions with finite support. Define on F the relation >
corresponding to the relation —s for the formal definition of S(N).

f>g<=f(k) > g(k), where k €N is largest
such that f(k) # g(k).

It is easy to see that (F,>) is a linear order. We will show that it is even a well-order,
i.e. for every non-empty set X C F there is a least element fy€ X. This implies that
there are no infinite descending chains in F.

To show this claim, it suffices to prove that each Fj is well-ordered, since

(Frg1 \ Fi) > Fi

element-wise. This will be proved by induction on k. If £ = 0, then this is trivial, since
Fo = {An.0}. Now assume (induction hypothesis) that Fj is well-ordered in order to
show the same for Fj 1. Let X C Fiy1 be non-empty. Define

X(k)£{f(k)|feX} CN;
Xy 2 {feX|f(k) minimal in X (k)} C Fpi1;

Xilk 2 {ge Fp|3f € Xy flk = g} C Fi,

where
(fIR)@) = f@), i<k

2, else.
By the induction hypothesisX|k has a least element gg. Then gy = fo|k for some
fo € Xi.. This fj is then the least element of X} and hence of X. mo

2A.9. REMARK. The second proof shows in fact that if (D, >) is a well-ordered set, then
so is (S(D), >), defined analogously to (S(N),>). In fact the argument can be carried
out in Peano Arithmetic, showing

Fpa Tl — Tlhe,

where T1,, is the principle of transfinite induction for the ordinal a. Since T1I, is in fact
ordinary induction we have in PA (in an iterated exponentiation parenthesing is to the
right: for example w** = w®*))

TL,, Tlyw, TI uw, - .

This implies that the proof of TI, can be carried out in Peano Arithmetic for every
a < €. Gentzen [1936] shows that TI,, where

w®?

€0 = w" y

cannot be carried out in PA.
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In order to prove that A%, is WN it suffices to work with ASP. We will use the following
notation. We write terms with extra type information, decorating each subterm with its
type. For example, instead of (Az4.M)N € termp we write (A\z4. MB)A=>BNA,

2A.10. DEFINITION. (i) Let R = (Az4. MPB)A7BN4 be a redex. The depth of R, nota-
tion dptR, is defined as
dpt(R) = dpt(A—B),
where dpt on types is defined in Definition 1A.21.
(ii) To each M in AS" we assign a multi-set Sys as follows

Sy = {dpt(R) | R is a redex occurrence in M},

with the understanding that the multiplicity of R in M is copied in S),.

In the following example we study how the contraction of one redex can duplicate
other redexes or create new redexes.

2A.11. EXAMPLE. (i) Let R be a redex occurrence in a typed term M. Assume
M-E 5 N,
i.e. N results from M by contracting R. This contraction can duplicate other redexes.
For example (we write M[P], or M[P, Q] to display subterms of M)
(Az. Mz, z])Ri =g M[R1, R1]

duplicates the other redex R;.
(ii) (Lévy [1978]) Contraction of a 3-redex may also create new redexes. For example

(/\xAHB.M[l,AaBPA}C)(AHB)HC()\yA.QB) —g3 M[()\yA.QB)AHBPA]C;
(/\.’EA.(/\yB.M[IA, yB]C)B—>C)A—>(B—>C)PAQB —s ()\yB.M[PA, yB}C)BeCQB;
()\erB.xA—)B)(AeB)—%AaB)()\yA.PB)AﬁBQA — (}\y

In Lévy [1978], 1.8.4., Lemme 3, it is proved (for the untyped A-calculus) that the three
ways of creating redexes in example 2A.11(ii) are the only possibilities. It is also given
as Exercise 14.5.3 in B[1984].

2A.12. LEMMA. Assume M&ﬁ N and let Ry be a created redex in N. Then
dpt(R) > dpt(Ry).

PROOF. In each of three cases we can inspect that the statement holds. m

2A.13. THEOREM (Weak normalization theorem for A%). If M € A is typable in A%, , then
M is Bn-WN, i.e. has a Bn-nf. In short X% = WN (or more explicitly A2, = Bn-WN ).
ProOF. By Proposition 1B.26(ii) it suffices to show this for terms in AS". Note that
n-reductions decrease the length of a term; moreover, for 3-normal terms n-contractions
do not create B-redexes. Therefore in order to establish 8n-WN it is sufficient to prove
that M has a B-nf.

Define the following B-reduction strategy F. If M is in nf, then F(M)= M. Otherwise,
let R be the rightmost redex of maximal depth n in M. A redex occurrence (A1z1.P1)Q1
is called to the right of an other one (Aax2.P2)Q2, if the occurrence of its A, viz. Ay, is
to the right of the other redex A, viz. As.

Then

A.PB)A_)BQA.

F(M)&N
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where M @ﬂ N. Contracting a redex can only duplicate other redexes that are to
the right of that redex. Therefore by the choice of R there can only be redexes of M
duplicated in F(M) of depth < n. By Lemma 2A.12 redexes created in F'(M) by the
contraction M —g F(M) are also of depth < n. Therefore in case M is not in B-nf we
have

Sum —s Sr(un)-
Since —¢s is SN, it follows that the reduction
M —g F(M) —g F*(M) =g F3(M) =g - -

must terminate in a G-nf. m
2A.14. COROLLARY. Let Ac T* and M e A_,(A). Then M has a Inf.

PRrROOF. Let M € A_,(A). Then M has a B-nf by Theorem 2A.13, hence by Exercise
1E.14 also a Inf. m

For B-reduction this weak normalization theorem was first proved by Turing, see
Gandy [1980a]. The proof does not really need SN for S-reduction, requiring trans-
finite induction up to w®. The simpler result Lemma 2A.7, using induction up to w?,
suffices.

It is easy to see that a different reduction strategy does not yield an S-reduction chain.

For example the two terms

(/\IA.yAHAHAxAl,A)A%A(()\IA'IA)AHA A) *>,3

x
yATASA (g AP AZA) (A 2 A) A A
give the multisets {1,1} and {1,1}. Nevertheless, SN does hold for all systems A%, as
will be proved in Section 2B. It is an open problem whether ordinals can be assigned in

a natural and simple way to terms of A%, such that
M —g N = ord(M) > ord(N).

See Howard [1970] and de Vrijer [1987].

Applications of normalization

We will show that B-normal terms inhabiting the represented data types (Bool, Nat, >*
and T?) all are standard, i.e. correspond to the intended elements. From WN for )\‘i and
the subject reduction theorem it then follows that all inhabitants of the mentioned data
types are standard. The argumentation is given by a direct argument using basically
the Generation Lemma. It can be streamlined, as will be done for Proposition 2A.18,
by following the inhabitation machines, see Section 1C, for the types involved. For
notational convenience we will work with A", but we could equivalently work with ACh
or A8 as is clear from Corollary 1B.25(iii) and Proposition 1B.32.

2A.15. PROPOSITION. Let Bool = Bool,, with a a type atom. Then for M in nf one has

F M : Bool = M € {true,false}.
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PROOF. By repeated use of Proposition 1B.21, the free variable Lemma 1B.2 and the
generation Lemma for )\gu, proposition 1B.3, one has the following.

FM:a—a—a = M= \x.M;
= z:ab M a—o
= M, = \y.Ms
= xa,y:abk M«
= My=xor My =y.
So M = Axy.x = true or M = A\zy.y = false. m
2A.16. PROPOSITION. Let Nat = Nat, = (a—a)—a—a. Then for M in nf one has
FM:Nat = Me{c,|neN}
PROOF. Again we have
FM: (a—a)=ma—a = M=\f.M
= fia—atk M a—a
= M = z.M;
= fa—a,z:atF My a.
Now we have
fra—a,z:ab My:ao = [Ma=2xV
[My = fM3 & f:a—a, v:a b Ms @ af].
Therefore by induction on the structure of Ms it follows that
fra—a,z:ak My :ao = My = fx,
withn > 0. So M = Afz.f"r=c,. m
2A.17. PROPOSITION. Let Sigma® = Sigma’,. Then for M in nf one has
F M :Sigma* = Me{w|weX*}.
PRrROOF. Again we have
FM:a—(a—a)*—a = M=M\z.N
= z:ak N: (a—a)f=a

= N =Xa1.N; & z:0,a1:a—a - Ny : (a—a)f1=a
= N=Xay---ap.N&za,aq, - ,ap:a—a b N«
= [Ny=zV

[N, = aijN’k & oy ay, - apa—a k- N ]
= Nk = ai (i (- (a3, @) - )

4

M = Azay - - - ag.aiy (aiy (- - - (@i, ) - -))
= A4y Qg * 0" Q. B

A more streamlined proof will be given for the data type of trees T2.
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2A.18. PROPOSITION. Let T=T2 2 (a = a—a) —a—a and M €N, (T?).
(i) If M is in Inf, then M =t, for some t € T?.
(ii) Then M=gyt for some tree t € T?.

PROOF. (i) For M in Inf use the inhabitation machine for T2 to show that M = t for
some t € T2.

(ii) For a general M there is by Corollary 2A.14 an M’ in Inf such that M =g,, M'.
Then by (i) applied to M’ we are done. m

This proof raises the question what terms in B-nf are also in Inf, do Exercise 1E.15.

2B. Proofs of strong normalization

We now will give two proofs showing that A% = SN. The first one is the classical proof
due to Tait [1967] that needs little technique, but uses set theoretic comprehension. The
second proof due to Statman is elementary, but needs results about reduction.

2B.1. THEOREM (Strong normalization theorem for AC). For all A€ T, M € ASP(A)
one has Bn-SN(M).

PROOF. We use an induction loading. First we add to A%, constants d, € AS(a) for
each atom «, obtaining )\g}”. Then we prove SN for the extended system. It follows a
fortiori that the system without the constants is SN.

Writing SN for SNg,, one first defines for A € T the following class C4 of computable
terms of type A.

Co 2 {M e AP (a) | SN(M)};
Cap2{MeAMP(A-B) |VQeCs. MQeCpY;

ct |J ca

AeT
Then one defines the classes C% of terms that are computable under substitution
Ch2{MeA(A) |VPeC.M[z: = P|le AMP(4) = M[#: = PleC4}.
Write C* £ |J{C% | A€ T*°}. For A= A;— - —A,—a define
da 2 Azt Axdn d,,.

Then for A one has
MeCy & VQeC.MQ €SN, (0)

MeCY & VP,QeC.M[z: = P|Q €SN, (1)

where the P, Q should have the right types and MQ and M [ = ]3]@ are of type a,
respectively. By an easy simultaneous induction on A one can show

MeCy = SN(M); (2)
da €Ca. (3)

In particular, since M[Z: = PJ§ €SN = M €SN, it follows that
MeC* = MeSN. (4)
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Now one shows by induction on M that
MeA(A) = MeCj. (5)

We distinguish cases and use (1).

Case M = z. Then for P, €C one has Mx: = P]@ = PQ €C C SN, by the definition
of C and (2).

Case M = NL is easy.

Case M = Ax.N. Now Ax.IN € C* iff for all 13, Q, R €C one has

(Az.N[j: = P))QR € SN. (6)
By the IH one has N € C* C SN; therefore, if 13, Q, ReccC SN, then
Nlz: = Q,§: = P]R€SN. (7)

Now every maximal reduction path o starting from the term in (6) passes through a
reduct of the term in (7), as reductions within N, P,Q, R are finite, hence o is finite.
Therefore we have (6).

Finally by (5) and (4), every typable term of ASP*, hence of A%, is SN. m

The idea of the proof is that one would have liked to prove by induction on M that it
is SN. But this is not directly possible. One needs the induction loading that MP € SN.
For a typed system with only combinators this is sufficient and is covered by the original
argument of Tait [1967]. For lambda terms one needs the extra induction loading of being
computable under substitution. This argument was first presented by Prawitz [1971],
for natural deduction, Girard [1971] for the second order typed lambda calculus A2, and
Stenlund [1972] for A_,.

2B.2. COROLLARY (SN for ASY). VA€ TVM € AS%T(A).SNg, (M).

PROOF. Suppose M € A has type A with respect to I' and has an infinite reduction path
o. By repeated use of Proposition 1B.26(ii) lift M to M’ € AC! with an infinite reduction
path (that projects to o), contradicting the Theorem. m

An elementary proof of strong normalization

Now we present an elementary proof, due to Statman, of strong normalization of )\ﬁ;Ch,
where A = {0}. Inspiration came from Nederpelt [1973], Gandy [1980b] and Klop [1980].
The point of this proof is that in this reduction system strong normalizability follows
from normalizability by local structure arguments similar to and in many cases identical
to those presented for the untyped lambda calculus in B[1984]. These include analysis
of redex creation, permutability of head with internal reductions, and permutability of
n- with B-redexes. In particular, no special proof technique is needed to obtain strong
normalization once normalization has been observed. We use some results in the untyped
lambda calculus
2B.3. DEFINITION. (i) Let R = (Az.X)Y be a B-redex. Then R is

(1) an I-redex if x € FV(X);
(2) a K-redez if x ¢ FV(X);
(3) a K°-redex if R is a K-redex and z = 2 and X € A“P(0);
(4)

3
4) a Kt-redex if R is a K-redex and is not a K°-redex.
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(ii) A term M is said to have the AK°-property, if every abstraction Az.X in M with
x ¢ FV(X) satisfies = 2° and X € A°1(0).
NOTATION. (i) —gi is reduction of I-redexes.

(ii) —gik+ is reduction of I- or K*-redexes.

(iii) — ke is reduction of K°-redexes.

2B.4. THEOREM. Every M € ACP is Bn-SN.

PRrROOF. The result is proved in several steps.
(i) Every term is Bn-normalizable and therefore has a hnf. This is Theorem 2A.13.
(ii) There are no B-reduction cycles. Consider a shortest term M at the beginning of
a cyclic reduction. Then

M—>ﬁM1—>@”-—>gMnEM,

where, by minimality of M, at least one of the contracted redexes is a head-redex. Then
M has an infinite quasi-head-reduction consisting of —g o —} o —3 steps. Therefore
M has an infinite head-reduction, as internal (i.e. non-head) redexes can be postponed.
(This is Exercise 13.6.13 [use Lemma 11.4.5] in B[1984].) This contradicts (i), using
B[1984], Corollary 11.4.8 to the standardization Theorem.

(i) M -, N —»E L = 3PM —»E P —, N. This is a strengthening of n-
postponement, B[1984] Corollary 15.1.6, and can be proved in the same way.

(iv) B-SN = Bn-SN. Take an infinite —g,, sequence. Make a diagram with 3-steps
drawn horizontally and n-steps vertically. These vertical steps are finite, as n = SN.
Apply (iii) at each —, o —»g—step. The result yields a horizontal infinite —3 sequence.

(v) We have A4, = BI-WN. By (i).

(vi) A4 = BI-SN. By Church’s result in B[1984], Conservation Theorem for Al, 11.3.4.

(vii) M -g N = IP.M —g+ P —gke N (BK’-postponement). When contracting
a K? redex, no redex can be created. Realizing this, one has

From this the statement follows by a simple diagram chase, that w.l.o.g. looks like

BIKT  BIKT  BIKT
—_— e P > ‘
,@K"i BKe : | BKO
BIKT ¥ BIKT ¥

e >

(viil) Suppose M has the NK°-property. Then M (-reduces to only finitely many N.
First observe that M —gk+ N = M —»g N, as a contraction of an I-redex cannot
create a KT-redex. (But a contraction of a K redex can create a K¥ redex.) Hence by



2C. CHECKING AND FINDING TYPES 55

(vi) the set X = {P | M —» g+ P} is finite. Since K-redexes shorten terms, also the set
of K°-reducts of elements of X form a finite set. Therefore by (vii) we are done.

(ix) If M has the AK°-property, then M = 3-SN. By (viii) and (ii).

(x) If M has the AK°-property, then M |= Bn-SN. By (iv) and (ix).

(xi) For each M there is an N with the AK°-property such that N —»gy, M. Let
R = \z.PP a subterm of M, making it fail to be a term with the AK°-property. Write
A=A1—---—A,—0, B= Bj—---—By—0. Then replace mentioned subterm by

R =Xyt oy (A (Py ) (et uge),

a

which Bn-reduces to R, but does not violate the AK°-property. That R’ contains the
free variables 4 does not matter. Treating each such subterm this way, N is obtained.
(xii) A4 = Bn-SN. By (x) and (xi). m
Other proofs of SN from WN are in de Vrijer [1987], Kfoury and Wells [1995], Sgrensen
[1997], and Xi [1997]. In the proof of de Vrijer a computation is given of the longest
reduction path to B-nf for a typed term M.

2C. Checking and finding types

There are several natural problems concerning type systems.

2C.1. DEFINITION. (i) The problem of type checking consists of determining, given basis
I', term M and type A whether I' - M : A.

(ii) The problem of typability consists of determining for a given term M whether M
has some type with respect to some I'.

(iii) The problem of type reconstruction (‘finding types’) consists of finding all possible
types A and bases I' that type a given M.

(iv) The inhabitation problem consists of finding out whether a given type A is inhab-
ited by some term M in a given basis I'.

(v) The enumeration problem consists of determining for a given type A and a given
context I' all possible terms M such that I' = M : A.

The five problems may be summarized stylistically as follows.

I' Fa, M:A? type checking;

JAT T Fa, M:A? typability;
? kA, M: 7 type reconstruction;
AM [T Fx, M:A]?  inhabitation;
I' Fn, 7:A enumeration.

In another notation this is the following.
M e AV (A)?  type checking;
JA,T M € AL (A)?  typability;
M e A% (?) type reconstruction;
AL (A) £ 07 inhabitation;

7 € AL (4) enumeration.
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In this section we will treat the problems of type checking, typability and type recon-
struction for the three versions of A_,. It turns out that these problems are decidable
for all versions. The solutions are essentially simpler for A" and A4B than for AC". The
problems of inhabitation and enumeration will be treated in the next section.

One may wonder what is the role of the context I' in these questions. The problem

dr3ATHM: A
can be reduced to one without a context. Indeed, for I' = {z1:41, -+ ,xp: 45}
F'FM:A & FAz1(GAD) - Axn(AR).M) : (A — - = A, — A).
Therefore
d3AT+FM: A < 3B [F A\Z.M : B].
On the other hand the question
JraM ' M : A]?
is trivial: take I' = {:A} and M = z. So we do not consider this question.

The solution of the problems like type checking for a fixed context will have important
applications for the treatment of constants.

Checking and finding types for )\d_>B and }\gh

We will see again that the systems A2 and AS" are essentially equivalent. For these sys-
tems the solutions to the problems of type checking, typability and type reconstruction
are easy. All of the solutions are computable with an algorithm of linear complexity.

2C.2. PrROPOSITION (Type checking for A4B). Let T' be a basis of A2, Then there is a
computable function typep : AB — T U {error} such that

M e ABT(A) & typep(M) = A.
PROOF. Define

typep(z) £ T(a);
typep(MN) £ B, if typep(M) = typer(N)—B,
£ error, else;
typep(\z:A.M) £ A-=typerpay(M),  if typepyy.ay(M) # error,
£ error, else.

Then the statement follows by induction on the structure of M. m
2C.3. COROLLARY. Typability and type reconstruction for A2 are computable. In fact
one has the following.
(i) M € ABT < typep(M) # error.
(ii) Each M € AYBT(typer) has a unique type; in particular
M € AT (typer(M)).
ProOF. By the proposition. m

For )\gh things are essentially the same, except that there are no bases needed, since
variables come with their own types.
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2C.4. PROPOSITION (Type checking for ASM). There is a computable function type :
ACM — T such that

M € A°M(A) & type(M) = A.
PROOF. Define

type(z”) £ A
type(MN) = B, if type(M) = type(N)—B,
type(A\z. M) £ A—type(M).

Then the statement follows again by induction on the structure of M. m

2C.5. COROLLARY. Typability and type reconstruction for AP are computable. In fact
one has the following. Each M € ACP has a unique type; in particular M € AP (type(M)).

ProOOF. By the proposition. m

Checking and finding types for )\gu

We now will show the computability of the three questions for AS". This occupies 2C.6
- 2C.16 and in these items - stands for l—gi over a general T,

Let us first make the easy observation that in )\gu types are not unique. For example
| = Az.z has as possible type a—«, but also (—3)—(5—/f) and in general A—A. Of
these types a—a is the ‘most general’ in the sense that the other ones can be obtained
by a substitution in a.

2C.6. DEFINITION. (i) A substitutor is an operation * : T — T such that
*(A — B) = x(A) — x(B).

(ii) We write A* for x(A).
(iii) Usually a substitution * has a finite support, that is, for all but finitely many
type variables a one has o = a (the support of * being

sup(x) = {a | o # a}).

In that case we write

x(A) = Alag ==, ,a = )],
where {aq, - ,a,} 2 sup(x). We also write
= [ag =, o =)
and
* =[]

for the identity substitution.
2C.7. DEFINITION. (i) Let A, B€ . A unifier for A and B is a substitutor * such that
A* = B*.

(ii) The substitutor * is a most general unifier for A and B if

o A*=B*

o A" = B*1 = dxg9 .%] = %9 0.
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(iii) Let E = {A; = By, -+, A, = By} be a finite set of equations between types.
The equations do not need to be valid. A wunifier for E is a substitutor * such that
A} = B & --- & A} = B}. In that case one writes x = E. Similarly one defines the
notion of a most general unifier for F.

2C.8. EXAMPLES. The types f — (o — ) and (v — ) — J have a unifier. For
example x = [ =7 = 7,0 =a = (y > y)]or*x =[f:=7 =7 a:=c¢c = ¢
0:=¢— e — (7 —7)]. The unifier * is most general, *; is not.

2C.9. DEFINITION. A is a variant of B if for some %; and %9 one has

A= B" and B = A*.
2C.10. EXAMPLE. a — 8 — f is a variant of v — 0 — ¢ but not of @« — 8 — a.

Note that if *; and %9 are both most general unifiers of say A and B, then A*!' and
A*? are variants of each other and similarly for B.

The following result due to Robinson [1965] states that (in the first-order” case) uni-
fication is decidable.

2C.11. THEOREM (Unification theorem). (i) There is a recursive function U having (af-
ter coding) as input a pair of types and as output either a substitutor or fail such
that

A and B have a unifier = U(A, B) is a most general unifier
for A and B;
A and B have no unifier = U(A, B) = fail.

(ii) There is (after coding) a recursive function U having as input finite sets of equa-
tions between types and as output either a substitutor or fail such that

E has a unifier = U(E) is a most general unifier for E;
E has no unifier = U(F) = fail.

ProoOF. Note that A1—As = B;— B> holds iff A1 = By and Ay = By hold.
(i) Define U(A, B) by the following recursive loop, using case distinction.

Ulw,B) = [a:=B], ifa ¢ FV(B),
= [], if B=a,
fail, else;

U(A1— Az, a) =U(a, A1 —A);
U(A1—Ag, Bi—By) = U(AVA ) pUAB)y o 174, By,
where this last expression is considered to be fail if one of its parts is. Let
#oar (A, B) = ‘the number of variables in A — B’,
#_(A, B) = ‘the number of arrows in A — B’.

By induction on (#yaer(A, B), #— (A, B)) ordered lexicographically one can show that
U(A, B) is always defined. Moreover U satisfies the specification.

(ii) If E={A1 = By,--- , A, = By}, then define U(E) = U(A, B), where
A=A—---—A,and B=B1— --—B,.n

"That is, for the algebraic signature (T, —). Higher-order unification is undecidable, see Section 4B.
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See Baader and Nipkow [1998] and Baader and Snyder [2001] for more on unifica-
tion. The following result due to Parikh [1973] for propositional logic (interpreted by
the propositions-as-types interpretation) and Wand [1987] simplifies the proof of the
decidability of type checking and typability for A_,.

2C.12. PROPOSITION. For every basis T, term M € A and A€ T such that FV(M) C
dom(T") there is a finite set of equations E = E(T', M, A) such that for all substitutors
one has

x=FET,M,A) = TI*FM:A" (1)
"'eM: A" = xFEEI,M,A), (2)
for some *1 such that *x and %1 have the same

effect on the type variables in I' and A.
PRrROOF. Define E(I', M, A) by induction on the structure of M:

ET,z,A)={A=T(2)};
E(’'MN,A)=E(IT,M,a—A) U E(I',N,a),
where « is a fresh variable;
ET  e.M,A)=ET U{z:a}, M,p) U {a—5 = A},

where «a, 8 are fresh.

By induction on M one can show (using the generation Lemma (1B.3)) that (1) and (2)
hold. m

2C.13. DEFINITION. (i) Let M € A. Then (I', A) is a principal pair for M, notation
pp(M), if
(1) TFM: A
2)T'EM:A = I« [*FCTV & A*= A
Here {z1:A1, -} ={z1:47,--- }.
(ii) Let M € A be closed. Then A is a principal type, notation pt(M), if
(H)FM: A
(2) FM:A = I [A*=A].

Note that if (T', A) is a pp for M, then every variant (I', A’) of (I', A), in the obvious
sense, is also a pp for M. Conversely if (', A) and (I, A") are pp’s for M, then (I, A)
is a variant of (I', A). Similarly for closed terms and pt’s. Moreover, if (I', A) is a pp for
M, then FV(M) = dom(T").

The following result is independently due to Curry [1969], Hindley [1969], and Milner
[1978]. It shows that for A_, the problems of type checking and typability are decidable.
One usually refers to it as the ‘Hindley-Milner algorithm’.

2C.14. THEOREM (Principal type theorem for AS“). (i) There exists a computable func-
tion pp such that one has
M has a type = pp(M) = (I", A), where (I, A) is a pp for M;
M has no type = pp(M) = fail.
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(ii) There exists a computable function pt such that for closed terms M one has
M has a type = pt(M) = A, where A is a pt for M;
M has no type = pt(M) = fail.
Proor. (i) Let FV(M) = {x1, - ,z,} and set I'g = {z1:a1,- -+ ,xp:,} and Ag = B.
Note that
M hasatype = d'dJATHFM: A
= dx I'GFM: Aj
= Jx x = E(lo, M, Ap).
Define
pp(M) (5, Ag), i U(E(To, M, Ag)) = *;
fail, if U(E(Ly, M, Ap)) = fail.

> 1>

Then pp(M) satisfies the requirements. Indeed, if M has a type, then
U(E(Ty, M, Ayp)) = *

is defined and I'§; = M : A§ by (1) in Proposition 2C.12. To show that (I'§, Af) is a pp,
suppose that also I' - M : A’ Let I =TV | FV(M); write [ = 'y and A" = A°. Then
also I'p® F M : Ay°. Hence by (2) in proposition 2C.12 for some #; (acting the same as
%o on I'g, Ap) one has x; |= E(Tg, M, Ap). Since * is a most general unifier (proposition
2C.11) one has *; = %9 o * for some 3. Now indeed

([§)2 =Ty =Ty =T C T’
and
(A5)" = Aft = A = A

If M has no type, then =3 % * = E(Tg, M, Ap) hence

U(To, M, Ap) = fail = pp(M).

(ii) Let M be closed and pp(M) = (I', A). Then I' = () and we can put pt(M) = A. =

2C.15. COROLLARY. Type checking and typability for /\g“ are decidable.
PROOF. As to type checking, let M and A be given. Then

FM:A & 3x[A=pt(M)*].

This is decidable (as can be seen using an algorithm—pattern matching—similar to the
one in Theorem 2C.11).
As to typability, let M be given. Then M has a type iff pt(M) # fail. m

The following result is due to Hindley [1969] and Hindley [1997], Thm. TA2.
2C.16. THEOREM (Second principal type theorem for ASY). (i) For every A€ T one has

FM:A = MM g M & pt(M') = A,
(ii) For every A€ T there exists a basis T and M € A such that (T, A) is a pp for M.



2C. CHECKING AND FINDING TYPES 61

PROOF. (i) We present a proof by examples. We choose three situations in which we
have to construct an M’ that are representative for the general case. Do Exercise 2E.5
for the general proof.

Case M = Az.z and A = (a—p)—a—f. Then pt(M) = a—a. Take M’ = I\xy.zy.
The n-expansion of A\z.x to Axy.xy makes subtypes of A correspond to unique subterms
of M'.

Case M = Azy.y and A = (a—7)—LB—5. Then pt(M) = a—p—F. Take M' =
Azy. Ky(Az.zz). The B-expansion forces x to have a functional type.

Case M = Maxy.x and A = a—a—a. Then pt(M) = a—f—a. Take M’ =
Axy.Kz(Af.[fz, fy]). The B-expansion forces z and y to have the same types.

(ii) Let A be given. We know that - | : A—A. Therefore by (i) there exists an
I” - gy, | such that pt(lI') = A—A. Then take M = I'z. We have pp(I'z) = ({2:A4},A). m

It is an open problem whether the result also holds in the Al-calculus.

Complexity

A closer look at the proof of Theorem 2C.14 reveals that the typability and type-checking
problems (understood as yes or no decision problems) reduce to solving first-order uni-
fication, a problem known to be solvable in polynomial time, see Baader and Nip-
kow [1998]. Since the reduction is also polynomial, we conclude that typability and
type-checking are solvable in polynomial time as well.

However, the actual type reconstruction may require exponential space (and thus also
exponential time), just to write down the result. Indeed, Exercise 2E.21 demonstrates
that the length of a shortest type of a given term may be exponential in the length of
the term. The explanation of the apparent inconsistency between the two results is this:
long types can be represented by small graphs.

In order to decide whether for two typed terms M, N € A_,(A) one has

M =g, N,

one can normalize both terms and see whether the results are syntactically equal (up
to a-conversion). In Exercise 2E.20 it will be shown that the time and space costs of
solving this conversion problem is hyper-exponential (in the sum of the sizes of M, N).
The reason is that there are short terms having very long normal forms. For instance,
the type-free application of Church numerals

CnCm = Cipn
can be typed, even when applied iteratively

CniCny ** " Cp. -

In Exercise 2E.19 it is shown that the costs of this typability problem are also at most
hyper-exponential. The reason is that Turing’s proof of normalization for terms in A_,
uses a successive development of redexes of ‘highest’ type. Now the length of each such
development depends exponentially on the length of the term, whereas the length of a
term increases at most quadratically at each reduction step. The result even holds for
typable terms M, N € AC"(A), as the cost of finding types only adds a simple exponential
to the cost.
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One may wonder whether there is not a more efficient way to decide M =g,, N, for
example by using memory for the reduction of the terms, rather than a pure reduction
strategy that only depends on the state of the term reduced so far. The sharpest question
is whether there is any Turing computable method, that has a better complexity class.
In Statman [1979] it is shown that this is not the case, by showing that every elementary
time bounded Turing machine computation can be coded as a a convertibility problem for
terms of some type in AY,. A shorter proof of this result can be found in Mairson [1992].

2D. Checking inhabitation

In this section we study for A%, the problem of inhabitation. In Section 1C we wanted to
enumerate all possible normal terms in a given type A. Now we study mere existence of
a term M such that in the empty context I—Ni M : A. By Corollaries 1B.20 and 1B.33
it does not matter whether we work in the system d la Curry, Church or de Bruijn.
Therefore we will focus on )\gu. Note that by Proposition 1B.2 the term M must be
closed. From the normalization theorem 2A.13 it follows that we may limit ourselves to
find a term M in G-nf.

For example, if A = a—a, then we can take M = Az(:a).z. In fact we will see later
that this M is modulo B-conversion the only choice. For A = a—a—r« there are two
inhabitants: M; = Azjz9.21 = K and Ms = Az129.79 = Kk. Again we have exhausted
all inhabitants. If A = «, then there are no inhabitants, as we will see soon.

Various interpretations will be useful to solve inhabitation problems.

The Boolean model

Type variables can be interpreted as ranging over B = {0,1} and — as the two-ary
function on B defined by

r=y=1—z+2y
(classical implication). This makes every type A into a Boolean function. More formally
this is done as follows.

2D.1. DEFINITION. (i) A Boolean valuation is a map p : A—B.
(ii) Let p be a Boolean valuation. The Boolean interpretation under p of a type
A€T, notation [A] , is defined inductively as follows.

[a], £ p(a);
[A1—As], = [A1],—[A42],
(iii) A Boolean valuation p satisfies a type A, notation p = A, if [A], = 1. Let
I'={xy: Ay, - ,x,: Ap}, then p satisfies ', notation p =T, if
pEAL& - &pE A,

(iv) A type A is classically valid, notation = A, iff for all Boolean valuations p one
has p = A.

2D.2. PROPOSITION. Let I' t-xa M:A. Then for all Boolean valuations p one has
pEL = pE A
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PRrOOF. By induction on the derivation in A\%,. m

From this it follows that inhabited types are classically valid. This in turn implies
that the type « is not inhabited.

2D.3. COROLLARY. (i) If A is inhabited, then = A.
(ii) A type variable v is not inhabited.

PRrROOF. (i) Immediate by Proposition 2D.2, by taking I' = (.
(ii) Immediate by (i), by taking p(a) =0.m
One may wonder whether the converse of 2D.3(i), i.e.
= A = A is inhabited (1)
holds. We will see that in A% this is not the case. For A%, (having only one base type
0), however, the implication (1) is valid.
2D.4. PROPOSITION (Statman [1982]). Let A = A1—---—A,—0, with n > 1 be a type
of A%, Then
A is inhabited < for some i with 1 < i < n the type
A; is not inhabited.
PROOF. ( = ) Assume ko, M : A. Suppose towards a contradiction that all A; are
inhabited, i.e. Fxo, N;: A;. Then Fyo MNy--- Ny : 0, contradicting 2D.3(ii).
(<) By induction on the structure of A. Assume that A; with 1 < ¢ < n is not
inhabited.
Case 1. A; =0. Then
T :Al,”- ,xn:Anl—xi:O
SO
= ()\1‘1 v xnl‘z) : A1—> v —)An—ﬂ),
i.e. A is inhabited.
Case 2. A; = By—---—B;,—0. By (the contrapositive of) the induction hypothesis
applied to A; it follows that all B; are inhabited, say - M; : B;. Then
x1: Ay, gt Ap byt Ay = Bi— - =B, —0
= iL'liAl,-'- ,$nAn|_$ZM1MmO
= FAr1-rxpaiMyoo My, A~ —>A,—w0=A. =
From the proposition it easily follows that inhabitation of types in A% is decidable
with a linear time algorithm.
2D.5. COROLLARY. In A%, one has for all types A

A is inhabited & = A.

PrROOF. ( = ) By Proposition 2D.3(i). (<) Assume = A and that A is not inhabited.
Then A = A;—---—A,—0 with each A; inhabited. But then for pg(0) = 0 one has

1= [[A]]Po
= [[Al]]p0—> e —>[[An]]p0—>0
=1—-.- =10, since | A; for all i,
=0, since 1-0 =0,
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contradiction. m

Corollary 2D.5 does not hold for A%. In fact the type ((a—f)—a)—« (corresponding
to Peirce’s law) is a valid type that is not inhabited, as we will see soon.

Intuitionistic propositional logic

Although inhabited types correspond to Boolean tautologies, not all such tautologies
correspond to inhabited types. Intuitionistic logic provides a precise characterization
of inhabited types. The underlying idea, the propositions-as-types correspondence will
become clear in more detail in Sections 6C, 6D. The book Sgrensen and Urzyczyn [2006]
is devoted to this correspondence.

2D.6. DEFINITION (Implicational propositional logic). (i) The set of formulas of the im-
plicational propositional logic, notation form(PROP), is defined by the following simpli-
fied syntax. Define form = form(PROP) as follows.

form = var|form D form
var = plvar

For example p’,p" D p,p’ D (p D p) are formulas.
(ii) Let I be a set of formulas and let A be a formula. Then A is derivable from T,
notation I' Fprop A, if I' = A can be produced by the following formal system.

Ael’ = TFA
'A>DB, T+A = TI+B
IAFB = THFADB

NoTATION. (i) ¢,7,s,t,--- stand for arbitrary propositional variables.

(ii) As usual I'+ A stands for I' Fprop A if there is little danger for confusion.
Moreover, - A stands for () - A.

2D.7. EXAMPLE. (i) F A D A;

(i) AF B D A

(i) FAD (B D A);

(iv) AD(ADB)-ADB.
2D.8. DEFINITION. Let A € form(PROP) and I" C form(PROP).
(i) Define [A] € T and I'y C T as follows.

A [A] Ta

D P [
PO Q| [P=[Q]|TpuUly

It so happens that I'y = () and [A] is A with the D replaced by —. But the setup will
be needed for more complex logics and type theories.

(ii) Moreover, we set [['| = {zx4:A| A€T}.
2D.9. PROPOSITION. Let A € form(PROP) and A C form(PROP). Then

Atprop A = [A]Fa_ M :[A], for some M.
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PrOOF. By induction on the generation of A - A.
Case 1. A+ A because A€ A. Then (z4:[A]) € [A] and hence [A] F z4 : [A]. So we
can take M = x4.
Case 2. A+ Abecause A+ B D Aand A F B. Then by the induction hypothesis[A] -
P : [B]—[A] and [A] F @ : [B]. Therefore, [A] - PQ : [A].
Case3. AF Abecause A= B D Cand A, B+ C. By the induction hypothesis[A], zp:[B] I
M :[C]. Hence [A]F (Azp.M) : [B]=[C]=[BDC]=[A]l. =
Conversely we have the following.
2D.10. PROPOSITION. Let A, A C form(PROP). Then

[A] }—)\ﬁ M : [A] = A Fprop A.

PRrOOF. By induction on the structure of M.

Case 1. M = z. Then by the generation Lemma 1B.3 one has (x:[A4]) € [A] and hence
A€ A; so Abprop A.

Case 2. M = P(Q). By the generation Lemma for some C' € T one has [A] - P : C—[A]
and [A] F @ : C. Clearly, for some C’ € form one has C = [C]. Then C—[A] = [C' D A].
By the induction hypothesisone has A+ C'—A and A + C’. Therefore A - A.

