
This handbook with exercises reveals in formalisms,

hitherto mainly used for designing and verifying hardware and software,

unexpected mathematical beauty.
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I see no way to improve this.
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Part 1.
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Harvard style did not allow this. Please correct.

2[The expression ‘safe’ should be in the index of definitions, as follows

safe µ̇-type 317

I did not manage to get it there. Please place it.]
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Preface

This book is about typed lambda terms using simple, recursive and intersection types.
In some sense it is a sequel to Barendregt [1984]. That book is about untyped lambda
calculus. Types give the untyped terms more structure: function applications are al-
lowed only in some cases. In this way one can single out untyped terms having special
properties. But there is more to it. The extra structure makes the theory of typed terms
quite different from the untyped ones.
The emphasis of the book is on syntax. Models are introduced only in so far they give

useful information about terms and types or if the theory can be applied to them.
The writing of the book has been different from that about the untyped lambda

calculus. First of all, since many researchers are working on typed lambda calculus,
we were aiming at a moving target. Also there was a wealth of material to work with.
For these reasons the book has been written by several authors. Several long-term open
problems had been solved in the period the book was written, notably the undecidability
of lambda definability in finite models, the undecidability of second order typability, the
decidability of the unique maximal theory extending βη-conversion and the fact that
the collection of closed terms of not every simple type is finitely generated, and the
decidability of matching at arbitrary types higher than order 4. The book is not written
as an encyclopedic monograph: many topics are only partially treated. For example
reducibility among types is analyzed only for simple types built up from only one atom.
One of the recurring distinctions made in the book is the difference between the implicit

typing due to Curry versus the explicit typing due to Church. In the latter case the terms
are an enhanced version of the untyped terms, whereas in the Curry theory to some of
the untyped terms a collection of types is being assigned. The book is mainly about
Curry typing, although some chapters treat the equivalent Church variant.
The applications of the theory are either within the theory itself, in the theory of

programming languages, in proof theory, including the technology of fully formalized
proofs used for mechanical verification, or in linguistics. Often the applications are
given in an exercise with hints.
We hope that the book will attract readers and inspire them to pursue the topic.
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Introduction

The rise of lambda calculus

Lambda calculus started as a formalism introduced by Church in 1932 intended to
be used as a foundation for mathematics, including the computational aspects. Sup-
ported by his students Kleene and Rosser—who showed that the prototype system was
inconsistent—Church distilled a consistent computational part and ventured in 1936 the
Thesis that exactly the intuitively computable functions can be defined in it. He also
presented a function that could not be captured by the λ-calculus. In that same year
Turing introduced another formalism, describing what are now called Turing Machines,
and formulated the related Thesis that exactly the mechanically computable functions
can be captured by these machines. Turing also showed in the same paper that the
question whether a given statement could be proved (from a given set of axioms) using
the rules of any reasonable system of logic is not computable in this mechanical way.
Finally Turing showed that the formalism of λ-calculus and Turing machines define the
same class of functions.
Together Church’s Thesis, concerning computability by homo sapiens, and Turing’s

Thesis, concerning computability by mechanical devices, using formalisms that are equally
powerful but having their computational limitations, made a deep impact on the philos-
ophy in the 20th century concerning the power and limitations of the human mind. So
far, cognitive neuropsychology has not been able to refute the combined Church-Turing
Thesis. On the contrary, also this discipline shows the limitation of human capacities.
On the other hand, the analyses of Church and Turing indicate an element of reflection
(universality) in both Lambda Calculus and Turing Machines, that according to their
combined thesis is also present in humans.
Turing Machine computations are relatively easy to implement on electronic devices,

as started to happen soon in the 1940s. The mentioned universality was employed by von
Neumann1 enabling to construct not only ad hoc computers but even a universal one,
capable of performing different tasks depending on a program. This resulted in what is
called now imperative programming , with the language C presently as the most widely
used one for programming in this paradigm. Like with Turing Machines a computation
consists of repeated modifications of some data stored in memory. The essential differ-
ence between a modern computer and a Turing Machine is that the former has random
access memory2.

Functional programming

The computational model of Lambda Calculus, on the other hand, has given rise to func-
tional programming . The input M becomes part of an expression FM to be evaluated,
where F represents the intended function to be computed on M . This expression is

1It was von Neumann who visited Cambridge UK in 1935 and invited Turing to Princeton during
1936-1937, so he probably knew Turing’s work.

2Another difference is that the memory on a TM is infinite: Turing wanted to be technology indepen-
dent, but was restricting a computation with given input to one using finite memory and time.
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reduced (rewritten) according to some rules (indicating the possible computation steps)
and some strategy (indicating precisely which steps should be taken).
To show the elegance of functional programming, here is a short functional program

generating primes using Eratosthenes sieve (Miranda program by D. Turner):

primes = sieve [2..]

where

sieve (p:x) = p : sieve [n | n<-x ; n mod p > 0]

primes_upto n = [p | p<- primes ; p<n]

while a similar program expressed in an imperative language looks like (Java program
from <rosettacode.org>)

public class Sieve{

public static LinkedList<Integer> sieve(int n){

LinkedList<Integer> primes = new LinkedList<Integer>();

BitSet nonPrimes = new BitSet(n+1);

for (int p = 2; p <= n; p = nonPrimes.nextClearBit(p+1)){

for (int i = p * p; i <= n; i += p)

nonPrimes.set(i);

primes.add(p);

}

return primes;

}

}

Of course the algorithm is extremely simple, one of the first ever invented. However, the
gain for more complex algorithms remains, as functional programs do scale up.
The power of functional programming languages derives from several facts.

1. All expressions of a functional programming language have a constant meaning (i.e.
independent of a hidden state). This is called ‘referential transparency’ and makes
it easier to reason about functional programs and to make versions for parallel
computing, important for quality and efficiency.

2. Functions may be arguments of other functions, usually called ‘functionals’ in math-
ematics and higher order functions in programming. There are functions acting on
functionals, etcetera; in this way one obtains functions of arbitrary order. Both in
mathematics and in programming higher order functions are natural and powerful
phenomena. In functional programming this enables the flexible composition of
algorithms.

3. Algorithms can be expressed in a clear goal-directed mathematical way, using var-
ious forms of recursion and flexible data structures. The bookkeeping needed for
the storage of these values is handled by the language compiler instead of the user
of the functional language3.

3In modern functional languages there is a palette of techniques (like overloading, type classes and
generic programming) to make algorithms less dependent of specific data types and hence more reusable.
If desired the user of the functional language can help the compiler to achieve a better allocation of values.
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Types

The formalism as defined by Church is untyped. Also the early functional languages,
of which Lisp (McCarthy, Abrahams, Edwards, Hart, and Levin [1962]) and Scheme
(Abelson, Dybvig, Haynes, Rozas, IV, Friedman, Kohlbecker, Jr., Bartley, Halstead,
[1991]) are best known, are untyped: arbitrary expressions may be applied to each
other. Types first appeared in Principia Mathematica, Whitehead and Russell [1910-
1913]. In Curry [1934] types are introduced and assigned to expressions in ‘combinatory
logic’, a formalism closely related to lambda calculus. In Curry and Feys [1958] this
type assignment mechanism was adapted to λ-terms, while in Church [1940] λ-terms
were ornamented by fixed types. This resulted in the closely related systems λCu

→ and
λCh
→ treated in Part I.
Types are being used in many, if not most programming languages. These are of the

form
bool, nat, real, ...

and occur in compounds like

nat → bool, array(real), ...

Using the formalism of types in programming, many errors can be prevented if terms
are required to be typable: arguments and functions should match. For example M of
type A can be an argument only of a function of type A → B. Types act in a way
similar to the use of dimensional analysis in physics. Physical constants and data obtain
a ‘dimension’. Pressure p, for example, is expressed as

g/m2

giving the constant R in the law of Boyle

pV

T
= R

a dimension that prevents one from writing an equation like E = TR2. By contrast
Einstein’s famous equation

E = mc2

is already meaningful from the viewpoint of its dimension.
In most programming languages the formation of function space types is usually not

allowed to be iterated like in

(real→ real)→ (real→ real) for indefinite integrals
∫
f(x)dx;

(real→ real)× real× real→ real for definite integrals
∫ b
a f(x)dx;

([0, 1]→ real)→ (([0, 1]→ real)→ real)→ (([0, 1]→ real)→ real),

where the latter is the type of a map occuring in fuctional analysis, see Lax [2002].
Here we wrote “[0, 1] → real” for what should be more accurately the set C[0, 1] of
continuous functions on [0, 1].
Because there is the Hindley-Milner algorithm (see Theorem 2C.14 in Chapter 2) that

decides whether an untyped term does have a type and computes the most general type
types found their way to functional programming languages. The first such language
to incoporate the types of the simply typed λ-calculus is ML (Milner, Tofte, Harper,
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and McQueen [1997]). An important aspect of typed expressions is that if a term M
is correctly typed by type A, then also during the computation of M the type remains
the same (see Theorem 1B.6, the ‘subject reduction theorem’). This is expressed as a
feature in functional programming: one only needs to check types during compile time.
In functional programming languages, however, types come of age and are allowed in

their full potential by giving a precise notation for the type of data, functions, functionals,
higher order functionals, ... up to arbitrary degree of complexity. Interestingly, the use
of higher order types given in the mathematical examples is modest compared to higher
order types occurring in a natural way in programming situations.

[(a→ ([([b], c)]→ [([b], c)])→ [([b], c)]→ [b]→ [([b], c)])→
([([b], c)]→ [([b], c)])→ [([b], c)]→ [b]→ [([b], c)]]→
[a→ (d→ ([([b], c)]→ [([b], c)])→ [([b], c)]→ [b]→ [([b], c)])→
([([b], c)]→ [([b], c)])→ [([b], c)]→ [b]→ [([b], c)]]→
[d→ ([([b], c)]→ [([b], c)])→ [([b], c)]→ [b]→ [([b], c)]]→
([([b], c)]→ [([b], c)])→ [([b], c)]→ [b]→ [([b], c)]

This type (it does not actually occur in this form in the program, but is notated using
memorable names for the concepts being used) is used in a functional program for efficient
parser generators, see Koopman and Plasmeijer [1999]. The type [a] denotes that of lists
of type a and (a, b) denotes the ‘product’ a × b. Product types can be simulated by
simple types, while for list types one can use the recursive types developed in Part II of
this book.
Although in the pure typed λ-calculus only a rather restricted class of terms and

types is represented, relatively simple extensions of this formalism have universal com-
putational power. Since the 1970s the following programming languages appeared: ML
(not yet purely functional), Miranda (Thompson [1995], <www.cs.kent.ac.uk/people/
staff/dat/miranda/>) the first purely functional typed programming language, well-
designed, but slowly interpreted; Clean (van Eekelen and Plasmeijer [1993], Plasmeijer
and van Eekelen [2002], <wiki.clean.cs.ru.nl/Clean>) and Haskell (Hutton [2007],
Peyton Jones [2003], <www.haskell.org>); both Clean and Haskell are state of the art
pure functional languages with fast compiler generating fast code). They show that func-
tional programming based on λ-calculus can be efficient and apt for industrial software.
Functional programming languages are also being used for the design (Sheeran [2005])
and testing (Koopman and Plasmeijer [2006]) of hardware. In both cases it is the com-
pact mathematical expressivety of the functional languages that makes them fit for the
description of complex functionality.

Semantics of natural languages

Typed λ-calculus has also been employed in the semantics of natural languages (Mon-
tague [1973], van Benthem [1995]). An early indication of this possibility can already be
found in Curry and Feys [1958], Section 8S2.
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Certifying proofs

Next to its function for designing, the λ-calculus has also been used for verification,
not only for the correctness of IT products, but also of mathematical proofs. The
underlying idea is the following. Ever since Aristotle’s formulation of the axiomatic
method and Frege’s formulation of predicate logic one could write down mathematical
proofs in full detail. Frege wanted to develop mathematics in a fully formalized way, but
unfortunately started from an axiom system that turned out to be inconsistent, as shown
by the Russell paradox. In Principia Mathematica Whitehead and Russell used types to
prevent the paradox. They had the same formalization goal in mind and developed some
elementary arithmetic. Based on this work, Gödel could state and prove his fundamental
incompleteness result. In spite of the intention behind Principia Mathematica, proofs
in the underlying formal system were not fully formalized. Substitution was left as an
informal operation and in fact the way Principia Mathematica treated free and bound
variables was implicit and incomplete. Here starts the role of the λ-calculus. As a formal
system dealing with manipulating formulas, being careful with free and bound variables,
it was the missing link towards a full formalization. Now, if an axiomatic mathematical
theory is fully formalized, a computer can verify the correctness of the definitions and
proofs. The reliability of computer verified theories relies on the fact that logic has only
about a dozen rules and their implementation poses relatively little problems. This idea
was pioneered since the late 1960s by N. G. de Bruijn in the proof-checking language
and system Automath (Nederpelt, Geuvers, and de Vrijer [1994], <www.win.tue.nl/
automath>).
The methodology has given rise to proof-assistants. These are computer programs

that help the human user to develop mathematical theories. The initiative comes from
the human who formulates notions, axioms, definitions, proofs and computational tasks.
The computer verifies the well-definedness of the notions, the correctness of the proofs,
and performs the computational tasks. In this way arbitrary mathematical notions can
represented and manipulated on a computer. Many of the mathematical assistants are
based on extensions of typed λ-calculus. See Section 6B for more information.

What this book is and is not about

None of the mentioned fascinating applications of lambda calculus with types are treated
in this book. We will study the formalism for its mathematical beauty. In particular
this monograph focuses on mathematical properties of three classes of typing for lambda
terms.
Simple types, constructed freely from type atoms, cause strong normalization, subject

reduction, decidability of typability and inhabitation, undecidability of lambda definabil-
ity. There turn out to be five canonical term models based on closed terms. Powerful
extensions with respectively a discriminator, surjective pairing, operators for primitive
recursion, bar recursion, and a fixed point operator are being studied. Some of these
extensions remain constructive, other ones are utterly non-constructive, and some will
be at the edge between these two realms.
Recursive types allow functions to fit as input for themselves, losing strong normaliza-

tion (restored by allowing only positive recursive types). Typability remains decidable.
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Unexpectedly α-conversion, dealing with a hygienic treatment of free and bound vari-
ables among recursive types has interesting mathematical properties.
Intersection types allow functions to take arguments of different types simultaneously.

Under certain mild conditions this leads to subject conversion, turning the filters of
types of a given term into a lambda model. Classical lattice models can be described
as intersection type theories. Typability and inhabitation now become undecidable, the
latter being equivalent to undecidability of lambda definability for models of simple
types.
A flavour of some of the applications of typed lambda calculus is given: functional

programming (Section 6A), proof-checking (Section 6B), and formal semantics of natural
languages (Section 6C).

What this book could have been about

This book could have been also about dependent types, higher order types and inductive
types, all used in some of the mathematical assistants. Originally we had planned a
second volume to do so. But given the effort needed to write this book, we will probably
not do so. Higher order types are treated in Girard, Lafont, and Taylor [1989], and
Sørensen and Urzyczyn [2006]. Research monographs on dependent and inductive types
are lacking. This is an invitation to the community of next generations of researchers.

Some notational conventions

A partial function from a set X to a set Y is a collection of ordered pairs f ⊆ X × Y
such that ∀x∈X, y, y′ ∈Y.[〈x, y〉 ∈ f & 〈x, y′〉 ∈ f ⇒ y = y′].
The set of partial functions from a setX to a set Y is denoted byX#Y . If f ∈ (X#Y )

and x∈X, then f(x) is defined , notation f(x)↓ or x∈ dom(f), if for some y one has
〈x, y〉 ∈ f . In that case one writes f(x) = y. On the other hand f(x) is undefined , nota-
tion f(x)↑, means that for no y ∈Y one has 〈x, y〉 ∈ f . An expression E in which partial
functions are involved, may be defined or not. If two such expressions are compared,
then, following Kleene [1952], we write E≃E2 for

if E1↓, then E2↓ and E1 = E2, and vice versa.

The set of natural numbers is denoted by N. In proofs formula numbers like (1),
(2), etcetera, are used to indicate formulas locally: different proofs may use the same

numbers. The notation , is used for “equality by definition”. Similarly ‘⇐⇒△ ’. is used for
the definition of a concept. By contrast ::= stands for the more specific introduction of a
syntactic category defined by the Backus-Naur form. The notation ≡ stands for syntactic
equality (for example to remember the reader that the LHS was defined previously as
the RHS). In a definition we do not write ‘M is closed iff FV(M) = ∅’ but ‘M is closed
if FV(M) = ∅’. The end of a proof is indicated by ‘ ’.



Part 1

SIMPLE TYPES λA
→

The systems of simple types considered in Part I are built up from atomic types A using
as only operator the constructor → of forming function spaces. For example, from the
atoms A = {α, β} one can form types α→β, (α→β)→α, α→(α→β) and so on. Two
choices of the set of atoms that will be made most often are A = {α0, α1, α2, · · · }, an
infinite set of type variables giving λ∞

→, and A = {0}, consisting of only one atomic type
giving λ0

→. Particular atomic types that occur in applications are e.g. Bool, Nat, Real.
Even for these simple type systems, the ordering effect is quite powerful.
Requiring terms to have simple types implies that they are strongly normalizing. For

an untyped lambda term one can find the collection of its possible types. Similarly, given
a simple type, one can find the collection of its possible inhabitants (in normal form).
Equality of terms of a certain type can be reduced to equality of terms in a fixed type.
Insights coming from this reducibility provide five canonical term models of λ0

→. See
next two pages for types and terms involved in this analysis.
The problem of unification

∃X:A.MX =βη NX

is for complex enough A undecidable. That of pattern matching

∃X:A.MX =βη N

will be shown to be decidable for A up to ‘rank 3’. The recent proof by Stirling of gen-
eral decidability of matching is not included. The terms of finite type are extended by
δ-functions, functionals for primitive recursion (Gödel) and bar recursion (Spector). Ap-
plications of the theory in computing, proof-checking and semantics of natural languages
will be presented.
Other expositions of the simply typed lambda calculus are Church [1941], Lambek and

Scott [1981], Girard, Lafont, and Taylor [1989], Hindley [1997], and Nerode, Odifreddi,
and Platek [In preparation]. Part of the history of the topic, including the untyped
lambda calculus, can be found in Crossley [1975], Rosser [1984], Kamareddine, Laan,
and Nederpelt [2004] and Cardone and Hindley [2009].



Sneak preview of λ→ (Chapters 1, 2, 3)

Terms

Term variables V , {c, c′, c′′, · · · }

Terms Λ





x∈V ⇒ x∈Λ
M,N ∈Λ ⇒ (MN)∈Λ

M ∈Λ, x∈V ⇒ (λxM)∈Λ
Notations for terms
x, y, z, · · · , F,G, · · · ,Φ,Ψ, · · · range over V
M,N,L, · · · range over Λ
Abbreviations

N1 · · ·Nn , (· · (MN1) · · ·Nn)

λx1 · · ·xn.M , (λx1(· · · (λxn.M) · ·))
Standard terms: combinators
I , λx.x

K , λxy.x

S , λxyz.xz(yz)

Types

Type atoms A∞ , {c, c′, c′′, · · · }

Types TT

{
α∈A ⇒ α∈TT

A,B ∈TT ⇒ (A→ B)∈TT
Notations for types
α, β, γ, · · · range over A∞

A,B,C, · · · range over TT
Abbreviation

A1 → A2 → · · · → An , (A1 → (A2 → · · · (An−1 → An) · ·))
Standard types: each n∈N is interpreted as type n∈TT

0 , c

n+ 1 , n→ 0

(n+ 1)2 , n→ n→ 0

Assignment of types to terms ⊢M : A (M ∈Λ, A∈TT)

Basis : a set Γ = {x1:A1, · · · , xn:An}, with xi ∈V distinct
Type assignment (relative to a basis Γ) axiomatized by



(x:A)∈Γ ⇒ Γ ⊢ x : A
Γ ⊢M : (A→B), Γ ⊢ N : A ⇒ Γ ⊢ (MN) : B

Γ, x:A ⊢M : B ⇒ Γ ⊢ (λx.M) : (A→B)

Notations for assignment
‘x:A ⊢M : B’ stands for ‘{x:A} ⊢M : B’
‘Γ, x:A’ for ‘Γ ∪ {x:A}’ and ‘⊢M : A’ for ‘∅ ⊢M : A’

Standard assignments: for all A,B,C ∈TT one has

⊢ I : A→A as x:A ⊢ x : A
⊢ K : A→B→A as x:A, y:B ⊢ x : A
⊢ S : (A→B→C)→(A→B)→A→C similarly



Canonical term-models built up from constants

The following types A play an important role in Sections 3D, 3E. Their normal inhabitants (i.e.
terms M in normal form such that ⊢M : A) can be enumerated by the following schemes.

Type Inhabitants (all possible βη−1-normal forms are listed)

12 λxy.x, λxy.y.

1→0→0 λfx.x, λfx.fx, λfx.f(fx), λfx.f3x, · · · ; general pattern: λfx.fnx.

3 λF.F (λx.x), λF.F (λx.F (λy.x)), · · · ;λF.F (λx1.F (λx2. · · ·F (λxn.xi) · ·)).

1→1→0→0 λfgx.x, λfgx.fx, λfgx.gx,
λfgx.f(gx), λfgx.g(fx), λfgx.f2x, λfgx.g2x,
λfgx.f(g2x), λfgx.f2(gx), λfgx.g(f2x), λfgx.g2(fx), λfgx.f(g(fx)), · · · ;
λfgx.w{f,g}x,
where w{f,g} is a ‘word over Σ = {f, g}’ which is ‘applied’ to x
by interpreting juxtaposition ‘fg’ as function composition ‘f ◦ g = λx.f(gx)’.

3→0→0 λΦx.x, λΦx.Φ(λf.x), λΦx.Φ(λf.fx), λΦx.Φ(λf.f(Φ(λg.g(fx)))), · · ·
λΦx.Φ(λf1.w{f1}x), λΦx.Φ(λf1.w{f1}Φ(λf2.w{f1,f2}x)), · · · ;
λΦx.Φ(λf1.w{f1}Φ(λf2.w{f1,f2} · · ·Φ(λfn.w{f1,···,fn}x) · ·)).

12→0→0 λbx.x, λbx.bxx, λbx.bx(bxx), λbx.b(bxx)x, λbx.b(bxx)(bxx), · · · ;λbx.t,
where t is an element of the context-free language generated by the grammar
tree ::= x | (b tree tree).

This follows by considering the inhabitation machine, see Section 1C, for each mentioned type.
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We have juxtaposed the machines for types 1→0→0 and 1→1→0→0, as they are similar, and
also those for 3 and 3→0→0. According to the type reducibility theory of Section 3D the types
1→0→0 and 3 are equivalent and therefore they are presented together in the statement.

From the types 12, 1→0→0, 1→1→0→0, 3→0→0, and 12→0→0 five canonical λ-theories and

term-models will be constructed, that are strictly increasing (decreasing). The smallest theory

is the good old simply typed λβη-calculus, and the largest theory corresponds to the minimal

model, Definition 3E.46, of the simply typed λ-calculus.





CHAPTER 1

THE SIMPLY TYPED LAMBDA CALCULUS

1A. The systems λA
→

Untyped lambda calculus

Remember the untyped lambda calculus denoted by λ, see e.g. B[1984]4.

1A.1. Definition. The set of untyped λ-terms Λ is defined by the following so called
‘simplified syntax’. This basically means that parentheses are left implicit.

V ::= c |V′

Λ ::= V |λV Λ |Λ Λ

Figure 1. Untyped lambda terms

This makes V = {c, c′, c′′, · · · }.
1A.2. Notation. (i) x, y, z, · · · , x0, y0, z0, · · · , x1, y1, z1, · · · denote arbitrary variables.

(ii) M,N,L, · · · denote arbitrary lambda terms.

(iii) MN1 · · ·Nk , (..(MN1) · · ·Nk), association to the left .

(iv) λx1 · · ·xn.M , (λx1(..(λxn(M))..)), association to the right .

1A.3. Definition. Let M ∈Λ.
(i) The set of free variables of M , notation FV(M), is defined as follows.

M FV(M)

x {x}
PQ FV(P ) ∪ FV(Q)

λx.P FV(P )− {x}

The variables in M that are not free are called bound variables.

(ii) If FV(M) = ∅, then we say that M is closed or that it is a combinator.

Λø , {M ∈Λ |M is closed}.

Well known combinators are I, λx.x,K, λxy.y, S, λxyz.xz(yz), Ω , (λx.xx)(λx.xx),

and Y , λf.(λx.f(xx))(λx.f(xx)). Officially S ≡ (λc(λc′(λc′′((cc′′)(c′c′′))))), according
to Definition 1A.1, so we see that the effort learning the notation 1A.2 pays.

4This is an abbreviation for the reference Barendregt [1984].

5



6 1. The simply typed lambda calculus

1A.4. Definition. On Λ the following equational theory λβη is defined by the usual
equality axiom and rules (reflexivity, symmetry, transitivity, congruence), including con-
gruence with respect to abstraction:

M = N ⇒ λx.M = λx.N,

and the following special axiom(schemes)

(λx.M)N = M [x := N ] (β-rule)
λx.Mx = M, if x /∈FV(M) (η-rule)

Figure 2. The theory λβη

As is known this theory can be analyzed by a notion of reduction.

1A.5. Definition. On Λ we define the following notions of β-reduction and η-reduction

(λx.M)N → M [x: = N ] (β)
λx.Mx → M, if x /∈FV(M) (η)

Figure 3. βη-contraction rules

As usual, see B[1984], these notions of reduction generate the corresponding reduction
relations →β,։β,→η,։η,→βη and ։βη. Also there are the corresponding conversion
relations =β,=η and =βη. Terms in Λ will often be considered modulo =β or =βη.

1A.6. Notation. If we write M = N , then we mean M =βη N by default, the exten-
sional version of equality. This by contrast with B[1984], where the default was =β.

1A.7. Remark. Like in B[1984], Convention 2.1.12. we will not be concerned with
α-conversion, renaming bound variables in order to avoid confusion between free and
bound occurrences of variables. So we write λx.x ≡ λy.y. We do this by officially
working on the α-equivalence classes; when dealing with a concrete term as representative
of such a class the bound variables will be chosen maximally fresh: different from the
free variables and from each other. See, however, Section 7D, in which we introduce
α-conversion on recursive types and show how it can be avoided in a way that is more
effective than for terms.

1A.8. Proposition. For all M,N ∈Λ one has

⊢λβη M = N ⇔ M =βη N.

Proof. See B[1984], Proposition 3.3.2.

One reason why the analysis in terms of the notion of reduction βη is useful is that
the following holds.

1A.9. Proposition (Church-Rosser theorem for λβ and λβη). For the notions of re-
duction ։β and ։βη one has the following.

(i) Let M,N1, N2 ∈Λ. Then

M ։β(η) N1 &M ։β(η) N2 ⇒ ∃Z ∈Λ.N1 ։β(η) Z & N2 ։β(η) Z.

One also says that the reduction relations ։R, for R∈{β,βη} are confluent.
(ii) Let M,N ∈Λ. Then

M =β(η) N ⇒ ∃Z ∈Λ.M ։β(η) Z & N ։β(η) Z.
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Proof. See Theorems 3.2.8 and 3.3.9 in B[1984].

1A.10. Definition. (i) Let T be a set of equations between λ-terms. Write

T ⊢λβη M = N, or simply T ⊢M = N

if M = N is provable in λβη plus the additional equations in T added as axioms.

(ii) T is called inconsistent if T proves every equation, otherwise consistent.

(iii) The equation P = Q, with P,Q∈Λ, is called inconsistent , notation P#Q, if
{P = Q} is inconsistent. Otherwise P = Q is consistent.

The set T = ∅, i.e. the λβη-calculus itself, is consistent, as follows from the Church-
Rosser theorem. Examples of inconsistent equations: K#I and I#S. On the other hand
Ω = I is consistent.

Simple types

Types in this part, also called simple types, are syntactic objects built from atomic types
using the operator →. In order to classify untyped lambda terms, such types will be
assigned to a subset of these terms. The main idea is that if M gets type A→B and N
gets type A, then the application MN is ‘legal’ (as M is considered as a function from
terms of type A to those of type B) and gets type B. In this way types help determining
which terms fit together.

1A.11. Definition. (i) Let A be a non-empty set. An element of A is called a type
atom. The set of simple types over A, notation TT = TTA, is inductively defined as
follows.

α∈A ⇒ α∈TT type atoms;

A,B ∈TT ⇒ (A→B)∈TT function space types.

We assume that no relations like α→β = γ hold between type atoms: TTA is freely
generated. Often one finds TT = TTA given by a simplified syntax.

TT ::= A |TT→TT

Figure 4. Simple types

(ii) Let A0 = {0}. Then we write TT0 , TTA0 .

(iii) Let A∞ = {c, c′, c′′, · · · }. Then we write TT∞ , TTA∞

We usually take 0 = c. Then TT0 ⊆ TT∞. If we write simply TT, then this refers to TTA

for an unspecified A.

1A.12. Notation. (i) If A1, · · · , An ∈TT, then

A1→· · ·→An , (A1→(A2→· · ·→(An−1→An)..)).

That is, we use association to the right.

(ii) α, β, γ, · · · , α0, β0, γ0, · · ·α′, β′, γ′, · · · denote arbitrary elements of A.
(iii) A,B,C, · · · denote arbitrary elements of TT.
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1A.13. Definition (Type substitution). Let A,C ∈TTA and α∈A. The result of substi-
tuting C for the occurrences of α in A, notation A[α: = C], is defined as follows.

α[α: = C] , C;

β[α: = C] , β, if α 6≡ β;
(A→ B)[α: = C] , (A[α: = C])→ (B[α: = C]).

Assigning simple types

1A.14. Definition (λCu
→ ). (i) A (type assignment) statement is of the form

M : A,

with M ∈Λ and A∈TT. This statement is pronounced as ‘M in A’. The type A is the
predicate and the term M is the subject of the statement.

(ii) A declaration is a statement with as subject a term variable.
(iii) A basis is a set of declarations with distinct variables as subjects.
(iv) A statement M :A is derivable from a basis Γ, notation

Γ ⊢Cu
λ→

M :A

(or Γ ⊢λ→ M : A, or even Γ ⊢M :A if there is little danger of confusion) if Γ ⊢M :A can
be produced by the following rules.

(x:A)∈Γ ⇒ Γ ⊢ x : A;

Γ ⊢M : (A→ B), Γ ⊢ N : A ⇒ Γ ⊢ (MN) : B;

Γ, x:A ⊢M : B ⇒ Γ ⊢ (λx.M) : (A→ B).

In the last rule Γ, x:A is required to be a basis.
These rules are usually written as follows.

(axiom) Γ ⊢ x : A, if (x:A)∈Γ;

(→-elimination)
Γ ⊢M : (A→ B) Γ ⊢ N : A

;
Γ ⊢ (MN) : B

(→-introduction)
Γ, x:A ⊢M : B

.
Γ ⊢ (λx.M) : (A→ B)

Figure 5. The system λCu
→ à la Curry

This is the modification to the lambda calculus of the system in Curry [1934], as devel-
oped in Curry et al. [1958].

1A.15. Definition. Let Γ = {x1:A1, · · · , xn:An}. Then
(i) dom(Γ), {x1, · · · , xn}, the domain of Γ.
(ii) x1:A1, · · · , xn:An ⊢λ→ M : A denotes Γ ⊢λ→ M : A.
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(iii) In particular ⊢λ→ M : A stands for ∅ ⊢λ→ M : A.

(iv) x1, · · · , xn:A ⊢λ→ M : B stands for x1:A, · · · , xn:A ⊢λ→ M : B.

1A.16. Example. (i) ⊢λ→ I : A→A;
⊢λ→ K : A→B→A;
⊢λ→ S : (A→B→C)→(A→B)→A→C.

(ii) Also one has x:A ⊢λ→ Ix : A;
x:A, y:B ⊢λ→ Kxy : A;

x:(A→B→C), y:(A→B), z:A ⊢λ→ Sxyz : C.

(iii) The terms Y,Ω do not have a type. This is obvious after some trying. A system-
atic reason is that all typable terms have a nf, as we will see later, but these two do not
have a nf.

(iv) The term ω , λx.xx is in nf but does not have a type either.

Notation. Another way of writing these rules is sometimes found in the literature.

Introduction rule x : A
...

M : B

λx.M : (A→B)

Elimination rule
M : (A→ B) N : A

MN : B

λ
Cu
→ alternative version

In this version the basis is considered as implicit and is not notated. The notation

x : A
...

M : B

denotes that M : B can be derived from x:A and the ‘axioms’ in the basis. Striking through x:A means
that for the conclusion λx.M : A→B the assumption x:A is no longer needed; it is discharged.

1A.17. Example. (i) ⊢ (λxy.x) : (A→ B → A) for all A,B ∈TT.
We will use the notation of version 1 of λA

→ for a derivation of this statement.

x:A, y:B ⊢ x : A

x:A ⊢ (λy.x) : B→A

⊢ (λxλy.x) : A→B→A

Note that λxy.x ≡ λxλy.x by definition.

(ii) A natural deduction derivation (for the alternative version of the system) of the same type assign-
ment is the following.

x:A 2 y:B 1

x:A
1

(λy.x) : (B → A)
2

(λxy.x) : (A→ B → A)



10 1. The simply typed lambda calculus

The indices 1 and 2 are bookkeeping devices that indicate at which application of a rule a particular
assumption is being discharged.
(iii) A more explicit way of dealing with cancellations of statements is the ‘flag-notation’ used by

Fitch (1952) and in the languages Automath of de Bruijn (1980). In this notation the above derivation
becomes as follows.

y:B

x:A

(λxy.x) : (A→ B → A)

(λy.x) : (B → A)

x:A

As one sees, the bookkeeping of cancellations is very explicit; on the other hand it is less obvious how a
statement is derived from previous statements in case applications are used.
(iv) Similarly one can show for all A∈TT

⊢ (λx.x) : (A→ A).

(v) An example with a non-empty basis is y:A ⊢ (λx.x)y : A.

In the rest of this chapter and in fact in the rest of this book we usually will introduce systems of

typed lambda calculi in the style of the first variant of λA
→.

1A.18. Definition. Let Γ be a basis and A∈TT = TTA. Then write

(i) ΛΓ
→(A) , {M ∈Λ |Γ ⊢λA

→
M : A}.

(ii) ΛΓ
→ ,

⋃
A∈TT ΛΓ

→(A).

(iii) Λ→(A) ,
⋃

Γ Λ
Γ
→(A).

(iv) Λ→ ,
⋃

A∈TT Λ→(A).

(v) Emphasizing the dependency on A we write ΛA
→(A) or ΛA,Γ

→ (A), etcetera.

1A.19. Definition. Let Γ be a basis, A∈TT and M ∈Λ. Then
(i) If M ∈Λø→(A), then we say that

M has type A or A is inhabited by M .

(ii) If M ∈Λø→, then M is called typable.

(iii) If M ∈ΛΓ
→(A), then M has type A relative to Γ.

(iv) If M ∈ΛΓ
→, then M is called typable relative to Γ.

(v) If ΛΓ
→(A) 6= ∅, then A is inhabited relative to Γ.

1A.20. Example. We have

K ∈ Λø
→(A→B→A);

Kx ∈ Λ{x:A}
→ (B→A).
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1A.21. Definition. Let A∈TT.
(i) The depth of A, notation dpt(A), is defined as follows.

dpt(α), 1;

dpt(A→B),max{dpt(A), dpt(B)}+ 1.

(ii) The rank of A, notation rk(A), is defined as follows.

rk(α), 0;

rk(A→B),max{rk(A) + 1, rk(B)}.
(iii) The order of A, notation ord(A), is defined as follows.

ord(α), 1;

ord(A→B),max{ord(A) + 1, ord(B)}.
(iv) The depth of a basis Γ is

dpt(Γ),max
i
{dpt(Ai) | (xi:Ai)∈Γ}.

Similarly we define rk(Γ) and ord(Γ). Note that ord(A) = rk(A) + 1.

The notion of ‘order’ comes from logic, where dealing with elements of type 0 is done in
‘first order’ predicate logic. The reason is that in first-order logic one deals with domains
and their elements. In second order logic one deals with functions between first-order
objects. In this terminology 0-th order logic can be identified with propositional logic.
The notion of ‘rank’ comes from computer science.

1A.22. Definition. For A∈TT we define Ak→B by recursion on k:

A0→B , B;

Ak+1→B , A→Ak→B.
Note that rk(Ak→B) = rk(A→B), for all k > 0.

Several properties can be proved by induction on the depth of a type. This holds for
example for Lemma 1A.25(i).
The asymmetry in the definition of rank is intended because the meaning of a type

like (0→0)→0 is more complex than that of 0→0→0, as can be seen by looking to
the inhabitants of these types: functionals with functions as arguments versus binary
functions. Some authors use the name type level instead of ‘rank’.

The minimal and maximal systems λ0
→ and λ∞

→

The collection A of type variables serves as set of base types from which other types are
constructed. We have A0 = {0} with just one type atom and A∞ = {α0, α1, α2, · · · }
with infinitely many of them. These two sets of atoms and their resulting type systems
play a major role in this Part I of the book.

1A.23. Definition. We define the following systems of type assignment.
(i) λ0

→ , λA0
→ .

(ii) λ∞
→ , λA∞

→ .
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Focusing on A0 or A∞ we write Λ0
→(A), ΛA0

→ (A) or Λ∞
→(A), ΛA∞

→ (A) respectively.
Many of the interesting features of the ‘larger’ λ∞

→ are already present in the minimal
version λ0

→.

1A.24. Definition. (i) The following types of TT0 ⊆ TTA are often used.

0, c, 1, 0→0, 2, (0→0)→0, · · · .
In general

0, c and k + 1, k→0.

Note that rk(n) = n. That overloading of n as element of N and as type will usually
disambiguated by stating ‘the type n’ for the latter case.

(ii) Define nk by cases on n.

0k , 0;

(n+ 1)k , nk→0.

For example

10 ≡ 0;

12 ≡ 0→0→0;

23 ≡ 1→1→1→0;

12→2→0≡ (0→0)→(0→0)→((0→0)→0)→0.

Notice that rk(nk) = rk(n), for k > 0.

The notation nk is used only for n∈N. In the following lemma the notation A1 · · ·Aa

with subscripts denotes as usual a sequence of types.

1A.25. Lemma. (i) Every type A of λ∞→ is of the form

A ≡ A1→A2→· · ·→Aa→α.
(ii) Every type A of λ0

→ is of the form

A ≡ A1→A2→· · ·→Aa→0.

(iii) rk(A1→A2→· · ·→Aa→α) = max{rk(Ai) + 1 | 1 ≤ i ≤ a}.
Proof. (i) By induction on the structure (depth) of A. If A ≡ α, then this holds for
a = 0. If A ≡ B→C, then by the induction hypothesis one has
C ≡ C1→· · ·→Cc→γ. Hence A ≡ B→C1→· · ·→Cc→γ.

(ii) Similar to (i).
(iii) By induction on a.

1A.26. Notation. Let A∈TTA and suppose A ≡ A1→A2→· · ·→Aa→α. Then the Ai

are called the components of A. We write

arity(A) , a,

A(i) , Ai, for 1 ≤ i ≤ a;
target(A) , α.

Iterated components are denoted as follows

A(i, j),A(i)(j).
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1A.27. Remark. We usually work with λA
→ for an unspecified A, but will be more

specific in some cases.

Different versions of λA
→

We will introduce several variants of λA
→.

The Curry version of λA
→

1A.28. Definition. The system λA
→ that was introduced in Definition 1A.14 assigns

types to untyped lambda terms. To be explicit it will be referred to as the Curry version
and be denoted by λA,Cu

→ or λCu
→ , as the set A often does not need to be specified.

The Curry version of λA
→ is called implicitly typed because an expression like

λx.xK

has a type, but it requires work to find it. In §2.2 we will see that this work is feasible. In
systems more complex than λA

→ finding types in the implicit version is more complicated
and may even not be computable. This will be the case with second and higher order
types, like λ2 (system F ), see Girard, Lafont, and Taylor [1989], Barendregt [1992] or
Sørensen and Urzyczyn [2006] for a description of that system and Wells [1999] for the
undecidability.

The Church version λCh
→ of λA

→

The first variant of λCu
→ is the Church version of λA

→, denoted by λA,Ch
→ or λCh

→ . In
this theory the types are assigned to embellished terms in which the variables (free and
bound) come with types attached. For example the Curry style type assignments

⊢Cu
λ→

(λx.x) : A→A (1Cu)

y:A ⊢Cu
λ→

(λx.xy) : (A→B)→B (2Cu)

now become

(λxA.xA)∈ΛCh
→ (A→A) (1Ch)

(λxA→B.xA→ByA)∈ΛCh
→ ((A→B)→B) (2Ch)

1A.29. Definition. Let A be a set of type atoms. The Church version of λA
→, notation

λA,Ch
→ or λCh

→ if A is not emphasized, is defined as follows. The system has the same set
of types TTA as λA,Cu

→ .
(i) The set of term variables is different: each such variable is coupled with a unique

type. This in such a way that every type has infinitely many variables coupled to it. So
we take

VTT , {xt(x) | x∈V},
where t : V→TTA is a fixed map such that t−1(A) is infinite for all A∈TTA. So we have

{xA, yA, zA, · · · } ⊆ VTT is infinite for all A∈TTA;

xA, xB ∈VTT ⇒ A ≡ B, for all A,B ∈TTA.
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(ii) The set of terms of type A, notation ΛCh
→ (A), is defined as follows.

xA ∈ΛCh
→ (A);

M ∈ΛCh
→ (A→B), N ∈ΛCh

→ (A) ⇒ (MN)∈ΛCh
→ (B);

M ∈ΛCh
→ (B) ⇒ (λxA.M)∈ΛCh

→ (A→B).

Figure 6. The system λCh
→ of typed terms á la Church

(iii) The set of terms of λCh
→ , notation ΛCh

→ , is defined as

ΛCh
→ ,

⋃

A∈TT

ΛCh
→ (A).

For example

yB→AxB ∈ ΛCh
→ (A);

λxA.yB→A ∈ ΛCh
→ (A→B→A);

λxA.xA ∈ ΛCh
→ (A→A).

1A.30. Definition. On ΛCh
→ we define the following notions of reduction.

(λxA.M)N → M [xA: = N ] (β)
λxA.MxA → M, if xA /∈FV(M) (η)

Figure 7. βη-contraction rules for λCh
→

It will be shown in Proposition 1B.10 that ΛCh
→ (A) is closed under βη-reduction; i.e.

this reduction preserves the type of a typed term.
As usual, see B[1984], these notions of reduction generate the corresponding reduction

relations. Also there are the corresponding conversion relations =β, =η and =βη. Terms

in λCh
→ will often be considered modulo =β or =βη. The notation M = N , means

M =βη N by default.

1A.31. Definition (Type substitution). ForM ∈ΛCh
→ , α∈A, and B ∈TTA we define the

result of substituting B for α in M , notation M [α := B], inductively as follows.

M M [α := B]

xA xA[α:=B]

PQ (P [α := B])(Q[α := B])

λxA.P λxA[α:=B].P [α := B]

1A.32. Notation. A term like (λf1x0.f1(f1x0))∈ΛCh
→ (1→0→0) will also be written as

λf1x0.f(fx)

just indicating the types of the bound variables. This notation is analogous to the one
in the de Bruijn version of λA

→ that follows. Sometimes we will even write λfx.f(fx).
We will come back to this notational issue in section 1B.
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The de Bruijn version λdB
→ of λA

→

There is the following disadvantage about the Church systems. Consider

I, λxA.xA.

In the next volume we will consider dependent types coming from the Automath language
family, see Nederpelt, Geuvers, and de Vrijer [1994], designed for formalizing arguments
and proof-checking5. These are types that depend on a term variable (ranging over
another type). An intuitive example is An, where n is a variable ranging over natural
numbers. A more formal example is Px, where x : A and P : A→TT. In this way types
may contain redexes and we may have the following reduction

I ≡ (λxA.xA)→β (λxA
′
.xA),

in case A→β A
′, by reducing only the first A to A′. The question now is whether λxA

′

binds the xA. If we write I as

I, λx:A.x,

then this problem disappears

λx:A.x։ λx:A′.x.

As the second occurrence of x is implicitly typed with the same type as the first, the
intended meaning is correct. In the following system λA,dB

→ this idea is formalized.

1A.33. Definition. The second variant of λCu
→ is the de Bruijn version of λA

→, denoted
by λA,dB→ or λdB

→ . Now only bound variables get ornamented with types, but only at the
binding stage. The examples (1Cu), (2Cu) now become

⊢dBλ→
(λx:A.x) : A→A (1dB)

y:A ⊢dBλ→
(λx:(A→B).xy) : (A→B)→B (2dB)

1A.34. Definition. The system λdB
→ starts with a collection of pseudo-terms, notation

ΛdB
→ , defined by the following simplified syntax.

ΛdB
→ ::= V |ΛdB

→ ΛdB
→ |λV:TT.ΛdB

→

For example λx:α.x and (λx:α.x)(λy:β.y) are pseudo-terms. As we will see, the first one
is a legal, i.e. actually typable, term in λA,dB

→ , whereas the second one is not.

1A.35. Definition. (i) A basis Γ consists of a set of declarations x:A with distinct term
variables x and types A∈TTA. This is exactly the same as for λA,Cu

→ .

(ii) The system of type assignment obtaining statements Γ ⊢ M : A with Γ a basis,
M a pseudoterm and A a type, is defined as follows.

5The proof-assistant Coq, see the URL <coq.inria.fr> and Bertot and Castéran [2004], is a modern
version of Automath in which one uses for formal proofs typed lambda terms in the de Bruijn style.
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(axiom) Γ ⊢ x : A, if (x:A)∈Γ;

(→-elimination)
Γ ⊢M : (A→ B) Γ ⊢ N : A

;
Γ ⊢ (MN) : B

(→-introduction)
Γ, x:A ⊢M : B

.
Γ ⊢ (λx:A.M) : (A→ B)

Figure 8. The system λdB
→ à la de Bruijn

Provability in λdB
→ is denoted by ⊢dBλ→

. Thus the legal terms of λdB
→ are defined by

making a selection from the context-free language ΛdB
→ . That λx:α.x is legal follows

from x:α ⊢dBλ→
x : α using the →-introduction rule. That (λx:α.x)(λy:β.y) is not legal

follows from Proposition 1B.12. These legal terms do not form a context-free language,
do exercise 1E.7. For closed terms the Church and the de Bruijn notation are isomorphic.

1B. First properties and comparisons

In this section we will present simple properties of the systems λA
→. Deeper properties,

like normalization of typable terms, will be considered in Sections 2A, 2B.

Properties of λCu
→

We start with properties of the system λCu
→ .

1B.1. Proposition (Weakening lemma for λCu
→ ).

Suppose Γ ⊢M : A and Γ′ is a basis with Γ ⊆ Γ′. Then Γ′ ⊢M : A.

Proof. By induction on the derivation of Γ ⊢M : A.

1B.2. Lemma (Free variable lemma for λCu
→ ). For a set X of variables write

Γ ↾ X = {x:A∈Γ |x∈X}.
(i) Suppose Γ ⊢M : A. Then FV (M) ⊆ dom(Γ).
(ii) If Γ ⊢M : A, then Γ ↾ FV(M) ⊢M : A.

Proof. (i), (ii) By induction on the generation of Γ ⊢M : A.

The following result is related to the fact that the system λ→ is ‘syntax directed’, i.e.
statements Γ ⊢M : A have a unique proof.

1B.3. Proposition (Inversion Lemma for λCu
→ ).

(i) Γ ⊢ x : A ⇒ (x:A)∈Γ.
(ii) Γ ⊢MN : A ⇒ ∃B ∈TT [Γ ⊢M : B→A & Γ ⊢ N : B].
(iii) Γ ⊢ λx.M : A ⇒ ∃B,C ∈TT [A ≡ B→C & Γ, x:B ⊢M : C].

Proof. (i) Suppose Γ ⊢ x : A holds in λ→. The last rule in a derivation of this statement
cannot be an application or an abstraction, since x is not of the right form. Therefore
it must be an axiom, i.e. (x:A)∈Γ.
(ii), (iii) The other two implications are proved similarly.
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1B.4. Corollary. Let Γ ⊢Cu
λ→

xN1 · · ·Nk : B. Then there exist unique A1, · · · ,Ak ∈TT
such that

Γ ⊢Cu
λ→

Ni : Ai, 1 ≤ i ≤ k, and x:(A1 → · · · → Ak → B)∈Γ.
Proof. By applying k-times (ii) and then (i) of the proposition.

1B.5. Proposition (Substitution lemma for λCu
→ ).

(i) Γ, x:A ⊢M : B & Γ ⊢ N : A ⇒ Γ ⊢M [x: = N ] : B.
(ii) Γ ⊢M : A ⇒ Γ[α := B] ⊢M : A[α := B].

Proof. (i) By induction on the derivation of Γ, x:A ⊢M : B. Write
P ∗ ≡ P [x: = N ].
Case 1. Γ, x:A ⊢M : B is an axiom, hence M ≡ y and (y:B)∈Γ ∪ {x:A}.

Subcase 1.1. (y:B)∈Γ. Then y 6≡ x and Γ ⊢M∗ ≡ y[x:N ] ≡ y : B.
Subcase 1.2. y:B ≡ x:A. Then y ≡ x and B ≡ A, hence Γ ⊢M∗ ≡ N : A ≡ B.
Case 2. Γ, x:A ⊢ M : B follows from Γ, x:A ⊢ F : C→B, Γ, x:A ⊢ G : C and

FG ≡ M . By the induction hypothesis one has Γ ⊢ F ∗ : C→B and Γ ⊢ G∗ : C. Hence
Γ ⊢ (FG)∗ ≡ F ∗G∗ : B.
Case 3. Γ, x:A ⊢M : B follows from Γ, x:A, y:D ⊢ G : E, B ≡ D→E and λy.G ≡M .

By the induction hypothesis Γ, y:D ⊢ G∗ : E, hence Γ ⊢ (λy.G)∗ ≡ λy.G∗ : D→E ≡ B.
(ii) Similarly.

1B.6. Proposition (Subject reduction property for λCu
→ ).

Γ ⊢M : A &M։βηN ⇒ Γ ⊢ N : A.

Proof. It suffices to show this for a one-step βη-reduction, denoted by →. Suppose
Γ ⊢M : A and M →βη N in order to show that Γ ⊢ N : A. We do this by induction on
the derivation of Γ ⊢M : A.
Case 1. Γ ⊢M : A is an axiom. Then M is a variable, contradicting M → N . Hence

this case cannot occur.
Case 2. Γ ⊢ M : A is Γ ⊢ FP : A and is a direct consequence of Γ ⊢ F : B→A and

Γ ⊢ P : B. Since FP ≡M → N we can have three subcases.
Subcase 2.1. N ≡ F ′P with F → F ′.
Subcase 2.2. N ≡ FP ′ with P → P ′.

In these two subcases it follows that Γ ⊢ N : A, by using twice the IH.
Subcase 2.3. F ≡ λx.G and N ≡ G[x: = P ]. Since

Γ ⊢ λx.G : B→A & Γ ⊢ P : B,

it follows by the inversion Lemma 1B.3 for λ→ that

Γ, x ⊢ G : A & Γ ⊢ P : B.

Therefore by the substitution Lemma 1B.5 for λ→ it follows that

Γ ⊢ G[x: = P ] : A, i.e. Γ ⊢ N : A.

Case 3. Γ ⊢M : A is Γ ⊢ λx.P : B→C and follows from Γ, x ⊢ P : C.
Subcase 3.1. N ≡ λx.P ′ with P → P ′. One has Γ, x:B ⊢ P ′ : C by the induction

hypothesis, hence Γ ⊢ (λx.P ′) : (B→C), i.e. Γ ⊢ N : A.
Subcase 3.2. P ≡ Nx and x /∈ FV(N). Now Γ, x:B ⊢ Nx : C follows by Lemma

1B.3(ii) from Γ, x:B ⊢ N : (B′→C) and Γ, x:B ⊢ x : B′, for some B′. Then B = B′, by
Lemma 1B.3(i), hence by Lemma 1B.2(ii) we have Γ ⊢ N : (B→C) = A.
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The following result also holds for λCh
→ and λdB

→ , see Proposition 1B.28 and Exercise
2E.4.

1B.7. Corollary (Church-Rosser theorem for λCu
→ ). On typable terms of λCu

→ the Church-
Rosser theorem holds for the notions of reduction ։β and ։βη.

(i) Let M,N1, N2 ∈ΛΓ
→(A). Then

M ։β(η) N1 &M ։β(η) N2 ⇒ ∃Z ∈ΛΓ
→(A).N1 ։β(η) Z & N2 ։β(η) Z.

(ii) Let M,N ∈ΛΓ
→(A). Then

M =β(η) N ⇒ ∃Z ∈ΛΓ
→(A).M ։β(η) Z & N ։β(η) Z.

Proof. By the Church-Rosser theorems for ։β and ։βη on untyped terms, Theorem
1A.9, and Proposition 1B.6.

Properties of λCh
→

Not all the properties of λCu
→ are meaningful for λCh

→ . Those that are have to be refor-
mulated slightly.

1B.8. Proposition (Inversion Lemma for λCh
→ ).

(i) xB ∈ΛCh
→ (A) ⇒ B = A.

(ii) (MN)∈ΛCh
→ (A) ⇒ ∃B ∈TT.[M ∈ΛCh

→ (B→A) & N ∈ΛCh
→ (B)].

(iii) (λxB.M)∈ΛCh
→ (A) ⇒ ∃C ∈TT.[A = (B→C) &M ∈ΛCh

→ (C)].

Proof. As before.

Substitution of a term N ∈ΛCh
→ (B) for a typed variable xB is defined as usual.We show

that the resulting term keeps its type.

1B.9. Proposition (Substitution lemma for λCh
→ ). Let A,B ∈TT. Then

(i) M ∈ΛCh
→ (A), N ∈ΛCh

→ (B) ⇒ (M [xB := N ])∈ΛCh
→ (A).

(ii) M ∈ΛCh
→ (A) ⇒ M [α := B]∈ΛCh

→ (A[α := B]).

Proof. (i), (ii) By induction on the structure of M .

1B.10. Proposition (Closure under reduction for λCh
→ ). Let A∈TT. Then

(i) M ∈ΛCh
→ (A) &M →β N ⇒ N ∈ΛCh

→ (A).

(ii) M ∈ΛCh
→ (A) &M →η N ⇒ N ∈ΛCh

→ (A).

(iii) M ∈ΛCh
→ (A) and M ։βη N . Then N ∈ΛCh

→ (A).

Proof. (i) Suppose M ≡ (λxB.P )Q∈ΛCh
→ (A). Then by Proposition 1B.8(ii) one has

λxB.P ∈ΛCh
→ (B′→A) and Q∈ΛCh

→ (B′). Then B = B′, and P ∈ΛCh
→ (A), by Proposition

1B.8(iii). Therefore N ≡ P [xB := Q]∈ΛCh
→ (A), by Proposition 1B.9.

(ii) Suppose M ≡ (λxB.NxB)∈ΛCh
→ (A). Then A = B→C and NxB ∈ΛCh

→ (C), by
Proposition 1B.8(iii). But then N ∈ΛCh

→ (B→C) by Proposition 1B.8(i) and (ii).

(iii) By induction on the relation ։βη, using (i), (ii).

The Church-Rosser theorem holds for βη-reduction on ΛCh
→ . The proof is postponed

until Proposition 1B.28.

Proposition [Church-Rosser theorem for λCh
→ ] On typable terms of λCh

→ the CR prop-
erty holds for the notions of reduction ։β and ։βη.
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(i) Let M,N1, N2 ∈ΛCh
→ (A). Then

M ։β(η) N1 &M ։β(η) N2 ⇒ ∃Z ∈ΛCh
→ (A).N1 ։β(η) Z & N2 ։β(η) Z.

(ii) Let M,N ∈ΛCh
→ (A). Then

M =β(η) N ⇒ ∃Z ∈ΛCh
→ (A).M ։β(η) Z & N ։β(η) Z.

The following property called uniqueness of types does not hold for λCu
→ . It is instruc-

tive to find out where the proof breaks down for that system.

1B.11. Proposition (Unicity of types for λCh
→ ). Let A,B ∈TT. Then

M ∈ΛCh
→ (A) &M ∈ΛCh

→ (B) ⇒ A = B.

Proof. By induction on the structure of M , using the inversion lemma 1B.8.

Properties of λdB
→

We mention the first properties of λdB
→ , the proofs being similar to those for λCh

→ .

1B.12. Proposition (Inversion Lemma for λdB
→ ).

(i) Γ ⊢ x : A ⇒ (x:A)∈Γ.
(ii) Γ ⊢MN : A ⇒ ∃B ∈TT [Γ ⊢M : B→A & Γ ⊢ N : B].
(iii) Γ ⊢ λx:B.M : A ⇒ ∃C ∈TT [A ≡ B→C & Γ, x:B ⊢M : C].

1B.13. Proposition (Substitution lemma for λdB
→ ).

(i) Γ, x:A ⊢M : B & Γ ⊢ N : A ⇒ Γ ⊢M [x: = N ] : B.

(ii) Γ ⊢M : A ⇒ Γ[α := B] ⊢M : A[α := B].

1B.14. Proposition (Subject reduction property for λdB
→ ).

Γ ⊢M : A &M։βηN ⇒ Γ ⊢ N : A.

1B.15. Proposition (Church-Rosser theorem for λdB
→ ). λdB

→ satisfies CR.

(i) Let M,N1, N2 ∈ΛdB,Γ
→ (A). Then

M ։β(η) N1 &M ։β(η) N2 ⇒ ∃Z ∈ΛdB,Γ
→ (A).N1 ։β(η) Z & N2 ։β(η) Z.

(ii) Let M,N ∈ΛdB,Γ
→ (A). Then

M =β(η) N ⇒ ∃Z ∈ΛdB,Γ
→ (A).M ։β(η) Z & N ։β(η) Z.

Proof. Do Exercise 2E.4.

It is instructive to see why the following result fails if the two contexts are different.

1B.16. Proposition (Unicity of types for λdB
→ ). Let A,B ∈TT. Then

Γ ⊢M : A & Γ ⊢M : B ⇒ A = B.
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Equivalence of the systems

It may seem a bit exaggerated to have three versions of the simply typed lambda calculus:
λCu
→ , λCh

→ and λdB
→ . But this is convenient.

The Curry version inspired some implicitly typed programming languages like ML,
Miranda, Haskell and Clean. Types are being derived. Since implicit typing makes
programming easier, we want to consider this system.
The use of explicit typing becomes essential for extensions of λCu

→ . For example in the
system λ2, also called system F , with second order (polymorphic) types, type checking
is not decidable, see Wells [1999], and hence one needs the explicit versions. The two
explicitly typed systems λCh

→ and λdB
→ are basically isomorphic as shown above. These

systems have a very canonical semantics if the version λCh
→ is used.

We want two versions because the version λdB
→ can be extended more naturally to more

powerful type systems in which there is a notion of reduction on the types (those with
‘dependent types’ and those with higher order types, see e.g. Barendregt [1992]) gener-
ated simultaneously. Also there are important extensions in which there is a reduction
relation on types, e.g. in the system λω with higher order types. The classical version
of λ→ gives problems. For example, if A ։ B, does one have that λxA.xA ։ λxA.xB?
Moreover, is the xB bound by the λxA? By denoting λxA.xA as λx:A.x, as is done in
λCh
→ , these problems do not arise. The possibility that types reduce is so important, that

for explicitly typed extensions of λ→ one needs to use the dB-versions.
The situation is not so bad as it may seem, since the three systems and their differences

are easy to memorize. Just look at the following examples.

λx.xy ∈ ΛCu,{y:0}
→ ((0→0)→0) (Curry);

λx:(0→0).xy ∈ ΛdB,{y:0}
→ ((0→0)→0) (de Bruijn);

λx0→0.x0→0y0 ∈ ΛCh
→ ((0→0)→0) (Church).

Hence for good reasons one finds all the three versions of λ→ in the literature.
In this Part I of the book we are interested in untyped lambda terms that can be

typed using simple types. We will see that up to substitution this typing is unique. For
example

λfx.f(fx)

can have as type (0→0)→0→0, but also (A→A)→A→A for any type A. Also there is a
simple algorithm to find all possible types for an untyped lambda term, see Section 2C.
We are interested in typable terms M , among the untyped lambda terms Λ, using

Curry typing. Since we are at the same time also interested in the types of the subterms
of M , the Church typing is a convenient notation. Moreover, this information is almost
uniquely determined once the type A of M is known or required. By this we mean that
the Church typing is uniquely determined by A for M not containing a K-redex (of the
form (λx.M)N with x /∈FV(M)). If M does contain a K-redex, then the type of the
β-nf Mnf of M is still uniquely determined by A. For example the Church typing of
M ≡ KIy of type α→α is (λxα→αyβ .xα→α)(λzα.zα)yβ . The type β is not determined.
But for the β-nf of M , the term I, the Church typing can only be Iα ≡ λzα.zα. See
Exercise 2E.3.
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If a type is not explicitly given, then possible types forM can be obtained schematically
from groundtypes. By this we mean that e.g. the term I ≡ λx.x has a Church version
λxα.xα and type α→α, where one can substitute any A∈TTA for α. We will study this
in greater detail in Section 2C.

Comparing λCu
→ and λCh

→

There are canonical translations between λCh
→ and λCu

→ .

1B.17. Definition. There is a forgetful map | · | : ΛCh
→ → Λ defined as follows:

|xA|, x;

|MN |, |M ||N |;
|λx:A.M |, λx.|M |.

The map | · | just erases all type ornamentations of a term in ΛCh
→ . The following result

states that terms in the Church version ‘project’ to legal terms in the Curry version of
λA
→. Conversely, legal terms in λCu

→ can be ‘lifted’ to terms in λCh
→ .

1B.18. Definition. Let M ∈ΛCh
→ . Then we write

ΓM , {x:A | xA ∈FV(M)}.
1B.19. Proposition. (i) Let M ∈ΛCh

→ . Then

M ∈ΛCh
→ (A) ⇒ ΓM ⊢Cu

λ→
|M | : A,.

(ii) Let M ∈Λ. Then

Γ ⊢Cu
λ→

M : A ⇔ ∃M ′ ∈ΛCh
→ (A).|M ′| ≡M.

Proof. (i) By induction on the generation of ΛCh
→ . Since variables have a unique type

ΓM is well-defined and ΓP ∪ ΓQ = ΓPQ.
(ii) (⇒) By induction on the proof of Γ ⊢ M : A with the induction loading that

ΓM ′ = Γ. (⇐) By (i).

Notice that the converse of Proposition 1B.19(i) is not true: one has

⊢Cu
λ→
|λxA.xA| ≡ (λx.x) : (A→B)→(A→B),

but (λxA.xA) /∈ ΛCh((A→B)→(A→B)).

1B.20. Corollary. In particular, for a type A∈TT one has

A is inhabited in λCu
→ ⇔ A is inhabited in λCh

→ .

Proof. Immediate.

For normal terms one can do better than Proposition 1B.19. First a structural result.

1B.21. Proposition. Let M ∈Λ be in nf. Then M ≡ λx1 · · ·xn.yM1 · · ·Mm, with
n,m ≥ 0 and the M1, · · · ,Mm again in nf.

Proof. By induction on the structure of M . See Barendregt [1984], Corollary 8.3.8 for
some details if necessary.

In order to prove results about the set NF of β-nfs, it is useful to introduce the subset
vNF of β-nfs not starting with a λ, but with a free variable. These two sets can be
defined by a simultaneous recursion known from context-free languages.
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1B.22. Definition. The sets vNF and NF of Λ are defined by the following grammar.

vNF ::= x | vNF NF

NF ::= vNF | λx.NF
1B.23. Proposition. For M ∈Λ one has

M is in β-nf ⇔ M ∈NF.
Proof. By simultaneous induction it follows easily that

M ∈ vNF ⇒ M ≡ x ~N &M is in β-nf;

M ∈NF ⇒ M is in β-nf.

Conversely, for M in β-nf by Proposition 1B.21 one has M ≡ λ~x.yN1 · · ·Nk, with the
~N all in β-nf. It follows by induction on the structure of such M that M ∈NF.
1B.24. Proposition. Assume that M ∈Λ is in β-nf. Then Γ ⊢Cu

λ→
M : A implies that

there is a unique MA;Γ ∈ΛCh
→ (A) such that |MA;Γ| ≡M and ΓMA;Γ ⊆ Γ.

Proof. By induction on the generation of nfs given in Definition 1B.22.

CaseM ≡ x ~N , with Ni in β-nf. By Proposition 1B.4 one has (x:A1→· · ·→Ak→A)∈Γ
and Γ ⊢Cu

λ→
Ni : Ai. As ΓMA;Γ ⊆ Γ, we must have xA1→···→Ak→A ∈FV(MA;Γ). By the IH

there are unique NAi,Γ
i for the Ni. Then MA;Γ ≡ xA1→···→Ak→ANA1,Γ

1 · · ·NAk,Γ
k is the

unique way to type M
CaseM ≡ λx.N , with N in β-nf. Then by Proposition 1B.3 we have Γ, x:B ⊢Cu

λ→
N : C

and A = B→C. By the IH there is a unique NC;Γ,x:B for N . It is easy to verify that
MA;Γ ≡ λxB.NC;Γ,x:B is the unique way to type M .

Notation. If M is a closed β-nf, then we write MA for MA;∅.

1B.25. Corollary. (i) Let M ∈ΛCh
→ be a closed β-nf. Then |M | is a closed β-nf and

M ∈ΛCh
→ (A) ⇒ [⊢Cu

λ→
|M | : A & |M |A ≡M ].

(ii) Let M ∈Λø be a closed β-nf and ⊢Cu
λ→

M : A. Then MA is the unique term
satisfying

MA ∈ΛCh
→ (A) & |MA| ≡M.

(iii) The following two sets are ‘isomorphic’

{M ∈Λ |M is closed, in β-nf, and ⊢Cu
λ→

M : A};
{M ∈ΛCh

→ (A) |M is closed and in β-nf}.

Proof. (i) By the unicity of MA.
(ii) By the Proposition.
(iii) By (i) and (ii).

The applicability of this result will be enhanced once we know that every term typable
in λA

→ (whatever version) has a βη-nf.
The translation | | preserves reduction and conversion.

1B.26. Proposition. Let R = β,η or βη. Then
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(i) Let M,N ∈ΛCh
→ . Then M →R N ⇒ |M | →R |N |. In diagram

M

| |

R
// N

| |

|M |
R

// |N |

(ii) Let M,N ∈ΛCu
→

,Γ(A), M = |M ′|, with M ′ ∈ΛCh
→ (A). Then

M →R N ⇒ ∃N ′ ∈ΛCh
→ (A).

|N ′| ≡ N &M ′ →R N ′.

In diagram

M ′

| |

R
// N ′

| |

M
R

// N

(iii) Let M,N ∈ΛCu
→

,Γ(A), N = |N ′|, with N ′ ∈ΛCh
→ (A). Then

M →R N ⇒ ∃M ′ ∈ΛCh
→ (A).

|M ′| ≡M &M ′ →R N ′.

In diagram

M ′

| |

R
// N ′

| |

M
R

// N

(iv) The same results hold for ։R and R-conversion.

Proof. Easy.

1B.27. Corollary. Define the following two statements.

SN(λCu
→ ), ∀Γ∀M ∈ΛCu,Γ

→ .SN(M).

SN(λCh
→ ), ∀M ∈ΛCh

→ .SN(M).

Then

SN(λCu
→ ) ⇔ SN(λCh

→ ).

In fact we will prove in Section 2B that both statements hold.

1B.28. Proposition (Church-Rosser theorem for λCh
→ ). On typable terms of λCh

→ the Church-
Rosser theorem holds for the notions of reduction ։β and ։βη.

(i) Let M,N1, N2 ∈ΛCh
→ (A). Then

M ։βη N1 &M ։β(η) N2 ⇒ ∃Z ∈ΛCh
→ (A).N1 ։β(η) Z & N2 ։β(η) Z.

(ii) Let M,N ∈ΛCh
→ (A). Then

M =β(η) N ⇒ ∃Z ∈ΛCh
→ (A).M ։β(η) Z & N ։β(η) Z.
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Proof. (i) We give two proofs, both borrowing a result from Chapter 2.
Proof 1. We use that every term of ΛCh

→ has a β-nf, Theorem 2A.13. Suppose M ։βη

Ni, i∈{1, 2}. Consider the β-nfs Nnf
i of Ni . Then |M | ։βη |Nnf

i |, i∈{1, 2}. By the

CR for untyped lambda terms one has |Nnf
1 | ≡ |Nnf

2 |, and is also in β-nf. By Proposition
1B.24 there exists unique Zi ∈ΛCh

→ such that M ։βη Zi and |Zi| ≡ |Nnf
i |. But then

Z1 ≡ Z2 and we are done.
Proof 2. Now we use that every term of ΛCh

→ is β-SN, Theorem 2B.1. It is easy to see
that →βη satisfies the weak diamond property; then we are done by Newman’s lemma.
See e.g. B[1984], Definition 3.1.24 and Proposition 3.1.25.

(ii) As usual from (i). See e.g. B[1984], Theorem 3.1.12.

Comparing λCh
→ and λdB

→

There is a close connection between λCh
→ and λdB

→ . First we need the following.

1B.29. Lemma. Let Γ ⊆ Γ′ be bases of λdB
→ . Then

Γ ⊢dBλ→
M : A ⇒ Γ′ ⊢dBλ→

M : A.

Proof. By induction on the derivation of the first statement.

1B.30. Definition. (i) Let M ∈ΛdB
→ and suppose FV(M) ⊆ dom(Γ).

Define MΓ inductively as follows.

xΓ , xΓ(x);

(MN)Γ ,MΓNΓ;

(λx:A.M)Γ , λxA.MΓ,x:A.

(ii) Let M ∈ΛCh
→ (A) in λCh

→ . Define M−, a pseudo-term of λdB
→ , as follows.

(xA)− , x;

(MN)− ,M−N−;

(λxA.M)− , λx:A.M−.

1B.31. Example. To get the (easy) intuition, consider the following.

(λx:A.x)∅ ≡ (λxA.xA);

(λxA.xA)− ≡ (λx:A.x);

(λx:A→B.xy){y:A} ≡ λxA→B.xA→ByA;

Γ(λxA→B .xA→ByA) = {y:A}, cf. Definition 1B.18.

1B.32. Proposition. (i) Let M ∈ΛCh
→ and Γ be a basis of λdB

→ . Then

M ∈ΛCh
→ (A) ⇔ ΓM ⊢dBλ→

M− : A.

(ii) Γ ⊢dBλ→
M : A ⇔ MΓ ∈ΛCh

→ (A).

Proof. (i), (ii)(⇒) By induction on the definition or the proof of the LHS.
(i)(⇐) By (ii)(⇒), using (M−)ΓM ≡M .
(ii)(⇐) By (i)(⇒), using (MΓ)− ≡M,ΓMΓ ⊆ Γ and proposition 1B.29.



1B. First properties and comparisons 25

1B.33. Corollary. In particular, for a type A∈TT one has

A is inhabited in λCh
→ ⇔ A is inhabited in λdB

→ .

Proof. Immediate.

Again the translation preserves reduction and conversion

1B.34. Proposition. (i) Let M,N ∈ΛdB
→ . Then

M →R N ⇔ MΓ →R NΓ,

where R = β,η or βη.
(ii) Let M1,M2 ∈ΛCh

→ (A) and R as in (i). Then

M1 →R M2 ⇔ M−
1 →R M−

2 .

(iii) The same results hold for conversion.

Proof. Easy.

Comparing λCu
→ and λdB

→

1B.35. Proposition. (i) Γ ⊢dBλ→
M : A ⇒ Γ ⊢Cu

λ→
|M | : A,

here |M | is defined by leaving out all ‘: A’ immediately following binding lambdas.
(ii) Let M ∈Λ. Then

Γ ⊢Cu
λ→

M : A ⇔ ∃M ′.|M ′| ≡M & Γ ⊢dBλ→
M ′ : A.

Proof. As for Proposition 1B.19.

Again the implication in (i) cannot be reversed.

The three systems compared

Now we can harvest a comparison between the three systems λCh
→ , λdB

→ and λCu
→ .

1B.36. Theorem. Let M ∈ΛCh
→ be in β-nf. Then the following are equivalent.

(i) M ∈ΛCh
→ (A).

(ii) ΓM ⊢dBλ→
M− : A.

(iii) ΓM ⊢Cu
λ→
|M | : A.

(iv) |M |A;ΓM ∈ΛCh
→ (A) & |M |A;ΓM ≡M .

Proof. By Propositions 1B.32(i), 1B.35, and 1B.24 and the fact that
|M−| = |M | we have

M ∈ΛCh
→ (A) ⇔ ΓM ⊢dBλ→

M− : A

⇒ ΓM ⊢Cu
λ→
|M | : A

⇒ |M |A;ΓM ∈ΛCh
→ (A) & |M |A;ΓM ≡M

⇒ M ∈ΛCh
→ (A).
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1C. Normal inhabitants

In this section we will give an algorithm that enumerates the set of closed inhabitants
in β-nf of a given type A∈TT. Since we will prove in the next chapter that all typable
terms do have a nf and that reduction preserves typing, we thus have an enumeration of
essentially all closed terms of that given type. The algorithm will be used by concluding
that a certain type A is uninhabited or more generally that a certain class of terms
exhausts all inhabitants of A.
Because the various versions of λA

→ are equivalent as to inhabitation of closed β-nfs,
we flexibly jump between the set

{M ∈ΛCh
→ (A) |M closed and in β-nf}

and

{M ∈Λ |M closed, in β-nf, and ⊢Cu
λ→

M : A},
thereby we often write a Curry context {x1:A1, · · · , xn:An} as {xA1

1 , · · · , xAn
n } and a

Church term λx0.x0 as λx0.x, an intermediate form between the Church and the de
Bruijn versions.
We do need to distinguish various kinds of nfs.

1C.1. Definition. Let A = A1→· · ·An→α and suppose M ∈ΛCh
→ (A).

(i) Then M is in long-nf , notation lnf , ifM ≡ λxA1
1 · · ·xAn

n .xM1 · · ·Mn and eachMi

is in lnf. By induction on the depth of the type of the closure of M one sees that this
definition is well-founded.

(ii) M has a lnf if M =βη N and N is a lnf.

In Exercise 1E.14 it is proved that if M has a β-nf, which according to Theorem 2B.4 is
always the case, then it also has a unique lnf and this will be its unique βη−1 nf. Here
η−1 is the notion of reduction that is the converse of η.

1C.2. Examples. (i) λx0.x is both in βη-nf and lnf.
(ii) λf1.f is a βη-nf but not a lnf.
(iii) λf1x0.fx is a lnf but not a βη-nf; its βη-nf is λf1.f .

(iv) The β-nf λF 2
2 λf

1.Ff(λx0.fx) is neither in βη-nf nor lnf.
(v) A variable of atomic type α is a lnf, but of type A→B not.
(vi) A variable f1→1 has as lnf λg1x0.f(λy0.gy)x =η f

1→1.

1C.3. Proposition. Every β-nf M has a lnf M ℓ such that M ℓ ։η M .

Proof. Define M ℓ by induction on the depth of the type of the closure of M as follows.

M ℓ ≡ (λ~x.yM1 · · ·Mn)
ℓ , λ~x~z.yM ℓ

1 · · ·M ℓ
n~z

ℓ

where ~z is the longest vector that preserves the type. Then M ℓ does the job.

We will define a 2-level grammar , see van Wijngaarden [1981], for obtaining all closed
inhabitants in lnf of a given type A. We do this via the system λCu

→ .

1C.4. Definition. Let L = {L(A; Γ) | A∈TTA; Γ a context of λCu
→ }. Let Σ be the al-

phabet of the untyped lambda terms. Define the following two-level grammar as a notion
of reduction over words over L ∪ Σ. The elements of L are the non-terminals (unlike in
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a context-free language there are now infinitely many of them) of the form L(A; Γ).

L(α; Γ) =⇒ xL(B1; Γ) · · ·L(Bn; Γ), if (x: ~B→α)∈Γ;
L(A→B; Γ) =⇒ λxA.L(B; Γ, xA).

Typical productions of this grammar are the following.

L(3; ∅) =⇒ λF 2.L(0;F 2)

=⇒ λF 2.FL(1;F 2)

=⇒ λF 2.F (λx0.L(0;F 2, x0))

=⇒ λF 2.F (λx0.x).

But one has also

L(0;F 2, x0) =⇒ FL(1;F 2, x0)

=⇒ F (λx01.L(0;F
2, x0, x01))

=⇒ F (λx01.x1).

Hence (=⇒=⇒ denotes the transitive reflexive closure of =⇒)

L(3; ∅) =⇒=⇒ λF 2.F (λx0.F (λx01.x1)).

In fact, L(3; ∅) reduces to all possible closed lnfs of type 3. Like in simplified syntax we
do not produce parentheses from the L(A; Γ), but write them when needed.

1C.5. Proposition. Let Γ,M,A be given. Then

L(A; Γ) =⇒=⇒M ⇔ Γ ⊢M : A &M is in lnf.

Now we will modify the 2-level grammar and the inhabitation machines in order to
produce all β-nfs.

1C.6. Definition. The 2-level grammar N is defined as follows.

N(A; Γ) =⇒ xN(B1; Γ) · · ·N(Bn; Γ), if (x: ~B→A)∈Γ;
N(A→B; Γ) =⇒ λxA.N(B; Γ, xA).

Now the β-nfs are being produced. As an example we make the following production.
Remember that 1 = 0→0.

N(1→0→0; ∅) =⇒ λf1.N(0→0; f1)

=⇒ λf1.f.

1C.7. Proposition. Let Γ,M,A be given. Then

N(A,Γ) =⇒=⇒M ⇔ Γ ⊢M : A &M is in β-nf.
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Inhabitation machines

Inspired by this proposition one can introduce for each type A a machine MA producing
the set of closed lnfs of that type. If one is interested in terms containing free variables
xA1
1 , · · · , xAn

n , then one can also find these terms by considering the machine for the
type A1→· · ·→An→A and looking at the sub-production at node A. This means that
a normal inhabitant MA of type A can be found as a closed inhabitant λ~x.MA of type
A1→· · ·→An→A.
1C.8. Examples. (i) A = 0→0→0. Then MA is

0→0→0
λx0λy0 // 0 // x

y
��

This shows that the type 12 has two closed inhabitants: λxy.x and λxy.y. We see that
the two arrows leaving 0 represent a choice.

(ii) A = α→((0→β)→α)→β→α. Then MA is

α→((0→β)→α)→β→α

λaαλf (0→β)→αλbβ

��
α

f
��

// a

0→β λx0
// β // b

Again there are only two inhabitants, but now the production of them is rather different:
λafb.a and λafb.f(λx0.b).
(iii) A = ((α→β)→α)→α. Then MA is

((α→β)→α)→α

λF (α→β)→α

��
α

F // α→β λxα
// β

This type, corresponding to Peirce’s law, does not have any inhabitants.
(iv) A = 1→0→0. Then MA is

1→0→0

λf1λx0

��

f 0@GAFBE // x

This is the type Nat having the Church’s numerals λf1x0.fnx as inhabitants.
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(v) A = 1→1→0→0. Then MA is

1→1→0→0

λf1λg1λx0

��

f 0 g@GAFBE AFBECD

��
x

Inhabitants of this type represent words over the alphabet Σ = {f, g}, for example

λf1g1x0.fgffgfggx,

where we have to insert parentheses associating to the right.
(vi) A = (α→β→γ)→β→α→γ. Then MA is

(α→β→γ)→β→α→γ

λfα→β→γλbβλaα

��
γ

��
a αoo oo f // β // b

giving as term λfα→β→γλbβλaα.fab. Note the way an interpretation should be given

to paths going through f : the outgoing arcs (to α and β ) should be completed both

separately in order to give f its two arguments.
(vii) A = 3. Then MA is

3

λF 2

��

0

��

F **
1

λx0

jj

x

This type 3 has inhabitants having more and more binders:

λF 2.F (λx00.F (λx
0
1.F (· · · (λx0n.xi)))).

The novel phenomenon that the binder λx0 may go round and round forces us to give new
incarnations λx00, λx

0
1, · · · each time we do this (we need a counter to ensure freshness of

the bound variables). The ‘terminal’ variable x can take the shape of any of the produced
incarnations xk. As almost all binders are dummy, we will see that this potential infinity
of binding is rather innocent and the counter is not yet really needed here.
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(viii) A = 3→0→0. Then MA is

3→0→0

λΦ3λc0

��

f 0@GAFBE Φ
++

��

2
λf1

kk

c

This type, called the monster M, does have a potential infinite amount of binding, having
as terms e.g.

λΦ3c0.Φ(λf11 .f1Φ(λf
1
2 .f2f1Φ(· · · (λf1n.fn · · · f2f1c)..))),

again with inserted parentheses associating to the right. Now a proper bookkeeping of
incarnations (of f1 in this case) becomes necessary, as the f going from 0 to itself needs
to be one that has already been incarnated.
(ix) A = 12→0→0. Then MA is

12→0→0
λp12λc0 // 0

��

// c

p

JJ TT

This is the type of binary trees, having as elements, e.g. λp12c0.c and λp12c0.pc(pcc).

Again, as in example (vi) the outgoing arcs from p (to 0 ) should be completed both
separately in order to give p its two arguments.

(x) A = 12→2→0. Then MA is

1

λx0




12→2→0

λF 12λG2
// 0

G

JJ

��

// x

F

JJ TT

The inhabitants of this type, which we call L, can be thought of as codes for untyped
lambda terms. For example the untyped terms ω ≡ λx.xx and Ω ≡ (λx.xx)(λx.xx) can
be translated to (ω)t ≡ λF 12G2.G(λx0.Fxx) and

(Ω)t ≡ λF 12G2.F (G(λx0.Fxx))(G(λx0.Fxx))
=β λFG.F ((ω)tFG)((ω)tFG)
=β (ω)t ·L (ω)t,

where forM,N ∈L one definesM ·LN = λFG.F (MFG)(NFG). All features of produc-
ing terms inhabiting types (bookkeeping bound variables, multiple paths) are present in
this example.
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Following the 2-level grammar N one can make inhabitation machines for β-nfs Mβ
A .

1C.9. Example. We show how the production machine for β-nfs differs from the one
for lnfs. Let A = 1→0→0. Then λf1.f is the (unique) β-nf of type A that is not a lnf.

It will come out from the following machine Mβ
A .

1→0→0

λf1

��

0→0 //

λx0

��

f

f 0@GAFBE // x

So in order to obtain the β-nfs, one has to allow output at types that are not atomic.

1D. Representing data types

In this section it will be shown that first order algebraic data types can be represented
in λ0

→. This means that an algebra A can be embedded into the set of closed terms in
β-nf in ΛCu

→ (A). That we work with the Curry version is as usual not essential.
We start with several examples: Booleans, the natural numbers, the free monoid over

n generators (words over a finite alphabet with n elements) and trees with at the leafs
labels from a type A. The following definitions depend on a given type A. So in fact
Bool = BoolA etcetera. Often one takes A = 0.

Booleans

1D.1. Definition. Define Bool ≡ BoolA

Bool, A→A→A;
true, λxy.x;

false, λxy.y.

Then true∈Λø
→(Bool) and false∈Λø

→(Bool).

1D.2. Proposition. There are terms not, and, or, imp, iff with the expected behavior on
Booleans. For example not∈Λø

→(Bool→Bool) and

not true=β false,

not false=β true.

Proof. Take not , λaxy.ayx and or , λabxy.ax(bxy). From these two operations the
other Boolean functions can be defined. For example, implication can be represented by

imp, λab.or(not a)b.

A shorter representation is λabxy.a(bxy)x, the normal form of imp.
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Natural numbers

1D.3. Definition. The set of natural numbers can be represented as a type

Nat, (A→A)→A→A.
For each natural number n∈N we define its representation

cn , λfx.fnx,

where

f0x, x;

fn+1x, f(fnx).

Then cn ∈Λø
→(Nat) for every n∈N. The representation cn of n∈N is called Church’s

numeral . In B[1984] another representation of numerals was used.

1D.4. Proposition. (i) There exists a term S+ ∈Λø
→(Nat→Nat) such that

S+cn =β cn+1, for all n∈N.
(ii) There exists a term zero? ∈Λø

→(Nat→Bool) such that

zero?c0 =β true,

zero?(S
+x) =β false.

Proof. (i) Take S+ , λnλfx.f(nfx). Then

S+cn =β λfx.f(cnfx)

=β λfx.f(fnx)

≡ λfx.fn+1x

≡ cn+1.

(ii) Take zero? ≡ λnλab.n(Kb)a. Then
zero?c0 =β λab.c0(Kb)a

=β λab.a

≡ true;

zero?(S
+x) =β λab.S

+x(Kb)a

=β λab.(λfy.f(xfy))(Kb)a

=β λab.Kb(x(Kb)a)

=β λab.b

≡ false.

1D.5. Definition. (i) A function f : Nk→N is called λ-definable with respect to Nat if
there exists a term F ∈Λ→ such that Fcn1 · · · cnk

= cf(n1,···,nk) for all ~n∈Nk.
(ii) For different data types represented in λ→ one defines λ-definability similarly.

Addition and multiplication are λ-definable in λ→.

1D.6. Proposition. (i) There is a term plus∈Λø
→(Nat→Nat→Nat) satisfying

plus cn cm =β cn+m.
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(ii) There is a term times∈Λø
→(Nat→Nat→Nat) such that

times cn cm =β cn·m.

Proof. (i) Take plus, λnmλfx.nf(mfx). Then

plus cn cm =β λfx.cnf(cmfx)

=β λfx.f
n(fmx)

≡ λfx.fn+mx

≡ cn+m.

(ii) Take times, λnmλfx.m(λy.nfy)x. Then

times cn cm =β λfx.cm(λy.cnfy)x

=β λfx.cm(λy.fny)x

=β λfx. (f
n(fn(· · · (fn︸ ︷︷ ︸
m times

x)..)))

≡ λfx.fn·mx

≡ cn·m.

1D.7. Corollary. For every polynomial p∈N[x1, · · · ,xk] there is a closed term Mp ∈
Λø
→(Natk→Nat) such that ∀n1, · · · ,nk ∈N.Mpcn1 · · · cnk

=β cp(n1,···,nk).

From the results obtained so far it follows that the polynomials extended by case
distinctions (being equal or not to zero) are definable in λA

→. In Schwichtenberg [1976]
or Statman [1982] it is proved that exactly these so-called extended polynomials are
definable in λA

→. Hence primitive recursion cannot be defined in λA
→; in fact not even

the predecessor function, see Proposition 2D.21.

Words over a finite alphabet

Let Σ = {a1, · · · , ak} be a finite alphabet. Then Σ∗ the collection of words over Σ can
be represented in λ→.

1D.8. Definition. (i) The type for words in Σ∗ is

Sigma∗ , (0→0)k→0→0.

(ii) Let w = ai1 · · · aip be a word. Define

w , λa1 · · · akx.ai1(· · · (aipx)..)
= λa1 · · · akx. (ai1◦ · · · ◦ aip)x.

Note that w∈Λø
→(Sigma∗). If ǫ is the empty word ( ), then naturally

ǫ, λa1 · · · akx.x
= KkI.

Now we show that the operation concatenation is λ-definable with respect to Sigma∗.

1D.9. Proposition. There exists a term concat∈Λø
→(Sigma∗→Sigma∗→Sigma∗) such

that for all w, v ∈Σ∗

concat w v = wv.
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Proof. Define

concat, λwv.~ax.w~a(v~ax).

Then the type is correct and the definition equation holds.

1D.10. Proposition. (i) There exists a term empty? ∈Λø
→(Sigma∗) such that

empty? ǫ = true;

empty? w = false, if w 6= ǫ.

(ii) Given a (represented) word w0 ∈Λø
→(Sigma∗) and a term G∈Λø

→(Sigma∗→Sigma∗)
there exists a term F ∈Λø

→(Sigma∗→Sigma∗) such that

F ǫ = w0;

F w = Gw, if w 6= ǫ.

Proof. (i) Take empty? ≡ λwpq.w(Kq)~kp.
(ii) Take F ≡ λwλx~a.empty?w(w0~ax)(Gw~ax).

One cannot define terms ‘car’ or ‘cdr’ such that car aw = a and cdr aw = w.

Trees

1D.11. Definition. The set of binary trees, notation T 2, is defined by the following
simplified syntax

t ::= ǫ | p(t, t)
Here ǫ is the ‘empty tree’ and p is the constructor that puts two trees together. For
example p(ǫ, p(ǫ, ǫ))∈T 2 can be depicted as

•
??

??
?

��
��

�

•
??

??
?

��
��

�

ǫ

ǫ

ǫ

Now we will represent T 2 as a type in TT0.

1D.12. Definition. (i) The set T 2 will be represented by the type

⊤2 , (02→0)→0→0.

(ii) Define for t∈T 2 its representation t inductively as follows.

ǫ, λpe.e;

p(t, s), λpe.(tpe)(spe).

(iii) Write

E , λpe.e;

P , λtspe.p(tpe)(spe).

Note that for t∈T 2 one has t∈Λø
→(⊤2)

The following follows immediately from this definition.
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1D.13. Proposition. The map : T 2→⊤2 can be defined inductively as follows

ǫ, E;

p(t, s), Pt s.

Interesting functions, like the one that selects one of the two branches of a tree cannot
be defined in λ0

→. The type ⊤2 will play an important role in Section 3D.

Representing Free algebras with a handicap

Now we will see that all the examples are special cases of a general construction. It turns
out that first order algebraic data types A can be represented in λ0

→. The representations
are said to have a handicap because not all primitive recursive functions on A are
representable. Mostly the destructors cannot be represented. In special cases one can
do better. Every finite algebra can be represented with all possible functions on them.
Pairing with projections can be represented.

1D.14. Definition. (i) An algebra is a set A with a specific finite set of operators of
different arity:

c1, c2, · · · ∈ A (constants, we may call these 0-ary operators);

f1, f2, · · · ∈ A→A (unary operators);

g1, g2, · · · ∈ A2→A (binary operators);

· · ·
h1, h2, · · · ∈ An→A (n-ary operators).

(ii) An n-ary function F : An→A is called algebraic if F can be defined explicitly
from the given constructors by composition. For example

F = λλa1a2.g1(a1, (g2(f1(a2), c2)))

is a binary algebraic function, usually specified as

F (a1, a2) = g1(a1, (g2(f1(a2), c2))).

(iii) An element a of A is called algebraic if a is an algebraic 0-ary function. Algebraic
elements of A can be denoted by first-order terms over the algebra.
(iv) The algebra A is called free(ly generated) if every element of A is algebraic and

moreover if for two first-order terms t, s one has

t = s ⇒ t ≡ s.
In a free algebra the given operators are called constructors.

For example N with constructors 0, s (s is the successor) is a free algebra. But Z with
0, s, p (p is the predecessor) is not free. Indeed, 0 = p(s(0)), but 0 6≡ p(s(0)) as syntactic
expressions.

1D.15. Theorem. For a free algebra A there is a A∈TT0 and λλa.a : A→Λø
→(A) satis-

fying the following.
(i) a is a lnf, for every a∈A.
(ii) a =βη b ⇔ a = b.
(iii) Λø

→(A) = {a | a∈A}, up to βη-conversion.
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(iv) For k-ary algebraic functions f on A there is an f ∈Λø
→(Ak→A) such that

f a1 · · · ak = f(a1, · · · ,ak).
(v) There is a representable discriminator distinguishing between elements of the form

c, f1(a), f2(a, b), · · · , fn(a1, · · · ,an). More precisely, there is a term test∈Λø
→(A→N)

such that for all a, b∈A
test c = c0;

test f1(a) = c1;

test f2(a, b) = c2;

· · ·
test fn(a1, · · · ,an) = cn.

Proof. We show this by a representative example. Let A be freely generated by, say,
the 0-ary constructor c, the 1-ary constructor f and the 2-ary constructor g. Then an
element like

a = g(c, f(c))

is represented by

a = λcfg.gc(fc)∈Λ(0→1→12→0).

Taking A = 0→1→12→0 we will verify the claims. First realize that a is constructed
from a via a∼ = gc(fc) and then taking the closure a = λcfg.a∼.

(i) Clearly the a are in lnf.
(ii) If a and b are different, then their representations a, b are different lnfs, hence

a 6=βη b .
(iii) The inhabitation machine MA =M0→1→12→0 looks like

0→1→12→0

λcλfλg

��

f 0@GAFBE

��

// gss
kk

c

It follows that for every M ∈Λø
→(A) one has M =βη λcfg.a

∼ = a for some a∈A. This
shows that Λø

→(A) ⊆ {a | a∈A}. The converse inclusion is trivial. In the general case
(for other data types A) one has that rk(A) = 2. Hence the lnf inhabitants of A have
for example the form λcf1f2g1g2.P , where P is a typable combination of the variables
c, f11 , f

1
2 , g

12
1 , g

12
2 . This means that the corresponding inhabitation machine is similar and

the argument generalizes.
(iv) An algebraic function is explicitly defined from the constructors. We first define

representations for the constructors.

c , λcfg.c : A;
f , λacfg.f(acfg) : A→A;
g , λabcfg.g(acfg)(bcfg) : A2→A.
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Then f a = λcfg.f(acfg)
= λcfg.f(a∼)
≡ λcfg.(f(a))∼, (tongue in cheek),
≡ f(a).

Similarly one has g a b = g(a, b).

Now if e.g. h(a, b) = g(a, f(b)), then we can take

h, λab.ga(fb) : A2→A.
Then clearly h a b = h(a, b).

(v) Take test, λafc.a(c0fc)(λx.c1fc)(λxy.c2fc).

1D.16. Definition. The notion of free algebra can be generalized to a free multi-sorted
algebra. We do this by giving an example. The collection of lists of natural numbers,
notation LN can be defined by the ’sorts’ N and LN and the constructors

0 ∈ N;

s ∈ N→N;

nil ∈ LN;

cons ∈ N→LN→LN.

In this setting the list [0, 1]∈LN is

cons(0,cons(s(0),nil)).

More interesting multisorted algebras can be defined that are ‘mutually recursive’, see
Exercise 1E.13.

1D.17. Corollary. Every freely generated multi-sorted first-order algebra can be repre-
sented in a way similar to that in Theorem 1D.15.

Proof. Similar to that of the Theorem.

Finite Algebras

For finite algebras one can do much better.

1D.18. Theorem. For every finite set X = {a1, · · · ,an} there exists a type X ∈TT0 and
elements a1, · · · ,an ∈Λø

→(X) such that the following holds.
(i) Λø

→(X) = {a | a∈X}.
(ii) For all k and f : Xk→X there exists an f ∈Λø

→(Xk→X) such that

f b1 · · · bk = f(b1, · · · ,bk).

Proof. Take X = 1n = 0n→0 and a i = λb1 · · · bn.bi ∈Λø
→(1n).

(i) By a simple argument using the inhabitation machine M1n .
(ii) By induction on k. If k = 0, then f is an element of X, say f = ai. Take f = ai.

Now suppose we can represent all k-ary functions. Given f : Xk+1→X, define for b∈X
fb(b1, · · · ,bk), f(b, b1, · · · ,bk).
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Each fb is a k-ary function and has a representative fb. Define

f , λb~b.b(fa1
~b) · · · (fan~b),

where ~b = b2, · · · , bk+1. Then

f b1 · · · bk+1 = b1 (fa1
~b) · · · (fan ~b)

= fb1 b2 · · · bk+1

= fb1(b2, · · · , bk+1), by the induction hypothesis,

= f(b1, · · · ,bk+1), by definition of fb1 .

One even can faithfully represent the full type structure over X as closed terms of λ0
→,

see Exercise 2E.22.

Examples as free or finite algebras

The examples in the beginning of this section all can be viewed as free or finite algebras.
The Booleans form a finite set and its representation is type 12. For this reason all
Boolean functions can be represented. The natural numbers N and the trees T are ex-
amples of free algebras with a handicapped representation. Words over a finite alphabet
Σ = {a1, · · · ,an} can be seen as an algebra with constant ǫ and further constructors
fai = λλw.aiw. The representations given are particular cases of the theorems about free
and finite algebras.

Pairing

In the untyped lambda calculus there exists a way to store two terms in such a way that
they can be retrieved.

pair, λabz.zab;

left, λz.z(λxy.x);

right, λz.z(λxy.y).

These terms satisfy

left(pairMN) =β (pairMN)(λxy.x)

=β (λz.zMN)(λxy.x)

=β M ;

right(pairMN) =β N.

The triple of terms 〈pair, left, right〉 is called a (notion of) ‘β-pairing’.
We will translate these notions to λ0

→. We work with the Curry version.

1D.19. Definition. Let A,B ∈TT and let R be a notion of reduction on Λ.
(i) A product with R-pairing is a type A×B ∈TT together with terms

pair∈Λ→(A→ B → (A×B));
left∈Λ→((A×B)→ A);
right∈Λ→((A×B)→ B),
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satisfying for variables x, y

left(pairxy) =R x;

right(pairxy) =R y.

(ii) The type A×B is called the product and the triple 〈pair, left, right〉 is called
the R-pairing .
(iii) An R-Cartesian product is a product with R-pairing satisfying moreover for vari-

ables z

pair(left z)(right z) =R z.

In that case the pairing is called a surjective R-pairing .

This pairing cannot be translated to a β-pairing in λ0
→ with a product A × B for

arbitrary types, see Barendregt [1974]. But for two equal types one can form the product
A × A. This makes it possible to represent also heterogeneous products using βη-
conversion.

1D.20. Lemma. For every type A∈TT0 there is a product A × A∈TT0 with β-pairing
pairA0 , left

A
0 and rightA0 .

Proof. Take

A×A, (A→A→A)→A;
pairA0 , λmnz.zmn;

leftA0 , λp.pK;

rightA0 , λp.pK∗.

1D.21. Proposition (Grzegorczyk [1964]). Let A,B ∈TT0 be arbitrary types. Then there

is a product A×B ∈TT0 with βη-pairing 〈pairA,B
0 , leftA,B

0 , rightA,B
0 〉 such that

pair
A,B
0 ∈ Λ0,

left
A,B
0 , rightA,B

0 ∈ Λ
{z:0}
0 ,

and

rk(A×B) = max{rk(A), rk(B), 2}.
Proof. Write n = arity(A),m = arity(B). Define

A×B ,A(1)→· · ·→A(n)→B(1)→· · ·→B(m)→0× 0,

where 0× 0, (0→0→0)→0. Then

rk(A×B) = max
i,j
{rk(Ai) + 1, rk(Bj) + 1, rk(02→0) + 1}

=max{rk(A), rk(B), 2}.
Define zA inductively: z0,z; zA→B,λa.zB. Then zA ∈Λz:0

0 (A). Write ~x = x1, · · · , xn, ~y =
y1, · · · , ym, ~zA = zA(1), · · · , zA(n) and ~zB = zB(1), · · · , zB(m). Now define

pair
A,B
0 , λmn.λ~x~y.pair00(m~x)(n~y);

left
A,B
0 , λp.λ~x.left00(p~x~zB);

right
A,B
0 , λp.λ~x.right00(p~zA~y).
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Then e.g.

left
A,B
0 (pairA,B

0 MN) =β λ~x.left
0
0(pair

0
0MN~x~zB)

=β λ~x. left
0
0[pair

0
0(M~x)(N~zB)]

=β λ~x.(M~x)

=η M.

In Barendregt [1974] it is proved that η-conversion is essential: with β-conversion one
can pair only certain combinations of types. Also it is shown that there is no surjective
pairing in the theory with βη-conversion. In Section 5B we will discuss systems extended
with surjective pairing. With similar techniques as in mentioned paper it can be shown

that in λ∞
→ there is no βη-pairing function pair

α,β
0 for base types. In section 2.3 we will

encounter other differences between λ∞
→ and λ0

→.

1D.22. Proposition. Let A1, · · · ,An ∈TT0. There are closed terms

tuplen : A1→· · ·→An→(A1× · · ·×An),

projnk : A1× · · ·×An→Ak,

such that for M1, · · · ,Mn of the right type one has

projnk(tuple
nM1 · · ·Mn) =βη Mk.

Proof. By iterating pairing.

1D.23. Notation. If there is little danger of confusion and the ~M,N are of the right
type we write

〈M1, · · · ,Mn〉, tuplenM1 · · ·Mn;

N · k , projnkN.

Then 〈M1, · · · ,Mn〉 · k =Mk, for 1 ≤ k ≤ n.

1E. Exercises

1E.1. Find types for

B , λxyz.x(yz);

C , λxyz.xzy;

C∗ , λxy.yx;

K∗ , λxy.y;

W , λxy.xyy.

1E.2. Find types for SKK, λxy.y(λz.zxx)x and λfx.f(f(fx)).
1E.3. Show that rk(A→B→C) = max{rk(A) + 1, rk(B) + 1, rk(C)}.
1E.4. Show that if M ≡ P [x := Q] and N ≡ (λx.P )Q, then M may have a type in λCu

→

but N not. A similar observation can be made for pseudo-terms of λdB
→ .

1E.5. Show the following.
(i) λxy.(xy)x /∈ ΛCu

→
,ø.

(ii) λxy.x(yx)∈ΛCu
→

,ø.
1E.6. Find inhabitants of (A→B→C)→B→A→C and (A→A→B)→A→B.
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1E.7. [van Benthem] Show that ΛCh
→ (A) and ΛCu

→
,ø(A) are for someA∈TTA not a context-

free language.
1E.8. Define in λ0

→ the pseudo-negation∼A,A→0. Construct an inhabitant of∼∼∼A→∼A.
1E.9. Prove the following, see definition 1B.30.

(i) Let M ∈ΛdB
→ with FV(M) ⊆ dom(Γ), then (MΓ)− ≡M and ΓMΓ ⊆ Γ.

(ii) Let M ∈ΛCh
→ , then (M−)ΓM ≡M .

1E.10. Construct a term F with ⊢λ0
→
F : ⊤2→⊤2 such that for trees t one has Ft =β t

mir,

where tmir is the mirror image of t, defined by

ǫmir , ǫ;

(p(t, s))mir , p(smir, tmir).

1E.11. A term M is called proper if all λ’s appear in the prefix of M , i.e. M ≡ λ~x.N
and there is no λ occurring in N . Let A be a type such that Λø

→(A) is not empty.
Show that

Every nf of type A is proper ⇔ rk(A) ≤ 2.

1E.12. Determine the class of closed inhabitants of the types 4 and 5.
1E.13. The collection of multi-ary trees can be seen as part of a multi-sorted algebra

with sorts MTree and LMTree as follows.

nil ∈ LMtree;

cons ∈ Mtree→LMtree→LMtree;

p ∈ LMtree→Mtree.

Represent this multi-sorted free algebra in λ0
→. Construct the lambda term rep-

resenting the tree

p

pppppppppppppp

NNNNNNNNNNNNNN

• p

��
��

��
�

??
??

??
? p

• • •

.

1E.14. In this exercise it will be proved that each term (having a β-nf) has a unique
lnf. A term M (typed or untyped) is always of the form λx1 · · ·xn.yM1 · · ·Mm

or λx1 · · ·xn.(λx.M0)M1 · · ·Mm. Then yM1 · · ·Mm (or (λx.M0)M1 · · ·Mm) is
the matrix of M and the (M0, )M1, · · · ,Mm are its components. A typed term
M ∈ΛΓ(A) is said to be fully eta (f.e.) expanded if its matrix is of type 0 and its
components are f.e. expanded. Show the following for typed terms. (For untyped
terms there is no finite f.e. expanded form, but the Nakajima tree, see B[1984]
Exercise 19.4.4, is the corresponding notion for the untyped terms.)

(i) M is in lnf iff M is a β-nf and f.e. expanded.

(ii) If M =βη N1 =βη N2 and N1, N2 are β-nfs, then N1 =η N2. [Hint. Use
η-postponement, see B[1984] Proposition 15.1.5.]



42 1. The simply typed lambda calculus

(iii) N1 =η N2 and N1, N2 are β-nfs, then there exist N↓ and N↑ such that
Ni ։η N↓ and N↑ ։η Ni, for i = 1, 2. [Hint. Show that both →η and η←
satisfy the diamond lemma.]

(iv) If M has a β-nf, then it has a unique lnf.
(v) If N is f.e. expanded and N ։β N

′, then N ′ is f.e. expanded.
(vi) For all M there is a f.e. expanded M∗ such that M∗ ։η M .
(vii) If M has a β-nf, then the lnf of M is the β-nf of M∗, its f.e. expansion.

1E.15. For which types A∈TT0 and M ∈Λ→(A) does one have

M in β-nf ⇒ M in lnf?

1E.16. (i) Let M = λx1 · · ·xn.xiM1 · · ·Mm be a β-nf. Define by induction on the
length of M its Φ-normal form, notation Φ(M), as follows.

Φ(λ~x.xiM1 · · ·Mm), λ~x.xi(Φ(λ~x.M1)~x) · · · (Φ(λ~x.Mm)~x).

(ii) Compute the Φ-nf of S = λxyz.xz(yz).

(iii) Write Φn,m,i , λy1 · · · ymλx1 · · ·xn.xi(y1~x) · · · (ym~x). Then
Φ(λ~x.xiM1 · · ·Mm) = Φn,m,i(Φ(λ~x.M1)) · · · (Φ(λ~x.Mm)).

Show that the Φn,m,i are typable.
(iv) Show that every closed nf of type A is up to =βη a product of the Φn,m,i.
(v) Write S in such a manner.

1E.17. Like in B[1984], the terms in this book are abstract terms, considered modulo
α-conversion. Sometimes it is useful to be explicit about α-conversion and even
to violate the variable convention that in a subterm of a term the names of free
and bound variables should be distinct. For this it is useful to modify the system
of type assignment.
(i) Show that ⊢Cu

λ→
is not closed under α-conversion. I.e.

Γ ⊢M :A,M ≡α M
′ 6⇒ Γ ⊢M ′:A.

[Hint. Consider M ′ ≡ λx.x(λx.x).]
(ii) Consider the following system of type assignment to untyped terms.

{x:A} ⊢ x : A;

Γ1 ⊢M : (A→B) Γ2 ⊢ N : A
,

Γ1 ∪ Γ2 ⊢ (MN) : B
provided Γ1 ∪ Γ2 is a basis;

Γ ⊢M : B
.

Γ− {x:A} ⊢ (λx.M) : (A→ B)

Provability in this system will be denoted by Γ ⊢′ M : A.
(iii) Show that ⊢′ is closed under α-conversion.
(iv) Show that

Γ ⊢′ M ′ : A ⇔ ∃M ≡α M
′.Γ ⊢M : A.
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1E.18. Elements in Λ are considered in this book modulo α-conversion, by working with
α-equivalence classes. If instead one works with α-conversion, as in Church [1941],
then one can consider the following problems on elements M of Λø.
1. GivenM , find an α-convert ofM with a smallest number of distinct variables.
2. Given M ≡α N , find a shortest α-conversion from M to N .
3. Given M ≡α N , find an α-conversion from M to N , which uses the smallest

number of variables possible along the way.
Study Statman [2007] for the proofs of the following results.
(i) There is a polynomial time algorithm for solving problem (1). It is reducible

to vertex coloring of chordal graphs.
(ii) Problem (2) is co-NP complete (in recognition form). The general feedback

vertex set problem for digraphs is reducible to problem (2).
(iii) At most one variable besides those occurring in both M and N is necessary.

This appears to be the folklore but the proof is not familiar. A polynomial
time algorithm for the α-conversion of M to N using at most one extra
variable is given.





CHAPTER 2

PROPERTIES

2A. Normalization

For several applications, for example for the problem of finding all possible inhabitants of
a given type, we will need the weak normalization theorem, stating that all typable terms
do have a βη-nf (normal form). The result is valid for all versions of λA

→ and a fortiori
for the subsystems λ0

→. The proof is due to Turing and is published posthumously in
Gandy [1980b]. In fact all typable terms in these systems are βη strongly normalizing,
which means that all βη-reductions are terminating. This fact requires more work and
will be proved in Section 2B.
The notion of ‘abstract reduction system’, see Klop [1992], is useful for the under-

standing of the proof of the normalization theorem.

2A.1. Definition. An abstract reduction system (ARS) is a pair (X,→R), where X is
a set and →R is a binary relation on X.

We usually will consider Λ,ΛA
→ with reduction relations →β(η) as examples of an ARS.

In the following definition WN, weak normalization, stands for having a nf, while SN,
strong normalization, stands for not having infinite reduction paths. A typical example
in (Λ,→β) is the term KIΩ that is WN but not SN.

2A.2. Definition. Let (X,R) be an ARS.
(i) An element x∈X is in R-normal form (R-nf ) if for no y ∈X one has x→R y.
(ii) An element x∈X is R-weakly normalizing (R-WN), notation x |= R-WN (or sim-

ply x |= WN), if for some y ∈X one has x։R y and y is in R-nf.
(iii) (X,R) is called WN, notation (X,R) |= WN, if

∀x∈X.x |= R-WN.

(iv) An element x∈X is said to beR-strongly normalizing (R-SN), notation x |= R-SN
(or simply x |= SN), if every R-reduction path starting with x

x→R x1 →R x2 →R · · ·
is finite.

(v) (X,R) is said to be strongly normalizing, notation (X,R) |= R-SN or simply
(X,R) |= SN, if

∀x∈X.x |= SN.

One reason why the notion of ARS is interesting is that some properties of reduction
can be dealt with in ample generality.

2A.3. Definition. Let (X,R) be an ARS.

45
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(i) We say that (X,R) is confluent or satisfies the Church-Rosser property, notation
(X,R) |= CR, if

∀x, y1, y2 ∈X.[x։R y1 & x։R y2 ⇒ ∃z ∈X.y1 ։R z & y2 ։R z].

(ii) We say that (X,R) is weakly confluent or satisfies the weak Church-Rosser prop-
erty , notation (X,R) |= WCR, if

∀x, y1, y2 ∈X.[x→R y1 & x→R y2 ⇒ ∃z ∈X.y1 ։R z & y2 ։R z].

It is not the case that WCR ⇒ CR, do Exercise 2E.18. However, one has the following
result.

2A.4. Proposition (Newman’s Lemma). Let (X,R) be an ARS. Then for (X,R)

WCR & SN ⇒ CR.

Proof. See B[1984], Proposition 3.1.25 or Lemma 5C.8 below, for a slightly stronger
localized version.

In this section we will show (ΛA
→,→βη) |= WN.

2A.5. Definition. (i) A multiset over N can be thought of as a generalized set S in
which each element may occur more than once. For example

S = {3, 3, 1, 0}

is a multiset. We say that 3 occurs in S with multiplicity 2; that 1 has multiplicity 1;
etcetera. We also may write this multiset as

S = {32, 11, 01} = {32, 20, 11, 01}.

More formally, the above multiset S can be identified with a function f ∈NN that is
almost everywhere 0:

f(0) = 1, f(1) = 1, f(2) = 0, f(3) = 2, f(k) = 0,

for k > 3. Such an S is finite if f has finite support, where

support(f), {x∈N | f(x) 6= 0}.

(ii) Let S(N) be the collection of all finite multisets over N. S(N) can be identified
with {f ∈NN | support(f) is finite}. To each f in this set we let correspond the multiset
intuitively denoted by

Sf = {nf(n) | n∈ support(f)}.
2A.6. Definition. Let S1, S2 ∈S(N). Write

S1→SS2

if S2 results from S1 by replacing some element (just one occurrence) by finitely many
lower elements (in the usual order of N). For example

{3, 3, 1, 0} →S {3, 2, 2, 2, 1, 1, 0}.
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The transitive closure of →S , not required to be reflexive, is called the multiset order6

and is denoted by >. (Another notation for this relation is →+
S .) So for example

{3, 3, 1, 0} > {3, 2, 2, 1, 1, 0, 1, 1, 0}.
In the following result it is shown that (S(N),→S) is WN, using an induction up to ω2.

2A.7. Lemma. We define a particular (non-deterministic) reduction strategy F on S(N).
A multi-set S is contracted to F (S) by taking a maximal element n∈S and replacing
it by finitely many numbers < n. Then F is a normalizing reduction strategy, i.e. for
every S ∈S(N) the S-reduction sequence

S →S F (S)→S F
2(S)→S · · ·

is terminating.

Proof. By induction on the highest number n occuring in S. If n = 0, then we are
done. If n = k+1, then we can successively replace in S all occurrences of n by numbers
≤ k obtaining S1 with maximal number ≤ k. Then we are done by the induction
hypothesis.

In fact (S(N),→S) is SN. Although we do not strictly need this fact in this Part, we
will give even two proofs of it. It will be used in Part II of this book. In the first place
it is something one ought to know; in the second place it is instructive to see that the
result does not imply that λA

→ satisfies SN.

2A.8. Lemma. The reduction system (S(N),→S) is SN.

We will give two proofs of this lemma. The first one uses ordinals; the second one is
from first principles.

Proof1. Assign to every S ∈S(N) an ordinal #S < ωω as suggested by the following
examples.

#{3, 3, 1, 0, 0, 0}= 2ω3 + ω + 3;

#{3, 2, 2, 2, 1, 1, 0}= ω3 + 3ω2 + 2ω + 1.

More formally, if S is represented by f ∈NN with finite support, then

#S = Σi∈Nf(i) · ωi.

Notice that
S1 →S S2 ⇒ #S1 > #S2

(in the example because ω3 > 3ω2 + ω). Hence by the well-foundedness of the ordinals
the result follows. 1

6We consider both irreflexive, usually denoted by < or its converse >, and reflexive order relations,
usually denoted by ≤ or its converse ≥. From < we can define the reflexive version ≤ by

a ≤ b ⇔ a = b or a < b.

Conversely, from ≤ we can define the irreflexive version < by

a < b ⇔ a ≤ b & a 6= b.

Also we consider partial and total (or linear) order relations for which we have for all a, b

a ≤ b or b ≤ a.

If nothing is said the order relation is total, while partial order relations are explicitly said to be partial.
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Proof2. Viewing multisets as functions with finite support, define

Fk , {f ∈NN | ∀n≥k. f(n) = 0};
F , ∪k∈NFk.

The set F is the set of functions with finite support. Define on F the relation >
corresponding to the relation →S for the formal definition of S(N).

f > g⇐⇒△ f(k) > g(k), where k∈N is largest

such that f(k) 6= g(k).

It is easy to see that (F , >) is a linear order. We will show that it is even a well-order,
i.e. for every non-empty set X ⊆ F there is a least element f0 ∈ X. This implies that
there are no infinite descending chains in F .
To show this claim, it suffices to prove that each Fk is well-ordered, since

(Fk+1 \ Fk) > Fk

element-wise. This will be proved by induction on k. If k = 0, then this is trivial, since
F0 = {λλn.0}. Now assume (induction hypothesis) that Fk is well-ordered in order to
show the same for Fk+1. Let X ⊆ Fk+1 be non-empty. Define

X(k), {f(k) | f ∈X} ⊆ N;

Xk , {f ∈X | f(k) minimal in X(k)} ⊆ Fk+1;

Xk|k , {g ∈Fk | ∃f ∈Xk f |k = g} ⊆ Fk,

where

(f |k)(i) , f(i), if i < k;

, 0, else.

By the induction hypothesisXk|k has a least element g0. Then g0 = f0|k for some
f0 ∈Xk. This f0 is then the least element of Xk and hence of X. 2

2A.9. Remark. The second proof shows in fact that if (D,>) is a well-ordered set, then
so is (S(D), >), defined analogously to (S(N), >). In fact the argument can be carried
out in Peano Arithmetic, showing

⊢PA TIα → TIαω ,

where TIα is the principle of transfinite induction for the ordinal α. Since TIω is in fact
ordinary induction we have in PA (in an iterated exponentiation parenthesing is to the

right: for example ωωω
= ω(ωω))

TIω, TIωω , TIωωω , · · · .
This implies that the proof of TIα can be carried out in Peano Arithmetic for every
α < ǫ0. Gentzen [1936] shows that TIǫ0 , where

ǫ0 = ωωωω···

,

cannot be carried out in PA.
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In order to prove that λA
→ is WN it suffices to work with λCh

→ . We will use the following
notation. We write terms with extra type information, decorating each subterm with its
type. For example, instead of (λxA.M)N ∈ termB we write (λxA.MB)A→BNA.

2A.10. Definition. (i) Let R ≡ (λxA.MB)A→BNA be a redex. The depth of R, nota-
tion dptR, is defined as

dpt(R), dpt(A→B),

where dpt on types is defined in Definition 1A.21.
(ii) To each M in λCh

→ we assign a multi-set SM as follows

SM , {dpt(R) |R is a redex occurrence in M},
with the understanding that the multiplicity of R in M is copied in SM .

In the following example we study how the contraction of one redex can duplicate
other redexes or create new redexes.

2A.11. Example. (i) Let R be a redex occurrence in a typed term M . Assume

M−→R β N,

i.e. N results from M by contracting R. This contraction can duplicate other redexes.
For example (we write M [P ], or M [P,Q] to display subterms of M)

(λx.M [x, x])R1 →β M [R1, R1]

duplicates the other redex R1.
(ii) (Lévy [1978]) Contraction of a β-redex may also create new redexes. For example

(λxA→B .M [xA→BPA]C)(A→B)→C(λyA.QB)→β M [(λyA.QB)A→BPA]C ;

(λxA.(λyB .M [xA, yB ]C)B→C)A→(B→C)PAQB →β (λyB .M [PA, yB ]C)B→CQB ;

(λxA→B .xA→B)(A→B)→(A→B)(λyA.PB)A→BQA →β (λyA.PB)A→BQA.

In Lévy [1978], 1.8.4., Lemme 3, it is proved (for the untyped λ-calculus) that the three
ways of creating redexes in example 2A.11(ii) are the only possibilities. It is also given
as Exercise 14.5.3 in B[1984].

2A.12. Lemma. Assume M−→R β N and let R1 be a created redex in N . Then

dpt(R) > dpt(R1).

Proof. In each of three cases we can inspect that the statement holds.

2A.13. Theorem (Weak normalization theorem for λA
→). IfM ∈Λ is typable in λA

→, then
M is βη-WN, i.e. has a βη-nf. In short λA

→ |= WN (or more explicitly λA
→ |= βη-WN).

Proof. By Proposition 1B.26(ii) it suffices to show this for terms in λCh
→ . Note that

η-reductions decrease the length of a term; moreover, for β-normal terms η-contractions
do not create β-redexes. Therefore in order to establish βη-WN it is sufficient to prove
that M has a β-nf.
Define the following β-reduction strategy F . IfM is in nf, then F (M),M . Otherwise,

let R be the rightmost redex of maximal depth n in M . A redex occurrence (λ1x1.P1)Q1

is called to the right of an other one (λ2x2.P2)Q2, if the occurrence of its λ, viz. λ1, is
to the right of the other redex λ, viz. λ2.
Then

F (M),N
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where M−→R β N . Contracting a redex can only duplicate other redexes that are to
the right of that redex. Therefore by the choice of R there can only be redexes of M
duplicated in F (M) of depth < n. By Lemma 2A.12 redexes created in F (M) by the
contraction M →β F (M) are also of depth < n. Therefore in case M is not in β-nf we
have

SM →S SF (M).

Since →S is SN, it follows that the reduction

M →β F (M)→β F
2(M)→β F

3(M)→β · · ·

must terminate in a β-nf.

2A.14. Corollary. Let A∈TTA and M ∈Λ→(A). Then M has a lnf.

Proof. Let M ∈Λ→(A). Then M has a β-nf by Theorem 2A.13, hence by Exercise
1E.14 also a lnf.

For β-reduction this weak normalization theorem was first proved by Turing, see
Gandy [1980a]. The proof does not really need SN for S-reduction, requiring trans-
finite induction up to ωω. The simpler result Lemma 2A.7, using induction up to ω2,
suffices.
It is easy to see that a different reduction strategy does not yield an S-reduction chain.

For example the two terms

(λxA.yA→A→AxAxA)A→A((λxA.xA)A→AxA)→β

yA→A→A((λxA.xA)A→AxA)((λxA.xA)A→AxA)

give the multisets {1, 1} and {1, 1}. Nevertheless, SN does hold for all systems λA
→, as

will be proved in Section 2B. It is an open problem whether ordinals can be assigned in
a natural and simple way to terms of λA

→ such that

M →β N ⇒ ord(M) > ord(N).

See Howard [1970] and de Vrijer [1987].

Applications of normalization

We will show that β-normal terms inhabiting the represented data types (Bool, Nat, Σ∗

and T 2) all are standard, i.e. correspond to the intended elements. From WN for λA
→ and

the subject reduction theorem it then follows that all inhabitants of the mentioned data
types are standard. The argumentation is given by a direct argument using basically
the Generation Lemma. It can be streamlined, as will be done for Proposition 2A.18,
by following the inhabitation machines, see Section 1C, for the types involved. For
notational convenience we will work with λCu

→ , but we could equivalently work with λCh
→

or λdB
→ , as is clear from Corollary 1B.25(iii) and Proposition 1B.32.

2A.15. Proposition. Let Bool ≡ Boolα, with α a type atom. Then for M in nf one has

⊢M : Bool ⇒ M ∈{true, false}.
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Proof. By repeated use of Proposition 1B.21, the free variable Lemma 1B.2 and the
generation Lemma for λCu

→ , proposition 1B.3, one has the following.

⊢M : α→α→α ⇒ M ≡ λx.M1

⇒ x:α ⊢M1 : α→α
⇒ M1 ≡ λy.M2

⇒ x:α, y:α ⊢M2 : α

⇒ M2 ≡ x or M2 ≡ y.
So M ≡ λxy.x ≡ true or M ≡ λxy.y ≡ false.

2A.16. Proposition. Let Nat ≡ Natα = (α→α)→α→α. Then for M in nf one has

⊢M : Nat ⇒ M ∈{cn |n∈N}.
Proof. Again we have

⊢M : (α→α)→α→α ⇒ M ≡ λf.M1

⇒ f :α→α ⊢M1 : α→α
⇒ M1 ≡ λx.M2

⇒ f :α→α, x:α ⊢M2 : α.

Now we have

f :α→α, x:α,⊢M2 : α ⇒ [M2 ≡ x ∨
[M2 ≡ fM3 & f :α→α, x:α ⊢M3 : α]].

Therefore by induction on the structure of M2 it follows that

f :α→α, x:α ⊢M2 : α ⇒ M2 ≡ fnx,
with n ≥ 0. So M ≡ λfx.fnx ≡ cn.

2A.17. Proposition. Let Sigma∗ ≡ Sigma∗α. Then for M in nf one has

⊢M : Sigma∗ ⇒ M ∈{w |w∈Σ∗}.
Proof. Again we have

⊢M : α→(α→α)k→α ⇒ M ≡ λx.N
⇒ x:α ⊢ N : (α→α)k→α
⇒ N ≡ λa1.N1 & x:α, a1:α→α ⊢ N1 : (α→α)k−1→α
· · ·
⇒ N ≡ λa1 · · · ak.N & x:α, a1, · · · , ak:α→α ⊢ Nk : α

⇒ [Nk ≡ x ∨
[Nk ≡ aijN ′

k & x:α, a1, · · · , ak:α→α ⊢ Nk
′ : α]]

⇒ Nk ≡ ai1(ai2(· · · (aipx) · ·))
⇒ M ≡ λxa1 · · · ak.ai1(ai2(· · · (aipx) · ·))
≡ ai1ai2 · · · aip .

A more streamlined proof will be given for the data type of trees T 2.
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2A.18. Proposition. Let ⊤ ≡ ⊤2
α , (α→ α→ α)→ α→ α and M ∈Λø→(⊤2).

(i) If M is in lnf, then M ≡ t, for some t∈T 2.
(ii) Then M=βηt for some tree t∈T 2.

Proof. (i) For M in lnf use the inhabitation machine for ⊤2 to show that M ≡ t for
some t∈T 2.

(ii) For a general M there is by Corollary 2A.14 an M ′ in lnf such that M =βη M
′.

Then by (i) applied to M ′ we are done.

This proof raises the question what terms in β-nf are also in lnf, do Exercise 1E.15.

2B. Proofs of strong normalization

We now will give two proofs showing that λA
→ |= SN. The first one is the classical proof

due to Tait [1967] that needs little technique, but uses set theoretic comprehension. The
second proof due to Statman is elementary, but needs results about reduction.

2B.1. Theorem (Strong normalization theorem for λCh
→ ). For all A∈TT∞, M ∈ΛCh

→ (A)
one has βη-SN(M).

Proof. We use an induction loading. First we add to λA
→ constants dα ∈ΛCh

→ (α) for
each atom α, obtaining λCh

→
+. Then we prove SN for the extended system. It follows a

fortiori that the system without the constants is SN.
Writing SN for SNβη one first defines for A∈TT∞ the following class CA of computable

terms of type A.

Cα , {M ∈ΛCh
→

,∅(α) | SN(M)};
CA→B , {M ∈ΛCh

→
,∅(A→B) | ∀Q∈CA.MQ∈CB};

C ,
⋃

A∈TT∞

CA.

Then one defines the classes C∗A of terms that are computable under substitution

C∗A , {M ∈ΛCh
→ (A) | ∀~P ∈C.[M [~x: = ~P ]∈ΛCh

→
,∅(A) ⇒ M [~x: = ~P ]∈CA]}.

Write C∗ ,⋃{C∗A | A∈TT∞}. For A ≡ A1→· · ·→An→α define

dA , λxA1
1 · · ·λxAn

n .dα.

Then for A one has

M ∈CA ⇔ ∀ ~Q∈C.M ~Q∈ SN, (0)

M ∈C∗A ⇔ ∀~P , ~Q∈C.M [~x: = ~P ] ~Q∈ SN, (1)

where the ~P , ~Q should have the right types and M ~Q and M [~x: = ~P ] ~Q are of type α,
respectively. By an easy simultaneous induction on A one can show

M ∈CA ⇒ SN(M); (2)

dA ∈CA. (3)

In particular, since M [~x: = ~P ] ~Q∈ SN ⇒ M ∈ SN, it follows that
M ∈C∗ ⇒ M ∈ SN. (4)
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Now one shows by induction on M that

M ∈Λ(A) ⇒ M ∈C∗A. (5)

We distinguish cases and use (1).

CaseM ≡ x. Then for P, ~Q∈C one hasM [x: = P ] ~Q ≡ P ~Q∈C ⊆ SN, by the definition
of C and (2).
Case M ≡ NL is easy.

Case M ≡ λx.N . Now λx.N ∈C∗ iff for all ~P ,Q, ~R∈C one has

(λx.N [~y: = ~P ])Q~R∈ SN. (6)

By the IH one has N ∈C∗ ⊆ SN; therefore, if ~P ,Q, ~R∈C ⊆ SN, then

N [x: = Q, ~y: = ~P ]~R∈ SN. (7)

Now every maximal reduction path σ starting from the term in (6) passes through a

reduct of the term in (7), as reductions within N, ~P ,Q, ~R are finite, hence σ is finite.
Therefore we have (6).
Finally by (5) and (4), every typable term of λCh+

→ , hence of λA
→, is SN.

The idea of the proof is that one would have liked to prove by induction on M that it

is SN. But this is not directly possible. One needs the induction loading that M ~P ∈ SN.
For a typed system with only combinators this is sufficient and is covered by the original
argument of Tait [1967]. For lambda terms one needs the extra induction loading of being
computable under substitution. This argument was first presented by Prawitz [1971],
for natural deduction, Girard [1971] for the second order typed lambda calculus λ2, and
Stenlund [1972] for λ→.

2B.2. Corollary (SN for λCu
→ ). ∀A∈TT∞∀M ∈ΛCu,Γ

→ (A).SNβη(M).

Proof. SupposeM ∈Λ has type A with respect to Γ and has an infinite reduction path
σ. By repeated use of Proposition 1B.26(ii) liftM toM ′ ∈ΛCh

→ with an infinite reduction
path (that projects to σ), contradicting the Theorem.

An elementary proof of strong normalization

Now we present an elementary proof, due to Statman, of strong normalization of λA,Ch
→ ,

where A = {0}. Inspiration came from Nederpelt [1973], Gandy [1980b] and Klop [1980].
The point of this proof is that in this reduction system strong normalizability follows
from normalizability by local structure arguments similar to and in many cases identical
to those presented for the untyped lambda calculus in B[1984]. These include analysis
of redex creation, permutability of head with internal reductions, and permutability of
η- with β-redexes. In particular, no special proof technique is needed to obtain strong
normalization once normalization has been observed. We use some results in the untyped
lambda calculus

2B.3. Definition. (i) Let R ≡ (λx.X)Y be a β-redex. Then R is
(1) an I-redex if x∈FV(X);
(2) a K-redex if x /∈ FV(X);
(3) a Ko-redex if R is a K-redex and x = x0 and X ∈ΛCh

→ (0);
(4) a K+-redex if R is a K-redex and is not a Ko-redex.
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(ii) A term M is said to have the λKo-property , if every abstraction λx.X in M with
x /∈ FV(X) satisfies x = x0 and X ∈ΛCh

→ (0).

Notation. (i) →βI is reduction of I-redexes.
(ii) →βIK+ is reduction of I- or K+-redexes.
(iii) →βKo is reduction of Ko-redexes.

2B.4. Theorem. Every M ∈ΛCh
→ is βη-SN.

Proof. The result is proved in several steps.
(i) Every term is βη-normalizable and therefore has a hnf. This is Theorem 2A.13.
(ii) There are no β-reduction cycles. Consider a shortest term M at the beginning of

a cyclic reduction. Then

M →β M1 →β · · · →β Mn ≡M,

where, by minimality of M , at least one of the contracted redexes is a head-redex. Then
M has an infinite quasi-head-reduction consisting of ։β ◦ →h ◦ ։β steps. Therefore
M has an infinite head-reduction, as internal (i.e. non-head) redexes can be postponed.
(This is Exercise 13.6.13 [use Lemma 11.4.5] in B[1984].) This contradicts (i), using
B[1984], Corollary 11.4.8 to the standardization Theorem.
(iii) M ։η N ։+

β L ⇒ ∃P.M ։+
β P ։η N . This is a strengthening of η-

postponement, B[1984] Corollary 15.1.6, and can be proved in the same way.
(iv) β-SN ⇒ βη-SN. Take an infinite →βη sequence. Make a diagram with β-steps

drawn horizontally and η-steps vertically. These vertical steps are finite, as η |= SN.
Apply (iii) at each ։η ◦։+

β -step. The result yields a horizontal infinite →β sequence.

(v) We have λA
→ |= βI-WN. By (i).

(vi) λA
→ |= βI-SN. By Church’s result in B[1984], Conservation Theorem for λI, 11.3.4.

(vii) M ։β N ⇒ ∃P.M ։βIK+ P ։βKo N (βKo-postponement). When contracting
a Ko redex, no redex can be created. Realizing this, one has

P
βIK+

// //

βKo

��

P ′

βKo

����
Q

βIK+
// R

From this the statement follows by a simple diagram chase, that w.l.o.g. looks like

M
βIK+

// βIK+

// //

βKo

��
βKo

����

βIK+

// // P

βKo

����· βIK+

//

βKo

��

βIK+

// //

βKo

����
· βIK+

// N

(viii) Suppose M has the λKo-property. Then M β-reduces to only finitely many N .
First observe that M ։βIK+ N ⇒ M ։βI N , as a contraction of an I-redex cannot

create a K+-redex. (But a contraction of a K redex can create a K+ redex.) Hence by
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(vi) the set X = {P |M ։βIK+ P} is finite. Since K-redexes shorten terms, also the set
of Ko-reducts of elements of X form a finite set. Therefore by (vii) we are done.
(ix) If M has the λKo-property, then M |= β-SN. By (viii) and (ii).
(x) If M has the λKo-property, then M |= βη-SN. By (iv) and (ix).
(xi) For each M there is an N with the λKo-property such that N ։βη M . Let

R ≡ λxA.PB a subterm of M , making it fail to be a term with the λKo-property. Write
A = A1→· · ·→Aa→0, B = B1→· · ·→Bb→0. Then replace mentioned subterm by

R′ ≡ λxAλyB1
1 · · · yBb

b .(λz0.(PyB1
1 · · · yBb

b ))(xAuA1
1 · · ·uAa

a ),

which βη-reduces to R, but does not violate the λKo-property. That R′ contains the
free variables ~u does not matter. Treating each such subterm this way, N is obtained.
(xii) λA

→ |= βη-SN. By (x) and (xi).

Other proofs of SN from WN are in de Vrijer [1987], Kfoury and Wells [1995], Sørensen
[1997], and Xi [1997]. In the proof of de Vrijer a computation is given of the longest
reduction path to β-nf for a typed term M .

2C. Checking and finding types

There are several natural problems concerning type systems.

2C.1. Definition. (i) The problem of type checking consists of determining, given basis
Γ, term M and type A whether Γ ⊢M : A.

(ii) The problem of typability consists of determining for a given term M whether M
has some type with respect to some Γ.
(iii) The problem of type reconstruction (‘finding types’) consists of finding all possible

types A and bases Γ that type a given M .
(iv) The inhabitation problem consists of finding out whether a given type A is inhab-

ited by some term M in a given basis Γ.
(v) The enumeration problem consists of determining for a given type A and a given

context Γ all possible terms M such that Γ ⊢M : A.

The five problems may be summarized stylistically as follows.

Γ ⊢λ→ M : A ? type checking ;

∃A,Γ [Γ ⊢λ→ M : A] ? typability ;

? ⊢λ→ M : ? type reconstruction;

∃M [Γ ⊢λ→ M : A] ? inhabitation;

Γ ⊢λ→ ? : A enumeration.

In another notation this is the following.

M ∈ ΛΓ
→(A) ? type checking ;

∃A,Γ M ∈ ΛΓ
→ (A)? typability ;

M ∈ Λ?
→(?) type reconstruction;

ΛΓ
→(A) 6= ∅ ? inhabitation;

? ∈ ΛΓ
→(A) enumeration.
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In this section we will treat the problems of type checking, typability and type recon-
struction for the three versions of λ→. It turns out that these problems are decidable
for all versions. The solutions are essentially simpler for λCh

→ and λdB
→ than for λCu

→ . The
problems of inhabitation and enumeration will be treated in the next section.
One may wonder what is the role of the context Γ in these questions. The problem

∃Γ∃A Γ ⊢M : A.

can be reduced to one without a context. Indeed, for Γ = {x1:A1, · · · , xn:An}
Γ ⊢M : A ⇔ ⊢ (λx1(:A1) · · ·λxn(:An).M) : (A1 → · · · → An → A).

Therefore
∃Γ∃A [Γ ⊢M : A] ⇔ ∃B [⊢ λ~x.M : B].

On the other hand the question

∃Γ∃M [Γ ⊢M : A] ?

is trivial: take Γ = {x:A} and M ≡ x. So we do not consider this question.
The solution of the problems like type checking for a fixed context will have important

applications for the treatment of constants.

Checking and finding types for λdB
→ and λCh

→

We will see again that the systems λdB
→ and λCh

→ are essentially equivalent. For these sys-
tems the solutions to the problems of type checking, typability and type reconstruction
are easy. All of the solutions are computable with an algorithm of linear complexity.

2C.2. Proposition (Type checking for λdB
→ ). Let Γ be a basis of λdB

→ . Then there is a
computable function typeΓ : ΛdB

→ → TT ∪ {error} such that

M ∈ ΛdB
→

,Γ(A) ⇔ typeΓ(M) = A.

Proof. Define

typeΓ(x) , Γ(x);

typeΓ(MN) , B, if typeΓ(M) = typeΓ(N)→B,

, error, else;

typeΓ(λx:A.M) , A→typeΓ∪{x:A}(M), if typeΓ∪{x:A}(M) 6= error,

, error, else.

Then the statement follows by induction on the structure of M .

2C.3. Corollary. Typability and type reconstruction for λdB
→ are computable. In fact

one has the following.
(i) M ∈ ΛdB

→
,Γ ⇔ typeΓ(M) 6= error.

(ii) Each M ∈ΛdB
→

,Γ(typeΓ) has a unique type; in particular

M ∈ ΛdB
→

,Γ(typeΓ(M)).

Proof. By the proposition.

For λCh
→ things are essentially the same, except that there are no bases needed, since

variables come with their own types.
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2C.4. Proposition (Type checking for λCh
→ ). There is a computable function type :

ΛCh
→ → TT such that

M ∈ ΛCh
→ (A) ⇔ type(M) = A.

Proof. Define

type(xA) , A;

type(MN) , B, if type(M) = type(N)→B,

type(λxA.M) , A→type(M).

Then the statement follows again by induction on the structure of M .

2C.5. Corollary. Typability and type reconstruction for λCh
→ are computable. In fact

one has the following. EachM ∈ΛCh
→ has a unique type; in particularM ∈ ΛCh

→ (type(M)).

Proof. By the proposition.

Checking and finding types for λCu
→

We now will show the computability of the three questions for λCu
→ . This occupies 2C.6

- 2C.16 and in these items ⊢ stands for ⊢Cu
λ→

over a general TTA.

Let us first make the easy observation that in λCu
→ types are not unique. For example

I ≡ λx.x has as possible type α→α, but also (β→β)→(β→β) and in general A→A. Of
these types α→α is the ‘most general’ in the sense that the other ones can be obtained
by a substitution in α.

2C.6. Definition. (i) A substitutor is an operation ∗ : TT→ TT such that

∗(A→ B) ≡ ∗(A)→ ∗(B).

(ii) We write A∗ for ∗(A).
(iii) Usually a substitution ∗ has a finite support, that is, for all but finitely many

type variables α one has α∗ ≡ α (the support of ∗ being
sup(∗) = {α | α∗ 6≡ α}).

In that case we write

∗(A) = A[α1 := α∗
1, · · · , αn := α∗

n],

where {α1, · · · , αn} ⊇ sup(∗). We also write

∗ = [α1 := α∗
1, · · · , αn := α∗

n]

and

∗ = [ ]

for the identity substitution.

2C.7. Definition. (i) Let A,B ∈TT. A unifier for A and B is a substitutor ∗ such that
A∗ ≡ B∗.

(ii) The substitutor ∗ is a most general unifier for A and B if
• A∗ ≡ B∗

• A∗1 ≡ B∗1 ⇒ ∃ ∗2 . ∗1 ≡ ∗2 ◦ ∗.
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(iii) Let E = {A1 = B1, · · · , An = Bn} be a finite set of equations between types.
The equations do not need to be valid. A unifier for E is a substitutor ∗ such that
A∗

1 ≡ B∗
1 & · · · & A∗

n ≡ B∗
n. In that case one writes ∗ |= E. Similarly one defines the

notion of a most general unifier for E.

2C.8. Examples. The types β → (α → β) and (γ → γ) → δ have a unifier. For
example ∗ = [β := γ → γ, δ := α → (γ → γ)] or ∗1 = [β := γ → γ, α := ε → ε,
δ := ε→ ε→ (γ → γ)]. The unifier ∗ is most general, ∗1 is not.

2C.9. Definition. A is a variant of B if for some ∗1 and ∗2 one has

A = B∗1 and B = A∗2 .

2C.10. Example. α→ β → β is a variant of γ → δ → δ but not of α→ β → α.

Note that if ∗1 and ∗2 are both most general unifiers of say A and B, then A∗1 and
A∗2 are variants of each other and similarly for B.
The following result due to Robinson [1965] states that (in the first-order7 case) uni-

fication is decidable.

2C.11. Theorem (Unification theorem). (i) There is a recursive function U having (af-
ter coding) as input a pair of types and as output either a substitutor or fail such
that

A and B have a unifier ⇒ U(A,B) is a most general unifier

for A and B;

A and B have no unifier ⇒ U(A,B) = fail.

(ii) There is (after coding) a recursive function U having as input finite sets of equa-
tions between types and as output either a substitutor or fail such that

E has a unifier ⇒ U(E) is a most general unifier for E;

E has no unifier ⇒ U(E) = fail.

Proof. Note that A1→A2 ≡ B1→B2 holds iff A1 ≡ B1 and A2 ≡ B2 hold.
(i) Define U(A,B) by the following recursive loop, using case distinction.

U(α,B) = [α := B], if α /∈ FV(B),

= [ ], if B = α,

= fail, else;

U(A1→A2, α) = U(α,A1→A2);

U(A1→A2, B1→B2) = U(A
U(A2,B2)
1 , B

U(A2,B2)
1 ) ◦ U(A2, B2),

where this last expression is considered to be fail if one of its parts is. Let

#var(A,B) = ‘the number of variables in A→ B′,

#→(A,B) = ‘the number of arrows in A→ B’.

By induction on (#var(A,B),#→(A,B)) ordered lexicographically one can show that
U(A,B) is always defined. Moreover U satisfies the specification.

(ii) If E = {A1 = B1, · · · , An = Bn}, then define U(E) = U(A,B), where
A = A1→· · ·→An and B = B1→· · ·→Bn.

7That is, for the algebraic signature 〈TT,→〉. Higher-order unification is undecidable, see Section 4B.
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See Baader and Nipkow [1998] and Baader and Snyder [2001] for more on unifica-
tion. The following result due to Parikh [1973] for propositional logic (interpreted by
the propositions-as-types interpretation) and Wand [1987] simplifies the proof of the
decidability of type checking and typability for λ→.

2C.12. Proposition. For every basis Γ, term M ∈Λ and A∈TT such that FV(M) ⊆
dom(Γ) there is a finite set of equations E = E(Γ,M,A) such that for all substitutors ∗
one has

∗ |= E(Γ,M,A) ⇒ Γ∗ ⊢M : A∗, (1)

Γ∗ ⊢M : A∗ ⇒ ∗1 |= E(Γ,M,A), (2)

for some ∗1 such that ∗ and ∗1 have the same

effect on the type variables in Γ and A.

Proof. Define E(Γ,M,A) by induction on the structure of M :

E(Γ, x, A) = {A = Γ(x)};
E(Γ,MN,A) = E(Γ,M, α→A) ∪ E(Γ, N, α),

where α is a fresh variable;

E(Γ, λx.M,A) = E(Γ ∪ {x:α},M, β) ∪ {α→β = A},
where α, β are fresh.

By induction on M one can show (using the generation Lemma (1B.3)) that (1) and (2)
hold.

2C.13. Definition. (i) Let M ∈Λ. Then (Γ, A) is a principal pair for M , notation
pp(M), if
(1) Γ ⊢M : A.
(2) Γ′ ⊢M : A′ ⇒ ∃∗ [Γ∗ ⊆ Γ′ & A∗ ≡ A′].
Here {x1:A1, · · · }∗ = {x1:A∗

1, · · · }.
(ii) Let M ∈Λ be closed. Then A is a principal type, notation pt(M), if

(1) ⊢M : A
(2) ⊢M : A′ ⇒ ∃∗ [A∗ ≡ A′].

Note that if (Γ, A) is a pp for M , then every variant (Γ′, A′) of (Γ, A), in the obvious
sense, is also a pp for M . Conversely if (Γ, A) and (Γ′, A′) are pp’s for M , then (Γ′, A′)
is a variant of (Γ, A). Similarly for closed terms and pt’s. Moreover, if (Γ, A) is a pp for
M , then FV(M) = dom(Γ).
The following result is independently due to Curry [1969], Hindley [1969], and Milner

[1978]. It shows that for λ→ the problems of type checking and typability are decidable.
One usually refers to it as the ‘Hindley-Milner algorithm’.

2C.14. Theorem (Principal type theorem for λCu
→ ). (i) There exists a computable func-

tion pp such that one has

M has a type ⇒ pp(M) = (Γ, A), where (Γ, A) is a pp for M ;

M has no type ⇒ pp(M) = fail.
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(ii) There exists a computable function pt such that for closed terms M one has

M has a type ⇒ pt(M) = A, where A is a pt for M ;

M has no type ⇒ pt(M) = fail.

Proof. (i) Let FV(M) = {x1, · · · , xn} and set Γ0 = {x1:α1, · · · , xn:αn} and A0 = β.
Note that

M has a type ⇒ ∃Γ ∃A Γ ⊢M : A

⇒ ∃ ∗ Γ∗
0 ⊢M : A∗

0

⇒ ∃ ∗ ∗ |= E(Γ0,M,A0).

Define

pp(M) , (Γ∗
0, A

∗
0), if U(E(Γ0,M,A0)) = ∗;

, fail, if U(E(Γ0,M,A0)) = fail.

Then pp(M) satisfies the requirements. Indeed, if M has a type, then

U(E(Γ0,M,A0)) = ∗
is defined and Γ∗

0 ⊢ M : A∗
0 by (1) in Proposition 2C.12. To show that (Γ∗

0, A
∗
0) is a pp,

suppose that also Γ′ ⊢M : A′. Let Γ̃ = Γ′ ↾ FV(M); write Γ̃ = Γ∗0
0 and A′ = A∗0

0 . Then
also Γ∗0

0 ⊢ M : A∗0
0 . Hence by (2) in proposition 2C.12 for some ∗1 (acting the same as

∗0 on Γ0, A0) one has ∗1 |= E(Γ0,M,A0). Since ∗ is a most general unifier (proposition
2C.11) one has ∗1 = ∗2 ◦ ∗ for some ∗2. Now indeed

(Γ∗
0)

∗2 = Γ∗1
0 = Γ∗0

0 = Γ̃ ⊆ Γ′

and

(A∗
0)

∗2 = A∗1
0 = A∗0

0 = A′.

If M has no type, then ¬∃ ∗ ∗ |= E(Γ0,M,A0) hence

U(Γ0,M,A0) = fail = pp(M).

(ii) Let M be closed and pp(M) = (Γ, A). Then Γ = ∅ and we can put pt(M) = A.

2C.15. Corollary. Type checking and typability for λCu
→ are decidable.

Proof. As to type checking, let M and A be given. Then

⊢M : A ⇔ ∃∗ [A = pt(M)∗].

This is decidable (as can be seen using an algorithm—pattern matching—similar to the
one in Theorem 2C.11).
As to typability, let M be given. Then M has a type iff pt(M) 6= fail.

The following result is due to Hindley [1969] and Hindley [1997], Thm. 7A2.

2C.16. Theorem (Second principal type theorem for λCu
→ ). (i) For every A∈TT one has

⊢M : A ⇒ ∃M ′[M ′ ։β M & pt(M ′) = A].

(ii) For every A∈TT there exists a basis Γ and M ∈Λ such that (Γ, A) is a pp for M.
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Proof. (i) We present a proof by examples. We choose three situations in which we
have to construct an M ′ that are representative for the general case. Do Exercise 2E.5
for the general proof.
Case M ≡ λx.x and A ≡ (α→β)→α→β. Then pt(M) ≡ α→α. Take M ′ ≡ λxy.xy.

The η-expansion of λx.x to λxy.xy makes subtypes of A correspond to unique subterms
of M ′.
Case M ≡ λxy.y and A ≡ (α→γ)→β→β. Then pt(M) ≡ α→β→β. Take M ′ ≡

λxy.Ky(λz.xz). The β-expansion forces x to have a functional type.
Case M ≡ λxy.x and A ≡ α→α→α. Then pt(M) ≡ α→β→α. Take M ′ ≡

λxy.Kx(λf.[fx, fy]). The β-expansion forces x and y to have the same types.
(ii) Let A be given. We know that ⊢ I : A→A. Therefore by (i) there exists an

I′ ։βη I such that pt(I′) = A→A. Then take M ≡ I′x. We have pp(I′x) = ({x:A}, A).
It is an open problem whether the result also holds in the λI-calculus.

Complexity

A closer look at the proof of Theorem 2C.14 reveals that the typability and type-checking
problems (understood as yes or no decision problems) reduce to solving first-order uni-
fication, a problem known to be solvable in polynomial time, see Baader and Nip-
kow [1998]. Since the reduction is also polynomial, we conclude that typability and
type-checking are solvable in polynomial time as well.
However, the actual type reconstruction may require exponential space (and thus also

exponential time), just to write down the result. Indeed, Exercise 2E.21 demonstrates
that the length of a shortest type of a given term may be exponential in the length of
the term. The explanation of the apparent inconsistency between the two results is this:
long types can be represented by small graphs.
In order to decide whether for two typed terms M,N ∈Λ→(A) one has

M =βη N,

one can normalize both terms and see whether the results are syntactically equal (up
to α-conversion). In Exercise 2E.20 it will be shown that the time and space costs of
solving this conversion problem is hyper-exponential (in the sum of the sizes of M,N).
The reason is that there are short terms having very long normal forms. For instance,
the type-free application of Church numerals

cncm = cmn

can be typed, even when applied iteratively

cn1cn2 · · · cnk
.

In Exercise 2E.19 it is shown that the costs of this typability problem are also at most
hyper-exponential. The reason is that Turing’s proof of normalization for terms in λ→

uses a successive development of redexes of ‘highest’ type. Now the length of each such
development depends exponentially on the length of the term, whereas the length of a
term increases at most quadratically at each reduction step. The result even holds for
typable termsM,N ∈ΛCu

→ (A), as the cost of finding types only adds a simple exponential
to the cost.
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One may wonder whether there is not a more efficient way to decide M =βη N , for
example by using memory for the reduction of the terms, rather than a pure reduction
strategy that only depends on the state of the term reduced so far. The sharpest question
is whether there is any Turing computable method, that has a better complexity class.
In Statman [1979] it is shown that this is not the case, by showing that every elementary
time bounded Turing machine computation can be coded as a a convertibility problem for
terms of some type in λ0

→. A shorter proof of this result can be found in Mairson [1992].

2D. Checking inhabitation

In this section we study for λA
→ the problem of inhabitation. In Section 1C we wanted to

enumerate all possible normal terms in a given type A. Now we study mere existence of
a term M such that in the empty context ⊢λA

→
M : A. By Corollaries 1B.20 and 1B.33

it does not matter whether we work in the system à la Curry, Church or de Bruijn.
Therefore we will focus on λCu

→ . Note that by Proposition 1B.2 the term M must be
closed. From the normalization theorem 2A.13 it follows that we may limit ourselves to
find a term M in β-nf.
For example, if A = α→α, then we can take M ≡ λx(:α).x. In fact we will see later

that this M is modulo β-conversion the only choice. For A = α→α→α there are two
inhabitants: M1 ≡ λx1x2.x1 ≡ K and M2 ≡ λx1x2.x2 ≡ K∗. Again we have exhausted
all inhabitants. If A = α, then there are no inhabitants, as we will see soon.
Various interpretations will be useful to solve inhabitation problems.

The Boolean model

Type variables can be interpreted as ranging over B = {0, 1} and → as the two-ary
function on B defined by

x→y = 1− x+ xy

(classical implication). This makes every type A into a Boolean function. More formally
this is done as follows.

2D.1. Definition. (i) A Boolean valuation is a map ρ : A→B.
(ii) Let ρ be a Boolean valuation. The Boolean interpretation under ρ of a type

A∈TT, notation [[A]]ρ, is defined inductively as follows.

[[α]]ρ , ρ(α);

[[A1→A2]]ρ , [[A1]]ρ→[[A2]]ρ.

(iii) A Boolean valuation ρ satisfies a type A, notation ρ |= A, if [[A]]ρ = 1. Let

Γ = {x1 : A1, · · · , xn : An}, then ρ satisfies Γ, notation ρ |= Γ, if

ρ |= A1 & · · · & ρ |= An.

(iv) A type A is classically valid, notation |= A, iff for all Boolean valuations ρ one
has ρ |= A.

2D.2. Proposition. Let Γ ⊢λA
→
M :A. Then for all Boolean valuations ρ one has

ρ |= Γ ⇒ ρ |= A.
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Proof. By induction on the derivation in λA
→.

From this it follows that inhabited types are classically valid. This in turn implies
that the type α is not inhabited.

2D.3. Corollary. (i) If A is inhabited, then |= A.
(ii) A type variable α is not inhabited.

Proof. (i) Immediate by Proposition 2D.2, by taking Γ = ∅.
(ii) Immediate by (i), by taking ρ(α) = 0.

One may wonder whether the converse of 2D.3(i), i.e.

|= A ⇒ A is inhabited (1)

holds. We will see that in λA
→ this is not the case. For λ0

→ (having only one base type
0), however, the implication (1) is valid.

2D.4. Proposition (Statman [1982]). Let A = A1→· · ·→An→0, with n ≥ 1 be a type
of λ0

→. Then

A is inhabited ⇔ for some i with 1 ≤ i ≤ n the type

Ai is not inhabited.

Proof. ( ⇒ ) Assume ⊢λ0
→
M : A. Suppose towards a contradiction that all Ai are

inhabited, i.e. ⊢λ0
→
Ni : Ai. Then ⊢λ0

→
MN1 · · ·Nn : 0, contradicting 2D.3(ii).

(⇐) By induction on the structure of A. Assume that Ai with 1 ≤ i ≤ n is not
inhabited.
Case 1. Ai = 0. Then

x1 : A1, · · · , xn : An ⊢ xi : 0
so

⊢ (λx1 · · ·xn.xi) : A1→· · ·→An→0,

i.e. A is inhabited.
Case 2. Ai = B1→· · ·→Bm→0. By (the contrapositive of) the induction hypothesis

applied to Ai it follows that all Bj are inhabited, say ⊢Mj : Bj . Then

x1 : A1, · · · , xn : An ⊢ xi : Ai = B1→· · ·→Bm→0

⇒ x1 : A1, · · · , xn : An ⊢ xiM1 · · ·Mm : 0

⇒ ⊢ λx1 · · ·xn.xiM1 · · ·Mm : A1→· · ·→An→0 = A.

From the proposition it easily follows that inhabitation of types in λ0
→ is decidable

with a linear time algorithm.

2D.5. Corollary. In λ0
→ one has for all types A

A is inhabited ⇔ |= A.

Proof. ( ⇒ ) By Proposition 2D.3(i). (⇐) Assume |= A and that A is not inhabited.
Then A = A1→· · ·→An→0 with each Ai inhabited. But then for ρ0(0) = 0 one has

1 = [[A]]ρ0
= [[A1]]ρ0→· · ·→[[An]]ρ0→0

= 1→· · ·→1→0, since |= Ai for all i,

= 0, since 1→0 = 0,
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contradiction.

Corollary 2D.5 does not hold for λ∞
→. In fact the type ((α→β)→α)→α (corresponding

to Peirce’s law) is a valid type that is not inhabited, as we will see soon.

Intuitionistic propositional logic

Although inhabited types correspond to Boolean tautologies, not all such tautologies
correspond to inhabited types. Intuitionistic logic provides a precise characterization
of inhabited types. The underlying idea, the propositions-as-types correspondence will
become clear in more detail in Sections 6C, 6D. The book Sørensen and Urzyczyn [2006]
is devoted to this correspondence.

2D.6. Definition (Implicational propositional logic). (i) The set of formulas of the im-
plicational propositional logic, notation form(PROP), is defined by the following simpli-
fied syntax. Define form = form(PROP) as follows.

form ::= var | form ⊃ form

var ::= p | var′

For example p′, p′ ⊃ p, p′ ⊃ (p′ ⊃ p) are formulas.
(ii) Let Γ be a set of formulas and let A be a formula. Then A is derivable from Γ,

notation Γ ⊢PROP A, if Γ ⊢ A can be produced by the following formal system.

A∈Γ ⇒ Γ ⊢ A
Γ ⊢ A ⊃ B, Γ ⊢ A ⇒ Γ ⊢ B

Γ, A ⊢ B ⇒ Γ ⊢ A ⊃ B

Notation. (i) q, r, s, t, · · · stand for arbitrary propositional variables.
(ii) As usual Γ ⊢ A stands for Γ ⊢PROP A if there is little danger for confusion.

Moreover, ⊢ A stands for ∅ ⊢ A.
2D.7. Example. (i) ⊢ A ⊃ A;

(ii) A ⊢ B ⊃ A;
(iii) ⊢ A ⊃ (B ⊃ A);
(iv) A ⊃ (A ⊃ B) ⊢ A ⊃ B.

2D.8. Definition. Let A∈ form(PROP) and Γ ⊆ form(PROP).
(i) Define [A]∈TT∞ and ΓA ⊆ TT∞ as follows.

A [A] ΓA

p p ∅
P ⊃ Q [P ]→[Q] ΓP ∪ ΓQ

It so happens that ΓA = ∅ and [A] is A with the ⊃ replaced by →. But the setup will
be needed for more complex logics and type theories.

(ii) Moreover, we set [Γ] = {xA:A |A∈Γ}.
2D.9. Proposition. Let A∈ form(PROP) and ∆ ⊆ form(PROP). Then

∆ ⊢PROP A ⇒ [∆] ⊢λ→ M : [A], for some M.
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Proof. By induction on the generation of ∆ ⊢ A.
Case 1. ∆ ⊢ A because A∈∆. Then (xA:[A])∈ [∆] and hence [∆] ⊢ xA : [A]. So we

can take M ≡ xA.
Case 2. ∆ ⊢ A because ∆ ⊢ B ⊃ A and ∆ ⊢ B. Then by the induction hypothesis[∆] ⊢

P : [B]→[A] and [∆] ⊢ Q : [B]. Therefore, [∆] ⊢ PQ : [A].
Case 3. ∆ ⊢ A becauseA ≡ B ⊃ C and ∆, B ⊢ C. By the induction hypothesis[∆], xB:[B] ⊢

M : [C]. Hence [∆] ⊢ (λxB.M) : [B]→[C] ≡ [B ⊃ C] ≡ [A].

Conversely we have the following.

2D.10. Proposition. Let ∆, A ⊆ form(PROP). Then

[∆] ⊢λ→ M : [A] ⇒ ∆ ⊢PROP A.

Proof. By induction on the structure of M .
Case 1. M ≡ x. Then by the generation Lemma 1B.3 one has (x:[A])∈ [∆] and hence

A∈∆; so ∆ ⊢PROP A.
Case 2. M ≡ PQ. By the generation Lemma for some C ∈TT one has [∆] ⊢ P : C→[A]

and [∆] ⊢ Q : C. Clearly, for some C ′ ∈ form one has C ≡ [C]. Then C→[A] ≡ [C ′ ⊃ A].
By the induction hypothesisone has ∆ ⊢ C ′→A and ∆ ⊢ C ′. Therefore ∆ ⊢ A.
Case 3. M ≡ λx.P . Then [∆] ⊢ λx.P : [A]. By the generation Lemma [A] ≡ B→C

and [∆], x:B ⊢ P : C, so that [∆], x:[B′] ⊢ P : [C ′], with [B′] ≡ B, [C ′] ≡ C (hence
[A] ≡ [B′ ⊃ C ′]). By the induction hypothesisit follows that ∆, B ⊢ C and therefore
∆ ⊢ B→C ≡ A.
Although intuitionistic logic gives a complete characterization of those types that are in-
habited, this does not answer immediately the question whether the type ((α→β)→α)→α
corresponding to Peirce’s law is inhabited.

Kripke models

Remember that a type A∈TT is inhabited iff it is the translation of a B ∈ form(PROP)
that is intuitionistically provable. This explains why

A inhabited ⇒ |= A,

but not conversely, since |= A corresponds to classical validity. A common tool to prove
that types are not inhabited or that formulas are not intuitionistically derivable consists
of the notion of Kripke model, that we will introduce now.

2D.11. Definition. (i) A Kripke model is a tuple K =< K,≤,⊙, F >, such that
(1) < K,≤,⊙ > is a partially ordered set with least element ⊙;
(2) F : K→℘(var) is a monotonic map from K to the powerset of the set of type-

variables; that is ∀k, k′ ∈K [k ≤ k′ ⇒ F (k) ⊆ F (k′)].
We often just write K =< K,F >.

(ii) Let K =< K,F > be a Kripke model. For k∈K define by induction on the
structure ofA∈TT the notion k forces A, notation k 
K A. We often omit the subscript.

k 
 α ⇔ α∈F (k);
k 
 A1→A2 ⇔ ∀k′ ≥ k [k′ 
 A1 ⇒ k′ 
 A2].

(iii) K forces A, notation K
A, is defined as ⊙ 
K A.
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(iv) Let Γ = {x1:A1, · · · , xn:An}. Then K forces Γ, notation K 
 Γ, if

K 
 A1 & · · · & K 
 An.

We say Γ forces A, notation Γ 
 A, iff for all Kripke models K one has

K 
 Γ ⇒ K 
 A.

In particular forced A, notation 
 A, if K 
 A for all Kripke models K.
2D.12. Lemma. Let K be a Kripke model. Then for all A∈TT one has

k ≤ k′ & k 
K A ⇒ k′ 
K A.

Proof. By induction on the structure of A.

2D.13. Proposition. Γ ⊢λ→ M : A ⇒ Γ 
 A.

Proof. By induction on the derivation of M : A from Γ. If M : A is x : A and is
in Γ, then this is trivial. If Γ ⊢ M : A is Γ ⊢ FP : A and is a direct consequence of
Γ ⊢ F : B→A and Γ ⊢ P : B, then the conclusion follows from the induction hypothesis
and the fact that k 
 B→A & k 
 B ⇒ k 
 A. In the case that Γ ⊢ M : A is
Γ ⊢ λx.N : A1→A2 and follows directly from Γ, x:A1 ⊢ N : A2 we have to do something.
By the induction hypothesiswe have for all K

K 
 Γ, A1 ⇒ K 
 A2. (2)

We must show Γ 
 A1→A2, i.e. K 
 Γ ⇒ K 
 A1→A2 for all K.
Given K and k∈K, define

Kk, < {k′ ∈K | k ≤ k′},≤, k, F >,

(where ≤ and F are in fact the appropriate restrictions to the subset {k′ ∈K | k ≤ k′}
of K). Then it is easy to see that also Kk is a Kripke model and

k 
K A ⇔ Kk 
 A. (3)

Now suppose K 
 Γ in order to show K 
 A1→A2, i.e. for all k∈K
k 
K A1 ⇒ k 
K A2.

Indeed,

k 
K A1 ⇒ Kk 
 A1, by (3)

⇒ Kk 
 A2, by (2), since by Lemma 2D.12 also Kk 
 Γ,

⇒ k 
K A2.

2D.14. Corollary. Let A∈TT. Then

A is inhabited ⇒ 
 A.

Proof. Take Γ = ∅.
Now it can be proved, see exercise 2E.8, that (the type corresponding to) Peirce’s law

P = ((α→β)→α)→α is not forced in some Kripke model. Since 6
P it follows that P is
not inhabited, in spite of the fact that |= P .
We also have a converse to corollary 2D.14 which theoretically answers the inhabitation

question for λA
→.

2D.15. Remark. [Completeness for Kripke models]
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(i) The usual formulation is for provability in intuitionistic logic:

A is inhabited ⇔ 
 A.

The proof is given by constructing for a type that is not inhabited a Kripke ‘counter-
model’ K, i.e. K 6
A, see Kripke [1965].

(ii) In Harrop [1958] it is shown that these Kripke counter-models can be taken to be
finite. This solves the decision problem for inhabitation in λ∞

→.
(iii) In Statman [1979a] the decision problem is shown to be PSPACE complete, so that

further analysis of the complexity of the decision problem appears to be very difficult.

Set-theoretic models

Now we will prove using set-theoretic models that there do not exist terms satisfying
certain properties. For example making it possible to take as product A × A just the
type A itself.

2D.16. Definition. Let A∈TTA. An A × A→A pairing is a triple 〈pair, left, right〉
such that

pair∈Λø
→(A→A→A);

left, right∈Λø
→(A→A);

left(pairxAyA) =βη x
A & right(pairxAyA) =βη y

A.

The definition is formulated for λCh
→ . The existence of a similar A × A→A pairing in

λCu
→ (leave out the superscripts in xA, yA) is by Proposition 1B.26 equivalent to that in

λCh
→ . We will show using a set-theoretic model that for all types A∈TT there does not

exist an A× A→A pairing. We take TT = TT0, but the argument for an arbitrary TTA is
the same.

2D.17. Definition. (i) Let X be a set. The full type structure (for types in TT0) over
X, notationMX = {X(A)}A∈TT0 , is defined as follows. For A∈TT0 let X(A) be defined
inductively as follows.

X(0),X;

X(A→B),X(B)X(A), the set of functions from X(A) into X(B).

(ii) Mn ,M{0,··· ,n}.

In order to use this model, we will use the Church version λCh
→ , as terms from this system

are naturally interpreted inMX .

2D.18. Definition. (i) A valuation inMX is a map ρ from typed variables into ∪AX(A)
such that ρ(xA)∈X(A) for all A∈TT0.

(ii) Let ρ be a valuation inMX . The interpretation under ρ of a λCh
→ -term intoMX ,

notation [[M ]]ρ, is defined as follows.

[[xA]]ρ , ρ(xA);

[[MN ]]ρ , [[M ]]ρ[[N ]]ρ;

[[λxA.M ]]ρ , λλd∈X(A).[[M ]]ρ(xA:=d),
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where ρ(xA: = d) = ρ′ with ρ′(xA), d and ρ′(yB), ρ(yB) if yB 6≡ xA.8
(iii) Define

MX |=M = N ⇔ ∀ρ [[M ]]ρ = [[N ]]ρ.

Before proving properties about the models it is good to do exercises 2E.11 and 2E.12.

2D.19. Proposition. (i) M ∈ΛCh
→ (A) ⇒ [[M ]]ρ ∈X(A).

(ii) M =βη N ⇒ MX |=M = N .

Proof. (i) By induction on the structure of M .
(ii) By induction on the ‘proof’ of M =βη N , using

[[M [x: = N ]]]ρ = [[M ]]ρ(x:=[[N ]]ρ)
, for the β-rule;

ρ↾FV(M) = ρ′↾FV(M) ⇒ [[M ]]ρ = [[M ]]ρ′ , for the η-rule;

[∀d∈X(A) [[M ]]ρ(x:=d) = [[N ]]ρ(x:=d)] ⇒ [[λxA.M ]]ρ = [[λxA.N ]]ρ, for the ξ-rule.

Now we will give applications of the notion of type structure.

2D.20. Proposition. Let A∈TT0.Then there does not exist an A×A→A pairing.

Proof. Take X = {0, 1}. Then for every type A the set X(A) is finite. Therefore by a
cardinality argument there cannot be an A×A→A pairing, for otherwise f defined by

f(x, y) = [[pair]]xy

would be an injection from X(A)×X(A) into X(A), do exercise 2E.12.

2D.21. Proposition. There is no term pred∈ΛCh
→ (Nat→Nat) such that

pred c0 =βη c0;

pred cn+1 =βη cn.

Proof. As before for X = {0, 1} the set X(Nat) is finite. Therefore

MX |= cn = cm,

for some n 6= m. If pred did exist, then it would follow easily thatMX |= c0 = c1. But
this implies that X(0) has cardinality 1, since c0(Kx)y = y but c1(Kx)y = Kxy = x, a
contradiction.

Another application of semantics is that there are no fixed point combinators in λCh
→ .

2D.22. Definition. A closed term Y is a fixed point combinator of type A∈TT0 if

Y : ΛCh
→ ((A→A)→A) & Y =βη λf

A→A.f(Y f).

2D.23. Proposition. For no type A there exists in λCh
→ a fixed point combinator.

Proof. Take X = {0, 1}. Then for every A the set X(A) has at least two elements, say
x, y ∈X(A) with x 6= y. Then there exists an f ∈X(A→A) without a fixed point:

f(z) = x, if z 6= x;

f(z) = y, else.

If there is a fixed point combinator of type A, then [[Y ]]f ∈MX is a fixed point of f .
Indeed, Y x=βηx(Y x) and taking [[ ]]ρ with ρ(x) = f the claim follows, a contradiction.

8Sometimes it is preferred to write [[λxA.M ]]ρ as λλd∈X(A).[[M [xA:, d]]], where d is a constant to be
interpreted as d. Although this notation is perhaps more intuitive, we will not use it, since it also has
technical drawbacks.
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Several results in this Section can easily be translated to λA∞
→ with arbitrarily many

type variables, do exercise 2E.13.

2E. Exercises

2E.1. Find out which of the following terms are typable and determine for those that
are the principal type.

λxyz.xz(yz);

λxyz.xy(xz);

λxyz.xy(zy).

2E.2. (i) Let A = (α→β)→((α→β)→α)→α Construct a term M such that ⊢ M : A.
What is the principal type B of M? Is there a λI-term of type B?

(ii) Find an expansion of M such that it has A as principal type.
2E.3. (Uniqueness of Type Assignments) Remember from B[1984] that

ΛI , {M ∈Λ | if λx.N is a subterm of M , then x∈FV(N)}.
One has

M ∈ΛI, M ։βη N ⇒ N ∈ΛI,

see e.g. B[1984], Lemma 9.1.2.
(i) Show that for all M1,M2 ∈ΛCh

→ (A) one has

|M1| ≡ |M2| ≡M ∈ΛøI ⇒ M1 ≡M2.

[Hint. Use as induction loading towards open terms

|M1| ≡ |M2| ≡M ∈ΛI & FV(M1) ≡ FV(M2) ⇒ M1 ≡M2.

This can be proved by induction on n, the length of the shortest β-reduction
path to nf. For n = 0, see Propositions 1B.19(i) and 1B.24.]

(ii) Show that in (i) the condition M ∈ΛøI cannot be weakened to

M has no K-redexes.

[Hint. Consider M ≡ (λx.xI)(λz.I) and A ≡ α→α.]
2E.4. Show that λdB

→ satisfies the Church-Rosser Theorem. [Hint. Use Proposition
1B.28 and translations between λdB

→ and λCh
→ .]

2E.5. (Hindley) Show that if ⊢Cu
λ→

M : A, then there is an M ′ such that

M ′ ։βη M & pt(M ′) = A.

[Hints. 1. First make an η-expansion of M in order to obtain a term with a
principal type having the same tree as A. 2. Show that for any type B with a
subtype B0 there exists a context C[ ] such that

z:B ⊢ C[z] : B0.

3. Use 1,2 and a term like λfz.z(fP )(fQ) to force identification of the types of
P and Q. (For example one may want to identify α and γ in (α→β)→γ→δ.)]

2E.6. Prove that Λø→(0) = ∅ by applying the normalization and subject reduction the-
orems.
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2E.7. Each type A of λ0
→ can be interpreted as an element [[A]]∈BB as follows.

[[A]](i) = [[A]]ρi ,

where ρi(0) = i. There are four elements in BB

{λλx∈B.0, λλx∈B.1, λλx∈B.x, λλx∈B.1− x}.
Prove that [[A]] = λλx∈B.1 iff A is inhabited and [[A]] = λλx∈B.x iff A is not
inhabited.

2E.8. Show that Peirce’s law P = ((α→β)→α)→α is not forced in the Kripke model
K = 〈K,≤, 0, F 〉 with K = {0, 1}, 0 ≤ 1 and F (0) = ∅, F (1) = {α}.

2E.9. Let X be a set and consider the typed λ-model MX . Notice that every permu-
tation π = π0 (bijection) of X can be lifted to all levels X(A) by defining

πA→B(f), πB ◦ f ◦ π−1
A .

Prove that every lambda definable element f ∈X(A) inM(X) is invariant under
all lifted permutations; i.e. πA(f) = f . [Hint. Use the fundamental theorem for
logical relations.]

2E.10. Prove that Λø→(0) = ∅ by applying models and the fact shown in the previous
exercise that lambda definable elements are invariant under lifted permutations.

2E.11. (i) Show thatMX |= (λxA.xA)yA = yA.
(ii) Show thatMX |= (λxA→A.xA→A) = (λxA→AyA.xA→AyA).
(iii) Show that [[c2(Kx

0)y0]]ρ = ρ(x).
2E.12. Let P,L,R be an A×B→C pairing. Show that in every structureMX one has

[[P ]]xy = [[P ]]x′y′ ⇒ x = x′ & y = y′,

hence card(A)·card(B)≤card(C).
2E.13. Show that Propositions 2D.20, 2D.21 and 2D.23 can be generalized to A = A∞

and the crresponding versions of λCu
→ , by modifying the notion of type structure.

2E.14. Let ∼A ≡ A→0. Show that if 0 does not occur in A, then ∼∼(∼∼A→A) is not
inhabited. (One needs the ex falso rule to derive ∼∼(∼∼A→A) as proposition.)
Why is the condition about 0 necessary?

2E.15. We say that the structure of the rational numbers can be represented in λA
→ if

there is a type Q∈TTA and closed lambda terms:

0, 1 : Q;

+, · : Q→Q→Q;

−,−1 : Q→Q;

such that (Q,+, ·,−,−1, 0, 1) modulo =βη satisfies the axioms of a field of char-

acteristic 0. Show that the rationals cannot be represented in λA
→. [Hint. Use a

model theoretic argument.]
2E.16. Show that there is no closed term

P : Nat→Nat→Nat

such that P is a bijection in the sense that

∀M :Nat∃!N1, N2:Nat PN1N2 =βη M.
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2E.17. Show that every M ∈Λø((0→0→0)→0→0) is βη-convertible to λf0→0→0x0.t,
with t given by the grammar

t := x | ftt.
2E.18. [Hindley] Show that there is an ARS that is WCR but not CR. [Hint. An example

of cardinality 4 exists.]
The next two exercises show that the minimal length of a reduction-path of a term

to normal form is in the worst case non-elementary in the length of the term9. See
Péter [1967] for the definition of the class of (Kalmár) elementary functions. This class
is the same as E3 in the Grzegorczyk hierarchy. To get some intuition for this class,
define the family of functions 2n:N→N as follows.

20(x), x;

2n+1(x), 22n(x).

Then every elementary function f is eventually bounded by some 2n:

∃n,m∀x>m f(x) ≤ 2n(x).

2E.19. (i) Define the function gk : N→N by

gk(m) , #FGK(M), if m = #(M) for some untyped

lambda term M ;

, 0, else.

Here #M denotes the Gödel-number of the term M and FGK is the Gross-
Knuth reduction strategy defined by completely developing all present re-
dexes in M , see B[1984]. Show that gk is Kalmár elementary.

(ii) For a term M ∈ΛCh
→ define

D(M), max{dpt(A→B) | (λxA.P )A→BQ is a redex in M},
see Definition 1A.21(i). Show that if M is not a β-nf, then

FGK(|M |) = |N | ⇒ D(M) > D(N),

where |.| : ΛCh
→→Λ is the forgetful map. [Hint. Use Lévy’s analysis of redex

creation, see 2A.11(ii), or Lévy [1978], 1.8.4. lemme 3.3, for the proof.]
(iii) IfM ∈Λ is a term, then its length, notation lth(M), is the number of symbols

in M . Show that there is a constant c such that for typable lambda terms
M one has for M sufficiently long

dpth(pt(M)) ≤ c(lth(M)).

See the proof of Theorem 2C.14.
(iv) Write σ:M→Mnf if σ is some reduction path of M to normal form Mnf. Let

$σ be the number of reduction steps in σ. Define

$(M), min{$σ | σ :M→Mnf}.
9In Gandy [1980b] this is also proved for arbitrary reduction paths starting from typable terms. In

de Vrijer [1987] an exact calculation is given for the longest reduction paths to normal form.
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Show that $M ≤ g(lth(M)), for some function g ∈E4. [Hint. Take g(m) =
gkm(m).]

2E.20. (i) Define 21,λf1x0.f(fx) and 2n+1, (2n[0:=1])2. Then for all n∈N one has
2n : 1→0→0. Show that this type is the principal type of the Curry version
|2n| of 2n.

(ii) [Church] Show (cn[0:=1])cm =β cmn .
(iii) Show 2n =β c2n(1), the notation is explained just above Exercise 2E.19.

(iv) Let M,N ∈Λ be untyped terms. Show that if M ։β N , then

lth(N) ≤ lth(M)2.

(v) Conclude that $(M), see Exercise 2E.19, is in the worst case non-elementary
in the length of M . That is, show that there is no elementary function f
such that for all M ∈ΛCh

→

$(M) ≤ f(lth(M)).

2E.21. (i) Show that in the worst case the length of the principal type of a typable
term is at least exponential in the length of the term, i.e. defining

f(m) = max{lth(pt(M)) | lth(M) ≤ m},
one has f(n) ≥ cn, for some real number c > 1 and sufficiently large n. [Hint.
Define

Mn , λxn · · ·x1.xn(xnxn−1)(xn−1(xn−1xn−2)) · · · (x2(x2x1)).
Show that the principal type of Mn has length > 2n.]

(ii) Show that the length of the principal type of a term M is also at most
exponential in the length of M . [Hint. First show that the depth of the
principal type of a typable term M is linear in the length of M .]

2E.22. (Statman) We want to show that Mn →֒ MN, for n ≥ 1, by an isomorphic
embedding.
(i) (Church’s δ) For A∈TT0 define δA ∈Mn(A

2→02→0) by

δAxyuv , u if x = y;

, v else.

(ii) We add to the language λCh
→ constants k : 0 for 1 ≤ k ≤ n and a constant

δ : 04→0. The intended interpretation of δ is the map δ0. We define the
notion of reduction δ by the contraction rules

δ i j k l →δ k if i = j;

→δ l, if i 6= j.

The resulting language of terms is called Λδ and on this we consider the
notion of reduction →βηδ.

(iii) Show that every M ∈Λδ satisfies SNβηδ(M).
(iv) Show that →βηδ is Church-Rosser.
(v) Let M ∈Λø

δ(0) be a closed term of type 0. Show that the normal form of M
is one of the constants 1, · · · , n.
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(vi) (Church’s theorem.) Show that every element Φ∈Mn can be defined by

a closed term MΦ ∈Λδ, i.e. Φ = [[MΦ]]
Mn . [Hint. For each A∈TT define

simultaneously the map Φ 7→MΦ :Mn(A)→Λδ(A) and δA ∈Λδ(A
2→02→0)

such that [[δA]] = δA and Φ = [[MΦ]]
Mn . For A = 0 take Mi = i and δ0 = δ.

For A = B→C, letMn(B) = {Φ1, · · · ,Φt} and C = C1→· · ·Cc→0. Define

δA , λxyuv. (δC(xMΦ1)(yMΦ1)
(δC(xMΦ2)(yMΦ2)
(· · ·
(δC(xMΦt−1)(yMΦt−1)
(δC(xMΦt)(yMΦt)uv)v)v..)v)v).

MΦ , λxy1 · · · yc. (δBxMΦ1(MΦ1~y )
(δBxMΦ2(MΦ2~y )
(· · ·
(δBxMΦt−1(MΦt−1~y )
(δBxMΦt(MΦt~y )0))..))). ]

(vii) Show that Φ 7→ [[MΦ]]
MN :Mn →֒ MN is the required embedding.

(viii) (To be used later.) Let πni ≡ (λx1 · · ·xn.xi) : (0n→0). Define

∆n , λabuv~x.a (b(u~x)(v~x) · · · (v~x)(v~x))
(b(v~x)(u~x) · · · (v~x)(v~x))
· · ·
(b(v~x)(v~x) · · · (u~x)(v~x))
(b(v~x)(v~x) · · · (v~x)(u~x)).

Then

∆nπni π
n
j π

n
kπ

n
l =βηδ πnk , if i = j;

=βηδ πnl , else.

Show that for i∈{1, · · · , n} one has for all M : 0

M =βηδ i ⇒
M [0: = 0n→0][δ: = ∆n][1: = πn1 ] · · · [n: = πnn] =βη π

n
i .

2E.23. (Th. Joly)
(i) Let M = 〈Q, q0, F, δ〉 be a deterministic finite automaton over the finite

alphabet Σ = {a1, · · · , an}. That is, Q is the finite set of states, q0 ∈Q is
the initial state, F ⊆ Q is the set of final states and δ : Σ × Q→Q is the
transition function. Let Lr(M) be the (regular) language consisting of words
in Σ∗ accepted by M by reading the words from right to left. LetM =MQ

be the typed λ-model over Q. Show that

w∈Lr(M) ⇔ [[w]]Mδa1 · · · δanq0 ∈F,
where δa(q) = δ(a, q) and w is defined in 1D.8.

(ii) Similarly represent classes of trees (with at the nodes elements of Σ) accepted
by a frontier-to-root tree automaton, see Thatcher [1973], by the model M
at the type ⊤n = (02→0)n→0→0.





CHAPTER 3

TOOLS

3A. Semantics of λ→

So far the systems λCu
→ and λCh

→ (and also its variant λdB
→ ) had closely related properties.

In this chapter we will give two rather different semantics to λCh
→ and to λCu

→ , respectively.
This will appear in the intention one has while giving a semantics for these systems. For
the Church systems λCh

→ , in which every λ-term comes with its unique type, there is a
semantics consisting of disjoint layers, each of these corresponding with a given type.
Terms of type A will be interpreted as elements of the layer corresponding to A. The
Curry systems λCu

→ are essentially treated as untyped λ-calculi, where one assigns to a
term a set (that sometimes can be empty) of possible types. This then results in an
untyped λ-model with overlapping subsets indexed by the types. This happens in such
a way that if type A is assigned to term M , then the interpretation of M is an element
of the subset with index A. The notion of semantics has been inspired by Henkin [1950],
dealing with the completeness in the theory of types.

Semantics for type assignment à la Church

In this subsection we work with the Church variant of λ0
→ having one atomic type 0,

rather than with λA
→, having an arbitrary set of atomic types. We will write TT = TT0.

The reader is encouraged to investigate which results do generalize to TTA.

3A.1. Definition. Let M = {M(A)}A∈TT be a family of non-empty sets indexed by
types A∈TT.

(i) M is called a type structure for λ0
→ if

M(A→B) ⊆M(B)M(A).

Here XY denotes the collection of set-theoretic functions

{f | f : Y → X}.

(ii) Let X be a set. The full type structureM over the ground set X defined in 2D.17
was specified by

M(0) , X

M(A→B) , M(B)M(A), for all A,B ∈TT.

75
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(iii) LetM be provided with application operators

(M, ·) = ({M(A)}A∈TT, {·A,B}A,B ∈TT)

·A,B : M(A→B)×M(A)→M(B).

A typed applicative structure is such an (M, ·) satisfying extensionality:

∀f, g ∈M(A→B) [[∀a∈M(A) f ·A,B a = g ·A,B a] ⇒ f = g].

(iv) M is called trivial ifM(0) is a singleton. ThenM(A) is a singleton for all A∈TT.
3A.2. Notation. For typed applicative structures we use the infix notation f ·A,B x or
f · x for ·A,B(f, x). Often we will be even more brief, extensionality becoming

∀f, g ∈M(A→B) [[∀a∈MA fa = ga] ⇒ f = g]

or simply,

∀f, g ∈M [[∀a fa = ga] ⇒ f = g],

where f, g range over the same type A→B and a ranges overMA.

3A.3. Proposition. The notions of type structure and typed applicative structure are
equivalent.

Proof. In a type structureM define f ·a, f(a); extensionality is obvious. Conversely,
let 〈M, ·〉 be a typed applicative structure. Define the type structure M′ and ΦA :
M(A)→M′(A) as follows.

M′(0),M(0);

Φ0(a), a;

M′(A→B), {ΦA→B(f)∈M′(B)M
′(A) | f ∈M(A→B)};

ΦA→B(f)(ΦA(a)), ΦB(f · a).
By definition Φ is surjective. By extensionality of the typed applicative structure it is also
injective. Hence ΦA→B(f) is well defined. Clearly one hasM′(A→B) ⊆M′(B)M

′(A).

3A.4. Definition. Let M,N be two typed applicative structures. A morphism is a
type indexed family F = {FA}A∈TT such that for each A,B ∈TT one has

FA :M(A)→N (A);
FA→B(f) · FA(a) = FB(f · a).
From now on we will not make a distinction between the notions ‘type structure’ and
‘typed applicative structure’.

3A.5. Proposition. LetM be a type structure. Then

M is trivial ⇔ ∀A∈TT.M(A) is a singleton.

Proof. (⇐) By definition. (⇒) We will show this for A = 1 = 0→0. If M(0) is
a singleton, then for all f, g ∈M(1) one has ∀x:M(0).(fx) = (gx), hence f = g, by
extensionality. ThereforeM(1) is a singleton.

3A.6. Example. The full type structureMX = {X(A)}A∈TT over a non-empty set X,
see definition 2D.17, is a typed applicative structure.
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3A.7. Definition. (i) Let (X,≤) be a non-empty partially ordered set. Let D(0) = X

and D(A→B) consist of the monotone elements of D(B)D(A), where we order this set
pointwise: for f, g ∈D(A→B) define

f ≤ g⇐⇒△ ∀a∈D(A) fa ≤ ga.
The elements of the typed applicative structure DX = {D(A)}A∈TT are called the hered-
itarily monotone functions. See Howard in Troelstra [1973] as well as Bezem [1989] for
several closely related type structures.

(ii) LetM be a typed applicative structure. A layered non-empty subfamily ofM is
a family ∆ = {∆(A)}A∈TT of sets, such that the following holds

∀A∈TT.∅ 6= ∆(A) ⊆M(A).

∆ is called closed under application if

f ∈∆(A→B), g ∈∆(A) ⇒ fg ∈∆(B).

∆ is called extensional if

∀A,B ∈TT∀f, g ∈∆(A→B).[[∀a∈∆(A).fa = ga] ⇒ f = g].

If ∆ satisfies all these conditions, thenM↾∆ = (∆, ·↾∆) is a typed applicative structure.

3A.8. Definition (Environments). (i) Let D be a set and V the set of variables of the
untyped lambda calculus. A (term) environment in D is a total map

ρ : V→D.
The set of environments in D is denoted by EnvD.

(ii) If ρ∈EnvD and d∈D, then ρ[x := d] is the ρ′ ∈EnvD defined by

ρ′(y),

{
d if y = x,

ρ(y) otherwise.

3A.9. Definition. (i) LetM be a typed applicative structure. Then a (partial) valua-
tion in M is a family of (partial) maps ρ = {ρA}A∈TT such that ρA : Var(A)#M(A).

(ii) Given a typed applicative structureM and a partial valuation ρ inM one defines
the partial semantics [[ ]]ρ : Λ→(A) #M(A) as follows. Let Γ be a context and ρ a

valuation. For M ∈ΛΓ
→(A) its semantics under ρ, notation [[M ]]Mρ ∈M(A), is

[[xA]]
M
ρ , ρA(x);

[[PQ]]Mρ , [[P ]]Mρ [[Q]]Mρ ;

[[λxA.P ]]
M
ρ , λλd∈M(A).[[P ]]Mρ[x:=d].

We often write [[M ]]ρ for [[M ]]Mρ , if there is little danger of confusion. The expression

[[M ]]ρ may not always be defined, even if ρ is total. The problem arises with [[λx.P ]]ρ.
Although the function

λλd∈M(A).[[P ]]ρ[x:=d] ∈M(B)M(A)
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is uniquely determined by [[λx.P ]]ρd = [[P ]]ρ[x:=d], it may fail to be an element of

M(A→B) which is only a subset of M(B)M(A). If [[M ]]ρ is defined , we write [[M ]]ρ↓,
otherwise, if [[M ]]ρ is undefined , we write [[M ]]ρ↑.
3A.10. Definition. (i) A type structure M is called a λ0

→-model or a typed λ-model
if for every partial valuation ρ = {ρA}A and every A∈TT and M ∈ΛΓ

→(A) such that
FV(M) ⊆ dom(ρ) one has [[M ]]ρ↓.

(ii) LetM be a typed λ-model and ρ a partial valuation. ThenM, ρ satisfiesM = N ,
assuming implicitly that M and N have the same type, notation

M, ρ |=M = N

if [[M ]]Mρ = [[N ]]Mρ .

(iii) LetM be a typed λ-model. ThenM satisfies M = N , notation

M |=M = N

if for all partial ρ with FV(MN) ⊆ dom(ρ) one hasM, ρ |=M = N.

(iv) LetM be a typed λ-model. The theory ofM is defined as

Th(M), {M = N |M,N ∈Λø→ &M |=M = N}.

3A.11. Notation. Let E1, E2 be partial (i.e. possibly undefined) expressions.

(i) Write E1 % E2 for E1↓ ⇒ [E2↓ & E1 = E2].

(ii) Write E1 ≃ E2 for E1 % E2 & E2 % E1.

3A.12. Lemma. (i) Let M ∈Λ0(A) and N be a subterm of M . Then

[[M ]]ρ↓ ⇒ [[N ]]ρ↓.

(ii) Let M ∈Λ0(A). Then

[[M ]]ρ ≃ [[M ]]ρ↾FV(M).

(iii) Let M ∈Λ0(A) and ρ1, ρ2 be such that ρ1 ↾ FV(M) = ρ2 ↾ FV(M). Then

[[M ]]ρ1 ≃ [[M ]]ρ2 .

Proof. (i) By induction on the structure of M .

(ii) Similarly.

(iii) By (ii).

3A.13. Lemma. LetM be a typed applicative structure. Then

(i) For M ∈Λ0(A), x,N ∈Λ0(B) one has

[[M [x:=N ]]]Mρ ≃ [[M ]]M
ρ[x:=[[N ]]Mρ ]

.

(ii) For M,N ∈Λ0(A) one has

M ։βη N ⇒ [[M ]]Mρ % [[N ]]Mρ .
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Proof. (i) By induction on the structure of M . Write M• ≡ M [x: = N ]. We only
treat the case M ≡ λy.P . By the variable convention we may assume that y /∈ FV(N).
We have

[[(λy.P )•]]ρ ≃ [[λy.P •]]ρ

≃ λλd.[[P •]]ρ[y:=d]

≃ λλd.[[P ]]ρ[y:=d][x:=[[N ]]ρ[y:=d]]
, by the IH,

≃ λλd.[[P ]]ρ[y:=d][x:=[[N ]]ρ]
, by Lemma 3A.12,

≃ λλd.[[P ]]ρ[x:=[[N ]]ρ][y:=d]

≃ [[λy.P ]]ρ[x:=[[N ]]ρ]
.

(ii) By induction on the generation of M ։βη N .
Case M ≡ (λx.P )Q and N ≡ P [x: = Q]. Then

[[(λx.P )Q]]ρ % (λλd.[[P ]]ρ[x:=d])([[Q]]ρ)

% [[P ]]ρ[x:=[[Q]]ρ]

≃ [[P [x: = Q]]]ρ, by (i).

Case M ≡ λx.Nx, with x /∈ FV(N). Then

[[λx.Nx]]ρ % λλd.[[N ]]ρ(d)

≃ [[N ]]ρ.

Cases M ։βη N is PZ ։βη QZ, ZP ։βη ZQ or λx.P ։βη λx.Q, and follows
directly from P ։βη Q. Then the result follows from the IH.
The cases where M ։βη N follows via reflexivity or transitivity are easy to treat.

3A.14. Definition. LetM,N be typed λ-models and let A∈TT.
(i) M and N are elementary equivalent at A, notationM≡A N , iff

∀M,N ∈Λø→(A).[M |=M = N ⇔ N |=M = N ].

(ii) M and N are elementary equivalent, notationM≡ N , iff

∀A∈TT.M≡A N .
3A.15. Proposition. LetM be a typed λ-model. Then

M is non-trivial ⇔ ∀A∈TT.M(A) is not a singleton.

Proof. (⇐) By definition. (⇒) We will show this for A = 1 = 0→0. Let c1, c2
be distinct elements of M(0). Consider M ≡ λx0.y0 ∈Λø→(1). Let ρi be the partial
valuation with ρi(y

0) = ci. Then [[M ]]ρi↓ and [[M ]]ρ1c1 = c1, [[M ]]ρ2c1 = c2. Therefore

[[M ]]ρ1 , [[M ]]ρ2 are different elements ofM(1).

Thus with Proposition 3A.5 one has for a typed λ-modelM
M(0) is a singleton ⇔ ∀A∈TT.M(A) is a singleton

⇔ ∃A∈TT.M(A) is a singleton.

3A.16. Proposition. LetM,N be typed λ-models and F :M→N a surjective morphism.
Then the following hold.
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(i) F ([[M ]]Mρ ) = [[M ]]NF◦ρ, for all M ∈Λ→(A).

(ii) F ([[M ]]M) = [[M ]]N , for all M ∈Λø→(A).

Proof. (i) By induction on the structure of M .

Case M ≡ x. Then F ([[x]]Mρ ) = F (ρ(x)) = [[x]]NF◦ρ.
Case M = PQ. Then

F ([[PQ]]Mρ ) = F ([[P ]]Mρ ) ·N F ([[Q]]Mρ )

= [[P ]]NF◦ρ ·N [[Q]]NF◦ρ, by the IH,

= [[PQ]]NF◦ρ.

Case M = λx.P . Then we must show

F (λλd∈M.[[P ]]Mρ[x:=d]) = λλe∈N .[[P ]]M(F◦ρ)[x:=e].

By extensionality it suffices to show for all e∈N
F (λλd∈M.[[P ]]Mρ[x:=d]) ·N e = [[P ]]M(F◦ρ)[x:=e].

By surjectivity of F it suffices to show this for e = F (d). Indeed,

F ([[P ]]Mρ[x:=d]) ·N F (d) = F ([[P ]]Nρ[x:=d]

= [[P ]]NF◦(ρ[x:=d]), by the IH,

= [[P ]]N(F◦ρ)[x:=F (d)]).

(ii) By (i).

3A.17. Proposition. LetM be a typed λ-model.
(i) M |= (λx.M)N =M [x := N ].
(ii) M |= λx.Mx =M , if x /∈ FV(M).

Proof. (i) [[(λx.M)N ]]ρ = [[λx.M ]]ρ[[N ]]ρ
= [[M ]]ρ[x:=[[N ]]ρ]

,

= [[M [x := N ]]]ρ, by Lemma 3A.13.

(ii) [[λx.Mx]]ρd = [[Mx]]ρ[x:=d]

= [[M ]]ρ[x:=d]d

= [[M ]]ρd, as x /∈ FV(M).

Therefore by extensionality [[λx.Mx]]ρ = [[M ]]ρ.

3A.18. Lemma. LetM be a typed λ-model. Then

M |=M = N ⇔ M |= λx.M = λx.N.

Proof. M |=M = N ⇔ ∀ρ. [[M ]]ρ = [[N ]]ρ
⇔ ∀ρ, d. [[M ]]ρ[x:=d] = [[N ]]ρ[x:=d]

⇔ ∀ρ, d. [[λx.M ]]ρd = [[λx.N ]]ρd

⇔ ∀ρ. [[λx.M ]]ρ = [[λx.N ]]ρ
⇔ M |= λx.M = λx.N.

3A.19. Proposition. (i) For every non-empty set X the type structure MX is a λ0
→-

model.
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(ii) Let X be a poset. Then DX is a λ0
→-model.

(iii) LetM be a typed applicative structure. Assume that [[KA,B]]
M↓ and [[SA,B,C ]]

M↓.
ThenM is a λ0

→-model.

(iv) Let ∆ be a layered non-empty subfamily of a typed applicative structure M that
is extensional and closed under application. Suppose [[KA,B]], [[SA,B,C ]] are defined and in
∆. ThenM↾∆, see Definition 3A.7(ii), is a λ0

→-model.

Proof. (i) SinceMX is the full type structure, [[M ]]ρ always exists.

(ii) By induction onM one can show that λλd.[[M ]]ρ(x:=d) is monotonic. It then follows

by induction on M that [[M ]]ρ ∈DX .

(iii) For every λ-term M there exists a typed applicative expression P consisting only
of Ks and Ss such that P ։βη M . Now apply Lemma 3A.13.

(iv) By (iii).

Operations on typed λ-models

Now we will introduce two operations on λ-models: M,N 7→ M × N , the Cartesian
product, andM 7→M∗, the polynomial λ-model. The relationship betweenM andM∗

is similar to that of a ring R and its ring of multivariate polynomials R[~x].

Cartesian products

3A.20. Definition. IfM,N are typed applicative structures, then the Cartesian prod-
uct ofM,N , notationM×N , is the structure defined by

(M×N )(A),M(A)×N (A)

(M1, N1) · (M2, N2), (M1 ·M2, N1 ·N2).

3A.21. Proposition. LetM,N be typed λ-models. For a partial valuation ρ inM×N
write ρ(x), (ρ1(x), ρ2(x)). Then

(i) [[M ]]M×N
ρ = ([[M ]]Mρ1 , [[M ]]Nρ2).

(ii) M×N is a λ-model.

(iii) Th(M×N ) = Th(M) ∩ Th(N ).

Proof. (i) By induction on M .

(ii) By (i).

(iii) M×N , ρ |=M = N ⇔ [[M ]]ρ = [[N ]]ρ

⇔ ([[M ]]Mρ1 , [[M ]]Nρ2) = ([[N ]]Mρ1 , [[N ]]Nρ2)

⇔ [[M ]]Mρ1 = [[N ]]Mρ1 & [[M ]]Mρ2 = [[N ]]Mρ2

⇔ M, ρ1 |=M = N & N , ρ2 |=M = N.
Hence for closed terms M,N

M×N |=M = N ⇔ M |=M = N & N |=M = N.
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Polynomial models

3A.22. Definition. (i) We introduce for each m∈M(A) a new constant m : A, for
each type A we choose a set of variables

xA0 , x
A
1 , x

A
2 , · · · ,

and let M be the set of all correctly typed applicative combinations of these typed
constants and variables.

(ii) For a valuation ρ : Var→M define the map ((−))ρ = ((−))Mρ :M→M by

((x))ρ , ρ(x);

((m))ρ ,m;

((PQ))ρ , ((P ))ρ((Q))ρ.

