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Preface

This English edition differs from the Russian original by the addition of a new
chapter. In this new Chapter 3 we give an account of the theory of train tracks
for automorphisms of free groups, which was developed in the seminal paper of
M. Bestvina and M. Handel [9]. Our exposition is more algebraic than in this paper,
but it is less technical than the account in the book [29] of W. Dicks and E. Ventura.
In Section 10 of Chapter 3 we consider two examples in detail. We have added
an appendix containing the famous Perron—Frobenius Theorem on nonnegative
matrices, which is used in this chapter. Also we have added solutions to selected
exercises.

The reader is assumed to have the knowledge of algebra expected after the first
semester of university (permutations, fields, matrices, vector spaces; see [23], [39]
or [55].

My sincere thanks go to Derek Robinson for invaluable help with the transla-
tion of this book and for useful comments that helped to improve the exposition.
I also like to thank Hans Schneider and Enric Ventura for their suggestions on the
improvement of the appendix and Chapter 3. Last but not least, I thank my wife
Marie-Theres for her constant support.

Dortmund, January 2008 O. Bogopolski



Preface to the Russian Edition

This book is an extended version of a course given by me at Novosibirsk University
from 1996 to 2001. The purpose of the book is to present the fundamentals of group
theory and to describe some nontrivial constructions and techniques, which will be
useful to specialists. The fundamentals are given in Sections 1-9 of Chapter 1; also
one can read Chapters 1 and 2 independently.

In Chapter 1 we quickly introduce beginners to the classification of finite simple
groups. It is shown that such complicated combinatorial objects as the Mathieu
group M3, and the Higman—Sims group HS have a natural geometric description.
In Section 17 we describe the relationship between Mathieu groups and Steiner
systems with coding theory.

In Chapter 2 we describe the Bass—Serre theory of groups acting on trees. This
theory gives a clear and natural explanation of many results about free groups and
free constructions. We also explain the theory of coverings: the attentive reader
will see a bridge from one theory to the other. I hope that numerous examples,
exercises and figures will help to give a deeper understanding of the subject.

The reader is assumed to have the knowledge of algebra expected after the first
semester of university (permutations, fields, matrices, vector spaces; see [39]). In
addition, the fundamentals of group theory (especially abelian, nilpotent and solv-
able groups) can be read in the excellent book of M. I. Kargapolov and Ju. I. Merzl-
jakov [38].

I thank many colleagues whose comments helped to improve the content and
exposition of the material presented in this book. In particular I thank V. G. Bar-
dakov, A.V. Vasiljev, E. P. Vdovin, A. V. Zavarnitzin, V. D. Mazurov, D. O. Revin,
0. S. Tishkin and V. A. Churkin.

I thank M.-T. Bochnig for the help in designing this book.

Novosibirsk, May 11, 2002 0. Bogopolski
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Chapter 1
Introduction to finite group theory

1 Main definitions

A binary operation - on a set G assigns to any two elements @, b of G an element
of G denoted by a - b. A binary operation can be denoted not only by - but by any
other symbol, for example by 4. Usually one writes ab instead of a - b.

A set G with a binary operation is called a group if the following holds:

1) the operation is associative, i.e., (ab)c = a(bc) for all a, b, c in G;
2) in G thereis an element e —called the identity element —suchthatae = ea = a
for all a in G;

3) for each a in G there is in G an element b — called the inverse of a — such
that ab = ba = e.

The identity element can be denoted by 1 if the operation is denoted by -, and
it can be denoted by 0 if the operation is denoted by +.

1.1 Exercise. 1) The identity element of any group G is unique. Each element a
in G has a unique inverse (denoted by a™1).

2) For any element a in G, the mapping ¢, : G — G given by the rule ¢, (g) =
ag (g € G) is a bijection.

A group is called trivial if it only contains the identity element.

A group G is called abelian or commutative if ab = ba for any a, b in G. The
set Z of integers with the usual addition is an abelian group. Examples 1.3 show
that there exist nonabelian groups.

Two groups G and G; are called isomorphic (one writes G = Gy) if there
exists an isomorphism ¢ : G — G, i.e., a bijection ¢ from G onto G; such that
p(ab) = ¢p(a)p(b) foralla, b in G.

Thanks to the associative law for groups, the product aa, ... a, of n elements
of a group does not depend on the bracketing. The product of n elements all equal to
a is denoted by a”. We define a® = e and ™ = (a~!)™™ for negative integers m.

If a” = e for some n > 0, then the smallest n with this property is called the
order of the element a and is denoted by |a|. If a” # e for every n > 0, we say that
a has infinite order and write |a| = oco. The cardinality |G| of a group G is called
the order of G. If this cardinality is finite, then we say that the group is finite, and
in the contrary case infinite. A finite group G is called a p-group if |G| = p* fora
prime number p and an integer k > 1.

1.2 Exercise. 1) If a” = e, then |a| divides n.
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2) If a and b commute, that is ab = ba, and their orders are relatively prime,
then |ab| = |a| - |b].

A nonempty subset H of a group G is called a subgroup of G if for any a, b
from H the elements ab and a~! also lie in H. In that case we write H < G.
A subgroup H of a group G is itself a group under the restriction of the operation
of the group G. If H < G and H # G, then H is called a proper subgroup of G;
in symbols H < G.

Following the terminology of the textbooks [39], [55], we use the following
rule for composition of two mappings: (fg)(x) = f(g(x)). Thus we multiply
permutations from the right to the left.

1.3 Examples. 1) An isometry of the Euclidean plane is any mapping of the plane
onto itself, preserving the distances between any two points.

Let F be a figure in the Euclidean plane. The set of all isometries of the plane,
sending F' onto itself, is a group under the composition of isometries. This group
is called the symmetry group of F.

Let P, be aregular n-gon. The symmetry group of P, has exactly 2n elements:
n clockwise rotations through the angles 2’;—]‘ (k =0,1,...,n—1)about the center
of P, and n reflections across the lines, passing through its center and one of its
vertices, or through its center and the middle point of one of its sides. All rotations
in the symmetry group of P, form a subgroup, which is called the rotation group
of P,.

2) The set of all permutations of the set {1,2,...,n} is a group under the usual
multiplication of the permutations. This group is called the symmetric group of
degree n and is denoted by S,,. All even permutations in S, form a subgroup which
is denoted by A, and is called the alternating group of degree n. The order of the
group Sy is n! and the order of the group A4, is n!/2 forn = 2.

3) The set GL, (K) of all invertible matrices of size n x n over a field K is a
group under the usual matrix multiplication. It is called the general linear group
of degree n over the field K. Its subgroup SL,,(K) consisting of all matrices with
determinant 1 is called the special linear group of degree n over K. The group
SL, (K) contains a subgroup UT, (K) consisting of those matrices with all entries
below the main diagonal zero, and with the entries on the main diagonal equal to
the identity. This subgroup is called the unitriangular group of degree n over K.

It is known (see [39] or [55] for example) that a finite field is defined up to an
isomorphism by the number of its elements, and this number must be a power of
a prime number. Therefore if a field K contains exactly g elements, we will write
GL;,(g) instead of GL, (K), and similarly for the other matrix groups.

1.4 Exercise. The symmetry group of a regular triangle is isomorphic to the
group S3.
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For any nonempty subset M of a group G the set
{af' ...a |aieM, ¢ =+, m=1,2,...}

forms a subgroup of G. This subgroup is called the subgroup generated by the set
M and is denoted by (M ). Itis easily seen that (M) is the smallest subgroup of G
containing the set M.

For ease of notations we write {(a, b, ..., c) instead of ({a,b,...,c}) and we
say that this subgroup is generated by the elements a, b, . . ., c. Some other simpli-
fications of notations are also allowed. For example, if A and B are two subsets of a
group G and c¢ is an element of G, then we write (A4, B, c¢) instead of (AU BU{c}).

A group is called finitely generated if it can be generated by a finite number of
elements.

A group G is called cyclic if in G there exists an element @ with G = (a). In
this case G = {a" | n € Z}. Notice: it may happen that a” coincides with a™ for
some 1 # m. In that case G is finite. An example of an infinite cyclic group is the
group Z of all integers under the usual addition (as a one can take 1 or —1).

Letn = 1be anatural number. To eachinteger i there corresponds the remainder
on division of i by 1, i.e., an integer i suchthat0 <7/ <n—1landn | (i —i). Itis
easy to verify that the set Z,, = {0, 1,...,n — 1} with the operation &, defined by
therulei @ j =i + j,is acyclic group generated by Oifn = 1 and by 1 ifn > 1.

1.5 Exercise. The rotation group of a regular n-gon is isomorphic to the group Z,,.

1.6 Theorem. Any infinite cyclic group is isomorphic to the group Z, and any finite
cyclic group of order n is isomorphic to the group Z,.

Proof. Let (a) be an infinite cyclic group. Define a mapping ¢: Z — (a) by the
rule p(i) = a'. Clearly, (p(l + j) = ¢(@)e(j) and ¢ is onto. Moreover, ¢ is
injective: if we had a’ = a/ for some i < j, then a/~/ = e and the group (a)
would contain only the elements e, a, . .. ,a’ 771 which is impossible. Therefore
@ is an isomorphism.

If (a) is a cyclic group of order n, then the mapping ¢ : Z,, — (a), given by the
same rule ¢(i) = a’, is an isomorphism. |

An arbitrary infinite cyclic group will be denoted by Z and an arbitrary finite
cyclic group of order n will be denoted by Z,,.

1.7 Theorem. Any subgroup of a cyclic group is cyclic.

Proof. Let (a) be a cyclic group. Clearly, the trivial subgroup is cyclic. Let H
be a nontrivial subgroup of (a) and let m be the smallest positive integer such that
a™ € H. Clearly (™) < H. We will prove that (¢™) = H. An arbitrary element
of H has the form a*. Dividing k by m, we getk = mgq + r, 0 < r < m. Then
a’ = a*(@™)™ e H. By the minimality of m it follows that = 0. Hence
ak = (@™ € (a™). O
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1.8 Exercise. 1) The order of any subgroup of Z, is a divisor of n. Moreover, for
any divisor d of n there exists a unique subgroup of Z, of order d.

2) The number of solutions of the equation x¥ = 1 in the group Z,, is equal to
gcd(n, k), the greatest common divisor of # and k.

The center of a group G is the subset
Z(G)={zeG |zg=gzforal g e G}.

Clearly Z(G) is a subgroup of G and G is abelian if and only if Z(G) = G.

The commutator of two elements a and b is the element aba~'h~!. We denote
it by [a, b]. The commutator subgroup or derived subgroup of a group G is the
subgroup G’ = {([a,b] | a,b € G).

We say that an element a of a group G is conjugate to an element b by an element
gifa = ghg™!'. Similarly, we say that a subgroup A of a group G is conjugate to
a subgroup B by an element g if A = {ghg™! | b € B}. This set will be denoted
by gBg~!. Itis easy to verify that the orders of conjugate elements (subgroups)
are the same.

The conjugacy class of an element b of a group G is the set of all elements in G
which are conjugate to . The group G is divided into disjoint conjugacy classes,
one of them being {e}.

An automorphism of a group G is an isomorphism of G onto itself. The set of all
automorphisms of G with functional composition is a group, denoted by Aut(G).

1.9 Exercise. 1) Prove that Aut(Z) =~ Z,.

2) Find the center, the commutator subgroup and the conjugacy classes of the
permutation group S3.

3) Prove that S, = ((12), (13),..., (1n)).

4) Prove that the group Q of rational numbers under addition is not finitely
generated.

2 Lagrange’s theorem. Normal subgroups and factor groups

Let H be a subgroup of a group G. The sets gH = {gh | h € H}, where g € G,
are called left cosets of the subgroup H in the group G. Right cosets H g are defined
similarly. It is easy to verify that

g1H = g»H if and only if gflgz € H.

2.1 Example. The set of all left cosets of the subgroup {e, (12)} in the group S
consists of

le.(12)},  {(13).(123)}, {(23).(132)}.

The set of all right cosets of the subgroup {e, (12)} in the group S3 consists of

le.(12)},  {(13).(132)}, {(23).(123)}.
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The correspondence x H <> Hx ™! is one-to-one, and therefore the cardinality
of the set of left cosets of H coincides with the cardinality of the set of right cosets
of H. This cardinality is called the index of the subgroup H in the group G and is
denoted by |G : H|.

2.2 Theorem (Lagrange). If H is a subgroup of a finite group G, then
|G| =[H]-|G: H|.

Proof. Since g € gH , the group G is the union of the left cosets of H in G. Any two
different cosets have empty intersection: if g1 H N g, H # @, then g1h; = g2h»
for some iy,h, € H andso g1 H = gzhzhl_lH = g, H. It remains to notice that
these left cosets have the same cardinality: a bijection H — gH is given by the
rule h— gh,h € H. O

2.3 Corollary. 1) The order of an element of a finite group divides the order of this

group.
2) Any group of prime order p is isomorphic to the group Z .

Proof. 1f g is an element of a finite group G, then |g| = |(g)| and |(g)| divides |G]|.
In particular, if |G| = p is a prime number and g # e, then |(g)| = |G|, hence
G =(g)=Z,. O

The product of two subsets A and B of a group G is defined as AB = {ab |
ac€ A, be B}. Let H< G and g € G. Then the product {g}H coincides with
the left coset gH . Moreover, we have HH = H.

We say that a subgroup H of G is normal in G and write H < G if gH = Hg
forevery g € G. Let H < G. Then the product of any two cosets of H in G is
again a coset of H in G:

g1H -g2H = g1(Hga)H = g1(g2H)H = g182H.

The set of all cosets of H in G with this product forms a group. Its identity
element is the coset H, the inverse of the coset xH is the coset x "' H. This
group is called the quotient group or the factor group of the group G by the normal
subgroup H and is denoted by G/H. By Lagrange’s theorem, if G is finite then
|G| = |H|-|G/H].

2.4 Example. The subgroup K = {e, (12)(34), (13)(24), (14)(23)} of Sy is nor-
mal and

S.+/K = {K, (12)K, (13)K, (23)K, (123)K, (132)K} = S;.

2.5 Exercise. 1) Prove that Z(G) < G, G’ < G and G/G’ is an abelian group.
Q)IfHy < H<G,then|G: H|=1|G:H|-|H: Hy|
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3) If H is a subgroup of index 2 in a group G, then H < G.

4) The product of any two subsets Hy, H, of a group G need not be a subgroup,
even if both H; and H, are subgroups. If both H; and H, are subgroups and one
of them is normal in G, then Hy H; is a subgroup in G. If both subgroups H; and
H, are normal in G, then the subgroup H; H; is also normal in G.

5) If A, B are finite subgroups of a group G, then

_ l41-1B]
|ANB|

|AB|

3 Homomorphism theorems

A mapping ¢ from a group G to a group G is called a homomorphism, if p(ab) =
p(a)p(b) for every a,b € G. The kernel of the homomorphism ¢ is the set
kerop = {g € G | ¢(g) = e}. The image of the homomorphism ¢ is the set

img = {p(g) | & € G}.
3.1 Exercise. Let o: G — G be a homomorphism. Then the following assertions
are valid.

D ple) =e, (g™ = (p(g)) "' forg € G.

2) If g € G is an element of a finite order, then |¢(g)| divides |g|.

3) kero < G,im¢ < G;.

4) For any two nonempty subsets A, B of a group G holds!

¢(A) =¢p(B) < A-kerp = B -kerg.

3.2 Example. 1) Let K* be a multiplicative group of a field K, i.e., the group of
all its nonzero elements under multiplication. The mapping ¢: GL,(K) — K*,
assigning to a matrix its determinant, is a homomorphism with kernel SL,, (K).

2)Let H < G. The mapping ¢: G — G/H given by the rule ¢(g) = gH isa
homomorphism with kernel H .

Given a subgroup H of a group G, we denote by L (G, H ) the set of all subgroups
of G containing H. Inparticular L(G, {1}) is the set of all subgroups of the group G.
3.3 Theorem. Let ¢: G — Gy be a homomorphism onto a group Gi. Then

1) the mapping ¥ : L(G,ker ¢) — L(Gy,{1}), sending a subgroup from the
first set into its image under ¢ is a bijection;

2) this bijection preserves indexes:

if kerp < Hy < Ha, then |Hy : Hi| = |¢(H>) : 9(H1);

'We use the notation ¢ (A) = {p(a) | a € A}.
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3) this bijection preserves the normality:
if kerop < Hy < Hy, then Hy A Hy, < ¢(H1) < ¢(H3).

Proof. 1) The mapping ¥ is onto, since the full preimage of the subgroup of the
group G is a subgroup of G containing ker ¢. The mapping is one-to-one: this
follows from Exercise 3.1.4 and the fact that H - ker ¢ = H for any subgroup H
of the group G containing ker ¢.

2) The mapping from the set of the left cosets of H; in H to the set of the
left cosets of ¢(H1) in ¢(H3), given by the rule x H; — ¢(x)@(Hy), is onto. The
mapping is one-to-one since ¢ (x Hy) = ¢(yH;) implies x H; -ker ¢ = yH; -ker ¢,
thatis xH, = yH;.

3) We have H; - ker¢ = H; and x - kerg = ker¢ - x for x € G. Therefore
the condition xH; = Hjx is equivalent to xH; - ker¢ = Hjx - ker ¢, which is
equivalent to p(x)p(Hy) = ¢(H;)@(x) because of Exercise 3.1.4. O

3.4 Theorem. If ¢: G — G is a homomorphism, then G/ ker ¢ = im .

Hint. The isomorphism is given by the rule g ker ¢ — ¢(g), g € G.

3.5 Theorem. Let A < B < G, A < G, B <G. Then B/A 4 G/A and
(G/A)/(B/A) = G/B.

Hint. Apply Theorem 3.4 to the homomorphism ¢ : G/A — G/ B given by the rule
gA — gB.

3.6 Theorem. Let H A G, B < G. Then BH/H ~ B/BN H.

Hint. The homomorphism¢: BH — B/BN H givenby therule bh — b(BNH),
b € B, h € H, has the kernel H.

Finally we explain some terminology. A homomorphism ¢ : G — G is called
an epimorphism if its image is equal to G;. A homomorphism is called a monomor-
phism (or an embedding) if its kernel is trivial. The group G is embeddable into the
group G if there exists an embedding of G into G;. Obviously, an isomorphism
is an epimorphism and a monomorphism simultaneously.

4 Cayley’s theorem

For any set M we denote by S(M) the group of all bijections of M onto itself, i.e.,
permutations of M. If the cardinality m of M is finite, then we can identify the
group S(M) with the group S,.



8 Chapter 1. Introduction to finite group theory

4.1 Theorem (Cayley). Let H be a subgroup of a group G and let M be the set of
all left cosets of H in G. Define the mapping ¢ : G — S(M) by the rule: for any
g € G the permutation ¢(g) sends a coset x H to the coset gxH.

Then @ is a homomorphism (not necessarily onto) with kernel

kerop = () xHx™ L.

xeG

Proof. Clearly ¢(g182) = ¢(g1)9(g2) since g1g2(xH) = g1(g2xH) for any
x € G. Moreover,

gekerg < (xH =gxH forallxH) <= (g e xHx 'forallx). O

If H = {1}, the homomorphism ¢ from Cayley’s theorem is called the (left)
regular representation of the group G.

4.2 Corollary. 1) The regular representation of a group G is an embedding of the
group G into the group S(G). The image of any nontrivial element of G under this
embedding is a permutation, which sends each element of G to a different element
of G.

Any finite group G can be embedded into the group Sy, where m = |G|.

2) Any finite group G can be embedded into the group GL,,,(F), where F is any
field and m = |G|.

Proof. The first claim follows from Cayley’s theorem, the second from the first,
using the embedding of S,, into GL,,(F) given by the rule ¢ +— A;, where
(Ag)ij = lifo(j) =i and (Ag);; = O otherwise. |

4.3 Exercise. Any group of order 4 is isomorphic to the group Z4 or to the group
K ={e, (12)(34), (13)(24), (14)(23)}.

Solution. Let G be a group of order 4. We identify G with its image under the
regular representation into S4. Then any nontrivial element of the group G is either
a cycle of length 4, or the product of two disjoint transpositions (otherwise a fixed
element would appear). If G contains a cycle of length 4, then G = Z4 and
otherwise G = K.

4.4 Corollary (Poincaré). Every subgroup H of finite index m in a group G contains
a subgroup N which is normal in G and has finite index k such that m |k and k | (m!).

Proof. We set N = ker ¢, where ¢ is the homomorphism from Cayley’s theorem.
Let k = |G : N|. By Theorem 3.4, k = |im ¢|. Since im ¢ is a subgroup of the
group S;,, we obtain k | (m!). The claim that m | k follows fromkerp < H < G
with the help of Exercise 2.5.2. |
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5 Double cosets

Suppose that K and H are two subgroups of a group G. The subset KgH = {kgh |
k € K, h € H}, where g € G, is called a double coset of K and H in G. The set
of all such cosets will be denoted by K \ G/H.

5.1 Proposition. Let K and H be two subgroups of a group G. Then

1) for any g € G there exists a unique double coset of K and H in G contain-
ing g;
2) G is the disjoint union of double cosets of K and H in G;

3) every double coset KgH is the union of |K : KN\ gHg™'| different left cosets
of H inG.

Proof. 1)Obviously, g = ege € KgH . If g belongs to another double coset Kx H ,
then g = kxh forsome k € K, h € H,hence KgH = K(kxh)H = KxH.

Claim 2) follows from claim 1).

3) Fix an element g € G. The double coset KgH is the union of the left cosets
kgH , when k runs through K. Let A be the set of all such left cosets and let B be
the set of all left cosets of K N gHg™! in K. We need to show that the cardinality
of A is equal to the cardinality of B.

Define a mapping ¢: A — B by the rule kgH +— k(K N gHg™!), where
k € K. This mapping is well defined and is one-to-one, since for all k;,k; € K
there holds

klgH = kng — g_lkl_lkzg e H
— ki'koe KNngHg™"
— ki (KNgHg™ ) =k,(KNgHg™).

Obviously the mapping ¢ is onto. Hence ¢ is a bijection. O

5.2 Theorem. Let K and H be two subgroups of a group G. Let X be a complete
set of representatives of double cosets of K and H in G (with one representative
from each double coset). Then

IG:H|=) |K:KnxHx|. (1)
xeX

Proof. The group G is the disjoint union of the double cosets KxH, x € X. Each
of these cosets is the disjoint union of |K : K N xH x~!| left cosets of H in G.
O
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6 Actions of groups on sets

We say that a group G acts (on the left) on a set X if foreach g € G and x € X
an element gx € X is defined, such that g,(g;x) = (g2g1)x and ex = x for all
x € X, g1,82 € G. The set

Gx ={gx|ge€G}

is called the orbit of the element x. Obviously, the orbits of two elements of X
either coincide or have empty intersection. Therefore the set X is a disjoint union
of orbits. If there is only one orbit — the set X itself — we say that G acts transitively
on X. In other words, a group G acts transitively on a set X if for any two elements
x, x" of X, there exists an element g of G such that gx = x'.

The stabilizer of an element x of X is the subgroup

Stg(x) ={g € G | gx = x}.
The fixed points set of an element g of G is the set
Fix(g) ={x € X | gx = x}.
6.1 Exercise. Stabilizers of elements from the same orbit are conjugate.

6.2 Proposition. The cardinality’ of the orbit Gx is equal to the index of the
stabilizer St (x) in the group G.

Proof. The mapping from Gx into the set of left cosets of Stg (x) in G, given by
the rule gx — g Stg(x), is a bijection. |

6.3 Examples. 1) Let H be a subgroup of a group G. Then G acts on the set of
the left cosets of H in G by the following rule: a coset x H goes under the action
of an element g € G to the coset gx H. This action is transitive. In fact it appears
in Cayley’s theorem.

2) Let K be a fixed cube in three-dimensional Euclidean space, and let G be
the isometry group of this space, which preserves orientation and maps K onto K.
The group G contains the identity isometry, the rotations through 120° and 240°
about 4 axes passing through the opposite vertices of the cube, the rotations through
180° about 6 axes passing through the middle points of the opposite edges, and the
rotations through 90°, 180° and 270° about 3 axes passing through the centers of
the opposite faces. Thus we have found 24 elements in the group G. We will show
that there are no other elements in G. The group G acts transitively on the set K°
of vertices of K, since every two vertices of K can be “connected by a chain of
neighboring vertices”, and every two neighboring vertices can be carried to each

2In the case of finite groups we use another terminology — the length of the orbit.
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other by an appropriate rotation from G. The stabilizer of a vertex x must fix the
opposite vertex x’ too. Therefore it consists of the identity isometry and the rotations
about the axes xx’ through 120° and 240°. Hence |G| = |K°|-|Stg(x)| = 8-3 =
24; therefore the group G consists only of the listed rotations.

The group G is called the rotation group of the cube. We will prove that G == Sy.
Each rotation from G permutes the four longest diagonals of the cube. This gives a
homomorphism ¢ : G — S4. The kernel of this homomorphism is {e}, since only
the identity isometry preserves each of these diagonals. Therefore G is isomorphic
to a subgroup of the group S4. Comparing the orders of these groups, we obtain
that G = S4.

6.4 Theorem (Burnside). Let a group G act on a set X. Then the cardinality of the
set of orbits of this action is equal to

1
i > [Fix(g)].

geG

Proof. Counting the cardinality of the set {(g, x) | gx = x} in two different ways,

we see that G|
> IFix(@l = Y Istetl = Y o

geG xeX xeX

Since the elements from the same orbit make the same contribution to the last sum,
this sum is equal to the cardinality of the set of orbits multiplied by |G]|. |

6.5 Exercise. A cube is called colored if each of its faces is colored by one of three
given colors. Two colorings are considered to be the same if there is a rotation of the
cube carrying one coloring to the other. Prove that there exist exactly 57 different
colorings of the cube.

We say that a group G acts k-transitively on a set X if for any two ordered tuples
(x1,...,xg) and (x7, ..., x;) of elements of X, where x; # x; and x; # x; for
i # j,there exists an element g of G such that gx; = x/,i = 1,...,k. We say
that G acts faithfully on X if for every nontrivial g € G there exists an x € X such
that gx # x.

6.6 Example. The group S, consisting of all permutations of the set {1,2,...,n}
acts on it n-transitively, and the subgroup A, consisting of all even permutations
acts on it (n — 2)-transitively for n = 3. The first statement is evident. The second
follows from the fact that if a permutation s carries the symbols iy, . .., i,—> to the
symbols ji,..., ju—2, then the permutation s - (i,—1i,) does too. One of these
permutations is even.

During the 1980s the following conjecture of C. Jordan was proven: if a group
acts faithfully on a set of n elements and the action is k-transitive for some k > 5,
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then this group is isomorphic to S, or A,. By investigating 4- and 5-transitive
groups, E. Mathieu discovered the first five simple groups (see Section 10). We
will construct one of them geometrically, the group M, in Section 16.

The following two propositions will be used in Sections 15, 16 and 20.

6.7 Proposition. If a group G acts on a set X faithfully and 2-transitively, then
every nontrivial normal subgroup N acts on X transitively.

Proof. Assume that N acts on X intransitively. Then X is the union of at least two
disjoint N -orbits, Nx, NXx3, .... Since G acts on X faithfully, one of these orbits
contains at least two elements. Assume that nx; # x; for some n € N. Since G
acts 2-transitively on X, there exists an element g € G such that gx; = x, and
g(nxy) = x;1. Then Nx, > gng 'x, = gnx; = x; € Nxi, a contradiction.

O

If a group G acts on a set X, then every subgroup N also acts on X. The sets
Nx ={nx|n e N}, x € X, are called N-orbits. If N < G, then we can define
an action of the group G on the set of all N-orbits by therule gNx = Ngx,x € X,
geaG.

6.8 Proposition. If a group G acts transitively on a set X and if N < G, then G
acts transitively on the set of all N -orbits and the cardinalities of the N -orbits are
the same.

Proof. Let Nx and Nx’ be two N -orbits. Because of the transitivity there exists an
element g € G such that gx = x’. Then gNx = Nx’. The mapping Nx — Nx’
given by nx — gng~'x’,n € N, is a bijection. (]

7 Normalizers and centralizers. The centers of finite p-groups

Let H be a subgroup of a group G. The normalizer of the subgroup H in the group
G is the set
Ng(H)={geG|gHg ' = H}.

Let a be an element of G. The centralizer of the element a € G in G is the set

Cola) ={g € G| gag™" =a}.

It is readily checked that the sets Ng (H ) and Cg (@) are subgroups of G. Moreover,
H < Ng(H) and (a) < Z(Cg(a)).

7.1 Theorem. 1) If H is a subgroup of a group G, then the cardinality of the set of
subgroups of G which are conjugate to H is equal to |G : Ng(H)].

2) If a is an element of a group G, then the cardinality of the set of elements of
G which are conjugate to a is equal to |G : Cg(a)|.
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Proof. 1) The group G acts on the set M = {xHx~' | x € G} by conjugation:
an element g € G sends a subgroup xH x~! to the subgroup gxHx " 'g~!. Tt
is easy to show that this action is transitive and that Stg(H) = Ng(H). Then
|[M| = |G : Ng(H)| by Proposition 6.2.

2) The group G acts on itself by conjugation: an element g € G sends an
element x to the element gxg~!. Obviously the orbits of this action are conjugacy
classes. The cardinality of the orbit of the element a is equal to |G : Stg(a)| =
|G : Cq (a)| O

7.2 Theorem. The center of a finite p-group is nontrivial.

Proof. Let G be a finite p-group. The group G is the disjoint union of its conjugacy
classes, one of which is {e}. By Theorem 7.1 the cardinality of any conjugacy
class in G is a power of p; one of these cardinalities is 1. Since the sum of
these cardinalities is a power of p, there exist at least p conjugacy classes in G of
cardinality 1. The union of all one-element conjugacy classes coincides with Z(G).

O

8 Sylow’s theorem

Let G be a group of order pXm where p is a prime number and k > 1, and let
ged(p,m) = 1. A subgroup H of the group G is called a Sylow p-subgroup if
|H| = p*.

8.1 Proposition. Let g be a power of a prime number p. Then UT,(q) is a Sylow
p-subgroup of the group GL,(q).

Proof. Firstwe compute the number of matrixes in GL,, (¢). The firstrow of a matrix
from GL,(g) can be any but the zero vector. Thus there are (¢” — 1) possibilities
for the first row. Once the first i linearly independent rows are chosen, then as the
(i + 1)-th row we may take any n-vector linearly independent of the first i rows;
there are thus ¢ — ¢ possibilities for it. Therefore

nn—1)

n—1
GLy(@)| = [[(¢"—d)=q 7 m, )
i=0

nn—1)
2

where gcd(p, m) = 1. It remains to note that [UT,(¢)| = ¢ O
8.2 Lemma. Let H be a Sylow p-subgroup of a finite group G| and let K be a
subgroup of the group G such that p is a divisor of |K|. Then there exists an
element x € Gy such that K N xHx~" is a Sylow p-subgroup of the group K.



14 Chapter 1. Introduction to finite group theory

Proof. Consider the formula (1) with G, instead of G. Since p does not divide
|Gy : H|, p does not divide at least one summand |K : K N xH x~!| in the right
side of this formula. Moreover, K N xH x ™! is a p-group, being a subgroup of the
p-group xH x~!. Hence K N xH x~!isa Sylow p-subgroup of the group K. [

8.3 Theorem (Sylow). Let G be a group of order p*m, where p is a prime number
k =1, and gcd(p, m) = 1. Then
1) there exists a Sylow p-subgroup in G;
2) every p-subgroup of the group G is contained in some Sylow p-subgroup
of G;
3) any two Sylow p-subgroups of G are conjugate;
4) the number of Sylow p-subgroups of G divides m and is congruent to 1
modulo p.

Proof. By Corollary 4.2 we may assume that G is a subgroup of the group GL, (p)
where n = |G|. The first three claims follow from Lemma 8.2: the first with
G, = GL,(p), H = UT,(p) and K = G; the second (third) with G; = G and
K equal to a p-subgroup (respectively Sylow p-subgroup) of the group G.

Now we will prove the fourth claim. Let H be some Sylow p-subgroup of the
group G. By 3) the number of Sylow p-subgroups of G is equal to the cardinality
of the set M = {gHg ! | g € G}. By Theorem 7.1 this cardinality is equal to
|G : Ng(H)| and hence it divides m. Consider the action of H on M by conjuga-
tion: an element & € H carries a subgroup gH g ™! to the subgroup hg Hg 'h™1.
By Proposition 6.2 the length of every orbit of this action is a power of p. Now we
will show that { H } is the unique orbit of length 1. Indeed, if {gH g~!} were another
orbit of length 1, then H - gHg~! would be a group (prove it!) of order p’ for
[ > k by Exercise 2.5.5, which is a contradiction. Now the claim follows from the
fact that the cardinality of M is equal to the sum of the lengths of all the orbits. [

8.4 Example. The group S; contains three Sylow 2-subgroups: {e, (12)}, {e, (13)}
and {e, (23)}. Their full preimages under the homomorphism ¢ : S4 — S3 implicit
in Example 2.4 are

KU(12)K, KU(3)K, KU (23)K,

and these are Sylow 2-subgroups in S4. By Sylow’s theorem the number of Sylow
2-subgroups in S4 cannot be larger than 3.

Consider S4 as the rotation group of a cube (see Example 6.3.2). These rotations
permute three square cross sections of this cube passing through its center. This
gives a homomorphism S4 — S3 with kernel consisting of the identity isometry
and three rotations through 180° about the axes passing through the centers of
opposite faces. Geometrically, each Sylow 2-subgroup of the group S4 consists of
all rotations of the cube which fix one of these cross sections as a whole. Thus each
Sylow 2-subgroup of Sy4 is isomorphic to the symmetry group of a square.



9. Direct products of groups 15

8.5 Exercise. If p is a prime divisor of |G|, then G contains an element of order p.
8.6 Theorem. The multiplicative group of any finite field is cyclic.

Proof. Let K* be a multiplicative group of a finite field K and let P be a Sylow
p-subgroup of K* with |P| = p¥. By Corollary 2.3 the orders of elements of P
are divisors of pX. Suppose that P does not contain an element of order p¥. Then
for all g € P the equation gl’k_1 = 1 holds. However, the equation P =
has at most p*~! roots in the field K, a contradiction. Thus P contains an element
of order pk.

Let |[K*| = plf‘ pfs be the prime factorization. As we have shown, K*

contains s elements of orders plfl, ey pfs respectively. By Exercise 1.2.2, the
product of these elements has the order | K™*| and hence generates the group K*.
O

9 Direct products of groups

Let Gy, ..., G, be groups. It is easy to verify that the set G = G; X -+ X Gy, of
sequences (g1, ..., &n), Where g; € G;, with the multiplication

(g17"'7gn) : (g/177g;1) = (glg/b?gng;l)?

is a group. This group is called the direct product of the groups Gy, ..., Gy,. The
identity element of this group is the sequence (e, ..., e,), where e; is the identity
element of the group G;.

WesetU; = {(e1,...,€i-1,8.€i+1,---,€n) | & € Gi}. Then U; is a subgroup
of G isomorphic to G; and the following formulas hold:

G = (U U), 3)
=1
U; <G, 4)
U:n (U U;) = {1} foralli. )
J#i

9.1 Theorem. Let G be a group and let Uy, ..., U, be subgroups such that the
conditions (3)—(5) are satisfied. Then G = Uy x --- x U,.

Proof. Leta € U;, b € U;, i # j. Using conditions (4) and (5) we get
a(ba='b71) = (aba"1)b~! € U;NU; = {1}, and hence ab = ba. Using this and
condition (3) we can write any element g € G as ¢ = uy ...u,, where u; € U;.
Such a representation of g is unique. Indeed, if g =} ...u},, where u; € U;, then
using the proven commutativity, we get (u})"'u; = uz b .. u; u),. In view
of (5), this implies that u} = u;. Similarly we get u; = u] foralli =2,...,n.
Now we define a map ¢: G — Uy x --- x U, by the rule: ¢(g) = (u1,...,un),

where g = uy...u,, u; € U;. Itis easy to verify that ¢ is an isomorphism. |
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If the conditions of this theorem are satisfied, we say that the group G is the
direct product of its subgroups Uy, ..., Uy,.

9.2 Exercise. Any group of order 6 is isomorphic to the group Z or to the group 5.

Solution. Let G be a group of order 6, let H be its Sylow 2-subgroup, and let F
be its Sylow 3-subgroup. Obviously, F < G. If H < G,then G = H x F =
ZyxZ3 = Zs. If H £ G, then (g xHx~! = {1}, and by Cayley’s theorem
G =~ S8;.

9.3 Exercise. If n and m are two coprime natural numbers, then Z,,,, = Z, X Z,.

A finite cyclic group is called primary cyclic if its order is a power of a prime
number. By Exercise 9.3 every finite cyclic group is a direct product of primary
cyclic groups. The following theorem generalizes this claim.

9.4 Theorem. Every finitely generated abelian group is a direct product of a finite
number of infinite cyclic and primary cyclic groups. The number of these infinite
cyclic groups and the set of orders of these primary cyclic groups are invariants of
the abelian group.

The proof of this theorem, together with information on nilpotent and solvable
groups can be found, for example, in the books [38] and [54]. We do not touch on
these important themes, since our aim is to become acquainted with some nontrivial
examples of finite simple groups.

10 Finite simple groups

A group G is called simple if it is nontrivial and has no proper nontrivial normal
subgroups. Clearly any cyclic group of prime order is simple. Later we will give
more complicated examples of finite simple groups.

The finite simple groups are important, since in a certain sense they are the
elementary building blocks for finite groups, just as the prime numbers are the
elementary building blocks for the natural numbers.

Indeed, for any natural number n there exists a chain of numbers

l=no<ny <---<np=n,

such that n; | n;4+1 and the quotients n; 1 /n; are prime numbers.
Similarly, for any finite group G there exists a chain of subgroups

{l}=G0<G1<~"<Gk=G,

such that G; < G, and the quotients G; 41/ G; are simple groups. For a nontrivial
group G we can construct such a chain by repeated insertions of terms in the



10. Finite simple groups 17

chain {1} < G. The insertion operation proceeds as follows: if we have a chain
{1} = Hy < Hy <--- < Hy = G where H;;1/H; is not a simple group, we take
in H;41/H; a proper nontrivial normal subgroup H/H; and replace the segment
H; < H;4, by the segment H; < H < H;4+;. We continue to insert new terms as
long as possible.

The analogy between natural numbers and finite groups is not complete, since
in general a finite group G cannot be reconstructed uniquely from the quotients
Gi+1/G;i. An easy example of this phenomenon is the following two chains:

{1} < Zy < Zy and {e} <{e, (12)(34)} < K,

where K is the Klein group from Example 2.4.

Thus for understanding the structure of finite groups, we need to study not only
simple groups but the ways of building groups from smaller ones. The following
theorem is useful in inductive proofs.

10.1 Theorem. Let H be a minimal nontrivial normal subgroup of a finite group G.
Then H = Uy x --- x Uy, where the U; are isomorphic simple groups.

Proof. We will proceed by induction on the order of G. If the group G is simple,
the claim is trivial. Let G be a non-simple group. Then |H | < |G|. Let V' be some
minimal nontrivial normal subgroup of the group H. By the inductive hypothesis,
V is a direct product of isomorphic simple groups. It is enough to prove that H
is a direct product of groups isomorphic to V. We will show this with the help of
Theorem 9.1.

Forany g € G we have gVg~! < gHg™! = H. The group generated by all
subgroups gVg~! is normal in G and lies in H . Therefore it coincides with H. Let
X be a minimal subset of G such that H = (xVx~! | x € X). Forany xo € X
the intersection xoVxy! N (xVx~! | x € X \ {xo}) is normal in H and strictly
smaller than xo Vx, ! (because of the minimality of X). Since x Vxy 1 is a minimal
nontrivial normal subgroup of H, this intersection is trivial. Hence H is a direct
product of groups xVx~! for x € X. |

1

10.2. In the 1980s some well-known specialists in finite group theory declared that
the following claim is valid.

Every finite simple group is isomorphic to a cyclic group of prime order,
an alternating group A,, for n = 5, a finite group of Lie type, or one of
the 26 sporadic simple groups (see the table on p. 43).

For groups of Lie type see the book [19]; for sporadic groups the book [3]; a
description of these groups is in [25]. The proof of this claim has not been published
yet (2007), although it is now generally accepted as being true. The history of this
problem is elucidated in the book [33] (see also [62], [56]).
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We prove that the group A, is simple for n = 5, give examples of simple groups
of the last two types, and touch on the problem of reconstruction of a group G from
its normal subgroup H and factor group G/H.

11 The simplicity of the alternating group A, forn > 5

11.1 Lemma. 1) For n = 3 the group A, is generated by all its 3-cycles.
2) Forn = 5the group A,, is generated by all the permutations® of type (ij ) (k1).

Proof. The group A, consists of those permutations in S, which can be decomposed
in a product of an even number of transpositions (they may have a common symbol).
It remains to note that (ij)(ik) = (ikj) = (ij)(ab) - (ab)(ik) and (ij)(kl) =
(ijk)(jkI). O

11.2 Exercise. Let o and B be arbitrary permutations in S;,,. The decomposition
of the permutation B! into disjoint cycles can be obtained from the analogous
decomposition of 8 by replacing there each symbol i by the symbol «(i).

In particular, the number of disjoint cycles of each length in the decompositions
of B and afa ! is the same.

11.3 Theorem. Letn = 5. Then

1) A, is the unique proper nontrivial normal subgroup of the group Sy;
2) Ay is a simple group.

Proof. 1) Let N be a proper nontrivial normal subgroup of the group S, and let o
be some nontrivial permutation in N. Then there exists an i such that o (i) # i.
We choose j # i,0(i). Then for t = (ij) the permutation p = oro~'r7! is
nontrivial and belongs to N. Moreover, p is a product of the transpositions o 7o ™!
and 7, therefore it is either a 3-cycle or a permutation of the form (ab)(cd) (see the
proof of Lemma 11.1). Since N is normal, it contains (by Exercise 11.2) either all
3-cycles or all permutations of the type (ab)(cd). Hence N = A, by Lemma 11.1.

2) By Theorem 10.1, A, = Uy X --- x Uy where all U; are isomorphic to the
same simple group U. Then n!/2 = |U|¥ and from a theorem of Chebychev* it
follows that k = 1.

However, we can complete the proof without the Chebychev theorem. Since
n = 5 the order |U | is even, and by Exercise 8.5 the group U; contains an element
p of order 2. Such a p can always be decomposed into the product of disjoint
transpositions, p = 7172 ... . Then p = 71p7; ! and hence p € Uy N 1 Uy ty!
Since the groups Uy and 71Uyt Lare simple and normal in 4, = 11 A4,7] 1 and

3Further different letters in a permutation denote different numbers.
“For any integer m > 1, there exists at least one prime number p such that m < p < 2m. An
elementary proof of this theorem is contained in [58], for example.



12. As as the rotation group of an icosahedron 19

since their intersection is nontrivial, we have Uy = tUyty 1 Then U is normal
in the group (A,,71) = S,. From claim 1) it follows that U; = A4,,. O

The simplicity of A5 was known to Galois and is crucial in showing that the
general equation of degree 5 is not solvable by radicals.

12 Aj as the rotation group of an icosahedron

Let I be a fixed regular icosahedron in the 3-dimensional Euclidean space (Figure 1)
and let G be the isometry group of this space, preserving orientation and mapping
I to I. The group G contains the identity isometry, the rotations through k - 72°
(k = 1,2, 3, 4) about 6 axes passing through the opposite vertices of 7, the rotations
through 180° about 15 axes passing through the middle points of the opposite edges,
and the rotations through 120° and 240° about 10 axes passing through the centers
of the opposite faces. Thus we have found 60 elements in the group G. We will
show that there are no other elements in G. The group G acts transitively on the
set 19 of vertices of I, since every two vertices of I can be connected by a chain
of neighboring vertices, and every two neighboring vertices can be carried to each
other by an appropriate rotation from G. The stabilizer of the vertex N must fix
the opposite vertex S too. Therefore it consists of the 5 rotations about the axes
NS including the identity isometry. Hence |G| = [1°]-|Stg(N)| = 12-5 = 60.
Therefore the group G consists only of the listed rotations.
The group G is called the rotation group of the icosahedron.

Figure 1

Now we prove that G = As. Let us divide the 30 edges of the icosahedron
into 5 groups, each consisting of six elements, in the following way. Each group
consists of the edges which are either parallel or perpendicular to each other. For
example, {NA, SA;, CD, C1 D1, BE:, B1 E} is one of these groups. The other
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are completely determined by their initial edges NB, NC, ND and NE and we will
not display them. We enumerate these groups of edges by numbers 1 to 5 according
to the given order.

Rotations in G permute these groups as sets, since they carry edges to edges
and preserve the relations of parallelism and perpendicularity. This gives a homo-
morphism ¢: G — Ss. To the rotation about the axis NS through 72° in an
appropriate direction corresponds the permutation (12345). To the rotation about
the axis passing through the centers of faces (BE1D1) and (B ED), through 120°
in an appropriate direction, corresponds the permutation (123). Therefore im ¢
contains the subgroup H = ((12345), (123)). Let us prove that H = As. Obvi-
ously H < As and |H| is divisible by 15 since H contains elements of orders 3
and 5. By Corollary 4.4, H contains a subgroup H; which is normal in 45 and
has index at most 4!. Since A5 is a simple group, this implies that H; = H = As.
Since G/ kerp =~ im¢ = H = As and |G| = | A5, it follows that G = As.