Case 3. M = Az.P. Then [A] F Az.P : [A]. By the generation Lemma [A] = B—C
and [A],z:B F P : C, so that [A],z:[B'] v P : [C'], with [B'] = B,[C'] = C (hence
[A] = [B' D C’]). By the induction hypothesisit follows that A, B I C and therefore
AFB—C=A.n
Although intuitionistic logic gives a complete characterization of those types that are in-
habited, this does not answer immediately the question whether the type ((a—f)—a)—a
corresponding to Peirce’s law is inhabited.

Kripke models

Remember that a type A€ T is inhabited iff it is the translation of a B € form(PROP)
that is intuitionistically provable. This explains why

A inhabited = [ A,

but not conversely, since = A corresponds to classical validity. A common tool to prove
that types are not inhabited or that formulas are not intuitionistically derivable consists
of the notion of Kripke model, that we will introduce now.
2D.11. DEFINITION. (i) A Kripke model is a tuple K =< K, <,®, F' >, such that
(1) < K,<,® > is a partially ordered set with least element ®;
(2) F : K—p(var) is a monotonic map from K to the powerset of the set of type-
variables; that is Vk, k'€ K [k <k = F(k) C F(K')].

We often just write K =< K, F >.

(ii) Let K =< K,F > be a Kripke model. For k€ K define by induction on the
structure of A € T the notion k forces A, notation k I A. We often omit the subscript.

kElFa < acF(k);
kIF A=Ay & VK >k[E - A = K IF A).

(iii) K forces A, notation KlI-A, is defined as © IFx A.
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(iv) Let I' = {z1: 41, -+ ,zn:An}. Then K forces I', notation I I- T, if
KA & - &K IFA,.
We say I' forces A, notation I' I- A, iff for all Kripke models K one has
KIFT = KIF A.
In particular forced A, notation IF A, if I I A for all Kripke models K.
2D.12. LEMMA. Let IC be a Kripke model. Then for all A€ T one has
k<K &klFx A = K IF¢ A
PRrROOF. By induction on the structure of A. m

2D.13. PROPOSITION. 'ty , M : A = T'I- A.

PrOOF. By induction on the derivation of M : A from I'. If M : Ais x : A and is
in I', then this is trivial. f T F M : Ais '+ FP : A and is a direct consequence of
I'F:B—Aand 't P: B, then the conclusion follows from the induction hypothesis
and the fact that £k IF BoA& kI B = kI A. In the case that ' H M : A is
' Ax.N : Aj— Ay and follows directly from I', x: A1 = N : Ay we have to do something,.
By the induction hypothesiswe have for all X

IC I+ F,Al = KIF AQ. (2)

We must show I' IF A1 — Ay, ie. CIFT = KIF A;— Ay for all K.
Given K and k € K, define

Kz <{KeK|k<k} <k F>,
(where < and F are in fact the appropriate restrictions to the subset {k¥' € K |k < k'}
of K). Then it is easy to see that also ki is a Kripke model and
klFx A & Ky IFA. (3)
Now suppose K IF T' in order to show IC IF A1 —Ag, i.e. for all ke K
kb A1 = kg As.
Indeed,
klbe Ay = Kyl Ay, by (3)
= Kl Ag, by (2), since by Lemma 2D.12 also Ky IF T,
= klFcAy m
2D.14. COROLLARY. Let AcT. Then
A is inhabited = |- A.

PROOF. Take ' = (). m

Now it can be proved, see exercise 2E.8, that (the type corresponding to) Peirce’s law
P = ((a—p)—a)—a is not forced in some Kripke model. Since I[P it follows that P is
not inhabited, in spite of the fact that = P.

We also have a converse to corollary 2D.14 which theoretically answers the inhabitation
question for A4,.

2D.15. REMARK. [Completeness for Kripke models]
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(i) The usual formulation is for provability in intuitionistic logic:
A is inhabited < IF A.

The proof is given by constructing for a type that is not inhabited a Kripke ‘counter-
model’ I, i.e. K I} A, see Kripke [1965].

(ii) In Harrop [1958] it is shown that these Kripke counter-models can be taken to be
finite. This solves the decision problem for inhabitation in A%.

(iii) In Statman [1979a] the decision problem is shown to be PSPACE complete, so that
further analysis of the complexity of the decision problem appears to be very difficult.

Set-theoretic models

Now we will prove using set-theoretic models that there do not exist terms satisfying
certain properties. For example making it possible to take as product A x A just the
type A itself.

2D.16. DEFINITION. Let A€ T*. An A x A—A pairing is a triple (pair,left, right)
such that

paire A% (A—A—A);

left,right € A’ (A—A);

left(pair zy?) =g, 2 & right(pair2?y?) =5, y*.
The definition is formulated for AS". The existence of a similar A x A—A pairing in
)\g“ (leave out the superscripts in x4, yA) is by Proposition 1B.26 equivalent to that in
ACh We will show using a set-theoretic model that for all types A€ T there does not

exist an A x A—A pairing. We take T = T, but the argument for an arbitrary T is
the same.

2D.17. DEFINITION. (i) Let X be a set. The full type structure (for types in TY) over
X, notation My = {X(A)} 4 c o, is defined as follows. For A€ T let X (A) be defined
inductively as follows.
X(0) £ X;
X(A—B) 2 X(B)X™ | the set of functions from X (A) into X (B).
(ii) M, =

In order to use this model, we will use the Church version /\gh, as terms from this system
are naturally interpreted in M.

2D.18. DEFINITION. (i) A waluationin Mx is a map p from typed variables into U4 X (A)
such that p(z4) € X(A) for all A€ TP,

(ii) Let p be a valuation in M. The interpretation under p of a ACP-term into M,
notation [M] ), is defined as follows.

[+"], = p(z);
[MN], = [M],IN],;
.M, 2 Ad e X(A).[M],a—g),
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where p(xz: = d) = p/ with p/(z4) £ d and p'(y?) £ p(yP) if yB % 248
(iii) Define
Mx EM=N < Vp[M],=[N],
Before proving properties about the models it is good to do exercises 2E.11 and 2E.12.
2D.19. PROPOSITION. (i) M € ASM(A) = [M], € X(A).
(i) M =gp, N = MxE=M=N.
PRrOOF. (i) By induction on the structure of M.
(i) By induction on the ‘proof’ of M =g, N, using
[M[z: = N]], = [[M]]p(w:[[N}]p)’ for the B-rule;
plFV(M) = p'|[FV(M) = [M], =[M],, for the n-rule;
Vde X (A) [M] peay = [N] juieay) = Da.M], = [Az*.N],, for the ¢-rule. m
Now we will give applications of the notion of type structure.
2D.20. PROPOSITION. Let A€ . Then there does not exist an A x A—A pairing.
ProOF. Take X = {0,1}. Then for every type A the set X (A) is finite. Therefore by a
cardinality argument there cannot be an A x A— A pairing, for otherwise f defined by
f(z,y) = [pair]zy
would be an injection from X (A) x X(A) into X (A), do exercise 2E.12. m
2D.21. PROPOSITION. There is no term pred € AS"(Nat—Nat) such that

pred cg =gy Co;
predcCpi1 =gn Cn-
PROOF. As before for X = {0, 1} the set X (Nat) is finite. Therefore
MX ): Cn = Cm,
for some n # m. If pred did exist, then it would follow easily that M x = ¢y = ¢;. But
this implies that X (0) has cardinality 1, since co(Kz)y = y but ¢i(Kz)y = Kzy = z, a
contradiction. m
Another application of semantics is that there are no fixed point combinators in Agh.

2D.22. DEFINITION. A closed term Y is a fized point combinator of type A€ TV if
YV ASM (A= A)—=A) &Y =g, MATAL(YVS).

2D.23. PROPOSITION. For no type A there exists in A°! a fized point combinator.
PRrROOF. Take X = {0,1}. Then for every A the set X (A) has at least two elements, say

z,y € X(A) with z # y. Then there exists an f € X(A—A) without a fixed point:
f2) = @ izt
f(z) = vy, else.

If there is a fixed point combinator of type A, then [Y]f € Mx is a fixed point of f.
Indeed, Yz=gynz(Yz) and taking [ |, with p(z) = f the claim follows, a contradiction. m

8Sometimes it is preferred to write [[)\xA.M]]ﬂ as Ad € X (A).[M[z*: £ d]], where d is a constant to be
interpreted as d. Although this notation is perhaps more intuitive, we will not use it, since it also has
technical drawbacks.
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Several results in this Section can easily be translated to )\‘i"o with arbitrarily many
type variables, do exercise 2E.13.

2E. Exercises

2E.1.

2E.2.

2E.3.

2E 4.

2E.5.

2E.6.

Find out which of the following terms are typable and determine for those that
are the principal type.
Aryz.xz(yz);
Axyz.axy(rz);
Axyz.xy(zy).
(i) Let A= (a—p)—((a—p)—a)—a Construct a term M such that - M : A.
What is the principal type B of M7 Is there a Al-term of type B?

(ii) Find an expansion of M such that it has A as principal type.
(Uniqueness of Type Assignments) Remember from B[1984] that

Ay 2 {M €A |if Az.N is a subterm of M, then z € FV(N)}.

One has
MeA, M—»ﬂn N = NeA,
see e.g. B[1984], Lemma 9.1.2.
(i) Show that for all My, My € AC(A) one has
M| = | Myl =MeA] = M, =M.
[Hint. Use as induction loading towards open terms
|Mi| = |[Ma| = M e & FV(M;) =FV(My) = M; = M.

This can be proved by induction on n, the length of the shortest 3-reduction
path to nf. For n = 0, see Propositions 1B.19(i) and 1B.24.]
(ii) Show that in (i) the condition M € A{ cannot be weakened to

M has no K-redexes.

[Hint. Consider M = (Az.zl)(Az.l) and A = a—a]
Show that AP satisfies the Church-Rosser Theorem. [Hint. Use Proposition
1B.28 and translations between A2 and ACP]
(Hindley) Show that if F§* M : A, then there is an M’ such that

M’ —p, M & pt(M') = A.

[Hints. 1. First make an m-expansion of M in order to obtain a term with a
principal type having the same tree as A. 2. Show that for any type B with a
subtype By there exists a context C| | such that

z:B + Clz] : By.

3. Use 1,2 and a term like Afz.2(fP)(fQ) to force identification of the types of
P and Q. (For example one may want to identify o and « in (a—f3)—vy—4.)]
Prove that A?,(0) = () by applying the normalization and subject reduction the-
orems.
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2E.7.

2E.8.

2E.9.

2E.10.

2E.11.

2E.12.

2E.13.

2E.14.

2E.15.

2E.16.

2. PROPERTIES

Each type A of A% can be interpreted as an element [A] € BB as follows.
[AlG) = [Al,
where p;(0) = i. There are four elements in BB
{AzeB.0,\z€B.1, \r € B.x, Az € B.1 — z}.

Prove that [A] = Az €B.1 iff A is inhabited and [A] = Az €B.z iff A is not
inhabited.

Show that Peirce’s law P = ((a—)—a)—« is not forced in the Kripke model
K=(K,<,0,F) with K ={0,1}, 0 <1 and F(0) =0,F(1) = {a}.

Let X be a set and consider the typed A-model M x. Notice that every permu-
tation m = mo (bijection) of X can be lifted to all levels X (A) by defining

masB(f)Empo fory!.
Prove that every lambda definable element f € X(A) in M(X) is invariant under
all lifted permutations; i.e. mo(f) = f. [Hint. Use the fundamental theorem for
logical relations.]
Prove that A%, (0) = () by applying models and the fact shown in the previous
exercise that lambda definable elements are invariant under lifted permutations.
(i) Show that Mx | (\z?.z4)y4 = y4.
(ii) Show that Mx | (AzA74.2474) = (\pA=4yA 247 494).
(iii) Show that [[CQ(KxO)yo]]p = p(z).
Let P, L, R be an A x B—(C pairing. Show that in every structure M x one has

[Plzy = [Pla'y = z=2"&y=1,

hence card(A)-card(B)<card(C).

Show that Propositions 2D.20, 2D.21 and 2D.23 can be generalized to A = A
and the crresponding versions of AQ“, by modifying the notion of type structure.
Let ~A = A—0. Show that if 0 does not occur in A, then ~~(~~A—A) is not
inhabited. (One needs the ez falso rule to derive ~~(~~A—A) as proposition.)
Why is the condition about 0 necessary?

We say that the structure of the rational numbers can be represented in A%, if
there is a type Q € T* and closed lambda terms:

0,1:Q;

+ 1 Q20Q=Q;

- Q=Q;
such that (Q,+,-,—, %, 0,1) modulo =gn satisfies the axioms of a field of char-
acteristic 0. Show that the rationals cannot be represented in A%,. [Hint. Use a

model theoretic argument.]
Show that there is no closed term

P : Nat—Nat—Nat
such that P is a bijection in the sense that

VM:NatH!Nl,NQ:Nat PNiN, =g8n M.
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2E.17. Show that every M € A°((0—0—0)—0—0) is Bn-convertible to \f07070z9 ¢,
with ¢ given by the grammar
t=ux|ftt.

2E.18. [Hindley] Show that there is an ARS that is WCR but not CR. [Hint. An example
of cardinality 4 exists.]

The next two exercises show that the minimal length of a reduction-path of a term

to normal form is in the worst case non-elementary in the length of the term”. See

Péter [1967] for the definition of the class of (Kalmér) elementary functions. This class
is the same as & in the Grzegorczyk hierarchy. To get some intuition for this class,
define the family of functions 2,,:N—N as follows.

20(x) = x;
D1 (z) £ 2%0(@),
Then every elementary function f is eventually bounded by some 2,,:
In,mVax>m f(x) < 2,(x).
2E.19. (i) Define the function gk : N—N by
gk(m) = #Fx(M), if m = #(M) for some untyped
lambda term M,
20, else.
Here #M denotes the Gdédel-number of the term M and Fyg is the Gross-
Knuth reduction strategy defined by completely developing all present re-
dexes in M, see B[1984]. Show that gk is Kalmar elementary.
(i) For a term M € A" define
D(M) 2 max{dpt(A—B) | \z?.P)A7BQ is a redex in M},
see Definition 1A.21(i). Show that if M is not a B-nf, then
Fe(|M]) = IN| = D(M) > D(N),

where |.| : ASP—A is the forgetful map. [Hint. Use Lévy’s analysis of redex
creation, see 2A.11(ii), or Lévy [1978], 1.8.4. lemme 3.3, for the proof.]

(iii) If M € A is a term, then its length, notation 1th(M ), is the number of symbols
in M. Show that there is a constant ¢ such that for typable lambda terms
M one has for M sufficiently long

dpth(pt(M)) < ¢(1th(M)).

See the proof of Theorem 2C.14.
(iv) Write o:M—M™ if o is some reduction path of M to normal form M™. Let
$o be the number of reduction steps in o. Define

$(M) = nin{$o | o : M—M"}.

°In Gandy [1980b] this is also proved for arbitrary reduction paths starting from typable terms. In
de Vrijer [1987] an exact calculation is given for the longest reduction paths to normal form.
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2E.20. (i)

(i)

2. PROPERTIES

Show that $M < g(1th(M)), for some function g € 4. [Hint. Take g(m) =
gk™(m).]

Define 21 2 A f12°.f(f) and 2,41 = (2,[0:=1])2. Then for all n € N one has
2, : 1-+0—0. Show that this type is the principal type of the Curry version
|2, of 2,,.

[Church] Show (c,[0:=1])cy, =g Cpmn.

iii) Show 2, =3 c9 (1), the notation is explained just above Exercise 2E.19.
B “2.(1)
(iv) Let M, N € A be untyped terms. Show that if M —g N, then

(v)

2E.21. (i)

(if)

1th(N) < 1th(M)2

Conclude that $(M), see Exercise 2E.19, is in the worst case non-elementary
in the length of M. That is, show that there is no elementary function f
such that for all M € ACh

$(M) < f(1th(M)).

Show that in the worst case the length of the principal type of a typable
term is at least exponential in the length of the term, i.e. defining

f(m) = max{1th(pt(M)) | 1th(M) < m},
one has f(n) > ¢", for some real number ¢ > 1 and sufficiently large n. [Hint.
Define
My & Xy -+ 0120 (Tn@p—1) (Tn—1(Tn—1Zn—2)) - - - (w2(z221)).

Show that the principal type of M,, has length > 2™.]

Show that the length of the principal type of a term M is also at most
exponential in the length of M. [Hint. First show that the depth of the
principal type of a typable term M is linear in the length of M.]

2E.22. (Statman) We want to show that M, — My, for n > 1, by an isomorphic
embedding.

(i)

(if)

(Church’s §) For A€ T define §4 € M,,(A2—02—0) by
Sazyuv 2w if z =y;
2 v else.

We add to the language )\gh constants k : 0 for 1 < k < n and a constant
6 : 0*—=0. The intended interpretation of § is the map &y. We define the
notion of reduction ¢ by the contraction rules
Sijkl -5 k  ifi=j;
—s L, ifi# ]
The resulting language of terms is called Ay and on this we consider the
notion of reduction — gys.

(ili) Show that every M € As satisfies SNgps(M).
(iv) Show that —gys is Church-Rosser.

(v)

Let M € A§(0) be a closed term of type 0. Show that the normal form of M
is one of the constants 1,--- ,n.
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(vi) (Church’s theorem.) Show that every element ® € M,, can be defined by

a closed term Mg € As, i.e. ® = [Mg]". [Hint. For each AeT define
simultaneously the map ® +— Mg : M,,(A)—As(A) and § 4 € As(A2—02—0)
such that [0,4] = 64 and ® = [Mg]™". For A = 0 take M; = i and &, = 4.
For A = B—C, let M, (B) ={®,--- ,®;} and C = C;— --- C.—0. Define

(B

éA = )\xyuv (éC(qu)l)(quH)

géC(xM@Q)(qu>2)
(6c(zMo, ,)(yMs, )
(Oc(xMs, ) (yMe, Juv)v)v..)v)v).

$Mq>1 (M<I>1:’j)

Mg £ \zyy - ye. (85
é xM‘1>2(M<I>2g)

(
(
(-
(5Bqu>t 1(M<I>t 1y)

(6prMo,(Me,7)0))..)))-]

(vii) Show that & — [Mg]™M" : M,, < My is the required embedding.
(viii) (To be used later.) Let 7' = (Azq - - zp.2;) : (0"—0). Define

A" £ \abuvZ.a (b(uZ)(vE) - - - (vE)(vT))
(b(vT) (ud) - - - (vT) (v7T))

(b(vZ)(vT) - - - (uF) (vT))
(b(vZ)(vE) - - - (V) (ud)).
Then
Armimimpm =ggs T,  ifi=j;
=gns ™', eclse.
Show that for i€ {1,--- ,n} one has for all M : 0
M =gpsi =

M[0: = 0"=0][6: = AM|[1: = 7] - - [n: = )] = 7}

2E.23. (Th. Joly)

(i)

Let M = (Q,qo, F,J) be a deterministic finite automaton over the finite
alphabet ¥ = {aj, -+ ,a,}. That is, @ is the finite set of states, gy € @ is
the initial state, F' C @ is the set of final states and § : ¥ x Q—Q is the
transition function. Let L"(M) be the (regular) language consisting of words
in X* accepted by M by reading the words from right to left. Let M = Mg
be the typed A-model over Q. Show that

weL"(M) < [w]™éa, - 6a4,q0 € F,

where 0,(q) = d(a,q) and w is defined in 1D.8.

Similarly represent classes of trees (with at the nodes elements of ¥) accepted
by a frontier-to-root tree automaton, see Thatcher [1973], by the model M
at the type T, = (02—0)"—0—0.






CHAPTER 3

TOOLS

3A. Semantics of A\_,

So far the systems AS" and AS" (and also its variant A4B) had closely related properties.
In this chapter we will give two rather different semantics to A" and to ASY, respectively.
This will appear in the intention one has while giving a semantics for these systems. For
the Church systems /\gh, in which every A-term comes with its unique type, there is a
semantics consisting of disjoint layers, each of these corresponding with a given type.
Terms of type A will be interpreted as elements of the layer corresponding to A. The
Curry systems )\gu are essentially treated as untyped A-calculi, where one assigns to a
term a set (that sometimes can be empty) of possible types. This then results in an
untyped A-model with overlapping subsets indexed by the types. This happens in such
a way that if type A is assigned to term M, then the interpretation of M is an element
of the subset with index A. The notion of semantics has been inspired by Henkin [1950],
dealing with the completeness in the theory of types.

Semantics for type assignment d la Church

In this subsection we work with the Church variant of A, having one atomic type 0,
rather than with Xi, having an arbitrary set of atomic types. We will write T = T,
The reader is encouraged to investigate which results do generalize to T*.

3A.1. DEFINITION. Let M = {M(A)}seT be a family of non-empty sets indexed by
types AeT.
(i) M is called a type structure for X, if

M(A—B) C M(BYMA),
Here XY denotes the collection of set-theoretic functions

{flf:Y—> X}

(ii) Let X be a set. The full type structure M over the ground set X defined in 2D.17
was specified by

(1>

M(0) X
M(A=B) 2 MBMA forall A,BeT.

75
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(iii) Let M be provided with application operators

(M, ) =({(MA)}aem {-aBtaseT)
‘aB : M(A—=B) x M(A) - M(B).

A typed applicative structure is such an (M, ) satisfying extensionality:
Vf,ge M(A—B)[[Vae M(A) f-apa=g-apal = f=g|.

(iv) M is called trivial if M(0) is a singleton. Then M(A) is a singleton for all A€ T.
3A.2. NoTATION. For typed applicative structures we use the infix notation f -4 p = or
f-a for -4 g(f,z). Often we will be even more brief, extensionality becoming

Vf,ge M(A—=B)[Vae My fa=ga] = f=yg]
or simply,
Vf,.ge M|[Va fa =ga] = f=g],
where f, g range over the same type A— B and a ranges over M 4.

3A.3. PROPOSITION. The notions of type structure and typed applicative structure are
equivalent.

PROOF. In a type structure M define f-a= f(a); extensionality is obvious. Conversely,
let (M,-) be a typed applicative structure. Define the type structure M’ and &4 :
M(A)—=M'(A) as follows.

=
Py (a) = q;
M'(A=B) £ {®45(f) e M'(BYM'W | f e M(A=B)};
Pap(f)(Pala)) £ Op(f - a).

By definition @ is surjective. By extensionality of the typed applicative structure it is also
injective. Hence ®4_,p(f) is well defined. Clearly one has M’(A—B) C M/(B)M' 4. m
3A.4. DEFINITION. Let M, N be two typed applicative structures. A morphism is a
type indexed family F' = {F4} 4 ¢ such that for each A, B € T one has

Fa: M(A)—=N(A);

Fasp(f) - Fala) = Fp(f - a).

From now on we will not make a distinction between the notions ‘type structure’ and
‘typed applicative structure’.

3A.5. PROPOSITION. Let M be a type structure. Then
M is trivial & VAeT.M(A) is a singleton.

PROOF. (<) By definition. (=) We will show this for A = 1 = 0—0. If M(0) is
a singleton, then for all f,g€ M(1) one has Va:M(0).(fz) = (gz), hence f = g, by
extensionality. Therefore M(1) is a singleton. m

3A.6. ExaMPLE. The full type structure Mx = {X(A)}acT over a non-empty set X,
see definition 2D.17, is a typed applicative structure.
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3A.7. DEFINITION. (i) Let (X, <) be a non-empty partially ordered set. Let D(0) = X
and D(A—B) consist of the monotone elements of D(B)P(4) where we order this set
pointwise: for f,g€ D(A—B) define

f<g<=VaeD(A) fa < ga.

The elements of the typed applicative structure Dx = {D(A)}4 e are called the hered-
itarily monotone functions. See Howard in Troelstra [1973] as well as Bezem [1989] for
several closely related type structures.

(ii) Let M be a typed applicative structure. A layered non-empty subfamily of M is
a family A = {A(A)}a e of sets, such that the following holds

VAeT.0 # A(A) C M(A).
A is called closed under application if
feA(A—=B),ge A(A) = fgeA(B).
A is called eztensional if
VA, BeTVf,ge A(A—=B).[Vae A(A).fa=ga] = f=g].

If A satisfies all these conditions, then MJA = (A, -[A) is a typed applicative structure.

3A.8. DEFINITION (Environments). (i) Let D be a set and V the set of variables of the
untyped lambda calculus. A (term) environment in D is a total map

p:V=D.

The set of environments in D is denoted by Envp.
(ii) If p€Envp and d € D, then p[z := d] is the p’ € Envp defined by

d if y ==,
p’(y)é{ v

p(y) otherwise.

3A.9. DEFINITION. (i) Let M be a typed applicative structure. Then a (partial) valua-
tion in M is a family of (partial) maps p = {pa}aeT such that py : Var(A) - M(A).

(ii) Given a typed applicative structure M and a partial valuation p in M one defines
the partial semantics [ ], : A (A) & M(A) as follows. Let I' be a context and p a

valuation. For M € AL, (A) its semantics under p, notation [M ]]ZM e M(A), is

M A
[=1,” £ pa(2);
[PQL) = [Pl [Q1)"
M A
[Az P, £ Nd e M(A). [[P]p[x_d]
We often write [M], for [M ]]l/)vt’ if there is little danger of confusion. The expression

[M] , may not always be defined, even if p is total. The problem arises with [Az.P] o
Although the function

Ad € M(A).[P] g € M(B)MA
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is uniquely determined by [Az.P],d = [P] plzimd)> it may fail to be an element of
M(A—B) which is only a subset of M(B)MW)  1f [M], is defined, we write [M] |,

otherwise, if [M], is undefined, we write [M] 1.

3A.10. DEFINITION. (i) A type structure M is called a A, -model or a typed A\-model
if for every partial valuation p = {pa}a and every A€ T and M € AL, (A) such that
FV(M) C dom(p) one has [[M]]pi.

(ii) Let M be a typed A-model and p a partial valuation. Then M, p satisfies M = N,
assuming implicitly that M and N have the same type, notation

M,p=M=N
: M M
if [M]," = [N],.
(iii) Let M be a typed A\-model. Then M satisfies M = N, notation
MEM=N

if for all partial p with FV(MN) C dom(p) one has M, p = M = N.
(iv) Let M be a typed A-model. The theory of M is defined as

Th(M)2{M =N | M,NeN, & M= M = N}.

3A.11. NOTATION. Let Ej, Es be partial (i.e. possibly undefined) expressions.
(i) Write Ey i E, for Ele = [EQJ, & E = EQ].
(11) Write E1 ~ EQ for E1 t EQ & E2 i El.

3A.12. LEMMA. (i) Let M € Ao(A) and N be a subterm of M. Then
(ii) Let M € Ag(A). Then
[[M]]p = [[M]]erV(M)'
(iii) Let M € Ag(A) and p1, p2 be such that p1 | FV(M) = py | FV(M). Then
[[M]]Pl = [[M]]m‘
PRrOOF. (i) By induction on the structure of M.
(ii) Similarly.
(iii) By (ii). m
3A.13. LEMMA. Let M be a typed applicative structure. Then
(i) For M € Ao(A), x, N € Ao(B) one has

ple:=[NT,"]"
(ii) For M,N € Ag(A) one has

M M
M gy N = [M]M 7 [N]M
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PRrOOF. (i) By induction on the structure of M. Write M*® = M[z: = N]. We only
treat the case M = A\y.P. By the variable convention we may assume that y ¢ FV(N).
We have

(0w, = [Mo.P"],

~ AL[P*, g

~ APy gy, Dy the TH,
)\d.[[P]]p[y::d”x::[[N]]p], by Lemma 3A.12,
Ad[P] =gy, =)

~ [Ay-Plypap, )

(ii) By induction on the generation of M —» g, N.
Case M = (Ax.P)Q and N = P[z: = Q)]. Then

[(Az.P)Q], = (Ad.[P],,.—q)([Q],)
[Pl pia=11,)
[Ple: = Q]],, by (i).
Case M = A\x.Nz, with x ¢ FV(V). Then
[[)\x.Naj]]p z )\d.[[N]]p(d)
~ [N],.
Cases M —gy N is PZ —g, QZ, ZP —g, ZQ or A\x.P —g, Ar.Q, and follows

directly from P — g, @Q. Then the result follows from the IH.
The cases where M —»g,, N follows via reflexivity or transitivity are easy to treat. m

3A.14. DEFINITION. Let M, N be typed A-models and let A€ T.
(i) M and N are elementary equivalent at A, notation M =4 N, iff

VM,NeA,(A)MEM=N o NEM=N].
(ii) M and N are elementary equivalent, notation M = N, iff
VAcT. M=, N.
3A.15. PROPOSITION. Let M be a typed A-model. Then
M is non-trivial < VA€ T.M(A) is not a singleton.

PROOF. («<=) By definition. (=) We will show this for A = 1 = 0—0. Let ¢1,¢2
be distinct elements of M(0). Consider M = Az".9° € A, (1). Let p; be the partial
valuation with p;(y") = ¢;. Then [[M]]pii, and [[M]]plcl = ¢1,[M], c1 = co. Therefore
[M],, . [M],, are different elements of M(1). m
Thus with Proposition 3A.5 one has for a typed A-model M
M(0) is a singleton < VAe€T.M(A) is a singleton
< JAeT.M(A) is a singleton.

3A.16. PROPOSITION. Let M, N be typed \-models and F: M—N" a surjective morphism.
Then the following hold.

Y 2

12

P2
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(i) F([M]M) = [MTY, . for all M € AL (A).
p Fop? —
(i) F(IM]M) = [M]Y, for all M € A2, (A).
PROOF. (i) By induction on the structure of M.
_ M N
Case M = z. Then F([z],") = F(p(z)) = [2]p.,-
Case M = P(Q. Then
F([PQI,") = F(IPI,") w F(QI,")
= [[ ]]Fop ‘N [[Q]]Fop? by the IH’
= [[PQ]]Fop
Case M = Az.P. Then we must show
F(Ad e MLIPT) _ ) = Ae € N[PI(R, pymieel-
By extensionality it suffices to show for all e € A/
F(AdEMHP]];\[/i:d]) N E= ”:P]](?op)[z::e}‘
By surjectivity of F' it suffices to show this for e = F'(d). Indeed,

F([Plot—y) W F(d) = F(IPI,._g
N
= [PlFo(ppe=ay): by the IH,

o N
= [Plropa=ray)-

(ii) By (i). m
3A.17. PROPOSITION. Let M be a typed A-model.
(i) M (Ae.M)N = M[z := NJ.
(i) MEXe.Mz =M, ifx ¢ FV(M).
PRroOF. (i) [[()\z.M)N]]p = [Az.M] [N],
= [[ ]]p:c—[[Np
[

= [Mlz: ]]]p, by Lemma 3A.13.
= [[M]]pd, asx ¢ FV(M).

Therefore by extensionality [Az.Mz],=[M],. =

3A.18. LEMMA. Let M be a typed A-model. Then
MEM=N & MEXe.M = \x.N.

PrROOF. MEM=N <& Vp [M], [N, .
& o, do M) = [N =g
& Vp, d. [[/\:U.M]]pd = [[)\x.N]]pd
& Vp. [Az.M], = [Mz.N],
& MEXNe.M = Xx.N.
3A.19. PROPOSITION. (i) For every non-empty set X the type structure Mx is a /\0

model.
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(ii) Let X be a poset. Then Dx is a A%, -model.

(iii) Let M be a typed applicative structure. Assume that [[KA,B]]Mi and [[SA7B7C]]M¢.
Then M is a A%, -model.

(iv) Let A be a layered non-empty subfamily of a typed applicative structure M that
is extensional and closed under application. Suppose [Ka g],[Sa,B,c] are defined and in
A. Then MIA, see Definition 3A.7(ii), is a A2, -model.

PROOF. (i) Since M is the full type structure, [M], always exists.

(ii) By induction on M one can show that Ad.[M],,._; is monotonic. It then follows

by induction on M that [M],€Dx.

(iii) For every A-term M there exists a typed applicative expression P consisting only
of Ks and Ss such that P —g, M. Now apply Lemma 3A.13.

(iv) By (iii). m

Operations on typed A-models

Now we will introduce two operations on A-models: M, N +— M x N, the Cartesian
product, and M — M*, the polynomial A-model. The relationship between M and M*
is similar to that of a ring R and its ring of multivariate polynomials R[Z].

Cartesian products

3A.20. DEFINITION. If M, N are typed applicative structures, then the Cartesian prod-
uct of M, N, notation M x N, is the structure defined by

(M x N)(A) 2 M(A) x N(A)
(My, N1) - (M, N3) = (My - My, Ny - N»).

3A.21. PROPOSITION. Let M, N be typed A-models. For a partial valuation p in M x N
write p(z) £ (p1(z), pa(x)). Then
(i) 10N = (I3 M)
(il) M x N is a A\-model.
(iii) Th(M x N') = Th(M) N Th(N).

PRroOOF. (i) By induction on M.
(i) By (i)

(i) MxN,pEM=N [M], =[N,

([MIY, IMTY) = (INTE INTY)

[M],! = NI, & [M],) = [N],;

Mapl lZM:N&N7P2):M:N

t T o0

Hence for closed terms M, N

MXNEM=N& MEM=N&NEM=N.m
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Polynomial models

3A.22. DEFINITION. (i) We introduce for each m € M(A) a new constant m : A, for
each type A we choose a set of variables

:E(I)Aal'f?x?a"' )
and let M be the set of all correctly typed applicative combinations of these typed
constants and variables.
(i) For a valuation p : Var—M define the map (—)), = (—)3" : M—M by

(@)p = p(2);
(m), = m;
(PQ), = (P)ol(@)s

(iii) Define
Py Q& (P)p = (@)
where p ranges over valuations in M.

3A.23. LEMMA. (i) ~aq is an equivalence relation satisfying de ~aq de.
(ii) For all P,Q € M one has

Py Py & VQ1,Q2e M[Q1 ~ v Q2 = P1Q1 ~pm P2Q2.

PRrOOF. Note that P, @ can take all values in M(A) and apply extensionality. m

3A.24. DEFINITION. Let M be a typed applicative structure. The polynomial structure
over M is M* = (|M*|, app) defined by

M2 Mg = ([Pl | PEM),
app [Pl [@lvp = [PQ~ -
By Lemma 3A.23(ii) this is well defined.

Working with M* it is often convenient to use as elements those of M and reason about
them modulo ~ 4.

3A.25. PROPOSITION. (i) M C M* by the embedding morphism i = Ad.[d] : M—M*.
(ii) The embedding i can be extended to an embedding i : M — M*.
(iii) There exists an isomorphism G : M* = M**.

PrOOF. (i) It is easy to show that 7 is injective and satisfies
i(de) = i(d) - pm i(e).
(ii) Define

i'(z) 2z

> 1>

—

m|

i'(dq)7' (dg).

i'(m)

i'(dyda)

[I>

We write again 4 for ¢'.
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(iii) By definition M is the set of all typed applicative combinations of typed variables
z* and constants m? and M* is the set of all typed applicative combinations of typed
variables yA and constants (@*)A. Define a map M — M* also denoted by G as

follows.

G(m) = [m]

Then we have

(1) P~m Q = G(P) ~p- G(Q).

(2) G(P) ~pm- G(Q) = P oy Q.

(3) VQ e M*IP € M|G(P) ~ Q).
Therefore GG induces the required isomorphism on the equivalence classes. m
3A.26. DEFINITION. Let P € M and let = be a variable. We say that

P does not depend on x

if whenever p1, pa satisfy p1(y) = pa2(y) for y # x, we have (P)),, = (P))p,-
3A.27. LEMMA. If P does not depend on x, then P ~pq Plz:=Q)] for all Q € M.

ProOF. First show that (Plz := Q])), = (P)) pz:=(@Q),]> in analogy to Lemma 3A.13(i).
Now suppose P does not depend on x. Then

(Plz=Q])p = (P)plz:=(),)
= (P)),, as P does not depend on x. m

3A.28. PROPOSITION. Let M be a typed applicative structure. Then

(i) M is a typed \-model < for each P € M* and variable x of M there exists an

F € M* not depending on x such that Fx] = P.

(ii) M is a typed A\-model = M* is a typed A\-model.
PrOOF. (i) Choosing representatives for P, F'€ M* we show

M is a typed A-model <& for each P € M and variable x there exists an

F € M not depending on x such that Fx ~ P.

(=) Let M be a typed A-model and let P be given. We treat an illustrative example,

e.g. P = fa¥0 with f e M(12). We take F = [Ayzsz.zrzy]yf. Then

(Fa)p = [Myzpz-zpaylp(y) fo(x) = fo(x)p(y) = (fzy),,
hence indeed Fx ~ ¢ fry. In general for each constant d in P we take a variable zg and
define F = [\jz37.P]yF.

(<) We show VM € A, (A)3Py € M(A)Vp.[M], = (Pnm)),, by induction on M : A.
For M being a variable or application this is trivial. For M = Az.N, we know by the
induction hypothesisthat [N], = (Py)), for all p. By assumption there is an I not
depending on x such that F'z ~5¢ Py. Then

(F)pd = (F2) pa:=a) = (PN)) plaz=a) =11 [N] yj3:=a-

Hence [Az.N], = (F)),. So indeed [M],| for every p such that FV(M) C dom(p).
Hence M is a typed A-model.
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(ii) By (i) M* is a A-model if a certain property holds for M**. But M** = M*
and the property does hold here, since M is a A-model. [To make matters concrete, one
has to show for example that for all M € M** there is an N not depending on y such
that Ny ~« M. Writing M = M|[x1, x2|[y] one can obtain N by rewriting the y in M
obtaining M’ = M|z, xs|[z] € M* and using the fact that M is a A-model: M’ = Nz,
so Ny=»M]. m
3A.29. PROPOSITION. If M is a typed A-model, then Th(M*) = Th(M).