(iii) Define

P ∼M Q⇐⇒△ ∀ρ ((P ))ρ = ((Q))ρ,

where ρ ranges over valuations inM.

3A.23. Lemma. (i) ∼M is an equivalence relation satisfying de∼M d e.
(ii) For all P,Q∈M one has

P1 ∼M P2 ⇔ ∀Q1, Q2 ∈M [Q1 ∼M Q2 ⇒ P1Q1 ∼M P2Q2].

Proof. Note that P,Q can take all values inM(A) and apply extensionality.

3A.24. Definition. LetM be a typed applicative structure. The polynomial structure
overM isM∗ = (|M∗|, app) defined by

|M∗|,M/∼M ≡ {[P ]∼M | P ∈M},
app [P ]∼M [Q]∼M , [PQ]∼M .

By Lemma 3A.23(ii) this is well defined.

Working withM∗ it is often convenient to use as elements those ofM and reason about
them modulo ∼M.

3A.25. Proposition. (i) M⊆M∗ by the embedding morphism i, λλd.[d] :M→M∗.
(ii) The embedding i can be extended to an embedding i :M→M∗.
(iii) There exists an isomorphism G :M∗ ∼=M∗∗.

Proof. (i) It is easy to show that i is injective and satisfies

i(de) = i(d) ·M∗ i(e).

(ii) Define

i′(x), x

i′(m), [m]

i′(d1d2), i′(d1)i
′(d2).

We write again i for i′.
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(iii) By definitionM is the set of all typed applicative combinations of typed variables
xA and constants mA andM∗ is the set of all typed applicative combinations of typed
variables yA and constants (m∗)A. Define a map M → M∗ also denoted by G as
follows.

G(m), [m]

G(x2i), [xi]

G(x2i+1), yi.

Then we have
(1) P ∼M Q ⇒ G(P ) ∼M∗ G(Q).
(2) G(P ) ∼M∗ G(Q) ⇒ P ∼M Q.
(3) ∀Q∈M∗∃P ∈M[G(P ) ∼ Q].

Therefore G induces the required isomorphism on the equivalence classes.

3A.26. Definition. Let P ∈M and let x be a variable. We say that

P does not depend on x

if whenever ρ1, ρ2 satisfy ρ1(y) = ρ2(y) for y 6≡ x, we have ((P ))ρ1 = ((P ))ρ2 .

3A.27. Lemma. If P does not depend on x, then P ∼M P [x:=Q] for all Q∈M.

Proof. First show that ((P [x := Q]))ρ = ((P ))ρ[x:=((Q))ρ], in analogy to Lemma 3A.13(i).
Now suppose P does not depend on x. Then

((P [x:=Q]))ρ = ((P ))ρ[x:=((Q))ρ]

= ((P ))ρ, as P does not depend on x.

3A.28. Proposition. LetM be a typed applicative structure. Then
(i) M is a typed λ-model ⇔ for each P ∈M∗ and variable x ofM there exists an

F ∈M∗ not depending on x such that F [x] = P .
(ii) M is a typed λ-model ⇒ M∗ is a typed λ-model.

Proof. (i) Choosing representatives for P, F ∈M∗ we show
M is a typed λ-model ⇔ for each P ∈M and variable x there exists an

F ∈M not depending on x such that Fx∼M P .
(⇒) LetM be a typed λ-model and let P be given. We treat an illustrative example,

e.g. P ≡ fx0y0, with f ∈M(12). We take F ≡ [[λyzfx.zfxy]]yf . Then

((Fx))ρ = [[λyzfx.zfxy]]ρ(y)fρ(x) = fρ(x)ρ(y) = ((fxy))ρ,

hence indeed Fx∼M fxy. In general for each constant d in P we take a variable zd and

define F ≡ [[λ~y ~zd~x.P ]]~y~f .

(⇐) We show ∀M ∈Λ→(A)∃PM ∈M(A)∀ρ.[[M ]]ρ = ((PM ))ρ, by induction on M : A.
For M being a variable or application this is trivial. For M = λx.N , we know by the
induction hypothesisthat [[N ]]ρ = ((PN ))ρ for all ρ. By assumption there is an F not
depending on x such that Fx∼M PN . Then

((F ))ρd = ((Fx))ρ[x:=d] = ((PN ))ρ[x:=d] =IH [[N ]]ρ[x:=d].

Hence [[λx.N ]]ρ = ((F ))ρ. So indeed [[M ]]ρ↓ for every ρ such that FV(M) ⊆ dom(ρ).
HenceM is a typed λ-model.
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(ii) By (i) M∗ is a λ-model if a certain property holds for M∗∗. But M∗∗ ∼= M∗

and the property does hold here, sinceM is a λ-model. [To make matters concrete, one
has to show for example that for all M ∈M∗∗ there is an N not depending on y such
that Ny ∼M∗ M . Writing M ≡M [x1, x2][y] one can obtain N by rewriting the y in M
obtaining M ′ ≡ M [x1, x2][x]∈M∗ and using the fact thatM is a λ-model: M ′ = Nx,
so Ny =M ].

3A.29. Proposition. IfM is a typed λ-model, then Th(M∗) = Th(M).

Proof. Do exercise 3F.5.

3A.30. Remark. In general for type structuresM∗×N ∗ 6∼= (M×N )∗, but the isomor-
phism holds in caseM,N are typed λ-models.

Semantics for type assignment à la Curry

Now we will employ models of untyped λ-calculus in order to give a semantics for λCu
→ .

The idea, due to Scott [1975a], is to interpret a type A∈TTA as a subset of an untyped
λ-model in such a way that it contains all the interpretations of the untyped λ-terms
M ∈Λ(A). As usual one has to pay attention to FV(M).

3A.31. Definition. (i) An applicative structure is a pair 〈D, ·〉, consisting of a set D
together with a binary operation · : D ×D→D on it.

(ii) An (untyped) λ-model for the untyped λ-calculus is of the form

D = 〈D, ·, [[ ]]D〉,
where 〈D, ·〉 is an applicative structure and [[ ]]D : Λ× EnvD→D satisfies the following.

(1) [[x]]Dρ = ρ(x);

(2) [[MN ]]Dρ = [[M ]]Dρ · [[N ]]Dρ ;

(3) [[λx.M ]]Dρ = [[λy.M [x := y]]]Dρ , (α)

provided y /∈ FV(M);

(4) ∀d∈D.[[M ]]Dρ[x:=d] = [[N ]]Dρ[x:=d] ⇒ [[λx.M ]]Dρ = [[λx.N ]]Dρ ; (ξ)

(5) ρ ↾ FV(M) = ρ′ ↾ FV(M) ⇒ [[M ]]Dρ = [[M ]]Dρ′ ;

(6) [[λx.M ]]Dρ · d = [[M ]]Dρ[x:=d]. (β)

We will write [[ ]]ρ for [[ ]]Dρ if there is little danger of confusion.

Note that by (5) for closed terms the interpretation does not depend on the ρ.

3A.32. Definition. Let D be a λ-model and let ρ∈EnvD be an environment in D. Let
M,N ∈Λ be untyped λ-terms and let T be a set of equations between λ-terms.

(i) We say that D with environment ρ satisfies the equation M = N , notation

D, ρ |=M = N,

if [[M ]]Dρ = [[N ]]Dρ .

(ii) We say that D with environment ρ satisfies T , notation

D, ρ |= T ,

if D, ρ |=M = N , for all (M = N)∈T .
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(iii) We define D satisfies T , notation

D |= T

if for all ρ one has D, ρ |= T . If the set T consists of equations between closed terms,
then the ρ is irrelevant.
(iv) Define that T satisfies equation M = N , notation

T |=M = N

if for all D and ρ∈EnvD one has

D, ρ |= T ⇒ D, ρ |=M = N.

3A.33. Theorem (Completeness theorem). Let M,N ∈Λ be arbitrary and let T be a set
of equations. Then

T ⊢λβη M = N ⇔ T |=M = N.

Proof. (⇒) (‘Soundness’) By induction on the derivation of T ⊢M = N .
(⇐) (‘Completeness’ proper) By taking the (extensional open) term model of T , see

B[1984], 4.1.17.

Following Scott [1975a] a λ-model gives rise to a unified interpretation of λ-terms
M ∈Λ and types A∈TTA. The terms will be interpreted as elements of D and the types
as subsets of D.
3A.34. Definition. Let D be a λ-model. On the powerset P(D) one can define for
X,Y ∈P(D) the element (X ⇒ Y )∈P(D) as follows.

(X ⇒ Y ), {d∈D | d.X ⊆ Y }, {d∈D | ∀x∈X.(d · x)∈Y }.
3A.35. Definition. Let D be a λ-model. Given a type environment ξ : A→ P(D), the
interpretation of an A∈TTA into P(D), notation [[A]]ξ, is defined as follows.

[[α]]ξ , ξ(α), for α∈A;
[[A→ B]]ξ , [[A]]ξ ⇒ [[B]]ξ.

3A.36. Definition. Let D be a λ-model and let M ∈Λ, A∈TTA. Let ρ, ξ range over
term and type environments, respectively.

(i) We say that D with ρ, ξ satisfies the type assignment M : A, notation

D, ρ, ξ |=M : A

if [[M ]]ρ ∈ [[A]]ξ.
(ii) Let Γ be a type assignment basis. Then

D, ρ, ξ |= Γ⇐⇒△ for all (x:A)∈Γ one has D, ρ, ξ |= x : A.

(iii) Γ |=M : A ⇔ ∀D, ρ, ξ[D, ρ, ξ |= Γ ⇒ D, ρ, ξ |=M : A].

3A.37. Proposition. Let Γ, M, A respectively range over bases, untyped terms and
types in TTA. Then

Γ ⊢Cu
λA
→
M : A ⇔ Γ |=M : A.

Proof. (⇒) By induction on the length of proof.
(⇐) This has been proved independently in Hindley [1983] and Barendregt, Coppo,

and Dezani-Ciancaglini [1983]. See Corollary 17A.11.
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3B. Lambda theories and term models

In this Section we treat consistent sets of equations between terms of the same type and
their term models.

3B.1. Definition. (i) A constant (of type A) is a variable (of the same type) that we
promise not to bind by a λ. Rather than x, y, z, · · · we write constants as c, d, e, · · · ,
or being explicit as cA, dA, eA, · · · . The letters C,D, · · · range over sets of constants (of
varying types).

(ii) Let D be a set of constants with types in TT0. Write Λ→[D](A) for the set of
open terms of type A, possibly containing constants in D. Moreover

Λ→[ ~D], ∪A∈TTΛ→[ ~D](A).
(iii) Similarly Λø→[D](A) and Λø→[D] consist of closed terms possibly containing the

constants in D.
(iv) An equation over D (i.e. between closed λ-terms with constants from D) is of the

form M = N with M,N ∈Λø→[D] of the same type.
(v) A termM ∈Λ→[D] is pure if it does not contain constants from D, i.e. ifM ∈Λ→.

In this subsection we will consider sets of equations over D. When writing M = N , we
implicitly assume that M,N have the same type.

3B.2. Definition. Let E be a set of equations over D.
(i) P = Q is derivable from E , notation E ⊢ P = Q if P = Q can be proved in the

equational theory axiomatized as follows

(λx.M)N =M [x := N ] (β)

λx.Mx =M, if x /∈ FV(M) (η)

, if (M = N)∈E
M = N

(E)

M =M (reflexivity)

M = N

N =M
(symmetry)

M = N N = L

M = L
(transitivity)

M = N

MZ = NZ
(R-congruence)

M = N

ZM = ZN
(L-congruence)

M = N

λx.M = λx.N
(ξ)

We write M =E N for E ⊢M = N .
(ii) E is consistent, if not all equations are derivable from it.
(iii) E is a typed lambda theory iff E is consistent and closed under derivability.
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3B.3. Remark. A typed lambda theory always is a λβη-theory.

3B.4. Notation. (i) E+ , {M = N | E ⊢M = N}.
(ii) For A∈TT0 write E(A), {M = N | (M = N)∈E &M,N ∈Λ→[D](A)}.
(iii) Eβη , ∅+.

3B.5. Proposition. If Mx =E Nx, with x /∈ FV(M) ∪ FV(N), then M =E N .

Proof. Use (ξ) and (η).

3B.6. Definition. LetM be a typed λ-model and E a set of equations.
(i) We say thatM satisfies (or is a model of) E , notationM |= E , iff

∀(M=N)∈E .M |=M = N.

(ii) We say that E satisfies M = N , notation E |=M = N , iff

∀M.[M |= E ⇒ M |=M = N ].

3B.7. Proposition. (Soundness) E ⊢M = N ⇒ E |=M = N.

Proof. By induction on the derivation of E ⊢ M = N . Assume that M |= E for a
model M towards M |= M = N . If M = N ∈E , then the conclusion follows from
the assumption. The cases that M = N falls under the axioms β or η follow from
Proposition 3A.17. The rules reflexivity, symmetry, transitivity and L,R-congruence are
trivial to treat. The case falling under the rule (ξ) follows from Lemma 3A.18.

From non-trivial models one can obtain typed lambda theories.

3B.8. Proposition. LetM be a non-trivial typed λ-model.
(i) M |= E ⇒ E is consistent.
(ii) Th(M) is a lambda theory.

Proof. (i) Suppose E ⊢ λxy.x = λxy.y. Then M |= λxy.x = λxy.y. It follows that
d = (λxy.x)de = (λxy.y)de = e for arbitrary d, e. HenceM is trivial.

(ii) Clearly M |= Th(M). Hence by (i) Th(M) is consistent. If Th(M) ⊢ M = N ,
then by soundnessM |=M = N , and therefore (M = N)∈Th(M).

The full type structure over a finite set yields an interesting λ-theory.

Term models

3B.9. Definition. Let D be a set of constants of various types in TT0 and let E be a set
of equations over D. Define the type structureME by

ME(A), {[M ]E |M ∈Λ→[D](A)},
where [M ]E is the equivalence class modulo the congruence relation =E . Define the
binary operator · as follows.

[M ]E · [N ]E , [MN ]E .

This is well-defined, because =E is a congruence. We often will suppress ·.
3B.10. Proposition. (i) (ME , ·) is a typed applicative structure.

(ii) The semantic interpretation of M inME is determined by

[[M ]]ρ = [M [~x:= ~N ]]E ,

where {~x} = FV(M) and the ~N are determined by ρ(xi) = [Ni]E .
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(iii) ME is a typed model, called the open term model of E.
Proof. (i) We need to verify extensionality.

∀d∈ME .[M ]d = [N ]d ⇒ [M ][x] = [N ][x], for a fresh x,

⇒ [Mx] = [Nx]

⇒ Mx =E Nx

⇒ M =E N, by (ξ), (η) and (transitivity),

⇒ [M ] = [N ].

(ii) We show that [[M ]]ρ defined as [M [x: = ~N ]]E satisfies the conditions in Definition

3A.9(ii).

[[x]]ρ = [x[x:=N ]]E , with ρ(x) = [N ]E ,

= [N ]E

= ρ(x);

[[PQ]]ρ = [(PQ)[~x:= ~N ]]E

= [P [~x:= ~N ]Q[~x:= ~N ]]E

= [P [~x:= ~N ]]E [[Q[~x:= ~N ]]E

= [[P ]]ρ[[Q]]ρ;

[[λy.P ]]ρ[Q]E = [(λy.P )[~x:= ~N ]]E [Q]E

= [λy.P [~x:= ~N ]]E [Q]E

= [P [~x:= ~N ][y:=Q]]E

= [P [~x, y:= ~N,Q]]E , because y /∈ FV( ~N) by the

variable convention and y /∈ {~x},
= [[P ]]ρ[y:=[Q]E ]

.

(iii) As [[M ]]ρ is always defined by (ii).

3B.11. Corollary. (i) ME |=M = N ⇔ M =E N .
(ii) ME |= E.

Proof. (i) (⇒) Suppose ME |= M = N . Then [[M ]]ρ = [[N ]]ρ for all ρ. Choosing

ρ(x) = [x]E one obtains [[M ]]ρ = [M [~x := ~x]]E = [M ]E , and similarly for N , hence

[M ]E = [N ]E and therefore M =E N .

(⇐) M =E N ⇒ M [~x := ~P ] =E N [~x := ~P ]

⇒ [M [~x := ~P ]]E = [N [~x := ~P ]]E
⇒ [[M ]]ρ = [[N ]]ρ
⇒ ME |=M = N.

(ii) If M = N ∈E , then M =E N , henceME |=M = N , by (i).

Using this Corollary we obtain completeness in a simple way.

3B.12. Theorem (Completeness). E ⊢M = N ⇔ E |=M = N .

Proof. (⇒) By soundness, Proposition 3B.7.
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(⇐) E |=M = N ⇒ ME |=M = N, asME |= E ,
⇒ M =E N
⇒ E ⊢M = N.

3B.13. Corollary. Let E be a set of equations. Then

E has a non-trivial model ⇔ E is consistent.

Proof. (⇒) By Proposition 3B.8. (⇐) Suppose that E 6⊢ x0 = y0. Then by the
Theorem one has E 6|= x0 = y0. Then for some modelM one hasM |= E andM 6|= x =
y. It follows thatM is non-trivial.

If D contains enough constants, then one can similarly define the applicative structure
Mø

E[D] by restrictingME to closed terms. See section 3.3.

Constructing Theories

The following result is due to Jacopini [1975].

3B.14. Proposition. Let E be a set of equations between closed terms in Λø→[D]. Then
E ⊢ M = N if for some n∈N, F1, · · · , Fn ∈Λ→[D] and P1 = Q1, · · · , Pn = Qn ∈E one
has FV(Fi) ⊆ FV(M) ∪ FV(N) and

M =βη F1P1Q1

F1Q1P1 =βη F2P2Q2

· · ·
Fn−1Qn−1Pn−1 =βη FnPnQn

FnQnPn =βη N.





(1)

This scheme (1) is called a Jacopini tableau and the sequence F1, · · · ,Fn is called the list
of witnesses.

Proof. (⇐) Obvious, since clearly E ⊢ FPQ = FQP if P = Q∈E .
(⇒) By induction on the derivation of M = N from the axioms. If M = N is a

βη-axiom or the axiom of reflexivity, then we can take as witnesses the empty list. If
M = N is an axiom in E , then we can take as list of witnesses just K. If M = N
follows from M = L and L = N , then we can concatenate the lists that exist by the
induction hypothesis. If M = N is PZ = QZ (respectively ZP = ZQ) and follows from
P = Q with list F1, · · · ,Fn, then the list for M = N is F1

′, · · · , Fn
′ with Fi

′ ≡ λab.FiabZ
(respectively Fi

′ ≡ λab.Z(Fiab)). If M = N follows from N = M , then we have to
reverse the list. If M = N is λx.P = λx.Q and follows from P = Q with list F1, · · · ,Fn,
then the new list is F1

′, · · · , Fn
′ with Fi

′ ≡ λpqx.Fipq. Here we use that the equations
in E are between closed terms.

Remember that true ≡ λxy.x, false ≡ λxy.y both having type 12 = 0→0→0.

3B.15. Lemma. Let E be a set of equations over D. Then

E is consistent ⇔ E 6⊢ true = false.

Proof. (⇐) By definition. (⇒) Suppose E ⊢ λxy.x = λxy.y. Then E ⊢ P = Q
for arbitrary P,Q∈Λ→(0). But then for arbitrary terms M,N of the same type A =
A1→· · ·→An→0 one has E ⊢M~z = N~z for fresh ~z = z1, · · · ,zn of the right type, hence
E ⊢M = N , by Proposition 3B.5.
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3B.16. Definition. Let M,N ∈Λø→[D](A) be closed terms of type A.
(i) M is inconsistent with N , notation M //=N , if

{M = N} ⊢ true = false.

(ii) M is separable from N , notation M ⊥N , iff for some F ∈Λø→[D](A→12)

FM = true & FN = false.

The following result, stating that inconsistency implies separability, is not true for the
untyped lambda calculus: the equation K = YK is inconsistent, but K and YK are not
separable, as follows from the Genericity Lemma, see B[1984] Proposition 14.3.24.

3B.17. Proposition. Let M,N ∈Λø→(A) be closed pure terms of type A. Then

M //=N ⇔ M ⊥N.
Proof. (⇐) Trivially separability implies inconsistency.
(⇒) Suppose {M = N} ⊢ true = false. Then also {M = N} ⊢ x = y. Hence by

Proposition 3B.14 one has

x=βη F1MN

F1NM =βη F2MN

· · ·
FnNM =βη y.

Let n be minimal for which this is possible. We can assume that the Fi are all pure
terms with FV(Fi) ⊆ {x, y} at most. The nf of F1NM must be either x or y. Hence
by the minimality of n it must be y, otherwise there is a shorter list of witnesses. Now
consider the nf of F1MM . It must be either x or y.
Case 1: F1MM =βη x. Then set F ≡ λaxy.F1aM and we have FM =βη true and

FN =βη false.
Case 2: F1MM =βη y. Then set F ≡ λaxy.F1Ma and we have FM =βη false and

FN =βη true.

This Proposition does not hold for M,N ∈Λø→[D], see Exercise 3F.2.

3B.18. Corollary. Let E be a set of equations over D = ∅. If E is inconsistent, then
for some equation M=N ∈E the terms M and N are separable.

Proof. By the same reasoning.

In the untyped theory λ the setH = {M = N |M,N are closed unsolvable} is consistent
and has a unique maximal consistent extension H∗, see B[1984]. The following result is
similar for λ→, as there are no unsolvable terms.

3B.19. Theorem. Let

Emax , {M=N |M,N ∈Λø→ and M,N are not separable}.
Then this is the unique maximally consistent set of equations.

Proof. By the corollary this set is consistent. By Proposition 3B.17 it contains all
consistent equations. Therefore the set is maximally consistent. Moreover it is the
unique such set.

It will be shown in Chapter 4 that Emax is decidable.



3C. Syntactic and semantic logical relations 91

3C. Syntactic and semantic logical relations

In this section we work in λ0,Ch
→ . We introduce the well-known method of logical relations

in two ways: one on the terms and one on elements of a model. Applications of the
method will be given and it will be shown how the two methods are related.

Syntactic logical relations

3C.1. Definition. Let n be a fixed natural number and let ~D = D1, · · · ,Dn be sets of
constants of various given types.

(i) R is called an (n-ary) family of (syntactic) relations (or sometimes just a (syn-

tactic) relation) on Λ→[ ~D], if R = {RA}A∈TT and for A∈TT
RA ⊆ Λ→[D1](A)× · · · × Λ→[Dn](A).

If we want to make the sets of constants explicit, we say that R is a relation on terms
from D1, · · · ,Dn.

(ii) Such an R is called a (syntactic) logical relation if
∀A,B ∈TT∀M1 ∈Λ→[D1](A→B), · · · ,Mn ∈Λ→[Dn](A→B).

RA→B(M1, · · · ,Mn) ⇔ ∀N1 ∈Λ→[D1](A) · · ·Nn ∈Λ→[Dn](A)
[RA(N1, · · · , Nn) ⇒ RB(M1N1, · · · ,MnNn)].

(iii) R is called empty if R0 = ∅.
Given ~D, a logical family {RA} is completely determined by R0. For A 6= 0 the RA do

depend on the choice of the ~D.
3C.2. Lemma. If R is a non-empty logical relation, then ∀A∈TT0.RA 6= ∅.
Proof. (For R unary.) By induction on A. Case A = 0. By assumption. Case
A = B→C. Then RB→C(M) ⇔ ∀P ∈Λ→(B).[RB(P ) ⇒ RC(MP )]. By the induction
hypothesisone has RC(N), for some N . Then M ≡ λp.N ∈Λ→(B→C) is in RA.

Even the empty logical relation is interesting.

3C.3. Proposition. Let R be the n-ary logical relation on Λ→[ ~D] determined by R0 = ∅.
Then

RA = Λ→[D1](A)× · · · × Λ→[Dn](A), if Λø→(A) 6= ∅;
= ∅, if Λø→(A) = ∅.

Proof. For notational simplicity we take n = 1. By induction on A. If A = 0, then we
are done, as R0 = ∅ and Λø→(0) = ∅. If A = A1→· · ·→Am→0, then

RA(M) ⇔ ∀Pi ∈RAi
.R0(M ~P )

⇔ ∀Pi ∈RAi
.⊥,

seeing R both as a relation and as a set, and ‘⊥’ stands for the false proposition. This
last statement either is always the case, namely if

∃i.RAi
= ∅ ⇔ ∃i.Λø→(Ai) = ∅, by the induction hypothesis,

⇔ Λø→(A) 6= ∅, by Proposition 2D.4.

Or else, namely if Λø→(A) = ∅, it is never the case, by the same reasoning.
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3C.4. Example. Let n = 2 and set R0(M,N) ⇔ M =βη N . Let R be the logical rela-

tion determined by R0. Then it is easily seen that for all A and M,N ∈Λ→[ ~D](A) one has
RA(M,N) ⇔ M =βη N .

3C.5. Definition. (i) Let M,N be lambda terms. Then M is a weak head expansion

of N , notation M →wh N , if M ≡ (λx.P )Q~R and N ≡ P [x: = Q]~R.

(ii) A family R on Λ→[ ~D] is called expansive if R0 is closed under coordinatewise
weak head expansion, i.e. if Mi

′ →wh Mi for 1 ≤ i ≤ n, then
R0(M1, · · · ,Mn) ⇒ R0(M1

′, · · · ,Mn
′).

3C.6. Lemma. If R is logical and expansive, then each RA is closed under coordinatewise
weak head expansion.

Proof. Immediate by induction on the type A and the fact that

M ′ →wh M ⇒ M ′N →wh MN.

3C.7. Example. This example prepares an alternative proof of the Church-Rosser property using
logical relations.

(i) Let M ∈Λ→. We say that βη is confluent from M , notation ↓βηM , if whenever N1 βη←←
M ։βη N2, then there exists a term L such that N1 ։βη L βη←← N2. Define R0 on Λ→(0) by

R0(M) ⇔ βη is confluent from M.

Then R0 determines a logical R which is expansive by the permutability of head contractions
with internal ones.

(ii) Let R be the logical relation on Λ→ generated from

R0(M) ⇔ ↓βηM.

Then for an arbitrary type A∈TT one has

RA(M) ⇒ ↓βηM.

[Hint. Write M ↓βη N if ∃Z [M ։βη Z βη ←← N ]. First show that for an arbitrary variable x of
some type B one has RB(x). Show also that if x is fresh, then by distinguishing cases whether
x gets eaten or not

N1x ↓βη N2x ⇒ N1 ↓βη N2.

Then use induction on A.]

3C.8. Definition. (i) Let R ⊆ Λ→[D1](A)× · · · × Λ→[Dn](A) and ∗1, · · · , ∗n
∗i : Var(A)→Λ→[Di](A)

be substitutors, each ∗ applicable to all variables of all types. Write R(∗1, · · · , ∗n) if
RA(x

∗1 , · · · , x∗n) for each variable x of type A.
(ii) Define R∗ ⊆ Λ→[D1](A)× · · · × Λ→[Dn](A) by

R∗
A(M1, · · · ,Mn)⇐⇒△ ∀ ∗1 · · · ∗n [R(∗1, · · · , ∗n) ⇒ RA(M

∗1
1 , · · · ,M∗n

n )].

(iii) R is called substitutive if R = R∗, i.e.

RA(M1, · · · ,Mn) ⇔ ∀ ∗1 · · · ∗n [R(∗1, · · · , ∗n) ⇒ RA(M
∗1
1 , · · · ,M∗n

n )].

3C.9. Lemma. Let R be logical.
(i) Suppose that R0 6= ∅. Then for closed terms M1 ∈Λø→[D1], · · · ,Mn ∈Λø→[Dn]

RA(M1, · · · ,Mn) ⇔ R∗
A(M1, · · · ,Mn).
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(ii) For pure closed terms M1 ∈Λø→, · · · ,Mn ∈Λø→
RA(M1, · · · ,Mn) ⇔ R∗

A(M1, · · · ,Mn).

(iii) For a substitutive R one has for arbitrary open M1, · · · ,Mn, N1, · · · , Nn

RA(M1, · · · ,Mn) & RB(N1, · · · , Nn) ⇒ RA(M1[x
B:=N1], · · · ,Mn[x

B:=Nn]).

Proof. (i) Clearly RA( ~M) implies R∗
A(

~M), as the ~M are closed. For the converse

assume R∗
A(

~M), that is RA(
−→
M∗), for all substitutors ~∗ satisfying R(~∗). As R0 6= ∅, we

have RB 6= ∅, for all B ∈TT0, by Lemma 3C.2. So we can take −→∗i such that RB(
−→
x∗i), for

all x = xB. But then R(∗) and hence R(
−→
M∗), which is R( ~M).

(ii) If Λø→(A) = ∅, then this set does not contain closed pure terms and we are done.
If Λø→(A) 6= ∅, then by Lemma 3C.3 we have RA = (Λø→(A))n and we are also done.

(iii) Since R is substitutive we have R∗( ~M). Let ∗i = [x:=Ni]. Then R(∗1, · · · , ∗n)
and hence R(M1[x:=N1], · · · ,Mn[x:=Nn]).

Part (i) of this Lemma does not hold for R0 = ∅ and D1 6= ∅. Take for example
D1 = {c0}. Then vacuously R∗

0(c
0), but not R0(c

0).

3C.10. Exercise. (CR for βη via logical relations.) Let R be the logical relation on Λ→ gener-
ated by R0(M) iff ↓βηM . Show by induction on M that R∗(M) for all M . [Hint. Use that R
is expansive.] Conclude that for closed M one has R(M) and hence ↓βηM . The same holds for
arbitrary open terms N : let {~x} = FV(M), then

λ~x.N is closed ⇒ R(λ~x.N)

⇒ R((λ~x.N)~x), since R(xi),

⇒ R(N), since R is closed under ։β,

⇒ ↓βη N.

Thus the Church-Rosser property holds for ։βη.

3C.11. Proposition. Let R be an arbitrary n-ary family on Λ→[ ~D]. Then
(i) R∗(x, · · · , x) for all variables.
(ii) If R is logical, then so is R∗.
(iii) If R is expansive, then so is R∗.
(iv) R∗∗ = R∗, so R∗ is substitutive.
(v) If R is logical and expansive, then

R∗(M1, · · · ,Mn) ⇒ R∗(λx.M1, · · · , λx.Mn).

Proof. For notational simplicity we assume n = 1.
(i) If R(∗), then by definition R(x∗). Therefore R∗(x).
(ii) We have to prove

R∗(M) ⇔ ∀N ∈Λ→[ ~D][R∗(N) ⇒ R∗(MN)].

(⇒) Assume R∗(M) & R∗(N) in order to show R∗(MN). Let ∗ be a substitutor such
that R(∗). Then

R∗(M) & R∗(N) ⇒ R(M∗) & R(N∗)

⇒ R(M∗N∗) ≡ R((MN)∗)

⇒ R∗(MN).
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(⇐) By the assumption and (i) we have

R∗(Mx), (1)

where we choose x to be fresh. In order to prove R∗(M) we have to show R(M∗),
whenever R(∗). Because R is logical it suffices to assume R(N) and show R(M∗N).
Choose ∗′ = ∗(x:=N), then also R(∗′). Hence by (1) and the freshness of x we have

R((Mx)∗
′
) ≡ R(M∗N) and we are done.

(iii) First observe that weak head reductions permute with substitution:

((λx.P )Q~R)∗ ≡ (P [x:=Q]~R)∗.

Now let M →wh M
w be a weak head reduction step. Then

R∗(Mw) ⇒ R(Mw∗) ≡ R(M∗w)

⇒ R(M∗)

⇒ R∗(M).

(iv) For substitutors ∗1, ∗2 write ∗1∗2 for ∗2 ◦ ∗1. This is convenient since
M∗1∗2 ≡M∗2◦∗1 ≡ (M∗1)∗2 .

Assume R∗∗(M). Let ∗1(x) = x for all x. Then R∗(∗1), by (i), and therefore we have
R∗(M∗1) ≡ R∗(M). Conversely, assume R∗(M), i.e.

∀ ∗ [R(∗) ⇒ R(M∗)], (2)

in order to show ∀ ∗1 [R∗(∗1) ⇒ R∗(M∗1)]. Now

R∗(∗1) ⇔ ∀ ∗2 [R(∗2) ⇒ R(∗1∗2)],
R∗(M∗1) ⇔ ∀ ∗2 [R(∗2) ⇒ R(M∗1∗2)].

Therefore by (2) applied to ∗1∗2 we are done.
(v) Let R be logical and expansive. Assume R∗(M). Then

R∗(N) ⇒ R∗(M [x:=N ]), since R∗ is substitutive,

⇒ R∗((λx.M)N), since R∗ is expansive.

Therefore R∗(λx.M) since R∗ is logical.

3C.12. Theorem (Fundamental theorem for syntactic logical relations). Let R be logi-
cal, expansive and substitutive. Then for all A∈TT and all pure terms M ∈Λ→(A) one
has

RA(M, · · · ,M).

Proof. By induction on M we show that RA(M, · · · ,M).
CaseM ≡ x. Then the statement follows from the assumption R = R∗ (substitutivity)

and Proposition 3C.11 (i).
Case M ≡ PQ. By the induction hypothesis and the assumption that R is logical.
Case M ≡ λx.P . By the induction hypothesis and Proposition 3C.11(v).

3C.13. Corollary. Let R be an n-ary expansive logical relation. Then for all closed
M ∈Λø→ one has R(M, · · · ,M).
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Proof. By Proposition 3C.11(ii), (iii), (iv) it follows that R∗ is expansive, substitutive,
and logical. Hence the theorem applied to R∗ yields R∗(M, · · · ,M). Then we have

R( ~M), by Lemma 3C.9(ii).

The proof in Exercise 3C.10 was in fact an application of this Corollary. In the
following Example we present the proof of weak normalization in Prawitz [1965].

3C.14. Example. Let R be the logical relation determined by

R0(M) ⇔ M is normalizable.

Then R is expansive. Note that if RA(M), then M is normalizable. [Hint. Use RB(x) for
arbitrary B and x and the fact that if M~x is normalizable, then so is M .] It follows from
Corollary 3C.13 that each closed term is normalizable. Hence all terms are normalizable by
taking closures. For strong normalization a similar proof breaks down. The corresponding R is
not expansive.

3C.15. Example. Now we ‘relativize’ the theory of logical relations to closed terms. A family
of relations SA ⊆ Λø→[D1](A)× · · · × Λø→[Dn](A) which satisfies

SA→B(M1, · · · ,Mn) ⇔ ∀N1 ∈Λø→[D1](A) · · ·Nn ∈Λø→[Dn](A)

[SA(N1, · · · , Nn) ⇒ SB(M1N1, · · · ,MnNn)]

can be lifted to a substitutive logical relation S∗ on Λ→[D1] × · · · × Λ→[Dn] as follows. Define
for substitutors ∗i : Var(A)→Λø→[Di](A)

SA(∗1, · · · , ∗n) ⇔ ∀xA SA(x
∗1 , · · · , x∗n).

Now define S∗ as follows: for Mi ∈Λ→[Di](A)

S∗
A(M1, · · · ,Mn) ⇔ ∀ ∗1 · · · ∗n [SA(∗1, · · · , ∗n) ⇒ SA(M

∗1

1 , · · · ,M∗n
n )].

Show that if S is closed under coordinatewise weak head expansions, then S∗ is expansive.

The following definition is needed in order to relate the notions of logical relation and
semantic logical relation, to be defined in 3C.21.

3C.16. Definition. Let R be an n+ 1-ary family. The projection of R, notation ∃R, is
the n-ary family defined by

∃R(M1, · · · ,Mn) ⇔ ∃Mn+1 ∈Λ→[Dn+1] R(M1, · · · ,Mn+1).

3C.17. Proposition. (i) The universal n-ary relation RU is defined by

RU
A , Λ→[D1](A)× · · · × Λ→[Dn](A).

This relation is logical, expansive and substitutive.
(ii) Let R = {RA}A∈TT0 , S = {SA}A∈TT0 with RA ⊆ Λ→[D1](A) × · · · × Λ→[Dm](A)

and SA ⊆ Λ→[E1](A)× · · · × Λ→[En](A) be non-empty logical relations. Define

(R× S)A ⊆ Λ→[D1](A)× · · · × Λ→[Dm](A)× Λ→[E1](A)× · · · × Λ→[En](A)
by

(R× S)A(M1, · · · ,Mm, N1, · · · ,Nn)⇐⇒△ RA(M1, · · · ,Mm) & SA(N1, · · · ,Nn).

Then R × S is a non-empty logical relation. If moreover R and S are both substitutive,
then so is R× S.
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(iii) If R is an n-ary family and π is a permutation of {1, · · · , n}, then Rπ defined by

Rπ(M1, · · · ,Mn)⇐⇒△ R(Mπ(1), · · · ,Mπ(n))

is logical if R is logical, is expansive if R is expansive and is substitutive if R is substi-
tutive.

(iv) Let R be an n-ary substitutive logical relation on terms from D1, · · · ,Dn and let
D ⊆ ∩iDi. Then the diagonal of R, notation R∆, defined by

R∆(M)⇐⇒△ R(M, · · · ,M)

is a substitutive logical (unary) relation on terms from D, which is expansive if R is
expansive.

(v) If R is a class of n-ary substitutive logical relations, then ∩R is an n-ary substi-
tutive logical relation, which is expansive if each member of R is expansive.

(vi) If R is an n-ary substitutive, expansive and logical relation, then ∃R is a substi-
tutive, expansive and logical relation.

Proof. (i) Trivial.
(ii) Suppose that R,S are logical. We show for n = m = 1 that R× S is logical.

(R× S)A→B(M,N) ⇔ RA→B(M) & SA→B(N)

⇔ [∀P.RA(P )⇒ RB(MP )] &

[∀Q.RA(Q)⇒ RB(NQ)]

⇔ ∀(P,Q).(R× S)A(P,Q) ⇒ (R× S)B(MP,NQ).

For the last (⇐) one needs that the R,S are non-empty, and Lemma 3C.2. If both R,S
are substitutive, then trivially so is R× S.
(iii) Trivial.
(iv) We show for n = 2 that R∆ is logical. We have

R∆(M) ⇔ R(M,M)
⇔ ∀N1, N2.R(N1, N2) ⇒ R(MN1,MN2)
⇔ ∀N.R(N,N) ⇒ R(MN,MN), (1)

where validity of the last equivalence is argued as follows. Direction (⇒) is trivial. As
to (⇐), suppose (1) and R(N1, N2), in order to show R(MN1,MN2). By Proposition
3C.11(i) one has R(x, x), for fresh x. Hence R(Mx,Mx) by (1). Therefore R∗(Mx,Mx),
as R is substitutive. Now taking ∗i = [x := Ni], one obtains R(MN1,MN2).

(v) Trivial.
(vi) Like in (iv) it suffices to show that

∀P.[∃R(P ) ⇒ ∃R(MP )] (2)

implies ∃N∀P,Q.[R(P,Q) ⇒ R(MP,NQ)]. Again we have R(x, x). Therefore by (2)

∃N1.R(Mx,N1).

Choosing N ≡ λx.N1, we get R∗(Mx,Nx), because R is substitutive. Then R(P,Q)
implies R(MP,NQ), as in (iv).

The following property R states that an M essentially does not contain the constants
from D. Remember that a term M ∈Λ→[D] is called pure iff M ∈Λ→. The property
R(M) states that M is convertible to a pure term.
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3C.18. Proposition. Define for M ∈Λ→[D](A)

Rβη
A (M)⇐⇒△ ∃N ∈Λ→(A)M =βη N.

Then

(i) Rβη is logical.

(ii) Rβη is expansive.

(iii) Rβη is substitutive.

Proof. (i) If Rβη(M) and Rβη(N), then clearly Rβη(MN). Conversely, suppose
∀N [Rβη(N) ⇒ Rβη(MN)]. Since obviously Rβη(x) it follows that Rβη(Mx) for fresh
x. Hence there exists a pure L =βη Mx. But then λx.L =βη M , hence Rβη(M).

(ii) Trivial as P →wh Q ⇒ P =βη Q.

(iii) We must show Rβη = Rβη∗. Suppose Rβη(M) and Rβη(∗). Then M = N , with
N pure and hence M∗ = N∗ is pure, so Rβη∗(M). Conversely, suppose Rβη∗(M). Then
for ∗ with x∗ = x one has Rβη(∗). Hence Rβη(M∗). But this is Rβη(M).

3C.19. Proposition. Let R be an n-ary logical, expansive and substitutive relation on
terms from D1, · · · ,Dn. Define the restriction to pure terms R ↾ Λ, again a relation on
terms from D1, · · · ,Dn, by

(R↾Λ)A(M1, · · · ,Mn)⇐⇒△ Rβη(M1) & · · · & Rβη(Mn) & RA(M1, · · · ,Mn),

where Rβη is as in Proposition 3C.18. Then R↾Λ is logical, expansive and substitutive.

Proof. Intersection of relations preserves the notion logical, expansive and substitu-
tive.

3C.20. Proposition. Given a set of equations E between closed terms of the same type,
define RE by

RE(M,N)⇐⇒△ E ⊢M = N.

Then

(i) RE is logical.

(ii) RE is expansive.

(iii) RE is substitutive.

(iv) RE is a congruence relation.

Proof. (i) We must show

E ⊢M1 =M2 ⇔ ∀N1, N2[E ⊢ N1 = N2 ⇒ E ⊢M1N1 =M2N2].

(⇒) Let E ⊢ M1 = M2 and E ⊢ N1 = N2. Then E ⊢ M1N1 = M2N2 follows by
(R-congruence), (L-congruence) and (transitivity).
(⇐) For all x one has E ⊢ x = x, so E ⊢M1x =M2x. Choose x fresh. Then M1 =M2

follows by (ξ-rule), (η) and (transitivity).

(ii) Obvious, since provability from E is closed under β-conversion, hence a fortiori
under weak head expansion.

(iii) Assume that RE(M,N) in order to show RE
∗(M,N). So suppose RE(x

∗1 , x∗2).
We must show RE(M

∗1 , N∗2). Now going back to the definition of RE this means that
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we have E ⊢ M = N and E ⊢ x∗1 = x∗2 and we must show E ⊢ M∗1 = N∗2 . Now if
FV(MN) ⊆ {~x}, then

M∗1 =β (λ~x.M)~x∗1

=E (λ~x.N)~x∗2

=β N
∗2 .

(iv) Obvious.

Semantic logical relations

3C.21. Definition. LetM1, · · · ,Mn be typed applicative structures.
(i) S is an n-ary family of (semantic) relations or just a (semantic) relation on

M1 × · · · ×Mn iff S = {SA}A∈TT and for all A

SA ⊆M1(A)× · · · ×Mn(A).

(ii) S is a (semantic) logical relation if

SA→B(d1, · · · , dn) ⇔ ∀e1 ∈M1(A) · · · en ∈Mn(A)
[SA(e1, · · · , en) ⇒ SB(d1e1, · · · , dnen)].

for all A,B and all d1 ∈M1(A→B), · · · , dn ∈Mn(A→B).
(iii) The relation S is called non-empty if S0 is non-empty.

Note that S is an n-ary relation onM1×· · ·×Mn iff S is a unary relation on the single
structureM1 × · · · ×Mn.

3C.22. Example. Define S onM×M by S(d1, d2)⇐⇒△ d1 = d2. Then S is logical.

3C.23. Example. LetM be a model and let π = π0 be a permutation ofM(0) which happens
to be an element ofM(0→0). Then π can be lifted to higher types by defining

πA→B(d), λλe∈M(A).πB(d(π
−1
A (e))).

Now define Sπ (the graph of π)

Sπ(d1, d2)⇐⇒△ π(d1) = d2.

Then Sπ is logical.

3C.24. Example. (Friedman [1975]) LetM,N be typed structures. A partial surjective homo-
morphism is a family h = {hA}A∈ of partial maps

hA :M(A)#N (A)

such that

hA→B(d) = e ⇔ e∈N (A→B) is the unique element (if it exists)

such that ∀f ∈ dom(hA) [e(hA(f)) = hB(d f)].

This implies that, if all elements involved exist, then

hA→B(d)hA(f) = hB(d f).

Note that h(d) can fail to be defined if one of the following conditions holds

1. for some f ∈ dom(hA) one has df /∈ dom(hB);
2. the correspondence hA(f) 7→ hB(df) fails to be single valued;
3. the map hA(f) 7→ hB(df) fails to be in NA→B .
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Of course, 3 is the basic reason for partialness, whereas 1 and 2 are derived reasons. A partial
surjective homomorphism h is completely determined by its h0. If we take M = MX and
h0 is any surjection X→N0, then hA is, although partial, indeed surjective for all A. Define
SA(d, e) ⇔ hA(d) = e, the graph of hA. Then S is logical. Conversely, if S0 is the graph of a
surjective partial map h0 :M(0)→N (0), and the logical relation S onM×N induced by this
S0 satisfies

∀e∈N (A)∃d∈M(A) SA(d, e),

then S is the graph of a partial surjective homomorphism fromM to N .

Kreisel’s Hereditarily Recursive Operations are one of the first appearences of logical
relations, see Bezem [1985a] for a detailed account of extensionality in this context.

3C.25. Proposition. Let R ⊆ M1 × · · · × Mn be the n-ary semantic logical relation
determined by R0 = ∅. Then

RA = M1(A)× · · · ×Mn(A), if Λø→(A) 6= ∅;
= ∅, if Λø→(A) = ∅.

Proof. Analogous to the proof of Proposition 3C.3 for semantic logical relations, using
that for a allMi and all types A one hasMi(A) 6= ∅, by Definition 3A.1.

3C.26. Theorem (Fundamental theorem for semantic logical relations).
Let M1, · · · ,Mn be typed λ-models and let S be logical on M1 × · · · ×Mn. Then for
each term M ∈Λø→ one has

S([[M ]]M1 , · · · , [[M ]]Mn).

Proof. We treat the case n = 1. Let S ⊆M be logical. We claim that for all M ∈Λ→

and all partial valuations ρ such that FV(M) ⊆ dom(ρ) one has

S(ρ) ⇒ S([[M ]]ρ).

This follows by an easy induction onM . In caseM ≡ λx.N one should show S([[λx.N ]]ρ),

assuming S(ρ). This means that for all d of the right type with S(d) one has S([[λx.N ]]ρd).

This is the same as S([[N ]]ρ[x:=d]), which holds by the induction hypothesis.

The statement now follows immediately from the claim, by taking as ρ the empty
function.

We give two applications.

3C.27. Example. Let S be the graph of a partial surjective homomorphism h : M→N . The
fundamental theorem just shown implies that for closed pure terms one has h(M) = M , which
is lemma 15 of Friedman [1975]. From this it is derived in that paper that for infinite X one has

MX |=M = N ⇔ M =βη N.

We have derived this in another way.

3C.28. Example. Let M be a typed applicative structure. Let ∆ ⊆ M. Write ∆(A) = ∆ ∩
M(A). Assume that ∆(A) 6= ∅ for all A∈TT and

d∈∆(A→B), e∈∆(A) ⇒ de∈∆(B).

Then ∆ may fail to be a typed applicative structure because it is not extensional. Equality
as a binary relation E0 on ∆(0) × ∆(0) induces a binary logical relation E on ∆ × ∆. Let
∆E = {d∈∆ | E(d, d)}. Then the restriction of E to ∆E is an applicative congruence and the
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equivalence classes form a typed applicative structure. In particular, if M is a typed λ-model,
then write

∆+ , {[[M ]] ~d |M ∈Λø→, ~d∈∆}
= {d∈M | ∃M ∈Λø→∃d1 · · · dn ∈∆ [[M ]] d1 · · · dn = d}.

for the applicative closure of ∆. The Gandy-hull of ∆ inM is the set ∆+E . From the fundamental
theorem for semantic logical relations it can be derived that

G∆(M) = ∆+E/E

is a typed λ-model. This model will be also called the Gandy-hull of ∆ inM. Do Exercise 3F.34
to get acquainted with the notion of the Gandy hull.

3C.29. Definition. LetM1, · · · ,Mn be type structures.
(i) Let S be an n-ary relation on M1 × · · · × Mn. For valuations ρ1, · · · ,ρn with

ρi : Var→Mi we define

S(ρ1, · · · ,ρn) ⇔ S(ρ1(x), · · · , ρn(x)), for all variables x satisfying ∀i.ρi(x)↓.
(ii) Let S be an n-ary relation onM1×· · ·×Mn. The lifting of S toM∗

1×· · ·×M∗
n,

notation S∗, is defined for d1 ∈M∗
1, · · · , dn ∈M∗

n as follows.

S∗(d1, · · · ,dn)⇐⇒△ ∀ρ1 : V→M1, · · · , ρn : V→Mn

[S(ρ1, · · · ,ρn) ⇒ S(((d1))
M1
ρ1 , · · · , ((dn))Mn

ρn )].

The interpretation ((−))ρ:M∗ →M was defined in Definition 3A.22(ii).
(iii) For ρ:V→M∗ define the ‘substitution’ (−)ρ:M∗ →M∗ as follows.

xρ , ρ(x);

mρ ,m;

(d1d2)
ρ , dρ1d

ρ
2

(iv) Let now S be an n-ary relation onM∗
1 × · · · ×M∗

n. Then S is called substitutive
if for all d1 ∈M∗

1, · · · , dn ∈M∗
n one has

S(d1, · · · ,dn) ⇔ ∀ρ1 : V→M∗
1, · · · ρn : V→M∗

n

[S(ρ1, · · · ,ρn) ⇒ S(dρ11 , · · · , dρnn )].

3C.30. Remark. If S ⊆ M∗
1 × · · · ×M∗

n is substitutive, then for every variable x one
has S(x, · · · , x).
3C.31. Example. (i) Let S be the equality relation onM×M. Then S∗ is the equality relation
onM∗ ×M∗.

(ii) If S is the graph of a surjective homomorphism, then S∗ is the graph of a partial surjective
homomorphism whose restriction (in the literal sense, not the analogue of 3C.19) toM is S and
which fixes each indeterminate x.

3C.32. Lemma. Let S ⊆M1 × · · · ×Mn be a semantic logical relation.

(i) Let ~d∈M1 × · · · ×Mn. Then S(~d ) ⇒ S∗(~d ).

(ii) Suppose S is non-empty and that theMi are λ-models. Then for ~d∈M1× · · · ×
Mn one has S∗(~d ) ⇒ S(~d ).

Proof. For notational simplicity, take n = 1.
(i) Suppose that S(d). Then S∗(d), as ((d))ρ = d, hence S(((d))ρ), for all ρ.
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(ii) Suppose S∗(d). Then for all ρ : V→M one has

S(ρ) ⇒ S(((d))M
∗

ρ )

⇒ S(d).

Since S0 is non-empty, say d∈S0, also SA is non-empty for all A∈TT0: the constant
function λ~x.d∈SA. Hence there exists a ρ such that S(ρ) and therefore S(d).

3C.33. Proposition. Let S ⊆ M1 × · · · × Mn be a semantic logical relation. Then
S∗ ⊆M∗

1 × · · · ×M∗
n and one has the following.

(i) S∗(x, · · · , x) for all variables.
(ii) S∗ is a semantic logical relation.
(iii) S∗ is substitutive.
(iv) If S is substitutive and eachMi is a typed λ-model, then

S∗(d1, · · · ,dn) ⇔ S(λ~x.d1, · · · ,λ~x.dn),
where the variables on which the ~d depend are included in the list ~x.

Proof. Take n=1 for notational simplicity.
(i) If S(ρ), then by definition one has S(((x))ρ) for all variables x. Therefore S

∗(x).
(ii) We have to show

S∗
A→B(d) ⇔ ∀e∈M∗(A).[S∗

A(e) ⇒ S∗
B(de)].

(⇒) Suppose S∗
A→B(d), S

∗
A(e), in order to show S∗

B(de). So assume S(ρ) towards
S(((de))ρ). By the assumption we have S(((d))ρ), S(((e))ρ), hence indeed S(((de))ρ), as S
is logical.
(⇐) Assume the RHS in order to show S∗(d). To this end suppose S(ρ) towards

S(((d))ρ). Since S is logical it suffices to show S(e) ⇒ S(((d))ρe) for all e∈M. Taking
e∈M, we have

S(e) ⇒ S∗(e), by Lemma 3C.32(i),

⇒ S∗(de), by the RHS,

⇒ S(((d))ρe), as e = ((e))ρ and S(ρ).

(iii) For d∈M∗ we show that S∗(d) ⇔ ∀ρ:V→M∗[S∗(ρ) ⇒ S∗(dρ)], i.e.

∀ρ:V→M.[S(ρ) ⇒ S(((d))Mρ )] ⇔ ∀ρ′:V→M∗.[S∗(ρ′) ⇒ S∗(dρ
′
)].

As to (⇒). Let d∈M∗ and suppose

∀ρ:V→M.[S(ρ) ⇒ S(((d))Mρ )], (1)

and
S∗(ρ′), for a given ρ′:V→M∗, (2)

in order to show S∗(dρ
′
). To this end we assume

S(ρ′′) with ρ′′:V→M (3)

in order to show
S(((dρ

′
))Mρ′′ ). (4)

Now define
ρ′′′(x), ((ρ′(x)))Mρ′′ .
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Then ρ′′′:V→M and by (2), (3) one has S(ρ′′′(x)) (being S(((ρ′(x)))M
∗

ρ′′ )), hence

S(((d))ρ′′′). (5)

By induction on the structure of d∈M∗ (considered asM modulo ∼M) it follows that

((d))Mρ′′′ = ((dρ
′
))Mρ′′ .

Therefore (5) yields (4).
As to (⇐). Assume the RHS. Taking ρ′(x) = x∈M∗ one has S∗ρ′) by (i), hence

S∗(dM
∗

ρ′ ). Now one easily shows by induction on d∈M that dM
∗

ρ′ = d, so one has S∗(d).

(iv) W.l.o.g. we assume that d depends only on y and that ~x = y. As M is a typed
λ-model, there is a unique F ∈M such that for all y ∈M one has Fy = d. This F is
denoted as λy.d.

S(d) ⇔ S(Fy)

⇔ ∀ρ:V→M∗[S(ρ) ⇒ S(((i(Fy)))ρ)], as S is substitutive,

⇔ ∀ρ:V→M∗[S(ρ) ⇒ S(((i(F )))ρ((i(y)))ρ)],

⇔ ∀e∈M∗.[S(e) ⇒ S(F e)], taking ρ(x) = e,

⇔ S(F ), as S is logical,

⇔ S(λy.d).

3C.34. Proposition. Let S ⊆ M1 × · · · ×Mm and S′ ⊆ N1 × · · · × Nn be non-empty
logical relations. Define S × S′ onM1 × · · · ×Mm ×N1 × · · · × Nn by

(S × S′)(d1, · · · ,dm, e1, · · · ,en)⇐⇒△ S(d1, · · · ,dm) & S′(e1, · · · ,en).
Then S × S′ ⊆ M1 × · · · × Mm × N1 × · · · × Nn is a non-empty logical relation. If
moreover both S and S′ are substitutive, then so is S × S′.

Proof. As for syntactic logical relations.

3C.35. Proposition. (i) The universal relation SU defined by SU ,M∗
1 × · · · ×M∗

n is
substitutive and logical onM∗

1 × · · · ×M∗
n.

(ii) Let S be an n-ary logical relation onM∗ × · · · ×M∗ (n-copies ofM∗). Let π be
a permutation of {1, · · · , n}. Define Sπ onM∗ × · · · ×M∗ by

Sπ(d1, · · · ,dn)⇐⇒△ S(dπ(1), · · · , dπ(n)).
Then Sπ is a logical relation. If moreover S is substitutive, then so is Sπ.
(iii) If S is an n-ary substitutive logical relation onM∗× · · ·×M∗, then the diagonal

S∆ defined by
S∆(d)⇐⇒△ S(d, · · · , d)

is a unary substitutive logical relation onM∗.
(iv) If S is a class of n-ary substitutive logical relations onM∗

1 × · · · ×M∗
n, then the

relation ∩S ⊆M∗
1 × · · · ×M∗

n is a substitutive logical relation.
(v) If S is an (n+1)-ary substitutive logical relation onM∗

1×· · ·×M∗
n+1 andM∗

n+1

is a typed λ-model, then ∃S defined by

∃S(d1, · · · ,dn)⇐⇒△ ∃dn+1.S(d1, · · · ,dn+1)

is an n-ary substitutive logical relation.

Proof. For convenience we take n = 1. We treat (v), leaving the rest to the reader.
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(v) Let S ⊆M∗
1×M∗

2 be substitutive and logical. DefineR(d1) ⇔ ∃d2 ∈M∗
2.S(d1.d2),

towards

∀d1 ∈M∗
1.[R(d1) ⇔ ∀e1 ∈M∗

1.[R(e1) ⇒ R(d1e1)]].

(⇒) Suppose R(d1), R(e1) in order to show R(d1e1). Then there are d2, e2 ∈M∗
2 such

that S(d1, d2), S(e1, e2). Then S(d1e1, d2, e2), as S is logical. Therefore R(d1e1) indeed.
(⇐) Suppose ∀e1 ∈M∗

1.[R(e1) ⇒ R(d1e1)], towards R(d1). By the assumption

∀e1[∃e2.S(e1, e2) ⇒ ∃e′2.S(d1e1, e′2)].
Hence

∀e1, e2∃e′2.[S(e1, e2) ⇒ S(d1e1, e
′
2)]. (1)

As S is substitutive, we have S(x, x), by Remark 3C.30. We continue as follows

S(x, x) ⇒ S(d1x, e
′
2[x]), for some e′2 = e′2[x] by (1),

⇒ S(d1x, d2x), where d2 = λx.e′2[x] using thatM∗
2

is a typed λ-model,

⇒ S(e1, e2) ⇒ S(d1e1, d2, e2), by substitutivity of S,

⇒ S(d1, d2), since S is logical,

⇒ R(d1).

This establishes that ∃S = R is logical.
Now assume that S is substitutive, in order to show that so is R. I.e. we must show

R(d1) ⇔ ∀ρ1.[[∀x∈V.R(ρ1(x))] ⇒ R((d1)
ρ1)]. (1)

(⇒) Assuming R(d1), R(ρ1(x)) we get S(d1, d2), S(ρ1(x), d
x
2), for some d2, d

x
2 . Defining

ρ2 by ρ2(x) = dx2 , for the free variables in d2, we get S(ρ1(x), ρ2(x)), hence by the
substitutivity of S it follows that S((d1)

ρ1 , (d2)
ρ2) and therefore R((d1)

ρ1).
(⇐) By the substitutivity of S one has for all variables x that S(x, x), by Remark

3C.30, hence also R(x). Now take in the RHS of (1) the identity valuation ρ1(x) = x,
for all x. Then one obtains R((d1)

ρ1), which is R(d1).

3C.36. Example. ConsiderMN and define

S0(n,m) ⇔ n ≤ m,
where ≤ is the usual ordering on N. Then {d∈S∗ | d=∗d}/=∗ is the set of hereditarily monotone
functionals. Similarly ∃(S∗) induces the set of hereditarily majorizable functionals, see the section
by Howard in Troelstra [1973].

Relating syntactic and semantic logical relations

One may wonder whether the Fundamental Theorem for semantic logical relations follows
from the syntactic version (but not vice versa; e.g. the usual semantic logical relations
are automatically closed under βη-conversion). This indeed is the case. The ‘hinge’
is that a logical relation R ⊆ Λ→[M∗] can be seen as a semantic logical relation (as
Λ→[M∗] is a typed applicative structure) and at the same time as a syntactic one (as
Λ→[M∗] consists of terms from some set of constants). We also need this dual vision for
the notion of substitutivity. For this we have to merge the syntactic and the semantic
version of these notions. Let M be a typed applicative structure, containing at each
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type A variables of type A. A valuation is a map ρ:V → M such that ρ(xA)∈M(A).
This ρ can be extended to a substitution (−)ρ:M→M. A unary relation R ⊆ M is
substitutive if for all M ∈M one has

R(M) ⇔ [∀x:V.[R(ρ(x)) ⇒ R((M)ρ)]].

The notion substitutivity is analogous for relationsR ⊆ Λ→[D], using Definition 3C.8(iii),
as for relations R ⊆M∗, using Definition 3C.29(iv).

3C.37. Notation. LetM be a typed applicative structure. Write

Λ→[M], Λ→[{d | d∈M}];
Λ→(M), Λ→[M]/=βη .

Then Λ→[M] is typed applicative structure and Λ→(M) is a typed λ-model.

3C.38. Definition. LetM, and hence alsoM∗, be a typed λ-model. For ρ : V →M∗

extend [[−]]ρ : Λ→ →M∗ to [[−]]M∗

ρ : Λ→[M∗]→M∗ as follows.

[[x]]ρ , ρ(x)

[[m]]ρ , m, with m∈M∗,

[[PQ]]ρ , [[P ]]ρ[[Q]]ρ

[[λx.P ]]ρ , d, the unique d∈M∗ with ∀e.de = [[P ]]ρ[x:=e].

Remember the definition 3C.29 of (−)ρ :M∗ →M∗.

(x)ρ , ρ(x)

(m)ρ , m, with m∈M∗,

(PQ)ρ , (P )ρ(Q)ρ.

Now define the predicate D ⊆ Λ→[M∗]×M∗ as follows.

D(M,d)⇐⇒△ ∀ρ:V→M∗.[[M ]]M
∗

ρ = (d)ρ.

3C.39. Lemma. D is a substitutive semantic logical relation.

Proof. First we show that D is logical. We must show for M ∈Λ→[M∗], d∈M∗ that

D(M,d) ⇔ ∀N ∈Λ→[M∗]∀e∈M∗.[D(N, e) ⇒ D(MN, de)].

(⇒) Suppose D(M,d), D(N, e), towards D(MN, de). Then for all ρ:V → M∗ by

definition [[M ]]M
∗

ρ = (d)ρ and [[N ]]M
∗

ρ = (e)ρ. But then [[MN ]]M
∗

ρ = (de)ρ, and therefore

D(MN, de).
(⇐) Now suppose ∀N ∈Λ→[M∗]∀e∈M∗.[D(N, e) ⇒ D(MN, de)], towards D(M,d).

Let x be a fresh variable, i.e. not inM or d. Note that x∈Λ→[M∗], x∈M∗, and D(x, x).
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Hence by assumption

D(x, x) ⇒ ∀ρ[[Mx]]ρ = (dx)ρ

⇒ ∀ρ[[M ]]ρ[[x]]ρ = (d)ρ(x)ρ

⇒ ∀ρ[[M ]]ρ′ [[x]]ρ′ = (d)ρ
′
(x)ρ

′
, where ρ′ = ρ[x := e],

⇒ ∀ρ∀e∈M∗.[[M ]]ρe = (d)ρe, by the freshness of x,

⇒ ∀ρ[[M ]]ρ = (d)ρ, by extensionality,

⇒ D(M,d).

Secondly we show that D is substitutive. We must show for M ∈Λ→[M∗], d∈M∗

D(M,d) ⇔ ∀ρ1:V→ Λ→[M∗], ρ2:V→M∗.

[∀x∈V.D(ρ1(x), ρ2(x)) ⇒ D((M)ρ1 , (d)ρ2)].

(⇒) Suppose D(M,d) and ∀x∈V.D(ρ1(x), ρ2(x) towards D((M)ρ1 , (d)ρ2). Then for
all ρ:V→M∗ one has

[[M ]]ρ = (d)ρ (1)

∀x∈V.[[ρ1(x)]]ρ = (ρ2(x))
ρ. (2)

Let ρ′1(x) = [[ρ1(x)]]
M∗

ρ and ρ′2(x) = (ρ2(x))
ρ. By induction on M and d one can show

analogous to Lemma 3A.13(i) that

[[Mρ1 ]]ρ = [[M ]]ρ′1
(3)

((d)ρ2)ρ = (d)ρ
′
2 . (4)

It follows by (2) that ρ′1 = ρ′2 and hence by (3), (4), and (1) that [[(M)ρ1 ]]ρ = ((d)ρ2)ρ,

for all ρ. Therefore D((M)ρ1 , (d)ρ2).
(⇐) Assume the RHS. Define ρ1(x) = x∈Λ→[M∗], ρ2(x) = x∈M∗. Then we have

D(ρ1, ρ2), hence by the assumption D((M)ρ1 , (d)ρ2). By the choice of ρ1, ρ2 this is
D(M,d).

3C.40. Lemma. Let M ∈Λø→. Then [[M ]]M
∗

= [[[M ]]M]∈M∗.

Proof. Let i:M → M∗ be the canonical inbedding defined by i(d) = d. Then for all
M ∈Λ→ and all ρ : V→M one has

i([[M ]]Mρ ) = [[M ]]M
∗

i◦ρ .

Hence for closed terms M it follows that [[M ]]M
∗

= [[M ]]M
∗

i◦ρ = i([[M ]]Mρ ) = [[[M ]]M].

3C.41. Definition. Let R ⊆ Λ→[M∗
1]× · · · × Λ→[M∗

n]. Then R is called invariant if
for all M1, N1 ∈Λ→[M∗

1],· · · , Mn, Nn ∈Λ→[M∗
n] one has

R(M1, · · · ,Mn)
M∗

1 |=M1 = N1 & · · · &M∗
n |=Mn = Nn

}
⇒ R(N1, · · · ,Nn).

3C.42. Definition. LetM1, · · · ,Mn be typed applicative structures.
(i) Let S ⊆M∗

1× · · · ×M∗
n. Define the relation S∧ ⊆ Λ→[M∗

1]× · · · ×Λ→[M∗
n] by

S∧(M1, · · · ,Mn)⇐⇒△ ∃d1 ∈M∗
1 · · · ∃dn ∈M∗

n.[S(d1, · · · ,dn) &
D(M1, d1) & · · · & D(Mn, dn)].



106 3. Tools

(ii) Let R ⊆ Λ→[M∗
1]× · · · × Λ→[M∗

n]. Define R∨ ⊆M∗
1 × · · · ×M∗

n by

R∨(d1, · · · ,dn)⇐⇒△ ∃M1 ∈Λ→[M∗
1], · · · ,Mn ∈Λ→[M∗

n].[R(M1, · · · ,Mn) &

D(M1, d1) & · · · & D(Mn, dn)].

3C.43. Definition. Let ι : V→M∗ be the ‘identity’ valuation, that is ι(x), [x].

3C.44. Lemma. (i) Let S ⊆M∗
1 × · · · ×M∗

n. Then S∧ is invariant.
(ii) Let R ⊆ Λ→[M∗

1]× · · · × Λ→[M∗
n] be invariant. Then

for all M1 ∈Λø→[M∗
1], · · · , Mn ∈Λø→[M∗

n] one has

R(M1, · · · ,Mn) ⇒ R∨([[M1]]
M∗

1
ι , · · · , [[Mn]]

M∗
n

ι ).

Proof. For notational convenience we take n = 1.
(i) S∧(M) &M∗ |=M = N ⇒ ∃d∈M∗.[S(d) & D(M,d)] &M∗ |=M = N

⇒ ∃d∈M∗.[S(d) &
∀ρ.[ [[M ]]ρ = (d)ρ & [[M ]]ρ = [[N ]]ρ]]

⇒ ∃d.[S(d) & D(N, d)]
⇒ S∧(N).

(ii) SupposeR(M). LetM ′ = [[M ]]ι ∈Λ→[M∗]. Then [[M ′]]ρ = [[M ]]ι = [[M ]]ρ, sinceM

is closed. Hence R(M ′) by the invariance of R and D(M ′, [[M ]]ι). Therefore R
∨([[M ]]ι).

3C.45. Proposition. LetM1, · · · ,Mn be typed λ-models.
(i) Let S ⊆ M∗

1 × · · · ×M∗
n be a substitutive semantic logical relation. Then S∧ is

an invariant and substitutive syntactic logical relation.
(ii) Let R ⊆ Λ→[M∗

1]×· · ·×Λ→[M∗
n] be a substitutive syntactic logical relation. Then

R∨ is a substitutive semantic logical relation.

Proof. Again we take n = 1.
(i) By Lemma 3C.44(i) S∧ is invariant. Moreover, one has for M ∈Λ→[M∗]

S∧(M) ⇔ ∃d∈M∗.[S(d) & D(M,d)].

By assumption S is a substitutive logical relation and also D, by Proposition 3C.39. By
Proposition 3C.35(iv) and (v) so is their conjunction and its ∃-projection S∧.

(ii) One has for d∈M∗

R∨(d) ⇔ ∃M ∈Λ→[M∗].[D(M,d) & R(M)].

We conclude similarly.

3C.46. Proposition. LetM1, · · · ,Mn be typed λ-models. Let S ⊆M∗
1× · · · ×M∗

n be a
substitutive logical relation. Then S∧∨ = S.

Proof. For notational convenience take n = 1. Write T = S∧. Then for d∈M∗

T∨(d) ⇔ ∃M ∈Λ→[M∗].[T (M) & D(M,d)],

⇔ ∃M ∈Λ→[M∗]∃d′ ∈M∗.[S(d′) & D(M,d′) & D(M,d)],

which implies d′ = d, asM∗ =M/ ∼M,

⇔ S(d),

where the last ⇐ follows by taking M = d, d′ = d. Therefore S∧∨ = S.

Using this result, the Fundamental Theorem for semantic logical relations can be
derived from the syntactic version.
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3C.47. Proposition. The Fundamental Theorem for syntactic logical relations implies
the one for semantic logical relations. That is, letM1, · · · ,Mn be λ-models, then for the
following two statements one has (i) ⇒ (ii).

(i) Let R on Λ→[ ~M] be an expansive and substitutive syntactic logical relation. Then
for all A∈TT and all pure terms M ∈Λ→(A) one has

RA(M, · · · ,M).

(ii) Let S on M1 × · · · × Mn be a semantic logical relation. Then for each term
M ∈Λø→(A) one has

SA([[M ]]M1 , · · · , [[M ]]Mn).

Proof. We show (ii) assuming (i). For notational simplicity we take n = 1. Therefore
let S ⊆M be logical and M ∈Λø→, in order to show S([[M ]]). First we assume that S is
non-empty. Then S∗ ⊆ M∗ is a substitutive semantic logical relation, by Propositions
3C.33(iii) and (ii). Writing R = S∗∧ ⊆ Λ→(M∗) we have that R is an invariant (hence
expansive) and substitutive logical relation, by Proposition 3C.45(i). For M ∈Λø→(A)
we have RA(M), by (i), and proceed as follows.

RA(M) ⇒ R∨([[M ]]M
∗

), by Lemma 3C.44(ii), as M is closed,

⇒ S∗∧∨
A ([[M ]]M

∗

), as R = S∗∧,

⇒ S∗
A([[M ]]M

∗

), by Proposition 3C.46(i),

⇒ S∗
A([[[M ]]M]), by Lemma 3C.40,

⇒ SA([[M ]]M), by Lemma 3C.32(ii) and the assumption.

In case S is empty, then we also have SA([[M ]]M), by Proposition 3C.25.

3D. Type reducibility

In this Section we study in the context of λdB
→ over TT0 how equality of terms of a certain

type A can be reduced to equality of terms of another type. This is the case if there is
a definable injection of Λø→(A) into Λø→(B). The resulting poset of ‘reducibility degrees’
will turn out to be the ordinal ω + 4 = {0, 1, 2, 3, · · · , ω, ω + 1, ω + 2, ω + 3}.
3D.1. Definition. Let A,B be types of λA

→.
(i) We say that there is a type reduction from A to B (A is βη reducible to B),

notation A ≤βη B, if for some closed term Φ:A→B one has for all closed M1,M2:A

M1 =βη M2 ⇔ ΦM1 =βη ΦM2,

i.e. equalities between terms of type A can be uniformly translated to those of type B.
(ii) Write A ∼βη B iff A ≤βη B & B ≤βη A.
(iii) Write A <βη B for A ≤βη B & B 6≤βη A.

An easy result is the following.

3D.2. Lemma. A = A1→· · ·→Aa→0 and B = Aπ(1)→· · ·→Aπ(a)→0, where π is a
permutation of the set {1, · · · , a}. We say that A and B are equal up to permutation of
arguments. Then

(i) B ≤βη A
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(ii) A ∼βη B.

Proof. (i) We have B ≤βη A via

Φ ≡ λm:Bλx1 · · ·xa.mxπ(1) · · ·xπ(a).

(ii) By (i) applied to π−1.

The reducibility theorem, Statman [1980a], states that there is one type to which all
types of TT0 can be reduced. At first this may seem impossible. Indeed, in a full type
structureM the cardinality of the sets of higher type increases arbitrarily. So one cannot
always have an injection MA→MB. But reducibility means that one restricts oneself
to definable elements (modulo =βη) and then the injections are possible. The proof
will occupy10 3D.3-3D.8. There are four main steps. In order to show that ΦM1 =βη

ΦM2 ⇒ M1 =βη M2 in all cases a (pseudo) inverse Φ−1 is used. Pseudo means that
sometimes the inverse is not lambda definable, but this is no problem for the implication.
Sometimes Φ−1 is definable, but the property Φ−1(ΦM) =M only holds in an extension
of the theory; because the extension will be conservative over =βη, the reducibility will
follow. Next the type hierarchy theorem, also due to Statman [1980a], will be given.
Rather unexpectedly it turns out that under ≤βη types form a well-ordering of length
ω + 4. Finally some consequences of the reducibility theorem will be given, including
the 1-section and finite completeness theorems.
In the first step towards the reducibility theorem it will be shown that every type is

reducible to one of rank ≤ 3. The proof is rather syntactic. In order to show that the
definable function Φ is 1-1, a non-definable inverse is needed. A warm-up exercise for
this is 3F.7.

3D.3. Proposition. Every type can be reduced to a type of rank ≤ 3, see Definition
1A.21(ii). I.e.

∀A∈TT0∃B ∈TT0.[A ≤βη B & rk(B) ≤ 3].

Proof. [The intuition behind the construction of the term Φ responsible for the re-
ducibility is as follows. If M is a term with Böhm tree (see B[1984])

λx1:A1 · · ·xa:Aa.xi

QQQQQQQQQQQQQQQQQQ
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λ~y1.z1
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33
33

33
33

3
··· λ~yn.zn


















44
44

44
44

4

10A simpler alternative route discovered later by Joly is described in the exercises 3F.15 and 3F.17,
needing also exercise 3F.16.
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then let UM be a term with “Böhm tree” of the form

λx1:0 · · ·xa:0.uxi

RRRRRRRRRRRRRRRRRRR

mmmmmmmmmmmmmmmmmmm

λ~y1 : 0.uz1

��
��

��
��

��

::
::

::
::

::
··· λ~yn : 0.uzn

��
��

��
��

��

;;
;;

;;
;;

;;

where all the typed variables are pushed down to type 0 and the variables u (each
occurrence possibly different) take care that the new term remains typable. From this
description it is clear that the u can be chosen in such way that the result has rank ≤ 1.
Also thatM can be reconstructed from UM so that U is injective. ΦM is just UM with
the auxiliary variables bound. This makes it of type with rank ≤ 3. What is less clear
is that U and hence Φ are lambda-definable.]

Define inductively for any type A the types A♭ and A♯.

0♭ , 0;

0♯ , 0;

(A1→· · ·→Aa→0)♭ , (0a→0);

(A1→· · ·→Aa→0)♯ , 0→A♭
1→· · ·→A♭

a→0.

Notice that rk(A♯) ≤ 2.
In the infinite context

{uA:A♯ |A∈TT}
define inductively for any type A terms VA : 0→A,UA : A→A♭.

U0 , λx:0.x;

V0 , λx:0.x;

UA1→···→Aa→0 , λz:Aλx1 · · ·xa:0.z(VA1x1) · · · (VAaxa);

VA1→···→Aa→0 , λx:0λy1:A1 · · · ya:Aa.uAx(UA1y1) · · · (UAaya),

where A = A1→· · ·→Aa→0.
Remark that for C = A1→· · ·→Aa→B one has

UC = λz:Cλx1 · · ·xa:0.UB(z(VA1x1) · · · (VAaxa)). (1)

Indeed, both sides are equal to

λz:Cλx1 · · ·xay1 · · · yb:0.z(VA1x1) · · · (VAaxa)(VB1y1) · · · (VBb
yb),

with B = B1→· · ·→Bb→0.
Notice that for a closed term M of type A = A1→· · ·→Aa→0 one can write

M =β λy1:A1 · · · ya:Aa.yi(M1y1 · · · ya) · · · (Mny1 · · · ya),
with the M1, · · · ,Mn closed. Write Ai = Ai1→· · ·→Ain→0.
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Now verify that

UAM = λx1 · · ·xa:0.M(VA1x1) · · · (VAaxa)

= λ~x.(VAi
xi)(M1(VA1x1) · · · (VAaxa)) · · · (Mn(VA1x1) · · · (VAaxa))

= λ~x.uAi
xi(UAi1(M1(VA1x1) · · · (VAaxa))) · · · (UAin

(Mn(VA1x1) · · · (VAaxa)))

= λ~x.uAi
xi(UB1M1~x) · · · (UBnMn~x),

using (1), where Bj = A1→· · ·→Aa→Aij for 1 ≤ j ≤ n is the type of Mj . Hence we
have that if UAM =βη UAN , then for 1 ≤ j ≤ n

UBj
Mj =βη UBj

Nj .

Therefore it follows by induction on the complexity of the β-nf of M that if UAM =βη

UAN , then M =βη N .
Now take as term for the reducibility Φ ≡ λm:AλuB1 · · ·uBk

.UAm, where the ~u are all
the ones occurring in the construction of UA. It follows that

A ≤βη B
♯
1→· · ·→B♯

k→A♭.

Since rk(B♯
1→· · ·→B♯

k→A♭) ≤ 3, we are done.

For an alternative proof, see Exercise 3F.15.
In the following proposition it will be proved that we can further reduce types to one

particular type of rank 3. First do exercise 3F.8 to get some intuition. We need the
following notation.

3D.4. Notation. (i) Remember that for k ≥ 0 one has

1k , 0k→0,

where in general A0→0, 0 and Ak+1→0,A→(Ak→0).
(ii) For k1, · · · , kn ≥ 0 write

(k1, · · · , kn), 1k1→· · ·→1kn→0.

(iii) For k11, · · · , k1n1 , · · · , km1, · · · , kmnm ≥ 0 write



k11 · · · k1n1

. .

. .
km1 · · · kmnm


, (k11, · · · , k1n1)→· · ·→(km1, · · · , kmnm)→0.

Note the “matrix” has a dented right side (the ni are in general unequal).

3D.5. Proposition. Every type A of rank ≤ 3 is reducible to

12→1→1→2→0.

Proof. Let A be a type of rank ≤ 3. It is not difficult to see that A is of the form

A =




k11 · · · k1n1

. .

. .
km1 · · · kmnm



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We will first ‘reduce’ A to type 3 = 2→0 using an open term Ψ, containing free variables
of type 12, 1, 1 respectively acting as a ‘pairing’. Consider the context

{p:12, p1:1, p2:1}.

Consider the notion of reduction p defined by the contraction rules

pi(pM1M2)→pMi.

[There now is a choice how to proceed: if you like syntax, then proceed; if you prefer
models omit paragraphs starting with ♣ and jump to those starting with ♠.]
♣ This notion of reduction satisfies the subject reduction property. Moreover βηp is

Church-Rosser, see Pottinger [1981]. This can be used later in the proof. [Extension of
the notion of reduction by adding

p(p1M)(p2M)→sM

preserves the CR property, see 5B.10. In the untyped calculus this is not the case, see
Klop [1980] or B[1984], ch. 14.] Goto ♠.
♠ Given the pairing p, p1, p2 one can extend it as follows. Write

p1 , λx:0.x;

pk+1 , λx1 · · ·xkxk+1:0.p(p
kx1 · · ·xk)xk+1;

p11 , λx:0.x;

pk+1
k+1 , p2;

pk+1
i , λz:0.pki (p1z), for i ≤ k;
P k , λf1 · · · fk:1λz:0.pk(f1z) · · · (fkz);
P k
i , λg:1λz:0.pki (gz), for i ≤ k.

Then pk : 0k → 0, pki : 0→ 0, P k : 1k → 1, P k
i : 1→ 1. We have that pk acts as a coding

for k-tuples of elements of type 0 with projections pki . The P
k, P k

i do the same for type
1. In context containing {f :1k, g:1} write

fk→1 , λz:0.f(pk1z) · · · (pkkz);
g1→k , λz1 · · · zk:0.g(pkz1 · · · zk).

Then fk→1 is f moved to type 1 and g1→k is g moved to type 1k.
Using βηp-convertibility one can show

pki (p
kz1 · · · zk) = zi;

P k
i (P

kf1 · · · fk) = fi;

(fk→1)1→k = f.

For (g1→k)k→1 = g one needs →s, the surjectivity of the pairing.
In order to define the term required for the reducibility start with a term Ψ:A→3

(containing p, p1, p2 as only free variables). We need an auxiliary term Ψ−1, acting as
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an inverse for Ψ in the presence of a “true pairing”.

Ψ≡ λM :AλF :2.M

[λf11:1k11 · · · f1n1 :1k1n1
.p1(F (P

n1fk11→1
11 · · · fk1n1→1

1n1
)] · · ·

[λfm1:1km1 · · · fmnm :1kmnm
.pm(F (Pnmfkm1→1

m1 · · · fkmnm→1
mnm

)];

Ψ−1 ≡ λN :(2→0)λK1:(k11, · · · , k1n1) · · ·λKm:(km1, · · · , kmnm).

N(λf :1.pm[K1(P
n1
1 f)1→k11 · · · (Pn1

n1
f)1→k1n1 ] · · ·

[Km(Pnm
1 f)1→km1 · · · (Pnm

nm
f)1→k1nm ]).

Claim. For closed terms M1,M2 of type A we have

M1 =βη M2 ⇔ ΨM1 =βη ΨM2.

It then follows that for the reduction A ≤βη 12→1→1→3 we can take

Φ = λM :A.λp:12λp1, p2:1.ΨM.

It remains to show the claim. The only interesting direction is (⇐). This follows in
two ways. We first show that

Ψ−1(ΨM) =βηp M. (1)

We will write down the computation for the “matrix”
(
k11
k21 k22

)

which is perfectly general.

ΨM =β λF :2.M [λf11:1k11 .p1(F (P
1fk11→1

11 ))]

[λf21:1k21λf22:1k22 .p2(F (P
2fk21→1

21 fk22→1
22 ))];

Ψ−1(ΨM) =β λK1:(k11)λK2:(k21, k22).
ΨM(λf :1.p1[K1(P

1
1 f)

1→k11 ][K2(P
2
1 f)

1→k21(P 2
2 f)

1→k22 ])

≡ λK1:(k11)λK2:(k21, k22).ΨMH, say,

=β λK1K2.M [λf11.p1(H(P 1fk11→1
11 ))]

[λf21λf22.p2(H(P 2fk21→1
21 fk22→1

22 ))];

=βp λK1K2.M [λf11.p1(p
2[K1f11][..‘irrelevant’..])]

[λf21λf22.p2(p
2[..‘irrelevant’..][K2f21f22])];

=p λK1K2.M(λf11.K1f11)(λf21f22.K2f21f22)
=η λK1K2.MK1K2

=η M,

since

H(P 1f11) =βp p
2[K1f11][..‘irrelevant’..]

H(P 2fk21→1
21 fk22→1

22 ) =βp p
2[..‘irrelavant’..][K2f21f22].

The argument now can be finished in a model theoretic or syntactic way.
♣ If ΨM1 =βη ΨM2, then Ψ−1(ΨM1) =βη Ψ−1(ΨM2). But then by (1) M1 =βηp M2.

It follows from the Church-Rosser theorem for βηp that M1 =βη M2, since these terms
do not contain p. Goto .
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♠ If ΨM1 =βη ΨM2, then

λp:12λp1p2:1.Ψ
−1(ΨM1) =βη λp:12λp1p2:1.Ψ

−1(ΨM2).

Hence

M(ω) |= λp:12λp1p2:1.Ψ
−1Ψ(M1) = λp:12λp1p2:1.Ψ

−1(ΨM2).

Let q be an actual pairing on ω with projections q1,q2. Then inM(ω)

(λp:12λp1p2:1.Ψ
−1(ΨM1))qq1q2 = λp:12λp1p2:1.Ψ

−1(ΨM2)qq1q2.

Since (M(ω),q,q1,q2) is a model of βηp conversion it follows from (1) that

M(ω) |=M1 =M2.

But then M1 =βη M2, by a result of Friedman [1975].

We will see below, Corollary 3D.32(i), that Friedman’s result will follow from the re-
ducibility theorem. Therefore the syntactic approach is preferable.
The proof of the next proposition is again syntactic. A warm-up is exercise 3F.10.

3D.6. Proposition. Let A be a type of rank ≤ 2. Then

2→A ≤βη 1→1→0→A.

Proof. Let A ≡ (k1, · · · , kn) = 1k1→· · · 1kn→0. The term that will perform the reduc-
tion is relatively simple

Φ, λM :(2→A)λf, g:1λz:0.M(λh:1.f(h(g(hz)))).

In order to show that for all M1,M2:2→A one has

ΦM1 =βη ΦM2 ⇒ M1 =βη M2,

we may assume w.l.o.g. that A = 12→0. A typical element of 2→12→0 is

M ≡ λF :2λb:12.F (λx.F (λy.byx)).

Note that its translation has the following long βη-nf

ΦM = λf, g:1λz:0λb:12.f(Nx[x: = g(Nx[x: = z]])),

where Nx ≡ f(b(g(bzx))x),
≡ λf, g:1λz:0λb:12.f(f(b(g(bz[g(f(b(g(bzz))z))]))[g(f(b(g(bzz))z))])).
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This term M and its translation have the following trees.
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Note that if we can ‘read back’ M from its translation ΦM , then we are done. Let
Cutg→z be a syntactic operation on terms that replaces maximal subterms of the form
gP by z. For example (omitting the abstraction prefix)

Cutg→z(ΦM) = f(f(bzz)).

Note that this gives us back the ‘skeleton’ of the termM , by reading f · · · as F (λ⊙· · · ).
The remaining problem is how to reconstruct the binding effect of each occurrence of
the λ⊙. Using the idea of counting upwards lambda’s, see de Bruijn [1972], this is
accomplished by realizing that the occurrence z coming from g(P ) should be bound at
the position f just above where Cutg→z(P ) matches in Cutg→z(ΦM) above that z. For
a precise inductive argument for this fact, see Statman [1980a], Lemma 5, or do exercise
3F.16.

The following simple proposition brings almost to an end the chain of reducibility of
types.

3D.7. Proposition.

14→12→0→0 ≤βη 12→0→0.

Proof. As it is equally simple, let us prove instead

1→12→0→0 ≤βη 12→0→0.

Define Φ : (1→12→0→0)→12→0→0 by

Φ, λM :(1→12→0→0)λb:12λc:0.M(f+)(b+)c,

where

f+ , λt:0.b(#f)t;

b+ , λt1t2:0.b(#b)(bt1t2);

#f , bcc;

#b, bc(bcc).

The terms #f,#b serve as ‘tags’. Notice that M of type 1→12→0→0 has a closed long
βη-nf of the form

Mnf ≡ λf :1λb:12λc:0.t
with t an element of the set T generated by the grammar

T :: = c | fT | b T T.

Then for such M one has ΦM =βη Φ(Mnf) ≡M+ with

M+ ≡ λf :1λb:12λc:0.t+,
where t+ is inductively defined by

c+ , c;

(ft)+ , b(#f)t+;

(bt1t2)
+ , b(#b)(bt+1 t

+
2 ).
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It is clear that Mnf can be constructed back from M+. Therefore

ΦM1 =βη ΦM2 ⇒ M+
1 =βη M

+
2

⇒ M+
1 ≡M+

2

⇒ Mnf
1 ≡Mnf

2

⇒ M1 =βη M2.

Similarly one can show that any type of rank ≤ 2 is reducible to ⊤2, do exercise 3F.19
Combining Propositions 3D.3-3D.7 we obtain the reducibility theorem.

3D.8. Theorem (Reducibility Theorem, Statman [1980a]). Let

⊤2 , 12→0→0.

Then

∀A∈TT0 A ≤βη ⊤2.

Proof. Let A be any type. Harvesting the results we obtain

A ≤βη B, with rk(B) ≤ 3, by 3D.3,

≤βη 12→12→2→0, by 3D.5,

≤βη 2→12→12→0, by simply permuting arguments,

≤βη 12→0→12→12→0, by 3D.6,

≤βη 12→0→0, by an other permutation and 3D.7

Now we turn attention to the type hierarchy, Statman [1980a].

3D.9. Definition. For the ordinals α ≤ ω + 3 define the type Aα ∈TT0 as follows.

A0 , 0;

A1 , 0→0;

· · ·
Ak , 0k→0;

· · ·
Aω , 1→0→0;

Aω+1 , 1→1→0→0;

Aω+2 , 3→0→0;

Aω+3 , 12→0→0.

3D.10. Proposition. For α, β ≤ ω + 3 one has

α ≤ β ⇒ Aα ≤βη Aβ.

Proof. For all finite k one has Ak ≤βη Ak+1 via the map

Φk,k+1 , λm:Akλzx1 · · ·xk:0.mx1 · · ·xk =βη λm:Ak.Km.

Moreover, Ak ≤βη Aω via

Φk, ω , λm:Akλf :1λx:0.m(c1fx) · · · (ckfx).
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Then Aω ≤βη Aω+1 via

Φω, ω+1 , λm:Aωλf, g:1λx:0.mfx.

Now Aω+1 ≤βη Aω+2 via

Φω+1, ω+2 , λm:Aω+1λH:3λx:0.H(λf :1.H(λg:1.mfgx)).

Finally, Aω+2 ≤βη Aω+3 = ⊤2 by the reducibility Theorem 3D.8. Do Exercise 3F.18
that asks for a concrete term Φω+2, ω+3.

3D.11. Proposition. For α, β ≤ ω + 3 one has

α ≤ β ⇐ Aα ≤βη Aβ .

Proof. This will be proved in 3E.52.

3D.12. Corollary. For α, β ≤ ω + 3 one has

Aα ≤βη Aβ ⇔ α ≤ β.
For a proof that these types {Aα}α≤ω+3 are a good representation of the reducibility
classes we need some syntactic notions.

3D.13. Definition. A type A∈TT0 is called large if it has a negative subterm occurrence,
see Definition 9C.1, of the form B1→· · ·→Bn→0, with n ≥ 2; A is small otherwise.

3D.14. Example. 12→0→0 and ((12→0)→0)→0 are large; (12→0)→0 and 3→0→0 are
small.

Now we will partition the types TT = TT0 in the following classes.

3D.15. Definition (Type Hierarchy). Define the following sets of types.

TT−1 , {A | A is not inhabited};
TT0 , {A | A is inhabited, small, rk(A) = 1 and

A has exactly one component of rank 0};
TT1 , {A | A is inhabited, small, rk(A) = 1 and

A has at least two components of rank 0};
TT2 , {A | A is inhabited, small, rk(A)∈{2, 3} and

A has exactly one component of rank ≥ 1};
TT3 , {A | A is inhabited, small, rk(A)∈{2, 3} and

A has at least two components of rank ≥ 1};
TT4 , {A | A is inhabited, small and rk(A) > 3};
TT5 , {A | A is inhabited and large}.

Typical elements of TT−1 are 0, 2, 4, · · · . This class we will not consider much. The
types in TT0, · · · ,TT5 are all inhabited. The unique element of TT0 is 1 = 0→0 and the
elements of TT1 are 1p, with k ≥ 2, see the next Lemma. Typical elements of TT2 are
1→0→0, 2→0 and also 0→1→0→0, 0→(13→0)→0→0. The types in TT1, · · · ,TT4 are all
small. Types in TT0 ∪ TT1 all have rank 1; types in TT2 ∪ · · · ∪ TT5 all have rank ≥ 2.
Examples of types of rank 2 not in TT2 are (1→1→0→0)∈TT3 and (12→0→0)∈TT5. Ex-

amples of types of rank 3 not in TT2 are ((12→0)→1→0)∈TT3 and ((1→1→0)→0→0)∈TT5.

3D.16. Lemma. Let A∈TT. Then
(i) A∈TT0 iff A = (0→0).
(ii) A∈TT1 iff A = (0p→0), for p ≥ 2.
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(iii) A∈TT2 iff up to permutation of components

A∈{(1p→0)→0q→0 | p ≥ 1, q ≥ 0} ∪ {1→0q→0 | q ≥ 1}

Proof. (i), (ii) If rk(A) = 1, then A = 0p→0, p ≥ 1. If A∈TT0, then p = 1; if A∈TT1,
then p ≥ 2. The converse implications are obvious.

(iii) Clearly the displayed types all belong to TT2. Conversely, let A∈TT2. Then A is
inhabited and small with rank in {2, 3} and only one component of maximal rank.
Case rk(A) = 2. Then A = A1→· · ·→Aa→0, with rk(Ai) ≤ 1 and exactly one Aj has

rank 1. Then up to permutation A = (0p→0)→0q→0. Since A is small p = 1; since A is
inhabited q ≥ 1; therefore A = 1→0q→0, in this case.
Case rk(A) = 3. Then it follows similarly that A = A1→0q→0, with A1 = B→0 and

rk(B) = 1. Then B = 1p with p ≥ 1. Therefore A = (1p→0)→0q→0, where now q = 0
is possible, since (1p→0)→0 is already inhabited by λm.m(λx1 · · ·xp.x1).
3D.17. Proposition. The TTi form a partition of TT0.

Proof. The classes are disjoint by definition.
Any type of rank ≤ 1 belongs to TT−1 ∪ TT0 ∪ TT1. Any type of rank ≥ 2 is either not

inhabited and then belongs to TT−1, or belongs to TT2 ∪ TT3 ∪ TT4 ∪ TT5.

3D.18. Theorem (Hierarchy Theorem, Statman [1980a]). (i) The set of types TT0 over
the unique groundtype 0 is partitioned in the classes TT−1,TT0,TT1,TT2,TT3,TT4,TT5.

(ii) Moreover, A∈TT5 ⇔ A ∼βη 12→0→0;
A∈TT4 ⇔ A ∼βη 3→0→0;
A∈TT3 ⇔ A ∼βη 1→1→0→0;
A∈TT2 ⇔ A ∼βη 1→0→0;
A∈TT1 ⇔ A ∼βη 0k→0, for some k > 1;
A∈TT0 ⇔ A ∼βη 0→0;
A∈TT−1 ⇔ A ∼βη 0.

(iii) 0 <βη 0→0 ∈TT0

<βη 02→0
<βη · · ·
<βη 0k→0
<βη · · ·





∈TT1

<βη 1→0→0 ∈TT2

<βη 1→1→0→0 ∈TT3

<βη 3→0→0 ∈TT4

<βη 12→0→0 ∈TT5.

Proof. (i) By Proposition 3D.17.

(ii) By (i) and Corollary 3D.12 it suffices to show just the ⇒’s.
As to TT5, it is enough to show that 12→0→0 ≤βη A, for every inhabited large type

A, since we know already the converse. For this, see Statman [1980a], Lemma 7. As a
warm-up exercise do 3F.26.
As to TT4, it is shown in Statman [1980a], Proposition 2, that if A is small, then

A ≤βη 3→0→0. It remains to show that for any small inhabited type A of rank > 3 one
has 3→0→0 ≤βη A. Do exercise 3F.30.
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As to TT3, the implication is shown in Statman [1980a], Lemma 12. The condition
about the type in that lemma is equivalent to belonging to TT3.
As to TT2, do exercise 3F.28(ii).
As to TTi, with i = 1, 0,−1, notice that Λø(0k→0) contains exactly k closed terms for

k ≥ 0. This is sufficient.
(iii) By Corollary 3D.12.

3D.19. Definition. Let A∈TT0. The class of A, notation class(A), is the unique i with
i∈{−1, 0, 1, 2, 3, 4, 5} such that A∈TTi.

3D.20. Remark. (i) Note that by the Hierarchy theorem one has for all A,B ∈TT0

A ≤βη B ⇒ class(A) ≤ class(B).

(ii) As B ≤βη A→B via the map Φ = λxByA.x, this implies

class(B) ≤ class(A→ B).

3D.21. Remark. Let C−1 , 0,

C0 , 0→0,

C1,k , 0k→0, with k > 1,

C1 , 02→0,

C2 , 1→0→0,

C3 , 1→1→0→0,

C4 , 3→0→0,

C5 , 12→0→0.

Then for A∈TT0 one has
(i) If i 6= 1, then

class(A) = i ⇔ A ∼βη Ci.

(ii) class(A) = 1 ⇔ ∃k.A ∼βη C1,k.
⇔ ∃k.A ≡ C1,k.

This follows from the Hierarchy Theorem.

For an application in the next section we need a variant of the hierarchy theorem.

3D.22. Definition. Let A ≡ A1→· · ·→Aa→0, B ≡ B1→· · ·→Bb→0 be types.
(i) A is head-reducible to B, notation A ≤h B, iff for some term Φ∈Λø→(A→B) one

has

∀M1,M2 ∈Λø→(A) [M1 =βη M2 ⇔ ΦM1 =βη ΦM2],

and moreover Φ is of the form

Φ = λm:Aλx1:B0 · · ·xb:Bb.mP1 · · ·Pa, (1)

with FV(P1, · · · , Pa) ⊆ {x1, · · · ,xb} and m /∈{x1 · · ·xb}.
(ii) A is multi head-reducible to B, notation A ≤h+ B, iff there are closed terms

Φ1, · · · ,Φm ∈Λø(A→B) each of the form (1) such that

∀M1,M2 ∈Λø→(A) [M1 =βη M2 ⇔ Φ1M1 =βη Φ1M2 & · · ·& ΦmM1 =βη ΦmM2].

(iii) Write A ∼h B iff A ≤h B ≤h A and similarly
A ∼h+ B iff A ≤h+ B ≤h+ A.
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Clearly A ≤h B ⇒ A ≤h+ B. Moreover, both ≤h and ≤h+ are transitive, do Exercise
3F.14. We will formulate in Corollary 3D.27 a variant of the hierarchy theorem.

3D.23. Lemma. 0 ≤h 1 ≤h 02→0 ≤h 1→0→0 ≤h 1→1→0→0.

Proof. By inspecting the proof of Proposition 3D.10.

3D.24. Lemma. (i) 1→0→0 6≤h+ 0k→0, for k ≥ 0.
(ii) If A ≤h+ 1→0→0, then A ≤βη 1→0→0.
(iii) 12→0→0 6≤h+ 1→0→0, 3→0→0 6≤h+ 1→0→0, and 1→1→0→0 6≤h+ 1→0→0.
(iv) 02→0 6≤h+ 0→0.
(v) Let A,B ∈TT0. If Λø→(A) is infinite and Λø→(B) finite, then A 6≤h+ B.

Proof. (i) By a cardinality argument: Λø→(1→0→0) contains infinitely many different
elements. These cannot be mapped injectively into the finite Λø→(0k→0), not even in
the way of ≤h+.

(ii) Suppose A ≤h+ 1→0→0 via Φ1, · · · ,Φk. Then each element M of Λø→(A) is
mapped to a k-tuple of Church numerals 〈Φ1(M), · · · ,Φk(M)〉. This k-tuple can be
coded as a single numeral by iterating the Cantorian pairing function on the natural
numbers, which is polynomially definable and hence λ-definable.
(iii) By (ii) and the Hierarchy Theorem.
(iv) Type 02→0 contains two closed terms. These cannot be mapped injectively into

the singleton Λø→(0→0), even not by the multiple maps.
(v) Suppose A ≤h+ B via Φ1, · · · ,Φk. Then the sequences 〈Φ1(M), · · · ,Φk(M)〉 are

all different for M ∈Λø→(A). As B is finite (with say m elements), there are only finitely
many sequences of length k (in fact mk). This is impossible as Λø→(A) is infinite.

3D.25. Proposition. Let A,B ∈TT0
i . Then

(i) If i /∈ {1, 2}, then A ∼h B.
(ii) If i∈{1, 2}, then A ∼h+ B.

Proof. (i) Since A,B ∈TTi and i 6= 1 one has by Theorem 3D.18 A ∼βη B. By inspec-
tion of the proof of that theorem in all cases except for A∈TT2 one obtains A ∼h B. Do
exercise 3F.29.

(ii) Case i = 1. We must show that 12 ∼h+ 1k for all k ≥ 2. It is easy to show
that 12 ≤h 1p, for p ≥ 2. It remains to verify that 1k ≤h+ 12 for k ≥ 2. W.l.o.g. take
k = 3. Then M ∈Λø→(13) is of the form M ≡ λx1x2x3.xi. Hence for M,N ∈Λø→(13)
with M 6=βη N either

λy1y2.My1y1y2 6=βη λy1y2.Ny1y1y2 or λy1y2.My1y2y2 6=βη λy1y2.Ny1y2y2.

Hence 13 ≤h+ 12.
Case i = 2. Do Exercise 3F.28.

3D.26. Corollary. Let A,B ∈TT0, with A = A1→· · ·→Aa→0, B = B1→· · ·→Bb→0.

(i) A ∼h B ⇒ A ∼βη B.
(ii) A ∼βη B ⇒ A ∼h+ B.
(iii) Suppose A ≤h+ B. Then for M,N ∈Λø(A)

M 6=βη N (: A) ⇒ λ~x.MR1 · · ·Ra 6=βη λ~x.NR1 · · ·Ra (: B),

for some fixed R1, · · · ,Ra with FV(~R) ⊆ {~x} = {xB1
1 , · · · , xBb

b }.
Proof. (i) Trivially one has A ≤h B ⇒ A ≤βη B. The result follows.
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(ii) By the Proposition and the hierarchy theorem.
(iii) By the definition of ≤h+ .

3D.27. Corollary (Hierarchy Theorem Revisited, Statman [1980b]).

A∈TT5 ⇔ A ∼h 12→0→0;
A∈TT4 ⇔ A ∼h 3→0→0;
A∈TT3 ⇔ A ∼h 1→1→0→0;
A∈TT2 ⇔ A ∼h+ 1→0→0;
A∈TT1 ⇔ A ∼h+ 02→0;
A∈TT0 ⇔ A ∼h 0→0;
A∈TT−1 ⇔ A ∼h 0.

Proof. The Hierarchy Theorem 3D.18 and Proposition 3D.25 establish the ⇒ impli-
cations. As ∼h implies ∼βη, the ⇐ we only have to prove for A ∼h+ 1→0→0 and
A ∼h+ 02→0. Suppose A ∼h+ 1→0→0, but A /∈ TT2. Again by the Hierarchy Theorem
one has A∈TT3∪TT4∪TT5 or A∈TT−1∪TT0∪TT1. If A∈TT3, then A ∼βη 1→1→0→0, hence
A ∼h+ 1→1→0→0. Then 1→0→0 ∼h+ 1→1→0→0, contradicting Lemma 3D.24(ii). If
A∈TT4 or A∈TT5, then a contradiction can be obtained similarly.
In the second case A is either empty or A ≡ 0k→0, for some k > 0; moreover

1→0→0 ≤h+ A. The subcase that A is empty cannot occur, since 1→0→0 is inhab-
ited. The subcase A ≡ 0k→0, contradicts Lemma 3D.24(i).
Finally, suppose A ∼h+ 02→0 and A /∈ TT1. If A∈TT−1 ∪ TT0, then Λø→(A) has at

most one element. This contradicts 02→0 ≤h+A, as 02→0 has two distinct elements. If
A∈TT2 ∪TT3 ∪TT4 ∪TT5, then 1→0→0 ≤βη A ≤h+ 02→0, giving A infinitely many closed
inhabitants, contradicting Lemma 3D.24(v).

Applications of the reducibility theorem

The reducibility theorem has several consequences.

3D.28. Definition. Let C be a class of λCh
→ models. C is called complete if

∀M,N ∈Λø[C |=M = N ⇔ M =βη N ].

3D.29. Definition. (i) T = Tb,c is the algebraic structure of trees inductively defined
as follows.

T ::= c | b T T
(ii) For a typed λ-modelM we say that T can be embedded intoM, notation T →֒M ,

if there exist b0 ∈M(0→0→0), c0 ∈M(0) such that

∀t, s∈T [t 6= s ⇒ M |= tclb0c0 6= sclb0c0],

where ucl = λb:0→0→0λc:0.u, is the closure of u∈T .
The elements of T are binary trees with c on the leaves and b on the connecting nodes.
Typical examples are c, bcc, bc(bcc) and b(bcc)c. The existence of an embedding using
b0, c0 implies for example that b0c0(b0c0c0), b0c0c0 and c0 are mutually different inM.
Note that T 6→֒ M2(=M{1,2}). To see this, write gx = bxx. One has g2(c) 6= g4(c),

butM2 |= ∀g:0→0∀c:0.g2(c) = g4(c), do exercise 3F.20.
Remember that ⊤2 = 12→0→0, the type of binary trees, see Definition 1D.12.
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3D.30. Lemma. (i) Πi∈ IMi |=M = N ⇔ ∀i∈ I.Mi |=M = N.
(ii) M ∈Λø(⊤2) ⇔ ∃s∈T .M =βη s

cl.

Proof. (i) Since [[M ]]Πi∈ IMi = λλi∈ I.[[M ]]Mi .
(ii) By an analysis of the possible shapes of the normal forms of terms of type ⊤2.

3D.31. Theorem (1-section theorem, Statman [1985]). C is complete iff there is an (at
most countable) family {Mi}i∈ I of structures in C such that

T →֒ Πi∈ IMi.

Proof. (⇒) Suppose C is complete. Let t, s∈T . Then
t 6= s ⇒ tcl 6=βη s

cl

⇒ C 6|= tcl = scl, by completeness,

⇒ Mts |= tcl 6= scl, for someMts ∈C,
⇒ Mts |= tclbtscts 6= sclbtscts,

for some bts ∈M(0→0→0), cts ∈M(0) by extensionality. Note that in the third impli-
cation the axiom of (countable) choice is used.
It now follows by Lemma 3D.30(i) that we can take as countable product Πt′ 6=s′Mt′s′

Πt′ 6=s′Mt′s′ |= tcl 6= scl,

since they differ on the pair b0c0 with b0(ts) = bts and similarly for c0.
(⇐) Suppose T →֒ Πi∈ IMi withMi ∈C. Let M,N be closed terms of some type A.

By soundness one has
M =βη N ⇒ C |=M = N.

For the converse, let by the reducibility theorem F : A→⊤2 be such that

M =βη N ⇔ FM =βη FN,

for all M,N ∈Λø→. Then

C |=M = N ⇒ Πi∈ IMi |=M = N, by the lemma,

⇒ Πi∈ IMi |= FM = FN,

⇒ Πi∈ IMi |= tcl = scl,

where t, s are such that
FM =βη t

cl, FN =βη s
cl, (1)

as by Lemma 2A.18 every closed term of type ⊤2 is βη-convertible to some ucl with
u∈T . Now the chain of arguments continues as follows

⇒ t ≡ s, by the embedding property,

⇒ FM =βη FN, by (1),

⇒ M =βη N, by reducibility.

3D.32. Corollary. (i) [Friedman [1975]] {MN} is complete.
(ii) [Plotkin [1980]] {Mn | n∈N} is complete.
(iii) {MN⊥

} is complete.
(iv) {MD | D a finite cpo}, is complete.

Proof. Immediate from the theorem.
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The completeness of the collection {Mn}n∈N essentially states that for every pair of
terms M,N of a given type A there is a number n = nM,N such thatMn |=M = N ⇒
M =βη N . Actually one can do better, by showing that n only depends on M .

3D.33. Proposition (Finite completeness theorem, Statman [1982]). For every type A
in TT0 and every M ∈Λø(A) there is a number n = nM such that for all N ∈Λø(A)

Mn |=M = N ⇔ M =βη N.

Proof. By the reduction Theorem 3D.8 it suffices to show this for A = ⊤2. Let M a
closed term of type ⊤2 be given. Each closed term N of type ⊤2 has as long βη-nf

N = λb:12λc:0.sN ,

where sN ∈T . Let p : N→N→N be an injective pairing on the integers such that
p(k1, k2) > ki. Take

nM = ([[M ]]Mωp 0) + 1.

Define p′:X2
n+1→Xn+1, where Xn+1 = {0, · · · , n+ 1}, by

p′(k1, k2) = p(k1, k2), if k1, k2 ≤ n & p(k1, k2) ≤ n;
= n+ 1 else.

SupposeMn |= M = N . Then [[M ]]Mnp′ 0 = [[N ]]Mnp′ 0. By the choice of n it follows

that [[M ]]Mnp 0 = [[N ]]Mnp 0 and hence sM = sN . Therefore M =βη N .

3E. The five canonical term-models

We work with λCh
→ based on TT0. We often will use for a term like λxA.xA its de Bruijn

notation λx:A.x, since it takes less space. Another advantage of this notation is that we
can write λf :1x:0.f2x ≡ λf :1x:0.f(fx), which is λf1 x0.f1(f1x0) in Church’s notation.
The open terms of λCh

→ form an extensional model, the term-modelMΛ→ . One may
wonder whether there are also closed term-models, like in the untyped lambda calculus.
If no constants are present, then this is not the case, since there are e.g. no closed terms
of ground type 0. In the presence of constants matters change. We will first show how
a set of constants D gives rise to an extensional equivalence relation on Λø→[D], the set
of closed terms with constants from D. Then we define canonical sets of constants and
prove that for these the resulting equivalence relation is also a congruence, i.e. determines
a term-model. After that it will be shown that for all sets D of constants with enough
closed terms the extensional equivalence determines a term-model. Up to elementary
equivalence (satisfying the same set of equations between closed pure terms, i.e. closed
terms without any constants) all models, for which the equality on type 0 coincides with
=βη, can be obtained in this way.

3E.1. Definition. Let D be a set of constants, each with its own type in TT0. Then D
is sufficient if for every A∈TT0 there is a closed term M ∈Λø→[D](A).

For example {x0}, {F 2, f1} are sufficient. But {f1}, {Ψ3, f1} are not. Note that

D is sufficient ⇔ Λø→[D](0) 6= ∅.
3E.2. Definition. Let M,N ∈Λø→[D](A) with A = A1→· · ·→Aa→0.
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(i) M is D-extensionally equivalent with N , notation M ≈ext

D N , iff

∀t1 ∈Λø→[D](A1) · · · ta ∈Λø→[D](Aa).M~t =βη N~t.

[If a = 0, then M,N ∈Λø→[D](0); in this case M ≈ext

D N ⇔ M =βη N .]

(ii) M is D-observationally equivalent with N , notation M ≈obs

D N , iff

∀F ∈Λø→[D](A→0)FM =βη FN.

3E.3. Remark. (i) Let M,N ∈Λø→[D](A) and F ∈Λø→[D](A→B). Then

M ≈obs

D N ⇒ FM ≈obs

D FN.

(ii) Let M,N ∈Λø→[D](A→B). Then

M ≈ext

D N ⇔ ∀Z ∈Λø→[D](A).MZ ≈ext

D NZ.

(iii) Let M,N ∈Λø→[D](A). Then
M ≈obs

D N ⇒ M ≈ext

D N,

by taking F ≡ λm.m~t.
Note that in the definition of extensional equivalence the ~t range over closed terms

(containing possibly constants). So this notion is not the same as βη-convertibility: M
and N may act differently on different variables, even if they act the same on all those
closed terms. The relation ≈ext

D is related to what is called in the untyped calculus the
ω-rule, see B[1984], §17.3.
The intuition behind observational equivalence is that for M,N of higher type A one

cannot ‘see’ that they are equal, unlike for terms of type 0. But one can do ‘experiments’
with M and N , the outcome of which is observational, i.e. of type 0, by putting these
terms in a context C[−] resulting in two terms of type 0. For closed terms it amounts
to the same to consider just FM and FN for all F ∈Λø→[D](A→0).
The main result in this section is Theorem 3E.34, it states that for all D and for all

M,N ∈Λø→[D] of the same type one has

M ≈ext

D N ⇔ M ≈obs

D N. (1)

After this has been proved, we can write simply M ≈D N . The equivalence (1) will first
be established in Corollary 3E.18 for some ‘canonical’ sets of constants. The general
result will follow, Theorem 3E.34, using the theory of type reducibility.
The following obvious result is often used.

3E.4. Remark. Let M ≡ M [~d], N ≡ N [~d]∈Λø→[D](A), where all occurrences of ~d are
displayed. Then

M [~d]=βηN [~d] ⇔ λ~x.M [~x]=βηλ~x.N [~x].

The reason is that new constants and fresh variables are used in the same way and that
the latter can be bound.

3E.5. Proposition. Suppose that ≈ext

D is logical on Λø→[D]. Then

∀M,N ∈Λø→[D] [M ≈ext

D N ⇔ M ≈obs

D N ].
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Proof. By Remark 3E.3(iii) we only have to show (⇒). So assume M ≈ext

D N . Let
F ∈Λø→[D](A→0). Then trivially

F ≈ext

D F.
⇒ FM ≈ext

D FN, as by assumption ≈ext

D is logical,
⇒ FM =βη FN, because the type is 0.

Therefore M ≈obs

D N .

The converse of Proposition 3E.5 is a good warm-up exercise. That is, if

∀M,N ∈Λø→[D] [M ≈ext

D N ⇔ M ≈obs

D N ],

then ≈ext

D is the logical relation on Λø→[D] determined by βη-equality on Λø→[D](0).
3E.6. Definition. BetaEtaD = {BetaEtaDA}A∈TT0 is the logical relation on Λø→[D] de-
termined by

BetaEtaD0 (M,N)⇐⇒△ M =βη N,

for M,N ∈Λø→[D](0).
3E.7. Lemma. Let d = dA→0 ∈D, with A = A1→· · ·→Aa→0. Suppose

(i) ∀F,G∈Λø→[D](A)[F ≈ext

D G ⇒ F =βη G];

(ii) ∀ti ∈Λø→[D](Ai) BetaEta
D(ti, ti), 1 ≤ i ≤ a.

Then BetaEtaDA→0(d,d).

Proof. Write S = BetaEtaD. Let d be given. Then

S(F,G) ⇒ F~t =βη G~t, since ∀~t∈Λø→[D] S(ti, ti) by assumption (ii),

⇒ F ≈ext

D G,

⇒ F =βη G, by assumption (i),

⇒ dF =βη dG.

Therefore we have by definition S(d,d).

3E.8. Lemma. Let S be a syntactic n-ary logical relation on Λø→[D], that is closed under
=βη. Suppose S(d, · · · ,d) holds for all d∈D. Then for all M ∈Λø→[D] one has

S(M, · · · ,M).

Proof. Let D = {dA1
1 , · · · ,dAn

n }. M can be written as

M ≡M [~d ] =βη (λ~x.M [~x])~d ≡M+~d,

with M+ a closed and pure term (i.e. without free variables or constants). Then

S(M+, · · · ,M+), by the fundamental theorem

for syntactic logical relations

⇒ S(M+~d, · · · ,M+~d), since S is logical and ∀d∈D.S(~d),
⇒ S(M, · · · ,M), since S is =βη closed.

3E.9. Lemma. Suppose that for all d∈D one has BetaEtaD(d,d). Then ≈ext

D is BetaEtaD

and hence logical.
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Proof. Write S = BetaEtaD. By the assumption and the fact that S is =βη closed
(since S0 is), Lemma 3E.8 implies that

S(M,M) (0)

for all M ∈Λø→[D]. It now follows that S is an equivalence relation on Λø→[D]. Claim
SA(F,G) ⇔ F ≈ext

D G,

for all F,G∈Λø→[D](A). This is proved by induction on the structure of A. If A = 0,
then this follows by definition. If A = B→C, then we proceed as follows.

(⇒) SB→C(F,G) ⇒ SC(Ft,Gt), for all t∈Λø→[D](B),
since t≈ext

D t and hence, by the IH, SB(t, t),
⇒ Ft≈ext

D Gt, for all t∈Λø→[D], by the IH,
⇒ F ≈ext

D G, by definition.

(⇐) F ≈ext

D G ⇒ Ft≈ext

D Gt, for all t∈Λø→[D],
⇒ SC(Ft,Gt) (1)

by the induction hypothesis. In order to prove SB→C(F,G), assume SB(t, s) towards
SC(Ft,Gs). Well, since also SB→C(G,G), by (0), we have

SC(Gt,Gs). (2)

It follows from (1) and (2) and the transitivity of S (which on this type is the same as
≈ext

D by the IH) that SC(Ft,Gs) indeed.
By the claim ≈ext

D is S and therefore ≈ext

D is logical.

3E.10. Definition. Let D = {cA1
1 , · · · , cAk

k } be a finite set of typed constants.
(i) The characteristic type of D, notation ∇(D), is A1→· · ·→Ak→0.
(ii) We say that a type A = A1→· · ·→Aa→0 is represented in D if there are distinct

constants dA1
1 , · · · ,dAa

a ∈D.
In other words, ∇(D) is intuitively the type of λλ~di.d

0, where D = {~di} (the order of
the abstractions is immaterial, as the resulting types are all ∼βη equivalent). Note that
∇(D) is represented in D.
3E.11. Definition. Let D be a set of constants.

(i) If D is finite, then the class of D is the class of the type ∇(D), i.e. the unique i
such that ∇(D)∈TTi.

(ii) In general the class of D is

max{class(A) | A represented in D}.
(iii) A characteristic type of D, notation ∇(D) is any A represented in D such that

class(D)=class(A). That is, ∇(D) is any type represented in D of highest class.

It is not hard to see that for finite D the two definitions of class(D) coincide.
3E.12. Remark. Note that it follows by Remark 3D.20 that

D1 ⊆ D2 ⇒ class(D1) ≤ class(D2).

In order to show that for arbitrary D extensional equivalence is the same as observa-
tional equivalence this will be done first for the following ‘canonical’ sets of constants.
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3E.13. Definition. The following sets of constants will play a crucial role in this section.

C−1 , ∅;
C0 , {c0};
C1 , {c0,d0};
C2 , {f1, c0};
C3 , {f1, g1, c0};
C4 , {Φ3, c0};
C5 , {b12 , c0}.

3E.14. Remark. The actual names of the constants is irrelevant, for example C2 and
C′2 = {g1, c0} will give rise to isomorphic term models. Therefore we may assume that
a set of constants D of class i is disjoint with Ci.
From now on in this section C ranges over the canonical sets of constants {C−1, · · · , C5}

and D over arbitrary sets of constants.

3E.15. Remark. Let C be one of the canonical sets of constants. The characteristic
types of these C are as follows.

∇(C−1) = 0;
∇(C0) = 0→0;
∇(C1) = 12 = 0→0→0;
∇(C2) = 1→0→0;
∇(C3) = 1→1→0→0;
∇(C4) = 3→0→0;
∇(C5) = 12→0→0.

So ∇(Ci) = Ci, where the type Ci is as in Remark 3D.21. Also one has

i ≤ j ⇔ ∇(Ci) ≤βη ∇(Cj),
as follows form the theory of type reducibility.

We will need the following combinatorial lemma about ≈ext

C4
.

3E.16. Lemma. For every F,G∈Λ[C4](2) one has

F ≈ext

C4 G ⇒ F =βη G.

Proof. We must show

[∀h∈Λ[C4](1).Fh =βη Gh] ⇒ F =βη G. (1)

In order to do this, a classification has to be given for the elements of Λ[C4](2). Define
for A∈TT0 and context ∆

A∆ = {M ∈Λ[C4](A) |∆ ⊢M : A &M in βη-nf}.
It is easy to show that 0∆ and 2∆ are generated by the following ‘two-level’ grammar,
see van Wijngaarden [1981].

2∆ ::= λf :1.0∆,f :1

0∆ ::= c | Φ 2∆ | ∆.1 0∆,

where ∆.A consists of {v | vA ∈∆}.



128 3. Tools

It follows that a typical element of 2∅ is

λf1:1.Φ(λf2:1.f1(f2(Φ(λf3:1.f3(f2(f1(f3 c))))))).

Hence a general element can be represented by a list of words

〈w1, · · · , wn〉,

with wi ∈Σ∗
i and Σi = {f1, · · · , fi}, the representation of the typical element above

being 〈ǫ, f1f2, f3f2f1f3〉. The inhabitation machines in Section 1C were inspired by this
example.
Let hm = λz:0.Φ(λg:1.gm(z)); then hm ∈ 1∅. We claim that

∀F,G∈Λø→[C4](2) ∃m∈N.[Fhm =βη Ghm ⇒ F =βη G].

For a given F ∈Λ[C4](2) and m∈N one can find a representation of the βη-nf of Fhm
from the representation of the βη-nf F nf ∈ 2∅ of F . It will turn out that if m is large
enough, then F nf can be determined (‘read back’) from the βη-nf of Fhm.
In order to see this, let F nf be represented by the list of words 〈w1, · · · , wn〉, as above.

The occurrences of f1 can be made explicit and we write

wi = wi0f1wi1f1wi2 · · · f1wiki .

Some of the wij will be empty (in any case the w1j) and wij ∈Σ−∗
i with Σ−

i = {f2, · · · , fi}.
Then F nf can be written as (using for application—contrary to the usual convention—
association to the right)

F nf ≡ λf1.w10f1w11 · · · f1w1k1

Φ(λf2.w20f1w21 · · · f1w2k2

· · ·
Φ(λfn.wn0f1wn1 · · · f1wnkn

c)..).
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Now we have

(Fhm)nf ≡ w10

Φ(λg.gmw11

· · ·
Φ(λg.gmw1k1

Φ(λf2.w20

Φ(λg.gmw21

· · ·
Φ(λg.gmw2k2

Φ(λf3.w30

Φ(λg.gmw31

· · ·
Φ(λg.gmw3k3

· · ·
· · ·
Φ(λfn.wn0

Φ(λg.gmwn1

· · ·
Φ(λg.gmwnkn

c)..))..)..)))..)))..).

So if m > maxij{length(wij)} we can read back the wij and hence F nf from (Fhm)nf.
Therefore using an m large enough (1) can be shown as follows:

∀h∈Λ[C4](1).Fh =βη Gh ⇒ Fhm =βη Ghm

⇒ (Fhm)nf ≡ (Ghm)nf

⇒ F nf ≡ Gnf

⇒ F =βη F
nf ≡ Gnf =βη G.

3E.17. Proposition. For all i∈{−1, 0, 1, 2, 3, 4, 5} the relations ≈ext
Ci

are logical.

Proof. Write C = Ci. For i = −1 the relation ≈ext

C is universally valid by the empty

implication, as there are never terms ~t making M~t,N~t of type 0. Therefore, the result
is trivially valid.
Let S be the logical relation on Λø→[C] determined by =βη on the ground level Λø→[C](0).

By Lemma 3E.9 we have to check S(c, c) for all constants c in Ci. For i 6= 4 this is easy
(trivial for constants of type 0 and almost trivial for the ones of type 1 and 12 = (02→0);
in fact for all terms h∈Λø→[C] of these types one has S(h, h)).
For i = 4 we reason as follows. Write S =BetaEtaC4 . It suffices by Lemma 3E.9 to

show that S(Φ3,Φ3). By Lemma 3E.7 it suffices to show

F ≈C4 G ⇒ F =βη G
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for all F,G∈Λø→[C4](2), which has been verified in Lemma 3E.16, and S(t, t) for all
t∈Λø→[C4](1), which follows directly from the definition of S, since =βη is a congruence:

∀M,N ∈Λø→[0].[M=βηN ⇒ tM=βηtN ].

3E.18. Corollary. Let C be one of the canonical classes of constants. Then

∀M,N ∈Λø→[C][M ≈obs

C N ⇔ M ≈ext

C N ].

Proof. By the Proposition and Proposition 3E.5.

Arbitrary finite sets of constants D
Now we pay attention to arbitrary finite sets of constants D.
3E.19. Remark. Before starting the proof of the next results it is good to realize the
following. For M,N ∈Λø→[D ∪ {cA}]\Λø→[D] it makes sense to state M ≈ext

D N , but in
general we do not have

M ≈ext

D N ⇒ M ≈ext
D∪{cA} N. (+)

Indeed, taking D = {d0} this is the case for M ≡ λx0b12 .bc0x, N ≡ λx0b12 .bc0d0. The
implication (+) does hold if class(D)=class(D ∪ {cA}), as we will see later.

We first need to show the following proposition.

Proposition (Lemma Pi, with i∈{3, 4, 5}). Let D be a finite set of constants of class
i>2 and C=Ci. Then for M,N ∈Λø→[D] of the same type we have

M ≈ext

D N ⇒ M ≈ext

D∪C N.

We will assume that D ∩ C = ∅, see Remark 3E.14. This assumption is not yet essential
since if D, C overlap, then the statementM≈ext

D∪CN is easier to prove. The proof occupies
3E.20-3E.27.

Notation. Let A = A1→· · ·→Aa→0 and d∈Λø→[D](0). Define KAd∈Λø→[D](A) by
KAd, (λx1:A1 · · ·λxa:Aa.d).

3E.20. Lemma. Let D be a finite set of constants of class i>1. Then for all A∈TT0 the
set Λø→[D](A) contains infinitely many distinct lnf-s.

Proof. Because i > −1 there is a term in Λø→[D](∇(D)). Hence D is sufficient and
there exists a d0 ∈Λø→[D](0) in lnf. Since i>1 there is a constant dB ∈D with B =
B1→· · ·→Bb→0, and b > 0. Define the sequence of elements in Λø→[D](0):

d0 , d0;

dk+1 , dB(KB1dk) · · · (KBbdk).

As dk is a lnf and |dk+1| > |dk|, the {KAd0,K
Ad1, · · · } are distinct lnf-s in Λø→[D](A).

3E.21. Remark. We want to show that for M,N ∈Λø→[D] of the same type one has

M ≈ext

D N ⇒ M ≈ext

D∪{c0} N. (0)

The strategy will be to show that for all P,Q∈Λ→[D ∪ {c0}](0) in lnf one can find a
term Tc ∈Λø→[D](A) such that

P 6≡ Q ⇒ P [c0: = Tc] 6≡ Q[c0: = Tc]. (1)
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Then (0) can be proved via the contrapositive

M 6≈ext
D∪{c0}N ⇒ M~t 6=βη N~t (: 0), for some ~t∈Λø→[D ∪ {c0}]

⇒ P 6≡ Q, by taking lnf-s,

⇒ P [c := Tc] 6≡ Q[c := Tc], by (1),

⇒ M~s 6=βηN~s, with ~s = ~t[c := Tc],

⇒ M 6≈DN.

3E.22. Lemma. Let D be of class i ≥ 1 and let c0 be an arbitrary constant of type 0.
Then for M,N ∈Λø→[D] of the same type

M ≈ext

D N ⇒ M ≈ext

D∪{c0} N.

Proof. Using Remark 3E.21 let P,Q∈Λ→[D ∪ {c0}](0) and assume P 6≡ Q.
Case i > 1. Consider the difference in the Böhm trees of P , Q at a node with smallest

length. If at that node in neither trees there is a c, then we can take Tc = d0 for any
d0 ∈Λø→[D]. If at that node in exactly one of the trees there is c and in the other a
different s∈Λø→[D ∪ {c0}], then we must take d0 sufficiently large, which is possible by
Lemma 3E.20, in order to preserve the difference; these are all cases.
Case i = 1. Then D = {d0

1, · · · ,d0
k}, with k ≥ 2. So one has P,Q∈{d0

1, · · · ,d0
k, c

0}.
If c /∈{P,Q}, then take any Tc = di. Otherwise one has P ≡ c, Q ≡ di, say. Then take
Tc ≡ dj , for some j 6= i.

3E.23. Remark. Let D = {d0} be of class i = 0. Then Lemma 3E.22 is false. Take for
example λx0.x≈ext

D λx0.d, as d is the only element of Λø→[D](0). But λx0.x 6≈ext

{d0,c0}λx
0.d.

3E.24. Lemma (P5). Let D be a finite set of class i = 5 and C=C5 = {c0, b12}. Then for
M,N ∈Λø→[D] of the same type one has

M ≈ext

D N ⇒ M ≈ext

D∪C N.

Proof. By Lemma 3E.22 it suffices to show for M,N ∈Λø→[D] of the same type

M ≈ext

D∪{c0} N ⇒ M ≈ext

D∪{c0,b12} N.

By Remark 3E.21 it suffices to find for distinct lnf-s P,Q∈Λ→[D ∪ {c0, b12}](0) a term
Tb ∈Λ→[D ∪ {c0}](12) such that

P [b := Tb] 6≡ Q[b := Tb]. (1).

We look for such a term that is in any case injective: for all R,R′, S, S′ ∈Λø→[D∪{c0}](0)
TbRS=βηTbR

′S′ ⇒ R=βηR
′ & S=βηS

′.

Now let D = {d1:A1, · · · ,db:Ab}. Since D is of class 5 the type ∇(D) = A1→· · ·→Ab→0
is inhabited and large. Let T ∈Λø→[D](0).
Remember that a type A = A1→· · ·→Ab→0 is large if it has a negative occurrence

of a subtype with more than one component. So one has one of the following two cases.
Case 1. For some i ≤ b one has Ai = B1→· · ·→Bb→0 with b ≥ 2.
Case 2. Each Ai = A′

i→0 and some A′
i is large, 1 ≤ i ≤ b.
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Now we define for a type A that is large the term TA ∈Λø→[D](12) by induction on the
structure of A, following the mentioned cases.

TA = λx0y0.di(K
B1x)(KB2y)(KB3T ) · · · (KBbT ), if i ≤ b is the least such that

Ai = B1→· · ·→Bb→0 with b ≥ 2,

= λx0y0.di(K
A′

i(TA′
i
xy)), if each Aj = A′

j→0 and i ≤ a is

the least such that A′
i is large.

By induction on the structure of the large type A one easily shows using the Church-
Rosser theorem that TA is injective in the sense above.
Let A = ∇(D), which is large. We cannot yet take Tb ≡ TA. For example the difference

bcc 6=βη TAcc gets lost. By Lemma 3E.20 there exists a T+ ∈Λø→[D](0) with
|T+| > max{|P |, |Q|}.

Define
Tb = (λxy.TA(TAxT

+)y)∈Λø→[D](12).
Then also this Tb is injective. The T

+ acts as a ‘tag’ to remember where Tb is inserted.
Therefore this Tb satisfies (1).

3E.25. Lemma (P4). Let D be a finite set of class i = 4 and C=C4 = {c0,Φ3}. Then for
M,N ∈Λø→[D] of the same type one has

M ≈ext

D N ⇒ M ≈ext

D∪C N.

Proof. By Remark 3E.21 and Lemma 3E.22 it suffices to show that for all distinct lnf-s
P,Q∈Λ→[D ∪ {c0,Φ3}](0) there exists a term TΦ ∈Λ→[D ∪ {c0}](3) such that

P [Φ := TΦ] 6≡ Q[Φ := TΦ]. (1)

Let A = A1→· · ·→Aa→0 be a small type of rank k ≥ 2. Wlog we assume that
rk(A1) = rk(A)− 1. As A is small one has A1 = B→0, with B small of rank k − 2.
Let H be a term variable of type 2. We construct a term

MA ≡MA[H]∈Λ{H:2}
→ (A).

The term MA is defined directly if k∈{2, 3}; else via MB, with rk(MB) = rk(MA)− 2.

MA , λx1:A1 · · ·λxa:Aa.Hx1, if rk(A) = 2,

, λx1:A1 · · ·λxa:Aa.H(λz:0.x1(K
Bz)), if rk(A) = 3,

, λx1:A1 · · ·λxa:Aa.x1MB, if rk(A) ≥ 4.

Let A = ∇(D) which is small and has rank k ≥ 4. Then wlog A1 = B→0 has rank ≥ 3.
Then B = B1→· · ·→Bb→0 has rank ≥ 2. Let

T = (λH:2.dA1
1 (MB[H]))∈Λø→[D](3).

Although T is injective, we cannot use it to replace Φ3, as the difference in (1) may
get lost in translation. Again we need a ‘tag’ to keep the difference between P,Q Let
n > max{|P |, |Q|}. Let Bi be the ‘first’ with rk(Bi) = k − 3. As Bi is small, we have
Bi = Ci→0. We modify the term T :

TΦ , (λH:2.dA1
1 (λy1:B1 · · ·λyb:Bb.(yi ◦ KCi)n(MB[H] ~y )))∈Λø→[D](3).

This term satisfies (1).
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3E.26. Lemma (P3). Let D be a finite set of class i = 3 and C=C3 = {c0,f1, g1}. Then
for M,N ∈Λø→[D] of the same type one has

M ≈ext

D N ⇒ M ≈ext

D∪C N.

Proof. Again it suffices that for all distinct lnf-s P,Q∈Λ→[D ∪ {c0,f1, g1}](0) there
exist terms Tf , Tg ∈Λ→[D ∪ {c0}](1) such that

P [f , g := Tf , Tg] 6≡ Q[f , g := Tf , Tg]. (1)

Writing D = {d1:A1, · · · ,da:Aa}, for all 1 ≤ i ≤ a one has Ai = 0 or Ai = Bi → 0 with
rk(Bi) ≤ 1, since ∇(D)∈TT3. This implies that all constants in D can have at most
one argument. Moreover there are at least two constants, say w.l.o.g. d1,d2, with types
B1→0, B2→0, respectively, that is having one argument. As D is sufficient there is a
d∈Λø→[D](0). Define

T1 , λx:0.d1(K
B1x) in Λø→[D](1),

T2 , λx:0.d2(K
B2x) in Λø→[D](1).

As P,Q are different lnf-s, we have

P ≡ P1(λ~x1.P2(λ~x2. · · ·Pp(λ~x2.X)..)),

Q≡Q1(λ~y1.Q2(λ~y2. · · ·Qq(λ~y2.Y )..)),

where the Pi, Qj ∈ (D∪C3), the ~xi, ~yj are possibly empty strings of variables of type 0, and
X,Y are variables or constants of type 0. Let (U, V ) be the first pair of symbols among
the (Pi, Qi) that are different. Distinguishing cases we define Tf , Tg such that (1). As a
shorthand for the choices we write (m,n), m,n∈{1, 2}, for the choice Tf = Tm, Tg = Tn.
Case 1. One of U, V , say U , is a variable or in D/{d1,d2}. This U will not be changed

by the substitution. If V is changed, after reducing we get U 6≡ di. Otherwise nothing
happens with U, V and the difference is preserved. Therefore we can take any pair (m,n).
Case 2. One of U, V is di.
Subcase 2.1. The other is in {f , g}. Then take (j, j), where j = 3− i.
Subcase 2.2. The other one is d3−j . Then neither is replaced; take any pair.
Case 3. {U, V } = {f , g}. Then both are replaced and we can take (1, 2).

After deciphering what is meant the verification that the difference is kept is trivial.

3E.27. Proposition. Let D be a finite set of class i>2 and let C=Ci. Then for all
M,N ∈Λø→[D] of the same type one has

M ≈ext

D N ⇔ M ≈ext

D∪C N.

Proof. (⇒) By Lemmas 3E.24, 3E.25, and 3E.26. (⇐) Trivial.

3E.28. Remark. (i) Proposition 3E.27 fails for i = 0 or i = 2. For i = 0, take D =
{d0}, C = C0 = {c0}. Then for P ≡ Kd, Q ≡ I one has Pc =βη d 6=βη c =βη Qc. But
the only u[d]∈Λø→[D](0) is d, loosing the difference: Pd =βη d =βη Qd. For i = 2, take
D = {g:1,d:0}, C = C2 = {f :1, c:0}. Then for P ≡ λh:1.h(h(gd)), Q ≡ λh:1.h(g(hd))
one has Pf 6=βη Qf , but the only u[g,d]∈Λø→[D](0) are λx.gnx and λx.gnd, yielding
Pu =βη g2n+1d = Qu, respectively Pu =βη gnd =βη Qu.

(ii) Proposition 3E.27 clearly also holds for class i = 1.

3E.29. Lemma. For A = A1→· · ·→Aa→0. write DA = {cA1
1 , · · · , cAa

a }. Let M,N ∈Λø→
be pure closed terms of the same type.
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(i) Suppose A ≤h+ B. Then

M ≈ext

DB
N ⇒ M ≈ext

DA
N.

(ii) Suppose A ∼h+ B. Then

M ≈ext

DA
N ⇔ M ≈ext

DB
N.

Proof. (i) We show the contrapositive.

M 6≈ext

DA
N ⇒ ∃~t∈Λø→[DA].M ~t [a1, · · · ,aa] 6=βη N ~t [a1, · · · ,aa] (: 0)

⇒ ∃~t λ~a.M ~t [~a ] 6=βη λ~a.N ~t [~a ] (: A), by Remark 3E.4,

⇒ ∃~t λ~b.(λ~a.M ~t [~a ])~R[~b] 6=βη λ~b.(λ~a.N ~t [~a ])~R[~b] (: B),

by 3D.26(iii), as A ≤h+ B,

⇒ ∃~t λ~b.M~t [~R [~b ]] 6=βη λ~b.N~t [~R [~b ]] (: B)

⇒ ∃~t M~t [~R [b1, · · · , bb]] 6=βη N~t [~R [b1, · · · , bb]] (: 0), by Remark 3E.4,

⇒ M 6≈ext

DB
N.

(ii) By (i).

3E.30. Proposition. Let D = {dB1
1 , · · · ,dBk

k } be of class i>2 and C = Ci, with D∩C =
∅. Let A∈TT0. Then we have the following.

(i) For P [~d ], Q[~d ]∈Λø→[D](A), such that λ~x.P [~x], λ~x.Q[~x]∈Λø→(B1→· · ·→Bk→0)
the following are equivalent.

(1) P [~d]≈ext

D Q[~d].

(2) λ~x.P [~x]≈C λ~x.Q[~x].

(3) λ~x.P [~x]≈ext

D λ~x.Q[~x].

(ii) In particular, for pure closed terms P,Q∈Λø→(A) one has

P ≈ext

D Q ⇔ P ≈C Q.

Proof. (i) We show (1) ⇒ (2) ⇒ (3) ⇒ (1).

(1) ⇒ (2). Assume P [~d ]≈ext

D Q[~d ]. Then

⇒ P [~d ]≈ext

D∪C Q[~d ], by Proposition 3E.27,

⇒ P [~d ]≈ext

C Q[~d ],

⇒ P [~d ]~t =βη Q[~d ]~t, for all ~t∈Λø→[C],
⇒ P [~s ]~t =βη Q[~s ]~t, for all ~t, ~s∈Λø→[C] as D ∩ C = ∅,
⇒ λ~x.P [~x ]≈ext

C λ~x.Q[~x ].

(2) ⇒ (3). By assumption ∇(D) ∼h+ ∇(C). As D = D∇(D) and C = D∇(C) one has

λ~x.P [~x]≈ext

D λ~x.Q[~x] ⇔ λ~x.P [~x]≈ext

C λ~x.Q[~x],

by Lemma 3E.29.
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(3) ⇒ (1). Assume λ~x.P [~x ]≈ext

D λ~x.Q[~x ]. Then

⇒ (λ~x.P (~x)~R~S =βη (λ~x.Q(~x)~R~S, for all ~R, ~S ∈Λø→[D],
⇒ P (~R)~S =βη Q(~R)~S, for all ~R, ~S ∈Λø→[D],
⇒ P (~d)~S =βη Q(~d)~S, for all ~S ∈Λø→[D],
⇒ P (~d) ≈ext

D Q(~d).

(ii) By (i).

The proposition does not hold for class i = 2. Take D = C2 = {f1, c0} and
P [f , c] ≡ λh:0.h(h(fc)), Q ≡ λh:0.h(f(hc)).

Then P [f , c]≈ext

D Q[f , c], but λfc.P [f, c] 6≈ext

D λfc.Q[f, c].

3E.31. Proposition. Let D be set of constants of class i 6= 2. Then
(i) The relation ≈ext

D on Λø→[D] is logical.
(ii) The relations ≈ext

D and ≈obs

D on Λø→[D] coincide.
Proof. (i) In case D is of class −1, then M ≈ext

D N is universally valid by the empty
implication. Therefore, the result is trivially valid.
In case D is of class 0 or 1, then ∇(D)∈TT0∪TT1. Hence ∇(D) = 0k→0 for some k ≥ 1.

Then D = {c01, · · · , c0k}. Now trivially BetaEtaD(c, c) for c∈D of type 0. Therefore ≈ext

D
is logical, by Lemma 3E.9.
For D of class i > 2 we reason as follows. Write C = Ci. We may assume that C∩D = ∅,

see Remark 3E.14.
We must show that for all M,N ∈Λø→[D](A→B) one has

M ≈ext

D N ⇔ ∀P,Q∈Λø→[D](A)[P ≈ext

D Q ⇒ MP ≈ext

D NQ]. (1)

(⇒) Assume M [~d ] ≈ext

D N [~d ] and P [~d ] ≈ext

D Q[~d ], with M,N ∈Λø→[D](A→B) and

P,Q∈Λø→[D](B), in order to showM [~d ]P [~d ]≈ext

D N [~d ]Q[~d ]. Then λ~x.M [~x ]≈C λ~x.N [~x ]
and λ~x.P [~x ]≈C λ~x.Q[~x ], by Proposition 3E.30(i). Consider the pure closed term

H ≡ λf :( ~E→A→B)λm:( ~E→A)λ~x: ~E.f~x(m~x).
As ≈C is logical, one has H ≈C H, λ~x.M [~x ]≈C λ~x.N [~x ], and λ~x.P [~x ]≈C λ~x.Q[~x ]. So

λ~x.M [~x ]P [~x ] =βη H(λ~x.M [~x ])(λ~x.P [~x ])

≈C H(λ~x.N [~x ])(λ~x.Q[~x ]),

=βη λ~x.N [~x ]Q[~x ].

But then again by the proposition

M [~d ]P [~d ]≈ext

D N [~d ]Q[~d ].

(⇐) Assume the RHS of (1) in order to show M ≈ext

D N . That is, one has to show

MP1 · · ·Pk =βη NP1 · · ·Pk, (2)

for all ~P ∈Λø→[D]. As P1 ≈ext

D P1, by assumption it follows that MP1 ≈ext

D NP1. Hence
one has (2) by definition.

(ii) That ≈ext

D is ≈obs

D on Λø→[D] follows by (i) and Proposition 3E.5.
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3E.32. Lemma. Let D be a finite set of constants. Then D is of class 2 iff one of the
following cases holds.

D = {F :(1p+1 → 0), c1, · · · , cq:0}, p, q ≥ 0;

D = {f :1, c1, · · · , cq+1:0}, q ≥ 0.

Proof. By Lemma 3D.16.

3E.33. Proposition. Let D be of class 2. Then the following hold.

(i) The relation ≈ext

D on Λø→[D] is logical.

(ii) The relations ≈ext

D and ≈obs

D on Λø→[D] coincide.
Proof. (i) Assume that D = {F , c1, · · · , cq} (the other possibility according Lemma
3E.32 is more easy). By Proposition 3E.9 (i) it suffices to show that for d∈D one has
S(d,d). This is easy for the ones of type 0. For F : (1p+1 → 0) assume for notational
simplicity that k = 0, i.e. F : 2. By Lemma 3E.7 it suffices to show f≈ext

D g ⇒ f =βη g
for f, g ∈Λø→[D](1). Now elements of Λø→[D](1) are of the form

λx1.F (λx2.F (· · · (λxm−1.F (λxm.c))..)),

where c ≡ xi or c ≡ cj . Therefore if f 6=βη g, then inspecting the various possibilities
(e.g. one has

f ≡ λx1.F (λx2.F (· · · (λxm−1.F (λxm.xn))..)) ≡ KA

g ≡ λx1.F (λx2.F (· · · (λxm−1.F (λxm.x1))..)),

do Exercise 3F.25), one has f(F f) 6=βη g(F f) or f(F g) 6=βη g(F g), hence f 6≈ext

D g.

(ii) By (i) and Proposition 3E.5.

Harvesting the results we obtain the following main theorem.

3E.34. Theorem (Statman [1980b]). Let D be a finite set of typed constants of class i
and C = Ci. Then

(i) ≈ext

D is logical.

(ii) For closed terms M,N ∈Λø→[D] of the same type one has

M ≈ext

D N ⇔ M ≈obs

D N.

(iii) For pure closed terms M,N ∈Λø→ of the same type one has

M ≈ext

D N ⇔ M ≈ext

C N.

Proof. (i) By Propositions 3E.31 and 3E.33.

(ii) Similarly.

(iii) Let D = {dA1
1 , · · · ,dAk

k }. Then ∇(D) = A1→· · ·Ak→0 and in the notation of
Lemma 3E.29 one has D∇(D) = D, up to renaming constants. One has ∇(D)∈TTi, hence
by the hierarchy theorem revisited ∇(D) ∼h+ Ci. Thus ≈D∇(D)

is equivalent with ≈DCi

on pure closed terms, by Lemma 3E.29. As D∇(D) = D and DCi = Ci, we are done.

From now on we can write ≈D for ≈ext

D and ≈obs

D .
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Infinite sets of constants

Remember that for D a possibly infinite set of typed constants we defined

class(D) = max{class(Df ) | Df ⊆ D & Df is finite}.
The notion of class is well defined and one has class(D)∈{−1, 0, 1, 2, 3, 4, 5}.
3E.35. Proposition. Let D be a possibly infinite set of constants of class i. Let A∈TT0

and M ≡M [~d], N ≡ N [~d]∈Λø→[D](A). Then the following are equivalent.
(i) M ≈ext

D N .

(ii) For all finite Df ⊆ D containing the ~d such that class(Df ) = class(D) one has

M ≈ext

Df
N.

(iii) There exists a finite Df ⊆ D containing the ~d such that class(Df ) = class(D) and
M ≈ext

Df
N.

Proof. (i)⇒ (ii). Trivial as there are less equations to be satisfied in M ≈ext

Df
N .

(ii) ⇒ (iii). Let Df ⊆ D be finite with class(Df ) = class(D). Let Df ′ = Df ∪ {~d}.
Then i = class(Df ) ≤ class(Df ′) ≤ i, by Remark 3E.12. Therefore Df ′ satisfies the
conditions of (ii) and one has M ≈ext

Df ′
N .

(iii)⇒ (i). Suppose towards a contradiction that M ≈ext

Df
N but M 6≈ext

D N . Then for

some finite Df ′ ⊆ D of class i containing ~d one has M 6≈ext
Df ′

N . We distinguish cases.

Case class(D) > 2. Since class(Df ) = class(Df ′) = i, Proposition 3E.30(i) implies that

λ~x.M [~x]≈ext

Ci λ~x.N [~x] & λ~x.M [~x] 6≈ext

Ci λ~x.N [~x],

a contradiction.
Case class(D) = 2. Then by Lemma 3E.32 the set D consists either of a constant f1

or F 1p+1→0 and furthermore only type 0 constants c0. So Df ∪Df ′ = Df ∪ {c01, · · · ,c0k}.
As M ≈ext

Df
N by Lemma 3E.22 one has M ≈ext

Df∪Df ′
N . But then a fortiori M ≈ext

Df ′
N ,

a contradiction.
Case class(D) = 1. Then D consists of only type 0 constants and we can reason

similarly, again using Lemma 3E.22.
Case class(D) = 0. Then D = {0}. Hence the only subset of D having the same class

is D itself. Therefore Df = Df ′ , a contradiction.

Case class(D) = −1. We say that a type A∈TT0 is D-inhabited if P ∈Λø→[D](A) for
some term P . Using Proposition 2D.4 one can show

A is inhabited ⇔ A is D-inhabited.
From this one can show for all D of class −1 that

A inhabited ⇒ ∀M,N ∈Λø→[D](A).M ≈ext

D N.

In fact the assumption is not necessary, as for non-inhabited types the conclusion holds
vacuously. This is a contradiction with M 6≈ext

D N .

As a consequence of this Proposition we now show that the main theorem also holds
for possibly infinite sets D of typed constants.

3E.36. Theorem. Let D be a set of typed constants of class i and C = Ci. Then
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(i) ≈ext

D is logical.
(ii) For closed terms M,N ∈Λø→[D] of the same type one has

M ≈ext

D N ⇔ M ≈obs

D N.

(iii) For pure closed terms M,N ∈Λø→ of the same type one has

M ≈ext

D N ⇔ M ≈ext

C N.

Proof. (i) Let M,N ∈Λø→[D](A→ B). We must show

M ≈ext

D N ⇔ ∀P,Q∈Λø→[D](A).[P ≈ext

D Q ⇒ MP ≈ext

D NQ].

(⇒) Suppose M ≈ext

D N and P ≈ext

D Q. Let Df ⊆ D be a finite subset of class i
containing the constants in M,N,P,Q. Then M ≈ext

Df
N and P ≈ext

Df
Q. Since ≈ext

Df
is

logcal by Theorem 3E.34 one has MP ≈ext

Df
NQ. But then MP ≈ext

D NQ.

(⇐) Assume the RHS. Let Df be a finite subset of D of the same class containing all
the constants of M,N,P,Q. One has

P ≈ext

Df
Q ⇒ P ≈ext

D Q, by Proposition 3E.35,

⇒ MP ≈ext

D NQ, by assumption,

⇒ MP ≈ext

Df
NQ, by Proposition 3E.35.

Therefore M ≈ext

Df
N . Then by Proposition 3E.35 again we have M ≈ext

D N .

(ii) By (i) and Proposition 3E.5.
(iii) Let Df be a finite subset of D of the same class. Then by Proposition 3E.35 and

Theorem 3E.34
M ≈ext

D N ⇔ M ≈ext

Df
N ⇔ M ≈ext

C N.

Term models

In this subsection we assume that D is a finite sufficient set of constants, that is, every
type A∈TT0 is inhabited by some M ∈Λø→[D]. This is the same as saying class(D) ≥ 0.

3E.37. Definition. Define
M[D], Λø→[D]/≈D,

with application defined by

[F ]D[M ]D , [FM ]D.

Here [−]D denotes an equivalence class modulo ≈D.

3E.38. Theorem. Let D be sufficient. Then
(i) Application inM[D] is well-defined.
(ii) For all M,N ∈Λø→[D] on has

[[M ]]M[D] = [M ]≈D .

(iii) M[D] |=M = N ⇔ M ≈D N.
(iv) M[D] is an extensional term-model.

Proof. (i) As the relation ≈D is logical, application is independent of the choice of
representative:

F ≈D F
′ &M ≈D M

′ ⇒ FM ≈D F
′M ′.
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(ii) By induction on open terms M ∈Λ→[D] it follows that
[[M ]]ρ = [M [~x: = ρ(x1), · · · , ρ(xn)]]D.

Hence (ii) follows by taking ρ(x) = [x]D.
(iii) By (ii).
(iv) Use (ii) and Remark 3E.3(ii).

3E.39. Lemma. Let A be represented in D. Then for all M,N ∈Λø→(A), pure closed
terms of type A, one has

M ≈D N ⇔ M =βη N.

Proof. The (⇐) direction is trivial. As to (⇒)

M ≈D N ⇔ ∀~T ∈Λø→[D].M ~T =βη N ~T

⇒ M~d =βη N~d, for some ~d∈D since

A is represented in D,
⇒ M~x =βη N~x, by Remark 3E.4 as

M,N are pure,

⇒ M =η λ~x.M~x =βη λ~x.N~x =η N.

3E.40. Definition. (i) If M is a model of λCh
→ [D], then for a type A its A-section is

simplyM(A).
(ii) We say thatM is A-complete (A-complete for pure terms) if for all closed terms

(pure closed terms, respectively) M,N of type A one has

M |=M = N ⇔ M =βη N.

(iii) M is complete (for pure terms) if for all types A∈TT0 it is A-complete (for pure
terms).
(iv) A modelM is called fully abstract if

∀A∈TT0∀x, y ∈M(A)[ [∀f ∈M(A→0).fx = fy] ⇒ x = y ].

3E.41. Corollary. Let D be sufficient. ThenM[D] has the following properties.
(i) M[D] is an extensional term-model.
(ii) M[D] is fully abstract.
(iii) Let A be represented in D. ThenM[D] is A-complete for pure closed terms.
(iv) In particular,M[D] is ∇(D)-complete and 0-complete for pure closed terms.

Proof. (i) By Theorem 3E.38 the definition of application is well-defined. That exten-
sionality holds follows from the definition of ≈D. As all combinators [KAB]D, [SABC ]D
are inM[D], the structure is a model.

(ii) By Theorem 3E.38(ii). Let x, y ∈M(A) be [X]D, [Y ]D respectively. Then

∀f ∈M(A→0).fx = fy ⇒ ∀F ∈Λø→[D](A→0).[FX]D = [FY ]D

⇒ ∀F ∈Λø→[D](A→0).FX ≈D FY (: 0)

⇒ ∀F ∈Λø→[D](A→0).FX =βη FY

⇒ X ≈D Y

⇒ [X]D = [Y ]D

⇒ x = y.
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(iii) By Lemma 3E.39.
(iv) By (iii) and the fact that ∇(D) is represented in D. For 0 the result is trivial.

3E.42. Proposition. (i) Let 0 ≤ i ≤ j ≤ 5. Then for pure closed terms M,N ∈Λø→
M[Cj ] |=M = N ⇒ M[Ci] |=M = N.

(ii) Th(M[C5]) ⊆ · · · ⊆ Th(M[C1]), see Definition 3A.10(iv). All inclusions are
proper.

Proof. (i) Let M,N ∈Λø→ be of the same type. Then

M[Ci] 6|=M = N ⇒ M 6≈Ci N

⇒ M(~t [~c]) 6=βη N(~t [~c]) : 0, for some (~t [~c])∈Λø→[C],
⇒ λ~c.M(~t [~c ]) 6=βη λ~c.N(~t [~c ]) : ∇(Ci), by Remark 3E.4,

⇒ Ψ(λ~c.M(~t [~c ])) 6=βη Ψ(λ~c.N(~t [~c ])) : ∇(Cj),
since ∇(Ci) ≤βη ∇(Cj) via some injective Ψ,

⇒ Ψ(λ~c.M(~t [~c ])) 6≈Cj Ψ(λ~c.N(~t [~c ])), since by 3E.41(iv)

the modelM[Cj ] is ∇(Cj)-complete for pure terms,

⇒ M[Cj ] 6|= Ψ(λ~c.M(~t [~c ])) = Ψ(λ~c.N(~t [~c ]))

⇒ M[Cj ] 6|=M = N, sinceM[Cj ] is a model.

(ii) By (i) the inclusions hold; they are proper by Exercise 3F.31.

3E.43. Lemma. Let A,B be types such that A ≤βη B. SupposeM[D] is B-complete for
pure terms. ThenM[D] is A-complete for pure terms.

Proof. Assume Φ : A ≤βη B. Then one has for M,N ∈Λø→(A)

M[D] |=M = N ⇐ M =βη N

⇓ ⇑

M[D] |= ΦM = ΦN ⇒ ΦM =βη ΦN

by the definition of reducibility.

3E.44. Corollary. Let ≈ext

D be logical. IfM[D] is A-complete but not B-complete for
pure closed terms, then A 6≤βη B.

3E.45. Corollary. M[C5] is complete for pure terms, i.e. for all A and M,N ∈Λø→(A)

M[C5] |=M = N ⇔ M =βη N.

Proof. M[C5] is ∇(C5)-complete for pure terms, by Corollary 3E.41(iii). Since for
every type A one has A ≤βη ⊤ = ∇(C5), by the reducibility Theorem 3D.8, it follows
by Lemma 3E.43 that this model is also A-complete.

So Th(M[C5]), the smallest theory, is actually just βη-convertibility, which is decidable.
At the other end of the hierarchy a dual property holds.

3E.46. Definition. Mmin =M[C1] is called the minimal model of λA
→ since it equates

most terms. Thmax = Th(M[C1]) is called the maximal theory. The names will be
justified below.
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3E.47. Proposition. Let A ≡ A1→· · ·→Aa→0∈TT0. LetM,N ∈Λø→(A) be pure closed
terms. Then the following statements are equivalent.

1. M = N is inconsistent.
2. For all modelsM of λA

→ one hasM 6|=M = N .
3. Mmin 6|=M = N .

4. ∃P1 ∈Λx,y:0(A1) · · ·Pa ∈Λx,y:0(Aa).M ~P = x & N ~P = y.
5. ∃F ∈Λx,y:0(A→0).FM = x & FN = y.
6. ∃G∈Λø(A→02→0).FM = λxy.x & FN = λxy.y.

Proof. (1) ⇒ (2) By soundness. (2) ⇒ (3) Trivial. (3) ⇒ (4 Since Mmin consists of

Λx,y:0/ ≈C1 . (4) ⇒ (5) By taking F ≡ λm.m~P . (5) ⇒ (6) By taking G ≡ λmxy.Fm.
(6)⇒ (1) Trivial.

3E.48. Corollary. Th(Mmin) is the unique maximally consistent extension of λ0
→.

Proof. By taking in the proposition the negations one has M = N is consistent iff
Mmin |= M = N . Hence Th(Mmin) contains all consistent equations. Moreover this
theory is consistent. Therefore the statement follows.

We already did encounter Th(Mmin) as Emax in Definition 3B.19 before. In Section 4D
it will be proved that it is decidable. M[C0] is the degenerate model consisting of one
element at each type, since

∀M,N ∈Λø→[C0](0)M = x = N.

Therefore its theory is inconsistent and hence decidable.

3E.49. Remark. For the theories, Th(M[C2]), Th(M[C3]) and Th(M[C4]) it is not
known whether they are decidable.

3E.50. Theorem. Let D be a sufficient set of constants of class i ≥ 0. Then
(i) ∀M,N ∈Λø→[M ≈D N ⇔ M ≈Ci N ].
(ii) M[D] is ∇(Ci)-complete for pure terms.

Proof. (i) By Proposition 3E.30(ii). (ii) By (i) and Corollary 3E.41(iv).

3E.51. Remark. So there are exactly five canonical term-models that are not elementary
equivalent (plus the degenerate term-model equating everything).

Proof of Proposition 3D.11

In the previous section the types Aα were introduced. The following proposition was
needed to prove that these form a hierarchy.

3E.52. Proposition. For α, β ≤ ω + 3 one has

α ≤ β ⇐ Aα ≤βη Aβ .

Proof. Notice that for α ≤ ω the cardinality of Λø→(Aα) equals α: For example
Λø→(A2) = {λxy:0.x, λxy:0.y} and Λø→(Aω = {λf :1λx:0.fkx | k∈N}. Therefore for
α, α′ ≤ ω one has Aα ≤βη Aα′ ⇒ α = α′.
It remains to show that Aω+1 6≤βη Aω, Aω+2 6≤βη Aω+1, Aω+3 6≤βη Aω+2.
As to Aω+1 6≤βη Aω, consider

M ≡ λf, g:1λx:0.f(g(f(gx))),
N ≡ λf, g:1λx:0.f(g(g(fx)).
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Then M,N ∈Λø→(Aω+1), and M 6=βη N . By Corollary 3E.41(iii) we know that M[C2]
is Aω-complete. It is not difficult to show that M[C2] |= M = N , by analyzing the
elements of Λø→[C2](1). Therefore, by Corollary 3E.44, the conclusion follows.
As to Aω+2 6≤βη Aω+1, this is proved in Dekkers [1988] as follows. Consider

M ≡ λF :3λx:0.F (λf1:1.f1(F (λf2:1.f2(f1x))))
N ≡ λF :3λx:0.F (λf1:1.f1(F (λf2:1.f2(f2x)))).

ThenM,N ∈Λø→(Aω+2) andM 6=βηN . In Proposition 12 of mentioned paper it is proved
that ΦM=βηΦN for each Φ∈Λø→(Aω+2→Aω+1).
As to Aω+3 6≤βη Aω+2, consider

M ≡ λh:12λx:0.h(hx(hxx))(hxx),
N ≡ λh:12λx:0.h(hxx)(h(hxx)x).

Then M,N ∈Λø→(Aω+3), and M 6=βη N . Again M[C4] is Aω+2-complete. It is not
difficult to show that M[C4] |= M = N , by analyzing the elements of Λø→[C4](12).
Therefore, by Corollary 3E.44, the conclusion follows.

3F. Exercises

3F.1. Convince yourself of the validity of Proposition 3C.3 for n = 2.

3F.2. Show that there are M,N ∈Λø→[{d0}]((12 → 12 → 0)→ 0) such that M#N , but
not M ⊥N . [Hint. Take M ≡ [λxy.x, λxy.d0] ≡ λz12→12→0.z(λxy.x)(λxy.d0),
N ≡ [λxy.d0, λxy.y]. The [P,Q] notation for pairs is from B[1984].]

3F.3. RememberMn =M{1,··· ,n} and ci = (λfx.f ix)∈Λø→(1→ 0→ 0).

(i) Show that for i, j ∈N one has

Mn |= ci = cj ⇔ i = j ∨ [i, j ≥ n−1 & ∀k1≤k≤n.i ≡ j(mod k)].

[Hint. For a∈Mn(0), f ∈Mn(1) define the trace of a under f as

{f i(a) | i∈N},
directed by Gf = {(a, b) | f(a) = b}, which by the pigeonhole principle
is ‘lasso-shaped’. Consider the traces of 1 under the functions fn, gm with
1 ≤ m ≤ n, where
fn(k) = k + 1, if k < n,

= n, if k = n,
and gm(k) = k + 1, if k < m,

= 1, if k = m,
= k, else.]

Conclude that e.g.M5 |= c4 = c64,M6 6|= c4 = c64 andM6 |= c5 = c65.
(ii) Conclude thatMn ≡1→0→0Mm ⇔ n = m, see Definitions 3A.14 and 3B.4.
(iii) Show directly that

⋂
nTh(Mn)(1) = Eβη(1).

(iv) Show, using results in Section 3D, that
⋂

nTh(Mn) = Th(MN) = Eβη.
3F.4. The iterated exponential function 2n is

20 = 1,

2n+1 = 22n .
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One has 2n = 2n(1), according to the definition before Exercise 2E.19. Define
s(A) to be the number of occurrences of atoms in the type A∈TT0, i.e.

s(0), 1

s(A→ B), s(A) + s(B).

Write #X for the cardinality of the set X. Show the following.

(i) 2n ≤ 2n+p.

(ii) 2
2p+1

n+2 ≤ 2n+p+3.

(iii) 2
2p
n ≤ 2n+p.

(iv) If X = {0, 1}, then ∀A∈TT.#(X(A)) ≤ 2s(A).

(v) For which types A do we have = in (iv)?
3F.5. Show that if M is a type model, then for the corresponding polynomial type

modelM∗ one has Th(M∗) = Th(M).
3F.6. Show that

A1→· · ·→An→0 ≤βη Aπ1→· · ·→Aπn→0,

for any permutation π ∈Sn
3F.7. Let A = (2→2→0)→2→0 and

B = (0→12→0)→12→(0→1→0)→02→0. Show that

A ≤βη B.

[Hint. Use the term λz:Aλu1:(0→12→0)λu2:12λu3:(0→2)λx1x2:0.
z[λy1, y2:2.u1x1(λw:0.y1(u2w))(λw:0.y2(u2w))][u3x2].]

3F.8. Let A = (12→0)→0. Show that

A ≤βη 12→2→0.

[Hint. Use the term λM :Aλp:12λF :2.M(λf, g:1.F (λz:0.p(fz)(gz))).]
3F.9. (i) Show that (

2
3 4

)
≤βη 1→1→

(
2
3 3

)
.

(ii) Show that (
2
3 3

)
≤βη 1→1→

(
2
3

)
.

(iii) ∗ Show that (
2 2
3 2

)
≤βη 12→

(
2
3 2

)
.

[Hint. Use Φ = λMλp:12λH
′
1H2.M

[λf11, f12:12.H
′
1(λxy:0.p(f12xy,H2f11)]

[λf21:13λf22:12.H2f21f22].]
3F.10. Show directly that 3→0 ≤βη 1→1→0→0. [Hint. Use

Φ ≡ λM :3λf, g:1λz:0.M(λh:1.f(h(g(hz)))).

Typical elements of type 3 are Mi ≡ λF :2.F (λx1.F (λx2.xi)). Show that Φ acts
injectively (modulo βη) on these.]
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3F.11. Give example of F,G∈Λ[C4] such that Fh2 =βη Gh2, but F 6=βη G, where
h2 ≡ λz:0.Φ(λg:1.g(gz)).

3F.12. Suppose ( ~A→0), ( ~B→0)∈TTi, with i > 2. Then

(i) ( ~A→ ~B→0)∈TTi.

(ii) ( ~A→ ~B→0) ∼h
~A→0.

3F.13. (i) Suppose that class(A) ≥ 0. Then

A ≤βη B ⇒ (C→A) ≤βη (C→B).

A ∼βη B ⇒ (C→A) ∼βη (C→B).

[Hint. Distinguish cases for the class of A.]
(ii) Show that in (i) the condition on A cannot be dropped.

[Hint. Take A ≡ 12→0, B ≡ C ≡ 0.]
3F.14. Show that the relations ≤h and ≤h+ are transitive.
3F.15. (Joly [2001a], Lemma 2, p. 981, based on an idea of Dana Scott) Show that any

type A is reducible to

12→2→0 = (0→(0→0))→((0→0)→0)→0.

[Hint. We regard each closed term of type A as an untyped lambda term and then

we retype all the variables as type 0 replacing applications XY by fXY (,X •Y )

and abstractions λx.X by g(λx.X)(,λ•x.X) where f : 12, g : 2. Scott thinks of f
and g as a retract pair satisfying g ◦ f = I (of course in our context they are just
variables which we abstract at the end). The exercise is to define terms which
‘do the retyping’ and insert the f and g, and to prove that they work. For A∈TT
define terms UA : A→0 and VA : 0→A as follows.

U0 , λx:0.x; V0 , λx:0.x;

UA→B , λu.g(λx:0.UB(u(VAx)));

VA→B , λvλy.VB(fv(UAy)).

Let A = A1→· · ·→Aa→0, Ai = Ai1→· · ·Airi→0 and write for a closed M : A

M = λy1 · · · ya.yi(M1y1 · · · ya) · · · (Mriy1 · · · ya),
with the Mi closed (this is the “Φ-nf” if the Mi are written similarly). Then

UAM ։ λ•~x.xi(UB1(M1~x)) • • • (UBn(Mn~x)),

where Bj = A1→· · ·→Aa→Aij , for 1 ≤ j ≤ n, is the type of Mj . Show for all
closed M,N by induction on the complexity of M that

UAM =βη UAN ⇒ M =βη N.

Conclude that A ≤βη 12→2→0 via Φ ≡ λbfg.UAb.]
3F.16. In this exercise the combinatorics of the argument needed in the proof of 3D.6

is analyzed. Let (λF :2.M) : 3. Define M+ to be the long βη nf of M [F : = H],
where

H = (λh:1.f(h(g(hz))))∈Λ{f,g:1,z:0}
→ (2).

Write cutg→z(P ) = P [g: = Kz].
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(i) Show by induction on M that if g(P ) ⊆ M+ is maximal (i.e. g(P ) is not a
proper subterm of a g(P ′) ⊆ M+), then cutg→z(P ) is a proper subterm of
cutg→z(M

+).
(ii) Let M ≡ F (λx:0.N). Then we know

M+ =βη f(N
+[x: = g(N+[x: = z])]).

Show that if g(P ) ⊆M+ is maximal and

length(cutg→z(P )) + 1 = length(cutg→z(M
+)),

then g(P ) ≡ g(N+[x: = z]) and is substituted for an occurrence of x in N+.
(iii) Show that the occurrences of g(P ) in M+ that are maximal and satisfy

length(cutg→z(P ))+1 = length(cutg→z(M
+)) are exactly those that were

substituted for the occurrences of x in N+.
(iv) Show that (up to =βη) M can be reconstructed from M+.

3F.17. Show directly that

2→12→0 ≤βη 12→12→0→0,

via Φ ≡ λM :2→12→0λfg:1λb : 12 λx:0.M(λh.f(h(g(hx))))b.
Finish the alternative proof that ⊤ = 12→0→0 satisfies ∀A∈TT(λ0

→).A ≤βη ⊤,
by showing in the style of the proof of Proposition 3D.7 the easy

12→12→0→0 ≤βη 12→0→0.

3F.18. Show directly that (without the reducibility theorem)

3→0→0 ≤βη 12→0→0 = ⊤.
3F.19. Show directly the following.

(i) 13→12→0 ≤βη ⊤.
(ii) For any type A of rank ≤ 2 one has A ≤βη ⊤.

3F.20. Show that all elements g ∈M2(0→0) satisfy g2 = g4. Conclude that T 6→֒ M2.
3F.21. Let D have enough constants. Show that the class of D is not

min{i | ∀D.[D represented in D ⇒ D ≤βη ∇(Ci)]}.
[Hint. Consider D = {c0,d0, e0}.]

3F.22. A modelM is called finite iffM(A) is finite for all types A. Find out which of
the five canonical termmodels is finite.

3F.23. LetM =Mmin.
(i) Determine inM(1→0→0) which of the three Church’s numerals c0, c10 and

c100 are equal and which not.
(ii) Determine the elements inM(12→0→0).

3F.24. Let M be a model and let |M0| ≤ κ. By Example 3C.24 there exists a partial
surjective homomorphism h :Mκ #M.
(i) Show that h−1(M) ⊆Mκ is closed under λ-definability. [Hint. Use Example

3C.27.]
(ii) Show that as in Example 3C.28 one has h−1(M)E = h−1(M).
(iii) Show that the Gandy Hull h−1(M)/E is isomorphic toM.
(iv) For the 5 canonical modelsM construct h−1(M) directly without reference

toM.
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(v) (Plotkin) Do the same as (iii) for the free open term model.
3F.25. Let D = {F 2, c01, · · · , c0n}.

(i) Give a characterization of the elements of Λø→[D](1).
(ii) For f, g ∈Λø→[D](1) show that f 6=βη g ⇒ f 6≈D g by applying both f, g to

F f or F g.
3F.26. Prove the following.

12→0→0 ≤βη ((12→0)→0)→0→0, via

λmλF :((12→0)→0)λx:0.F (λh:12.mhx) or via

λmλF :((12→0)→0)λx:0.m(λpq:0.F (λh:12.hpq))x.

12→0→0 ≤βη (1→1→0)→0→0

via λmHx.m(λab.H(Ka)(Kb))x.

3F.27. Sow that TT2 = {(1p → 0)→ 0q → 0 | p · q > 0}.
3F.28. In this Exercises we show that A ∼βη B & A ∼h+ B, for all A,B ∈TT2.

(i) First we establish for p ≥ 1

1→0→0∼βη 1→0p→0 & 1→0→0 ∼h+ 1→0p→0.

(a) Show 1→0→0 ≤h 1→0p→0. Therefore

1→0→0 ≤βη 1→0p→0 & 1→0→0 ≤h+ 1→0p→0.

(b) Show 1→0p→0 ≤h+ 1→0→0. [Hint. Using inhabitation machines one
sees that the long normal forms of terms in Λø→(1→0p→0) are of the
form Ln

i ≡ λf :1λx1 · · ·xp:0.fnxi, with n ≥ 0 and 1 ≤ i ≤ p. Define
Φi : (1→0p→0)→(1→0→0), with i = 1, 2, as follows.

Φ1L, λf :1λx:0.Lfx∼p;

Φ2L, λf :1λx:0.LI(f1x) · · · (fpx).
Then Φ1L

n
i =βη cn and Φ2L

n
i =βη ci. Hence for M,N ∈Λø→(1→0q→0)

M 6=βη N ⇒ Φ1M 6=βη Φ1N or Φ2M 6=βη Φ2N.]

(c) Conclude that also 1→0p→0 ≤βη 1→0→0, by taking as reducing term

Φ ≡ λmfx.P2(Φ1m)(Φ2m),

where P2 λ-defines a polynomial injection p2 : N2→N.
(ii) Now we establish for p ≥ 1, q ≥ 0 that

1→0→0∼βη (1p→0)→0q→0 & 1→0→0 ∼h+ 1p→0q→0.

(a) Show 1→0→0 ≤h (1p→0)→0q→0 using

Φ ≡ λmFx1 · · ·xq.m(λz.F (λy1 · · · yp.z)).
(b) Show (1p→0)→0q→0 ≤h+ 1→0→0. [Hint. For L∈Λø→((1p→0)→0q→0)

its lnf is of one of the following forms.

Ln,k,r = λF :(1p→0)λy1 · · · yq:0.F (λ~z1. · · ·F (λ~zn.zkr)..)
Mn,s = λF :(1p→0)λy1 · · · yq:0.F (λ~z1. · · ·F (λ~zn.ys)..),
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where ~zk = zk1 · · · zkp, 1 ≤ k ≤ n, 1 ≤ r ≤ p, and 1 ≤ s ≤ q, in
case q > 0 (otherwise the Mn,s does not exist). Define three terms
O1, O2, O3 ∈Λø→(1→0→1p→0) as follows.

O1 , λfxg.g(f1x) · · · (fpx)
O2 , λfxg.f(gx∼p)

O3 , λfxg.f(g(f(gx∼p))∼p).

Define terms Φi ∈Λø→(((1p→0)→0q→0)→1→0→0) for 1 ≤ i ≤ 3 by

Φ1L , λfx.L(O1fx)(f
p+1x) · · · (fp+qx);

ΦiL , λfx.L(Oifx)x
∼q, for i∈{2, 3}.

Verify that
Φ1L

n,k,r = cr
Φ1M

n,s = cp+s

Φ2L
n,k,r = cn

Φ2M
n,s = cn

Φ3L
n,k,r = c2n+1−k

Φ3M
n,s = cn.

Therefore ifM 6=βη N are terms in Λø→(1p→0q→0), then for at least one
i∈{1, 2, 3} one has Φi(M) 6=βη Φi(N).]

(c) Show 1p→0q→0 ≤βη 1→0→0, using a polynomial injection p3 : N3→N.
3F.29. Show that for all A,B /∈ TT1 ∪ TT2 one has A ∼βη B ⇒ A ∼h B.
3F.30. Let A be an inhabited small type of rank > 3. Show that

3→0→0 ≤m A.

[Hint. For small B of rank ≥ 2 one has B ≡ B1→· · ·Bb→0 with Bi ≡ Bi1→0 for
all i and rank(Bi01) = rank(B)− 2 for some i0. Define for such B the term

XB ∈Λø[F 2](B),

where F 2 is a variable of type 2.

XB , λx1 · · ·xb.F 2xi0 , if rank(B) = 2;

, λx1 · · ·xb.F 2(λy:0.xi0(λy1 · · · yk.y)), if rank(B) = 3 and

where Bi0 having

rank 1 is 0k→0;

, λx1 · · ·xb.xi0XBi01 , if rank(B) > 3.

(Here XBi01 is well-defined since Bi01 is also small.) As A is inhabited, take
λx1 · · ·xb.N ∈Λø(A). Define Ψ : (3→0→0)→A by

Ψ(M), λx1 · · ·xb.M(λF 2.xiX
Ai1)N,

where i is such that Ai1 has rank ≥ 2. Show that Ψ works.]
3F.31. Consider the following equations.

1. λf :1λx:0.fx = λf :1λx:0.f(fx);
2. λf, g:1λx:0.f(g(g(fx))) = λf, g:1λx:0.f(g(f(gx)));
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3. λF :3λx:0.F (λf1:1.f1(F (λf2:1.f2(f1x)))) =
λF :3λx:0.F (λf1:1.f1(F (λf2:1.f2(f2x)))).

4. λh:12λx:0.h(hx(hxx))(hxx) = λh:12λx:0.h(hxx)(h(hxx)x).
(i) Show that 1 holds inMC1 , but not inMC2 .
(ii) Show that 2 holds inMC2 , but not inMC3 .
(iii) Show that 3 holds inMC3 , but not inMC4 .

[Hint. Use Lemmas 7a and 11 in Dekkers [1988].]
(iv) Show that 4 holds inMC4 , but not inMC5 .

3F.32. Construct six pure closed terms of the same type in order to show that the fi-
ve canonical theories are maximally different. I.e. we want terms M1, · · · ,M6

such that in Th(MC5) the M1, · · · ,M6 are mutually different; also M6 = M5 in
Th(MC4), but different fromM1, · · · ,M4; alsoM5 =M4 in Th(MC3), but different
from M1, · · · ,M3; also M4 = M3 in Th(MC2), but different from M1,M2; also
M3 = M2 in Th(MC1), but different from M1; finally M2 = M1 in Th(MC0).
[Hint. Use the previous exercise and a polynomially defined pairing operator.]

3F.33. Let M be a typed lambda model. Let S be the logical relation determined by
S0 = ∅. Show that S∗

0 6= ∅.
3F.34. We work with λCh

→ over TT0. Consider the full type structureM1 =MN over the
natural numbers, the open term modelM2 =M(βη), and the closed term model
M3 =Mø[{h1, c0}](βη). For these models consider three times the Gandy-Hull

G1 = G{S:1,0:0}(M1)

G2 = G{[f :1],[x:0]}(M2)

G3 = G{[h:1],[c:0]}(M3),

where S is the successor function and 0∈N, f, x are variables and h, c are con-
stants, of type 1, 0 respectively. Prove

G1 ∼= G2 ∼= G3.
[Hint. Consider the logical relation R onM3 ×M2 ×M1 determined by

R0 = {〈[hk(c)], [fk(x)], k〉 | k∈N}.
Apply the Fundamental Theorem for logical relations.]

3F.35. A function f : N → N is slantwise λ-definable, see also Fortune, Leivant, and
O’Donnel [1983] and Leivant [1990] if there is a substitution operator + for types
and a closed term F ∈Λø(N+ → N) such that

Fck
+ =βη cf(k).

This can be generalized to functions of k-arguments, allowing for each argument
a different substitution operator.
(i) Show that f(x, y) = xy is slantwise λ-definable.
(ii) Show that the predecessor function is slantwise λ-definable.
(iii) Show that subtraction is not slantwise λ-definable. [Hint. Suppose towards

a contradiction that a term m : Natτ → Natρ → Natσ defines subtraction.
Use the Finite Completeness Theorem, Proposition 3D.33, for A = Natσ and
M = c0.]
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3F.36. (Finite generation, Joly [2002]) Let A∈TT. Then A is said to be finitely generated
if there exist types A1, · · · , At and terms M1 : A1, · · · , At : Mt such that for any
M : A, M is βη convertible to an applicative combination of M1, · · · ,Mt.
Example. Nat = 1→0→0 is finitely generated by c0 ≡ (λfx.x) : Nat and S ≡

(λnfx.f(fx)) : (Nat→Nat).
A slantwise enumerates a type B if there exists a type substitution @ and

F : @A→B such that for each N : B there exists M : A such that F@M =βη N
(F is surjective).
A type A is said to be poor if there is a finite sequence of variables ~x, such that

every M ∈Λø→(A) in βη-nf has FV(M) ⊆ ~x. Otherwise A is said to be rich .
Example. Let A = (1→0)→0→0 is poor. A typical βη-nf of type A has the

shape λFλx(F (λx(· · · (F (λy(F (λy · · ·x · · · )))..))). One allows the term to violate
the variable convention (that asks different occurrences of bound variables to be
different). The monster type 3→1 is rich.
The goal of this exercise is to prove that the following are equivalent.
1. A slantwise enumerates the monster type M;
2. The lambda definability problem for A is undecidable;
3. A is not finitely generated;
4. A is rich.

However, we will not ask the reader to prove (4) ⇒ (1) since this involves more
knowledge of and practice with slantwise enumerations than one can get from
this book. For that proof we refer the reader to Joly’s paper. We have already
shown that the lambda definability problem for the monster M is undecidable. In
addition, we make the following steps.
(i) Show A is rich iff A has rank >3 or A is large of rank 3 (for A inhabited;

especially for ⇒). Use this to show

(2) ⇒ (3) and (3) ⇒ (4).

(ii) (Alternative to show (3) ⇒ (4).) Suppose that every closed term of type A
beta eta converts to a special one built up from a fixed finite set of variables.
Show that it suffices to bound the length of the lambda prefix of any subterm
of such a special term in order to conclude finite generation. Suppose that
we consider only terms X built up only from the variables v1:A1, · · · , vm:Am

both free and bound .We shall transform X using a fixed set of new variables.
First we assume the set of Ai is closed under subtype. (a) Show that we can
assume that X is fully expanded. For example, if X has the form

λx1 · · ·xt.(λx.X0)X1 · · ·Xs

then (λx.X0)X1 · · ·Xs has one of the Ai as a type (just normalize and con-
sider the type of the head variable). Thus we can eta expand

λx1 · · ·xt.(λx.X0)X1 · · ·Xs

and repeat recursively. We need only double the set of variables to do this.
We do this keeping the same notation. (b) Thus given

X = λx1 · · ·xt.(λx.X0)X1 · · ·Xs
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we have X0 = λy1 · · · yr.Y , where Y : 0. Now if r>m, each multiple oc-
currence of vi in the prefix λy1 · · · yr is dummy and those that occur in the
initial segment λy1 · · · ys can be removed with the corresponding Xj . The
remaining variables will be labelled z1, · · · , zk. The remaining Xj will be
labelled Z1, · · · , Zl. Note that r − s+ t < m+ 1. Thus

X = λx1 · · ·xt.(λz1 · · · zkY )Z1 · · ·Zl,

where k < 2m + 1. We can now repeat this analysis recursively on Y , and
Z1, · · · , Zl observing that the types of these terms must be among the Ai.
We have bounded the length of a prefix.

(iii) As to (1) ⇒ (2). We have already shown that the lambda definability
problem for the monster M is undecidable. Suppose (1) and ¬(2) towards a
contradiction. Fix a type B and let B(n) be the cardinality of B in P (n).
Show that for any closed terms M,N : C

P (B(n)) |=M = N ⇒ P (n) |= [0 := B]M = [0 := B]N.

Conclude from this that lambda definability for M is decidable, which is not
the case.



CHAPTER 4

DEFINABILITY, UNIFICATION AND MATCHING

4A. Undecidability of lambda definability

The finite standard models

Recall that the full type structure over a set X, notation MX , is defined in Definition
2D.17 as follows.

X(0) =X,

X(A→B) =X(B)X(A);

MX = {X(A)}A∈TT.

Note that if X is finite then all the X(A) are finite. In that case we can represent
each element ofMX by a finite piece of data and hence (through Gödel numbering) by
a natural number. For instance for X = {0, 1} we can represent the four elements of
X(0→0) as follows. If 0 is followed by 0 to the right this means that 0 is mapped onto
0, etcetera.

0 0
1 0

0 1
1 1

0 0
1 1

0 1
1 0

Any element of the model can be expressed in a similar way, for instance the following
table represents an element of X((0→ 0)→ 0).

0 0
1 0

0

0 1
1 1

0

0 0
1 1

0

0 1
1 0

1

We know that I ≡ λx.x is the only closed βη-nf of type 0→ 0. As [[I]] = 1X , the identity
on X is the only function of X(0→ 0) that is denoted by a closed term.

4A.1. Definition. Let M = MX be a type structure over a finite set X and let
d∈M(A). Then d is called λ-definable if d = [[M ]]M, for some M ∈Λø(A).
The main result in this section is the undecidability of λ-definability inMX , for X of

cardinality >6. This means that there is no algorithm deciding whether a table describes
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a λ-definable element in this model. This result is due to Loader [2001b], and was already
proved by him in 1993.
The method of showing that decision problems are undecidable proceeds via reducing

them to well-known undecidable problems (and eventually to the undecidable Halting
problem).

4A.2. Definition. (i) A decision problem is a subset P ⊆ N. This P is called decidable
if its characteristic function KP : N → {0, 1} is computable. An instance of a problem
is the question “n∈P?”. Often problems are subsets of syntactic objects, like terms or
descriptions of automata, that are considered as subsets of N via some coding.

(ii) Let P,Q ⊆ N be problems. Then P is (many-one) reducible to problem Q,
notation P ≤m Q, if there is a computable function f : N→ N such that

n∈P ⇔ f(n)∈Q.
(iii) More generally, a problem P is Turing reducible to a problemQ, notation P ≤T Q,

if the characteristic function KP is computable in KQ, see e.g. Rogers Jr. [1967].

The following is well-known.

4A.3. Proposition. Let P,Q be problems.

(i) If P ≤m Q, then P ≤T Q.

(ii) If P ≤T Q, then the undecidability of P implies that of Q.

Proof. (i) Suppose that P ≤m Q. Then there is a computable function f : N→N such
that ∀n∈N.[n∈P ⇔ f(n)∈Q]. Therefore KP (n) = KQ(f(n)). Hence P ≤T Q.

(ii) Suppose that P ≤T Q and that Q is decidable, in order to show that P is
decidable. Then KQ is computable and so is KP , as it is computable in KQ.

The proof of Loader’s result proceeds by reducing the two-letter word rewriting prob-
lem, which is well-known to be undecidable, to the λ-definability problem in MX . By
Proposition 4A.3 the undecidability of the λ-definability follows.

4A.4. Definition (Word rewriting problem). Let Σ = {A,B}, a two letter alphabet.

(i) A word (over Σ) is a finite sequence of letters w1 · · ·wn with wi ∈Σ. The set of
words over Σ is denoted by Σ∗.

(ii) If w = w1 · · ·wn, then lth(w) = n is called the length of w. If lth(w) = 0, then
w is called the empty word and is denoted by ǫ.

(iii) A rewrite rule is a pair of non empty words v, w denoted as v →֒ w.

(iv) Given a word u and a finite set R = {R1, · · · , Rr} of rewrite rules Ri = vi →֒ wi.
Then a derivation from u of a word s is a finite sequence of words starting by u finishing
by s and such that each word is obtained from the previous by replacing a subword vi
by wi for some rule vi →֒ wi ∈R.

(v) A word s is said to be R-derivable from u, notation u ⊢R s, if it has a derivation.

4A.5. Example. Consider the word AB and the rule AB →֒ AABB. Then AB ⊢
AAABBB, but AB 6⊢ AAB.

We will need the following well-known result, see e.g. Post [1947].

4A.6. Theorem. There is a word u0 ∈Σ∗ and a finite set of rewrite rules R such that
{u∈Σ∗ | u0 ⊢R u} is undecidable.
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4A.7. Definition. Given the alphabet Σ = {A,B}, define the set

X = XΣ , {A,B, ∗, L,R, Y,N}.
The objects L and R are suggested to be read left and right and Y and N yes and no.
In 4A.8-4A.21 we writeM for the full type structureMX built over the set X.

4A.8. Definition. [Word encoding] Let n > 0 and 1n = 0n→0 andMN∼n ≡MN · · ·N ,
with n times the same term N . Let w = w1 · · ·wn be a word of length n.

(i) The word w is encoded as the object w∈M(1n) defined as follows.

w(∗∼(i−1), wi, ∗∼(n−i)) , Y ;

w∗(∼(i−1), L,R, ∗∼(n−i−1)) , Y ;

w(x1, · · · , xn) , N, otherwise.

(ii) The word w is weakly encoded by an object h∈M(1n) if

h(∗∼(i−1), wi, ∗∼(n−i)) = Y ;

h(∗∼(i−1), L,R, ∗∼(n−i−1)) = Y.

4A.9. Definition. (Encoding of a rule) In order to define the encoding of a rule we use
the notation (a1 · · · ak 7→ Y ) to denote the element h∈M(1k) defined by

ha1 · · · ak , Y ;

hx1 · · ·xk , N, otherwise.

Now a rule v →֒ w where lth(v) = m and lth(w) = n is encoded as the object
v →֒ w∈M(1m→1n) defined as follows.

v →֒ w(v) , w;

v →֒ w(∗∼m 7→ Y ) , (∗∼n 7→ Y );

v →֒ w(R∗∼(m−1) 7→ Y ) , (R∗∼(n−1) 7→ Y );

v →֒ w(∗∼(m−1)L 7→ Y ) , (∗∼(n−1)L 7→ Y );

v →֒ w(h) , λλx1 · · ·xn.N, otherwise.

As usual we identify a term M ∈Λ(A) with its denotation [[M ]]∈X(A).

4A.10. Lemma. Let s, u be two words over Σ and let v →֒ w be a rule. Let the lengths
of the words s, u, v, w be p, q,m, n, respectively. Then svu ⊢ swu and

swu~s ~w ~u = (v →֒ w (λλ~v.svu~s~v ~u ))~w, (1)

where ~s, ~u,~v, ~w are sequences of elements in X with lengths p, q,m, n, respectively.

Proof. The RHS of (1) is obviously either Y or N . Now RHS= Y

iff one of the following holds

• λλ~v.svu~s~v ~u = v and ~w = ∗∼(i−1)wi∗∼(n−i)

• λλ~v.svu~s~v ~u = v and ~w = ∗∼(i−1)LR∗∼(n−i−1)

• λλ~v.svu~s~v ~u = (∗∼m 7→ Y ) and ~w = ∗∼n

• λλ~v.svu~s~v ~u = (R∗∼(m−1) 7→ Y ) and ~w = R∗∼(n−1)

• λλ~v.svu~s~v ~u = (∗∼(m−1)L 7→ Y ) and ~w = ∗∼(n−1)L

iff one of the following holds
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• ~s = ∗∼p, ~u = ∗∼q and ~w = ∗∼(i−1)wi∗∼(n−i)

• ~s = ∗∼p, ~u = ∗∼q and ~w = ∗∼(i−1)LR∗∼(n−i−1)

• ~s = ∗∼(i−1)si∗∼(p−i), ~u = ∗∼q and ~w = ∗∼n

• ~s = ∗∼(i−1)LR∗∼(p−i−1), ~u = ∗∼q and ~w = ∗∼n

• ~s = ∗∼p, ~u = ∗∼(i−1)ui∗∼(q−i) and ~w = ∗∼n

• ~s = ∗∼p, ~u = ∗∼(i−1)LR∗∼(q−i−1) and ~w = ∗∼n

• ~s = ∗∼p, ~u = R∗∼(q−1) and and ~w = ∗∼(n−1)L
• ~s = ∗∼(p−1)L, ~u = ∗∼q and ~w = R∗∼(n−1)

iff one of the following holds

• ~s ~w ~u = ∗∼(i−1)ai∗∼(p+n+q−i) and ai is the i-th letter of swu
• ~s ~w ~u = ∗ · · · ∗ LR ∗ · · · ∗

iff swu~s ~w ~u = Y .

4A.11. Proposition. Let R = {R1, · · · , Rr} be a set of rules. Then

u ⊢R s ⇒ ∃F ∈Λø s = Fu R1 · · ·Rr.

In other words, (the code of) a word s that can be produced from u and some rules is
definable from the (codes) of u and the rules.

Proof. By induction on the length of the derivation of s, using the previous lemma.

We now want to prove the converse of this result. We shall prove a stronger result,
namely that if a word has a definable weak encoding then it is derivable.

4A.12. Convention. For the rest of this subsection we consider a fixed wordW and set
of rewrite rules R = {R1, · · · , Rk} with Ri = Vi →֒Wi. Moreover we let w, r1, · · · , rk be
variables of the types of W,R1, · · · , Rk respectively. Finally ρ is a valuation such that
ρ(w) =W , ρ(ri) = Ri and ρ(x

0) = ∗ for all variables of type 0.

The first lemma classifies the terms M in lnf that denote a weak encoding of a word.

4A.13. Lemma. Let M be a long normal form with FV(M) ⊆ {w, r1, · · · ,rk}. Suppose
[[M ]]ρ = V , for some word V ∈Σ∗. Then M has one of the two following forms

M ≡ λ~x.w~x1,
M ≡ λ~x.ri(λ~y.N)~x1,

where ~x, ~x1, ~y:0 are variables and the ~x1 are distinct elements of the ~x.

Proof. Since [[M ]]ρ is a weak encoding for V , the term M is of type 1n and hence has
a long normal form M = λ~x.P , with P of type 0. The head variable of P is either w,
some ri or a bound variable xi. It cannot be a bound variable, because then the term
M would have the form

M = λ~x.xi,

which does not denote a weak word encoding.
If the head variable of P is w then

M = λ~x.w ~P .

The terms ~P must all be among the ~x. This is so because otherwise some Pj would have
one of the w,~r as head variable; for all valuations this term Pj would denote Y or N ,

the term w~P would then denote N and consequently M would not denote a weak word
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encoding. Moreover these variables must be distinct, as otherwise M would not denote
a weak word encoding.
If the head variable of M is some ri then

M = λ~x.ri(λ~y.N)~P .

By the same reasoning as before it follows that the terms ~P must all be among ~x and
different.

In the next four lemmas, we focus on the terms of the form

M = λ~x.ri(λ~y.N)~x1.

We prove that if such a term denotes a weak word encoding, then

• the variables ~x1 do not occur in λ~y.N ,
• [[λ~y.N ]]ρ = vi.
• and none of the variables ~x1 is the variable xn.

4A.14. Lemma. Let M with FV(M) ⊆ {w, r1, · · · ,rk, x1, · · · ,xp}, with ~x:0 be a lnf of type
0 that is not a variable. If x1 ∈FV(M) and there is a valuation ϕ such that ϕ(x1) = A
or ϕ(x1) = B and [[M ]]ϕ = Y , then ϕ(y) = ∗, for all other variables y:0 in FV(M).

Proof. By induction on the structure of M .
Case M ≡ wP1 · · ·Pn. Then the terms P1, · · · , Pn must all be variables. Otherwise,

some Pj would have as head variable one of w, r1, · · · ,rk, and [[Pj ]]ϕ would be Y or N .

Then [[M ]]ϕ would be N , quod non. The variable x1 is among these variables and if some
other variable free in this term were not associated to a ∗, it would not denote Y .

CaseM = ri(λ~w.Q)~P . As above, the terms ~P must all be variables. If some Pj is equal
to x1, then [[λ~w.Q]]ϕ is the word vi. So Q is not a variable and all the other variables in
~P denote ∗. Let l be the first letter of vi. We have [[λ~w.Q]]ϕl ∗ · · · ∗ = Y and hence

[[Q]]ϕ∪{〈w1,l〉,〈w2,∗〉,··· ,〈wm,∗〉} = Y.

By induction hypothesis it follows that ϕ∪{〈w1, l〉, 〈w2, ∗〉, · · · , 〈wm, ∗〉} takes the value
∗ on all free variables of Q, except for w1. Hence ϕ takes the value ∗ on all free variables
of λ~w.Q. Therefore ϕ takes the value ∗ on all free variables of M , except for x1.

If none of the ~P is x1, then x1 ∈FV(λ~w.Q). Since [[ri(λ~w.Q)~P ]]ϕ = Y , it follows that

[[λ~w.Q]]ϕ is not the constant function equal to N . Hence there are objects a1, · · · , am
such that [[λ~w.Q]]ϕ(a1) · · · (am) = Y . Therefore

[[Q]]ϕ∪{〈w1,a1〉,··· ,〈wm,am〉} = Y.

By the induction hypothesis ϕ ∪ {〈w1, a1〉, · · · , 〈wm, am〉} takes the value ∗ on all the
variables free in Q, except for x1. So ϕ takes the value ∗ on all the variables free in λ~wQ,
except for x1. Moreover a1 = · · · = am = ∗, and thus [[λ~w.Q]]ϕ ∗ · · · ∗ = Y . Therefore the

function [[λ~w.Q]]ϕ can only be the function mapping ∗ · · · ∗ to Y and the other values to

N . Hence [[ri(λ~w.Q)]]ϕ is the function mapping ∗ · · · ∗ to Y and the other values to N

and ϕ takes the value ∗ on ~P . Therefore ϕ takes the value ∗ on all free variables of M
except for x1.

4A.15. Lemma. If the term M = λ~x(ri(λ~wQ)~y) denotes a weak word encoding, then the
variables ~y do not occur free in λ~w.Q and [[λ~w.Q]]ϕ0

is the encoding of the word vi.
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Proof. Consider a variable yj . This variable, say, xh. Let l be the hth letter of the
word w′, we have

[[M ]] ∗∼(h−1) l∗∼(k−h) = Y

Let ϕ = ϕ0 ∪ {〈xh, l〉}. We have

ri([[λ~w.Q]]ϕ) ∗∼(j−1) l∗∼(m−j) = Y

Hence [[λ~w.Q]]ϕ is the encoding of the word vi. Let l′ be the first letter of this word,
we have

[[λ~w.Q]]ϕ(l
′) ∗ · · · ∗ = Y

and hence

[[Q]]ϕ∪{〈w1,l′〉,〈w2,∗〉,··· ,〈wm,∗〉} = Y

By Lemma 4A.14, ϕ ∪ {〈w1, l
′〉, 〈w2, ∗〉, · · · , 〈wm, ∗〉} takes the value ∗ on all variables

free in Q except w1. Hence yj is not free in Q nor in λ~w.Q.
At last [[λ~w.Q]]ϕ is the encoding of vi and yj does not occur in it. Thus [[λ~w.Q]]ϕ0

is
the encoding of vi.

4A.16. Lemma. Let M be a term of type 0 with FV(M) ⊆ {w, r1,..., rr, x1, · · · , xn} and
~x:0 that is not a variable. Then there is a variable x such that
either ϕ(z) = L ⇒ [[M ]]ϕ = N , for all valuations ϕ,

or ϕ(z)∈{A,B} ⇒ [[M ]]ϕ = N , for all valuations ϕ.

Proof. By induction on the structure of M .

Case M ≡ w~P . Then the terms ~P = t1, · · · ,tn must be variables. Take z = Pn. Then
ϕ(z) = L implies [[M ]]ϕ = N .

Case M ≡ ri(λ~w.Q)~P . By induction hypothesis, there is a variable z′ free in Q, such
that

∀ϕ [ϕ(z′) = L ⇒ [[M ]]ϕ = N ]

or

∀ϕ[[ϕ(z′) = A ∨ ϕ(z′) = B] ⇒ [[M ]]ϕ = N ].