13 Aj as the first noncyclic simple group

13.1 Exercise. If G is a noncyclic group of order less than 60, then G is not simple.

Solution. Assume that G has a unique Sylow p-subgroup for some p. Then this
p-subgroup is normal by Theorem 8.3.3 and contains a nontrivial center by Theo-
rem 7.2. This center is also normal in G. If it is smaller than G, then G is not
simple. If it coincides with G, then G is an abelian group and so is either cyclic or
non-simple.

Therefore we may exclude the groups G which have a unique Sylow p-subgroup
for some p. With the help of Sylow’s theorem and Corollary 4.4 we may also exclude
the groups of orders 12, 24, 36 and 48. The only remaining groups have orders 30
and 56.

Consider the case |G| = 56. Assume that G has not one, but eight Sylow
7-subgroups. Since their pairwise intersections are trivial, the total number of their
elements is 1 + 8(7 — 1) = 49. The remaining seven elements together with the
trivial element form the unique Sylow 2-subgroup.

The case |G| = 30 can be considered similarly, but we will present another
proof. We identify the group G with the image of its regular representation in S3.
Consider the homomorphism from G to the group {£1} mapping all even permuta-
tions to 1 and odd to —1. This homomorphism is onto, since any element of order 2
in G is the product of 15 disjoint transpositions (by Corollary 4.2.1) and hence is
odd. Therefore the kernel of this homomorphism has index 2 in G and G is not
simple.

13.2 Theorem. If G is a simple group of order 60, then G = As.
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First proof of Theorem 13.2. By Sylow’s theorem, G has exactly six Sylow 5-sub-
groups. We denote themby H;,i = 1,...,6. Theindex of Ng(H;)in G is equal to
the number of subgroups conjugate to H;, i.e., is equal to 6. Hence |Ng (H;)| = 10.
Let H; = (a) and let (b) be some Sylow 3-subgroup in G. The order of the group
(a, b) is divisible by 15, hence this group coincides with G (otherwise G would
have a proper normal subgroup by Corollary 4.4).

Consider the action of the group G by conjugation on the set of its Sylow
5-subgroups. The element b stabilizes none of the H; since Ng (H;) has no elements
of order 3. Hence b cyclically permutes three Sylow 5-subgroups and cyclically
permutes the remaining three. Thus the action of b can be displayed by a permutation
b = (123)(* = x). The element a stabilizes H; and (prove it!) cyclically permutes
the remaining five subgroups. In particular, a stabilizes 1 and some power of a
moves 2 to 3. Therefore, replacing the generator a by its appropriate power, we
may assume that a = (23ijk). Redenoting, we may additionally assume that
i =4,j =5,k = 6. For the second cycle of b there are only two possibilities:
(% % %) = (456) and (x * %) = (465). The first one implies a—1b = (163). In
particular, the element !5 normalizes the subgroup H,. But Ng (H>) has order
10 and so does not contain elements of order 3. So the second case takes place.

This action gives a homomorphism G — S¢ defined on generators by the
rule: a — (23456), b — (123)(465). Since G is not simple, the kernel of this
homomorphism is trivial, and hence G == ((23456), (123)(465)). In particular, G
is unique up to an isomorphism. On the other hand, |A5s| = 60 and A5 is simple.
Hence G = As. O

13.3 Exercise. Enumerate the longest diameters of a regular icosahedron by num-
bers from 1 to 6 and find the rotations a and b, permuting these diameters as in the
proof of the theorem. Deduce that ((23456), (123)(465)) = As.

Second proof of Theorem 13.2. By Corollary 4.4, G has no proper subgroup of
index less than 5.

Suppose that G has a subgroup H of index 5. The group G acts by left mul-
tiplication on the set of left cosets of H in G. Since G is a simple group, the
kernel of this action is trivial. Therefore G embeds in S5 and we may assume that
|S5: G| =2. Then G < S5 and G =~ A5 by Theorem 11.3.

Now suppose that G has no subgroup of index 5. Let n, denote the number
of Sylow p-subgroups of G. If n, < 4, then by considering the action of G, by
conjugation, on the set of its Sylow p-subgroups, we see that G embeds in Sy,
which is impossible. Therefore n, > 5. By Sylow’s theorem, we deduce that
n, = 15and ns = 6.

Let P, Q be two Sylow 2-subgroups of G. Assume that P N Q is nontrivial.
We have P N Q < (P, Q) since P and Q are abelian. Therefore (P, Q) is a proper
subgroup of G. Moreover, the order of (P, Q) is divisible by 4 and is larger than 4.
Hence |G : (P, Q)| < 5, which is impossible.
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Thus any two Sylow 2-subgroups of G intersect trivially. Therefore the total
number of elements in Sylow 2-and 5-subgroupsis 1 +15-3 +6-4 = 70, a
contradiction.

14 As as a projective special linear group

Let K be a field. A projective special linear group of degree n over K, denoted
PSL,, (K), is the quotient group of SL,,(K) by its center. Similarly one defines the
group PGL,, (K). Recall that if the cardinality g of K is finite, then we write SL, (¢)
instead of SL, (K), and similarly for the other matrix groups.

It is easy to prove that the center of the group SL,(q) consists of all scalar
matrices with determinant 1. Thus the order d of this center is equal to the number
of elements a from the multiplicative group of the field such that a” = 1. By The-
orem 8.6 the multiplicative group of a finite field is cyclic. Thus, by Exercise 1.8.2,
we have d = gcd(q — 1, n). Formula (2) and Example 3.2.1 imply the formula

1 n—1 .
| PSL,(q)| = FICE) [ 1@ —a).
i=0

14.1 Theorem. PSL,(5) =~ PSL,(4) =~ As.

Proof. 1) Let V be the vector space consisting of all columns of size 2 over [5, the
field of residues modulo 5. Each nonzero vector of V' is a scalar multiple of one of

e OG0 0 0 0

and no two of these vectors are scalar multiples of each other. Therefore V' contains
exactly six one-dimensional subspaces (lines). The group SL,(5) acts on the set of
these lines by the following rule: a matrix A € SL;(5) carries a line {kv | k € [Fs},
where 0 # v € V, to the line {kAv | k € Fs}. Only the scalar matrices stabilize
each line. Therefore the group PSL,(5) acts on the set of these lines faithfully.
Consider the elements A and B of the group PSL;(5) which are the images of the
matrices A = (19) and B = (1 =}). It is easy to verify that for an appropriate
numeration of lines the element A acts on them as the permutation (23456), and
the element B as the permutation (123)(465). This gives rise to a homomorphism
from the subgroup (A, B) of PSL,(5) onto the group ((23456), (123)(465)) = As
(see the proof of Theorem 13.2 or Exercise 13.3). Since |PSL»(5)| = 60 = |A45],
this homomorphism is an isomorphism and (A4, B) = PSL,(5) = As.

2) Let V be a vector space consisting of all columns of size 2 over the field
F4 = {0,1,x,y}.5 Each nonzero vector of V is a scalar multiple of one of the

SProve that in [4 the following identities hold: 1 +1 =x+x =y +y =0, x+1 = y,
X-x=y,yy=x,xy=1
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(B G ) () 6)

and no two of these vectors are scalar multiples of each other. Therefore V' contains
exactly five one-dimensional subspaces (lines). As above the group PSL,(4) acts
faithfully on the set of these lines. Consider the elements A and B of the group
PSL,(4) which are the images of the matrices A = (7 ) and B = (1}). Itis
easy to verify that for an appropriate numeration of lines the element A acts on
them as the permutation (12345), and the element B as the permutation (123). In
Section 12 we showed that ((12345), (123)) = As. This enables us to complete
the proof as in part 1). |

following:

14.2 Exercise. PSL,(2) = S3, PSL,(3) = A4.

15 A theorem of Jordan and Dickson

15.1 A simplicity criterion. Let a group G act faithfully and 2-transitively on the
set X. Suppose that the following conditions hold:

1) G coincides with its commutator G';

2) in the stabilizer St(x) of an element x € X there is a subgroup A such that
a) A is abelian,
b) A < St(x),
©) G=(gAg™' | g €G)
Then G is simple.

Proof. Let N be a nontrivial normal subgroup of the group G. By Proposition 6.7,
N acts transitively on X and hence G = N St(x). We will prove that G = NA. By
condition c), every element g from G can be written as g = g1a; gl_1 ... gkay g,:l,
where a; € A, g; € G. Write each g; as g; = n;s;, where n; € N, s; € St(x).
Then the image of the element g in G/ N coincides with the image of the element
a = sja1s7" ... sgags;'. By condition b) we have a € A and so g € Na C NA.
Finally, G = G’ = (NA)’ < N since modulo N the commutator [n1a1,n2ds],
where n; € N, a; € A, is equal to the commutator [a;, az], i.e., equal to 1 because
of the commutativity of A. (|

15.2 Theorem (Jordan—Dickson). Let K be a field, n = 2. The group PSL,(K) is
simple with the exception of PSL;(2) and PSL,(3).

Proof. Let V be the vector space consisting of all columns of size n over the field K.
Let eq, ..., e, be the standard basis of V. Let X be the set of all one-dimensional
subspaces of V' (lines). For any nonzero vector v € V denote by v the line in X
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containing v. For any matrix M € SL,(K) denote by M the image of M in the
group G = PSL,(K). We define the action of the group G on the set X by the
rule M © = Mv and prove that this action satisfies the conditions of the simplicity
criterion.

First we will prove that G acts faithfully on X. Suppose not, then there ex-
ists M € G such that M stabilizes each line from X. Then Me; = Aje; and
M(ey +---+e,) = Aleg + -+- + e,) for some A; and A in K. By linearity we
deduce that A; = --- = A, = A. Therefore M is a scalar matrix and M = 1. Thus
the action of G on X is faithful. This action is 2-transitive, since the lines ¢; and
e, can be carried to any two different lines v; and v, by the element M, where M
is a matrix from SL, (K) with the first and the second columns multiples of v; and
v, respectively.

Now we prove that (PSL, (K)) = PSL,(K). In general, from N < H and
H = H’ it follows that (H/N) = H/N. Therefore it is sufficient to prove
that (SL,(K)) = SL,(K). For n = 3 this follows from the claims 1) and 2) of
Exercise 15.3, and for n = 2 from the claims 1) and 3), and the fact that for | K| > 3
the group SL,(K) contains a non-scalar diagonal matrix.

Let x be the line containing the vector e,. Its stabilizer St(x) in the group G
consists of all B such that the column Be,, is a multiple of the column e, that is,

St(x) = {B | Bin = -+ = Bp—1,n = 0}. Let A be the subgroup of the group St(x)
consisting of all B such that B differs from the identity matrix only by elements in
the positions (n, 1),..., (n,n — 1). It is easy to verify that A is an abelian group

and A < St(x). The equation PSL, (K) = (gAg~! | g € PSL,(K)) follows from
the fact that A contains the images of the transvections of the form #,; (o) and from
the claims 1) and 4) of the following exercise. O

15.3 Exercise. 1) The group SL, (K) is generated by all its transvections #;; (o).
2) [tix (@), txj (B)] = tij (@p) for distinct i, j, k.
3) [tij (). d] = t;j(e(1 — 3—;)), where d is a diagonal matrix from GL,(K)

with elements d, . .., d, on the main diagonal.
4) Myt;; (Ol)Ma_l = t5()o(j) (), where o € S, and M, is the matrix with 1 in
the positions (g (1), 1),..., (o(n),n) and 0 in the other positions.

How will this formula be changed if in M, we replace one of the 1’s by —17?

15.4 Remarks. 1) The groups PSL,(g) are simple for n = 2 and (n,q) #
(2,2), (2, 3), they belong to the family of finite simple groups of Lie type (see
[19], [25]). With a finite number of exceptions they are not isomorphic to any
alternating group. In most cases this follows just by comparing their orders. For
example, | PSL,(7)| = 168 # |A,,| for all m. We notice the following surprising
isomorphisms:

PSL,(4) = PSL,(5) = As,
PSL,(7) = PSL3(2),
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PSL2(9) ~ Ag,
PSL4(2) = As.

The simple groups Ag and PSL3(4) have the same orders, but they are not
isomorphic. This follows from the fact that Ag has an element of order 15 (for

example, (12345)(678)), but PSL3(4) does not. Indeed, let A = (é § (1)), where x

is a generator of the multiplicative group of the field of cardinality 4. Itx is sufficient
to prove that the element A € PSL3(4) has order 5 and that its centralizer coincides
with (A ). The latter is equivalent to the following: if B is a matrix in SL3(4) such
that BA and A B differ by a scalar matrix, then B and some power of A differ by a
scalar matrix. This can be verified by a direct computation.

One can prove that PSL3(4) has the largest order among all groups from the
series PSL,, (¢), whose order coincide with the order of some group in the series A4,,.

2) It turns out that the noncyclic simple groups of order at most 1000 have orders
60, 168, 360, 504 and 660, and are isomorphic to PSL;(g) for ¢ = 4 and 5 (see
Sections 13 and 14), 7, 9, 8 and 11 respectively.

In the next section we will define one of the 26 sporadic groups, the Mathieu
group M>,, and prove that it is simple. This group is not isomorphic to A, and
PSL, (¢) for any n and g. The group PSL3(4), however, plays an important role
for constructing M»;.

16 Mathieu’s group M,

Let [, be a field of cardinality ¢, let V' be the vector space of dimension 3 over
F4. and let xq, X2, x3 be a basis of V. The projective plane P,(q) is the set of all
1-dimensional subspaces of the space V. The elements of the projective plane are
called projective points or simply points, and the subsets of points corresponding
to 2-dimensional subspaces of V are called projective lines or simply lines.

For any nonzero vector v € V' we denote by v the 1-dimensional subspace of V'
containing v. Thus ¥ is a point of P5(g). Since V contains (¢ — 1) nonzero vectors
and every 1-dimensional subspace in V' contains (¢ — 1) nonzero vectors, P>(g)
contains q;%ll = g% 4 ¢ + 1 points. We can write them as x| + a>x> + a3x3,
X2 4+ azx3 and X3, where a,, a3 € [,.

The line containing two distinct points v, V2 € P,(g) has the form

[(V1,02) = {ai1v1 + azvs | ar,az € Fy}.

There exists a bijective (orthogonal) correspondence between the sets of all
1-dimensional and all 2-dimensional subspaces in V. This gives a bijection between
the sets of points and lines in P>(g). In particular, there are g> + ¢ + 1 lines

in P2(q).
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16.1 Exercise. Any line of [P,(g) contains exactly ¢ + 1 points.

The image of a matrix A € GL3(g) in the group PGL3(g) is denoted by A. The
group PGL3(g) naturally acts on the projective plane P»(q): for A in PGL3(g) and
aixy + azxz + aszxz in P(g) we set

A-a1xy + azxy + asxz = byxy + byxs + b3xs,

where
ai by
A an = b2
as b3

16.2 Exercise. This action is well defined, faithful and 2-transitive, and carries
lines to lines.

16.3 Definition. An automorphism of the projective plane [P,(q) is a permutation
of points of P,(g) which carries lines to lines.

The group of all automorphisms of P,(g) is denoted by Aut([P>(¢)). By Exer-
cise 16.2 we may assume that PGL3(q)< Aut(P2(q)).

Further we will use the field consisting of 4 elements and denoted by F4 =
{0,1,a,a7'}. Recallthat 1 + 1 =a+a=a'4+a'=0,14a =a""' and
a®=1.

Now we define a system M consisting of points and blocks (standard and non-
standard).

¢ The points of M are the points of [P,(4) with a further point denoted by oco.
¢ The standard blocks are the lines of P,(4) completed by oco.
* The nonstandard blocks (ovals) are the images of the oval

O = {X1, X2, X3, X1 + X2 + X3, X1 +axs +a~lx3, x; +a"1xs + axs}
under the action of elements of the group PSL3(4). We consider the group
PSL3(4) as a subgroup of the group PGL3(4).
The set of all points of the system M is denoted by M © and the set of its blocks
by M.
16.4 Exercise. No three points of the oval O lie on the same line. Deduce the same

for an arbitrary oval.

16.5 Definition. An automorphism of the system M is a permutation of points of M
which carries blocks to blocks (possibly, standard to nonstandard and conversely).

We denote by Aut(M) the group of all automorphisms of M, and by M5, the
group of all even automorphisms of M.
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16.6 Theorem. The Mathieu group My, is simple.

We will prove this theorem with the help of seven lemmas.

Let f be an automorphism of the field 4 permuting @ and a~'. This gives a bi-
jection from V to V sending a point aix; + axx» + aszxs to the point
f(ay)x1 + f(az)xo + f(az)xs. Since this bijection carries lines to lines and
planes to planes, it induces the automorphism f* of the projective plane P,(4)
given by the formula

S (arx1 +azxy +azxz) = f(a)x1 + f(az)xz + f(az)xs.

A group G is called a split extension of a group H by a group F if H < G and
G contains a subgroup Fi isomorphic to F suchthat HN F; = {l}and HF; = G.
In this case we write G = H x F.

16.7 Lemma. Aut(P,(4)) = PGL3(4) x (f*).

Proof. Let o € Aut(P2(4)). We show how to replace o by 1, by multiplying «
by elements of the group PGL3(4) and by the element f*. Since PGL3(4) acts
transitively on the set of points of P,(4), we may assume that

1) o fixes x7.

Let A be the set of five lines passing through x; (Figure 2).

X1+ X2 + X3
——.

———

p
,;

ax, +alxsz

X1 +ax, +a1x;

Figure 2

The stabilizer of ¥, in PGL3(4) acts on A 2-transitively,® f* permutes the lines
1(k%1,a x5 +ax3) and I(X1,ax, + a—1x3) and stabilizes the other three lines
of A. Let [y and /5 be any two lines from A, and let g be an element of the group

Hint. Look where the lines / (X1, X») and [(X1, X3) are going on under the action of an element
(aij) from PGL3(4) withai; = 1,a31 = asz] = 0.
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PGL3(4), which stabilizes X; and carries /1 and I, to the lines I(X1,a"1x, + ax3)
and [(X1,ax, + a~1x3) respectively. Then the automorphism g~! f*g permutes
the lines /; and /, and stabilizes the other three lines from A. Since the permutation
group of the set A is generated by transpositions, we may assume that

2) « stabilizes each line from A.

Let Qpe = (é z §>) The group {Opc | b,c € [F4} fixes X; and stabilizes

each line from A. Moreover, it acts transitively on the set of the remaining 16
lines of P,(4). This follows from the fact that each such line intersects the lines
[(X1,X») and [ (X1, X3) in points of the form bx; + x, and cx; + x3, and hence is
the Qp.-image of the line k = [(¥,, X3). Therefore we may assume that

3) « stabilizes the line k.

Because of 2), « fixes k pointwise. The element A, where A = diag(a, 1, 1),
also fixes k pointwise and fixes X;. Moreover, A cyclically permutes three points
of the line m = [(X1, X»), different from X; and X,. Therefore, after multiplication
of & by an appropriate power of A, we may assume that

4) « fixes the lines k and m pointwise.

Any line not passing through the point kK N m is a-invariant, since it intersects
k U m in two points. Now, take any point different from & N m and take any two
lines containing this point and not passing through k N m. Since these lines are
a-invariant, this point is also «-invariant. Thus all points of P,(4) are fixed by «
and hence o = 1.

The subgroup PGL3(4) is normal in the group Aut(P,(4)), since for every
element of A € PGL3(4) there holds f*A(f*)~! = A*, where A* is the matrix
whose entries are the images of the entries of A under the automorphism f. O

16.8 Lemma. 1) StPSL3(4)(0) = SthL3(4)(0) ~ Ag.
2) Stau(pr(4)(0) = Se.

Proof. We prove that Stpg; ,(4)(0O) = Ag. First notice that the group G =
Stpsi;(4)(0) acts faithfully on six points of the oval O: if an element AeG
fixes the points X1, X2, X3 and X1 + X2 + x3, then the matrix A € SL3(4) is scalar,
and hence 4 = 1.

Consider the matrixes

1 0 1 1 0 ! 0 0 1
A=10 0o 1|, B=|lo o 1], c=]1 0 o0
0 1 1 01 a 01 0

Easy computations show that /T, B , C €G. Moreover, A and B stabilize X1 and
actonthe set O\ {X;} asa3-cycleand asa 5-cycle respectively. We denote by Gz,
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the stabilizer of x; in G. Since any 3-cycle and 5-cycle in the group S5 generate
the subgroup As, it follows that Gz, = 4s.

The element C moves X into the domain of action of the 5-cycle. Therefore G
acts transitively on O and hence |G| = |Gg,| - |O] = 360. This implies that G is
isomorphic to either Sg or a subgroup of index 2 in S¢. In the first case, in G there
would exist an element fixing the points X1, X», X3 and X; + x> + X3, and permuting
the points x1 + ax, +a~1x3 and x; + a~!x, + axs. But this is impossible in
view of the beginning of the proof. In the second case G =~ A¢ by Exercise 2.5.3
and Theorem 11.3.

Analogously one can prove that Stpgy,(4)(O) = As, and hence Stpgy ;(4)(0) =
Stpgr;(4)(O). The second claim of the lemma follows from the first; here one uses
Lemma 16.7 and the fact that f* acts on O as a transposition permuting the last
two points of O. (]

Complete the action of f* and PGL3(4) on M by setting f*oco = oo and
A oo = oo for any element A € PGL3(4). We note that the elements of PSL3(4)
and f* carry blocks to blocks. This obviously holds for elements of PSL3(4). Also
it is obvious that f* carries standard blocks to standard blocks. The claim that f™*
carries nonstandard blocks to nonstandard blocks follows from the fact that for any
AEPSL3(4)thereholdsf A0 = fFA(f* 7L f*0 = f*A(f*)710 = A*0
and A* € PSL3(4).

16.9 Lemma. Any three points of P,(4) not lying on the same line belong to a
unique oval.

Proof. Let v; = ayjx1 + azixa + asixs, i = 1, 2, 3, be three points not lying on
the same line. Dividing the entries of the last column of the matrix A = (a;;) by
det(A), we may assume that A € PSL, (4) and v; = AX;,i = 1,2, 3. Therefore
it is sufficient to prove that the points x;, X, X3 belong to the unique oval O.
Suppose that these points belong to an oval BO. Since Stpsi;(4)(0) = A and
the group Ae acts on O 4-transitively (see Example 6.6), there exists an element
S e Stpsi;(4)(O) such that S-Bx;i = X;,i = 1,2, 3. Then the matrix SB is
equal to a matrix D of the form D = diag(1,d,d ") up to a scalar multiple. Since
DO =80 =0,weget BO = 0. O

16.10 Lemma. Stys,,(0c0) = PSL3(4).

Proof. The group Styy,, (00) consists of all even bijections of [P,(4) on itself, which

1) preserve blocks of M lying in P,(4) (they are the PSL3(4)-images of the
oval O), and

2) preserve blocks of M passing through oo, that is, preserve the lines of P, (4).
From this and Lemma 16.7 it follows that

Stary, (00) < Aut(Py(4)) = PGL3(4) x (f*) = PSL3(4) x ({(4) x (f*)).
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where A = diag(a, 1, 1). It is easy to verify that (4 ) x ( f*) = S3.

To compute Styy,, (00) precisely, we need to find in PSL3(4) x ((A) % (f*)
those elements which induce even bijections on the set of points of M and satisfy
the condition 1). The condition 2) holds for these elements automatically.

Clearly the elements of PSL3(4) satisfy the condition 1). Moreover, they induce
even bijections on the set of points of M. Otherwise some element of PSL3(4) would
induce an odd permutation of points of [P, (4). Then PSL3(4) would have a subgroup
of index 2 (the intersection of PSL3(4) and the group of even permutations), which
contradicts the simplicity of PSL3(4).

The element A does not satisfy the condition 1), since |[A0N 0| = 3, A0 # O,
and by Lemma 16.9 the set A O is not an oval. Analogously one can prove that the
element (A4 )? does not satisfy the condition 1).

The element f* stabilizes 7 points of P>(4) (namely, X1, X2, X3, X1 + X2,
X1 + x3, X2 + x3 and x| + x2 + x3),’ and divides the remaining 14 points into 7
pairs, permuting the points in each pair. Therefore f* induces an odd permutation
on [P,(4) and so does not belong to M5,. The remaining two elements of order 2
of the group (A) x ( f*) are conjugate to f* and hence they are also odd and do
not belong to M»;.

Thus we have proved that Styy,, (c0) = PSL3(4). |

16.11 Lemma. There exists an element g € M, permuting X1 and oo.

Proof. EverypointZz = a;x; + azx, + aszxs in P,(4) can be uniquely represented
in a canonical way:

zZ =X ifa, = a3z =0,
Z=ux;+xz ifaz #0,a3 =0,
Z=1ux| + x3 ifa, =0,a3 #0,
Z=uxy +vxy +v1lx3 ifas, # 0and as # 0.

We define a bijection ¢ : M? — MO by the rule:

@(x1) =00, ¢(00) = X1,

e(uxy +x2) =uxy +x2, @(ux; +x3) =ux; + x3,

o(uxy +vxy +v7lxz) =@+ Dxg +vxy +v71lxg

where u € Fy, v € F4 \ {0}.

Obviously ¢? is the identity mapping. The standard blocks passing through X
(see Figure 2) are @-invariant, and ¢ carries the standard block passing through x;
and x3 to the oval O. Therefore ¢ can be informally considered as an inversion in
M analogous to an inversion in the extended Euclidean plane.

"These seven points form the subplane [P5(2) of the projective plane [P (4).
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Now we prove that ¢ is an automorphism of M, i.e., ¢ carries blocks of M to
blocks of M. First we will verify that ¢ carries the standard blocks which do not pass
through X to the nonstandard ones. There are 16 such blocks since there are 16 lines
in P>(4) not passing through Xx;. Each such block is the 0 »c-image of the block
[ = 1(x,, X3)U{oc} forappropriate b, ¢ € [F4 (see the proof of Lemma 16.7). Direct
calculations show that the mappings Q. and ¢ commute. Then for any standard
block !’ not passing through X1, we get 9(I') = ¢(Qpc 1) = Opc (1) = QpcO
and hence ¢(!’) is a nonstandard block.

It remains to verify that ¢ maps an arbitrary oval P to some block. Set

1 0 O 1 0 0
H=|0 a 0], Hy=|0 01
0 0 a! 010

The mappings Qp., H; and H, commute with ¢, and they carry blocks to blocks.
Therefore at any point we may change P by an appropriate oval AP, where h €
(Ope., Hy, Hy). We will choose & such that i P passes through one of the following
pairs of points

{X2, X3}, {X2, X2 + x3}, {x2 + x3, axy +a"lx3},

and then apply Exercise 16.12.

Let us fulfill this plan. There are 15 lines going through pairs of points of the
oval P. Take one of them which does not pass through the point X;. Changing
P by an appropriate oval Qp. P, we may assume that this line is k = (X5, X3).
The group H = (H,, H,) stabilizes k as a whole. Moreover, any pair of points
of k can be carried by an appropriate element 7 € H to one of the pairs {X,, X3},
{X2, x3 + x3}, {x2 + x3, axy + a~'x3}. Changing P by the oval AP, we may
assume that k intersects P in one of these pairs of points. By Exercise 16.12, ¢
carries the oval P to some block.

Thus ¢ € Aut(M). However, ¢ ¢ M, since ¢ is an odd permutation of the
points of M': ¢ has order 2 and fixes 8 points of 22. The automorphism f*, as it was
mentioned above, is also odd. Therefore f*p € M,,. Moreover, f*¢(X1) = oo
and f*@(c0) = X1. O

16.12 Exercise. Prove that through every pair of points of [P, (4) there pass exactly 4
ovals (use Lemma 16.9). Write down all the ovals passing through the pairs of points
{Xa, X3}, {X2, X3 + X3}, {X2 + X3, axy + a~1x3}. Verify that ¢ carries these ovals
to blocks.

16.13 Lemma. The group Ms; acts 3-transitively on the set M° of points of the
system M.
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Proof. 1t is easy to show that if a group G acts transitively on a set X and the
stabilizer G, of an element x € X acts (k — 1)-transitively on the set X \ {x},
then G acts k-transitively on X . Therefore, in view of Lemma 16.10, it is sufficient
to prove that M, acts transitively on the set M°. But this is evident since the
point oo can be carried to the point X1 by the element f*¢, and X can be carried
to any point of P,(4) by an element from PSL3(4). |

16.14 Exercise. The group M,, acts transitively on the set M ! of blocks of the
system M.

Hint. The subgroup PSL3(4) of the group M5, acts transitively on the set of stand-
ard blocks and on the set of nonstandard blocks (by Lemma 16.9), and the mapping
f*@ € M, carries the nonstandard block O to the standard block / (X5, ¥3) U {oco}.

16.15 Definition. A group N acts regularly on a set X, if N acts transitively on X
and the stabilizer in N of every element of X is trivial.

16.16 Lemma. Leta group G act 2-transitively on a set X and let N be a nontrivial
finite normal subgroup of G. If N acts regularly on X, then |X| is a power of a
prime number.

Proof. Let x be an arbitrary element from X and let G be the stabilizer of x in G.
Since G acts 2-transitively on X, then Gy acts transitively on X \ {x}. Therefore
for any two nontrivial elements ny,n, € N there exists an element g € G, with
g(n1x) = nox and hence gn;g~'x = n,x. Since N is normal and acts regularly
on X, we get gn1g~' = n,. In particular, all nontrivial elements of N have the
same order and hence N is a p-group for some prime number p. Since N acts on
X regularly, we have | X | = |N|, and the proof is complete. |

Proof of Theorem 16.6. Let N be a nontrivial normal subgroup of M55. In view
of Proposition 6.7 and Lemma 16.13, the group N acts transitively on the set M°.
Therefore My = N - Star,,(00). Since |[M°] = 22 is not a power of a prime
number, Lemma 16.16 implies that the group N acts non-regularly on M9, that is,
Star,, (00) NN # {1}. It remains to notice that Stay,,(c0) N N < Stpy,, (00), and
that the group Staz,, (00) = PSL3(4) is simple. Then Styy,,(00) < N, and hence
My, = N. O

16.17 Exercise. |M5,| = |PSL3(4)|-22 = 27 -3%2.5.7-11. The group M», is
not isomorphic to A, or to PSL,(g) for any n and q.

17 The Mathieu groups, Steiner systems and coding theory

A Steiner system S(v, k, t) isaset X consisting of v elements (called points) together
with a set of k-element subsets (called blocks) such that each ¢-element subset of
X is contained in exactly one block.
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Any projective plane P»(g) can be considered as a Steiner system of type
S(g? + q + 1,¢q + 1,2) with projective lines as blocks.

An automorphism of a Steiner system is a permutation of its points inducing a
permutation of the blocks.

The Steiner system S = S(v,k,t), t = 2, can be transformed to a Steiner
system S = S(v—1,k—1,t —1) by deleting a point x from the set X and taking
as blocks only those (k — 1)-element subsets which can be obtained from blocks
of the system S(v, k, 1) by deleting x. In this situation the system S is called an
extension of the system S. In Section 16 we have actually constructed an extension
M = S(22,6,3) of the Steiner system P,(4) = S(21, 5, 2). It turns out that one
can extend these systems further:

S(21,5,2) < 5(22,6,3) < S(23,7,4) < S(24,8,5).

Moreover these Steiner systems are well defined up to isomorphism and the system
S(24, 8, 5) cannot be extended. The Mathieu groups M, where v = 22, 23 and 24,
are the groups of even automorphisms of the corresponding systems (for v = 23
and 24 all automorphisms are even automatically).

One can construct the system S(24, 8, 5) using ovals, subplanes [P, (2) and sym-
metric differences of pairs of lines of the projective plane [P, (4). Below we describe
another construction of the system S(24, 8, 5) using coding theory.

Let F" be a vector space of dimension n over the field F = {0, 1}. The vectors
from F" are called words. It is convenient to write them as sequences of length n
consisting of letters (or bits) 0 and 1. By 0 we denote the word consisting of n
zeros, and by 1 the word consisting of # ones.

For u and v in F" we denote by d(u, v) the number of positions where the
letters of u and v are distinct. The number d(u, v) is called the Hamming distance
between the words u and v. One can easily verify that the function d is a metric
on F". This metric is called the Hamming metric. The number d(0, u) is called
the weight of the word u. The support of u is the set of integers i such that the i-th
entry of u is 1.

17.1 Definition. An error correcting binary s-code is a nonempty subset C € F"
such that
du,v) =22s+1 foru,veC, u#v.

Forr € Nand u € F" we set B(u,r) = {v € F" | d(u,v) < r}. Then the
condition in the definition can be written as

Bu,s)N B(v,s) =@ foru,veC, u#v.
A binary s-code C is called perfect if

J B(u,s) = F".
ueC
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Imagine that we send by the Internet a message encoded by words from C.
Faults on the line can lead to errors: in certain words some zeros may have been
replaced by ones and conversely. As a result the recipient may receive words not
from C. However, if in each word there are not more than s errors, the recipient can
reconstruct the message correctly by replacing each received word u by the closest
(in the Hamming metric) word u from C.

One says that the code C corrects s errors. The aim of the coding theory is to
find the most efficient and compact codes correcting as much errors as possible.

17.2 Examples. 1) Every subspace C of the vector space F” is a binary s-code for
1 .
=|5 d0,u)—1)|.
s = [3 ,min_(d(0.1)~1)]

Such code is called linear or an (n, m)-code, where m = dim C.

The automorphism group of a linear code C < F" is the group of all linear
transformations of the vector space F” permuting the standard® basis vectors e;,
i =1,...,n, and preserving the subspace C.

An extension of the linear code C C F" is a code of the form

n
C = {(co,cl,...,c,,) | (¢1,...,cn) €C, Z ¢ =0}

i=0

lying in F**1,

2)Letk = 1,n = 2% — 1. A binary Hamming (n,n —k)-code is an (n,n — k)-
code C = {u € F" | uH = 0}, where H is a matrix of size n x k whose rows
are all nonzero vectors of the space F* written in some order. From this it follows
that the weight of any nonzero word from C is at least 3, and hence C is an 1-code.
Moreover, any binary Hamming code is a perfect 1-code since

|Bu,1)|=14+n=2% |C|=2"% and || Bu.1)|=2" = |F"|.

ueC

17.3 Exercise. The subspace C C F7 spanned by the rows of the matrix

1 1010 00
0110100
001 10T1PO0
00011 01
is a Hamming (7, 4)-code.
This code is cyclic since together with each word (cy, ¢3, . . . , ¢7) it contains the
cyclic permutation (ca, ..., c7, c1). Using this code, one can construct the Steiner

8As usual standard means that the i-th coordinate of the vector e; is equal to 1 and the other
coordinates are equal to zero.
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system S(7, 3, 2): the set of points of this systemis {1, 2, ..., 7} and the set of blocks
is the set of supports of words of this code of weight 3. Notice that the Steiner system
S(7,3,2) can be identified with the projective plane P,(2). This implies (prove it!)
that the automorphism groups of three objects — the binary Hamming (7, 4)-code,
the Steiner system S(7, 3, 2) and the projective plane P,(2) — are all isomorphic to
the same simple group PSL3(2) of order 168.

The extended Hamming (8, 4)-code is just the extension of the Hamming (7, 4)-
code. We denote it by C.

17.4 Theorem. The set X = {1,2,...,8} together with the supports of words of
weight 4 of the extended Hamming (8, 4)-code C form the Steiner system S (8, 4, 3).

Proof. Writing out the 16 words of this code, one can verify that it contains the
words 0, 1 and 14 words of weight 4. The supports of two distinct words u, v € C
of weight 4 have no common subset of cardinality 3, otherwise C would contain
the word u + v of weight 2. Therefore the supports of all words of weight 4 in C
contain 4 - 14 = 56 subsets of X of cardinality 3. Since the set X contains exactly
(2) = 56 subsets of cardinality 3, each of them is contained in exactly one support.
d
Let C be the code considered in Exercise 17.3 and let C be its extension. Let
C’ be the code obtained from C by reversing the order of letters in each of its words
and let C’ be its extension. Now we define the binary linear code G4 € F 24 35
the span of all vectors (a, «, 0), (0, b, b), (x, x, x), where a € C,beC,xe(C.
A sketch of the proof of the following theorem can be found in [18].

17.5 Theorem. The minimum weight of a nonzero word of the code Gaq is 8. The
set {1,...,24} and the supports of words of weight 8 of the code G4 form the
Steiner system S (24,8, 5).

The code G,4 is called the extended binary Golay code. The perfect binary
Golay code, denoted G»3, is the code which can be obtained from the code G4 by
leaving out the last bit in each of its words. This code, which was discovered by
Golay in 1949, is a perfect (23, 12)-code correcting 3 errors (see [18], [3]). The
minimum weight of its nonzero words is equal to 7. The set {1,...,23} and the
supports of words of weight 7 form the Steiner system S(23, 7, 4). One can deduce
from this that the automorphism group of the binary Golay code is isomorphic to
the Mathieu group M>3.

The extended binary Golay code was used for the transmission of pictures of
Jupiter and Saturn made by Voyager 1 and 2 spacecrafts in 1979 and 1980.

18 Extension theory

18.1 Definition. A group G is called an extension of a group H by a group F if
H <Gand G/H = F.
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The aim of extension theory is to describe all possible extensions of one given
group by another.

Let G be an extension of a group H by a group F. We will identify the
groups G/H and F using a fixed isomorphism. In each coset 0 € F we choose a
representative 7 (o). In the identity coset we will always choose the trivial element,
that is, (1) = 1. Since the element ¢ (o) t(7) lies in the coset o7, there exists an
element f(o,t) € H such that

t(@)t(r) = f(o,t)t(oT). (6)
To each element p € F we associate an automorphism 7'(p): H — H such that
T(p)(h) = t(p)ht(p)™'. heH. @)
Obviously, the following conditions hold:
T()=id and f(o,1)= f(1,7)=1. 8)

It follows from (6) and (7) that
T(0)T(r) = f(0.7) T(o7), ©)

where m is the automorphism of the group H induced by conjugation by
f(o,71).

18.2 Exercise. By applying the associative law to the product ¢ (') (7)#(p), deduce
the formula

flo.t) =T@©0)(f(r.p)- flo.tp) floT, p)~". (10)

18.3 Definition. A pair of functions f: F x F — H and T: F — Aut(H) is
called a factor set for the groups H and F if the formulas (8), (9) and (10) hold.

We have shown above that to every extension G of a group H by a group F
and every system of representatives {t(0)}scr of cosets of H in G there corre-
sponds a factor set for H and F. The following theorem establishes the converse
correspondence.

18.4 Theorem. Let ( f, T') be afactor set for the groups H and F. Then there exists
an extension G of H by F and a system of representatives {t(0)}seF of cosets of
H in G, such that the factor set corresponding to them coincides with (f, T).

Proof. We define a multiplication on the set H x F by the rule (x,0) - (y,7) =
(x-T(0)(y)- f(o,7),07). Itis easy to verify that with this multiplication H x F
is a group. Denote it by G and consider the homomorphism ¢: G — F given
by ¢(x,0) = o. Its image coincides with F' and its kernel coincides with the
subgroup {(h, 1) | h € H}. Identifying this subgroup with H, we get G/H = F.
One can easily verify that G is the desired extension of H by F and {(1,0)}seF is
the desired system of representatives. (|
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18.5 Definition. A group G is called a split extension of a group H by a group F
if H < G and G contains a subgroup F; such that F; =~ F, H N F; = {1} and
HF; = G. Alternatively one says that G is a semidirect product of H by F. The
notationis G = H x F.

Obviously, F =~ G/H.

18.6 Examples. 1) S, = A, x Z, forn = 2.
2) S4 = K x S3 (see Example 2.4).

18.7 Exercise. By Theorem 14.1 we have SL,(5)/{£E} =~ As, where E is the
identity matrix. Show that SL,(5) is not a split extension of Z, by As.

Hint. If SL,(5) were a split extension of Z, by A5, we would have SL,(5) =~
Z5 X As and so SL,(5) would not contain an element of order 4, which is not true.

18.8 Proposition. Let G be an extension of a group H by a group F and let (f, T)
be afactor set constructed by a system of representatives {t (0)}oeF. This extension
is split if and only if there exists a function h: F — H such that h(1) = 1 and

flo,1) =T(@)(h(t)™") - h(0) ™! - h(oD). (an

Proof. Assume that this extension is split. Then there exists a system of represen-
tatives {t'(0)}scF which is a subgroup. Since the product ¢'(c) t'(z) lies in the
coset ot and also in this subgroup, it is equal to ¢'(o 7). In particular, ¢'(1) = 1.
We define now a function & with the help of equations t’(0) = h(o)t(0),0 € F.
Then

h(ot)t(ot) = h(o)t(0) - h(x) 1(z) = h(o) - T(0)(h(2)) - f(o,T)t(0T),

which implies the formula (11). Since (1) = ¢/(1) = 1, we have 2(1) = 1.
Conversely, if there exists a function h: F — H such that #(1) = 1 and

the formula (11) holds, then the system of representatives {#(0)t(0)}secF forms a

subgroup, and hence this extension is split. |

19 Schur’s theorem

19.1 Lemma (Frattini). Let H be a normal subgroup of a finite group G and let P
be a Sylow p-subgroup of H. Then G = H - Ng(P).

Proof. Let g be an arbitrary element of G. Then gP g~ ! is contained in H and is a

Sylow p-subgroup of H. By Sylow’s theorem, gPg~! = hPh~! forsome h € H.
Therefore h~'g € Ng(P)and g € H - Ng(P). O

19.2 Lemma. Let H be a finite abelian group and let F be a finite group such that
gcd(|H|, |F|) = 1. Then every extension of H by F splits.
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Proof. Let G be an extension of the group H by the group F and let (f,T) be a
factor set of this extension. By Proposition 18.8, it is sufficient to prove that there
exists a function i: F — H such that the condition /(1) = 1 and the formula (11)
hold. Since H is an abelian group, we will use the additive notation. We define a
function f: F — H by the rule

fle)=>_ f(o.0.

teF

Summing the equations’

flo.1) =T(©)(f(z.p) + flo.zp) = f(oT, p)

over all p € F, we obtain

|F|- f(o,7) = T(0)(f(1)) + f(0) — f(oT).

Multiplying this equation by an integer #n such that n|F| = 1 (mod |H|) gives

f(0.7) = T©@)(nf(0) +nf(0) —nf(o0).
Now it is clear that we can set h = —n f~ . |

19.3 Theorem (Schur). Let H and F be finite groups and let gcd(|H |, |F|) = 1.
Then every extension of H by F splits.

Proof. Setn = |F|,m = |H|. Let G be an arbitrary extension of H by F. Itis
enough to prove that G contains a subgroup of order n. We prove this by induction
on m. For m =1 this is trivial, so let m > 1. We may assume that [ is a proper
subgroup of G.

First consider the case where H contains a proper nontrivial subgroup H; normal
in G. Then (G/H1)/(H/H,) =~ F and by induction the group G/H; contains a
subgroup N/H; of order n. Again by induction, N contains a subgroup of order 7.

Now consider the alternative case: H is a minimal nontrivial normal subgroup
of G. Let P be a Sylow p-subgroup of H. Then

F =~ G/H = Ng(P)H/H = Ng(P)/Ng(P) N H = Ng(P)/Ng (P).

If INg(P)| < |H|, then by induction N (P) contains a subgroup of order .
If INg(P)| = |H|, then |[Ng(P)| = |F|-|H| = |G|, thatis, Ng(P) = G. Thus
the subgroup P, and hence its center Z(P), are normal in G. Since the center of a
finite p-group is nontrivial, it follows that Z(P) = H by minimality of H. Hence
H is an abelian group. By Lemma 19.2 the extension G splits. (]

9See the formula (10).



20. The Higman—Sims group 39
20 The Higman-Sims group

Recall that we defined the Mathieu group M>, in Section 16 as the group of all
even automorphisms of the Steiner system M = S(22,6,3). The set of points
M?O of this system consists of 21 points of P(4) and an additional point oo;
thus [M°| = 22. The set M of its blocks consists of 21 standard blocks and
56 = |PSL3(4)|/|Stpsi,(4)(O)| nonstandard blocks (i.e., ovals); therefore
M| = 77.

We construct a graph I" with 100 = 1422477 vertices: ' = {x}UM° U M !;
here the vertex * is connected to each vertex m € MO, a vertex m € M9 is
connected to a vertex B € M! if and only if m is a point of the block B, and a
vertex B € M is connected to a vertex B; € M if and only if the blocks B and
B; are disjoint. There are no other edges.

The Higman—Sims group HS is defined to be the group of all automorphisms of
this graph which induce even permutations of its vertices: HS = Aut™(I"). Every
automorphism of the system M induces an automorphism of the graph I" fixing the
vertex *. Therefore we may assume that the group M, and the automorphisms
@, f* of the system M defined in Section 16 lie in Aut(T"). Moreover we have
M5, < Autt(I), since the group M, is simple and |Aut(I") : Aut™(I")| < 2.

Now we prove that the group HS is simple, using Lemmas 20.8 and 20.9, which
will be proven later.