Proor. Do exercise 3F.5. m
3A.30. REMARK. In general for type structures M* x N* 2 (M x N')*, but the isomor-
phism holds in case M, N are typed A\-models.

Semantics for type assignment a la Curry

Now we will employ models of untyped A-calculus in order to give a semantics for )\g“.
The idea, due to Scott [1975al, is to interpret a type A € T as a subset of an untyped
A-model in such a way that it contains all the interpretations of the untyped A-terms
M e A(A). As usual one has to pay attention to FV ().
3A.31. DEFINITION. (i) An applicative structure is a pair (D, -), consisting of a set D
together with a binary operation - : D x D—D on it.

(ii) An (untyped) A\-model for the untyped A-calculus is of the form

D=(D,,[ "),
where (D, -) is an applicative structure and [ ]” : A x Envp—D satisfies the following.
(1) [«], = o)
(2) [MN]; = [M] - [N]}
(3) PeM]y = DoMe:=yl], (o)
provided y ¢ FV(M);

(4) VdeDIMID,_y = [NFy = DaMIP=DanND: (©
(5) P IFV(M)=p [FV(M) = [M]]=[M]y;
(6) PeMP-d = [M]D,_, (8)

We will write [ ], for [ ]]? if there is little danger of confusion.
Note that by (5) for closed terms the interpretation does not depend on the p.

3A.32. DEFINITION. Let D be a A-model and let p € Envp be an environment in D. Let
M, N € A be untyped A-terms and let T be a set of equations between A-terms.
(i) We say that D with environment p satisfies the equation M = N, notation

D,p=M =N,
if [M]7 = [N]7.
(ii) We say that D with environment p satisfies T, notation
D,pET,
if D,pEM =N, forall (M =N)eT.
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(iii) We define D satisfies T, notation
DET

if for all p one has D,p = T. If the set T consists of equations between closed terms,
then the p is irrelevant.
(iv) Define that T satisfies equation M = N, notation

TEM=N
if for all D and p € Envp one has
D,p=T = D,p=M = N.

3A.33. THEOREM (Completeness theorem). Let M, N € A be arbitrary and let T be a set
of equations. Then

ThyxgnM=N & TE=M=N.
PROOF. (=) (‘Soundness’) By induction on the derivation of 7'+ M = N.

(<) (‘Completeness’ proper) By taking the (extensional open) term model of T', see
B[1984], 4.1.17. m

Following Scott [1975a] a A-model gives rise to a unified interpretation of A-terms
M e A and types A € T®. The terms will be interpreted as elements of D and the types
as subsets of D.

3A.34. DEFINITION. Let D be a A-model. On the powerset P(D) one can define for
X,Y € P(D) the element (X = Y) e P(D) as follows.

(X=>Y)2{deD|dXCY}2{deD|VzecX.(d-z)€Y}.
3A.35. DEFINITION. Let D be a A-model. Given a type environment & : A — P(D), the
interpretation of an A€ T* into P(D), notation [A] ¢+ 1s defined as follows.
[a], 2 o), for a € A;
[A — BJ; £ [Ale = [B],-
3A.36. DEFINITION. Let D be a A-model and let M €A, Ae T Let p,& range over

term and type environments, respectively.
(i) We say that D with p,{ satisfies the type assignment M : A, notation

D,p,6=M: A
if [M], € [Al-
(ii) Let I' be a type assignment basis. Then
D,p, & =T <& for all (2:4) €T one has D, p, & = x : A.
(iii) TEM:A & VD, p,¢[D,p, ET = D,p,{ =M : A
3A.37. PROPOSITION. Let I') M, A respectively range over bases, untyped terms and
types in T2, Then

p

TFE M:A & TEM:A
PROOF. (=) By induction on the length of proof.

(<) This has been proved independently in Hindley [1983] and Barendregt, Coppo,
and Dezani-Ciancaglini [1983]. See Corollary 17A.11. m
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3B. Lambda theories and term models

In this Section we treat consistent sets of equations between terms of the same type and
their term models.
3B.1. DEFINITION. (i) A constant (of type A) is a variable (of the same type) that we
promise not to bind by a A. Rather than z,y, z,--- we write constants as c,d,e,-- -,
or being explicit as ¢4, d4,e4,---. The letters C, D, --- range over sets of constants (of
varying types).

(ii) Let D be a set of constants with types in T°. Write A_,[D](A) for the set of
open terms of type A, possibly containing constants in D. Moreover

AL[D] 2 UgeTA_[D](A).

(iii) Similarly A?,[D](A) and A?,[D] consist of closed terms possibly containing the
constants in D.

(iv) An equation over D (i.e. between closed A-terms with constants from D) is of the
form M = N with M, N € A?,[D] of the same type.

(v) A term M € A_,[D] is pure if it does not contain constants from D, i.e. if M € A_,.

In this subsection we will consider sets of equations over D. When writing M = N, we
implicitly assume that M, N have the same type.

3B.2. DEFINITION. Let £ be a set of equations over D.
(i) P = @ is derivable from &, notation £ - P = @ if P = @ can be proved in the
equational theory axiomatized as follows

(Az.M)N = M|z := N] (B)
Ae.Mx = M,if z ¢ FV(M) (n)
Vif (M =N)e€
= ) ()
M=M (reflexivity)
M=N
o (symmetry)
N=M
M=N N=1L
(transitivity)
M=1L
M =
(R~congruence)
MZ=NZ
M=N
- (L-congruence)
ZM =ZN
M=N

- (€
.M = dx.N

We write M =¢ N for E- M = N.
(ii) & is consistent, if not all equations are derivable from it.
(iii) & is a typed lambda theory iff £ is consistent and closed under derivability.
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3B.3. REMARK. A typed lambda theory always is a A@n-theory.
3B.4. NotaTION. (i) EVE£{M =N |EF M = N}.

(ii) For Ac T write £(A)£{M =N | (M = N)€& & M,N € A,[D](A)}.

(iil) Egn =0T
3B.5. PROPOSITION. If Mx =¢ Nz, with x ¢ FV(M)UFV(N), then M =¢ N.
PRrOOF. Use (§) and (). =
3B.6. DEFINITION. Let M be a typed A-model and £ a set of equations.

(i) We say that M satisfies (or is a model of) £, notation M = &, iff
V(M=N)eE MM = N.
(ii) We say that & satisfies M = N, notation £ = M = N, iff
VMIMEE = MEM=N].

3B.7. PROPOSITION. (Soundness) EF M =N = &= M = N.

PrOOF. By induction on the derivation of £ = M = N. Assume that M = £ for a
model M towards M = M = N. If M = N €&, then the conclusion follows from
the assumption. The cases that M = N falls under the axioms S or 7 follow from
Proposition 3A.17. The rules reflexivity, symmetry, transitivity and L,R-congruence are
trivial to treat. The case falling under the rule (¢) follows from Lemma 3A.18. m

From non-trivial models one can obtain typed lambda theories.

3B.8. PROPOSITION. Let M be a non-trivial typed A-model.
(i) M E=E = €& is consistent.

(ii) Th(M) is a lambda theory.
PROOF. (i) Suppose & - Azy.x = A\zy.y. Then M = \zy.x = Azxy.y. It follows that
d = (A\zy.x)de = (Azxy.y)de = e for arbitrary d,e. Hence M is trivial.

(ii) Clearly M = Th(M). Hence by (i) Th(M) is consistent. If Th(M) - M = N,
then by soundness M |= M = N, and therefore (M = N) & Th(M). m

The full type structure over a finite set yields an interesting A-theory.

Term models

3B.9. DEFINITION. Let D be a set of constants of various types in TY and let € be a set
of equations over D. Define the type structure Mg by

Me(A) = {[M]e | M € A, [D)(A)},

where [M]¢ is the equivalence class modulo the congruence relation =g¢. Define the
binary operator - as follows.

[M]g - [N]g £ [MNe.
This is well-defined, because =¢ is a congruence. We often will suppress -.
3B.10. PROPOSITION. (i) (Mg,-) is a typed applicative structure.

(ii) The semantic interpretation of M in Mg is determined by
[M], = [M[Z:=Ne,

where {Z} = FV(M) and the N are determined by p(z;) = [Nye.
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(iii) Mg is a typed model, called the open term model of £.
PROOF. (i) We need to verify extensionality.
Vde Mg.[M]d =[N]d = [M][z] =[N][z], for a fresh z,
= [Mz] = [Nx]
= Mzxz=¢ Nz
= M =¢ N, by (£), (1) and (transitivity),
= [M]=[N].
(i) We show that [M], defined as [M[z: = N]¢ satisfies the conditions in Definition
3A.9(ii).

[z], = [zlz:=N], with p(z) = [N]e,
= [N
= p(z);
[PQl, = [(PQ)[7:=N]l
= [P[#:=N]Q[#:=N]]e
= [P[#:=N]|¢[[Q[#:=N]]e

P f,y::]\_f,Q]]g, because y ¢ FV(]\7) by the

variable convention and y ¢ {Z},

= Ply=rp)

(iii) As [M], is always defined by (ii). m
3B.11. COROLLARY. (i) Mg =M =N & M =¢ N.

(i) Mg EE.
PRrROOF. (i) (=) Suppose Mg = M = N. Then [M], = [N], for all p. Choosing
p(z) = [z]e one obtains [M], = [M[# := Z]]le¢ = [M]e, and similarly for N, hence
[M]s = [N]¢ and therefore M =g N.

() M= N = MI[Z:=P|=¢N[i:=
= [M[T:=Plle = [N[7:= Pl
= [M],=[N]
= MgEM=N.

(ii)) If M = Ne€&, then M =¢ N, hence Mg =M = N, by (i). m

Using this Corollary we obtain completeness in a simple way.
3B.12. THEOREM (Completeness). EF M =N < &= M = N.

PROOF. (=) By soundness, Proposition 3B.7.
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(<) EEM=N = MgcEM=N, asMgcEE¢€,
= M=¢ N
= EFM=N.nm
3B.13. COROLLARY. Let £ be a set of equations. Then

E has a non-trivial model < & is consistent.

PROOF. (=) By Proposition 3B.8. (<) Suppose that & I/ z° = y°. Then by the
Theorem one has £ [~ 2° = y°. Then for some model M one has M |= € and M [ x =
y. It follows that M is non-trivial. m

If D contains enough constants, then one can similarly define the applicative structure
MZ[D] by restricting Mg to closed terms. See section 3.3.

Constructing Theories

The following result is due to Jacopini [1975].

3B.14. PROPOSITION. Let € be a set of equations between closed terms in A’,[D]. Then
EF M = N if for someneN, Fy,--- | F, e A,[D] and P, = Q1,--- ,P, = Q, €E one
has FV(F;) CFV(M)UFV(N) and

M =g, Fi1PiQ:
Q1P =g, F2PQ2
(1)
anlanl-Pnfl =pBn FnPnQn
FoQuPy =gy N.

This scheme (1) is called a Jacopini tableau and the sequence Fy,--- Fy, is called the list
of witnesses.

PROOF. (<) Obvious, since clearly £+ FPQ = FQP if P=Q¢€¢€.

(=) By induction on the derivation of M = N from the axioms. If M = N is a
Bn-axiom or the axiom of reflexivity, then we can take as witnesses the empty list. If
M = N is an axiom in &, then we can take as list of witnesses just K. If M = N
follows from M = L and L = N, then we can concatenate the lists that exist by the
induction hypothesis. If M = N is PZ = QZ (respectively ZP = Z(@)) and follows from
P = @Q with list F,---,F},, then the list for M = N is F/,--- | F,,/ with F;’ = Xab.F;abZ
(respectively F;' = Xab.Z(Fjab)). If M = N follows from N = M, then we have to
reverse the list. If M = N is Az.P = \z.Q) and follows from P = @ with list F},--- F},,
then the new list is Y/, --- , F},’ with F;’ = Apgx.F;pq. Here we use that the equations
in £ are between closed terms. m

Remember that true = A\zy.z, false = Azy.y both having type 15 = 0—0—0.
3B.15. LEMMA. Let &£ be a set of equations over D. Then

& is consistent < & f true = false.

PROOF. (<) By definition. (=) Suppose & F Azy.x = Ary.y. Then € - P = Q
for arbitrary P,Q € A_,(0). But then for arbitrary terms M, N of the same type A =
A= —A,—0one has E+ MZ = NZ for fresh z = 21, - - - ,z, of the right type, hence
EF M = N, by Proposition 3B.5. m
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3B.16. DEFINITION. Let M, N € A? [D](A) be closed terms of type A.
(i) M is inconsistent with N, notation M # N, if

{M = N} F true = false.
(ii) M is separable from N, notation M L N, iff for some F € A’ [D](A—12)
FM = true & FN = false.

The following result, stating that inconsistency implies separability, is not true for the
untyped lambda calculus: the equation K = YK is inconsistent, but K and YK are not
separable, as follows from the Genericity Lemma, see B[1984] Proposition 14.3.24.

3B.17. PROPOSITION. Let M, N € A’ (A) be closed pure terms of type A. Then
M#N & MLN.
PROOF. (<) Trivially separability implies inconsistency.

(=) Suppose {M = N} I true = false. Then also {M = N} F z = y. Hence by
Proposition 3B.14 one has

& =gy FIMN
FINM =g, F;MN

FuNM =g, y.

Let n be minimal for which this is possible. We can assume that the F; are all pure
terms with FV(F;) C {z,y} at most. The nf of F; NM must be either = or y. Hence
by the minimality of n it must be y, otherwise there is a shorter list of witnesses. Now
consider the nf of FyM M. It must be either x or y.

Case 1: F'1MM =g5 x. Then set F' = Aaxy.FiaM and we have FM =g, true and
FN =g, false.

Case 2: Fi1MM =gy, y. Then set F' = Aaxy.F1Ma and we have FFM =g, false and
FN =gy, true. B
This Proposition does not hold for M, N € A?,[D], see Exercise 3F.2.

3B.18. COROLLARY. Let € be a set of equations over D = (). If £ is inconsistent, then
for some equation M=N €& the terms M and N are separable.
PROOF. By the same reasoning. m

In the untyped theory A theset H = {M = N | M, N are closed unsolvable} is consistent
and has a unique maximal consistent extension H*, see B[1984]. The following result is
similar for A_,, as there are no unsolvable terms.

3B.19. THEOREM. Let
Emaz = {M=N | M,N € N, and M, N are not separable}.

Then this is the unique mazimally consistent set of equations.

PrROOF. By the corollary this set is consistent. By Proposition 3B.17 it contains all
consistent equations. Therefore the set is maximally consistent. Moreover it is the
unique such set. m

It will be shown in Chapter 4 that &yax is decidable.
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3C. Syntactic and semantic logical relations

In this section we work in A%C". We introduce the well-known method of logical relations
in two ways: one on the terms and one on elements of a model. Applications of the
method will be given and it will be shown how the two methods are related.

Syntactic logical relations

3C.1. DEFINITION. Let n be a fixed natural number and let D = Dy,--- ,D, be sets of
constants of various given types.
(i) R is called an (n-ary) family of (syntactic) relations (or sometimes just a (syn-
tactic) relation) on A_[D], if R ={Ra}act and for AeT
Ry CALD](A) x -+ x AL Dy (A).
If we want to make the sets of constants explicit, we say that R is a relation on terms
from Dy,--- ,Dy.
(ii) Such an R is called a (syntactic) logical relation if
VA,Be TVM;, € A,[D1](A—B), -, M, € A,[D,|(A—B).
Rap(My, -+, M,) << VN1€AL[D1|(A)---N,eAL[D,](A)
[RA(N17 T 7Nn) = RB(MlNla e ;MnNn)]
(iii) R is called empty if Ry = 0.
Given ﬁ, a logical family {R4} is completely determined by Ry. For A # 0 the R4 do
depend on the choice of the D.
3C.2. LEMMA. If R is a non-empty logical relation, then YA€ T°. Ry # 0.

Proor. (For R unary.) By induction on A. Case A = 0. By assumption. Case

A = B—C. Then Rp_,c(M) < VPeA_(B).[Rp(P) = Rc(MP)]. By the induction

hypothesisone has R¢(N), for some N. Then M = Ap.N € A,(B—C) isin R4. m
Even the empty logical relation is interesting.

—.

3C.3. PROPOSITION. Let R be the n-ary logical relation on A_,[D] determined by Ry = 0.
Then

Ra = ALDI(A) x - x AL[DAJ(A),  if A%, (A) # 0
= 0, if N, (A) = 0.

PROOF. For notational simplicity we take n = 1. By induction on A. If A =0, then we
are done, as Ry = () and A?,(0) =0. If A= A;—---—A,;,—0, then

Ru(M) & YPieRy, .Ry(MP)
& VP ERy, .1,

seeing R both as a relation and as a set, and ‘1’ stands for the false proposition. This
last statement either is always the case, namely if

Ji.Ra, =0 <& FiAN,(4;)=0, by the induction hypothesis,
& NL(A) #0, by Proposition 2D.4.

Or else, namely if A?,(A) = 0, it is never the case, by the same reasoning. m
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3C.4. EXAMPLE. Let n = 2 and set Ry(M,N) < M =g, N. Let R be the logical rela-
tion determined by Ro. Then it is easily seen that for all A and M, N € A_,[D](A) one has
RA(M,N) & M =g, N.

3C.5. DEFINITION. (i) Let M, N be lambda terms. Then M is a weak head expansion
of N, notation M —,p N, if M = (Az.P)QR and N = P[x: = Q|R.

(ii) A family R on A [D] is called expansive if Ry is closed under coordinatewise
weak head expansion, i.e. if M;" —,, M; for 1 < i < n, then

RO(Mlv e aMn) = RO(Mlla e 7Mn/)-

3C.6. LEMMA. If R is logical and expansive, then each R4 is closed under coordinatewise
weak head expansion.
PrOOF. Immediate by induction on the type A and the fact that

M —un M = M'N —,, MN. =

3C.7. ExAMPLE. This example prepares an alternative proof of the Church-Rosser property using
logical relations.

(i) Let M € A_,. We say that Bn is confluent from M, notation dgn M, if whenever Ny gp4—
M — gy Na, then there exists a term L such that Ny —g, L gné— Na. Define Ry on A_,(0) by

Ro(M) < pBn is confluent from M.

Then Ry determines a logical R which is expansive by the permutability of head contractions
with internal ones.
(ii) Let R be the logical relation on A_, generated from

Ro(M) & lg, M.
Then for an arbitrary type A€ T one has

Ra(M) = lg, M.
[Hint. Write M |g,, N if 3Z [M gy Z gy = NJ|. First show that for an arbitrary variable x of
some type B one has Rp(z). Show also that if z is fresh, then by distinguishing cases whether
x gets eaten or not

Nix iﬁn Nox = Ny \Lﬁ’fl No.
Then use induction on A.]
3C.8. DEFINITION. (i) Let R C AL [D1](A) x -+ x AL [Dy](A) and *q,- -+ , %,
*; : Var(A)—A_[D;](A)

be substitutors, each * applicable to all variables of all types. Write R(x1,--- %) if

Ry(x*t,---  x*) for each variable x of type A.
(ii) Define R* C A [D1](A) x -+ x AL [Dy](A) by

RE(MI; ’Mn) &V*l*n [R(*]-’ ’*n) = RA(Mikl, 7M:;")]
(iii) R is called substitutive if R = R*, i.e.
RA(Mlv"' aMn) d v*1"'*11 [R(*la 7*11) = RA(M1*17"' 7M;Lkn)]

3C.9. LEMMA. Let R be logical.
(i) Suppose that Ry # 0. Then for closed terms My € N, [D1], -+, M, € A, [D,)]

Ra(Mu,-- , My) & Ry(Mi,- -+, My).
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(ii) For pure closed terms My €N, -+ M, € N,
Ry(My,--- ,My) & RyY(My,- -, M,).
(iii) For a substitutive R one has for arbitrary open My, -+ , My, N1,--+ , Ny
RaA(My,--- ,M,) & Rg(Ny,---,N,) = Ra(M[zB:=Ny],---, M,[zP:=N,)).

PROOF. (i) Clearly Ry (M) implies RZ(M ), as the M are closed. For the converse
assume RZ(M), that is RA(W), for all substitutors ¥ satisfying R(¥). As Ry # 0, we
have Rp # 0, for all B TY, by Lemma 3C.2. So we can take % such that RB(:U_*z), for
all z = xB. But then R(*) and hence R(W}, which is R(M).
(i) If A%, (A) = 0, then this set does not contain closed pure terms and we are done.
If A?,(A) # 0, then by Lemma 3C.3 we haveqRA = (A, (A))" and we are also done.
(iii) Since R is substitutive we have R*(M). Let *; = [z:=N;]. Then R(x%1,--- ,%y)
and hence R(Mi[x:=Ny],- -+, My[z:=N,]).
Part (i) of this Lemma does not hold for Ry = @ and D; # (. Take for example
Dy = {c’}. Then vacuously R§(c?), but not Ry(c?).
3C.10. EXERCISE. (CR for 8n via logical relations.) Let R be the logical relation on A_, gener-
ated by Ro(M) iff | g, M. Show by induction on M that R*(M) for all M. [Hint. Use that R
is expansive.] Conclude that for closed M one has R(M) and hence | g, M. The same holds for
arbitrary open terms N: let {#} = FV(M), then

AZ.N is closed = R(AZ.N)
= R((A\Z.N)Z), since R(x;),
= R(N), since R is closed under —g,
= gy N

Thus the Church-Rosser property holds for —gy,.
3C.11. PROPOSITION. Let R be an arbitrary n-ary family on A_, [5] Then
(i) R*(z,---,x) for all variables.
(ii) If R is logical, then so is R*.
(iii) If R is expansive, then so is R*.
(iv) R*™ = R*, so R* is substitutive.
(v)

v) If R is logical and expansive, then

R*(My,---,M,) = R*(A\z.Mj, -, x.M,).

PRroOF. For notational simplicity we assume n = 1.
(i) If R(x), then by definition R(z*). Therefore R*(x).
(ii) We have to prove

—,

R*(M) & VNeAL[D|[R*(N) = R*(MN)].
(=) Assume R*(M) & R*(N) in order to show R*(MN). Let * be a substitutor such
that R(*). Then
R*(M) & R*(N) = R(M*)& R(N™)
— R(M*N*) = R((MN)")
= R*(MN).
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(<) By the assumption and (i) we have
R (M), (1)
where we choose x to be fresh. In order to prove R*(M) we have to show R(M™),
whenever R(x). Because R is logical it suffices to assume R(N) and show R(M*N).
Choose *' = *(z:=N), then also R(x'). Hence by (1) and the freshness of x we have
R((Mz)*) = R(M*N) and we are done.
(iii) First observe that weak head reductions permute with substitution:
((A\z.P)QR)* = (Plz:=Q|R)*.
Now let M —,,, M™ be a weak head reduction step. Then
R*(M") = R(M"")=R(M")
= R(M~)
= R*'(M).
(iv) For substitutors xi, o write *q%g for *g o %1. This is convenient since
M*l*g = M*20*1 = (M*l)*z.
Assume R**(M). Let %1(x) = x for all x. Then R*(*1), by (i), and therefore we have
R*(M*1) = R*(M). Conversely, assume R*(M), i.e.
Vi [R(x) = R(M")], (2)
in order to show V% [R*(x1) = R*(M™)]. Now
Ri(x1) & Vg [R(x2) = R(x1%2)];
R*(M™) < Vx9[R(x2) = R(M*™*2)].

Therefore by (2) applied to *1%2 we are done.
(v) Let R be logical and expansive. Assume R*(M). Then

R*(N) =  R*(M[z:=N]), since R* is substitutive,
= R*((Ax.M)N), since R* is expansive.

Therefore R*(Ax.M) since R* is logical. m

3C.12. THEOREM (Fundamental theorem for syntactic logical relations). Let R be logi-
cal, expansive and substitutive. Then for all A€ and all pure terms M € A_,(A) one
has

Ra(M,--- , M).
PRrOOF. By induction on M we show that R4(M,---, M).
Case M = z. Then the statement follows from the assumption R = R* (substitutivity)
and Proposition 3C.11 (i).
Case M = P(Q. By the induction hypothesis and the assumption that R is logical.
Case M = A\z.P. By the induction hypothesis and Proposition 3C.11(v). m

3C.13. COROLLARY. Let R be an n-ary expansive logical relation. Then for all closed
M e N, one has R(M,--- ,M).
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PRrOOF. By Proposition 3C.11(ii), (iii), (iv) it follows that R* is expansive, substitutive,
and logical. Hence the theorem applied to R* yields R*(M,---,M). Then we have
R(M), by Lemma 3C.9(ii). m

The proof in Exercise 3C.10 was in fact an application of this Corollary. In the
following Example we present the proof of weak normalization in Prawitz [1965].
3C.14. EXAMPLE. Let R be the logical relation determined by

Ry(M) < M is normalizable.

Then R is expansive. Note that if R4(M), then M is normalizable. [Hint. Use Rp(x) for
arbitrary B and x and the fact that if M is normalizable, then so is M.] It follows from
Corollary 3C.13 that each closed term is normalizable. Hence all terms are normalizable by
taking closures. For strong normalization a similar proof breaks down. The corresponding R is
not expansive.

3C.15. EXAMPLE. Now we ‘relativize’ the theory of logical relations to closed terms. A family
of relations S4 C A%, [D1](A) x - -+ x A?,[D,](A) which satisfies

Sasp(My,- M) & YN, €N, [Dy](A)-- Ny € A, [Dy](A)
[SA(Nla”' 7N’n) = SB(MlNla"' 7MnNn)]

can be lifted to a substitutive logical relation S* on A_,[Dq] x --- x A, [D,] as follows. Define
for substitutors #; : Var(A)—A?, [D;](A)
Saler,e o kn) & Vot Sa(z™, - a™).

Now define S* as follows: for M; € A_,[D;](A)
SH(My, - My) & Vg ook, [Salx1, - k) = Sa(Mir, -+, M)
Show that if S is closed under coordinatewise weak head expansions, then S* is expansive.

The following definition is needed in order to relate the notions of logical relation and
semantic logical relation, to be defined in 3C.21.

3C.16. DEFINITION. Let R be an n + l-ary family. The projection of R, notation 3R, is
the n-ary family defined by

E|R(M1, s ,Mn) <~ E|Mn+1 € A.*)[DnJrl} R(Ml, s ,Mn+1).
3C.17. PROPOSITION. (i) The universal n-ary relation RV is defined by
RY 2 AL [D{](A) x - x AL[D,](A).

This relation is logical, expansive and substitutive.
and Sy C AL[E](A) x - x AL[E](A) be non-empty logical relations. Define

(Rx S)4 CAL[DI](A) x -+ x AL[Dp](A) x AL[EL](A) x -+ x AL[E,](A)
by
(R x S)a(My, -+ My, Ny, ,Nyp) <= Ra(My,--- ;M) & Sa(Ny,- - ,Ny).

Then R x S is a non-empty logical relation. If moreover R and S are both substitutive,
then so is R x S.
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(iii) If R is an n-ary family and 7 is a permutation of {1,--- ,n}, then R™ defined by
RW(Mla T 7MTL) <é>[1)(]\47r(1)7 to >M7r(n))

is logical if R is logical, is expansive if R is expansive and is substitutive if R is substi-
tutive.

(iv) Let R be an n-ary substitutive logical relation on terms from Di,--- ,D, and let
D C NyD;. Then the diagonal of R, notation R™, defined by

RA(M) <5 R(M,--- | M)

is a substitutive logical (unary) relation on terms from D, which is expansive if R is
expansive.

(v) If R is a class of n-ary substitutive logical relations, then MR is an n-ary substi-
tutive logical relation, which is expansive if each member of R is expansive.

(vi) If R is an n-ary substitutive, expansive and logical relation, then 3R is a substi-
tutive, expansive and logical relation.
PrOOF. (i) Trivial.

(ii) Suppose that R, S are logical. We show for n = m = 1 that R x S is logical.

< [VP.R4(P)= Rp(MP)] &
[VQ.RA(Q) = Rp(NQ)]
& Y(P,Q).(RxS)a(P,Q) = (RxS)gp(MP,NQ).
For the last (<) one needs that the R, S are non-empty, and Lemma 3C.2. If both R, S
are substitutive, then trivially so is R x S.
(iii) Trivial.
(iv) We show for n = 2 that R® is logical. We have
RA(M) &  R(M,M)
~ VNl,NQ.R(Nl,NQ) = R(MNl,MNQ)
&  VYN.R(N,N) = R(MN,MN), (1)
where validity of the last equivalence is argued as follows. Direction (=) is trivial. As
to (<), suppose (1) and R(Ni, N2), in order to show R(M Ny, M N3). By Proposition
3C.11(i) one has R(x,x), for fresh z. Hence R(Mz, Mx) by (1). Therefore R*(Mx, Mx),
as R is substitutive. Now taking *; = [z := N;|, one obtains R(M Ny, M N3).
(v) Trivial.
(vi) Like in (iv) it suffices to show that
VP[3R(P) = 3R(MP)] 2)
implies INVP, Q.[R(P,Q) = R(MP,NQ)]. Again we have R(x,z). Therefore by (2)
HNlR(M.CL‘, Nl)
Choosing N = A\z.Np, we get R*(Mz, Nz), because R is substitutive. Then R(P, Q)
implies R(MP,NQ), as in (iv). m
The following property R states that an M essentially does not contain the constants

from D. Remember that a term M € A_,[D] is called pure iff M € A_,. The property
R(M) states that M is convertible to a pure term.
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3C.18. PROPOSITION. Define for M € A_,[D](A)
RA(M) £L53N e A, (A) M =g, N.

Then
(i) RP" is logical.

(i) RPM is expansive.

(iii) RP7 is substitutive.
Proor. (i) If RP"(M) and RP"(N), then clearly RP"(MN). Conversely, suppose
VN [RP"(N) = RPT(MN)]. Since obviously RP"(z) it follows that RP"(Mzx) for fresh
x. Hence there exists a pure L =g, Mz. But then A\z.L =g, M, hence RP(M).

(ii) Trivial as P —wn @ = P =py Q.

(iii) We must show RP" = RP"*. Suppose RA"(M) and RP"(x). Then M = N, with
N pure and hence M* = N* is pure, so RA"*(M). Conversely, suppose RP"*(M). Then
for * with z* = 2 one has RP"(x). Hence RP"(M*). But this is RP"(M). m

3C.19. PROPOSITION. Let R be an n-ary logical, expansive and substitutive relation on
terms from D1,--- ,D,. Define the restriction to pure terms R | A, again a relation on
terms from Dy,--- , Dy, by

(RIA)A(My, -+, M) > RP (M) & --- & RPV(M,,) & Ra(My,--- , M,),

where RP" is as in Proposition 3C.18. Then R|A is logical, expansive and substitutive.

PROOF. Intersection of relations preserves the notion logical, expansive and substitu-
tive. B

3C.20. PROPOSITION. Given a set of equations € between closed terms of the same type,
define Re by

Re(M,N) <&+ M = N.

Then
(i) Rg is logical.
(ii) Rg is expansive.
(iii) Rg is substitutive.
(iv) Rg is a congruence relation.

PrOOF. (i) We must show
Er M, =My, & VNl,NQ[g FNi =Ny = Er MiNy = M2N2].

<=>) Let £ F M1 = M2 and & + N1 = NQ. Then & + M1N1 = M2N2 follows by
(R-congruence), (L-congruence) and (transitivity).

(<) For all  one has £+ x =z, so £+ Myz = Max. Choose x fresh. Then M; = M,
follows by (&-rule), (n) and (transitivity).

(ii) Obvious, since provability from & is closed under B3-conversion, hence a fortiori
under weak head expansion.

(iii) Assume that Rg(M,N) in order to show Rg*(M,N). So suppose Rg(z™, x*?).
We must show Rg(M*t, N*2). Now going back to the definition of Rg¢ this means that
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we have EF M = N and € F 2* = z*2 and we must show & - M* = N*2. Now if
FV(MN) C {Z}, then
M*™ =g (A\Z.M)z™
=g (AZ.N)Z*?
=g N™.

(iv) Obvious. m

Semantic logical relations

3C.21. DEFINITION. Let My, ---, M, be typed applicative structures.
(i) S is an n-ary family of (semantic) relations or just a (semantic) relation on

My x o x My, it S ={Ss}aecT and for all A
Sa C Mi(A) x -+ x Mp(A).
(ii) S is a (semantic) logical relation if
SA—)B(d].a"' ,dn) & V61€M1(A)---€n€Mn(A)
[SA(G]_, e 7611) = SB(dlela e 7dn6n)]-
for all A, B and all d; € M1(A—B), - ,dy, € My(A—B).
(iii) The relation S is called non-empty if Sy is non-empty.

Note that S is an n-ary relation on My x - -- x M,, iff S is a unary relation on the single
structure My X -+ x M,,.

3C.22. EXAMPLE. Define S on M x M by S(dy,ds) <2>d; = do. Then S is logical.

3C.23. EXAMPLE. Let M be a model and let m = 7y be a permutation of M(0) which happens
to be an element of M(0—0). Then 7 can be lifted to higher types by defining

Tasp(d) 2 Nee M(A).mp(d(ry (e))).
Now define Sy (the graph of )
Sr(dy, d2) <5 m(dy) = do.
Then S, is logical.
3C.24. ExAMPLE. (Friedman [1975]) Let M, N be typed structures. A partial surjective homo-
morphism is a family h = {ha}ac of partial maps
ha: M(A) 3+ N(A)
such that
hasp(d)=e < eeN(A—B) is the unique element (if it exists)
such that Vf € dom(ha) [e(ha(f)) = hp(d f)].

This implies that, if all elements involved exist, then

ha—p(d)ha(f) = hp(df).
Note that i(d) can fail to be defined if one of the following conditions holds

1. for some f €dom(hy) one has df ¢ dom(hp);
2. the correspondence h4(f) — hp(df) fails to be single valued;
3. the map ha(f) — hp(df) fails to be in Na_,g.
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Of course, 3 is the basic reason for partialness, whereas 1 and 2 are derived reasons. A partial
surjective homomorphism h is completely determined by its hg. If we take M = Mx and
ho is any surjection X—N, then hy is, although partial, indeed surjective for all A. Define
Sa(d,e) & ha(d) = e, the graph of hs. Then S is logical. Conversely, if Sy is the graph of a
surjective partial map hg : M(0)—N(0), and the logical relation S on M x A induced by this
So satisfies

Vee N(A)Ide M(A) Sa(d,e),
then S is the graph of a partial surjective homomorphism from M to N.

Kreisel’s Hereditarily Recursive Operations are one of the first appearences of logical
relations, see Bezem [1985a] for a detailed account of extensionality in this context.

3C.25. PROPOSITION. Let R C My X --- X M,, be the n-ary semantic logical relation
determined by Ry = (). Then

Ry = My(A)x - x Ma(A),  if N (A) #0;

) if A%, (4) = 0.
PRrROOF. Analogous to the proof of Proposition 3C.3 for semantic logical relations, using
that for a all M; and all types A one has M;(A) # 0, by Definition 3A.1. m

3C.26. THEOREM (Fundamental theorem for semantic logical relations).
Let My, -+, M, be typed A-models and let S be logical on My X --- x M. Then for
each term M € A, one has

S(MPM, - (MM,

PRrROOF. We treat the case n = 1. Let S C M be logical. We claim that for all M € A_,
and all partial valuations p such that FV(M) C dom(p) one has

S(p) = S([M],).

This follows by an easy induction on M. In case M = Az.N one should show S([Az.N] p),
assuming S(p). This means that for all d of the right type with S(d) one has S([Az.N] ,d).
This is the same as S([V] .~ ), Which holds by the induction hypothesis.

The statement now follows immediately from the claim, by taking as p the empty
function. m

We give two applications.

3C.27. EXAMPLE. Let S be the graph of a partial surjective homomorphism h : M—N. The
fundamental theorem just shown implies that for closed pure terms one has h(M) = M, which
is lemma 15 of Friedman [1975]. From this it is derived in that paper that for infinite X one has

MxlEM=N & M=g, N.

We have derived this in another way.
3C.28. EXAMPLE. Let M be a typed applicative structure. Let A C M. Write A(A) = AN
M(A). Assume that A(A) # () for all Ae T and

de A(A—B),ec A(A) = dee A(B).

Then A may fail to be a typed applicative structure because it is not extensional. Equality
as a binary relation Ey on A(0) x A(0) induces a binary logical relation E on A x A. Let
AE = {deA | E(d,d)}. Then the restriction of E to A is an applicative congruence and the
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equivalence classes form a typed applicative structure. In particular, if M is a typed A-model,
then write

At E2{[M]d| MeN,, deA}
={deM |3IMeN . 3dy---d,eA[M]d;--d, =d}.
for the applicative closure of A. The Gandy-hull of A in M is the set AT#. From the fundamental
theorem for semantic logical relations it can be derived that
Ga(M)=ATE/E
is a typed A-model. This model will be also called the Gandy-hull of A in M. Do Exercise 3F.34
to get acquainted with the notion of the Gandy hull.

3C.29. DEFINITION. Let My, --- M, be type structures.
(i) Let S be an n-ary relation on Mj X --- x M,,. For valuations py,---,p, with
pi : Var—M; we define

S(p1,--,pn) < S(p1(z),---, pn(x)), for all variables x satisfying Vi.p;(x)].

(ii) Let S be an n-ary relation on My x - - - x M,,. The lifting of S to M} x--- x M,
notation S*, is defined for dy e M7, --- ,d,, € M as follows.