If the variable z′ is not among w1, · · · , wn we take z = z′. Either for all valuations such
that ϕ(z) = L, [[λ~w.Q]]ϕ is the constant function equal to N and thus [[M ]]ϕ = N , or for

all valuations such that ϕ(z) = A or ϕ(z) = B, [[λ~w.Q]]ϕ is the constant function equal

to N and thus [[M ]]ϕ = N .

If the variable z′ = wj (j ≤ m−1), then for all valuations [[λ~w.Q]]ϕ is a function taking

the value N when applied to any sequence of arguments whose jth element is L or when
applied to any sequence of arguments whose jth element is A or B. For all valuations,
[[λ~w.Q]]ϕ is not the encoding of the word vi and hence [[ri(λ~w.Q)]]ϕ is either the function
mapping ∗ · · · ∗ to Y and other arguments to N , the function mapping R ∗ · · · ∗ to Y
and other arguments to N , the function mapping ∗ · · · ∗L to Y and other arguments to
N or the function mapping all arguments to N . We take z = Pn and for all valuations
such that ϕ(z) = A or ϕ(z) = B we have [[M ]]ϕ = N .

At last if z′ = wm, then for all valuations [[λ~w.Q]]ϕ is a function taking the value N

when applied to any sequence of arguments whose mth element is L or for all valuations
[[λ~w.Q]]ϕ is a function taking the value N when applied to any sequence of arguments
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whose mth element is A or B. In the first case, for all valuations, [[λ~w.Q]]ϕ is not the

function mapping ∗ · · · ∗L to Y and other arguments to N . Hence [[ri(λ~w.Q)]]ϕ is either
wi or the function mapping ∗ · · · ∗ to Y and other arguments to N the function mapping
R∗· · · ∗ to Y and other arguments to N or the function mapping all arguments to N . We
take z = Pn and for all valuations such that ϕ(z) = A or ϕ(z) = B we have [[M ]]ϕ = N .

In the second case, for all valuations, [[λ~w.Q]]ϕ is not the encoding of the word vi.

Hence [[ri(λ~w.Q)]]ϕ is either the function mapping ∗ · · · ∗ to Y and other arguments to
N the function mapping R ∗ · · · ∗ to Y and other arguments to N , the function mapping
∗ · · · ∗ L to Y and other arguments to N or the function mapping all arguments to N .
We take z = Pn and for all valuations such that ϕ(z) = L we have [[M ]]ϕ = N .

4A.17. Lemma. If the termM = λ~x.ri(λ~w.Q)~y denotes a weak word encoding, then none
of the variables ~y is the variable xn, where ~x = x1, · · · ,xn.
Proof. By the Lemma 4A.16, we know that there is a variable z such that either for
all valuations satisfying ϕ(z) = L we have

[[ri(λ~w.Q)~y]]ϕ = N,

or for all valuations satisfying ϕ(z) = A or ϕ(z) = B we have

[[ri(λ~w.Q)~y]]ϕ = N.

Since M denotes a weak word encoding, the only possibility is that z = xn and for all
valuations such that ϕ(xn) = L we have

[[ri(λ~w.Q)~y]]ϕ = N.

Now, if yj were equal to xn and yj+1 to some xh, then the object

[[ri(λ~w.Q)~y]]ϕ0∪{〈xn,L〉,〈xh,R〉}

would be equal to ri([[λ~w.Q]]ϕ0
) ∗ · · · ∗LR ∗ · · · ∗ and, as [[λ~w.Q]]ϕ0

is the encoding of the
word vi, also to Y . This is a contradiction.

We are now ready to conclude the proof.

4A.18. Proposition. If M is a lnf, with FV(M) ⊆ {w, r1, · · · ,rk}, that denotes a weak
word encoding w′, then w′ is derivable.

Proof. Case M = λ~x.w~y. Then, as M denotes a weak word encoding, it depends on
all its arguments and thus all the variables x1, · · · , xn are among ~y. Since the ~y are
distinct, ~y is a permutation of x1, · · · ,xn. As M denotes a weak word encoding, one has
[[M ]] ∗ · · · ∗ LR ∗ · · · ∗ = Y . Hence this permutation is the identity and

M = λ~x.(w~x).

The word w′ is the word w and hence it is derivable.
Case M = λ~x.ri(λ~w.Q)~y. We know that [[λ~w.Q]]ϕ0

is the encoding of the word vi
and thus [[ri(λ~w.Q)]]ϕ0

is the encoding of the word wi. Since M denotes a weak word

encoding, one has [[M ]] ∗ · · · ∗ LR ∗ · · · ∗ = Y . If some yj (j ≤ n − 1) is, say, xh then,

by Lemma 4A.17, h 6= k and thus [[M ]] ∗∼(h−1) LR∗∼(k−h−1) = Y and yi+1 = xh+1.
Hence ~y = xp+1, · · · , xp+l. Rename the variables x1, · · · ,xp as ~x′ and xp+l+1, · · · , xl as
~z = z1, · · · , zq. Then

M = λ~x′~y~z.ri(λ~w.Q)~y.
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Write w′ = u1wu2, where u1 has length p, w length l and u2 length q.
The variables ~y are not free in λ~w.Q, hence the term λ~x′ ~w~z.Q is closed. We verify

that it denotes a weak encoding of the word u1viu2.

• First clause.
– If l be the jth letter of u1. We have

[[λ~x′~y~z.ri(λ~w.Q)~y]] ∗∼(j−1) l∗∼(p−j+l+q) = Y.

Let ϕ = ϕ0 ∪{〈xj , l〉}. The function [[ri(λ~w.Q)]]ϕ maps ∗ · · · ∗ to Y . Hence, the

function [[λ~w.Q]]ϕ maps ∗ · · · ∗ to Y and other arguments to N . Hence

[[λ~x′ ~w~z.Q]] ∗∼(j−1) l∗∼(p−j+m+q) = Y.

– We know that [[λ~w.Q]]ϕ0
is the encoding of the word vi. Hence if l is the jth

letter of the word vi, then

[[λ~x′ ~w~z.Q]] ∗∼(p+j−1) l∗∼(l−j+q) = Y.

– In a way similar to the first case, we prove that if l is the jth letter of u2. We
have

[[λ~x′ ~w~z.Q]] ∗∼(p+m+j−1) l∗∼(q−j) = Y.

• Second clause.
– If j ≤ p− 1, we have

[[λ~x′~y~z.ri(λ~w.Q)~y]] ∗∼(j−1) LR∗∼(p−j−1+m+q) = Y.

Let ϕ be ϕ0 but xj to L and xj+1 to R. The function [[ri(λ~w.Q)]]ϕ maps ∗ · · · ∗
to Y . Hence, the function [[λ~w.Q]]ϕ maps ∗ · · · ∗ to Y and other arguments to
N and

[[λ~x′ ~w~z.Q]] ∗∼(j−1) LR∗∼(p−j−1+m+q) = Y.

– We have

[[λ~x′~y~z.(ri(λ~w.Q)~y)]] ∗∼(p−1) LR∗∼(l−1+q) = Y.

Let ϕ be ϕ0 but xp to L. The function [[ri(λ~w.Q)]]ϕ maps R∗ · · · ∗ to Y . Hence,

the function [[λ~w.Q]]ϕ maps R ∗ · · · ∗ to Y and other arguments to N and

[[λ~x′ ~w~z.Q]] ∗∼(p−1) LR∗∼(m−1+q) = Y.

– We know that [[λ~w.Q]]ϕ0
is the encoding of the word vi. Hence if j ≤ m − 1

then

[[λ~x′ ~w~z.Q]] ∗∼(p+j−1) LR∗∼(m−j−1+q) = Y.

– In a way similar to the second, we prove that

[[λ~x′ ~w~z.Q]] ∗∼(p+m−1) LR∗∼(q−1) = Y.

– In a way similar to the first, we prove that if j ≤ q − 1, we have

[[λ~x′ ~w~z.Q]] ∗∼(p+m+j−1) LR∗∼(q−j−1) = Y.
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Hence the term λ~x′ ~w~z.Q denotes a weak encoding of the word u1viu2. By induc-
tion hypothesis, the word u1viu2 is derivable and hence u1wiu2 is derivable.
At last we prove that w = wi, i.e. that w

′ = u1wiu2. We know that [[ri(λ~w.Q)]]ϕ0

is the encoding of the word wi. Hence

[[λ~x′~y~z.ri(λ~w.Q)~y]] ∗∼(p+j−1) l∗∼(l−j+q) = Y

iff l is the jth letter of the word wi.
Since [[λ~x′~y~z.ri(λ~w.Q)~y]] is a weak encoding of the word u1wu2, if l is the jth

letter of the word w, we have

[[λ~x′~y~z.ri(λ~w.Q)~y]] ∗∼(p+j−1) l∗∼(l−j+q) = Y

and l is the jth letter of the word wi. Hence w = wi and w
′ = u1wiu2 is derivable.

From Proposition 4A.11 and 4A.18, we conclude.

4A.19. Proposition. The word w′ is derivable iff there is a term whose free variables
are among w, r1, · · · ,rk that denotes the encoding of w′.

4A.20. Corollary. Let w and w′ be two words and v1 →֒ w1,..., vr →֒ wr be rewrite
rules. Let h be the encoding of w, h′ be the encoding of w′, r1 be the encoding of
v1 →֒ w1,..., and rk be the encoding of vr →֒ wr.
Then the word w′ is derivable from w with the rules v1 →֒ w1,..., vr →֒ wr iff there is

a definable function that maps h, r1, · · · ,rk to h′.

The following result was proved by Ralph Loader 1993 and published in Loader [2001b].

4A.21. Theorem (Loader). λ-definability is undecidable, i.e. there is no algorithm de-
ciding whether a table describes a λ-definable element of the model.

Proof. If there were a algorithm to decide if a function is definable or not, then a
generate and test algorithm would permit to decide if there is a definable function that
maps h, r1, · · · ,rk to h′ and hence if w′ is derivable from w with the rules v1 →֒ w1,...,
vr →֒ wr contradicting the undecidability of the word rewriting problem.

Joly has extended Loader’s result in two directions as follows. LetMn =M{0,··· ,n−1}.
Define for n∈N, A∈TT, d∈Mn(A)

D(n,A, d)⇐⇒△ d is λ-definable inMn.

Since for a fixed n0 and A0 the set Mn0(A0) is finite, it follows that D(n0, A0, d) as
predicate in d is decidable. One has the following.

4A.22. Proposition. Undecidability of λ-definability is monotonic in the following sense.

λλAd.D(n0, A, d) undecidable & n0 ≤ n1 ⇒ λλAd.D(n1, A, d) undecidable.

Proof. Use Exercise 3F.24(i).

Loader’s proof above shows in fact that λλAd.D(7, A, d) is undecidable. It was sharp-
ened in Loader [2001a] showing that λλAd.D(3, A, d) is undecidable. The ultimate sharp-
ening in this direction is proved in Joly [2005]: λλAd.D(2, A, d) is undecidable.
Going in a different direction one also has the following.

4A.23. Theorem (Joly [2005]). λλnd.D(n, 3→0→0, d) is undecidable.
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Loosely speaking one can say that λ-definability at the monster type M = 3→ 0→ 0 is
undecidable. Moreover, Joly also has characterized those types A that are undecidable
in this sense.

4A.24. Definition. A type A is called finitely generated if there are closed terms M1,
· · · ,Mn, not necessarily of type A such that every closed term of type A is an applicative
product of the M1, · · · ,Mn.

4A.25. Theorem (Joly [2002]). Let A∈TT. Then λλnd.D(n,A, d) is decidable iff the
closed terms of type A can be finitely generated.

For a sketch of the proof see Exercise 3F.36.

4A.26. Corollary. The monster type M = 3→0→0 is not finitely generated.

Proof. By Theorems 4A.25 and 4A.23.

4B. Undecidability of unification

The notion of (higher-order11) unification and matching problems were introduced by
Huet [1975]. In that paper it was proved that unification in general is undecidable.
Moreover the question was asked whether matching is (un)decidable.

4B.1. Definition. (i) Let M,N ∈Λø(A→B). A pure unification problem is of the form

∃X:A.MX = NX,

where one searches for anX ∈Λø(A) (and the equality is =βη). A is called the search-type
and B the output-type of the problem.

(ii) Let M ∈Λø(A→B), N ∈Λø(B). A pure matching problem is of the form

∃X:A.MX = N,

where one searches for an X ∈Λø(A). Again A,B are the search- and output types,
respectively.
(iii) Often we write for a unification or matching problem (when the types are known

from the context or are not relevant) simply

MX = NX

or

MX = N.

and speak about the unification (matching) problem with unknown X.

Of course matching problems are a particular case of unification problems: solving the
matching problem MX = N amounts to solving the unification problem

MX = (λx.N)X.

4B.2. Definition. The rank (order) of a unification or matching problem is rk(A)
(ord(A) respectively), where A is the search-type. Remember that ord(A) = rk(A) + 1.

11By contrast to the situation in 2C.11 the present form of unification is ‘higher-order’, because it
asks whether functions exist that satisfy certain equations.
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The rank of the output-type is less relevant. Basically one may assume that it is ⊤ =
12→0→0. Indeed, by the Reducibility Theorem 3D.8 one has Φ : B ≤βη ⊤, for some
closed term Φ. Then

MX = NX : B ⇔ (Φ ◦M)X = (Φ ◦N)X : ⊤.
One has rk(⊤) = 2. The unification and matching problems with an output type of rank
< 2 are decidable, see Exercise 4E.6.
The main results of this Section are that unification in general is undecidable from a low

level onward, Goldfarb [1981], and matching up to order 4 is decidable, Padovani [2000].
In Stirling [2009] it is shown that matching in general is decidable. The paper is too

recent and complex to be included here.
As a spin-off of the study of matching problems it will be shown that the maximal

theory is decidable.

4B.3. Example. The following are two examples of pure unification problems.

(i) ∃X:(1→0).λf :1.f(Xf) = X.
(ii) ∃X:(1→0→0).λfa.X(Xf)a = λfa.Xf(Xfa).

This is not in the format of the previous Definition, but we mean of course

(λx:(1→0)λf :1.f(xf))X = (λx:(1→0)λf :1.xf)X;

(λx : (1→0→0)λf :1λa:0.x(xf)a)X = (λx : (1→0→0)λf :1λa:0.xf(xfa))X.

The most understandable form is as follows (provided we remember the types)

(i) λf.f(Xf) = X;
(ii) X(Xf)a = Xf(Xfa).

The first problem has no solution, because there is no fixed point combinator in λ0
→.

The second one does (λfa.f(fa) and λfa.a), because n2 = 2n for n∈{2, 4}.
4B.4. Example. The following are two pure matching problems.

X(Xf)a = f10a X:1→0→0; f :1, a:0;
f(X(Xf)a) = f10a X:1→0→0; f :1, a:0.

The first problem is without a solution, because
√
10 /∈ N. The second with a solution

(X ≡ λfa.f3a), because 32 + 1 = 10.

Now the unification and matching problems will be generalized. First of all we will
consider more unknowns. Then more equations. Finally, in the general versions of

unification and matching problems one does not require that the ~M, ~N, ~X are closed but
they may contain a fixed finite number of constants (free variables). All these generalized
problems will be reducible to the pure case, but (only in the transition from non-pure
to pure problems) at the cost of possibly raising the rank (order) of the problem.

4B.5. Definition. (i) Let M,N be closed terms of the same type. A pure unification
problem with several unknowns

M ~X=βηN ~X (1)

searches for closed terms ~X of the right type satisfying (1). The rank of a problem with

several unknowns ~X is
max{rk(Ai) | 1 ≤ i ≤ n},
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where the Ai are the types of the Xi. The order is defined similarly.

(ii) A system of (pure) unification problems starts with termsM1, · · · ,Mn andN1, · · · ,Nn

such thatMi, Ni are of the same type for 1 ≤ i ≤ n. searching for closed terms ~X1, · · · , ~Xn

all occuring among ~X such that

M1
~X1 =βη N1

~X1

· · ·
Mn

~Xn =βη Nn
~Xn

The rank (order) of such a system of problems the maximum of the ranks (orders) of
the types of the unknowns.

(iii) In the general (non-pure) case it will also be allowed to have the M,N, ~X range
over ΛΓ rather than Λø. We call this a unification problem with constants from Γ. The
rank of a non-pure system of unknowns is defined as the maximum of the rank (orders)
of the types of the unknowns.

(iv) The same generalizations are made to the matching problems.

4B.6. Example. A pure system of matching problem in the unknowns P, P1, P2 is the
following. It states the existence of a pairing and is solvable depending on the types
involved, see Barendregt [1974].

P1(Pxy) = x

P2(Pxy) = y.

One could add a third equation (for surjectivity of the pairing)

P (P1z)(P2z) = z,

causing this system never to have solutions, see Barendregt [1974].

4B.7. Example. An example of a unification problem with constants from Γ = {a:1, b:1}
is the following. We search for unknowns W,X, Y, Z ∈ΛΓ(1) such that

X = Y ◦W ◦ Y
b ◦W =W ◦ b

W ◦W = b ◦W ◦ b
a ◦ Y = Y ◦ a
X ◦X = Z ◦ b ◦ b ◦ a ◦ a ◦ b ◦ b ◦ Z,

where f ◦ g = λx.f(gx)) for f, g:1, having as unique solution W = b, X = a ◦ b ◦ b ◦ a,
Y = Z = a. This example will be expanded in Exercise 4E.5.

4B.8. Proposition. All unification (matching) problems reduce to pure ones with just
one unknown and one equation. In fact we have the following.

(i) A problem of rank k with several unknowns can be reduced to a problem with one
unknown with rank rk(A) = max{k, 2}.

(ii) Systems of problems can be reduced to one problem, without altering the rank.
The rank of the output type will be max{rk(Bi), 2}, where Bi are the output types of the
respective problems in the system.
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(iii) Non-pure problems with constants from Γ can be reduced to pure problems. In
this process a problem of rank k becomes of rank

max{rk(Γ), k}.
Proof. We give the proof for unification.

(i) Following Notation 1D.23 we have

∃ ~X.M ~X = N ~X (1)
⇔ ∃X.(λx.M(x · 1) · · · (x · n))X = (λx.N(x · 1) · · · (x · n))X. (2)

Indeed, if the ~X work for (1), then X ≡ 〈 ~X〉 works for (2). Conversely, if X works for (2),

then ~X ≡ X ·1, · · · , X ·n work for (1). By Proposition 1D.22 we have A = A1×· · ·×An

is the type of X and rk(A) = max{rk(A1), · · · , rk(An), 2}.
(ii) Similarly for ~X1, · · · , ~Xn being subsequences of ~X one has

∃ ~X M1
~X1 = N1

~X1

· · ·
Mn

~Xn = Nn
~Xn

⇔ ∃ ~X (λ~x.〈M1~x1, · · · ,Mn~xn〉) ~X = (λ~x.〈N1~x1, · · · , Nn~xn〉) ~X.
(iii) Write a non-pure problem with M,N ∈ΛΓ(A→B), and dom(Γ) = {~y} as

∃X[~y]:A.M [~y]X[~y] = N [~y]X[~y].

This is equivalent to the pure problem

∃X:(
∧∧

Γ→A).(λx~y.M [~y](x~y))X = (λx~y.N [~y](x~y))X.

Although the ‘generalized’ unification and matching problems all can be reduced to the
pure case with one unknown and one equation, one usually should not do this if one
wants to get the right feel for the question.

Decidable case of unification

4B.9. Proposition. Unification with unknowns of type 1 and constants of types 0, 1 is
decidable.

Proof. The essential work to be done is the solvability of Markov’s problem by Makanin.
See Exercise 4E.5 for the connection and a reference.

In Statman [1981] it is shown that the set of (bit strings encoding) decidable unification
problems is itself polynomial time decidable

Undecidability of unification

The undecidability of unification was first proved by Huet. This was done before the
undecidability of Hilbert’s 10-th problem (Is it decidable whether an arbitrary Diophan-
tine equation over Z is solvable?) was established. Huet reduced Post’s correspondence
problem to the unification problem. The theorem by Matijasevič makes things more
easy.
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4B.10. Theorem (Matijasevič). (i) There are two polynomials p1, p2 over N (of degree
7 with 13 variables12) such that

D = {~n∈N | ∃~x∈N.p1(~n, ~x) = p2(~n, ~x)}
is undecidable.

(ii) There is a polynomial p(~x, ~y) over Z such that

D = {~n∈N | ∃~x∈Z.p(~n, ~x) = 0}
is undecidable. Therefore Hilbert’s 10-th problem is undecidable.

Proof. (i) This was done by coding arbitrary RE sets as Diophantine sets of the form
D. See Matiyasevič [1972], Davis [1973] or Matiyasevič [1993].

(ii) Take p = p1 − p2 with the p1, p2 from (i). Using the theorem of Lagrange

∀n∈N ∃a, b, c, d∈N.n = a2 + b2 + c2 + d2,

it follows that for n∈Z one has

n∈N ⇔ ∃a, b, c, d∈N.n = a2 + b2 + c2 + d2.

Finally write ∃x∈N.p(x, · · · ) = 0 as ∃a, b, c, d∈Z.p(a2 + b2 + c2 + d2, · · · ) = 0.

4B.11. Corollary. The solvability of pure unification problems of order 3 (rank 2) is
undecidable.

Proof. Take the two polynomials p1, p2 and D from (i) of the theorem. Find closed
termsMp1 ,Mp2 representing the polynomials, as in Corollary 1D.7. Let U~n = {Mp1 ~n ~x =

Mp2 ~n ~x}. Using that every X ∈Λø(Nat) is a numeral, Proposition 2A.16, it follows that
this unification problem is solvable iff ~n∈D.

The construction of Matijasevič is involved. The encoding of Post’s correspondence
problem by Huet is a more natural way to show the undecidability of unification. It has
as disadvantage that it needs to use unification at variable types. There is a way out.
In Davis, Robinson, and Putnam [1961] it is proved that every RE predicate is of the
form ∃~x∀y1<t1 · · · ∀yn<tn.p1 = p2. Using this result and higher types (NatA, for some
non-atomic A) one can get rid of the bounded quantifiers. The analogon of Proposition
2A.16 (X:Nat ⇒ X a numeral) does not hold but one can filter out the ‘numerals’ by
a unification (with f :A→A):

f ◦ (Xf) = (Xf) ◦ f.
This yields without Matijasevič’s theorem the undecidability of unification with the
unknown of a fixed type.

4B.12. Theorem. Unification of order 2 (rank 1) with constants is undecidable.

Proof. See Exercise 4E.4.

This implies that pure unification of order 3 is undecidable, something we already saw
in Corollary 4B.11. The interest in this result comes from the fact that unification over
order 2 variables plays a role in automated deduction and the undecidability of this
problem, being a subcase of a more general situation, is not implied by Corollary 4B.11.
Another proof of the undecidability unification of order 2 with constants, not using

Matijasevič’s theorem, is in Schubert [1998].

12This can be pushed to polynomials of degree 4 and 58 variables or of degree 1.6∗1045 and 9 variables,
see Jones [1982].
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4C. Decidability of matching of rank 3

The main result will be that matching of rank 3 (which is the same as order 4) is
decidable and is due to Padovani [2000]. On the other hand Loader [2003] has proved
that general matching modulo =β is undecidable. The decidability of general matching
modulo =βη, which is the intended case, has been established in Stirling [2009], but will
not be included here.
The structure of this section is as follows. First the notion of interpolation problem is

introduced. Then by using tree automata it is shown that these problems restricted to
rank 3 are decidable. Then at rank 3 the problem of matching is reduced to interpolation
and hence solvable. At rank 1 matching with several unknowns is already NP-complete.

4C.1. Proposition. (i) Matching with unknowns of rank 1 is NP-complete.
(ii) Pure matching of rank 2 is NP-complete.

Proof. (i) Consider A = 02→0 = Bool0. Using Theorem 2A.13, Proposition 1C.3
and Example 1C.8 it is easy to show that if M ∈Λø(A), then M ∈ βη{true, false} By
Proposition 1D.2 a Boolean function p(X1, · · · ,Xn) in the variables X1, · · · ,Xn is λ-
definable by a term Mp ∈Λø(An→A). Therefore

p is satisfiable ⇔ MpX1 · · ·Xn = true is solvable.

This is a matching problem of rank 1.
(ii) By (i) and Proposition 4B.8.

Following an idea of Statman [1982], the decidability of the matching problem can be
reduced to the existence for every term N of a logical relation ‖N on terms λ0

→ such
that

• ‖N is an equivalence relation;
• for all types A the quotient TA/ ‖N is finite;
• there is an algorithm that enumerates TA/ ‖N , i.e. that takes in argument a type
A and returns a finite sequence of terms representing all the classes.

Indeed, if such a relation exists, then a simple generate and test algorithm permits to
solve the higher-order matching problem.
Similarly the decidability of the matching problem of rank n can be reduced to the

existence of a relation such that TA/ ‖N can be enumerated up to rank n.
The finite completeness theorem, Theorem 3D.33, yields the existence of a standard

model M such that the relation M |= M = N meets the two first requirements, but
Loader’s theorem shows that it does not meet the third.
Padovani has proposed another relation - the relative observational equivalence - that

is enumerable up to order 4. Like in the construction of the finite completeness theorem,
the relative observational equivalence relation identifies terms of type 0 that are βη-
equivalent and also all terms of type 0 that are not subterms of N . But this relation
disregards the result of the application of a term to a non definable element.
Padovani has proved that the enumerability of this relation up to rank n can be

reduced to the decidability of a variant of the matching problem of rank n: the dual
interpolation problem of rank n. Interpolation problems have been introduced in Dowek
[1994] as a first step toward decidability of third-order matching. The decidability of
the dual interpolation problem of order 4 has been also proved by Padovani. However,
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here we shall not present the original proof, but a simpler one proposed in Comon and
Jurski [1998].

Rank 3 interpolation problems

4C.2. Definition. (i) An interpolation equation is a particular matching problem

X ~M = N,

whereM1, · · · ,Mn and N are closed terms. That is, the unknown X occurs at the head.
A solution of such an equation is a term P such that

P ~M =βη N.

(ii) An interpolation problem is a conjunction of such equations with the same un-
known. A solution of such a problem is a term P that is a solution for all the equations
simultaneously.
(iii) A dual interpolation problem is a conjunction of equations and negated equations.

A solution of such a problem is a term solution of all the equations but solution of none
of the negated equations.

If a dual interpolation problem has a solution it has also a closed solution in lnf. Hence,
without loss of generality, we can restrict the search to such terms.
To prove the decidability of the rank 3 dual interpolation problem, we shall prove that

the solutions of an interpolation equation can be recognized by a finite tree automaton.
Then, the results will follow from the decidability of the non-emptiness of a set of terms
recognized by a finite tree automaton and the closure of recognizable sets of terms by
intersection and complement.

Relevant solution

In fact, it is not exactly quite so that the solutions of a rank 3 interpolation equation
can be recognized by a finite state automaton. Indeed, a solutions of an interpolation
equation may contain an arbitrary number of variables. For instance the equation

XK = a

where X is a variable of type (0→1→0)→0 has all the solutions

λf.fa(λz1.fa(λz2.fa · · · (λzn.fz1(K(fz2(K(fz3 · · · (fzn (K a))..)))))..)).
Moreover since each zi has z1, · · · , zi−1 in its scope it is not possible to rename these
bound variables so that the variables of all these solutions are in a fixed finite set.
Thus the language of the solution cannot be a priori limited. In this example, it is

clear however that there is another solution

λf.(f a 2)

where 2 is a new constant of type 0→0. Moreover all the solutions above can be retrieved
from this one by replacing the constant 2 by an appropriate term (allowing captures in
this replacement).
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4C.3. Definition. For each simple type A, we consider a constant 2A. Let M be a
term solution of an interpolation equation. A subterm occurrence of M of type A is
irrelevant if replacing it by the constant 2A yields a solution. A relevant solution is a
closed solution where all irrelevant subterm occurrences are the constant 2A.

Now we prove that relevant solutions of an interpolation equations can be recognized
by a finite tree automaton.

An example

Consider the problem

Xc1 = ha,

where X is a variable of type (1→0→0)→0, the Church numeral c1 ≡ λfx.fx and a and
h are constants of type 0 and 12. A relevant solution of this equation substitutes X by
the term λf.P where P is a relevant solution of the equation P [f := c1] = ha.
Let Qha be the set of the relevant solutions P of the equation P [f := c1] = ha. More

generally, let QW be the set of relevant solutions P of the equation P [f := c1] =W .
Notice that terms in QW can only contain the constants and the free variables that

occur in W , plus the variable f and the constants 2A. We can determine membership
of such a set (and in particular to Qha) by induction over the structure of a term.

• analysis of membership to Qha

A term is in Qha if it has either the form (hP1) and P1 is in Qa or the form
(fP1P2) and (P1[f := c1]P2[f := c1]) = ha. This means that there are terms
P ′
1 and P ′

2 such that P1[f := c1] = P ′
1, P2[f := c1] = P ′

2 and (P ′
1P

′
2) = ha, in

other words there are terms P ′
1 and P ′

2 such that P1 is in QP ′
1
, P2 is in QP ′

2
and

(P ′
1P

′
2) = ha. As (P ′

1P
′
2) = ha there are three possibilities for P ′

1 and P ′
2: P

′
1 = I

and P ′
2 = ha, P ′

1 = λz.hz and P ′
2 = a and P ′

1 = λz.ha and P ′
2 = 2o. Hence (fP1P2)

is in Qha if either P1 is in QI and P2 in Qha or P1 is in Qλz.hz and P2 in Qa or P1

is in Qλz.ha and P2 = 2o.
Hence, we have to analyze membership to Qa, QI, Qλz.hz, Qλz.ha.

• analysis of membership to Qa

A term is in Qa if it has either the form a or the form (fP1P2) and P1 is in QI

and P2 is in Qa or P1 in Qλz.a and P2 = 2o.
Hence, we have to analyze membership to Qλz.a,

• analysis of membership to QI

A term is in QI if it has the form λz.P1 and P1 is in Qz.
Hence, we have to analyze membership to Qz.

• analysis of membership to Qλz.hz

A term is in Qλz.hz if it has the form λz.P1 and P1 is in Qhz.
Hence, we have to analyze membership to Qhz.

• analysis of membership to Qλz.ha

A term is in Qλz.ha if it has the form λz.P1 and P1 is in Qha.
• analysis of membership to Qλz.a

A term is in Qλz.a if it has the form λz.P1 and P1 is in Qa.
• analysis of membership to Qz
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A term is in Qz if it has the form z or the form (fP1P2) and either P1 is in QI

and P2 is in Qz or P1 is in Qλz′.z and P2 = 2o.
Hence, we have to analyze membership to Qλz′.z.

• analysis of membership to Qhz

A term is in Qhz if it has the form (hP1) and P1 is in Qz or the form (fP1P2)
and either P1 is in QI and P2 is in Qhz or P1 is in Qλz.hz and P2 is in Qz or P1 is
in Qλz′.hz and P2 = 2o.
Hence, we have to analyze membership to Qλz′.hz.

• analysis of membership to Qλz′.z

A term is in Qλz′.z if it has the form λz′.P1 and P1 is in Qz.
• analysis of membership to Qλz′.hz

A term is in Qλz′.hz if it has the form λz′.P1 and P1 is in Qhz.

In this way we can build an automaton that recognizes in qW the terms of QW .

(hqa)→qha
(fqIqha)→qha

(fqλz.hzqa)→qha
(fqλz.haq2o)→qha

a→qa
(fqIqa)→qa

(fqλz.aq2o)→qa
λz.qz→qI

λz.qhz→qλz.hz
λz.qha→qλz.ha
λz.qa→qλz.a

z→qz
(fqIqz)→qz

(fqλz′.zq2o)→qz
(hqz)→qhz

(fqIqhz)→qhz
(fqλz.hzqz)→qhz
(fqλz′.hzq2o)→qhz
λz′.qz→qλz′.z
λz′.qhz→qλz′.hz

Then we need a rule that permits to recognize 2o in the state q2o

2o→q2o

and at last a rule that permits to recognize in q0 the relevant solution of the equation
(Xc1) = ha

λf.qha→q0
Notice that as a spin off we have proved that besides f all relevant solutions of this

problem can be expressed with two bound variables z and z′.
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The states of this automaton are labeled by the terms ha, a, I, λz.a, λz.hz, λz.ha, z,
hz, λz′.z and λz′.hz. All these terms have the form

N = λy1 · · · yp.P

where P is a pattern (see Definition 4C.4) of a subterm of ha and the free variables of
P are in the set {z, z′}.

Tree automata for relevant solutions

The proof given here is for λ0
→, but can easily be generalized to the full λA

→.

4C.4. Definition. Let M be a normal term and V be a set of k variables of type 0 not
occurring in M where k is the size of M . A pattern of M is a term P such that there
exists a substitution σ mapping the variables of V to terms of type 0 such that σP =M .

Consider an equation

X ~M = N

where ~M = M1, · · · ,Mn and X is a variable of rank 3 type at most. Consider a finite
number of constants 2A for each type A subtype of a type of X. Let k be the size of
N . Consider a fixed set V of k variables of type 0. Let N be the finite set of terms of
the form λy1 · · · yp.P , where the ~y are of type 0, the term P is a pattern of a subterm
of N and the free variables of P are in V . Also the p should be bounded as follows: if

Mi : A
i
1 . . . A

j
ni → 0, then p < the maximal arity of all Ai

j . It is easy to check that in the

special case that P is not of ground type (that is, starts with a λ which, intuitively, binds
a variable in N introduced directly or hereditarily by a constant of N of higher-order
type) then one can take p = 0.
We define a tree automaton with the states qW for W in N and q2A

for each constant
2A, and the transitions

• (fiqW1 · · · qWn)→qW , if (Mi
~W ) =W and replacing a Wi different from 2A

by a 2A does not yield a solution,
• (hqN1 · · · qNn)→q(hN1···Nn), for N1, · · · , Nn and (hN1 . . . Nn) in N ,
• 2A→q2A

• λz.qt→qλz.t
• λf1 · · · fn.qN→q0.
4C.5. Proposition. Let U and W be two elements of N and X1, · · · , Xn be variables
of order at most two. Let σ be a relevant solution of the second-order matching problem

(UX1 · · ·Xn) =W

then for each i, either σXi is in N (modulo alpha-conversion) or is equal to 2A.

Proof. Let U ′ be the normal form of (UσX1 · · ·σXi−1XiσXi+1 · · ·σXn). If Xi has no
occurrence in U ′ then as σ is relevant σXi = 2A.
Otherwise consider the higher occurrence at position l of a subterm of type 0 of U ′ that

has the form (XiV1 · · ·Vp). The terms V1, · · · , Vp have type 0. Let W0 be the subterm
of W at the same position l. The term W0 has type 0, it is a pattern of a subterm of N .
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Let V ′
i be the normal form of Vi[σXi/Xi]. We have (σXiV

′
1 · · ·V ′

p) = W0. Consider p
variables y1, · · · , yp of V that are not free in W0. We have σXi = λy1 · · · yp.P and

P [V ′
1/y1, · · · , V ′

p/yp] =W0.

Hence P is a pattern of a subterm of N and σXi = λy1 · · · yp.P is an element of N .

4C.6. Remark. As a corollary of Proposition 4C.5, we get an alternative proof of the
decidability of second-order matching.

4C.7. Proposition. Let

X ~M = N

be an equation, and A the associated automaton. Then a term is recognized by A (in q0)
if and only if it is a relevant solution of this equation.

Proof. We want to prove that a term V is recognized in q0 if and only if it is a relevant

solution of the equation V ~M = N . It is sufficient to prove that V is recognized in the
state qN if and only if it is a relevant solution of the equation V [f1 := M1, · · · , fn :=
Mn] = N . We prove, more generally, that for any term W of N , V is recognized in qW
if and only if V [f1 :=M1, · · · , fn :=Mn] =W .
The direct sense is easy. We prove by induction over the structure of V that if V is

recognized in qW , then V is a relevant solution of the equation V [f1 := M1, · · · , fn :=
Mn] =W . If V = (fi V1 · · ·Vp) then the term Vi is recognized in a state qWi

, whereWi is

either a term of N or 2A and (Mi
~W ) =W . In the first case, by induction hypothesis Vi

is a relevant solution of the equation Vi[f1 :=M1, · · · , fn :=Mn] =Mi and in the second
Vi = 2A. Thus (Mi V1[f1 := M1, · · · , fn := Mn] · · · Vp[f1 := M1, · · · , fn := Mn]) = N ,
i.e. V [f1 := M1, · · · , fn := Mn] = N , and moreover V is relevant. If V = (h V1 · · ·Vp),
then the Vi are recognized in states qWi

with Wi in N . By induction hypothesis Vi are
relevant solutions of Vi[f1 := M1, · · · , fn := Mn] = Mi. Hence V [f1 := M1, · · · , fn :=
Mn] = N and moreover V is relevant. The case where V is an abstraction is similar.
Conversely, assume that V is a relevant solution of the problem

V [f1 :=M1, · · · , fn :=Mn] =W.

We prove, by induction over the structure of V , that V is recognized in qW .
If V ≡ (fi V1 · · ·Vp) then

(Mi V1[f1 :=M1, · · · , fn :=Mn] · · ·Vp[f1 :=M1, · · · , fn :=Mn]) = N.

Let V ′
i = Vi[f1 :=M1, · · · , fn :=Mn]. The V

′
i are relevant solutions of the second-order

matching problem (Mi V
′
1 · · ·V ′

p) = N . Now, by Proposition 4C.5, each V ′
i is either an

element of N or the constant 2A. In both cases Vi is a relevant solution of the equation
Vi[f1 := M1, · · · , fn := Mn] = V ′

i and by induction hypothesis Vi is recognized in qWi
.

Thus V is recognized in qW .
If V = (h V1 · · ·Vp) then

(h V1[f1 :=M1, · · · , fn :=Mn] · · ·Vp[f1 :=M1, · · · , fn :=Mn]) =W.

Let Wi = Vi[f1 := M1, · · · , fn := Mn]. We have (h ~W ) = W and Vi is a relevant
solution of the equation Vi[f1 := M1, · · · , fn := Mn] = Wi. By induction hypothesis Vi
is recognized in qWi

. Thus V is recognized in qW . The case where V is an abstraction is
similar.
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4C.8. Proposition. Rank 3 dual interpolation is decidable.

Proof. Consider a system of equations and inequalities and the automata associated
to all these equations. Let L be the language containing the union of the languages of
these automata and an extra constant of type 0. Obviously the system has a solution if
and only if it has a solution in the language L. Each automaton recognizing the relevant
solutions can be transformed into one recognizing all the solutions in L (adding a finite
number of rules, so that the state 2A recognizes all terms of type A in the language
L). Then using the fact that languages recognized by a tree automaton are closed
by intersection and complement, we build a automaton recognizing all the solutions of
the system in the language L. The system has a solution if and only if the language
recognized by this automaton is non empty.
Decidability follows from the decidability of the emptiness of a language recognized

by a tree automaton.

Decidability of rank 3 matching

A particular case

We shall start by proving the decidability of a subcase of rank 3 matching where problems
are formulated in a language without any constant and the solutions also must not
contain any constant.
Consider a problem M = N . The term N contains no constant. Hence, by the

reducibility theorem, Theorem 3D.8, there are closed terms R1, · · · , Rκ of type A→0,
whose constants have order at most two (i.e. level at most one), such that for each term
M of type A

M =βη N ⇔ ∀ℓ.(Rℓ M) =βη (Rℓ N).

The normal forms of (Rℓ N)∈Λø(0) are closed terms whose constants have order at
most two, thus it contains no bound variables. Let U be the set of all subterms of type
0 of the normal forms of Rℓ N . All these terms are closed. Like in the relation defined
by equality in the model of the finite completeness theorem, we define a congruence on
closed terms of type 0 that identifies all terms that are not in U . This congruence has
card(U) + 1 equivalence classes.

4C.9. Definition. M =βηN M ′ ⇔ ∀U ∈U [M =βη U ⇔ M ′ =βη U ].

Notice that if M,M ′ ∈Λø(0) one has the following

M =βηN M ′ ⇔ M =βη M
′ or ∀U ∈U (M 6=βη U &M 6=βη U)

⇔ [M =βη M
′

or neither the normal form of M nor that of M ′ is in U ]

Now we extend this to a logical relation on closed terms of arbitrary types. The following
construction could be considered as an application of the Gandy Hull defined in Example
3C.28. However, we choose to do it explicitly so as to prepare for Definition 4C.18.

4C.10. Definition. Let ‖N be the logical relation lifted from =βηN on closed terms.

4C.11. Lemma. (i) ‖N is head-expansive.
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(ii) For each constant F of type of rank ≤ 1 one has F ‖N F .
(iii) For any X ∈Λ(A) one has X ‖N X.
(iv) ‖N is an equivalence relation.

(v) P ‖N Q ⇔ ∀S1, · · · ,Sk.P ~S ‖N Q~S.

We want to prove, using the decidability of the dual interpolation problem, that the
equivalence classes of this relation can be enumerated up to order four, i.e. that we can
compute a set EA of closed terms containing a term in each class.
More generally, we shall prove that if dual interpolation of rank n is decidable, then the

sets TA/ ‖N can be enumerated up to rank n. We first prove the following Proposition.

4C.12. Proposition (Substitution lemma). Let M be a normal term of type 0, whose
free variables are x1, · · · , xn. Let V1, · · · , Vn, V ′

1 , · · · , V ′
n be closed terms such that V1 ‖N

V ′
1, ... , Vn ‖N V ′

n. Let σ = V1/x1, ..., Vn/xn and σ′ = V ′
1/x1, ..., V

′
n/xn. Then

σM =βηN σ′M

Proof. By induction on the pair formed with the length of the longest reduction in
σM and the size of M . The term M is normal and has type 0, thus it has the form
(f W1 · · ·Wk).
If f is a constant, then let us write Wi = λSi with Si of type 0. We have σM =

(f λ σS1 · · ·λ σSk) and σ′M = (f λ σ′S1 · · ·λ σ′Sk). By induction hypothesis (as the
Si’s are subterms of M) we have σS1 =βηN σ′S1, ... , σSk =βηN σ′Sk, thus either for all
i, σSi =βη σ

′Si and in this case σM =βη σ
′M or for some i, neither the normal forms

of σSi nor that of σ
′Si is an element of U . In this case neither the normal form of σM

nor that of σ′M is in U and σM =βηN σ′M .
If f is a variable xi and k = 0 then M = xi, σM = Vi and σ

′M = V ′
i and Vi and V

′
i

have type 0. Thus σM =βηN σ′M .
Otherwise, f is a variable xi and k 6= 0. The term Vi has the form λz1 · · ·λzk S and

the term V ′
i has the form λz1 · · ·λzk S′. We have

σM = (Vi σW1 · · ·σWk) =βη S[σW1/z1, · · · , σWk/zk]

and σ′M = (V ′
i σ

′W1 · · ·σ′Wk). As Vi ‖N V ′
i , we get

σ′M =βηN (Vi σ
′W1 · · ·σ′Wk) =βηN S[σ′W1/z1, · · · , σ′Wk/zk]

It is routine to check that for all i, (σWi) ‖N (σ′Wi). Indeed, if the term Wi has the
form λy1 · · ·λyp O, then for all closed terms Q1 · · · Qp, we have

σWi Q1 · · ·Qp = ((Q1/y1, · · · , Qp/yp) ◦ σ)O
σ′Wi Q1 · · ·Qp = ((Q1/y1, · · · , Qp/yp) ◦ σ′)O.

Applying the induction hypothesis to O that is a subterm of M , we get

(σWi) Q1 · · ·Qp =βηN (σ′Wi) Q1 · · ·Qp

and thus (σWi) ‖N (σ′Wi).
As (σWi) ‖N (σ′Wi) we can apply the induction hypothesis again, because

σM ։ s[σW1/z1, · · · , σWk/zk],

and get

S[σW1/z1, · · · , σWk/zk] =βηN S[σ′W1/z1, · · · , σ′Wk/zk]
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Thus σM =βηN σ′M .

The next proposition is a direct corollary.

4C.13. Proposition (Application lemma). If V1 ‖N V ′
1, ... , Vn ‖N V ′

n, then for all
term M of type A1→· · ·→An→0,

(M V1 · · ·Vn) =βηN (M V ′
1 · · ·V ′

n).

Proof. Applying Proposition 4C.12 to the term (M x1 · · ·xn).
We then prove the following lemma that justifies the use of the relations =βηN and
‖N .

4C.14. Proposition (Discrimination lemma). Let M be a term. Then

M ‖N N ⇒ M =βη N.

Proof. As M ‖N N , by Proposition 4C.13, we have for all ℓ, (Rℓ M) =βηN (Rℓ N).
Hence, as the normal form of (Rℓ N) is in U , (Rℓ M) =βη (Rℓ N). Thus M =βη N .

Let us discuss now how we can decide and enumerate the relation ‖N . If M and M ′

are of type A1→· · ·→An→0, then, by definition, M ‖N M ′ if and only if

∀W1 ∈TA1 · · · ∀Wn ∈TAn (M ~W =βηN M ′ ~W )

The fact that M ~W =βηN M ′ ~W can be reformulated

∀U ∈U (M ~W =βη U if and only if M ′ ~W =βη U)

Thus M ‖N M ′ if and only if

∀W1 ∈TA1 · · · ∀Wn ∈TAn ∀U ∈U (M ~W =βη U if and only if M ′ ~W =βη M)

Thus to decide if M ‖N M ′, we should list all the sequences U,W1, · · · ,Wn where U
is an element of U and W1, · · · ,Wn are closed terms of type A1, · · · , An, and check that

the set of sequences such that M ~W =βη U is the same as the set of sequences such that

M ′ ~W =βη U .
Of course, the problem is that there is an infinite number of such sequences. But by

Proposition 4C.13 the fact that M ~W =βηN M ′ ~W is not affected if we replace the
terms Wi by ‖N -equivalent terms. Hence, if we can enumerate the sets TA1/ ‖N , ... ,
TAn/ ‖N by sets EA1 , ... , EAn , then we can decide the relation ‖N for terms of type
A1→· · ·→An→0 by enumerating the sequences in U × EA1 × · · · × EAn , and checking

that the set of sequences such that M ~W =βη U is the same as the set of sequences such

that M ′ ~W =βη U .
As class of a term M for the relation ‖N is completely determined, by the set of

sequences U,W1, · · · ,Wn such that M ~W =βη U and there are a finite number of
subsets of the set E = U ×EA1 × · · · × EAn , we get this way that the set TA/ ‖N is finite.
To obtain an enumeration EA of the set TA/ ‖N we need to be able to select the subsets

A of U × EA1 × · · · × EAn , such that there is a term M such that M ~W =βη U if and

only if the sequence U, ~W is in A. This condition is exactly the decidability of the dual
interpolation problem. This leads to the following proposition.

4C.15. Proposition (Enumeration lemma). If dual interpolation of rank n is decidable,
then the sets TA/ ‖N can be enumerated up to rank n.



174 4. Definability, unification and matching

Proof. By induction on the order of A = A1→· · ·→An→0. By the induction hypoth-
esis, the sets TA1/ ‖N , · · · , TAn/ ‖N can be enumerated by sets EA1 , · · · , EAn .
Let x be a variable of type A. For each subset A of E = U ×EA1 × · · · × EAn we define

the dual interpolation problem containing the equation x ~W = U for U,W1, · · · ,Wp ∈A
and the negated equation x ~W 6= U for U,W1, · · · ,Wp /∈ A. Using the decidability of
dual interpolation of rank n, we select those of such problems that have a solution and
we chose a closed solution for each problem. We get this way a set EA.
We prove that this set is an enumeration of TA/ ‖N , i.e. that for every term M of

type A there is a term M ′ in EA such that M ′ ‖N M . Let A be the set of sequences

U,W1, · · · ,Wp such that (M ~W ) =βη U . The dual interpolation problem corresponding
to A has a solution (for instance M). Thus one of its solutions M ′ is in EA. We have

∀W1 ∈EA1 · · · ∀Wn ∈EAn∀U ∈U ((M ~W ) =βη U ⇔ (M ′ ~W ) =βη U).

Thus

∀W1 ∈EA1 · · · ∀Wn ∈EAn (M ~W ) =βηN (M ′ ~W );

hence by Proposition 4C.13

∀W1 ∈TA1 · · · ∀Wn ∈TAn(M ~W ) =βηN (M ′ ~W ).

Therefore M ‖N M ′.

Then, we prove that if the sets TA/ ‖N can be enumerated up to rank n, then matching
of rank n is decidable. The idea is that we can restrict the search of solutions to the sets
EA.
4C.16. Proposition (Matching lemma). If the sets TA/ ‖N can be enumerated up to
order n, then matching problems of rank n whose right hand side is N can be decided.

Proof. Let ~X = X1, · · · ,Xm. We prove that if a matching problem M ~X = N has a

solution ~V , then it has also a solution ~V , such that V i ∈EAi
for each i, where Ai is the

type of Xi.

As ~V is a solution of the problem M = N , we have M~V =βη N .
For all i, let V i be a representative in EAi

of the class of Vi. We have

V 1 ‖N V1, · · · , V m ‖N Vm.

Thus by Proposition 4C.12

M~V =βηN M~V ,

hence

M~V =βηN N,

and therefore by Proposition 4C.14

M~V =βη N.

Thus for checking whether a problem has a solution it suffices to check whether it has

a solution ~V , with each V i in EA; such substitutions can be enumerated.

Note that the proposition can be generalized: the enumeration allows to solve ev-
ery matching inequality of right member N , and more generally, every dual matching
problem.
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4C.17. Theorem. Rank 3 matching problems whose right hand side contain no constants
can be decided.

Proof. Dual interpolation of order 4 is decidable, hence, by proposition 4C.15, if N is
a closed term containing no constants, then the sets TA/ ‖N can be enumerated up to
order 4, hence, by Proposition 4C.16, we can decide if a problem of the form M = N
has a solution.

The general case

We consider now terms formed in a language containing an infinite number of constants
of each type and we want to generalize the result. The difficulty is that we cannot apply
Statman’s result anymore to eliminate bound variables. Hence we shall define directly
the set U as the set of subterms of N of type 0. The novelty here is that the bound
variables of U may now appear free in the terms of U . It is important here to chose the
names x1, · · · , xn of these variables, once for all.
We define the congruence M =βηN M ′ on terms of type 0 that identifies all terms

that are not in U .
4C.18. Definition. (i) Let M,M ′ ∈Λ(0) (not necessarily closed). Define

M =βηN M ′ ⇔ ∀U ∈U .[M =βη U ⇔ M ′ =βη U ].

(ii) Define the logical relation ‖N by lifting =βηN to all open terms at higher types.

4C.19. Lemma. (i) ‖N is head-expansive.
(ii) For any variable x of arbitrary type A one has x ‖N x.
(iii) For each constant F ∈Λ(A) one has F ‖N F .
(iv) For any X ∈Λ(A) one has X ‖N X.
(v) ‖N is an equivalence relation at all types.

(vi) P ‖N Q ⇔ ∀S1, · · · ,Sk.P ~S ‖N Q~S.

Proof. (i) By definition the relation is closed under arbitrary βη expansion.
(ii) By induction on the generation of the type A.
(iii) Similarly.
(iv) Easy.
(v) Easy.
(vi) Easy.

Then we can turn to the enumeration Lemma, Proposition 4C.15. Due to the presence
of the free variables, the proof of this lemma introduces several novelties. Given a subset
A of E = U ×EA1×· · ·×EAn we cannot define the dual interpolation problem containing

the equation (x ~W ) = U for U,W1, · · · ,Wp ∈A and the negated equation (x ~W ) 6= U
for U,W1, · · · ,Wp /∈ A, because the right hand side of these equations may contain free
variables. Thus, we shall replace these variables by fresh constants c1, · · · , cn. Let θ
be the substitution c1/x1, · · · , cn/xn. To each set of sequences, we associate the dual

interpolation problem containing the equation (x ~W ) = θU or its negation.
This introduces two difficulties: first the term θU is not a subterm of N , thus, be-

sides the relation ‖N , we shall need to consider also the relation ‖θU , and one of its
enumerations, for each term U in U . Then, the solutions of such interpolation problems
could contain the constants c1, · · · , cn, and we may have difficulties proving that they
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represent their ‖N -equivalence class. To solve this problem we need to duplicate the
constants c1, · · · , cn with constants d1, · · · , dn. This idea goes back to Goldfarb [1981].
Let us consider a fixed set of constants c1, · · · , cn, d1, · · · , dn that do not occur in N ,

and if M is a term containing constants c1, · · · , cn, but not the constants d1, · · · , dn, we
write M̃ for the term M where each constant ci is replaced by the constant di.
Let A = A1→· · ·→An→0 be a type. We assume that for any closed term U of type

0, the sets TAi
/ ‖U can be enumerated up to rank n by sets EUAi

.

4C.20. Definition. We define the set of sequences E containing for each term U in U
and sequence W1, · · · ,Wn in EθUA1

×· · ·×EθUAn
, the sequence θU,W1, · · · ,Wn. Notice that

the terms in these sequences may contain the constants c1, · · · , cn but not the constants
d1, · · · , dn.
To each subset of A of E we associate a dual interpolation problem containing the

equations x ~W = U and x W̃1 · · · W̃n = Ũ for U,W1, · · · ,Wn ∈A and the inequalities

x ~W 6= U and x W̃1 · · · W̃n 6= Ũ for U,W1, · · · ,Wn /∈ A.
The first lemma justifies the use of constants duplication.

4C.21. Proposition. If an interpolation problem of Definition 4C.20 has a solution M ,
then it also has a solution M ′ that does not contain the constants c1, · · · , cn, d1, · · · , dn.
Proof. Assume that the term M contains a constant, say c1. Then by replacing this
constant c1 by a fresh constant e, we obtain a termM ′. As the constant e is fresh, all the

inequalities that M verify are still verified by M ′. If M verifies the equations x ~W = U

and x W̃1 · · · W̃n = Ũ , then the constant e does not occur in the normal form of M ′ ~W .
Otherwise the constant c1 would occur in the normal form of M W̃1 · · · W̃n, i.e. in the

normal form of Ũ which is not the case. Thus M ′ also verifies the equations x ~W = U
and x W̃1 · · · W̃n = Ũ .
We can replace this way all the constants c1, · · · , cn, d1, · · · , dn by fresh constants,

obtaining a solution where these constants do not occur.

Then, we prove that the interpolation problems of Definition 4C.20 characterize the
equivalence classes of the relation ‖N .

4C.22. Proposition. Every term M of type A not containing the constants c1, · · · , cn,
d1, · · · , dn is the solution of a unique problem of Definition 4C.20.

Proof. Consider the subset A of E formed with sequences U,W1, · · · ,Wn such that

M ~W = U . The term M is the solution of the interpolation problem associated to A
and A is the only subset of E such that M is a solution to the interpolation problem
associated to.

4C.23. Proposition. LetM andM ′ be two terms of type A not containing the constants
c1, · · · , cn, d1, · · · , dn. Then M and M ′ are solutions of the same unique problem of
Definition 4C.20 iff M ‖N M ′.

Proof. By definition ifM ‖N M ′ then for allW1, · · · ,Wn and for all U in U : M ~W =βη

U ⇔ M ′ ~W =βη U . Thus for any U, ~W in E , θ−1U is in U andM θ−1W1 · · · θ−1Wn =βη

θ−1U ⇔ M ′ θ−1W1 · · · θ−1Wn =βη θ
−1U . Then, as the constants c1, · · · , cn, d1, · · · , dn

do not appear inM andM ′, we haveM ~W =βη U ⇔ M ′ ~W =βη U andM W̃1 · · · W̃n =βη

Ũ ⇔ M ′ W̃1 · · · W̃n =βη Ũ . Thus M and M ′ are the solutions of the same problem.
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Conversely, assume that M 6 ‖NM ′. Then there exists terms W1, · · · ,Wn and a term

U in U such that M ~W =βη U and M ′ ~W 6=βη U . Hence M θW1 · · · θWn =βη θU and

M ′ θW1 · · · θWn 6=βη θU . As the sets EθUAi
are enumeration of the sets TAi

/ ‖θU there

exists terms ~S such that the Si ‖θU θWi and θU, ~S ∈E . Using Proposition 4C.13 we have

M ~S =βηθU M θW1 · · · θWn =βη θU , hence M ~S =βηθU θU i.e. M ~S =βη θU . Similarly,

we have M ′ ~S =βηθU M ′ θW1 · · · θWn 6=βη θU hence M ′ ~S 6=βηθU θs i.e. M ′ ~S 6=βη θU
Hence M and M ′ are not the solutions of the same problem.

Finally, we can prove the enumeration lemma.

4C.24. Proposition (Enumeration lemma). If dual interpolation of rank n is decidable,
then, for any closed term N of type 0, the sets TA/ ‖N can be enumerated up to rank n.

Proof. By induction on the order of A. Let A = A1→· · ·→An→0. By the induction
hypothesis, for any closed term U of type 0, the sets TAi

/ ‖U can be enumerated by sets
EUAi

.
We consider all the interpolation problems of Definition 4C.20. Using the decidability

of dual interpolation of rank n, we select those of such problems that have a solution. By
Proposition 4C.21, we can construct for each such problem a solution not containing the
constants c1, · · · , cn, d1, · · · , dn and by Proposition 4C.22 and 4C.23, these terms form
an enumeration of TA/ ‖N .

To conclude, we prove the matching lemma (Proposition 4C.16) exactly as in the
particular case and then the theorem.

4C.25. Theorem (Padovani). Rank 3 matching problems can be decided.

Proof. Dual interpolation of order 4 is decidable, hence, by Proposition 4C.15, if N
is a closed term, then the sets TA/ ‖N can be enumerated up to order 4, hence, by
Proposition 4C.16, we can decide if a problem of the form M = N has a solution.

4D. Decidability of the maximal theory

We prove now that the maximal theory is decidable. The original proof of this result is
due to Padovani [1996]. This proof has later been simplified independently by Schmidt-
Schauß and Loader [1997], based on Schmidt-Schauß [1999].
Remember that the maximal theory, see Definition 3E.46, is

Tmax{M = N |M,N ∈Λø0(A), A∈TT0 &M~c
min |=M = N},

where

M~c
min = Λø0[~c]/≈ext

~c

consists of all terms having the ~c = c1, · · · ,cn, with n > 1, of type 0 as distinct constants
and M ≈ext

~c N on type A = A1→· · ·→Aa→0 is defined by

M ≈ext
~c N ⇔ ∀P1 ∈Λø0[~c](A1) · · ·Pa ∈Λø0[~c](Aa).M ~P =βη N ~P.

Theorem 3E.34 states that ≈ext
~c is a congruence which we will denote by ≈. Also that

theorem implies that Tmax is independent of n.
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4D.1. Definition. Let A∈TTA. The degree of A, notation ||A||, is defined as follows.

||0|| = 2,

||A→ B|| = ||A||!||B||, i.e. ||A|| factorial times ||B||.
4D.2. Proposition. (i) ||A1 → · · · → An → 0|| = 2||A1||! · · · ||An||!.

(ii) ||Ai|| < ||A1 → · · · → An → 0||.
(iii) n < ||A1 → · · · → An → 0||.
(iv) If p < ||Ai||, ||B1|| < ||Ai||, ..., ||Bp|| < ||Ai|| then

||A1 → · · · → Ai−1 → B1 → · · · → Bp → Ai+1 → · · · → An → 0|| <
< ||A1 → · · · → An → 0||.

4D.3. Definition. LetM ∈Λø0[~c](A1→· · ·An→0) be a lnf. Then eitherM ≡ λx1 · · ·xn.y
or M ≡ λx1 · · ·xn.xiM1 · · ·Mp. In the first case, M is called constant, in the second it
has index i.

The following proposition states that for every type A, the terms M ∈Λø0[~c](A) with a

given index can be enumerated by a term E : ~C→A, where the ~C have degrees lower
than A.

4D.4. Proposition. Let ≈ be the equality in the minimal model (the maximal theory).
Then for each type A and each natural number i, there exists a natural number k < ||A||,
types C1, · · · , Ck such that ||C1|| < ||A||, ..., ||Ck|| < ||A||, a term E of type C1 → · · · →
Ck → A and terms P1 of type A→ C1, ..., Pk of type A→ Ck such that if M has index
i then

M ≈ E(P1M) · · · (PkM).

Proof. By induction on ||A||. Let us write A = A1 → · · · → An → 0 and Ai =
B1 → · · · → Bm → 0. By induction hypothesis, for each j in {1, · · · ,m} there are
types Dj,1, · · · , Dj,lj , terms Ej , Pj,1, · · · , Pj,lj such that lj < ||Ai||, ||Dj,1|| < ||Ai||, ...,
||Dj,lj || < ||Ai|| and if N ∈Λø0[~c](Ai) has index j then

N ≈ Ej(Pj,1N) · · · (Pj,ljN).

We take k = m, and define

C1 , A1 → · · · → Ai−1 → D1,1 → · · · → D1,l1 → Ai+1 → · · · → An → 0,

· · ·
Ck , A1 → · · · → Ai−1 → Dk,1 → · · · → Dk,lk → Ai+1 → · · · → An → 0,

E , λf1 · · · fkx1 · · ·xn.
xi(λ~c.f1x1 · · ·xi−1(P1,1xi) · · · (P1,l1xi)xi+1 · · ·xn)
· · ·

(λ~c.fkx1 · · ·xi−1(Pk,1xi) · · · (Pk,lkxi)xi+1 · · ·xn),
P1 , λgx1 · · ·xi−1~z1xi+1 · · ·xn.gx1 · · ·xi−1(E1~z1)xi+1 · · ·xn,
· · ·

Pk , λgx1 · · ·xi−1~zkxi+1 · · ·xn.gx1 · · ·xi−1(Ek~zk)xi+1 · · ·xn,
where ~zi = z1, · · · ,zli for 1 ≤ i ≤ k. We have k < ||Ai|| < ||A||, ||Ci|| < ||A|| for
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1 ≤ i ≤ k and for any M ∈Λø0[~c](A)
E(P1M) · · · (PkM) = λx1 · · ·xn.xi

(λ~c.tx1 · · ·xi−1(E1(P1,1xi) · · · (P1,l1xi))xi+1 · · ·xn)
· · ·
(λ~c.tx1 · · ·xi−1(Ek(Pk,1xi) · · · (Pk,lkxi))xi+1 · · ·xn)

We want to prove that if M has index i then this term is equal to M . Consider terms
~Q∈Λø0[~c]. We want to prove that for the term

Q = Qi (λ~c.tQ1 · · ·Qi−1(E1(P1,1Qi) · · · (P1,l1Qi))Qi+1 · · ·Qn)
· · ·

(λ~c.tQ1 · · ·Qi−1(Ek(Pk,1Qi) · · · (Pk,lkQi))Qi+1 · · ·Qn)

one has Q ≈ (MQ1 · · ·Qn). If Qi is constant then this is obvious. Otherwise, it has an
index j, say, and Q reduces to

Q′ = MQ1 · · ·Qi−1(Ej(Pj,1Qi) · · · (Pj,ljQi))Qi+1 · · ·Qn.

By the induction hypothesis the term (Ej(Pj,1Qi) · · · (Pj,ljQi)) ≈ Qi and hence, by
Theorem 3E.34 one has Q = Q′ ≈ (MQ1 · · ·Qn).

4D.5. Theorem. LetM be the minimal model built over ~c:0, i.e.

M =Mmin = Λø0[~c]/≈.
For each type A, we can compute a finite set RA ⊆ Λø0[~c](A) that enumeratesM(A), i.e.
such that

∀M ∈M(A)∃N ∈RA.M ≈ N.
Proof. By induction on ||A||. If A = 0, then we can take RA = {~c}. Otherwise write
A = A1 → · · · → An → 0. By Proposition 4D.4 for each i∈{1, · · · , n}, there exists a
ki ∈N, types Ci,1, · · · , Ci,ki smaller than A, a term Ei of type Ci,1 → · · · → Ci,ki → A
such that for each term M of index i, there exists terms P1, · · · , Pki such that

M ≈ (EiP1 · · ·Pki).

By the induction hypothesis, for each type Ci,j we can compute a finite set RCi,j
that

enumeratesM(Ci,j). We take for RA all the terms of the form (EiQ1 · · ·Qki) with Q1

in RCi,1 , ... , Qki in RCi,ki
.

4D.6. Corollary (Padovani). The maximal theory is decidable.

Proof. Check equivalence in any minimal modelM~c
min. At type

A = A1→· · ·→Aa→0 we have

M ≈ N ⇔ ∀P1 ∈Λø0[~c](A1) · · ·Pa ∈Λø0[~c](Aa).M ~P =βη N ~P,

where we can now restrict the ~P to the RAj
.

4D.7. Corollary (Decidability of unification in Tmax). For terms

M,N ∈Λø0[~c](A→B),

of the same type, the following unification problem is decidable

∃X ∈Λø[~c](A).MX ≈ NX.
Proof. Working inM~c

min, check the finitely many enumerating terms as candidates.
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4D.8. Corollary (Decidability of atomic higher-order matching). (i) For

M1 ∈Λø0[~c](A1→0), · · · ,Mn ∈Λø0[~c](An→0),

with 1 ≤ i ≤ n, the following problem is decidable

∃X1 ∈Λø0[~c](A1), · · · , Xn ∈Λø0[~c](An).[M1X1 =βη c1

· · ·
MnXn =βη cn].

(ii) For M,N ∈Λø0[~c](A→0) the following problem is decidable.

∃X ∈Λø0[~c](A).MX =βη NX.

Proof. (i) Since βη-convertibility at type 0 is equivalent to ≈, the previous Corollary
applies.

(ii) Similarly to (i) or by reducing this problem to the problem in (i).

The non-redundancy of the enumeration

We now prove that the enumeration of terms in Proposition 4C.24 is not redundant. We
follow the given construction, but actually the proof does not depend on it, see Exercise
4E.2. We first prove a converse to Proposition 4D.4.

4D.9. Proposition. Let E,P1, · · · ,Pk be the terms constructed in Proposition 4D.4.
Then for any sequence of terms M1, · · · ,Mk, we have

(Pj(EM1 · · ·Mk)) ≈Mj .

Proof. By induction on ||A|| where A is the type of (EM1 · · ·Mk). The term

N ≡ Pj(EM1 · · ·Mk)

reduces to

λx1 · · ·xi−1~zjxi+1 · · ·xn.Ej~zj
(λ~c.M1x1 · · ·xi−1(P1,1(Ej~zj)) · · · (P1,l1(Ej~zj))xi+1 · · ·xn)
· · ·
(λ~c.Mkx1 · · ·xi−1(Pk,1(Ej~zj)) · · · (Pk,lk(Ej~zj))xi+1 · · ·xn)

Then, since Ej is a term of index lj + j, the term N continues to reduce to

λx1 · · ·xi−1~zjxi+1 · · ·xn.Mjx1 · · ·xi−1(Pj,1(Ej~zj)) · · · (Pj,lj (Ej~zj))xi+1 · · ·xn.
We want to prove that this term is equal to Mj . Consider terms

N1, · · · , Ni−1, ~Lj , Ni+1, · · · , Nn ∈Λø0[~c].
It suffices to show that

MjN1 · · ·Ni−1(Pj,1(Ej
~Lj)) · · · (Pj,lj (Ej

~Lj))Ni+1 · · ·Nn ≈
MjN1 · · ·Ni−1

~LjNi+1 · · ·Nn.

By the induction hypothesis we have

(Pj,1(Ej
~Lj)) ≈ L1,

· · ·
(Pj,lj (Ej

~Lj)) ≈ Llj .
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Hence by Theorem 3E.34 we are done.

4D.10. Proposition. The enumeration in Theorem 4D.5 is non-redundant, i.e.

∀A∈TT0∀M,N ∈RA.M ≈C N ⇒ M ≡ N.
Proof. Consider two terms M and N equal in the enumeration of a type A. We prove,
by induction, that these two terms are equal. Since M and N are equal, they must have
the same head variables. If this variable is free then they are equal. Otherwise, the
terms have the form M = (EiM

′
1 · · ·M ′

k) and N = (EiN
′
1 · · ·N ′

k). For all j, we have

M ′
j ≈ (PjM) ≈ (PjN) ≈ N ′

j .

Hence, by induction hypothesis M ′
j = N ′

j and therefore M = N .

4E. Exercises

4E.1. LetM =M[C1] be the minimal model. Let cn = card(M(1n→0)).
(i) Show that

c0 = 2;

cn+1 = 2 + (n+ 1)cn.

(ii) Prove that

cn = 2n!
n∑

i=0

1

i!
.

The dn = n!
∑n

i=0
1
i! “the number of arrangements of n elements” form a well-

known sequence in combinatorics. See, for instance, Flajolet and Sedgewick
[1993].

(iii) Can the cardinality ofM(A) be bounded by a function of the form k|A| where
|A| is the size of A∈TT0 and k a constant?

4E.2. Let C = {c0, d0}. Let E be a computable function that assigns to each type A∈TT0

a finite set of terms XA such that for all

∀M ∈Λ[C](A)∃N ∈XA.M ≈C N.

Show that not knowing the theory of section 4D one can effectively make E non-
redundant, i.e. such that

∀A∈TT0∀M,N ∈EA.M ≈C N ⇒ M ≡ N.
4E.3. (Herbrand’s Problem) Consider sets S of universally quantified equations

∀x1 · · ·xn.[T1 = T2]

between first order terms involving constants f, g, h, · · · of various arities. Her-
brand’s theorem concerns the problem of whether S |= R = S where R,S are
closed first order terms. For example the word problem for groups can be repre-
sented this way. Now let d be a new quaternary constant i.e. d : 14 and let a, b be
new 0-ary constants i.e. a, b : 0. We define the set S+ of simply typed equations
by

S+ = { (λ~x.T1 = λ~x.T2) | (∀~x[T1 = T2])∈S}.
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Show that the following are equivalent
(i) S 6|= R = S.
(ii) S+ ∪ {λx.dxxab = λx.a, dRSab = b} is consistent.
Conclude that the consistency problem for finite sets of equations with constants
is Π0

1-complete (in contrast to the decidability of finite sets of pure equations).
4E.4. (Undecidability of second-order unification) Consider the unification problem

Fx1 · · ·xn = Gx1 · · ·xn,
where each xi has a type of rank <2. By the theory of reducibility we can assume
that Fx1 · · ·xn has type (0→(0→0))→(0→0) and so by introducing new constants
of types 0, and 0→(0→0) we can assume Fx1 · · ·xn has type 0. Thus we arrive
at the problem (with constants) in which we consider the problem of unifying 1st
order terms built up from 1st and 2nd order constants and variables, The aim
of this exercise is to show that it is recursively unsolvable by encoding Hilbert’s
10-th problem, Goldfarb [1981]. For this we shall need several constants. Begin
with constants

a, b : 0

s : 0→0

e : 0→(0→(0→0))

The nth numeral is sna.
(i) Let F :0→0. F is said to be affine if F = λx.snx. N is a numeral if there exists

an affine F such that Fa = N . Show that F is affine ⇔ F (sa) = s(Fa).
(ii) Next show that L = N +M iff there exist affine F and G such that N = Fa,

M = Ga, and L = F (Ga).
(iii) We can encode a computation of n ∗m by

e(n ∗m)m(e(n ∗ (m− 1))(m− 1)(...(e(n ∗ 1)11)...)).
Finally show that L = N ∗M ⇔ ∃C,D,U, V affine and ∃F,W

Fab= e(Ua)(V a)(Wab)

F (Ca)(sa)(e(Ca)(sa)b) = e(U(Ca))(V (sa))(Fabl)

L= Ua

N = Ca

M = V a

=Da.

4E.5. Consider Γn,m = {c1:0, · · · , cm:0, f1:1, · · · , fn:0}. Show that the unification prob-
lem with constants from Γ with several unknowns of type 1 can be reduced to
the case where m = 1. This is equivalent to the following problem of Markov.
Given a finite alphabet Σ = {a1, · · · ,an} consider equations between words over

Σ ∪ {X1, · · · ,Xp}. The aim is to find for the unknowns ~X words w1, · · · ,wp ∈Σ∗

such that the equations become syntactic identities. In Makanin [1977] it is proved
that this problem is decidable (uniformly in n, p).
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4E.6. (Decidability of unification of second-order terms) Consider the unification prob-
lem F~x = G~x of type A with rk(A) = 1. Here we are interested in the case of
pure unifiers of any types. Then A = 1m = 0m→0 for some natural number m.
Consider for i = 1, · · · ,m the systems

Si = {F~x = λ~y.yi, G~x = λ~y.yi}.
(i) Observe that the original unification problem is solvable iff one of the systems

Si is solvable.
(ii) Show that systems whose equations have the form

F~x = λ~y.yi

where yi : 0 have the same solutions as single equations

H~x = λxy.x

where x, y : 0.
(iii) Show that provided there are closed terms of the types of the xi the solutions

to a matching equation

H~x = λxy.x

are exactly the same as the lambda definable solutions to this equation in
the minimal model.

(iv) Apply the method of Exercise 2E.9 to the minimal model. Conclude that if
there is a closed term of type A then the lambda definable elements of the
minimal model of type A are precisely those invariant under the transposition
of the elements of the ground domain. Conclude that unification of terms of
type of rank 1 is decidable.





CHAPTER 5

EXTENSIONS

In this Chapter several extensions of λCh
→ based on TT0 are studied. In Section 5A the

systems are embedded into classical predicate logic by essentially adding constants δA
(for each type A) that determine whether forM,N ∈Λø→(A) one hasM = N orM 6= N .
In Section 5B a triple of terms π, π1, π2 is added, that forms a surjective pairing. In both
cases the resulting system becomes undecidable. In Section 5C the set of elements of
ground type 0 is denoted by N and is thought of as consisting of the natural numbers.
One does not work with Church numerals but with new constants 0 : N, S+ : N → N,
and RA : A→ (A→ N→ A)→ N→ A, for all types A∈TT0, denoting respectively zero,
successor and the operator for describing primitive recursive functionals. In Section 5D
Spector’s bar recursive terms are studied. Finally in Section 5E fixed point combinators
are added to the base system. This system is closely related to the system known as
‘Edinburgh PCF’.

5A. Lambda delta

In this section λ0
→ in the form of λCh

→ based on TT0 will be extended by constants
δ (= δA,B), for arbitrary A,B. Church [1940] used this extension to introduce a logical
system called “the simple theory of types”, based on classical logic. (The system is
also refered to as “higher order logic”, and denoted by HOL.) We will introduce a
variant of this system denoted by ∆. The intuitive idea is that δ = δA,B satisfies for all
a, a′ : A, b, b′ : B

δaa′bb′ = b if a = a′;

= b′ if a 6= a′.

Here M 6= N is defined as ¬(M = N), which is (M = N) ⊃ K = K∗. The type of the
new constants is as follows

δA,B : A→A→B→B→B.
The classical variant of the theory in which each term and variable carries its unique

type will be considered only, but we will suppress types whenever there is little danger
of confusion.
The theory ∆ is a strong logical system, in fact stronger than each of the 1st, 2nd,

3rd, ... order logics. It turns out that because of the presence of δ’s an arbitrary
formula of ∆ is equivalent to an equation. This fact will be an incarnation of the
comprehension principle. It is because of the δ’s that ∆ is powerful, less so because
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of the presence of quantification over elements of arbitrary types. Moreover, the set of
equational consequences of ∆ can be axiomatized by a finite subset. These are the main
results in this section. It is an open question whether there is a natural (decidable)
notion of reduction that is confluent and has as convertibility relation exactly these
equational consequences. Since the decision problem for (higher order) predicate logic
is undecidable, this notion of reduction will be non-terminating.

Higher Order Logic

5A.1. Definition. We will define a formal system called higher order logic, notation ∆.
Terms are elements of ΛCh

→ (δ), the set of open typed terms with types from TT0, possibly
containing constants δ. Formulas are built up from equations between terms of the same
type using implication (⊃) and typed quantification (∀xA.ϕ). Absurdity is defined by

⊥, (K = K∗), where K,λx0y0.x,K∗,λx0y0.y. and negation by ¬ϕ,ϕ ⊃ ⊥. Variables
always have to be given types such that the terms involved are typable and have the
same type if they occur in one equation. By contrast to other sections in this book Γ
stands for a set of formulas. In Fig. 9 the axioms and rules of ∆ are given. There Γ
is a set of formulas, and FV(Γ) = {x | x∈FV(ϕ), ϕ∈Γ}. M,N,L, P,Q are terms.

Provability in this system will be denoted by Γ ⊢∆ ϕ, or simply by Γ ⊢ ϕ.
5A.2. Definition. The other logical connectives of ∆ are introduced in the usual clas-
sical manner.

ϕ ∨ ψ , ¬ϕ ⊃ ψ;
ϕ & ψ , ¬(¬ϕ ∨ ¬ψ);
∃xA.ϕ, ¬∀xA.¬ϕ.

5A.3. Lemma. For all formulas of ∆ one has

⊥ ⊢ ϕ.
Proof. By induction on the structure of ϕ. If ϕ ≡ (M = N), then observe that by
(eta)

M = λ~x.M~x = λ~x.K(M~x)(N~x),
N = λ~x.N~x = λ~x.K∗(M~x)(N~x),

where the ~x are such that the type of M~x is 0. Hence ⊥ ⊢M = N , since ⊥ ≡ (K = K∗).
If ϕ ≡ (ψ ⊃ χ) or ϕ ≡ ∀xA.ψ, then the result follows immediately from the induction
hypothesis.

5A.4. Proposition. δA,B can be defined from δA,0.

Proof. Indeed, if we only have δA,0 (with their properties) and define

δA,B = λmnpq~x . δA,0mn(p~x)(q~x),

then all δA,B satisfy the axioms.

The rule (classical) is equivalent to

¬¬(M = N) ⊃M = N.

In this rule the terms can be restricted to type 0 and the same theory ∆ will be obtained.
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Γ ⊢ (λx.M)N =M [x: = N ] (beta)

Γ ⊢ λx.Mx =M, x /∈ FV(M) (eta)

Γ ⊢M =M (reflexivity)

Γ ⊢M = N

Γ ⊢ N =M
(symmetry)

Γ ⊢M = N, Γ ⊢ N = L

Γ ⊢M = L
(trans)

Γ ⊢M = N, Γ ⊢ P = Q

Γ ⊢MP = NQ
(cong-app)

Γ ⊢M = N
x /∈ FV(Γ)

Γ ⊢ λx.M = λx.N
(cong-abs)

ϕ∈Γ
Γ ⊢ ϕ

(axiom)

Γ ⊢ ϕ ⊃ ψ Γ ⊢ ϕ
Γ ⊢ ψ

(⊃ -elim)

Γ, ϕ ⊢ ψ
Γ ⊢ ϕ ⊃ ψ

(⊃ -intr)

Γ ⊢ ∀xA.ϕ
Γ ⊢ ϕ[x: =M ]

M ∈Λ(A) (∀-elim)

Γ ⊢ ϕ
xA /∈ FV(Γ)

Γ ⊢ ∀xA.ϕ
(∀-intr)

Γ,M 6= N ⊢ ⊥
Γ ⊢M = N

(classical)

Γ ⊢M = N ⊃ δMNPQ = P (deltaL)

Γ ⊢M 6= N ⊃ δMNPQ = Q (deltaR)

Figure 9. ∆: Higher Order Logic

5A.5. Proposition. Suppose that in the formulation of ∆ one requires

Γ,¬(M = N) ⊢∆ ⊥ ⇒ Γ ⊢∆ M = N (1)

only for terms x, y of type 0. Then (1) holds for terms of all types.
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Proof. By (1) we have ¬¬M = N ⊃M = N for terms of type 0. Assume ¬¬(M = N),
with M,N of arbitrary type, in order to show M = N . We have

M = N ⊃M~x = N~x,

for all fresh ~x such that the type of M~x is 0. By taking the contrapositive twice we
obtain

¬¬(M = N) ⊃ ¬¬(M~x = N~x).

Therefore by assumption and (1) we get M~x = N~x. But then by (cong-abs) and (eta)
it follows that M = N .

5A.6. Proposition. For all formulas ϕ one has

⊢∆ ¬¬ϕ ⊃ ϕ.
Proof. Induction on the structure of ϕ. If ϕ is an equation, then this is a rule of the
system ∆. If ϕ ≡ ψ ⊃ χ, then by the induction hypothesis one has ⊢∆ ¬¬χ ⊃ χ and we
have the following derivation

[ψ ⊃ χ]1 [ψ]3

χ [¬χ]2

⊥
1

¬(ψ ⊃ χ) [¬¬(ψ ⊃ χ)]4

⊥
2

¬¬χ

···
¬¬χ ⊃ χ

3
ψ ⊃ χ

4
¬¬(ψ ⊃ χ) ⊃ ψ ⊃ χ)

for ¬¬(ψ ⊃ χ) ⊃ (ψ ⊃ χ). If ϕ ≡ ∀x.ψ, then by the induction hypothesis ⊢∆ ¬¬ψ(x) ⊃
ψ(x). Now we have a similar derivation

[∀x.ψ(x)]1

ψ(x) [¬ψ(x)]2

⊥
1

¬∀x.ψ(x) [¬¬∀x.ψ(x)]3

⊥
2

¬¬ψ(x)

···
¬¬ψ(x) ⊃ ψ(x)

ψ(x)

∀x.ψ(x)
3

¬¬∀x.ψ(x) ⊃ ∀x.ψ(x)
for ¬¬∀x.ψ(x) ⊃ ∀x.ψ(x).
Now we will derive some equations in ∆ that happen to be strong enough to provide

an equational axiomatization of the equational part of ∆.
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5A.7. Proposition. The following equations hold universally (for those terms such that
the equations make sense).

δMMPQ = P (δ-identity);

δMNPP = P (δ-reflexivity);

δMNMN = N (δ-hypothesis);

δMNPQ = δNMPQ (δ-symmetry);

F (δMNPQ) = δMN(FP )(FQ) (δ-monotonicity);

δMN(P (δMN))(Q(δMN)) = δMN(PK)(QK∗) (δ-transitivity).

Proof. We only show δ-reflexivity, the proof of the other assertions being similar. By
the δ axioms one has

M = N ⊢ δMNPP = P ;

M 6= N ⊢ δMNPP = P.

By the “contrapositive” of the first statement one has δMNPP 6= P ⊢M 6= N and hence
by the second statement δMNPP 6= P ⊢ δMNPP = P . So in fact δMNPP 6= P ⊢ ⊥,
but then ⊢ δMNPP = P , by the classical rule.

5A.8. Definition. The equational version of higher order logic, notation δ, consists of
equations between terms of ΛCh

→ (δ) of the same type, axiomatized as in Fig. 10. As
usual the axioms and rules are assumed to hold universally, i.e. the free variables may
be replaced by arbitrary terms. E denotes a set of equations between terms of the same
type. The system δ may be given more conventionally by leaving out all occurrences of
E ⊢δ and replacing in the rule (cong-abs) the proviso “x /∈ FV(E)” by “x not occurring
in any assumption on which M = N depends”.

There is a canonical map from formulas to equations, preserving provability in ∆.

5A.9. Definition. (i) For an equation E ≡ (M = N) in ∆, write E.L,M and E.R,N .

(ii) Define for a formula ϕ of ∆ the corresponding equation ϕ+ as follows.

(M = N)+ ,M = N ;

(ψ ⊃ χ)+ , (δ(ψ+.L)(ψ+.R)(χ+.L)(χ+.R) = χ+.R);

(∀x.ψ)+ , (λx.ψ+.L = λx.ψ+.R).

(iii) If Γ is a set of formulas, then Γ+ , {ϕ+ | ϕ∈Γ}.
5A.10. Remark. So, if ψ+ ≡ (M = N) and χ+ ≡ (P = Q), then

(ψ ⊃ χ)+ = (δMNPQ = Q);

(¬ψ)+ = (δMNKK∗ = K∗);

(∀x.ψ)+ = (λx.M = λx.N).

5A.11. Theorem. For every formula ϕ one has

⊢∆ (ϕ↔ ϕ+).
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E ⊢ (λx.M)N =M [x: = N ] (β)

E ⊢ λx.Mx =M, x /∈ FV(M) (η)

E ⊢M = N, if (M = N)∈E (axiom)

E ⊢M =M (reflexivity)

E ⊢M = N

E ⊢ N =M
(symmetry)

E ⊢M = N, E ⊢ N = L

E ⊢M = L
(trans)

E ⊢M = N, E ⊢ P = Q

E ⊢MP = NQ
(cong-app)

E ⊢M = N
x /∈ FV(E)

E ⊢ λx.M = λx.N
(cong-abs)

E ⊢ δMMPQ = P (δ-identity)

E ⊢ δMNPP = P (δ-reflexivity)

E ⊢ δMNMN = N (δ-hypothesis)

E ⊢ δMNPQ = δNMPQ (δ-symmetry)

E ⊢ F (δMNPQ) = δMN(FP )(FQ) (δ-monotonicity)

E ⊢ δMN(P (δMN))(Q(δMN)) = δMN(PK)(QK∗) (δ-transitivity)

Figure 10. δ: Equational version of ∆

Proof. Note that (ϕ+)+ = ϕ+, (ψ ⊃ χ)+ = (ψ+ ⊃ χ+)+, and (∀x.ψ)+ = (∀x.ψ+)+.
The proof of the theorem is by induction on the structure of ϕ. If ϕ is an equation, then
this is trivial. If ϕ ≡ ψ ⊃ χ, then the statement follows from

⊢∆ (M = N ⊃ P = Q)↔ (δMNPQ = Q).

If ϕ ≡ ∀x.ψ, then this follows from

⊢∆ ∀x.(M = N)↔ (λx.M = λx.N).

We will show now that ∆ is conservative over δ. The proof occupies 5A.12-5A.18

5A.12. Lemma. (i) ⊢δ δMNPQz = δMN(Pz)(Qz).

(ii) ⊢δ δMNPQ = λz.δMN(Pz)(Qz), where z is fresh.

(iii) ⊢δ λz.δMNPQ = δMN(λz.P )(λz.Q), where z /∈FV(MN).

Proof. (i) Use δ-monotonicity F (δMNPQ) = δMN(FP )(FQ) for F = λx.xz.

(ii) By (i) and (η).

(iii) By (ii) applied with P := λz.P and Q := λz.Q.
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5A.13. Lemma. (i) δMNPQ = Q ⊢δ δMNQP = P.
(ii) δMNPQ = Q, δMNQR = R ⊢δ δMNPR = R.

(iii) δMNPQ = Q, δMNUV = V ⊢δ δMN(PU)(QV ) = QV.

Proof. (i) P = δMNPP
= δMN(KPQ)(K∗QP )
= δMN(δMNPQ)(δMNQP ), by (δ-transitivity),
= δMNQ(δMNQP ), by assumption,
= δMN(δMNQQ)(δMNQP ), by δ-reflexivity,
= δMN(KQQ)(K∗QP ), by (δ-transitivity),
= δMNQP.

(ii) R = δMNQR, by assumption,
= δMN(δMNPQ)(δMNQR), by assumption,
= δMN(KPQ)(K∗QR), by (δ-transitivity),
= δMNPR.

(iii) Assuming δMNPQ = Q and δMNUV = V we obtain by (δ-monotonicity) ap-
plied twice that

δMN(PU)(QU) = δMNPQU = QU
δMN(QU)(QV ) = Q(δMNPUV ) = QV.

Hence the result δMN(PU)(QV ) = QV follows by (ii).

5A.14. Proposition (Deduction theorem I). Let E be a set of equations. Then

E ,M = N ⊢δ P = Q ⇒ E ⊢δ δMNPQ = Q.

Proof. By induction on the derivation of E ,M = N ⊢δ P = Q. If P = Q is an
axiom of δ or in E , then E ⊢δ P = Q and hence E ⊢δ δMNPQ = δMNQQ = Q. If
(P = Q) ≡ (M = N), then E ⊢δ δMNPQ ≡ δMNMN = N ≡ N . If P = Q follows
directly from E ,M = N ⊢δ Q = P , by (symmetry). Hence by the induction hypothesis
one has E ⊢δ δMNQP = P . But then by lemma 5A.13(i) one has E ⊢δ δMNPQ = Q. If
P = Q follows by (transitivity), (cong-app) or (cong-abs), then the result follows from the
induction hypothesis, using Lemma 5A.13(ii), (iii) or Lemma 5A.12(iii) respectively.

5A.15. Lemma. (i) ⊢δ δMN(δMNPQ)P = P .
(ii) ⊢δ δMNQ(δMNPQ) = Q.

Proof. (i) By (δ-transitivity) one has

δMN(δMNPQ)P = δMN(KPQ)P = δMNPP = P.

(ii) Similarly.

5A.16. Lemma. (i) ⊢δ δKK∗ = K∗;
(ii) ⊢δ δMNKK∗ = δMN ;
(iii) ⊢δ δ(δMN)K∗PQ = δMNQP ;
(iv) ⊢δ δ(δMNKK∗)K∗(δMNPQ)Q = Q.

Proof. (i) K∗ = δKK∗KK∗, by (δ-hypothesis),
= λab.δKK∗(Kab)(K∗ab), by (η) and Lemma 5A.12(ii),
= λab.δKK∗ab
= δKK∗, by (η).
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(ii) δMNKK∗ = δMN(δMN)(δMN), by (δ-transitivity),
= δMN, by (δ-reflexivity).

(iii) δMNQP = δMN(δKK∗PQ)(δK∗K∗PQ), by (i), (δ-identity),
= δMN(δ(δMN)K∗PQ)(δ(δMN)K∗PQ), by (δ-transitivity),
= δ(δMN)K∗PQ, by (δ-reflexivity).

(iv) By (ii) and (iii) we have

δ(δMNKK∗)K∗(δMNPQ)Q = δ(δMN)K∗(δMNPQ)Q = δMNQ(δMNPQ).

Therefore we are done by lemma 5A.15(ii).

5A.17. Lemma. (i) δMN = K ⊢δ M = N ;
(ii) δMNK∗K = K∗ ⊢δ M = N.
(iii) δ(δMNKK∗)K∗KK∗ = K∗ ⊢δ M = N.

Proof. (i) M = KMN = δMNMN = N , by assumption and (δ-hypothesis).

(ii) Suppose δMNK∗K = K∗. Then by Lemma 5A.12(ii) and (δ-hypothesis)

M = K∗NM = δMNK∗KNM = δMN(K∗NM)(KNM) = δMNMN = N.

(iii) By Lemma 5A.16(ii) and (iii)

δ(δMNKK∗)K∗KK∗ = δ(δMN)K∗KK∗ = δMNK∗K.

Hence by (ii) we are done.

Now we are able to prove the conservativity of ∆ over δ.

5A.18. Theorem. For equations E , E and formulas Γ, ϕ of ∆ one has the following.

(i) Γ ⊢∆ ϕ ⇔ Γ+ ⊢δ ϕ+.
(ii) E ⊢∆ E ⇔ E ⊢δ E.

Proof. (i) (⇒) Suppose Γ ⊢∆ ϕ. By induction on this proof in ∆ we show that
Γ+ ⊢δ ϕ+.
Case 1. ϕ is in Γ. Then ϕ+ ∈Γ+ and we are done.
Case 2. ϕ is an equational axiom. Then the result holds since δ has more equational

axioms than ∆.
Case 3. ϕ follows from an equality rule in ∆. Then the result follows from the induction

hypothesis and the fact that δ has the same equational deduction rules.
Case 4. ϕ follows from Γ ⊢∆ ψ and Γ ⊢∆ ψ ⊃ ϕ. By the induction hypothesis

Γ+ ⊢δ (ψ ⊃ ϕ)+ ≡ (δMNPQ = Q) and Γ+ ⊢δ ψ+ ≡ (M = N), where ψ+ ≡ (M = N)
and ϕ+ ≡ (P = Q). Then Γ+ ⊢δ U = δMMPQ = Q, i.e. Γ+ ⊢δ ϕ+.
Case 5. ϕ ≡ (χ ⊃ ψ) and follows by an (⊃-intro) from Γ, χ ⊢∆ ψ.By the induction

hypothesis Γ+, χ+ ⊢δ ψ+ and we can apply the deduction Theorem 5A.14.
Cases 6, 7. ϕ is introduced by a (∀-elim) or (∀-intro). Then the result follows easily

from the induction hypothesis and axiom (β) or the rule (cong-abs). One needs that
FV(Γ) = FV(Γ+).
Case 8. ϕ ≡ (M = N) and follows from Γ,M 6= N ⊢∆ ⊥ using the rule (classical).

By the induction hypothesis Γ+, (M 6= N)+ ⊢δ K = K∗. By the deduction Theorem it
follows that Γ+ ⊢δ δ(δMNKK∗)K∗KK∗ = K∗. Hence we are done by Lemma 5A.17(iii).
Case 9. ϕ is the axiom (M = N ⊃ δMNPQ = P ). Then ϕ+ is provable in δ by

Lemma 5A.15(i).
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Case 10. ϕ is the axiom (M 6= N ⊃ δMNPQ = Q). Then ϕ+ is provable in δ by
Lemma 5A.16(iv).
(⇐) By the fact that δ is a subtheory of ∆ and theorem 5A.11.

(ii) By (i) and the fact that E+ ≡ E.

Logic of order n

In this subsection some results will be sketched but not (completely) proved.

5A.19. Definition. (i) The system ∆ without the two delta rules is denoted by ∆−.

(ii) ∆(n) is ∆− extended by the two delta rules restricted to δA,B’s with rank(A) ≤ n.
(iii) Similarly δ(n) is the theory δ in which only terms δA,B are used with rank(A) ≤ n.
(iv) The rank of a formula ϕ is rank(ϕ) = max{ rank(δ) | δ occurs in ϕ}.

In the applications section we will show that ∆(n) is essentially n-th order logic.
The relation between ∆ and δ that we have seen also holds level by level. We will only

state the relevant results, the proofs being similar, but using as extra ingredient the proof-
theoretic normalization theorem for ∆. This is necessary, since a proof of a formula of
rank n may use a priori formulas of arbitrarily high rank. By the normalization theorem
such formulas can be eliminated.
A natural deduction is called normal if there is no (∀-intro) immediately followed by

a (∀-elim), nor a (⊃-intro) immediately followed by a (⊃-elim). If a deduction is not
normal, then one can subject it to reduction as follows. This idea is from Prawitz [1965].

··· Σ
ϕ

∀x.ϕ
ϕ[x :=M ]

⇒
··· Σ[x :=M ]

ϕ[x :=M ]

··· Σ2

ϕ

[ϕ]
··· Σ1

ψ

ϕ ⊃ ψ
ψ

⇒

··· Σ2

[ϕ]
··· Σ1

ψ

5A.20. Theorem. ∆-reduction on deductions is SN. Moreover, each deduction has a
unique normal form.

Proof. This has been proved essentially in Prawitz [1965]. The higher order quantifiers
pose no problems.
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Notation. (i) Let Γδ be the set of universal closures of

δmmpq = p,

δmnpp= p,

δmnmn= n,

δmnpq = δnmpq,

f(δmnpq) = δmn(fp)(fq),

δmm(p(δmn))(q(δmn)) = δmn(pK)(qK∗).

(ii) Write Γδ(n) , {ϕ∈Γδ | rank(ϕ) ≤ n}.
5A.21. Proposition (Deduction theorem II). Let S be a set of equations or negations
of equations in ∆, such that for (U = V )∈S or (U 6= V )∈S one has for the type A of
U, V that rank(A) ≤ n. Then

(i) S,Γδ(n),M = N ⊢∆(n) P = Q ⇒ S,Γδ(n) ⊢∆(n) δMNPQ = Q.
(ii) S,Γδ(n),M 6= N ⊢∆(n) P = Q ⇒ S,Γδ(n) ⊢∆(n) δMNPQ = P.

Proof. In the same style as the proof of Proposition 5A.14, but now using the normal-
ization Theorem 5A.20.

5A.22. Lemma. Let S be a set of equations or negations of equations in ∆. Let S∗ be S
with each M 6= N replaced by δMNKK∗ = K∗. Then we have the following.

(i) S,M = N ⊢∆(n) P = Q ⇒ S∗ ⊢δ(n) δMNPQ = Q.
(ii) S,M 6= N ⊢∆(n) P = Q ⇒ S∗ ⊢δ(n) δMNPQ = P.

Proof. By induction on derivations.

5A.23. Theorem. E ⊢∆(n) E ⇔ E ⊢δ(n) E.

Proof. (⇒) By taking S = E and M ≡ N ≡ x in Lemma 5A.22(i) one obtains E ⊢δ(n)
δxxPQ = Q. Hence E ⊢δ(n) P = Q, by (δ-identity). (⇐) Trivial.

5A.24. Theorem. (i) Let rank(E ,M = N) ≤ 1. Then

E ⊢∆ M = N ⇔ E ⊢δ(1) M = N.

(ii) Let Γ, A be first-order sentences. Then

Γ ⊢∆ A ⇔ Γ ⊢δ(1) A+.

Proof. See Statman [2000].

In Statman [2000] it is also proved that ∆(0) is decidable. Since ∆(n) for n ≥ 1
is at least first order predicate logic, these systems are undecidable. It is observed in
Gödel [1931] that the consistency of ∆(n) can be proved in ∆(n+ 1).

5B. Surjective pairing

5B.1. Definition. A pairing on a set X consists of three maps π, π1, π2 such that

π :X→X→X
πi :X→X

and for all x1, x2 ∈X one has
πi(πx1x2) = xi.
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Using a pairing one can pack two or more elements of X into one element:

πxy ∈ X,
πx(πyz) ∈ X.

A pairing on X is called surjective if one also has for all x∈X
π(π1x)(π2x) = x.

This is equivalent to saying that every element of X is a pair.

Using a (surjective) pairing one can encode data-structures.

5B.2. Remark. From a (surjective) pairing one can define πn : Xn → X,πni : X → X,
1 ≤ i ≤ n such that

πni (π
nx1 · · ·xn) = xi, 1 ≤ i ≤ n,

πn(πn1x) · · · (πnnx) = x, in case of surjectivity.

Moreover π = π2 and πi = π2i , for 1 ≤ i ≤ 2.

Proof. Define

π1(x) = x

πn+1x1 · · ·xn+1 = π(πnx1 · · ·xn)xn+1

π11(x) = x

πn+1
i (x) = πni (π1(x)), if i ≤ n,

= π2(x), if i = n+ 1.

Surjective pairing is not typable in untyped λ-calculus and therefore also not in λ→,
see Barendregt [1974]. In spite of this in de Vrijer [1989], and later also in Støvring [2006]
for the extensional case, it is shown that adding surjective pairing to untyped λ-calculus
yields a conservative extension. Moreover normal forms remain unique, see de Vrijer
[1987] and Klop and de Vrijer [1989]. By contrast the main results in this section are
the following. 1. After adding a surjective pairing to λ0

→ the resulting system λSP
becomes Hilbert-Post complete. This means that an equation between terms is either
provable or inconsistent. 2. Every recursively enumerable set X of terms that is closed
under provable equality is Diophantine, i.e. satisfies for some terms F,G

M ∈X ⇔ ∃N FMN = GMN.

Both results will be proved by introducing Cartesian monoids and studying freely gen-
erated ones.

The system λSP

Inspired by the notion of a surjective pairing we define λSP as an extension of the simply
typed lambda calculus λ0

→.

5B.3. Definition. (i) The set of types of λSP is simply TT0.
(ii) The terms of λSP , notation ΛSP (or ΛSP (A) for terms of a certain type A or

Λø, ΛøSP (A) for closed terms), are obtained from λ0
→ by adding to the formation of terms

the constants π : 12 = 02→0, π1 : 1, π2 : 1.
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(iii) Equality for λSP is axiomatized by β, η and the following scheme. For all
M,M1,M2 : 0

πi(πM1M2) = Mi;

π(π1M)(π2M) = M.

(iv) A notion of reduction SP is introduced on λSP -terms by the following contraction
rules: for all M,M1,M2 : 0

πi(πM1M2)→Mi;

π(π1M)(π2M)→M.

Usually we will consider SP in combination with βη, obtaining βηSP .

According to a well-known result in Klop [1980] reduction coming from surjective
pairing in untyped lambda calculus is not confluent (i.e. does not satisfy the Church-
Rosser property). This gave rise to the notion of left-linearity in term rewriting, see
Terese [2003]. We will see below, Proposition 5B.10, that in the present typed case the
situation is different.

5B.4. Theorem. The conversion relation =βηSP , generated by the notion of reduction
βηSP, coincides with that of the theory λSP .

Proof. As usual.

For objects of higher type pairing can be defined in terms of π, π1, π2 as follows.

5B.5. Definition. For every type A∈TT we define πA : A→A→A, πi : A→A as follows,
cf. the construction in Proposition 1D.21.

π0 , π;

π0i , πi;

πA→B , λxy:(A→B)λz:A.πB(xz)(yz);

πA→B
i , λx:(A→B)λz:A.πBi (xz).

Sometimes we may suppress type annotations in πA, πA1 , π
A
2 , but the types can always

and unambiguously be reconstructed from the context.
The defined constants for higher type pairing can easily be shown to be a surjective

pairing also.

5B.6. Proposition. Let π = πA, πi = πAi . Then for M,M1,M2 ∈ΛSP (A)

π(π1M)(π2M)։βηSP M ;

πi(πM1M2)։βηSP Mi, (i = 1, 2).

Proof. By induction on the type A.

Note that the above reductions may involve more than one step, typically additional
βη-steps.
Inspired by Remark 5B.2 one can show the following.
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5B.7. Proposition. Let A∈TT0. Then there exist πA,n : ΛøSP (A
n → A), and πA,n

i :
ΛøSP (A→ A), 1 ≤ i ≤ n, such that

πA,n
i (πA,nM1 · · ·Mn) ։βηSP Mi, 1 ≤ i ≤ n,

πA,n(πA,n
1 M) · · · (πA,n

n M) ։βηSP M.

The original π, π1, π2 can be called π0,2, π0,21 , π0,22 .
Now we will show that the notion of reduction βηSP is confluent.

5B.8. Lemma. The notion of reduction βηSP satisfies WCR.

Proof. By the critical pair lemma of Mayr and Nipkow [1998]. But a simpler argument
is possible, since SP reductions only reduce to terms that already did exist, and hence
cannot create any redexes.

5B.9. Lemma. (i) The notion of reduction SP is SN.

(ii) If M ։βηSP N , then there exists P such that M ։βη P ։SP N .

(iii) The notion of reduction βηSP is SN.

Proof. (i) Since SP -reductions are strictly decreasing.

(ii) Show M →SP L →βη N ⇒ ∃L′M ։βη L′ ։βηSP N . Then (ii) follows by a
staircase diagram chase.

(iii) By (i), the fact that βη is SN and a staircase diagram chase, possible by (ii).

Now we show that the notion of reduction βηSP is confluent, in spite of being not
left-linear.

5B.10. Proposition. βηSP is confluent.

Proof. By lemma 5B.9(iii) and Newman’s Lemma 5C.8.

5B.11. Definition. (i) An SP-retraction pair from A to B is a pair of terms M :A→B
and N :B→A such that N ◦M =βηSP IA.

(ii) A is a SP-retract of B, notation A ⊳SP B, if there is an SP -retraction pair from
A to B.

The proof of the following result is left as an exercise to the reader.

5B.12. Proposition. Define types Nn as follows. N0 , 0 and Nn+1 , Nn→Nn. Then
for every type A, one has A ⊳SP Nrank(A).

Cartesian monoids

We start with the definition of a Cartesian monoid, introduced in Scott [1980] and,
independently, in Lambek [1980].

5B.13. Definition. (i) A Cartesian monoid is a structure

C , 〈M, ∗, I, L,R, 〈·, ·〉〉
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such that (M, ∗, I) is a monoid (∗ is associative and I is a two sided unit), L,R∈M
and 〈·, ·〉 :M2→M and satisfy for all x, y, z ∈M

L ∗ 〈x, y〉= x

R ∗ 〈x, y〉= y

〈x, y〉 ∗ z = 〈x ∗ z, y ∗ z〉
〈L,R〉= I

(ii) M is called trivial if L = R.
(iii) A map f :M→M′ is a morphism if

f(m ∗ n) = f(m) ∗ f(n);
f(〈m,n〉) = 〈f(m), f(n)〉,

f(L) = L′,

f(R) = R′.

Then automatically one has f(I) = I ′.

Note that ifM is trivial, then it consists of only one element: for all x, y ∈M
x = L ∗ 〈x, y〉 = R ∗ 〈x, y〉 = y.

5B.14. Lemma. The last axiom of the Cartesian monoids can be replaced equivalently by
the surjectivity of the pairing:

〈L ∗ x,R ∗ x〉 = x.

Proof. First suppose 〈L,R〉 = I. Then 〈L∗x,R∗x〉 = 〈L,R〉∗x = I∗x = x. Conversely
suppose 〈L ∗ x,R ∗ x〉 = x, for all x. Then 〈L,R〉 = 〈L ∗ I, R ∗ I〉 = I.

5B.15. Lemma. LetM be a Cartesian monoid. Then for all x, y ∈M
L ∗ x = L ∗ y & R ∗ x = R ∗ y ⇒ x = y.

Proof. x = 〈L ∗ x,R ∗ x〉 = 〈L ∗ y,R ∗ y〉 = y.

A first example of a Cartesian monoid has as carrier set the closed βηSP -terms of
type 1 = 0→0.

5B.16. Definition. Write for M,N ∈ΛøSP (1)
〈M,N〉, π1MN ;

M ◦N , λx:0.M(Nx);

I, λx:0.x;

L, π01;

R, π02.

Define

C0 = 〈ΛøSP (1)/ =βηSP , ◦, I, L,R, 〈·, ·〉〉.
The reason to call this structure C0 and not C1 is that we will generalize it to Cn being
based on terms of the type 1n→1.

5B.17. Proposition. C0 is a non-trivial Cartesian monoid.
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Proof. For x, y, z:1 the following equations are valid in λSP .

I ◦ x= x;

x ◦ I= x;

L ◦ 〈x, y〉= x;

R ◦ 〈x, y〉= y;

〈x, y〉 ◦ z = 〈x ◦ z, y ◦ z〉;
〈L,R〉= I.

The third equation is intuitively right, if we remember that the pairing on type 1 is lifted
pointwise from a pairing on type 0; that is, 〈f, g〉 = λx.π(fx)(gx).

5B.18. Example. Let [·, ·] be any surjective pairing of natural numbers, with left and
right projections l, r : N→N. For example, we can take Cantor’s well-known bijection13

from N2 to N. We can lift the pairing function to the level of functions by putting
〈f, g〉(x) = [f(x), g(x)] for all x∈N. Let I be the identity function and let ◦ denote
function composition. Then

N 1 , 〈N→N, I, ◦, l, r, 〈·, ·〉〉.
is a non-trivial Cartesian monoid.

Now we will show that the equalities in the theory of Cartesian monoids are generated
by a confluent rewriting system.

5B.19. Definition. (i) Let TCM be the terms in the signature of Cartesian monoids,
i.e. built up from constants {I, L,R} and variables, using the binary constructors 〈−,−〉
and ∗.

(ii) Sometimes we need to be explicit which variables we use and set Tn
CM equal to

the terms generated from {I, L,R} and variables x1, · · · ,xn, using 〈−,−〉 and ∗. In
particular T 0

CM consists of the closed such terms, without variables.
(iii) Consider the notion of reduction CM on TCM, giving rise to the reduction relations
→CM and its transitive reflexive closure ։CM , introduced by the contraction rules

L ∗ 〈M,N〉 →M

R ∗ 〈M,N〉 →N

〈M,N〉 ∗ T → 〈M ∗ T,N ∗ T 〉
〈L,R〉 → I

〈L ∗M,R ∗M〉 →M

I ∗M →M

M ∗ I →M
modulo the associativity axioms (i.e. the termsM ∗(N ∗L) and (M ∗N)∗L are considered
to be the same), see Terese [2003]. The following result is mentioned in Curien [1993].

5B.20. Proposition. (i) CM is WCR.
(ii) CM is SN.
(iii) CM is CR.

13A variant of this function is used in Section 5C as a non-surjective pairing function [x, y] + 1, such
that, deliberately, 0 does not encode a pair. This variant is specified in detail and explained in Figure 12.
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Proof. (i) Examine all critical pairs. Modulo associativity there are many such pairs,
but they all converge. Consider, as an example, the following reductions:

x ∗ z ← (L ∗ 〈x, y〉) ∗ z = L ∗ (〈x, y〉) ∗ z)→ L ∗ 〈x ∗ z, y ∗ z〉 → x ∗ z.
(ii) Interpret CM as integers by putting

[[x]] = 2;

[[e]] = 2, if e is L,R or I;

[[e1 ∗ e2]] = [[e1]].[[e2]];

[[〈e1, e2〉]] = [[e1]] + [[e2]] + 1.

Then [[·]] preserves associativity and

e→CM e′ ⇒ [[e]] > [[e′]].

Therefore CM is SN.
(iii) By (i), (ii) and Newman’s lemma 5C.8.

Closed terms in CM -nf can be represented as binary trees with strings of L,R (the
empty string becomes I) at the leaves. For example

•
��
�� 44

44

•
��
�� ++

++
LRR

LL I

represents 〈〈L ∗ L, I〉, L ∗R ∗R〉. In such trees the subtree corresponding to 〈L,R〉 will
not occur, since this term reduces to I.

The free Cartesian monoids F [x1, · · · , xn]
5B.21. Definition. (i) The closed term model of the theory of Cartesian monoids con-
sists of T 0

CM modulo =CM and is denoted by F . It is the free Cartesian monoid with no
generators.

(ii) The free Cartesian monoid over the generators ~x = x1, · · · ,xn, notation F [~x], is
Tn
CM modulo =M.

5B.22. Proposition. (i) For all a, b∈F one has

a 6= b ⇒ ∃c, d∈F [c ∗ a ∗ d = L & c ∗ b ∗ d = R].

(ii) F is simple: every homomorphism g : F→M to a non-trivial Cartesian monoid
M is injective.

Proof. (i) We can assume that a, b are in normal form. Seen as trees (not looking at
the words over {L,R} at the leaves) the a, b can be made congruent by expansions of
the form x ← 〈L ∗ x,R ∗ x〉. These expanded trees are distinct in some leaf, which can
be reached by a string of L’s and R’s joined by ∗. Thus there is such a string, say c,
such that c ∗ a 6= c ∗ b and both of these reduce to 〈 〉-free strings of L’s and R’s joined
by ∗. We can also assume that neither of these strings is a suffix of the other, since c
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could be replaced by L ∗ c or R ∗ c (depending on an R or an L just before the suffix).
Thus there are 〈 〉-free a′, b′ and integers k, l such that

c ∗ a ∗ 〈I, I〉k ∗ 〈R,L〉l = a′ ∗ L and

c ∗ b ∗ 〈I, I〉k ∗ 〈R,L〉l = b′ ∗R
and there exist integers n and m, being the length of a′ and of b′, respectively, such
that

a′ ∗ L ∗ 〈〈I, I〉n ∗ L, 〈I, I〉m ∗R〉= L and

b′ ∗R ∗ 〈〈I, I〉n ∗ L, 〈I, I〉m ∗R〉= R

Therefore we can set d = 〈I, I〉k ∗ 〈R,L〉l ∗ 〈〈I, I〉n ∗ L, 〈I, I〉m ∗R〉.
(ii) By (i) and the fact thatM is non-trivial.

Finite generation of F [x1, · · · ,xn]
Now we will show that F [x1, · · · ,xn] is finitely generated as a monoid, i.e. from finitely
many of its elements using the operation ∗ only.
5B.23. Notation. In a monoidM we define list-like left-associative and right-associative
iterated 〈 〉-expressions of length > 0 as follows. Let the elements of ~x range overM.

〈〈x〉 , x;

〈〈x1, · · · , xn+1〉 , 〈〈〈x1, · · · , xn〉, xn+1〉, n > 0;

〈x〉〉 , x;

〈x1, · · · , xn+1〉〉 , 〈x1, 〈x2, · · · , xn+1〉〉〉, n > 0.

5B.24. Definition. (i) For H ⊆ F let [H] be the submonoid of F generated by H using
the operation ∗.

(ii) Define the finite subset G ⊆ F as follows.

G , {〈X ∗ L, Y ∗ L ∗R,Z ∗R ∗R〉〉 | X,Y, Z ∈{L,R, I}} ∪ {〈I, I, I〉〉}.
We will show that [G] = F .
5B.25. Lemma. Define a string to be an expression of the form X1 ∗ · · · ∗ Xn, with
Xi ∈{L,R, I}. Then for all strings s, s1, s2, s3 one has the following.

(i) 〈s1, s2, s3〉〉 ∈ [G].
(ii) s∈ [G].

Proof. (i) Note that

〈X ∗ L, Y ∗ L ∗R,Z ∗R ∗R〉〉 ∗ 〈s1, s2, s3〉〉 = 〈X ∗ s1, Y ∗ s2, Z ∗ s3〉〉.
Hence, starting from 〈I, I, I〉〉 ∈G every triple of strings can be generated because the
X,Y, Z range over {L,R, I}.

(ii) Notice that
s= 〈L,R〉 ∗ s
= 〈L ∗ s,R ∗ s〉
= 〈L ∗ s, 〈L,R〉 ∗R ∗ s〉
= 〈L ∗ s, L ∗R ∗ s,R ∗R ∗ s〉〉,



202 5. Extensions

which is in [G] by (i).

5B.26. Lemma. Let e1, · · · ,en ∈F . Suppose 〈〈e1, · · · ,en〉 ∈ [G]. Then
(i) ei ∈ [G], for 1 ≤ i ≤ n.
(ii) 〈〈e1, · · · , en, 〈ei, ej〉〉 ∈ [G] for 0 ≤ i, j ≤ n.
(iii) 〈〈e1, · · · , en, X ∗ ei〉 ∈ [G] for X ∈{L,R, I}.

Proof. (i) By Lemma 5B.25(ii) one has F1 ≡ L(n−1) ∈ [G] and
Fi ≡ R ∗ L(n−i) ∈ [G]. Hence

e1 = F1 ∗ 〈〈e1, · · · , en〉 ∈ [G];
ei = Fi ∗ 〈〈e1, · · · , en〉 ∈ [G], for i = 2, · · · , n.

(ii) By Lemma 5B.25(i) one has 〈I, 〈Fi, Fj〉〉 = 〈I, Fi, Fj〉〉 ∈ [G]. Hence
〈〈e1, · · · , en, 〈ei, ej〉〉 = 〈I, 〈Fi, Fj〉〉 ∗ 〈〈e1, · · · , en〉 ∈ [G].

(iii) Similarly 〈〈e1, · · · , en, X ∗ ei〉 = 〈I,X ∗ Fi〉 ∗ 〈〈e1, · · · , en〉 ∈ [G].
5B.27. Theorem. As a monoid, F is finitely generated. In fact F = [G].
Proof. We have e∈F iff there is a sequence e1 ≡ L, e2 ≡ R, e3 ≡ I, · · · , en ≡ e such
that for each 4 ≤ k ≤ n there are i, j < k such that ek ≡ 〈ei, ej〉 or ek ≡ X ∗ ei, with
X ∈{L,R, I}.
By Lemma 5B.25(i) we have 〈〈e1, e2, e3〉 ∈ [G]. By Lemma 5B.26(ii), (iii) it follows that

〈〈e1, e2, e3, · · · , en〉 ∈ [G].
Therefore by (i) of that lemma e ≡ en ∈ [G].
The following corollary is similar to a result of Böhm, who showed that the monoid of
untyped lambda terms has two generators, see B[1984].

5B.28. Corollary. (i) Let M be a finitely generated Cartesian monoid. Then M is
generated by two of its elements.

(ii) F [x1, · · · ,xn] is generated by two elements.

Proof. (i) Let G = {g1, · · · , gn} be the set of generators ofM. Then G and henceM
is generated by R and 〈〈g1, · · · , gn, L〉.

(ii) F [~x] is generated by G and the ~x, hence by (i) by two elements.

Invertibility in F
5B.29. Definition. (i) Let L (R) be the submonoid of the right (left) invertible ele-
ments of F

L, {a∈F | ∃b∈F b ∗ a = I};
R, {a∈F | ∃b∈F a ∗ b = I}.

(ii) Let I be the subgroup of F consisting of invertible elements

I , {a∈F | ∃b∈F a ∗ b = b ∗ a = I}.
It is easy to see that I = L ∩R. Indeed, if a∈L ∩R, then there are b, b′ ∈F such that
b ∗ a = I = a ∗ b′. But then b = b ∗ a ∗ b′ = b′, so a∈I. The converse is trivial.

5B.30. Examples. (i) L,R∈R, since both have the right inverse 〈I, I〉.
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(ii) The element a = 〈〈R,L〉, L〉 having as ‘tree’

•
��
�� **

**

•
��
�� ))

))
L

R L

has as left inverse b = 〈R,LL〉, where we do not write the ∗ in strings.
(iii) The element •

��
�� **

**

•
��
�� ))

))
L

L L

has no left inverse, since “R cannot be obtained”.

(iv) The element a = 〈〈RL,LL〉, RR〉 having the following tree

•
��
�� 44

44

•
��
�� --

--
RR

RL LL

has the following right inverse b = 〈〈RL,LL〉, 〈c, R〉〉. Indeed
a ∗ b = 〈〈RLb, LLb〉, RRb〉 = 〈〈LL,RL〉, R〉 = 〈L,R〉 = I.

(v) The element •
{{

{{
{

@@
@@

@

•
��
�� 44

44
•

��
�� ..

..

•
��
�� --

--
LL RR RL

LL LR

has no right inverse, as “LL occurs twice”.

(vi) The element •
		

		 77
77

•
��
�� 44

44
RL

•
��
�� --

--
RR

LL LR

has a two-sided inverse, as “all strings of two

letters” occur exactly once, the inverse being •
~~

~~
~

FF
FF

FF

•
��
�� --

--
•

��
�� //

//

LLL R RLL RL

.

For normal forms f ∈F we have the following characterizations.
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5B.31. Proposition. (i) f has a right inverse if and only if f can be expanded (by
replacing x by 〈Lx,Rx〉) so that all of its strings at the leaves have the same length and
none occurs more than once.

(ii) f has a left inverse if and only if f can be expanded so that all of its strings at
the leaves have the same length, say n, and each of the possible 2n strings of this length
actually occurs.

(iii) f is doubly invertible if and only if f can be expanded so that all of its strings at
the leaves have the same length, say n, and each of the possible 2n strings of this length
occurs exactly once.

Proof. This is clear from the examples.

The following terms are instrumental to generate I and R.
5B.32. Definition. Bn , 〈LR0, · · · , LRn−1, LLRn, RLRn, RRn〉〉;

C0 , 〈R,L〉,
Cn+1 , 〈LR0, · · · , LRn−1, LRRn, LRn, RRRn〉〉.

5B.33. Proposition. (i) I is the subgroup of F generated (using ∗ and −1) by

{Bn | n∈N} ∪ {Cn | n∈N}.

(ii) R = [{L} ∪ I] = [{R} ∪ I], where [ ] is defined in Definition 5B.24.

Proof. (i) In fact I = [{B0, B
−1
0 , B1, B

−1
1 , C0, C1}]. Here [H] is the subset generated

from H using only ∗. Do Exercise 5F.15.

(ii) By Proposition 5B.31.

5B.34. Remark. (i) The Bn alone generate the so-called Thompson-Freyd-Heller group,
see exercise 5F.14(iv).

(ii) A related group consisting of λ-terms is G(λη) consisting of invertible closed
untyped lambda terms modulo βη-conversion, see B84, Section 21.3.

5B.35. Proposition. If f(~x) and g(~x) are distinct members of F [~x], then there exists
~h∈F such that f(~h) 6= g(~h). We say that F [~x] is separable.

Proof. Suppose that f(~x) and g(~x) are distinct normal members of F [~x]. We shall

find ~h such that f(~h) 6= g(~h). First remove subexpressions of the form L ∗ xi ∗ h and
R ∗ xj ∗ h by substituting 〈y, z〉 for xi, xj and renormalizing. This process terminates,
and is invertible by substituting L ∗ xi for y and R ∗ xj for z. Thus we can assume that
f(~x) and g(~x) are distinct normal and without subexpressions of the two forms above.
Indeed, expressions like this can be recursively generated as a string of xi’s followed by
a string of L’s and R’s, or as a string of xi’s followed by a single 〈 〉 of expressions of the
same form. Let m be a large number relative to f(~x), g(~x) (> #f(~x),#g(~x), where #t
is the number of symbols in t.) For each positive integer i, with 1 ≤ i ≤ n, set

hi = 〈〈Rm, · · · , Rm, I〉〉, Rm〉

where the right-associative 〈Rm, · · · , Rm, I〉〉-expression contains i times Rm. We claim

that both f(~x) and g(~x) can be reconstructed from the normal forms of f(~h) and g(~h),

so that f(~h) 6= g(~h).
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Define dr(t), for a normal t∈F , as follows.

dr(~w) , 0, if ~w is a string of L,R’s;

dr(〈t, s〉) , dr(s) + 1.

Note that if t is a normal member of F and dr(t) < m, then

hi ∗ t =CM 〈〈t′, · · · , t′, t〉〉, t′〉,

where t′ ≡ Rmt is 〈 〉-free. Also note that if s is the CM-nf of hi ∗ t, then dr(s) = 1. The

normal form of, say, f(~h) can be computed recursively bottom up as in the computation
of the normal form of hi ∗ t above. In order to compute back f(~x) we consider several
examples.

f1(~x) = x3R;

f2(~x) = 〈〈R2, R2, R2, R〉〉, R2〉;
f3(~x) = x2〈R,R,L〉〉;
f4(~x) = x3x1x2R;

f5(~x) = x3x1〈x2R,R〉.

Then f1(~h), · · · , f5(~h) have as trees respectively

???
��

��

R∗

??
??���

??
??���

???���

R

R∗

R∗

R∗

???
��

��

R2

??
??���

??
??���

??
?

���

R

R2

R2

R2

???
��

��

R∗L
??

??���

??
??���

??
??���

???���

L

R∗L

R∗L

R

R
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???
��

��

R∗

??
??���

??
??���

??
??���

???
��

��

R∗

R∗

R∗

R∗

??
??���

???
��

��

R∗

R∗

??
??���

???���

R

R∗

R∗

???
��

��

R∗

??
??���

??
??���

??
??���

???
��

��

R∗

R∗

R∗

R∗

??
??���

???
��

��

R

R∗

???
��

��

R∗

??
??���

???���

R

R∗

R∗

In these trees the R∗ denote long sequences of R’s of possibly different lengths.

Cartesian monoids inside λSP

Remember C0 = 〈ΛøSP (1)/ =βηSP , ◦, I, L,R, 〈·, ·〉〉.
5B.36. Proposition. There is a surjective homomorphism h : F→C0.
Proof. If M : 1 is a closed term and in long βηSP normal form, then M has one of
the following shapes: λa.a, λa.πX1X2, λa.πiX for i = 1 or i = 2. Then we have M ≡ I,
M = 〈λa.X1, λa.X2〉, M = L ◦ (λa.X) or M = R ◦ (λa.X), respectively. Since the terms
λa.Xi are smaller than M , this yields an inductive definition of the set of closed terms
of λSP modulo = in terms of the combinators I, L,R, 〈 〉, ◦. Thus the elements of C0 are
generated from {I, ◦, L,R, 〈·, ·〉} in an algebraic way. Now define

h(I) = I;

h(L) = L;

h(R) = R;

h(〈a, b〉) = 〈h(a), h(b)〉;
h(a ∗ b) = h(a) ◦ h(b).

Then h is a surjective homomorphism.

Now we will show in two different ways that this homomorphism is in fact injective and
hence an isomorphism.

5B.37. Theorem. F ∼= C0.
Proof 1. We will show that the homomorphism h in Proposition 5B.36 is injective. By
a careful examination of CM -normal forms one can see the following. Each expression
can be rewritten uniquely as a binary tree whose nodes correspond to applications of
〈·, ·〉 with strings of L’s and R’s joined by ∗ at its leaves (here I counts as the empty
string) and no subexpressions of the form 〈L ∗ e,R ∗ e〉. Thus
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a 6= b ⇒ anf 6≡ bnf ⇒ h(anf) 6= h(bnf) ⇒ h(a) 6= h(b),

so h is injective. 1

Proof 2. By Proposition 5B.22. 2

The structure C0 will be generalized as follows.

5B.38. Definition. Consider the type 1n→1 = (0→0)n→0→0. Define

Cn , 〈ΛøSP (1n→1)/ =βηSP , In, Ln,Rn, ◦n, 〈−,−〉n〉,
where writing ~x = x1, · · · , xn:1

〈M,N〉n , λ~x.〈M~x,N~x〉;
M ◦n N , λ~x.(M~x) ◦ (N~x);

In , λ~x.I;

Ln , λ~x.L;

Rn , λ~x.R.

5B.39. Proposition. Cn is a non-trivial Cartesian monoid.

Proof. Easy.

5B.40. Proposition. Cn ∼= F [x1, · · · , xn].
Proof. As before, let hn : F [~x]→Cn be induced by

hn(xi) = λ~xλz:0.xiz = λ~x.xi;
hn(I) = λ~xλz:0.z = In;
hn(L) = λ~xλz:0.π1z = Ln;
hn(R) = λ~xλz:0.π2z = Rn;

hn(〈s, t〉) = λ~xλz:0.π(s~xz)(t~xz) = 〈hn(s), hn(t)〉n.
As before one can show that this is an isomorphism.

In the sequel an important case is n = 1, i.e. C1→1 ∼= F [x].

Hilbert-Post completeness of λ→SP

The claim that an equation M = N is either a βηSP convertibility or inconsistent is
proved in two steps. First it is proved for the type 1→1 by the analysis of F [x]; then it
follows for arbitrary types by reducibility of types in λSP .
Remember that M#TN means that T ∪ {M = N} is inconsistent.

5B.41. Proposition. (i) Let M,N ∈ΛøSP (1). Then

M 6=βηSP N ⇒ M#βηSPN.

(ii) The same holds for M,N ∈ΛøSP (1→1).

Proof. (i) Since F ∼= C0 = ΛøSP (1), by Theorem 5B.37, this follows from Proposition
5B.22(i).
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(ii) If M,N ∈ΛøSP (1→1), then

M 6= N ⇒ λf :1.Mf 6= λf :1.Nf

⇒ Mf 6= Nf

⇒ MF 6= NF, for some F ∈ΛøSP (1), by 5B.35,

⇒ MF#NF, by (i) as MF,NF ∈ΛøSP (1),
⇒ M#N.

We now want to generalize this last result for all types by using type reducibility in
the context of λSP .

5B.42. Definition. Let A,B ∈TT. We say that A is βηSP-reducible to B, notation

A ≤βηSP B,

if there exists Φ : A→B such that for any closed N1, N2 : A

N1 = N2 ⇔ ΦN1 = ΦN2.

5B.43. Proposition. For each type A one has A ≤βηSP 1→1.

Proof. We can copy the proof of 3D.8 to obtain A ≤βηSP 12→0→0. Moreover, by

λuxa.u(λz1z2.x(π(xz1)(xz2)))a

one has 12→0→0 ≤βηSP 1→1.

5B.44. Corollary. Let A∈TT and M,N ∈ΛøSP . Then

M 6=βηSP N ⇒ M#βηSPN.

Proof. Let A ≤βηSP 1→1 using Φ. Then

M 6= N ⇒ ΦM 6= ΦN
⇒ ΦM#ΦN, by corollary 5B.41(ii),
⇒ M#N.

We obtain the following Hilbert-Post completeness theorem.

5B.45. Theorem. LetM be a model of λSP . For any type A and closed termsM,N ∈Λø(A)
the following are equivalent.

(i) M =βηSP N ;

(ii) M |=M = N ;

(iii) λSP ∪ {M = N} is consistent.

Proof. ((i)⇒(ii)) By soundness. ((ii)⇒(iii)) Since truth implies consistency. ((iii)⇒(i))
By corollary 5B.44.

The result also holds for equations between open terms (consider their closures). The
moral is that every equation is either provable or inconsistent. Or that every model of
λSP has the same (equational) theory.
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Diophantine relations

5B.46. Definition. Let R ⊆ ΛøSP (A1)× · · · × ΛøSP (An) be an n-ary relation.
(i) R is called equational if

∃B ∈TT0∃M,N ∈ΛøSP (A1→· · ·→An→B) ∀~F
R(F1, · · · , Fn) ⇔ MF1 · · ·Fn = NF1 · · ·Fn. (1)

Here = is taken in the sense of the theory of λSP .
(ii) R is called the projection of the n+m-ary relation S if

R(~F ) ⇔ ∃~G S(~F , ~G)

(iii) R is called Diophantine if it is the projection of an equational relation.

Note that equational relations are closed coordinate wise under = and are recursive
(since λSP is CR and SN). A Diophantine relation is clearly closed under = (coordinate
wise) and recursively enumerable. Our main result will be the converse. The proof
occupies 5B.47-5B.57.

5B.47. Proposition. (i) Equational relations are closed under substitution of lambda
definable functions. This means that if R is equational and R′ is defined by

R′(~F )⇐⇒△ R(H1
~F , · · · , Hn

~F ),

then R′ is equational.
(ii) Equational relations are closed under conjunction.
(iii) Equational relations are Diophantine.
(iv) Diophantine relations are closed under substitution of lambda definable functions,

conjunction and projection.

Proof. (i) Easy.
(ii) Use (simple) pairing. E.g.

M1
~F = N1

~F &M2
~F = N2

~F ⇔ π(M1
~F )(M2

~F ) = π(N1
~F )(N2

~F )

⇔ M ~F = N ~F ),

with M ≡ λ~f.π(M1
~f)(M2

~f) and N is similarly defined.
(iii) By dummy projections.
(iv) By some easy logical manipulations. E.g. let

Ri(~F ) ⇔ ∃~Gi.Mi
~Gi
~F = Ni

~Gi
~F .

Then

R1(~F ) & R2(~F ) ⇔ ∃~G1
~G2.[M1

~G1
~F = N1

~G1
~F &M2

~G2
~F = N2

~G2
~F ]

and we can use (i).

5B.48. Lemma. Let Φi : Ai ≤SP (1 → 1) and let R ⊆ Πn
i=1Λ

ø
SP (Ai) be =-closed coordi-

natewise. Define RΦ ⊆ ΛøSP (1→1)n by

RΦ(G1, · · · , Gn) ⇔ ∃F1 · · ·Fn [Φ1F1 = G1& · · ·ΦnFn = Gn & R(F1, · · · , Fn)].

We have the following.
(i) If RΦ is Diophantine, then R is Diophantine.
(ii) If RΦ is re, then R is re.
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Proof. (i) By Proposition 5B.47(iv), noting that

R(F1, · · · , Fn) ⇔ RΦ(Φ1F1, · · · ,ΦnFn).

(ii) Similarly.

From Proposition 5B.7 we can assume without loss of generality that n = 1 in Dio-
phantine equations.

5B.49. Lemma. Let R ⊆ (ΛøSP (1→1))n closed under =. Define R∧ ⊆ ΛøSP (1→1) by

R∧(F ) ⇔ R(π1→1,n
1 (F ), · · · , π1→1,n

n (F )).

Then
(i) R is Diophantine iff R∧ is Diophantine.
(ii) R is re iff R∧ is re.

Proof. By Proposition 5B.47(i) and the pairing functions π1→1,n.

Note that

R(F1, · · · ,Fn) ⇔ R∧(π1→1,nF1 · · ·Fn).

5B.50. Corollary. In order to prove that every re relation R ⊆ Πn
i=1Λ

ø
SP (Ai) that is

closed under =βηSP is Diophantine, it suffices to do this just for such R ⊆ ΛøSP (1→1).

Proof. By the previous two lemmas.

So now we are interested in recursively enumerable subsets of ΛøSP (1→1) closed under
=βηSP . Since

(T 1
CM/=CM ) = F [x] ∼= C1 = (ΛøSP (1→1)/ =βηSP )

one can shift attention to relations on T 1
CM closed under =CM. We say loosely that such

relations are on F [x]. The definition of such relations to be equational (Diophantine) is
slightly different (but completely in accordance with the isomorphism C1 ∼= F [x]).
5B.51. Definition. A k-ary relation R on F [~x] is called Diophantine if there exist
s(u1, · · · ,uk, ~v), t(u1, · · · ,uk, ~v)∈F [~u,~v] such that

R(f1[~x], · · · , fk[~x]) ⇔ ∃~v ∈F [~x].s(f1[~x], · · · , fk[~x], ~v) = t(f1[~x], · · · , fk[~x], ~v).
The isomorphism hn : F [~x]→ Cn given by Proposition 5B.38 induces an isomorphism

hkn : (F [~x])k → (Cn)k.
Diophantine relations on F are closed under conjunction as before.

5B.52. Proposition (Transfer lemma). (i) Let X ⊆ (F [x1, · · · ,xn])k be equational (Dio-
phantine). Then hkn(X) ⊆ (Cn)k is equational (Diophantine), respectively.

(ii) Let X ⊆ (Cn)k be re and closed under =βηSP . Then

(hkn)
−1(X) ⊆ (F [x1, · · · ,xn])k is re and closed under =CM.

5B.53. Corollary. In order to prove that every re relation on C1 closed under =βηSP

is Diophantine it suffices to show that every re relation on F [x] closed under =CM is
Diophantine.

Before proving that every =-closed recursively enumerable relation on F [x] is Dio-
phantine, for the sake of clarity we shall give the proof first for F . It consists of two
steps: first we encode Matijasevič’s solution to Hilbert’s 10th problem into this setting;
then we give a Diophantine coding of F in F , and finish the proof for F . Since the
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coding of F can easily be extended to F [x] the result then holds also for this structure
and we are done.

5B.54. Definition. Write s0 , I, sn+1 , Rn+1, elements of F . The set of numerals in
F is defined by

N , {sn | n∈N}.
We have the following.

5B.55. Proposition. f ∈N ⇔ f ∗R = R ∗ f.
Proof. This is because if f is normal and f ∗R = R ∗ f , then the binary tree part of
f must be trivial, i.e. f must be a string of L’s and R’s, therefore consists of only R’s.

5B.56. Definition. A sequence of k-ary relations Rn ⊆ F is called Diophantine uni-
formly in n if there is a k + 1-ary Diophantine relation P ⊆ Fk+1 such that

Rn(~u) ⇔ P (sn, ~u).

Now we build up a toolkit of Diophantine relations on F .
1. N is equational (hence Diophantine).

Proof. In 5B.55 it was proved that

f ∈N ⇔ f ∗R = R ∗ f.
2. The sets F ∗ L, F ∗R ⊆ F and {L,R} are equational. In fact one has

(i) f ∈F ∗ L ⇔ f ∗ 〈L,L〉 = f.
(ii) f ∈F ∗R ⇔ f ∗ 〈R,R〉 = f.
(iii) f ∈{L,R} ⇔ f ∗ 〈I, I〉 = I.

Proof.
(i) Notice that if f ∈F ∗L, then f = g ∗L, for some g ∈F , hence f ∗ 〈L,L〉 = f .

Conversely, if f = f ∗ 〈L,L〉, then f = f ∗ 〈I, I〉 ∗ L∈F ∗ L.
(ii) Similarly.
(iii) (⇐) By distinguishing the possibile shapes of the nf of f .

3. Notation

[ ] , R;

[f0, · · · , fn−1] , 〈f0 ∗ L, · · · , fn−1 ∗ L,R〉〉, if n > 0.

One easily sees that [f0, · · · , fn−1] ∗ [I, fn] = [f0, · · · , fn]. Write

Auxn(f), [f, f ∗R, · · · , f ∗Rn−1].

Then the relations h = Auxn(f) are Diophantine uniformly in n.

Proof. Indeed,

h = Auxn(f) ⇔ Rn ∗ h = R & h = R ∗ h ∗ 〈〈L,L〉, 〈f ∗Rn−1 ∗ L,R〉〉.
To see (⇒), assume h = [f, f ∗R, · · · , f ∗Rn−1], then
h = 〈f ∗ L, f ∗R ∗ L, · · · , f ∗Rn−1 ∗ L,R〉〉, so Rn ∗ h = R and

R ∗ h= [f ∗R, · · · , f ∗Rn−1]

R ∗ h ∗ 〈〈L,L〉, 〈f ∗Rn−1 ∗ L,R〉〉= [f, f ∗R, · · · , f ∗Rn−1]

= h.
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To see (⇐), note that we always can write h = 〈h0, · · · , hn〉〉. By the assumptions
hn = R and h = R ∗ h ∗ 〈〈L,L〉, 〈f ∗Rn−1 ∗ L,R〉〉 = R ∗ h ∗—, say. So by reading
the following equality signs in the correct order (first the left =’s top to bottom;
then the right =’s bottom to top) it follows that

h0 = h1 ∗ — = f ∗ L
h1 = h2 ∗ — = f ∗R ∗ L
· · ·

hn−2 = hn−1 ∗ — = f ∗Rn−2 ∗ L
hn−1 = f ∗Rn−1 ∗ L
hn = R.

Therefore h = Auxn(f) .
4. Write Seqn(f)⇐⇒△ f = [f0, · · · , fn−1], for some f0, · · · , fn−1. Then Seqn is Dio-

phantine uniformly in n.

Proof. One has Seqn(f) iff

Rn ∗ f = R & Auxn(L) ∗ 〈I, L〉 ∗ f = Auxn(L) ∗ 〈I, L〉 ∗ f ∗ 〈L,L〉,
as can be proved similarly (use 2(i)).

5. Define
Cpn(f), [f, · · · , f ], (n times f).

(By default Cp0(f), [ ],R.) Then Cpn(f) = g is Diophantine uniformly in n.

Proof. Cpn(f) = g iff

Seqn(g) & g = R ∗ g ∗ 〈L, f ∗ L,R〉〉.
6. Let Pown(f), fn. Then Pown(f) = g is Diophantine uniformly in n.

Proof. One has Pown(f) = g iff

∃h[Seqn(h) & h = R ∗ h ∗ 〈f ∗ L, f ∗ L,R〉〉 & L ∗ h = g].

This can be proved in a similar way (it helps to realize that h has to be of the form
h = [fn, · · · , f1]).
Now we can show that the operations + and × on N are Diophantine.

7. There are Diophantine ternary relations P+, P× such that for all n,m, k
(1) P+(sn, sm, sk) ⇔ n+m = k.
(2) P×(sn, sm, sk) ⇔ n.m = k.

Proof. (i) Define P+(x, y, z) ⇔ x ∗ y = z. This relation is Diophantine and
works: Rn ∗Rm = Rk ⇔ Rn+m = Rk ⇔ n+m = k.

(ii) Let Pown(f) = g ⇔ P (sn, f, g), with P Diophantine. Then choose
P× = P .

8. Let X ⊆ N be a recursively enumerable set of natural numbers. Then {sn | n∈X}
is Diophantine.

Proof. By 7 and the famous Theorem of Matiyasevič [1972].

9. Define SeqNn , {[sm0 , · · · , smn−1 ] | m0, · · · ,mn−1 ∈N}. Then the relation f ∈ SeqNn
is Diophantine uniformly in n.

Proof. Indeed, f ∈ SeqNn iff

Seqn(f) & f ∗ 〈R ∗ L,R〉 = Auxn(R ∗ L) ∗ 〈I, Rn〉 ∗ f.
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10. Let f = [f0, · · · , fn−1] and g = [g0, · · · , gn−1]. We write

f#g = [f0 ∗ g0, · · · , fn−1 ∗ gn−1].

Then there exists a Diophantine relation P such that for arbitrary n and f, g ∈ Seqn
one has

P (f, g, h) ⇔ h = f#g.

Proof. Let

Cmpn(f) = [L ∗ f, L ∗R ∗ f ∗R, · · · , L ∗Rn−1 ∗ f ∗Rn−1].

Then g = Cmpn(f) is Diophantine uniformly in n.

This requires some work. One has by the by now familiar technique

Cmpn(f) = g ⇔
∃h1, h2, h3 [

Seqn(h1) & f = h1 ∗ 〈I, Rn ∗ f〉
Seqn2(h2) & h2 = Rn ∗ h2 ∗ 〈〈L,L〉, h1 ∗ 〈Rn−1 ∗ L,R〉〉
SeqNn (h3) & h3 = R ∗ h3 ∗ 〈〈I, I〉n+1 ∗ L, 〈Rn2−1 ∗ L,R〉〉

& g = Auxn(L
2) ∗ 〈h3, Rn〉 ∗ 〈h2, R〉

] .

For understanding it helps to identify the h1, h2, h3. Suppose
f = 〈f0, · · · , fn−1, fn〉〉. Then

h1 = [f0, f1, · · · , fn−1];

h2 = [f0, f1, · · · , fn−1,

f0 ∗R, f1 ∗R, · · · , fn−1 ∗R,
· · · ,
f0 ∗Rn−1, f1 ∗Rn−1, · · · , fn−1 ∗Rn−1];

h3 = [I, Rn+1, R2(n+1), · · · , R(n−1)(n+1)].

Now define

P (f, g, h)⇐⇒△ ∃n[Seqn(f) & Seqn(g) & Cmpn(f ∗ L) ∗ 〈I, Rn〉 ∗ g = h].

Then P is Diophantine and for arbitrary n and f, g ∈ Seqn one has

h = f#g ⇔ P (f, g, h).

11. For f = [f0, · · · , fn−1] define Π(f),f0 ∗ · · · ∗fn−1. Then there exists a Diophantine
relation P such that for all n∈N and all f ∈ Seqn one has

P (f, g) ⇔ Π(f) = g.



214 5. Extensions

Proof. Define P (f, g)⇐⇒△

∃n, h [

Seqn(f) &

Seqn+1(h) & h = ((f ∗ 〈I, R〉)#(R ∗ h)) ∗ 〈L, I ∗ L,R〉〉
& g = L ∗ h ∗ 〈I, R〉
] .

Then P works as can be seen realizing h has to be

[f0 ∗ · · · ∗ fn−1, f1 ∗ · · · ∗ fn−1, · · · , fn−2 ∗ fn−1, fn−1, I].

12. Define Byten(f)⇐⇒△ f = [b0, · · · , bn−1], for some bi ∈{L,R}. Then Byten is Dio-
phantine uniformly in n.

Proof. Using 2 one has Byten(f) iff

Seqn(f) & f ∗ 〈〈I, I〉, R〉 = Cpn(I).

13. Let m∈N and let [m]2 be its binary notation of length n. Let [m]Byte ∈ SeqNn be
the corresponding element, where L corresponds to a 1 and R to a 0 and the most
significant bit is written last. For example [6]2 = 110, hence [6]Byte = [R,L,L].
Then there exists a Diophantine relation Bin such that for all m∈N

Bin(sm, f) ⇔ f = [m]Byte.

Proof. We need two auxiliary maps.

Pow2(n), [R2n−1
, · · · , R20 ];

Pow2I(n), [〈R2n−1
, I〉, · · · , 〈R20 , I〉].

These relations Pow2(n) = g and Pow2I(n) = g are Diophantine uniformly in n.
Indeed, Pow2(n) = g iff

Seqn(g) & g = ((R ∗ g)#(R ∗ g)) ∗ [I, R];
and Pow2I(n) = g iff

Seqn(g) & Cpn(L)#g = Pow2(n);

& Cpn(R)#g = Cpn(I).

It follows that Bin is Diophantine since Bin(m, f) iff

m∈N & ∃n[Byten(f) & Π(f#Pow2I(n)) = m].

14. We now define a surjection ϕ : N→F . Remember that F is generated by two
elements {e0, e1} using only ∗. One has e1 = L. Define

ϕ(n), ei0 ∗ · · · ∗ eim−1 ,

where [n]2 , im−1 · · · i0. We say that n is a code of ϕ(n). Since every f ∈F can be
written as L ∗ 〈I, I〉 ∗ f the map ϕ is surjective indeed.

15. Code(n, f) defined by ϕ(n) = f is Diophantine uniformly in n.

Proof. Indeed, Code(n, f) iff

∃g [Bin(n, g) & Π(g ∗ 〈〈e0, e1〉, R〉) = f.
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16. Every =-closed re subset X ⊆ F is Diophantine.

Proof. Since the word problem for F is decidable, #X = {m | ∃f ∈X ϕ(m) = f}
is also re. By (8), #X ⊆ N is Diophantine. Hence by (15) X is Diophantine via

g ∈X ⇔ ∃f f ∈#X & Code(f, g).

17. Every =-closed re subset X ⊆ F [~x] is Diophantine.

Proof. Similarly, since also F [~x] is generated by two of its elements. We need
to know that all the Diophantine relations ⊆ F are also Diophantine ⊆ F [x].
This follows from exercise 5F.12 and the fact that such relations are closed under
intersection.

5B.57. Theorem. A relation R on closed ΛSP terms is Diophantine if and only if R is
closed coordinate wise under = and recursively enumerable.

Proof. By 17 and corollaries 5B.50 and 5B.53.

5C. Gödel’s system T : higher-order primitive recursion

5C.1. Definition. The set of primitive recursive functions is the smallest set contain-
ing zero, successor and projection functions which is closed under composition and the
following schema of first-order primitive recursion:

F (0, ~x) =G(~x)

F (n+ 1, ~x) =H(F (n, ~x), n, ~x)

This schema defines F from G and H by stating that F (0) = G and by expressing
F (n+1) in terms of F (n), H and n. The parameters ~x range over the natural numbers.

The primitive recursive functions were thought to consist of all computable functions.
This was shown to be false in Sudan [1927] and Ackermann [1928], who independently
gave examples of computable functions that are not primitive recursive. Ten years
later the class of computable functions was shown to be much larger by Church and
Turing. Nevertheless the primitive recursive functions include almost all functions that
one encounters ‘in practice’, such as addition, multiplication, exponentiation, and many
more.
Besides the existence of computable functions that are not primitive recursive, there

is another reason to generalize the above schema, namely the existence of computable
objects that are not number theoretic functions. For example, given a number theoretic
function F and a number n, compute the maximum that F takes on arguments <n.
Other examples of computations where inputs and/or outputs are functions: compute
the function that coincides with F on arguments less than n and zeroes otherwise,
compute the n-th iterate of F , and so on. These computations define maps that are
commonly called functionals, to emphasize that they are more general than number
theoretic functions.
Consider the full typestructure MN over the natural numbers, see Definition 2D.17.

We allow a liberal use of currying, so the following denotations are all identified:

FGH ≡ (FG)H ≡ F (G,H) ≡ F (G)H ≡ F (G)(H)

Application is left-associative, so F (GH) is notably different from the above denotations.
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The above mentioned interest in higher-order computations leads to the following
schema of higher-order primitive recursion proposed in Gödel [1958]14.

RMN0 =M

RMN(n+ 1) =N(RMNn)n

HereM need not be a natural number, but can have any A∈TT0 as type (see Section 1A).
The corresponding type of N is A→N→A, where N is the type of the natural numbers.
We make some further observations with respect to this schema. First, the dependence
of F on G and H in the first-order schema is made explicit by defining RMN , which is
to be compared to F . Second, the parameters ~x from the first-order schema are left out
above since they are no longer necessary: we can have higher-order objects as results of
computations. Third, the type of R depends on the type of the result of the computation.
In fact we have a family of recursors RA : A→(A→N→A)→N→A for every type A.

5C.2. Definition. The set of primitive recursive functionals is the smallest set of func-
tionals containing 0, the successor function and functionals R of all appropriate types,
which is closed under explicit λ0

→-definition.

This definition implies that the primitive recursive functionals include projection func-
tions and are closed under application, composition and the above schema of higher-order
primitive recursion.
We shall now exhibit a number of examples of primitive recursive functionals. First,

let K,K∗ be defined explicitly by K(x, y) = x, K∗(x, y) = y for all x, y ∈N, that
is, the first and the second projection. Obviously, K and K∗ are primitive recursive
functionals, as they come from λ0

→-terms. Now consider P ≡ R0K∗. Then we have
P0 = 0 and P (n + 1) = R0K∗(n + 1) = K∗(R0K∗n)n = n for all n∈N, so that we
call P the predecessor function. Now consider x . y ≡ Rx(P ∗K)y. Here P ∗K is the
composition of P andK, that is, (P ∗K)xy = P (K(x, y)) = P (x). We have x . 0 = x and
x . (y + 1) = Rx(P ∗K)(y + 1) = (P ∗K)(Rx(P ∗K)y)y = P (Rx(P ∗K)y) = P (x . y).
Thus we have defined cut-off subtraction . as primitive recursive functional.
In the previous paragraph, we have only used RN in order to define some functions that

are, in fact, already definable with first-order primitive recursion. In this paragraph we
are going to use RN→N as well. Given functions F, F ′ and natural numbers x, y, define
explicitly the functional G by G(F, F ′, x, y) = F ′(F (y)) and abbreviate G(F ) by GF .
Now consider RIGF , where R is actually RN→N and I is the identity function on the
natural numbers. We calculate RIGF 0 = I and RIGF (n+ 1) = GF (RIGFn)n, which is
a function assigning G(F,RIGFn, n,m) = RIGFn(Fm) to every natural number m. In
other words, RIGFn is a function which iterates F precisely n times, and we denote this
function by Fn.
We finish this paragraph with an example of a computable function A that is not first-

order primitive recursive. The function A is a variant, due to Péter [1967] of a function
by Ackermann. The essential difficulty of the function A is the nested recursion in the
third clause below.

14For the purpose of the so-called Dialectica interpretation, a translation of intuitionistic arithmetic
into the quantifier free theory of primitive recursive functionals of finite type, yielding a consistency
proof for arithmetic.
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5C.3. Definition (Ackermann function).

A(0,m),m+ 1

A(n+ 1, 0), A(n, 1)

A(n+ 1,m+ 1), A(n,A(n+ 1,m))

Write A(n) , λλm,A(n,m). Then A(0) is the successor function and A(n + 1,m) =
A(n)m+1(1), by the last two equations. Therefore we can define A = RSH, where S
is the successor function and H(F, x, y) = F y+11. As examples we calculate A(1,m) =
H(A(0), 1,m) = A(0)m+1(1) = m + 2 and A(2,m) = H(A(1), 1,m) = A(1)m+1(1) =
2m+ 3.

Syntax of λT

In this section we formalize Gödel’s T as an extension of the simply typed lambda
calculus λCh

→ over TT0, called λT . In this and the next two sections we write the type
atom 0 as ‘N’, as it is intended as type of the natural numbers.

5C.4. Definition. The theory Gödel’s T , notation λT , is defined as follows.

(i) The set of types of λT is defined by TT(λT ) = TT{N}, where the atomic type N is
called the natural number type.

(ii) The terms of λT are obtained by adding to the term formation rules of λ0
→ the

constants 0 : N, S+ : N→N and RA : A→(A→N→A)→N→A for all types A.
(iii) We denote the set of (closed) terms of type A by ΛT (A) (respectively ΛøT (A)) and

put ΛT =
⋃

A ΛT (A) (Λ
ø
T =

⋃
A ΛøT (A)).

(iv) Terms constructed from 0 and S+ only are called numerals, with 1 abbreviating
S+(0), 2 abbreviating S+(S+(0)), and so on. An arbitrary numeral will be denoted by n.

(v) We define inductively nA→B ≡ λxA.nB, with nN ≡ n.
(vi) The formulas of λT are equations between terms (of the same type).
(vii) The theory of λT is axiomatized by equality axioms and rules, β-conversion and

the schema of higher-order primitive recursion from the previous section.
(viii) The notion of reduction T on λT , notation →T , is defined by the following con-
traction rules (extending β-reduction):

(λx.M)N →T M [x := N ]

RAMN0→T M

RAMN(S+P )→T N(RAMNP )P

This gives rise to reduction relations →T , ։T . Gödel did not consider η-reduction.

5C.5. Theorem. The conversion relation =T coincides with equality provable in λT .

Proof. By an easy extension of the proof of this result in untyped lambda calculus, see
B[1984] Proposition 3.2.1.

5C.6. Lemma. Every closed normal form of type N is a numeral.

Proof. Consider the leftmost symbol of a closed normal form of type N. This symbol
cannot be a variable since the term is closed. The leftmost symbol cannot be a λ, since
abstraction terms are not of type N and a redex is not a normal form. If the leftmost
symbol is 0, then the term is the numeral 0. If the leftmost symbol is S+, then the term
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must be of the form S+P , with P a closed normal form of type N. If the leftmost term is

R, then for typing reasons the term must be RMNP ~Q, with P a closed normal form of
type N. In the latter two cases we can complete the argument by induction, since P is a
smaller term. Hence P is a numeral, so also S+P . The case RMNP with P a numeral
can be excluded, as RMNP should be a normal form.

We now prove SN and CR for λT , two results that could be proved independently from
each other. However, the proof of CR can be simplified by using SN, which we prove
first by an extension of the proof of SN for λ0

→, Theorem 2B.1.

5C.7. Theorem. Every M ∈ΛT is SN with respect to →T .

Proof. Recall the notion of computability from the proof of Theorem 2B.1. We gen-
eralize it to terms of λT . We shall frequently use that computable terms are SN, see
formula (2) in the proof of Theorem 2B.1. In view of the definition of computability it
suffices to prove that the constants 0, S+,RA of λT are computable. The constant 0 : N
is computable since it is SN. Consider S+P with computable P : N, so P is SN and hence
S+P . It follows that S+ is computable. In order to prove that RA is computable, assume
that M,N,P are computable and of appropriate type such that RAMNP is of type A.
Since P : N is computable, it is SN. Since →T is finitely branching, P has only finitely
many normal forms, which are numerals by Lemma 5C.6. Let #P be the largest of
those numerals. We shall prove by induction on #P that RAMNP is computable. Let
~Q be computable such that RAMNP ~Q is of type N. We have to show that RAMNP ~Q

is SN. If #P = 0, then every reduct of RAMNP ~Q passes through a reduct of M ~Q,

and SN follows since M ~Q is computable. If #P = S+n, then every reduct of RAMNP ~Q

passes through a reduct of N(RAMNP ′)P ′ ~Q, where P ′ is such that S+P ′ is a reduct of
P . Then we have #P ′ = n and by induction it follows that RAMNP ′ is computable.
Now SN follows since all terms involved are computable. We have proved that RAMNP
is computable whenever M,N,P are, and hence RA is computable.

5C.8. Lemma (Newman’s Lemma, localized). Let S be a set and → a binary relation on
S that is WCR. For every a∈S we have: if a∈SN, then a∈CR.

Proof. Call an element ambiguous if it reduces to two (or more) distinct normal forms.
Assume a∈ SN, then a reduces to at least one normal form and all reducts of a are SN.
It suffices for a∈CR to prove that a is not ambiguous, i.e. that a reduces to exactly
one normal form. Assume by contradiction that a is ambiguous, reducing to different
normal forms n1, n2, say a → b → · · · → n1 and a → c → · · · → n2. Applying WCR

to the diverging reduction steps yields a common reduct d such that b ։ d and c ։ d.
Since d∈ SN reduces to a normal form, say n, distinct of at least one of n1, n2, it follows
that at least one of b, c is ambiguous. See Figure 11.
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Figure 11. Ambiguous a has ambiguous reduct b or c.

Hence a has a one-step reduct which is again ambiguous and SN. Iterating this argument
yields an infinite reduction sequence contradicting a∈ SN, so a cannot be ambiguous.

5C.9. Theorem. Every M ∈ΛT is WCR with respect to →T .

Proof. Different redexes in the same term are either completely disjoint, or one redex is
included in the other. In the first case the order of the reduction steps is irrelevant, and
in the second case a common reduct can be obtained by reducing (possibly multiplied)
included redexes.

5C.10. Theorem. Every M ∈ΛT is CR with respect to →T .

Proof. By Newman’s Lemma 5C.8, using Theorem 5C.7.

If one considers λT also with η-reduction, then the above results can also be obtained.
For SN it simply suffices to strengthen the notion of computability for the base case to
SN with also η-reductions included. WCR and hence CR are harder to obtain and require
techniques like η-postponement, see B[1984], Section 15.1.6.

Semantics of λT

In this section we give a general model definition of λT building on that of λ0
→.

5C.11. Definition. A model of λT is a typed λ-model with interpretations of the con-
stants 0, S+ and RA for all A, such that the schema of higher-order primitive recursion
is valid.

5C.12. Example. Recall the full typestructure over the natural numbers, that is, sets
MN = N andMA→B =MA→MB, with set-theoretic application. The full typestruc-
ture becomes the canonical model of λT by interpreting 0 as 0, S+ as the successor
function, and the constants RA as primitive recursors of the right type. The proof that
[[RA]] is well-defined goes by induction.

Other interpretations of Gödel’s T can be found in Exercises 5F.28-5F.31.
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Computational strength

As primitive recursion over higher types turns out to be equivalent with transfinite
ordinal recursion, we give a brief review of the theory of ordinals.
The following are some ordinal numbers, simply called ordinals, in increasing order.

0, 1, 2, · · ·ω, ω + 1, ω + 2, · · ·ω + ω = ω · 2, · · ·ω · ω = ω2, · · ·ωω, · · ·ω(ωω), · · ·

Apart from ordinals, also some basic operations of ordinal arithmetic are visible, namely
addition, multiplication and exponentiation, denoted in the same way as in high-school
algebra. The dots · · · stand for many more ordinals in between, produced by iterating
the previous construction process.
The most important structural property of ordinals is that < is a well-order, that is,

an order such that every non-empty subset contains a smallest element. This property
leads to the principle of (transfinite) induction for ordinals, stating that P (α) holds for
all ordinals α whenever P is inductive, that is, P (α) follows from ∀γ < α.P (γ) for all α.
In fact the arithmetical operations are defined by means of two more primitive oper-

ations on ordinals, namely the successor operation +1 and the supremum operation
⋃
.

The supremum
⋃
a of a set of ordinals a is the least upper bound of a, which is equal

to the smallest ordinal greater than all ordinals in the set a. A typical example of the
latter is the ordinal ω, the first infinite ordinal, which is the supremum of the sequence
of the finite ordinals n produced by iterating the successor operation on 0.
These primitive operations divide the ordinals in three classes: the successor ordinals of

the form α+1, the limit ordinals λ =
⋃{α | α < λ}, i.e. ordinals which are the supremum

of the set of smaller ordinals, and the zero ordinal 0. (In fact 0 is the supremum of the
empty set, but is not considered to be a limit ordinal.) Thus we have zero, successor
and limit ordinals.
Addition, multiplication and exponentiation are now defined according to Table 1.

Ordinal arithmetic has many properties in common with ordinary arithmetic, but there
are some notable exceptions. For example, addition and multiplication are associative
but not commutative: 1+ω = ω 6= ω+1 and 2·ω = ω 6= ω·2. Furthermore, multiplication
is left distributive over addition, but not right distributive: (1+1) ·ω = ω 6= 1 ·ω+1 ·ω.
The sum α + β is weakly increasing in α and strictly increasing in β. Similarly for the
product α ·β with α > 0. The only exponentiations we shall use, 2α and ωα, are strictly
increasing in α.

Addition Multiplication Exponentiation (α > 0)

α+ 0, α α · 0, 0 α0 , 1

α+ (β + 1), (α+ β) + 1 α · (β + 1), α · β + α αβ+1 , αβ · α
α+ λ,

⋃{α+ β | β < λ} α · λ,
⋃{α · β | β < λ} αλ ,

⋃{αβ | β < λ}

Table 1. Ordinal arithmetic (with λ limit ordinal in the third row).

The operations of ordinal arithmetic as defined above provide examples of a more
general phenomenon called transfinite iteration, to be defined below.
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5C.13. Definition. Let f be an ordinal function. Define by induction f0(α) , α,

fβ+1(α) , f(fβ(α)) and fλ(α) ,
⋃{fβ(α) | β < λ} for every limit ordinal λ. We

call fβ the β-th transfinite iteration of f .

5C.14. Example. As examples we redefine the arithmetical operations above.

α+ β = fβ(α)

α · β = gβα(0)

αβ = hβα(1),

with f the successor function, gα(γ) = γ + α, and hα(γ) = γ · α. Do Exercise 5F.33.

We proceed with the canonical construction for finding the least fixed point of a weakly
increasing ordinal function if there exists one. The proof is in Exercise 5F.19.

5C.15. Lemma. Let f be a weakly increasing ordinal function. Then:
(i) fα+1(0) ≥ fα(0) for all α;
(ii) fα(0) is weakly increasing in α;
(iii) fα(0) does not surpass any fixed point of f ;
(iv) fα(0) is strictly increasing (and hence fα(0) ≥ α), until a fixed point of f is

reached, after which fα(0) becomes constant.

If a weakly increasing ordinal function f has a fixed point, then it has a smallest fixed
point and Lemma 5C.15 above guarantees that this so-called least fixed point is of the
form fα(0), that is, can be obtained by transfinite iteration of f starting at 0. This
justifies the following definition.

5C.16. Definition. Let f be a weakly increasing ordinal function having a least fixed
point which we denote by lfp(f). The closure ordinal of f is the smallest ordinal α such
that fα(0) = lfp(f).

Closure ordinals can be arbitrarily large, or may not even exist. The following lemma
gives a condition under which the closure ordinal exists and does not surpass ω.

5C.17. Lemma. If f is a weakly increasing ordinal function such that

f(λ) =
⋃{f(α) | α < λ}

for every limit ordinal λ, then the closure ordinal exists and is at most ω.

Proof. Let conditions be as in the lemma. Consider the sequence of finite iterations
of f : 0, f(0), f(f(0)) and so on. If this sequence becomes constant, then the closure
ordinal is finite. If the sequence is strictly increasing, then the supremum must be a
limit ordinal, say λ. Then we have f(λ) =

⋃{f(α) | α < λ} = fω(0) = λ, so the closure
ordinal is ω.

For example, f(α) = 1 + α has lfp(f) = ω, and f(α) = (ω + 1) · α has lfp(f) = 0. In
contrast, f(α) = α + 1 has no fixed point (note that the latter f is weakly increasing,
but the condition on limit ordinals is not satisfied). Finally, f(α) = 2α has lfp(f) = ω,
and the least fixed point of f(α) = ωα is denoted by ǫ0, being the supremum of the
sequence:

0, ω0 = 1, ω1 = ω, ωω, ωωω

, ωωωω

, · · ·
In the following proposition we formulate some facts about ordinals that we need in

the sequel.
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5C.18. Proposition. (i) Every ordinal α < ǫ0 can be written uniquely as

α = ωα1 + ωα2 + · · ·+ ωαn ,

with n ≥ 0 and α1, α2, · · · , αn a weakly decreasing sequence of ordinals smaller than α.

(ii) For all α, β we have ωα + ωβ = ωβ if and only if α < β.

Proof. (i) This is a special case of Cantor normal forms with base ω, the generalization
of the position system for numbers to ordinals, where terms of the form ωα ·n are written
as ωα+ · · ·+ωα (n summands). The fact that the exponents in the Cantor normal form
are strictly less than α comes from the assumption that α < ǫ0.

(ii) The proof of this so-called absorption property goes by induction on β. The case
α ≥ β can be dealt with by using Cantor normal forms.

From now on ordinal will mean ordinal less than ǫ0, unless explicitly stated otherwise.
This also applies to ∀α, ∃α, f(α) and so on.

Encoding ordinals in the natural numbers

Systematic enumeration of grid points in the plane, such as shown in Figure 12, yields
an encoding of pairs 〈x, y〉 of natural numbers x, y as given in Definition 5C.19.

y 〈x, y〉

...
...

3 7
FFF

FF
.

2 4
FFF

FF 8
FFF

FF
.

1 2
FFF

FF 5
FFF

FF 9
HHH

HH
.

0 1 3 6 10 · · ·

0 1 2 3 · · · x

Figure 12. 〈x, y〉-values for x+ y ≤ 3

Finite sequences [x1, · · · , xk] of natural numbers, also called lists, can now be encoded
by iterating the pairing function. The number 0 does not encode a pair and can hence
be used to encode the empty list [ ]. All functions and relations involved, including pro-
jection functions to decompose pairs and lists, are easily seen to be primitive recursive.

5C.19. Definition. Recall that 1+2+· · ·+n = 1
2n(n+1) gives the number of grid points

satisfying x + y < n. The function . below is to be understood as cut-off subtraction,
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that is, x . y = 0 whenever y ≥ x. Define the following functions.

〈x, y〉, 1
2(x+ y)(x+ y + 1) + x+ 1

sum(p),min{n | p ≤ 1
2n(n+ 1)} . 1

x(p), p . 〈0, sum(p)〉
y(p), sum(p) . x(p)

Now let [ ] , 0 and, for k > 0, [x1, · · · , xk] , 〈x1, [x2, · · · , xk]〉 encode lists. Define

lth(0), 0 and lth(p), 1 + lth(y(p)) (p > 0) to compute the length of a list.

The following lemma is a straightforward consequence of the above definition.

5C.20. Lemma. For all p > 0 we have p = 〈x(p), y(p)〉. Moreover, 〈x, y〉 > x, 〈x, y〉 > y,
lth([x1, · · · , xk]) = k and 〈x, y〉 is strictly increasing in both arguments. Every natural
number encodes a unique list of smaller natural numbers. Every natural number encodes
a unique list of lists of lists and so on, ending with the empty list.

Based on the Cantor normal form and the above encoding of lists we can represent
ordinals below ǫ0 as natural numbers in the following way. We write α for the natural
number representing the ordinal α.

5C.21. Definition. Let α < ǫ0 have Cantor normal form ωα1 + · · ·+ωαk . We encode α
by putting α = [α1, α2, · · · , αn]. This representation is well-defined since every αi (1 ≤
i ≤ n) is strictly smaller than α. The zero ordinal 0, having the empty sum as Cantor
normal form, is thus represented by the empty list [ ], so by the natural number 0.

Examples are 0 = [ ], 1 = [[ ]], 2 = [[ ], [ ]], · · · and ω = [[[ ]]], ω + 1 = [[[ ]], [ ]] and so on.
Observe that [[ ], [[ ]]] does not represent an ordinal as ω0 + ω1 is not a Cantor normal
form. The following lemmas allow one to identify which natural numbers represent
ordinals and to compare them.

5C.22. Lemma. Let ≺ be the lexicographic ordering on lists. Then ≺ is primitive recur-
sive and α ≺ β ⇔ α < β for all α, β < ǫ0.

Proof. Define 〈x, y〉 ≺ 〈x′, y′〉 ⇔ (x ≺ x′) ∨ (x = x′ ∧ y ≺ y′) and x 6≺ 0, 0 ≺ 〈x, y〉.
The primitive recursive relation ≺ is the lexicographic ordering on pairs, and hence also
on lists. Now the lemma follows using Cantor normal forms. (Note that ≺ is not a
well-order itself, as · · · ≺ [0, 0, 1] ≺ [0, 1],≺ [1] has no smallest element.)

5C.23. Lemma. For x∈N, define the following notions.

Ord(x) ⇐⇒△ x = α for some ordinal α < ǫ0;
Succ(x) ⇐⇒△ x = α for some successor ordinal < ǫ0;
Lim(x) ⇐⇒△ x = α for some limit ordinal < ǫ0;
Fin(x) ⇐⇒△ x = α for some ordinal α < ω.

Then Ord, Fin, Succ and Lim are primitive recursive predicates.

Proof. By course of value recursion.
(i) Put Ord(0) and Ord(〈x, y〉) ⇔ (Ord(x) ∧Ord(y) ∧ (y > 0 ⇒ x(y) � x)).
(ii) Put ¬Succ(0) and Succ(〈x, y〉) ⇔ (Ord(〈x, y〉) ∧ (x > 0 ⇒ Succ(y))).
(iii) Put Lim(x) ⇔ (Ord(x) ∧ ¬Succ(s) ∧ x 6= [ ]).
(iv) Put Fin(x) ⇔ (x = [ ] ∨ (x = 〈0, y〉 ∧ Fin(y))).
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5C.24. Lemma. There exist primitive recursive functions exp (base ω exponentiation),
succ (successor), pred (predecessor), plus (addition), exp2 (base 2 exponentiation) such
that for all α, β: exp(α) = ωα, succ(α) = α+ 1, pred(0) = 0, pred(α+ 1) = α,
plus(α, β) = α+ β, exp2(α) = 2α.

Proof. Put exp(x) = [x]. Put succ(0) = 〈0, 0〉 and succ(〈x, y〉) = 〈x, succ(y)〉, then
succ([x1, · · · , xk]) = [x1, · · · , xk, 0]. Put pred(0) = 0, pred(〈x, 0〉) = x and pred(〈x, y〉) =
〈x, pred(y)〉 for y > 0. For plus, use the absorption property in adding the Cantor
normal forms of α and β. For exp2 we use ωβ = 2ω·β . Let α have Cantor normal form
ωα1 + · · ·+ωαk . Then ω ·α = ω1+α1 + · · ·+ω1+αk . By absorption, 1+αi = αi whenever
αi ≥ ω. It follows that we have

α = ω · (ωα1 + · · ·+ ωαi + ωn1 + · · ·+ ωnp) + n,

for suitable nj , n with α1 ≥ · · · ≥ αi ≥ ω, nj+1 = αi+j < ω for 1 ≤ j ≤ p and n = k−i−p
with αk′ = 0 for all i+p < k′ ≤ k. Using ωβ = 2ω·β we can calculate 2α = ωβ ·2n with β =
ωα1 + · · ·+ωαi +ωn1 + · · ·+ωnp and n as above. If α = [x1, · · · , xi, · · · , xj , · · · , 0, · · · , 0],
then β = [x1, · · · , xi, · · · , pred(xj), · · · ] and we can obtain exp2(α) = 2α = ωβ · 2n by

doubling n times ωβ = exp(β) using plus.

5C.25. Lemma. There exist primitive recursive functions num, mun such that num(n) =
n and mun(n) = n for all n. In particular we have mun(num(n)) = n and num(mun(n)) =
n for all n. In other words, num is the order isomorphism between (N, <) and ({n |
n∈N},≺) and mun is the inverse order isomorphism.

Proof. Put num(0) = 0 = [ ] and num(n + 1) = succ(num(n)) and mun(0) = 0 and
mun(〈x, y〉) = mun(y) + 1.

5C.26. Lemma. There exists a primitive recursive function p such that p(α, β, γ) = α′

with α′ < α and β < γ + 2α
′
, provided that α is a limit and β < γ + 2α.

Proof. Let conditions be as above. The existence of α′ follows directly from the def-
inition of the operations of ordinal arithmetic on limit ordinals. The interesting point,
however, is that α′ can be computed from α, β, γ in a primitive recursive way, as will
become clear by the following argument. If β ≤ γ, then we can simply take α′ = 0.
Otherwise, let β = ωβ1 + · · · + ωβn and γ = ωγ1 + · · · + ωγm be Cantor normal forms.
Now γ < β implies that γi < βi for some smallest index i ≤ m, or no such index ex-
ists. In the latter case we have m < n and γj = βj for all 1 ≤ j ≤ m, and we put

i = m+1. Since α is a limit, we have α = ω · ξ for suitable ξ, and hence 2α = ωξ. Since
β < γ + 2α it follows by absorption that ωβi + · · · + ωβn < ωξ. Hence βi + 1 ≤ ξ, so
ωβi+· · ·+ωβn ≤ ωβi ·n < ωβi ·2n = 2ω·βi+n. Now take α′ = ω·βi+n < ω·(βi+1) ≤ ω·ξ = α

and observe β < γ + 2α
′
.

From now on we will freely use ordinals in the natural numbers instead of their codes.
This includes uses like α is finite instead of Fin(α), α ≺ β instead of α ≺ β, and so
on. Note that we avoid using < for ordinals now, as it would be ambiguous. Phrases
like ∀α P (α) and ∃α P (α) should be taken as relativized quantifications over natural
numbers, that is, ∀x (Ord(x) ⇒ P (x)), and ∃x (Ord(x) ∧ P (x)), respectively. Finally,
functions defined in terms of ordinals are assumed to take value 0 for arguments that do
not encode any ordinal.
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Transfinite induction and recursion

Transfinite induction (TI) is a principle of proof that generalizes the usual schema of
structural induction from natural numbers to ordinals.

5C.27. Definition. Define

Ind(P )⇐⇒△ ∀α ((∀β < α P (β)) ⇒ P (α)).

Then the principle of transfinite induction up to α, notation TIα, states

Ind(P ) ⇒ ∀β < α P (β).

Here Ind(P ) expresses that P is inductive, that is, ∀β<α P (β) implies P (α) for all ordi-
nals α. For proving a property P to be inductive it suffices to prove (∀β < α P (β)) ⇒
P (α) for limit ordinals α only, in addition to P (0) and P (α) ⇒ P (α+ 1) for all α. If
a property is inductive then TIγ implies that every ordinal up to γ has this property.
(For the latter conclusion, in fact inductivity up to γ suffices. Note that ordinals may
exceed ǫ0 in this Section.)
By Lemma 5C.25, TIω is equivalent to structural induction on the natural numbers.

Obviously, the strength of TIα increases with α. Therefore TIα can be used to measure
the proof theoretic strength of theories. Given a theory T , for which α can we prove
TIα? We shall show that TIα is provable in Peano Arithmetic for all ordinals α < ǫ0 by
a famous argument due to Gentzen.
The computational counterpart of transfinite induction is transfinite recursion TR,

a principle of definition which can be used to measure computational strength. By a
translation of Gentzen’s argument we shall show that every function which can be defined
by TRα for some ordinal α < ǫ0, is definable in Gödel’s T . Thus we have established a
lower bound to the computational strength of Gödel’s T .
5C.28. Lemma. The schema TIω is provable in Peano Arithmetic.

Proof. Observe that TIω is structural induction on an isomorphic copy of the natural
numbers by Lemma 5C.25.

5C.29. Lemma. The schema TIω·2 is provable in Peano Arithmetic with the schema TIω.

Proof. Assume TIω and Ind(P ) for some P . In order to prove ∀α < ω · 2 P (α) define
P ′(α) ≡ ∀β < ω + α P (β). By TIω we have P ′(0). Also P ′(α) ⇒ P ′(α + 1), as
P ′(α) implies P (ω + α) by Ind(P ). If Lim(α), then β < ω + α implies β < ω + α′ for
some α′ < α, and hence P ′(α′) ⇒ P (β). It follows that P ′ is inductive, which can be
combined with TIω to conclude P ′(ω), so ∀β < ω + ω P (β). This completes the proof
of TIω·2.

5C.30. Lemma. The schema TI2α is provable in Peano Arithmetic with the schema TIα,
for all α < ǫ0.

Proof. Assume TIα and Ind(P ) for some P . In order to prove ∀α′ < 2α P (α′) define

P ′(α′) ≡ ∀β(∀β′ < β P (β′) ⇒ ∀β′ < β + 2α
′
P (β′)). The intuition behind P ′(α′) is:

if P holds on an arbitrary initial segment, then we can prolong this segment with 2α
′
.

The goal will be to prove P ′(α), since we can then prolong the empty initial segment
on which P vacuously holds to one of length 2α. We prove P ′(α) by proving first
that P ′ is inductive and then combining this with TIα, similar to the proof of the
previous lemma. We have P ′(0) as P is inductive and 20 = 1. The argument for
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P ′(α) ⇒ P ′(α+1) amounts to applying P ′(α) twice, relying on 2α+1 = 2α+2α. Assume
P ′(α) and ∀β′ < β P (β′) for some β. By P ′(α) we have ∀β′ < β + 2α P (β′). Hence
again by P ′(α), but now with β+2α instead of β, we have ∀β′ < β + 2α + 2α P (β′). We
conclude P ′(α+1). The limit case is equally simple as in the previous lemma. It follows
that P ′ is inductive, and the proof can be completed as explained above.

The general idea of the above proofs is that the stronger axiom schema is proved by
applying the weaker schema to more complicated formulas (P ′ as compared to P ). This
procedure can be iterated as long as the more complicated formulas remain well-formed.
In the case of Peano arithmetic we can iterate this procedure finitely many times. This
yields the following result.

5C.31. Lemma (Gentzen). TIα is provable in Peano Arithmetic for every ordinal α < ǫ0.

Proof. Use ωβ = 2ω·β , so 2ω·2 = ω2 and 2ω
2
= ωω. From ωω on, iterating exponentia-

tion with base 2 yields the same ordinals as with base ω. We start with Lemma 5C.28
to obtain TIω, continue with Lemma 5C.29 to obtain TIω·2, and surpass TIα for every
ordinal α < ǫ0 by iterating Lemma 5C.30 a sufficient number of times.

We now translate the Gentzen argument from transfinite induction to transfinite re-
cursion, closely following the development of Terlouw [1982].

5C.32. Definition. Given a functional F of type 0→A and ordinals α, β, define primi-
tive recursively

[F ]αβ(β
′),

{
F (β′) if β′ ≺ β � α,
0A otherwise.

By convention, ‘otherwise’ includes the cases in which α, β, β′ are not ordinals, and the
case in which α ≺ β. Furthermore, we define [F ]α , [F ]αα, that is, the functional F
restricted to an initial segment of ordinals smaller than α.

5C.33. Definition. The class of functionals definable by TRα is the smallest class of
functionals which contains all primitive recursive functionals and is closed under the
definition schema TRα, defining F from G (of appropriate types) in the following way:

F (β),G([F ]αβ , β).

Note that, by the above definition, F (β) = G(00→A, β) if α ≺ β or if the argument of F
does not encode an ordinal.
The following lemma is to be understood as the computational counterpart of Lemma

5C.29, with the primitive recursive functionals taking over the role of Peano Arithmetic.

5C.34. Lemma. Every functional definable by the schema TRω is T -definable.
Proof. Let F0(α) = G([F0]

ω
α, α) be defined by TRω. We have to show that F0 is

T -definable. Define primitive recursively F1 by F1(0), 00→A and

F1(n+ 1, α),

{
F1(n, α) if α < n
G([F1(n)]

ω
α, α) otherwise

By induction one shows [F0]
ω
n = [F1(n)]

ω
n for all n. Define primitive recursively F2 by

F2(n), F1(n+ 1, n) and F2(α), 0A if α is not a finite ordinal. Then F2 = [F0]
ω
ω. Now
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it is easy to define F0 explicitly in F2

F0(α),





F2(α) if α < ω
G(F2, ω) if α = ω
G(00→A, α) otherwise

Note that we used both num and mun implicitly in the definition of F2.

The general idea of the proofs below is that the stronger schema is obtained by applying
the weaker schema to functionals of more complicated types.

5C.35. Lemma. Every functional definable by the schema TRω·2 is definable by the schema
TRω.

Proof. Put ω · 2 = α and let F0(β),G([F0]
α
β , β) be defined by TRα. We have to show

that F0 is definable by TRω (applied with functionals of more complicated types). First

define F1(β) , G([F1]
ω
β , β) by TRω. Then we can prove F1(β) = F0(β) for all β < ω

by TIω. So we have [F1]ω = [F0]ω, which is to be compared to P ′(0) in the proof of
Lemma 5C.29. Now define H of type 0→(0→A)→(0→A) by TRω as follows. The more
complicated type of H as compared to the type 0→A of F is the counterpart of the more
complicated formula P ′ as compared to P in the proof of Lemma 5C.29.

H(0, F ), [F1]ω

H(β + 1, F, β′),





H(β, F, β′) if β′ < ω + β
G(H(β, F ), β′) if β′ = ω + β
0A otherwise

This definition can easily be cast in the form H(β),G′([H]ωβ , β) for suitable G
′, so that

H is actually defined by TRω. We can prove H(β, 00→A) = [F0]
α
ω+β for all β < ω by

TIω. Finally we define

F2(β
′),





F1(β
′) if β′ < ω

G(H(β, 00→A), β′) if β′ = ω + β < α
G(00→A, β′) otherwise

Note that F2 is explicitly defined in G and H and therefore defined by TRω only. One
easily shows that F2 = F0, which completes the proof of the lemma.

5C.36. Lemma. Every functional definable by the schema TR2α is definable by the schema
TRα, for all α < ǫ0.

Proof. Let F0(β) , G([F0]
2α

β , β) be defined by TR2α . We have to show that F0 is

definable by TRα (applied with functionals of more complicated types). Like in the
previous proof, we will define by TRα an auxiliary functional H in which F0 can be
defined explicitly. The complicated type of H compensates for the weaker definition
principle. The following property satisfied by H is to be understood in the same way
as the property P ′ in the proof of Lemma 5C.30, namely that we can prolong initial
segments with 2α.

propH (α′)⇐⇒△ ∀β, F ([F ]2
α

β = [F0]
2α

β ⇒ [H(α′, β, F )]2
α

β+2α
′ = [F0]

2α

β+2α
′ )
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To make propH come true, define H of type 0→0→(0→A)→(0→A) as follows.

H(0, β, F, β′),





F (β′) if β′ < β ≤ 2α

G([F ]2
α

β , β) if β′ = β ≤ 2α

0A otherwise

H(α′ + 1, β, F ),H(α′, β + 2α
′
, H(α′, β, F ))

If α′ is a limit ordinal, then we use the function p from Lemma 5C.26.

H(α′, β, F, β′),

{
H(p(α′, β′, β), β, F, β′) if β′ < β + 2α

′

0A otherwise

This definition can easily be cast in the form H(β),G′([H]αβ , β) for suitable G
′, so that

H is in fact defined by TRα. We shall prove that propH (α′) is inductive, and conclude
propH (α′) for all α′ ≤ α by TIα. This implies [H(α′, 0, 00→A)]2

α

2α
′ = [F0]

2α

2α
′ for all α′ ≤ α,

so that one could manufacture F0 from H in the following way:

F0(β),





H(α, 0, 00→A, β) if β < 2α

G(H(α, 0, 00→A), β) if β = 2α

G(00→A, β) otherwise

It remains to show that propH (α′) is inductive up to and including α. For the case α′ = 0
we observe that H(0, β, F ) follows F up to β, applies G to the initial segment of [F ]2

α

β

in β, and zeroes after β. This entails propH (0), as 20 = 1. Analogous to the successor
case in the proof of Lemma 5C.30, we prove propH (α+ 1) by applying propH (α) twice,
once with β and once with β + 2α. Given β and F we infer:

[F ]2
α

β = [F0]
2α

β ⇒ [H(α′, β, F )]2
α

β+2α
′ = [F0]

2α

β+2α
′ ⇒

[H(α′, β + 2α
′
, H(α′, β, F ))]2

α

β+2α
′+1 = [F0]

2α

β+2α
′+1

For the limit case, assume α′ ≤ α is a limit ordinal such that propH holds for all smaller
ordinals. Recall that, according to Lemma 5C.26 and putting α′′ = p(α′, β′, β), α′′ < α′

and β′ < β + 2α
′′
whenever β′ < β + 2α

′
. Now assume [F ]2

α

β = [F0]
2α

β and β′ < β + 2α
′
,

then [H(α′′, β, F )]2
α

β+2α
′′ = [F0]

2α

β+2α
′′ by propH (α′′), so H(α′′, β, F, β′) = F0(β

′). It

follows that [H(α′, β, F )]2
α

β+2α
′ = [F0]

2α

β+2α
′ .

5C.37. Lemma. Every functional definable by the schema TRα for some ordinal α < ǫ0
is T -definable.
Proof. Analogous to the proof of Lemma 5C.31.

Lemma 5C.37 shows that ǫ0 is a lower bound for the computational strength of Gödel’s
system T . It can be shown that ǫ0 is a sharp bound for T , see Tait [1965], Howard [1970]
and Schwichtenberg [1975]. In the next section we will introduce Spector’s system B. It
is also known that B is much stronger than T , lower bounds have been established for
subsystems of B, but the computational strength of B in terms of ordinals remains one
of the great open problems in this field.
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5D. Spector’s system B: bar recursion

Spector [1962] extends Gödel’s T with a definition schema called bar recursion.15 Bar
recursion is a principle of definition by recursion on a well-founded tree of finite sequences
of functionals of the same type. For the formulation of bar recursion we need finite
sequences of functionals of type A. These can conveniently be encoded by pairs consisting
of a functional of type N and one of type N→A. The intuition is that the pair 〈x,C〉
encodes the sequence of the first x values of C, that is, C(0), · · · , C(x − 1). We need
auxiliary functionals to extend finite sequences of any type. A convenient choice is the
primitive recursive functional ExtA : (N→A)→N→A→N→A defined by:

ExtA(C, x, a, y),

{
C(y) if y < x,
a otherwise.

We shall often omit the type subscript in ExtA, and abbreviate Ext(C, x, a) by C ∗x a
and Ext(C, x, 0A) by [C]x. We are now in a position to formulate the schema of bar
recursion:16

ϕ(x,C) =

{
G(x,C) if Y [C]x < x,
H(λaA.ϕ(x+ 1, C ∗x a), x, C) otherwise.

The case distinction is governed by Y [C]x < x, the so-called bar condition. The base
case of bar recursion is the case in which the bar condition holds. In the other case ϕ is
recursively called on all extensions of the (encoded) finite sequence.
A key feature of bar recursion is its proof theoretic strength as established in Spector

[1962]. As a consequence, some properties of bar recursion are hard to prove, such as SN
and the existence of a model. As an example of the latter phenomenon we shall show
that the full set theoretic model of Gödel’s T is not a model of bar recursion.
Consider functionals Y,G,H defined by G(x,C), 0, H(Z, x, C), 1 + Z(1) and

Y (F ),

{
0 if F (m) = 1 for all m,
n otherwise, where n = min{m | F (m) 6= 1}.

Let 1N→N be the constant 1 function. The crux of Y is that Y [1N→N]x = x for all x, so
that the bar recursion is not well-founded. We calculate

ϕ(0, 1N→N) = 1 + ϕ(1, 1N→N) = · · · = n+ ϕ(n, 1N→N) = · · ·
which shows that ϕ is not well-defined.

Syntax of λB

In this section we formalize Spector’s B as an extension of Gödel’s T called λB.

15For the purpose of characterizing the provably recursive functions of analysis, yielding a consistency
proof of analysis.

16Spector uses [C]x instead of C as last argument of G and H. Both formulations are easily seen to
be equivalent since they are schematic in G,H (as well as in Y ).
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5D.1. Definition. The theory Spector’s B, notation λB is defined as follows. TT(λB) =
TT(λT ). We use AN as shorthand for the type N→A. The terms of λB are obtained by
adding constants for bar recursion

BA,B : (AN→N)→(N→AN→B)→((A→B)→N→AN→B)→N→AN→B
BcA,B : (AN→N)→(N→AN→B)→((A→B)→N→AN→B)→N→AN→N→B

for all types A,B to the constants of λT . The set of (closed) terms of λB (of type A)

is denoted with Λ
(0)
B (A). The formulas of λB are equations between terms of λB (of

the same type). The theory of λB extends the theory of λT with the above schema of
bar recursion (with ϕ abbreviating BY GH). The reduction relation →B of λB extends
→T by adding the following (schematic) rules for the constants B,Bc (omitting type
annotations A,B):

BY GHXC →B BcY GHXC(X . Y [C]X)

BcY GHXC(S+N)→B GXC

BcY GHXC0→B H(λa.BY GH(S+X)(C ∗X a))XC

The reduction rules for B,Bc require some explanation. First note that x . Y [C]x = 0
iff Y [C]x ≥ x, so that testing x . Y [C]x = 0 amounts to evaluating the (negation) of the
bar condition. Consider a primitive recursive functional If0 satisfying If00M1M0 = M0

and If0(S
+P )M1M0 =M1. A straightforward translation of the definition schema of bar

recursion into a reduction rule:

BY GHXC → If0 (X . [C]X)(GXC)(H(λx.BY GH(S+X)(C ∗X x))XC)

would lead to infinite reduction sequences (the innermost B can be reduced again and
again). It turns out to be necessary to evaluate the Boolean first. This has been achieved
by the interplay between B and Bc.
Theorem 5C.5, Lemma 5C.6 and Theorem 5C.9 carry over from λT to λB with proofs

that are easy generalizations. We now prove SN for λB and then obtain CR for λB

using Newman’s Lemma 5C.8. The proof of SN for λB is considerably more difficult
than for λT , which reflects the meta-mathematical fact that λB corresponds to analysis
(see Spector [1962]), whereas λT corresponds to arithmetic. We start with defining
hereditary finiteness for sets of terms, an analytical notion which plays a similar role as
the arithmetical notion of computability for terms in the case of λT . Both are logical
relations in the sense of Section 3C, although hereditary finiteness is defined on the
power set. Both computability and hereditary finiteness strengthen the notion of strong
normalization, both are shown to hold by induction on terms. For meta-mathematical
reasons, notably the consistency of analysis, it should not come as a surprise that we
need an analytical induction loading in the case of λB.

5D.2. Definition. (i) For every set X ⊆ ΛB, let nf(X) denote the set of B-normal forms
of terms from X. For all X ⊆ ΛB(A→B) and Y ⊆ ΛB(A), let XY denote the set of all
applications of terms in X to terms in Y. Furthermore, if M(x1, · · · , xk) is a term with
free variables x1, · · · , xk, and X1, · · · ,Xk are sets of terms such that every term from
Xi has the same type as xi (1 ≤ i ≤ k), then we denote the set of all corresponding
substitution instances by M(X1, · · · ,Xk).
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(ii) By induction on the type A we define that a set X of closed terms of type A is
hereditarily finite, notation X∈HFA.

X∈HFN⇐⇒△ X ⊆ ΛøB(N) ∩ SN and nf (X) is finite

X∈HFA→B ⇐⇒△ X ⊆ ΛøB(A→B) and XY∈HFB whenever Y∈HFA

(iii) A closed term M is called hereditarily finite, notation M ∈HF0, if {M}∈HF.
(iv) If M(x1, · · · , xk) is a term all whose free variables occur among x1, · · · , xk, then

M(x1, · · · , xk) is hereditarily finite, notation M(x1, · · · , xk)∈HF, if M(X1, · · · ,Xk) is
hereditarily finite for all Xi ∈HF of appropriate types (1 ≤ i ≤ k).
We will show in Theorem 5D.15 that every bar recursive term is hereditarily finite,

and hence strongly normalizing.
Some basic properties of hereditary finiteness are summarized in the following lemmas.

We use vector notation to abbreviate sequences of arguments of appropriate types both

for terms and for sets of terms. For example, M ~N abbreviates MN1 · · ·Nk and X~Y
stands for XY1 · · ·Yk. The first two lemmas are instrumental for proving hereditary
finiteness.

5D.3. Lemma. X ⊆ ΛøB(A1→· · ·→An→N) is hereditarily finite if and only if X~Y∈HFN

for all Y1 ∈HFA1 , · · · ,Yn ∈HFAn.

Proof. By induction on n, applying Definition 5D.2.

5D.4. Definition. Given two sets of terms X,X′ ⊆ ΛøB, we say that X is adfluent with
X′ if every maximal reduction sequence starting in X passes through a reduct of a term
in X′. Let A ≡ A1→· · ·→An→N with n ≥ 0 and let X,X′ ⊆ ΛøB(A). We say that X is

hereditarily adfluent with X′ if X~Y is adfluent with X′~Y, for all Y1 ∈HFA1 , · · · ,Yn ∈HFAn .

5D.5. Lemma. Let X,X′ ⊆ ΛøB(A) be such that X is hereditarily adfluent with X′. Then
X∈HFA whenever X′ ∈HFA.

Proof. Let conditions be as in the Lemma and A ≡ A1→· · ·→An→N. Assume
X′ ∈HFA. Let Y1 ∈HFA1 , · · · ,Yn ∈HFAn , then X~Y is adfluent with X′~Y. It follows

that X~Y ⊆ SN since X′~Y ⊆ SN and nf (X~Y) ⊆ nf (X′~Y), so nf (X~Y) is finite since nf (X′~Y)
is. Applying Lemma 5D.3 we obtain X∈HFA.

Note that the above lemma holds in particular if n = 0, that is, if A ≡ N.

5D.6. Lemma. Let A be a type of λB. Then
(i) HFA ⊆ SN.
(ii) 0A ∈HFA.
(iii) HF0

A ⊆ SN.

Proof. We prove (ii) and (iii) by simultaneous induction on A. Then (i) follows imme-
diately. Obviously, 0∈HFN and HF0

N ⊆ SN. For the induction step A→B, assume (ii)
and (iii) hold for all smaller types. If M ∈HF0

A→B, then by the induction hypothesis (ii)
0A ∈HF0

A, so M0A ∈HF0
B, so M0A is SN by the induction hypothesis (iii), and hence M

is SN. Recall that 0A→B ≡ λxA.0B. Let X∈HFA, then X ⊆ SN by the induction hypoth-
esis. It follows that 0A→BX is hereditarily adfluent with 0B. By the induction hypothesis
we have 0B ∈HFB, so 0A→BX∈HFB by Lemma 5D.5. Therefore 0A→B ∈HFA→B.

The proofs of the following three lemmas are left to the reader.

5D.7. Lemma. Every reduct of a hereditarily finite term is hereditarily finite.
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5D.8. Lemma. Subsets of hereditarily finite sets of terms are hereditarily finite.

In particular elements of a hereditarily finite set are hereditarily finite.

5D.9. Lemma. Finite unions of hereditarily finite sets are hereditarily finite.

In this connection of course only unions of the same type make sense.

5D.10. Lemma. The hereditarily finite terms are closed under application.

Proof. Immediate from Definition 5D.2.

5D.11. Lemma. The hereditarily finite terms are closed under lambda abstraction.

Proof. Let M(x, x1, · · · , xk)∈HF be a term all whose free variables occur among
x, x1, · · · , xk. We have to prove λx.M(x, x1, · · · , xk)∈HF, that is,

λx.M(x,X1, · · · ,Xk)∈HF
for given ~X = X1, · · · ,Xk ∈HF of appropriate types. Let X∈HF be of the same type

as the variable x, so X ⊆ SN by Lemma 5D.6. We also have M(x, ~X) ⊆ SN by the

assumption on M and Lemma 5D.6. It follows that (λx.M(x, ~X))X is hereditarily ad-

fluent with M(X, ~X). Again by the assumption on M we have that M(X, ~X)∈HF,
so that (λx.M(x, ~X))X∈HF by Lemma 5D.5. We conclude that λx.M(x, ~X)∈HF, so
λx.M(x, x1, · · · , xk)∈HF.
5D.12. Theorem. Every term of λT is hereditarily finite.

Proof. By Lemma 5D.10 and Lemma 5D.11, the hereditarily finite terms are closed
under application and lambda abstraction, so it suffices to show that the constants and
the variables are hereditarily finite. Variables and the constant 0 are obviously heredi-
tarily finite. Regarding S+, let X∈HFN, then S+X ⊆ ΛøB(N) ∩ SN and nf (S+X) is finite
since nf (X) is finite. Hence S+X∈HFN, so S+ is hereditarily finite. It remains to prove
that the constants RA are hereditarily finite. Let M,N,X∈HF be of appropriate types
and consider RAMNX. We have in particular X∈HFN, so nf (X) is finite, and the proof
of RAMNX∈HF goes by induction on the largest numeral in nf (X). If nf (X) = {0},
then RAMNX is hereditarily adfluent with M. Since M∈HF we can apply Lemma 5D.5
to obtain RAMNX∈HF. For the induction step, assume RAMNX′ ∈HF for all X′ ∈HF
such that the largest numeral in nf (X′) is n. Let, for some X∈HF, the largest numeral
in nf (X) be S+n. Define

X′ , {X | S+X is a reduct of a term in X}
Then X′ ∈HF since X∈HF, and the largest numeral in nf (X′) is n. It follows by the
induction hypothesis that RAMNX′ ∈HF, so N(RAMNX′)X′ ∈HF and hence

N(RAMNX′)X′ ∪M∈HF,
by Lemmas 5D.10, 5D.9. We have that RAMNX, is hereditarily adfluent with

N(RAMNX′)X′ ∪M,

so RAMNX∈HF by Lemma 5D.5. This completes the induction step.

Before we can prove that B is hereditarily finite we need the following lemma.

5D.13. Lemma. Let Y,G,H,X,C∈HF be of appropriate type. Then

BYGHXC∈HF,
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whenever BYGH(S+X)(C ∗X A)∈HF for all A∈HF of appropriate type.

Proof. Let conditions be as above. Abbreviate BYGH by B and BcYGH by Bc. As-
sume B(S+X)(C ∗X A)∈HF for all A∈HF. Below we will frequently and implicitly
use that . , ∗, [ ] are primitive recursive and hence hereditarily finite, and that heredi-
tary finiteness is closed under application. Since hereditarily finite terms are strongly
normalizable, we have that BXC is hereditarily adfluent with BcXC(X . Y[C]X), and
hence with GCX ∪ H(λa.B(S+X)(C ∗X a))CX. It suffices to show that the latter set
is in HF. We have GCX∈HF, so by Lemma 5D.9 the union is hereditarily finite if
H(λa.B(S+X)(C ∗X a))CX is. It suffices that λa.B(S+X)(C ∗X a)∈HF, and this will
follow by the assumption above. We first observe that {0A}∈HF so B(S+X)(C ∗X
{0A})∈HF and hence B(S+X)(C ∗X a) ⊆ SN by Lemma 5D.6. Let A∈HF. Since
B(S+X)(C ∗X a),A ⊆ SN we have that (λa.B(S+X)(C∗Xa))A is adfluent with B(S+X)(C∗X
A)∈HF and hence hereditarily finite itself by Lemma 5D.5.