20.1 Theorem. The Higman—Sims group HS is simple. Its order is equal to
| M55 - 100.

Proof. Let {1} # N < Aut*(I"). By Lemma 20.9, we have StAut+(F)( x) = M»p,.
Since My, N = NM,,, it follows that My, (N %) = NMjyy*% = (N *), and hence
the orbit (/N *) is the union of the orbits of the group M»,. Since the lengths of orbits
of the group M>, are 1, 22 and 77, and the lengths of N -orbits are all equal and
divide 100 (see Lemma 16.13, Exercise 16.14 and Proposition 6.8, Lemma 20.8)
the length of the orbit (N *) is equal to 1 or 100. The length of every N -orbit cannot
be equal to 1 since N acts faithfully on I'°. Therefore N acts on I'? transitively and
Autt (') =N StAut+(F)(*) = NM>;. Since N N My, < M, and M»; is simple,
either N N My = Moy or N N Moy = {1}. In the first case Aut+(F) = N, in
the second |N| = 100. But any group of order 100 has a unique Sylow subgroup
of order 25. One can take it as N and obtains a contradiction. Thus the group HS
is simple. The claim about its order follows from Lemmas 20.8 and 20.9. a

Before we start to prove the main Lemmas 20.8 and 20.9, we prove several
auxiliary lemmas.

20.2 Lemma. The number of intersection points of a line with an oval in the
projective plane P, (4) is equal to 0 or 2.
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Proof. Let ! be aline and O; an oval in P,(4). Suppose that the intersection / N O;
contains a point X. There are 5 lines in [P,(4) passing through X, and they cover
the plane P,(4). Therefore the oval O; is contained in their union. Each of them
intersects the oval O; in at most two points. Since O; contains 6 points, each of
these lines (including /) intersects O; in X and one other point. O

Given an oval O; in the projective plane [P,(4), we denote by L; the set of all
lines / in P,(4) such that O; NI = @.

20.3 Lemma. No three lines from L; have a common point.

Proof. Through any point of P,(4) there pass exactly 5 lines. If some three lines
from L; had a common point, then the other two lines passing through this point
would contain the oval O;, which is impossible. (]

Let V' be the vector space defined at the beginning of Section 16. We define a
scalar product on V' by the rule:

(a1x1 4+ azxz + azxs, bixy + baxy + b3xz) = aiby + azbs + asbs.
Consider the function defined on the set of all linear subspaces of V' assigning
to each subspace its orthogonal complement. This function induces a mapping 6

from the projective plane P,(4) sending points to lines and lines to points. More
precisely, if v is a point and [ is a line in [P,(4), then

0(v) =1 < (v,w)=0forallw €l < 06(l) = v.
20.4 Exercise. 1) 2(v) = v, 0%(]) = [.
Qvel < 0() € b(v).
3) B~ = (BT)~! for every matrix B € SL3(4).
(Recall that the image of a matrix A € SL3(4) in PSL3(4) is denoted by A.)
The last statement follows from the formula (v, w) = (BT)"! v, B w).

Now we will define a mapping « from I'° to itself. Recall that the set T'° consists
of the point *, the points of M (which are the points of P, (4) together with the extra
point 00), and the standard and nonstandard blocks of M. The standard blocks of
M are the lines in [P,(4) completed by the point oo, while the nonstandard blocks
are the ovals in P,(4). If [ is a line of P,(4), we denote by /o, the standard block
[ U {oo}in M. We set

a(v) = (0(V))so for points v of P, (4),
a(x) = oo and a(00) = x,
a(loo) = (1) for lines [ in P2(4),
and

a(0;) = P4\ U 0()

I_JEOI'

for ovals O; in P, (4).
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Our immediate aim is to prove that « is an automorphism of the graph T".
20.5 Lemma. For any pair of ovals O;, O; and any line | in P»(4) the following
assertions hold:
1) a(0;) is an oval;
2) &*(0;) = O;;
3) O Nl =T <= a(ly) € a(0;);
4) O;N0; =@ <= a(0;)Na(0)) =2.

Proof. It is easy to compute that

a(0) = {ax; + x2 + x3, a~lx; + x2 + x3, X1 + ax; + x3,

x1+alxy+x3, X1 +x2 +axz, x;+x+alx3} =40,

where
a 1 a
A=\|1 a a
1 a7t

1) Write O; in the form O; = B - O, where B € PSL3(4). Then

@(0;) = P24\ U a(B)

ve0

=P\ U BDT @)

=B -a(0)=(BT)'4-0,

that is, «(O;) is an oval.

2) We have «2(0;) = B(AT)"14-0 = B- 0 = 0; since (AT)"14- 0= O,
as can easily be proved.

30Nl =0 < v¢lforallve O < () ¢ 6(v) forallv € O,
— a(lw) € x(0;).

4) Suppose that O; N O; = @, but v € a(0;) N« (0;). By 3) we have
a() N O0; = @ and a(v) N O = . Since the ovals O;, O; and the line
[ = a(v) \ {oo} are pairwise disjoint, their complement in P,(4) contains 4 points,
say ¥1, Y2, ¥3, ya. By Exercise 20.6, there exists a point x € / such that the number
of lines connecting x to the points yy is at least 3.

Denote three of these lines by /1, I3, I3. Since [ € L;, at most one of them
can lie in L; (by Lemma 20.3). Analogously at most one of them can lie in L;.
Therefore one of them, say /; = I(x, y;1), does not lie in L; U L; and hence it
intersects O; and O;. Then /; contains 6 points: x, y;, two points from /; N O;,
and two from /1 N O; (see Lemma 20.2), a contradiction. The converse implication
follows from 2). O
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20.6 Exercise. For any line / in [P,(4) and for any four points y;, y2, y3, y4 not
lying on [, there exists a point x € / such that the number of lines connecting x to
the points yi is at least 3.

20.7 Corollary. The mapping « is an automorphism of the graph T with order 2.

Now we have three automorphisms of order 2, namely «, ¢, f*, and we can
easily prove Lemma 20.8. This lemma has a general mathematical meaning: it
removes a difference between a set (the vertex * can be identified with the set M ?),
its subsets (blocks) and its elements (points).

20.8 Lemma. The group Aut™ (") acts transitively on the set T'°.

Proof. By Lemma 16.13 and Exercise 16.14, the group M>; has three orbits under
the action on I'°, namely {*}, M and M'. The group Aut™ (") acts transitively
on I'? since the following holds: M, < Aut™(T"), the automorphism (f*pa)?
carries the point * to the oval O, and the automorphism (c.f *¢)? carries the point co
to the oval (). These automorphisms are even since the square of any permutation
is even. O

20.9 Lemma. Sty +r)(*) = Ma.

Proof. It is easy to see that the group Stayr)(*) can be identified with the group
Aut(M). The group Aut(M) contains the subgroup M,, of index 2 (see the
end of the proof of Lemma 16.11), and the group Stayr)(*) contains the sub-
group St .+ (*) of index 2 (see Lemma 20.10). Since M>, is simple we get
StAut+(F)(*) = M5,. O

20.10 Lemma. The automorphism ¢ induces an odd permutation of the vertices of
the graph T'.

Proof. Let ® be the set of all g-invariant ovals. First we prove that |®| is divisible
by 4. Since ¢ commutes with any element of the group Q = {Qp. | b, ¢ € [F4} (see
Section 16), the group Q acts on the set ®. It is sufficient to prove that the length
of any Q-orbit in ® is divisible by 4. Since |Q| = 16 it is sufficient to prove that
the stabilizer of every oval in the group Q has order 1, 2 or 4. By Lemma 16.8, the
stabilizer of an oval in the group PSL3(4) is isomorphic to the group A, in which
Sylow 2-subgroups are conjugate to the group ((12)(34), (1234)(56)) of order 8.
Therefore the stabilizer of an oval in the group Q cannot have order 16. Moreover,
since Q does not contain elements of order 4, this stabilizer cannot have order 8.
Thus the stabilizer has order 1, 2 or 4. Hence |®| is divisible by 4.

Let |®| = 4n. The automorphism ¢ preserves exactly 5 standard blocks (they
pass through X; since ¢(0o) = X;), and it preserves exactly 8 points of M? and
the vertex *. Therefore the total number of fixed vertices of the graph I" under the
action of ¢ is equal to (14 + 4n). Since ¢? = id, the automorphism ¢ acts on the
remaining (86 — 4n) vertices as a product of (43 — 2n) transpositions. Therefore
¢ is an odd automorphism of the graph I'. O
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The sporadic simple groups
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Group | Order Discoverers

My 24.32.5.11 Mathieu

My, | 20-33.5.11 Mathieu

My, | 27-32.5.7-11 Mathieu

My | 27-32.5.7-11-23 Mathieu

My, | 219.33.5.7.11-23 Mathieu

J> 27.33.52.7 Janko; M. Hall, Wales

Suz 213.37.52.7.11-13 Suzuki

HS 29.32.53.7-11 Higman, Sims

McL 27.36.53.7.11 McLaughlin

Coz 210.37.53.7.11-23 Conway

Co> 218.36.53.7.11.23 Conway

Coy 221.39.54.72.11-13-23 Conway, Leech

He 210.33.52.73.17 Held; G. Higman, McKay

Fizy 217.39.52.7.11-13 Fischer

Fiz3 218.313.52.7.11.13-17-23 Fischer

Fing 221.316.52.73.11.13-17-23-29 Fischer

HN 214.36.56.7.11-19 Harada, Norton; Smith

Th 215.310.53.72.13.19.31 Thompson; Smith

B 241.313.56.72.11.13-17-19-23-31-47 | Fischer; Leon, Sims
246.320.59.76.112.133.17-19-23-29- | Fischer; Griess, Conway
31-41-47-59-71

Ji 23.3.5.7-11-19 Janko

O'N 29.3%.5.73.11-19-31 O’Nan; Sims

J3 27.35.5.17-19 Janko; Higman, McKay

Ly 28.37.56.7.11-31-37-67 Lyons; Sims

Ru 214.33.53.7.13.29 Rudvalis; Conway, Wales

J4 221.33.5.7.113.23-.29-31-37-43 Janko; Norton, Parker, Ben-

son, Conway, Thackray
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Below some relations between the sporadic simple groups are depicted. The
largest of the sporadic simple groups is M, the “Monster”, and 20 of the 26 sporadic
groups are involved in the Monster as subgroups or as quotients of subgroups. These
twenty are called the “Happy Family”. The other six groups, J1, J3, J4, O’N, Ru
and Ly, the so-called pariahs, are not involved in the Monster. A line means that
one group is a homomorphic image of a subgroup in the other.

M
Coq B Fiy,
Th He
Js
\
Cos Coy  Suz HN My Fiz3
McL HS M, M3 Fizp

Ru J3



Chapter 2
Introduction to combinatorial group theory

1 Graphs and Cayley’s graphs

For an understanding of the structure of a group it is useful to study an action of
the group on an appropriate geometric object. This idea will be developed in the
following sections. In this section we will recall some definitions from Chapter 1
and introduce some notions related to graphs and groups acting on them. The
difference of sets X and Y will be denoted by X — Y.

1.1 Definition. We say that a group G acts on a set M on the left if foreach g € G
and m € M, an element gm € M is defined such that g,(g;x) = (g2g1)x and
Ix=xforallme M, g1,g2 € G.

The action is fransitive if for any two elements m, m’ of M there exists an
element g of G such that gm = m’. The action is faithful if for any nontrivial
element g of G there exists an element m of M such that gm # m. The subgroup

{geG|gm=mforallme M}

is called the kernel of the action. Clearly, the action is faithful if its kernel is trivial.
The orbit of an element m of M isthe set O (m) = {gm | g € G}. Two elements m,
m’ of M are called G-equivalent if they lie in the same orbit. The stabilizer of an
element m of M is the subgroup Stg(m) = {g € G | gm = m}.

Sometimes we will use right actions.

1.2 Definition. We say that a group G acts on a set M on the right if for each
g€ Gandm € M, anelement mg € M is defined such that (mgy)g> = m(g182)
andml =mforallme M, g1,8, € G.

1.3 Remark. Given a left action of a group G on a set M, one can define a right
action of G on M (and conversely) by setting mg = g~ 'm.

1.4 Definition. A graph X is a tuple consisting of a nonempty set of vertices X°,
aset of edges X ! and three mappingso: X! — X% w: X! — X%, —: X! - X!
(meaning the beginning, the end, and the inverse of an edge) such thaté = e, & # e
and a(e) = w(e) forevery e € X!,

The vertices (e) and w(e) are called the initial and the terminal vertices of the
edge e. A graph is called finite if the sets of its vertices and edges are finite. One
can define a subgraph of a graph in a natural way. The direct product of graphs X
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and Y, denoted X x Y, is the graph with the set of vertices X 0 % Y9 and the set
of edges X! x Y'! such that a((e, e’)) = (a(e),a(e’)), w((e,e’)) = (w(e), w(e')),
and (e, e’) = (e, ') for any pair (e,e’) € X! x Y.

A morphism from the graph X to the graph Y is a map p from the set of vertices
and edges of X to the set of vertices and edges of Y sending vertices to vertices, edges
to edges, and satisfying the conditions p(x(e)) = a(p(e)), p(w(e)) = w(p(e)),
pe) = 1Te). For brevity we write p: X — Y. A bijective morphism is called
an isomorphism. An isomorphism of a graph to itself is called an automorphism.
If x is a distinguished vertex of the graph X, we write (X, x). We also write
p: (X,x) —> (Y,y)if p: X — Y is a morphism of graphs with p(x) = y.

The star of a vertex x in a graph X is the set of all edges of X with the initial
vertex x. The valency of the vertex x is the cardinality of its star. A morphism
p: X — Y iscalled locally injective if the restriction of p to the star of any vertex
of X is injective.

A graph X is called oriented if in each pair of its mutually inverse edges {e, ¢}
one edge is chosen. This edge is called positively oriented and the other is called
negatively oriented. The set of all positively (negatively) oriented edges is denoted
by X} (respectively X!'). The set X is called an orientation of the graph X .

Graphs can be drawn as objects consisting of points and lines which connect
some of these points. The lines correspond to pairs of inverse edges. Positively
oriented edges will be drawn as lines with arrows.

Define two types of graphs: €, (n € Z, n = 1) and €. The vertices of
the graph €, are the numbers 0, 1,...,n — 1, the edges are the symbols e¢;, ¢é;
(0<i<n-—1),wherea(e;) =i, w(e;) =i + 1 (the addition is modulo ). The
vertices of the graph €, are integers, and the edges are the symbols e;, e; (i € Z),
where a(e;) =i, w(e;) =i + 1 (Figure 3).

en—1 p*~L0
\‘\..A/W‘ M»._

Figure 3

A sequence [ = eje; ...e, of edges of a graph X is called a path of length n
in X ifw(e;) =alej+1),i =1,...,n— 1. We say that [ is a path from the vertex
a(eq) to the vertex w(ey), and that a(e;) and w(e;) are the beginning and the end
of /. We assume that any vertex v of X is a (degenerate) path of length 0 with the
beginning and the end at v. For a non-degenerate path / = eje; . ..e, we denote
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by 7! the path &, ...é, ;. For a degenerate path [ put /~! = [. A path [ is said
to be reduced if it is either degenerate or [ = eje;...e,, where e; 41 # e; for
i =1,...,n—1. Apath/ is closed if its beginning and end coincide.

If the end of a path [ = e;...e; coincides with the beginning of a path
I = e ...e},, then the product of these paths is defined to be the path /I’ =
er...exe...e.

A graph X is connected if for any two of its vertices u and v, there exists a
path in X from u to v. A circuit in a graph is a subgraph isomorphic to a graph €,
for some n. A tree is a connected graph without circuits. Obviously, for any two
vertices u and v of a tree, there exists a unique reduced path from u to v.

1.5 Exercise. Let p: X — T be a locally injective morphism from a connected
graph X to atree T. Then p is injective and X is a tree.

1.6 Proposition. Let T be a maximal subtree (with respect to inclusion) of a con-
nected graph X. Then T contains all vertices of X.

Proof. Suppose that this is not true. Then, because of the connectivity of X, there
exists an edge y beginning in 7" and ending outside 7. Adjoining to T the edges
¥, ¥ and the vertex w(y), we get a larger tree, which contradicts to the maximality
of T. |

The following exercise is difficult, but one can easily solve it after reading
Sections 3 and 4.

1.7 Exercise. The cardinality of the set of edges of a connected graph X lying
outside some maximal subtree 7" does not depend on the choice of 7. If X is
a finite connected graph with an orientation X!, then the number of positively
oriented edges of X not belonging to 7 is equal to [ X} | — X% + 1.

1.8 Definition. We say that a group G acts on a graph X (on the left) if (left) actions
of G on the sets X° and X! are defined so that ga(e) = a(ge) and gé = ge for
allg e Gande € X1

We say that G acts on X without inversion of edges if ge # e forall e € X!
and g € G.

The action is called free if gv # v for all v € X° and all nontrivial g € G.

In the Bass—Serre theory described below, it is required that a group act on a
graph without inversion of edges. We show that this is not a serious restriction: if a
group G acts on a graph X, then G acts without inversion of edges on its barycentric
subdivision B(X) and this action is closely related to the original one.

Informally, a barycentric subdivision of a graph X is a graph B(X) which can
be obtained from X by a “subdivision” of each edge e into two edges e; and e5,
and by adding a new vertex v, corresponding to the “middle” of the edge e. We
assume that (e), = ej, (€); = ez, v, = v; (Figure 4).
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We define an action of a group G on the graph B(X) by setting ge; = (ge)1,
ge» = (ge)2, gV = Vg and preserving the action of G on the vertices of the
graph B(X), which are the vertices of X.

Figure 4

1.9 Exercise. The action of G on the graph B(X) is without inversion of edges.

Let G be a group acting on a graph X without inversion of edges. For x €
X% U X!, we denote by O (x) the orbit of x with respect to this action: @ (x) =
{gx | g € G}. Define the factor graph G \ X as the graph with vertices O (v),
where v € X°, and edges O (e), where e € X!, provided that:

1) O(v) is the beginning of @ (e) if there exists g € G such that gv is the
beginning of e;
2) the inverse of the edge @ (e) is the edge O (e).

The edges O (e) and O (e) do not coincide since G acts on X without inversion
of edges. Themap p: X — G \ X given by the rule p(x) = O(x),x € X°U X1,
is a morphism of graphs. We call it projection. Let y be a vertex or an edge of the
factor graph G \ X. Any preimage of y with respect to p is called a liff of y in X.

1.10 Example. The graph on the left side of Figure 5 admits an action of the group
Z 3 by rotations through multiples of 120°. The corresponding factor graph is drawn

on the right side of Figure 5.
Z3 { >
—_—

Figure 5

1.11 Exercise. Let e be an edge of a factor graph G \ X and v be a lift of a(e).
Then there exists a lift of e with initial vertex v.

1.12 Proposition. Let G be a group acting on a connected graph X without inver-
sion of edges. For any subtree T' of the factor graph G \ X there exists a subtree
T in X such that p|r: T — T is an isomorphism.
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Proof. Consider the set of all subtrees in X which project injectively into 7. This
set is partially ordered by inclusion and any ascending chain of its elements has
an upper bound (namely, the union of the corresponding trees). By Zorn’s Lemma
this set has a maximal element 7. It is sufficient to prove that p(T) = T'. If
this is false, then there exists an edge ¢’ with initial point in p(7T") and endpoint in
the complement 7’ — p(T). Using Exercise 1.11, one can increase T and get a
contradiction. |

Any subtree T as in Proposition 1.12 is called a lif in X of the subtree T’.

1.13 Definition. Let G be a group and S be a subset of G. Denote by I'(G, S)
the oriented graph with set of vertices G, set of positively oriented edges G x S,
and functions « and w given by the rules «((g,s)) = g and w((g, s)) = gs, where
(g.5) € GxS. Theinverse of the edge (g, 5) is assumed to be the edge (g5, s™1). In
this context we consider s~ ! as a formal symbol, not as an element of the group G.
Then (gs,s™1) ¢ G x S even in the case where the element s~ ! lies in S. The label
of an edge (g, t) is the element 7.

The group G acts by left multiplication on I'(G, S): an element g € G sends a
vertex g’ to the vertex gg’ and an edge (g’, t) to the edge (gg’,t). Obviously, this
action is free and without inversion of edges.

1.14 Exercise. The graph I'(G, S) is connected if and only if S is a generating set
of G.

1.15 Definition. Let G be a group and S be a generating set of G. The graph
I'(G, S) constructed above is called the Cayley graph of G with respect to S.

1.16 Examples. The graphs €, and € are isomorphic to the Cayley graphs of
cyclic groups Z,, and Z with respect to generating sets consisting of one element.

In Figure 6 are drawn the Cayley graph of the group Z¢ = (x) with respect to
the generating set {x2, x3} and the Cayley graph of the group S3 with respect to
the generating set {(12), (123)}.

Figure 6

Letn = 1 be an integer or n = oco. The dihedral group D, is the group of all
automorphisms of the graph €,. Any such automorphism is completely determined
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by an image of the edge eg. Let a and b be automorphisms such that a(eg) = e_;
and b(eg) = ey (for finite n we take the subscripts modulo 7). Then the group D,
consists of the automorphisms b* and b*a, where 0 < k < n — 1 for finite n
and k € Z for n = oco. The automorphisms b* can be thought as rotations (for
finite n) or as translations (for n = 00); the automorphisms b¥a can be thought as
reflections.

1.17 Exercise. 1) Prove that D3 =~ S3.
2) Let n be an integer. Draw the Cayley graph of the group D, with respect to
the generating set {a, b}.

In Figure 7 are drawn the Cayley graphs of the group D, with respect to the
generating sets {a, b} and {a, c}, where ¢ = ab, and the Cayley graph of the group
Z x Z with respect to an arbitrary generating set {x, y}.

Figure 7

1.18 Exercise. The group of label preserving automorphisms of the Cayley graph
of a group G is isomorphic to G.

1.19 Exercise. Verify that the graph drawn on the cover of this book is the Cayley
graph of the alternating group As.

2 Automorphisms of trees

In many interesting cases groups act on trees. Therefore we need to investigate the
automorphisms of trees.

Let X be a tree. A reduced path in X is called a geodesic in X. Obviously, for
any two disjoint subtrees X; and X of the tree X, there exists a unique geodesic
with initial vertex in X, terminal vertex in X, and the edges outside X; and X>.
Given two vertices u, v of X, the geodesic from u to v is denoted by u — v. Its
length is denoted by /(u, v).
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Let 7 be an automorphism of a tree X. For any vertex (edge) v of X, denote
by v the image of v with respect to t. Note that /(u, v) = [(u®, v7). Set
|z] = min (v, v").
veXxo
The minimal subtree of the tree X containing all vertices u with the property
I(u,u?) = |t|is denoted by 7 if || = Oand by T if |z| > 0. The following theorem
is illustrated by Figure 9.

2.1 Theorem. Let t be an automorphism of a tree X. The following claims are
valid.

1) If |t| = 0, then any vertex and any edge of the tree T is fixed by t. Let P
be an arbitrary vertex of X and let Q be a vertex of T closest to P. Then
P — Q and Q — PT are geodesics of equal length, and the product of these
geodesics is the geodesic connecting P and PT.
2) If|t| > 0and t acts without inversion of edges, then the tree T is isomorphic
to the tree €oo. The automorphism t acts on T by translations at distance |t|.
Let P be an arbitrary vertex of X and let Q be a vertex of T closest to P.
Then the geodesic P — PT intersects the tree T along the geodesic Q — QF
and (P, PT) = |t| + 2{(P, Q).
Proof. We will prove only the claim 2), leaving the proof of the claim 1) to the
reader. Let A be an arbitrary vertex of X such that /(A4, A") = |t|. Then the last
edge of the geodesic A — AT is not the inverse of the first edge of the geodesic
AT — A, Otherwise (see Figure 8), if |7| = 1 we would have an inversion of an
edge, and if |7| > 1 then, considering the vertex B of the geodesic A — A* with
[(A, B) = 1, we would have /(B, BY) = I(A, A™) — 2 < |t|, which contradicts to
the definition of |z].

2

A‘C
A B BT AT
Figure 8
Now it is clear that the infinite path 7 = --- — AT A — AT composed

of the geodesics AT — g7 (n € Z) is isomorphic to the tree €, and 7 acts

on it by translations at distance |t|. If P is an arbitrary vertex outside 7 and Q
is a vertex of T closest to P (see the right part of Figure 9), then /[(P, P7) =
I(P,Q)+1(Q,0% + I(QF%, P") = |t| + 2I(P, Q) > |t|. Hence T = T, and
claim 2) is proven. O
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o

7 Q o°

Figure 9

In view of this theorem the following terminology is justified.

2.2 Definition. An automorphism t of a tree X acting on X without inversion of
edges is called a roration if |t| = 0, and a translation if |t| > 0. For |t| > 0 the
subtree T is called the axis of T.

2.3 Exercise. Let v and t be automorphisms of a tree X, n € Z. Then

D v~ tov] = |z,
2) || = |n| - |z| if T acts without inversion of edges.
2.4Exercise. Let Ty, ..., T, beafinite set of subtrees of atree X andlet7; NT; # @

foralli and j. Then (/_, T; # &.

2.5 Proposition. Let 11, ..., 1, be a finite set of automorphisms of a tree X. If t;

o
and tj7; are rotations for all i and j, then (\/_, ti # @.

Proof. We will prove that any two subtrees to, and 1?1 have nonempty intersection.
The claim will then follow from Exercise 2.4. Recall that by definition of the
composition of two mappings, we have P¥% = 7;(z; (P)).

Suppose that there exist two disjoint subtrees 73 and roj and let P — Q be a
geodesic connecting them. Since P%% = P%, the geodesics P — P%% and
P — P% coincide. By Theorem 2.1 the middle Q of this geodesic lies in rjori
and rc; Therefore Q = Q% = Q%% , and hence Q = Q% and Q € TN roj, a
contradiction. O

2.6 Corollary. Let G be a finite automorphism group of a tree T, acting on T
without inversion of edges. Then there exists a vertex of T fixed by each element

of G.

3 Free groups

Free groups play a key role in combinatorial group theory. It is enough to say that
any group is a factor group of an appropriate free group (Theorem 3.14). In this
section we establish the existence of free groups with an arbitrary basis. In later
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sections we prove that only free groups can act freely and without inversion of edges
on trees.
For any subset X of a group let X ! denote the subset {x~! | x € X}.

3.1 Definition. Let F be a group and let X be a linearly ordered subset of F such
that X N X~! = @. The group F is called a free group with the basis X if every
nontrivial element f can be uniquely represented as a product f = x1x3...Xp,
where x; € X U X~ ! and x;x;4; # 1 for all i. Such an expression is called
reduced with respect to X . We assume that the trivial element is represented by the
empty reduced expression.

In particular, this definition implies that X generates F. Obviously, the infinite
cyclic group Z is free with a basis consisting of one element.

3.2 Theorem. For any set X there exists a free group with the basis X .

Before we give a proof of this theorem, we need to introduce some notions and
to prove the auxiliary Proposition 3.3.

Let X be an arbitrary set. Set X ! = {x~! | x € X}, where x~! denotes a new
symbol corresponding to the element x. We assume that X N X~! = @ and that
the expression (x~1)~! denotes the element x. The set X* = X U X! is called
an alphabet and its elements are called letters. A word is a finite sequence of letters
written in the form x1x5...x,, 7 = 0, x; € X*. For n = 0 we have the empty
word. Given a word f = X1X5...X,, the number n is called the length of f and
is denoted | f|. A subword of the word is any subsequence of consecutive letters.

Let W be the set of all words in the alphabet X*. Given two words f and g
of W, define their product by juxtaposition as the word fg. Obviously, W is not a
group if X # @.

Now we will introduce an equivalence relation on W and define a product on
the set of equivalence classes, so as to yield a group. Two words u, v are called
equivalent if there exists a finite sequence of words u = f1, f2, ..., fx = v such
that each f;1; can be obtained from f; by insertion or deletion of subwords of the
form xx~!, where x € X*. Such a sequence will be called a sequence connecting
the words u and v. Let [F] denote the set of equivalence classes of words of W.
The class containing a word f is denoted by [ f]. A word g is called reduced if it
does not contain subwords of the form xx~!, where x € X *.

3.3 Proposition. Any class [ f] contains a unique reduced word.

Proof. The existence of a reduced word in the class [ f] is evident. We will prove
the uniqueness using the so called “pick reduction” method. Suppose that there
exist two different reduced words u, v in [ f]. Among all sequences connecting
u with v, we choose a sequence u = f1, f2,..., fx = v with the minimal sum

Zf-;l | fi]. Since the words u, v are reduced and different, we have | f1| < | f2| and
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| fi—1| > | fx|. Therefore there existsi € {2,...,k—1}suchthat|fi_;| < |fi| and
| fil > | fi+1|.- Hence f;41 can be obtained from f;_; in two steps: first insert a
subword xx~! (and get f;) and then delete a subword yy~!. If these subwords are
disjoint in f;, one can do it in another way: first delete yy~! (and get a new word
/) and then insert xx~!. Using this we can replace the triple f;i_1, f;, fi+1 by the
triple f;—1, f/, fi+1 and get a new sequence connecting u and v with smaller sum
of lengths, a contradiction. If the subwords xx~! and yy~! of f; have a nonempty
intersection, then f;_; = fi4+1, and we can delete the words f;, fi4+1 from the
connecting sequence. Again we get a contradiction to the minimality of the sum.

O

Proof of Theorem 3.2. We define a multiplication on the set [F] by [f][g] = [ fg]
and prove that [ F] is a free group with basis [X] = {[x] | x € X }. The associativity
of the multiplication is evident, the identity element is the class [@] and the inverse
of the class [f] = [x1...xn], where x; € X U X~ is the class [x,'...x]'].
Moreover, [ f] = [x1]...[xs] and this expression is reduced with respect to [X] if
and only if the word X ... x, is reduced. The uniqueness of the reduced form of
elements of [F] with respect to [X] follows from the fact that each class contains
exactly one reduced word. It remains to note that the cardinality of [X] is equal to
the cardinality of X . O

3.4 Exercise. An arbitrary free group with abasis X is isomorphic to the constructed
free group [F] with the basis [X].

The free group with a basis X is denoted by F(X). In practice, it is convenient
for us to consider the elements of the group F(X) as words in the alphabet X UX 1,
assuming that two words are equal if the corresponding reduced words are equal.

Now we give another, categorical, definition of a free group.

3.5 Definition. Let X be a subset of a group F. Then F is a free group with basis
X if for any group G and any map ¢ : X — G, there exists a unique extension of ¢
to a homomorphism ¢*: F — G.

3.6 Theorem. Definitions 3.1 and 3.5 of a free group are equivalent.

Proof. Let F be a free group with basis X in the sense of Definition 3.1 and let ¢ be
amap from X to a group G. We extend ¢ to a homomorphism from F to G by the
following rule. Given an element f of F, we write it in the form f = x1...Xxy,
where x1,...,x, € X%, and set o*(f) = ¢*(x1)...¢*(x»), where we assume
that *(x~!) = (p(x))~! for x € X. This definition is correct, since from one
expression for f as a product of elements of X one can pass to another by a finite
number of insertions and deletions of words of the form xx~!, where x € X=*.
Obviously, this is the unique way to extend ¢ to a homomorphism from F to G.
Now let F be a free group with the basis X in the sense of Definition 3.5.
Then the identity embedding X — (X) can be extended to a homomorphism
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F — (X) and hence to a homomorphism F — F with image (X). The latter
homomorphism and the identity homomorphism F — F both extend the identity
embedding X — [F. By uniqueness of extensions they must coincide, hence
F = (X).

The uniqueness of the reduced form of elements of the group F with respect
to X follows from consideration of the homomorphism F — [F], extending the
mapping x — [x], x € X. O

3.7 Exercise. The free group with the basis {a, b} also has the basis {ab, bab}.
3.8 Theorem. All bases for a given free group F have the same cardinality.

Proof. Let X be a basis of the free group F. Let Z, = {0, 1} be the group of
residues modulo 2, and let H be the additive group consisting of all functions
f: X — Z, which take the value 1 for only a finite number of elements of x € X.
The addition in this group is defined by the rule ( f + g)(x) = f(x)+g(x),x € X.

With each element x € X we associate the function fy which takes the value 1
on x and 0 on the other elements of X. Themap X — H, x — f5, can be extended
to an epimorphism ¢: FF — H. The subgroup ker ¢ consists of all words in F' in
which for every x € X the total number of occurrences of x and x~! is even. Now
we prove that ker ¢ = (w? | w € F). Obviously, the right side lies in the left. The
converse inclusion follows by induction on the length of a word from ker ¢ with
the help of the identities xuxv = (xu)? -u~'v and x 'uxv = x2(xu)? - u~lv.
Thus H =~ F/{(w? | w € F), which implies that the cardinality of H does not
depend on the choice of X. On the other hand, it follows from the definition of
H that |H| = 2/X1 if X is finite, and |[H| = |X| if X is infinite. Therefore the
cardinality of X depends only on F'. |

3.9 Definition. The rank of a free group F, denoted rk(F), is the cardinality of
any basis of F.

3.10 Corollary. Two free groups are isomorphic if and only if their ranks coincide.
3.11 Corollary. Ify: F(Y) — F(X) is an epimorphism, then |Y | = | X|.

Proof. Let ¢: F(X) — H be the epimorphism from the proof of Theorem 3.8.
The group H can be considered as a vector space over the field of cardinality 2,
with basis { f | x € X}. Since the set (¥ (Y)) generates H, we have |Y| = | X]|.

O

3.12 Exercise. A free group of rank n = 2 contains free subgroups of all finite
ranks.

Hint. In the group F(a,b) the subset {a,b~'ab,...,b~"ab"} generates a free
group of rank r + 1.
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3.13 Exercise. Letp: G — F(X) be an epimorphism from the group G to the free
group F(X). For each element x € X we choose an element x’ in the preimage
¢ 1(x). Set X’ = {x’ | x € X}. Prove that (X’) is a free group isomorphic to the
group F(X).

The following theorem enables us to study arbitrary groups with the help of free
groups and their subgroups. We will develop this approach in Section 5.

3.14 Theorem. An arbitrary group G is a factor group of an appropriate free group.

Proof. Let Y be an arbitrary set generating the group G. By Theorem 3.6, there
exists a homomorphism from the free group F(Y) to the group G extending the
identity mapping ¥ — Y. Obviously, this homomorphism is an epimorphism.

O

3.15 Definition. The rank of an arbitrary group G is the minimal cardinal ¢ such
that a free group of rank ¢ maps homomorphically onto G. Equivalently the rank
of G is the minimal cardinal ¢ such that a set of size ¢ generates G.!!

Let us prove that this minimum is achieved on some set generating G. This
is evident if at least one generating set is finite. If all generating sets are infinite,
their cardinalities coincide with the cardinality of the group G and this minimum
is equal to |G|. Indeed, let X be an infinite set generating G. Then each element
of G is the product of a finite number of elements of X U X ~!. Since X is infinite,
the cardinality of the set of all finite sequences of elements of X is equal to | X|.
Therefore |G| = | X|.

The rank of the group G is denoted by rk(G).

4 The fundamental group of a graph

Let X be a connected graph with a distinguished vertex x. Consider the set P (X, x)
of all paths in X which begin and end at x. For any two paths p = e; ...ex and
g = e}...e, from P(X,x) their product pg = e;...exe]...e, also lies in
P (X, x). We can consider the degenerate path x as the identity element, assuming
that it has the empty expression as a product of edges. However, if X contains at least
one edge, the set P (X, x) is not a group under this multiplication. The situation can
be improved if we consider the paths e; ...e;eee;j+1...e, and ey ...ej€i41 ...,
as equal.

More precisely, we say that the paths p1, p» € P(X, x) are homotopic if p;
can be obtained from p; by a finite number of insertions and deletions of subpaths
of the form eé. The homotopy class of a path p € P(X, x), denoted [p], is the
set of all paths homotopic to p. Thus the set P (X, x) is partitioned into homotopy
classes. The product of two classes [p], [¢] is defined by [p] - [¢] = [pq].

"By Corollary 3.11, this definition generalizes Definition 3.9.
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4.1 Exercise. Prove that

1) the product of two homotopy classes is well-defined, that is, does not depend
on the choice of representatives in them;

2) in each homotopy class there exists only one reduced path.

It is easy to verify that the set of homotopy classes of paths from P(X, x)
with respect to the above multiplication forms a group. This group is called the
Sfundamental group of the graph X with respect to the vertex x and is denoted by
m1(X, x).

4.2 Remark. 1) Analogously, one can define the homotopy class [ p] of an arbitrary
(not necessarily closed) path p in X, the product of paths p, g in X and the product
of their homotopy classes [p] and [¢] under assumption that the end of p coincides
with the beginning of g. The set of all homotopy classes of paths in X with respect
to such partial multiplication is called the fundamental groupoid of the graph X .
2) If x; is another vertex of the graph X, then 71 (X, x1) = m1(X,x). The
isomorphism is given by [p] — [gpg~!], where g is a fixed path from x to x;.

Now we will prove that the fundamental group of a connected graph X is free.
Choose a maximal subtree 7 in X. For any vertex v € X° there exists a unique
reduced path in 7 from x to v. Denote this path by p,. With each edge e € X! we
associate the path p, = pa(e)epa_)(le). Notice that [p;z] = [pe]!.

4.3 Theorem. Let X be a connected graph, let x € X 0 and let T be a maximal
subtree in X. Then w1 (X, x) is a free group with basis S = {[pe] | e € X_l|r -7,
where X_}_ is an orientation of X .

Proof. If p = ejea...ex is a closed path in X beginning at x, then [p] =
[Pe,lPey] - - - [Pey]- Since [pe] = 1 fore € T, the group 7 (X, x) is gener-
ated by the set S. We shall prove that the reduced form of elements of 77 (X, x)
with respect to S is unique.

Let [p] = [Pe,][Pe,] - - - [Pe, ] be areduced form of the element [p] with respect
to the set S. Thene; € X! — T! and e;11 # & for all i. Recall that the
path p., goes first inside the tree 7', then along the edge e; outside the tree and
finally again inside the tree. Therefore cancellations in the path pe, pe, ... pe, do
not reach the edge e; of p,,. Hence the path p is homotopic to a reduced path
of the form t1eytye; ... extr41, where the paths #; are within the tree 7. Since
each homotopy class contains only one reduced path, the sequence ey, es, ..., ek
is uniquely determined by [p]. Hence the reduced form of [p] is unique. O

Let f: X — Y be a morphism of graphs. For any path p = e;...e, in X, we
define the path f(p) in Y by the formula f(p) = f(e1)... f(en).

4.4 Exercise. Let X and Y be connected graphs and let f: (X,x) — (Y, y) be
a morphism. Then the mapping fi: 71 (X,x) — m1(Y,y), given by fi([p]) =
[/ (p)], is a homomorphism.
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In Section 20 we will prove that for some special morphisms of graphs called
coverings, the corresponding homomorphisms are injective.

5 Presentation of groups by generators and relations

In this section we will explain how to present groups with the help of generators
and relations. It enables us not only to define groups concisely, but also to study
their properties and to construct groups with desired properties. Such presentations
arise naturally in group theory and topology.

5.1 Definition. Let R be a subset of a group F. The normal closure of the set R in
the group F is the smallest normal subgroup of F containing R.

We denote this normal closure by RF. Obviously, if R is nonempty, then

k
RE={T1 f7'fi fi | fi € Fori € Re = £1,k = 0},
i=1

The following simple observation serves to shorten some proofs.

5.2 Remark. If r € RF, then
urv e RY <« uv e RF.

5.3. Let G be a group generated by a system A = {a;};c; and let F be the free
group with basis X = {x;}ier. The map X — A, givenby x; — a; (i € I), can
be extended to an epimorphism ¢: F — G. Then G = F/N, where N = ker ¢.
If R a subset of F such that N = R¥, then the expression (X | R) determines
the group G up to an isomorphism and is called a presentation of G. This way of
expressing G is convenient, since often, even if N is not finitely generated,'? one
can find a finite set R with the property N = R¥. The presentation (X | R) is
called finite, if the sets X and R finite. There exist finitely generated groups which
have no finite presentation [47], [4], see also [41, Problem 47 for Section 4.2].

5.4 Example. The group S5 has the presentation (x, y | x2, y2, (xy)3).

Indeed, we can define a homomorphism ¢: F(x,y) — S3 by ¢(x) = (12),
¢(y) = (23). Then ¢ is an epimorphism and its kernel contains the elements x?2,
y2, (xy)3. Now we prove that ker ¢ coincides with the normal closure of this set
of elements. Let x¥1 y/t | xks yls xks+1 ¢ ker ¢, where all exponents are nonzero
except perhaps the first and the last. Deleting the subwords x*2 and y*2, we may
assume that all nonzero exponents are equal to 1 (here we use Remark 5.2). Further,
deleting the subwords xyxyxy and yxyxyx, we get a word of length at most 5
with exponents of the letters x and y equal to 1. Among these words only the empty
word lies in ker ¢ (it is equal to 1). The claim is proven.

2By Theorem 22.5, if F'(X) is a free group of finite rank, then any nontrivial normal subgroup N
of infinite index in F (X)) is not finitely generated.
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In Section 7 we will find a presentation of the group S, for any n, using induction
on n and Theorems 5.7, 5.8.

Sometimes instead of words r € R in a presentation we write the identities
r = 1 oreven u = v, if r has the form uv~!. Using the notations of Section 5.3,
we may conveniently identify the generating system A of the group G with the set
X from its presentation'®. Then the set {r = 1 | r € R} is called the set of defining
relations of the group G, and the expression (X | R) is called a presentation of the
group G by generators and defining relations. We write G = (X | R) and identify
the words in the alphabet X * with the elements of the group G.

If u, v are two words in the alphabet X* representing the same element of
the group G, then we say that u = v is a relation in the group G. An arbitrary
relation ¥ = v in G is a consequence of the defining relations (i.e., is deducible
from them) in the sense that the word uv™! in F(X) is a product of conjugates of
words from R*. In general, it is not easy to prove or to disprove that two given
words in the alphabet X * represent the same element of G. This problem, called the
word problem, is algorithmically undecidable even in the class of finitely presented
groups [50], [14]. However, if the group is finitely presented and residually finite,
then the word problem is decidable (see Section 29).

5.5 Exercise. Let n be an integer different from —1, 0, 1. Then the subgroup G of
GL,(Q) generated by the matrices

(Y =)

has the presentation {a,b | a~'ba = b").

Solution. The value of the word a¥1h't ... a*sbls on the matrices A, B is defined
to be the image of this word in G under the map a — A, b — B. We will use the
alphabet {4, B}*, when we consider relations in G.

First, we note that the relation A~!BA = B”" holds. Second, we will prove
that any relation between the matrices A and B can be deduced from this relation.
Let w = a®1b't ... a*s bl be an arbitrary word with the property that its value on
the matrices A and B is equal to the identity matrix £. We rewrite this word as
(P blra=Pvy(aP2b2q=P2) . (aPsblsa=Ps)aPs, where p; = ki + ko + -+ k.
Note that for k > [ the relation a ¥ba* = (a~'ba’ )”(k_[) is a consequence of the
relation a~'ha = b". Using this we can transform the word w to a word w; of the
form w; = a~'b'a’l - aPs. The value of the word w; on the matrices A and B is
also equal to E. Easy matrix calculations show that t = p; = 0, whence w; = 1.

5.6 Exercise. 1) Any finite dihedral group D, has the presentation
{(a,b | a?=1,b"=1,a'ha = b_l).

3The system A may contain some element several times. Then to this element correspond several
letters from X .
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2) The infinite dihedral group D, has the presentation
(a,bla®>=1,a 'ba =b71).

Letp: X — G'beamapfromaset X toagroup G'. Forany wordr = xj ... x,
in the alphabet X* we set @(r) = ¢@(x1)...¢(x,), assuming that p(x~!) =
(p(x))"forx € X.

5.7 Theorem. Let G be a group presented by generators and defining relations
(X | R), and let G’ be another group. Every map ¢: X — G’ such that (r) = 1
forall r € R can be extended to a homomorphism G — G’.

Proof. An arbitrary element g € G can be written (perhaps not uniquely) as
g = X1...x, where all x; lie in X*. Therefore the desired homomorphism
must be defined by the rule g — ¢(x1)...¢(xg). This definition makes sense,
since if xq...xx = 1in G, then ¢(x1)...9(xx) = 1 in G’. This follows from the
fact that ¢ maps all words from RFX) to 1. O

We reformulate this theorem in the following way.

5.8 Theorem. Let G and G’ be groups presented by generators and defining rela-
tions (X | R) and (X' | R'). Then every map ¢: X — X' with the property that
all the words @(r) (r € R) lie in the normal closure of the set R' in F(X') can be
extended to a homomorphism G — G’.

5.9 Exercise. Let G = U xV be a semidirect product, and let the subgroups U and
V have presentations (X | R) and (Y | S) respectively. Then G has the presentation

(XUY|RUSU{y_1xy=wx,y|xeX,eri}),

1

where wy y is a word in the alphabet X *+ representing the element y~!xy of U.

6 Tietze transformations

In this section we will prove that if a group G has two finite presentations, then one
can pass from one to the other by a finite number of Tietze transformations.

In accordance with Section 5.3 we say that a presentation (X | R) of a group G
arises from an epimorphism ¢: F(X) — G if ker ¢ = RFX)_ The epimorphism
¢ and the set R do not determine each other uniquely. For example, the presen-
tation (x | x3) of the group Z3 = {0, 1,2} of residues modulo 3 arises from two
epimorphisms @1, ¢ : F(x) — Z3 given by the rules ¢;(x) = 1 and ¢,(x) = 2,
respectively.