S*(dy, -+ \dy) <=Vp : VMo, V=M,
[S(p1,- o) = S((d)p - (da))pl)]-
The interpretation ((—)),:M* — M was defined in Definition 3A.22(ii).
(iii) For p:V — M* define the ‘substitution’ (—)”:M* — M* as follows.
af 2 p(z);
m’ £ m;
(dida)” = dfdy
(iv) Let now S be an n-ary relation on M7} x --- x M},. Then S is called substitutive
if for all dy e M7, --- ,d, € M;, one has
S(dy,---,dy) < Yp1: VoML, - pp: VoM,
[S(,Ol, T 7Pn) = S(dll)la T 7dfzn)]
3C.30. REMARK. If § C M7 x --- x My is substitutive, then for every variable x one
has S(z, -+, z).
3C.31. EXAMPLE. (i) Let S be the equality relation on M x M. Then S* is the equality relation
on M* x M*.
(ii) If S is the graph of a surjective homomorphism, then S* is the graph of a partial surjective

homomorphism whose restriction (in the literal sense, not the analogue of 3C.19) to M is S and
which fixes each indeterminate x.

3C.32. LEMMA. Let S C My X --- x My, be a semantic logical relation.

(i) Let de My x --- x My,. Then S(d) = S*(d).

(ii) Suppose S is non-empty and that the M; are A-models. Then for de My x -+ x
M,, one has S*(d) = S(d).
PRrOOF. For notational simplicity, take n = 1.

(i) Suppose that S(d). Then S*(d), as (d)), = d, hence S(((d)),), for all p.
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(ii) Suppose S*(d). Then for all p : V—M one has

S(p) = S((d),")
= S(d).
Since Sy is non-empty, say d €Sy, also S, is non-empty for all A€ T°: the constant
function A\Z.d € S4. Hence there exists a p such that S(p) and therefore S(d). m

3C.33. PROPOSITION. Let S C My X --- X M,, be a semantic logical relation. Then
S* C M x - x My, and one has the following.
(i) S*( ,x) for all variables.
(ii) S* is a semant@c logical relation.
(iii) S* is substitutive.
(iv) If S is substitutive and each M; is a typed A\-model, then

S*(dy, - dy) & STy, NEdy),

where the variables on which the Jdepend are included in the list T.
ProOOF. Take n=1 for notational simplicity.
(i) If S(p), then by definition one has S(((x)),) for all variables x. Therefore S*(x).
(ii) We have to show
Shopld) & Vee M*(A).[S%(e) = Sk(de)].

(=) Suppose S%_, 5(d), S%(e), in order to show Sj(de). So assume S(p) towards
S((de)),). By the assumption we have S(d),), S((¢)), hence indecd S((de)),), as S
is logical.

(<) Assume the RHS in order to show S*(d). To this end suppose S(p) towards
S((d)),). Since S is logical it suffices to show S(e) = S(((d)),e) for all e M. Taking
e € M, we have
e), by Lemma 3C.32(i),
de), by the RHS,

= S((d)pe), ase=(e),and S(p).
(iii) For d € M* we show that S*(d) < Vp:V—=M*[S*(p) = S*(d”)], i.e

Voo MS(p) = S((d)YM)] & Vo VM- [S*(0) = S*(d).

P
As to (=). Let d € M* and suppose
VpV—=M.[S(p) = S((d),")]; (1)
and
S*(p), for a given p/:-V—M*, (2)
in order to show S*(d”"). To this end we assume
S(p") with p":-V—M (3)
in order to show
S((@ ) (4)

Now define
P () 2 (¢ ()i
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Then p"":V—M and by (2), (3) one has S(p”'(x)) (being S(((p’(x)))?,’,t*)), hence
S((d)prm)- (5)

By induction on the structure of d € M* (considered as M modulo ~ ) it follows that

(@)t = (@)
Therefore (5) yields (4).
As to («). Assume the RHS. Taking p'(z) = x € M* one has S*p’) by (i), hence
S* (dﬁf‘*). Now one easily shows by induction on d € M that dﬁf‘* = d, so one has S*(d).
(iv) W.l.o.g. we assume that d depends only on y and that £ = y. As M is a typed
A-model, there is a unique F' € M such that for all y € M one has Fy = d. This F is
denoted as Ay.d.

S(d) = S(Fy)

& VpVaME[S(p) = S((i(Fy))p)l, as S is substitutive,
& VPVSMIS() = S,

& Yee M*.[S(e) = S(Fe), taking p(z) = e,

< S(F), as S is logical,

& S(yd).m

3C.34. PROPOSITION. Let S C M1 X -+ x My, and S C Ny x --- x N, be non-empty
logical relations. Define S x S" on My X «-- x My, x N1 x --- x Ny, by

(S x S)(dy, - dm,e1,- - en) <=S(dy, - ,dn) & S (€1, ,en).

Then S x S C My x -+ X My, x N1 x --- x Ny, is a non-empty logical relation. If
moreover both S and S’ are substitutive, then so is S x S'.
PrOOF. As for syntactic logical relations. m
3C.35. PROPOSITION. (i) The universal relation SY defined by SY £ M3 x --- x MZ is
substitutive and logical on M7 X -+ x M;,.

(ii) Let S be an n-ary logical relation on M* x - -+ x M* (n-copies of M*). Let 7 be
a permutation of {1,--- ,n}. Define S™ on M* x --- x M* by

Sﬂ—(dla T )dn) &S(dw(l)a T 7d7r(n))

Then S™ is a logical relation. If moreover S is substitutive, then so is S™.

(iii) If S is an n-ary substitutive logical relation on M* X - -+ x M*, then the diagonal
SA defined by

SA(d) A= S(d,--- ,d)

s a unary substitutive logical relation on M*.

(iv) If S is a class of n-ary substitutive logical relations on M7 x --- x M7 then the
relation NS C M7 x --- x M} is a substitutive logical relation.

(v) If S is an (n+1)-ary substitutive logical relation on M7 x ---x M» | and M |
s a typed A\-model, then 35S defined by

3S(dy, -+ dp) <2=>3dpi1.5(dr, - ydnt1)

s an n-ary substitutive logical relation.
PROOF. For convenience we take n = 1. We treat (v), leaving the rest to the reader.
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(v) Let S C M7x M3 be substitutive and logical. Define R(d;) < 3dy € M35.5(d;.d2),
towards
Vd; GMT[R(dl) < Vey EMI.[R(el) = R(dlel)]].
(=) Suppose R(d;), R(e1) in order to show R(die;). Then there are da, es € M3 such
that S(di,ds), S(e1,e2). Then S(dieq,ds,es), as S is logical. Therefore R(dyeq) indeed.
(<) Suppose Ve; € M;.[R(e1) = R(die1)], towards R(d;). By the assumption

Vei[Jea.S(e1, e2) = Jeh.S(drer, eh)].

Hence
Vey, eodeh.[S(e1,e2) = S(dier,eh)]. (1)
As S is substitutive, we have S(z,x), by Remark 3C.30. We continue as follows
S(z,x) = S(diz,ehfz]), for some e}, = e}[z] by (1),
= S(diz,dax), where dy = A\z.e)[z] using that M

is a typed A-model,
= S(ei,e2) = S(dier,ds,e2), by substitutivity of S,
= S(di1,ds), since S is logical,
= R(dl)

This establishes that 35 = R is logical.
Now assume that S is substitutive, in order to show that so is R. I.e. we must show

R(d1) < Vpui.[[VeeV.R(pi(2))] = R((d1)™)]. (1)

(=) Assuming R(d1), R(p1(z)) we get S(di,d2), S(p1(x),d3), for some da, d5. Defining
p2 by pa2(x) = dj, for the free variables in do, we get S(p1(z), p2(x)), hence by the
substitutivity of S it follows that S((dy)"", (d2)”?) and therefore R((d;)").

(<) By the substitutivity of S one has for all variables = that S(z,x), by Remark
3C.30, hence also R(z). Now take in the RHS of (1) the identity valuation p;(x) = z,
for all z. Then one obtains R((d1)?*), which is R(d;). m

3C.36. ExamMPLE. Consider My and define
So(n,m) < n<m,

where < is the usual ordering on N. Then {d € S* | d=*d}/=" is the set of hereditarily monotone
functionals. Similarly 3(S*) induces the set of hereditarily majorizable functionals, see the section
by Howard in Troelstra [1973].

Relating syntactic and semantic logical relations

One may wonder whether the Fundamental Theorem for semantic logical relations follows
from the syntactic version (but not vice versa; e.g. the usual semantic logical relations
are automatically closed under Bn-conversion). This indeed is the case. The ‘hinge’
is that a logical relation R C A_,[M*| can be seen as a semantic logical relation (as
A [M*] is a typed applicative structure) and at the same time as a syntactic one (as
A_,[M*] consists of terms from some set of constants). We also need this dual vision for
the notion of substitutivity. For this we have to merge the syntactic and the semantic
version of these notions. Let M be a typed applicative structure, containing at each
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type A variables of type A. A valuation is a map p:V — M such that p(z4) € M(A
This p can be extended to a substitution (—)”:M—M. A unary relation R C M i
substitutive if for all M € M one has

)

R(M) < [Vo:V.[R(p(z)) = R((M)")]].
The notion substitutivity is analogous for relations R C A_,[D], using Definition 3C.8(iii),
as for relations R C M*, using Definition 3C.29(iv).
3C.37. NOTATION. Let M be a typed applicative structure. Write

AL M= AL[{d] de MY;
A (M) SA, (M]/=pn -

Then A_,[M] is typed applicative structure and A_, (M) is a typed A-model.

3C.38. DEFINITION. Let M, and hence also M*, be a typed A-model. For p:V — M*
extend [-],: Aoy — M* to [[—]];M t AL MY — M* as follows.

[«], £ p()
[[mﬂp 4 m, with m € M*,
[PQl, = [P],1QI,
[\z.P], £ 4, the unique d € M* with Ve.de = [[P]]p[x i=e]

Remember the definition 3C.29 of (—)” : M* — M*.

(z)f = p(x)
(m)? = m, with m e M*,
(PQY 2 (PY(Q).

Now define the predicate D C A_,[M*] x M* as follows.
D(M,d) <2VpV—M* [M])" = (d)".

3C.39. LEMMA. D is a substitutive semantic logical relation.

PROOF. First we show that D is logical. We must show for M € A_,[M*],d € M* that
D(M,d) & VYN €A [M*Vee M*.[D(N,¢) = D(MN, de)].

(=) Suppose D(M d), D(N,e), towards D(M N, de). Then for all p:vV — M* by
definition [[M]]p = (d)P and [[ ]]M (e)?. But then [[MN]] = (de)?, and therefore
D(MN, de).

(<) Now suppose VN € A_,[M*Vee M*.[D(N,e) = D(MN,de)], towards D(M,d).
Let x be a fresh variable, i.e. not in M or d. Note that x € A_,[M*], z € M* and D(z, x).
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Hence by assumption

D(z,z) = Vp[Mz],= (dz)’
= Vp[M], [x], = (d)"(x)"
S VoMl [l = (@7 (@), where pf = pla i=e],
= VpVee M".[M] e = (d)’e, by the freshness of z,
= Vp[M], = (d)", by extensionality,
= D(M,d)

Secondly we show that D is substitutive. We must show for M € A_,[M*],d € M*
D(M,d) < Vp1:V = A [M*], p2:V — M.
Vo eV.D(pi(x), p2(x)) = D((M)", (d)")].
(=) Suppose D(M,d) and Yz € V.D(pi(x), p2(z) towards D((M)P*, (d)??). Then for
all p:V—M* one has

[M], = (@) (1)

VeeVn@)], = (p@). (2

Let pi(z) = [m (a:)]];w* and ph(z) = (p2(x))?. By induction on M and d one can show
analogous to Lemma 3A.13(i) that

], = M, )
(=) = (@)= @)
It follows by (2) that pj = py and hence by (3), (4), and (1) that [(M)*], = ((d)"?)?,
for all p. Therefore D((M )P, (d)P?).

(<) Assume the RHS. Define p;(z) = x € A [M*], pa(x) = 2 € M*. Then we have
D(p1,p2), hence by the assumption D((M)**,(d)P?). By the choice of pi,py this is
D(M,d). m
3C.40. LEMMA. Let M € A?,. Then [M]M = [[M]™] e M*.

PRrROOF. Let i:M — M* be the canonical inbedding defined by i(d) = d. Then for all
MeA_, and all p:V — M one has

i([M])") = [MT5, -
Hence for closed terms M it follows that [M]M = [[M]]f‘;ﬁ: = z([[M]];M) = [[M]M]. w
3C.41. DEFINITION. Let R C A, [M}] x - -+ x A, [MZ]. Then R is called invariant if
for all My, Ny € A, [M],- -+, M, N, € A, [M] one has

R(My, -+ My)
MiEM =N & - & MY = M, = N,

3C.42. DEFINITION. Let My, ---, M, be typed applicative structures.
(i) Let S C M3 x -+ x M. Define the relation S C A, [M3] x -+ x A, [M}] by

SMNMy, -+ M) <23dy € M+ 3d,, € ME[S(dy, - -+ dy) &
D(My,dy) & -+ & D(M,,dy)).

} = R(Ny,---,Np).



106 3. TooLs
(ii) Let R C A [M3] x -+ x A,[M?]. Define RY C M35 x --- x M3 by
RY(dy,- -+ ,dp) <2=3My € A [MT],- -+, My, € AL[ME]L[R(My, - - -, M,) &
D(My,dy) & --- & D(Mn,dn)].

3C.43. DEFINITION. Let ¢ : V — M?* be the ‘identity’ valuation, that is ¢(z) = [z].

3C.44. LEMMA. (i) Let S C M} x --- x M. Then S" is invariant.
(i) Let R C A, [M3] x -+ x A,[MZ] be invariant. Then
for all My e A M), -+, My €N, [M?] one has

R(My, -+, My) = RY(IMGIME, - [M]M).
Proor. For notational convenience we take n = 1.
i) SN(M)&M*EM=N = 3JdeM*.[S(d
= dde M*.[S(d
Vp.[[M], = (

& D(M,d)] & M* =M = N

)

) &

d)? & [M], = [N],]]
~  3d.[S(d)& D(N,

d)]
= S*(N).
(ii) Suppose R(M). Let M' = [M], € A_,[M*]. Then [M'] , = [M], = [M] ,, since M
is closed. Hence R(M’) by the invariance of R and D(M’, [M],). Therefore RY([M],). m

3C.45. PROPOSITION. Let My, --,M,, be typed A-models.

(i) Let S C M3 x --- x MZ be a substitutive semantic logical relation. Then S™ is
an invariant and substitutive syntactic logical relation.

(ii) Let R C A [M3]x - x A [MZ] be a substitutive syntactic logical relation. Then
RY is a substitutive semantic logical relation.

PROOF. Again we take n = 1.
(i) By Lemma 3C.44(i) S is invariant. Moreover, one has for M € A_, [M?*]

SANM) & 3de M*.[S(d) & D(M,d)).

By assumption S is a substitutive logical relation and also D, by Proposition 3C.39. By
Proposition 3C.35(iv) and (v) so is their conjunction and its 3-projection S™.
(ii) One has for d € M*

RY(d) & 3M e A [M*].[D(M,d) & R(M)).

We conclude similarly. m

3C.46. PROPOSITION. Let My, -, M,, be typed A\-models. Let S C M7 x ---x M} be a
substitutive logical relation. Then SNV = S.

PRrROOF. For notational convenience take n = 1. Write "= S”. Then for d € M*
TV(d) < 3IMeA_ [M*|.[T(M)& D(M,d),
& IM e A (M 3d e M*.[S(d') & D(M,d') & D(M,d)],
which implies d’ = d, as M* = M/ ~ 4,
& S(d),
where the last < follows by taking M = d,d = d. Therefore SV = S. m

Using this result, the Fundamental Theorem for semantic logical relations can be
derived from the syntactic version.
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3C.47. PROPOSITION. The Fundamental Theorem for syntactic logical relations implies
the one for semantic logical relations. That is, let My, - -+, My be A\-models, then for the
following two statements one has (i) = (ii).

(i) Let R on A_,[M)] be an expansive and substitutive syntactic logical relation. Then
for all A€ T and all pure terms M € A_,(A) one has

Rua(M,---,M).

(ii) Let S on My x --- x M,, be a semantic logical relation. Then for each term

M e N (A) one has
SA([[M]]M17 T [[M]]Mn)

PROOF. We show (ii) assuming (i). For notational simplicity we take n = 1. Therefore
let S € M be logical and M € A2, in order to show S([M]). First we assume that S is
non-empty. Then §* C M* is a substitutive semantic logical relation, by Propositions
3C.33(iii) and (ii). Writing R = S* C A_,(M*) we have that R is an invariant (hence
expansive) and substitutive logical relation, by Proposition 3C.45(i). For M € A’ (A)
we have R4(M), by (i), and proceed as follows.

Ra(M) = RY(M]'), by Lemma 3C.44(ii), as M is closed,
= SYV(IMPMT),  as R=5*,
= SL(MPM, by Proposition 3C.46(i),
= SH([[MIM), by Lemma 3C.40,
= Sa([M]), by Lemma 3C.32(ii) and the assumption.

In case S is empty, then we also have S4([M]™M), by Proposition 3C.25. m

3D. Type reducibility

In this Section we study in the context of A4B over T? how equality of terms of a certain
type A can be reduced to equality of terms of another type. This is the case if there is
a definable injection of A?,(A) into A?,(B). The resulting poset of ‘reducibility degrees’
will turn out to be the ordinal w+4 = {0,1,2,3, -+ ,w,w + 1,w + 2,w + 3}.
3D.1. DEFINITION. Let A, B be types of A%,.

(i) We say that there is a type reduction from A to B (A is Bn reducible to B),
notation A <g, B, if for some closed term ®:A— B one has for all closed M, Ms:A

My =pn My & M, =pn DM,
i.e. equalities between terms of type A can be uniformly translated to those of type B.
(ii) Write A ~Bn Biff A SB’? B& B <pn A.
(iii) Write A <pBn B for A Sﬁ"? B& B fﬁn A.
An easy result is the following.
3D.2. LEMMA. A = A1—---—=A4,—0 and B = A= = Az @)—0, where m is a
permutation of the set {1,--- ,a}. We say that A and B are equal up to permutation of

arguments. Then
(i) B <pn A
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(i) A ~gy B.
PROOF. (i) We have B <g, A via

O = Am:BAT1 - TaMTr(1) " Tr(a)-

(ii) By (i) applied to 7—!. m

The reducibility theorem, Statman [1980a], states that there is one type to which all
types of MY can be reduced. At first this may seem impossible. Indeed, in a full type
structure M the cardinality of the sets of higher type increases arbitrarily. So one cannot
always have an injection M 4—Mp. But reducibility means that one restricts oneself
to definable elements (modulo =g,) and then the injections are possible. The proof
will occupy!? 3D.3-3D.8. There are four main steps. In order to show that ®M; =gan
OMy; = M; =gy Mo in all cases a (pseudo) inverse &1 is used. Pseudo means that
sometimes the inverse is not lambda definable, but this is no problem for the implication.
Sometimes ®~! is definable, but the property ®~!(®M) = M only holds in an extension
of the theory; because the extension will be conservative over =g,,, the reducibility will
follow. Next the type hierarchy theorem, also due to Statman [1980a], will be given.
Rather unexpectedly it turns out that under <g, types form a well-ordering of length
w + 4. Finally some consequences of the reducibility theorem will be given, including
the 1-section and finite completeness theorems.

In the first step towards the reducibility theorem it will be shown that every type is
reducible to one of rank < 3. The proof is rather syntactic. In order to show that the
definable function ® is 1-1, a non-definable inverse is needed. A warm-up exercise for
this is 3F.7.

3D.3. PROPOSITION. FEwvery type can be reduced to a type of rank < 3, see Definition
1A.21(i3). Le.

VAeT°3IBeTY.[A <g, B & rk(B) < 3|.

PROOF. [The intuition behind the construction of the term ® responsible for the re-
ducibility is as follows. If M is a term with Bohm tree (see B[1984])

AC1:AL g Ay

)\371.21 )\gjnzn

/ N\ /\

10 A simpler alternative route discovered later by Joly is described in the exercises 3F.15 and 3F.17,
needing also exercise 3F.16.
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then let UM be a term with “Bohm tree” of the form

Ax1:0 - x24:0.ux;

T T

A1 : Ouzg A : O.uzy

/N /N
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where all the typed variables are pushed down to type 0 and the variables u (each
occurrence possibly different) take care that the new term remains typable. From this
description it is clear that the u can be chosen in such way that the result has rank < 1.
Also that M can be reconstructed from UM so that U is injective. ®M is just UM with
the auxiliary variables bound. This makes it of type with rank < 3. What is less clear

is that U and hence ® are lambda-definable.]
Define inductively for any type A the types A and A%

0°£0;
0% £ 0;
(A= - —A,—0)" £ (0°—0);
(A= - —=A,—0)F 2 05 A% — ... - 4" 0.
Notice that rk(A¥) < 2.

In the infinite context
{uq:A*|AeT)}
define inductively for any type A terms V4 : 0—A, Uy : A—A°.
Up & \x:0.x;
Vo £ \x:0.2;
Uy sy 0 = Azt ANy - 14:0.2(Va, 1) - (Va, 24);
VA ooy Mg 0 = A:0Xy1: AL - yarAq.uaz(Ua, 1) - - (Ua,ya),

where A = A;—---—A,—0.
Remark that for C = A1— --- —A,— B one has

Uo = Az:CAxy - 24:0.Up(2(Va, 1) - - (Va,zq)).
Indeed, both sides are equal to

Az:CAzy - mayy -+ Ypi0.2(Vay@1) - - (Va,@a) (VBy1) - - (VB 4b),

with B = B1— - - - —Bp—0.

Notice that for a closed term M of type A = A1—---—A,—0 one can write

M =g Ay1:A1 - Yar Aa yi(Miyt -+ Ya) - - (MpY1 -+ - Ya),
with the My, --- , M, closed. Write A; = A;1— -+ - = A, —0.
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Now verify that

UaM =Ax1 - 20:0.M(Va,z1) - - (Va,za)
= AT (Va,2:)(M1(Vay21) -+ (Va,@a)) -+ (Mp(Vay, 1) - (Va, 2a))
AT,z Uy My (Vayn) -+ (Viagza))) -+ Uy (M (Vi) -+ (Va,2a)
= )\f.uAiiL'i(UBlle) e (UBnMnf),
using (1), where B; = Aj—---—A,—A;; for 1 < j < n is the type of M;. Hence we
have that if UsM =g, UsN, then for 1 <j <n
UBij =pBn UBij.

Therefore it follows by induction on the complexity of the B-nf of M that if UsM =g,
UaN, then M =g, N.

Now take as term for the reducibility ® = Am:AMlup, - - - up, .Usm, where the @ are all
the ones occurring in the construction of Uy. It follows that

A <gy B§—>~~—>B£—>A".

Since rk(B§—> e —>B£—>Ab) < 3, we are done. m
For an alternative proof, see Exercise 3F.15.

In the following proposition it will be proved that we can further reduce types to one
particular type of rank 3. First do exercise 3F.8 to get some intuition. We need the
following notation.

3D.4. NOTATION. (i) Remember that for k£ > 0 one has

15 2 00,
where in general A°—02 0 and A¥1 02 A—(AF—0).
(ii) For kq,--- ,k, > 0 write
(K1, kp) & 1 — - =1, —0.

(iii) For k11, , king, - s kmi, -+ kmn,, > 0 write

kin - ki,

: 2 (ki1 ki) = = (km1, - K, )—0.
kmi - K,

Note the “matrix” has a dented right side (the n; are in general unequal).

3D.5. PROPOSITION. Fwery type A of rank < 3 is reducible to
1o—1—-1—-2—0.
PROOF. Let A be a type of rank < 3. It is not difficult to see that A is of the form
ki - ki
e ) :

kml e kmnm
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We will first ‘reduce’ A to type 3 = 2—0 using an open term V¥, containing free variables
of type 19,1, 1 respectively acting as a ‘pairing’. Consider the context

{p:12, p1:1, pa:1}.
Consider the notion of reduction p defined by the contraction rules
pi(pM1Mz)—, M.

[There now is a choice how to proceed: if you like syntax, then proceed; if you prefer
models omit paragraphs starting with & and jump to those starting with é.]

& This notion of reduction satisfies the subject reduction property. Moreover Snp is
Church-Rosser, see Pottinger [1981]. This can be used later in the proof. [Extension of
the notion of reduction by adding

p(p1M)(p2M)—s M

preserves the CR property, see 5B.10. In the untyped calculus this is not the case, see
Klop [1980] or B[1984], ch. 14.] Goto #.
& Given the pairing p, p1, p2 one can extend it as follows. Write

pt & 0.z
PR Aay e 0.p(pFa - ) wngs
pi 2 Az:0.x;
Pt & pa
ML X208 (pr2), for i < k;
PY & N freldz0.p5(f12) - (fr2);
PF 2 \g:1Xz:0.pF(g2), for ¢ < k.

Then pF : 0F — O,pi-€ :0—0,PF:1F - 1,Pf :1 — 1. We have that p* acts as a coding
for k-tuples of elements of type 0 with projections pf . The P*, Pik do the same for type
1. In context containing {f:1x, g:1} write

FENENZ0.£ (P 2) - (pfi2);
g P E N zk:O.g(pkzl e 2g)-

Then f*~1is f moved to type 1 and g'7* is ¢ moved to type 1.
Using Bnp-convertibility one can show

pE(p 2 ) = 2
PFPYfy-- o) = fis
(fk—)l)l—)k _ f
For (g'7*)¥2! = g one needs —, the surjectivity of the pairing.

In order to define the term required for the reducibility start with a term ¥:A—3
(containing p, p1, p2 as only free variables). We need an auxiliary term W1, acting as
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an inverse for ¥ in the presence of a “true pairing”.
U= \M:ANF:2.M
M1k - fim g, pr(F(P™ fER= L pim )
Mt Ly =+ Frnngn L, P (F (P fhmt e fiamnm 1],
L= AN (2=0)AK :(ki1, - king) - Ao (Bmts -+ Ky, )-
N Lp™ [y (PP f) 70 (P ) 7 Hm]
(K (P f)1 7 mt e (P )t R ],
Claim. For closed terms M7y, My of type A we have
My =gy My & VM =g, YM>.
It then follows that for the reduction A <g, 13—+1—1—3 we can take
D = AM:AAp:15Ap1, p2:1. U M.

It remains to show the claim. The only interesting direction is (<=). This follows in
two ways. We first show that
U (UM) =g, M. 1)

We will write down the computation for the “matrix”
k11
ko1 ka2

UM =5  AF:2.M[Afir:le, .pr(F(PfE1)]
[Mf21: Ly, Mozt Ly -p2(F (P2 5200 £3327 1))
\Iffl(\IfM) =3 )\Kl:(ku))\KQZUle,kzg)

UM\ f1p' (K (P f) T a][Ka (P ) R (PR f) F22))

= )\Klt(ku))\KQZUfgl,kzg).‘I’Mﬂ, say,

=5 MK KoM\ fri.p(H(PUFE )]
A a1\ foo.pa(H (P2 5227 fo22 7))

=Bp )\KlKQ.M[)\fll.pl( [KlfllH-- 1rrelevant’..])]
[Af21 A fag.po(p?[..Cirrelevant’..][ Ko fa1 fo2))];

=p A Ky M(Af11.K1 f11) (M for faz. Ko fo1 f22)

= MK Ko ME Ky

= M

which is perfectly general.

)

since

(Plfll) =gp p2[K1f11}[..‘irrelevant’..]
H(P2 =t phaa=ly — 5 02[ “rrelavant’..][Ka for fao)-
The argument now can be finished in a model theoretic or syntactic way.
& If UM, =g,) UMy, then U—1(WAM;) =g,) U1 (VM3). But then by (1) My =gy, Ma.
It follows from the Church-Rosser theorem for Bnp that My =g, Ma, since these terms
do not contain p. Goto m.
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& If VN, =g, WM>, then
Ap:1oAp1p2: LU H(UMY) =g, Ap:1oAp1p2: 1Y (T M).
Hence
M(w) = Ap:laApipo: 1. U1 (M) = Ap:1oApipe:1. U~ (W My).
Let q be an actual pairing on w with projections q1,q2. Then in M(w)
(Ap:12Ap1p2:1.U ™ (W M1))qqrqz = Ap:1aAp1pa:1. ¥~ (W M5)qq1qa.
Since (M(w),q,q1,qz2) is a model of Bnp conversion it follows from (1) that
M(w) E My = Ms.

But then M; =g, M>, by a result of Friedman [1975]. m

We will see below, Corollary 3D.32(i), that Friedman’s result will follow from the re-
ducibility theorem. Therefore the syntactic approach is preferable.
The proof of the next proposition is again syntactic. A warm-up is exercise 3F.10.

3D.6. PROPOSITION. Let A be a type of rank < 2. Then
2—A <gp 1=-1-0—A.

ProoF. Let A = (ky,--- ,ky) = 1p,— - - - 1, —0. The term that will perform the reduc-
tion is relatively simple

O £ AM:(2—=A)Nf, g:102:0.M (Ah:1.f (h(g(h2)))).
In order to show that for all M7, Ms:2— A one has
QM| =gy PMy = My =g, Mo,
we may assume w.l.o.g. that A = 19—0. A typical element of 2—15—0 is
M = AF:2)\b:15. F (Az.F(\y.byx)).
Note that its translation has the following long B7n-nf

OM = \f,g:1z:0\b:1a. f (N [x: = g(Ny[x: = 2]])),
where N, = f(b(g(bzx))x),
= Af g:1Az:0Ab:15. f(f (b(g(bz[g(f (b(g(b22))2)) 1)) g (f (b(g(b22))2))])-
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This term M and its translation have the following trees.

BT(M) AFb.F

L.

and

BT(®M) Afgzb.
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Note that if we can ‘read back’ M from its translation ®M, then we are done. Let
Cuty_,. be a syntactic operation on terms that replaces maximal subterms of the form
gP by z. For example (omitting the abstraction prefix)

Cuty,,(PM) = f(f(bz2)).

Note that this gives us back the ‘skeleton’ of the term M, by reading f--- as F(A®---).
The remaining problem is how to reconstruct the binding effect of each occurrence of
the \®. Using the idea of counting upwards lambda’s, see de Bruijn [1972], this is
accomplished by realizing that the occurrence z coming from g(P) should be bound at
the position f just above where Cut,_,.(P) matches in Cut,_,,(®M) above that z. For
a precise inductive argument for this fact, see Statman [1980a], Lemma 5, or do exercise
3F.16. m

The following simple proposition brings almost to an end the chain of reducibility of
types.
3D.7. PROPOSITION.
1'—15—0—0 <g, 1o—0—0.
PROOF. As it is equally simple, let us prove instead
1—-12—0—-0 <g, 12—0—0.
Define @ : (1—+15—0—0)—12—0—0 by
® £ AM:(1—12—0—0)Ab:1oAc:0. M (f ) (b7 )e,
where
T2 X:0.b(# 1)t
bt & Myt9:0.b(#b)(bt1ts);

#f = bee;
#b 2 be(bec).

The terms #f, #b serve as ‘tags’. Notice that M of type 1—-12—0—0 has a closed long
Bn-nf of the form

M = Af:1Ab:19Mc:0.8
with ¢ an element of the set T generated by the grammar
Te:=c| fT|bTT.
Then for such M one has ®M =g, ®(M™) = M* with
M™T = Mf:1\b:1Ac:0.T,
where T is inductively defined by

ct &
(ft)F £ b(# N
(bt1ta)™ £ b(#b) (bt t3).
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It is clear that M™ can be constructed back from MT. Therefore
DMy =gn PMy = M, =g, My
= Ml+ = M';r
= MM =Myt
= M) =gy, M>.m

Similarly one can show that any type of rank < 2 is reducible to T2, do exercise 3F.19
Combining Propositions 3D.3-3D.7 we obtain the reducibility theorem.

3D.8. THEOREM (Reducibility Theorem, Statman [1980a]). Let
T2 £ 1,-0-0.

Then
VAE-"_O A S/Bﬂ T2.
PROOF. Let A be any type. Harvesting the results we obtain

A <gn B, with rk(B) < 3, by 3D.3,
<gn 1o—1°—-2-0, by 3D.5,
<gn 2151250, by simply permuting arguments,
<gy 1°=0—1y-12-0, by 3D.6,
<gn 12—0-0, by an other permutation and 3D.7 m

Now we turn attention to the type hierarchy, Statman [1980a].
3D.9. DEFINITION. For the ordinals a < w + 3 define the type A, € T as follows.

AQ = 0;
Ay = 0—0;
A Ak

A, =0 —0;

A, = 1-0-0;
Api1 £ 1=51-0-0;
Ayio 2 3-0-0;
Auiz = 15—0-0.

3D.10. PROPOSITION. For a, 3 < w + 3 one has
a<fB = Ay <gy As.
ProOF. For all finite k one has Ay <g, Ajy1 via the map
D kg1 L \m: Az - x:0.may - - T =gn Am:Ap.Km.
Moreover, Ay <g, A, via

q)kvw 2 )\m:Ak)\f:l)\l‘:O.m(C1f$) s (Ckff)'
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Then A, <gn Awt1 via
Dy i1 = Az AAf, g 1Az:0.m f .
Now A, 11 <gn Awy2 via
D1, w2 2 A Ay i AH:3Mz:0. H( A\ f:1.H(Ag:1.mfgz)).
Finally, A 42 <gn Awt3z = T2 by the reducibility Theorem 3D.8. Do Exercise 3F.18

that asks for a concrete term ®,, 19 (3. B
3D.11. PROPOSITION. For a, 8 < w + 3 one has

a< B« Ay <gn Ap.
Proor. This will be proved in 3E.52. m
3D.12. COROLLARY. For a, 8 < w + 3 one has
Ay <pgndpg & a<fp. m
For a proof that these types {Aq}a<w+3 are a good representation of the reducibility
classes we need some syntactic notions.

3D.13. DEFINITION. A type A € T is called large if it has a negative subterm occurrence,
see Definition 9C.1, of the form By— --- —B,—0, with n > 2; A is small otherwise.

3D.14. EXAMPLE. 15—0—0 and ((12—0)—0)—0 are large; (15—0)—0 and 3—0—0 are
small.

Now we will partition the types T = T? in the following classes.
3D.15. DEFINITION (Type Hierarchy). Define the following sets of types.

T 1 = {A] Ais not inhabited};
Ty = {A] Ais inhabited, small, rk(4) = 1 and

A has exactly one component of rank 0};
T, 2 {A] Ais inhabited, small, rk(A) = 1 and

A has at least two components of rank 0};
T, 2 {A] Aisinhabited, small, rk(4) € {2,3} and

A has exactly one component of rank > 1};
T3 = {A]Ais inhabited, small, rk(A) € {2,3} and

A has at least two components of rank > 1};
Ty, = {A] Aisinhabited, small and rk(A) > 3};
Ts = {A] Aisinhabited and large}.

Typical elements of T_; are 0,2,4,---. This class we will not consider much. The
types in Tg,--- , Ty are all inhabited. The unique element of Ty is 1 = 0—0 and the
elements of Ty are 1,, with & > 2, see the next Lemma. Typical elements of Ty are
1—0—0, 2—0 and also 0—+1—0—0, 0—(13—0)—0—0. The types in Ty, --, T4 are all
small. Types in Ty U T all have rank 1; types in Mo U --- U T3 all have rank > 2.

Examples of types of rank 2 not in Ty are (1—-1—0—0) € T3 and (1,—0—0) € T5. Ex-
amples of types of rank 3 not in Ty are ((12—0)—1—0) € T3 and ((1-1—0)—0—0) € Ts.
3D.16. LEMMA. Let A€ T. Then

(i) AeTy iff A= (0—0).
(ii) Ae Ty iff A= (0P—0), forp > 2.
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(iii) A€ Ty iff up to permutation of components
Ae{(1,—0)=07=0[p=>1,¢ =0} U{107=0] g > 1}

Proor. (i), (ii) If rk(A) =1, then A = 0P—0, p > 1. If A€ Ty, then p =1;if Ae Ty,
then p > 2. The converse implications are obvious.

(iii) Clearly the displayed types all belong to Ty. Conversely, let A€ Ty. Then A is
inhabited and small with rank in {2,3} and only one component of maximal rank.

Case r1k(A) = 2. Then A = A1—--- —A,—0, with rk(4;) <1 and exactly one A; has
rank 1. Then up to permutation A = (0P—0)—09—0. Since A is small p = 1; since A is
inhabited g > 1; therefore A = 1—09—0, in this case.

Case rk(A) = 3. Then it follows similarly that A = A;—09—0, with A; = B—0 and
rk(B) = 1. Then B = 1, with p > 1. Therefore A = (1,—0)—0¢—0, where now ¢ = 0
is possible, since (1,—0)—0 is already inhabited by Am.m(Az1---zp.z1). B

3D.17. PROPOSITION. The T; form a partition of T°.

PRrROOF. The classes are disjoint by definition.
Any type of rank < 1 belongs to T_; U Ty U Ty. Any type of rank > 2 is either not
inhabited and then belongs to T_1, or belongs to Mo UMTsUT,UTs5. =

3D.18. THEOREM (Hierarchy Theorem, Statman [1980a]). (i) The set of types T° over
the unique groundtype O is partitioned in the classes M_1, Mo, M1, Mo, Mg, Ty, Ts.

(ii) Moreover, A€ 5 & A~gp 15-0-0;
AeTy & An~gy 3—0-0;
AeTs & A~gy 1212005
AcT, & An~gy 1=20-0;
AeTy & A~gy 00, for some k > 1;
AeTy & A~gy 0-=0;
AcT_ 1 & A~gy,O.
(ili) 0 <gp 0—0 ey
<gn 0°—0
<gn 0F—0
<gn 1—-0—0 ety
<gn 1=1-0-0 €T3
<gn 3—0—0 ety

<gn 1l2—0—0 eTs.