We now have arrived at the crucial step, where not only the language of analysis will be
used, but also the axiom of dependent choice in combination with classical logic. We will
reason by contradiction. Suppose B is not hereditarily finite. Then there are hereditarily
finite Y,G,H,X and C such that BYGHXC is not hereditarily finite. We introduce the
following abbreviations: B for BYGH and X+n for S+(· · · (S+X) · · · ) (n times S+). By
Lemma 5D.13, there exists U∈HF such that B(X+1)(C ∗X U) is not hereditarily finite.
Hence again by Lemma 5D.13, there exists V∈HF such that B(X+2)((C ∗X U) ∗X+1 V)
is not hereditarily finite. Using dependent choice17, let

D, C ∪ (C ∗X U) ∪ ((C ∗X U) ∗X+1 V) ∪ · · ·

be the infinite union of the sets obtained by iterating the argument above. Note that all
sets in the infinite union are hereditarily finite of type AN. Since the union is infinite,
it does not follow from Lemma 5D.9 that D itself is hereditarily finite. However, since
D has been built up from terms of type AN having longer and longer initial segments
in common we will nevertheless be able to prove that D∈HF. Then we will arrive at a
contradiction, since YD∈HF implies that Y is bounded on D, so that the bar condition
is satisfied after finitely many steps, which conflicts with the construction process.

5D.14. Lemma. The set D constructed above is hereditarily finite.

Proof. Let N, ~Z∈HF be of appropriate type, that is, N of type N and ~Z such that DN~Z

is of type N. We have to show DN~Z∈HF. Since all elements of D are hereditarily finite

we have DN~Z ⊆ SN. By an easy generalization of Theorem 5C.9 we have WCR for λB,

so by Newman’s Lemma 5C.8 we have DN~Z ⊆ CR. Since N∈HF it follows that nf (N)

is finite, say nf (N) ⊆ {0, · · · , n} for n large enough. It remains to show that nf (DN~Z) is

finite. Since all terms in DN~Z are CR, their normal forms are unique. As a consequence

we may apply a leftmost innermost reduction strategy to any term DN ~Z ∈DN~Z. At
this point it might be helpful to remind the reader of the intended meaning of ∗: C ∗xA

17The axiom of dependent choice DC states the following. Let R ⊆ X2 be a binary relation on a set
X such that ∀x∈X∃y ∈X.R(x, y). Then ∀x∈X∃f : Nat→X.[f(0) = x & ∀n∈Nat.R(f(n), f(n + 1))].
DC is an immediate consequence of the ordinary axiom of choice in set theory.
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represents the finite sequence C0, . . . , C(x− 1), A. More formally,

(C ∗x A)y ,
{
C(y) if y < x,
A otherwise.

With this in mind it is easily seen that nf (DN~Z) is a subset of nf (DnN~Z), with

Dn , C ∪ (C ∗X U) ∪ ((C ∗X U) ∗X+1 V) ∪ · · · ∪ (· · · (C ∗X U) ∗ · · · ∗X+n W)

a finite initial part of the infinite union D. The set nf (DnN~Z) is finite since the union is
finite and all sets involved are in HF. Hence D is hereditarily finite by Lemma 5D.3.

Since D is hereditarily finite, it follows that nf (YD) is finite. Let k be larger than any
numeral in nf (YD). Consider

Bk ,B(X+k)(· · · (C ∗X U) ∗ · · · ∗X+k W
′)

as obtained in the construction above, iterating Lemma 5D.13, hence not hereditarily
finite. Since k is a strict upper bound of nf (YD) it follows that the set nf ((X+k) . YD)
consists of numerals greater than 0, so that Bk is hereditarily adfluent with G(X+k)D.
The latter set is hereditarily finite since it is an application of hereditarily finite sets
(use Lemma 5D.14). Hence Bk is hereditarily finite by Lemma 5D.5, which yields a plain
contradiction.
By this contradiction, B must be hereditarily finite, and so is Bc, which follows by

inspection of the reduction rules. As a consequence we obtain the main theorem of this
section.

5D.15. Theorem. Every bar recursive term is hereditarily finite.

5D.16. Corollary. Every bar recursive term is strongly normalizable.

5D.17. Remark. The first normalization result for bar recursion is due to Tait [1971],
who proves WN for λB. Vogel [1976] strengthens Tait’s result to SN, essentially by
introducing Bc and by enforcing every B-redex to reduce via Bc. Both Tait and Vogel
use infinite terms. The proof above is based on Bezem [1985a] and avoids infinite terms
by using the notion of hereditary finiteness, which is a syntactic version of Howard’s
compactness of functionals of finite type, see Troelstra [1973], Section 2.8.6.

If one considers λB also with η-reduction, then the above results can also be obtained
in a similar way as for λT with η-reduction.

Semantics of λB

In this section we give some interpretations of Spector’s B.
5D.18. Definition. A model of λB is a model of λT with interpretations of the constants
BA,B and BcA,B for all A,B, such that the rules for these constants can be interpreted
as valid equations. In particular we have then that the schema of bar recursion is valid,
with [[ϕ]] = [[BY GH]].

We have seen at the beginning of this section that the full set theoretic model of Gödel’s
T is not a model of bar recursion, due to the existence of functionals (such as Y un-
bounded on binary functions) for which the bar recursion is not well-founded. Designing
a model of λB amounts to ruling out such functionals, while maintaining the necessary
closure properties. There are various solutions to this problem. The simplest solution is
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to take the closed terms modulo convertibility, which form a model by CR and SN. How-
ever, interpreting terms (almost) by themselves does not explain very much. For this
closed term model the reader is asked in Exercise 5F.37 to prove that it is extensional.
An important model is obtained by using continuity in the form of the Kleene [1959a] and
Kreisel [1959] continuous functionals. Continuity is on one hand a structural property of
bar recursive terms, since they can use only a finite amount of information about their
arguments. On the other hand continuity ensures that bar recursion is well-founded,
since a continuous Y eventually gets the constant value Y C on increasing initial seg-
ments [C]x. In Exercise 5F.36 the reader is asked to elaborate this model in detail.
Refinements can be obtained by considering notions of computability on the continuous
functionals, such as in Kleene [1959b] using the ‘S1-S9 recursive functionals’. Com-
putability alone, without uniform continuity on all binary functions, does not yield a
model of bar recursion, see Exercise 5F.32. The model of bar recursion we will elaborate
in the next paragraphs is based on the same idea as the proof of strong normalization in
the previous section. Here we consider the notion of hereditary finiteness semantically
instead of syntactically. The intuition is that the set of increasing initial segments is
hereditarily finite, so that any hereditarily finite functional Y is bounded on that set,
and hence the bar recursion is well-founded. See Bezem [1985b] for a closely related
model based on strongly majorizable functionals.

5D.19. Definition (Hereditarily finite functionals). Recall the full type structure over

the natural numbers: MN ,N andMA→B ,MA→MB. A set X ⊆MN is hereditarily
finite if X is finite. A set X ⊆ MA→B is hereditarily finite if XY ⊆ MB is hereditarily
finite for every hereditarily finite Y ⊆ MA. Here and below, XY denotes the set of all
results that can be obtained by applying functionals from X to functionals from Y. A
functional F is hereditarily finite if the singleton set {F} is hereditarily finite. Let HF be
the substructure of the full type structure consisting of all hereditarily finite functionals.

The proof that HF is a model of λB has much in common with the proof that λB

is SN from the previous paragraph. The essential step is that the interpretation of
the bar recursor is hereditarily finite. This requires the following semantic version of
Lemma 5D.13:

5D.20. Lemma. Let Y,G,H,X,C be hereditarily finite sets of appropriate type. Then
[[B]]YGHXC is well defined and hereditarily finite whenever [[B]]YGH(X+1)(C ∗X A) is so
for all hereditarily finite A of appropriate type.

The proof proceeds by iterating this lemma in the same way as how the SN proof
proceeds after Lemma 5D.13. The set of longer and longer initial sequences with elements
taken from hereditarily finite sets (cf. the set D in Lemma 5D.14) is hereditarily finite
itself. As a consequence, the bar recursion must be well-founded when the set Y is also
hereditarily finite. It follows that the interpretation of the bar recursor is well-defined
and hereditarily finite.
Following Troelstra [1973], Section 2.4.5 and 2.7.2, we define the following notion of

hereditary extensional equality .

5D.21. Definition. We put ≈N to be =, convertibility of closed terms in ΛøB(N). For the
type A ≡ B→B′ we define M ≈A M

′ if and only if M,M ′ ∈ΛøB(A) and MN ≈B′ M ′N ′

for all N,N ′ such that N ≈B N ′.
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By (simultaneous) induction on A one shows easily that ≈A is symmetric, transitive
and partially reflexive, that is, M ≈A M holds whenever M ≈A N for some N . The
corresponding axiom of hereditary extensionality is simply stating that ≈A is (totally)
reflexive: M ≈A M , schematic in M ∈ΛøB(A) and A. This is proved in Exercise 5F.37.

5E. Platek’s system Y: fixed point recursion

Platek [1966] introduces a simply typed lambda calculus extended with fixed point com-
binators. Here we study Platek’s system as an extension of Gödel’s T . An almost
identical system is called PCF in Plotkin [1977].
A fixed point combinator is a functional Y of type (A→A)→A such that Y F is a fixed

point of F , that is, Y F = F (Y F ), for every F of type A→A. Fixed point combinators
can be used to compute solutions to recursion equations. The only difference with the
type-free lambda calculus is that here all terms are typed, including the fixed point
combinators themselves.
As an example we consider the recursion equations of the schema of higher order

primitive recursion in Gödel’s system T , Section 5C. We can rephrase these equations
as

RMNn = If0 n (N(RMN(n− 1))(n− 1))M,

where If0 nM1M0 =M0 if n = 0 and M1 if n > 0. Hence we can write

RMN = λn. If0 n (N(RMN(n− 1))(n− 1))M

= (λfn. If0 n (N(f(n− 1))(n− 1))M)(RMN)

This equation is of the form Y F = F (Y F ) with

F , λfn. If0 n (N(f(n− 1))(n− 1))M

and Y F = RMN . It is easy to see that Y F satisfies the recursion equation for RMN
uniformly inM,N . This shows that, given functionals If0 and a predecessor function (to
compute n− 1 in case n > 0), higher-order primitive recursion is definable by fixed point
recursion. However, for computing purposes it is convenient to have primitive recursors
at hand. By a similar argument, one can show bar recursion to be definable by fixed
point recursion.
In addition to the above argument we show that every partial recursive function can be

defined by fixed point recursion, by giving a fixed point recursion for minimization. Let
F be a given function. Define by fixed point recursion GF , λn.If0 F (n) GF (n+ 1) n.
Then we have GF (0) = 0 if F (0) = 0, and GF (0) = GF (1) otherwise. We have GF (1) = 1
if F (1) = 0, and GF (1) = GF (2) otherwise. By continuing this argument we see that

GF (0) = min{n | F (n) = 0},
that is, GF (0) computes the smallest n such that F (n) = 0, provided that such n exists.
If there exists no n such that F (n) = 0, then GF (0) as well as GF (1), GF (2), · · · are
undefined. Given a function F of two arguments, minimization with respect to the
second argument can now be obtained by the partial function λx.GF (x)(0).
In the paragraph above we saw already that fixed point recursions may be indefinite:

if F does not zero, then GF (0) = GF (1) = GF (2) = · · · does not lead to a definite



5E. Platek’s system Y: fixed point recursion 237

value, although one could consistently assume GF to be a constant function in this case.
However, the situation is in general even worse: there is no natural number n that
can consistently be assumed to be the fixed point of the successor function, that is,
n = Y (λx.x+ 1), since we cannot have n = (λx.x+ 1)n = n+ 1. This is the price to be
paid for a formalism that allows one to compute all partial recursive functions.

Syntax of λY

In this section we formalize Platek’s Y as an extension of Gödel’s T called λY .

5E.1. Definition. The theory Platek’s Y, notation λY , is defined as follows. TT(λY ),
TT(λT ) = TT{N}. The terms of λY are obtained by adding constants

YA : (A→A)→A
for all types A to the constants of λT . The set of (closed) terms of λY (of type A)
is denoted by ΛøY (A). The formulas of λY are equations between terms of λY (of the
same type). The theory of λY extends the theory of λT with the schema YF = F (YF )
for all appropriate types. The reduction relation →Y of λY extends →T by adding the
following rule for the constants Y (omitting type annotations A):

Y→Y λf.f(Yf).

The reduction rule for Y requires some explanation, as the rule YF → F (YF ) seems
simpler. However, with the latter rule we would have diverging reductions λf.Yf →η Y

and λf.Yf →Y λf.f(Yf) that cannot be made to converge, so that we would lose CR of
→Y in combination with η-reduction.
The SN property does not hold for λY : the term Y does not have a Y -nf. However, the

Church-Rosser property for λY with β-reduction and with βη-reduction can be proved
by standard techniques from higher-order rewriting theory, for example, by using weak
orthogonality, see van Raamsdonk [1996].
Although λY has universal computational strength in the sense that all partial re-

cursive functions can be computed, not every computational phenomenon can be repre-
sented. For example, λY is inherently sequential: there is no term P such that PMN = 0
if and only if M = 0 or N = 0. The problem is that M and N cannot be evaluated in
parallel, and if the argument that is evaluated first happens to be undefined, then the
outcome is undefined even if the other argument equals 0. For a detailed account of the
so-called sequentiality of λY , see Plotkin [1977].

Semantics of λY

In this section we explore the semantics of λY and give one model. This subject is
more thoroughly studied in domain theory, see e.g. Gunter [1992] or Abramsky and
Jung [1994].

5E.2. Definition. A model of λY is a model of λT with interpretations of the constants
YA for all A, such that the rules for these constants can be interpreted as valid equations.

Models of λY differ from those of λT ,λB in that they have to deal with partialness.
As we saw in the introduction of this section, no natural number n can consistently
be assumed to be the fixed point of the successor function. Nevertheless, we have to
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interpret terms like YS+. The canonical way to do so is to add an element ⊥ to the
natural numbers, representing undefined objects like the fixed point of the successor
function. Let N⊥ denote the set of natural numbers extended with ⊥. Now higher
types are interpreted as function spaces over N⊥. The basic intuition is that ⊥ contains
less information than any natural number, and that functions and functionals give more
informative output when the input becomes more informative. One way of formalizing
these intuitions is by using partial orderings. We equip N⊥ with the partial ordering
⊑ such that ⊥ ⊏ n for all n∈N. In order to be able to interpret Y, every function
must have a fixed point. This requires some extra structure on the partial orderings,
which can be formalized by the notion of complete partial ordering (cpo, see for example
B[1984], Section 1.2). The next lines bear some similarity to the introductory treatment
of ordinals in Section 5C. We call a set directed if it is not empty and contains an upper
bound for every two elements of it. Completeness of a partial ordering means that every
directed set has a supremum. A function on cpo-s is called continuous if it preserves
suprema of directed sets. Every continuous function f of cpo-s is monotone and has a
least fixed point lfp(f), being the supremum of the directed set enumerated by iterating
f starting at ⊥. The function lfp is itself continuous and serves as the interpretation of
Y. We are now ready for the following definition.

5E.3. Definition. Define N⊥
A by induction on A.

N⊥
N , N⊥,

N⊥
A→B , [N⊥

A→N⊥
B], the set of all continuous maps.

Given the fact that cpo-s with continuous maps form a Cartesian closed category
and that the successor, predecessor and conditional can be defined in a continuous way,
the only essential step in the proof of the following lemma is to put [[Y]] = lfp for all
appropriate types.

5E.4. Lemma. The type structure of cpo-s N⊥
A is a model for λY .

In fact, as the essential requirement is the existence of fixed points, we could have taken
monotone instead of continuous maps on cpo-s. This option is elaborated in detail in
van Draanen [1995].

5F. Exercises

5F.1. Prove in δ the following equations.

(i) δMNK∗K = δ(δMN)K∗.

(ii) δ(λz.δ(Mz)(Nz))(λz.K) = δMN .
[Hint. Start observing that δ(Mz)(Nz)(Mz)(Nz) = Nz.]

5F.2. Prove Proposition 5B.12: for all types A one has A ⊳SP Nrk(A).

5F.3. Let λP be λ0
→ extended with a simple (not surjective) pairing. Show that Theorem

5B.45 does not hold for this theory. [Hint show that in this theory the equation
λx:0.〈π1x, π2x〉 = λx:0.x does not hold by constructing a counter model, but is
nevertheless consistent.]

5F.4. Does every model of λSP have the same first order theory?
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5F.5. (i) Show that if a pairing function 〈 , 〉 : 0→(0→0) and projections L,R : 0→0
satisfying L〈x, y〉 = x and R〈x, y〉 = y are added to λ0

→, then for a non-trivial
modelM one has (see 4.2)

∀A∈TT ∀M,N ∈Λø(A) [M |=M = N ⇒ M=βηN ].

(ii) (Schwichtenberg and Berger [1991]) Show that forM a model of λT one has
(see 4.3)

∀A∈TT ∀M,N ∈Λø(A) [M |=M = N ⇒ M=βηN ].

5F.6. Show that F [x1, · · · ,xn] for n ≥ 0 does not have one generator. [Hint. Otherwise
this monoid would be commutative, which is not the case.]

5F.7. Show that R ⊆ Λø(A)× Λø(B) is equational iff

∃M,N ∈Λø(A→B→1→1) ∀F [R(F ) ⇔ MF = NF ].

5F.8. Show that there is a Diophantine equation lt ⊆ F2 such that for all n,m∈N
lt(Rn, Rm) ⇔ n < m.

5F.9. Define SeqNk
n (h) if h = [Rm0 , · · · , Rmn−1 ], for some m0, · · · ,mn−1 < k. Show

that SeqNk
n is Diophantine uniformly in n.

5F.10. LetB be some finite subset of F . Define SeqBn(h) if h = [g0, · · · , gn−1], with each

gi ∈B. Show that SeqBn is Diophantine uniformly in n.

5F.11. For B ⊆ F define B+ to be the submonoid generated by B. Show that if B is

finite, then B+ is Diophantine.
5F.12. Show that F ⊆ F [x] is Diophantine.
5F.13. Construct two concrete terms t(a, b), s(a, b)∈F [a, b] such that for all f ∈F one

has
f ∈{Rn | n∈N} ∪ {L} ⇔ ∃g ∈F [t(f, g) = s(f, g)].

[Remark. It is not sufficient to notice that Diophantine sets are closed under
union. But the solution is not hard and the terms are short.]

5F.14. Let 2 = {0, 1} be the discrete topological space with two elements. Let Cantor
space be C = 2N endowed with the product topology. Define Z,O : C→C ‘shift
operators’ on Cantor space as follows.

Z(f)(0), 0;

Z(f)(n+ 1), f(n);

O(f)(0), 1;

O(f)(n+ 1), f(n).

Write 0f = Z(f) and 1f = O(f). If X ⊆ C→C is a set of maps, let X+ be the
closure of X under the rule

A0, A1 ∈X ⇒ A∈X ,
where A is defined by

A(0f) = A0(f);

A(1f) = A1(f).
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(i) Show that if X consists of continuous maps, then so does X+.
(ii) Show that A∈{Z,O}+ iff

A(f) = g ⇒ ∃r, s∈N ∀t > s.g(t) = f(t− s+ r).

(iii) Define on {Z,O}+ the following.

I , λx∈{Z,O}+.z;
L , Z;

R , O;

x ∗ y , y ◦ x;
〈x, y〉 , x(f), if f(0) = 0;

, y(f), if f(0) = 1.

Then 〈{Z,O}+, ∗, I, L,R, 〈−,−〉〉 is a Cartesian monoid isomorphic to F , via
ϕ : F→{Z,O}+.

(iv) The Thompson-Freyd-Heller group can be defined by

{f ∈I | ϕ(f) preserves the lexicographical ordering on C}.
Show that the Bn introduced in Definition 5B.32 generate this group.

5F.15. Let

B0 , 〈LL,RL,R〉〉 B−1
0 , 〈〈L,LR〉, LRR,RRR〉〉

B1 , 〈L,LLR,RLR,RR〉〉 B−1
1 , 〈L, 〈LR,LRR〉, RRR〉〉

C0 , 〈R,L〉
C1 , 〈LR,L,RR〉〉.

Show that for the invertible elements of the free Cartesian monoid F one has

I = [{B0, B
−1
0 , B1, B

−1
1 , C0, C1}].

[Hint. Show that

B0〈〈A,B,C〉= 〈A,B,C〉〉
B1〈A, 〈B,C〉, D〉〉= 〈A,B,C,D〉〉

C0〈A,B〉= 〈B,A〉
C1〈A,B,C〉〉= 〈B,A,C〉〉.

Use this to transform any element M ∈I into I. By the inverse transformation
we get M as the required product.]

5F.16. Show that the Bn in Definition 5B.32 satisfy

Bn+2 = BnBn+1B
−1
n .

5F.17. Prove Proposition 5B.12: for all types A one has A ⊳SP Nrank(A).
5F.18. Does every model of λSP have the same first order theory?
5F.19. Prove the Lemma 5C.15. [Hint. Use the following procedure:

(i) To be proved by induction on α;
(ii) Prove α ≤ β ⇒ fα(0) ≤ fβ(0) by induction on β;
(iii) Assume f(β) = β and prove fα(0) ≤ β by induction on α;
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(iv) Prove α < β ⇒ fα(0) < fβ(0) for all α, β such that fα(0) is below any fixed
point, by induction on β.]

5F.20. Justify the equation f(λ) = λ in the proof of 5C.17.
5F.21. Let A be the Ackermann function. Calculate A(3,m) and verify that A(4, 0) = 13

and A(4, 1) = 65533.
5F.22. With one occurrence hidden in H, the term RSH contains RN→N twice. Define

A using RN and RN→N only once. Is it possible to define A with RN only, possibly
with multiple occurrences?

5F.23. Show that the first-order schema of primitive recursion is subsumed by the higher-
order schema, by expressing F in terms of R, G and H.

5F.24. Which function is computed if we replace P in Rx(P ∗ K)y by the successor
function? Define multiplication, exponentiation and division with remainder as
primitive recursive functionals.

5F.25. [Simultaneous primitive recursion] Assume Gi, Hi (i = 1, 2) have been given and
define Fi (i = 1, 2) as follows.

Fi(0, ~x),Gi(~x);

Fi(n+ 1, ~x),Hi(F1(n, ~x), (F2(n, ~x), n, ~x).

Show that Fi (i = 1, 2) can be defined by first-order primitive recursion. [Hint.
Use a pairing function such as in Figure 12.]

5F.26. [Nested recursion, Péter [1967]] Define

F (n,m), 0, if m · n = 0;

F (n+ 1,m+ 1),G(m,n, F (m,H(m,n, F (m+ 1, n))), F (m+ 1, n)).

Show that F can be defined from G,H using higher-order primitive recursion.
5F.27. [Dialectica translation] We closely follow Troelstra [1973], Section 3.5; the solu-

tion can be found there. Let HAω be the theory of higher-order primitive recursive
functionals equipped with many-sorted intuitionistic predicate logic with equal-
ity for natural numbers and axioms for arithmetic, in particular the schema of
arithmetical induction:

(ϕ(0) ∧ ∀x (ϕ(x) ⇒ ϕ(x+ 1))) ⇒ ∀x ϕ(x)
The Dialectica interpretation of Gödel [1958], D-interpretation for short, assigns

to every formula ϕ in the language of HAω a formula ϕD , ∃~x ∀~y ϕD(~x, ~y) in the
same language. The types of ~x, ~y depend on the logical structure of ϕ only. We
define ϕD and ϕD by induction on ϕ:
1. If ϕ is prime, that is, an equation of lowest type, then ϕD , ϕD , ϕ.

For the binary connectives, assume ϕD ≡ ∃~x ∀~y ϕD(~x, ~y), ψ
D ≡ ∃~u ∀~v ψD(~u,~v).

2. (ϕ ∧ ψ)D , ∃~x, ~u ∀~y,~v (ϕ ∧ ψ)D, with
(ϕ ∧ ψ)D , (ϕD(~x, ~y) ∧ ψD(~u,~v)).

3. (ϕ ∨ ψ)D , ∃z, ~x, ~u ∀~y,~v (ϕ ∨ ψ)D, with
(ϕ ∨ ψ)D , ((z = 0 ⇒ ϕD(~x, ~y)) ∧ (z 6= 0 ⇒ ψD(~u,~v))).

4. (ϕ ⇒ ψ)D , ∃~u′, ~y′ ∀~x,~v (ϕ ⇒ ψ)D, with

(ϕ ⇒ ψ)D , (ϕD(~x, ~y′~x~v) ⇒ ψD(~u′~x,~v)).
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Note that the clause for ϕ ⇒ ψ introduces quantifications over higher types
than those used for the formulas ϕ, ψ. This is also the case for formulas of the
form ∀z ϕ(z), see the sixth case below. For both quantifier clauses below, assume
ϕD(z) ≡ ∃~x ∀~y ϕD(~x, ~y, z).

5. (∃z ϕ(z))D , ∃z, ~x ∀~y (∃z ϕ(z))D, with (∃z ϕ(z))D , ϕD(~x, ~y, z).

6. (∀z ϕ(z))D , ∃~x′ ∀z, ~y (∀z ϕ(z))D, with (∀z ϕ(z))D , ϕD(~x′z, ~y, z).
With ϕ, ψ as in the case of a binary connective, determine (ϕ ⇒ (ϕ ∨ ψ))D
and give a sequence ~t of higher-order primitive recursive functionals such that
∀~y (ϕ ⇒ (ϕ ∨ ψ))D(~t, ~y). We say that in this way the D-interpretation of
(ϕ ⇒ (ϕ∨ψ))D is validated by higher-order primitive recursive functionals. Vali-
date the D-interpretation of (ϕ ⇒ (ϕ∧ϕ))D. Validate the D-interpretation of in-
duction. The result of Gödel [1958] can now be rendered as: the D-interpretation
of every theorem of HAω can be validated by higher-order primitive recursive func-
tionals. This yields a consistency proof for HAω, since 0 = 1 cannot be validated.
Note that the D-interpretation and the successive validation translates arbitrar-
ily quantified formulas into universally quantified propositional combinations of
equations.

5F.28. Consider for any type B the set of closed terms of type B modulo convertibility.
Prove that this yields a model for Gödel’s T . This model is called the closed term
model of Gödel’s T .

5F.29. Let ∗ be Kleene application, that is, i ∗ n stands for applying the i-th partial
recursive function to the input n. If this yield a result, then we flag i ∗ n↓,
otherwise i ∗ n↑. Equality between expressions with Kleene application is taken
to be strict, that is, equality does only hold if left and right hand sides do yield a
result and the results are equal. Similarly, i ∗ n∈S should be taken in the strict
sense of i ∗ n actually yielding a result in S.
By induction we define a family of sets, the hereditarily recursive operators

HROB ⊆ N for every type B, as follows.

HRON , N

HROB→B′ , {x∈N | x ∗ y ∈HROB′ for all y ∈HROB}

Prove that HRO with Kleene application constitutes a model for Gödel’s T .
5F.30. By simultaneous induction we define a family of sets, the hereditarily extensional

operators HEOB ⊆ N for every type B, equipped with an equivalence relation
=B as follows.

HEON , N

x =N y⇐⇒△ x = y

HEOB→B′ , {x∈N | x ∗ y ∈HEOB′ for all y ∈HEOB and

x ∗ y =B′ x ∗ y′ for all y, y′ ∈HEOB with y =B y′}
x =B→B′ x′⇐⇒△ x, x′ ∈HEOB→B′ and x ∗ y =B′ x′ ∗ y for all y ∈HEOB.

Prove that HEO with Kleene application constitutes a model for Gödel’s T .
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5F.31. Recall that extensionality essentially means that objects having the same ap-
plicative behavior can be identified. Which of the above models of λT , the full
type structure, the closed term model, HRO and HEO, is extensional?

5F.32. This exercise shows that HEO is not a model for bar recursion. Recall that ∗
stands for partial recursive function application. Consider functionals Y,G,H
defined by G(x,C) = 0, H(Z, x, C) = 1 + Z(0) + Z(1) and Y (F ) is the smallest
number n such that i ∗ i converges in less than n steps for some i < n and,
moreover, i ∗ i = 0 if and only if F (i) = 0 does not hold. The crux of the
definition of Y is that no total recursive function F can distinguish between
i ∗ i = 0 and i ∗ i > 0 for all i with i ∗ i↓. But for any finite number of such i’s we
do have a total recursive function making the correct distinctions. This implies
that Y , although continuous and well-defined on all total recursive functions, is
not uniformly continuous and not bounded on total recursive binary functions.
Show that all functionals involved can be represented in HEO and that the latter
model of λT is not a model of λB.

5F.33. Verify that the redefinition of the ordinal arithmetic in Example 5C.14 is correct.
5F.34. Prove Lemma 5C.15. More precisely:

(i) To be proved by induction on α;

(ii) Prove α ≤ β ⇒ fα(0) ≤ fβ(0) by induction on β;

(iii) Assume f(β) = β and prove fα(0) ≤ β by induction on α;

(iv) Prove α < β ⇒ fα(0) < fβ(0) for all α, β such that fα(0) is below any fixed
point, by induction on β.

5F.35. Justify the equation f(λ) = λ in the proof of Lemma 5C.17.
5F.36. This exercise introduces the continuous functionals, Kleene [1959a]. Define for

f, g ∈N→N the (partial) application of f to g by f(g) = f(g n) − 1, where n is
the smallest number such that f(g n) > 0, provided there is such n. If there is no
such n, then f ∗ g is undefined. The idea is that f uses only a finite amount of
information about g for determining the value of f ∗g (if any). Define inductively
for every type A a set CA together with an association relation between elements
of of N→N and elements of CA. For the base type we put CN = N and let the
constant functions be the associates of the corresponding natural numbers. For
higher types we define that f ∈N→N is an associate of F ∈CA→CB if for any
associate g of G∈CA the function h defined by h(n) = f(n:g) is an associate of
F (G)∈CB. Here n:g is shorthand for the function taking value n at 0 and value
g(k − 1) for all k > 0. (Note that we have implicitly required that h is total.)
Now CA→B is defined as the subset of those F ∈CA→CB that have an associate.
Show that C is a model for bar recursion.

5F.37. Show that for any closed term M ∈ΛøB one has M ≈ M , see Definition 5D.21.
[Hint. Type subscripts are omitted. Define a predicate Ext(M(~x)) for any open
term M with free variables among ~x = x1, · · · , xn by

M(X1, · · · , Xn) ≈M(X ′
1, · · · , X ′

n)

for all X1, · · · , Xn, X
′
1, · · · , X ′

n ∈ΛøB with X1 ≈ X ′
1, · · · , Xn ≈ X ′

n. Then prove by
induction on terms that Ext holds for any open term, so in particular for closed
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terms. For B, prove first the following. Suppose

Y ≈ Y ′, G ≈ G′, H ≈ H ′, X ≈ X ′, C ≈ C ′,

and for all A ≈ A′

BY GH(S+X)(C ∗X A) ≈ BY ′G′H ′(S+X ′)(C ′ ∗X′ A′)

then
BY GHXC ≈ BY ′G′H ′X ′C ′. ]

5F.38. It is possible to define λY as an extension of λ0
→ using the Church numerals

cn , λxN fN→N.fnx. Show that every partial recursive function is also definable
in this version of λY .



CHAPTER 6

APPLICATIONS

6A. Functional programming

Lambda calculi are prototype programming languages. As is the case with imperative
programming languages, where several examples are untyped (machine code, assembler,
Basic) and several are typed (Algol-68, Pascal), systems of λ-calculi exist in untyped
and typed versions. There are also other differences in the various lambda calculi. The
λ-calculus introduced in Church [1936] is the untyped λI-calculus in which an abstraction
λx.M is only allowed if x occurs among the free variables ofM . Nowadays, “λ-calculus”
refers to the λK-calculus developed under the influence of Curry, in which λx.M is
allowed even if x does not occur in M . This book treats the typed versions of the
lambda calculus. Of these, the most elementary are the versions of the simply typed
λ-calculus λA

→ introduced in Chapter 1.

Computing on data types

In this subsection we explain how it is possible to represent data types in a very direct
manner in the various λ-calculi.
Lambda definability was introduced for functions on the set of natural numbers N. In

the resulting mathematical theory of computation (recursion theory) other domains of
input or output have been treated as second class citizens by coding them as natural
numbers. In more practical computer science, algorithms are also directly defined on
other data types like trees or lists.
Instead of coding such data types as numbers one can treat them as first class citizens

by coding them directly as lambda terms while preserving their structure. Indeed, λ-
calculus is strong enough to do this, as was emphasized in Böhm [1966] and Böhm and
Gross [1966]. As a result, a much more efficient representation of algorithms on these
data types can be given, than when these types were represented via numbers. This
methodology was perfected in two different ways in Böhm and Berarducci [1985] and
Böhm, Piperno, and Guerrini [1994] or Berarducci and Böhm [1993]. The first paper
does the representation in a way that can be typed; the other papers in an essentially
stronger way, but one that cannot be typed. We present the methods of these papers by
treating labeled trees as an example.

245
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Let the (inductive) data-type of labeled trees be defined by the following simplified
syntax.

tree, • | leaf nat | tree+ tree

nat, 0 | succ nat

We see that a label can be either a bud (•) or a leaf with a number written on it. A
typical such tree is (leaf 3) + ((leaf 5) + •). This tree together with its mirror image
look as follows (‘leaf 3’ is essentially 3, but we officially need to write the constructor
to warrant unicity of types; in the examples below we do not write it).
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Operations on such trees can be defined by recursion. For example the action of mirroring
can be defined by

fmir(•), •;
fmir(leaf n), leaf n;

fmir(t1 + t2), fmir(t2) + fmir(t1).

Then one has for example that

fmir((leaf 3) + ((leaf 5) + •)) = ((•+ leaf 5) + leaf 3).

We will now show in two different ways how trees can be represented as lambda terms
and how operations like fmir on these objects become lambda definable. The first method
is from Böhm and Berarducci [1985]. The resulting data objects and functions can be
represented by lambda terms typable in the second order lambda calculus λ2, see Girard,
Lafont, and Taylor [1989] or Barendregt [1992].

6A.1. Definition. (i) Let b, l, p be variables (used as mnemonics for bud, leaf and
plus). Define ϕ = ϕb,l,p : tree→ term, where term is the collection of untyped lambda
terms, as follows.

ϕ(•), b;

ϕ(leaf n), l n ;

ϕ(t1 + t2), pϕ(t1)ϕ(t2).

Here n ≡ λfx.fnx is Church’s numeral representing n as lambda term.
(ii) Define ψ1 : tree→ term as follows.

ψ1(t), λblp.ϕ(t).

6A.2. Proposition. Define

B1 , λblp.b;

L1 , λnblp.ln;

P1 , λt1t2blp.p (t1blp)(t2blp).
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Then one has
(i) ψ1(•) = B1.
(ii) ψ1(leaf n) = L1 n .
(iii) ψ1(t1 + t2) = P1 ψ1(t1)ψ1(t2).

Proof. (i) Trivial.
(ii) We have

ψ1(leaf n) = λblp.ϕ(leaf n)

= λblp.l n

= (λnblp.ln) n

= L1 n .

(iii) Similarly, using that ψ1(t)blp = ϕ(t).

This Proposition states that the trees we considered are representable as lambda terms
in such a way that the constructors (•,leaf and +) are lambda definable. In fact, the
lambda terms involved can be typed in λ2. A nice connection between these terms and
proofs in second order logic is given in Leivant [1983b].
Now we will show that iterative functions over these trees, like fmir, are lambda de-

finable.

6A.3. Proposition (Iteration). Given lambda terms A0, A1, A2 there exists a lambda
term F such that (for variables n, t1, t2)

FB1 = A0;

F (L1 n) = A1 n;

F (P1t1t2) = A2(Ft1)(Ft2).

Proof. Take F , λw.wA0A1A2.

As is well known, primitive recursive functions can be obtained from iterative functions.
There is a way of coding a finite sequence of lambda terms M1, · · · ,Mk as one lambda

term
〈M1, · · · ,Mk〉, λz.zM1 · · ·Mk

such that the components can be recovered. Indeed, take

U i
k , λx1 · · ·xk.xi,

then
〈M1, · · · ,Mk〉U i

k =Mi.

6A.4. Corollary (Primitive recursion). Given lambda terms C0, C1, C2 there exists a
lambda term H such that

HB1 = C0;

H(L1 n) = C1 n;

H(P1t1t2) = C2t1t2(Ht1)(Ht2).

Proof. Define the auxiliary function F ,λt.〈t,Ht〉. Then by the Proposition F can be
defined using iteration. Indeed,

F (P1t1t2) = 〈Pt1t2, H(Pt1t2)〉 = A2(Ft1)(Ft2),
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with

A2 , λt1t2.〈P (t1U1
2 )(t2U

1
2 ), C2(t1U

1
2 )(t2U

1
2 )(t1U

2
2 )(t2U

2
2 )〉.

Now take H = λt.F tU2
2 . [This was a trick Kleene found at the dentist treated under

laughing-gas, see Kleene [1975].]

Now we will present the method of Böhm, Piperno, and Guerrini [1994] and Berarducci
and Böhm [1993] to represent data types. Again we consider the example of labelled
trees.

6A.5. Definition. Define ψ2 : tree→ term as follows.

ψ2(•), λe.eU1
3 e;

ψ2(leaf n), λe.eU2
3 n e;

ψ2(t1 + t2), λe.eU3
3ψ2(t1)ψ2(t2)e.

Then the basic constructors for labeled trees are definable by

B2 , λe.eU1
3 e;

L2 , λnλe.eU2
3ne;

P2 , λt1t2λe.eU
3
3 t1t2e.

6A.6. Proposition. Given lambda terms A0, A1, A2 there exists a term F such that

FB2 = A0F ;

F (L2n) = A1nF ;

F (P2xy) = A2xyF.

Proof. Try F , 〈〈X0, X1, X2〉〉, the 1-tuple of a triple. Then we must have

FB2 = B2〈X0, X1, X2〉
= U1

3X0X1X2〈X0, X1, X2〉
=X0〈X0, X1, X2〉
= A0〈〈X0, X1, X2〉〉
= A0F,

provided X0 = λx.A0〈x〉. Similarly one can find X1, X2.

This second representation is essentially untypable, at least in typed λ-calculi in which
all typable terms are normalizing. This follows from the following consequence of a
result similar to Proposition 6A.6. Let K = λxy.x,K∗ = λxy.y represent true and false

respectively. Then writing

if bool then X else Y fi

for

bool X Y,

the usual behavior of the conditional is obtained. Now if we represent the natural
numbers as a data type in the style of the second representation, we immediately get
that the lambda definable functions are closed under minimization. Indeed, let

χ(x) = µy[g(x, y) = 0],
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and suppose that g is lambda defined by G. Then there exists a lambda term H such
that

Hxy = if zero? (Gxy) then y else (Hx(succ y)) fi.

Indeed, we can write this asHx = AxH and apply Proposition 6A.6, but now formulated
for the inductively defined type num. Then F , λx.Hx 0 does represent χ. Here succ

represents the successor function and zero? a test for zero; both are lambda definable,
again by the analogon to Proposition 6A.6. Since minimization enables us to define all
partial recursive functions, the terms involved cannot be typed in a normalizing system.

Self-interpretation

A lambda term M can be represented internally as a lambda term M . This rep-
resentation should be such that, for example, one has lambda terms P1, P2 satisfying
Pi X1X2 = Xi. Kleene [1936] already showed that there is a (‘meta-circular’) self-
interpreter E such that, for closed terms M one has E M = M . The fact that data
types can be represented directly in the λ-calculus was exploited by Mogensen [1992] to
find a simpler representation for M and E.
The difficulty of representing lambda terms internally is that they do not form a first

order algebraic data type due to the binding effect of the lambda. Mogensen [1992]
solved this problem as follows. Consider the data type with signature

const, app, abs

where const and abs are unary, and app is a binary constructor. Let const, app and

abs be a representation of these in λ-calculus (in the style of Definition 6A.5).

6A.7. Proposition (Mogensen [1992]). Define

x , const x;

PQ , app P Q ;

λx.P , abs(λx. P ).

Then there exists a self-interpreter E such that for all lambda terms M (possibly con-
taining variables) one has

E M =M.

Proof. By an analogon to Proposition 6A.6 there exists a lambda term E such that

E(const x) = x;

E(app p q) = (Ep)(Eq);

E(abs z) = λx.E(zx).

Then by an easy induction one can show that E M =M for all terms M .

Following the construction of Proposition 6A.6 by Böhm, Piperno, and Guerrini [1994],
this term E is given the following very simple form:

E , 〈〈K, S,C〉〉,
where S , λxyz.xz(yz) and C , λxyz.x(zy). This is a good improvement over Kleene
[1936] or B[1984]. See also Barendregt [1991], [1994], [1995] for more about self-interpreters.
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Development of functional programming

In this subsection a short history is presented of how lambda calculi (untyped and typed)
inspired (either consciously or unconsciously) the creation of functional programming.

Imperative versus functional programming

While Church had captured the notion of computability via the lambda calculus, Turing
had done the same via his model of computation based on Turing machines. When in
the second world war computational power was needed for military purposes, the first
electronic devices were built basically as Turing machines with random access memory.
Statements in the instruction set for these machines, like x: = x+1, are directly related to
the instructions of a Turing machine. Such statements are much more easily interpreted
by hardware than the act of substitution fundamental to the λ-calculus. In the beginning,
the hardware of the early computers was modified each time a different computational
job had to be done. Then von Neumann, who must have known18 Turing’s concept of a
universal Turing machine, suggested building one machine that could be programmed to
do all possible computational jobs using software. In the resulting computer revolution,
almost all machines are based on this so called von Neumann computer, consisting of
a programmable universal machine. It would have been more appropriate to call it the
Turing computer.
The model of computability introduced by Church (lambda definability)—although

equivalent to that of Turing—was harder to interpret in hardware. Therefore the emer-
gence of the paradigm of functional programming, that is based essentially on lambda
definability, took much more time. Because functional programs are closer to the spec-
ification of computational problems than imperative ones, this paradigm is more con-
venient than the traditional imperative one. Another important feature of functional
programs is that parallelism is much more naturally expressed in them, than in impera-
tive programs. See Turner [1981] and Hughes [1989] for some evidence for the elegance
of the functional paradigm. The implementation difficulties for functional programming
have to do with memory usage, compilation time and actual run time of functional pro-
grams. In the contemporary state of the art of implementing functional languages, these
problems have been solved satisfactorily.19

Classes of functional languages

Let us describe some languages that have been—and in some cases still are—influential
in the expansion of functional programming. These languages come in several classes.
Lambda calculus by itself is not yet a complete model of computation, since an ex-

pression M may be evaluated by different so-called reduction strategies that indicate
which sub-term of M is evaluated first (see B[1984], Ch. 12). By the Church-Rosser
theorem this order of evaluation is not important for the final result: the normal form

18Church had invited Turing to the United States in the mid 1930’s. After his first year it was von
Neumann who invited Turing to stay for a second year. See Hodges [1983].

19Logical programming languages also have the mentioned advantages. But so far pure logical lan-
guages of industrial quality have not been developed. (Prolog is not pure and λ-Prolog, see Nadathur
and Miller [1988], although pure, is presently a prototype.)
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of a lambda term is unique if it exists. But the order of evaluation makes a difference
for efficiency (both time and space) and also for the question whether or not a normal
form is obtained at all.
So called ‘eager’ functional languages have a reduction strategy that evaluates an ex-

pression like FA by first evaluating F and A (in no particular order) to, say, F ′ ≡
λa. · · · a · · · a · · · and A′ and then contracting F ′A′ to · · · A′ · · · A′ · · · . This evalua-
tion strategy has definite advantages for the efficiency of the implementation. The main
reason for this is that if A is large, but its normal form A′ is small, then it is advanta-
geous both for time and space efficiency to perform the reduction in this order. Indeed,
evaluating FA directly to

· · ·A · · ·A · · ·
takes more space and if A is now evaluated twice, it also takes more time.
Eager evaluation, however, is not a normalizing reduction strategy in the sense of

B[1984], CH. 12. For example, if F ≡ λx.I and A does not have a normal form, then
evaluating FA eagerly diverges, while

FA ≡ (λx.I)A = I,

if it is evaluated leftmost outermost (roughly ‘from left to right’). This kind of reduction
is called ‘lazy evaluation’.
It turns out that eager languages are, nevertheless, computationally complete, as we

will soon see. The implementation of these languages was the first milestone in the
development of functional programming. The second milestone consisted of the efficient
implementation of lazy languages.
In addition to the distinction between eager and lazy functional languages there is

another one of equal importance. This is the difference between untyped and typed
languages. The difference comes directly from the difference between the untyped λ-
calculus and the various typed λ-calculi, see B[1984]. Typing is useful, because many
programming bugs (errors) result in a typing error that can be detected automatically
prior to running one’s program. On the other hand, typing is not too cumbersome, since
in many cases the types need not be given explicitly. The reason for this is that, by the
type reconstruction algorithm of Curry [1969] and Hindley [1969] (later rediscovered by
Milner [1978]), one can automatically find the type (in a certain context) of an untyped
but typable expression. Therefore, the typed versions of functional programming lan-
guages are often based on the implicitly typed lambda calculi à la Curry. Types also
play an important role in making implementations of lazy languages more efficient, see
below.
Besides the functional languages that will be treated below, the languages APL and

FP have been important historically. The language APL, introduced in Iverson [1962],
has been, and still is, relatively widespread. The language FP was designed by Backus,
who gave, in his lecture (Backus [1978]) at the occasion of receiving his Turing award (for
his work on imperative languages) a strong and influential plea for the use of functional
languages. Both APL and FP programs consist of a set of basic functions that can be
combined to define operations on data structures. The language APL has, for example,
many functions for matrix operations. In both languages composition is the only way
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to obtain new functions and, therefore, they are less complete than a full functional
language in which user defined functions can be created. As a consequence, these two
languages are essentially limited in their ease of expressing algorithms.

Eager functional languages

Let us first give the promised argument that eager functional languages are computa-
tionally complete. Every computable (recursive) function is lambda definable in the
λI-calculus (see Church [1941] or B[1984], Theorem 9.2.16). In the λI-calculus a term
having a normal form is strongly normalizing (see Church and Rosser [1936] or B[1984],
Theorem 9.1.5). Therefore an eager evaluation strategy will find the required normal
form.
The first functional language, LISP, was designed and implemented by McCarthy,

Abrahams, Edwards, Hart, and Levin [1962]. The evaluation of expressions in this lan-
guage is eager. LISP had (and still has) considerable impact on the art of programming.
Since it has a good programming environment, many skillful programmers were attracted
to it and produced interesting programs (so called ‘artificial intelligence’). LISP is not
a pure functional language for several reasons. Assignment is possible in it; there is
a confusion between local and global variables20 (‘dynamic binding’; some LISP users
even like it); LISP uses the ‘Quote’, where (QuoteM) is like M . In later versions of
LISP, Common LISP (see Steele Jr. [1984]) and Scheme (see Abelson, Dybvig, Haynes,
Rozas, IV, Friedman, Kohlbecker, Jr., Bartley, Halstead, [1991]), dynamic binding is
no longer present. The ‘Quote’ operator, however, is still present in these languages.
Since Ia = a but Ia 6= a adding ‘Quote’ to the λ-calculus is inconsistent. As one may
not reduce in LISP within the scope of a ‘Quote’, however, having a ‘Quote’ in LISP is
not inconsistent. ‘Quote’ is not an available function but only a constructor. That is,
if M is a well-formed expression, so is (QuoteM)21. Also, LISP has a primitive fixed
point operator ‘LABEL’ (implemented as a cycle) that is also found in later functional
languages.
In the meantime, Landin [1964] developed an abstract machine—the SECD machine—

for the implementation of reduction. Many implementations of eager functional lan-
guages, including some versions of LISP, have used, or are still using, this computational
model. (The SECD machine also can be modelled for lazy functional languages, see
Henderson [1980].) Another way of implementing functional languages is based on the

20This means substitution of an expression with a free variable into a context in which that variable
becomes bound. The originators of LISP were in good company: in Hilbert and Ackermann [1928] the
same was done, as was noticed by von Neumann in his review of that book. Church may have known
von Neumann’s review and avoided confusing local and global variables by introducing α-conversion.

21Using ‘Quote’ as a function would violate the Church-Rosser property. An example is

(λx.x(Ia)) Quote

that then would reduce to both

Quote (Ia) → Ia

and to

(λx.xa) Quote → Quote a→ a

and there is no common reduct for these two expressions Ia and a .
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so called CPS-translation. This was introduced in Reynolds [1972] and used in compilers
by Steele Jr. [1978] and Appel [1992]. See also Plotkin [1975] and Reynolds [1993].
The first important typed functional language with an eager evaluation strategy is

Standard ML, see Milner [1978]. This language is based on the Curry variant λCh
→ ,

the simply typed λ-calculus with implicit typing. Expressions are type-free, but are
only legal if a type can be derived for them. By the algorithm of Curry and Hindley
cited above, it is decidable whether an expression does have a type and, moreover, its
most general type can be computed. Milner added two features to λA

→. The first is the
addition of new primitives. One has the fixed point combinator Y as primitive, with
essentially all types of the form (A→A)→A, with A ≡ (B→C), assigned to it. Indeed,
if f : A→A, then Yf is of type A so that both sides of

f(Yf) = Yf

have type A. Primitives for basic arithmetic operations are also added. With these
additions, ML becomes a universal programming language, while λA

→ is not (since all its
terms are normalizing). The second addition to ML is the ‘let’ construction

let x be N in M end. (1)

This language construct has as its intended interpretation

M [x: = N ], (2)

so that one may think that the let construction is not necessary. If, however, N is large,
then this translation of (1) becomes space inefficient. Another interpretation of (1) is

(λx.M)N. (3)

But this interpretation has its limitations, as N has to be given one fixed type, whereas
in (2) the various occurrences of N may have different types. The expression (1) is a
way to make use of both the space reduction (‘sharing’) of the expression (3) and the
‘implicit polymorphism’ in which N can have more than one type of (2). An example of
the let expression is

let id be λx.x in λfx.(id f)(id x) end.

This is typable by

(A→A)→(A→A),
if the second occurrence of id gets type (A→A)→(A→A) and the third (A→A).
Because of its relatively efficient implementation and the possibility of type checking at

compile time (for finding errors), the language ML has evolved into important industrial
variants (like Standard ML of New Jersey).
Although not widely used in industry, a more efficient implementation of ML is based

on the abstract machine CAML, see Cousineau, Curien, and Mauny [1987]. CAML was
inspired by the categorical foundations of the λ-calculus, see Smyth and Plotkin [1982],
Koymans [1982] and Curien [1993]. All of these papers have been inspired by the work
on denotational semantics of Scott, see Scott [1972] and Gunter and Scott [1990].
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Lazy functional languages

Although all computable functions can be represented in an eager functional program-
ming language, not all reductions in the full λK-calculus can be performed using eager
evaluation. We already saw that if F ≡ λx.I and A does not have a normal form, then
eager evaluation of FA does not terminate, while this term does have a normal form. In
‘lazy’ functional programming languages the reduction of FA to I is possible, because
the reduction strategy for these languages is essentially leftmost outermost reduction
which is normalizing.
One of the advantages of having lazy evaluation is that one can work with ‘infinite’

objects. For example there is a legal expression for the potentially infinite list of primes

[2, 3, 5, 7, 11, 13, 17 · · · ],
of which one can take the n-th projection in order to get the n-th prime. See Turner [1981]
and Hughes [1989] for interesting uses of the lazy programming style.
Above we explained why eager evaluation can be implemented more efficiently than

lazy evaluation: copying large expressions is expensive because of space and time costs.
In Wadsworth [1971] the idea of graph reduction was introduced in order to also do lazy
evaluation efficiently. In this model of computation, an expression like (λx. · · ·x · · ·x · · · )A
does not reduce to · · ·A · · ·A · · · but to · · ·@ · · ·@ · · · ; @ : A, where the first two oc-
currences of @ are pointers referring to the A behind the third occurrence. In this way
lambda expressions become dags (directed acyclic graphs).22

Based on the idea of graph reduction, using carefully chosen combinators as primi-
tives, the experimental language SASL, see Turner [1976], [1979], was one of the first
implemented lazy functional languages. The notion of graph reduction was extended by
Turner by implementing the fixed point combinator (one of the primitives) as a cyclic
graph. (Cyclic graphs were already described in Wadsworth [1971] but were not used
there.) Like LISP, the language SASL is untyped. It is fair to say that—unlike programs
written in the eager languages such as LISP and Standard ML—the execution of SASL
programs was orders of magnitude slower than that of imperative programs in spite of
the use of graph reduction.
In the 1980s typed versions of lazy functional languages did emerge, as well as a con-

siderable speed-up of their performance. A lazy version of ML, called Lazy ML (LML),
was implemented efficiently by a group at Chalmers University, see Johnsson [1984]. As
underlying computational model they used the so called G-machine, that avoids build-
ing graphs whenever efficient. For example, if an expression is purely arithmetical (this
can be seen from type information), then the evaluation can be done more efficiently
than by using graphs. Another implementation feature of the LML is the compilation
into super-combinators, see Hughes [1984], that do not form a fixed set, but are created
on demand depending on the expression to be evaluated. Emerging from SASL, the
first fully developed typed lazy functional language called MirandaTM was developed by

22Robin Gandy mentioned at a meeting for the celebration of his seventieth birthday that already in
the early 1950s Turing had told him that he wanted to evaluate lambda terms using graphs. In Turing’s
description of the evaluation mechanism he made the common oversight of confusing free and bound
variables. Gandy pointed this out to Turing, who then said: “Ah, this remark is worth 100 pounds a
month!”
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Turner [1985]. Special mention should be made of its elegance and its functional I/O
interface (see below).
Notably, the ideas in the G-machine made lazy functional programming much more

efficient. In the late 1980s very efficient implementations of two typed lazy functional
languages appeared that we will discuss below: Clean, see van Eekelen and Plasmei-
jer [1993], and Haskell, see Peyton Jones and Wadler [1993], Hudak, Peyton Jones,
Wadler, Boutel, Fairbairn, Fasel, Guzman, Hammond, Hughes, Johnsson, [1992]. These
languages, with their implementations, execute functional programs in a way that is
comparable to the speed of contemporary imperative languages such as C.

Interactive functional languages

The versions of functional programming that we have considered so far could be called
‘autistic’. A program consists of an expression M , its execution of the reduction of M
and its output of the normal form Mnf (if it exists). Although this is quite useful for
many purposes, no interaction with the outside world is made. Even just dealing with
input and output (I/O) requires interaction.
We need the concept of a ‘process’ as opposed to a function. Intuitively a process is

something that (in general) is geared towards continuation while a function is geared
towards termination. Processes have an input channel on which an input stream (a
potentially infinite sequence of tokens) is coming in and an output channel on which an
output stream is coming out. A typical process is the control of a traffic light system: it
is geared towards continuation, there is an input stream (coming from the push-buttons
for pedestrians) and an output stream (regulating the traffic lights). Text editing is also
a process. In fact, even the most simple form of I/O is already a process.
A primitive way to deal with I/O in a functional language is used in some versions of

ML. There is an input stream and an output stream. Suppose one wants to perform the
following process P :

read the first two numbers x, y of the input stream;
put their difference x− y onto the output stream

Then one can write in ML the following program

write (read− read).

This is not very satisfactory, since it relies on a fixed order of evaluation of the expression
‘read− read’.
A more satisfactory way consists of so-called continuations, see Gordon [1994]. To the

λ-calculus one adds primitives Read, Write and Stop. The operational semantics of an
expression is now as follows:

M ⇒ Mhnf, where Mhnf is the head normal form23 of M ;

ReadM ⇒ M a, where a is taken off the input stream;

Write b M ⇒ M, and b is put into the output stream;

Stop ⇒ i.e., do nothing.

23A head nf in λ-calculus is of the form λ~x.yM1 · · ·Mn, with the M1 · · ·Mn possibly not in nf.
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Now the process P above can be written as

P = Read (λx. Read (λy. Write (x− y) Stop)).
If, instead, one wants a process Q that continuously takes two elements of the input
stream and put the difference on the output stream, then one can write as a program
the following extended lambda term

Q = Read (λx. Read (λy. Write (x− y) Q)),

which can be found using the fixed point combinator.
Now, every interactive program can be written in this way, provided that special

commands written on the output stream are interpreted. For example one can imagine
that writing

‘echo’ 7 or ‘print’ 7

on the output channel will put 7 on the screen or print it out respectively. The use of
continuations is equivalent to that of monads in programming languages like Haskell, as
shown in Gordon [1994]. (The present version of Haskell I/O is more refined than this;
we will not consider this issue.)
If A0, A1, A2, · · · is an effective sequence of terms (i.e., An = F n for some F ), then

this infinite list can be represented as a lambda term

[A0, A1, A2, · · · ]≡ [A0, [A1, [A2, · · · ]]]
=H 0 ,

where [M,N ] ≡ λz.zMN and

H n = [F n ,H n+ 1 ].

This H can be defined using the fixed point combinator.
Now the operations Read, Write and Stop can be made explicitly lambda definable

if we use

In= [A0, A1, A2, · · · ],
Out= [ · · · , B2, B1, B0 ],

where In is a representation of the potentially infinite input stream given by ‘the world’
(i.e., the user and the external operating system) and Out of the potentially infinite
output stream given by the machine running the interactive functional language. Ev-
ery interactive program M should be acting on [In, Out] as argument. So M in the
continuation language becomes

M [In, Out].

The following definition then matches the operational semantics.

(1)





Read F [[A, In′], Out] = F A [In′, Out];
Write F B [In, Out] = F [In, [B, Out]]

Stop [In, Out] = [In, Out].

In this way [In, Out] acts as a dynamic state. An operating system should take care that
the actions on [In,Out] are actually performed to the I/O channels. Also we have to take
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care that statements like ‘echo’ 7 are being interpreted. It is easy to find pure lambda
terms Read, Write and Stop satisfying (1). This seems to be a good implementation
of the continuations and therefore a good way to deal with interactive programs.
There is, however, a serious problem. Define

M ≡ λp.[Write b1 Stop p, Write b2 Stop p].
Now consider the evaluation

M [In, Out] = [Write b1 Stop [In, Out], Write b2 Stop [In, Out]]

= [[In, [b1, Out]], [In, [b2, Out]].

Now what will happen to the actual output channel: should b1 be added to it, or perhaps
b2?
The dilemma is caused by the duplication of the I/O channels [In,Out]. One solution

is not to explicitly mention the I/O channels, as in the λ-calculus with continuations.
This is essentially what happens in the method of monads in the interactive functional
programming language Haskell. If one writes something like

Main f1 ◦ · · · ◦ fn
the intended interpretation is (f1 ◦ · · · ◦ fn)[In, Out].
The solution put forward in the functional language Clean is to use a typing system

that guarantees that the I/O channels are never duplicated. For this purpose a so-called
‘uniqueness’ typing system is designed, see Barendsen and Smetsers [1993], [1996], that
is related to linear logic (see Girard [1995]). Once this is done, one can improve the way
in which parts of the world are used explicitly. A representation of all aspects of the
world can be incorporated in λ-calculus. Instead of having just [In,Out], the world can
now be extended to include (a representation of) the screen, the printer, the mouse, the
keyboard and whatever gadgets one would like to add to the computer periphery (e.g.,
other computers to form a network). So interpreting

‘print’ 7

now becomes simply something like

put 7 printer.

This has the advantage that if one wants to echo a 7 and to print a 3, but the order in
which this happens is immaterial, then one is not forced to make an over-specification,
like sending first ‘print’ 3 and then ‘echo’ 7 to the output channel:

[ · · · , ‘echo’ 7, ‘print’ 3]

By representing inside the λ-calculus with uniqueness types as many gadgets of the world
as one would like, one can write something like

F [ keyboard, mouse, screen, printer ] =

= [ keyboard, mouse, put 3 screen, put 7 printer ].

What happens first depends on the operating system and parameters, that we do not
know (for example on how long the printing queue is). But we are not interested in this.
The system satisfies the Church-Rosser theorem and the eventual result (7 is printed and
3 is echoed) is unambiguous. This makes Clean somewhat more natural than Haskell
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(also in its present version) and definitely more appropriate for an implementation on
parallel hardware.
Both Clean and Haskell are state of the art functional programming languages pro-

ducing efficient code; as to compiling time Clean belongs to the class of fast compilers
(including those for imperative languages). Many serious applications are written in
these languages. The interactive aspect of both languages is made possible by lazy eval-
uation and the use of higher type24 functions, two themes that are at the core of the
λ-calculus (λK-calculus, that is). It is to be expected that they will have a significant
impact on the production of modern (interactive window based) software.

Other aspects of functional programming

In several of the following viable applications there is a price to pay. Types can no longer
be derived by the Hindley-Milner algorithm, but need to be deduced by an assignment
system more complex than that of the simply typed λ-calculus λ→.

Type classes

Certain types come with standard functions or relations. For example on the natural
numbers and integers one has the successor function, the equality and the order relation.
A type class is like a signature in computer science or a similarity type in logic: it states
to which operations, constants, and relations the data type is coupled. In this way one
can write programms not for one type but for a class of types.
If the operators on classes are not only first order but higher order, one obtains ‘type

constructor classes’, that are much more powerful. See Jones [1993], where the idea was
introduced and Voigtländer [2009] for recent results.

Generic programming

The idea of type classes can be pushed further. Even if data types are different, in the
sense that they have different constructors, one can share code. For

[a0, a1, a2, · · · ]
a stream, there is the higher type function ‘maps’ that acts like

mapsf[a0, a1, a2, · · · ] ։ [fa0, fa1, fa2, · · · ].
But there is also a ‘mapt’ that distributes a function over all data present at nodes of the
tree.
Generic programming makes it possible to write one program ‘map’ that acts both for

streams and trees. What happens here is that this ‘map’ works on the code for data types
and recognizes its structure. Then ‘map’ transforms itself, when requested, into the right
version to do the intended work. See Hinze, Jeuring, and Löh [2007] for an elaboration of
this idea. In Plasmeijer, Achten, and Koopman [2007] generic programming is exploited
for efficient programming of web-interfaces for work flow systems.

24In the functional programming community these are called ‘higher order functions’. We prefer to
use the more logically correct expression ‘higher type’ , since ‘higher order’ refers to quantification over
types, like in the system λ2 (system F ) of Girard, see Girard, Lafont, and Taylor [1989].
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Dependent types

These types come from the language Automath, see next Section, intended to express
mathematical properties as a type depending on a term. This breaks the independence
of types from terms, but is quite useful in proof-checking. A typical dependent type
is an n-dimensional vector space Fn, that depends on the element n of another type.
In functional programming dependent types have been used to be able to type more
functions. See Augustson [1999].

Dynamic types

The underlying computational model for functional programming consists of reducing
λ-terms. From the λ-calculus point of view, one can pause a reduction of a term towards
some kind of normal form, in order to continue work later with the intermediate ex-
pression. In many efficient compilers of functional programming languages one does not
reduce any term, but translates it into some machine code and works on it until there is
(the code of) the normal form. There are no intermediate expressions, in particular the
type information is lost during (partial) execution. The mechanism of ‘dynamic types’
makes it possible to store the intermediate values in such a way that a reducing computer
can be switched off and work is continued the next day. Even more exciting applications
of this idea to distributed or even parallel computing is to exchange partially evaluated
expressions and continue the computation process elsewhere.
In applications like web-brouwsers one may want to ask for ‘plug-ins’, that employ

functions involving types that are not yet known to the designer of the application. This
becomes possible using dynamic types. See Pil [1999].

Generalized Algebraic Data types

These form another powerful extension of the simple types for functional languages. See
Peyton Jones, Vytiniotis, Weirich, and Washburn [2006].

Major applications of functional programming

Among the many functional programs for an impressive range of applications, two major
ones stand out. The first consists of the proof-assistants, to be discussed in the next
Section. The second consists of design languages for hardware, see Sheeran [2005] and
Nikhil, R. S. [2008].

6B. Logic and proof-checking

The Curry-de Bruijn-Howard correspondence

One of the main applications of type theory is its connection with logic. For several
logical systems L there is a type theory λL and a map translating formulas A of L into
types [A] of λL such that

⊢ LA ⇔ ΓA ⊢λL
M : [A], for some M,
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where ΓA is some context ‘explaining’ A. The term M can be constructed canonically
from a natural deduction proof D of A. So in fact one has

⊢L A, with proof D ⇔ ΓA ⊢λL
[D] : [A], (1)

where the map [ ] is extended to cover also derivations. For deductions from a set of
assumptions one has

∆ ⊢L A, with proof D ⇔ ΓA, [∆] ⊢λL
[D] : [A].

Curry did not observe the correspondence in this precise form. He noted that inhabited
types in λ→, like A→A or A→B→A, all had the form of a tautology of (the implication
fragment of) propositional logic.
Howard [1980] (the work was done in 1968 and written down in the unpublished but

widely circulated Howard [1969]), inspired by the observation of Curry and by Tait [1963],
gave the more precise interpretation (1). He coined the term propositions-as-types and
proofs-as-terms.
On the other hand, de Bruijn independently of Curry and Howard developed type

systems satisfying (1). The work was started also in 1968 and the first publication
was de Bruijn [1970]; see also de Bruijn [1980]. The motivation of de Bruijn was his
visionary view that machine proof checking one day will be feasible and important.
The collection of systems he designed was called the Automath family, derived from
AUTOmatic MATHematics verification. The type systems were such that the right hand
side of (1) was efficiently verifiable by machine, so that one had machine verification of
provability. Also de Bruijn and his students were engaged in developing, using and
implementing these systems.
Initially the Automath project received little attention from mathematicians. They did

not understand the technique and worse they did not see the need for machine verification
of provability. Also the verification process was rather painful. After five ‘monk’ years
of work, van Benthem Jutting [1977] came up with a machine verification of Landau
[1900] fully rewritten in the terse ‘machine code’ of one of the Automath languages.
Since then there have been developed modern versions of proof-assistants family, like
Mizar, COQ (Bertot and Castéran [2004]), HOL, and Isabelle (Nipkow, Paulson, and
Wenzel [2002b]), in which considerable help from the computer environment is obtained
for the formalization of proofs. With these systems a task of verifying Landau [1900]
took something like five months. An important contribution to these second generation
systems came from Scott and Martin-Löf, by adding inductive data-types to the systems
in order to make formalizations more natural.25 In Kahn [1995] methods are developed
in order to translate proof objects automatically into natural language. It is hoped that

25For example, proving Gödel’s incompleteness theorem contains the following technical point. The
main step in the proof essentially consists of constructing a compiler from a universal programming
language into arithmetic. For this one needs to describe strings over an alphabet in the structure of
numbers with plus and times. This is involved and Gödel used the Chinese remainder theorem to do
this. Having available the datatype of strings, together with the corresponding operators, makes the
translation much more natural. The incompleteness of this stronger theory is stronger than that of
arithmetic. But then the usually resulting essential incompleteness result states incompleteness for all
extensions of an arithmetical theory with inductive types, which is a weaker result than the essential
incompleteness of just arithmetic.
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in the near future new proof checkers will emerge in which formalizing is not much more
difficult than, say, writing an article in TeX.

Computer Mathematics

Systems for computer algebra (CA) are able to represent mathematical notions on a
machine and compute with them. These objects can be integers, real or complex num-
bers, polynomials, integrals and the like. The computations are usually symbolic, but
can also be numerical to a virtually arbitrary degree of precision. It is fair to say—as is
sometimes done—that “a system for CA can represent

√
2 exactly”. In spite of the fact

that this number has an infinite decimal expansion, this is not a miracle. The number√
2 is represented in a computer just as a symbol (as we do on paper or in our mind),

and the machine knows how to manipulate it. The common feature of these kind of
notions represented in systems for CA is that in some sense or another they are all com-
putable. Systems for CA have reached a high level of sophistication and efficiency and
are commercially available. Scientists and both pure and applied mathematicians have
made good use of them for their research.
There is now emerging a new technology, namely that of systems for Computer Math-

ematics (CM). In these systems virtually all mathematical notions can be represented
exactly, including those that do not have a computational nature. How is this possi-
ble? Suppose, for example, that we want to represent a non-computable object like the
co-Diophantine set

X = {n∈N | ¬∃~x D(~x, n) = 0}.
Then we can do as before and represent it by a special symbol. But now the computer in
general cannot operate on it because the object may be of a non-computational nature.
Before answering the question in the previous paragraph, let us first analyze where

non-computability comes from. It is always the case that this comes from the quantifiers
∀ (for all) and ∃ (exists). Indeed, these quantifiers usually range over an infinite set and
therefore one loses decidability.
Nevertheless, for ages mathematicians have been able to obtain interesting information

about these non-computable objects. This is because there is a notion of proof. Using
proofs one can state with confidence that e.g.

3∈X, i.e., ¬∃~x D(~x, 3) = 0.

Aristotle had already remarked that it is often hard to find proofs, but the verification
of a putative one can be done in a relatively easy way. Another contribution of Aristotle
was his quest for the formalization of logic. After about 2300 years, when Frege had
found the right formulation of predicate logic and Gödel had proved that it is complete,
this quest was fulfilled. Mathematical proofs can now be completely formalized and
verified by computers. This is the underlying basis for the systems for CM.
Present day prototypes of systems for CM are able to help a user to develop from

primitive notions and axioms many theories, consisting of defined concepts, theorems
and proofs.26 All the systems of CM have been inspired by the Automath project of

26This way of doing mathematics, the axiomatic method, was also described by Aristotle. It was
Euclid of Alexandria [-300] who first used this method very successfully in his Elements.
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de Bruijn (see de Bruijn [1970], [1994] and Nederpelt, Geuvers, and de Vrijer [1994]) for
the automated verification of mathematical proofs.

Representing proofs as lambda terms

Now that mathematical proofs can be fully formalized, the question arises how this
can be done best (for efficiency reasons concerning the machine and pragmatic reasons
concerning the human user). Hilbert represented a proof of statement A from a set of
axioms Γ as a finite sequence A0, A1 · · · , An such that A = An and each Ai, for 0 ≤ i ≤ n,
is either in Γ or follows from previous statements using the rules of logic.
A more efficient way to represent proofs employs typed lambda terms and is called the

propositions-as-types interpretation discovered by Curry, Howard and de Bruijn. This
interpretation maps propositions into types and proofs into the corresponding inhab-
itants. The method is as follows. A statement A is transformed into the type (i.e.,
collection)

[A] = the set of proofs of A.

So A is provable if and only if [A] is ‘inhabited’ by a proof p. Now a proof of A⇒B
consists (according to the Brouwer-Heyting interpretation of implication) of a function
having as argument a proof of A and as value a proof of B. In symbols

[A⇒B] = [A]→ [B].

Similarly

[∀x∈X.Px] = Πx:X.[Px],

where Πx:A.[Px] is the Cartesian product of the [Px], because a proof of ∀x∈A.Px
consists of a function that assigns to each element x∈A a proof of Px. In this way
proof-objects become isomorphic with the intuitionistic natural deduction proofs of
Gentzen [1969]. Using this interpretation, a proof of ∀y ∈A.Py⇒Py is λy:Aλx:Py.x.
Here λx:A.B(x) denotes the function that assigns to input x∈A the output B(x). A
proof of

(A⇒A⇒B)⇒A⇒B
is

λp:(A⇒A⇒B)λq:A.pqq.

A description of the typed lambda calculi in which these types and inhabitants can be
formulated is given in Barendregt [1992], which also gives an example of a large proof
object. Verifying whether p is a proof of A boils down to verifying whether, in the
given context, the type of p is equal (convertible) to [A]. The method can be extended
by also representing connectives like & and ¬ in the right type system. Translating
propositions as types has as default intuitionistic logic. Classical logic can be dealt with
by adding the excluded middle as an axiom.
If a complicated computer system claims that a certain mathematical statement is

correct, then one may wonder whether this is indeed the case. For example, there may
be software errors in the system. A satisfactory methodological answer has been given
by de Bruijn. Proof-objects should be public and written in such a formalism that
a reasonably simple proof-checker can verify them. One should be able to verify the
program for this proof-checker ‘by hand’. We call this the de Bruijn criterion. The
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proof-development systems Isabelle/HOL, Nipkow, Paulson, and Wenzel [2002b], HOL-
light and Coq, (see Bertot and Castéran [2004]), all satisfy this criterion.
A way to keep proof-objects from growing too large is to employ the so-called Poincaré

principle. Poincaré [1902], p. 12, stated that an argument showing that 2 + 2 = 4
“is not a proof in the strict sense, it is a verification” (actually he claimed that an
arbitrary mathematician will make this remark). In the Automath project of de Bruijn
the following interpretation of the Poincaré principle was given. If p is a proof of A(t)
and t =R t′, then the same p is also a proof of A(t′). Here R is a notion of reduction
consisting of ordinary β reduction and δ-reduction in order to deal with the unfolding
of definitions. Since βδ-reduction is not too complicated to be programmed, the type
systems enjoying this interpretation of the Poincaré principle still satisfy the de Bruijn
criterion27.
In spite of the compact representation in typed lambda calculi and the use of the

Poincaré principle, proof-objects become large, something like 10 to 30 times the length
of a complete informal proof. Large proof-objects are tiresome to generate by hand.
With the necessary persistence van Benthem Jutting [1977] has written lambda after
lambda to obtain the proof-objects showing that all proofs (but one) in Landau [1960]
are correct. Using a modern system for CM one can do better. The user introduces
the context consisting of the primitive notions and axioms. Then necessary definitions
are given to formulate a theorem to be proved (the goal). The proof is developed in
an interactive session with the machine. Thereby the user only needs to give certain
‘tactics’ to the machine. (The interpretation of these tactics by the machine does nothing
mathematically sophisticated, only the necessary bookkeeping. The sophistication comes
from giving the right tactics.) The final goal of this research is that the necessary effort
to interactively generate formal proofs is not more complicated than producing a text
in, say, LATEX. This goal has not been reached yet.

Computations in proofs

The following is taken from Barendregt and Barendsen [1997]. There are several compu-
tations that are needed in proofs. This happens, for example, if we want to prove formal
versions of the following intuitive statements.

(1) [
√
45] = 6, where [r] is the integer part of a real;

(2) Prime(61);

(3) (x+ 1)(x+ 1) = x2 + 2x+ 1.

A way to handle (1) is to use the Poincaré principle extended to the reduction relation
։ι for primitive recursion on the natural numbers. Operations like f(n) = [

√
n ] are

primitive recursive and hence are lambda definable (using ։βι) by a term, say F , in the

27The reductions may sometimes cause the proof-checking to be of an unacceptable time complexity.
We have that p is a proof of A iff type(p) =βδ A. Because the proof is coming from a human, the
necessary conversion path is feasible, but to find it automatically may be hard. The problem probably
can be avoided by enhancing proof-objects with hints for a reduction strategy.
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lambda calculus extended by an operation for primitive recursion R satisfying

RAB zero→ι A

RAB (succx)→ι B x (RAB x).

Then, writing 0 = zero, 1 = succ zero, · · · , as
6 = 6

is formally derivable, it follows from the Poincaré principle that the same is true for

F 45 = 6

(with the same proof-object), since F 45 ։βι 6 . Usually, a proof obligation arises
that F is adequately constructed. For example, in this case it could be

∀n (F n)2 ≤ n < ((F n) + 1)2.

Such a proof obligation needs to be formally proved, but only once; after that reductions
like

F n ։βι f(n)

can be used freely many times.
In a similar way, a statement like (2) can be formulated and proved by constructing a

lambda defining term KPrime for the characteristic function of the predicate Prime. This
term should satisfy the following statement

∀n [(Primen ↔ KPrime n = 1 ) &

(KPrime n = 0 ∨ KPrime n = 1 )].

which is the proof obligation.
Statement (3) corresponds to a symbolic computation. This computation takes place

on the syntactic level of formal terms. There is a function g acting on syntactic expres-
sions satisfying

g((x+ 1)(x+ 1) ) = x2 + 2x+ 1,

that we want to lambda define. While x + 1 : Nat (in context x:Nat), the expression
on a syntactic level represented internally satisfies ‘x + 1’ : term(Nat), for the suitably
defined inductive type term(Nat). After introducing a reduction relation։ι for primitive
recursion over this data type, one can use techniques similar to those of Section 6A to
lambda define g, say by G, so that

G ‘(x+ 1)(x+ 1) ’ ։βι ‘x
2 + 2x+ 1’.

Now in order to finish the proof of (3), one needs to construct a self-interpreter E, such
that for all expressions p : Nat one has

E ‘p’ ։βι p

and prove the proof obligation for G which is

∀t:term(Nat) E(Gt) = E t.

It follows that

E(G ‘(x+ 1)(x+ 1) ’) = E ‘(x+ 1)(x+ 1) ’;
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now since

E(G ‘(x+ 1)(x+ 1) ’)։βι E ‘x2 + 2x+ 1’

։βι x
2 + 2x+ 1

E ‘(x+ 1)(x+ 1) ’։βι (x+ 1)(x+ 1),

we have by the Poincaré principle

(x+ 1)(x+ 1) = x2 + 2x+ 1.

The use of inductive types like Nat and term(Nat) and the corresponding reduction
relations for primitive reduction was suggested by Scott [1970] and the extension of the
Poincaré principle for the corresponding reduction relations of primitive recursion by
Martin-Löf [1984]. Since such reductions are not too hard to program, the resulting
proof checking still satisfies the de Bruijn criterion.
In Oostdijk [1996] a program is presented that, for every primitive recursive predicate

P , constructs the lambda termKP defining its characteristic function and the proof of the
adequacy of KP . The resulting computations for P = Prime are not efficient, because
a straightforward (non-optimized) translation of primitive recursion is given and the
numerals (represented numbers) used are in a unary (rather than n-ary) representation;
but the method is promising. In Elbers [1996], a more efficient ad hoc lambda definition
of the characteristic function of Prime is given, using Fermat’s small theorem about
primality. Also the required proof obligation has been given.

Foundations for existing proof-assistants

Early indications of the possibility to relate logic and types are Church [1940] and
a remark in Curry and Feys [1958]. The former is worked out in Andrews [2002].
The latter has lead to the Curry-Howard correspondence between formulas and types
(Howard [1980] written in 1969, Martin-Löf [1984], Barendregt [1992], de Groote [1995],
and Sørensen and Urzyczyn [2006]).
Higher order logic as foundations has given rise to the mathematical assistants HOL

(Gordon and Melham [1993], </hol.sourceforge.net>), HOL Light (Harrison [2009a],
<www.cl.cam.ac.uk/~jrh13/hol-light/>), and Isabelle28, (Nipkow, Paulson, andWen-
zel [2002a], <www.cl.cam.ac.uk/research/hvg/isabelle>). The type theory as foun-
dations gave rise to the systems Coq (based on constructive logic, but with the pos-
sibility of impredicativity; Bertot and Castéran [2004], <coq.inria.fr>) and Agda
(based on Martin-Löf’s type theory: intuitionistic and predicative; Bove, Dybjer, and
Norell [2009]). We also mention the proof assistant Mizar (Muzalewski [1993], <mizar.
org>) that is based on an extension of ZFC set theory. On the other end of the spec-
trum there is ACL2 (Kaufmann, Manolios, and Moore [2000]), that is based on primitive
recursive arithmetic.

28Isabelle is actually a ‘logical framework’ in which a proof assistant proper can be defined. The main
version is Isabelle/HOL, which representing higher order logic.



266 6. Applications

All these systems give (usually interactive) support for the fully formal proof of a
mathematical theorem, derived from user specified axioms. For an insightful compari-
son of these and many more existing proof assistants see Wiedijk [2006], in which the
irrationality of

√
2 has been formalized using seventeen different assistants.

Highlights

By the end of the twentieth century the technology of formalizing mathematical proofs
was there, but impressive examples were missing. The situation changed dramatically
during the first decade of the twenty-first century. The full formalization and computer
verification of the Four Color Theorem in was achieved in Coq by Gonthier [2008] (formal-
izing the proof in Robertson, Sanders, Seymour, and Thomas [1997]); the Prime Number
Theorem in Isabelle by Avigad, Donnelly, Gray, and Raff [2007] (elementary proof by
Selberg) and in HOL Light by Harrison [2009b] (the classical proof by Hadamard and
de la Vallée Poussin using complex function theory). Building upon the formalization of
the Four Color Theorem the Jordan Curve Theorem has been formalized by Tom Hales,
who did this as one of the ingredients needed for the full formalization of his proof of
the Kepler Conjecture, Hales [2005].

Certifying software, and hardware

This development of high quality mathematical proof assistants was accelerated by the
industrial need for reliable software and hardware. The method to certify industrial
products is to fully formalize both their specification and their design and then to provide
a proof that the design meets the specification29. This reliance on so called ‘Formal
Methods’ had been proposed since the 1970s, but lacked to be convincing. Proofs of
correctness were much more complex than the mere correctness itself. So if a human
had to judge the long proofs of certification, then nothing was gained. The situation
changed dramatically after the proof assistants came of age. The ARM6 processor—
predecessor of the ARM7 embedded in the large majority of mobile phones, personal
organizers and MP3 players—was certified, Fox [2003], by mentioned method. The
seL4 operating system has been fully specified and certified, Klein, Elphinstone, Heiser,
Andronick, Cock, Derrin, Elkaduwe, Engelhardt, Kolanski, Norrish, [2009]. The same
holds for a realistic kernel of an optimizing compiler for the C programming language,
Leroy [2009].

Illative lambda calculus

Curry and his students continued to look for a way to represent functions and logic into
one adequate formal system. Some of the proposed systems turned out to be inconsistent,
other ones turned out to be incomplete. Research in TS’s for the representation of logic
has resulted in an unexpected side effect. By making a modification inspired by the
TS’s, it became possible, after all, to give an extension of the untyped lambda calculus,
called Illative Lambda Calculi (ILC; the expression ‘illative’ comes from ‘illatum’ past

29This presupposes that the distance between the desired behaviour and the specification on the one
hand, and that of the disign and realization on the other is short enough to be bridged properly.
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participle of the Latin word inferre which means to infer), such that first order logic
can be faithfully and completely embedded into it. The method can be extended for an
arbitrary PTS30, so that higher order logic can be represented too.
The resulting ILC’s are in fact simpler than the TS’s. But doing computer mathematics

via ILC is probably not very practical, as it is not clear how to do proof-checking for
these systems.
One nice thing about the ILC is that the old dream of Church and Curry came true,

namely, there is one system based on untyped lambda calculus (or combinators) on
which logic, hence mathematics, can be based. More importantly there is a ‘combinatory
transformation’ between the ordinary interpretation of logic and its propositions-as-types
interpretation. Basically, the situation is as follows. The interpretation of predicate logic
in ILC is such that

⊢logic A with proof p ⇔ ∀r ⊢ILC [A]r[p]

⇔ ⊢ILC [A]I[p]

⇔ ⊢ILC [A]K[p] = K[A]′I[p] = [A]′I,

where r ranges over untyped lambda terms. Now if r = I, then this translation is the
propositions-as-types interpretation; if, on the other hand, one has r = K, then the
interpretation becomes an isomorphic version of first order logic denoted by [A]′I. See
Barendregt, Bunder, and Dekkers [1993] and Dekkers, Bunder, and Barendregt [1998]
for these results. A short introduction to ILC (in its combinatory version) can be found
in B[1984], Appendix B.

6C. Proof theory

Lambda terms for natural deduction, sequent calculus and cut elimination

There is a good correspondence between natural deduction derivations and typed lambda
terms. Moreover normalizing these terms is equivalent to eliminating cuts in the cor-
responding sequent calculus derivations. The correspondence between sequent calculus
derivations and natural deduction derivations is, however, not a one-to-one map. This
causes some syntactic technicalities. The correspondence is best explained by two ex-
tensionally equivalent type assignment systems for untyped lambda terms, one corre-
sponding to natural deduction (λN) and the other to sequent calculus (λL). These two
systems constitute different grammars for generating the same (type assignment relation
for untyped) lambda terms. The second grammar is ambiguous, but the first one is not.
This fact explains the many-one correspondence mentioned above. Moreover, the second
type assignment system has a ‘cut–free’ fragment (λLcf). This fragment generates ex-
actly the typable lambda terms in normal form. The cut elimination theorem becomes
a simple consequence of the fact that typed lambda terms posses a normal form. This
Section is based on Barendregt and Ghilezan [2000].

30For first order logic, the embedding is natural, but e.g. for second order logic this is less so. It is an
open question whether there exists a natural representation of second and higher order logic in ILC.
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Introduction

The relation between lambda terms and derivations in sequent calculus, between normal lambda
terms and cut–free derivations in sequent calculus and finally between normalization of terms and
cut elimination of derivations has been observed by several authors (Prawitz [1965], Zucker [1974]
and Pottinger [1977]). This relation is less perfect because several cut–free sequent derivations
correspond to one lambda term. In Herbelin [1995] a lambda calculus with explicit substitution
operators is used in order to establish a perfect match between terms of that calculus and sequent
derivations. In this section the mismatch will not be avoided, and we obtain a satisfactory view of
it, by seeing the sequent calculus as a more intensional way to do the same as natural deduction:
assigning lambda terms to provable formulas.

[Added in print.] The relation between natural deduction and sequent calculus formulations
of intuitionistic logic has been explored in several ways in Espirito Santo [2000], von Plato
[2001a], von Plato [2001b], and Joachimski and Matthes [2003]. Several sequent lambda cal-
culi Espirito Santo [2007], Espirito Santo, Ghilezan, and Ivetić [2008] have been developed for
encoding proofs in sequent intuitionistic logic and addressing normalisation and cut-elimination
proofs. In von Plato [2008] an unpublished manuscript of Genzten is described, showing that
Gentzen knew reduction and normalisation for natural deduction derivations. The manuscript is
published as Gentzen [2008]. Finally, there is a vivid line of investigation on the computational
interpretations of classical logic. We will not discuss these in this section.

Next to the well-known system λ→ of Curry type assignment to type free terms, which here
will be denoted by λN , there are two other systems of type assignment: λL and its cut-free
fragment λLcf . The three systems λN , λL and λLcf correspond exactly to the natural deduction
calculus NJ , the sequent calculus LJ and the cut–free fragment of LJ , here denoted by N , L
and Lcf respectively. Moreover, λN and λL generate the same type assignment relation. The
system λLcf generates the same type assignment relation as λN restricted to normal terms and
cut elimination corresponds exactly to normalization. The mismatch between the logical systems
that was observed above, is due to the fact that λN is a syntax directed system, whereas both
λL and λLcf are not. (A syntax directed version of λL is possible if rules with arbitrarily many
assumptions are allowed, see Capretta and Valentini [1998].)

The type assignment system of this Section is a subsystem of one in Barbanera, Dezani-Cian-
caglini, and de’Liguoro [1995] and also implicitly present in Mints [1996].

For simplicity the results are presented only for the essential kernel of intuitionistic proposi-
tional logic, i.e. for the minimal implicational fragment. The method probably can be extended
to the full first-order intuitionistic logic, using the terms as in Mints [1996].

The logical systems N , L and Lcf

6C.1. Definition. The set form of formulas (of minimal implicational propositional logic) is
defined by the following simplified syntax.

form ::= atom | form→form

atom ::= p | atom′

Note that the set of formulas is TTA with A = {p, p′, p′′, · · · }, i.e. a notational variant of TT∞.
The intention is a priori different: the formulas are intended to denote propositions, with the
→-operation denoting implication; the types denote collections of lambda terms, with the →
denoting the functionality of these.

We write p, q, r, · · · for arbitrary atoms and A,B,C, · · · for arbitrary formulas. Sets of formulas
are denoted by Γ,∆, · · · . The set Γ, A stands for Γ ∪ {A}. Because of the use of sets for
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assumptions in derivability, the structural rules are only implicitly present. In particular Γ, A ⊢ A
covers weakening and Γ ⊢ A, Γ, B ⊢ C ⇒ Γ, A→B ⊢ C contraction.

6C.2. Definition. (i) A formula A is derivable in the system N from the set Γ31, notation
Γ ⊢N A, if Γ ⊢ A can be generated by the following axiom and rules.

N

A∈Γ
Γ ⊢ A

axiom

Γ ⊢ A→B Γ ⊢ A
Γ ⊢ B

→ elim

Γ, A ⊢ B
Γ ⊢ A→B

→ intr

(ii) A formula A is derivable from a set of assumptions Γ in the system L, notation Γ ⊢L A,
if Γ ⊢ A can be generated by the following axiom and rules.

L

A∈Γ
Γ ⊢ A

axiom

Γ ⊢ A Γ, B ⊢ C
Γ, A→B ⊢ C

→ left

Γ, A ⊢ B
Γ ⊢ A→B

→ right

Γ ⊢ A Γ, A ⊢ B
Γ ⊢ B

cut

(iii) The system Lcf is obtained from the system L by omitting the rule (cut).

Lcf

A∈Γ
Γ ⊢ A

axiom

Γ ⊢ A Γ, B ⊢ C
Γ, A→B ⊢ C

→ left

Γ, A ⊢ B
Γ ⊢ A→B

→ right

6C.3. Lemma. Suppose Γ ⊆ Γ′. Then

Γ ⊢ A ⇒ Γ′ ⊢ A
31By contrast to the situation for bases, Definition 1A.14(iii), the set Γ is arbitrary
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in all systems.

Proof. By a trivial induction on derivations.

6C.4. Proposition. For all Γ and A we have

Γ⊢NA ⇔ Γ ⊢L A.
Proof. (⇒) By induction on derivations in N . For the rule (→ elim) we need the rule
(cut).

Γ ⊢L A→B
Γ ⊢L A

(axiom)
Γ, B ⊢L B

(→ left)
Γ, A→B ⊢L B

(cut)
Γ ⊢L B

(⇐) By induction on derivations in L. The rule (→ left) is treated as follows.

Γ ⊢N A
(6C.3)

Γ, A→B ⊢N A
(axiom)

Γ, A→B ⊢N A→B
(→ elim)

Γ, A→B ⊢N B

Γ, B ⊢N C
(→ intr)

Γ ⊢N B→C
(→ elim)

Γ, A→B ⊢N C

The rule (cut) is treated as follows.

Γ ⊢N A

Γ, A ⊢N B
(→ intr)

Γ ⊢N A→B
(→ elim).

Γ ⊢N B

6C.5. Definition. Consider the following rule as alternative to the rule (cut).

Γ, A→A ⊢ B
(cut’)

Γ ⊢ B
The system L′ is defined by replacing the rule (cut) by (cut’).

6C.6. Proposition. For all Γ and A

Γ ⊢L A ⇔ Γ ⊢L′ A.

Proof. (⇒) The rule (cut) is treated as follows.

Γ ⊢L′ A Γ, A ⊢L′ B
(→ left)

Γ, A→A ⊢L′ B
(cut’)

Γ ⊢L′ B

(⇐) The rule (cut’) is treated as follows.

Γ, A→A ⊢L B

(axiom)
Γ, A ⊢L A

(→ right)
Γ ⊢L A→A

(cut).
Γ ⊢L B

Note that we have not yet investigated the role of Lcf .
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The type assignment systems λN , λL and λLcf

6C.7. Definition. (i) A type assignment is an expression of the form

P : A,

where P ∈L is an untyped lambda term and A is a formula.

(ii) A declaration is a type assignment of the form

x : A.

(iii) A context Γ is a set of declarations such that for every variable x there is at most
one declaration x:A in Γ.

In the following definition, the system λ→ over TT∞ is called λN . The formulas of N
are isomorphic to types in TT∞ and the derivations in N of a formula A are isomorphic
to the closed terms M of A considered as type. If the derivation is from a set of
assumptions Γ = {A1, · · · ,An}, then the derivation corresponds to an open term M
under the basis {x1:A1, · · · , xn:An}. This correspondence is called the Curry-Howard
isomorphism or the formulas-as-types—terms-as-proofs interpretation. One can consider
a proposition as the type of its proofs. Under this correspondence the collection of proofs
of A→B consists of functions mapping the collection of proofs of A into those of B. See
Howard [1980], Martin-Löf [1984], de Groote [1995], and Sørensen and Urzyczyn [2006]
and the references therein for more on this topic.

6C.8. Definition. (i) A type assignment P : A is derivable from the context Γ in the
system λN , notation

Γ ⊢λN P : A,

if Γ ⊢ P : A can be generated by the following axiom and rules.

λN

(x:A)∈Γ
Γ ⊢ x : A

axiom

Γ ⊢ P : (A→B) Γ ⊢ Q : A

Γ ⊢ (PQ) : B
→ elim

Γ, x:A ⊢ P : B

Γ ⊢ (λx.P ) : (A→B)
→ intr

(ii) A type assignment P : A is derivable form the context Γ in the system λL,
notation

Γ ⊢λL P : A,
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if Γ ⊢ P : A can be generated by the following axiom and rules.

λL

(x:A)∈Γ
Γ ⊢ x:A

axiom

Γ ⊢ Q : A Γ, x:B ⊢ P : C

Γ, y : A→B ⊢ P [x:=yQ] : C
→ left

Γ, x:A ⊢ P : B

Γ ⊢ (λx.P ) : (A→B)
→ right

Γ ⊢ Q : A Γ, x:A ⊢ P : B

Γ ⊢ P [x:=Q] : B
cut

In the rule (→ left) it is required that Γ, y:A→B is a context. This is the case if y is
fresh or if Γ = Γ, y:A→B, i.e. y:A→B already occurs in Γ.

(iii) The system λLcf is obtained from the system λL by omitting the rule (cut).

λLcf

(x:A)∈Γ
Γ ⊢ x:A

axiom

Γ ⊢ Q : A Γ, x:B ⊢ P : C

Γ, y : A→B ⊢ P [x:=yQ] : C
→ left

Γ, x:A ⊢ P : B

Γ ⊢ (λx.P ) : (A→B)
→ right

6C.9. Remark. The alternative rule (cut’) could also have been used to define the vari-
ant λL′. The right version for the rule (cut’) with term assignment is as follows.

Rule cut′ for λL′

Γ, x:A→A ⊢ P : B

Γ ⊢ P [x:=I] : B
cut’

Notation. Let Γ = {A1, · · · , An} and ~x = {x1, · · · , xn}. Write

Γ~x = {x1:A1, · · · , xn:An}
and

Λ◦(~x) = {P ∈ term | FV (P ) ⊆ ~x},
where FV (P ) is the set of free variables of P .
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The following result has been observed for N and λN by Curry, Howard and de Bruijn.
(See Troelstra and Schwichtenberg [1996] 2.1.5. and Hindley [1997] 6B3, for some fine
points about the correspondence between deductions in N and corresponding terms in
λN .)

6C.10. Proposition (Propositions—as—types interpretation). Let S be one of the log-

ical systems N , L or Lcf and let λS be the corresponding type assignment system. Then

Γ ⊢S A⇔ ∃~x ∃P ∈Λ◦(~x) Γ~x ⊢λS P : A.

Proof. (⇒) By an easy induction on derivations, just observing that the right lambda
term can be constructed. (⇐) By omitting the terms.

Since λN is exactly λ→, the simply typed lambda calculus, we know the following
results from previous Chapters: Theorem 2B.1 and Propositions 1B.6 and 1B.3. From
corollary 6C.14 it follows that the results also hold for λL.

6C.11. Proposition. (i) (Normalization theorem for λN).

Γ⊢λNP : A ⇒ P is strongly normalizing.

(ii) (Subject reduction theorem for λN).

Γ⊢λNP : A & P ։β P
′ ⇒ Γ⊢λNP ′ : A.

(iii) (Inversion Lemma for λN). Type assignment for terms of a certain syntactic
form can only be caused in the obvious way.

(1) Γ ⊢λN x : A ⇒ (x:A) ∈ Γ.
(2) Γ ⊢λN PQ : B ⇒ Γ ⊢λN P : (A→B) & Γ ⊢λN Q : A,

for some type A.
(3) Γ ⊢λN λx.P : C ⇒ Γ, x:A ⊢λN P : B & C ≡ A→B,

for some types A,B.

Relating λN , λL and λLcf

Now the proof of the equivalence between systems N and L will be ‘lifted’ to that of λN
and λL.

6C.12. Proposition. Γ⊢λNP : A ⇒ Γ⊢λLP : A.

Proof. By inductions on derivations in λN . Modus ponens (→ elim) is treated as
follows.

Γ ⊢λL P : A→B
Γ ⊢λL Q : A Γ, x:B ⊢λL x:B

(→ left)
Γ, y:A→B ⊢λL yQ : B

(cut).
Γ ⊢λL PQ : B

6C.13. Proposition. (i) Γ⊢λLP : A ⇒ Γ⊢λNP ′ : A, for some P ′ ։β P .

(ii) Γ⊢λLP : A ⇒ Γ⊢λNP : A.
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Proof. (i) By induction on derivations in λL. The rule (→ left) is treated as follows
(the justifications are left out, but they are as in the proof of 6C.4).

Γ ⊢λN Q : A

Γ, y:A→B ⊢λN Q : A Γ, y:A→B ⊢λN y:A→B
Γ, y:A→B ⊢λN yQ : B

Γ, x:B ⊢λN P : C

Γ ⊢λN (λx.P ) : B→C
Γ, y:A→B ⊢λN (λx.P )(yQ) : C

Now (λx.P )(yQ)→β P [x:=yQ] as required. The rule (cut) is treated as follows.

Γ ⊢λN Q : A

Γ, x:A ⊢λN P : B
(→ intr)

Γ ⊢λN (λx.P ) : A→B
(→ elim)

Γ ⊢λN (λx.P )Q : B

Now (λx.P )Q→β P [x:=Q] as required.
(ii) By (i) and the subject reduction theorem for λN (6C.11(ii)).

6C.14. Corollary. Γ⊢λLP : A ⇔ Γ⊢λNP : A.

Proof. By Propositions 6C.12 and 6C.13(ii).

Now we will investigate the role of the cut–free system.

6C.15. Proposition.
Γ ⊢

λLcf P : A ⇒ P is in β-nf.

Proof. By an easy induction on derivations.

6C.16. Lemma. Suppose

Γ ⊢
λLcf P1 : A1, · · · , Γ ⊢λLcf Pn : An.

Then
Γ, x:A1→· · ·→An→B ⊢λLcf xP1 · · ·Pn : B

for those variables x such that Γ, x:A1→· · ·→An→B is a context.

Proof. We treat the case n = 2, which is perfectly general. We abbreviate ⊢
λLcf as ⊢.

Γ ⊢ P1 : A1

Γ ⊢ P2 : A2

(axiom)
Γ, z:B ⊢ z : B

(→ left)
Γ, y:A2→B ⊢ yP2 ≡ z[z:=yP2] : B

(→ left)
Γ, x:A1→A2→B ⊢ xP1P2 ≡ (yP2)[y:=xP1] : B

Note that x may occur in some of the Pi.

6C.17. Proposition. Suppose that P is a β-nf. Then

Γ⊢λNP : A ⇒ Γ ⊢
λLcf P : A.

Proof. By induction on the following generation of normal forms.

nf = var nf∗ | λvar.nf
Here var nf∗ stands for var followed by 0 or more occurrences of nf. The case P ≡ λx.P1

is easy. The case P ≡ xP1 · · ·Pn follows from the previous lemma, using the generation
lemma for λN , Proposition 6C.11(iii).
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Now we get as bonus the Hauptsatz of Gentzen [1936] for minimal implicational sequent
calculus.

6C.18. Theorem (Cut elimination).

Γ ⊢L A ⇒ Γ ⊢Lcf A.

Proof. Γ ⊢L A ⇒ Γ~x ⊢λL P : A, for some P ∈Λ◦(~x), by 6C.10,
⇒ Γ~x ⊢λN P : A, by 6C.13(ii),

⇒ Γ~x ⊢λN Pnf : A, by 6C.11(i),(ii),

⇒ Γ~x ⊢λLcf P
nf : A, by 6C.17,

⇒ Γ ⊢Lcf A, by 6C.10.

As it is clear that the proof implies that cut-elimination can be used to normalize
terms typable in λN = λ→, Statman [1979] implies that the expense of cut-elimination
is beyond elementary time (Grzegorczyk class 4). Moreover, as the cut-free deduction is
of the same order of complexity as the corresponding normal lambda term, the size of the
cut-free version of a derivation is non elementary in the size of the original derivation.

Discussion

The main technical tool is the type assignment system λL corresponding exactly to
sequent calculus (for minimal propositional logic). The type assignment system λL is a
subsystem of a system studied in Barbanera, Dezani-Ciancaglini, and de’Liguoro [1995].
The terms involved in λL are also in Mints [1996]. The difference between the present
approach and the one by Mints is that in that paper derivations in L are first class
citizens, whereas in λL the provable formulas and the lambda terms are.
In λN typable terms are built up as usual (following the grammar of lambda terms).

In λLcf only normal terms are typable. They are built up from variables by transitions
like

P 7−→ λx.P

and

P 7−→ P [x:=yQ]

This is an ambiguous way of building terms, in the sense that one term can be built up
in several ways. For example, one can assign to the term λx.yz the type C→B (in the
context z:A, y:A→B) via two different cut–free derivations:

x:C, z:A ⊢ z : A x:C, z:A, u:B ⊢ u : B
(→ left)

x:C, z:A, y:A→B ⊢ yz : B
(→ right)

z:A, y:A→B ⊢ λx.yz : C→B
and

z:A ⊢ z:A
x:C, z:A, u:B ⊢ u : B

(→ right)
z:A, u:B ⊢ λx.u : C→B

(→ left)
z:A, y:A→B ⊢ λx.yz : C→B
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These correspond, respectively, to the following two formations of terms

u 7−→ yz 7−→ λx.yz,

u 7−→ λx.u 7−→ λx.yz.

Therefore there are more sequent calculus derivations giving rise to the same lambda
term. This is the cause of the mismatch between sequent calculus and natural deduction
as described in Zucker [1974], Pottinger [1977] and Mints [1996]. See also Dyckhoff and
Pinto [1999], Schwichtenberg [1999] and Troelstra [1999].
In Herbelin [1995] the mismatch between L-derivations and lambda terms is repaired

by translating these into terms with explicit substitution:

λx.(u < u:=yz >),

(λx.u) < u:=yz > .

In this Section lambda terms are considered as first class citizens also for sequent calculus.
This gives an insight into the mentioned mismatch by understanding it as an intensional
aspect how the sequent calculus generates these terms.
It is interesting to note, how in the full system λL the rule (cut) generates terms not

in β–normal form. The extra transition now is

P 7−→ P [x:=F ].

This will introduce a redex, if x occurs actively (in a context xQ) and F is an abstrac-
tion (F ≡ λx.R), the other applications of the rule (cut) being superfluous. Also, the
alternative rule (cut’) can be understood better. Using this rule the extra transition
becomes

P 7−→ P [x:=I].

This will have the same effect (modulo one β–reduction ) as the previous transition, if x
occurs in a context xFQ. So with the original rule (cut) the argument Q (in the context
xQ) is waiting for a function F to act on it. With the alternative rule (cut’) the function
F comes close (in context xFQ), but the ‘couple’ FQ has to wait for the ‘green light’
provided by I.
Also, it can be observed that if one wants to manipulate derivations in order to obtain

a cut–free proof, then the term involved gets reduced. By the strong normalization
theorem for λN (= λ→) it follows that eventually a cut–free proof will be reached.

6D. Grammars, terms and types

Typed lambda calculus is widely used in the study of natural language semantics, in
combination with a variety of rule-based syntactic engines. In this section, we focus on
categorial type logics. The type discipline, in these systems, is responsible both for the
construction of grammatical form (syntax) and for meaning assembly. We address two
central questions. First, what are the invariants of grammatical composition, and how
do they capture the uniformities of the form/meaning correspondence across languages?
Secondly, how can we reconcile grammatical invariants with structural diversity, i.e. vari-
ation in the realization of the form/meaning correspondence in the 6000 or so languages
of the world?
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The grammatical architecture to be unfolded below has two components. Invariants
are characterized in terms of a minimal base system: the pure logic of residuation for
composition and structural incompleteness. Viewing the types of the base system as
formulas, we model the syntax-semantics interface along the lines of the Curry-Howard
interpretation of derivations. Variation arises from the combination of the base logic
with a structural module. This component characterizes the structural deformations un-
der which the basic form-meaning associations are preserved. Its rules allow reordering
and/or restructuring of grammatical material. These rules are not globally available,
but keyed to unary type-forming operations, and thus anchored in the lexical type dec-
larations.
It will be clear from this description that the type-logical approach has its roots in

the type calculi developed by Jim Lambek in the late Fifties of the last century. The
technique of controlled structural options is a more recent development, inspired by the
modalities of linear logic.

Grammatical invariants: the base logic

Compared to the systems used elsewhere in this book, the type system of categorial type
logics can be seen as a specialization designed to take linear order and phrase structure
information into account.

F ::= A | F/F | F • F | F\F
The set of type atoms A represents the basic ontology of phrases that one can think of
as grammatically ‘complete’. Examples, for English, could be np for noun phrases, s for
sentences, n for common nouns. There is no claim of universality here: languages can
differ as to which ontological choices they make. Formulas A/B, B\A are directional
versions of the implicational type B → A. They express incompleteness in the sense
that expressions with slash types produce a phrase of type A in composition with a
phrase of type B to the right or to the left. Product types A •B explicitly express this
composition.
Frame semantics provides the tools to make the informal description of the interpre-

tation of the type language in the structural dimension precise. Frames F = (W,R•), in
this setting, consist of a set W of linguistic resources (expressions, ‘signs’), structured
in terms of a ternary relation R•, the relation of grammatical composition or ‘Merge’
as it is known in the generative tradition. A valuation V : S 7→ P(W ) interprets types
as sets of expressions. For complex types, the valuation respects the clauses below,
i.e. expressions x with type A • B can be disassembled into an A part y and a B part
z. The interpretation for the directional implications is dual with respect to the y
and z arguments of the Merge relation, thus expressing incompleteness with respect to
composition.

x∈V (A •B) iff ∃yz.R•xyz and y ∈V (A) and z ∈V (B)

y ∈V (C/B) iff ∀xz.(R•xyz and z ∈V (B)) implies x∈V (C)

z ∈V (A\C) iff ∀xy.(R•xyz and y ∈V (A)) implies x∈V (C)
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Algebraically, this interpretation turns the product and the left and right implications
into a residuated triple in the sense of the following biconditionals:

A −→ C/B ⇔ A •B −→ C ⇔ B −→ A\C (Res)

In fact, we have the pure logic of residuation here: (Res), together with Reflexivity
(A −→ A) and Transitivity (from A −→ B and B −→ C, conclude A −→ C), fully
characterizes the derivability relation, as the following completeness result shows.
completeness A −→ B is provable in the grammatical base logic iff for every valua-

tion V on every frame F we have V (A) ⊆ V (B) (Došen [1992], Kurtonina [1995]).
Notice that we do not impose any restrictions on the interpretation of the Merge rela-

tion. In this sense, the laws of the base logic capture grammatical invariants: properties
of type combination that hold no matter what the structural particularities of individual
languages may be. And indeed, at the level of the base logic important grammatical
notions, rather than being postulated, can be seen to emerge from the type structure.

• Valency. Selectional requirements distinguishing verbs that are intransitive np\s,
transitive (np\s)/np, ditransitive ((np\s)/np)/np, etcetera are expressed in terms
of the directional implications. In a context-free grammar, these would require the
postulation of new non-terminals.
• Case. The distinction between phrases that can fulfill any noun phrase selectional
requirement versus phrases that insist on playing the subject s/(np\s), direct object
((np\s)/np)\(np\s), prepositional object (pp/np)\pp, etc role, is expressed through
higher-order type assignment.
• Complements versus modifiers. Compare exocentric types (A/B with A 6= B)
versus endocentric types A/A. The latter express modification; optionality of A/A
type phrases follows.
• Filler-gap dependencies. Nested implications A/(C/B), A/(B\C), etc, signal the
withdrawal of a gap hypothesis of type B in a domain of type C.

Parsing-as-deduction

For automated proof search, one turns the algebraic presentation in terms of (Res) into a
sequent presentation enjoying cut elimination. Sequents for the grammatical base logic
are statements Γ ⇒ A with Γ a structure, A a type formula. Structures are binary
branching trees with formulas at the leaves: S ::= F | (S,S). In the rules, we write Γ[∆]
for a structure Γ containing a substructure ∆. Lambek [1958], Lambek [1961] proves
that Cut is a redundant rule in this presentation. Top-down backward-chaining proof
search in the cut-free system respects the subformula property and yields a decision
procedure.
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A⇒ A
Ax

∆⇒ A Γ[A]⇒ B

Γ[∆]⇒ B
Cut

Γ⇒ A ∆⇒ B
(Γ,∆)⇒ A •B (•R) Γ[(A,B)]⇒ C

Γ[A •B]⇒ C
(•L)

∆⇒ B Γ[A]⇒ C

Γ[(∆, B\A)]⇒ C
(\L) (B,Γ)⇒ A

Γ⇒ B\A (\R)

∆⇒ B Γ[A]⇒ C

Γ[(A/B,∆)]⇒ C
(/L)

(Γ, B)⇒ A

Γ⇒ A/B
(/R)

To specify a grammar for a particular language it is enough now to give its lexicon.
Lex ⊆ Σ × F is a relation associating each word with a finite number of types. A
string belongs to the language for lexicon Lex and goal type B, w1 · · ·wn ∈L(Lex, B)
iff for 1 ≤ i ≤ n, (wi, Ai)∈Lex, and Γ ⇒ B where Γ is a tree with ‘yield’ at its
endpoints A1, · · · , An. Buszkowski and Penn [1990] model the acquisition of lexical type
assignments as a process of solving type equations. Their unification-based algorithms
take function-argument structures as input (binary trees with a distinguished daughter);
one obtains variations depending on whether the solution should assign a unique type to
every vocabulary item, or whether one accepts multiple assignments. Kanazawa [1998]
studies learnable classes of grammars from this perspective, in the sense of Gold’s notion
of identifiability ‘in the limit’; the formal theory of learnability for type-logical grammars
has recently developed into a quite active field of research.

Meaning assembly

Lambek’s original work looked at categorial grammar from a purely syntactic point of
view, which probably explains why this work was not taken into account by Richard
Montague when he developed his theory of model-theoretic semantics for natural lan-
guages. In the 1980-ies, van Benthem played a key role in bringing the two traditions
together, by introducing the Curry-Howard perspective, with its dynamic, derivational
view on meaning assembly rather than the static, structure-based view of rule-based
approaches.
For semantic interpretation, we want to associate every type A with a semantic domain

DA, the domain where expressions of type A find their denotations. It is convenient to
set up semantic domains via a map from the directional syntactic types used so far to
the undirected type system of the typed lambda calculus. This indirect approach is
attractive for a number of reasons. On the level of atomic types, one may want to make
different basic distinctions depending on whether one uses syntactic or semantic criteria.
For complex types, a map from syntactic to semantic types makes it possible to forget
information that is relevant only for the way expressions are to be configured in the form
dimension. For simplicity, we focus on implicational types here — accommodation of
product types is straightforward.
For a simple extensional interpretation, the set of atomic semantic types could consist

of types e and t, with De the domain of discourse (a non-empty set of entities, objects),
and Dt = {0, 1}, the set of truth values. DA→B, the semantic domain for a functional
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type A → B, is the set of functions from DA to DB. The map from syntactic to
semantic types (·)′ could now stipulate for basic syntactic types that np′ = e, s′ = t,
and n′ = e → t. Sentences, in this way, denote truth values; (proper) noun phrases
individuals; common nouns functions from individuals to truth values. For complex
syntactic types, we set (A/B)′ = (B\A)′ = B′ → A′. On the level of semantic types,
the directionality of the slash connective is no longer taken into account. Of course, the
distinction between numerator and denominator — domain and range of the interpreting
functions — is kept. Below some common parts of speech with their corresponding
syntactic and semantic types.

determiner (s/(np\s))/n (e→ t)→ (e→ t)→ t

intransitive verb np\s e→ t

transitive verb (np\s)/np e→ e→ t

reflexive pronoun ((np\s)/np)\(np\s) (e→ e→ t)→ e→ t

relative pronoun (n\n)/(np\s) (e→ t)→ (e→ t)→ e→ t

Formulas-as-types, proofs as programs

Curry’s basic insight was that one can see the functional types of type theory as logical
implications, giving rise to a one-to-one correspondence between typed lambda terms and
natural deduction proofs in positive intuitionistic logic. Translating Curry’s ‘formulas-as-
types’ idea to the categorial type logics we are discussing, we have to take the differences
between intuitionistic logic and the grammatical resource logic into account. Below we
give the slash rules of the base logic in natural deduction format, now taking term-
decorated formulas as basic declarative units. Judgements take the form of sequents
Γ ⊢M : A. The antecedent Γ is a structure with leaves x1 : A1, · · · , xn : An. The xi are
unique variables of type A′

i. The succedent is a term M of type A′ with exactly the free
variables x1, · · · , xn, representing a program which, given inputs k1 ∈DA′

1
· · · , kn ∈DA′

n
,

produces a value of typeA′ under the assignment that maps the variables xi to the objects
ki. The xi in other words are the parameters of the meaning assembly procedure; for
these parameters we will substitute the actual lexical meaning recipes when we rewrite
the leaves of the antecedent tree to terminal symbols (words). A derivation starts from
axioms x : A ⊢ x : A. The Elimination and Introduction rules have a version for the
right and the left implication. On the meaning assembly level, this syntactic difference
is ironed out, as we already saw that (A/B)′ = (B\A)′. As a consequence, we don’t
have the isomorphic (one-to-one) correspondence between terms and proofs of Curry’s
original program. But we do read off meaning assembly from the categorial derivation.

(Γ, x : B) ⊢M : A

Γ ⊢ λx.M : A/B
I/

(x : B,Γ) ⊢M : A

Γ ⊢ λx.M : B\A I\

Γ ⊢M : A/B ∆ ⊢ N : B

(Γ,∆) ⊢MN : A
E/

Γ ⊢ N : B ∆ ⊢M : B\A
(Γ,∆) ⊢MN : A

E\
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A second difference between the programs/computations that can be obtained in in-
tuitionistic implicational logic, and the recipes for meaning assembly associated with
categorial derivations has to do with the resource management of assumptions in a
derivation. In Curry’s original program, the number of occurrences of assumptions (the
‘multiplicity’ of the logical resources) is not critical. One can make this style of resource
management explicit in the form of structural rules of Contraction and Weakening, al-
lowing for the duplication and waste of resources.

Γ, A,A ⊢ B
Γ, A ⊢ B C

Γ ⊢ B
Γ, A ⊢ B W

In contrast, the categorial type logics are resource sensitive systems where each as-
sumption has to be used exactly once. We have the following correspondence between
resource constraints and restrictions on the lambda terms coding derivations:

1. no empty antecedents: each subterm contains a free variable;
2. no Weakening: each λ operator binds a variable free in its scope;
3. no Contraction: each λ operator binds at most one occurrence of a variable in its

scope.

Taking into account also word order and phrase structure (in the absence of Associa-
tivity and Commutativity), the slash introduction rules responsible for the λ operator
can only reach the immediate daughters of a structural domain.
These constraints imposed by resource-sensitivity put severe limitations on the ex-

pressivity of the derivational semantics. There is an interesting division of labor here in
natural language grammars between derivational and lexical semantics. The proof term
associated with a derivation is a uniform instruction for meaning assembly that fully
abstracts from the contribution of the particular lexical items on which it is built. At the
level of the lexical meaning recipes, we do not impose linearity constraints. Below some
examples of non-linearity; syntactic type assignment for these words was given above.
The lexical term for the reflexive pronoun is a pure combinator: it identifies the first and
second coordinate of a binary relation. The terms for relative pronouns or determiners
have a double bind λ to compute the intersection of their two (e→ t) arguments (noun
and verb phrase), and to test the intersection for non-emptiness in the case of ‘some’.

a, some (determiner) (e→ t)→ (e→ t)→ t λPλQ.(∃ λx.((P x) ∧ (Q x)))

himself (reflexive pronoun) (e→ e→ t)→ e→ t λRλx.((R x) x)

that (relative pronoun) (e→ t)→ (e→ t)→ e→ t λPλQλx.((P x) ∧ (Q x)))

The interplay between lexical and derivational aspects of meaning assembly is illustrated
with the natural deduction below. Using variables x1, · · · , xn for the leaves in left to
right order, the proof term for this derivation is ((x1 x2) (x4 x3)). Substituting the above
lexical recipes for ‘a’ and ‘himself’ and non-logical constants boye→t and hurte→e→t,
we obtain, after β conversion, (∃ λy.((boy y) ∧ ((hurt y) y))). Notice that the proof
term reflects the derivational history (modulo directionality); after lexical substitution
this transparency is lost. The full encapsulation of lexical semantics is one of the strong
attractions of the categorial approach.
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Figure 13. Various Lambek calculi

a
(s/(np\s))/n

boy
n

(a, boy) ⊢ s/(np\s) (/E)

hurt
(np\s)/np

himself
((np\s)/np)\(np\s)

(hurt, himself) ⊢ np\s (\E)

((a, boy), (hurt, himself)) ⊢ s (/E)

Structural variation

A second source of expressive limitations of the grammatical base logic is of a more
structural nature. Consider situations where a word or phrase makes a uniform semantic
contribution, but appears in contexts which the base logic cannot relate derivationally.
In generative grammar, such situations are studied under the heading of ‘displacement’,
a suggestive metaphor from our type-logical perspective. Displacement can be overt (as
in the case of question words, relative pronouns and the like: elements that enter into
a dependency with a ‘gap’ following at a potentially unbounded distance, cf. ‘Who do
you think that Mary likes (gap)?’), or covert (as in the case of quantifying expressions
with the ability for non-local scope construal, cf. ‘Alice thinks someone is cheating’,
which can be construed as ‘there is a particular x such that Alice thinks x is cheating’).
We have seen already that such expressions have higher-order types of the form (A →
B) → C. The Curry-Howard interpretation then effectively dictates the uniformity of
their contribution to the meaning assembly process as expressed by a term of the form
(M (A→B)→C λxA.NB)C , where the ‘gap’ is the λ bound hypothesis. What remains to
be done, is to provide the fine-structure for this abstraction process, specifying which
subterms of NB are in fact ‘visible’ for the λ binder. To work out this notion of visibility
or structural accessibility, we introduce structural rules, in addition to the logical rules of
the base logic studied so far. From the pure residuation logic, one obtains a hierarchy of
categorial calculi by adding the structural rules of Associativity, Commutativity or both.
For reasons of historical precedence, the system of Lambek [1958], with an associative
composition operation, is known as L; the more fundamental system of Lambek [1961]
as NL, i.e. the non-associative version of L. Addition of commutativity turns these into
LP and NLP, respectively. For linguistic application, it is clear that global options
of associativity and/or commutativity are too crude: they would entail that arbitrary
changes in constituent structure and/or word order cannot affect well-formedness of an
expression. What is needed, is a controlled form of structural reasoning, anchored in
lexical type assignment.
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Control operators

The strategy is familiar from linear logic: the type language is extended with a pair of
unary operators (‘modalities’). They are constants in their own right, with logical rules
of use and of proof. In addition, they can provide controlled access to structural rules.

F ::= A | ♦F | 2F | F\F | F • F | F/F

Consider the logical properties first. The truth conditions below characterize the control
operators ♦ and 2 as inverse duals with respect to a binary accessibility relation R⋄.
This interpretation turns them into a residuated pair, just like composition and the left
and right slash operations, i.e. we have ♦A −→ B iff A −→ 2B (Res).

x∈V (♦A) iff ∃y.R⋄xy and y ∈V (A) x∈V (2A) iff ∀y.R⋄yx implies y ∈V (A)

We saw that for composition and its residuals, completeness with respect to the frame
semantics doesn’t impose restrictions on the interpretation of the merge relation R•.
Similarly, for R⋄ in the pure residuation logic of ♦,2. This means that consequences of
(Res) characterize grammatical invariants, in the sense indicated above. From (Res) one
easily derives the fact that the control operators are monotonic (A −→ B implies ♦A −→
♦B and 2A −→ 2B), and that their compositions satisfy ♦2A −→ A −→ 2♦A. These
properties can be put to good use in refining lexical type assignment so that selectional
dependencies are taken into account. Compare the effect of an assignment A/B versus
A/♦2B. The former will produce an expression of type A in composition both with
expressions of type B and ♦2B, the latter only with the more specific of these two, ♦2B.
An expression typed as 2♦B will resist composition with either A/B or A/♦2B.
For sequent presentation, the antecedent tree structures now have unary in addition

to binary branching: S ::= F | (S) | (S,S). The residuation pattern then gives rise to
the following rules of use and proof. Cut elimination carries over straightforwardly to
the extended system, and with it decidability and the subformula property.

Γ[(A)]⇒ B

Γ[♦A]⇒ B
♦L Γ⇒ A

(Γ)⇒ ♦A ♦R

Γ[A]⇒ B

Γ[(2A)]⇒ B
2L

(Γ)⇒ A

Γ⇒ 2A
2R

Controlled structural rules

Let us turn then to use of ♦,2 as control devices, providing restricted access to structural
options that would be destructive in a global sense. Consider the role of the relative
pronoun ‘that’ in the phrases below. The (a) example, where the gap hypothesis is in
subject position, is derivable in the structurally-free base logic with the type-assignment
given. The (b) example might suggest that the gap in object position is accessible via
re-bracketing of (np, ((np\s)/np, np)) under associativity. The (c) example shows that
apart from re-bracketing also reordering would be required to access a non-peripheral
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gap.

(a) the paper that appeared today (n\n)/(np\s)
(b) the paper that John wrote (n\n)/(s/np) + Ass
(c) the paper that John wrote today (n\n)/(s/np) + Ass,Com

The controlled structural rules below allow the required restructuring and reordering only
for ♦ marked resources. In combination with a type assignment (n\n)/(s/♦2np) to the
relative pronoun, they make the right branches of structural configurations accessible
for gap introduction. As long as the gap subformula ♦2np carries the licensing ♦,
the structural rules are applicable; as soon as it has found the appropriate structural
position where it is selected by the transitive verb, it can be used as a regular np, given
♦2np −→ np.

(P1) (A •B) • ♦C −→ A • (B • ♦C) (P2) (A •B) • ♦C −→ (A • ♦C) •B

Frame constraints, term assignment

Whereas the structural interpretation of the pure residuation logic does not impose
restrictions on the R♦ and R• relations, completeness for structurally extended versions
requires a frame constraint for each structural postulate. In the case of (P2) above, the
constraint guarantees that whenever we can connect root r to leaves x, y, z via internal
nodes s, t, one can rewire root and leaves via internal nodes s′, t′.

∀rstxyz r

s

x y

t

z

; ∃s′t′ r

s′

x t′

z

y

As for term assignment and meaning assembly, we have two options. The first is to
treat ♦,2 purely as syntactic control devices. One then sets (♦A)′ = (2A)′ = A′, and
the inference rules affecting the modalities leave no trace in the term associated with a
derivation. The second is to actually provide denotation domains D♦A, D2A for the new
types, and to extend the term language accordingly. This is done in Wansing [2002],
who develops a set-theoretic interpretation of minimal temporal intuitionistic logic. The
temporal modalities of future possibility and past necessity are indistinguishable from the
control operators ♦,2, proof-theoretically and as far as their relational interpretation is
concerned, which in principle would make Wansing’s approach a candidate for linguistic
application.

Embedding translations

A general theory of sub-structural communication in terms of ♦,2 is worked out in
Kurtonina and Moortgat [1997]. Let L and L′ be neighbors in the landscape of Fig. 13.
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We have translations ·♮ from F(/, •, \) of L to F(♦,2, /, •, \) of L′ such that

L ⊢ A −→ B iff L′ ⊢ A♮ −→ B♮

The ·♮ translation decorates formulas of the source logic L with the control operators
♦,2. The modal decoration has two functions. In the case where the target logic L′ is
more discriminating than L, it provides access to controlled versions of structural rules
that are globally available in the source logic. This form of communication is familiar
from the embedding theorems of linear logic, showing that no expressivity is lost by
removing free duplication and deletion (Contraction/Weakening). The other direction
of communication obtains when the target logic L′ is less discriminating than L. The
modal decoration in this case blocks the applicability of structural rules that by default
are freely available in the more liberal L.
As an example, consider the grammatical base logic NL and its associative neighbor L.

For L = NL and L′ = L, the ·♮ translation below affectively removes the conditions for
applicability of the associativity postulate A • (B •C)←→ (A •B) •C (Ass), restricting
the set of theorems to those of NL. For L = L and L′ = NL, the ·♮ translation provides
access to a controlled form of associativity (Ass⋄) ♦(A•♦(B •C))←→ ♦(♦(A•B)•C),
the image of (Ass) under ·♮.

p♮ = p (p∈A)
(A •B)♮ = ♦(A♮ •B♮)
(A/B)♮ = 2A♮/B♮

(B\A)♮ = B♮\2A♮

Generative capacity, computational complexity

The embedding results discussed above allow one to determine the Cartesian coordi-
nates of a language in the logical space for diversity. Which regions of that space are
actually populated by natural language grammars? In terms of the Chomsky hierarchy,
recent work in a variety of frameworks has converged on the so-called mildly context-
sensitive grammars: formalisms more expressive than context free, but strictly weaker
than context-sensitive, and allowing polynomial parsing algorithms. The minimal system
in the categorial hierarchy NL is strictly context-free and has a polynomial recognition
problem, but, as we have seen, needs structural extensions. Such extensions are not
innocent, as shown in Pentus [1993], [2006]: whereas L remains strictly context-free, the
addition of global associativity makes the derivability problem NP complete. Also for
LP, coinciding with the multiplicative fragment of linear logic, we have NP completeness.
Moreover, van Benthem [1995] shows that LP recognizes the full permutation closure of
context-free languages, a lack of structural discrimination making this system unsuited
for actual grammar development. The situation with ♦ controlled structural rules is
studied in Moot [2002], who establishes a PSPACE complexity ceiling for linear (for
•), non-expanding (for ♦) structural rules via simulation of lexicalized context-sensitive
grammars. The identification of tighter restrictions on allowable structure rules, leading
to mildly context-sensitive expressivity, is an open problem.
For a grammatical framework assigning equal importance to syntax and semantics,

strong generative capacity is more interesting than weak capacity. Tiede [2001], [2002]
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studies the natural deduction proof trees that form the skeleton for meaning assembly
from a tree-automata perspective, arriving at a strong generative capacity hierarchy.
The base logic NL, though strictly context-free at the string level, can assign non-
local derivation trees, making it more expressive than context-free grammars in this
respect. Normal form NL proof trees remain regular; the proof trees of the associative
neighbor L can be non-regular, but do not extend beyond the expressivity of indexed
grammars, generally considered to be an upper bound for the complexity of natural
language grammars.

Variants, further reading

In the Handbook of Logic and Language, van Benthem and ter Meulen [1997], the ma-
terial discussed in this section is covered in greater depth in the chapters of Moortgat
and Buszkowski. The monograph van Benthem [1995] is indispensable for the relations
between categorial derivations, type theory and lambda calculus and for discussion of the
place of type-logical grammars within the general landscape of resource-sensitive logics.
Morrill [1994] provides a detailed type-logical analysis of syntax and semantics for a rich
fragment of English grammar, and situates the type-logical approach within Richard
Montague’s Universal Grammar framework. A versatile computational tool for catego-
rial exploration is the grammar development environment GRAIL of Moot [2002]. The
kernel is a general type-logical theorem prover based on proof nets and structural graph
rewriting. Bernardi [2002] and Vermaat [2006] are recent PhD theses studying syntactic
and semantic aspects of cross-linguistic variation for a wide variety of languages.
This section has concentrated on the Lambek-style approach to type-logical deduction.

The framework of Combinatory Categorial Grammar, studied by Steedman and his co-
workers, takes its inspiration more from the Curry-Feys tradition of combinatory logic.
The particular combinators used in CCG are not so much selected for completeness with
respect to some structural model for the type-forming operations (such as the frame
semantics introduced above) but for their computational efficiency, which places CCG
among the mildly context-sensitive formalisms. Steedman [2000] is a good introduction
to this line of work, whereas Baldridge [2002] shows how one can fruitfully import the
technique of lexically anchored modal control into the CCG framework.
Another variation elaborating on Curry’s distinction between an abstract level of tec-

togrammatical organization and its concrete phenogrammatical realizations is the frame-
work of Abstract Categorial Grammar (ACG, De Groote, Muskens). An abstract catego-
rial grammar is a structure (Σ1,Σ2,L, s), where the Σi are higher-order linear signatures,
the abstract vocabulary Σ1 versus the object vocabulary Σ2, L a map from the abstract
to the object vocabulary, and s the distinguished type of the grammar. In this setting,
one can model the syntax-semantics interface in terms of the abstract versus object vo-
cabulary distinction. But one can also study the composition of natural language syntax
from the perspective of non-directional linear implicational types, using the canonical
λ-term encodings of strings and trees and operations on them discussed elsewhere in this
book. Expressive power for this framework can be measured in terms of the maximal
order of the constants in the abstract vocabulary and of the object types interpreting
the atomic abstract types. A survey of results for the ensuing complexity hierarchy can
be found in de Groote and Pogodalla [2004]. Whether one approaches natural language
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grammars from the top (non-directional linear implications at the LP level) or from the
bottom (the structurally-free base logic NL) of the categorial hierarchy is to a certain
extent a matter of taste, reflecting the choice, for the structural regime, between allowing
everything except what is explicitly forbidden, or forbidding everything except what is
explicitly allowed. The theory of structural control, see Kurtonina and Moortgat [1997]
shows that the two viewpoints are feasible.





Part 2

RECURSIVE TYPES λA
=



The simple types of λ→ of Part I are freely generated from the type atoms A. This
means that there are no identifications like α = α→β or 0→0 = (0→0)→0.
With the recursive types of this part the situation changes. Now, one allows extra

identifications between types; for this purpose one considers types modulo a congruence
determined by some set E of equations between types. Another way of obtaining type
identifications is to add the ‘fixed-point operator’ µ for types as a syntactic type con-
structor, together with a canonical congruence ∼ on the resulting terms. Given a type
A[α] in which α may occur, the type µα.A[α] has as intended meaning a solution X of
the equation X = A[X]. Following a suggestion of Dana Scott [1975b], both approaches
(types modulo a set of equations E or using the operator µ) can be described by consid-
ering type algebras, consisting of a set A on which a binary operation→ is defined (one
then can have in such structures e.g. a = a→b). For example for A ≡ µα.α→B one has
A ∼ A→B, which will become an equality in the type algebra.
We mainly study systems with only→as type constructor, since this restriction focuses

on the most interesting phenomena. For applications sometimes other constructors, like
+ and × are needed; these can be added easily. Recursive type specifications are used
in programming languages. One can, for example, define the type of lists of elements of
type A by the equation

list = 1 + (A× list).
For this we need a type constant 1 for the one element type (intended to contain nil),
and type constructors + for disjoint union of types and × for Cartesian product. Re-
cursive types have been used in several programming languages since ALGOL-68, see
van Wijngaarden [1981] and Pierce [2002].
Using type algebras one can define a notion of type assignment to lambda terms, that

is stronger than the one using simple types. In a type algebra in which one has a type
C = C→A one can give the term λx.xx the type C as follows.

x:C ⊢ x : C
C=C→A

x:C ⊢ x:C→A x:C ⊢ x : C

x:C ⊢ xx : A

⊢ λx.xx : C→A
C→A=C

⊢ λx.xx : C

Another example is the fixed-point operator Y ≡ λf.(λx.f(xx))(λx.f(xx)) that now will
have as type (A→A)→A for all types A such that there exists C satisfying C = C→A.
Several properties of the simple type systems are valid for the recursive type systems.

For example Subject Reduction and the decidability of type assignment. Some other
properties are lost, for example Strong Normalization of typable terms and the canonical
connection with logic in the form of the formulas-as-type interpretation. By making some
natural assumption on the type algebras the Strong Normalization property is regained.
Finally, we also consider type structures in which type algebras are enriched with a

partial order, so that now one can have a ≤ a→ b. Subtyping could be pursued much
further, looking at systems of inequalities as generalized simultaneous recursions. Here
we limit our treatment to a few basic properties: type systems featuring subtyping will
be dealt with thoroughly in the next Part III.



CHAPTER 7

THE SYSTEMS λA
=

In the present Part II of this book we will again consider the set of types TT = TTA

freely generated from atomic types A and the type constructor→. (Sometimes other
type constructors, including constants, will be allowed.) But now the freely generated
types will be ‘bent together’ by making identifications like A = A→B. This is done by
considering types modulo a congruence relation ≈ (an equivalence relation preserved by
→). Then one can define the operation → on the equivalence classes. As suggested by
Scott [1975b] this can be described by considering type algebras consisting of a set with
a binary operation→ on it. In such structures one can have for example a = a→b. The
notion of type algebra was anticipated in Breazu-Tannen and Meyer [1985] expanding
on a remark of Scott [1975b]; it was taken up in Statman [1994] as an alternative to the
presentation of recursive types via the µ-operator. It will be used as a unifying theme
throughout this Part.

7A. Type-algebras and type assignment

Type algebras

7A.1. Definition. (i) A type algebra is a structure

A = 〈|A|,→A〉,
where→A is a binary operation on |A|.

(ii) The type-algebra 〈TTA,→〉, consisting of the simple types under the operation →,
is called the free type algebra over A . This terminology will be justified in 7B.1 below.

Notation. (i) If A is a type-algebra we write a∈A for a∈ |A|. In the same style, if
there is little danger of confusion we often write A for |A| and→ for→A.

(ii) We will use α, β, · · · to denote arbitrary elements of A and A,B,C, · · · to range
over TTA. On the other hand a, b, c, · · · range over a type algebra A.

Type assignment à la Curry

We now introduce formal systems for assigning elements of a type algebra to λ-terms.
We will focus our presentation mainly on type inference systems à la Curry, but for any
of them a corresponding typed calculus à la Church can be defined.
The formal rules to assign types to λ-terms are defined as in Section 1A, but here the

types are elements in an arbitrary type algebra A. This means that the judgments of

291
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the systems are of the following shape.

Γ ⊢M : a,

where one has a∈A and Γ, called a basis over A, is a set of statements of the shape x:a,
where x is a term variable and a∈A. As before, the subjects in Γ = {x1:a1, · · · , xn:an}
should be distinct, i.e. xi = xj ⇒ i = j.

7A.2. Definition. Let A be a Type Algebra, a, b∈A, and let M ∈Λ. Then the Curry
system of type assignment λA,Cu

= , or simply λA
=, is defined by the following rules.

(axiom) Γ ⊢ x : a if (x:a)∈Γ

(→E)
Γ ⊢M : a→ b Γ ⊢ N : a

Γ ⊢ (MN) : b

(→I)
Γ, x:a ⊢M : b

Γ ⊢ (λx.M) : (a→ b)

Figure 14. The system λA
=.

In rule (→I) it is assumed that Γ, x:a is a basis.
We write Γ⊢λA

=
M : a, or simply Γ⊢AM : a, in case Γ ⊢M : a can be derived in λA

=.

We could denote this system by λA
→, but we write λA

= to emphasize the difference with
the system λA

→, which is λA
= over the free type algebra A = TTA. In a general A we can

have identifications, for example b = b→a and then of course we have

Γ ⊢A M : b ⇒ Γ ⊢A M : (b→a).

This makes a dramatic difference. There are examples of type assignment in λA
= to terms

which have no type in the simple type assignment system λA
→.

7A.3. Example. Let A be a type algebra and let a, b∈A with b = (b→a). Then
(i) ⊢A (λx.xx) : b.

(ii) ⊢A Ω : a, where Ω , (λx.xx)(λx.xx).
(iii) ⊢A Y : (a→a)→a,

where Y , λf.(λx.f(xx))(λx.f(xx)) is the fixed point combinator.

Proof. (i) The following is a deduction of ⊢A (λx.xx) : b.

x:b ⊢ x : b x:b ⊢ x : b
(→E), b = (b→a)

x:b ⊢ xx : a

⊢ (λx.xx) : (b→a) = b

(ii) As ⊢A (λx.xx) : b, we also have ⊢A (λx.xx) : (b→a), since b = b→a. Therefore
⊢A (λx.xx)(λx.xx) : a.
(iii) We can prove ⊢A Y : (a→ a)→ a in λA

= in the following way. First modify the
deduction constructed in (i) to obtain f :a→a ⊢A λx.f(xx) : b. Since b = b→a we have
as in (ii) by rule (→E)

f : a→a ⊢A (λx.f(xx))(λx.f(xx)) : a
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from which we get

⊢A λf.(λx.f(xx))(λx.f(xx)) : (a→a)→a.

7A.4. Proposition. Suppose that Γ ⊆ Γ′. Then

Γ ⊢A M : a ⇒ Γ′ ⊢A M : A.

We say that the rule ‘weakening’ is admissible.

Proof. By induction on derivations.

Quotients and syntactic type-algebras and morphisms

A ‘recursive type’ b satisfying b = (b→a) can be easily obtained by working modulo the
right equivalence relations.

7A.5. Definition. (i) A congruence on a type algebra A = 〈A,→〉 is an equivalence
relation ≈ on A such that for all a, b, a′, b′ ∈A one has

a≈ a′ & b≈ b′ ⇒ (a→b)≈ (a′→b′).

(ii) In this situation define for a∈A its equivalence class, notation [a]≈, by

[a]≈ = {b∈A | a≈b}.
(iii) The quotient type algebra of A under ≈, notation A/≈, is defined by

〈A/≈,→≈〉,
where

A/≈, {[a]≈ | a∈A}
[a]≈→≈[b]≈ , [a→b]≈.

Since ≈ is a congruence, the operation→≈ is well-defined.

A special place among type-algebras is taken by quotients of the free type-algebras
modulo some congruence. In fact, in Proposition 7A.16 we shall see that every type
algebra has this form, up to isomorphism.

7A.6. Definition. Let TT = TTA.
(i) A syntactic type-algebra over A is of the form

A = 〈TT/≈,→≈〉,
where ≈ is a congruence on 〈TT,→〉.

(ii) We usually write TT/≈ for the syntactic type-algebra 〈TT/≈,→≈〉, as no confusion
can arise since →≈ is determined by ≈.
7A.7. Remark. (i) We often simply writeA for [A]≈, for example in “A∈TT/≈”, thereby
identifying TT/≈ with TT and→≈ with →.

(ii) The free type-algebra over A is also syntactic, in fact it is the same as TTA/=,
where = is the ordinary equality relation on TTA. This algebra will henceforth be denoted
simply by TTA.

7A.8. Definition. Let A and B be type-algebras.
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(i) A map h : A→B is called a morphism between A and B, notation1 h : A→B, iff
for all a, b∈A one has

h(a→Ab) = h(a)→Bh(b).

(ii) An isomorphism is a morphism h : A→B that is injective and surjective. Note
that in this case the inverse map h−1 is also a morphism. A and B are called isomorphic,
notation A ∼= B, if there is an isomorphism h : A→B.
(iii) We say that A is embeddable in B, notation A →֒ B, if there is an injective

morphism i : A→B. In this case we also write i : A →֒ B.

Constructing type-algebras by equating elements

The following construction makes extra identifications in a given type algebra. It will
serve in the next subsection as a tool to build a type-algebra satisfying a given set of
equations. What we do here is just bending together elements (like considering numbers
modulo p). In the next subsection we also extend type algebras in order to get new
elements that will be cast with a special role (like extending the real numbers with an
element X, obtaining the ring R[X] and then bending X2 = −1 to create the imaginary
number i).

7A.9. Definition. Let A be a type algebra.

(i) An equation over A is of the form (a=. b) with a, b∈A.
(ii) A satisfies such an equation a=. b (or a=. b holds in A), notation

A |= a=. b,

if a = b.

(iii) A satisfies a set E of equations over A, notation

A |= E ,

if every equation a=. b∈E holds in A.

Here a is the corresponding constant for an element a∈A. But usually we will write for
a=. b simply a = b.

7A.10. Definition. Let A be a type-algebra and let E be a set of equations over A.
(i) The least congruence relation on A extending E is introduced via an equality de-

fined by the following axioms and rules, where a, a′, b, b′, c range over A. The system of
equational logic extended by the statements in E , notation (E), is defined as follows.

1This is an overloading of the symbol “→” with little danger of confusion.
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(axiom) E ⊢ a = b if (a = b)∈E
(refl) E ⊢ a = a

(symm)
E ⊢ a = b

E ⊢ b = a

(trans)
E ⊢ a = b E ⊢ b = c

E ⊢ a = c

(→-cong)
E ⊢ a = a′ E ⊢ b = b′

E ⊢ a→b = a′→b′

Figure 15. The system of equational logic (E).
If E ′ is another set of equations over A we write

E ⊢ E ′

if E ⊢ a = b for all a = b∈E ′.
(ii) Write =E , {(a, b) | a, b∈A & E ⊢ a = b}. This is the least congruence relation

extending E .
(iii) The quotient type-algebra A modulo E , notation A/E is defined as

A/E , (A/=E).

If we want to construct recursive types a, b such that b = b→a, then we simply work
modulo =E , with E = {b = b→a}.
7A.11. Definition. Let h : A→B be a morphism between type algebras.

(i) For a1, a2 ∈A define h(a1 = a2), (h(a1) = h(a2)).

(ii) h(E), {h(a1 = a2) | a1 = a2 ∈E}.
7A.12. Lemma. Let E be a set of equations over A and let a, b∈A.

(i) A |= E & E ⊢ a = b ⇒ A |= a = b.
Let moreover h:A→B be a morphism. Then
(ii) A |= a1 = a2 ⇒ B |= h(a1 = a2).
(iii) A |= E ⇒ B |= h(E).
Proof. (i) By induction on the proof of E ⊢ a = b.

(ii) Since h(a1 = a2) = (h(a1) = h(a2)).
(iii) By (ii).

7A.13. Remark. (i) Slightly misusing language we simply state that a = b, instead of
[a] = [b], holds in A/E . This is comparable to saying that 1+2=0 holds in ZZ /(3), rather
than saying that [1](3) + [2](3) = [0](3) holds.

(ii) Similarly we write sometimes h(a) = b instead of h([a]) = [b].

7A.14. Lemma. Let E be a set of equations over A and let a, b∈A. Then
(i) A/E |= a = b ⇔ E ⊢ a = b.
(ii) A/E |= E .

Proof. (i) By the definition of A/E .
(ii) By (i).

Remark. (i) E is a congruence relation on A iff =E coincides with E .
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(ii) The definition of a quotient type-algebra A/≈ is a particular case of the construc-
tion 7A.10(iii), since by (i) one has ≈ = (=≈). In most cases a syntactic type-algebra is
given by TT/E where E is a set of equations between elements of the free type-algebra TT.

7A.15. Example. (i) Let TT0 = TT{0}, E1 = {0 = 0→0}. Then all elements of TT0 are
equated in TT0/E1. As a type algebra, TT0/E1 contains therefore only one element [0]E1
(that will be identified with 0 itself by Remark 7A.7(i)). For instance we have

TT0/E1 |= 0 = 0→0→0.

Moreover we have that 0 is a solution for X = X→0 in TT0/E1.
At the semantic level an equation like 0 = 0→ 0 is satisfied by many models of the

type free λ-calculus. Indeed using such a type it is possible to assign type X to all pure
type free terms (see Exercise 7G.12).

(ii) Let TT∞ = TTA∞ be a set of types with∞∈A∞. Define E∞ as the set of equations

∞ = T→∞, ∞ =∞→T,

where T ranges over TT∞. Then in TT∞/E∞ the element ∞ is a solution of all equations
of the form X = A(X) over TT∞, where A(X) is any type expression over TT∞ with at
least one free occurrence of X. Note that in TT∞/E∞ one does not have that a→ b =
a′→b′ ⇒ a = a′ & b = b′.

We now show that every type-algebra can be considered as a syntactic one.

7A.16. Proposition. Every type-algebra is isomorphic to a syntactic one.

Proof. Given A = 〈A,→〉, take A = {a | a∈A} and
E = {a→b = a→b | a, b∈A }.

Then A is isomorphic to TTA/E via the isomorphism a 7→ [a]E .

7A.17. Definition. Let E be a set of equations over A and let B be a type algebra.
(i) B justifies E if for some h:A→B

B |= h(E).
(ii) E ′ over B justifies E if B/E ′ justifies E .

The intention is that h interprets the constants of E in B in such a way that the equations
as seen in B become valid. We will see in Proposition 7B.7 that

B justifies E ⇔ there exists a morphism h : A/E→B.

Type assignment in a syntactic type algebra

7A.18. Notation. If A = TT/≈ is a syntactic type algebra, then we write

x1:A1, · · · , xn:An⊢TT/≈M : A

for

x1:[A1]≈, · · · , xn:[An]≈ ⊢TT/≈ M : [A]≈.

We will present systems often in the following form.
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7A.19. Proposition. The system of type assignment λ
TT/≈
= can be axiomatized by the

following axioms and rules.

(axiom) Γ ⊢ x : A if (x:A)∈Γ

(→E)
Γ ⊢M : A→ B Γ ⊢ N : A

Γ ⊢ (MN) : B

(→ I)
Γ, x:A ⊢M : B

Γ ⊢ (λx.M) : (A→ B)

(equal)
Γ ⊢M : A A≈B

Γ ⊢M : B

Figure 16. The system λ
TT/≈
= .

where now A,B range over TT and Γ is of the form {x1:A1, · · · , xn:An}, ~A∈TT.
Proof. Easy.

Systems of type assignment can be related via the notion of type algebra morphism.
The following property can easily be proved by induction on derivations.

7A.20. Lemma. Let h : A→B be a type algebra morphism. Then for Γ = {x1:A1, · · · , xn:An}

Γ ⊢A M : A ⇒ h(Γ) ⊢B M : h(A),

where h(Γ), {x1:h(A1), · · · , xn:h(An)}.
In Chapter 9 we will prove the following properties of type assignment.

1. A type assignment system λA
= has the subject reduction property for β-reduction

iff A is invertible: a→b = a′→b′ ⇒ a = a′ & b = b′, for all a, a′, b, b′ ∈A.
2. For the type assignment introduced in this Section there is a notion of ‘principal type

scheme’ with properties similar to that of the basic system λ→. As a consequence
of this, most questions about typing λ-terms in given type algebras are decidable.

3. There is a simple characterization of the collection of type algebras for which a
strong normalization theorem holds. It is decidable whether a given λ-term can be
typed in them.

Explicitly typed systems

Explicitly typed versions of λ-calculus with recursive types can also be defined as for
the simply typed lambda calculus in Part I, where now, as in the previous section, the
types are from a (syntactic) type algebra.
In the explicitly typed systems each term is defined as a member of a specific type,

which is uniquely determined by the term itself. In particular, as in Section 1.4, we
assume now that each variable is coupled with a unique type which is part of it. We also
assume without loss of generality that all terms are well named, see Definition 1C.4.
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The Church version

7A.21. Definition. Let A = TTA/≈ be a syntactic type algebra and A,B ∈A. We in-
troduce a Church version of λA

=, notation λA,Ch
= . The set of typed terms of the system

λA,Ch
= , notation ΛA,Ch

= (A) for each type A, is defined by the following term formation
rules.

xA ∈ΛA,Ch
= (A);

M ∈ΛA,Ch
= (A→B), N ∈ΛA,Ch

= (A) ⇒ (MN)∈ΛA,Ch
= (B);

M ∈ΛA,Ch
= (B) ⇒ (λxA.M)∈ΛA,Ch

= (A→B);

M ∈ΛA,Ch
= (A) and A≈B ⇒ M ∈ΛA,Ch

= (B).

Figure 17. The family ΛA,Ch
= of typed terms.

This is not a type assignment system but a disjoint family of typed terms.

The de Bruijn version

A formulation of the system in the “de Bruijn” style is possible as well. The “de Bruijn”
formulation is indeed the most widely used to denote explicitly typed systems in the
literature, especially in the field of Computer Science. The “Church” style, on the other
hand, emphasizes the distinction between explicitly and implicitly typed systems, and
is more suitable for the study of models in Chapter 10. Given a syntactic type algebra
A = TT/≈ the formulation of the system λA,dB

= in the de Bruijn style is given by the rules
in Fig. 18.

(axiom) Γ ⊢ x : A if (x:A)∈Γ

(→E)
Γ ⊢M : A→ B Γ ⊢ N : A

Γ ⊢MN : B

(→I)
Γ, x:A ⊢M : B

Γ ⊢ (λx:A.M) : A→ B

(equiv)
Γ ⊢M : A A≈B

Γ ⊢M : B

Figure 18. The system λA,dB
= .

Theorems 1B.19, 1B.32, 1B.35, and 1B.36, relating the systems λCu
→ ,λCh

→ , and λdB
→ ,

also hold after a change of notations, for example λCh
→ must be canged into λA,Ch

= , for
the systems of recursive types λA,Cu

= ,λA,Ch
= , and λA,dB

= . The proofs are equally simple.
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The Church version with coercions

In an explicitly typed calculus we expect that a term completely codes the deduction
of its type. Now any type algebra introduced in the previous sections is defined via a
notion of equivalence on types which is used, in general, to prove that a term is well
typed. But in the systems λA,Ch

= the way in which type equivalences are proved is not
coded in the term. To do this we must introduce new terms representing equivalence
proofs. To this aim we need to introduce new constants representing, in a syntactic type
algebra, the equality axioms between types. The most interesting case is when these
equalities are of the form α = A with α an atomic type. Equations of this form will be
extensively studied and motivated in Section 7C).

7A.22. Definition. Let A = TT/=E , were E is a set of type equations of the form α = A
with α an atomic type. We introduce a system λA,Ch0

= .

(i) The set of typed terms of the system λA,Ch0
= , notation ΛA,Ch0

= (A) for each type A,
is defined as follows

xA ∈ΛA,Ch0
= (A);

α = A∈E ⇒ foldα ∈ΛA,Ch0
= (A→α);

α = A∈E ⇒ unfoldα ∈ΛA,Ch0
= (α→ A);

M ∈ΛA,Ch0
= (A→B), N ∈ΛA,Ch0

= (A) ⇒ (MN)∈ΛA,Ch0
= (B);

M ∈ΛA,Ch0
= (B) ⇒ (λxA.M)∈ΛA,Ch0

= (A→B).

Figure 19. The family ΛA,Ch0
= of typed terms.

The terms foldα, unfoldα are called coercions and represent the two ways in which the
equation α = A can be applied. This will be exploited in Section 7C.

(ii) Add for each equation α = A∈E the following reduction rules.

(Ruf
E ) unfoldα(foldα M

A) → MA, if α = A∈E ;
(Rfu

E ) foldα(unfoldα M
α) → Mα, if α = A∈E .

Figure 20. The reduction rules on typed terms in ΛA,Ch0
= .

The rules (Ruf
E ) and (Rfu

E ) represent the isomorphism between α and A expressed by the
equation α = A.

7A.23. Example. Let E , {α = α→β}. The following term is the version of λx.xx in
the system λA,Ch0

= above.

foldα(λx
α.(unfoldα x

α)xα)∈ΛCh0
A (α)

The system λA,Ch0
= in which all type equivalences are expressed via coercions is equiv-

alent to the system λA,Ch
= , in the sense that for each term M ∈ΛA,Ch

= (A) there is a term
M ′ ∈ΛA,Ch0

= (A) obtained from an η-expansion of M by adding some coercions. Con-
versely for each termM ′ ∈ΛA,Ch0

= (A) there is a termM ∈ΛA,Ch
= (A) which is η-equivalent

to a term M ′′ ∈ΛA,Ch
= (A) obtained from M by erasing all its coercions.

For instance working with E = {α = α→β} of example 7A.23 and the term xα→γ one
has λyα→β.xα→γ(foldαy

α→β)∈ΛA,Ch
= ((α→ β)→ γ), as α→ γ =E (α→ β)→ γ. See also

Exercise 7G.16.
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For many interesting terms of λA,Ch0
= , however, η-conversion is not needed to obtain

the equivalent term in λA,Ch
= , as in the case of Example 7A.23.

Definition 7A.21 identifies equivalent types, and therefore one term can have infinitely
many types (though all equivalent to each other). Such presentations have been called
equi-recursive in the recent literature Gapeyev, Levin, and Pierce [2002], and are more
interesting both from the practical and the theoretical point of view, especially when de-
signing corresponding type checking algorithms. The formulation with explicit coercions
is classified as iso-recursive, due to the presence of explicit coercions from a recursive
type to its unfolding and conversely. We shall not pursue this matter, but refer the
reader to Abadi and Fiore [1996] which is, to our knowledge, the only study of this issue,
in the context of a call-by-value formulation of the system FPC, see Plotkin [1985].

7B. More on type algebras

Free algebras

7B.1. Definition. Let A be a set of atoms, and let A be a type algebra such that
A ⊆ A. We say that A is the free type algebra over A if, for any type algebra B and any
function f : A →B, there is a unique morphism f+ : A→B such that, for any α∈A ,
one has f+(α) = f(α); in diagram

A

i
��

f // B

A,
f+

??(1)

where i : A→A is the embedding map.

The following result, see, e.g. Goguen, Thatcher, Wagner, and Wright [1977], Propo-
sition 2.3, characterizes the free type algebra over a set of atoms A :

7B.2. Proposition. 〈TTA,→〉 is the free type algebra over A .

Proof. Given a map f : A →B, define a morphism f+ : TTA→B as follows:

f+(α) = f(α)

f+(A→B) = f+(A)→Bf
+(B).

This is clearly the unique morphism that makes diagram (1) commute.

Subalgebras, quotients and morphisms

7B.3. Definition. Let A = 〈A,→A〉, B = 〈B,→B〉 be two type algebras. Then A is a
sub type-algebra of B, notation A ⊆ B, if A ⊆ B and

→A =→B ↾ A,
i.e. for all a1, a2 ∈A one has a1→Aa2 = a1→Ba2.

Clearly any subset of B closed under→B induces a sub type algebra of B.
7B.4. Proposition. Let A,B be type algebras and ≈ be a congruence on A.
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(i) Given a morphism f : A→B such that B |= f(≈), i.e. B |= {f(a) = f(a′) | a≈a′},
then there is a unique morphism f ♯ : A/≈→B such that f ♯([a]≈) = f(a).

A
f //

[ ]≈ !!C
CC

CC
CC

C B

A/≈
f♯

==

Moreover, [ ]≈ is surjective.
(ii) If ∀a, a′ ∈A.[f(a) = f(a′) ⇒ a≈ a′], then f ♯ is injective.
(iii) Given a morphism f : A/≈→B, write f ♮ = f ◦ [ ]≈.

A
f♮

//

[ ]≈ !!C
CC

CC
CC

C B

A/≈
f

=={{{{{{{{

Then f ♮ : A→B is a morphism such that B |= f ♮(≈).
(iv) Given a morphism f : A→B as in (i), then one has f ♯♮ = f .
(v) Given a morphism f : A/≈→B as in (iii), then one has f ♮♯ = f .

Proof. (i) The map f ♯([a]≈) = f(a) is uniquely determined by f and well-defined:

[a] = [a′] ⇒ a≈ a′
⇒ f(a) = f(a′), as B |= f(≈),
⇒ f ♯([a]) = f ♯([b]).

The map [ ]≈ is surjective by the definition of A/≈; it is a morphism by the definition
of→≈.
(ii)-(v) Equally simple.

7B.5. Corollary. Let A,B be two type algebras and f :A→B a morphism. Define

(i) f(A) , {b | ∃a∈A.f(a) = b} ⊆ B;
(ii) a≈f a

′ ⇐⇒△ f(a) = f(a′), for a, a′ ∈A.
Then

(i) f(A) is a sub-type algebra of B.
(ii) The morphisms [ ]≈f

: A → (A/≈f ) and f ♯ : (A/≈f ) → B are an ‘epi-mono’

factorization of f : f = f ♯ ◦ [ ]f , with [ ]f surjective and f ♯ injective.

A
f //

[ ]≈f ""D
DD

DD
DD

D B

A/≈f

f♯

==zzzzzzzz

.

(iii) (A/≈f ) ∼= f(A) ⊆ B.
Proof. (i) f(A) is closed under→B. Indeed, f(a)→Bf(a

′) = f(a→Aa
′).

(ii) By definition of ≈f one has B |= ≈f , hence Proposition 7B.4(i) applies.
(iii) Easy.
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7B.6. Remark. (i) In case A = TT/≈ is a syntactic type algebra and B = 〈B,→〉, mor-
phisms h : TT/≈ → B correspond exactly to morphisms h♮ : TT→ B such that for all
A,B ∈TT

A ≈ B ⇒ h♮(A) = h♮(B).

The correspondence is given by h♮(A) = h([A]). We call such a map h♮ a syntactic
morphism and often identify h and h♮.

(ii) If TT = TTA for some set A of atomic types then h♮ is uniquely determined by its
restriction h♮ ↾ A .
(iii) If moreover B = TT′/≈′ then h♮(A) = [B]≈′ for some B ∈TT′. Identifying B with

its equivalence class in ≈′, we can write simply h♮(A) = B. The first condition in (i)
then becomes A≈B ⇒ h♮(A)≈′ h♮(B).

7B.7. Proposition. Let E be a set of equations over A.
(i) B justifies E ⇔ there is a morphism g:A/E→B.
(ii) E ′ over B justifies E ⇔ there is a morphism g:A/E→B/E ′.

Proof. (i) (⇒) Suppose B justifies E . Then there is a morphism h:A→B such that
B |= h(E). By Proposition 7B.4(i) there is a morphism h♯ : A/E→B. So take g = h♯.
(⇐) Given a morphism g:A/E→B. Then h = g♮ is such that B |= h(E), according to

Proposition 7B.4(iii).
(ii) By (i).

Invertible type algebras and prime elements

7B.8. Definition. (i) A relation ∼ on a type algebra 〈A,→〉 is called invertible if for all
a, b, a′, b′ ∈A

(a→b) ∼ (a′→b′) ⇒ a ∼ a′ & b ∼ b′.
(ii) A type algebra A is invertible if the equality relation = on A is invertible.

Invertibility has a simple characterization for syntactic type algebras.

Remark. A syntactic type algebra TT/≈ is invertible if one has

(A→B) ≈ (A′→B′) ⇒ A ≈ A′ & B ≈ B′,

i.e. if the congruence ≈ on the free type algebra TT is invertible.

The free syntactic type algebra TT is invertible. See example 7A.15(ii) for an example of
a non-invertible type algebra. Another useful notion concerning type algebras is that of
prime element.

7B.9. Definition. Let A be a type algebra.
(i) An element a∈A is prime if a 6= (b→c) for all b, c∈A.
(ii) We write ||A||, {a∈A | a is a prime element}.

7B.10. Remark. If A = TT/≈ is a syntactic type algebra, then an element A∈TT is
prime if A 6≈ (B→C) for all B,C ∈TT. In this case we also say that A is prime with
respect to ≈.
In Exercise 7G.17(i) it is shown that a type algebra is not always generated by its prime
elements. Moreover in item (iii) of that Exercise it is shown that a morphism h:A→B
is not uniquely determined by h ↾ ||A||.
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Well-founded type algebras

7B.11. Definition. A type algebra A is well-founded if A is generated by ||A||. That
is, if A is the least subset of A containing ||A|| and closed under→.
The free type algebra TTA is well-founded, while e.g. TT{α,β}[α = α→ β] is not. A

well-founded invertible type algebra is isomorphic to a free type algebra.

7B.12. Proposition. Let A be an invertible type algebra.

(i) TT||A|| →֒ A.
(ii) If moreover A is well-founded, then TT||A|| ∼= A.

Proof. (i) Let i be the morphism determined by i(a) = a for a∈ ||A||. Then i :

TT||A|| →֒ A. Indeed, note that the type algebra TT||A|| is free and prove the injectivity of
i by induction on the structure of the types, using the invertibility of A.

(ii) By (i) and well-foundedness.

In Exercise 7G.17(ii) it will be shown that this embedding is not necessarily surjective:
some elements may not be generated by prime elements.

7B.13. Proposition. Let A,B be type algebras and let ∼, ≈ be congruence relations on
A,B, respectively.

(i) Let h0 : A→B be a morphism such that

∀x, y ∈A.x ∼ y ⇒ h0(x)≈ h0(y). (1)

Then there exists a morphism h : A/ ∼ →B/≈ such that

A
h0

//

[ ]∼
��

B
[ ]≈
��

A/∼
h

// B/≈

∀x∈A.h([x]∼) = [h0(x)]≈. (2)

(ii) Suppose moreover that A is well-founded and invertible. Let h : A/∼→B/≈ be a
map. Then h is a morphism iff there exists a morphism h0 : A→B such that (2) holds.

Proof. (i) By (1) the equation (2) is a proper definition of h. One easily verifies that
h is a morphism.

(ii) (⇒) Define for x, y ∈A
h0(x) , b, if x∈ ||A||, for some chosen b∈h([x]≈);

h0(x→Ay) , h0(x)→Bh0(y).

Then by well-founded induction one has that h0(x) is defined for all x∈A and h([x]∼) =
[h0(x)]≈, using also that A is invertible. The map h0 is by definition a morphism.
(⇐) By (i).

Enriched type algebras

The notions can be generalized in a straightforward way to type algebras having more
constructors, including constants (0-ary constructors). This will happen only in exercises
and applications.
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7B.14. Definition. (i) A type algebra A is called enriched if there are besides→ also
other type constructors (of arity ≥ 0) present in the signature of A, that denote opera-
tions over A.

(ii) An enriched set of types over the atoms A , notation TT = TTA
C1,··· ,Ck

is the collec-
tion of types freely generated from A by→ and some other constructors C1, · · · , Ck.

For enriched type algebras (of the same signature), the definitions of morphisms and
congruences are extended by taking into account also the new constructors. A congruence
over an enriched set of types TT is an equivalence relation ≈ that is preserved by all
constructors. For example, if C is a constructor of arity 2, we must have a≈ b, a′≈ b′ ⇒
C(a, b)≈ C(a′, b′).
In particular, an enriched set of types TT together with a congruence ≈ yields in a

natural way an enriched syntactic type algebra TT/≈ . For example, if +,× are two
new binary type constructors and 1 is a (0-ary) type constant, we have an enriched type
algebra 〈TTA

1,+,×,→,+,×, 1〉 which is useful for applications (think of it as the set of types
for a small meta-language for denotational semantics).

Sets of equations over type algebras

7B.15. Proposition. If E is a finite set of equations over TTA, then =E is decidable.

Proof (Ackermann [1928]). Write A =n B if there is a derivation of A =E B using a
derivation of length at most n. It can be shown by a routine induction on the length of
derivations that

A =n B ⇒ A ≡ B ∨
[A ≡ A1→A2 & B ≡ B1→B2 &

A1 =m1 B1 & A2 =m2 B2, with m1,m2 < n] ∨
[A =m1 A

′ & B =m2 B
′ &

((A′ = B′)∈E ∨ (B′ = A′)∈E) with m1,m2 < n]

(the most difficult case is when A =E B has been obtained using rule (trans)).
This implies that if A =E B, then every type occurring in a derivation is a subtype of

a type in E or of A or of B. From this we can conclude that for finite E the relation =E

is decidable: trying to decide that A = B leads to a list of finitely many such equations
with types in a finite set; eventually one should hit an equation that is immediately
provable. For the details see Exercise 7G.19.

In the following Lemma (i) states that working modulo some systems of equations is
compositional and (ii) states that a quotient of a syntactic type algebra A = TT/≈ is
just the syntactic type algebra TT/E with ≈ ⊆ E . Point (i) implies that type equations
can be solved incrementally.

7B.16. Lemma. (i) Let E1, E2 be sets of equations over A. Then

A /(E1 ∪ E2) ∼= (A/E1)/E12,
where E12 is defined by

([A]E1 = [B]E1)∈E12 ⇔ (A = B)∈E2.
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(ii) Let A = TT/≈ and let E be a set of equations over A. Then

A/E ∼= TT/E ′,

where

E ′ = {A = B | A≈B} ∪ {A = B | ([A]≈ = [B]≈)∈E}.
Proof. (i) By induction on derivations it follows that for A,B ∈A one has

⊢E1∪E2 A = B ⇔ ⊢E12 [A]E1 = [B]E1 .

It follows that the map h:TT/(E1 ∪ E2)→(TT/E1)/E12, given by

h([A]E1∪E2) = [[A]E1 ]E12 ,

is well-defined and an isomorphism.

(ii) Define

E1 , {A = B | A≈B},
E2 , {A = B | ([A]≈ = [B]≈)∈E}.

Then E12 in the notation of (i) is E . Now we can apply (i):

A/E = (TT/≈)/E
= (TT/E1)/E12
= TT/(E1 ∪ E2).

Notation. In general to make notations easier we often identify the level of types with
that of equivalence classes of types. We do this whenever the exact nature of the denoted
objects can be recovered unambiguously from the context. For example, if A = TTA/≈ is
a syntactic type algebra and A denotes as usual an element of TTA, then in the formula
A∈A the A stands for [A]≈. If we consider this A modulo E , then A =E B is equivalent
to A =E ′ B, with E ′ as in Lemma 7B.16(ii).

7C. Recursive types via simultaneous recursion

In this section we construct type algebras containing elements satisfying recursive equa-
tions, like a = a→ b or c = d→ c. There are essentially two ways to do this: defining
the recursive types as the solutions of a given system of recursive type equations or via
a general fixed point operator µ in the type syntax. Recursive type equations allow to
define explicitly only a finite number of recursive types, while the introduction of a fixed
point operator in the syntax makes all recursive types expressible without an explicit
separate definition.
For both ways one considers types modulo a congruence relation. Some of these

congruence relations will be defined proof-theoretically (inductively), as in the previous
section, Definition 7A.10. Other congruence relations will be defined semantically, using
possibly infinite trees (co-inductively), as is done in Section 7E.
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Adding indeterminates

In algebra one constructs, for a given ring R and set of indeterminates ~X, a new object

R[ ~X], the ring of polynomials over ~X with coefficients in R. A similar construction will

be made for type algebras. Intuitively A( ~X) is the type algebra obtained by “adding”

to A one new object for each indeterminate in ~X and taking the closure under→. Since
this definition of A( ~X) is somewhat syntactic we assume, using Prop. 7A.16, that A is
a syntactic type algebra.
Often we will take for A the free syntactic type algebra TTA over an arbitrary non-

empty set of atomic types A.

7C.1. Definition. Let A = TTA/≈ be a syntactic type algebra. Let ~X = X1, · · · , Xn

(n ≥ 0) be a set of indeterminates, i.e. a set of type symbols such that ~X ∩A = ∅. The
extension of A with ~X is defined as

A( ~X), TTA∪{ ~X}/≈.

Note that TT/≈ is a notation for TT/=≈. So in A( ~X) = TTA∪{ ~X}/≈ the relation ≈ is

extended with the identity on the ~X. Note also that in A( ~X) the indeterminates are not

related to any other element, since ≈ is not defined for elements of ~X. By Proposition
7A.16 this construction can be applied to arbitrary type algebras as well.

Notation. A( ~X) ranges over arbitrary elements of A( ~X).

7C.2. Proposition. A →֒ A( ~X).

Proof. Immediate.

We consider extensions of a type algebra A with indeterminates in order to build

solutions to E(~a, ~X), where E(~a, ~X) (or simply E( ~X) giving ~a for understood) is a set of

equations over A with indeterminates ~X. This solution may not exist in A, but via the

indeterminates we can build an extension A′ of A containing elements ~c solving E( ~X).
For simplicity consider the free type algebra TT = TTA. A first way of extending TT

with elements satisfying a given set of equations E( ~X) is to consider the type algebra

TT( ~X)/E whose elements are the equivalence classes of TT( ~X) under =E .

7C.3. Definition. Let A be a type algebra and E = E( ~X) be a set of equations over

A( ~X). Write A[E ],A( ~X)/E

Satisfying existential equations

Now we want to state for existential statements like ∃X.a = b→X, with a, b∈A when
they hold in a type structure. We say that ∃X.a = b→X holds in A, notation

A |= ∃X.a = b→X,

if for some c∈A one has a = b→c.
The following definitions are stated for sets of equations E but apply to a single equa-

tion a = b as well, by considering it as a singleton {a = b}.
7C.4. Definition. Let A be a type algebra and E=E( ~X) a set of equations over A( ~X).
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(i) We say A solves E (or A satisfies ∃ ~X.E or ∃ ~X.E holds in A), notation A |= ∃ ~X.E , if
there is a morphism h:A( ~X)→A such that h(a) = a, for all a∈A andA |= h(E( ~X)).

(ii) For any h satisfying (i), the sequence 〈h(X1), · · · , h(Xn)∈A〉 is called a solution in

A of E( ~X).

7C.5. Remark. (i) Note that A |= ∃ ~X.E iff A |= E [ ~X: = ~a] for some ~a∈A. Indeed,
choose ai = h(Xi) as definition of the ~a or of the morphism h.

(ii) If A solves E( ~X), then A( ~X) justifies E( ~X), but not conversely. During justifica-
tion one may reinterpret the constants, via a morphism.

Remark. (i) The set of equations E( ~X) over A( ~X) is interpreted as a problem of finding

the appropriate ~X in A. This is similar to stating that the polynomial x2− 3∈R[x] has
root

√
3∈R.

(ii) In the previous Definition we tacitly changed the indeterminates ~X in a bound

variable: by ∃ ~X.E or ∃ ~X.E( ~X) we intend ∃~x.E(~x). We will allow this ‘abus de language’:
~X as bound variables, since it is clear what we mean.

(iii) If ~X = ∅, then

A |= ∃ ~X.E ⇔ A |= E .

Example. There exists a type algebra A such that

A |= ∃X.(X→X)= (X→X→X). (1)

Take A = TT[E ], with E = {X→X = X→X→X}, with solution

X = [X]{X→X=X→X→X}.

7C.6. Remark. Over TT{a}(X,Y ) let R , {X = a → X, Y = a → a → Y }. Then
[X]R, [Y ]R ∈TT[R] is a solution of ∃X Y.R. Note that also [X]R, [X]R is such a solution
and intuitively [X]R 6= [Y ]R, as we will see later more precisely. Hence solutions are not
unique.

Simultaneous recursions

In general TT/E is not invertible. Take e.g. in Example 7A.15(ii) A∞ = {α,∞}. Then in
TTA∞/E∞ one has α→∞ =∞→∞, but α 6=∞.
Note also that in a system of equations E the same type can be the left-hand side of

more than one equation of E . For instance, this is the case for ∞ in Example 7A.15 (ii).
The following notion will specialize to particular E , such that A[E ] is invertible. A

simultaneous recursion (‘sr’ also for the plural) is represented by a set R( ~X) of type

equations of a particular shape over A, in which the indeterminates ~X represent the
recursive types to be added to A. Such types occur in programming languages, for the
first time in Algol-68, see van Wijngaarden [1981].

7C.7. Definition. Let A be a type algebra.
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(i) A simultaneous recursion (sr) over A with indeterminates ~X = {X1, · · · , Xn} is
a finite set R = R( ~X) of equations over A( ~X) of the form

X1 = A1( ~X)
· · ·

Xn = An( ~X)



 R

where all indeterminates X1, · · · , Xn are different.

(ii) The domain of R, notation Dom(R), consists of the set { ~X}.
(iii) If Dom(R) = ~X, then R is said to be an sr over A( ~X).

(iv) The equational theory on A( ~X) axiomatized by R is denoted by (R).
It is useful to consider restricted forms of simultaneous recursion.

7C.8. Definition (Simultaneous recursion). (i) A sr R( ~X) is proper if

(Xi=Xj) ∈ R ⇒ i < j.

(ii) A sr R( ~X) is simple if no equation Xi = Xj occurs in R.
Note that a simple sr is proper. The definition of proper is intended to rule out

circular definitions like X = X or X = Y, Y = X. Proper sr are convenient from the
Term Rewriting System (TRS) point of view introduced in Section 8C: the reduction
relation will be SN. We always can make an sr proper, as will be shown in Proposition
7C.18

Example. For example let α, β ∈A. Then
X1 = α→X2

X2 = β→X1

is an sr with indeterminates {X1, X2} over TTA.

Intuitively it is clear that in this example one has X1 =R α→β→X1, but X1 6=R X2.
To show this the following is convenient.
An sr can be considered as a TRS, see Klop [1992] or Terese [2003]. The reduction

relation is denoted by ⇒∗
R; we will later encounter its converse ⇒∗−1

R as another useful
reduction relation.

7C.9. Definition. Let R on A be given.

(i) Define on A( ~X) the R-reduction relation, notation⇒∗
R, induced by the notion of

reduction
X1 ⇒R A1( ~X)

· · ·
Xn ⇒R An( ~X)



 (⇒R)

So⇒∗
R is the least reflexive, transitive, and compatible relation on A( ~X) extending⇒R.

(ii) The relation =R is the least compatible equivalence relation extending ⇒∗
R

(iii) We denote the resulting TRS by TRS(R) = (A( ~X),⇒R).

It is important to note that the ~X are not variables in the TRS sense: if a(X)⇒∗
R b(X),

then not necessarily a(c)⇒∗
R b(c). Rewriting in TRS(R) is between closed expressions.

In general ⇒R is not normalizing. For example for R as above one has

X1 ⇒R (α→X2)⇒R (α→β→X1)⇒R · · ·
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Remember that a rewriting system 〈X,⇒〉 is Church-Rosser (CR) if

∀a, b, c∈X.[a⇒∗ b & a⇒∗ c ⇒ ∃d∈X.[b⇒∗ d & c⇒∗ d]],

where ⇒∗ is the transitive reflexive closure of ⇒.

7C.10. Proposition (Church-Rosser Theorem for ⇒µ). Given an sr R over A. Then

(i) For a, b∈A one has R ⊢ a = b ⇔ a =R b.

(ii) ⇒R on A( ~X) is CR.
(iii) Therefore a =R b iff a, b have a common ⇒∗

R reduct.

Proof. (i) See e.g. Terese [2003], Exercise 2.4.3.
(ii) Easy, the ‘redexes’ are all disjoint.
(iii) By (ii).

So in the example above one has X1 6=R X2 and X1 =R (α→β→X1).
An important property of an sr is that they do not identify elements of A.

7C.11. Lemma. Let R( ~X) be an sr over a type algebra A. Then for all a, b∈A we have

a 6= b ⇒ a 6=R b.

.Proof. By Proposition 7C.10(ii).

Lemma 7C.11 is no longer true, in general, if we start work with a set of equations

E instead of an sr R( ~X). Take e.g. E = {a = a→ b, b = (a→ b)→ b}. In this case
a =E b. In the following we will use indeterminates only in the definition of sr. Generic
equations will be considered only between closed terms (i.e. without indeterminates).
Another application of the properties of TRS(R) is the invertibility of an sr.

7C.12. Proposition. Let R be an sr over TT. Then =R is invertible.

Proof. Suppose A→B =R A′→B′, in order to show A =R A′ & B =R B′. By the
CR property for ⇒∗

R the types A→B and A′→B′ have a common ⇒∗
R-reduct which

must be of the form C→D. Then A =R C =R A′ and B =R D =R B′.

Note that the images of A and the [Xi] in A( ~X)/ =R are not necessarily disjoint. For

instance if R contains an equation X = a where X ∈ ~X and a∈A we have [X] = [a].

7C.13. Definition. (i) Let R = R( ~X) be a simultaneous recursion in ~X over a type

algebra A (i.e. a special set of equations over A( ~X)). As in Definition 7C.3 write

A[R],A( ~X)/R
(ii) For X one of the ~X, write X , [X]R.

(iii) We say that A[R] is obtained by adjunction of the elements ~X to A.
The method of adjunction then allows us to define recursive types incrementally, ac-

cording to Lemma 7B.16(i).

Remark. (i) By Proposition 7C.12 the type algebra TT[R] is invertible.
(ii) In general A[E ] is not invertible, see Example 7A.15(ii).
(iii) Let the indeterminates of R1 and R2 be disjoint, then R1 ∪ R2 is an sr again.

By Lemma 7B.16 (i) A[R1 ∪R2] = A[R1][R2]. Recursive types can therefore be defined
incrementally.

7C.14. Theorem. Let A be a type algebra and R an sr over A. Then
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(i) ϕ:A →֒ A[R], where ϕ(a) = [a]R.
(ii) A[R] is generated from (the image under ϕ of) A and the [Xi]R.

(iii) A[R] |= ∃ ~X.R and the X1, · · · ,Xn form a solution of R in A[R].
Proof. (i) The canonical map ϕ is an injective morphism by Lemma 7C.11.

(ii) Clearly A[R] is generated by the Xi and the [a]R, with a∈A.
(iii) A[R] |= ∃ ~X.R by Lemma 7A.14(ii).

In Theorem 7C.14(iii) we stated that the X1, · · · ,Xn form a solution of R. In fact they

form a solution of R translated to A[R]( ~X). Moreover, this translation is trivial, due to
the injection ϕ:A →֒ A[R].

Folding and unfolding

Simultaneous recursions are a natural tool to specify types satisfying given equations.

We call unfolding (modulo R) the operation of replacing an occurrence of Xi by Ai( ~X),

for any equation Xi = Ai( ~X)∈R; folding is the reverse operation. Like with a notion of

reduction, this operation can also be applied to subterms. If a, b ∈ A( ~X) then a =R b
if they can be transformed one into the other by a finite number of applications of the
operations folding and unfolding, possibly on subexpressions of a and b.

7C.15. Example. (i) The sr R0 = {X0 = A → X0}, where A∈TT is a type, specifies a
type X0 which is such that

X0 =R0 A→X0 =R0 A→A→X0 . . .

i.e. X0 =R0 A
n→X0 for any n. This represents the behavior of a function which can

take an arbitrary number of arguments of type A.
(ii) The sr R1 , {X1 = A→A→X1} is similar to R0 but not all equations modulo

R0 hold modulo R1. For instance X1 6=R1 A→X1 (i.e. we cannot derive X1 = A→X1

from the derivation rules of Definition 7A.10(i)).

Remark. Note that =R is the minimal congruence with respect to→ satisfying R. Two
types can be different w.r.t. it even if they seem to represent the same behavior, like X0

and X1 in the above example. As another example take R = {X = A→X, Y = A→Y }.
Then we have X 6=R Y since we cannot prove X = Y using only the rules of Definition
7A.10(i). These types will instead be identified in the tree equivalence introduced in
Section 7E.

We will often consider only proper simultaneous recursions. In order to do this, it is
useful to transform an sr into an ‘equivalent’ one. We introduce two notions of equiva-
lence for simultaneous recursion.

7C.16. Definition. Let R = R( ~X) and R′ = R′( ~X ′) be sr over A.
(i) R and R′ are equivalent if A[R] ∼= A′[R′].

(ii) Let ~X = ~X ′ be the same set of indeterminates. Then R( ~X) and R′( ~X) are
logically equivalent if

∀a, b∈A[ ~X].a =R b ⇔ a =R′ b.

Remark. (i) It is easy to see that R and R′ over the same ~X are logically equivalent if

R ⊢ R′ and R′ ⊢ R.



7C. Recursive types via simultaneous recursion 311

(ii) Two logically equivalent sr are also equivalent.
(iii) There are equivalent R,R′ that are not logically equivalent, e.g.

R = {X = α} and R′ = {X = β}.
Note that R and R′ are on the same set of indeterminates.

7C.17. Definition. Let A be a type algebra. Define A• := A(~•), where ~• are some
indeterminates with special names different from all Xi. These ~• are treated as new
elements that are said to have been added to A. Indeed, A →֒ A•.

7C.18. Proposition. (i) Every proper sr R( ~X) over A is equivalent to a simple R′( ~X ′),

where ~X ′ is a subset of ~X.
(ii) Let R be an sr over A. Then there is a proper R′ over A• such that

A[R] ∼= A•[R′].

Proof. (i) If R is not simple, then R = R1 ∪ {Xi = Xj}, with i<j. Now define

R−
(X1, · · · , Xi−1, Xi+1, · · · , Xn),

by R−
,R1[Xi: = Xj ]. Note that R−

is still proper (since an equation Xk = Xi in R
becomes Xk = Xj in R−

and k<i<j), equivalent to R, and has one equation less. So
after finitely many such steps the simple R′ is obtained. One easily proves that

A[ ~X]/R ∼= A[X1, · · · ,Xi−1, Xi+1, · · · , Xn]/R′

as follows. Note that if R = {Xk = Ak( ~X) | 1 ≤ k ≤ n}, then
R− = {Xk = Ak( ~X)[Xi := Xj ] | k 6= i}.

Define
g♮ : A( ~X)→A[X1, · · · ,Xi−1, Xi+1, · · · , Xn]

h♮ : A[X1, · · · ,Xi−1, Xi+1, · · · , Xn]→A( ~X)

by

g♮(A) , A[Xi := Xj ], for A∈A[ ~X],

h♮(A) , A, for A∈A[X1, · · · ,Xi−1, Xi+1, · · · , Xn]

and show

g♮(Xk) = g♮(Ak( ~X)), for 1 ≤ k ≤ n,
h♮(Xk) = h♮((Ak( ~X))[Xi := Xj ]), for k 6= j.

Then g♮, h♮ induce the required isomorphism g and its inverse h.
(ii) First remove each Xj = Xj from R and put the Xj in ~•. The equations Xi = Xj

with i > j are treated in the same way as Xj = Xi in (i). The proof that indeed

A[R] ∼= A•[R′] is very easy. Now g♮ and h♮ are in fact identities.

7C.19. Lemma. Let R( ~X) be a proper sr over A. Then all its indeterminates X are

such that either X =R a where a∈A or X =R (b→c) for some b, c∈A[ ~X].

Proof. Easy.

The prime elements of the type algebras TT[R], where R is proper and TT = TTA, can
easily be characterized.
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7C.20. Lemma. Let R( ~X) be a proper sr over TTA. Then

||TT[R]||= {[α] | α∈A};
[α]⊆ {α} ∪ { ~X},

i.e. [α] consists of α and some of the ~X.

Proof. The elements of TT[R] are generated from A and the ~X. Now note that
by Lemma 7C.19 (i) an indeterminate X either is such that X =R A→B for some

A, B ∈TTA∪ ~X (and then [X] is not prime) or X =R α for some atomic type α. More-
over, by Proposition 7C.10 it follows that no other atomic types or arrow types can
belong to [α]. Therefore, the only prime elements in TT[R] are the equivalence classes of
the α∈A.
For a proper srR we can write, for instance ||TT[R]|| = A choosing α as the representative
of [α].

Justifying sets of equations by an sr

Remember that B justifies a set of equations E overA if there is a morphism h:A→B such
that B |= h(E) and that A set E ′ over B justifies E over A iff B/E ′ justifies E . A particular

case is that an sr R over B( ~X) justifies E over A iff B[R] justifies E . Proposition 7B.7
stated that B justifies a set of equations E iff there is a morphism h:A/E →B. Indeed,
all the equations in E become valid after interpreting the elements of A in the right way
in B.
In Chapter 8 it will be shown that in the right context the notion of justifying is de-

cidable. But decidability only makes sense if B is given in an effective ‘finitely presented’
way.

7C.21. Proposition. Let A,B be type algebras and let E be a set of equations over A
(i) Let E ′ be a set of equations over B. Then

E ′ justifies E ⇔ ∃g. g : A/E→B/E ′.
(ii) Let R be an sr over B( ~X). Then

R justifies E ⇔ ∃g. g : A/E→B[R].
Proof. (i), (ii). By Proposition 7B.7(ii).

Example. Let E , {α→ β = α→ α→ β}. Then R = {X = α→X} justifies E over

TT{α,β} as we have the morphism

h : TT{α,β}/E→TT{α}[R]
determined by h([α]E) = [α]R, h([β]E) = [X]R, or, with our notational conventions,
h(α) = α, h(β) = X (where h is indeed a syntactic morphism).

7C.22. Proposition. Let A,B be type algebras. Suppose that A is well-founded and

invertible. Let E be a system of equations over A and R( ~X) be an sr over B. Then

R justifies E ⇔ ∃h:A→B( ~X) ∀a, b∈A.[a =E b ⇒ h(a) =R h(b)]. (∗)
Proof. By Corollary 7B.7(ii) and Proposition 7B.13.

As a free type algebra is well-founded and invertible, (*) holds for all TTA.
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Closed type algebras

A last general notion concerning type algebras is the following.

7C.23. Definition. Let A be a type algebra.
(i) A is closed if every sr R over A can be solved in A, cf. Definition 7C.4.
(ii) A is uniquely closed, if every proper sr R over A has a unique solution in A.

7C.24. Remark. There are type algebras that are closed but not uniquely so. For
instance let A = TT{a,b}/E with E , {a = a→ a, b = b→ b, b = a→ b, b = b→ a}. Then
A is closed, but not uniquely so. A simple uniquely closed type algebra will be given in
section 7E.

From Proposition 7B.15 we know that =R is decidable for any (finite) R over TTA( ~X).
In Chapter 8 we will prove some other properties of TT[R], in particular that it is decidable
whether an sr R justifies a set E of equations.

7D. Recursive types via µ-abstraction

Another way of representing recursive types is that of enriching the syntax of types with
a new operator µ to explicitly denote solutions of recursive type equations. The resulting
(syntactic) type algebra “solves” arbitrary type equations, i.e. is closed in the sense of
definition 7C.23.

7D.1. Definition (µ̇-types). Let A = A∞ be the infinite set of type atoms considered as
type variables for the purpose of binding and substitution. The set TTA

µ̇ is defined by the
following ‘simplified syntax’, omitting parentheses. The ‘·’ on top of the µ̇ indicates that
we do not (yet) consider the types modulo α-conversion (renaming of bound variables).

TTA
µ̇ ::= A | TTA

µ̇→TTA
µ̇ | µ̇ATTA

µ̇

Often we write TTµ̇ for TTA
µ̇ , leaving A implicit.

The subset of TTA
µ̇ containing only types without occurrences of the µ̇ operator coincides

with the set TTA of simple types.

Notation. (i) Similarly to the case with repeated λ-abstraction we write

µ̇α1 · · ·αn.A, (µ̇α1(µ̇α2 · · · (µ̇αn(A))..)).

(ii) We assume that→takes precedence over µ̇, so that e.g. the type µ̇α.A→ B should
be parsed as µ̇α.(A→ B).

According to the intuitive semantics of recursive types, a type expression of the form
µ̇α.A should be regarded as the solution for α in the equation α = A, and is then
equivalent to the type expression A[α: = µ̇α.A].

Some bureaucracy for renaming and substitution

The reader is advised to skip this subsection at first reading: goto 7D.22.
In µ̇β.A the operator µ̇ binds the variable β. We write FV(A) for the set of variables occurring

free in A, and BV(A) for the set of variables occurring bound in A.
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7D.2. Notation. (i) The sets of variables occurring as bound variables or as free variables in

the type A∈TTA

µ̇, notation BV(A), FV(A), respectively, are defined inductively as follows.

A FV(A) BV(A)

α {α} ∅
A→B FV(A) ∪ FV(B) BV(A) ∪ BV(B)

µ̇α.A1 FV(A1)− {α} BV(A1) ∪ {α}

(ii) If β /∈FV(A) ∪ BV(A) we write β /∈A.
Bound variables can be renamed by α-conversion: µ̇β.A ≡α µ̇γ.A[β: = γ], provided that γ /∈A.

From 7D.22 on we will consider types in TTA

µ̇ modulo α-convertibility, obtaining TTA

µ. Towards
this goal, items 7D.1-7D.21 are a preparation.

We will often assume that the names of bound and free variables in types are distinct: this can
be easily obtained by a renaming of bound variables. Unlike for λ-terms we like to be explicit
about this so-called α-conversion. We will distinguish between ‘naive’ substitution [β := A] 6α in

which innocent free variables may be captured and ordinary ‘smart’ substitution [β := A] that
avoids this.

7D.3. Definition. Let A,B ∈TTµ̇.

(i) The naive substitution operator, notation A[β := B]6α, is defined as follows.

A A[β := B] 6α
α α, if α 6= β,

β B
A1→A2 A1[β := B]6α→A2[β := B] 6α

µ̇β.A µ̇β.A

µ̇α.A µ̇α.(A[β := B] 6α), if α 6= β,

The notation A[β := B]6α comes from Endrullis, Grabmayer, Klop, and van Oostrom [2010].

(ii) Ordinary ‘smart’ substitution, notation A[β := B], that avoids capturing of free variables
(‘dynamic binding’) is defined by Curry as follows, see B[1984], Definition C.1.

A A[β := B]

α α if α 6= β
β B
A1→A2 A1[β := B]→A2[β := B],
µ̇β.A µ̇β.A
µ̇α.A1 µ̇α′.(A1[α := α′][β := B]), if α 6= β,

where α′ = α if β /∈FV(A1) or α /∈FV(B),
else α′ is the first variable in the sequence
of type variables α0, α1, α2, · · · that
is not in FV(A1) ∪ FV(B).

7D.4. Lemma. (i) If BV(A) ∩ FV(A) = ∅, then
A[β := B] ≡ A[β := B]6α.

(ii) If β /∈FV(A), then

A[β := B] ≡ A.
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Proof. (i) By induction on the structure of A. The interesting case is A ≡ µ̇γ.C, with γ 6≡ β.
Then

(µ̇γ.C)[β := B] ≡ µ̇γ′.C[γ := γ′][β := B], by Definition 7D.3(ii),

≡ µ̇γ.C[β := B], since γ /∈ FV(B),

≡ µ̇γ.C[β := B]6α, by the induction hypothesis,

≡ (µ̇γ.C)[β := B]6α, by Definition 7D.3(i).

(ii) Similarly, the interesting case being A ≡ µ̇γ.C, with γ 6≡ β. Then
(µ̇γ.C)[β := B] ≡ µ̇γ′.C[γ := γ′][β := B], by Definition 7D.3(ii),

≡ µ̇γ.C[β := B], as β /∈FV(A) & β 6≡ γ so β /∈FV(C),

≡ µ̇γ.C, by the induction hypothesis.

7D.5. Definition (α-conversion). On TTµ̇ we define the notion of α-reduction and α-conversion
via the contraction rule

µ̇α.A7→αµ̇α
′.A[α := α′], provided α′ /∈ FV(A).

The relation⇒α is the least compatible relation containing 7→α. The relation⇒∗
α is the transitive

reflexive closure of ⇒α. Finally ≡α the least congruence containing 7→α.

For example µ̇α.α→α≡α µ̇β.β→β. Also µ̇α.(α→ µ̇β.β)≡α µ̇β.(β→ µ̇β.β).

7D.6. Lemma. (i) If A⇒α B, then B⇒α A.
(ii) A≡α B implies A⇒∗

α B & B ⇒∗
α A.

Proof. (i) If µ̇α.A⇒α µ̇α
′.A[α := α′], then α /∈ FV(A[α := α′]), so that also

µ̇α′.A[α := α′]⇒α µ̇α.A[α := α′][α′ := α] ≡ µ̇α.A.
(ii) By (i).

7D.7. Definition. (i) Define on TTµ̇ a notion of µ̇-reduction via the contraction rule 7→µ̇

µ̇α.A 7→µ̇ A[α := µ̇α.A].

(ii) A µ̇-redex is of the form µ̇α.A and its contraction is A[α := µ̇α.A].
(iii) The relation ⇒µ̇⊆ TTµ̇ × TTµ̇ is the compatible closure of 7→µ̇. That is

A⇒µ̇ A
′ ⇒ A→B ⇒µ̇ A

′→B
A⇒µ̇ A

′ ⇒ B→A⇒µ̇ B→A′

A⇒µ̇ A
′ ⇒ µ̇α.A⇒µ̇ µ̇α.A

′.

(iv) As usual ⇒n
µ̇ denotes reduction in n steps.

(v) The relation ⇒∗
µ̇ is the reflexive and transitive closure of ⇒µ̇, i.e. 0 or more reduction

steps.
(vi) The relation µ̇-conversion, notation =µ̇, is the conversion relation generated by µ̇-reduction,

i.e. the least congruence relation containing 7→µ̇.

7D.8. Lemma. Let A,A′, B ∈TTµ̇. Then
(i) A⇒µ̇ A

′ ⇒ A[α: = B]⇒µ̇ A
′[α: = B].

(ii) A⇒µ̇ A
′ ⇒ B[α := A]⇒µ̇ B[α := A′].

(iii) Both (i) and (ii) hold with ⇒µ̇ replaced by =µ̇.

Proof. (i) By induction on the derivation of A⇒µ̇ A
′.

(ii) By induction on the structure of B.
(iii) By (i) and (ii).

7D.9. Lemma. Let A,A′, B ∈TTµ̇. Then
(i) A⇒α A

′ ⇒ A[α: = B]⇒∗
α A

′[α: = B].
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(ii) A⇒α A
′ ⇒ B[α := A]⇒∗

α B[α := A′].
(iii) Both (i) and (ii) hold with ⇒α and ⇒α

∗ replaced by ≡α.

Proof. (i) By induction on the derivation of A⇒α A
′.

(ii) By induction on the structure of B.
(iii) By (i) and (ii).

7D.10. Lemma (Substitution Lemma). Let A∈TTµ̇. Then for all B,C ∈TTµ̇ and type variables
β, γ with β 6≡ γ and β /∈FV(C) one has

A[β := B][γ := C]≡α A[γ := C][β := B[γ := C]]. (1)

Writing Dγ = D[γ := C] this is

(A[β := B])γ ≡α A
γ [β := Bγ ].

Proof. By induction on the number of symbols in A. The interesting cases are A ≡ α and
A ≡ µ̇α.A1.

Case A ≡ α. If α /∈{β, γ}, then the result is trivial: α ≡α α. If α ≡ β, then (1) boils down to
Bγ ≡α B

γ . If α ≡ γ, then because of the assumption β /∈FV(C) equation (1) becomes C ≡α C.
Case A ≡ µ̇α.A1. We must show

((µ̇α.A1)[β := B])γ ≡α (µ̇α.A1)
γ [β := Bγ ]. (2)

By Lemma 7D.9(iii) it suffices to show (2) for an ‘α-variant’ µ̇α2.A2 ≡α µ̇α.A1. Take α2 such
that α2 /∈{β, γ} ∪ FV(B) ∪ FV(C). Then by the freshness of α2

(µ̇α2.A2)[β := B]γ ≡ µ̇α2.(A2[β := B])γ , by applying twice Definition 7D.3(ii),
≡α µ̇α2.(A

γ
2 )[β := Bγ ], by the IH,

≡ (µ̇α2.A2)
γ [β := Bγ ].

7D.11. Lemma. Let A,B ∈TTµ̇ and α′ /∈FV(A). Then

A[α := α′][α′ := B] ≡α A[α := B].

Proof. By induction on the structure of A. We treat the case A ≡ µ̇β.A1. Like in the proof of
the Substitution Lemma we may assume that β /∈{α, α′} ∪ FV(B). Then as before

(µ̇β.A1)[α := α′][α′ := B] ≡ µ̇β.(A1[α := α′][α′ := B])
≡α µ̇β.A1[α := B], by the IH,
≡ (µ̇β.A1)[α := B].

Avoiding α-conversion on µ̇-types

As µ̇-types are built up from the variable binding µ̇-operator one has to take care that
there will be no clash of variables during a µ̇-reduction. This is similar to the situation
with untyped λ-terms and β-reduction. An important difference between those λ-terms
and µ̇-types is the possibility to choose a correct α-variant of the µ̇-types that remains
correct after arbitrary reduction steps. In the (un)typed lambda calculus this is not
possible. The term

(λx.xx)(λyz.yz)∈Λø
has its bound variables maximally different. But after some reduction steps a clash of
variables occurs.

(λx.xx)(λyz.yz)→β (λyz.yz)(λyz.yz)

→β λz.(λyz.yz)z

6→β (λz.(λz.zz)) ≡ λzz.zz,
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which should have been λzz′.zz′. In order to avoid clashes in the untyped lambda cal-
culus one therefore should be constantly alert and apply α-conversion whenever needed.
This example can be modified so that a typable λ-term results, do Exercise 7G.2.
In B[1984] this necessary hygienic discipline is somewhat swept under the carpet via

the so-called ‘variable convention’: choosing the names of bound variables maximally
fresh. The belief that this is sound came from the calculus with nameless binders in
de Bruijn [1972], which is implemented for converting lambda terms in the proof-checker
Agda. The variable convention has been cleverly implemented in the Nominal package
for Isabelle/HOL, see Urban and Tasson [2005], with as goal to reason formally about
binding. They show that the variable convention is compatible with structural inductions
over terms with binders. However, Urban, Berghofer, and Norrish [2007] also show that
care needs to be taken in rule inductions over inductively defined predicates: if a bound
variable occurs free in a conclusion of a rule, then the variable convention can easily lead
to unsound reasoning.

7D.12. Definition. Let A∈TTµ̇.
(i) The type A is called safe if for all subtypes µ̇β.B of A the one step reduction

µ̇β.B ⇒µ̇ B[β := µ̇β.B] 6α

does not result in binding a free variable of µ̇β.B in B[β := µ̇β.B] 6α. One also could state
that for all subtypes µ̇β.B of A

B[β := µ̇β.B] ≡ B[β := µ̇β.B] 6α.

(ii) We say that A is forever safe if

A⇒∗
µ̇ B ⇒ B is safe,

for all B ∈TTµ̇.

7D.13. Example. (i) µ̇α.α→β is safe.
(ii) µ̇α.(β→µ̇β.(α→β)) is not safe; ‘contracting µ̇α’ leads to a clash.
(iii) µ̇α.(β→µ̇γ.(α→γ)) is safe.

Like with (un)typed λ-terms one has that every A∈TTµ̇ has an α-variant that is safe,
by renaming bound variables by fresh bound variables. We will show something better:
the existence of an α-variant that is and remains safe. In general being safe does not
warrant remaining safe after µ̇-reduction.