6.1 Exercise. Show that Z 3 has the presentation (x, y | x> y2, x6y73).
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Let (X | R) be a presentation of a group G. Suppose that it arises from an
epimorphism ¢. We define Tietze transformations of types I, II, I’ and II'.

Type I. Let r be an arbitrary element in RFX), Then (X | R U {r}) is also a
presentation of the group G and it arises from ¢. We write this transformation as

(X | R) =5 (X | RU{r)).

Type II. Let y ¢ X* be a new letter and let w be an arbitrary element from
F(X). Then there is a transformation

(X | R) = (X U{y} | RU{y " w}).

The last presentation is also a presentation of the group G. We show that it
arises from the epimorphism ¢’: F(X U {y}) — G given by ¢'(x) = ¢(x) for
x € X and ¢'(y) = ¢(w). Denote by N the normal closure of the set R U {y 1w}
in the group F(X U{y}). Clearly N C ker ¢’. Let us prove the converse inclusion.
Let g be an arbitrary element in ker ¢’. By Remark 5.2, we have that uy*!'v € N
if and only if uw®!'v € N. Therefore we may assume that g does not contain the
letters y and y~!. Then g € kergp C N.

The transformations I, Il and their inverses I, II' are called Tietze transforma-
tions. We write (X1 | R1) — (X3 | Ry) if there exists a finite sequence of Tietze
transformations carrying (X; | R;) to (X, | Ry). Let W be an arbitrary set of
words and let x, y be a pair of letters. We denote by Wy, the set obtained from
W by replacing the letters x and x~! by the letters y and y~! in each word w € W.

6.2 Exercise. 1) Let Ry, R, be two finite subsets of a free group F'(X) which have
the same normal closure. Then (X | R;) — (X | R2).
2) Let R be a finite subset of F(X),letx € X and let y ¢ X* be a new letter.
Then (X | R) = (Xxisy | Rxsy)-
We show only how to deduce the second claim from the first. We have
(X | R) = (X U{p} | RU 7))

_ w
— (X U} | Ramy U{XT19}) — (Xaisy | Ruisy).

The second transformation is possible by claim 1). The corresponding normal clo-
sures are equal since any word of the form uxv can be written as uyv-v = (y ~!x)v.

6.3 Theorem (Tietze). Two finite presentations (X | Ry) and (Y | Ry) define the
same group G if and only if the second presentation can be obtained from the first
by a finite number of Tietze transformations.
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Proof. Suppose that the presentations (X | R1) and (Y| R;) define the same group
G and arise from epimorphisms ¢; and ¢,. By Exercise 6.2 we may assume that
X NY = @. Foreach y € Y we choose w, € F(X) such that ¢;(w,) = @2(y).
For each x € X we choose wy € F(Y) such that ¢ (x) = ¢2(wy). Then

(X | R)) —> - —> (XUY [ Ry U{y wy |y € Y}) —> -

X UY | RIUR Uy wy |y e YU {xtwy | x € X}).

The middle presentation in this chain arises from the epimorphism ¢; Ug,. The final
transformations are possible because of the inclusions R, C ker ¢, C Kker(¢; U@z)
and x 'w, € ker(p; U ¢,). Similarly, the presentation (Y | R,) can be carried to
the same form. Therefore (X | R;) — (Y | R,). The converse assertion of this
theorem is evident. |

Note that there is no algorithm to decide whether two presentations define the
same group [1], [53]. Moreover, to construct the corresponding chain of Tietze
transformations, if it exists, is a kind of art. To do this, one needs to learn how
to deduce the desired consequences from a given set of relations. In the following
examples we will raise relations to a power, multiply them and substitute one relation
into the other. In the last procedure if we have relations of the form w = upv and
p = ¢, we can substitute g for p and get the relation w = uqv.

6.4 Examples. 1) The fundamental group of the trefoil knot'* (Figure 10) has the
presentation (x,y | xyx = yxy). We show that this group is represented as a
nontrivial amalgamated product.'>

(x,y [ xyx =yxy) > (x,y.a,b | xyx = yxy,a = xy,b = xyx)
— (x,y,a,b | xyx =yxy,a®>=b>a=xy,b=xyx,x =a"'b,y =b"1a?)

— le,\rv,a,b la®> =b% x =a'b,y =b"'a?) — (a,b | a® = b?).
2) Now we show that the presentation

(a,b|ab?a™! = b3 ba’b™! = a?)
defines a trivial group. Introduce new generators and relations:
by =aba™', by =abja”', b; =abya '
We deduce the consequences:
bby' =a, by =bby" by-byb' = bbyb7 !,
b*=b?, b} =b3, b; =03,

b =by> =b{® =b>, by =b>=b".

14A definition of the fundamental group of a knot can be found, for example, in the book [28].
5This construction will be discussed in details in Section 11.
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Figure 10

Since b3 = bbb~ ! it follows that 5?7 = b'8. Then 1 = b° = b® = b3. Since
by = a?ba~? we have b* = 1. From b° = 1 = b* it follows that » = 1 and thus
a=1.

6.5 Exercise. Deduce from Exercise 5.6 that
1) any finite dihedral group D, has the presentation

{a,c| a>=1,c¢*=1, (ac)* = 1);

2) the infinite dihedral group Dy, has the presentation (a,c | a®> = 1, ¢? = 1).

7 A presentation of the group S,
7.1 Theorem. The group S, has the presentation
(1 tamr |17 = 1, titinty = tiatiti, Gty = 0 ([ = j| > 1))

Proof. We will proceed by induction on n. For n = 1,2 this theorem is evident.
Now we do an inductive step from n — 1 to n. Let G be the group with the
given presentation. By Theorem 5.7 the mapping #; — (i,i + 1) determines an
epimorphism ¢ : G — S,. It is sufficient to show that |G| < |S,|. Consider the
subgroup H = (t,...,t,—1) of the group G. By the inductive hypothesis S,_1
has the presentation

(S1sevesSnmz | 87 = 1, Sisip18i = siv18isiv1, si8; = 58 (i — j| > 1))

and, by Theorem 5.8, there is a homomorphism S,_; — H given by the rule
Si—>tig1, 1 <i<n-—-2.

Therefore |H| < |S,—1]. We will get |G| < |S,| if we show that |G : H| < n.
Set H = H, H; = Ht1t,...t; (1 <i <n —1). Since tl._l = t; it is enough to
prove that the set HyU Hy U---U Hy,_ is closed with respect to right multiplication
by t1,...,thn—1. Wehave H;t; = H;_y, Hitiy1 = H;j4,. Setu; = t1t,...t;. For
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J =i+ 2wehave H;t; = Hu;t; = Htju; = Hu; = H;. For j <i—1wehave
u; = uj_1t;t;41v, where v commutes with ¢;. Hence H;t; = Hu; 1tjtj 1 1vt; =
Huj_l(tjtj_Ht_/)v = Huj_l(thtjth)v = Htjy1u;1ttj v = H;. |

7.2 Exercise. The group A, has the presentation
(53,....8n |87 =1, (si5)> =13 <i #j<n)).

This presentation arises from the epimorphism F(s3,...,s,) — A, given by
the rule s; — (12i), where 3 <i < n.

8 Trees and free groups

In this section we will prove the theorem of Nielsen—Schreier that any subgroup
of a free group is free. The proof uses actions on trees, which seems reasonable if
one inspects Figure 11, where a part of the Cayley graph of the free group F(x, y)
with respect to the generating set {x, y} is drawn. A development of this method
leads to the Bass—Serre theory of groups acting on trees. This theory describes
from a universal point of view the constructions of amalgamated product and HNN
extension, which play an important role in group theory and topology.

Y
y yXx
1
1

yx~!

Xyx—

P \,1 T

e

Figure 11

For understanding of this section the reader should recall the definitions from
Section 1. All actions in this section are left.
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8.1 Proposition. Let I'(G, S) be the graph defined by a group G and a subset S
of G (see Definition 1.13). Then T'(G, S) is a tree if and only if G is a free group
with the basis S.

Proof. For anedge e = (g,t) witht € S U S™! we define its label to be s(e) = ¢.
Then w(e) = a(e)s(e) and w(e,) = a(er)s(ey) ... s(ey) for any path e ... e,.
Let G be a free group with the basis S. By Exercise 1.14 the graph I'(G, S)
is connected. Suppose that in I'(G, ) there exists a closed reduced path e; ... e,.
Then w(e,) = a(ey) and hence s(eq)...s(e,) = 1. Since S is a basis of the
group G, there exists an index k such that s(ex) = (s(ex+1))"!. Thenex = €x11,
acontradiction. Thus the graph I'(G, S) is atree. We leave the proof of the converse
assertion to the reader. O

8.2 Corollary. Any free group acts freely and without inversion of edges on a tree.

Proof. Let G be a free group with a basis S. The group G acts by left multiplication
on its Cayley graph I'(G, S). This action is free and without inversion of edges,
and the graph I'(G, S) is a tree. |

The converse claim is also true.

8.3 Theorem. Let G be a group acting freely and without inversion of edges on a
tree X. Then G is free and its rank is equal to the cardinality of the set of positively
oriented edges of the factor graph G \ X (for any choice of its orientation) lying
outside some maximal tree.

In particular, if the factor graph G \ X is finite, then

k(G) = [(G\ X)L |- 1(G\ X)°| + 1.

Proof. Let p: X — X’ be the canonical projection of the tree X onto the factor
graph X’ = G \ X. Choose in X’ a maximal subtree 7’ and lift it to some subtree
T in X. Notice that distinct vertices of 7" are not equivalent under the action of G
and each vertex of X is equivalent to some (uniquely defined) vertex of 7. Orient
X’ in an arbitrary way and lift this orientation to X, i.e., assume that an edge of X
is positively oriented if and only if its image in X’ is positively oriented.

Let E’ be the set of positively oriented edges of X’ outside T’. By Exer-
cise 1.11, for each edge ¢’ € E’ there exists a lift of ¢’ with initial vertex in 7. Such
a lift is unique, since otherwise from some vertex of 7" would emanate two distinct
equivalent edges and then the element carrying one edge to the other would fix this
vertex, contradicting the freeness of the action.

Denote this lift by e and notice that the end of e lies outside 7" (otherwise e lies
in T and then ¢’ lies in T"). Let E be the set of all positively oriented edges in X
with initial vertices in T and terminal vertices outside 7. It is easy to show that p
maps E onto E’ bijectively.
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The terminal vertex of each edge e € E is equivalent to a unique vertex from 7',
say v(e). The element from G carrying v(e) to the terminal vertex of e is also
unique by the freeness of the action of G on X. Denote it by g,.

We will prove that G is a free group with basis S = {g. | e € E}. Subtrees g7,
g € G, are disjoint and the set of their vertices coincides with the set of vertices of
the tree X. Let f be a positively oriented edge from X which is outside the union of
these trees. Then f connects two of them, say g1 T and g, T. Contract each subtree
gT onto one vertex and denote this vertex by (g7'). We obtain a new tree X7 in
which the edge f connects the vertices (g17') and (g27'). By Proposition 8.1, it is
sufficient to show that X7 = I'(G, S). We define the isomorphism on the vertices
of X7 by the rule (¢7) — g, and on the edges by the rule f — (g1,s), where
s = g7 'g2 if f connects the vertices (g17T) and (g2T). The element s belongs
to S, since the edge g7 f connects the subtrees T and g7 'g>7.

The last claim of this theorem follows from Exercise 1.7. O

8.4 Corollary (The Nielsen—Schreier Theorem). Any subgroup of a free group is
free.

Proof. Let G be a free group with basis S. By Corollary 8.2, the group G acts
freely and without inversion of edges on the tree I'(G, S). If H < G then H also
acts freely and without inversion of edges on this tree. By Theorem 8.3 the group
H is free. O

8.5 Corollary (Schreier’s formula). If G is a free group of a finite rank and H is
its subgroup of finite index n, then

tk(H) — 1 =n({k(G) —1).

Proof. Let S be abasis of a group G and let H \ G be the set of right cosets of H in
G. The group H acts on vertices and positively oriented edges of the tree I'(G, S)

by the following rules: g |£> hg, (g,5) li (hg,s). Here h e H, g € G,s € S.
Therefore the factor graph Y = H \ T'(G, S) is given by the formulas Y° = H\ G
and Yi = (H \ G)x S, while the edge (Hg, s) connects the vertices Hg and Hgs.
By Theorem 8.3 we gettk(H) = n -rtk(G) —n + 1. |

Next we study the factor graph Y = H \I'(G, S) in detail. Using this graph and
the notion of a fundamental group, we will present another proof of Corollary 8.4.
The label of an edge e = (Hg,t), wheret € SU S ~1 is defined to be the element
s(e) = t. The label of the path / = ey ... ey is the product s(I) = s(e1) . ..s(ex).
The label of the degenerate path is the identity element. If the product of the paths
[1 and [, is defined, then clearly s(/1/) = s(I1)s(l2).

8.6 Remark. In the star of each vertex of the graph Y the labels of distinct edges
are distinct. The set of these labels coincides with S U S~1.
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8.7 Proposition. The group H consists of the labels of all paths in the graph Y
with the initial and terminal vertex H.

Proof. Letl = e;...ex be a path in Y with the initial and terminal vertex H. As
above we have w(e;) = a(e;)s(e;) and w(ex) = a(eq)s(er) ...s(ex) = aley)s(l).
Since w(ex) = a(e1) = H it follows that s(/) € H.

Conversely, let h = s;...5, € H, where s; € ST foralli. Sete; = (H,s1)
ande; = (Hsy...si—1,8;)for2 <i < k. Thenl = e;...ex is a path with initial
and terminal vertex H and with s(/) = h. |

Our immediate aim is to show that H is generated by the labels of some “simple”
pathsin Y.

Choose a maximal subtree A in Y and denote the vertex H by y. For each
vertex v € Y ° there exists a unique reduced path from y to v in A. Denote this
path by p,. For every edge e € Y define the path pe = pae)epy(y-

8.8 Theorem. With the above notation H is a free group with basis {s(pe) | e €
Yl — Al
+

Proof. Defineamaps: 71(Y,y) — G by therule [p] — s(p). Since the labels of
homotopic paths are equal, the map s is well defined. By Proposition 8.7 this map
is a homomorphism onto H. The map s is injective since any nontrivial homotopy
class contains a reduced path with a nontrivial label (by Remark 8.6). The theorem
now follows from Theorem 4.3. (]

8.9 Definition. Let G be the free group with basis S and let H be a subgroup. A
(right) Schreier transversal for H in G is a set T of reduced words such that each
right coset of H in G contains a unique word of 7 (called a representative of this
class) and all initial segments of these words also lie in 7.

In particular, 1 lies in 7 and represents the class H. For any g € G denote by
g the element of 7~ with the property Hg = Hg.

8.10 Theorem. 1) For any subgroup H of a free group G with basis S there exists
a Schreier transversal in G. Moreover, let A be an arbitrary maximal subtree in
the factor graph Y = H \ T'(G, S). Then the set

T(A) = {s(py) |v e Y

is a Schreier transversal for H in G.

2) The correspondence A — T (A) gives a bijection from the set of all maximal
subtrees of Y to the set of all Schreier transversals for H in G.

3) Let T be an arbitrary Schreier transversal for H in G. Then H has basis

{ts(ts) ' |t €T, seSandtsis)”" #1}.
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Proof. 1) Since v runs through the set of all right cosets of H in G andv = Hs(py),
T (A) is a system of representatives of these classes. It remains to notice that for
the path p, = ejes...e, in the tree A its label s(p,) = s(e1)s(ez)...s(ey) is a
reduced word and every initial segment of this word is the label of the corresponding
initial subpath of p,.

2) Let 7 be a Schreier transversal for H in G. To every element t = 57 ...5%
of T we associate apath [; = e ...ex in Y such that w(e;) = H, s(e;) = s;. Let
A(T") be the minimal subgraph in Y containing all the paths /; (¢ € 7). Itis easy to
see that A(77) is a maximal subtree in Y and that the correspondences A — T (A)
and 7 +— A(T) define mutually inverse maps.

3) The third claim follows from Theorem 8.8. Indeed, let A be the maximal
subtree in Y corresponding to the system 7. For each path p, = P e)epa_)(le)
we have s(pe) = tst;', where 1 = $(pg(e)), s = s(e), 11 = $(Pw(e))- By the
first claim we have #,¢; € 7, and by Proposition 8.7 we have tstl_1 € H, that is,
t; = fs. It remains to observe that e € Yi if and only if s(e) € S, and e € Al if
and only if s(p.) = 1, and apply Theorem 8.8. |

8.11 Examples. 1) The set {a"b™ | n,m € Z} is a Schreier transversal for the
commutator subgroup of the free group F(a,b). Moreover, a"b™ -a = a" 1™
and a"b™ - b = a"b™*!. Therefore this subgroup has the basis

{a”bmab_ma_("+1) |n,meZ, m#0}.

2) Let H be the subgroup of the free group F(a, b) consisting of all words with
even sums of exponents for a and b. Clearly, the set {1,a,b,ab} is a Schreier
transversal for H in the group F(a, b). Let I" be the Cayley graph of F(a, b) with
respect to the basis {a, b}. The labelled factor graph H \ T" is drawn in Figure 12
on the left (for example, the vertices Hab and H b are connected by an edge with

Figure 12

the label a since Haba = Hb). Choose in it the maximal subtree A consisting of
the thick edges and their initial and terminal vertices. Then H has the basis

a®, b2, ab?a”', abab™', bab lal.
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Notice that H is the kernel of the homomorphism ¢ : F(a,b) — Z X Z, mapping
a and b to the generators of the first and the second direct factors.

3) Let H be the kernel of the homomorphism ¢: F(a,b) — Sz defined by
ar (12), b — (13).
The set {1,a,b,ab,ba,aba} is a Schreier transversal for H in F(a, b). The group
H has the basis

{a,ab’a™, aba®*b~'a™', ababa='b', b% ba*b™', baba'b7la7!}.

8.12 Remark. The group of automorphisms of the graph H \ I preserving the
labels of edges is isomorphic to the group Z, X Z, in the first example and to the
group S3 in the second.

The following exercise generalizes the last two examples.

8.13 Exercise. 1) Represent the dihedral group D,, as the factor group of F(a,c)
by the normal closure of the set {a2, ¢2, (ac)"}. Let H be the kernel of the canoni-
cal epimorphism ¢: F(a,c) — D,. Prove that the following sets are Schreier
transversals for H in F(a, c):

i) the set of all initial segments of the words (ac)* and (ca)*~'c if n is even
and n = 2k;

ii) the set of all initial segments of words (ac)¥a and (ca)¥ if n is odd and
n =2k + 1.

Then find a basis of the group H.

2) Represent the infinite dihedral group Do, as the factor group of F(a,c) by
the normal closure of the set {az, c2}. Find a basis of the kernel of the canonical
epimorphism F(a,c¢) — Dyo.

9 The rewriting process of Reidemeister—Schreier

Let F be a free group with basis X, let H < F and let T be a Schreier transversal
for Hin F. Fort € T and x € X U X! set y(¢,x) = tx(fx)~!. Nontrivial
elements y(t, x), wheret € T, x € X, form a basis of the free group H, which we
denote by Y. Let H* be the free group with basis Y* = {y* | y € Y'}. The map
y > y* extends to the isomorphism t: H — H*.

For w € H the element t(w) can be computed using the following remark. Let
W=2Xx1...X, € H,x; € XU X! Then

w=y,x1) -y, x2) ... yX1 XL X)L Y (L Xn—1, Xa).

Taking into account y(f, x~!) = y(tx~1,x)~!, one can write w as a word in the
basis Y and hence t(w) as a word in the basis Y *. This process of rewriting of w
as a word in the basis Y is called the Reidemeister—Schreier rewriting process.
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9.1 Theorem. Let a group G have a presentation (X | R) and let ¢: F(X) > G
be the epimorphism corresponding to this presentation. Let Gy be a subgroup of
G and let H be its full preimage with respect to ¢. Then, in the above notation, Gy
has the presentation (Y* | R*), where R* = {t(trt™') |t € T, r € R}.

Proof. Let N be the normal closure of Rin F(X). ThenG, =~ H/N =~ H*/t(N).
The subgroup N consists of all finite products of elements of the form fr®f !,
where f € F,r € R, e = +1. Let f = ht, wheret € T, h € H. Then
t(fref=Y = t(htrét='h=1) = t(h)(z(trt~'))*t(h™1), which proves the theo-
rem. (|

9.2 Corollary. Any subgroup of finite index in a finitely presented ( finitely gener-
ated) group is finitely presented (respectively finitely generated).

9.3 Example. Let  be a homomorphism from the fundamental group of the trefoil
knot G = (a,b | a®> = b3) to the group S3 given by the rule a > (12), b > (123).
We will find a finite presentation of its kernel G .

Letg: F(a,b) — G be the canonical epimorphism and H be the full preimage
of G1 with respect to ¢. As Schreier representatives of the right cosets of H
in F(a, b) we choose 1, b, b2, a, ab, ab?. Then the following elements generate H :

l-a-@7'=1, 1-b-(b)"' =1,
x=b-a-(ba)"' =bab2a!, b-b-(b2)7 =1,
y=0b%a-(b2a) ' =b%ab a7,  w=0b>-b-(b3 =b
z=a-a-(@) "' =d’ a-b-(ab)™ =1,
u=ab-a-(aba)~" = abab™?, ab-b-(ab?)' =1,

v=ab?® a- (ab2a)"' =ab?ab™', s=ab?>-b-(ab3) "' =aba"".

We may assume that these elements generate G;. To find the defining relations
of Gy, we need to rewrite the relations ¢7t~1, where t € {1,b,b% a,ab,ab?},
r = b3a—?2, as words in generators x, y, z, u, v, w, s. We have

r=wz 1, brb~! = wolx7l, b*rb™% = wuty™!,
ara ' =sz7t, (ab)yr(ab)”! =sy Tt (ab®)r(ab®) ! = sx oL

Now we eliminate generators w, v, u, s and replace them in all relations by the
words z, x 1z, y~1z, z. As aresult we obtain the presentation (x, y,z | yz = zy,
xz = zx) of the group G;. It follows that G; = F(z) x F(x, y).

9.4 Exercise. Prove that the kernel of the homomorphism
0: (s.t]s313 (50)3) > Z3 = (a|a®)

mapping s and ¢ to a is isomorphic to Z x Z.
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One can prove this by considering the Cayley graph (Figure 13) constructed
from the presentation (s, ¢ | 53,13, (s1)3).

Figure 13

9.5 Exercise. Find a presentation of the group A, using the presentation of the
group S, in Theorem 7.1.

10 Free products

In this section we define the free product of groups 4 and B. By taking isomorphic
copies of these groups, we may assume that A N B = {1}. A normal form is an
expression of the form g1g> ... g,, wheren =20, g, € (AUB)—{1} (1 <i <n)
and the adjacent factors g;, g;+1 do not lie in the same group A or B. The number n
is called the length of this normal form. The normal form of zero length is identified
with the identity element. Define a multiplication on the set of all normal forms,
using induction on the sum of lengths of the forms: for every normal form x set
1-x =x-1= x; fornormal forms x = g1...gpand y = hy ... h, withn > 1,
m =1 put

g1...&nh1. . hy ifgon€e A,hy e Borg, € B, h; € A,
Xy =1981...8n-12h2 ... hy, ifgy,hy€Aorg,, hy € Bandz = g,h; # 1,
g1.--8n—1-ha...hy, ifgy,hy € Aorg,, hy € Band g,h; = 1.

10.1 Exercise. Prove that the set of normal forms with this multiplication is a group.

This group is called the free product of the groups A and B and is denoted A x B.
The groups A and B are naturally embedded into the group 4 * B. The following
proposition is straightforward.
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10.2 Proposition. Let A and B be subgroups of a group G such that any nontrivial
element g € G can be represented in a unique way as a product g = g182 - .- &n,
where gi € (AU B) —{1} (1 < i < n) and the adjacent factors g;, gi+1 do not
lie in the same group A or B. Then G =~ A x B.

10.3 Theorem. Let A = (X | R), B = (Y | S)and X NY = @&. Then
A*B=(XUY|RUS).

Proof. Denote by ((R)), ((S)) and {(R U S)) the normal closures of the sets R, S
and R U S in the groups F(X), F(Y) and F(X UY). Let¢: F(X) —> A and
Y : F(Y) — B be homomorphisms with kernels {(R)) and {(S)) respectively. Let
0: F(XUY) — A= B be the homomorphism coinciding with ¢ on X and with
on Y. Itis sufficient to prove thatker 8 = ((RU S)). Obviously, ((RUS)) C ker 6.
We will prove the converse inclusion. Let g = g18>...gn € ker 6, where g; €
(F(X)U F(Y))—{1} and the adjacent factors g;, g;+1 do not lie in the same group
F(X)or F(Y). Since 0(g1)0(g2)...60(gn) = 1in A % B, there exists i such that
O(gi) = 1; hence g; € ((R)) or g; € {(S)). Further, 6(g1...gi—18i+1..-8n) = 1;
therefore, by induction on 7, we conclude that g ... gi—1gi+1...8n € {(RU S))
andso g € (RU S)). O

10.4 Example. Do, = Z5 % Z;.

Although this follows from Exercise 6.5, we give another proof. After Exam-
ples 1.16 we defined the automorphisms a and b of the graph €. Set ¢ = ba.
Then a and ¢ can be thought of as reflections of the graph € through the initial
and the middle points of the edge eq. In particular, @ and ¢ have order 2. Forn = 0
the automorphisms (ca)”, (ca)”c, a(ca)"c, a(ca)™ carry the edge eq to the edges
€n, €n, €_(n+1)> €—(n+1), respectively. Since every automorphism of the graph €oo
is completely determined by the image of the edge e, all these automorphisms are
distinct and they form the group Do.. By Proposition 10.2, we get Doo = {(a) * {(c).

11 Amalgamated free products

Let G and H be groups with distinguished isomorphic subgroups A < G and
B < H. Fix an isomorphism ¢: A — B. The free product of G and H with
amalgamation of A and B by the isomorphism ¢ is the factor group of G * H by
the normal closure of the set {@p(a)a™! | a € A}. We will refer to this factor group
briefly as the amalgamated product and use the following notations:

(GxH|a=g¢(a),acA), G=xg=p H, G=*4H,

where in the last two forms the isomorphism ¢ must be specified.
One can interpret the amalgamated product ' = G x4—p H as the result of
identifying A and B in the free product G * H. Below we define an A-normal form
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and show that to every element of F there corresponds a unique A-normal form.
Using this we will show that G and H can be canonically embedded to F.

Leti: G *x H — F be the canonical homomorphism. Any element f € F
can be written as f = i (x¢)i (x1)...i(x,), where x; € G U H. Simplifying the
notation, we will write this as f = x¢x71 ... X,.

Choose a system of representatives T4 of right cosets of A in G and a system
of representatives Tp of right cosets of B in H. We assume that 1 represents the
cosets A and B. Any x € G can be uniquely written in the form x = Xx, where
xeA xely.

11.1 Definition. An A-normal form is a sequence (xg, X1, ..., X,) such that
1) xo € A,

2) xi e Tq4—{1}orx; € Tp — {1} fori = 1, and the consecutive terms x; and
X;j+1 lie in distinct systems of representatives.

Similarly, one can define a B-normal form.

11.2 Example. Let G = (a | a'?> = 1), H = (b | b'> = 1), let A and B be
subgroups of order 3in G and in H andletp: A — B be the isomorphism sending
a* to b>. Then the free product of G and H with amalgamation of A and B by ¢
has the presentation {(a,b | a'? =1, b'> =1, a* = b>). Let Ty = {1,a,a?,a>},
T = {1,b,b? b3 b*}. We write the element f = a>ha as a product of factors
which form an A-normal form. For this we rewrite this word from the right to
the left by forming coset representatives and replacing some elements in A by
corresponding elements in B, and conversely: thus

f =a’ba* a=ab®-a =a3b° -ba =a’a* ba = a*aba.
Hence the A-normal form for £ is (a*,a3, b, a).

11.3 Theorem. Any element f € F = G x4=p H can be uniquely written in the
form f = xox1...xn, where (X9, X1,...,Xn) is an A-normal form.

Proof. The existence of this form can be proven by induction on n, with the help
of successive extraction of coset representatives, as in the example above.

We will establish the uniqueness. Let Wy be the set of all A-normal forms and
let Wp be the set of all B-normal forms. Let ¢.: W4 — Wp be the bijection given

by (x0, X1,...,%Xn) — (¢(x9), X1,...,X,). Define a left action of the group G on
the set Wy: for g € G and © = (x¢, X1,...,X,) € Wy, wheren = 1, we set
(gx0,X1,...,%Xn) ifg e A,
g._[: ((’g-;-(/)’mvxl’""xn) 1fg¢A,XI€H,
(gxo0X1,X2,...,Xn), ifgé¢ A, x; € G, gxox; € A,

(gXoX1,8X0X1,X2,...,Xp) ifg ¢ A x1 €G,gxox; ¢ A.
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Also we set
(gxo) ifgeA,

g-(xo)=93y__"___ .
(gx0,8x0) ifg ¢ A.

Similarly, one can define an action of the group H on the set Wp. We extend
this action to the set Wy as follows: h-1 = ¢ ' (h-¢,(1)),T € Wy, h € H. These
actions of the groups G and H on the set Wy can be extended to the action of the
free product G x H on Wy. Since the elements ¢(a)a™!, where a € A, lie in the
kernel of this action, there is a natural action of the group F on the set Wy.

Let f € F and f = xoXx1...Xn, where (xg, X1,...,Xn) is an A-normal form.
Compute the image of the form (1) € Wy under the action of f. Write f; =
X0X1...X;. Then

S = fu—1-(1,xp)

= fn—2 . (l»xn—hxn) == fO . (19x1’ e ’xn—laxn)
= (X(), X1y vxn—l»xn)-
Thus to the element f there corresponds a unique A-normal form. |

Sometimes the expression xoX1 . . . Xy is called the normal form of the element f .

11.4 Exercise. Show that the formulas for g - T and g - (x¢) in the proof of Theo-
rem 11.3 do indeed define an action of the group G on the set Wjy.

11.5 Corollary. Let F = G x4=p H. Then the canonical homomorphism
i:Gx H — F induces embeddings of groups G and H into the group F. The
subgroups i (G) andi (H) generate the group F, their intersectionis i (A), or what
is the same, i (B).

We will denote the groups G, H, A and B, and their canonical images in the
group F by the same letters.

11.6 Corollary. Let G = Gy x4 G,. [fg € Gandg = g182 ... 8n, wheren = 1,
and g; € G1 — A or g; € G, — A depending on the parity of i, then g # 1.

12 Trees and amalgamated free products

Let H be a subgroup of a group G. We denote by G/H the set of all left cosets of
H in G even if H is not normal.

A connected graph, consisting of two vertices and two mutually inverse edges
is called a segment: e————e
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12.1 Theorem. Let G = G x4 Go. Then there exists a tree X, on which G acts
without inversion of edges such that the factor graph G \ X is a segment. Moreover
this segment can be lifted to a segment in X with the property that the stabilizers
in G of its vertices and edges are equal to G1, G, and A respectively.

Proof. Let X = G/G{ U G/G, and X} = G/A. Puta(gA) = gG1, w(gAd) =
gG,, and let T be the segment in X with the vertices G, G, and the positively
oriented edge A. The group G acts on X by left multiplication.

First we will prove that the graph X is connected. Without loss of generality, it
is sufficient to prove that any vertex gG is connected by a path to the vertex G;.
Write the element g in the form g1 g5 ... gn, with g; € G; or g; € G, depending
on the parity of i. Then the vertices g1...g;—1G1 and g1 ... g; G coincide if
gi € Gy, and are connected by edges to the vertex g1 ...2i—1G2 (= g1...8iG2)
if g; € G,. Now the connectedness follows by induction on #.

Finally we will prove that the graph X has no a circuit. Suppose that there exists
a closed reduced path e; ...e, in X. Applying an appropriate element of G, we
may assume without loss of generality that «(e;) = G;. Since adjacent vertices are
cosets of different subgroups, we conclude that 7 is even and there exist elements
x; € G1—A,y; € Gp—Asuchthata(ey) = x1Gy, a(e3) = x1y1Gyq, ..., a(ey) =
X1V1 ... Xn2G2, w(€n) = X1Y1...Xp/2Yn/2G1. Since w(e,) = a(er) = Gy, we
obtain a contradiction to the uniqueness of the normal form of an element in the
amalgamated product G x4 G». O

12.2 Remark. In the graph X constructed above, all edges with the initial vertex
gG1 have the form gg; A, where g; runs over the set of representatives of the left
cosets of A in G1. The valency of the vertex gG is equal to the index |Gy : A].
The stabilizer of the vertex gG is equal to gG1g~!. Analogous claims are valid
for any vertex of X of the form gG».

12.3 Theorem. Let the group G act without inversion of edges on a tree X and
suppose that the factor graph G \ X is a segment. Let T be an arbitrary lift of this
segment in X. Denote its vertices by P, Q and the edge by e, and let Gp, Gg
and G, be the stabilizers of these vertices and the edge. Then the homomorphism
¢: Gp *g, Gg — G which is the identity on Gp and G is an isomorphism.

Proof. Firstwewill provethatG = (Gp,Gg). WriteG’ = (Gp, Go) and suppose
that G’ < G. The graphs G’ - T and (G — G') - T are disjoint. Indeed, the identity
g'P = gQ, where g’ € G/, g € G — G, is impossible, since the vertices P and
Q are not equivalent under the action of G. Analogously, the identity g'Q = gP
is impossible. The identity ¢’R = gR, where R € {P, Q}, is also impossible,
since it would imply that g € g¢’Gr € G’. It remains to observe that X = G - T
is a connected graph, and therefore it cannot be represented as the union of two
nonempty disjoint subgraphs. This is a contradiction.
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Now we prove that the homomorphlsm @ is injective. Let G =Gp *G, Go
and let X be the tree constructed from G as in the proof of Theorem 12.1. Define a
morphism ¥: X — X by the rule gG, — ¢(g) - r, where r € {P, Q.e}, g € G.
This morphism is an isomorphism: the surjectivity follows from X = G - T and
G = (Gp, GQ), while the injectivity follows from Exercise 1.5, Remark 12.2, and
the injectivity of the restrictions ¢|G,, ¢|c,, -

Let g € G — Gp. Then the vertices Gp and gGp of the tree X are distinct.
Therefore the vertices P and ¢(g)- P of the tree X are also distinct. Hence p(g) # 1
and the injectivity of ¢ is proven. |

We give another proof of the injectivity of ¢. It is sufficient to show that
8n..-8281 7 1in G forn > 2, where g; € Gp — G, or g; € Gg — G, depending
on the parity of i. Without loss of generality we may assume that g; € Gp — Ge.
Then g; fixes P butnot Q. We have d(P,g:1Q) =d(g1P,g:10) =d(P,Q) =1
and in particular d(Q, g1 Q) = 2. Therefore we may regard g; as acting on the
tree X as arotation about the vertex P. This rotation sends any reduced path passing
through the vertices P and Q to a reduced path passing through the vertices P and
g1 Q. Similarly, g, acts on the tree X as a rotation about the vertex Q. Using these
remarks, one can prove by induction that d(Q, g; ... g2g1 Q) equals i for even i
and i + 1 for odd i. Therefore g, ... g2g1 # 1.

12.4 Example. The group Do, acts without inversion of edges on the barycentric
subdivision of the graph € (see Section 1 and Figure 14).

a c
N T N
—1 -1/2 0 1/2 1 3/2
Figure 14

The corresponding factor graph is isomorphic to a segment. As a lift of this
segment we can take the segment with the vertices 0 and 1/2. The stabilizers of
these vertices are equal to {(a) and (c) where ¢ = ba. The stabilizer of the edge of
this lift is equal to {1}. Therefore Dy, = {(a) * (c).

12.5 Exercise. Let¢o: G — H be an epimorphism and let H = H; xg, H,. Then
G = Gy *g, Ga, where G; = ¢ (H;).

13 Action of the group SL,(Z) on the hyperbolic plane

In what follows C denotes the field of complex numbers. Each complex number z
can be uniquely written in the form z = x + iy, where x,y € R, i> = —1. The
numbers x, y and y/x2 + y? are denoted by Re(z), Im(z) and |z|, and are called
the real part, the imaginary part and the norm of z respectively.
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The hyperbolic plane H? is the set {z € C | Im(z) > 0}, which it is convenient
to identify with the open upper half-plane of the Euclidean plane. The elements of
this set will be called points.

A hyperbolic line is an open half-circle or an open half-line (in the Euclidean
sense) in H? such that its closure meets the real axis at right angles (Figure 15).

Figure 15

13.1 Exercise. 1) Through any two points in H? there passes a unique hyperbolic
line.

2) For any hyperbolic line / and any point z € H? not on this line, there exist
infinitely many hyperbolic lines passing through z which do not intersect /.

A linear fractional transformation (or a Mobius transformation) of the plane

H? is amap H? — H? of the form z > ?jig,wherea,b,c,d e R,ad —bc = 1.

The following exercise shows that the image of M? under such map indeed lies
in H2.

13.2 Exercise. If a,b,c,d € R,ad —bc = 1 and Im(z) > 0, then

(az +b) Im(z)
m _
cz+d

ez +d)?
In particular, this number is positive.

The group SL,(R) acts on H? by the rule

a b a9zt b
Dz .
c d cz+d
The kernel of this action is {£ E'}. Thus the group PSL,(R) = SL,(R)/{£E}

can be identified with the group of all linear fractional transformations of the
plane H2. The group PSL;(Z) can be considered as a subgroup of PSL;(R).
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13.3 Exercise. Let z be a point of H2. The image of the half-line {z + it | ¢ = 0}
under the action of a matrix (g Z) from SL;(R) is either a half-line (if ¢ = 0) or
an arc of a circle (if ¢ # 0) whose closure contains the real point a/c.

13.4 Exercise. 1) The group PSL;(R) acts transitively and faithfully on the set of
all hyperbolic lines.

2) The group PSL,(R) is generated by the transformations z + z + b (b € R),
Zl—>az(ae[R,a>0),Zb—>—%.

3) The group PSL;(Z) is generated by the transformations ¥ : z — z 4+ 1 and
1
@z —7.

Let M denote the union of the interior of the infinite hyperbolic triangle XY oo
together with the part of its boundary drawn in Figure 16 by a thick line. More
precisely,

M=1{z|1<|z], =1/2 <Re(z) < 1/2}U{e'® | n/3 < a < 7/2}.

Figure 16

13.5 Theorem. The set M is the fundamental region for the action of the group
PSL,(Z) on H?, i.e., under this action each point of H? is equivalent to a point of
M and distinct points of M are not equivalent.

Proof. 1) First we prove that any point z of H? can be carried to a point of M by
an appropriate element of PSL,(Z). Given a point z € H?2, we consider all its
images under the action of the group PSL,(Z) and choose among them an image
z' with maximal imaginary part. This is possible, since if (‘; 3) € SL,(Z), then
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Im(%) = |clsz£Z)|2’
many pairs of integers (c, d).

Since the transformation v preserves the imaginary part, we may assume that
—1/2 < Re(z’) < 1/2. The condition Im(z") = Im(¢(z’)) implies that |z’| = 1.
Thus the point z’ lies in the set M or on the arc {¢/* | 7/2 < a < 27/3}. In the
last case one can apply the transformation z —% to carry z’ into M.

2) We will prove that distinct points from M are inequivalent. Suppose that
z = ’CIZZ:[S, where z,z" € M, (¢ 2) € SLy(Z). Ifc = 0thena = d = +1 and
hence b = 0,z = z’. Let ¢ # 0. Then we have

and the inequality |cz + d| < 1 is satisfied by only finitely

(cz' —a)(cz+d)=cZ(cz+d)—al(cz +d)
=c(az+b)—a(cz+d)=cb—ad =—-1.

Therefore |2/ —a/c|-|z + d/c| = 1/c?. Since the numbers a/c and d /c are real,
|z/ —a/c| = Im(z' —a/c) = Im(z') = +/3/2. Analogously |z + d/c| = /3/2.
Hence |c¢| < 2/+/3. Since ¢ is anon-zero integer, ¢ = +1and |z’ Fa|-|z+d| = 1.
Forany w € M andn € Z we have |w + n| = 1; moreover the equality is possible
only for n = —1,0. This gives a finite number of possibilities for a, b, ¢ and d.
All of them lead to a contradiction if we assume that z # z’. |

13.6 Exercise. If a matrix g € SL,(Z) — {£ E} fixes a point z € M, then one
of the following cases holds (where the matrices —E, A and B are defined as in
Theorem 13.7):

1) z = ™2 and g is a power of the matrix A;

2) z = ¢'™/3 and g is a power of the matrix B.
13.7 Theorem. The union of the images of the arc
T ={e*|n/3<a<nr/2}

under the action of the group SL,(Z) is a tree.'® The group SL,(Z) acts on this tree
without inversion of edges and so that distinct points of the arc T are inequivalent.
The stabilizer of this arc and the stabilizers of its endpoints e'™? and e'™3 are
generated by the matrixes —E = (7§ _9), A= (_93) and B = (_91) of orders
2, 4 and 6 respectively. In particular,

SLz(Z) ~ /4 *Z, Ze.

Proof. We will prove that the set X = SL,(Z) - T is a tree. The connectedness
of X follows from the facts'” that SL,(Z) = (A, B) and the matrices A and B fix

16More precisely, a geometric realization of a tree since our definition of a tree is combinatorial.
1Tt is known that SL(Z) is generated by the transvections z12 (1) and 21 (1) which are equal to
B 'Aand BA™.
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the endpoints of the arc T (in a similar way we proved the connectedness of X in
Theorem 12.1). Two different images of 7" under the action of SL;(Z) can intersect
each other only in the endpoints, as follows from Theorem 13.5 and Exercise 13.6.
Thus we can consider X as a graph. Suppose now that some images of 7', considered
as edges of this graph, form a circuit. Then these images bound some compact region
D in H?. Since the images of M cover H?2, the interior of D contains a point w
lying in the interior of some translate g.M. By Exercise 13.3, from w into the
interior of the region g.M leads either a half-line or an arc converging to a point on
the real axis. This half-line or arc must intersect the boundary of D. We obtain
a contradiction to the fact that the interior points of M are not equivalent to the
boundary points. Thus X is a tree. The other claims of the theorem can be easily
verified, the last claim following from Theorem 12.3. |

13.8 Exercise. Let C = (91). Prove that (—E,C) = D5, (A,C) = D4 and
(B,C) = Dg. Deduce that GL>(Z) = D4 *p, De.

The amalgamated product Gy *g, G is called nontrivial if Gz # G and
G3 # G,. We state the following four theorems without proofs.

13.9 Theorem (Serre [57]). Forn = 3 the groups SL, (Z) and GL,(Z) cannot be
represented as nontrivial amalgamated products.

Let F,, be a free group with basis X = {x1,x3,...,x,} and let Aut(F;) be
the automorphism group of F,,. The group Aut(F;) is a classical object in group
theory, as is the group GL, (Z). It is known (see [40] or Theorem 1.7 in Chapter 3
of this book) that there exists an epimorphism Aut(F,) — GL,(Z) given by the
following rule: the image of an element & € Aut(F}) is the matrix & whose entry
@;; is equal to the sum of the exponents of the letter x; in the word a(x;). Denote
by SAut(F},) the full preimage of the group SL, (Z) under this epimorphism.

13.10 Theorem (Bogopolski [11]). 1) Forn = 3 the groups Aut(F,) and SAut(Fy,)
cannot be represented as nontrivial amalgamated products.

2) The group Aut(F>) can be represented as a nontrivial amalgamated product.
This representation is unique up to conjugation.

Notice that Theorem 13.9 follows from the first claim of Theorem 13.10 in view
of Exercise 12.5.

The proofs of the following theorems of Ihara and Nagao are contained in [57].

Let p be a prime number. We denote by Z[1/p] the subring of the ring Q
of rational numbers consisting of all numbers of the form n/p*, where n € Z,
ke{0,1,...}.

13.11 Theorem (Thara).

SL2(Z[1/ p]) = SL2(Z) *r1y(p) SL2(Z),
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where I'g(p) is the subgroup of the group SL,(Z) consisting of all matrices of the
form (i{ 2), where ¢ = 0 (mod p).

Let K be an arbitrary commutative and associative ring with the identity element.
Denote by B(K) the subgroup of the group GL,(K) consisting of all matrices of
the form (g 3)

13.12 Theorem (Nagao). Let k[t] be the ring of polynomials in t over the field k.
Then
GL,(k[t]) = GL2 (k) *p) B(k[t]).

13.13 Theorem. For any integer m = 2 the matrices

t12(m) = ((1) ’711) tr1(m) = (riz (1))

generate in SLo(Z) a free group of rank 2.

Proof. With the notation of Theorem 13.7, we have t;o(m) = (B~14)™ and
tr1(m) = (BA™Y)™. It remains to note that any nonempty reduced product of
two words (B~'A4)™ and (BA~')" has a nontrivial normal form in the amalga-
mated product in Theorem 13.7. |

Another proof of this theorem, using direct matrix computations, can be found
in [38].