PRrOOF. (i) By Proposition 3D.17.
(ii) By (i) and Corollary 3D.12 it suffices to show just the =s.

As to Tj, it is enough to show that 1,—0—0 <g, A, for every inhabited large type
A, since we know already the converse. For this, see Statman [1980a], Lemma 7. As a
warm-up exercise do 3F.26.

As to Ty, it is shown in Statman [1980a], Proposition 2, that if A is small, then
A <gy 3—0—0. It remains to show that for any small inhabited type A of rank > 3 one
has 3—0—0 <g, A. Do exercise 3F.30.
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As to T3, the implication is shown in Statman [1980a], Lemma 12. The condition
about the type in that lemma is equivalent to belonging to Ts.

As to o, do exercise 3F.28(ii).

As to T, with 4 = 1,0, —1, notice that A?(0¥—0) contains exactly k closed terms for
k > 0. This is sufficient.

(iii) By Corollary 3D.12. m

3D.19. DEFINITION. Let A€ TP, The class of A, notation class(A), is the unique i with
i€{-1,0,1,2,3,4,5} such that A€ ;.

3D.20. REMARK. (i) Note that by the Hierarchy theorem one has for all A, B¢ T
A <gyn B = class(A) < class(B).
(ii) As B <g A—B via the map ® = AzPy?.z, this implies
class(B) < class(A — B).

3D.21. REMARK. Let C_; = 0,
Co £ 0-0,
Cip = 080, with k> 1,
Ci £ 0%-0,
Cy £ 1-0-0,
C; £ 1-1-0—0,
Cy £ 3-0-0,
Cs; £ 1,—0-0.

Then for A€ T one has
(i) If i # 1, then
class(A) =i & A ~gy C;.
(i) class(4)=1 <«  3Jk.A~gy Cip.
& JkA=Chy.
This follows from the Hierarchy Theorem.
For an application in the next section we need a variant of the hierarchy theorem.

3D.22. DEFINITION. Let A= A1—---—A,—0, B= B1—---—By—0 be types.
(i) A is head-reducible to B, notation A <;, B, iff for some term ® € A’ ,(A—B) one
has

VM, My EAQ;(A) [Ml =pBn My, & ®M; =pBn CI)MQ],
and moreover ® is of the form
O = \m:Adx1:By -+ xp:By.mPy - - - Py, (1)

with FV(Py, -+, P,) C {x1, -2} and m ¢ {x -z}
(ii) A is multi head-reducible to B, notation A <+ B, iff there are closed terms
&y, , D, € A(A—DB) each of the form (1) such that

VM, My GAQL}(A) [Ml =pBn My, < ®1M; =pBn DMy & - - & D, My =pBn (I)mMQ]

(iii) Write A ~j, B iff A <;, B <;, A and similarly
A~y Bift A<+ B <;+ A.
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Clearly A <, B = A <;+ B. Moreover, both <j; and <j,+ are transitive, do Exercise
3F.14. We will formulate in Corollary 3D.27 a variant of the hierarchy theorem.

3D.23. LEMMA. 0 <j, 1 <, 020 <j, 1-0—0 <j, 1—-1—0—0.
PRrROOF. By inspecting the proof of Proposition 3D.10. m

3D.24. LEMMA. (i) 1=0—0 %,+ 0¥—0, for k > 0.

(ii) If A <p+1=0—0, then A <g, 1-0—0.

(iii) 15—=0—0 £;+ 1=-0—0, 3—0—0 £;+ 1=0—0, and 1-1—0—0 £, + 1-0—0.

(iv) 02—0 £+ 0—0.

(v) Let A,B€ . If A%, (A) is infinite and N°,(B) finite, then A £,+ B.

PRrROOF. (i) By a cardinality argument: A?,(1—0—0) contains infinitely many different
elements. These cannot be mapped injectively into the finite A%, (0¥—0), not even in
the way of <j+.

(ii) Suppose A <,+ 1—0—0 via ®1,---,P;. Then each element M of A’ (A) is
mapped to a k-tuple of Church numerals (®1(M), -+, ®x(M)). This k-tuple can be
coded as a single numeral by iterating the Cantorian pairing function on the natural
numbers, which is polynomially definable and hence A-definable.

(iii) By (ii) and the Hierarchy Theorem.

(iv) Type 02—0 contains two closed terms. These cannot be mapped injectively into
the singleton A?,(0—0), even not by the multiple maps.

(v) Suppose A <j+ B via ®y,---,®;. Then the sequences (®1(M), -, Pp(M)) are
all different for M € A’ (A). As B is finite (with say m elements), there are only finitely
many sequences of length k (in fact m¥). This is impossible as A?, (A) is infinite. m

3D.25. PROPOSITION. Let A, B€TY. Then

(i) Ifi ¢ {1,2}, then A ~;, B.

(ii) Ifie{1,2}, then A ~,+ B.

ProOOF. (i) Since A, B€T; and i # 1 one has by Theorem 3D.18 A ~g,, B. By inspec-
tion of the proof of that theorem in all cases except for A € Mo one obtains A ~;, B. Do
exercise 3F.29.

(ii) Case i = 1. We must show that 1o ~j+ 1j for all & > 2. It is easy to show
that 1o <j 1,, for p > 2. It remains to verify that 1 <;+ 13 for £ > 2. W.lo.g. take
k = 3. Then M €A (13) is of the form M = Azjxexs.x;. Hence for M, N € A%, (13)
with M #g, N either

Ay1y2-My1y1y2 #pn ANy1y2-Ny1y1y2 or Ay1y2- My1y2y2 #pn Ay1y2-Ny1y2y2.
Hence 13 Sh"’ 12.
Case i = 2. Do Exercise 3F.28. m
3D.26. COROLLARY. Let A,BeT°, with A= A;—---—A,—0,B = Bj— - - - —By—0.
(i) A~n B = A ~gy B.
(iii) Suppose A <+ B. Then for M, N € N’(A)
M 75,377 N (: A) = )\f.MRl - Ry #gn )\f.NRl - R, (: B),

for some fized Ry, Ry with FV(R) C {Z} = {aPr ... ,xf”}.
PrOOF. (i) Trivially one has A <; B = A <g,, B. The result follows.
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(ii) By the Proposition and the hierarchy theorem.
(iii) By the definition of <,+. m
3D.27. COROLLARY (Hierarchy Theorem Revisited, Statman [1980b]).

AeTs & A~y 19—0—-0;
AeTy & A~y 3—0-0;
AeTg & A~y 151200
AeTy & A~ 1500
AeTy = A ~p+ 02—>0;
AeTy = A ~p, 0—0;
AeT_4 -~ A ~p 0.

ProoF. The Hierarchy Theorem 3D.18 and Proposition 3D.25 establish the = impli-
cations. As ~j, implies ~g,, the <= we only have to prove for A ~p,+ 1—-0—0 and
A ~p+ 02—0. Suppose A ~;+ 1—0—0, but A ¢ To. Again by the Hierarchy Theorem
one has A€ T3UT4UTs0or Ac T_UT UT . If A€ T3, then A ~g, 1—+1—-0—0, hence
A ~p+ 151-0—0. Then 1-+0—0 ~p,+ 1—-1—0—0, contradicting Lemma 3D.24(ii). If
AeTyor A€ s, then a contradiction can be obtained similarly.

In the second case A is either empty or A = 0¥—0, for some k > 0; moreover
1-0—0 <;+ A. The subcase that A is empty cannot occur, since 1—+0—0 is inhab-
ited. The subcase A = 0¥—0, contradicts Lemma 3D.24(i).

Finally, suppose A ~,+ 020 and A ¢ ;. If A€ T_; U Ty, then A?,(A) has at
most one element. This contradicts 02—0 <, + A, as 0°—0 has two distinct elements. If
AeTMyUT3UT,LUTs5, then 1-0—0 <g,) A <;+02—0, giving A infinitely many closed
inhabitants, contradicting Lemma 3D.24(v). m

Applications of the reducibility theorem

The reducibility theorem has several consequences.
3D.28. DEFINITION. Let C be a class of AC" models. C is called complete if

VM,NeN[C}=M =N & M =g, N].

3D.29. DEFINITION. (i) 7 = Ty is the algebraic structure of trees inductively defined
as follows.

Tu=c|bTT
(ii) For a typed A-model M we say that T can be embedded into M, notation T — M,
if there exist by € M(0—0—0), co € M(0) such that

Vi,seTlt#s = M = tTbco # sTboco),

where u = \b:0—0—0Ac:0.u, is the closure of u e T.

The elements of T are binary trees with ¢ on the leaves and b on the connecting nodes.
Typical examples are ¢, bee, be(bee) and b(bee)e. The existence of an embedding using
bo, co implies for example that byco(bococo), bococo and ¢y are mutually different in M.
Note that T #» Ma(= My 23). To see this, write gz = bzz. One has g%(c) # g*(c),
but My = Vg:0—0Vc:0.9%(c) = g*(c), do exercise 3F.20.
Remember that T2 = 15—0—0, the type of binary trees, see Definition 1D.12.
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3D.30. LEMMA. (i) e M;EM =N < YielI. M; =M = N.
(ii) MeN(T?) & Ise€T.M =g, s°.

PROOF. (i) Since [M]MieMi = i e 1.[M]M:.
(ii) By an analysis of the possible shapes of the normal forms of terms of type T2. m

3D.31. THEOREM (1-section theorem, Statman [1985]). C is complete iff there is an (at
most countable) family {M;};c1 of structures in C such that

T — IL; ¢ ;1 M;.
PROOF. (=) Suppose C is complete. Let ¢, s € T. Then
t#£s = t9 #6n s
=  CFEtd =5 by completeness,
= M E £ s, for some My, €C,
= My = t%scrs # sMbrscrs,

for some bys € M(0—0—0), cts € M(0) by extensionality. Note that in the third impli-
cation the axiom of (countable) choice is used.
It now follows by Lemma 3D.30(i) that we can take as countable product Iy g My

Ht/;és’Mt’s/ ': td 7& 8C17
since they differ on the pair bycy with by(ts) = bys and similarly for ¢g.
(<) Suppose T < II; ¢ tM; with M; €C. Let M, N be closed terms of some type A.
By soundness one has
M=, N = CE=M=N.
For the converse, let by the reducibility theorem F : A—T?2 be such that
M =g, N <& FM =g, FN,
for all M, N € A,. Then
CEM=N = IjcM;E=M=N, by the lemma,
= ngle):FM:FNa
= IerM; it =5,
where t, s are such that
FM =g, t*, FN =g, s, (1)

as by Lemma 2A.18 every closed term of type T2 is Bn-convertible to some u° with
u € 7T. Now the chain of arguments continues as follows

= t=s, by the embedding property,
= FM =gy FN, by (1),
= M =g, N, by reducibility. m

3D.32. COROLLARY. (i) [Friedman [1975]] {Mxy} is complete.
(ii) [Plotkin [1980]] {M,, | n € N} is complete.
(iii) {Mn, } is complete.
(iv) {Mp | D a finite cpo}, is complete.

PROOF. Immediate from the theorem. m



3E. THE FIVE CANONICAL TERM-MODELS 123

The completeness of the collection { M}, cn essentially states that for every pair of
terms M, N of a given type A there is a number n = njs n such that M,, =M =N =
M =g, N. Actually one can do better, by showing that n only depends on M.
3D.33. PROPOSITION (Finite completeness theorem, Statman [1982]). For every type A
in MY and every M € A°(A) there is a number n = nyy such that for all N € A°(A)

M, EM=N & M=g, N.

PROOF. By the reduction Theorem 3D.8 it suffices to show this for A = T2. Let M a
closed term of type T2 be given. Each closed term N of type T2 has as long 8n-nf

N = )\btlg)\C:O.SN,

where sy €7T. Let p : N->N—N be an injective pairing on the integers such that
p(ki1, ko) > k;. Take

ny = ([M]PM“p0) + 1.
Define p’: X2, — X, 11, where X, 11 = {0,--- ,n+1}, by

p(k1,k2) = pki,ka), if ki, ke <n & p(ki, k) <m;
= n+1 else.

Suppose M,, = M = N. Then [[M]]M”p’O = [[N]]M”p’(). By the choice of n it follows
that [M]"p0 = [N]™"p0 and hence sy, = sy. Therefore M =gnp N.m

3E. The five canonical term-models

We work with AP based on T°. We often will use for a term like Az*.z4 its de Bruijn
notation Ax:A.x, since it takes less space. Another advantage of this notation is that we
can write Af:12:0.f2x = A\f:12:0.f(fx), which is A\f! 2°. f1(f12°) in Church’s notation.

The open terms of AC! form an extensional model, the term-model My . One may
wonder whether there are also closed term-models, like in the untyped lambda calculus.
If no constants are present, then this is not the case, since there are e.g. no closed terms
of ground type 0. In the presence of constants matters change. We will first show how
a set of constants D gives rise to an extensional equivalence relation on A?,[D], the set
of closed terms with constants from D. Then we define canonical sets of constants and
prove that for these the resulting equivalence relation is also a congruence, i.e. determines
a term-model. After that it will be shown that for all sets D of constants with enough
closed terms the extensional equivalence determines a term-model. Up to elementary
equivalence (satisfying the same set of equations between closed pure terms, i.e. closed
terms without any constants) all models, for which the equality on type 0 coincides with
=g, can be obtained in this way.

3E.1. DEFINITION. Let D be a set of constants, each with its own type in T°. Then D
is sufficient if for every A€ T there is a closed term M € A?,[D](A).

For example {20}, {F?2, !} are sufficient. But {f'}, {¥3, f1} are not. Note that
D is sufficient < A”,[D](0) # 0.
3E.2. DEFINITION. Let M, N € A?,[D](A) with A = A41—---—A,—0.
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(i) M is D-extensionally equivalent with N, notation M ~$* N, iff
Vi1 € N, [D](Ay) - -ty € A, [D](A,). Mt =g, Nt.

[If @ = 0, then M, N € A°,[D](0); in this case M ~* N < M =g, N.]
(i) M is D-observationally equivalent with N, notation M ~%* N, iff

VF e N, [D|(A—=0) FM =g, FN.m
3E.3. REMARK. (i) Let M, N € A°,[D](A) and F € A?,[D](A—B). Then
M~%*N = FM ~%° FN.
(ii) Let M, N € A°,[D)(A—B). Then
M~EEN & VZeN,[D|(A).MZ~F* NZ.
(iii) Let M, N € A?,[D](A). Then
M~$5N = M=~5* N,

by taking F = Am.mf.

Note that in the definition of extensional equivalence the ¢ range over closed terms
(containing possibly constants). So this notion is not the same as Bn-convertibility: M
and N may act differently on different variables, even if they act the same on all those
closed terms. The relation ~$* is related to what is called in the untyped calculus the
w-rule, see B[1984], §17.3.

The intuition behind observational equivalence is that for M, N of higher type A one
cannot ‘see’ that they are equal, unlike for terms of type 0. But one can do ‘experiments’
with M and N, the outcome of which is observational, i.e. of type 0, by putting these
terms in a context C[—] resulting in two terms of type 0. For closed terms it amounts
to the same to consider just FM and FN for all F € A?,[D](A—0).

The main result in this section is Theorem 3E.34, it states that for all D and for all
M, N € N, [D] of the same type one has

M~E*N & M=~$°N. (1)

After this has been proved, we can write simply M ~p N. The equivalence (1) will first
be established in Corollary 3E.18 for some ‘canonical’ sets of constants. The general
result will follow, Theorem 3E.34, using the theory of type reducibility.

The following obvious result is often used.

3E.4. REMARK. Let M = M|d], N = N[d] € A°,[D](A), where all occurrences of d are
displayed. Then

M(d)=g,N|[d] & \&.M[#]=gn\Z.N|i].
The reason is that new constants and fresh variables are used in the same way and that
the latter can be bound.

3E.5. PROPOSITION. Suppose that =5 is logical on A?,[D]. Then

VM, N € N, [D][M ~ N < M~ N
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PRrROOF. By Remark 3E.3(iii) we only have to show (=). So assume M ~$* N. Let
F e N, [D](A—0). Then trivially

F =% F.
= FM =§* FN, asby assumption ~%* is logical,
= FM =g, FN, because the type is 0.
Therefore M ~3* N. m

The converse of Proposition 3E.5 is a good warm-up exercise. That is, if
VM,N € N,[D][M ~5* N < M ~%° N,
then ~$* is the logical relation on A?,[D] determined by Bn-equality on A?,[D](0).

3E.6. DEFINITION. BetaEta? = {BetaEta}} , o is the logical relation on A%,[D] de-
termined by

BetaEtal (M, N) <&M =g, N,
for M, N € A?,[D](0).
3E.7. LEMMA. Let d = dA7%€D, with A = Aj— --- —A,—0. Suppose
(i) VF,Ge N, [D](A)F ~5* G = F =g, G);
(ii) Vt; € A%, [D](A;) BetaEtaP (¢;,t;), 1 <i < a.
Then BetaEtaL ,,(d,d).
PROOF. Write S = BetaEta”. Let d be given. Then
S(F,G) = Ft=g,Gt, since V£ € A?, [D] S(t;,t;) by assumption (ii),
= F=aFaG,
= F=3,G, by assumption (i),
= dF =g, dG.
Therefore we have by definition S(d, d). m

3E.8. LEMMA. Let S be a syntactic n-ary logical relation on A, [D], that is closed under
=gn. Suppose S(d,--- ,d) holds for all d€D. Then for all M € A’ [D] one has

S(M,---,M).
PROOF. Let D = {d{",--- ,d"}. M can be written as
M = M[d] =g, A\2.M|[])d = M*d,
with M™ a closed and pure term (i.e. without free variables or constants). Then

S(M*, - M), by the fundamental theorem
for syntactic logical relations
= S(M‘%?, e ,M+&), since S is logical and Vd € D.S(Ei),
=  SM,---, M), since S is =gy, closed. m

3E.9. LEMMA. Suppose that for alld € D one has BetaEtaP (d, d). Then ~&* is BetaEta®
and hence logical.
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PROOF. Write S = BetaEta”. By the assumption and the fact that S is =gn closed
(since Sp is), Lemma 3E.8 implies that
S(M, M) (0)
for all M € A?,[D]. It now follows that S is an equivalence relation on A?,[D]. Claim
SA(F,G) & F~5*G,

for all F,G e A?,[D](A). This is proved by induction on the structure of A. If A =0,
then this follows by definition. If A = B—C, then we proceed as follows.

(=) Sposc(F,G) = Sc(Ft,Gt), forallteA’,[D]|(B),
since t =$* ¢ and hence, by the IH, Sp(t,t),
= Ft=%*Gt, forall te A, [D], by the IH,
= F=$*G, Dby definition.
(<) Fr$*G = Ft=§*Gt, forallte N [D],
= Sc(Ft,Gt) (1)

by the induction hypothesis. In order to prove Sp_,c(F,G), assume Sp(t,s) towards
Sc(Ft,Gs). Well, since also Sp_,c(G, G), by (0), we have

Sc(Gt, Gs). 2)

It follows from (1) and (2) and the transitivity of S (which on this type is the same as
~%* by the IH) that S¢(Ft,Gs) indeed.
By the claim ~$* is S and therefore ~%* is logical. m
3E.10. DEFINITION. Let D = {0‘141, e ,c?’“} be a finite set of typed constants.
(i) The characteristic type of D, notation V(D), is A1— - -+ —Ap—0.
(ii) We say that a type A = A;—--- —A,—0 is represented in D if there are distinct
constants d‘fh, .- ,dg‘“ eD.
In other words, V(D) is intuitively the type of Ad;.d®, where D = {d;} (the order of
the abstractions is immaterial, as the resulting types are all ~g,, equivalent). Note that
V(D) is represented in D.
3E.11. DEFINITION. Let D be a set of constants.
(i) If D is finite, then the class of D is the class of the type V(D), i.e. the unique i

such that V(D) e T,.
(ii) In general the class of D is

max{class(A) | A represented in D}.

(iii) A characteristic type of D, notation V(D) is any A represented in D such that
class(D)=class(A). That is, V(D) is any type represented in D of highest class.
It is not hard to see that for finite D the two definitions of class(D) coincide.
3E.12. REMARK. Note that it follows by Remark 3D.20 that

D1 €Dy = class(Dy) < class(Da).

In order to show that for arbitrary D extensional equivalence is the same as observa-
tional equivalence this will be done first for the following ‘canonical’ sets of constants.
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3E.13. DEFINITION. The following sets of constants will play a crucial role in this section.

C.1 = 0

Co = {'%

C1 & {Co,do};

C2 £ {flaco};

Cs £ {flaglvco};
Cs = {®3 )
Cs = {b12,co}. [ ]

3E.14. REMARK. The actual names of the constants is irrelevant, for example Cy and
Ch = {g',c’} will give rise to isomorphic term models. Therefore we may assume that
a set of constants D of class ¢ is disjoint with C;.

From now on in this section C ranges over the canonical sets of constants {C_1,--- ,Cs}
and D over arbitrary sets of constants.

3E.15. REMARK. Let C be one of the canonical sets of constants. The characteristic
types of these C are as follows.

V() = 0

V(Co) = 0-—0;

V(Cl) = 19 = O—)O—)O;
V(C) = 1-0-0;
V(C3) = 1-1—0-0;
V(Cy) = 3-0-0;
V(C5) = 1o—0—0.

So V(C;) = Cy, where the type C; is as in Remark 3D.21. Also one has
i<j e V(G) <pn V(C),
as follows form the theory of type reducibility.

We will need the following combinatorial lemma about %a‘t.
3E.16. LEMMA. For every F,G € A[C4](2) one has

F%a{tG = FZﬁn G.
Proor. We must show
[VhEA[C4](1)Fh =pn Gh] = F =Bn G. (1)

In order to do this, a classification has to be given for the elements of A[C4)(2). Define
for AeT° and context A

Ap ={M e A[C4)(A)|A+ M : A& M in Bn-nf}.

It is easy to show that 0Ao and 2a are generated by the following ‘two-level” grammar,
see van Wijngaarden [1981].

2A n=Af:1.0A 11
Oa = c | ®2a | A10a,
where A.A consists of {v|v4 € A}.
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It follows that a typical element of 2y is

AMr:1.@(Afa: 1 fi(fo(R (M f3:1. f3(f2(f1(f5€)))))))-

Hence a general element can be represented by a list of words

with w; € ¥ and ¥; = {f1,---, fi}, the representation of the typical element above
being (€, f1f2, f3faf1f3). The inhabitation machines in Section 1C were inspired by this
example.

Let hy, = A2:0.®(Ag:1.9™(2)); then h,, € 1p. We claim that

VF,G € A, [C4](2) Im EN.[Fhy, =gy Ghm = F =gy GJ.

For a given F' € A[C4](2) and m € N one can find a representation of the Bn-nf of Fh,,
from the representation of the Bn-nf F™ €2y of F. It will turn out that if m is large
enough, then F™ can be determined (‘read back’) from the Bn-nf of Fh,,.

In order to see this, let F™ be represented by the list of words (wy,- -+ ,wy), as above.
The occurrences of f; can be made explicit and we write

w; = wip frwit frweg - - - frwi, -

Some of the w;; will be empty (in any case the wy;) and w;; € ;" with ¥ = {fo,--- , fi}.
Then F™ can be written as (using for application—contrary to the usual convention—
association to the right)

= Af1.wio frwir -+ frwig,
P (A fa.wao frwar - - - frwag,

(I)()\fn-wnOflwnl T flwnkn
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Now we have

(Fhm)nf = wio
‘I’()\g-gmwn

®(Ag.gMwyg,
<I>()\f2.w20
‘I'(Ag-gmwm

®(Ag.g"way,
<I>()\f3.w30
‘I’()\g-gmw?ﬂ

®(Ng.g"wsp,

(I'()\fn.wno
q)()‘g'gmwnl

P (Ng.g"wpk,

So if m > max;;{length(w;;)} we can read back the w;; and hence F™ from (Fh,)™.
Therefore using an m large enough (1) can be shown as follows:

Vh e A[C4](1)Fh =Bn Gh = Fhy, =Bn Ghy,
= (Fhy)™ = (Ghp)™
= an = an
= F:Bn anEan =pBn G.m

3E.17. PROPOSITION. For alli€{—1,0,1,2,3,4,5} the relations %E’f are logical.

PROOF. Write C = C;. For i = —1 the relation ~&* is universally valid by the empty
implication, as there are never terms ¢ making Mt, Nt of type 0. Therefore, the result
is trivially valid.

Let S be the logical relation on A?, [C] determined by =g, on the ground level A?,[C](0).
By Lemma 3E.9 we have to check S(c, c) for all constants ¢ in C;. For i # 4 this is easy
(trivial for constants of type 0 and almost trivial for the ones of type 1 and 15 = (02—0);
in fact for all terms h € A?,[C] of these types one has S(h,h)).

For i = 4 we reason as follows. Write S =BetaEta. It suffices by Lemma 3E.9 to
show that S(®3, ®3). By Lemma 3E.7 it suffices to show

F%C4G$F:l@nG
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for all F,G € A”,[C4](2), which has been verified in Lemma 3E.16, and S(¢,t) for all
t € A, [C4](1), which follows directly from the definition of S, since =g,, is a congruence:

VM,N e A, [0].[M=g,N = tM=g,tN]. m

3E.18. COROLLARY. Let C be one of the canonical classes of constants. Then
VM, N € N, [C][M ~@** N & M ~g* N]J.

Proor. By the Proposition and Proposition 3E.5. m

Arbitrary finite sets of constants D

Now we pay attention to arbitrary finite sets of constants D.
3E.19. REMARK. Before starting the proof of the next results it is good to realize the
following. For M, N € A?,[D U {c*}]\ A, [D] it makes sense to state M ~&* N, but in
general we do not have

M~FEN = M ~3 a4 N. (+)
Indeed, taking D = {d°} this is the case for M = \x°b'2.bc%z, N = A\z°b'2.bc%d’. The
implication (+) does hold if class(D)=class(D U {c}), as we will see later.

We first need to show the following proposition.
PROPOSITION (Lemma P;, with i € {3,4,5}). Let D be a finite set of constants of class
i>2 and C=C;. Then for M, N € A’,[D] of the same type we have
M~F*N = M=~F5 N.

We will assume that DN C = (), see Remark 3E.14. This assumption is not yet essential

since if D, C overlap, then the statement M ~$%. N is easier to prove. The proof occupies

3E.20-3E.27.

NOTATION. Let A= A;—---—A,—0 and d € A?,[D](0). Define KAd € A°,[D](A) by
KAd 2 Az Ag - Mg Ag.d).

3E.20. LEMMA. Let D be a finite set of constants of class i>1. Then for all Ac T the

set A’ [D](A) contains infinitely many distinct Inf-s.

PROOF. Because ¢ > —1 there is a term in A?,[D](V(D)). Hence D is sufficient and

there exists a d” € A?,[D](0) in Inf. Since i>1 there is a constant d® € D with B =
By—---—By—0, and b > 0. Define the sequence of elements in A?,[D](0):

do 2 d°;
dip1 2 dP(KPLdy) - - (KP2dy).
As dy is a Inf and |dg 1| > |di|, the {KAdy, KAdy,-- -} are distinct Inf-s in A?,[D](A). m
3E.21. REMARK. We want to show that for M, N € A?,[D] of the same type one has
MASEN = Mgt o N (0)

The strategy will be to show that for all P,@Q € A_,[D U {c°}](0) in Inf one can find a
term T, € A’ ,[D](A) such that

P#Q = Pl =TJ]#Q[c’ =T, (1)
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Then (0) can be proved via the contrapositive

M;é%ﬁ{co}N = Mt +#g, Nt (:0), for some £ € A?,[D U {c"}]
= P#Q, by taking Inf-s,
=  Ple:=T]#Qlc:=T], by (1),
= M&#g, NS, with § = t]c := T,
= M#pN.

3E.22. LEMMA. Let D be of class i > 1 and let ¢® be an arbitrary constant of type 0.
Then for M, N € A?,[D] of the same type

M~F*N = M=~35 0 N.

PrOOF. Using Remark 3E.21 let P,Q € A_,[D U {c"}](0) and assume P # Q.

Case ¢ > 1. Consider the difference in the Bohm trees of P, () at a node with smallest
length. If at that node in neither trees there is a ¢, then we can take T, = d° for any
d’ € A?,[D]. If at that node in exactly one of the trees there is ¢ and in the other a
different s € A%, [D U {c"}], then we must take d° sufficiently large, which is possible by
Lemma 3E.20, in order to preserve the difference; these are all cases.

Case i = 1. Then D = {d?,--- ,dg}, with k > 2. So one has P,Q € {dY,-- ,dg,co}.
If c¢{P,Q}, then take any T, = d;. Otherwise one has P = ¢, Q = d;, say. Then take
T. = d;, for some j #i. ®
3E.23. REMARK. Let D = {d"} be of class i = 0. Then Lemma 3E.22 is false. Take for
example A\r¥.2~S* \1Y.d, as d is the only element of A, [D](0). But Az".z ﬁ?’éﬁ’co})\xo.d.

3E.24. LEMMA (Ps). Let D be a finite set of class i =5 and C=C5 = {c°,b'2}. Then for
M, N € A, [D] of the same type one has

M~F*N = M~ N.
PrOOF. By Lemma 3E.22 it suffices to show for M, N € A, [D] of the same type
M”%XS{CO} N = M*%ﬁ{&,blz} N.

By Remark 3E.21 it suffices to find for distinct Inf-s P,Q € A [D U {c,b'2}](0) a term
T, € A [D U {c"}](12) such that

Plb:=Ty] # Q[b :=T)). (1).
We look for such a term that is in any case injective: for all R, R', S, S" € A?, [DU{c"}](0)
TbRS:gnTbR/SI = RZgnR, & S:ﬂ,,S’.

Now let D = {di:A1,- -+ ,dp:Ap}. Since D is of class 5 the type V(D) = A1 — -+ —A—0
is inhabited and large. Let 7€ A%, [D](0).

Remember that a type A = A;—---—Ap—0 is large if it has a negative occurrence
of a subtype with more than one component. So one has one of the following two cases.

Case 1. For some ¢ < b one has A; = Bi— -+ —Bp—0 with b > 2.

Case 2. Each A; = A/—0 and some A is large, 1 <1i < b.
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Now we define for a type A that is large the term T4 € A?,[D](12) by induction on the
structure of A, following the mentioned cases.
Ty = Xe%0.di(KPra)(KP2y)(KP3T) ... (KPeT),  if i < b is the least such that
A; = B1— - —By—0 with b > 2,
= Aa%.d; (KA (Tarzy)), if each Aj = A’—0 and i <ais
the least such that A} is large.

By induction on the structure of the large type A one easily shows using the Church-
Rosser theorem that T4 is injective in the sense above.
Let A = V(D), which is large. We cannot yet take T}, = T4. For example the difference
bee #ay Tace gets lost. By Lemma 3E.20 there exists a T € A%, [D](0) with
7] > max{|P],|Ql}.
Define
Ty = (\zy. Ta(TazT)y) € A, [D](1s).
Then also this T} is injective. The T+ acts as a ‘tag’ to remember where T}, is inserted.
Therefore this T} satisfies (1). m
3E.25. LEMMA (Py). Let D be a finite set of class i = 4 and C=C4 = {c°, ®3}. Then for
M, N € N, [D] of the same type one has
M=~5*N = M ~$55. N.
ProOF. By Remark 3E.21 and Lemma 3E.22 it suffices to show that for all distinct Inf-s
P,Qe A [DU{c, ®3}](0) there exists a term Ty € A_,[D U {c’}](3) such that
P[® :=To] # Q[® :=To]. (1)

Let A = Aj—---—A,;—0 be a small type of rank k& > 2. Wlog we assume that
rk(A;) =rk(A) — 1. As A is small one has A; = B—0, with B small of rank k — 2.
Let H be a term variable of type 2. We construct a term

My = Ma[H] e A2 (4).
The term M, is defined directly if k € {2, 3}; else via Mp, with rk(Mp) = rk(M4) — 2.

My & dxi:Ay-AxgAg Ha, if rk(A) =2,
2 NppAy - Azg Al H(A2:0.21(KB2)),  if rk(A) = 3,
L2 M\rp:Ap - AxgiAg.zi Mp, if rk(A) > 4.

Let A = V(D) which is small and has rank k& > 4. Then wlog A; = B—0 has rank > 3.
Then B = B1— - -+ —Bp—0 has rank > 2. Let

T = (\H:2.d{" (Mp[H))) € A, [D](3).
Although T is injective, we cannot use it to replace ®3, as the difference in (1) may
get lost in translation. Again we need a ‘tag’ to keep the difference between P, () Let
n > max{|P|, |Q|}. Let B; be the ‘first’ with rk(B;) = k — 3. As B; is small, we have
B; = C;—0. We modify the term T
Te 2 (NH:2.d" (Ay1:By - Ayy: By (y; o K™ (Mp[H] 7)) € A°, [D](3).

This term satisfies (1). m
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3E.26. LEMMA (P3). Let D be a finite set of class i = 3 and C=C3 = {c°, f',g'}. Then
for M,N € N, [D] of the same type one has

M~F*N = M=% N.

PROOF. Again it suffices that for all distinct Inf-s P,Q € A[D U {c°, f1,g'}](0) there
exist terms Ty, Ty € A, [D U {c"}](1) such that

Plf.g =Ty, Tyl # Qlf, 9 := Ty, Ty]. (1)
Writing D = {d:A1, -+ ,dq: Ay}, for all 1 <i < a one has A; =0 or 4; = B; — 0 with
rk(B;) < 1, since V(D) € 3. This implies that all constants in D can have at most
one argument. Moreover there are at least two constants, say w.l.o.g. d1, ds, with types

B1—0, Bo—0, respectively, that is having one argument. As D is sufficient there is a
de N, [D](0). Define

Ty 2 Xz:0.di(KP'z)  in A2, [D](1),
Ty 2 Mz:0.dy(KP2z)  in A?,[D](1).
As P, (@ are different Inf-s, we have
P= Pl ()\flpg()\fQ s Pp()\fQX))),
Q= Q1M1 Q2(Afa- -+ Qq(A2.Y)..)),
where the P;, Q; € (DUC3), the &;, ; are possibly empty strings of variables of type 0, and
X,Y are variables or constants of type 0. Let (U, V') be the first pair of symbols among
the (P;, Q;) that are different. Distinguishing cases we define T, T such that (1). As a
shorthand for the choices we write (m,n), m,n € {1,2}, for the choice Ty = T,,,, Ty = T,.
Case 1. One of U,V say U, is a variable or in D/{d;,ds2}. This U will not be changed
by the substitution. If V is changed, after reducing we get U # d;. Otherwise nothing
happens with U, V and the difference is preserved. Therefore we can take any pair (m,n).
Case 2. One of U,V is d;.
Subcase 2.1. The other is in {f,g}. Then take (j,7), where j =3 — 4.
Subcase 2.2. The other one is d3_;. Then neither is replaced; take any pair.
Case 3. {U,V} ={f,g}. Then both are replaced and we can take (1,2).
After deciphering what is meant the verification that the difference is kept is trivial. m

3E.27. PROPOSITION. Let D be a finite set of class i>2 and let C=C;. Then for all
M, N € A, [D] of the same type one has

M~F*N & M=~%5: N.

PROOF. (=) By Lemmas 3E.24, 3E.25, and 3E.26. (<) Trivial. m
3E.28. REMARK. (i) Proposition 3E.27 fails for ¢ = 0 or ¢ = 2. For i = 0, take D =
{d°}, C = Co = {c°}. Then for P = Kd,Q = | one has Pc =g, d #g, ¢ =g, Qc. But
the only u[d] € A?,[D](0) is d, loosing the difference: Pd =g, d =g, Qd. For i = 2, take
D = {g:1,d:0}, C = Cy = {f:1,¢:0}. Then for P = Ah:1.h(h(gd)), Q@ = \h:1.h(g(hd))
one has Pf #gn Qf, but the only u[g,d] € A?,[D](0) are Az.g"x and \r.g"d, yielding
Pu =g, g°""'d = Qu, respectively Pu =g, g"d =g, Qu.

(ii) Proposition 3E.27 clearly also holds for class ¢ = 1.
3E.29. LEMMA. For A= A1—---—A,—0. write Dy = {0’141, oo ,cde}. Let MN €N,
be pure closed terms of the same type.
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(i) Suppose A <+ B. Then
~oext ~.ext
MAZEN = M~ZEN.
(ii) Suppose A ~,+ B. Then
MNeXtN o= MNeXtN
PROOF. (i) We show the contrapositive.

M#FIN = e N, [Da].Mtlay, -, a4 #an Ntlai, - ,a4) (: 0)
= W NAM{[@) #py Na.Nt[a@] (: A), by Remark 3E.4,
= IN.\TMT[@))R[b) #an \bo.(Aa@.Nt[@])R[b] (: B),
by 3D. 26(iii) as A <, B,

= SNMI[R[D]] £y \b.NE[E[B]] (: B)
= T ME[R[by,- -, by)] #an NE[R[b1, - ,b)] (: 0), by Remark 3E.4,
= M¢ext

(ii) By (i). m
3E.30. PROPOSITION. Let D = {d?l, e ,dkB’“} be of class i>2 and C = C;, with DNC =
0. Let AcT°. Then we have the following.

(i) For Pld],Q[d] €A\, [D](A), such that \Z.P[Z],\Z.Q[Z] € \?,(B1— - - - —By—0)
the following are equivalent.

(1) Pld] ~5* Qld).

(2) AZ.P[Z] ~¢ AZ.Q[7].

(3) A2.P[T] ~5" AT.Q[Z].

(ii) In particular, for pure closed terms P,Q € A?,(A) one has

P~5*Q & P=cQ.