7D.14. Definition. Let P ⊆ TTµ̇ be a predicate on types.
(i) P is called α-flexible if

∀A∈TTµ̇∃A′ ∈TTµ̇.[A ≡α A
′ & P (A′)].

(ii) P is called µ̇-invariant if for all A,B ∈TTµ̇

A⇒µ̇ B & P (A) ⇒ P (B).

(iii) P is called protective if for all A∈TTµ̇

P (A) ⇒ A is safe.

(iv) P is called α-avoiding if it is α-flexible, protective, and µ̇-invariant.
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Note that if a predicate P ⊆ TTµ is protective and invariant, then P (A) implies that A is
forever safe. Therefore it will be nice to have an α-avoiding predicate: then every type
A can be replaced by an α-equivalent one that is forever safe.

7D.15. Remark. We try several predicates Pi on TTµ̇.
(i) P1(A) ⇐⇒△ FV(A) ∩ BV(A) = ∅.
(ii) P2(A) ⇐⇒△ P1(B) for all subtypes B of A.
(iii) P3(A) ⇐⇒△ P1(A) and different occurrences µ̇ in A

bind different type variables.
(iv) P4(A) ⇐⇒△ A is safe.
(v) P5(A) ⇐⇒△ A is forever safe.

Unfortunately none of these predicates is α-avoiding.

7D.16. Lemma. (i) P1 is α-flexible, µ̇-invariant, but not protective.
(ii) P2 is α-flexible, protective, but not µ̇-invariant.
(iii) P3 is α-flexible, protective, but not µ̇-invariant.
(iv) P4 is α-flexible, protective, but not µ̇-invariant.
(v) P5 is protective and µ̇-invariant; it is α-avoiding iff there exists an α-avoiding

predicate.

Proof. For the proof we use a convenient notation of van Oostrom: the binary operation
‘→’ is denoted by an implicit ‘multiplication’, with association to the right. E.g. µ̇α.αβα
denotes µ̇α.α→(β→α).

(i) Define A1 ≡ µ̇α.B[α], with B[α] ≡ µ̇β.αβ(µ̇α.β). Then P1(A1); but by contract-
ing B[α] a capture of α∈FV(B[α]) occurs:

B[α]⇒µ̇ αB[α](µ̇α.B[α]),

Hence A1 is not safe, and therefore P1 is not protective.
(ii) Clearly P2 is α-flexible and protective. Define A2 ≡ µ̇αβ.αβ. Then P2(A2); but

A2 ⇒µ̇ µ̇β.A2β ≡ A′
2.

Now P2(A
′
2) fails as its subterm A2β contains β both as free and as bound variable.

Therefore P2 is not µ̇-invariant.
(iii) Again P3 is α-flexible and protective. Define A3 = µ̇α.αα. Then P3(A3), but

A3 ⇒µ̇ A3A3

and P (A3A3) does not hold. Therefore P3 is not µ̇-invariant.
(iv) [van Oostrom.] Also P4 is α-flexible and protective. In order to show it is not

µ̇-invariant, define A4 ≡ µ̇αβ.α(µ̇γ.β(µ̇α.γ)). Then P4(A4) and

A4 ⇒µ̇ µ̇αµ̇β.α(β(µ̇αγ.β(µ̇α.γ))) ≡ µ̇α.B[α].

⇒µ̇ µ̇α.α(B[α](µ̇αγ.B[α](µ̇α.γ)), a variable capture.

Therefore µ̇αβ.B[α] is not safe, and hence P4 not µ̇-invariant.
(v) The predicate P5 is safe and µ̇-invariant by definition. If there is an α-avoiding

predicate P , then P is protective, hence P ⊆ P5, but also P is α-flexible and therefore
for all A∈TTµ̇ there is an α-variant A′ ∈P ⊆ P5. The converse is trivial.

After these examples we show that there does exist an α-avoiding predicate on TTµ̇. The
result is due to van Oostrom and was inspired by Melliès [1996].
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7D.17. Definition. Let A∈TTµ̇.

(i) An occurrence of µ̇α in A binds an occurrence of the variable α if µ̇α occurs as
µ̇α.B with α∈FV(B), and α occurs in the scope of µ̇α.

(ii) An occurrence of µ̇α in A captures an occurrence of the variable β 6≡ α if β freely
occurs in the scope of µ̇α.

(iii) Define for subterm occurrences o1, o2 of A of the form µ̇α or α, with α any type
variable, the relation

o1 ≺ o2 ⇔ o1 is captured by o2 or o1 binds o2.

(iv) An occurrence α is self-capturing if

α ≺∗ µ̇α.

7D.18. Example. Let A ≡ µ̇α.β→(µ̇β.β→α). The following diagram

µ̇α

��

→

||
||

||
||

DD
DD

DD
DD

β

<<

µ̇β

→

zz
zz

zz
zz

z

BB
BB

BB
BB

β α

bb

shows that the ‘highest’ occurence in A of the variable β is self-capturing, but not the
other occurrence.

7D.19. Example. In the following diagram, where we write µ̇α.A→B as

µ̇α

}}
}}

}
BB

BB
B

A B
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one has α0 ≺∗ µ̇αk for all k ≥ 1.

µ̇α1

zzzzz
FF

FF
F

α0 µ̇α2

xx
xx

x
DDDDD

µ̇α3

zzzzz
FF

FF
F

α1

α2 µ̇α4

xx
xx

x
DDDDD

µ̇α5

zzzzz
FF

FF
F

α3

α4 µ̇α6

xx
xx

x
DDDDD

µ̇α7 α5

Convince yourself that if there is self-capturing, e.g. α4 = α0, then a naive µ̇-reduction
without changing names of bound variables may result in a variable clash. The diagram
shows a typical ‘topology’ causing the phenomenon of self-capturing.

7D.20. Proposition (van Oostrom [2007]). Define P ⊆ TTµ̇ by

P (A)⇐⇒△ for no variable β there is a self-capturing occurrence in A.

Then P is α-avoiding.

Proof. We will show that P is (i) α-flexible, (ii) protecting, and (iii) µ̇-invariant.
(i) Renaming all binders in A in such a way that they are fresh and pairwise distinct

we obtain A′ ≡α A with P (A′).
(ii) We have to show that

P (A) ⇒ A is safe,

for which it suffices that for all subtypes µ̇β.B of A

P (µ̇β.B) ⇒ B[β := µ̇β.B] = B[β := µ̇β.B] 6α. (1)

It is not clear how to prove this directly. One can prove a stronger statement. Let
Q(β,B,C) be the statement

Q(β,B,C)⇐⇒△ [β ∈FV(B) ⇒ ∀γ ∈BV(B).[β ≺ µ̇γ ⇒ γ /∈FV(C)]].

This states about β, B, and C that if β occurs in FV(B), which occurence is captured
by an occurrence of µ̇γ in B, then the variable γ does not occur in FV(C). The stronger
statement to be proved is

∀C.[Q(β,B,C) ⇒ B[β := C] = B[β := C] 6α ]. (2)

Now we show (2) by induction on the structure of B. For B a variable or of the form
B = B1→B2 this is easy, noting that

B′ ⊆ B ⇒ Q(β,B,C) ⇒ Q(β,B′, C).
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If B = µ̇γ.B′, then we must show

Q(β, µ̇γ.B′, C) ⇒ (µ̇γ.B′)[β := C] = (µ̇γ.B′)[β := C] 6α.

If β /∈FV(B′), then this is trivial. Otherwise β ∈FV(B′), hence β ≺ µ̇γ. By the assump-
tion Q(β, µ̇γ.B′, C) it follows that γ /∈FV(C). Then

(µ̇γ.B′)[β := C] = µ̇γ.(B′[β := C]), since µ̇γ cannot bind a variable in C,

= µ̇γ.(B′[β := C] 6α), by the induction hypothesis,

= (µ̇γ.B′)[β := C] 6α, by definition of [β := C] 6α.

This establishes (2).
Now for (µ̇β.B) ⊆ A we have

P (µ̇β.B) ⇒ Q(β,B, µ̇β.B). (3)

Indeed, if β ∈FV(B) and γ occurs both in BV(B) and in FV(µ̇β.B), two different
occurrences, then β ≺ µ̇γ is impossible since it implies γ ≺ µ̇β ≺ β ≺ µ̇γ, i.e. γ is
self-capturing, contradicting P (µ̇β.B).
Now by (2) and (3) we obtain (1).
(iii) Suppose A⇒µ̇ A

′ and P (A), in order to show P (A′). Let

A = C[µ̇.β.B]⇒µ̇ C[B[β := µ̇β.B]],

where C[ ] is some context (with possible binding effects, like C[ ] = µ̇ǫ.[ ]). It suffices
to show that if γ is a self-capturing occurrence of a variable in A′, then also A contains
a selfcapturing occurrence of γ. Let o′1, o

′
2 be occurrences of an α or µ̇α in A′. Let o1, o2

be the unique occurrences in A such that o′i is the residual, see Terese [2003], of oi (for
1 ≤ i ≤ 2). The symbols (α, µ̇α, or→) written at occurrences oi and o

′
i are the same.

We claim that they satisfy

o′1 ≺ o′2 ⇒ o1 ≺∗ o2. (4)

Let {o′1, o′2} = {γ, µ̇δ} and suppose o′1 ≺ o′2.
Case 1. The occurrences o′1, o

′
2 in A′ both occur in the same ‘component’, i.e. both in

C[ ], in the ‘body’ B, or in (a copy of) B[β := µ̇β.B], respectively. Then also o1 ≺ o2.
Case 2. o′1 occurs on C[ ], o′2 in B. Then γ 6= β, because otherwise µ̇β.B would have

been substituted for it. Hence o1 ≺ o2.
Case 3. o′1 occurs on C[ ], o

′
2 in (a copy of) µ̇β.B. Now γ 6= β holds, because otherwise

o′1 6≺ o′2. If γ = δ, then o′1 = µ̇γ, o′2 = γ and we also have o1 ≺ o2. If γ 6= δ, then
o′1 = γ, o′2 = µ̇δ and we have o1 ≺ o2.
Case 4. o′1 occurs on B, o′2 in (a copy of) µ̇β.B. Then again γ 6= β, for the same

reason as in Case 3. If γ = δ, then o′1 = µ̇γ, o′2 = γ and we have o1 ≺ o2. If γ 6= δ, then
o′1 = γ, o′2 = µ̇δ and we have o1 ≺∗ o2 (this is the only place where we use ≺∗), because

γ ≺ µ̇β ≺ β ≺ µ̇δ.
This establishes (4). Now suppose ¬P (A′). Then A′ contains a self-capturing occur-

rence γ ≺∗ µ̇γ. By (4) and transitivity it follows that also A contains such an occurrence.
Therefore indeed ¬P (A).
At the end of the day for every A∈TTµ̇ an α-variant that can be forever µ̇-reduced

naively can be easily found.
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7D.21. Corollary. Let A∈TTµ̇. Suppose that all binders in A are pairwise distinct and
different from the free variables in A. Then A is forever safe.

Proof. As in (i) in the proof of the Proposition the condition implies P (A). Therefore
A is forever safe.

Identifying types equal up to renaming

7D.22. Definition. (i) The set of recursive types, notation TTµ, is defined as

TTA
µ , TTA

µ̇/≡α,

i.e. TTA
µ , {[A]α | A∈TTA

µ̇}, where [A]α , {B ∈TTA
µ̇ | B ≡α A}.

(ii) On TTA
µ one defines

[A]α→[B]α , [A→B]α,

µβ.[A]α , [µ̇β.A]α.

(iii) For elements of TTA
µ instead of [A]α we simply write A.

Note that on TTA
µ the operations→ and µβ are well-defined, i.e. independent of the choice

of representative in the α-equivalence classes.
Definition 7D.3(ii) of substitution for TTµ̇ can immediately be lifted to TTµ as follows.

7D.23. Definition. For A,B ∈TTA
µ substitution is defined as follows.

A A[β := B]

α α if α 6= β
β B
A1→A2 A1[β := B]→A2[β := B],
µα.A1 µα.(A1[β := B]), if α 6= β

Using the variable convention we choose α 6= β, α /∈ B for the case A ≡ µα.A1.

7D.24. Remark. The above definition of substitution is correct, i.e. it is independent
of the choice of representatives, and the variable convention makes sense, as follows
immediately from Lemma 7D.9(iii).

7D.25. Lemma (Substitution Lemma). Let A∈TTµ. Then for all B,C ∈TTµ and type
variables β, γ with β 6≡ γ and β /∈FV(C) one has

A[β := B][γ := C] ≡ A[γ := C][β := B[γ := C]]. (1)

Writing Dγ = D[γ := C] this is

(A[β := B])γ ≡ Aγ [β := Bγ ].

Proof. Directly from Lemma 7D.10.

7D.26. Definition (Weak equivalence of recursive types). (i) In Fig. 21 the equational
theory (µ) is defined. The variable H stands for a set of equations between two elements
of TTµ. We say that A,B ∈TTµ are (weakly) equivalent , notation A =µB, if ⊢µ A = B,
i.e. ⊢ A = B is provable in (µ) from H = ∅.

(ii) We will often identify TTµ with the (syntactic) type algebra TTµ/=µ, if there is

little danger of confusion. If we want to refer to TTµ not modulo =µ, we write TT!
µ.
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(ident) H ⊢ A = A

(symm)
H ⊢ A = B

H ⊢ B = A

(trans)
H ⊢ A = B H ⊢ B = C

H ⊢ A = C

(axiom) H ⊢ A = B, if (A = B)∈H,
(µ-eq) H ⊢ µα.A = A[α := µα.A]

(µ-cong)
H ⊢ A = A′

,
H ⊢ µα.A = µα.A′

if α not free in H,

(→-cong)
H ⊢ A = A′ H ⊢ B = B′

H ⊢ A→B = A′→B′

Figure 21. The system of equational logic (µ)

Remark. (i) Rule (µ-eq) is well-defined, as follows immediately from Lemma 7D.9(iii).
(ii) In the theory (µ) we call unfolding the operation consisting in replacing µα.A by

A[α := µα.A] and folding its inverse.
(iii) Two types in TTµ are weakly equivalent iff they can be transformed one into the

other by a finite number of applications of folding and unfolding, possibly on subexpres-
sions.

7D.27. Example. Let B , µβ.A→β, with β /∈ FV(A). Then we have

B =µA→B =µA→A→B =µ · · ·
Now let B′ , µβ.(A→A→β). Then

B′ =µA→A→B′ =µ · · ·
It is easy to see that B 6=µB

′ (see also Section 8B). Indeed B and B′ are the µ-types
solving, respectively, the type equations in R0 and R1 of Example 7C.15.

7D.28. Definition. (i) Define on TTµ a notion of µ-reduction via the contraction rule
7→µ

µα.A 7→µ A[α := µα.A].

(ii) A µ-redex is of the form µα.A and its contraction is A[α := µα.A].
(iii) The relation ⇒µ ⊆ TTµ × TTµ is the compatible closure of 7→µ. That is

A⇒µ A
′ ⇒ A→B ⇒µ A

′→B;

A⇒µ A
′ ⇒ B→A⇒µ B→A′;

A⇒µ A
′ ⇒ µα.A⇒µ µα.A

′.

(iv) As usual ⇒n
µ denotes reduction in n steps.

(v) The relation ⇒∗
µ is the reflexive and transitive closure of ⇒µ, i.e. 0 or more

reduction steps.
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(vi) Finally =µ µ-conversion is the conversion relation generated by µ-reduction, i.e.
the least congruence relation containing 7→µ. We will see in Proposition 7D.29(i) that
this overloading is justified, as it is the same as the relation in Definition 7D.26.

This turns TTµ into a Combinatory Reduction System (CRS), notation 〈TTµ,⇒µ〉, which
generates =µ as its convertibility relation. For an introduction to term rewriting
systems (TRS) and CRS see e.g. Klop [1992], Klop, van Oostrom, and van Raams-
donk [1993] and Terese [2003].

7D.29. Proposition. (i) Convertibility corresponding to ⇒µ is =µ.
(ii) The reduction relation ⇒µ on TTµ is CR.

Proof. (i) By definition of =µ; do exercise 8D.2.
(ii) The notion of reduction ⇒µ induces on µ-types an orthogonal combinatory re-

duction system, see Terese [2003], Ch. 11. By Theorem 11.6.19 of that book it is CR.

Most µ-types can be unfolded to a form with main constructor (a type variable or→)
at top level, unless they belong to the following pathological subset of TTµ.

7D.30. Definition. Let A∈TTµ.
(i) A is called circular iff A ≡ µβ1 · · ·βn.βi for some 1 ≤ i ≤ n.
(ii) The most typical circular type is •, µα.α. Following Ariola and Klop [1996] the

symbol ‘•’ is called ‘the blackhole’.
(iii) A is called contractive in α if µα.A is not circular.

Circular types correspond to non-proper sr.

7D.31. Remark. In Definition 7D.30(i) we mean in fact that an element of TTµ is circular
if it is of the form A = [µ̇β1 · · ·βn.βi]α. Suppose that also A = [B]α, for some B ∈TTµ̇.
Then by Lemma 7D.6(ii) one has µ̇β1 · · ·βn.βi ⇒∗

α B. It follows that B ≡ µ̇γ1 · · · γm.γj ,
with 1 ≤ j ≤ m. Therefore each representative of A is of the form µ̇β1 · · ·βn.βi. In
particular it is decidable whether A is circular.

7D.32. Lemma. Let A be a circular type. Then A =µ µα.α ≡ •. Therefore, the circular
types form an equivalence class in TTµ.

Proof. Let A ≡ µβ1 · · ·βn.βi. Then
A ⇒n−i

µ µβ1 · · ·βi.αi,

⇒i−1
µ µβi.βi.

Therefore A⇒n−1
µ .

7D.33. Lemma. Let A∈TTµ. One has exactly one of the following cases.

A 7→∗
µ β;

A 7→∗
µ (B→C);

A is circular.

Moreover, β and B→C are unique.

Proof. Write A ≡ µβ1 · · ·βn.A1, with A1 6≡ µγ.A2. If A1 ∈{β1 · · ·βn}, then A is
circular. If A1 ≡ β /∈ {β1 · · ·βn}, then A 7→n

µ β. If A1 ≡ B1→ C1, then there exist
unique B,C such that A 7→n

µ (B→C).

7D.34. Definition. Let A∈TTµ.
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(i) [Grabmayer [2007]] The lead symbol of A, notation ls(A), is defined as

ls(A) , α, if A 7→∗
µ α;

ls(A) , →, if A 7→∗
µ (B→C);

ls(A) , •, if A is circular.

(ii) The principal reduced form A′ of A is defined as follows.

A′ ≡ α, if A 7→∗
µ α;

A′ ≡ B→C, if A 7→∗
µ (B→C);

A′ ≡ •, if A is circular.

(iii) In untyped λ-calculus terms can have several head normal forms but only one
principal head normal form. One speaks about the principal head normal form. Similarly
one can speak about a reduced form of A, obtained by µ-reduction, contrasting it with
the unique principal reduced form, obtained by µ-contraction in case A is not circular.

The type B ≡ µβ.A→β has A→B as reduced form.

7D.35. Lemma. (i) If A has B→C and B′→C ′ as reduced forms, then B =µ B
′ and

C =µ C
′.

(ii) If A has α and α′ as reduced forms, then α ≡ α′.

Proof. (i), (ii) By the Church-Rosser theorem for ⇒µ.

7D.36. Lemma. (i) Let α, β ∈A be different. Then [α]µ 6= [β]µ.

(ii) The prime elements of TTµ = TTA
µ are given by

||TTµ|| = {[α]µ | α∈A} ∪ {[•]}

(iii) TTA →֒ TTA
µ .

Proof. (i) By Proposition 7D.29.

(ii) By Lemma 7D.33.

(iii) One has

TTA →֒ TT||TTµ||, by (i) and (ii),

→֒ TTµ, by Lemma 7B.12(ii),

the necessary condition that TTµ is invertible will be proved in Chapter 8.

Example. The deductions in Proposition 7A.3 can be obtained in λµ by taking A∈TTµ

arbitrarily and B as µt.t→A. Then one has B = µt.t→A =µ (µt.t→A)→A = B→A.

7D.37. Fact. In Chapter 8 we will see the following properties of TTµ.

(i) TTµ is closed, i.e. TTµ |= ∃ ~X.R, for all sr R over TTµ.

(ii) =µ is invertible, and hence TTµ is an invertible type algebra.

(iii) =µ is decidable.
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7E. Recursive types as trees

We now introduce the type-algebra TrAinf consisting of the finite and infinite trees over
a set of atoms A. These are type-algebras that solve arbitrary simultaneous recursions
R over TTA in a unique way and induce a stronger notion of equivalence between types.
For example, if A = A→b and B = (B→b)→b, then in Trinf one has A = B.
We first need to recall the basic terminology needed to present (infinite) labeled trees

by means of addresses and suitable labelings for them. For more information the reader
is referred to Courcelle [1983] for a classic and comprehensive treatment of trees. A node
of a tree is represented by the unique path in the tree leading to it. If Σ is a set, then Σ∗

denotes the set of all finite sequences of elements of Σ. The elements of Σ∗ are usually
called the words over the alphabet Σ. As usual concatenation is represented simply by
juxtaposition; ǫ denotes the empty word.

7E.1. Definition (Trees). (i) A type-tree (or just tree, for short) over A is a partial
function

t : {0, 1}∗ # (A ∪ {→} ∪ {•})
satisfying the following conditions.
(1) ǫ∈ dom(t) (i.e. a tree has at least the root node);
(2) if uv ∈ dom(t), then also u∈ dom(t)

(i.e. if a node is in a tree, then all its prefixes are in that tree);
(3) if t(u) =→ then u0, u1∈ dom(t)

(i.e. if→ is given at a node, then it has exactly two successors);
(4) if t(u)∈A ∪ {•} then uv /∈ dom(t) for all v 6= ǫ

(i.e. labels other than ‘→’ occur only at endpoints).

(ii) The set of trees over A will be denoted by TrAinf .

(iii) Define TrAfin ⊆ TrAinf to be the set of finite trees, i.e. those with finite domain.

We will often write simply Trinf , or Trfin, when A is understood or not relevant.

Example. The function t defined on the (finite) domain {ǫ, 0, 1} as follows:
t(ǫ), →,
t(0), α,

t(1), •,
represents the tree →

��
�� 77

77

α •

.

We say that the symbol c∈A ∪ {→, •} occurs in tree t at node u∈Σ∗ if t(u) = c.
Since Trfin(A) is clearly isomorphic to TT(A), we will often identify them, considering

(and representing) simple types as finite trees and vice versa. The operation of substi-
tution of types, for elements of A, can be extended to trees. Among infinite trees, we
single out trees having a periodic structure, which represent solutions of (systems of)
equations of the form

ξ = A[α:=ξ],

where A∈Trfin. These will be called the regular trees. See Courcelle [1983], §4.
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7E.2. Example. Take the equation ξ = A→ξ where A is any type (with by the variable
convention ξ /∈ FV(A)). The solution of this equation is given by ξ = t0 where t0 is the
following infinite tree.

t0 = →
		
		
	

55
55

5

A →
		

		
55

55
5

A →
		

		
88

88
8

A . . .

Note that t0 has only a finite number of distinct subtrees, namely A and t0 itself. Such
a tree is called regular.

7E.3. Definition (Regular trees). (i) Let t∈Trinf be a tree and w∈ dom(t) be a word.
The subtree of t at w, notation t|w, is the tree defined by the following conditions.
(1) dom(t|w) = {u∈{0, 1}∗ | wu∈dom(t)};
(2) (t|w)(u) = t(wu), for all u∈ dom(t|w).
A subtree of t is t|w for some w∈ dom(t).

(ii) A tree is regular if the set of its subtrees is finite. The set of regular trees is
denoted by TrAreg or Trreg.

7E.4. Remark. One has the following characterization of t|u

t|ǫ = t;

t|iv = ti, if i∈{0, 1} and t = →

||
||

||
||

BB
BB

BB
BB

t1 t2

;

= ↑, otherwise.

Note that Trfin ⊆ Trreg ⊆ Trinf . Moreover, we will see that regular trees are closed under
substitutions, i.e. if t, s are regular trees then so is t[α: = s].
We consider Trinf ,Trreg and Trfin as type-algebras. Since→ is injective, all of them are

invertible.

7E.5. Lemma. Trinf ,Trreg and Trfin are invertible type-algebras.

7E.6. Definition. Let t, u∈Trinf .
(i) Define for k∈ω the tree (t)k ∈Trfin, its truncation at level k, as follows.

(t)0 , •;
(α)k+1 , α, for α∈A ;

((t→u))k+1 , (t)k → (u)k.

(ii) Define t =k u⇐⇒△ (t)k = (u)k.
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Example. Let t = α→β. Then

(t)0 = •;
(t)1 = •→•;
(t)n = t for n ≥ 2.

The following obvious fact will be useful.

7E.7. Lemma. Let t, u, t′, u′ ∈Trinf .
(i) t = u ⇔ ∀k ≥ 0 . t =k u.
(ii) t =0 u.
(iii) t→u =k+1 t′→u′ ⇔ t =k u & t′ =k u

′.

7E.8. Definition. Let t, s∈Trinf . The substitution of s for the occurrences of α in t,
notation t[α := s], is defined as follows. (Note that α may occur infinitely many times
in t.)

t[α: = s](u) = s(w) if u = vw & t(v) = α,

for some v, w∈Σ∗;

= t(u) else.

Bisimulation

Equalities among trees can be proved by a proof technique called coinduction, which
allows to show that two trees are equal whenever there is a bisimulation that relates
them.

7E.9. Definition. A relation R ⊆ TrAinf × TrAinf is a bisimulation if, for all s, t∈Trinf
sRt implies

- either s, t∈A and s = t;

- or s = s1 → s2, t = t1 → t2, and s1Rt1, s2Rt2.

The existence of a bisimulation between two trees s and t amounts to a proof that
there is no contradiction in assuming that s = t. The coinduction principle for trees is
as follows.

7E.10. Proposition (Coinduction for trees). Let R be a bisimulation over Trinf ×Trinf .
Then

∀s, t∈Trinf .[sRt ⇒ s = t].

Proof. Assume that 〈s, t〉 ∈R. We can show that dom(s) = dom(t) and that, for
all addresses w∈ dom(s), 〈s|w, t|w〉 ∈R by induction on the length of w. We have by
Definition 7E.9 either s|w = t|w in A, hence s(w) = t(w), or s|w = s1 → s2 and
t|w = t1→ t2 and then also s(w) = t(w), both sides being equal to→. Hence in either
case s(w) = t(w). So s = t as partial functions.

In particular the equality relation is the largest bisimulation over trees. This coinduc-
tion principle may be used whenever we want to prove that two finitary presentations of
trees, typically given as terms over some type algebra, have the same value.
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Tree-unfolding for invertible general type algebras

Every (possibly non-well-founded) invertible type-algebra can be mapped into a tree
type-algebra, by a morphism determined by the “tree-unfolding” of the types in the
algebra. Invertibility is needed in order to do the unfolding in a unique fashion. The
construction has a flavor similar to the construction of Böhm-trees for untyped lambda
terms, see B[1984], in that both have a co-inductive nature.

7E.11. Definition. Let A = 〈|A|,→〉 be an invertible type algebra. Write TrAinf = Tr
||A||
inf .

The tree-unfolding of a type a∈A, notation (a)∗A, is defined as follows.

(a)∗A(ǫ) , a, if a∈ ||A||;
(a)∗A(ǫ) , →, if a = b0→b1;

(a)∗A(iw) , ↑, if a∈ ||A||;
(a)∗A(iw) , (bi)

∗
A(w) (i = 0, 1), if a = b0→b1.

In spite of its technicality, the construction of definition 7E.11 is quite intuitive. The
tree (a)∗A, which has the (names of the) prime elements of A as leaves, corresponds to
the (possibly) infinite “unfolding” of a with respect to→.
7E.12. Lemma. For invertible A the map (−)∗A : A→Tr

||A||
inf satisfies the following.

(a)∗A = a, if a∈ ||A||;
(a)∗A = →

��
��

�
??

??
?

(b1)
∗
A (b2)

∗
A

, if a = b1→b2.

Note that this is not an inductive definition: a may be as complex as a→b.

Proof. By Definition 7E.11.

This property characterizes the map.

7E.13. Remark. (i) The map (−)∗A : A→TrAinf is a morphism.
(ii) In Section 7F we will see that the simple intuitive characterization of Lemma

7E.12 as official definition. See Remark 7F.18.

7E.14. Definition. Let A be an invertible type-algebra.
(i) Strong equality , notation =∗

A , is the relation =∗
A ⊆ A×A defined by

a =∗
A b⇐⇒△ (a)∗A = (b)∗A.

By contrast the relation = will be called weak equality .
(ii) Define A∗ ,A/ =∗

A .

(iii) For a∈A write a∗ , [a] =∗
A
.

It is immediate from the definition that =∗
A is a congruence with respect to→ and

hence A∗ is well defined.

7E.15. Lemma. Let A be an invertible type-algebra.
(i) =∗

A is the greatest invertible congruence over A such that for all a∈ ||A||
[a]=∗ = {a}.

(ii) A∗ is an invertible type-algebra and ||A∗|| = {a∗ | a∈ ||A||}.
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Proof. (i) To prove invertibility note that a1→ a2 =∗ b1→ b2 implies, by definition,
(ai)

∗ = (bi)
∗ (i = 1, 2) and then ai =∗ bi. Note also that if a∈ ||A||, then a =∗ b iff

a = b. Hence a∗ = {a} and indeed a∗ is prime.
On the other hand, let now ≈ be any invertible congruence over A such that [a]≈ = {a}

for all a∈ ||A|| and ≈ 6⊆ =∗
A . Then there are two elements a and b such that a≈ b but

a 6=∗ b. In this case there must be some finite path w such that (a)∗A(w) 6= (b)∗(w). It
is easy to show by induction on w and using invertibility that this implies that for some
prime element a′ ∈A either a′ ≈ b′→c′ or a′ ≈ d′ for some other prime element d′ of A.
In both cases [a′]≈ 6= {a′}.

(ii) By (i).

7E.16. Proposition. Let A be an invertible type-algebra.
(i) There are canonical morphisms

iA : TT||A|| →֒ A
f : A → A∗

i∗ : A∗ →֒ TrAinf

with f surjective, iA, i∗ injective and ( )∗ = i∗ ◦ f ; in diagram

TT||A||
iA // A

( )∗A //

f ��@
@@

@@
@@

@ TrAinf

A∗

i∗

==zzzzzzzz

.

(ii) The maps in (i) are uniquely determined by postulating for all a∈ ||A||
iA(a) = a;

f(a) = (a)∗A;

i∗((a)
∗
A) = (a)∗A.

Proof. (i) By Propositions 7B.12 and 7B.5(ii).
(ii) By the (easy) proof of these Propositions.

Tree-unfolding for invertible syntactic type algebras

The most interesting applications of the tree-unfolding (−)∗A, Definition 7E.11, are for
syntactic type-algebras of the form A = TT/≈. In this case A∗ can easily be described.

7E.17. Definition. Let A be an invertible syntactic type algebra.
(i) In case A = TTA/≈, with invertible relation ≈, write

(−)∗≈ for (−)∗A : A→TrAinf ,

=∗ for =∗
A,

TT∗
≈ for A/=∗

A.

(ii) In case A = TTA[R], which is always invertible, write

(−)∗R for (−)∗A : A→TrAinf ,

=∗
R for =∗

A,

TT[R]∗ for A/=∗
A.
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(iii) In case A = TTA
µ/=µ, which is always invertible, write

(−)∗µ for (−)∗A : A→TrAinf ,

=∗
µ for =∗

A,

TT∗
µ for A/=∗

A.

7E.18. Remark. In case A = TTA/ ≈, see exercise 7G.10, Lemma 7E.15 states that =∗ is
the greatest invertible congruence on TT extending ≈ and preserving all prime elements
of A. That is, if 2 is an invertible congruence on TT extending ≈, such that

[A]≈ ∈ ||A|| & A2B ⇒ [A]≈ = [B]≈,

then 2 ⊆ =∗.

The map (−)∗A can be considered as an interpretation of types in TT as infinite trees.

7E.19. Notation. (i) Working in a syntactic type algebra TTA/≈ we view a type as if
it is its equivalence class. Therefore we bend the meaning of (−)∗≈ so that it also applies

to an element of TTA:

(−)∗≈ : TTA→TrAinf .

That is, we identify (−)∗≈ = (−)∗≈♮, see Lemma 7B.4(ii) for the definition of ♮.

TTA
(−)∗≈=(−)∗≈

♮

//

[−]≈ ""E
EE

EE
EE

EE
TrAinf

TTA/≈
(−)∗≈

;;xxxxxxxx

(ii) For A = TTA[R] and A = TTA
µ/=µ this boils down to

(−)∗R : TT( ~X)→TrAinf ;

(−)∗µ : TTA
µ→TrAinf .

(iii) One has by definition

A =∗ B ⇔ (A)∗≈ = (B)∗≈,

A =∗
R B ⇔ (A)∗R = (B)∗R,

A =∗
µ B ⇔ (A)∗µ = (B)∗µ.

7E.20. Lemma. In this context we have the following.

(i) TT∗
≈
∼= TT/=∗ .

(ii) TT[R]∗ ∼= TT( ~X)/=∗
R .

(iii) TT∗
µ
∼= TTµ/=

∗
µ .

Proof. Immediate from Definition 7E.17 and Notation 7E.19.

Now we focus on the syntactic type-algebras TT( ~X)/≈, TT[R] and TTµ/ =µ. By Theo-
rem 7C.12 we have that TT[R] is invertible. In Chapter 9A9 it will be proved that the
other two type algebras are also invertible.
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Tree equivalence for sr

For syntactic type algebras coming from a simultaneous recursion R, the tree-unfolding
( )∗R : TT→Trinf can be characterized as follows.

7E.21. Lemma. Let R = R( ~X) be an sr over TT = TTA. Then we have the following.
(i) TT[R] is invertible.

(ii) Suppose moreover that R is proper. Then the map (−)∗R : TT[R]→TrAinf can be
characterized as follows.

(A)∗R = α, if A =R α with α∈A;
(A)∗R = →

��
��

�
??

??
?

(B)∗R (C)∗R

, if A =R B→C,

(A)∗R = (B)∗R, if A =R X and (X = B)∈R.
Proof. (i) By Theorem 7C.12.

(ii) Note that by Lemma 7C.20 one has ||TT[R]|| = {[α] | α∈A}.
Remark. If R is not proper there may be equations like X = X, or X = Y, Y = X.
In this case the above procedure becomes circular due to the third clause in Lemma
7E.21(ii).

7E.22. Example. (i) Let R = {X = A→X,Y = A→A→Y }. We have X 6=R Y . But
both types unfold to the same tree (X)∗R = (Y )∗R = t0, where t0 is the tree defined in
Example 7E.2.

(ii) Let R be the sr defined by the following equations.

X1 =X2→X1

X2 =X1→X2

It is easy to see that (X1)
∗
R = (X2)

∗
R = t1 where t1 is the following infinite tree

t1 = →
yy

yy
yy

EE
EE

EE

→





 44

44
→






 44

44

· · · · · · · · · · · ·

.

Hence X1 =
∗
R X2. Note that X1 6=R X2. Also (X)∗R2

= t1, where R2 = {X = X→X}.
(iii) Take the sr R,{X = A→X, Y = A→Y }. We have that X =∗

R Y . In fact both
(X)∗R and (Y )∗R are equal to the tree t0 defined in Example 7E.2. Note that X 6=R Y .

So we see that the relation =∗
R has a more semantic nature than =R. It turns out

to be the type equivalence induced by the interpretation of types in continuous models
(see Chapter 10). The relation =∗

R can be also characterized as the equational theory
of a suitable sr R∗. In particular in Section 8 we will prove constructively the following
property.

7E.23. Theorem. Let R( ~X) be an sr over TT. Then there is an sr R∗( ~X) such that for

all A,B ∈TT( ~X) one has A =∗
R B ⇔ A =R∗ B.

7E.24. Corollary. TT[R]∗ ∼= TT[R∗].
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Proof. TT[R]∗ ∼= TT( ~X)/ =∗
R, by Lemma 7E.20(ii),

= TT( ~X)/ =R∗ , by the Theorem,
= TT[R∗].

In Section 8 we will give an alternative axiomatization for the relation =∗
R using a

coinduction principle.
As a consequence of Theorem 7C.14 the sr R is solved not only by the type-algebra

TT[R], but also by its tree-collapse TT[R]∗. But now, as bonus, the solution is unique.

7E.25. Theorem. Let R( ~X) = {X1 = A1( ~X), · · · , Xn = An( ~X)} be an sr over TT.
Then

(i) TT →֒ TT[R]∗ and TT[R]∗ is generated by (the image of) TT and the ~X.

(ii) TT[R]∗ |= ∃ ~XR.
(iii) If moreover R is proper, then ~X, with Xi = [Xi]=∗

R
is the unique solution of R

in TT[R]∗.
Proof. (i) By Theorem 7C.14(iii) and Lemma 7E.16 (ii).

(ii) ~X is a solution of R: apply 7C.14(i) and 7E.16(ii).
(iii) Note that TT[R]∗ can be seen as a subset of Trinf . The map F :Trninf→Trninf defined

by F ( ~X) = 〈A1( ~X), . . . , An( ~X)〉 satisfies the conditions of Proposition 7F.8(ii), since R
is proper. Hence by that Proposition it has a unique fixed point. Clearly ~X viewed as
element of Trninf is this fixed point.

Tree equivalence for µ-types

7E.26. Fact. The type algebra TTµ/=µ is invertible. See Theorem 8B.1.

Therefore the construction of 7E.11 can be applied to this type algebra. For example,
from Lemma 7E.20 it follows that (TTµ/=µ)

∗ = TTµ/=
∗
µ.

7E.27. Lemma. The map (−)∗µ : TTA
µ→TrAinf can be characterized in the following way.

(A)∗µ = α, if α is a reduced form of A,

(A)∗µ = →
��

�� ==
==

(B)∗µ (C)∗µ

, if B→C is a reduced form of A,

(A)∗µ = •, if A is circular.

Proof. Similar to that of 7E.21.

In particular =∗
µ is an invertible congruence extending =µ and there is a unique

morphism h∗:TTµ→TT∗
µ (or rather h∗:TTµ/=µ→TT∗

µ) defined by h∗([A] =µ ) = [A]=∗
µ
.

Example. Consider the types B = µβ.A→β and B′ = µβ.A→A→β (with by the vari-
able convention β /∈ FV(A)). We have that B=∗

µB
′. Indeed, one has (B)∗µ = (B′)∗µ = t0,

where t0 is the infinite tree of example 7E.2.

7E.28. Lemma. (A[α: = B])∗µ = (A)∗µ[(α)
∗
µ: = (B)∗µ].

Proof. By induction on the structure of A.
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7E.29. Remark. Note that by lemma 7E.28

(µα.A)∗µ = (A[α := µα.A])∗µ = (A)∗µ[α: = (µα.A)∗µ].

So (µα.A)∗µ is a solution of the equation X = (A)∗µ[α := X] in Trreg. If A 6= α, this
solution in Trinf is unique, by Proposition 7F.8 and Theorem 7F.5.

In Chapter 8 we will give a complete axiomatization of =∗
µ. As an application we

obtain a constructive proof that =∗
µ is decidable.

Types as regular trees

All trees in the codomain of (−)∗R are regular.

7E.30. Lemma. Let R be an sr over TT. Then for all A∈TT[ ~X] (A)∗R is a regular tree,
i.e. (−)∗R : TT[R]→Trreg.

Proof. Let ~X = X1, . . . , Xn (n ≥ 0) and R = {Xi = Bi | 1 ≤ i ≤ n}. If A∈TT[ ~X] let
S(A) denote the set of all subtypes of A. Obviously S(A) is finite for all A. Now it is
easy to prove by induction on w that for all w∈{0, 1}∗ for which (A)∗R(w) is defined we
have

(A)∗R|w = (C)∗R for some C ∈ S(A) ∪
⋃

1≤i≤n

{Xi} ∪
⋃

1≤i≤n

S(Bi).

Since S(A) and all S(Bi) for 1 ≤ i ≤ n are finite, (A)∗R can have only a finite number of
subtypes and hence is regular.

The following theorem is an immediate consequence of this.

7E.31. Theorem. (i) Let R( ~X) be a proper sr over TT. Then R has a unique solution
in Trreg given by ~t = (X1)

∗
R, · · · , (Xn)

∗
R.

(ii) Trinf is a uniquely closed type algebra.
(iii) Trreg is a uniquely closed type algebra.

Proof. (i) By theorem 7E.25 and 7E.30.
(ii) As the proof of Theorem 7E.25(iii).
(iii) Every R over Trreg has a unique solution in Trinf . That the solution is in Trreg

follows as in the proof of Lemma 7E.30.

7E.32. Remark. (i) On the other hand each regular tree can be obtained as a compo-
nent of a solution of some sr R, see Exercise 7G.9. See also Courcelle [1983], Theorem
4.2.1.

(ii) It is easy to see that lemma 7E.30 and theorem 7E.31 hold also if we assume more
generally that R is an sr with coefficients in Trreg, see also Courcelle [1983], Theorem
4.3.1.

7E.33. Remark. The mapping (−)∗R can be seen as a unifier of R in Trreg. It is well
known, see Courcelle [1983], Prop. 4.9.5(ii), that (−)∗R is indeed the most general unifier
of R in Trreg. This means that each syntactic morphism h : TT[R]→Trreg can be written
as h = s ◦ (−)∗R where s is a substitution in Trreg. Note that any such substitution can
be seen as a morphism s : Trreg→Trreg.

7E.34. Remark. Simultaneous recursions of a special form can be viewed as TA-coalge-
bras, where TA is the tree functor of Definition 7F.15, as suggested by an analogy of
simultaneous recursions with systems of equations defining non-well-founded sets (Aczel
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[1988]). See Section 4 of Cardone and Coppo [2003] for an application of this remark to
the decidability of strong equivalence of simultaneous recursions.

The µ-types are just notations for regular trees, see Courcelle [1983], Theorem 4.5.7.

7E.35. Lemma. (i) If A∈TTµ then (A)∗µ ∈Trreg.
(ii) Each regular tree t can be written as t = (A)∗µ, for some type A∈TTµ.

(iii) TT∗
µ
∼= Trreg.

Proof. (i) This follows from Remark 7E.32(i).

(ii) By the fact that TTµ is a closed type-algebra (a proof of this will be given in
Section 9).

(iii) Immediate from (i).

Type assignment modulo tree equality

7E.36. Definition. As a shorthand we denote the type assignment systems correspond-
ing to TTµ,TT

∗
µ,TT/E , TT[R], and TT[R]∗ by λµ, λµ∗, λE , λR, and λR∗ respectively. The

only difference in the formal presentations of these systems is in the set of types and in
the definition of the corresponding equivalence.

7E.37. Remark. (i) It is easy to see that any substitution s : A→TTµ determines a type
algebra morphism of s : TTµ→TTµ. So all the typings of Lemma 7A.3 hold in λµ if we
replace α by any type A∈TTµ (i.e. taking the substitution [α := A]). Note in particular
that (λx.xx)(λx.xx) has all types and that the fixed point operator has all the types
of the form (A→A)→A. Obviously the same property holds in the other systems, in
particular in λµ∗.

(ii) The two systems λµ and λµ∗ are not equivalent. Take T0 = µβ.α→β and T1 =
µβ.α→α→β as in Example 7D.27. Then {x : T1} 6⊢λµ x : T0 while {x : T1} ⊢λµ∗ x : T0.
Similarly {x : T1} 6⊢λµ x : α→T1 but {x : T1} ⊢λµ∗ x : α→T1.

Notations for type assignment systems

The notion of type algebra has been introduced to unify a number of type assignment
systems. The general version is λA

=, that specializes to various cases.
We make the following notation.

7E.38. Definition. (i) The type assignment system λA
= is also denoted as λA.
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(ii) Similar shorthands apply to several other systems.

Type algebra Type assignment system Simplified notation

A λA
= λA

TT/≈ λ
TT/≈
= λ≈

TT/E λ
TT/E
= λE

TT[R] λ
TT[R]
= λR

TT(R)∗ λ
TT(R)∗
= λR∗

TTµ/ =µ λ
TTµ
= λµ

TT∗
µ λ

TT∗
µ

= λµ∗

(iii) The simplified notation is introduced so we can write

⊢λA, ⊢λ≈, ⊢λE , ⊢λR, ⊢λR∗ , ⊢λµ, ⊢λµ∗ .

The approach we are taking in this Part of the book comes from Scott [1975b]: this
manifold of type assignment systems can be captured by one idea and a parameter: the
type algebra.

Explicitly typed versions

The explicitly typed versions of the systems λR and λµ are usually given in ‘Church’
style with coercions (the fold-unfold constants) introduced in Definition 7A.22. In the
system λCh0

µ in particular the fold-unfold constants are labeled with the folded version
of the corresponding µ-type

foldµt.A ∈ΛCh
TTµ

(A[t := µt.A]→ µt.A);

unfoldµt.A ∈ΛCh
TTµ

(µt.A→ A[t := µt.A]).

On the terms extended by the coercion operators one postulates a notion of reduction

unfoldµt.A(foldµt.AM)→M ;

foldµt.A(unfoldµt.AM
′)→M ′,

where M ∈ΛCh
TTµ

(A[t := µt.A]) and M ′ ∈ΛCh
TTµ

(µt.A).

7F. Special views on trees

The set of trees, as introduced in Definition 7E.1, can be viewed as a metric space or as a
coalgebra. They are given here for the interested reader, and may be skipped.

Trees as a metric space

We can turn Trinf into a metric space in the following way, Courcelle [1983].
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7F.1. Definition. [Metrics over Trinf ] Let α, α
′ ∈Trinf . Define

d(α, α′),

{
0 if α = α′

2−δ(α,α′) if α 6= α′

where δ(α, α′) is the length of the minimum path w such that w∈ dom(α), w∈ dom(α′) and
α(w) 6= α′(w).

7F.2. Proposition (Courcelle [1983]). 〈Trinf , d〉 is a complete metric space. With respect to the
resulting topology, the set Trfin is a dense subset of Trinf and Trinf is the topological completion
of Trfin.

7F.3. Remark. 〈Trinf , d〉 is even an ultrametric space, i.e. satisfies the strengthened triangle
inequality

d(x, y) ≤ max{d(x, z), d(z, y)}.
7F.4. Definition. Let 〈D, d〉 be a metric space. A map f : D −→ D is called contractive if
there exists a real number c (0 ≤ c < 1) such that

∀x, x′ ∈D d(f(x), f(x′)) ≤ c · d(x, x′) .
A basic property of complete metric spaces is the following.

7F.5. Theorem (Banach fixed point theorem). Let 〈D, d〉 be a complete metric space. Every
contractive mapping f : D −→ D has a unique fixed point x in D. This will be denoted by
fix(f).

Proof. Let x0 ∈D. Define xn , fn(x0). This is a Cauchy sequence. The fixed point x can be
defined as the limit of the xn. If x, y are fixed points, then d(x, y) = d(fn(x), fn(y)) ≤ cn ·d(x, y).
Therefore d(x, y) = 0 and hence the fixed point is unique.

7F.6. Proposition. Let D1 = 〈D1, d1〉, D2 = 〈D2, d2〉 be metric spaces. Define on D = D1×D2

the map d : D→R by

d((x1, x2), (y1, y2)) = max{d1(x1, y1), d2(x2, y2)}.
Then D = 〈D, d〉 is a metric space.

(i) If D1, D2 are complete metric spaces, then so is D.

(ii) If D1, D2 are ultrametric spaces, then so is D.

7F.7. Definition. An algebraic map on a type algebra A is defined as usual. For example, if
a, b∈A, then f defined by f(x) = a→(b→x)→x is algebraic.

7F.8. Proposition. (i) Let f : Trinf → Trinf be algebraic that is not the identity. Then f is
contractive.

(ii) Let f1, · · · ,fn : Trninf→Trinf be algebraic such that for all a1, · · · , ai−1, ai+1, · · · , an ∈Trinf ,
with 1 ≤ i ≤ n, one has

λλxi.fi(a1, · · · , ai−1, xi, ai+1, · · · , an) : Trinf→Trinf is not the identity.

Define

F (~x) = 〈f1(~x), · · · , fn(~x)〉.
Then F is contractive on Trninf .

Proof. (i) It suffices to show that the map g defined by g(x, y) = x→ y is contractive in its
two arguments. Indeed, d(x→y, x′→y) = 1

2d(x, x
′).

(ii) For notational simplicity we treat n = 2. We must show

d(F (x1, x2), F (y1, y2)) ≤ c.d((x1, x2), (y1, y2)) (∗)
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Now

d(F (x1, x2), F (y1, y2)) = d(〈f1(x1, x2), f2(x1, x2)〉, 〈f1(y1, y2), f2(y1, y2)〉)
= max{d(f1(x1, x2), f1(y1, y2)), d(f2(x1, x2), f2(y1, y2))}.

Now for i = 1, 2 one has

d((fi(x1, x2), fi(y1, y2))) ≤ max{d(fi(x1, x2), fi(y1, x2)), d(fi(y1, x2), fi(y1, y2))}
≤ max{ci · d(x1, y1), ci · d(x2, y2)}, by the assumption and (i),

= ci · d((x1, x2), (y1, y2)).
Now (∗) easily follows.

Now let t∈Trinf and α a variable occurring in t. If α 6≡ t, then λλx∈Trinf .t[α := x] defines a
contractive mapping of Trinf into itself and therefore it has a fixed point.

The following property is also easy to prove, see Courcelle [1983], Theorem 4.3.1.

7F.9. Proposition. If α∈Trreg and α 6≡ t then fix(λλx∈Trinf .t[α := x])∈Trreg.

Trees as a coalgebra

Algebras and coalgebras

The notion of algebra to be introduced presently arises as a categorical generalization of the usual
set-theoretical notion of algebraic structure. In order to provide a background to the general
definitions, we show below how natural numbers provide a simple (but fundamental) example of
algebra.

7F.10. Example. Natural numbers form a structure 〈N, 0, suc〉 with an element 0∈N and a
unary operator suc : N→N, the successor function. Towards a categorical formulation of this
structure, observe that two functions with a common codomain can be ‘packed’ into one function
as follows. First of all, define the disjoint union

A+B , (A× {0}) ∪ (B × {1}).
There are canonical maps

inl : A → A+B
a 7→ 〈a, 0〉

inr : B → A+B
b 7→ 〈b, 1〉

Then, two functions f : A→C and g : B→C can be packed together as [f, g] : A + B→C by
setting

[f, g](inl(a)) , f(a),

[f, g](inr(b)) , g(b).

In the case of natural numbers, we have a mapping [0, suc] : 1+N→N, where 1 is any singleton,
say 1 = {∗} and 0 : 1→N has as its (unique) value exactly the number 0. In categorical terms,
the situation can be described as follows.

7F.11. Definition. Let a functor T : Set→Set be given. We call it the signature functor.

(i) A T -algebra consists of a pair 〈X, ξ〉 with X ∈ Set the carrier and ξ a morphism

ξ : T (X)→X.
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(ii) If 〈X, ξ : T (X) −→ X〉 and 〈Y, ζ : T (Y ) −→ Y 〉 are two T -algebras, then a morphism is a
mapping f : X −→ Y such that the following diagram commutes.

T (X)
ξ //

T (f)

��

X

f

��
T (Y )

ζ // Y

It is easy to check that the T -algebras with these morphisms form a category.

(iii) A T -algebra 〈A, in〉 is called initial if it is an initial object in the category of T -algebras,
i.e. for every T -algebra 〈X, ξ〉 there is a unique T -algebra morphism ϕ:〈A, in〉→〈X, ξ〉.
It is easy to see that natural numbers 〈N, [0, suc]〉 form the initial algebra for the signature
functor

TN(X), 1 +X = X0 +X1.

Initiality of N is equivalent to the iteration principle: the unique morphism h : N→A from the
TN-algebra 〈N, [0, suc]〉 to any other TN-algebra 〈A, [a, f ]〉 is precisely the unique function from
N to A satisfying the equations (see Dedekind [1901]):

h(0) = a

h(suc(n)) = f(h(n)).

7F.12. Definition. A polynomial functor T :Set→Set is of the form

T (X) = A0 ×X0 +A1 ×X1 + · · ·+An ×Xn,

where × denotes the cartesian product and the Ak ∈ Set are arbitrary objects.

7F.13. Proposition. For every polynomial functor T :Set→Set there is an initial algebra 〈I, in〉
that is unique up to isomorphism in the category of T -algebras. Moreover, in : T (I)→ I is an
isomorphism, hence T (I) ∼= I.

Proof. Do Exercise 7G.20.

We now examine coalgebras, which are dual to algebras in the categorical sense and appear in
nature as spaces of infinitely proceeding processes. A simple coalgebra is that of streams over a
set A, namely infinite lists of elements of A. Another coalgebra is that of lazy lists, consisting of
both the finite lists and the streams. Some properties of these coalgebras are left as exercises.
In this section we shall be concerned only with trees as a coalgebra. For more examples and
properties of coalgebras, and the general theory, we refer the reader to Rutten [2000].

7F.14. Definition (Coalgebra). Let a functor T : Set→Set be given.

(i) A T -coalgebra is a pair 〈X, ξ : X −→ T (X)〉.
(ii) If 〈X, ξ : X −→ T (X)〉 and 〈Y, ζ : Y −→ T (Y )〉 are T -coalgebras, then a T -coalgebra

morphism is a mapping f : X −→ Y such that the following diagram commutes.

X
ξ //

f

��

T (X)

T (f)

��
Y

ζ // T (Y )

(iii) A T -coalgebra 〈C, out〉 is called final if it is a final object in the category of T -coalgebras,
i.e., for any T -coalgebra 〈X, ξ : X −→ T (X)〉 there is a unique T -coalgebra morphism ϕ : X −→
C.
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Dualizing the proof of proposition 7F.13, we have that every polynomial endofunctor of Set

has a final coalgebra, which is unique up to a T -coalgebra isomorphism. Furthermore, final
T -coalgebras are fixed points of T : if 〈X, ξ : X −→ T (X)〉 is the final T -coalgebra, then ξ is a
bijection.

Trees as final coalgebras

We sketch now how it is possible – and in fact convenient – to regard (finite and infinite) trees
over a set of atoms A as the final coalgebra of a suitable functor.

7F.15. Definition (The tree functor). Let A be a set of atoms. The assignment

TA(X), A+ (X ×X)

defines a functor over Set that will be called the tree functor.

We can define the TA-coalgebra:

ω : Trinf(A) −→ A+ Trinf(A)× Trinf(A)

by the following clauses:

ω(t) , inl(a), if t = a∈A,
, inr(〈t′, t′′〉), if t = t′ → t′′.

7F.16. Proposition. 〈Trinf(A), ω〉 is the final TA-coalgebra.

Proof. We only give the details of the construction of the unique TA-coalgebra morphism toward
〈Trinf(A), ω〉, because this has a concrete description that shall also be exploited later. Let
ξ : X −→ A+(X×X) be any TA-coalgebra. First define, for any x∈X, an element ℓ(x)∈A∪{→}
as follows.

ℓ(x) , a, if ξ(x) = inl(a) for some a∈A,
, →, otherwise.

For any x∈X we have to construct a tree ϕ(x) in such a way that the resulting mapping
ϕ : X −→ Trinf(A) is a TA-coalgebra morphism. We define the corresponding partial function
(see Definition 7E.1)

ϕ(x) : {0, 1}∗ ⇀ A ∪ {→}
by induction on the length of the tree addresses.

ϕ(x)(ǫ) , ℓ(x),

ϕ(x)(iw) , ↑, if ξ(x) = inl(a) for some a∈A,
, ϕ(xi)(w), if ξ(x) = inr〈x0, x1〉 for some x0, x1 ∈X.

We leave to the reader the verification that ϕ is indeed the unique TA-coalgebra morphism from
X to TrAinf .

7F.17. Remark. A flat simultaneous recursion R( ~X), that is, one whose right-hand sides have

either the shape α∈A or the shape X ′→X ′′ for some X ′, X ′′ ∈ ~X, may be seen directly as a

TA-coalgebra. Explicitly, R( ~X) corresponds to the TA-coalgebra

fR : ~X −→ A+ ~X × ~X

defined by the following conditions, for any X ∈ ~X:

fR(X) , inl(α), if X = α∈A,
, inr(〈X ′, X ′′〉), if X = X ′ → X ′′.
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The unique TA-morphism from ~X to Trinf(A), which exists by finality, is easily seen to be the

solution of R( ~X) in Trinf(A).

Coinduction enables us to define maps in a ‘coordinate-free’ fashion, rather than in the way
of Definition 7E.11.

7F.18. Remark. The coalgebraic treatment of trees can also justify the format of 7E.12 as official
definition. This is intuitively simpler than that given in Definition 7E.11. If A is invertible, then
there is an obvious map

τ : |A| −→ ||A||+ (|A| × |A|),
where the disjoint union matches the case distinction in the definition of function (−)∗A in Lemma
7E.12. The existence of the unique morphism (−)∗A : A→ Trinf(A) follows then by finality of
〈Trinf(A), ω〉, where A = ||A||.
We have seen already a direct proof of the following coinduction principle for trees, see Propo-

sition 7E.10. A categorical proof avoids using argumentation involving maps. This fits with the
‘coordinate-free’ treatment of definitions and propositions, see Section 7E.

7F.19. Proposition (Coinduction for trees). Let R be a bisimulation over Trinf × Trinf . Then

∀s, t∈Trinf .[sRt ⇒ s = t].

Proof. The following categorical proof, exploiting the finality of the coalgebra of trees, is taken
from Rutten [2000], Theorem 8.1. Observe that R is a bisimulation exactly when there is a
function ωR : R −→ TA(R) that makes the diagram

Trinf

ω

��

R
π1oo

ωR

��

π2 // Trinf

ω

��
TA(Trinf) TA(R)

TA(π1)
oo

TA(π2)
// TA(Trinf)

commute, where π1 (resp. π2) extracts the first (resp. the second) component of R. Then they
both are morphisms to the final coalgebra 〈Trinf , ω〉, therefore π1 = π2, and all pairs in R have
identical components.

7G. Exercises

7G.1. Let B = µα.β→α, with α 6= β. Show that ⊢λµ YK : B.
7G.2. Show that there is a term M ∈Λø→ such that all occurrences of λ in M bind

different variables, but M cannot be reduced naively, i.e. there is a β-reduct N
of M with a redex (λx.P )Q in N such that

(λx.P )Q 6→βP [x := Q] 6α.

[Hint. Consider a term of the form M ≡ (λx.x(Bx))c1.]
7G.3. Let h : A→S be a morphism. Define the kernel of h, notation ker(h), as follows

ker(h), {a = b | h(a) = h(b)}.
(i) Show that ker(h) is always a congruence relation and hence

(a = b)∈ ker(h) ⇔ a =ker(h) b.

(ii) Let h : A→S be a morphism and E be a set of equations over A. Show
E ⊆ ker(h) ⇔ (=E) ⊆ ker(h).
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7G.4. Show that R over TT( ~X) justifies E over TT in exactly one of the following cases.
See also Exercise 8D.12.

(i) R , {X = α→α→X};
E , {β = α→α→α→β, β = α→α→α→α→β}.

(ii) R , {X = α→α→X}
E , {β = α→α→α→α→β, β = α→α→α→α→α→α→β}.

7G.5. Let E = E( ~X) be a set of equations over A( ~X). Show that the following are
equivalent.

(i) B justifies E .
(ii) B |= h+(E). for some h+:A( ~X)→B,
(iii) B |= ∃ ~X.h(E), for some h : A→B. Here an h : A→B is extended in the

natural way to h : A( ~X)→B( ~X). E.g. h(a→X) = h(a)→X.

(iv) There is a morphism h♯ : A[E ]→B.
7G.6. Let E be a binary relation on a type algebra A. Show the following for the

category of type algebras with their morphisms.

(i) Show that a morphism h : A/E →S is uniquely determined by a morphism
h♮ : A→S such that E ⊆ ker(h♮) by h([a]E) = h♮(a).

(ii) The canonical map [−]E : A→A/E is an epimorphism having as kernel =E .
Conversely, if h : A→S is an epimorphism and E is its kernel, then S ∼= A/E .

(iii) A/E is determined, up to isomorphism, as the initial object such that [−]E :
A→A/E has kernel E . That is, if S is such that there is a h : A→S with
kernel E , then there is a unique arrow k : A/E→S such that k ◦ [−]E = h.

7G.7. Let A,B be type algebras and let h : A→B be a morphism. Show

(i) B |= h(E) ⇔ E ⊆ ker(h).

(ii) B justifies E ⇔ ∃h : A→B.E ⊆ ker(h).

7G.8. Suppose there is a morphism h : B→C. Show that if R[ ~X] is justified by B, then
also by C.

7G.9. Show that for every regular tree T ∈Trreg there exists a proper sr R( ~X) over TT

such that T = (X1)
∗
R. [Hint. Let T1, · · · , Tn, with T1 = T be the distinct subtrees

occurring in T and take ~X = X1, · · · , Xn.]
7G.10. Show that the relation =∗ introduced in Definition 7E.17(i) is the greatest in-

vertible congruence on TT extending ≈ and preserving all prime elements of TT/≈.
7G.11. Show that ||TTµ|| = {[α] | α∈A} ∪ {[µt.t]}.
7G.12. Let U denote the type µt.(t→ t). Show that, for all pure λ-terms M , Γ0 ⊢λµ M :

U , where Γ0 is the environment which assigns type U to all free variables of M .
7G.13. Show that the rule

Γ ⊢M : A α does not occur in Γ

Γ ⊢M : µα.A

is admissible in λµ.
7G.14. Let A be a type algebra with elements a, b such that b = b→ a. Provide the

de Bruijn version of the terms in Proposition 7A.3: ω , λx.xx, Ω , ωω, Y ,
λf.(λx.f(xx))(λx.f(xx)).
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7G.15. Inserting the fold− and unfold− constants at the proper types find a version Yµ

of the fixed point operator Y which is well typed in λCh0
µ . Verify that assuming a

reduction rule similar to (Ruf
E ) of Definition 7A.22 it can be proved that this has

the same reduction properties as Y.
7G.16. Let M , λxγ→µα.(β→α).xγ→µα.(β→α) ∈ΛA,Ch

= ((γ→µα.(β→α))→γ→µα.(β→α)).
Construct a term M ′ by adding to some η-expansion of M occurrences of fold or
unfold such that M ′ ∈ΛA,Ch0

= ((γ→µα.(β→α))→γ→µα.(β→α)).

Ingeneral construct for each M ∈ΛA,Ch
= (A) a term M ′ ∈ΛA,Ch0

= (A) such that

M̂ ′ =η M , where M̂ ′ is the term obtained from M ′ by erasing all occurrences of
fold and unfold .

7G.17. (i) A type algebra A is not always generated by its prime elements. [Hint. If
A = {A} with A = A→A, then ||A|| = ∅.]

(ii) The embedding 7B.12(i) is not always surjective. [Hint. Use (i).]
(iii) A morphism h:A→B is not uniquely determined by h ↾ ||A||.

7G.18. Let E be a set of equations over the type algebra A. We say that E satisfies
A = B, notation E |= A = B, if for all type algebras C and all morphisms
h : A→C one has C |= h(E) ⇒ C |= h(A) = h(B). Show that

E |= A = B ⇔ E ⊢ A = B.

7G.19. This elaborates some points in the proof of Proposition 7B.15.

(i) Show that the following is a ‘cut-free’ (no application of transitivity) axiom-
atization of ⊢E .

(refl) ;
A = A

(→)
A1 = B1 A2 = B2

;
(A1→A2) = (B1→B2)

(E [P,Q])
A = P B = Q

, if (P = Q)∈E or (Q = P )∈E .
A = B

(ii) Given a statement A = B, construct a tree (see Figure 22) that describes all
possible attempts of backwards derivations of A = B, following the cut-free
rules. The nodes are labeled with equations P = Q (expressing an equation
to be proved) or a symbol ‘→’ or a pair E [P,Q] (expressing proof-steps in
the cut-free system), with always P,Q being subtypes of a type occurring in
E ∪ {A = B}, such that the following holds.

1. There are exactly two ‘targets’ of the→ or E [P,Q] nodes.
2. A node with label P = Q is provable if both targets of at least one of its

(→ or E [P ′, Q′]) targets (an→ or an E [P ′, Q′] node) are provable (in the
cut-free version of ⊢E). [The P = Q nodes are called ‘or-nodes’ (having
dotted lines) and the→ and E [P,Q] are called ‘and-nodes’ (having solid
lines).]
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3. The tree path terminates at an or-node if the formula is A = A (indi-
cating local success) or if the formula is ‘P = Q’ which is already below
along the same path from the root (indicating local failure).

This tree is finite and contains all possible proofs of A = B (if any exists).
Check among all possible subtrees of this tree in which at an or-node only
one successor, at an and-node both successors are chosen, whether at a ter-
minating node one always has success. If there is at least one such subtree,
then A = B is provable in the cut-free system and hence in E , otherwise it
is not provable.

7G.20. Prove proposition 7F.13.
[Hint. Take I as the direct limit (union with identifications via the T k(f))

0
f // T (0)

T (f)
// T 2(0)

T 2(f)
// · · · ,

where 0 = ∅ is the initial element of Set and f : 0→T (0) the canonical map. The
inverse of the morphism in is defined by mapping an element of I, say in T k(0),
via T k(f) to the next level in I. This is an isomorphism.]

7G.21. Let T : Set→Set be a functor and let 〈C, out〉 be the final T -coalgebra. Prove
the following.
(i) For all α:X→T (X) there exists a unique f :X→C such that the following

diagram commutes

X
α // T (X)

C
out //

��
f

T (C)
��
T (f)

Figure 23. Coiteration

(ii) For all α:X→T (C +X) there exists a unique f :X→C such that the follow-
ing diagram commutes

T (C) oo
out

C

T (C +X) oo
α

T ([idC ,f ])

OO

X

f

OO

Figure 24. Primitive corecursion
[Hint. Verify that there exists a g : C + X→C such that the following diagram
commutes

C +X
T (nil) ◦outα

// T (C +X)

T (g)

��
C
��

g

T (C)//
out

Show that g = [1C , g ◦ nil], i.e. g ◦ nil = 1C .]

7G.22. The collection of streams over A is SA. An element s∈ SA is often written as
s = 〈s0, s1, s2, · · · 〉, with si = s(i). There are two basic operations (‘head’ and
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‘tail’) on SA with hd : SA→A; tl : SA→SA. defined by

hd(〈s0, s1, s2, · · · 〉), s0;

tl(〈s0, s1, s2, · · · 〉), 〈s1, s2, s3, · · · 〉.
The stream tl(s) is also called the derivative of s and is denoted by s′. One has
t = s iff ∀n∈N.s(n) = t(n), for s, t∈S.
(i) Show that SA is the final coalgebra of the functor TSA(X) = A×X.
(ii) A relation R ⊆ SA × SA is called a bisimulation iff for all s, t∈ SA

sRt ⇒ s0 = t0 & s′Rt′. (ci)

Show the principle of coinduction for streams: for R a bisimulation over SA,
and all s, t∈SA

sRt ⇒ s = t.

7G.23. Define maps even, odd : SA→SA and zip : SA × SA→SA as follows, by corecur-
sion.

(even(s))(0), s(0)

(even(s))′ , even(s′′)

(odd(s))(0), s(1)

(odd(s))′ , odd(s′′)

(zip(s, t))(0), s(0)

(zip(s, t))′ , zip(t, s′).

This has the effect that

even(〈a0, a1, · · · 〉) = (〈a0, a2, · · · 〉)
odd(〈a0, a1, · · · 〉) = (〈a1, a3, · · · 〉)

zip(〈a0, a1, · · · 〉, 〈b0, b1, · · · 〉) = (〈a0, b0, a1, b1, , · · · 〉).
Show that, for all s, t∈ SA, one has

even(zip(s, t)) = s;

odd(zip(s, t)) = t.

[Hint. Show that R = {〈even(zip(s, t)), s〉 | s, t∈ S} is a bisimulation.]

7G.24. Show that the maps even, odd : SA→SA and zip : SA2→SA can be defined by
coiteration.

7G.25. Using (a slightly modified form of) coinduction, show that

∀s∈ SA.zip(even(s), odd(s)) = s.

7G.26. Let F,G : SA→SA. Suppose

∀s∈ S.(F s)(0) = (Gs)(0) & (F s)′ = F (s′) & (Gs)′ = G(s′).

Show by coinduction that

∀s∈ S.F s = Gs.
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7G.27. Define map : (A→A)→SA→SA by

(map f s)(0), f(s(0)),

(map f s)′ , map f s′

Using Exercise 7G.26 show that

∀f, g ∈A→A∀s∈ S.map g (map f s) = map (g ◦ f) s.

7G.28. Construct by primitive corecursion a map g:SA→SA such that

g(s) = 〈0, s0, s1, s2, · · · 〉.
7G.29. (Rutten [2005]) For s, t∈ S define the sum and convolution-product corecursively

as follows.

(s+ t)(0), s(0) + t(0),

(s+ t)′ , s′ + t′;

(s× t)(0), s(0) ∗ t(0),
(s× t)′ , (s′ × t) + (s× t′).

(i) Show the following for all s, t, u∈ S.
(i) s+ t = t+ s;
(ii) (s+ t) + u = s+ (t+ u);
(iii) (s+ t)× u = (s× u) + (t× u);
(iv) s× t = t× s;
(v) (s× t)× u = s× (t× u).

[Hint. Use coinduction.]
(ii) Show that

〈a0, a1, a2, · · · 〉 × 〈b0, b1, b2, · · · 〉 = 〈c0, c1, c2, · · · 〉,
with cn = Σn

k=0 (
n
k)akbn−k.

(iii) Show that

〈1, r, r2, · · · 〉 × 〈1, s, s2, · · · 〉 = 〈1, r + s, (r + s)2, · · · 〉.
[Hint. Use (ii). Alternatively, define GS(r) = 〈1, r, r2, · · · 〉 using corecursion
and show GS(r)×GS(s) = GS(r + s), using coinduction.]

7G.30. Define the coalgebra lazy lists consisting of finite and infinite lists. Is there a
polynomial functor for which this is the final coalgebra?

7G.31. Show that µα.(α → µβ.β) ≡α µβ.(β → µβ.β), in spite of the restriction on
variables in the axioms (α-conv).

7G.32. [Klop] (i) Draw the complete µ-reduction graph of A = µαβγ.β, i.e. the set
{B | A⇒∗

µ B} directed by⇒µ. [Warning. The set has more than 2010 elements.]
(ii) Do the same for the type An,k = µα1 · · ·αn.αk.





CHAPTER 8

PROPERTIES OF RECURSIVE TYPES

In this Chapter we study the properties of recursive types independently of their use
in typing λ-terms. Most of these properties will however be useful in the study of the
properties of typed terms in the next Chapter.
We will discuss properties of µ-types and of systems of type equations in two separate

sections, even if most of them are indeed similar. In Section 8A we build a solution of
an sr using µ-types, and show the essential equivalence of the two notations for recursive
types. There are, nevertheless, aspects which are treated more naturally in one approach
than in the other. For instance, In Chapter 9, the notion of principal type scheme is
formulated and studied in a more natural way using simultaneous recursion. In Sections
8B, 8C we show the decidability of weak and strong equality for µ-types.

8A. Simultaneous recursions vs µ-types

The µ-types and the recursive types defined via an sr turn out to be closely related.

From sr to µ-types

First we show that types in any sr can be simulated (in a precise sense) by µ-types.

Take any sr R = R( ~X) over TT = TTA. We show that TTµ |= ∃ ~X.R( ~X), for TTµ = TTA
µ .

We do this in a constructive way by building an n-tuple of types S1, · · · , Sn ∈TTµ such

that TTµ |= R(~S). This means that

S1 =µ C1[ ~X := ~S]
· · ·

Sn =µ Cn[ ~X := ~S],

if R is of the form
X1 = C1( ~X)

· · ·
Xn = Cn( ~X),

(1)

with the Ci( ~X)∈TT[ ~X]. The following construction is taken from Bekič [1984], p. 39
‘Bisection Lemma’, and is known as ‘folklore’ of the subject.

8A.1. Theorem. Let R = R( ~X) be an sr over TT = TTA as (1) above.

(i) There is a morphism h : TT( ~X)→TTµ, leaving TT fixed, i.e. h(A) = A for A∈TT,
such that

S1 = h(X1), · · · , Sn = h(Xn)

349
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is a solution of R( ~X) in TTµ. This means that for each 1 ≤ i ≤ n
Si =µCi[ ~X := ~S].

(ii) Therefore TTµ |= ∃ ~X.R( ~X), i.e. TTµ solves R.
Proof. (i) First define the types ~P = P1, · · · ,Pn ∈TTµ for 1 ≤ i ≤ n.

P1 , µX1.C1

P2 , µX2.(C2[X1 := P1])
...

Pn , µXn.(Cn[X1 := P1] · · · [Xn−1 := Pn−1]).

Then define the types ~S = S1, · · · ,Sn ∈TTµ by

Sn , Pn

Sn−1 , Pn−1[Xn := Sn]
...

S1 , P1[X2 := S2, · · · , Xn := Sn].

Finally set

h(α) , α, if α∈A,
h(Xi) , Si,

h(A→B) , h(A)→h(B).

Clearly h is a morphism leaving TT fixed.
For notational simplicity we write down the proof for n = 2. The proof in this case

is similar to the first proof of the Double Fixed-Point Theorem 6.5.1 in B[1984]. Let
R(X1, X2) be

X1 = C1(X1, X2),

X2 = C2(X1, X2).

Write the construction of the ~S as follows.

PX2
1 = µX1.C1(X1, X2),

P2 = µX2.C2(P
X2
1 , X2),

S2 = P2,

S1 = PS2
1 .

Then

S2 = P2

= C2(P
P2
1 , P2)

= C2(S1, S2);

S1 = PS2
1

= C1(S1, S2).
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(ii) By (i) and Definition 7C.4. Here we tacitly extend h to a morphism h : TTµ( ~X)→TTµ,
leaving TTµ fixed.

8A.2. Example. Take the following sr R1 :

X1 = X2→X1

X2 = X1→X2

Applying Definition 8A.1 we have:

P1 = µX1.(X2→X1)
P2 = µX2.((µX1.(X2→X1))→X2)

and then

S2 = µX2.((µX1.(X2→X1))→X2)
S1 = µX1.(µX2.((µX

′
1.(X2→X ′

1))→X2)→X1)

It is easy to check that S1 =µ S2→S1 and S2 =µ S1→S2, but note that S1 6=µ S2 as
can be proved with the technique developed in Section 8B.

8A.3. Remark. 〈S1, . . . , Sn〉 is not a unique solution in TTµ (modulo =µ). In Example
8A.2 both the pair 〈S2, S1〉, as well as 〈S, S〉, where S = µX.X→X, solve R1. Note,
however, that (S1)

∗
µ = (S2)

∗
µ = (S)∗µ.

Note that in this proof all the needed type equivalences can be obtained by axiom
(µ-eq). No other rules of Definition 7D.26 (for instance (→-cong)) have been used. So
the solution is one in a rather strong sense.

8A.4. Corollary. (i) For the morphism h : TT[ ~X]→TTµ of Theorem 8A.1 one has for

all A,B ∈TT( ~X)

A =R B ⇒ h(A) =µ h(B).

(ii) Therefore h induces a morphism h♯ : TT[R]→TTµ, satisfying h
♯([α]) = α for α∈A

and h♯([A]) = h(A), for A∈TT( ~X).
(iii) ⊢TTA[R] M : A ⇒ ⊢TTµ M : h♯(A).

Proof. (i) By induction on the derivation of A =R B.
(ii) By Proposition 7B.4(i).
(iii) By Lemma 7A.20.

8A.5. Remark. In general the reverse of Corollary 8A.4(i) is not valid. Take e.g.

R0 , {X1=X1→X1, X2=X2→X2}.
Applying the construction of Theorem 8A.1 we obtain S1 = S2 = µX.(X → X), but
X1 6=R0 X2.

In the case of solutions modulo strong equivalence there are other constructions in the
literature which give simpler solutions, see e.g. Ariola and Klop [1996].

From µ-type to sr

In the opposite direction, any µ-type can be represented by an equivalent sr. While
the idea underlying this property is intuitively simple, a formal definition in the case
of weak equivalence becomes complicated and not especially interesting. In the case
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of strong equivalence, however, this notion can be easily formalized by exploiting the
interpretation of types as infinite trees.
We define for each A∈TTA

µ an sr R and a B ∈TTA such that (B)∗R is the same infinite
tree as (A)∗µ. In the following definition we assume, as usual, that all bound variables in
A have different names, which are also different from the names of all free variables in
A.

8A.6. Definition. We associate to a A∈TTµ a type T (A)∈TTA and an sr SR(A) over

TTA defined in the following way.

T (α) , α SR(α) , ∅, for α∈A,
T (A→B) , T (A)→T (B) SR(A→B) , SR(A) ∪ SR(B)

T (µαA) , α SR(µαA) , SR(A) ∪ {α = T (A)}.
8A.7. Theorem. (A)∗µ = (T (A))∗SR(A)

Proof. See Exercise 8D.1.

8B. Properties of µ-types

In this section we investigate properties of µ-types both under the weak and the strong
equivalence. In particular we show that both relations are invertible and decidable.

Invertibility and decidability of weak equivalence

Invertibility and decidability will be proved using the notion of reduction ⇒µ, defined
in Definition 7D.28. Note that ⇒µ is not normalizing: types can be infinitely unfolded.
However, the CR property, Proposition 7D.29(ii), suffices to prove invertibility.

8B.1. Theorem. The relation =µ on TTµ is invertible, i.e. for all A1, A2, B1, B2 ∈TTµ

A1→B1 =µA2→B2 ⇒ A1 =µA2 & B1 =µB2.

Proof. Assume A1→B1 =µA2→B2. By Lemma 7D.29(ii) there is a type C such that
A1→B1 ⇒∗

µ C and A2→B2 ⇒∗
µ C. But then we must have C ≡ C1→C2 with Ai ⇒∗

µ C1

and Bi ⇒∗
µ C2 for i = 1, 2. By 7D.29(i) this implies A1 =µA2 and B1 =µB2.

Decidability of weak equivalence

The relation =µ is also decidable. The proof occupies 8B.3-8B.32. This result is relevant,
as one of the typing rules in λµ, see Definition 7E.38, is

⊢λµ M : A, A =µB ⇒ ⊢λµ M : B.

Hence decidability of =µ is needed to show the system is recursively axiomatizable.
Surprisingly decidability is not so easy to prove, due to the transitivity of equality

(a ‘cut’-rule) and the presence of α-conversion. This makes proof search potentially
undecidable, as infinitely many types may have to be tried. In Cardone and Coppo [2003]
a proof system without cut-rule was presented. In Endrullis, Grabmayer, Klop, and
van Oostrom [2011] it is pointed out that one also needs to be careful with α-conversion,
as this may introduce infinitely many candidates in a proof search. This paper gives
three different proofs of the decidability of =µ, two of these based on Cardone and
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Coppo [2003] and the third on tree-regular languages. The elementary proof below is a
simplification of the first proof of Endrullis et al. It uses a simpler bookkeeping device
to give an upper bound to the number of nodes in a derivation tree for A =µB.

8B.2. Remark. One obvious attempt to prove decidability of weak equivalence is that
of introducing a reduction relation ⇒−1

µ , defined by the contraction rule

A[α := µα.A]⇒−1
µ µα.A.

If the relation ⇒−1
µ were Church-Rosser, then each =µ-equivalence class would have

a unique minimal representative reachable in a finite number of steps. From this decid-
ability of =µ would follow. Unfortunately ⇒−1

µ is not Church-Rosser, see Exercise 8D.6,
therefore this proof strategy fails.

The cut-rule (trans) in the definition of system (µ) in Fig 21 causes problems in the
proof of the decidability. In searching a proof of A = C one must find a type B such that
A = B and B = C. But in general there are many possible choices for B. In Cardone
and Coppo [2003] another proofsystem (µ−), without rule (trans), is defined that turns
out to be equivalent with the proofsystem (µ).

8B.3. Definition. (The system (µ−))

(axiom) A = A

(left µ-step)
A1[α := µα.A1] = B

µα.A1 = B

(right µ-step)
A = B1[α := µα.B1]

A = µα.B1

(µ-cong)
A1 = B1

µα.A1 = µα.B1

(→ -cong)
A1 = B1 A2 = B2

A1→A2 = B1→B2

Write ⊢µ− A = B if A = B is provable in the system (µ−).

In 8B.4-8B.9 it will be shown that

A =µB ⇔ ⊢µ− A = B.

8B.4. Definition. (Standard reduction ⇒∗
st)

(i) Consider the ⇒µ-reduction sequence

R : A1 ⇒µ A2 ⇒µ . . .⇒µ An.

In each step Ai ⇒µ Ai+1 mark all µ occurring in Ai to the left of the contracted µ
with a symbol ♦. Then R is called a standard ⇒µ-reduction if only non-marked µ are
contracted in R.

(ii) Write A⇒∗
st B if there is a standard reduction R : A⇒∗

µ B.
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8B.5. Definition. Let the length l(A) of a type A be defined inductively by

l(α) = 1, l(A1→A2) = 1 + l(A1) + l(A2), l(µα.A1) = 1 + l(A1).

8B.6. Lemma. The relation ⇒∗
st is completely determined as follows.

(a) A⇒∗
st A.

(b) If A1[α := µα.A1]⇒∗
st B, then µα.A1 ⇒∗

st B.
(c) If A1 ⇒∗

st B1, then µα.A1 ⇒∗
st µα.B1.

(d) If A1 ⇒∗
st A

′
1 and A2 ⇒∗

st A
′
2, then (A1→A2)⇒∗

st (A
′
1→A′

2).

Proof. Write A⇒′
st B if (A,B) is in the least relation satisfying (a)-(d). By induction

on the generation of ⇒′
st one has

(A⇒′
st B) ⇒ (A⇒∗

st B).

Conversely, suppose A ⇒∗
st B. Then there exist a standard reduction A ⇒∗ B. By

induction on (n, l), i.e. on the ordinal ωn+ l, where n is the length of this reduction and
l = l(A), we show A⇒′

st B. The only interseting cases are the following.
Case 1. A ≡ A1→A2 then B ≡ B1→B2 and A1 ⇒∗

st B1, A2 ⇒∗
st B2. By the induction

hypothesis Ai ⇒′
st Bi, hence A1→A2 ⇒′

st B1→B2.
Case 2. A ≡ µα.A1. Subcase 2.1 µα.A1⇒µ A1[α := µα.A1]⇒∗

st B. By the induction
hypothesis A1[α := µα.A1] ⇒′

st B and hence A ⇒′
st B, by clause (b). Subcase 2.2

A ⇒∗
st B is µα.A1 ⇒µ µα.A2 ⇒∗

st B. Then B ≡ µα.An+1 and A1 ⇒∗
st An+1. By the

induction hypothesis A1 ⇒′
st An+1 hence A⇒′

st B.

8B.7. Example. Let A = µαµβ.C[α, β], where C[α, β] is a type in which possibly α and
β occur several times. Let B = µα.C[α, µβ.C[α, β]]. Consider

(i) A⇒µ B ⇒µ C[B,µβ.C[B, β]].
(ii) A⇒µ µβ.C[A, β]⇒µ C[A, µβ.C[A, β]]⇒µ C[B,µβ.C[A, β]]⇒µ C[B,µβ.C[B, β]].

Then (i) is not a standard reduction, but (ii) is.

The following standardization theorem for ⇒∗
µ can be obtained as a particular case of

the standardization theorem for CRS. For a proof see J.W. Klop, V. van Oostrom, and
F. van Raamsdonk [1993].

8B.8. Lemma. If A⇒∗
µ B then A⇒∗

st B.

8B.9. Corollary. A =µB ⇔ A and B have a common standard reduct.

Proof. Use that the reduction relation ⇒∗
µ is Church Rosser.

8B.10. Proposition. ⊢µ− A = B ⇔ A and B have a common standard reduct.

Proof. (⇒) By induction on the derivation of ⊢µ− A = B, using Lemma 8B.6.
(⇐) By Lemma 8B.6 we can distinguish the following cases.
Case (a) for both A and B, i.e. A ≡ C and B ≡ C.
Case (b) for A (and similarly for B).
Case (c) for A and for B.
Case (d) for A and for B.
This suffices. If we have Case (c) for A and Case (a) for B, then in fact we have Case

(c) for both A and B. If we have Case (d) for A and Case (a) for B, then (d) holds for
both A and B. Finally, Case (c) for A and Case (d) for B (or vice versa) cannot occur
at the same time. In all these four cases we easily conclude ⊢µ− A = B.

8B.11. Corollary. A =µB ⇔ ⊢µ− A = B.
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Proof. By Corollary 8B.9.

Items 8B.3-8B.11 all come from Cardone and Coppo [2003], but their proof of the
decidability of ⊢µ− A = B incorrectly treated rule (µ-cong).

8B.12. Lemma. In a branch of a proof search tree for ⊢µ− A = B the number of different
nodes is at most

3l(A)+l(B).

Proof. The proof of this lemma occupies 8B.16-8B.32.

8B.13. Corollary. In an exhaustive proof search tree for ⊢µ− A = B the number of
different nodes is at most

3(3
l(A)+l(B)).

Proof. Easy. Note that each node in the tree has at most three daughters.

8B.14. Corollary. ⊢µ− A = B is decidable.

8B.15. Theorem. A =µB is decidable.

Proof. By the preceding corollary and Corollary 8B.11.

In the proof of Lemma 8B.12 the rule (µ-cong) of the proofsystem (µ−), i.e.

A1 = B1
,

µα.A1 = µα.B1

gives problems in case α∈FV(A1), α∈FV(B1). In a proof attempt for ⊢µ− C = D one
may encounter this rule. Then a proof of ⊢µ− µα.A1 = µα.B1 follows from a proof of
⊢µ− A1 = B1. But there is an ambiguity here because the equation µα.A1 = µα.B1 is
the same equation as µβ.A1[α := β] = µβ.B1[α := β] for a fresh variable β and so one
could also look for a proof of ⊢µ− A1[α := β] = B1[α := β]. So we must treat the change
of a free variable α by a fresh variable β in A1 and B1 at the same time.
For that we define yet another proof system (µ′) where the two equations A1 = B1

and A1[α := β] = B1[α := β] are identified. In case α∈FV(A1) ∪ FV(B1) we replace
rule (µ-cong) by

(α)A1 = (α)B1

µα.A1 = µα.B1
.

Here (α)A1 and (α)B1 are no longer redexes, but α is not thrown away. The γ in (γ)A
is considered to be bound and we work modulo α-conversion, (γ)A =α (δ)A.[γ := δ], so
the equation (α)A1 = (α)B1 is the same equation as (β)A1[α := β] = (β)B1[α := β].
The system (µ′) will turn out to be equivalent with the system (µ−) in the following

strong sense. Each proof (attempt) of ⊢µ− A = B corresponds to a proof (attempt) of
⊢µ′ A = B of the same structure and vice versa. We will show that Lemma 8B.12 holds
with ⊢µ− replaced by ⊢µ′ and then it clearly also holds for ⊢µ− itself and we are ready.
Now we give the precise definition of the system (µ′).
The inspiration for the use of so called annotated types in the following came from

the first proof in Endrullis, Grabmayer, Klop, and van Oostrom [2011]. In this proof the

set AnnTer(µ) = {(µβ1) · · · (µβn)A | A∈TTµ} is defined. By requiring that the ~β are all
distinct, that βi ∈FV (A), and working modulo α-conversion the proof below will run
more smoothly.
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8B.16. Definition (Annotated types TTµ′). (i) The set of annotated types is defined as

TTµ′ ≡ {(β1) · · · (βn)A | A∈TTµ with βi ∈FV (A) and with the ~β all distinct}.

Note that TTµ ⊂ TTµ′ .

(ii) The βi in (β1) · · · (βn)A are bound and we consider the annotated types modulo
α-equivalence as follows

(β1) · · · (βn)A ≡ (β′1) · · · (β′n)A[βi := β′i],

where the β′1, · · · ,β′n are distinct and fresh, i.e. β′i /∈ (FV(A)− {β1, · · · , βn}) ∪ BV(A).

8B.17. Notation. (i) For (β1) · · · (βn)A we write (β1 · · ·βn)A and often also (~β)A.

(ii) Let a, b, c, · · · range over TTµ′ and as before A,B,C, · · · over TTµ.

(iii) If ~β is a sequence of (distinct) type variables then (~β)↾a denotes (~β′)a, where ~β′

is the sequence that arises from ~β by omitting the variables not occuring freely in a.

(iv) For S ⊆ TTµ′ , write (~β)↾S = {(~β)↾a | a∈S}.
(v) If X is a finite set, then |X| is the number of its elements.

(vi) If ~β is a sequence of variables (assumed distinct), then {~β} is its set {β1, · · · , βn}.
Now we give the definition of the proof system (µ′).

8B.18. Definition. The system (µ′) deriving equations a = b for a, b∈TTµ′ .

(axiom) (~β)A = (~β)A

(left µ-step)
(~β)A1[α := µα.A1] = (~β)B

(~β)µα.A1 = (~β)B

(right µ-step)
(~β)A = (~β)B1[α := µα.B1]

(~β)A = (~β)µα.B1

(µ-cong1)
(~βα)A1 = (~βα)B1

(~β)µα.A1 = (~β)µα.B1

(µ-cong2)
(~β)A1 = (~β)B1 α /∈FV(A1), α /∈FV(B1)

(~β)µα.A1 = (~β)µα.B1

(→ -cong)
(~β)↾A1 = (~β)↾B1 (~β)↾A2 = (~β)↾B2

(~β)(A1→A2) = (~β)(B1→B2)

8B.19. Remark. (i) One has FV(A1)[α := µα.A1] = FV(µα.A1) and from that one gets
immediately ⊢µ− A = B ⇒ FV(A) = FV(B) and ⊢µ′ A = B ⇒ FV(A) = FV(B). So
if FV(A) 6= FV(B) then one cannot have A =µB. Therefore from now on we restrict
ourselves to equations A = B such that FV(A) = FV(B) and similarly for equations

(~β)A = (~β)B.
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(ii) Note that in rule (µ-cong1) implicitly α∈FV(A1) = FV(B1) and that in rule

(→-cong) one has {~β} ⊂ FV(A1→A2) = FV(B1→B2). Also note that rule(µ-cong2) is
superfluous, because it follows by a (left µ-step) and a (right µ-step).

(iii) In rule (→-cong) the conclusion is not always uniquely determined by the as-
sumptions: from (β1β2) ↾ β1 = (β1β2) ↾ µα.β1 and (β1β2) ↾ β2 = (β1β2) ↾ β2, which
is in fact (β)β = (β)µα.β and (β)β = (β)β one can conclude not only the equality
(β1β2)β1→β2 = (β1β2)(µ.α.β1)→β2, but also (β)β→β = (β)(µα.β)→β.

The following is an example of a successful proof attempt of an equality between
annotated types. In other cases such an attempt may fail.

8B.20. Example.

(β)β = (β)β
(left µ-step)

(β)(µδ.β) = (β)β

(β)β = (β)β
(left µ-step)

(β)µδ.β = (β)β (γ)γ = (γ)γ
(→ -cong)

(βγ)((µδ.β)→γ) = (βγ)(β→γ)
(µ-cong1)

(β)µγ.((µδ.β)→γ) = (β)(µγ.β→γ)
(→ -cong)

(β)((µδ.β)→µγ.((µδ.β)→γ)) = (β)(β→(µγ.β→γ))
(left µ-step)

(β)µγ.((µδ.β)→γ) = (β)(β→(µγ.β→γ))
(µ-cong2)

(β)µαγ.((µδ.β)→γ) = (β)µα.(β→(µγ.β→γ))
(µ-cong1)

µβαγ.((µδ.β)→γ) = µβα.(β→(µγ.β→γ))

8B.21. Remark. (i) Let A = µβαγ.((µδβ)→γ) and B = µβα.(β→ (µγ.β→γ)). In the
example above we gave a proof of ⊢µ′ A = B. In fact one could try other proofs. For
example starting (from below) with a left µ-step and a right µ-step. Then one encounters
at some stage again a node A = B. So one could go on for ever and the result would be
an infinite tree. But of course one should stop developing the sub-branch at that node.
In general if in a proof attempt for ⊢µ′ a = b we arrive at a node c = d that we

encountered already below on the branch to the root, then we stop: we consider only
proof attempts without repetitions.

(ii) We go a step further in our restriction on the proof attempts. An (annotated)
equation a = b is called a variant of a′ = b′ if the second results from the first by
renaming the free variables on both sides in the same way. For example the following
three equations are variants

(β)µα.α→β→γ→δ = (β)µα.α→γ
(β)µα.α→β→γ′→δ′ = (β)µα.α→γ′

(β′)µα′.α′→β′→γ′→δ′ = (β′)µα′.α′→γ′

of each other, but not of

(β)µα.α→β→γ1→δ = (β)µα.α→γ2.

Note that variants a = b and a′ = b′ are equivalent in the sense that from a derivation
(attempt) for a = b one obtains one for a′ = b′ of the same structure by a change of free
variables. We only consider proof attempts in (µ′) and (µ−) without repetitions up to
variance.
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8B.22. Lemma. A derivation (attempt) in (µ′) corresponds to one in (µ−), having the
same structure. The converse is also valid.

Proof. In a derivation attempt of ⊢µ′ A = B skip all (~β),i.e. replace all (~β)C = (~β)D
by C = D. By Remark 8B.21(ii) this does not depend on the choice of representatives
of the α-equivalence class of annotated types.
Conversely, given a derivation of ⊢µ− A = B, build a derivation of ⊢µ′ A = B working

upwards using the corresponding rules in (µ′).

8B.23. Remark. The map from the derivations in (µ−) to those in (µ′) is a bijection up
to variance. For example derivations like

α = α

µα.α = µα.α
and

β = β

µβ.β = µβ.β
are identified.

Now we will finish the proof of decidability of =µ . We show that the number of
different nodes c = d occurring in a proof search tree for ⊢µ′ A = B is bounded by a
function in A,B.

8B.24. Definition. (i) The binary relation ⇒µ′ : TTµ′→TTµ′ is defined as follows.

(~β)µα.A1⇒µ′ (~βα)A1 if α∈FV (A1);

(~β)µα.A1⇒µ′ (~β)A1[α := µα.A1];

(~β)(A1→A2)⇒µ′ (~β)↾Ai i = 1, 2;

(ii) For a∈TTµ′ define the set SCw
r (a) = {b∈TTµ′ | a ⇒∗

µ′ b}. The name SC comes
from subterm closure and we will encounter it in various variants.

8B.25. Remark. Note that ⇒µ′ is not meant to be a reduction relation, compatible
with µ or→. For example we do not require µβµα.A1 ⇒µ′ µβ.A1[α := µα.A1].

8B.26. Lemma. If c = d occurs in a proof attempt in (µ′) for a = b. Then c∈SCw
r (a)

and d∈SCw
r (b).

Proof. By induction on the length of the proof attempt for ⊢µ′ a = b.

The essential step towards decidability is showing that |SCw
r (a)| is bounded by a

computable function in a, Lemma 8B.31.

8B.27. Lemma. (i) Let {~β} ∩ {~α} = ∅. Then (~β~α)↾A = (~β)↾((~α)↾A).
(ii) SCw

r ((
~β)↾A) = (~β)↾SCw

r (A).

Proof. Immediate.

8B.28. Lemma. SCw
r (α) = {α};

SCw
r (µα.A1) = {µα.A1} ∪ (α)↾SCw

r (A1) ∪ SCw
r (A1[α := µα.A1]);

SCw
r (A1→A2) = {A1→A2} ∪ SCw

r (A1) ∪ SCw
r (A2).

Proof. By induction on the structure of a∈TTµ′ , using(ii) of the preceding lemma. Note
that the second clause also holds for α /∈FV(A1), because then

(α)↾SCw
r (A1) = SCw

r (A1) = SCw
r (A1[α := µα.A1]).

The set SCw
r (A1[α := µα.A1]) is intricate, but by Lemma 8B.30 it will be contained

in
{µα.A1} ∪ (α)↾SCw

r (A1) ∪ SCw
r (A1)[α := µα.A1]. (1)
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Note the difference in the brackets in (1) and the second clause in Lemma 8B.28.
The following lemma is an adaptation of Lemma 25 in Endrullis, Grabmayer, Klop,

and van Oostrom [2011].

8B.29. Lemma. If A[α := µα.A]⇒∗
µ′ b then we have either

(i) this reduction is A[α := µα.A]⇒∗
µ′ µα.A⇒∗

µ′ b;

(ii) this reduction is an [α := µα.A] instance of A⇒∗
µ′ a. So b = a[α := µα.A].

Proof. By induction on the length of the reduction A[α := µα.A]⇒∗
µ′ b.

If the length is zero then we have (ii). Otherwise A[α := µα.A] ⇒∗
µ′ b′ ⇒µ′ b. The

induction hypothesis for A[α := µα.A]⇒∗
µ′ b′ gives either (i) or (ii) as follows.

(i) A[α := µα.A]⇒∗
µ′ µα.A⇒∗

µ′ b′. Then we have also case (i) for A[α := µα.A]⇒∗
µ′ b.

(ii) The reduction A[α := µα.A] ⇒∗
µ′ b′ is a [α := µα.A] instance of A ⇒∗

µ′ a′. So

b′ = a′[α := µα.A]. We distinguish subcases for a′ as follows.
(iia) a′ = α. Then we have Case (i) (for A[α := µα.A]⇒∗

µ′ b).

(iib) a′ = β 6= α or a′ = (β)β. These cases cannot occur because then b′ = a′ is in nf.

(iic) a′ = (~β)µγ.A′ with α /∈{~β, γ}. Then (~β) at the root is very innocent. It is frozen
and occurs in the same way at the root in all types occurring in the proof. Therefore we

may assume {~β} = ∅. Now b′ = µγ.A′[α := µα.A]. We distinguish two subsubcases.
(iic1) µγ.A′[α := µα.A] ⇒µ′ (γ)(A′[α := µα.A]) (∗). Then γ ∈FV(A′[α := µα.A]),

hence also γ ∈FV(A′), as γ /∈FV(µα.A) by the variable convention. So the reduction (∗)
is an [α := µα.A] instance of µγ.A′ ⇒µ′ (γ).A′. Therefore A[α := µα.A]⇒∗

µ′ b′ ⇒µ′ b is

an instance of A⇒∗
µ′ µγ.A′ ⇒µ′ (γ).A′ and we are in Case (ii) (for A[α := µα.A]⇒∗

µ′ b).

(iic2) b′ = µγ.A′[α := µα.A]⇒µ′ A′[α := µα.A][γ := µγ.A′[α := µα.A]] = b.
By the substitution lemma b′ = µγ.A′[α := µα.A] ⇒µ′ A′[γ := µγ.A′][α := µα.A] = b.
So A[α := µα.A]⇒∗

µ′ b′ ⇒µ′ b is an instance of A⇒∗
µ′ a′ = µγ.A′ ⇒µ′ a = A′[γ := µγ.A′]

and we are in Case (ii) (for A[α := µα.A]⇒∗
µ′ b).

(iid) a′ = (~β)(A1→A2). As α /∈{~β} and {~β} ∩ FV(µα.A) = ∅. We have

b′ = (~β)(A1[α := µα.A]→A2[α := µα.A])

⇒µ′ b = (~β)↾(Ai[α := µα.A]) = ((~β)↾Ai)[α := µα.A].

Also a′ ⇒µ′ (~β)↾Ai. Again we are in case (ii) (for A[α := µα.A]⇒∗
µ′ b).

For an alternative proof of the following Lemma, see Exercise 8D.7.

8B.30. Lemma. SCw
r (µα.A1) ⊆ {µα.A1} ∪ (α)↾SCw

r (A1) ∪ SCw
r (A1)[α := µα.A1].

Proof. Let µα.A1 ⇒∗
µ′ b be a reduction path of minimal length. If the length is zero

then b = µα.A1 and we are done. If the length is greater than zero, we distinguish cases.
Case (i) µα.A1 ⇒µ′ (α).A1 ⇒∗

µ′ b. Then we have α∈FV(A1) and b∈SCw
r ((α).A1) =

(α)↾SCw
r (A1), by Lemma 8B.27.

Case(ii) µα.A1 ⇒µ′ A1[α := µα.A1]⇒∗
µ′ b. By Lemma 8B.29 there are two subcases.

(iia) µα.A1 ⇒µ′ A1[α := µα.A1]⇒∗
µ′ µα.A1 ⇒∗

µ′ b. By minimality this is impossible.

(iib) A1[α := µα.A1]⇒∗
µ′ b is an [α := µα.A1] instance of A1 ⇒∗

µ′ a. Now a∈SCw
r (A1),

hence b = a[α := µα.A1]∈SCw
r (A1)[α := µα.A1].

8B.31. Lemma. |SCw
r (A)| ≤ 3l(A).

Proof. By induction on A, using Lemmas 8B.28 and 8B.30.
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8B.32. Corollary. The number of different nodes in a branch of a proof search tree for
⊢µ′ A = B is at most

3l(A)+l(B).

Proof. Immediate by Lemma 8B.26.

Theorem 8B.15 A =µB is decidable.

Proof. By Lemma 8B.22(ii) and Corollary 8B.32 proof search is bounded. This proves
Lemma 8B.12, hence also the result.

Invertibility of strong equivalence

Also strong µ-equivalence is invertible.

8B.33. Proposition. The type algebra TT∗
µ is invertible.

Proof. By the fact that (A→B)∗µ = →

(A)∗µ

zzzzzzzz
(B)∗µ

DDDDDDDD

.

Hence (A→B)∗µ = (A′→B′)∗µ implies (A)∗µ = (A′)∗µ and (B)∗µ = (B′)∗µ.

Clearly A =∗
µ B if at all nodes u the trees (A)∗µ and (B)∗µ have the same label.

Decidability and axiomatization of strong equivalence

We will show that it is decidable whether given two types A,B ∈TTµ their unfolding as
infinite trees are equal, i.e. (A)∗µ = (B)∗µ, also written as A =∗

µ B. The decidability is
due to Koster [1969], with an exponential algorithm. In unpublished lecture notes by
Koster this was improved to an algorithm of complexity O(n2). In Kozen, Palsberg, and
Schwartzbach [1995] another quadratic algorithm is given. In Moller and Smolka [1995]
an O(n logn) algorithm is presented. Automata aspects of both algorithms can be found
in ten Eikelder [1991].
While the notion of weak equivalence was introduced by means of a formal inference

system, that of strong equivalence was introduced in Chapter 7E in a semantic way via
the interpretation of recursive types as trees. We show in this section that also strong
equivalence can be represented by a (rather simple) finite set of formal rules, exploiting
implicitly the proof principle of coinduction. The formal system (BH) and the proof
that

⊢BH A = B ⇔ A =∗
µ B

are taken from Brandt and Henglein [1998]. Other complete formalizations of strong
equivalence have been given by Ariola and Klop [1996] and Amadio and Cardelli [1993],
and will be discussed below in Definition 8B.60. See Grabmayer [2005] for a proof-
theoretical analysis of these formalizations.
Here we follow Brandt and Henglein [1998], who give at the same time an axiomati-

zation and the decidability of strong equality.
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8B.34. Definition. For A∈TTµ define the set SCs(A) ⊆ TTµ.

SCs(c) , {c}, if c is a variable or a constant;

SCs(A1→A2) , {A1→A2} ∪ SCs(A1) ∪ SCs(A2);

SCs(µβA) , {µβA} ∪ SCs(A)[β := µβA].

8B.35. Lemma. Let A∈TTµ. Then the cardinality of the set SCs(A) is at most the
number of symbols in A and hence finite.

Proof. By induction on the generation of A.

8B.36. Lemma. For all A∈TTµ one has

SCs(SCs(A)) = SCs(A).

Proof. As to (⊆). First show by induction on A that2

SCs(A[β := B]) ⊆ SCs(A)[β := B] ∪ SCs(B). (1)

Then show SCs(SCs(A)) ⊆ SCs(A) by induction on A. For A = µα.A1 use (1) and the
induction hypothesis for A1.
As to (⊇). This immediately follows from the fact that B ∈SC(B) for all B.

8B.37. Definition. Following Endrullis, Grabmayer, Klop, and van Oostrom [2011] we
define for A∈TTµ the set SCs

r(A) ⊆ TTµ. Define the binary relation ;⊆ TT2
µ by

(A1→A2); Ai;

µα.A; A[α := µα.A].

Now write

SCs
r(A), {C ∈TTµ | A;

∗ C},

where ;
∗ is the transitive reflexive closure of ;.

8B.38. Lemma. For all A∈TTµ one has SCs
r(A) = SCs(A).

Proof. (⊆) By Lemma 8B.36.
(⊇) By induction on the structure of A, using the Substitution Lemma 7D.25.

8B.39. Corollary. For every A∈TTµ the set SCs
r(A) is finite.

Proof. By Lemma 8B.35.

For an alternative proof of this Corollary, see Exercise 8D.9.

2In Brandt and Henglein [1998] Lemma 15, under the condition β ∈FV(A), even equality is proved.
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8B.40. Definition (Ariola and Klop [1996]). (i) On TTµ consider the formal system de-
fined by the following axioms and rules.

(ident) H ⊢ A = A

(symm)
H ⊢ A = B

H ⊢ B = A

(trans)
H ⊢ A = B H ⊢ B = C

H ⊢ A = C

(axiom) H ⊢ A=B, if (A=B)∈H,

(µ-eq) H ⊢ µα.A = A[α := µα.A],

(deconstr)
H ⊢ (A→B)=(A′→B′)

H ⊢ A=A′ H ⊢ (B′=B′)

Write H ⊢µ-dec A = B if H ⊢ A = B is derivable in this system.
(ii) The deductive closure of H is defined as

{C = D | H ⊢µ-dec C = D}.
(iii) Define an equation A = B to be consistent if for no C = D in the deductive

closure of {A = B} one has ls(C) 6≡ ls(D).

8B.41. Lemma. For A,B ∈TTA one has

A =∗
µ B ⇔ A = B is consistent.

Proof. See Exercise 8D.15.

8B.42. Example. Consider A,µα.α→α and B,µαβ.α→β. Write C,µγ.B→γ. Then
the deductive closure of {A = B} is {P = Q | P,Q∈{A,B,C}}. For all P,Q we have
lsP = lsQ = →. Hence A=B is consistent: no inconsistency ‘has appeared’. Therefore
A =∗

µ B.

8B.43. Lemma. Let C = D be in the deductive closure of {A = B}. Then

C,D∈SCs
r(A) ∪ SCs

r(B).

Therefore the cardinality of the deductive closure is at most n2, where n is the maximum
of the number of symbols in A and in B.

Proof. By induction on the derivation in ⊢µ-dec and Lemmas 8B.35 and 8B.38.

8B.44. Theorem (Koster [1969]). The relation =∗
µ⊆ (TTµ)

2 is decidable.

Proof. Using the system ⊢µ-dec one produces the elements of the deductive closure of
{A = B} as an increasing sequence of sets

C0 , {A = B} ⊆ C1 ⊆ C2 ⊆ · · · ⊆ Cn
such that if Cn = Cn+1, then Cn = Cm for all m > n. This is done by adding to already
produced equations only new equations produced by the formal system. At a certain
moment Cn = Cn+1, by Lemma 8B.43; then the deductive closure is completed and we
can decide whether the result is consistent or not. This is sufficient by Lemma 8B.41.
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(ident) H ⊢ A = A

(symm)
H ⊢ A = B

H ⊢ B = A

(trans)
H ⊢ A = B H ⊢ B = C

H ⊢ A = C

(axiom) H ⊢ A = B, if (A = B)∈H,
(µ-eq) H ⊢ µα.A = A[α := µα.A]

(µ-cong)
H ⊢ A = A′

,
H ⊢ µα.A = µα.A′

if α not free in H,

(→-cong)
H ⊢ A=A′ & H ⊢ B=B′

H ⊢ (A→B)=(A′→B′)

(coind)

H, (A→B)=(A′→B′) ⊢ A=A′

H, (A→B)=(A′→B′) ⊢ B=B′

H ⊢ (A→B)=(A′→B′)

Figure 25. The system (BH).

Axiomatization of strong equality

We will introduce a deductive system (BH) for deriving strong equality. The decidability
of =∗

µ will follow a second time as a Corollary (8B.57).

The proof system for strong equality can be given for both µ-types and simultaneous
recursions: the approach and the proof techniques are essentially the same. Below, we
will carry out the proofs for µ-types. From the completeness of this formalization we
obtain a proof of the decidability of strong equivalence for µ-types. In the next section
this proof strategy will be used to show the decidability of strong equivalence =∗

R for a
simultaneous recursion R.
In the system (BH) we have judgments of the form

H ⊢ A=B

in which H is a set of equations between types of the shape A1→A2=B1→B2, where
A1, B1, A2, B2 ∈TTµ. The meaning of this judgment is that we can derive A=B using
the equations in H. We will show in Theorem 8B.56 that provability in (BH) from H = ∅
corresponds exactly to strong equivalence.

8B.45. Definition. Let H denote a set of statements of the form A1→A2=B1→B2,
where A1, B1, A2, B2 ∈TTµ. The system (BH) is defined by the rules in Fig. 25.
We write H ⊢BH A=B if H ⊢ A=B can be derived by the rules of (BH) .

Rule (coind) is obviously the crucial one. It says that if we are able to prove A=A′ and
B=B′ assuming A→B=A′→B′ then we can conclude that A→B=A′→B′.
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By rule (coind) the system (BH) exploits its coinductive characterization of equality
of infinite trees. Given a formal derivation in system (BH) of a judgment of the form
H ⊢ A=B, we can regard each application of rule (coind) as a step in the construction
of a bisimulation, see Definition 7E.9 relating the infinite trees (A)∗µ and (B)∗µ.

8B.46. Remark. (i) By induction on derivations one can show that weakening is an
admissible rule:

H ⊢ A = B ⇒ H,H′ ⊢ A = B.

(ii) Note that the rule (→-cong) can be omitted while maintaining the same provability
strength. This follows from the rule (coind) and weakening. Indeed, assuming H ⊢ A =
A′, H ⊢ B = B′, one has by weakening H, (A→B) = (A′→B′) ⊢ A = A′, H, (A→
B) = (A′→B′) ⊢ B = B′ and therefore by rule (coind) H ⊢ (A→B) = (A′→B′).

8B.47. Example. As an example of a derivation in (BH), consider S , µβ.µα.α → β,

T ,µα.α→ S, and B,µα.α→ α. Observe that S =µ T =µ T → S, and B =µB → B
but S 6=µ B. We will show ⊢BH S = B. Let D stand for the following derivation of
H ⊢ T =B with H = {T → S=B → B}.

(µ-eq)

H ⊢ T =T → S

(hyp)

H ⊢ T → S=B → B
(trans)

H ⊢ T =B → B

(µ-eq)

H ⊢ B=B → B
(symm)

H ⊢ B → B=B
(trans)

H ⊢ T =B

Consider now the following derivation in (BH).

(µ-eq)

⊢S=T

(µ-eq)

⊢T =T → S

D
...

H ⊢ T =B

(µ-eq)

H ⊢ S=T

D
...

H ⊢ T =B
(trans)

H ⊢ S=B
(coind)

⊢T → S=B → B

(µ-eq)

⊢ B=B → B
(symm)

⊢B → B=B
(trans)

⊢T → S=B
(trans)

⊢T =B
(trans)

⊢S=B

Now we will prove the following soundness and completeness result.

A =∗
µ B ⇔ ⊢BHA = B.

The proof occupies 8B.48-8B.56.

8B.48. Definition. (i) Let A,B ∈TTµ and k ≥ 0. Define

A =∗
k B⇐⇒△ ((A)∗µ)k = ((B)∗µ)k.

(ii) A set H of formal equations of the form A = B is said k-valid if A =∗
k B for all

A = B ∈H.
(iii) H is valid if A =∗

µ B for all A = B ∈H.
Note that A =∗

µ B ⇔ ∀.k ≥ 0.A =∗
k B, by Lemma 7E.7(i).
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8B.49. Lemma. Let H be valid. Then

H ⊢BH A=B ⇒ A =∗
µ B.

Proof. It suffices to show for all k ≥ 0 that if H is k-valid then

H ⊢BH A=B ⇒ A =∗
k B.

We use induction on k. If k = 0 this is trivial, by Lemma 7E.7(ii). If k > 0 the proof is
by induction on derivations. Most rules are easy to treat. Rule (µ-cong) follows using
Remark 7E.29, showing by induction on p

A =∗
k B ⇒ ∀p ≤ k.[µα.A =∗

p µα.B].

The most interesting case is when the last applied rule is (coind), i.e.

(coind)
H ∪ {A→B=A′→B′} ⊢ A=A′

H ∪ {A→B=A′→B′} ⊢ B=B′

H ⊢ A→B=A′→B′

Since H is k-valid it is also (k−1)-valid. By the induction hypothesis on k we have
A→B =∗

k−1 A
′→B′. But then H ∪ {A→B = A′→B′} is also k − 1 valid and hence,

again by the induction hypothesis on k, we have A =∗
k−1 A

′ and B =∗
k−1 B

′. By Lemma
7E.7(iii) we conclude A→B =∗

k A
′→B′.

8B.50. Corollary (Soundness). ⊢BH A=B ⇒ A=∗
µB.

Proof. Take H empty.

The opposite implication is the completeness of (BH). The proof of this fact is given in
a constructive way. Below in Definition 8B.51 we define a recursive predicate S(H, A,B),
where H is a set of equations and A, B ∈TTµ. The relation S will satisfy

S(H, A,B) ⇒ H ⊢BH A=B.

Note that it is trivially decidable whether a type A is non-circular or not. If A and
B are circular we can easily prove ⊢BH A=B, see Lemma 7D.32. Otherwise A has a
reduced form A′ as defined in 7D.34 such that, for all H, H ⊢BH A=A′ by (µ-eq) and
(trans).

8B.51. Definition. Let A,B ∈TTµ be two µ-types and let H be a set of equations of the
form A1→A2 = B1→B2. The predicate S(H, A,B) is defined as follows. Let A′, B′ be
the reduced forms of A,B, respectively. Remember Definition 7D.34(i), explaining that
these are only of one of the possible forms (a) α, a type atom, (b) A→B, a function
type, or (c) • standing for a circular type. In these cases the lead symbol of the type
involved is α,→, or •, respectively. Then define

S(H, A,B) , true, if A′ ≡ B′ or if (A′ = B′)∈H; else

, false, if A′ and B′ have different lead symbols; else

, S(H ∪ {A′ = B′}, A1, B1) & S(H ∪ {A′ = B′}, A2, B2),
if A′ ≡ A1→A2, B

′ ≡ B1→B2.

This S(H, A,B) will be seen to be always defined and is a truth value in {true, false}.
At the same time S is considered as a partial computable function denoting this truth
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value, that happens to be total. Therefore it is intuitively clear to see S(H, A,B) also
as an expression reducing to the truth value.

8B.52. Notation. (i) Write

S(H, A,B)≻ S(H′, A1, B1)

S(H, A,B)≻ S(H′, A2, B2),

where H′ = H ∪ {A1→A2 = B1→B2}, if the value of S(H, A,B) depends directly on
that of S(H′, Ai, Bi) according to the last case of the previous definition.
Note that ≻ is a “non-deterministic relation”.
(ii) The notations ≻n and ≻∗ have the usual meaning: n-step rewriting and the

reflexive transitive closure of ≻.
8B.53. Lemma. (i) If S(H, A,B) ≻∗ S(H′, A′, B′), then A′ ∈SCs

r(A), B
′ ∈SCs

r(B) and
all equations in H′\H are of the form A′′ = B′′, where A′′ ∈SCs

r(A), B
′′ ∈SCs

r(B).
(ii) The relation ≻ is well-founded.
(iii) The predicate S is decidable, i.e., S seen as map is total and computable.

Proof. (i) Directly by Definition 8B.37.
(ii) Suppose there exists an infinite sequence

S(H, A,B) ≻ S(H1, A1, B1) ≻ S(H2, A2, B2) ≻ · · · .
Then S(Hk, Ak, Bk)≻S(Hk+1, Ak+1, Bk+1), and, for otherwise by the first clause of the
definition of S(H, A,B) the sequence stops, with S(Hk, Ak, Bk) being true. From (i) and
Lemma 8B.35 it follows that the sequence terminates.
(iii) By (ii) and König’s lemma the evaluation of S(H, A,B) must terminate in a finite

conjunction of Booleans. From this the value is uniquely determined.

8B.54. Lemma. If S(H, A,B) = true, then H ⊢BH A = B. If moreover A,B have no
circular subterms, then rule (µ-cong) is not needed.

Proof. Each step of the definition of S(H, A,B), which does not determine a false value,
corresponds to the application of one or more deduction rules in (BH). For instance the
first clause corresponds to a proof, by (µ-eq), (µ-cong), and (trans), that two circular
types are equal, see Lemma 7D.32 and the last clause to an application of rule (coind).

See also Exercise 8D.3.

8B.55. Lemma. If A=∗
µB, then S(H, A,B) = true.

Proof. Let n be the maximum number such that S(H, A,B) ≻n S(H′, A′, B′). By
Lemma 8B.53(ii) we know that such an n must certainly exist. The proof is by induction
on n. If n = 0, then A=∗

µB implies that S(H, A,B) = true, by Lemma 7E.27. If n > 0,
then we are in the last case of Definition 8B.51. Let mi be the maximum number of
steps such that S(H, Ai, Bi) ≻mi S(H′, A′

i, B
′
i), for i = 1, 2. We have that mi< n. Now

use the induction hypotheses for Ai=
∗
µBi and the fact that A=∗

µB implies Ai=
∗
µBi, by

Lemma 8B.33.

Now we can harvest.

8B.56. Theorem (Completeness). Let A,B ∈TTµ. Then the following are equivalent:

(i) A=∗
µB;

(ii) S(∅, A,B) = true;
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(iii) ⊢BH A=B.

Proof. (i) ⇒ (ii). By Lemma 8B.55.
(ii) ⇒ (iii). By Lemma 8B.54.
(iii) ⇒ (i). By Corollary 8B.50.

Now Theorem 8B.44, Koster [1969], follows again as a corollary.

8B.57. Corollary. Given A,B ∈TTµ, it is decidable whether A=∗
µB.

Proof. By Theorem 8B.56 and Lemma 8B.53.

8B.58. Remark. The connection between the present proof of this result via the system
of Brandt-Henglein (BH) and the one using the deductive closure presented in 8B.44 is
elaborated in Grabmayer [2005], where it is shown that the two are a kind of mirror
image of each other.

8B.59. Corollary. If A,B ∈TTµ are not circular and ⊢BH A = B, then there is a
derivation of A = B in BH such that rule (µ-cong) is not used.

Proof. By completeness and Lemma 8B.54.

The predicate S defined in 8B.51 is a computable procedure to test equality of µ-
types. In the present form S is O(2n×m) where n, m are, respectively, the number of
arrow types in SCs(A) and SCs(B). More efficient algorithms are known, as mentioned
in the beginning of this subsection.

Other systems

Other systems have been proposed in the literature to give a complete axiomatization
of =∗

µ. In Amadio and Cardelli [1993] a formal system is mentioned to prove strong
equivalence (that we will denote by (µ∗AC)) defined by adding to the rules of system (µ),
see Definition 7D.26, the following rule.

8B.60. Definition. (i) The rule (AC) is defined as follows.

(AC)
A[β := B] = B A[β := B′] = B′

B = B′

In Ariola and Klop [1996] an equivalent but slightly different rule has been introduced,
see Exercise 8D.13.

(ii) The system µ extended with the rule (AC) is denoted by (µ∗AC).

The soundness of this system can be proved by a standard induction on derivations
using the uniqueness of fixed points in Trinf Theorem 7F.5, when the last applied rule is
(AC). In fact we have that both (µα.B)∗ (by Remark 7E.29) and (A)∗ (by the induction
hypothesis and Lemma 7E.28) are fixed points of λζ ∈Trinf .(B)∗[α := ζ]. In Ariola and
Klop [1996] it is proved that also (µ∗AC) is complete with respect to the tree semantics.
So (µ∗AC) is equivalent to (BH).
Rule (AC) has indeed a great expressive power; it sometimes allows more synthetic

proofs than rule (coind). The system presented in this section, however, uses a more
basic proof principle (coinduction) and suggests a natural algorithm (obtained by going
backward in the deduction tree) to test type equality.

8B.61. Example. In (µ∗AC) we have ⊢ µα.(β→ α) = µα.(β→ β→ α) . Indeed, by two
applications of (µ-eq)we have ⊢ µα.(β→α)=β→β→µα.(β→α). Then we can apply
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rule (AC) with B[α] = β→β→α. Compare this proof with that of Exercises 8D.5 and
8D.4.

Some general properties of strong equality can be easily proved by rule (AC). As an
example of this, in the following proposition we show that two consecutive applications
of the µ-operator can be contracted into a single one.

8B.62. Proposition. The following are directly provable by the rule (AC).
(i) µα.A = A, if α does not occur in A;
(ii) µαβ.A = µβα.A;
(iii) µαβ.A(α, β) = µα.A(α, α).

Proof. Do Exercise 8D.11.

8B.63. Remark. The notion of bisimulation over infinite trees, see Definition 7E.9, is
formulated directly over their representation in TTµ. A relation Rµ ⊆ TTµ × TTµ is a µ-
bisimulation if the following statements hold. Here ls(A) is the lead-symbol of A, defined
in Definition 7D.34.

A Rµ B ⇒ ls(A) ≡ ls(B);

A Rµ µα.B ⇒ A Rµ B[α := µα.B];

µα.A Rµ B ⇒ A[α := µα.A] Rµ B;

A→ B Rµ A
′ → B′ ⇒ A Rµ A

′ & B Rµ B
′.

It is easy to prove that for any pair of recursive types A,B ∈TTµ and µ-bisimulation Rµ

one has

A Rµ B ⇒ A =∗
µ B.

8C. Properties of types defined by an sr over TT

In this section we will study some fundamental properties of type algebras defined via
type equations and simultaneous recursions over a set TT = TTA of types. All results
can however be easily generalized to arbitrary type algebras. Some properties of types
defined in this way are essentially the same as those of µ-types, but their proofs require
sometimes slightly different techniques.

Decidability of weak equivalence for an sr

For an sr R over TT we already have proved invertibility of =R in Theorem 7C.12 by

introducing the TRS with as notion of reduction Xi ⇒R Ai( ~X). Decidability follows as
a particular case of Theorem 7B.15.
Decidability for recursive types defined by an sr R can also be proved via the ‘inverse’

term rewriting system (TRS), see Statman [1994], Terese [2003], that generates =R

and is complete, i.e. Church-Rosser (CR) and strongly normalizing (SN). We present
this proof here since the inverse TRS will be used also in the proof of Theorem 8C.29.
Moreover its properties can suggest efficient algorithms to test type equality.
The first step consists of orienting the equations of R.
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8C.1. Definition. Let R = {Xi = Ai | 1 ≤ i ≤ n} be a proper sr over TT. The rewriting
system TRS−1(R) is generated by the notion of reduction

{Ai ⇒−1
R Xi | Xi = Ai ∈R}.

Then =−1
R is the convertibility relation generated by TRS−1(R).

8C.2. Proposition. If R is proper, then TRS−1(R) is SN.

Proof. Each contraction decreases the size of the type to which it is applied, except
for Xj ⇒ Xi. But then we have j > i, since R is proper, Definition 7C.8. Therefore we

can make the following argument. Define for A∈TT( ~X) the following numbers.

s(A) , number of symbols in A;

n(A) , sum of the indices of variables among ~X in A.

Then reducing A, the pair 〈s(A), n(A)〉 decreases in the lexicographical order.

However TRS−1(R) is, in general, not CR, as we show now.

8C.3. Example. Let R be the sr

X0 =X0→X2

X1 = (X0→X2)→X2

X2 =X0→X1.

Then TRS−1(R) consists of the rules

X0→X2⇒R X0

(X0→X2)→X2⇒R X1

X0→X1⇒R X2.

Observe that the LHS of the first equation is a subterm of the LHS of the second one.
In particular (X0→X2)→X2 can be reduced both to X1 and to X0→X2 which further
reduces to X0: it has then two distinct normal forms X1 and X0. Therefore TRS−1(R)
is not CR.

Expressions like X0→X2 and (X0→X2)→X2 in the example above are called critical
pairs in the literature on term rewriting systems. In TRS−1(R) there is a critical pair
whenever there are i, j such that i 6= j and Ai is a subexpression of Aj . The following
result is well-known.

8C.4. Theorem (Knuth-Bendix). Let T be a TRS that is SN.
(i) If all critical pairs of T have a common reduct, then T is CR.
(ii) If T has no critical pairs, then it is CR.

Proof. (i) See Terese [2003] Theorem 2.7.16.
(ii) By (i).

Now we present an algorithm for transforming any proper sr into a logically equivalent
one, see Definition 7C.16 (ii), without critical pairs. The procedure amounts to a simple
case of the Knuth-Bendix completion algorithm, see Terese [2003] Theorem 7.4.2, as the
equations involved are between closed terms.

8C.5. Proposition. Let R be a proper sr. Then there exists a proper sr R⋄ such that
(i) R⋄ is a proper sr logically equivalent to R.
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(ii) TRS−1(R⋄) is complete, i.e. SN and CR.

Proof. LetR be a proper sr. We define by recursion on n a sequence of sets of equations
Dn, In (n ≥ 0) such that

(a) Dn is a proper sr;
(b) In is a set of equations of the form Xi = Xj with i < j;
(c) Dn ∪ In is logically equivalent to R, for all n.
Let D0 = R and I0 = ∅. Define Dn+1, In+1 from Dn, In as follows.

1. If there exists a pair of equations Xi = Ai, Xj = Aj ∈Dn such that Aj is a proper
subexpression of Ai take

Dn+1 = (Dn − {Xi=Ai}) ∪ {Xi=A
∗
i }

In+1 = In,

where A∗
i is the result of replacing all occurrences of Aj in Ai by Xj .

2. If there exist two equations Xi=A,Xj=A∈Dn then, assuming i < j, take

Dn+1 =Dn[Xi := Xj ]

In+1 = In ∪ {Xi = Xj}.

3. Otherwise take Dn+1 = Dn and In+1 = In.
4. The algorithm terminates if Dn+1 = Dn. Let N be the least n such that Dn+1 = Dn.

Define

R⋄ =DN ∪ IN ;

TRS⋄(R) = TRS−1(R⋄).

This algorithm terminates, as can be seen as follows. In case (2) and in case (1) if

Aj /∈ A ∪ { ~X}, the number of symbols in Dn decreases. In case (1), if Aj ∈A ∪ { ~X},
then

(i) an α is replaced by Xj ; or

(ii) an Xk is replaced by Xj , with j < k.

After a finite number of applications of (1) or (2) we must eventually apply a rule in
which the number of symbols in Dn decreases and so eventually the process must stop.

(i) By construction each Dn ∪ In is a proper sr that is logically equivalent to R. In
particular this holds for R⋄ = DN ∪ IN .

(ii) Note that TRS⋄(R) is SN, by Proposition 8C.2 and (i). Claim: TRS⋄(R) has no
critical pairs. Indeed TRS−1(DN ) has no such pairs, otherwise we could apply step 1 or
2 of the definition of Dn to DN . Moreover if Xj =Xi ∈IN then Xj does not occur in
DN and there is no other equation of the form Xj = Xi′ in IN . In fact, if Xj =Xi has
been put in Ik at step 2 of the definition of Dn, for some (0 < k ≤ N), then Xj does not
occur in Dk, hence not in Dn for all n ≥ k. Consequently no other equation containing
Xj is put in any In for n > k. By Theorem 8C.4(ii) it follows that ⇒ is CR.
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Example. Applying the above algorithm to the sr R defined in Example 8C.3 we obtain
(assuming X0 < X1 < X2 )

D1 = {X0 = X0→X2, X1 = X0→X2, X2 = X0→X1},
I1 = ∅;

D2 = {X1 = X1→X2, X2 = X1→X1},
I2 = {X0 = X1}.

Now no more transformations are possible, so we have N = 2. Note that D2 ∪ I2 is
logically equivalent to R and has no critical pairs. We obtain an sr R⋄ and TRS⋄(R) as
follows.

X0 = X1

X1 = X1→X2

X2 = X1→X1



 R

⋄;
X1 ⇒R⋄ X0

X1→X2 ⇒R⋄ X1

X1→X1 ⇒R⋄ X2



 TRS⋄(R).

8C.6. Corollary. Let R be a proper sr. Then =R is decidable.

Proof. Since R⋄ is logically equivalent to R, it follows that also =R is the convertibility
relation generated by TRS⋄(R). For a type C, let Cnf be its (unique) normal form
with respect to TRS⋄(R). This nf exists and is computable from C, since TRS⋄(R) is

complete. Now, given a pair of types A,B ∈TT[ ~X], we have

A =R B ⇔ Anf ≡ Bnf .

This is decidable.

Alternatively decidability of =R follows also as a particular case of Proposition 7B.15.
A more algebraic but less direct proof is given in Marz [1999].

Strong equivalence as an equational theory

In this section we show that for every sr R we can constructively find another sr R∗ such
that =∗

R coincides with the equational theory of R∗. This allows to shift to tree type
algebras generated by an sr all the results and the techniques valid for the equational
theories. To this aim we need some preliminary definitions and lemmas.

8C.7. Definition. Let R = R( ~X) be an sr over TTA.

(i) An sr R[ ~X] is flat if all equations of R are of the form X = α where α∈A is an

atomic type or X = Y →Z, where X, Y, Z ∈ ~X
(ii) An indeterminate X ∈ ~X is called an orphan in R if X does not occur in one of

the right hand sides of R.
8C.8. Example. Note that a flat sr is simplified. Any sr can be transformed in an
equivalent flat one by adding and possibly removing indeterminates. For example R1 =
{X = X→(α→β), Y = (X→X)→Y } can be ‘flattened’ to

R′
1 , {X = X→Z,Z = U→V, U = α, V = β, Y =W→Y,W = X→X}.

Note that R2 , {X = Y→Z, Y = Z→Y, Z = Z→Z,W = X→Y } has W as orphan.

Removing it by consideringR′
2,R2−{W = X→Y } yields an equivalent sr, as TTA[R′

2]
∼=
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TTA[R2] by mapping [W ] onto [X→Y ]. But now X has become an orphan in R′
2. We

can remove also X and obtain R′′
2 , {Y = Z→Y, Z = Z→Z}, that is without orphans.

8C.9. Lemma. Each proper sr can be transformed into an equivalent flat one without
orphans.

Proof. Let R( ~X) be a proper sr over TT. First transform R( ~X) into an equivalent

simplified sr R′( ~X ′) applying the construction in the proof of Lemma 7C.18. Now take
any equation X = A1 → A2 ∈R′ such that either A1 or A2 is not an indeterminate.
Assume that A1 is not an indeterminate. Then replace in R′ the equation X = A1→A2

by the two equations X = Y →A2, Y = A1, where Y is a fresh new indeterminate. Do
similarly if A2 is not an indeterminate. Repeat these steps until the resulting sr is flat;
it is trivial to prove that this process terminates. It is also trivial to prove that at each
step R′ is transformed into an equivalent sr. The example given shows that orphans can

be removed successively. The proof that at each step one has TTA[R] ∼= TTA′
[R′] can be

given in a way similar to that in Proposition 7C.18.

8C.10. Definition. Let R = R[ ~X] be a flat sr. For each equivalence class [X], for

X ∈ ~X, with respect to the relation =∗
R , choose a representative X ′. We define the sr

R∗ = R∗[ ~X] in two steps as follows. First let R′ = R′[ ~X ′] be the flat sr constructed as
follows.

R′ , {X ′ = α | (X ′ = α)∈R} ∪

{X ′ = Y ′→Z ′ | ∃Y ∈ [Y ′], Z ∈ [Z ′].(X ′ = Y →Z)∈R}
Then define R∗ = R∗[ ~X] as

R∗ , {X = α | (X = α)∈R} ∪ {X = Y ′→Z ′ | X ∈ [X ′], X ′ = Y ′→Z ′ ∈R′}.
8C.11. Example. For R, {X = Y →Z, Y = Z→X,Z = X→Y } we have
R′ = {X = X→X} and R∗ = {X = X→X,Y = X→X,Z = X→X}.
A different construction of R∗ is given in Exercise 8D.17.
We will show that weak equality w.r.t. R∗ is equivalent to strong equality w.r.t. R.

8C.12. Lemma. (i) X ∈ [X ′] ⇒ X =R∗ X ′.
(ii) A =R B ⇒ A =R∗ B.

Proof. (i) By the Definition of R∗ from R′ in Definition 8C.10.
(ii) It suffices to show

(X = B)∈R ⇒ X =R∗ B.

The case (X = α)∈R is trivial. Now let (X = Y →Z)∈R. Then
X ∈ [X1], Y ∈ [Y1], Z ∈ [Z1], (X1 = Y1→Z1)∈R∗.

Then the result follows from (i).

8C.13. Theorem. Given a flat sr R( ~X), define R∗ as in Definition 8C.10. Then

(i) For all A, B ∈TT[ ~X]

A =R∗ B ⇔ A =∗
R B.

(ii) (TT[R])∗ ∼= TT[R∗].
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Proof. (i) (⇒) It suffices to show

(X = A( ~X))∈R∗ ⇒ X =∗
R A( ~X).

Case 1. A( ~X) ≡ α. Then (X = α)∈R∗, hence also (X = α)∈R.
Case 2. A( ~X) = Y → Z. Then (X = Y → Z)∈R∗, and (X1 = Y1 → Z1)∈R,

X =∗
R X1, Y =∗

R Y1, and Z =∗
R Z1. Then clearly X =∗

R Y1→Z1.
(⇐) Assume (A)∗R = (B)∗R. We show A =R∗ B by induction on s(A) + s(B), where

s(C) is the number of symbols in C ∈TT[ ~X ′]. We distinguish the following cases.
(1) A = α,B = α;
(2) A = α,B = X, (X = α)∈R;
(3) A = Y,B = α, (Y = α)∈R;
(4) A = Y,B = Z;
(5) A = Y,B = B1→B2, (Y = A1→A2)∈R;
(6) A = A1→A2, B = Y, (Y = B1→B2)∈R;
(7) A = A1→A2, B = B1→B2.
The cases (1)-(3) are trivial.

Case (4). Now Y ∈ [Y ′], Z ∈ [Z ′], where Y ′, Z ′ ∈ ~X ′. Then (Y )∗R = (Z)∗R, so [Y ] = [Z],
and Y ′ = Z ′. By Lemma 8C.12 we have Y =R∗ Y ′, Z =R∗ Z ′. Therefore Y =R∗ Z.

Case (5). A1, A2 ∈ ~X, because R is flat, say (Y = X1→X2)∈R. Now (B1→B2)
∗
R =

(X1→X2)
∗
R, hence by invertibility, Lemma 7E.5,

B1 =∗
R X1, B2 =∗

R X2

and by the induction hypothesis

B1 =R∗ X1, B2 =R∗ X2.

Therefore B1→B2 =R∗ X1→X2 =R∗ Y , by Lemma 8C.12.
Case (6). Similar to Case (5).
Case (7). Similar to Case (5), but easier.

(ii) From (i) we immediately get that the identity morphism TT[ ~X]→TT[ ~X] induces
an isomorphism TT[R∗]→(TT[R])∗.
8C.14. Corollary. For every proper sr R there exists a flat sr R∗ such that

TT[R∗] ∼= (TT[R])∗.
Proof. Let R be proper. By Lemma 8C.9 there exists a flat sr R1 such that TT[R] ∼=
TT[R1]. One easily shows that also (TT[R])∗ ∼= (TT[R1])

∗. Now apply the Theorem.

Axiomatization of strong equivalence for sr

Given a proper sr R Theorem 8C.13 (ii) shows that =∗
R can be axiomatized by the rules

of Definition 7A.10 simply by taking R∗ instead of R. However, in a way similar to what
we have done in section 8B for =∗

µ, we can also define a coinductive system (R∗) that
directly axiomatizes =∗

R. Also in this system we have judgments of the form H ⊢ A = B
in which H is a set of equations of the shape A→A′ = B→B′. As in system (BH),
Definition 8B.45, the crucial point is the introduction of a rule (coind).

8C.15. Definition. Let R be a proper sr. The system (R∗) is defined by the following
axioms and rules.
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(ident) H ⊢ A = A

(symm)
H ⊢ A = B

H ⊢ B = A

(trans)
H ⊢ A = B H ⊢ B = C

H ⊢ A = C

(axiom) H ⊢ A=B, if A=B ∈H,

(R-eq) H ⊢ X = A, if X = A∈R,

(coind)

H, (A→B)=(A′→B′) ⊢ A=A′

H, (A→B)=(A′→B′) ⊢ B=B′

H ⊢ (A→B)=(A′→B′)

Figure 26. The system (R∗)

We write H ⊢∗R A = B to mean that H ⊢ A = B can be derived by the above rules.

In this system rule (→-cong) is missing but it is easy to prove that it is derivable. Note
that in this system there are no types having properties analogous to these of the circular
types in TTµ, TT

∗
µ.

Example. Let R1 , {X = A→A→X} where A is a any type. Then we have ⊢∗R1
X =

A→X, with the following proof. Let C denote A→A→X.

(R-eq)

⊢ X=C

(ident)

{C=A→X} ⊢ A=A

(R-eq)

{C=A→X} ⊢ X=C

(hyp)

{C=A→X} ⊢ C=A→X
(trans)

{C=A→X} ⊢ X=A→X
(coind), (symm)

⊢ C=A→X
(trans)

⊢ X=A→X

With the same technique as used in Section 8B we can prove the soundness and
completeness of (R∗) with respect to strong equivalence. The completeness proof, in
particular, is based on a variant of the algorithm introduced in Definition 8B.51 (up to
some minor adjustments due to the different set of types) which, given two types A and
B builds a proof of A = B iff A =∗

R B. This yields the following.

8C.16. Theorem. Let R( ~X) be a proper sr over TT.
(i) ⊢∗R A=B ⇔ A =∗

R B.

(ii) Given A,B ∈TT[ ~X] it is decidable whether A =∗
R B.

Justifying type equations by an sr

In the study of recursive type inference it will be useful to know whether a given sr
justifies a given set of equations, according to definition 7A.17(ii). We prove that this is
a decidable property, which result is needed in section 9B. The original proof is due to
Statman [1994].
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In the rest of this subsection we show the decidability of the existence of morphisms
between algebras of the form TTA[R]. By Proposition 7C.18(ii) and Lemma 8C.9 one has

TTA[R] ∼= TTA′
[R′], where R′ is flat and without orphans. Moreover this isomorphism is

effective. Hence in a proof that the existence of morphisms is decidable one may assume
that the R are flat and without orphans.

8C.17. Definition. Let A, A′ be type algebras.
(i) A set of constraints is of the form C ⊆ A×A′.
(ii) A morphism h : A→A′ is said to agree with C if it satisfies h(a) = a′, for all

〈a, a′〉 ∈ C.
(iii) Two sets of constraints C, C′ ⊆ A×A′ are equivalent , if

for all morphisms h : A→A′.[h agrees with C ⇔ h agrees with C′]
It will be shown that the existence of an h : TTA/E→TTA′

[R′] agreeing with a finite set
of constraints C is decidable. The proof occupies 8C.18-8C.28. For the proof substantial
help was obtained from Dexter Kozen and Jan Willem Klop (personal communications).

8C.18. Definition. Let A be a type algebra and a, b, c∈A.
(i) If a = b→c, then b and c are called direct descendants of a. Direct descendants

are descendants. And direct descendants of descendants are descendants. Write a ; b
if b is a direct descendant of a and a;

+ b if b is a descendant of a. The relation ;
∗ is

the reflexive transitive closure of ;.
(ii) An element a∈A is called cyclic if a;

+ a.
(iii) Write C(A) = {a∈A | a is cyclic}.

For example in TT{a}[X = X→a] the element [X] is cyclic, as [X] = [X]→[a]. Notice

that not every indeterminate X ∈ ~X of R needs to be cyclic. For example if R = {X =
X→Y, Y = a}, then only [X] but not [Y ] is cyclic in TTA[R].
8C.19. Notation. Let R be an sr over TTA.

(i) Write I(R),{[X]∈TTA[R] | X an indeterminate of R}, the set of indeterminates
in TTA[R].

(ii) Write C(R), C(TTA[R]), the set of cyclic elements of TTA[R].
We will see that for a flat sr without orphans R one has C(R) ⊆ I(R).
8C.20. Lemma. Let h : A→B be a morphism and a, b∈A.

(i) Suppose B is invertible. Let a = b→ c. Then h(b), h(c) are uniquely determined
by h(a).

(ii) a; b ⇒ h(a) ; h(b).
(iii) a is cyclic ⇒ h(a) is cyclic.

Proof. (i) Because B is invertible.
(ii) Suppose a; b. If, say, a = b→c, then h(a) = h(b)→h(c), so h(a) ; h(b).
(iii) By (ii).

8C.21. Lemma. Let R be a flat sr over TTA and a, b∈TTA[R], with a; b and a = [A]R.

(i) Then A ≡ X or A ≡ A1→A2, for some A1, A2 ∈TTA∪ ~X .
(ii) In case A ≡ X one has (X = X1→X2)∈R and b = [Xi] for some i∈{1, 2}.
(iii) In case A ≡ A1→A2 one has b = [Ai]R, for some i∈{1, 2}.
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Proof. Note that A has a unique pair of direct descendants because TT[R] is invertible
by Proposition 7C.12.

(i) Suppose A ≡ α. Then α =R C→D for some C,D∈TT[ ~X]. But then α ⇒∗
R (C ′→

D′) by the Church-Rosser Theorem for ⇒∗
R, Proposition 7C.10(ii), a contradiction.

(ii) and (iii) The case (X = α)∈R goes as the case A ≡ α in (i). The rest is immediate
by the invertibility of TT[R].
8C.22. Lemma. Let R be flat. Let a, b range over TTA[R].

(i) a; b & a∈ I(R) ⇒ b∈ I(R).
(ii) If

a = a1 ; a2 ; · · ·; an ; · · ·
is an infinite chain of descendants, then for some k one has ak ∈ I(R).
Proof. (i) Let a∈ I(R). Then a = [X], hence by Lemma 8C.21(ii) one has (X = X1→
X2)∈R and b = [Xi], for some i.

(ii) Let a1 = [A]. If A∈ ~X, then we are ready. Else by Lemma 8C.21(i) and (iii)
one has A ≡ A1 → A2 and a2 = [Ai], for some i. Thus continuing, by splitting the

type A1→A2 ∈TTA∪ ~X in its components, one eventually obtains ak = [Y ], by Lemma
8C.21(i).

8C.23. Corollary. Let R be flat without orphans.

(i) ∀a∈ I(R)∃b∈C(R).b;∗ a.

(ii) C(R) ⊆ I(R).
Proof. (i) Since R is without orphans, each a∈ I(R) has a ‘father’ a′ ∈ I(R). Going
backwards along the ancestors, since the set I(R) is finite, we must end up in a cyclic

element a(k) ∈C(R). Then a(k) ;∗ a, and we are done.

(ii) Let a∈C(R). Then
a;

+ a;
+ · · ·

Hence for some b∈ I(R) one has a;
+ b;+ a, by (ii) of the Lemma. But then a∈ I(R),

by (i) of the Lemma.

8C.24. Proposition. Let R( ~X),R′( ~X ′) be sr-s, over TT = TTA,TTA′
respectively, and let

A = TTA[R], A′ = TTA′
[R′].

(i) It is decidable whether there exists a morphism h : A→A′.

(ii) Let moreover C ⊆ A×A′ be finite. Then it is decidable whether

there exists a morphism h : A→A′ agreeing with C.
Proof. (i) By Proposition 7C.18(ii) and Lemma 8C.9 we may assume that R and R′

are flat and without orphans.
Define a proto-morphism to be a map h : I(R)→I(R′) such that

a = b→c ⇒ h(a) = h(b)→h(c).

Claim 1. For a morphism h : A→A′ the restriction h ↾ I(R) is a proto-morphism.
We only need to show that if a∈ I(R), then h(a)∈ I(R′). By Corollary 8C.23(i) there
exists a b∈C(R) such that b;∗ a. But then as R′ is flat one has h(b)∈C(R′) ⊆ I(R′),
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by Lemma 8C.20(iii) and Corollary 8C.23(ii). By Lemma 8C.20(ii) one has h(b) ;∗ h(a).
Therefore h(a)∈ I(R′), by Lemma 8C.22(i).

b

∗

�� �O
�O
�O
�O
∈C(R) h // h(b)

∗
�� �O
�O
�O

∈C(R′) ⊆ I(R′)

a ∈ I(R) h // h(a) ∈ I(R′)

Claim 2. Any proto-morphism h : I(R) → I(R′) can be extended to a morphism
h+ : A→A′.
For an X occurring in R choose h0(X) such that h([X]) = [h0(X)]. Then extend h0 to

a morphism h+0 : TTA∪ ~X→TTA′∪ ~X′
by recursion, with a case distinction for the base case.

Basis h+0 (α) = h0(X), if (X = α)∈R,
= arbitrary, otherwise,

h+0 (X) = h0(X);

Recursion h+0 (A→B) = h+0 (A)→h+0 (B).

Then A =R B ⇒ h+0 (A) =R′ h+0 (B). Hence by Proposition 7B.13(i) h+0 induces the

required morphism h+ : A→A′:

h+([A]) = [h+0 (A)].

Claim 3. There exists a morphism h : A → A′ iff there exists a proto-morphism
h0 : I(R)→I(R′). Immediate by Claims 1 and 2.
Claim 4. It is decidable whether there exists a proto-morphism h0 : I(R)→I(R′).

As I(R), I(R′) are finite there are only finitely many candidates. By Proposition 8C.6
the relation =R is decidable, hence also the requirement to be a proto-morphism.
Now we are done by Claims 3 and 4.

(ii) Instead of considering equivalence classes, we use elements of TTA∪ ~X ,TTA′∪ ~X′
and

work modulo =R,=R′ , respectively. Given a set of constraints C one can construct an
equivalent set C′ such that the elements are of the form

〈α,A′〉,
〈X,α′〉,
〈X,Y ′→Z ′〉,
〈A→B,α′〉.

Indeed, other possible forms are 〈X,X ′〉, 〈A→ B,X ′〉 and 〈A→ B,A′ → B′〉. Using
invertibility the last pair can be replaced equivalently by {〈A,A′〉, 〈B,B′〉}. In the first
pair 〈X,X ′〉 the type X ′ can be replaced by the RHS of X ′ in R′, and similarly in the
second pair. Let us call the resulting C′ a simplified set of constraints. A proto-morphism
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h : A→A′ is called consistent with C′ if the following holds.

〈α,A′〉 ∈ C′ ⇒ h(X) = A′, in case (X = α)∈R,
〈X,α′〉 ∈ C′ ⇒ h(X) = α′

〈X,Y ′→Z ′〉 ∈ C′ ⇒ h(X) = Y ′→Z ′

〈A→B,α′〉 /∈ C′.
The reason to require 〈A → B,α′〉 /∈ C′ is that h(A → B) = α is impossible for a
morphism h, as α 6=R′ A′→B′.
Now similarly to the claims in (i), one can show the following.
Claim 3′. There exists a morphism h : A → A′ agreeing with C iff there exists a

proto-morphism h : I(R)→I(R′) consistent with C′, a simplified form of C.
Claim 4′. It is decidable whether there exists a proto-morphism h : I(R)→ I(R′)

consistent with a simplified set C′.
From claims 3′, 4′ the result follows.

In Statman [1994] it is shown that the justifiability of an sr in another sr is an NP-
complete problem.
Now we like to obtain this result also for type algebras of the shape A = TTA/E . We do

this by extending the axiomatization of type equality to force a type algebra generated
by a set of equations E to have the invertibility property.

8C.25. Definition. Write E ⊢inv a = b if there is a proof of ⊢ a = b by the axioms
and rules for equality given in Definition 7A.10 extended by the following two rules for
invertibility

(inv)
⊢ a1→a2 = b1→b2

⊢ ai = bi
(i = 1, 2)

We define for a, b∈TT the relation a =inv
E b ⇔ E ⊢inv a = b.

8C.26. Lemma. Let E a system of type equations. Then there exists a E inv which is a
proper sr such that

E ⊢inv E inv & E inv ⊢ E .
In other words, E inv is equivalent to E for provability with the extra rule of invertibility.

Proof. Given E over TTA. The relation =inv
E is the least invertible congruence containing

=E . We now define an sr which generates =inv
E .

Let α0, α1, ... denote the elements of A. As in Definition 8C.5(i) define by induction

on n sets of equations Dn, In (n ≥ 0). Let D0 , E and I0 , ∅. Define Dn+1, In+1 from
Dn, In (n ≥ 0) in the following way.

1. If (A→B = A′→B′)∈Dn, then take

Dn+1 ,Dn − {A→B = A′→B′} ∪ {A = A′, B = B′}
and In+1 , In;

2. Replace in Dn all equations of the form A→B = α by α = A→B;
3. If (αi = A→B), (αi = A′→B′)∈Dn, then take

Dn+1 ,Dn − {αi = A′→B′} ∪ {A = A′, B = B′},
assuming dpt(A→B) ≤ dpt(A′→B′), see Definition 1A.21(i) and take In+1 , In;

4. If (αi = αi)∈Dn for some i, then take Dn+1 ,Dn − {αi = αi} and In+1 , In;
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5. If (αi = αj)∈Dn, with i 6= j, then take

Dn+1 ,Dn[αh := αk]− {αi = αj}
In+1 , In ∪ {αh = αk},

where h = min(i, j) and k = max(i, j);

6. Otherwise take Dn+1 ,Dn and In+1 , In.
7. Let N be the least n such that Dn+1 = Dn and In+1 = In. We will show below

that this number exists. Write DE ,DN , IE , IN .
8. Finally define E inv ,DN ∪ IN .

Claim. The number N in step 7 exists. Indeed, to D = {A1 = B1, ..., An = Bn} we
assign

SD = {d(A1), d(B1), ..., d(An), d(Bn)},
considered as multiset. Steps (1), (3)-(6) of the algorithm decrease the multiset order,
see Definition 2A.6. Step (2) keeps the multiset fixed. Since the multiset order is well-
founded, Lemma 2A.8, it follows that a potential infinite path D1, D2, D3, · · · ends up
by only performing step (2). But this is impossible, by counting the number of type
atoms on the RHSs.
It is easy to prove, by induction on n, that for all n ≥ 0

Dn ∪ In ⊢ E and E ⊢inv Dn ∪ In
To show that DN ∪ IN is a proper sr, note that, by step (2) and (4) above, DN is a
proper sr. Now note that when an equation αi = αj is put in In we must have i < j
and moreover αi does not occur in Dm for all m ≥ n. So no other equation of the form
αi = αh can be put in some Im for m ≥ n.
We now give some applications of this result.

8C.27. Proposition. Let A be a type algebra. Then there exists an invertible type alge-
bra Ainv initial under A. I.e. there is a morphism k : A→Ainv such that all h : A→B,
with B invertible, can be factored through k; that is h = i ◦ k, for some i : Ainv→B.

A h //

k
��

B

Ainv

i

==

Proof. By Lemma 7A.16 we can assume that A = TT/ ∼ is a syntactic algebra. Then
there is a morphism h♮ : TT→B corresponding to h according to Proposition 7B.4(iii).
Now define Ainv = TT/ ≈inv where ≈inv is a shorthand for =inv

≈ defined in 8C.26. Now
note that h♮ can also be seen as a syntactic morphism from TT to B preserving ≈inv. In
fact, if A1→A2 ≈ B1→B2 we must have Ai ≈inv Bi (i = 1, 2) by rule (inv) but also
h♮(Ai) = h♮(Bi) since B is invertible. Now take k : A→Ainv such that k([A]≈) = [A]≈inv

and i such that i([A]≈inv) = h♯(A) = h([A]≈).

8C.28. Corollary. Let A = TTA/E, A′ = TTA′
[R′], with proper R′, and C ⊆ A × A′.

Then it is decidable whether

there exists a morphism h : A→A′ agreeing with C.
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Proof. The existence of an h : A → A′ is by Proposition 8C.27 equivalent to the
existence of an h1 : Ainv → A′. Moreover, h agrees with C iff h1 agrees with C1 =
{〈k(a), a′〉 | 〈a, a′〉 ∈ C}. Therefore by Proposition 8C.24(ii) we are done.

It is possible to strengthen Proposition 8C.24(i) as follows.

8C.29. Theorem. Let E , E ′ be finite sets of equations over TTA and TTA′
respectively.

Then it is decidable whether there exists a morphism h : TTA/E→TTA′
/E ′.

Proof. This is proved in Kozen [1977].

8D. Exercises

8D.1. Prove Theorem 8A.7. [Hint. Argue by induction on A. Note that the union of
two sr, provided the indeterminates are disjoint, is still an sr.]

8D.2. Prove Proposition 7D.29.
8D.3. Let (triv) be the following rule

(triv) M = N, for M,N circular.

Let A1 ≡ µβ.(µα.α→β) and B1 ≡ µβ.(µα.α→β)→β.
(i) Show that one has ⊢BH A1 = B1, without using rule (µ-cong).
(ii) Let (BH∼) be the system (BH) with (µ-cong) replaced by (triv). Show

⊢BH A = B ⇔ ⊢BH∼ A = B.

[Hint. Use Lemma 8B.54 and Theorem 8B.56(ii), (iii).]
(iii) Show that (triv) is not equivalent with (µ-cong) in system (µ). [Hint. Let

system (µ∼) be system (µ) with (µ-cong) replaced by (triv). Show that
A1 = B1 is not derivable in (µ∼).]

8D.4. Show that ⊢BH µα.(β→ β→α) =µα.(β→α), where β is any type variable, see
Examples 7D.27 and 8B.61.

8D.5. (i) Prove µα.((α→α)→α) = µα.(α→α→α) in (BH).
(ii) Prove directly µα.((α→α)→α) =∗

µ µα.(α→α→α).
Compare the proofs with that in (µ∗AC).

8D.6. [Grabmayer] Show that ⇒−1
µ is not CR. [Hint. Take the following type:

A = (µs.s→µt.(s→ t))→µt′.((µs.s→µt.(s→ t))→ t′).

Show that A = B[t′ := µt′.B] = C[s := µs.C] for two types B 6= C irreducible
with respect to ⇒−1

µ .]
[[One exercise deleted and replaced by the following.]]

8D.7. Define SCw(a) ⊂ TTµ′ as follows.
SCw(α) = {α};
SCw(A1→A2) = {A1→A2} ∪ SCw(A1) ∪ SCw(A2);
SCw(µα.A1) = {µα.A1} ∪ (α)↾SCw(A1) ∪ SCw(A1)[α := µα.A1].

SCw((~β)A) = (~β)↾SCw(A).
(i) Show SCw(A[α := B]) ⊆ (SCw(A)[α := B] ∪ SCw(B)).
(ii) Show SCw(SCw(A)) = SCw(A).
(iii) Show SCw

r(A) = SCw(A).
(iv) Show Lemma 8B.30.
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8D.8. This exercise, inspired by Endrullis, Grabmayer, Klop, and van Oostrom [2011],
is about TTµ̇. The relation ; over TTµ̇ is defined as follows.
(1) (A→B) ; A
(2) (A→B) ; B
(3) (µ̇α.A) ; A
(4) (µ̇α.A) ; (A[α := µ̇α.A]).
(i) Write ;

∗ for the transitive reflexive closure of ;.
(ii) Write A;n B if A;

∗ B in n steps.
(iii) Define SC .(A) = {B ∈TTµ̇ | A;

∗ B}. Show that SC .(A) is always finite.
[Hint. Define the set of underlined µ̇-types, notation TTµ̇, for example (µ̇α.α→
µ̇βµ̇γ.(α→β→γ) and (µ̇α.α→ µ̇βµ̇γ.(α→β→γ)) are in TTµ̇. For B ∈TTµ̇ write

|B| ∈TTµ̇ for the type obtained from B by erasing all underlinings. On TTµ̇ we

define ;, a variant of ;.
(1) (A→B) ; A
(2) (A→B) ; B
(3) (µ̇α.A) ; A
(4) (µ̇α.A) ; (A[a := µ̇a.A]).

Show that {B ∈TTµ̇ | A ; B} is finite, for all A∈TTµ̇. Finally, prove that for

every ;-reduction without repetitions R : A ≡ B0 ; B1 ; · · ·; Bn, there is a
;-reduction R′ : A ≡ B0 ; B′

1 ; · · ·; B′
n, such that |B′

i| ≡ Bi for 1 ≤ i ≤ n.
This yields the conclusion.]
[[One exercise deleted and replaced by the following.]]

8D.9. Recall the definition of SCs
r(A) = {C ∈TTµ|A;

∗ C} in Definition 8B.37.
(i) Show the following. If A[α := µα.A] ;∗ B then we have either

(a) This reduction is A[α := µα.A] ;∗ µα.A;
∗ B;

(b) This reduction is a [α := µα.A] instance of A ;
∗ C (So B = C[α :=

µα.A]).
(ii) Show SCs

r(µα.A1) ⊆ {µα.A1} ∪ SCs
r(A1)[α := µα.A1].

(iii) Show that SCs
r(A) is finite.

8D.10. Prove that if A, B ∈TTµ and ARµB, where Rµ is a bisimulation over types
defined in Remark 8B.63 then (A)∗µ = (B)∗µ.

8D.11. Prove Proposition 8B.62.
8D.12. Let E , {X = αp→X, X = αq→X} and R, {X = αr→X}. Show that R(X)

solves E(X) over TT{α}(X) iff r|gcd(p, q), where n|m denotes ‘n divides m’.
8D.13. In Ariola and Klop [1994] the following rule is introduced.

(AK)
A[α := B] = B

µα.A = B

Show that (AK) is equivalent to (AC) in Definition 8B.60.
8D.14. Give a formulation of rule (AC) for a simultaneous recursion. Use it to prove

⊢∗{c=β→β→c} c=β→c.

8D.15. Prove Lemma 8B.41.
8D.16. Prove soundness, completeness and decidability of (R∗) in Definition 8C.15. This

then proves 8C.16.
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8D.17. Define, inductively on n, the equivalence relation Rn ⊆ ~X × ~X (n ≥ 0) as the
minimal equivalence relation such that the following holds.
1. XRnX

′ for all n ≥ 0 if X = α, X ′ = α∈R for the same atomic type α;

2. XR0X
′ if X = Y →Z, X ′ = Y ′→Z ′ ∈R for some Y, Y ′, Z, Z ′ ∈ ~X;

3. XRn+1X
′ if X = Y →Z, X ′ = Y ′→Z ′ ∈R and Y RnY

′ and ZRnZ
′.

Let N be the first N such that RN = RN+1. Show

X =∗
R Y ⇔ XRNY.

The following is due to Grabmayer [2007] and is a direct proof of both the
regularity of (A)∗µ and decidability of =∗

µ.

8D.18. (i) Let A∈TTµ. Then for all subtrees T ⊆ (A)∗µ of the tree-unfolding of A there
exists a B ∈SCs(A) such that T = (B)∗µ.

(ii) Show card(SCs(A)) ≤ l(A), where l(A) is defined in Definition 8B.5.
(iii) A number n is large enough for a regular tree T if all subtrees of T occur at

a p of length < n. Show that l(A) is large enough for (A)∗µ.

(iv) For A∈TTµ the tree (A)∗µ is regular with at most l(A) subtrees. [Hint. Use

(i).] By (i) there is a surjection of SCs(A), which is of cardinality < l(A)
by (ii), to the set of subtrees of (A)∗µ. Therefore also the latter set is of

cardinality < l(A) and hence finite.
(v) Conclude that =∗

µ is decidable.
Proof. Let A,B ∈TTµ. Given a sequence number p∈{0, 1}∗. By (iii) there
are only finitely many different pairs 〈(A)∗µ|p, (B)∗µ|p〉. Therefore, in order to

test (A)∗µ = (B)∗µ, we claim that one needs to examine these trees only up to

depth N = l(A) · l(B) + 1:

A =∗
µ B ⇔ ∀p < N.(A)∗µ|p ∼= (B)∗µ|p.

Indeed, ⇒ is obvious. As to ⇐, assume the RHS and A6=∗
µB towards a

contradiction. Then (A)∗µ|p 6= (Q)∗µ|p, for some p.



CHAPTER 9

PROPERTIES OF TERMS WITH TYPES

In this Chapter we establish some basic properties of terms which have types in the
systems introduced in the previous Chapters. We only consider type inference systems
à la Curry. Some of the results shown in this Chapter are meaningless for typed systems
à la Church, while some others can be easily adapted to them (like, for instance, the
Subject Reduction Theorem). In Section 9A we study the subject reduction property for
recursive type systems, in Section 9B the problem of finding types for untyped terms and
in Section 9C we study restrictions on recursive types such that strong normalization
holds for terms that inhabit these.

9A. First properties of λA
=

We will show that for invertible A the recursive type systems λA
= have the subject

reduction property, i.e.

Γ ⊢A M : a
M ։β(η) M

′

}
⇒ Γ ⊢A M ′ : a,

where ⊢ is defined in Section 7A.
This means that typings are stable with respect to β- or βη-reduction, which is the

fundamental evaluation process for λ-terms.
In general, however, types are not preserved under the reverse operation of expansion.
We will study the subject reduction property for a type assignment system induced by

an arbitrary type algebra A. It satisfies the subject reduction property iff it is invertible.
We start with some basic lemmas.

9A.1. Lemma. Γ, x:b ⊢A M : a, Γ ⊢A N : b ⇒ Γ ⊢A M [x:=N ] : a.

Proof. By induction on the derivation of Γ, x:b ⊢A M : a.

9A.2. Lemma. Suppose x /∈FV(M), then

Γ, x:b ⊢A M : a ⇒ Γ ⊢M : a.

Proof. By induction on the derivation of Γ, x:b ⊢M : a.

9A.3. Proposition (Inversion Lemma). Let A be a type algebra.

(i) Γ ⊢A x : a ⇔ (x:a)∈Γ.
(ii) Γ ⊢A (MN) : a ⇔ ∃b∈A.[Γ ⊢A M : (b→a) & Γ ⊢A N : b].

(iii) Γ ⊢A (λx.M) : a ⇔ ∃b, c∈A.[a = (b→c) & Γ, x:b ⊢A M : c].

383
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Proof. (⇐) immediate. (⇒) The proof is in all cases by induction on the derivation of
Γ ⊢ P : d.
(i) To prove Γ ⊢ x : A we can use only rule (axiom).
(ii) Similar to (i). Now we can use only rule (→E).
(iii) Now we can only use rule (→I).

9A.4. Remark. It is good to realize that the Inversion Lemma is a consequence of the
following easy observation. For a derivation of e.g. Γ ⊢A MN : a, there is a b∈A such
that this statement is a direct consequence of the statements Γ ⊢A M : (b→ a) and
Γ ⊢A N : b in that same derivation. Note that there may be several b∈A such that
Γ ⊢A M : (b→a) and Γ ⊢A N : b.

For syntactic type algebras this boils down to the following.

9A.5. Corollary (Inversion Lemma for syntactic type algebras). Let A = TT/≈ be a
syntactic type algebra. Then

(i) Γ ⊢TT/≈ x : A ⇔ ∃A′ ∈TT.[A′ ≈ A & x:A′ ∈Γ].
(ii) Γ ⊢TT/≈ (MN) : A ⇔ ∃B ∈TT.[Γ ⊢TT/≈ M : B→A & Γ ⊢TT/≈ N : B].

(iii) Γ ⊢TT/≈ (λx.M) : A ⇔ ∃B,C ∈TT.[A ≈ (B→C) & Γ, x:B ⊢TT/≈ M : C].

Proof. From Proposition 9A.3 and Notation 7A.18.

9A.6. Corollary (Inversion Lemma II). Let A be an invertible type algebra. Then

Γ ⊢λA λx.M : (a→b) ⇔ Γ, x:a ⊢λA M : b.

Proof. (⇒) If Γ ⊢ λx.M : a→ b, then by Proposition 9A.3(iii) we have a→ b = c→d
and Γ, x:c ⊢M : d. By invertibility a = c and b = d. Hence Γ, x:a ⊢M : b.
(⇐) By rule (→ I).

Now we can prove the subject reduction property for one step βη-reduction.

9A.7. Lemma. (i) If Γ ⊢A λx.(Mx) : a and x /∈FV(M), then Γ ⊢A M : a.
(ii) If moreover A is invertible, then

Γ ⊢A (λx.M)N : a ⇒ Γ ⊢A (M [x := N ]) : a.

Proof. (i) By the Inversion Lemma 9A.3(iii) we have that Γ, x:b ⊢ (Mx) : c for some
b, c∈A such that a = (b→ c). Moreover, by Lemma 9A.3 (ii) and (i) we have that
Γ, x:b ⊢ M : d→ c and Γ, x:b ⊢ x : d for some type d such that d = b. Then (d→ c) =
(b→c) = a. Then Γ ⊢M : a, by Lemma 9A.2.

(ii) Suppose Γ ⊢ (λx.M)N : a. By the Inversion Lemma 9A.3(iii)

Γ ⊢ (λx.M) : b→a & Γ ⊢ N : b,

for some type b. Moreover, by Lemma 9A.3(iii), there are types b′ and a′ such that
b→a = b′→a′ and

Γ, x:b′ ⊢M : a′.

Then b′ = b and a′ = a, by invertibility. Hence Γ ⊢ N : b′ and by Lemma 9A.1

Γ ⊢ (M [x := N ]) : a′.

9A.8. Corollary (Subject Reduction for λA
=). Let A be an invertible type algebra. Then

λA
= satisfies the subject reduction property for βη.

Proof. By Lemma 9A.7.
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Invertibility of A is a characterization of all the type algebras A such that ⊢A has the
subject reduction property for β-reduction. The proof is from Statman [1994].

9A.9. Theorem. Let A be a type algebra. Then

A is invertible ⇔ λA
= satisfies the subject reduction property for β.

Proof. (⇒) By Lemma 9A.8.
(⇐) Let a, a′, b, b′ ∈A and assume a→b = a′→b′. We first prove that b = b′. Writing

Γ1 = {x:b, y:a′} we have Γ1 ⊢ ((λz.x)y) : b′. Then by subject reduction Γ1 ⊢ x : b′.
Hence by the Inversion Lemma 9A.3(i) b = b′.
Now take Γ2 = {x:(a→ b), y:(a→ a), z:a′}. We can derive Γ2 ⊢ (λu.x(yu))z : b′.

Again by subject reduction we obtain Γ2 ⊢ (x(yz)) : b′. Now by the Inversion Lemma
9A.3(ii) there is a type c∈TT such that Γ2 ⊢ x : c→ b′ and Γ2 ⊢ (yz) : c. Again by the
Inversion Lemma 9A.3 (iii), (i) the second statement implies a→ a = a′→ c. By the
first part of the proof we then have a = c and so a→a = a′→a. Now use this to prove
x:a′ ⊢ ((λy.y)x) : a. A final application of subject reduction and the Inversion Lemma
yields a = a′.

9B. Finding and inhabiting types

In this section we consider the problem of finding the (possibly empty) collection of types
for a given untyped λ-term M ∈Λ in a system λA

= à la Curry3. The questions that can
be asked about typing terms in recursive type systems are similar to those introduced in
Section 2C, but now we have one more parameter: the type algebra in which we want to
work. For simplicity we work only with closed terms. So assume M ∈Λø. The problems
are the following.

1. Type reconstruction
[1a] Find all type algebras A and all types a∈A such that ⊢A M : a.
[1b] Given a type algebra A find all types a∈A such that ⊢A M : a.

2. Typability The problems can be seen as a particular case of both 1a. and 1b. Now
we ask whether the set of all possible types of a given term is empty or not. Thus
for a given λ-term M the typability problems corresponding to 1a and 1b are:
[2a] Does there exist a type algebra A and a∈A such that ⊢A M : a?
[2b] Given A, does there exist an a∈A such that ⊢A M : a?

3. Type checking Given A and a∈A, do we have ⊢λAM : a?

In the next two problems the role of terms and types are reversed: we start with a type
algebra A and element a∈A.
4. Enumeration Find all M ∈Λ such that ⊢λAM : a.
5. Inhabitation Is there a term M ∈Λ such that ⊢λAM : a?

3As in the case of simple types this kind of problem is much simpler for explicitly typed terms. The
well formed terms of the typed calculi à la Church have a unique type and have all type information
written in them. To check that they are well formed with respect to the formation rules the only non
trivial step is that of checking type equivalence in rule (equal). But we have seen in Chapter 8 that all
interesting type equivalences are decidable. Type checking is even simpler in the system λCh0

µ where also
type equivalence is explicit. In the case of the typed calculi à la de Bruijn the type information is given
only partially, which sometimes leads to undecidability. See Schubert [1998].
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Stylistically these problems can be rendered as follows.
Type reconstruction ⊢? M : ? ⊢λAM : ?.
Typability ∃A, a∈A. ⊢λAM : a? ∃a∈A. ⊢λAM : a?
Type checking ⊢λAM : a?
Enumeration ⊢λA? : a;
Inhabitation ∃M ∈Λ. ⊢λAM : a?

Problems 1, 2 could be called ‘finding types’; problem 3 ‘fitting’; and problems 4, 5
‘finding terms’.
From Corollary 9A.3 it follows that for invertible A one has

x1:a1, ..., xn:an ⊢A M : a ⇔ ⊢A (λx1 · · ·xn.M) : (a1→ ...→an→a).

So in this case it is not restrictive to formulate these questions for closed terms only.
We will not consider the possibility of having a type environment Γ as parameter for
non-invertible type algebras. The reader is invited to study this situation.
The problem of inhabitation is sometimes trivial. As pointed out in Remark 7E.37(i),

for instance, in the systems λµ, λµ∗ all types are inhabited by Ω = (λx.xx)(λx.xx). We
will discuss the problem of finding inhabitants in (λR) at the end of this section.
We will present here the basic results concerning type reconstruction considering only

pure λ-terms. The generalization to terms containing constants is rather straightforward
and will be discussed in Section 11C.
Now we will answer the typing questions for syntactic type algebras A. The answer

to similar questions for µ-types follows easily from this case.

Finding types in type algebras

The most natural way to describe a type algebra is via a set of equations over a set TT
of types. So in many of the above questions we will assume (without loss of generality)

that A is of the form TT/E . Since an sr over A is a particular set of equations over A( ~X)
all results apply immediately to an sr as well. Only Theorem 9B.7 about type checking
is specific for type algebras defined via an sr.
Using the notion of type algebra morphism, see Definition 7A.8, we can define, in a

quite natural way, a notion of a principal type scheme for type assignments with respect
to arbitrary type algebras. It is a quite natural generalization of Corollary 2C.15, the
principal type scheme for λA

=.

Principal type scheme in λA
=

For every M ∈Λ a principal triple will be constructed: a type algebra AM = TTcM /EM ,
where cM is a set of type atoms and EM is a set of equations over TTcM , a type aM =
[αM ]EM , and a basis ΓM over AM such that

(i) ΓM ⊢AM
M : aM .

(ii) Γ ⊢A M : a ⇔ there is a morphism h : AM→A such that
h(ΓM ) ⊆ Γ and h(aM ) = a.

Since we are now working with type algebras, we define a type reconstruction algorithm
based on the use of type equations, rather than use unification as in Section 2C in Part
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I. This approach was first introduced, for type reconstruction in (λ→), in Curry [1969]
and has been followed by many other authors, see e.g. Wand [1987]. We start with some
simple examples, that explain the method. To make the examples more readable we will
use numbers to denote atomic types and we will add to each reconstruction rule used in
the deduction the type equation which makes it valid.

9B.1. Example. In the following examples we use the notation as indicated in 7A.18,
that is elements of TTA/E are denoted as elements of TTA, to be considered modulo E .

(i) LetM,λx.xx. In order to typeM , we build from below the following derivation.
(We will write αn just as n.)

x:1 ⊢ x : 1 x:1 ⊢ x : 1 1 = 1→2

x:1 ⊢ xx : 2 3 = 1→2

⊢ λx.xx : 3

This gives the triple

aM = 3,ΓM = ∅,AM = TTcM /EM ,
where cM = {1, 2, 3} and EM = {1 = 1→ 2, 3 = 1→ 2}. We can simplify this triple to

the isomorphic aM = 1, ΓM = ∅, AM = TT{1,2}/{1 = 1→2}, i.e.

AM = TT{α1,α2}/{α1 = α1→α2}.
Indeed

⊢AM
(λx.xx) : 1

In order to show that this assignment is initial, suppose that Γ ⊢λA M : a1. Then one
can reconstruct from below a derivation with the same shape, using Proposition 9A.3
and Remark 9A.4.

x:a1 ⊢ x : a1 x:a1 ⊢ x : a1 a1 = a1→a2

x:a1 ⊢ xx : a2 a3 = a1→a2

⊢ λx.xx : a3

The required morphism is determined by h(k) = ak for k ≤ 3. Indeed one has h(aM ) = a3
and h(ΓM ) ⊆ Γ.

(ii) If we consider the (open) term M ≡ x(xx) we have, using Church notation to
represent deduction in a more compact way, the following.

⊢AM
x1 (x1 x1)2 : 3,

where aM = 3, AM = TT{1,2,3}/{1 = 1→2 = 2→3} and ΓM = {x1}.
Moreover, if we want to consider type assignment with respect to invertible type

algebras we can convertAM to an invertible type algebraAinv
M . Assuming invertibility we

get 1 = 2 = 3. Then Ainv
M can be simplified to the trivial type algebra TT{1}/{1 = 1→1}.

(iii) If we consider terms having a simple type in (λ→), then the construction sketched
above does not involve recursive definitions as in case (i). Moreover if we assume in-
vertibility the resulting type algebra is isomorphic to a free one and we get the same
principal type as in (λ→). Let M , c2 ≡ λfx.f(fx).
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f :1, x:2 ⊢ f :1 f :1, x:2 ⊢ x : 2 1 = 2→3

f :1, x:2 ⊢ fx : 3 1 = 3→4

f :1, x:2 ⊢ f(fx) : 4 5 = 2→4

f :1 ⊢ λx.f(fx) : 5 6 = 1→5

⊢ λfx.f(fx) : 6
Simplifying this gives the triple

⊢TT/E c2 : (2→3)→(2→4), (1)

with E , {2→3 = 3→4}. We can understand this by looking at

⊢ λf (2→3)=(3→4) x2.(f3→4(f2→3x2)3)4 : (2→3)→2→4.

Also in λA
→ this term M can be typed.

⊢λA
→

c2 : (α→α)→α→α, (2)

Note that there is a morphism h : TT/E→TTα determined by

h(2) = h(3) = h(4) = α.

This h respects the equations in E . In this way the type assignment (2) is seen to follow
from (1), applying Lemma 7A.20.
Again assuming invertibility we get 2 = 3 = 4 and so TT/≈ contains only identities.

Then Ainv
c2

is isomorphic to TT{α}, the free type algebra over the atomic type α.
(iv) M ≡ II. Bottom-up we construct the following derivation-tree.

x:1 ⊢ x : 1 2 = 1→1

⊢ (λx.x) : 2

y:1′ ⊢ y : 1′ 2′ = 1′→1′

⊢ (λy.y) : 2′ 2 = 2′→0

⊢ (λx.x)(λy.y) : 0

Hence E = {1→1 = (1′→1′)→0} on TT{0,1,1′} we have

⊢E II : 0, (3)

In λ→ this term has as principal type α→α. This can be obtained as image of (3) under

the morphism h : TT{0,1,1′}→TT{α} defined by

h(0), α→α;

h(1), α→α;

h(1′), α.

Note that it was important to keep the names of the bound variables of the two occur-
rences of I different.
We present now the formal algorithm to build the principal triple of a term M . To

simplify its definition we make the assumption that the names of all free and bound
variables of M are distinct. This can always be achieved by α-conversion.
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9B.2. Definition. Let M ∈Λ. Define a set of type constants cM , a type αM , a basis
ΓM , a set of equations EM , and a type algebra AM with element aM as follows. We do
this by defining first for each subterm-occurrence L ⊆M for L not a variable a distinct
type atom αL. For variables x occuring in M we choose a fixed type αx (for different
occurrences the same αx). Then we define EL for each subterm-occurrence L ⊆ M ,
obtaining this notion also for M as highest subterm of itself.

L EL
x ∅
PQ EP ∪ EQ ∪ {αP = αQ→αPQ}
λx.P EP ∪ {αλx.P = αx→αP }

Define cM as the set of all atomic types αL and αx occurring in M . Finally we define

ΓM , {x:[αx] | x∈FV(M)};
AM , TTcM /EM ;

aM , [αM ]EM .

The type aM is called the principal recursive type of M and AM its principal type
algebra. ΓM is the principal recursive basis of M , which is empty if M is closed. The
triple 〈ΓM , AM , aM 〉 is called principal recursive triple. Note that EM is an sr, if we
consider the αL as indeterminates.

Type reconstruction

Of the following theorem part (iii) solves both versions of the type reconstruction prob-
lem.

9B.3. Theorem. For every M ∈Λ the principal recursive triple 〈ΓM , AM , aM 〉 satisfies
the following.

(i) ΓM ⊢AM
M : aM .

(ii) Γ ⊢A M : a ⇔ there is a morphism h : AM→A such that
h(ΓM ) ⊆ Γ and h(aM ) = a.

(iii) For M ∈Λø this simplifies to

⊢λAM : a ⇔ ∃h:AM→A.h(aM ) = a.

The triple is ‘principal’, as it is the initial one giving M a type satisfying (i) and (ii).

Proof. Take as triple the one defined in the previous Definition.
(i) By induction on the structure of L ⊆ M we show that this statement holds for

M replaced by L and hence also for M itself. Case L ≡ x. Then clearly x:αx ⊢ x : αx.
Case L ≡ PQ, and ΓP ⊢TT/EP P : αP , ΓQ ⊢TT/EQ Q : αQ. Then ΓP ∪ΓQ ⊢TT/E PQ : αPQ,

as αP =E αQ→αPQ. Case L ≡ λx.P and ΓP ⊢TT/EP P : αP . Then ΓP − {x:αx} ⊢TT/E
λx.P : αx→αP = αλx.P .

(ii) (⇐) By (i), Lemma 7A.20 and weakening, Proposition 7A.4.
(⇒) By Remark 7B.6 it is enough to define a morphism h♮ : TTcM → A such that

h♮(αM ) = a and B = C ∈EM ⇒ h♮(B) = h♮(C), for all B,C ∈TTcM .
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Take a deduction D of Γ ⊢A M : a. Note that in definition 9B.2 for every L ⊆ M a
type derivation DL is constructed in which to each variable x occurring in L we assign
a type αx and to each subterm occurrence of L, that is not a variable, a distinct type
variable. Moreover, as in Example 9B.1 DM and D have the same shape corresponding
to the structure of M . Now we define h♮.

h♮(αL) = bL, for all αL assigned to the subterm occurrences L of M ,

where bL is assigned in D to the corresponding L.

By induction on the subterm occurrences ofM it easily follows, using Proposition 9A.3
and Remark 9A.4, that all equations in EM are preserved. Moreover, by construction,
h♮(αM ) = a. Obviously we have h(ΓM ) ⊆ Γ, since ΓM contains only assumptions for
variables occurring in M .
(iii) By (ii), knowing that ΓM = ∅ for M ∈Λø.

9B.4. Remark. EM , ΓM and aM are the generalization of the notion of principal type
and basis scheme for simple types, see Hindley [1969], 1997. In typing a term in the
simple type assignment system we require that EM can be solved in an initial type algebra
TT. In this case EM simply defines the substitution which applied to ΓM and aM gives
the principal typing of M in the usual sense. Theorem 9B.3 is then a generalization of
the Principal Type Theorem.

If we want to consider only invertible type algebras, then by Lemma 8C.27 we can
take BM = TTcM /E invM as the initial type algebra for M . Let RM = E invM . Note that, by
Lemma 8C.26, RM is a proper sr and we have BM = TTcM /RM .

9B.5. Corollary. For every M ∈Λ there exists a so-called invertible principal triple
ΓM , BM , bM such that BM is invertible and the following holds.

(i) ΓM ⊢BM
M : bM .

(i) Γ ⊢B M : a, with B invertible ⇔ ∃h : BM→B.[h(ΓM ) ⊆ Γ & h(bM ) = a].

Proof. Given M , consider its principal type Γ′
M ,AM , aM and let BM = Ainv

M . Let
k : AM→BM be the canonical morphism and take ΓM = k(Γ′

M ), bM = k(aM ). Then (i)
holds by the Theorem and Lemma 7A.20. Property (ii) follows by (ii) of the Theorem
and Proposition 8C.27.

Let aM be the subset of cM containing all α∈ cM such that α does not occur in the
right hand of any equation in RM . Then we have that BM = TTaM [RM ].

The typability problems

Theorem 9B.3 provides the abstract answer to the question whether a term has a type
within a given type algebra A. The first typability question

“Given an untyped M ∈Λø, does there exist A and a∈A such that ⊢λAM : a?”,

is trivially checked: this is always the case. Indeed, take A = TT{α}/{α = α→α} and
a = [α]; then one has ⊢λAM : a, see Exercise 7G.12. However, this problem is no longer
trivial when term constants are considered, see the discussion in Section 11C.
The decidability of the second question, given M ∈Λø and type algebra A

“Does there exist an a∈A such that ⊢λA M : a?”,
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only makes sense if A is ‘finitely presented’, i.e. of the form TTA/E with A and E finite.
Then typability is decidable.

9B.6. Theorem. Let E be a set of equations over TT = TTA, with A and E finite. It is
decidable whether an M ∈Λø has a type in TT/E.
Proof. By Theorem 9B.3(iii) this boils down to checking whether E justifies EM , which
is decidable by Theorem 8C.29.

A related but stronger version of this problem will be discussed in the next subsection
in the case that E is an sr R.

Type checking

We work in the type algebra TT[R]. Writing x1:A1, · · · , xn:An ⊢λR M : A we mean

x1:[A1], · · · , xn:[An] ⊢λR M : [A]R, according to Notation 7A.18, identifying TT( ~X)/=R

with TT( ~X).

9B.7. Theorem. Given M ∈Λ, a proper sr R over TTA, with A finite, a type basis Γ and
a type A∈TT. Then it is decidable whether Γ ⊢λR M : A.

Proof. W.l.o.g. we can assume dom(Γ) = FV(M). By Theorem 9B.3(ii) one has Γ⊢λR
M : A iff there is a morphism h : AM →TT[R] such that h(aM ) = A and h(ΓM ) ⊆ Γ.
This is decidable by Corollary 8C.28.

9B.8. Remark. The set

{〈hk(ΓM ), hk(aM )〉 | there is h′ which agrees with Si}
can be seen as a finite set of principal pairs for M in R, in the sense of Theorem 2C.14,
from which we can generate all possible other typings of M in R via morphisms.

Finding inhabitants

We will now discuss the inhabitation problem for (λR). Following a suggestion of R.
Statman we will reduce the inhabitation problem for recursive types to the one for simple
types discussed in Section 2D. In the following we will consider the syntactic version of
the type assignment system for (λR) (see Proposition 7A.19), where the type equivalence
relation is given by =R.

9B.9. Definition. LetR( ~X) = {Xi = Ai( ~X) | 1 ≤ i ≤ n} be an sr over TTand A∈TT[ ~X].

Define the type ((R))→A∈TT[ ~X] and the environment ΓR as:

(i) ((R))→A, (X1→A1)→(A1→X1)→· · ·→A.

(ii) ΓR , {ci : Xi→Ai | 1 ≤ i ≤ n} ∪ {c′i : Ai→Xi | 1 ≤ i ≤ n}.
We will show that A is inhabited in λR if and only if ((R))→A is inhabited in λ→.

9B.10. Lemma. Let R( ~X) be an sr over TT and A,B ∈TT[ ~X]. If R ⊢ A = B then there
are terms M and M ′ such that ΓR ⊢λ→M : A→B and ΓR ⊢λ→M ′ : B→A.

Proof. By induction on the proof of R ⊢ A = B. If A = B has been obtained by rule
(axiom) (i.e. A = Xi and B = Ai where Xi = Ai ∈R) then take M = ci and M

′ = c′i.
If A = B has been obtained by rule (refl) the proof is trivial.
As for the induction step the most interesting case is when A = B has been obtained
by rule (→-cong). In this case we have A = A1→A2, B = B1→B2, R ⊢ A1 = B1 and
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R ⊢ A2 = B2. By induction hypothesis there are M ′
1 and M2 such that ΓR ⊢λ→ M ′

1 :
B1→A1 and ΓR ⊢λ→M2 : A2→B2. The take M = λx.λy.M2 (x (M

′
1 y)) and note that

ΓR ⊢λ→M : (A1→A2)→B1→B2 (assume x : A1→A2 and y : B1). The term M ′ can
be defined in a similar way.

9B.11. Lemma. Let A be a type in TT[ ~X] and Γ a type environment over TT[ ~X]. Then

∃M. Γ ⊢λR M : A⇔ ∃M ′. Γ,ΓR ⊢λ→M ′ : A.

Proof. (⇒) By induction on deductions in (λR) using Lemma 9B.10.
(⇐) Take a deduction D of Γ,ΓR ⊢λ→ M ′ : A. To build a deduction of Γ ⊢λR M : A
for some term M we only need to get rid of the constants ci and c′i. The proof is by
induction on the derivation of Γ,ΓR ⊢λA

→
M ′ : A.

If M ′ = x∈ dom(Γ), then we are done trivially. If M ′ = ci then since Xi =R Ai we
have Xi→Xi =R Xi→Ai. Then we can take M = I. We have Γ ⊢λR I : Xi→Ai, using
rule (equal). If M ′ = c′i the argument is similar.
All induction steps are trivial.

Lemma 9B.11 can be generalized in the following way.

9B.12. Proposition. Given an sr R( ~X) over TT and a type A in TT[ ~X]
A is inhabited in λR iff ((R))→A is inhabited in (λ→).

9B.13. Remark. The reduction of the inhabitation problem for recursive types to that
for simple types is immediate if we consider the system (λRCh0) with explicit constants
representing type conversion via folding and unfolding. Here the ci play the roles of
unfoldXi

and the c′i of foldXi
.

Moreover, using Lemma 9B.10 it can easily be shown that any typing in (λR) can be
represented by a term of (λRCh0).

Finding µ-types and their inhabitants

Concerning the problems of type reconstruction, typability, type checking and inhabita-
tion in (λµ) and (λµ∗), two of these are trivial. Write λµ(∗) to mean that both the λµ

and the λµ∗ versions hold. Typability in λµ(∗), i.e.

∃A∈TTµ. ⊢λµ(∗) M : A,

always holds, taking A = µα.α→α, see Exercise 7G.12. Inhabitation in λµ(∗),

∃M ∈Λ. ⊢λµ(∗) M : A,

always holds, taking M ≡ Ω, see Example 7A.3(ii), using µα.α→A.
The remaining problems, type reconstruction and type checking are first considered

for λµ∗ using µ-terms modulo strong equality (as the situation there is somewhat simpler
than the one for λµ). Note that both λµ∗ and λµ are invertible, so we can consider only
invertible type algebras.
The notions of principal type and principal pair, see Definitions 2C.13 and 9B.5, can be

generalized in a straightforward way to µ-types considered modulo strong equivalence.
On the one hand in TTµ all possible recursive types are present and so in considering
problems about assigning types to λ-terms there is no parameter R describing the re-
cursive types available in the system. On the other hand the solutions are not unique
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up to weak equivalence =µ but only up to =µ∗ . Therefore, only for the system (λµ∗) we
know how to state the Principal Type Theorem in a straightforward way.

9B.14. Definition. Recall the definitions of EM , aM , and ΓM in 9B.2. Let ~X denote

the indeterminates of the sr EM and ~S = 〈S1, ..., Sn〉 be a solution of EM in TTµ (typically
that given by Theorem 8A.1). We define

(i) aµM , aM [ ~X := ~S];

(ii) Γµ
M , ΓM [ ~X := ~S].

9B.15. Theorem. (i) Γµ
M ⊢λµ M : aµM .

(ii) Suppose Γ ⊢λµ∗ M : A. Then there is a substitution s : aM → TTµ such that
A=∗

µs(a
µ
M ) and Γ ⊇ s(Γµ

M ) (modulo =∗
µ).

Proof. (i) By Theorem 9B.3(ii) and Corollary 8A.4(ii).
(ii) By Remark 7E.33, since µ-types modulo =∗

µ are just notations for regular trees.

9B.16. Corollary. Γµ
M ⊢λµ∗ M : aµM .

Proof. By Theorem 9B.15(i) and Lemma 7A.20(i),, taking h(A) = (A)∗µ.

Using a similar argument one can show the following result.

9B.17. Theorem. For M ∈Λ, basis Γ and A∈TTµ it is decidable whether Γ ⊢λµ∗ M : A.

Proof. See Exercise 9D.6.

As for weak equivalence Theorem 9B.3 implies that the set of possible typings in λµ
of a term M , i.e. the set of all Γ, A such that Γ′ ⊢λµ M : A for all Γ′ ⊇ Γ, is after coding
recursively enumerable. Moreover, by Lemma 7A.20 and Theorem 8A.1, given a typing
deduction in λR (for any sr R) we can easily build one in λµ (via the construction in
Theorem 8A.1). It is not clear, however, how a principal type can be constructed in λµ,
owing to the many incomparable solutions that the same sr can have in TTµ.

9C. Strong normalization

As shown by the examples in Section 7A type systems with recursive types do not have,
in general, the strong normalization property. This is easy: in the presence of a type
A = A→A all untyped lambda terms can be typed. By restricting the use of the µ
operator in type formation, however, it is possible to define systems in which the strong
normalization property holds. The strong normalization theorem in this section comes
from Mendler [1987], 1991. We will prove in detail the strong normalization theorem
for an assignment system with µ-types. Exploiting the fact, shown in 8A, that any sr
can be solved in TTµ, this result can be extended to assignment systems defined via an
sr.

Strong normalization for µ-types

Using recursive types, in general, we can assign types to non-normalizing terms, like
the fixed point operator Y ≡ λf.(λx.f(xx))(λx.f(xx)), or even to unsolvable ones, like
Ω ≡ (λx.xx)(λx.xx). However, there is a subset TT+

µ ⊆ TTµ such that terms that can

be typed using only types in TT+
µ are strongly normalizable. The set TT+

µ completely
characterizes the types assuring normalization in the following sense. For any type
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T ∈TTµ, such that T /∈TT+
µ , it is possible to define a non-normalizing term which can be

typed using only the type T and its subtypes.

9C.1. Definition. (i) The notion of positive and negative occurrence of a subtype in a
type of TTµ is defined (inductively) by the following clauses.

(1) A is positive in A.

(2) If A is positive (negative) in B then A is positive (negative) in C→B and negative
(positive) in B→C.

(3) If A is positive (negative) in B then A is positive (negative) in µt.B.

(ii) We say that a type variable α is positive (negative) in A if all free occurrences of
α in A are positive (negative). It is not required that α∈FV(A), but we do not speak
about occurrences of bound variables being positive or negative.
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Figure 27. The universal binary tree and the ± nodes

Note that A is positive (negative) in B if A occurs in B only on the left hand side of
an even (odd) number of ‘→’. Let this number be the level of the occurrence of A in B.
For instance δ is positive in ((µα.α→δ)→β)→γ, since the occurrence of δ is at level 2,
but not in ((µα.δ→α)→β)→γ, since now it is at level 3.
Finite or infinite trees can be considered as subtrees of the universal binary tree. The

positive and negative subtypes in a type considered as tree are displayed in Fig. 27.
It is interesting to note that the sequences of the signs +,− on one horizontal level,
starting all the way to the left with a +, form longer and longer initial segments of the
Morse-Thue sequence, see Allouche and Shallit [2003].

9C.2. Definition. (i) A type A∈TTµ is called positive if for every µα.B ⊆ A all occur-
rences of α in B are positive.

(ii) TT+
µ , {A∈TTµ | A is positive}.

(iii) Let λµ+ be the type assignment system defined as λµ, but restricting the set of
types to TT+

µ .

9C.3. Remark. Note that A,B ∈TT+
µ ⇔ (A→B)∈TT+

µ .

9C.4. Examples. (i) µβ.α→β ∈TT+
µ .

(ii) µβ.β→α /∈ TT+
µ .

(iii) µβ.β→β /∈ TT+
µ .

(iv) ((µβ.α→β)→γ)∈TT+
µ .

(v) (µβ.(α→β)→γ) /∈ TT+
µ .

Obviously any deduction in λµ+ is also a deduction in λµ. So any type assignment
provable in λµ+ is also provable in λµ.
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Positive recursive types are often called inductive, since it is possible to define for them
an induction principle, see Mendler [1991]. In that paper the result is proved in fact for
a stronger system, defined as an extension of second order typed lambda calculus with
provable positive recursive types and induction and coinduction operators for each type.
The strong normalization proof for terms typable in λµ+ is based on the notion of

saturated set introduced in Girard [1971], which is in turn based on Tait’s method
presented in Section 2B provided with an impredicative twist. We will prove it for the
Curry version of λµ, but the proof extends to the systems with explicit typing, see
Definition 7A.21. For an arithmetical proof of the mentioned SN result, see David and
Nour [2007].
Let SN be the set of strongly normalizing type free λ-terms.

9C.5. Definition. (i) A subset X ⊆ SN is saturated if the following conditions hold.

(1) X is closed under reduction, i.e. for all M,N ∈Λ
M ∈X &M ։β N ⇒ N ∈X .

(2) For all variables x one has

∀n ≥ 0∀R1, · · · , Rn ∈ SN.xR1 · · ·Rn ∈X .
(3) For all Q∈ SN one has

P [x := Q]R1 · · ·Rn ∈X =⇒ (λx.P )QR1 · · ·Rn ∈X
(ii) Let SAT be the set of all saturated subsets of SN.

9C.6. Proposition. SAT is a complete lattice, see Definition 10A.4(vi) under the oper-
ations of set inclusion, with sup{X ,Y} = X ∪ Y and inf{X ,Y} = X ∩ Y.
The top element of SAT is SN while its bottom element ⊥SAT=

⋂
X ∈ SAT

X is the least set
containing all terms of the shape xR1 · · ·Rn (Ri ∈ SN) and that satisfies (3) of Definition
9C.5(i). We recall that a function f : SAT → SAT is monotonic if X ⊆ Y (where
X,Y ∈ SAT) implies f(X) ⊆ f(Y ) and anti-monotonic if X ⊆ Y implies f(Y ) ⊆ f(X).
If f : SAT→SAT is a monotonic function, then

fix(f) ,
⋂
{x | f(x) ⊆ x}

is the least fixed point of f .

9C.7. Definition. The operation ⇒: SAT× SAT→SAT is defined by

(X ⇒ Y), {M | ∀N ∈X .(MN)∈Y}
The proof of the following proposition is standard.

9C.8. Proposition. ⇒ is well defined, i.e. for all X ,Y ∈ SAT X ⇒ Y ∈ SAT. Moreover
⇒ is anti-monotonic in its first argument and monotonic in its second argument, i.e. if
X ′ ⊆ X and Y ⊆ Y ′, then (X ⇒ Y) ⊆ (X ′ ⇒ Y ′).

We now define an interpretation of types in TT+
µ as elements of SAT and of terms as

elements of Λ. This is inspired by standard semantical notions, see Chapter 10. Let a
type environment be a function τ : A→SAT.
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9C.9. Definition. The interpretation of a type A ∈TT+
µ under a type environment τ ,

notation [[A]]τ , is defined by

[[α]]τ , τ(α);

[[A→B]]τ , [[A]]τ ⇒ [[B]]τ ;

[[µα.A]]τ , fix(λλX :SAT.[[A]]τ [α:=X ]).

9C.10. Lemma. (i) If α is positive (negative) in A∈TT+
µ then

λλX :SAT.[[A]]τ [α:=X ]

is a monotonic (anti-monotonic) function over the complete lattice SAT.
(ii) [[−]]τ is well defined on TT+

µ , i.e. [[A]]τ ∈ SAT for all types A∈TT+
µ and all type

environments τ .
(iii) For circular types A one has [[A]]τ = ⊥SAT.

Proof. (i), (ii) by simultaneous induction on A.
(iii) Notice that [[µα.α]]τ = ⊥SAT and [[µα.B]]τ = [[B]]τ , if α /∈ B. Then for a circular

A ≡ µα1 · · ·αn.αi one has [[A]]τ = [[µαi.αi]]
τ = ⊥SAT.

9C.11. Lemma. (i) [[A[α := B]]]τ = [[A]]τ [α:=[[B]]τ ]

(ii) [[µα.A]]τ = [[A[α := µα.A]]]τ .

Proof. (i) By structural induction on A.
(ii) By definition [[µα.A]]τ is a fixed point of λλX :SAT.[[A]]τ [t:=X ]. Therefore we have

[[µα.A]]τ = [[A]]τ [t:=[[µα.A]]τ ]
, which is [[A[α := µα.A]]]τ , by (i).

By Lemma 9C.11 type interpretation is preserved under weak equivalence.

9C.12. Lemma. Let A,B ∈TT+
µ . If A =µB, then [[A]]τ = [[B]]τ .