14 HNN extensions

Let G be a group and let A and B be subgroups of G with ¢: A — B an isomor-
phism. Let (¢} be the infinite cyclic group, generated by a new element t. The HNN
extension of G relative to A, B and ¢ is the factor group G* of G * (t) by the
normal closure of the set {t "at(¢(a))™! | a € A}. The group G is called the base
of G*, t is the stable letter, and A and B are the associated subgroups. We use the
following notation for the group G*:

(G,t|t7rat = ¢(a), a € A).

Below we will show that any element in the group G* has a unique normal
form. From this we will deduce that the groups G and (¢) can be canonically
embedded into G*. After identification of G and (¢) with their images in G* the
subgroups A and B will be conjugate in G* by ¢. Moreover the restriction on A4 of
this conjugation will coincide with the isomorphism ¢.

Leti: G * (t) — G* be the canonical homomorphism. Any element x € G*
can be written as x = i (g0)i (1)*'i (g1)...i(¢)*"i (gn), where g; € G, ¢; = £1.
Simplifying the notation, we write this as x = got°'g;...1%"g,.
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Choose systems of representatives T4 of the right cosets of A in G and Tp of
the right cosets of B in G. We shall assume that 1 represents the cosets A and B.
If g € G, then we denote by g the representative of the coset Ag and by g the
representative of the coset Bg.

Further the letter g with a subscript will denote an element of the group G. By
& with a subscript we mean 1 or —1.

14.1 Definition. A normal form is a sequence (go,t°', g1,...,t%", gy) such that

1) go is an arbitrary element of G;

2) ife; = —1,then g; € Ty;

3) ife; = 1,then g; € Tp;

4) there is no consecutive subsequence ¢, 1, 1 7¢.

Using the relations t "'a = ¢(a)t~! and th = ¢~ '(b)t, wherea € A, b € B,
one can write any element of G* in the form got°! gy .. .t°" g,, where the sequence
(go,2%', g1,...,t%", gy) is a normal form.

14.2 Example. Consider the HNN extension G* = (a,b,t | t'a?t = b3), with
base G = F(a,b) and associated subgroups A = (a?) and B = (b3). As Ty
we take the set of all reduced words in F(a, b) which do not begin with a power
of a except possibly a'. As Tp we take the set of all reduced words in F(a,b)
which do not begin with a power of b except possibly b! and h2. We compute
the normal form of the element x = b%t~'a~*th>abt~'a*bh3a by rewriting this
word from the end. Since a*b3a = b3a and t7'a* = b%t~ 1, we have x =
b2t Ya=*tb%ab’t71b3a. Since b2ab” = b2ab” and th3 = a?t, it follows that
x = b2t Ya=2tb%ab’t7'b3a = bab’t"'b3a. The sequence (bab’,t~!,b3a) is
a normal form.

14.3 Theorem. Let G* = (G,t |t 'at = ¢(a), a € A) be an HNN extension of
the group G with associated subgroups A and B. Then the following statements
hold.

1) Every element x of G* has a unique representation x=got°1gy ...t°" g,
where (g0, 15, g1,...,t°", gp) is a normal form.'®

2) The group G is embeddedin G* bythemap g — g. Ifw = got®lgy...t°" gy,
n = 1, and this expression does not contain subwords t 1 g;t with g; € A,
ortgjt~ withg; € B, thenw # 1in G*.

The statement on the embedding of G in G* was proven by G. Higman,
B.H. Neumann and H. Neumann (1949). Therefore this construction is called
an HNN extension. The last part of statement 2) was proved by J. L. Britton and is
called Britton’s lemma.

18Therefore the expression got€! g1 ... 25" g, is also called the normal form of the element x.
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Proof. The proof of the first statement is similar to the proof of Theorem 11.3.
To prove the existence of the desired representation of x one takes an arbitrary
expression for x as a word in elements of G and ¢, and rewrites it, moving from
right to left as in the example above. In this process two operations are used:
forming coset representatives and replacing t ~'a by ¢(a)t~!ifa € A, and tbh by
e~ L(b)tifbh € B.

Now we prove the uniqueness of such representation. To this end we define an
action of G* on the set W of all normal forms in such a way that the image of the
form (1), consisting of 1, under the action of the element x will be equal to the
normal form of x.

Let t = (go,t%!,g1,...,t%",g,) € W. We define the actions of the ele-
ments g € G, t and ¢! on 7 by the following formulas:

g 1T= (ggo’tgl’gla‘”azan7gn);

o V@ (g0)g1 172 g2, 1% gn)  ifer = —1, 80 € B,
(1 (b).1, 80,151, g1, ..., 15", gn) otherwise,

where b is the element of B such that go = bgy;
1o = )@(80)81.172, 82, 1% gn) ifer =1, g0 € 4,
(p(a), 171, go, 51, g1,...,1°", g,) otherwise,

where a is the element of A such that gg = agyp.

The first formula defines an action of G on the set W. The second and the third
formulas define the action of (¢) on W (Exercise 14.4). So G * () acts on W in a
natural way. Let N be the normal closure of {t latp(a)™! | a € A} in G * (1).
The subgroup N acts trivially on W (Exercise 14.5). Therefore G N N = {1} and
hence G is embedded in G* = (G * (t))/N. Moreover, since N lies in the kernel
of the action of G on W, the group G* also acts on W. Now the uniqueness of the
normal form follows from Exercise 14.6.

Next we prove the last claim of statement 2). To do this we apply the process
of rewriting w in the normal form. Using the assumptions, one can show that this
normal form contains 27 + 1 = 3 terms. On the other hand, the normal form of the
identity element is (1). Hence w # 1 by the statement 1). |

14.4 Exercise. Prove that the composition of the actions of the elements ¢ and ¢~
on W is the trivial action.

14.5 Exercise. Prove that the actions of the elements ¢ ~!at and ¢(a) on W coincide
forany a € A.

14.6 Exercise. Let x = got®lgy...t°"g, € G*, where (go,1%', g1,...,t5", gn)
is a normal form. Prove that the image of the normal form (1) under the action of
the element x is equal to the form (go, %!, g1, ...,2°", gn)-
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14.7 Corollary. Let G* = (G,t | t~'at = ¢(a), a € A) be an HNN extension of
the group G with the associated subgroups A and B. Then the canonical homo-
morphism i © G % (t) — G* induces embeddings of the groups G and (t) into
the group G*. Identify these groups with their images in G*. Then the subgroups
A and B are conjugate in G* by the element t. Moreover the restriction to A of
conjugation by t coincides with the isomorphism ¢.

15 Trees and HNN extensions

A graph consisting of one vertex and two mutually inverse edges is called a loop:

O

15.1 Theorem. Let G = (H,t | t~'at = ¢(a), a € A) be an HNN extension of
the group H with the associated subgroups A and ¢(A). Then there exists a tree X
on which G acts without inversion of edges such that the factor graph G \ X is a
loop. Moreover, there is a segment Y in X such that the stabilizers of its vertices
and edges in the group G are equal to H, tHt ™! and A respectively.

Proof. Set X° = G/H, X; = G/A (here all cosets are left), a(g4) = gH,
w(gA) = gtH,andlet Y be the segmentin X with the vertices H , ¢t H and positively
oriented edge A. Define the action of G on the graph X by left multiplication. The
rest of the proof is similar to the proof of Theorem 12.1, and we leave it for the
reader. 0

15.2 Theorem. Let a group G act without inversion of edges on a tree X and let
the factor graph Y = G \ X be a loop. Let Y be an arbitrary segment in X,
let P, Q and e, e be the vertices and the edges of this segment, and let Gp, Gg
and G, = G be the stabilizers of these vertices and edges in the group G. Let
x € G be an arbitrary element such that Q = xP. Put G, = x"'G.x and let
¢: Ge — G, be an isomorphism induced by the conjugation by x. Then G, < Gp
and the homomorphism

(Gp.t|t7 at = p(a), a € G.) - G
which is the identity on Gp and sends t to x is an isomorphism.

The proof is similar to the proof of Theorem 12.3.

16 Graphs of groups and their fundamental groups

In this section we define the fundamental group of a graph of groups, thereby
generalizing the definitions of amalgamated product and HNN extension.
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16.1 Definition. A graph of groups (G, Y) consists of a connected graph Y, a
vertex group G, for each vertex v € Y°, an edge group G, for eachedge e € Y1,
and monomorphisms {ae: Ge — Gge) | € € Y1}, we require in addition that
G. = Gs.

Sometimes we use the monomorphism w, : Ge — Gy(e) defined by w, = ;.
Denote by F(G, Y) the factor group of the free product of all groups G, (v € Y?)
and the free group with basis {z, | ¢ € Y'!} by the normal closure of the set of
elements 7, Yoo (g)te - (az(g)) ' and t,1; (e € Y1, g € G,).

We will define the fundamental group of a graph of groups (G, Y') with respect
to a vertex and also with respect to a maximal subtree of the graph Y. We will show
that these definitions yield isomorphic groups.

16.2 Definition. Let (G, Y) be a graph of groups and let P be a vertex of the
graph Y. The fundamental group w1(G, Y, P) of the graph of groups (G, Y) with
respect to the vertex P is the subgroup of the group F(G,Y) consisting of all
elements of the form gofe, g1te, . . . le, &n, Where ejes ... e, is a closed path in ¥
with the initial vertex P, go € Gp, gi € Gu(e;), 1 <i < n.

16.3 Definition. Let (G, Y) be a graph of groups and let 7 be a maximal subtree
of the graph Y. The fundamental group w1(G, Y, T) of the graph of groups (G, Y)
with respect to the subtree T is the factor group of the group F (G, Y') by the normal
closure of the set of elements #, (e € T1).

16.4 Examples. 1) If G, = {1} forall v € Y, then 7(G,Y, P) = n,(Y, P),
where 771 (Y, P) is the fundamental group of the graph Y with respect to the vertex P
(see Section 4).

0
DY = «—° eisa segment, then the group 71 (G, Y, Y) is isomorphic
to the free product of the groups Gp and Go amalgamated over the subgroups
ae(Ge) and oz (Ge).

HIf Y=r Q e is aloop, then the group 71 (G, Y, P) is isomorphic to

the HNN extension with the base Gp and the associated subgroups o, (G,.), and
oz (Ge).

4) For an arbitrary graph of groups (G, Y'), the fundamental group 1 (G, Y, T)
can be obtained from the fundamental group 1 (G, T, T) by consecutive appli-
cations'® of HNN extensions. The group 71 (G, T, T) can be obtained from the
fundamental group of a segment of groups (for |7°| > 1) by successive applica-
tions of the construction of an amalgamated product.

19The number of applications is equal to the number of pairs of mutually inverse edges of the graph
Y not lying in the tree T'.
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16.5 Theorem. Let (G, Y) be a graph of groups, let P be a vertex of Y and let
T be a maximal subtree of Y. The restriction p of the canonical homomorphism
F(G,Y) - n(G,Y,T) to the subgroup mw1(G,Y, P) is an isomorphism onto
T (G, Y, T).

Proof. For any vertex v of the graph Y distinct from P, there exists a unique reduced
patheje; ... e inthe tree T from P to v. The corresponding element Z¢, 7o, . . . fe,
of the group F(G,Y) is denoted by y,. We set yp = 1. Define a map ¢’ from the
set of generators of the group 71 (G, Y, T) to the group 71 (G, Y, P) by the rules
g ¥,8Yy forg € Gy,v € YO and te = Yy, leVp ) for e € Y. The theorem
now follows from the next exercise. |

16.6 Exercise. 1) Show that the map ¢’ can be extended to a homomorphism
q: m1(G,Y,T) - m1(G,Y, P).
2) Verify that the homomorphisms g o p and p o g are the identities.

16.7 Corollary. The fundamental groups w1(G,Y, P) and 71 (G, Y, T) are iso-
morphic for any choice of the vertex P and any choice of the maximal subtree T in
the graph Y .

The isomorphism class of these groups is denoted by 71 (G, Y).

16.8 Reduced expressions. Let (G, Y) be a graph of groups with a fixed maximal
subtree TinY. Letg € Gyandg’ € G, whereu, v € Y°. We say that the elements
g and g’ are equivalent (with respect to T) if g’ = We, ae_kl W, oze_ll(g), where
€1 ...ex is a path in the tree 7 from v to u. We assume also that g is equivalent
to g.

Fix an orientation Yi of the graph Y. Then any element x € (G, Y, T) can
be written as g1g> ... gn, Where each g; belongs to a vertex group or is equal to
tF! fore € Y] — T'. Such an expression is called reduced if

1) the adjacent elements g;, g;+1 are not equivalent to elements of the same
vertex group (in particular the adjacent elements do not lie in the same vertex
group);

2) it does not contain subwords of the type ,7;! and 7, '1,;

3) it does not contain subwords of the type 7, ! gt,, where g is an element of a
vertex group equivalent to an element from . (G,);

4) it does not contain subwords of the form #,g7;"!, where g is an element of a
vertex group equivalent to an element from w, (G.).

Observe that if the expression g;g5 ... g, is not reduced, one can shorten it
using the relations of the group 71 (G,Y,T). This proves the existence of a reduced
expression for any element x € 71(G, Y, T). The following example shows that
an element can have several reduced expressions.
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16.9 Example. Let Y be a graph with vertices u, v and the edges e;, €1, €2, €2
such that a(e;) = a(ey) = u, w(e;) = w(e;) = v. Put G, = (a | a'? = 1),
Go= (b |6 =1),Ge, = e | ¢ = 1),Ge, = (d | d* = 1); e, (c) = a,
we, (€) = b, ae,(d) = a*, we,(d) = b®. Let T be the maximal subtree of ¥
containing the vertices u, v and the edges e, ;. Then

(G, Y, T) = {(a,b,t] a? =1, =1,a°=0°, t71a* = b6).
The element bt ~'a3ta®b3t~! has reduced expressions bt ~1a~1 and b=>¢t1a3.

16.10 Theorem. If an element g of the fundamental group w1(G,Y,T) has a
reduced expression different from 1, then g # 1. In particular the groups Gy,
v € Y°, can be canonically embedded in the group 71(G, Y, T).

Proof. The proof proceeds by induction on the number of edges of the graph ¥ with
the help of the statements in 16.4. The base of induction is valid by Corollaries 11.5,
11.6 and Theorem 14.3. O

17 Therelationship between amalgamated products and HNN
extensions

Let G = (H,t |t 'at = ¢(a), a € A) be an HNN extension. We will prove that
the kernel of the epimorphism 68 : G — (¢) givenby therulet — t,h— 1,h € H,
is an amalgamated product.

Let € be the graph introduced in Section 1. Recall that the vertices of the graph
€ are the integers, the edges are the symbols e,, e, (n € Z), while a(e,) = n,
w(ey) = n + 1. To each vertex n we associate the group H, = {h, | h € H},
which is the nth copy of the group H. To each edge we associate the group A.
Define the embeddings of the group A, corresponding to an edge e, into the vertex
groups H, and H, 1 by the rules a — (¢(a)), and a — an41.

) Haz A H_1 4 Hy A H, A 1{)2

Figure 17

The fundamental group F of the defined graph of groups (Figure 17) has the
presentation
(*iczHi | ant1 = (9(@)n.a € A, n € Z).

Let (¢) be the infinite cyclic group generated by a new element ¢. Define the semi-
direct product F x (t) by setting t ~'h;jt = hj 41, h; € H;,i € Z.

17.1 Theorem. F x (t) = G.
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Proof. The proof follows from the fact that the group F x (t) is generated by the
subgroup Hy and the element 7, and that all its relations follow from the relations
of the group Hy and the relations t 'agt = (¢(a))o, a € A. |

17.2 Exercise. Let A < C, B < D and let ¢: A — B be an isomorphism. The
homomorphism from the amalgamated product G = (C * D | a = ¢p(a), a € A)
to the HNN extension F = (C * D, t | t 'at = ¢(a), a € A) given by the rule
cr—tlet,d — d,c € C,d € D, is an embedding.

Hint. This homomorphism carries a nontrivial reduced expression from G to a
nontrivial reduced expression from F.

17.3 Exercise. Deduce Corollary 11.6 from Theorem 14.3 and Exercise 17.2.

18 The structure of a group acting on a tree

18.1 Definition. Let p: X — Y be a morphism from a tree X to a connected graph
Y and let T be a maximal subtree in Y. A pair (T, Y ) of subtrees in X is called a
lift of the pair of graphs (T,Y)if T € Y and

1) each edgg from ¥'! — T'! has the initial or the te&minalyertex in T;

2) p maps T isomorphically onto 7 and p maps Y'! — T'! bijectively onto

y'—rh

For any vertex v € Y° (= T°) let § denote its preimage in 7' and for any edge
e € Y let & denote its preimage in Y ! (see Figure 18).

By Theorem 16.10 we may identify the vertex groups of the graph of groups
(G, Y) with their canonical images in the fundamental group 71 (G, Y, T).

18.2 Theorem. Let G = m1(G,Y,T) be the fundamental group of a graph of
groups (G, Y) with respect to a maximal subtree T. Then the group G acts without
inversion of edges on a tree X such that the factor graph G \ X is isomorphic to the
graph Y and the stabilizers of the vertices and edges of the tree X are conjugate
to the canonical images in G of the groups Gy, v € Y°, and a.(G.), e € Y1,
respectively.

Moreover, for the projection p: X — Y corresponding to this action, there
exists a lift (T, Y) of the pair (T, Y) such that

1) the stabilizer of any vertex v € 7O (any edge ¢ € Y with the initial point
in T°) in the group G is equal to the group G, (respectively to the group
a.(Ge));

2) if the terminal vertex of an edge e € Y does not lie in T, then the element
t, U carries this vertex into T°.
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Figure 18

Proof. The proof is similar to the proof of Theorems 12.1 and 15.1. Therefore we
only define the graphs X, T, Y and the action of the group G on X.

Choose an arbitrary orientation of the graph Y. For any vertex v € Y° we
identify the group G, with its canonical image in the group G. For any edge
ee€ Yi we identify the group G, with the canonical image of the subgroup a (G.)
in the group G. Recall that z, = 1in G if and only ife € T'!.

We define the graph X in the following way (all unions are disjoint and all cosets
are left):

X°= U G/G,. X}= U G/G..

0 1
veY e€Y+

@(gGe) = gGa(e). ®(gGe) = g1eGu(e). § € G, e € Y.

The group G acts on the graph X by left multiplication.

The valency of the vertex gG, is equal to Y _ | Gy, : e (G.)|, where the sum is
taken over all edges e € Y'! with initial vertex v.

The lift 7 of the tree T is defined in a natural way:

T°= U Gy, Tl= U (G}

veT0 eeT}

The graph Y consists of the vertices and edges of the graph T, and of the vertices
1eG o (e) and edges G, e € Y — T, together with their inverses. O

18.3 Corollary. Any finite subgroup of the fundamental group 7w1(G, Y, T) is con-
jugate to a subgroup of its vertex group.

Proof. The result follows from Theorem 18.2 and Corollary 2.6. O

18.4. Let G be a group acting on atree X withoutinversionofedges. LetY = G\ X
be a factor graph, p: X — Y the canonical projection, 7" a maximal subtree of ¥
and (7', Y) alift of the pair (7, 7).
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We define a graph of groups (G, Y) in the following way. For each vertex (each
edge) y of the graph Y we set G, equal to the stabilizer St (¥) of the corresponding
lift 7. For each edge e € Y! — T with w(¢) ¢ T?, choose an arbitrary element
fe € G such that (&) = t,(e) (recall that w(e) € T°). Putz, = 1}’

For each e € Y'! define an embedding w, : G, — G (e) in the following way:

g ifw(@) e TO,
We (g) = —1 . ~ v 0 70

t, gte fw(E)eY®-T°.

18.5 Theorem. Let a group G act without inversion of edges on a tree X. Then
there exists a canonical isomorphism from G onto the group w1 (G, Y, T), defined in
Section 18.4. This isomorphism extends the identity isomorphisms Stg (V) — Gy,
v eY® and carriest, tot, e € Y1 — TL

Proof. The proofis analogous to the proof of Theorem 12.3 (see also Theorem 15.2).
|

18.6 Remark. Let (G, Y) be a graph of groups and let X be the tree constructed
from this graph of groups as in the proof of Theorem 18.2. Any subgroup H of
the fundamental group 1 (G, Y, T') acts on X, and by Theorem 18.5 the subgroup
H itself is the fundamental group of a graph of groups. We will not describe the
structure of H in the general case precisely. Instead we consider only Example 18.7
and prove Kurosh’s theorem for a special type of graph of groups.

18.7 Example. Let ¢ be ahomomorphism from the fundamental group of the trefoil
knot G = (a,b | a®> = b3) to the group S3 given by the rule a > (12), b > (123).
We find a presentation of its kernel H in the form of fundamental group of a graph
of groups.

: (b) (b3)=(a?) {a)
The group G is the fundamental group of the segment of groups o——— .

A part of the corresponding tree X is drawn in Figure 19 on the left. The vertices of
this tree are the left cosets of subgroups (a) and (b} in G, and the positively oriented
edges are the left cosets of the subgroup (a2) (= (b)) in G. The vertices g(b)
and g{a) are connected by the positively oriented edge g(a?). The group H acts
on the tree X by left multiplication. The corresponding factor graph Y is drawn in
Figure 19 on the right.

Indeed, since {1,b,b?,a,ba, b?a} is a system of representatives of left cosets
of H in G, any vertex of the form g{(a) is H-equivalent to one of the vertices
(a), b{a) or b?{a), and these three vertices are not H -equivalent. Similarly, since
{1,b,b% a,ab,ab?)} is also a system of representatives of left cosets of H in G,
any vertex of the form g(b) is H -equivalent to one of the vertices (b) or a(b), and
these two vertices are not H -equivalent. Therefore we have 5 equivalence classes
A, D, E, B, C of the vertices of the tree X. Their representatives are the vertices

(a), bla), b*(a), (b), a(b).
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Figure 19

It is easy to see that there are exactly 6 equivalence classes of positively ori-
ented edges of the tree X. Their representatives are positively oriented edges from
the minimal subtree ¥ containing the vertices b{a), b%(a), ab(a), ab*(a). The
vertices b{a) and ab?(a) are H -equivalent, since ab?a~'b~!-b{a) = ab?{(a) and
ab?a='b~' € H. Therefore they are projected to the same vertex D. Similarly,
the vertices h%(a) and ab(a) are projected to the same vertex E.

Let T be the maximal subtree of the graph Y which contains all vertices and
edges of this graph except the edges CD, CE and their inverses. As its lift T inthe
tree X, we take the minimal subtree containing the vertices b(a), b?{a) and a(b).
Then (7', Y) is a lift of the pair (7, Y). It is easy to show that the stabilizers of all
vertices of the tree 7' and all edges of the tree Y in the group H are equal to {a?).
Therefore to each vertex and to each edge of the graph Y we assign the group (a?).
All embeddings of edge groups into the corresponding vertex groups are identities,
since {a?) is the center of the group G.

Thus, we have constructed the graph of groups (H, Y') whose fundamental group
with respect to the maximal subtree 7" is isomorphic to H. From this we deduce
that H has the presentation

(xﬂtlatz | tl_lxtl =X, tz_lxtz = _x)’

in which the letters x, 1, t, correspond to the elements a2, alzza_lb_l, aba= b2,
The element ab?a~'h~! carries the vertex b(a) of the tree T to the vertex ab?(a)
of the tree Y. The element aba~'h~2 carries the vertex b2(a) of the tree T to the
vertex ab(a) of the tree ¥ .
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19 Kurosh’s theorem

Kurosh’s theorem is the special case of the following theorem for A = {1}.

19.1 Theorem. Let H be afree product of the groups H;, i € I, amalgamated over
a common subgroupA.”° Let G be a subgroup of H such that G N xAx~! = {1}
forall x € H. Then there exists a free group I and a system of representatives X;
of double cosets G \ H/H; such that G is the free product of the group F and the
groups G N xH;x Y fori € I, x € X;.

Proof. Let X be atree on which the fundamental group H acts as described in Theo-
rem 18.2. From the proof of that theorem we have X° = H/AU(J;; H/H;) and
X}r = {J;es(H/A x {i}). The initial and the terminal vertices of an edge (hA, i)
are hA and 7 H;. The group G acts on X by left multiplication. To understand the
structure of G, we will use definitions from Section 18.4 and Theorem 18.5.

A H,

A A o H,
A

H3
Figure 20

Let Y = G \ X be the factor graph, p: X — Y the canonical projection, T a
maximal subtree of Y, and (T, Y) a lift of the pair (7, Y) in the tree X .

The set of vertices of the tree T is a maximal set of left cosets of the form x A4
and xH;, i € I, with the property that these cosets are not G-equivalent. Thus,
there exist systems of representatives X4 and X; of double cosets G \ H/A and
G\ H/H; suchthat T® = {xA | x € X4} U, ;{xH; | x € X;}.

The stabilizer in G of a vertex of the form x A4 is equal to G NxAx~! = {1}. The
stabilizer in G of a vertex of the form x H; is equal to G N x H;x~!. The stabilizer
in G of any edge of the graph X is trivial, since the edges have the form xA. The
theorem now follows from definitions in Section 18.4 and Theorem 18.5.

For each edge ¢ € Y! with terminal vertex outside 7°, choose an element
;7! € G carrying this vertex into T9. Then F has a basis consisting of all such
elements ¢,. O

19.2 Exercise. Consider the homomorphism SL>(Z) = Z4 *z, Z6 — Z12 given
by the natural embeddings of the factors in the group Z;,. Prove that its kernel is
a free group of rank 2.

20In other words, H is the fundamental group of the graph of groups drawn in Figure 20. Every edge
group A embeds into the vertex group A identically.
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19.3 Remark. With the help of the ends of groups, Stallings proved the following
theorem: a group G is the fundamental group of a finite graph of finite groups?! if
and only if G has a subgroup of finite index which is free of finite rank (see [60]).

20 Coverings of graphs

20.1 Definition. A morphism of graphs f: X — Y is called a covering map if f
maps the set of vertices and the set of edges of the graph X onto the set of vertices
and the set of edges of the graph Y in such a way that the star of every vertex v € X°
is bijectively mapped to the star of the vertex f(v).

Let f: X — Y be a covering map. The fiber over a vertex u € Y is the full
preimage of u under the map f. Similarly one defines the fiber over an edge of Y'!.

20.2 Examples. 1) For any integer n > 1 there exists a covering map from the
graph €, onto the graph €, (see the definitions of these graphs in Section 1).

2) There are covering maps from the graphs drawn in Figures 12, 22 and 38
onto the graph drawn in Figure 21.

a b

OO

Figure 21

3) Let I'(G, S) be the Cayley graph of a group G with respect to a generating
set S. Any subgroup H of the group G acts by left multiplication on I'(G, S).
The canonical projection I'(G,S) — H \ I'(G,S) is a covering. The graph
{1} \ T'(G, S) coincides with I'(G, S), while the graph R(S) = G \ I'(G, S) has
one vertex and |S| pairs of mutually inverse edges.

Let f: X — Y be a covering and let p be a path in Y. A [lift of the path p is
any path [ in X such that f(I) = p.

20.3 Exercise. Let f: X — Y be a covering. Then the following hold.

1) For any path p in the graph Y and for any lift v of its initial vertex, there
exists a unique lift of p starting at v.

2) If two paths /; and [, in X are homotopic, then their projections f (/) and
f(l») are homotopic. Conversely, if the paths p; and p, in Y are homotopic,
then their lifts in X which start at the same vertex are homotopic. In particular,
these lifts have the same terminal vertex.

2IThis means that the graph is finite and the vertex groups are also finite.
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Let X and Y be connected graphs and let f: (X, x) — (¥, y) be a morphism.
By Exercise 4.4, the map fi: m1(X, x) — m1(Y, y) defined by the rule fi([I]) =
[f(D)] is a homomorphism.

20.4 Exercise. Let X and Y be connected graphs and let f: (X,x) — (¥, y) bea
covering. If pisaclosed pathin Y such that its homotopy class liesin fx (71 (X, x)),
then its lift / with initial vertex x is closed.

We say that a covering f: (X, x) — (Y, y) corresponds to the subgroup H of
the group 71 (Y, y) if fiu(m1(X,x)) = H.

20.5 Theorem. In the following claims we assume that all graphs are connected.

D) Iff: (X,x) = (Y, y)isacovering, thenthe homomorphism f: mw1(X, x) —
w1(Y, y) is an embedding.

2) Foreach subgroup H < m1(Y, y) there exists a covering f: (X,x) — (Y, y)
such that fy«(m1(X,x)) = H.

3) Let f1: (X1.x1) = (Y,y) and f3: (X2,x2) — (Y, y) be coverings such
that f1x«(m1(X1,x1)) = fax(7m1(X2,x2)) = H. Then there exists an iso-
morphism p: (X1, x1) = (X2, Xx2) such that f; = fop.

3) Let f1: (X1,x1) — (Y,y) and f>: (X2,x2) — (Y,y) be coverings such
that f1+(m1(X1,x1)) < fax(m1(X2,x2)). Then there exists a covering
D (X],xl) —> (Xz,Xz) with fl = fzp

4) Let f: (X,x) — (Y, y) be a covering. The graph X is a tree if and only if
fe(m1(X,x)) = {1}. If X is a tree, then the group w1(Y, y) acts on it freely
and the factor graph is isomorphic to the graph Y .

5) Let H be anormal subgroup of the group t1 (Y, y) andlet f: (X,x) — (Y, y)
be the covering corresponding to H. Then the factor group w1(Y, y)/H acts
on X freely and the factor graph by this action is isomorphic to Y .

Proof. 1) Denote by 1, and 1, the degenerate paths in X and Y with the initial
vertices x and y. Let [/] € 1 (X, x) and suppose that f([/]) = [1,]. Then the paths
f(I) and 1,, are homotopic. By Exercise 20.3 their lifts / and 1, are homotopic,
hence [[] = 1.

2) Choose a maximal subtree 7" in Y. For any vertex v of the graph Y there
exists a unique reduced path going from y to v in the tree 7. Denote this path
by py. For any edge e € Y'! we define the path p, = pa(e)ep_(le). In Section 4 it

w
was shown that 771 (Y, y) is a free group with basis {[p.] | ¢ € Y| — T''}, where
Y j is an arbitrary orientation of the graph Y.

Let {t#; | i € I} be a system of representatives of the right cosets of H in
m1(Y, y) such that the representative of H is equal to #; where t; = 1. Set X° =
{(,i)|veY®iel, X' ={(i)|ecY'icl}a(lei)) = (a(e),i),
and w((e,i)) = (w(e), j), where j is a subscript such that Ht; = Ht;[p.]. Put
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(e.i) = (&, j). We distinguish the vertex x = (y, 1) in the graph X and define
amap f: X — Y by therule f((v,i)) = v, f((e,i)) = e,v € X% e € X
Obviously, f is a covering.

We prove that the graph X is connected. For each i € I let 7; be the subgraph
of the graph X with the set of vertices {(v,i) | v € T°} and the set of edges
{(e,i) | e € T'}. Clearly, the graph 7} is isomorphic to T and hence is connected.
Clearly, | J;¢; Ti0 = X0, Therefore it is sufficient to prove that for any i, j € I the
graphs T; and T} are connected by apathin X. Letg = e;...egbeapathinY with
initial and terminal vertex y such that Ht;[g] = Ht;. Then [g] = [pe,]. . . [Pe,]-
Define a sequence (i1,i2,...,is+1) by the rules iy = i, Ht; ., = Ht; [pe ],
1 <k <s. Thenigz4; = j and the path (e1,7;1) ... (es, i5) connects the vertices
(y,i) € T;and(y, j) € T;. Thus the graph X is connectedand themap f: X — Y
is a covering.

Notice that an arbitrary path (eq, 1)(e2,i2) ... (es,is) in X with initial vertex
x = (y,1) is closed if and only if the path g = eje;...es in Y with initial
vertex y is closed and H - 1 - [pe,]...[pe,] = H -1, thatis, [g] € H. Therefore
Se(mi(X,x)) = H.

3) Define amap p: X; — X> in the following way. Let x be an arbitrary vertex
(edge) of the graph X;. Choose an arbitrary path /; in X; with initial vertex x;
and terminal vertex (edge) x. By Exercise 20.3.1, there exists a unique path /5 in
X, with initial vertex x, such that f1(l;) = f2(/2). Set p(x) equal to the terminal
vertex (edge) of the path /5.

We prove that this definition does not depend on the choice of the path /;. It is
sufficient to consider the case when x is a vertex. Let /{ be another path in X; with
initial vertex x; and terminal vertex x. Let /) be a path in X, with initial vertex x»
such that f1(I7) = f2(1}).

We say that paths a and b differ by a path c if the path ca is homotopic to the
path b. Since /; and /{ differ by a closed path, fi(/;) and f1(/7) differ by a path
whose homotopy class lies in H. By Exercise 20.4 the lifts /, and [} of these paths
in X, also differ by a closed path. In particular, the terminal vertices of the paths
I, and [} coincide.

By definition of p we have that p: X; — X, is a morphism and f; = f>p.
Similarly one can define a morphism ¢: X, — X; with the property f> = fiq.
Since gp = id |x, and pg = id |x,, we see that p is an isomorphism.

Claim 3’) can be proved in a similar way.

4) Since f is an embedding, the condition fi (71 (X, x)) = {1} is equivalent to
the condition 771 (X, x) = {1}. This means that X has no circuites. The remaining
statement follows from claim 5).

5) By claim 3), we may assume that the graph X is defined as in the proof of
claim 2). Then the left action of the group 71 (Y, y)/H on X can be defined in the
following way. Let (u,7) be a vertex or an edge of the graph X, and let Hg be a
coset of H in 1 (Y, y). We say that Hg carries (u,7) to (u, j) if Ht; = Hgt,;.
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The proof that this action has the required properties is not difficult and we leave it
to the reader. |

20.6 Corollary. Let X and Y be connected graphs and let f: X — Y be a
covering. Then the cardinality of the preimage of any vertex or edge of Y is equal
to the index of the subgroup f«(71(X, x)) in the group 71 (Y, f(x)).

This cardinality is called the multiplicity of the covering f .

Proof. The proof follows from the construction of the covering in the proof of
claim 2), with the help of claims 1) and 3) of Theorem 20.5. O

Using coverings, one can easily prove the Nielsen—Schreier theorem on sub-
groups of free groups.

20.7 Theorem. Any subgroup of a free group is a free group itself. If G is a free
group of finite rank and H is a subgroup of finite index n in G, then

tk(H) — 1 =n(@k(G)—1).

Proof. Let H be asubgroup of the free group G. Identify G with the group 771 (Y, y),
where Y is a graph with the single vertex y and rk(G) positively oriented edges.
By Theorem 20.5, there is a covering f: (X, x) — (Y, y) such that the embedding
[+ identifies the group 1 (X, x) with the group H. By Theorem 4.3, the group
w1 (X, x) is free.

If |G : H| = n, then the multiplicity of the covering f is equal to n; hence
|X° = n and |X_1F| = n - rk(G). From Theorem 4.3 and Exercise 1.7 (under the
condition of finiteness of rk(G) and n), it follows that 71 (X, x) is a free group of
rank n - rtk(G) —n + 1. |

21 S -graphs and subgroups of free groups

Let S be a fixed set and let F(S) be the free group with basis S. Let X be a
connected graph.

A labelling of the edges of the graph X is a map s: X! — S U S™! such
that s(¢) = (s(e))™! for e € X!. The label of a path [ = ey...eg in X is
the product s(I) = s(ey)...s(ex) in F(S). The label of a degenerate path is
the identity element. Notice that if the product of the paths /; and [, is defined,
then s(/1/2) = s(l1)s(l2). Since the labels of homotopic paths coincide, the map
s: m1(X,x) = F(S) given by the rule [p] — s(p) is a well-defined homomor-
phism. Here p is an arbitrary path in X with initial and terminal vertices x and
[p] is the homotopy class of p. The group s (71 (X, x)) is called the s-fundamental
group of the graph X (relative to the labelling s).

Our immediate aim is to determine a class of labelled graphs for which the
homomorphism s is injective.
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21.1 Definition. A connected graph X with a distinguished vertex x and a labelling
s: X! — SUS~lis called an S-graph if this labelling maps the star of any vertex
of X bijectively onto S U S~

A simple example of an S-graph is the graph R (.S) consisting of a single vertex
v and | S| pairs of mutually inverse edges with a fixed bijective labelling R(S)! —
S U S~ Obviously its s-fundamental group coincides with F(S).

Other examples of S-graphs can be obtained from coverings. Let f: (X, x) —
(R(S), v) be a covering, where X is a connected graph. We label each edge of X
by the same letter as its f-image. Then (X, x) is an S-graph. It is easy to show
that any S-graph can be obtained in this way.

21.2 Proposition. Let X be an S-graph with a distinguished vertex x and a la-
belling s. Then the homomorphism s: w1(X,x) — F(S) defined by the rule
[p] — s(p) is injective.

Proof. Any nontrivial homotopy class from m; (X, x) contains a nondegenerate
reduced path and the label of this path is reduced and nontrivial. O

Thus, the s-fundamental group of the S-graph (X, x) is free and has the basis
{s(pe) | e € X} — T} by Theorem 4.3.

We say that two S-graphs are S-isomorphic if there is an isomorphism from
one graph to the other carrying one distinguished vertex to the other and preserv-
ing the labels of edges. Theorem 20.5 and Corollary 20.6 imply the following
proposition.

21.3 Proposition. 1) For each subgroup H of the group F(S) there exists a unique
S-graph,®* up to S-isomorphism, with s-fundamental group H.

2) The index of H in F(S) equals the number of vertices of the S-graph corre-
sponding to H.

21.4 Theorem (M. Hall). The number of subgroups of finite index n in a finitely
generated group G is finite.

Proof. Since the group G is finitely generated, there exists an epimorphism
0: F(S) — G, where F(S) is the free group with a finite basis S. The full
preimages of different subgroups of index 7 in G with respect to 6 are different and
have index n in F(S). But the number of subgroups of index n in F(S) is equal
to the number of classes of S-isomorphic S-graphs with n vertices and hence is
finite. |

21.5 Example. In the group F(a, b) there are exactly three subgroups of index 2:
(b%,a* ab), (a,b* bab™'), (b,a* aba™').

These correspond to the S-graphs drawn in Figure 22.

22Such S-graph is called corresponding to the subgroup H .
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Figure 22

21.6 Exercise. Find bases for all 13 subgroups of index 3 in the group F(a, b).

22 Foldings

Let F'(S) be the free group with basis S and let /iy, ..., h, be words in the alphabet
S U S~!. We describe how to construct the S-graph corresponding to the subgroup
H = (hy,...,hy) (see Proposition 21.3).

Let Iy be a graph with one vertex x and n loops. We divide the i-th loop
into [, segments, where /,, is the length of the word i; (i = 1,...,n). We orient
each segment and label it by a letter of S U S™! so that the word reading along
the i-th loop is equal to &;. Thus we get the graph I'; with the labelling whose
s-fundamental group with respect to x is equal to H. However, the graph 'y will
not be an S-graph if two of its edges have the same initial vertex and the same
label. If this happens for some pair of edges, we identify them (and their terminal
vertices) and give the resulting edge the same label. This operation is called folding.
A folding does not change the s-fundamental group of a graph, but it decreases the
number of edges. Let I'; be the graph obtained from the graph I'y by repeated
foldings, as long as possible. The graph I', will still not be the S-graph if for some
vertex v the labels of edges emanating from v miss some letter of S U S™1. In this
case we glue to this vertex an appropriate infinite subtree from the Cayley graph
I'(S) (see Example 22.1). Such a gluing does not change the s-fundamental group.
Performing all such gluings (their number is finite if the set S is finite), we end up
with the S-graph corresponding to the subgroup H.

22.1 Example. In Figure 23 are displayed all the steps needed to construct the
S-graph corresponding to the subgroup (a2, aba™"') of the group F(a, b).

22.2 Lemma. Let N be a normal subgroup of the free group F(S) and let (X, x)
be the S-graph corresponding to N. Then the automorphism group of the graph X
preserving the labels of edges acts transitively on the set of its vertices. This group
is isomorphic to the group F(S)/N.

Proof. Let f: (X, x) = (R(S), v) be the covering corresponding to the subgroup
N of the group F(S) and preserving the labels of edges. By claim 5) of Theo-
rem 20.5 the factor group F(S)/N acts on X freely and the factor graph by this
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Figure 23

action is isomorphic to R (S). Since the graph & (S) has only one vertex, this action
is transitive on X°. Moreover, it preserves the labels of edges of X. The last claim
of the lemma follows from the fact that every automorphism of the S-graph X which
preserves the labels of its edges and fixes a vertex is the identity automorphism. [

We give another proof of the transitivity, not using Theorem 20.5. Let v be an
arbitrary vertex of the graph X and let / be a path from x to v. We will construct
an automorphism ¢ of the graph X preserving the labels of its edges and carrying
X tov.

Let w be an arbitrary vertex of the graph X. Choose an arbitrary path g from
x to w. Since X is an S-graph, there is a unique path g’ with initial vertex v and
label equal to the label of the path g. Set ¢(w) equal to the terminal vertex of the
path g’. We prove that this definition does not depend on the choice of the path g.
Let g1 be another path from x to w. Denote by g} the path with initial point v and
label equal to the label of the path g;. Then

s(gh) =s(D)s(g) = () -s(ggr") s - s(Ds(g0).

/ /

Figure 24

Since s(ggl_l) € Nand N < F(S), we have s(/) -s(ggl_l) -s()7! = s(n) for
some closed path n with initial vertex x. Then s(/g") = s(n)s(l)s(g}) = s(nig)).
Since the labels of the paths /g’ and nlg’ and their initial vertices coincide, the
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terminal vertices of these paths also coincide. Therefore the terminal vertices of
the paths g’ and g coincide.

If e is an edge of the graph X, set ¢(e) equal to the edge with initial vertex
¢(a(e)) and label equal to the label of the edge e. It is not difficult to show that ¢
is an automorphism of the graph X and ¢(x) = v.

22.3 Definition. The core of a connected graph X with respect to a vertex x of X
is the subgraph containing all reduced paths from x to x.

Denote this core by C(X, x). Obviously, the identity embedding of C(X, x)
in X induces an isomorphism of the groups 71 (C(X, x), x) and 71(X, x). The
following exercise shows that to get the core of a graph, one needs to leave out
some “hanging” subtrees of X.

22.4 Exercise. The core C(X, x) coincides with the smallest subgraph C of X
containing x for which there exists a set {7; | i € I} of disjoint subtrees such that
X =C U (U;er Ti) and C N T; is a vertex depending on i.

22.5 Theorem. Let F(S) be a free group of a finite rank and N be a nontrivial
normal subgroup of F(S). Then the index of N in F(S) is finite if and only if the
group N is finitely generated.

Proof. The necessity follows from Corollary 9.2. We prove the sufficiency.
Supposethat {1} # N < F(S) andthat N is finitely generated. Let (X, x) be an
S -graph corresponding to the group N. Since N is finitely generated and nontrivial,
the core C (X, x) of this graph is finite and contains a circuit. By Lemma 22.2 the
trees from Exercise 22.4 are absent and hence X = C(X, x). The index of the
subgroup N in the group F () is equal to the number of vertices of the graph X. [

We say that a subgroup H of a group L is a free factor of L if there exists a
subgroup M in L such that H x M = L.

22.6 Definition. A group G is said to have the M. Hall property if every finitely
generated subgroup H of G is a free factor of some subgroup L of finite index in G.

22.7 Theorem. A free group of a finite rank has the M. Hall property.

Proof. Let F be a free group with finite basis S, let H be a finitely generated
subgroup of F and let (X, x) be the S-graph corresponding to the subgroup H. The
core C = C(X, x) of this graph is finite, since the group H is finitely generated.
We show that the graph C can be embedded in some finite S-graph (Cy, x) in such
a way that the labels of the edges are preserved.

An edge with the label s will be called an s-edge. For each s-edge e; with initial
vertex outside C and with terminal vertex in C, there exists aunique patheje; . . . e
such that ey, ..., ex_; € C, the terminal vertex of the edge ey lies outside C and
the labels of all edges e; are equal to s. Indeed, “coming into” some vertex of the
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graph C, one can “go out” along only one s-edge. There are no cycles in such a path
(i.e., the vertices @ (e1), @ (e2), ... are different), since in each vertex comes only one
s-edge. Since C is finite, after finitely many steps we will leave C. Analogously,
one can show that the paths corresponding to different initial edges have no common
edges. Moreover, to the edge ey there corresponds the path ex ex—; ...e1. Now
“close” all the constructed paths (see Figure 25). Formally, we replace each pair of
corresponding edges e1, ex by one edge e such that a(e) = a(er), w(e) = w(ey),
and label this edge by 5. We assume that the pair e, €, is replaced by the edge e.

Figure 25

As a result we obtain a finite S-graph (Cy, x) containing the core (C, x). Then
as L we can take the group s (771 (C1, x)). Indeed, any maximal subtree of the graph
C is a maximal subtree of the graph C;. By Theorem 4.3 this means that some
basis of the group H = s(71(C, x)) can be included into an appropriate basis of
the group s(71(Cy, x)). The group s(71(Cy,x)) has a finite index in F(S) by
Proposition 21.3. |

22.8 Exercise. Find a basis of a subgroup of finite index in F(a, b) which has the
subgroup (a2, aba™!) as a free factor.

22.9 Exercise. Deduce Theorem 22.5 from Theorem 22.7.

The following theorem characterizes finitely generated groups with the M. Hall
property. The first part of this theorem follows from the paper of Dunwoody [30,
Theorem 3.5] and the theory of ends of groups by Stallings [60]; see also [17]. The
second part is proven by Bogopolski in [12].