PRrROOF. (i) We show (1 ) (2) = (3) = (1).

(1) = (2). Assume P[d] ~T Q|[d]. Then
=  Pld]~Z% Qld), by Proposition 3E.27,
= Pld]~g* Qld],
= Pld)f =g, Qd]t, for all £'e A?,[C],
= P[5t =g, Q[5]L, for all £, 5€ A?,[C] as DNC = ),
=  AZP[Z]~F AL.Q[T].

(2) = (3). By assumption V(D) ~j,+ V(C). As D = Dy(p) and C = Dy/c) one has
AZ.P[T] ~5* M\2.Q[T] & M2.P[7] ~g* \7.Q[7],
by Lemma 3E.29.
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Plz]
= (M.P@ER

§ =gy (AML.Q(Z)RS, forall R, 5 e A, [D],
= P(R)S =a, Q(R)S, for all R, S e A°.[D],
= P(d)S =p, Q(d)S, for all S e A?,[D],
= P(d) ~< Q(d).

(ii) By (i). m
The proposition does not hold for class i = 2. Take D = Cy = {f!,c’} and
P[f,c] = Mr:0.h(h(fc)), Q@ = Mr:0.h(f(he)).

Then P[f,c] =5* Q[f, c]|, but Afc.P[f,c] #5 A\ fe.Q[f, c].

3E.31. PROPOSITION. Let D be set of constants of class i # 2. Then
(i) The relation =5* on A?,[D] is logical.
(i) The relations ~5* and ~ ~°bs on N, [D] coincide.

PRrOOF. (i) In case D is of class —17 then M ~$* N is universally valid by the empty
implication. Therefore, the result is trivially valid.

In case D is of class 0 or 1, then V(D) € MoUT;. Hence V(D) = 0¥—0 for some k > 1.
Then D = {c),---,%}. Now trivially BetaEta”(c, ¢) for c € D of type 0. Therefore ~5*
is logical, by Lemma 3E.9.

For D of class i > 2 we reason as follows. Write C = C;. We may assume that CN'D = (),
see Remark 3E.14.

We must show that for all M, N € A, [D](A—B) one has

M~AZN < VP,Qe N, [D|(A)[P~ZQ = MP~Z* NQ). (1)

(=) Assume M[d] ~%* N|d] and Pld] ~Z* Q[d], with M, N € A°,[D](A—B) and
P,Q € N, [D](B), in order to show M[d]P[d]~2 et N|[d]Q[d]. Then AZ.M[Z]~¢ AZ.N[Z]
and \Z.P[Z] ~¢ \Z.Q[Z], by Proposition 3E.30(i). Consider the pure closed term

H = \f:(E—A—B)Am:(E—A)\Z:E. fT(m7).
As ~¢ is logical, one has H ~¢ H, A\&. M |[Z] ~¢ A\Z.N[Z], and \Z.P[Z] ~¢ AZ.Q[Z]. So
AEMIZIPIE] =py HOAZ.M[Z])(AZ.P[Z])
~e  HOAEN[Z])(AZ.Q[Z]),
=pn ATN[Z]Q[T].
But then again by the proposition
M[d]P[d] ~5* N(d]Q[d].
(<) Assume the RHS of (1) in order to show M ~$* N. That is, one has to show
MPy -+ Py =gy NPy -+ P, (2)

for all P € N, [D]. As P =%* Py, by assumption it follows that M P; ~$* N P;. Hence
one has (2) by definition.
(i) That ~&* is ~$* on A?,[D] follows by (i) and Proposition 3E.5. m
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3E.32. LEMMA. Let D be a finite set of constants. Then D is of class 2 iff one of the
following cases holds.

D= {F:(lp-‘rl — 0)7617 e 7cq:0}7 D, q Z Oa
D= {levclu" : )cq+l:0}’ q > 0.

Proor. By Lemma 3D.16. m
3E.33. PROPOSITION. Let D be of class 2. Then the following hold.

(i) The relation ~55* on A?,[D] is logical.

(ii) The relations ~&* and ~%* on A’,[D] coincide.
PRrROOF. (i) Assume that D = {F, ¢y, - ,cq} (the other possibility according Lemma
3E.32 is more easy). By Proposition 3E.9 (i) it suffices to show that for d € D one has
S(d,d). This is easy for the ones of type 0. For F : (1,47 — 0) assume for notational

simplicity that £ = 0, i.e. F : 2. By Lemma 3E.7 it suffices to show f~$*g = f =gn g
for f,g€ A?,[D](1). Now elements of A?,[D](1) are of the form

A1 F(Azo . F(- - (Axp—1.F(Azp.c))..)),

where ¢ = x; or ¢ = ¢j. Therefore if f #g, g, then inspecting the various possibilities
(e.g. one has

f=de1. F(\xo. F(- - (Axpm—1.F(Azp.2))..)) = KA
g= 1. F(Axo. F(- - - (Azp—1.F(Axpm.21))..)),

do Exercise 3F.25), one has f(Ff) #gn g(Ff) or f(Fg) #an g(Fg), hence f #%* g.
(ii) By (i) and Proposition 3E.5. m

Harvesting the results we obtain the following main theorem.

3E.34. THEOREM (Statman [1980b]). Let D be a finite set of typed constants of class i
and C = C;. Then

(i) ~$* is logical.
(ii) For closed terms M, N € A’,[D] of the same type one has

M~E*N < M=~3®N.
(iii) For pure closed terms M, N € N, of the same type one has
M~F*N & M =g N.

PRrROOF. (i) By Propositions 3E.31 and 3E.33.

(ii) Similarly.

(iii) Let D = {d{",--- ,di*}. Then V(D) = A;—--- A;,—0 and in the notation of
Lemma 3E.29 one has Dy (p) = D, up to renaming constants. One has V(D) € T;, hence
by the hierarchy theorem revisited V(D) ~j,+ C;. Thus ~p, Dy 18 equivalent with ~De,
on pure closed terms, by Lemma 3E.29. As Dy p) = D and D¢, = C;, we are done. m

From now on we can write ~p for ~&* and ~%*.



3E. THE FIVE CANONICAL TERM-MODELS 137
Infinite sets of constants

Remember that for D a possibly infinite set of typed constants we defined
class(D) = max{class(Dy) | Dy C D & Dy is finite}.
The notion of class is well defined and one has class(D) € {—1,0,1,2,3,4,5}.
3E.35. PROPOSITION. Let D be a possibly infinite set of constants of class i. Let Ae TP
and M = M|[d],N = N[d| € A?,[D](A). Then the following are equivalent.
(i) M ~$* N.
(ii) For all finite Dy C D containing the d such that class(Dy) = class(D) one has
~ext
M~ N,
(iii) There exists a finite Dy C D containing the d such that class(Dy) = class(D) and
~ext
M~ N,
PRrOOF. (i) = (ii). Trivial as there are less equations to be satisfied in M Rﬁ%‘; N.

(ii) = (iii). Let Dy C D be finite with class(Dy) = class(D). Let Dy = Dy U {d}.
Then ¢ = class(Dy) < class(Dy) < i, by Remark 3E.12. Therefore Dy satisfies the
conditions of (ii) and one has M z%‘; N.

(iii) = (i). Suppose towards a contradiction that M %%‘ft N but M#E'N. Then for

ext

some finite Dy C D of class ¢ containing d one has M aépf,N . We distinguish cases.
Case class(D) > 2. Since class(Dy) = class(Dys) = i, Proposition 3E.30(i) implies that

AL M[Z) =g \Z.N[Z] & \Z.M[Z] £ 2N 7],
a contradiction.

Case class(D) = 2. Then by Lemma 3E.32 the set D consists either of a constant f!
or F1»+170 and furthermore only type 0 constants c?. So D;UDys =Dy U {c(l’, e ,cg}.
As M m%"; N by Lemma 3E.22 one has M %%X;U’Df/ N. But then a fortiori M %%‘; N,
a contradiction.

Case class(D) = 1. Then D consists of only type 0 constants and we can reason
similarly, again using Lemma 3E.22.

Case class(D) = 0. Then D = {0}. Hence the only subset of D having the same class
is D itself. Therefore Dy = Dy, a contradiction.

Case class(D) = —1. We say that a type A€ T is D-inhabited if P € A%, [D](A) for
some term P. Using Proposition 2D.4 one can show

A is inhabited < A is D-inhabited.
From this one can show for all D of class —1 that
A inhabited = VM, N € A°,[D](A).M ~5* N.
In fact the assumption is not necessary, as for non-inhabited types the conclusion holds

vacuously. This is a contradiction with M#%*N. m

As a consequence of this Proposition we now show that the main theorem also holds
for possibly infinite sets D of typed constants.

3E.36. THEOREM. Let D be a set of typed constants of class i and C = C;. Then
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(i) ~%* is logical.
(ii) For closed terms M, N € A°,[D] of the same type one has
MNeXt N & MNObSN
(iii) For pure closed terms M, N € N’ of the same type one has
M~F*N & M =g N.
PrOOF. (i) Let M, N € A?,[D](A — B). We must show
M=~ N & VP,QeN,[D)(A).[P~5*Q = MP=~$* NQ].

(=) Suppose M ~5* N and P ~%* Q. Let Dy C D be a finite subset of class i
containing the constants in M, N, P,Q). Then M z%"; N and P m%‘ft Q. Since R:%X; is
logcal by Theorem 3E.34 one has M P z%xft NQ. But then M P =5* NQ.

(<) Assume the RHS. Let Dy be a finite subset of D of the same class containing all
the constants of M, N, P,Q. One has

S TQ = P= S by Proposition 3E.35,
= MP=5*NQ, by assumption,
= MP= NeXt NQ, by Proposition 3E.35.

Therefore M %%‘ft N. Then by Proposition 3E.35 again we have M ~%* N.
(ii) By (i) and Proposition 3E.5.
(iii) Let Dy be a finite subset of D of the same class. Then by Proposition 3E.35 and
Theorem 3E.34
M~F*N & M~EIN & M~ N.m

Term models

In this subsection we assume that D is a finite sufficient set of constants, that is, every
type A€ TV is inhabited by some M € A%, [D]. This is the same as saying class(D) > 0.
3E.37. DEFINITION. Define
M[D] £ A, [D]/~p,
with application defined by
[Flp[M]p = [FM]p
Here [—]p denotes an equivalence class modulo ~p.
3E.38. THEOREM. Let D be sufficient. Then
(i) Application in M[D] is well-defined.
(ii) For all M, N € A°,[D] on has

M
(MM = (M),
(iii) M[D]EM =N < M ~p N.
(iv) M[D] is an extensional term-model.

PROOF. (i) As the relation ~p is logical, application is independent of the choice of
representative:
FrpF & M~pM = FM~pF' M.
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(ii) By induction on open terms M € A_,[D] it follows that
[M], = [M[Z: = p(z1),- -, p(zn)]]D-

Hence (ii) follows by taking p(x) = [z]p.

(iii) By (ii).

(iv) Use (ii) and Remark 3E.3(ii). m
3E.39. LEMMA. Let A be represented in D. Then for all M,N € A’ (A), pure closed
terms of type A, one has

M~pN & M =g, N.

PROOF. The (<) direction is trivial. As to (=)

M~pN & VTeN,[D|.MT =g, NT

= Md =an N&, for some d € D since
A is represented in D,

= MZ =g, NT, by Remark 3E.4 as
M, N are pure,

= M =, \i.M& =gy \E.NE=, N.

3E.40. DEFINITION. (i) If M is a model of AC"[D], then for a type A its A-section is
simply M(A).

(ii) We say that M is A-complete (A-complete for pure terms) if for all closed terms
(pure closed terms, respectively) M, N of type A one has

MEM=N & M =g, N.

(iii) M is complete (for pure terms) if for all types A € T it is A-complete (for pure
terms).

(iv) A model M is called fully abstract if
VA€ Tz, y € M(A)[[Vf € M(A=0).fx = fy] = =z =y].

3E.41. COROLLARY. Let D be sufficient. Then M[D] has the following properties.
(i) M[D] is an extensional term-model.
(ii) M[D] is fully abstract.

(iii) Let A be represented in D. Then M[D] is A-complete for pure closed terms.
(iv) In particular, M[D] is V(D)-complete and 0-complete for pure closed terms.
PRrROOF. (i) By Theorem 3E.38 the definition of application is well-defined. That exten-
sionality holds follows from the definition of ~p. As all combinators [Kag|p, [Sapc|p

are in M|[D], the structure is a model.
(ii) By Theorem 3E.38(ii). Let x,y € M(A) be [X]p, [Y]p respectively. Then

VfeEM(A=0).fz = fy = VFeN,[D|(A—0).[FX]p = [FY]p

[D](A—0)
= VFe N, [D|(A=0).FX ~p FY (:0)
= VFeN,[D)(A0).FX =g, FY
= X~pY
= [Xlp=[Y]p
=

T =1.
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(iii) By Lemma 3E.39.
(iv) By (iii) and the fact that V(D) is represented in D. For 0 the result is trivial. m
3E.42. PROPOSITION. (i) Let 0 <i < j <b5. Then for pure closed terms M,N € A?,
MCjlEM =N = M[C] =M =N.
(ii) Th(M|Cs]) C --- C Th(M]Ci1]), see Definition 3A.10(iv). All inclusions are

proper.
PrOOF. (i) Let M, N € A, be of the same type. Then

M[Cl]%M:N = M’#‘QN

= M(t[d]) #n N(£[€)) : 0, for some (f'[€]) € A2, [C],
= AEM(F[E]) #£pn A&.N(E[G]) : V(C;), by Remark 3E.4,
= YOEM([e)) #pn YOEN(E[E])) - V(C)),
since V(C;) <gn V(C;) via some injective ¥,
= UM (T[E])) #c, W(AEN(]E])), since by 3E.41(iv)

the model M(C;] is V(C;)-complete for pure terms,
= MIC)] [ (M (E[E]) = PACN(F]E]))
=  M|C;] = M = N, since M[C,] is a model.
(ii) By (i) the inclusions hold; they are proper by Exercise 3F.31. m

3E.43. LEMMA. Let A, B be types such that A <g,, B. Suppose M[D] is B-complete for
pure terms. Then M[D] is A-complete for pure terms.

PRrOOF. Assume ¢ : A <g,, B. Then one has for M, N € A (A)
MD|EM=N <« M=g,N

¥ T

M[D] = ®M = ®N = ®M =g, N
by the definition of reducibility. m
3E.44. COROLLARY. Let ~55* be logical. If M[D] is A-complete but not B-complete for
pure closed terms, then A £, B. ®
3E.45. COROLLARY. M|Cs] is complete for pure terms, i.e. for all A and M,N € A’ (A)

M[Cs] =M =N < M =g, N.

PRrROOF. M|Cs5] is V(Cs)-complete for pure terms, by Corollary 3E.41(iii). Since for
every type A one has A <g, T = V(Cs), by the reducibility Theorem 3D.8, it follows
by Lemma 3E.43 that this model is also A-complete. m

So Th(M|Cs]), the smallest theory, is actually just Bn-convertibility, which is decidable.
At the other end of the hierarchy a dual property holds.

3E.46. DEFINITION. My, = M|[Cy] is called the minimal model of Xi since it equates
most terms. Thpax = Th(M]|C1]) is called the mazimal theory. The names will be
justified below.
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3E.47. PROPOSITION. Let A= Aj—--- —A,—0€ T, Let M, N € \°,(A) be pure closed
terms. Then the following statements are equivalent.

1. M = N 1s inconsistent.
For all models M of A%, one has M = M = N.
Mpin £ M = N.
3P, € A*¥O(Ay) .- P, e A%V O0(A).MP =2 & NP =y.
JF € A% (A—0).FM =2 & FN = y.

6. 3G € N?(A—02—0).FM = \zy.x & FN = \ry.y.
PROOF. (1) = (2) By soundness. (2) = (3) Trivial. (3) = (4 Since My, consists of
A"/ ~p . (4) = (5) By taking F = Am.mP. (5) = (6) By taking G = Amay.Fm.
(6) = (1) Trivial. m
3E.48. COROLLARY. Th(M ) is the unique maximally consistent extension of XY, .
ProoOF. By taking in the proposition the negations one has M = N is consistent iff
Mpin E M = N. Hence Th(Mpin) contains all consistent equations. Moreover this
theory is consistent. Therefore the statement follows. m
We already did encounter Th(Mpin) as Emax in Definition 3B.19 before. In Section 4D
it will be proved that it is decidable. M|[Cp] is the degenerate model consisting of one
element at each type, since

VM,N € A, [Co](0) M =z = N.

Therefore its theory is inconsistent and hence decidable.
3E.49. REMARK. For the theories, Th(M]C2]), Th(M]C3]) and Th(M]C4]) it is not
known whether they are decidable.
3E.50. THEOREM. Let D be a sufficient set of constants of class i > 0. Then

(i) VM,Ne N, [M~p N & M ~¢, N].

(ii) M[D] is V(C;)-complete for pure terms.
ProOOF. (i) By Proposition 3E.30(ii). (ii) By (i) and Corollary 3E.41(iv). m
3E.51. REMARK. So there are exactly five canonical term-models that are not elementary
equivalent (plus the degenerate term-model equating everything).

Gr

Proof of Proposition 3D.11

In the previous section the types A, were introduced. The following proposition was
needed to prove that these form a hierarchy.

3E.52. PROPOSITION. For a, 8 < w + 3 one has
a< <A, Sﬁ"lAﬁ'
Proor. Notice that for @« < w the cardinality of A?,(A,) equals a: For example
A (A2) = {Day:0.2, \zy:0.y} and A, (A, = {Af:1\z:0.f*2 | k€N}. Therefore for
a,o/ <w one has Ay <gp Ay = a=da.
It remains to show that Ay41 Lgn Aw, Awt2 Loy Awt1s Awts oy Awta-
As to Ay41 £8n Au, consider

M = Af, g:122:0.f(g(f(9)));
N =\f,9:1\2:0.f(g9(g(fx)).
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Then M, N € A’ (Aw+1), and M #g,, N. By Corollary 3E.41(iii) we know that M|Cy]
is A, -complete. It is not difficult to show that M[C3] E M = N, by analyzing the
elements of A?,[C5](1). Therefore, by Corollary 3E.44, the conclusion follows.

As to Awt2 £8n Awti, this is proved in Dekkers [1988] as follows. Consider

N = AF3Ax:0.F( A\ fi:1. fi(F (A fa:1. fa( faz)))).
Then M, N € A, (Ay42) and M#g, N. In Proposition 12 of mentioned paper it is proved
that ®M =g, PN for each ® € A’ (Ayt2—Aut1).
As to Ayt3 £8n Aw2, consider
M = Ah:19Ax:0.h(hx(hax))(hz),
N = Mh:19A\z:0.h(hax) (h(hzz)x).
Then M,N € A, (Awt3), and M #g, N. Again M[C4] is A,yo-complete. It is not

difficult to show that M[C4] = M = N, by analyzing the elements of A?, [C4](12).
Therefore, by Corollary 3E.44, the conclusion follows. m

3F. Exercises

3F.1. Convince yourself of the validity of Proposition 3C.3 for n = 2.

3F.2. Show that there are M, N € A%, [{d°}]((12 — 12 — 0) — 0) such that M#N, but
not M L N. [Hint. Take M = [Mry.z, \vy.d’] = A\z1271270 2(Azy.z) Awy.d°),
N = [Ary.d°, A\zy.y]. The [P, Q] notation for pairs is from B[1984].]

3F.3. Remember M, = My ... ;3 and ¢; = (Afz.flz) € A, (1 — 0 — 0).
(i) Show that for 7, j € N one has

MpEci=c; & i=jV [i,j>n—18& Ykicgen.i = j(mod k)].
[Hint. For a € M,,(0), f € M,,(1) define the trace of a under f as

{f'(a) | ieN},

directed by Gy = {(a,b) | f(a) = b}, which by the pigeonhole principle
is ‘lasso-shaped’. Consider the traces of 1 under the functions f,, g, with
1 < m < n, where
fulk) = kE+1, ifk<n, and gn(k) = k+1, if k<m,
= n, if k=mn, = 1, if K =m,
= k, else.]
Conclude that e.g. M35 |= ¢4 = g4, Mg = €4 = ¢4 and Mg = ¢5 = cg5.
(ii) Conclude that M,, =100 My, < n = m, see Definitions 3A.14 and 3B 4.
(iii) Show directly that (), Th(M,)(1) = £z, (1).
(iv) Show, using results in Section 3D, that (), Th(M,,) = Th(My) = Ez,.
3F.4. The iterated exponential function 2,, is

2 =1,
2py1 =227,
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One has 2,, = 2,(1), according to the definition before Exercise 2E.19. Define
s(A) to be the number of occurrences of atoms in the type A€ T, i.e.

s(0) =1
s(A — B) 2 s(A) + s(B).
Write #X for the cardinality of the set X. Show the following.
i) 2, <2y

iii) 207 < 2,4,

iv) If X = {0,1}, then VA€ T.#(X(A)) < 244).-

(v) For which types A do we have = in (iv)?

Show that if M is a type model, then for the corresponding polynomial type

model M* one has Th(M*) = Th(M).
Show that

(
iy o2
(ii) QnTQI < 2nipt3
(
(

A1_> e _>An—)0 Sﬁn A7r1_> s —)Aﬂ-n—>0,

for any permutation w € .5,
Let A = (2—+2-0)—2—0 and
B = (0—12—0)—13—(0—1—0)—02—0. Show that

A<p, B.

[Hint. Use the term Az:AXup:(0—12—0)Aug:19Aug: (0—2) Azg 22:0.
z[Ay1, y2:2.u1 21 (Aw:0.y1 (uaw) ) (Aw:0.y2 (uow) )| [usxa].]
Let A = (12-50)—0. Show that

A SBT’ 1o—2—0.
[Hint. Use the term AM:AAp:1oAF:2. M (A f, g:1.F(A2:0.p(f2)(g2))).]

(i) Show that
2 <gp 1—1— 2
3 4 ) =B 3 3 )
2 2
<3 3>§gn1—>1—>(3).
2 2 2
(55) (5 )

[Hint. Use ® = AM Ap:1o\H| Hy. M
[Af11, fr2:12. H (Azy:0.p( frazy, Ha f11)]
[Afa1:13A fag:12. Ha fo1 foo] ]
Show directly that 3—0 <g,, 1+1—0—0. [Hint. Use
O = AM:3Af, g:1A2:0.M (Ah:1. f(h(g(hz)))).

Typical elements of type 3 are M; = AF:2.F (Ax1.F(\x2.2z;)). Show that ® acts
injectively (modulo Bn) on these.]

(ii) Show that

(iii) * Show that
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Give example of F,G € A[Cy4] such that Fhy =g, Gha, but F #g, G, where

ho = Az:0.2(A\g:1.9(g%)).

Suppose ([f—>0), (B)%O) e T;, with ¢ > 2. Then

(i) (A-B—0)eT,.

(i) (A—B—0) ~;, A—0.

(i) Suppose that class(A) > 0. Then
A<gn B = (C—A)<gy
A~gy B = (C—=A) ~gy

C—B)

( .
(C—B).
[Hint. Distinguish cases for the class of A.]
(ii) Show that in (i) the condition on A cannot be dropped.
[Hint. Take A =1,—0, B=C=0]
Show that the relations <j and <+ are transitive.
(Joly [2001a], Lemma 2, p. 981, based on an idea of Dana Scott) Show that any

type A is reducible to
19—2—0 = (0—(0—0))—((0—0)—0)—0.

[Hint. We regard each closed term of type A as an untyped lambda term and then
we retype all the variables as type 0 replacing applications XY by fXY (£X eY)
and abstractions Az.X by g(Az.X)(2A%z.X) where f : 13, g : 2. Scott thinks of f
and g as a retract pair satisfying g o f = | (of course in our context they are just
variables which we abstract at the end). The exercise is to define terms which
‘do the retyping’ and insert the f and g, and to prove that they work. For Ae T
define terms U4 : A—0 and V4 : 0— A as follows.

Upg = Mz:i0.x; Vo2 \x:0.x;
Ussp 2 Mu.g\z:0.Ug(u(Var)));
Vasp = My Vp(fu(Uay)).

Let A=A;—---—A,—0, A; = A;,— - - - Ajp,—0 and write for a closed M : A

M fr Ayl .. 'ya'y'L(Mlyl .. -y ) ... ( yl .. -y ),
with the M; closed (this is the “@-nf” if the M; are written similarly). Then
UAM - )\'f.l‘i(UBl ) (UBn ),

where B; = A1—---—=A,—A;j, for 1 < j < n, is the type of M;. Show for all
closed M, N by induction on the complexity of M that

UaM =gn UsN = M =g, N.

Conclude that A <gy 1o0—2—0 via ® = Abfg.Uab.]

In this exercise the combinatorics of the argument needed in the proof of 3D.6
is analyzed. Let (AF:2.M) : 3. Define M to be the long 8n nf of M[F: = H]|,
where

H = (AL f(h(g(h=))) € A=) )
Write cuty,,(P) = Plg: = Kz].
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(i) Show by induction on M that if g(P) C M™ is maximal (i.e. g(P) is not a
proper subterm of a g(P') C M™), then cut,_,,(P) is a proper subterm of
cuty,,(M™T).

(ii) Let M = F(Az:0.N). Then we know

M =gy f(NT[a: = g(N [z = 2])]).
Show that if g(P) C M is maximal and
length(cuty,(P)) + 1 = length(cut,,.(M™)),

then g(P) = g(N™T[x: = z]) and is substituted for an occurrence of z in NT.

(iii) Show that the occurrences of g(P) in M™ that are maximal and satisfy
length(cuty.(P))+1 = length(cuty,.(M ™)) are exactly those that were
substituted for the occurrences of x in N.

(iv) Show that (up to =gy) M can be reconstructed from M.

Show directly that

2—15-0 <g, 121500,

via ® = AM:2—153—=0 A fg:1 Ab : 19 Az:0.M (Ah.f(h(g(hx))))b.
Finish the alternative proof that T = 15—0—0 satisfies VA € T(A%,).4 <gn T,
by showing in the style of the proof of Proposition 3D.7 the easy

12—15—0—0 <g, 12—0—0.
Show directly that (without the reducibility theorem)
3—0—0 <gy 12—=0-0=T.

Show directly the following.

(1) 13—15—0 Slgn T.

(ii) For any type A of rank < 2 one has A <g,, T.

Show that all elements g € M3(0—0) satisfy g* = ¢g*. Conclude that T + Ms.
Let D have enough constants. Show that the class of D is not

min{s | VD.[D represented in D = D <g, V(C;)]}.

[Hint. Consider D = {c,d’,e"}.]

A model M is called finite iff M(A) is finite for all types A. Find out which of

the five canonical termmodels is finite.

Let M = Mmin-

(i) Determine in M(1—0—0) which of the three Church’s numerals ¢, ¢19 and
cigo are equal and which not.

(ii) Determine the elements in M(12—0—0).

Let M be a model and let | My| < k. By Example 3C.24 there exists a partial

surjective homomorphism h : M, & M.

(i) Show that h=1(M) C M, is closed under A-definability. [Hint. Use Example
3C.27]

(ii) Show that as in Example 3C.28 one has h~1(M)¥ = h=1(M).

(iii) Show that the Gandy Hull h~!(M)/E is isomorphic to M.

(iv) For the 5 canonical models M construct h~!(M) directly without reference

to M.
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(v) (Plotkin) Do the same as (iii) for the free open term model.
3F.25. Let D= {F?¢c),---,c%}.
(i) Give a characterization of the elements of A?,[D](1).
(ii) For f,ge€ A?,[D](1) show that f #g, g = f #pg by applying both f,g to
Ffor Fg.
3F.26. Prove the following.
1p—0—=0 <gn ((12—0)—0)—0—0, via
AMAF:((13—0)—0)Az:0.F (Ah:13.mhx) or via
AMAF:((12—0)—=0)\x:0.m(Apq:0.F (Ah:15.hpq) ).
1,—0—-0 <g, (1=1=0)—=0—0
via AmHz.m(Aab.H(Ka)(Kb))z.

3F.27. Sow that Ty ={(1, - 0) - 0?7 =0 |p-q > 0}.
3F.28. In this Exercises we show that A ~g, B & A ~y+ B, for all A, Bc .
(i) First we establish for p > 1

1-0—=0 ~gy 1=0P=0 & 1-0—=0 ~p+ 107 —=0.

(a) Show 1—0—0 <; 1—0P—0. Therefore
1-0—0 <gyp 1=0P=0 & 1-0—0 <+ 1=07—=0.

(b) Show 1—-0P—0 <;,+ 1—0—0. [Hint. Using inhabitation machines one
sees that the long normal forms of terms in A, (1—-0P—0) are of the
form L} = Af:1Ax1---2,:0.f"x;, with n > 0 and 1 < ¢ < p. Define
D, : (1-0P—=0)—(1—0—0), with i = 1,2, as follows.

O1LE Nf:1\x:0.Lf2"P;
OoL 2 Nf:ANz:0.LI(f1z) - - (fP2).
Then ®,L} =g, ¢, and ®2L} =g, c;. Hence for M, N € A? ,(1—-0,—0)
M #gn N = &M #g, &N or oM #g, D3N]
(c) Conclude that also 1-0P—0 <g,, 1-+0—0, by taking as reducing term
¢ = dmfr.Py(Prm)(Pam),

where Py A-defines a polynomial injection po : N2—N.
(ii) Now we establish for p > 1,¢q > 0 that

1=0—=0 ~gy (1,—0)=07=0 & 1-0—0 ~p+ 1,—07=0.

(a) Show 1—0—0 < (1,—0)—07—0 using
O = AImFxy - xgmAz.F(Ayr - yp.2)).
(b) Show (1,—0)—07—=0 <;+ 1—-0—0. [Hint. For L€ A?,((1,—0)—09—0)
its Inf is of one of the following forms.
LvkT = AF:(1,—0)Ay1 - yg:0.F(AZ1. - - F(AZy.281)..)
M™ = AF:(1,—0)Ay1 - - yg:0.F(AZ1. - - - F(AZp.ys)..),
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where 2, = zp1-- 2pp, 1 <k <n, 1 <r < p,and 1 < 5 < g, in
case ¢ > 0 (otherwise the M™* does not exist). Define three terms
01,02,03 € A?,(1-0—1,—0) as follows.

O1 £ Mfag.g(flz)- - (fPx)
Oz £ Afag.f(gz"™?)
O3 = Mfxg.f(g(f(gz™"))™").
Define terms ®; € A?, (((1,—0)—07—0)—1—0—0) for 1 <i < 3 by

L & Nfz.L(O1fz)(fPHz) .- (fPTiz);
®,L & Mfa.L(Ojfx)z™, for i € {2, 3}.
Verify that
o, LT = ¢,
PIM™® = cCpys
DLk = ey
oM™ = ¢,
P L™ET = copyiy
OM™ = ¢,

Therefore if M #g, N are terms in A?, (1,—+09—0), then for at least one
i€{1,2,3} one has ®;(M) #gy, ®;(N).]
(¢) Show 1,—09—0 <g,, 1—0—0, using a polynomial injection p3 : N3—N.
3F.29. Show that for all A, B ¢ T U T4 one has A ~gn B = A~y B.
3F.30. Let A be an inhabited small type of rank > 3. Show that

3—0—0 <, A.

[Hint. For small B of rank > 2 one has B = B1— - - - B,—0 with B; = B;, —0 for
all 7 and rank(B;,, ) = rank(B) — 2 for some ig. Define for such B the term

X5 e N[F?(B),
where F? is a variable of type 2.
X5 ey - ay FPag,, if rank(B) = 2;
ey xp F2(Ay:0.25,(Ay1 - yey)),  if rank(B) = 3 and

where B;, having

> 1>

rank 1 is 0’“—)0;
Ay - - .xb,g;iOXBm% if rank(B) > 3.
(Here XBio1 is well-defined since B;,, is also small.) As A is inhabited, take
Axy - xp. N € N(A). Define ¥ : (3—0—0)—A by
U(M) 2 Azy -2y M(NF? .2, X4)N,

where 7 is such that A;; has rank > 2. Show that ¥ works.]
3F.31. Consider the following equations.
1o Af:IAz:0. fx = Af: 1 x:0.f(fx);
2. A, 9:102:0.f(g(g(fx))) = Af, g:1A2:0.f (9(f (92)));

(1>
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3. AF3BAz:0.F (A fi:1. fi(F(Afa:l. fa(f12)))) =
AF:3Ax:0.F (A f1:1. f1(F (A fa:1. fa(fax))))-

4. Mh:1oAz:0.h(hx(hzz))(hex) = Ah:19Az:0.h(hez)(h(hzz)x).
(i) Show that 1 holds in M¢,, but not in Mec,.
(ii) Show that 2 holds in Mc,, but not in Me,.
(iii) Show that 3 holds in Mc,, but not in Mc,.

[Hint. Use Lemmas 7a and 11 in Dekkers [1988].]

(iv) Show that 4 holds in Mg,, but not in Mc,.

Construct six pure closed terms of the same type in order to show that the fi-
ve canonical theories are maximally different. I.e. we want terms My, .- , Mg
such that in Th(Mc,) the My, .-, Mg are mutually different; also Mg = M5 in
Th(Mc, ), but different from My, - - -, My; also My = My in Th(Me, ), but different
from My,---, Ms; also My = M3 in Th(Mc,), but different from M, My; also
Ms = M in Th(Mg,), but different from M;; finally My = M; in Th(Me,).
[Hint. Use the previous exercise and a polynomially defined pairing operator.]
Let M be a typed lambda model. Let S be the logical relation determined by
So = (0. Show that S§ # 0.

We work with ACP over Y. Consider the full type structure M; = My over the
natural numbers, the open term model My = M(8n), and the closed term model
M3z = MP?[{ht,c°}](Bn). For these models consider three times the Gandy-Hull

G1 = G(s:1,0:01(M1)
Gy = g{[f:l],[x:O]}(MQ)
93 = G{(n:1 [0} (M3),

where S is the successor function and 0 €N, f, x are variables and h, ¢ are con-
stants, of type 1,0 respectively. Prove

g1 = Gy = G3.
[Hint. Consider the logical relation R on M3 x Mgy x M; determined by

Ry = {([h*(e)], [f*(@)], k) | keN}.

Apply the Fundamental Theorem for logical relations.]

A function f : N — N is slantwise \-definable, see also Fortune, Leivant, and
O’Donnel [1983] and Leivant [1990] if there is a substitution operator * for types
and a closed term F' € A°(NT — N) such that

FCk+ =pBn cf(k:)'

This can be generalized to functions of k-arguments, allowing for each argument

a different substitution operator.

(i) Show that f(z,y) = xY¥ is slantwise A-definable.

(ii) Show that the predecessor function is slantwise A-definable.

(iii) Show that subtraction is not slantwise A-definable. [Hint. Suppose towards
a contradiction that a term m : Nat; — Nat, — Nat, defines subtraction.
Use the Finite Completeness Theorem, Proposition 3D.33, for A = Nat, and
M = Co.]
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3F.36. (Finite generation, Joly [2002]) Let A € T. Then A is said to be finitely generated
if there exist types Ay,---, A; and terms My : Ay, ---, A : M; such that for any
M : A, M is Bn convertible to an applicative combination of My, .-, M.

Example. Nat = 1—0—0 is finitely generated by co = (Afx.x) : Nat and S =
(Anfx.f(fzx)) : (Nat—Nat).

A slantwise enumerates a type B if there exists a type substitution @ and
F : @A— B such that for each N : B there exists M : A such that FQM =g,, N
(F is surjective).

A type A is said to be poor if there is a finite sequence of variables Z, such that
every M € A’ (A) in Bn-nf has FV(M) C Z. Otherwise A is said to be rich .

Example. Let A = (1-0)—0—0 is poor. A typical Bn-nf of type A has the
shape AFAz(F(Ax(--- (F(Ay(F(Ay---2--+)))..))). One allows the term to violate
the variable convention (that asks different occurrences of bound variables to be
different). The monster type 3—1 is rich.

The goal of this exercise is to prove that the following are equivalent.

1. A slantwise enumerates the monster type M;

2. The lambda definability problem for A is undecidable;

3. A is not finitely generated;

4. A is rich.
However, we will not ask the reader to prove (4) = (1) since this involves more
knowledge of and practice with slantwise enumerations than one can get from
this book. For that proof we refer the reader to Joly’s paper. We have already
shown that the lambda definability problem for the monster M is undecidable. In
addition, we make the following steps.
(i) Show A is rich iff A has rank >3 or A is large of rank 3 (for A inhabited;

especially for =). Use this to show

(2) = (3) and (3) = (4).

(ii) (Alternative to show (3) = (4).) Suppose that every closed term of type A
beta eta converts to a special one built up from a fixed finite set of variables.
Show that it suffices to bound the length of the lambda prefix of any subterm
of such a special term in order to conclude finite generation. Suppose that
we consider only terms X built up only from the variables v1: A1, -+, Um:Am
both free and bound .We shall transform X using a fixed set of new variables.
First we assume the set of A; is closed under subtype. (a) Show that we can
assume that X is fully expanded. For example, if X has the form

)\331 tee fEt.()\x.Xo)Xl cee XS

then (Azx.Xo)X1 - X has one of the 4; as a type (just normalize and con-
sider the type of the head variable). Thus we can eta expand

AZL‘l s Jj‘t.()\x.Xo)Xl s XS

and repeat recursively. We need only double the set of variables to do this.
We do this keeping the same notation. (b) Thus given

X = )\131 . J,‘t()\l‘XQ)Xl N 'XS
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we have Xg = Ay1---y,.Y, where Y : 0. Now if r>m, each multiple oc-
currence of v; in the prefix Ay - - -y, is dummy and those that occur in the
initial segment Ay ---ys can be removed with the corresponding X;. The
remaining variables will be labelled z1,---,2;. The remaining X; will be
labelled Z1,--- , Z;. Note that r — s+t < m + 1. Thus

X:)\])1-..xt.()\zlu-zkY)Zl...Zh

where k < 2m 4+ 1. We can now repeat this analysis recursively on Y, and
Z1,- -, Z; observing that the types of these terms must be among the A;.
We have bounded the length of a prefix.