We define now an interpretation of terms in Λ. This is in fact a term model inter-
pretation. Let a term environment be a function from the set of term variables V to
elements of Λ.

9C.13. Definition. Let ρ : V→Λ be a term environment. The evaluation of a term M
under ρ is defined by

[[M ]]ρ , M [x1 := ρ(x1), · · · , xn := ρ(xn)],

where x1, . . . , xn (n ≥ 0) are the variables free in M .

We define now the notion of satisfiability of a statement Γ ⊢λµ+ M : A with respect
to the interpretations of types and terms just given.

9C.14. Definition. Let τ, ρ be a type and a term environment, respectively. Define
(i) τ, ρ |=M : A ⇐⇒△ [[M ]]ρ ∈ [[A]]τ .
(ii) τ, ρ |= Γ ⇐⇒△ τ, ρ |= x : A, for all x:A∈Γ.
(iii) Γ |=M : A ⇐⇒△ τ, ρ |= Γ ⇒ τ, ρ |=M : A, for all τ, ρ.

9C.15. Lemma. Γ ⊢λµ+ M : A =⇒ Γ |=M : A.

Proof. By induction on the derivation of M : A from Γ, using Lemma 9C.12 for rule
(equal).

9C.16. Theorem (Mendler). Γ ⊢λµ+ M : A ⇒ M is SN.
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Proof. By Lemma 9C.15 one has Γ |= M : A. Define ρ0 by ρ0(x) = x for all x∈V.
Trivially, for any type environment τ one has τ, ρ0 |= Γ. Hence τ, ρ0 |=M : A. Therefore
[[M ]]ρ0 =M ∈ [[A]]τ ⊆ SN.

9C.17. Remark. The converse of this result does not hold. For example ω ≡ λx.xx is
SN, but not typable in λµ+, see Exercise 9D.9.

We can reformulate Theorem 9C.16 as follows. Define the set of terms typable from a
set of types as follows.

9C.18. Definition. Let X ⊆ TTµ. Then

Typable(X ) = {M ∈Λ |M can be typed using only types in X}.
By ‘using only types in X ’ we mean that all types (including those in the basis) in some
derivation of Γ ⊢M : A are elements of X .
9C.19. Definition. Let SC+(A) be the least set of types containing SCs(A), see Defi-
nition 8B.34, that is closed under→.
9C.20. Lemma. (i) If A∈TT+

µ and B ∈SCs(A), then B ∈TT+
µ .

(ii) If A∈TT+
µ and B ∈SCsp(A), then B ∈TT+

µ .

Proof. (i) By induction on the definition of SCs(A).
(ii) By (i) and Remark 9C.3.

The following is a consequence of Theorem 9C.16.

9C.21. Corollary. If B ∈TT+
µ , then Typable(SC+(B)) ⊆ SN.

Proof. Immediate from Theorem 9C.16 and Lemma 9C.20.

Note that this Corollary also implies Theorem 9C.16. Indeed, assume G ⊢λµ+ M : A.
Let X = {A1, · · · ,An} ⊆ TT+

µ be the set of types used in this deduction. Then we can

apply the Corollary to B = A1→A2→· · ·→An ∈TT+
µ .

It is easy to extend this result and its proof to systems with other type constructors
like Cartesian product and disjoint union since all these operators are monotonic in both
arguments.
Conversely, all µ-types B which do not belong to TT+

µ allow to type a non-normalizable

term, using only types of SC+(B). We see this in the next theorem. The construction
is due to Mendler [1991]. As a warm-up, do exercise 9D.11.

Let ~A denote a sequence of types A1, · · · , An (n ≥ 0) and ~A→ B denote the type

A1→ · · · → An→ B. Moreover if ~M is a sequence of terms M1, · · · ,Mn then ~M : ~A
denotes the set of statements M1 : A1, · · · ,Mn : An.

9C.22. Theorem (Mendler). Let B ∈TTµ\TT+
µ . Then there is a term N without normal

form, typable in SC+(B). In formula (where N denotes the set of normalizable terms)

B /∈ TT+
µ ⇒ Typable(SC+(B)) 6⊆ N.

Proof. By assumption there is a subtype µα.T of B such that α has a negative occur-

rence in T . Now there is an integer n ≥ 0 and types Qi, ~Ai, Bj with 0 ≤ i ≤ 2n+1, 1 ≤
j ≤ 2n+ 1 such that

µα.T =µ Q2n+1;

Qi ≡ ~Ai→Qi−1→Bi, with 1 ≤ i ≤ 2n+ 1;

Q0 ≡ ~A0→µα.T,
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where Q2n+1 is the head reduced form of µα.T (see Definition 7D.34). Clearly all these
types are elements of SC+(B). See Example 9C.23.
Case n = 0 is an exercise.
Case n > 0. Define terms Ni : Qi with 0 ≤ i ≤ 2n + 1 in the following order

N1, N3, · · · , N2n+1, N0, N2, · · · , N2n.

N1 , λ~x1.λy0.f
2n+1,1(y0~z0~z2n+1y2n);

N2i+1 , λ~x2i+1λy2i.f
2i,2i+1(y2i~z2iN2i−1), for 0 ≤ i ≤ n,

N0 , λ~x0.N2n+1;

N2i , λ~x2iλy2i−1.f
2i−1,2i(y2i−1~z2i−1N2i−2), for 1 ≤ i ≤ n.

Note that the yi for 0 ≤ i < 2n do not occur free in any Nj and that y2n occurs free in
N1, N3, · · · , N2n−1, but not in N2n+1, N0, N2, · · · , N2n. We do this relative to the basis
{fk,h : Bk→Bh}, with 1 ≤ k, h ≤ 2n+1. Moreover in these terms we have the intended

types ~xi: ~Ai, ~zi: ~Ai, and yi:Qi.
Now consider the term N , (N2n+1~z2n+1N2n). It is straightforward to verify that N

can be typed in the following basis.

Γ0 , {fk,h : Bk→Bh | 1 ≤ k, h ≤ 2n+ 1} ∪ {~zi : ~Ai | 0 ≤ i ≤ 2n+ 1},

using only types of SC+(B). The term N has the following (unique) reduction which is
infinite.

N = N2n+1~z2n+1N2n

։β f
2n,2n+1(N2n~z2nN2n−1[y2n := N2n])

։β f
2n,2n+1(f2n−1,2n(N2n−1[y2n := N2n]~z2n−1N2n−2))

։β f
2n,2n+1(· · · (f1,2(N1[y2n := N2n]~z1N0)) · · · )

։β f
2n,2n+1(· · · (f1,2(f2n+1,1(N0~z0~z2n+1N2n))) · · · )

→β f
2n,2n+1(· · · (f1,2(f2n+1,1(N2n+1~z2n+1N2n))) · · · )

= f2n,2n+1(· · · (f1,2(f2n+1,1N)) · · · ).

Theorem 9C.22 can be immediately extended to λCh
µ and λCh0

µ .

9C.23. Example. Let B , µα.T , with T , ((α→β)→α)→β. We consider the leftmost
negative occurrence of t. [Considering the rightmost occurrence of t will result in a more
simple example.] Now

B =µ ((B→β)→B)→β.

Then we have n = 1, Q3 = ((B→ β)→B)→ β, Q2 = (B→ β)→B, Q1 = B→ β, and

Q0 = B. There are no ~Ai, one has B1 ≡ B3 ≡ β, and B2 ≡ B. Moreover,

Γ0 = {f12:β→B, f2,3:B→β, f3,1:β→β};
N1 = λy0.f

3,1(y0 y2);
N0 = N3 = λy2.f

2,3(y2N1) = λy2.f
2,3(y2 λy0.f

3,1(y0 y2));
N2 = λy1.f

1,2(y1N0).
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Note that Γ0, y2:Q2 ⊢ N1 : Q1, Γ0 ⊢ Ni : Qi, for i∈{0, 2, 3}. Then Γ0 ⊢λµ (N0N2) : α.
We have the infinite reduction

(N0N2)→βf
2,3(N2N1 [y2: = N2]) ։β f

2,3(f1,2(f3,1(N0N2)))→· · · .

Theorems 9C.16 and 9C.22 show that TT+
µ is the largest subset X ⊆ TTµ such that if a

term can be typed using only the types in X , then M is strongly normalizing (SN).

9C.24. Corollary. Let B ∈TTµ. Then

(i) Typable(SC+(B)) ⊆ N ⇒ B ∈TT+
µ .

(ii) B ∈TT+
µ ⇔ Typable(SC+(B)) ⊆ SN.

⇔ Typable(SC+(B)) ⊆ N.

Proof. (i) By Theorem 9C.22.

(ii) B ∈TT+
µ ⇒ Typable(SC+(B)) ⊆ SN, by Corollary 9C.21,

⇒ Typable(SC+(B)) ⊆ N

⇒ B ∈TT+
µ , by (i).

9C.25. Corollary. Let B ∈TTµ. Then

Typable(SC+(B)) ⊆ N ⇔ Typable(SC+(B)) ⊆ SN.

This reminds us of the old question whether M ∈N ⇒ M ∈ SN. This is not the case.
KIΩ has a nf, but is not SN. The reason is that there is the subterm Ω that has no nf.
There is even a term M0 = (λz.(λxy.y)(zz))(λz.(λxy.y)(zz)), such that every subterm
has a nf, but the term itself is not SN. Note that M0 =β Y(λxy.y).

The strong normalization theorem holds also for the typed systems λCh
µ and λCh0

µ

(which is indeed weaker than λCh
µ ). In the case of λCh0

µ it is easy to prove that the reduc-

tion rules (Ruf
E ) and (Rfu

E ) of Definition 7A.22 cannot cause infinite reduction sequences.
On the other hand there does not seem to be a natural definition of positive types for
⊢λµ∗ .

Strong normalization for simultaneous recursion

For elements of TT[R] we define a notion similar to that of a positive occurrence.

9C.26. Definition. We say that an sr R is inductive if the following holds: if X =R C
for an indeterminate X, then X has only positive occurrences in C.

9C.27. Example. (i) Let R0 , {X0 = X1→X0, X1 = X0→X1}. Then R0 is inductive.
Note that by unfolding we can get X0 =R0 (X0 → X1)→ X0) (and so on) but both
occurrences of X0 are positive.
(ii) Let R1 , {X0 = X1 → X1, X1 = X0 → X1}. Then R1 is not inductive. In fact
X1 =R1 (X1→X1)→X1.

The following is a useful property.

9C.28. Proposition. An sr R is inductive iff the solution {S1, · · · , Sn} of R in TTµ (see
Theorem 8A.1) is such that Si ∈TT+

µ , 1 ≤ i ≤ n.
Proof. A routine check.
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By this Proposition it is easily decidable if a given sr is inductive. As a consequence
of Theorems 9C.16 and 9C.22 we can characterize those sr which can type only terms
that are strongly normalizing.

9C.29. Theorem. Let R be an inductive sr. Then

Γ ⊢λR M : A ⇒ M ∈ SN.
Proof. Let R = R(X1, · · · , Xn) and h : TT[R]→ TT+

µ be the type algebra morphism
defined by h(Xi) = Si, with 1 ≤ i ≤ n, where S1, · · · , Sn = Solµ(R) and h(α) = α, for
all other atomic types α. By Proposition 9C.28 we have Si ∈TT+

µ , for 1 ≤ i ≤ n. Then

for all B ∈TT[ ~X] we have h(B)∈TT+
µ and by Lemma 7A.20 we get h(Γ) ⊢λµ+ M : h(A).

Now Theorem 9C.16 applies.

9C.30. Theorem. Let R = {Xi = Ai | 1 ≤ i ≤ n} be a non-inductive sr. Then
there is a term N without normal form such that for some basis Γ and some i we have
Γ ⊢λR N : Xi.

Proof. We have Xi =R Ai for some i with Xi occurring negative in Ai. The proof is
the same as for Theorem 9C.22 where Xi replaces µα.T and =R replaces =µ .

Type Inference

The typability of a term M is decidable also with respect to inductive sr (and with
respect to λµ+). This property follows easily from the following Lemma.

9C.31. Lemma. (i) Let A = TT/≈ and A′ = TT′/≈′ be syntactic type algebras and h :
A→A′ a morphism. If A∈TT has a positive (negative) occurrence in B ∈TT then h(A)
has a positive (negative) occurrence in h(B).

(ii) Let R( ~X) and R′( ~X ′) be proper sr over TT, TT′ respectively. Assume that R is
non-inductive and that there is a morphism h : TT[R]→TT[R′]. Then R′ is non-inductive.

Proof. (i) By induction on B.

(ii) Take X ∈ ~X such that X =R C for some C which contains a negative occurrence
of X. Since h is a morphism we have that h(X) =R′ h(C). Then h(X) has a negative
occurrence in h(C), by (i). Using Lemma 7C.12, it follows by a simple induction on h(X)
that h(X) must contain a Y ∈ dom(R′) such that Y =R′ C ′ for some C ′ with negative
occurrence Y in it.

9C.32. Definition. LetM ∈Λ. We say thatM can be inductively typed if it has a type
in λR, for some inductive sr R.
9C.33. Theorem. Let M ∈Λ. Then

M can be inductively typed ⇔ EM is inductive.

Proof. We show

M cannot be inductively typed ⇔ EM is not inductive.

(⇒) Immediate by Lemma 9B.3. (⇐) Assume EM is not inductive and that Γ ⊢λR
M : A. Then, by Theorem 9B.3 and Lemma 9C.31 R is not inductive.

9C.34. Theorem. It is decidable whether an M ∈Λ can be inductively typed.

Proof. By Theorem 9C.33 and Proposition 9C.28.
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9C.35. Example. Take the term λx.xx. We have seen in Example 9B.1(i) that Eλx.xx
contains an equation α1 = α1→α2 and then is not inductive. Then there is no inductive
sr which can give a type to λx.xx. Compare this with Theorems 9C.29 and 9C.30.

An inductive sr can be solved in TT+
µ , by Proposition 9C.28. Hence if a term is typable

from an inductive sr, then it is also typable in λµ+. The proof of the converse follows
from Exercise 9D.5.

9C.36. Theorem. It is decidable whether a given term M can be given a type in λµ+,
i.e. whether Γ ⊢λµ+ M : A for some type A and basis Γ over TT+

µ .

Proof. By the above and Theorem 9C.34.

9D. Exercises

9D.1. Let M ,λxy.xy(xy). Construct the recursive principal type and type algebra for
M .

9D.2. Let M , c2c2.

(i) Find the principal recursive type and type algebra for M .

(ii) Show that ⊢λ→ M : (α→α)→α→α. This is the principal type in λ→ and
in an invertible type algebra.

(iii) Show that ⊢λA
=
M : β, with A = TT{α,β}/E , where E = {(α→α)→α→α =

((α→α)→α→α)→β}.
(iv) Find the morphisms mapping the recursive principal type of M onto respec-

tively (α→α)→α→α and β, according to Theorem 9B.3.

9D.3. Prove that the system λCh0
µ defined in 7A.22 satisfies the subject-reduction prop-

erty. Note that this does not follow from Lemma 9A.8, since type equivalence is
not defined by a type algebra.

9D.4. Let (λµ−) be the system that assigns types in TTµ to terms in Λ, in which the
equivalence on types is not an→-congruence, i.e. the rule→-cong is deleted from
Definition 7D.26(i). Show that

x:(A→µα.B) ⊢λµ− (λy.xy) : (A→B[α := µα.B]);

x:(A→µα.B) 6⊢λµ− x : (A→B[α := µα.B]).

9D.5. Show that if a term M has a type A in λµ, then for some s.r. R it also has a type
B in λR, with the same tree unfolding, i.e. (A)∗ = (B)∗.

9D.6. Prove Theorem 9B.17. [Hint. Assume for simplicity that M is closed. By The-
orem 9B.16 we have to find a substitution s such that s(a∗M ) = A. Use Remark
7E.33.]

9D.7. Design an algorithm to decide directly (i.e. without passing through the transla-
tion in TT+

µ ), whether a given s.r. is inductive.
9D.8. Show that the typings for the terms in Example 7A.3, are all principal, except

the one for Y.
9D.9. Prove that λx.xx is not typable in λµ+. [Hint. Use the Inversion Lemma 9A.3.]
9D.10. Show that if A∈TT+

µ and A =µB, then B ∈TT+
µ .
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9D.11. For M ∈Λ write 〈M〉, λy.yM . Define

N , λx.x〈x〉;
L,N〈N〉.

(i) Show that L is not normalizing. [Hint. Note that 〈P 〉Q→β QP .] Historical
note. This is very much like Quine’s paradox (QP):

(QP)

{
“yields falshood when preceded by its own quotation”

yields falshood when preceded by its own quotation.
(QP) states that a sentence obtained by the given recipe is false; but following
that recipe one obtains (QP) itself.

(ii) Show that ⊢λµ L : α, using A = µβ.((β→α)→α)→α.



CHAPTER 10

MODELS

Our purpose in the present Chapter is to build concrete type algebras for the interpreta-
tion of recursive types. In Section 10A we focus on systems à la Curry, where infinitely
many types can in general be inferred for each (type-free) λ-term. Accordingly, it is
natural to regard the interpretation of a type as a collection of elements of a model of
the untyped λ-calculus. This idea is due to Scott [1975a].
We shall also describe, in Sections 10B and 10C, how to build models for explicitly

typed systems with recursive types. Classical categories of domains yield straightforward
models for these formulations. Beside these, we shall also consider models based on
different constructions (like continuous closures or partial equivalence relations) that are
of interest in their own.

10A. Interpretations of type assignments in λA
=

Before constructing a concrete interpretation of type inference systems of the form λA
=

introduced in Definition 7A.2, we need to define in general what data are needed to
specify such an interpretation. In the sequel, we shall focus on pure λ-terms, i.e., we
shall in general deal only with terms in Λ. In Chapter 11 we will indicate how the results
can be extended to the situation in which there are constants, both in the types and
terms.

10A.1. Definition. Let D = 〈D, ·, [[ ]]Dρ 〉 be a λ-model, see Definition 3A.31.

(i) We can turn P(D) into a type algebra by considering P(D) = 〈P(D),⇒〉, where
⇒ is defined in Definition 3A.34 as

X ⇒ Y , {d∈D | d ·X ⊆ Y }, {d∈D | ∀x∈X.(d · x)∈Y }.
(ii) An interpretation of a type algebra A in D is a morphism h : A→P(D).

10A.2. Definition. Let D be a λ-model, ρ∈EnvD, A be a type algebra and h : A→
P(D) be a morphism. Let Γ be a basis.

(i) We say that D, ρ, h satisfies the type assignment statement M : a, notation

|=D,ρ,h M : a,

if [[M ]]Dρ ∈h(a).
(ii) D, ρ, h satisfies Γ, notation

|=D,ρ,h Γ,

if |=D,ρ,h x : a, for all (x : a)∈Γ.

403
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(iii) Γ satisfies (M : a) with respect to D, ρ, h, notation
Γ |=D,ρ,h M : a,

if |=D,ρ,h Γ ⇒ |=D,ρ,h M : A,.

(iv) Γ satisfies (M : a) with respect to A,D, notation
Γ |=A,D M : a,

if Γ |=D,ρ,h M : a, for all ρ∈EnvD, h : A→P(D).
(v) Finally we write Γ |=A M : a if for all D

Γ |=A,D M : a.

10A.3. Proposition (Soundness).

Γ ⊢λA
=
M : a ⇒ Γ |=A M : a.

Proof. By induction on the length of proof of the LHS.

For well-founded type algebras A morphisms to P(D) can be obtained by assigning
arbitrary values ξ(a) for the prime elements a∈A. In this way morphisms from TTA are
determined by the choice ξ(α) for α∈A.

Some notions of domain theory

For non well-founded type algebras like TTµ or TT[R] the existence of morphisms to P(D)
is less obvious. We present some well-known domain theory to be used in Section 10B
in order to show that interpretations do exist, exploiting the domain structure of a well-
known class of λ-models.

10A.4. Definition. (i) A partially ordered set, also called poset is a structure D =
〈D,⊑〉 satisfying

x ⊑ x;
x ⊑ y & y ⊑ z⇒ x ⊑ z;
x ⊑ y & y ⊑ x⇒ x = y.

(ii) For X ⊆ D we say that d∈D is an upperbound of X, notation X ⊑ d, if
∀x∈X.x ⊑ d.

(iii) A subset X of D has a supremum (sup) d∈D, notation ⊔X = d if

X ⊑ d
∀d′ ∈D.X ⊑ d′ ⇒ d ⊑ d′

That is, d is the least upper bound of X.
(iv) A subset X of a poset D is directed if X is nonempty and

∀x, y ∈X∃z ∈X[x ⊑ z & y ⊑ z].
(v) A complete partial order (CPO) is a poset D such that there is a least element ⊥

and every directed X ⊆ D has a sup X ∈D.
(vi) A complete lattice is a poset D such that every X ⊆ D has a sup X in D.

10A.5. Definition. Let D be a complete lattice.
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(i) An element d∈D is called compact (also called finite) if for every directed Z ⊆ D
one has

d ⊑ Z ⇒ ∃z ∈Z.d ⊑ z.
(ii) Write K(D) = {d∈D | d is compact}. D is called an algebraic lattice if for all

x∈D the set {e∈K(D) | e ⊑ x} is directed and

x = {e∈K(D) | e ⊑ x}.
(iii) D is called an ω-algebraic lattice if moreover K(D) is countable.

10A.6. Example. (i) For any set X, the powerset 〈P(X),⊆〉 is a complete lattice under
the subset ordering. It is an ω-algebraic lattice iff X is countable.

(ii) A typical CPO is 〈⊥, true, false〉, where ⊥< true and ⊥< false.
(iii) Also, given two sets X and Y , we can define the CPO of partial functions X ⇀ Y

(given as graphs) ordered by subset (on the graphs).

Note that for posets D = 〈D,⊑〉 we have

ω-algebraic lattice ⇒ algebraic lattice
⇒ complete lattice
⇒ complete partial order
⇒ partially ordered set.

In Part III we will work mainly with ω-algebraic lattices and in this chapter mainly
with CPOs, in order to exercise flexibility of mind.

10A.7. Definition. Let f : D→D′ be a map.
(i) f is called strict if f(⊥D) = ⊥D′ .
(ii) f is called monotonic if

∀d, d′ ∈D.[d ⊑ d′ ⇒ f(d) ⊑ f(d′)].
(iii) f is called continuous if for every directed X ⊆ D

f(X)∈D′ exists and

f( X) = f(X).

(iv) If D,D′ are CPOs, then write [D→D′] = {f : D→D′ | f is continuous}.
(v) The category CPO consists of complete partial orders as objects and continuous

functions as morphisms.
(vi) The category ALG consists of ω-algebraic complete lattices as objects and

continuous functions as morphisms.

A continuous map f ∈ [D→D′] is always monotonic (consider for d ⊑ d′ the directed
set {d, d′}), but does not need to be strict.

10A.8. Definition. (i) Let D = 〈D,⊑〉 be a CPO. The Scott topology on D is defined
as follows. A set O ⊆ D is Scott open if

x∈O & x ⊑ y ⇒ y ∈O;

X ⊆ D directed & X ∈O ⇒ ∃x∈X ∩O.
10A.9. Remark. For each x∈D, the set Ux = {z | z 6⊑ x} is open. D is a T0 space.
Indeed, if x 6= y, then, say, x 6⊑ y and Uy separates x from y. D is in general not T1
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(if x ⊑ y, if every open set containing x also contains y, therefore the partial order is
discrete iff the Scott topology is T1.).

10A.10. Lemma. Let D,D′ be CPOs and f : D→D′.
(i) f is continuous ⇔ f is continuous w.r.t. the Scott topology.
(ii) For f, g ∈ [D→D′] define

f ⊑ g ⇔ ∀d∈D.f(d) ⊑ g(d).
Then 〈[D→D′],⊑〉 is a CPO.

Proof. See e.g. B[1984], Propositions 1.2.6, 1.2.11.

The following is a well-known property of CPOs for finding fixed points.

10A.11. Theorem. Let 〈D,⊑〉 be a CPO. There is a functional

fix∈ [[D → D]→ D]
such that for every f ∈ [D → D] one has

f(fix(f)) = fix(f)

Proof. Take fix to be the function which assigns to f : D → D the element

n∈ω
f (n)(⊥D).

Then fix is continuous and that the equation holds is left as an exercise.

10A.12. Definition. A reflexive structure is of the form
D = 〈D, F,G〉, where D is a CPO and F : D → [D → D] and G : [D → D]→D, are
continuous and satisfy F ◦ G = 1[D→D], i.e. F (G(f)) = f , for all f ∈ [D→D]. We say
that D is reflexive via F,G.

A reflexive structure D can be turned into a λ-model.

10A.13. Definition. (i) Let D be a reflexive structure. We turn D into an applicative
structure by defining the binary operation d · e = F (d)(e).

(ii) Then we define for M ∈Λ and ρ∈EnvD the interpretation [[M ]]ρ ∈D by induction
on the structure of M . This will turn D into a λ-model in the sense of Definition 3A.31.

[[x]]ρ , ρ(x), for x∈V;
[[MN ]]ρ , [[M ]]ρ · [[N ]]ρ;

[[λx.M ]]ρ , G(λλd.[[M ]]ρ[x 7→d]).

The last equation could also have been written as follows: [[λx.M ]]ρ , F (f), where

f(d) = [[M ]]ρ[x 7→d]. That this is indeed a continuous function can be proved by induction

on the structure of M .

10A.14. Proposition. Let D = 〈D, F,G〉 be a reflexive structure. Define the maps
· : D ×D→D and [[ ]]ρ as above. Then

(i) [[M [x: = N ]]]ρ = [[M ]]ρ[x 7→[[N ]]ρ]
.

(ii) 〈D, ·, [[ ]]ρ〉 is a λ-model.
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10B. Interpreting TTµ and TT
∗
µ

In this Section D will range over λ-models of the form D = 〈D, F,G〉, with D a reflexive
structure. If A is a well-founded type algebra of the form TTA/E , then there are many
morphisms h : A→P(D) determined by the images h(α) for α∈A.
If A is not well-founded, like TTµ, TT

∗
µ, TT[R],TT[R]∗, see Definitions 7C.13 and 7E.17,

then it is harder to construct morphisms A→P(D). We will address this in the present
Section for the systems TTµ, TT∗

µ, which are somewhat more general since they con-
tain solutions of all recursive type equations. The same technique can be applied to
TT[R],TT[R]∗ as well, see Exercise 10D.17.
For this construction we have to find a suitable class of subsets of a λ-model D closed

under⇒, with the property that TTµ and TT∗
µ can be mapped by a morphism to the type

algebra so obtained.

Approximating λ-models

An important tool to interpret recursive types is to work with λ-models having a notion
of approximation.

10B.1. Definition (Notion of approximation). Let 〈D, F,G〉 be a reflexive structure. A
family of continuous functions {(·)n : D→D}n∈ω is a notion of approximation for D if
it satisfies the following conditions. Write dn for (d)n.

(i) For all d∈D, and all n,m∈ω:
⊥0 = ⊥(2)

n ≤ m⇒ dn ⊑ dm(3)

(dn)m = dmin(n,m)(4)

d =
n∈ω

dn.(5)

(ii) For all d, e∈D and n∈ω:
d0 · e = d0 = (d · ⊥)0(6)

dn+1 · en = dn+1 · e = (d · en)n(7)

d · e =
n∈ω

(dn+1 · en).(8)

(iii) For X ⊆ D write Xn , {dn | d∈X} for n∈ω.
10B.2. Lemma. Suppose k ≤ n. Then

(X)k ⊆ (X)n.

(Xn)k = Xk.

Proof. Since dk = (dk)n = (dn)k, by (4).
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The conditions of Definition 10B.1 are satisfied by the λ-models D∞ built by the classical
construction of Scott, see e.g. B[1984], Lemma 18.2.8 and Proposition 18.2.13, although
some of these may fail for the same construction as modified by Park, see B[1984],
Exercise 18.4.21. Furthermore, they also apply to λ-models not explicitly obtained by
means of an inverse limit construction, like the models DA, see Engeler [1981], or the
filter λ-model F introduced in Barendregt, Coppo, and Dezani-Ciancaglini [1983], see
Part III. See Exercises 16E.6 and 10D.5.

Complete-uniform sets

Notation. From now on in this section we use D to denote a reflexive structure with a
notion of approximation.

One way to interpret elements of TTµ is the collection of ideals of D, i.e., the non empty
closed subsets of D with respect to the Scott topology (see MacQueen, Plotkin, and
Sethi [1986], Coppo [1985], Cardone and Coppo [1991]). Equivalently, these can be
described as the non-empty, downward closed subsetsX ofD such that ∆∈X whenever
∆ ⊆ X is directed. Here we shall use a slightly more general semantical notion of type,
by relaxing the requirement of downward closure and assuming only that types are closed
under increasing sequences and uniform: if d belongs to a type, then dn belongs to that
type for all n∈ω. (The names of these properties come from Abadi and Plotkin [1990].)

10B.3. Remark. The closure properties that we require for our semantical notion of
type are motivated by the fact that we are working essentially in continuous λ-models.
For example, in all such models, see B[1984], Chapter 19, §3,

⊥D = [[(λx.xx)(λx.xx)]],

hence ⊥D belongs to all types, which accounts for non-emptiness, see Example 7A.3(ii).
On the other hand, the interpretation of Y ≡ λf.(λx.f(xx))(λx.f(xx)), the fixed point
combinator, defines the map fix∈ [[D→D]→D] introduced in Theorem 10A.11. Now,
it was shown in Example 7A.3(iii) that Y has type (A→ A)→ A, and this motivates
completeness, because then every type has to be closed under least upper-bounds of
increasing sequences. Concerning uniformity, observe that if X is an ideal of D, the set
Xn , {dn | d∈X} is not, in general, an ideal of D. For example, in D∞ the subset D0

is not downward closed.

The construction described below can be performed, more generally, using n-ary com-
plete and uniform relations over D as interpretations of types. This applies in particular
to the interpretation of types as (complete and uniform) partial equivalence relations
(PER’s) over D, that can be exploited in the construction of an extensional model for
the versions à la Church of both λµ and λµ∗ (this is the content of Exercises 10D.11,
10D.12 and 10D.13). The subsets that interpret types are required to respect the notion
of approximation, in the following sense.

10B.4. Definition. (i) A subset X ⊆ D is complete if
• ⊥D ∈X;
• if d0 ⊑ d1 ⊑ · · · are all in X, then so is n∈ω d

n.
(ii) Let ∇ be a complete subset of D0. A subset X ⊆ D is called ∇-uniform if
• X0 = ∇,
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• Xn ⊆ X for all n∈ω.
(iii) Let CU∇(D), or just CU(D) if ∇ is clear from the context, denote the set of

complete and ∇-uniform subsets of D.
The following provides some properties of this set.

10B.5. Proposition (Properties of complete and uniform subsets). Let X,Y ∈CU∇(D).
Then for all n∈ω.

(i) Xn ∈CU∇(D).
(ii) X = Y ⇔ ∀n∈ω, Xn = Yn;

Proof. (i) Xn is uniform by Definition 10B.1 (4). It also is complete: since ⊥∈X also
⊥ = ⊥n ∈Xn; and if dk is an increasing chain in Xn, then ⊔kdk = ⊔kdkn = (⊔kdk)n ∈Xn,
by continuity of the approximation mappings.

(ii) Easy, using Definitions 10B.4 and 10B.1(5).

10B.6. Proposition. Let the sequence of sets X(n) ∈CU∇(D), n∈ω, satisfy

∀n∈ω
(
X(n) = (X(n+1))n

)
.(9)

Define X(∞) , {d | dn ∈X(n)}∈ CU∇(D). Then this set is the unique complete and

∇-uniform subset of D, such that (X(∞))n = X(n), for all n∈ω.
Proof. We first claim that

(i) (X(n))k = X(k), for k ≤ n;
(ii) X(k) ⊆ X(n) for k ≤ n;
(iii) (X(n))k ⊆ X(k). for all k, n.

Item (i) is proved by induction on n− k. If n = k, then

(X(n))n = ((X(n+1))n)n

= (X(n+1))n

=X(n).

Now we show the equation for n, k − 1, assuming it for n, k.

(X(n))k−1 = ((X(n))k)k−1

= (X(k))k−1, by the induction hypothesis,

= X(k−1).

Item (ii) follows from (i), as (X(n))k ⊆ X(n). Item (iii) follows for k ≤ n from (i), and
for n ≤ k, then one has by (ii)

(X(n))k ⊆ X(n) ⊆ X(k).

To show that X(∞) ∈CU∇(D), notice (X(∞))0 = ∇, because if d∈∇ then d∈X(i) for

all i∈ω as each X(i) is uniform. But then d∈ (X(i))i, hence di = d∈X(i) and therefore

∇ ⊆ (X(∞))0. Conversely, observe that (X(∞))0 ⊆ X(0) = ∇, by assumption (9).

As to uniformity of X(∞), let d∈X(∞). Then (dn)k ∈ (X(n))k ⊆ X(k), by (iii). There-

fore dn ∈X(∞).
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As to completeness, let d(j) ∈X(∞) be a chain of elements: then (d(j))n ∈X(n), for

all n∈ω, and therefore also j(d
(j))n =

(
j d

(j)
)
n
∈X(n) by continuity of the approx-

imation mappings, which entails that j d
(j) ∈X(∞). By (iii) we have X(n+1) ⊆ X(∞),

for every n. Hence X(n) ⊆ (X(n+1))n ⊆ (X(∞))n. Therefore X(n) = (X(∞))n, because

the reverse inclusion holds by definition of X(∞). Finally, X(∞) is unique, because if
Y is another complete and uniform subset with the property that Yn = X(n), then
Yn = (X(∞))n for all n∈ω, and this yields Y = X(∞).

The following result shows that each class CU∇(D) is closed under ⇒.

10B.7. Proposition. If X,Y ∈CU(D) then (X ⇒ Y )∈CU(D).
Proof. We first show that ∇ = (X ⇒ Y )0. Assume d∈∇, and let a∈X. Then

d · a = d0 · a, as ∇ ⊆ D0,

= d, by Definition 10B.1 (6).

Therefore d · a∈∇ = Y0 ⊆ Y , by uniformity. So ∇ ⊆ X ⇒ Y , and ∇ ⊆ (X ⇒ Y )0 as
∇ = ∇0. Conversely, let d∈ (X ⇒ Y ). Then

d0 = (d · ⊥D)0 , by Definition 10B.1 (6).

but ⊥D ∈∇ = X0 ⊆ X, hence d · ⊥D ∈Y , because d∈X ⇒ Y , so (d · ⊥D)0 ∈Y0 = ∇
and finally d0 ∈∇.
Also we have ⊥D ∈X ⇒ Y , since ⊥D ∈∇ = (X ⇒ Y )0 ⊆ X ⇒ Y .
For uniformity of X ⇒ Y , assume that d∈X ⇒ Y , and consider dn for n > 0 (we

already know that (X ⇒ Y )0 = ∇ ⊆ X ⇒ Y ). For any a∈X
dn · a = (d · an−1)n−1, by Definition 10B.1 (7),

but an−1 ∈X by uniformity of X and therefore d · an−1 ∈Y , so also (d · an−1)n−1 by
uniformity of Y , and finally dn · a∈X ⇒ Y .
For completeness, assume that we have an increasing chain of elements {d(j) | j ∈ω}

in X ⇒ Y , in order to show that the sup also is in X ⇒ Y . Let a∈X. Then
(

j ∈ω
d(j)

)
· a =

j ∈ω
(d(j) · a)∈Y,

by continuity of application and completeness of Y . Therefore j ∈ω d
(j) ∈ (X ⇒ Y ).

The following property of the interpretation of function types is the key to the whole
construction of the interpretation of recursive types.

10B.8. Proposition. For any X,Y ∈CU(D) and n∈ω,
(X ⇒ Y )n+1 = (Xn ⇒ Yn)n+1.

Proof. Assume that dn+1 ∈ (X ⇒ Y )n+1 ⊆ X ⇒ Y and that an ∈Xn ⊆ X. Then
dn+1 · an ∈Y . But

dn+1 · an = (dn+1 · an)n ∈Yn
by Definition 10B.1(7), so dn+1 ∈Xn ⇒ Yn and hence dn+1 ∈ (Xn ⇒ Yn)n+1. Conversely,
let dn+1 ∈ (Xn ⇒ Yn)n+1, and assume that a∈X. Then an ∈Xn. Now

dn+1 · a = dn+1 · an ∈Yn ⊆ Y,
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using again Definition 10B.1(7) and uniformity of Y and Xn ⇒ Yn, so dn+1 ∈X ⇒ Y
and finally dn+1 ∈ (X ⇒ Y )n+1.

Finally, we can define the type algebra used throughout this section.

10B.9. Definition. S(D), 〈CU(D),⇒〉
As an example, let us see how the theory developed so far allows to interpret a type
T = T → T as a complete and uniform subset Ξ = Ξ ⇒ Ξ. The latter is built in
denumerably many steps

Ξ(0),Ξ(1),Ξ(2), · · ·

The 0-th stage is Ξ(0) = ∇. Then, whatever Ξ will be eventually, Ξ0 = Ξ(0). Later stages
are defined by the recurrence

Ξ(n+1) = (Ξ(n) ⇒ Ξ(n))n+1.

If we can show that for all n∈ω
(
Ξ(n+1)

)
n
= Ξ(n),(10)

then we can exploit Proposition 10B.6 and take Ξ = Ξ(∞), so that Ξn = Ξ(n) for all
n∈ω. The proof of (10) is therefore the core of the technique, and appeals in an essential
way to Proposition 10B.8. The fact that Ξ = Ξ ⇒ Ξ is then a direct consequence of
Proposition 10B.5 (ii). Of course, this process must be carried out, in parallel, for all
type expressions, by defining a whole family of approximate interpretations of types. We
shall now show how to do this in the case of µ-types. The same method will be applied
to the interpretation of simultaneous recursions in Exercise 10D.17.

Approximate interpretations of µ-types

In order to state the definition of the approximate interpretation of types it is convenient
to introduce an auxiliary notation.

Notation. For X,Y ∈CU(D) and n∈ω, let X ⇒n+1 Y denote (X ⇒ Y )n+1.

10B.10. Lemma. (i) If A ⊆ D is ∇-uniform, then (A)n = A ∩ Dn.

(ii) Let X,Y ∈CU(D). Then X ⇒n+1 Y = (X ⇒ Y ) ∩ Dn+1.

(iii) X ⇒n+1 Y = Xn ⇒n+1 Yn.

Proof. (i) Note that An ⊆ A ∩ Dn by uniformity. Conversely, if d∈A ∩ Dn, then
d = dn ∈An, by the idempotency of (·)n, implied by 10B.1 (4).

(ii) By (i).

(iii) By Proposition 10B.8.

10B.11. Definition (Approximate Interpretations of Types). Given a type A∈TTµ, a
number n∈ω, and a type environment η : A → CU(D), define the n-th approximation
of the interpretation of A in the environment η, notation In[[A]]η, by induction on n
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and the complexity of the type A.

I0[[A]]η ,∇;
In+1[[α]]η , (η(α))n+1;

In+1[[A1 → A2]]η , In[[A1]]η ⇒n+1 In[[A2]]η;

In+1[[µα.A1]]η , In+1[[A1]]η[α 7→In[[µα.A1]]η ]
.

By a simple inductive argument (on n and then on the structure of the type) one can
see that each In[[A]]η is a complete and uniform subset of D and In[[A]]η ⊆ Dn. Below
we shall make frequent use of the following properties, whose easy inductive proofs are
left as an exercise.

10B.12. Lemma. Let A∈TTµ, α∈A, n∈ω and η be an environment.

(i) In[[A]]η = In[[A]](η↾n), where (η ↾ n)(α), (η(α))n.

(ii) In+1[[A]]η = In+1[[A]]η[α 7→(η(α))n]
, if µα.A is non-circular.

(iii) In[[µα.A]]η = ∇, if µα.A is circular.

10B.13. Lemma. For any n∈ω, all types A and any type environment η:

In[[A]]η =
(
In+1[[A]]η

)
n
.

Proof. For all n∈ω, A and η we have to prove the conjunction of (a) and (b):

(a) In[[A]]η ⊆ In+1[[A]]η;

(b) d∈In+1[[A]]η ⇒ dn ∈In[[A]]η.
We do this by induction on n. The basis is obvious. The induction step is proved by
induction on the complexity of the type A.
Case A ≡ α. Then In[[α]]η = (η(α))n, and we can use Lemma 10B.2.
Case A ≡ A1 → A2. Then we show first that

In−1[[A1]]η ⇒n In−1[[A2]]η ⊆ In[[A1]]η ⇒n+1 In[[A2]]η.

So assume d∈In−1[[A1]]η ⇒n In−1[[A2]]η and a∈In[[A1]]η. By the induction hypothesis

on n for (b) one has an−1 ∈In−1[[A1]]η. Hence

d · an−1 = d · a∈In−1[[A2]]η ⊆ In[[A2]]η,

using the induction hypothesis for (a), and equation (7) of Definition 10B.1. If

d∈In[[A1]]η ⇒n+1 In[[A2]]η

and a∈In−1[[A1]]η, then a∈In[[A1]]η by the induction hypothesis for (a). Hence d ·
a∈In[[A2]]η and by the induction hypothesis for (b) we get (d · a)n−1 ∈In−1[[A2]]η. The

result follows by observing that, using again equation (7) of Definition 10B.1, (d·a)n−1 =
dn · a, therefore

dn ∈In−1[[A1]]η ⇒n In−1[[A2]]η.
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Case A ≡ µα.A1. If A is circular, then the property holds trivially by Lemma
10B.12(iii). Otherwise

In[[µα.A1]]η = In[[A1]]η[α 7→In−1[[µα.A1]]η ]

= In[[A1]]η[α 7→(In[[µα.A1]]η)n−1]
, by the IH on n,

= In[[A1]]η[α 7→In[[µα.A1]]η ]
, by Lemma 10B.12(ii),

⊆ In+1[[A1]]η[α 7→In[[µα.A1]]η ]
, by the IH on A,

= In+1[[µα.A1]]η.

Now, let d∈In+1[[µα.A1]]η = In+1[[A1]]η[α 7→In[[µα.A1]]η ]
. Then by the induction hypothesis

on the complexity of the type one has dn ∈In[[A1]]η[α 7→In[[µα.A1]]η ]
. Hence by Lemma

10B.12 one has dn ∈In[[A1]]η[α 7→(In[[µα.A1]]η)n−1]
, as we assumed that A1 is contractive in

α. But (In[[µα.A1]]η)n−1 = In−1[[µα.A1]]η, by the induction hypothesis on n. Therefore

dn ∈In[[A1]]η[α 7→In−1[[µα.A1]]η ]
= In[[µα.A1]]η.

The interpretation I[[A]]η of a type A can now be defined by glueing its approximate

interpretations In[[A]]η, as described in Proposition 10B.6.

10B.14. Definition (Type Interpretations). For every type A and type environment η,
define the type interpretation

I[[A]]η , I∞[[A]]η,

which is X(∞) for X(n) = (In[[A]]η).
Observe that the interpretation of types depends on the choice of the base ∇. For

example, when D = D∞ is defined as the inverse limit of a sequence of CPOs (see 16C.1-

16C.23), where D0 consists of the two points ⊥,⊤, if ∇ = {⊥} then ⊤ /∈I[[µt.t→ t]]η ,

whereas I[[µt.t→ t]]η = D when ∇ = {⊥,⊤}. Note that if ∇ = {⊥}, then we have

D∞ /∈ CU(D∞). But I∞[[A]]η ∈CU(D∞), for all A and η.

10B.15. Proposition. For any type A, environment η, and n∈ω one has
(
I[[A]]η

)
n
= In[[A]]η.

Proof. By Proposition 10B.6.

10B.16. Proposition. (i) For any type A and environment η one has

I[[µα.A]]η = I[[A]]η[α 7→I[[µα.A]]η ]
.

(ii) For any pair of types A,B, any type variable α and any environment η one has

I[[A[α := B]]]η = I[[A]]η[α 7→I[[B]]η ]
.

Proof. (i) If µα.A is circular, then Lemma 10B.12(iii) applies. Otherwise, by Propo-
sition 10B.5 it suffices to show that for all n(

I[[µα.A]]η
)
n
=

(
I[[A]]η[α 7→I[[µα.A]]η ]

)
n
.
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By Proposition 10B.15 for all B, η, n
(
I[[B]]η

)
n
= In[[B]]η.

Case n = 0. Then both sides equal ∇. Case n+ 1. Then we have

In+1[[µα.A]]η = In+1[[A]]η[α 7→In[[µα.A]]η ]
, by Definition 10B.11

= In+1[[A]]η[α 7→I[[µα.A]]η ]
, by Lemma 10B.12(ii),

applied to η′ = η[α 7→ I[[µα.A]]η].
(ii) By a double induction, do Exercise 10D.7.

10B.17. Theorem (Properties of Type Interpretations). The following conditions are sat-
isfied, for any type environment η and all types A,B.

(i) I[[α]]η = η(α).

(ii) I[[A→ B]]η = I[[A]]η ⇒ I[[B]]η.

(iii) I[[µα.A]]η = I[[A[α := µα.A]]]η.

Proof. (i) d∈I[[α]]η ⇔ ∀n∈ω.dn ∈In[[α]]η = (η(α))n
⇔ d∈ η(α).

(ii) Observe that for all n∈ω one has

(I[[A→B]]η)n+1
= In+1[[A→B]]η, by Proposition 10B.15,

= In[[A]]η ⇒n+1 In[[B]]η

= (I[[A]]η)n ⇒
n+1 (I[[B]]η)n

= (I[[A]]η ⇒ I[[B]]η)n+1
, by Proposition 10B.8.

Now the result follows by induction from Proposition 10B.5 (ii), observing that

(I[[A→ B]]η)0 = ∇ = (I[[A]]η ⇒ I[[B]]η)0.

(iii) By Lemma 10B.16(i),(ii).

Soundness and completeness for interpreting TTµ and TT∗
µ

Theorem 10B.17 implies that I[[−]]η : (TTµ/ =µ ) −→ D is a type algebra morphism, for
all type environments η. We have immediately the following corollary.

10B.18. Proposition (Soundness of ⊢λµ). For all ρ∈EnvD, η : A→ CU(D)
Γ ⊢λµ M : A ⇒ Γ |=D,ρ,I[[−]]η

M : A.

Proof. By Proposition 10A.3.

We now proceed to show that the type interpretation introduced in Definition 10B.14
and characterized in Theorem 10B.17 induces a type algebra morphism from TT∗

µ, see
notation 7E.19, to S(D), see Definition 7E.17 and Definition 10B.9. To this end, we
introduce a notion of approximate interpretation for the regular trees which result from
unfolding infinitely often types in TTµ. This interpretation is of interest in its own,
and is indeed the notion of interpretation which was taken as basic in Cardone and
Coppo [1991].
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10B.19. Definition (Approximate interpretation of regular trees). Given n∈ω, t∈Trreg,
α∈A and η : A→ CU(D) a type environment, define the n-th approximation of the reg-
ular tree t, notation T n[[t]]η, by induction on n as follows.

T 0[[t]]η ,∇
T n+1[[α]]η , (η(α))n+1

T n+1[[•]]η ,∇
T n+1[[t1 → t2]]η , (T n[[t1]]η ⇒n+1 T n[[t2]]η).

10B.20. Lemma. For all types A∈TTµ, all type environments η and all n∈ω:
In[[A]]η = T n[[A∗]]η,

where (−)∗ = (−)∗µ : TTµ → Trreg is given in Notation 7E.19.

Proof. By induction on n. The basis is obvious, while the induction step is proved by
induction on A∈TTµ. Again the basis is clear. For the induction step we distinguish
cases.
Case A ≡ A1 → A2. Then

T n+1[[(A1 → A2)
∗]]η = T n+1[[(A1)

∗→(A2)
∗]]η

= T n[[(A1)
∗]]η ⇒n+1 T n[[(A2)

∗]]η

= In[[A1]]η ⇒n+1 In[[A2]]η

= In+1[[A1 → A2]]η;

Case A ≡ µα.A1. Then

T n+1[[(µα.A1)
∗]]η = T n+1[[(A1)

∗[α := (µα.A1)
∗]]]η

and we can prove by cases on the possible forms of (A1)
∗ that

T n+1[[(µα.A1)
∗]]η = T n+1[[(A1)

∗]]η[α 7→T n[[(µα.A1)∗]]η ]
.

Then we have

T n+1[[(µα.A1)
∗]]η = T n+1[[(A1)

∗]]η[α 7→T n[[(µα.A1)∗]]η ]

= In+1[[A1]]η[α 7→In[[µα.A1]]η ]

= In+1[[µα.A1]]η

using the induction hypotheses on n and A1.

10B.21. Proposition. Let A,B ∈TTµ. Then for all type environments η one has

A =∗
µ B ⇒ I[[A]]η = I[[B]]η.

Proof. Let A,B ∈TTµ and assume A =∗
µ B. Then by Lemma 10B.20 for all n, η

In[[A]]η = T n[[A∗]]η

= T n[[B∗]]η

= In[[B]]η.

Then the statement follows from Proposition 10B.5(ii).
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As an immediate consequence we have the soundness of rule (equal) in Definition 7A.2
and therefore, by a straightforward inductive argument, also the soundness of the typing
rules of the system à la Curry with strong equality of types.

10B.22. Corollary (Soundness of ⊢λµ∗). For all ρ∈EnvD, η : A→ CU(D)
Γ ⊢λµ∗ M : A ⇒ Γ |=D,ρ,I[[−]]η

M : A.

Proof. Again by Proposition 10A.3.

Applications of soundness

One application of the type interpretations described so far is the following, easy proof
of a standard result on definability by untyped terms, see B[1984], Exercise 19.4.5. Let
D be a λ-model. An element d∈D is called λ-definable if there exists an M ∈Λø such
that d = [[M ]]D.
In the sequel we take for D Scott’s λ-model D∞, see 16C.1-16C.23, where

• D0 is the two point lattice {⊥D0 ,⊤D0};
• 〈i0, j0〉 is the so-called standard embedding-projection pair,

i0(d), λλe.d, j0(f),⊥D0 ;

• ∇, {⊥D0}.
The sets Dn are considered as subsets of D∞ by identifying them with Φn∞(Dn).

Then the maps λλd.dn : D → D form a notion of approximation for D. Note that
⊤ = ⊤D = 〈⊤Dn〉, hence ⊤n = ⊤Dn . Moreover, ⊥∈D is λ-definable: ⊥ = [[Ω]].

10B.23. Proposition. ⊤ = ⊤D is not λ-definable.

Proof. Let L = µα.α→α, and recall that every M ∈Λø has type L. Then [[M ]]∈I[[L]],
by soundness, Proposition 10B.18. Now let d = [[M ]]. Then

d0 = [[M ]]0 ∈ (I[[L]])0 = I0[[L]] = ∇ = {⊥0}.
But ⊤0 = ⊤D0 6= ⊥D0 = ⊥0. Hence d 6= ⊤.
Another application of Corollary 10B.22 shows that types of a special form are inhab-
ited only by unsolvable terms, in the sense of B[1984], §8.3. This generalizes the easy
observation that, if ⊢λµ∗ M : µα.α for a closed term M , then M is unsolvable. In fact
I[[µα.α]] = ∇, so [[M ]] = ⊥ by soundness (Corollary 10B.22), and in D any M such that
[[M ]] = ⊥ is unsolvable, see B[1984], Theorem 19.2.4(i).
We need two Lemmas about the standard D∞ that do not hold if i0(⊤D0) 6= ⊤D1 .

10B.24. Lemma. (i) in(⊤n) = ⊤n+1, for all n ≥ 0;
(ii) Φn,∞(⊤n) = ⊤, for all n ≥ 0.

Proof. (i) By induction on n.
(ii) By (i).

Note that D /∈CU(D), because D0 6= ∇. In the next Lemma we show D− {⊤}∈CU(D).
10B.25. Lemma. LetD ,D − {⊤}. ThenD∈CU(D).
Proof. First we show that (D)0 = ∇. Let d∈D. Then Φ0∞(d0) = Φ0∞ ◦ Φ∞0(d0) ⊑ d.
But Φ0∞(⊤0) = ⊤, by Lemma 10B.24(ii). Hence d0 6= ⊤0, so d0 = ⊥0 ∈∇.
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Now we show thatD is complete. Note that d0 = ⊥0, for d∈D, because if d0 = ⊤0,
then Φ0∞(d0) = ⊤, but Φ0∞(d0) ⊑ d 6= ⊤. Now let e, supD{d | d∈D}. We must show
that e∈D, i.e. e 6= ⊤. It suffices to show e0 6= ⊤0. Now indeed

e0 = Φ∞0(e) = Φ∞0(sup{d | d∈D})
= sup{Φ∞0(d) | d∈D} = sup{d0 | d∈D}
= sup{⊥0} = ⊥0 6= ⊤0.

10B.26. Theorem. Let M be a closed term. Suppose for n,m ≥ 0

⊢λµ∗ M : α1→· · ·→αn→µα.(β1→· · ·→βm→α).

Then M is unsolvable.

Proof. Define η by η(γ) = D for all γ ∈A. Claim

(D ⇒ · · · ⇒ D ⇒ D) $ D. (1)

Observe that ⊤ /∈D ⇒ · · · ⇒ D ⇒ D, hence any element of D ⇒ · · · ⇒ D ⇒ D is also an
element of D. In order to show that the inclusion is strict, let the step function (e 7→ e′),
for compact elements e, e′ ∈D, be defined by

(e 7→ e′)(d),

{
e′, if e ⊑ d ,
⊥, otherwise.

Now consider

(~e 7→ ⊤), (e1 7→ (e2 7→ · · · 7→ (ep 7→ ⊤) · ·)),
where e1, · · · , ep ∈D are compact elements, with e1 6= ⊥. One has (~e 7→ ⊤)(⊥) = ⊥,
hence (~e 7→ ⊤)∈D, but (~e 7→ ⊤) /∈ (Dm ⇒ D), establishing (1).

Now, assume towards a contradiction that M is solvable. Then M ~N = I, for some
~N = N1, · · · ,Nℓ. Hence [[M ]] · [[N1]] · · · [[Nℓ]] = [[λx.x]]. Note that [[Ni]]∈D, by Proposition
10B.23. Let

T , α1→· · ·→αn→µα.(β1→· · ·→βm→α).

Case m = 0. If ℓ ≥ n then [[M ]] · [[N1]] · · · [[Nn]]∈∇, which is impossible because then
[[MN1 · · ·Nn]] = ⊥, so MN1 · · ·Nn is unsolvable. Otherwise, ℓ < n and

[[λx.x]]∈Dn−ℓ ⇒ ∇.

Then [[(λx.x)In−ℓ]]∈∇, hence (λx.x)In−ℓ = I would be unsolvable, again a contradiction.
Case m > 0. We can assume that ℓ < n, otherwise take some µ-unfoldings of T . Now

[[λx.x]]∈ (Dn−ℓ ⇒ I[[µα.(β1→· · ·→βm→α)]]η)

because, for i = 1, · · · , ℓ, [[Ni]]∈D = I[[αi]]η. By applying [[λx.x]] to I∼(n−(ℓ+1))d, we get

∀d∈D.d∈I[[µα.β1→· · ·→βm→α]]η.
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Therefore I[[µα.β1→· · ·→βm→α]]η = D. But this is impossible because then

I[[µα.β1→ ...→βm→α]]η =Dm ⇒ I[[µα.β1→ ...→βm→α]]η

= Dm ⇒ D
$ D, by (1).

Completeness

Partial converses to the above soundness results have been proved in Coppo [1985] (see
also Cardone and Coppo [1991]) for an interpretation of types in a domain D of the
shape A+[D→D]. On the one hand, the interpretation in D of every unsolvable λ-term
is ⊥, see B[1984], §§8.3, 19.2, for the notion of unsolvable terms and their interpretation
in topological λ-models. Now ⊥ is an element of every complete and uniform subset,
therefore, if M is such a term, it is true that [[M ]]ρ ∈I[[A]]η for any term environment
ρ, any type A and any type environment η. The incompleteness of all type inference
systems presented above, in particular of ⊢λµ∗ , becomes apparent by just considering

the λ-term ∆3∆3, where ∆3 , λx.xxx, which is unsolvable of order 0, yet has principal
type scheme µα.α→α. Therefore the system ⊢λµ∗ is incomplete.
Clearly this cannot be remedied by extending ⊢λµ∗ by the following rule, giving the

same types to (βη)-convertible terms.

(Eq)
Γ ⊢M : A M =βη N

Γ ⊢ N : A
.

One can, however, extend the system ⊢λµ∗ to a complete system in another way. The
system introduced in Coppo [1985] exploits the notion of approximant of a λ-term in the
formulation of an infinitary rule that assigns a type to a term when all its approximants
can be assigned that type.

10B.27. Definition (Approximants of λ-terms). Let Λ⊥ be the set of λ-terms with a
new constant ⊥.

(i) For M ∈Λ, define inductively the direct approximant ω(M)∈Λ⊥ of M .

ω(x) , x, if x is a variable,

ω(λx.M) , λx.ω(M), if ω(M) 6= ⊥,
, ⊥, otherwise,

ω(xM1 · · ·Mk) , xω(M1) · · ·ω(Mk), for k > 0,

ω((λx.M)M1 · · ·Mk) , ⊥, for k > 0.

(ii) A term P ∈Λ⊥ is called an approximant of a λ-term M if P = ω(N) for some
N ∈Λ with M ։β N .
(iii) The set of approximants of M , notation A(M), is defined by

A(M), {P ∈Λ⊥ | P is approximant of M}.
10B.28. Definition. Let D be a λ-model.

(i) Elements of Λ⊥ are interpreted in D by interpreting ⊥ as the least element of D.
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(ii) D satisfies the approximation (AT) if for all M ∈Λ and term environments ρ one
has

[[M ]]ρ = {[[P ]]ρ | P ∈A(M)}. (AT)

A classical result is the Approximation Theorem by Wadsworth [1976], stating that the
property (AT) holds for Scott’s D∞ models.
We now introduce the promised complete extension of ⊢BH.

10B.29. Definition. The type inference system λµ∗∞ is defined by adding to the system
⊢λµ∗ the following rules.

(⊥) Γ ⊢ ⊥ : A

(C)
Γ ⊢ P : A for all P ∈A(M)

Γ ⊢M : A

Figure 28. Extra axiom and rule for λµ∗∞

For the resulting system λµ∗∞ it is possible to prove a form of completeness.

10B.30. Theorem. Let D range over λ-models satisfying AT. Then

Γ ⊢λµ∗∞ M : A ⇔ ∀D [Γ|=TTµ∗ ,D M : A]

see Definition 10A.2(iv) and Lemma 7E.20(iii).

A proof of this result and a thorough discussion of the system λµ∗∞ is contained in
Cardone and Coppo [1991], §4.
More directly relevant to applications is another completeness result, which states that
=∗

µ completely describes the equivalence which identifies two recursive types whenever
their interpretations are identical in all type environments: this provides a strong se-
mantical evidence for the use of =∗

µ as the preferred notion of equality of recursive
types. This can be proved following the same idea as in Coppo [1985] and Cardone and
Coppo [1991], by using a domain D ∼= A + [D→D], where A is a cpo whose elements
are basic values, for example the flat cpo of integers or of boolean values.
The following result on the equivalence of recursive types will be obtained as Corollary

11A.39.

10B.31. Theorem. Let A,B ∈TTµ. Then

A=∗
µB ⇔ ∀η.[I[[A]]η = I[[B]]η].

10C. Type interpretations in systems with explicit typing

One straightforward way of interpreting the explicitly typed calculi with recursive types
consists in restricting the full type structure introduced in Part I, Chapter 3.1, by replac-
ing sets with domains and functions with (Scott) continuous functions. Indeed, there is
a sense in which domain theory and the solution of recursive domain equations can be
regarded as a purely semantical theory of recursive types. The leading idea is to define
M(A → B) as the domain of continuous functions from M(A) to M(B); a recursive
type µα.A is interpreted as the solution of the domain equation D ∼= F (D), where F
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interprets the functor over domains defined by (the interpretation of) A: such a solution
can be built, for example, as the limit of an inverse sequence of approximations, following
Scott [1972].
In order to overcome some pathologies that arise in the resulting model, for example

the fact that for many natural choices of categories of domains the interpretation of type
µα.α→α collapses to one point, alternative interpretations are available.
On the one hand, we can interpret types as closures over the λ-model Pω following

Scott [1976]. Such a construction yields far more than a model for simple recursive types:
indeed, it has been used in McCracken [1979] and Bruce, Meyer, and Mitchell [1990] to
interpret the polymorphic λ-calculus and in Barendregt and Rezus [1983] to give a model
for calculi with dependent types and a type of all types.
On the other hand, types can be interpreted as partial equivalence relations (more

precisely, as complete and uniform per’s) over a continuous λ-model with a notion of
approximation, along the lines of Section 10B. Such models are discussed in many
references, among them Amadio [1991], Cardone [1989], Abadi and Plotkin [1990]. We
shall sketch these model constructions in the exercises, see Exercises 10D.11, 10D.12 and
10D.13. We also mention in passing other models that have been proposed recently in
the literature, mostly based on operational interpretations that haven’t been dealt with
at all in this Part, Birkedal and Harper [1999], Appel and McAllester [2001] and Vouillon
and Melliès [2004].
In this section we focus in particular on the system λCh0

µ in which all possible recursive
types are present. The advantage of this system is that the terms foldµα.A and unfoldµα.A

afford an explicit notation for the isomorphisms provided by the solution of recursive
domain equations and formalize the intuitive idea that a recursive type is interpreted as
such a solution.
We assume below that A is a collection of basic types containing at least one element

with a non empty interpretation.

Domain models

Solving recursive domain equations

The sketch below summarizes the results that we shall need for the model construction;
complete details can be found in Smyth and Plotkin [1982] or Amadio and Curien [1998],
§7.1.
10C.1. Definition. We associate to the category CPO a category CPOep whose mor-
phisms from D to E are the embedding-projection pairs 〈e : D→E , p : E →D〉, namely
the pairs of continuous functions such that

p ◦ e = 1D and e ◦ p ⊑ 1E .

Observe that, if 〈e1, p1〉 : D1 −→ E1 and 〈e2, p2〉 : D2 −→ E2 are embedding-projection
pairs, then we have an embedding-projection pair

〈[p1→e2], [e1→p2]〉 : [D1→D2] −→ [E1→E2],
where [p1→ e2](h) , e2 ◦ h ◦ p1 for all h : D1→D2 and [e1→ p2](k) , p2 ◦ k ◦ e1 for all
k : E1→E2.
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In the sequel F : CPOep→CPOep is a functor that is continuous, i.e. preserves di-
rect limits of chains of embeddings of the form (13) below. This F associates to each
D∈CPO an element F (D) and to each 〈e, p〉 : D→E a pair F (〈e, p〉) : F (D)→F (E).
Note that e and p determine each other completely. Hence if F (〈e, p〉) = 〈e′, p′〉, then
e′ is completely determined by e and p′ by p. Therefore we write loosely F (e) = e′ and
F (p) = p′.
The solution of an equation D ∼= F (D) will be obtained as the inverse limit of a

sequence of projections.

D0 D1
j0oo D2

j1oo · · ·j2oo Dn
jn−1oo Dn+1

jnoo · · ·jn+2oo(11)

or, equivalently, as the direct limit of the sequence of embeddings

D0
i0 // D1

i1 // D2
i2 // · · · Dn

in // Dn+1
in+1 // · · · ,(12)

where

D0 , 1, the one-element cpo,

Dn+1 , F (Dn)

〈i0, j0〉 , 〈⊥D0→D1 ,⊥D1→D0〉.
Compare this with Section 16C, where the case F (D) ∼= [D→D] is treated, starting from
a general D0. For the present D0 the pair 〈i0, j0〉 is the only morphism from D0 to D1

and the pairs 〈in, jn〉, for n > 0, are embedding-projection pairs from Dn to Dn+1 and
are defined inductively by

in , F (in−1) : F (Dn−1) −→ F (Dn)

jn , F (jn−1) : F (Dn) −→ F (Dn−1).

The direct limit of the sequence (12) can be described explicitly as

D∞ , lim
−→
〈Dn, in〉 = {〈dn〉n∈ω | ∀n∈ω.dn ∈Dn and jn+1(dn+1) = dn}.

with embeddings in∞ : Dn → D∞ and projections j∞n : D∞ → Dn, for all n∈ω, making
all the diagrams

Dn
in //

in∞ $$I
IIIIIIII Dn+1

i(n+1)∞yyssssssssss

lim
−→
〈Dn, in〉

commute. From the continuity of F and universality we obtain:

10C.2. Proposition. There is a unique isomorphism ϑ : F (D∞) −→ D∞, given by

n∈ω

(
i(n+1)∞ ◦ F (j∞n)

)

whose inverse ϑ−1 is

n∈ω

(
F (in∞) ◦ j∞(n+1))

)
.
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Note that the suprema do exist indeed, because 〈i(n+1)∞◦F (j∞n)〉 and 〈F (in∞)◦j∞(n+1)〉
are chains. This follows from the fact that the 〈F (in), F (jn)〉 are morphisms in CPOep,
hence F (in) ◦ F (jn) ⊑ IdF (Dn+1).
For a proof, we refer the reader to Plotkin [1982], Chapter 5. The construction is

based on the observation that all the following diagrams (in CPOep ) commute:

F (Dn)
F (in) //

F (in∞) &&NNNNNNNNNN

i(n+1)∞

""

F (Dn+1);

F (i(n+1)∞)wwooooooooooo

i(n+2)∞

||

F (lim
−→
〈Dn, in〉)

ϑ
���
�
�

lim
−→
〈Dn, in〉

(13)

Dn
in //

in∞ %%LLLLLLLLLLL

F (i(n−1)∞)

  

Dn+1.

i(n+1)∞xxqqqqqqqqqqq

F (in∞)

}}

lim
−→
〈Dn, in〉

ϑ−1

���
�
�

F (lim
−→
〈Dn, in〉)

(14)

Interpreting µ-types as domains

With the machinery set up for the solution of recursive domain equations we can now
easily define a typed applicative structure, see Definition 3A.1, by interpreting each
A∈TTµ = TTA

µ as MCPO(A)∈CPO, by induction on A. If η maps A to the objects of
CPO, then it can be extended to an interpretation of TTµ as follows.

MCPO
η (α) , η(α);

MCPO
η (A→B) , [MCPO

η (A)→MCPO
η (B)];

MCPO
η (µα.A) , lim

−→
〈Fn(1), in〉, where F (D),MCPO

η[α 7→D](A).

The above clauses, especially the last one, are justified by the theory developed in
Lehmann and Smyth [1981, §4].
For morphisms 〈e, p〉 : D→E we give the definition of F (〈e, p〉) by a few examples.

• If A = β, then F (D) = F (E) = η(β) and F (〈e, p〉) = 〈1,1〉.
• If A = α, then F (D) = D, F (E) = E and F (〈e, p〉) = 〈e, p〉.
• If A = α→β, then F (D) = [D→η(β)], F (E) = [E→η(β)], where [D→E ] is the CPO
of continuous functions from D to E , see Definition 10A.7, and
F (〈e, p〉) = 〈[p→1], [e→1]〉.

Summarizing we have the following result.
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10C.3. Theorem. MCPO is an applicative type structure.

We can extend in a straightforward way Definition 3A.9 and define an interpretation
of every term M ∈ΛCh

TTµ
(A). In particular, define

foldµα.A , θ : F (MCPO
η (µα.A)) −→MCPO

η (µα.A)

unfoldµα.A , θ−1 :MCPO
η (µα.A) −→ F (MCPO

η (µα.A))

where F (D) is defined, as above, as F (D) ,MCPO
η[α 7→D](A), and θ and θ−1 are as in

diagrams (13) and (14), respectively. It is immediate to verify that this interpretation
is well-defined, and not trivial.

10C.4. Theorem. MCPO is a typed λ-model, that models the coercions and their reduc-
tions.

The following result is a typical application of the interpretation of terms of λCh0
µ outlined

above. It relates the interpretation of the typed fixed-point combinator YA
µ of Exercise

7G.15 to the iterative construction of fixed-points of continuous endofunctions of a CPO
D (see Theorem 10A.11). It is similar to a well-known result of Park [1976] on the
interpretation of the Y combinator in Scott’s D∞ models, and was stated for the typed
case in Cosmadakis [1989].

10C.5. Theorem. The interpretation of YA
µ as a term of type (A→A)→A coincides,

for any environment η, with the functional fix∈ [MCPO
η (A)→MCPO

η (A)]→MCPO
η (A).

Proof. A straightforward analysis of the interpretation of recursive types in the cate-
gory CPO, whose details are left as an exercise.

As TTA
µ is an enrichment of the set of simple types TT, the interpretation of TTA

µ yields a

CPO model of simple types. Observe that the interpretation inMCPO of types like, e.g.,
µα.α→α is trivial: its interpretation in MCPO has only one element. This semantical
phenomenon suggests immediately that, at the operational level, terms of trivial type
should be observationally equivalent. Programming languages generally possess a notion
of observable type, for example integers or booleans. Two closed termsM,N of the same
type A are observationally equivalent if, for any context C[ ] bringing a term of type A
into an observable type α∈A,

C[M ] has a value iff C[N ] has the same value.

A trivial type is a type such that any two inhabitants are observationally equivalent.
Somewhat surprisingly, we shall see that there are trivial types in TTµ. Indeed we can
state for trivial types a result similar to the Genericity Lemma for the pure type-free
λ-calculus B[1984], Proposition 14.3.24.

10C.6. Definition (Trivial types). A type T is trivial if
(i) either T =µ µα1...µαk.A1→ ...→An→αi (k ≥ 1, n ≥ 0, 1 ≤ i ≤ k),
(ii) or T =µ S→T ′ where T ′ is trivial.

10C.7. Lemma. let A be a trivial type. ThenMCPO(A) ∼= 1.

Proof. By induction on the structure of types, observing that MCPO(A) ∼= 1 and
A =µA

′ entail that MCPO(A′) ∼= 1 by a straightforward induction on the proof that
A =µA

′. A ≡ µα1 · · ·µαk.A1→ · · · →An→ αi. Then A =µ µαi.A
′
1→ · · · →A′

n→ αi,
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and MCPO(µαi.A
′
1 → · · · → A′

n → αi) ∼= 1 because in CPO [D → 1] ∼= 1. Therefore
MCPO(A) ∼= 1. A ≡ S→ T , with MCPO(T ) ∼= 1 by induction hypothesis. Then also
MCPO(S→T ) ∼= 1.

Given a set T of equations between closed terms of the same type, we write T ⊢M = N
if and only if the equationM = N follows from (the typed version of) β-conversion using
the equations in T as further axioms: this is called the typed λ-theory generated by T .
A theory with a set T of equations is consistent if there is a type A and terms M,N of
type A such that T 6⊢ M = N . We can now state an easy result that shows that it is
consistent to identify terms with the same trivial type.

10C.8. Corollary. The following theory T is consistent.

T , {M = N |M,N ∈ΛCh
TTµ

(B) and B is trivial}.

Proof. Observe that by Lemma 10C.7 one has MCPO |= T . Let A , α→α→α and

M , λxα.λyα.x, N , λxα.λyα.y. Let η(α) be a non-trivial CPO. Then [[M ]] 6= [[N ]] in
η(α) ⇒ η(α) ⇒ η(α). Then MCPO 6|= M = N , hence T 6⊢ M = N . Therefore T is
consistent.

In the following it will be often useful to decorate subterms with their types. Let us
say that a subterm NT of a term M , where T is a trivial type, is maximally trivial if it
is not a subterm of another subterm of M of trivial type. If M is any typed term let M
be the term obtained by replacing all maximal trivial subterms of M of type T by ΩT

(as shown in Example 7A.3 there are typed versions of Ω at all types).

10C.9. Lemma. LetM→βM
′. ThenM→=

βM
′, where→=

β denotes one or zero reduction
steps.

Proof. A straightforward structural induction on M . The interesting case is MA ≡
((λxT .PA)T→AQT )A→ βP [x

T := QT ]A, with T trivial and A not trivial, so that QT is

maximally trivial in M . We immediately have ((λxT .PA)T→AQT )A→ βP [xT := QT ]A,
observing that both x and Q are of the same trivial type T .

A type S ∈TTµ is hereditarily non-trivial if no trivial type is a subexpression of S. Say
that an occurrence of a subterm P of a normalizable term M is useless if M has the
same β-normal form whenever P is replaced by any other term of the same type.

10C.10. Lemma. Let S be hereditarily non-trivial. For any closed normalizable term
M ∈ΛCh

TTµ
(S), any occurrence in M of a subterm P of trivial type T is useless.

Proof. Note that if M is in normal form (i.e. M ≡ λ~x.xiM1 · · ·Mm ) the types of all
its subterms are hereditarily non-trivial. In fact, S ≡ S1 → S2 → · · · → Sn → B, and
Si ≡ Bi

1→Bi
2→ · · · →Bi

m→B, so Bi
1, · · · , Bi

m, B are hereditarily non-trivial because
subexpressions of a hereditarily non-trivial type. Therefore, the types of xi,M1, · · · ,Mm

are hereditarily non-trivial and this holds, recursively, for the subterms of M1, · · · ,Mm.
Then it is impossible for a normal form to have a subterm of trivial type.
If M is not in normal form let M ′ be a term obtained from M by replacing a subterm

of a trivial type T by any other subterm of the same type. Note thatM =M ′ and apply
Lemma 10C.9.
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10D. Exercises

10D.1. Let D be a CPO.
(i) Show that a subset O ⊆ D is closed iff it is closed downwards and closed

under sups of directed sets.
(ii) Show that continuous functions are monotonic.

10D.2. Let D be a complete lattice.
(i) Show that D has a top element ⊤ such that ∀d∈D.d ⊑ ⊤.
(ii) Show that D has arbitrary infima and the sup and inf of two elements.
(iii) Show that ⊥D is compact and that d, e∈K(D) ⇒ d ⊔ e∈K(D).
(iv) In general it is not true that if d ⊑ e∈K(D), then d∈K(D). [Hint. Take

ω + 1 in the ordinal ω + ω = {0, 1, 2, · · · ω, ω + 1, ω + 2, · · · }. It is compact,
but ω (⊑ ω + 1) is not.]

10D.3. Let D be a complete lattice.
(i) Show that every monotonic f : D→D has a unique least fixed point. [Hint.

Take x = {z | f(z) ⊑ z}.]
(ii) In case f is also continuous, show that the least fixed point is fix(f).

10D.4. Fill in the details of Theorem 10A.11.
10D.5. Let A be a non-empty set. Define Engeler’s model DA as follows. DA has as

underlying set P(D∗), where D∗ =
⋃

n∈ω Dn and

D0 , A

D1 , A

Dn+2 ,Dn+1 ∪ {(β,m) | m∈Dn+1, β ⊆fin Dn+1}.
Thus, D∗ is the least set X containing A such that if β is a finite subset of X and
m∈X, then (β,m)∈X. The complete lattice DA = 〈DA,⊆〉 can be turned into
a reflexive structure by defining, for d, e∈DA

d · e, {m∈D∗ | ∃β ⊆fin e.(β,m)∈ d}.
Show that dn , d ∩ Dn defines a notion of approximation for DA.

10D.6. Prove Lemma 10B.12.
10D.7. Prove Lemma 10B.16(ii). [Hint. Prove by induction that

∀n∈ω.In[[A[α := B]]]η = In[[A]]η[α 7→I[[B]]η ]
.]

10D.8. (Bekic’s Theorem for recursive types) Prove that the equation

µβ.(A[α := µα.B]) = (µβ.A)[α := µα.(B[β := µβ.A])],

is valid in the interpretation described in Section 10B.
[Hint. Let Â,A[α := µα.B] and B̂,B[β := µβ.A]. Then prove by simultaneous
induction on n∈ω that the following two equations hold.
(i) In[[µβ.Â]]η = In[[µβ.A[α := µα.B̂]]]η,

(ii) In[[µα.B̂]]η = In[[µα.B[β := µβ.Â]]]η.]

10D.9. (Metric interpretation of contractive recursive types) For X,Y ∈CU , let

δ(X,Y ),

{
max{n | Xn = Yn}, if X 6= Y ,
∞, otherwise.
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Define a function d : CU × CU → R+ by setting

d(X,Y ),

{
2−δ(X,Y ), if X 6= Y ;
0, otherwise.

Show the following, see Theorem 7F.5.
(1) 〈CU , d〉 is a complete ultrametric space.
(2) The functions λλX ∈CU .X ⇒ Y for a fixed Y ∈CU , λλY ∈CU .X ⇒ Y for

a fixed X ∈CU and λλX ∈CU .X ⇒ X are contractive, where the function
⇒: CU × CU → CU is defined in Definition 10A.1.

(3) For µα.A∈TTµ define

[[µα.A]]η , fix(λλX ∈CU .[[A]]η[α 7→X]).

Use these facts to give an interpretation of all A∈TTµ. [Hint. See MacQueen,
Plotkin, and Sethi [1986], Amadio [1991].]

10D.10. Show that ⊢λµ∗ λy.y((λx.x x)(λx.x x)) : µα.Tα→α where Tα ,µβ.β→(β→α).
[Recall that (λx.x x)(λx.x x) has all types].

10D.11. A partial equivalence relation (per) over D is any symmetric and transitive
relation R ⊆ D ×D.
Let D be a λ-model with a notion of approximation and R be a per over D.

Let Rn , {〈dn, en〉 | 〈d, e〉 ∈R}. We say that R is complete and uniform over D if
we have
• R0 = {〈d, d〉 | d∈D0};
• (Completeness) if {〈d(1,j), d(2,j)〉 | j ∈ω} is an increasing chain such that

(
∀j ∈N.〈d(1,j), d(2,j)〉 ∈R

)
, then 〈

j ∈N
d(1,j),

j ∈N
d(2,j)〉 ∈R;

• (Uniformity) 〈d1, d2〉 ∈R implies 〈d1n, d2n〉 ∈R for all n∈N.
Generalize Definition 10B.11 to the case where types are interpreted as complete
and uniform partial equivalence relations over a λ-model D with a notion of
approximation.

10D.12. Use the interpretation of types as complete and uniform partial equivalence
relations of Exercise 10D.11 to build a model of λCh0

µ . [Hint. The main steps are
as follows.
(i) Prove the following Fundamental Lemma. If Γ ⊢λCh

µ
M : A, η is a type envi-

ronment and ρ1, ρ2 are term environments such that 〈ρ1(xi), ρ2(xi)〉 ∈ I[[Ai]]η
whenever xi : Ai ∈Γ, then

〈[[M ]]ρ1 , [[M ]]ρ2〉 ∈ I[[A]]η.
(ii) Define the model M = 〈T, {M(R)}R∈T , {ΦRS}R,S ∈T 〉 as follows. T is the

set of all complete and uniform per’s over D. For R,S ∈T define

(R⇒ S), {〈d1, d2〉 | ∀〈e1, e2〉 ∈R.〈d1 · e1, d2 · e2〉 ∈S};
[d]R , {e∈D | 〈d, e〉 ∈R}

M(R), {[d]R | 〈d, d〉 ∈R};
ΦRS([d]R⇒S)([e]R), [d · e]S ,
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where [d]R⇒S ∈M(R⇒S) and [e]R ∈M(R). Show that the above construc-
tion is well-defined.]

10D.13. Explore the consequences of choosing other definitions of R0 (e.g., R0 = D0×D0

or R0 = {〈⊥D,⊥D〉}).
10D.14. (i) In this exercise, we sketch how to build a model M for the system λCh0

µ

where types are interpreted as closures over the λ-model Pω. The construc-
tion can be adapted easily to systems of the form λA-Ch, for a type algebra A,
provided we assume that elements of A can be mapped homomorphically to
closures. We presuppose a basic knowledge of the λ-model Pω, see for exam-
ple Scott [1976], §5, and B[1984], §18.1, Exercises 18.4.3–18.4.9. For a related
construction see Bruce, Meyer, and Mitchell [1990], §7.2. Define a closure
(over Pω) as a continuous function a : Pω → Pω such that I ⊆ a = a ◦ a
where I∈Pω is the interpretation of the identity function. Let V denote
the collection of all closures over Pω. Given a∈V , its range im(a) coincides
with the set {x∈Pω | a(x) = x}. It can easily be proved that im(a) is an
ω-algebraic lattice. Moreover, Scott [1976], Theorem 5.2, proves that, if D
is an algebraic lattice with a countable basis, then there is a closure aD over
Pω such that D ∼= im(aD). This representation of countably based algebraic
lattices as closures over Pω lifts nicely to continuous function spaces, as for
all closures a, b there is a closure a ; b, defined by (a ; b)(x) = b ◦ x ◦ a,
with a continuous bijection

Φab : im(a; b)
∼−→ [im(a)→ im(b)].

(ii) Define the mapping I[[·]]η : TTµ→V as follows, where η is a type environment
assigning to each atom a closure.

(a) I[[α]]η , η(α);

(b) I[[A→B]]η , I[[A]]η ; I[[B]]η;

(c) I[[µα.A]]η , fix(λλa∈V .I[[A]]η[α 7→a]).

Show that this mapping is well-defined.

(iii) Let A,B ∈TTµ. Show that if A =µB in the formal system of Definition
7D.26(i), then I[[A]]η = I[[B]]η, for any type environment η.

(iv) For any a∈V , defineM(a) as im(a). We have isomorphisms

Φab :M(a; b) −→ [M(a)→M(b)]

for any pair a, b∈V and (trivial) isomorphisms

Ψab :M(a)→M(b)

whenever a = b. DefineM as a structure

M, 〈V , {M(a)}a∈V , {Φab}a,b∈V , {Ψab}a,b∈V〉.

Show thatM is a typed λ-model of λCh0
µ .

10D.15. Let Γ be a basis. A Γ, η-environment is a function ρ such that ρ(x)∈M(I[[A]]η),
whenever (x:A)∈Γ. Define the interpretation of a term (w.r.t. a Γ, η-environment)
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by induction on its construction tree in the system λCh0
µ :

[[Γ, x:A ⊢λCh
µ
x : A]]

ηρ
, ρ(x),

[[Γ ⊢λCh
µ
MN : B]]

ηρ
, Φab

(
[[Γ ⊢λCh

µ
M : A→B]]

ηρ

)
[[Γ ⊢λCh

µ
N : A]]

ηρ
,

[[Γ ⊢λCh
µ

(λx:A.M) : A→B]]
ηρ

, Φ−1
ab (f),

where f is the function defined by the assignment:

f(d), [[Γ, x : A ⊢λCh
µ
M : B]]

ηρ[x 7→d]

for any d∈M(I[[A]]η). Now f ∈ [M(a)→M(b)], for a = I[[A]]η and b = I[[B]]η.

Let a, I[[µα.A]]η and b, I[[A[α := µα.A]]]η, then we have

[[Γ ⊢λCh
µ

foldµα.A(M) : µα.A]]
ηρ

= Ψ−1
ab

(
[[Γ ⊢λCh

µ
M : A[α := µα.A]]]

ηρ

)

[[Γ ⊢λCh
µ

unfoldµα.A(M) : A[α := µα.A]]]
ηρ

= Ψab

(
[[Γ ⊢λCh

µ
M : µα.A]]

ηρ

)
.

Show that this yields a typed λ-model of λCh0
µ .

10D.16. Define a partial order on TrAinf , exploiting the “undefined” tree •, as follows. For
s, t∈TrAinf

s 4 t⇔ dom(s) ⊆ dom(t), and

∀w∈ dom(s).s(w) 6= • ⇒ s(w) = t(w)

(i) Prove that the partially ordered set 〈TrAinf ,4〉 is ω-complete and has • as
least element.

(ii) Prove that TrAinf is the initial ω-complete Σ-algebra, where Σ = A∪{→}∪{•}.
(iii) Conclude that for every η : A→ V , there is a unique continuous Σ-morphism

extending η

T [[·]]η : TrAinf → V ,
which satisfies the following equations.

T [[α]]η = η(α) for any α∈A;
T [[•]]η = I;

T [[t1→ t2]]η = T [[t1]]η ; T [[t2]]η.

for all t1, t2 ∈TrAinf . [Hint. See e.g. Goguen, Thatcher, Wagner, and Wright
[1977], Theorem 4.8, or Courcelle [1983].]

(iv) Prove that for all types A,B ∈TTA
µ and all type environments η one has

(i) T [[A∗]]η = I[[A]]η.
(ii) I[[A]]η = I[[B]]η, whenever A=∗

µB.

[Hint. By structural induction on A∈TTA
µ . Show first that for any pair of

infinite trees s, t∈TrAinf , we have

T [[s[α := t]]]η = T [[s]]η[α 7→T [[t]]η ]
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and use the fact that I[[µα.A1]]η = n∈ω Θ(n)(⊥), where Θ(0)(⊥) = ⊥ and

Θ(n+1)(⊥) = I[[A1]]η[α 7→Θ(n)(⊥)]. See Cardone [2002], where also the converse

of this soundness result is proved: for A,B ∈TTA
µ one has

A=∗
µB ⇔ I[[A]]η = I[[B]]η, for all η : A→ V.]

10D.17. Given a simultaneous recursion

R( ~X) = {Xi = Ai | 1 ≤ i ≤ n},
where Ai ∈TTA∪{ ~X}, for each i = 1, · · · , n, show how to construct type algebra
morphisms h, k, see Definitions 7C.13(i) and 7E.17(ii), with

h : TT[R] −→ S(D)
k : TT[R]∗ −→ S(D).

[Hint. Adapt the technique used in Section 10B. Alternatively, observe that

a solution ~X = X1, · · · ,Xn of R( ~X) consists of regular trees so, for each i =
1, · · · , n, there is AXi

∈TTA
µ such that (AXi

)∗ = Xi. Let η be the type environment
defined by the mapping Xi 7→ I[[AXi

]]. Consider the following clauses.

J [[Xi]]η = η(Xi)

J [[A′→A′′]]η = J [[A′]]η ⇒ J [[A′′]]η

They define inductively the extension of η to the required type algebra mor-
phisms.]

10D.18. A function f : CU(D)→ CU(D) is called ideal if, for all X ∈CU , and n∈N
(f(X))n+1 = (f((X)n))n+1.

Show that such an ideal function f has a unique fixed-point X ∈CU(D).





CHAPTER 11

APPLICATIONS

11A. Subtyping

The model of recursive types discussed in the previous Chapter justifies thinking of types
as subsets of a model for the untyped λ-calculus (possibly extended with constants). This
interpretation suggests a straightforward notion of subtyping : recursive types A,B are
in the subtype relation, written A 6 B, if I[[A]]η ⊆ I[[B]]η for all type environments η
interpreting the free type variables occurring in them as complete and uniform subsets
of D. We shall see later that a natural formal system for deriving type inequalities for
recursive types is sound and complete for this interpretation. We start by introducing
some basic systems of subtyping for simple types, showing by way of examples how,
assuming that some types are included in others, one can achieve the same effects as
having recursive types. Then, we discuss in some more detail the formal system described
in Brandt and Henglein [1998] for axiomatizing the subtyping relation on recursive types
introduced by Amadio and Cardelli [1993], which is by now standard.

11A.1. Definition. A type structure is of the form S = 〈|S|,6,→〉, where 〈|S|,6〉 is a
poset and→ : |S|2→|S| is a binary operation such that for a, b, a′, b′ ∈ |S| one has

a′ 6 a & b 6 b′ ⇒ (a→b) 6 (a′→b′).

These type structures should not be confused with type structures in Part III of this
book, which latter name is an abbreviation of ‘intersection type structures’. Note that a
type structure S = 〈|S|,6,→〉 can be considered as a type algebra 〈|S|,→〉. We call the
latter the type algebra underlying the type structure S.

11A.2. Definition. Let S be a type structure and a, b∈S. Then the system of type
assignment λS6 is defined by the axioms and rules in Fig. 29. Write Γ ⊢λS

6
M : a or

Γ ⊢S M : a if Γ ⊢M : a can be derived in system λS6.

11A.3. Proposition. Let S be a type structure. Then

Γ ⊢λS
=
M : A ⇒ Γ ⊢λS

6
M : A,

where Γ ⊢λS
=
M : A is type assignment using the type algebra underlying S.

Proof. Trivial as λS=, see Definition 7A.2, has less rules than λS6.

11A.4. Lemma. Suppose that Γ ⊆ Γ′. Then for all a∈S
Γ ⊢S M : a ⇒ Γ′ ⊢S M : a.

431
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(axiom) Γ ⊢ x : a if (x:a)∈Γ

(→E)
Γ ⊢M : a→ b Γ ⊢ N : a

Γ ⊢ (MN) : b

(→I)
Γ, x:a ⊢M : b

Γ ⊢ (λx.M) : (a→ b)

(6)
Γ ⊢M : a a 6 b

Γ ⊢M : b

Figure 29. The system λS6

11A.5. Example. Let a, b be elements of a type structure S.
(i) If b 6 (b→a), then ⊢S (λx.xx) : (b→a).

(ii) If (b→a) 6 b, then ⊢S (λx.xx) : (b→a)→a.

(iii) If ((b→a)→a) 6 (b→a) 6 b, then ⊢S (λx.xx)(λx.xx) : a.

(iv) If a 6 (a→a), then ⊢S (λx.x(xx)) : (a→a).

11A.6. Definition. Let S,S ′ be type structures. A map h : S → S ′ is called a a
morphism of type structures if for all a, b∈S one has

a ≤S b ⇒ h(a) ≤S′ h(b);

h(a→b) = h(a)→S′h(b).

11A.7. Lemma. Let h : S→S ′ be a morphism of type structures. Then for all a∈S

Γ ⊢S M : a ⇒ h(Γ) ⊢S′ M : h(a).

Type structures from type theories

11A.8. Definition. (i) Now we will be a bit more specific about the set A of atom on
which TTA is defined. We work with A countable (finite or countably infinite).

(ii) The following are some of the type atoms that will be used in different contexts.

c0, c1, c2, · · · atoms without special role
⊥,⊤,nat, int,bool, · · · , atoms with special properties.

(iii) The atoms ⊤ and ⊥ are called top and bottom, respectively. The intention of the
special atoms nat, int,bool is to have primitive natural numbers, integers and booleans.
These can be defined, see Section 3.1, but having primitive ones is often more efficient.

11A.9. Definition. (i) Let H be a set of type inequalities. Define for A,B ∈TTA deriv-
ability of A 6 B from basis H, notation H ⊢ A 6 B, by the following axioms and
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rules.

(hyp) H ⊢ A 6 B, if (A 6 B)∈H,

(refl) H ⊢ A 6 A

(trans)
H ⊢ A 6 B H ⊢ B 6 C

H ⊢ A 6 C

(→)
H ⊢ A′ 6 A H ⊢ B 6 B′

H ⊢ (A→B) 6 (A′→B′)

(ii) A set of type inequalities T is a type theory if for all A,B ∈TT
T ⊢ A 6 B ⇒ (A 6 B)∈T .

(iii) If T = {A ≤ B | H ⊢ A ≤ B}, then T is the type theory axiomatized by H.
11A.10. Definition. (i) A type inequality is called inflationary in a type atom α if it
is of the form α 6 A; it is called deflationary in α if it is of the form A 6 α. In both
cases, the type atom α is called a subject of the judgement. A type inequality is called
atomic if it is of the form α ≤ β.

(ii) A set of type inequalitiesH is called homogeneous in α if the subtyping judgements
in H of which α is subject are all inflationary or they are all deflationary.
(iii) A set of type inequalities H is called homogeneous if it is homogeneous in α for

every type atom α that occurs as subject.
(iv) A type theory T is called homogeneous if it is axiomatized by a homogeneous set
H of type inequalities.

(v) The set H is called inflationary (respectively deflationary), if it consists only of
inflationary (respectively deflationary) type inequalities.
(vi) A type theory is inflationary (respectively deflationary), if it is axiomatized by

an inflationary (respectively deflationary) set of type inequalities.

11A.11. Definition. Let T be a type theory over TT = TTA.
(i) Write for A,B ∈TT

A 6T B⇐⇒△ (A 6 B)∈T ;
A≈T B⇐⇒△ A 6T B & B 6T A;

[A]T , {B ∈TT | A≈T B}.
(ii) The type structure determined by T is ST = 〈TT/≈T ,→,6〉, with

TT/≈T , {[A]T | A∈TT};
[A]T → [B]T , [A→B]T ;

[A]T 6 [B]T ⇐⇒△ A 6T B.

The last two definitions are independent on the choice of representatives.
(iii) Write x1:A1, · · · , xn:An⊢TM : A, with A1, · · · ,An, A∈TT for

x1:[A1]T , · · · , xn:[An]T ⊢ST M : [A]T .

The following result relates typability and normalization of λ-terms.
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11A.12. Proposition. (i) Let T be a homogeneous type theory. Then

Γ ⊢T M : A ⇒ M is strongly normalizing.

(ii) Let N ∈Λ be in β-nf. Then there is an inflationary type theory T such that N
can be typed in ⊢T , i.e. for some A, A∈TTA, and Γ one has

Γ ⊢T N : A.

Proof. We only give a sketch of the proofs, leaving most of the details to the reader.
(i) T is axiomatized by a homogeneous set H of type inequalities. Interpret types

as saturated sets, defined in 9C.5, using the first two clauses of 9C.9 and the type
environment τ such that

τ(α) = ⊥SAT =
⋂

X ∈ SAT

X , if (α ≤ A)∈H for some A;

= ⊤SAT = SN, if (A ≤ α)∈H for some A.

= X, with X ∈ SAT arbitrary, otherwise.

Observe that by homogeneity of H the type environment τ is well-defined. By a straight-
forward induction on the derivations one shows, cf. Definition 9C.14, that

Γ ⊢T M : A ⇒ Γ |=M : A.

Therefore, as in the proof of Theorem 9C.16, every typable term belongs to a saturated
set, hence is SN.

(ii) Proceed by induction on the structure of the normal form. The only interesting

case is when N ≡ zN1 · · ·Nk. Then, by induction hypothesis, there are type theories

T1, · · · , Tk generated by inflationary H1, · · · ,Hk, types Ai, and bases Γi such that for

each i = 1, · · · , k one has Γi ⊢Ti Ni : Ai. Let T be the type theory generated by

the inflationary H1 ∪ · · · ∪ Hk. Assume that a variable x has types Xj(1), ..., Xj(k) in

bases Γj(1), ...,Γj(k). Let for a new type variable tx the statement x : tx be in Γ and
let H be

⋃
iHi plus the type inequalities tx 6 Xj(1), · · · , tx 6 Xj(k). Thus, we get

a basis Γ and an inflationary H such that, if T is the type theory generated by H,
Γ, z : A1→· · ·→Ak→β ⊢T zN1 · · ·Nk : β.

Subject reduction

We show now that the straightforward generalization of the notion of invertibility to
subtyping yields the subject reduction property, as for the corresponding property for
type equality discussed in Section 9A.

11A.13. Definition (Invertibility for subtyping). A type structure S = 〈|S|,6,→〉 is
invertible if for all a, b, a′, b′ ∈ |S| one has

(a→b) 6 (a′→b′) ⇒ a′ 6 a & b 6 b′.

The following parallels Corollary 9A.5 of the Inversion Lemma 9A.3 for derivations of
system λS6.



11A. Subtyping 435

11A.14. Lemma (Inversion Lemma). Let S be a type structure. Then

(i) Γ ⊢λS
6
x : a ⇔ ∃a′ ∈S.[a′ 6 a & (x:a′)∈Γ].

(ii) Γ ⊢λS
6
(MN) : a ⇔ ∃b∈S.[Γ ⊢λS

6
M : (b→a) & Γ ⊢λS

6
N : b].

(iii) Γ ⊢λS
6
(λx.M) : a ⇔ ∃b, c∈S.[a > (b→c) & Γ, x:b ⊢λS

6
M : c].

Proof. (⇐) immediate from the rules for ⊢λS
6
. (⇒) The proof is by induction on the

height of the derivation of typings Γ ⊢λS
6
M : a. The basis is obvious, and the induction

step considers the possible shapes of the term M .
(i) M ≡ x, then case (i) applies because the last rule must be (6).

(ii) M ≡ PQ. If the last rule applied is (→E) then case (ii) applies; if the last rule
applied is (6) then the derivation has the shape

Γ ⊢ PQ : a′ a′ 6 a

Γ ⊢λS
6
PQ : a

By induction hypothesis there is a type b∈S such that Γ ⊢λS
6
P : b→ a′ and Γ ⊢λS

6
Q : b,

and these judgements can be reassembled in a derivation whose last step is an application
of rule (→E):

Γ ⊢λS
6
P : b→ a Γ ⊢λS

6
Q : b

Γ ⊢λS
6
PQ : a

.

(iii) M ≡ λx.N . If the last rule is (→I), then a = b→c; if the last rule applied is (6),
then Γ ⊢λS

6
λx.N : a′ and a′ 6 a. By induction hypothesis we have Γ, x : b′ ⊢λS

6
N : c′,

where b′→c′ 6 a′. Then we can take b = b′ and c = c′.

11A.15. Definition. Let Γ = {x1 : a1, · · · , xn : an} and Γ′ = {x1 : a′1, · · · , xn : a′n}.
Then we write Γ′ ≤ Γ if a′i ≤ ai for every 1 ≤ i ≤ k.
11A.16. Lemma. Let Γ ⊢M : a and Γ′ ≤ Γ. Then Γ′ ⊢M : a.

Proof. By induction on the derivation of Γ ⊢M : a.

11A.17. Corollary (Inversion Lemma). Let S be an invertible type structure. Then

Γ ⊢λS
6
λx.M : (a→b) ⇔ Γ, x:a ⊢λS

6
M : b.

Proof. (⇒) If Γ ⊢λS
6
λx.M : a → b, then by Lemma 11A.14 a → b > c → d and

Γ, x:c ⊢λS
6
M : d. By invertibility a 6 c and d 6 b. Hence Γ, x:a ⊢λS

6
M : b. (⇐) By rule

(→I).

11A.18. Lemma. Suppose x /∈FV(M), then

Γ, x:b ⊢λS
6
M : a ⇒ Γ ⊢λS

6
M : a.

Proof. By induction on the derivation of Γ, x:b ⊢λS
6
M : a.

Now we can prove the subject reduction property for one step βη-reduction.

11A.19. Lemma. (i) If Γ ⊢λS
6
λx.(Mx) : a and x /∈FV(M), then Γ ⊢λS

6
M : a.

(ii) If moreover S is invertible, then

Γ ⊢λS
6
(λx.M)N : a ⇒ Γ ⊢λS

6
(M [x := N ]) : a.
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Proof. Analogous to the proof of Lemma 9A.7.

11A.20. Corollary (Subject Reduction). Let S be an invertible type structure. Then
λS6 satisfies the subject reduction property for βη.

Proof. By Lemma 11A.19.

11A.21. Example. (i) We can type self-application by an essential use of rule (6):

{s 6 s→ t} ⊢ λx.xx : s→ t

Observe that {s 6 s→ t} is inflationary, hence homogeneous because it consists of one
type inequality.

(ii) type inequalities can have the same effect as simultaneous recursions:

{s 6 s→ s, s→ s 6 s} ⊢ (λx.xx)(λx.xx) : s

Actually, the set {s 6 s → s, s → s 6 s} allows to type every pure λ-term, and in this
sense is equivalent to the simultaneous recursion {s = s→ s}. Note that this set of type
inequalities is not homogeneous.

Subtyping recursive types

Now we will define µ-type theories. In the following we summarize the theory of subtyp-
ing on recursive types, seen as representations of infinite trees, introduced by Amadio
and Cardelli [1993], and the equivalent formulation of Brandt and Henglein [1998].
We can turn the type algebra TT∗

µ into a type structure by considering approximations
using the elements ⊥ and ⊤. For most technical details, the reader is referred to the
original papers, and also to the elegant exposition of Gapeyev, Levin, and Pierce [2002].
To introduce the basic notion of subtyping in TTA

µ we add to the set TTA
µ two type

constants ⊥, ⊤∈A representing the minimal and maximal elements of the set of types.
Obviously other constants and corresponding type inclusions could be added, like nat 6
int.
First we need to define lower approximations τ ↓ n and upper approximations τ ↑ n,

for all n∈ω, for an infinite tree τ as follows.

11A.22. Definition (Approximations of an infinite tree). Let τ be an infinite tree, its
lower and upper approximations, notation τ ↓ n, τ ↑ n, are the partial types defined
simultaneously as follows. Let n∈N.

τ ↓ 0 , ⊥ τ ↑ 0 , ⊤
(τ ′ → τ ′′) ↓ (n+ 1) , τ ′ ↑ n→ τ ′′ ↓ n (τ ′ → τ ′′) ↑ (n+ 1) , τ ′ ↓ n→ τ ′′ ↑ n

α ↓ (n+ 1) , α α ↑ (n+ 1) , α,

where α is a type constant or variable.

11A.23. Definition (Subtyping). (i) The subtyping relation, notation 6fin, on partial
types is defined by

A 6fin A;

⊥6fin A; A 6fin ⊤;

A 6fin B B 6fin C

A 6fin C
;

A′ 6fin A B 6fin B
′

A→ B 6fin A′ → B′
.
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(ii) For a recursive type A, let (A)∗µ be the tree unfolding of A as in Notation 7E.19(ii).
The subtyping relation 6∗

µ is defined by

A6∗
µB ⇔ ∀n∈ω.((A)∗µ) ↓ n 6fin ((B)∗µ) ↓ n.

11A.24. Remark. Let A,B ∈TT{⊥,⊤}
µ , (where ⊥ and ⊤ are considered as distinct atomic

types). Then for =∗
µ defined as in Definition 7E.19(iii) one has

A=∗
µB ⇔ [A 6∗

µ B & B 6∗
µ A].

11A.25. Definition. Define the µ-type structure TBH = 〈TT∗
µ,6

∗
µ,→〉, where 6∗

µ,→ are
lifted to equivalence classes in an obvious way.

Also for this notion of subtyping we can define, following Brandt and Henglein [1998],
a sound and complete coinductive proof system.

11A.26. Definition. (i) Let H be a set of subtype assumptions of the form A 6 B for
A,B ∈TTµ. The system (BH6) is defined by the following axioms and rules.

(hyp) H ⊢ A ≤ B, if A ≤ B ∈H

(refl) H ⊢ A 6 A

(trans)
H ⊢ A 6 B H ⊢ B 6 C

H ⊢ A 6 C

(→)
H ⊢ A′ 6 A H ⊢ B 6 B′

H ⊢ A→B 6 A′→B′

(unfold) H ⊢ µα.A 6 A[α: = µα.A]

(fold) H ⊢ A[α: = µα.A] 6 µα.A

(bot) H ⊢ ⊥ 6 A

(top) H ⊢ A 6 ⊤

(Arrow/Fix)

H, (A→ B) 6 (A′ → B′) ⊢ (A′ 6 A)
H, (A→ B) 6 (A′ → B′) ⊢ (B 6 B′)

H ⊢ (A→ B) 6 (A′ → B′)

Figure 30. The system (BH6).

Write H ⊢BH6
A 6 B if A 6 B is derivable form assumptions in H in (BH6).

The above system can be proved sound and complete for 6∗
µ. The proof is a straightfor-

ward extension of the corresponding proof for the system (for type equality) discussed
in Section 1.

11A.27. Theorem. (i) ⊢BH6
A 6 B=⇒A 6∗

µ B.

(ii) A 6∗
µ B=⇒ ⊢BH6

A 6 B.

Proof. (i) By Brandt and Henglein [1998], Theorem 2.2.
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(ii) By Brandt and Henglein [1998], Theorem 2.6.

The formalization of Brandt and Henglein [1998] is based on a coinductive analysis of
recursive types, ultimately going back to the theory of infinite trees outlined in the last
Section of Chapter 7E. The following notion is the key to the extension of this conceptual
framework to subtyping.

11A.28. Definition (Simulations on recursive types). A simulation on recursive types
is a binary relation R that satisfies the following properties.

(i) (A→ B) R (A′ → B′) ⇒ A′ R A & B R B′;
(ii) µt.A R B ⇒ A[t := µt.A] R B;
(iii) A R µt.B ⇒ A R B[t := µt.B];
(iv) A R B ⇒ L(A) 6 L(B),

where L(A) is the root symbol of the tree A∗ and the ordering on symbols is the least
poset with the property that ⊥6 ⊤.
11A.29. Proposition. Let R be a simulation. Then for A,B ∈TTµ

A R B ⇒ A 6∗
µ B.

Proof. Brandt and Henglein [1998], Lemma 2.2.

Models of subtyping

In the sequel let D be a reflexive structure, Definition 10A.12, with a notion of approxi-
mation, Definition 10B.1. We will give natural truth conditions for type inequalities so
that the system BH6 is sound when types are interpreted, as in Section 10B, as com-
plete uniform subsets of a reflexive structure with a notion of approximation D. This
soundness result also motivates the contravariance of arrow types in the first argument
w.r.t. the subtyping relation, which is hard to justify using only the definition of 6∗

µ.
Finally, we shall point out under what conditions the reverse implication holds.

Soundness

The following Lemma characterizes inclusion for elements of CU .

11A.30. Lemma. Let X,Y ∈CU . Then

X ⊆ Y ⇔ ∀n∈ω.Xn ⊆ Yn.

Proof. If X ⊆ Y and d∈Xn, then d∈X, so d∈Y and d∈Yn, because d = dn. Con-
versely, if d∈X, then for all n∈ω dn ∈Xn ⊆ Yn ⊆ Y , so d = n∈ω dn ∈Y .

We now define a notion of satisfaction for type inequalities exploiting the stratification
of D into levels, following the development of Chapter 10B.
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11A.31. Definition. Fix a reflexive structure with a notion of approximation D and let
η be a type environment relative to D and k∈ω:

(i) η |=k A 6 B ⇔ Ik[[A]]η ⊆ Ik[[B]]η.

(ii) η |=k H ⇔ η |=k A 6 B, for all judgements A 6 B in H.
(iii) H |=k A 6 B ⇔ [η |=k H ⇒ η |=k A 6 B], for all η.

(iv) H |= A 6 B ⇔ H |=k A 6 B, for all k∈ω.
11A.32. Lemma. H ⊢BH6

A 6 B ⇒ H |= A 6 B

Proof. By induction on the length of the proof that H ⊢BH6
A 6 B. This is clear if the

last rule applied is (const), (hyp), (fold) or (unfold): for the last two cases use Lemma
10B.16. Assume that the last rule applied is (Arrox/Fix). Then the last inference has
the following shape.

H, A→ B 6 A′ → B′ ⊢ A′ 6 A H, A→ B 6 A′ → B′ ⊢ B 6 B′

H ⊢ A→ B 6 A′ → B′
.

By the induction hypothesis

H, A→ B 6 A′ → B′ |= A′ 6 A

H, A→ B 6 A′ → B′ |= B 6 B′

and we have to show that, for all k∈ω,
H |=k A→ B 6 A′ → B′.

We do this by induction on k. The base case is obvious, as both sides are interpreted
as {⊥D}. For the induction step, assume that H |=k A → B 6 A′ → B′ and assume
also that η |=k+1 H. We have to show that Ik+1[[A→ B]]η ⊆ Ik+1[[A′ → B′]]η. By the

induction hypothesis (on k) we have η |=k H, A → B 6 A′ → B′, because if η |=k+1 H,
then also η |=k H, by the properties of the approximate interpretation of types and
Lemma 11A.30. Hence, by the hypothesis of the main induction, Ik[[A′]]η ⊆ Ik[[A]]η and

Ik[[B]]η ⊆ Ik[[B′]]η. Now if d∈Ik+1[[A→ B]]η = Ik[[A]]η →n+1 Ik[[B]]η and a∈Ik[[A′]]η,

then a∈Ik[[A]]η. Hence d · a∈Ik[[B]]η ⊆ Ik[[B′]]η. Therefore d∈Ik+1[[A′ → B′]]η.

11A.33. Corollary (Soundness). Suppose A 6∗
µ B. Then ∀η

(
I[[A]]η ⊆ I[[B]]η

)
.

Completeness

The formal system BH6 is too weak to achieve completeness, namely the reverse of
Corollary 11A.33. For example (see Amadio and Cardelli [1993]), for any reflexive D
with a notion of approximation

I[[α→β]]η ⊆ I[[γ→⊤]]η,
for all type variables α, β, γ, and all type environemts η relative to D, but this fact cannot
be proved in BH6. One strategy to remedy this is to add all type inequalities of this
form, as do Amadio and Cardelli [1993], who interpret types under what is called the F-
semantics. Another strategy consists in replacing the atoms ⊤,⊥, which are only needed
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for avoiding the triviality of the subtype relation, by atoms nat, int with nat 6 int. We
use a domain D satisfying the equation

D ∼= Z⊥ + [D → D]⊥ + {err}⊥,
where Z⊥ is the flat CPO of integers, E⊥ denotes the lifting of E, and D + E is the
coalesced sum of CPOs, i.e. the disjoint union of the non-bottom elements of D and E,
with a new bottom element. The element err is the semantic value of terms that lead
to run-time errors, notably those arising from type-incorrect applications. We shall also
assume that D has been obtained as an inverse limit, hence it is endowed with a notion
of approximation, with essentially the same properties as in Definition 10B.1. Then,
types are interpreted as complete and uniform subsets of D that do not contain err and,
in addition, are also closed subsets of D under the Scott topology.

11A.34. Definition. Let X ⊆ D. Then X is called an ideal if it is complete, uniform
and closed in the Scott topology.

These variations on the standard setting are exploited to show that the natural relation
of semantic subtyping induces a simulation on recursive types.

11A.35. Lemma. If A,B,A′, B′ are ideals of D, then
(A⇒ B) ⊆ (A′ ⇒ B′) ⇒ A′ ⊆ A & B ⊆ B′.

Proof. Let A ⇒ B ⊆ A′ ⇒ B′ and suppose A′ 6⊆ A towards a contradiction. Then
there is a compact element d of D such that d∈ (A′ ⇒ A). The step function d 7→ err

belongs to A⇒ B because no x ⊒ d is in A, but not to A′ ⇒ B′, contradiction.
Similarly suppose B 6⊆ B′. Take e∈ (B ⇒ B′). Then (⊥D 7→ e)∈ (A⇒ B)\(A′ ⇒ B′),

again a contradiction.

11A.36. Corollary. Define on TTµ the binary relation

A R B ⇔ ∀η. I[[A]]η ⊆ I[[B]]η,

where η ranges over type environments that interpret type variables as ideals of D. Then
R is a simulation.

Proof. This follows easily from Lemma 11A.35 and Theorem 10B.17.

11A.37. Theorem (Completeness). Let A,B ∈TTµ. Then

∀η
(
I[[A]]η ⊆ I[[B]]η

)
⇒ A 6∗

µ B.

Proof. Define

C R D ⇔ ∀η.
(
I[[C]]η ⊆ I[[D]]η

)
.

Then R is a simulation, by Corollary 11A.36. Now Proposition 11A.29 applies.

11A.38. Corollary. Let A,B ∈TTµ. Then the following are equivalent.
(i) A 6∗

µ B

(ii) ∀η
(
I[[A]]η ⊆ I[[B]]η

)
.

(iii) ⊢BH6
A 6 B.

Proof. (i) ⇔ (ii). By Theorem 11A.37 and Corollary 11A.33.
(i) ⇔ (iii). By Theorem 11A.27.

Now we obtain Theorem 10B.31, using Remark 11A.24.



11B. The principal type structures 441

11A.39. Corollary. A =∗
µ B ⇔ ∀η.[I[[A]]η = I[[B]]η].

11B. The principal type structures

The notions and results in this Section come from Andrew Polonsky [2010] with different
proofs.
Remember that a type structure is of the form S = 〈|S|,≤S ,→S〉; a type theory T is a

set of type inequalities closed under derivations of the system given in Definition 11A.9.
Let S range over type structures and T over type theories. For a type theory T , ST is
the type structure generated by T , as defined in Definition 11A.11.
Similar to Definition 9B.2 to each untyped M ∈Λ we assign a triple 〈ΓM ,SM , aM 〉,

where now SM is a type structure, aM ∈SM , and ΓM is a basis over SM . This SM will
be the principal type structure of M .

11B.1. Definition. Let M ∈Λ. Define a set of type constants cM , a type αM , a basis
ΓM , a set of type inequalities TM , and a type algebra AM with element aM as follows.
We do this by defining first for each subterm-occurrence L ⊆ M for L not a variable
a distinct type atom αL. For variables x occuring in M we choose a fixed type αx

(for different occurrences the same αx). Then we define the type theory TL for each
subterm-occurrence L ⊆M , obtaining this notion also for M as we have M ⊆M .

L TL
x ∅
PQ TP ∪ TQ ∪ {αP ≤ (αQ→αPQ)}
λx.P TP ∪ {αx→αP ≤ (αλx.P )}

Define cM as the set of all atomic types αL and αx occurring in M . Finally we define

ΓM , {x:[αx] | x∈FV(M)},
SM , 〈TTcM /TM , ≤ ,→〉,
aM , [αM ]TM .

The type aM is called the principal recursive type of M and SM its principal type struc-
ture. ΓM is the principal recursive basis of M , which is empty if M is closed. The triple
〈ΓM , SM , aM 〉 is called principal recursive triple. We call TM the principal type theory
of M . If we consider the αL as indeterminates it is like an sr, but with inequalities.

Below we will derive a principal type theorem for type structures very similar to
Theorem 9B.3 for type algebras. We need an extra Definition and Lemma.

11B.2. Definition. Let D be derivation of Γ ⊢S M : a. For each subterm L of M let
DL be the smallest subderivation of D whose last judgement has L as subject. Then bL
denotes the type that is assigned to L in the conclusion of DL.
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11B.3. Example. Let M ≡ Iy and D be the derivation

x:a ⊢ x : a

⊢ I : (a→a) a ≤ c
⊢ I : (a→c) y:a ⊢ y : a

⊢M : c
Then bx = a, bI = a→a, bM = c.

11B.4. Lemma. (i) Let Γ ⊢ PQ : bPQ have subderivations Γ ⊢ P : bP , Γ ⊢ Q : bQ. Then

bP ≤ bQ→bPQ.

(ii) Let Γ ⊢ λx.P : bλx.P have as subderivation Γ, x:bx ⊢ P : bP . Then

bx→bP ≤ bλx.P .
Proof. (i) Let the derivation D of Γ ⊢ PQ : bPQ be

...

Γ ⊢ P : bP

... ≤
Γ ⊢ P : c→bPQ

...

Γ ⊢ Q : bQ

... ≤
Γ ⊢ Q : c

Γ ⊢ PQ : bPQ.

Now bP ≤ c→bPQ and bQ ≤ c. Hence bP ≤ c→bPQ ≤ bQ→bPQ.
(ii) Similarly.

11B.5. Theorem. For M ∈Λ the principal recursive triple 〈ΓM ,SM , aM 〉 satisfies
(i) ΓM ⊢SM

M : aM .

(ii) Γ ⊢S M : a ⇔ there is a morphism h : SM→S such that
h(ΓM ) ⊆ Γ and h(aM ) ≤ a.

(iii) For closed M ∈Λø this simplifies to

⊢S M : a ⇔ ∃h : SM→S.h(aM ) ≤ a.
Proof. (i) As for Theorem 9B.3(i) with =E replaced by ≤T .

(ii) (⇐) By (i) and Lemmas 11A.7, 11A.4.
(⇒) Similar to (⇒) in Theorem 9B.3, where bL is given by Definition 11B.2, using

Lemma 11B.4.
(iii) By (ii).

11B.6. Remark. (i) Using the principal type theories of M,N ∈Λ we can define

M - N ⇐⇒△ there exists a morphism h : TM→TN
This introduces a new non-trivial partial order relation on Λ. This relation remains
non-trivial over the set of unsolvable terms, and therefore provides a new avenue for
studying relations between unsolvable terms. It is not immediately obvious whether the
order described above is decidable, because type theories may be equivalent without
being the same (for example, {α ≤ β} is equivalent to {α ≤ α}). We conjecture that
the --order on Λ is decidable.
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11C. Recursive types in programming languages

The results proved in the present Part II are relative to (slight variants of) the λ-
calculus, while the languages of interest for the programming practice normally include
predefined term and type constants and other type constructors, as mentioned in the
notion of enriched type algebra in Chapter 7B. Yet, the theoretical work on recursive
types expounded in Chapters 7–10 constitutes a mathematical framework for modeling
the uses of recursive types in programming: on the one hand, many results carry over
literally to the extended languages used in practice (for example the principal type-
scheme property). On the other hand, the theoretical framework can be extended to
practical languages mostly in a straightforward manner.
In this subsection we review very sketchily the various forms that recursive types take

in programming languages. Recursive types are orthogonal to different programming
paradigms, so we shall see how they show up in imperative, functional and object-
oriented languages. We shall do this mostly by means of examples, referring to the
literature for more details.

Extending the language

If we consider an extension of the λ-calculus where term constants c are present, then we
must assume a type τ(c) for each of these belonging to the corresponding enriched type
algebra. In this case it is standard to assume that some of the atoms of A represent data
types (for instance an atom int representing the set of integers). Each term constant c
is then given a type τ(c) belonging to TTµ(A) (for instance τ(n) = int for all numerals
n, τ(+) = int→ int→ int, etc.).

11C.1. Remark. Observe also that a rich system of types, including an encoding of the types
of integer and Boolean values, can be based on recursive types, provided a minimal set of basic
type constructors is available. As an example, assume that the set of basic recursive types is
extended as described by the following simplified syntax (Cosmadakis [1989]).

TTµ ::= A | TTµ→TTµ | µA.TTµ | TTµ × TTµ | TTµ ⊕ TTµ | (TTµ)⊥

Then we can define the following data types:

triv , µt.t

O , triv⊥

bool , O⊕ O

nat , µt.O⊕ t
obliq , µt.O⊕ t⊥
vert , µt.t⊥

lamb , µt.O⊕ (t→ t)

lazy , µt.(t→ t)⊥

Within a formulation with explicit typing as in Section 0, we can add typed constants representing
constructors and destructors for each of the new types. So, for example, we may have constants
up : A→A⊥ and down : A⊥→A (possibly with a new conversion rule down(up(x)) = x). This
set of types is useful in formalizing a metalanguage for denotational semantics. Type lamb then



444 11. Applications

encodes the terms of the pure untyped λ-calculus, whereas lazy does the same for terms of the
lazy λ-calculus (Abramsky [1990]). The types nat, vert and obliq represent three versions of a
type of natural numbers.

Finding and checking types

Assume for the moment that only constants and constant types, and no other type
constructors are added. Generalization to other standard type constructors is straight-
forward. In this case usually one must take into account that constant types cannot
be equated to anything else but themselves. We do not allow, for instance, that int be
equivalent to an arrow type. Moreover invertibility is always assumed. We say that the
(principal) set of type equations EM is consistent if it does not imply any equation κ = A
where k is a constant type and A is either a different constant type or a non atomic type
expression. Then, as a consequence of Theorem 9B.3 a term M can be typed (w.r.t.
some invertible type algebra) iff EM is consistent. We can take into account constants in
the construction of EM in Definition 9B.2 by taking Ec = {αc = τ(c)} for each constant
c occurring in M . We then can easily prove that EM is consistent iff for each atomic
constant type κ the sr EM does not contain equations κ = a1, a1 = a2, . . . , an = C where
n ≥ 0 and C is either a constant type different from κ or a non atomic type expression.
This also yields an algorithm for deciding whether EM is consistent.
All the results given in Section 9B still hold if we consider terms with additional

constants. In some cases this makes these results more interesting. For instance, the
problem of deciding whether a given term has a type w.r.t. some sr is no longer trivial
since there are terms, like (3 3), which have no type at all w.r.t. any sr. By the subject
reduction theorem, however, we can still prove that a term to which a type can be given
in any system with recursive types can not produce incorrect applications during its
evaluation. This is one of the motivations for the practical uses of these systems in
programming languages Milner [1978].
In real programming languages recursive types are usually defined via recursive type

equations, so the problem of typability with respect to a given sr is the closest one to
real cases. However the declaration of constructors which is usually included in recursive
type definitions make type inference much easier.

Imperative programming

Historically, a form of recursive type definition was introduced in ALGOL 68, see
van Wijngaarden [1981], as “recursive mode declarations”, e.g.

mode cell = struct(ref cell next, int item)

Also in this case, equality of recursive modes can be checked by reducing the problem to
that of deciding the equality of infinite regular trees, see Koster [1969], or, equivalently,
of components of solutions of finite systems of equations, Pair [1970]; the latter method
is thoroughly investigated in Courcelle, Kahn, and Vuillemin [1974], whereas the first
anticipates some ideas on which the coinductive proof-system of Brandt and Henglein
[1998] is based: in particular, also this algorithm allows a certain amount of circularity
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because in order to decide whether two modes are equivalent, one assumes that they are
and shows that this assumption does not lead to a contradiction.

Functional programming

Typed functional programming languages in the tradition of ML Gordon, Milner, and
Wadsworth [1979], including Miranda and Haskell, allow recursive definitions of data-
types which the type-checker exploits in inferring type schemes for programs, see Peyton-
Jones [1987], Chs. 8–9. A typical example of such definitions, say, in Haskell Peyton
Jones [editor], Hughes [editor], Augustsson, Barton, Boutel, Burton, Fraser, Fasel, Ham-
mond, Hinze, [1999], is

data Tree a = Leaf a | Branch (Tree a) (Tree a)

which declares Tree as a (polymorphic) type constructor, and Leaf and Branch as data
constructors, so that Leaf has type a -> Tree a and Branch has type Tree a -> (Tree

a -> Tree a); an element of this type is a binary tree with leaves of type a, where a is
any type, see Hudak, Peterson, and Fasel [1999], §2.2.1.
Another example from SML (a call-by-value language) is a type declaration intended

to define the notion of polymorphic streams.

type ’a stream = Scons of (unit -> ’a * ’a stream)

where unit is the one-element type. The function type is introduced to suspend evalu-
ation.
Definitions like the example above also declare constructors (like Leaf and Branch in

the example) that can be used in defining functions over elements of the data-type by
pattern-matching, Burstall [1969]. In type inference, however, constructors are treated
like constants and have then a specific type (or type scheme) assigned a priori.

Object-Oriented programming

Recursive types have been widely used in the theoretical study of object-oriented pro-
gramming, especially in the many proposals that have been made to encode objects as
terms of λ-calculi extended with record structures. There is a huge literature on this
subject, originating with the work of Cardelli [1988]; we just discuss a few motivating
examples.

11C.2. Definition. We extend TTµ = TTA
µ with record types {ℓ1 : A1, · · · , ℓn : An} as

indicated by the following simplified syntax.

TTµ ::= A | TTµ→TTµ | µA.TTµ | {ℓ1 : TTµ, · · · , ℓn : TTµ}

where ℓ1, · · · , ℓn are distinct labels, and we assume that A contains atoms for base types
like nat, int,bool, · · · .
Correspondingly, the set of terms is extended with record structures of the form {ℓ1 =
M1, · · · ℓn =Mn} where M1, · · · ,Mn are terms, and constants of base types.
Record structures are tuples whose components are accessed via their labels: if {ℓ1 =

M1, · · · ℓn = Mn} is such a structure, then {ℓ1 = M1, · · · ℓn = Mn}.ℓi has the same
meaning as Mi.
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Recursive record structures can be interpreted as objects. For example, we may have
a point object in the plane defined as follows.

Y
(
λs.{x = 1.0, y = 2.0, dist = λp.

√
(p.x− s.x)2 + (p.y − s.y)2}

)

with coordinates of type real, x and y, and a method dist for calculating its distance
from another point. Observe that this point has type

Point ≡ {x : real, y : real, dist : Point→ real},
a recursive record type. Further developments of this approach to modeling objects are
thoroughly described in Abadi and Cardelli [1996].

11D. Further reading

This Section collects further references, in addition to those indicated in the main text,
where the reader may find additional information on the topics discussed in this Part.

Historical

The origins of recursive types can be traced back to the basic early developments in
theoretical computer science. On the semantical side, they appeared in the special form
of recursive definitions of sets. For example, McCarthy [1963], §2.6, discussed the set
S of sequences of elements of a set A defined recursively by S = 1 + (A × S) (to be
read: “a sequence is either empty, or is a pair whose first component is an A and whose
second component is a sequence”). McCarthy also observed that this definition implies
that 1 = S − (A × S) = S × (1 − A), hence S = 1/(1 − A), whose expansion gives
S = 1 + A + A2 + A3 + · · · , which describes a sequence as either empty, or consisting
of two elements of A, or consisting of three elements of A, ... (The justification of
such calculations requires a deep understanding of algebraic facts; see Fiore [2004] for an
introduction to these, with applications to deciding isomorphisms of recursive types). Of
course, the various categories of domains and the methods of solving recursive domain
equations over them (Smyth and Plotkin [1982], Gunter and Scott [1990], Freyd [1990],
Freyd [1991], Freyd [1992]) can be regarded as comprehensive semantical universes for
recursive types, as may be seen already from the straightforward use of the category of
CPOs in Section 10C.
On the syntactical side, recursive types appeared in J.H. Morris’ thesis Morris [1968],

who considered the possibility of allowing, in the simply typed λ-calculus, “circular”
type expressions like the solution of the equation X = X → α. At about the same time,
a form of recursive type definition was introduced in ALGOL 68 as “recursive mode
declarations”mentioned above, in Section 11C.

Type inference and equivalence of recursive types

Recursive type equations like those considered by Morris arise naturally when omitting
the “occur check” in the unification procedure invoked by the type inference algorithms
of Curry [1969], Hindley [1969] and Milner [1978], as remarked already in Wand [1987]
(see Aho, Sethi, and Ullman [1986] for a textbook treatment). The solutions of these
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equations are best regarded as infinite expressions, equivalently infinite trees. They are
always regular (or rational) trees Courcelle [1983], §4, a fact that yields efficient decision
procedures for checking their equality. This view of recursive types as infinite trees has
then been exploited systematically in Cardone and Coppo [1991], and is at the basis of
this whole Part.
More recent approaches exploit the fact that the set of finite and infinite trees (over a

first-order signature) is the final coalgebra of a polynomial endofunctor over the category
of sets canonically associated with the signature, as in Proposition 7F.16. This is a
well-known fact in the theory of coalgebras Rutten [2000], and has been exploited in
Fiore [1996].

Models

The first model for the implicitly typed systems is given in MacQueen, Plotkin, and
Sethi [1986], where types are interpreted as ideals over a Scott domain of the form
D ∼= V + [D → D]. Recursive types are restricted to those of the form µt.A where A is
contractive in t, and are then interpreted as the unique fixed point of the induced con-
tractive mapping over the complete metric spaces of ideals, whose existence is guaranteed
by the Banach fixed point theorem, Theorem 7F.5.
The interpretation of recursive types that we have described in §10B, exploiting the

approximation structure of domains like D above induced by their construction as in-
verse limits by the technique in Scott [1972], stems from Coppo [1985], where also the
completeness theorems 10B.30 and 10B.31 were first proved. The technique described
in this paper has been shown to extend to model constructions for various extensions
of simple recursive types: on the one hand it applies to many first-order type construc-
tors without the contractiveness requirement, as in Cardone, Dezani-Ciancaglini, and
de’Liguoro [1994]. On the other hand, it can be extended to second-order polymorphic
types Abadi and Plotkin [1990] and even to bounded polymorphic types with subtyp-
ing Cardone [1991]. Orthogonally to all these applications, it is possible to adapt the
constructions to the explicitly typed systems, by performing them over (complete and
uniform) partial equivalence relations. Concerning the interpretation of the explicitly
typed systems, the domain models presented in Section 10C belong to the folklore of the
subject.

Subtyping

The theory of subtyping recursive types has received much attention in recent years,
mainly for the interest it has for the design of object-oriented programming languages.
The seminal paper on this is Amadio and Cardelli [1993]. The presentation of subtyping
has been refined in Brandt and Henglein [1998], who have exploited in an elegant way
the coinductive basis of every reasoning on infinite objects, like the infinite trees of
which recursive types can be regarded as finite notations. See also Grabmayer [2005],
[2007] for work in this direction. Algorithms for deciding subtyping between µ-types,
with the relative complexity issues, have been studied first in Kozen, Palsberg, and
Schwartzbach [1995]. We have not dealt at all with this topic; pointers to the relevant
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literature can be found in Gapeyev, Levin, and Pierce [2002]. In Jay [2009] the (typed)
lambda calculus is extended with patterns as a first class citizen.

11E. Exercises

11E.1. Call type theories T , T ′ equivalent if T 4 T ′ and T ′ 4 T . In each of the
following, show equivalence of the listed theories.
1. ∅, {α ≤ α}, {α ≤ β}, {α ≤ A}, where A is a type with α /∈ A.
2. {α ≤ (α→β)}, {(α→β) ≤ α}, {γ ≤ α, γ ≤ (α→β)}.

11E.2. Let TA be the category of type algebras and TS be the category of type struc-
tures. Let U : TS→TA be the forgetful map that sends (S,→,≤) to (S,→).
1. Show that there is a functor F : TA→TS such that U is right adjoint to F .
2. Show that F also has a left adjoint C.
3. LetM be a lambda term, T the principal type theory ofM . Show that C(ST )

is isomorphic to the principal type algebra of M in the sense of Definition
9B.2.

4. Show that T is a weakly initial object in TS. Show that S{α≤(α→α),(α→α)≤α}

is a weakly terminal object.
5. Show that TS has arbitrary coproducts (and finite products?)
6. Show that the Subtyping order refines the Typability order induced by 4 be-

tween type algebras.
7. Show that there exist two unsolvables whose principal type theories are 4-

incompatible.



Part 3

INTERSECTION TYPES λS
∩



In a nutshell the intersection type systems considered in this Part form a class of type
assignment systems for untyped λ-calculus, extending Curry’s basic functionality in the
context of identifications and subtyping with a new type constructor, intersection. This
simple move makes it possible to express naturally and in a finitary way many operational
and denotational properties of terms.
Intersection types have been originally introduced as a language for describing and

capturing properties of λ-terms, which had escaped all previous typing disciplines. For
instance, they were used in order to give the first type theoretic characterization of
strongly normalizing terms, and later of normalizing terms.
It was realized early on that intersection types also had a distinctive semantical flavor:

they express at a syntactical level the fact that a term belongs to suitable compact
open sets in a Scott domain. Building on this intuition, intersection types were used in
Barendregt, Coppo, and Dezani-Ciancaglini [1983] to introduce filter models and give a
proof of the completeness of the natural semantics of simple type assignment systems in
applicative structures suggested in Scott [1972].
Since then, intersection types have been used as a powerful tool both for the analysis

and the synthesis of λ-models. On the one hand, intersection type disciplines provide
finitary inductive definitions of interpretation of λ-terms in models. On the other hand,
they are suggestive for the shape the domain model has to have in order to exhibit
certain properties.
Intersection types can be viewed also as a restriction of the domain theory in logical

form, see Abramsky [1991], to the special case of modeling pure lambda calculus by
means of ω-algebraic complete lattices. Many properties of these models can be proved
using this paradigm, which goes back to Stone duality.
Type assignment using intersection types can be parametrized by intersection type

theories or intersection type structures. The various type theories (and corresponding
type structures) are introduced together in order to give reasonably uniform proofs of
their properties as well of those of the corresponding type assignment systems and filter
models.
In the present Part III of this book both these syntactic and semantic aspects will be

explored.
The interested reader can find a continuously updated bibliography maintained by Joe

Wells on intersection types at URL <www.macs.hw.ac.uk/~jbw/itrs/bibliography.

html>. Introductions to intersection types are in Cardone and Coppo [1990] and Hindley
[1992].



CHAPTER 12

AN EXEMPLARY SYSTEM

There are several systems that assign intersection types to untyped lambda terms.
These will be collectively denoted by λ∩. In this section we consider one particular
system of this family, λBCD

∩ in order to outline the concepts and related properties.
Definitions and the statements of theorems will be given, but no proofs. These can be
found in the next chapters of Part III.
One motivation for the system presented comes from trying to modify the system λ→

in such a way that not only subject reduction, but also subject expansion holds. The
problem of subject expansion is the following. Suppose ⊢λ→ M : A and that M ′ ։β M .
Does one have ⊢λ→ M ′ : A? Let us focus on one β-step. So let M ′ ≡ (λx.P )Q be a
redex and suppose

⊢λ→ P [x := Q] : A. (1)

Do we have ⊢λ→ (λx.P )Q : A? It is tempting to reason as follows. By assumption
(1) also Q must have a type, say B. Then (λx.P ) has a type B→A and therefore
⊢λ→ (λx.P )Q : A. The mistake is that in (1) there may be several occurrences of Q, say
Q1 ≡ Q2 ≡ · · · ≡ Qn, having as types respectively B1, · · · ,Bn. It may be impossible to
find a single type for all the occurrences of Q and this prevents us from finding a type
for the redex. For example

⊢λA
→

(λx.I(Kx)(Ix)) : A→A,
6⊢λA

→
(λxy.x(Ky)(xy))I : A→A.

The system introduced in this chapter with intersection types assigned to untyped
lambda terms remedies the situation. The idea is that if the several occurrences of Q
have to have different types B1, · · · ,Bn, we give them all of these types:

⊢ Q : B1 ∩ · · · ∩Bn,

implying that for all i one has Q : Bi. Then we will get

⊢ (λx.P ) : B1 ∩ · · · ∩Bn→A and

⊢ ((λx.P )Q) : A.

There is, however, a second problem. In the λK-calculus, with its terms λx.P such
that x /∈ FV(P ) there is the extra problem that Q may not be typable at all, as it may
not occur in P [x := Q]! This is remedied by allowing B1 ∩ · · · ∩ Bn also for n = 0 and
writing this type as U, to be considered as the universal type, i.e. assigned to all terms.
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Then in case x /∈ FV(P ) one has

⊢ Q : U

⊢ (λx.P ) : U→A and

⊢ ((λx.P )Q) : A.

This is the motivation to introduce a ≤ relation on types with largest element U and
intersections such that A∩B ≤ A,A∩B ≤ B and the extension of the type assignment
by the sub-sumption rule Γ ⊢ M : A, A ≤ B ⇒ Γ ⊢ M : B. It has as consequence
that terms like λx.xx get as type ((A→B) ∩ A)→B, while (λx.xx)(λx.xx) only gets U
as type. Also we have subject conversion

Γ ⊢M : A &M =β N ⇒ Γ ⊢ N : A.

This has as consequence that one can create a so-called filter lambda model in which
the meaning of a closed term consists of the collection of types it gets. In this way new
lambda models will be obtained and new ways to study classical models as well. It is
worth noticing that these models are models of the untyped lambda calculus.
The type assignment system λBCD

∩ will be introduced in Section 12A and the corre-
sponding filter model in 12B. Results are often stated without proof, as these will appear
in later Chapters.

12A. The type assignment system λ∩
BCD

A typical member of the family of intersection type assignment systems is λBCD
∩ . This

system is introduced in Barendregt, Coppo, and Dezani-Ciancaglini [1983] as an exten-
sion of the initial system in Coppo and Dezani-Ciancaglini [1980].

12A.1. Definition. (i) Define the following sets of type atoms.

A∞ , {c0, c1, c2, · · · }
AU

∞ , A∞ ∪ {U},
ABCD , AU

∞,

where the type atom U /∈A∞ is a special symbol called universe or universal top.
(ii) The intersection type language over ABCD, denoted by TT = TTBCD

∩ is defined by
the following simplified syntax.

TT ::= ABCD | TT→TT | TT ∩ TT

Notation. (i) Greek letters α, β, · · · will denote arbitrary atoms in ABCD.
(ii) A,B,C,D,E range over arbitrary types in TT.
(iii) In Barendregt, Coppo, and Dezani-Ciancaglini [1983] the universe used to be

denoted by ω.
(iv) When writing intersection types we shall use the following convention: the con-

structor ∩ takes precedence over the constructor→ and the constructor→ associates to
the right. For example

(A→B→C) ∩A→B→C ≡ ((A→(B→C)) ∩A)→(B→C).



12A. The type assignment system λ∩
BCD 453

12A.2. Remark. In this Part III other sets TT of types will be formed by replacing the
set ABCD of type atoms by an arbitrary set A (finite or countably infinite). In this
Chapter, however, we take A = ABCD = AU

∞.

The following deductive system has as intention to introduce an appropriate pre-order
on TT, compatible with the operator →, such that A ∩B is a greatest lower bound of A
and B, for each A,B.

12A.3. Definition (Intersection type preorder). The intersection type theory BCD is
the set of all statements A ≤ B (to be read as “A sub B”), with A,B ∈TT, derivable
from the following axioms and rules, where A,B,C, · · · ∈TT.

(refl) A ≤ A
(inclL) A ∩B ≤ A
(inclR) A ∩B ≤ B

(glb)
C ≤ A C ≤ B
C ≤ A ∩B

(trans)
A ≤ B B ≤ C

A ≤ C

(Utop) A ≤ U

(U→) U ≤ A→U

(→∩) (A→B) ∩ (A→C) ≤ A→(B ∩ C)

(→)
A′ ≤ A B ≤ B′

(A→B) ≤ (A′→B′)

12A.4. Notation. (i) For (A ≤ B)∈BCD we write A ≤BCD B or ⊢BCD A ≤ B (or often
just A ≤ B if there is little danger of confusion).

(ii) Write A=BCDB (or A = B) for A ≤BCD B & B ≤BCD A.
(iii) We write [TT] for the set TT modulo =BCD. For types in BCD we usually work

with [TT].
(iv) We write A ≡ B for syntactic identity. E.g. A ∩B = A ∩B, but A ∩B 6≡ B ∩A.

12A.5. Remark. All systems in Part III have the first five axioms and rules of Definition
12A.3. They differ in the extra axioms and rules and the set of atoms.

12A.6. Proposition. The equivalence relation = defined in Notation 12A.4(ii) is a con-
gruence, i.e. = is compatible with ∩ and →.

Proof. By rules (trans), (inclL), (inclR) and (glb) one has

A = A′ & B = B′ ⇒ (A ∩B) = (A′ ∩B′).

By rule (→) one has

A = A′ & B = B′ ⇒ (A→B) = (A′→B′).

12A.7. Remark. The theory BCD can be seen as a structure with a pre-order

BCD = 〈TT,≤,∩,→, U〉.
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This means that ≤ is reflexive and transitive, but not anti-symmetric

A ≤ B & B ≤ A 6⇒ A ≡ B.
One can go over to equivalence classes and define a partial order ≤ on [TT] that satisfies
antisymmetry.

[A] ≤ [B] ⇔ A ≤ B.
By Proposition 12A.6, the operators ∩ and → can be defined on [TT] by

[A] ∩ [B], [A ∩B];

[A]→[B], [A→B].

We obtain a type structure

[BCD] , 〈[TT],≤,∩,→, [U]〉.
In this structure, [U] is the largest element (also called top) and [A] ∩ [B] is the greatest
lower bound of [A] and [B].

12A.8. Definition. (i) A basis is a finite set of statements of the shape x:B, where
B ∈TT, with all variables distinct.

(ii) The type assignment system λBCD
∩ for deriving statements of the form Γ ⊢M : A

with Γ a basis, M ∈Λ (the set of untyped lambda terms) and A∈TT is defined by the
following axioms and rules.

(Ax) Γ ⊢ x:A if (x:A)∈Γ

(→I)
Γ, x:A ⊢M : B

Γ ⊢ (λx.M) : (A→B)
if (x:A) /∈ Γ

(→E)
Γ ⊢M : (A→ B) Γ ⊢ N : A

Γ ⊢ (MN) : B

(∩I) Γ ⊢M : A Γ ⊢M : B

Γ ⊢M : (A ∩B)

(≤) Γ ⊢M : A

Γ ⊢M : B
if A ≤BCD B

(U) Γ ⊢M : U

(iii) We say that a termM is typable from a given basis Γ, if there is a type A∈TT such
that the judgement Γ ⊢M : A is derivable in λBCD

∩ . In this case we write Γ ⊢BCD
∩ M : A

or just Γ ⊢M : A, if there is little danger of confusion.

12A.9. Remark. All systems of type assignment in Part III have the first five axioms
and rules of Definition 12A.8.

In Proposition 12A.11 we need the notions of admissible and derivable rule.

12A.10. Definition. Consider an unspecified rule of the form (possibly with several
assumptions or side-conditions)

Γ ⊢M : A
(R) if p(Γ,M,A)

Γ′ ⊢M ′ : A′
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where p(Γ,M,A) is a predicate on Γ,M,A.

(i) R is called admissible if one has

Γ ⊢M : A and p(Γ,M,A) ⇒ Γ′ ⊢M ′ : A′.

(ii) R is called derivable if p(Γ,M,A) is always true and there is a derivation starting
from Γ ⊢M : A that ends in Γ′ ⊢M ′ : A′.

A derivable rule is always admissible but the converse does not hold. If

Γ ⊢M : A

Γ′ ⊢M ′ : A′

is a derivable rule, then for all ∆ one has that

Γ ∪∆ ⊢M : A

Γ′ ∪∆ ⊢M ′ : A′

is also derivable. Hence derivable rules are closed under theory extension. We will only
be concerned with admissible and derivable rules for theories of type assignment. The
statements of next proposition are easy to prove. For instance, derivability of the rules
(∩E) follows immediately from rule (≤). The other proofs are left to the reader.

12A.11. Proposition. (i) The rules (∩E)
Γ ⊢M : (A ∩B)

Γ ⊢M : A

Γ ⊢M : (A ∩B)

Γ ⊢M : B

are derivable in λBCD
∩ .

(ii) The following rules are admissible in the type assignment system λBCD
∩ .

(weakening)
Γ ⊢M : A x /∈ Γ

Γ, x:B ⊢M : A

(strengthening)
Γ, x:B ⊢M : A x /∈FV (M)

Γ ⊢M : A

(cut)
Γ, x:B ⊢M : A Γ ⊢ N : B

Γ ⊢ (M [x := N ]) : A

(≤-L) Γ, x:B ⊢M : A C ≤ B
Γ, x:C ⊢M : A

(→L)
Γ, y:B ⊢M : A Γ ⊢ N : C x /∈Γ
Γ, x:(C→B) ⊢ (M [y := xN ]) : A

(∩L) Γ, x:A ⊢M : B

Γ, x:(A ∩ C) ⊢M : B

Next theorem is a particular case of an “Inversion Lemma” (see Theorem 14A.1).
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12A.12. Theorem. In (i) assume A 6= U. Then

(i) Γ ⊢ x : A ⇔ ∃B ∈TT.[(x:B ∈Γ & B ≤ A].
(ii) Γ ⊢ (MN) : A ⇔ ∃B ∈TT.[Γ ⊢M : (B→A) & Γ ⊢ N : B].

(iii) Γ ⊢ λx.M : A ⇔ ∃n>0∃B1, · · · ,Bn, C1, · · · ,Cn ∈TT
∀i∈{1, · · · , n}.[Γ, x:Bi ⊢M : Ci &

(B1→C1) ∩ · · · ∩ (Bn→Cn) ≤ A].
(iv) Γ ⊢ λx.M : B→C ⇔ Γ, x:B ⊢M : C.

12A.13. Definition. Let R be a notion of reduction. Consider the following rules.

(R-red)
Γ ⊢M : A M →R N

Γ ⊢ N : A

(R-exp)
Γ ⊢M : A M ←R N

Γ ⊢ N : A

General results of Section 14B imply next proposition. More in details, Corollary
14B.7(ii) implies admissibility of (β-red) and (β-exp), Corollary 14B.9 admissibility of
(η-red). The negative result on (η-exp) follows from Theorem 14B.11(ii) together with
Proposition 14B.12(ii).

12A.14. Proposition. The rules (β-red), (β-exp) and (η-red) are admissible in λBCD
∩ .

The rule (η-exp) is not.

The following result characterizes notions related to normalization in terms of type
assignment in the system λBCD

∩ . The notation U /∈ A means that U does not occur in A.
The result follows from Theorem 17B.15(i) and (ii).

12A.15. Theorem. Let M ∈Λø.
(i) M has a head normal form ⇔ ∃A∈TT.[A 6=BCD U & ⊢M : A].

(ii) M has a normal form ⇔ ∃A∈TT.[U /∈ A & ⊢M : A].

Let M be a lambda term. For the notion ‘approximant of M ’, see B[1984] Section
14.3. The approximants of a term M are roughly obtained from the Böhm tree BT(M)
of M by removing some branches and replacing these by a new symbol ⊥. The set of
approximants of M is denoted by A(M). We have e.g. for the fixed-point combinator Y

A(Y) = {⊥} ∪ {λf.fn⊥ | n>0}.
Approximants can be typed (for details see Section 17C) by extending the typing rules

from terms to approximants. For example it will be shown that

⊢ ⊥ : U

⊢ λf.f⊥ : (U→A1)→A1

⊢ λf.f(f⊥) : (U→A1) ∩ (A1→A2)→A2

· · ·
⊢ λf.fn⊥ : (U→A1) ∩ (A1→A2) ∩ · · · ∩ (An−1→An)→An

· · ·
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The set of types of a termM will be shown to coincide with the union of the sets of types
of its approximants P ∈A(M). This will give an Approximation Theorem for the filter
model of next section. Theorem 17C.17 is the next theorem in a more general context.

12A.16. Theorem. Γ ⊢M : A ⇔ ∃P ∈A(M).Γ ⊢ P : A.

For example since λf.fn⊥ is for all n an approximant of Y, we have that all types of
the shape (U→A1) ∩ · · · ∩ (An−1→An)→An can be derived for Y.
Finally the question whether an intersection type is inhabited is undecidable: the proof

is the content of Section 17E, see Corollary 17E.32.

12A.17. Theorem. The set {A∈TT | ∃M ∈Λø ⊢M : A} is undecidable.

12B. The filter model FBCD

12B.1. Definition. (i) A filter over TT = TTBCD is a non-empty set X ⊆ TT such that
(1) A∈X & A ≤BCD B ⇒ B ∈X;
(2) A,B ∈X ⇒ (A ∩B)∈X.

(ii) FBCD, or just F , denotes the set of filters over TT.

12B.2. Definition. (i) If X ⊆ TT is non-empty, then the filter generated by X, notation
↑X, is the smallest filter containing X.

(ii) A principal filter is of the form ↑{A} for some A∈TT. We shall denote this simply
by ↑A. Note that ↑A = {B | A ≤ B}.
Remember the definition of the notion of (ω-algebraic) complete lattice in 10A.4 and

10A.5. The following proposition easily follows from the above definitions.

12B.3. Proposition. (i) F = 〈F ,⊆〉 is an ω-algebraic complete lattice.
(ii) F has as bottom element ↑U and as top element TT.
(iii) The compact elements of F are exactly the principal filters.

A reflexive element of ALG, see Definitions 10A.7 and 10A.12, is also a model of the
untyped λ-calculus in which the term interpretation is naturally defined as follows, see
B[1984], Section 5.4.

12B.4. Definition (Interpretation of terms). Let D be reflexive via F,G.
(i) A term environment in D is a map ρ : Var→D. We denote by EnvD the set of

term environments.
(ii) If ρ is a term environment and d∈D, then ρ[x := d] is the term environment ρ′

defined by

ρ′(y) , ρ(y) if y 6≡ x;
ρ′(x) , d.

(iii) Given such ρ, the interpretation [[ ]]Dρ : Λ→D is defined as follows.

[[x]]Dρ , ρ(x);

[[MN ]]Dρ , F ([[M ]]Dρ )([[N ]]Dρ );

[[λx.M ]]Dρ ,G(λλd∈D.[[M ]]Dρ(x:=d)).
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(iv) Let M,N ∈Λ. Then M = N , is true in D, notation D |=M = N , if

∀ρ∈EnvD.[[M ]]Dρ = [[N ]]Dρ .

Remember the notion of a λ-model D given in Definition 3A.10.

12B.5. Theorem. Let D be reflexive via F,G. Then D is a λ-model, in particular for
all M,N ∈Λ

D |= (λx.M)N =M [x: = N ].

We state now properties of F which are implied by more general results proved in the
following sections. More precisely Proposition 12B.6 follows from Corollary 16B.10(i),
Theorem 12B.7 follows from Theorem 16B.7, and Theorem 12B.8 follows from Theorem
16B.18.

12B.6. Proposition. Define maps F : F→[F→F ] and G : [F→F ]→F by

F (X)(Y ), ↑{B | ∃A∈Y.(A→B)∈X}
G(f), ↑{A→B | B ∈ f(↑A)}.

Then F is reflexive via F,G. Therefore F is a model of the untyped λ-calculus.

An important property of the λ-model F is that the meaning of a term is the set of
types which are deducible for it.

12B.7. Theorem. For all λ-terms M one has

[[M ]]Fρ = {A | ∃Γ |= ρ.Γ ⊢M : A},
where Γ |= ρ iff for all (x:B)∈Γ one has B ∈ ρ(x).
Lastly we notice that all continuous functions are representable.

12B.8. Theorem.

[F→F ] = {f : F→F | f is representable},
where f ∈F→F is called representable if for some X ∈F one has

∀Y ∈F .f(Y ) = F (X)(Y ).

12C. Completeness of type assignment

12C.1. Definition (Interpretation of types). Let D be reflexive via F,G and hence a
λ-model. For F (d)(e) we also write (as usual) d · e.
(i) A type environment in D is a map ξ : A∞→P(D).

(ii) For X,Y ∈P(D) define
(X ⇒ Y ), {d∈D | d ·X ⊆ Y }, {d∈D | ∀x∈X.d · x∈Y }.

(iii) Given a type environment ξ, the interpretation [[ ]]ξ : TT→P(D) is defined as
follows.

[[U]]Dξ , D;
[[α]]Dξ , ξ(α), for α∈A∞;

[[A→B]]Dξ , [[A]]Dξ ⇒ [[B]]Dξ ;

[[A ∩B]]Dξ , [[A]]Dξ ∩ [[B]]Dξ .
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12C.2. Definition (Satisfaction). (i) Given a λ-model D, a term environment ρ and a
type environment ξ one defines the following.

D, ρ, ξ |=M : A ⇐⇒△ [[M ]]Dρ ∈ [[A]]Dξ .
D, ρ, ξ |= Γ ⇐⇒△ D, ρ, ξ |= x : B, for all (x:B)∈Γ.

(ii) Γ |=M : A⇐⇒△ ∀D, ρ, ξ.[D, ρ, ξ |= Γ ⇒ ρ, ξ |=M : A].

12C.3. Theorem (Soundness).

Γ ⊢M : A ⇒ Γ |=M : A.

12C.4. Theorem (Completeness).

Γ |=M : A ⇒ Γ ⊢M : A.

The completeness proof is an application of the λ-model F , see Section 17A, where
soundness and completeness are proved.





CHAPTER 13

TYPE ASSIGNMENT SYSTEMS

This chapter defines a family of systems λT
∩ that assign intersection types to untyped

lambda terms. These systems have a common set of typing rules parametric in an
intersection type theory T . They are obtained as a generalization of the exemplary
system λBCD

∩ presented in Chapter 12.
In Section 13A, we start by defining a set TTA of intersection types similar to TTBCD,

where the set of type atoms is now an arbitrary one denoted by A. Then, we define the
intersection type theory T as the set of statements of the form A ≤T B (or just A ≤ B)
with A,B ∈TTA satisfying some logical rules which ensure that ≤T is a pre-order on TTA.
In particular, the logical rules for the intersection will ensure that A ∩ B is a greatest
lower bound for the types A and B. Since all type theories in Part III of this book are
using the intersection operator, we keep this implicit and often simply speak about type
theories without the word ‘intersection’ in the front.
For some type theories a particular atom, denoted by U, is selected to act as universal

type: intended as the type of all lambda terms. The rules of type assignment are such
that if U ≤ A, then also A is a universal element. So it is natural (but not strictly
necessary) to require that U is the top element. The class of intersection type theories
with a universal and top element is denoted by TTU and the one without by TT-U. For
the (disjoint) union we write TT = TTU ∪ TT-U.
Fig. 31 shows the thirteen specific examples of type theories that will be consid-

ered, where BCD is amongst them. These theories are denoted by names (respectively
acronyms) of the author(s) who have first considered the λ-model induced by such a
theory. In this list the given order is logical, rather than historical, and some of the
references define the theories directly, others deal with the corresponding filter models.
In some cases the type theory was modelled after an existing domain model in order to
study the image of terms and hence equality of terms in that model; in other cases the
type theory came first and created a domain model with certain properties.
The first ten type theories of Fig. 31 have the universal type U and the remaining

three do not, i.e.

Scott,Park,CDZ,HR,DHM,BCD,AO,Plotkin,Engeler,CDS ∈TTU

HL,CDV,CD ∈TT-U

Some of these type theories have other type atoms such as 0 and 1. We will end this
section by proving some basic lemmas for these specific type theories. In particular, we
will prove that 0 < 1 < U.

461
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T λT
∩ FT Reference

Scott λScott
∩ FScott Scott [1972]

Park λPark
∩ FPark Park [1976]

CDZ λCDZ
∩ FCDZ Coppo, Dezani-Ciancaglini, and Zacchi [1987]

HR λHR
∩ FHR Honsell and Ronchi Della Rocca [1992]

DHM λDHM
∩ FDHM Dezani-Ciancaglini, Honsell, and Motohama [2005]

BCD λBCD
∩ FBCD Barendregt, Coppo, and Dezani-Ciancaglini [1983]

AO λAO
∩ FAO Abramsky and Ong [1993]

Plotkin λPlotkin
∩ FPlotkin Plotkin [1993]

Engeler λ
Engeler
∩ FEngeler Engeler [1981]

CDS λCDS
∩ FCDS Coppo, Dezani-Ciancaglini, and Sallé [1979]

HL λHL
∩ FHL Honsell and Lenisa [1999]

CDV λCDV
∩ FCDV Coppo, Dezani-Ciancaglini, and Venneri [1981]

CD λCD
∩ FCD Coppo and Dezani-Ciancaglini [1980]

Figure 31. Specific type theories, type assignment systems and filter models

In Section 13B we will assign types in TTA to lambda terms in Λ. Given a type theory
T , we will derive assertions of the form Γ ⊢T∩ M : A where M ∈Λ, A∈TTA and Γ is a
set of type declarations for the variables in M . For this, we define a set of typing rules
parametric in T denoted by λT

∩ and called type assignment system over T . This can be
seen as a mapping

T ∈TT 7→ set λT
∩ of typing rules (and axioms) parametric in T .

The parameter T appears in rule (≤) and axiom (Utop). The rule (≤) states that a
lambda term has type B if it has type A and A ≤T B. The axiom (Utop) states that all
lambda terms have type U in case T ∈TTU. In particular, the type assignments of the
first ten type theories of Fig. 31 contain (Utop) and the remaining three do not.
The systems λT

∩ also share a set of non-parametric rules for assigning lambda terms
to the types (A∩B) and (A→ B). The particular use of intersection is that if a lambda
term has both type A and type B, then it also has type (A ∩ B). The type (A → B)
plays the same role as in the simply typed lambda calculus to cover the abstraction
terms.
We have an infinite collection {λT

∩ | T ∈TT} of type assignment systems which are
defined by giving only one set of typing rules parametric in T . Now we mention some
of the advantages of having this general and common framework for all these systems:

1. We can capture most of the intersection type assignment systems that appear in
the literature as shown in Fig. 31.

2. We can study general properties of λT
∩ that hold for all T ∈TT as it will be done

in Chapter 14.

In Section 13C we define the notion of intersection type structure

S = 〈|S|,≤,∩,→〉
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where ≤ is now a partial order (a pre-order that is anti-symmetric) and the greatest
lower bound ∩ is unique. The collection of type structures is denoted by TS. Given a
type theory T , one usually requires that the equivalence relation =T is a congruence
with respect to →. Then we speak of a compatible type theory, having a corresponding
type structure

[T ] = 〈[TT],≤,∩,→〉.
Each type structure can be seen as coming from a compatible type theory and compatible
type theories and type structures are basically the same. In this section, we also introduce
specific categories of lattices and type structures to accommodate them.
Finally in Section 13D we introduce the notion of filter over T as a set of types closed

under intersection ∩ and pre-order ≤. If T ∈TTU, then filters are non-empty and the
smallest filter (ordered by subset inclusion) is the filter generated by {U}. If T ∈TT-U,
then the empty set is considered to be a filter which in this case is the smallest one. As
for the type assignment systems, we also have the mapping

T ∈TT 7→ set FT of filters over T .
We also define the notion of filter structure over T as a triple 〈FT , F T , GT 〉 where
F T , GT are operations for interpreting application and abstraction, respectively. We
also have a mapping

T ∈TT 7→ FT = 〈FT , F T , GT 〉.
In Chapter 15 a proper categorical setting is provided to study some interesting prop-

erties of these mappings as functors. This will be used to establish equivalences of
categories of specific type structures and algebraic lattices.
In Chapter 16 we will study general conditions on T to ensure that the filter structures
FT are models of the untyped lambda calculus, i.e. filter models. This will cover the
thirteen specific cases of filter models of Fig. 31 which appear in the literature. The first
ten are models of the λ-calculus (when T ∈TTU) and the remaining three are models of
the λI-calculus (when T ∈TT-U).

13A. Type theories

13A.1. Definition. Let A be a (usually countable, i.e. finite or countably infinite) set
of symbols, called (type) atoms. The set of intersection types over A, notation TTA

∩ (if
there is little danger of confusion also denoted by TT∩, TT

A or just TT), is defined by the
following simplified syntax.

TT ::= A | TT→TT | TT ∩ TT

13A.2. Remark. (i) The set A varies in the applications of intersection types.
(ii) In Chapter 12 the set of intersection types TT was defined over the set of atoms

AU

∞ = {c0, c1, · · · } ∪ {U}. We write this as

ABCD = AU

∞ and TTBCD = TTAU

∞ .

(iii) The following are some of the type atoms that will be used in different contexts.

c0, c1, c2, · · · indiscernible atoms
0, 1, U atoms with special properties.
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(iv) The atom U is called universe. Its intention is to host all lambda terms. The
intention of the special atom 1 varies: sometimes it hosts the strongly normalizing terms,
sometimes the terms which reduce to λI-terms. Similarly 0 can host the terms which
reduce to closed terms or other sets of terms. This will be determined by the properties
of the type theory in which 1 and 0 occur. See Fig. 43 at page 572.

Notation. (i) Greek letters α, β, · · · range over arbitrary atoms in A.
(ii) The letters A,B,C, · · · range over types in TTA.
(iii) Some papers on intersection types such as Coppo, Dezani-Ciancaglini, and Sallé

[1979] use the Greek letter ω to denote the universal type, while they use the atoms 0
and 1 with the same meaning as here. Other papers such as Dezani-Ciancaglini, Honsell,
and Alessi [2003] use Ω for the universal type and ω and ϕ for 0 and 1.

13A.3. Definition. (i) An intersection type theory over a set of type atoms A is a set
T of sentences of the form A ≤ B (to be read: A sub B), with A,B ∈TTA, satisfying at
least the following axioms and rules.

(refl) A ≤ A

(inclL) A ∩B ≤ A
(inclR) A ∩B ≤ B

(glb)
C ≤ A C ≤ B
C ≤ A ∩B

(trans)
A ≤ B B ≤ C

A ≤ C

This means that e.g. (A ≤ A)∈T and (A ≤ B), (B ≤ C)∈T ⇒ (A ≤ C)∈T , for all
A,B,C ∈TTA.

(ii) The notion ‘intersection type theory’ will be abbreviated as ‘type theory’, as the
‘intersection’ part is default.

The set of type theories is denoted by TT. In the following definition, we distinguish
two disjoint subsets, TTU and TT-U.

13A.4. Definition. (i) The collection of intersection type theories with universe U no-
tation TTU, consists of the type theories T over a A such that U∈A and U is the top,
i.e. the following holds for all types A

(Utop) A ≤ U

In the corresponding type structures treated in 13C the universal element will be visible
in the signature.

(ii) The collection of intersection type theories without universe, notation TT-U ,
consists of the type theories without such special atom U that is a top.

13A.5. Remark. (i) An intersection type theory T can fail in three ways to be in TTU:
(a) there is a universe U, assigned to all lambda terms M , but it is not a top; (b) there is
a top ⊤, but it is not declared as a universal element; (c) there is neither special element
U, nor a top ⊤. In all these cases T ∈TT-U.
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(ii) The intuition behind the special atom U, and its name, will become clear in the
next section 13B on type assignment. The types in a TT will be assigned to untyped
lambda terms. Arrow types like A → B will be assigned to abstraction terms of the
form λx.M . For T ∈TTU we will postulate the assignment

Γ ⊢M : U,

for all Γ and all M ∈Λ. So U will be a universal type, i.e. a type assigned to all terms.
Another rule of type assignment will be

Γ ⊢M : A A ≤ B
.

Γ ⊢M : B

Hence if U ≤ A, then also A will be a universal type. Therefore, for type theories in
which we wish to have both a universe U and a top ⊤, we have chosen in 13A.4 that
U = ⊤, i.e. that for all types A

A ≤ U.

There will be T ∈TT with a top, but without a universe. In principle the converse, a
TT with a universe, but without a top could also be considered, but we will not do so

in the main theory. The system λ∩
KrivineU of Krivine, see Exercise 13E.10, is such an

example.

13A.6. Remark. (i) In this Part of the book T ranges over elements of TT.

(ii) If T ∈TT over A, then we also write TTT = TTA
∩ and AT = A.

13A.7. Remark. Most T ∈TT have some extra axioms or rules, the above set in Defini-
tion 13A.3 being the minimum requirement. For example the theory BCD over A = AU

∞,
introduced in Chapter 12, is a TTU and has the extra axioms (U→) and (→∩) and rule
(→).

13A.8. Notation. Let T ∈TT. We write the following.
(i) A ≤T B for (A ≤ B)∈T .
(ii) A =T B for A ≤T B ≤T A.
(iii) A <T B for A ≤ B & A 6=T B.
(iv) If there is little danger of confusion and T is clear from the context, then we will

write ≤,=, < for respectively ≤T ,=T , <T .
(v) We write A ≡ B for syntactic identity. E.g. A ∩B = A ∩B, but A ∩B 6≡ B ∩A.

Note that always A ∩B =T B ∩A in a type theory.
(vi) We write [TT] for TT modulo =T .
(vii) We will use the informal notation A1 ∩ · · · ∩An to denote the intersection of a

sequence of n types Ai for i∈{1 · · · , n} associating to the right. If n = 3 then A1∩· · ·∩An

denotes (A1 ∩ (A2 ∩ A3)). In case n = 0 and T ∈TTU, we intend that the sequence is
empty and A1 ∩ · · · ∩An denotes U.
(viii) For a finite I = {1, · · · , n} we may also use the notation

⋂
i∈ I Ai to denote

A1 ∩ · · · ∩An.

13A.9. Proposition. The following rule is derivable.

(mon)
A ≤ A′ B ≤ B′

A ∩B ≤ A′ ∩B′
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Proof. By (trans), (inclL), (inclR) and (glb).

The above proposition implies that for any T , =T is compatible with the operator ∩.
For the case that =T is compatible with → we define the following.

13A.10. Definition. T is called compatible if the following rule is admissible.

(→=)
A = A′ B = B′

(A→B) = (A′→B′)

This means A =T A′ & B =T B′ ⇒ (A→B) =T (A′→B′). One way to insure this is
to adopt (→=) as rule determining T .
13A.11. Lemma. (i) For any T one has A ∩B =T B ∩A.

(ii) If T is compatible, then (A ∩B)→C =T (B ∩A)→C.
Proof. (i) By (inclL), (inclR) and (glb).

(ii) By (i).

13A.12. Remark. Similarly to Remark 12A.7 any T ∈TT can be seen as a structure
with a pre-order T = 〈TT,≤,∩,→〉. This means that ≤ is reflexive and transitive, but
not necessarily anti-symmetric

A ≤ B & B ≤ A does not always imply A = B.

One can go over to equivalence classes and define a partial order on [TT] by

[A] ≤ [B]⇐⇒△ A ≤ B.

By Proposition 13A.9, ∩ is always well defined on [TT] by [A]∩ [B] = [A∩B]. To ensure
that → is well defined by [A]→[B] = [A→B], we need to require that = is compatible
with →. This is the case if T is compatible and one obtains a type structure

[T ] = 〈[TT],≤,∩,→〉.

This structure is a meet semi-lattice, i.e. a poset with [A]∩ [B] the greatest lower bound
of [A] and [B]. If moreover T ∈TTU, then [T ] can be enriched to a type structure with
universe [U] of the form

[T ] = 〈[TT],≤,∩,→, [U]〉.

This will be done in Section 13C.

Specific intersection type theories

Now we will construct several, in total thirteen, type theories that will play an important
role in later chapters, by introducing the following axiom schemes, rule schemes and
axioms. Only two of them are non-compatible, so we obtain eleven type structures.
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Axioms

(0Scott) (U→0) = 0

(0Park) (0→0) = 0

(01) 0 ≤ 1

(1→0) (1→0) = 0

(0→1) (0→1) = 1

(I) (1→1) ∩ (0→0) = 1

Axiom schemes

(Utop) A ≤ U

(U→) U ≤ (A→U)

(Ulazy) (A→B) ≤ (U→U)

(→∩) (A→B) ∩ (A→C) ≤ A→B ∩ C
(→∩=) (A→B) ∩ (A→C) = A→B ∩ C

Rule schemes

(→)
A′ ≤ A B ≤ B′

(A→B) ≤ (A′→B′)

(→=)
A′ = A B = B′

(A→B) = (A′→B′)

Figure 32. Possible Axioms and Rules concerning ≤.

13A.13. Remark. (i) The axiom scheme (Utop) states that the universe U is a top ele-
ment.

(ii) In the presence of (→) the axiom-scheme (U→) is equivalent with the axiom
U ≤ (U → U). Also in that case the axiom-scheme (→∩) is equivalent with (→∩=). See
Exercise 13E.1.

13A.14. Definition. In Fig. 33 a collection of elements of TT is defined. For each name
T a set AT of atoms and a set of rules and axiom(scheme)s are given. The type theory
T is the smallest intersection type theory over AT (see Definition 13A.3) that satisfies
the rules and axioms of T shown in Fig. 33.
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T AT Rules Axiom Schemes Axioms

Scott {U, 0} (→) (→∩), (Utop), (U→) (0Scott)
Park {U, 0} (→) (→∩), (Utop), (U→) (0Park)
CDZ {U, 1, 0} (→) (→∩), (Utop), (U→) (01), (1→0), (0→1)
HR {U, 1, 0} (→) (→∩), (Utop), (U→) (01), (1→0), (I)
DHM {U, 1, 0} (→) (→∩), (Utop), (U→) (01), (0→1), (0Scott)
BCD AU

∞ (→) (→∩), (Utop), (U→)

AO {U} (→) (→∩), (Utop), (Ulazy)
Plotkin {U, 0} (→=) (Utop) −
Engeler AU

∞ (→=) (→∩=), (Utop), (U→) −
CDS AU

∞ − (Utop) −

HL {1, 0} (→) (→∩) (01), (0→1), (1→0)

CDV A∞ (→) (→∩) −
CD A∞ − − −

Figure 33. Various type theories

13A.15. Remark. (i) Note that CDS and CD are non-compatible, while the other eleven
type theories are compatible.

(ii) The first ten type theories of Fig. 33 belong to TTU and the last three to TT-U.
In Lemma 13A.22(i) we will see that HL has 1 as top.
(iii) The type theories CDV and CD do not have a top at all, as shown in Lemma

13A.22(ii) and (iii).

13A.16. Remark. The expressive power of intersection types is remarkable. This will
become apparent when we will use them as a tool for characterizing properties of λ-terms
(see Sections 17B and 17D), and for describing different λ-models (see Section 16C).
Much of this expressive power comes from the fact that they are endowed with a

preorder relation, ≤, which induces, on the set of types modulo =, the structure of
a meet semi-lattice with respect to ∩. This appears natural when we think of types
as subsets of a domain of discourse D (the interpretation of the universe U), which is
endowed with a (partial) application · : D × D→D, and interpret ∩ as set-theoretic
intersection, ≤ as set inclusion, and give → the realizability interpretation [[A]]ξ ⊆ D for
each type A. One starts by interpreting types in TT→.

[[α]]ξ , ξ(α), for α 6≡ U;

[[A→B]]ξ , ([[A]]ξ ⇒ [[B]]ξ), {d∈D | d · [[A]]ξ ⊆ [[B]]ξ}.
This semantics, due to Scott, can be extended to intersection types by

[[U]]ξ ,D;
[[A ∩B]]ξ , [[A]]ξ ∩ [[B]]ξ.
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Given the right TT and right domain the following holds.

A ≤ B ⇔ ∀ξ.[[A]]ξ ⊆ [[B]]ξ.

This type of semantics will be studied in Section 17A.
The type U→U is in the set-theoretic interpretation the set of functions which applied

to an arbitrary element return again an arbitrary element. Then axiom scheme (U→)
expresses the fact that all the objects in our domain of discourse are total functions,
i.e. that U is equal to A→U, hence A→U = B→U for all A,B (Barendregt, Coppo, and
Dezani-Ciancaglini [1983]). If now we want to capture only those terms which truly
represent functions, as we do for example in the lazy λ-calculus, we cannot assume
axiom (U→). One still may postulate the weaker property (Ulazy) to make all functions
total (Abramsky and Ong [1993]). It simply says that an element which is a function,
because it maps A into B, maps also the whole universe into itself.
The intended interpretation of arrow types also motivates axiom (→∩), which implies

that if a function maps A into B, and the same function maps also A into C, then,
actually, it maps the whole A into the intersection of B and C (i.e. into B ∩ C), see
Barendregt, Coppo, and Dezani-Ciancaglini [1983].
Rule (→) is again very natural in view of the set-theoretic interpretation. It implies

that the arrow constructor is contravariant in the first argument and covariant in the
second one. It is clear that if a function maps A into B, and we take a subset A′ of
A and a superset B′ of B, then this function will map also A′ into B′, see Barendregt,
Coppo, and Dezani-Ciancaglini [1983].
The rule (→∩=) is similar to the rule (→∩). It captures properties of the graph

models for the untyped lambda calculus, see Plotkin [1975] and Engeler [1981], as we
shall discuss in Section 16C.
For Scott,Park,CDZ,HR,DHM, the axioms express peculiar properties of D∞-like

inverse limit models (see Section 16C). For Park,CDZ,HR,DHM as well as for HL,
the axioms also express properties of subsets of λ-terms (see Fig. 43 at page 572 and
Proposition 17B.13).
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Figure 34. Inclusion among some intersection type theories.
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13A.17. Remark. In Fig. 34 we have connected T1 with an edge towards the higher
positioned T2 in case T1 ⊂ T2. In Exercise 13E.15 it is shown that the inclusions are
strict. Above the horizontal line we find the elements of TTU, below of TT-U.

Some classes of type theories

Now we will consider some classes of type theories. In order to do this, we list the
relevant defining properties.

13A.18. Definition. We define special subclasses of TT.

Class Defining axiom(-scheme)(s) or rule(-scheme)(s)

graph (→=), (Utop)

lazy (→), (→∩), (Utop), (Ulazy)

natural (→), (→∩), (Utop), (U→)

proper (→), (→∩)
13A.19. Notation. The sets of graph, lazy, natural and proper type theories are denoted
by respectively GTTU, LTTU, NTTU and PTT.
The following subset inclusions are easily deduced from their definition.

NTTU ⊂ LTTU ⊂ GTTU ⊂ TTU ⊂ TT

and LTTU ⊂ PTT.

13A.20. Remark. The type theories of Fig. 33 are classified as follows.

non compatible CD,CDS

graph Plotkin, Engeler

lazy AO

natural Scott, Park,CDZ,HR,DHM,BCD

proper HL,CDV

This table indicates the typical classification for these type theories: for example, CDZ
is typically natural because NTTU is the smallest set that contains CDZ.

Some properties about specific TTs

Results about proper type theories

All type theories of Fig. 33 are proper, except CD,CDS,Plotkin,Engeler.

13A.21. Proposition. Let T be proper. Then we have

(i) (A→B) ∩ (A′→B′) ≤ (A ∩A′)→(B ∩B′);

(ii) (A1→B1) ∩ · · · ∩ (An→Bn) ≤ (A1 ∩ · · · ∩An)→(B1 ∩ · · · ∩Bn);

(iii) (A→B1) ∩ · · · ∩ (A→Bn) = A→(B1 ∩ · · · ∩Bn).



13A. Type theories 471

Proof. (i) (A→B) ∩ (A′→B′) ≤ ((A ∩A′)→B) ∩ ((A ∩A′)→B′)

≤ (A ∩A′)→(B ∩B′),
by respectively (→) and (→∩).

(ii) Similarly (i.e. by induction on n>1, using (i) for the induction step).
(iii) By (ii) one has (A→B1) ∩ · · · ∩ (A→Bn) ≤ A→(B1 ∩ · · ·Bn). For ≥ use (→) to

show that A→(B1 ∩ · · · ∩Bn) ≤ (A→Bi), for all i.

It follows that the mentioned equality and inequalities hold for Scott,Park,CDZ,
HR,DHM,BCD,AO,HL and CDV.

Results about the type theories of Fig. 33

13A.22. Lemma. (i) 1 is the top and 0 the bottom element in HL.
(ii) CDV has no top element.
(iii) CD has no top element.

Proof. (i) By induction on the generation of TTHL one shows that 0 ≤ A ≤ 1 for all
A∈TTHL.

(ii) If α is a fixed atom and

Bα := α | Bα ∩ Bα
and A∈Bα, then one can show by induction on the generation of ≤CDV that A ≤CDV

B ⇒ B ∈Bα. Hence if α ≤CDV B, then B ∈Bα. Since Bα1 and Bα2 are disjoint when
α1 and α2 are two different atoms, we conclude that CDV has no top element.
(iii) Similarly to (ii), but easier.

13A.23. Remark. By the above lemma, the atom 1 turns out to be the top element in
HL. But 1 is not declared as a universe and hence, HL is not in TTU.

In the following Lemmas 13A.24-13A.28 we study the positions of the atoms 0, and 1
in the TTs introduced in Fig. 33. The principal result is that 0 < 1 in HL and, as far
as applicable,

0 < 1 < U,

in the theories Scott,Park,CDZ,HR,DHM and Plotkin.

13A.24. Lemma. Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,Engeler}. Define induc-
tively the followin collection of types.

B ::= U | TTT→B | B ∩ B
Then we have B = {A∈TTT | A =T U}.
Proof. By induction on the generation of A ≤T B one proves that B is closed upwards.
This gives U ≤T A ⇒ A∈B.
By induction on the definition of B one shows, using (→) or (→=), (Utop) and (U→),

that A∈B ⇒ A =T U.
Therefore

A =T U ⇔ A∈B.
13A.25. Lemma. For T ∈ {AO,Plotkin} define inductively

B ::= U | B ∩ B
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Then B = {A∈TTT | A =T U}, hence U→U 6=T U.

Proof. Similar to the proof of 13A.22, but easier.

13A.26. Lemma. For T ∈ {CDZ,HR,DHM} define by mutual induction

B ::= 1 | U | TTT→B | H→TTT | B ∩ B
H ::= 0 | B→H | H ∩ TTT | TTT ∩H.

Then

1 ≤ B ⇒ B ∈B,
A ≤ 0 ⇒ A∈H.

Proof. By induction on ≤T one shows

A ≤ B ⇒ (A∈B ⇒ B ∈B) ⇒ (B ∈H ⇒ A∈H).
From this the assertion follows immediately.

13A.27. Lemma. We work with the theory HL.
(i) Define by mutual induction

B ::= 1 | H→B | B ∩ B
H ::= 0 | B→H | H ∩ TTHL | TTHL ∩H

Then
B = {A∈TTHL | A =HL 1};
H = {A∈TTHL | A =HL 0}

(ii) 0 6=HL 1 and hence 0 <HL 1.

Proof. (i) By induction on ≤T one shows

A ≤ B ⇒ (A∈B ⇒ B ∈B) & (B ∈H ⇒ A∈H).
This gives

(1 ≤ B ⇒ B ∈B) & (A ≤ 0 ⇒ A∈H).
By simultaneous induction on the generation of B and H one shows, using that 0 is the
bottom element and 1 is the top element of HL, by Lemma 13A.22(i),

(B ∈B ⇒ B = 1) & (A∈H ⇒ A = 0).

Now the assertion follows immediately.
(ii) By (i).

13A.28. Proposition. In HL we have 0 < 1. For the other members of Fig. 33 as far
as applicable

0 < 1 < U.

More precisely, in HL one has

(i) 0 < 1.

In CDZ,HR,DHM one has

(ii) 0 < 1 < U.

Proof. (i) By rule (01) and Lemma 13A.27.
(ii) By rules (01), (Utop)and Lemmas 13A.24-13A.26.
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13B. Type assignment

Assignment of types from type theories

In this subsection we define an infinite collection {λT
∩ | T ∈TT} of type assignment

systems by giving a uniform set of typing rules parametric in T .
13B.1. Definition. Let T ∈TT.

(i) A T -statement is of the form M : A, with M ∈Λ and A∈TTT .
(ii) A T -declaration is a T -statement of the form x : A.
(iii) A T -basis Γ is a finite set of T -declarations, with all term variables distinct.
(iv) A T -assertion is of the form

Γ ⊢M : A,

where M : A is a T -statement and Γ is a T -basis.
13B.2. Remark. Let M : A be a T -statement.

(i) The term M is called the subject of this statement.
(ii) The type A is called its predicate.

13B.3. Definition. Let T ∈TT. The type assignment system λT
∩ derives T -assertions

by the following axioms and rules.

(Ax) Γ ⊢ x:A if (x:A)∈Γ

(→I)
Γ, x:A ⊢M : B

Γ ⊢ λx.M : A→B

(→E)
Γ ⊢M : A→ B Γ ⊢ N : A

Γ ⊢MN : B

(∩I) Γ ⊢M : A Γ ⊢M : B

Γ ⊢M : A ∩B

(≤) Γ ⊢M : A A ≤T B

Γ ⊢M : B

(U) Γ ⊢M : U if T ∈TTU

Note that the parameter T appears only in the last two rules.

13B.4. Notation. (i) We write Γ ⊢T∩ M : A if Γ ⊢M : A is derivable in λT
∩ .

(ii) The assertion ⊢T∩ may also be written as ⊢T∩ , as ⊢∩ or simply as ⊢, if there is little
danger of confusion.
(iii) λT

∩ may be denoted simply by λ∩.

13B.5. Remark. Given a type theory T , the following two options are mutually exclu-
sive: either the type assignment system λT

∩ contains the axiom (Utop) or it does not. For
the specific type theories in Fig. 33, the situation is as follows.

1. For the first ten type theories, i.e. Scott,Park,CDZ,HR, DHM, BCD,AO, Plotkin,
Engeler, and CDS, we only get the type assignment system with the axiom (Utop),
since they all belong to TTU.
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2. For the remaining three type theories, i.e. HL,CDV and CD, we only get the one
without this axiom, since they all belong to TT-U.

13B.6. Remark. As suggested in the introduction of Chapter 12, the type assignment
systems with the axiom (Utop) are closed under β-expansions and can be used to construct
models of the λK-calculus. On the other hand the systems without this axiom are closed
under βI-expansions (not necessarily under β) and can be used to construct models
specifically for the λI-calculus.

13B.7. Example. The statements in this Example will be proved in Exercises 14C.7 and
14C.8. Define ω,λx.xx, Ω,ωω, V,λyz.Kz(yz) and K∗,λyz.z. Then V ։β K∗. We
have the following for arbitrary A,B ∈TT.

(i) For all T ∈TT.
⊢T∩ ω : A ∩ (A→ B)→ B.

⊢T∩ V : (B → A)→ B → B.

⊢T∩ K∗ : A→B → B.

(ii) For some T ∈TT-U, for example for CDV and CD, one has

6⊢T∩ V : α→β → β.

Conclude that

M ։β N & Γ ⊢T∩ N : A 6⇒ Γ ⊢T∩ M : A,

i.e. in the absence of U subject expansion fails, even if the expanded term is typable, as
observed in van Bakel [1993]; this phenomenon also occurs in λ→.
(iii) For some T ∈TT-U, for example for HL,CDV and CD, one has for all A

6⊢T∩ KIΩ : A;

6⊢T∩ Ω : A.

(iv) 6⊢CD I : ((α ∩ β)→γ)→((β ∩ α)→γ).
(v) Let T ∈TTU. Then

⊢T∩ Ω : U.

⊢T∩ KIΩ : (A→ A).

⊢T∩ V : A→B → B.

13B.8. Definition. Define the rules (∩E)
Γ ⊢M : (A ∩B)

Γ ⊢M : A

Γ ⊢M : (A ∩B)

Γ ⊢M : B

Notice that these rules are derived in λT
∩ for all T .

13B.9. Lemma. For T ∈TT-U one has the following.
(i) Γ ⊢T∩ M : A ⇒ FV(M) ⊆ dom(Γ).

(ii) Γ ⊢T∩ M : A ⇒ (Γ ↾ FV(M)) ⊢M : A.

Proof. (i), (ii) By straightforward induction on the derivation.

Notice that Γ ⊢ M : A ⇒ FV(M) ⊆ dom(Γ) does not hold for T ∈TTU, since by
axiom (Utop) we have ⊢T∩ M : U for all M .
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Admissible rules

13B.10. Proposition. The following rules are admissible in λT
∩ .

(weakening)
Γ ⊢M : A x /∈ Γ

Γ, x:B ⊢M : A
;

(strengthening)
Γ, x:B ⊢M : A x /∈FV (M)

Γ ⊢M : A
;

(cut)
Γ, x:B ⊢M : A Γ ⊢ N : B

Γ ⊢ (M [x := N ]) : A
;

(≤-L) Γ, x:B ⊢M : A C ≤T B

Γ, x:C ⊢M : A
;

(→L)
Γ, y:B ⊢M : A Γ ⊢ N : C x /∈Γ
Γ, x:(C→B) ⊢ (M [y := xN ]) : A

;

(∩L) Γ, x:A ⊢M : B

Γ, x:(A ∩ C) ⊢M : B
.

Figure 35. Various admissible rules.
Proof. By straightforward induction on the structure of derivations.

Proofs later on in Part III will freely use the rules of the above proposition.
As we remarked earlier, there are various equivalent alternative presentations of in-

tersection type assignment systems. We have chosen a natural deduction presentation,
where T -bases are additive. We could have taken, just as well, a sequent style presen-
tation and replace rule (→E) with the three rules (→L), (∩L) and (cut) occuring in
Proposition 13B.10, see Barbanera, Dezani-Ciancaglini, and de’Liguoro [1995], Baren-
dregt and Ghilezan [2000]. Next to this we could have formulated the rules so that
T -bases “multiply”. Notice that because of the presence of the type constructor ∩, a
special notion of multiplication of T -bases is useful.
13B.11. Definition (Multiplication of T -bases).

Γ ⊎ Γ′ , {x:A ∩B | x:A∈Γ and x:B ∈Γ′}
∪{x:A | x:A∈Γ and x /∈ Γ′}
∪{x:B | x:B ∈Γ′ and x /∈ Γ}.

Accordingly we define:

Γ ⊆+Γ′⇐⇒△ ∃Γ′′.Γ ⊎ Γ′′ = Γ′.

For example, {x:A, y:B} ⊎ {x:C, z:D} = {x:A ∩ C, y:B, z:D}.
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13B.12. Proposition. The following rules are admissible in all λT
∩ .

(multiple weakening)
Γ1 ⊢M : A

Γ1 ⊎ Γ2 ⊢M : A

(relevant →E)
Γ1 ⊢M : A→ B Γ2 ⊢ N : A

Γ1 ⊎ Γ2 ⊢MN : B

(relevant ∩ I)
Γ1 ⊢M : A Γ2 ⊢M : B

Γ1 ⊎ Γ2 ⊢M : A ∩B
Proof. By straightforward induction on derivations.

In Exercise 14C.23, it will be shown that we can replace rule (≤) with other more
perspicuous rules. This is possible as soon as we will have proved appropriate “inversion”
lemmas for λT

∩ . For some very special theories, one can even omit altogether rule (≤),
provided the remaining rules are reformulated “multiplicatively” with respect to T -
bases, see e.g. Di Gianantonio and Honsell [1993]. We shall not follow up this line of
investigation.
In λT

∩ , assumptions are allowed to appear in the basis without any restriction. Alter-
natively, we might introduce a relevant intersection type assignment system, where only
“minimal-base” judgements are derivable, (see Honsell and Ronchi Della Rocca [1992]).
Rules like (relevant →E) and (relevant ∩ I), which exploit the above notion of multi-
plication of bases, are essential for this purpose. Relevant systems are necessary, for
example, for giving finitary logical descriptions of qualitative domains as defined in Gi-
rard, Lafont, and Taylor [1989]. We will not follow up this line of research either. See
Honsell and Ronchi Della Rocca [1992].

Special type assignment for call-by-value λ-calculus

13B.13. Definition. The type theory EHR is defined with AEHR = {V} and the extra
rule (→) and axioms (→∩) and

A→B ≤ V.

The type assignment system λEHR
∩V is defined by the axiom and rules of Definition 13B.3

with the extra axiom

(V) Γ ⊢ (λx.M) : V.

The type theory EHR has a top, namely V, but it is not an element of TTU. Hence λEHR
∩V

does not contain the axiom (Utop). Note also that the axiom (V) is different from (Utop).
This type assignment system is suitable for modelling the call-by-value λ-calculus: it
has been extensively studied in Ronchi Della Rocca and Paolini [2004].

13C. Type structures

Intersection type structures

Remember that a type algebra A, see Definition 7A.1, is of the form A = 〈|A|,→〉, i.e.
just an arbitrary set |A| with a binary operation → on it.
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13C.1. Definition. (i) A meet semi-lattice (without universe) is a structure

M = 〈|M|,≤,∩〉,
such that |M| is a countable set, ≤ is a partial order, for all A,B ∈ |M| the element A∩B
(meet) is the greatest lower bound of A and B. MSL-U is the set of meet semi-lattices.

(ii) A meet semi-lattice with universe is a similar structure

M = 〈|M|,≤,∩, U〉,
with U the (unique) top element of M. MSLU is the set of meet semi-lattices with
universe.
(iii) MSL = MSLU ∪MSL-U is the set of meet semi-lattices with or without universe.
(iv) We have MSLU ∩MSL-U = ∅, as the signatures are different.

13C.2. Definition. (i) An (intersection) type structure (without universe) is a type
algebra with the additional structure of a meet semi-lattice

S = 〈|S|,≤,∩,→〉.
TS-U is the set of type structures without universe. The relation ≤ and the operation →
have a priori no relation with each other, but in special structures this will be the case.

(ii) A type structure with universe U is a type algebra that is also a meet semi-lattice
with universe.

S = 〈|S|,≤,∩,→, U〉.
TSU is the set of type structures with universe U.
(iii) TS = TSU∪TS-U is the set of type structures with or without universe. As before

TS-U ∩ TSU = ∅.
Notation. (i) As ‘intersection’ is everywhere in this Part III, we will omit this word
and only speak about a type structure.

(ii) Par abus de language we also use A,B,C, · · · to denote arbitrary elements of type
structures and we write A∈S for A∈ |S|.
If T is a type theory that is not compatible, like CD and CDS, then → cannot be

defined on the equivalence classes. But if T is compatible, then one can work on the
equivalence classes and obtain a type structure in which ≤ is a partial order.

13C.3. Proposition. Let T ∈TT be compatible. Then T induces a type structure [T ]
defined as follows.

[T ] = 〈[TT],≤,∩,→〉,
by defining on the =T -equivalence classes

[A] ≤ [B]⇐⇒△ A ≤ B;

[A] ∩ [B] , [A ∩B];

[A]→[B] , [A→B]4

where A,B,C range over TT. If moreover T has universe U, then [T ] is a type structure
with [U] as universe.

Proof. See Remark 13A.12.

4Here we misuse notation in a suggestive way, by using the same notation → for equivalence classes
as for types.
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Let T ∈TT. Then the type structure [T ] is called a syntactical type structure.

13C.4. Proposition. Every type structure is isomorphic to a syntactical one.

Proof. For a type structure S, define a type theory Th(S) as follows. Take A =

ATh(S) = {c | c∈S}. Then define g : TTA→S by

g(c), c;

g(A→B), g(A)→g(B);

g(A ∩B), g(A) ∩ g(B).

Define A ≤Th(S) B ⇐⇒△ g(A) ≤S g(B). Then g induces a bijective morphism

g : [Th(S)]→ S
where the inverse f is defined by f(a) , [a]. Moreover, if S has a universe U, then [U]
is the universe of [Th(S)] and g([U]) = U.

13C.5. Remark. (i) Each of the eleven compatible type theories T in Figure 33 may
be considered as the intersection type structure [T ]. For example Scott can be a name,
a type theory or a type structure.

(ii) Although essentially equivalent, type structures and type theories differ in the
following. In the theories the types are freely generated from a fixed set of atoms and
inequality can be controlled somewhat by choosing the right axioms and rules. This will
be explored in Chapters 14, 16 and 17. In type structures one has the antisymmetric
law A ≤ B ≤ A ⇒ A = B, which is in line with the common theory of partial orders.
This will be explored in Chapter 15.
(iii) Note that in a type theory there is up to =T at most one universe U, as we require

it to be the top.

Now the notion of type assignment will also be defined for type structures. These
structures arise naturally coming from algebraic lattices that are used towards obtaining
a semantics for untyped lambda calculus.

13C.6. Definition. Let S ∈TS.
(i) The notion of an S-statement M : A, an S-declaration x:A, an S-basis and an S-
assertion Γ ⊢ M : A is as in Definition 13B.1, now for A∈S an element of the type
structure S.

(ii) The notion Γ ⊢S∩ M : A is defined by the same set of axioms and rules of λT
∩ in

Definition 13B.3, where now ≤S is the inequality of the structure S.
The following result shows that for syntactic type structures type assignment is essen-

tially the same as the one coming from the corresponding lambda theory.

13C.7. Proposition. Let T ∈TT be compatible and write

[T ] = 〈[TT],≤,∩,→(, [U])〉
its corresponding type structure possibly with universe. For a type A∈T write its equiv-
alence class as [A]∈ [T ]. For Γ = {x1 : B1, · · · , xn : Bn} a T -basis write [Γ] = {x1 :
[B1], · · · , xn : [Bn]}, a [T ]-basis. Then

Γ ⊢T∩ M : A ⇔ [Γ] ⊢[T ]
∩ M : [A].
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Proof. (⇒) By induction on the derivation of Γ ⊢T M : A. (⇐) Show by induction on

the derivation of [Γ] ⊢[T ] M : [A] that for all A′ ∈ [A] and Γ′ = {x1 : B′
1, · · · , xn : B′

n},
with B′

i ∈ [Bi] for all 1 ≤ i ≤ n, one has

Γ′ ⊢T M : A′.

Using this result we could have defined type assignment first for type structures and
then for compatible type theories via translation to the type assignment for its corre-
sponding syntactical type structure, essentially by turning the previous result into a
definition.

Categories of meet-semi lattices and type structures

For use in Chapter 15 we will introduce some categories related to given classes of type
structures.

13C.8. Definition. (i) The category MSL-U has as objects the elements of MSL-U and
as morphisms maps f :M→M′, preserving ≤, ∩:

A ≤ B⇒ f(A) ≤′ f(B);

f(A ∩B) = f(A) ∩′ f(B).

(ii) The category MSLU has as objects the elements of MSLU and as morphisms maps
that preserve ≤, ∩ but also U, i.e. f(U) = U′.

There is no natural category corresponding to MSL, as it is a hybrid set consisting of
structures with and without universe.

13C.9. Definition. (i) The category TS-U has as objects type structures and as mor-
phisms maps f :M→M′, which satisfy restrictions based on inequalities:

(m1) A ≤ B ⇒ f(A) ≤′ f(B);
(m2) f(A) ∩′ f(B) ≤′ f(A ∩B);
(m3) f(A)→′f(B) ≤′ f(A→B).

Because of monotonicity (m1) of f , we obtain that (m2) implies f(A∩B) = f(A)∩′f(B).
(ii) The category TSU is as TS-U, but based on type structures with universe. For

morphisms we require

(m4) U′ ≤′ f(U)

or, equivalently, U′ = f(U). Again there is no category corresponding to TS.

13C.10. Definition. The definitions of graph, lazy, natural and proper type theory
translate immediately to type structures. For example, a type structure S such that
(→=), (Utop) hold is called a graph type structure.

13C.11. Definition. We define three full subcategories of TSU and one full subcategory
of TS-U by specifying in each case the objects.

(i) GTSU whose objects are the graph type structures.
(ii) LTSU whose objects are the lazy type structures.
(iii) NTSU whose objects are the natural type structures.
(iv) PTS-U whose objects are the proper type structures.
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13D. Filters

In this section we define the notions of filter and filter structure.

13D.1. Definition. (i) Let T ∈TTU and X ⊆ TTT . Then X is a filter over T if the
following hold.
(1) A∈X & A ≤ B ⇒ B ∈X;
(2) A,B ∈X ⇒ A ∩B ∈X;
(3) X is non-empty.

(ii) Let T ∈TT-U and X ⊆ TTT . Then X is a filter over T if the following hold.
(1) A∈X & A ≤ B ⇒ B ∈X;
(2) A,B ∈X ⇒ A ∩B ∈X.

(iii) Write FT = {X ⊆ TTT | X is a filter over T }.
If T ∈TTU, then filters are sets of types containing U and closed under ≤ and ∩. If
T ∈TT-U, then filters may be empty.

13D.2. Definition. Let T ∈TT.
(i) For A∈TTT write ↑A,{B ∈TTT | A ≤ B}.
(ii) For X ⊆ TTT define ↑X to be the smallest filter over T containing X.

13D.3. Remark. (i) If X is non-empty,

↑X = {B ∈TTT | ∃n ≥ 1 ∃A1, · · · ,An ∈X.A1 ∩ · · · ∩An ≤ B}.
(ii) For X = ∅, we have that

↑∅ =
{
{A | A = U} = [U] if T ∈TTU

∅ if T ∈TT-U

(iii) C ∈ ↑ {Bi | i∈I 6= ∅} ⇔ ∃J ⊆fin I.[J 6= ∅ &
⋂

j ∈ J Bj ≤ C].
Complete lattices and the category ALG were introduced in Definition 10A.4.

13D.4. Proposition. Let T ∈TT.
(i) FT = 〈FT ,⊆〉 is a complete lattice, with for X ⊆ FT the sup is

X = ↑(⋃X ).
(ii) For A∈TTT one has ↑A = ↑{A} and ↑A∈FT .

(iii) For A,B ∈TTT one has ↑A ⊔ ↑B = ↑(A ∩B).

(iv) For Ai ∈TTT (i∈I) one has {↑ Ai | i∈I} =↑ {Ai | i∈I}.
(v) For X ∈FT one has

X = {↑A | A∈X} = {↑A | ↑A ⊆ X}
=

⋃{↑A | A∈X} =
⋃{↑A | ↑A ⊆ X}.

(vi) The set K(FT ) of finite (i.e. compact) elements of FT is given by

K(FT ) =

{
{↑A | A∈TTT } if T ∈TTU

{↑A | A∈TTT } ∪ ∅ if T ∈TT-U.
(vii) FT ∈ALG.

Proof. Easy.
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Now we introduce the fundamental notion of filter structure. It is of paramount im-
portance in Part III of this book. Since the seminal paper Barendregt, Coppo, and
Dezani-Ciancaglini [1983], this notion has played a major role in the study of the math-
ematical semantics of lambda calculus.

13D.5. Definition. Let T ∈TT. Define

F T ∈ [FT→[FT→FT ]], and

GT ∈ [[FT→FT ]→FT ]

as follows

F T (X)(Y ), ↑{B ∈TTT | ∃A∈Y.(A→B)∈X};
GT (f), ↑{A→B | B ∈ f(↑A)}.

Then, FT , 〈FT , F T , GT 〉 is called the filter structure over T .
It is easy to show that

F T ∈ [FT→[FT→FT ]] & GT ∈ [[FT→FT ]→FT ].

13D.6. Remark. The items 13A.18-13B.12 and 13D.1-13D.5 are about type theories,
but can be translated immediately to structures and if no → are involved to meet-
semi lattices. For example Proposition 13A.21 also holds for a proper type structure,
hence it holds for Scott,Park,CDZ,HR,DHM,BCD,AO, HL and CDV considered as
type structures. Also 13A.22-13A.28 immediately yield corresponding valid statements
for the corresponding type structures, though the proof for the type theories cannot
be translated to proofs for the type structures because they are by induction on the
syntactic generation of TT or ≤. Also 13B.7-13B.12 hold for type structures, as follows
immediately from Propositions 13C.4 and 13C.7. Finally 13D.1-13D.5 can be translated
immediately to type structures and meet semi-lattices. In Chapter 15 we work directly
with meet semi-lattices and type structures and not with type theories, because there a
proper partial order is needed.

An example of the use of this remark is the following easy lemma.

13D.7. Lemma. Let T be a compatible type theory. Then FT ∼= F [T ] in the category
ALG.

Proof. A filter X over T is mapped to

[X] = {[A] | A∈X}.
This map is 1-1, onto and preserves ⊆.

13E. Exercises

13E.1. Let T be a type theory that satisfies (→).
(i) Show that if (Utop) holds, then the scheme axiom (U→) is equivalent to the

following axiom:
U ≤ U→ U.