22.10 Theorem. 1) A finitely generated group with the M. Hall property is isomor-
phic to the fundamental group of a finite graph of finite groups.

2) The fundamental group G of a finite graph of finite groups has the M. Hall
property if and only if every subgroup of each vertex group is a free factor of a
subgroup of finite index in G. The last property can be algorithmically verified.

23 The intersection of two subgroups of a free group

In this section we will show how to find a basis of the intersection of two subgroups
of a free group if we know bases of these subgroups.
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23.1 Theorem. Let G and H be two subgroups of a free group F(S), and let (X, x)
and (Y,y) be two S-graphs with s-fundamental groups G and H respectively.
Define a new labelled graph (Z, z) by the rules:

70 =X%xY% z = (x,y),

Z! ={(e,e') | (e.e') e X' x Y, s(e) = s(e')},

a((e,e) = (a(e).ale’)),

w((e,e") = (w(e), w(e),

(e.e') = (e.¢),

s((e,e’)) = s(e) for (e,e’) € Z1.

_ Let Z be a connected component of the graph Z containing the vertex z. Then

(Z,z) is an S-graph with s-fundamental group G N H.
Proof. Obviously, (Z,z)is an S-graph. Let p = (e, ef)(ea.ey) ... (ex.e;) bean
arbitrary closed path in the graph V4 beginning at the vertex z. Then eqe; . .. ex and
ele, .. .e; are closed paths in the graphs X and Y with the initial vertices x and y
respectively. Their labels are equal to s(p). Therefore s(p) € G N H. Conversely,

if g is an arbitrary element from G N H, then there exists a closed path p in the
graph Z with initial vertex z and label g. The theorem is proven. O

23.2 Example. The intersection of the subgroups G = (b%,a?,ab) and H =
(a,b? bab™!) of the free group F(a, b) has basis {a?,b?,ab?>a™",abab, baba)}.
As S-graphs corresponding to the groups G and H , one can take the first two graphs
in Figure 22. Denote their vertices from left to right by the letters x, x’, y, y’. The
S-graph corresponding to the group G N H is drawn in Figure 26.

Figure 26

23.3 Exercise. 1) Find a basis of the intersection of all subgroups of index 2 in
F(a,b).
2) Find the factor group of F(a, b) by this intersection.

By definition, a group G has the Howson property if the intersection of any two
finitely generated subgroups in G is finitely generated.
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23.4 Theorem. Any free group has the Howson property.

Proof. Let F be a free group with a basis S and let G, H be two finitely gen-
erated subgroups of F. We may assume that S is finite by taking the group
(G, H) instead of F. Notice that a subgroup of the group F is finitely gener-
ated if and only if the core of the corresponding S-graph is finite. Therefore,
using the notation of Theorem 23.1, it is sufficient to prove that C(Z, z) is a sub-
graph of the graph C(X,x) x C(Y,y). This follows from the next considera-
tion. Let (e1.e})...(ex.e;) be a reduced path in the graph Z from z to z. Then

s((ei.e;)) # s((ei+1.e;,,)) fori = 1,... .k — 1. Therefore s(e;) # s(&j+1) and
s(ej) # s(ej,,), and hence e; ...ex and €] ...e; are reduced paths from x to x
and from y to y in the graphs X and Y respectively. |

Without a proof we state the following theorem.

23.5 Theorem (Hanna Neumann [48], [49]). Let G and H be two finitely generated
subgroups of a free group. Then

k(G N H) — 1 < 2(tk(G) — 1)(tk(H) — 1).

The following problem of Hanna Neumann is still open at the time of writing:
does the above inequality hold without the factor 2? This and many other problems
of combinatorial and geometric group theory are discussed in [65].

Not all finitely generated groups possess the Howson property. An easy example
is the group A *4/—p’ B, where A and B are free groups of rank 2 and A" and B’
are their commutator subgroups. But even in the class of groups with one defining
relation there are groups which do not have the Howson property.

23.6 Proposition. The group G = (a,b | a='b%a = b?) does not have the Howson
property.

Proof. Put H = {(a, b~'ab). From the normal form of the elements of the group G,
considered as an HNN extension with the base (b), it follows that any nonempty
reduced word in the elements a, b~ ab and their inverses is nontrivial. Therefore H
is a free group of rank 2. Moreover, H < G because bab™! = b~ 1 (b%2ab™2)b =
b~'ab. Similarly L = (ba,ab) is a free group of rank 2 and L < G. Therefore
the subgroup H N L is normal in H and nontrivial (since a~'b~'ab € H N L)
and has infinite index in H (since under the epimorphism G — Z given by a +— 1,
b — —1 the image of H is equal to Z, and the image of L is equal to {0}). By
Theorem 22.5, the group H N L is not finitely generated. O

23.7 Exercise. Prove that the group H N L is the normal closure in H of the element
a~'b~ab. Deduce from this that H N L coincides with the commutator subgroup
of G.
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23.8 Exercise. Prove the following statements.

1) The group G = (a,b|a~'h%?a = b3) contains a subgroup isomorphic to
(c.b|c? = b3).

2) The group H = (c, b |c? = b3) contains a subgroup isomorphic to F, x Z,
where F; is the free group of rank 2.

3) The group F, x Z does not have the Howson property.

4) The group G = (a,b|a~'b%a = b3) does not have the Howson property.

24 Complexes

The terms graph and 1-dimensional complex are synonyms. A cyclic path in a
graph is any cyclically ordered sequence of its edges eje,...e, such that
w(e;)) = alei+1), 1 <i < n—1, and w(e,) = ale;). By this definition the
cyclic paths eje; ...e, and ezes...e,e; are equal. We say that a vertex v lies
on this cyclic path if v is the initial point of an edge of the path. The number of
such edges is called the number of occurrences of v in this path. By definition, the
inverse of the cyclic path eje; . . . e, is the cyclic path e, e;,—; ... €;.

24.1 Definition. The 2-dimensional complex K consists of a 1-dimensional com-
plex KM aset K2 of 2-cells, and two maps d and ~ defined on K2. The map
associates to every 2-cell D a cyclic path dD in KV called the boundary of the
cell D. The map ~ associates to every 2-cell D a 2-cell D with the property that
the cyclic path d(D) is the inverse of the cyclic path dD. Moreover, it is required

that D = D and D # D. The 2-cell D is said to be inverse to the 2-cell D.

We denote by K°, K!, K? the sets of vertices, edges and 2-cells of the com-
plex K. The notions subcomplex and morphism between complexes can be defined
in the natural way. By definition, a path in K is a path in K1), The complex K is
connected if its subcomplex K is connected.

Let D be a 2-cell. A path p in K is called a contour path of D if its edges in
cyclic order form the boundary of D.

Two paths p and ¢ in K are called elementary homotopic if for some edge e
and some paths s, t we have p = seet,q = st or p = st,q = seet or p = srit,
q = srat, where riry 1 is a contour path of a 2-cell.

Two paths p and g in K are called homotopic in K if there exists a finite sequence
of paths p1, p2,..., ps in which p = p;, g = p, and the adjacent paths p;, p;+1
are elementary homotopic. The class of paths homotopic to p in K is denoted by
[p]. Recall that the class of paths homotopic to the path p in the graph KM is
denoted by [p]. Obviously, [p] C [ p].

Let now K be a connected 2-complex and x a distinguished vertex of K. Denote
by P(K, x) the set of all closed paths in K with the initial vertex x. Define the
product of classes of paths of P(K, x) by the formula [p] - [¢] = [pq].-
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24.2 Exercise. Prove that this product is well defined, that is, it does not depend
on the choice of representatives in the classes.

It is easy to verify that the set of classes of paths in P (K, x) with respect to this
multiplication forms a group. This group is called the fundamental group of the
complex K with respect to the vertex x and is denoted by 71 (K, x).

24.3 Remark. The fundamental group of a subcomplex need not be embeddable
into the fundamental group of the complex. An example is the complex L consisting

of one vertex x, two edges e, e and two 2-cells D, D such that dD = e. Clearly,
(LW, x) = Z and 71 (L, x) = {1}.

Now we will describe a presentation of the group 771 (K, x). There is a canonical
epimorphism ¢: 71 (KM, x) — (K, x) defined by the rule [p] > [p]. Since
the group 71 (KW, x) is free (by Theorem 4.3), we need to study ker ¢.

First we introduce some notation. Choose a maximal subtree 7" and an orienta-
tion K }r in KM For every vertex v of the complex K there exists a unique reduced
path from x to v in 7. Denote this path by p,. Then for any edge e € K! the path
Pe = Dey€Paie) 18 defined. Note that [pg] = [pe] ™. For any 2-cell D we choose
a vertex v on its boundary and choose?? a contour path 9, (D) for D with the initial
vertex v. Set [pp] = [p,dy(D)p,']. We may assume that [p5] = [pp]~!. Recall
that the group 71 (KD, x) is free and the elements [p,], e € K1 — T, form its
basis. Therefore the class [pp] can be expressed as a word in these elements and
their inverses, [pp] = [p¢,]- - . [Pc,], Where ¢y, . . ., ¢s are the edges which remain
in 9, (D) after deleting the edges occurring in 7''. Denote this word by rp.

24.4 Theorem. Let K be a connected complex with a distinguished vertex x, let T
be a maximal subtree in KO and let K}r be an orientation of the graph K M Then
the group 71(K, x) has a presentation with generators {[p.] | e € K:L — T and
defining relations {rp | D € K?}.

Proof. 1t is sufficient to prove that ker ¢ coincides with the normal closure N of
the set {[pp] | D € K?} in the group 7; (K™, x). The inclusion N C ker ¢ is
obvious. Now we prove the converse, i.e. kero € N. It is sufficient to verify
that if two paths p and ¢ of P(K, x) are elementary homotopic in K, then [p]
differs from [g] by an element of N. If p = seet and ¢ = st, then [p] = [q].
Let p = srit, ¢ = srat, where rlrz_1 is a contour path of a cell D. Let v
be the distinguished vertex on the boundary of this cell, let 3,(D) = ejes...ey
and suppose that r1r2_1 = ep...epe1...€_1. Set f = ejey...ex_1. Then
(Pligl™! = [sryrsts™ ) = [sf~'pyt - p,0u(D)pyt - p, fs7'], ie., the element
[pllg]~" is conjugate to [pp] and hence lies in N. O

ZThere can be several such paths if D goes through v several times.
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24.5 Theorem. For every group G there exists a 2-dimensional complex K whose
Sfundamental group is isomorphic to G.

Proof. We construct the complex K from a presentation § = (S | R) of the
group G. The complex K has a single vertex x, edges e5, s € S U S 1 and
2-cells D, and D,, r € R. We assume that &; = e—1. If r = s182...8.,
where s; € S U S™1, then we set D, = €s,€s, . . . €s,. From Theorem 24.4 (or
directly from the definition of the fundamental group of a complex) it follows that
(K, x) = G. |

Given a presentation §, the complex constructed from § as in the proof of this
theorem will be denoted by K(9).

25 Coverings of complexes

Let K be a 2-dimensional complex and let v be a vertex of K. A star of the vertex v
is the system consisting of all edges of K beginning at v and all 2-cells containing v
on its boundary; moreover, each 2-cell is counted with the multiplicity equal to the
number of occurrences of v in the boundary of this 2-cell.

25.1 Definition. Let X and Y be 2-dimensional complexes. A morphism f: X — Y
is called a covering if f maps the set of vertices, edges and 2-cells of the complex X
onto the set of vertices, edges and 2-cells of the complex Y so that the star of any
vertex v € X is mapped bijectively onto the star of the vertex f(v).

25.2 Remark. Claims 1), 2), 3), 3') and 5) of Theorem 20.5 remain valid if one
replaces the word graph by the word complex. The proofs require only minor
changes and additions. For example, in the proof of the claim 2) one needs to set
X2 ={(D,i)| D € Y2, i € I}. For each 2-cell D € Y2, we choose a contour
path [p. Then we define the contour of the 2-cell (D, i) to be the lift of the path
[p starting at the vertex («(/p),i). The symbols [,] have to be replaced by the
symbols [, ].

The following generalization of Corollary 20.6 is also valid.

25.3 Corollary. Let X and Y be connected complexes and let f: (X,x) — (Y, y)
be a covering. Then the cardinality of the preimage of an arbitrary vertex, edge
or 2-cell of Y is equal to the index of the subgroup f«(m1(X,x)) in the group
(Y, ).

The cardinality n is called the multiplicity of the covering f, and f itself is
called n-fold covering.

In the examples below, in saying that a complex consists of certain edges and
cells, we assume that it also contains the inverses of these edges and cells. Also we
identify a group with its presentation.
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25.4 Examples. 1) Let A = (a | a®> = 1)and B = (b | b> = 1) be cyclic
groups of orders 2 and 3. In Figure 27 we see the coverings f: K(A) — K(A) and
g: K(B) — K(B) corresponding to the identity subgroups of these groups. These

coverings have multiplicities 2 and 3 respectively. The complex K(A) has two pairs
of mutually inverse 2-cells, drawn as the upper and lower hemispheres. The complex

K(B) contains additionally the pair of mutually inverse 2-cells corresponding to
the horizontal cut of this sphere.

Figure 27

2) Consider the free product A * B = (a,b | a> = 1, b3 = 1). Connect the
unique vertices of the complexes K(A4) and K(B) by an oriented edge ¢ and denote
the resulting complex by Y. Obviously, 1 (Y, y) = A * B, where y is the vertex
of K(A). In Figure 28 we see the complex X in the covering /: (X, x) — (¥, y)
corresponding to the trivial subgroup of the group 771 (Y, y). The complex X con31sts
of infinitely many subcomplexes isomorphic to the complexes K (A) and K (B)
connected by lifts of 7. It has a treelike structure.

Figure 28

3) Consider the amalgamated free product G = (a,b | a®> = b3). Let Y be the
complex obtained from the graph I" (see the right side of Figure 29) by attaching
the 2-cell D (see the left side of Figure 29).
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This means that the boundary of the 2-cell D is identified with a cyclic path in I"
respecting the labels of edges. Obviously, 71(Y, y) = G. Denote by H the kernel
of a homomorphism ¢: G — S3 defined by the rule a — (12), b — (123). In
Figure 30 we see the covering space X in the covering f: (X, x) — (Y, y) which

Figure 30

corresponds to the subgroup H. This covering has multiplicity 6. The complex X
consists of three copies of the 2-fold (since a? € ker¢ and a ¢ ker @) covering
of the a-loop of the graph I' and of two copies of the 3-fold (since b3 € ker ¢
and b ¢ ker @) covering of the b-loop of the graph I", connected by six lifts of the
edge ¢, and also of six copies of the cell D, glued along the cyclic paths with the
label a?th™3t1,

We recommend that the reader formally constructs the complex X, using the
method from the proof of the claim 2) of Theorem 20.5 and using Remark 25.2.

Next we compute a presentation of the fundamental group of the complex X
with the distinguished vertex x. In Figure 30 we have distinguished a maximal
subtree T in X with thick lines. The oriented a-edges, not lying in T, are denoted
by a1, as, as. The oriented b-edges not lying in 7" are denoted by by, b5, b3, b4. For
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brevity we will identify an edge e with the element [p,] of the fundamental group.
Then the group 71 (X, x) is generated by the elements ay, as, as, b1, bz, b3, ba.
The defining relations are the words obtained from the contour paths of 2-cells by
deleting all edges lying in T'. For example, if the contour path of a cell starts at the
vertex x and has the label a?th =3¢, then the relation a1 by ! appears. Considering

six contour paths, with the label b3t !, we get the following defining relations:
arby',  aiby'by b3,
bt by by bt
azbq -, azby 03 0Oy,
-1 —1p—1p—1
Cl3b1 , Cl3b3 b2 b4 .

Applying Tietze transformations, we deduce the following presentation of the
group 11 (X, x):

(b1.bs.by | by b3 b by = 1, bi'by byb, = 1).

The group H has the same presentation and is generated by words obtained from
the labels of the paths pp,, pps, pp, by deleting the letters ¢ and 7~!. Thus the
group H is generated by the elements b3, a~'bab™2, b2a~'bab™!.

25.5 Exercise. Express these generators of the group H in terms of the generators
found in Example 18.7.

25.6. Using coverings one can easily deduce Theorem 19.1. To illustrate the idea,
we consider only the case where the group H is the free product of groups H;,i € 1.
We want to describe the structure of an arbitrary subgroup G of H . First we construct
a complex with fundamental group isomorphic to H. As building blocks we will
use the complexes (K, x;) corresponding to presentations of groups H;. Now take
anew vertex x and connect it with each vertex x; by an oriented edge ¢;. Obviously,
m(K,x) = H. Let f: (K,%) — (K, x) be the covering corresponding to the
subgroup G. The complex K consists of different coverings of complexes K;
(which we call blocks), connected with lifts of the vertex x by lifts of the edges ;.
Let K be the graph obtained from K by “collapsing the blocks into points”. If K
is a tree, then G is the free product of certain conjugates of subgroups of the H;.
The conjugating elements correspond to some paths in K from X to distinguished
vertices of the blocks. If K is not a tree, then an additional free factor F appears.
We leave to the reader to reconstruct the details of this proof.

26 Surfaces

In this section we give a combinatorial description of a surface, which is differ-
ent from the characterization in differential geometry. Therefore we use the term
finiteness instead of compactness.
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26.1 Definition. A 2-dimensional complex consisting of a finite number of vertices,
edges and 2-cells is called finite. The Euler characteristic of a finite 2-dimensional
complex K is the integer

2(K) = K% — K[+ K2,

where | K| is the number of vertices, | K! | is the number of pairs of mutually inverse
edges and | K2| is the number of mutually inverse 2-cells of the complex K.

The following transformations of the complex K are called elementary trans-
formations.

(1) Subdivision of an edge. Let an edge e go from the vertex v; to the vertex v,.
Remove from K the edges e, ¢ and add new edges e, e, and ey, €5, and also add a
new vertex v such that in the resulting complex the edge e; goes from v; to v and
the edge e, goes from v to v,. In the boundaries of 2-cells we replace the edge e
by the product eje; and the edge e by the product e;e; .

€1 €2

e
V] &e——e Uy e V] &e——eo——0 Uy
v

Figure 31

(2) Subdivision of 2-cells. Let D be a 2-cell with the contour pq p,, where pq,
p2 are paths. Remove from K the 2-cells D, D and add new edges e, & such that
e goes from the beginning of the path p; to the beginning of the path p;. Also add
new 2-cells D1, D, with contour paths pje, ep,, and add inverses of the 2-cells.

Figure 32

(3) Pasting edges and pasting 2-cells are transformations inverse to the trans-
formations (1) and (2).

Two complexes K7 and K, are said to be equivalent if K; can be transformed
into K, by a finite number of elementary transformations.

26.2 Exercise. The fundamental groups of equivalent connected complexes are
isomorphic. The Euler characteristics of finite equivalent complexes are equal.
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Two edges e; and e, of a complex K are said to be adjacent if they have the
same initial vertex and e, follows e; in the boundary of some 2-cell.

26.3 Definition. A surface is a 2-dimensional complex K with a nonempty set of
2-cells, satisfying the following properties.

1) K is connected.
2) Each edge of K is contained in the boundary of some 2-cell.

3) Each edge of K occurs in the boundary of at most two cells and the total
number of these occurrences®* is at most 2.

4) The star of any vertex v is finite and for some numbering of its edges e;,
ez, ..., ey the edges e; and e; 4 are adjacent, | <i <n — 1.

A boundary edge is an edge which occurs once in the boundary of only one
2-cell. The vertices of the boundary edges are called the boundary vertices. The
boundary of a surface is the subcomplex of this surface consisting of its boundary
edges and vertices. The edges and vertices which do not lie on the boundary are
called inner.

26.4 Exercise. Here we use the notation of condition 4) in Definition 26.3.

1) A vertex v of a surface is a boundary vertex if and only if the edges e; and
e, are the boundary edges. If these edges are not on the boundary, then they are
adjacent.

2) Each connected component of the boundary of a finite surface is isomorphic
to the graph €, for some n (see Definition 1.4). The connected components of the
boundary of an infinite surface can be isomorphic to €.

26.5 Definition. A surface is called orientable if in each pair of mutually inverse
2-cells one can choose a representative so that every inner edge occurs only once
in the boundary of some representative and it does not occur in the boundaries of
the other representatives.

26.6 Exercise. Elementary transformations carry any finite (orientable) surface to
a finite (orientable) surface and preserve the Euler characteristic and the number of
connected components of the boundary.

26.7 Examples. 1) Let S be a surface consisting of two vertices v1, v,, two pairs
of edges e;, e; and ey, e,, and two pairs of 2-cells Dy, Dy and D,, D, such that
a(er) = vy, w(er) = vz, a(ez) = v2, w(e2) = vy, (D) = erez, (D) = eqes.
Any surface equivalent to the surface S is called a sphere (see the left side of
Figure 33).

241f the boundaries of two 2-cells coincide, we count the occurrences in each of them. It can happen
that an edge occurs twice in the boundary of some 2-cell, but then it cannot occur in the boundary of
another 2-cell.
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Let P be a surface consisting of one vertex v, one pair of edges e, e and one
pair of 2-cells D, D such that D = ee. Any surface equivalent to the surface P
is called a projective plane.

Obviously, there is a covering f: S — P of multiplicity 2. Moreover, the
surface S is orientable, but the surface P is not.

2) Let M be a surface consisting of one inner vertex v, one boundary vertex u,
three pairs of edges o, &, p, p, ¥, 7, and one pair of 2-cells D, D such that o goes
from v to u, p goes from u to u, y goes from v to v, and D = op5y?.

Figure 33

The surface M is not orientable. Any surface equivalent to the surface M is
called a Mobius strip (see the right side of Figure 33).

Now we describe informally one way to construct finite surfaces. Let A be
a finite alphabet. Take an n-gon D on a plane, orient its edges and label them
by letters of A so that each letter appears at most twice. Then the surface can be
obtained by gluing edges which are labelled by the same letters (see Figure 34).

Figure 34

The following theorem shows that up to elementary transformations any finite
surface can be obtained in such a way. For loops « and B with the same initial point
we use the notation [«, 8] = afap.

26.8 Theorem. Any finite surface other than a sphere can be carried by elementary
transformations to a surface K such that:

1) K has only one inner vertex, denoted v;
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2) K has a finite number of boundary components 01K, ..., K, each com-
ponent 0; K consists of one vertex v; and one pair of mutually inverse edges
Pis Pis

3) for each boundary vertex v;, there is only one edge o; from v to v;;

4) all edges of K other than p;, pi, 0i, 6; are loops at v, that is, they start and
terminate at v;

5) K has only one pair of mutually inverse 2-cells D, D, and the 2-cell D has
the contour

r g
l_[UiPi6i 1_[ v;. g>0, (=)
i=1 j=1

or
r g
[Loipiai [[les.Bil. (. g) # (0.0 +)
i=1 j=1

where y1, ..., Vg, respectively ay, B1, ..., 0g, Bg, are loops at v.

The proof of this theorem can be found for example in the books [43] and [64].
Note that in the case (—) the surface is nonorientable and y(K) = (1 + r) —
(r+r+g)+1=2—r —g,while in the case (+) the surface is orientable and
Ky=0Q+r)—@F+r+29)+1=2—-r—2g.

The number g is called genus of the surface. The sphere has genus 0. From this
and from Exercise 26.6 one can deduce the following theorem.

26.9 Theorem. The orientability, the number of boundary components and the
genus define a finite surface up to equivalence. The fundamental group of a finite
nonorientable surface of genus g with r boundary components has the presentation

r g
2
<s1,...,s,,c1,...,cg|]_[si]_[cj>, g>0.
i=1 j=1

The fundamental group of a finite orientable surface of genus g with r boundary
components has the presentation

r g
<s1,...,sr,a1,b1,...,ag,bg | TT si T1 [aj,bj]>.

i=1 j=1

26.10 Theorem. If K is a connected complex, S is a surface and f: K — S isa
covering, then K is also a surface. Moreover, K is a surface without boundary if
and only if S is a surface without boundary. If the surfaces K and S are finite and
n is the multiplicity of the covering f, then y(K) = n - x(S).

Proof. The proof follows immediately from the definitions. |
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Further let T, denote the finite orientable surface of genus g without boundary.
The following theorem is analogous to Theorem 20.7 and can be deduced from
Theorem 26.10.

26.11 Theorem. Any subgroup of the fundamental group of a surface is isomorphic
to the fundamental group of another surface. If H is a subgroup of a finite index n
in the group mw1(Ty, x), then H = w1(Tg,,x1), where g1 — 1 =n(g —1).

Finally we give nontrivial examples of coverings of surfaces. In Figure 35 we
see two different coverings 75 — T of multiplicity 2. These coverings are obtained
by “thickening” the covering maps from the graphs in Figure 22 onto the graph in
Figure 21.

0 (50 (2
20 as0 O

Figure 35

26.12 Exercise. Find all subgroups of index 2 in the group
71(T2, x) = (a1, b1, a2, bz | [a1, b1]laz, b2)).

The fundamental groups of surfaces possess many properties of free groups.
This is not a coincidence: the free group of rank 7 is isomorphic (for example) to
the fundamental group of the sphere with n + 1 holes; moreover, the fundamental
group of any surface with a nonempty boundary is isomorphic to a free group.

In Chapter 3 we will study automorphisms of free groups with the help of train
tracks. This technique was developed first to study the homeomorphisms of surfaces
(see [9], [10] and [20]).
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We note another parallel. Free groups act freely on trees, while the groups
m1(Tg, x) act freely on planes. The last assertion follows from the fact that if
f 1 P — Tjgisthe covering corresponding to the trivial subgroup of 771 (T, x), then
the surface P is the plane (see [64]). Even more surprising, the groups 7 (Tg, x)
act freely on R-zrees, which naturally generalize the simplicial trees introduced in
Section 1 (see [22], [31]).

27 The theorem of Seifert and van Kampen

27.1 Theorem. Let K be a complex which is the union of connected subcomplexes
K;, i € 1, such that the following conditions are satisfied.
1) Ks N Ky =)y Ki forany s # t.
2) The intersection (\;c; Ki is a connected subcomplex.
3) The inclusion of (\;¢; Ki in K; induces an embedding of the corresponding
Jfundamental groups for each j € I.

Let x be an arbitrary vertex of the complex( ); ey Ki. Thenthe group 71 (K, x) is
isomorphic to the free product of groups w1 (K;, x) amalgamated over the subgroup
71 ((Nier Kiv x).

Proof. We deduce this theorem from Theorem 24.4. Write Ky = (),¢; K; and
assumethat 0 ¢ /. Choose an orientation K 3 +inK 31) and extend it to an orientation
Ki1+
maximal subtree 7; in each K l.(l). The union of these subtrees is a maximal subtree
in K. Similarly, the union of bases {[p.] | ¢ € K}, — T;'} of all the free groups

T (Kl.(l), x) is a basis of the free group 7 (K, x) (see Theorem 4.3). Set

in each Kl.(l). Also choose a maximal subtree Ty in K(()l) and extend it to a

Xi ={lpel le € Ky —T'}, Ri=1{rp|D €K}

By Theorem 24.4 we have 71 (K;,x) = (X; | R;) and 71 (K, x) = (U,;e; Xi |
Uies Ri). It remains to notice that X; N X; = X, fori # j (in view of condi-
tion 1)), and that the subgroup generated by Xy in each 71 (Kj;, x) is canonically
isomorphic to the group 71 (K, x) (in view of condition 3)). (|

27.2 Exercise. With the help of Figure 35 prove that 1 (7%, x) = A *¢c B, where
each of the groups A, B, C is isomorphic to the free group of rank 3.

28 Grushko’s Theorem

28.1Theorem. Let: F — x;¢; G; be an epimorphismfrom afinitely generated®
free group F onto the free product of free groups G;, i € I. Then there exists a

ZThis theorem is valid without the assumption that the free group F is finitely generated.
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decomposition of the group F into a free product *;iey F; such that ¥ (F;) = G;
foreachi.

Proof. Let S be abasis of F and let R be the graph with a single vertex x and posi-
tively oriented edges corresponding bijectively to the elements of S. Foreachs € S,
we express the element v (s) in the normal form for the free product G = *;¢7 G;.
If ¥(s) = g1g2...g: is this expression, we subdivide the edge e corresponding
to s into ¢ edges e = ejey...e; and label the edge e; by the element g;. De-
note the resulting graph by K. Define the label ¢(p) of any path p in K as the
product of the labels of edges of this path. This labelling induces a homomorphism
¥ m(K,x) = G.

Furthermore we add to the complex K new edges with labels 1 and new 2-cells.
After each step we denote the resulting complex again by K. For eachi € I, we
define a subcomplex K; in K by the following rule: K? = K% K! = {e € K! |
@(e) € Gi}and K> = {D € K* | aD € K}}.

For the initial complex K the following properties hold.

1) The groups 71 (K, x) and F can be identified so that ¢* is identified with .
2) U;e; Ki =K.

3) Ks N K; = ;¢ Ki fors # ¢.

4) (;¢; Ki is a disjoint union of trees.

We will modify this complex so that each new complex K will have these
properties too and in the final complex the intersection ();¢; K; will be a tree.

Suppose that the intersection ();¢; K; is not connected. A binding tie is defined
to be a path p in some K; connecting vertices in different components of ();¢; K;
and such that p(p) = 1. By Lemma 28.2 (see below) there exists a binding tie p.
We add to K a new edge e with the same initial and terminal vertices as p, and
add a new 2-cell with the boundary pe. We extend ¢ by setting ¢(e¢) = 1. The
new complex K has the properties 1)-4) and the new intersection ();¢; K; has one
connected component fewer than the old one.

Therefore in a finite number of steps we will arrive at a complex K for which
(M;es Ki is connected and hence is a tree by property 4). Since K° € (0);¢; K;, the
complex K; is connected for each i € I. By the theorem of Seifert—van Kampen,
we have 1 (K, x) = *;je7 m1(K;, x). Set F; = m1(K;, x). Then F = %;¢y F; and
¥ (F;) € G;. Since ¥ maps F onto G, we obtain V¥ (F;) = G;. |

28.2 Lemma. If();c; K; is not connected, then a binding tie exists.

iel
Proof. Let v be a vertex lying in a connected component of ();; K; different from
that containing x. Choose in K a path p from x to v. Since ¥ is an epimorphism,
there exists a closed path g starting at x such that ¢(p) = ¢(g). Then the path
r =g~ ! pgoesfromxtovandp(r) = 1. Since Uier Ki = K, wecanexpress rin
the formr = ryry ... rg, where each path r; lies in some K;(;) and the consecutive
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paths 7;, ;1 do not lie in the same K;. Since ¢(r) = 1 and ¢(r;) € G,()), it
follows from the normal form of an element in the free product that ¢(rs) = 1 for
some rs. If a(r) and w(ry) lie in different connected components of the intersection
(ies Ki, then r is a binding tie. Suppose that a(rs) and w(r) lie in the same
connected component. Choose a path r in this component from a(rs) to w(rs).
Since ¢(r}) € (\;e; Gi = {1}, one canreplace ry by r} in r, preserving the property
@(r) = 1. Since the path r| goes inside [);c; K;, one can decrease the number of
factors k by adjoining r; to a neighboring factor. Thus in a finite number of steps
we can find a binding tie. O

28.3 Corollary. If G = «"_, G, then tk(G) = >_;_, 1k(G;).

Proof. Let F be a free group with the rank equal to the rank of the group G
and let ¥: F — G be an epimorphism. By Grushko’s theorem there exists a
decomposition F = F; % --- % F, such that ¥ (F;) = G; for all i. Then the
corollary follows from the inequalities

> k(Gy) = tk(G) = tk(F) = Y _1k(F) = Y _1k(G)). O

i=1 i=1 i=1

29 Hopfian groups and residually finite groups

A group G is called Hopfian if any epimorphism 68: G — G is an isomorpshism.
The problem of whether finitely presented non-Hopfian groups exist first appeared
in topology (H. Hopf, 1931). The simplest examples of such groups are given in
the following theorem of Baumslag and Solitar [5].

29.1 Theorem. Let m, n be a pair of coprime integers different from 0, 1, —1. Then
the group G = (b,t | t~'b™t = b") is non-Hopfian.

Proof. Define a homomorphism 6: G — G by the rule 6(¢t) = ¢, 8(b) = b™.
Since application of @ to the defining relation ¢ ~'5™¢ = b" is equivalent to raising
both sides of this relation to the power m, the homomorphism 6 is well defined.
Since ¢ and 5™ lie in the image of 0, the element 5" also lies in the image of 6.
Since n and m are coprime, b lies in the image of 6 and hence 8 is an epimorphism.
We have

O([t b, b)) = [t71b™t,b™] = [b",b™] = 1
and
[t71bt,b] =t tbebt~h b £ 1

by Britton’s lemma. Therefore the kernel of the epimorphism 6 is nontrivial. [
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Below we will prove that the group G = (bt | t~'bt = b™) is Hopfian for any
integer n. A part of the Cayley graph of this group for » = 2 is drawn in Figure 36.
From the “front” this graph looks like a plane and from the “side” as a regular tree
with vertices of valency 3.

Figure 36

29.2 Definition. A group G is said to be residually finite if for each nontrivial
element g from G there exists a finite group K and a homomorphism ¢: G — K
such that p(g) # 1.

29.3 Exercise. 1) A group G is residually finite if and only if the intersection of all
its normal subgroups of finite index is equal to {1}.
2) Any subgroup of a residually finite group is itself residually finite.

Residual finiteness can be applied to solve certain algorithmic problems.

29.4 Theorem. The word problem in any finitely presented residually finite group
G is solvable.

Proof. Let (X | R) be afinite presentation of the group G, let g be an arbitrary word
in the alphabet X U X! and let g be its image under the canonical epimorphism
from F(X) to G. We want to decide whether the element g is equal to the identity
element in G. For this purpose we run simultaneously the following two processes.

The first process enumerates all words equal to 1 in the group G (for this we
need to enumerate the words from the normal closure of R in F(X)); the second
process computes the images of the given word g under all homomorphisms from G
into all finite groups. If g = 1 then we will know this in a finite number of steps in
the first process; if g # 1 then we will recognise this from the second process. [
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29.5 Theorem. The group GL,(Z) is residually finite.

Proof. For any natural number m there exists a homomorphism ¢, : GL,(Z) —
GL,,(Z,) under which the elements in any matrix are replaced by the corresponding
residues modulo m. Clearly the image of any nontrivial matrix A € GL, (Z) under
¢m is nontrivial for m > max | 4;;|. |

The following general theorem was proven by A. 1. Mal’cev [42].
29.6 Theorem. Any finitely generated matrix group over a field is residually finite.
29.7 Theorem. Any free group is residually finite.

Proof. Let F(X) be a free group with basis X and let g be an arbitrary nontrivial
element from F(X). The element g can be expressed as a product of a finite number
of elements of X and their inverses. Let X; be the set of these elements. Consider
the homomorphism ¢: F(X) — F(X;) such that ¢(x) = x for x € X; and
¢(x) = 1for x € X — X;. Then ¢(g) # 1. Therefore it is sufficient to consider
the case where the basis X is finite. By Exercise 3.12, free groups of finite rank
can be embedded in the free group F'(a, b). Therefore it is sufficient to prove that
the group F(a, b) is residually finite. But this group is residually finite, since it
is embeddable into the group SL,(Z), as follows from Theorem 13.13 or from
Exercise 19.2. |

We give the original proof of Schreier, which illustrates the thesis that many
genial ideas are simple. Let g = x;X3...Xx, be a nonempty reduced word in
the alphabet X U X~ !. Define a homomorphism ¢: F(X) — S,4; for which
@(g) # 1. We map the generators from X not occurring in g and in g~! to the
identity permutation and we map x; to a permutation which sends i + 1 to i. This
condition defines permutations non-uniquely, but it is consistent, since the elements
x; and x; 41 are not mutually inverse. It now follows immediately that x{x, ... x,
sends the symbol n 4 1 to 1. Therefore ¢(g) # 1.

A similar proof follows from the fact that the labelled graph in Figure 37 can be
always extended by edges to an X -graph (see example in Figure 38 for X = {a, b}
and g = ab?a='b7?).

a a a a a
Vel lieX2,,. .. o210, U, O/\g/g\?
b b b
Figure 37 Figure 38

The subgroup H of F(X) corresponding to this X -graph has index n + 1 and
g ¢ H, since the path starting at v and corresponding to the word g is not closed.
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29.8 Problem (see [46, Problem 15.35]). Let F be a free group with finite basis X .
Does there exist a constant C (depending only on | X |) such that any element from F
of length k = 2 with respect to X lies outside a subgroup of F which has index at
most C Ink?

29.9 Theorem. A finitely generated residually finite group G is Hopfian.
We will prove this theorem with the help of the following theorem of M. Hall.

29.10 Theorem. The number of subgroups of a finite index n in a finitely generated
group G is finite.

Proof.*® Let H be a subgroup of index n in G. We label the left cosets of H in G
by integers from 1 to n, so that the coset H has the number 1. The group G acts on
this set by left multiplication and this action gives a homomorphism 0 : G — S,,.
The permutation 0z (h) fixes 1 only for & € H. Therefore the homomorphisms
corresponding to different subgroups of index n are all different. It remains to note
that the number of homomorphisms from a finitely generated group to a given finite
group is finite. |

Proof of Theorem 29.9. Let0: G — G be an epimorphism with kernel K and let n
be an arbitrary natural number. Since the group G is finitely generated, it contains a
finite number of subgroups My, ..., My of index n. Let L; = 67 1(M;). All the
subgroups L; are different and have index n in G. Therefore the set of subgroups
L; coincides with the set of subgroups M;. Thus K is contained in all the M;. Since
n is an arbitrary natural number, K is contained in the intersection of all subgroups
of finite index in G. But G is residually finite, so this intersection is equal to {1},
and hence K = {1}. |

29.11 Corollary (Mal’cev [42]). Any finitely generated matrix group over a field
is Hopfian.

Proof. The proof follows immediately from Theorems 29.6 and 29.9. O
29.12 Corollary. For each integer n the group {a,b | a~'ba = b") is Hopfian.

Proof. The proof follows from Exercise 5.5 and Corollary 29.11. (|

2%6See Theorem 21.4 for another proof.



Chapter 3
Automorphisms of free groups and train tracks

As the planets turn around the sun,
all in group theory turns around matrices.

Ju. 1. Merzljakov

In this chapter we study the dynamics of automorphisms of free groups. Let F;, be
the free group with the free generators y1, ..., y,. We will consider the elements of
F,, as reduced words in these generators and denote the length of a word w by |w|.
Let o be an automorphism of F,. If we want to compute o?(y;), we should
take the word a(y;), replace there each letter y; by the word «(y;) and perform
cancellations to get a reduced word. A perfect situation is the one where we never
have to perform cancellations in computing a?(y; ), @3(y;), ... . Then we can control
the lengths (and perhaps the forms) of a* (;).
However this situation occurs seldom. Consider for example the automorphism
o of F, given by the rule
Y1 = )2,
Y2 = Y1ya.
Then the images of y; under positive powers of « can be computed without per-
forming any cancellations:

Yi = Y2 > Yiy2 = Ya2y1yY2 > Yiyay2Yi1yz2 B> Y2yYi1Y2y1y2y2y1y2 = -0

We observe that the length of o (y,) for k = 0 is equal to Fj 41, the (k + 1)-th
Fibonacci number.?® It is known that F; 1 is the closest integer to Ak%, where

A= # In particular
! oF 1 ()]
im ————— =
koo [ (y1)]

Note also that A is the Perron—Frobenius eigenvalue (see Appendix, Definition A.6)

of the matrix
0 1
1 1)°

28The definition of Fibonacci numbers is inductive: F1 := F := 1, Fx41 := Fr—1 + Fx for
k=2
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Now consider the automorphism of F3 given by the rule

Y1 = )2,
Vi (V2 s,
y3 > yayrh

Then under successive applications of {r we obtain

Y3 yayr e vy vy e ey vy !
= 3y sy !
= yayy vy vy s yayys !
e R e R TR PR PR U PR F PR YR R

We see that the first cancellation occurs in ¥°(y3). Subsequently more cancel-
lations appear and we cannot control the lengths of the ¥ (y3) as easily as in the
first example.

In the seminal paper [9], M. Bestvina and M. Handel introduced a large class of
outer automorphisms?’ of F,, the so-called irreducible outer automorphisms. They
showed that for any irreducible outer automorphism @ of F, one can construct
algorithmically a connected graph G and defineamap f : G — G which adequately
describes (@ and has the nice property that for any edge e of G all the paths % (e)
for k = 1 are reduced. Bestvina and Handel call the map f a train track map
representing .

The exact formulation of the theorem of Bestvina and Handel is given in The-
orem 6.3. In Sections 1-8 we give all necessary definitions** and prepare for the
proof of this theorem. The proof will be given in Section 9. It uses the Perron—
Frobenius theorem on matrices (see Appendix, Theorem A.5). In Section 10 we
consider two examples, one of them shows how to construct the train track map
corresponding to the above outer automorphism .

Note that in the paper [9] the case of a general outer automorphism is also
considered. The technique was refined in [6], [7], [8] to prove several difficult
conjectures on automorphisms of free groups. Our purpose here is to explain the
initial steps of this theory.

In Section 11 we give two applications of train tracks. As a corollary we will

deduce that .
ly" ')l .,
im ————— = A
n—oo ||y (y3)l

where A’ = 1.16730... is the Perron-Frobenius eigenvalue of the train track map
corresponding to ¥, and || - | denotes the cyclic word length (see Section 11.2 and
Exercise 11.3).

2See Definition 1.6 below.
39We slightly change the original definitions of valence-one and valence-two homotopies.

bl
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1 Nielsen’s method and generators of Aut(F,)

Let F be a free group with a finite basis X. We identify the elements of F' with
reduced words in the alphabet X U X~!. For any element w € F, we denote by
|w| the length of w with respect to X .
We define three types of transformation on an arbitrary finite tuple of elements

U= uy,...,uy)of F:

(T1) replace some u; by ul-_l;
(T2) replace some u; by u;u; wherei # j;
(T3) delete some u; if u; = 1.

In all three cases it is understood that the vy for k # i remain unchanged. These
transformations are called elementary Nielsen transformations.

1.1 Exercise. Let IV be a tuple, obtained from the tuple U by a permutation of its
elements. Show that V' can be obtained from U by a finite number of elementary
Nielsen transformations.

Atuple U = (uy,...,un) of elements of F is called Nielsen reduced if for any
three elements vy, v,, v3 of the form uiil, where u; € U, the following conditions
hold:

(ND) vy # 1
(N2) if viva # 1, then |v1va] = |v1], |val;
(N3) if viva # 1 and vovs # 1, then |vivavs| > |v1| — |v2| + |vs].

The condition (N2) means that in the product v;v, not more than half of each
factor cancels. The condition (N3) means that in the product v;v,v3 at least one
letter of v, remains uncancelled.

Now we will introduce some notation. Suppose that the set X U X! is well
ordered. This ordering induces a graded lexicographical ordering < on the set of
all reduced words in the alphabet X U X ~! by the following rule.

Let u and v be two reduced words in the alphabet X U X ~!. Denote by w their
maximal common initial segment. We write ¥ < v if either |u| < |v] or |u| = |v]
and the letter of u following w (if it exists) occurs earlier in the ordering than the
letter of v following w.

We write u < vifu < vandu # v. Note thatu < v implies that uw < vw for
any w € F, provided that the words uw and vw are reduced. For any w € F, let
¢ (w) denote the cardinality of theset{z | z < w}. Thenu < v <= ¢(u) < ¢p(v)
and ¢(u) < ¢p(v) < dp(uw) < p(vw), provided that the words uw and vw are
reduced.

Let v € F be a reduced word. By L(v) we denote the initial segment of v
of length [(|v| 4+ 1)/2]. The weight W(v) of the word v is defined to be W(v) =
¢ (L(v)) + ¢(L(v™")). Obviously, W(v) = W(v~!) and there exists only a finite
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number of words with weight not exceeding a given real number. The weight of a
finite tuple is defined to be the sum of weights of its elements.

1.2 Theorem. Any finite tuple U = (uy,...,u,) of elements of a free group
F can be carried into a Nielsen reduced tuple V by a finite number of Nielsen
transformations.

Proof. If the condition (N1) is not satisfied, we can decrease the number of elements
of U by using the transformation (T3). Suppose that the condition (N2) is not
satisfied. Using (T1), we may assume that vy, v, € U. If, say |vjvz| < |vy], then
using (T2), we can replace v; by viv,. Then the sum of the lengths of elements of
U decreases. Thus we may assume that the conditions (N1), (N2) are satisfied.

Suppose that the condition (N3) is not satisfied. Let vy = ap~! and v, = pb,
where p is the maximal initial segment of v, cancelling in the product vyv,. Simi-
larly, we write v = c¢q~ ! and v3 = qd, where ¢~! is the maximal terminal
segment of the word v, cancelling in the product v,v3. By condition (N2), we have
|2l lq| < |v2|/2. Then vy = prq~! for some r. Assuming that r # 1 we would
have

lvivavs| = |v1] = |v2] + |vs] + 2|r],

a contradiction to the assumption that (N3) is not satisfied. Therefore, r = 1,
v, = pq~'and |p| = |g| = |v2|/2. Since v, # 1, we obtain p # q.