(iii) As to (1) = (2). We have already shown that the lambda definability

problem for the monster M is undecidable. Suppose (1) and —(2) towards a
contradiction. Fix a type B and let B(n) be the cardinality of B in P(n).
Show that for any closed terms M, N : C

P(B(n))EM =N = P(n)=[0:=B]M =[0:= B|N.

Conclude from this that lambda definability for M is decidable, which is not
the case.



CHAPTER 4

DEFINABILITY, UNIFICATION AND MATCHING

4A. Undecidability of lambda definability

The finite standard models

Recall that the full type structure over a set X, notation Mx, is defined in Definition
2D.17 as follows.

X(0) =X,
X(A—B) = X (B)*XW;
Mx ={X(A)}aeT
Note that if X is finite then all the X (A) are finite. In that case we can represent
each element of M x by a finite piece of data and hence (through Gédel numbering) by
a natural number. For instance for X = {0,1} we can represent the four elements of

X (0—0) as follows. If 0 is followed by 0 to the right this means that 0 is mapped onto
0, etcetera.

00 0|1 010 01
1(0 111 1|1 110

Any element of the model can be expressed in a similar way, for instance the following
table represents an element of X ((0 — 0) — 0).

AHIE
I
IR
5L

We know that | = Az.z is the only closed Bn-nf of type 0 — 0. As [I] = 1x, the identity
on X is the only function of X (0 — 0) that is denoted by a closed term.

4A.1. DEFINITION. Let M = Mx be a type structure over a finite set X and let
de M(A). Then d is called A-definable if d = [M]M, for some M € A?(A).

The main result in this section is the undecidability of A-definability in M x, for X of
cardinality >6. This means that there is no algorithm deciding whether a table describes
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a A-definable element in this model. This result is due to Loader [2001b], and was already
proved by him in 1993.

The method of showing that decision problems are undecidable proceeds via reducing
them to well-known undecidable problems (and eventually to the undecidable Halting
problem).

4A.2. DEFINITION. (i) A decision problem is a subset P C N. This P is called decidable
if its characteristic function Kp : N — {0,1} is computable. An instance of a problem
is the question “n € P?”. Often problems are subsets of syntactic objects, like terms or
descriptions of automata, that are considered as subsets of N via some coding.

(ii) Let P,@Q C N be problems. Then P is (many-one) reducible to problem @,
notation P <,, @, if there is a computable function f : N — N such that

neP < f(n)eq.

(iii) More generally, a problem P is Turing reducible to a problem @, notation P < @,
if the characteristic function Kp is computable in K¢, see e.g. Rogers Jr. [1967].

The following is well-known.

4A.3. PROPOSITION. Let P,(Q be problems.

(i) If P <,,, Q, then P <p Q.

(ii) If P <7 @Q, then the undecidability of P implies that of Q.
PROOF. (i) Suppose that P <,,, @. Then there is a computable function f : N—N such
that VneN.[ne P < f(n) € Q]. Therefore Kp(n) = Kg(f(n)). Hence P <r Q.

(ii) Suppose that P <7 @ and that @ is decidable, in order to show that P is
decidable. Then K¢ is computable and so is Kp, as it is computable in Kqg. ®

The proof of Loader’s result proceeds by reducing the two-letter word rewriting prob-
lem, which is well-known to be undecidable, to the A-definability problem in Mx. By
Proposition 4A.3 the undecidability of the A-definability follows.

4A.4. DEFINITION (Word rewriting problem). Let ¥ = {A, B}, a two letter alphabet.

(i) A word (over ¥) is a finite sequence of letters wy - - - wy, with w; € ¥. The set of
words over X is denoted by X*.

(i) If w = wy - - - wy, then 1th(w) = n is called the length of w. If 1th(w) = 0, then
w is called the empty word and is denoted by e.

(iii) A rewrite rule is a pair of non empty words v, w denoted as v < w.

(iv) Given a word u and a finite set R = {Ry,--- , R, } of rewrite rules R; = v; < w;.
Then a derivation from w of a word s is a finite sequence of words starting by w« finishing
by s and such that each word is obtained from the previous by replacing a subword v;
by w; for some rule v; — w; € R.

(v) A word s is said to be R-derivable from u, notation u Fx s, if it has a derivation.

4A.5. EXAMPLE. Consider the word AB and the rule AB «— AABB. Then AB F
AAABBB, but ABV AAB.

We will need the following well-known result, see e.g. Post [1947].

4A.6. THEOREM. There is a word ug € X* and a finite set of rewrite rules R such that
{ueX* | up kg u} is undecidable.
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4A.7. DEFINITION. Given the alphabet ¥ = {4, B}, define the set
X =Xys2{A B, L RY,N}.

The objects L and R are suggested to be read left and right and Y and N yes and no.
In 4A.8-4A.21 we write M for the full type structure M x built over the set X.

4A.8. DEFINITION. [Word encoding] Let n > 0 and 1,, = 0"—0and MN~" = MN --- N,
with n times the same term N. Let w = w; - - - w,, be a word of length n.
(i) The word w is encoded as the object w € M(1,,) defined as follows.

w(*w(i_1)7wia*N(n_i)) = Ya

wx(~0D [ R sty Ay
w(xy, - ,r,) = N, otherwise.
(ii) The word w is weakly encoded by an object h € M(1,,) if
R(x~0D s, x>0y =y

h(x~0D L R x>y =y,

4A.9. DEFINITION. (Encoding of a rule) In order to define the encoding of a rule we use
the notation (aj ---ag — Y') to denote the element h € M(1;) defined by

hay---ap = Y,
hxi---x, 2 N, otherwise.
Now a rule v < w where 1th(v) = m and 1lth(w) = n is encoded as the object
v = we M(1,—1,) defined as follows.
v w() 2w
v wETT YY) & (e Y);
v wRMD s y) 2 (R Ly,
v wE"" VLS Y) & ULy,
A

v <= w(h) Axq - x,.N, otherwise.

As usual we identify a term M € A(A) with its denotation [M] € X (A).
4A.10. LEMMA. Let s,u be two words over ¥ and let v — w be a rule. Let the lengths
of the words s,u,v,w be p,q, m,n, respectively. Then svu - swu and

swuSWU = (v = w (AV.svu ST ))w, (1)

where 8,1, VU, W are sequences of elements in X with lengths p,q, m,n, respectively.
Proor. The RHS of (1) is obviously either Y or N. Now RHS=Y
iff one of the following holds

o AU.svu

svu§TT = v and @ = x>y,
o A\.svuSUuU=wv and W = «~(=1) [ Ry~ (n—i=1)
e M.svu§vd = (x"""—Y) and & = ™"
o N\U.svuSviu = (R*N(m D Y) and @ = Rx~(n—1)
o A\J.svuSvUU = (*N(mfl)L —Y) and @ = (=1

iff one of the following holds
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o §=x"P =1 and @ = x>y~ (n—7)
e §=x"P =1 and @ = x~0" D[ Rx~(n—i=1)
o §= "D gs~(—0) 7 =+~ and & = ™"
o §=x~"DLRx~P—i=1) 7 = 4~ and @ = x™"
o §= " i = x~(im Dy x~(070) and o = «™"
e 5=x"P ¢ = «~ (=1 [ Rx~(a=i=1) and @ = x~"
o §=x"P =R« and and & = x>~V
o =5~V =%~ and & = Rx~(""1)

iff one of the following holds
o s = x~(1=Dgx~Ptnta=i) anqd q; is the i-th letter of swu
e SWi=x---% LR*---x%

- — —

iff swusSwd=Y.m
4A.11. PROPOSITION. Let R ={Ry,---,R,} be a set of rules. Then
utrs = IFeN s=FuR, --R,.

In other words, (the code of) a word s that can be produced from u and some rules is
definable from the (codes) of u and the rules.
PRrROOF. By induction on the length of the derivation of s, using the previous lemma. m

We now want to prove the converse of this result. We shall prove a stronger result,
namely that if a word has a definable weak encoding then it is derivable.
4A.12. CONVENTION. For the rest of this subsection we consider a fixed word W and set
of rewrite rules R = {Ry, - -+ , Ry} with R; = V; < W,. Moreover we let w,ry, - ,ry be
variables of the types of W, R,,--- , R, respectively. Finally p is a valuation such that
p(w) =W, p(r;) = R; and p(z°) = * for all variables of type 0.

The first lemma classifies the terms M in Inf that denote a weak encoding of a word.
4A.13. LEMMA. Let M be a long normal form with FV(M) C {w,r,---,rp}. Suppose
[[M]]p =V, for some word V € ¥*. Then M has one of the two following forms

M = \NP.wX,
M= )\:E’n()\ny)fl,
where &, ¥1,y:0 are variables and the ¥ are distinct elements of the T.

PROOF. Since [M] , 1s a weak encoding for V, the term M is of type 1, and hence has
a long normal form M = A\Z.P, with P of type 0. The head variable of P is either w,
some r; or a bound variable x;. It cannot be a bound variable, because then the term
M would have the form
M = )\fﬂ?l,
which does not denote a weak word encoding.
If the head variable of P is w then

M = \Z.wP.

The terms P must all be among the . This is so because otherwise some P; would have
one of the w, 7 as head variable; for all valuations this term P; would denote Y or NV,

the term wP would then denote N and consequently M would not denote a weak word
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encoding. Moreover these variables must be distinct, as otherwise M would not denote
a weak word encoding.
If the head variable of M is some r; then

M = AZ.r;(\j.N)P.
By the same reasoning as before it follows that the terms P must all be among T and

different. m
In the next four lemmas, we focus on the terms of the form
M = \&.r;(\j.N)71.
We prove that if such a term denotes a weak word encoding, then

e the variables 71 do not occur in Ay.N,

® [[)\g-N]]p = ;-

e and none of the variables ¥ is the variable x,.
4A.14. LEMMA. Let M with FV(M) C {w,ry,- - ,rg, @1, - ,2p}, with Z:0 be a Inf of type
0 that is not a variable. If x1 € FV(M) and there is a valuation ¢ such that p(z1) = A
or p(x1) = B and [M], =Y, then o(y) = *, for all other variables y:0 in FV(M).
PRrROOF. By induction on the structure of M.

Case M = whP; --- P,. Then the terms Py, --, P, must all be variables. Otherwise,
some P; would have as head variable one of w,r1,---,r%, and [[Pj]]@ would be Y or N.
Then [M ]]QO would be N, quod non. The variable x; is among these variables and if some
other variable free in this term were not associated to a *, it would not denote Y.

Case M = T‘i()\’LB.Q)ﬁ. As above, the terms P must all be variables. If some Pj is equal
to z1, then [[)\u_)’.Qﬂ(p is the word v;. So @ is not a variable and all the other variables in

P denote *. Let [ be the first letter of v;. We have [M0.Q] L -+ - =Y and hence

(@i s 1), () w2y = Y-
By induction hypothesis it follows that ¢ U{(w1,1), (wa, %), -, (wm, *)} takes the value
x on all free variables of ), except for w;. Hence ¢ takes the value * on all free variables
of \M.Q). Therefore ¢ takes the value * on all free variables of M, except for x7.
If none of the P is a1, then z; € FV(M5.Q). Since [r;(Ai.Q)P], =Y, it follows that
[A5.Q] , 1s not the constant function equal to N. Hence there are objects a, -, an
such that [Mi.Q],(a1) - (am) =Y. Therefore

[QL,ut(wr a1), - (wmam)} = Y-

By the induction hypothesis ¢ U {{wi,a1), -, (Wm,am)} takes the value x on all the
variables free in @), except for x1. So ¢ takes the value x on all the variables free in A\ @,
except for 1. Moreover a1 = - - - = a,, = %, and thus [[MD'.Q]](p %---x = Y. Therefore the

function [Aw.Q]  can only be the function mapping *---* to Y and the other values to
N. Hence [r;i(Mi.Q)],, is the function mapping x---* to Y and the other values to N
and ¢ takes the value * on P. Therefore  takes the value * on all free variables of M
except for z1. m

4A.15. LEMMA. If the term M = AZ(r;(AMUQ)7Y) denotes a weak word encoding, then the
variables i do not occur free in \Mv.QQ and [[)\QU.Q]]CPO 1s the encoding of the word v;.
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Proor. Consider a variable y;. This variable, say, x;. Let [ be the hth letter of the
word w’, we have
[M] 5~ s~ B=h) — y
Let ¢ = o U {(xp,1)}. We have
ri([A0.Q],) $~U=D e~(m=i) — y

Hence [Aw.Q],, is the encoding of the word v;. Let I’ be the first letter of this word,
we have
[[)\u_f.Q]]@(l') ¥k =Y
and hence
(@i 1y, w2, fwm iy =Y
By Lemma 4A.14, o U {{w1,l'), (wa,*), -+, (wpm,*)} takes the value * on all variables
free in @ except wq. Hence y; is not free in @) nor in A0.Q.

At last [Mi.Q)],, is the encoding of v; and y; does not occur in it. Thus [Ad.Q],, is
the encoding of v;. m
4A.16. LEMMA. Let M be a term of type 0 with FV(M) C {w,r1,..., rp,x1,- -+ ,x,} and
Z:0 that is not a variable. Then there is a variable x such that

either p(z) = L = [M],= N, for all valuations ¢,

or p(z) e{A,B} = [M],= N, for all valuations .

PRrROOF. By induction on the structure of M.

Case M = wP. Then the terms P = t1,---,t, must be variables. Take z = F,,. Then
¢(z) = L implies [M], = N.

Case M = ri(Aw.Q)ﬁ. By induction hypothesis, there is a variable 2’ free in @, such
that

Volp(z') =L = [M], = N]
or
Vollp(z') = A V ¢(¢') = B] = [M], = N].
If the variable 2’ is not among wy, - - - , w, we take z = z’. Either for all valuations such
that p(z) = L, [Ad.Q],, is the constant function equal to N and thus [M], = N, or for
all valuations such that (z) = A or ¢(z) = B, [M.Q)],, is the constant function equal
to N and thus [M], = N.

If the variable 2’ = w; (j < m—1), then for all valuations [[)\15.@]]@ is a function taking
the value N when applied to any sequence of arguments whose j** element is L or when
applied to any sequence of arguments whose j** element is A or B. For all valuations,
[A\.Q],, is not the encoding of the word v; and hence [r;(Mi.Q)],, is either the function
mapping *---* to Y and other arguments to N, the function mapping R * ---* to Y
and other arguments to IV, the function mapping *--- % L to Y and other arguments to
N or the function mapping all arguments to N. We take z = P, and for all valuations
such that ¢(z) = A or (z) = B we have [M], = N.

At last if 2/ = wyy,, then for all valuations [A0.Q] plsa function taking the value NV
when applied to any sequence of arguments whose m** element is L or for all valuations
[Mo.Q] p is a function taking the value N when applied to any sequence of arguments
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whose m!" element is A or B. In the first case, for all valuations, [\7.Q] , is not the
function mapping *---* L to Y and other arguments to N. Hence [r;(A0.Q)] » 1s either
w; or the function mapping * - --* to Y and other arguments to IV the function mapping
R+---xtoY and other arguments to N or the function mapping all arguments to N. We
take z = P, and for all valuations such that ¢(z) = A or ¢(z) = B we have [M], = N.
In the second case, for all valuations, [A@.Q[, is not the encoding of the word wv;.
Hence [r;(AMd.Q)] , is either the function mapping #---* to Y and other arguments to
N the function mapping Rx*---* to Y and other arguments to NV, the function mapping
x---% L to Y and other arguments to N or the function mapping all arguments to NV.
We take z = P, and for all valuations such that ¢(z) = L we have [M],=N.m
4A.17. LEMMA. If the term M = \Z.r;(AM0.Q)Y denotes a weak word encoding, then none
of the variables i is the variable x,, where & = x1,- -+ ,Ty.
PrOOF. By the Lemma 4A.16, we know that there is a variable z such that either for
all valuations satisfying ¢(z) = L we have

[ri(Md.Q)y], = N,
or for all valuations satisfying ¢(z) = A or ¢(z) = B we have
[ri(Md.Q)y], = N.

Since M denotes a weak word encoding, the only possibility is that z = x,, and for all
valuations such that ¢(z,) = L we have

[ri(Aw.Q)¢], = N.

Now, if y; were equal to x,, and y;41 to some x5, then the object

[rs AT Q)F] oot 2, 1 (2, 1))
would be equal to r;([A0.Q], ) * - -+ LRx---* and, as [M.Q], is the encoding of the
word v;, also to Y. This is a contradiction. m
We are now ready to conclude the proof.

4A.18. PROPOSITION. If M is a Inf, with FV (M) C {w,r1,---,ri}, that denotes a weak
word encoding w', then w' is derivable.

PRrOOF. Case M = AZ.wy. Then, as M denotes a weak word encoding, it depends on
all its arguments and thus all the variables z1,--- ,z, are among 4. Since the ¢ are

distinct, ¥ is a permutation of x1, - --,z,. As M denotes a weak word encoding, one has
[M]s*-- %« LRx*---% =Y. Hence this permutation is the identity and

M = \2.(wZ).
The word w’ is the word w and hence it is derivable.

Case M = A\&.ri(AM0.Q)y. We know that [[)wa.Q]]% is the encoding of the word v;
and thus [r;(A0.Q)],, is the encoding of the word w;. Since M denotes a weak word
encoding, one has [M] *---* LR« ---x =Y. If some y; (j < n—1) is, say, xp, then,
by Lemma 4A.17, h # k and thus [M] *~"=D LRx~* =1 =V and g1 = 241
Hence § = xpt1,- -+ ,Tpr;. Rename the variables z1,---,xp as @ and xpiip1, -+, 2 as
Z =21, ,%; Then

M = \?5zZ.r;(M6.Q)y.
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Write w’ = ujwus, where uy has length p, w length [ and us length q.
The variables ¥ are not free in AM@0.Q, hence the term A\7'wz.Q is closed. We verify
that it denotes a weak encoding of the word wqv;us.

e First clause.
— If I be the j** letter of u;. We have

INZ 527 (AB.Q) ] =) e~ p—itita) _ vy
Let p=poU {<1‘j, l)} The function HTZ(AIBQ)H@ maps *---* to Y. Hence7 the
function [A@.Q], maps #---* to Y and other arguments to N. Hence
N'5z.Q] >0 [e~p—jtm+q) _ vy

— We know that [A.Q[,, is the encoding of the word v;. Hence if [ is the Gt
letter of the word v;, then

[\ 57.Q] +~PHi—1) [x~(=ita) — y,

— In a way similar to the first case, we prove that if [ is the j** letter of uy. We
have

NEwz.Q] «~Ptmti=1) j~a=i) — y,

e Second clause.
—If j <p-—1, we have

D727 (AB.Q) ] +~V 1) LRx>P—i—1H+mta) — vy,

Let ¢ be ¢ but z; to L and z;+1 to R. The function [r;(Aw.Q)], maps * - - -
to Y. Hence, the function [[ME.Q]]Q maps *---* to Y and other arguments to
N and

[\&wz.Q] +~~Y [Rs~P—i-1tmta) —y,
— We have
&' §Z.(ri( MB.Q) )] +~ P~ LR+™~(7170) =y,

Let ¢ be ¢g but z; to L. The function [r;(Aw.Q)], maps R*---* to Y. Hence,
the function [[/\TE.Q]](P maps R *---*x to Y and other arguments to N and

[\ 57.Q x~ P~ LRx~(m—110) — y.

— We know that [A\.Q)]
then

o, 18 the encoding of the word v;. Hence if j < m —1

[N w5z.Q] «~ PN LRy~ m—im14a) —y,
— In a way similar to the second, we prove that
N wz.Q] «~Ptm=D LR — y,
— In a way similar to the first, we prove that if j < g — 1, we have

[\ 5z.Q] +~PHm+i=1) [Ry~a-i-1) —y,
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Hence the term A\7'wZ.Q denotes a weak encoding of the word wjv;us. By induc-
tion hypothesis, the word ujv;us is derivable and hence ujw;us is derivable.

At last we prove that w = w;, i.e. that w’ = ujw;us. We know that [[ri()\ﬂ)’.Q)]](po
is the encoding of the word w;. Hence

G2 (NB.Q)if] +~ @1 [x~(=i+a) — y

iff  is the j** letter of the word w;.
Since [AF'§Z.r;(Mi.Q)y] is a weak encoding of the word ujwug, if [ is the ;%
letter of the word w, we have

[[A-f/:ljz_’rz(A’U_}’Q>g1] *N(p'f‘j—l) Z*N(l_j+q) —_y

and [ is the jth letter of the word w;. Hence w = w; and w’ = ujw;us is derivable. m
From Proposition 4A.11 and 4A.18, we conclude.
4A.19. PROPOSITION. The word w' is derivable iff there is a term whose free variables
are among w,r1,- - ,ri that denotes the encoding of w'.

4A.20. COROLLARY. Let w and w' be two words and vi < w1,..., v, < w, be rewrite
rules. Let h be the encoding of w, h' be the encoding of w', r1 be the encoding of
vl <> W1,..., and 1 be the encoding of v, — w,.

Then the word w' is derivable from w with the rules vy < wy,..., v, < w, iff there is
a definable function that maps h,ry,---,ry to h'.

The following result was proved by Ralph Loader 1993 and published in Loader [2001b].

4A.21. THEOREM (Loader). A-definability is undecidable, i.e. there is no algorithm de-
ciding whether a table describes a A-definable element of the model.

PROOF. If there were a algorithm to decide if a function is definable or not, then a
generate and test algorithm would permit to decide if there is a definable function that
maps h,r1,---,r, to A’ and hence if w’ is derivable from w with the rules v; < wi,...,
v, — w, contradicting the undecidability of the word rewriting problem. m

Joly has extended Loader’s result in two directions as follows. Let M, = Myq .. ,_1}.
Define for ne N, Ae T, de M, (A)
D(n, A,d) <&=d is A-definable in M,,.
Since for a fixed ng and Ay the set M, (Ap) is finite, it follows that D(ng, Ap,d) as
predicate in d is decidable. One has the following.
4A.22. PROPOSITION. Undecidability of \-definability is monotonic in the following sense.

AAd.D(ng, A, d) undecidable & ng <n; = AAd.D(nq, A, d) undecidable.

ProOOF. Use Exercise 3F.24(i). m

Loader’s proof above shows in fact that AAd.D(7, A, d) is undecidable. It was sharp-
ened in Loader [2001a] showing that AAd.D(3, A, d) is undecidable. The ultimate sharp-
ening in this direction is proved in Joly [2005]: AAd.D(2, A, d) is undecidable.

Going in a different direction one also has the following.

4A.23. THEOREM (Joly [2005]). And.D(n,3—0—0,d) is undecidable.
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Loosely speaking one can say that A-definability at the monster type M =3 — 0 — 0 is
undecidable. Moreover, Joly also has characterized those types A that are undecidable
in this sense.

4A.24. DEFINITION. A type A is called finitely generated if there are closed terms My,
-+, M,, not necessarily of type A such that every closed term of type A is an applicative
product of the My, - ,M,.

4A.25. THEOREM (Joly [2002]). Let A€ T. Then And.D(n,A,d) is decidable iff the
closed terms of type A can be finitely generated.

For a sketch of the proof see Exercise 3F.36.
4A.26. COROLLARY. The monster type M = 3—0—0 is not finitely generated.
ProOF. By Theorems 4A.25 and 4A.23. m

4B. Undecidability of unification

The notion of (higher-order!'!) unification and matching problems were introduced by
Huet [1975]. In that paper it was proved that unification in general is undecidable.
Moreover the question was asked whether matching is (un)decidable.

4B.1. DEFINITION. (i) Let M, N € A°(A—B). A pure unification problem is of the form
AX:AMX = NX,

where one searches for an X € A°(A) (and the equality is =g,,). A is called the search-type
and B the output-type of the problem.
(ii) Let M € A°(A—B), N € N°(B). A pure matching problem is of the form

IX:AMX = N,

where one searches for an X € A(A4). Again A, B are the search- and output types,
respectively.

(iii) Often we write for a unification or matching problem (when the types are known
from the context or are not relevant) simply

MX =NX
or
MX = N.
and speak about the unification (matching) problem with unknown X.

Of course matching problems are a particular case of unification problems: solving the
matching problem M X = N amounts to solving the unification problem

MX = (\z.N)X.
4B.2. DEFINITION. The rank (order) of a unification or matching problem is rk(A)
(ord(A) respectively), where A is the search-type. Remember that ord(A) = rk(A) + 1.

"By contrast to the situation in 2C.11 the present form of unification is ‘higher-order’, because it
asks whether functions exist that satisfy certain equations.
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The rank of the output-type is less relevant. Basically one may assume that it is T =
1—0—0. Indeed, by the Reducibility Theorem 3D.8 one has ® : B <g,, T, for some
closed term ®. Then

MX=NX:B & (PoM)X =(PoN)X :T.
One has rk(T) = 2. The unification and matching problems with an output type of rank
< 2 are decidable, see Exercise 4E.6.

The main results of this Section are that unification in general is undecidable from a low
level onward, Goldfarb [1981], and matching up to order 4 is decidable, Padovani [2000].

In Stirling [2009] it is shown that matching in general is decidable. The paper is too
recent and complex to be included here.

As a spin-off of the study of matching problems it will be shown that the maximal
theory is decidable.
4B.3. EXAMPLE. The following are two examples of pure unification problems.

(i) 3IX:(1=0). A f:1.f(Xf) = X.
(i) 3X:(1-0—0). A fa. X (X f)a = Afa. X f(X fa).
This is not in the format of the previous Definition, but we mean of course
Az:(1=0)Af:1.f(xf) X = Az:(1=0)Af:l.zf)X;
Az : (1=0—=0)Af:1Xa:0.x(xf)a) X = (Az : (1=0—=0)Af:1 a:0.2f(xfa))X.
The most understandable form is as follows (provided we remember the types)
() M) = X;
(i) X(Xfla = Xf(Xfa).
The first problem has no solution, because there is no fixed point combinator in A’,.
The second one does (Afa.f(fa) and Afa.a), because n? = 2n for n € {2,4}.
4B.4. EXAMPLE. The following are two pure matching problems.
X(Xfla = fY X:1-0—0; f:1, a:0;
f(X(Xfla) = fY X:1-0—0; f:1, a:0.
The first problem is without a solution, because v/10 ¢ N. The second with a solution
(X = Ma.f3a), because 3% + 1 = 10.

Now the unification and matching problems will be generalized. First of all we will
consider more unknowns. Then more equations. Finally, in the general versions of
unification and matching problems one does not require that the M, N, X are closed but
they may contain a fixed finite number of constants (free variables). All these generalized

problems will be reducible to the pure case, but (only in the transition from non-pure
to pure problems) at the cost of possibly raising the rank (order) of the problem.

4B.5. DEFINITION. (i) Let M, N be closed terms of the same type. A pure unification
problem with several unknowns

MX=g,NX (1)
searches for closed terms X of the right type satisfying (1). The rank of a problem with

several unknowns X is
max{rk(4;) | 1 <i<n},
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where the A; are the types of the X;. The order is defined similarly.

(ii) A system of (pure) unification problems starts with terms My, - - - M, and Ny, ---,N,,
such that M;, N; are of the same type for 1 < ¢ < n. searching for closed terms Xl, e ,Xn
all occuring among X such that

M X, =g, NiX;
M. X, =pn, N.X,

The rank (order) of such a system of problems the maximum of the ranks (orders) of
the types of the unknowns.

(iii) In the general (non-pure) case it will also be allowed to have the M, N, X range
over Al rather than A?. We call this a unification problem with constants from T'. The
rank of a non-pure system of unknowns is defined as the maximum of the rank (orders)
of the types of the unknowns.

(iv) The same generalizations are made to the matching problems.
4B.6. EXAMPLE. A pure system of matching problem in the unknowns P, P, P, is the
following. It states the existence of a pairing and is solvable depending on the types
involved, see Barendregt [1974].

P (Pry) =z
Py(Pzy) =vy.
One could add a third equation (for surjectivity of the pairing)
P(P1z)(P2z) = z,
causing this system never to have solutions, see Barendregt [1974].

4B.7. EXAMPLE. An example of a unification problem with constants from I' = {a:1, b:1}
is the following. We search for unknowns W, X, Y, Z € A'(1) such that

X=YoWoY
boW =Wob
WoW =boWob
aoY =Yoa

XoX=Zoboboaoaobobo Z,

where fog = Azx.f(gz)) for f,g¢:1, having as unique solution W =b, X =aoboboa,
Y = Z = a. This example will be expanded in Exercise 4E.5.
4B.8. PROPOSITION. All unification (matching) problems reduce to pure ones with just
one unknown and one equation. In fact we have the following.

(i) A problem of rank k with several unknowns can be reduced to a problem with one
unknown with rank rk(A) = max{k, 2}.

(ii) Systems of problems can be reduced to one problem, without altering the rank.
The rank of the output type will be max{rk(B;),2}, where B; are the output types of the
respective problems in the system.
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(iii) Non-pure problems with constants from T' can be reduced to pure problems. In
this process a problem of rank k becomes of rank

max{rk(I'), k}.

PROOF. We give the proof for unification.
(i) Following Notation 1D.23 we have

IX MX =NX (1)
< AX.AeM(z-1)---(x-n)X =Ae.N(x-1)---(z-n))X. (2)
Indeed, if the X work for (1), then X = (X) works for (2). Conversely, if X works for (2),

then X = X-1,--- , X -n work for (1). By Proposition 1D.22 we have A = Ay x--- x A,
is the type of X and rk(A) = max{rk(A;),--- ,rk(A,),2}.

(ii) Similarly for X1, X, being subsequences of X one has
HX M 1 X 1 = N 1 X 1
M,X, = N,X,

—

& 3X (AB(MEL, -, Mp@ )X = VB (N1, -+, Np@in)) X
(iii) Write a non-pure problem with M, N € A'(A—B), and dom(I") = {i} as
SX (31 A M[FX [ = NIFAX[7)

This is equivalent to the pure problem

3X:(\T—=A). A2 M) X = Az .N[g](z7))X. m

Although the ‘generalized’ unification and matching problems all can be reduced to the
pure case with one unknown and one equation, one usually should not do this if one
wants to get the right feel for the question.

Decidable case of unification

4B.9. PROPOSITION. Unification with unknowns of type 1 and constants of types 0,1 is
decidable.

PROOF. The essential work to be done is the solvability of Markov’s problem by Makanin.
See Exercise 4E.5 for the connection and a reference. m

In Statman [1981] it is shown that the set of (bit strings encoding) decidable unification
problems is itself polynomial time decidable

Undecidability of unification

The undecidability of unification was first proved by Huet. This was done before the
undecidability of Hilbert’s 10-th problem (Is it decidable whether an arbitrary Diophan-
tine equation over Z is solvable?) was established. Huet reduced Post’s correspondence
problem to the unification problem. The theorem by Matijasevi¢ makes things more
easy.



164 4. DEFINABILITY, UNIFICATION AND MATCHING

4B.10. THEOREM (Matijasevi¢). (i) There are two polynomials p1,pa over N (of degree
7 with 13 variables*?) such that

D = {fieN| 37 eNpi (@) = pa(il, 7))

s undecidable.
(i1) There is a polynomial p(Z,y) over Z such that

D={neN|3¥eZpn,z) =0}
is undecidable. Therefore Hilbert’s 10-th problem is undecidable.
PRrOOF. (i) This was done by coding arbitrary RE sets as Diophantine sets of the form

D. See Matiyasevic [1972], Davis [1973] or Matiyasevi¢ [1993].
(ii) Take p = p1 — p2 with the p1,po from (i). Using the theorem of Lagrange

VneN3da,b,c,deNn = a? + b2 + & + d?,
it follows that for n € Z one has
neN & 3Ja,b,c,deNn =a?®+b*+ &+ d>
Finally write 32 € N.p(z,---) = 0 as Ja,b,c,d € Z.p(a® + b + 2 +d?,---) =0.m

4B.11. COROLLARY. The solvability of pure unification problems of order 3 (rank 2) is
undecidable.

PRrROOF. Take the two polynomials pi,ps and D from (i) of the theorem. Find closed
=7 =

terms M, , M, representing the polynomials, as in Corollary 1D.7. Let Uz = {M,, 1'% =

M, "7'Z}. Using that every X € A?(Nat) is a numeral, Proposition 2A.16, it follows that
this unification problem is solvable iff 7€ D. m

The construction of Matijasevi¢ is involved. The encoding of Post’s correspondence
problem by Huet is a more natural way to show the undecidability of unification. It has
as disadvantage that it needs to use unification at variable types. There is a way out.
In Davis, Robinson, and Putnam [1961] it is proved that every RE predicate is of the
form 3TVy <ty ---Vyp<tn.p1 = p2. Using this result and higher types (Naty4, for some
non-atomic A) one can get rid of the bounded quantifiers. The analogon of Proposition
2A.16 (X:Nat = X a numeral) does not hold but one can filter out the ‘numerals’ by
a unification (with f:A—A):
fo(X[f)=(X[f)of.

This yields without Matijasevi¢’s theorem the undecidability of unification with the
unknown of a fixed type.
4B.12. THEOREM. Unification of order 2 (rank 1) with constants is undecidable.
PROOF. See Exercise 4E.4. m
This implies that pure unification of order 3 is undecidable, something we already saw
in Corollary 4B.11. The interest in this result comes from the fact that unification over
order 2 variables plays a role in automated deduction and the undecidability of this
problem, being a subcase of a more general situation, is not implied by Corollary 4B.11.

Another proof of the undecidability unification of order 2 with constants, not using
Matijasevi¢’s theorem, is in Schubert [1998].

12This can be pushed to polynomials of degree 4 and 58 variables or of degree 1.6+ 10*® and 9 variables,
see Jones [1982].
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4C. Decidability of matching of rank 3

The main result will be that matching of rank 3 (which is the same as order 4) is
decidable and is due to Padovani [2000]. On the other hand Loader [2003]| has proved
that general matching modulo =g is undecidable. The decidability of general matching
modulo =gy, which is the intended case, has been established in Stirling [2009], but will
not be included here.

The structure of this section is as follows. First the notion of interpolation problem is
introduced. Then by using tree automata it is shown that these problems restricted to
rank 3 are decidable. Then at rank 3 the problem of matching is reduced to interpolation
and hence solvable. At rank 1 matching with several unknowns is already NP-complete.

4C.1. PROPOSITION. (i) Matching with unknowns of rank 1 is NP-complete.
(ii) Pure matching of rank 2 is NP-complete.

PRrOOF. (i) Consider A = 02—0 = Booly. Using Theorem 2A.13, Proposition 1C.3
and Example 1C.8 it is easy to show that if M € A°(A), then M € gy{true, false} By
Proposition 1D.2 a Boolean function p(Xy,---,X,) in the variables X, -, X, is A-
definable by a term M, € A(A"—A). Therefore

p is satisfiable < M, X; --- X, = true is solvable.

This is a matching problem of rank 1.

(ii) By (i) and Proposition 4B.8. m

Following an idea of Statman [1982], the decidability of the matching problem can be
reduced to the existence for every term N of a logical relation ||y on terms A% such
that

e || is an equivalence relation;

e for all types A the quotient T4/ || is finite;

e there is an algorithm that enumerates 74/ ||, i.e. that takes in argument a type
A and returns a finite sequence of terms representing all the classes.

Indeed, if such a relation exists, then a simple generate and test algorithm permits to
solve the higher-order matching problem.

Similarly the decidability of the matching problem of rank n can be reduced to the
existence of a relation such that 74/ ||x can be enumerated up to rank n.

The finite completeness theorem, Theorem 3D.33, yields the existence of a standard
model M such that the relation M = M = N meets the two first requirements, but
Loader’s theorem shows that it does not meet the third.

Padovani has proposed another relation - the relative observational equivalence - that
is enumerable up to order 4. Like in the construction of the finite completeness theorem,
the relative observational equivalence relation identifies terms of type 0 that are Gn-
equivalent and also all terms of type 0 that are not subterms of N. But this relation
disregards the result of the application of a term to a non definable element.

Padovani has proved that the enumerability of this relation up to rank n can be
reduced to the decidability of a variant of the matching problem of rank n: the dual
interpolation problem of rank n. Interpolation problems have been introduced in Dowek
[1994] as a first step toward decidability of third-order matching. The decidability of
the dual interpolation problem of order 4 has been also proved by Padovani. However,
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here we shall not present the original proof, but a simpler one proposed in Comon and
Jurski [1998].

Rank 3 interpolation problems
4C.2. DEFINITION. (i) An interpolation equation is a particular matching problem
X M = N,

where My, --- , M, and N are closed terms. That is, the unknown X occurs at the head.
A solution of such an equation is a term P such that

P M =g, N.

(ii) An interpolation problem is a conjunction of such equations with the same un-
known. A solution of such a problem is a term P that is a solution for all the equations
simultaneously.

(iii) A dual interpolation problem is a conjunction of equations and negated equations.
A solution of such a problem is a term solution of all the equations but solution of none
of the negated equations.

If a dual interpolation problem has a solution it has also a closed solution in Inf. Hence,
without loss of generality, we can restrict the search to such terms.

To prove the decidability of the rank 3 dual interpolation problem, we shall prove that
the solutions of an interpolation equation can be recognized by a finite tree automaton.
Then, the results will follow from the decidability of the non-emptiness of a set of terms
recognized by a finite tree automaton and the closure of recognizable sets of terms by
intersection and complement.