(ii) Show that (→∩) is equivalent with (→∩=).
13E.2. Let T ∈ {Scott,DHM}. Prove that 0 is a bottom element in T , i.e. 0 ≤T A for

all A∈TTT .
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13E.3. Let T ∈ {CDZ,HR}. Show that U → 0 < 0. Conclude that 0 is not a bottom
element in T .

13E.4. Prove that for all types A∈TTAO there is an n such that

Un→U ≤AO A.

13E.5. Show that Γ, x:U ⊢T∩ M : A ⇒ Γ ⊢T∩ M : A.
13E.6. For T a type theory, M,N ∈Λ and x /∈ dom(Γ) show

Γ ⊢T∩ M : A ⇒ Γ ⊢T∩ M [x: = N ] : A.
13E.7. Prove that if (01), (1→ 0) and (0→ 1) are axioms in T , then for allM in normal

form {x1 : 1, · · · , xn : 1} ⊢T M : 0, where {x1, · · · , xn} ⊇ FV(M).
13E.8. Show that

M is a closed term ⇒ ⊢Park∩ M : 0.

Later we will show the converse (Theorem 17D.3).
13E.9. Suppose in T there is a type A such that A = A→A. Then

FV(M) ⊆ dom(Γ) ⇒ Γ ⊢T∩ M : A.

13E.10. The type theory Krivine and the type assignment system λKrivine
∩ of Krivine

[1990] are CD and λCD
∩ , but with rule (≤) replaced by

(∩E) Γ ⊢M : A ∩B
Γ ⊢M : A

Γ ⊢M : A ∩B
Γ ⊢M : B

Similarly KrivineU and λKrivineU
∩ are CDS and λCDS

∩ , with (≤) replaced by (∩E).
Show that

(i) Γ ⊢Krivine M : A ⇔ Γ ⊢CD
∩ M : A.

(ii) Γ ⊢KrivineU M : A ⇔ Γ ⊢CDS
∩ M : A.

13E.11. (i) Show that λx.xxx and (λx.xx)I are typable in λKrivine
∩ .

(ii) Show that all closed terms in normal form are typable in λKrivine
∩ .

13E.12. Show the following:

(i) ⊢Krivine λz.KI(zz) : (A→B) ∩A→C→C.
(ii) ⊢KrivineU λz.KI(zz) : U→C→C.
(iii) ⊢BCD

∩ λz.KI(zz) : U→(A→B ∩ C)→A→B.
13E.13. Consider HL as type structure with universe 〈[TTHL],≤HL,∩,→, [1]〉, where [1]

is taken as the universe. Show that HL /∈ LTSU and HL /∈NTSU [Hint. Show
that 1→ 1 <HL 0→ 1].

13E.14. Let D = 〈D, ·〉 be an applicative structure. Consider (P(D),⇒,⊆,∩,D), where
P(D) is the power set of D, ⇒ is defined in 3A.34, ⊆ and ∩ are the usual set
theoretic notions, and D is the top of P(D). Show
• (P(D),⇒,⊆,∩) is a proper type structure.
• D = D ⇒ D.
• (P(D),⇒,⊆,∩,D) is a natural type structure.

13E.15. Show that the inclusions suggested in Fig. 34 are strict.



CHAPTER 14

BASIC PROPERTIES

This chapter studies meta-theoretical properties of the type assignment systems. They
will be crucial for the development of filter lambda models induced by these systems in
Chapter 16. The most important question here is whether the type assignment system
satisfies β-, η-reduction or β-, η-expansion. Due to the intrinsic syntactic nature of the
filter models, any property on the type assignment system is transferred into the filter
structure. This is revealed by the Type Semantics Theorem (Theorem 16B.7) which says
that the interpretation of a term is the set of its types. The amazing consequence of this
is that we know whether the filter structure preserves the meaning of λ-terms under β-
or η- reduction or expansion, exactly when the type assignment does.
Inversion lemmas are proved in Section 14A and they essentially state when an asser-

tion Γ ⊢T M : A holds depending on the form of M . This is a convenient technical tool
for doing proofs by induction (or by cases) on M when the typing is involved. Instead of
doing a proof by induction on the derivation, the inversion lemma gives the possibility
of doing induction on the structure of the term.
Fig. 36 summarizes the characterizations of the admissibility of β and η in the type

assignment systems. This topic is developed in Section 14B.

Property of T ∈TT versus property of λT
∩

β-sound ⇒ β-red

T ∈TT ⇒ βI-exp
T ∈TTU ⇒ β-exp

T ∈TT-U & proper ⇔ η-red

T ∈TTU & natural ⇔ η-red

T ∈TT-U & η-sound ⇔ η-exp

T ∈TTU & ηU-sound ⇔ η-exp

Figure 36. Characterizing reduction and expansion

On the left hand side of the table, we find sufficient conditions (sometimes necessary as
well) on the type theory to preserve the typing after reducing or expanding.

483
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The notions of natural and proper type theory were introduced in Definition 13A.18
because they characterize η-reduction. The idea is to deduce which conditions are nec-
essary to preserve the typing after η-reducing terms. What we find turns out to be a
sufficient set of conditions as well. Let Γ = {x : (A→ B)}. If A ≥ A′ and B ≤ B′, then
Γ ⊢ λy.xy : A′ → B′ and λy.xy η-reduces to x. Then, it is easy to see that to deduce
Γ ⊢ x : A′ → B′, we need the axiom (→). A similar argument can be used to show that
the axiom (→∩) is necessary as well.
New classes of type theories will be given for completing the picture. The notions of

η-sound and ηU-sound are introduced in Definition 14B.10 to characterize η-expansion.
Roughly speaking, the condition of η-soundness states that any type A should be equal
to an intersection of arrow types. Let Γ = {x : A}. The term λy.xy will have type A in
Γ if we impose the condition that there exist B,C,D,E such that

(B → C) ≤ A
A ≤ (D → E)
B ≤ D & A ≤ C.

It is easy to see that if the type theory is also natural, then A = B → C. The above
condition is a simplification of the actual condition of η-soundness that has to consider
intersections.
For β-expansion, there is no need to impose any condition, except the presence of the

universal type. As explained in the introduction of Chapter 12, this was the reason to
introduce intersection types. Without (Utop), the type assignment system only preserves
βI-expansion.
For β-reduction, the condition of β-soundness is introduced in Definition 14A.4. To

illustrate the idea, we consider a simplification of β-soundness:

(A→ B) ∩ (C → D) ≤ E → F ⇒ E ≤ A ∩ C & B ∩D ≤ F .
If we know that (λx.M)N is typable, then we can apply the Inversion Lemmas and reach
a point where the condition of β-soundness appears naturally to be able to continue with
the proof and deduce that M [x := N ] is typable too. Suppose that

⊢ (λx.M) : E → F
⊢ N : E.

This does not necessarily mean that x : E ⊢M : F . We could have the situation where

(A→ B) ∩ (C → D) ≤ E → F
x : A ⊢M : B
x : C ⊢M : D.

Our goal is to conclude that x : E ⊢ M : F and apply (cut) to finally have that
⊢ M [x := N ] : F . At this point, we see that it would be enough to have the simplified
condition of β-soundness to conclude our goal.
The condition of β-soundness is sufficient for preserving β-red but it is not necessary.

In Definition 16B.19, an example will be given of a type theory that preserves β-reduction
but is not β-sound.
Fig. 37 summarizes the results on β and η for the specific type theories of Fig. 33.

The proofs can be found in Sections 14B and 14C. The symbol ‘
√
’ stands for “holds”

and ‘.’ for “fails”.
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T β-red β-exp βI-exp η-red η-exp

Scott
√ √ √ √ √

Park
√ √ √ √ √

CDZ
√ √ √ √ √

HR
√ √ √ √ √

DHM
√ √ √ √ √

BCD
√ √ √ √

.

AO
√ √ √

.
√

Plotkin
√ √ √

. .
Engeler

√ √ √
. .

CDS
√ √ √

. .

HL
√

.
√ √ √

CDV
√

.
√ √

.
CD

√
.

√
. .

Figure 37. Reduction and expansion in the type assignment systems

Since all type theories of Fig. 37 are β-sound, they all preserve β-reduction and ob-
viously, they also preserve βI-reduction. Since the type assignment systems induced by
the first ten type theories contain (Utop), they are all closed under β-expansions. The
type assignment systems for the last three are closed under βI-expansions.
It is easy to see that BCD,Engeler,CDS,CDV,CD cannot be closed under η-expansion

because a constant in A∞ cannot be decomposed into an intersection of arrow types. A
similar argument applies to Plotkin where 0 does not have any axiom associated to it.

14A. Inversion lemmas

In the style of Coppo, Dezani-Ciancaglini, Honsell, and Longo [1984] and Alessi, Bar-
banera, and Dezani-Ciancaglini [2003], Alessi, Barbanera, and Dezani-Ciancaglini [2006]
we shall isolate special properties which allow to ‘reverse’ some of the rules of the type
assignment system ⊢T∩ , thereby achieving some form of ‘generation’ and ‘inversion’ prop-
erties. These state necessary and sufficient conditions when an assertion Γ ⊢T M : A
holds depending on the form of M and A, see Theorems 14A.1 and 14A.9.

14A.1. Theorem (Inversion Lemma for λT
∩ ). Let T ∈TT and let ⊢ denote ⊢T∩ . If T ∈TT-U,

then the following statements hold unconditionally; if T ∈TTU, then they hold under the
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assumption that A 6= U in (i) and (ii).

(i) Γ ⊢ x : A ⇔ Γ(x) ≤ A.
(ii) Γ ⊢MN : A ⇔ ∃k ≥ 1 ∃B1, · · · ,Bk, C1, · · · ,Ck

[C1 ∩ · · · ∩ Ck ≤ A & ∀i∈{1, · · · , k}
Γ ⊢M : Bi→Ci & Γ ⊢ N : Bi].

(iii) Γ ⊢ λx.M : A ⇔ ∃k ≥ 1 ∃B1, · · · ,Bk, C1, · · · ,Ck

[(B1→C1) ∩ · · · ∩ (Bk→Ck) ≤ A
& ∀i∈{1, · · · , k}.Γ, x:Bi ⊢M : Ci].

Proof. We only treat (⇒) in (i)-(iii), as (⇐) is trivial. First consider T ∈TT-U.
(i) By induction on derivations. We reason according which axiom or rule has been

used in the last step. Only axiom (Ax), and rules (∩I), (≤) could have been applied. In
the first case one has Γ(x) ≡ A. In the other two cases the induction hypothesis applies.

(ii) By induction on derivations. By assumption on A and the shape of the term the
last applied step has to be rule (→E), (≤) or (∩I). In the first case the last applied rule
is

(→E)
Γ ⊢M : D→A Γ ⊢ N : D

.
Γ ⊢MN : A

We can take k = 1 and C1 ≡ A and B1 ≡ D. In the second case the last rule applied is

(≤) Γ ⊢MN : B B ≤ A
Γ ⊢MN : A

and the induction hypothesis applies. In the last case A ≡ A1 ∩A2 and the last applied
rule is

(∩I) Γ ⊢MN : A1 Γ ⊢MN : A2

Γ ⊢MN : A1 ∩A2
.

By the induction hypothesis there are Bi, Ci, Dj , Ej , with 1 ≤ i ≤ k, 1 ≤ j ≤ k′, such
that

Γ ⊢M : Bi→Ci, Γ ⊢ N : Bi,
Γ ⊢M : Dj→Ej , Γ ⊢ N : Dj ,
C1 ∩ · · · ∩ Ck ≤ A1, E1 ∩ · · · ∩ Ek′ ≤ A2.

Hence we are done, as C1 ∩ · · · ∩ Ck ∩ E1 ∩ · · · ∩ Ek′ ≤ A.
(iii) Again by induction on derivations. We only treat the case A ≡ A1 ∩ A2 and the

last applied rule is (∩I):

(∩I) Γ ⊢ λx.M : A1 Γ ⊢ λx.M : A2

Γ ⊢ λx.M : A1 ∩A2
.

By the induction hypothesis there are Bi, Ci, Dj , Ej with 1 ≤ i ≤ k, 1 ≤ j ≤ k′ such
that

Γ, x:Bi ⊢M : Ci, (B1→C1) ∩ · · · ∩ (Bk→Ck) ≤ A1,
Γ, x:Dj ⊢M : Ej , (D1→E1) ∩ · · · ∩ (Dk′→Ek′) ≤ A2.

We are done, since (B1→C1) ∩ · · · ∩ (Bk→Ck) ∩ (D1→E1) ∩ · · · ∩ (Dk′→Ek′) ≤ A.
Now we prove (⇒) in (i)-(iii) for T ∈TTU.
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(i), (ii) The condition A 6= U implies that axiom (Utop) cannot have been used in the
last step. Hence the reasoning above suffices.
(iii) If A = U, then (⇒) in (iii) holds as U → U ≤ U and Γ, x:U ⊢ M : U. So we may

assume that A 6= U. Then the only interesting rule is (∩I). Condition A 6= U implies that
we cannot have A1 = A2 = U. In case A1 6= U and A2 6= U the result follows as above.
The other cases are easier.

Under some conditions (that will hold for many type theories, notably the ones intro-
duced in Section 13A), the Inversion Lemma can be restated in a more memorable form.
This will be done in Theorem 14A.9.

14A.2. Corollary (Subformula property). Let T ∈TT. Assume

Γ ⊢T∩ M : A and N is a subterm of M .

Then N is typable in an extension Γ+ = Γ, x1:B1, · · · , xn:Bn in which also the variables
{x1, · · · ,xn} = FV(N)− FV(M) get a type assigned.

Proof. We can write M ≡ C[N ]. If T ∈TTU, then the statement is trivial as ⊢ N :
U. Otherwise the statement is proved by induction on the structure of C[ ], using
Theorem 14A.1.

14A.3. Proposition. Let T ∈TT. Writing ⊢ for ⊢T∩ , we have for y /∈ dom(Γ)

∃B [Γ ⊢ N : B & Γ ⊢M [x: = N ] : A] ⇒
∃C [Γ ⊢ N : C & Γ, y:C ⊢M [x: = y] : A].

Proof. By induction on the structure of M .

In the following definition, the notion of β-soundness is introduced to prove invertibil-
ity of the rule (→I) and preservation of β-reduction.

14A.4. Definition. T is called β-sound if

∀k≥1∀A1, · · · ,Ak, B1, · · · ,Bk, C,D.

(A1→B1) ∩ · · · ∩ (Ak→Bk) ≤ (C→D) & D 6= U ⇒
C ≤ Ai1 ∩ · · · ∩Aip & Bi1 ∩ · · · ∩Bip ≤ D,
for some p ≥ 1 and 1 ≤ i1, · · · ,ip ≤ k.

This definition translates immediately to type structures. The notion of β-soundness
is important to prove invertibility of the rule (→I), which is crucial for the next section.
In particular the condition of β-soundness for k=1 is expressed as follows:

B′ 6= U & A→B ≤ A′→B′ ⇒ A′ ≤ A & B ≤ B′.

When B′ = U and A→B ≤ A′→B′, the condition of β-soundness does not imply that
A′ ≤ A and B ≤ B′.
It will be shown that all type theories of Fig. 33 are β-sound. The proof occupies

14A.5-14A.7.

14A.5. Remark. Note that in a TT every type A can be written uniquely, modulo the
order, as

A ≡ α1 ∩ · · · ∩ αn ∩ (B1→C1) ∩ · · · ∩ (Bk→Ck) (+),

i.e. an intersection of atoms (αi ∈A) and arrow types.

For some of our T the shape (+) in Remark 14A.5 can be simplified.
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14A.6. Definition. For the type theories T of Fig. 33 we define for each A∈TTT its
canonical form, notation cf(A), as follows.

(i) If T ∈ {BCD,AO,Plotkin,Engeler,CDV,CDS,CD}, then
cf(A) ≡ A.

(ii) If T ∈ {Scott,Park,CDZ,HR,DHM,HL} then the definition is by induction on
A. For an atom α the canonical form cf(α) depends on the type theory in question;
moreover the mapping cf preserves →,∩ and U.

System T A cf(A)
Scott 0 U→0
Park 0 0→0
CDZ,HL 0 1→0

1 0→1
HR 0 1→0

1 (0→0) ∩ (1→1)
DHM 0 U→0

1 0→1

All systems U U

All systems B→C B→C
All systems B ∩ C cf(B) ∩ cf(C)

14A.7. Theorem. All type theories of Fig. 33 are β-sound.

Proof. We prove the following stronger statement (induction loading). Let

A≤ A′,

cf(A) = α1 ∩ · · · ∩ αn ∩ (B1→C1) ∩ · · · ∩ (Bk→Ck),

cf(A′) = α′
1 ∩ · · · ∩ α′

n′ ∩ (B′
1→C ′

1) ∩ · · · ∩ (B′
k′→C ′

k′)

where n, n′ ≥ 0, k, k′ ≥ 1. Then

∀j ∈{1, · · · , k′}.[C ′
j 6= U ⇒

∃p≥1∃i1, · · · , ip ∈{1, · · · , k}.[B′
j ≤ Bi1 ∩ · · · ∩Bip & Ci1 ∩ · · · ∩ Cip ≤ C ′

j ]].

The proof of the statement is by induction on the generation of A ≤ A′. From it
β-soundness follows easily.

14A.8. Remark. From Theorem 14A.7 it follows immediately that for the compatible
theories of Fig. 33 the corresponding type structures are β-sound.

14A.9. Theorem (Inversion Lemma II). Let T ∈TT. Of the following properties (i)
holds in general, (ii) provided that T ∈PTT and if T ∈TTU, then A 6= U, and (iii)
provided that T is β-sound.

(i) Γ, x:A ⊢ x : B ⇔ A ≤ B.
(ii) Γ ⊢ (MN) : A ⇔ ∃B [Γ ⊢M : (B→A) & Γ ⊢ N : B].
(iii) Γ ⊢ (λx.M) : (B→C) ⇔ Γ, x:B ⊢M : C.

Proof. The proof of each (⇐) is easy. So we only treat (⇒).
(i) If B 6= U, then the conclusion follows from Theorem 14A.1(i). If B = U, then the

conclusion holds trivially.
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(ii) Suppose Γ ⊢MN : A. Then by Theorem 14A.1(ii) there areB1, · · · ,Bk, C1, · · · ,Ck,
with k ≥ 1, such that C1 ∩ · · · ∩ Ck ≤ A, Γ ⊢M : Bi→Ci and Γ ⊢ N : Bi for 1 ≤ i ≤ k.
Hence Γ ⊢ N : B1 ∩ · · · ∩Bk and

Γ ⊢M : (B1→C1) ∩ · · · ∩ (Bk→Ck)
≤ (B1 ∩ · · · ∩Bk)→(C1 ∩ · · · ∩ Ck)
≤ (B1 ∩ · · · ∩Bk)→A,

by Lemma 13A.21. So we can take B ≡ (B1 ∩ · · · ∩Bk).

(iii) Suppose Γ ⊢ (λx.M) : (B→C). Then Theorem 14A.1(iii) applies and we have for
some k ≥ 1 and B1, · · · ,Bk, C1, · · · ,Ck

(B1→C1) ∩ · · · ∩ (Bk→Ck) ≤ B→C,
Γ, x:Bi ⊢M : Ci for all i.

If C = U, then the assertion holds trivially, so let C 6= U. Then by β-soundness there
are 1 ≤ i1, · · · ,ip ≤ k, p ≥ 1 such that

B ≤ Bi1 ∩ · · · ∩Bip ,

Ci1 ∩ · · · ∩ Cip ≤ C.

Applying (≤-L) we get

Γ, x:B ⊢M : Cij , 1 ≤ j ≤ p,
Γ, x:B ⊢M : Ci1 ∩ · · · ∩ Cip ≤ C.

We give a simple example which shows that in general rule (→E) cannot be reversed,
i.e. that if Γ ⊢ MN : B, then it is not always true that there exists A such that
Γ ⊢M : A→B and Γ ⊢ N : A.

14A.10. Example. Let T = Engeler, one of the intersection type theories of Fig. 33.
Let Γ, {x:(c0→c1) ∩ (c2→c3), y:(c0 ∩ c2)}. Then one has

Γ ⊢T∩ xy : c1 ∩ c3.

But for no type B

Γ ⊢T∩ x : B→(c1 ∩ c3) and Γ ⊢T∩ y : B.

14A.11. Remark. Note that in general

Γ ⊢T∩ (λx.M) : A 6⇒ ∃B,C.A = (B→C) & Γ, x:B ⊢T∩ M : C.

Consider ⊢BCD
∩ I : (c1→c1) ∩ (c2→c2), with c1, c2 different type atoms.

14A.12. Proposition. For all T in Fig. 13A.14 except AO properties (i), (ii) and (iii)
of Theorem 14A.9 hold unconditionally. For T = AO they hold under the condition that
A 6= U in (ii).

Proof. Since these T are proper and β-sound, by Theorem 14A.7, we can apply The-
orem 14A.9. Moreover, by axiom (→U) we have Γ ⊢T∩ M : U→ U for all Γ,M , hence we
do not need to assume A 6= U for T ∈ {Scott, Park, CDZ, HR, DHM, BCD}.
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14B. Subject reduction and expansion

Various subject reduction and expansion properties are proved, for the classical β, βI
and η notions of reduction. Other results can be found in Alessi, Barbanera, and Dezani-
Ciancaglini [2003], Alessi, Barbanera, and Dezani-Ciancaglini [2006]. We consider the
following rules.

(R-red)
M →R N Γ ⊢M : A

Γ ⊢ N : A

(R-exp)
MR← N Γ ⊢M : A

Γ ⊢ N : A

where R is a notion of reduction, notably β-, βI, or η-reduction. If one of these rules
holds in λT

∩ , we write λ
T
∩ |= (R-{exp, red}), respectively. If both hold we write λT

∩ |= (R-
cnv). These properties will be crucial in Section 16B, where we will discuss (untyped)
λ-models induced by these systems.
Recall that (λx.M)N is a βI-redex if x∈FV(M), Curry and Feys [1958].

β-conversion

We first investigate when λT
∩ |= (β(I)-red).

14B.1. Proposition. Let T ∈TT. Then we have the following.
(i) λT

∩ |= (βI-red) ⇔
[Γ ⊢T (λx.M) : (B→A) & x∈FV(M) ⇒ Γ, x:B ⊢T M : A].

(ii) λT
∩ |= (β-red) ⇔

[Γ ⊢T (λx.M) : (B→A) ⇒ Γ, x:B ⊢T M : A].

Proof. (i) (⇒) Assume Γ ⊢ λx.M : B→A & x∈FV(M), which implies Γ, y:B ⊢
(λx.M)y : A, by weakening and rule (→E) for a fresh y. Now rule (βI-red) gives us
Γ, y:B ⊢M [x:=y] : A. Hence Γ, x:B ⊢M : A.
(⇐) Suppose Γ ⊢ (λx.M)N : A & x∈FV(M), in order to show that Γ ⊢M [x:=N ] : A.

We may assume A 6= U. Then Theorem 14A.1(ii) implies Γ ⊢ λx.M : Bi→Ci, Γ ⊢ N : Bi

and C1 ∩ · · · ∩Ck ≤ A, for some B1, · · · ,Bk, C1, · · · ,Ck. By assumption Γ, x:Bi ⊢M : Ci.
Hence by rule (cut), Proposition 13B.10, one has Γ ⊢ M [x:=N ] : Ci. Therefore Γ ⊢
M [x:=N ] : A, using rules (∩I) and (≤).

(ii) Similarly.

14B.2. Corollary. Let T ∈TT be β-sound. Then λT
∩ |= (β-red).

Proof. Using Theorem 14A.9(iii).

The converse of Corollary 14B.2 does not hold. In Definition 16B.19 we will introduce
a type theory that is not β-sound, but nevertheless induces a type assignment system
satisfying (β-red).

14B.3. Corollary. Let T be one of the TT in Fig. 13A.14. Then

λT
∩ |= (β-red).

Proof. By Corollary 14B.2 and Theorem 14A.7.
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Now we investigate when λT
∩ |= (β-exp). As a warm-up, suppose that Γ ⊢M [x:=N ] :

A. Then we would like to conclude that N has a type, as it seems to be a subformula,
and therefore Γ ⊢ (λx.M)N : A. There are two problems: N may occur several times
in M [x:=N ], so that it has (should have) in fact several types. In the system λ→ this
problem causes the failure of rule (β-exp). But in the intersection type theories one has
N : B1 ∩ · · · ∩Bk if N : B1, · · · , N : Bk. Therefore (λx.M)N has a type if M [x:=N ] has
one. The second problem arises if N does not occur at all in M [x:=N ], i.e. if the redex
is a λK-redex. We would like to assign as type to N the intersection over an empty
sequence, i.e. the universe U. This makes (β-exp) invalid for T ∈TT-U, but valid for
T ∈TTU.

14B.4. Proposition. Let T ∈TT. Then we have the following.
(i) Suppose Γ ⊢T M [x:=N ] : A. Then

Γ ⊢T (λx.M)N : A ⇔ N is typable in context Γ.

(ii) λT
∩ |= (βI-exp) ⇔ ∀Γ,M,N,A with x∈FV(M)

[Γ ⊢T M [x:=N ] : A ⇒ N is typable in context Γ].

(iii) λT
∩ |= (β-exp) ⇔ ∀Γ,M,N,A

[Γ ⊢T M [x:=N ] : A ⇒ N is typable in context Γ].

Proof. (i) (⇒) By Theorem 14A.1(ii). (⇐) Let Γ ⊢ M [x:=N ] : A and suppose N is
typable in context Γ. By Proposition 14A.3 for some B and a fresh y one has Γ ⊢ N :
B & Γ, y:B ⊢M [x: = y] : A. Then Γ ⊢ λx.M : (B→A) and hence Γ ⊢ (λx.M)N : A.

(ii) Similar and simpler than (iii).
(iii) (⇒) Assume Γ ⊢M [x:=N ] : A. Then Γ ⊢ (λx.M)N : A, by (β-exp), hence by (i)

we are done. (⇐) Assume Γ ⊢ L′ : A, with L→β L
′. By induction on the generation of

L→β L
′ we get Γ ⊢ L : A from (i) and Theorem 14A.1.

14B.5. Corollary. (i) Let T ∈TT. Then λT
∩ |= (βI-exp).

(ii) Let T ∈TTU. Then λT
∩ |= (β-exp).

Proof. (i) By the subformula property (Corollary 14A.2).
(ii) Trivial, since every term has type U.

Now we can harvest results towards closure under β-conversion.

14B.6. Theorem. (i) Let T ∈TT. Then

T is β-sound ⇒ λT
∩ |= (βI-cnv).

(ii) Let T ∈TTU. Then

T is β-sound ⇒ λT
∩ |= (β-cnv).

Proof. (i) By Corollaries 14B.2 and 14B.5(i).
(ii) By Corollaries 14B.2 and 14B.5(ii).

14B.7. Corollary. (i) Let T be a TT of Fig. 13A.14. Then

λT
∩ |= (βI-cnv).

(ii) Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,AO,Plotkin,Engeler,CDS}. Then λT
∩ |=

(β-cnv).



492 14. Basic properties

Proof. (i) By Theorems 14A.7 and 14B.6(i).
(ii) Similarly, by Theorem 14B.6(ii).

η-conversion

First we give necessary and sufficient conditions for a system λT
∩ to satisfy the rule

(η-red).

14B.8. Theorem (Characterization of η-red). (i) Let T ∈TT-U. Then

λT
∩ |= (η-red) ⇔ T is proper.

(ii) Let T ∈TTU. Then

λT
∩ |= (η-red) ⇔ T is natural.

Proof. (i) Similarly, but simpler than (ii).
(ii) (⇒) Assume λT

∩ |= (η-red) towards (→∩), (→) and (U→).
As to (→∩), one has

x:(A→B) ∩ (A→C), y:A ⊢ xy : B ∩ C,
hence by (→I) it follows that x:(A→B) ∩ (A→C) ⊢ λy.xy : A→(B ∩ C). Therefore
x:(A→B) ∩ (A→C) ⊢ x : A→(B ∩ C), by (η-red). By Theorem 14A.9(i) one can
conclude (A→B) ∩ (A→C) ≤ A→(B ∩ C).
As to (→), suppose that A ≤ B and C ≤ D, in order to show B→C ≤ A→D. One

has x:B→C, y:A ⊢ xy : C ≤ D, so x:B→C ⊢ λy.xy : A→D. Therefore by (η-red) it
follows that x:B→C ⊢ x : A→D and we are done as before.
As to U ≤ U→U, notice that x:U, y:U ⊢ xy : U, so we have x:U ⊢ λy.xy : U→U. Therefore

x:U ⊢ x : U→U and again we are done.
(⇐) Let T be natural. Assume that Γ ⊢ λx.Mx : A, with x /∈ FV(M), in order to

show Γ ⊢M : A. If A = U, we are done. Otherwise,

Γ ⊢ λx.Mx : A ⇒ Γ, x:Bi ⊢Mx : Ci, 1 ≤ i ≤ k, &
(B1→C1) ∩ · · · ∩ (Bk→Ck) ≤ A,
for some B1, · · · ,Bk, C1, · · · ,Ck,

by Theorem 14A.1(iii). We can suppose that Ci 6= U for all i. If there exists i such Ci = U

then, by (U) and (U→), we have (Bi → Ci) ∩D = U ∩D = D, for any type D. On the
other hand, there is at least one Ci 6= U, since otherwise A ≥ (B1→U)∩· · ·∩(Bk→U) = U,
and we would have A = U. Hence by Theorem 14A.9(ii)

⇒ Γ, x:Bi ⊢M : Di→Ci and

Γ, x:Bi ⊢ x : Di, for some D1, · · · ,Dk,

⇒ Bi ≤ Di, by Theorem 14A.9(i),

⇒ Γ ⊢M : (Bi→Ci), by (≤-L) and (→),

⇒ Γ ⊢M : ((B1→C1) ∩ · · · ∩ (Bk→Ck)) ≤ A.
14B.9. Corollary. Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,HL,CDV}.
Then λT

∩ |= (η-red).
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In order to characterize the admissibility of rule (η-exp), we need to introduce a further
condition on type theories. This condition is necessary and sufficient to derive from the
basis x:A the same type A for λy.xy, as we will show in the proof of Theorem 14B.11.

14B.10. Definition. Let T ∈TT.
(i) T is called η-sound if for all A there are k ≥ 1, m1, · · · ,mk ≥ 1 and B1, · · · ,Bk,
C1, · · · ,Ck, 


D11 · · ·D1m1

· · ·
Dk1 · · ·Dkmk


 and




E11 · · ·E1m1

· · ·
Ek1 · · ·Ekmk




with
(B1→C1) ∩ · · · ∩ (Bk→Ck) ≤ A
& A ≤ (D11→E11) ∩ · · · ∩ (D1m1→E1m1) ∩

· · ·
(Dk1→Ek1) ∩ · · · ∩ (Dkmk

→Ekmk
)

& Bi ≤ Di1 ∩ · · · ∩Dimi
& Ei1 ∩ · · · ∩ Eimi

≤ Ci,
for 1 ≤ i ≤ k.

(ii) Let T ∈TTU. Then T is called ηU-sound if for all A 6= U at least one of the
following two conditions holds.
(1) There are types B1, · · · ,Bn with (B1→U) ∩ · · · ∩ (Bn→U) ≤ A;
(2) There are n ≥ k ≥ 1, m1, · · · ,mk ≥ 1 and B1, · · · ,Bk, C1, · · · ,Ck,




D11 · · ·D1m1

· · ·
Dk1 · · ·Dkmk


 and




E11 · · ·E1m1

· · ·
Ek1 · · ·Ekmk




with
(B1→C1) ∩ · · · ∩ (Bk→Ck) ∩
∩ (Bk+1→U) ∩ · · · ∩ (Bn→U) ≤ A
& A ≤ (D11→E11) ∩ · · · ∩ (D1m1→E1m1) ∩

· · ·
(Dk1→Ek1) ∩ · · · ∩ (Dkmk

→Ekmk
)

& Bi ≤ Di1 ∩ · · · ∩Dimi
& Ei1 ∩ · · · ∩ Eimi

≤ Ci,
for 1 ≤ i ≤ k.

The validity of η-expansion can be characterized as follows.

14B.11. Theorem (Characterization of η-exp). (i) Let T ∈TT-U. Then

λT
∩ |= (η-exp) ⇔ T is η-sound.

(ii) Let T ∈TTU. Then

λT
∩ |= (η-exp) ⇔ T is ηU-sound.

Proof. (i) (⇒) Assume λT
∩ |= (η-exp). As x:A ⊢ x : A, by assumption we have

x:A ⊢ λy.xy : A. From Theorem 14A.1(iii) it follows that x:A, y:Bi ⊢ xy : Ci and
(B1→C1) ∩ · · · ∩ (Bk→Ck) ≤ A for some Bi, Ci. By Theorem 14A.1(ii) for each i there
exist Dij , Eij , such that for each j one has x:A, y:Bi ⊢ x : (Dij→Eij), and x:A, y:Bi ⊢
y : Dij and Ei1 ∩ · · · ∩ Eimi

≤ Ci. Hence by Theorem 14A.1(i) we have A ≤ (Dij→Eij)
and Bi ≤ Dij for all i and j. Therefore we obtain the condition of Definition 14B.10(i).



494 14. Basic properties

(⇐) Suppose that Γ ⊢ M : A in order to show Γ ⊢ λx.Mx : A, with x fresh. By
assumption A satisfies the condition of Definition 14B.10(i).

(B1→C1) ∩ · · · ∩ (Bk→Ck) ≤ A
& A ≤ (D11→E11) ∩ · · · ∩ (D1m1→E1m1) ∩

· · ·
(Dk1→Ek1) ∩ · · · ∩ (Dkmk

→Ekmk
)

& Bi ≤ Di1 ∩ · · · ∩Dimi
& Ei1 ∩ · · · ∩ Eimi

≤ Ci,
for 1 ≤ i ≤ k.

By rule (≤) for all i, j we have Γ ⊢ M : Dij→Eij and so Γ, x:Dij ⊢ Mx : Eij by
rule (→E). From (≤-L), (∩I) and (≤) we get Γ, x:Bi ⊢ Mx : Ci and this implies
Γ ⊢ λx.Mx : Bi→Ci, using rule (→I). So we can conclude by (∩I) and (≤) that
Γ ⊢ λx.Mx : A.

(ii) The proof is nearly the same as for (i). (⇒) Again we get x:A, y:Bi ⊢ xy : Ci

and (B1→C1) ∩ · · · ∩ (Bk→Ck) ≤ A for some Bi, Ci. If all Ci = U, then A satisfies the
first condition of Definition 14B.10(ii). Otherwise, consider the i such that Ci 6= U and
reason as in the proof of (⇒) for (i).
(⇐) Suppose that Γ ⊢ M : A in order to show Γ ⊢ λx.Mx : A, with x fresh. If A

satisfies the first condition of Definition 14B.10(ii), that is (B1→U)∩ · · · ∩ (Bn→U) ≤ A,
then by (Utop) it follows that Γ, x:Bi ⊢ Mx : U, hence Γ ⊢ λx.Mx : (B1→U) ∩ · · · ∩
(Bn→U) ≤ A. Now let A satisfy the second condition. Then we reason as for (⇐) in
(i).

For most intersection type theories of interest the condition of η(U)-soundness is de-
duced from the following proposition.

14B.12. Proposition. Let T ∈TT be proper, with set A of atoms.

(i) T is η-sound ⇔ ∀α∈A ∃k ≥ 1 ∃B1, · · · ,Bk, C1, · · · ,Ck

α = (B1→C1) ∩ · · · ∩ (Bk→Ck).

(ii) Let T ∈TTU. Then

T is ηU-sound ⇔ ∀α∈A[U→U ≤ α ∨ ∃k≥1∃B1, · · · ,Bk, C1, · · · ,Ck

[(B1→C1) ∩ · · · ∩ (Bk→Ck) ∩ (U→U) ≤ α
& α ≤ (B1→C1) ∩ · · · ∩ (Bk→Ck)]].

(iii) Let T ∈NTTU. Then

T is ηU-sound ⇔ T is η-sound.

Proof. (i) (⇒) Suppose T is η-sound. Let α∈A. Then α satisfies the condition of
Definition 14B.10(i), for some B1, · · · ,Bk, C1, · · · ,Ck,
D11, · · · , D1m1 , · · · , Dk1, · · · , Dkm1 , E11, · · · , E1m1 , · · · , Ek1, · · · , Ekmk

. By (→∩) and
(→), using Proposition 13A.21, it follows that

α≤ (D11 ∩ · · · ∩D1m1→E11 ∩ · · · ∩ E1m1) ∩ · · · ∩
(Dk1 ∩ · · · ∩Dkmk

→Ek1 ∩ · · · ∩ Ekmk
)

≤ (B1→C1) ∩ · · · ∩ (Bk→Ck),

hence α =T (B1→C1) ∩ · · · ∩ (Bk→Ck).



14C. Exercises 495

(⇐) By induction on the generation of A one can show that A satisfies the condition
of η-soundness. The case A1→A2 is trivial and the case A ≡ A1 ∩ A2 follows by the
induction hypothesis and Rule (mon).

(ii) Similarly. Note that (U→U) ≤ (B→U) for all B.
(iii) Immediately by (ii) using rule (U→).

14B.13. Corollary. (i) Let T ∈ {Scott,Park,CDZ,HR,DHM,AO}. Then T is ηU-
sound.

(ii) HL is η-sound.

Proof. Easy. For AO in (i) one applies (ii) of Proposition 14B.12.

14B.14. Corollary. Let T ∈ {Scott,Park,CDZ,HR,DHM,AO,HL}. Then

λT
∩ |= (η-exp).

Proof. By the previous Corollary and Theorem 14B.11.

Exercise 14C.21 shows that the remaining systems of Fig. 33 do not satisfy (η-exp).
Now we can harvest results towards closure under η-conversion.

14B.15. Theorem. (i) Let T ∈TT-U. Then

λT
∩ |= (η-cnv) ⇔ T is proper and η-sound.

(ii) Let T ∈TTU. Then

λT
∩ |= (η-cnv) ⇔ T is natural and ηU-sound.

Proof. (i) By Theorems 14B.8(i) and 14B.11(i).
(ii) By Theorems 14B.8(ii) and 14B.11(ii).

14B.16. Theorem. For T ∈ {Scott,Park,CDZ,HR,DHM,HL} one has

λT
∩ |= (η-cnv).

Proof. By Corollaries 14B.9 and 14B.14.

14C. Exercises

14C.1. Let ⊂ be the inclusion relation as considered in Remark 13A.17. Prove that
T1 ⊂ T2 ⇔ ∀Γ,M,A[Γ ⊢T1 M : A ⇒ Γ ⊢T2 M : A].

14C.2. Show that for each number n∈N there is a type An ∈TTCD such that for the
Church numerals cn one has Γ ⊢CD

∩ cn+1 : An, but Γ 0CD
∩ cn : An.

14C.3. Show that S(KI)(II) and (λx.xxx)S are typable in ⊢CD
∩ .

14C.4. Derive ⊢CDZ
∩ (λx.xxx)S : 1 and y:0, z:0 ⊢CDZ

∩ (λx.xxx)(Syz) : 0.

14C.5. Using the Inversion Lemmas show the following.

(i) 6⊢CD
∩ c1 : α→α, where α is any constant.

(ii) 6⊢HL
∩ K : 0.

(iii) 6⊢Scott∩ I : 0.

(iv) 6⊢Plotkin∩ I : 0.

14C.6. Let ⊢ be ⊢CD and ≤ be ≤CD. Show
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(i) Let

A≡ α1 ∩ · · · ∩ αn ∩ (B1 → C1) ∩ · · · ∩ (Bm → Cm),

A′ ≡ α′
1 ∩ · · · ∩ α′

n′ ∩ (B′
1 → C ′

1) ∩ · · · ∩ (Bm′ → C ′
m′).

Suppose A ≤ A′. Then every α′
i is one of α1, · · · , αn and every B′

i → C ′
i is

one of (B1 → C1), · · · , (Bm → Cm).
(ii) Let k ≥ 1. Then

(B1 → C1) ∩ · · · ∩ (Bk → Ck) ≤ (B → C) ⇒
(B → C) ≡ (Bj → Cj), for some 1 ≤ j ≤ k.

(iii) Γ ⊢ λx.M : A→ B ⇒ Γ, x:A ⊢M : B.
(iv) Γ ⊢MN : A ⇒ ∃B,C [Γ ⊢M : B → C & Γ ⊢ N : B].

14C.7. Let ω = λx.xx and Ω = ωω. For ⊢ being ⊢CD we want to show

6⊢ Ω : A, for all types A;
6⊢ KIΩ : A, for all types A.

Prove this using the following steps.
(i) ⊢ Ω : A ⇒ ∃B,C ⊢ ω : (B → C) ∩B.
(ii) ⊢ ω : (B→C) ∩B ⇒ ∃B′, C ′. ⊢ ω : (B′ → C ′) ∩B′ &

B′ is a proper subtype of B.

14C.8. Let M , λxy.Kx(xy). Show that for ⊢ being ⊢CD one has the following.

6⊢M : α→ β → α;
6⊢ I : ((α ∩ β)→γ)→((β ∩ α)→γ).

[Hint. Use 14C.6.]

14C.9. We say that M and M ′ have the same types in Γ, notation M ∼Γ M
′ if

∀A [Γ ⊢M : A ⇔ Γ ⊢M ′ : A].

Prove that M ∼Γ M
′ ⇒ M ~N ∼Γ M

′ ~N for all ~N .

14C.10. Let T be a β-sound type theory that satisfies (U) and(U→). Prove that for all
A,B we have that A→B = U ⇔ B = U.

14C.11. Using β-soundness, find out whether the following types are related or not with
respect to ≤CDZ.

(0→(1→1)→0) ∩ ((1→1)→1), 0→0→0, (0→0)→0 and 1→(0→0)→1.

14C.12. Let T ∈ {CDZ,HR}. Consider the sequence of types defined by A0 = 0 and
An+1 = U → An. Using Exercise 13E.3 and β-soundness, prove that T does not
have a bottom element at all.

14C.13. Show that Plotkin is β-sound by checking that it satisfies the following stronger
condition.

(A1→B1) ∩ · · · ∩ (An→Bn) ≤ C→D ⇒
∃k 6= 0 ∃i1, · · · , ik.1 ≤ ij ≤ n & C = Aij & Bi1 ∩ · · · ∩Bik = D.
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14C.14. Show that Engeler is β-sound by checking that it satisfies the following stronger
condition:

(A1→B1) ∩ · · · ∩ (An→Bn) ≤ C→D&D 6= U ⇒
∃k 6= 0 ∃i1, · · · , ik.1 ≤ ij ≤ n & C = Aij & Bi1 ∩ · · · ∩Bik = D.

14C.15. Let AT = {U, 0} and T be defined by the axioms and rules of the theories Scott
and Park together. Show that T is not β-sound [Hint: show that U 6= 0].

14C.16. Prove that Theorem 14A.9(ii) still holds if the condition of properness is replaced
by the following two conditions

A ≤T B ⇒ C→A ≤T C→B

(A→B) ∩ (C→D) ≤T A ∩ C→B ∩D.

14C.17. Show that for T ∈TTU the following condition

A→ B =T U→ U ⇒ B =T U

is necessary for the admissibility of rule (β-red) in λT
∩ . [Hint: Use Proposi-

tion 14B.1(ii).]

14C.18. Remember that the systems λKrivine
∩ and λKrivineU

∩ are defined in Exercise 13E.10.

(i) Show that rules (β-red) and (βI-exp) are admissible in λKrivine
∩ , while (β-exp)

is not admissible.
(ii) Show that rules (β-red) and (β-exp) are admissible in λKrivineU

∩ .

14C.19. Show that for T ∈ {AO,Plotkin,Engeler,CDS,CD} one has

λT
∩ 6|= (η-red).

14C.20. Verify the following.
(i) Let T ∈ {BCD,Plotkin,Engeler,CDS}. Then T is not ηU-sound.
(ii) Let T ∈ {CDV,CD}. Then T is not η-sound.

14C.21. Show that for T ∈ {BCD,Plotkin,Engeler,CDS,CDV,CD} one has

λT
∩ 6|= (η-exp).

14C.22. Show that rules (η-red) and (η-exp) are not admissible in the systems λKrivine
∩

and λKrivineU
∩ as defined in Exercises 13E.10.

14C.23. Let ⊢ denote derivability in the system obtained from the system λCDV
∩ by

replacing rule (≤) by the rules (∩E), see Definition 13B.8, and adding the rule

(Rη)
Γ ⊢ λx.Mx : A

Γ ⊢M : A
if x /∈ FV(M).

Show that Γ ⊢CDV
∩ M : A ⇔ Γ ⊢M : A.

14C.24. (Barendregt, Coppo, and Dezani-Ciancaglini [1983])Let ⊢ denote derivability
in the system obtained from λBCD

∩ by replacing rule (≤) by the rules (∩E) and
adding (Rη) as defined in Exercise 14C.23. Verify that

Γ ⊢BCD
∩ M : A ⇔ Γ ⊢M : A.
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14C.25. Let ∆ be a basis that is allowed to be infinite. We define ∆ ⊢ M : A if there
exists a finite basis Γ ⊆ ∆ such that Γ ⊢M : A.
(i) Show that all the typability rules are derivable except possibly for (→I).
(ii) Suppose dom(∆) is the set of all the variables. Show that the rule (→I) is

derivable if it is reformulated as

∆x, x:A ⊢M : B ⇒ ∆ ⊢ (λx.M) : (A→ B),

with ∆x the result of removing any x:C from ∆.
(iii) Reformulate and prove Propositions 13B.10, 13B.12, Theorems 14A.1 and

14A.9 for infinite bases.
14C.26. A multi-basis Γ is a set of declarations, in which the requirement that

x:A, y:B ∈Γ ⇒ x ≡ y ⇒ A ≡ B
is dropped. Let ∆ be a (possibly infinite) multi-basis. We define ∆ ⊢ M : A if
there exists a singled (only one declaration per variable) basis Γ ⊆ ∆ such that
Γ ⊢M : A.
(i) Show that x : α1, x : α2 6⊢CD x : α1 ∩ α2.
(ii) Show that x : α1 → α2, x : α1 6⊢CD xx : α2.
(iii) Consider ∆ = {x : α1 ∩ α2, x : α1};

A = α2;
B = (α1 → α2 → α3)→ α3;
M = λy.yxx.

Show that ∆, x : A ⊢CD M : B, but

∆ 6⊢CD (λx.M) : (A→ B).
(iv) We say that a multi-basis is closed under ∩ if for all x∈ dom(∆) the set
X = ∆(x) is closed under ∩, i.e. A,B ∈X ⇒ A ∩ B ∈X , up to equality of
types in the TT under consideration.
Show that all the typability rules of Definition 13B.3, except for (→I), are
derivable for (possibly infinite) multi-bases that are closed under ∩.

(v) Let ∆ be closed under ∩. We define

∆[x := X], {y : ∆(y) | y 6= x} ∪ {x : A | A∈X}.
Prove that the following reformulation of (→I) using principal filters is deriv-
able

∆[x :=↑ B] ⊢ N : C
∆ ⊢ λx.N : B → C

.

(vi) Prove Propositions 13B.10, 13B.12, Theorems 14A.1 and 14A.9 for (possible
infinite) multi-bases reformulating the statements whenever it is necessary.

(vii)Prove that if ∆(x) is a filter then {A | ∆ ⊢ x : A} = ∆(x).

14C.27.
(i) Prove that F T ◦GT ⊇ IdFT for all T ∈TT.
(ii) Prove that F T ◦GT ⊆ IdFT iff T is β-sound.
(iii) Construct a natural type theory T such that F T ◦GT 6= IdFT .

14C.28. Let T ∈TT-U.
(i) Prove that GT ◦ F T ⊆ IdFT iff T is proper.
(ii) Prove that GT ◦ F T ⊇ IdFT iff T is η-sound.
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14C.29. Let T ∈TTU.
(i) Prove that GT ◦ F T ⊆ IdFT iff T is natural.
(ii) Prove that GT ◦ F T ⊇ IdFT iff T is ηU-sound.





CHAPTER 15

TYPE AND LAMBDA STRUCTURES

This Chapter makes connections between convenient categories for models of the un-
typed lambda calculus and those of certain type structures. The main result that is
needed later in Section 16C is the equivalence between the categories of natural type
structures on the one hand and natural lambda structures on the other hand. This can
be found in Section 15B.
As a warm-up, a proto-type result in this direction is Corollary 15A.20, stating the

equivalence between the categories MSLU of meet semi-lattices with universe and ALGa

of algebraic lattices with additive morphisms that preserve compactness. The idea is that
by definition in an algebraic lattice D an element d is fully determined by its compact,
see Definition 10A.4(iii), approximations

d = {a | a ⊑ d & a compact}.

Writing K(D) = {a∈D | a compact} and ↑a = {d∈D | a ⊑ d} one has

a ⊑ b ⇔ ↑b ⊆ ↑a.

Therefore it is natural to write for a, b∈K(D)

b ≤ a ⇔ a ⊑ b.

The complete lattice D can be reconstructed from the meet semi-lattice S by a general
construction that assigns to S the collection FS of filters (defined in Definition13D.1 for
type theories, see also Remark 13D.6 for the translation to type structures), forming an
algebraic lattice. We will show the isomorphisms

S ∼= K(FS);

D ∼= FK(D).

In fact the isomorphisms are functional and constitute an equivalence between the cate-
gories MSLU and ALGa. Similarly, for the strict case, the equivalence between MSL-U

and ALGs
a is proved. See Fig. 38. For the injectivity of the map establishing S ∼= K(FS)

in Proposition 15A.19 one needs that ≤ is a partial order. Therefore the results of this
section do not work for type theories in general.
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meet semi-
lattices

MSLU ∼= ALGa

MSL-U ∼= ALGs
a

algebraic
lattices

Figure 38. Equivalences proved in Section 15A

To interpret untyped λ-terms the objects D in ALG are not enough. We need some
more structure, D enriched to 〈D, F,G〉, where F ∈ [D→[D→D]] and G∈ [[D→D]→D].
These are called lambda structures. There is a canonical way to define such a pair F,G
for D being a filter structure obtained from a type theory, see Definition 13D.5 and
Exercise 14C.27. Then we always have

F ◦G ⊒ IdD

This does not yet imply the validity of the β-axiom

(β) (λx.M)N =M [x: = N ]

For β to hold it suffices to require

(fun-β) F ◦G = IdD

Looking for the ‘right’ category of type structures corresponding to lambda structures
there are other considerations. The axioms (→), (→∩) and (U→) are natural considering
the intended semantics of λ→ given by Scott [1975a] generalized to λ∩. The ‘natural
type structures’, satisfying (→), (→∩) and (U→), exactly correspond to ‘natural lambda
structures’ satisfying

(1) F ◦G⊒ Id[D→D]

(2) G ◦ F ⊑ IdD

as suggested in Exercise 14C.29. Moreover, these axioms suffice to make the connection
between type structures and lambda structures categorical, see Section 15B.

NTSU ∼= NLS

Figure 39. Equivalence proved in Section 15B

This, however, does not automatically give rise to λ-models. But the lambda structures
induced by type structures (arising from the natural type theories) presented in Table
33 all satisfy (fun-β) and hence are λ-models. See Exercise 14C.27 for a natural lambda
structure that is not a λ-model.
Weakening one of the axioms for natural type structures, taking (Ulazy) instead of

(U→), we obtain the ‘lazy type structures’. This category is equivalent with that of ‘lazy
lambda structures’ in which there is a weaker version of (2). These give rise to models
of the lazy λ-calculus in which the order of a term (essentially the maximum number of
consecutive λ’s it can have on its head) is preserved under equality, see Section 16D.
After this success of the type structures, one may hope to find appropriate ones whose

filter models are isomorphic to the well-known graph λ-models Pω by Scott and DA by
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Engeler (see respectively Section 18.1 and 18.4.2 of B[1984]). This can be done, but we
cannot rely on Pω or DA as lambda structures for the following reason. The essence of
the graph models is that there are maps

i : K(D)× Prime(D)→ Prime(D),
where

Prime(D), {d∈D | ∀A ⊆ D.d ⊑ A ⇒ ∃a∈A.d ⊑ a}.
In the case of Pω and DA the subset Prime(D) consists of the singletons. Although we
can define from these maps i appropriate Fi, Gi, from these one cannot reconstruct i.

NTSU

∼=
rr

NZS
∼=

uu
NLS

uu

LTSU

∼=
llll

LZS
∼=

mmmmm LLS
mmmmm

TSU

∼=
ZS LS

PTS-U
∼=

lll
PZSs

∼=
mmmm

PLSs

mmmm

TS-U
∼=

ZSs LSs

type
structures

zip
structures

lambda
structures

Figure 40. Equivalences proved in Sections 15C and 15D

Therefore we want to incorporate i into the definition of a relevant category of structures.
In order to do this, we generalize i to a coding of pairs of compact elements

Z : K(D)×K(D)→ K(D)
in order to be able to relate it in a simple way to type structures: Z(a, b) roughly
corresponds to (a → b). In this way we obtain the so-called zip structures 〈D, Z〉. For
these structures one can define a corresponding lambda structure 〈D, FZ , GZ〉 by

FZ(x)(y), {b | ∃a ⊑ y.Z(a, b) ⊑ x},

GZ(f), {Z(a, b) | b ⊑ f(a)}.
Finally the type structures whose filter models are Pω and DA, respectively, can be
defined by weakening the conditions (→), (→∩).
Even if we can establish an equivalence between the categories of type and zip struc-

tures, we lose the equivalence between the general categories of type structures and
lambda structures. This situation is studied in detail in Sections 15C and 15D. The
equivalence between all variants of type structures and zip structures is perfect, but as
stated before not between those of zip structures and lambda structures.
Summarizing, there are three groups of categories of structures: the type, zip and

lambda structures. The type structures are expansions of meet semi-lattices with the
extra operator →; the zip and lambda structures are expansions of algebraic lattices D
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with respectively a map Z merging (‘zipping’) two compact elements into one or the
extra structure of a pair 〈F,G〉 with F : D→[D→D] and G : [D→D]→D. Each time
we also consider the so called strict case, in which the objects of the categories may
miss a top element or where the top element is treated in a special way. Within each
group there are five relevant categories, explained above. The categorical equivalences
are displayed in Fig.s 38, 39 and 40.

15A. Meet semi-lattices and algebraic lattices

The results of this section are either known or relatively simple modifications of known
ones, see Gierz, Hofmann, Keimel, Lawson, Mislove, and Scott [1980].

Categories of meet semi-lattices

Remember the following notions, see Definitions 13C.8-13C.11. The category MSL has
as objects at most countable meet semi-lattices and as morphisms maps preserving ≤
and ∩.
The category MSLU is as MSL, but based on top meet semi-lattices. So now mor-

phisms also should preserve the top.
The category TS-U has as objects the at most countable type structures and as mor-

phisms maps f : S→S ′, preserving ≤ and ∩, and which moreover satisfy the following:

(mon-→) f(s)→f(t) ≤ f(s→t).
The category TSU is as TS-U, but based on top type structures. Now also morphisms

should preserve the top.
In Definition 13C.11 we defined three full subcategories of TSU and one of TS-U, by

specifying in each case the objects: GTSU with as objects the graph top type structures;
LTSU with as objects the lazy top type structures; NTSU with as objects the natural
top type structures; PTS-U with as objects the proper type structures.

Categories of algebraic lattices

Remember the notions from domain theory presented in 10A.4-10A.12.

15A.1. Definition. Let D be a complete lattice.
(i) For x∈D define K(x), {d∈K(D) | d ⊑ x}.
(ii) On K(D) define

d≤e⇐⇒△ e ⊑ d.
(iii) A function f ∈ [D→D] is called strict if f(⊥D) = ⊥D.

(iv) Write [D→sD], {f ∈ [D→D]|f is strict}.
(v) Ks(D),K(D)− {⊥D}.
When useful we will decorate ⊑, , , ⊥,⊤, ⊔ and ⊓ with D, e.g. ⊑D etcetera. In

this Chapter a, b, c, d · · · often range over compact elements in lattices, while x, y, z · · ·
range over general elements.
The following connects the notion of compact element to the notion of compact subset

of a topological space.
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15A.2. Lemma. Let D be a complete lattice.
(i) d∈D is compact if

∀Z ⊆ D.[d ⊑ Z ⇒ ∃Z0 ⊆ Z.[Z0 is finite & d ⊑ Z0]].

(ii) If a, b are compact, then a ⊔ b is compact.
(iii) For a, b∈K(D) one has a ⊓K(D) b = a ⊔D b.
(iv) (K(D),≤)∈MSLU.

Proof. (i) (⇒) Suppose d∈D is compact. Given Z ⊆ D, let
Z+ = { Z0 | Z0 ⊆ Z & Z0 finite}.

Then Z ⊆ Z+, Z = Z+ and Z+ is directed. Hence

d ⊑ Z ⇒ d ⊑ Z+

⇒ ∃z+ ∈Z+.d ⊑ z+
⇒ ∃Z0 ⊆ Z.d ⊑ Z0 & Z0 is finite.

(⇐) Suppose d ⊑ Z with Z ⊆ D directed. By the condition d ⊑ Z0 for some finite
Z0 ⊆ Z. If Z0 is non-empty, then by the directedness of Z there exists a z ∈Z such that
z ⊒ Z0 ⊒ d. If Z0 is empty, then d = ⊥D and we can take an arbitrary element z in
the non-empty Z satisfying d ⊑ z.

(ii) If a ⊔ b is ‘covered’ (in the sense of ⊑) by the union of a family Z, then each of
a, b is covered by a finite subset of Z by (i). Therefore also a ⊔ b is covered by a finite
subset of Z.
(iii) By (ii) (a ⊔D b)∈K(D); now turn things around.
(iv) Immediate from (iii), noticing that UK(D) = ⊥D ∈K(D).

Instead of ⊓≤ we often write ∩≤ or simply ∩.
15A.3. Proposition. Let D,D′ be algebraic lattices.

(i) Let f ∈ [D→D′]. Then for x∈D
f(x) = {f(a) | a∈K(x)}.

(ii) Let f, g ∈ [D→D′]. Suppose f ↾ K(D) = g ↾ K(D). Then f = g.

Proof. (i) Use that x = {a | a∈K(x)} is a directed sup and that f is continuous.
(ii) By (i).

15A.4. Definition. If e∈D, e′ ∈D′, then e 7→ e′ is the step function defined by

(e 7→ e′)(d),

{
e′ if e ⊑ d ,
⊥D′ otherwise.

15A.5. Lemma. [D→D′] is a complete lattice with

(
f ∈X

f)(d) =
f ∈X

f(d).

15A.6. Lemma. For d, e∈D, d′, e′ ∈D′ and f ∈ [D→D′] one has
(i) d compact ⇒ d 7→ d′ is continuous.
(ii) d 7→ d′ is continuous and d′ 6= ⊥ ⇒ d is compact.
(iii) d′ compact ⇔ d 7→ d′ compact.
(iv) d′ ⊑ f(d) ⇔ (d 7→ d′) ⊑ f.
(v) e ⊑ d & d′ ⊑ e′ ⇒ (d 7→ d′) ⊑ (e 7→ e′).
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(vi) (d 7→ d′) ⊔ (e 7→ e′) ⊑ (d ⊓ e) 7→ (d′ ⊔ e′).
Proof. Easy.

15A.7. Lemma. For all e, d1, · · · , dn ∈D, e′, d′1, · · · , d′n ∈D′

(e 7→ e′) ⊑ (d1 7→ d′1) ⊔ · · · ⊔ (dn 7→ d′n) ⇔
⇔ ∃I⊆{1, · · · , n} [ i∈ I di ⊑ e & e′ ⊑ i∈ I d

′
i].

Clearly in (⇒) we have I 6= ∅ if e′ 6= ⊥D′.

Proof. Easy.

15A.8. Proposition. Let D,D′ ∈ALG.
(i) For f ∈ [D→D′] one has f = {a 7→ a′ | a′ ⊑ f(a), a∈K(D), a′ ∈K(D′)}.
(ii) Let D∈ALG and let f ∈ [D→D′] be compact. Then

f = (a1 7→ a′1) ⊔ · · · ⊔ (an 7→ a′n),

for some a1, · · · ,an ∈K(D), a′1, · · · ,a′n ∈K(D′).
(iii) [D→D′]∈ALG.

Proof. (i) It suffices to show that RHS and LHS are equal when applied to an arbitrary
element d∈D.

f(d) = f( {a | a ⊑ d & a∈K(D)})
= {f(a) | a ⊑ d & a∈K(D)}
= {a′ | a′ ⊑ f(a) & a ⊑ d & a∈K(D), a′ ∈K(D′)}
= {(a 7→ a′)(d) | a′ ⊑ f(a) & a ⊑ d & a∈K(D), a′ ∈K(D′)}
= {(a 7→ a′)(d) | a′ ⊑ f(a) & a∈K(D), a′ ∈K(D′)}
= {(a 7→ a′) | a′ ⊑ f(a) & a∈K(D), a′ ∈K(D′)}(d).

(ii) For f compact one has f = {a 7→ a′ | a′ ⊑ f(a) & a∈K(D), a′ ∈K(D′)}, by (i).
Hence by Lemma 15A.2(i) for some a1, · · · ,an ∈K(D), a′1, · · · ,a′n ∈K(D′)

f = (a1 7→ a′1) ⊔ · · · ⊔ (an 7→ a′n).(1)

(iii) It remains to show that there are only countably many compact elements in
[D→D]. Since K(D) is countable, there are only countably many expressions in the
RHS of (1). (The cardinality is ≤ Σnn.ℵ20 = ℵ0.) Therefore there are countable many
compact f ∈ [D→D]. (There may be more expressions on the RHS for one f , but this
results in less compact elements.)

15A.9. Definition. (i) The category ALGa has the same objects as ALG and as mor-
phisms ALGa(D,D′) maps f ∈ [D→D′] that satisfy the properties ‘compactness pre-
serving’ and ‘additive’:

(cmp-pres) ∀a∈K(D).f(a)∈K(D′);
(add) ∀X ⊆ D.f( X) = f(X).

(ii) The category ALGs
a has the same objects as ALGa and as morphisms ALGs

a(D,D′)
maps f ∈ [D→D′] satisfying (cmp-pres), (add) and

(s) ∀d∈D.[f(d) = ⊥D′ ⇒ d = ⊥D].
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15A.10. Remark. (i) Note that the requirement (add) implies that a morphism f is
continuous (preserving sups for directed subsets X) and strict (f(⊥D) = ⊥D′).

(ii) Remember that Ks(D) = K(D)−{⊥D}. Note that ALGs
a(D,D′) consists of maps

satisfying

(cmp-press) ∀a∈Ks(D).f(a)∈Ks(D′);
(add) ∀X ⊆ D.f( X) = f(X).

(iii) By contrast to Proposition 15A.8(iii) ALGa(D,D′) /∈ALGa, because from (i) of
that Proposition it follows that the set of compactness preserving functions is not closed
under taking the supremum.

We need some Lemmas.

15A.11. Lemma. (i) Let f : D → D′ be a continuous function with D,D′ ∈ALG. Then,
for any X ⊆ D, b′ ∈K(D′),

b′ ⊑ f( X) ⇔ ∃Z ⊆fin X ∩ K(D).b′ ⊑ f( Z).

(ii) A map f ∈ [D→D′] satisfies (add) iff f is Scott continuous and

∀X ⊆fin K(D).f( X) = f(X).(2)

Proof. (i) Note that Ξ = { Z | Z ⊆fin X ∩ K(D)} is a directed set and Ξ = X.
Moreover, by monotonicity of f , also the set {f( Z) | Z ⊆fin X ∩ K(D)} is directed.
Therefore

b′ ⊑ f( X) ⇔ b′ ⊑ f( Ξ)

⇔ b′ ⊑ f(Ξ), since f is continuous,

⇔ b′ ⊑ {f( Z) | Z ⊆fin X ∩ K(D)}, by definition of Ξ,

⇔ ∃Z ⊆fin X ∩ K(D).b′ ⊑ f( Z), since b′ is compact.

(ii) The non-trivial direction is to show, assuming f is Scott continuous and satisfies
(2), that f is additive. By monotonicity of f we only need to show for all X ⊆ D

f( X) ⊑ f(X).

As D′ is algebraic, it suffices to assume b′ ⊑ f( X) and conclude b′ ⊑ f(X). By (i)
∃Z ⊆fin X ∩ K(D).b′ ⊑ f( Z) = f(Z), so b′ ⊑ f(X).

15A.12. Lemma. Let S ∈MSLU be a meet semi-lattice, I 6= ∅ and s, t, si ∈S. Then
(i) In FS we have

i∈ I
↑ si =↑

⋂

i∈ I

si.

(ii) In K(FS) we have
⋂

i∈ I

↑ si =↑
⋂

i∈ I

si,

where the
⋂

denote the infima in respectively S and K(S).
(iii) ↑ s ≤K(FS)↑ t ⇔ s ≤S t.

Proof. From the definitions.
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15A.13. Lemma. (i) Let X ⊆ FK(D). Then taking sups in D one has

(
⋃
X ) =

X ∈X
( X).

(ii) Let θ ⊆ K(D) be non-empty. Then taking the sups in D one has

(↑θ) = θ.

Proof. (i) Realizing that a sup (in D) of a union of {Yi}i∈ I ⊆ K(D) is the sup of the
sups Yi, one has

(
⋃

i∈ I

Yi) =
i∈ I

( Yi).

The result follows by making an α-conversion [i := X] and taking I = X and YX = X.
(ii) ↑θ is obtained from θ by taking extensions and intersections in K(D). Now the

order in this MSLU is the reverse of the one induced by D, therefore ↑θ is obtained by
taking smaller elements and unions (in D). But then taking the big union the result is
the same.

We now will establish the following equivalences of categories.

MSLU ∼= ALGa;

MSL-U ∼= ALGs
a.

Equivalence between MSLU and ALGa

We now define the functors establishing the equivalences between categories of meet semi-
lattices and complete algebraic lattices. Remember that 13D.1-13D.4 can be translated
immediately to meet semi-lattices.

15A.14. Definition. We define a map Flt : MSLU → ALGa, that will turn out to be a
functor, as follows.

(i) On objects S ∈MSLU one defines

Flt(S), 〈FS ,⊆〉.
(ii) On morphisms f : S→S ′ one defines Flt(f) : FS→FS′

by

Flt(f)(X), {s′ | ∃s∈X.f(s) ≤ s′}.
15A.15. Lemma. Let f ∈MSLU(S,S ′).

(i) For X ⊆ S, one has Flt(f)(↑ X) =↑ {f(s) | s∈X}.
(ii) For s∈S one has Flt(f)(↑ s) =↑ f(s).

Proof. We only prove (ii).

Flt(f)(↑ s) = {s′ | ∃t∈ ↑ s.f(t) ≤ s′},
= {s′ | ∃t ≥ s.f(t) ≤ s′},
= {s′ | f(s) ≤ s′}, since f is monotone,

= ↑ f(s).
15A.16. Proposition. Flt is a functor from MSLU to ALGa.
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Proof. We have to prove that Flt transforms a morphism in MSLU into a morphism in
ALGa. Let f ∈MSLU(S,S ′), ↑ s∈K(FS). By Lemma 15A.15(ii) Flt(f)(↑ s) =↑ f(s),
which is compact in FS′

, hence Flt(f) satisfies (cmp-pres).
Flt(f) satisfies (add). Indeed, by Lemma 15A.11(ii) and the fact that Flt(f) is trivially

Scott continuous, it is enough to prove that it commutes with finite joins of compact
elements. Let I be non-empty. We have

Flt(f)( i∈ I ↑ si) = Flt(f)(↑ ⋂i∈ I si), by Lemma 15A.12(ii),

= ↑ f(⋂i∈ I si), by Lemma 15A.15(ii),

= ↑ ⋂i∈ I f(si), since f commutes with ∩,
= i∈ I ↑ f(si), by Lemma 15A.12(ii),

= i∈ I Flt(f)(↑ si) by Lemma 15A.15(ii).

If I is empty, and U, U′ are respectively the universal tops of S,S ′, then

Flt(f)( ∅ ↑ si) = Flt(f)(↑ U),
= ↑ f(U), by Lemma 15A.15(ii),

= ↑ U′, since f preserves tops,

= ∅ Flt(f)(↑ si).

So Flt(f) satisfies (add).

It is possible to leave out conditions (cmp-pres) and (add), obtaining the category ALG.
Then one needs to consider approximable maps as morphisms in the category MSLU.
See Abramsky [1991].

15A.17. Definition. We define a map Cmp : ALGa →MSLU, that will turn out to be
a functor, as follows.

(i) On objects D∈ALGa one defines Cmp by

Cmp(D), (K(D),≤).

(ii) On morphisms f ∈ALGa(D,D′) one defines Cmp(f) by

Cmp(f)(d), f(d).

15A.18. Lemma. The map Cmp is a functor.

Proof. Let f ∈ALGa(D,D′). Note that Cmp(f) = f ↾ K(D) : K(D)→K(D′), by (cmp-
pres). By the fact that f is additive one has f(⊥D) = ⊥D′ , which is f(UK(D)) = UK(D′),
and

f(a ∩K(D) b) = f(a ⊔D b) = f(a) ⊔D′ f(b) = f(a) ∩K(D) f(b).

Also f is monotonic as it is continuous.

In the remainder of the present section we write ≤ instead of ≤K(FS).
Now we will show that the functors Flt and Cmp establish an equivalence between the

categories MSLU and ALGa.
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15A.19. Proposition. (i) Let S ∈MSLU. Then σ = σS : S→K(FS) defined by σS(s) =
↑s is an MSLU isomorphism.

S Flt //

σ=↑ ��5
55

5 FS

Cmpxx
K(FS)

Therefore S ∼= K(FS).

(ii) Let D∈ALGa. Then τ = τD : FK(D)→D defined by τ(X) = X, where is

taken in D, is an ALGa isomorphism with inverse τ−1 : D→FK(D) defined by τ−1(x) =
{c∈K(D) | c ⊑ x}.

K(D)

Flt ''

D
Cmpoo

FK(D)
τ=

CC�����

Therefore D ∼= FK(D).

Proof. (i) By Proposition 13D.4(v) σ is a surjection. It is also 1-1, since ↑s = ↑t ⇒
s ≤ t ≤ s ⇒ s = t. (This is the place where we need that ≤ is a partial order, not
only a pre-order.) Moreover, σ preserves ≤:

s ≤ t ⇔ ↑t ⊆ ↑s
⇔ ↑s ≤ ↑t, by definition of ≤ on K(FS).

Also σ preserves ∩:
σ(s ∩ t) = ↑(s ∩ t)

= ↑s ⊔ ↑t in FS , by 13D.4(iii),

= ↑s ∩ ↑t in K(FS), by definition of ≤ on K(FS),

= σ(s) ∩ σ(t).
Then σ(US) = ↑US = UK(FS), since {US} is the ⊆-smallest filter; hence σ preserves tops.

Finally σ−1 preserves≤,⊓K(FS) and UK(FS), as by Lemma 13D.4(v) an element c∈K(FS)

is of the form c = ↑s, with s∈S and σ−1(↑s) = s.
(ii) We have τ ◦ τ−1 = 1D and τ−1 ◦ τ = 1FK(D) :

τ(τ−1(x)) = {c∈K(D) | c ⊑ x}
= x, since D∈ALGa.

τ−1(τ(X)) = {c | c ⊑ X}
= {c | c∈X}, since one has

c ⊑D X ⇔ ∃x∈X c ⊑D x, as c is compact and X ⊆ K(D) ⊆ D is

a filter w.r.t. ≤, so directed w.r.t. ⊑
⇔ ∃x∈X x ≤K(D) c

⇔ c∈X, as X is a filter on K(D).
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We still have to show that τ and τ−1 are morphisms. One easily sees that τ satisfies
(cmp-pres). The map τ is also additive, i.e. τ(X ) = τ( X ) for arbitrary X ⊆ FK(D).
Indeed,

τ(X ) =
X ∈X

( X), by definition of τ ,

= (
⋃
X ), by Proposition 15A.13(i),

= (↑(
⋃
X )), by Proposition 15A.13(ii),

= τ(↑(
⋃
X )), by definition of τ ,

= τ( X ), by Proposition 13D.4(i).

Now we have to prove that τ−1 satisfies (cmp-pres) and (add). As to (cmp-pres), assume
that b∈K(D) and τ−1(b) ⊑ X, with X directed. Then b ⊑ τ(X), since τ satisfies
(add). Since b is compact, there exists x∈X such that b ⊑ τ(x), hence τ−1(b) ⊑ x and
we are done. As to (add), let X ⊆ D. Then

τ−1( X) = τ−1( {τ(τ−1(x)) | x∈X}),
= τ−1(τ( {τ−1(x) | x∈X})), since τ satisfies (add),

= {τ−1(x) | x∈X}.
15A.20. Corollary. The categories MSLU and ALGa are equivalent; in fact the iso-
morphisms in Proposition 15A.19 form natural isomorphisms showing

Cmp ◦ Flt ∼= Id
MSL

U & Flt ◦ Cmp ∼= IdALGa .

Proof. First one has to show that in MSLU the following diagram commutes.

S

f

��

↑ // K(FS)

Cmp(Flt(f))

��

S ′
↑ // K(FS′

)

One must show Cmp(Flt(f))(↑s) = ↑(f(s)). This follows from Lemma 15A.15(ii) and
the definition of Cmp.
Secondly one has to show that in ALGa the following diagram commutes.

FK(D)

Flt(Cmp(f))

��

// D

f

��
FK(D′) // D′
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Now for X ∈FK(D) one has

Flt(Cmp(f))(X) = {d′ ∈K(D′) | ∃d∈X. f(d) ≤ d′}
= {d′ ∈K(D′) | ∃d∈X. d′ ⊑ f(d)}.

Hence, using also the continuity of f and the fact that X as subset of 〈D,⊑〉 is directed,
(Flt(Cmp(f))(X)) = d∈Xf(d) = f( X),

and the diagram commutes. As before we have Flt ◦ Cmp ∼= IdALGa .

This result is a special case of Stone duality, cf. Johnstone [1986] (II, 3.3).

Equivalence between MSL-U and ALGs
a

We prove that MSL-U ∼= ALGs
a. The proof uses the functors Flt and a small variant of

Cmp, denoted by Cmps. The functor Flt is given in Definition 15A.14, where now FS is
taken with S ∈MSL-U. But now ∅∈K(FS) by Definition 13D.1 and hence, S 6≃ K(FS).
To obtain an isomorphism, the functor Cmps is defined by considering the set Ks(D) of
compact elements of D without ⊥.
15A.21. Definition. Let D∈ALGs

a.
(i) The functor Cmps : ALGs

a →MSL-U is defined as follows

Cmps(D), (Ks(D),≤).
For a morphism f ∈ALGs

a(D,D′) define Cmps(f) : Ks(D)→ Ks(D′) by

Cmps(f)(d), f(d).

15A.22. Proposition. (i) Let S ∈MSL-U. Then σ : S→Ks(FS) defined by σ(s), ↑s is
an MSL-U isomorphism.

S Flt //

↑ ��7
77

7 FS

Cmps
xx

Ks(FS)

Therefore S ∼= Ks(FS).

(ii) Let D∈ALGs
a. Then τ : FKs(D)→D defined by τ(X) , X, is an ALGs

a iso-

morphism with inverse τ−1 : D→FKs(D) defined by

τ−1(d), {c∈Ks(D) | c ⊑ d}.
In diagram,

Ks(D)

Flt ''

D
Cmpsoo

FKs(D)

BB�����

Therefore D ∼= FKs(D).

Proof. Similar to the proof of Proposition 15A.19.

15A.23. Corollary. The categories MSL-U and ALGs
a are equivalent.

15A.24. Remark. The map ρ : FKs(D)→FK(D), given by ρ(X) , X ∪ {⊥D} is an iso-
morphism in the category ALGs

a, hence also in ALGa.
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15B. Natural type structures and lambda structures

In this section we prove for the natural type and lambda structures that

S ≃ K(FS),

D ≃ FK(D),

such that there is a congruence between the categories NTSU ∼= NLS. The results of
this Section will be generalized using zip structures in Sections 15C and 15D. Even if
the results in this section follow from the mentioned generalization, we decided to keep
the proofs here as a warm-up. Moreover, the proofs of the results in this Section are
more direct than those obtained as corollaries.

15B.1. Definition. Let D,D′ ∈ALG. A Galois connection between D and D′, notation
〈m, n〉 : D → D′, is a pair of continuous functions 〈m, n〉 with m : D → D′, n : D′ → D
such that

(Galois-1) n ◦m ⊒ IdD,
(Galois-2) m ◦ n ⊑ IdD′ ;

m is said to be the left adjoint of the Galois connection, n the right adjoint.
A statement equivalent to (Galois-1, Galois-2) is the following.

(Galois) ∀x∈D, x′ ∈D′.m(x) ⊑ x′ ⇔ x ⊑ n(x′).

See Exercise 15E.7.

Each adjoint in a Galois connection determines the other, see Exercise 15E.8. For this
reason often one writes mR for n, and nL for m. From now on m is short for 〈m,mR〉.
The next lemma provides some properties of Galois connections.

15B.2. Lemma. Let m : D → D′ be a Galois connection. Then

(i) m is additive:

∀X ⊆ D, m( X) = m(X).

In particular m is strict, m(⊥) = ⊥, as ⊥ = ∅.
(ii) mR(⊤) = ⊤.
(iii) d∈K(D) ⇒ m(d)∈K(D′).

(iv) Let d, e∈K(D). Then

m ◦ (d 7→ e) ◦mR = (m(d) 7→ m(e)).

Proof. (i) As m is monotone we have m(X) ⊑ m( X). On the other hand

m( X) ⊑ m( mR ◦m(X)), by (Galois-1),
⊑ m(mR( m(X))), since mR is monotone,
⊑ m(X), by (Galois-2).

(ii) By (Galois) applied to x′ = ⊤.
(iii) Let d∈K(D) and let m(d) ⊑ Z, where Z ⊆ D′ is any directed set. Then, by

(Galois), d ⊑ mR( Z) = mR(Z). Since d is compact, there exists z ∈Z such that
d ⊑ mR(z), hence, by (Galois), m(d) ⊑ z.This proves that m(d) is compact.
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(iv) Let y ∈D′. We have

(m ◦ (d 7→ e) ◦mR)(y) =

{
m(e), if mR(y) ⊒ d;
m(⊥), otherwise.

Note that by (Galois), d ⊑ mR(y) is equivalent to m(d) ⊑ y. Moreover, as previously
noted, m(⊥) = ⊥. So we have

(m ◦ (d 7→ e) ◦mR)(y) =

{
m(e), if m(d) ⊑ y;
⊥, otherwise.

The RHS above is the definition of the step function (m(d) 7→ m(e)).

15B.3. Definition. (i) A triple D = 〈D, F,G〉 is called a lambda structure, notation LS,
if D∈ALG and F : D → [D → D] and G : [D → D]→ D are continuous.

(ii) The lambda structure D = 〈D, F,G〉 is natural if 〈G,F 〉 is a Galois connection,
with F = GR, i.e. F ◦G ⊒ IdD and G ◦ F ⊑ IdD.

Note that we are using the notation 〈D, F,G〉 coherent with lambda structure notation,
but this is in contrast with Galois connection notation, since the left adjoint G is put on
the right.
Given a natural lambda structure 〈D, F,G〉, then (Galois) implies

(func-Galois) ∀d, e∈K(D), x∈D. e ⊑ F (x)(d) ⇔ G(d 7→ e) ⊑ x.
The next lemma shows how to build Galois connections in ALG from morphisms

between NTSU’s.

15B.4. Lemma. Let f ∈NTSU(S,S ′). Letf be short for Flt(f). Definef
R
: ALG(FS′

,FS)
by

f
R
(d′) , {s | f(s)∈ d′}.

Then 〈f,fR〉 : FS→FS′
is a Galois connection (so the name f

R
is appropriate).

Proof. We leave as an exercise to prove that f is well defined and continuous. Note
that

[∀s∈S. s∈ d ⇒ f(s)∈ d′] ⇔ [∀s′ ∈S ′. (∃s∈ d.f(s) ≤ s′) ⇒ s′ ∈ d′](3)

(⇒) Suppose that s′ ∈S ′ and there exists s∈ d such that f(s) ≤ s′. Then f(s)∈ d′ by
the LHS and hence s′ ∈ d′ as d is a filter.
(⇐) Let s∈ d. Choosing s′ = f(s) in the RHS, we get f(s)∈ d′.
Now we prove that (Galois) holds for 〈f,fR〉.

f(x) ⊆ x′ ⇔ {s′ | ∃s∈x.f(s) ≤ s′} ⊆ x′
⇔ ∀s′ ∈S ′. (∃s∈x.f(s) ≤ s′) ⇒ s′ ∈x′
⇔ ∀s∈S. s∈x ⇒ f(s)∈x′, by (3),
⇔ x ⊆ {s | f(s)∈x′}
⇔ x ⊆fR(x′).

From now on f denotes for f ∈NTSU(S,S ′) the Galois connection 〈f,fR〉.
Next definition is necessary for introducing morphisms between lambda structures.

We will explain this choice in Section 15D.
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15B.5. Definition. Let D = 〈D, F,G〉, D′ = 〈D′, F,G〉 be lambda structures. A lambda
Galois connection is a Galois connection m = 〈m,mR〉 : D → D′ such that

(lambda-gc1) ∀f ∈ [D → D].m(G(f)) ⊑ G′(m ◦ f ◦mR);
(lambda-gc2) ∀x′ ∈D′, x∈D.F (mR(x′))(x) ⊑ mR(F ′(x′)(m(x))).

If we write fm ,m ◦ f ◦mR, then we can reformulate these conditions as

(lambda-gc1) ∀f ∈ [D → D].m(G(f)) ⊑ G′(fm);
(lambda-gc2) ∀x′ ∈D′, x∈D.mR(x′) · x ⊑ mR(x′ · (m(x))).

See also Lemma 16A.12.

15B.6. Definition. (i) The category LS consists of lambda structures as objects and
lambda Galois connections as morphisms. The composition between morphisms 〈m,mR〉 :
D → D′ and 〈n, nR〉 : D′ → D′′ is given by 〈n ◦m,mR ◦ nR〉.

(ii) The category of natural lambda structures, notation NLS, is the full subcategory
of LS which has as objects natural lambda structures.

For S ∈TSU the maps FS : FS → [FS → FS ] and GS : [FS → FS ] → FS are two
continuous functions, defined in Definition 13D.5 as follows.

∀x∈FS . FS(x), λλy ∈S. ↑ {t | ∃s∈ y.s→ t∈x};
∀f ∈ [FS → FS ]. GS(f), ↑ {s→ t | t∈ f(↑ s)}.

Also remember that x · y , FS(x)(y), for any x, y ∈FS .

15B.7. Lemma. Let S ∈NTSU, s, t∈S, x, y ∈FS , and f : FS → FS . Then
(i) x · y = {t | ∃s∈ y.s→ t∈x}.
(ii) t∈x· ↑ s ⇔ s→ t∈x.
(iii) t∈ f(↑ s) ⇒ (s→ t)∈GS(f).
(iv) GS(↑ s 7→ ↑ t) =↑ (s→ t).

Proof. (i) Let {x · y} = {t | ∃s∈ y.s → t∈x}. Then {x · y} ⊆ x · y by definition. We
prove that {x · y} is a filter, hence it coincides with x · y. Now U∈{x · y} by (U→).
Moreover, {x · y} is upward closed. In fact, let t∈{x · y} and t ≤ t′. Then there exists

s∈ y such that (s → t)∈x. But (s → t) ≤ (s → t′) by (→), so this last type is also in
the filter x. Therefore t′ ∈{x · y}.
Finally, let t, t′ ∈{x · y}. Then (s → t), (s′ → t′)∈x for some s, s′ ∈ y. Then (s →

t) ∩ (s′ → t′)∈x and s ∩ s′ ∈ y, as x, y are filters. By Proposition 13A.21(ii) one has
(s→ t) ∩ (s′ → t′) ≤ (s ∩ s′)→ (t ∩ t′), hence this last type is in the filter x. Therefore,
by definition of application, t ∩ t′ ∈{x · y}.

(ii) By (i), t∈x· ↑ s if and only if there exists s′ ∈ ↑ s such that (s′ → t)∈x. By
(→), this is equivalent to (s→ t)∈x.
(iii) Easy.
(iv) We have

GS(↑ s 7→ ↑ t) = ↑ {s′ → t′ | t′ ∈ (↑ s 7→ ↑ t)(↑ s′)}
= ↑ {s′ → t′ | [↑ s′ ⊇↑ s & t′ ∈ ↑ t] or t′ = U}
= ↑ (s→ t).

As to the last equality, ⊇ holds trivially, and ⊆ by (→), (U→).

15B.8. Lemma. Let S be in NTSU. Write Flt
NTS

U(S) = 〈FS , FS , GS〉. Then
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(i) Flt
NTS

U(S)∈LS.
(ii) Flt

NTS
U(S)∈NLS.

Proof. (i) Easy.
(ii) We claim that 〈FS , GS〉 is a Galois connection. As to FS(GS(f)) ⊒ f , it suffices

to prove this on compact elements ↑ s∈K(S). Let f ∈ [S → S], s∈S. We have

FS(GS(f))(↑ s) = {t | s→ t∈GS(f)}, by Lemma 15B.7(ii),

⊇ {t | t∈ f(↑ s)}, by Lemma 15B.7(iii),

= f(↑ s).
On the other hand, let x∈FS . We have

GS(FS(x)) = ↑ {s→ t | t∈x· ↑ s}
= ↑ {s→ t | s→ t∈x}, by Lemma 15B.7(ii),
⊆ x.

15B.9. Theorem. Define the action of Flt
NTS

U on morphisms f ∈NTSU(S,S ′) by
Flt

NTS
U(f), 〈Flt(f),Flt(f)R〉.

Then Flt
NTS

U : NTSU → NLS is a functor.

Proof. The proof will descend from the results of Sections 15C and 15D (see in partic-
ular Proposition 15D.27).

15B.10. Definition. (i) Given a natural lambda structure D, we define

FltNLS(D), 〈K(D),≤,∩,→D, U〉
with a ≤ b⇐⇒△ b ⊑K(D) a, a ∩ b, a ⊔D b, U,⊥D, and a→K(D) b,G(a 7→ b).

(ii) Given m∈NLS(D,D′), we define

FltNLS(m),m ↾ K(D) : K(D)→ K(D′).

15B.11. Lemma. FltNLS is a functor from NLS to NTSU.

Proof. The proof will descend from the result of Sections 15C and 15D (see in particular
Theorem 15B.14).

Now we will prove that NTSU and NLS are equivalent categories.

15B.12. Proposition. Let S ∈NTSU. Define σS : S → K(FS) by

σS(s), ↑ s.
Then σS is an isomorphism in NTSU. Hence S ∼= K(FS).

Proof. We write simply σ for σS . We know from Proposition 15A.19 that σ is an
isomorphism of meet-semilattices, so it preserves intersections and top elements, and so
does its inverse σ−1. We will prove that σ(s→t) = σ(s) →K(FS) σ(t), for any s, t∈S.
We have

σ(s)→K(FS) σ(t) = ↑s→K(FS) ↑t
= GS(↑s 7→ ↑t), by Definition 15B.10,
= ↑ (s→ t), by Lemma 15B.8(i),
= σ(s→t).

Similarly, σ−1(↑s→K(FS) ↑t) = s→t.
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15B.13. Proposition. Let D∈NLS. Define τD : FK(D)→D by

τD(x) = x.

Then τD is an isomorphism in NLS. Hence D ∼= FK(D).

Proof. Write τ = τD. By Proposition 15A.19 τ is an isomorphism of lattices. The pair
〈τ, τ−1〉 is a Galois connection. We show that

〈τ, τ−1〉 : 〈FK(D), FK(D), GK(D)〉 → 〈D, F,G〉

is lambda. Let f : FK(D) → FK(D) be a continuous function. We have:

τ(GK(D)(f)) = τ(↑ {a→K(D) b | b∈ f(↑ a)})
= {a→K(D) b | b∈ f(↑ a)},

since ↑ x = x, for any x ⊆ K(D),
= {G(a 7→ b | b∈ f(↑ a)}), by definition of →K(D),
= {G(a 7→ b) | b ⊑ (f(↑ a))}
= {G(a 7→ b) | b ⊑ τ ◦ f ◦ τ−1(a)}
= G( {a 7→ b | b ⊑ τ ◦ f ◦ τ−1(a)}),

since G is additive by Lemma 15B.2(i),

= G(τ ◦ f ◦ τ−1).

The above shows in particular that 〈τ, τ−1〉 satisfies (lambda-gc1) in Definition 15B.5.
We now prove (lambda-gc2). Of course it is sufficient to reason on compact elements,
so let a, b∈K(D). Taking, into (lambda-gc2), x′ = a and x = ↑b, we have to prove

FK(D)(τ−1(a))(↑b) ⊑ τ−1(F (a)(τ(↑b)), that is

FK(D)(↑a)(↑b) ⊑ τ−1(F (a)(b)).

We have

FK(D)(↑a)(↑b) = {t∈K(D) | b→K(FS) t∈↑a}, by Lemma 15B.7(ii),

= {t∈K(D) | G(b 7→ t) ⊑ a}, by Definition 15B.10,
= {t∈K(D) | b 7→ t ⊑ F (a)}, since 〈F,G〉 is a Galois

connection,
= {t∈K(D) | t ⊑ F (a)(b)}
= τ−1(F (a)(b)).

As a consequence of the above, we have that 〈τ, τ−1〉 satisfies (lambda-gc2). Similarly,

also 〈τ−1, τ〉 is a lambda Galois connection from D to FK(D), and it is of course the
inverse of 〈τ, τ−1〉.
15B.14. Theorem. The categories NTSU and NLS are equivalent.

Proof. This follows from Propositions 15B.12 and 15B.13 almost in the same way as
Corollary 15A.20 follows from Proposition 15A.19. There is one extra case. If 〈m,mR〉 :
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D→D′, then we must show the commutativity of the following diagram

D FK(D)
OO

m↾K(D)
R

oo

D′

mR

OO

FK(D′)oo

This is done in Exercise 15E.11.

15C. Type and zip structures

The aim of the two next sections is to compare type and lambda structures, using an
intermediate kind of structure, the zip structures. A zip structure is a pair 〈D, Z〉, where
D is an object in ALG and Z : K(D) × K(D)→K(D) is the semantic counterpart of
the arrow constructor in type structures, being a set-theoretic function that “zips” the
information of two compact elements, not necessarily in such a way that the constituents
can be found back. The various categories of zip structures are easily proven to be
equivalent to the corresponding ones of type structures. So we can think of zip structures
as an alternative way of describing type structures.

15C.1. Definition. (i) A zip structure is a pair 〈D, Z〉 with D∈ALG and

Z : K(D)×K(D)→ K(D)
an arbitrary map.

(ii) The category ZS has zip structures as objects and maps f : D → D′ such that
(a, b, c, · · · ranging over K(D))

(cmp-pres) ∀a.f(a)∈K(D′);
(add) ∀X ⊆ D.f( X) = f(X);
(Z-mon) ∀a, b.f(Z(a, b)) ⊑ Z ′(f(a), f(b))

as morphisms ZS(〈D, Z〉, 〈D′, Z ′〉). The second requirement implies that a morphism
f is continuous (only required to preserve sups for directed sets X) and strict, i.e.
f(⊥D) = ⊥D′ .

We now specialize this general framework to special zip structures.

15C.2. Definition. Let 〈D, Z〉 be a zip structure.
(i) Then 〈D, Z〉 is a lazy zip structure if the following holds.

(1) (Z-contr) a ⊑ a′ & b′ ⊑ b ⇒ Z(a′, b′) ⊑ Z(a, b);
(2) (Z-add) Z(a, b1 ⊔ b2) = Z(a, b1) ⊔ Z(a, b2);
(3) (Z-lazy) Z(⊥D,⊥D) ⊑ Z(a, b).

(ii) LZS is the full subcategory of ZS consisting of lazy zip structures.

15C.3. Definition. Let 〈D, Z〉 ∈ZS.
(i) Then 〈D, Z〉 is a natural zip structure if 〈D, Z〉 ∈LZS and moreover

(Z-bot) Z(⊥D,⊥D) = ⊥D.

(ii) NZS is the full subcategory of LZS consisting of natural zip structures.
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15C.4. Remark. Since condition (Z-bot) is stronger than (Z-lazy), D is natural if it
satisfies (Z-contr), (Z-add) and (Z-bot). In fact, (Z-bot) corresponds to (U→), and
(Z-lazy) to the weaker (Ulazy).

Strict zip structures

15C.5. Definition. Let D∈ALG. Remember that Ks(D) = K(D)− {⊥D}.
(i) A strict zip structure is of the form 〈D, Z〉, with

Z : (Ks(D)×Ks(D))→ Ks(D).
(ii) If we write Z(a, b), then it is always understood that (a, b)∈ dom(Z).
(iii) The category ZSs consists of strict zip structures as objects and as morphisms

maps f satisfying

(cmp-press) ∀a∈Ks(D).f(a)∈Ks(D′);
(add) ∀X ⊆ D.f( X) = f(X);
(Z-mon) ∀a, b.f(Z(a, b)) ⊑ Z ′(f(a), f(b)).

15C.6. Definition. (i) Let 〈D, Z〉 ∈ZSs. Then 〈D, Z〉 is called a proper strict zip struc-
ture, if it satisfies the following conditions.

(Z-contr) a ⊑ a′ & b′ ⊑ b ⇒ Z(a′, b′) ⊑ Z(a, b);
(Z-add) Z(a, b1 ⊔ b2) = Z(a, b1) ⊔ Z(a, b2).

(ii) PZSs is the full subcategory of ZSs consisting of proper strict zip structures.

15C.7. Remark. In Section 13C we introduced the names MSLU,MSL-U,TSU, TS-U for
collections of meet semi-lattices and type structures. The superscript U in these names
denotes that the structures in the relevant collections have a top element.
In Definitions 15A.9, 15C.1 and 15C.5, we introduced ALGa, ALGs

a, ZS, ZSs. The
superscript s, to be read as ‘strict’, concerns the top element of K(D)≤ (see Defini-

tion 15A.1(ii)) and suggests that we are not interested in it.

Equivalences between type and zip structures

Now we will extend the equivalences of Section 15A to the various categories of type and
zip structures. We will show the following equivalences of categories.

TSU ∼= ZS;

LTSU ∼= LZS;

NTSU ∼= NZS;

TS-U ∼= ZSs;

PTS-U ∼= PZSs.

Note that under this correspondence there is a sort of adjunction in the superscripts of
the names due to the fact that in the left-hand side of this table the presence of a top
is given explicitly, whereas in the right hand side the name indicates when we are not
interested in the top (of K(D)≤). In particular, note that TS does not correspond with
ZS.
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Since the proofs are standard, we will give the full details only for the equivalence
between TSU and ZS, whilst the other cases are done in Exercises 15E.15 and 15E.16.

Equivalence between TSU and ZS

First we see how the functors Flt and Cmp between MSLU and ALGa induce new
functors between the richer categories TSU and ZS.

15C.8. Definition. (i) For S ∈TSU, define Q(S)∈ZS by

Q(S), 〈FS , ZS〉,
with ZS : K(FS)×K(FS)→ K(FS) defined by

ZS(↑ s, ↑ t) , ↑ (s→ t).

(ii) For 〈D, Z〉 ∈ZS, define M(〈D, Z〉)∈TSU by

M(〈D, Z〉), 〈K(D),≤,∩,→Z , U〉,

with a ≤ b ⇐⇒△ b ⊑D a, a ∩ b, a ⊔D b, and U,⊥D, as in Definition 15A.17 and

a→Zb, Z(a, b).

(iii) The actions of the maps M : ZS→TSU and Q : TSU→ZS on morphisms are
defined as follows. Given f ∈TSU(S,S ′), X ∈FS and g ∈ZS(〈D, Z〉, 〈D′, Z ′〉) define

Q(f) , λX.{t | ∃s∈X.f(s) ≤ t};
M(g) , g ↾ K(D).

15C.9. Lemma. If S ∈TSU and ZS are defined as above in Definition 15C.8(i), then
〈K(FS), ZS〉 ∈ZS. Moreover if →ZS is defined for 〈K(FS), ZS〉 ∈ZS as in Defini-
tion 15C.8(ii), then

↑s→ZS↑t = ↑(s→t).
Proof. Immediate from Definition 15C.8.

15C.10. Proposition. M is a functor from ZS to TSU.

Proof. We just have to prove thatM transforms a morphism in ZS into a morphism
into TSU. Let m : 〈D, Z〉 → 〈D′, Z ′〉 be a morphism. By Lemma 15A.18 we only need
to show thatM(m) satisfies condition (m3) of Definition 13C.9. We have

M(m)(a→Zb) = m(a→Zb), by definition ofM(m),

= m(Z(a, b)), by definition of →Z ,

≥ Z ′(m(a),m(b)), since m satisfies (Z-mon),

= m(a)→Z′m(b)),

= M(m(a))→Z′M(m(b)),

= M(m)(a)→Z′M(m)(b).

15C.11. Proposition. Q is a functor from TSU to ZS.
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Proof. We have to prove that Q transforms a morphism in TSU into a morphism
in ZS. Let f ∈TSU(S,S ′) with arrows →ZS and →ZS′ corresponding to ZS and ZS′

,
respectively. By Proposition 15A.16 we only need to show that Q(f) satisfies (Z-mon).
Indeed,

Q(f)(ZS(↑ s, ↑ t)) = Q(f)(↑ (s→ZS t), by definition of ZS ,

= ↑ f(s→ZS t), by Lemma 15A.15,

⊆ ↑ (f(s)→ZS′ f(t)), since f ∈TSU(S,S ′),
= ZS′

(↑ f(s), ↑ f(t)), by definition of ZS′
,

= ZS′
(Q(f)(↑ s),Q(f)(↑ t)), by Lemma 15A.15.

Now we will prove that ZS and TSU are equivalent. To this aim we show that natural
isomorphisms Id

TS
U ≃ M ◦ Q and Q ◦ M ≃ IdZS are given by σ and τ respectively,

exactly as in the case of the equivalence between the categories MSLU and ALGa.

15C.12. Proposition. Let S be a top type structure. Let σ : S → K(FS) be the map
such that σ(s) =↑ s. Then σ is an isomorphism in TSU.

Proof. By Proposition 15A.19(i) we only need to show that σ and σ−1 commute with
arrows. Now σ is a bijection, hence the following suffices.

σ(s→ t) = ↑ (s→ t),

= ↑ s→ZS ↑ t, by Lemma 15C.9,

= σ(s)→ZSσ(t).

15C.13. Proposition. Let 〈D, Z〉 ∈ZS. Define τ : FK(D) → D by

τ(x) = x, where the sup is taken in D.
Then τ is an isomorphism in ZS.

Proof. By Proposition 15A.19(ii) we only need to show that τ and τ−1 satisfy (Z-
comm). As to τ , we have

τ(ZK(D)(↑ a, ↑ b)) = τ(↑ (a→Zb)), by definition of ZK(D),

= τ(↑ Z(a, b)), by definition of →Z ,

= (↑ Z(a, b))
= Z(a, b)

= Z( ↑ a, ↑b)
= Z(τ(↑ a), τ(↑ b)).

As to τ−1, we must show

τ−1(Z(a, b)) = ZK(D)(τ−1(a), τ−1(b)).

This follows by applying τ−1 to both sides of the equality above, using the fact that it
is one-to-one.

15C.14. Theorem. The categories TSU and ZS are equivalent.

Proof. As in Corollary 15A.20, using Propositions 15C.10-15C.13.
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15D. Zip and lambda structures

In this section we do not proceed to a direct comparison between type and lambda
structures, but put zip structures to work and compare them with lambda structures.
We will see that there is no categorical equivalence between zip and lambda structures in
the general case and how the correspondence is perfect in the lazy, natural, and proper
cases. Then, the relation between type and lambda structures will be a consequence
of combining the results of this section and the previous one. We gain clarity when
comparing lambda structures with the intermediate zip structures since both have some
components in common such as the ω-algebraic lattices and their compact elements. We
also avoid the confusion which arises with the reversed order and the use of filters when
passing from type to lambda structures or vice-versa.

Justifying morphisms in LS

This section justifies the choice of morphisms between lambda structures. We anticipated
their definitions in previous section, and in this section we substantiate that choice.

15D.1. Definition. Let 〈D, Z〉 ∈ZS.

(i) Define ΘDZ
(x, y), {b | ∃a ⊑ y.Z(a, b) ⊑ x}, for x, y ∈D.

(ii) FZS is defined as the lambda structure 〈D, FZ , GZ〉, with the two continuous
functions FZ : D → [D → D] and GZ : [D → D]→ D defined by

FZ(x) , λy. ΘDZ
(x, y);

GZ(f) , {Z(a, b) | b ⊑ f(a)}.

(iii) Moreover define ·Z : D2→D, by

x ·Z y , FZ(x)(y)

15D.2. Proposition. Let m∈ZS(〈D, Z〉, 〈D′, Z ′〉). Then mR(x′) = {x | m(x) ⊑ x′}
is the right adjoint of m and m = 〈m,mR〉 satisfies the following properties, for all
f : D → D, x∈D, x′ ∈D′:

m(GZ(f)) ⊑ G′
Z′(m ◦ f ◦mR)

FZ(m
R(x′))(x) ⊑ mR(F ′

Z′(x′)(m(x)).

Proof. In order to simplify notation, we omit all the subscripts. We have

m(G(f)) = m( {Z(a, b) | b ⊑ f(a)}
= {m(Z(a, b)) | b ⊑ f(a)}, by 15B.2(i),

⊑ {Z ′(m(a),m(b)) | b ⊑ f(a)}, by (Z-mon),

⊑ {Z ′(a′, b′) | ∃a, b.m(a) ⊑ a′ & b′ ⊑ m(b) & b ⊑ f(a)}
= {Z ′(a′, b′) | ∃a.m(a) ⊑ a′ & b′ ⊑ m(f(a))}, since f is continuous,

= {Z ′(a′, b′) | b′ ⊑ m(f(mR(a′)))}, by (Galois),

= G′(m ◦ f ◦mR).
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F (mR(x′))(x) = {b | ∃a ⊑ x.Z(a, b) ⊑ mR(x′)}
⊑ {b | ∃a ⊑ x.m(Z(a, b)) ⊑ x′}, by (Galois-2),

⊑ {b | ∃a ⊑ x.Z ′(m(a),m(b)) ⊑ x′}, by (Z-mon),

⊑ {b | ∃a′ ⊑ m(x).Z ′(a′,m(b)) ⊑ x′}
⊑ {b | m(b) ⊑ {b′ | ∃a′ ⊑ m(x).Z ′(a′, b′) ⊑ x′}}
= mR( {b′ | ∃a′ ⊑ m(x).Z ′(a′, b′) ⊑ x′}), see 15E.8,

= mR(F ′(x′)(m(x))).

We recall that the category LS has been defined in Definition 15B.6, using Definition
15B.5. Note that the conditions (lambda-gc1) and (lambda-gc2) of Definition 15B.5 are
expressed in the thesis of previous Proposition 15D.2. As a consequence, it is immediate
that FZS can be extended to a functor.

15D.3. Proposition. Given m∈ZS(〈D, Z〉, 〈D′, Z ′〉), define FZS(m) , m. Then FZS :
ZS→ LS is a functor.

Proof. We only need to show that FZS(m) = m is in LS(FZS(D),FZS(D′)), when
m∈ZS(D,D′). This follows from Proposition 15D.2.

As a consequence of last proposition, the fundamental operation A = FZS ◦ Q is
actually a functor from TSU to LS (see Theorem 15D.27). Our notion of morphism
between lambda structures guarantees the functoriality of A. In Plotkin [1993] a dif-
ferent definition of morphism between lambda structures is given: a morphism m :
〈D, F,G〉→〈D′, F ′, G′〉 between lambda structures consists of a pair of continuous func-
tions, m : D → D′ and n : D′ → D such that

m ◦G = G′ ◦ (n→m)
(m→n) ◦ F ′ = F ◦ n(4)

where n→m : [D → D] → [D′ → D′] is defined, for every f : D → D, by (n→m)(f) =
m ◦ f ◦ n : D′ → D′ (and similarly is defined n ◦m : [D′ → D′]→ [D → D]). This choice
allows to look at lambda structures as dialgebras, but does not guarantees a functorial
behavior of A in the general case.
The conditions (lambda-gc1) and (lambda-gc2) defining our notion of morphism be-

tween lambda structures arise from Proposition 15D.2 and they are obviously weaker
than (4).

Equivalence between ZS and LS?

We do not know whether the categories ZS and LS are equivalent, nor do we have a
counter example. Restricting both categories we do obtain equivalent categories, as we
will see below.

Various categories of lambda structures

15D.4. Definition. Let 〈D, F,G〉 be a lambda structure. Write

δ ,G(⊥ 7→ ⊥).
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We say that 〈D, F,G〉 is a lazy lambda structure if the following holds.

(i) (δ-comp) δ ∈K(D);
(ii) (adj1) ∀f ∈ [D → D].F (G(f)) ⊒ f ;
(iii) (adj2) ∀x∈D.δ ⊑ x ⇒ G(F (x)) ⊑ x;
(iv) (δ⊥) ∀x∈D.δ 6⊑ x ⇒ F (x) = ⊥ 7→ ⊥.

15D.5. Definition. A strict lambda structure, notation LSs, is a triple 〈D, F,G〉, where
D∈ALG, and F : D→s[D→sD] and G : [D→sD]→sD are continuous.

We now give the definition of various categories of lambda structures. This definition
is an expansion of Definition 15B.6. By sake of completeness, we repeat the definition
of the categories of lambda structures and natural lambda structures.

15D.6. Definition. (i) The category LS consists of lambda structures as objects and
lambda Galois connections as morphisms. The composition between morphisms 〈m,mR〉 :
D → D′ and 〈n, nR〉 : D′ → D′′ is given by 〈n ◦m,mR ◦ nR〉.

(ii) The category LLS is the full subcategory of LS which has as objects lazy lambda
structures.
(iii) The category of natural lambda structures, notation NLS, is the full subcategory

of LS which has as objects natural lambda structures.
(iv) The category of strict lambda structures, notation LSs, has as objects strict

lambda structures and as morphisms special Galois connections m such that m and
mR are strict.

(v) A proper lambda structure, notation PLSs is a strict lambda structure D such
that 〈G,F 〉 is a Galois connection.
(vi) PLSs is the full subcategory of LSs having as objects proper lambda structures.

We will establish the following equivalences of categories.

LZS∼= LLS;

NZS∼= NLS;

PZSs ∼= PLSs.

The three equivalences are actually isomorphisms. The first two will be proved in The-
orems 15D.18 and 15D.22. The third one will be proved in Exercise 15E.17.

Isomorphism between LZS and LLS

In this subsection we see how the correspondence between zip structures and lambda
structures becomes very smooth (an isomorphism of categories) in the case of lazy struc-
tures. We start with some technical preliminary results.

15D.7. Lemma. Let 〈D, F,G〉 be a lazy lambda structure. Then

∀f ∈ [D→D′]∀x∈D.f 6= (⊥ 7→ ⊥) ⇒ [G(f) ⊑ x ⇔ f ⊑ F (x)].
Proof. Do Exercise 15E.12.

Recall that ΘDZ
is defined in Definition 15D.1.

15D.8. Remark. Note that by (Z-contr) and (Z-add) one has in LZS
(i) ∀a∈K(D).Z(a,⊥) = Z(⊥,⊥).
(ii) ΘDZ

(x, y) 6= ∅ ⇔ ΘDZ
(x, y) is directed.
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15D.9. Lemma. Let 〈D, Z〉 ∈LZS and let a, b∈K(D), x∈D, with b 6= ⊥. Then

b ⊑ x · a ⇔ Z(a, b) ⊑ x.
Proof. (⇐) follows immediately from the definition of application.
We prove (⇒). We have

b ⊑ x · a ⇔ b ⊑ ΘDZ
(x, a),

⇒ ∃a1, b1.b ⊑ b1 & a1 ⊑ a & Z(a1, b1) ⊑ x, by Remark 15D.7,

⇒ Z(a, b) ⊑ x.
15D.10. Proposition. Let 〈D, Z〉 be a lazy zip structure. Then

(i) GZ(a 7→ b) = Z(a, b).

(ii) FZS(〈D,Z〉) = 〈D,FZ,GZ〉 is a lazy lambda structure.

Proof. (i) We have the following.

GZ(a 7→ b) = {Z(a′, b′) | b′ ⊑ (a 7→ b)a′}
= {Z(a′, b′) | a ⊑ a′ & b′ ⊑ b}, by Remark 15D.8(i),

= Z(a, b), by (Z-contr).

(ii) We prove that FZS(〈D,Z〉) satisfies the four points of Definition 15D.4. We have
G(⊥ 7→ ⊥) = Z(⊥,⊥), by (i). Therefore (δ-comp) holds, since Z(⊥,⊥) is compact.
As to (adj1), it is sufficient to reason about compact elements, and prove that for

every a, b,

b ⊑ f(a) ⇒ b ⊑ F (G(f))(a).
Notice that if b ⊑ f(a), then b∈ΘDZ

(G(f), a), so

b ⊑ ΘDZ
(G(f), a),

= G(f) · a,
= F (G(f))(a).

Now we prove (adj2). Suppose δ ⊑ x, that is Z(a,⊥) ⊑ x for every a. Since G(F (x)) =
{Z(a, b) | b ⊑ x · a}, it is enough to prove that Z(a, b) ⊑ x whenever b ⊑ x · a. There

are two cases. If b = ⊥, then the thesis follows from the hypothesis. If b 6= ⊥, then the
thesis follows from Lemma 15D.9.
Finally we prove (δ⊥). By (Z-lazy) it follows that Z(a, b) 6⊑ x, for all a, b. So

F (x)(y) = ⊥, for every y.
From Propositions 15D.10 and 15D.3 we get the following.

15D.11. Theorem. FZS restricts to a functor from LZS to LLS.

Going in the other direction, from every lazy lambda structure one can define a lazy
zip structure. Before showing that, we need to extend Lemma 15B.2(i), (ii) to lazy
lambda structures.

15D.12. Lemma. Let 〈D, F,G〉 be a lazy lambda structure. Then
(i) G is additive.
(ii) ∀f ∈K([D → D]).G(f)∈K(D).

Proof. (i) Similar to the proof of Lemma 15B.2(i).
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(ii) If f = (⊥ 7→ ⊥) then G(f)∈K(D) by Definition 15D.4(i). If on the other hand
f 6= (⊥ 7→ ⊥), then the proof is similar to that of Lemma 15B.2(ii), using Lemma
15D.7.

15D.13. Definition. Let D = 〈D, F,G〉 be a lazy lambda structure. Then we can define,
for every a, b∈K(D),

ZF,G(a, b),G(a 7→ b)

and

R(D), 〈D, ZF,G〉.
Because of Lemma 15D.12(ii), R(D) is a zip structure.

15D.14. Proposition. Let D = 〈D, F,G〉 be a lazy lambda structure. Then R(D) is a
lazy zip structure.

Proof. First of all notice that Z is well defined since by Lemma 15D.12(ii), Z(a, b) is
a compact element.
We prove (Z-contr). Let a ⊑ a′, b′ ⊑ b. Then, in [D → D], a′ 7→ b′ ⊑ a 7→ b, hence

G(a′ 7→ b′) ⊑ G(a 7→ b). By definition of Z, this implies Z(a′, b′) ⊑ Z(a, b) as desired.
We prove (Z-add). We have

Z(a, b1 ⊔ b2) = G(a 7→ (b1 ⊔ b2)), by definition,

= G(a 7→ b1) ⊔G(a 7→ b2), by Lemma 15D.12(i).

Finally, (Z-lazy) is immediate by monotonicity of G and the fact that
(⊥ 7→ ⊥) ⊑ (a 7→ b), for all a, b∈K(D).
15D.15. Lemma. Let m = 〈m,mR〉 ∈LLS(D,D′

F ′,G′), where D = 〈D, F,G〉 and D′ =

〈D′, F ′, G′〉. Define R(m),m. Then R(m)∈LZS(R(D),R(D′)).

Proof. R(m) = m satisfies (cmp-pres) and (add) by Lemma 15D.12. So we are left to
prove that m satisfies (Z-mon) , that is, for every a, b∈K(D),

m(Z(a, b)) ⊑ Z ′(m(a),m(b))

where Z = ZF,G, Z
′ = ZF ′,G′ . We have

m(Z(a, b)) = m(G(a 7→ b)), by definition of Z,
⊑ G′(m ◦ (a 7→ b) ◦mR), by Definition 15B.5(i),
= G′(m(a) 7→ m(b)), by Lemma 15B.2(iii),
= Z ′(m(a),m(b)).

From Proposition 15D.14 and Lemma 15D.15 we obtain the following.

15D.16. Theorem. R : LLS→ LZS is a functor.

Actually, R and FZS set up an isomorphism between LLS and LZS. So the corre-
spondence between LLS and LZS is perfect.

15D.17. Theorem. (i) FZS ◦ R = IdLLS.
(ii) R ◦ FZS = IdLZS.

Proof. (i) We have to prove prove that for every lazy lambda structure D = 〈D, F,G〉,
FZS(R(D)) = D. This is equivalent to prove that

FZF,G
= F, GZF,G

= G.
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The proof is left to the reader.
(ii) For every lazy zip structure
〈D, Z〉, we have that R(A(〈D, Z〉)) = 〈D, Z〉. For this aim, it is enough to prove that

ZGZ
= Z.

ZGZ
(a, b) = GZ(a 7→ b)

= Z(a, b), by Proposition 15D.10(i).

15D.18. Theorem. The categories LZS and LLS are isomorphic.

Isomorphism between NZS and NLS

In this short subsection we specialize the results of the previous subsection to natural
zip structures.
As expected, natural lambda structures are a specialization of the lazy ones: in a

lambda structure D = 〈D, F,G〉, F and G set up a Galois connection iff D is a lazy
lambda structure with δ = ⊥.
15D.19. Lemma. Let D = 〈D, F,G〉 be a lambda structure. Then D is natural (that is
〈G,F 〉 is a Galois connection) iff D is a lazy lambda structure with δ = ⊥.
15D.20. Proposition. Let 〈D, Z〉 be a natural zip structure. Then

FZS(〈D,Z〉) = 〈D,FZ,GZ〉
is a natural lambda structure.

Proof. By Lemma 15D.19, since Z(⊥,⊥) = ⊥, hence GZ(⊥ 7→ ⊥) = ⊥.
So we get the following.

15D.21. Theorem. FZS restricts to a functor from NZS to NLS.

We now prove the other direction.

15D.22. Proposition. Let D = 〈D, F,G〉 be a natural lambda structure. Then R(D) =
〈D, ZF,G〉 is a natural zip structure.

Proof. By Proposition 15D.14, we just have to prove that ZF,G(⊥,⊥) = ⊥. By Lemma
15D.19 we know that G(⊥ 7→ ⊥) = ⊥, so we are done by the definition of ZF,G.

15D.23. Corollary. R restricts to a functor from NLS to NZS.

15D.24. Theorem. The categories NLS and NZS are isomorphic.

Proof. From Theorem 15D.18 and the fact that NLS and NZS are full subcategories
of LLS and LZS respectively.

Equivalences between type and lambda structures

In this subsection we can establish the equivalences between categories of type and
lambda structures. The notion of filter structure 〈FS , FS , GS〉 over a type structure S
given in Definition 13D.5 can be seen as a functor A from TSU to LS. Since many clas-
sical models of λ-calculus are (or could be) defined as A(S) for suitable type structures
S, one fundamental question is whether it is possible to describe every lambda structure
as the filter space of a suitable type structure. In the general case, lambda structures are
not captured by type structures, and no categorical equivalence result seems possible.



528 15. Type and lambda structures

But as far as we restrict to the lazy, natural, or proper case, then the correspondence is
perfect, and assumes the shape of categorical equivalences.

15D.25. Definition. Let S ∈TSU. We define the functor Flt
TS

U analogous to the one
in Lemma 15B.8 and Theorem 15B.9.

1. For S ∈TSU, define Flt
TS

U(S), 〈FS , FS , GS〉.
2. For f ∈TSU(S,S ′), define Flt

TS
U(f), 〈Flt(f),Flt(f)R〉

15D.26. Lemma. A is the composition of Q and FZS.

Proof. Given f ∈TSU(S,S ′), it is easy to see that FZS(Q(f)) = A(f). Let S ∈TSU.
We will prove that FZS(Q(S)) = A(S). By Definitions 15C.8 and 15D.1, we have to
prove that FS = FZS and GS = GZS . Taking the suprema in FS one has

FS(X)(Y ) = ↑{↑A | ∃B ∈Y.(B→A)∈X}

= {↑A | ∃B ∈Y.↑(B→A) ⊆ X}

= {↑A | ∃↑B ⊆ Y.ZS(↑B, ↑A) ⊆ X}

= FZS (X)(Y ).

Moreover,

GS(f) = ↑{B→A | A∈ f(↑B)}

= {↑(B→A) | A∈ f(↑B)}

= {Z(↑B, ↑A) | ↑A ⊆ f(↑B)}

=GZS (f).

15D.27. Theorem. (i) A : TSU → LS is a functor.
(ii) A restricts to a functor from LTSU to LLS.
(iii) A restricts to a functor from NTSU to NLS.

Proof. (i) By Lemma 15D.26, A is a functor since it is the composition of two functors.
(ii), (iii) By Exercise 15E.15 along with Theorem 15D.11 for the lazy case, and Theo-

rem 15D.21 for the natural case.

15D.28. Theorem. Define FltNLS : LLS→ LTSU as in Definition 15B.10.

(i) Given a lazy lambda structure D, we define

FltNLS(D), 〈K(D),≤,∩,→D, U〉
(ii) Given m∈LLS(D,D′), we define

FltNLS(m),m ↾ K(D) : K(D)→ K(D′).

Then FltNLS is a functor. Moreover FltNLS restricts to a functor from NLS to NTSU.

Proof. It follows from the fact that FltNLS is a composition of R withM, which are
functors as proved in Theorem 15D.16 and Corollary 15D.23 and Exercise 15E.15, both
for the lazy and natural case.

15D.29. Theorem. The categories LTSU and LLS are equivalent.

Proof. By Theorem 15D.18 and Exercise 15E.15
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15D.30. Theorem. The categories NTSU and NLS are equivalent.

Proof. By Theorem 15D.24 and Exercise 15E.15.

15D.31. Theorem. The categories PTS-U and PLSs are equivalent.

Proof. By Exercise 15E.17 and Exercise 15E.16.

15E. Exercises

15E.1. Let S ∈TS-U. Show that
∅ ·X = ∅ for all X ∈FS

X · ∅ = ∅ for all X ∈FS .
15E.2. Let S be a natural and β-sound type structure. Show that

↑ ⋂i∈ I(si → ti)· ↑ s′ =
⋂

j ∈ J tj ,

where J = {i∈ I | s′ ≤ si}.
15E.3. Let S be a top type structure. Show that

FS(GS(⊥ 7→ ⊥)) = (⊥ 7→ ⊥) ⇔
(s1 → U) ∩ · · · ∩ (sn → U) ≤ (s′ → t′) ⇒ t′ = U.

15E.4. Let S be an arbitrary type structure. Show that
GS( i∈ I(↑ si 7→ ↑ ti)) ⊇ ↑ ⋂i∈ I(si→ti).

15E.5. Let S be a proper type structure. Show that
GS( i∈ I(↑ si 7→ ↑ ti)) = ↑ ⋂i∈ I(si→ti).

15E.6. Let S be a natural type structure. Show that GS(↑ U 7→ ↑ U) =↑ U.
15E.7. Show that in Definition 15B.1 one has: (Galois-1) & (Galois-2) ⇔ (Galois).
15E.8. Let 〈m,mR〉 : D→D′ be a Galois connection. Show that

(i) m(x) = {x′ | x ⊑ mR(x′)};
(ii) mR(x′) = {x | m(x) ⊑ x′}.

15E.9. We consider the following dual conditions to Definition 15B.5.

(lambda-gc1∗) ∀f ′ ∈ [D′ → D′].mR(G′(f ′)) ⊒ G(mR ◦ f ′ ◦m);

(lambda-gc2∗) ∀x∈D, x′ ∈D′.F ′(m(x))(x′) ⊒ m(F (x)(mR(x′))).

Prove the following equivalences.
(i) (lambda-gc1) ⇔ (lambda-gc1∗).

(ii) (lambda-gc2) ⇔ (lambda-gc2∗).

15E.10. Let f ∈NTSU(S,S ′) and f ′ ∈NTSU(S ′,S ′′). Show that

f ◦ f ′ = f ◦f ′;
f ◦ f ′R = f ′

R ◦fR;
〈Id,IdR〉 = 〈Id, Id〉, for Id = IdS : S→S.

15E.11. Let 〈m,mR〉 : D→D′ be a morphism in LS. Show the commutativity of the
following diagram
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D FK(D)
OO

m↾K(D)
R

oo

D′

mR

OO

FK(D′)oo

Note that a filter X ′ on (K(D′),≤) is a directed subset of (D′,⊑).
15E.12. Let 〈D, F,G〉 be a lazy lambda structure, f ∈ [D→D] and x∈D. Assume f 6=

⊥ 7→ ⊥. Show that
G(f) ⊑ x ⇔ f ⊑ F (x).

15E.13. Let 〈D, F,G〉 and 〈D′, F ′, G′〉 be natural lambda structures and letm = 〈m,mR〉 :
D→D′ be a Galois connection. Show that

[∀x, y ∈D.m(Fxy) ⊑ F ′(mx)(my)] ⇒
[∀f ∈ [D→D].m(Gf) ⊒ G′(m ◦ f ◦mR)].

15E.14. Let 〈D,F,G〉 and 〈D′, F ′, G′〉 be lambda structures. Assume m : D → D′ is a
bijection such that m and m−1 are continuous and the following conditions hold
for m.

m(G(f)) = G′(m ◦ f ◦m−1);
m(F (d)(e)) = F ′(m(d))(m(e)).

Prove that m induces an isomorphism of lambda structures m = 〈m,m−1〉 :
〈D, F,G〉 → 〈D′, F ′, G′〉.

15E.15. Using restrictions of the functors Q andM, prove the following equivalences of
categories:

LTSU ∼= LZS

NTSU ∼= NZS.

15E.16. Prove the following equivalences of categories:

TS-U ∼= ZSs

PTS-U ∼= PZSs

using the functors Qs andMs defined as follows.
1. For S ∈TS-U, define Qs(S)∈ZSs by Qs(S) , (FS , ZS), with ZS as in Defi-

nition 15C.8. Note that ZS : Ks(FS)×Ks(FS)→ Ks(FS).
For (D, Z)∈ZSs, defineMs(〈D, Z〉)∈TS-U by

Ms(〈D, Z〉), 〈Ks(D),≤,∩,→Z〉,
with ≤,∩,→Z as in Definition 15C.8.

2. Given f ∈TS-U(S,S ′), X ∈FS , and g ∈ZSs(〈D, Z〉, 〈D′, Z ′〉), define

Qs(f)(X) ,

{ {t | ∃s∈X.f(s) ≤ t}, if X 6= ⊥ (= ∅),
⊥, else;

Ms(g) , g ↾ K(D).
15E.17. (i) Let 〈D, Z〉 ∈ZSs. Prove that the mappings FZ and GZ given in Definition

15D.1 are strict and that FZ : D→s[D→sD] and GZ : [D→sD]→sD.
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(ii) Let 〈D, F,G〉 ∈PLSs. Show that if f 6= ⊥ 7→ ⊥ then G(f) 6= ⊥ and conclude
that ZF,G introduced in Definition 15D.13 is a mapping from Ks(D)×Ks(D)
to Ks(D).

(iii) Prove that FZS is a functor from PZSs to PLSs (see Definition 15D.1 and
Proposition 15D.3).

(iv) Prove that R is a functor from PLSs to PZSs (see Definition 15D.13 and
Lemma 15D.15).

(v) Prove that the categories PZSs and PLSs are isomorphic.





CHAPTER 16

FILTER MODELS

Filter models are models of the untyped lambda calculus where terms are interpreted
as sets of types. The domain of a filter model will be the set FT of filters as defined in
Section 13D, i.e.

[[M ]]F
T ∈FT .

The application and the abstraction will be interpreted using the functions F T and GT of
a filter structure, see Definition 13D.5. Variations on T induce different interpretations

[[ ]]F
T

on λ-terms which may or may not satisfy β-conversion. This leads to define the
following different classes of filter models.

Classes of FT Rule satisfied by [[ ]]F
T

Filter λ-model β-conversion

Filter λI-model βI-conversion

Moreover, filter models could be extensional or non-extensional depending on whether

[[ ]]F
T
satisfies η-conversion or not.

The first important property that will be proved in Section 16B is the so-called Type-
semantics Theorem. This theorem states that the interpretation of a closed term is the
set of its types. More formally, if M is closed,

[[M ]]F
T
= {A | ⊢T∩ M : A}.

A first consequence of this theorem is that the interpretation on a filter structure
satisfies β(I)(η)-conversion exactly when the type assignment system does. Hence, Fig.
41 and Fig. 42 can be easily deduced from Fig. 36 and Fig. 37, respectively.

Property of T ∈TT versus property of FT

T ∈TTU, β-sound ⇒ filter λ-model

T ∈TT-U, β-sound ⇒ filter λI-model

T ∈TTU, β-sound, natural,ηU-sound ⇒ extensional filter λ-model

T ∈TT-U, β-sound, proper,η-sound ⇒ extensional filter λI-model

Figure 41. Conditions on type theories for inducing filter models

533
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Class of filter model FT Type theory T
Extensional filter λ-model Scott,Park,CDZ,HR,DHM
Extensional filter λI-model HL
Non-extensional filter λ-model BCD,AO,Plotkin,Engeler,CDS
Non-extensional filter λI-model CDV,CD

Figure 42. Classification of filter models
Section 16B also studies representability of continuous functions (Coppo, Dezani-Cian-
caglini, Honsell, and Longo [1984], Alessi, Barbanera, and Dezani-Ciancaglini [2004]).
We prove that T is β-sound iff all continuous functions are representable in FT . At
the end of the section, we show an example of a non β-sound type theory called ABD
which induces a filter lambda model. As a consequence, not all continuous functions
are representable in FABD. This example also shows that the condition of β-soundness
does not have the full power to characterize the type theories whose type assignment is
closed under β-reduction, or equivalently, whose filter structure is a λ-model.
Section 16C shows the relation between Scott’s D∞-models (see Section 18.2 of B[1984]

for definition and properties of D∞) and filter models. It is well known that Scott’s D∞-
models are models of the lambda calculus that satisfy the recursive domain equation
D = [D → D]. The construction of D∞ does not only depend on the initial D0, but also
on the projection pair i0, j0

5 which gives the start of the D∞ construction:

i0 : D0→D1, j0 : D1→D0,

where D1 = [D0→D0]. Given the triple t = (D0, i0, j0), we write D∞ = Dt
∞ to emphasize

the dependency on t. Variations of t define different Dt
∞-models. Some instances of

t = (D0, i0, j0) have given rise to some specific filter models such as FScott and FPark, see
Scott [1972], Park [1976], Barendregt, Coppo, and Dezani-Ciancaglini [1983]. Actually
we will show that any Dt

∞ model in the category ALG of ω-algebraic complete lattices
can be described as a filter model FCDHL(t) by considering the compact elements of D0

as atomic types and defining a type theory CDHL(t) that contains both the order of
D0 and i0, see Barendregt, Coppo, and Dezani-Ciancaglini [1983], Coppo, Dezani-Cian-
caglini, Honsell, and Longo [1984], Coppo, Dezani-Ciancaglini, and Zacchi [1987], Alessi,
Dezani-Ciancaglini, and Honsell [2004]. We will first prove that

K(Dt
∞) ∼= [CDHL(t)].

Then, by Proposition 15B.13, we get our result that Dt
∞ can be described as FCDHL(t),

i.e.

Dt
∞
∼= F [CDHL(t)] ∼= FCDHL(t).

The converse is obviously not true. Filter models are in a sense weaker structures than
D∞-models. Not all of them satisfy the recursive domain equation D = [D → D] for they
can be non-extensional. If we restrict our attention to the extensional filter models of Fig.
42, then all of them, i.e. FScott, FPark, FCDZ, FHR, and FDHM, can be described as D∞

models by choosing an appropriate t, see Coppo, Dezani-Ciancaglini, and Longo [1983],

5In B[1984], Definition 18.2.1, the maps i0 and j0 are called respectively ϕ0 and ψ0.
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Coppo, Dezani-Ciancaglini, Honsell, and Longo [1984], Alessi [1991], Dezani-Ciancaglini,
Ghilezan, and Likavec [2004]. One obtains the following versions of D∞,

DScott
∞ ,DPark

∞ ,DCDZ
∞ ,DDHM

∞ and DHR
∞ .

Given T ∈ {Scott,Park,CDZ,DHM,HR}, we will associate a triple init(T ) = (D0, i0, j0)
such that CDHL(init(T )) = T . Then,

Dinit(T )
∞

∼= FCDHL(init(T )) = FT .

We will write DT
∞ := Dinit(T )

∞ . Then the equation becomes

DT
∞
∼= FCDHL(init(T )) = FT .

The pleasant fact is that T and the triple t = (D0, i0, j0) correspond to each other in
a canonical way. For each of the theories T ∈ {Scott,Park} the model DT

∞ was con-
structed first and the natural type theory T came later. For T ∈ {CDZ,DHM,HR} one
constructed this natural type theory in order to obtain the model DT

∞ satisfying certain
properties.
Although the non-extensional filter models do not satisfy D = [D → D], in some cases

it is possible to find other recursive domain equations for them, see Alessi [1991]. For
instance, the non-extensional filter model FAO satisfies the equation D = [D → D]⊥ and
FBCD satisfies the equation D = [D → D]× P(A∞).
Section 16D studies other filter models. The first model considered is AO which is

shown to be computationally adequate for the lazy operational semantics, see Abramsky
and Ong [1993]. The second one is used as an application of intersection types to prove
consistency of certain equations in the λ-calculus. Following Alessi, Dezani-Ciancaglini,
and Honsell [2001] we show that Ω := (λx.xx)(λx.xx) is an easy lambda term in the
sense of Jacopini and Venturini-Zilli: λβ ∪ {Ω = M}, is consistent for all M ∈Λ. This
has been shown in various ways, see e.g. Jacopini [1975], Baeten and Boerboom [1979]
or Mitschke’s proof in B[1984], Proposition 15.3.9. Given any λ-term M , we inductively
build natural intersection type theories ADHn(M) in such a way that the union of
these theories, called ADH(M), forces the interpretation of M to coincide with the
interpretation of Ω, i.e.

FADH(M) |=M = Ω.

Further applications of intersection types consist of necessary conditions for filter λ-
models to be sensible or semi-sensible. We will not consider this issue, see Zylberajch
[1991]. At the end of this section, we describe some graph models as filter models.

16A. Lambda models

In this Section we generalize the basic notions and properties of λ-models. That defi-
nition was given in Section 3A. We now introduce also quasi λ-models. This makes it
possible to differentiate between models for the λ-calculus and for the λI-calculus.

16A.1. Definition. (i) Let D be a set and V the set of variables of the untyped lambda
calculus. An environment in D is a total map

ρ : V→D.
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The set of environments in D is denoted by EnvD.
(ii) If ρ∈EnvD and d∈D, then ρ[x := d] is the ρ′ ∈EnvD defined by

ρ′(y) =

{
d if y = x,

ρ(y) otherwise.

Remember that an applicative structure is a pair 〈D, ·〉, consisting of a set D together
with a binary operation · : D ×D→D on it.

16A.2. Definition. (i)
(ii) A quasi λ-model is of the form

D = 〈D, ·, [[ ]]D〉,
where 〈D, ·〉 is an applicative structure and [[ ]]D : Λ× EnvD→D satisfies the following.

(1) [[x]]Dρ = ρ(x);

(2) [[MN ]]Dρ = [[M ]]Dρ · [[N ]]Dρ ;

(3) [[λx.M ]]Dρ = [[λy.M [x := y]]]Dρ , (α)

provided y /∈ FV(M);

(4) ∀d∈D.[[M ]]Dρ[x:=d] = [[N ]]Dρ[x:=d] ⇒ [[λx.M ]]Dρ = [[λx.N ]]Dρ ; (ξ)

(5) ρ ↾ FV(M) = ρ′ ↾ FV(M) ⇒ [[M ]]Dρ = [[M ]]Dρ′ .

(iii) A λ-model is a quasi λ-model which satisfies

(6) [[λx.M ]]Dρ · d = [[M ]]Dρ[x:=d] (β)

This is consistent with Definition 3A.31.

(iv) A λI-model is a quasi λ-model which satisfies

(6′) x∈FV(M) ⇒ [[λx.M ]]Dρ · d = [[M ]]Dρ[x:=d] (βI)

16A.3. Remark. As noticed by R. Hindley the present definition of λI-model requires
that every λK term have an interpretation, even though it plays no “active” role. But K
is not in the λI language (as defined by most people, e.g. Barendregt [1984] p.185). On
the other hand, this approach agrees with Church’s original λ-calculus Church [1932],
[1933], in which K was allowed in the language but not permitted to be active in redexes.

We will write simply [[ ]]ρ instead of [[ ]]Dρ when there is no danger of confusion.

We have the following implications.

D λ-model =⇒ D λI-model =⇒ D quasi λ-model.

The first class of applicative structures satisfies (β) in general, the second only for λI-
redexes and the third class does not need to satisfy (β) at all, but there is an interpre-
tation for λ-terms.

16A.4. Definition. Let D = 〈D, ·, [[ ]]〉 be a quasi λ-model.
(i) The statement M = N , for M,N untyped lambda terms, is true in D, notation

D |=M = N if

∀ρ∈EnvD.[[M ]]ρ = [[N ]]ρ.
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(ii) As usual one defines D |= χ, where χ is any statement built up using first order
predicate logic from equations between untyped lambda terms.
(iii) A λ(I)-model D is called extensional if

D |= (∀x.Mx = Nx) ⇒ M = N.

(iv) A λ(I)-model D is called an η-model if

D |= λx.Mx =M, for x /∈ FV(M). (η)

We will see now how the notions of λ(I)-model and (strict) lambda structure are related,
see Definition 15B.3 and Definition 15D.5.

16A.5. Definition. (i) Let 〈D, F,G〉 be a lambda structure, see Definition 15B.3. We
define the triple 〈D, ·F , [[ ]]F,G〉 as follows, with the intention to construct a quasi λ-
model.
• First we obtain an applicative structure by setting for d, e∈D

d ·F e, F (d)(e).

• Then the map [[ ]]F,G : Λ× EnvD → D is defined as follows.

[[x]]F,Gρ , ρ(x);

[[MN ]]F,Gρ , F ([[M ]]F,Gρ )([[N ]]F,Gρ );

[[λx.M ]]F,Gρ ,G(λλd∈D.[[M ]]F,Gρ[x:=d]),

noticing that the map λλd∈D.[[M ]]ρ[x:=d] used for [[λx.M ]]ρ is continuous.

(ii) Let 〈D, F,G〉 be a strict lambda structure. We define the triple 〈D, ·F , [[ ]]F,G〉 as
above, changing the clause for [[λx.M ]]F,Gρ into

[[λx.M ]]F,Gρ ,G(λλd∈D. if d = ⊥D then ⊥D else [[M ]]F,Gρ[x:=d]).

16A.6. Proposition. Let 〈D, F,G〉 be a (strict) lambda structure. Then
〈D, ·F , [[ ]]F,G〉 is a quasi λ-model.

Proof. Easy.

16A.7. Definition. Let 〈D, F,G〉 be a (strict) lambda structure. Then,

D = 〈D, ·F , [[ ]]F,G〉
is called the quasi λ-model induced by 〈D, F,G〉. We will sometimes omit the subscript
from ·F when there is no danger of confusion.

The only requirement that a (strict) lambda structure misses to be a λ(I)-model is the
axiom (β(I)).

16A.8. Proposition. (i) Let D = 〈D, ·F , [[ ]]F,G〉 be the quasi λ-model induced by the
lambda structure 〈D, F,G〉. Then the following statements are equivalent.

(1) D |= (λx.M)N =M [x: = N ], for all M,N ∈Λ;
(2) [[λx.M ]]F,Gρ · d = [[M ]]F,Gρ(x:=d), for all M ∈Λ and d∈D;
(3) D is a λ-model;
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(4) D |= {M = N | λβ ⊢M = N}.
(ii) Let D = 〈D, ·F , [[ ]]F,G〉 be the quasi λ-model induced by the strict lambda structure

〈D, F,G〉. Then the following statements are equivalent.

(1) D |= (λx.M)N =M [x: = N ], for all M,N ∈Λ such that x∈FV(M);

(2) [[λx.M ]]F,Gρ · d = [[M ]]F,Gρ(x:=d), for all M ∈Λ with x∈FV(M), and d∈D;
(3) D is a λI-model;

(4) D |= {M = N | λβI ⊢M = N}.

Proof. (i) (1)⇒(2). By (1) one has [[(λx.M)N ]]F,Gρ = [[M [x: = N ]]]F,Gρ . Taking N ≡ x

and ρ′ = ρ(x: = d) one obtains

[[(λx.M)x]]F,Gρ′ = [[M ]]F,Gρ′ ,

hence

[[λx.M ]]F,Gρ · d = [[M ]]F,Gρ′ ,

as ρ ↾ FV(λx.M) = ρ′ ↾ FV(λx.M).
(2)⇒(3). By (ii), Definition 16A.5 and Proposition 16A.6 all conditions for being a

λ-model are fulfilled, see Definition 16A.2.
(3)⇒(4). By Theorem 5.3.4 in B[1984].
(4)⇒(1). Trivial.

(ii) Similarly.

In Part I, Definition 10A.13, we required F ◦ G = Id[D→D] for a lambda structure to
be a lambda model. This condition implies representability of all continuous functions,
see Lemma 16B.15. The theory ABD defined in Definition 16B.19 gives rise to a lambda
model, where not all continuous functions are representable.

16A.9. Corollary. Let D be the λ(I)-model induced by the (strict) lambda structure
〈D, F,G〉. Then

D is a λ(I)η-model ⇔ D is an extensional λ(I)-model.

Proof. (⇒) Suppose that for some ρ one has for all d∈D

[[Mx]]F,Gρ[x:=d] = [[Nx]]F,Gρ[x:=d].

Then by (η) and Proposition 16A.6(ii) one has

[[M ]]F,Gρ = [[λx.Mx]]F,Gρ = [[λx.Nx]]F,Gρ = [[N ]]F,Gρ .

(⇐) Note that by (β(I)) one has D |= (λx.Mx)y = My, where x is fresh. Hence by
extensionality one has D |= λx.Mx =M.

Isomorphisms of λ-models

This section relates isomorphisms between lambda structures and lambda models.
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16A.10. Definition. We say that D and D′ are isomorphic λ-models (via m), notation
(m :) D ∼= D′, if m is a bijection and for all λ-terms M and environments ρ:

m([[M ]]Dρ ) = [[M ]]D
′

m◦ρ

16A.11. Lemma. If two λ-models D and D′ are isomorphic, then they equate the same
terms, i.e. D |=M = N ⇔ D′ |=M = N .

Proof. Easy.

Next lemma is used to prove that an isomorphism of lambda structures is also an
isomorphism of λ-models. For the converse of this lemma, see Exercise 15E.14.

16A.12. Lemma. Let m = 〈m,mR〉 : 〈D, F,G〉 → 〈D′, F ′, G′〉 be an isomorphism between
lambda structures. Then m : D → D′ is a bijective continuous map such that

(iso-ls1) m(G(f)) = G′(m ◦ f ◦mR);
(iso-ls2) m(F (d)(e)) = F ′(m(d))(m(e)).

If we write fm = m ◦ f ◦m−1 then we can reformulate these conditions as

m(G(f)) =G′(fm);

m(d ·F e) =m(d) ·F ′ m(e).

Proof. By Definition 15B.5 we get:

(lambda-gc1) ∀f ∈ [D → D].m(G(f)) ⊑ G′(m ◦ f ◦mR);
(lambda-gc2) ∀x′ ∈D′, x∈D.F (mR(x′))(x) ⊑ mR(F ′(x′)(m(x))).

As to (iso-ls1). Since m is an isomorphism, we have that besides the lambda Galois
connection

〈m,mR〉 : D → D′,

there is another lambda Galois connection m−1, which we call n = 〈n, nR〉 : D′ → D such
that

n ◦m = 〈IdD, IdD〉,
m ◦ n = 〈IdD′ , IdD′〉.

Using composition between Galois connections, this amounts to saying

n ◦m = IdD,
mR ◦ nR = IdD,
m ◦ n = IdD′ ,
nR ◦mR = IdD′ .

(1)

Looking at (1), we see that compositions of m and n give the identities. So n =
m−1. This implies that n is a right adjoint of m. But the right adjoint is unique,
so m−1 = n = mR. For the same reason nR = m. Therefore we have proved that
(m−1 = n =)〈n, nR〉 = 〈mR,m〉. Note that, as n is a lambda Galois connection, we have
that {

mR is (also) the left adjoint of m, and
m is (also) the right adjoint of mR.

(2)

We are now in the position to prove (1). The inequality

m(G(f)) ⊑ G′(m ◦ f ◦mR)



540 16. Filter models

is (lambda-gc1). As to the other inequality, first of all note that, exploiting (2), we
have that conditions (lambda-gc1) and (lambda-gc2) induce, for any f ′ : D′ → D′, and
x∈D, x′ ∈D′,

mR(G′(f ′)) ⊑ G(mR ◦ f ′ ◦m),
F ′(m(x))(x′) ⊑ m(F (x)(mR(x′))).

(3)

So we have

G′(m ◦ f ◦mR) = m ◦mR ◦G′(m ◦ f ◦mR), by (1),

⊑ m ◦G(mR ◦m ◦ f ◦mR ◦m), f ′ = m ◦ f ◦mR in (b),

= m ◦G(f), since mR = m−1.

Therefore we have proved m(G(f)) = G′(m ◦ f ◦m−1).
As to (iso-ls2). Notice that m(F (d))(e) ⊑ F ′(m(d))(m(e)), since

m(F (d))(e) = m(F (mR(m(d)))(e)), by (1),

⊑ m(mR(F ′(m(d))(m(e)))), by (lambda-gc2),

= F ′(m(d))(m(e)), by (1).

On the other hand, we have also F ′(m(d))(m(e)) ⊑ m(F (d)(e)). In fact

F ′(m(d))(m(e)) ⊑ m(F (d)(mR(m(e)))), by (3),
= m(F (d)(e)), by (1).

The following proposition will be used in Corollary 16C.31 to prove that the models
D∞ and FScott equate the same terms.

16A.13. Proposition. Let D and D′ be isomorphic as lambda structures. Then

(i) D and D′ are isomorphic as λ-models.
(ii) They equate the same terms, i.e. D |=M = N ⇔ D′ |=M = N .

Proof. (i) By induction on M using Lemma 16A.12.
(ii) Using (i) and Lemma 16A.11.

16B. Filter models

In this section, we define the notion of filter model and prove that the interpretation of
a term is the set of its types (Type-semantics Theorem). Using this theorem and the
results in Chapter 14, we study which conditions have to be imposed on a type theory
to induce a filter model. At the end of this section we also study representability of
continuous functions.

16B.1. Definition. Let T ∈TT. The filter quasi λ-model of T is a quasi λ-model,

denoted by FT , where [[ ]]F
T

: Λ× EnvFT→FT is defined by

[[x]]F
T

ρ , ρ(x);

[[MN ]]F
T

ρ , ↑{B ∈TTT | ∃A∈ [[N ]]F
T

ρ .(A→B)∈ [[M ]]F
T

ρ };
[[λx.M ]]F

T

ρ , ↑{A→B | B ∈ [[M ]]F
T

ρ[x:=↑A]}.
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The notion of filter structure 〈FT , F T , GT 〉 given in Definition 13D.5 contains two op-
erations F T and GT that can be used to interpret application and abstraction. These
operations coincide with the way application and abstraction are interpreted in Defini-
tion 16B.1. This leads to the following lemma:

16B.2. Lemma. Let T ∈TT. The filter structure 〈FT , F T , GT 〉 induces a quasi λ-model
which coincides with the notion of filter quasi λ-model given in Definition 16B.1.

Proof. Note first that the filter structure 〈FT , F T , GT 〉 is a lambda structure by
Definition 15B.3 and the Remark just after 13D.5. In case T ∈TT-U, we have that
〈FT , F T , GT 〉 is also a strict lambda structure, i.e.

F T ∈ [FT→s[FT→sFT ]] and GT ∈ [[FT→sFT ]→sFT ],

see Definition 15D.5. Hence 〈FT , F T , GT 〉 induces a quasi λ-model, by Proposition

16A.6. It is easy to see that [[ ]]F
T ,GT

= [[ ]]F
T

.

We now define two classes of filter models: filter λ-models and filter λI-models.

16B.3. Definition. (i) Let T ∈TTU. We say that FT is a filter model if the filter quasi

λ-model FT = 〈FT , ·, [[ ]]F
T 〉 is a λ-model.

(ii) Let T ∈TT-U. We say that FT is a filter model for λI if the filter quasi λ-model

FT = 〈FT , ·, [[ ]]F
T 〉 is a λI-model.

16B.4. Proposition. (i) Let T ∈TTU. Then FT is a filter λ-model iff for all M,N ∈Λ

[[(λx.M)N ]]F
T

ρ = [[M [x := N ]]]F
T

ρ .

(ii) Let T ∈TT-U. Then FT is a filter λI-model iff for all M,N ∈Λ

x∈FV(M) ⇒ [[(λx.M)N ]]F
T

ρ = [[M [x := N ]]]F
T

ρ .

Proof. Both equivalences follow from Proposition 16A.8.

The following Type-semantics Theorem 16B.7 is important. It has as consequence
that for a closed untyped lambda term M and a T ∈TT one has

[[M ]]F
T

= {A | ⊢T∩ M : A},
i.e. the semantical meaning of M is the collection of its types.

16B.5. Definition. Let Γ be a context and ρ∈EnvFT . Then Γ agrees ρ, notation Γ |= ρ,
if

(x : A)∈Γ ⇒ A∈ ρ(x).
16B.6. Proposition. (i) Γ |= ρ & Γ′ |= ρ ⇒ Γ ⊎ Γ′ |= ρ.

(ii) Γ |= ρ[x :=↑ A] ⇒ Γ\x |= ρ.

Proof. Immediate.

16B.7. Theorem (Type-semantics Theorem). Let T ∈TT and 〈FT , ·, [[ ]]F
T 〉 its corre-

sponding filter quasi λ-model. Then, for any M ∈Λ and ρ∈EnvFT ,

[[M ]]F
T

ρ = {A | Γ ⊢T∩ M : A for some Γ |= ρ}.
Proof. We have two cases:
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(i) Let T ∈TTU. By induction on the structure of M .
Case M ≡ x. Then

[[M ]]F
T

ρ = ρ(x)

= {A | A∈ ρ(x)}
= {A | A∈ ρ(x) & x : A ⊢T∩ x : A}
= {A | Γ ⊢T∩ x : A for some Γ |= ρ},

by Definition 16B.5 and the Inversion Lemma 14A.1(i).

Case M ≡ NL. Then
[[M ]]F

T

ρ = [[N ]]F
T

ρ · [[L]]FT

ρ

= ↑{A | ∃B ∈ [[L]]FT

ρ .(B → A)∈ [[N ]]F
T

ρ }

= {A | ∃k>0∃B1, · · · ,Bk, C1, · · · ,Ck.

[ (Bi→Ci)∈ [[N ]]F
T

ρ & Bi ∈ [[L]]F
T

ρ & (
⋂

1≤i≤k Ci) ≤ A]} ∪ ↑{U},
by definition of ↑,

= {A | ∃k>0∃B1, · · · ,Bk, C1, · · · ,Ck,Γ1, · · · ,Γk,∆1, · · · ,∆k

[Γi,∆i |= ρ & Γi ⊢T∩ N : (Bi→Ci)

& ∆i ⊢T∩ L : Bi & C1 ∩ · · · ∩ Ck ≤ A]} ∪ ↑{U},
by the induction hypothesis,

= {A | Γ ⊢T∩ NL : A for some Γ |= ρ},
taking Γ = Γ1 ⊎ · · · ⊎ Γk ⊎ · · · ⊎∆1 ⊎ · · · ⊎∆k,

by Theorem 14A.1(ii) and Proposition 16B.6(i).

Case M ≡ λx.N . Then

[[λx.N ]]F
T

ρ = GT (λλX ∈FT .[[N ]]F
T

ρ[x:=X]

= ↑ {(B→C) | C ∈ [[N ]]F
T

ρ[x:=↑B]}

= {A | ∃k>0∃B1, · · · ,Bk, C1, · · · ,Ck,Γ1, · · · ,Γk[Γi |= ρ[x: = ↑Bi]

& Γi, x:Bi ⊢T∩ N : Ci & (B1→C1) ∩ · · · ∩ (Bk→Ck) ≤ A]},

by the induction hypothesis,

= {A | Γ ⊢T∩ λx.N : A for some Γ |= ρ},

taking Γ = (Γ1 ⊎ · · · ⊎ Γk)\x, by Theorem 14A.1(iii), rule (≤)

and Proposition 16B.6.

(ii) Let T ∈TT-U. Similarly. Note that in the case M = NL we drop ‘∪↑{U}’ both
times.
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16B.8. Corollary. (i) Let T ∈TTU. Then

FT is a filter λ-model ⇔ [Γ ⊢T∩ (λx.M) : (B→A) ⇒ Γ, x:B ⊢T∩ M : A].

(ii) Let T ∈TT-U. Then

FT is a filter λI-model ⇔
[Γ ⊢T∩ (λx.M) : (B→A) & x∈FV(M) ⇒ Γ, x:B ⊢T∩ M : A].

Proof. (i) By Propositions 16B.4(i), 14B.1(i) and Corollary 14B.5(i).
(ii) By Propositions 16B.4(ii), 14B.1(ii) and Corollary 14B.5(ii).

16B.9. Corollary. (i) Let T ∈TTU. Then

T is β-sound ⇒ FT is a filter λ-model.

(ii) Let T ∈TT-U. Then

T is β-sound ⇒ FT is a filter λI-model.

Proof. By the Corollary above and Theorem 14A.9(iii).

16B.10. Corollary. (i) Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,AO,
Plotkin,Engeler,CDS}. Then

FT is a filter λ-model.

(ii) Let T ∈ {HL,CDV,CD}. Then
FT is a filter λI-model.

Proof. (i) By (i) of the previous Corollary and Theorem 14A.7.
(ii) By (ii) of the Corollary, using Theorem 14A.7.

16B.11. Proposition. (i) Let T ∈TTU. Then

T is natural and β- and ηU-sound ⇒ FT is an extensional filter λ-model.

(ii) Let T ∈TT-U. Then

T is proper and β- and η-sound ⇒ FT is an extensional filter λI-model.

Proof. (i) and (ii). FT is a λ(I)-model by Corollary 16B.9(i)((ii)). As to extensionality
it suffices by Corollary 16A.9 to verify for x /∈ FV(M) that

[[λx.Mx]]ρ = [[M ]]ρ. (η)

This follows from Theorems 16B.7, and 14B.15.

16B.12. Corollary. (i) Let T ∈ {Scott,Park,CDZ,HR,DHM}. Then

FT is an extensional filter λ-model.

(ii) Let T = HL. Then

FT is an extensional filter λI-model.

Proof. (i) and (ii) follow from Corollary 14B.13.
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As shown in Meyer [1982], see also B[1984] Ch.4, a lambda structure D is a λ-model
provided that there are elements K, S, ε∈D, satisfying certain properties. Thus, a
condition for being a filter λ-model can be obtained by simply requiring the existence of
such elements. This yields a characterization of the natural type theories which induce
λ-models. See Alessi [1991] for the rather technical proof.

16B.13. Theorem. Let T ∈NTTU.
(i) The filter structure FT is a filter λ-model if and only if the following three con-

ditions are fulfilled in T .
(K) For all C,E one has

C ≤ E ⇔ ∀D ∃k ≥ 1, A1, · · · ,Ak, B1, · · · ,Bk.
(A1 → B1 → A1) ∩ · · · ∩ (Ak → Bk → Ak) ≤ C → D → E.

(S) For all D,E, F,G one has

∃H.[E ≤ F → H & D ≤ F → H → G] ⇔

∃k ≥ 1, A1, · · · ,Ak, B1, · · · ,Bk, C1, · · · ,Ck.
[((A1 → B1 → C1)→ (A1 → B1)→ A1 → C1)∩
· · ·
∩((Ak → Bk → Ck)→ (Ak → Bk)→ Ak → Ck)] ≤ D → E → F → G


.

(ε) For all C,D one has
[
∃k ≥ 1, A1, · · · ,Ak, B1, · · · ,Bk.
((A1 → B1)→ A1 → B1) ∩ · · · ∩ ((Ak → Bk)→ Ak → Bk) ≤ (C → D)

]
⇔

∃m ≥ 1, E1, · · · ,Em, F1, · · · ,Fm.C ≤ (E1 → F1) ∩ · · · ∩ (Em → Fm) ≤ D.
(ii) The structure FT is an extensional filter λ-model iff the third condition above is

replaced by the following two.

(ε1) ∀A ∃k ≥ 1, A1, · · · ,Ak, B1, · · · ,Bk.A = (A1 → B1) ∩ · · · ∩ (Ak → Bk);

(ε2) ∀A,B ∃k ≥ 1, A1, · · · ,Ak.[(A1 → A1) ∩ · · · ∩ (Ak → Ak) ≤ (A→ B)

⇔ A ≤ B].

Representability of continuous functions

In this subsection following Alessi, Barbanera, and Dezani-Ciancaglini [2004] we will
isolate a number of conditions on a T ∈NTTU to characterize properties of the set of
representable functions in 〈FT , F T , GT 〉, i.e. the set of functions in the image of F T .

16B.14. Definition. A function f : D → D is called representable in the lambda struc-
ture 〈D, F,G〉 if f = F (d) for some d∈D.
Note that since F : D→[D→D], all representable functions are continuous.

16B.15. Lemma. Let T ∈NTTU and let f ∈ [FT→FT ]. Then

f is representable in 〈FT , F T , GT 〉 ⇔ F T ◦GT (f) = f.

Proof. (⇐) Trivial. (⇒) Suppose f = F T (X). Claim F T (GT (F T (X))) = F T (X).
One has GT (F T (X)) = ↑{A→B | A→B ∈X}. Hence

A→B ∈GT (F T (X)) ⇔ A→B ∈X.



16B. Filter models 545

So ∀Y.F T (GT (F T (X)))(Y ) = F T (X)(Y ), hence F T (GT (f)) = f .

16B.16. Lemma. Let T ∈NTTU. Let A,B ∈TTT . Then

GT (↑A⇒ ↑B) = ↑(A→B).

Proof.

GT (↑A⇒ ↑B) = ↑{(C→D) | D∈ (↑A⇒ ↑B)(↑C)}

= ↑(A→B).

In the last step the inclusion ⊇ is trivial: (A→B) is one of the C→D. Now suppose
C→D is such that D∈ (↑A⇒ ↑B)(↑C). Then there are two cases. Case ↑A ⊆ ↑C. This
means C ≤ A, so (↑A ⇒ ↑B)(↑C) = ↑B, so D ≥ B. Hence in this case A→B ≤ C→D
by rule (→). Case ↑A 6⊆ ↑C. Then D = U, hence C→D = U, by rules (→), (U→), and
again A→B ≤ C→D. Therefore also ⊆ holds in the last equation.

16B.17. Lemma. Let T ∈NTTU and define the function h : FT → FT by

h, (↑A1 ⇒ ↑B1) ⊔ · · · ⊔ (↑An ⇒ ↑Bn).

Then, for all C ∈TTT we have that
(i) h(↑C) = {D | ∃k ≥ 1∃i1 · · · ik.

[Bi1 ∩ · · · ∩Bik ≤ D & C ≤ Ai1 ∩ · · · ∩Aik ]} ∪ ↑{U}.

(ii) (F T ◦GT )(h)(↑C) = {D | (A1→B1) ∩ · · · ∩ (An→Bn) ≤ (C→D)}.
Proof. (i) h(↑C) = {↑Bi | ↑Ai ⊆ ↑C & 1 ≤ i ≤ n}

= ↑Bi1 ⊔ · · · ⊔ ↑Bik

for {i1, · · · ik} = {i | C ≤ Ai&1 ≤ i ≤ n}
= ↑(Bi1 ∩ · · · ∩Bik) ∪ ↑U, by Proposition 13D.4(iii),

= {D | ∃k ≥ 1∃i1 · · · ik.
Bi1 ∩ · · · ∩Bik ≤ D & C ≤ Ai1 ∩ · · · ∩Aik} ∪ ↑{U}.

(ii) (F T ◦GT )(h)(↑C) =

= F T (GT (↑A1 ⇒ ↑B1) ⊔ · · · ⊔GT (↑An ⇒ ↑Bn))(↑C), by Lemma 15B.2(ii),

= F T (↑(A1→B1) ⊔ · · · ⊔ ↑(An→Bn))(↑C), by Lemma 16B.16,

= F T (↑((A1→B1) ∩ · · · ∩ (An→Bn)))(↑C), by Proposition 13D.4(iii),

= {D | ∃E ∈↑C.(E→D)∈↑((A1→B1) ∩ · · · ∩ (An→Bn))},
see Definition 13D.5(ii),

= {D | ∃E ≥ C.(A1→B1) ∩ · · · ∩ (An→Bn) ≤ (E→D)}
= {D | (A1→B1) ∩ · · · ∩ (An→Bn) ≤ (C→D)}, by (→).

Notation. We define the function KT ∈FT→FT→FT as

KT , λλX ∈FT .λλY ∈FT .X.

For each X ∈FT , KT (X) is a constant function in [FT→FT ].

16B.18. Theorem. Let T ∈NTTU. Let RR ⊆ [FT→FT ] be the set of representable func-
tions in 〈FT , F T , GT 〉. Then we have the following.
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(i) RR contains the bottom function KT (⊥FT ) iff for all C,D

U ≤ C→D ⇒ U ≤ D.

(ii) RR contains all constant functions iff for all B,C,D

U→B ≤ C→D ⇒ B ≤ D.

(iii) RR contains all continuous step functions iff for all A,B,C,D

A→B ≤ C→D & D 6= U ⇒ C ≤ A & B ≤ D.

(iv) RR contains (i.e. is the set of) all continuous functions iff T is β-sound.

Proof. (i) Assume that KT (⊥FT )∈RR. Then F T (GT (KT (⊥FT ))) = KT (⊥FT ), by
Lemma 16B.15. Observe that

GT (KT (⊥FT )) = ↑{A→U | A∈TT}, by Definition 13D.5(i),

= ↑U, since T is natural.

Hence F T (⊥FT ) = KT (⊥FT ), so in particular F T (⊥FT )(↑C) = ⊥FT , and hence

{D | U ≤ D} = ↑U = ⊥FT

= F T (⊥FT )(↑C)
= F T (↑U)(↑C)
= {D | U ≤ (C→D)}, by Definition 13D.5(i).

But then U ≤ C→D ⇒ U ≤ D.
(⇐) Suppose U ≤ C→D ⇒ U ≤ D. We show that F T (⊥FT ) = KT (⊥FT ). Indeed,

F T (⊥FT )(X) = {B | ∃A∈X.(A→B)∈⊥FT }
= {B | ∃A∈X.(A→B)∈↑U}
= {B | ∃A∈X.U ≤ (A→B)}
= {B | U ≤ B}, by the assumption,

= ↑U = ⊥FT .

(ii) Suppose that U→B ≤ C→D ⇒ B ≤ D. We first show that each compact
constant function KT (↑B) is represented by ↑(U→B). Indeed,

D∈↑(U→B) · ↑C ⇔ C→D∈↑(U→B), by (→),

⇔ U→B ≤ C→D
⇔ B ≤ D, using the assumption,

⇔ D∈↑B = KT (↑B) (↑C).

Now we show that an arbitrary constant function KT (X) is representable. Then X =⋃{↑B | B ∈X}, where {↑B | B ∈X} is directed. Notice that KT (X) = B ∈X KT (↑B).
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Therefore by the representability of KT (↑B) just proved, Lemma 16B.15 and the conti-
nuity of F T ◦GT we get

KT (X) =
B ∈X

KT (↑B)

=
B ∈X

(F T ◦GT )(KT (↑B))

= (F T ◦GT )(
B ∈X

KT (↑B))

= (F T ◦GT )(KT (X)),

hence again by Lemma 16B.15 the constant map KT (X) is representable.
Conversely, suppose that all constant functions are representable. Then F T ◦GT (KT (↑B)) =

KT (↑B), by Lemma 16B.15. Therefore

U→B ≤ C→D ⇒ (C→D)∈↑(U→B)

⇒ D∈↑(U→B) · ↑C
⇒ D∈ ((F T ◦GT )(KT (↑B)))(↑C),

since ↑(U→B) ⊆ KT (↑B) by (→) and (U),

⇒ D∈ (KT (↑B))(↑C) = ↑B
⇒ B ≤ D.

(iii) (⇒) Suppose all continuous step functions are representable. Suppose A→B ≤
C→D, D 6= U. Take h = ↑A⇒ ↑B. By Lemma 16B.17(ii) we have

(F T ◦GT )(h)(↑C) = {E | A→B ≤ C→E}
h(↑C) = {E | B ≤ E & C ≤ A} ∪ ↑U.

By the first assumption these two sets are equal. By the second assumption it follows
that C ≤ A & B ≤ D.
(⇐) Let h = X ⇒ Y be continuous. We have to show that

(F T ◦GT )(h) = h.(4)

By Lemma 15A.3(ii) it suffices to show this for compact h. If Y 6= ⊥FT , then by 15A.6
both X,Y are compact, so h = ↑A→↑B. Then (4) holds by Lemma 16B.17 and the
assumption. If Y = ⊥FT , then h is the bottom function and hence representable (the
assumption in (iii) implies the assumption in (i)).
(iv) Let T ∈NTT. Let h∈K([FT→FT ]). By Proposition 15A.8(ii) it follows that for

some A1, · · · ,An, B1, · · · ,Bn ∈T
h = (↑A1 ⇒ ↑B1) ⊔ · · · ⊔ (↑An ⇒ ↑Bn),

as a finite element of FT is of the form ↑A.
(⇒) Suppose all continuous functions are representable. Then since h above is con-

tinuous and by Lemma 16B.15, one has

(F T ◦GT )(h)(↑C) = h(↑C).
It follows from Lemma 16B.17(i),(ii) that T is β-sound.
(⇐) Suppose T is β-sound. Again by Lemma 16B.17 for a compact continuous function

h one has that (F T ◦ GT )(h) and h coincide on the compact elements ↑C. Therefore
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by Proposition 15A.3 they coincide everywhere. But then it follows again that f =
(F T ◦GT )(f) for every continuous f : FT→FT . Hence Lemma 16B.15 applies.

To induce a filter model β-soundness is not necessary

The intersection type theories T ∈ {Scott,Park,BCD,CDZ,HR,AO,DHM} all induce
filter λ-models, by Corollary 16B.10(i). These type theories are all natural and β-sound.
Therefore by Theorem 16B.18(iv) all continuous functions are representable in these FT .
In Sections 16C and 16D we will give many more filter λ-models arising from domain
models. It is therefore interesting to ask whether there exist filter λ-models where not all
continuous functions are representable. We answer affirmatively, and end this section by
giving an example of a natural type theory ABD that is not β-sound and nevertheless,

it induces a filter λ-model FABD. Therefore by the same theorem not all continuous
functions are representable in FABD. The model builds on an idea in Coppo, Dezani-
Ciancaglini, Honsell, and Longo [1984]. In Exercise 16E.4 another such model, due to
Alessi [1993], is constructed. See also Alessi, Barbanera, and Dezani-Ciancaglini [2004].

The theory ABD

16B.19. Definition. Let AABD , {U,♦,♥} . We define ABD as the smallest natural
type theory 6 that contains the axiom (♦) where

(♦) A ≤ABD A[♦ := ♥].
16B.20. Lemma. (i) A ≤ABD B ⇒ A[♦ := ♥] ≤ABD B[♦ := ♥].

(ii) Γ ⊢ABD M : A ⇒ Γ[♦ := ♥] ⊢ABD M : A[♦ := ♥].
(iii) Γ,Γ′ ⊢ABD M : A ⇒ Γ,Γ′[♦ := ♥] ⊢ABD M : A[♦ := ♥].
(iv) Γ, x:Ai ⊢ABD M : Bi for 1 ≤ i ≤ n &

(A1→B1) ∩ · · · ∩ (An→Bn) ≤ABD C→D ⇒ Γ, x:C ⊢ABD M : D.

Proof. (i) By induction on the definition of ≤ABD.

(ii) By induction on derivations using (i) for rule (≤ABD).

(iii) From (ii) and rule (≤ABD-L), taking into account that if (x:B)∈Γ,
then (x:B[♦ := ♥])∈Γ[♦ := ♥] and B ≤ABD B[♦ := ♥].
(iv) Let α1, · · · ,αn, α

′
1, · · · ,α′

n′ ∈AABD. We show by induction on
the definition of ≤ABD that if the following statements hold

A ≤ABD A′,

A = α1 ∩ · · · ∩ αn ∩ (B1→C1) ∩ · · · ∩ (Bk→Ck),

A′ = α′
1 ∩ · · · ∩ α′

n′ ∩ (B′
1→C ′

1) ∩ · · · ∩ (B′
k′→C ′

k′),

Γ, x:Bi ⊢ABD M : Ci ∀i∈{1, · · · , k},
then

Γ, x:B′
j ⊢ABD M : C ′

j ∀j ∈{1, · · · , k′}.
6ABD contains the axioms and rules of Definitions 13A.3 and 13A.18.
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The only interesting case is when the applied rule is (♦), i.e. we have

A ≤ABD A[♦ := ♥];
A = α1 ∩ · · · ∩ αn ∩ (B1→C1) ∩ · · · ∩ (Bk→Ck);

A′ = A[♦ := ♥].

By hypothesis Γ, x:Bi ⊢ABD M : Ci for all i∈{1, · · · , k}, so we are done by (iii).

16B.21. Theorem. (i) ABD is a TT that is not β-sound.

(ii) Nevertheless FABD is a filter λ-model.

Proof. (i) By definition ABD is a TT. We have ♦→♦ ≤ABD ♥→♥, but ♥ 6≤ABD ♦,
so it is not β-sound.

(ii) To show that FABD is a λ-model, it suffices, by Proposition 16B.8, to verify that

Γ ⊢ABD λx.M : A→B ⇒ Γ, x:A ⊢ABD M : B. Suppose that Γ ⊢ABD λx.M : A→B. By
Lemma 14A.1(iii), there are C1, · · · ,Cn, D1, · · · ,Dn such that

(C1→D1) ∩ · · · ∩ (Cn→Dn) ≤ABD A→B
∀i∈{1, · · · , n}Γ, x:Ci ⊢ABD M : Di.

So, we are done by Lemma 16B.20(iv).

For example the step function ↑♦ ⇒ ↑♦ is not representable in FABD.

16C. D∞ models as filter models

This section shows the connection between filter models and D∞ models, see Scott [1972]
or B[1984]. We will work in the category ALG of ω-algebraic complete lattices and Scott-
continuous maps. In other categories such as the one of Scott domains or stable sets,
filter models do not capture the D∞-models in their full generality.

D∞ models

This subsection recalls some basic concepts of the standard D∞ construction and fixes
some notations, see Scott [1972], B[1984], Gierz, Hofmann, Keimel, Lawson, Mislove,
and Scott [1980]. See also Definition 10C.1, where the construction is given in a more
categorical setting.
In the following of this subsection we will recall main definitions and results presented

in Section 18.2 of B[1984].

16C.1. Definition. (i) Let D0 be an ω-algebraic complete lattice and

〈i0, j0〉

be an embedding-projection pair between D0 and [D0→D0], i.e.

i0 :D0→[D0→D0]

j0 : [D0→D0]→D0
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are Scott continuous maps satisfying

i0 ◦ j0 ⊑ Id[D0→D0]

j0 ◦ i0 = IdD0 .

(ii) Define a tower 〈in, jn〉 : Dn→Dn+1 in the following way:
• Dn+1 = [Dn→Dn];
• in(f) = in−1 ◦ f ◦ jn−1 for any f ∈Dn;
• jn(g) = jn−1 ◦ g ◦ in−1 for any g ∈Dn+1.
(iii) For d∈Πn∈NDn write dn = d(n). The set D∞ is defined by

D∞ = {d∈Πn∈NDn | ∀n∈N. dn ∈Dn & jn(dn+1) = dn},
Notation. dn denotes the projection on Dn, while d

n is an element of Dn.

16C.2. Definition. (i) The ordering on D∞ is given by
d ⊑ e ⇐⇒△ ∀k∈N. dk ⊑ ek.

(ii) Let 〈Φm∞,Φ∞m〉 denote the standard embedding-projection pair between Dm

and D∞ defined as follows. For dm ∈Dm, d∈D∞ write

Φmn(d
m) ,





jn(· · · (jm−1(d
m))), if m > n;

dm if m = n;
in−1(· · · (im(dm))), if m < n;

and take

Φm∞(dm) , 〈Φm0(d
m),Φm1(d

m), · · · ,Φmn(d
m), · · · 〉;

Φ∞m(d) , dm = d(m).

16C.3. Lemma. X exists for all X ⊆ D∞.

Proof. Let dn = {xn|x∈X};
en = {Φmn(d

m)|m∈N}.
The set {Φmn(d

m)|m∈N} is directed by monotonicity of im, jm, and the fact that im◦jm ⊑
IdDm+1 and jm ◦ im = IdDm . Define

X = λn∈N.en.
Then, by continuity of jn, we have that X ∈D∞, if X 6= ∅. If X = ∅, then the
continuity cannot be applied, but ∅ = λλn∈N.⊥Dn (use in(⊥Dn) = ⊥Dn+1 so that
jn+1(⊥Dn+1) = ⊥Dn).

16C.4. Lemma. (i) in ◦ jn ⊑ Id[Dn→Dn], jn ◦ in = IdDn.
(ii) ∀p, q ∈Dn [in+1(p 7→ q) = (in(p) 7→ in(q)) &

jn+1(in(p) 7→ in(q)) = (p 7→ q)].
(iii) Φm∞ ◦ Φ∞m ⊑ Id∞ and Φ∞m ◦ Φm∞ = IdDm.
(iv) ∀e∈K(Dn) [in(e)∈K(Dn+1)].
(v) ∀e∈K(Dn) [m ≥ n⇒ Φnm(e)∈K(Dm)].
(vi) ∀e∈K(Dn) [Φn∞(e)∈K(D∞)].
(vii) If n ≤ k ≤ m and d∈Dn, e∈Dk, then

Φnk(d) ⊑ e ⇔ Φnm(d) ⊑ Φkm(e) ⇔ Φn∞(d) ⊑ Φk∞(e).

(viii) Φmn = Φ∞n ◦ Φm∞.
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(ix) ∀a, b∈Dn [(Φn∞(a) 7→ Φn∞(b)) = Φn∞ ◦ (a 7→ b) ◦ Φ∞n].

Proof. (i) and (ii): By induction on n.
(iii) follows from (i).
(iv) and (v) and (vi): By Lemma 15B.2(ii), observing that the following pairs are all

Galois connections:

1. 〈in, jn〉;
2. 〈Φnm,Φmn〉 for n ≤ m;
3. 〈Φn∞,Φ∞n〉.

(ix) follows from 15B.2(iii).

16C.5. Lemma. n∈NΦn∞ ◦ Φ∞n = IdD∞.

Proof. Since 〈Φn∞,Φ∞n〉 is an embedding-projection pair, we have for all n∈N Φn∞ ◦
Φ∞n ⊑ IdD∞ , hence for all d∈D∞

n∈N
Φn∞ ◦ Φ∞n(d) ⊑ d.

On the other hand, for all k∈N, we have

( n∈N Φn∞ ◦ Φ∞n(d))k ⊒ (Φk∞ ◦ Φ∞k(d))k, because (−)k is monotone,
= Φ∞k(d), as ∀x∈Dk.(Φk∞(x))k = x,
= dk.

Therefore also

n∈N
Φn∞ ◦ Φ∞n(d) ⊒ d,

and we are done.

Next lemma characterizes the compact elements of D∞ and [D∞→D∞].

16C.6. Lemma. (i) d∈K(D∞) ⇔ ∃k, e∈K(Dk).Φk∞(e) = d.
(ii) f ∈K([D∞→D∞]) ⇔ ∃k, g ∈K(Dk+1).f = Φk∞ ◦ g ◦ Φ∞k.

Proof. (i) (⇒) Let d∈K(D∞). Then d = n∈NΦn∞(dn), by Lemma 16C.5. Since d
is compact, there exists k∈N such that d = Φk∞(dk). Now we prove that dk ∈K(Dk).
Let X ⊆ Dk be directed. Then

dk ⊑ X ⇒ d ⊑ Φk∞( X)

⇒ d ⊑ Φk∞(X), since Φk∞ is continuous,

⇒ ∃x∈X.d ⊑ Φk∞(x), for some k since d is compact,

⇒ Φ∞k(d) ⊑ Φ∞k ◦ Φk∞(x)

⇒ dk ⊑ x.
This proves that dk ∈K(Dk). (⇐) By Lemma 16C.4(vi).

(ii) (⇒) By Lemma 16C.5, we have

f =
n∈N

Φn∞ ◦ (Φ∞n ◦ f ◦ Φn∞) ◦ Φ∞n.

Using similar arguments as in the proof of (i), we have that
• ∃k∈N.f = Φk∞ ◦ (Φ∞k ◦ f ◦ Φk∞) ◦ Φ∞k,
• (Φ∞k ◦ f ◦ Φk∞)∈K(Dk+1).

Put g = (Φ∞k ◦ f ◦ Φk∞). (⇐) Easy.
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16C.7. Lemma. (i) ∀x∈D∞.x = {e∈K(D∞) | e ⊑ x}.
(ii) K(D∞) is countable.

(iii) D∞ ∈ALG.

Proof. (i) Let x∈D∞ and Ux = {e∈K(D∞) | e ⊑ x}. Clearly, Ux ⊑ x. Now let
f = Ux in order to show x ⊑ f . By definition of sup in D∞ we have

fn = V (n, x), where V (n, x) = {en ∈Dn | e∈K(D∞) & e ⊑ x}.

Since Dn is algebraic, we have that

xn = W (n, x), where W (n, x) = {d∈K(Dn) | d ⊑ xn}.

We will prove that W (n, x) ⊆ V (n, x). Suppose d∈W (n, x). Then d∈K(Dn) and
d ⊑ xn. Let e = Φn∞(d). Then,
(1) d = Φ∞n ◦ Φn∞(d) = en.
(2) e = Φn∞(d)∈K(D∞), by Lemma 16C.4(vi).
(3) e = Φn∞(d) ⊑ Φn∞(xn) ⊑ x, by monotonicity of Φn∞ and Lemma 16C.4(iii).
Hence d∈V (n, x). Now indeed x ⊑ f , as clearly xn ⊑ fn.
(ii) By Proposition 15A.8 one has Dn ∈ALG for each n. Hence K(Dn) is countable

for each n. But then also K(D∞) is countable, by Lemma 16C.6(i).

(iii) By (i), and (ii).

16C.8. Definition. Let

F∞ :D∞→[D∞→D∞]

G∞ : [D∞→D∞]→D∞

be defined as follows

F∞(d),
n∈N

(Φn∞ ◦ dn+1 ◦ Φ∞n);

G∞(f),
n∈N

Φ(n+1)∞(Φ∞n ◦ f ◦ Φn∞).

16C.9. Theorem. (Scott [1972]) Let D∞ be constructed from D0 ∈ALG and a projec-
tion pair i0, j0. Then D∞ ∈ALG and D∞ with F∞, G∞ is reflexive. Moreover,

F∞ ◦G∞ = Id[D∞→D∞] & G∞ ◦ F∞ = IdD∞ .

It follows that D∞ is an extensional λ-model.

Proof. For the proof that F∞ and G∞ are inverse of each other for Scott’s model D∞,
with embedding-projection pair i0(d) = λλe.d and j0(f) = f(⊥), see B[1984], Theorem
18.2.16. For a proof in the general case see Plotkin [1982]. By Proposition 16A.9 it
follows that D∞ is an extensional λ-model.

16C.10. Corollary. Let D∞ be constructed from D0 ∈ALG and a projection pair i0, j0.
Then 〈D∞, F∞, G∞〉 is in NLS.

Proof. Immediate from the Theorem.
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D∞ as a filter λ-model

In this subsection we follow Alessi [1991], Alessi, Dezani-Ciancaglini, and Honsell [2004].
Let D∞ be constructed from the triple t = (D0, i0, j0). To emphasize the dependence on
t we write D∞ = Dt

∞. From the previous corollary and Proposition 15B.13 it follows

that Dt
∞
∼= FK(Dt

∞). In this subsection we associate with t = (D0, i0, j0) a family of
intersection type theories CDHL(t). These type theories are compatible and they can
be considered as type structures, denoted also by CDHL(t). We will show that

K(Dt
∞) ∼= CDHL(t).

Hence

Dt
∞
∼= FCDHL(t).

The name of the family of type theories CDHL(t) is due to Coppo, Dezani-Ciancaglini,
Honsell, and Longo [1984] where this construction was first discussed. Other relevant
references are Coppo, Dezani-Ciancaglini, and Zacchi [1987], which presents the filter
λ-model induced by the type theory CDZ, Honsell and Ronchi Della Rocca [1992], where
the filter λ-models induced by the type theories Park,HR and other models are consid-
ered, and Alessi [1991], Di Gianantonio and Honsell [1993], Plotkin [1993], where the
relation between applicative structures and type theories is studied.

16C.11. Definition. Let t = (D0, i0, j0) be given. We define the family of type theories
CDHL(t) as follows.

(i) The partial order ≤0 on K(D0) is defined by

d ≤0 e⇐⇒△ d ⊒ e, where d, e∈K(D0);

(ii) TTCDHL(t) ,K(D0) | TTCDHL(t)→TTCDHL(t) | TTCDHL(t) ∩ TTCDHL(t).

(iii) Write U for ⊥D0 . Let CDHL(t) be the smallest natural type theory7 on TTCDHL(t)

that contains the following extra axiom and rules.

(⊔) c ∩ d =CDHL(t) c ⊔ d,

(≤0)
c ≤0 d

c ≤CDHL(t) d
(i0)

i0(e) = (c1 7→ d1) ⊔ · · · ⊔ (cn 7→ dn)

e =CDHL(t) (c1→d1) ∩ · · · ∩ (cn→dn)
,

where c, d, e, c1, d1, · · · , cn, dn ∈K(D0) and ⊔ is the least upper bound for the ordering
⊑ on K(D0). Note that for c, d, e∈K(D0) one has (c 7→ d), i0(e)∈D1.

(iv) Since CDHL(t) is compatible, it can be considered as a type structure denoted
by [CDHL(t)]. Note that [CDHL(t)]∈NTSU.

The proof of the next lemma follows easily from Definition 16C.11.

16C.12. Lemma. c1 ∩ · · · ∩ cn =CDHL(t) c1 ⊔ · · · ⊔ cn.
The proof of K(Dt

∞) ∼= CDHL(t) occupies 16C.13-16C.18. First we classify the types

in TTCDHL(t)according to the maximal number of nested arrow occurrences they may
contain.

7CDHL(t) contains the axiom and rules of Definitions 13A.3 and 13A.18.



554 16. Filter models

16C.13. Definition. (i) We define the map depth : TTCDHL(t)→N by:

depth(c) , 0, for c∈K(D0);

depth(A→B) , max{depth(A), depth(B)}+ 1;

depth(A ∩B) , max{depth(A), depth(B)}.

(ii) Let TT
CDHL(t)
n , {A∈TTCDHL(t) | depth(A) ≤ n}.

Notice that depth differs from the map dpt in Definition 1A.21.

We can associate to each type in TT
CDHL(t)
n an element in Dn: this will be crucial for

defining the required isomorphism (see Definition 16C.20).

16C.14. Definition. We define, for each n∈N, a map wn : TT
CDHL(t)
n →K(Dt

n) by a

double induction on n and on the construction of types in TTCDHL(t):

wn(c) , Φ0n(c);

wn(A ∩B) , wn(A) ⊔ wn(B);

wn(A→B) , (wn−1(A) 7→ wn−1(B)).

16C.15. Remark. From Lemma 15A.6 we get ∀A∈TTCDHL(t)
n .wn(A)∈K(Dt

n).

16C.16. Lemma. Let n ≤ m and A∈TTCDHL(t)
n . Then Φm∞(wm(A)) = Φn∞(wn(A)).

Proof. We show by induction on the definition of wn that wn+1(A) = in(wn(A)). Then
the desired equality follows from the definition of the function Φ. The only interesting
case is when A ≡ B → C. We get

wn+1(B→C) = wn(B) 7→ wn(C), by definition,

= in−1(wn−1(B)) 7→ in−1(wn−1(C)), by induction,

= in(wn−1(B) 7→ wn−1(C)), by Lemma 16C.4(ii),

= in(wn(B → C)), by Definition 16C.14.

The maps wn reverse the order between types.

16C.17. Lemma. Let depth(A ∩B) ≤ n. Then

A ≤CDHL(t) B ⇒ wn(B) ⊑ wn(A).

Proof. The proof is by induction on the definition of ≤CDHL(t). We consider only two
cases.
Case (→). Let A ≤CDHL(t) B follows from A ≡ C→D, B ≡ E→F , E ≤CDHL(t) C and

D ≤CDHL(t) F . Then

E ≤CDHL(t) C & D ≤CDHL(t) F ⇒
⇒ wn−1(C) ⊑ wn−1(E) & wn−1(F ) ⊑ wn−1(D),

by the induction hypothesis,
⇒ wn−1(E) 7→ wn−1(F ) ⊑ wn−1(C) 7→ wn−1(D)

⇒ wn(B) ⊑ wn(A).

Case e =CDHL(t) (c1→d1)∩ · · · ∩ (ck→dk) follows from i0(e) = (c1 7→ d1)⊔ · · · ⊔ (ck 7→
dk).
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We show by induction on n ≥ 1 the following.

wn(e) = (wn−1(c1) 7→ wn−1(d1)) ⊔ · · · ⊔ (wn−1(ck) 7→ wn−1(dk)).

It trivially holds for n = 1, so let n > 1.

wn(e) = in−1(wn−1(e))

= in−1((wn−2(c1) 7→ wn−2(d1)) ⊔ · · · ⊔ (wn−2(ck) 7→ wn−2(dk)))

= in−1(wn−2(c1) 7→ wn−2(d1)) ⊔ · · · ⊔ in−1(wn−2(ck) 7→ wn−2(dk))

= (in−2(wn−2(c1)) 7→ in−2(wn−2(d1))) ⊔ · · ·
· · · ⊔ (in−2(wn−2(ck)) 7→ in−2(wn−2(dk))

= (wn−1(c1) 7→ wn−1(d1)) ⊔ · · · ⊔ (wn−1(ck) 7→ wn−1(dk)).

Also the reverse implication of Lemma 16C.17 holds.

16C.18. Lemma. Let depth(A ∩B) ≤ n. Then

wn(B) ⊑ wn(A) ⇒ A ≤CDHL(t) B.

Proof. By induction on depth(A ∩B).
If depth(A ∩B) = 0 we have A ≡ ⋂

i∈ I ci, B =
⋂

j ∈ J dj . Then

wn(B) ⊑ wn(A) ⇒
j ∈ J

Φ0n(dj) ⊑
i∈ I

Φ0n(ci)

⇒ Φn0(
j ∈ J

Φ0n(dj)) ⊑ Φn0(
i∈ I

Φ0n(ci))

⇒
j ∈ J

(Φn0 ◦ Φ0n)(dj) ⊑
i∈ I

(Φn0 ◦ Φ0n)(ci)

⇒
j ∈ J

dj ⊑
i∈ I

ci

⇒ A ≤CDHL(t) B.

Otherwise, let

A≡ (
⋂

i∈ I

ci) ∩ (
⋂

l∈L

(Cl→Dl)),

B ≡ (
⋂

h∈H

dh) ∩ (
⋂

m∈M

(Em→Fm)).

By rule (i0), we have that

ci =CDHL(t)

⋂

j ∈ Ji

(aj → bj), dh =CDHL(t)

⋂

k∈Kh

(ek → fk),

where aj , bj , ek, fk ∈K(D0). Now for all n ≥ 1

wn(ci) =
j ∈ Ji

(wn−1(aj) 7→ wn−1(bj))),

wn(dh) = (
k∈Kh

(wn−1(ek) 7→ wn−1(fk))),



556 16. Filter models

since by Lemma 16C.17 the function wn identifies elements in the equivalence classes of
=CDHL(t). Therefore

h∈H
(
k∈Kh

wn−1(ek) 7→ wn−1(fk)) ⊔ (
m∈M

wn−1(Em) 7→ wn−1(Fm))⊑

i∈ I
(
j ∈ Ji

wn−1(aj) 7→ wn−1(bj)) ⊔ (
l∈L

wn−1(Cl) 7→ wn−1(Dl)).

Hence for each h∈H, k∈Kh we have

(wn−1(ek) 7→ wn−1(fk))⊑
i∈ I

(
j ∈ Ji

wn−1(aj) 7→ wn−1(bj)) ⊔

(
l∈L

wn−1(Cl) 7→ wn−1(Dl)).

Suppose wn−1(fk) 6= ⊥Dn . By Lemma 15A.7 there exist I ′ ⊆ I, J ′
i ⊆ Ji, L

′ ⊆ L such
that

i∈ I′
(
j ∈ J ′

i

wn−1(aj)) ⊔ (
l∈L′

wn−1(Cl))⊑ wn−1(ek),

i∈ I′
(
j ∈ J ′

i

wn−1(bj)) ⊔ (
l∈L′

wn−1(Dl))⊒ wn−1(fk).

Notice that all types involved in the two above judgments have depths strictly less than
depth(A ∩B):

(i) the depth of aj , bj , ek, fk is 0, since they are all atoms in K(D0);
(ii) the depth of Cl,Dl is strictly smaller than the one of A∩B, since they are subterms

of an arrow in A.

Then by induction and by Lemma 16C.12 we obtain

ek ≤CDHL(t)

⋂

i∈ I′

(
⋂

j ∈ J ′
i

aj) ∩
⋂

l∈L′

Cl,

fk ≥CDHL(t)

⋂

i∈ I′

(
⋂

j ∈ J ′
i

bj) ∩
⋂

l∈L′

Dl.

Therefore, by (→) and Proposition 13A.21, we have A ≤CDHL(t) ek→fk.
If wn−1(fk) = ⊥Dn , then wn−1(fk) = Φ0n(fk) since fk ∈K(D0). This gives fk =
Φn0 ◦ Φ0n(fk) = Φn0(⊥Dn) = ⊥D0 because jn(⊥Dn+1) = ⊥Dn . Since fk = ⊥D0 im-
plies A ≤CDHL(t) ek → fk we are done.
In a similar way we can prove that A ≤CDHL(t) Em→Fm, for any m∈M . Putting

together these results we get A ≤CDHL(t) B.

16C.19. Proposition. 〈K(Dt
∞),≤∞,∩,→∞, U〉 is a natural type structure, where ≤∞ is

the reverse order on K(Dt
∞), a→∞ b = G∞(a 7→ b), ∩ is the least upper bound of Dt

∞
and U = ⊥Dt

∞
.

Proof. By Lemma 15B.11.

We can now prove the isomorphism in NTSU between K(Dt
∞) and CDHL(t) seen as type

structure, i.e. [CDHL(t)].
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16C.20. Definition. For A∈TTCDHL(t) write

f([A]), Φr∞(wr(A)),

where r ≥ depth(A).

16C.21. Theorem. In NTSU one has [CDHL(t)] ∼= K(Dt
∞) via f .

Proof. First of all notice that f is well defined, in the sense the it does not depend on
either the type chosen in [A] or the depth r. In fact let B,B′ ∈ [A], and let p ≥ depth(B),
p′ ≥ depth(B′). Fix any q ≥ p, p′. Then we have

Φp∞(wp(B)) = Φq∞(wq(B)), by Lemma 16C.16,

= Φq∞(wq(B
′)), by Lemma 16C.17,

= Φp′∞(wp′(B
′)), by Lemma 16C.16.

Write f(A) for f([A]). Now f is injective by Lemma 16C.18 and monotone by Lemma
16C.17. From Lemma 15A.8(ii) we get immediately

K(Dn+1) = {c1 7→ d1 ⊔ · · · ⊔ cn 7→ dn|ci, di ∈K(Dn)}.
it is easily proved by induction on n that wn is surjective on K(Dn), hence f is surjective
by Lemma 16C.6(i). The function f−1 is monotone by Lemma 16C.18. Taking into
account that the order ≤∞ on K(Dt

∞) is the reversed of ⊑ of Dt
∞ and that d →∞ e =

G∞(d 7→ e), we need to show

A ≤CDHL(t) B → C ⇔ f(A) ⊒ G∞(f(B) 7→ f(C))(5)

In order to prove (5), let r ≥ max{depth(A), depth(B → C)} (in particular it follows
depth(B), depth(C) ≤ r − 1). We have

G∞(f(B) 7→ f(C)) = G∞(Φ(r−1)∞(wr−1(B)) 7→ Φ(r−1)∞(wr−1(C)))

= G∞(Φ(r−1)∞ ◦ (wr−1(B) 7→ wr−1(C)) ◦ Φ∞(r−1)),

by Lemma 16C.4(viii),

= Φr∞(wr−1(B) 7→ wr−1(C)), by Lemma 16C.6(iii),

= Φr∞(wr(B → C)), by definition of wr.

Finally we have

A ≤CDHL(t) B → C ⇔ wr(A) ⊒ wr(B → C),

by Lemmas 16C.17 and 16C.18,

⇔ Φr∞(wr(A)) ⊒ Φr∞(wr(B → C)),

since Φr∞ is an embedding,

⇔ Φr∞(wr(A)) ⊒ G∞(f(B) 7→ f(C)), as above,

⇔ f(A) ⊒ G∞(f(B) 7→ f(C)).

⇔ f(A) ≤∞ f(B)→∞ f(C)

So we have proved (5) and the proof is complete.

16C.22. Theorem. F [CDHL(t)] ∼= Dt
∞ in NLS, via the map

f̂(X), {f(B) | B ∈X},
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satisfying f̂(↑A) = f(A).

Proof. Let f : [CDHL(t)] → K(Dt
∞) be the isomorphism in NTSU. By Proposition

15B.9 we know that A is a functor from NTSU to NLS. Then

A(f) : F [CDHL(t)] → FK(Dt
∞)

is an isomorphism in NLS where A(f)(X) = {B | ∃A∈X.f(A) ⊑ B}.
By Proposition 15B.13 we have that

τ : FK(Dt
∞) → Dt

∞

is an isomorphism in NLS where τ(X) = X.

The composition of τ and A(f) is an isomorphism from F [CDHL(t)] to Dt
∞ explicitly

given by

τ ◦ A(f)(X) = {B | ∃A∈X.f(A) ⊑ B}
= {f(A) | A∈X} = f̂(X).

16C.23. Corollary. FCDHL(t) ∼= Dt
∞ in NLS.

Proof. By Lemma 13D.7.

Specific models D∞ as filter models

In this subsection we specialize Theorem 16C.22 to Dt
∞ models constructed from specific

triples t = (D0, i0, j0), five in total, each satisfying a specific model theoretic property.
For each T ∈ {Scott,Park,CDZ,DHM,HR}, we associate a triple init(T ) = (D0, i0, j0)
such that CDHL(init(T )) = T . By Corollary 16C.23,

Dinit(T )
∞

∼= FCDHL(init(T )) = FT .

We will write DT
∞ := Dinit(T )

∞ , so that this reads smoothly as DT
∞
∼= FT .

16C.24. Remark. (i) Remember the following type theoretic axioms.

(0Scott) (U→0) = 0

(0Park ) (0→0) = 0

(01) 0 ≤ 1

(1→0) (1→0) = 0

(0→1) (0→1) = 1

(I) (1→1) ∩ (0→0) = 1

(ii) In Definition 13A.14, each T ∈ {Scott,Park,CDZ,DHM,HR} has been defined by
specifying its set of atoms AT and some extra axioms (besides the axioms (→∩), (Utop)
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and (U→) and the rule (→)).

T Atoms AT Axioms of T
Scott {U, 0} (0Scott)

Park {U, 0} (0Park)

CDZ {U, 0, 1} (01), (1→0), (0→1)

DHM {U, 0, 1} (01), (0→1), (0Scott)

HR {U, 0, 1} (01), (1→0), (I)

16C.25. Definition. For each T ∈ {Scott,Park,CDZ,DHM,HR}, we associate a triple
init(T ) = (DT

0 , i
T
0 , j

T
0 ) defined as follows.

1. Define DT
0 as either a two point chain or a three point chain depending on T as

follows.

T DT
0

Scott,Park U ⊑ 0
CDZ,DHM,HR U ⊑ 1 ⊑ 0

2. Define iT0 : DT
0 →[DT

0 →DT
0 ] as follows.

iT0 (U) , U 7→ U for any T ∈ {Scott,Park,CDZ,DHM,HR}

iT0 (1) ,

{
0 7→ 1 if T ∈ {CDZ,DHM}
(1 7→ 1) ⊔ (0 7→ 0) if T ∈ {HR}

iT0 (0) ,





U 7→ 0 if T ∈ {Scott,DHM}
0 7→ 0 if T ∈ {Park}
1 7→ 0 if T ∈ {CDZ,HR}

3. Then define jT0 : [DT
0 →DT

0 ]→DT
0 as follows.

jT0 (f) , {d∈DT
0 | iT0 (d) ⊑ f}, for f ∈ [DT

0 →DT
0 ].

It is easy to prove that 〈iT0 , jT0 〉 is an embedding-projection pair fromDT
0 to [DT

0 → DT
0 ],

so we can build Dinit(T )
∞ following the steps outlined in Definition16C.1.

16C.26. Lemma. Let T ∈ {Scott,Park,CDZ,DHM,HR} and
c1, · · · ,cn, d1, · · · ,dn, e1, · · · ,ek, f1, · · · ,fk ∈DT

0 . Then

(e1→f1) ∩ · · · ∩ (ek→fk) =T (c1→d1) ∩ · · · ∩ (cn→dn) ⇔
(c1 7→ d1) ⊔ · · · ⊔ (cn 7→ dn) = (e1 7→ f1) ⊔ · · · ⊔ (ek 7→ fk).

Proof. It suffices to prove

(c 7→ d) ⊑ (e1 7→ f1) ⊔ · · · ⊔ (ek 7→ fk) ⇔ (e1→f1) ∩ · · · ∩ (ek→fk) ≤T (c→d).
Now, (c 7→ d) ⊑ (e1 7→ f1) ⊔ · · · ⊔ (ek 7→ fk)

⇔ ∃I⊆{1, · · · , k} [⊔i∈ Iei ⊑ c & d ⊑ ⊔i∈ Ifi], by Lemma 15A.7,

⇔ ∃i1, · · · , ip ∈{1, · · · , k} [c ≤T ei1 ∩ · · · ∩ eip & fi1 ∩ · · · ∩ fip ≤T d],

⇔ (e1→f1) ∩ · · · ∩ (ek→fk) ≤T (c→d), by β-soundness, (→) and (→∩).
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16C.27. Corollary. The definition of iT0 is canonical. By this we mean that we could
have given equivalently the following definition.

iTo (e) = (c1 7→ d1) ⊔ · · · ⊔ (cn 7→ dn) ⇔ e =T (c1→d1) ∩ · · · ∩ (cn→dn).
Proof. Immediate, by the definition of iT0 , the axioms (Utop) and (U→), the special
axioms (0Scott), (0Park), (1→0), (0→1), (I) respectively, and the previous Lemma.

16C.28. Proposition. For T ∈ {Scott,Park,CDZ,DHM,HR} one has

T = CDHL(init(T )).
Proof. First of all, we have that TTT = TTCDHL(init(T )) because

AT = K(DT
0 ) by Definition 16C.25

= ACDHL(init(T )) by Definition 16C.11

since each DT
0 only contains compact elements. It remains to show that

A ≤CDHL(init(T )) B ⇔ A ≤T B.

As to (⇒), this follows by induction on the generation of ≤CDHL(t) where t = init(T ).
Now T satisfies the axioms (→∩), (Utop) and is closed under rule (→), since it is a natural
type theory. It remains to show that the extra axiom and rules are valid in this theory.
Axiom (⊔). Then, c ∩ d =CDHL(t) c ⊔ d, with c, d∈K(DT

0 ) = DT
0 , we have, say, c ⊑ d.