Case 1. Suppose that ¢(p) < ¢(q). Applying the transformation (T1), we
may assume that v, v3 € U. Now we replace vz = qd by v,v3 = pd, using the
transformation (T2). Clearly the weight of the resulting tuple is smaller than the
weight of U.

Case 2. Suppose that ¢ (q) < ¢(p). Applying the transformation (T1), we may
assume that vy, v, € U. Now we replace v; = ap~! by vjvy = ag~!. Clearly
the weight of the resulting tuple is smaller than the weight of U.

Since the number of elements, the sum of the lengths of the elements and the sum
of the weights of the elements in a tuple cannot decrease indefinitely, the process
will stop and we will get a Nielsen reduced tuple. O

1.3 Corollary. Let V = (vq,..., V) be a Nielsen reduced tuple of elements of a
free group F. Then for any element w = w; ... wg wherek >0, w; € VU V™!
and w;w; +1 # 1, the inequality \w| = k holds.

Let F, be a free group with basis X = (x1, ..., X,). Any homomorphism from
F,, into itself is completely determined by the images of the basis elements. For any
x; € X let n; be the automorphism sending x; to x; I and leaving other elements
of X unchanged. For any different x;, x; € X letn;; be the automorphism sending
x; to x;x; and leaving other elements of X unchanged.

Notice that the automorphisms 7; and n;; act on the tuple (x,..., x,) as ele-
mentary Nielsen transformations. For this reason these automorphisms are called
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Nielsen automorphisms. An automorphism o of Fj, is called monomial if there
exists a permutation o of 1,...,n and ¢; € {—1, 1} such that a(x;) = xf(’, for

i=1,...,n.

1.4 Exercise. Any monomial automorphism of the group F, is a composition of
Nielsen automorphisms.

Given an automorphism « of F; and an element w € F},, we denote by wa the
image of w under «. For any tuple of elements U = (uy, ..., up,) of the group Fy,,
we define Ux = (u1a, ..., upno).

1.5 Theorem. The group Aut(Fy,) is generated by the set of all Nielsen automor-
phisms n; and n;;.

Proof. Let « be an arbitrary automorphism of the group F,. By Theorem 1.2, the
tuple U = Xa = (uy,...,uy,) can be carried by elementary Nielsen transforma-
tions into a Nielsen reduced tuple V. If one replaces the i-th entry of U by ul._l or
by u;uj fori # j,then the new tuple U’ has the form U’ = Xn;a or U’ = Xn;ja.
By induction we get that V' = Xf; ... Bs«, where f1,..., Bs are Nielsen auto-
morphisms. Thus V' is an automorphic image of X and hence V' generates F,. In
particular, any element x € X can be expressed in the form x = w; ... w; where
w; € VUV~ and w;w;y; # 1. By Corollary 1.3 we obtain |x| > k. Therefore
k = 1 and hence x € V U V~!. This implies that V = XBy, where By is a
monomial automorphism. Then 87 ... Bsa = By, which, in view of Exercise 1.4,
completes the proof of the theorem. (|

1.6 Definition. Let G be a group. For any element g € G, we define the inner
automorphism iz of G by ig(x) = gxg~! for each x € G. The set {i, | g € G}
is a subgroup of Aut(G). This is called the subgroup of inner automorphisms of
G and it is denoted by Inn(G). Clearly, Inn(G) is isomorphic to the factor group
of G by its center. For example, if G is a noncyclic free group, then Inn(G) = G.
Clearly Inn(G) < Aut(G). The group Out(G) = Aut(G)/Inn(G) is called the
outer automorphism group of G. The image of an automorphism ¢p € Aut(G) in the
group Out(G) is denoted by [¢] and is called the outer automorphism corresponding
to ¢.

1.7 Theorem. Let F, be a free group with basis X = {x1,X2,...,Xn}. Let
W: Aut(F,) — GL,(Z) be the map defined by the following rule: for any
o € Aut(Fy) the (i, j)-th entry of the matrix V() is equal to the sum of exponents
of the letter x; in the word a(x;). Then the map WV is an epimorphism.>!

Proof. Easy calculations show that W is a homomorphism. This homomorphism is
surjective since the images of the Nielsen automorphisms #;; and n; are transvec-
tions and diagonal matrices respectively, and they generate the group GL,(Z). O

31 The kernel of ¥ coincides with Inn(F},) for n = 2 and is strictly larger than Inn(F},) forn = 3
(see [40]).
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Clearly the kernel of W contains all inner automorphisms of F,. Therefore W
induces a homomorphism W: Out(F,) — GL,(Z). For any O € Out(Fy) the
matrix W(QO) is called the abelianization matrix of .

2 Maps of graphs. Tightening, collapsing and expanding

2.1 Graphs. Let G be a connected graph?. The sets of vertices and edges of G are
denoted by V(G) and E(G). For any edge e € E(G) the inverse edge is denoted
by e. For any subset S C E(G) disjoint from the set S~ = {e | e € S} we write
St=SuUSs".

A path in G is either a vertex of G (in this case the path is called trivial) or
a nonempty sequence of edges eje; . .. ex, where the end of e; coincides with the
beginning of e¢; 1 for 1 <i < k — 1. The initial vertex of a path p is denoted by
a(p), the terminal by w(p), the inverse path to p is denoted by p. A path is reduced
if it does not contain a subpath of the form ee where e € E(G).

The definitions of homotopic paths and the fundamental group 71(G, v) are
given in Section 4 of Chapter 2. The homotopy class of a path p is denoted by [p].
The set of all paths in G is denoted by P(G).

2.2 Maps between graphs. A map from a graph G to a graph G, is a map
f:V(Gy) U E(Gy) — V(Gy) U P(G,) which sends V(Gy) to V(Gz), E(Gy)
to P(G,) and preserves the relations of incidence and inverse. We write
f: Gy — G for ease. If vy is a distinguished vertex of Gy and v, = f(vy),
we write f : (G1,v1) = (Ga,v2). The map f can be extended naturally to paths
inGy: f(erea...ex) = f(e1)f(ez)... f(er). Note thatthe f-image of areduced
path (even an edge) may be not reduced.

2.3 Induced homomorphisms and outer automorphisms. Let G, G, be con-
nected graphs and let f: (G1,v1) = (G2, v2) be amap. Then f induces a homo-
morphism fy: 71(G1,v1) — 71(Ga, v2) given by the rule [p] — [f(p)]. Now
we consider the situation where G = G1 = G»,.

Let f: (G,v) = (G, f(v)) beamap. With each path x from v to f(v) we asso-
ciate the homomorphism ¢, : 71(G,v) — m1(G,v) given by [p] — [xf(p)x~1].
If x and y are two paths from v to f(v), then clearly ¢, = i}, 1] o ¢x, Where i)
is the inner automorphism of 771 (G, v) given by the rule: [/] — [glg™!].

Therefore, if ¢ is an automorphism of 71 (G, v), then ¢,, is one too. Moreover,
the images of ¢ and ¢, in Out (71 (G, x)) coincide. We denote this common image
by fe and say that the map f determines (or induces) the outer automorphism fg
of m1(G, v).

2.4 Tightening, collapsing and expanding of maps. A map f: G — G is said
to be tight if for each edge e € E(G) the path f(e) is reduced. To any map

32See Definition 1.4 in Chapter 2.
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f’: G — G there corresponds a unique tight map f: G — G such that for each
e € E(G) the path f(e) is reduced and homotopic to f’(e). We also say that f is
obtained from f’ by tightening.

A graph is called a forest if each of its connected components is a tree.

Let f: G — G be an arbitrary map and let G be a forest in the graph G. Let
G/ Gy be the graph obtained from G by collapsing each connected component of
the forest G to a point. Below we give the formal definitions of the graph G/ G,
the collapsing map col: G — G/ Gy, the expanding map exp: G/Go — G and
the induced map f: G/Gy — G/Gy provided Gy is f-invariant.

First we define the graph G/Ggy. Let {T1,...,Ti} be the set of connected
components of the forest Go. We choose a vertex v; in each 7; and set

V(G/Go) = {0 | v € V(G)\ V(Go)} U {1, ..., Uk},
E(G/Go) =1{e|e € E(G)\ E(Go)}-
The initial vertex of &is a(e) if a(e) € V(G)\V(Go), andis ; if a(e) € V(T}).

The terminal vertex of ¢ is defined similarly.
Define the collapsing map col: G — G/ Gy by the rule:

col() = gv ifv e V(G) \ V(Go),
v; ifv e V(Ty);
{é ife € E(G)\ E(Gy),
col(e) =3 _ .
v; ife e E(T;).

Next we define the expanding map exp: G/ Gy — G. Foreachvertexv € V(T;)
let py be the reduced path in 7; from v; to v. For each vertex v € V(G) \ V(Gy)
we put p, = v. Now we set

exp(?) = v for v € V(G/Gy),
exp(é) = pa(e)ep_w(e) fore e E(G/Go).
Clearly col o exp = id, but exp o col might not be the identity.
_ Finally, we assume that the forest G is f-invariant and define the induced map
f: G/Gog — G/Gy by the rule:
f =colof oexp.
We say that the map f is obtained from the map f by collapsing the f -invariant
subforest Gy.

2.5 Exercise. Prove the following statements. B

I)Ifamap f: G — G is tight, then the induced map f: G/Gy — G/Gy is
also tight.

2) If Gy is a maximal f-invariant forest in G, then the graph G/G¢ does not
contain f_ -invariant forests different from sets of vertices.
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3 Homotopy equivalences

Let G, G1, G; be connected graphs.

3.1 Definition. A map f: Gy — G, is called a homotopy equivalence if for
some (and hence for any) vertex v; € V(G;) the induced homomorphism
fe: w1(G1,v1) = 71(G2, f(v1)) is an isomorphism.

Let ¢: m1(G1,v1) — m1(G2, v2) be an arbitrary isomorphism. We say that ¢
is realized by a homotopy equivalence f: (G1,v1) = (G2, v2) if ¢ = fx.

3.2 Example. The collapsing map col: G — G/Gy and the expanding map
exp: G/ Gy — G as defined in the previous section are homotopy equivalences.

3.3 Definition. The rose with n petals, denoted R,, is the graph with one vertex *
and n oriented edges ey, ..., e,. Its fundamental group is freely generated by the
classes of petals [e1], ..., [es] and thus can be identified with the free group Fj,.

3.4 Example. Any isomorphism ¢: m1(R,, *) — 71(G, v) can be realized by a
homotopy equivalence f: (R,,*) — (G, v) given by the rule f(e;) = p; where
pi is a path such that ¢ ([e;]) = [pi],i = 1,...,n.

3.5 Proposition. 1) Anyisomorphism¢: mw1(G1,v1) = w1(Ga, v2) can be realized
by a homotopy equivalence f: (G1,v1) = (Ga, v2).

2) For each homotopy equivalence t: (G1,v1) — (G2, v2), there exists a ho-
motopy equivalence o : (Ga, v2) — (G1, v1) with the following property: the map
o o T induces the identity automorphism of the group w1(G1,v1); the map Tt o o
induces the identity automorphism of the group mw1(G2, v3).

Proof. Let T be amaximal subtreein G1. Then the graph G/ T is isomorphic to the
rose R;. The collapsing map col: (G1,v1) = (Ry, *) is a homotopy equivalence.
Therefore it is enough to prove that any isomorphism v : 71 (R, *) = 71(G2, v3)
can be realized by a homotopy equivalence. This is true by Example 3.4. The
statement 2) follows immediately from the statement 1). O

3.6 Definition. A homotopy equivalence o: G, — G is called Out-inverse to
a homotopy equivalence 7: G; — G if for some (and hence for any) vertices
v1 € V(Gyp) and v, € V(Gy) the maps o o T and 7 o ¢ induce the identity outer
automorphisms of the groups 71 (G1, v1) and 1 (G,, v,) respectively.

Because of Proposition 3.5, for each homotopy equivalence t: G; — G, there
exists a homotopy equivalence o : G, — G which is Out-inverse to t.

3.7 Definition. Two homotopy equivalences f;: G; — G; and f5: G, — G,
are said to be similar if there exist mutually Out-inverse homotopy equivalences
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7: G — G, and 0: G, — G such that the maps f; and ¢ o f> o t induce the
same outer automorphisms of the group 71(Gy, v).

G2L>G2

1o

G1*>G1

3.8 Example. Let f: G — G be a homotopy equivalence and let f;: G; — G,
be the homotopy equivalence obtained from f by tightening or collapsing an
f -invariant forest. Then f is similar to fj.

4 Topological representatives

Let R, be the rose with one vertex v and n oriented edges eq,...,e,. Let F, be
the free group with free generators x1, . .., x,. We identify the group F;, with the
fundamental group 71 (R, v) by the rule x; — [e;].

4.1 Definition. A marked graph is apair (G, t) where G isagraphandz: R, - G
is a homotopy equivalence. The map 7 is called marking.

Let (G, t) be a marked graph and let 6: G — R, be an arbitrary homotopy
equivalence Out-inverse to t. Then every homotopy equivalence f: G — G
determines the outer automorphism (o o f o 7)g of the group 71 (R,,v) = F.
This outer automorphism does not depend on the choice of o.

Ll

T
Ry, —-=R,

S
R

If fi: G; — G; is a homotopy equivalence similar to f: G — G, then f;
determines the same outer automorphism of F,, but with respect to the marking
T107: R, —> Gq:

Gy /N Gy
1
R

T

T B l

n n-
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4.2 Definition. Let @ be an outer automorphism of the group F,,. A homotopy
equivalence f: G — G is called a topological representative of O with respect to
amarking t: R, — G if f determines O (as explained in 4.1), f istight and f(e)
is not a vertex for any edge e € E(G).

Now we define a standard topological representative for (. Let ¢ be an arbitrary
automorphism from the class @ and let ¢ (x;) = w;(x1, ... x,) be the image of x;
written in reduced form, i = 1,...,n. The standard topological representative of
O (with respect to the identity marking id: R, — R,)isthe map f: R, — R,
given by the rule f(e;) = wi(e1,...,ey), i =1,...,n.

Such a representative is not always good since, for example, the image of an
edge of R, under a power of f may be not reduced. Below we will define irre-
ducible outer automorphisms of F,, and show how to construct for them topological
representatives with good properties, the so-called train tracks.

5 The transition matrix. Irreducible maps
and automorphisms

5.1 Definition. Let f: G — G be a (not necessarily tight) map. From each
pair of mutually inverse edges of the graph G we choose one edge. Let
E(G)T = {e1,...,en} be the set of chosen edges. The transition matrix of the
map f: G — G is the matrix M (f) of size m x m such that its entry M;; is equal
to the total number of occurrences of the edges e; and e; in the (not necessarily
reduced) path f(e;).

A subgraph of G is called nontrivial if at least one of its connected components
is not a vertex. A tight map f: G — G is called irreducible if G does not
contain proper nontrivial f-invariant subgraphs. An equivalent condition is that the
matrix M( f) is irreducible.>® An outer automorphism © of the group F, is called
irreducible if every topological representative f: G — G of O for which G has
no valence-one vertices and no proper nontrivial f -invariant forests is irreducible.
The outer automorphism O is reducible if it is not irreducible.

The following proposition gives an algebraic criterion for reducibility of an outer
automorphism. Its proof is given in Remark 1.3 and Lemma 1.16 of the paper [9].

5.2 Proposition. An outer automorphism [¢p] of the group F, is reducible if and only
if there exist subgroups Hy, ..., Hy, k = 1, and L of F, suchthat1 < tk(Hy) < n,
F, = Hyx---% Hy x L, and ¢(H;) is conjugate to Hi 11,1 = 1, ...,k (addition
modulo k; the subgroup L may be trivial).

Let £k > 1 be an integer. Denote by Py the permutation matrix of size k x k
with entries 1 at the positions (1,2), (2,3),...,(k — 1,k), (k, 1). A square matrix

3See Definition A.1 in Appendix.
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is called a PB-matrix if it can be obtained from some permutation matrix Py by
replacing each entry by a square matrix (a block) of the same size, so that each zero
entry is replaced by the zero block.

5.3 Corollary. If an outer automorphism O of the group F, is reducible, then its
abelianization matrix V() is similar to an integer reducible matrix** or to an
integer PB-matrix.

The two cases in the conclusion of this corollary correspond to the cases L # 1
and L = 1 from Proposition 5.2.

5.3/ Corollary. If an outer automorphism O of the group Fy, is reducible, then the
characteristic polynomial of its abelianization matrix V(QO) is reducible over Z or
the trace of this matrix is zero.

5.4 Example. 1) Let ¢ be the automorphism of the group > = F(y1, y2) given
by the rule

iyt

y2 > yiys t

The outer automorphism [¢] is irreducible.

2) Let ¥ be the automorphism of the group F3 = F(y1, ¥2, y3) given by the
rule

Y1t y2,
Vi Y2 s,
y3 = yayih

The outer automorphism [¥/] is irreducible.
3) Let 6 be the automorphism of the group F> = F(y1, y2) given by the rule

Y1),

Y2 = Y1)y2.

0:

The outer automorphism [6] is reducible.

5.5 Definition. Let f: G — G be a (not necessarily tight) map with irreducible
transition matrix M(f). By Theorem A.5 in Appendix, M(f) has a Perron—
Frobenius eigenvalue A (see Definition A.6). We say that the map f has the
Perron—Frobenius eigenvalue A and denote it by PF( f).

34See Definition A.1 in Appendix.
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6 Train tracks

6.1 Definition. Let G be a connected graph. A furn in G is an unordered pair of
edges of G originating at a common vertex. A turn is non-degenerate if these edges
are distinct and it is degenerate otherwise.

Let f: G — G be a map which does not send edges of G to vertices. Then
f induces a map Df: E(G) — E(G) which sends each edge ¢ € E(G) to the
first edge of the path f(e). This induces a map Tf on turns in G by the rule
Tf(e1,e2) = (Df(e1), Df(ez)). Aturn (eq, ez) is legal if the turns (Tf)" (e1, e2)
are non-degenerate for all n = 0; a turn is illegal if it is not legal. A path p =
e1es...er in G is legal if all its turns {e;, e; +1} are legal. Clearly, a legal path is
reduced.

Amap f: G — G is called a train track map if the path f(e) is nontrivial and
legal for each edge e € E(G). In particular, a train track map is tight.

6.2 Exercise. Given a map f: G — G, how can we determine whether f is a
train track map or not?

6.3 Theorem (Bestvina and Handel [9]). Every irreducible outer automorphism
O of F, can be topologically represented by an irreducible train track map. Such
a map can be constructed algorithmically. In fact, any irreducible topological
representative f: G — G of O whose Perron—Frobenius eigenvalue A is minimal
(i.e., less than or equal to the Perron—Frobenius eigenvalue of any other irreducible
topological representative of O) is a train track map. If A = 1, then f is a finite
order isomorphism.

In Section 7 we will introduce some transformations on maps that will allow us
to prove this theorem in Section 9.

7 Transformations of maps

We introduce six types of transformations of maps f: G — G: tightening, col-
lapsing, subdivision, folding, valence-one and valence-two homotopies. We will
investigate how these transformations affect the Perron—Frobenius eigenvalue of
the transition matrix of f, assuming its irreducibility. We assume in the sequel that
the graph G is connected, but is not a tree.

Tightening and collapsing
These transformations were introduced in Section 2.4.

7.1 Proposition. Let f: G — G be a map which is not tight and let f1: G - G
be the corresponding tight map. If the transition matrices of the maps f and fi
are irreducible, then PE( f1) < PE(f).
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7.2 Proposition. Let f: G — G be a map and let f1: G — Gy be the map
obtained from f by collapsing a nontrivial f -invariant forestin G. Ifthe transition
matrices of the maps f and f1 are irreducible, then PF( f1) < PF(f).

The proofs follow from Corollary A.9, see Appendix.

Subdivision

Let f: G — G be a map. Let ¢ be an edge of G and let f(e) = p’p” be a
subdivision of the path f(e) into two nontrivial subpaths. Thus w(p’) = a(p”) is
a vertex of G.

We subdivide the edge e by a new vertex w into two new edges ¢’, ¢’’. Thus we
getagraph G with V(G;) = V(G)U{w}and E(G1) = (E(G)\{e}*)U{e’, "} .
For an arbitrary path p in G, we denote by p the path in G; obtained from p by
replacing each occurrence of e by ¢’¢” and each occurrence of é by e¢’e”. Define a
map f1: G; — G, by the rule:

fiv) = f(v) forv € V(G), fi(w) = a(p”),
i) = fQ) forl € E(G)\{e}®, fi(e)=p', file")=p".

We say that the map f;: G; — G is obtained from the map f: G — G with

the help of subdivision of the edge e in accordance with the subdivision of the path
fle)=p'p"
7.3 Proposition. Let f: G — G be a map, let E(G) = {ey,...,en}T and let
f1: G1 — Gy be amap obtained from f: G — G by a subdivision of the edge ey,.
Let M and M be the transition matrices of | and fi. Then the following statements
hold.

1) The last two rows of M1 coincide and, without the last two entries, are equal
to the last row of M without the last entry.

2) The sum of the last two columns of the matrix M without the last entries is
equal to the last column of the matrix M.

3) M,'_/=(M1),‘jf0r1$l'$m—1,1$j <m-—1.

Proof. The first statement follows from the fact that in any path fi(/), where / €
E(G)), the edges e,,, e, appear simultaneously and the subpaths e}, e, correspond
to e. The second statement follows from the fact that for any / € E(G) the total
number of occurrences of the edges /, [ in the path f(e,,) is equal to the sum of
the analogous numbers for the paths fi(e,,) and fi(e,). The third statement is
obvious. |

7.4 Corollary. Let f: G — G be amap and let f1: G; — Gy be a map obtained
from f by subdivision. If the transition matrix of the map f is irreducible, then the
transition matrix of fi is also irreducible. Moreover, PE( f) = PF( f1).
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Proof. Let M and M; be the transition matrices of f and f;. Suppose that M is
irreducible. By Exercise A.3 in Appendix the graph I'(M) is strongly connected.
Then the graph I'(M,) is strongly connected and hence M, is irreducible.

Now we prove that PF( f) = PF(f;). Assume that E(G) = {eq, ..., e, )T and
that f7 is obtained from f by a subdivision of e,,.

It follows from the first statement of Theorem A.5 that there exists a column
vector v = (vq,...,v,)T > 0 such that Mv = Av where A = PF(M). We set
= (V1....,Um, V). Then ¥ > 0 and M5 = A by Proposition 7.3. Again by
statement 1) of Theorem A.5 it follows that A = PF(M;). |

Folding

Let f: G — Gbeamapand E(G) = {ey,...,em}t.

First we define an elementary folding. Suppose that two edges ¢;, e; in G
originating at a common vertex have the same images under f. We construct a
new graph G; by identifying these edges and their terminal vertices in G. Thus
E(Gy) = E(G) \ {e;i,ej}* U {z}*, where z is an edge obtained by identifying
e; and ej. We define amap f;: G; — Gy by the rule: if e € E(Gy)\{z}¥, then
f1(e) is the path obtained from the path f(e) by replacing the occurrences of el.jE
and ej:-t by z*;if e = z, then fj(e) is the path obtained from the path f(e;) by the
same procedure. We will say that the map f;: G; — G is obtained from the map
f 1 G — G by elementary folding of edges e; and e;.

Next we define a folding. Suppose that e;, e; are two edges in G with a com-
mon initial vertex and that the paths f(e;) and f(e;) have a nontrivial common
initial subpath. Denote the longest such subpath by p. Let f(e;) = pp; and
flej) = pp2.

Case 1. Suppose that both paths p; and p, are nontrivial. We perform sub-
divisions of edges ¢; = eje;’ and e; = e}e} according to subdivisions of paths
f(ei) = pp1 and f(e;) = pp», and then perform the elementary folding of edges
e; and €.

Case 2. Suppose that one of the paths p;, p, is trivial and the other, say p;, is
nontrivial. Then we perform the subdivision e; = e]e;’ according to the subdivision
of the path f(e;) = pp: and after that we perform the elementary folding of edges
e, ande;.

Case 3. Suppose that both paths p; and p, are trivial. Then we perform the
elementary folding of edges e; and e;.

In all three cases we will say that the resulting map f1: G; — G is obtained
from the map f: G — G by folding e; and e;. In Case 1 the folding is said to be
partial.

7.5 Proposition. Let f: G — G be a map, let E(G) = {ey,...,en}T and let
f1: G1 — Gy be the map obtained from f: G — G by elementary folding of
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edges ey—1 and ey,. Let M and M, be the transition matrices of the maps f and
f1 respectively. Then the following statements hold.

1) The last two columns of the matrix M coincide and, without the last two
entries, are equal to the last column of My without the last entry.

2) The sum of the last two rows of the matrix M without the last entries is equal
to the last row of the matrix M.

3) Ml'j =(M1)l-jfor1$i <Sm-2,1<js<m-2

Proof. The first statement follows from f(e,—1) = f(em). Let z be the edge
of G obtained by identification of edges e,,—; and e,,, and let e be an arbitrary
edge of G1. Then the second statement follows from the fact that the total number
of occurrences of the edges z, z in the path fj(e) is equal to the total number of
occurrences of the edges e;,—1, €m—1, €m, €m in the path f(e). The third statement
is obvious. (|

7.6 Corollary. Let f: G — G be amap and let f1: G; — G be a map obtained
from f byfolding a pair of edges. Ifthe transition matrix of the map f isirreducible,
then the transition matrix of f1 is also irreducible. Moreover, PE( f) = PF( f1).

Proof. Using Corollary 7.4, we may assume that this folding is elementary. Let
M and M be the transition matrices of f and f;. Suppose that M is irreducible.
By Exercise A.3 the graph I'(M) is strongly connected. Then the graph I'(M;) is
strongly connected and hence M is irreducible.

Next we prove that PF( f) = PF(f}). Assume that E(G) = {ey,...,epn}T and
that we fold the edges e;,—1 and e,.

Write A = PF(M) and let v = (v1,...,vm)T > 0 be a column vector such
that Mv = Av. From Proposition 7.5, it follows that M{v' = Av’, where v/ =
(V1s. .., Um—2, Um—1 + vm)T. Since v/ > 0, we have A = PF(M) by statement 1)
of Theorem A.5. (|

Valence-one homotopy

Let f: G — G be a map. Suppose that G contains a valence-one vertex v and an
edge e originating at v and ending at some vertex u. We will call such an edge a
hanging edge.

Let G, be a subgraph of G obtained by removing v and the edges e, e. Let
m: G — G; be the map sending the vertex v and the edges e, e to the vertex u,
and sending other vertices and edges of G to themselves. This map can be thought
of as a contraction of the edge e into the vertex u and the identity on the rest of G.
The map 7 can be naturally extended to nontrivial paths: if p is a path consisting
only of edges e, e, we set 7(p) = u; in the other cases 7 (p) is obtained from p by
deleting all occurrences of e and e.
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Define amap f1: G; — G by therule f1 = m o f|g,. We say that the map
f1 is obtained from the map f by a valence-one homotopy.

7.7 Proposition. Let f: G — G beamap andlet f>: G» — G, be amap obtained
from f by a finite number of valence-one homotopies, followed by tightening and

collapsing a maximal invariant subforest. If the transition matrices of the maps f
and f, are irreducible, then PF( f2) < PF(f).

Proof. The inequality PF( f2) < PF(f) follows from Corollary A.9 and the fact
that the transition matrix of the map f, is dominated by the transition matrix of the
map f (see Definition A.7). O

Valence-two homotopy

Let f: G — G be a map, where E(G) = {ey,...,e,}*, m = 2. Suppose that G
has a valence-two vertex v. By renumbering and reorienting the edges ey, ..., e;
if necessary, we may assume that v is the terminal vertex of e,,—; and the initial
vertex of e,,. Let u be the terminal vertex of e,,.

Let G; be the graph obtained from G by deleting v and “unifying” the edges
em—1, €m into one edge e. Let 0: G — G be the map such that 0 (v) = o(ey,) =
u, o(e;m—1) = e and o sends the vertices from V(G) \ {v} and the edges from
E(G)\{em—_1.em} into themselves. One can think of o as stretching the edge e,, |
across e, and collapsing e, to the vertex u. Clearly o is a homotopy equivalence.

The map o can be extended to nontrivial paths in G: if p is such a path, then
the path o (p) is obtained from p by removing all occurrences of e, and e,,, and
replacing each occurrence of e;;,—; and é,,—; by e and e respectively. If all edges
disappear, we set o (p) = u.

Lett: G; — G be the map which sends the edge e to the path (e,,,_; em)i and
sends the other vertices and edges of G into themselves. Clearly t is a homotopy
equivalence which is Out-inverse to o.

Define amap fi: G; — G1 by therule f; = 0 o f o 7. Thus for / contained
in E(Gy) \ {e,e} we have fi(I) = o(f(l)) and for [ = e we have f(e) =
o(f(em—1)f(em)). We say that the map f; is obtained from the map f by a
valence-two homotopy stretching e,,—; across ey,.

7.8 Proposition. Let f: G — G be a map, let E(G) = {ey,...,en}™ and let
f2: Go — G be the map obtained from f by a valence-two homotopy stretch-
ing em—1 across ey, followed by tightening and collapsing a maximal invariant
subforest. If the transition matrices of the maps [ and f, are irreducible and

Wm—1 < Wy, where w is a Perron—Frobenius right eigenvector of the transition
matrix of f, then PE( f2) < PE(f).

Proof. Let M, My, M, be the transition matrices of the maps f, f1, f2, where
f1 is as in the definition of the valence-two homotopy. Suppose the matrices M
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and M, are irreducible. The matrix M; can be obtained from the matrix M in two
steps:

1. add the m-th column of M to the (m — 1)-th column;
2. remove from the resulting matrix the last column and the last row.

We have Mw = Aw, where A = PF(M). Let w’ be the vector obtained
from w by removing the last entry w,,. Then (M w’); = Aw; — Mjp (Wp — Win—1)
for 1 <i < m — 1. By assumption, w;, = wp—1 and hence Myw’ < Aw’.
Since M7 dominates the irreducible matrix M,, we obtain that PF(M;) < A by
Theorem A.8. O

7.9 Remark. Let O be an irreducible outer automorphism of F,, andlet f: G — G
be an arbitrary homotopy equivalence which determines ©.

Let f1: G; — Gy be a new map obtained from f by valence-one homotopies
(to delete all hanging edges), followed by tightening and collapsing a maximal
invariant subforest. Then f is an irreducible topological representative of (. This
follows from Exercise 2.5 and the definition of irreducibility, see Definition 5.1. In
particular, the standard topological representative of@ (see Section 4) is irreducible.

8 The metric induced on a graph by an irreducible map

Let f: G — G beanirreducible map. We define a metric on G in the following way.
Let M be the transition matrix of f corresponding to some numeration of edges
E(G) = {ey,...,em}*. LetuM = Av, where A = PE(M) and v = (v1,..., Unm)
is the left eigenvector corresponding to A such that Y 'L, v; = 1. Such a vector is
unique.

We define a metric on G by identifying every edge e; with an interval of length v; .
Note that such a metrization does not depend on the numeration of edges. From the
definition of M it follows that the length of the path f(e;) is equal to (vM);, i.e.,
it equals Av;. Thus the map f expands each edge by the factor A. If the map f
is a train track, then every path f(e;), f2(e;), ... is reduced. Moreover, for each
k = 0 the length of the path fX*1(e;) is equal to the length of the path f*(e;)
multiplied by A.

A path in the metric graph G is a point (i.e., a degenerate path), a segment
inside some edge, or a sequence acicy...cxgb where cy,...,cx € E(G),ais a
terminal segment of some edge co, b is an initial segment of some edge cg 41, and
a(ci+1) = w(c;) fori = 0,..., k. The beginning of a path p is denoted by a(p),
the end by w(p). The length of p is denoted by L (p). Forapoint X on p we write
X € p to indicate a certain occurrence of X in p. For any two points U,V € p
one can naturally define the distance from U to V along p. Denote this distance
by d,(U, V).
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8.1 Definition. Let /' : G — G be an irreducible map and A the Perron—Frobenius
eigenvalue of its transition matrix. Let p be a path in the metric graph G. A
preimage in p of a point Y € f(p) is the point X € p such that

A-dp(a(p), X) = dripy(@(f(p)). Y).
In a similar way one can define the preimage in p of a subpath r € f(p).

The following exercise shows that the metric behaves well with respect to sub-
divisions of edges.

8.2 Exercise. Let f: G — G be an irreducible map and let f1: G; — G be the
map obtained from f by subdivision of an edge ¢ = ¢’¢” € E(G) in accordance
with a subdivision of the path f(e) = p’p”. Prove the following formulas.

1) Lg, (1) = Lg(l) forl € E(Gy) \ {e’,e"}*;

2) Lg,(¢') + Lg,(e") = Lg(e);

3) Lg,(¢")/Lg,(€") = L(p)/La(p").

9 Proof of the main theorem
For any graph G with E(G) = {ey,...,en}T we write E(G)T = {e1,...,em}.

9.1 Lemma. Let G be a finite connected graph with the fundamental group of
rank n and without vertices of valency 0, 1 and 2. Then |E(G)*| < 3n — 3.

Proof. Let T be amaximal subtree in G. According to Theorem 4.3 from Chapter 2,
we have n = |E(G)™| — |E(T)™"|. Further,

E@G)T| =3 ) deg(v) = 2|V(G)].
veV(G)

|E(T)"| = [V(G)| - 1.
Hence |E(T)*| < 2|E(G)*|— 1 and
n=|EG) |- |E(M)*| = IEG)|+1. O

9.2 Theorem (Bestvina and Handel [9]). Every irreducible outer automorphism O
of F,, can be topologically represented by an irreducible train track map. Such
a map can be constructed algorithmically. In fact, any irreducible topological
representative f: G — G of O whose Perron—Frobenius eigenvalue A is minimal
(i.e., less than or equal to the Perron—Frobenius eigenvalue of any other irreducible
topological representative of O) is a train track map. If A = 1, then f is a finite
order isomorphism.
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Proof. Thetheoremisobviousforn = 1,soweassumethatn = 2. Let f: G — G
be an arbitrary irreducible topological representative of @ (for example, the stan-
dard one given on arose — see Section 4). We may assume that G has no valence-one
or valence-two vertices (for this it is enough to apply valence-one or valence-two
homotopies, followed by tightening and collapsing a maximal invariant subforest;
because of Propositions 7.7 and 7.8, the Perron—Frobenius eigenvalue will not in-
crease). Then |E(G)'| < 3n — 3 by Lemma 9.1. By Theorem A.10 the entries of
the transition matrix M ( f) do not exceed A3"~3, where A = PF(f).

If f is not a train track map, we will find algorithmically another irreducible
topological representative f': G’ — G’ of @ such that G’ has no valence-one or
valence-two vertices and A’ < A. Similarly, we get |E(G’)"| < 3n — 3, and the
entries of the transition matrix M( f”) do not exceed (1')3"~3. Notice that there
are only finitely many nonnegative integer matrices of bounded size whose entries
do not exceed a given value. Therefore, after applying the algorithm several times
(in fact not more than ZIZTB[}L" + l]i2 times), we get a train track map.

Now we describe the algorithm for constructing f”/. By Theorem A.10 we have
A = 1. Moreover, if A = 1 then M(f) is a permutation matrix. In this case it is
evident that f is an automorphism of the graph G permuting its edges; in particular
f is a train track. Therefore we may assume that A > 1. We consider the graph G
as a metric space, as described in Section 8, and extend the map f linearly to the
interiors of edges of G.

Claim. Tn any neighborhood U of a point of G, there is apoint x with f!(x) € V(G)
for some [ = 0.

Proof. The map f enlarges the distances A > 1 times. Hence for some / the length
of f(U) will exceed the maximum of the lengths of edges of G. For this | we get
L)Y NV(G) # 0. O

Suppose that f: G — G is not a train track map. Then there exists an edge
e € E(G) such that for some k > 1 the path f¥+1(e) contains a subpath of the
form cc, where c is an edge.

An informal description of the algorithm

First we will find a special subpath @x 41 b1 in f5+1(e) such that@g1bx41 C éc
and axy; = bg41. Then we will define its consecutive preimages @;b; £ (e),
i=k,k—1,..,0.

By subdivision we can assume that the endpoints of all paths a;, b; are vertices.
After that we will perform foldings of edges in the paths ag by, @x—1bx—1, ..., @obo
(see Figure 39).

We choose the subpath aj 1541 so that the first k foldings are outside the path
apbg. Then, after the last folding in the path agbg, we will get a hanging edge.

We remove this edge by a valence-one homotopy and, after some improvement,
we obtain an irreducible map with a smaller Perron-Frobenius eigenvalue (see
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Proposition 7.7). Note that the decrease in the Perron—Frobenius eigenvalue may
happen in an earlier step. Sometimes we will improve the maps using tightening,
collapsing a maximal invariant forest, and valence-one or valence-two homotopies.

A detailed description of the algorithm

Let e be an edge such that for some k > 1 the path f**1(e) is not reduced, i.e., it
contains a subpath of the form ¢c, where ¢ is an edge. Let Prq € f*T1(e) be the
initial vertex of the edge ¢ and let Py be its preimage in e with respect to the map
f*F1. Observe that Py lies in the interior of the edge e. If P; = f(Pp) also lies
in the interior of some edge e;, then we can replace e by e¢; and decrease k. Thus
we assume that the following condition is satisfied:

L P, € V(G).

Next we will show how to find a subpath dy41bg 41 of the path f**1(e) with
the following properties.

1I. C_lk+1bk+1 - C_C, where Ak+1 = bk+1.

II. The initial (= the terminal) point of the path ax 1541 is mapped to a vertex
of G under a nonnegative power of f.

IV. Py ¢ a;b; fori =1,... k.
Here a, b; is the preimage in f/ (e) of the path @; 415,11 € f/T1(e), where
j=0,...k.

By the Claim on page139, here for any ¢ > 0 we can choose a path ay+1bx+1
of length less than ¢ for which conditions II and III are fulfilled. We show that for
sufficiently small ¢ condition IV will be fulfilled too.

Suppose that Lg (@x41bk+1) < €. Then Lg (@;b;) = A=%D L (Gr41bk+1)
< efori =1,...,k. By condition I the paths a1, by, and hence all the paths a;,
b; fori = 1, originate at vertices of G. Therefore the paths @;b; fori = 1 lie
in an open e-neighborhood of the set V(G). Recall that Py lies in the interior of
the edge e. If we set ¢ equal to the distance from Py to the closest vertex, then
condition IV will be satisfied.

The next step is the preparation of a series of foldings. Perform a subdivision at
point Py. This subdivision is possible since P; = f(Pp) is a vertex by condition 1.
Let Ay 1 be the initial (= the terminal) point of the path a +1bx+1. By condition I1I
the point f!(Ax4) is a vertex for some / > 0. Perform subsequent subdivisions
at points f'~'(Ag41). ..., Ax41. Subdividing further, we may assume that the
endpoints of all the paths @;b; are vertices.

Now we would like to perform consecutive foldings in the paths agby,
ax—1bg—1, ..., agbg. Note that a;, b; may be paths with several edges since we
have performed subdivisions. We will fold® the first edges of the paths a; and b; .

If we perform all these foldings, we will get a hanging edge, since Py is a

3These folds can be partial, which will lead to new subdivisions.
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valence-two vertex (see Figure 39). However, in practlce we will perform these
foldings up to the moment where for the new map f G — G one of the following
is satisfied:

* the map f: G — G is not tight;

* the graph G contains a non-trivial f -invariant subforest;

* the graph G contains a hanging edge.

Note that up to this point we have used only subdivisions and foldings. There-
fore, by Corollaries 7.4 and 7.6, all constructed maps, including f , have irreducible
transition matrices and the same Perron—Frobenius eigenvalue A as at the beginning.
As soon as we get the map f, we perform valence-one homotopies (to delete all
hanging edges), followed by tightening and collapsing a maximal invariant subfor-
est. By Remark 7.9, the resulting map f : G — G is an irreducible topological
representative of (9. Therefore the transition matrix of f is irreducible. By Propo-
sition 7.7, applied to f and f, we get PF(f) < PF(f) = A

If G does not contain valence-two vertices, we can put ' = f . Otherwise, we
perform valence-two homotopies (to delete all valence-two vertices), followed by
tightening and collapsing a maximal invariant subforest. As a result we obtain an
irreducible topological representative f': G’ — G’ with the vertices of valence at
least 3. By Proposition 7.8 we have PF(f') < PF(f) <A O

by b /
H l» k+1
Po P1< P2< Py X Pk—i—lm
e CE G Gt

Figure 39

10 Examples of the construction of train tracks

First we introduce some useful notation. Let G be a metric graph, f:G—>Ga
map and p a pathin G. We set p; = f'(p) fori = 0. Let P be a point in some
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path p; and let s, t be natural numbers such that s < j < ¢. The trajectory of P in

the sequence of paths pg, ps+1,..., pr is the sequence of points P, Ps41,..., Py
such that
@) P =P;
(i) Pj_1,..., Py are consecutive preimages of the point P in the paths
Pj—1,--+, Ds;
(iii) Pjy1,..., Py areconsecutive images of the point P inthe paths p; y1,..., p;.

In this section we will use a metric on G which differs from the one defined in
Section 8 by a scalar factor.

10.1 Example. Let ¢ be the automorphism of F, = F(y1, y2) defined by the rule
et
b: 1
Yat=> Y1y, .

Let f: Ry — R, be the standard topological representative for [¢] defined on
the rose R, by the rule

. ep — éz,
' ey — 6152.
For the map Df we have:
el
Df: eqy ést e
A T

We see that the pair of edges {e1, &>} is an illegal turn.
Write down the f-images of the edge e5:

ey > e1-ex > e ere.

Since f(e») contains an illegal turn, f is not a train track map.

A degenerate turn appears first in the path x, = f2(e,). Let P, be the vertex
of this turn and let 7 (P,) = (Py, P1, P>) be the trajectory of the point P, in the
paths xg, x1, X3, where x; = fi (e2). One can see that Py, P, are vertices and Py
is a point in the interior of the edge e, of the metric graph R»:

ey —>ep - éz I—)éz . ezél.
Po P P>

Let us compute the distances from Py to the initial and terminal vertices of e,
in the metric graph R;. The transition matrix of the map f: R, — R is

()
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This matrix is irreducible; it has the Perron—Frobenius eigenvalue A = 1+2‘/§,
one of the left Perron—Frobenius eigenvectors being (1,A). Thus we define the
lengths of edges by the rule L(e;) = 1, L(e2) = A. As f increases the distances

by the factor A (see Section 8), we have

1 1 1
dez(oz(ez), P()) = ngléz(a(eléz), Pl) = X L(el) = x (1)
Therefore
1
de, (Po, w(e2)) = L(ez) —de,(a(e2), Po) = A — 1= 1. (2)

We set cc equal to the subpath e,e, of the path e; - e;e;. Next we choose a
subpath a,b, = [A3, P2][ P2, Bz] in cc so that the conditions II-IV of the algorithm
from Section 9 are satisfied for k = 1.

We set A,, B; equal to the occurrences of Py in the subpaths é;, e; of the path
cc. Obviously conditions II and III are satisfied.

Now we check the condition IV: Py ¢ a;b;,. Recall that according to the
definition a;b; = [A;, P;][P;, B;] where A;, P;, B; are preimages of A,, P>, B>
inx;,i =0,1.

In Figure 40 the paths x; and the points A;, P;, B; are drawn. The vertices are
indicated by filled circles, while the occurrences of the point Py are indicated by
small circles. The edges connect filled circles.

€2
Xo: @
€1
X1 .
ez
X2 . @&
A

Figure 40

Let us compute the distances from the points A;, B;, i = 1,2 to the vertex of
the rose along the edges containing them (we use equation (1)):

ey (A2, 0(2)) = 5 = dey(@(e2), By)

1

de (A1, w(e1)) = Z = dz,(a(e2), Br).
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According to equations (1) and (2), the distance from Py to the vertex of R,

is equal to %, which is larger than %2 Therefore Py ¢ a,b; and condition IV is
satisfied. Moreover one can verify that aghg N a1 by = @.

Thus the conditions I-IV of the algorithm are satisfied and we can perform all
necessary subdivisions and foldings.

Step 1. Subdivide the graph R, at the point Py. Then Py, and hence the points
Az, By (they coincide with Py), become vertices:

By POA
0

€ e1

B Ay

In subsequent figures vertices are indicated by filled circles and points by circles.
The edges join filled circles. We use Figure 40 to compute images of edges.

Step 2. Subdivide at points A1, By and fold.

ar—dc
b > cb
cH—a

d — cb

Step 3. Subdivide at points Ag, By and fold.

er>d
fc
g—>8f
cn—)fé
d—cgf

As a result we obtain a graph with a valence-one vertex.
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Step 4. Remove this vertex and the incident edge by the valence-one homotopy.

e—d

gr>g
cH—e

d—cg

By A4

Step 5. Collapse the maximal invariant subforest determined by the edge g.

er—>d

cre ¢ ¢ d

d—c¢ Bo, Ao
BlAl

This map is irreducible; the Perron—Frobenius eigenvalue of its transition matrix

010
0 0 1
1 0 0

is equal to 1, which is smaller than A. Obviously this map is a train track map
representing the outer automorphism [¢]. According to Theorem 9.2, this is a finite
order automorphism. In fact ¢> = 1 in Aut(F,).