Relevant solution

In fact, it is not exactly quite so that the solutions of a rank 3 interpolation equation
can be recognized by a finite state automaton. Indeed, a solutions of an interpolation
equation may contain an arbitrary number of variables. For instance the equation

XK=a
where X is a variable of type (0—1—0)—0 has all the solutions

M. fa(Azi.fa(Aza.fa - (Azn.f21(K(f22(K(fz3 -+ (fzn (Ka)).)))))..)).

Moreover since each z; has z1,---,2;_1 in its scope it is not possible to rename these
bound variables so that the variables of all these solutions are in a fixed finite set.

Thus the language of the solution cannot be a priori limited. In this example, it is
clear however that there is another solution

M.(f aO)

where O is a new constant of type 0—0. Moreover all the solutions above can be retrieved
from this one by replacing the constant O by an appropriate term (allowing captures in
this replacement).
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4C.3. DEFINITION. For each simple type A, we consider a constant O4. Let M be a
term solution of an interpolation equation. A subterm occurrence of M of type A is
irrelevant if replacing it by the constant O4 yields a solution. A relevant solution is a
closed solution where all irrelevant subterm occurrences are the constant O 4.

Now we prove that relevant solutions of an interpolation equations can be recognized
by a finite tree automaton.

An example

Consider the problem
XCl = ha,

where X is a variable of type (1—-+0—0)—0, the Church numeral ¢; = Afz.fx and a and
h are constants of type 0 and 15. A relevant solution of this equation substitutes X by
the term Af.P where P is a relevant solution of the equation P[f := c;| = ha.

Let Qp, be the set of the relevant solutions P of the equation P[f := c1] = ha. More
generally, let Qy be the set of relevant solutions P of the equation P[f :=c1] = W.

Notice that terms in Qs can only contain the constants and the free variables that
occur in W, plus the variable f and the constants O4. We can determine membership
of such a set (and in particular to Qp,) by induction over the structure of a term.

e analysis of membership to Qp,

A term is in Qp, if it has either the form (hP;) and P; is in Q, or the form
(fPiPy) and (Pi[f := ci|P[f := c1]) = ha. This means that there are terms
P{ and Pj such that Pi[f := ¢1] = P, P2[f := ¢1] = Pj and (P{Pj) = ha, in
other words there are terms P| and P such that Py is in Qp/, P is in Qp, and
(P{P}) = ha. As (P{Pj) = ha there are three possibilities for P{ and Pj: P} = |
and Py = ha, P{ = Az.hz and Pj = a and P| = A\z.ha and Pj = O,. Hence (fP,P»)
is in Qp, if either P; is in Q) and P» in Qpq or Py is in Qy, . and P in Q4 or Py
is in Q)\z.ha and P2 = O,.

Hence, we have to analyze membership to Qg, O, Qazhzs Dorsha-

e analysis of membership to Q,

A term is in Q, if it has either the form a or the form (fP;P») and P; is in Q)
and P isin Q, or P in Q). , and P, = O,.

Hence, we have to analyze membership to Qy, 4,

e analysis of membership to Q|
A term is in Qj if it has the form A\z.P; and P} is in Q..
Hence, we have to analyze membership to Q..
e analysis of membership to Qx, -
A term is in Q) p. if it has the form Az.P; and P; is in Q.
Hence, we have to analyze membership to Oj,..
e analysis of membership to Qx, ha
A term is in Q) pe if it has the form Az.P; and P; is in Q.
e analysis of membership to Qx,.q
A term is in Q) if it has the form Az.P; and P; is in Q,.
e analysis of membership to Q,
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A term is in Q, if it has the form z or the form (fP;P,) and either P} is in Q,
and P isin @, or P; isin Q). , and P, = O,,.

Hence, we have to analyze membership to Q). ..

e analysis of membership to Qp,,

A term is in Qp, if it has the form (hP;) and P; is in Q. or the form (fPP,)
and either P is in Q) and P is in Qp, or P; is in Qy, ., and P, is in 9, or P is
in Oy, p, and Py, = O,.

Hence, we have to analyze membership to Q. p,.

e analysis of membership to Oy, .
A term is in Q,,/, if it has the form \2’.P; and P; is in Q..
e analysis of membership to Qx, p,
A term is in Q. p, if it has the form \2'.P; and Pj is in Qy,..

In this way we can build an automaton that recognizes in ¢y the terms of Q.
(ha)—Gha
(f019ha)—aha
(f@r2.h290)—ha
(f@rzhaq0,)—qha
a—qq
(f019a)—a
(f@r2090,)—4a
AZ.q,—q)
AZ.Qhz—qrz.hz
AZ.Gha—>z.ha
A2.Qa—>xz.a
2=
(fag:)—q-
(far 2q0,)—q-
(hgz)—qn=
(faan)—an-
(f@rzh22)—qnz
(fare n2q0,)—hz
)‘Z/-Qz_>q/\z’.z
A2 Qhz=Qrxt
Then we need a rule that permits to recognize O, in the state go,
Uo—qo,
and at last a rule that permits to recognize in qg the relevant solution of the equation
(Xc1) =ha
Af-Gha—q0

Notice that as a spin off we have proved that besides f all relevant solutions of this
problem can be expressed with two bound variables z and 2’.
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The states of this automaton are labeled by the terms ha, a, |, Az.a, Az.hz, A\z.ha, z,
hz, A\z'.z and \z’.hz. All these terms have the form

N =Xy1---yp.P

where P is a pattern (see Definition 4C.4) of a subterm of ha and the free variables of
P are in the set {z, 2'}.

Tree automata for relevant solutions

The proof given here is for A%,, but can easily be generalized to the full )\‘i.

4C.4. DEFINITION. Let M be a normal term and V be a set of k variables of type 0 not
occurring in M where k is the size of M. A pattern of M is a term P such that there
exists a substitution ¢ mapping the variables of V to terms of type 0 such that cP = M.

Consider an equation
XM =N

where M = My, -+, M, and X is a variable of rank 3 type at most. Consider a finite
number of constants O 4 for each type A subtype of a type of X. Let k be the size of
N. Consider a fixed set V of k variables of type 0. Let N be the finite set of terms of
the form Ayj - --y,.P, where the ¢ are of type 0, the term P is a pattern of a subterm
of N and the free variables of P are in V. Also the p should be bounded as follows: if
M; : A ... A}, — 0, then p < the maximal arity of all A; It is easy to check that in the
special case that P is not of ground type (that is, starts with a A which, intuitively, binds
a variable in N introduced directly or hereditarily by a constant of N of higher-order
type) then one can take p = 0.

We define a tree automaton with the states gy for W in A and ¢g , for each constant
O4, and the transitions

o (figw, - qw,)—aqw, if (MZVT/) = W and replacing a W; different from 04
by a O4 does not yield a solution,

o (hgn, - qN,)=qhN,N,s  for Ni,--- Ny and (A Ny...Ny,) in NV,

4 DA_>QEIA

o AZ.gt—qhzt

o Afi++ fngn—qo-
4C.5. PROPOSITION. Let U and W be two elements of N and X1,--- , X, be variables
of order at most two. Let o be a relevant solution of the second-order matching problem

UX) - Xp) =W

then for each i, either o X; is in N (modulo alpha-conversion) or is equal to O 4.

PROOF. Let U’ be the normal form of (UoX; - -0X;_1X;0X;11---0X,). If X; has no
occurrence in U’ then as o is relevant o X; = O 4.

Otherwise consider the higher occurrence at position [ of a subterm of type 0 of U’ that
has the form (X;V;i---V,). The terms Vi,---, V], have type 0. Let Wy be the subterm
of W at the same position [. The term Wy has type 0, it is a pattern of a subterm of N.
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Let V/ be the normal form of V;[o X;/X;]. We have (¢ X;V/--- V) = Wy. Consider p
variables y1,--- ,y, of V that are not free in Wy. We have 0 X; = Ay - - - y,.P and

P[‘/l//yla T ’V;/yp] = WO-
Hence P is a pattern of a subterm of N and 0X; = Ay; -+ - y,.P is an element of N. m

4C.6. REMARK. As a corollary of Proposition 4C.5, we get an alternative proof of the
decidability of second-order matching.

4C.7. PROPOSITION. Let

XM =N
be an equation, and A the associated automaton. Then a term is recognized by A (in qo)
if and only if it is a relevant solution of this equation.

PROOF. We want to prove that a term V is recognized in ¢ if and only if it is a relevant
solution of the equation V' M = N. It is sufficient to prove that V is recognized in the
state ¢y if and only if it is a relevant solution of the equation V[f; := My, -, f =
M,] = N. We prove, more generally, that for any term W of N, V is recognized in gy
if and only if V[f; := My, -, fr:= M, =W.

The direct sense is easy. We prove by induction over the structure of V that if V is
recognized in gy, then V' is a relevant solution of the equation V[f; := M, -, f, =
M, =W. ItV = (f; Vi---V,) then the term V] is recognized in a state gy ,, where Wj is
either a term of N or O4 and (M; V_V) = W. In the first case, by induction hypothesis V;
is a relevant solution of the equation V;[f1 := My, -, fn := M,] = M; and in the second
V; = 0y4. Thus (Mz Vl[fl =My, fn = Mn] ‘/p[fl =My, fn = Mn]) =N,
ie. V[fi = Miy,---, fn:= M, =N, and moreover V is relevant. If V.= (h Vi ---V,),
then the V; are recognized in states gy, with W; in M. By induction hypothesis V; are
relevant solutions of V;[f1 := My, -, fn := M,] = M;. Hence V[f1 := My, -, fn =
M,] = N and moreover V is relevant. The case where V' is an abstraction is similar.

Conversely, assume that V' is a relevant solution of the problem

VI[fi:=My,-, fn:= M) =W

We prove, by induction over the structure of V', that V is recognized in qyy .
IV =(f; Vi---Vp) then

(Mi Vilfr o= My, -+, fo = Mp] - - Vp[fr:= My, -+, fn := Mp]) = N.

Let V! =V;[fi1 := My, -, fn := M,]. The V/ are relevant solutions of the second-order
matching problem (M; V{---V]) = N. Now, by Proposition 4C.5, each V; is either an
element of A/ or the constant O 4. In both cases V; is a relevant solution of the equation
Vilfi :== My, -+, fn, := M,] = V/ and by induction hypothesis V; is recognized in gy, .
Thus V' is recognized in qyy.

IfV=(hVi---V,) then

(h ‘/l[fl ::Ml,---,fn :Mn]‘/p[fl ::Ml,-~-, n:Mn]):W

Let W; = Vi[f1 := My, -, fn := M,]. We have (h V_f/') = W and V; is a relevant
solution of the equation V;[f1 := My, -, fn := M,] = W;. By induction hypothesis V;
is recognized in qy,. Thus V is recognized in gy. The case where V' is an abstraction is
similar. m
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4C.8. PROPOSITION. Rank & dual interpolation is decidable.

Proor. Consider a system of equations and inequalities and the automata associated
to all these equations. Let £ be the language containing the union of the languages of
these automata and an extra constant of type 0. Obviously the system has a solution if
and only if it has a solution in the language £. Each automaton recognizing the relevant
solutions can be transformed into one recognizing all the solutions in £ (adding a finite
number of rules, so that the state O4 recognizes all terms of type A in the language
L). Then using the fact that languages recognized by a tree automaton are closed
by intersection and complement, we build a automaton recognizing all the solutions of
the system in the language £. The system has a solution if and only if the language
recognized by this automaton is non empty.

Decidability follows from the decidability of the emptiness of a language recognized
by a tree automaton. m

Decidability of rank 3 matching
A particular case

We shall start by proving the decidability of a subcase of rank 3 matching where problems
are formulated in a language without any constant and the solutions also must not
contain any constant.

Consider a problem M = N. The term N contains no constant. Hence, by the
reducibility theorem, Theorem 3D.8, there are closed terms Ry, -, R, of type A—0,
whose constants have order at most two (i.e. level at most one), such that for each term
M of type A

M =pBn N & VE(Rg M) =Bn (Rg N)
The normal forms of (R, N)€ A°(0) are closed terms whose constants have order at
most two, thus it contains no bound variables. Let I/ be the set of all subterms of type
0 of the normal forms of Ry N. All these terms are closed. Like in the relation defined
by equality in the model of the finite completeness theorem, we define a congruence on
closed terms of type 0 that identifies all terms that are not in &. This congruence has
card(U) + 1 equivalence classes.

4C.9. DEFINITION. M =g,y M' & YU €U [M =, U & M' =g, U].
Notice that if M, M’ € A?(0) one has the following

M =gyn M' & M =gy M' or VU €U (M #py U & M #p, U)
g [MZﬁnM/

or neither the normal form of M nor that of M’ is in U]

Now we extend this to a logical relation on closed terms of arbitrary types. The following
construction could be considered as an application of the Gandy Hull defined in Example
3C.28. However, we choose to do it explicitly so as to prepare for Definition 4C.18.

4C.10. DEFINITION. Let ||x be the logical relation lifted from =g, n on closed terms.
4C.11. LEMMA. (i) ||n is head-expansive.
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(ii) For each constant F of type of rank < 1 one has F ||y F.
(iii) For any X € A(A) one has X ||n X.
(iv) ||v is an equivalence relation.
(V) P ”N Q = VSl, < ,SkPS HN QS

We want to prove, using the decidability of the dual interpolation problem, that the
equivalence classes of this relation can be enumerated up to order four, i.e. that we can
compute a set £4 of closed terms containing a term in each class.

More generally, we shall prove that if dual interpolation of rank n is decidable, then the
sets T4/ | can be enumerated up to rank n. We first prove the following Proposition.

4C.12. PROPOSITION (Substitution lemma). Let M be a normal term of type 0, whose

free variables are x1,- -+ ,xn. Let Vi,--- ,Vy,, V{ -+ [V be closed terms such that Vi ||n
Vi, ... \Valln V). Let o =Vi/x1,.... Vo )z and o' =V /x1,..., V] /2. Then
oM =gyNn o' M

PROOF. By induction on the pair formed with the length of the longest reduction in
oM and the size of M. The term M is normal and has type 0, thus it has the form
(f Wy - Wg). B

If f is a constant, then let us write W; = AS; with S; of type 0. We have oM =
(fXoSi---AaSk) and o'M = (f X 0’S1--- X 0'Sy). By induction hypothesis (as the
Si’s are subterms of M) we have 051 =gyn 0'S1, ... , 05k =gnn 'Sy, thus either for all
i, 0S; =gy 0'S; and in this case oM =g, 0’ M or for some i, neither the normal forms
of ¢S; nor that of ¢’S; is an element of ¢/. In this case neither the normal form of oM
nor that of ¢’M is in U and oM =g,n o' M.

If f is a variable z; and k = 0 then M = z;, oM =V, and ¢'M = V/ and V; and V/
have type 0. Thus oM =gyn o'M.

Otherwise, f is a variable x; and k # 0. The term V; has the form Az --- Az S and
the term V/ has the form Az --- Az, S’. We have

oM = (Vi oWy ---oWy) =gy SloW1/z1, -+ , oWy /2]
and o'M = (V! o'Wy ---0'Wy). As V; ||n V], we get
o'M =gyn (Vi o'Wi---0'Wy) =gnn S[o'Wi/z1,- -+, 0'Wi /2]
It is routine to check that for all i, (cW;) ||n (0/W;). Indeed, if the term W; has the
form Ay; --- Ay, O, then for all closed terms @1 --- @, we have
oWi Q1+ Qp=((Q1/y1, - ,@p/yp) ©0)O
o'W Qu-+Qp=((Q1/y1,++,@p/yp) ©0)O.

Applying the induction hypothesis to O that is a subterm of M, we get

(W) Q1+ Qp =pBnN (U/Wi) Q1 Qp

and thus (cW;) ||n (o/W;).
As (oW;) ||v (6'W;) we can apply the induction hypothesis again, because

oM — sjoWi/z1,-- , oWy /2],

and get
SleWi/z1,- - , oWy /zk) =gnn Slo'Wi/z1,- -+, o'Wy /2]
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Thus oM =gyn 0'M. m

The next proposition is a direct corollary.
4C.13. PROPOSITION (Application lemma). If Vi ||y V{, ... , Vi |Inv V,., then for all
term M of type Ay— -+ — A, —0,

(M Vi V) =gy (M V] V7).

PRrROOF. Applying Proposition 4C.12 to the term (M z1---x,). B

We then prove the following lemma that justifies the use of the relations =g,y and
In-
4C.14. PrRoOPOSITION (Discrimination lemma). Let M be a term. Then

MHNN = M:ﬂnN.

Proor. As M ||y N, by Proposition 4C.13, we have for all ¢, (R, M) =gyn (R¢ N).
Hence, as the normal form of (R, N) is in U, (R M) =gy, (R; N). Thus M =g, N. m

Let us discuss now how we can decide and enumerate the relation ||y. If M and M’
are of type A1— - -+ — A, —0, then, by definition, M ||y M’ if and only if

YW1 E€Th, - -YWn€Ta, (M W =gyn M’ W)
The fact that M W =gnn M’ W can be reformulated
YU €U (M W =g, U if and only if M' W =g, U)
Thus M ||y M’ if and only if
YWy €Ta, YW €T, YU €U (M W =g, U if and only if M' W =g, M)

Thus to decide if M ||y M’, we should list all the sequences U, W7y, --- , W,, where U
is an element of & and W1y, --- , W, are closed terms of type Ay,--- , A,, and check that
the set of sequences such that M W =g, U is the same as the set of sequences such that
M'W =g, U.

Of course, the problem is that there is an infinite number of such sequences. But by
Proposition 4C.13 the fact that M W =g,y M’ W is not affected if we replace the
terms W; by || n-equivalent terms. Hence, if we can enumerate the sets T4,/ ||n, ...

Ta,/ |In by sets Ea,, ... , Ea,, then we can decide the relation ||y for terms of type
A1— - —A,—0 by enumerating the sequences in U x 4, x --- X E4,, and checking
that the set of sequences such that M W =gn U is the same as the set of sequences such
that M’ W =g, U.

As class of a term M for the relation ||y is completely determined, by the set of
sequences U, Wy, -+, W, such that M 174 =gn U and there are a finite number of
subsets of the set £ =U x Ea, X -+ x E4,,, we get this way that the set T4/ || is finite.

To obtain an enumeration €4 of the set 74/ ||xy we need to be able to select the subsets
Aof U x E4, X -+ x Ea,, such that there is a term M such that M W =gn U if and
only if the sequence U, W is in A. This condition is exactly the decidability of the dual
interpolation problem. This leads to the following proposition.

4C.15. PROPOSITION (Enumeration lemma). If dual interpolation of rank n is decidable,
then the sets Ta/ ||n can be enumerated up to rank n.
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PRrROOF. By induction on the order of A = A;— ---—A,,—0. By the induction hypoth-

esis, the sets Ta,/ |In, -+, 74,/ ||nv can be enumerated by sets £4,,---,€a, .-
Let x be a variable of type A. For each subset A of £ =U x E4, X -+ x E4, we define
the dual interpolation problem containing the equation W = U for U, Wq,--- , W€ A

and the negated equation W # U for U Wy,--- W, ¢ A. Using the decidability of
dual interpolation of rank n, we select those of such problems that have a solution and
we chose a closed solution for each problem. We get this way a set £4.

We prove that this set is an enumeration of T4/ ||n, i.e. that for every term M of
type A there is a term M’ in €4 such that M’ ||y M. Let A be the set of sequences
U, Wy, -, W) such that (M W) =gn U. The dual interpolation problem corresponding
to A has a solution (for instance M). Thus one of its solutions M’ is in £4. We have

YWy €Eay - VWneEa YU €U (M W) =g, U = (M' W) =g, U).
Thus

.

VWi €Eay - VW €Ea, (M W) =gyn (M' W);
hence by Proposition 4C.13

YWy € Tay -+ YWy, € Ta, (M W) =gpn (M' W),
Therefore M ||y M'. m

Then, we prove that if the sets T4/ ||y can be enumerated up to rank n, then matching
of rank n is decidable. The idea is that we can restrict the search of solutions to the sets
Ea.
4C.16. PROPOSITION (Matching lemma). If the sets Ta/ ||n can be enumerated up to
order n, then matching problems of rank n whose right hand side is N can be decided.
PROOF. Let X = X1, -+, Xm. We prove that if a matching problem MX = N has a
solution 17, then it has also a solution Q, such that V, € €4, for each i, where A; is the
type of X;.

As V is a solution of the problem M = N, we have MV =gn N.

For all 7, let V; be a representative in €4, of the class of V;. We have

Villn Viyoo Vo [N Vi
Thus by Proposition 4C.12
MV =gp,n MV,

hence

MV =gyn N,
and therefore by Proposition 4C.14

MV =g, N.

Thus for checking whether a problem has a solution it suffices to check whether it has

a solution V, with each V, in £4; such substitutions can be enumerated. m

Note that the proposition can be generalized: the enumeration allows to solve ev-
ery matching inequality of right member N, and more generally, every dual matching
problem.
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4C.17. THEOREM. Rank 3 matching problems whose right hand side contain no constants
can be decided.

PRrROOF. Dual interpolation of order 4 is decidable, hence, by proposition 4C.15, if N is
a closed term containing no constants, then the sets T4/ ||y can be enumerated up to
order 4, hence, by Proposition 4C.16, we can decide if a problem of the form M = N
has a solution. m

The general case

We consider now terms formed in a language containing an infinite number of constants
of each type and we want to generalize the result. The difficulty is that we cannot apply
Statman’s result anymore to eliminate bound variables. Hence we shall define directly
the set U as the set of subterms of N of type 0. The novelty here is that the bound
variables of U may now appear free in the terms of . It is important here to chose the
names x1,--- , I, of these variables, once for all.

We define the congruence M =gyn M’ on terms of type 0 that identifies all terms
that are not in U.

4C.18. DEFINITION. (i) Let M, M’ e A(0) (not necessarily closed). Define
M =BnN M < VUGU[M =Bn U< M =Bn U]

(ii) Define the logical relation ||x by lifting =g,n to all open terms at higher types.
4C.19. LEMMA. (i) || is head-ezpansive.

(ii) For any variable x of arbitrary type A one has x ||§ .

(iii) For each constant F € A(A) one has F' ||n F.

(iv) For any X € A(A) one has X ||y X.

(v) ||~ is an equivalence relation at all types.

(vi) P|lvn @ & VS, --,Sk.PS ||nv QS.
PROOF. (i) By definition the relation is closed under arbitrary 8n expansion.

(ii) By induction on the generation of the type A.

Then we can turn to the enumeration Lemma, Proposition 4C.15. Due to the presence
of the free variables, the proof of this lemma introduces several novelties. Given a subset
Aof E=UxE4, x---xE4, we cannot define the dual interpolation problem containing
the equation (z W) = U for U, Wy, -- ,Wp, € A and the negated equation (z W) #U
for U,Wh,--- ,W, ¢ A, because the right hand side of these equations may contain free
variables. Thus, we shall replace these variables by fresh constants c¢y,---,c¢,. Let 6
be the substitution ¢;/x1,--- , ¢ /x,. To each set of sequences, we associate the dual
interpolation problem containing the equation (x W) = 06U or its negation.

This introduces two difficulties: first the term OU is not a subterm of N, thus, be-
sides the relation ||, we shall need to consider also the relation |lg;7, and one of its
enumerations, for each term U in . Then, the solutions of such interpolation problems
could contain the constants c1,--- ,¢,, and we may have difficulties proving that they
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represent their ||y-equivalence class. To solve this problem we need to duplicate the

constants ¢y, - -+ , ¢, with constants dy,--- ,d,. This idea goes back to Goldfarb [1981].
Let us consider a fixed set of constants ¢1,--- ,¢y,, di,- -+ ,dy, that do not occur in N,
and if M is a term containing constants c1, - - - , ¢, but not the constants dy,--- ,d,,, we

write M for the term M where each constant ¢; is replaced by the constant d;.
Let A= A;j—---—A,—0 be a type. We assume that for any closed term U of type
0, the sets T4,/ || can be enumerated up to rank n by sets Eﬁ{i.

4C.20. DEFINITION. We define the set of sequences £ containing for each term U in U

and sequence Wy, -+, W, in 8;91(1] X e X 5%{, the sequence 60U, W1, - -- , W,. Notice that
the terms in these sequences may contain the constants cy, - - - , ¢, but not the constants
di, -, dp.

To each subset of A of £ we associate a dual interpolation problem containing the
equations x W = U and o Wy---W,, = U for U, Wy,--- , W, € A and the inequalities
x W #U and ¢ Wy---W,, £ U for U Wh,--- W, ¢ A.

The first lemma justifies the use of constants duplication.

4C.21. PROPOSITION. If an interpolation problem of Definition 4C.20 has a solution M,
then it also has a solution M’ that does not contain the constants ci,- -+ ,Cn,dy, - ,dy.

PROOF. Assume that the term M contains a constant, say c¢;. Then by replacing this
constant ¢; by a fresh constant e, we obtain a term M’. As the constant e is fresh, all the
inequalities that M verify are still verified by M". ' If M verifies the equations z W = U
and z W, - - Wn = U then the constant e does not occur in the normal form of M’ W.
Otherwise the constant ¢; would occur in the normal form of M Wi --- W, i.e. in the
normal form of U which is not the case. Thus M’ also verifies the equations x W=U
and W1 Wn =U.

We can replace this way all the constants ci,---,c¢,, di, -+ ,d, by fresh constants,
obtaining a solution where these constants do not occur. m

Then, we prove that the interpolation problems of Definition 4C.20 characterize the
equivalence classes of the relation ||x.
4C.22. PROPOSITION. FEvery term M of type A not containing the constants cy,- -+ ,cCp,
di,- - ,dy is the solution of a unique problem of Definition 4C.20.
ProOF. Consider the subset A of £ formed with sequences U, W7¢,--- ,W,, such that
M W = U. The term M is the solution of the interpolation problem associated to .4

and A is the only subset of £ such that M is a solution to the interpolation problem
associated to. m

4C.23. PROPOSITION. Let M and M’ be two terms of type A not containing the constants
cl, +  Cn,dy, - ,dn. Then M and M' are solutions of the same unique problem of

Definition 4C.20 iff M ||y M.

PROOF. By definition if M ||y M’ then for all Wy, --- | W,, and for all U inU: M 1174 =8n
Ues MW =gpn U. Thus for any UWin€, 0~ U isinU and M 0~W; --- 071w, =8n
0~'U < M o'Wy ---071 W, =38n 6~ 1U. Then, as the constants c1,- - ,cn,d1, -+ ,dn
do not appear in M and M’, we have M W =g, U & MW =8n Uand M Wy ---W, =3n
U M Wy---W, =g, U. Thus M and M’ are the solutions of the same problem.
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Conversely, assume that M J{,,M’. Then there exists terms Wi,---, W, and a term
U in U such that M W =gn U and M’ 174 #pn U. Hence M OWy---0W,, =g, 0U and
M OW,---0W, #s, 0U. As the sets 5%_] are enumeration of the sets T4,/ ||o there
exists terms S such that the S, llor 6W; and 60U, See&. Using Proposition 4C.13 we have
M 8§ =g,90 M OW, ---0W,, =g, OU, hence M S =pg,g; OU i.c. M S =g, §U. Similarly,
we have M’ § =gnou M' OW; - - OW,, #gy U hence M’ S Fanou Os ie. M’ S #an O0U
Hence M and M’ are not the solutions of the same problem. m

Finally, we can prove the enumeration lemma.

4C.24. PROPOSITION (Enumeration lemma). If dual interpolation of rank n is decidable,
then, for any closed term N of type 0, the sets Ta/ ||n can be enumerated up to rank n.

PROOF. By induction on the order of A. Let A = A;—---—A,,—0. By the induction
hypothesis, for any closed term U of type 0, the sets T4,/ ||r can be enumerated by sets
£v.

We consider all the interpolation problems of Definition 4C.20. Using the decidability
of dual interpolation of rank n, we select those of such problems that have a solution. By
Proposition 4C.21, we can construct for each such problem a solution not containing the
constants ¢, - ,¢p,dy, - ,d, and by Proposition 4C.22 and 4C.23, these terms form
an enumeration of T4/ ||n. ®m

To conclude, we prove the matching lemma (Proposition 4C.16) exactly as in the
particular case and then the theorem.

4C.25. THEOREM (Padovani). Rank 8 matching problems can be decided.

PROOF. Dual interpolation of order 4 is decidable, hence, by Proposition 4C.15, if N
is a closed term, then the sets 74/ ||y can be enumerated up to order 4, hence, by
Proposition 4C.16, we can decide if a problem of the form M = N has a solution. m

4D. Decidability of the maximal theory

We prove now that the maximal theory is decidable. The original proof of this result is
due to Padovani [1996]. This proof has later been simplified independently by Schmidt-
Schauf} and Loader [1997], based on Schmidt-Schaufl [1999].

Remember that the maximal theory, see Definition 3E.46, is

Toax{M = N | M,N € N(A), Ac T & ME,, E M = N},

min
where
M, = Aglel/~"

consists of all terms having the ¢ = ¢y, - - - ,¢,, with n > 1, of type 0 as distinct constants
and M ~&* N on type A = A;—--- —A,—0 is defined by

M~ N & VP e N)[d(Ar) - Po€ N[d(Ay).MP =g, NP.

Theorem 3E.34 states that %‘?‘t is a congruence which we will denote by ~. Also that
theorem implies that Tnax is independent of n.
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4D.1. DEFINITION. Let A€ T®. The degree of A, notation ||A||, is defined as follows.

o =2,
l|A— B|| = [|A||'||B]|, ie. ||A]|l factorial times ||B]|.
4D.2. PROPOSITION. (i) ||A1 — -+ = Ap — O] = 2||As||!- - - || An]]!

(i) [ 4l| < |[A1— - = Ap = 0]|.
(iii) n < ||]41 = -+ = 4, = 0|
(v) Ifp < [[All, [Ball < [[Adll, .., [|Bpl| < | Ail| then

|4 == A1 —>B == By—> A1 - =4, —-0]<
<||A1 = - = A, — 0]

4D.3. DEFINITION. Let M € Aj[é](A1— - - - A,—0) be alnf. Then either M = Az -+ 2.y
or M = Axy---xp.x;My--- Mp. In the first case, M is called constant, in the second it
has indezx 1.

The following proposition states that for every type A, the terms M € Af[c](A) with a
given index can be enumerated by a term E : C’H—>A, where the C' have degrees lower
than A.

4D.4. PROPOSITION. Let = be the equality in the minimal model (the maximal theory).
Then for each type A and each natural number i, there exists a natural number k < ||A]|,
types C1,- -+, Ck such that ||C1|| < ||A]l, ..., ||Ckl| < ||Al|, a term E of type C; — -+ —
Cr — A and terms Py of type A — C1, ..., Py of type A — C}, such that if M has index
1 then

M ~ E(PLM)--- (P;M).

PROOF. By induction on ||A||. Let us write A = Ay — -+ — A, — 0 and A; =
B; —» -+ — B,, — 0. By induction hypothesis, for each j in {1,---,m} there are
types Dj1,--+, Djy;, terms Ej, Py, -+, Py, such that I < [[A], [[Djall < [[Adl, -

IDj1;|| < ||A;l| and if N € Aj[¢](A;) has index j then
N~ E;j(PjiN)---(Pj;;N).
We take k = m, and define

Cy = A1—)-‘-—>AZ‘_1—>D171—>”-—>D1’11—)Ai+1—>--'—>An—>O,

> -

Ck
FE

Ay — - = A1 — Dy — - = Dy, — Aipr — - — A, = 0,

A frrn .
zi(AC frey -2 (Priwg) - (P @) Tig1 -+ Tn)

(1>

(AC.frwr - i1 (Priwi) - - (Prgy i) Tig1 - - Tn),

A o 5
P = Agxy- 21 21T Tpegr - i1 (B2 T - X

Py £ Agri-omiaZi@ign o Tpogt o i1 (BrZe) i - o,
where Zj = 21, -,z for 1 <i < k. We have k < |[4;]| < [|A]l, ||Ci|| < ||A]| for
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1 <i <k and for any M € A}[c](A)

E(PM)---(PyM) = Azp---xp.;
(Atar a1 (Br(Praas) - - (P )it - - )

(Autar - w1 (B (Pi@i) - - (Pity ) )Tig1 -+~ )
We want to prove that if M has index ¢ then this term is equal to M. Consider terms
Q € A[d]. We want to prove that for the term

Q = Qi(ACtQ1 - Qi—1(E1(P11Qi) - (P11, Q4))Qit1- - Qn)

(ACtQ1 - Qi—1(Ek(Pe1Qi) - -+ (P, Qi) Qi1+ Qn)
one has Q ~ (MQ1---Qn). If Q; is constant then this is obvious. Otherwise, it has an
index j, say, and @ reduces to
Q = MQ:i-- Qi 1(E;(Pj1Q:) - (Pj1,Q:))Qis1+ - Qn.
By the induction hypothesis the term (E;(P;1Q;)---(P;;;Qi)) ~ Q; and hence, by
Theorem 3E.34 one has Q = Q' ~ (MQ1---Q,).
4D.5. THEOREM. Let M be the minimal model built over ¢:0, i.e.
M = Muin = N[ /~.

For each type A, we can compute a finite set Ra C AJ[c](A) that enumerates M(A), i.e.
such that
VM e M(A)SNeR4.M ~ N.

ProoF. By induction on [|A||. If A =0, then we can take R4 = {¢}. Otherwise write
A=A — -+ = A, — 0. By Proposition 4D.4 for each i € {1,--- ,n}, there exists a
ki €N, types Cj1,---,C;, smaller than A, a term E; of type C;1 — -+ — Cijp, — A
such that for each term M of index ¢, there exists terms Py, ---, Py, such that

M~ (E;Py--- Fy,).

By the induction hypothesis, for each type C;; we can compute a finite set R¢, ; that

enumerates M(C; ;). We take for R4 all the terms of the form (E;Q1--- Qg,) with Q1
inRe¢,,, - Qr in Rg, - M

4D.6. COROLLARY (Padovani). The mazimal theory is decidable.

PRrROOF. Check equivalence in any minimal model /\/lf;in. At type
A=A— - -—A,—0 we have

M~N & VP e Nd(Ay)--- P,e N[d(As).MP =g, NP,
where we can now restrict the P to the R A;-H
4D.7. COROLLARY (Decidability of unification in Tmax). For terms
M, N € Nj[d(A—B),
of the same type, the following unification problem is decidable
IX e N’[c)(A).MX ~ NX.

ProoF. Working in M¢.. | check the finitely many enumerating terms as candidates. m

min’
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4D.8. COROLLARY (Decidability of atomic higher-order matching). (i) For
My € NJ[El(A1—0), - -, M, € Ay [c](A,—0),
with 1 < i < mn, the following problem is decidable
IX1 € AY[(Ar), -, Xy € AY[A(An).[M1 X1 =y c1

Mp X, =gy cnl
(ii) For M, N € A[c](A—0) the following problem is decidable.
IX € A%[A(A).MX =g, NX.

PROOF. (i) Since Bn-convertibility at type 0 is equivalent to /2, the previous Corollary
applies.
(ii) Similarly to (i) or by reducing this problem to the problem in (i). m

The non-redundancy of the enumeration

We now prove that the enumeration of terms in Proposition 4C.24 is not redundant. We
follow the given construction, but actually the proof does not depend on it, see Exercise
4E.2. We first prove a converse to Proposition 4D.4.

4D.9. PROPOSITION. Let E, Py,---,P; be the terms constructed in Proposition 4D.4.
Then for any sequence of terms My, --- , M}, we have

(Pj(EM, - - My)) ~ M.
PrOOF. By induction on ||A|| where A is the type of (EMj --- Mj). The term
N = Pj(EM; -~ My)
reduces to

)\xl s xi_lgjxi+1 s anJ%
(AEMizy - - w1 (PLi(B)Z))) - (Priy (BjZ))) @it - - o)

(MM -+ i1 (Pri (B 7)) - - (Prygy, (EjZ5))Tis1 - - - Tn)
Then, since Ej is a term of index [; + j, the term N continues to reduce to
ALy i1 2 T My 21 (Pya (B Z))) - - (P, (B Z5)) @i - - e
We want to prove that this term is equal to M;. Consider terms
Ny,--- N1, I_;j, NZ'+1, - Ny EA%[E]
It suffices to show that
M;Ny -+ Nio1(Pia(EjLyj)) -+ (P, (EjLj))Nig - Np ~
MjNy---N;1LjNiy1--+ Ny.
By the induction hypothesis we have
(Pji(E;jLj)) ~ Ly,
(Pjy; (EjLj)) ~ Ly;.

J
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Hence by Theorem 3E.34 we are done. m
4D.10. PROPOSITION. The enumeration in Theorem 4D.5 is non-redundant, i.e.

VAe TWM,NeRs.M~c N = M= N.

Proor. Consider two terms M and N equal in the enumeration of a type A. We prove,
by induction, that these two terms are equal. Since M and N are equal, they must have
the same head variables. If this variable is free then they are equal. Otherwise, the
terms have the form M = (E;M] ---M]) and N = (E;N{--- N;). For all j, we have

M; ~ (P;M) = (P;N) ~ Nj.
Hence, by induction hypothesis M} = N} and therefore M = N. m

4FE. Exercises

4E.1. Let M = M|C;] be the minimal model. Let ¢, = card(M(1"—0)).
(i) Show that

co = 2;
Cnt1 =24 (n+ 1)cy.
(ii) Prove that

Z” 1

Cp = 2n' - .

£ g
=0

Thed, =n!Y ", Zl, “the number of arrangements of n elements” form a well-
known sequence in combinatorics. See, for instance, Flajolet and Sedgewick
[1993].
(iii) Can the cardinality of M(A) be bounded by a function of t