Then c ⊔ d = d. Again we have d ≤T c. Therefore d ≤T c ∩ d ≤T d, and hence
c ∩ d =T d = c ⊔ d.
Rule (≤0). Then, c ≤CDHL(t) d because d ⊑ c, we have d = U, c = 0 or d = c. Then in

all cases c ≤T d, by the axioms (Utop) and (01).
Rule (i0) where i0 = iT0 . Suppose e =CDHL(t) (c1→d1) ∩ · · · ∩ (cn→dn), because

iT0 (e) = (c1 7→ d1) ⊔ · · · ⊔ (cn 7→ dn).

Then e =T (c1→d1) ∩ · · · ∩ (cn→dn), by Corollary 16C.27.
As to (⇐), the axioms and rules (Utop), (U→), (→∩) and (→) hold for T by definition.

Moreover, all axioms extra of T hold in CDHL(init(T )), by Definition 16C.25 and the
rules (≤0), (i0) of Definition 16C.11.

Now we can obtain the following result

16C.29. Corollary. Let T ∈ {Scott,Park,CDZ,DHM,HR}. Then in the category NLS
we have

FT ∼= DT
∞.

Proof. FT = FCDHL(init(T )), by Proposition 16C.28,
∼= DT

∞, by Corollary 16C.23.

We will end this subsection by telling what is the interest of the various models Dt
∞.

In B[1984], Theorem 19.2.9, the following result is proved.

16C.30. Theorem (Hyland and Wadsworth). Let t = (D0, i0, j0), where D0 is a cpo (or
object of ALG) with at least two elements and

i0(d) = λλe∈D0.d, for d∈D0,

j0(f) = f(⊥D0), for f ∈ [D0→D0].
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Then for M,N ∈Λ (untyped lambda terms) and C[ ] ranging over contexts

Dt
∞ |=M = N ⇔ ∀C[ ].(C[M ] is solvable ⇔ C[N ] is solvable).

In particular, the local structure of Dt
∞ (i.e. {M = N | Dt

∞ |=M = N}) is independent
of the initial D0.

16C.31. Corollary. For t as in the theorem one has for closed terms M,N

Dt
∞ |=M = N ⇔ ∀A∈TTScott [⊢Scott∩ M : A ⇔ ⊢Scott∩ N : A].

Proof. Let M,N ∈Λø. Then
Dt

∞ |=M = N ⇔ DScott
∞ |=M = N, by Theorem 16C.30,

⇔ FScott |=M = N,

by Corollary 16C.29 and Proposition 16A.13,

⇔ ∀A∈TTScott [⊢Scott∩ M : A ⇔ ⊢Scott∩ N : A],

by Theorem 16B.7.

The model DPark
∞ has been introduced to contrast the following result, see B[1984],

19.3.6.

16C.32. Theorem (Park). Let t be as in 16C.30. Then for the untyped λ-term

YCurry ≡ λf.(λx.f(xx))(λx.f(xx))
one has

[[YCurry]]
Dt

∞ = YTarski,

where YTarski is the least fixed-point combinator on Dt
∞.

The model DPark
∞ has been constructed to give YCurry a meaning different from YTarski.

16C.33. Theorem (Park). [[YCurry]]
DPark

∞ 6= YTarski.

Now this model can be obtained as a simple filter model DPark
∞

∼= FPark and therefore,
by Corollary 16C.29, one has

[[YCurry]]
FPark 6= YTarski.

Other domain equations

Results similar to Theorem 16C.21 can be given also for other, non-extensional, inverse
limit λ-models. These are obtained as solutions of domain equations involving different
functors. For instance one can solve the equations

D = [D → D]×A
D = [D → D] +A

D = [D →⊥ D]×A
D = [D →⊥ D] +A,

useful for the analysis of models for restricted λ-calculi. In all such cases one gets concise
type theoretic descriptions of the λ-models obtained as fixed points of such functors
corresponding to suitable choices of the mapping G, see Coppo, Dezani-Ciancaglini, and
Longo [1983]. Solutions of these equations will be discussed below. At least the following
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result is worthwhile mentioning in this respect, see Coppo, Dezani-Ciancaglini, Honsell,
and Longo [1984] for a proof.

16C.34. Proposition. The filter λ-model FBCD is isomorphic to 〈D, F,G〉, where D is
the initial solution of the domain equation

D = [D → D]× P(A∞)

the pair 〈F,G〉 set up a Galois connection and G is the map that takes the minimal
elements in the extensionality classes of functions.

16D. Other filter models

Lazy λ-calculus

Intersection types are flexible enough to allow for the description of λ-models which
are computationally adequate for the lazy operational semantics (Abramsky and Ong
[1993]). Following Berline [2000] we define the notion of lazy λ-model.

16D.1. Definition. (i) The order of an untyped lambda term is

order(M), sup{n | ∃N.M ։β λx1 · · ·xn.N},
i.e. the upper-bound of the number of its initial abstractions modulo β-conversion. So
order(M)∈N ∪∞.

(ii) A λ-model D is lazy if

[D |=M = N & order(M) = k] ⇒ order(N) = k.

For example order(Ω)=0, order(K)=2 and order(YK) =∞.

16D.2. Proposition. Let FT be a filter λ-model. Then FT is lazy iff

∀Γ, A.[Γ ⊢T∩ M : A⇔ Γ ⊢T∩ N : A] ⇒ order(M) = order(N),

i.e. if M and N have the same types, then they have the same order.

Proof. By 16B.7(i).

A very simple type theory is AO, see Fig. 13A.14. This gives a lazy λ-model, which
is discussed in Abramsky and Ong [1993]. In this paper the following result is proved,
where for a D∈ALG its lifting D⊥ is defined as the domain obtained by adding a new
bottom element.

16D.3. Theorem (Abramsky and Ong [1993]). Let Dlazy
∞ be the initial solution of the

domain equation D ∼= [D → D]⊥ in ALG. Then Dlazy
∞
∼= FAO.

The theory AO can also be used to prove the completeness of the so called F-semantics,
see Dezani-Ciancaglini and Margaria [1986].

The λI-calculus.

Models of the λI-calculus are considered in Honsell and Lenisa [1993], [1999]. Similar to
Theorem 16C.21 one has the following.
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16D.4. Theorem (Honsell and Lenisa [1999]). Let DI
∞ be the inverse limit solutions of

the domain equation [D →⊥ D] ∼= D. Then DI
∞
∼= FT , for some proper type theory T

with A T = K(D0).

Honsell and Lenisa [1999] discusses a filter structure which gives a computationally
adequate model for the perpetual operational semantics and a mathematical model for
the maximal sensible λI-theory.

A filter model equating an arbitrary closed term to Ω

In Jacopini [1975] it has been proved by an analysis of conversion that the lambda
term Ω is easy, i.e. for any closed lambda term M the equation Ω = M is consistent.
This fact was proved by a Church-Rosser argument by Mitschke, see his Mitschke [1976]
or B[1984], Proposition 15.3.9. A model theoretical proof was given by Baeten and
Boerboom [1979], where it was shown that for any closed M one has

P(ω) |= Ω =M,

for a particular way of coding pairs on the set of natural numbers ω. We will now
present the proof of this fact from Alessi, Dezani-Ciancaglini, and Honsell [2001], using

intersection types. For an arbitrary closed λ-termM we will build a filter model FADH(M)

such that

FADH(M) |= Ω =M.

We first examine which types can be assigned to ω := λx.xx and Ω := ωω.

16D.5. Lemma. Let T be a natural type theory that is β-sound.

(i) ⊢T∩ ω : A→ B ⇔ A ≤T A→ B.

(ii) ⊢T∩ Ω : B ⇔ ∃A∈TTT . ⊢T∩ ω : A ≤T (A→ B).

Proof. (i) (⇐) Suppose A ≤T (A→B). Then

x:A ⊢T∩ x : (A→B)

x:A ⊢T∩ xx : B

⊢T∩ λx.xx : (A→B).

(⇒) Suppose ⊢T∩ ω : (A → B). If B =T U, then A ≤T U =T (A → B), by axiom
(U→). Otherwise, by Theorem 14A.9,

⊢T∩ λx.xx : (A→B) ⇒ x:A ⊢T∩ xx : B,

⇒ x:A ⊢T∩ x : C, x:A ⊢T∩ x : (C→B), for some C,

⇒ A ≤T (C→B) ≤T (A→B), by (→).

(ii) (⇐) Immediate. (⇒) If B =T U, then ⊢T∩ ω : U ≤T U→B. If B 6=T U, then
by Theorem 14A.9(ii) one has ⊢T∩ ω : (A→B), ⊢T∩ ω : A, for some A. By (i) one has
A ≤T A→B.

We associate to each type the maximum number of nested arrows in the leftmost path.



564 16. Filter models

16D.6. Definition. Let T be a type theory. For A∈TTT its type nesting, notation ⊡(A),
is defined inductively on types as follows:

⊡(A) , 0 if A∈AT ;

⊡(A→ B) , ⊡(A) + 1;

⊡(A ∩B) , max{⊡(A),⊡(B)}.

For ηU-sound and natural type theories Lemma 16D.5(ii) can be strengthened using type
nesting. First we need the following lemma that shows that, any type A with ⊡(A) ≥ 1
is equivalent to an intersection of arrows with the same type nesting.

16D.7. Lemma. Let T be a ηU-sound and natural type theory. Then for all A∈TTT with
⊡(A) ≥ 1, there exist C1, · · · ,Cm, D1, · · · ,Dm such that

A =T (C1 → D1) ∩ · · · ∩ (Cm → Dm);
⊡(A) = ⊡((C1 → D1) ∩ · · · ∩ (Cm → Dm)).

Proof. Every type A is an intersection of arrow types and atoms. Since T is ηU-sound
and natural, the atoms can be replaced by an intersection of arrows between atoms. As
⊡(A) ≥ 1 this does not increase the type nesting.

16D.8. Lemma. Let T be a natural type theory which is β and ηU-sound. Then

⊢T∩ Ω : B ⇒ ∃A∈TTT [⊢T∩ ω : A ≤T A→ B & ⊡ (A) = 0].

Proof. Let ⊢T∩ Ω : B. If B =T U take A ≡ U. Otherwise, by Lemma 16D.5(ii), there
exists A∈TTT such that ⊢T∩ ω : A and A ≤T A → B. We show by course of value
induction on n = ⊡(A) that we can take an alternative A′ with ⊡(A′) = 0. If n = 0 we
are done, so suppose n ≥ 1. By Lemma 16D.7, we may assume that A is of the form
A ≡ (C1 → D1)∩ · · · ∩ (Cm → Dm). Now A ≤T A→ B, hence A ≤T Ci1 ∩ · · · ∩Cip and
Di1 ∩ · · · ∩Dip ≤T B, with p > 0 and 1 ≤ i1, · · · , ip ≤ m, since T is β-sound. Hence,

⊢T∩ ω : A ⇒ ⊢T∩ ω : (Cik → Dik), 1 ≤ k ≤ p,
⇒ Cik ≤T (Cik → Dik), by 16D.5(i),
⇒ Ci1 ∩ · · · ∩ Cip ≤T (Ci1 → Di1) ∩ · · · ∩ (Cip → Dip)

≤T Ci1 ∩ · · · ∩ Cip → Di1 ∩ · · · ∩Dip , since T is natural,
≤T (Ci1 ∩ · · · ∩ Cip → B), as Di1 ∩ · · · ∩Dip ≤T B.

Now take A′ ≡ Ci1 ∩ · · · ∩ Cip . Then ⊡(A′) < n and we are done by the IH.

Now let M ∈Λø. We will build the desired model satisfying |= Ω = M by taking
the union of a countable sequence of type theories ADHn(M) defined in a suitable way
to force the final interpretation of M to coincide with the interpretation of Ω. In the
following 〈·, ·〉 denotes any bijection between N× N and N.

16D.9. Definition. (i) Define the following increasing sequence of intersection type the-
ories ADHn(M) by induction on n∈N, specifying the atoms, axioms and rules.

- A ADH0(M) = {U, 0};
- ADH0(M) = Scott, the smallest natural type theory that contains (0Scott);

- A ADHn+1(M) = A ADHn(M) ∪ {ξ〈n,m〉 | m∈N};
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- ADHn+1(M) is the smallest natural type theory that contains ADHn(M) and the
following infinite set of axioms

ξ〈n,m〉 = (ξ〈n,m〉 →W〈n,m〉) for m∈N,
where 〈W〈n,m〉〉m∈N is any enumeration of the countably infinite set

{A | ⊢ADHn(M)
∩ M : A}.

(ii) We define ADH(M) as follows:

AADH(M) ,
⋃

n∈N

AADHn(M); ADH(M),
⋃

n∈N

ADHn(M).

16D.10. Proposition. ADH(M) is a β,ηU-sound natural type theory.

Proof. It is immediate to check that ADH(M) is β and ηU-sound: they hold for
ADH0(M), and not adding ≤ between arrows β is preserved, while each fresh constant
being equated to an arrow assures η. By construction all the ADHn(M) are natural type
theories. The validity of rule (→) in ADH(M) follows by a ‘compactness’ argument: if
A′ ≤ADH(M) A and B ≤ADH(M) B

′, then A′ ≤ADHn(M) A and B ≤ADHm(M) B
′; but

then we have (A→B) ≤ADHmax{n,m}(M) (A
′→B′) and hence (A→B) ≤ADH(M) (A

′→B′).

Similarly one verifies that (→∩), (Utop), and (U→) all hold in ADH(M). Therefore the
type theory ADH(M) is natural.

16D.11. Theorem. FADH(M) is an extensional filter λ-model.

Proof. By Propositions 16D.10 and 16B.11.

We now need to show that some types cannot be deduced for ω.

16D.12. Lemma. 6⊢ADH(M)
∩ ω : 0 and 6⊢ADH(M)

∩ ω : (0→ 0)→ 0→ 0.

Proof. Define the set EU ⊆ TT(AADH(M)) as the minimal set such that:

U∈EU;
A∈TTADH(M), B ∈EU ⇒ (A→ B)∈EU;
A,B ∈EU ⇒ (A ∩B)∈EU;
Wi ∈EU ⇒ ξi ∈EU.

Claim: A∈EU ⇔ A =ADH(M) U.
(⇒) By induction on the definition of EU, using axiom (U→).
(⇐) By induction on ≤ADH(M) it follows that

EU ∋ B ≤ADH(M) A ⇒ A∈EU.
Hence if A =ADH(M) U, one has EU ∋ U ≤ADH(M) A and thus A∈EU.
As 0 /∈EU, it follows by the claim that

0 6=ADH(M) U.(6)

Similarly one has 0→0 /∈ EU , hence 0→0 6=ADH(()M) U . Suppose towards a contradic-

tion that ⊢ADH(M)
∩ ω : 0. Then ⊢ADH(M) ω : U→ 0, by (0Scott). By Lemma 16D.5(i) we

get U ≤ADH(M) (U→ 0) =ADH(M) 0 ≤ADH(M) U, i.e. U =ADH(M) 0, contradicting (6).
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Similarly from ⊢ADH(M)
∩ ω : (0 → 0) → 0 → 0, by Lemma 16D.5(i), we get 0 →

0 ≤ADH(M) (0 → 0) → (0 → 0), which implies 0 → 0 ≤ADH(M) 0 ≤ADH(M) U→0, by
β-soundness and (0Scott). Therefore U =ADH(M) 0, contradicting (6).

We finally are able to prove the main theorem.

16D.13. Theorem. Let M ∈Λø. Then FADH(M) is a non-trivial extensional λ-model

such that FADH(M) |=M = Ω.

Proof. The model is non-trivial since clearly ⊢ADH(M)
∩ I : (0 → 0) → 0 → 0 and by

Lemma 16D.12 6⊢ADH(M)
∩ ω : (0→ 0)→ 0→ 0, hence FADH(M) 6|= I = ω.

We must show that [[M ]] = [[Ω]]. Suppose that W ∈ [[M ]]. Then

⊢ADH(M)
∩ M :W ⇒ ⊢ADHn(M)

∩ M :W, for some n,

⇒ ξi =ADHn+1(M) (ξi →W ), for some i,

⇒ ⊢ADH(M)
∩ Ω :W,

⇒ W ∈ [[Ω]].

This proves [[M ]] ⊆ [[Ω]].

Now suppose B ∈ [[Ω]], i.e. ⊢ADH(M)
∩ Ω : B. Then by Lemma 16D.8 there exists

A such that ⊡(A) = 0 and ⊢ADH(M)
∩ ω : A ≤ADH(M) A → B. Let A ≡ ⋂

i∈ I ψi,
with ψi ∈A = {U, 0, ξ0, · · · }. By Lemma 16D.12 ψi 6=ADH(M) 0. Hence it follows that
A =ADH(M) U or A =ADH(M)

⋂
j ∈ J(ξj), for some finite J ⊆ N. Since U =ADH(M) (U→U)

and ξj =ADH(M) (ξj→W ) we get A =ADH(M) (U → U) or A =ADH(M)

⋂
j ∈ J(ξj → Wj).

Since A ≤ADH(M) A → B it follows by β-soundness that in the first case U ≤ADH(M) B
or in the second case

⋂
j ∈LWj ≤ADH(M) B, for some L ⊆ J . Since each Wj is in [[M ]],

we have in both cases B ∈ [[M ]]. This shows [[Ω]] ⊆ [[M ]] and we are done.

Graph models as filter models

For a set X we use P(X) to denote the power-set of X and Pfin(X) to denote the set of
finite subsets of X.

Engeler’s Model

16D.14. Definition (Engeler [1981]). Let A∞ be a countable set of atoms.

(i) Define Em as the least set satisfying Em = A∞ ∪ (Pfin(Em)× Em)).

(ii) Define FEm : P(Em)→ [P(Em)→P(Em)]
GEm : [P(Em)→P(Em)]→P(Em)

by

FEm(X) = {u 7→ e | 〈u, e〉 ∈X}
GEm(f) = {〈u, e〉 | e∈ f(u)}.

16D.15. Theorem. FEm, GEm satisfy FEm ◦GEm = Id, making P(Em) a λ-model.

Proof. See Engeler [1981].
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16D.16. Theorem. Let the type theory Engeler be as defined in Definition 13A.14. Then
P(Em) ∼= FEngeler are isomorphic as λ-structures (λ-models).

Proof. See Plotkin [1993].

Scott’s P(ω) model

Following the original notation by Scott, we use ω to denote the set of natural numbers.

16D.17. Notation. (i) Let λλnm.〈n,m〉 : N × N→N be the polynomially defined bijec-
tion

〈n,m〉, 1

2
(n+m)(n+m+ 1) +m.

(ii) Let λλn.en : N→Pfin(ω) be a bijection, e.g. the one defined by

en , {k0, · · · , km−1} with k0 < k1 < · · · < km−1 ⇔ n = Σi<m2ki .

16D.18. Definition. [Scott [1972]] Let γ : Pfin(ω)× ω→ω be the bijection defined by

γ(en,m), 〈n,m〉.

(i) Define Fω : Pω→[Pω→Pω] by

Fω(X), {u 7→ i | γ(u, i)∈X}.

(ii) Gω : [Pω→Pω]→Pω by

Gω(f), {γ(u, i) | i∈ f(u)}

for all f ∈ [Pω→Pω].
16D.19. Proposition. Define for X,Y ∈Pω the application

X·PωY , {m | ∃en ⊆ Y 〈n,m〉 ∈X}.

Then Fω(X)(Y ) = X ·Pω Y is a (more common) equivalent definition for Fω.

Proof. Do exercise 16E.5.

16D.20. Theorem. Pω is a λ-model via Fω, Gω.

Proof. See Scott [1972].

16D.21. Theorem. Define

AScott-ω , ω

Scott-ω , Engeler ∪ {⋂k∈ e(k→n) = γ(e, n) | e∈Pfin(ω), n∈ω}.

Then Pω ∼= FScott-ω are isomorphic as natural λ-structures (λ-models).

Proof. See Alessi [1991].
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Plotkin’s Model

16D.22. Definition (Plotkin [1993]). Let 0 be an atom.
(i) Define Pm as the least set such that

Pm = {0} ∪ (Pfin(Pm)× Pfin(Pm)).

(ii) Define FPm : P(Pm)→[P(Pm)→P(Pm)]
GPm : [P(Pm)→P(Pm)]→P(Pm)

by

FPm(X), {u 7→ v | 〈u, v〉 ∈X}
GPm(f), {〈u, v〉 | v ⊆ f(u)}.

16D.23. Theorem. FPm, GPm satisfy FPm ◦GPm = Id, turning P(Pm) into a λ-model.

Proof. See Plotkin [1993].

16D.24. Theorem. Let the type theory Plotkin be as defined in Definition 13A.14. Then
P(Pm) ∼= FPlotkin are isomorphic as natural λ-structures (λ-models).

Proof. See Plotkin [1993].

16E. Exercises

16E.1. Check the following equalities:

[[λx.y]]F
CDV

ρ0 = ∅;
[[λx.y]]F

HL

ρ1 = ↑ 0;
[[λx.y]]F

AO

ρ0 = ↑ (U→U);

[[λx.y]]F
EHR

ρ0 = ↑ V,
where ρ0(y) =↑ ∅ and ρ1(y) =↑ 0.

16E.2. (i) Define K∞ , YK. This term is called the ogre. Find a type for it in the
system λ∩AO.

(ii) Show that “ogre” inhabits all types in λ∩AO. [Hint. Use (i) and Exercise
13E.4.]

16E.3. Prove using the results of Exercise 16E.2 that [[K∞]]F
AO

ρ = FAO.
16E.4. Define t : TT({0, 1, U})→TT({0, 1, U}) inductively:

t(α) , α, where α∈{U, 0};
t(1) , U;

t(A→B) , A→t(B);

t(A ∩B) , t(A) ∩ t(B).

The intersection type theory Alessi is axiomatized by rule (→) and axioms (→∩),
(Utop), (U→), (01), (1→0), (0→1), see Fig. 13A.14, and (t), (t→), where

(t) A ≤ t(A);
(t→) A→B ≤ t(A)→t(B).
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If Γ = {x1:A1, · · · , xn:An}, then write t(Γ), {x1:t(A1), · · · , xn:t(An)}. Show the
following.

(i) The map t is idempotent, i.e. t(t(A)) = t(A).
(ii) A→t(B) =Alessit(A)→t(B).
(iii) A ≤Alessi B ⇒ t(A) ≤Alessi t(B).
(iv) Γ ⊢Alessi M : A ⇒ t(Γ) ⊢Alessi M : t(A).
(v) Γ,Γ′ ⊢Alessi M : A ⇒ Γ, t(Γ′) ⊢Alessi M : t(A).
(vi) ∀i∈ I. Γ, x:Ai ⊢Alessi M : Bi &

⋂
i∈ I(Ai→Bi) ≤Alessi C→D

⇒ Γ, x:C ⊢Alessi M : D.
(vii) Alessi is not β-sound. [Hint. 1→0 ≤Alessi U→0.]
(viii) FAlessi is a filter λ-model. [Hint. Modify Theorem 16B.21, and

Lemma 16B.20(vi).]
(ix) The step function ↑ 1⇒↑ 0 is not representable in FAlessi.

Actually, FAlessi is the inverse limit solution of the domain equation D ≃ [D→D]
taken in the category of t-lattices, whose objects are ω-algebraic lattices D en-
dowed with a finitary additive projection δ : D→D and whose morphisms f :
(D, δ)→(D′, δ′) are continuous functions such that δ′ ◦f ⊑ f ◦δ. See Alessi [1993],
Alessi, Barbanera, and Dezani-Ciancaglini [2004] for details.

16E.5. Show Proposition 16D.19.
16E.6. Show Theorem 16D.16 using the mapping f : Pfin(Em)→TTEngeler defined as

f(∅) , U,

f({a}) , a,

f(u ∪ {e}) , f(u)∩f({e})
f({〈u, e〉}) , f(u)→f({e}),

where u∈Pfin(Em), e∈Em, a∈A∞.

16E.7. Show Theorem 16D.21 using the mapping f : Pω→TTAlessi defined as

f(∅) , U,

f({i}) , i,

f(u ∪ {i}) , f(u)∩i.
where u∈Pfin(ω), i∈ω.

16E.8. Show Theorem 16D.24 using the mapping f : Pfin(Pm)→TTPlotkin defined as

f(∅) , U,

f({ω}) , ω,

f(u ∪ {a}) , f(u)∩f({a}),
f({〈u, v〉}) , f(u)→f(v).

where u, v ∈Pfin(Pm), a∈Pm.

16E.9. Let T ∈TT-U. Prove the following statements.

1. The filter quasi λ-model FT = 〈FT , ·, [[ ]]F
T 〉 is not a λ-model [Hint. Consider

the constant function λx.y.]

2. The filter quasi λ-model FT = 〈FT , ·, [[ ]]F
T 〉 does not satisfy β-conversion.

3. The filter structure FT = 〈FT , F T , GT 〉 is not reflexive.
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4. Not all continuous functions are representable in FT = 〈FT , F T , GT 〉.
16E.10. Let F = FBCD be the model described in Section 16B. To every intersection

type A∈TTBCD associate a height, notation |A | , as follows.
(i) | U | , 0,

(ii) | ci | , 1, for all ci ∈ABCD such that ci 6= U,

(iii) |A ∩B | ,max{ |A | , |B | },
(iv) |A→ B | , 1 + max{ |A | , |B | }.
Given a filter d∈F , define

d[n], {A∈ d | |A | ≤ n}
and set dn , ↑ d[n], where ↑X is the filter generated by the set X (this is the
intersection of all filters containing X). Prove that the mappings d 7→ dn : F → F
define a notion of approximation over F . [Hint. (i) Show that, for a filter d, the
set d[n] is closed under finite intersections. As a consequence, B ∈ ↑ d[n] if and
only if B ≥ A for some A∈ d[n].
(ii) Prove that d0 = ↑{U}.
(iii) In order to prove some of the equations for a notion of approximation, you

may need the following properties of the preorder on intersection types.
• If B 6= U and A′ → B′ ≤ A→ B, then A ≤ A′ and B′ ≤ B.
• If C ≤ A→ B and |C | ≤ n+1, then there existA′, B′ such that |A′ | , |B′ | ≤
n and C ≤ A′ → B′ ≤ A→ B.

For the proof of the latter, define the relation ⋖ on types by the same axioms
and rules as ≤, with the exception of reflexivity and transitivity, then show that
A ≤ B iff A(⋖)∗B.]



CHAPTER 17

ADVANCED PROPERTIES AND APPLICATIONS

This chapter proves some properties of intersection types in relation to terms and
models.
Section 17A defines a realizability interpretation of types (Barendregt, Coppo, and

Dezani-Ciancaglini [1983]). Types are interpreted as subsets of a domain of discourse D.
Assuming a (partial) application · : D×D→D, and a type environment ξ, i.e. a mapping

from type atoms to subsets of D, we can define an interpretation [[A]]ξ = [[A]]Tξ ⊆ D for
each type A in TT→ by giving → the realizability interpretation, i.e.

[[α]]ξ , ξ(α);

[[A→B]]ξ , [[A]]ξ→[[B]]ξ , {d∈D | d · [[A]]ξ ⊆ [[B]]ξ}.
This semantics, due to Scott [1975a], can be extended to intersection types by interpret-
ing U as the domain of discourse and the intersection ∩ on types as ordinary intersec-
tion:

[[U]]ξ ,D;
[[A ∩B]]ξ , [[A]]ξ ∩ [[B]]ξ.

The first requirement will be met by considering only ξ with ξ(U) = D. Then, ≤ is
interpreted as inclusion between sets. For interpreting λ-terms, it is enough to require
that D is a quasi λ-model, depending on a valuation ρ of the term variables in D.
One says that D satisfies M : A under ρ, ξ, notation D, ρ, ξ |=T

∩ M : A or simply
D, ρ, ξ |=M : A, if

[[M ]]ρ ∈ [[A]]Tξ .
Then Γ satisfies M : A, notation Γ |=M : A, is defined by

Γ |=M : A⇐⇒△ ∀D, ρ, ξ.[D, ρ, ξ |= Γ ⇒ D, ρ, ξ |=M : A].

First soundness is proved, i.e.

Γ ⊢T∩ M : A ⇒ Γ |=T
∩ M : A.

Completeness is the converse implication. Not all type theories satisfy completeness. We
will prove that the natural type theories are exactly the ones that satisfy completeness.

Γ |=T
∩ M : A ⇒ Γ ⊢T∩ M : A] ⇔ T ∈NTTU.

The proof of completeness for a natural type theory T follows by taking D = FT where
FT is the filter quasi λ-model over T .

571
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In Barendregt, Coppo, and Dezani-Ciancaglini [1983] the completeness of the type
theory BCD was used to show the completeness of simple types: for all M ∈Λø and
A∈TTA

→

⊢λ→ M : A ⇔ |=M : A.

In Sections 17B and 17D intersection types will be used to characterize some prop-
erties of λ-terms. We consider the following properties (subsets) of λ-terms: strong
normalization, normalization, head normalization and the persistent variants of these.
A term has persistently property P if for all appropriate (to be defined in Section 17B)

arguments ~N the term M ~N has property P . The sets of untyped lambda terms having
these properties are denoted respectively by SN,N,HN,PSN,PN,PHN. For a set of terms
X ⊆ Λ write

X↑β = {M | ∃N ∈X.M ։β N}.
We denote by Γα the set of type declarations which associate α to all variables. For
T ∈ {Park,CDZ,HR,DHM,HL} Fig. 43 defines a context CtxT and a subset SetT (c) of
lambda terms for each type atom c∈{0, 1, U}.

T CtxT SetT (0) SetT (1) SetT (U)

Park ∅ Λø↑β − Λ
CDZ Γ0 PN N Λ
HR Γ1 ∅ ΛI↑β Λ
DHM Γ0 PHN HN Λ
HL Γ0 PSN SN −

Figure 43. Context and Set associated to 0, 1 and U.
We will show the following characterizations.

M ∈ SetT (c) ⇔ CtxT ⊢T M : c.

The characterizations for U are immediate; those for 1 are given in Theorems 17B.15
(CDZ, DHM, HL) and 17D.9 (HR); those for 0 in Theorem 17D.3 (Park), Lemma 17D.6
(HR); the remaining ones can be found in Dezani-Ciancaglini, Honsell, and Motohama
[2005] (CDZ, DHM), and Tatsuta and Dezani-Ciancaglini [2006] (HL). Two methods are
used to prove the characterizations, explaining why they are located in different sections.

1. Section 17B uses the type interpretation defined in Section 17A and the standard
technique of type stable sets.

2. Section 17D uses the Approximation Theorem presented in Section 17C.

In Section 17C, we introduce appropriate notions of approximants for almost all the type
theories of Fig. 33. Intuitively, an approximant is a partial term in the computation that
does not contain redexes. In some cases, the approximants are obtained by replacing
redexes by ⊥ and in other cases by just freezing them. In case of Scott,CDZ,DHM
and BCD, the whole context containing a redex in a head position is replaced by ⊥. In
case of AO, the notion of approximant is relaxed and abstractions are not replaced by
⊥. In case of Park and HR, the redexes are frozen by inserting a constant before the
abstraction. We will show that a type can be derived for a term if and only if it can
be derived for an approximant of that term (Approximation Theorem). A common and
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uniform proof is given of this theorem for all the type theories mentioned above (Dezani-
Ciancaglini, Honsell, and Motohama [2001]). The proof technique used is a variant of
stable sets over a Kripke applicative structure. In Section 17D some applications of the
Approximation Theorem are given. Amongst these, the characterizations for Park and
HL, mentioned in Fig. 43.
Finally in Section 17E it will be shown that given Γ, A one cannot decide inhabitation

for the type theory CDV, i.e. the existence of an M such that Γ ⊢CDV M : A. Also
for BCD the inhabitation is undecidable, see Urzyczyn [1999]. On the other hand, in
the type theory AO all types are inhabited, see Exercise 16E.2, therefore inhabitation
is decidable. The question of decidability of inhabitation for several other type theories
remains open.
Notice that the contents of the first four sections of this chapter can also be regarded

as applications of intersection types.

17A. Realizability interpretation of types

The natural set-theoretic semantics for type assignment in λ→ based on untyped λ-
models is given in Scott [1975a] where it was shown that

Γ ⊢λ→ M : A ⇒ Γ |=M : A.

Scott asked whether the converse (completeness) holds. In Barendregt, Coppo, and
Dezani-Ciancaglini [1983] the notion of semantics was extended to intersection types and
completeness was proved for λBCD

∩ via the corresponding filter model. Completeness
for λ→ follows by a conservativity result. In Hindley [1983] an alternative proof of
completeness for λ→ was given directly, using a term model. Variations of the semantics
are presented in Dezani-Ciancaglini, Honsell, and Alessi [2003].
Recall that quasi λ-models are defined in Definition 16A.2 and are λ-models without

the requirement that (β) holds. Using this notion one can distinguish between models
for the λI-calculus and the full λ-calculus.

17A.1. Definition (Type Interpretation). Let D = 〈D, ·, [[ ]]D〉 be a quasi λ-model and
let T be an intersection type theory over the atoms AT .

(i) Remember that for X,Y ⊆ D we defined

(X ⇒ Y ), {d∈D | ∀e∈X.d · e∈Y }.
(ii) The type interpretation induced by the type environment ξ : AT → P(D), with

ξ(U) = D if T ∈TTU, is the map [[ ]]Dξ : TTT→P(D) defined as follows.

[[α]]Dξ , ξ(α),

[[A→B]]Dξ , [[A]]Dξ ⇒ [[B]]Dξ ,

[[A ∩B]]Dξ , [[A]]Dξ ∩ [[B]]Dξ .

The above definition is the extension to intersection-types of the simple semantics for
simple types of Scott [1975a], generalized by allowing D to be just a quasi λ-model
instead of a λ-model.
It is easy to verify that [[U→U]]Dξ = D for all D, ξ.



574 17. Advanced properties and applications

In order to prove soundness, we have to check that the interpretation preserves the
typability rules. We already know that the interpretation preserves the typing rules for
application and intersection. This is because ∩ is interpreted as intersection on sets
and → is interpreted as the arrow induced by the application · on D. The following
definition is necessary to require that the interpretation preserves the remaining two
typability rules: abstraction and subtyping.

17A.2. Definition. Let D = 〈D, ·, [[ ]]D〉 be a quasi λ-model and ξ : AT → P(D) be a
type environment.

(i) The pair (D, ξ) is →-good if for all A,B ∈TTT for all environments ρ, terms M
and variables x

[∀d∈ [[A]]Dξ . [[M ]]Dρ[x:=d] ∈ [[B]]Dξ ] ⇒ [[λx.M ]]Dρ ∈ [[A]]Dξ →[[B]]Dξ ;

(ii) The pair (D, ξ) preserves ≤T if for all A,B ∈TTT one has

A ≤T B ⇒ [[A]]Dξ ⊆ [[B]]Dξ .

We now introduce the semantics of type assignment.

17A.3. Definition (Semantic Satisfiability). Let T ∈TT.
(i) Let D = 〈D, ·, [[ ]]D〉 be a quasi λ-model. Define

D, ρ, ξ |=M : A ⇐⇒△ [[M ]]Dρ ∈ [[A]]Dξ ;
D, ρ, ξ |= Γ ⇐⇒△ D, ρ, ξ |= x : B, for all (x:B)∈Γ.

(ii) We say that Γ satisfies M : A, notation Γ |=T
∩ M : A, if

D, ρ, ξ |= Γ ⇒ D, ρ, ξ |=M : A,

for all D, ξ, ρ such that (D, ξ) is →-good and preserves ≤T .

Derivability in the type system implies semantic satisfiability, as shown in the next
theorem.

17A.4. Theorem (Soundness). For all T ∈TT one has

Γ ⊢T∩ M : A ⇒ Γ |=T
∩ M : A.

Proof. By induction on the derivation of Γ ⊢T∩ M : A. Rules (→E), (∩I) and (Utop)
are sound by the definition of type interpretation (Definition 17A.1).
As to the soundness of rule (→I), assume Γ, x:A ⊢T∩ M : B in order to show Γ |=T

(λx.M) : (A→B). Assuming D, ρ, ξ |= Γ we have to show

[[λx.M ]]Dρ ∈ [[A]]Dξ →[[B]]Dξ .

Let d∈ [[A]]Dξ . We are done if we can show

[[M ]]Dρ[x:=d] ∈ [[B]]Dξ ,

because (D, ξ) are →-good. Now D, ρ[x: = d], ξ |= Γ, x:A, hence [[M ]]Dρ[x:=d] ∈ [[B]]Dξ , by

the induction hypothesis for Γ, x:A ⊢T∩ M : B.
Rule (≤) is sound, as we consider only (D, ξ) that preserve ≤T .
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Completeness

Now we characterize the complete theories.

17A.5. Notation. Let T ∈NTTU and FT = 〈FT , ·, [[ ]]F
T 〉 its corresponding filter quasi

λ-model, see Definition 16B.1.
(i) Let ξT : AT → P(FT ) be the type environment defined by

ξT (α), {X ∈FT | α∈X}.
(ii) Let [[ ]]T : TTT → P(FT ) be the mapping [[ ]]F

T

ξT
.

The mapping [[ ]]T : TTT → P(FT ) turns out to have the property of associating to each
type A the set of filters which contain A (thus preserving the property which defines ξT

in the basic case of type atoms).

17A.6. Proposition. Let T ∈NTTU. Then we have

[[A]]T = {X ∈FT | A∈X}.
Proof. By induction on A. The only interesting case is when A is an arrow type. If
A ≡ B→C we have

[[B→C]]T = {X ∈FT | ∀Y ∈ [[B]]T . X · Y ∈ [[C]]T }, by definition,

= {X ∈FT | ∀Y. B ∈Y ⇒ C ∈X · Y }, by induction,

= {X ∈FT | C ∈X· ↑ B}, by monotonicity,

= {X ∈FT | C ∈↑{C ′ | ∃B′ ∈↑B.B′→C ′ ∈X}}, by the definition of

filter application,

= {X ∈FT | B→C ∈X}, by (→) and (U→).

17A.7. Lemma. Let T ∈NTTU. Then (FT , ξT ) is →-good and preserves ≤T .

Proof. Suppose that X ∈ [[A]]T is such that

[[M ]]Tρ[x:=X] ∈ [[B]]T ,

in order to show [[λx.M ]]Tρ · X ∈ [[B]]T, which establishes that (FT , ξT ) is →-good. By

Proposition 17A.6 we have B ∈ [[M ]]Tρ[x:=X], hence B ∈ f(X), where we have put f =

λλd.[[M ]]Tρ[x:=d]. Since by Lemma 15B.8(ii) one has f ⊑ F T (GT (f)), it follows that

B ∈F T (GT (f))(X). Hence [[λx.M ]]Tρ ·X = F T (GT (f))(X)∈ [[B]]T , by Definition 16A.5(i)
and Proposition 17A.6.
As an immediate consequence of Proposition 17A.6 we get

A ≤T B ⇔ ∀X ∈FT .[A∈X ⇒ B ∈X]⇔ [[A]]T ⊆ [[B]]T,

and therefore (FT , ξT ) preserves ≤T .

Now we can prove the desired completeness result.

17A.8. Theorem (Completeness). Let T ∈TTU.

(i) [Γ |=T
∩ M : A ⇒ Γ ⊢T∩ M : A] iff T ∈NTTU.

(ii) Let T ∈NTTU. Then

Γ |=T
∩ M : A ⇔ Γ ⊢T∩ M : A.
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Proof. (i) (⇒) It is easy to verify that all type interpretations validate rule (→) and
the axiom (Utop). As to axiom (→∩), consider the T -basis Γ = {x:(A→ B)∩ (A→ C)}.
From Definition 17A.1 we get

Γ |=T
∩ x : A→(B ∩ C).

Hence, by hypothesis, we have Γ ⊢T∩ x : A→(B ∩C). Using Theorem 14A.9(i) it follows
that (A→B)∩(A→C) ≤T A→B ∩ C. Therefore axiom (→∩) holds.
As to axiom (U→)

|=T
∩ x : U→ U ⇒ ⊢T∩ x : (U→U)

⇒ x:U ⊢T∩ x : (U→U)

⇒ U ≤T (U→U), by Theorem 14A.9(i).

This proves (⇒).
(⇐) Now suppose Γ |=T M : A towards Γ ⊢T∩ M : A. We use the filter quasi λ-model

〈FT , ·, [[ ]]T 〉. By Lemma 17A.7 we have that Γ |=T
∩ M : A implies [[M ]]TρΓ ∈ [[A]]

T , where

ρΓ(x) =

{
↑ A if x:A∈Γ,
↑ U otherwise.

We conclude Γ ⊢T∩ M : A, using Proposition 17A.6 and Theorem 16B.7(i).

(ii) By Proposition 17A.4 and (i).

17A.9. Corollary. For T ∈ {Scott,Park,CDZ,HR,DHM,BCD} one has for allM ∈Λø

|=T
∩ M : A ⇒ ⊢T∩ M : A.

17A.10. Remark. In Barendregt, Coppo, and Dezani-Ciancaglini [1983] the complete-
ness of the type theory BCD was used to show the completeness of simple types via the
following conservativity result

∀A∈TTA
→∀M ∈Λ[ ⊢BCD

∩ M : A ⇒ ⊢λ→ M : A ].

This solved an open problem of Scott [1975a]. Independently a different completeness
proof has been given in Hindley [1983].

17A.11. Corollary. For M ∈Λø and A∈TTA
→ one has

⊢λ→ M : A ⇔ |=M : A.

Proof. (⇒) This is soundness, Proposition 3A.37, part ⇒.

(⇐) |=λ→ M : A ⇒ |=BCD
∩ M : A

⇒ ⊢BCD
∩ M : A, by Corollary 17A.9,

⇒ ⊢λ→ M : A, by Remark 17A.10.

Similar results for T ∈PTT can be found in Dezani-Ciancaglini, Honsell, and Alessi
[2003]. See also Exercises 17F.3 and 17F.4.
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17B. Characterizing syntactic properties

In this section we will see the intersection type systems at work in the characterization
of properties of λ-terms. Since types are preserved by reduction, it is only possible
to characterize properties which induce equivalences that are preserved by reduction.
In particular we will consider some normalization properties of λ-terms, i.e. the stan-
dard properties of having a head normal form or a normal form, and of being strongly
normalizable. First we recall some basic definitions.

17B.1. Definition. (i) A lambda termM is called β-strongly normalizing (SN) if there
is no infinite β-reduction starting with M . This is equivalent to being βη-SN.

(ii) SN, {M |M is strongly normalizing}.
For example SK∈ SN, but Ω, SKΩ /∈ SN, even if the last term has a normal form.

17B.2. Lemma (van Raamsdonk, Severi, Sørensen, and Xi [1999]). The set SN is the small-
est set of terms closed under the following rules.

M1 ∈ SN, · · · ,Mn ∈ SN
xM1 · · ·Mn ∈ SN

n ≥ 0

M ∈ SN
λx.M ∈ SN

M [x := N ]M1 · · ·Mn ∈ SN N ∈ SN
(λxM)NM1 · · ·Mn ∈ SN

n ≥ 0

Proof. Let SN be the set defined by these rules. We show

M ∈SN ⇔ M ∈ SN.

(⇒) By induction on the generation of SN .
(⇐) Suppose that M is strongly normalizing. Let ||M ||, the norm of M , be the length

of the longest reduction path starting with M . We prove that M ∈SN by induction on
the pair (||M ||,M), lexicographically ordered by the usual ordering on natural numbers
and the subterm ordering. IfM is a nf, thenM ∈SN . In the case ||M || = n > 0, we have

three cases, being x ~M, λx.N or (λx.P )N ~M . In the first two cases, the result follows
by the induction hypothesis applied to subterms, where the norm is the same or has
decreased. In the last case, the induction hypothesis is applied to P [x := N ]M1 · · ·Mn

and N , where the norm strictly decreases.

17B.3. Definition. (i) A term M is persistently head normalizing if M ~N has a head

normal form for all terms ~N .

(ii) A termM is persistently normalizing ifM ~N has a normal form for all normalizable

terms ~N .

(iii) A term M is persistently strongly normalizing if M ~N is strongly normalizing for

all strongly normalizing terms ~N .

The notion of persistently normalizing terms has been introduced in Böhm and Dezani-
Ciancaglini [1975].
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17B.4. Notation. Several classes of lambda terms are denoted by an acronym.

HN, {M |M has a head normal form}.
PHN, {M |M is persistently head normalizing}.

N, {M |M has a normal form}.
PN, {M |M is persistently normalizing}.
SN, {M |M is strongly normalizing}.

PSN, {M |M is persistently strongly normalizing}.
The following inclusions follow immediately by definition, except those of the last line
below, namely PSN ⊆ PN ⊆ PHN, which are proved in Exercise 17F.6.
The inclusion PSN ⊆ PN follows also comparing Fig.s 34 and 43. It is easy to find

examples to show that all these inclusions are strict.

SN ⊂ N ⊂ HN

∪ ∪ ∪
PSN ⊂ PN ⊂ PHN

17B.5. Example. (i) KxΩ∈PN but not in SN, hence not in PSN.
(ii) (λx.KxΩ)∈N but not in SN nor in PHN, hence not in PN.
(iii) xΩ∈PHN but not in N, hence not in PN.
(iv) x∈PSN.
(v) II∈SN, but not in PN.

Stable sets

We will use the standard proof technique of type stable sets (Krivine [1990]).

17B.6. Definition. The open term model of the lambda calculus consists of arbitrary
λ-terms modulo β-conversion. That isMΛ(β) , 〈Λ, ·, [[ ]]Λ〉 and we have

[[M ]]Λρ , {N | N =β M [~x := ~ρ(x)]}, where ~x = FV (M),

[[M ]]Λρ · [[N ]]Λρ , [[MN ]]Λρ .

The substitution M [x := ρ(x)] is to be interpreted as follows. If ρ(x) = [P ]=β
, then

M [x := ρ(x)] =M [x := P ]; this is independent of the choice of the representative P .

17B.7. Remark. InMΛ(β) = 〈Λ, ·, [[ ]]Λ〉 one has for X,Y ⊆MΛ(β)

(X ⇒ Y ) = {M ∈Λ | ∀N ∈X MN ∈Y }.
17B.8. Definition. Let X ⊆ Λ.
(i) X is called closed under head expansion of redexes, notation h↑-closed, if

P [x := Q]~R∈X implies (λx.P )Q~R∈X.
The term Q is called the argument of the head expansion.

(ii) X is HN-stable if X ⊆ HN, it contains x ~M for all ~M ∈Λ and is h↑-closed.
(iii) X is N-stable if X ⊆ N, it contains x ~M for all ~M ∈N and is h↑-closed.
(iv) A set X is SN-stable if X ⊆ SN, it contains x ~M for all ~M ∈ SN and is closed

under head expansion of redexes, whose arguments are in SN.
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From the above definition and Lemma 17B.2 we easily get the following.

17B.9. Proposition. Let S∈{HN,N, SN} and X,Y ⊆ Λ.
(i) S is S-stable.
(ii) PHN is HN-stable and PN is N-stable.
(iii) If X,Y are S-stable, then (X→Y ) and (X ∩ Y ) are S-stable.
(iv) If Y is HN-stable and X 6= ∅, then (X→Y ) is HN-stable.

17B.10. Definition (Type environments). (i) The type environment
ξ = ξ1BCD : A∞ → P(Λ) in the open term modelMΛ(β) is defined as follows.

ξ(α) , HN, if α∈A∞.

(ii) The type environment ξ = ξ2BCD inMΛ(β) is defined as follows.

ξ(α) , N, if α∈A∞.

(iii) The type environment ξ = ξDHM inMΛ(β) is defined as follows.

ξ(0) , PHN;

ξ(1) , HN.

(iv) The type environment ξ = ξCDZ inMΛ(β) is defined as follows.

ξ(0) , PN;

ξ(1) , N.

(v) The type environment ξ = ξCDV inMΛ(β) is defined as follows.

ξ(α) , SN, if α∈A∞.

(vi) The type environment ξ = ξHL inMΛ(β) is defined as follows.

ξ(0) , PSN;

ξ(1) , SN.

17B.11. Lemma. (i) [[A]]ξ1BCD
and [[A]]ξDHM

are HN-stable.

(ii) [[A]]ξ2BCD
and [[A]]ξCDZ

are N-stable.

(iii) [[A]]ξCDV
and [[A]]ξHL

are SN-stable.

Proof. All points follow easily from Proposition 17B.9.

We shall show that for each type environment ξT of Definition 17B.10 (MΛ(β), ξT ) are
→-good, see Definition 17A.2(i), and preserve ≤T . The proof occupies 17B.12-17B.14.

17B.12. Lemma. (i) M ∈ SN, N ∈PSN ⇒ M [x := N ]∈ SN.
(ii) M ∈ SN, N ∈PSN ⇒ MN ∈ SN.
(iii) M ∈N, N ∈PN ⇒ M [x := N ]∈N.
(iv) M ∈N, N ∈PN ⇒ MN ∈N.
(v) M ∈HN, N ∈PHN ⇒ M [x := N ]∈N.
(vi) M ∈HN, N ∈PHN ⇒ MN ∈HN.

Proof. The first two statements follow using the inductive definition of SN given in
17B.2. The rest follow by an easy induction on the (head) normal form of M .

17B.13. Proposition. (i) PSN = (N⇒ PSN).
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(ii) SN = (PSN⇒ SN).

(iii) PN = (N⇒ PN).

(iv) N = (PN⇒ N).

(v) PHN = (HN⇒ PHN).

(vi) HN = (PHN⇒ HN).

Proof. All cases are immediate except the inclusions SN ⊆ (PSN ⇒ SN), N ⊆ (PN ⇒
N) and HN ⊆ (PHN⇒ HN). These follow easily from Lemma 17B.12 (ii), (iv) and (vi).

17B.14. Lemma. For all ξT of Definition 17B.10 we have the following.

(i) ∀N ∈ [[B]]ξT ,M [x := N ]∈ [[A]]ξT implies (λx.M)∈ [[B → A]]ξT .

(ii) A ≤T B ⇒ [[A]]ξT ⊆ [[B]]ξT .

I.e. for all ξT of Definition 17B.10 (MΛ(β), ξT ) are →-good and preserve ≤T .

Proof. (i) If either T 6= CDV or T = CDV and N ∈ SN one easily shows that M [x :=
N ]∈ [[A]]ξT implies (λx.M)N ∈ [[A]]ξT by induction on A using Proposition 17B.9. The
conclusion from the definition of →.

(ii) By induction on the generation of ≤T , using Proposition 17B.13.

In the following result several important syntactic properties of lambda terms are
characterized by typability with respect to some intersection type theory. We define
ΓM
0 = {x1:0, · · · , xn:0}, where {x1, · · · ,xn} = FV(M).

17B.15. Theorem (Characterization Theorems).

(i) M ∈N ⇔ ∀T ∈TTU ∃Γ, A.Γ ⊢T∩ M : A & U /∈Γ, A
⇔ ∃Γ, A.Γ ⊢BCD

∩ M : A & U /∈ Γ, A.

⇔ ΓM
0 ⊢CDZ

∩ M : 1.

(ii) M ∈HN ⇔ ∀T ∈TTU ∃Γ ∃n,m∈N.Γ ⊢T∩ M : (Um→A)n→A
⇔ ∃Γ, A.Γ ⊢BCD

∩ M : A & A 6=BCD U

⇔ ΓM
0 ⊢DHM

∩ M : 1.

(iii) M ∈ SN ⇔ ∀T ∈TT ∃Γ, A.Γ ⊢T∩ M : A.

⇔ ∃Γ, A.Γ ⊢CDV
∩ M : A.

⇔ ΓM
0 ⊢HL

∩ M : 1.

Proof. We first prove (⇒) for (i)-(iii).

(i) By Corollary 14B.5(ii) it suffices to consider M in normal form. The proof is by
induction on M .
For the first and second equivalence, the only interesting case is M ≡ x ~M , where
~M ≡ M1 · · ·Mm. By the induction hypothesis we have Γj ⊢T Mj : Aj , for some Γj , Aj

not containing U and for j ≤ m. This implies that

⊎j≤mΓj ⊎ {x:A1→· · ·→Am→A} ⊢T∩ x ~M : A.

Therefore, ∀T ∈TTU ∃Γ, A.Γ ⊢T∩ M : A & U /∈Γ, A in particular for T = BCD.
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For λCDZ
∩ we also show by induction on M in normal form that ΓM

0 ⊢ M : 1. If

M ≡ x ~M then ΓM
0 ⊢CDZ

∩ Mj : 1 by the induction hypothesis and weakening. As 0 = 1→0

in CDZ, this implies ΓM
0 ⊢CDZ

∩ x ~M : 0. By rule (≤CDZ) we conclude ΓM
0 ⊢CDZ

∩ M : 1.
If M ≡ λy.N then by the induction hypothesis we have ΓM

0 , y : 0 ⊢CDZ
∩ N : 1 and this

implies ΓM
0 ⊢CDZ

∩ M : 0→ 1. Hence ΓM
0 ⊢CDZ

∩ M : 1 by rule (≤CDZ).
(ii) Again assume M ≡ λx1 · · ·xn.xM1 · · ·Mm is in head normal form.

x:(Um→A) ⊢T∩ xM1 · · ·Mm : A, by (→E), hence

x:(Um→A) ⊢T∩ M : (Um→A)n→A, by (weakening) and (→I).

As A is arbitrary we can get the type 6= U in T = BCD. We get

x:(Um → 0) ⊢DHM
∩ M : (Um → 0)n → 0,

taking T = DHM and A ≡ 0. This implies

x:0 ⊢DHM
∩ M : 1,

using (Um → 0) =DHM 0, as (U → 0) =DHM 0, and ((Um → 0)n → 0) ≤DHM 1, as
0 ≤DHM 1 and 1 =DHM 0→ 1.
(iii) By induction on the structure of strongly normalizing terms following Definition

17B.2. We only consider the case M ≡ (λx.R)N ~M with ~M ≡ M1 · · ·Mn and both

R[x := N ] ~M and N are strongly normalizing. By the induction hypothesis there are

Γ, A,Γ′, B such that Γ ⊢T∩ R[x := N ] ~M : A and Γ′ ⊢T∩ N : B. We get Γ ⊎ Γ′ ⊢T∩ R[x :=

N ] ~M : A and Γ ⊎ Γ′ ⊢T∩ N : B, so if n = 0 we are done by Theorem 14B.4(i). If n > 0,

then by iterated applications of Theorem 14A.1(ii) to Γ ⊢T∩ R[x := N ] ~M : A we obtain

Γ ⊢T∩ R[x := N ] : B
(i)
1 →· · ·→B(i)

n →B(i) Γ ⊢T∩ Mj : B
(i)
j , (j ≤ n)

and
⋂

i∈ I B
(i) ≤T A for some I, B

(i)
j (j ≤ n), B(i) ∈TTT . As in case n = 0 we obtain

Γ⊎ Γ′ ⊢T∩ (λx.R)N : B
(i)
1 →· · ·→B

(i)
m→B(i). So we can conclude Γ⊎ Γ′ ⊢T∩ (λx.R)N ~M :

A. Finally, ΓM
0 ⊢HL

∩ M : 1 follows from the observation that 1 is the top and 0 the
bottom element in HL, see Lemma 13A.22(i).

(⇐) Now we show the converse implication. Let ρ0(x) = x for all x∈V.
(i) Suppose Γ ⊢BCD

∩ M : A and U /∈A,Γ. By soundness (Theorem 17A.4) it follows

that Γ |=BCD
∩ M : A. By Lemmas 17B.14 and 17B.11(ii) one has Λ(β), ρ0, ξ

2
BCD |= Γ.

Hence, M ∈ [[A]]ξ2BCD
⊆ N, again by Lemma 17B.11(ii).

Suppose ΓM
0 ⊢CDZ

∩ M : 1. By soundness it follows that ΓM
0 |=CDZ

∩ M : 1. By Lem-
mas 17B.14 and 17B.11(ii) one has Λ(β), ρ0, ξCDZ |= Γ. Hence, M ∈ [[1]]ξCDZ

= N, by
Definition 17B.10(iv).

(ii) Suppose Γ ⊢BCD
∩ M : A 6= U. Then Γ |=BCD

∩ M : A by soundness. By Lemmas
17B.14 and 17B.11(i) one has Λ(β), ρ0, ξ

1
BCD |= Γ. Therefore we haveM ∈ [[A]]ξ1BCD

⊆ HN,

again by Lemma 17B.11(ii).
Suppose ΓM

0 ⊢DHM
∩ M : 1. Again by soundness ΓM

0 |=DHM
∩ M : 1. By Lemmas 17B.14

and 17B.11(i) one has Λ(β), ρ0, ξDHM |= Γ. Hence, by Definition 17B.10(iii) one has
M ∈ [[1]]ξDHM

= HN.
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(iii) Let Γ ⊢CDV
∩ M : A. Again by soundness Γ |=CDV

∩ M : A. By Lemmas 17B.14
and 17B.11(iii) one has Λ(β), ρ0, ξCDV |= Γ. Hence M ∈ [[A]]ξCDV

⊆ SN, by Lemma
17B.11(iii).

17B.16. Remark. (i) For T ∈TTU one has

∃A,Γ.Γ ⊢T∩ M : A & U 6=T A,Γ 6⇒M ∈HN.
Take for example T = Park, then ⊢Park∩ Ω : 0 6=Park U, by Theorem 17D.3, but this term
is unsolvable, hence without hnf, see B[1984].

(ii) There are many proofs of Theorem 17B.15(iii) in the literature: Pottinger [1980],
Leivant [1986], van Bakel [1992], Krivine [1990], Ghilezan [1996], Amadio and Curien
[1998]. As observed in Venneri [1996] all but Amadio and Curien [1998] contain some
bugs, which in Krivine [1990] can be easily remedied with a suitable non-standard notion
of length of reduction path.
(iii) In Coppo, Dezani-Ciancaglini, and Zacchi [1987] persistently normalizing normal

forms have been given a similar characterization using the notion of replaceable variable
(Coppo, Dezani-Ciancaglini, and Zacchi [1987]). Other classes of terms are characterized
in Dezani-Ciancaglini, Honsell, and Motohama [2005] and Tatsuta and Dezani-Cian-
caglini [2006].

17C. Approximation theorems

Crucial results for the study of the equational theory of ω-algebraic λ-models are the
Approximation Theorems, see e.g. Hyland [1975/76], Wadsworth [1976], B[1984], Longo
[1988], Ronchi Della Rocca [1988], Honsell and Ronchi Della Rocca [1992]. An Approxi-
mation Theorem expresses the interpretation of any λ-term, even a non terminating one,
as the supremum of the interpretations of suitable normal forms, called the approximants
of the term, in an appropriate extended language. Approximation Theorems are very
useful in proving, for instance, Computational Adequacy of models with respect to oper-
ational semantics, see e.g. B[1984], Honsell and Ronchi Della Rocca [1992]. There are
other possible methods of showing computational adequacy, both semantical and syntac-
tical, e.g. Hyland [1975/76], Wadsworth [1976], Honsell and Ronchi Della Rocca [1992],
Abramsky and Ong [1993], but the method based on Approximation Theorems is usu-
ally the most straightforward. However, proving an Approximation Theorem for a given
model theory is usually rather difficult. Most of the proofs in the literature are based
on the technique of indexed reduction, see Wadsworth [1976], Abramsky and Ong [1993],
Honsell and Ronchi Della Rocca [1992]. However, when the model in question is a filter
model, by applying duality, the Approximation Theorem can be rephrased as follows:
the types of a given term are all and only the types of its approximants. This change
in perspective opens the way to proving Approximation Theorems using the syntactical
machinery of proof theory, such as logical predicates and computability techniques.
The aim of the present section is to show in a uniform way that all the type assignment

systems which induce filter models isomorphic to the models in Scott [1972], Park [1976],
Coppo, Dezani-Ciancaglini, and Zacchi [1987], Honsell and Ronchi Della Rocca [1992],
Dezani-Ciancaglini, Honsell, and Motohama [2005], Barendregt, Coppo, and Dezani-
Ciancaglini [1983], Abramsky and Ong [1993] satisfy the Approximation Theorem. To
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this end following Dezani-Ciancaglini, Honsell, and Motohama [2001] we use a technique
which can be constructed as a version of stable sets over a Kripke applicative structure.
In Ronchi Della Rocca and Paolini [2004] the approximation theorem is given also for
the type assignment system λEHR

∩V defined in Definition 13B.13.
For almost all the type theories of Fig. 33 which induce λ-models we introduce appro-

priate notions of approximants which agree with the λ-theories of different models and
therefore also with the type theories describing these models. Then we will prove that
all types of an approximant of a given term (with respect to the appropriate notion of
approximants) are also types of the given term. Finally we show the converse, namely
that the types which can be assigned to a term can also be assigned to at least one ap-
proximant of that term. Hence a type can be derived for a term if and only if it can be
derived for an approximant of that term. We end this section showing some applications
of the Approximation Theorem.

Approximate normal forms

In this section we consider two extensions of λ-calculus, both obtained by adding one
constant. The first one is the well known language λ⊥, see B[1984]. The other extension
is obtained by adding the constant Φ and is discussed in Honsell and Ronchi Della Rocca
[1992].

17C.1. Definition. (i) The set Λ⊥ of λ⊥-terms is obtained by adding the constant
bottom, notation ⊥, to the formation rules of terms.

(ii) The set ΛΦ of λΦ-terms is obtained by adding the constant Φ to the formation
rules of terms.

We consider two mappings (�⊥ and �L) from λ-terms to λ⊥-terms and one mapping
(�Φ) from λ-terms to λΦ-terms. These mappings differ in the translation of β-redexes.
Clearly the values of these mappings are β-irreducible terms, i.e. normal forms for
an extended language. As usual we call such a term an approximate normal form or
abbreviated an anf.

17C.2. Definition. The mappings �⊥ : Λ→Λ⊥, �L : Λ→Λ⊥, �Φ : Λ→ΛΦ are induc-
tively defined as follows.

�(λ~x.y ~M) , λ~x.y�(M1) · · ·�(Mm);

�⊥(λ~x.(λy.R)N ~M) , ⊥;
�L(λ~x.(λy.R)N ~M) , λ~x.⊥;
�Φ(λ~x.(λy.R)N ~M) , λ~x.Φ�Φ(λy.R)�Φ(N)�Φ(M1) · · ·�Φ(Mm),

where �∈{�⊥,�L,�Φ}, ~M ≡M1 · · ·Mm and m ≥ 0.

The mapping �⊥ is related to the Böhm-tree of untyped lambda terms, whereas �L to
the Lévy-Longo trees, see van Bakel, Barbanera, Dezani-Ciancaglini, and de Vries [2002],
where these trees are related to intersection types.
In order to give the appropriate Approximation Theorem we will use the mapping �⊥ for
the type assignment systems λScott

∩ , λCDZ
∩ , λDHM

∩ , λBCD
∩ , the mapping �L for the type

assignment system λAO
∩ , and the mapping �Φ for the type assignment systems λPark

∩ ,
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λHR
∩ . Each one of the above mappings associates a set of approximants to each λ-term

in the standard way.

17C.3. Definition. Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,AO}.
The set AT (M) of T -approximants of M is defined by

AT (M), {P | ∃M ′. M ։β M
′ and P ≡ �(M ′)},

where
� , �⊥, for T ∈ {Scott,CDZ,DHM,BCD},
� , �L, for T ∈ {AO},
� , �Φ, for T ∈ {Park,HR}.

We extend the typing to λ⊥-terms and to λΦ-terms by adding two different axioms for
Φ and nothing for ⊥.
17C.4. Definition. (i) Let T ∈ {Scott,CDZ,DHM,BCD,AO}. We extend the defini-
tion of type assignment Γ ⊢T∩ M : A to λ⊥-terms by letting M,N in Definition 13B.3
range over Λ⊥.

(ii) We extend the type assignment λPark
∩ to λΦ-terms by adding the axiom

(Ax-Φ-Park) Γ ⊢Park∩ Φ : 0.

(iii) We extend the type assignment λHR
∩ to λΦ-terms by adding the axiom

(Ax-Φ-HR) Γ ⊢HR
∩ Φ : 1.

We do not introduce different notations for these extended type assignment systems
concerning terms in Λ⊥Φ. It is easy to verify that the Inversion Lemmas (Theorems
14A.1 and 14A.9) remain valid. In addition to these the following result is relevant.

17C.5. Proposition. (i) Let T ∈ {Scott,CDZ,DHM,BCD,AO}. Then

Γ ⊢T∩ ⊥ : A ⇔ A =T U.

(ii) Γ ⊢Park∩ Φ : A ⇔ 0 ≤Park A.

(iii) Γ ⊢HR
∩ Φ : A ⇔ 1 ≤HR A.

17C.6. Lemma. Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,AO}.
(i) M1 ։β M2 & Γ ⊢T∩ �(M1) : A ⇒ Γ ⊢T∩ �(M2) : A.

(ii) If P, P ′ ∈AT (M), Γ ⊢T∩ P : A and Γ ⊢T∩ P ′ : B, then

∃P ′′ ∈AT (M).Γ ⊢T∩ P ′′ : A ∩B.
Proof. (i). For T ∈ {Scott,CDZ,DHM,BCD,AO} the proof follows by induction on
the structure of the term distinguishing cases (being or not in head normal form) and
using the Inversion Lemmas.
For T ∈ {Park,HR} it suffices to consider the caseM1 ≡ (λx.M)N andM2 ≡M [x := N ].
Notice that �Φ(M [x := N ]) is �Φ(M), where the occurrences of x have been replaced
by Φ�Φ(N) if they are functional and N is an abstraction, and by �Φ(N) otherwise.
More formally, define the mapping �Φ : Λ→ ΛΦ by

�Φ(M) =

{
Φ�Φ(M) if M ≡ λx.M ′

�Φ(M) otherwise
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and the mapping { }xy : Λ→ Λ by

{z}xy = z

{M1M2}xy =

{
y{M2}xy if M1 ≡ x
{M1}xy{M2}xy otherwise

{λz.M}xy = λz.{M}xy .
Then �Φ(M1M2) = �Φ(M1)�Φ(M2) and one can check, by induction on M , that
�Φ(M [x := N ]) ≡ �Φ({M}xy)[x := �Φ(N)][y := �Φ(N)] for y fresh.

We may assume A 6=T U. Then from Γ ⊢T∩ Φ(λx.�Φ(M))�Φ(N) : A we get Γ ⊢T∩
Φ(λx.�Φ(M)) : C → A, Γ ⊢T∩ �Φ(N) : C for some C, by Theorem 14A.9(ii). By Lemma
13A.24 we have C → A 6=T U, so again by Theorem 14A.9(ii) Γ ⊢T∩ Φ : B → C → A,
Γ ⊢T∩ λx.�Φ(M) : B, for some B.
For T = Park we get 0 ≤Park B → C → A from Γ ⊢Park∩ Φ : B → C → A by

Proposition 17C.5(ii). This implies B ≤Park 0, C ≤Park 0, and 0 ≤Park A, since 0 =T

0→ 0, since Park is β-sound by Theorem 14A.7, (C→A) 6=T U and A 6=T U. We obtain
by rule (≤) Γ ⊢Park∩ λx.�Φ(M) : 0 and Γ ⊢Park∩ �Φ(N) : 0. We get Γ, x:0 ⊢Park∩ �Φ(M) : 0
(by Theorem 14A.9 (iii)) and Γ ⊢Park∩ Φ�Φ(N) : 0 since 0 =Park 0→ 0. Now �Φ({M}xy)
equals �Φ(M) with some occurrences of x replaced by the fresh variable y. Hence
Γ, y:0, x:0 ⊢Park∩ �Φ({M}xy):0. So we conclude Γ ⊢Park∩ �Φ({M}xy)[x := �Φ(N)][y :=

�Φ(N)] : A by rules (cut) and (≤).
For T = HR we get 1 ≤HR B → C → A from Γ ⊢HR

∩ Φ : B → C → A by The-
orem 17C.5. This implies either (B ≤HR 1 and 1 ≤HR C → A) or (B ≤HR 0 and
0 ≤HR C → A) since 1 =HR (1 → 1)∩(0 → 0) and HR is β-sound by Theorem 14A.7,
C→A 6=HR U and A 6=HR U (notice that 1∩0 = 0). Similarly in the first case from
1 ≤HR C → A we get either C ≤HR 1 and 1 ≤HR A or C ≤HR 0 and 0 ≤HR A. In the
second case from 0 ≤HR C → A we get C ≤HR 1 and 0 ≤HR A since 0 =HR 1→ 0.
To sum up, using rule (≤) we have the following alternative cases.

• Γ ⊢HR
∩ λx.�Φ(M) : 1, Γ ⊢HR

∩ �Φ(N) : 1, and 1 ≤HR A;

• Γ ⊢HR
∩ λx.�Φ(M) : 1, Γ ⊢HR

∩ �Φ(N) : 0, and 0 ≤HR A;

• Γ ⊢HR
∩ λx.�Φ(M) : 0, Γ ⊢HR

∩ �Φ(N) : 1, and 0 ≤HR A.

From Theorem 14A.9 (iii) we get alternatively:

• Γ, x:1 ⊢HR
∩ �Φ(M) : 1, and Γ ⊢HR

∩ Φ�Φ(N) : 1;

• Γ, x:0 ⊢HR
∩ �Φ(M) : 0, and Γ ⊢HR

∩ Φ�Φ(N) : 0;

• Γ, x:1 ⊢HR
∩ �Φ(M) : 0, and Γ ⊢HR

∩ Φ�Φ(N) : 1,

so we can conclude as in the previous case.
(ii). By hypotheses there are M1, M2 such that M ։β M1, M ։β M2 and P ≡

�(M1), P
′ ≡ �(M2). By the Church-Rosser property of →β we can find M3 such that

M1 ։β M3 and M2 ։β M3. By (i) we can choose P ′′ ≡ �(M3).

Approximation Theorem - Part 1

It is useful to introduce the following definition.

17C.7. Definition. Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,AO}. Write
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[A]TΓ = {M | ∃P ∈AT (M). Γ ⊢T∩ P : A}.
By definition we get that M ∈ [A]TΓ and N ։β M imply N ∈ [A]TΓ . Moreover Γ ⊆+Γ′

implies [A]TΓ ⊆ [A]TΓ′ for all types A∈TTT .

In this subsection we prove that, if M ∈ [A]TΓ , then there exists a derivation of Γ ⊢T∩
M : A.

17C.8. Proposition. Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,AO}.
M ∈ [A]TΓ ⇒ Γ ⊢T∩ M : A.

Proof. Write P ≡ �(M) with � = �⊥ for T ∈ {Scott,CDZ,DHM,BCD},
� = �L for T = AO,
� = �Φ for T ∈ {Park,HR}.

By Corollary 14B.5 (ii) it is sufficient to show that for all mentioned T one has

Γ ⊢T∩ P : A⇒ Γ ⊢T∩ M : A.(7)

For ⊢T∩ just write ⊢ in this proof.
For T ∈ {Scott,CDZ,DHM,BCD,AO} the implication (7) follows from Proposition

17C.5(i) and the definition of the mappings �⊥ and �L.
For T ∈ {Park,HR} we prove (7) by induction on M , assuming A 6=T U.
Case M ≡ x. Trivial.
Case M ≡ λx.M ′. Then P ≡ λx.P ′ where P ′ ≡ �Φ(M

′). By Theorem 14A.1(iii) from
Γ ⊢ P : A we get Γ, x:Bi ⊢ P ′ : Ci and

⋂
i∈ I(Bi → Ci) ≤ A for some I, Bi, Ci. We get

by induction Γ, x:Bi ⊢M ′ : Ci and so we conclude Γ ⊢M : A using rules (→I), (∩I) and
(≤).
Case M ≡ M1M2, where M1 is not an abstraction. Then P ≡ P1P2 where P1 ≡

�Φ(M1) and P2 ≡ �Φ(M2). By Theorem 14A.9(ii) from Γ ⊢ P : A we get Γ ⊢ P1 : B →
A, Γ ⊢ P2 : B for some B. By induction this implies Γ ⊢ M1 : B → A and Γ ⊢ M2 : B,
hence Γ ⊢M ≡M1M2 : A.
Case M ≡M1M2, where M1 is an abstraction. Then P ≡ ΦP1P2 where P1 ≡ �Φ(M1)

and P2 ≡ �Φ(M2). As in the proof of Lemma 17C.6(i) from Γ ⊢ P : A, where A 6=T U,
we get Γ ⊢ Φ : B → C → A, Γ ⊢ P1 : B, Γ ⊢ P2 : C for some B,C. By induction this
implies Γ ⊢M1 : B and Γ ⊢M2 : C.
For T = Park, as in the proof of Lemma 17C.6(i), we get Γ ⊢ M1 : 0 and Γ ⊢ M2 : 0.

We can conclude Γ ⊢M : A using rules (≤Park) and (→E) since 0 =Park 0→ 0.
For T = HR as in the proof of Lemma 17C.6(i) we have the following alternative cases.

• Γ ⊢HR
∩ M1 : 1, Γ ⊢HR

∩ M2 : 1, and 1 ≤HR A;

• Γ ⊢HR
∩ M1 : 1, Γ ⊢HR

∩ M2 : 0, and 0 ≤HR A;

• Γ ⊢HR
∩ M1 : 0, Γ ⊢HR

∩ M2 : 1, and 0 ≤HR A.

It is easy to verify that in all cases we can derive Γ ⊢ M : A from (I) and (1→0) using
rules (≤HR) and (→E).

Approximation Theorem - Part 2

In order to prove the converse of Proposition 17C.8 we will use a Kripke-like version of
stable sets Mitchell [1996]. First we need a technical result.
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17C.9. Lemma. Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,AO}. Write Γ′ = Γ, z : B,
with z /∈ FV(M), and assume A 6=T U for T = AO. Then

Mz ∈ [A]TΓ′ ⇒ M ∈ [B → A]TΓ .

Proof. Let P ∈AT (Mz) and Γ′ ⊢ P : A. We show by cases on P and M that there is

P̂ ∈AT (M) such that Γ ⊢ P̂ : B → A.

There are two possibilities.

• Mz ։β M
′z and P ≡ �(M ′z);

• Mz ։β (λx.M ′)z →β M
′[x := z] and P ∈AT (M

′[x := z]).

In the first case again there are two possibilities.

• M ′ ≡ yM1 · · ·Mm, m ≥ 0;
• M ′ ≡ (λy.M0)M1 · · ·Mm, m ≥ 0.

In total there are four cases:

• P ≡ P ′z and P ′ ≡ y�(M1) · · ·�(Mm)∈AT (M);

• P ≡ ⊥ and T ∈ {Scott,CDZ,DHM,BCD,AO};
• P ≡ ΦP ′z, P ′ ≡ �(λy.M0)�(M1) · · ·�(Mm)∈AT (M) and T ∈ {Park,HR};
• M ։β λx.M

′ and P ∈AT (M
′[x := z]).

Case P ≡ P ′z, where P ′ ∈AT (M). Then we can choose P̂ ≡ P ′. This is clear if
A =T U because by assumption T 6= AO, hence we have (U→). Now let A 6=T U. Then
by Theorem 14A.9(ii) from Γ′ ⊢ P : A we get Γ′ ⊢ P ′ : C → A, Γ′ ⊢ z : C for
some C. By Theorem 14A.9(i) B ≤ C and we conclude using (≤) and (strengthening)
Γ ⊢ P ′ : B → A.
Case P ≡ ⊥. By Proposition 17C.5(i) A =T U. By assumption, T 6= AO. Hence, we

have rule (U→).
Case P ≡ ΦP ′z, where P ′ ∈AT (M) and T ∈ {Park,HR}. Now we show that we can

choose P̂ ≡ P ′. Again let A 6=T U. Then from Γ′ ⊢ P : A we get by Theorem 14A.9(ii)
and (i) Γ′ ⊢ Φ : C → D → A, and Γ′ ⊢ P ′ : C, and Γ′ ⊢ z : D, for some C,D
with B ≤ D. For T = Park, using Proposition 17C.5(ii) as in the proof of Lemma
17C.6(i), we get C ≤Park 0, D ≤Park 0, and 0 ≤Park A (remember that 0 =Park 0→0).
Similarly for T = HR, using Proposition 17C.5(iii), we get either C ≤HR 1, D ≤HR 1,
and 1 ≤HR A or C ≤HR 1,D ≤HR 0, and 0 ≤HR A or C ≤HR 0, D ≤HR 1, and 0 ≤Park A
(remember that 1 =HR (1→1)∩(0→0) and 0 =HR 1→0). In all cases we can conclude
C ≤ D → A ≤ B → A and therefore by (≤) and (strengthening) Γ ⊢ P ′ : B → A.
Case M ։β λx.M ′ and P ∈AT (M

′[x := z]).If � = �⊥ and P ≡ ⊥, then we choose

P̂ ≡ P, otherwise P̂ ≡ λz.P.
The following crucial definition is somewhat involved. It amounts essentially to the

definition of the natural set-theoretic semantics of intersection types over a suitable
Kripke applicative structure, where bases play the role of worlds.8 In order to keep
the treatment elementary we don’t develop the full theory of the natural semantics of
intersection types in Kripke applicative structures. The definition below is rather long,

8As already observed in Berline [2000] we cannot use here stable sets as we did in Section 17B since
we need to take into account also the T -bases, not only the λ-terms and their types.
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since we have different cases for the type 0 and for arrow types according to the different
type theories under consideration.

17C.10. Definition (Kripke type interpretation).

Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,AO}. Define [[A]]TΓ for A∈TTT

[[α]]TΓ , [α]TΓ , for α∈A∞ ∪ {U, 1};

[[0]]TΓ ,





{M | ∀ ~N.M ~N ∈ [0]TΓ }, for T ∈ {Scott,DHM};
{M | ∀Γ′⊇+ Γ∀ ~N ∈ [1]TΓ′ .M ~N ∈ [0]TΓ′}, for T ∈ {CDZ,HR};
[0]TΓ , for T = Park;

[[A→B]]TΓ ,

{
{M | ∀Γ′⊇+ Γ∀N ∈ [[A]]TΓ′ .MN ∈ [[B]]TΓ′}, if T 6= AO or B 6=AOU;

[A→B]TΓ , if T = AO & B =AO U;

[[A ∩B]]TΓ , [[A]]TΓ ∩ [[B]]TΓ .

The definition of [[A→B]]TΓ is somewhat involved in order to make Lemma 17C.12(ii)
valid for T = AO.

17C.11. Proposition. (i) M ∈ [[A]]TΓ & N ։β M ⇒ N ∈ [[A]]TΓ .
(ii) Γ ⊆+Γ′ ⇒ [[A]]TΓ ⊆ [[A]]TΓ′, for all types A∈TTT .

Proof. Easy.

The Lemmas 17C.12, 17C.15 and the final theorem are standard.

17C.12. Lemma. Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,AO}. Then

(i) x ~M ∈ [A]TΓ ⇒ x ~M ∈ [[A]]TΓ .
(ii) [[A]]TΓ ⊆ [A]TΓ .

Proof. (i) and (ii) are proved simultaneously by induction on A. We consider only
some interesting cases.

(i) Case A ≡ 0 and T = CDZ. Let Γ′⊇+ Γ and ~N ∈ [1]CDZ
Γ′ .

Clearly P ∈ACDZ(x ~M), ~Q∈ACDZ( ~N)⇒ P ~Q∈ACDZ(x ~M ~N). Hence

x ~M ∈ [0]CDZ
Γ ⇒ x ~M ~N ∈ [0]CDZ

Γ′ by rules (≤CDZ) and (→E)
since 0 =CDZ 1→ 0,

⇒ x ~M ∈ [[0]]CDZ
Γ by Definition 17C.10.

Case A ≡ B → C. Let Γ′⊇+ Γ and T 6= AO or C 6=AOU and let N ∈ [[B]]TΓ′ .

[[B]]TΓ′ ⊆ [B]TΓ′ by induction on (ii). Hence

x ~M ∈ [A]TΓ ⇒ x ~MN ∈ [C]TΓ′ by rule (→E),

⇒ x ~MN ∈ [[C]]TΓ′ by induction on (i),

⇒ x ~M ∈ [[B → C]]TΓ by Definition 17C.10.
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(ii) Case A ≡ B→C and T 6= AO or C 6=AOU. Let Γ′ = Γ, z:B with z fresh, and

suppose M ∈ [[B → C]]TΓ ; as z ∈ [[B]]TΓ,z:B by induction on (i), we have

M ∈ [[B → C]]TΓ & z ∈ [[B]]TΓ,z:B ⇒ Mz ∈ [[C]]TΓ′ by Definition 17C.10,

⇒ Mz ∈ [C]TΓ′ by induction on (ii),

⇒ M ∈ [B→C]TΓ by Lemma 17C.9.

Case A ≡ B ∩ C. This follows from [[B ∩ C]]TΓ = [[B]]TΓ ∩ [[C]]TΓ and the induction
hypothesis using Lemma 17C.6(ii).

The following lemma essentially states that the Kripke type interpretations agree with
the corresponding type theories.

17C.13. Lemma. (i) Let T ∈ {CDZ,DHM}. Then

M ∈ [A]TΓ,z:0 & N ∈ [[0]]TΓ ⇒ M [z := N ]∈ [A]TΓ .

(ii) Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,AO}. Then

∀A,B ∈TTT [A ≤T B ⇒ [[A]]TΓ ⊆ [[B]]TΓ ].

Proof. (i) We may assume A 6=T U.
Let T = CDZ. If M ∈ [A]CDZ

Γ,z:0, then there is a P ∈ACDZ(M) such that Γ, z:0 ⊢CDZ
∩ P :

A. This is proved by induction on P .
Case P ≡ ⊥. Trivial.
Case P ≡ λx.P ′. Then M ։β λx.M

′ and P ′ ∈ACDZ(M
′). From Γ, z:0 ⊢CDZ

∩ P : A we

get Γ, z:0, x:Bi ⊢CDZ
∩ P ′ : Ci and

⋂
i∈ I(Bi→Ci) ≤CDZ A for some I and Bi, Ci ∈TTCDZ

by Theorem 14A.1(iii). By induction for each i∈ I there is a Pi ∈ACDZ(M
′[z := N ])

such that Γ, x:Bi ⊢CDZ
∩ Pi : Ci. Let Pi = �(Mi), where M

′[z := N ] ։β Mi and let M ′′

be a common reduct of the Mi and P ′′ ≡ �(M ′′). Then P ′′ ∈ACDZ(M
′[z := N ]) and

Γ, x:Bi ⊢CDZ
∩ P ′′ : Ci, for all i∈ I, by Lemma 17C.6(i). Clearly λx.P ′′ ∈ACDZ(M [z :=

N ]) and by construction Γ ⊢CDZ
∩ λx.P ′′ : A.

Case P ≡ x~P , then M ։β x ~M and ~P ∈ACDZ( ~M). From Γ, z:0 ⊢CDZ
∩ P : A we get

Γ, z:0 ⊢CDZ
∩ x : ~B → A and Γ, z:0 ⊢CDZ

∩
~P : ~B by Theorem 14A.9(ii) and Lemma 13A.24.

By induction there are ~P ′ ∈ACDZ( ~M [z := N ]) such that Γ ⊢CDZ
∩

~P ′ : ~B. If x 6= z we

are done since x ~P ′ ∈ACDZ(M [z := N ]) and we can derive Γ ⊢CDZ
∩ x ~P ′ : A using (→E).

Otherwise Γ, z:0 ⊢CDZ
∩ z : ~B → A implies 0 ≤CDZ

~B → A by Theorem 14A.9(i). Being

CDZ β-sound by Theorem 14A.7 from 0 =CDZ
~1→ 0 we obtain ~B ≤CDZ

~1 and 0 ≤CDZ A

by Lemma 13A.24. So we get Γ ⊢CDZ
∩

~P ′ : ~1, i.e. ~M [z := N ]∈ [1]CDZ
Γ . Now

N ∈ [[0]]CDZ
Γ & ~M [z := N ]∈ [1]CDZ

Γ ⇒ M [z := N ]∈ [0]CDZ
Γ ,

by Definition 17C.10. Since 0 ≤CDZ A we get M [z := N ]∈ [A]CDZ
Γ .

Let T = DHM. Then the proof is similar but easier. In the case P ≡ z ~P it follows
from Definition 17C.10 that N ∈ [[0]]DHM

Γ ⇒ M [z := N ]∈ [A]DHM
Γ .

(ii) We treat the cases related to A→B≤U→U in AO, (0→1)=1, 0=(1→0) in CDZ,
(1→1) ∩ (0→0)=1 in HR, and (0→0)=0 in Park.
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Proof of [[A→B]]AO
Γ ⊆ [[U→U]]AO

Γ . If B =AO U, then

[[A→B]]AO
Γ = [A→B]AO

Γ ⊆ [U→U]AO
Γ = [[U→U]]AO

Γ .

If, on the other hand, B 6=AO U, thenM ∈ [[A→B]]AO
Γ . Write Γ′ = Γ, z:A. Then z ∈ [A]AO

Γ′ ,

hence by Lemma 17C.12(i) z ∈ [[A]]AO
Γ′ . So Mz ∈ [[B]]AO

Γ′ ⊆ [B]AO
Γ′ , by Lemma 17C.12(ii),

and therefore M ∈ [A→B]AO
Γ ⊆ [U→U]AO

Γ = [[U→U]]AO
Γ , by Lemma 17C.9.

Proof of [[0→1]]CDZ
Γ ⊆ [[1]]CDZ

Γ . We have

[[0→1]]CDZ
Γ ⊆ [0→1]CDZ

Γ , by Lemma 17C.12(ii),

= [1]CDZ
Γ , since 0→1 =CDZ 1,

= [[1]]CDZ
Γ , by Definition 17C.10.

Proof of [[1]]CDZ
Γ ⊆ [[0→1]]CDZ

Γ . Suppose Γ′⊇+ Γ, M ∈ [[1]]CDZ
Γ and N ∈ [[0]]CDZ

Γ′ , in order

to show MN ∈ [[1]]CDZ
Γ′ . By Definition 17C.10 [[1]]CDZ

Γ = [1]CDZ
Γ . IfM ∈ [1]CDZ

Γ , then there

is P ∈ACDZ(M) such that Γ ⊢CDZ
∩ P : 1. We will show MN ∈ [[1]]CDZ

Γ′ by distinguishing

cases of P .
Case P ≡ ⊥. By Proposition 17C.5(i) one has 1 =CDZ U, contradicting Proposi-

tion 13A.28. So this case is impossible.

Case P ≡ λz.P ′. Then M ։β λz.M
′ and P ′ ∈ACDZ(M

′). From Γ ⊢CDZ
∩ P : 1 we get

Γ, z:0 ⊢CDZ
∩ P ′ : 1 by Theorem 14A.9(iii), since 1 =CDZ 0→1. This implies M ′ ∈ [1]CDZ

Γ,z:0.

We may assume that z /∈ dom(Γ′). Then also M ′ ∈ [1]CDZ
Γ′,z:0. Therefore

MN ։β (λz.M ′)N

→β M ′[z := N ]

∈ [1]CDZ
Γ′ , by (i),

= [[1]]CDZ
Γ′ .

Case P ≡ x~P . Notice that Γ ⊢CDZ
∩ P : 1 implies Γ ⊢CDZ

∩ P : 0→1, since 1 =CDZ 0→1.

By Lemma 17C.12(ii) [[0]]CDZ
Γ′ ⊆ [0]CDZ

Γ′ , hence there is P ′ ∈ACDZ(N) such that Γ′ ⊢CDZ
∩

P ′ : 0. We get Γ′ ⊢CDZ
∩ PP ′ : 1. As PP ′ ∈ACDZ(MN) we conclude that MN ∈ [[1]]CDZ

Γ′ .

Proof of [[1→0]]CDZ
Γ ⊆ [[0]]CDZ

Γ . We have [[1→0]]CDZ
Γ ⊆ [1→0]CDZ

Γ , by Lemma 17C.12(ii)

and [1→0]CDZ
Γ = [0]CDZ

Γ , as 1→0 =CDZ 0, using Definition 17C.7. Moreover using

Definition 17C.10 it follows that

[[1→0]]CDZ
Γ = {M | ∀Γ′⊇+ Γ, ∀N ∈ [[1]]CDZ

Γ′ .MN ∈ [[0]]CDZ
Γ′ }

= {M | ∀Γ′⊇+ Γ, ∀N ∈ [1]CDZ
Γ′ .MN ∈ [[0]]CDZ

Γ′ }

⊆ {M | ∀Γ′⊇+ Γ, ∀N, ~N ∈ [1]CDZ
Γ′ .MN ~N ∈ [0]CDZ

Γ′ }.
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From [[1→0]]CDZ
Γ ⊆ [0]CDZ

Γ and

[[1→0]]CDZ
Γ ⊆ {M | ∀Γ′⊇+ Γ, ∀N, ~N ∈ [1]CDZ

Γ′ .MN ~N ∈ [0]CDZ
Γ′ }

we can conclude

[[1→0]]CDZ
Γ ⊆ {M | ∀Γ′⊇+ Γ, ~N ∈ [1]CDZ

Γ′ .M ~N ∈ [0]CDZ
Γ′ } = [[0]]CDZ

Γ .

Proof of [[0]]CDZ
Γ ⊆ [[1→0]]CDZ

Γ . Again using Definition 17C.10 one has

M ∈ [[0]]CDZ
Γ ⇒ ∀Γ′⊇+ Γ, ∀N, ~N ∈ [1]CDZ

Γ′ .MN ~N ∈ [0]CDZ
Γ′

⇒ ∀Γ′⊇+ Γ, ∀N ∈ [1]CDZ
Γ′ .MN ∈ [[0]]CDZ

Γ′

⇒ M ∈ [[1→0]]CDZ
Γ .

Proof of [[(1→1)∩(0→0)]]HR
Γ ⊆ [[1]]HR

Γ . By Lemma 17C.12(ii) one has

[[(1→1)∩(0→0)]]HR
Γ ⊆ [(1→1)∩(0→0)]HR

Γ

= [1]HR
Γ

= [[1]]HR
Γ ,

by Definition 17C.7, (1→1)∩(0→0) = 1 and Definition 17C.10.

Proof of [[1]]HR
Γ ⊆ [[(1→1)∩(0→0)]]HR

Γ . Let Γ′⊇+ Γ.

M ∈ [[1]]HR
Γ ⇒M ∈ [1]HR

Γ

⇒ ∃P ∈AHR(M) Γ ⊢HR
∩ P : 1, by Definition 17C.7.(8)

N ∈ [[1]]HR
Γ′ ⇒ N ∈ [1]HR

Γ′

⇒ ∃P ′ ∈AHR(N) Γ′ ⊢HR
∩ P ′ : 1, by Definition 17C.7.(9)

Let P̂ ≡ ΦPP ′ if P is a lambda abstraction and P̂ ≡ PP ′ otherwise.

(8) and (9) ⇒ Γ′ ⊢HR P̂ : 1, by (Ax-Φ-HR), (≤T ), (→E),

⇒ MN ∈ [1]HR
Γ′ , since P̂ ∈AHR(MN),

⇒ MN ∈ [[1]]HR
Γ′

⇒ M ∈ [[1→ 1]]HR
Γ .

N ∈ [[0]]HR
Γ′ ⇒ N ∈ [0]HR

Γ′

⇒ ∃P ′ ∈AHR(N) Γ′ ⊢HR
∩ P ′ : 0, by Definition 17C.7.(10)

~N ∈ [[1]]HR
Γ′ ⇒ ~N ∈ [1]HR

Γ′

⇒ ∃~P ∈AHR( ~N) Γ′ ⊢HR
∩

~P : ~1, by Definition 17C.7.(11)
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Let P̂ ≡ ΦPP ′ ~P if P is a lambda-abstraction and P̂ ≡ PP ′ ~P otherwise.

(8), (10) and (11) ⇒ Γ′ ⊢HR P̂ : 0, by (Ax-Φ-HR), (≤T ), (→E)

⇒ MN ~N ∈ [0]HR
Γ′ since P̂ ∈AHR(MN ~N)

⇒ MN ∈ [[0]]HR
Γ′

⇒ M ∈ [[0→ 0]]HR
Γ .

Proof of [[0→0]]ParkΓ ⊆ [[0]]ParkΓ . Let M ∈ [[0→0]]ParkΓ and Γ′ = Γ, z : 0, where z /∈
FV(M).

z ∈ [0]Park{z:0} ⇒ z ∈ [[0]]Park{z:0}

⇒ Mz ∈ [[0]]ParkΓ′

⇒ Mz ∈ [0]ParkΓ′

⇒ M ∈ [0]ParkΓ , by Lemma 17C.9 and (0→ 0) ≤Park 0,

⇒ M ∈ [[0]]ParkΓ .

Proof of [[0]]ParkΓ ⊆ [[0→0]]ParkΓ . Let Γ′⊇+ Γ. Then we have

M ∈ [[0]]ParkΓ ⇒M ∈ [0]ParkΓ

⇒ ∃P ∈APark(M) Γ ⊢Park∩ P : 0, by Definition 17C.7.(12)

N ∈ [[0]]ParkΓ′ ⇒ N ∈ [0]ParkΓ′

⇒ ∃P ′ ∈APark(N) Γ′ ⊢Park∩ P ′ : 0, by Definition 17C.7.(13)

Let P̂ ≡ ΦPP ′ if P is a lambda-abstraction and P̂ ≡ PP ′ otherwise.

(12) and (13) ⇒ Γ′ ⊢Park∩ P̂ : 0, by (Ax-Φ), (≤Park), (→E)

⇒ MN ∈ [0]ParkΓ′ , since P̂ ∈APark(MN)

⇒ MN ∈ [[0]]ParkΓ′

⇒ M ∈ [[0→ 0]]ParkΓ .

17C.14. Definition (Semantic Satisfiability). Let ρ be a mapping from term variables

to terms and write [[M ]]ρ ,M [~x := ρ(~x)], where ~x = FV(M). Define

(i) T , ρ,Γ |=M : A ⇐⇒△ [[M ]]ρ ∈ [[A]]TΓ .
(ii) T , ρ,Γ′ |= Γ ⇐⇒△ T , ρ,Γ′ |= x : B, for all (x:B)∈Γ;
(iii) Γ |=T

∩ M : A ⇐⇒△ T , ρ,Γ′ |= Γ ⇒ T , ρ,Γ′ |=M : A, for all ρ,Γ′.

In line with the previous remarks, the following result can be constructed also as
the soundness of the natural semantics of intersection types over a particular Kripke
applicative structure, where bases play the role of worlds.

17C.15. Lemma. Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,AO}. Then

Γ ⊢T∩ M : A ⇒ Γ |=T M : A.
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Proof. The proof is by induction on the derivation of Γ ⊢T∩ M : A.
Cases (Ax), (Ax-U). Immediate.
Cases (→E), (∩I). By induction.
Case (≤). By Lemma 17C.13(ii).
Case (→I). Suppose M ≡ λy.R, A ≡ B→C and Γ, y : B ⊢T∩ R : C.

Subcase T 6= AO or C 6=AOU. Suppose T , ρ,Γ′ |= Γ in order to show [[λy.R]]ρ ∈ [[B→C]]TΓ′ .

Let Γ′′⊇+ Γ′ and T ∈ [[B]]TΓ′′ . Then by the induction hypothesis [[R]]ρ[y:=T ] ∈ [[C]]TΓ′′ .We may

assume y /∈ ρ(x) for all x∈ dom(Γ). Then one has [[λy.R]]ρT →β [[R]]ρ[y:=T ] and hence

[[λy.R]]ρT ∈ [[C]]TΓ′′ , by Proposition 17C.11. Therefore [[λy.R]]ρ ∈ [[B→C]]TΓ′ .

Subcase T = AO and C =AO U. The result follows easily from λx.⊥∈AAO([[λy.R]]ρ)

for all ρ, and we can derive ⊢AO
∩ λx.⊥ : B→C, using (Ax-U), (→I) and (≤AO). Therefore

[[M ]]ρ ∈ [A]TΓ , implying [[M ]]ρ ∈ [[A]]TΓ by Definition 17C.10.

Now we can prove the converse of Proposition 17C.8.

17C.16. Proposition. Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,AO}. Then

Γ ⊢T∩ M : A⇒M ∈ [A]TΓ .

Proof. Let ρ0(x) = x. By Lemma 17C.12(i) T , ρ0,Γ |= Γ. Then Γ ⊢T∩ M : A implies
M = [[M ]]ρ0 ∈ [[A]]TΓ by Lemma 17C.15. So we concludeM ∈ [A]TΓ by Lemma 17C.12(ii).

17C.17. Theorem (Approximation Theorem). Let T ∈ {Scott,Park,CDZ,HR,
DHM,BCD,AO}. Then

Γ ⊢T∩ M : A ⇔ ∃P ∈AT (M).Γ ⊢T∩ P : A.

Proof. By Propositions 17C.8 and 17C.16.

17C.18. Corollary. Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,AO}. LetM be an un-
typed lambda term. Then

[[M ]]F
T

ρ = {A | Γ ⊢T∩ P : A for some P ∈AT (M) and some Γ |= ρ}.

Proof. By Theorem 16B.7 and the Approximation Theorem.

Another way of writing this is

[[M ]]F
T

ρ =
⋃

P ∈AT (M)

[[P ]]F
T

ρ

=
⋃

P ∈AT (M)

{A | Γ ⊢T∩ P : A for some Γ |= ρ}.

This gives the motivation for the name ‘Approximation Theorem’. Theorem 17C.17 was
first proved for T = BCD in Barendregt, Coppo, and Dezani-Ciancaglini [1983], for
T = Scott in Ronchi Della Rocca [1988], for T = CDZ in Coppo, Dezani-Ciancaglini,
and Zacchi [1987], for T = AO in Abramsky and Ong [1993], for T = Park and T = HR
in Honsell and Ronchi Della Rocca [1992].
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17D. Applications of the approximation theorem

As discussed in Section 16B type theories give rise in a natural way to filter λ-models.
Properties of FT with T ∈ {Scott,CDZ,AO,BCD,Park,HR} can be easily derived using
Theorem 17C.17. For instance, one can check the following.

• The models FScott,FCDZ,FDHM,FBCD are sensible.
• The top element in FAO is the interpretation of the terms of order ∞.
• The model FPark characterizes the terms reducible to closed terms.
• The model FHR characterizes the terms reducible to λI-terms.

The rest of this section is devoted to the proof of these properties. Other uses of the Ap-
proximation Theorem can be found in the corresponding relevant papers, i.e. Barendregt,
Coppo, and Dezani-Ciancaglini [1983], Coppo, Dezani-Ciancaglini, and Zacchi [1987],
Ronchi Della Rocca [1988], Abramsky and Ong [1993], Honsell and Ronchi Della Rocca
[1992].

17D.1. Theorem. The models FT with T ∈ {Scott,CDZ,DHM,BCD} are sensible, i.e.
for all unsolvable terms M,N one has

[[M ]]F
T

ρ = [[N ]]F
T

ρ .

Proof. It follows immediately from Corollary 17C.18 of the Approximation Theorem,
the fact that ⊥ is the only approximant of an unsolvable term for the mapping �⊥, and
Proposition 17C.5(i).

Let us recall that according to Definition 16D.1(i) an untyped lambda termM is of order
∞ if

∀n∃Nn.M ։β λx1 · · ·λxn.Nn.

17D.2. Theorem. Let M be an untyped lambda term. Then the following are equiva-
lent.

(i) M is of order ∞.

(ii) ⊢AO
∩ M : A for all types A∈TTAO.

(iii) [[M ]]F
AO

ρ = ⊤ = TTAO ∈FAO for all valuations ρ.

Proof. Write ⊢,≤ for ⊢AO
∩ ,≤AO, respectively. ((i)⇔(ii)). It is easy to check by struc-

tural induction on types (see Exercise 13E.4) that

∀A∈TTAO∃n∈N.(Un → U) ≤ A.
So by the Approximation Theorem it suffices to show that, if P ∈Λ⊥ is an approximate
normal form, then we have

⊢ P : (Un → U) ⇔ P ≡ λx1 · · ·λxn.P ′ for some P ′.

(⇐) By axiom (Utop) and rule (→I). (⇒) Assume towards a contradiction that P ≡
λx1 · · ·λxm.P ′ for m < n and P ′ is of the form ⊥ or x~P . Then by Theorem 14A.9(iii)

⊢ P : (Un → U) ⇒ {x1:U, · · · , xm:U} ⊢ P ′ : (Un−m → U).

But this latter judgment can neither be derived if P ′ ≡ ⊥, by Proposition 17C.5(i) and

Lemma 13A.25, nor if P ′ ≡ x~P , by Theorem 14A.1(i) and (ii) and Lemma 13A.25.



17D. Applications of the approximation theorem 595

((ii)⇔(iii)). Suppose ⊢M : A for all A. Then by Theorem 16B.7

[[M ]]F
AO

ρ = {A | Γ ⊢M : A for some Γ |= ρ} = TTAO,

for all ρ. This is the top element in FAO. Conversely, if [[M ]]F
AO

ρ = ⊤ = TTAO, for all ρ,

then take ρ0(x) = ↑U. Then Γρ0 = {x:U | x∈Var}. Hence

TTAO = [[M ]]F
AO

ρ0

= {A | Γ ⊢M : A for some Γ |= ρ0}, by Theorem 16B.7,

= {A | ⊢M : A}, by Exercise 13E.5.

Therefore ⊢M : A for all A∈TTAO.

We denote by Λ↓Λ∅ the set of terms which reduce to a closed term.

17D.3. Theorem. A term M ∈Λ↓Λ∅ iff ⊢Park∩ M : 0.

Proof. By the Approximation Theorem it suffices to check that if P ∈ΛΦ is an anf and
V is a finite set of term variables:

{x:0 | x∈V} ⊢Park∩ P : 0 iff FV (P ) ⊆ V .
(⇐) By an easy induction on P , using that 0 = 0→0.

(⇒) By induction on P . Lemma 13A.24 shows ~B→0 6= U.

Case P ≡ λy.Q. By Theorem 14A.9(iii) and the induction hypothesis for Q.

Case P ≡ y ~P . By Theorem 14A.9(ii) we have Γ ⊢Park∩ y : ~B→0 and Γ ⊢Park∩
~P : ~B.

Hence by Theorem 14A.9(i) one has y ∈V and 0 ≤ ~B→0. By β-soundness and 0 = 0→0

we get Bi ≤ 0. Thus Γ ⊢Park∩ Pi : 0 and hence FV(Pi) ⊆ V , by the induction hypothesis.

Case P ≡ Φ~P . Similar to the previous case.

Lastly we work out the characterization of terms reducible to λI-terms.

17D.4. Lemma. Let m > 0. Then

1 ≤HR A1 → · · ·Am → 0 ⇒ [Ai = 0, for some i].

Proof. By induction on m.
Case m = 1. Then 1 = (1 → 1) ∩ (0 → 0) ≤ A1 → 0. By β-soundness, the only

possible case is A1 ≤ 0. Since 0 is the least element, we have that A1 = 0.
Case m > 1. Similarly, using the induction hypothesis.

17D.5. Notation. Write ΓP
1 , {x:1 | x∈FV (P )}.

17D.6. Lemma. There is no anf P such that ΓP
1 ⊢HR

∩ P : 0.

Proof. Suppose towards a contradiction there exists such a P . By induction on P ,
using the Inversion Lemmas, the result will be shown.
Case P ≡ λz.P ′. Then ΓP

1 ⊢ P : 0 implies ΓP
1 , z:1 ⊢ P ′ : 0 and the induction hypothesis

applies.
Case P ≡ P0P1...Pm, where P0 is either a variable z or Φ. Then

ΓP
1 ⊢ P0 : A1 → · · ·Am → 0(14)
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and ΓPi
1 ⊢ Pi : Ai for some Ai, by the Inversion Lemma 14A.9(ii) and (strengthening).

Then 1 ≤ A1 → · · ·Am → 0, by (14). By Lemma 17D.4, there exists an i such that
Ai = 0. Then Γ ⊢ Pi : 0. By the induction hypothesis, this is impossible.

17D.7. Lemma. Let P ∈ΛΦ be an anf. If ΓP
1 ⊢HR P : 1, then P is a λI-term.

Proof. By induction on P.
Case P ≡ λz.P ′. By Inversion Lemma 14A.9(iii), ΓP ′

1 ⊢ P ′ : 1 and ΓP ′

1 ⊎ z : 0 ⊢ P ′ : 0.
By the induction hypothesis, we have that P ′ is a λI-term. It remains to prove that
z ∈FV (P ′). Suppose that z /∈FV (P ′). Then we could remove it from the context and

get ΓP ′

1 ⊢ P ′ : 0, contradicting Lemma 17D.6.
Case P ≡ P0P1 · · ·Pn, where P0 = x or P0 = Φ. By the Inversion Lemma 14A.9 (ii),

ΓP
1 ⊢ P0 : A1 → · · · → An → 1 and ΓP

1 ⊢ Pi : Ai for all i > 0. By Inversion Lemma
14A.9(i) for P0 = x or Proposition 17C.5(iii) for P0 = Φ, we get 1 ≤ A1 → · · · → An → 1.
Since 0 ≤ 1 and 0 = 1 → 0, we get that 1 → · · · → 1 → 0 ≤ A1 → · · · → An → 1. So
Ai ≤ 1, by β-soundness. Hence, by rules (strengthening) and (≤), ΓPi

1 ⊢ Pi : 1 for all
i > 0. Therefore, by the induction hypothesis, all Pi’s are λI-terms.

17D.8. Lemma. Let P ∈ΛΦ be an anf.
(i) If P is a λI-term, then ΓP

1 ⊢HR P : 1.

(ii) If P is a λI-term and x∈FV (P ), then ΓP
1 ⊎ {x : 0} ⊢HR P : 0.

Proof. By simultaneous induction on P .
(i) Case P ≡ y. Trivial.

Case P ≡ λz.P ′. If P is a λI-term, so is P ′ and z ∈FV (P ′). By the induction

hypothesis (i), we have that ΓP ′

1 ⊢ P ′ : 1. By the induction hypothesis (ii), we have that

ΓP ′

1 ⊎ {z : 0} ⊢ P ′ : 0. Since 1 ∩ 0 = 0 and 1 = (1→ 1) ∩ (0→ 0), we get ΓP
1 ⊢ P : 1 by

rules (→I),(∩I), (≤).
Case P = P ′P ′′. Then ΓP ′

1 ⊢ P ′ : 1 ≤ 1 → 1 and ΓP ′′

1 ⊢ P ′′ : 1, by the induction
hypothesis (i). Hence ΓP

1 ⊢ P : 1 by rules (weakening), (≤) and (→E).
(ii) Case P ≡ x. Trivial.
Case P ≡ λz.P ′. As x∈FV (P ), also x∈FV (P ′). Then

ΓP ′

1 ⊎ {x : 0} ⊢ P ′ : 0,

by the induction hypothesis (ii). By rules (→I), (≤) with 1 → 0 = 0 we get ΓP
1 ⊎ {x :

0} ⊢ P : 0.
Case P ≡ P ′P ′′. We have two subcases.
Subcase x∈FV (P ′). By the induction hypothesis (ii) it follows that

ΓP ′

1 ⊎ {x : 0} ⊢ P ′ : 0 = 1→ 0.

By the induction hypothesis (i) ΓP ′′

1 ⊢ P ′′ : 1. Hence by (weakening) and (→E) we
conclude ΓP

1 ⊎ {x : 0} ⊢ P : 0.

Subcase x∈FV (P ′′). Again ΓP ′′

1 ⊎ {x : 0} ⊢ P ′′ : 0. By the induction hypothesis

(i) we have ΓP ′

1 ⊢ P ′ : 1 ≤ 0 → 0. Hence by (weakening) and (→E) we conclude
ΓP
1 ⊎ {x : 0} ⊢ P : 0.

Now we can characterize the set Λ↓ΛI of terms which reduce to λI-terms in a type
theoretic way.
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17D.9. Theorem. Let M be a lambda term. Then

M ∈Λ↓ΛI ⇔ ΓM
1 ⊢HR

∩ M : 1.

Proof. By Theorem 17C.17 the types of M are all and only the types of its approxi-
mants. By Lemmas 17D.7 and 17D.8(i) an anf is a λI-term iff it has the type 1 in HL
from the basis which gives type 0 to all its free variables. We conclude observing that if
�Φ(M) is a λI-term, then M is a λI-term as well.

Theorem 17D.9 was first proved in Honsell and Ronchi Della Rocca [1992] by purely
semantic means.
The following results are translations of the results in Theorems 17D.3, 17D.9 and

17B.15 to filter models.

17D.10. Proposition. Let M ∈Λø be a closed lambda term. Then

(i) M has a normal form ⇔ [[M ]]D
CDZ
∞ ⊒ 1.

(ii) M is solvable ⇔ [[M ]]D
DHM
∞ ⊒ 1.

(iii) M reduces to a λI-term ⇔ [[M ]]D
HR
∞ ⊒ 1.

(iv) M is strongly normalizing ⇔ [[M ]]F
CDV 6= ∅.

Let M ∈Λ be an (open) lambda term. Then

(v) M reduces to a closed term ⇔ [[M ]]D
Park
∞

ρ ⊒ 0, for all ρ.

Proof. (i)-(ii) We explain the situation for (i), the other case being similar.

M has a nf ⇔ ⊢CDZ
∩ M : 1, by Theorem 17B.15(i),

⇔ [[M ]]F
CDZ ∋ 1, by 16B.7,

⇔ [[M ]]F
CDZ ⊒ ↑1, by the definition of filters,

⇔ [[M ]]D
CDZ
∞ ⊒ f̂(↑1) = f(1), by Theorem 16C.22,

⇔ [[M ]]D
CDZ
∞ ⊒ Φ0,∞(1), since 1∈D0,

⇔ [[M ]]D
CDZ
∞ ⊒ 1,

by the identification of D0 as a subset of D∞.
(iii) Similarly, using Theorem 17D.9.
(iv) As (i), but simpler as the step towards D∞ is not made. Notice that FCDV gives

rise to a λI-model, not to a λ-model.
(v) Similarly, using Theorem 17D.3.

We do not have a characterization like (i) in the Proposition for DScott
∞ , as it was

shown in Wadsworth [1976] that there is a closed term J without a normal form such
that DScott

∞ |= I = J.

17E. Undecidability of inhabitation

In this section we consider type theories with infinitely many type atoms, as described
in Section 13A. To fix ideas, we are concerned here with the theory T = CDV. Since
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we do not consider other type theories, in this section the symbols ⊢ and ≤ stand for
⊢CDV
∩ and ≤CDV, respectively. Moreover TT = TTCDV.
We investigate the inhabitation problem for this type theory, which is to determine,

for a given type A, if there exists a closed term of type A (an inhabitant). In symbols,
the problem can be presented as follows:

⊢ ? : A

A slightly more general variant of the problem is the inhabitation problem relativized
to a given context Γ:

Γ ⊢ ? : A

It is, however, not difficult to show that these two problems are equivalent.

17E.1. Lemma. Let Γ = {x1:A1, · · · , xn:An}. Then the following are equivalent.
1. There exists a term M ∈Λ such that Γ ⊢M : A.
2. There exists a term N ∈Λ such that ⊢ N : A1 → · · · → An → A.

Proof. (1) ⇒ (2) Define N ≡ λx1 · · ·xn.M . Apply n times rule (→I).
(2) ⇒ (1) Take M ≡ Nx1 · · ·xn and apply n times (→E) and (weakening).

The main result of the present section (Theorem 17E.31) is that type inhabitation is
undecidable for T = CDV. Compare this to Proposition 2D.15 and Statman [1979a],
stating that for simple types the problem is decidable in polynomial space.
By Theorem 17B.15 and Corollary 14B.3 we need to consider only inhabitants in

normal form. The main idea of the undecidability proof is based on the following obser-
vation. The process of solving an instance of the inhabitation problem can be seen as
a certain (solitary) game of building trees. In this way, one can obtain a combinatorial
representation of the computational contents of the inhabitation problem (for a restricted
class of types). We call this model a “tree game”. In order to win a tree game, the
player may be forced to execute a computation of a particular automaton (“typewriter
automaton”). Thus, the global strategy of the proof is as follows. We make the following
abbreviations.

17E.2. Definition. We introduce the following decision problems.

EQA : Emptiness Problem for Queue Automata;

ETW : Emptiness Problem for Typewriter Automata;

WTG : Problem of determining whether one can Win a Tree Game;

IHP : Inhabitation Problem in λCDV
∩ .

These are problems in the following sense. In each case there is a set involved: the set of
natural number codes for the description of the automata or types involved; the problem
consists in determining whether a candidate element of the set actually belongs to it. It
is well known that EQA is undecidable, see e.g. Kozen [1997]. The following inequalities,
show that IHP is undecidable.

EQA ≤m ETW (Lemma 17E.26);

ETW ≤m WTG (Proposition 17E.30);

WTG ≤m IHP (Corollary 17E.24).
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Basic properties

We begin with some basic observations concerning the relation ≤.
17E.3. Lemma. Let n > 0.

(i) Let α∈A∞, and none of the A1, · · · ,An ∈TT be an intersection. Then

A1 ∩ · · · ∩An ≤ α ⇒ ∃i.α ≡ Ai.

(ii) Let α1, · · · ,αn ∈A∞ and A∈TT be not an intersection. Then

α1 ∩ · · · ∩ αn ≤ A ⇒ ∃i.A ≡ αi.

(iii) Let α1, · · · ,αn ∈A∞ and A∈TT. Then

α1 ∩ · · · ∩ αn ≤ A ⇒ A ≡ αi1 ∩ · · · ∩ αik ,

for some k ≥ 0 and 1 ≤ i1 < · · · < ik ≤ n.
Proof. (i), (ii) Exercise 17F.18.
(iii) Let A ≡ B1 ∩ · · · ∩ Bk with k > 0 and the Bj not intersections. Then for each j

one has α1 ∩ · · · ∩ αn ≤ Bj and can apply (ii) to show that Bj ≡ αij .

17E.4. Lemma. Let A1, · · · ,An, B ∈TT and α1, · · · ,αn, β ∈A∞, with n > 0. Then

(A1 → α1) ∩ · · · ∩ (An → αn) ≤ (B → β) ⇒ ∃i [β ≡ αi & B ≤ Ai].

Proof. By Theorem 14A.7 the type theory CDV is β-sound. Hence by the assumption
it follows that B ≤ (Ai1 ∩ · · · ∩Aik) and (αi1 ∩ · · · ∩ αik) ≤ β. By Lemma 17E.3(ii) one
has β ≡ αip , for some 1 ≤ p ≤ k, and the conclusion follows.

17E.5. Lemma. If Γ ⊢ λx.M : A then A /∈ A∞.

Proof. Suppose Γ ⊢ λx.M : α. By Lemma 14A.1(iii) it follows that there are n > 0
and B1, · · · ,Bn, C1, · · · ,Cn such that Γ, x : Bi ⊢ M : Ci, for 1 ≤ i ≤ n, and (B1→C1) ∩
· · · ∩ (Bn→Cn) ≤ α. This is impossible by Lemma 17E.3(i).

Game contexts

In order to prove that a general decision problem is undecidable, it is enough to identify
a “sufficiently difficult” fragment of the problem and prove undecidability of that frag-
ment. Such an approach is often useful. This is because restricting the consideration to
specific instances may simplify the analysis of the problem. Of course the choice should
be done in such a way that the “core” of the problem remains within the selected special
case. This is the strategy we are applying for our inhabitation problem. Namely, we
restrict our analysis to the following special case of relativized inhabitation.

Γ ⊢ ? : α,

where α is a type atom, and Γ is a “game context”, the notion of game context being
defined as follows.

17E.6. Definition. (i) Let X ,Y ⊆ TT be sets of types. Write

X→Y , {X→Y | X ∈X , Y∈Y}.
X ⊓ Y , {X ∩ Y | X ∈X , Y∈Y}.
X∩ , {A1 ∩ · · · ∩An | n ≥ 1 & A1, · · · ,An ∈X}.
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If A ≡ A1 ∩ · · · ∩ An, and each Ai is not an intersection, then the Ai are called the
components of A.

(ii) We consider the following sets of types.

(1) A, A∩
∞.

(2) B , (A∞→A∞)∩.

(3) C , (D→A∞)∩, where

(4) D , (B→A∞) ⊓ (B→A∞).

(iii) Types in A ∪ B ∪ C are called game types.
(iv) A type context Γ is a game context if all types in Γ are game types.

We show some properties of type judgements involving game types.

17E.7. Lemma. For a game context Γ the following three properties hold.
(i) Γ ⊢ xM : A ⇒ A∈A & ∃n > 0.[ Γ(x) ≡ (E1→α1) ∩ · · · ∩ (En→αn) &

∃k > 0 ∃i1, · · · , ik.[ 1 ≤ i1 < · · · < ik ≤ n &
A ≡ αi1 ∩ · · · ∩ αik & Γ ⊢M : (Ei1 ∩ · · · ∩ Eik)]].

(ii) Γ ⊢ xM : α ⇒ ∃n > 0.[ Γ(x) ≡ (E1→α1) ∩ · · · ∩ (En→αn) &
∃i.[1 ≤ i ≤ n & α ≡ αi & Γ ⊢M : Ei]].

(iii) Γ 6⊢ xMN : A.

Proof. (i) Suppose Γ ⊢ xM : A. By Lemma 14A.9(ii) we have for some type B that
Γ ⊢ x : (B→A) and Γ ⊢ M : B. Then Γ(x) ≤ B → A, by Lemma 14A.1(i). By
Lemma 17E.3(ii), this cannot happen if Γ(x) is in A. Thus Γ(x), being a game type, is
of the form (E1→α1) ∩ · · · ∩ (En→αn). Then,

(E1→α1) ∩ · · · ∩ (En→αn) ≡ Γ(x) ≤ (B→A),
Since CDV is β-sound and by Lemma 17E.3(iii), we have B ≤ Ei1 ∩ · · · ∩ Eik and

αi1 ∩ · · · ∩ αik ≡ A, for some k > 0 and ij such that 1 ≤ ij ≤ n.
(ii) By (i) and Lemma 17E.3(ii).
(iii) By (i), using that B→A 6= αi1 ∩ · · · ∩ αik , by Lemma 17E.3(ii).

17E.8. Lemma. If A is a game type and D∈D, then A 6≤ D.

Proof. Suppose A ≤ D ≤ (B→α), with B ∈B. The case A∈A is impossible by
Lemma 17E.3(ii). If A∈B, then (α1→β1) ∩ · · · ∩ (αn→βn) ≤ B→α and hence B ≤ αi

for some i, by Lemma 17E.4. By Lemma 17E.3(i) this is also impossible. If A∈C, then
(D1→β1)∩ · · · ∩ (Dn→βn) ≤ B→α and hence B ≤ Di ∈D for some i, by Lemma 17E.4.
We have already shown that this is impossible.

For game contexts the Inversion Lemma 14A.9 can be extended as follows.

17E.9. Lemma. Let Γ be a game context, and let M be in normal form.
(i) If Γ ⊢ M : (B1 → α1) ∩ (B2 → α2)∈D, with Bi ∈B, then M ≡ λy.N , and

Γ, y:Bi ⊢ N : αi for i = 1, 2.
(ii) If Γ ⊢M : α, with α∈A∞, then there are two exclusive possibilities.
• M is a variable z and Γ(z) is in A, where α is one of the components.
• M ≡ xN , where Γ(x) ≡ (E1 → β1) ∩ · · · ∩ (En → βn), and α ≡ βi and Γ ⊢ N : Ei,
for some 1 ≤ i ≤ n.

Proof. (i) Notice first that by Lemma 17E.7 the term M cannot be an application.
If it is a variable x, then Γ(x) ≤ (B1 → α1) ∩ (B2 → α2), by Lemma 14A.1(i). This
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contradicts Lemma 17E.8, because Γ(x) is a game type. It follows that M = λy.N and
Γ ⊢ λy.N : (Bi→αi). Then for i = 1, 2 one has Γ, y:Bi ⊢ Ni : αi, by Lemma 14A.9(iii).

(ii) M is not an abstraction by Lemma 17E.5. If M ≡ z, then Γ(z) ≤ α and Γ(z) is
a game type, i.e. in A ∪ B ∪ C. By Lemma 17E.3(i) one has Γ(z)∈A, with α as one of
the components. If M is an application, M ≡ zM1 · · ·Mm, m > 0, write

Γ(z) = (E1 → β1) ∩ · · · ∩ (En → βn).

As it is a game type Γ(z) /∈A, by Theorem 14A.9(ii). ThenM ≡ zN , by Lemma 17E.7(iii).
By (ii) of the same Lemma one has α ≡ βi and Γ ⊢ N : Ei for some i.

Tree games

In order to show the undecidability of inhabitation for CDV we will introduce a certain
class of tree games. Within a game one can have a particular ‘play ’. (Chess is a game,
but the match between Kasparov and Karpov consisted of several plays). These form
an intermediate step in our construction. The idea of a tree game is to represent, in an
abstract way, the crucial combinatorial behavior of proof search in CDV. We now focus
on establishing WTG ≤m IHP.

17E.10. Definition. Let Σ be a finite alphabet; its elements are called labels.

1. A local move (over Σ) is a finite nonempty set B of pairs of labels.
2. A global move (over Σ) is a finite nonempty set C of triples of the form

〈 〈X, b 〉, 〈Y, c 〉, d 〉,
where b, c, d∈Σ and X,Y are local moves.

3. A tree game (over Σ) is a triple of the form

G = 〈 a,A, {C1, · · · , Cn} 〉,
where a∈Σ, A ⊆ Σ and C1, · · · , Cn are global moves. We call a the initial label
and A the set of final labels.

Before we explain the rules of the game, we give an interpretation of the constituents
of the tree games in terms of types.

17E.11. Definition. Let Σ be a finite subset of A∞, the infinite set of type atoms, and
let G be a tree game over Σ. Moves of G, and the set of final labels, can be interpreted
as types of CDV as follows.

1. If A = {a1, · · · , an}, then Ã, a1 ∩ · · · ∩ an.
2. If B = {〈 a1, b1 〉, · · · , 〈 an, bn 〉}, then B̃ , (a1 → b1) ∩ · · · ∩ (an → bn).
3. If C = {〈 〈B1, b1 〉, 〈B′

1, b
′
1 〉, c1 〉, · · · , 〈 〈Bn, bn 〉, 〈B′

n, b
′
n 〉, cn 〉}, then

C̃ , (((B̃1 → b1) ∩ (B̃′
1 → b′1))→ c1) ∩ · · · ∩ (((B̃n → bn) ∩ (B̃′

n → b′n))→ cn).

Notice that Ã∈A, B̃ ∈B and C̃ ∈C.
A tree game is a solitary game, i.e. there is only one player. Starting from an initial

position, the player can non-deterministically choose a sequence of moves, and wins if
(s)he can manage to reach a final position. Every position (configuration) of the game
is a finite labelled tree, and at every step the depth of the tree is increasing.

17E.12. Definition. Let G = 〈a,A, {C1, · · · ,Cn}〉 be a tree game over Σ. A position T
of G is a finite labelled tree, satisfying the following conditions.
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Figure 44. An example position

• The root is labelled by the initial symbol a;
• Every node has at most two children;
• Nodes at the same level (the same distance from the root) have the same number
of children (in particular all leaves are at the same level);
• All nodes are labelled by elements of Σ;
• In addition, if a node v has two children v′ and v′′, then the branches 〈 v, v′ 〉 and
〈 v, v′′ 〉 are labelled by local moves.

17E.13. Definition. Let G = 〈a,A, {C1, · · · ,Cn}〉 be a tree game.

1. The initial position of G is the tree with a unique node labelled a.
2. A position T is winning if all labels of the leaves of T are in A.

17E.14. Definition. Let T be a position in a game G = 〈a,A, {C1, · · · ,Cn}〉, and let v
be a leaf of T . Let k be such that all nodes in T at level k − 1 have two children as
shown in Fig. 45. There is a node u at level k − 1 which is an ancestor of v, one of the
children of u, say u′, is also an ancestor of v (possibly improper, i.e., it may happen that
u′ = v). Assume that B is the label of the branch 〈u, u′ 〉. Then we say that B is the
k-th local move associated to v, and we write B = Bv,k.

Now we can finally describe the rules of the game.

17E.15. Definition. (i) Let G = 〈 a,A, {C1, · · · , Cn} 〉 and let T be a (current) position
in G. There are two possibilities to obtain a next position.

(1) The player can perform a “global” step, by first selecting one of the global moves
Ci and then performing the following actions for each leaf v of T .

(a) Choose a triple 〈 〈B, b 〉, 〈B′, b′ 〉, c 〉 ∈Ci such that c is the label of v;
(b) Create two children of v, say v′ and v′′, labelled b and b′, respectively;
(c) Label the branch 〈 v, v′ 〉 by B and the branch 〈 v, v′′ 〉 by B′.

The step is only allowed if the appropriate actions can be performed at every leaf—
otherwise the resulting tree is not a position.

(2) The player can also perform a “local” step. This begins with a choice of a level
k > 0 of T such that each node at level k − 1 has two children. Then, for each leaf v of
T , the player executes the following actions.

(a) Choose a pair 〈 a, b 〉 ∈Bv,k such that b is the label of v;
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Figure 45. Local move X associated to node v

(b) Create a single child of v, labelled a.
Again the step is only allowed if the appropriate actions can be performed at every
leaf—otherwise the resulting tree is not a position.

(ii) If a position T ′ is reachable from T with help of one global step Ci, we write

T ⇒Ci T ′.

If T ′ is obtained from T by a local step defined via level k, we write

T ⇒k T ′.

If T ′ is reachable from T in one step (global or local), then we write T ⇒ T ′.
(iii) A position T in G is called favorable if there is a position T ′ with

T ⇒∗
T T

′ and T ′ is winning,

where ⇒∗
T is the reflexive transitive closure of ⇒T .

(iv) The game G is solvable (i.e. the player can win) if the initial position is favorable.

The following example gives an idea of the tree games and moreover it is important
for our principal construction.

17E.16. Example. Consider the tree game G0 = 〈 1, {c}, {C1, C2} 〉, over the alphabet
Σ = {1, 2, a, b, c}, where
• C1 = {〈 〈 {〈a, a〉}, 1 〉, 〈 {〈b, a〉}, 2 〉, 1 〉, 〈 〈 {〈a, b〉}, 1 〉, 〈 {〈b, b〉}, 2 〉, 2 〉};
• C2 = {〈 〈 {〈c, a〉}, a 〉, 〈 {〈c, a〉}, a 〉, 1 〉, 〈 〈 {〈c, b〉}, a 〉, 〈 {〈c, b〉}, a 〉, 2 〉}.

Fig. 46 demonstrates a possible winning position T of the game. Note that this position
can actually be reached from the initial one in 6 steps, so that the player can win G0.
These 6 steps are as follows

T0 ⇒C1 T1 ⇒C1 T2 ⇒C2 T3 ⇒1 T4 ⇒2 T5 ⇒3 T6 = T,
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Figure 46. A winning position in G0 of Example 17E.16.

where each Ti is of depth i. The reader should observe that every sequence of steps
leading from T0 to a winning position must obey a similar pattern:

T0 ⇒C1 T1 ⇒C1 · · · ⇒C1 Tn−1 ⇒C2 Tn ⇒1 Tn+1 ⇒2 · · · ⇒n T2n,

where T2n is winning. Thus, the game must consist of two phases: first a number of
applications of C1, then a single application of C2 and then a sequence of steps using
only local moves. What is important in our example is that the order of local steps
is fully determined. Indeed, at the position Tn+k−1 the only action possible is “⇒k”.
That is, one must apply the k-th local moves associated to the leaves (the moves labelling
branches at depth k). This is forced by the distribution of symbols a, b at depth n+k−1.
Let us emphasize a few properties of our games. First, a game is a nondeterministic

process, and there are various sequences of steps possible. We can have winning sequences
(reaching a winning position), and infinitely long sequences, but also “deadlocks” when
no rule is applicable. Note that there are various levels of non-determinism here: we
can choose between Ci’s and k’s and then between various elements of the chosen set Ci

(respectively Bv,k). It is an important property of the game that the actions performed
at various leaves during a local step may be different, as different moves Bv,k were
“declared” before at the corresponding branches of the tree.
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We now explain the relationship between tree games and term search in CDV. Since
we deal with intersection types, it is not unexpected that we need sometimes to require
one term to have many types, possibly within different contexts. This leads to the
following definition.

17E.17. Definition. Let k, n > 0. Let ~A1, · · · , ~An be n sequences of k types:

~Ai = Ai1, · · · ,Aik.

Let Γi = {x1:Ai1, · · · , xk:Aik} and let αi ∈A∞, for 1 ≤ i ≤ n. An instance of a gener-
alized inhabitation problem (gip) is a finite set of pairs P = {〈Γi, αi 〉 | i = 1, · · · , n},
where each Γi and αi are as above. A solution of P is a term M such that Γi ⊢ M : αi

holds for each i. Then we say that M solves P . This is equivalent to requiring that

⊢ λ~x.M : ( ~A1→α1) ∩ · · · ∩ ( ~An→αn).

17E.18. Definition. Let G = 〈 a,A, {C1, · · · , Cn} 〉 be a tree game and let T be a
position in G.

(i) Define ΓG , {x0:Ã, x1:C̃1, · · · , xn:C̃n}.
(ii) Let J be the set of all numbers k such that every node in T at level k− 1 has two

children. We associate a new variable yk to each k∈ J . Define for a leaf v of T the basis

Γv , {yk:B̃v,k | k∈ J}.

(iii) Define the gip PG
T , {〈ΓG ∪ Γv, av〉 | v is a leaf of T with label av}.

The following lemma states the exact correspondence between inhabitation and games.
Let us make first one comment that perhaps may help to avoid confusion. We deal here
with quite a restricted form of inhabitation problem (only game contexts), which implies
that the lambda terms to be constructed have a “linear” shape (Exercise 17F.20). Thus
we have to deal with trees not because of the shape of lambda terms (as often happens
with proof search algorithms) but exclusively because of the nature of intersection types
and the need to solve various inhabitation problems uniformly (i.e., to solve a gip).

17E.19. Lemma. Let G = 〈 a,A, {C1, · · · , Cn} 〉 be a tree game.

(i) If T is a winning position of G, then x0 solves PG
T .

(ii) If T1 ⇒Ci T2 and N solves PG
T2
, then xi(λyk.N) solves PG

T1
, where k is the depth

of T2 and i > 0.

(iii) If T1 ⇒k T2 and N solves PG
T2
, then ykN solves PG

T1
.

Proof. (i) T is winning, hence av ∈A for each leaf v. Hence x0:Ã ⊢ x0 : av and
therefore ΓG ∪ Γv ⊢ x0 : av.

(ii) T1 ⇒Ci T2, hence each leaf v of T1 has two children v′ and v′′ in T2 and the
branches 〈v, v′〉 and 〈v, v′′〉 are labelled by B and B′ such that 〈〈B, av′ , av〉, 〈B′, av′′〉〉 ∈Ti.
Let k =level(v). As N solves PG

T2
one has

ΓG ∪ Γv, yk:B̃ ⊢ N : av′ ;

ΓG ∪ Γv, yk:B̃
′ ⊢ N : av′′ .

So ΓG ∪ Γv ⊢ λyk.N : (B̃→av′) ∩ (B̃′→av′′). Therefore ΓG ∪ Γv ⊢ xi(λyk.N) : av.
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(iii) T1 ⇒k T2, hence each leaf v of T1 has a child v′ in T2 such that 〈av′ , av〉 ∈Bv,k.

Then yk:B̃v,k ⊢ yk : a′v→av and ΓG ∪ Γv ⊢ N : av′ , by assumption. Therefore

ΓG ∪ Γv ⊢ ykN : av.

17E.20. Corollary. Let G be a tree-game. For positions T one has

T is favorable ⇒ PG
T has a solution.

Proof. By induction on the number of steps needed to reach a winning position and
the lemma.

For the converse we need the following result.

17E.21. Lemma. Let T1 be a position in a tree game G and let M be a solution in β-nf
of PG

T1
. Then we have one of the following cases.

1. M ≡ x0 and T1 is winning.
2. M ≡ ykN and N is the solution of PG

T2
, for some T2 with T1 ⇒k T2.

3. M ≡ xi(λyk.N) and N is the solution of PG
T2
, for some T2 with T1 ⇒Ci T2.

Proof. Case M ≡ z. As M is a solution of PG
T1
, one has

∆v = ΓG ∪ Γv ⊢ z : av,
for all leaves v of T1. Then by Lemma 14A.1(i) one has ∆v(z) ≤ av. Hence by Lemma
17E.3(i) av ∈A and z = x0. Therefore T1 is winning.
Case M is an application. Then for all leaves v of T1

∆v = ΓG ∪ Γv ⊢M : av.

By Lemma 17E.9(ii) we have M ≡ zN and ∆v(z) ≡ (E1 → β1) ∩ · · · ∩ (En → βn), with
∆v ⊢ N : Ej and av = βj , for some j. Now choose a leaf v of T1. As ∆v is a game
context there are only two possibilities

Ej ∈A∞ or Ej ∈D.
Subcase Ej ∈A∞. Let Ej ≡ αj . Now z /∈ dom(ΓG), hence z ∈ dom(Γv) and

z:(α1→β1) ∩ · · · ∩ (αn→βn)
being yk : B̃v,k, for some k. Also for each leaf w of T1 one has z ∈ dom(Γw) and z:Γw(z)

is yk:B̃w,k. Define T1 ⇒k T2 by giving each leaf v of T1 with label βj a child v′ with

label αj . We have ∆v ⊢ N : αj and yk:B̃v,k ⊢ yk : αj→βj . Hence ∆v′ ⊢M : av′ .

Subcase Ej ∈D. Then ∆v(z) ≡ (E1→β1) ∩ · · · ∩ (En→βn). Hence z : ∆v(z) is xi:C̃i

for some i. So z ∈ dom(ΓG) and therefore ∆w(z) = ∆v(z) for all leaves w of T1. Let

Ci = {· · · , 〈〈Bj , αj〉, 〈B′
jα

′
j〉, βj〉, · · · } and Ej = ((B̃j→αj)∩ (B̃′

j→α′
j)). Define the move

T1 ⇒Ci T2 as follows. Give each leaf v with label βj two children v′ and v′′ with labels αj

and α′
j , respectively. Label the branches with Bj and B

′
j , respectively. Let k =depth(T1).

One has ∆v ⊢ N : Ej , hence by Lemma 17E.9(i) one has N ≡ λyk.N ′, with

∆v, yk:B̃j ⊢ N ′:αj & ∆v, yk:B̃
′
j ⊢ N ′ : α′

j .

Therefore ∆v′ ⊢ N ′ : av′ and ∆v′′ ⊢ N ′ : av′′ .
The case that M is an abstraction is impossible, by Lemma 17E.5.
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17E.22. Corollary. Let G be a tree game. For positions T one has

T is favorable ⇔ PG
T has a solution.

Proof. (⇒) This was Corollary 17E.20. (⇐) Let M be a solution of PG
T . By Theorem

17B.15(ii) one may assume that M is in normal form. The conclusion follows from the
previous lemma by induction on the size of M .

17E.23. Theorem. Let G be a tree game with initial position {a}. Then

G is solvable ⇔ PG
{a} has a solution.

Proof. Immediate from the previous Corollary.

17E.24. Corollary. WTG ≤m IHP, i.e. winning a tree-game is many-one reducible to
the inhabitation problem.

Proof. By the theorem, as PG
T0

= PG
a is an inhabitation problem.

Typewriters

In order to simplify our construction we introduce an auxiliary notion of a typewriter
automaton. Informally, a typewriter automaton is just a reusable finite-state transducer.
At each step, it reads a symbol, replaces it by a new one and changes the internal state.
But at the end of the word, our automaton moves its reading and printing head back
to the beginning of the tape and continues. This goes on until a final state is reached.
That is, a typewriter automaton is a special kind of a linear-bounded automaton, see
Kozen [1997].

17E.25. Definition. (i) A (deterministic) typewriter automaton A is a tuple of the form

A, 〈Σ, Q, q0, F, ̺ 〉,
where Σ is a finite alphabet, Q is a finite set of states, q0 ∈Q is an initial state and
F ⊆ Q is a set of final states. The last component is a transition function

̺ : (Q− F )× (Σ ∪ {ǫ})→ Q× (Σ ∪ {ǫ}),
which must satisfy the following condition: whenever ̺(q, a) = (p, b), then either a, b∈Σ
or a = b = ǫ.

(ii) A configuration (instantaneous description, ID) of A is represented by a triple
〈w, q, v 〉, where (as usual) wv ∈Σ∗ is the tape contents, q ∈Q is the current state, and
the machine head points at the first symbol of v.
(iii) The next ID function ̺ is defined as follows:

• ̺(〈w, q, av 〉), 〈wb, p, v 〉, if a 6= ǫ and ̺(q, a) = (p, b);

• ̺(〈w, q, ǫ 〉), 〈 ǫ, p, w 〉, if ̺(q, ǫ) = (p, ǫ).
(iv) The language LA accepted by A is the set of all w∈Σ∗, such that

̺k(〈 ǫ, q0, w 〉) = 〈u, q, v 〉, for some k and q ∈F , and uv ∈Σ∗.

Recall that ETW is the emptiness problem for typewriter automata and EQA is the
emptiness problem for queue automata. The latter is undecidable, see Kozen [1997]. We
need the following.

17E.26. Lemma. EQA ≤m ETW.

Proof. Exercise 17F.23.
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It follows that also ETW is undecidable.
Our goal is now to represent typewriters as games, in order to establish ETW ≤m

WTG. We begin with a refinement of Example 17E.16. In what follows, triples of the
form 〈 〈B1, b 〉, 〈B2, c 〉, d 〉 will be represented graphically as

d
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b c

in order to enhance readability.

17E.27. Definition. The alphabet Σ1 is the following Cartesian product.

Σ1 , {⊥, a, b} × {⊥, 1, 2} × {loc, glo}.

We define a tree game G1 ,〈 〈⊥, 1, glo 〉,Σ1, {C1, C2, C3} 〉. The set of accepting labels
is Σ1, because we are interested in all possible ‘plays’ (i.e. instances) of the game. The
moves are defined as follows.

(i) global move C1 consists of the following two triples:

〈⊥, 1, glo 〉

{(〈 a,x,glo 〉,〈 a,x,loc 〉) | x∈{⊥,1,2}}

~~}}
}}

}}
}}

}}
}}

}}
}}

}

{(〈 b,x,glo 〉,〈 a,x,loc 〉) | x∈{⊥,1,2}}

  A
AA

AA
AA

AA
AA

AA
AA

AA

〈⊥, 1, glo 〉 〈⊥, 2, glo 〉

and

〈⊥, 2, glo 〉

{(〈 a,x,glo 〉,〈 b,x,loc 〉) | x∈{⊥,1,2}}

~~}}
}}

}}
}}

}}
}}

}}
}}

}

{(〈 b,x,glo 〉,〈 b,x,loc 〉) | x∈{⊥,1,2}}

  A
AA

AA
AA

AA
AA

AA
AA

AA

〈⊥, 1, glo 〉 〈⊥, 2, glo 〉

Before we define other global moves, let us point out that C1 is very similar to rule C1

of the game G0 in Example 17E.16 (observe the a and b in the first component and 1
and 2 in the second one).

(ii) global move C2 consists again of two triples:
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〈⊥, 1, glo 〉

{(〈 a,x,glo, 〉,〈 a,x,loc 〉) | x∈{⊥,1,2}}
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{(〈 b,x,glo, 〉,〈 a,x,loc 〉) | x∈{⊥,1,2}}

  A
AA

AA
AA

AA
AA

AA
AA

AA

〈 a, 1, loc 〉 〈 a, 2, loc 〉

and

〈⊥, 2, glo 〉

{(〈 a,x,glo, 〉,〈 b,x,loc 〉) | x∈{⊥,1,2}}

~~}}
}}

}}
}}

}}
}}

}}
}}

}

{(〈 b,x,glo, 〉,〈 b,x,loc 〉) | x∈{⊥,1,2}}

  A
AA

AA
AA

AA
AA

AA
AA

AA

〈 a, 1, loc 〉 〈 a, 2, loc 〉

(iii) global move C3 consists of the triples (where z ∈{a, b}, i.e., z 6= ⊥)

〈 z, 1, glo 〉

{(〈 a,x,glo 〉,〈 a,x,loc 〉) | x∈{⊥,1,2}}

~~~~
~~

~~
~~

~~
~~

~~
~~

~

{(〈 b,x,glo 〉,〈 a,x,loc 〉) | x∈{⊥,1,2}}

  @
@@

@@
@@

@@
@@

@@
@@

@@

〈 z, 1, loc 〉 〈 z, 2, loc 〉

and

〈 z, 2, glo 〉

{(〈 a,x,glo 〉,〈 b,x,loc 〉) | x∈{⊥,1,2}}

~~~~
~~

~~
~~

~~
~~

~~
~~

~

{(〈 b,x,glo 〉,〈 b,x,loc 〉) | x∈{⊥,1,2}}

  @
@@

@@
@@

@@
@@

@@
@@

@@

〈 z, 1, loc 〉 〈 z, 2, loc 〉

17E.28. Lemma. Every play of G1 must have the following sequence of moves.
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C1 C1 C1 C1 · · · C1 C2

1 C3 2 C3 3 C3 4 C3 · · · m C3 m+ 1 C3

m+ 2 C3 m+ 3 C3 m+ 4 C3 .. .. · · · .. .. ..

That is, the game starts with m times a C1 move (possibly m = 0 or m =∞), followed
by a single C2 move. Then the local and global C3 moves alternate. It is convenient
to see a play as divided into phases. Each phase consists of m+1 “rounds”; in the first
phase a “round” is a single global move, in the other phases it consists of two steps: one
local and one global. The local move declared at any global step is executed m+1 phases
later, after exactly 2m+ 1 steps.

Proof. Exercise 17F.22.

17E.29. Definition. Let G1 be as above and let A = 〈ΣA, Q, q0, F
A, ̺ 〉 be a typewriter

automaton. We define a game GA as follows.
(i) The alphabet of GA is the Cartesian product Σ1 ×Q× (ΣA ∪ {⊥, ǫ}).
(ii) For each local move B of G1 and each β ∈ΣA ∪ {ǫ}, we define a local move

Bβ = {(〈 a, q, β 〉, 〈 b, q,⊥〉) | q ∈Q and 〈 a, b 〉 ∈B}.
(iii) If ∆ = 〈 〈B, b 〉, 〈B′, b′ 〉, c 〉 ∈ C1 ∪ C2, then we define ∆β as the triple

〈c, q0,⊥〉
Bβ

xxrrrrrrrrrr B′
β

&&MMMMMMMMMM

〈b, q0,⊥〉 〈b′, q0,⊥〉

(iv) For each triple ∆ = 〈 〈B, b 〉, 〈B′, b′ 〉, c 〉 ∈C3 we define a set CA
∆ consisting of all

triples of the form

〈c, q, α〉
Bβ

yyssssssssss B′
β

%%KKKKKKKKKK

〈b, p,⊥〉 〈b′, p,⊥〉
where ̺(q, α) = (p, β).

(v) Define CA
1 (β) , {∆β | ∆∈C1}, for β ∈ΣA;

CA
2 , {∆ǫ | ∆∈C2};

CA
3 ,

⋃{CA
∆ | ∆∈C3}.

(vi) The initial symbol of GA is a = 〈 a1, q0,⊥〉, where we have a1 = 〈⊥, 1, G〉, the
initial symbol of G1.
(vii) The set of final symbols is A = Σ1 × (ΣA ∪ {⊥, ǫ})× FA;

(viii) Finally, we take GA , 〈 a,A, {CA
1 (β) | β ∈ΣA} ∪ {CA

2 , C
A
3 } 〉.

17E.30. Proposition. Let A be a typewriter that accepts the language LA. Then

LA 6= ∅ ⇔ GA is solvable.

Hence ETW ≤m WTG.
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Proof. Our game GA behaves as a “Cartesian product” of G1 and A. Informally
speaking, there is no communication between the first component and the other two. In
particular we have the following.

1. Lemma 17E.28 remains true with G1 replaced by GA and C1, C2, C3 replaced
respectively by CA

1 (β), CA
2 , CA

3 . That is, a legitimate play of GA must look as
follows.

CA
1 (β1) CA

1 (β2) · · · CA
1 (βm) CA

2

1 CA
3 2 CA

3 · · · m CA
3 m+ 1 CA

3

m+ 2 CA
3 m+ 3 CA

3 · · ·

2. If a position T of GA can be reached from the initial position, then the second and
third components of labels are always the same for all nodes at every fixed level
of T .

Consider a play of the game GA as in 1 above. Note that this sequence is fully
determined by the choice of m and β1, · · · , βm. Also observe that βi, for i = 1, · · · ,m
are the third components of the labels of all leaves of Tm+2i. Let w denote the word
β1β2 · · ·βm and OA(w) the ‘opening’ CA

1 (β1), · · · , CA
1 (βm) in the game GA.

Claim. Typewriter A accepts w iff OA(w) leads to a winning position in GA.

We shall now prove the claim. Let βkj denote the symbol contained in the j-th cell of

the tape of A, after the machine has completed k−1 full phases (the tape has been fully
scanned k − 1 times). That is, βkj is the symbol to be read during the k-th phase. Of

course β1j is βj . For uniformity write βkm+1 = ǫ. Further, let qkj be the internal state

of the machine, just before it reads the j-th cell for the k-th time (i.e., after k − 1 full
phases). The reader will easily show that for all k and all j = 1, · · · ,m+1 the following
statements hold.

(i) The third component of labels of all leaves of T(2k−1)(m+1)+2j−1 is βkj ,

(ii) The second component of labels of all leaves of T(2k−1)(m+1)+2j−2 is qkj .

In particular, the second and third component of these labels are solely determined by
the depth of the appropriate node. That is, the computation-related information is the
same in every node at any given level; the tree shape is only needed to ensure the pattern
of alternating global and local moves.
To have a closer look at the simulation, assume that ̺(β, q) = (α, p). Then a global

move changes labels of the form (·, β, q) (where we ignore the first coordinate) into
(·,⊥, p) and creates a local move containing pairs of the form (·, α, q′) → (·,⊥, q′). The
role of the local move is to pass the information about α (the symbol to be written in
place of β) to the next phase of the game.
The next local move brings the information from the previous phase about the symbol

in the next tape cell, and then we have again a global move, and so on. Consider for
example an initial word β1β2β3 and let the automaton take on the following sequence of
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〈a, qkj ,⊥〉

��
〈b, qkj , βkj 〉

B
β
k+1
j

��~~
~~

~~
~~

~~
~~

~~
~~

~
B′

β
k+1
j

��@
@@

@@
@@

@@
@@

@@
@@

@@

〈c, qkj+1,⊥〉 〈d, qkj+1,⊥〉

Figure 47. Simulation of a single machine step

configurations:

(ε, q0, β1β2β3)→ (γ1, q1, β2β3)→ (γ1γ2, q2, β3)→ (γ1γ2γ3, q3, ε)→
→ (ε, p0, γ1γ2γ3)→ (δ1, p1, γ2γ3)→ (δ1δ2, p2, γ3)→ (δ1δ2δ3, p3, ε)→

→ (ε, r0, δ1δ2δ3)→ · · ·

This corresponds to a play with these labels on the consecutive levels of the tree:

(·,⊥, q0) β1−→ (·,⊥, q0) β2−→ (·,⊥, q0) β3−→ (·,⊥, q0) ε−→
(·, β1, q0) γ1−→ (·,⊥, q1) → (·, β2, q1) γ2−→ (·,⊥, q2) → (·, β3, q2) γ3−→ (·,⊥, q3) → (·, ε, q3) ε−→
(·,⊥, p0) → (·, γ1, p0) δ1−→ (·,⊥, p1) → (·, γ2, p1) δ2−→ (·,⊥, p2) → (·, γ3, p2) δ3−→ (·,⊥, p3) →
(·, ε, p3) ε−→ (·,⊥, r0)→ (·, δ1, r0) −→ · · ·

Fig. 47 illustrates the induction hypothesis by showing labels of a node at depth (2k −
1)(m + 1) + 2j − 2 together with her daughter and grandchildren. The claim follows
when (ii) is applied to the final states.
It follows immediately from 1 and the claim that LA 6= ∅ iff there is a strategy to

win GA. Hence the emptiness problem for typewriter automata can be reduced to the
problem of winning tree games.

17E.31. Theorem. The inhabitation problem for λCDV
∩ is undecidable.

Proof. By Corollary 17E.24, Lemma 17E.26 and Proposition 17E.30.

17E.32. Corollary. The inhabitation problem for λBCD
∩ is undecidable.

Proof. Do Exercise 17F.26.

Remarks

The proof of undecidability of the inhabitation problem presented in this section is a
modified version of the original proof in Urzyczyn [1999].
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The following notion of rank has been given for intersection types by Leivant [1983a].
We denote it by i-rank in order to distinguish it from the rank in Definition 1A.21.

i-rank(A) , 0, for simple types A;

i-rank(A ∩B) , max(1, i-rank(A), i-rank(B));

i-rank(A→ B) , max(1 + i-rank(A), i-rank(B)), if ∩ occurs in A→ B.

It should be observed that all types in game contexts are of i-rank at most 3. Thus,
the relativized inhabitation problem is undecidable for contexts of i-rank 3, and the
inhabitation problem (with empty contexts) is undecidable for types of i-rank 4. It is
decidable for i-rank 3, see Urzyczyn [2009]. Decidability for i-rank 2 is done in Exercise
17F.24. Some other decidable cases are discussed in Kurata and Takahashi [1995].
From the point of view of the formulæ-as-types principle, (the ‘Curry-Howard iso-

morphism’), the inhabitation problem should correspond to a provability problem for a
certain logic. It is however not at all obvious what should be the logic corresponding to
intersection types. We deal here with a “proof-functional” rather than “truth-functional”
connective ∩, which is called sometimes “strong conjunction”: a proof of A∩B must be a
proof of both A and B, rather than merely contain two separate proofs of A and B. See
Lopez-Escobar [1983], Mints [1989], and Alessi and Barbanera [1991] for the discussion
of strong conjunction logics.
Various authors defined Church-style calculi for intersection types, which is another

way leading to understand the logic of intersection types. We refer the reader to Venneri
[1994], Dezani-Ciancaglini, Ghilezan, and Venneri [1997], Wells, Dimock, Muller, and
Turbak [1997], Capitani, Loreti, and Venneri [2001], Ronchi Della Rocca [2002], and Pi-
mentel, Ronchi Della Rocca, and Roversi [In preparation], Liquori and Ronchi Della Rocca
[2007], Bono, Venneri, and Bettini [2008] for this approach.

Undecidability of inhabitation in λCDV
∩ vs. λ-definability in MX

During proofchecking this book Salvati [2009] showed that the undecidability of inhab-
itation follows directly from the undecidability of λ-definability in full type structures
over a finite set, Theorem 4A.21. The main idea is a simple embedding of the elements
ofMX into the intersection types in TTX

∩ .

17E.33. Definition. Let X be a finite set. Consider the full type structureMX over X,
see Definition 2D.17 Elements of MX =

⋃
A∈TT0

→
X(A) can be encoded as elements

of TTX
∩ . To avoid confusion between simple and intersection types, we writeA,B, . . . ∈TT0

→

and σ, ξ, · · · ∈TTX
∩ . This helps to disambiguate ⊢ as being either ⊢Cu

λ0
→

or ⊢CDV
λ∩

. For

d∈X(A) define ξd ∈TTX
∩ by induction on the structure of A∈TT0

→.

ξd , d, if A = 0;

ξd ,
⋂

e∈X(B)

(ξe → ξde), if A = B→C.

17E.34. Lemma. Let d∈X(A→B), e∈X(A). Then we have
(i) Γ ⊢M : ξd & Γ ⊢ N : ξe ⇒ Γ ⊢ (MN) : ξde.
(ii) Γ ⊢ (λx.N) : ξd ⇔ ∀e∈X(A) [Γ, x : ξe ⊢ N : ξde].
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Proof. (i) Since ξd ≤ ξe → ξde.
(ii) (⇒) By (i) and the subject reduction property for ⊢, being ⊢CDV

∩ .
(⇐) By the rules (→I) and (∩I).

17E.35. Lemma. (i) Let α∈X be a type atom and σ ∈TTX
∩ . Then

α ≤CDV σ or σ ≤CDV α ⇒ σ ≡ α.
(ii) Let d, e∈MX . Then

ξd ≤CDV ξe ⇒ d = e.

Proof. (i) By induction on the derivation of say α ≤ σ in T CDV.
(ii) By induction on the joint size of ξd and ξe. If either of the two types is an atom,

the result follows by (i). Otherwise, both types are intersections of arrows and we have
d∈X(A→ B) and e∈X(C → D), for some A,B,C,D∈TT0. Thus for all c∈X(C)

ξd = (ξa1 → ξda1) ∩ · · · ∩ (ξak → ξdak) ≤ ξc → ξec,

where X(A) = {a1, · · · ,ak}. By Theorem 14A.7 (β-soundness) it follows that

ξc ≤ ξai1 ∩ · · · ∩ ξaip (≤ aij ) (1)

ξdai1 ∩ · · · ∩ ξdaip ≤ ξec (2),

for a non-empty subset {ai1 , · · · , aip} ⊆ X(A). By the induction hypothesis, we have
c = ai1 = · · · = aip = a, say, and A = C. Hence (2) boils down to ξdc ≤ ξec. Again by
the induction hypothesis one has dc = ec and B = D. As c was arbitrary, it follows that
the functions d and e are equal.

17E.36. Definition. An X-basis is of the form

Γ = {x1 : ξd1 , · · · , xn : ξdn},
with d1, · · · ,dn ∈MX .

17E.37. Lemma. Define sets N ,V ⊆ Λ as the smallest sets such that

N1, · · · ,Nn ∈N , n ≥ 0 ⇒ xN1 · · ·Nn ∈V
M ∈V ⇒ M ∈N
M ∈N ⇒ (λx.M)∈N .

Then

N = {M ∈Λ |M in β-nf}
V = {M ∈N |M ≡ x ~N, for some ~N = N1 · · ·Nn}.

17E.38. Lemma. Consider two predicates P,Q on Λ:
P (M) := for all X-bases Γ and d1, d2 ∈X(A) one has

Γ ⊢M : ξd & Γ ⊢M : ξd′ ⇒ d = d′.

Q(M) := M is of the form M ≡ xN1 · · ·Nn, n ≥ 0, and for all X-bases Γ and σ ∈TTX
∩

one has

Γ ⊢M : σ ⇒ ∃e1, · · · ,en ∈MX .[Γ ⊢ Ni : ξei , 1 ≤ i ≤ n,
& Γ ⊢M : ξce1···en ≤ σ], where Γ(x) = ξc.
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Then for all M ∈Λ one has

M ∈N ⇒ P (M);

M ∈V ⇒ Q(M).

Proof. By ‘induction on the simultaneous inductive definition’ of V and N in Lemma
17E.37. It suffices to show

(1) P (N1), · · · , P (Nn) ⇒ Q(xN1 · · ·Nn)
(2) P (N1), · · · , P (Nn) ⇒ P (xN1 · · ·Nn)
(3) P (M) ⇒ P (λx.M).

As to (1), suppose P (N1), · · · , P (Nn) towards Q(xN1 · · ·Nn). We do this by induction
on n. For n = 0 the assumption is Γ ⊢ x : σ. By Theorem 14A.1(i) one has Γ(x) ≤ σ,
i.e. Γ ⊢ x : ξc ≤ σ, with Γ(x) = ξc. Therefore Q(x). Now suppose P (N1), · · · , P (Nn+1)
towards Q(xN1 · · ·Nn+1). Assume Γ ⊢ xN1 · · ·Nn+1 : σ. Then by Theorem 14A.9(ii)
one has

∃ν ∈TTX
∩ .[Γ ⊢ xN1 · · ·Nn : ν→σ & Γ ⊢ Nn+1 : ν].

By the induction hypothesis one has Q(xN1 · · ·Nn), hence for some e1, · · · ,en ∈MX

Γ ⊢ Ni : ξei(1 ≤ i ≤ n) & Γ ⊢ xN1 · · ·Nn : ξce1···en ≤ ν→σ.
Write b = ce1 · · · en. By Lemma 17E.34(i) the intersection type ξb cannot be a type atom
(in X), hence writing X(ν) = {a1, · · · ,ak} we have

ξb = (ξa1→ξba1) ∩ · · · ∩ (ξak→ξbak) ≤ ν→σ.
By Theorem 14A.7 one has for some non-empty {i1, · · · , ip} ⊆ {1, · · · , k}

ν ≤ ξai1 ∩ · · · ∩ ξaip
ξbai1 ∩ · · · ∩ ξbaip ≤ σ.

Since P (Nn+1) and Γ ⊢ Nn+1 : ν ≤ ξai we have ai1 = · · · = aik = a, say. Noting that

Γ ⊢ xN1 · · ·Nn : ξb ≤ ξa→ξba
Γ ⊢ Nk+1 : ν ≤ ξa,

taking en+1 = a it follows that

Γ ⊢ xN1 · · ·Nn+1 : ξba = ξce1···en+1 ≤ σ.
Therefore indeed Q(xN1 · · ·Nn+1).
As to (2), writing M ≡ xN1 · · ·Nn suppose P (Ni) towards P (M). Assume

Γ ⊢M : ξd & Γ ⊢M : ξd′

towards d = d′. As Q(M), by (1), we have

∃e1, · · · ,en.Γ ⊢M : ξce1···en ≤ ξd & Γ ⊢ Ni : ξei ,
∃e′1, · · · ,e′n.Γ ⊢M : ξce′1···e′n ≤ ξd′ & Γ ⊢ Ni : ξe′i .

Since P (Ni) we have ei = e′i. Therefore by Lemma 17E.34(ii) we have d = c~e = c~e′ = d′.
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As to (3), suppose P (M) towards P (λx.M). Assume Γ ⊢ λx.M : ξd and Γ ⊢ λx.M : ξe,
in order to show d = e. By Theorem 14A.1(iii) and Lemma 17E.35(ii) it follows that
d∈X(A→B). So ξd ≤ (ξc→ξdc) for all c∈X(A). Then for all c∈X(A)

Γ ⊢ λx.M : ξc→ξdc,
Γ, x : ξc ⊢ M : ξdc, by Theorem 14A.9(iii).

Similarly Γ, x : ξc ⊢M : ξec. By P (M) we have ∀c∈X(A).dc = ec. Therefore d = e.

17E.39. Proposition. Let A∈TT0,M ∈Λ→(A), and d∈X(A). For a valuation ρ inMX ,
write Γρ(x) = ξρ(x). Then

(i) [[M ]]ρ = d ⇔ Γρ ↾ FV(M) ⊢ |M | : ξd.
(ii) If M ∈Λø→(A), then

[[M ]] = d ⇔ ⊢ |M | : ξd.
Proof. (i) (⇒) By induction on M one shows

Γρ ↾ FV(M) ⊢ |M | : ξ[[M ]]ρ
.

We write Γρ for Γρ ↾ FV(M).
Case M ≡ xA. Then Γρ ⊢ x : ξρ(X), as Γ(x) = ξρ(x).
Case M ≡ NL. By the induction hypothesis one has

Γρ ⊢ |N | : ξ[[N ]]ρ
& Γρ ⊢ |L| : ξ[[L]]ρ .

Therefore by Lemma 17E.34(i)

Γρ ⊢ |NL| : ξ[[N ]]ρ[[L]]ρ
= ξ[[NL]]ρ

.

Case M ≡ λxB.N . By the induction hypothesis one has for all b∈X(B)

Γρ[x:=b] ⊢ |N | : ξ[[N ]]ρ[x:=b]
.

Hence

Γρ, x : ξb ⊢ |N | : ξ[[N ]]ρ[x:=b]
⇒ Γρ ⊢ λx.|N | : ξb→ξ[[N ]]ρ[x:=b]

⇒ Γρ ⊢ |λxB.N | :
⋂

b∈X(B)

.ξb→ξ[[N ]]ρ[x:=b]
= ξ[[λxB .N ]]ρ

.

(⇐) Assume Γρ ⊢ |M | : ξd. Then by normalization and subject reduction one has

Γρ ⊢ |Mnf | : ξd,
where Mnf is the β-nf of M . By (⇒) one has

Γρ ⊢ |Mnf | : ξ[[Mnf ]]ρ
.

By Lemmas 17E.37 and 17E.38 one has P (Mnf). Therefore

d = [[Mnf ]]ρ = [[M ]]ρ.

(ii) By (i).
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17E.40. Lemma. For d∈X(A) with A∈TT0, define ξ∼d = A. For Γ = {x1:ξd1 , · · · , xn:ξdn},
an X-basis, define Γ∼ = {x1:ξ∼d1 , · · · , xn:ξ∼dn}. Then for M ∈Λ in β-nf one has

Γ ⊢λ∩ M : ξd ⇒ Γ∼ ⊢Cu
λ0
→
M : ξ∼d .

Proof. By induction on the generation of M .
CaseM ≡ x. Then Γ ⊢λ∩ x : ξd implies Γ(x) ≤ ξd, so Γ(x) = ξd, by Lemma 17E.35(ii).

Then Γ∼ ⊢Cu
λ0
→
x : ξ∼d .

Case M ≡ λx.N . Then Γ ⊢λ∩ λx.N : ξe =
⋂

a∈X(A)(ξa→ξea), with e∈X(A→B)

implies Γ, x:ξa ⊢λ∩ N : ξea, for all a∈X(A). Therefore by Lemma 17E.34(ii) one has

Γ∼ ⊢Cu
λ0
→

(λx.N) : (A→B).

Case M ≡ xN1 · · ·Nn. Suppose Γ ⊢λ∩ xN1 · · ·Nn : ξd. Then by Lemmas 17E.38 and
17E.35(ii) one has d = ca1 · · · an with Γ(x) = ξc, Γ ⊢λ∩ Ni : ξai , and ai ∈X(Ai), and
c∈X(A1→· · ·→An→B). By the induction hypothesis one has

Γ∼ ⊢Cu
λ0
→
Ni : Ai & Γ∼ ⊢ x : (A1→· · ·→An→B).

Therefore
Γ∼ ⊢Cu

λ0
→
xN1 · · ·Nn : B = ξ∼d ,

as d = ca1 · · · an ∈X(B) by Lemma 17E.34(i).

17E.41. Theorem (Salvati). The undecidability of inhabitation in T CDV follows by a
reduction from the undecidability of λ-definability, Theorem 4A.21.

Proof. Given A∈TT0 and d∈X(A) we claim that

∃M ∈Λø→(A) [[M ]] = d ⇔ ∃M ∈Λø ⊢λ∩ M : ξd.

(⇒) By Proposition 17E.39(ii).
(⇐) ⊢λ∩ M ∈ ξd ⇒ ⊢Cu

λ0
→
M : A, by Proposition 17E.40,

⇒ M+ ∈Λø→(A) & |M+| =M, by Proposition 1B.19(ii),
⇒ [[M+]] = d, by Proposition 17E.39(ii).

Therefore d is definable iff ξd is inhabited. This yields a reduction of the definability
problem to the inhabitation problem.

In a personal communication Sylvain Salvati mentioned that the proof (not the state-
ment) of the undecidability of inhabitation in T CDV also implies undecidability of λ-
definability in MP(X). In the reduction of inhabitation in λCDV

∩ to λ-definability of
elements in the full λ-structure over a finite set, the intersection types are interpreted
as non-deterministic finite automata, while the elements of the full type structure corre-
spond to deterministic finite automata. This explains the need of the power-set construc-
tion inMP(X), which is similar to the one for making a finite automaton deterministic:
states of the new automaton are sets of states of the former one.

17F. Exercises

17F.1. Show by means of examples that the type theories Plotkin and Engeler are not
complete, i.e. we do not have Γ |=T M : A ⇔ Γ ⊢T∩ M : A, for T = Plotkin or
T = Engeler.
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17F.2. Show that Σ({0},CDV) is the smallest complete type theory (w.r.t. the order of
Fig. 34).

17F.3. Show that for all T ∈PTT one has

Γ ⊢T∩ M : A ⇒ Γ |=T
∩ M : A.

[Hint. Adapting Definition 17A.1 to proper intersection type theories in the
obvious way.]

17F.4. Let T ∈TT-U. Take FT = 〈FT , ·, [[ ]]F
T 〉 as in 16B.1; define the type environment

ξT : AT → P(FT ) by

ξT (α), {X ∈FT | α∈X};

and let [[ ]]T : TTT → P(FT ) be the map [[ ]]F
T

ξT
defined by deleting the first clause

from Definition 17A.1. Show the following.

(i) [[A]]T = {X ∈FT | A∈X}.
(ii) FT , ξT are →-good and preserve ≤T .

(iii) [Γ |=T
∩ M : A ⇒ Γ ⊢T∩ M : A] ⇔ T ∈PTT.

(iv) Γ |=T
∩ M : A ⇔ Γ ⊢T∩ M : A.

17F.5. Show that all quasi λ-models and all type environments preserve ≤BCD.
17F.6. Dezani-Ciancaglini, Honsell, and Motohama [2005], Tatsuta and Dezani-Cian-

caglini [2006].

1. The terms that are in PHN reduce to terms of the form λ~x.y ~M where y /∈{~x}.
Are these all of them? Is this enough to characterize them?

2. The terms that are in PN reduce to terms of the form λ~x.y ~M where y /∈{~x}
and ~M ∈N. Are these all of them? Is this enough to characterize them?

3. The terms that are in PSN strongly reduce to terms of the form λ~x.y ~M where

y /∈{~x} and ~M ∈N. Are these all of them? Is this enough to characterize
them?

4. Conclude that PSN ⊂ PN ⊂ PHN.
17F.7. Show that PHN is HN-stable and PN is N-stable.
17F.8. LetMΛ(β) = 〈Λ, ·, [[ ]]Λ〉 be the term model of β-equality and [M ] the equivalence

class of M under β-equality. Let a term M be persistently head normalizing if

M ~N has a head normal form for all terms ~N (see Definition 17B.3). Define the
type environment

ξScott(0), {[M ] |M is persistently head normalizing}.
Prove that (MΛ(β), ξScott) preserves ≤Scott.

17F.9. LetMΛ(β) and [M ] be as in Exercise 17F.8. Define the type environment

ξPark(0), {[M ] |M reduces to a closed term}.
Prove that (MΛ(β), ξPark) preserves ≤Park.

17F.10. A term (λx.M)N is a βN-redex if x /∈FV (M) or [N is either a variable or a
closed SN (strongly normalizing) term] (Honsell and Lenisa [1999]). We denote
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by ։βN the induced reduction. Show that if Γ assigns types to all free variables
in N , i.e. x∈ dom(Γ) for all x∈FV(N), then

Γ ⊢HL
∩ M : A & N ։βN M ⇒ Γ ⊢HL

∩ N : A.

[Hint: use Theorem 17B.15(iii).]
17F.11. Show that in the system induced by the type theory AO, the terms typable with

type U→ U for a suitable context are precisely the lazy normalizing ones, i.e. the
terms which reduce either to an abstraction or to a (λ-free) head normal form.

17F.12. Show that in the system induced by the type theory EHR, as defined in Defini-
tion 13B.13, the terms typable with type V in the context all whose predicates are
V are precisely the terms which reduce either to an abstraction or to a variable
using the call-by-value β-reduction rule.

17F.13. Show that all type interpretation domains and all type environments agree with
AO.

17F.14. Using the Approximation Theorem, show that

• there is no type deducible for Ω in the system ⊢CDV
∩ ;

• ⊢BCD
∩ Ω : A iff A =BCD U;

• ⊢Park∩ Ω : A iff 0 ≤Park A.
17F.15. Using the Approximation Theorem, show that in the system λAO

∩ the set of
types deducible for ωω is strictly included in the set of types deducible for K(Ω).

17F.16. Using the Approximation Theorem, show that in the system λScott∩ the set of
types deducible for J and I coincide.

17F.17. Prove that typability in λCDV
∩ is undecidable.

17F.18. Prove Lemma 17E.3(i) and (ii). [Hint. Similar to the proof of Lemma 13A.22.]

17F.19. Consider the type assignment systems λKrivine
∩ and λKrivineU

∩ as defined in Exercise
13E.10.
(i) Prove an analogue of Lemma 17E.9.

(ii) Prove that if Γ is a game context then Γ ⊢Krivine M : α and Γ ⊢KrivineU M : α
are equivalent to Γ ⊢ M : α, for all type variables α. Conclude that type
inhabitation remains undecidable without (≤).

(iii) Prove that the type δ ∩ (α → β) ∩ (α → γ) → δ ∩ (α → β ∩ γ) is inhabited
in λBCD

∩ but is not inhabited in λKrivineU
∩ .

17F.20. Let Γ be a game context and α∈A∞. Prove that if Γ ⊢M : α then every node
in the Böhm tree of M (see B[1984], Ch. 10) has at most one branch.

17F.21. Complete the proofs of Proposition 17E.23 and Lemma 17E.24.
17F.22. Prove Lemma 17E.28. [Hint. Compare G1 to the game G0 of Example 17E.16.

Observe that in each sequence of positions

T(2k+1)n, · · · , T(2k+3)n,

the odd steps behave as an initial phase of G0, while the even steps behave as a
final phase of G0. Writing

⊥i , 〈⊥, i, G〉;
A, 〈a, 1, {G,L}〉〈a, 2, {G,L}〉;
B , 〈b, 1, {G,L}〉〈b, 2, {G,L}〉
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we have the following (the canopy of a tree is the collection of its leaves) for the
case of two initial C1 steps.

position # via move canopy of position
0 ⊥1

1 C1 ⊥1⊥2

2 C1 (⊥1⊥2)
2

3 C2 A2A2

4 1 A2B2

5 C3 A4B4

6 2 (A2B2)2

7 C3 (A4B4)2

8 3 (A2B2)4

9 C3 (A4B4)4

10 5 (A2B2)8

11 C3 (A4B4)8

12 7 (A2B2)16

· · · · · · · · ·
4 + 2k (A2B2)2

k

If one starts with m moves of C1 (0<m<∞), then the canopy of position m+

2 + 2k will be (A2m−1
B2m−1

)2
k
. Note that m = 0 or m =∞ yield possible plays

of the game.]
17F.23. Prove Lemma 17E.26. [Hint. Encode a queue automaton (also called a Post

machine), i.e. a deterministic finite automaton with a queue, into a typewriter,
thus reducing the halting problem for queue automata to the emptiness problem
for typewriters. One possible way of doing it is as follows. Represent a queue,
say “011100010”, as a string of the form

$$ · · · $<011100010>♯ · · · ♯♯,
with a certain number of the $’s and ♯’s. The initial empty queue is just “<>♯ · · · ♯♯”.
Now an insert instruction means: replace “>” with a digit and replace the first
“ ♯” with “>”, and similarly for a remove. The number of $’s increases after each
remove, while the suffix of ♯’s shrinks after each insert , so that the queue “moves
to the right”. If the number of the initial suffix of ♯’s is sufficiently large, then a
typewriter automaton can verify the queue computation.]

17F.24. Kuśmierek [2007]. Prove that in λCDV
∩ the inhabitation problem for types of

i-rank at most 2 is decidable. See definition of i-rank after Theorem 17E.31. Note
that if the i-rank of B→C is at most 2 then the i-rank of B is at most 1.

17F.25. Kuśmierek [2007].

(i) Let ι, (α→ α) ∩ (β → β) and define for k = 0, · · · , n the type

Ak , α→ ιk → (α→ β)→ (β → α)n−k → β.

Prove that the shortest inhabitant of A1, · · · ,An is of length exponential in n.
Can you modify the example so that the shortest inhabitant is of double
exponential length?
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(ii)∗ How long (in the worst case) is the shortest inhabitant (if it exists) of a given
type whose i-rank is 2?

17F.26. Show that inhabitation in λBCD
∩ is undecidable. [Hint. Show that λBCD

∩ is
conservative over λCDV

∩ for β-normal forms, that is

Γ ⊢BCD M : A ⇔ Γ ⊢CDV M : A,

for all A∈TTCDV, Γ with types from TTCDV, and M ∈Λ in β-normal form. Use
Theorem 17B.15(i).]
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R. Péter



References 647

[1967] Recursive functions, third revised ed., Academic Press.

S. Peyton-Jones
[1987] The Implementation of Functional Programming Languages, Prentice

Hall.

S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn
[2006] Simple unification-based type inference for GADTs, International confer-

ence on functional programming, pp. 50–61.

S. Peyton Jones [editor], J. Hughes [editor], L. Augustsson, D. Barton, B. Boutel, W. Burto

[1999] Haskell 98 — A non-strict, purely functional language, URL <www.haskell.

org/definition/>.

S. L. Peyton Jones and P. Wadler
[1993] Imperative functional programming, Principles of Programming Lan-

guages, ACM Press, pp. 71–84.

B. C. Pierce
[2002] Types and programming languages, MIT Press.

M. R. C. Pil
[1999] Dynamic types and type dependent functions, Implementation of functional

languages (H. Hammond, T. Davie, and C. Clack, editors), Lecture Notes in Computer
Science, vol. 1595, Springer, pp. 169–185.

E. Pimentel, S. Ronchi Della Rocca, and L. Roversi
[In preparation] Intersection types from a proof-theoretic perspective.

M. J. Plasmeijer and M. van Eekelen
[2002] Concurrent Clean language report (version 2.1), <www.cs.ru.nl/~clean>.

R. Plasmeijer, P. Achten, and P. Koopman
[2007] iTasks: Executable Specifications of Interactive Work Flow Systems for the

Web, International Conference on Functional Programming, ACM Press, pp.
141–152.

R. A. Platek
[1966] Foundations of recursions theory, Ph.D. thesis, Stanford University.

J. von Plato
[2001a] A proof of Gentzen’s Hauptsatz without multicut, Archiv für Mathematis-

che Logik und Grundlagenforschung, vol. 40, no. 1, pp. 9–18.
[2001b] Natural deduction with general elimination rules, Archiv für Mathematis-

che Logik und Grundlagenforschung, vol. 40, no. 7, pp. 541–567.
[2008] Gentzen’s proof of normalization for natural deduction, The Bulletin of Sym-

bolic Logic, vol. 14, no. 2, pp. 240–257.



648 References

G. D. Plotkin
[1975] Call-by-name, call-by-value and the λ-calculus, Theoretical Computer Sci-

ence, vol. 1, no. 2, pp. 125–159.
[1977] LCF considered as a programming language, Theoretical Computer Science,

vol. 5, pp. 225–255.
[1980] Lambda-definability in the full type hierarchy, in Hindley and Seldin [1980]

(J. R. Hindley and J. P. Seldin, editors), Academic Press, pp. 363–373.
[1982] The category of complete partial orders: a tool for making meanings, Postgrad-

uate lecture notes, Edinburgh University.
[1985] Lectures on predomains and partial functions, Center for the Study of Language

and Information, Stanford.
[1993] Set-theoretical and other elementary models of the λ-calculus, Theoretical

Computer Science, vol. 121, no. 1-2, pp. 351–409.

H. Poincaré
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INDICES

There is an index of definitions, of names (authors of cited references), and of symbols.
The index of symbols is subdivided as follows.

• Terms: general, operations, classes, relations, theories.
• Types/Propositions: general, operations, classes, relations, theories, classes of theories.
• Assignment: theories, derivation.
• Models: general, operations on, classes, relations, interpretations in.
• Miscellaneous: general, operations, classes, relations.
• Categories: general, functors.

The meaning of the main division is as follows. There are objects and relations between
these. Using the operations one constructs new objects. By collecting objects one ob-
tains classes, by collecting valid relations one obtains theories. Categories consist of
classes of objects together with operations.
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Index of definitions

α-avoiding, 317
α-flexible, 317
µ̇-redex, 315
λ-definable, 32

slantwise, 148
µ-redex, 323
∇-uniform, 408
safe

µ̇-type, 317

abstract reduction system, 45
Ackermann function, 217
added, 311
additive, 513
adfluent, 231
adjunction, 309
admissible rule, 455
agree

with ρ, 541
with constraints, 375

algebra, 35, 338
algebraic, 35, 35

ω- - lattice, 405
lattice, 405
map, 337

ambiguous, 218
application operators, 76
applicative structure, 84
approximable maps, 509
approximant
T -, 584
direct, 418
of M , 418
of a λ-term, 418, 456

approximate
interpretation, 415

approximation, 407
of a regular tree, 415
of a type, 411
theorem, 419

argument, 578
arity, 12
assertion

S-, 478
T -, 473

association
to the left, 5
to the right, 5

atom
type -, 291, 463

atomic
type inequality, 433

bar condition, 229
bar recursion, 230
basis, 8, 454

X-, 614
S-, 478
T -, 473
á la de Bruijn, 15

binary trees, 34
binds, 319
bisimulation, 328, 346
Boolean

interpretation, 62
valuation, 62

bottom, 432, 583
bound variable

of a λ-term, 5
of a µ-type, 314

canonical form, 488
captures, 319
carrier, 338
Cartesian

monoid, 197
free -, 200

product, 81
category

of algebraic lattices, 405
of complete lattices, 405

characteristic type, 126
Church

numeral, 32
version of λA

=, 298
version of λA

→, 13
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Church-Rosser, 309
Church-Rosser property, 46

weak -, 46
Church-Rosser theorem

for ⇒µ, 309

for λCh
→ , 23

for λdB
→ , 19

for λCu
→ , 18

for λβη, 6
circular, 324
class

of a set of constants, 126
of a type, 119

classically valid, 62
closed, 313

term, 5
term model, 242
under application, 77
under head expansion, 578
under reduction, 395

closure
under reduction, 18

closure ordinal, 221
coalgebra

T -, 339
morphism, 339

code, 214
computationally adequate, 563
combinator, 5
Combinatory Reduction System, 324
compact

element, 405
compatible, 466
complete, 121

A-, 139
for pure terms, 139
lattice, 404
partial order, 404
subset, 408

completeness, 459, 575
components, 12, 41, 600
computable, 52

under substitution, 52
Computer Mathematics, 261
configuration, 607

confluent, 6, 46
from M , 92

congruence, 293, 304
consistent, 7, 86
constant, 86, 178
constraints, 375
constructor, 35
continuous, 238, 405
contraction

of µ̇-redex, 315
of µ-redex, 323

contractive
map, 337
type - in a variable, 324

conversion
α- - on types, 315
µ̇- - on types, 315
µ- - on types, 324

Coq, 15
corecursion, 346
CPO: complete partial order, 404
Curry

version of λA
=, 292

version of λA
→, 13

Curry-Howard isomorphism, 271
cyclic, 375

de Bruijn
version of λA

→, 15
decidable, 152
decision problem, 152
declaration, 8
S-, 478
T -, 473

deductive closure, 362
definable

λ-, 151
functional - by TRα, 226

defined
for partial function, xx
partial semantics, 78

deflationary
set of type inequalities, 433
type inequality, 433
type theory, 433

degree, 178
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dependent
on a variable, 83

depth
of a basis, 11
of a type, 11

derivability
for subtyping, 432

derivable
R - word, 152
from Γ, 8
proposition, 64

derivable rule, 455
derivative, 346
descendants, 375

direct -, 375
Dialectica interpretation, 241
Diophantine, 209, 210

uniformly in n, 211
directed, 238

subset, 404
discharged, 9
domain, 8, 308

elementary equivalent, 79
elementary equivalent at A, 79
embed, 121
embeddable, 294
empty tree, 34
empty word, 152
encoded, 153
enriched, 304

set of types, 304
syntactic type algebra, 304

enumerates
slantwise, 149

enumeration
- problem, 55
for λA

=, 385
environment

term, 77
environment in D, 535
equality

strong - on types, 329
weak - on types, 329

equation
over D, 86

equational, 209
version, 189

equational logic
extended by E , 294

equi-recursive, 300
equivalence of recursive types

completeness, 419
equivalent

sets of constraints, 375
sr, 310
weakly, 322

evaluation
of a term, 396

expansive, 92
extensional, 77, 537

equality, 6
hereditary, 235

equivalence, 124
extensionality, 76

F-semantics, 439, 562
favorable, 603
filter, 457, 480, 480
filter model

for λ, 541
for λI, 541

filter quasi λ-model, 540
filter structure, 481
final

coalgebra, 339
final labels, 601
finite

element, 405
tree, 326

finite completeness theorem, 123
finitely generated, 149, 160
fixed point

combinator, 68, 236
least, 221
recursion, 236

flat, 371
fold-unfold, 336
folding, 310, 323
forcing

Γ 
 A, 66
k 
 A, 65
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K 
 A, 65
K 
 Γ, 66

 A, 66

forgetful map, 21
formulæ-as-types, 613
formulas-as-types, 271
free variable

lemma
for λCu

→ , 16
of a λ-term, 5
of a type, 314

free(ly generated), 35
fully abstract, 139
fully eta (f.e.) expanded, 41
function

partial, xx
functional

continuous, 243
hereditarily finite, 235

functional programming, 250
fundamental theorem

for semantic logical relations, 99
for syntactic logical relations, 94

Gödel’s T , 217
Gödel-number, 71
Galois connection, 513
game

rules, 602
game context, 600
game types, 600
Gandy-hull, 100
generated by, 457
gip: inhabitation problem, 605
global move, 601

C2, 608
C3, 609

good
→-, 574

grammar
2-level, 26

graph, 470
greatest lower bound, 454
group

Thompson-Freyd-Heller, 204, 240

h↑-closed, 578
has a lnf, 26
has index i, 178
has type, 10
has type A relative to Γ, 10
head-reducible to, 119
height, 570
hereditarily

adfluent, 231
extensional operators, 242
finite, 231
monotone functions, 77
recursive operators, 242

hereditarily non-trivial, 424
hierarchy theorem, 118

revisited, 121
higher order logic, 186
Hindley-Milner algorithm, 59
holds (validity)

for equations, 294
for existential statements, 307

homogeneous, 433
in α, 433
type theory, 433

ideal, 408, 429, 440
implicational propositional logic, 64
inconsistent

equation, 7
terms, 90
theory, 7

indeterminate, 306, 308
induction loading, 53
inductive, 220, 225

sr, 399
types, 395

inductively, 400
inequality, 174
inflationary

set of type inequalities, 433
type inequality, 433
type theory, 433

inhabitation
for λA

=, 385
inhabitation problem, 55, 598

generalized, 605
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inhabited relative to Γ, 10
initial

algebra, 339
initial label, 601
initial position, 602
instance

of a problem, 152
instantaneous description, 607
interpolation

dual - problem, 166
equation, 166
problem, 166

interpretation, 85, 331
of a type, 396
of terms, 457
of types, 458
under ρ, 67

intersection type
language, 452
preorder, 453
structure, 477
theory, 453

intersection type theory
with universe, 464

invariant, 105
µ̇-, 317

inversion, 485
Inversion Lemma, 384

for λT
∩ , 485

for λCh
→ , 18

for λdB
→ , 19

for λCu
→ , 16

for syntactic type algebras, 384
for type algebras, 383

Inversion lemma
for λS6, 435
for invertible type algebras, 435

invertible, 302, 302, 434
i-rank, 613
irrelevant, 167
is inhabited by, 10
iso-recursive, 300
isomorphic, 294
isomorphic λ-models, 539
isomorphism, 294

Jacopini tableau, 89
justifies

set of equations -, 296
type algebra -, 296

kernel, 341
Kleene application, 242
Kripke model, 65
Kripke type interpretation, 588

labels, 601
lambda Galois connection, 515
lambda structure, 514

natural, 515
lambda structures, 515
large, 117
lattice

ω-algebraic -, 405
algebraic -, 405
complete -, 404

layered non-empty subfamily, 77
lazy, 470, 524, 562
lazy lists, 347
lazy zip structure, 518
lead symbol, 325
least congruence extending E , 294
left, 153
left adjoint, 513
legal, 15
length, 71
lifting of S, 100
limit, 220
lists, 222
lnf: long normal form, 26
local move, 601

k-th, 602
logical framework, 265
logical relation

semantic, 98
syntactic, 91

logically equivalent
sr, 310

lower
approximations, 436

matching
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problem
with unknown X, 160

pure - problem, 160
matrix, 41
maximal theory, 140
maximally trivial, 424
meet semi-lattice, 477
meet semi-lattice with universe, 477
minimal model, 140
model, 87

λ, 536, 536
η, 537
λ0
→-, 78

of λT , 219
of λY , 237
quasi λ-, 536
typed λ-, 78
untyped λ-, 84

monotonic, 405
monster, 30
morphism, 76, 294, 339

for Cartesian monoids, 198
of type structures, 432

most general unifier, 57
move

global, 608
multi head-reducible to, 119
multi-sorted, 37
multiplication of T -bases, 475
multiset, 46

order, 47

natural, 470, 514
natural deduction, 9
natural lambda structures, 524
natural zip structure, 518
negative

α - in A, 394
occurrence, 394

next ID function, 607
nf: normal form, 45
no, 153
non-empty

logical relation, 98
norm, 577
normal form

R-, 45
Φ-, 42
long, 26

normalization theorem
strong -
for λA

→, 52
weak -
for λA

→, 49
normalizing

strongly R-, 45
weakly R-, 45

numeral
Church, 32
in F , 211
in T , 217

observable type, 423
observational

equivalence, 124
observationally equivalent, 423
ogre, 568
open set

Scott -, 405
order, 562

of a basis, 11
of a matching problem, 160
of a type, 11

ordering on D∞, 550
ordinals, 220
orphan, 371
output-type, 160

pairing, 194
A×A→A, 67
R-, 38, 39
surjective, 39

partial
CPO of - functions, 405
function, xx
semantics
[[M ]]ρ defined, 78

[[M ]]ρ undefined, 78
surjective homomorphism, 98

partially ordered set, 404
pattern, 169
pattern matching, 60
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permutation of arguments, 107
perpetual, 563
persistently head normalizing, 577
persistently normalizing, 577
persistently strongly normalizing, 577
Platek’s Y, 237
play

in a game, 601
Plotkin’s Model, 568
polynomial, 339
polynomial structure, 82
poor type, 149
poset: partially ordered set, 404
position, 601

next, 602
positive

α - in A, 394
occurrence, 394
type, 394

predicate, 8, 473
preorder

intersection type -, 453
preserves, 574
prime, 302
principal, 457

recursive basis
of a term, 389, 441

recursive triple
of a term, 389, 441

recursive type
of a term, 389, 441

type algebra
of a term, 389, 441

type theory
of a term, 441

principal pair, 59
principal type, 59
principal type theorem, 59

second, 60
problem

EQA, 598
ETW, 598
IHP, 598
WTG, 598

product, 38, 39

Cartesian
R-, 39

programming
functional, xv
imperative, xv

projection, 95, 209
proper, 41, 308, 470, 524
proper strict zip structure, 519
property

λKo-, 54
propositions-as-types, 64
protective, 317
pseudo-negation, 41
pseudo-terms, 15

quasi λ-model, 537

R-exp, 456
R-red, 456
rank

of a basis, 11
of a formula, 193
of a matching problem, 160
of a type, 11

realizability interpretation, 468
recursion

bar, 229, 230
nested, 241
primitive
simultaneous, 241

recursive
primitive
functionals, 216
functions, 215

recursor, 216
of type A, 216

redex
βN, 618
I-, 53
K-, 53
K+-, 53
Ko-, 53

reduced form, 325
principal, 325

Reducibility Theorem, 116
reducible
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decision problems
many one, 152
Turing, 152

types, 107
reduction

T , 217
α- - on types, 315
µ̇- - on types, 315
µ- - on types, 323
β-, 6
η-, 6
R- - on types, 308

reflexive structure, 406
regular, 327, 327
relation

semantic, 98
syntactic, 91

relativized, 598
relevant, 167
representable, 458, 544
represented in, 126
retract

SP , 197
retraction pair

SP , 197
rewrite rule, 152
rich type, 149
right, 153
right adjoint, 513
rightmost redex, 49
rule

admissible, 455
derivable, 455

safe
forever - µ̇-type, 317

satisfaction, 403, 459
T |=M = N , 85
ρ |= A, 62
ρ |= Γ, 62
D, ρ, ξ |=M : A, 85
D, ρ |=M = N , 84
D, ρ |= T , 84
D |= T , 85
M, ρ |=M = N , 78
M |=M = N , 78

M |= E , 87
Γ |=M : A

for λ∩
S , 574

in term model, 396
satisfies, 343

existential statement, 307
saturated, 395
search-type, 160
section

A-, 139
self-capturing, 319
Semantic Satisfiability, 592
semantics

partial, 77
separable, 204
separable from, 90
signature functor, 338
simple, 308
simple semantics, 573
simplified syntax, 5
simulation, 438
simultaneous recursion

over A( ~X), 308
over A, 308

slantwise
λ-defineble, 148
enumerates, 149

small, 117
SN: strongly normalizing, 45, 577
solitary game, 601
solution, 307, 605
solvable

game, 603
solves, 307

M solves P , 605
sound

β, 487
η-, 493
ηU-, 493

soundness, 459, 574
Spector’s B, 230
sr: simultaneous recursion, 308
stable

HN, 578
N, 578
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SN, 578
standard ⇒µ-reduction, 353
statement, 8
S-, 478
T -, 473

step function, 417, 505
streams, 345
strict, 405, 537

function, 504
strict lambda structure, 524
strict lambda structures, 524
strict zip structure, 519
string, 201
strongly normalizing, 45

β-, 577
structure

full type, 75
type, 75

sub, 464
subject, 8, 433, 473
subject reduction

for λA
=, 384

subject reduction property
for λdB

→ , 19
for λCu

→ , 17
substitution, 328

naive, 314
smart, 314
type
in term, 14
in type, 8

substitution lemma
for λCh

→ , 18
for λdB

→ , 19
for λCu

→ , 17
substitutive, 92

semantic logical relation, 100
substitutor, 57
subterm closure, 358
subtree, 327
subtree of t at w, 327
subtyping relation, 436
successor, 220, 220
sufficient

set of constants, 123

sup: supremum, 404
support, 46
supremum, 220, 404
surjective, 149, 195
surjective pairing, 40
syntactic

morphism, 302
type algebra, 293

syntactical type structure, 478

target, 12
term

λΦ, 583
λ⊥, 583
pure, 86

term environment, 396, 457
term model, 396

closed
for λB, 235

open, 88
terms of λSP , 195
terms of λCh

→ , 14
terms of type A, 14
terms-as-proofs, 271
theory

consistent, 424
theory ofM, 78
to the right, 49
top, 432, 454, 464
topology

Scott -, 405
trace

of a under f , 142
transfinite

induction, 225
iteration, 221
recursion, 225

tree, 326
tree functor, 340
tree game, 601

G0, 603
G1, 608

tree-unfolding, 329
trivial, 76, 198
trivial type, 423
true in D, 458, 536
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truncation, 327
typability, 55

for λA
=, 385

typable, 10, 454
typable relative to, 10
type

assignment
à la Curry, 8
à la de Bruijn, 16

atom, 7
characteristic, 126
checking, 55
depth, 11
for words, 33
function space, 7
level, 11
natural number, 217
of λSP , 195
order, 11
poor, 149
rank, 11
reconstruction, 55
reduction
βη, 107
βηSP , 208

rich, 149
simple, 7
trivial, 423

type algebra, 291
(equation over, 294
free -, 291, 300
interpretation of a -, 403
quotient of, 295
satisfying a set of equations, 294
satisfying an equation, 294
subalgebra, 300

type assignment
λBCD
∩ , 454

λT
∩ , 473

type checking
for λA

=, 385
type environment, 458
type interpretation, 413, 573

approximate -, 411
type intersection theory

without universe, 464
type nesting, 564
type reconstruction

for λA
=, 385

type structure, 431, 477
determined by T , 433
full -, 67
graph -, 479
intersection -
with universe, 477
without universe, 477

lazy -, 479
natural -, 479
proper -, 479

type theory, 464
axiomatized by H, 433
for subtyping, 433
graph -, 470
intersection -, 453, 464
with universe, 464
without universe, 464

lazy -, 470
natural -, 470
proper -, 470

type-semantics theorem, 541
type-tree, 326
typed applicative structure, 76
typed lambda theory, 86
typed terms

of λA,Ch0
= , 299

of λA,Ch
= , 298

typewriter automaton, 607

ultrametric space, 337
undefined

for partial function, xx
partial semantics, 78

unfolding, 323
unfolding (modulo R), 310
unicity of types

for λCh
→ , 19

for λdB
→ , 19

unification
first-order, 58
problem
with unknown X, 160
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pure - problem, 160
system of - problems, 162
theorem, 58
with constants from Γ, 162
with several unknowns, 161

unifier, 57
uniform

set, 408
uniquely closed, 313
universal n-ary relation, 95
universal top, 452
universe, 452, 464
upper

approximations, 436
upperbound, 404
useless, 424

valid, 364
k-, 364

valuation, 67
partial, 77

variable
bound, 5
bound type -, 314
free, 5
free type -, 314

variant, 58

weak head expansion, 92
weakening lemma

for λCu
→ , 16

weakly confluent, 46
weakly encoded, 153
well-founded, 303
winning, 602
witnesses, 89
WN: weakly normalizing, 45
word, 152

yes, 153

zero, 220
zip structure, 518
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BcA,B, 230
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�⊥, 583
order(M), 562
p, 34
XY, 230
pp(M), 59
pt(M), 59
lth(M), 71

C. classes
Tn
CM, 199
TCM, 199
[A]TΓ , 586
Λø→[D], 86
Λ, 5
ΛΦ, 583
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A ≡ B, 453, 465
A ≤ B, 453, 464
A ≤T B, 465
A ≤BCD B, 453
A ≤βηSP B, 208
A ≤βη B, 107
A ∼βη B, 107
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TRS−1(R), 369
TT, 464
Krivine, 482
KrivineU, 482
AO, 468
BCD, 453, 468
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Γ ⊢M : A, 454
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B. operations on
init(T ), 559
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MSLU, 477
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D. relations
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η |=k A 6 B, 439
η |=k H, 439
≤, 504
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|=D,ρ,h M : a, 403
|=D,ρ,h Γ, 403
⊑D, 504
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D, ρ, ξ |=M : A, 459, 574
D, ρ, ξ |= Γ, 459, 574
D |=M = N , 458, 536
M≡A N , 79
M≡ N , 79
M×N , 81
T , ρ,Γ′ |= Γ, 592
T , ρ,Γ |=M : A, 592
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((−))Mρ , 82

T |=M = N , 85
[[M ]]ρ, 592

[[ ]]F,G, 537

[[ ]]F
T

ξT
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[[ ]]Λ, 578
Γ 
 A, 66
Γ |=M : A, 85

 A, 66
s[[M ]]ρ↓, 78
s[[M ]]ρ ↑, 78
ι, 106
|= A, 62

ρ[x := d], 77, 457, 536
ρ |= A, 62
ρ |= Γ, 62
k 
K A, 65
[[M ]]ρ, 67, 77, 406

[[M ]]Mρ , 77

[[ ]]D, 536

[[ ]]Dρ , 457

[[ ]]ξ, 458

[[ ]]F
T

, 540
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[[ ]]ρ, 536
βN, 618
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 Γ, 66
K
A, 65
M, ρ |=M = N , 78
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EnvD, 77, 536
ξ1BCD, 579
ξ2BCD, 579

ξT , 575, 618
ξCDV, 579
ξCDZ, 579
ξDHM, 579
ξHL, 579
ξPark, 618
ξScott, 618

5. Miscellaneous
A. general
(♦), 548
Bβ , 610
Bv,k, 602
C1, 603
C2, 603
GA, 610
ID, 607
PG
T , 605

∆β , 610
ΓG, 605
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TIα, 225
TR, 225
TRα, 225, 226
dn, 407
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EQA, 598
ETW, 598
IHP, 598
WTG, 598
Trfin, 326
TrAfin, 326
Trinf , 326
TrAinf , 326
Trreg, 327

TrAreg, 327
t | w, 327

B. operations
2n, 71
E.L, 189
E.R, 189
R∗, 92
S∧, 105
X ⇒ Y , 403
#X, 143
∃R, 95
#, xx
⊔X, 404
f ♮, 301
f ♯, 301
h(a1 = a2), 295
h(E), 295
h : A→B, 294
[[ ]]ρ, 77

Cpn(f), 212
dom(f), xx

C. classes
ARS, 45
CA
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LA, 607
T 2, 34
XY , 75
F , 200
S(D), 411
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K(D), 405
L, 202
N , 211
R, 202
F [~x], 200
ST , 433
TBH, 437
form(PROP), 64
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(X,R) |= R-SN, 45
(X,R) |= SN, 45
(X,R) |= WN, 45
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P ≤T Q, 152
P ≤m Q, 152
R(∗1, · · · , ∗n), 92
RU

A, 95
T ⇒ T ′, 603
T ⇒k T ′, 603
T ⇒Ci T ′, 603
=⇒, 27
⇒∗

T , 603
⊢TT/≈ , 296
→S , 46
⊢T , 433
f(x) = y, xx
u ⊢R s, 152
x |= R-SN, 45
x |= R-WN, 45
x |= SN, 45
x |= WN, 45
f(x)↓, xx
f(x)↑, xx

6. Categories
A. general

ALGs
a, 506

ALGa, 506
CPO, 405
GTSU, 479
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MSLU, 479
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NTSU, 479
TS-U, 479
TSU, 479
LSs, 524
LTSU, 479
LZS, 518
PLSs, 524
PTS-U, 479
PZSs, 519
ZSs, 519
ZS, 518
ALG, 405

B. functors
Cmp, 509
FZS, 522, 523
Flt

NTS
U , 515, 516

R, 526
Cmps, 512
FltNLS, 516, 516
Flt

TS
U , 528

Flt, 508