10.2 Example. Let ¥ be the automorphism of the group F3 = F(y1, Y2, ¥3)
defined by the rule
Y1 = )2,
Vi {y2 >3,
Y3 vy
Let f: R3 — Rj3 be the standard topological representative of 1] defined on
the rose R3 by the rule
e > ey,
fi dex>es,
e3 — eseq.

Write down the map Df':

Df:ej—>ex>est>ept>ep>e3 0.
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We see that the map (Df)? carries each edge to the edge e3. Therefore any pair
of edges forms an illegal turn. Since f(e3) contains a pair of edges, f is not a train
track. Write down the f-images of the edge e3:

e3 — ez - él [ 6‘351 . éz = €3é152 . é3 = €3élé253 . 6153

= 635152536153 . 626153 = 835152536153826153 . 636‘26153.

A degenerate turn appears first in the path xs = f°(e3). Let Pg be the vertex of
this turn and let T'(Pg) = (Po, P1, ..., Pe) be the trajectory of the point Pg in the
paths xg, X1, ..., Xg, where x; = f(e3). One can see that Py, ..., Ps are vertices
and Py is a point in the interior of the edge e3 of the metric graph R3:

e3 = e3 - é] = 636_’1 . éz = 635152 . 53 [ad 63@152@3 . 6153
Po Py P> Ps3 Py
= 635152538153 . 828153 = 835152536153626153 . e3€2€1é3.

Ps Pg

Let us compute the distances from Py to the initial and terminal vertices of e
in the metric graph R3. The transition matrix of the map f: R; — Rj3 is

S = O

0 1
0 0
1 1

This matrix is irreducible. Its characteristic polynomial is z3 — z2 — 1, the
Perron—Frobenius eigenvalue is A = 1.46557 .. ., one of the left Perron—Frobenius
eigenvectors being (1,A,A2). Thus we define the lengths of edges by the rule
L(e1) =1, L(ez) = A, L(e3) = A%. As f increases distances by the factor A, we
have

1 1
des(a(es), Po) = T desz, (a(ezey), Pr) = 1 L(e3) = A. (3)
Therefore
1
dey(Po, w(e3)) = L(e3) — dey(a(es), Po) =A% — A = T “4)

We set cc equal to the subpath eses of the path xg = esejereseieszezeres -
ezezeres. Now we choose a subpath aghg = [Ag, Ps][Ps, Bes] in Cc, so that the
conditions II-IV of the algorithm from Section 9 are satisfied for k = 5.

We set Ag, Bg equal to the occurrences of Py in the respective subpaths e3, e3
of the path cc. Obviously conditions II and III are satisfied.

Now we check the condition IV: Py ¢ a;b; fori = 1,...,5. Recall that,
according to the definition, a;b; = [A;, P;][P;, B;], where A;, P;, B; are preimages
OfA6, P6, B6inx,~,i =0,1,...,5.
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In Figure 41 the paths x; and the points A;, P;, B; are shown. The vertices are

indicated by filled circles, the occurrences of the point Py by small circles. The
edges connect filled circles.

es AO P() Bo

X0 -

e3 €1

Xo @

X3 .

X4 .

X5 .

X6 .

Figure 41

Compute the distances from the points A;, B;, i = 1,...,6, to the vertex of
the rose along the edges containing them. In the first computation we use the
formula (3) and the fact that Ag = B¢ = Py. In the next computations we use the
fact that f increases the distances by the factor A.

dey(As, w(e3)) = A = dey(a(e3), Bs),
de;(As, w(e3)) = 1 = de,(a(e2), Bs),
dez(As, ©(83)) = A" = do, (a(e1), Ba).

de, (A3, ©(82)) = A2 = dg, (a(€3), B3).
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dél (AZ’ a)(él)) = /\_3 = déz (a(52)7 BZ)»
d€3(A1’ C()(e3)) = A’_4 = dél (a(é1)7 Bl)

Comparing this with equations (3) and (4), we conclude that Py ¢ a;b; for
i = 1,...,5 and hence condition IV is satisfied.

Thus conditions I-IV of the algorithm are satisfied and we can perform all the
necessary subdivisions and foldings.

Step 1. Subdivide the graph R3 at the point Py. Then Py, and hence the points
Ag, Bg (which coincide with Py) become vertices.

Step 2. Subdivide at points As, Bs and fold.

avwab
b—c
c—d
d— ae

e—c
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Step 3. Subdivide at points A4, B4 and fold.

S fg
g—>b
brc
c—hf

e c

h—e

Step 4. Subdivide at points A3, B3 and fold.
i—=ij
Jg
g—>b

b ki
kv h

e ki

hi>e

Step 5. Subdivide at points A, B, and fold.

l—=Im
mi j n
=g
g—b

-
b+ kml ,‘

_ Py
kl—)h_ b Bs
h+— nl A
n—k
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Step 6. Subdivide at points Ay, By and fold.

0 o0q
qgt>m
mi j
J—8
g—b
b — kmgo
k+—op

n—k

pr—n

As aresult we obtain a graph with a valence-one vertex.

Step 7. Remove this vertex and incident edge by a valence-one homotopy:

qr—>m
mi j
J=8
g—>b
b kmg
ke p

n—k

prH—n

qt—>m
mi> j
=g
g—b

b +— mq
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This map f': G’ — G’ is irreducible and the Perron—Frobenius eigenvalue of
its transition matrix

0 0 0 01
1 0 0 01
01 0 0O
00100
00010

is equal to A = 1.16730..., which is smaller than A = 1.46557.... Now we
check that f” is a train track map. For this purpose we compute the induced map

Df": q|—>m|—>j|—>g%>b|\—/4>n‘1|—>f%>g|—>l;

q

We see that {b, ¢} is the unique non-degenerate illegal turn. The paths f”/(e), where
e € E(G’), do not contain this turn. Thus f’ is a train track map representing the
outer automorphism [v/].

11 Two applications of train tracks

We formulate here two results, which can be proven with the help of train tracks.

11.1. For any automorphism «: F,, — F, let Fix(«) be the fixed subgroup of «:
Fix(a) = {x € F, | a(x) = x}.

Then rk(Fix(e)) < n, and if « lies in an irreducible outer automorphism class, then
rk(Fix(«)) < 1 (see Theorems 9.1 and 6.1 in [9]).

11.2. Let X be a fixed basis of F,. A cyclic word of length m is a cyclically
ordered set of m letters x; € X* indexed by elements of Z,,. We shall understand
a cyclic word to be reduced in the sense that x;x; 17 7 1 for all i (indices taken
modulo m). Clearly, cyclic words are in one-to-one correspondence with conjugacy
classes in F;. We denote the length of a cyclic word w by ||w]|.

For any cyclic word w in F, and any outer automorphism O the growth rate of
w with respect to @ is defined as

GRp(w) = lim sup V/[O™(w)]|.

n—>oo

Suppose now that @ is irreducible. Then either @ acts periodically on w (in
this case GRg(w) = 1) or GRg(w) = A > 1, where A is the Perron—Frobenius
eigenvalue of an irreducible train track map f': G — G topologically representing
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O (see Remark 1.8 in [9] ). In particular, all irreducible train track representatives
of @ have the same Perron—-Frobenius eigenvalue. Moreover, one can prove that
either O acts periodically on w or

et _
we O w)]

11.3 Example. For the automorphism ¥ defined in the introduction to Chapter 3

we have o
n
oDl _
n—oo ||y (y3)||

where A’ = 1, 16730... is the unique real root of the polynomial x> — x — 1.

’

Proof. The outer automorphism [/] does not act periodically on y3, otherwise it
acts periodically on y; = ¥ 2(y3) and on y, = ¥~ !(y3), and so it has a finite
order. But the abelianization matrix of [y/],

’

0
0
-1

[ R

0
1
1

has infinite order, since the real root of its characteristic polynomial z* — z2 + 1 is
different from +1. Thus the assumption on periodicity is impossible.

Therefore the above limit equals to the Perron—Frobenius eigenvalue of an irre-
ducible train track representative of [y]. This eigenvalue A’ was computed at the
end of Section 10. |



Appendix. The Perron-Frobenius Theorem

A.1 Definitions. A real matrix A is called non-negative (we write A = 0) if all its
entries are non-negative. Also A is called positive (we write A > 0) if all its entries
are positive.

A permutation matrix is a square matrix in which each row and column consists
entirely of zeros except for a single entry 1.

A reducible matrix is a square matrix A for which there exists a permutation

matrix P such that
X Y
-1 _
P AP = (0 Z)’

where X, Z are square matrices.

If a square matrix is not reducible, then it is said to be irreducible. Note that all
1 x 1 matrices are irreducible; in particular the 1 x 1 zero matrix is irreducible; this
will be called the zero irreducible matrix.

For x = (x1,...,x,) € R" we define |x| = Y 7_, |x;|.

A.2 Exercise. If a matrix A is irreducible, then the matrix A7 is also irreducible.

To every non-negative matrix A of size n X n we associate an oriented graph
I"'(A); the vertices of this graph are the numbers 1, ..., and for every pair of its
vertices i, j there is an oriented edge from i to j if and only if 4;; > 0. A path p
in this graph is called oriented if each edge of p is oriented.

A.3 Exercise. Let A be a non-negative matrix of size n x n. Then the following
statements are equivalent.

1) A isirreducible.

2) Theset{l,...,n} cannot be divided into two nonempty subsets / and J with
the property: A;; =0ifi € [ and j € J.

3) The graph I'(A) is strongly connected, that is, for any two different vertices
i, j of I'(A), there exists in I'(A4) an oriented path from i to j.

A4 Lemma. Let A be a non-negative non-zero irreducible matrix of size n x n.
Then the matrix B = Z::é A" is positive. In particular, if x € R", x = 0 and
x # 0, then Bx > 0.

Proof. Obviously, B;; > 0. We prove that B;; > 0 fori # j. By Exercise A.3,
there exists a sequence of vertices i = iy, i1, ..., ik(,j) = j in the graph I'(A)
such that there is an oriented edge from iy to iz+1 foreach 0 < s < k(i, j). We
may assume that all these vertices are different, so that k = k(i,j) < n — 1.
By definition of the graph I'(4), we have A;,;, Ai,i, ... Aip_,ir, > 0. Therefore
(A%);; > 0, and hence B;; > 0. O
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A.5 Theorem (Perron—Frobenius). Let A be a non-negative, non-zero, irreducible,
real matrix. Then

1) A has a positive, real, right eigenvector, unique up to multiplication by a
positive real number; the associated eigenvalue PF(A) is positive;

2) PF(4) = PF(AT);
3) for every eigenvalue t of the matrix A, it holds |t| < PF(A);

4) to the eigenvalue PF(A) there corresponds a unique, up to multiplication by
a real number; right real eigenvector.

Moreover; let w be a non-negative, non-zero, real column vector and let o be a
non-negative real number. Then the following hold.

5) If Aw < PF(A)w, then Aw = PF(A)w.
6) If Aw < aw, then PF(A) < a.

Proof. *® 1) and 2) First we prove that there exists a column vector y > 0 and a
number A > 0 such that Ay = Ay.

Say A is an n x n matrix. Let u be the row vector of size n with each entry
equalto 1. Set A = {x e R" | x = 0, |x| = 1}. We claim that

sup{p | there exists x € A such that Ax > px}
is a finite number. Indeed, if Ax = px for some x € A, then
udul = udx = puUx = p.

Denote the above supremum by A. Using the compactness of A, one can prove that
there exists y € A suchthat Ay > Ay. Suppose that Ay # Ay. Then BAy > ABy,
where B is the positive matrix from LemmaA.4. Since AB = BA,we get Ax > Ax
forx = By/|By| € A, which contradicts the maximality of A.

Thus Ay = Ay where y € A. This implies that By = er':(; Ay, and since
By > 0 by Lemma A.4, we obtain y > 0. Again from Ay = Ay it follows that
A>0.

By symmetry there is a row vector z > 0 and a number © > 0 such that
zA = pz. Then uzy = zAy = Azy and zy > 0, from which it follows that
nw=A.

Now let y’ be an arbitrary positive right eigenvector of A and let A’ be the
associated eigenvalue. As above we get 4 = A’ and hence A’ = A. Suppose that
¥’ is not a scalar multiple of y. Then the points y’/|y’| and y/|y| lie in A and are
different. Therefore the line containing them intersects the boundary of A at some
point v. Since v is an eigenvector for A, and hence for B, we conclude that Bv is
a scalar multiple of v. Then one of the coordinates of the vector Bv is 0, which
contradicts Lemma A.4.

36The proof follows the line suggested by H. Wielandt in [63].
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Thus y’ is a scalar multiple of y and 1) is proven. The above identity u = A
proves the statement 2).

3) Let Au = tu, where t € C and u € C", withu # 0. Setu’ =
(lutl,....|ua])T. Then Au’ = |t|u’. Letz > Obearow vector such thatz4 = Az,
where A = PF(A). Then Azu’ = zAu’ = |t|zu’ and zu’ > 0, so that A = |z].

4) Let u be a positive and v an arbitrary real right eigenvector with eigenvalue
PF(A). Then for a large enough number r > 0 the vector v + ru is also a positive
right eigenvector with the eigenvalue PF(A). By 1) this vector, and hence the vector
v, is a scalar multiple of the vector u.

5) Suppose that Aw < Aw and Aw # Aw, where A = PF(A). Letz > Obe a
row vector such that z4 = Az. Then Azw = zAw < Azw, a contradiction.

6) follows from 5). O

A.6 Definition. Let A be a non-negative, non-zero, irreducible matrix. The eigen-
value PF(A) from Theorem A.5 is called the Perron—Frobenius eigenvalue of the
matrix A. If A is the zero 1 x 1 irreducible matrix, we set PF(4) = 0. A positive

column vector v with Av = PF(A)v is called a Perron—Frobenius right eigenvector
of A.

A.7 Definition. Let N and M be real matrices. We write N < M to mean that N
and M have the same size and N;; < M;; for all possible i, j. We also say that the
matrix N is dominated by the matrix M if N < A, where A is a submatrix of the
matrix M.

A.8 Theorem. Let My and M be real, non-negative square matrices and let M,
be irreducible and dominated by M. Suppose that Mw < Aw for some number
A > 0 and vector w > 0. Then either PE(M) < A or PE(My) = A and, up to
conjugation by a permutation matrix,

_(M; 0
M_(C D).

Proof. Without loss of generality we may assume that
A B
v=(c )

and My < A. Write w in the form (¥ ), where the size of the vector u corresponds

to the size of A. Then
u u\ _(Au+ Bv
1(0)=m () - (Gt ).

Miu < Au < Au + Bv < Au,

whence
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and by statement 6) of Theorem A.5 we have PF(M;) < A. If PF(M;) = A, then
statement 5) of Theorem A.5 yields Myu = Au. Hence Bv = 0. Since v > 0, it
follows that B = 0. O

A.9 Corollary. Let My and M be irreducible, non-negative, real square matrices
and let My be dominated by M and My # M. Then PF(M;) < PF(M).

A.10 Theorem. Let A be a non-negative, non-zero, irreducible, n X n integer matrix
with Perron—Frobenius eigenvalue A. Then the following hold.

Azl
2) If A = 1, then A is a permutation matrix.
3) Aji < A" foralli,j €{l,...,n}.

Proof. By the Perron—Frobenius Theorem there exists a column vector v > 0 such
that Av = Av. Let u be the row vector of size n with each entry equal to 1.
1) and 2) Computing v Av in two ways, we have

n n
(ZAfl)vl ot (ZAjn)vn =uAv = Auv = Avy + -+ + Avy,.
j=1 Jj=1

For each i the sum Z?:l Aj; is at least 1, since the matrix A is non-negative,
non-zero, integral and irreducible. Therefore A > 1.

If A = 1 then each of these sums is equal to 1. Hence each column of A consists
entirely of zeros except for a single entry which equals 1. Since A does not contain
a zero row, A is a permutation matrix.

3)Fixi,j € {l,...,n}. In the proof of Lemma A.4 we have shown that there
exists a natural number k = k(i, j) such that (4%); 7 > 0; moreover 0 < k < n.
Since the matrix A is integral, it follows that (Ak)ij > 1. From Afv = 1*v we
have

v < (Ak),'jl)j < /\kvi.

Further, from Av = Av we deduce that
Aj,'l),' < Avj < )Lk+lvl' < A,
which proves 3). O

A.11 Corollary. Let r be a real number and n a natural number. Then there
exist only a finite number of non-negative, irreducible n x n integer matrices with
Perron—Frobenius eigenvalue not exceeding r.
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Exercises of Chapter 1

1.9. 1) There are only two automorphisms of Z: the identity n > n and the automor-
phism n — —n, which sends each number to its inverse. Therefore Aut(Z) =~ Z,.

2) (a) Clearly Z(S1) = {1} and Z(S>) = S,. We will prove that Z(S,) = 1
for all » = 3. Let o be an arbitrary element of Z(S,). Then (ij) -0 = o - (ij) for
every transposition (ij) € S,. Hence

(ij)=0-(ij) 0" = (a(i)o(j)).
Take k € {1,2,...,n}\ {i, j}. Then
(ik)y =0-(k)-07' = (o(i)o(k)).

Hence o (i) = i for each i. Thus, o = id.

(b) We prove that (S,) = A, for all n = 1. The commutator of two permuta-
tions in S, is even, therefore S, < A,. Conversely, any permutation in A, is the
product of an even number of transpositions from S,, and the product of any two
of them lies in S

() (Gk) = [G)), (K],
() (kD) = [(ijk), (ijD]-
Therefore 4, C S,,.

(c) The conjugacy classes of S3 are

{idj, {(12).(23),(13)}, {(123), (132)}.

3) Each permutation from S, is a product of transpositions (ij). If i, j are
different from 1, then (ij) = (1i)(17)(1i). Therefore S, = ((12), (13),..., (1n)).
4) Suppose that Q is generated by a finite number of rational numbers, i.e.,

Q = (2’—1‘, ey f]’—’). Then each rational number can be expressed in the form
r
ny % +---+n, % for some integers n1, ..., n,. This latter sum can be written as
r
m 1

for some integer m. But the rational number cannot be expressed in
r

q1--9r q1---9

this form, a contradiction.

2.5. 1) The normality of the center follows immediately from the definition. The
normality of the commutator subgroup follows g~ ![a, b]g = [g " 'ag, g7 'bg]. Let
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us show that G/ G’ is an abelian group, that is, (xG')(yG') = (yG’)(xG’) for any
x,y € G. This is equivalent to xyG’ = yxG’,i.e.,to y"'x~!yx € G'. The latter
is valid.

2) Let {Hx; |i € I} be the set of right cosets of H in G, and {H,y;|j € J}
be the set of right cosets of H; in H. Then {H,y;x; |i € I,j € J} is the set of
right cosets of Hy in G. Thus,

|G Hi|=[I|-|J| =G : H|-|H : Hi|.

3) Let x € G \ H. Then the right cosets H and Hx are distinct. Since
|G : H| = 2,wehave G = H U H x. Analogously the left cosets H and x H are
distinct and G = H U xH . Therefore Hx = xH for any x € G \ H. Obviously
Hx = xH forany x € H. Hence H is normal in G.

4) (a) Consider the subgroups H; = {id, (12)} and H, = {id, (13)} of the
permutation group S3. Then H; H; has order 4 and, by the theorem of Lagrange,
cannot be a subgroup of S3.

(b) Let H be a subset of a group G. Denote H~! = {h=!|h € H}. Then H
is a subgroup of G if and only if HH € H and H™! = H.

Now let H; < G and H < G. Then HiH, = H,;H; by definition of
normality. We verify that Hy H, is a subgroup of G:

(H Hy) - (HiHy) = (HiHy) - (H2H>) = HiH;
and
(H\Hy)™' = H;'H{' = HyH, = H\ H,.

(c)If H < G and H, < G, thenforany g € G thereholds gH1H, = Hig1H> =
HH>g,hence HHH, < G.

5) Each element of A B has the form ab, wherea € A, b € B. Letus analyze in
how many ways the element ab can be written as a;b; for some a; € A,b; € B.
We have

ab = a1hy < a la, = bbl_1
<~ a_lal = bbl_1 =c¢ forsomece ANB
< ay =ac,by =c”'b forsomec € AN B.

Thus any element of AB can be written as a;b;, where a; € A, by € B, in
exactly |4 N B| ways. This implies the required formula

_ l4]-1B|
|ANB|’

|AB|
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6.5. Let G be the rotation group of the cube. Then G acts on the set of its colorings.
The number of different colorings is equal to the number of orbits, which is

ﬁ 3 [Fix(g)|

geG

by Burnside’s theorem.

In the following table, the first row shows all possible angles of rotations in G
(see Example 6.3.2). The subscripts F, E, V mean that the corresponding rotation
preserves a pair of opposite faces, edges or vertices. The second row shows the
number of rotations in G through a given angle. The third row shows how many
colorings are fixed by a given rotation.

Possible angles | 903 | 180 | 2705 | 180g | 1205, | 2405, | 0° =id

Number of rotations | 3 3 3 6 4 4
|Fix(g)| | 33 34 33 33 32 32 30

Thus we have

1 1
G > [Fix(g)| = i(3-33+3-3“+3-33+6-33+4-32+4-32+1-36) = 57.
geG

8.5. Let H be a Sylow p-subgroup of G. Take a nontrivial element # € H. Then
|h| = p* for some s = 1, and hence |12~ | = p.

9.3. The elements (1, 0) and (0, 1) of Z,, x Z,,, commute and have coprime orders
n and m. By Exercise 1.2.2 the order of their sum (1, 1) is nm. Therefore (1, 1)
generates Z, X Zy,and s0 Zy X Ly = Zym.-

11.2. If B = (i1ia...ig), then afa™! = (a(i})a(iz) ... a(ix)). Indeed,
N Y : o .
a(ij) — i — ij41 — a(ij+1),

where the subscripts are considered modulo k. The general case similar.

14.2. We will show that PSL,(3) =~ A4, following the line of the proof of Theo-
rem 14.1.

Let V' be the vector space consisting of all columns of size 2 over the field
F; = {0, 1, 2}. Each nonzero vector of V is a scalar multiple of one of the following

0000
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and no two of them are scalar multiples of each other. Therefore V' contains exactly
four one-dimensional subspaces (lines). The group PSL,(3) acts faithfully on the
set of these lines. This gives an embedding ¢: PSL,(3) — S4.

Consider the elements A and B of PSL,(3) which are the images of the matrices
A= (§1)and B = (19).Itis easy to verify that for an appropriate numeration

of lines, the element A acts on them as the permutation (134), and the element B
acts as the permutation (234). Therefore ((134), (234)) < im ¢.

It is easy to show that ((134), (234)) = A4. Since |PSL,(3)| = 12 = | A4, we
have PSL,(3) = Aa.

Similarly one shows that PSL,(2) =~ S3.

17.3. According to the definition of a binary Hamming (n,n — k)-code given in
Example 17.2, we must show that C = {u € F’ | uH = 0}, where H isa7 x 3
matrix with rows consisting of nonzero vectors in F'3 written in some order. In our
case we can take

Il
O O = = = O

O = O OO = =
—_— O O = = = O

Exercises of Chapter 2

5.6. By the definition following Examples 1.16, the group D), is the automorphism
group of the graph €,. Clearly D, consists of n reflections and » rotations and so
is generated by a, b, where a is a reflection and b is a rotation of order n. It is easy
to verify that a—'ha = bh~!. Now let us see that D,, has the presentation

(@,bla®=1,b"=1,a"ba =b"1).

We must show that any word w(a, b) which is equal to 1 in G can be carried to
the trivial one using the above relations. First of all, using the relations a?> = 1 and
ba = ab™" we can move all a® in w to the left and obtain a word of the form ab*
or b¥. Using b = 1, we may assume that 0 < k < n. Since the resulting word is
also equal to 1 in D,,, it has the form b* with k = 0, that is, it is trivial.

5.9. Let w be an arbitrary word in the alphabet (X U Y)* representing the identity
element in G. Using the relations y~lxy = Wyy (x € X,y € Y¥), we can
transform w into uv, where u is a word in the alphabet X + and v is a word in
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the alphabet Y*. Since U N V = {1}, the words u and v represent the identity
elements in U and V respectively. Therefore these words can be reduced to the
trivial word using only relations from R U S.

6.1. From the presentation (x,y | x°> = y2, x® = y3) we deduce y = y3y—2 =

x6x7> = x. Therefore the presentation (x,y | x°> = y2, x® = y3, x = y)

determines the same group. Eliminating y with the help of a Tietze transformation,

we get the presentation (x | x°> = x2, x® = x3), which simplifies to (x | x3 = 1).

6.5. 1) From Exercise 5.6 we deduce that D,, has the presentation
(a,b|a®=1,b" =1, (ab)®> =1).
Now we introduce the new generator ¢ and the new relation ¢ = ab:

{a,b,c| a>=1,b"=1, (ab)®>=1,c= ab).

Then we eliminate the generator b using b = a~!c:

{a,c| a>=1,@'e)" =1,c% = 1).
Finally, using the relation @ = a~!, we get the presentation
{a,c| a’>=1, (ac)" =1, ¢? = 1).
2) This can be deduced similarly.

7.2. For n = 3 the statement is evident. Now we perform the inductive step from
n — 1 to n. By the inductive hypothesis, 4,1 has the presentation

(53, snm1 |57 =1 (5i8)> =103 <i#j<n—1).
Let G be a group with the presentation
(5305 |57 = 1 (55 = 1B <i # j <m),

and let H be the subgroup of G generated by s3,...,s,—1. Since these gener-
ators satisfy the relations of the presentation of A,_;, there is an epimorphism
Ap—1 — H. Also there is an epimorphism G — A, (given by the rule s; — (12i),
3 < i < n). In partticular, |G| = |A,| = n|A,—1] = n|H]|. If we show that
|G : H| < n, this will imply that |G| = |A,| and hence G = A4,,.

Consider the following cosets of H in G:

2 2 2 2
H, Hs,, Hs,, Hsys5, Hspsy, ..., HspS;_4.

It is enough to show that the union of these cosets is closed with respect to right
multiplication by s3,...,s,. Then this union coincides with the whole group G
and hence |G : H| < n.
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Fori € {3,...,n — 1} we have
HSZ' = H,
—14-1 -1 2
Hsysi = Hs; s, = Hs,,” = Hs,,,
Hs,%s, = Hs,, ,
Hsnsl-zsn = Hs; g5, = Hs, Lsisy = Hs_1 _1 _1 Hs,, ,

Hsnsfsi = Hs,,;
and fori, j € {3,...,n — 1} withi # j we have
-1 _ =1 —~1 -1 —1 _ g —1-1_—1
i =Hs; s, s;s = Hs, s
— S 2
= Hsjsys; = Hsps;.

2 -1
Hsysis; = Hs,,sisj )

9.4. Denote G = (s,t | 53, 3, (st)3) and G; = ker 6. Let ¢: F(s,t) — G be
the canonical epimorphism and let H be the full preimage of G with respect to ¢.
As Schreier representatives of right cosets of H in F(s,t) we choose 1, s, s2. Then
the following elements generate H:

los-® =1, x=1-t-() =15,
ses-(s) V=1, y=s-1-(61)"" = 51572,
u =sz-s~(s_3)_1 =53 z=s21-(s20)"" = s%t.

We may assume that these elements generate G . To find the defining relations of
G1, weneed to rewrite the relations prp~!, where p € {1,s,s%},r € {s3,13, (s1)3},
as words in the generators x, y, z, u. We have

1-s3- 1" =gy =u,
1.3 17" = xyz,
1-(s)® 17! = yuxz,
ses3. sl =43 = u,
s-t3.s7 = yzx,
s-(st)? 571 = zyux,
253572 =43 = u,
.57 = zxy,
s2(st)>s™% = uxzy.

Now eliminate the generators u, z and replace them in all relations by the words

1, y"'x71. As a result we obtain the following presentation of the group Gi:

(x,y|x 'y~ lxy). Hence G; =~ Z x Z.
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12.5. By Theorem 12.1, the group H = H; *p, H> acts on a tree X without
inversions of edges such that

1) H \ X is a segment,

2) for some lift e of this segment there holds Sty (¢ (e)) = H1, Sty (w(e)) = H;
and Sty (e) = Hs.

Since ¢: G — H is an epimorphism, we can define an action of G on X by
the formula: g - x = ¢(g) - x, where x is a vertex or an edge of X. This action is
clearly without inversion of edges. Moreover, G \ X is a segment, and for the lift e
of this segment there holds Stg(x(e)) = G1, Stg(w(e)) = G, and Stg(e) = G3,
where G; = ¢~ !(H;). By Theorem 12.3 we get G = G *g, Ga.

13.8. Let us verify, for example, the isomorphism (B, C) =~ Dg. First we note
that |B| = 6,|C| = 2and C"'BC = B~!. Therefore (B,C) = (B) x (C)
and, by Exercise 5.9, the group (B, C) has the presentation (B,C | B® = 1,
C? =1,C7!'BC = B™!). This is a presentation of Dg by Exercise 5.6.

Now we prove that

GLz(Z) ~ Dy *Dy De.

First we note that GL,(Z) = SL,(Z) x (C). By Theorem 13.7, SL,(Z) has the
presentation (4, B| A* =1, B = 1, A2 = B3). Again by Exercise 5.9 the group
GL,(Z) has the presentation

(A,B,C|A*=1,B® =1, A?> = B>,
C?2=1,C'AC =4, c'BC =B™Y).

Using Tietze transformations, we get another presentation of GL;(Z):

(A,B,C1,Cy | A*=1,C2 =1,C;'AC; = A7,
B®=1,C3=1,C,"BC, =B,
A% = B3 C, = (),

which is clearly a presentation of D4 *p, De.

19.2. Let a, b, c be generators of Z4, Zg, Z12, respectively. Define a homomor-
phism ¢: Z4 %z, Zg — Z12 by the rule a — ¢3, b + c¢2. Clearly ¢ is an
epimorphism which embeds the factors Z4 and Z¢ into Z ;5.

We will prove that ker ¢ is a free group, which is freely generated by the elements
x =la,b] =aba'b~'and y = [a,b?] = ab?>a"'b2.

Obviously x, y € ker¢. First we show that the subgroup (x, y) is normal in
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G = Z4 *z, Zs. We use the fact that a® = b* lies in the center of G:
axa”' =a*ba b a7 = bab7'a7! = x71,
aya~' =a*b*a"'b a7t = bPab a7 =y,
bxb™' =baba"'b™> =x7ly,
byb™! = bab?*a” '3 = bab a7 = x71.

Secondly, we show that (x, y) = ker ¢. It is enough to verify that the group
G/(x, y) has order at most 12. This group has the presentation

(abla*=b°=1,a>=0% [a,b] =1, [a,b?] = 1).

Take an arbitrary word in a, b. Using the relation [a, b] = 1, we can reduce it to
a word of the form a¥b!. Using a* = b® = 1 and a®> = b> we may assume that
0<k<l1,0<[<5

It remains to show that x, y freely generate ker ¢. Take an arbitrary nontrivial
reduced word w(x, y). We need to verify that w(aba='b~! ab?a='h=2) # 1
inG.

We analyze which cancellations can occur in subwords of length 2 of w(x, y)
if we replace x by aba='h~! and y by ab?a~'h2. In each of the words xx, yy,
Xy, VX, xy_1 and in their inverses at most one pair of letters a, a Y, b, b7 canbe
cancelled. In the words x~ !y, y~!x two pairs of such letters cancel.

One can show that after performing replacements and cancellations in w, in
the resulting word the exponents of a lie in {—1, 1} and the exponents of b lie in
{—2,—1,1,2}. By Corollary 11.6 we conclude that w # 1in G.

21.6. Below are drawn all {a, b}-graphs with 3 vertices. There are 7 types of such
graphs if we forget about the distinguished vertex. And there are 13 such graphs if
we remember the distinguished vertex. Their s-fundamental groups are exactly the
subgroups of index 3 in F(a, D).

1. (a,bab™!, b%2ab~2,b3)




3. (bab_l,bza,b3,b2a_1)
4. (a,bab,b® ba~'b)
5. (b~tab,ab? b3 a"'b?)
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. (b,aba™',a*ba™?,a®)

. (aba_l,azb,a3,a2b_1)
. (b,aba,a3,ab_1a)

8. (a_lba,baz,a3,b_1a2)

. {ab™',bab™2,b%a, b3)
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a a
10. (@~ 'b7',ba='b72, b%a™', b3)
10
a
11. {(a,b% b7 a?b, b= a"'bab) b a
12. (b%,bab™!,a* a 'ba) a X X x b
13. (b,a? ab*a™' abab™'a™) b a

22.8. Example 21.5 shows that the elements a2, aba™' and b freely generate a
subgroup of index 2 in F(a,b). Therefore (a?, aba™!) is a free factor of this
subgroup.

233. 1) {az,bz,abza_l,abab,baba}.
2)Zy X Z5.

23.7. Recall that G = {a,b |a~'b%a = b?), H = (a,b~'ab) and L = (ba,ab).
Denote by N the normal closure of a~'h~'ab in H.

First we note that H = ;<7 a' N. Indeed, modulo N, any word in a, b~ tab
can be carried to the form a’.

Secondly, a' ¢ L for any i # 0. Indeed, consider the homomorphism G — Z
given by the rule @ — 1, b — —1. Clearly L lies in its kernel, but a’ is not
contained in the kernel for any i # 0.

a) We show that N = H N L. Obviously a='b~'ab € HN L. Since L < G,
we have H N L < H and hence N < H N L. Now take an arbitrary element
g€ HNL. Then g € a' N for some i € Z, and hence a’ € L. By the above
claim we have i = 0, and so g € N. Therefore H N L < N.

b) We show that N = G’. Trivially N < G’. In the proof of Proposition 23.6 it
was shown that H < G and L < G. Since G/H and G/ L are abelian groups we
have G’ < HN L. But HN L = N by a).

23.8. 1)Inthe amalgamated product H = (c, b | ¢> = b3) the elements c and b gen-
erate subgroups isomorphic to Z. Therefore we can construct the HNN extension
(a,c,b|c? = b3, a~'ba = c) with the base H and the stable letter a. Eliminat-
ing ¢ from this presentation, we get the presentation G = (a,b|a~'b%a = b3).
Thus, G is an HNN extension with the base H. Therefore H embeds into G.

2) Let x = (ch)3, y = (ch?)?. We will show that x, y generate the free group
of rank 2 in H. Take an arbitrary nontrivial reduced word w(x, y). We need to
verify that w((ch)3, (ch?)?) # 1in H.
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First we analyze which cancellations can occur in subwords of length 2 of
w(x, y) if we replace x by (ch)? and y by (ch?)?. In each of the words x2, y2,
yex* and x®y*, where €, u € {—1, 1}, at most two pairs of letters ¢, c=1, b, h~!
can be cancelled.

Using this one can show that after performing the above replacements and
cancellations in w, we get a nonempty word with exponents of ¢ from {—1, 1}
and with exponents of b from {—2,—1, 1,2}. By Corollary 11.6 we conclude that
w # lin H. Thus, (x, y) = F,.

Moreover, this corollary yields that w ¢ (c?). Since c? generates the center
of H, which is infinite, we obtain that (x, y,c?) =~ F, x Z.

3) Let F, have the basis {x, y} and let Z be generated by z. Consider the
subgroups L = (x,y) and M = (x, yt) of F; x Z. We show that L " M =
(yixy~'|i € Z) and hence L N M cannot be finitely generated.

Clearly, y'xy~ = (yt)'x(yt)™" € L N M. Conversely, let g € L N M. Then
g can be written in the form x¥1 (y#)t ... x*7 (yt)!. Since ¢ lies in the center, we
have g = x¥1yl . xknylngl wherel = Iy 4+ --- 4+ 1,. Since g € L we have
[ = 0. This implies g = ]_[721 ysixkiy_si,where s1=0ands; =11 +---+1i1
fori =2,...,n.

4) This follows immediately from 1)-3).

26.12. The subgroups of index 2 of an arbitrary group G are in one-to-one corre-
spondence with the epimorphisms G — Z,. For the group

G = (a,b,c.d |aba b lede™d™ ! =1)

there are 15 such epimorphisms. Consider, for example, the epimorphism ¢ given
on the generators by the rule

a1,
b0,
cH—1,
dw—1.

Clearly |G : kerg| = 2. As representatives of cosets of ker ¢ in G we take the
elements 1 and a. Then, using the method of Reidemeister—Schreier, we obtain the
following generators of ker ¢:

loa-@'=1, a~a-(a_2)_1:a2,

1-b-(b)"' =b, a-b-(ab)™' =aba™ ',

l-c- (@) t=ca™t, a-c-(ac) ! =ac,

1-d-(d)'=da™', a-d-(ad)™" =ad.
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27.2.
10) E
O OO
2() 4

Cutting the surface 75 along the circles 1, 2, 3, 4, we get three pieces. Denote
by K the union of the left and the middle pieces, and by K> the union of the right
and the middle pieces. Let x be a point in the middle piece. By the Seifert—van
Kampen theorem,

7T1(T2,)C) = 7'[1(K1,X)7T1(K1 N Kz,x) *7(K1NK2,x) 7T1(K2,X).

Each of the surfaces K1, K> is orientable, has genus 1 and has two boundary
components. According to Theorem 26.9 we have

71 (K1, x) = w1 (K2, x) = (s152,a.b | s1s2aba™'b71).

Eliminating s; from this presentation with the help of the Tietze transformation, we
get the presentation (s, a, b | ), which is the presentation of F3.

The surface K1 N K3 is orientable, has genus 0 and has four boundary compo-
nents. According to Theorem 26.9 we have

w1 (K1 N K2, x) = (51, 52,53, 54 | $51525354),

which is again a presentation of Fs.
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abelian group, 1
abelianization matrix of an
automorphism, 126
alternating group, 2
amalgamated product, 72

associated subgroups of an HNN exten-

sion, 81
associative operation, 1
automorphism, 4
of a graph, 46
of a projective plane, 26
of a Steiner system, 33
automorphism group of a
linear code, 34

barycentric subdivision, 47

base of an HNN extension, 81
basis of a free group, 53
Baumslag—Solitar Theorem, 117
Bestvina—Handel Theorem, 132, 138
binary operation, 1

binary s-code, 33

Bogopolski’s Theorem, 80, 101
boundary edge, 111

boundary of a cell, 104
boundary of a surface, 111
boundary vertex, 111

Britton’s lemma, 82

Burnside’s Theorem, 11

Cayley graph, 49

Cayley’s Theorem, 8

center of a group, 4
centralizer of an element, 12
Chebychev’s Theorem, 18
circuit, 47

closed path, 47

collapsing an invariant forest, 127

collapsing map, 127
commutative group, 1
commutator, 4
commutator subgroup, 4
conjugacy class, 4
conjugate elements, 4
conjugate subgroups, 4
connected complex, 104
connected graph, 47
contour path of a cell, 104
core of a graph, 100
covering corresponding

to a subgroup, 94
covering map, 93
covering of a complex, 106
covering of a graph, 93
cyclic code, 34
cyclic group, 3
cyclic path, 104
cyclic word, 151

degenerate path, 46
degenerate turn, 132
derived subgroup, 4
dihedral group, 49

direct product of graphs, 45
direct product of groups, 15
double coset, 9

edge group, 85
elementary folding, 134

elementary Nielsen transformations, 123

elementary transformations
of a complex, 110

embedding, 7

empty word, 53

epimorphism, 7
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equivalent complexes , 110
Euler characteristic, 110
expanding map, 127
extended binary Golay code, 35
extended Hamming (8, 4)-code, 35
extension

of a group, 35

of a linear code, 34

of a Steiner system, 33

factor graph, 48
factor group, 5
factor set, 36
faithful group action, 11
fiber over a vertex, 93
fiber over an edge, 93
finite complex, 109
finite presentation of a group, 58
finitely generated group, 3
finite p-group, |
fixed subgroup of an automorphism, 151
folding, 134
folding of a graph, 98
forest, 127
Frattini’s Lemma, 37
free factor, 100
free group, 53
free product, 71
free product with amalgamation, 72
fundamental group
of a complex, 105
of a graph, 57
of a graph of groups with respect
to a tree, 85
of a graph of groups with respect
to a vertex, 85

general linear group, 2
geodesic, 50
G-equivalent elements, 45
graph, 45

graph of groups, 85

group, 1
group action, 10
group action on a graph, 47
group action on a graph
without inversion of edges, 47
group extension, 35
growth rate of a word with respect to an
outer automorphism, 151
Grushko’s Theorem, 115

Hamming code, 34

Hamming distance, 33
Hamming metric, 33

Hamming (7, 4)-code, 34

Hanna Neumann’s problem, 103
Hanna Neumann’s Theorem, 103
Higman—-Sims group, 39

HNN extension, 81
homomorphism, 6

homotopic paths in a complex, 104
homotopic paths in a graph, 56
homotopy class of a path, 56
homotopy equivalence, 128
Hopfian group, 117

Howson property, 102
hyperbolic line, 77

hyperbolic plane M2, 77

identity element, |

Thara’s Theorem, 80

illegal turn, 132

image of a homomorphism, 6
index of a subgroup, 5
induced map, 127

inner automorphism, 125
inner edge, 111

inner vertex, 111

inverse cell, 104

inverse element, 1
irreducible map, 130
irreducible matrix, 153
irreducible outer automorphism, 130



isometry, 2

isomorphic groups, 1
isomorphism of graphs, 46
isomorphism of groups, 1

Jordan—Dickson Theorem, 23

kernel of a group action, 45
kernel of a homomorphism, 6
Klein group, 17

k-transitive action, 11
Kurosh’s Theorem, 92

label of a path, 96

label of an edge, 65
labelling of a graph, 96
Lagrange’s Theorem, 5
left cosets, 4

left regular representation, 8
legal path, 132

legal turn, 132

length of a word, 53
length of an orbit, 10

lift of a pair of graphs, 88
lift of a path, 93

lift of a tree, 49

lift of a vertex, 48

lift of an edge, 48

linear code, 34

linear fractional transformation, 77
locally injective morphism, 46

Mal’cev’s Theorem, 119, 120
map between graphs, 126
marked graph, 129

marking, 129

Mathieu group Mj,, 27
matrix, dominated by, 155

M. Hall’s property, 100

M. Hall’s Theorem, 97
Mobius transformation, 77
monomial automorphism, 125
monomorphism, 7
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morphism of graphs, 46
multiplicative group of a field, 6
multiplicity of a covering, 96, 106

Nagao’s Theorem, 81

n-fold covering, 106

Nielsen automorphisms, 125

Nielsen reduced tuple, 123

Nielsen—Schreier Theorem, 66

(n, m)-code, 34

non-degenerate turn, 132

non-negative matrix, 153

nonstandard block, 26

nontrivial amalgamated product, 80

nontrivial subgraph, 130

normal closure, 58

normal form in a free product, 71

normal form in an amalgamated product,
74

normal form in an HNN extension, 82

normal subgroup, 5

normalizer, 12

1-dimensional complex, 104
orbit of an element, 10

order of a group, 1

order of a group element, 1
orientable surface, 111
orientation of a graph, 46
oriented graph, 46

oriented path, 153

Out-inverse homotopy equivalence, 128
outer automorphism, 125

outer automorphism group, 125
oval, 26

path, 46

path in a metric graph, 137
PB-matrix, 131

perfect binary Golay code, 35
perfect binary s-code, 33
permutation matrix, 153
Perron-Frobenius eigenvalue, 155
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Perron—Frobenius eigenvalue of a map,
131

Perron—Frobenius right
eigenvector, 155

Perron—Frobenius Theorem, 154

Poincaré’s Theorem, 8

positive matrix, 153

presentation of a group, 58

by generators and defining

relations, 59

primary cyclic group, 16

product of paths, 47

product of words, 53

projective line, 25

projective plane, 25

projective point, 25

projective special linear group, 22

proper subgroup, 2

quotient group, 5

rank of a free group, 55

rank of a group, 56

reduced path, 47

reduced word, 53

reducible matrix, 153

reducible outer automorphism, 130

regular group action, 32

Reidemeister—Schreier rewriting process,

69

relation in a group, 59

residually finite group, 118

right cosets, 4

rose, 128

rotation group, 2
of a regular icosahedron, 19
of the cube, 11

Schreier transversal, 67

Schreier’s formula, 66

Schur’s Theorem, 38

segment, 74

Seifert—van Kampen Theorem, 115

semidirect product, 37

Serre’s Theorem, 80

s-fundamental group of a graph, 96
S-graph, 97

similar homotopy equivalences, 128
simple group, 16

S -isomorphism of graphs, 97

special linear group, 2

split extension, 27, 37

sporadic simple groups, 43

stabilizer of an element, 10

stable letter of an HNN extension, 81
standard block, 26

standard topological representative, 130
star of a vertex in a complex, 106
star of a vertex in a graph, 46
Steiner system, 32

strongly connected oriented graph, 153
subdivision, 133

subgroup, 2

subgroup generated by a set, 3
subword, 53

support of a word, 33

surface, 111

Sylow p-subgroup, 13

Sylow’s Theorem, 14

symmetric group, 2

symmetry group, 2

Tietze transformations, 61
Tietze’s Theorem, 61
tight map, 126
tightening, 127
topological representative, 130
train track map, 132
trajectory of a point, 142
transition matrix, 130
transitive action, 10

tree, 47

trivial group, 1

trivial path, 126

turn, 132



2-dimensional complex, 104
unitriangular group, 2

valence of a vertex, 46
valence-one homotopy, 136
valence-two homotopy, 136

Index

vertex group, 85

weight of a word, 33
word, 53
word problem, 59

zero irreducible matrix, 153
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